
New Benchmarks for Static Task Scheduling on

Homogeneous Multiprocessor Systems with

Communication Delays

Tatjana Davidović

Mathematical Institute,
Serbian Academy of Science and Arts,

Kneza Mihaila 35, 11000 Belgrade, Yugoslavia
tanjad@crt.umontreal.ca

Teodor Gabriel Crainic

Departement management et technologie,
Université du Québec à Montréal and

Centre de recherche sur les transports, Université de Montréal
theo@crt.umontreal.ca

January 8, 2003

Abstract

Scheduling tasks on multiprocessor systems is a very active research area with numerous
papers addressing the many different variants of the problem. Yet, there appears to be
a lack of adequate benchmark problem instances. In this paper, we propose a large set
of benchmark graphs for the Multiprocessor Scheduling Problem with Communication
Delays. The proposed benchmark problems have known optimal solutions and cover a
broad spectrum of characteristics: multiprocessor architecture, number of processors,
number of tasks, density of inter-task communications links. We use these benchmark
problem instances to analyze the performance of several constructive heuristics and may
thus emphasize the dependency of constructive heuristic solutions on different problem
parameters related to both task graph characteristics and multiprocessor architecture.

Key words: Multiprocessor systems, task scheduling, communication delays, bench-
mark problem instances

Résumé

L’allocation et l’ordonnancement de tâches sur les processeurs d’un ordinateur multi-
processeurs constitue un domaine très actif de recherche et de développement et de mul-
tiples travaux ont été dédiés aux diverses variantes du problème. On observe, toutefois,
un manque sérieux de problémes tests permettant de analyses comparatives poussées.
Nous proposons un ensemble de 700 problèmes tests avec solutions optimales connues
pour le problème d’allocation de taâches avec delais de communication. Les problèmes
proposés différent selon le type d’architecture du système, le nombre de processeurs, le
nombre de tâches, la densité des liens de communication inter-tâches. Nous avons utilisé
cet ensemble de problèmes pour analyser le comportement de plusieurs méthodes heuris-
tiques de construction de solution, ce qui nous permet de souligner la sensibilité de ces
méthodes aux variations dans le caractéristiques des problèmes reliées à la fois au graph
à allouer et au systéme multi-processeur.

Mots-clefs: Ordinateurs multi-processeurs, Allocation et ordonnancement de tâches,
delais de communication, problèmes tests

1 Introduction

The problem of the efficient use of multiprocessor systems, addressed by scheduling pro-
gram modules (tasks) to processors, has been studied for over forty years now [9]. The
problem is known to be NP-hard in its most general form [8, 24]. There are only a
few special cases that can be solved optimally in polynomial time [3, 10, 25]. For all
the other problem variants, numerous heuristics have been proposed to efficiently obtain
suboptimal solutions [7, 12, 16, 21, 22]. See [2] for a recent survey.

Performance of heuristics are often difficult to analyze and compare, however, even
when they address the same scheduling problem variant. Not only theoretical perfor-
mance measures are difficult to come by, but even the experimental analysis is hampered
by the fact that most papers propose new test instances and report efficiency results
for these examples only. The utilization of acknowledged sets of benchmark problem
instances (e.g., the OR Library: http://mscmga.ms.ic.ac.uk/info.html) to report com-
putational results contributes to alleviate this issue. Such sets of benchmark problem
instances are not available for all classes of scheduling problems, however.

We are particularly interested in the problem of scheduling dependent tasks to homo-
geneous multiprocessor systems with processors connected in an arbitrary way. Moreover,
we take into account the time spent for transferring data between tasks allocated to dif-
ferent processors. Despite the interest of the problem and the work already accomplished
in the area, very few benchmark problem instances have been proposed. Ribeiro, Porto,
and Kitajima [?, 19, 20] proposed a set of problems of relatively small sizes, but report
scheduling results only for completely connected heterogeneous multiprocessor systems.
Tobita and Kasahara [23] recently presented a large set of problem instances, but commu-
nications and multiprocessor architecture are not explicitly considered. In fact, according
to the authors’ knowledge, Kwok and Ahmad [14] proposed the only existing benchmarks
closely related to the problem addressed in this paper. It appears, however, that these
problems are not very challenging, shown in Section 3. There is thus the need for a more
complete and challenging set of benchmark problem instances.

The objective of this paper is to propose new sets of benchmarks with known optimal
solutions and different characteristics in terms of the type of multiprocessor architec-
ture, number of processors, number of tasks to schedule, and the density of the prece-
dence/communication task graph. We also analyze the scheduling results obtained by
several constructive heuristics for these problems. This allows us not only to confirm that
there are “easy” and “hard” graphs for each heuristic (which is an already well known
fact), but also, and most importantly, to explain the dependency of scheduling results
on task graph and multiprocessor characteristics. The proposed benchmark instances
should thus also prove useful in testing meta-heuristics that are increasingly proposed to
address scheduling problems (e.g., [4, 5, 13]), and that often proceed by searching some
solution space and applying a constructive heuristic to obtain the corresponding schedule

1

and objective function value.

The paper is organized as follows. The considered scheduling problem is described
in Section 2. Section 3 describes the problem set introduced by Kwok and Ahmad [14]
and the new benchmarks that we propose. The results of the performance analysis of
constructive heuristics applied to the new benchmarks are reported in Section 4, while
Section 5 concludes the paper. The complete set of figures displaying the scheduling
results is included in the Appendix.

2 Problem Formulation

The tasks to be scheduled are represented by a Directed Acyclic Graph (DAG) [4, 11, 22]
defined by a tuple G = (T, E, C, L), where T = {t1, . . . , tn} denotes the set of tasks; E =
{eij | ti, tj ∈ T} represents the set of precedence/communication edges; C = {cij | eij ∈
E} denotes the set of edge communication costs; and L = {l1, . . . , ln} represents the set
of task computation times (execution times, lengths). The communication cost cij ∈ C
denotes the amount of data transferred between tasks ti and tj if they are executed on
different processors. If both tasks are assigned to the same processor, the communication
cost equals zero. The set E defines precedence relations between tasks. A task cannot
be executed unless all of its predecessors have completed their execution and all relevant
data is available. Task preemption and redundant executions are not allowed in the
problem version considered in this paper.

The multiprocessor system M is assumed to contain p identical processors with their
own local memories. Processors communicate by exchanging messages through bidirec-
tional links of the equal capacity. The architecture is modeled by a distance matrix [4, 7].
The element (i, j) of the distance matrix D = [dij]p×p is equal to the minimum distance
between the nodes i and j. In the following, the minimum distance is calculated as
the number of links along the shortest path between two nodes. It is obvious that the
distance matrix is symmetric with zero diagonal elements.

The scheduling of DAG G onto M consists of determining the index of the associated
processor and starting time instant for each of the tasks from the task graph in such a
way as to minimize some objective function. The usual objective function (that we use
in this paper as well) computes the completion time of the scheduled task graph (also
referred to as makespan, response time or schedule length). The starting time of a task
ti depends on the completion times of its predecessors and the amount of time needed
to transfer the associated data from the processors executing these predecessors to the
processor that has to execute the task ti. Depending on the multiprocessor architecture,
the time that is spent for communication between tasks ti and tj can be calculated as

commij(l, k) = cij ∗ dlk ∗ ccr,

2

where it is assumed that task ti will be executed on processor pl, task tj on processor
pk, and ccr represents the Communication-to-Computation-Ratio defined as the ratio
between the transfer time of a unit amount of data and the time spent for performing a
single computational operation. Note that this definition is characterizes the multipro-
cessor architecture and is thus different from that of the CCR parameter of Kwok and
Ahmad [13, 14] (defined as the ratio between total communication and total computation
times) that corresponds to a characterization of the task graph. If l = k then dlk = 0
implying that commij(l, k) = 0.

3 Benchmarks Description

Kwok and Ahmad [14] performed an impressive work by collecting 15 scheduling algo-
rithms proposed in the literature and generating several sets of test instances to compare
them. Since different algorithms usually introduce different assumptions, it is almost
impossible to compare them all. Consequently, the authors divided the scheduling al-
gorithms into five groups and compared the algorithms within groups. Similarly, test
instances were partitioned into groups and not all scheduling algorithms were applied to
all groups. The authors also proposed criteria for performance evaluation and comparison
of scheduling algorithms.

The most interesting set of test instances is the one containing task graphs with
known optimal solution. Kwok and Ahmad generated two groups of such test examples.
The first set contains 36 graphs: for each of the 12 DAG sizes corresponding to a number
of tasks n ranging from 10 to 32 by increment of 2, three (3) graphs were generated with
three different values for CCR parameter. Optimal solutions for these small examples
were determined by using an A∗ enumeration algorithm [1]. The heuristic results reported
displayed 1% to 8% deviations from the optimum. The second group of test examples
consists of 30 instances with the preselected optimal solution for completely connected
multiprocessor systems. For these examples, n ranges from 50 to 500 by the increment
50 and, again, for each n, three different values were used for the CCR parameter.
Scheduling results were reported for 11 scheduling algorithms and 2% to 15% average
deviation was registered. Known optimal solutions were obtained only in few cases.

We run the CPES algorithm on the second group of test examples. This algorithm
is a modification of the DLS scheduling heuristic [22], in the sense that static priorities
based on the Critical Path (CP) method are assigned to each task. The critical path
does not involve the communication times as in the case of the method reported in [12].
Rather, the calculation of the length of the critical path is based only on task execution
times li. The “ES” stands for Earliest Start, meaning that for each processor pk, the
starting time st(ti, pk) of task ti is calculated and the task is allocated to the processor
with the smallest associated starting time value [4].

3

The results for scheduling the benchmark instances with known optimal solution by
using the CPES algorithm were surprising: Optimal schedules were obtained for all 30
instances. This would mean that CPES is “the best heuristic in the world” and our
experience [5, 6] is that the results obtained by CPES can deviate by more than 100%
from the optimum. Analyzing the task graphs of these test instances, we noticed that
they are all very sparse graphs, with edge (connection) density ρ varying from 8% to 15%.
It than becomes clear that these graphs contain almost independent tasks. Moreover,
differences in multiprocessor architecture is not accounted for. Thus, for each n, there is
only one multiprocessor system (with fixed number of completely connected processors)
associated to the 3 test instances of that size.

In this paper we propose a new, large set of randomly generates test instances with
known optimal solution that overcomes some of these limitations. The 700 problem in-
stances we propose display different characteristics in terms of multiprocessor system
architecture, number of tasks, and connection density. We selected 7 different multipro-
cessor system configurations defined by the connection architecture and the number of
processors p: Four hypercubes of dimensions 1, 2, 3, and 4 (i.e., 2, 4, 8, and 16 proces-
sors), and three mesh configurations of 6, 9, and 12 processors. For each of the 7 system
configurations, 100 problem instances are generated by combining the number of tasks n,
10 values from 50 to 500 by increment of 50, and the connection density ρ, 10 values from
0 (independent tasks) to 90% of the maximum allowed density ρmax of the corresponding
task graph.

The graphs are generated similarly to Kwok and Ahmad [13, 14]. A number m
(set here to 10) graphs is generated for each combination of multiprocessor architecture,
defined by the number of processors p and the distance matrix Dp×p, number of tasks
n, and length of the optimal schedule SLopt. All m graphs contain the same number of
tasks, with the same task durations but with different edge densities ρ. First, the optimal
schedule is generated in such a way that each processor j executes approximately the same
number of tasks xj (with 10% allowed deviations). The task durations are determined
randomly, using a uniform distribution (mean equal to SLopt/xj and 10% deviation).
All processors are completing the execution at the same time (SLopt) and there are no
idle time intervals between tasks. Tasks are then numbered according to their starting
times: the first task on the first processor obtains number 1, the first task on the second
processor obtains number 2, and so on. p+1 will be the number of the second task with
the smallest starting time (regardless of the index of the corresponding processor); p+2
will be associated to the task that is the next one to begin its execution (the task could
be on the same processor if the previous one has a small duration); etc.

Finally, precedence relations between tasks are defined by adding edges to the graph
and assigning communication loads to these edges. The maximum allowed density ρmax

is calculated first, because there cannot be an edge from task ti to tj if st(ti, pk) + li >
st(tj, pl)). Then, for each i = 0, ...,m − 1, the number of edges corresponding to the

4

density i/m ∗ ρmax is calculated and new edges are added randomly to the task graph
to reach that number. The communication amount along each edge (edge weight) is
calculated by the following rule:

cij =

{

∞, if k = l,
(st(tj, pl)− (st(ti, pk) + li))/dkl, otherwise.

i.e., when tasks are executed on the same processor, the amount of data exchanged can be
arbitrary large, otherwise, the communication amount is defined by the interval between
the completion time of the first task and the starting time of the second one divided by
the distance between the corresponding processors. The task graph obtained in this way
is written in the output file, and becomes the starting point for building the instance
with the next higher density (only a few new edges are needed to be added).

The lengths of optimal schedules for each number of tasks n in the DAG are given
in Table 1. These lengths do not depend on the values for p and ρ. The proposed set of
problem instances can thus be used for scheduling on completely connected architectures,
as well as when communication delays are not relevant.

n 50 100 150 200 250 300 350 400 450 500
SLopt 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Table 1: Optimal schedule lengths for random task graphs

The zip file Bench opt.zip, which can be downloaded from the following web address
http://www.mi.sanu.ac.yu/~tanjad/Bench_opt.zip, contains the task graph exam-
ples and the readme.txt file. File names are ogra<n> <r> <p>.td, where < n > should
be substituted with the number of tasks in that file, < r > with the edge density, and
< p > with the number of processors for which the optimal solution is given.

In each file, data are written in the following format:

• The first row contains the number of tasks n;

• The next n rows contain the data for task i = 1, . . . , n: index i, duration ti,
number of successors nsucc, the list of nsucc pairs sj cij representing the index of the

jth successor and corresponding communication amount.

Other than the test instances with known optimal solutions, the zip-file Bench.zip

with 180 completely random task graphs can also be found at the same web address. The
task graph files are written in the same format, with file names t<n> <r> <i>.td, where
n and r have the same meaning as in the previous case, while i is the index of graph
with same n and r value (there are 6 graphs for each (n, r) pair). The graphs in that

5

zip-file do not depend on multiprocessor architecture, they can be scheduled to arbitrary
multiprocessor systems but, since optimal solutions are not known, the solution quality
cannot be predicted.

4 Scheduling results

In this section we report and analyze results of scheduling the random task graphs with
known optimal solution we introduce by using CPES, as well as several other construc-
tive scheduling heuristics. The quality of the heuristic solutions is examined relative to
parameters related to both task graph characteristics and multiprocessor architectures:
number of tasks n, edge density ρ, number of processors p, interconnection architecture,
and communication delay.

Other than CPES, we implemented the PPS [15], LBMC [21], and DC [4] heuristics.
LBMC is a two-step heuristic method based on balancing the load (LB) of the processors
and minimizing communications (MC): The task allocation to processors is performed in
the first step, while the actual schedule (i.e., definition of the order among tasks and of
the starting time for each task) is performed during the second step. PPS is also based on
the same two-step specification: First, tasks are assigned to processors according to the
Preferred Path Selection (PPS) rule, and schedules are determined in the second step.
For CPES and DC, the steps are defined according to the list-scheduling ideas: Tasks
are first sorted according to some priority scheme. Then, each task is assigned to the
processor selected by the ES rule for CPES and by an ES improvement of the sequential
schedule (DeClustering) for DC. Since task priorities, as well as assignment rules, can be
defined in different ways, several variations of these heuristic methods are possible (for
example, combination of Largest Processing Time (LPT) priorities with LB, maximum
communication with ES, etc.). It is not our intention, however, to compare and classify
scheduling heuristics but to show that the proposed set of benchmarks is representative.
We thus focus on these four heuristics.

A limited number of the scheduling results for graphs from the set of 700 random test
instances are illustrated in this section. Complete results are summarized in the Appendix
(actual figures can be obtained from the authors). For all figures, unless otherwise stated,
the results correspond to CPES applications.

We first analyzed the influence of the edge (communication) density on the solution
quality. Since the results for each p are similar, we display in Figures 1 and 2 the results
for p=8 to illustrate the observations connected to this analysis. A curve shows for each
n, the change in the solution deviation when ρ grows. Therefore, each graph displays
10 curves. Two cases are considered for the multiprocessor architecture with a fixed
number of processors p: Connected according to a given interconnection structure (mesh

6

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 1: Solution deviations for 8-processor hypercube, with and without communica-
tion delays

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 2: Solution deviations for completely connected 8 processors with communication
delays

or hypercube) or completely connected, i.e. there is a direct communication link between
each two processors. We also distinguish between cases when communication delay is
significant and when it can be neglected. In the latter case, the interconnection network
does not play any role. Consequently, three cases exist (and three graphs are displayed)
for each p: Particular interconnection network with and without communication delays
and complete interconnection network with communication delays. An exception is the
case p = 2 since the particular and the complete connections are the same; Therefore,
only two cases have to be analyzed.

As Figures 1 and 2 illustrate, with a small number of exceptions, the deviation from
optimality grows with ρ growing when communication time is significant. In addition,
the processor connection is very important for the scheduling process: Deviations when
processors are not completely connected can be large, an order of magnitude larger

7

than for completely connected processors. Moreover, for completely connected processor
systems, the deviation does not depend on ρ that much, but the growing tendency can
still be observed, especially for higher number of processors. When one can neglect the
communication time, the deviations are very small.

These results show that sparse task graphs are easy to schedule with CPES. This
explains why all benchmarks from [14] were scheduled optimally and emphasizes the
need for a more complete set of benchmark problem instances.

0

20

40

60

80

100

120

140

160

180

200

220

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 3: Solution deviations for task graphs with ρ = 50, with and without communi-
cation delays, scheduled onto incomplete networks

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 4: Solution deviations for task graphs with ρ = 50 with communication delays
scheduled onto complete network of processors

Next, we examined the influence of the number of processors on the scheduling re-
sults. It is natural to expect to be easier to schedule for systems with smaller number
of processors than for larger multiprocessor systems. Data dependencies can indeed pre-
vent the efficient exploitation of a large number of available processors. Sometimes, the

8

number of processors can be even two large, resulting in very significant time spent on
data transfers.

Figures 3 and 4 illustrate the deviations in the schedule lengths obtained by CPES,
according to the number of processors for graphs with ρ = 50%. The results support
our assumption: when communication times are significant, the deviation grows with the
number of processors. If communication times are irrelevant, tasks can be packed in a
better way. For completely connected processors, the deviations are still growing, but
less rapidly. Here is the second reason for the optimality of the CPES scheduling results
on the problem instances from [14]: For each n, only one value for p is given (although
p is growing with n).

The complete scheduling results obtained by using CPES, for all values of p and ρ, are
given in the Appendix. From this analysis, summarized in the previous paragraphs, it
appears that it is easier to schedule sparse task graphs than more dense ones. Moreover,
better result should be expected when the number of processors is relatively small. We
believe such hard or easy graphs exist for all scheduling heuristics and that the set of
problem instances we propose is sufficiently large to include challenging problems in most
cases.

To examine this hypothesis, we run the LBMC, PPS, and DC constructive heuristics
on the same set of task graphs. The corresponding results are also given in the Appendix,
starting with Figure 49. Here, we only include figures relative to the same cases used
for the CPES to illustrate and support our conclusion. See Figures 5 to 16. The results
show that PPS and DC encounter the same difficulties as CPES in scheduling dense
task graphs. Moreover, the DC method does not distinguish between different types of
processor connections. LBMC seems to have even more difficulty in addressing sparse
task graphs, except for independents tasks where it acts like the LPT method. Deviations
also tend to grow with the number of processors, except for LBMC and PPS for which
the 4-dimensional hypercube seems to be easier to handle than the 12-processor mesh in
the case when communications are significant.

The complete set of test instances is very large and it may not be necessary to use all
the examples. According to our analyses, however, at least one of the two parameters p
and ρ should be varied. This can reduce the size of benchmark set by an order of mag-
nitude (either 70 or 100 examples need to be evaluated, depending on which parameter
is varied, p or ρ). Based on the experiments with the four constructive heuristics, we
concluded that p and ρ are equivalent, in the sense on the insight their variation provides
to the user. It is up to the user to decide which one to vary. We believe this conclusion
holds for other methods as well.

9

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 5: LBMC Solution deviation for 8-processor hypercube, with and without com-
munication delays

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 6: LBMC Solution deviation for completely connected 8 processors with commu-
nication delays

10

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 7: LBMC Solution deviation for task graphs with ρ = 50, with and without
communication delays scheduled onto incomplete networks

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 8: LBMC Solution deviation for task graphs with ρ = 50 with communication
delays scheduled onto complete network of processors

11

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 9: PPS solution deviation for 8-processor hypercube, with and without commu-
nication delays

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 10: PPS solution deviation for completely connected 8 processors with communi-
cation delays

12

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 11: PPS Solution deviation for task graphs with ρ = 50, with and without
communication delays scheduled onto incomplete networks

20

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 12: PPS Solution deviation for task graphs with ρ = 50 with communication
delays scheduled onto complete network of processors

13

280

290

300

310

320

330

340

350

360

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

280

290

300

310

320

330

340

350

360

370

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 13: DC solution deviation for 8-processor hypercube, with and without commu-
nication delays

280

290

300

310

320

330

340

350

360

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 14: DC solution deviation for completely connected 8 processors with communi-
cation delays

14

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 15: DC Solution deviation for task graphs with ρ = 50, with and without com-
munication delays scheduled onto incomplete networks

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 16: DC Solution deviation for task graphs with ρ = 50 with communication delays
scheduled onto complete network of processors

15

5 Conclusion

In this paper we propose a new set of benchmark problem instances with known optimal
solutions for scheduling dependent tasks onto different multiprocessor architectures, not
necessarily completely connected, taking into account communication delays.

We analyzed the dependency of the deviation of heuristic solution from the optimal
one on several parameters: task graph density, communication delays, number of pro-
cessors and connections between them. These parameters play a significant role in the
quality of heuristic solutions. We concluded that communication delays are significantly
degrading the performance of the scheduling heuristics. Regarding the multiprocessor
architecture, it appears easier to schedule onto completely connected processors. For the
other two parameters, number of processors and task graph density, at least one of them
should be varied in order to objectively evaluate the efficiency of a particular scheduling
heuristic.

Most of the problem instances we propose are difficult, in particular for constructive
scheduling heuristics and, as such, should offer a greater challenge than the problems
currently available to scheduling heuristics and meta-heuristics, in their sequential or
parallel forms.

Acknowledgments

This project was partially supported by NSF of Serbia, grant no. 1583, under project
“Mathematical optimization models and methods with applications”. Funding for this
project has also been provided by the Natural Sciences and Engineering Council of
Canada, through its Research Grant programs, and by the Fonds F.C.A.R. of the Province
of Québec.

References

[1] Ahmad, I. and Kwok, Y.-K. Optimal and Near-Optimal Allocation of Precedence-
Constrained Tasks to Parallel Processors: Defying the High Complexity Using Ef-
fective Search Technique. In Proceedings 1998 International Conference on Parallel
Processing, 424–431, 1998.

[2] Blazewicz, J., Drozdowski, M., and Ecker, K. Management of Resources in Parallel
Systems. In J. Blazewicz, K. Ecker, B. Plateau, D. Trystram, editors, Handbook on
Parallel and Distributed Processing, 263–341. Springer-Verlag, New York, 2000.

16

[3] Coffman Jr., E.G. and Graham, R.L. Optimal Scheduling for Two-Processor Sys-
tems. Acta Informatica, 1:200–213, 1972.

[4] Davidović, T. Exhaustive List-Scheduling Heuristic for Dense Task Graphs. YUJOR,
10(1):123–136, 2000.

[5] Davidović, T., Hansen, P., and Mladenović, N. Scheduling by VNS: Experimental
Analysis. In Zbornik Jug. Simp. o Operacionim Istraživanjima, SYM-OP-IS 2001,
319–322, Beograd, 2001.

[6] Davidović, T., Hansen, P., and Mladenović, N. Variable Neighborhood Search for
Multiprocessor Scheduling Problems with Communication Delays. In Proceedings
MIC’2001, 4th Metaheuristics International Conference, 737–741, Porto, Portugal,
2001.

[7] Djordjević, G. and Tošić, M. A Compile-Time Scheduling Heuristic for Multipro-
cessor Architectures. The Computer Journal, 39(8):663–674, 1996.

[8] Garey, M.R. and Johnson, D.S. Computers and Intractability: A Guide to the Theory
of NP-Completness. W. H. Freeman and Company, 1979.

[9] Hu, T.C. Parallel Sequencing and Assembly Line Problems. Operations Research,
9(6):841–848, 1961.

[10] Krishnamoorthy, V, and Efe, K. Task Scheduling with and without Communication
Delays: A Unified Approach. European Journal of Operational Research, 89:366–379,
1996.

[11] Kwok, Y.-K. and Ahmad, I. Bubble Scheduling: A Quasi Dynamic Algorithm
for Static Allocation of Tasks to Parallel Architectures. In Proceedings 7th IEEE
Symposium of Parallel and Distributed Processing (SPDP’95), 36–43, Dallas, Texas,
USA, 1995.

[12] Kwok, Y.-K. and Ahmad, I. Dynamic Critical Path Scheduling: An Effective Tech-
nique for Allocating Task Graphs to Multiprocessors. IEEE Transactions on Parallel
and Distributed Systems, 7(5):506–521, 1996.

[13] Kwok, Y.-K. and Ahmad, I. Efficient Scheduling of Arbitrary Task Graphs to Mul-
tiprocessors Using a Parallel Genetic Algorithm. Journal of Parallel and Distributed
Computing, 47:58–77, 1997.

[14] Kwok, Y.-K. and Ahmad, I. Benchmarking and Comparison of the Task Graph
Scheduling Algorithms. Journal of Parallel and Distributed Computing, 59(3):381–
422, 1999.

[15] Malloy, B.A., Lloyd, E.L., and Soffa, M.L. Scheduling DAG’s for Asynchronous
Multiprocessor Execution. IEEE Transactions on Parallel and Distributed Systems,
5(5):498–508, 1994.

17

[16] Manoharan, S. and Thanisch, P. Assigning Dependency Graphs onto Processor
Networks. Parallel Computing, 17:63–73, 1991.

[17] Ribeiro, C.C. Test Instances for Scheduling Unrelated Processors under Precedence
Constraints. Personal communication, 2002.

[18] Porto, S.C.S. and Ribeiro, C.C. A Tabu Search Approach to Task Scheduling on
Heterogeneous Processors Under Precedence Constraints. International Journal of
High-Speed Computing, 7:47–71, 1995.

[19] Porto, S.C.S. and Ribeiro, C.C. Parallel Tabu Search Message-Passing Synchronous
Strategies for Task Scheduling Under Precedence Constraints. Journal of Heuristics,
1(2):207–223, 1996.

[20] Porto, S.C.S., Kitajima, J.P.F.W., and Ribeiro, C.C. Performance Evaluation of
a Parallel Tabu Search Task Scheduling Algorithm. Parallel Computing, 26:73–90,
2000.

[21] Sarje, A.K. and Sagar, G. Heuristic Model for Task Allocation in Distributed Com-
puter Systems. IEE Proceedings-E, 138(5):313–318, 1991.

[22] Sih, G.C. and Lee, E.A. A Compile-Time Scheduling Heuristic for Interconnection-
Constrained Heterogeneous Processor Architectures. IEEE Transactions on Parallel
and Distributed Systems, 4(2):175–187, 1993.

[23] Tobita, T. and Kasahara, H. A Standard Task Graph Set for Fair Evaluation of
Multiprocessor Scheduling algorithms. Journal of Scheduling 5(5), 379–394, 2002.

[24] Ullman, J.D. NP-Complete Scheduling Problems. J. Comput. Syst. Sci., 10(3):384–
393, 1975.

[25] Varvarigou, T.A., Roychowdhury, V.P., Kailath, T., and Lawler, E. Scheduling in
and out Forests in the Presence of Communication Delays. IEEE Transactions on
Parallel and Distributed Systems, 7(10):1065–1074, 1996.

18

Appendix

This Appendix includes the complete set of graphs representing the deviations from

optimality of the solutions obtained by the four considered constructive heuristics for

different task graph and multiprocessor architecture characteristics.

Figures 17 to 48 display the scheduling results obtained by using CPES, for all values

of p and ρ. The deviations of the heuristic solutions from the optima, according to the

value for ρ for all selected multiprocessor architectures, are given in Figures 20 to 29.

Starting with Figure 30, scheduling results for a given ρ value and different multipro-

cessor system architecture are given in each figure. When scheduling independent tasks,

communication delays and processor connection are not significant, therefore, there is

only one graph displaying the deviations of the heuristic schedule from the optimal one.

The results for the LBMC, PPS, and DC heuristics are displayed starting with Figure

49.

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 17: Solution deviations for 2-processor system, with and without communication

delays

19

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 18: Solution deviations for 4-processor hypercube, with and without communica-

tion delays

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 19: Solution deviations for completely connected 4 processors with communication

delays

20

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

1

2

3

4

5

6

7

8

9

10

11

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 20: Solution deviations for mesh containing 6 processors, with and without com-

munication delays

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 21: Solution deviations for completely connected 6 processors with communication

delays

21

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 22: Solution deviations for 8-processor hypercube, with and without communica-

tion delays

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 23: Solution deviations for completely connected 8 processors with communication

delays

22

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 24: Solution deviations for 9-processor mesh, with and without communication

delays

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 25: Solution deviations for completely connected 9 processors with communication

delays

23

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 26: Solution deviations for 12-processor mesh, with and without communication

delays

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 27: Solution deviations for completely connected 12 processors with communica-

tion delays

24

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 28: Solution deviations for 16-processor hypercube, with and without communi-

cation delays

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 29: Solution deviations for completely connected 16 processors with communica-

tion delays

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 30: Solution deviations for scheduling independent tasks

25

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 31: Solution deviations for sparse task graphs ρ = 10, with and without commu-

nication delays scheduled onto incomplete networks

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 32: Solution deviations for sparse task graphs ρ = 10 with communication delays

scheduled onto complete network of processors

26

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 33: Solution deviations for task graphs with ρ = 20, with and without communi-

cation delays scheduled onto incomplete networks

10

12

14

16

18

20

22

24

26

28

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 34: Solution deviations for task graphs with ρ = 20 with communication delays

scheduled onto complete network of processors

27

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 35: Solution deviations for task graphs with ρ = 30, with and without communi-

cation delays scheduled onto incomplete networks

8

10

12

14

16

18

20

22

24

26

28

30

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 36: Solution deviations for task graphs with ρ = 30 with communication delays

scheduled onto complete network of processors

28

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

1

2

3

4

5

6

7

8

9

10

11

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 37: Solution deviations for task graphs with ρ = 40, with and without communi-

cation delays scheduled onto incomplete networks

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 38: Solution deviations for task graphs with ρ = 40 with communication delays

scheduled onto complete network of processors

29

0

20

40

60

80

100

120

140

160

180

200

220

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 39: Solution deviations for task graphs with ρ = 50, with and without communi-

cation delays scheduled onto incomplete networks

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 40: Solution deviations for task graphs with ρ = 50 with communication delays

scheduled onto complete network of processors

30

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 41: Solution deviations for task graphs with ρ = 60, with and without communi-

cation delays scheduled onto incomplete networks

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 42: Solution deviations for task graphs with ρ = 60 with communication delays

scheduled onto complete network of processors

31

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 43: Solution deviations for task graphs with ρ = 70, with and without communi-

cation delays scheduled onto incomplete networks

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 44: Solution deviations for task graphs with ρ = 70 with communication delays

scheduled onto complete network of processors

32

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

1

2

3

4

5

6

7

8

9

10

11

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 45: Solution deviations for task graphs with ρ = 80, with and without communi-

cation delays scheduled onto incomplete networks

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 46: Solution deviations for task graphs with ρ = 80 with communication delays

scheduled onto complete network of processors

33

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 47: Solution deviations for task graphs with ρ = 90, with and without communi-

cation delays scheduled onto incomplete networks

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 48: Solution deviations for task graphs with ρ = 90 with communication delays

scheduled onto complete network of processors

34

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 49: LBMC Solution deviations for 2-processor system, with and without commu-

nication delays

35

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 50: LBMC Solution deviations for 4-processor hypercube, with and without com-

munication delays

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 51: LBMC Solution deviations for completely connected 4 processors with com-

munication delays

36

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 52: LBMC Solution deviations for 6-processor mesh, with and without communi-

cation delays

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 53: LBMC Solution deviations for completely connected 6 processors with com-

munication delays

37

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 54: LBMC Solution deviations for 8-processor hypercube, with and without com-

munication delays

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 55: LBMC Solution deviations for completely connected 8 processors with com-

munication delays

38

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 56: LBMC Solution deviations for 9-processor mesh, with and without communi-

cation delays

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 57: LBMC Solution deviations for completely connected 9 processors with com-

munication delays

39

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 58: LBMC Solution deviations for 12-processor mesh, with and without commu-

nication delays

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 59: LBMC Solution deviations for completely connected 12 processors with com-

munication delays

40

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 60: LBMC solution deviations for 16-processor hypercube, with and without

communication delays

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 61: LBMC solution deviations for completely connected 16 processors with com-

munication delays

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 62: Solution deviations for scheduling independent tasks

41

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 63: Solution deviations for sparse task graphs ρ = 10, with and without commu-

nication delays scheduled onto incomplete networks

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 64: Solution deviations for sparse task graphs ρ = 10 with communication delays

scheduled onto complete network of processors

42

100

150

200

250

300

350

400

450

500

550

600

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 65: Solution deviations for task graphs with ρ = 20, with and without communi-

cation delays scheduled onto incomplete networks

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 66: Solution deviations for task graphs with ρ = 20 with communication delays

scheduled onto complete network of processors

43

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 67: Solution deviations for task graphs with ρ = 30, with and without communi-

cation delays scheduled onto incomplete networks

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 68: Solution deviations for task graphs with ρ = 30 with communication delays

scheduled onto complete network of processors

44

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 69: Solution deviations for task graphs with ρ = 40, with and without communi-

cation delays scheduled onto incomplete networks

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 70: Solution deviations for task graphs with ρ = 40 with communication delays

scheduled onto complete network of processors

45

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 71: Solution deviations for task graphs with ρ = 50, with and without communi-

cation delays scheduled onto incomplete networks

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 72: Solution deviations for task graphs with ρ = 50 with communication delays

scheduled onto complete network of processors

46

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 73: Solution deviations for task graphs with ρ = 60, with and without communi-

cation delays scheduled onto incomplete networks

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 74: Solution deviations for task graphs with ρ = 60 with communication delays

scheduled onto complete network of processors

47

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

20

40

60

80

100

120

140

160

180

200

220

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 75: Solution deviations for task graphs with ρ = 70, with and without communi-

cation delays scheduled onto incomplete networks

40

60

80

100

120

140

160

180

200

220

240

260

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 76: Solution deviations for task graphs with ρ = 70 with communication delays

scheduled onto complete network of processors

48

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

20

40

60

80

100

120

140

160

180

200

220

240

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 77: Solution deviations for task graphs with ρ = 80, with and without communi-

cation delays scheduled onto incomplete networks

60

80

100

120

140

160

180

200

220

240

260

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 78: Solution deviations for task graphs with ρ = 80 with communication delays

scheduled onto complete network of processors

49

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

20

40

60

80

100

120

140

160

180

200

220

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 79: Solution deviations for task graphs with ρ = 90, with and without communi-

cation delays scheduled onto incomplete networks

60

80

100

120

140

160

180

200

220

240

260

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 80: Solution deviations for task graphs with ρ = 90 with communication delays

scheduled onto complete network of processors

50

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 81: PPS solution deviations for 2-processor system, with and without communication delays

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 82: PPS solution deviations for 4-processor hypercube, with and without communication delays

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 83: PPS solution deviations for completely connected 4 processors with communication delays

51

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 84: PPS solution deviations for 6-processor mesh, with and without communication delays

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 85: PPS solution deviations for completely connected 6 processors with communication delays

52

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 86: PPS solution deviations for 8-processor hypercube, with and without communication delays

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 87: PPS solution deviations for completely connected 8 processors with communication delays

53

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 88: PPS solution deviations for 9-processor mesh, with and without communication delays

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 89: PPS solution deviations for completely connected 9 processors with communication delays

54

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 90: PPS solution deviations for 12-processor mesh, with and without communication delays

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 91: PPS solution deviations for completely connected 12 processors with communication delays

55

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 92: PPS solution deviations for 16-processor hypercube, with and without communication delays

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 93: PPS solution deviations for completely connected 16 processors with communication delays

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 94: Solution deviations for scheduling independent tasks

56

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 95: Solution deviations for sparse task graphs ρ = 10, with and without communication delays

scheduled onto incomplete networks

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 96: Solution deviations for sparse task graphs ρ = 10 with communication delays scheduled onto

complete network of processors

57

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 97: Solution deviations for task graphs with ρ = 20, with and without communication delays

scheduled onto incomplete networks

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 98: Solution deviations for task graphs with ρ = 20 with communication delays scheduled onto

complete network of processors

58

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 99: Solution deviations for task graphs with ρ = 30, with and without communication delays

scheduled onto incomplete networks

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 100: Solution deviations for task graphs with ρ = 30 with communication delays scheduled onto

complete network of processors

59

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 101: Solution deviations for task graphs with ρ = 40, with and without communication delays

scheduled onto incomplete networks

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 102: Solution deviations for task graphs with ρ = 40 with communication delays scheduled onto

complete network of processors

60

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 103: Solution deviations for task graphs with ρ = 50, with and without communication delays

scheduled onto incomplete networks

20

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 104: Solution deviations for task graphs with ρ = 50 with communication delays scheduled onto

complete network of processors

61

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 105: Solution deviations for task graphs with ρ = 60, with and without communication delays

scheduled onto incomplete networks

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 106: Solution deviations for task graphs with ρ = 60 with communication delays scheduled onto

complete network of processors

62

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 107: Solution deviations for task graphs with ρ = 70, with and without communication delays

scheduled onto incomplete networks

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 108: Solution deviations for task graphs with ρ = 70 with communication delays scheduled onto

complete network of processors

63

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 109: Solution deviations for task graphs with ρ = 80, with and without communication delays

scheduled onto incomplete networks

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 110: Solution deviations for task graphs with ρ = 80 with communication delays scheduled onto

complete network of processors

64

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 111: Solution deviations for task graphs with ρ = 90, with and without communication delays

scheduled onto incomplete networks

30

40

50

60

70

80

90

100

110

120

130

140

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 112: Solution deviations for task graphs with ρ = 90 with communication delays scheduled onto

complete network of processors

65

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 113: DC solution deviations for 2-processor system, with and without communi-

cation delays

66

90

100

110

120

130

140

150

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

80

85

90

95

100

105

110

115

120

125

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 114: DC solution deviations for 4-processor hypercube, with and without com-

munication delays

90

100

110

120

130

140

150

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 115: DC solution deviations for completely connected 4 processors with commu-

nication delays

67

185

190

195

200

205

210

215

220

225

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

180

185

190

195

200

205

210

215

220

225

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 116: DC solution deviations for 6-processor mesh, with and without communica-

tion delays

185

190

195

200

205

210

215

220

225

230

235

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 117: DC solution deviations for completely connected 6 processors with commu-

nication delays

68

280

290

300

310

320

330

340

350

360

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

280

290

300

310

320

330

340

350

360

370

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 118: DC solution deviations for 8-processor hypercube, with and without com-

munication delays

280

290

300

310

320

330

340

350

360

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 119: DC solution deviations for completely connected 8 processors with commu-

nication delays

69

330

340

350

360

370

380

390

400

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

330

340

350

360

370

380

390

400

410

420

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 120: DC solution deviations for 9-processor mesh, with and without communica-

tion delays

330

340

350

360

370

380

390

400

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 121: DC solution deviations for completely connected 9 processors with commu-

nication delays

70

480

490

500

510

520

530

540

550

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

480

490

500

510

520

530

540

550

560

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 122: DC solution deviations for 12-processor mesh, with and without communi-

cation delays

470

480

490

500

510

520

530

540

550

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 123: DC solution deviations for completely connected 12 processors with commu-

nication delays

71

680

690

700

710

720

730

740

750

760

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

670

680

690

700

710

720

730

740

750

760

770

780

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 124: DC solution deviations for 16-processor hypercube, with and without com-

munication delays

680

690

700

710

720

730

740

750

760

0 10 20 30 40 50 60 70 80 90

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 125: DC solution deviations for completely connected 16 processors with commu-

nication delays

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 126: Solution deviations for scheduling independent tasks

72

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 127: Solution deviations for sparse task graphs ρ = 10, with and without commu-

nication delays scheduled onto incomplete networks

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 128: Solution deviations for sparse task graphs ρ = 10 with communication delays

scheduled onto complete network of processors

73

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 129: Solution deviations for task graphs with ρ = 20, with and without commu-

nication delays scheduled onto incomplete networks

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 130: Solution deviations for task graphs with ρ = 20 with communication delays

scheduled onto complete network of processors

74

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 131: Solution deviations for task graphs with ρ = 30, with and without commu-

nication delays scheduled onto incomplete networks

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 132: Solution deviations for task graphs with ρ = 30 with communication delays

scheduled onto complete network of processors

75

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 133: Solution deviations for task graphs with ρ = 40, with and without commu-

nication delays scheduled onto incomplete networks

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 134: Solution deviations for task graphs with ρ = 40 with communication delays

scheduled onto complete network of processors

76

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 135: Solution deviations for task graphs with ρ = 50, with and without commu-

nication delays scheduled onto incomplete networks

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 136: Solution deviations for task graphs with ρ = 50 with communication delays

scheduled onto complete network of processors

77

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 137: Solution deviations for task graphs with ρ = 60, with and without commu-

nication delays scheduled onto incomplete networks

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 138: Solution deviations for task graphs with ρ = 60 with communication delays

scheduled onto complete network of processors

78

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 139: Solution deviations for task graphs with ρ = 70, with and without commu-

nication delays scheduled onto incomplete networks

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 140: Solution deviations for task graphs with ρ = 70 with communication delays

scheduled onto complete network of processors

79

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 141: Solution deviations for task graphs with ρ = 80, with and without commu-

nication delays scheduled onto incomplete networks

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 142: Solution deviations for task graphs with ρ = 80 with communication delays

scheduled onto complete network of processors

80

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 143: Solution deviations for task graphs with ρ = 90, with and without commu-

nication delays scheduled onto incomplete networks

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 144: Solution deviations for task graphs with ρ = 90 with communication delays

scheduled onto complete network of processors

81

