

301

VNS FOR SCHEDULING INDEPENDENT TASKS TO IDENTICAL PROCESSORS

TATJANA DAVIDOVIĆ, STEFANA JANIĆIJEVIĆ
Mathematical Institute of Serbian Academy of Sciences and Arts, Belgrade, {tanjad,stefana}@mi.sanu.ac.rs

Abstract: A heuristic approach, based on the Variable Neighborhood Search (VNS) meta-heuristic, to static scheduling
of independent tasks to homogeneous multiprocessor systems (consisting of identical processors) is proposed. A mixed
integer programming formulation is used within CPLEX optimization software to obtain optimal solution for the small
size test instances. Preliminary experimental results show that using VNS optimal solutions are obtained within
reasonable computational time.

Keywords: Static Scheduling, Independent Tasks, Homogeneous Multiprocessors, Variable Neighborhood Search.

1. INTRODUCTION
In this paper we consider a well known problem of
scheduling n independent tasks to homogeneous
multiprocessor systems containing p identical processors.
Although it is the simplest variant of scheduling problem
it has been proven that it is NP-complete in the strong
sense [1,7]. There are several exact algorithms in the
literature with the goal to solve small to medium size
problems to optimality [6,13]. A lot of approximation
algorithms (heuristic and meta-heuristic ones) for solving
this problem have been proposed (for example,
[2,8,11.14]). Constructive heuristic implementing "largest
processing time first" rule (LPT) proposed in [8] consists
in two steps: i) tasks are sorted in decreasing order of
their processing times and then ii) each task is assigned to
the least loaded processor (ties are broken by the minimal
index of task and/or processor). MultiFit algorithm [2]
uses the fact that this scheduling problem can be
formulated as the bin packing problem and produces
better results than the LPT algorithm but with increasing
the computational complexity. The Tabu Search approach
has been proposed in [14].

In this paper we implement Variable Neighborhood
Search (VNS) heuristic proposed by Mladenović and
Hansen [12] which has already been successfully applied
to a variety of combinatorial and continuous optimization
problems [9,10]. Among scheduling problems, VNS was
applied to a Multiprocessor Scheduling Problem with
Communication Delays [4].

The paper is organized as follows. Problem description is
given in the next section. We present a mixed integer
programming formulation which is used to obtain optimal
solution for small examples. The outline of the VNS
heuristic is given in the Section 3, while the
implementation details connected to the scheduling
problem are described in the Section 4. Section 5 contains
experimental evaluation of our approach and Section 6
concludes the paper.

2. PROBLEM FORMLATION
The problem of scheduling independent tasks onto
homogeneous multiprocessor systems consists in
following: Given are a set of tasks { }nT ,...,2,1= and a set

of identical processors { }pP ,...,2,1= . We assume that
the number of tasks n and number of processors p are
input parameters. In addition, for all tasks, processing
times li, i=1,…,n are given in advance. Since all input
data are known prior to the start of scheduling process,
this variant of the scheduling problem is called static. The
goal of the scheduling process is to assign all tasks to
processors in such a way as to minimize the total
completion time of all tasks (also referred to as
makespan). Each task should be executed by a single
processor without preemption and each processor can
execute only one task at a time. Therefore the running
time of each processor is determined as a sum of
processing times of all tasks assigned to that particular
processor. Makespan equals to the maximum over all
processor's running times.

The considered scheduling problem could be graphically
represented by Gantt diagram (Figure 1).

Pr
oc

es
so

rs

1

2

3

4

t=0 time axis

1

5

8

6

3

2

4

7 10

9

5 10 15 20 25 30 35 40

Figure 1: Gantt diagram of a schedule example

 302

The horizontal axis in the diagram represents time. The
rectangulars in the Gantt diagram represent tasks. The
starting time of a task is determined by the completion
times of all tasks already scheduled to the same processor.
The total completion time (makespan) for the schedule
shown in the Figure 1 equals 40 time units (the
completion time of task 9 scheduled to processor 3). Any
schedule that has completion time less than 40 time units
is considered better. The goal is to discover the schedule
of tasks to processors that has shortest completion time.

In order to present mathematical programming
formulation of the problem, let us introduce the binary
variables defined in the following way:





=
otherwise.,0

,processortoscheduledistaskif,1 ji
x ij

 (1)

The considered scheduling problem is formulated in

the following way [13]:

Minimize

y
(2)

subject to

nix
m

j
ji ≤≤=∑

=

1,1
1

 (3)

mjxly ij

n

i
i ≤≤≥−∑

=

10
1

 (4)

{ } mjnix ji ≤≤≤≤∈ 1,1,1,0 (5)

The objective function that should be minimized
represents the total completion time of all tasks –
makespan y. Each task i should be scheduled to one and
only one potential processor j (constraint (3)). The
makespan y is computed as the maximum over all
processor’s computation times, and processing time of a
processor is defined as a sum of processing times of all
tasks scheduled to that processor. This is described by the
constraints (4). Constraint (5) shows binary nature of the
variables xij.

This formulation is used within ILOG AMPL and CPLEX
11.2 optimization software to solve to optimality used test
instances.

3. VARIABLE NEIGHBORHOOD SEARCH
In this section we give a brief overview of Variable
Neighborhood Search (VNS) [9,10,12] meta-heuristic.
VNS is designed for various combinatorial optimization
problems. It can be described as follows. For a given
optimization problem min f(x), we first define the set of
solutions S and the set of feasible solutions X ⊆ S. Let x ∈
X be an arbitrary solution and Nk, (k =1,…,kmax), a finite
set of pre-selected neighborhood structures. Then Nk (x)
is the set of solutions in the kth neighborhood of x. Steps
in the basic VNS are:

Initialization. Find an initial solution Xx ∈ ; choose a
stopping condition.

Repeat until the stopping condition is met:

1. Set k = 1;
2. Until k = kmax repeat the following steps:

a. Shaking. Generate a point x' at
random from the k-th neighborhood
of x, (x' ∈ Nk(x));

b. Local search. Apply some local
search method with x' as initial
solution; denote with x'' the
obtained local optimum;

c. Move or not. If this local optimum
is better than the incumbent, move
there (x = x''), and continue the
search with N1 (k = 1); otherwise,
set k = k+1.

Usually, the initial solution is determined by some
constructive scheduling heuristic and then improved by
LS before the beginning of actual VNS procedure.

The stopping condition may be e.g. maximum cpu time
allowed, maximum number of iterations, or maximum
number of iterations between two improvements. Often
successive neighborhoods Nk, are nested, but it is not
necessary to be always the case. Observe that point x' is
generated at random in step 2a in order to avoid cycling,
which might occur if any deterministic rule was used.

As a local optimum within some neighborhood is not
necessarily one within another, change of neighborhoods
can be performed during the local search phase too. This
local search is then called Variable Neighborhood
Descent (VND).

Basic VNS is very simple meta-heuristic and its only
parameter is kmax - the preselected number of
neighborhoods. For each particular problem solution
representation, number and order of neighborhoods, and
stopping condition should be defined in such a way to
assure efficient execution of the search.

4. VNS IMPLEMENTATION DETAILS
In our implementation solution is defined as a “dynamic”
matrix Sp×n where the element sji represents the i-th task
scheduled to a processor j. More precisely, for each
processor, the corresponding row of the matrix S contains
list of tasks scheduled to that processor. Since not all
elements of the matrix S are relevant, we introduced an
array oj, j=1,…,p, containing the number of tasks
scheduled to processor j. The last part of the solution is
array yj, j=1,…,p, whose elements represent running times
of processors. Namely, yj equals to the sum of execution
times of all tasks scheduled to processor j.

We used two types of neighborhoods: shift and
interchange. Shift neighborhood is realized by moving a
task from one processor to another. This means that the
complexity of the shift neighborhood is O(np), more

 303

precisely, each task (n) is transferred to any of the
remaining (p-1) processors. Interchange neighborhood
means that tasks from different processors exchange their
positions. The worst case complexity of the interchange
neighborhood is O(n2) since each pair of tasks (not
scheduled onto same processor) can be considered for the
position exchange.

In order to make our implementation more efficient, we
used reduced neighborhoods. Namely, shift neighborhood
moves only tasks from the most loaded processor to the
least loaded one. Within the interchange neighborhood,
only tasks from the most loaded and the least loaded
processors exchange their positions. Moreover, since the
order of tasks is not relevant in the case of independent
tasks scheduling, moved tasks are placed at the end of the
list of tasks for a given processor while a hole for task
taken away from a processor is filled in with the last task
allocated to that processor. These assumptions make easy
to update data structures at each step of a local search
move. Namely, for each neighborhood, the number of
transformations of one solution to another one is constant,
i.e. the complexity of a move from one solution to the
other is O(1). For example, in shift neighborhood, to
move task i (being the r-th one on the corresponding
processor) from processor j to processor m, one should
perform the following steps (we use C-like notation):

1. s[m][o[m]++] = i;
2. s[j][r] = s[j][--o[j]];
3. y[m] += l[i];
4. y[j] -= l[i];

Finally, the makespan to be minimized is maximum yj
overall j.

5. EXPERIMENTAL EVALUATION
Our heuristic implementation is tested on small size
examples with known optimal solutions. Optimal
solutions were obtained by using ILOG AMPL and
CPLEX 11.2 optimization software. Both programs,
CPLEX and our VNS are running on Intel Core 2 Duo
CPU E6750 on 2.66GHz with RAM=8 Gb under Linux
Slackware 12, Kernel: 2.6.21.5, gcc version 4.1.2
Therefore we were able to compare execution times and
solution quality for these programs. Test examples are
generated using the random task graph generators
proposed in [3]. Actually, we used examples generated for
the more complex problem (multiprocessor scheduling
problem with communication delays) and neglected task
dependencies and communication times.

Experimental results are summarized in Table 1. The first
column of Table 1 contains the name of an example file.
Number of tasks is a part of the file name, while number
of processors is set to 4 in all examples. In the second and
third columns we present the optimal schedule length and
CPU time required by CPLEX to find it, respectively.
Column four contains the schedule length obtained by
VNS. Corresponding CPU time (needed by VNS to find
its best schedule) is given in the last column.

Table 1: Scheduling results for small task graphs
Example opt opt

CPU time
VNS VNS

CPU time
It50_70 212 0.021 212 0.001
It50_80 196 0.028 196 0.001
It50_80_1 234 0.044 234 0.001
It50_80_2 337 0.020 337 0.001
It50_80_3 216 0.026 216 0.001
It50_80_4 278 0.018 278 0.001
It50_80_5 128 0.007 128 0.001
It50_80_6 167 0.023 167 0.001
It100_40_1 493 0.064 493 0.001
It100_40_2 782 0.111 782 0.001
It100_40_3 478 0.096 478 0.001
It100_40_4 483 0.075 483 0.001
It100_40_5 271 0.036 271 0.001
It100_40_6 340 0.011 340 0.001
It100_50_1 471 0.098 471 0.001
It100_60_1 465 0.010 465 0.001

As can be seen from Table 1, VNS was able to obtain
optimal solution for all test instances within significantly
smaller CPU time. Stopping criteria for the VNS was set
to 1 sec of CPU time.

We compared the performance of VNS heuristic with the
previously implemented Monte Carlo (MC) method [5].
The stopping criterion for MC was 10000 iterations
requiring less than 1 sec to be completed. The results are
presented in Table 2.

Table 2: Comparison of VNS and MC

Example MC MC
CPU time

VNS VNS
CPU time

It50_70 212 0.007 212 0.001
It50_80 196 0.001 196 0.001
It50_80_1 234 0.001 234 0.001
It50_80_2 337 0.007 337 0.001
It50_80_3 216 0.000 216 0.001
It50_80_4 278 0.029 278 0.001
It50_80_5 128 0.000 128 0.001
It50_80_6 167 0.001 167 0.001
It100_40_1 493 0.006 493 0.001
It100_40_2 783 0.020 782 0.001
It100_40_3 478 0.028 478 0.001
It100_40_4 483 0.001 483 0.001
It100_40_5 271 0.000 271 0.001
It100_40_6 340 0.047 340 0.001
It100_50_1 471 0.001 471 0.001
It100_60_1 465 0.001 465 0.001

Although MC was also able to obtain optimal solution for
most of the instances, it required several times longer
execution time then VNS (except in several cases).

6. CONCLUSION
In this paper we present preliminary results of applying
Variable neighborhood Search (VNS) heuristic to the
problem of scheduling independent tasks onto
homogeneous multiprocessor system. The obtained results

 304

are very encouraging for continuing research on this
topic. Possible extensions are related to testing larger
instances, comparing with other heuristic methods, like
Genetic Algorithms (GA), Tabu Search (TS), Multistart
Local Search (MLS), and introducing new neighborhood
structures.

REFERENCES

[1] Brucker, P., Scheduling Algorithms, Springer, 1998.
[2] Coffman Jr, E. G., Garey, M. R., Johnson, D. S. “An

application of bin-packing to multiprocessor
scheduling”, SIAM J. Comput., 7 (1978), 1-17.

[3] Davidović, T., Crainic, T. G., “Benchmark problem
instances for static task scheduling of task graphs
with communication delays on homogeneous
multiprocessor systems”, Comput. & OR, 33(8)
(2006), 2155-2177.

[4] Davidović, T., Hansen, P., Mladenović, N.,
“Permutation based genetic, tabu and variable
neighborhood search heuristics for multiprocessor
scheduling with communication delays”, Asia-pacific
Journal of Operational Research, 22(3) (2005), 297-
326.

[5] Davidović, T., Janićijević, S., “Heuristic Approach to
Scheduling Independent Tasks on Identical
Processors”, in Proc. Symp. on information
technology, YUINFO 2008, (on CD 115.pdf),
Kopaonik, March 08-11, 2009.

[6] Dell'Amico, M., Martello, S., “Optimal scheduling of
tasks on identical parallel processors”, ORSA Journal
on Computing, 7 (1995), 191-200.

[7] Garey, M. R., Johnson, D. S., Computers and
Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman and Company, 1979.

[8] Graham, R. L., “Bounds on multiprocessor timing
anomalies”, SIAM J. Applied Math., 17 (1969), 416-
429.

[9] Hansen, P. Mladenović, N., “Variable neighbourhood
search”, in Glover, F., Kochenagen, G., editors,
Handbook of Metaheuristics, pages 145-184. Kluwer
Academic Publishers, Dordrecht, 2003.

[10] Hansen, P., Mladenović, N., “Variable
neighbourhood search”, in Burke, E. K., Kendall, G.,
editors, Search Methodologies: Introductory
Tutorials in Optimization and Decision Support
Techniques, pages 211-238. Springer, 2005.

[11] Haouari, M., Gharbi, A., Jemmali, J. “Tight bounds
for the identical parallel machine scheduling
problem”, Int. Trans. in Oper. Res., 13 (2006), 529-
548.

[12] Mladenović, N., Hansen, P., “Variable neighborhood
search”, Comput. & OR, 24(11) (1997), 1097-1100.

[13] Mokotoff, E, “An exact algorithm for the identical
parallel machine scheduling problem”, Europ. J.
Oper. Res., 152 (2004), 758-769.

[14] Thesen, A., “Design and evaluation of a tabu search
algorithm for multiprocessor scheduling”, J. Heur.,
4(2) (1998), 141-160.

