
Benchmark-Problem Instances for Static Scheduling

of Task Graphs with Communication Delays on

Homogeneous Multiprocessor Systems

Tatjana Davidović

Mathematical Institute,
Serbian Academy of Science and Arts,

Kneza Mihaila 35, 11000 Belgrade, Serbia and Montenegro
tanjad@crt.umontreal.ca

Teodor Gabriel Crainic

Departement management et technologie,

École des sciences de la gestion,
Université du Québec à Montréal and

Centre de recherche sur les transports, Université de Montréal
theo@crt.umontreal.ca

August 17, 2004

Abstract

Scheduling program tasks on processors is at the core of the efficient use of multipro-
cessor systems. Most task scheduling problems are known to be NP-Hard and, thus,
heuristics are the method of choice in all but the simplest cases. The utilization of ac-
knowledged sets of benchmark-problem instances is essential for the correct comparison
and analysis of heuristics. Yet, such sets are not available for several important classes of
scheduling problems, including Multiprocessor Scheduling Problem with Communication
Delays (MSPCD) where one is interested in scheduling dependent tasks onto homo-
geneous multiprocessor systems, with processors connected in an arbitrary way, while
explicitly accounting for the time required to transfer data between tasks allocated to
different processors. We propose test-problem instances for the MSPCD that are repre-
sentative in terms of number of processors, type of multiprocessor architecture, number
of tasks to be scheduled, and task graph characteristics (task execution times, commu-
nication costs, and density of dependencies between tasks). Moreover, we define our
task-graph generators in a way appropriate to ensure that the corresponding problem
instances obey the theoretical principles recently proposed in the literature.

Key words: Multiprocessor systems, task scheduling, communication delays, benchmark-
problem instances

Résumé

L’allocation et l’ordonnancement de tâches sur les processeurs d’un ordinateur multi-
processeurs est au coeur de l’utilisation efficace de tels systèmes. Les problèmes d’allocation
de tâches sont, en géneral, NP-durs, et les méthodes heuristiques sont utilisées presque
dans tous les cas. L’évaluation et l’analyse comparative des méthodes heuristiques de-
mandent l’utilisation d’ensembles de problèmes tests reconnus. Malheureusement, de
tels ensembles ne sont pas disponibles pour plusieurs classes de problèmes d’allocation
et d’ordonnancement, en particulier pour le problème d’allocation de tâches avec delais
de communication (MSPCD). Nous proposons des ensembles de problèmes tests pour le
MSPCD qui diffèrent selon le type d’architecture du système, le nombre de processeurs,
le nombre de tâches, ainsi que les caractéristiques du graphe telles la densité des liens
de communication inter-tâches, la durée des tâches, et ainsi de suite. Les ensembles
de problèmes tests proposés obéissent également aux critères théoriques de correctitude
proposés récemment dans la litérature.

Mots-clefs : Ordinateurs multi-processeurs, allocation et ordonnancement de tâches,
delais de communication, problèmes tests

1 Introduction

Scheduling program modules (tasks) to processors is at the core of the efficient use of
multiprocessor systems and is being studied for over forty years now [14]. Most task
scheduling problems are known to be NP-Hard [12, 27]. There are only a few special
cases that can be solved optimally in polynomial time [4, 16, 28]. For all the other
problem variants, heuristics have been mainly proposed [11, 18, 22, 24, 25]. See [2, 23]
for recent surveys on these topics.

We are particularly interested in the problem of scheduling dependent tasks onto ho-
mogeneous multiprocessor systems with processors connected in an arbitrary way, while
explicitly accounting for the time required to transfer data between the tasks allocated
to different processors. We refer to this variant of task scheduling problem as the Multi-
processor Scheduling Problem with Communication Delays (MSPCD).

It is generally difficult to analyze and compare the performance of heuristics, even
when they address the same scheduling problem variant. On the one hand, theoretical
performance measures are difficult to come by. On the other hand, the experimental
analysis is hampered by the fact that most papers propose new test instances and re-
port performance results for these examples only. The utilization of acknowledged sets of
benchmark-problem instances (e.g., the OR Library at chttp://mscmga.ms.ic.ac.uk/info.html)
to report computational results contributes to alleviate this issue. Such sets of benchmark-
problem instances are not available for all classes of scheduling problems, however. Thus,
very few benchmark-problem instances have been proposed for task scheduling on mul-
tiprocessor systems [5, 20, 26]. Moreover, it turns out that these problems are often
addressing particular multiprocessor architectures, do not involve communication delays,
and are not very challenging with respect to some other parameters of the problem.
There is thus the need for a more complete and challenging set of benchmark-problem
instances.

The objective of this paper is to propose benchmark-problem instances for the MSPCD
that are representative in terms of number of processors, type of multiprocessor archi-
tecture, number of tasks to be scheduled, and task graph characteristics (task execution
times, communication costs, and density of dependencies between tasks). We show that
the problem sets we propose overcome most of the drawbacks displayed by other sets
of test problems available in the literature. Moreover, task-graph generators are defined
such that the corresponding problem instances obey the principles proposed recently by
Hall and Posner [13].

The scheduling heuristics used to evaluate the proposed test-problem instances, as
well as those present in the literature and related to the MSPCD, provide a fair repre-
sentation of the main heuristic approaches: breath/depth first search, explicit/implicit
treatment of communications, priority/dependency-based selection of tasks, minimiza-

1

tion/maximization of the number of processors used, and so on. We may thus not only
confirm the well-known fact that there are “easy” and “hard” graphs for each heuristic
but, most importantly, to explain how scheduling results depend on the task graph and
the characteristics of the multiprocessor system.

To sum up, the main contributions of the paper are: 1) a critical analysis of ex-
isting test-problem sets for scheduling problems related to the MSPCD ; 2) new sets of
benchmark-task graphs for the MSPCD, a problem variant not yet directly considered
in the literature, with parameter variations that ensure a fair evaluation of scheduling
algorithms; and 3) the theoretical analysis of the proposed sets of benchmark-problem
instances.

The paper is organized as follows. The MSPCD scheduling problem is described
in Section 2, together with the scheduling heuristics used for experimental evaluations.
Section 3 reviews the literature and analyzes the existing sets of test-problem instances,
indicating weaknesses and pointing to the need for new problem sets. The benchmark-
problem instances that we propose are described in the next section, together with the
corresponding task graph generators. Section 5 presents an experimental analysis of these
sets. Section 6 concludes the paper.

2 Multiprocessor Scheduling Problem with Commu-

nication Delays

In this section, we first recall the graph-based combinatorial formulation of the MSPCD
problem. We then describe the characteristics of the scheduling heuristics used to evaluate
the sets of test-problem instances.

The tasks to be scheduled are represented by a Directed Acyclic Graph (DAG) [6,
17, 25] defined by a tuple G = (T, E, C, L), where T = {t1, . . . , tn} denotes the
set of tasks; E = {eij | ti, tj ∈ T} represents the set of precedence/communication
edges; C = {cij | eij ∈ E} denotes the set of edge communication costs; and L =
{l1, . . . , ln} represents the set of task computation times (execution times, lengths). The
communication cost cij ∈ C corresponds to the amount of data transferred between tasks
ti and tj when executed on different processors. When both tasks are assigned to the same
processor, the communication cost equals zero. The set E defines precedence relations
between tasks. A task cannot be executed unless all its predecessors have completed their
execution and all relevant data is available. Task preemption and redundant executions
are not allowed in the problem version considered in this paper.

The multiprocessor system M is assumed to contain p identical processors with their

2

own local memories. Processors communicate by exchanging messages through bidirec-
tional links of equal capacity. The architecture is modelled by a distance matrix [6, 11].
The element (k, l) of the distance matrix D = [dkl]p×p equals the minimum number of
links connecting the nodes pk and pl. The distance matrix is thus symmetric with zero
diagonal elements. We also assume that each processor constituting the multiprocessor
system has I/O processing units for all communication links so that computations and
communications can be performed simultaneously.

The scheduling of DAG G onto M consists in determining a processor index and
starting-time instant for each task in G in such a way as to minimize a given objective
function. An often used objective function (that we use in this paper as well) represents
the completion time of the scheduled task graph (also referred to as makespan, response
time or schedule length). The starting time of a task ti is determined by the completion
times of its predecessors and the amount of time needed to transfer the associated data
from the processors executing these predecessors to the processor that executes the task
ti. The communication time between tasks ti and tj, executed on processors pk and pl,
respectively, may be calculated as

γkl
ij = cij ∗ dkl ∗ ccr,

where ccr is architecture-dependent and represents the Communication-to-Computation-
Ratio, defined as the ratio between the transfer time of a unit of data and the time
required to perform a single computational operation. (Note that this definition charac-
terizes the multiprocessor architecture; ccr is thus different from the CCR parameter of
Kwok and Ahmad [19, 20], which is defined as the ratio between the total communication
and computation times for the given task graph and thus corresponds to a characteriza-
tion of the task graph.) When l = k, dkl = 0 implying that γkl

ij = 0.

Scheduling problems are NP-Hard in most cases [12, 27] and are usually addressed by
using heuristic methods in all but the simplest cases. This is also the case for task-graph
scheduling problems in general [11, 18, 22, 24, 25] and, in particular, for the MSPCD
problem for which a linear programming formulation displays n6 variables [10].

Most heuristic methods proposed for task-scheduling problems are based on some
priority-ordering scheme and include two phases: task ordering and task-to-processor
allocation. Heuristic methods may then be classified according to the order of these
two phases [15, 23]. A first class of heuristics starts by sorting the tasks according to
some priority scheme, followed by the second phase where each task is assigned to the
processor which is selected by some scheduling rule. Heuristics that belong to the second
class, first assign tasks to processors, while the actual schedule, i.e., the definition of the
order among tasks and the starting time for each task, is performed during the second
phase. For commodity of presentation, we refer to the two classes as list-scheduling and
clustering heuristics. The difference between the two classes is that the former orders all
tasks according to specified priorities prior to assignment, while the latter first generates
subsets of tasks and then orders each subset separately.

3

Both types of algorithms involve heuristic rules for the task ordering and assignment
phases. Task priorities may be defined based on task execution times, communication
requirements, number of successor tasks, and so on. Several criteria may be combined and
considered simultaneously. The heuristic task assignment rule may be breath first, when
mutually independent tasks are considered, or depth first in which case one examines
tasks along paths in the task graph. Scheduling problems and algorithms may also be
distinguished according to the role associated to the number of processors: one may
either use all the processors available or attempt to minimize the number of processors
used.

We selected a set of heuristics that reflect these methodological approaches and used
them to investigate the characteristics of different sets of benchmark-problem instances
proposed in the literature as well as our own. Four list-scheduling and two clustering
heuristics represent our choice.

The first list-scheduling heuristic is denoted CPES and is a modification of the Dy-
namic Level Scheduling (DLS) heuristic [25]. The basic idea of DLS is to calculate static
task priorities based on the Critical Path (CP) method and use them to order the tasks
and then, to modify them during the scheduling phase to reflect the partial schedules
already generated (the best (task, processor) pair is selected for scheduling). The dy-
namic update of priorities improves somewhat the performance of the scheduling phase,
but it also increases its computational burden significantly. Therefore, we decided to use
only static, CP -based priorities. Notice that the calculation of the critical path does
not involve communication times, because these depend upon the final task-to-processor
assignment and schedule. Thus, only task execution times li are considered. An Earliest
Start (ES) heuristic is used for scheduling, meaning that one computes the starting time
st(ti, pk) for each task ti and processor pk, the task being allocated to the processor with
the smallest associated starting time value [6].

We also implemented the DeClustering (DC) list-scheduling algorithm [6]. The first
phase is based on a CP -based priority list, which defines a sequential order of execution
(i.e., the order of tasks when all assigned to a single processor). In the second phase,
tasks are moved one by one to the other available processors for as long as it improves
the current schedule. This approach proved very efficient for dense task graphs for which
most heuristics yield solutions with large number of idle time intervals due to inter-
process data exchanges, resulting in longer parallel execution times than the sequential
one [6, 15].

The literature hints that the CP rule might not be efficient when communication
times are involved [2, 11, 15]. Consequently, we also implemented two variants of the
previous methods, LPTES and LPTDC, which make use of the Largest Processing Time
(LPT) [3] rule to build the priority list of the first phase.

4

The Preferred Path Selection (PPS) [21] and the Load Balancing with Minimized
Communications (LBMC) [24] are the two clustering heuristics that we implemented.
The main idea of the second method is to cluster tasks in the first phase such that
processor loads are balanced and inter-processor communications are minimized. The
PPS method builds paths through the given DAG such that a task is included in the
path if at least one of its predecessors already belongs to the path. For a task, the path
containing the highest number of predecessors is identified as preferred. Preferred paths
are then used to determine clusters. Both methods include a second phase to compute
the actual schedules on each processor.

Let us summarize here the differences among the selected scheduling algorithms:
CPES is a greedy breath-first heuristics, while PPS performs a depth-first search {or
chaining [11]}. LBMC explicitly considers the minimization of communications, while
DC includes communication times to improve upon the sequential schedule. Moreover,
while CPES and DC aim to minimize the number of processors, LBMC and PPS are
using all available processors. Thus, the selected procedures cover the main scheduling
heuristic designs and were used in all the experiments reported in this paper.

3 Existing Problem Sets

Most papers describing benchmark-problem instances for scheduling problems consider
simpler cases than MSPCD, such as DAGs without communication costs or completely
connected multiprocessor architectures. Thus, only a few sets of test-problem instances
may be found in the literature that are somewhat related to the MSPCD. We review these
efforts in this section. Our goal is to qualify their usefulness to benchmark heuristics for
the MSPCD. We base our evaluation both on experimental results and on the criteria
proposed by Hall and Posner [13].

Hall and Posner [13] addressed the issue of the generation of representative test-
problem instances for analyzing and comparing heuristic algorithms for scheduling prob-
lems. They pointed out the need for sets of test problems that address a given schedul-
ing problem variant but are independent of the problem characteristics, and may thus be
used for a fair evaluation of corresponding algorithms. Hall and Posner defined principles
that representative sets of test examples should satisfy. They illustrated these principles
by describing the generation process of test problems for two scheduling problems: the
minimization of the maximum tardiness with release dates, and the minimization of
the weighted completion times with deadlines. These problems are more complex than
the MSPCD. We thus assume that the principles and properties proposed by Hall and
Posner hold for this simpler case. The principles that should govern the generation of
test-problem instances are: 1) Purpose, the generated examples must be functional for
the analysis and comparison of algorithms for the given scheduling problem; 2) Compara-

5

bility, examples should not depend on any characteristic of the experimental environment;
3) Unbiasedness, the generation process should avoid incorporation of any problem char-
acteristic; and 4) Reproducibility, the generation process should be simple and clear so as
to be easily repeated for the generation of new adequate data. The generation procedure
should display the following properties: 1) Variety, the problem generator must create
a wide range of problem instances; 2) Relevance, i.e., create test instances that model
real world situations; 3-4) Scale and size invariance to ensure that the results will not
depend on problem instance size; 5) When identical types of input are treated in a similar
manner, the generation procedure satisfies the regularity property; 6-8) Describability,
efficiency, and parsimony to guarantee that the generation procedure is easy to describe,
easy and efficient to implement, use and replicate and, finally, that only parameters that
may affect the analysis are varied. The relations between principles and properties are
explained in [13]. In the following, we characterize existing sets of problem instances
with respect to them.

Coll, Ribeiro, and de Sousa [5] proposed a set of problems of relatively small sizes
with no communication delays. Moreover, scheduling results are available for completely
connected heterogeneous multiprocessor systems only. Therefore, these test-problem in-
stances are not appropriate for MSPCD.

A similar conclusion is reached relative to the very large set of problem instances
proposed by Tobita and Kasahara [26]. The problem-instance generators satisfy most of
the principles and properties of [13] (the parsimony criterion does not appear to be strictly
enforced). Communication delays and arbitrary multiprocessor architecture were not
considered, however, which make these test-problem instances not suitable for MSPCD.
(Appendix 2 presents scheduling results using the selected heuristics on some of these
problem instances.)

According to the authors’ knowledge, Kwok and Ahmad [20] proposed the only ex-
isting sets of problem instances closely related to the problem addressed in this paper.
They considered the communication delays. Multiprocessor architecture was assumed to
be completely connected, however.

Kwok and Ahmad [20] collected 15 scheduling algorithms proposed in the literature
and generated several sets of test instances to compare them. The authors divided the
scheduling algorithms into five somewhat homogeneous groups and compared the algo-
rithms within groups. The five groups of algorithms were classified as SRC (Scheduling
Restricted Graphs), TDB (Task Duplication Based), UNC (Unbounded Number of Clus-
ters), BNP (Bounded Number of (completely connected) Processors), and APN (Ar-
bitrary Processor Networks). APN is thus the only group of algorithms that appears
suitable for MSPCD but, it was not analyzed in details in [20].

Test instances were also partitioned into groups. Not all scheduling algorithms were

6

applied to all groups. The proposed groups of task graphs were PSG (Peer Set Graph
containing small-sized graphs collected from the literature), RGBOS (Random Graphs
with Branch-and-bound obtained Optimal Solutions), RGPOS (Random Graphs with
Preselected Optimal Solutions), RGNOS (Random Graphs with Not-known Optimal So-
lutions), and TG (Traced Graphs, representing real-world applications). PSG and TG
contain graphs of particular structure (e.g., triangle– or diamond–like) and their charac-
teristics, scheduling environment, and results were not detailed. Therefore, we focus our
analysis on the remaining three groups, RGBOS, RGPOS, and RGNOS, that consider
communication delays, even though results were reported for completely connected pro-
cessor networks only. The set of scheduling algorithms that considers arbitrary processor
networks (APN) can be applied to these instances. All the scheduling algorithms we
implemented can be classified as APN, some being similar to those used in [20] (e.g.,
DLS and DC).

The RGBOS set of test examples contains 36 graphs, 3 graphs with different values
for the CCR parameter (0, 1, and 10) for each of the 12 DAG sizes corresponding to a
number of tasks n ranging from 10 to 32 by increment of 2. Optimal solutions for these
small examples were determined by using an A∗ enumeration algorithm [1]. The heuristic
results reported in [20] for scheduling these task graphs on a 2-processor system displayed
1% to 8% deviations from the optimum. The results obtained using the heuristics we
selected are given in Table 1. CPES and LPTES always yielded optimal solutions.

The second group of test-problem instances, RGPOS, consists of 30 instances with
the preselected optimal solution for completely connected multiprocessor systems. For
these examples, n ranges from 50 to 500 by an increment of 50 and for each n, the same
three values were used for the CCR parameter. Scheduling results were reported for 11
scheduling algorithms with an average deviation from the optimum of 2% to 15%. The
optimal solutions were obtained only in a few cases. Surprisingly, in the [20] study, most
scheduling algorithms from the APN group were not applied to the test instances from the
RGBOS and RGPOS sets. The fact that these sets are not representative for arbitrary
multiprocessor architectures does not preclude the utilization of APN algorithms. The
results of our experiments with the RGPOS problem instances are displayed in Table 2.
Surprisingly, as previously, the CPES and LPTES heuristics yielded optimal solutions
for all problem instances.

The performance of the CPES and LPTES heuristics cannot be explained by their
design or intrinsic qualities. Our experience shows, for example, that the results obtained
by CPES can deviate by more than 100% from the optimum [8, 9]. We thus analyzed the
task graphs in the two sets and noticed that they all display very similar edge (connection)
densities. The edge density of a graph, ρ, is defined as the number of edges divided by
the number of edges of a completely connected graph with the same number of nodes
(i.e., ρ = |E|/n(n − 1)/2). For RGBOS, ρ varies from 30% to 40%, while for graphs in
RGPOS, the value of ρ is between 4% and 10%. To conclude, both sets contain only

7

Table 1: Scheduling results for RGBOS problem instances

Opt
Graph p CPES LBMC DC LPTDC PPS

LPTES
r10 0 2 271 488 352 275 284
r10 1 2 207 281 279 283 289
r10 10 2 266 1342 902 902 1169
r12 0 2 307 522 395 339 414
r12 1 2 246 366 320 356 352
r12 10 2 232 916 780 701 970
r14 0 2 281 428 339 326 399
r14 1 2 271 629 370 368 373
r14 10 2 267 1212 843 882 678
r16 0 2 332 441 485 373 428
r16 1 2 326 620 358 428 489
r16 10 2 416 2175 1040 1109 2517
r18 0 2 420 815 512 481 569
r18 1 2 428 892 476 732 526
r18 10 2 390 1860 1201 1255 2147
r20 0 2 477 962 566 547 579
r20 1 2 378 783 469 521 596
r20 10 2 457 3361 1249 1249 2989
r22 0 2 585 1023 686 708 784
r22 1 2 488 905 488 605 996
r22 10 2 575 2567 1292 1356 3370
r24 0 2 480 882 634 557 625
r24 1 2 618 1276 800 817 961
r24 10 2 594 3843 1349 1372 2691
r26 0 2 737 1319 893 781 934
r26 1 2 614 1097 687 687 1150
r26 10 2 529 909 1128 1196 4287
r28 0 2 680 1269 750 731 958
r28 1 2 671 1194 875 812 1279
r28 10 2 623 4507 1467 1467 3189
r30 0 2 750 1435 849 790 1068
r30 1 2 811 1842 859 1144 1530
r30 10 2 653 3519 1388 1333 4692
r32 0 2 749 1337 894 821 1186
r32 1 2 886 1806 886 1353 1698
r32 10 2 941 5487 1675 1713 6453

8

Table 2: Scheduling results for RGPOS problem instances

Opt
Graph p CPES LBMC DC LPTDC PPS

LPTES
50 0 3 933 2085 1690 1473 1864
50 1 3 956 2403 1807 1790 2176
50 10 3 811 6166 2281 2360 7255
100 0 5 898 2601 2435 1939 1501
100 1 5 831 2583 2353 2032 1704
100 10 5 929 7138 4602 4650 7349
150 0 6 1215 3442 3973 3166 2253
150 1 6 1104 3490 3464 3342 2539
150 10 6 1186 11269 6583 6319 11879
200 0 7 1351 4807 4895 4091 3175
200 1 7 1345 5343 4663 4450 3336
200 10 7 1446 18640 8824 8473 17132
250 0 7 2553 9505 9696 9855 8532
250 1 7 2377 9399 8750 8448 7127
250 10 7 2357 27198 12238 12835 26373
300 0 8 2464 8798 10316 9601 5850
300 1 8 2250 10388 9831 8098 6520
300 10 8 2397 28860 14076 14767 23844
350 0 9 2342 8986 11177 9880 5299
350 1 9 2371 9582 11012 10590 7879
350 10 9 2409 28824 16906 16855 24231
400 0 10 1796 6218 9258 7387 3809
400 1 10 1798 7290 8854 7504 4554
400 10 10 1781 24140 13889 14626 20964
450 0 10 2763 10363 15207 12273 6597
450 1 10 2872 12478 14645 14470 9924
450 10 10 3168 42928 22035 23214 33480
500 0 11 2085 7356 11864 9744 4663
500 1 11 2050 9288 11041 9789 5488
500 10 11 2054 28111 16049 17545 24285

9

sparse task graphs, with RGPOS graphs containing almost independent tasks.

Further analysis shows that, in fact, the two sets of problem instances violate sev-
eral properties required by Hall and Posner [13]. Thus, variety is not ensured because
the graph density does not vary and differences in multiprocessor architectures are not
accounted for. Indeed, only one multiprocessor system, with fixed number of completely
connected processors, is considered for each size n. Relevance is not provided either,
since only completely connected multiprocessor systems are considered. Regularity is
also violated for RGPOS examples since the structure of the task graphs and the optimal
solutions is predetermined. It may thus be easy to define scheduling procedures that
will always generate optimal schedules. Consequently, the RGBOS and RGPOS sets
of problem instances proposed in [20] are not adequate to benchmark algorithms for the
MSPCD problem.

A note on the behavior of the other heuristics on these two sets. As can be seen from
Tables 1 and 2, LBMC and PPS displayed the worst performance. The main issue with
LBMC is the poor approximation during clustering of the communication delays that
are generated by assigning tasks to clusters. Simple heuristics, such as considering the
maximum inter-task communication delay [24] or the weighted sum of communication
delays, do not seem to work. As for the PPS heuristic, it was originally designed for
fine-grained task execution times and communication delays, which is not the case here.

The third set of problem instances proposed in [20] that could be used for heuristics
designed for general networks is the set RGNOS composed of 250 random task graphs
generated similarly to the ones in RGBOS, but with number of tasks in the same range as
for the RGPOS set. The authors provided very little information regarding this set and
the APN algorithms. Neither optimal solutions, nor best-known solutions were provided
and the number of processors was not specified either. Comparisons are thus very difficult
to undertake. We applied the selected heuristics, however, to the subset of 50 tasks with
CCR = 1.0 with p = 2. The relative behavior of the heuristics is similar to that observed
previously. Complete results may be obtained as indicated in Appendix 2. It is worth
noticing that the density of the task graphs in RGNOS is again very low, varying from
8% to 15%. As for the properties required by [13], RGNOS does not violate relevance
and regularity, but variety is still not satisfied since only sparse graphs were generated.

4 New Sets of Benchmark Problem Instances

We propose two new sets of task graphs for analyzing and comparing scheduling heuristics
addressing the MSPCD problem. The first is composed of randomly-generated DAGs.
The generation procedures and the parameters settings (e.g., edge density) are such
that the rules and principles of [13] are enforced. The second set contains task graphs

10

with known optimal solutions for given multiprocessor architectures. In this section, we
describe both the problem instances and the corresponding task graph generators for
the two sets. The task graphs may be obtained from the authors as indicated in the
Appendix 1.

Two generators were built for the first set of problem instances. The first produces
task graphs with given heights and widths (i.e., with preselected number of ”layers” and
tasks within a layer; it should be noted, however, that we do not enforce the multi-layer
design). Such task graphs display a predetermined level of parallelism and are thus suit-
able for experimentations involving different multiprocessor system architectures. The
generator also allows to control the input parameters that affect other characteristics of
the task graphs, such as granularity, the CCR factor ([20]), and the density.

The second generator yields task graphs with preselected densities. One thus over-
comes the main drawback of the sets proposed in [20]. Task execution times and com-
munication delays are determined randomly according to given input parameters. One
may generate several graphs for the same input parameter values. The randomness of
the procedure ensures that the resulting graphs are different, however.

Several input parameters are the same for the two generators: number of graphs to
be generated, number of tasks within each task graph, maximum value of task duration
(execution time), and maximum value of communication delay. The maximum number
of levels (height) in each graph and the maximum number of successors for each task are
specific for the first generator, while the density of the generated task graphs appears
only for the second. The actual values for these parameters are determined randomly
during the generation process for each particular task graph that is generated. Because
no assumptions are made during the generation process regarding the problem-specific
parameters, these generators obey the principles proposed in [13].

These two generators were used to build the first set of test examples. It consists of
180 random task graphs with n ∈ {50, 100, 200, 300, 400, 500} and ρ ∈ {20, 40, 50, 60, 80}.
For each (n, ρ) combination, we generated 6 graphs with different combinations of the pa-
rameters controlling the task computation time and communication requirements. Three
task graphs of the same size were obtained by the first generator, the other three by
the second. For each n, there are thus 30 task graphs with the same number of tasks,
while for each ρ, there are 36 graphs with the same density. The proposed task graphs
do not depend on the multiprocessor architecture. They can be scheduled to arbitrary
multiprocessor systems.

We also propose a new set of randomly generated test instances with known-optimal
solutions that overcomes some of the limitations of [20]. The generation process is as
follows. A number of graphs m (set here to 10) is generated for each combination of
multiprocessor architecture, defined by the number of processors p and the distance

11

matrix Dp×p, number of tasks n, and length of the optimal schedule SLopt. All m graphs
contain the same number of tasks, with the same task durations but with different edge
densities ρ. First, the optimal schedule is generated in such a way that each processor
pk executes approximately the same number of tasks xk (with 10% allowed deviations).
The task durations are determined randomly, using a uniform distribution (mean equal
to SLopt/xk and 10% deviation). All processors are completing the execution at the same
time (SLopt) and there are no idle time intervals between tasks. Tasks are then numbered
according to their starting times: the first task on the first processor obtains number 1,
the first task on the second processor obtains number 2, and so on; p + 1 will be the
number of the second task with the smallest starting time (regardless of the index of the
corresponding processor); p + 2 will be associated to the task that is the next one to
begin its execution (the task could be on the same processor if the previous one has a
small duration); etc. Figure 1 illustrates the structure of the optimal schedule obtained
by this procedure.

Figure 1: Structure of the optimal schedule for problem instances in set 2

Precedence relations among tasks are defined by adding edges to the graph and assign-
ing communication loads to these edges. The maximum allowed density ρmax is calculated
first, because there cannot be an edge from task ti to tj if st(ti, pk)+ li > st(tj, pl). Then,
for each i = 0, ...,m − 1, the number of edges corresponding to the density ρmax · i/m
is calculated and new edges are added randomly to the task graph to reach that num-
ber. The communication requirement along each edge (edge weight) is calculated by the
following rule:

cij =

{

∞, if k = l,
(st(tj, pl) − (st(ti, pk) + li))/dkl, otherwise.

i.e., when tasks are executed on the same processor, the amount of data exchanged can be
arbitrary large, otherwise, the communication amount is defined by the interval between
the completion time of the first task and the starting time of the second one divided by
the distance between the corresponding processors. The resulting task graph becomes
the starting point for building the instance with the next higher density (one needs to
add only a few new edges).

12

The input parameters for this generator thus are: the number of task graphs to
be generated, the number of tasks in each task graph, the number of processors, the
corresponding distance matrix, and the length of the optimal schedule. The number
of tasks per processor, the task duration times and communication requests are then
calculated as indicated previously.

The set is made up of 700 problem instances with different characteristics in terms
of the multiprocessor system architecture (number of processors and distance matrix),
number of tasks, and density of the task graphs. We selected 7 different multiprocessor
system configurations defined by the connection architecture and the number of proces-
sors p: four hypercubes of dimensions 1, 2, 3, and 4 (i.e., 2, 4, 8, and 16 processors),
and three mesh configurations of 6, 9, and 12 processors. 100 problem instances were
generated for each of the 7 system configurations by combining the number of tasks n
(10 values from 50 to 500 by increment of 50) and the connection density ρ (10 values
from 0 (independent tasks) to 90% of the maximum allowed density ρmax) of the corre-
sponding task graph. These test instances do not satisfy all properties proposed in [13]:
the second and third properties are not satisfied because the multiprocessor architecture
and the structure of the final (optimal) schedule are pre-specified. The set of problem
instances may still be quite useful, however, for the estimation of the solution quality
offered by the given heuristic.

The lengths of the optimal schedules for each number of tasks n in the DAG are given
in Table 3. These lengths do not depend on the values for p and ρ. The proposed set of
problem instances can also be used for scheduling on completely connected architectures,
as well as when communication delays are not relevant.

Table 3: Optimal schedule lengths for random task graphs

n 50 100 150 200 250 300 350 400 450 500
SLopt 600 800 1000 1200 1400 1600 1800 2000 2200 2400

5 Analysis of Scheduling Results on the New Prob-

lem Sets

In this section we report and analyze results of applying the selected heuristics to the
two sets of task graphs introduced in the previous section. The quality of the heuristic
solutions is examined relative to the task graph characteristics and the multiprocessor
architecture: number of tasks n, edge density ρ, number of processors p, interconnection
architecture, and communication delay. It is worth emphasizing that our objective is

13

not the comparison of scheduling heuristics, but rather the illustration of the value of
the proposed sets of problem instances as benchmarks. We therefore emphasize the
characteristics of the test examples with respect to parameter variations and algorithm
behavior.

The hypercube is a widely used multiprocessor architecture. We thus experimented
with 1-, 2-, and 3-dimensional hypercubes, i.e., we set p = 2, 4, 8. The distance matrix
for 3-dimensional hypercube is

D =

0 1| 1 2| 1 2 2 3
1 0| 2 1| 2 1 3 2
1 2 0 1| 2 3 1 2
2 1 1 0| 3 2 2 1
1 2 2 3 0 1 1 2
2 1 3 2 1 0 2 1
2 3 1 2 1 2 0 1
3 2 2 1 2 1 1 0

For p = 2 and p = 4 the respective distance matrices are represented by the corre-
sponding upper left blocks of matrix D. To show that the proposed problem instances
may be used even in extreme cases, we also considered completely connected architectures
and systems with negligible communication delays.

We first present the results on the first set of problem instances (Set 1), which contains
random task graphs with no known optimal solutions. The complete set of results is too
large to be included in the paper. Only average results are presented. The complete set
of results may be obtained from the authors as indicated in Appendix 2.

Table 4 displays comparison results of scheduling onto 1-, 2-, and 3-dimensional hy-
percube networks with significant communication delays. The first column indicates the
number of tasks and the second displays the number of processors. Averages over 30
test instances of equal size are presented in the next columns: column three displays the
average best known result (scheduling length), while the remaining six columns contain
average percentage deviations from the best schedule reported in the third column. In
most cases, the best solution was obtained by CPES. Among the other heuristics, LPTES,
DC, and LPTDC generated better solutions than CPES in a few cases, although, on av-
erage, they do not perform well. In the following, we focus on illustrating how variations
in the characteristics of the proposed problem instances (due to parameter variation dur-
ing generation) induce the appropriate variations in algorithm behavior, thus showing the
interest of the proposed set of problems for the evaluation of heuristics for the MSPCD
problem.

The figures in Table 4 illustrate the dependency of the scheduling results on the num-

14

Table 4: Scheduling results for Set 1 problems: Hypercube multiprocessor systems and
significant communication delays

Av. Percentage of deviation
n p Best. CPES LPTES DC LPTDC PPS LBMC

50 2 517.47 22.21 27.71 40.85 41.10 54.86 70.64
50 4 500.47 19.55 25.37 42.35 40.50 64.38 104.09
50 8 537.43 11.30 16.26 32.62 30.84 63.22 115.81

100 2 1128.97 16.73 21.97 36.91 37.31 45.28 70.10
100 4 1071.87 16.24 21.75 71.47 40.68 52.97 102.52
100 8 1129.80 10.13 14.91 34.10 33.38 49.37 115.28
200 2 2355.57 12.63 18.10 29.11 31.46 38.90 64.44
200 4 2261.43 10.57 15.43 31.42 32.42 42.18 92.88
200 8 2349.03 6.40 10.65 26.50 27.57 41.84 111.30
300 2 3586.10 9.77 14.40 25.78 28.60 35.80 62.43
300 4 3396.83 9.07 14.08 29.65 31.91 42.33 94.23
300 8 3497.17 5.72 10.45 25.93 27.08 42.11 113.81
400 2 4835.76 9.45 13.84 28.44 30.63 33.60 61.88
400 4 4620.33 8.33 12.83 32.02 33.15 37.69 89.96
400 8 4759.20 5.06 9.23 28.18 29.10 36.39 110.39
500 2 6071.00 8.81 13.00 25.26 27.96 33.27 60.93
500 4 5784.63 7.93 12.29 28.85 30.43 37.07 91.60
500 8 5940.50 5.05 9.08 25.40 26.90 36.76 112.14

ber of processors. As expected, for breath-first heuristics, such as CPES and LPTES,
which try to minimize the number of processors used, the deviations decrease when the
number of processors increases. The opposite trend may be observed for the other heuris-
tics, which may be explained by the additional communication burden corresponding to
a larger number of processors. Figure 2 illustrates the performance of the heuristics in
terms of deviations from the optimal schedule length, for n = 200 and various graph
densities. The same behavior may be observed for the other values of n. To make for a
clearer presentation, LPT-based heuristics are not included, since LPTES and LPTDC
display a behavior similar to that of CPES and DC, respectively. The results displayed in
Figure 2 indicate that the performance of all heuristics increases with the density of the
task graphs (i.e., the respective deviations from the best known solutions decrease). This
means that sparse task graphs are generally harder to address by scheduling heuristics,
while it is easier for more dense graphs. The results also illustrate the previously noted
relations between the number of processors and the quality of the solution obtained by
each heuristic: the performance of CPES improves with the number of processors, while
it decreases for the other heuristics.

15

0

5

10

15

20

25

30

20 30 40 50 60 70 80

%
de

v.

density

CPES solution deviations

p=2
p=4
p=8

0

20

40

60

80

100

120

20 30 40 50 60 70 80

%
de

v.

density

DC solution deviations

p=2
p=4
p=8

10

20

30

40

50

60

70

80

90

100

110

120

20 30 40 50 60 70 80

%
de

v.

density

PPS solution deviations

p=2
p=4
p=8

40

60

80

100

120

140

160

180

200

20 30 40 50 60 70 80

%
de

v.

density

LBMC solution deviations

p=2
p=4
p=8

Figure 2: Solution deviations for task graphs with n = 200 with communication delays
scheduled onto hypercube networks

Tables 5 and 6 display scheduling results for completely connected networks of proces-
sors (for p = 2, the hypercube and the complete interconnection network of processors are
the same system) and for DAGs without communication delays, respectively. Most pre-
vious conclusions hold for these extreme cases as well. It might be noteworthy, however,
that the PPS and LBMC heuristics display different behaviors relative to the number of
processors: the quality of solution degrades when this number decreases. Their general
performance is so poor, however, that this observation cannot be considered definitive.
Work is required to improve these heuristics but this is beyond the scope of the current
paper.

An important observation is that, on average, the best solution (Column 3) does not
improve when more processors are added. An analysis of the detailed results indicates
that some improvement is achieved for sparse-task graphs, while the degradation in solu-
tion quality is observed for dense ones. It appears that dense graphs do not benefit from
adding processors to multiprocessor systems due to the time spent waiting for predecessor
tasks to complete their execution and transferring data between related tasks scheduled

16

Table 5: Results for Set 1 for completely interconnected systems and significant commu-
nication delays

Av. Percentage of deviation
n p Best. CPES LPTES DC LPTDC PPS LBMC
50 4 595.90 0.15 4.38 19.57 17.35 26.35 52.02
50 8 596.67 0.00 0.00 19.42 17.19 20.57 48.96
100 4 1235.43 0.06 4.73 22.29 20.92 23.30 56.82
100 8 1233.80 0.06 4.60 22.45 16.71 17.63 51.60
200 4 2481.00 0.00 4.44 19.64 20.38 22.31 57.09
200 8 4279.93 0.00 4.15 19.69 20.49 16.91 52.68
300 4 3667.10 0.00 4.71 19.81 21.20 23.44 60.77
300 8 3660.57 0.00 4.64 20.02 21.42 17.70 68.73
400 4 4956.97 0.00 4.37 22.56 23.39 20.92 58.25
400 8 4951.30 0.00 3.97 22.63 23.53 15.22 53.34
500 4 6187.80 0.00 3.97 20.11 21.56 20.98 59.09
500 8 6181.90 0.00 3.85 20.22 21.68 15.87 54.24

on different processors. Moreover, the ES -based heuristics, which often perform best, do
not aim to use all processors. Consequently, in most cases, they produce exactly the same
schedule even though the number of available processors increases. The same conclusions
hold for the problem instances without communication delays.

The detailed results for the 700 random test instances with known optimal solutions
(Set 2) are presented in [7]. In this section, we summarize these results and present a
limited number of illustrative examples using the CPES heuristic.

We first analyze the influence of the edge (communication) density on the solution
quality. Since the results for each p are similar, we display in Figures 3 and 4 the
results for p = 8 only. Each figure displays 10 curves, one for each n, showing the
change in the deviation from the optimal solution when ρ increases. Two multiprocessor
architectures with fixed number of processors p were considered: Connected according to
a given interconnection structure (mesh or hypercube), and completely connected. We
also distinguished between cases with and without communication delays. In the latter
case, the interconnection network does not play any role. Consequently, three cases exist
only (and three graphs are displayed) for each p: Particular interconnection network with
and without communication delays (Figure 3), and complete interconnection network
with communication delays (Figure 4). An exception is the case p = 2 since the particular
and the complete connections are the same and only two cases have to be analyzed.

As illustrated in Figures 3 and 4, the deviation from the optimal solution generally

17

Table 6: Results for Set 1 for systems with no communication delays

Av. Percentage of deviation
n p Best. CPES LPTES DC LPTDC PPS LBMC

50 2 582.37 0.00 2.29 13.05 13.09 18.53 24.27
50 4 538.00 0.00 0.74 17.16 13.74 10.54 19.83
50 8 538.03 0.00 0.00 17.14 13.41 1.86 8.48

100 2 1218.73 0.00 2.88 13.64 13.84 18.51 27.41
100 4 1113.70 0.00 0.92 17.51 14.81 10.57 22.36
100 8 1113.83 0.00 0.00 17.46 15.00 2.11 10.73
200 2 2438.70 0.01 3.15 10.59 12.82 18.67 28.16
200 4 2231.10 0.00 1.16 13.28 13.28 12.06 22.88
200 8 2229.27 0.00 0.00 13.38 13.17 4.37 12.76
300 2 3597.10 0.00 2.81 10.52 14.14 19.23 28.74
300 4 3279.30 0.00 0.80 14.34 14.48 11.93 25.11
300 8 2373.47 0.00 0.00 14.55 14.70 4.17 14.14
400 2 4852.64 0.01 2.80 15.27 16.67 17.92 28.58
400 4 4450.80 0.00 0.86 18.32 18.14 11.04 23.56
400 8 4445.17 0.00 0.00 18.46 17.96 3.41 12.83
500 2 6045.80 0.00 3.03 12.53 15.44 18.68 29.02
500 4 5545.50 0.00 0.86 15.93 16.57 11.32 24.42
500 8 5539.00 0.00 0.00 16.04 16.70 3.99 14.30

grows with ρ when communication times are significant. This emphasizes the fact that
the problem instances of the Set 2, due to their special structure used to provide known
optimal solutions, behave quite differently form the completely random test problems of
the Set 1. The figures also illustrate the impact of the type of processor connection on the
quality of solution of scheduling heuristics on these problem instances. For completely
connected systems, the impact of increasing ρ appears relatively small and that of n
appear negligible. The performance seems to degrade somewhat for large number of
processors, however. For systems without communication times, deviations are very
small in all cases. The observations are quite different for systems that are not completely
connected: deviations from optimum can be quite large, an order of magnitude larger
than for completely connected systems. Moreover, the deviations seem to increase with
n. Finally, the results show that sparse task graphs in Set 2 are easy to schedule with
CPES, which points to the shortcomings of the problem instances in [20], which were all
scheduled optimally using this heuristic.

The second main analysis concernes the influence of the number of processors on the
scheduling results. It is natural to expect to be easier to schedule on systems with a
smaller number of processors than on larger multiprocessor systems. Data dependencies

18

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90

%
de

v.

density

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90

%
de

v.

density

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 3: Solution deviations for 8-processor hypercube, with and without communica-
tion delays

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90

%
de

v.

density

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 4: Solution deviations for completely connected 8 processors with communication
delays

can indeed prevent the efficient exploitation of a large number of available processors.
Sometimes, the number of processors can be even too large, resulting in very significant
time spent on data transfers, as we already noticed while scheduling examples from Set 1.

Figures 5 and 6 illustrate the deviations in the schedule lengths obtained by CPES,
for varying numbers of processors and task graphs with fixed density (at ρ = 50%).
The results support the previous hypothesis: when communication times are significant,
the deviation from the optimal solution grows with the number of processors. It is
interesting to note that, when communications can be neglected, the curves are very
close (maximum deviation is 7%) and that the deviation is not increasing with n. The
trend may also be observed for completely connected systems, but it is weaker (deviations
increase at a slower rate). On the other hand, better task allocations may be obtained

19

0

20

40

60

80

100

120

140

160

180

200

220

0 2 4 6 8 10 12 14 16

%
 d

ev
.

p

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16

%
 d

ev
.

p

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 5: Solution deviations for task graphs with ρ = 50, with and without communi-
cation delays, scheduled onto incomplete networks

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16

%
 d

ev
.

p

n=50
n=100
n=150
n=200
n=250
n=300
n=350
n=400
n=450
n=500

Figure 6: Solution deviations for task graphs with ρ = 50 with communication delays
scheduled onto complete network of processors

when communication times are irrelevant. These observations yield a second explanation
for the performance of CPES that found the optimal schedules for all problem instances
from [20]: the single value of p given for each size n is sufficiently low to make the
problems “easy”.

It thus appears that it is easier to schedule sparse task graphs with CPES than
denser ones. Moreover, better results may be expected when the number of processors is
relatively small. We believe such hard or easy problem instances exist for all scheduling
heuristics and that the set of problem instances we propose is sufficiently large to include
challenging problems for most cases. This claim is supported by our care to vary the
parameters related to the characteristics of both the task graphs and the multiprocessor
systems, as well as by the results of the LBMC, PPS, and DC heuristics on the same set
of task graphs (full results in [7]). The results show that PPS and DC encounter the same

20

difficulties as CPES in scheduling dense task graphs. Moreover, the DC method does not
distinguish between different types of processor connections. LBMC, as expected given
its communication-minimizing heuristic rule, seems to have difficulty to address sparse
task graphs (except for independent tasks where it acts like the LPT method). We notice
a decrease in the solution deviations when the density of task graphs increases. For all
heuristics, the deviations tend to increase with the number of processors, except for
LBMC and PPS that seem to handle more easily the 4-dimensional hypercube (p = 16)
than the 12-processor mesh when communications are significant.

The complete set of test instances with known optimal solution is quite large and it
may not be necessary to use all the examples in all cases. According to our analysis, at
least one of the two parameters p and ρ should be varied, however. This can reduce the
size of the set by an order of magnitude (either 70 or 100 examples need to be evaluated,
depending on which parameter is varied, p or ρ). Based on the experiments with the
six constructive heuristics, we concluded that p and ρ are equivalent, in the sense of the
insight their variation provides to the user. It is up to the user to decide which one to
vary. We believe this conclusion holds for other methods as well.

6 Conclusion

In this paper, we propose two new sets of benchmark-problem instances for scheduling
dependent tasks onto different multiprocessor architectures, not necessarily completely
connected, taking into account communication delays (MSPCD). The first set includes
completely random instances and may be used for any multiprocessor architecture. It is
theoretically sound and general. The second set includes problem instances with known
optimal solutions for specific processor interconnection networks. The generators are also
described and made available.

Several representative heuristics were used to evaluate the sets of problems instances in
the literature as well as the ones we propose. We analyzed the dependency of the deviation
of the heuristic solution from the best known or the optimal one on several parameters:
task graph density, communication delay, number of processors and connections between
them. These parameters play a significant role in the quality of heuristic solutions and
should be varied when scheduling heuristics are tested to ensure a fair evaluation. We
noticed that communication delays are significantly degrading the performance of the
scheduling heuristics. Regarding the multiprocessor architecture, it is of course easier to
schedule onto completely connected processors but this is not always possible. Therefore,
the type of processor interconnection should also be varied. For the other two parameters,
number of processors and task graph density, at least one of them should be varied in
order to objectively evaluate the efficiency of a particular scheduling heuristic. The sets
of problem instances we propose provide this variation.

21

The MSPCD is a difficult and important problem class. The test-problem instances
we propose bridge a gap in the literature by providing a theoretically sound and experi-
mentally comprehensive framework for the fair evaluation of heuristics for the MSPCD.

Acknowledgments

This work was partially supported by NSF of Serbia, grant no. 1583, under project
“Mathematical optimization models and methods with applications”. Funding for this
work has also been provided by the Natural Sciences and Engineering Council of Canada,
through its Research Grant program, and by the Fonds F.C.A.R. of the Province of
Québec.

References

[1] I. Ahmad and Y.-K. Kwok. Optimal and near-optimal allocation of precedence-
constrained tasks to parallel processors: Defying the high complexity using effective
search technique. In Proceedings 1998 International Conference on Parallel Process-
ing, pages 424–431, 1998.

[2] J. Blazewicz, M. Drozdowski, and K. Ecker. Management of resources in parallel
systems. In J. Blazewicz, K. Ecker, B. Plateau, D. Trystran, eds., Handbook on
Parallel and Distributed Processing, pages 263–341. Springer, 2000.

[3] B. Chen. A note on lpt scheduling. Operations Research Letters 14:139–142, 1993.

[4] Jr. E. G. Coffman and R. L. Graham. Optimal scheduling for two processor systems.
Acta Informatica 1:200–213, 1972.

[5] P. E. Coll, C. C. Ribeiro, C. C. de Sousa. Test instances for schedul-
ing unrelated processors under precedence constraints. http://www-di.inf.puc-
rio.br/ celso/grupo/readme.ps, 2002.

[6] T. Davidović. Exaustive list-scheduling heuristic for dense task graphs. YUJOR
10(1):123–136, 2000.

[7] T. Davidović and T. G. Crainic. New benchmarks for static task scheduling on
homogeneous multiprocessor systems with communication delays. Publication CRT-
2003-04, Centre de Recherche sur les Transports, Université de Montréal, 2003.

[8] T. Davidović, P. Hansen, and N. Mladenović. Scheduling by VNS: Experimental
analysis. In Proceedings Yugoslav Symposium on Operations Research, SYM-OP-IS
2001, S. Minić, S. Borović, N. Petrović, eds., pages 319–322, Beograd, 2001.

22

[9] T. Davidović, P. Hansen, and N. Mladenović. Variable neighborhood search for
multiprocessor scheduling problem with communication delays. In Proc. MIC’2001,
4th Metaheuristic International Conference, J. P. de Sousa, ed., pages 737–741,
Porto, Portugal, 2001.

[10] T. Davidović, N. Maculan, and N. Mladenović. Mathematical programming for-
mulation for the multiprocessor scheduling problem with communication delays. In
Proc. Yugoslav Symposium on Operations Research, N. Mladenović, Dj. Dugošija,
eds., pages 331–334, Herceg–Novi, 2003.

[11] G. Djordjević and M. Tošić. A compile-time scheduling heuristic for multiprocessor
architectures. The Computer Journal 39(8):663–674, 1996.

[12] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completness. W. H. Freeman and Company, 1979.

[13] N. G. Hall and M. E. Posner. Generating experimental data for computational
testing with machine scheduling applications. Operations Research 49:854–865, 2001.

[14] T. C. Hu. Parallel sequencing and assembly line problems. Operations Research
9(6):841–848, 1961.

[15] A. A. Khan, C. L. McCreary, and M. S. Jones. A comparison of multiprocessor
scheduling heuristics. In H. J. Siegel, editor, Proceedings of the 8th International
Symposium on Parallel Processing, pages 243–250, Cancún, Mexico, IEEE Computer
Society, 1994.

[16] V. Krishnamoorthy and K. Efe. Task scheduling with and without communication
delays: A unified approach. European Journal of Operational Research 89:366–379,
1996.

[17] Y.-K. Kwok and I. Ahmad. Bubble scheduling: A quasi dynamic algorithm for static
allocation of tasks to parallel architectures. In Proceedings 7th IEEE Symposium of
Parallel and Distributed Processing (SPDP’95), pages 36–43, Dallas, Texas, USA,
1995.

[18] Y.-K. Kwok and I. Ahmad. Dynamic critical path scheduling: An effective technique
for allocating task graphs to multiprocessors. IEEE Transactions on Parallel and
Distributed Systems 7(5):506–521, 1996.

[19] Y.-K. Kwok and I. Ahmad. Efficient scheduling of arbitrary task graphs to multi-
processors using a parallel genetic algorithm. J. Parallel and Distributed Computing
47:58–77, 1997.

[20] Y.-K. Kwok and I. Ahmad. Benchmarking and comparison of the task graph schedul-
ing algorithms. J. Parallel and Distributed Computing 59(3):381–422, 1999.

23

[21] B. A. Malloy, E. L. Lloyd, and M. L. Soffa. Scheduling DAG’s for asynchronous mul-
tiprocessor execution. IEEE Transactions Parallel and Distributed Systems 5(5):498–
508, 1994.

[22] S. Manoharan and P. Thanisch. Assigning dependency graphs onto processor net-
works. Parallel Computing 17:63–73, 1991.

[23] M. Pinedo. Scheduling Theory, Algorithms and Systems. 2dn edition, Prentice Hall,
2002.

[24] A. K. Sarje and G. Sagar. Heuristic model for task allocation in distributed computer
systems. IEE Proceedings-E 138(5):313–318, 1991.

[25] G. C. Sih and E. A. Lee. A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures. IEEE Transactions on Parallel
and Distributed Systems 4(2):175–187, 1993.

[26] T. Tobita and H. Kasahara. A standard task graph set for fair evaluation of multi-
processor scheduling algorithms. Journal of Scheduling 5(5):379–394, 2002.

[27] J. D. Ullman. NP-complete scheduling problems. J. Comput. Syst. Sci. 10(3):384–
393, 1975.

[28] T. A. Varvarigou, V. P. Roychowdhury, T. Kailath, and E. Lawler. Scheduling in
and out forests in the presence of communication delays. IEEE Transactions Parallel
and Distributed Systems 7(10):1065–1074, 1996.

Appendix 1 - Description of Task Graph Files

The zip file Bench.zip, which can be downloaded from the following web address
http://www.mi.sanu.ac.yu/~tanjad/, contains 180 completely random task graphs
and the readme.txt file. File names are t<n> <r> <i>.td, where <n> should be sub-
stituted with the number of tasks in the corresponding graphs, and <r> with the edge
density, while i is the index of the graph with the same n and r values (there are 6 graphs
for each (n, r) pair). In each file, data are written in the following format:

• The first row contains the number of tasks n;

• The next n rows contain the data for task i = 1, . . . , n: index i, duration ti,
number of successors nsucc, the list of nsucc pairs sj cij representing the index of the

jth successor and corresponding communication amount.

24

We report best known solutions in the file NonoptBestResults.dat (obtained by ap-
plying GA and VNS meta-heuristics). The structure of this file is given in the following
table, where D = C stands for complete interconnected processor networks, while D = H
indicates a hypercube multiprocessor architecture. 30 test examples are given for each
n.

n p = 2 p = 4 p = 8
ccr = 0 ccr = 1 ccr = 0 ccr = 1 ccr = 0 ccr = 1

D = C D = H D = C D = H
50 SL SL SL SL SL SL SL SL
.
.
.

50 SL SL SL SL SL SL SL SL
100 SL SL SL SL SL SL SL SL
.
.
.

100 SL SL SL SL SL SL SL SL
.
.
.

The zip file Bench opt.zip, which can also be found at the same web address, contains
the task graph examples with known optimal solutions and the corresponding readme.txt
file. File names are ogra<n> <r> <p>.td, where n and r have the same meaning as in the
previous case, while <p> should be substituted with the number of processors for which
the optimal solution is given.

Appendix 2 - Complete Scheduling Results

The complete results for the sets RGBOS and RGPOS proposed in [20] are given in
Tables 1 and 2. The third set proposed by Kwok and Ahmad [20] contains 250 task
graphs. Since the authors did not provide any scheduling results, we run the 6 schedul-
ing algorithms we selected on a subset and provide the corresponding scheduling results.
The selected subset contains 50 task graphs with different number of tasks and degree
of parallelism and the same value for the parameter CCR = 1.0. The results are re-
ported in the file RGNOS.RES, which can be downloaded from the following web address
http://www.mi.sanu.ac.yu/~tanjad/. The file is in LATEX-like table format. The num-
ber of tasks appears in the first column and the schedule length in the third. The results
are sorted according to the scheduling heuristic whose abbreviation is in the separate row

25

Table 7: Scheduling results for Tobita and Kasahara test examples [20]

Percentage of deviation
n p Av. Opt. CPES LPTES DC LPTDC

50 2 214.39 0.55 3.12 12.57 16.08
50 4 135.10 0.90 6.53 60.13 49.72
50 8 113.76 0.25 3.08 90.11 77.68
50 16 112.52 0.00 0.05 92.21 76.64

100 2 402.85 0.32 3.37 10.45 15.51
100 4 228.11 0.60 7.47 71.69 56.96
100 8 175.45 0.32 4.23 123.37 102.71
100 16 171.24 0.02 3.21 128.87 107.70
300 2 1206.14 0.11 2.00 62.21 11.16
300 4 619.63 0.38 7.23 85.13 63.85
300 8 398.31 0.32 7.08 187.90 153.82
300 16 361.51 0.22 1.23 217.21 179.66
500 2 1998.54 0.07 1.57 5.26 10.01
500 4 1021.56 0.26 5.64 86.48 62.01
500 8 617.99 0.31 7.21 208.24 167.32
500 16 521.53 0.04 2.18 265.25 216.76

indicating the beginning of the corresponding data. The value for p equals 2.

Tobita and Kasahara proposed a large number of test examples, but communication
delays and multiprocessor architecture were not considered [26]. The input files can
be found on http://www.kasahara.elec.waseda.ac.jp/schedule. There are 180 task
graphs for each fixed value of the number of tasks n. Even though these problem instances
are not directly relevant for the MSPCD, we applied the selected scheduling heuristics
to the task graphs containing up to 500 tasks. Table 7 displays the average, over 180
instances, of the optimal schedule length value and the deviations from that value of the
results obtained by each of the four heuristics (the deviations for the other heuristics
range from 10% to over 200%). It is interesting to note that the deviations of the
ES–based methods decrease when the number of processors increases, while the PPS,
LBMC, and DC–based heuristics show the opposite trend. The result is quite natural
since the first two heuristic aim to use all processors available, which yields higher levels of
communications. For the DC heuristic, a large number of processors proves problematic
when the tasks display high communication requirements.

Full scheduling results can be found at http://www.mi.sanu.ac.yu/~tanjad/. The
files are also in LATEX-like format. The name of each file is composed of the abbreviation
of the heuristic, the name of the first author, followed by the number of tasks and the

26

extension .tex. The results are written in the same format as for the previous case, and
are sorted according to the number of processors in the target multiprocessor system.
This means that the first 180 rows contain results of scheduling to p = 2 processors, the
next line contains corresponding average values, then the structure is repeated for p = 4,
p = 8, and p = 16.

We also provide the complete heuristic results of six selected scheduling heuristics
applied to the Set 1 problem instances proposed in this paper. The format and file-name
scheme used previously also applies here. The name of each file consists of the abbre-
viation of the method, followed by nonopt, the number of processors, and the indication of
connection topology and communication issues. For example, CPES.nonopt.p4.comm1.compl.tex
denotes the results of applying CPES scheduling heuristic to the Set 1 examples when
the multiprocessor system contains 4 completely connected processors and communica-
tion time is significant. The corresponding resulting files can be found on the same web
address.}

27

