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Rezime: Metoda optimizacije kolonijom pčela (eng. Bee Colony Optimization, BCO) je metaheuristička 
metoda, inspirisana prirodnim procesima, pomoću koje se rešavaju teški optimizacioni problemi. BCO 
metoda je zasnovana na ponašanju pčela u prirodi tokom potrage za hranom i predložili su je Lučić i 
Teodorović 2001. godine. Kroz brojne primene u transportu, teoriji lokacija, raspoređivanju i drugim 
oblastima metoda je evoluirala, odnosno prošla kroz mnoge transformacije, modifikacije, pa i paralelizacije, 
što je uticalo na povećanje njene efikasnosti. Nedavno su se pojavili prvi rezultati na temu teorijske 
verifikacije BCO metode, a ovaj rad predstavlja korak dalje u tom smeru.  

Ključne reči: Operaciona istraživanja, prirodom inspirisani algoritmi, inteligencija roja, potraga pčela za 
nektarom, kombinatorna optimizacija, metaheurističke metode, uslovi konvergencije. 

Abstract: The Bee Colony Optimization (BCO) algorithm is a nature-inspired meta-heuristic method for 
dealing with hard, real-life optimization problems. It is based on the foraging habits of honeybees and was 
proposed by Lučić and Teodorović in 2001. Through numerous applications in transportation, location 
theory, scheduling and some other fields, method has evolved and underwent many transformations, 
modifications, even parallelization, which resulted in the increase of its efficiency. The first results of the 
theoretical verification of the BCO method have appeared recently. The aim of this paper is to further 
contribute to this topic. 

Keywords: Operational research, bio-inspired algorithms, swarm intelligence, foraging of honeybees, 
combinatorial optimization, meta-heuristic methods, convergence properties. 

1. INTRODUCTION 
BCO is a population-based meta-heuristic method that belongs to the class of Swarm intelligence algorithms. 
Lučić and Teodorović were among the first who used the basic principles of collective bee intelligence in 
dealing with combinatorial optimization problems (Lučić and Teodorović 2001). The basic idea behind BCO 
is to build the multi agent system (colony of B artificial bees) that will search for good solutions of various 
combinatorial optimization problems exploring the principles used by honey bees during nectar collection 
process. Every artificial bee generates one solution to the problem. In order to find the best possible 
solutions, autonomous artificial bees collaborate and exchange information. Using collective knowledge and 
information sharing, artificial bees concentrate on the more promising areas, and slowly abandon solutions 
from the less promising ones. Step by step, artificial bees collectively generate (Davidović et al. 2012) and/or 
improve their solutions (Davidović et al. 2011). The BCO search is running in iterations until some 
predefined stopping criterion is satisfied. An iteration consists of predefined number (NC) of steps. Each 
algorithm step consists of two alternating phases: forward pass and backward pass. During each forward 
pass, every bee is exploring the search space. Backward pass is responsible for the collaboration (knowledge 
exchange) among bees. More detailed description of the BCO method can be found in (Davidović et al 2014) 
and its applications are reviewed in (Teodorović et al. 2014).  

Our main objective is to contribute to the mathematical verification of the BCO meta-heuristic, aiming to 
reduce the gap between successful practice and missing theory. Like other meta-heuristics, BCO method 
suffers from a serious drawback related to the actual quality of the reported solution: even if this solution is 
optimal there is no any proof. For this reason, in the recent literature a lot of effort has been done on the 
theoretical analysis of meta-heuristic methods: (Brimberg et al. 2004) for Variable Neighbourhood Search 
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VNS, (Granville et al. 1994), (Hajek 1988) and (Steinhöfel et al. 2000) for Simulated Annealing, SA, 
(Gutjahr 2002) and (Stützle and Dorigo 2002) for Ant Colony Optimization ACO, (Hanafi 2001) for Tabu 
Search TS, (Hartl 1990), (Rudolph 1994) and (Schmitt 2001) for Genetic Algorithm GA, (Jacobson and 
Yücesan 2004) for Generalized Hill Climbing Algorithms GHC, (Jiang et al. 2007) and (Zeng et al. 2004)  
for Particle Swarm Optimization PSO, (Margolin 2005) for Cross Entropy.  

In the recent papers (Jakšić Kruger 2013) and (Jakšić Kruger et al. 2014) two types of convergence of the 
BCO method are analyzed: the so called best-so-far convergence and the more sophisticated model 
convergence. Both convergence analyses are considered for constructive variant of the BCO algorithm where 
the complete solution contains subset of components. It was noted that the implementation of the forward 
pass is crucial for the convergence, while the backward pass can influence the convergence speed. 

The rest of the paper is organized as follows. The next section provides a basic notation and definitions of 
convergence for meta-heuristic methods. In Section 3 we present mathematical validation and proof for 
model convergence of constructive BCO. Section 4 concludes the paper. 

2. BASIC NOTATION AND DEFINITIONS 
The term convergence is defined in order to answer the question whether or not the current solutions 
proposed by a considered meta-heuristic method converge to an optimal solution and if yes, how fast this 
happens (Gutjahr 2009). The aforementioned paper provides the basic ideas of convergence proofs for 
various meta-heuristic methods. We use the same notation and definitions, and recall them briefly here.  

Let us denote by (x1,x2,... xt, ...), x ∈ χ the sequence of elements that are under consideration. We also 
define some distance function d between these elements. The sequence (xt) converges to a limit x*, if for 
each ε > 0, there is an integer t0 such that d(xt, x*) < ε for all t ≥ t0. If the space χ is finite, the simplified 
version of the definition is applicable:  xt converges to x* if and only if there is some t0 such that xt = x* for 
all t ≥ t0. When meta-heuristics are under consideration, the analyzed sequence (x1,x2,... xt, ...), with xt ∈ χ, 
denotes the sequence of "best-so-far" solutions xt

bsf provided by a given meta-heuristic method after t 
iterations. The distance function d is defined as d(xi,xj) = |f(xi)-f(xj)|, i.e., as the absolute difference between 
the corresponding values of the objective function. For most of the meta-heuristic methods it holds that once 
an optimal solution is reached, it is propagated through the forthcoming iterations. Consecutively, our 
sequence becomes (x1

bsf , x2
bsf ,..., xt

bsf, ...,x*,x*,...).  
Most of the meta-heuristics are stochastic search algorithms, and therefore, in order to obtain more formal 

definition of convergence we need to consider the series of random variables with a common distribution. In 
general, the random variables are not independent, and when meta-heuristics are considered the 
independency holds only for random walk search techniques. The two important established definitions of 
stochastic convergence are as follows. 

Definition 1: A sequence of random variables (X1, X2, ...) converges with probability one (short: w. pr. 1) 
or almost surely to a random variable X*, if Pr{limt → ∞ Xt = X*} = 1, i.e., if with probability one, the 
realization (x1,x2,...) of the sequence Xt converges to the realization x* of X*. 

Definition 2: A sequence of random variables (X1, X2,...) converges in probability to a random variable 
X*, if for all ε > 0, Pr{ d(Xt, X*) ≥ ε} → 0 as t → ∞, where d is the distance function on the space χ from 
which the random variables Xt take their values. 
If χ is a finite set, convergence of Xt to x* w. pr. 1 holds exactly if Pr{∃ u ≥ 1: Xt = x*, ∀ t ≥ u} = 1, and 
convergence of Xt in probability holds exactly if Pr{Xt = x*} → 1 as t → ∞.  

Zlochin et al. (2004) and Gutjahr (2009) discussed two main approaches to constructing meta-heuristic 
methods. In Zlochin (2004) search methods were defined as instance-based type if new candidate solutions 
are being generated using solely the current solution or the current population of solutions. Gutjahr (2009) 
classified these methods as convergent according to the best-so-far criterion since only the best-so-far 
solution is being considered, while other parameters are not analyzed. Best-so-far convergence is easy to 
prove but it is not of practical value. 

On the other hand, in both of the above mentioned papers the alternative frameworks, that enable 
improving the search, were proposed. These frameworks are based on analyzing the parameters of the 
corresponding meta-heuristic method. The authors agree that, in order to generate high-quality solutions, the 
considered meta-heuristic has to learn from previously visited solutions how to concentrate its search on the 
regions containing solutions of higher quality. According to (Zlochin et al. 2004), a meta-heuristic method 
satisfies the model-based search properties if it attempts to solve the optimization problem by repeating the 
following two steps:  
 Candidate solutions are constructed using some parameterized probabilistic model, 
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 Candidate solutions are used to modify the model in such a way to concentrate the search toward 
more promising regions (containing solutions of better quality). 

 For that type of meta-heuristics the model-based parameter scheme was adapted as an assurance for 
model convergence by (Gutjahr 2009). Then, the considered meta-heuristic is being analyzed with respect to 
its parameters. The main conclusion in (Gutjahr 2009) and (Zlochin et al. 2004) is that parameter values have 
to change during the search. 

In the model-based view, the generation of new search points is depending on the current model (the 
current set of solutions), (Gutjahr 2009). The newly obtained cost function values are evaluated, and the 
obtained information is used to modify the model. According to (Gutjahr 2009) the model convergence is 
described by requirement that the model converge as t → ∞, to some state that supports only the generation 
of optimal or at least high quality solutions.  

Contrary to the proofs of best-so-far convergence which are quite easy, model convergence proofs have to 
take the exploration/exploitation tradeoff explicitly into account and only succeed under parameter 
assumptions ensuring a proper balance between these two factors.  Typically, the convergence results lead to 
rather narrow conditions for parameter schemes within which model convergence holds; outside the balanced 
regime, either a surplus of exploitation yields premature convergence to a suboptimal solution, or a surplus 
of exploration produces random-search-type behavior without model convergence (although best-so-far 
convergence may hold).  

In analyzing the parametric properties of a meta-heuristic methods according to (Gutjahr 2009), and 
(Jacobson and Yücesan 2004) the following terms are important. For each iteration t it holds: 
 C(t) represents the event that xt ∈ X*, i.e., an optimal solution was generated in iteration t. The 

complementary event is denoted by Cc(t). 
 B(t) denotes the event CC(1) ∩CC(2) ∩ ... ∩ CC(t), i.e., the algorithm does not  visit any element of X* 

over  first t iterations. Bc(t) is the complementary event to B(t). 
 B = ∩t

∞
= 1 B(t) describes the event that an optimal solution cannot be generated by the algorithm, i.e., 

no iteration at all produces an optimal solution. 
 r(t) = P{BC(t) | B(t-1)} = P{C (t) | B(t-1)}, is the probability that in the iteration t, an optimal solution 

is produced for the first time. 
According to Definition 2, the convergence of xt in probability to the set X* can be expressed as 

Pr{C(t)}→ 1 as t → ∞. We now reproduce the relevant main theorem for the convergence of GHC algorithm 
and an auxiliary result formulated as Lemma 1. 

Theorem 1: A GHC algorithm converges in probability to X* if and only if the following two conditions 
are satisfied:  
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The detailed proofs can be found in (Jacobson and Yücesan 2004) and (Gutjahr 2009). 

3. MODEL CONVERGENCE OF CONSTRUCTIVE BCO 
In (Jakšić Kruger et al. 2014) the authors analyzed both types (best-so-far and model) of convergence 
properties of the BCO method. They established the conditions that are sufficient for the model convergence 
of the constructive variant of the BCO algorithm, in the case where not all the components are included in 
the solution. Here we are concerned with proving model convergence of the constructive BCO algorithm 
when all the components are included in the solution. This scenario occurs while dealing with traveling 
salesman problem TSP, vehicle routing problems, or scheduling problems.  

The (model convergent) variants of the BCO algorithm should always represent a highly structured search 
procedure which exploits the historical record of performance reflected at each stage of its execution. These 
requirements could be fulfilled if the forward pass includes some learning properties. As in our previous 
paper, in order to assure the generation of high quality solutions, we should change the selection probability 
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for the components based on previously obtained good solutions. In fact, our selection probability depends 
on two factors: the problem specific and the learned one.  

Let us consider first TSP problem and denote by (i,j) a pair of components that are directly connected. We 
propose the following modification scheme for the selection probability of component j in the iteration t after 
we chose component i: 

,
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where λt  represents the time dependent learning rate. The idea is to learn from the previous experience how 
each component influences the quality of generated solution. If the pair of components (i,j) was a part of the 
current best (best-so-far) solution, the probability that it will be selected in the next iteration is increased. If 
this pair of components is included in some low quality solutions, we decrease the probability of its selection 
for the next iteration. Now we can present the sufficient conditions that the BCO algorithm, with the above 
defined selection probability modification scheme, converges in probability to an optimal solution. 
 
Theorem 2: Assume that  
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Then the corresponding BCO algorithm converges in probability to one of the optimal solutions. 

Proof: We have to proof that the conditions (i) and (ii) from Theorem 1 are satisfied.  

(i) We will actually prove the equivalent condition (according to Lemma 1), i.e., that Pr(B)=0. As it is 
already defined, C(t) denotes the event that iteration t is the first in which an optimal solution is found by 
some bee. Consider a fixed optimal solution x*. Then it holds:  
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According to the cumulative probability update rule (1), for all pairs of components (i,j)  that don't belong 
to xbsf it holds: 
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which can be easily verified by induction. From the condition (2) it holds 
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Therefore, the above derived is a lower bound of the worst case selection scenario for any component (i,j).  
Consecutively, for the probability to find the optimal solution x* by any bee it holds: 
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where n denotes the total number of components (number of cities in the TSP). 
Considering the complementary event (the optimal solution x* was not found by any bee) we obtain the 

upper bound on the right hand side of the relation (4) as: 
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Applying a logarithm to this expression gives us: 
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From this we can conclude 

,0
log

1
0

=



















−∏

∞+

=tt

n

t
const

  
i.e., in (4) we have Pr(B) ≤ 0. Since Pr(B) ≥ 0 always holds, we have Pr(B) = 0. 
(ii) This condition actually means the following: once the optimal solution is found the probability that it will 
not be generated in the next iteration tends to zero, as the number of iterations tends to infinity. 

Let m denote the index of the iteration when x* is generated for the first time. Then in all iteration t > m, 
the selection probability for components not included in the optimal solution converge to zero as the number 
of iterations tends to infinity. 

Consider the pair of components (i,j) ∉ x*. According to (1), its selection probability after iteration m, i.e., 
in some iteration m+r, r = 1, 2,... is modified as follows: 
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Therefore, after generating the optimal solution x*, for the probability that the pair of component (i,j) ∉ x* 
will be again used it holds: 
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which competes the proof of the theorem. ■ 
Considering the problem of scheduling independent tasks on identical processors, where the pair of 

components (i,j) describes the situation that task j is allocated to processor i, we can apply the selection 
probability modification scheme defined by (1). Therefore, the above described reasoning holds, and the 
resulting BCO algorithm satisfies model convergence properties.  

5. CONCLUSION 
We analyzed some convergence properties of constructive variant of the Bee Colony Optimization method 
(BCO) in cases when solutions contain all the components. We established the conditions that are sufficient 
for the model convergence of the constructive BCO and provided directions for designing the corresponding 
optimization algorithm. The possible topic of future research may include expanding the existing 
convergence results to improvement variant of BCO as well as performing the analysis of the convergence 
speed. 
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