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Let D be the diameter of a graph G and let λ1 be the largest eigenvalue of its (0,1)-
adjacency matrix. We give a proof of the fact that there are exactly 69 non-trivial con-
nected graphs with (D + 1)λ1 � 9. These 69 graphs all have up to 10 vertices and were
recently found to be suitable models for small multiprocessor interconnection networks.
We also examine the suitability of integral graphs to model multiprocessor interconnection
networks, especially with respect to the load balancing problem. In addition, we classify
integral graphs with small values of (D + 1)λ1 in connection with the load balancing
problem for multiprocessor systems.
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1. Introduction

Let G be a simple graph on n vertices with (0,1)-adjacency matrix A. The eigenvalues
of A (i.e. the zeros of det(xI−A)) and the spectrum of A (which consists of n eigenvalues)
are also called the eigenvalues of G and the spectrum of G, respectively. The eigenvalues
of G are real because A is symmetric (thus can be ordered so that λ1 ≥ λ2 ≥ · · · ≥ λn).
The largest eigenvalue λ1 = λ1(G) is called the index of G; m = m(G) denotes the number
of distinct eigenvalues of G.

Let D = diam(G) be the diameter of a (connected) graph G. Graphs with small product
(D + 1)λ1 (tightness) appear to be suitable for designing multiprocessor interconnection
networks [7,9]. It was proved that there are exactly 69 non-trivial connected graphs with
(D + 1)λ1 � 9. The aim of this paper is to extend mathematical arguments used in [9],
and to offer some related results.

The rest of this paper is organized as follows: in Section 2 we give some preparatory
results; in Section 3 we prove theorems related to the 69 graphs identified in [9]; in
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Section 4 we consider integral graphs in connection to the load balancing problem for
multiprocessor systems; in Section 5 we study integral graphs with small value of tightness.

2. Preliminaries

As usual, Kn, Cn, Sn and Pn denote the complete graph, cycle, star and path on n
vertices, respectively. Km,n denotes the complete bipartite graph on m + n vertices (in
particular, K1,n−1 = Sn).

Maximum (minimum) vertex degree of a graph G is denoted by Δ = Δ(G) (resp.
δ = δ(G)); d̄ = d̄(G) denotes the average vertex degree of G.

It is well-known (see, for example, [11], p. 85) that

δ � d̄ � λ1 � Δ. (1)

In addition we have (cf. [11], p. 112 and p. 85):

√
Δ � λ1 � Δ. (2)

We also have (see, for example, [11] Theorem 3.13):

D � m − 1. (3)

The following inequality is well-known (for any connected graph on n vertices)

n � 1 + Δ + Δ(Δ − 1) + Δ(Δ − 1)2 + · · · + Δ(Δ − 1)D−1. (4)

This upper bound for the number of vertices is obtained by adding maximal numbers
of neighbours of a particular vertex at distances 1, 2, . . . , D.

Definition 2.1. Let G be a graph of diameter D, maximum (vertex) degree Δ, index λ1

and with m distinct eigenvalues. Then we have the following types of tightness for G

(i) t1(G) = mΔ is the first type mixed tightness;

(ii) stt(G) = (D + 1)Δ is the structural tightness;

(iii) spt(G) = mλ1 is the spectral tightness;

(iv) t2(G) = (D + 1)λ1 is the second type mixed tightness.

If the type of tightness is not relevant in some discussion, then any of them is addressed,
for short, by tightness; if the graph in question is understood from context we suppress
its name from our notation (so write only t1, t2, stt and spt). Definition 2.1 stems from
[7]. It was proved there that the number of graphs with a bounded tightness of any type
is finite.

Several arguments were given in [7,9] supporting the claim that graphs with small
tightness t2 are well suited for multiprocessor interconnection networks.

Applying (1) and (2) we get:

t1 � stt, t1 � spt and t2 � stt, t2 � spt.
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Let Gc be the set of connected graphs with at least two vertices. Let us introduce the
following notation:

T a
1 = {G : G ∈ Gc, t1(G) � a}, T a

stt = {G : G ∈ Gc, stt(G) � a},

T a
spt = {G : G ∈ Gc, spt(G) � a} , T a

2 = {G : G ∈ Gc, t2(G) � a}.
It is obvious that T a

1 ⊆ T a
stt ⊆ T a

2 and T a
1 ⊆ T a

spt ⊆ T a
2 .

A graph is called integral if its spectrum consists entirely of integers (see [2], for a general
survey on integral graphs). As noted in [6], the important feature of integral graphs is
that each eigenspace has a basis consisting of integral eigenvectors. This fact could be
relevant in managing load balancing in multiprocessor systems. It is noteworthy that
integral graphs have already several applications: in quantum computing (perfect state
transfer [22], in quantum spin networks with periodic dynamics [4]) and in theoretical
chemistry (hyperenergetic and equienergetic graphs [21]). We expect that some further
applications can be found in load balancing (see Section 4).

Graphs with small index are relevant in studying graphs with small tightness. Con-
nected graphs with λ1 = 2 (known as Smith graphs), can play here an important role (as
is generally the case in the whole spectral graph theory). All of them are given on Fig. 1.
There are 6 types of Smith graphs. Four of them are concrete graphs, while the remaining
types are cycles Cn (on n � 3 vertices) and double-head snakes Wn (on n � 6 vertices;
note W5 = S5).
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Figure 1. Smith graphs

Connected graphs with λ1 < 2 are also relevant to us. They are (connected) subgraphs
of Smith graphs. By removing vertices out of Smith graphs, we obtain paths Pn (n � 2)
and single-head snakes Zn (n � 4; note Z3 = P3) (see Fig. 2); other 3 graphs (given in
the second row of Fig. 2) are denoted by E6, E7 and E8. It is enough to consider only one
vertex removal; removing further vertices leads to the graph already obtained in another
way.

Eigenvalues of Smith graphs and of their connected subgraphs are explicitly calculated
in [13].
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Figure 2. Connected subgraphs of Smith graphs

3. New proofs of some theorems related to graph tightness

We are interested in the 69 graphs given in Figs. 3-8 under names Ωn,k, where n,
2 � n � 10 (denotes the number of vertices) and k � 1 (being a counter).

In Appendix, we give in Table 1 some data on these 69 graphs.

2,3 vertices

Ω2,1

� �
Ω3,1

� �
�

�
�
�
�

Ω3,2

� � �

4 vertices

Ω4,1

�
�

�
�

�
�

�
�

Ω4,2

� �

� �

Ω4,3

� �

� �

�
�
�
�

�
�
�
�

Ω4,4

� � � �

Ω4,5

�
�

�
�

�
�

�
�

Ω4,6

�
�

�
�

�
�
�
�

�
�
�
�

Figure 3. Graphs up to 4 vertices with small tightness

The main result of [9] is the next theorem. However, in [9] only a sketch of a proof is
given. Here we provide a complete proof.

Theorem 3.1. The only non-trivial connected graphs G such that t2(G) � 9 are the 69
graphs Ωn,k, depicted on Figs. 3-8.



Graphs for Small Multiprocessor Interconnection Networks 5

Ω5,1

� �

� �
�

�
�
�
�

�
�

�
�

Ω5,2

� �

� �

�

�
��

�
��

�
�
�

�
�

�

Ω5,3

� �

� � �

�
��

	
		

Ω5,4

�
�

�
��

�
�
�
�

�
�
�
�

Ω5,5

�
�

�
� �

�
�

�
�

Ω5,6

� �

� �
�







�
��

Ω5,7

�
�

�

�

�

�
�

�
�

�
�

�
�

Ω5,8

� �

� �

�

�
��

�
��

�
�
�
��











��
��
�

��
��

��
�
�

�
�
�

Ω5,9

�
�

�
� �

�
�
�
�

�
�
�
�

Ω5,10

�
�

�
� �

�
�
�
�

�
�
�
�

Ω5,11

�
�

�
��

�
�
�
�

�
�
�
�

Ω5,12

� � � � �

Ω5,13

� � �

� �

�
��

�
��

	
		

	
		

Ω5,14

�
�

�
� �

�
�

�
�

Ω5,15

�
�

�
��

�
�

�
�

��
��

����

��
��

��

������

Figure 4. Graphs on 5 vertices with small tightness
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Figure 5. Graphs on 6 vertices with small tightness
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Figure 6. Graphs on 7 vertices with small tightness
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Figure 7. Graphs on 8 vertices with small tightness
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Figure 8. Graphs on 9 and 10 vertices with small tightness
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Proof of Theorem 3.1. We have the following cases:

a◦ D = 1, λ1 � 4.5. We have complete graphs Ω2,1, Ω3,1, Ω4,3, Ω5,8.

b◦ D = 2, λ1 � 3. Denote the set of graphs satisfying these conditions by A1. According
to (2) we have Δ � λ2

1 � 9 and by formula (4) we get n � 1 + 9 + 9 · 8 = 82. For
example, the star Ω10,1 ∈ A1. The set A1 is completely determined in Lemma 3.2.

c◦ D = 3, λ1 � 2.25. Denote the set of graphs satisfying these conditions by A2. Now,
Δ � 5 since λ2

1 < 6, and we have n � 1 + 5 + 5 · 4 + 5 · 42 = 106. Graphs belonging
to the set A2 are listed in Lemma 3.3.

d◦ D = 4, λ1 � 1.8. It is easy to see that the only graph in this case is the path Ω5,12.

e◦ D � 5, λ1 � 1.5. There are no graphs satisfying these conditions.

To treat the cases b◦ and c◦ in Lemmas 3.2 and 3.3 we need an auxiliary result.
Let R be the set of graphs satisfying the conditions D = 2, Δ = 3.

Lemma 3.1. The set R consists of the following 17 graphs: Ω4,1, Ω4,5, Ω4,6, Ω5,4, Ω5,6,
Ω5,11, Ω6,2, Ω6,7, Ω6,9, Ω6,18, Ω6,19, Ω7,2, Ω7,9, Ω7,10, Ω8,6, Ω8,7 and Ω10,2.

Sketch of the proof. (The complete proof is given in [9].) By formula (4) graphs from
R have at most 10 vertices. Consider a graph G ∈ R. It has a vertex v of degree 3. Let
f be the number of edges in the subgraph of G induced by the three neighbours of v. We
have the following possibilities:

If f = 3, we have G = Ω4,3 which is excluded since D = 1.
Consider f = 2. Now we start from vertex v and its neighbours and add new vertices

and edges in such a way that conditions D = 2, Δ = 3 are not violated. We readily get
G = Ω4,6, or G = Ω5,11 given on Fig. 4, or G is isomorphic to Ω6,9 from Fig. 5.

In the case f = 1 the obtained graphs up to 7 vertices are presented on Fig. 9. Finally,
we get the graph Ω8,6 from Fig. 7 on n = 8 vertices.
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Figure 9. Some graphs from the set R

If f = 0, we first have complete bipartite graphs Ω4,1, Ω5,4, and Ω6,19, and Ω6,2. For
n = 7 we again come across graph Ω7,2, and the graph Ω7,10. For n = 8 the graphs Ω8,6,
Ω8,7 from Fig. 7 appear. The Petersen graph Ω10,2 on 10 vertices belongs here. There are
no graphs on 9 vertices. �
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Lemma 3.2. The set A1 consists of 52 graphs given below.

n = 3 : Ω3,2;

n = 4 : Ω4,1, Ω4,2, Ω4,6, Ω4,5;

n = 5 : Ω5,1, Ω5,2, Ω5,3, Ω5,4, Ω5,6, Ω5,7, Ω5,9, Ω5,11, Ω5,13, Ω5,15;

n = 6 : Ω6,1, Ω6,2, Ω6,3, Ω6,6, Ω6,7, Ω6,9, Ω6,10, Ω6,11, Ω6,12, Ω6,14, Ω6,15,

Ω6,16, Ω6,18, Ω6,19;

n = 7 : Ω7,1, Ω7,2, Ω7,4, Ω7,5, Ω7,6, Ω7,7, Ω7,9, Ω7,10, Ω7,11, Ω7,13, Ω7,14, Ω7,15;

n = 8 : Ω8,1, Ω8,2, Ω8,3, Ω8,4, Ω8,5, Ω8,6, Ω8,7;

n = 9 : Ω9,1, Ω9,2;

n = 10 : Ω10,1, Ω10,2 (the Petersen graph).

Proof. (The paper [9] contains only a sketch of a proof of the Lemma.) We shall first
prove that there are no graphs on n > 10 vertices with diameter 2 and index less than or
equal to 3.

Assume to the contrary that G is a graph on n > 10 vertices such that diam(G) = 2
and λ1(G) � 3.

We first claim that Δ(G) � 9, for otherwise λ1(G) � λ1(SΔ+1) =
√

Δ > 3, a con-
tradiction. If δ(G) = 1, let v be a pendant vertex G, and w its neighbour. Since the
eccentricity of v is at most 2, w must be adjacent to all vertices of G, but then n � 10, a
contradiction.

Therefore, we can assume further on that δ(G) > 1. Let e be the number of edges of G.
Then, λ1(G) � 2e

n
(= d̄, see (1)), with equality if and only if G is regular. By (4) G can

have at most 10 (= 1+3+3 ·2) vertices, a contradiction. So the average (vertex) degree of
G is less than 3, and since none of them is of degree 1, nor all are of degree 3, there exists
at least one vertex in G, say u, of degree 2. Denote with v and w its neighbours. Let the
remaining vertices (n− 3 in total) be partitioned as follows: A contains the vertices that
are adjacent only to v; B contains the vertices that are adjacent only to w; C contains
the vertices that are adjacent to both, v and w. If so

|A| + |C| � 7 and |B| + |C| � 7.

Since |A| + |B| + |C| = n − 3 and n > 10, we have |A| > 0 and |B| > 0.

Let all edges incident to v or w be coloured in blue, while the other edges, non-incident
to v or w (but incident only to vertices from A ∪ B ∪ C) be coloured in red. Let eb and
er be the number of blue and red edges (in G), respectively. Clearly, eb � n − 1 + |C|.

We now claim that er � |A| + |B| − 1. To see this, assume first that H = 〈A ∪ B ∪ C〉
(the subgraph induced by the vertex set A ∪ B ∪ C) is connected. But then er � |A| +
|B|+ |C| − 1 (� |A|+ |B| − 1) and we are done. Let x and y be the vertices belonging to
different components of H. Since G is of diameter 2, there is a vertex z (in G) adjacent
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to both, x and y. Clearly, z 
= u (otherwise, diam(G) > 2). If z ∈ A ∪ B ∪ C, then x
and y are not in different components of H. So z = v or w. If z = v then x, y ∈ A ∪ C;
otherwise, if z = w then x, y ∈ B ∪ C. Assume first, that x ∈ A and y ∈ B. But then
we have (in G) that x and y are at distance greater than 2, a contradiction. Otherwise,
we have that all vertices from A and B are in the same component of H, and therefore
er � |A| + |B| − 1, as required.

Consequently, we have

3n

2
= e = eb + er � (n − 1 + |C|) + (|A| + |B| − 1) = 2n − 5.

But this is equivalent to n � 10, a contradiction.
Hence, there are no graphs on n > 10 vertices with diameter 2 and index less than or

equal to 3.
By an exhaustive search of connected graphs up to ten vertices one can verify that only

the 52 graphs, quoted in the statement of the lemma fulfill the requirements. �
Remark 3.1. (i) The exhaustive search in [9] was performed by the program nauty.
(ii) Another possibility to find the 52 graphs from Lemma 3.2 is to use computer assisted
reasoning.

Graphs up to 7 vertices can be found using existing graph tables [14,18] (up to 6
vertices), [12] (7 vertices).

Using an interactive graph package we follow the effect of adding vertices and edges
to the largest eigenvalue λ1. (We have used the package newGRAPH available at the
address http://www.mi.sanu.ac.rs/newgraph/.)

If Δ = k, then there exists a subgraph in the form of the star Sk+1.
If Δ = 9, the only solution is Ω10,1 = S10, in all other cases λ1 > 3.
If Δ = 8, only one edge can be added and we get Ω9,1 = S9 and Ω9,2. Adding a vertex

yields λ1 > 3.
If Δ = 7, at most two edges can be added and we get Ω8,1 = S8, Ω8,2 and Ω8,5.
If Δ = 6, addition of at most three edges is possible and we get Ω7,1 = S7, Ω7,5, Ω7,7,

Ω7,11, Ω7,15.
If Δ = 5, again by adding at most three edges we get Ω6,1 = S6, Ω6,3, Ω6,6, Ω6,12, Ω6,15.

Now adding vertices in a specific way is possible and we get Ω8,4.
If Δ = 4, we get Ω8,3 and graphs with less than 8 vertices can be found by graph tables.
The case Δ = 3 is covered by Lemma 3.1, while the cases Δ < 3 are trivial. ♦

Lemma 3.3. The set A2 consists of 12 graphs listed below.

n = 4 : Ω4,4;

n = 5 : Ω5,5, Ω5,10, Ω5,14;

n = 6 : Ω6,4, Ω6,5, Ω6,8, Ω6,13, Ω6,17;

n = 7 : Ω7,3, Ω7,8, Ω7,12.

Proof. (Reproduced from [9].) By Table 1 given in Appendix the above 12 graphs clearly
belong to the the set A2. We shall show that no other graphs H belong to A2.
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Maximal degree of H cannot be 5 since in this case H would contain S6 with an
additional vertex (since D = 3). Such a subgraph would have λ1 > 2.25 which is forbidden.

If Δ = 4, H contains a subgraph isomorphic to S5. We can not add an edge to S5, since
then we obtain Ω5,3 with λ1 > 2.25 (see Table 1). However, S5 can be extended with new
vertices to graphs Ω6,8 and Ω7,8. No other extensions of vertices and edges are feasible.

Next we have to consider the case Δ � 3. Now formula (4) gives that H can have at
most 10 vertices which completes the proof using Lemma 3.1. �

This completes the proof of Theorem 3.1. �

Recall from Section 2 that T 9
1 ⊆ T 9

stt ⊆ T 9
2 and T 9

1 ⊆ T 9
spt ⊆ T 9

2 . Using Table 1 from
Appendix we can immediately verify the following corollaries of Theorem 3.1.

Corollary 3.1. The only non-trivial connected graphs G such that t1(G) � 9 are 14
graphs Ωi,j, where (i, j) is:

(2, 1), (3, 1), (3, 2), (4, j) (j ∈ {1, . . . , 4}),
(5, j) (j ∈ {2, 4, 8}), (6, 4), (6, 19), (7, 3), (10, 2).

Corollary 3.2. The only non-trivial connected graphs G such that stt(G) � 9 are 27
graphs Ωi,j, where (i, j) is:

(2, 1), (3, 1), (3, 2), (4, j) (j ∈ {1, . . . , 6}), (5, j) (j ∈ {2, 4, 6, 8, 11},
(6, j) (j ∈ {2, 4, 7, 9, 18, 19}), (7, j) (j ∈ {2, 3, 9, 10}), (8, 6), (8, 7), (10, 2).

Corollary 3.3. The only non-trivial connected graphs G such that spt(G) � 9 are 21
graphs Ωi,j, where (i, j) is:

(2, 1), (3, 1), (3, 2), (4, j) (j ∈ {1, . . . , 5}), (5, j) (j ∈ {1, 2, 4, 8, }),
(6, j) (j ∈ {1, 4, 14, 19}), (7, 1), (7, 3), (8, 1), (10, 2).

Corollaries 3.1–3.3. have been proved in [9] in another way.

Remark 3.2. In fact in [9] we have proved that T 9
2 = Q ∪ R′ ∪ S ′ ∪ V ′ where T 9

1 = Q,
T 9

stt = Q ∪ R′, T 9
spt = Q ∪ S ′ and |T 9

2 | = 69.
Here we have

Q = {K2, K3, K4, K5, P3, P4, C4, C5, C6, C7, K1,3, K2,3, K3,3, PG},
S ′ = {P5, K1,4, K1,5, K1,6, K1,7, K1,8, K1,9},
R′ = {Ω4,5, Ω4,6, Ω5,6, Ω5,11, Ω6,2, Ω6,7, Ω6,9, Ω6,18, Ω7,2, Ω7,9, Ω7,10, Ω8,6, Ω8,7} and V ′ con-

sists of the remaining 35 graphs. Here, PG denotes the Petersen graph. We see that the
sets Q and S ′ (related to tightness t1 and spt) contain only the standard graphs. When
considering stt and t2, the graphs with non-standard names occur. ♦

4. Load balancing problem and integral graphs

Among graphs with small tightness integral graphs deserve special attention because of
their suitability for solving the load balancing problems in multiprocessors. The purpose
of this section is to present some arguments in this direction.
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Note first that each integral eigenvalue admits a basis consisting of integral eigenvectors
(see [6]); so for integral graphs, there exists an integral eigenbasis for the whole space.
Therefore, in integral graphs load balancing algorithms for multiprocessors (based on
spectral techniques) can be executed in integer arithmetic. This possibility was mentioned
in [9], and here we elaborate it more.

We shall first describe the load balancing problem in some details. Let us assume that
a multiprocessor system is modelled by an integral graph G. The vertices of G correspond
to processors while edges represent links between processors.

The job which has to be executed by a multiprocessor system is divided into parts
assigned to particular processors to handle them. In other words, the whole job consists
of a number of elementary jobs (modules, items) so that each processor gets a number
of such items to execute. Mathematically, the item distribution among processors can
be viewed as a vector x whose coordinates are non-negative integers. If the coordinates
are associated to vertices of G (as their weights), then they indicate how many items are
assigned to the corresponding processors.

Vector x is usually changed during the work of the system because some items are exe-
cuted, while new items are arriving for execution. Of course, it would be optimal that the
number of items assigned to any processor is the same, i.e. that the vector x is an integer
multiple of all-1 vector j. Since this is not always possible, it is reasonable that processors
with more items assigned (or more load) send some of them to adjacent processors to
make the item distribution more uniform. This gives raise to the so called (dynamic)
load balancing problem, which turns to be very important in managing multiprocessor
systems. The load balancing problem requires creation of algorithms for moving items
among processors in order to achieve the uniform distribution (see, for example, [19,20]
for further information on the load balancing problem).

We shall present an ad hoc algorithm for the load balancing problem which is based on
eigenvalues and eigenvectors of the adjacency matrix of a regular integral graph. At this
stage we do not claim that our algorithm is any better than the existing ones. We just
want to suggest that calculations in integer arithmetic could offer some advantages.

One idea for generating integral eigenbases (i.e. those consisting of integral eigenvectors)
could be taken from the theory of star partitions of a graph (see [17], Chapter 7).

Definition 4.1. Let G be a graph on n vertices with m distinct eigenvalues μ1, . . . , μm.
A partition X1 ∪ · · · ∪Xm of the vertex set V (G) of G is a star partition of G if for each
i ∈ {1, . . . , m}, μi is not an eigenvalue of G − Xi.

It is known (see [15]) that for any graph at least one star partition exists (a polyno-
mial time algorithm for constructing star partitions is described in [16]). Therefore, the
following algorithm for generating integral eigenbases can be proposed:

Algorithm 4.1. For any vertex v ∈ Xi the subgraph of G induced by the vertex set
(V (G) \Xi)∪ {v} (call it Hi + v) has μi as a simple eigenvalue. If G is an integral graph,
then clearly μi is an integer, and the corresponding eigenvector of Hi + v can be chosen
to be integral. Extending it with zeros for coordinates corresponding to vertices from
Xi \ {v}, we obtain an n-dimensional integral vector which is an eigenvector of G for μi.
In this way n independent integral eigenvectors of G can be found, as required. ©
Remark 4.1. The constructed eigenvectors are not necessarily mutually orthogonal
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within the fixed eigenspace. However, the eigenvectors for the eigenvalue μi found by
algorithm have at least ki − 1 coordinates equal to 0, where ki (= |Xi|) is the multiplicity
of μi. Needless to say, integral coordinates, including a lot of zeros in many cases, rep-
resent an advantage of this approach. The constructed basis can be transformed into an
orthogonal integral one, but then the total number of non-zero coordinates in the resulting
eigenbasis vectors could increase. ♦

Before describing the load balancing algorithm, we illustrate it by an example.

Example 4.1. All star partitions of the Petersen graph are given in [17], pp. 180–181.
Using the first of them we have constructed 10 independent integral eigenvectors of the
Petersen graph. They are displayed in Fig. 10.

Recall that 3, 15, (−2)4 is the spectrum of the Petersen graph. Let v0,v1, . . . ,v9 denote
an integral eigenbasis for the Petersen graph, where v0 is the all-1 vector belonging to
eigenvalue 3, while v1, . . . ,v5 and v6, . . . ,v9 are eigenvectors belonging to eigenvalues
1 and −2, respectively. Vectors v1, . . . ,v9 are given on first 9 copies of the Petersen
graph on Fig. 10. The sum of coordinates of each of these vectors is equal to 0, since
they are orthogonal to all-1 vector. Only non-zero entries of the vectors are indicated as
vertex labels. The labelling of vertices by numbers 1, 2, . . . , 10 can be arbitrary but it is
understood that the labelling of vertices is the same in all copies of the Petersen graph.

Assume that a balancing flow shows how to move the commodity from the sources
(vertices with positive weights) to the sinks (vertices with negative weights) in order to
transform the corresponding eigenvector to 0-vector.

For each eigenvector v1, . . . ,v9 one of the simplest balancing flow is indicated by di-
rected thick edges connecting non-zero entries of the corresponding eigenvector (see the
first 9 copies of the Petersen graph on Fig. 10). In our example, the value of the flow
through each thick edge is equal to 1 and the direction of the flow is indicated by an
arrow. There is no flow through other edges.

A balancing flow can be viewed as a vector whose dimension is equal to the number
of edges in G (= 15 in our case), provided the edges are numbered and each edge is
directed in an arbitrary (but fixed) way. Let b1, . . . ,b9 be the balancing flow vectors that
correspond to eigenvectors v1, . . . ,v9.

The tenth copy of the Petersen graph on Fig. 10 contains an initial load distribution
among processors given by weights on vertices. The difference between the corresponding
load vector x and the vector of uniform load distribution 30v0 can be represented as linear
combination

x − 30v0 = 11v1 + 4v2 + 5v3 − 12v5 − 5v8 − 3v9.

The resulting balancing flow vector b is given on the same copy of the Petersen graph by
edge weights. It is obtained by the above linear combination of balancing flows vectors
b1, . . . ,b9, i.e.

b = 11b1 + 4b2 + 5b3 − 12b5 − 5b8 − 3b9.

When the flow is realized each vertex has a load equal to 30.
In this way we have defined a load flow on the edge set of the Petersen graph. Particular

amounts of load flow should be considered algebraically, i.e. having in mind their sign.
The flow through an edge ij at the end has a nonnegative value which is sent either from
i to j or vice versa. �
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Figure 10. Integral eigenvectors and the load balancing of the Petersen graph

Example 4.1. can be generalized to all regular integral graphs, since all–1 vector is
an eigenvector for the largest eigenvalue; thus the sum of coordinates of eigenvectors for
other eigenvalues is equal to 0 (by orthogonality to all–1 vector).

Algorithm 4.2. Given an integral regular graph G on n vertices and e edges, find
by Algorithm 4.1. an integral eigenbasis B = {v0, . . . ,vn−1} of G. For each eigenvector
vi ∈ B other than v0 = j (all–1 vector), define ad hoc an e-dimensional balancing flow
vector bi. Represent the difference between the load vector and the vector of uniform



14 Cvetković et al.

load distribution as a linear combination of the vectors from B. Form the same linear
combination of balancing flow vectors bi to obtain the resulting load balancing flow b.©
Remark 4.2. When choosing the balancing flow vectors bi in Example 4.1. we were
concerned to minimize the number of edges with non-zero flow, instead of �2-optimality (cf.
[19]). However, one can use various integral bases of eigenspaces and for each eigenvector
the balancing flow could be defined in several ways. These facts indicate that one should
further study the load balancing in integral graphs and find, if possible, flow plans which
would be optimal according to some criteria. ♦

The suggested approach via eigenvectors can be extended to interconnection networks
constructed by some operations on simpler networks. For example, in [24] the Cartesian
product (known also as the sum) of two Petersen graphs, and similar complex networks,
have been studied. In the sum of graphs the eigenvectors are the Kronecker products
of the eigenvectors of the starting graphs (see, for example, [11], pp. 70–71) and the
balancing flow can be easily constructed.

For non-regular graphs, we should use the Laplacian instead of the adjacency matrix.
Recall that, given a graph, the matrix L = D −A is called the Laplacian, where A is the
adjacency matrix and D is the diagonal matrix of vertex degrees. Now all-1 vector is an
eigenvector for the smallest Laplacian eigenvalue (in any graph).

A graph is called Laplacian integral if all its Laplacian eigenvalues are integral. In
Laplacian integral graphs, we again have an eigenbasis consisting of integral vectors.
Laplacian integral graphs are generally more frequent than integral graphs.

The further study of integral graphs in connection to multiprocessor topologies seems
to be a promising subject for future research.

5. Integral graphs with small tightness

In this section we present a classification of integral graphs with small tightness with
emphasis on regular graphs, indicating also the open enumeration problems.

We shall need the fact that t2(Kn) = 2n − 2.

Proposition 5.1. We have:
(i) if p > 2 is a prime, there are no graphs G such that t2(G) = p;
(ii) integral Smith graphs are the following graphs: K3, C4, K1,4, C6, W6, H7;
(iii) the only graph G with t2(G) = 2k, k being a prime greater than 5, is the graph Kk+1.

Proof. (i) As known, a rational eigenvalue of a graph is an integer. Therefore, if t2(G) =
p, then either λ1 = p and D = 0 or λ1 = 1 and D = p−1. In both cases G does not exist.

(ii) By inspecting spectra of Smith graphs from [13] we easily get the graphs quoted.
(iii) If we put D + 1 = 2 and λ1 = k, then clearly G = Kk+1. In the case D + 1 = k

and λ1 = 2 we have to find integral Smith graphs with D � 6. By (ii) such graphs do not
exist. �

By Proposition 5.1(i), there are no integral graphs G with t2(G) = 3, 5, 7, 11, 13, 17, 19.
Based on Proposition 5.1, we shall give a survey of integral graphs with t2 � 20.

t2(G) = 2. We have G = K2.

t2(G) = 4. We have G = K3.
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t2(G) = 6. We have G = K4, C4, K1,4 (by Proposition 5.1(ii)).

t2(G) = 8. We have G = K5, C6,W6 (by Proposition 5.1(ii)).

t2(G) = 9. All connected graphs G with t2(G) � 9 have been determined in Theorem
3.1. There are 69 such graphs and among them exactly 14 are integral (see Table 1
in Appendix). Those with t2(G) = 9 are the following graphs: regular graphs Ω6,18,
Ω6,19 = K3,3 and the Petersen graph, and non-regular graphs Ω10,1 = K1,9, Ω5,15 and
Ω7,15.

t2(G) = 10. We have G = K6, H7 (by Proposition 5.1(ii-iii)).

t2(G) = 12. Here we have K7 for λ1 = 6 and by Proposition 5.1(ii), there are no integral
graphs for λ1 = 2. The following two cases remain.

λ1 = 3 and D = 3. All integral cubic graphs are well known [5]. Those with D = 3 are
graphs denoted in [5] by G4, G7, G8, G11 and they have 8, 10, 12, 10 vertices respectively.
G4 is the cube graph. Non-regular case is not yet completely explored; only non-regular
connected integral graphs with λ1 = 3 and Δ = 4 are found.

λ1 = 4 and D = 2. Integral regular graphs of degree 4 up to 24 vertices are listed in
[23]. Those which fulfill the requirements are B1 = K4,4, D2, D3, D4, D5, D6, D7, D8, D11

(graph names as in [23]). There are only sporadic data in the literature for non-regular
case.

t2(G) = 14. We have only G = K8 (by Proposition 5.1(iii)).

t2(G) = 15. λ1 = 3 and D = 4. Out of 13 cubic integral graphs [5] there are two which
fulfill these requirements G7 (Tutte’s 8-cage on 30 vertices with girth 8) and G12 (6-sided
prism). Non-regular case is not explored yet.

λ1 = 5 and D = 2. We have no data on such graphs.

t2(G) = 16. Here we have K9 for λ1 = 8 and by Proposition 5.1(ii), there are no integral
graphs for λ1 = 2. The following case remains.

λ1 = 4 and D = 3. Among integral regular graphs of degree 4 up to 24 vertices, listed
in [23], there are 16 graphs which fulfill the requirements (B2, B3, B4, B5, B11, B12, B13,
B20, B22, B25, B26, D9, D10, D12, D13, D14). We have no data for non-regular case.

t2(G) = 18. Here we have K10 for λ1 = 9 and by Proposition 5.1(ii), there are no integral
graphs for λ1 = 2. The following two cases remain.

λ1 = 3 and D = 5. Out of 13 cubic integral graphs [5] there are two which fulfill these
requirements (G9 and G10, i.e. the Desargues graph and a graph cospectral to it). As
noted above, the non-regular case is still unexplored.

λ1 = 6 and D = 2. An example is the complement of the Petersen graph.

t2(G) = 20. Here we have K11 for λ1 = 10 and by Proposition 5.1(ii), there are no integral
graphs for λ1 = 2. The following two cases remain.

λ1 = 4 and D = 4. Among integral regular graphs of degree 4 up to 24 vertices (see
[23]) there are 34 graphs which fulfill the requirements. We have no data for non-regular
case.

λ1 = 5 and D = 3. We have no data on such graphs.

Basic data on connected integral graphs up to 10 vertices can be found in [1]. According
to [3] there are several integral graphs on 13 vertices which fall into the above classification.
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We conclude our considerations by some remarks and data on Laplacian integral graphs
with small tightness. Note that they are more frequent than integral graphs with adja-
cency spectrum, but much less studied in the literature. Among the 69 graphs that we
consider in this paper the following ones are Laplacian integral (37 graphs):

Ω2,1, Ω3,1, Ω3,2, Ω4,j (j ∈ {1, . . . , 6}), Ω5,j (j ∈ {1, 3, 4, 7, 8, 9, 11, 15}),
Ω6,j (j ∈ {1, 3, 4, 6, 12, 14, 16, 18, 19}), Ω7,j (j ∈ {1, 5, 7, 11, 15}),

Ω8,j (j ∈ {1, 2, 5}), Ω9,1, Ω9,2, Ω10,1, Ω10,2.

Laplacian spectra of connected graphs up to 5 vertices can be found in [18], Table A1.
For other graphs we used system newGRAPH.

Acknowledgement. We are grateful to K.T. Balińska and K.T. Zwierzyński (from
Technical University of Poznań) for computing all data on tightness for integral graphs
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13. Cvetković D., Gutman I., On the spectral structure of graphs having the maximal
eigenvalue not greater than two, Publ. Inst. Math. (Beograd), 18(32)(1975), 39-45.
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Appendix

The Table 1 given below contains some relevant data about 69 graphs with second type
mixed tightness not exceeding 9.

Graphs are ordered first by n (the number of vertices), and within the groups with fixed
n, by t2. Columns of the table provide graph name, the number of vertices n, the number
of edges e, the name(s) under which the graph appeared in [9], diameter D, maximum
vertex degree Δ, the number of distinct eigenvalues m, the spectrum starting with the
largest eigenvalue λ1. Last four columns contain the values of the four types of tightness
t1, stt, spt, t2.

As ”the old names” we used different notation. First we distinguish the well known
graphs such as complete graphs, circuits, stars, complete bipartite graphs, and so on. For
graphs up to 5 vertices we used the notation from [11], while graphs on n = 6 vertices
are marked primarily as in [14]. N(n, j) denotes the j-th graph on n vertices generated
by program nauty. PG denotes the well known Petersen graph.
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T
ab

le
1:

G
ra

p
h
s

on
u
p

to
10

ve
rt

ic
es

w
it

h
sm

al
l
ti

gh
tn

es
s

(c
on

t.
)

gr
ap

h
n

e
ol

d
na

m
e(

s)
D

Δ
m

λ
1
,λ

2
,.

..
,λ

n
t 1

st
t

sp
t

t 2
Ω

7
,6

7
9

N
(7

,7
5)

2
4

6
2.

75
,
0.

84
,
0.

62
,
0,

0,
-1

.6
2,

-2
.5

9
24

12
16

.5
1

8.
25

Ω
7
,7

8
N

(7
,2

3)
2

6
6

2.
86

,
1,

0.
32

,
0,

-1
,
-1

,
-2

.1
8

36
18

17
.1

3
8.

57
Ω

7
,8

6
N

(7
,5

)
3

4
5

2.
18

,
1.

13
,
0,

0,
0,

-1
.1

3,
-2

.1
8

20
16

10
.8

8
8.

70
Ω

7
,9

10
N

(7
,6

24
)

2
3

7
2.

90
,
1.

41
,
0.

81
,
0,

-1
.4

1,
-1

.7
1,

-2
21

9
20

.3
2

8.
71

Ω
7
,1

0
10

N
(7

,5
14

)
2

3
6

2.
90

,
0.

81
,
0.

73
,
0,

0,
-1

.7
1,

-2
.7

3
18

9
17

.4
2

8.
71

Ω
7
,1

1
8

N
(7

,8
)

2
6

5
2.

94
,
0.

66
,
0,

0,
0,

-1
.3

7,
-2

.2
4

30
18

14
.7

2
8.

83
Ω

7
,1

2
7

N
(7

,9
2)

3
3

6
2.

21
,
1,

1,
0,

-0
.5

4,
-1

.6
8,

-2
18

12
13

.2
9

8.
86

Ω
7
,1

3
10

N
(7

,4
48

)
2

4
7

2.
98

,
1.

33
,
0.

65
,
0,

-1
,
-1

.7
7,

-2
.1

9
28

12
20

.8
6

8.
94

Ω
7
,1

4
9

N
(7

,3
24

)
2

4
7

2.
97

,
0.

80
,
0.

70
,
0.

45
,
-0

.5
5,

-2
.1

2,
-2

.2
5

28
12

20
.7

7
8.

90
Ω

7
,1

5
9

N
(7

,2
19

)
2

6
4

3,
1,

1,
-1

,
-1

,
-1

,
-2

24
18

12
9

Ω
8
,1

8
7

S
8

=
K

1
,7

=
N

(8
,1

)
2

7
3

2.
65

,
0,

0,
0,

0,
0,

0,
-2

.6
5

21
21

7.
94

7.
94

Ω
8
,2

8
N

(8
,3

)
2

7
5

2.
54

,
0.

69
,
0,

0,
0,

0,
-1

,
-2

.8
4

35
21

14
.2

2
8.

53
Ω

8
,3

11
N

(8
,1

03
9)

2
4

8
2.

90
,
1.

30
,
0.

81
,
0.

62
,
0,

-1
.6

2,
-1

.7
1,

-2
.3

0
32

12
23

.2
3

8.
71

Ω
8
,4

11
N

(8
,3

42
)

2
5

6
2.

98
,
1.

13
,
0.

65
,
0,

0,
0,

-2
.0

7,
-2

.6
8

30
15

17
.8

6
8.

93
Ω

8
,5

9
N

(8
,3

0)
2

7
6

3,
1,

0.
41

,
0,

0,
-1

,
-1

,
-2

.4
1

42
21

18
9

Ω
8
,6

12
N

(8
,8

46
9)

2
3

6
3,

1.
56

,
0.

62
,
0.

62
,
0,

-1
.6

2,
-1

.6
2,

-2
.5

6
18

9
18

9
Ω

8
,7

12
N

(8
,6

66
0)

2
3

5
3,

1,
1,

0.
41

,
0.

41
,
-1

,
-2

.4
1,

-2
.4

1
15

9
15

9
Ω

9
,1

9
8

S
9

=
K

1
,8

=
N

(9
,1

)
2

8
3

2.
83

,
0,

0,
0,

0,
0,

0,
0,

-2
.8

3
24

24
8.

49
8.

49
Ω

9
,2

9
N

(9
,3

)
2

8
5

3,
0.

73
,
0,

0,
0,

0,
0,

-1
,
-2

.7
3

40
24

15
9

Ω
1
0
,1

10
9

S
1
0

=
K

1
,9

=
N

(1
0,

1)
2

9
3

3,
0,

0,
0,

0,
0,

0,
0,

0,
-3

27
27

9
9

Ω
1
0
,2

10
15

P
G

=
N

(1
0,

80
27

95
6)

2
3

3
3,

1,
1,

1,
1,

1,
-2

,
-2

,
-2

,
-2

9
9

9
9


