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Abstract: A heuristic approach, based on the Variable Neighborhood Search (VNS) meta-heuristic, to static scheduling 
of independent tasks to homogeneous multiprocessor systems (consisting of identical processors) is proposed. A mixed 
integer programming formulation is used within CPLEX optimization software to obtain optimal solution for the small 
size test instances. Preliminary experimental results show that using VNS optimal solutions are obtained within 
reasonable computational time. 
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1. INTRODUCTION 
In this paper we consider a well known problem of 
scheduling n independent tasks to homogeneous 
multiprocessor systems containing p identical processors. 
Although it is the simplest variant of scheduling problem 
it has been proven that it is NP-complete in the strong 
sense [1,7]. There are several exact algorithms in the 
literature with the goal to solve small to medium size 
problems to optimality [6,13]. A lot of approximation 
algorithms (heuristic and meta-heuristic ones) for solving 
this problem have been proposed (for example, 
[2,8,11.14]). Constructive heuristic implementing "largest 
processing time first" rule (LPT) proposed in [8] consists 
in two steps: i) tasks are sorted in decreasing order of 
their processing times and then ii) each task is assigned to 
the least loaded processor (ties are broken by the minimal 
index of task and/or processor). MultiFit algorithm [2] 
uses the fact that this scheduling problem can be 
formulated as the bin packing problem and produces 
better results than the LPT algorithm but with increasing 
the computational complexity. The Tabu Search approach 
has been proposed in [14]. 
 
In this paper we implement Variable Neighborhood 
Search (VNS) heuristic proposed by Mladenović and 
Hansen [12] which has already been successfully applied 
to a variety of combinatorial and continuous optimization 
problems [9,10]. Among scheduling problems, VNS was 
applied to a Multiprocessor Scheduling Problem with 
Communication Delays [4]. 
 
The paper is organized as follows. Problem description is 
given in the next section. We present a mixed integer 
programming formulation which is used to obtain optimal 
solution for small examples. The outline of the VNS 
heuristic is given in the Section 3, while the 
implementation details connected to the scheduling 
problem are described in the Section 4. Section 5 contains 
experimental evaluation of our approach and Section 6 
concludes the paper.  

2. PROBLEM FORMLATION 
The problem of scheduling independent tasks onto 
homogeneous multiprocessor systems consists in 
following: Given are a set of tasks { }nT ,...,2,1=  and a set 

of identical processors { }pP ,...,2,1= . We assume that 
the number of tasks n and number of processors p are 
input parameters. In addition, for all tasks, processing 
times li, i=1,…,n are given in advance. Since all input 
data are known prior to the start of scheduling process, 
this variant of the scheduling problem is called static. The 
goal of the scheduling process is to assign all tasks to 
processors in such a way as to minimize the total 
completion time of all tasks (also referred to as 
makespan). Each task should be executed by a single 
processor without preemption and each processor can 
execute only one task at a time. Therefore the running 
time of each processor is determined as a sum of 
processing times of all tasks assigned to that particular 
processor. Makespan equals to the maximum over all 
processor's running times.  

 
The considered scheduling problem could be graphically 
represented by Gantt diagram (Figure 1). 
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Figure 1:  Gantt diagram of a schedule example 
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The horizontal axis in the diagram represents time. The 
rectangulars in the Gantt diagram represent tasks. The 
starting time of a task is determined by the completion 
times of all tasks already scheduled to the same processor. 
The total completion time (makespan) for the schedule 
shown in the Figure 1 equals 40 time units (the 
completion time of task 9 scheduled to processor 3). Any 
schedule that has completion time less than 40 time units 
is considered better. The goal is to discover the schedule 
of tasks to processors that has shortest completion time.  

In order to present mathematical programming 
formulation of the problem, let us introduce the binary 
variables defined in the following way:  
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The considered scheduling problem is formulated in 

the following way [13]:  
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The objective function that should be minimized 
represents the total completion time of all tasks – 
makespan y. Each task i should be scheduled to one and 
only one potential processor j (constraint (3)). The 
makespan y is computed as the maximum over all 
processor’s computation times, and processing time of a 
processor is defined as a sum of processing times of all 
tasks scheduled to that processor. This is described by the 
constraints (4). Constraint (5) shows binary nature of the 
variables xij. 
 
This formulation is used within ILOG AMPL and CPLEX 
11.2 optimization software to solve to optimality used test 
instances. 
 

3. VARIABLE NEIGHBORHOOD SEARCH  
In this section we give a brief overview of Variable 
Neighborhood Search (VNS) [9,10,12] meta-heuristic. 
VNS is designed for various combinatorial optimization 
problems. It can be described as follows. For a given 
optimization problem min f(x), we first define the set of 
solutions S and the set of feasible solutions X ⊆ S. Let x ∈ 
X be an arbitrary solution and Nk, (k =1,…,kmax), a finite 
set of pre-selected neighborhood structures. Then   Nk (x) 
is the set of solutions in the kth neighborhood of x. Steps 
in the basic VNS are: 
 

Initialization. Find an initial solution Xx ∈ ; choose a 
stopping condition. 
 
Repeat until the stopping condition is met: 

1. Set k = 1; 
2. Until k = kmax repeat the following steps: 

a. Shaking. Generate a point x' at 
random from the k-th neighborhood 
of x, (x' ∈ Nk(x)); 

b. Local search. Apply some local 
search method with x' as initial 
solution; denote with x'' the 
obtained local optimum; 

c. Move or not. If this local optimum 
is better than the incumbent, move 
there (x = x''), and continue the 
search with N1  (k = 1); otherwise, 
set k = k+1. 

 
Usually, the initial solution is determined by some 
constructive scheduling heuristic and then improved by 
LS before the beginning of actual VNS procedure. 
 
The stopping condition may be e.g. maximum cpu time 
allowed, maximum number of iterations, or maximum 
number of iterations between two improvements. Often 
successive neighborhoods Nk, are nested, but it is not 
necessary to be always the case. Observe that point x' is 
generated at random in step 2a in order to avoid cycling, 
which might occur if any deterministic rule was used. 
 
As a local optimum within some neighborhood is not 
necessarily one within another, change of neighborhoods 
can be performed during the local search phase too. This 
local search is then called Variable Neighborhood 
Descent (VND). 
 
Basic VNS is very simple meta-heuristic and its only 
parameter is kmax - the preselected number of 
neighborhoods. For each particular problem solution 
representation, number and order of neighborhoods, and 
stopping condition should be defined in such a way to 
assure efficient execution of the search. 
 

4. VNS IMPLEMENTATION DETAILS 
In our implementation solution is defined as a “dynamic” 
matrix Sp×n where the element sji represents the i-th task 
scheduled to a processor j. More precisely, for each 
processor, the corresponding row of the matrix S contains 
list of tasks scheduled to that processor. Since not all 
elements of the matrix S are relevant, we introduced an 
array oj, j=1,…,p, containing the number of tasks 
scheduled to processor j. The last part of the solution is 
array yj, j=1,…,p, whose elements represent running times 
of processors. Namely, yj equals to the sum of execution 
times of all tasks scheduled to processor j. 
 
We used two types of neighborhoods: shift and 
interchange. Shift neighborhood is realized by moving a 
task from one processor to another. This means that the 
complexity of the shift neighborhood is O(np), more 
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precisely, each task (n) is transferred to any of the 
remaining (p-1) processors. Interchange neighborhood 
means that tasks from different processors exchange their 
positions. The worst case complexity of the interchange 
neighborhood is O(n2) since each pair of tasks (not 
scheduled onto same processor) can be considered for the 
position exchange. 
 
In order to make our implementation more efficient, we 
used reduced neighborhoods. Namely, shift neighborhood 
moves only tasks from the most loaded processor to the 
least loaded one. Within the interchange neighborhood, 
only tasks from the most loaded and the least loaded 
processors exchange their positions. Moreover, since the 
order of tasks is not relevant in the case of independent 
tasks scheduling, moved tasks are placed at the end of the 
list of tasks for a given processor while a hole for task 
taken away from a processor is filled in with the last task 
allocated to that processor. These assumptions make easy 
to update data structures at each step of a local search 
move. Namely, for each neighborhood, the number of 
transformations of one solution to another one is constant, 
i.e. the complexity of a move from one solution to the 
other is O(1). For example, in shift neighborhood, to 
move task i (being the r-th one on the corresponding 
processor) from processor j to processor m, one should 
perform the following steps (we use C-like notation): 
 

1. s[m][o[m]++] = i; 
2. s[j][r] = s[j][--o[j]]; 
3. y[m] += l[i]; 
4. y[j] -= l[i]; 

 
Finally, the makespan to be minimized is maximum yj 
overall j. 
 

5. EXPERIMENTAL EVALUATION 
Our heuristic implementation is tested on small size 
examples with known optimal solutions. Optimal 
solutions were obtained by using ILOG AMPL and 
CPLEX 11.2 optimization software. Both programs, 
CPLEX and our VNS are running on Intel Core 2 Duo 
CPU E6750 on 2.66GHz with RAM=8 Gb under Linux 
Slackware 12, Kernel: 2.6.21.5, gcc version 4.1.2 
Therefore we were able to compare execution times and 
solution quality for these programs. Test examples are 
generated using the random task graph generators 
proposed in [3]. Actually, we used examples generated for 
the more complex problem (multiprocessor scheduling 
problem with communication delays) and neglected task 
dependencies and communication times. 
 
Experimental results are summarized in Table 1. The first 
column of Table 1 contains the name of an example file. 
Number of tasks is a part of the file name, while number 
of processors is set to 4 in all examples. In the second and 
third columns we present the optimal schedule length and 
CPU time required by CPLEX to find it, respectively. 
Column four contains the schedule length obtained by 
VNS. Corresponding CPU time (needed by VNS to find 
its best schedule) is given in the last column. 

Table 1: Scheduling results for small task graphs  
Example opt opt  

CPU time 
VNS VNS  

CPU time 
It50_70 212 0.021 212 0.001 
It50_80 196 0.028 196 0.001 
It50_80_1 234 0.044 234 0.001 
It50_80_2 337 0.020 337 0.001 
It50_80_3 216 0.026 216 0.001 
It50_80_4 278 0.018 278 0.001 
It50_80_5 128 0.007 128 0.001 
It50_80_6 167 0.023 167 0.001 
It100_40_1 493 0.064 493 0.001 
It100_40_2 782 0.111 782 0.001 
It100_40_3 478 0.096 478 0.001 
It100_40_4 483 0.075 483 0.001 
It100_40_5 271 0.036 271 0.001 
It100_40_6 340 0.011 340 0.001 
It100_50_1 471 0.098 471 0.001 
It100_60_1 465 0.010 465 0.001 

 
As can be seen from Table 1, VNS was able to obtain 
optimal solution for all test instances within significantly 
smaller CPU time. Stopping criteria for the VNS was set 
to 1 sec of CPU time. 
 
We compared the performance of VNS heuristic with the 
previously implemented Monte Carlo (MC) method [5].  
The stopping criterion for MC was 10000 iterations 
requiring less than 1 sec to be completed. The results are 
presented in Table 2. 
 
Table 2: Comparison of VNS and MC  

Example MC MC  
CPU time 

VNS VNS  
CPU time 

It50_70 212 0.007 212 0.001 
It50_80 196 0.001 196 0.001 
It50_80_1 234 0.001 234 0.001 
It50_80_2 337 0.007 337 0.001 
It50_80_3 216 0.000 216 0.001 
It50_80_4 278 0.029 278 0.001 
It50_80_5 128 0.000 128 0.001 
It50_80_6 167 0.001 167 0.001 
It100_40_1 493 0.006 493 0.001 
It100_40_2 783 0.020 782 0.001 
It100_40_3 478 0.028 478 0.001 
It100_40_4 483 0.001 483 0.001 
It100_40_5 271 0.000 271 0.001 
It100_40_6 340 0.047 340 0.001 
It100_50_1 471 0.001 471 0.001 
It100_60_1 465 0.001 465 0.001 

 
Although MC was also able to obtain optimal solution for 
most of the instances, it required several times longer 
execution time then VNS (except in several cases). 

6. CONCLUSION 
In this paper we present preliminary results of applying 
Variable neighborhood Search (VNS) heuristic to the 
problem of scheduling independent tasks onto 
homogeneous multiprocessor system. The obtained results 
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are very encouraging for continuing research on this 
topic. Possible extensions are related to testing larger 
instances, comparing with other heuristic methods, like 
Genetic Algorithms (GA), Tabu Search (TS), Multistart 
Local Search (MLS), and introducing new neighborhood 
structures.  
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