
[1]MIC'2001 - 4th Metaheuristics International Conference [MIC'2001

- 4th Metaheuristics International Conference]1 [Porto, Portugal, July
16-20, 2001] []Porto, Portugal, July 16-20, 2001 0.4pt

1

Variable Neighborhood Search for Multiprocessor Scheduling

Problem with Communication Delays

Tatjana Davidovi�c � Pierre Hansen y Nenad Mladenovi�c � y

� Mathematical Institute, Serbian Academy of Science and Arts,

Kneza Mihaila 35, 11000 Belgrade, Yugoslavia,

Email: ftanjad, nenadg@mi.sanu.ac.yu

y GERAD and �Ecole des Hautes �Etudes Commerciales

3000 chemin de la Côte-Sainte-Catherine, Montr�eal H3T 2A7, Canada

Email: fpierreh, nenadg@crt.umontreal.ca

1 Introduction

The multiprocessor Scheduling Problem with Communication Delays (MSPCD) is de�ned as follows:
tasks (or jobs) have to be executed on several processors; we have to �nd where and when each task
will be executed, such that the total completion time is minimum. The duration of each task is known
as well as precedence relations among tasks, i.e., which tasks should be completed before some others
can begin. In addition, if dependent tasks are executed on di�erent processors, data transferring times
(or communication delays) that are given in advance are also considered.

Scheduling of parallel tasks among processors with and without communication delays is a NP-hard
problem [14]. However, some special cases can be solved in polynomial time [8, 15]. There are many
extended and restricted versions of the multiprocessor scheduling model suggested in the literature (see
e.g. [4] for a recent survey), but the most studied is the case without precedence relations among tasks
and/or without communication delays.

Among classical constructive heuristics, the best known are LPT (Largest-Processing-Time-�rst)
[2] and CP (Critical Path) [12]. Many papers proposing constructive heuristic solutions can be found
in the literature [4]. Recently, metaheuristic approaches have appeared as well.

Genetic Algorithms (GA) have been proposed in [1, 7, 9]. The algorithms developed in [1, 7] assume
communication time to be negligible and perform scheduling onto a complete crossbar interconnection
network of processors. In [1] a genetic algorithm is combined with a list-scheduling heuristic. The
population members (chromosomes) are represented by arrays of task priorities. The �rst member
in the initial population is determined by using the CP method in calculating task priorities. The
remainder of the chromosomes in the initial population are generated by random perturbation in the
priorities (genes) of this �rst chromosome. In each generation, the list-scheduling heuristic is applied
to all of the chromosomes to obtain corresponding cost function values (schedule lengths).

In the parallel GA proposed in [9] MSPCD is considered and members of the population are repre-
sented by feasible permutations of tasks.

In [13] Tabu Search (TS) is used to schedule a set of n independent tasks on a complete network of
processors. The TS approach is also used in [11] for solving MSPCD on heterogeneous processors.

2

In this paper we develop several heuristics based on the same solution representation for solving
MSPCD. The solution is represented by a feasible permutation of tasks, i.e., a permutation obeying
dependences between tasks. To obtain the criterion function value, the Earliest Start (ES) scheduling
heuristic is used. We develop basic Variable neighborhood search (VNS, [10], [5], [6]), and TS approaches
and compare them with each other and with the Multistart Local Search (MLS) and Problem Space
Genetic Algorithm (PSGA) proposed in [1] and modi�ed for the MSPCD case. All heuristics are
compared within the same CPU time limit on two sets of random task graphs. First type task graphs
are arbitrary random graphs with given edge densities, while the second type are task graphs which
have known optimal solutions for given multiprocessor architectures.

2 Multiprocessor scheduling problem

The tasks to be scheduled are represented by a directed acyclic graph (DAG) de�ned by a 4-tuple
G = (T; E; C; L) where T = ft1; : : : ; tng denotes the set of tasks; E = feij j ti; tj 2 Tg represents
the set of communication edges; C = fcij j eij 2 Eg denotes the set of edge communication costs;
and L = fl1; : : : ; lng represents the set of task computation times (execution times, lengths). The
communication cost cij 2 C denotes the amount of data transferred between tasks ti and tj if they are
executed on di�erent processors. If both tasks are scheduled to the same processor the communication
cost equals zero. The set E de�nes precedence relation between tasks. A task cannot be executed
unless all of its predecessors have completed their execution and all relevant data is available. Task
preemption and redundant execution are not allowed. An example of task graph is given on Fig. 1a).
Node labels represent task numeration, task lengths are given in the corresponding table, while edge
labels denote communication costs.

n1

n6

n2
n3

n7

n4
n5 n8

n9
�
�
�
���

Z
Z
Z
Z
Z
Z~

XXXXXXz

��
��
�*

J
JĴ

PPPPPPPPPPPPq
HHj

���
���

��:

-

���
���

���
��:

ZZ~
hhhhhh-

@@R

8

3

10

4

4

3
7

1
8

6
3 12

12

10

5

ti 1 2 3 4 5 6 7 8 9

li 60 30 15 40 15 30 35 50 40

nP1 nP2

nP3 nP4

D =

2
664

0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0

3
775

Figure 1: a) An example of task graph; b) 2-dimensional hypercube multiprocessor architecture.

The multiprocessor architecture M is assumed to contain p identical processors with their own
local memories which communicate by exchanging messages through bidirectional links of the same
capacity. This architecture can be modeled by a distance matrix [3]. The element (i; j) of the distance
matrix D = [dij]p�p is equal to the minimum distance between the nodes i and j. Here, the minimum
distance is calculated as the number of links along the shortest path between two nodes. It is obvious
that the distance matrix is symmetric with zero diagonal elements. Fig. 1b) contains the picture of a
2-dimensional hypercube containing p = 4 identical processors and the corresponding distance matrix
D.

The scheduling of DAG G onto M consists of determining the index of the associated processor
and starting time instant for each of the tasks from the task graph in such a way as to minimize some
objective function. The usual objective function (that we shall use in this paper as well) is completion
time of the scheduled task graph (also referred to as makespan, response time or schedule length).

3

3 Variable Neighborhood Search in MSPCD

In order to apply metaheuristics for solving MSPCD we �rst need to de�ne a solution space S and
X � S a set of so called feasible solutions. Let S be a set of all permutations of n tasks, and let
x, (x 2 X) be a feasible solution (a feasible permutation means that the order of the tasks in that
permutation obeys the precedence constraints de�ned by the task graph: a task cannot appear in a
feasible permutation before any of its predecessors or after any of its successors). Having a feasible
permutation x, we are able to evaluate the objective function value in a unique way, if we follow always
the same rules of assigning tasks to processors (for example, ES rules) in the order given by that
permutation (see [1] and [3]). Therefore, the solution set of MSPCD can be represented by S.

By presenting a solution of MSPCD as permutation of tasks, we can use several well known neigh-
borhood structures used in solving the Traveling salesman problem, such as 2-opt, 3-opt, Or-opt etc.
Since most of the solutions in the neighborhood de�ned by k-opt are not feasible, we used 1-Or-opt
neighborhood structures in a local search routine in MLS, TS and VNS.

A 1-Or-opt (1-Swap) neighbor of a feasible solution x is de�ned by moving a single task from one
position to another. All such possible replacements of tasks de�ne neighborhood N (x); a 2-Swap
neighbor is obtained by changing positions of two arbitrary tasks (not necessary succeeding ones), etc.
To obtain a k-Swap neighbor of a solution x we have to pick up a task and move it from its position to
another feasible one, k times.

The next step in developing the heuristics is to decide how to represent the solution, i.e., what data
structure should be used to make our implementation more e�cient? Here, we use a \double-link" data
structure which allows us to generate a neighbor in O(1) steps.

In all heuristics we start with an initial solution x which can be randomly chosen or determined as the
�rst feasible permutation in topological order, or a permutation obtained by the use of some constructive
heuristic: a) nonincreasing critical path priority of the tasks (CP), b) nonincreacing processing time
of tasks (LPT), etc. Local search (LS) in such a neighborhood is de�ned as performing scheduling for
all feasible Or-opt neighbors of the given initial solution x and calculating the so-obtained schedule
lengths. If a better solution is found we move there and look for improvement in the neighborhood of
this new solution again. This process is repeated until there is no better solution in N (x).

MLS is realized by restarting LS from a random initial feasible permutation until the stopping
criterion (number of restarts, CPU time limit) is satis�ed and saving the best so obtained local optimum.

To describe the VNS approach ([10], [5], [6]), let x 2 X be an arbitrary solution and Nk; (k =
1; : : : ; kmax), a �nite set of pre-selected neighborhood structures. Then Nk(x) is the set of solutions in
the kth neighborhood of x. The main parameter for the VNS is kmax{maximum number of neighbor-
hoods. Starting from an initial solution we perform the following steps: 1) shaking in k-th neighborhood,
2) local search and 3) move and update k; until stopping condition is satis�ed (for further details on
VNS see [10] and for most recent surveys see [5] and [6]).

We also develop a basic TS for solving MSPCD, with the same solution representation and LS
procedures. In the TS heuristic we use a variable size tabu list (TL) to store tasks that should not be
moved in succeeding iterations. The maximum length of the tabu list (NTABU) is a parameter, and
the actual length is determined randomly in each iteration.

We adapted the PSGA approach developed in [1], to solve the MSPCD by taking into account
required communications and multiprocessor architecture.

All these heuristics are compared on random task graphs within the same CPU time limit and
results are reported in the next section.

4

4 Experimental results

We implemented the proposed metaheuristics in C programming language on Intel Celeron processor
(468 MHz) with Linux operating system.

To illustrate the e�ciency of our approach we tested it on two types of randomly generated task
graphs. The �rst group of task graphs is generated with preselected edge existence density � ranging
from 0:2 to 0:8. We generated random task graphs with up to n = 300 tasks and six di�erent values
for communication-to-computation ratio (CCR). Therefore, for each n thirty di�erent task graphs are
generated. These task graphs are scheduled onto di�erent multiprocessor architectures containing up
to p = 8 processors. Sparse task graphs (with � = 0:2) are scheduled onto 3-dimensional hypercube
(p = 8). Task graphs with � = 0:4; 0:5 are scheduled onto 2-dimensional hypercube (ring of four
processors, Fig. 1b)), while dense task graphs (� = 0:6; 0:8) are scheduled to be executed on p = 2
processors. We obtain the following conclusion experimentally: it appears that dense graphs cannot
bene�t from adding new processors to the multiprocessor system since too much time is spent on data
transfer between tasks scheduled to di�erent processors.

We compare the initial solution length (obtained by scheduling permutation de�ned with task
priorities set by the use of the CP heuristic) and LS obtained schedule to the minimum schedule length
obtained by the use of VNS, TS, MLS, and PSGA heuristics. Comparative results are presented in
Table 1. The �rst column of this table contains the number of tasks in the tasks graphs, the second
one the makespan of the best obtained schedule (in average), while in the remining six columns average
values of schedule lengths obtained by the use of CP constructive heuristic, LS and each of the new
heuristics are presented. The last four columns contain CPU time spent by each heuristic to �nd its
minimum schedule (in average).

The second type of randomly generated task graphs were graphs with known optimal schedule
lenghts (the generation procedure is described in [9]). For these task graphs we set p = 4 (processor
ring, Fig. 1b)) while for edge density we set � = 0:33 and � = 0:67. The number of tasks in second
type task graphs is varying from 50 to 500.

Table 2 contains the similar results for sparse task graphs of second type: i.e., with a known
optimal solution which is given in second column. For dense task graphs (� = 0:67) optimal solution
was obtained as initial CP heuristic schedule or, at worst, by applying only LS to initial solution.

Table 1: The Multiprocessor scheduling: average results for each n over 30 random tests.

Best % Deviation Time (seconds)
n (av.) CP LS VNS TS MLS PSGA VNS TS MLS PSGA
50 584.67 3.56 0.34 0.03 0.33 0.18 0.48 0.54 0.99 0.34 1.36
100 1207.73 7.38 1.05 0.07 0.57 0.77 2.03 26.40 22.15 7.32 19.36
200 2435.03 10.68 1.67 0.07 0.93 1.20 4.02 246.11 168.87 80.93 187.34
300 3599.83 14.15 2.37 0.09 1.22 1.85 6.63 1235.44 934.11 439.95 1015.84

It appears that for both types of random test instances VNS performs best. However, the possible
reason why the best solution found by VNS is still more than 60% above the optimal one (in Table 2)
should be the subject of further investigation.

References

[1] I. Ahmad and M. K. Dhodhi. Multiprocessor scheduling in a genetic paradigm. Parallel Comput.,
22:395{406, 1996.

[2] B. Chen. A note on lpt scheduling. Oper. Res. Lett., 14: 139{142, 1993.

5

Table 2: The Multiprocessor scheduling on random test instances with known optimal solution.

% Deviation Time (seconds)
n fopt CP LS VNS TS MLS PSGA Init LS VNS TS MLS PSGA
50 600 51.67 36.67 25.17 36.67 29.00 34.33 0.00 0.23 5.99 0.05 2.67 8.36
100 800 74.50 65.75 56.88 67.62 66.75 66.88 0.00 5.25 39.36 23.42 40.86 32.05
150 1000 83.50 60.90 10.50 60.90 77.20 78.60 0.01 22.69 346.49 32.03 56.60 33.52
200 1200 86.92 83.25 71.67 83.25 78.33 83.50 0.01 27.60 190.21 16.96 550.84 239.12
250 1400 87.00 86.43 83.50 85.50 84.86 84.29 0.02 19.03 721.65 94.72 297.81 151.14
300 1600 88.62 88.62 81.62 85.50 81.94 88.19 0.03 34.44 1392.77 1667.78 547.53 267.18
350 1800 93.06 88.28 86.78 88.17 83.72 89.39 0.03 176.83 1777.05 226.68 314.64 1128.29
400 2000 92.50 90.90 88.70 90.10 43.50 90.50 0.05 382.83 3635.18 4044.16 4043.25 827.54
450 2200 94.59 92.77 80.04 91.09 91.23 92.64 0.06 377.16 6685.96 2358.65 1002.72 3582.86
500 2400 95.29 90.83 43.50 89.08 90.67 92.08 0.07 479.24 9091.91 7305.25 1242.98 2220.48
Average 84.76 78.44 62.84 77.79 72.72 80.04 0.03 152.53 2382.36 1576.97 809.99 849.05

[3] Tatjana Davidovi�c. Exaustive list{scheduling heuristic for dense task graphs. Yugoslav J. Oper.

Res., 10 (1): 123{136, 2000.

[4] M. Drozdowski. Scheduling multiprocessor tasks - an overview. European J. Oper. Res., 94:
215{230, 1996.

[5] P. Hansen and N. Mladenovi�c. An introduction to Variable Neighborhood Search. in S. Voss,
editor, Meta-heuristics, Advances and Trends in Local Search Paradigms for Optimization, pages
433{458, Kluwer Academic Publishers, Dordrecht, 1999.

[6] P. Hansen and N. Mladenovi�c. Variable Neighborhood Search: Principles and Applications. Eu-

ropean J. Oper. Res. 130 (3): 449-467, 2001.

[7] E. S. H. Hou, N. Ansari, and H. Ren. A genetic algorithm for multiprocessor scheduling. IEEE

Trans. Parallel and Distrib. Sys., 5 (2):113{120, Feb. 1994.

[8] V. Krishnamoorthy and K. Efe. Task scheduling with and without communication delays: A
uni�ed approach. European J. Oper. Res., 89: 366{379, 1996.

[9] Y.-K. Kwok and I. Ahmad. E�cient scheduling of arbitrary task graphs to multiprocessors using
a parallel genetic algorithm. J. Parallel and Distrib. Comput., 47:58{77, 1997.

[10] N. Mladenovi�c and P. Hansen. Variable neighborhood search. Computers Oper. Res., 24 (11):
1097{1100, 1997.

[11] S.C.S. Porto and C.C. Ribeiro. A tabu search approach to task scheduling on heterogeneous
processors under precedence constraints. Int. J. High Speed Comput., 7:45{71, 1995.

[12] G. C. Sih and E. A. Lee. A compile-time scheduling heuristic for interconnection-constrained het-
erogeneous processor architectures. IEEE Trans. Parallel and Distrib. Sys., 4(2):175{187, February
1993.

[13] A. Thesen. Design and evaluation of a tabu search algorithm for multiprocessor scheduling. J.

Heuristics, 4(2):141{160, 1998.

[14] J. D. Ullman. NP-complete scheduling problems. J. Comput. Syst. Sci., 10(3):384{393, 1975.

[15] T. A. Varvarigou, V. P. Roychowdhury, T. Kailath, and E. Lawler. Scheduling in and out forests
in the presence of communication delays. IEEE Trans. Parallel and Distrib. Sys., 7(10):1065{1074,
Oct. 1996.

6

