
UNIVERSITY OF NOVI SAD

Development, implementation and theoretical
analysis of the bee colony optimization

meta-heuristic method

Dissertation written by

Tatjana Jakšić Krüger

Supervised by
Dr. Tatjana DAVIDOVIĆ

Faculty of Technical Sciences

2017

"EVEN DIRTY TECHNOLOGY IS GOOD, IF THE INTENTION IS PURE".
– Slavko Jakšíc, 2012

In loving memory of my father.
You are still with me, real in memory as you were in flesh.

Mojoj majci Stanki Jakšíc,
koja me je inspirisala.

Für meinen Ehemann Thomas Krüger,
den ich sehr liebe.

Sestri bliznakinji Tijani Jakšíc Carevíc,
najboljoj sestri na svetu.

Acknowledgment

The first two years of my PhD studies were not connected with the topic of my
current research. Back then, I was determined that my journey remain in the field
of astronomy. However, my work with professor Tatjana Davidović on a problem of
parallelization six years ago introduced me to this new chapter of my professional
carrier. She proposed to me a collaboration that I both-handedly accepted and I have
never doubted that it was the right choice. Learning about the field of operations
research, a completely new one for me, was among the hardest things I had done until
then. The dissertation reflects the stages of my development, from the basics of the field
to its theoretical revelations. With the final revision I would like to thank everyone who
has inspired me to learn and strive for discoveries which will contribute to the general
knowledge of things.

First of all, I would like to thank my advisor professor Tatjana Davidović for her
immense capacity to help and clarify both the smallest and the largest details about
optimization problems. Your optimism, enthusiasm and the general concern for good
science was what drew me to work with you. You are a good friend and colleague and
an amazing scientist.

I would like to thank professors Joakim Lindblad, Milica Šelmić, Dragan Urošević
Tibor Lukić and professor Jovanka Pantović for graciously accepting to be a part of the
Committee. Thank you Joakim for your countless corrections of my style of writing.
Thank you Milica for your thoroughness. Thank you Dragan for your insights and
directions. Thank you Tibor for your calmness and understanding. Thank you Jovanka
for your unyielding support.

In July 2016 I prepared the first draft of the thesis and I would like to thank pro-
fessors Nataša Sladoje Matić and Joakim Lindblad who have helped me to improve the
first version, to change the structure of my presentation and to envision a good thesis.

I would like to express my appreciation to the projects’ leaders at the Mathematical
Institute of the Serbian Academy of Sciences and Arts for their support and encourage-
ment.

Finally, I would like to express my deepest gratitude to my husband, my family and
friends for their love and support. Without you, the thesis would have not been pos-
sible. I want to thank my friends Anatolij Mihajlov, Attila Cséki and Petar Maksimović
for their objectivity and the help to stay focused.

Abstract

Difficult optimization problems are problems that require computationally intensive
resources to generate optimal or sub-optimal solutions. Therefore, development of effi-
cient optimization methods is essential. The contribution of stochastic methods, such as
meta-heuristics, to dealing with difficult optimization problems is widely recognized in
the operations research community. Current topics in the field of optimization address
the success of stochastic methods through empirical or theoretical study, or both.

The subject of this dissertation is the study of the Bee Colony Optimization (BCO)
meta-heuristic method. The study follows three lines of research: theoretical analysis
of convergence, implementation of parallelization strategies and empirical analysis of
performance. We deliberate our research goals from the point of the design of the BCO
algorithm.

A growing interest in the convergence properties of the BCO method has inspired
the main segment of the thesis. Theoretical analysis of BCO implies mathematical ver-
ification of the asymptotic convergence towards an optimal solution, assuming certain
conditions. We identify these conditions for constructive (BCOc) and improvement
BCO (BCOi). Based on the recently published tutorial we inspect two types of conver-
gence, the best-so-far and the sophisticated model convergence. The best-so-far conver-
gence has just to answer if the optimal solution is reachable by the considered search
method, i.e., will the desired optimum be found if the algorithm is given enough time.
The model convergence analyzes the properties of the algorithm that direct the search
process toward the subspace containing the optimal solution. Regarding the best-so-far
convergence, we prove that BCO already satisfies necessary and sufficient conditions.
To fulfil the conditions of the model convergence the BCO algorithm must incorporate
the global knowledge and the specific modification/construction rules. We prove that
BCO is well founded and provides a good basis for model convergence.

Operating with population of solutions makes BCO suitable for parallelization. The-
refore, we explore potential parallelization strategies for distributed memory multi-
processor architecture, as it allows utilization of a large number of processors. Three
parallelization strategies and five corresponding coarse-grained implementations are
considered under the Message Passing Interface (MPI) communication protocol. The
first strategy involves independent execution of various BCOc algorithms. The second
strategy is related to synchronous cooperative execution of the BCOc algorithms. The
third strategy defines a novel general approach that implements asynchronous coop-
eration between the algorithms. The strategy enables diversified search suitable for
various multiprocessor topologies. We propose two variants of asynchronous strategy:
with centralized and with non-centralized communication control. The results demon-
strate that all parallel BCO algorithms provide excellent performance compared to the
sequential implementation. The independent executions enable significant speedup
while preserving the quality of solutions. As for both of cooperative strategies, the

iv Abstract

quality is improved in addition to speeding up the computations. Moreover, the asyn-
chronous strategy outperforms the synchronous with respect to both solution’s quality
and running time. We observe that the best performance is achieved by engaging a
modest number of processors (up to 12). Several reasons might cause this behav-
ior: communication overhead between a larger number of processors and/or stochastic
nature of the BCO method that corrupts a systematic behavior of the parallel imple-
mentations.

We address the empirical study of BCO(c|i) by conducting experimental tests in
domains where sophisticated alternatives already exist in order to perform sensitivity
analysis of algorithm’s response to changes in problem and parameter settings. Our
objective is to contribute to the further development of the BCO algorithms. Statistical
and visual analysis are two general directions that we exploit, supported by an off-
line strategy. The design of our studies is founded on averaging response values and
comparing profile data between the factors of interest. The two studies are focused on
the influence of two actual and two novel BCO parameters on the measured outcomes.
They encompass comparisons between several heuristic algorithms and the selection
of the best candidate for construction/modification rules embedded in the BCO(c|i)
algorithm. Statistical analysis helps to establish the statistical and practical significance
between the best reported results of investigated algorithm instances. Visual analysis
is employed to provoke research questions about the performance and to extend the
information obtained by statistical analysis. Specifically, the focus is on the influence
and interactions between a subset of BCO parameters: population size (B), control
number of constructions/transformations (NC), choice of objective function (ME) and
loyalty function (Lf). Both statistical and visual analysis are conducted for BCOc while
we employ only visual analysis for the BCOi solver.

Contents

Acknowledgment . i

Abstract . iii

Module I Preliminaries

Chapter 1 Introduction . 3
1.1 Current topics in the field of meta-heuristics 3
1.2 Motivation and goals of the thesis 4
1.3 Structure of the thesis . 6
1.4 Publications and contributions 8
1.5 Chapter summary . 10

Chapter 2 Optimization problems and methods 11
2.1 Introduction to optimization . 11

2.1.1 NP-hard problems . 12
2.1.2 Optimization problems 15

2.2 Optimization methods . 20
2.2.1 Background . 20
2.2.2 Classification . 21
2.2.3 Heuristic methods . 23

2.3 Examples of optimization problems and their methodologies . . 24
2.3.1 Scheduling problems . 25
2.3.2 Methods for P ||Cmax . 29
2.3.3 Satisfiability problem . 30
2.3.4 k-SAT solvers . 32

2.4 Chapter summary . 35

Chapter 3 Meta-heuristic methods . 37
3.1 Introduction to meta-heuristics 37

3.1.1 Classification of meta-heuristics 38
3.1.2 Nature- and bio-inspired methods 40
3.1.3 Swarm intelligence . 41

3.2 Examples of meta-heuristics . 42
3.2.1 Simulated annealing . 43
3.2.2 Evolutionary computation and genetic algorithm 44
3.2.3 Ant Colony Optimization 45
3.2.4 Particle swarm optimization 46
3.2.5 Artificial Bee Colony . 47

vi Contents

3.2.6 Tabu search . 47
3.2.7 Variable neighborhood search 49
3.2.8 Final remarks . 50

3.3 Chapter summary . 50

Chapter 4 Bee colony optimization method 53
4.1 The development of BCO . 53

4.1.1 Bees in nature . 53
4.1.2 BCO model . 55
4.1.3 The evolution of BCO . 56

4.2 The BCO Algorithm . 57
4.2.1 Pseudo-code for BCO . 59
4.2.2 Variants of the BCO algorithm 60
4.2.3 Backward pass and loyalty functions 63
4.2.4 Comparing ABC, ACO and BCO 73
4.2.5 Final remarks . 74

4.3 Chapter summary . 75

Module II Methodology and contributions

Chapter 5 Theoretical analysis of the asymptotic convergence of the BCO
method . 79
5.1 Motivation for theoretical analysis 79
5.2 Instance- and model-based algorithms 81
5.3 Theoretical background . 82

5.3.1 Best-so-far convergence 84
5.3.2 Model convergence . 86

5.4 Convergence analysis of the BCO method 87
5.4.1 Approximation of an optimal solution 88
5.4.2 Generic BCO algorithm 89
5.4.3 Various cases of the BCO algorithms 89

5.5 Best-so-far convergence of BCO 90
5.6 Model convergence of BCO . 92

5.6.1 Preliminary conditions for model convergence 93
5.6.2 Model convergence of BCOc 94
5.6.3 Model convergence of BCOi 100

5.7 Final remarks . 101
5.8 Chapter summary . 102

Chapter 6 Parallelization strategies for the BCO algorithm 103
6.1 Motivation for parallelization of meta-heuristics 103
6.2 Parallelization strategies of meta-heuristics 104

6.2.1 Parallelization of ABC . 105
6.2.2 Parallelization of ACO 106

6.3 Parallelization strategies of the BCO algorithm 108
6.3.1 Independent execution of the BCO algorithms 108
6.3.2 Synchronous cooperation of the BCO algorithms 110

Contents vii

6.3.3 Asynchronous cooperation of the BCO algorithms 111
6.4 Comparison of the results for parallel BCOc executions 113

6.4.1 Experimental environment 113
6.4.2 Test instances . 115
6.4.3 Comparison of independent BCOc executions 115
6.4.4 Comparison of cooperative executions 117

6.5 Final remarks . 121
6.6 Chapter summary . 122

Chapter 7 Methodology of experimental study of BCO 125
7.1 Motivation for empirical analysis 125
7.2 Experimental study of meta-heuristics 126

7.2.1 What is an experiment? 126
7.2.2 Measure of performance 126
7.2.3 Configuration methods 128
7.2.4 Types of parameters . 129
7.2.5 Sensitivity analysis . 129
7.2.6 Reproducibility . 130
7.2.7 Statistical methods . 130

7.3 Experimental analysis of BCO 133
7.3.1 Motivation of the BCO study 133
7.3.2 Structure of the BCO study 134
7.3.3 Categorizations of BCO parameters 135
7.3.4 Hierarchy diagram of BCO parameters 135
7.3.5 Experimental setup for BCO analysis 137
7.3.6 Final remarks . 138

7.4 Chapter summary . 139

Chapter 8 Development and empirical analysis of BCOc 141
8.1 Sensitivity analysis of the BCOc algorithm 141

8.1.1 Research goals . 142
8.1.2 Test instances . 143
8.1.3 The first BCOc for P ||Cmax 144

8.2 Candidate heuristics for P ||Cmax 144
8.2.1 Experimental evaluation of candidate heuristics 145
8.2.2 Conclusions regarding the best heuristic 147

8.3 Development of the BCOc algorithm for P ||Cmax 148
8.3.1 Experimental methodology 149
8.3.2 Design of BCOc forward pass 150
8.3.3 Design of BCOc backward pass: qualitative parameters . 151
8.3.4 Collection of results . 152

8.4 Screening BCOc parameters: basic plots 159
8.4.1 3-D plots: qualitative parameters 159
8.4.2 2-D plots: quantitative parameters 162

8.5 Statistical analysis: hypothesis testing 166
8.6 Stopping criterion: Nit . 167

8.6.1 Case study: the best loyalty function 168
8.6.2 Case study: the effect of ME 172

viii Contents

8.7 Stopping criterion: CPU time 175
8.7.1 Case study: the best loyalty function 175
8.7.2 Case study: the effect of ME 177

8.8 Recruitment dynamics . 179
8.9 Final remarks . 183
8.10 Chapter summary . 184

Chapter 9 Development and experimental analysis of BCOi 187
9.1 Sensitivity analysis of the BCOi algorithm 187

9.1.1 Research goals . 188
9.1.2 Swarm intelligence for SAT 188
9.1.3 Problem instances . 189
9.1.4 Experimental methodology 191

9.2 Candidate heuristics for 3-SAT 193
9.2.1 Experimental evaluation of candidate solvers 194
9.2.2 Final remarks and conclusions for candidate heuristics . 196

9.3 Development of BCOi for 3-SAT 197
9.3.1 Design of the BCOi algorithm 197
9.3.2 Backward pass of randBCOi and WalkBCOi 198

9.4 Empirical study of randBCOi . 199
9.4.1 Case study: randBCOi for uf100-430 199
9.4.2 Case study: randBCOi for uf50-218 203
9.4.3 Conclusions for randBCOi 204

9.5 Experimental study of WalkBCOi 204
9.5.1 Case study: Evaluation function ev1 204
9.5.2 Case study: Evaluation function ev2 207
9.5.3 Conclusions for walkBCOi 208

9.6 Final remarks . 208
9.7 Chapter summary . 208

Chapter 10 Conclusions and future work . 213
10.1 Concluding remarks . 213
10.2 Future work . 215

Bibliography . 217

Appendix AComplementary material . 247
A.1 Empirical study of BCOc . 247

A.1.1 Time measurement . 247
A.1.2 Box-plots . 247
A.1.3 Candidate heuristics for P ||Cmax 247
A.1.4 Comparative study of candidate heuristics 251
A.1.5 Experimental evaluation of the best heuristic: sLPT+BF . 253

A.2 The BCO algorithm . 257
A.2.1 BCOc for P ||Cmax: calculate constructive moves 257
A.2.2 Choice of reference case: heuristic vs. NC = 1 258

A.3 Statistical analysis of BCOc . 259
A.3.1 Preliminaries . 259

Contents ix

A.3.2 Repeated measures ANOVA 261
A.3.3 Ranking R procedure for ME 264

A.4 Empirical study of BCOi . 265
A.4.1 SATLIB . 265
A.4.2 Number of transformations 266

Appendix BTables and graphics . 267
B.1 Empirical study of BCOc . 267

B.1.1 Analysis of the bestfit heuristic 267
B.1.2 BCOc: response landscape for two methods of evaluation 267
B.1.3 Comparison of 3-D surface plots 267
B.1.4 Case study: Maximal allowed CPU time 271

B.2 Tables and Figures . 272
B.2.1 Performance table . 272

B.3 Bar-chart of instances . 306

List of Figures

2.1 Partial solution for TSP . 24
2.2 Gantt diagram–schedule of tasks on machines (taken from [Dav12] . . . 29
2.3 Main procedure of Schöning’s algorithm. 33
2.4 GWSAT . 34
2.5 WalkSAT from [Sel94]. 35

3.1 Pseudo-code of the SA algorithm . 43
3.2 Pseudo-code of the EA algorithm. 44
3.3 Pseudo-code of the ACO algorithm. 45
3.4 Pseudo-code of the PSO algorithm. 46
3.5 Pseudo-code of the ABC algorithm. 47
3.6 Pseudo-code of the TS algorithm. 48
3.7 Pseudo-code of the VNS algorithm. 50

4.1 Waggle dance (courtesy of Wikimedia, CC-BY-SA-3.0) [Jü11]. 54
4.2 Recruiters and uncommitted bees. 58
4.3 Illustration of the process of recruitment. 59
4.4 Pseudo-code for BCO . 60
4.5 An example of partial solutions after the first forward pass (taken from

[Dav12]) . 61
4.6 An example of partial solutions in the second forward pass after first

move (taken from [Dav12]). 61
4.7 An illustration of the s-th forward pass (courtesy of Tatjana Davidović),

[Dav11a] . 62
4.8 Possible result of a recruiting process within s-th backward pass, (cour-

tesy of Tatjana Davidović), [Dav11a] . 62
4.9 An example of complete solutions after (s+1)-th forward pass 63
4.10 Influence of forward pass counter and normalized quality of solutions

on the loyalty function p0,u
b . 66

4.11 Influence of Ob on the loyalty function p1
b 67

4.12 Influence of u and Ob on the loyalty function p4,u 68
4.13 Influence of u and Ob on the loyalty function p5,u 69
4.14 Influence of u and Ob on the loyalty function p6,u 70
4.15 Influence of u and Ob on the loyalty function p7,u 70
4.16 Influence of forward pass counter on the loyalty function p8 71
4.17 Influence of u and Ob on the loyalty function p9,u 71
4.18 Probability based choice (courtesy of Tatjana Davidović and Milica Šelmić). 72
4.19 Roulette wheel (courtesy of Tatjana Davidović). 72

6.1 Independent execution of several BCO algorithms. 109

xii List of Figures

6.2 Classification of parallelization strategies for BCO. The colored fields in-
dicate settings of our implementations. 112

6.3 Network Topology. 114

6.4 Improvement in time of the current best solution, during CBCO with a
fixed number of communications . 118

6.5 Improvement in time of the current best solution, during CBCO with a
variable number of communications . 119

7.1 Hierarchy of parameters in the BCO algorithm design. 136

8.1 Box-plot for m = 12, 16 and 9 instances in relation to the n, where
possible outliers are marked with red crosses. 143

8.2 Response landscape of 10 BCOc with min(ev1) for Iogra100_12, Nit = 100.160

8.3 Effects of parameters ME , Lp and the problem instance characteristics.
Profile lines with squares denote problem instances in the class m = 12
and with triangles the class m = 16. Different colors refer to value of n.
Stopping criterion is Nit = 100. 161

8.4 Representative graphic of influence of three BCO parameters (ME, LF,
NC) on solution quality for Nit = 100. Graphic represents changing
of average solutions over values of NC for each loyalty function, on
problem instance Iogra100_12. For easiness of comparing, relative error
is used. 163

8.5 Influence of three methods of evaluation and 10 loyalty function on the
performance of BCOc for P ||Cmax, when NC ∈ [1, 100] and fixed B that
generated the best results. Stopping criterion is maximum number of
iterations, Nit = 100. 164

8.6 Influence of three methods of evaluation and 10 loyalty function on the
performance of BCOc for P ||Cmax, NC ∈ [1, 100] and fixed B that has
reported the best solution. Stopping criterion is allowed CPU time T =
n/100[s]. 165

8.7 Graphic of propagation of best results generated by each method of eval-
uation when maximal number of iterations is provided. Dotted line cor-
responds to performance of sLPT+BF. 175

8.8 Graphic of propagation of best results generated by each method of eval-
uation when maximal CPU time is provided. Dotted line corresponds to
performance of sLPT+BF. 179

8.9 Propagation of variable Re (average number of recruiters per experi-
ment) over NC ∈ [1, 100] for B = 10 and instance Iogra100_12. 180

8.10 Propagation of variable Rmiss (average number of misses per experi-
ment) reported for B = 10, NC ∈ [1, 100] and test instance Iogra100_12. 182

8.11 Propagation of variableRmax (average number of times conditionR = B
has occurred in backward pass per experiment) reported for B = 10,
NC ∈ [1, 100] and test instance Iogra100_12. 182

8.12 Grouping of loyalty functions regarding the similarities exhibited during
the recruitment process. 183

List of Figures xiii

9.1 Semi-log plots of cumulative distribution of nflip for three 3-SAT solvers
and three problem sets. The x-axis shows nflip based on 1000 runs/in-
stance and stopping criterion T = 5s. 195

9.2 Pseudo-code for BCOi for satisfiability problem. 198
9.3 Algorithmic structure of the evaluation function ev2 within BCOi. 199
9.4 Matrix-plots of average number of unsatisfied clauses generated by BCO

with the Class I functions: p1,2,8 and p3,niter 200
9.5 Matrix-plots of average number of unsatisfied clauses generated by dif-

ferent BCOi instances and Class II loyalty functions for uf100 problem-set.202
9.6 Evolution of average number of flips for different randBCOi instances.

Problem instances belong to class uf50-218. Stopping criteria is MAXFLIPS=106206
9.7 Evolution of average number of flips for different walkBCOi instances

and the evaluation function ev1 = numfalse . Problem instances belong
to class uf100–430. Stopping criteria is MAXFLIPS=106. 209

9.8 Evolution of average number of flips for different walkBCOi instances
and the evaluation function ev2 . Problem instances belong to class
uf100–430. Stopping criteria is MAXFLIPS=106. 210

A.1 Pseudo-code for sLPT+BF . 249
A.2 Pseudo-code for sLPT+FF . 250
A.3 Pseudo-code for sLPT+ES . 251
A.4 Pseudo-code for sLPT+sES algorithm. 252
A.5 Propagation of solutions for different instances generated by sLPT+BF af-

ter 100, 200, 300, 400, 500 and 1000 iterations. Solid line corresponds
to class of instances when number of machines is 12, and dashed line to
16 machines. 257

A.6 Graphic of propagation of the average quality of solution generated by
standalone heuristic and of BCO algorithm when NC = 1, B = 20. Stop-
ping criteria is Nit. 259

A.7 Pairwise comparison between results of the best performing loyalty func-
tion (here p2

b), and the rest of loyalty functions within the same group,
on test instance Iogra100_16. 263

B.1 Occurence of best found solution of each run generated with sLPT+BF
for different instances, when Nit = 1000, m = 12. 268

B.2 Occurrence of best found solutions of each run generated with sLPT+bestfit
for different instances, when Nit = 1000, m = 16. 268

B.3 Occurence of best found solution of each run generated with sLPT+BF
for different instances, when Nit = 10000, m = 12. 269

B.4 Occurrence of best found solutions of each run generated with sLPT+bestfit
for different instances, when Nit = 10000, m = 16. 269

B.5 Response landscape of 10 BCOc with max(ev1) for Iogra100_12,Nit = 100.270
B.6 Response landscape of 10 BCOc with max(ev2) for Iogra100_12,Nit = 100.271
B.7 Landscape of measured outcomes for four different loyalty functions,

when Nit = 100, min(ev1) and problem instance Iogra100_12. 272
B.8 Bar chart for Iogra100 . 306
B.9 Bar chart for Iogra150 . 307
B.10 Bar chart for Iogra200 . 308

xiv List of Figures

B.11 Bar chart for Iogra250 . 309
B.12 Bar chart for Iogra300 . 310
B.13 Bar chart for Iogra350 . 311
B.14 Bar chart for Iogra400 . 312
B.15 Bar chart for Iogra450 . 313
B.16 Bar chart for Iogra500 . 314

List of Tables

6.1 MBCO Scheduling results – test problems Iogra100_12 and u250_4. . . . 116
6.2 CBCO Scheduling results – test problem Iogra100_12. 117
6.3 CBCO Scheduling results – test problem u250_04. 120
6.4 GBCO Scheduling results – test problem Iogra100_12. 121
6.5 GBCO Scheduling results – test problem u250_04. 122
6.6 Comparison between sequential and parallel BCOc within the same CPU

time – test problem Iogra100_12. 123

7.1 Statistical tests. 132

8.1 Scheduling results for test problems with known optimal solutions ap-
propriated from [Dav06b] with n = {100, 250}, nrun = 100, Nit = 100
and different number of machines. 146

8.2 Minimal number of iterations needed to obtain value 811 for test in-
stance Iogra100_12 and nrun = 100. Time is reported in seconds. 147

8.3 Parameter space for experimental analysis of BCOc. 153
8.4 Response values after a run of the BCOc instance. 153
8.5 Overview of the response values and the corresponding descriptive statis-

tics of the experiment. 154
8.6 Best and worst average solutions found by corresponding BCOc algo-

rithms for problem instance Iogra100_12 [Dav06b]. Stopping criterion,
Nit = 100. 155

8.7 Best and worst average solutions found by corresponding BCOc algo-
rithms for problem instance Iogra100_16 [Dav06b]. Stopping criterion,
Nit = 100. 156

8.8 Best and worst average solutions found by corresponding BCOc algo-
rithms for problem instance Iogra100_12 [Dav06b]. Stopping criterion,
T = 0.1[s]. 157

8.9 Best and worst average solutions found by corresponding BCOc algo-
rithms for problem instance Iogra100_16 [Dav06b]. Stopping criterion,
T = 0.1[s]. 158

8.10 Repeated-measure ANOVA and Friedman’s test results for equivalence
of means between loyalty functions of specific method of evaluation for
α = .05 and maximum number of iterations. 169

8.11 Results of RMANOVA and Friedman’s test for Nit. 170
8.12 Results of pairwise comparison test (Nit = 100): list of loyalty functions

that are not significantly different from the control group. 171
8.13 Table of best results and its corresponding parameter configurations for

class of m = 12 of problem instances. Stopping criterion, Nit = 100. . . 173

xvi List of Tables

8.14 Table of best results and its corresponding parameter configurations for
class of m = 16 of problem instances. Stopping criterion, Nit = 100. . . 173

8.15 Results of RMANOVA and Friedman’s test for T 176
8.16 Results of pairwise comparison test (T = n/100[s]): list of loyalty func-

tions that are not significantly different from the control group. 176
8.17 Table of best results and its corresponding parameter configurations for

class of m = 12 of problem instances. Stopping criterion: CPU time. . . 178
8.18 Table of best results for m = 16. 178

9.1 SATLIB 3-SAT satisfiable instaces. 191
9.2 Results of wsat for uf100-430 [Hoo98a]. 193
9.3 Descriptive statistics for nflip reported by three candidate solvers for

three problem instances in class uf50-218, T = 5[s]. 195
9.4 Results for Rand, SchRand and WalkSAT for SATLIB problem-sets. Opti-

mality criterion is an average number of flips. 196
9.5 Parameter space for experimental analysis of BCOi on 3-SAT. 198
9.6 Results of comparison between Rand and the best configurations of randBCOi

for SATLIB problem-set uf100-430. Optimality criterion is Nuns. 201
9.7 Results for randBCOi for problem-set uf50-218. Optimality criterion is

Nflip. 203
9.8 Descriptive statistics for walkBCOi with ev1 for problem-set uf100-430.

Optimality criterion is Nflip. 205
9.9 Descriptive statistics for walkBCOi with ev2 for problem-set uf100-430.

Optimality criterion is Nflip. 207

A.1 Scheduling results - test problems with known optimal solutions adopted
from [Dav06b] with m = 12, 16, nrun = 100 and a different number of
iterations (Nit = 100, . . . , 1000). 254

A.2 Scheduling results - test problems with known optimal solutions adopted
from [Dav06b] with m = 12, 16, nrun = 100 and different number of
iterations (Nit = 2000, . . . , 10000) (cont). 255

B.1 Repeated-measure ANOVA and Friedman’s test results for equivalence
of means between loyalty functions of specific method of evaluation for
α = .05 and maximum CPU time. 273

B.2 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra150_12 [Dav06b]. Stopping criterion, Nit = 100. . . . 274

B.3 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra150_16 [Dav06b]. Stopping criterion, Nit = 100. . . . 275

B.4 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra200_12 [Dav06b]. Stopping criterion, Nit = 100. . . . 276

B.5 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra200_16 [Dav06b]. Stopping criterion, Nit = 100. . . . 277

B.6 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra250_12 [Dav06b]. Stopping criterion, Nit = 100. . . . 278

B.7 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra250_16 [Dav06b]. Stopping criterion, Nit = 100. . . . 279

List of Tables xvii

B.8 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra300_12 [Dav06b]. Stopping criterion, Nit = 100. . . . 280

B.9 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra300_16 [Dav06b]. Stopping criterion, Nit = 100. . . . 281

B.10 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra350_12 [Dav06b]. Stopping criterion, Nit = 100. . . . 282

B.11 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra350_16 [Dav06b]. Stopping criterion, Nit = 100. . . . 283

B.12 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra400_12 [Dav06b]. Stopping criterion, Nit = 100. . . . 284

B.13 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra400_16 [Dav06b]. Stopping criterion, Nit = 100. . . . 285

B.14 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra450_12 [Dav06b]. Stopping criterion, Nit = 100. . . . 286

B.15 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra450_16 [Dav06b]. Stopping criterion, Nit = 100. . . . 287

B.16 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra500_12 [Dav06b]. Stopping criterion, Nit = 100. . . . 288

B.17 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra500_16 [Dav06b]. Stopping criterion, Nit = 100. . . . 289

B.18 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra150_12 [Dav06b]. Stopping criterion, T = 0.15[s]. . . 290

B.19 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra150_16 [Dav06b]. Stopping criterion, T = 0.15[s]. . . 291

B.20 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra200_12 [Dav06b]. Stopping criterion, T = 0.2[s]. . . 292

B.21 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra200_16 [Dav06b]. Stopping criterion, T = 0.2[s]. . . 293

B.22 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra250_12 [Dav06b]. Stopping criterion, T = 0.25[s]. . . 294

B.23 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra250_16 [Dav06b]. Stopping criterion, T = 0.25[s]. . . 295

B.24 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra300_12 [Dav06b]. Stopping criterion, T = 0.3[s]. . . 296

B.25 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra300_16 [Dav06b]. Stopping criterion, T = 0.3[s]. . . 297

B.26 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra350_12 [Dav06b]. Stopping criterion, T = 0.35[s]. . . 298

B.27 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra350_16 [Dav06b]. Stopping criterion, T = 0.35[s]. . . 299

B.28 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra400_12 [Dav06b]. Stopping criterion, T = 0.4[s]. . . 300

B.29 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra400_16 [Dav06b]. Stopping criterion, T = 0.4[s]. . . 301

B.30 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra450_12 [Dav06b]. Stopping criterion, T = 0.45[s]. . . 302

xviii List of Tables

B.31 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra450_16 [Dav06b]. Stopping criterion, T = 0.45[s]. . . 303

B.32 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra500_12 [Dav06b]. Stopping criterion, T = 0.5[s]. . . 304

B.33 Best and worst average solutions found by corresponding BCOs for prob-
lem instance Iogra500_16 [Dav06b]. Stopping criterion, T = 0.5[s]. . . 305

1

Module I

Preliminaries

CHAPTER1
Introduction

This chapter provides motivation and structure of the dissertation. It begins with an
overview of actual topics in the field of meta-heuristic methods that has inspired our
research. In Section 1.2 we elaborate on these topics and establish general research
questions of the dissertation. Finally, the structure of the thesis is given along with
associated publications.

A meta-heuristic is a high-level problem-independent algorithmic framework that
provides a set of guidelines or strategies to develop heuristic optimization algorithms
to efficiently produce solutions of high quality [Voß12, Sör13]. In practice, it is custom-
ary to use the term solution for any result that an algorithm reports, regardless of its
quality. Therefore, a high quality solution is a result that we consider to be close enough
to the true solution of a problem, usually called optimum. Moreover, in optimization a
suboptimal solution is commonly regarded as a local optimum. Population-based meta-
heuristics are methods that incorporate an idea of combining existing solutions in order
to generate new one(s). The idea has proven successful and has inspired development
of various meta-heuristic methods. The subject of this thesis is the method inspired by
principles of bee’s colony behavior and their collaboration mechanism during foraging
process in nature, namely Bee Colony Optimization method (BCO). Our work follows
two directions of research: theoretical and empirical. Theoretical analysis is exploring
convergence properties of BCO towards global optimal solution using probability anal-
ysis. The empirical part consists of two segments. The first is focused on improving
performance of the BCO algortihm by implementing parallelization strategies. The sec-
ond deals with empirical evaluation of BCO’s performance by analyzing the influence
of its parameters on the measured outcomes.

1.1 Current topics in the field of meta-heuristics

Theoretical and empirical analysis of optimization methods, as well as the develop-
ment of parallelization strategies, represent current topics in the field of operations
research (OR). The development of natural computation (such as evolutionary comput-
ing, swarm intelligence, neural networks) has established a new paradigm as to how
problems may be solved, significantly increasing the number of new meta-heuristic
methods. During the last three decades we can follow an expansion of the field of
population-based meta-heuristic methods, as they provide opportunity to compare more
solutions at the same time. Various empirical and theoretical studies have demon-
strated the advantage of meta-heuristics as methods that exhibit flexibility and robust-

4 Chapter 1 Introduction

ness to structure of optimization problems, while providing high quality solutions at a
reasonable computational time. Given that meta-heuristics are characterized by their
parameters, proper configuration brings improvement in their overall performance.

BCO is a meta-heuristic method that has proved to be very efficient, being ap-
plied in a wide portfolio of optimization problems. It was proposed by Panta Lučić
and Dušan Teodorović at the beginning of the 21st century, and since then has been
used by researchers from all over the world. Lučić and Teodorović stand among the
first who used the basic principles of collective bee intelligence to solve optimization
problems [Luč01, Luč02b, Luč03a]. BCO is still being extensively developed and ex-
plored with numerous successful applications [Dav11a, Dav12, Eda08, Mar07, Nik13a,
Šel10, Teo05, Teo08, Teo06, Teo07, Won10b]. A recent survey of BCO can be found
in [Dav15b, Teo15]. The inspiration for creating the multi-agent system, such as BCO,
came from the analogy between the natural behaviour of bees while looking for food
and behaviour of optimization algorithm searching for an optimal solution of an opti-
mization problem.

There are several contributions that we want to present in the dissertation. The
first central topic of this thesis concerns theoretical analysis of BCO, as we provide suf-
ficient and necessary conditions under which asymptotic convergence of BCO toward
the optimal solution holds. The practical segment of this thesis examines properties of
BCO which provide a good basis for parallelization and propose several strategies for
parallelization of BCO on various levels. We aim to contribute to this topic since, to the
best of the author’s knowledge, only a few basic ideas regarding parallel execution of
BCO were reported in the literature. Empirical analysis of BCO is addressing sensitivity
analysis of BCO to changes in its parameter configurations and the structure of problem
instances. We introduce a term loyalty function as a characterization of the probabil-
ity decisions inside BCO, and demonstrate the influence of several new and existing
loyalty functions on the values of decision probabilities. New evaluation functions are
proposed for two hard combinatorial problems: simple variant of the scheduling prob-
lem and 3-SAT. The practical contributions we provide have opened a new chapter in
the study of BCO. Namely, we have increased the total number of the BCO parame-
ters that may be configured before the algorithm’s execution. We address the issue of
configuration by following two general directions: statistical and/or visual analysis.

1.2 Motivation and goals of the thesis

Many real-life problems are difficult with respect to the number of their appropriately
definable factors. A substantial part of these problems can be represented as optimiza-
tion problems. The main objective of an optimization problem is to find an optimal
solution, preferably, in some timely manner. The difficult optimization problem is the
problem that cannot be solved to optimality or no method can guarantee a bound in
reasonable time [Flo09, pg. 2309]. Classical approach in the fields of operations re-
search and mathematical programming is to employ methods, such as exact methods,
that guarantee to find an optimal solution. Their primary feature is a systematic search
of the solution-space or an intelligent way that reduces the solution-space by some pref-
erence. However, the exact methods can express inefficiency with respect to both time
and memory for various difficult optimization problems. The issue has motivated the

1.2 Motivation and goals of the thesis 5

researches to address the search efficiency in other ways. One way, and also the central
topic of the dissertation, is to invoke stochastic processes in the search for high quality
solutions. These methods, known as non-deterministic, are often more efficient than
the exact methods for problems that are: multimodal, non-differentiable, NP-hard, etc.
[Whi70, Smu12]. We are particularly interested in meta-heuristic methods, as a class of
general computational methods that commonly applies some non-deterministic rules.
Numerous meta-heuristic methods have been developed up to this time as they provide
solutions of high quality for a reasonable execution time.

Intensive applications of meta-heuristic methods have initiated the research on their
empirical and theoretical analysis. Despite the usefulness and practical efficiency of
meta-heuristics, there exists a serious drawback related to the actual quality of gen-
erated solution(s). Whether meta-heuristics can find an optimal solution cannot be
proved without the knowledge or without the utilization of an exact method. In par-
ticular, if the optimal solution is not reachable, it is hard to determine how far the
generated solution might be from it. We have addressed this issue by conducting the-
oretical analysis of the necessary steps required for the successful implementation of
BCO that would assure asymptotic convergence of the BCO algorithm to the desired op-
timal solution. We provide sufficient and necessary convergence condition and prove
that, when satisfied, BCO can solve an optimization problem if given enough time.

Apart from the significant advances in computer technology and progress in disci-
plines relevant for solving optimization problems, some problems are still challenging
in the sense that it is hard to solve realistically large problem instances within a reason-
able computation time. A possible approach for dealing with the issue is parallelization.
One of the goals of parallelization is to produce a linear speedup of algorithm’s exe-
cution on distributed- or shared-memory processor machines. However, parallelization
of non-deterministic algorithms is usually not as straightforward as it is for determin-
istic algorithms due to their stochastic component, therefore, are more challenging. In
the dissertation we propose parallelization strategies of BCO for distributed memory
multiprocessor systems and examine the benefits of its parallel execution.

The performance of meta-heuristics are closely connected to their particular appli-
cations and implementations, which is why their analysis is mainly conducted experi-
mentally. Meta-heuristics are characterized by their parameters, producing another op-
timization problem when searching for the most appropriate parameter configurations.
Advancement in automatic algorithm configuration (e.g., off-line parameter tuning)
has provided a helpful framework for evaluation of meta-heuristic algorithms. How-
ever, these strategies might be computationally expensive to oversee the performance
of an algorithm on the complete (or large part of) parameter space. Furthermore,
it is highly recommended to become familiar with the underlying procedures of the
tuning methods, especially when dealing with some specific requirements. Accord-
ingly, the time spent to find an appropriate tuner and to adjust its environment can
be spend to design a study that will incorporate only the necessary parts. Without
loss of generality, we conduct an empirical analysis of the BCO algorithm by means of
a comparative study between a large number of BCO’s parameter configurations. In
particular, we study the sensitivity of BCO to changes in its parameter values by incor-
porating various suggestions from the literature, while pertaining an overview on the
large part of the parameter space. The significance of our work is to provide reliable
values of the BCO parameters since the sub-optimal parameter values can lead to stag-

6 Chapter 1 Introduction

nation and an extremely high variability during the execution [Hoo07, pg. 12]. We are
primarily interested in the performance of BCO while changing the maximal number
of bees and the number of constructive/improvement moves within an iteration. How-
ever, due to the increasing number of proposals for loyalty function, the research topic
has expanded towards modular BCO parameters, such as loyalty and evaluation func-
tion. Modular suggests that they are not necessary functions, but can be a subroutine
(module). Experimental analysis of BCO is conducted for two combinatorial problems
(scheduling and satisfiability) by employing off-line (static) configuration of the BCO pa-
rameters. For the scheduling problem, we revisit the choice of an underlying heuristic
to provide some empirical evidence about the most influential part of BCO that ensures
convergence towards an optimal solution. Additionally, for both considered problems
we propose new evaluation functions and study which, among the loyalty functions,
exhibits the best behavior w.r.t. the quality of response values and their influence on
the convergence speed. The motivation is to step away from the conventional BCO
parameter settings and provide rationale behind the selection of its values. In addition,
we investigate some of the properties of benchmark problem instances of scheduling
problems [Dav06b] and revisit the critical values for the 3-SAT instances. Finally, we
discuss the underlying mechanisms of BCOc exploring the recruitment process, how-
ever, for fixed configurations of the BCO parameters.

1.3 Structure of the thesis

The thesis is divided into ten chapters, organized within two modules. The first mod-
ule provides introduction to the field of optimization with the focus on meta-heuristic
methods and BCO. The second module outlines three topics of the dissertation: theo-
retical analysis, parallelization strategies and empirical study. The topics are arranged
within separate chapters. The corresponding chapters in the second module begin with
a formal background and related work. The contributions of our study are presented
in the second half of the corresponding chapters.

Chapter 1(current chapter): We elaborate the main motivation and research objec-
tives and introduce the structure of the dissertation.

Chapter 2: Optimization problems and methods. The chapter provides an in-
troduction into the optimization by reviewing the general definition of optimization
problems. Definition of the non-linear optimization problem helps establish necessary
notation used in this thesis. A short survey of different optimization problems and
methods is given next. A special class of optimization methods (heuristic methods) is
covered, as they represent an integral part of the most meta-heuristics. As an illustra-
tion, we provide description of two combinatorial problems: scheduling of independent
tasks to identical machines and the special variant of satisfiability problem, 3-SAT. For
each problem, a short survey of widely used heuristic methods is given.

Chapter 3: Meta-heuristic methods. The chapter is devoted to the topic of meta-
heuristic methods. First, we provide definitions of class of mathematically- and nature-
inspired meta-heuristic methods, with special attention to the swarm intelligence meth-
ods. Secondly, for each class we describe several most common meta-heuristics.

Chapter 4: Bee colony optimization method. The chapter is dedicated to BCO,
its development and implementations. It reviews a behavioral model of bees in nature

1.3 Structure of the thesis 7

used as inspiration for development of the BCO method. Two variants of the BCO
algorithm are revisited and new concept introduced – the loyalty function. We discuss
impact of 10 different loyalty functions on the performance of the BCO algorithm.

Chapter 5: Theoretical analysis of the asymptotic convergence of the BCO
method. The chapter is dedicated to the theory of BCO. It begins with the theoreti-
cal background of convergence analysis of meta-heuristics and a survey of the existing
literature on this topic. The chapter covers formal definitions of probability analysis,
used as the basic tool in study of meta-heuristics. We focus on the parts that are in-
tegral for our theoretical conclusions. The second part of the chapter presents results
of the theoretical analysis of the BCO method. Following the guidelines presented in
[Gut09] we investigate two types of convergence for both variants of BCO: BCOc and
BCOi. Sufficient and necessary conditions that establish the best-so-far and the model
convergence are presented for six different scenarios w.r.t. methods of selection. A part
of the chapter originates from [JK14a, JK14b, JK16b].

Chapter 6: Parallelization strategies for the BCO algorithm. The chapter is ded-
icated to the study of parallelization strategies for BCO. In the first half we review the
literature that deals with parallelization of meta-heuristics for distributed memory ar-
chitectures. It provides examples of successful parallel implementations on two nature-
inspired population-based meta-heuristic methods. In the second half of the chapter
we present five parallel implementations of the BCO algorithm. In the experimental
segment of the chapter we present comparison results for these implementations. The
conclusion is that invoking modest number of processors (up to 12) generates best
results. Majority of the chapter originates from [Dav13].

Chapter 5: Methodology of experimental study of BCO. In this chapter we briefly
review the literature on empirical analysis of meta-heuristic methods and discuss sev-
eral examples of measure of performance. We establish experimental conditions used
for empirical analysis of the BCO method. A brief inspection of common statistical tools
in the operations research is also given.

Chapter 8: Development and empirical analysis of BCOc. An exhaustive em-
pirical study of the BCOc algorithm for the problem of scheduling independent tasks
on identical machines is presented. In order to choose best heuristic for the BCOc
algorithm, in the first segment of the chapter we conduct several experimental compar-
isons and graphical evaluations. Next, we address the issues of tuning of both qualita-
tive and quantitative BCO parameters. The main objective is to test BCOc in domains
where sophisticated alternatives already exist in order to investigate its robustness and
performance. A part of the chapter originates from [JK16c].

Chapter 9: Development and experimental analysis of BCOi. The chapter pro-
vides results of an exhaustive empirical study of the BCOi algorithm developed for 3-
SAT. The structure of the chapter is similar to the previous one. However, we consider
only visual representation of our results. A part of the chapter originates from [JK16a].

Chapter 10: Conclusions and future work. The thesis concludes with final re-
marks and conclusions of presented material. Moreover, some ideas for future research
are provided.

Appendix A: Complementary material provides an additional information regard-
ing the two variants of the BCO algorithm. However, the majority of material is focused
on results of BCOc. We present the procedure for determining the number of construc-
tive moves (adding components to partial solution). We give results of comparison

8 Chapter 1 Introduction

study between the reference case of the BCOc algorithm (BCO with only one bee) and
the underlying heuristic. We demonstrate that the two exhibit almost identical behav-
ior, and thus, performance of underlying heuristics can be replaced by results of the
reference case.

Appendix B: Tables and graphics provides figures and tables of the results of BCOc,
related to Chapter 8.

1.4 Publications and contributions

During research activities prior to the dissertation, two lines of research were followed.
The first relates to increasing the effectiveness and efficiency of BCO variants for in-
stances of a particular optimization problem, by studying the influence of BCO param-
eters on the overall performance and implementing different parallelization strategies.
The second line of the research covers the theoretical analysis of the BCO convergence
properties. The main questions of the dissertation have been elaborated within several
journal and conference papers, which are covered here. Results are specified according
to the order in which they were published.

• Tatjana Davidović, Tatjana Jakšić, Dušan Ramljak, Milica Šelmić and Dušan
Teodorović. Parallelization strategies for bee colony optimization based on
message passing communication protocol. Optimization, Vol. 62, Iss. 8, 2013.

Development of the new and the efficient parallelization strategies for BCO repre-
sents the first practical contribution of the dissertation. BCO operates on a population
of solutions, therefore, presumes good basis for parallelization. Few basic ideas regard-
ing the parallel execution of the BCO algorithm have been reported in [Dav11b]. Due
to its stochastic nature, parallelization of the BCO algorithm for distributed memory
architectures was considered to be challenging. Therefore, we propose three paral-
lelization strategies for a distributed memory multiprocessor architecture under the
Message Passing Interface (MPI) communication protocol. The first strategy involves
independent execution of several BCO algorithms, and was used in the early work on
parallelization of BCO [Dav11b]. The above mentioned paper contains a synchronous
strategy implementing cooperation between various BCO algorithms and defines more
general approach. Another novelty is the development of asynchronous strategies intro-
duced to provide a more diversified search. Asynchronous strategies are implemented
in two ways: with centralized and with non-centralized communication control. The
presented experimental results, addressing the problem of static scheduling of inde-
pendent tasks on identical machines, show that the parallel BCO algorithms provide
superior performance compared against the sequential implementation. Specifically, in
the case of independent executions, a significant speedup was obtained while preserv-
ing the quality of solution. As for both of cooperative strategies, the solution quality
was improved. However, both asynchronous strategies outperform the synchronous
with respect to both solution quality and the running time. Another interesting con-
clusion is that in order to obtain better quality solutions within the same amount of
wall–clock time, only a modest number of processors should be engaged in the parallel
BCO execution. There are a couple of reasons why this is the case. Firstly, the overhead

1.4 Publications and contributions 9

from communication between multiple processors prevails over benefits of paralleliza-
tion. Secondly, the stochastic component of the BCO method might influence the loss
of a systematic speedup, thus progressing as a random walk. In addition, as the time
and the quality of solutions are relatively stable, the conclusion is that adding new pro-
cessors does not improve an overall performance. This is covered in greater detail in
Chapter 6.

• Tatjana Jakšić Kruger. O konvergenciji metaheurističke metode optimizacije
kolonijom pčela. Zbornik IV Simpozijuma "Matematika i primene", pp. 176–188,
2014.

• Tatjana Jakšić Krüger, Tatjana Davidović. Model convergence properties of
the constructive Bee Colony Optimization algorithm, in Proceedings of the
41th Symposium on Operations Research (SYM-OP-IS 2014), pp. 340-346, Div-
čibare, Serbia, Sep. 16-19, 2014.

• Tatjana Jakšić, Tatjana Davidović, Dušan Teodorović, Milica Šelmić. The Bee
Colony Optimization Algorithm and its Convergence. International Journal
of Bio-Inspired Computation, Volume 8, Issue 5, pp. 340–354, 2016 (accepted
2014).

The lack of theoretical understanding of BCO inspired publications of three research pa-
pers, listed above. The aim was to understand the mechanisms of probability decisions
incorporated in the BCO method and analyze its influence on the convergence toward
optimal solution. Based on the tutorial [Gut09] we consider two types of convergence,
best-so-far convergence and the model convergence. We provide necessary and suffi-
cient conditions under which BCO is converging in the best-so-far sense. In order to
assure the model convergence of BCOc we present sufficient properties. Specifically, we
conclude that BCOc converges, under certain restrictions, with probability one toward
the optimal solution. These restrictions imply that BCOc needs to implement learning
mechanism used for adaptation of probability rule for selecting a (partial) candidate
solution. We prove that BCOc is well founded and provides a good basis for model con-
vergence. Results are elaborated in Chapter 5.4 and in the above mentioned papers.

• Tatjana Jakšić Krüger, Tatjana Davidović. Empirical Analysis of the Bee Colony
Optimization Method on 3-SAT problem, Proceedings of the 43th Symposium
on Operations Research (SYM-OP-IS 2016), pp. 297–301 Tara, Serbia, Sept. 20-
23, 2016.

• Tatjana Jakšić Krüger, Tatjana Davidović. Sensitivity analysis of the Bee Colony
Optimization Algorithm, in Proceedings of the 7th International Conference on
Bioinspired Optimization Methods and their Applications (BIOMA 2016), pp. 64-
80, Bled, Slovenia, May 18-20, 2016.

Recent contribution to the thesis relates to the empirical analysis of the constructive
and the improvement version of BCO on two problems: problem of scheduling inde-
pendent tasks to identical machines and 3-SAT, respectively. The empirical analysis has
been conducted to investigate the sensitivity and robustness of BCO to changes in the
parameter configurations and problem instances. The results have been obtained by
a detailed inspection of different parameter configurations, such as number of bees,

10 Chapter 1 Introduction

number of forward/backward passes, the choice of evaluation and loyalty functions.
The case studies have been conducted for the fixed interval of the parameter B and for
the fixed number of constructive/modification moves during an execution of the BCO
algorithm. Results of the experiments are presented in chapter 8 and 9 while the part
has been published in the mentioned conference paper.

Contributions that have not been published and are for the first time elaborated in
the dissertation may be found in Chapters 4, 5, 7, 8, 9. Material in Chapters 2 and 3
should be considered as a contribution to the curriculum in the field of optimization.
Content of these chapters is inspired by the substantial amount of valuable tutorials,
lectures and books, however, it is our understanding that their main focus is often on
the specific topics. We have tried to consider various aspects of the field of optimization
by reviewing its history, recalling the existing definitions and reorganize some of the
current classifications.

1.5 Chapter summary
In this chapter we present motivation and objectives of the thesis. More precisely, we:

• Introduce research topics of this dissertation.

• Provide general definitions of the high quality solution and meta-heuristic meth-
ods.

• Emphasize the significance of working with population of solutions at the same
time.

• Review our publications and we provide the short summaries of the contributions.

CHAPTER2
Optimization problems and methods

The chapter contains a general introduction to the field of optimization. It provides
definitions of hard optimization problems and the most common optimization methods.
To establish necessary notation, utilized throughout the dissertation, we review the
definition of (nonlinear) optimization problem. Next, we briefly survey different types
of optimization problems. Section 2.2 contains a historical synopsis on the development
of optimization methods and their classification, followed by a short survey of various
heuristic methods. Finally, we review two combinatorial optimization problems (the
problem of scheduling independent tasks to identical machines and 3-SAT) and the
corresponding heuristic methods important for our study of BCO.

2.1 Introduction to optimization

Optimization simply means to find the best solution or to operate a system in the most
effective way [Hau04, Wan09]. It can be considered as a process of adjusting the
input in order to attain the optimal (minimal or maximal) system output. Optimization
today has an essential place in the real-life and science, as optimization problems can
arise from anywhere. It became essential for the design and the analysis of complex
systems (e.g., management of the freight and passenger transportation and traffic)
which has introduced problems such as: infrastructure planning, timetable generation,
route planning, multi-modal transport optimization, etc. Other real-life problems might
be nurse scheduling problem, multiple sequence alignment problems or prediction of
protein structure and recognition, string selection and comparison problems, vehicle
routing problems, etc. The complexity of the problems grows daily with respect to the
input size and the constraints imposed on the data. Consequently, optimal solutions to
these problems are increasingly hard to obtain.

During the last decades the successful applications and implementations of various
optimization methods may be observed. A motivation behind their development is to
maximize the efficiency in terms of speed and/or memory usage while faced with the
growing needs of the modern industry. Especially if the problem exhibits a huge num-
ber of local extremes, such as a Griewank’s function, uneven distribution of extremes,
deception extremes, high-dimensional problems, etc. [Spa03][Fod12, Chapter 4]. With
the development of algorithms, such as branch-and-bound (B&B) and integer liner pro-
graming (ILP) during the 70s, the border for number of solvable optimization problems
has expended. Nevertheless, many optimization problems required innovations, why
the meta-heuristics have received the attention from the research community. We de-

12 Chapter 2 Optimization problems and methods

tect again a new trend of research in the field of optimization, with the rise of so called
matheuristics. They represent hybrids between meta-heuristic and exact methods.

Most of the real-life optimization problems belong to the class of NP-hard problems
[Pap98]. For this reason, the following section is dedicated to the formal definition of
hard problems from the aspect of the theory of computational complexity.

2.1.1 NP-hard problems

Typical problems encountered during bachelor studies in computations, belong to the
class of problems that are solvable in polynomial time. Even the simple real-world
optimization problems like determining the shortest path from work to home, while
taking detours to visit a couple of places before reaching the final destination, are
intuitively considered as easy. Our basic comprehension can, therefore, deceive us, es-
pecially when faced with current scientific and industry problems. To describe a hard
optimization problem, we recapitulate its definition from the the theory of computa-
tional complexity. Because the definition relies on the concept of decision problems,
the aim of this section is to point out relation between search and decision variant of
the considered optimization problem.

Decision problems are problems for which the answer for every valid input is YES
or NO. Examples of such problems are: satisfiability problem (SAT, given a Boolean
formula, is it satisfiable), graph coloring (can a graph of n vertices be colored using
k colors, such that no two adjacent vertices are colored with the same color, where
k < n), halting problem (given an algorithm and its input, will it ever complete the
computations), traveling salesperson problem (also known as traveling salesman prob-
lem, TSP, given a number of cities n, an n × n matrix of nonnegative integers [di,j]
that represent distances between cities, is there a tour τ of length less than or equal
to given integer l, where tour τ is a cyclic permutation of cities), and many others
[Pap98]. Search problems are problems which require identification of solutions from
a countable or infinite set of possible solutions. The majority of above mentioned deci-
sion problems can be used to formulate the corresponding search problems, where in
this case we want to have more information than simple yes or no. For graph coloring,
a search problem would correspond to finding pairs of (vertex, color) which satisfy the
conditions of the problem, i.e., that two vertices are not colored with the same color
(in case these pairs exist). In similar fashion, the search problem of TSP is easy to
formulate as the objective is to find the actual tour of a length less then or equal to l.
We can also identify verification problems in which we need to demonstrate if provided
solution really is a solution of the given problem. To demonstrate, previous examples
are used. In the case of graph coloring, a verification problem would be that for a given
pair (vertex, color) we need to verify if it is a solution, or not. In the case of TSP, for
some given tour, we want to verify if it is a cyclic permutation with the length not larger
than l.

Regarding the optimization problems, we distinguish between their search and de-
cision variants. The search variant of an optimization problem corresponds to finding
a solution that optimizes a given objective function. For example, finding the shortest
tour of a TSP, or a valid coloring with minimal number of colors in the graph color-
ing problem. Decision variant of an optimization problem implies providing an answer
to a question: does the optimal (feasible) solution of the corresponding optimization

2.1 Introduction to optimization 13

problem exists.
A significant portion of research in computer science is dedicated to construction

of algorithms that solve problems in an efficient manner. We say that an algorithm is
useful in practice, efficient, polynomial bounded, or tractable if its running time is guar-
anteed to be bounded by a polynomial p(n) in the size n of the input of the problem. In
other words, an algorithm is known to be of polynomial-time complexity if, given any
instance as input, it generates a correct answer in at most c · nk steps, where k and c
are constants and n is the size of the instance, or the number of bits needed to specify
it. Polynomial boundedness has been shown to have both theoretical and practical sig-
nificance [Law76]. A formal definition of these types of the problems are in the theory
of computation known as class P. The class P is defined as the class of all problems
for which there exists a deterministic polynomial-time algorithm. Even if parameter
k, from definition of tractable problems, takes values such as k = 50000, is enough to
meet the requirement of this definition. The examples of the problems in class P are:
sorting, minimum cut, minimum spanning tree and shortest paths [Gar79, Gol88].

Exponential time algorithms are algorithms whose time complexity function cannot
be bounded by a polynomial p(n). They are usually considered inefficient, although a
few proved to be very useful in practice (e.g. simplex algorithm for linear program-
ming, branch-and-bound for knapsack problem). The inefficiency is revealed when
considering a solution of the large problem instances, reflected by the time complexity
functions provided in [Gar79, pg. 6]. For example, observing time complexity func-
tion n5, where n denotes an input length, an increment in the size of the instance
by only 10 increases the computing time by a factor 4, whereas for 2n the computing
time is increased 210 times. A problem is considered to be intractable if there is no
guaranty that it can be solved in polynomial time, and therefore may take exponential
time to discover a solution [Gar79]. In the worst case, there are problems for which
no algorithm can solve them, often refered to as being non-computable or undecidable
(non-computable problem that requires a yes/no answer). One such example is the
halting problem, described by Turing in [Tur36], [Gar79, pg. 12]. One can also con-
sider intractability with respect to the space (memory requirements). It occurs when
the solution cannot be described with an expression having length bounded by a poly-
nomial function of the input size. A good example of such problem is to generate all
possible permutations of a set of n integers. The length of the output, in this case,
cannot be a polynomial function of the length of the input, thus it cannot be computed
in polynomial time [Kam09].

The question then is, which problems have polynomial time algorithms? Unfortu-
nately, this is not an easy question. Since almost all real problems are intractable, the
main resort is to find as efficient algorithms as possible in terms of the running time
and the memory usage. There are many tools one can use to approach such problem.
To estimate complexity of the algorithm a hypothetical computer is considered: it has
unlimited random access memory, the access time to memory is constant and unaf-
fected by the size of the data and the number of data stored, it is capable of executing
instructions such as integer arithmetic operations, numerical comparisons, branching
operations, that always require one unit of time [Law76]. An example of such a ma-
chine is widely used Turing machine [Gar79].

Class NP is defined as a more general than class P, i.e., it is a class of all problems for
which some previously provided solution can be verified in polynomial time [Gar79].

14 Chapter 2 Optimization problems and methods

NP refers to the nondeterministic polynomial problem, that is, problems that are solv-
able in polynomial time on a nondeterministic Turing machine (Cook-Levin theorem
[Coo71]). Various formal definition exists in the literature related to theory of com-
putational complexity [Gar79, Gol99, Cor01, Ogn04, Pap07]. There is an alternative
theory known as probabilistically checkable proof, PCP, also used to provide analysis of
computing approximate solutions to NP problems [Aro98]. It implements a computa-
tional model as probabilistic Turing machine in order to measure and formalize the
performance of probabilistic algorithms.

To define what means hard problem for NP class of problems, let us first recall the
standard definition: a problem P is hard for a class of problems C if every problem in C
can be reduced to P. Therefore, no problem in C is harder than P, since an algorithm
for P can solve any problem in C. The notion of hard problems depends on the type
of reduction being used. If problem P also belongs to the class C, then P is said to be
complete for C [Cor01].

This all leads us to the important class of NP-complete problems(1). The foundations
for the theory of NP-completeness were presented by Stephen Cook [Coo71]. He dis-
played the importance of polynomial time reducibility, which states that a polynomial
time reduction from one problem to another ensures that any polynomial time algo-
rithm for the second problem can be converted into a corresponding polynomial time
algorithm for the first problem. Another significant result Cook provided is that one
particular problem in NP, called the satisfiability problem (SAT), has the property that
every other problem in NP can be polynomially reduced to it. This means that if we
can solve SAT problem efficiently, then we can solve all other problems in NP efficiently
as well. Equivalently, if any problem in NP is intractable, then the SAT problem also is
intractable. Therefore, the satisfiability problem is the hardest problem in NP [Gar79].
Richard Karp proved that there is a great number of other NP problems that share this
property of being as hard as SAT. This equivalence class which consists of the hardest
problems in NP is called NP-complete class of problems. There are hundreds of known
NP-complete problems [Gar79].

Here, we demonstrate the connection between decision and search problems. It
can be shown that for all NP-complete problems if there exists an efficient procedure
for solving a search problem, there also exist an efficient procedure for solving the
corresponding decision problem [Gol99, Lecture 1, pg. 4]. We concentrate in the rest
of the thesis on the search problems. Search problems are considered to be a general
class of problems and a decision problem may simply be considered as a special type of
the corresponding search problem [Gar79]. However, to classify optimization problems
regarding the theory of computational complexity, a step into generalized world of
problems is required.

Search problem is NP-hard if it is as least as hard as some NP-complete problem.
Class of NP-hard problems, therefore, introduces broader set of problems, the one for
which verification of correctness in polynomial time doesn’t have to exist. For addi-
tional formal definitions a reader is referred to [Gar79, Ogn04, Pap07]. The accent
here is on the conclusion from the literature about NP-hard problems: any NP-hard
problem, to which we can transform an NP-complete problem, cannot be solved in

(1)The presented material on NP-complete problems follows the guidelines of the lectures, given by prof.
dr Tim Roughgarden, Algorithms: Design and Analysis, part 2,
(http://theory.stanford.edu/ tim/videos.html).

2.1 Introduction to optimization 15

polynomial time unless P = NP [Gar79].
As already mentioned, a search variant of an optimization problem can be formu-

lated as a series of decision problems. To elaborate further on this correspondence, let
us observe an instance of the traveling salesperson problem that is specified by some
n vertices (cities), distances amongst all of the pairs of vertices as positive integers
and a bound l ∈ Z+ [Gar79, pg. 18]. The corresponding decision problem would
be: is there a tour that has a total length no more than l? Considering this decision
problem, possibly exponentially many times, it is possible to find the optimal solution
for related search variant of TSP. Furthermore, if the objective function of the search
problem is relatively easy to evaluate, then the decision problem can be no harder than
the the corresponding optimization problem. Therefore, if the decision variant of TSP
is NP-complete, than the search variant is at least as hard [Gar79, pg. 19]. The same
reasoning can be applied to essentially all search problems. Therefore, we may state
that an optimization problem is NP-hard if the corresponding decision problem is NP-
complete [Gar79, Pap91b][Bru07, pg. 46].

2.1.2 Optimization problems
Optimization maintains an essential place in practical and scientific world. Today,
common optimization problems are versatile, e.g.,: sequence alignment problems, a
prediction of protein structure, genome rearrangement problems, string selection and
comparison problems, vehicle routing problems, air traffic scheduling problem, etc.
Therefore, we begin with a brief survey of the development of the optimization prob-
lems, followed by their formal definitions taken from optimization theory. Finally, we
provide the classification of optimization problems.

2.1.2.1 History and definitions

The word optimum comes from a Latin word optimus meaning to describe the property
of being the best, ideal or perfect. The essence of the word has not changed, and today
designates a condition that produces the best result. What we consider the best in
some practical problem can be described in mathematics as an extreme of a suitable
mathematical function. Therefore, the process of searching for configurations, or states
of physical processes, that are the best among a given set of finite or infinite alternatives
is called optimization.

First historical endeavor in mathematical formalization of optimization problem can
be tracked back to the beginnings of the field of mathematical analysis called calculus
of variations, when in the 17th century a Brachistochrone problem was first proposed.
The problem was described by John Bernoulli as a requirement to find a path along
which a particle (point-like body) would move under the influence of gravity, from one
point to another in the least amount of time. But it was only until middle of 1940s
when the optimization methods, such as linear and dynamic programming, were first
used [Dut04]. Despite the fact that optimization problems have been always a major
part of our every-day lives, from the invention of wheel (to minimize the drag during
transportation) to maximizing the monetary profits, it was only in the last 60 years
when the optimization has grown as an independent field.

The fundamental elements of a mathematical model of optimization problems are:
(i) a set of objects (variables), each with an associated contribution, (ii) an objective

16 Chapter 2 Optimization problems and methods

function used for computing the value of a particular subset or order of objects, and
(iii) a set of constraints, i.e., the feasibility rules specifying how subsets/orderings may
be built [Cra14]. The goal of an optimization method is to assign possible values to the
variables so as to acquire the optimal value of the objective function, while satisfying
all constraints. General definition of optimization problems is as follows [Dav06a]:

Definition 1. Let f : S → R be real function, defined on the set S, and let X ⊆ S be
some given set. Find

min f(x),

under condition (constraint)
x ∈ X . 3

To further demonstrate what each of this element means, we review the definition of
the (nonlinear) programming problem from [Pap98]. The formulation of the problem is
suitable for the introduction of basic terminology.

Definition 2. (Nonlinear) programming problem consists of finding a(all) value(s) for
the decision vector x ∈ Rn, as to

minimize f(x)
subject to gi(x) ≥ 0, i = 1, . . . ,m

hj(x) = 0 j = 1, . . . , p.
(2.1)

3

The components xi of vector x = (x1, x2, . . . , xn)T are called decision variables, while
f , gi and hj represent general functions of these variables. Function f(x) signifies the
objective function, and gi(x) and hj(x) denote constraint functions of the optimization
problem. When considering merely objective function f(x), the decision vectors x are
called possible solutions, while a set of all possible solutions is called a search space
(2), denoted here as S. Therefore, function f(x) is a mapping f : S → R, where
S ⊆ Rn. Furthermore, the set of possible solutions x that meet all the constraints
of functions gi(x) and hj(x) is called a feasible region (X) and its elements feasible
solutions. Based on the provided terminology, the (nonlinear) programming problem
can now be defined as finding the minimum of function f(x) on the set X . In other
words, we are searching for some x∗ that satisfies:

f(x∗) ≤ f(x), ∀x ∈ X . (2.2)

Feasible solution x∗ ∈ X that satisfies condition (2.2) is called (global) optimal solution.
The best (optimal) solution is the one satisfying feasibility rules with the property that
the corresponding value of the objective function is minimal among all possible combi-
nations. A feasible solution which is not optimal is called sub-optimal [Pap98, Dav06a].
The solutions that are optimal within a subset of a feasible region are called local op-
tima. Formal definition of local optimum is given in Definition 4 in the text to follow. It
is worth noting that maximization of f(x) can be described as the problem of minimiza-
tion of −f(x), therefore, it is enough to consider one type of optimization problems.

(2)Yang in his book [Yan10] has distinguished the notion of search space from so-called solution space
stating that the search space is a complete space Rn, and that solutions space represent the domain of
objective function f .

2.1 Introduction to optimization 17

The essential part of the optimization problems is the objective. The objective should
be considered as an expression in form of an unambiguous (mathematical) statement
of the goals to be achieved [Mic04]. In operations research, the statements typically
concern minimization or maximization of an objective function, usually under some re-
strictions. Optimization expressions, derived from Definition 2, are standardized in the
optimization community. When it comes down to implementation of an optimization
method, a slightly different terminology may be used [Hoo05]. First of all there is a no-
tion of a candidate solution defined as a potential solution that may be encountered dur-
ing the attempt to solve given problem instance, but may not satisfy all the conditions
from the problem definition. Moreover, candidate solutions satisfying the logical con-
ditions can be called feasible or valid [Hoo05, pg. 16]. Furthermore, the search space
is defined as a set of all candidate solutions of a problem instance, and the solution
set as the set of all valid solutions. Other expressions, such as neighborhood relation,
memory states, initialisation function and step function are also used [Hoo05] [Gon07,
chapter 14]. In the recent literature, the expression candidate solution is employed with
a slightly different meaning than in [Hoo05]. It is assumed that candidate solutions are
always feasible, and sometimes they belong to the subspace of the so-called promising
solutions that should be visited first during the search. Henceforth, we refer to the later
definition in the thesis.

Another useful distinction between theory and practice is the utilization of the eval-
uation (fitness) function. The evaluation function is a function that provides guidance
on the quality of a candidate solution by comparing it to other solutions (e.g., optimal,
within population of solutions, etc.). The evaluation function can be derived from the
objective function, or it can be a set of some algorithmic (heuristic) procedures that
employ additional knowledge gathered during an execution of an algorithm. Because
of various ways to construct an evaluation function, one which maps from the space
of candidate solutions to a set of real numbers (known as numeric evaluation function,
[Mic04]) is utilized in this dissertation, and denoted as ev(x). Another useful term
used in practice is the solution quality referring to the evaluation function value of any
given candidate solution.

Global optimum can be hard to identify and even harder to locate. Special case
is convex programming, where all local solutions are also global or some nonlinear
problems where global solutions do not exist [Noc99]. Therefore, definition of the
problem provided by set of equations (2.1) may not provide enough information about
what kind of optimum we want or are able to find, i.e., local or global. The notion is
fundamentally connected with optimization methods one wants to implement, but also,
with the overall number of existing optimal solutions. Formalization of the problem of
finding local optimum is connected with the notion of the neighborhood, which needs
to be introduced.

Definition 3. Given an optimization problem with instances (X , f), a neighborhood is
a mapping

N : X → 2X (2.3)

defined for each instance [Pap98]. 3

Definition 3 is more general than the classical definition of the neighborhoods in the
real analysis. It is letting us determine a neighborhood N (x) of some solution x ∈
X as a set of feasible solutions that are being generated in its vicinity, by applying

18 Chapter 2 Optimization problems and methods

some elementary transformations on x. For example, in TSP, a neighboring solution
of the feasible tour x can be obtained by exchanging some two edges. In SAT, two
solutions can be neighbors if the difference is in only one bit. Therefore, the size of the
neighborhood can be determined in terms of the number of executed transformations
that have generated corresponding neighboring solutions.

Definitions of local and global optimum for general form of optimization problem
are presented in the following [Pap98, Dav06a]:

Definition 4 (Local optimum). A feasible solution x ∈ X is a local minimum (local
optimum), or locally optimal with respect to N if

f(x) ≤ f(y), ∀y ∈ N (x). (2.4)

3

Definition 5 (Global optimum). A feasible solution x ∈ X is a global minimum (global
optimum) of the objective function f(x) if

@y ∈ X , such thatf(y) < f(x). (2.5)

3

Previous definitions can be generalized to a maximization problem, i.e., observing the
function −f(x).

The aim of any optimization method is to locate global minimum, or find solution
of the best quality. However, finding multiple (global and/or local) optimal solutions
can be useful, especially in engineering, for example, when locating some hidden prop-
erties. In addition, solving optimization problem is usually simplified to finding one
optimal solution, even when the problem contains multiple optimal solutions (solu-
tions that correspond to the same minimal or maximal value of the objective function)
[Dav06a].

2.1.2.2 Classifications of optimization problems

Optimization problems can be classified in many different ways, according to the(3):

Types of variables: continuous and discrete;

Definition of the feasible space: constrained and unconstrained;

Number of optimization criteria: single-objective and multi-objective;

Number of optima: uni-modal and multi-modal;

Uncertainty: deterministic and stochastic.

Classification based on the types of the variables divide optimization problems natu-
rally into three categories: problems with continuous variables, problems with discrete
variables (which are also called combinatorial) and problems involving both types of
variables which are called mixed. Combinatorial optimization is formally defined as
(3)The classification was inspired by general guidelines provided on http://neos-guide.org/content/

optimization-taxonomy

http://neos-guide.org/content/optimization-taxonomy
http://neos-guide.org/content/optimization-taxonomy

2.1 Introduction to optimization 19

“the mathematical study of finding an optimal arrangement, grouping, ordering, or se-
lection of discrete objects usually finite in numbers” [Law76]. In the discrete (combi-
natorial) problems, we are looking for an object that may only take discrete values,
e.g., from a finite or, possibly, countably infinite set, typically an integer. By contrast,
in the continuous problems feasible solutions are allowed to take any value restricted
by constraints, typically real numbers, or even be a function. Discrete optimization
problem is also known as integer programming problem. If a model contains continuous
and discrete variables, it is referred to as mixed integer programming (MIP) problem
[Pap98, Noc99, Blu03, Tal09]. A very good survey related to historical development of
different combinatorial problems can be found in [Ale05].

Classifications of the optimization problems based on a definition of the feasible
space are the most diverse. Unconstrained types of optimization problems have no
limitations on values of variables other than they minimize (or maximize) a value of
an objective function. They are usually tackled by classical methods, such as the gra-
dient or Newton’s method. However, for constrained types of problems the character
of constraints is very important since they may vary widely, from simple bounds to
complex systems of (in)equalities. Therefore, based on the nature of constraints, opti-
mization problems are further classified as: convex, linear and nonlinear. For example,
when both, an objective function and all the constraints, are linear functions the prob-
lem is known as linear programming problem, whereas nonlinear programming prob-
lems have at least some of the constraints as a nonlinear function. The nature of the
objective function can also greatly influence the diversification of optimization prob-
lems. Beside already mentioned linear and nonlinear programming problems, there
are some other problems such as geometric and quadratic programming problems. In
geometric programs an objective and constraint functions take a special form, i.e., an
objective function is expressed as “posynomial” function (different from "polynomial"
as the posynomial exponents are real numbers with strictly positive coefficients) and
constraint functions as “monomials” [Boy07]. In quadratic programming an objective
function is quadratic function and constraints are affine (linear). In case the smooth-
ness of a constraint functions is considered, optimization problems can be classified
as: differentiable and non-differentiable, which are the topic of calculus of variations
[Noc99].

Given the number of objective functions, single-objective and multi-objective pro-
gramming problems are distinguished. Owing to the technology advances, operations
research grew rapidly while exploring practical problems that need to incorporate a
number of contradictory objective functions, in which case we are dealing with multi-
objective optimization problems. A problem we can all relate to is the purchase of an
automobile car, as we try to minimize the costs while maximizing comfortability. The
multi-objective problem can be trivial when solved with single-objective methodolo-
gies, i.e., when optimal solution of each objective function can be found. In the case of
nontrivial multi-objective problems, between two extremes can exist many other solu-
tions, the so called trade-off solutions. All trade-off solutions are optimal solutions to a
multi-objective optimization problem and are called Pareto-optimal solutions [Deb14].

The optimization problem is uni-modal if there is only one unique optimal solution.
Otherwise, it is a multi-modal optimization problem. Multi-modal problems contain
many optima, including at least one global optimum and a number of local ones in the
search space. A goal of the multi-modal optimization is to identify as many of these

20 Chapter 2 Optimization problems and methods

optima as possible. There is a significant difference between the multi-modal and multi-
objective problems. In most multi-objective optimization problems, the Pareto-optimal
solutions have certain similarities in their decision variables. However, between one
local or global optimal solution and another in a multi-modal optimization problem,
such similarity may not exist [Deb14].

The uncertainty is a big part of the problems in everyday life. The absence of uncer-
tainty defines a class of optimization problems called deterministic optimization prob-
lems. However, great number of real-data can be, mainly, influenced by different kinds
of errors (e.g. measurement errors), which might notably impact the correctness of
purported results. Most often this errors cannot be removed. Furthermore, uncertainty
often happens in many economic and financial planning models while working with
some data information that cannot be specified precisely. Problems that have incorpo-
rated uncertainty belong to the class of stochastic optimization problems.

We define an instance of an optimization problem as a pair of the corresponding
feasible region and objective function, i.e., (X , f). For example, the instance of TSP
contains number of cities and the matrix of distances between them. An optimization
problem can, thus, be represented as a set of instances for which we are given some
input data and enough information to obtain a solution [Pap98].

2.2 Optimization methods

Optimization method represents a search procedure for obtaining an optimal solution
of an optimization problem, possibly subject of some set of constraints. Various types
of optimization methods have been developed over the years for dealing with hard
optimization problems. Therefore, we begin this section with a historical background
of their development. As previosly, there are different ways to distinguish optimization
methods. For example, some are constructed to find only local optima, while others try
to find a global optimum. A thorough scheme of optimization methods classification
may be found in [Hau04].

2.2.1 Background

The techniques for solving optimization problems can be traced back to the era of
Pythagoras (around 500 BC). Beside the logical interpretations within mathematics of
that age, one can identify a pursuit of scientists towards formalism in order to capture
an optimal state of some observed natural or other process. For example, Pappus of
Alexandria (300 BC) was concerned with a question of honeycomb shape, and proved
the so called honeycomb conjecture, that repeating hexagonal pattern represents an
optimal way of storing honey [Kir14]. However, to proceed with a construction of
some general optimization methods, first a language of algebra and calculus had to be
established. From the work of Al-Karaji in 11th century, who introduced the theory
of algebraic calculus, around 500 years has passed before René Descartes proposed
mathematical principles and notation that have enabled description of the geometric
objects by using language of algebra, thus opening the doors for later concepts such
as calculus of variations. The calculus of variations is considered to be a key stone for
development of optimization, and later on, operations research, as it offers methods

2.2 Optimization methods 21

that deal with finding maximum or minimum of functionals. Methods were usually
constructed as procedures of finding an extreme point of some empirical or theoretical
function. Karush-Kuhn-Tucker conditions, maximum principle and Hamilton-Jacobi-
Bellman equation were among popular methods for solving optimization problems at
the beginning of the 20’s century [Gal91].

The modern optimization methods were developed mostly with a help of the Opera-
tions research (operational research), abbreviated OR. The origin of the discipline can be
traced to the work of Charles Babbage (1791-1871), who already worked on problems
of sorting, pricing and transportation operations in the postal industry at the begin-
ning of the 19’s century. His paper “On the Economy of Machinery and Manufactures”
from 1832 was an influential early work of operations research, however, operations
research officially started to exist after 1940’s and the second world war. The earliest
occurrence of the expression is from 1941, given by British scientist Patric Blackett. In
the report of the US navy office, called Methods of operations research, the meaning of
the phrase “operations research”, or British “operational”, was regarded as a study of
warfare, i.e., operations of war which were under the control of military departments
[Mor46]. Soon after the end of the second world war it was noticed how broad an
application of the operations research has became, since it was involving work from
many different aspects of science. The importance was recognized both in theoretical
and real-life problems, for example, in the field of management in terms of helping
businesses to achieve their goals.

It can be stated that the development of modern optimization methods happened
on the crossroad of operations research and mathematical programming(4). In parallel
with operations research, mathematical programming was developed. Leonid Kan-
torovich (1912-1986) was one of the founders of the linear programming, a mathemat-
ical formulation of the problem represented by linear equations and/or inequalities.
He was the first to formulate a problem of finding the best (optimal) solution under
certain restrictions, so called Problem C, and has presented a new method for solv-
ing it, today known as simplex method. The phrase was coined later by the influence
of George Dantzig, in 1948. The widely used simplex algorithm was based on the
idea of improving the value of objective function by moving from vertex to vertex of a
polytope. After 30 years of refinement, today simplex algorithm is considered as very
efficient, with hundreds of variables and thousands of constraints being solved rou-
tinely [Pap98, Ale05]. The concept of dynamic programming by Richard Bellman came
in 1940. Very thorough exploration of some aspects of the operations research devel-
opment before 1960’s is provided in book of Schrijver [Sch98] and other good books
and proceedings [Ale05, Joh06, Grö12, Kir14].

2.2.2 Classification
The choice of a method or the construction of a new one depends to a large extent on
characteristics of the problem to be solved. As stated in Chapter 1, we are primarily
focused on combinatorial search problems, although many of our conclusions can be
extended to continuous optimization problems.

Methods for combinatorial optimization problems are in the most general sense
divided into exact (complete) and approximate (incomplete) [Dav06a, Tal09]. The ap-

(4)The expression mathematical programming is used as a synonym for optimization [Der09].

22 Chapter 2 Optimization problems and methods

proximate methods represent method such as: (i) heuristic, (ii) approximation, and
(iii) meta-heuristic methods. In the literature one can find different classifications. In
[Hau04] six categories of optimization methods are distinguished, while [Tal09] pro-
vides a taxonomy in greater detail.

Exact methods (algorithms) are based on the search of the entire search space and
guarantee to find an optimal solution in bounded time for every finite size instance of
a combinatorial problem. The most typical example of implementation of such meth-
ods is through exhaustive search. Exhaustive search is a technique for checking every
solution in the search space, after which the best-found solution designates the global
optimum. The exhaustive search methods are also known as enumerative algorithms
[Mic04]. However, for combinatorial problems that are NP-hard no polynomial time al-
gorithm has been found. In other words, the main problem with solving combinatorial
problems is that the number of feasible solutions can be extremely large or even infinite.
Often this makes exact algorithms too expensive in computational time. This invites for
other intelligent ways to guide the search towards more promising parts of the search
space in order to avoid useless examinations. Such methods are, for example: branch
and bound B&B, branch-and-cut B&C and branch-and-price B&P [Blu03, Sta07, Tal09].
Alternative approach for solving combinatorial problem would be to use other formula-
tions, such as linear programming, to describe the original problem. If problem can be
presented in a way that feasible solutions correspond to vertices of some convex poly-
tope, the linear programming methods might be employed. Efficient exact algorithms
for linear programming problems are a well known simplex method or interior point
methods [Law76, Tal09].

Heuristic methods are, for the most part, developed when utilization of the exact
methods becomes cumbersome or even impossible due to large dimensions of opti-
mization problems. Heuristics are techniques for solving complex optimization prob-
lems that employ a priori knowledge about the considered problem. The term heuristic
originates from Latin, meaning to find or to discover using trials and errors. Today it is
used in its original form, pertaining to the trial-and-error method of problem solving.
Their main characteristic is to provide solutions of relatively high quality, “close” to
the optimal or near-optimal, in reasonable amount of time. Most common used tech-
nique in heuristic methods relies on local information around some starting feasible
solution x. Such techniques are known as local search strategies, LS. The main idea be-
hind LS is that during the search for the nearest optimum a sequence of good feasible
solutions is generated by conducting exploration of N (x). Neighborhood exploration
represents a sequence of consecutive execution steps, each leading to a better solution.
The weakness of the LS strategies is that, in general, they greatly depend on the size
of the neighborhood and the selection of the starting point, leading the search usually
towards a local optimum. Nevertheless, if the size of the neighborhood is large enough
then the local technique decisions may lead the search towards the global optimum. LS
methods are typical representatives of so-called iterative heuristics.

Heuristic methods, in general, do not guarantee the quality of the obtained solution.
However, there are other approximate methods designed to make such guarantee, such
as approximation algorithms. The methods are founded on the factor of the approxi-
mation, α, which is utilized to establish the distance of the worst generated solution
from the optimum. Approximation algorithms are deterministic algorithms that guar-
antee that the obtained solution will be at most α times worse than the optimal, for any

2.2 Optimization methods 23

problem instance. The property does not imply that the algorithm will not generate an
optimal solution, rather, the obtained result will never be worse than optimum for the
specified factor α.

Contrary to the heuristics, which were designed for solving specific problems, meta-
heuristics (also known as black-box methods) are general (universal) computational
methods designed to deal with various optimization problems. They iteratively gener-
ate and/or improve solutions by applying some predefined stochastic rules. The gener-
ality implies that they do not use a priori knowledge about the problem to be optimized.
As such, meta-heuristics might invoke any heuristic method in order to guide them in
the search for the best solution of a given particular problem. The main goals of each
meta-heuristic method are: solving problems faster, solving large problems, and ob-
taining robust algorithms. They accomplish these goals by efficiently exploring suitably
selected sub-spaces of a very large solution space for each given problem. Numerous
meta-heuristic methods have been developed in the past twenty years. Most of them
are known to provide solutions of high quality for a reasonable execution time.

2.2.3 Heuristic methods

Today’s technology allows us to search for solutions despite of increasing complexity of
demands. Nevertheless, solving real-life problems may be difficult since the number of
factors that need to be accounted has been increasing in the last decades. In addition,
the restrictions under which we deal with problems in the real world may be different
from those required by the classical solution methods such as linear, nonlinear and
dynamic programming. Namely, it is quite common that the results are required in a
timely manner, i.e., the demands are mostly related to finding high quality solutions as
fast as possible. One can state that getting any solution fast is much better than having
to wait for superior one. However, obtaining high quality solutions as fast as possible
may create various mistakes. The most abundant one is changing the purpose of the
problem so it would fit the existing algorithm.

2.2.3.1 Type of solutions

During the optimization process we distinguish partial from complete solutions. A par-
tial solution may appear as [Mic04]: (i) incomplete, or (ii) a complete solution of a
reduced (simpler) problem. An incomplete solution is used when we focus our atten-
tion on a subset of a search space that has a particular property. Furthermore, a partial
solution is incomplete solution if, e.g., some of decision variables are not assigned with
fixed values. For example, an incomplete solution is the one where we have fixed the
values of some decision variables, and still are left to determine the values of the rest of
them. Good example is for TSP of n cities where an initial partial solution is presented
as a solution of some k cities (k < n), so the incomplete solution has (n− k)! different
states (Fig. 2.1). To find a complete solution we need to search the subspace of the
search space of size (n − k)!. The notion of the incomplete solution is important for
methods that use ordering as a part of their search technique [Mic04].

To attain a good final solution of an optimization problem we could decompose the
problem into a set of simpler (smaller) problems. The complete solution of the smaller
problem is then considered as a partial solution of the original problem. Combining

24 Chapter 2 Optimization problems and methods

Figure 2.1: Partial solution for TSP

solutions of the considered sub-problems might lead to either high quality solution or
an optimal solution of the original problem. This can be demonstrated on TSP with n
cities so that we are searching for shortest paths in smaller groups of the cities, at the
end combining the found paths into a final complete tour [Mic04].

2.2.3.2 Classification of heuristics

There are different ways to classify heuristics. We point out the classification based
on how a heuristic is treating a solution and distinguish two broad classes of heuristic
methods: (1) constructive and (2) improvement. Both classes of algorithms provide
at the end a complete solution, i.e., all the decision variables are specified [Mic04].

The constructive heuristics are building the solution either from some empty set or
an initial partial solution, peace by peace iteratively adding appropriate solution com-
ponents. These heuristics are usually the fastest methods. They cannot be interrupted
at any time since it might result with an incomplete solution, which is not valid. Typi-
cal representative of the constructive class of algorithms is the greedy method [Tal09].
In particular, a variable (component) is assigned with a value in a best possible way
regarding the current state of the search. Heuristics that implement greedy methods
are known as greedy heuristics.

On the other hand, improvement techniques start from a complete initial solution
and try to find a better solution by applying some transformations. They are evaluat-
ing only complete solutions, therefore, we are allowed to interrupt them at any time.
Improvement strategies are an essential part of a LS algorithms, which is why improve-
ment heuristics belong to the class of local search methods. Detailed classification of
heuristics is provided in [Dav06a, pg. 33].

2.3 Examples of optimization problems and their
methodologies

In this section we present two well-know combinatorial optimization problems: schedul-
ing and satisfiability problems. For each we provide a brief general overview and clas-
sifications. We then continue by focusing on their specific variants, formulations and
established heuristic methods. We are especially interested in the heuristic methods
employed in this dissertation within development phases of BCO algorithms.

2.3 Examples of optimization problems and their methodologies 25

2.3.1 Scheduling problems

Various types of scheduling problems are recognized in many scientific disciplines and
everyday life. The most common scheduling problems from the real life are known as
sequencing problems such as: customers standing in a queue, programs to be executed
on a computer server, aircraft waiting for take-off clearance, etc. Generally, scheduling
problems represent a class of combinatorial optimization problems which deal with al-
location of tasks to several resources [Pap98, pg. 310]. Among the first attempts to
organize research on scheduling problems is conducted in book of Conway, Maxwell
and Miller in [Con67]. Of course, great deal of research about scheduling problems
has been conducted in already developed field of scheduling. For example, parallel
machine scheduling is studied in the late 1950s addressing the problem of scheduling
one-stage tasks on several machines to minimize the total loss, which is a sum of losses
associated with the individual tasks [McN59]. In [Bel56] Belmman addresses schedul-
ing problems in the context of a control (management) and transportation and reviews
current techniques for solving such problems.

The conducted studies lacked the general overview of the field of scheduling and,
as a result, Conway, Maxwell and Miller sought for the model under which scheduling
(sequencing) problems may be generally described, in order to encompass sequencing
problems dealt within the literature of that time. They presented their overview in
[Con67] claiming that it is not possible to generate a mathematical model over the en-
tire process of making a decision, and that proposed abstract model does not represent
a solution to any real sequencing problem. In their book they suggest that the model
might be utilized as an information along with the common sense and knowledge about
other aspects of the considered scheduling problem. A term job-shop scheduling problem
was coined. The basic unit of the job-shop process is introduced as the operation, where
the definition of a job assumes that jobs are a subset of the set of all operations that can
be disjoint, exhaustive or mutually exclusive. A machine is defined as a device capable
of performing any operation, but abstractly, should refer to a time scale with certain
intervals available. A job-shop can then be observed as a set of all the machines that
are identified with a particular set of operations. The proposed abstract model can thus
be referred to as scheduling a job-shop process which consists of the machines, the jobs
(operations) and a statement of the disciplines that restrict the manner in which oper-
ations can be assigned to specific points on the time scale of the appropriate machine.
In other words, scheduling a job-shop process is the task of assigning each operation to
a specific position on the time scale of the specified machine [Con67].

Job-shop problems do not offer complete overview of all scheduling problems that
are considered today, therefore, further elaboration about basic notation is required in
order to provide general definition. Typically, a basic unit used to model activities to be
scheduled is in the literature most often referred to as a task [Bła07, pg.57]. Moreover,
scheduling problems can be defined by three sets: set of n tasks T = {T1, T2, . . . , Tn},
set of m machines (machines) P = {P1, P2, . . . , Pn} and set of s types of additional
resources R = {R1, R2, . . . , Rs} [Bła07]. In particular, a tasks Ti ∈ T can be character-
ized by [Len77, Bła07]:

• Processing time pij , i = 1, 2, . . . , n and j = 1, 2, . . .m, is a time needed to process
task Ti by machine Pj .

• Arrival time or release date ri, which is the earliest possible starting time at which

26 Chapter 2 Optimization problems and methods

tasks Ti is ready for processing.

• Due date di referring to time limit by which task Ti should be completed, and
deadline d̃i, specifying "hard" real time limit.

• Weight wi denoting relative urgency of task Ti.

• Resource request, when specified, is classified into different types and categories
[Bła07, pg. 425].

A job can now be defined as a one of the n subsets which tasks can shape [Bła07].
Based on this introduction it is clear that scheduling problems are versatile and their
classification can be organized by different set of assumptions, which is more clearly
elaborated in the next section.

2.3.1.1 Classification of scheduling problems

Classification upon which we distinguish different categories of scheduling problems
may be conducted in various ways. For example, scheduling problems can be distin-
guished by a different set of assumptions, of which most common are: number of tasks
to be processed, the order in which the tasks are processed on machines and the man-
ner in which tasks are arriving [Con67]. Another general classification in the literature
is based on the amount and type of information provided for tasks (jobs) before or after
a scheduling starts, where we distinguish two categories [Dav06a]. When all informa-
tion concerning the scheduling of tasks is known either a priori or gathered during the
running time, we deal with deterministic scheduling. If necessary information cannot be
provided or we need to use some presumptions regarding, for example, the number of
tasks (jobs), their due dates, or the processing times, then we are dealing with stochastic
scheduling due to the presence of the uncertainty [Pin04, Dav06a]. Another common
classification is oriented towards specific times of release of information, where two
categories are distinguished: dynamic and static scheduling [Con67, Dav06a, Sin07]. In
the static scheduling all information is always available a priori, while in the dynamic
scheduling the information is provided during running time. Often there is a need to
know when information is being collected, yielding another arrangement of scheduling
problems. The collection of information can be conducted offline and online. Hence,
in offline scheduling all information is collected before the scheduling starts and is of-
ten associated with static scheduling. In online scheduling, some or all information is
collected during running time. The later is often referred to as dynamic scheduling.
However, we can utilize dynamic scheduling without disclosing all information before
scheduling starts [Bes04].

To supplement general overview, we should note that a taxonomy based on the
four-parameter notation for identifying scheduling problems was first time offered in
[Con67]. The notation is presented with four capital letters A/B/C/D and was later
modified to n, m, l, k in [Len77]. A thorough taxonomy covers job-shop and flow-shop
problems and is too extensive to cover here. Instead, we review classifications based on
assumptions that are common in today’s literature. The forthcoming survey is inspired
by a commendable introduction provided in [Bła07, pp. 57-58]. Scheduling problems
can be classified by the specialization of the machine employed, i.e., we distinguish
parallel and dedicated machines. Parallel machines perform the same functions, whilst
dedicated machines that are often specialized. Furthermore, parallel machines can be

2.3 Examples of optimization problems and their methodologies 27

identified as: (a) identical, when all machines have the same speed, (b) uniform, if
each machine has different speed that does not depend on the task, and (c) unrelated
if machines have different speeds that depend on the tasks. Unrelated machines can
also be further classified as: (a) flow shop, (b) open shop, and (c) job shop. A great
deal on job shop was already mentioned. The flow shop is a case where all jobs have
prerequisites (routes) in the order in which they will be processed [Con67]. It presumes
that all machines will process all jobs. Open shop is similar to flow shop, however, the
order of tasks comprising one job may be arbitrary [Bła07, pg. 321].

The classification of scheduling problems used in today’s literature was proposed by
Graham in [Gra79] and Błażewicz in [Bła83]. A notation α|β|γ is commonly utilized to
characterize a scheduling problem with α, β and γ denoting the machine environment,
the scheduling characteristics and restrictions, and the scheduling objective criterion,
respectively. The first parameter α refers to the type of machine, like single (α = 1)
or parallel identical machines (α = Pm). Moreover, the machines can have different
speeds, in which case α = Qm or can be unrelated (α = Rm). Index m indicates that
the number of machines is fixed, but it can also indicate fixed number of stages in
which case letter s is used. Parameter β is specifying job constraints like dependencies
between the tasks (β = prec) and the exhaustive list of all its possible scenarios is given
in [Che99] and [All08]. In order to provide few examples, another useful terminology
regarding scheduling problems is related to the interruption of the currently executed
task. If the intention is to interrupt the task in order to resume its computation later,
then the act is known as preemption. Non-preemptive scheduling doesn’t allow inter-
ruptions [Bru09]. If preemptions are allowed the field β includes pmtn. Other cases
concern specifying additional resources, processing times, deadlines, etc. Parameter γ
describes the objective to be minimized, like makespan, total completion time, max-
imum lateness, total tardiness, release dates, etc. To elaborate on one example let
completion times of tasks T1, . . . , Tn be C1, . . . , Cn. A minimization of the objective
function Cmax = maxi{Ci}, (where Cmax is known as makespan) referrers to finding
minimal completion time of the last job to leave the system. For example, P ||Cmax is a
problem of scheduling independent jobs on identical machines to minimize makespan
without preemptions. In [Dav06b, Dav06a] Multimachine Scheduling Problem with
Communications Delays (MSPCD) was considered and is classified as P ∗|prec∗|Cmax.

The term P ∗ is used to denote that machines are not completely connected, inter-
connection topology is given as an input parameter instead. In addition to preceding
relation among tasks (prec), the time required to transfer data between dependent
tasks is considered. Therefore, the value of β field is set to prec∗. The communication
time depends on the distance between machines allocated to the corresponding tasks.

The topic of the dissertation is a problem that belongs to the class of scheduling
problems known as multiprocessor scheduling problem. Its general definition is pro-
vided in [Gar79, pg. 238] as a problem of finding minimum possible time required
to schedule all n jobs to m machines. Restricting the problem with different set of
assumptions produces a vast number of multiprocessor scheduling problems. We were
interested in one particular, that is P ||Cmax, described in the forthcoming text.

2.3.1.2 P ||Cmax

In this thesis we address a problem of static scheduling of independent tasks on identi-
cal machines (homogeneous multiprocessor systems), i.e., P ||Cmax. The expression static

28 Chapter 2 Optimization problems and methods

indicates that the total number of tasks is known, as is the duration of each task. In ad-
dition, the multiprocessor system contains m identical machines where the solution of
the considered scheduling problem consists of the index of the associate machine and
starting time for each task. The objective of the problem is to find minimal makespan,
which is known to be NP-hard in a strong sense [Kar72, Gar79, Gla94, FP10]. Makespan
minimization on parallel machines is a fundamental and extensively studied schedul-
ing problem and is important in practice since the resourceful use of multiprocessor
systems depends highly on adequate schedule of tasks on machines [Dav09, Alb12].
The research on this problem dates back to 1960s according to [Mar73].

The interest in the study of scheduling problems on parallel machines arose as a
result of interest in the usage of computers with many processors in parallel [Gra66,
Dav06a, Fra10, Pin12]. However, scheduling problem exists everywhere. It is a part
of a great number of practical problems which are usually complex, like bandwitdh
scheduling, airport gate scheduling, machines in a workshop, repair crew scheduling,
agriculture, hospitals, transport, virtualized environments, many-core processors, DNA
sequencing [Rob09, Fra10]. In the literature many scheduling problems are addressed,
but still real world problems can use only a fraction of provided solutions when faced
with new challenges. One example of such real problem is presented in paper [Boc09]
in the context of shoe manufacturing. The problem is identified with a parallel ma-
chine scheduling problem (PMSP). The novelty in the scheduling of operations on a
multiprocessor machine in the context of shoe manufacturing is that the machines are
not independent, that is, all the processors share some data and whenever a single
processor requires a setup the entire machine should be stopped.

2.3.1.3 Complexity and problem formulation

Solving P ||Cmax to optimality, in its most general form, belongs to the class of NP-hard
problems, as proved in the book by Garey and Johnson [Gar79]. In few cases solution
can be found in polynomial time, such as when all tasks have unit length [Dav06a].
The simplest case of NP-hard is for m = 2, while for arbitrary m scheduling problem
becomes NP-hard in a strong sense [Gar79].

The first mathematical formulation of P ||Cmax was presented in 1994 by Queyranne
et al. [Que94] in the form of integer program. However, we use formulation by
[Mok04], described in the following.

Let m be the total number of identical machines engaged, and n number of non-
preemptive tasks. The considered scheduling problem consists of assigning tasks to
processors, as well determining their starting times. Let T = {1, 2, . . . , n} be a given
set of independent tasks, where each task i ∈ T has to be processed by exactly one
out of the set of identical machines P = {1, 2, . . . ,m}. Each machine can engage only
one task at a time, and once the task has started it will continue to run on the same
machine until completion. Let li be the processing time of task i (i = 1, 2, . . . , n), which
is known and fixed, and yj (j = 1, 2, . . . ,m) the load of machine j calculated as the sum
of processing times of all tasks assigned to machine j. The goal is to find a schedule of
tasks on processors such that the corresponding completion time of all tasks maxj∈P yj
is minimized [Dav12].

A solution of a scheduling problem might be graphically represented by Gantt di-
agram. In Fig. 2.2 an example of the schedule for 9 tasks on 4 machines is shown
[Dav12]. The horizontal axis in Fig. 2.2 represents time, while the machines are enu-

2.3 Examples of optimization problems and their methodologies 29

P4

P3

P2

P1

4
3 6 9
2 7
1 5 8

t = 0 5 10 15 20 25 30 35 40
time axis

Figure 2.2: Gantt diagram–schedule of tasks on machines [Dav09, Dav12]

merated on the vertical axis and the rectangles represent tasks. To determine the
starting time of a task one should sum up the processing times of all tasks already
scheduled to the same machine. The total completion time for the schedule shown in
Fig. 2.2 equals 40 time units (the completion time of task 8 scheduled on machine P1).
This schedule is obtained by sorting tasks in the increasing order of task indices and
scheduling them to the least loaded machine. Any schedule that has a completion time
less than 40 time units is considered better. The goal is to discover the schedule of tasks
on machines that has the shortest completion time.

In order to present a mathematical programming formulation of the problem, let us
introduce the binary variables xij defined in the following way:

xij =
{

1, if task i is assigned to machine j,
0, otherwise.

The considered scheduling problem is formulated in the following way [Mok04]:

min y = min max
j∈P

yj (2.6)

s.t.
m∑
j=1

xij = 1, 1 ≤ i ≤ n, (2.7)

y −
n∑
i=1

lixij ≥ 0, 1 ≤ j ≤ m, (2.8)

xij ∈ {0, 1}, 1 ≤ i ≤ n, 1 ≤ j ≤ m, (2.9)

y ∈ R+. (2.10)

The objective function that should be minimized represents the total completion time of
all tasks - makespan y. Each task i should be scheduled to one and only one potential
machine j (constraints (2.7)). The makespan is computed as the maximum over all
machine’s completion times, and the completion time of a machine is defined as the
sum of processing times of all tasks scheduled to that machine. This is described by the
constraints (2.8). Constraints (2.9) show the binary nature of the variables xij . The
objective function value y is a positive real number as it is stated by (2.10).

2.3.2 Methods for P ||Cmax

Exact algorithms, utilized to solve to optimality small to medium size problems, repre-
sent one line of research in the theory of scheduling [Del12]. The most common enu-
merative algorithm is the branch-and-bound algorithm (B&B). The B&B aims to find

30 Chapter 2 Optimization problems and methods

appropriate bounding scheme and dominance rules that restrict the search by elimi-
nating partial solutions [Del95]. Dominance rules and bounding schemes are usually
based on problem-specific features [Che99]. [Mok04] successfully developes an exact
cutting plane algorithm to address the problems with up to 1000 tasks and 100 pro-
cessors. Another line of research are approximate methods designed to search for high
quality solutions for a broader class of scheduling problems and/or when enumerative
algorithms fail to produce results.

The first deterministic online algorithm for multiprocessor scheduling problems was
presented by Graham in 1966 in [Gra66]. The author has introduced a simple greedy
heuristic method, known as List scheduling (LS) which today represents a whole class of
algorithms. LS constitutes of two steps: (1) ordering of jobs by some given priority rule
(e.g., second job from the list cannot be considered for scheduling before the first from
the list), and (2) scheduling the jobs on machines following some specified criterion.
For example, current task is allocated to an idle processor or to processor that will be
the first to complete its execution. The second step is in the literature referred to as
Earliest-start strategy, ES. The worst-case performance guarantees for the LS algorithm
are presented in [Gra66]. Other variants of the first step of LS are discussed in [Gra69].
A simple rule, today known as Largest Processing Time first rule (LPT), implies sorting
the jobs in nonincreasing order of processing times before they are scheduled to the
least loaded machine [Che04, Dav09]. Implementing this simple rule in the LS algo-
rithm Graham has obtained performance guarantee through theoretical analysis and
has obtained the upper bound of 4/3 − 1/(3m) as the worst-case scenario. Numer-
ous approximate algorithms were proposed since then. Generally, the algorithms with
stronger guarantees are preferred [Che99].

Based on the fact that the P ||Cmax problem can be formulated as a bin-packing prob-
lem (BPP), Coffman, Garey and Johson proposed MultiFit algorithm [Cof78, Che04,
Dav09]. Bin-packing problem is a problem of packing a given set I = {1, 2, . . . , n}
of n items into as few bins of a fixed capacity C as possible. The principle of duality
between P ||Cmax and BPP was considered by many authors [Che04, Dav09]. Since the
development of meta-heuristics their application in solving various scheduling prob-
lem has been successful [Osm96b, The98, Che99, Leu04, Tal09]. A survey of the first
implementations of meta-heuristics dealing with parallel machines scheduling problem
may be found in [Osm96a, FP10].

2.3.3 Satisfiability problem

In this section we review definition of a satisfiability problem and give a short survey on
the most common corresponding solvers in order to locate methods used as underlying
mechanisms of BCO for 3-SAT.

A topic of our research belongs to a class of propositional satisfiability problems,
abbreviated as SAT. The historical significance of SAT originates from the proof of its
NP-completeness. Moreover, SAT is crucial in computation complexity theory as it pro-
vides basis for determining complexity of other algorithms. Aiming to solve SAT prob-
lems represents a quest for solving other problems as well. For example, SAT can be
used in bioinformatics [Lyn06], AI planning, software model checking, etc. [MS08].
It represents one of the most studied problems in the field of artificial intelligence and
operations research.

2.3 Examples of optimization problems and their methodologies 31

In the field of theoretical computer science a decision problem can be viewed as a
form of posing a question, usually formulated with ’if ...’ or ’if true ...’, with only two
possible answers: YES or NO. For example, for two given numbers x and y, decision
problem within framework of computability theory can be formulated as a question
of divisibility of two numbers. An answer can be either YES or NO, dependent on the
values of x and y [Ogn04]. Moreover, a problem is decidable if the answer can always be
provided inside some formal framework. The formalism behind expressions of decision
problems is studied in the field of formal logic. Specifically, areas such as propositional
logic provide rules of syntax and semantics that help mapping these expressions to a
system of truth values [Hoo98a].

Rules of propositional logic describe construction of propositional formulas. Proposi-
tional formulas assume basic building blocks such as: propositional variables and logical
operators, for example, conjunction (∧) and disjunction (∨). Propositional formulas
are used to articulate different statements that can have unique truth value (TRUE or
FALSE) and have become essential in many fields of science such as mathematics and
philosophy. Occasionally a propositional formula might be needlessly too complex, es-
pecially if other forms of expressions are more suitable, such as normal formula. For
instance, a propositional formula ((C∧D)∨A))∧((C∧D)∨B))∧(E∨¬E) is equivalent
to the normal formula (C ∧D) ∨ (A ∧ B) [Hed04, pg. 11]. Building blocks of normal
formulas are literals which can be propositional variables or their negation. Normal
formula, represented as a conjunction over disjunctions of its literals, is known as con-
junctive normal form (CNF). The disjunctions are called clauses. In a general form, the
CNF formulas with k literals (Lij) are all the formulas F defined over set of n variables
X and m clauses (Ci), for which:

F = f(X) = C1 ∧ C2 ∧ ... ∧ Cm,
X = {x1, x2, x3, ..., xn},
Ci = Li1 ∨ Li2 ∨ . . . ∨ Lik , i = 1, 2, ...,m
Lij ∈ {xl,¬xl}, j = 1, 2, . . . , k, l = 1, 2, ..., n.

(2.11)

Normal formula that is expressed as a disjunction of clauses, where clauses represent
the conjunctions, is known as disjunctive normal form (DNF).

SAT in propositional logic is a decision-making problem in which the goal is to
determine whether formula (2.11) is satisfiable, i.e., if there exists such set of values
that, after assignment to variables, formula evaluates to true [Ogn04]. If a proper
set of values does not exist, formula F is called unsatisfiable. SAT considers Boolean
variables, whereas clauses impose certain restrictions, e.g., it might not be allowed to
simultaneously assign x1 to true, x2 to false, and x3 to false.

k-SAT represents special case of SAT problem, namely, when clauses consist of only
k literals. For example, a CNF formula of a 3-SAT with four variables can be written as:

F = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x4).

Originally, SAT is formulated as a decision problem. We may distinguish two ap-
proaches to SAT: model-finding and theorem-proving [Sel92]. Model-finding problem
is a problem of finding a satisfiable assignment to a given formula. Within theorem-
proving we search for a formal proof that the formula in question is satisfiable. More
often in the literature the authors are interested in the maximum satisfiability problem

32 Chapter 2 Optimization problems and methods

or MAX-SAT, where the objective is to find a model that maximizes the number of satis-
fied clauses. MAX-SAT is considered as an optimization variant of SAT [Han90, Stü01].
According to [Stü01, pg. 2] the difference in the hardness of MAX-2-SAT w.r.t. the
corresponding SAT problem is that 2-SAT problem is a polynomially solvable special case
of SAT. Nevertheless, the MAX-2-SAT problem is known to be NP-hard.

2.3.4 k-SAT solvers
Algorithms for dealing with SAT are employed in different fields, from software verifi-
cation to computational biology. To illustrate practicality of SAT solvers we point out
the construction of logical circuits in the car industry. Thanks to their development SAT
solvers are able to deal with many hard satisfiability problems.

In the last decade a lot of sophisticated SAT solvers have emerged, a large number
developed as a result of the SAT competition (5). The complexity of new algorithms has
increased, along with the number of algorithms’ parameters compared to older SAT
solvers [Bal09]. Analogous to previously mentioned approaches, two general goals of
SAT solvers are identified: confirming that a formula is satisfiable and searching for
satisfiable assignment. As a result, we distinguish the Conflict Driven Clause Learning
(CDCL) from Stochastic Local Search (SLS) [Bal14b]. Namely, the general classifica-
tion of SAT solvers differs complete from incomplete algorithms [Hoo05, pg. 33]. The
complete search algorithms are know as systematic search algorithms as they inves-
tigate a search space in a systematic manner, able to determine if the solution does
not exists. The brute-force approach, where all 2n assignments are evaluated, guar-
antees that the solution will be found but disregards the effort needed to reach it.
Complete solvers are used in practice to rule out unsatisfiable instances. Majority of
complete solvers today are founded on the Davis-Putnam-Logemann-Loveland (DPLL)
algorithm [Dav60]. Weakness of complete solvers is their inefficiency while dealing
with problem instances for which clause-to-variable ratio becomes higher (until reach-
ing a certain threshold) [Mit92]. To increase efficiency of the search, incomplete solvers
are employed.

SLS solvers, also known as model-finding algorithms, are recognized for their speed
to obtain solutions of satisfiable instances, especially the hard ones [Hoo98a, pg. 73].
The efficiency of SLS solvers was recognized early in the 1990’s when the general
problem MAX-SAT was tackled by incomplete solvers, such as SA, LS and and other
random search techniques [Han90, Sel92, Sel96]. Because most of the SLS solvers start
with a random assignment the main goal is to direct the process of guessing variable
values that would lead to a solution. The manner in which variable is chosen depicts
each heuristic. A SLS algorithm performs iterative search steps that generally modify
a value of the most one variable appearing in the formula, whereas a move is called
a variable flip [Hoo98a, pg. 73]. After the evaluation of the initial assignment, if all
clauses are satisfied solver’s work is done. Otherwise, one of the variables is selected
and flipped and all the corresponding data structures are updated in order for a new
cycle of evaluation to begin. The choice of variable that will change its value depicts
each heuristic.

Until today, hundreds of SLS solvers were developed on the top of previous versions,
improved by incorporating different data structures and other implementations tricks.

(5)www.satcompetition.org

2.3 Examples of optimization problems and their methodologies 33

Among vast number of them, general algorithms can be identified that are still the
basic part of the most efficient SAT solvers. Of a particular interest for this thesis are
two representatives of families of algorithms: GSAT and WalkSAT [Sel94]. The simplest
SLS algorithms are considered to follow an uniform random walk paradigm, i.e., choose
at random some variable and then change (flip) its current value.

2.3.4.1 Random Walk

A more elaborated version of simples SLS algorithm implements what is known as
conflict-directed random walk steps [Hoo05, pg. 269]. The algorithm is based on se-
lecting uniformly at random an unsatisfied clause, followed by a random selection of a
variable from this clause. The approach is also known as Focused Random Walk (special
case of iterative repair algorithms, introduced later in [Coo97]), targeting a specific
type of clauses. Theoretical proof that the focused SLS solvers can solve 2-CNF prob-
lems in O(n2) is provided by Papadimitriou [Pap91a]. Papadimitriou described the
procedure as: start with any truth assignment; while there are unsatisfied clauses, pick
one and flip a random literal in it [Pap91a, pg. 168], and suggested that the procedure
may be used for 3-SAT problems. However, a theoretical proof that a uniform random
walk procedure finds an optimal solution of the satisfiable k-CNF (k > 2) formulas is
presented in [Sch99]. The Schönings’s algorithm requires restarts after every 3n steps,
as shown in Figure 2.3..

Input : Formula F in k-CNF with n variables.
Uniformly at random pick an initial assignment a ∈ {0, 1}n.
Repeat 3n times:

(1) If the formula F is satisfied:
stop and accept the solution.

(2) Let C be a clause (randomly picked) not satisfied by a.
(3) Randomly choose literal ≤ k in clause C and flip its

value.

Figure 2.3: Main procedure of Schöning’s algorithm.

The theoretical work done to explore the efficiency of solvers is usually presented in
simple case of random walk, and the theoretical results show that such algorithms pro-
vide good results. For that reason random walk is considered as a candidate heuristic
for the BCO model.

2.3.4.2 GSAT

The oldest SLS solver, GSAT [Sel92], implements greedy local search techniques. It
starts with an initial assignment generated randomly and then changes the value of a
variable that produces the largest decrease in the total number of unsatisfied clauses
[Sel92]. The flips are repeated until either maximum number of flips is satisfied or a
satisfying assignment is found. GSAT requires adjustment of two parameters: number
of flips the algorithm performs before it restarts (MAX-FLIPS) and number of times the
search is allowed to restart before termination (MAX-TRIES). Initial recommendations
for the adjustment of these parameters are given in [Sel92]. However, to achieve the

34 Chapter 2 Optimization problems and methods

high performance on different classes of SAT instances it is essential to conduct a fine-
tuning. The weakness of GSAT technique, know to be easily trapped in a local optimum,
was reported in[Sel92]. To transcend the obstacle, "sideways" moves were proposed
that occasionally allow a variable flip that does not decrease number of unsatisfiable
clauses (or, does not increase the number of satisfiable clauses) [Sel92]. If such proce-
dure gets stuck in the local optimum, a simple restart of the greedy search with a new
initial assignment is used. Two years later, the same authors proposed three strategies
to escape a local optimum: SA, mixed random walk and random noise. Incorporat-
ing random walk, focused on the unsatisfied clauses, is a more efficient way for GSAT
to avoid being trapped in the local optimum [Sel94, pg. 338]. In the same article a
new algorithm, the mixed random walk strategy (abbreviated as GWSAT) is proposed.
GWSAT mixes a focused random walk strategy with the greedy search, (pseudo-code
Fig. 2.4).

With probability p, pick a variable occuring in some
unsatisfied clause and flip its value.

With probability 1− p, repeat GSAT scheme, i.e.,
make the best possible local move.

Figure 2.4: GWSAT

The difference between the random noise and random walk strategies is that the
former is not restricted to a set of variables that appears in the unsatisfied clauses. An
interesting aspect of the SA strategy from [Sel94] is that after flipping it keeps track of
changes in the number of unsatisfied clauses for each selected variable. This change is
commonly expressed by three variables: break,make and score. Here, break represents
a number of satisfied clauses that becomes unsatisfied after flipping a value of the
selected variable x. The variablemake counts clauses that are currently unsatisfied, but
become satisfied after the flip, and score is computed as score(x) = make(x)−break(x)
[Hoo99]. Different definitions of score may be found in the literature. In [Gen93]
an increase in satisfied clauses is calculated as the difference between the number of
unsatisfied clauses obtained before and the number of unsatisfied clauses obtained after
the flip (similar to GSAT [Sel94]). Related to the previously mentioned SA approach
with GSAT, [Sel94] has introduced variable δ that, for a randomly picked variable,
counts changes in the number of unsatisfied clauses (similar score). If δ ≤ 0 the
variable is flipped. Otherwise, the probability of the flip is determined by e−δ/T , where
T is the SA parameter. [Sel95] showed that GWSAT performs significantly better than
the random noise and SA strategies.

Various GSAT variants and its improvements have been described in [Gen93]. The
HSAT solver incorporates a search history in order to pick the least recently flipped
variable. It is shown to work better then the other existing versions of GSAT. Search
history within HSAT is commonly depicted as age of the variable x, defined as the
number of steps since x was last time flipped.

2.3.4.3 WalkSAT

After the introduction of several SLS solvers in [Sel94] the authors proposed different
approach for selection of variables, the WSAT (WalkSAT). The procedure is considered

2.4 Chapter summary 35

to be a focused random walk algorithm because the first step after the initial assignment
is to choose uniformly at random an unsatisfied clause. From the selected clause a
variable is picked either randomly or by greedy rule. Greediness in WalkSAT is identical
to GSAT, i.e., variable that leads to the least number of unsatisfied clauses is favored.
This greedy property is mostly established by break(x) of a variable x. In Figure 2.5 the
pseudo-code of WalkSAT follows guidelines given in [Sel94] (originally, pseudo-code
for WalkSAT is not provided). The choice of a variable inside of a randomly picked
unsatisfied clause depends on the value of break and noise parameter p (usually set to
0.5).

Pick an unsatisfied clause C.
For each x ∈ C calculate break(x).
Calculate u := minx∈Cbreak(x).
If u = 0

variable with break(x) = 0 is flipped.
Else

With probability p, pick a variable.
With probability 1− p, repeat GSAT scheme.

Figure 2.5: WalkSAT from [Sel94].

2.3.4.4 Novelty

Most of SLS solvers represent a combination of the focused random walk and the greedy
local search. From the introduction of the local search for SAT problems in [Gu92] and
(especially) after the introduction of GSAT and WalkSAT in [Sel92], the new state-of-
the art algorithms emerged on the grounds of the two architectures [Hoo00a]. The
fusion of basic and new ideas gave birth to the Novelty algorithm [McA97]. The al-
gorithm incorporates WalkSAT architecture and variable score and exploits a search
history, i.e., variable age. Based on the value of score the best and the second best
variables are determined. If the best variable is also not the youngest one, its value is
changed. Otherwise, with probability p the second best variable is flipped, and with
probability 1− p the best variable is selected [McA97].

2.4 Chapter summary

In this chapter we review basic definitions of optimization problems, and, occasionally
discuss about the terminology from across the literature. Moreover, we refer to:

• Connection between decision and search problems. We revisit definitions of NP-
hard problems based on material in [Gar79].

• Formal definitions of optimization problems, local and global optimum of the
objective function, based on material in [Pap98].

• Development of operations research and its intersection with established mathe-
matical fields, such as mathematical programming and calculus of variations.

36 Chapter 2 Optimization problems and methods

• Development of various heuristic methods, as integral part of most meta-heuristics.

• Two know combinatorial optimization problems that are also a topic of the dis-
sertation.

CHAPTER3
Meta-heuristic methods

Both the classical (exact) and heuristic methods have certain limitations. Exact
methods usually require a lot of resources, while heuristics may provide sub-optimal so-
lutions of not so good quality. To eliminate these limitations general methods were de-
veloped, known as meta-heuristic methods. The generality implies that meta-heuristics
do not impose a priori knowledge about the problem to be optimized. Therefore, meta-
heuristics could be applied to a variety of optimization problems, however, they should
be tailored to each particular problem separately. Meta-heuristics iteratively construct
and/or improve solutions by applying some predefined stochastic rules. These kind of
techniques are designed to escape local optimum, balance exploration and exploitation
and/or establish search independent from the initial configuration. In order to imple-
ment some of these strategies, one can choose to start with a large number of initial
configurations. It is also often possible to use the previously obtained results to im-
prove decisions in the next trail. The implementation might involve moving to worse
solutions before reaching an optimum.

The chapter examines formal definitions of meta-heuristics and provides supple-
mentary material for the previous chapter. It covers classification of meta-heuristics
in order to help locate the BCO method in a context of other meta-heuristic methods.
Definitions of nature-inspired methods and swarm intelligence models are presented.
We give a brief overview of the development of artificial intelligence, followed by an
overview of the most known representatives of nature- and mathematically inspired
meta-heuristic methods.

3.1 Introduction to meta-heuristics

Meta-heuristic should not be considered as an algorithm, but as a set of concepts used
to serve as guidelines for tackling an optimization problem [Bir09]. Meta-heuristics
were originally developed for solving a class of optimization problems where variables
have discrete structure, that is, for problems of combinatorial optimization. The phrase
“meta-heuristic” was first coined by Glover in 1986, referring to the tabu search [Glo86].
It took at least 10 years before the name was accepted. Before that, meta-heuristics
were referred to as modern heuristics [Ree93], or new age algorithms [Pap98]. In this
thesis we have adopted the original notation meta-heuristic, although more often in
the literature they are specified as metaheuristics. In [Glo86] Glover emphasizes the
construction of the tabu search as being superimposed on another heuristic, labeling it
as “weak inhibition” search with a small number of steps. He referes to the type of im-

38 Chapter 3 Meta-heuristic methods

posing constraints that produce incomplete search and allow revisits after a short time,
unlike branch-and-bound with a “strong inhibition” that impose more rigid constraints.
Blum and Roli define meta-heuristics as methods that try to combine basic heuristic
methods into higher level frameworks, aimed at efficiently and effectively exploring a
search space [Blu03]. They have presented other definitions of meta-heuristics from lit-
erature actual up to that time. In this thesis, we endorse one of the definitions proposed
by Voß et al. [Voß12].

Definition 6 (Meta-heuristic). A meta-heuristic is an iterative master process that guides
and modifies the operations of subordinate heuristics to efficiently produce high-quality
solutions. It may manipulate a complete (or incomplete) single solution or a collection
of solutions at each iteration. The subordinate heuristics may be high (or low) level
procedures, or a simple local search, or just a construction method. 3

We also remind on the latest definition provided in [Gas13, pg. 982] by Sörenson
and Glover, that defines meta-heuristics as general methods.

Definition 7 (Meta-heuristic). A meta-heuristic is a high-level problem-independent al-
gorithmic framework that provides a set of guidelines or strategies to develop heuristic
optimization algorithms. The term is also used to refer to a problem-specific imple-
mentation of a heuristic optimization algorithm according to the guidelines expressed
in such a framework. 3

An important concept of a meta-heuristic method is a trade-off between exploration
(diversification) and exploitation (intensification) techniques of the search. Exploration
refers to the identification of promising areas of a search space, while exploitation is
used to intensify the search inside such areas. This concept is a fundamental part of
performance of any search algorithm, although meta-heuristics are completely under
its influence with the help of its parameterization, which will be demonstrated in Chap-
ter 5. This trade-off balance was noted in many research papers, the oldest dating as
early as the 1950s [Box54, Mic04]. George Box in [Box54] presented a simulation of
the trade-off process between exploration and exploitation, using role play scenario be-
tween “statistician” and “experimenter”. Statistician is performing exploitation, while
experimenter conducts exploration. In quite an entertaining manner Box presented a
general method for maximizing a response function of some k variables (temperature,
time, pressure of reaction, etc). He concluded that the methods used for exploitation
can only contribute to the current process of exploration of the search space, but must
not influence it. In other words, the information of statistician may be considered for
the process of exploration but can also be disregarded, which depends on the experi-
ence of an experimenter from some previous work.

3.1.1 Classification of meta-heuristics

Meta-heuristics were designed to attack complex optimization problems where classical
heuristics and optimization methods have failed to be effective and efficient [Osm96b].
For that reason, numerous meta-heuristic methods have been developed in the past
forty years. There are different ways to classify meta-heuristics, i.e., according to the:

1. Origins of the algorithm,

3.1 Introduction to meta-heuristics 39

2. Number of solutions used during the search,

3. Randomization,

4. Manipulation over solution.

Other criteria on which basis meta-heuristics can be classified also exist, however,
are not covered here. For example, the way meta-heuristics are making use of the
objective function (some methods modify objective function during the work). Fur-
thermore, meta-heuristics can be distinguished by their use of search history, whether
they use memory or not [Blu03]. For an extensive classification the reader is referred
to a material provided by Talbi in [Tal09] and recent survey by [Bou13]. Here, we
concentrate on four mentioned classes of meta-heuristics.

• Origins. The general behavior of meta-heuristics is based on the principles taken
from nature or are based on mathematical principles. Therefore, the most instinc-
tive is to classify meta-heuristics by their origins. Natural processes that have in-
spired meta-heuristics are: evolution of species, annealing process, insect colony
behavior, particle swarms, immune systems and many others. Meta-heuristics
with such background are known to belong to the class of nature-inspired meth-
ods.

Mathematically founded meta-heuristics are, for example, Tabu Search, TS [Gen10b,
Glo97] and Variable Neighborhood Search, VNS [Han10b, Mla97]). These meth-
ods include definitions of some metric to measure the distance between solutions,
the neighborhoods to distinguish solutions that are close to each other, and local
search principles which enable efficient exploration of the solution space.

• Population. Another common classification of meta-heuristics, and often taken
in the literature as a fundamental, is based on the number of solutions used
during the search: one can distinguish methods that are either single solution-
or population-based. Single solution methods are also known as trajectory-based
methods and typical representatives of this class are: TS, VNS, Iterated Local
Search, ILS, [Lou03, Lou10], Simulated Annealing, SA [Kir83, Nik10]. Population-
based meta-heuristics incorporate an idea that a certain combination of existing
solutions can generate a new solution. Great number of popular nature inspi-
red methods are also population based. Typical examples are Genetic Algorit-
hms, GA [Gol89, Ree10], Bee Colony Optimization, BCO [Luč01, Teo09b], Ant
Colony Optimization, ACO [Dor99, Dor10], Particle Swarm Optimization, PSO
[Jam95, Pol07], Artificial Immune Systems, AIS [Ber91] and Firefly algorithm,
FA, [Yan07b].

• Randomization. Classification based on the types of rules used during the de-
cision process, defines two types of meta-heuristics: deterministic and stochastic.
In deterministic meta-heuristics an optimization problem is solved by means of
decisions that are based on deterministic set of rules. Such course for solving
is typical for TS. In case when decision process is based on randomization, a
stochastic algorithm is then generated. This situation is most common as it is
related to nearly all of the today’s meta-heuristic methods.

• Handling of solution. Moreover, meta-heuristics can be classified as constructive
(if they build new and better solutions during their execution), or based on the

40 Chapter 3 Meta-heuristic methods

improvement principles (in the case when they transform given solutions in order
to obtain the improved ancestors). The representatives of constructive meta-
heuristics are Greedy Randomized Adaptive Search Procedure, GRASP [Feo95,
Res10], ACO and BCO, while GA, SA, Multistart Local Search (MLS), VNS, PSO
as well as some newly developed BCO variants represent methods based on the
improvement of given initial solutions. For further details on the design and
implementation of meta-heuristic methods the interested reader is referred to
[Gen10a, Tal09].

Recently, some researchers have suggested that the increased number of nature-
inspired optimization methods has diminished the role of meta-heuristics within the
operations research community [Sör13]. Arguments Sörensen has provided was to
show the vulnerability behind the misuse of all different possible metaphors one could
employ in order to develop a novel method. We agree with the author that the time
spent to develop new meta-heuristic method might be better used. In particular, a
better understanding of mechanisms behind the panel of an existing meta-heuristic
might be more valuable. With all that in mind we believe that the research, conducted
and presented within this dissertation, contributes to the field of optimization.

3.1.2 Nature- and bio-inspired methods

Many natural phenomena, such as Darwinian evolution, the functioning of the brain,
group (swarm) behavior, or the immune system, have fostered new paradigms in com-
puter science. Such interaction between Nature and Computation gave rise to the field
of research known as natural computing or nature-inspired computation [Yao99, Bal99,
Cas07]. Natural computing is a study of computational systems that gets ideas and
inspiration from natural systems. The most established nature-inspired models of com-
putation are cellular automata, neural computation, and evolutionary computation.
Specifically, a class of nature-inspired models that are inspired by biological processes
with the purpose to solve hard problems are known in the literature as bio-inspired
computing.

A rapid growth of natural computing can be explained by a number of factors, such
as the boost of a computing power and memory storage capacity, increased number of
problems that are influenced by nonlinearity or high-dimensionality [Cas07]. However,
the popularity of the bio-inspired algorithms is primarily caused by the ability of biolog-
ical systems to effectively adapt in frequently changeable environments. Evolutionary
computation, neural networks, ant colony optimization, bee colony optimization, par-
ticle swarm optimization, artificial immune systems, and bacteria foraging algorithm
are among the algorithms and concepts that were motivated by biological processes.
For optimization applications in fields such as pattern recognition, self-identity, data
analysis and machine learning, nature- and bio-inspired methods are capable of outper-
forming the classical techniques by providing better and more flexible solution choices
[Wan09].

In nature we can find many examples of animal societies, such as insect societies,
that exhibit intelligent collective behavior. Still, observing each individual of these
societies shows us that they operate without centrally organized control and in un-
predictable and dynamic environment [Teo09b]. A global intelligent behavior arises

3.1 Introduction to meta-heuristics 41

as a result of the interactions between these individual organisms. Insect society is
the classical example of a birth of global effects from local interactions and commu-
nication. Analysis of such behavior gave rise to the notion of the collective intelligence
that is today a basic part of research in different scientific fields, primarily in artificial
intelligence, biology and computations.

3.1.3 Swarm intelligence

Swarm Intelligence (SI) is the discipline that deals with natural and artificial systems
composed of many individuals [Dor07]. The name for SI was coined by Beni and Weng
in the 1989 in order to present Cellular Robotic Systems (CRS) as capable of being intel-
ligent [Ben93]. CRS are collections of autonomous, non-synhronized, non-intelligent
robots cooperating to achieve some given tasks [Ben93]. In area of operations research,
SI is used to represent models of simple behaviors of the individuals, their interactions
with each other and with their environment, which can be applied for coping with
difficult optimization problems. Historically, the idea to use the collection of simple
agents for solving optimization problems dates back to 1960s [But64]. Back then, the
idea of computing with a swarm of simple agents was based on using large numbers
of elementary entities (automata) with ability to randomly walk through space, graph
or network. It is considered that the Tsetlin’s work [Tse73], is the first to address col-
lections of automata as a model for collective behavior of a group with no a priori
information other than the rules of the game, and attempts to derive the structure of
systems that exhibit self-organizing behavior.

SI is considered to be an area of Artificial Intelligence (AI) that is based on studying
the actions of individuals in various decentralized systems [Bon99]. However, there is
still big discrepancy between two schools of thought in the Artificial Intelligence that
are known by the name neat and scruffy AI. Neat researchers in AI base their work on
logic and formal extensions of logic, while scruffy AI researchers use relatively simple
approach [Bro11]. SI models are typical for scruffy AI researchers.

When creating SI models and techniques, researchers apply some principles of the
natural swarm intelligence. From biology perspective, swarm behavior is based on
the biological needs of individuals to stay and work together without any central con-
trol. In such a way, it is believed that individuals increase the probability to stay alive,
since predators usually attack only isolated individuals. Colonies of various social in-
sects (bees, wasps, ants, termites) are characterized by the swarm behavior. This type
of behavior is first and foremost characterized by autonomy, distributed functioning
and self-organizing. The most important characteristic here is the self-organizing. It
requires interactions (communication) between the individual agents. There are two
types of communication among insects: the direct and indirect. Direct communication
that is typical for colonies of bees, imply food or liquid exchange and visual contact.
The indirect interactions (also known as stigmergy) imply modifications of the envi-
ronment, which in turn modifies behavior of individual agents, such as ants, at a later
time. Communication systems between individual agents contribute to the collective
intelligence pattern of SI.

In 1990s the group around Mark Millonas from Santa Fe Institute developed math-
ematical model of the dynamics of swarms and collective intelligence based on phero-
mone-sniffing, simple-minded ants [Ken01, Lim09]. They presented five basic princi-

42 Chapter 3 Meta-heuristic methods

ples of SI as:

• The proximity: the ability of the population to carry out simple space and time
computations;

• The quality: the ability of population to respond to environmental factors, such
as quality of the food;

• The diverse response: the population should be able to distribute resources;

• The stability: the ability of population to maintain its mode of behavior against
the environment changes.

• The adaptability: the ability of population to change the group behavior when it
leads to an advancement.

It is a general consensus today that the use of the term “swarm” refers to different
systems with a similar architecture. In [Ken01], its description was taken from the
Santa Fe Institute document about the swarm simulation system, where it states: "The
classic example of a swarm is a swarm of bees, but the metaphor of a swarm can be
extended to other systems with a similar architecture. An ant colony can be considered as
a swarm whose individual agents are ants, a flock of birds is a swarm whose agents are
birds, traffic is a swarm of cars, a crowd is a swarm of people, an immune system is a
swarm of cells and molecules, and an economy is a swarm of economic agents."

As of 2004 a new terminology was also presented, namely computational intelli-
gence, CI. The CI approaches comprise of all nature-inspired methods. The name was
coined by Bezdek [Bez92], however it was firmly established in Institute of Electrical
and Electronics Engineers (IEEE)(1), by the Computational Intelligence Society (CIS)
[Mum09, pg. 5]. The scope of the CIS community, as stated on their web site, is to
deal with the theory, design, application and development of biologically and linguisti-
cally motivated computational paradigms emphasizing neural networks, connectionist
systems, genetic algorithms, evolutionary programming, fuzzy systems, and hybrid in-
telligent systems in which these paradigms are contained. Extensive informations can
be found at http://cis.ieee.org/scope.html.

Other names are also used in the research community, such as soft computing. Due
to lack of standardization in the literature we have opted for the term swarm intelli-
gence. All SI algorithms possess several common advantages such as the robustness
against the obscure mathematical descriptions and the unique mathematical properties
of optimization problems, as well as the capacity to attain global optima [Che13].

3.2 Examples of meta-heuristics

Despite not being used for the experiments in this dissertation, we review several well
known meta-heuristic methods. The majority of them belong to the class of nature-
inspired algorithms. However, the most popular meta-heuristic methods based on the
mathematical principles are also presented, namely VNS and TS. In each class the
methods are presented following a chronological order.

(1)http://cis.ieee.org/

http://cis.ieee.org/scope.html

3.2 Examples of meta-heuristics 43

3.2.1 Simulated annealing

The history of meta-heuristics is connected with a couple of methods already men-
tioned until now, such as simulated annealing and Evolutionary Algorithms (EA). SA
is considered as one of the oldest nature-inspired meta-heuristics, establish on imita-
tion of physical annealing process. It emerged from independent work of two groups
of researchers: Kirkpatric, Gelatt, Vecci [Kir83] and Černý [Čer85] who have found
the analogy in statistical thermodynamics. When first proposed, it was considered a
powerful methodology for solving combinatorial problems, since the search for high
quality solutions does not depend on the choice of the initial solution and for some im-
plementations of the algorithm it is possible to derive polynomial upper bound on the
computation time [Aar88, Osm96b]. Another important feature of the first SA was the
proof of convergence to an optimal solution, however in infinite computational time
[Aar88].

Using the concept of annealing as an inspiration dates back to 1953. In particular, it
has inspired the construction of the so-called Metropolis algorithm. The algorithm was
used for simulating energy changes exhibited during the evolution of a solid to thermal
equilibrium. The same scheme inspired SA algorithm, where a particular optimization
problem represents a physical system, a solution of the problem is equivalent to states
of the physical system, and an objective function of the problem corresponds to energy
of the state of the physical system [Aar88, Tal09].

SA is a single solution iterative stochastic algorithm that starts from some initially
generated solution, and does not use information gathered during the search [Tal09].
At each iteration two solutions, current (x) and newly selected (x′), are compared
[Nik10]. A solution that is better then the current will always be accepted, while the
probability of excepting non-improving solution is a function of SA control parameter,
the temperature. The probability to accept a newly selected solution of a minimization
problem follows, in general, the Boltzmann distribution, as can be observed in formula
(3.1) [Tal09, Nik10].

P{x′ is accepted} =
{

1 if f(x′) ≤ f(x)
e−

f(x′)−f(x)
T if f(x′) > f(x)

(3.1)

Figure 3.1 presents simplified pseudo-code of SA. At each level of the temperature
many trials can be explored until an equilibrium state is reached [Tal09]. At that point
the temperature is decreased (according to a cooling rule) in such a way that less non-

Initialization phase;
Repeat

Repeat
Generate a random neighbor;
Acceptance phase;

Until Equilibrium condition;
Temperature update;

Until (the stopping criterion is satisfied).

Figure 3.1: Pseudo-code of the SA algorithm

44 Chapter 3 Meta-heuristic methods

improving solutions are accepted as the search approaches its end. In addition, the
stopping criterion is chosen and can include the maximum total number of iterations,
the maximum total number of iterations without improvement of the objective func-
tion, the maximum allowed CPU time or any their combination.

3.2.2 Evolutionary computation and genetic algorithm

An important class of meta-heuristic methods are evolutionary algorithms (EA). Evo-
lutionary computing, or evolutionary computation, EC, is a field of research inspired by
evolutionary biology aiming to develop optimization methods for complex optimiza-
tion problems [Cas07]. The inspiration is drawn from the capabilities of live systems to
adapt to challenging conditions in the environment, often described as natural selection
or as survival of the fittest. Development of the field of EC is considered as contribution
of many researchers starting from late 50s and early 60s, according to [Bac97, Ree10].
Their work introduced different EC paradigms, such as evolutionary programming (EP)
developed by Lawrence Fogel in 1960, evolution strategies (ES) developed by group of
three students Bienert, Rechenberg and Schwefel in Berlin during 1960s, and Genetic
Algorithms (GA) mainly developed by John Holland in the early 1960s [Bac97, Tal09].
This three main forms of evolutionary algorithms were developed independently until
1990s, when EA researchers organized an international workshop devoted to establish-
ing more cooperation in the EC field [Bac97].

Evolutionary algorithms, EA, are population based meta-heuristics that belong to
the class of iterative algorithms used for simulation of the evolution of species [Tal09].
Pseudo-code of the EA is provided in Fig. 3.2, however, it should be considered as a
broad template covering shared ideas of all the versions of today EAs. Each iteration
of an EA corresponds to a generation. An algorithm starts with the random creation of
the population, where each individual represents an encoded version of some feasible
solution. In the evaluation phase an objective function is used to assign to each mem-
ber of the population a fitness value, indicating its suitability to the problem [Tal09].
Following a selection scheme, individuals with better fitness are selected with higher
probability for the next operation. The chosen individuals are being reproduced by im-
plementing variation operators (e.g., crossover and/or mutation). In the next stage it is
determined which individuals of the population will survive by means of replacing the
parents by the offsprings in some probabilistic manner (in EP) or in total (in canonical
GA).

Initialization phase (initial population);
Repeat

Evaluate population P(t);
Select fittest individuals for reproduction (P’(t));
Reproduction of fittest;
Replacement of parents by offsprings;

Until (the stopping criterion is satisfied).

Figure 3.2: Pseudo-code of the EA algorithm.

One of the widely used class of the EAs is the class of genetic algorithms. GAs are

3.2 Examples of meta-heuristics 45

considered as the original prototypes of EAs, which were popularized by Goldberg in
late 1980s, as in [Gol89], according to [Blu12]. The current model used for genetic
algorithms originated from the studies of adaptive systems conducted by Holland and
his colleagues in the 1960s [Hol92]. Holland’s GA introduced the idea of recombination
(crossover) [Ree10]. GAs are mostly used for discrete optimization problems and are
associated with the use of binary representation [Tal09]. However, there are many
variations of GA according to the representation of solution, selection strategy, type of
crossover and mutation operators, etc., [Bou13].

3.2.3 Ant Colony Optimization

Ant Colony Optimization, ACO, [Dor99, Dor10] is a population-based meta-heuristic
inspired by the foraging behavior of ants in nature. The first version of ACO was pro-
posed by Dorigo as an Ant System method (AS) in 1992 for solving TSP [Dor92, Dor10].
As AS didn’t manage to be competitive with up to that time specific oriented algorithms
designed for dealing with TSP, next years were devoted to development of better ver-
sion, known today as ACO. This method uses artificial ants to construct solutions by
incrementally adding new components [Dor10]. In the analogy to the biological ex-
ample, the communication between artificial ants is indirect and uses pheromones as
a communication medium. The pheromone trails in ACO serve as a distributed, nu-
merical information, which the ants use to probabilistically construct solutions to the
problem being solved. Moreover, the ants adapt this information during the algorithms
execution to reflect their search experience.

A general outline of the ACO meta-heuristic according to [Dor10] is given in Fig. 3.3.
After initializing parameters and pheromone trails, the main loop is performed. It con-
sists of three main steps. In the first step each ant from the colony constructs a solution
by selecting its components using a probabilistic rule. This rule takes into account the
experience acquired during the search, through the trace of pheromone deposited. The
heuristic information of the considered components may also be exploited.

Once the ants have completed their solutions, these may be improved in an optional
local search phase. As it was shown in [Dor04, pg. 93], ACO algorithms reach best
performance when coupled with local search algorithms. These are used to implement
problem specific or centralized actions that cannot be performed by individual ants.

In the third stage, the pheromone trails are updated with an intention to make so-
lution components belonging to high quality solutions more desirable for the following
iterations. The pheromone update is performed in two steps. In the first step, the
values of the pheromone trails on all the components are decreased by a small factor,

Initialization;
Do

ContructAntSolutions;
ApplyLocalSearch; //optional
UpdatePheromones.

While (termination condition not met).

Figure 3.3: Pseudo-code of the ACO algorithm.

46 Chapter 3 Meta-heuristic methods

called the evaporation rate. From a practical point of view, pheromone evaporation is
needed to avoid premature convergence towards a sub-optimal region. It implements
a useful form of forgetting, favoring the exploration of new areas of the search space.
In the second step, the values of the pheromone trails on the components belonging to
the determined set of high quality solutions are increased depending on the selected
evaluation criterion. ACO algorithms usually differ in the way the set of high qual-
ity solutions is specified (e.g., current global best solution and/or set of all solutions
constructed in the current iteration). When the termination condition is fulfilled, ACO
returns the best-so-far (current global best) solution.

3.2.4 Particle swarm optimization

Particle Swarm Optimization (PSO) is a population-based meta-heuristics introduced
for a continuous nonlinear optimization problem in 1995 [Jam95]. It emerged from
the work of psychologist, J. Kennedy, and electrical engineer, R. Eberhart with an aim
to contribute to the field of artificial intelligence [Pol07]. The basic idea is the mimick-
ing of social behavior of bird flocks and fish schools searching for food. This method
belongs to the class of SI algorithms as it was inspired by dynamics of population inter-
actions without central coordination.

PSO is an iterative stochastic algorithm that simulates swarm of particles, each rep-
resenting some candidate solution of the particular optimization problem. It might be
viewed as a cellular automata, as the new solution of each particle depends on its old
value and the solutions in its neighborhood [Tal09]. Pseudo-code for PSO is provided
in Figure 3.4. In the initialization phase, each particle starts from randomly generated
solution, after which the iteration begins with the evaluation of the solutions. Since a
particle is defined in terms of its position and velocity, an update phase consists of cal-
culating the new position of each particle with an objective to move the search toward
the global optimum. This is done by calculating new velocity values as a function of
the old one, the position of the particle’s best-so-far solution (~pi), and the position of
the best-so-far solution of the entire swarm (~pg), described by (3.2). After calculating
velocity, particle’s position is updated [Tal09].

vi(t) = vi(t− 1) + ρ1C1 × (pi − xi(t− 1)) + ρ2C2 × (pg − xi(t− 1)) (3.2)

Initialization phase;
Repeat

Evaluation phase;
Update phase:

Update velocities;
Update solution;

Until (the stopping criterion is satisfied).

Figure 3.4: Pseudo-code of the PSO algorithm.

3.2 Examples of meta-heuristics 47

3.2.5 Artificial Bee Colony

The Artificial Bee Colony [Kar05, Kar07] is a population-based meta-heuristic intro-
duced by Karaboga in 2005 as a method inspired by the foraging habits of honeybees.
The colony of artificial bees in ABC contains three groups of bees: employed bees asso-
ciated with specific food sources, onlooker bees watching the dance of employed bees
within the hive to choose a food source, and scout bees searching for food sources
randomly. Both onlookers and scouts are also called un-employed bees. In ABC, the
position of a food source represents a possible solution to the problem and the nectar
amount of a food source corresponds to the quality (fitness) of the associated solution.
In the basic form of the ABC algorithm, the number of employed bees is equal to the
number of solutions since each employed bee is associated with exactly one solution.
The general algorithmic structure of the ABC optimization approach is given in Fig. 3.5.

In the initialization phase, the population of solutions is initialized by scout bees
and control parameters are set. In the employed bees phase, the neighborhood of each
solution is examined in an attempt to find the new solution with a higher quality. In
particular, a random solution from the neighborhood is generated, its fitness is calcu-
lated and a greedy selection is applied between this and the original solution.

In the next (onlooker bees) phase employed bees share the information about the
quality of their solutions with the onlooker bees. Onlooker bees probabilistically choose
their solutions, depending on the information provided by the employed bees. For this
purpose, a fitness based selection technique can be used, such as the roulette wheel
selection method. After a solution for an onlooker bee is chosen, a neighborhood so-
lution is determined randomly, and its fitness value is computed. As in the employed
bees phase, a greedy selection is applied between these two solutions.

In the scout bees phase, employed bees whose solutions cannot be improved through
a predetermined number of trials (called limit) become scouts and their solutions
are abandoned. Subsequently, the scouts start to randomly search for new solutions.
Hence, those solutions which are initially poor or have been made poor by exploitation
are abandoned in order to avoid suboptimal solutions.

Initialization phase;
Repeat

Employed bees phase;
Onlooker bees phase;
Scout bees phase;
Memorize the best solution achieved so far;

Until (the stopping criterion is satisfied).

Figure 3.5: Pseudo-code of the ABC algorithm.

3.2.6 Tabu search

Tabu Search (TS) was introduced by Glover in 1986 [Glo86] and it is a single solution
meta-heuristic based on the utilization of its search history. However, 10 years earlier,
most of the basic elements of TS were suggested by Glover as a part of specific oriented

48 Chapter 3 Meta-heuristic methods

heuristic for solving nonlinear covering problem [Glo77, Osm96b]. TS is commonly
applied to combinatorial optimization problems. It can be viewed as an extension of a
classical steepest local search method presented in [Han86], including various types of
memory structures (classical being short-term memory) in order to overcome local op-
tima [Gen10b]. It shares similarity with the SA algorithm as a method that guides the
local search to avoid bad local optima by accepting non-improving solutions. It uses,
however, a deterministic rather than stochastic acceptance criterion [Osm96b, Tal09].
The basic functionality behind TS is a dual relationship between imposed restrictions
and aspiration criteria on the TS moves [Glo89]. The restrictions are imposed by con-
straints which label certain TS moves as forbidden, tabu. On the other hand, a search
can be released by means of a short-term memory functions. This is achieved by incor-
poration of an aspiration level function A(s, x) used to provide flexibility by overriding
the tabu status of a move if the aspiration level is attained [Glo89].

The basic version of TS is presented by pseudo-code in Fig. 3.6. The algorithm starts
with generation of an initial solution. At each iteration a complete neighborhood of the
current solution is searched in a deterministic manner [Tal09]. When a new solution
leads to improvement, TS replaces the current solution with the new. If all examined
neighboring solutions do not lead to an improvement (TS reached local optima), TS
moves to the best admissible neighbor, even if this causes an objective function to
deteriorate. This kind of admission criterion may lead to cycling, that is, returning
to already visited solutions [Osm96b]. To avoid cycles, TS memorizes attributes(2) of
previously visited solutions, proclaimed as tabu, by storing them in a so called tabu list.
The tabu status of a solution is valid for a number of iterations, and this is the reason
for referring to tabu list as a short-term memory.

Initialization phase;
Repeat

Find best non-tabu neighbor, or satisfy aspiration criteria;
Update current solution;
Update tabu list;
Update aspiration conditions;

Until (the stopping criterion is satisfied).

Figure 3.6: Pseudo-code of the TS algorithm.

Sophisticated TS algorithm can hold more information, saved in terms of a medium-
term and a long-term memory. Both types of memories represented advanced mecha-
nisms used to deal with an intensification and diversification of a search. Intensification
process concerns storing of best (elite) solutions found during the search in order to
guide the search towards promising areas of the search space. Diversification relates to
storing of information that diversify the search by discouraging the attributes of some
elite solutions. It is important to notice that the diversification of the search is not
always useful, as the search is closely connected to a solution landscape of an opti-
mization problem. For example, when all high quality solutions are grouped within a

(2)In order to decrease memory used for storing already visited solutions, a subset of information can
be used for determining the position/configuration of the solution. The elements of the subset are
referred to as attributes of the solution.

3.2 Examples of meta-heuristics 49

small distance, diversification can be found useless [Tal09, Gen10b].

3.2.7 Variable neighborhood search

Variable Neighborhood Search (VNS) is a single solution meta-heuristic, proposed by
Hansen and Mladenović in 1995 [Mla95, Mla97]. It is a simple and an effective opti-
mization method which has been widely used for dealing with combinatorial and global
optimization problems [Han10b]. The VNS search is based on a systematic changing
of neighborhoods within a descent phase in order to find a local optimum, as well as
within a perturbation phase to get out of the corresponding valley [Han10b, Cra14]. It
uses multiple neighborhoods in order to increase an efficiency of a search, and is based
on three simple properties [Han03]:

1. A local optimum w.r.t. one neighborhood structure is not necessarily a local min-
imum for another;

2. A global optimum is a local optimum w.r.t. all possible neighborhood structures;

3. For many problems, local optimum w.r.t. one or several neighborhoods are rela-
tively close to each other.

A basic building block of VNS is LS procedure. In order to describe VNS, an in-
troduction into particular notation is first required. For an arbitrary solution x ∈X a
neighborhood of x (N (x)) is a set of all solutions obtained from x by an application
of some predefined elementary transformation. Let Nk, (k=1, . . . , kmax) be a finite set
of pre-selected neighborhood structures. Then, Nk(x) is a set of solutions in the kth

neighborhood of x, i.e., the set of solutions obtained from x by the application of k
elementary transformations [Cra14]. A general outline of the VNS is presented in the
form of pseudo-code in Fig. 3.7.

In the initialization phase an initial solution is usually determined by some construc-
tive heuristic and improved by LS before the beginning of the actual VNS procedure.
In a shake procedure a random point x′ is generated in a kth neighborhood of x,
(x′ ∈ Nk(x)). The role of the shake procedure is to prevent trapping in a local opti-
mum. Intensification of a search is realized by the improvement step which involves
the selected LS procedure with an aim to improve a current solution x′ in order to
obtain a local optimum x′′. In the move step, if this local optimum is better than the
current best-so-far solution, the search moves there (x = x′′), and continues within N1
(k = 1). More precisely, the entire VNS procedure is concentrated around the current
global best solution, and therefore, move step has to ensure that this solution is always
updated, as early as possible. If local optimum is not better than the current global best
solution, algorithm moves to the next neighborhood (k = k + 1). Once the stopping
criterion is met, the global best solution is reported [Tal09, Han10b, Cra14].

Basic VNS has a unique parameter kmax – the maximum number of neighborhoods.
Sometimes, but not necessarily, successive neighborhoods are nested. There are sev-
eral variations and modifications of this basic VNS scheme, as well as many successful
applications. The readers are referred to [Han10b, Han14] for more details.

50 Chapter 3 Meta-heuristic methods

Initialization phase;
Repeat

Set k = 1.
Repeat

Shake;
Improve;
Move;

Until k > kmax;
Until (the stopping criterion is satisfied).

Figure 3.7: Pseudo-code of the VNS algorithm.

3.2.8 Final remarks

A detailed classification of various types of meta-heuristic is given in a recent survey by
Boussaïd et al. [Bou13]. Beside development of mathematically-based meta-heuristics,
during the last decades behavior of social insects became an inspiration for design of
new SI artificial systems. Here, we name a few algorithms that have appeared in the last
15 years and are based on a behavior of bees: Bee System [Luč01, Luč03b], Bee Colony
Optimization (BCO) [Teo05], Marriage in Honey-Bees Optimization (MBO) [Abb01],
BeeHive [Wed04], Honey Bees [Nak03], Artificial Bee Colony (ABC) [Kar05], Bee Sys-
tem Optimization (BSO) [Dri05], the Bees Algorithm [Pha06], Honey Bee Marriage
Optimization (HBMO) [Afs07], Fast Marriage in Honey Bees Optimization (MHBO)
[Yan07a], Virtual Bee Algorithm (VBA) [Yan05]. In all these variants numerous agents
(i.e., artificial bees) investigate search space at the same time. However, a central
concept behind their work is the cooperation, allowing them to achieve better results
from those that would otherwise be generated by the independent work. In this dis-
sertation, special consideration is given to the Bee Colony Optimization method. The
primary goal is to provide detailed description behind its development and underlying
mechanisms by employing tools of theoretical and empirical analysis.

3.3 Chapter summary

In this chapter we review different schools of meta-heuristic design. Meta-heuristics
have proven their power in obtaining high quality solutions to many complex real
world problems. The structure of this chapter can be reviewed by following the list
of presented topics:

• Definition of meta-heuristics and elaboration on different types of meta-heuristic
classifications according to the: origins of the algorithm, number of solutions
used during the search, randomization and manipulation of solutions.

• A brief interpretation of the bio-inspired methods and swarm intelligence.

• Overview of the couple of most representative nature-inspired methods, as well
as two methods based on mathematical principles.

3.3 Chapter summary 51

Topics that were not covered are, e.g., hybrid meta-heuristics that try to combine
best features of different methods in order to derive more powerful new algorithms.
There are two main classes of hybrid methods: the first one obtained when combining
two or more meta-heuristics (e.g., GA with SA or TS, SA with TS), while the second
class covers combinations of meta-heuristics with exact methods (e.g., TS with B&B,
VNS with MIP) [Blu08, Man09]. It is an ongoing topic that is attracting the atten-
tion of an increasing number of researchers, however, it is beyond the scope of this
dissertation.

CHAPTER4
Bee colony optimization method

This chapter is devoted to the Bee Colony Optimization (BCO) method. We start
with a short historical exposé about the discovery of certain behavioral pattern of bee
swarms in the early 1940s. The goal is to remind of first steps within the development
of BCO, inspired by previous research on foraging of bees. In section 4.1.2 we describe
mathematical model of BCO. Then, we review two BCO variants and describe steps
that led to the current versions of the BCO method. Both variants of the BCO algorithm
are reviewed in great detail in section 4.2. Part of our contributions in this thesis
is the introduction of loyalty functions in section 4.2.3.1, as a characterization of the
probability decisions inside of BCO. Finally, we list various applications of the BCO
method and provide a short overview of future research topics.

4.1 The development of BCO

Bee colony optimization is a population-based meta-heuristic method that was first
proposed by Lučić and Teodorović in 2001 [Luč01]. In the early stages of its devel-
opment BCO showed promising results in application to combinatorial optimization
problems, drawing attention of many researchers around the world [Luč01, Luč02b,
Luč03a, Teo05]. BCO belongs to the class of SI algorithms and is first of its kind where
basic principles of collective bee intelligence were used in dealing with combinatorial
and continuous optimization problems. The inspiration for creating new multi-agent
system, such as BCO, originates from the foraging behavior of honey bees. This behav-
ior is suitable for modeling as the practice of collecting and processing nectar is highly
organized [Teo09b]. The first version of the BCO algorithm was developed as a con-
structive procedure, where each artificial bee is building a solution from scratch. Later
variant of BCO, known as improvement BCO, used a modification of complete solutions
[Dav15b]. To provide better understanding of the BCO structure, the introduction into
the behavior of bees in nature is being presented.

4.1.1 Bees in nature

In nature, honey bees succeed to find nectar among limited resources in quite efficient
manner, without control of any central management and within unpredictable and
dynamic environment. The reason for such success is the capacity for communication
using skills that most resemble to symbolic language, a property known only for bees to
share [Gou75]. Observations of the bees behavior dates back to ancient times. The first

54 Chapter 4 Bee colony optimization method

documented observations about the bees behavior can be found in the Aristotle book
“History of Animals” from 350 b.c. However, it took a long time until true research
was conducted. Before 1940, researchers recognized that some of the bees that have
returned to the hive perform a certain dancing ritual [Hai10]. However, it was Karl
von Frisch that in the mid-1940s first realized functionality of what was considered
almost unimportant - the waggle dance (Fig. 4.1) [VF74]. He earned the Nobel Prize in
1973 for this discovery. As it seems, he has inspired a great number of researches who
thereafter decided to deepen understanding of the bees behavior [See85, Cam91]. von
Frisch discovered that bees notify their fellow bees about the food sources, i.e., that
they communicate. In the survey of von Frisch’s life [Hai10] Tania Munz recognized
that such discoveries, together with discoveries of other animal communication, have
influenced self-image of humans. Until then, it was thought that homo sapiens was
clearly characterized by the skills of communication, seen as a boundary that divides
us from other living organisms on Earth.

Figure 4.1: Waggle dance of forager bees in nature.

The waggle dance (also known as wag-tail or figure-eight dance), together with the
odor, defines a dancing language. Several other forms of the dance were recognized,
such as a round dance [Sam98]. Round dance is the simplest and doesn’t provide
much information, except that the food is somewhere close to the hive. The bees use
waggle dance to learn about different properties of a food source, such as a position
(defined by the direction and distance) [Com11]. The direction is specified with the
angle α between food source and the Sun (Fig.4.1). The distance is represented by
the bees’ shaking of hindquarters (“waggle”). The odor is used to help other foragers
to determine the quality of the food source. In the rest of this thesis both parts of the
dancing language will be referenced as only a dance or a waggle dance.

Understanding the mechanism behind the foraging of honey bees colonies was al-
ready proposed in the middle of 80s, from which here we distinguish work of Seeley
[See85]. Seeley was inspired by progress made in models of bumble bees. He recog-
nized that even substantial work has been done to understand the inner working of

4.1 The development of BCO 55

honey bees colonies, a lot still remained to be discovered [See95]. The initial study,
he conducted together with his colleague Kirk Visscher, reviled a great deal of new
insights, like those that bees make individual assessments of a food source’s absolute
quality, or that honey bees can cover more than 100 square kilometers around the hive
during foraging. In joint work with Camazine and Sneyd, Seeley showed that waggle
dance of worker bees is changing with regard to an absolute quality of a food source
[See91]. When the quality of nectar is high, the foraging bees dance longer and more
vigorously [See00]. It can be noted that to conclude a mathematical model of foraging
mechanism is quite an ambitious task. Main problem is that much of the nectar collec-
tion process of honey bees may not be correctly described [See95]. However, a pursuit
towards simplification of the living processes can also lead to interesting discoveries
and tools that can be used for solving hard real-world problems.

The first mathematical model of how information of food sources are stored within
a honey bee colony was introduced by Camazine and Sneyd [Cam91]. They postulated
that the collective memory is shared via the dance language and presented a model that
describes the colony’s decision-making process using system of non-linear differential
equations that have most effect on the total foraging success. This model, however,
disregarded some aspects of honey bees foraging process, like individual behavior. In
the literature this problem has been addressed, leaving an open question about how
important is the dance language for communicating memory. In [Gra12] experimental
results have shown that the drop in total foraging success, when the use of dance lan-
guage was removed, was not as drastic as proposed in models of Seeley. Furthermore,
another interesting question is the imprecision of information being shared, which can
influence on fertility of new food sources of high quality.

The complexity of an insect behavior still today cannot be replicated with mathe-
matical models. Nonetheless, the imitation of only a small part of some observed be-
havior in animals can, with its natural ingenuity, contribute greatly to the science. The
particularity of such knowledge is that otherwise it could not be invented by classical
approaches of mathematics or physics.

4.1.2 BCO model

Basically, a mathematical model of the foraging behavior of honey bees can be de-
scribed as follows [Dav15b]. Bees that are searching and collecting the nectar are
known as worker bees. They collect and accumulate food for later use by other bees.
The worker bees that are exploring the area are called scout bees. Typically, scout bees
in nature look for food by exploring the fields in the neighborhood of their hive. After
completing the exploration, scout bees return to the hive and inform their hive-mates
about the locations, quantity and quality of the available food sources in the areas they
have examined. In the case they have discovered nectar in the previously investigated
locations, scout bees dance in the so-called dance floor area of the hive using a ritual
called waggle dance, in an attempt to attract the remaining members of the colony to
follow their lead. If a bee decides to leave the hive and collect the nectar, it follows one
of the dancing scout bees to the previously discovered patch of flowers. After taking a
load of nectar, the foraging bee returns to the hive, leaving the nectar at a food store.
The foraging bee then decides for one of the several scenarios: (1) it can try to recruit
its hive-mates with the dance ritual before returning to the food location; (2) it can

56 Chapter 4 Bee colony optimization method

continue with the foraging behavior at the discovered nectar source, without recruiting
the rest of the colony; (3) it can abandon the food source and become uncommitted
follower [Cam91, Bon99]. As several bees may be attempting to recruit their hive-
mates on the dance floor area at the same time, it is unclear how an uncommitted bee
decides which recruiter to follow. The only obvious fact is, quote: the loyalty and re-
cruitment among bees are always a function of the quantity and quality of the food source
[Teo09b, Dav15b].

The described model has served as a basis for BCO algorithm. Here, the artificial
bees are considered to be homogeneous, that is, all bees can be considered as being
analogous to foragers that can do the work of a scout bee. A general structure of the
BCO algorithm, that combines both constructive and improvement version, is as fol-
lows. The population of artificial bees (B individuals) searches for an optimal solution.
Every artificial bee generates one solution to the problem. Each algorithm step consists
of two alternating phases: forward pass and backward pass. During each forward pass,
every bee is exploring a search space. It applies a predefined number of moves to ei-
ther construct the part of a solution [Teo05] or modify an existing complete solution
[Dav11b]. During backward pass, bees exchange information about the found solu-
tions after which each bee can decide for one of the two scenarios, mentioned earlier
(first or third).

4.1.3 The evolution of BCO

It all started as a Bee System, by a joint work of Lučić and Teodorović in 2001 [Luč01].
The development of this algorithm was also a building block for future development of
smart algorithms that use basic principles of collective bee intelligence for solving op-
timization problems [Teo05]. A Bee System, presented in 1997 by Sato and Hagiwara
in [Sat97], was introduced as a modified genetic algorithm where communication and
dancing was utilized to replace steps of GA, such as mutation and crossover operators.
Namely, each bee corresponds to a chromosome of GA that tries to find a high qual-
ity solution independently from others. When best solution is found, other bees try
to improve it in the local search step of the algorithm. The Bee System of Lučić and
Teodorović was constructed having in mind only the behavior of bees in nature and
incorporating principles of foraging [Luč01, Luč02b, Luč03a]. It was first used on in-
stances of the TSP, where, process of searching for shortest tour greatly depended on
the location of the hive (starting position of artificial bees) and the probability model by
which bees are choosing the next node. The starting position was randomly selected.
The probability model incorporated: distance between the current node (hive at the
beginning) and node-candidate to be visited; the total number of performed iterations
in a search process; and the total number of bees that have visited the considered link
in the past [Teo15]. Results in paper [Luč01] showed that the Bee System method
can produce optimal solutions in reasonable time. Besides transportation problems
[Luč02b, Luč03a], Bee System was also used on a routing problems. More precisely,
Vehicle Routing Problem (VRP) with stochastic demands [Luč02a]. VRP is a problem
of finding a set of routes that would minimize transport costs. The uncertainty in de-
mands arises when the real value of demand becomes known only after the vehicle has
reached the node. In a thesis of Lučić [Luč02a], a goal was to generate an intelligent
vehicle routing system capable of providing decisions that would lead to a set of high

4.2 The BCO Algorithm 57

quality routes. The approach to solve stochastic VRP problem was dealt by using two
steps in order to combine advantages of solving TSP with newly developed Bee System
and fuzzy rules. In the first step, Bee System was used for solving the VRP problem, as a
TSP, in order to create a Giant route. The second step consists of decisions when to fin-
ish one’s vehicle route and when to start with the next, while walking along the created
giant route. The task of deciding whether the vehicle should serve the next node or not
was conducted using fuzzy rules. In a similar fashion, on the same problem Lučić and
Teodorović in [Luč03b] presented results for combination of Bee System and fuzzy logic
where decisions were made in real-time with regard to the route shape.

Version of BCO, commonly used today, was proposed in 2005 by Teodorović and
Dell’Orco in [Teo05], as an improved and more general version of the Bee System. To
illustrate the performance of the newly proposed BCO, authors used Ride-matching
problem. Ride-matching is a problem of finding the best combination between the ve-
hicle and the passengers who will share the ride, taking into account: vehicle capacity,
days in a week when person is ready to have a ride, trip origin, trip destination, desired
departure and/or arrival time. In their article, Teodorivić and Dell’Orco assumed that
the arrival and departure times are fixed. On a relatively small example of 97 passen-
gers, and a constraint of 4 persons per vehicle, 6 feasible solutions were presented.
These preliminary results showed that the development of bee inspired methods could
significantly contribute to the solution of complex problems [Teo05].

Bee System had more similarities with the behavior of bees in nature, compared to
the BCO method. The main difference between them is that the location of a hive had
a bigger role in the Bee System model. During the search process, the location of a hive
could be changed. Another big difference was that Bee System incorporated Logit-based
model for the probability of choosing next node, while BCO method is using roulette
wheel [Dav15b, Š11].

4.2 The BCO Algorithm

The BCO method is based on engaging a group of artificial bees (B individuals) in
search for an optimal solution of a considered optimization problem. All artificial bees
are engaged in a search process in such a way that each bees generates one solution for
a considered problem. For the sake of further analogy, we introduce a foraging cycle.
One foraging cycle corresponds to a work done by foragers between two adjacent visits
to the hive. Namely, after leaving the hive forager bees search for a food source after
which they return to the hive to advertise found locations. The process of repetition
of the foraging cycle in nature is terminated when the night falls. Similarly, the search
process of artificial bees is conducted through iterations, during which bees also com-
municate in order to compare the quality of obtained solutions, until some predefined
stopping criterion is satisfied. In regard to this clear distribution of tasks of artificial
bees, each iteration of a BCO algorithm can be represented as a composition of alter-
nating phases (steps): a forward pass and a backward pass. Therefore, one alternation
corresponds to one foraging cycle.

During the forward pass, all artificial bees explore a search space. The method of ex-
ploration highly depends on concrete implementation of the BCO algorithm. Namely,
the exploration is performed through a certain (predefined) number of moves to ei-

58 Chapter 4 Bee colony optimization method

ther construct a part of a solution [Teo05] or modify an existing complete solution
[Dav11b]. These moves may be implemented in various ways, for example, by employ-
ing some well-known problem-specific heuristic procedure. Furthermore, in the for-
ward pass all artificial bees perform an exploration independently from each other, and
therefore, no information is being exchanged in this phase. A number of moves within
one forward pass can be represented as a function of a second BCO parameter, namely,
NC . Parameter NC is used to determine a frequency of information exchange between
artificial bees, therefore, influencing an exploitation of the search. In early (construc-
tive) implementations, NC was employed to count the number of components to be
added to partial solution within a forward pass [Dav15b, pg. 41]. To enable a unique
description for both BCO variants, in recent implementations of the constructive BCO
the definition of NC has changed to represent a number of forward/backward alter-
nations during an iteration. At the end of a forward pass, a new (partial or complete)
solution is generated for each bee [Dav15b].

During the backward pass of the BCO algorithm all artificial bees share the informa-
tion about quality of discovered solutions. In nature, sharing of information is made
by performing a dancing ritual where bees notify others about the amount and quality
of food, and its proximity to the hive. The information being exchanged in the BCO
algorithm contains a quality of each (partial) solution, with respect to the best and
the worst solution. After the evaluation of all (partial) solutions, each artificial bee
decides, with a probability depending on the solution quality, whether it stays loyal to
its solution or not. The bees that remain loyal to its solution become recruiters, while
the rest become uncommitted. Consequently, within each backward pass all bees are
divided into two groups: R recruiters, and the remaining B − R uncommitted bees
[Dav11b]. Values for R and B − R fluctuate from one backward pass to another. In
Fig. 4.2 recruiters are marked with a style of von Frisch experiments, who has distin-
guished recruiters from other foragers with different colors. Next, the uncommitted
bees have to select among solutions advertised by the recruiters. A selection process
for one of the advertised solutions is stochastic, in such a way that better solutions are
given higher probabilities to be chosen for further exploitation (Fig. 4.3).

An illustration of the recruiting process for B = 10 is demonstrated in Fig. 4.3. The
recruiters are marked with a style of von Frisch experiments, who has distinguished re-
cruiters from other foragers with different colors. After evaluating (partial) solutions,

Figure 4.2: Recruiters and uncommitted bees.

4.2 The BCO Algorithm 59

bee B1 decides to abandon its own and join bee B2. This scenario corresponds to one
in nature when second bee has performed waggle dance, in order to advertise a supe-
rior food location, after which both bees fly out to discovered location. Within BCO,
artificial bee B1 associates (copies) a (partial) solution of the bee B2. We demonstrate
in Fig. 4.3 possible scenarios for other artificial bees. For example, bees B6, B7 and
B8 decided to copy a (partial) solution of bee B5. Therefore, the quality of a (partial)
solution of the bee B5 was probably much better then of other recruiters.

Figure 4.3: Illustration of the process of recruitment.

In nature, bees start their exploration by leaving the hive. However, the hive as
an artificial object is not commonly used in BCO and does not influence algorithm
execution. It is used only to mark synchronization points at which bees are exchanging
information about the current state of the search. To summarize, two phases of the
BCO algorithm, the forward and backward pass, alternate in order to generate new
and better solutions (one for each bee). Among all complete solutions the best is
identified and used to update a global best solution. The BCO algorithm runs iteration
by iteration until a stopping criterion is met. A possible stopping criterion can imply,
for example, a maximum total number of iterations, a maximum number of iterations
without improvement of a current global best solution, a maximum allowed CPU time,
maximal number of objective function evaluations, etc. [Teo09a, Dav15b].

4.2.1 Pseudo-code for BCO
One among various advantages of the BCO algorithm is the small number of parame-
ters:

• B - number of artificial bees involved in search;

• NC - number of forward/backward passes during one iteration.

A pseudo-code of the BCO algorithm is provided in Figure 4.4. Steps (a) i (b) in
forward pass and step (ii) in backward pass are problem dependent and should be
resolved in each implementation of the BCO algorithm. On the contrary, other steps
of BCO are problem independent. These steps specify loyalty decision (step (iii)), re-
cruiting process (step (iv)), and update of the global best solution (step (v)), and are
therefore described in more detail in the following.

60 Chapter 4 Bee colony optimization method

Initialization: Read problem data, parameter values (B and NC), and stopping criterion.
Do

(1) Initialize a solution for each bee.
(2) For (u = 0;u < NC ;u+ +)

//forward pass
(i) For (b = 0; b < B; b+ +)

(a) Evaluate possible moves;
(b) Choose a move using a heuristic rule;

//backward pass
(ii) For (b = 0; b < B; b+ +)

Evaluate the (partial/complete) solution of bee b;
(iii) For (b = 0; b < B; b+ +)

Loyalty decision for bee b;
(iv) For (b = 0; b < B; b+ +)

If (b is uncommitted), choose a recruiter by a selection rule .
(v) If (solutions are completed)

Use the best one to update xbest and f(xbest).
While stopping criterion is not satisfied.
return (xbest, f(xbest))

Figure 4.4: Pseudo-code for BCO

4.2.2 Variants of the BCO algorithm

The BCO algorithm was evolving during the last 15 years. Throughout the evolution
two of its variants have developed, constructive BCO (BCOc) and improvement-based
BCO (BCOi) [Dav15b]. The first approach is based on constructive steps in which bees
build solutions piece by piece. BCOi, more often used today, is based on transformations
of complete solutions in order to obtain the best possible final solution. The main
differences between these two are within forward pass implementations, whereas the
backward pass of both algorithms follows the same set of steps. In the text to follow
we give a general description for both variants of the BCO algorithm.

4.2.2.1 Constructive BCO

The BCOc method was developed first. It was originally proposed by Lučić and Teodor-
ović [Luč01, Luč02b, Luč03a] and later on used in [Dav09, Luč03b, Mar07, Šel10,
Won10a, Won09]. In the BCOc algorithm a construction procedure starts from an
empty solution. A number of forward/backward passes depends on a number of com-
ponents constituting a complete solution. Moreover, the number of constructive moves
in a single forward pass is mostly determined as a function f(NC), being restricted
by parameter NC . For example, if a complete solution consists of n components, ap-
proximately n/NC of them are added to a current partial solution during each forward
pass. An iteration of BCOc is finalized once each bee generates a complete solution to
a given problem. Then, the best solution is determined and is used to update a global
best solution. At this point, all B solutions are deleted and an initialization of a new
iteration is performed.

4.2 The BCO Algorithm 61

The construction approach usually implies a constructive heuristic procedure that is
building a solution step by step, applying some stochastic, problem specific rules, thus
generating a (partial) solution. Suppose we have B bees (Bee 1, Bee 2, . . . , Bee B)
which participate in a decision-making process on n entities. A possible situation that
may arise after a first forward pass, where three components are added, is illustrated
in Fig. 4.5.

Figure 4.5: An example of partial solutions after the first forward pass.

Upon constructing new partial solutions for each bee, the algorithm starts the back-
ward pass. Based on the probability that depends on solution quality, every bee makes
the decision whether it will stay loyal to its solution or not. Let us assume that after
comparing all generated partial solutions, Bee 2 from example in Fig. 4.5 decided to
abandon its solution and join Bee B. In practice, this implies that the partial solution
generated by Bee B is copied to Bee 2. Let us also assume that the Bee 1 decided to
stay loyal to its partial solution and, without being chosen by any forager, it performs a
new constructive step independently. A possible situation resulting after the first move
(decision process) of the second forward pass is illustrated in Fig. 4.6.

Figure 4.6: An example of partial solutions after the first move in the second forward
pass.

Different values of parameter NC can greatly influence the quality of a reported
solution. If NC is large, the search process is intensified and each bee generates similar
results. On the other hand, if NC is small, each bee adds more components to its partial

62 Chapter 4 Bee colony optimization method

solution, thus introducing variety among different solutions.

4.2.2.2 Improvement BCO

BCOi was first proposed by Davidović et al. in 2011 [Dav11a]. Some indications of
combining constructive with improvement approach were suggested by [Teo09b], how-
ever, were not published until 2013 in [Tod13]. BCOi was developed with an aim to
overcome unsatisfactory results obtained for a few combinatorial problems dealt with
BCOc [Dav15b]. Unlike BCOc, the BCOi algorithm always works on the complete
solutions. At the initialization stage, one complete solution (for example, generated
randomly) is assigned to each bee. During each forward pass all bees modify several
components of their complete solutions in order to enhance them. The role of param-
eter NC in BCOi is to define maximum number of forward/backward passes in the
single iteration. The number of transformations in a single forward pass is usually de-
termined randomly [Dav11a], or as a function of problem size [Sto15]. In particular, it
is up to an implementation to ensure that distinct bees perform different modifications.
This property is important in order to have different treatment of the same solutions as-
signed to a recruiter and its follower(s) after the backward pass. The possible situation
after s-th forward pass is illustrated in Fig. 4.7.

Figure 4.7: An illustration of the s-th forward pass

Rectangles in Fig. 4.7 represent complete solutions associated with bees. Distinct pat-
terns are to denote that each bee is associated with a different solution. Suppose that
after comparing all generated (complete) solutions, Bee 1, from Fig. 4.7 decide to
abandon its own solution and joins Bee B. Similarly, Bee 4 was recruited by Bee 2 (see
Fig. 4.8). Bee 3 decides to stay loyal to its solution.

Figure 4.8: The possible result of a recruiting process within s-th backward pass

Next, they are free to make individual decisions about the next step to be made, i.e., to

4.2 The BCO Algorithm 63

perform transformations that change each solution in a different way. This is illustrated
in Fig. 4.9.

Figure 4.9: An example of complete solutions after (s+1)-th forward pass

Considering that the transformations are to be executed for each of the B bees
during one forward pass, the reasonable requirement is that the modification must be
efficient. Obviously, local search is not an option. A less computationally extensive
stochastic transformation may be employed, such as: select a component randomly,
change its value or replace it with another component.

Contrary to the BCOc, in BCOi the best solution is used to update a global best solu-
tion after each transformation. An iteration of BCOi completes after each bee performs
NC solution modifications (NC · f(NC) transformations). The initial solutions for new
iteration can be generated in some random manner [Dav11a, Nik13b] or an existing
solutions is used [Nik13a, Sto15].

4.2.3 Backward pass and loyalty functions
As mentioned in previous paragraphs, backward pass is a phase where artificial bees
share information about the quality of discovered (partial) solutions by following three
steps: 1. Evaluation; 2. Decision on loyalty; 3. Recruitment. Before bees can share
information the quality of (partial) solutions, obtained in the forward pass, needs to be
evaluated. Next, the obtained values are utilized within the decision-making process
on loyalty. Once determined, loyal bees become recruiters which in the last step of the
backward pass try to recruit uncommitted bees.

Evaluation. If Cb (b = 1, 2, ..., B) denotes a quality (value of an evaluation function)
of the b-th bee (partial) solution then, in a case of minimization, a normalized value of
the Cb is calculated as follows:

Ob =
{

Cmax−Cb
Cmax−Cmin

if Cmax 6= Cmin
1 if Cmax = Cmin

, b = 1, 2, ..., B, (4.1)

where Cmin and Cmax represent minimal (the best) and maximal (the worst among
all bees) value of the evaluation (objective) function among all engaged bees. The
normalization in the case of maximization, whereby minimal value (Cmin) corresponds
to a worst and maximal (Cmax) to the best value, is calculated as follows:

Ob =
{

Cb−Cmin
Cmax−Cmin

if Cmax 6= Cmin
1 if Cmax = Cmin

, b = 1, 2, ..., B. (4.2)

64 Chapter 4 Bee colony optimization method

The normalized value Ob reflects the quality of a reported solution with regard to ob-
jective of the optimization problem. Moreover, it is essential for the next phase of
backward pass, i.e., decision-making on loyalty.

Loyalty. In most of BCO implementations, a probability that b-th bee (at the beginning
of the new forward pass) will stay loyal to its previously generated partial solution is
expressed as:

pu+1
b = e−

Omax−Ob
u , b = 1, 2, . . . , B, (4.3)

where Omax represents maximum over all normalized values of (partial) solutions to be
compared, and u is a forward pass counter (e.g., u = 1 for the first forward pass, u = 2
for the second forward pass, etc.). To remind, parameter NC in the BCO algorithm
implies the number of times the probability function should be invoked. Furthermore,
normalized value Omax is, generally, equal to 1. Index u + 1 in expression pu+1

b is
typically used term in the literature on BCO algorithms. However, after careful consid-
eration the index notation should instead hold u in order to keep consistency in both
the format and the description of the algorithm steps. Consequently, formula (4.3) can
be rewritten as follows:

pub = e−
1−Ob

u , b = 1, 2, . . . , B. (4.4)

For a better understanding of the connection between the evaluation and the loyalty
decision process, we offer couple of remarks. Let us consider a problem of minimiza-
tion of an objective function. When a quality of b-th bee (partial) solution is equal to
maximal value Cmax, its normalized value Ob (Formula (4.1)) takes value 0. However,
when the quality is close to Cmin the normalized value Ob approaches 1. Moreover,
if the bee b found the best (partial) solution, its Ob = 1. Utilizing equation (4.4) for
each artificial bee it is decided whether to become uncommitted follower or to continue
exploring already known solution. In its form equation (4.3) assures that the bee b will
stay loyal with a higher probability to discovered (partial) solutions of a good quality
(the ones with higher Ob value). It is thus obvious that a larger value of Ob (closer
to 1) corresponds to a (partial) solution of good quality, inducing higher probability
of a bee to remain loyal. As the search process advances (u increases) the influence
of already discovered (partial) solution increases, i.e., the probability that the bee will
keep and advertise its current solution takes larger values. The influence is expressed
by counter u in the denominator of the exponent of expression (4.3). Increasing index
u is increasing the influence of already discovered (partial) solution at the beginning
of the search. This, again, agrees with the behavior of bees in nature where valuable
food locations are well exploited. In addition, increased effort that a bee invests in a
current (partial) solution decreases its willingness to abandon it.

Formula by which probability pub is calculated is similar to the one for SA algorithm.
In SA it is used to decrease the probability of selecting a solution that is worse. Within
the BCO algorithm, the case is to some extant reversed: as the solution is being con-
structed (u increases), the probability to accept better result is decreasing as bee is
more likely to stay loyal to its solution.

4.2 The BCO Algorithm 65

Recruitment. The probability that any uncommitted bee chooses (partial) solution of
a recruiter r equals to:

pr = Ob
R∑
k=1

Ok

, r = 1, 2, . . . , R, (4.5)

where Ok represents normalized value of the k-th advertised (partial) solution quality
and R denotes the current number of recruiters. Using equation (4.5) and a random
number generator through the roulette wheel, each follower selects one recruiter to
join.

4.2.3.1 Loyalty functions

In the literature the most used decision probability is pub determined by formula (4.4).
From an analytical perspective it can be reasoned that pub should be utilized when
we want to avoid often interruptions during the backward pass. Different perspective
on loyalty decision-making needs to be considered when we want to avoid behavior
of the pub . In recent articles [Nik13a, Nik13b] authors report that for some variants
of the BCOi algorithm, a better performance might be achieved if the forward pass
index (u) is omitted. Other formulas are examined in [Mak13] indicating alternative
ways to decide on loyalty. New results suggest that, when dealing with combinatorial
problems, introduced formulas by which probabilities are obtained are able to assist
the algorithm to faster obtain optimal or near-optimal solutions. The novel formulas
are: (1) pub = e−Omax−Ob; (2) pub = e(−Omax−Ob)/

√
u; and (3) pub = Ob .

In view of a increasing number of proposals for pub we introduce new term loyalty
function, denoted by pα,β. It enables to review different formulas by which the values
of pub are determined. Particularly, it provides analytical formulation of the decision-
making process that helps distinguish among different decision-making strategies. The
inscription incorporates p as the function symbol in order to stay close to the common
notation of the decision probability. In the superscript, variable α designates an index
of the loyalty function (α ∈ Z+). The second parameter β, know as a class indicator,
is used to assign the function to some predefined class. Its values may be: ∅, u, niter .
For example, loyalty function that describes probability pub = e−

Omax−Ob
u is denoted as

p0,u, where value u indicates that it belongs to a specific class of functions that employ
counter u. We believe that the proposed notation helps to avoid any ambiguity while
addressing other probabilities within the text. Occasionally, we address the loyalty
function by its index, as is the case in graphics provided in Chapters 8 and 9. It is
worth noting that the loyalty function corresponds to the loyalty criterion introduced
by Maksimović et al. in [Mak13].

This part of the section is exploring ten different loyalty functions employed as an
integral part of an empirical study of BCO and an integral part of our research [JK16c,
JK16a]. In addition to existing formulas we propose six new loyalty functions. Re-
sults of the conducted empirical study on BCO show that different loyalty functions
have different impact on the performance of the BCO algorithm. Therefore, we employ
graphical assessment of functions’ analytical expression in order to contribute towards
understanding of underlying mechanisms behind influence of loyalty decision. In par-
ticular, out goal is to elaborate in detail about the impact of functions arguments on
values of probability pub .

66 Chapter 4 Bee colony optimization method

We distinguish two classes of loyalty functions:

• Class I: class of all functions that have one argument, a normalized value of an
evaluation function, Ob.

• Class II: class of all functions that have two arguments, Ob and forward pass
counter u or iteration counter niter .

The second class of loyalty functions is also more versatile than the first, as it may hold
various combinations of two variables, while preserving values in the range between
zero and one.

4.2.3.2 Loyalty function p0,u = e−(1−Ob)/u

The probability function p0,u is a class II function, often employed in the literature
within BCO implementations while dealing with various combinatorial and continuous
optimization problems. The main goal is to elevate the values of loyalty decision prob-
abilities as the counter of forward/backward passes (u) increases during an execution
of a BCO iteration. In order to observe an impact of its two arguments Ob and u on
the probability pub , the function was plotted for u = 1, 2, 5, 10, 20, 50, 100 and complete
domain of Ob (i.e., [0, 1]). The graphics are presented in Fig. 4.10. To distinguish be-
tween different cases of u, each plot is referred to as the level of loyalty function. In
Figure 4.10, each colored plot corresponds to the different level.

Figure 4.10: Influence of forward pass counter u and normalized value Ob on the loy-
alty function p0,u

b = e−(1−Ob)/u.

In Fig. 4.10 the propagation of probability values within an iteration can be nicely
followed. In particular, it is interesting to contemplate the range of values for pub of
the worst (partial) solution. In the first foward pass, the lowest probability by which
a bee decides to stay with its (partial) solution, is close to 0.36. Another interesting
observation concerns plots for larger u. As the pass counter is reaching value 5, loyalty
function helps establish probabilities larger than 0.8. In fact, as soon u = 20 it becomes
almost certain that the bee will decide not to follow any of the recruiters and stay with
its own solution. Bees that obtain (partial) solutions of poor quality will have a high
chance to remain loyal and, consequently, transfer the solution into the next forward

4.2 The BCO Algorithm 67

pass/iteration. Namely, when pub is large bees do not share the knowledge and the BCO
algorithm resembles to multi-start iterative search.

4.2.3.3 Loyalty function p1 = e−(1−Ob)

Loyalty function p1 = e−(1−Ob) was proposed by independent work of [Mak13] and
[Nik13a]. It is a class I function, as it relies solely on the Ob values, therefore, charac-
terized by only one level. Its graphical presentation is provided in Fig. 4.11. Authors of
[Nik13a] were not explicit about the reason behind omission of the variable u, whereas
in [Mak13] different concepts of the loyalty probability pub were investigated. Without
levels, the function coincides with the probability function p0,1, ∀Ob ∈ [0, 1]. Conse-
quently, the lowest probability by which bees decide to remain loyal is not changing for
different u, yielding values of pub in the range [0.36, 1] within each backward pass of the
BCO algorithm. Contrary to p0,u that produces high number of loyal bees, the loyalty
functions p1 results in more uncommitted bees that will continue to exploit promising
areas. In addition, the worst solution will be transferred into the next forward pass
with probability close to 0.36, which is significantly smaller than values of p0,u≥2.

Figure 4.11: Influence of Ob on the loyalty function p1
b = e−(1−Ob).

4.2.3.4 Loyalty function p2 = Ob

Loyalty function p2 is proposed in [Mak13] as a part of investigation of various princi-
ples behind the probability decision. The function follows the expression represented
as a linear function of the Ob. Graphical representation is provided in Fig. 4.11. From
the graphic it is clear that the worst (partial) solution will not be transferred into the
next foraging cycle, since the corresponding probability pub is always equal to 0. As the
values of Ob change each time after the evaluation, yielding different values of proba-
bility pub , it is hard to predict their influence on the BCO performance. It seems that the
function p2 provides higher amount of intensification within the population compared
against the rest of loyalty functions.

68 Chapter 4 Bee colony optimization method

4.2.3.5 Loyalty function p3,niter = e−(1−Ob)/niter

Inspired by p0,u and p1, we propose new function p3,niter = e−(1−Ob)/niter . The objective
is to generate probabilities that will remain within the same interval during an execu-
tion of one iteration, however, throughout the iterations the lower bound changes. We
accomplished that by replacing the u with iteration counter niter . It is a Class II func-
tion, as it depends on two arguments: Ob and niter . Its graphical presentation coincides
with levels in Fig. 4.10, where instead of variable u all the levels of function p3,niter are
defined by value of variable niter . The function is most suitable for implementations of
BCO when parameter NC is not utilized, or when we want to disregard the impact of
the variable u. However, as was the case for p0,u, after niter reaches 20, probabilities
pub increase drastically. Therefore, another variant of the expression might be consid-
ered in the future work, such as reinitialization of the counter after it reaches some
predefined threshold.

4.2.3.6 Loyalty function p4,u = e−(1−Ob)/
√
u

As suggested in paper [Mak13], in order to weaken the impact of variable u on loyalty
probabilities, one can use the square root of u thus obtaining new loyalty function,
here marked as p4,u. Its graphical assessment is provided in Fig. 4.12. When u = 1
the graphic resembles that of other loyalty functions presented until now. Namely, the
lowest point in the graphic is equal to 0.36. Unlike p0,u, within an iteration of BCO the
highest level of the p4,u will not converge towards 1 as fast as p0,u. Moreover, all levels
are shifted towards lower regions of the probability space indicating higher recruitment
dynamics. This actually increases diversity of (partial) solutions with respect to p1 and
p2, and increases exploitation compared to p0,u and p3,niter . Assessing the plots we can
conclude that, compared to p0,u, the function provides much better balance between
diversification and intensification of the search space as the number of uncommitted
bees is higher for p4,u>20. Concerning the performance of the BCO algorithm, we expect
that it exhibits different results then of previous loyalty functions.

Figure 4.12: Influence of u and Ob for the loyalty function p4,u = e−(1−Ob)/
√
u.

4.2 The BCO Algorithm 69

4.2.3.7 Loyalty function p5,u = e−(1−Ob)
√
u/
√
u+1

Up to this point, all loyalty functions of argument u increase monotonically for u ≥ 1.
To reverse the idea by letting probabilities pub become smaller for larger u, we propose
function p5,u. Its graphic is presented in Fig. 4.13. Its first level provides highest
probability during the search for the worst (partial) solution to be transferred into next
forward pass. For u→∞ levels converge towards values of p1

b , i.e., levels are bounded
by loyalty function p1. The function p5,u is generated in order to avoid fast convergence
towards lower regions of the probability space, however, the range within the minimal
and maximal values of the worst case scenario is not as wide as first believed. The
function should be used to inspire new expressions, that would allow larger range of
function values.

Figure 4.13: Influence of u and Ob for the loyalty function p5,u = e−(1−Ob)
√
u/
√
u+1.

4.2.3.8 Loyalty function p6,u = e−(1−Ob)/ ln (u+1)

Similar to the idea that has inspired construction of the p4,u, instead using square root,
a logarithmic function may be employed. We were able to provide new expression of
loyalty function, here denoted as p6,u (Fig. 4.14). In this case, the influence of the
variable u is even more suppressed. It is worth noting that natural logarithm is used.
The graphical representation on the same domains of u and Ob is provided in Fig. 4.14.
Compared to loyalty function p4,u, levels of probabilities have decreased and the lower
and upper bounds on all possible values of the loyalty function are shifted toward lower
region of the probability space. The lowest point of the graphic is 0.236. Compared to
p4,u, probabilities p6,u are lower within each level of u.

4.2.3.9 Loyalty function p7,u = e−(1−Ob)/(u ln (u+1))

To expand the bounds of the loyalty functions, we used p7,u = e−(1−Ob)/(u ln (u+1)).
Level graphics are provided in Fig. 4.15. By comparing Figure 4.15 with 4.14 we no-
tice matching between the level p7,1

b and level p6,1
b . This serves as an indicator that

expanding toward lower regions was successful. The function p7,u however skips entire
segments of the probability space, converging fast to high values. Namely, the prob-
ability pub of the worst (partial) solution when u = 1, has tripled in the next level.

70 Chapter 4 Bee colony optimization method

Figure 4.14: Influence of u and Ob on the loyalty function p6,u = e−(1−Ob)/ ln (u+1).

Moreover, considering solely levels u ≥ 2 , function p7,u generates values larger than
values of function p0,u

b , thus causing bees to remain loyal to their (partial) solution
early within an iteration.

Figure 4.15: Influence of u and Ob on the loyalty function p7,u = e−(1−Ob)/(u ln (u+1)).

4.2.3.10 Loyalty function p8 = e−2∗(1−Ob)

Loyalty function p8 is similar to p1 regarding the omission of the variable u. The an-
alytical expression of p8 was designed in order to investigate a possible influence of
coefficient in the numerator of the exponent. The graphical representation is provided
in Fig. 4.16. As can be observed, the probabilities that are used in all iterations of BCO
will be, for the most part, lower than the average case of pub = Ob. Beside p2, the func-
tion also provides the lowest point in the probability space. An additional increase in
the negative power of the exponential would further expand the reaches of the loyalty
functions towards the lower regions of the probability space. The coefficient should
not, however, be much higher than 2.

4.2 The BCO Algorithm 71

Figure 4.16: Influence of forward pass counter on the loyalty function p8 = e−2∗(1−Ob).

4.2.3.11 Loyalty function p9,u = e−(1−Ob) ln (u+1)/ ln (u+2)

Similar to p6,u, the idea is to investigate the influence of the logarithmic function on
the probability space. For that reason we propose new probability function p9,u =
e−(1−Ob) ln (u+1)/ ln (u+2). Its graphical representation is provided in Fig. 4.17. The func-
tion resembles p5,u

b , however, when the ranges between the lowest and highest proba-
bilities for Ob = 0 are compared between these two functions, p9,u

b shows nicer prop-
erties. Namely, the initial probabilities are higher then of p5,1. All possible values of
the loyalty functions for u ≥ 2 are shifted toward lower regions beneath the level p9,1.
Similar to p5,u, as u converges to higher values, the function converges towards p1. The
span between probabilities obtained when Ob = 0 and u = 1, . . . 100 is broader then of
p5.

Figure 4.17: Levels of loyalty function p9,u = e−(1−Ob) ln (u+1)/ ln (u+2).

72 Chapter 4 Bee colony optimization method

4.2.3.12 Models of choice

So far the concept of choice has been used in more than one occasion, which deserves
more consideration. Within the BCO model two types of choices are used: those based
on probabilities and the roulette wheel. To elaborate on the first type, let us observe
formula (4.3). After the probability that the bee will stay loyal to its (partial) solution
is determined, a number is chosen by uniform distribution U(0, 1] and compared to pub .
If the chosen random number is smaller than the value of pub , the bee remains loyal to
its solution. Otherwise, the bee becomes uncommitted, as shown in Fig. 4.18.

Figure 4.18: Probability based choice.

Roulette wheel represents another method of selection and it is a technique that is
exploited in many domains of the theory of games. When utilizing roulette wheel all
(partial) solutions are assigned with a value proportional to their quality. Therefore,
the principle of the roulette wheel is to randomly select candidate solutions based
of their objective (evaluation) value. Solution with better quality will have a higher
chance to be selected. Equivalently, we leave the possibility that the good solution may
be eliminated from the further search process as well as the possibility that the low
quality solutions will be further explored.

Figure 4.19: Roulette wheel.

The illustration of the roulette wheel is presented in Fig. 4.19 as the surface subdivided
into wedges. The wedge represents probability associated to the corresponding (par-
tial) candidate solution. The size of the wedge, in practice, is determined by the ratio of
the corresponding normalized objective function value and the sum of the normalized
objective function values for all solutions advertised by recruiters [Dav15b]. Recently,
some new selection methods in BCO have been tested [Alz15]. Among roulette, tour-
nament, rank and disruptive selection, the later one performed the best.

4.2 The BCO Algorithm 73

4.2.4 Comparing ABC, ACO and BCO

The differences between three meta-heuristics are provided in the following text. It
should be noted that ABC and BCOi share most of features, whereas ABC and BCOc
are different. We point out the differences between both variants of BCO and ABC as
follows:

• Initial solutions are generated in various ways: randomly in ABC and in some
constructive probability based manner in BCOc and or randomly in BCOi;

• Bees have different role (e.g. scouts, employed bees and onlookers) in ABC, while
in BCO all bees perform the same algorithm steps;

• In ABC and BCOi the whole solutions are propagated, while in BCOc partial so-
lutions influence the decision making process;

• In ABC the dance duration (i.e. the number of iterations a solution is propagated)
is changing, contrary to BCO where only the solutions from the current iteration
are propagated;

• ABC involves solution improvement, which is opposite to purely constructive ba-
sic BCO approach.

The major differences between ACO and BCO are as follows:

• The communication between ants is indirect and based on the solution compo-
nents (pheromone trials), on the contrary to synchronous direct communication
between bees which uses (partial) solutions;

• In the majority of the cases, ants use the local search to improve generated solu-
tions, while the improvement is not employed concept for BCOc;

• During the solution generation process bees communicate the information from
the current partial/complete solutions, while ants use the previous search expe-
rience;

• Unlike BCO, the ACO algorithms sometimes use re-initialization (of pheromone
trails) to escape from local optima.

Next, we emphasize the similarities between these three methods (ABC, ACO, BCO).
They are:

• The initial inspiration is coming from the foraging habits of social insects;

• All of them are population based methods;

• Artificial individuals exchange knowledge and experience during the search;

• A large number of new solutions is generated from the scratch.

74 Chapter 4 Bee colony optimization method

4.2.5 Final remarks

The BCO method has been proved useful in dealing with hard optimization prob-
lems, mainly due to its potential to explore different solutions and by harnessing
stochastic processes. The BCO methods has been successfully applied to various com-
binatorial and continuous optimization problems [Teo15]: routing [Luč01, Luč03a,
Luč03b, Mar07, Won09, Won10a], location [Teo07, Šel08, Šel10, Dav11b, Dim11,
Lev11, Soh11, Dav11b], scheduling [Dav09, Dav12, Kov13, Mou11, Ned09, Per11,
Teo05, Teo08], medicine with chemistry [Sa’13, Teo13], network design [Nik13b], nu-
meric functions optimization and mixed optimization problems [Nik13a, Sto13]. A
survey on various applications of the BCO algorithm is depicted in [Teo15, Dav15a].

Beside the fact that BCO has been successfully applied to various optimization prob-
lems, enough space is left for its advancement by examining, for example, various
information sharing mechanisms and different mechanisms of collaborations, or fur-
ther exploring homogeneity of bees (e.g. exploiting heterogeneous bees). Preliminary
results concerning heterogeneity are presented in [Nik15]. As previously discussed,
different types of probability choices might be further explored, such as roulette, tour-
nament, rank or disruptive selection. For example, the tournament selection is known
as a standard for nearly all GAs [Hau04].

Theoretical analysis of the BCO was the first time tackled in [JK14a, JK14b, JK16b].
In [JK14a] the BCO algorithm convergence is analyzed in the best-so-far sense. In
particular, we have determined the necessary and sufficient conditions that guarantee
the convergence in probability of BCO towards an optimal solution. It is concluded that
the algorithm should propagate the best-so-far solution during the search and that all
feasible solutions must be reachable. In [JK14b, JK16b] the BCO method is analyzed by
means of model convergence, implying a specific type of probabilistic rules that need
to be implemented in order to guarantee a more efficient search. We have concluded
that the important feature of the BCO algorithm is to include a learning component
about the quality of previously visited solutions. As a contribution to the performance
enchantment, future work might involve implementation of the theoretical results for
BCO.

As a method based on the population of solutions, the BCO is suitable for application
of different parallelization strategies. To the best of the authors’ knowledge, prior to
[Dav13] the parallel execution of BCO is treated only in [Dav11b] where independent
multiple execution of different BCO algorithms is proposed and a significant speedup,
while preserving solution quality, is reported. The contribution of this thesis is to in-
vestigate other various types of parallelization strategies on the BCO algorithm. The
topic is to some extent covered in [Dav13] where the constructive version of BCO is
implemented for the scheduling problem and tailored for distributed systems.

During the past decades an extensive work has been conducted to improve the met-
hodological empirical analysis of meta-heuristics. The first results concerning empirical
analysis of the BCO algorithm are given in [Mak13, Nik13a]. Some questions remained
open, e.g., the interaction between different BCO parameters or the connection be-
tween properties of the considered problem and the BCO algorithm performance. In
[JK16c, JK16a] we have addressed the question of parameter interrelation. Moreover,
the topic of parameter configuration of the BCO algorithm is treated in the Chapters 7–
9 of this dissertation. Future work needs to concern choice/development of tools for
efficient parameter tuning based on appropriate statistical methods.

4.3 Chapter summary 75

4.3 Chapter summary
This chapter provides information about the past and current development of the BCO
method. We review the bees’ behavioral model to help present similarities with the
current BCO framework. Furthermore, we have distinguished the work of von Frish
and Camazine and Sneyd that pioneered in the field of modeling of bees’ foraging
behavior.

In this chapter we give:

• Overview of early work towards understanding and modeling bees’ behavior dur-
ing foraging and the review of the first steps of the BCO model development.

• Pseudo-code of the BCO method and detailed description of the constructive and
improvement variants of BCO.

• New concept of deciding on loyalty as we define loyalty functions and conduct a
graphical assessment of dependence.

• Final remarks Brief survey of the BCO application for solving different optimiza-
tion problems.

• Commentary on future development and research on BCO algorithms and appli-
cations.

77

Module II

Methodology and contributions

CHAPTER5
Theoretical analysis of the asymptotic

convergence of the BCO method

Theoretical analysis of a meta-heuristic algorithm may be conducted in different
ways. One can observe the algorithm as Markov chains, where the algorithm’s behav-
ior is controlled by its solution steps and transition moves. Another approach is to
study about the balance between diversification (exploration) and intensification (ex-
ploitation) components of the algorithm. The subject of this chapter is the theoretical
analysis of the BCO algorithm properties that lead towards generation of a global opti-
mum. In this chapter we cover formal definitions of two types of stochastic convergence
used as the basic tool for theoretical analysis of various meta-heuristics. Moreover, al-
ready existing contributions to the topic are presented, while focusing on parts that
are relevant for our study. We do not discuss the effectiveness of the BCO algorithm
or provide improvements that would enhance the performance on any optimization
problem. Rather, we provide necessary convergence conditions and prove that, when
satisfied, the BCO algorithm can generate optimal solution of a considered problem if
given enough time.

5.1 Motivation for theoretical analysis
Assuming that the considered optimization problem has a solution, convergence anal-
ysis is related to the question: will the desired optimum be found if the algorithm is
given enough time. A serious drawback of meta-heuristic methods is the lack of in-
formation necessary to determine the actual quality of the reported solution: even if
solution is optimal, no proof could be derived. Consequently, when suboptimal solution
is reported we cannot estimate how far it is from some desired optimum. In the litera-
ture we can find a growing body of tutorials on theoretical analysis of convergence of
meta-heuristic methods [Pin84, Liu09, Gut09, Yan11, Che13]. Nevertheless, majority
of practitioners are largely focused on demonstrating, instead of analyzing method’s
performance. Moreover, meta-heuristics are primarily investigated experimentally, for
the most part associated with their concrete engagement and implementations.

The difficulty in theoretical analysis of meta-heuristic methods is generally a conse-
quence of highly nonlinear, complex, and stochastic interactions between their various
components [Yan11]. There are different approaches to theoretical analysis of stochas-
tic algorithms, such as observing the processes as dynamical systems and Markov chains
and using tools of computational complexity theory and probability theory [Yan14]. For
example, finite state Markov chains is a common approach to model EA algorithms to

80 Chapter 5 Theoretical analysis of the asymptotic convergence of the BCO method

compute the optimal convergence probability with finite search sets [Ras11]. [Rud94]
investigate convergence properties of the canonical GA by means of Markov model, and
shown that only variants of CGA with an elite reserve policy converge to a global opti-
mum. [Rud96] provides conditions under which EA algorithms with an elitist selection
rules converge to the global optimum. Among mentioned methodologies, probability
theory is the most common approach for analysis of non-deterministic algorithms. A
good review of this subject is given in [Che13].

Intensive applications of meta-heuristics and their remarkable success in solving var-
ious optimization problems has initiated the development of a mathematical methodol-
ogy for explaining and predicting a performance of meta-heuristic algorithms [Pap98].
The methodology depicts formal aspects, e.g., convergence and scalability analysis,
the design of novel operators, universal computation and approximation capabilities,
hybridization with other methodologies and approaches, the automatic parameter tun-
ing, etc. [Cas07]. Some aspects of an algorithm’s behavior are in theory well explained
(e.g., convergence analysis and scalability of ACO and PSO), while others remained
unanswered (e.g., connection between convergence speed and properties of a prob-
lem) [Cas07, Gut11]. It can be argued that the lack of theory can influence a number
of meta-heuristic prospects, such as the development of more effective meta-heuristic
algorithms, identification of the meta-heuristic the most appropriate for a given prob-
lem, more thorough investigations into the benefits and/or drawbacks of particular
meta-heuristic, etc. [Glo86, Hoo95, Pap98, Wat10].

Theoretical analysis of meta-heuristics is commonly addressing a question of conver-
gence: will a given meta-heuristic method find an (global) optimal solution when given
enough resources [Dor05]. The question about the asymptotic convergence dates back
to the beginnings of the random search method and analysis of its properties. Random
search method was first considered in the design of experiments for the purpose of seek-
ing maxima. According to [Whi70] the pure random search is mentioned in [And53]
and later elaborated in [Bro58]. The method is based on selecting n random points
and taking the one with the largest value of an optimal function f . In order to study
the convergence of a random search method, Rastrigin in [Ras63] observes creeping
random search. The method is based on improving the current solution by conducting
step moves. In the same paper the author considers convergence rate and compares
the algorithm with the steepest decent method. Other researchers, such as Karnopp
in [Kar63], have stressed the importance of the random search methods for general op-
timization problems. However, the general convergence proofs were presented by Solis
and Wets [Sol81], almost 20 years later, for two versions of the conceptual (generic)
random search algorithm. Namely, the authors distinguished local and global versions.
Opposed to local search, the algorithm is considered as a global search method if, for
any A ⊂ S, the probability of repeatedly missing the set A must be zero [Sol81].

Theoretical verification of meta-heuristic convergence is a topic of many research
papers: SA [Haj88, Gra94, Ste00], GHC (generalized hill-climbing) [Sul01, Joh02a,
Jac04b, Jac04a], PSO [Tre03, Zen04, VDB06, Jia07, GG12], CE (cross-entropy) [Mar05],
GA [Har90, Rud94, Sch01], ACO [Gut00, Stü02, Gut02, Zlo04, Gut11, Köt12], TS
[Han01] and VNS [Bri04]. Various approaches can be distinguished. Difference be-
tween them is that, for the most part, the starting point is a specific algorithm not
related to some other meta-heuristic method. For this reason authors of [Zlo04] and
[Gut09, Gut10] provided a general framework to encompass most (or all) known meta-

5.2 Instance- and model-based algorithms 81

heuristics.

5.2 Instance- and model-based algorithms

An alternative framework, one that would enable improving the performance of major-
ity of meta-heuristic algorithms, were proposed in [Zlo04, Gut09]. These frameworks
are based on analyzing the parameters of the corresponding meta-heuristic method.
The authors discuss two main approaches to constructing meta-heuristic methods.
In particular, borrowing a notation from the machine learning field, Zlochin et al.
[Zlo04] proposed two types of heuristic algorithms: instance-based and model-based.
An instance-based algorithm is one that uses only current solution or a set of current so-
lutions, in order to generate new candidate solutions. Model-based algorithms (MBS)
are algorithms that generate candidate solutions using a parameterized probabilistic
model. The authors of [Zlo04, Gut09] agree that, in order to generate high-quality
solutions, the considered meta-heuristic has to utilize previously attained knowledge.
This actually means that the meta-heuristic method has to learn from previously vis-
ited solutions how to concentrate its search on the more promising areas of the solution
space, i.e., the regions containing solutions of higher quality.

According to [Zlo04], a meta-heuristic method satisfies the model-based search prop-
erties if it attempts to solve the optimization problem by repeating the following two
steps:

• Candidate solutions are constructed using some parameterized probabilistic model.

• The candidate solutions are used to modify the model in such a way to concen-
trate the search toward more promising regions (containing solutions of better
quality).

For that type of meta-heuristics the model-based parameter scheme was adopted as an as-
surance for model convergence by Gutjahr [Gut09]. Then, the considered meta-heuristic
can be analyzed with respect to its parameters.

Important component of the model requires an update rule for the method’s parame-
ters and/or structure [Zlo02, Zlo04]. A role of the update rule is to define a probability
vector that will explicitly keep gathered knowledge (statistics). On the contrary, in the
classical algorithm designs, to implicitly maintain statistics about a search space (about
information that is carried into the next iteration) according to [Bal95] a population of
solutions is commonly used. To combine the best from both worlds, in [Bal95] the au-
thors proposed an abstract genetic algorithm, so called population-based incremental
learning (PBIL), where the classical GA operators were replaced by three parameters:
(a) a number of samples, (b) a learning rate, and (c) a number of probability vectors.
Authors have compared PBIL and GA and showed that PBIL outperforms GA on a four
peaks problem, which they also introduced in the same paper. Incorporating update
rules inspired a new design of algorithms (with good grounds for theoretical studies)
and development of more sophisticated algorithms [Ras11]. In particular, the early
work on PBIL motivated the model-based approach in [Zlo02, Zlo04].

To assure model convergence of the meta-heuristic Gutjahr presented generic algo-
rithm, which we briefly review here. First, let us consider an optimization problem
that requires minimization of a real-valued function f on a search space S. Generic

82 Chapter 5 Theoretical analysis of the asymptotic convergence of the BCO method

algorithm is an iterative algorithm that uses two structures: mt and Lt, where t is an it-
eration index. In iteration t structure mt defines a state of memory, while Lt represents
a list of solutions (xi ∈ S) employed as sample points in iteration t. The description of
the algorithm consists of following steps:

1. Initialization of memory m1 by specified rules;

2. t← 1;

3. Until stopping criterion is satisfied:

a) Determine the list Lt as a function g(mt, ξt) of memory state mt and a ran-
dom influence ξt;

b) Determine a value of objective function f(xi) for all xi ∈ Lt, and generate
a list L+

t of pairs (xi, f(xi));
c) Determine new memory state mt+1 as a function h(mt, L

+
t , ξ

′
t) of current

memory state mt, list of solution-value pairs L+
t and random influence ξ′t;

d) t← t+ 1.

Structuremt consists of two components: ms
t , part of memory that contains all solution-

values (sample-generating part) andmr
t , part of memory that contains reports (reporting

part). The component ms
t holds all the information required by function g to gener-

ate the list Lt of sample points. The component mr
t accommodates all other relevant

information, for example, solution of the highest quality found so far, namely best-so-
far, xbsf . In the initialization phase, a value of variable xbsf is set arbitrary until, in
some iteration t, it copies a value from x̂t, the best among xi solutions that satisfies the
condition f(x̂t) < f(xbsf). Furthermore, function g(mt, ξt) specifies a probability dis-
tribution for new elements of list Lt, whereas function h(mt, L

+
t , ξ

′
t) denotes probability

distribution of the new state of memory mt+1. It is important to note that information
about the problem instance can also be used as an argument of functions g and h. In
addition, we want to emphasize that the best-so-far solution in iteration t is used as a
current approximation of a global optimal solution [Gut09].

Gutjahr [Gut09] provided several examples for generic algorithms of meta-heuris-
tic method, e.g., the GHC method, canonical GA (CGA) and ACO. Here, we review a
procedure for ACO. Generic ACO uses procedure structures: a sample part ms

t , con-
taining a matrix of real-valued pheromones, and mr

t containing xbsf , possibly also an
iteration-best x̂t. Furthermore, the list Lt contains k solutions. The procedure steps for
ACO are: (1) let k agents construct k random solutions, where the moves are governed
by the pheromone values stored in ms

t and thus obtain Lt; (2) update mt to mt+1 by:
(a) update xbsf based on k new solutions in L+

t , and (b) apply specific pheromone up-
date rule to obtain new pheromone values from the current values by reinforcing the
components of the solutions contained in xbsf . Similarly, generic algorithm for BCO
method can be deduced, which we present in section 5.4.

5.3 Theoretical background

The main theoretical contribution of this thesis (Section 5.4) concerns the proof of
convergence of the BCO method towards an optimal solution. Therefore, we recall

5.3 Theoretical background 83

some of the basic tools of probability theory and establish the notation necessary to
present our results.

Most of the meta-heuristics are stochastic search algorithms, and therefore, in order
to obtain formal definitions of algorithm convergence, tools of probability theory are
used while we consider the series of random variables with a common distribution.
Generally, the random variables are not independent. For meta-heuristics the inde-
pendence holds only in case of pure random-walk search techniques. Two important
definitions of stochastic convergence are provided in the following [Bil86, Pap91c].

From mathematical definition, an expression convergence is defined to answer a
question whether or not a series of elements (x1,x2, . . . ,xt, . . .), xt ∈ X , converges to
a fixed value x∗. We also define some distance function d between these elements. The
sequence (xt)∞t=1 converges to a fixed value x∗, if for each ε > 0, there is an integer t0
such that d(xt,x∗) < ε for all t ≥ t0, where d(·) is a convenient metric function (for
vector it is usually a vector norm || · ||). If the space X is finite, the simplified version of
the definition is applicable: xt converges to x∗ if and only if there is some t0 such that
xt = x∗ for all t ≥ t0.

Let (X1, X2, . . .) be a series of random variables with the common distribution.

Definition 8 (convergence in probability). A sequence of random variables (X1, X2, . . .)
converges in probability to a random variable X∗, if for all ε > 0,

lim
t→∞

Pr({d(Xt, X
∗) ≥ ε}) = 0

where d is the distance function on the space X from which the random variables Xt

take their values. 3

Definition 9 (convergence with probability one). A sequence of random variables
(X1, X2, . . .) converges with probability one (short: w. pr. 1) or almost surely to a
random variable X∗, if

Pr({ lim
t→∞

Xt = X∗}) = Pr({Xt → X∗}) = 1,

i.e., if with probability one the realization (x1,x2, . . .) of the sequence {Xt}∞t=1 con-
verges to the realization x∗ of X∗. 3

For random variables that satisfy condition of Def. 8 it is said that the weak law of
large numbers holds uniformly on X [Sha96]. Usually the definitions are specialized
to the case where X∗ takes a constant element x∗. In this case, if X is a finite set,
convergence of Xt to x∗ w. pr. 1 holds exactly if

Pr({∃u ≥ 1 : Xt = x∗ ∀t ≥ u}) = 1,

and convergence of Xt in probability holds exactly if

lim
t→∞

Pr({Xt = x∗}) = 1.

However, the definition of the convergence in probability can be generalized by saying
that if set of limit solutions, denoted as X ∗, is the subset of X then

lim
t→∞

Pr({Xt ∈ X ∗}) = 1.

84 Chapter 5 Theoretical analysis of the asymptotic convergence of the BCO method

Moreover, it is important to provide the most often used elaboration of the convergence
in probability in the literature: "The basic idea behind the convergence in probability is
that the probability of an unusal outcome becomes smaller and smaller as the sequence
progresses". What is referred by an "unusal" event is that d(Xt, X

∗) exceeds any pre-
scribed, positive value ε [Kar93].

Considering meta-heuristics, convergence is defined to answer a question whether
or not current solution, proposed by a meta-heuristic method, converge to an optimal
solution and, if yes, how fast this happens [Gut09]. In particular, the sequence of ran-
dom variables corresponds to iterations of a meta-heuristic algorithm. At the end of
each iteration, the algorithm reports a solution. To establish analogy with previous
definitions, we denote any solution found in iteration t as xt = (x1

t , x
2
t , . . . , x

n
t), where

xit ∈ R is the element (component) of the solution. In case of population-based al-
gorithms, at the end of a iteration t the algorithm reports the iteration-best solution
x̂. Let us presume that the algorithm incorporates global knowledge. Thus, we ob-
tain "best-so-far" solution in iteration t, denoted by xbsft . Therefore, analyzed sequence
(x1,x2, . . . ,xt, . . .), where xt ∈ X , denotes a sequence of "best-so-far" solutions xbsft
generated by the meta-heuristic method after t iterations. Let global optimum be de-
noted as x∗. The distance function d is defined as d(xi,xj) = |f(xi) − f(xj)|, i.e., as
the absolute difference between the corresponding values of the objective function. For
most of the meta-heuristic methods it holds that once an optimal solution is reached, it
is propagated across the forthcoming iterations. Consecutively, our sequence becomes
(xbsf1 ,xbsf2 , . . . ,xbsft , . . . ,x∗,x∗, . . .).

Dorigo and Blum recognized two types of convergence [Dor05]: convergence in value
and convergence in solution. Goal of convergence in value is to evaluate the probability
of finding an optimal solution at least once. However, when investigating the conver-
gence in solution, the aim is to evaluate the probability that the algorithm reaches a
state in which it generates optimal solution. [Gut09] identifies the two types of conver-
gence as the best-so-far convergence and more sophisticated model convergence. Unlike
best-so-far, the model convergence is more complicated to prove since the compro-
mise between exploration and exploitation of the search space needs to be balanced by
properly adjusting algorithm’s parameters. In addition, proof of model convergence is
focused on the ms

t part of the memory.
Slightly different framework for algorithm analysis in terms of Markov chain Monte

Carlo was formulated in [Yan11]. The convergence analysis of SA and PSO was ex-
amined in this context as well as the analysis of a newly proposed method, the firefly
algorithm. In this thesis, however, we endorse the approach proposed in [Gut09].

5.3.1 Best-so-far convergence

The first type of convergence refers to a question whether or not the best-so-far solution
xbsft converges to some optimal solution x∗, as t → ∞. Considering meta-heuristics,
this question actually refers to the convergence of the objective function values f(xbsft),
(t = 1, 2, . . .) to the optimal function value f(x∗). Thus, we may ask under which
conditions it can be guaranteed that f(xbsft) converges ("w. pr. 1" or "in probability") to
f∗ = min{f(x) : x ∈ X}.

Proving the best-so-far convergence is generally simple. The concept originates from
theoretical work of random search method, e.g., in [Sol81]. [Sol81] derive general

5.3 Theoretical background 85

convergence conditions for global and local search versions of the conceptual random
search algorithm, for problem of minimization of function f on S ⊂ R. The conceptual
algorithm is based on step xt+1 = D(xt, ξt), i.e., mapping of solution xt and random
samples ξt onto a new solution. This means that xt+1 is generated according to some
conditional probability measure, denoted by µt. We focus on the global search variant
and the two provided conditions. The first one is that for map D with domain S ×
Rn the condition f(D(x, ξ)) ≤ f(x) must hold. The second condition is that for any
(Borel) set A ⊂ S with positive Lebesque measure v(A) > 0, following must hold:∏∞
t=0 [1− µt(A)] = 0. The later means that the probability to repeatedly miss set A,

over all iterations, must be zero [Sol81]. By means of Markov chain theory [Rud96]
concludes similarly for EA algorithms, i.e., regardless of the starting point, a nonzero
probability to visit any subset of X needs to be enabled. The both requirements from
[Sol81] can be substituted by only one condition, that the probability (p∗) of hitting
an optimal solution in a single iteration of the search procedure is strictly greater than
zero [Gut09]. The conceptual algorithm differs from the pure random search method as
it incorporates some view of knowledge. Namely, generic algorithm of the pure random
search relies on the reporting part of the memory mr

t that consists only of xbsft , while
the sample-generating partms

t is empty. Becausems
t does not hold any information, the

choice of a new solution is performed independently from previous iterations [Gut09],
whereas conceptual random search algorithm uses ms

t when choosing µt.

Best-so-far convergence has been proven in [Har90, Rud94] for certain variants of
GA, transferring "elite" solutions from generation to generation (elitist selection implies
that the best individuals survive with probability one). Rudolph [Rud94] proved that
even though original CGA never converges to the global optimum for any selection
of the initial population, crossover operator, and objective function, while modified
versions, like elitist GA, do. In [Har90] the author concluded that global convergence
of simple GA can be achieved not only if the best individuals survive, but also (in a
spirit of simulated annealing) in the cases when some randomly selected individuals
are transferred to the next generation. The various stochastic convergence properties
for EA were summarized recently in [Rud12]. The best-so-far convergence has also
been proven for some variants of ACO [Stü02] and PSO [Zen04].

Among the single solution based methods, the best-so-far convergence was first
proven for SA [Haj88]. This and the later convergence results for SA [Gra94, Ste00]
serve as the initial point in analyzing the convergence of many other methods, both
population and single solution based. In [Han01] the author proposed a Convergent
TS (CTS) algorithm with the special rules to deal with the situations where cycling is
unavoidable. The best-so-far convergence of VNS and MLS was considered in [Bri04].
In the case of MLS, it was concluded that the probability of obtaining a local solution
in any iteration depends on the volume of the number of points in the so called en-
trapment zone, which leads to exponentially increasing the time for finding a global
solution. The necessary condition for the convergence of VNS was expressed with re-
spect to the parameter kmax defining the largest neighborhood visited: it has to be
sufficiently large to cover the entire search space S.

The convergence concept described above may look nice. However, this concept is
too "generous" since it turns out that even very inefficient search algorithms converge
to the optimum. The standard example of this observation is the random search. Fur-
thermore, it turns out that the expected value of the first hitting time E(T1), is usually

86 Chapter 5 Theoretical analysis of the asymptotic convergence of the BCO method

very large which makes this convergence concept unhelpful for the practice. The first
hitting time is given as T1 = inf{t : f(xbsft) = f(x∗)}. The measure is typically used
in the runtime analysis of stochastic algorithms that deals with questions regarding
computational effort needed to obtain an optimal solution for the first time [Gut10].

5.3.2 Model convergence

To ensure that provable convergence properties correspond also to a good runtime
behavior, the best-so-far convergence is not enough. In addition, we need to address
the issue of a poor performance as the search sharply decreases in the neighborhood
of the optimal solution [Pin84]. In [Gut09, Zlo04] it was stated that an efficient meta-
heuristic method should concentrate the search more and more on the most promising
areas of the search space S exploiting the previous search experience. The current set
of solutions was referred to as the current model for the search distribution [Gut09].
In the model-based view, the generation of new search points depends on the current
model. The newly obtained objective function values are evaluated, and the obtained
information is then fed back for a modification of the model.

By the argumentation above, a runtime behavior superior to that of random search
can be expected if it can be shown that the model (the set of current solutions) con-
verges, as t→∞, to some state that supports only the generation of optimal or at least
high quality solutions. This type of convergence is actually model convergence [Gut09].

Contrary to the proofs of best-so-far convergence which are quite easy, model con-
vergence proofs have to take the exploration/exploitation tradeoff explicitly into ac-
count and only succeed under parameter assumptions ensuring a proper balance be-
tween these two factors. The main conclusion in [Gut09, Zlo04] is that parameter val-
ues have to change during the search. Typically, the convergence results lead to rather
narrow conditions for parameter schemes within which model convergence holds; out-
side the balanced regime, either a surplus of exploitation yields premature convergence
to a suboptimal solution, or a surplus of exploration produces random-search-type be-
havior without model convergence (although best-so-far convergence may hold).

Historically, the first model convergence results have been found in the SA field
[Haj88]. In order to implement convergent SA one has to change the cooling temper-
ature rate T (t) as a non-increasing function of the iteration number t that approaches
zero as t→∞. Hajek [Haj88] suggested the following function for T (t):

T (t) = c

log(t+ 1)

for suitably selected constant c. Furthermore, model convergence results have been
provided for GHC algorithms [Joh02a, Jac04b, Jac04a]. The authors work already on
a general level and present rules applicable to wide range of meta-heuristic methods.

Results for model convergence exist also for some ACO variants [Gut00, Gut02].
For a Graph-based Ant System (GBAS), two cases were identified [Gut02]:

1. For GBAS with time-dependent evaporation rate ρ(t) the convergence conditions
are as follows

ρ(t) ≤ 1− log t
log(t+ 1) , (t ≥ t0) for some t0 ≥ 1,

5.4 Convergence analysis of the BCO method 87

and
+∞∑
t=1

ρ(t) = +∞.

2. GBAS with time-dependent pheromone lower bound τmin(t) converges if the fol-
lowing condition is satisfied

τmin(t) = c(t)
log(t+ 1) for t ≥ 1 with lim

t→+∞
c(t) > 0.

In order to design GA as a model-based search, various authors proposed either
to use time-dependent mutation and/or crossover probabilities or to substitute classi-
cal GA operators by some other, ACO-based probabilistic transformations. The brief
overview of these ideas can be found in [Sch01, Zlo04]. The model convergence has
also been considered for a variant of Cross Entropy Optimization [Mar05].

Detailed analysis of the principles incorporated in the PSO algorithm described in
[GG12, Jia07] adopted completely different approach to the definition of convergence
properties for this meta-heuristic method. Starting with the rules for updating positions
and velocities of each particle in each iteration, the authors identified three influencing
parameters (the inertia weight, global and local accelerations). Since their update rules
represent the motion equations involving differentiation, the values for the influential
parameters have to be chosen in such a way as to guarantee the stability of the resulting
equations. This stability is, however, closely related to the convergence properties of
the PSO meta-heuristic. In [GG12] the authors presented a taxonomy of various PSO-
based algorithms and pointed out the appropriate values of the influential parameters
for some of them.

5.4 Convergence analysis of the BCO method
Each implementation of the BCO algorithm is tailored for a particular optimization
problem that one wants to solve. This involves the solution representation, the rules for
constructing/modifying current solutions, as well as the evaluation and the comparison
of these solutions. Once the program is completed, it is executed on each of the given
instances until the stopping criterion is satisfied.

The final solution of the BCO execution is identified as the best solution found before
the stopping criterion is fulfilled (xbsf). If the optimal solution for a particular problem
instance is not known, we cannot discuss the quality of the final BCO solution. Is it
the optimal one or, if not, how far is it from the desired optimum? The only thing we
can do is to increase the maximum number of iterations and, possibly, obtain a better
final solution. A numerous successful applications of the BCO method illustrated its
efficiency in an experimental way. Moreover, there are some recent papers dealing with
the empirical evaluation and parameter calibration of BCO [Nik13a, Mak13, JK16c,
JK16a]. The main goal of this thesis is to provide some results towards theoretical
analysis of BCO.

For the considerations to follow, we assume that the optimization problem involves
minimization of some objective function f(x) on the feasible space X . Additionally, the
stopping criterion is defined as the maximum number of iterations. For the course of

88 Chapter 5 Theoretical analysis of the asymptotic convergence of the BCO method

our analysis we borrow the notation from [Jac04b, Gut09] and define the following
events.

Definition 10. Let x be any feasible solution of the considered problem. For each
iteration t ≥ 1:

• C(t) represents the event that xt = x, i.e., the considered solution was generated
in iteration t. The complementary event is denoted by Cc(t).

• B(t) denotes the event Cc(1) ∩ Cc(2) ∩ · · · ∩ Cc(t), i.e., the algorithm does not
visit x over first t iterations. Bc(t) is the complementary event to B(t).

• B =
⋂∞
t=1B(t) describes the event that x cannot be generated by the algorithm,

i.e., no iteration at all produces the consdidered solution x.

• r(t) = Pr(Bc(t)|B(t − 1)) = Pr(C(t)|B(t − 1)) is the probability that in the iter-
ation t, solution x is produced, although it has not yet been produced in any of
the previous iterations. 3

The events in Def. 10 might specify different outcomes regarding the type of the
solution. In particular, we utilize the same notation for events related to the optimal
solution. Thus, before utilization of Def. 10 in the thesis we always specify which type
of solution is being observed.

An important feature of the event B(t) is the type of the sequence it produces. Let
x = x∗ and B(1) denote the outcome that the algorithm did not produce an optimal
solution in the first iteration. If Ω denotes the space of all possible outcomes, then
B(1) = Ω\C(1). Consequently, the {B(t)}∞t=1 is a non-increasing sequence of events(1),
i.e.,:

B(1) ⊇ B(2) ⊇ · · · ⊇ B(t) ⊇ B(t+ 1) ⊇ · · · .

5.4.1 Approximation of an optimal solution
To establish solid grounds for convergence proof of population-based method, we need
to consider more carefully how the sequence (xt)t∈N, introduced in Section 5.3, is being
constructed.

Let {x1
t ,x

2
t , . . . ,x

b
t , . . . ,x

B
t } denote a collection of solutions generated in iteration t,

where each solution consists of n elements. The best solution in iteration t with regard
to some objective function f(x) of the minimization problem, is denoted as x̂t such
that f(x̂t) = minb∈{1,...,B} f(xbt). The BCO algorithm can start with some initial value
for xbsf1 , after which it is being calculated as:

xbsft+1 =
{

x̂t if f(x̂t) < f(xbsft);
xbsft otherwise

(5.1)

for t = 1, 2, In other words, the best-so-far solution is updated only if better so-
lution is produced. Therefore, the update rule (5.1) does not forbid generation of
other solutions from X . Practicality of this approach is in observation of one instead
(1)In [Gut09] the author mistakenly reported that the sequence {B(t)}∞t=1 is non-decreasing.

5.4 Convergence analysis of the BCO method 89

of population of solutions. Moreover, the rule can be easily defined for a maximization
problem.

A good approximation of the optimal solution would be a solution that is not far
away from the optimum and/or an optimum are reachable from any current best-so-
far solution. Therefore, the best-so-far solution is used as a current approximation of
the global optimal solution in iteration t [Gut09]. In order to analyze the convergence
of BCO we observe the sequence of best-so-far solutions, i.e., (xbsf1 ,xbsf2 , . . . ,xbsft , . . .),
i.e., their corresponding objective function values, where one solution can be prop-
agated through more then one iteration. To assure global convergence of BCO it is
important that either all solutions can be reached from any initial point or restart proce-
dures are used to avoid being trapped in a local minimum (from which optimal solution
cannot be generated).

5.4.2 Generic BCO algorithm

To apply general set of rules that helps establish convergence properties of a BCO
method we need to assure that it belongs to a collection of meta-heuristic methods that
can be depicted under a single framework proposed by Gutjahr [Gut09]. The generic
procedure for the BCO method contains the following steps:

1. Perform NC forward/backward passes and obtain the list Lt as a function of mem-
ory state mt and a random influence.

2. Evaluate all solutions and generate L+
t .

3. Determine new memory state mt+1 based on L+
t , mt and some random influence

by updating xbsft and evaluation model of possible moves (to be used in step
(2)(i)(a) of the pseudo-code presented in Fig. 4.4, pg. 60).

The above steps describe only one iteration of the BCO algorithm to avoid stating ob-
vious parts of the initialization and the stopping criteria condition. The generic BCO
algorithm implies both BCOc and BCOi algorithms. However, it does not specifies their
differences, which may influence convergence properties.

5.4.3 Various cases of the BCO algorithms

To summarize the differences between constructive and improvement BCO we point out
that BCOc operates on partial solutions, adds components(2) to them and makes loyalty
and recruitment decisions that depend on the incomplete knowledge. For example, the
current (partial) value of the objective function or the lower/upper bound for the final
solution quality guide the search process. On the other hand, BCOi uses the complete
solutions all the time, tries to improve them during the execution of each forward pass
and decides on loyalty and recruitment based on the complete information related to
the quality of current solutions.

(2)To avoid any ambiguity, in this chapter we single out the term component to refer to a component of the
problem, e.g., a city in TSP.

90 Chapter 5 Theoretical analysis of the asymptotic convergence of the BCO method

In addition to the described two classes of the BCO algorithm, from the mathe-
matical verification point of view we need to introduce two more classes: The vari-
ants composed of mutually independent iterations (either constructive [Teo05, Teo06,
Teo07, Mar07, Teo08, Eda08, Šel10] or improvement [Dav11a]) and the variants in-
volving the transmission of some global knowledge through the iterations (again either
in constructive [Dav12] or improvement [Nik13a, Nik13b] case). The main differences
between these two will be pointed out later in this section.

5.5 Best-so-far convergence of BCO

We first identify the sufficient condition assuring that an optimal solution can be gener-
ated by any bee when the number of iterations is large enough. Then, we show that the
current best solution generated by BCO converges to one of the optimal solutions, as
the number of iterations increases, with the probability one. More precisely, we prove
the best-so-far convergence of the BCO algorithm.

As we already mentioned, two types of the BCO implementations should be dis-
tinguished: The one consisting of independent iterations and the other with global
knowledge exchanged between iterations. In order to make our BCO able to gener-
ate an optimal solution we need to assure that the whole search space is accessible,
i.e., that any solution can be generated by at least one bee with the strictly positive
probability (p > 0). If the iterations are independent, then the above mentioned prob-
ability does not change during the algorithm execution. Even in this case the current
best solution xbsft is kept and always included in the sequence of the "best-so-far" so-
lutions, defining the final result of BCO at the termination condition. Essentially, this
reflects the assumption that the Markovian chain described by the search process is
irreducible [Har90]. The iteration independency means that xbsft does not influence
the search process during the next iteration. In this case BCO acts more or less as a
population based search of "random walk" type. However, as it was stated in [Gut09],
the best-so-far convergence holds and we prove it for the BCO algorithm here.

Theorem 5.1. (Independent case). Let P ∗(t) be the probability that the BCO algorithm
generates an optimal solution x∗ at least once within the first t iterations. Let p∗ be the
probability that any bee generates the optimal solution. Then for an arbitrary ε > 0 and
for a sufficiently large t, p∗ > 0 implies P ∗(t) ≥ 1− ε. Asymptotically, this yields

lim
t→+∞

P ∗(t) = 1.

Proof: (⇒)

By Def. 10 and assuming that x represents x∗, we have

P ∗(t) = 1− Pr({x∗ is not found in any of t iterations})
= 1− Pr(B(t))
= 1− Pr(Cc(1) ∩ Cc(2) ∩ · · · ∩ Cc(t)).

(5.2)

5.5 Best-so-far convergence of BCO 91

If the iterations are independent then

P ∗(t) = 1− Pr(Cc(1)) · Pr(Cc(2)) · . . . · Pr(Cc(t))

= 1−
t∏
i=1

(1− p∗) = 1− (1− p∗)t.
(5.3)

Asymptotically, this yields

1 ≥ lim
t→+∞

P ∗(t) = 1− lim
t→+∞

(1− p∗)t = 1.

(⇐) Suppose that x∗ is found by BCO. This implies p∗ > 0.

When the combinatorial optimization problem is considered the search space is dis-
crete (usually also finite), and therefore convergence means that starting with some t0
it holds that xbsft = x∗ for all t ≥ t0. Consecutively, we can easily prove the converse of
Theorem 5.1, i.e., that the best-so-far convergence of BCO implies p∗ > 0. Indeed, once
the optimal solution is found by BCO, it is obvious that the probability of its generation
must be strictly positive.

Therefore, in combinatorial optimization case the necessary and sufficient condition
for an implementation of the BCO algorithm to be convergent is that selected solution
representation and construction/modification rules allow the generation of an optimal
solution with the probability strictly larger than 0. For example, in solving TSP if the
solution is represented as a permutation of cities, than the probability to generate an
optimal tour equals at least 1/n! > 0. In solving the p-median or p-center problem,
to obtain the optimal solution a bee has to select appropriate p among n locations.
The number of all selections of p elements out of the given n is

(n
p

)
, and therefore,

p∗ ≥ 1/
(n
p

)
> 0.

In the case when iterations are not independent, the probability that any bee gener-
ates the optimal solution is not constant anymore. It depends on the iteration number
and the collected knowledge, i.e., we can denote p∗ = p∗(t). The necessary condition
for best-so-far convergence is the existence of strictly positive lower bound pmin for
p∗(t). This is expressed in the next theorem. The proof is inspired by proof of Lemma 1
in [Jac04b].

Theorem 5.2. (Global knowledge exchange case). Let P ∗(t) be the probability that
the BCO algorithm generates an optimal solution x∗ at least once within the first t itera-
tions. Let p∗(t) be the probability that in the t-th iteration any bee generates the optimal
solution although it has not yet been produced. Then for an arbitrary ε > 0 and for a
sufficiently large t, p∗(t) ≥ pmin > 0 implies P ∗(t) ≥ 1− ε. Asymptotically, this yields

lim
t→+∞

P ∗(t) = 1.

Proof: (⇒)
By Def. 10 and assuming x represents x∗, we get the same as expression 5.2.

P ∗(t) = 1− Pr({x∗ is not found in any of t iterations})
= 1− Pr(B(t)).

(5.4)

92 Chapter 5 Theoretical analysis of the asymptotic convergence of the BCO method

To obtain expression for Pr(B(t)) we use definition of p∗(t). Consequently, probability
1− p∗(t) designates probability of an event B(t)|B(t− 1), that is

1− p∗(t) = Pr(B(t)|B(t− 1)) = Pr(B(t) ∩B(t− 1))
Pr(B(t− 1)) = Pr(B(t))

Pr(B(t− 1)) . (5.5)

Multiplying above expression for all t ≥ 1, we obtain:

t∏
i=1

(1− p∗(i)) =
t∏
i=1

Pr(B(i))
Pr(B(i− 1)) = Pr(B(t))

Pr(B(0)) . (5.6)

The event B(0) = Ω, and therefore, Pr(B(0)) = 1. Hence

Pr(B(t)) =
t∏
i=1

(1− p∗(i)). (5.7)

By substituting expression (5.7) into (5.4), asymptotically we get

1 ≥ lim
t→+∞

P ∗(t) = 1− lim
t→+∞

t∏
i=1

(1− p∗(i)) ≥ 1− lim
t→+∞

(1− pmin)t = 1.

(⇐) Suppose that x∗ is found by BCO. This implies existence of strictly positive bound
pmin > 0.

Theorems 5.1 and 5.2 guarantee convergence w. pr. 1. of f(xbsf) to f∗. Note
that for a given optimization problem there may exist more than one optimal solution.
In that case, from theoretical point of view, we consider X ∗ ⊆ X and state that the
problem is solved to optimality if at least one optimal solution x∗ ∈ X ∗ is found.

5.6 Model convergence of BCO

In this section we concentrate our consideration to the analysis of the BCO meta-
heuristic in order to prove that both constructive and improvement variants satisfy
model-based search properties. Obviously, we need to consider only the variants of
BCO that use global knowledge exchange. The meta-heuristic method can have the
model convergence property only if it learns from the previously visited solutions
[Gut09, Zlo04] and adjusts parameter values according to that knowledge. Moreover,
the model-based BCO algorithm should represent a highly structured search procedure
which exploits the historical record of performance reflected at each stage of its ex-
ecution. All these requirements could be fulfilled if the forward pass includes some
learning properties. More precisely, the evaluation of possible moves (step (2)(i)(a) in
the BCO pseudo-code given in Fig. 4.4, pg. 60) should depend on the moves already
explored in previous iterations.

In order to assure the generation of high quality solutions, we should increase the se-
lection probability for the components previously used to obtain good solutions. There-
fore, our selection probability involves two components: the problem specific and the
learned one.

5.6 Model convergence of BCO 93

5.6.1 Preliminary conditions for model convergence

Some asymptotic properties of GHC algorithms were analyzed in [Jac04b]. The au-
thors, seemingly, refine the results of [Pin84, Pin86] and present necessary conditions
for the model convergence of GHC algorithm. However, the methodology is described
on a more general level such that it become method-independent. In particular, it is
used in [Gut02, Gut09] for analyzing ACO convergence properties. Therefore, we use
the same methodology in analyzing the parametric properties of the BCO algorithm.

Assuming that x represents an optimal solution x∗ of the considered problem and
according to Def. 8 and Def. 10 the convergence of xt in probability to the set X ∗ can
be expressed as Pr(C(t))→ 1 as t→∞.

By the definition of B(t), and [Jac04b] it follows

Pr(B(t))→ P (B) = Pr
({+∞⋂

t=1
B(t)

})
as t→ +∞.

We now reproduce the main theorem for the convergence of GHC algorithm from
[Jac04b].

Theorem 5.3. A GHC algorithm converges in probability to X ∗ if and only if the following
two conditions are satisfied:

(i)
+∞∑
t=1

r(t) = +∞,

(ii) Pr({Cc(t)|Bc(t− 1)})→ 0 as t→∞.

The detailed proof can be found in [Jac04b]. For our analysis of BCO only a part,
formulated as the following Lemma, is relevant.

Lemma 1. Pr(B) = 0⇔
+∞∑
t=1

r(t) = +∞.

Proof: ([Gut09]) Since B =
+∞⋂
t=1

B(t) its probability can be calculated as follows:

Pr(B) = Pr(B(1)) · Pr(B(2)|B(1)) · Pr(B(3)|B(2)) · · ·

= (1− r(1)) · (1− r(2)) · (1− r(3)) · · ·

Therefore

Pr(B) = 0 (5.8)

⇔
+∞∏
t=1

(1− r(t)) = 0 (5.9)

⇔
+∞∑
t=1

log(1− r(t)) = −∞ (5.10)

⇔
+∞∑
t=1

r(t) = +∞. (5.11)

94 Chapter 5 Theoretical analysis of the asymptotic convergence of the BCO method

where the equivalence between (5.9) and (5.10) is obtained applying logarithm to both
sides, while the equivalence between (5.10) and (5.11) follows from the fact that for
r(t) ∈ [0, 1) it holds log(1− r(t)) ≤ −r(t).

Using Lemma 1 and defined convergence conditions for two variants of GBAS al-
gorithms, Gutjahr was able to prove that conditions (i) and (ii) of Theorem 5.3 are
satisfied [Gut02]. In [Gut11] the author provides slightly different conditions of the
global convergence. Instead of considering an event of visiting an optimal solution,
in the first part of the proof he considers probabilities to visit any feasible solutions.
This actually means that Lemma 1 holds for any given feasible solution x. The above
consideration is also applicable to the variant of the BCO algorithm which is defined in
such a way to satisfy the model-based search properties formulated in [Zlo04], i.e. the
variants of BCO that can fit into the generic framework presented on pg. 89.

In connection with the model convergence, we identify classification of selection
schemes regarding the properties of a optimization problem, i.e., when: all components
are not included in the solution representation (problem of p-centers) and all are (TSP,
VRP, scheduling problem). Thus, both variants of the BCO algorithm, BCOc and BCOi,
may be implemented by adjusting to this classification. In particular, the process of
building a complete feasible solution should imply different sets of rules, which is why
we present theoretical proofs for four different scenarios of the BCO implementation.

5.6.2 Model convergence of BCOc

5.6.2.1 Model convergence of BCOc when all components are not included

We propose the following modification scheme for the selection probability of compo-
nent i in the iteration t:

pi(t+ 1) =


1−λt · (1−pi(t)) if i ∈ xbsft ;
λt · pi(t) if i /∈ xbsft ;
pi(0) if i was not choosen.

(5.12)

where pi(0) denotes the initial (problem specific) probability of choosing component
i and λt represents the time dependent learning rate. The idea is to learn from the
previous experience how each component influences the quality of generated solution.
If component i was a part of the best (best-so-far) solution, the probability that it
will be selected in the next iteration is increased. If this component is included in
some low quality solutions, we decrease the probability of its selection in the next
iteration. Obviously, if component i is not included in any solution, we cannot evaluate
its influence. In that case, we keep its selection probability at the initial value. As the
number of iterations increases, the selection probability for components not included
in the search will become larger than the probability for components belonging to the
low quality solutions. Therefore, for these new components, chances to be included in
some future solutions will increase. Consequently, as the number of iterations t tends
to infinity only the first two modification cases will remain.

Now we can present the sufficient conditions that the BCOc algorithm, with the
above defined probability modification scheme, converges in probability to an optimal
solution.

5.6 Model convergence of BCO 95

Theorem 5.4. Assume that

1 ≥ λt ≥
log t

log(t+ 1) for all t ≥ t0, (t0 ≥ 2) (5.13)

and
+∞∑
t=1

(1− λt) = +∞. (5.14)

Then the corresponding BCOc algorithm converges in probability to one of the optimal
solutions from X ∗.

Proof: We have to prove that conditions (i) and (ii) from Theorem 5.3 are satisfied.

(i) We will actually prove the equivalent condition (according to Lemma 1), i.e.,
that Pr(B) = 0. Let us remind that C(t) denotes the event that iteration t is the first in
which some solution x (including optimal) is found by some bee. In other words, first
we show that for each solution x there exists with probability one an iteration t such
that this solution will be generated by any bee. Such property is sufficient to establish
best-so-far convergence, since xbsf holds best found solution that is only updated under
rigorous improvements.

Consider a fixed solution x. Then it holds

B = Cc(1) ∩ Cc(2) ∩ · · · ⇒ x is never found

and hence

Pr(B) = Pr({Cc(1) ∩ Cc(2) ∩ · · · }) ≤ Pr({x is never found})

=
+∞∏
t=1

Pr({x is not found in iteration t | x is not found in iteration k < t})

= Pr (Cc(1)) ·
+∞∏
t=2

Pr
(
Cc(t) |

t−1⋂
k=1

Cc(k)
)
.

(5.15)

Next, the lower bound for the probability rule of a fixed component is derived. In the
worst case, probability to choose component i is decreasing over iterations (becomes
lower then the initial probabilities).

Since x can be any feasible solution we use worst case scenario (the one that is
decreasing probability of its generation) which is modeled by selecting components
that don’t belong to xbsf in the probability update rule (5.12). Therefore, for any
component i it holds:

pi(t) =
[
t−1∏
k=1

λk

]
· pi(0),

which can be easily verified by induction. Let t0 ≥ 2. Then from the condition (5.13)
and for t > t0 it holds

96 Chapter 5 Theoretical analysis of the asymptotic convergence of the BCO method

[
t−1∏
k=1

λk

]
· pi(0) ≥

[
t0−1∏
k=1

λk

]
·

 t−1∏
j=t0

log j
log(j + 1)

 · pi(0)

=
[
t0−1∏
k=1

λk

]
· log t0

log t · pi(0) = C

log t .

where C =
[∏t0−1

k=1 λk
]
· log t0 · pi(0) = const. The above inequality provides lower

bound on the probability pi(t) that in iteration t > t0 a bee will choose component i.
Consecutively, for the probability to find the solution x by any bee it holds:

∏
i∈x

pi(t) ≥
(
const

log t

)#x

,

and in the case of optimal solution:

∏
i∈x∗

pi(t) ≥
(
const

log t

)#x∗

,

where #x (#x∗) denotes the number of components constituting the solution x (x∗).
Considering the complementary event (the solution x is never found by any bee in

t > t0) we obtain the upper bound on the right hand side of the relation (5.15) as:

+∞∏
t=t0

[
1−

(
const

log t

)#x
]
.

Applying a logarithm to this expression and using the convexity of the exponential
function expressed by (1− a) ≤ e−a,∀a ∈ (0, 1) (i.e., log(1− a) ≤ −a) gives us:

+∞∑
t=t0

log
(

1−
(
const

log t

)#x
)
≤ −

+∞∑
t=t0

(
const

log t

)#x

= −∞.

From this we can conclude

+∞∏
t=t0

[
1−

(
const

log t

)#x
]

= 0,

i.e., in (5.15) we have Pr(B) ≤ 0. Since Pr(B) ≥ 0 always holds, we can conclude
Pr(B) = 0.

First part of the proof concludes the best-so-far convergence, i.e., with probability
one there is an iteration t > t0 where solution x is found. It implies that with the
proposed selection rule any feasible solution (optimal included) is reachable. This
also coincides with the claim (i) of the Theorem 5.3, i.e., probability that the optimal
solution will never be generated tends to zero for large enough t. Second part of the
proof concerns model convergence. The goal is to provide proof that after reaching the
optimal solution the BCO model will support only the generation of optimal solutions
by initiating update rule (5.12). In other words, pi(t) converges to p∗i defined as

5.6 Model convergence of BCO 97

indicator function:

p∗i =
{

1 if i ∈ x∗;
0 if i /∈ x∗.

(ii) To begin our consideration, let us verify that the probability modification rule
(5.12) increases the selection probability for components i ∈ x∗ to the maximum. Let
m denote the index of the iteration when x∗ is generated for the first time. Then in
all iterations t > m, the selection probability for components included in the optimal
solution converge to unity as the number of iterations tends to infinity. Indeed, these
probabilities are updated in some iteration m+ r, r = 1, 2, ... according to the formula:

pi(t) = 1−
m+r∏

k=m+1
λk · (1− pi(m)).

This can be easily justified by induction. Due to the condition (5.14) we have

+∞∑
t=1

(1− λt) = +∞, which is equivalent to,
+∞∏
k=1

λk = 0.

Therefore, once the optimal solution is found for the probability that the component
i ∈ x∗ will be used again it holds:

lim
t→+∞

pi(t) = 1− lim
t→+∞

 t−1∏
k=m+1

λk

 · (1− pi(m)) = 1.

Consider the component i /∈ x∗. According to (5.12), its selection probability after
iteration m, i.e., in some iteration m+ r, r = 1, 2, ... is modified as follows:

pi(m+ r) =

 m+r∏
k=m+1

λk

 · pi(m).

After generating the optimal solution x∗, for the probability that the component i /∈ x∗

will be used again the condition (5.14) yields:

lim
t→+∞

pi(t) = lim
t→+∞

 t−1∏
k=m+1

λk

 · pi(m) = 0,

which completes the proof of the theorem.

5.6.2.2 Model convergence of BCOc when all components are included

The above consideration was focused on the convergence properties of the constructive
variant of the BCO algorithm in the case where not all the components are included
in the solution. Next, we prove model convergence of the BCOc algorithm when all
the components are included in the solution. This scenario occurs while dealing with
traveling salesman problem, vehicle routing problems or scheduling problems. As in
previous section, in order to assure the generation of high quality solutions, we should
change the selection probability for the components based on previously obtained good

98 Chapter 5 Theoretical analysis of the asymptotic convergence of the BCO method

solutions.
Let us consider TSP and denote by (i, j) a pair of components that are directly

connected. We propose the following modification scheme for the selection probability
of component j in the iteration t after we have chosen component i:

p(i,j)(t+ 1) =
{

1−λt · (1−p(i,j)(t)) if (i, j) ∈ xbsft ;
λt · p(i,j)(t) if (i, j) /∈ xbsft ;

(5.16)

where λt represents the time dependent learning rate. The idea is to learn from the
previous experience how each component influences the quality of generated solution.
If the pair of components (i, j) was a part of the current best (best-so-far) solution,
the probability that it will be selected in the next iteration is increased. If this pair of
components is included in some low quality solutions, we decrease the probability of
its selection for the next iteration. Now we can present the sufficient conditions that
the BCOc algorithm, with the above defined selection probability modification scheme,
converges in probability to an optimal solution.

Theorem 5.5. Assume that

1 ≥ λt ≥
log t

log(t+ 1) for all t ≥ t0, (t0 ≥ 2), (5.17)

and
+∞∑
t=1

(1− λt) = +∞, (5.18)

Additionally, p(i,j)(0) represents initial set of probabilities. Then the corresponding BCO
algorithm converges in probability to one of the optimal solutions from X ∗.

Proof: The proof is almost identical to the proof of Theorem 5.4. The difference resides
within the number of components, which is why we present all the necessary steps. We
start by proving that conditions (i) and (ii) from Theorem 5.3 are satisfied.

(i) We prove the equivalent condition (according to Lemma 1), i.e., that Pr(B) = 0.
Consider a fixed solution x. C(t) denotes the event that iteration t is the first in which
a solution x is found by some bee. Then it holds

B = Cc(1) ∩ Cc(2) ∩ · · · ⇒ x is never found

and hence

Pr(B) = Pr({Cc(1) ∩ Cc(2) ∩ · · · }) ≤ Pr({x is never found})

=
+∞∏
t=1

Pr({x is not found in iteration t|x is not found in iteration k < t}).

(5.19)

Let us now return to the components and assume that the pair (i, j) was not estab-
lished in iterations 1, . . . , t. In the worst case and according to the cumulative proba-
bility update rule (5.16), for all pairs of components (i, j) it holds:

5.6 Model convergence of BCO 99

p(i,j)(t) =
[
t−1∏
k=1

λk

]
· p(i,j)(0),

which can be easily verified by induction. From the condition (5.17) it holds

[
t−1∏
k=1

λk

]
· p(i,j)(0) ≥

[
t0−1∏
k=1

λk

]
·

 t−1∏
j=t0

log j
log(j + 1)

 · p(i,j)(0)

=
[
t0−1∏
k=1

λk

]
· log t0

log t · p(i,j)(0) = const
log t .

Therefore, the above derived is a lower bound of the worst case selection scenario for
any component (i, j). Consecutively, for the probability to find the solution x by any
bee it holds:

∏
(i,j)∈x

p(i,j)(t) ≥
(
const

log t

)n
,

where n denotes the total number of components (number of cities in the TSP).
Considering the complementary event (the solution x was not found by any bee) we
obtain the upper bound on the right hand side of the relation (5.19) as:

+∞∏
t=t0

[
1−

(
const

log t

)n]
.

Applying a logarithm to this expression gives us:

+∞∑
t=t0

log
(

1−
(
const

log t

)n)
≤ −

+∞∑
t=t0

(
const

log t

)n
= −∞.

From this we can conclude

+∞∏
t=t0

[
1−

(
const

log t

)n]
= 0,

i.e., in (5.19) we have Pr(B) ≤ 0. Since Pr(B) ≥ 0 always holds, we can conclude
Pr(B) = 0.

(ii) (Model convergence) This condition means that if m is the index of the iteration
when x∗ is generated for the first time, then xbsft = x∗ for all t ≥ m. Moreover, in all
iterations t > m the selection probability for pairs of components, not included in the
optimal solution, converge to zero as the number of iterations tends to infinity.

Consider the pair of components (i, j) /∈ x∗. According to (5.16), its selection
probability after iteration m, i.e., in some iteration m + r, r = 1, 2, ... is modified as
follows:

p(i,j)(m+ r) =

 m+r∏
k=m+1

λk

 · p(i,j)(m).

100 Chapter 5 Theoretical analysis of the asymptotic convergence of the BCO method

Due to the condition (5.18) we have

+∞∑
t=1

(1− λt) = +∞, which is equivalent to,
+∞∏
k=1

λk = 0.

Therefore, after generating the optimal solution x∗, for the probability that the pair of
components (i, j) /∈ x∗ will be again used it holds:

lim
t→+∞

p(i,j)(t) = lim
t→+∞

 t−1∏
k=m+1

λk

 · p(i,j)(m) = 0,

which completes the proof of the theorem.

Considering the problem of scheduling independent tasks on identical processors,
where the pair of components (i, j) describes the situation that task i is allocated to pro-
cessor j, we can apply the selection probability modification scheme defined by (5.16).
Therefore, the above described reasoning holds, and the resulting BCO algorithm sat-
isfies model convergence properties.

5.6.3 Model convergence of BCOi
The above consideration was mainly related to the BCOc algorithm. However, it can be
easily generalized to BCOi, as we distinguish two cases w.r.t. number of components
constituting a final solution. Main difference between the two modification schemes is
the ordering. For the problems like TSP, where feasible solutions contain all compo-
nents, the probability update rules should be modify in such a way to consider ordering
of components. In the other case, modifications of solutions only need to consider com-
ponents’ affiliation within the xbsf .

We present model convergence for BCO for the first time. There are no previous
publications of presented material. We first propose modification scheme (5.20) in-
spired by the update rules, similar to the one provided for BCOc when all components
are not included in the complete solutions. The cumulative probability update rule de-
pends on the components that will be taken out of the current solution, as well as on
the components identified for the inclusion in the current solution. It is presumed that
the best-so-far reinforcement is used as provided in Formula (5.1).

The following modification scheme for the selection probability that component i
should replace component j in the iteration t is as follows:

p(i,j)(t+ 1) =
{

1−λt · (1−p(i,j)(t)) if i ∈ xbsf and j /∈ xbsf ;
λt · p(i,j)(t) otherwise.

(5.20)

Next, let us consider the case of optimization problems where all components of the
problem constitute a solution. We start with problems such as TSP, where an ordering
of solution’s components needs to be accounted. Moreover, let there be an ordering
such that city j is not behind city i. The probability to move city j behind i should be
determined as follows:

p(i,j)(t+ 1) =
{

1−λt · (1−p(i,j)(t)) if (i, j) ∈ xbsf ;
λt · p(i,j)(t) otherwise.

(5.21)

5.7 Final remarks 101

Furthermore, when considering problems such as scheduling or VRP, we can denote
the pair (i, j) as indicator that a task i should be allocated on the processor j, i.e.,
location i is associated to vehicle j. Therefore, the modification scheme (5.21) can be
applied for this kind of problems.

Finally, the theorem identifying the conditions under which the BCOi algorithm,
with the above defined selection probability modification schemes (5.20) and (5.21),
converges in probability towards optimal solution is identical for all considered cases
of optimization problems.

Theorem 5.6. Assume that

1 ≥ λt ≥
log t

log(t+ 1) for all t ≥ t0, (t0 ≥ 2), (5.22)

and
+∞∑
t=1

(1− λt) = +∞, (5.23)

Additionally, p(i,j)(0) represents initial set of probabilities. Then the corresponding BCOi
algorithm converges in probability to one of the optimal solutions from X ∗.

Proof: The proof is identical to the proof of Theorem 5.5.

In addition, let us elaborate the existence of the proposed probability modification
scheme. For example, if learning rate λt = 1− c/(t log t) for a given constant 0 < c < 1,
the conditions of Theorems 5.4–5.6 are valid.

5.7 Final remarks
Based on the existing methodology, we distinguish two types of convergence, a weaker
best-so-far convergence, and a stronger model convergence. In this chapter we prove
best-so-far convergence of general BCO algorithm for arbitrary optimization problem
by providing sufficient and necessary conditions that satisfy the requirement p∗ > 0. In
both cases of BCO, with independent as well as dependent iterations, we conclude that
it is enough if the BCO algorithm assures that any feasible solution may be generated
during the search process. However, the assumption is weak in order to reason about
the consistency of the BCO algorithm, which is: after providing an optimal solution the
algorithm needs to support production of this optimal solution in the next iterations.
Therefore, we establish the conditions that are sufficient for the model convergence of
the BCOc and BCOi by following the guidelines presented in section 5.3.2. The con-
ditions of the model convergence are: 1. convergence in the best-so-far sense, i.e., all
feasible solutions are reachable from any position in the search space; 2. the generation
of an optimal solution is favored once it is found. We have fulfilled the requirements by
providing rules of construction/modification that exploit historical record of the BCO
algorithm performance. We provide four modification schemes w.r.t. type of considered
optimization problem and variant of the BCO algorithm. In order to analyze the algo-
rithm’s efficiency, the next step is to examine the speed of the model convergence, i.e.,
to investigate the estimation of E(T1), the expected time of the first hit for an optimal
solution (pg. 86).

102 Chapter 5 Theoretical analysis of the asymptotic convergence of the BCO method

5.8 Chapter summary
The chapter was devoted to the topic of theoretical analysis of the BCO meta-heuristic
method. We begin by providing a survey of the most recent developments in this field of
optimization that helps to establish conditions under which a meta-heuristic converges
towards an optimal solution.

BCO has been extensively developed and explored in the last decade [Dav11a,
Dav12, Eda08, Mar07, Nik13a, Teo05, Teo08, Teo06, Teo07, Šel10, Won10b] and has
numerous successful applications. However, the theoretical verification (convergence
analysis) of BCO was missing and therefore, our aim is to contribute to this topic. The
main goal of this dissertation is to provide mathematical verification of the BCO meta-
heuristic by examining the conditions of its convergence. We analyze both types of
convergence, best-so-far and model-convergence, and provide the hints for construct-
ing the BCO method that converges to optimal solutions.

In this chapter we analyze convergence properties of BCO by providing theoretical
proof of asymptotic convergence for two variants of the BCO algorithm: BCOc and
BCOi. The topics are arranged in the following manner:

• We begin with the description of BCO within the generic framework [Gut09] and
introduce notation as an extension of the material introduced in Chapter 5 or
incorporated from the literature.

• We prove that the BCO method is well founded and converges in the best-so-far
sense.

• We prove model convergence of BCO. We conclude that the conditions, under
which BCO will converge, need to uphold the probabilistic rules that assure algo-
rithm’s convergence in the best-so-far sense and that the generation of the optimal
solution is favored once it is found. We show that the conditions are fulfilled if
the BCO algorithm exploits its historical record of performance by incorporating
modification scheme presented in this chapter.

CHAPTER6
Parallelization strategies for the BCO

algorithm

Parallel computing implies simultaneous execution of several tasks (processes) on
different processors with the goal to solve faster a given problem instance. Paralleliza-
tion signifies decomposition of total computational work and the distribution of corre-
sponding tasks (workload) among free processors. The decomposition can be realized
at the task level, data level, instruction level or bit level [Bar15]. One of the challenges
of parallel computation are balancing the workload and minimizing the communica-
tion. It should be noted that in recent literature an expression concurrent computing has
been used, but should not be confused with parallel computing. Two tasks are concur-
rent if they can run in overlapping time periods. Readers are referred to [Alb05, Ray12]
on the topic of concurrent computing.

The BCO method appears to be suitable for parallelization as it operates on a pop-
ulation of solutions. In this chapter we study this proposition and investigate differ-
ent parallelization strategies for the BCO method. We address the questions about
properties relevant for efficient implementation on distributed memory systems. The
chapter begins pointing out the main goals of the parallelization. Next, we review
parallelization strategies proposed for meta-heuristic methods. We enclose the survey
with description of parallel implementation of two swarm intelligence algorithms, ABC
and ACO. Section 6.3 is devoted to description and implementation of parallelization
strategies for the BCOc algorithm. In Section 6.4 we provide results of the comparison
study between five parallel implementation of BCOc for P ||Cmax.

6.1 Motivation for parallelization of
meta-heuristics

The advancement of exact solution methods has led to a more efficient generation of
optimal solutions. However, for a large number of situations that arise in practice
there are still many challenges one has to deal with because optimal (or high quality)
solutions can be hard to obtain in a reasonable amount of time. As a result, solv-
ing optimization problems requires constant development of fast solution methods. To
construct faster algorithmic solutions is to use parallel implementations of (existing)
sequential algorithms, for shared-memory or distributed-memory systems. An easier
access to commodity and high-performance computers has greatly facilitated the de-
velopment of parallel implementations that help enhance efficiency of generating high

104 Chapter 6 Parallelization strategies for the BCO algorithm

quality solutions.
Majority of well-known meta-heuristic methods have been parallelized for vari-

ous optimization problems [Alb05]. This greatly contributed to the standardization
within the new field of computation that deals with parallelization strategies for meta-
heuristics. The population-based meta-heuristics seem to be the most suitable for par-
allelization. The nature of these methods is to work with multitude of solutions, either
by utilizing greedy or a local search method. In the both cases, it is straightforward
to make an assumption of an independent workload during the constructions or mod-
ifications of solutions, that could be executed on different processors. This scenario
corresponds to one of the ways we can implement a parallelization strategy.

The main goal of parallelization is to speedup the computations needed to solve
a particular problem by engaging several processors and dividing the total amount of
work between them. For stochastic algorithms (meta-heuristics, in particular), several
goals may be achieved, such as [Alb06, Tal09, Cra14]:

• speeding up the search (i.e., reducing the search time);

• improving the quality of the obtained solutions (by enabling searching of different
parts of the solution space);

• improving the robustness (in terms of solving different optimization problems
and different instances of a given problem, in an effective manner, robustness
may also be measured in terms of the sensitivity of the meta-heuristic to its pa-
rameters);

• solving large-scale problems (i.e., solving very large instances that cannot be
solved by a sequential machine).

A combination of gains may also be obtained: parallel execution can enable an efficient
search through different regions of the solution space, yielding an improvement of the
quality of the final solution within a smaller amount of execution time.

A significant amount of work concerning the parallelization of meta-heuristics al-
ready exists. The approach can be twofold, considering theoretical aspects of paral-
lelization [Ste02], or developing practical applications of parallel meta-heuristics for
different optimization problems. The survey papers [Ver95, Cun02, Cra05, Cra07,
Cra10, Cra14] summarize these works and propose an adequate taxonomy.

6.2 Parallelization strategies of meta-heuristics

According to [Cra05], parallelization strategies can be conducted in different ways.
The first classification of parallelization strategies for meta-heuristic methods is given
in [Ver95]. Based on the control of the search process, this classification resulted in two
main groups of parallelization strategies: single walk and multiple walks parallelism. To
refine the classification of parallelization strategies, besides the control of the search
process, one has to consider communication aspects (synchronous or asynchronous)
and search parameters (same or different initial point and/or same or different search
strategies). The resulting classification is described in details in [Cra05] and is briefly
recalled here in order to enable adequate classification of parallelization strategies for
ABC, ACO and BCO.

6.2 Parallelization strategies of meta-heuristics 105

The classification from [Cra05, Cra07] takes into account three main aspects of
parallel execution: search control, communication control, and search differentiation.
Such an approach resulted in the 3D-Taxonomy X/Y/Z. Here, X is used to denote
search control cardinality, which could take centralized (1C) or distributed (pC) val-
ues. Y deals with two aspects of communication control, synchronization and type of
data to be exchanged. The four possibilities for Y are Rigid Synchronous (RS), Knowl-
edge Synchronous (KS), Collegial Asynchronous (C) and Knowledge Collegial (KC).
The RS classification is customary for independent executions and synchronous strate-
gies where there is no need to apply local changes to the distributed information. The
KS classification depicts strategies where a certain knowledge is utilized on the dis-
tributed data [Cra05, Cra14]. Collegial classification refers to asynchronous strategies
with the same properties described previously. Search differentiation Z specifies the
part of the search executed by each of the parallel processes. The difference is char-
acterized by the initial point and by the search strategy. Each process can start from
the same or different initial point, and it can perform the same or different search
procedure. Therefore, there exist four combinations for Z: Same initial Point-Same
search Strategy (SPSS), Same initial Point-Different search Strategies (SPDS), Multi-
ple initial Points-Same search Strategy (MPSS), Multiple initial Points-Different search
Strategies (MPDS). The particular implementation of each of the described strategies
may vary, depending on the given multiprocessor architecture and the characteristics
of the problem at hand.

BCO is closely related to some other swarm intelligence meta-heuristic methods,
especially ABC [Kar05, Kar07] and ACO [Dor99, Dor10]. ABC and ACO are more
extensively exploited in the recent literature, in both sequential and parallel variants.
Therefore, we review the papers dealing with the parallelization of these two meta-
heuristics and exploit their methodologies here. However, some new strategies are also
proposed.

6.2.1 Parallelization of ABC

There are several papers in the recent literature describing parallelization techniques
for ABC. A parallel version of the ABC algorithm for shared memory architectures was
presented in [Nar09]. It was shown that the proposed parallelization strategy did not
degrade the quality of obtained solutions, and achieved substantial speedup. There,
the entire colony of bees was divided equally among the available processors. A set
of solutions was placed in the local memory of each processor, while a copy of each
solution was maintained in the global shared memory. During each cycle the set of
bees associated with each processor, improved the solutions in its local memory. At the
end of the cycle, the solutions were copied into the corresponding slots in the shared
memory and made available to all other bees. A similar approach was proposed in
[Ban10], and was implemented on a distributed memory multiprocessor system. The
authors decomposed the entire bee colony into several subgroups, and each subgroup
performed a local search concurrently on each processing node. The local best solu-
tions were exchanged between the nodes. The algorithm implementation utilized the
message passing technique as the communication paradigm. The experimental results
showed improvement in both solution quality and computing time, when compared
to the sequential ABC algorithm. We would classify both aforementioned strategies as

106 Chapter 6 Parallelization strategies for the BCO algorithm

pC/RS/MPDS.
The authors of [Par11] presented three parallel models for the ABC algorithm: a

master-slave approach that divides the processing load into several processors; a multi-
hive approach that promotes periodic migrations between independent sub-populations;
and a hierarchical approach that hybridizes the two former models. The MPI commu-
nication library, different variants of the ABC algorithm, and a large number of bees
(over 1000) were used. The Master-Slave ABC (MS-ABC) model was a global single-
population system where a master process divided the computational effort into several
slave processes, each one running on a different processor. After completing their as-
signed jobs, slaves would send the results to the master process. According to the
adopted classification, this model falls into the 1C/RS/SPSS category. A Parallel Multi-
Hive model (MH–ABC) was a multiple-population coarse-grained system that used two
or more hives initialized at the same time, with different random seeds. Therefore, this
model belongs to the pC/RS/MPDS category. The combination of these two methods
was also given as the Parallel Hybrid Hierarchical Model (HH–ABC), which had two
levels: multiple-population coarse-grained islands were executed at the upper level,
while single-population master-slaves were invoked at the lower level. The authors
showed that MH–ABC was able to outperform the sequential ABC algorithm.

Three different approaches to the parallelization of ABC were proposed in [Sub11]:
parallel independent runs; multiple swarms – one best solution; and multiple swarms
– best solutions from all swarms. Increasing performance was the main focus of the
parallel independent runs approach, while the multiple swarm approaches aimed at
obtaining better results. In the parallel independent runs approach, every thread ran
the same sequential ABC algorithm, with different random seeds. The final solution
was the best one from all the independent runs. The speedup was almost linear. This
strategy can be classified as pC/RS/SPDS. The other two approaches were based on
multiple swarm tactics, and the idea was to use more than one swarm on the same
search space. These swarms were able to communicate with each other in order to ex-
change their best-so-far solutions. The number of cycles between two communications
was determined as the ratio between the total number of cycles and the number of
swarms. In the "multiple swarms – one best solution" approach only the best among all
"best-so-far solutions" was accepted by all other swarms, and therefore, we classify this
approach as pC/KS/SPDS. In the "multiple swarms – best solutions from all swarms"
approach "best-so-far solutions" from all swarms were exchanged and influence the
further execution of the parallel ABC algorithm. Therefore, this approach should be
classified as pC/KS/MPDS. On a set of eleven well-known benchmark functions, the
authors reported significant speedup of the independent run, as well as an improve-
ment in the quality and consistency of the final solutions obtained by multiple swarm
parallelization strategies.

6.2.2 Parallelization of ACO

Parallel ACO algorithms exist in the literature for more than twenty years, starting with
a very fine-grained parallelization on the Connection Machine proposed by [Bol93].
Two parallelization strategies for ACO applied to the Travelling Salesman Problem
(TSP) were proposed in [Stü98]. The first involved independent executions of a sin-
gle ACO with different seeds, classified as pC/RS/MPSS. The second strategy aimed

6.2 Parallelization strategies of meta-heuristics 107

at speeding up the local search procedure, computationally the most intensive part of
the ACO algorithm. It falls into medium grained parallelization strategies and can be
classified as 1C/KS/MPSS. The reported experimental results showed that for the in-
dependent execution almost linear speedup could be obtained, if a small number of
processors was used (up to 6). The second strategy did not prove efficient for TSP due
to the fact that sequential local search was fast enough. Two parallel implementations
of ACO for Set Covering Problem were proposed in [Rah02]. Independent execution on
up to 40 processors showed the improvement of the solutions found by the sequential
algorithm. In addition, the average speedup 37.17 and the average efficiency 92.93%
was obtained. The second implementation involved a very fine-grained parallelization
(1C/KS/MPSS) with each ant considered as a separate search process. The average
speedup of 10.95 was obtained on 20 processors. In addition to the independent ex-
ecution, various coarse grained cooperative parallel implementations of ACO for TSP
were proposed in [Man06]. The authors tested both synchronous (pC/KS/MPSS) and
asynchronous (pC/C/MPSS) communication concepts realized on four interconnection
topologies: fully connected, replace worst, hypercube, and ring. Artificial colonies from
different processors exchanged only the best-so-far solution. The presented experimen-
tal evaluation indicated that independent execution was the best performing approach
under the tested conditions. Similar approach was used in [Jov09] to tackle Minimum
Weighted Vertex Cover Problem. Four topologies (fully connected, replace worst, and
two rings) executing synchronous multi colony ACO approach were tested and com-
pared against the independent and sequential executions. Contrary to [Man06], the
authors of [Jov09] concluded that the ring topology performed the best.

A cooperative multi colony approach applied to TSP and Quadratic Assignment
problem was proposed in [Mid02]. Synchronous communication involved one or sev-
eral best solutions and therefore this approach can be classified as pC/KS/MPSS. The
authors investigated different ways of exchanging solutions among ant colonies. They
considered an exchange of the global best solutions among all colonies and local ex-
changes based on a virtual neighborhood between two colonies which corresponds to
a directed ring. Their main observation was that the best results, with respect to com-
puting time and solution quality, were obtained by limiting the information exchange
to a local neighborhood of two colonies.

The synchronous multi colony ACO approach using an unidirectional ring topology
of 8 processors was used in [Yan07c, Yu11]. Each colony performed an independent
search for a given number of iterations called an epoch. Then, a specified number of
high quality solutions were propagated through the processor ring and used for the
pheromone trial updates. The described approach can be classified as pC/KS/MPSS.
The reported experimental evaluation showed that both the solution quality and the
execution time were improved in the parallel ACO when compared to a single colony
model.

For a more extensive survey of parallel ACO implementation, the readers are re-
ferred to [Dor10, Ped11].

108 Chapter 6 Parallelization strategies for the BCO algorithm

6.3 Parallelization strategies of the BCO algorithm
The BCO algorithm is created as a multi-agent system which inherently provides a good
basis for parallelization on different levels. High-level parallelization assumes a coarse
granulation of tasks, and can be applied to the iterations of BCO. Smaller parts of the
BCO algorithm (the forward and backward passes within a single iteration) occur on
the agent level. They are suitable for low-level parallelization because they contain a
lot of independent executions. In this dissertation, we consider a coarse granulation
strategy, since we are using distributed memory multiprocessor systems. Fine-grained
parallelization is not suitable for these multiprocessor systems, as it was verified in
[Dav11b]. On shared-memory multiprocessor systems, however, our preliminary ex-
periments showed that we can benefit from the fine-grained strategy by employing
OpenMP extension [Dag98]. Usefulness of the OpenMP directives rises from the care-
ful implementation of the synchronization points and utilization of private data struc-
tures. If we do not take care of the CPU time needed for creating threads and their
synchronization, the conclusion is that fine-grained parallelization does not provide
any benefits, as stated in [Sub11].

The first approach to parallelization of BCOc was proposed in [Dav11b]. The au-
thors considered coarse-grained parallelization obtained by dividing the total amount
of computations in a single BCOc instance(1) among the available processors. We pro-
pose three different strategies for parallelization of BCOc, one independent and two
cooperative. Independent strategy is generalization of the approach from [Dav11b],
as it involves an independent execution of various BCO instances, for which the to-
tal amount of computation is (equally) distributed among available processors. The
cooperative strategies involve knowledge exchange between various BCOc instances
executed on different processors. The main difference between them is in the way
the communication is performed (synchronous or asynchronous). Asynchronous strat-
egy of BCOc is the most general parallelization concept as it provides more diversified
search. The asynchronous strategy is implemented in two ways, with centralized and
non-centralized information exchange. More details about all the implementations are
provided in the remainder of this section.

6.3.1 Independent execution of the BCO algorithms
The simplest form of coarse-grained parallelization of BCO represents the indepen-
dent executions of necessary computations on different processors, as it is illustrated
in Fig. 6.1. More precisely, we distribute all the calculations among the available pro-
cessors denoted by BCOi, i = 1, . . . , q, where q is total number of engaged processors.
This distribution could be obtained e.g., by the division of the stopping criterion (SC)
among the processors. For example, if the stopping criterion is maximum allowed CPU
time (given as a runtime value in seconds), we could run BCO in parallel on q pro-
cessors for runtime/q seconds. A similar rule could be introduced in the case when
the stopping criterion is the allowed number of iterations. In both cases, each proces-
sor independently performs a sequential variant of BCO, with a different seed, same
configuration of the BCO parameters (Bi = B, NCi = NC , i = 1, . . . , q) and with a
reduced value of the stopping criterion. The main aim of this approach is to speed up
(1)An instance of BCO is obtained by specifying all parameters’ values.

6.3 Parallelization strategies of the BCO algorithm 109

the execution of BCO by dividing the total workload among several processors, and
therefore it could be classified as pC/RS/MPSS. In [Dav11b], this variant of distributed
BCO is applied to BCOc for P ||Cmax problem and named DBCO. DBCO is similar to the
second approach proposed in [Par11] for the ABC algorithm.

START

INIT

BCO1
(B1,NC1)

BCO2
(B2,NC2)

BCOq

(Bq,NCq)

best.
sol.

EXIT

. . .

Figure 6.1: Independent execution of several BCO algorithms.

Another way to implement the independent execution of the BCO algorithms could
involve dividing the population of bees instead of the stopping criterion. On each
processor a sequential BCO is executed with a different seed, equal number of for-
ward/backward passes and with a smaller number of bees. Therefore, if the sequential
execution uses B bees for the search, our parallel variant, running on q processors, is
using only Bi = B/q. This approach was also considered in [Dav11b] and it was re-
ferred to as BBCO. BBCO is similar to the first approach proposed for ABC in [Sub11].
In [Dav11b] it is assumed that the BCOc parameters (the number of bees B and the
number of forward/backward passes NC) are the same for all BCOc processes execut-
ing on different processors, in order to assure load balancing between all processors.
Therefore, we classified the BBCO approach also as pC/RS/MPSS.

Combining these two approaches, we can vary the values of the BCO parameters
and change the stopping criterion at the same time. We refer to this approach as MBCO
(Multiple BCO), classify it as pC/RS/MPDS, and expect it to introduce more diversifi-
cation into the search process (Fig. 6.1). The changes required to realize distributed
execution should be adjusted in such a way as to balance the resulting workload. That
could be efficiently implemented if the allowed CPU time is adopted as the stopping
criterion, and is reduced q times for parallel execution on q processors.

In such a way, we obtain three variants of independent parallel execution for our
BCO, but all of them fit in the block-diagram given in Fig. 6.1. The initialization phase
(denoted by INIT on this block-diagram) involves the reading of input parameters and
the problem instance, as well as the recalculation of the parameter values according

110 Chapter 6 Parallelization strategies for the BCO algorithm

to the rules defined by the corresponding parallelization variant. After the initializa-
tion is completed, each process performs an independent sequential variant of BCO, in
the sense that processor k is executing BCOk (k = 1, 2, . . . , q), which is illustrated by
the branching part of the block-diagram. At the end, the best obtained solutions are
collected from all processes (processors), and the best among them is reported to the
user.

6.3.2 Synchronous cooperation of the BCO algorithms

The more sophisticated way to achieve coarse-grained parallelization is through coop-
erative execution of several BCO processes. At certain predefined execution points, all
processes exchange the relevant data (usually current best solutions). These data are
used to guide further searches. This approach, named CBCO, is synchronous and can
be classified as pC/KS/MPSS if all BCO processes have the same values of the parame-
ters B and NC. Otherwise, it will belong to the pC/KS/MPDS class. The block-diagram
illustrating this strategy would be similar to the one presented in Fig. 6.1, where the
branching part should be concatenated several times (depending on the allowed com-
munication frequency). Similar approaches were used for the parallelization of the
ABC meta-heuristic [Ban10, Nar09, Sub11].

In order to examine the benefit of the information exchange during the cooperative
execution, we do not make a reduction of the stopping criterion, and thus allow all
processors to work until the original stopping criterion is satisfied (SC = const). The
cooperative execution of different BCO algorithms should increase the quality of the
search. Therefore, if we do not reduce the allowed CPU time, we expect to obtain an
improvement of the quality of the final solution. Of course, the total running time is
then increased q times and we have to ensure fair comparison between the sequential
and cooperative BCO. We elaborate on this point in the experimental evaluation section.

The communication points can be determined in two different ways [Dav13]: fixed
and processor-dependent. The fixed communication means that the best solution is
exchanged nCOM times during the parallel BCO execution, regardless of the number
of processors engaged. In such a way, the processors are given more freedom to per-
form the associated part of the search. Actually, increasing the number of engaged
processors (q) yields an increase in the total number of iterations performed before the
communication is initiated. For example, let the stopping criterion be maximal number
of iterations, fixed to 1000 (meaning that each processor will perform 1000 iterations
and in total q · 1000 iterations will be performed). In addition, let nCOM = 10, i.e.,
communications are performed when each processor completes 100 iterations. This
means that 200 iterations will be performed before the communication is initiated, in
the case when q = 2. In the case when q = 5, the communication occurs after 500
iterations.

The processor-dependent communication frequency provides that the information
about the improvement of the current global best solution is passed to all processors
more often. For the definition of communication points in this case we used the follow-
ing rule [Dav13]: the current global best solution is exchanged each nit/(10 · q) itera-
tions where nit represents the maximum allowed number of iterations. This means that
in the case when nit = 1000 and q = 5, the communication will be initiated 50 times
during the search, i.e., each time all processors complete 5 · 20 = 100 iterations. In the

6.3 Parallelization strategies of the BCO algorithm 111

case when q = 10, we will have 100 communications, again after 10·10 = 100 iterations
in total are completed. Since the stopping criterion is not reduced, each processor will
always perform nit iterations, which yields q ·1000 in total. In the case when the values
of BCO parameters vary from processor to processor, the communication points should
be defined with respect to the allowed CPU time, rather than using the number of it-
erations as the reference value. Increasing the communication frequency may increase
the time required for communication and synchronization between processors, which
could degrade the performance of the parallel search. The solution of this problem is
certainly the asynchronous parallelization of BCO, which we describe next.

6.3.3 Asynchronous cooperation of the BCO algorithms

To decrease the communication and synchronization overhead during the cooperative
execution of different BCO algorithms, a more general (GBCO) approach, the asyn-
chronous execution strategy, is proposed [Dav13]. We implement this strategy in two
different ways. The first implementation involves a centrally coordinated knowledge
exchange, while the second one utilizes non-centralized parallelism. Each processor
executes a particular sequential variant of BCO until some predefined communication
condition is satisfied. It than informs others about its search status, collects the current
global best, and continues its execution. However, this strategy does not require all of
the processors to participate in the communication at the same time. Each processor
sends its results, and looks for the ones from the others when it is ready.

The first approach assumes the existence of a central blackboard (a kind of global
memory) [Cra10] to which each processor has access to. The communication condition
is defined as the improvement of the current best solution or the execution of 5 iterations
without improvement. More precisely, each processor performs sequential BCO steps
until one of the aforementioned conditions is satisfied. If it manages to improve the
current best solution, it informs other processors of that improvement (putting the
information on the blackboard) and continues its own execution.

On the other hand, if no improvement occurs after 5 iterations, the correspond-
ing processor checks if there are improvements generated by the other processors. If
some other processor reported an improved solution, that new solution is used as the
reference point for further search. In the case when an improvement has not been
announced by others, the execution continues with the previous best solution as the
reference point. The improvement checking frequency (the number of iterations be-
tween two consecutive blackboard accesses) is selected in such a way to ensure both
individual search on each processor and high information exchange rate.

The stopping criterion is not reduced, and it is set to maximum allowed CPU time, in
order to ensure better load balancing, i.e., that all processors complete their execution
at approximately the same time. This strategy is classified as pC/C/MPSS in the case
when the BCO parameters are the same on all processors (only the seed differs), or as
pC/C/MPDS otherwise.

Non-centralized asynchronous parallel BCO execution assumes the existence of sev-
eral blackboards, and that only a subset of (adjacent) processors may post and access
information on the corresponding blackboard. In this case, we allow each processor to
perform a single iteration of the corresponding BCO before addressing its associated
blackboard. In the case that it manages to improve the current global best solution,

112 Chapter 6 Parallelization strategies for the BCO algorithm

it posts that information on the blackboard and checks if there are better solutions al-
ready posted there. The best posted solution is adopted as the new reference point.
If the improvement did not occur in the current iteration, the corresponding processor
simply checks for a better solution on its associated blackboard. If there is a better solu-
tion posted, it serves as a new reference point, otherwise, the execution continues with
the previous best as the reference point. This strategy is also classified as pC/C/MPSS
or pC/C/MPDS, depending on the search parameters. To the best of our knowledge,
asynchronous strategies for bee-inspired were not considered in the recent literature,
and therefore, they represent the major contribution in this dissertation.

In Fig. 6.2 we summarize all the strategies and their implementations and provide
details that distinguish them. Since some implementations have been already pro-
posed in [Dav11b], here we develop several new parallel implementations (shaded in
Fig. 6.2). More details about their experimental evaluation are presented in the next
section.

Parallel
strategies of

BCO

cooperative

asynchronous
(GBCO)

SC = const.

pC/C/MPDS
(Bq, NCq)

non-centralized:
COM after 1it.

centralized:
COM after 5it.

pC/C/MPSS
(B,NC)

synchronous
(CBCO)

SC = const.

pC/KS/MPDS
(Bq, NCq)

nCOM = SC
(c·q)

nCOM = const.

pC/KS/MPSS
(B,NC)

nCOM = f(q)

nCOM = const.

independent

pC/RS/MPDS
(Bq, NCq)
(MBCO)

Bq,NC q, SC/q

pC/RS/MPSS
(B,NC)

(DBCO, BBCO) B/q,NC ,
SC = const.

B,NC , SC/q

Figure 6.2: Classification of parallelization strategies for BCO. The colored fields indi-
cate settings of our implementations.

6.4 Comparison of the results for parallel BCOc executions 113

6.4 Comparison of the results for parallel BCOc
executions

In order to set up the framework for the experimental validation of our approaches to
the parallelization of the BCO algorithm, we first describe how the available hardware
and software resources influence our implementation. In the rest of this section, we
present experimental evaluation of the proposed parallel BCOc implementations for
the P ||Cmax problem. The test problem has been introduced in section 2.3.2 and the
corresponding sequential BCOc implementation in [Dav12], which is the starting point
for the parallelization. Finally, we present the results of a comparison between the
sequential and each of the proposed parallel BCO implementations. To ensure fairness
of the obtained results, we always compare parallel execution with the best sequential
one, executed on a single processor of our parallel architecture (instead of a parallel
version executed for q = 1).

As we already mentioned, BCOc is the stochastic meta-heuristic method, which
means that different executions can produce different results, even in the sequential
case. Therefore, we cannot use the standard performance measures (speedup and
efficiency) for the evaluation of its parallel execution. Moreover, the parallelization
changes the original algorithm, and consequently, we need to evaluate both the exe-
cution time and the quality of the final solution. Those become the new performance
measures.

6.4.1 Experimental environment

All parallelization strategies are implemented on a distributed memory IBM HPC Linux
Cluster: IBM eServer IBM x3650 2 x Dual Xeon 5140 2.0GHz, 4GB RAM, 196GB, and
16 Working Nodes – 2 x Dual Core Intel Xeon 5141 2.33GHz with 4GB memory and
36GB scratch space. Our implementations are coded in the C programming language,
using the MPI communication library.

Our target architecture for parallelized BCOc is a homogeneous distributed memory
multiprocessor system, containing q processors. For synchronous parallelization, we
use a completely connected network of q processors, and distinguish the processor
(master) that communicates with the user, usually marked as processor 0. The other
q−1 processors are called working processors (slaves), indexed from processor 1, up to
processor q−1. A completely connected topology containing q=5 processors is shown
in Fig. 6.3(a). The synchronous parallel versions of BCO execute on all q processors,
i.e., the computations are assigned to the master as well. In our experiments, we use a
different number of processors, ranging from 2 to 20.

In the first variant of GBCO (with centralized information exchange) we require a
central blackboard, i.e., global memory. Under the MPI implementation we need to sim-
ulate it in such a way that each processor would be able to put its current best solution
into global memory, and to read the actual global best from it, without disturbing the
others. This situation is realized on the master-slave architecture (Fig. 6.3(b)). Each
slave is connected only to the master and communicates with it. The master serves as
the global memory, which means that it does not perform any calculations connected
to the execution of BCO. The primary role of the master is to manage the global best

114 Chapter 6 Parallelization strategies for the BCO algorithm

P0

P1

P2P3

P4

USER

(a) Complete interconnection net-
work of five processors.

P0

P1

P2P3

P4
USER

(b) Master-slave architecture.

P0

P1

P2P3

P4

USER

(c) Unidirectional processor ring.

Figure 6.3: Network Topology.

solution. It collects improved solutions coming from the slaves one by one, compares
them with the current global best, and performs updates if necessary. If no improve-
ment is reported, but a request for a new best solution arrives from a slave, the master
sends the current global best solution to that slave. On the other hand, the slaves do
not require the current global best as long as they are able to improve their own best
solution. They simply report their improvement to the master and continue searching.

In the recent literature [Jov09, Man06, Sev07, Yu11] a non-centralized approach to
the parallelization of meta-heuristic methods was proposed. It was implemented via a
processor ring architecture. The authors tested uni- and bi-directional cases, and con-
cluded that a unidirectional ring architecture (Fig. 6.3(c)) performs better. Therefore,
we also adopted this architecture for the implementation of our non-centralized GBCO.
Each processor performs a single iteration of the BCO algorithm and, in the case of an
improvement, sends its current global best solution to its predecessor. It also collects
potentially improved solution from its successor, compares it with its own current best
solution, and adopts the better one as the new reference point. At the end of the execu-
tion (when the stopping criterion is met), all current global best solutions are collected
and the best among them is reported to the user. In this case, no physical spaces for

6.4 Comparison of the results for parallel BCOc executions 115

the blackboards are needed; they are simulated by the messages used for transferring
data between two adjacent processors.

6.4.2 Test instances

For the experimental evaluation, we have chosen a representative subset of test ex-
amples from [Dav12], containing two hard instances. The first instance consisting of
100 tasks to be scheduled on 12 machines, Iogra100_12 from [Dav06b] with an a pri-
ori known optimal solution. This instance can be found at http://www.mi.sanu.ac.
rs/~tanjad/IndepExamples.htm. The optimal schedule length for the Iogra100_12
instance is 800.

Due to a lack of official benchmark examples for the scheduling problem and the
similarities between this problem and the bin packing problem (BPP), the second
instance that we use is u250_04 from the bin packing library [Fal96] available at
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/binpackinfo.html.

BPP is defined in section 2.3.2 (pg. 29) as the problem of packing a given set
I = {1, 2, . . . , n} of n items into minimum number of bins of a fixed capacity C. For
each item i its size (li) is given. If the items are viewed as tasks and the bins as
machines, then the scheduling problem can be seen as equivalent to a BPP with the
goal of finding a solution such that the number of bins equals the number of available
machines m and the makespan does not increase the bin capacity C. In [Dav12] it was
shown that the BCO best solution required two more machines (bins) than the best
known BPP solution from literature. In our experiments, we simply report the values
of makespan obtained in the best BCO solution for the BPP. Therefore, for the BPP
instance u250_04 we assume scheduling 250 tasks to 103 machines.

6.4.3 Comparison of independent BCOc executions

Since it was shown that the first two variants of independent runs of several BCOc
algorithms with different seeds provide an excellent speedup, with only a small degra-
dation in the quality of the final solution [Dav11b], we do not reproduce these results
here. Instead, we first test our coarse-grained parallelization strategy, named multiple
BCOc (MBCO). In order to select the appropriate values for the BCOc parameters (B
and NC), we performed numerous sequential executions on the Iogra100_12 example
and identified the following best performing combinations:

B = 5, NC = 10; B = 10, NC = 5; B = 10, NC = 10;
B = 15, NC = 10; B = 15, NC = 15; B = 20, NC = 10.

We order all the variants by their performance and assign them in a cyclic manner
to the processors engaged in the parallel execution of MBCO. As the best performing
sequential execution, we take B = 10, NC = 10, and its results serve as baseline
values. Table 6.1 contains the scheduling results for both test instances Iogra100_12
and u250_04. For all examples, the stopping criterion is set to 60 seconds of CPU time.

In the first column of Table 6.1 the number of parallel processors q, executing MBCO,
is given. The second column contains the minimum value of the objective function

http://www.mi.sanu.ac.rs/~tanjad/IndepExamples.htm
http://www.mi.sanu.ac.rs/~tanjad/IndepExamples.htm
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/binpackinfo.html

116 Chapter 6 Parallelization strategies for the BCO algorithm

Table 6.1: MBCO Scheduling results – test problems Iogra100_12 and u250_4.

Iogra100_12 u250_4

min. max. av. av. min. max. av. av.
q MBCO MBCO MBCO CPU time MBCO MBCO MBCO CPU time

1 809 813 811 60.00 149 150 149.7 60.00
2 808 812 811 30.03 149 150 149.8 30.04
3 810 813 811 20.03 149 150 149.7 20.05
4 809 813 811 15.02 150 150 150.0 15.06
5 810 814 812 12.02 150 150 150.0 12.05
6 811 813 812 10.03 149 150 149.8 10.06
7 811 814 813 8.59 149 150 149.9 8.62
8 811 814 813 7.52 150 150 150.0 7.56
9 812 814 813 6.68 150 150 150.0 6.71

10 809 815 813 6.02 150 150 150.0 6.05
11 811 815 814 5.48 150 150 150.0 5.50
12 811 816 814 5.03 150 191 154.1 5.06
13 811 816 814 4.65 150 197 163.6 4.67
14 812 815 814 4.31 150 193 164.0 4.35
15 810 816 814 4.02 150 208 174.2 4.05
16 810 817 815 3.77 150 234 179.6 3.83
17 813 818 815 3.56 150 239 181.9 3.60
18 812 816 814 3.35 169 225 199.4 3.41
19 814 817 816 3.19 181 261 215.0 3.25
20 814 817 816 3.03 181 260 221.9 3.08

av. 811 815 813.42 8.23 154.05 184.63 165.94 8.26

(schedule length), out of 10 repetitions. The corresponding maximum value is pre-
sented in the third column of the table. The average schedule length (rounded to the
nearest integer value for Iogra100_12) represents the content of column four, while the
average maximum over q MBCOs’ running (CPU) times are placed in the fifth column.
Namely, it is important to note that the CPU time, required by MBCO to complete the
necessary computations, is actually the CPU time of the processor which is the last to
finish its work. Accordingly, it is equal to the maximum overall running time of the
processors. The only difference between two groups of the results is that for u250_4
the average schedule lengths are not rounded to the nearest integer value.

From the results presented in Table 6.1 we can conclude that by engaging different
variants of the BCO algorithm the quality of the solution for Iogra100_12 is preserved
up to the q = 5 within a proportionally smaller wall-clock time. For the second test
example (u250_4), the solution quality is preserved for q < 12, but later deviations
are quite large, going to almost 50% for q = 20. As the number of engaged processors
increases, the benefit of parameter variations is nullified by the reduction of the CPU
time allowed to each BCO. According to the results from Table 6.1, we conclude that,
when MBCO is executed, the linear speedup pertains the (best) solution quality for
both test instances if q ≤ 5.

6.4 Comparison of the results for parallel BCOc executions 117

6.4.4 Comparison of cooperative executions

6.4.4.1 Comparison of CBCOs

For synchronous cooperation, we select the same six instances of the BCOc algorithm,
and assign them to the processors in the same cyclic manner. We allow our parallel
BCO, regardless of the number of engaged processors, to run for the same amount
of CPU time as the sequential BCOc, and check for an improvement in the quality of
the final solution. During the cooperative execution, different instances of the BCOc
algorithm exchange their best solutions at predefined communication points, and the
best among these solutions is used to guide further search for all BCOc variants. We
implement two versions of CBCO, one with a fixed (10 in our case) number of com-
munications, and the other with processor-dependent number of communications. The
obtained results are presented in Tables 6.2 and 6.3.

Table 6.2: CBCO Scheduling results – test problem Iogra100_12.

Variable number of communications Fixed number of communications

min. max. av. av. min. max. av. av.
q CBCO CBCO CBCO min time CBCO CBCO CBCO min time

1 809 813 811.5 37.90 809 813 811.5 37.90

2 809 812 810.5 45.57 809 812 810.6 30.45
3 809 812 810.6 27.71 809 812 810.1 28.70
4 811 813 811.9 30.78 809 811 810.4 33.51
5 810 813 811.3 31.74 808 811 810.0 39.68
6 809 813 811.2 28.12 809 811 810.4 36.00
7 809 812 810.6 31.43 808 811 809.7 31.38
8 810 813 811.2 33.45 809 811 810.2 26.68
9 807 812 809.9 38.02 809 811 810.5 37.73

10 807 813 810.1 31.79 809 812 810.7 22.96
11 807 812 810.0 30.52 809 812 810.5 26.62
12 809 812 810.9 32.13 810 812 811.1 22.38
13 808 812 810.6 40.28 810 812 811.3 21.40
14 808 813 810.8 34.69 808 813 810.8 21.42
15 810 815 812.2 30.29 810 812 810.8 30.41
16 810 814 812.1 39.69 811 813 811.6 25.91
17 810 813 811.6 45.89 809 812 810.5 31.88
18 810 814 811.8 39.99 809 812 810.6 27.86
19 807 814 810.8 32.78 806 813 811.0 25.37
20 811 815 812.8 30.53 810 813 811.5 34.39

av. 809.00 813.00 811.10 34.49 809.00 811.89 810.65 29.20

Table 6.2 is divided into two parts: the left part is designated as the variant of
CBCO in which the number of communications increases with the number of engaged
processors, while analogous results, in the case of the fixed number of communications,
are given in the right part of the table. We perform 10 repetitions of both variants of
CBCO, and in Table 6.2 present the minimum, maximum, and average obtained objec-
tive function values, as well as the average (over ten executions) CPU time required
to obtain the best solution. As in previous case, the average values are rounded to the
nearest integer. As can be seen in Table 6.2, in both cases the quality of the obtained
final solution is either improved or at least preserved for q ≤ 12, with respect to the

118 Chapter 6 Parallelization strategies for the BCO algorithm

sequential execution of the best performing BCOc. At the same time, in the majority of
cases, the CPU time is reduced. We cannot expect complete scalability because of the
highly stochastic nature of the BCO algorithm. Another interesting conclusion is that
the time required for communication and synchronization between processors can be
neglected, as the largest value is less than 1s (comparing to the total allowed CPU time
of 60s). As Table 6.2 shows, the CBCO variant with less frequent communications gives
a slightly better performance with respect to both solution quality and minimum CPU
time.

To illustrate the benefits of using CBCO, in Fig. 6.4 we present the improvement
of the solution quality obtained for q ≤ 5 over time. The results of a single run for
the variant with a fixed number of communications are shown. The vertical lines in
Fig. 6.4 are to indicate a proportionally smaller execution time. As can be seen from
Fig. 6.4 parallel executions significantly outperform the best sequential BCOc within
a proportionally shorter execution time. Moreover, at the end of parallel executions
better final solutions are obtained, indicating that within the same wall-clock time we
are able to gain in the solution quality. However, the graphics intersect due to the
stochastic nature of BCOc. Comparing different parallel executions, we can conclude
that all parallel executions exhibit rapid improvements at the beginning of execution.
Later on, some of the executions (for q = 4, 5) are continually making small progress
during the entire scanned period, while others (for q = 2, 3) show a stagnation.

Figure 6.4: Improvement in time of the current best solution, during CBCO with a fixed
number of communications

The similar graphic for CBCO with a processor-dependent number of communica-
tions is provided in Fig. 6.5. As can be seen, for each q, the solution obtained in 40/q s
is better than the corresponding solution obtained by the best sequential BCO. More-
over, the solution quality stays better, or at least equal to the sequentially obtained one,
until the end of the execution. This completely coincides with the results presented

6.4 Comparison of the results for parallel BCOc executions 119

Figure 6.5: Improvement in time of the current best solution, during CBCO with a vari-
able number of communications

in Table 6.2. Comparing different parallel executions, we can conclude that some of
the executions (for q = 3, 4) are continually making small progress during the entire
scanned period. On the other hand, for q = 2, 5 we identify a rapid improvement in the
quality of the solution at the beginning of the execution, which is later outperformed
by the executions on q = 3, 4 processors. Other possibilities (degradation of the final
solution, improvements over the sequential execution within more than t/q s, etc.) did
not occur in these examples.

The results of CBCO applied to the u250_04 example are presented in Table 6.3.
This table has the same structure as Table 6.2. It shows that CBCO with the fixed
number of communications performs better: the quality of the solutions or minimum
running time are improved.

6.4.4.2 Comparison of GBCOs

The results of asynchronous parallel BCOc executions are presented in Tables 6.4 and
6.5. These tables have the same structure as the previous ones. As can be seen
from these tables, for the Iogra100_12 example on average the processor ring shows a
slightly better performance regarding the quality of the solution, while the master-slave
architecture appears to be a little bit faster.

With respect to the synchronous execution, when comparing the results from Ta-
bles 6.2 and 6.4 we can conclude that for smaller values of q, CBCO performs better
regarding the solution quality and starting with q = 14 GBCO shows better perfor-
mance. However, considering the average execution time CBCO with fixed number of
communications outperforms all other cooperative executions. The presented results
for the u250_4 example show that non-centralized asynchronous execution (GBCO ex-

120 Chapter 6 Parallelization strategies for the BCO algorithm

Table 6.3: CBCO Scheduling results – test problem u250_04.

Variable number of communications Fixed number of communications

min. max. av. av. min. max. av. av.
q CBCO CBCO CBCO min time CBCO CBCO CBCO min time

1 149 150 149.7 16.20 149 150 149.7 16.20
2 149 150 149.9 6.59 149 150 149.8 8.39
3 149 150 149.7 13.59 149 150 149.5 19.32
4 149 150 149.7 13.53 149 150 149.5 19.63
5 149 150 149.8 7.12 149 150 149.5 18.75
6 149 150 149.6 16.95 149 150 149.8 8.8
7 149 150 149.7 12.17 149 150 149.6 14.86
8 149 150 149.8 9.85 149 150 149.4 20.04
9 149 150 149.7 11.38 149 150 149.3 22.43

10 149 150 149.8 12.43 149 150 149.2 23.6
11 149 150 149.9 8.21 149 150 149.3 25.12
12 149 150 149.8 8.79 149 150 149.4 22.62
13 149 150 149.9 8.96 149 150 149.8 11.14
14 149 150 149.9 11.09 149 150 149.9 6.29
15 149 150 149.7 18.97 149 150 149.7 12.06
16 149 150 149.9 10.74 149 150 149.4 25.21
17 149 150 149.9 10.69 149 150 149.7 18.3
18 149 150 149.9 10.06 149 150 149.9 5.15
19 150 150 150.0 12.68 150 150 150.0 5.81
20 149 150 149.9 15.81 149 150 149.8 10.53

av. 149.05 150.00 149.82 11.56 149.05 150.00 149.61 15.69

ecuted on a processor ring) outperforms on average all the other parallel variants with
respect to the solution quality, while CBCO with variable number of communications is
the fastest variant.

6.4.4.3 Comparison of sequential and cooperative BCOs

To analyze the resource utilization we perform an additional experiment. Instead of
using the best performing sequential BCOc algorithm, we implement the version that
cyclically changes values of BCOc parameters (B and NC) using the same six com-
binations as the parallel BCOc versions. We let this sequential algorithm to run for
proportionally longer time and compare it with the best performing parallel variants
running 60 seconds on the corresponding number of processors. In such a way we
equalize the total CPU time of parallel and the corresponding sequential execution.
The obtained results are summarized in Table 6.6.

The first column of Table 6.6 contains the total CPU time (the multiple of 60sec)
allowed for the sequential BCOc. Average (over 10 executions) of schedule lengths
obtained within the given time limit and the corresponding average minimum times
for sequential BCOc are given in columns two and three, respectively. Column four
contains the number of processors for parallel executions lasting 60sec of wall-clock
time. The next two columns contain average schedule lengths and average minimum
time for better among cooperative BCOc algorithms, while the remaining two columns
are devoted to non-centralized GBCO. As it is expected, the sequential results improve
systematically with the increasing in the allowed running time. On the other hand, the

6.5 Final remarks 121

minimum time required to realize these improvements also increases. The summary
results in the last row of Table 6.6 show that in order to improve the average schedule
lengths for only 0.2% by the sequential BCOc we would have to wait more than 10
times longer. Therefore, our conclusion is that the application of parallel BCOc is more
than justified for the considered problem.

6.5 Final remarks

The BCO method is suitable for parallelization as it operates on a population of so-
lutions by utilizing stochastic, either constructive or improvement, heuristic methods.
The main concept was introduction of Multiple BCO (MBCO), where we vary the val-
ues of the BCO parameters and change the stopping criterion at the same time. We
consider three strategies for parallelization of BCOc and propose five coarse-grained
parallel implementations under the Message Passing Interface (MPI). The first strat-
egy assumes independent execution of various BCO algorithms. Sequential versions of
BCOc are executed on different processors and the best solution is collected at the end.
Applying independent parallelization of MBCO to P ||Cmax we obtained almost linear
speedup for a modest number of engaged processors (≤ 12). At the same time quality
of the solution is not degraded significantly (below 3% with respect to the sequential
result).

The second strategy is related to synchronous cooperative execution of various BCOc

Table 6.4: GBCO Scheduling results – test problem Iogra100_12.

Master-slave architecture Processor ring architecture

min. max. av. av. min. max. av. av.
q GBCO GBCO GBCO min time GBCO GBCO GBCO min time

1 809 813 811.5 37.90 809 813 811.5 37.90

2 809 812 811.1 37.46 808 813 811.0 19.14
3 809 812 810.5 35.88 809 812 810.8 24.45
4 808 812 810.8 30.00 810 813 811.1 35.52
5 809 812 810.9 34.37 808 812 811.0 36.01
6 809 812 810.5 37.14 809 812 810.8 29.09
7 810 812 810.8 26.32 810 812 811.1 39.14
8 810 813 811.4 25.88 809 812 810.7 36.01
9 809 812 810.4 34.80 809 812 810.8 36.95

10 808 813 810.9 34.10 808 811 809.8 42.61
11 807 813 811.1 25.32 809 812 810.4 38.10
12 809 813 811.3 35.15 809 812 810.5 36.88
13 810 813 811.3 33.18 809 812 810.9 36.10
14 807 812 810.9 25.08 809 812 810.4 42.53
15 809 812 810.7 30.81 809 812 810.7 30.14
16 810 812 811.0 31.40 808 812 810.5 32.47
17 807 812 810.8 22.60 810 812 810.8 32.76
18 809 812 810.8 33.42 810 812 810.6 35.75
19 810 813 811.1 28.32 809 813 811.0 35.29
20 809 813 811.3 16.58 809 812 810.7 31.61

av. 808.84 812.37 810.93 30.41 809.00 812.11 810.72 34.24

122 Chapter 6 Parallelization strategies for the BCO algorithm

Table 6.5: GBCO Scheduling results – test problem u250_04.

Master-slave architecture Processor ring architecture

min. max. av. av. min. max. av. av.
q GBCO GBCO GBCO min time GBCO GBCO GBCO min time

1 149 150 149.7 16.20 149 150 149.7 16.20

2 149 150 149.8 9.93 149 150 149.8 14.42
3 149 150 149.7 12.33 149 150 149.5 16.25
4 149 150 149.6 14.01 149 150 149.5 20.65
5 149 150 149.8 6.40 149 150 149.7 15.49
6 149 150 149.5 9.50 149 150 149.6 17.32
7 149 150 149.4 21.17 149 150 149.6 12.08
8 149 150 149.3 16.86 149 150 149.4 15.49
9 149 150 149.4 23.75 149 150 149.7 14.49

10 149 150 149.3 25.54 149 150 149.5 17.11
11 149 150 149.2 27.00 149 150 149.5 20.9
12 149 150 149.2 19.93 149 150 149.2 29.87
13 149 150 149.4 17.17 149 150 149.3 27.42
14 149 150 149.6 12.42 149 150 149.3 27.98
15 149 150 149.4 20.89 149 150 149.2 31.25
16 149 150 149.4 16.92 149 150 149.3 34.96
17 149 150 149.5 21.56 149 150 149.1 32.26
18 149 150 149.6 11.65 149 150 149.2 31.36
19 149 150 149.5 17.09 149 150 149.5 20.98
20 149 150 149.3 32.17 149 150 149.3 32.42

av. 149.00 150.00 149.47 17.70 149 150 149.43 22.77

instances. We implemented two synchronous cooperative variants on a completely
connected homogeneous multiprocessor system, in which processors communicate by
exchanging messages. The one involving a less frequent knowledge exchange resulted
in better performance for the considered MBCO.

Finally, related to the third strategy, we implemented two variants of asynchronous
BCO parallelization. The first of them includes a global memory concept, and it is im-
plemented on master-slave multiprocessor architecture. The second, a non-centralized
asynchronous execution, is realized on a unidirectional processor ring. To the best
of our knowledge, these are the first implementations of asynchronous parallel bee-
inspired meta-heuristic methods.

On two hard test examples we showed that, while both the synchronous and asyn-
chronous concepts perform well on a modest number of processors, the asynchronous
concept outperforms the synchronous one as the number of engaged processors in-
creases. Therefore, our main contribution is the successful development of new and
efficient distributed memory parallelization strategies for BCO.

6.6 Chapter summary

The chapter begins with an overview of parallelization strategies, where we discuss
about the goals of parallelization of meta-heuristic. Then, we provide detailed de-
scriptions of parallel implementation of two nature-inspired meta-heuristics (ABC and

6.6 Chapter summary 123

Table 6.6: Comparison between sequential and parallel BCOc within the same CPU time
– test problem Iogra100_12.

Total Sequential BCO CBCO-Fixed comm. GBCO-Processor ring
CPU time av. av. av.

(q ∗ 60sec) av. SL min time q av. SL min time av. SL min time

120 810.7 60.27 2 810.6 30.45 811.0 19.14
180 810.3 86.69 3 810.1 28.70 810.8 24.45
240 809.8 126.50 4 810.4 33.51 811.1 35.52
300 809.8 126.50 5 810.0 39.68 811.0 36.01
360 809.6 176.61 6 810.4 36.00 810.8 29.09
420 809.6 176.61 7 809.7 31.38 811.1 39.14
480 809.4 231.51 8 810.2 26.68 810.7 36.01
540 809.2 283.49 9 810.5 37.73 810.8 36.95
600 809.0 320.66 10 810.7 22.96 809.8 42.61
660 808.8 332.44 11 810.5 26.62 810.4 38.1
720 808.7 357.47 12 811.1 22.38 810.5 36.88
780 808.5 417.83 13 811.3 21.40 810.9 36.10
840 808.5 417.83 14 810.8 21.42 810.4 42.53
900 808.3 496.91 15 810.8 30.41 810.7 30.14
960 808.3 496.91 16 811.6 25.91 810.5 32.47

1020 808.3 496.91 17 810.5 31.88 810.8 32.76
1080 808.2 517.00 18 810.6 27.86 810.6 35.75
1140 808.2 517.00 19 811.0 25.37 811.0 35.29
1200 808.2 517.00 20 811.5 34.39 810.7 31.61

av. 809.02 324.01 810.65 29.20 810.72 34.24

ACO). The survey shows that their parallel implementations exhibit good performance,
which was the inspiration to conduct similar approaches on BCO.

In the second part of this chapter we propose parallelization strategies for BCO and
have tested them on BCOc implementation for P ||Cmax. We conclude that cooperative
approach is more powerful than independent executions, as it was expected. Among
cooperative strategies, we compared synchronous and asynchronous and confirmed
that increasing number of processors over some threshold makes it difficult to synchro-
nize processors. In these cases asynchronous parallelization strategy manifests better
performance.

CHAPTER7
Methodology of experimental study of

BCO

In the last decade the BCO community has encouraged systematic experimental re-
search either as an integral part of the BCO development and/or during experimental
evaluation of particular implementations. In this chapter we aim to contribute to fur-
ther development of methodological study of BCO and explore different combinations
of the BCO parameters’ configurations by addressing the question of parameter control
(influence of parameter values). Numerous strategies to experimental study of meta-
heuristics have been proposed in the literature. For the most part, the strategies are
efficient as they try to minimize the overall computational coast. However, the choice
of an appropriate automatic tuner can often be time consuming. In addition, integrated
statistical and visual tests might not address the goals of a particular study. We opt for
statistical and visual tests that help establish conclusions after collection of measured
outcomes.

The chapter is organized as follows. We first review tutorials regrading experimen-
tal analysis of meta-heuristics. Various aspects of the experimental methodology are
described, along with discussions and literature surveys. The objective is to show how
a research goal might influence the selection of a performance measure and configura-
tion method. To distinguish it from the definition in the field of statistics, we review
definition of sensitivity analysis applied in optimization. In this chapter we emphasize
the importance of reproducibility as a contributor to every unbiased study. Due to their
broad utilization, we identify and describe the most frequently employed statistical
tests in OR. In the last section we focus on the subject of the BCO parameters and
their interdependence. We introduce new concepts regarding different components of
the BCO algorithm and reference them as new BCO’s parameters. The parameters are
categorized and their interdependence described by a hierarchy diagram.

7.1 Motivation for empirical analysis

Empirical analysis is a study based on data collected by observations or experiments. Ex-
perimental analysis of meta-heuristic methods is occasionally employed as a synonym
[Kao08, pg. 290], therefore, we make no distinction and we use them interchange-
ably throughout the dissertation. Empirical analysis of meta-heuristics in many cases
requires great effort due to the stochastic nature of the method and/or parameter in-
teractions.

126 Chapter 7 Methodology of experimental study of BCO

The aim of this dissertation is to provide insights into the performance of BCO by
following the guidelines of Hooker [Hoo94, Hoo95], Barr [Bar95], Rardin [Rar01] and
Johnson [Joh02b], who together with many other researchers [McG96, BB06], were
concerned with methodical analysis of heuristic and meta-heuristic methods. Meta-
heuristics are characterized by their parameters and/or different algorithmic compo-
nents [Bir09]. Once implemented, the algorithm can exhibit different performance as
parameter values change. The awareness of how to conduct a comprehensive empirical
study of meta-heuristics has increased over the last decade in the operations research
community [Stü09]. There are various recommendations in the literature, however,
identifying the best one is an ongoing topic of interdisciplinary research.

In [Hoo95] Hooker emphasizes the importance of thorough experimental analysis,
as opposed to competitive testing focused solely on the design of heuristic algorithms for
a specific instance or a class of problems for the purpose of outperforming a state-of-
the-art method. Utilization of the so-called controlled experimentation might be the only
way to find out why some heuristic procedure has demonstrated a good performance.
Therefore, embracing the terminology of Hooker, the subject of the thesis is scientific
testing of the BCO method. By scientific testing we assume that we plan to discover the
method’s properties by learning, for example, how the algorithmic components and/or
properties of problem instances effect algorithm’s behavior. The most widespread va-
riety of empirical study in OR and computer science concerns configuration (tuning)
of the algorithm. It is clear that obtaining the best configuration is an optimization
problem itself because of a large number of algorithm’s parameters, or merely due to
the size of the parameters’ domain. Several other proposals of well-planned and ex-
tensive testing of heuristics have been given by Barr et.al [Bar95], McGeoch [McG96],
Bartz-Beielstein [BB06], Birattari [Bir09], just to mention a few.

7.2 Experimental study of meta-heuristics

7.2.1 What is an experiment?

An experiment represents a collection of independent runs of an investigated algorithm.
A run of the algorithm corresponds to a single execution, occurring through iterations,
until a stopping criterion is satisfied. In particular, an experiment consists of nrun dif-
ferent runs of the algorithm’s instance (each specified by the fixed value of the random
number generator, seed) conducted under the same conditions. The conditions are
determined by the algorithm’s components, such as heuristic rules for construction/-
modification of a solution, population size or an operator. The number of independent
runs of one experiment is often, in the literature, appointed to 100 in order to assure
statistical significance when comparing different data samples [Hoo07, Blu08].

7.2.2 Measure of performance

A stochastic nature of meta-heuristics requires executions of the algorithm several times
in order to capture the central tendencies of the response values. A response value com-
monly refers to the quality of a solution (sometimes referred to as usefulness or utility),
or the computational effort (e.g., running time). There are different ways to define

7.2 Experimental study of meta-heuristics 127

measure of the algorithm’s performance, depending on the goal of the research. For
instance, if the idea is to capture performance of an algorithm under limited amount
of time (or number of evaluations) then classical tools, such as mean and standard de-
viation, are good representatives of the performance measures. This kind of estimates
provide what is known as effectiveness of the algorithm [Bar95, BB06, Bar11]. How-
ever, measures of effectiveness can be restricted, especially when a distribution of the
response variable does not follow any bell or symmetric shape (e.g., Gaussian). If the
idea is to estimate an effort to reach a solution of a predetermined quality, the perfor-
mance measure describes what is known as efficiency of the algorithm. In addition, a
mixed measure of the two is possible [Bar11]. The intention of our study is to inspect
the effectiveness of proposed BCO algorithms. We believe that the gathered knowledge
might be used to determine the efficiency of the BCO algorithm for different test in-
stances. A thorough review of different performance measures is provided in [BB06,
pg. 110] and in [Bar11, pg. 40].

Here, we shortly describe several types of performance measures suggested in the
literature in order to discuss various aspects of the study. For example, organized com-
petitions between stochastic algorithms imply restrictions on the total running times.
Conversely, strict limitations are usually not imposed while researchers try to under-
stand the mechanisms that led towards a certain outcome.

We begin with 2010’s competition "Real-Parameter Black-Box Optimization Bench-
marking" (BBOB-2010), between various heuristic algorithms for continuous optimiza-
tion problems [Han10a]. The requirement of the competition was a small value for
nrun (set to 15). The explanation is: if the number is set even a little bit higher, then
the irrelevant performance differences become statistically significant [Han10a]. The
second requirement was the target value ftarget = fopt + 10−8. The advocated mea-
sure of performance was expected running time, ERT, introduced in [Hoo98b]. ERT
represents the expected number of function evaluations until reaching ftarget for the
first time. It is determined as a ratio of the number of unsuccessful evaluations (1) (in
all runs of one experiment) and the number of successful runs [Han10a, BB13]. More
precisely,

ERT (ftarget) = #FEs(fbest(FE) ≥ ftarget)
#succ .

The authors of [Han10a] advice to employ ERT because it is ideal for wide variations
and ratio scales, simple and easy to interpret.

Another performance measure, commonly used for stochastic algorithms with high
variability, is presented by Hoose and Stützle [Hoo98b]. It is known as run-time dis-
tribution (RTD), or more generally, run-length distribution (RLD). The authors have
demonstrated its usefulness on the Las Vegas algorithm. To attain RLD the algorithm is
executed nrun times for a longer period of time, i.e., until reaching an optimal or some
other target solution. During the experiment the time to obtain the target solution is
measured and reported. If rl(j) is the number of steps that leads to successful run of
the jth execution of the algorithm, then the cumulative empirical distribution of the
RLD is defined as

P (rl ≤ i) = #j|rl(j) ≤ i
nrun

.

(1)Unsuccessful evaluation is considered to be the one where the observed objective function is worse then
a given target [BB13].

128 Chapter 7 Methodology of experimental study of BCO

According to the literature, selection of a performance measure may depend on the
problem to be solved. In fact, the criteria by which one is favored over the other is
not yet clear [Bar11, pg. 38]. Furthermore, if the problem is too hard for a stochastic
algorithm to find an optimum, or if there is no previous knowledge about the qual-
ity of a solution, then utilization of descriptive statistics (such as mean or median) is
appropriate [Eib02].

The performance measures featured by central tendencies are employed in this the-
sis, i.e., average value of a solution quality (or relative error) and average value of
running times (number of evaluations). We have opted for this approach to establish
optimal parameter configurations (as they are problem dependent). In addition, our
study is focused on observations and conclusions about the variability of outcomes that
the BCO algorithm exhibits over different settings of its parameters/modules.

7.2.3 Configuration methods

Tuning of an algorithm is a process of configuring meta-heuristics in order to discover
configuration of the method’s parameters which enables the best possible performance
for a particular problem instance [Bir09]. Numerous doctoral thesis, especially pub-
lished in the recent years, are devoted to the topic of configuration (tuning and sam-
pling) of meta-heuristic methods [DJ75, Bes04, Rid07, She11, Bar11, Smi12, EO13,
Lai14]. Various research papers pursue the same questions [Gre86, Bir06, Eib11,
Hoo11, Les11, Hut11, BB13, LI14], proposing and/or inspecting different tools for
experimental analysis. The tools are designed to avoid analysis of algorithms’ perfor-
mance on the complete parameter space. Among the first is F-Race as a representative
of racing algorithms [Mar97, Bir09]. The procedure is based on re-sampling techniques
such as bootstrap in order to avoid multiple runs while pertaining statistical significance
of conclusions [Bir09, pg. 5]. F-Race relies on the non-parametric Friedman’s two-way
analysis to compare different parameter configurations. Another racing method is it-
erated PARAMILS [Hut07, LI14]. Both approaches are known as model-free algorithm
configuration methods because no assumption about the response surface landscape
is made. On the contrary, model-based methods are iterative procedures founded on
model fitting of the response surface in order to attain a good set of parameters’ val-
ues for the next iteration [Hut10b]. Design of Experiments (DOE) [Win62, Mon01]
represents an integral part of the model-based methods. A thorough introduction to
DOE, adjusted for performance analysis of stochastic algorithms, is given in [BB06]
and in [Rid07] it was successfully applied to tuning of ACO parameters for TSP. An-
other novel method for analyzing and tuning parametrized stochastic algorithms is
Sequential Parameter Optimization (SPO) toolbox [BB13]. SPO is based on succes-
sive improvements by estimating relationships between parameters of a method and
the corresponding response values. The machine-learning aspect of the tuning process
is covered in [Bat08], whereas [Les11] presents procedures inspired by data mining.
[Hut10b, Hut11] propose SMAC to overcome the limitations of sequential model-based
optimization methods focused on configuration of deterministic algorithms. SMAC is
based on empirical hardness models (EHMs) that estimate the runtime of an algorithm,
and thus it selects the promising configurations explored in the next iteration [LB14].
The majority of today’s tuners are model-based and employ linear or nonlinear models
or other sophisticated approaches, such as quadratic ridge regression, neural networks,

7.2 Experimental study of meta-heuristics 129

regression trees, random forests, etc [LB14]. In general, majority of parameter tuners
follow three basic principles: screening, experimentation and exploitation. The liter-
ature on the subject of tunning is overwhelming, therefore, the correct choice of the
configuration method for BCO remains one of the future challenges. A comprehensive
classification of the state-of-the-art automatic tuners has been provided in [Eib11].

We distinguish two broad classes of tuning: off-line and on-line. Off-line implies
that assigning values to all the algorithm’s parameters is conducted at the beginning
of an experiment. The idea behind on-line tuning is obtaining the feedback, which is
used to modify the parameters while the search itself is still in progress [Bir09]. For
both classes it is suggested that two independent sets of problem instances should be
treated: tuning instances and test instances [Bir09]. Tuning instances are applied to find
the best-performing configuration of the algorithm parameters. Once the parameters
are found, the algorithm can be evaluated on a different set of instances, indicated as
test instances. In this way an unbiased estimate of the algorithm’s performance can be
conducted.

7.2.4 Types of parameters
From the field of statistics we define a factor or parameter as any controllable variable
which could affect the outcome or the result of an experiment. Two types of parameters
are distinguished [Win62, Eib11]: qualitative and quantitative. Quantitative parame-
ters are mostly numerical values with sensible ordering. Qualitative parameters rep-
resent symbolical values that are difficult to measure, e.g., evaluation functions. The
specifications are similar to those introduced in [Bir10, pg. 338] where two types of
parameters are distinguished: numerical and categorical(2). Categorical parameters are
defined as: "different procedures or discrete choices that can be taken by an algorithm"
[Bir10]. Therefore, qualitative factors are variables used to represent categorical data,
taking values that are names or labels to substitute expressions or formulas. A different
terminology exists concerning the types of parameters, one that elegantly reflects the
difference between two types of algorithm tuning [Bir09, Eib11]. Structural tuning is
conceived as an analysis of influence of qualitative factors on the performance measure,
while the parameter tuning is associated with influence of quantitative factors.

7.2.5 Sensitivity analysis
A complete scientific study of the BCO method is overwhelming, and therefore our fo-
cus is on the investigation of parameters’ influence with the tools of sensitivity analysis.
Sensitivity analysis in OR and computer science may be considered as a part of the
broader field of scientific testing. It is a term used in relation to studies of variance in
algorithm’s response values while changing the parameter configurations or problem
instances [Hoo07]. Research in sensitivity dates back to the development of linear pro-
gramming, according to [Gal97, Chapter 1]. For general definition of the sensitivity
analysis we refer to Definition 11, found in [Nak13, pg. 5]. The author implies that
with the lower variability of the obtained solutions we obtain the better sensitivity. A
consistency of parameter configurations is also an important aspect of sensitivity analy-
sis, i.e., establishing to which degree an impact of parameter configurations is similar
(2)Categorical data is one which can have two or more categories, but there is no intrinsic ordering [Cal]

130 Chapter 7 Methodology of experimental study of BCO

across the benchmark set of problem instances [Hoo07]. We are particularly interested
in parameter sensitivity analysis(3), as provided in Definition 12. In the study of BCO,
we do not conduct exhaustive analysis of interactions between the parameters, and
concentrate on the main effects.

Definition 11 (sensitivity analysis, [Nak13]). Sensitivity analysis of a optimization
algorithm corresponds to insensitivity against small deviations in either problem in-
stances or the parameters of the algorithm. 3

Definition 12 (parameter sensitivity analysis, [Hoo07]). Sensitivity analysis of a
optimization algorithm corresponds to analyzing variation of an algorithm’s outcome
in response to changes in its parameter settings. 3

In order to explore hidden properties of an analyzed data the tools of exploratory
data analysis, such as boxplots and histograms, are typically utilized together with other
techniques of visual analysis [Tuk77, Rar01, Joh02b, Cza04, BB04, BB06, Rid07, Bir09,
Eib11].

7.2.6 Reproducibility
An important feature of any research presentation needs to consider the factor of re-
producibility [Bar95, Hoo95]. Namely, the utilization of the random number generator
causes systematic variability in the response values. The reason can be found in the
methods employed to produce stochastic behavior of the algorithm, thus, influencing
all the executions across the study. By reproducibility we imply that when repeating the
study with the same settings, we generate the same outcome. Therefore, we distinguish
parameter seed from others as nuisance factor since it is not the subject of the experi-
mentation [Mon01]. It should be controlled during the experimentation and fixed to
values that assure reproducibility under the same experimentation conditions [Cza04].
Value of seed might be reported with other descriptive data. Another contribution
to the reproducibility of the empirical analysis is to provide as much information on
results as possible. Moreover, employing identical random seeds may contribute to-
wards adequate choice of statistical tests focused on exploring an influence of main
effects [Hut10a].

7.2.7 Statistical methods
Many research questions can be formulated in form of a statistical hypothesis. Usually,
a hypothesis is defined as a statement where we compare means or medians of two data
sets or one set with a specified value. A null hypothesis is usually defined to propose
no difference between compared values. An alternative hypothesis would correspond
to a statement that proposed values (or data sets) are statistically different. At the
beginning of a hypothesis testing it is required to determine a critical or rejection region.
Critical region represents a set of values that helps establish the rejection of the null
hypothesis. It is worth noting that statistical tests are not absolute and can produce
certain types of error. For example, if a result of a hypothesis test is that we should

(3)The expression parametric analysis is commonly employed for the parameters of a optimization problem,
also know as parameter optimization [FB07].

7.2 Experimental study of meta-heuristics 131

reject a null hypothesis while in fact it is true, then type I error has occurred. This
is why at the beginning of an experiment we need to assure to which degree we are
ready to cause the type I error, i.e., with which probability we expect the error to
happen. Such probability is known as significance level of a test, often denoted by α.
Significance level of statistical tests represents an extreme value for so-called p-value
that denotes a result of the statistical test. Normally, if p-value is less than α, we reject
the null hypothesis and accept the alternative hypothesis. Otherwise, we fail to reject
the null hypothesis. This describes a critical value approach to conduct a hypothesis
test [Mon01, Leh06, Ric06, Kir07, How10].

The correct choice of a statistical test relies on more factors, such as: sample size
(ne), distribution of data sample under review, dependency between data, etc. A sam-
ple can be: original data and/or difference between two data samples. There are
two types of hypothesis testing procedures [Cro12]: (a) parametric; and (b) non-
parametric. Parametric tests are employed on samples with interval or ratio (4) data
which satisfy the condition of normal (Gaussian) distribution or when departures from
normality are not substantial. These condition need to be satisfied for different groups
of data, like: distribution of an original data or variances of data from the group mean.
Each statistical test comes with its own set of conditions. In the case that normality
condition is not satisfied, or we are not concerned with the underlying distributions,
non-parametric tests may be used [Hol99]. However, the literature recommends the
use of parametric tests if the normality condition is satisfied, seeing that non-parametric
tests have weak (or non) assumptions about sample distributions.

For data sets with normal distributions, measure of central tendency can be based
on the mean and standard deviation of the sample. Otherwise, if the data sample is
not normally distributed, then using median and range is advised [BB13]. In the lit-
erature, the most common statistical test used to investigate a difference between two
algorithms is the t-test [Box05, pg. 39]. There are two types of t-test. If data samples
are mutually dependent, paired t-test is commonly used. Otherwise, two independent
sample t-test is employed. Both tests evaluate statistical differences between means of
two samples. Comparing multiple samples requires investigating homogeneity of vari-
ance. If homogeneity of variance is satisfied, most common utilized statistical test is
ANOVA test (Analysis of Variance, [Mon01, She04]). It is recommended to conduct
post-hoc analysis in order to determine pairs of samples that exhibit statistical differ-
ence. ANOVA test is used to establish statistical differences between means of two or
more samples. Therefore, ANOVA assumes that a sample follows normal distribution
and satisfies a condition of homoscedasticity(5). Moreover, parametric tests, such as
ANOVA, can be robust to moderate departures from normality, and some general ad-
vices are proposed in [Wes95, Kim13]. To make assessment for normality of medium-
sized samples (50 < ne < 300), the authors of [Kim13] suggest using z-test (based on
skewness and kurtosis) instead formal normality tests, such as Shapiro-Wilk. We follow
the first approach during examination of ANOVA conditions.

As ANOVA requires a certain level of homoscedasticity on an independent set of sam-
ples, parametric Leven’s test is often used [Tal09]. In case we are testing the difference
between a variance for paired data, it is recommended to use Spearman correlation

(4)[Ste46] provides a classification of scales of measurements where he introduced four levels: nominal,
ordinal, interval and ratio.

(5)Equality of variance.

132 Chapter 7 Methodology of experimental study of BCO

or less robust Pitman-Morgan test [McC87]. If the p-value of Leven’s test is greater
than 0.05, we accept a null hypothesis that always assumes an equality of variance. If
p-values is smaller than 0.05, there is no proof of homogeneity. It is often the case that
the homogeneity test of variance is not needed prior to the choice of analysis method
since even conservative test, such as paired t-test and ANOVA, can hold for differences
in variances up to four times, or if the largest standard deviation is less than double the
smallest standard deviation [Cof00, How10].

Repeated-measures ANOVA, or single-factor within-subjects analysis of variance, is
used in case of two or more dependent samples with interval/ratio data for which we
want to obtain information concerning individual patters of change [Dav02, She04].
For example, when studying effects of a medical treatment over time on the same pa-
tients. Furthermore, instead of time change, we can observe the effects of different
conditions. Such scenario corresponds to the empirical study, conducted in this the-
sis, of the BCOc algorithm for the particular scheduling problem. Repeated-measures
ANOVA (RMANOVA) presumes normal distribution of data, as well as condition of
sphericity, analog to the homogeneity of variance for one-way ANOVA test. In R pack-
age language(6) sphericity condition is tested as a part of ez package [Law15].

Stochastic nature of meta-heuristic algorithms can often cause a distribution of re-
sults to obey some non-Gaussian function. This is why non-parametric tests are com-
mon during experimental analysis of meta-heuristics. If two samples of equal size need
to be compared, we can choose between [Cof00]: (a) Wilcox signed rank-sum test as the
analog to the paired t-test; (b) Wilcoxon-Mann-Whitney U test as analog to the 2-sample
independent t-test; or (c) Kolmogorov-Smirnov. When comparing more than two algo-
rithms we can use: (1) Friedman’s non-parametric test which represents analog to an
ANOVA with repeated measures; (2) Kruskal-Wallis test, analog to the one way ANOVA.
A clearer overview of commonly used statistical tests in the empirical analysis of heuris-
tics is provided in Table 7.1. When data are not normally distributed, or not of equal
size, then the non-parametric Levene’s test can be used to inspect the homoscedasticity.

Table 7.1: Statistical tests.
Parametric Non-parametric

Dependent samples

2 Paired t-test Wilcoxon signed rank test

> 2 One way ANOVA with Friedman’s test

repeated measures
Independent samples

2 Independent sample t-test Wilcoxon-Mann-Whitney U test

> 2 One way ANOVA Kruskal-Wallis

Friedman’s test is used for multiple comparison between different samples when
we want to investigate a null hypothesis of equivalence of medians. It is based on
ranking between samples, and is, therefore, commonly employed to test for differences
in samples with ordinal data. However, it can also be utilized for continuous data that
has violated assumptions of RANOVA.

(6)https://www.r-project.org/

https://www.r-project.org/

7.3 Experimental analysis of BCO 133

Kruskal-Wallis (KW) test is based on the Wilcoxon-Mann-Whitney (WMW) test for
more than two samples. Although Kruskal-Wallis does not assume normality of sam-
ples distribution, it does work best when it assumes that the populations have same
distributions [Fag09]. A common misunderstanding about a null hypothesis of the
Kruskal-Wallis test is that it is often used to examine an equivalence of groups mean or
median. Instead, it should be used to test the difference between mean ranks [Fag09].
Kruskal-Wallis can also be described as ANOVA applied to ranks, where ranks are calcu-
lated on the overall dataset [Mon01]. However, using a rank transformation can have
severe consequences on a test result, especially when two samples do not have identical
distributions and equal size [Fag09]. In that case, the rank transformation can change
mean, standard deviation and skewness of two samples and therefore should be used
when distributions of the two samples are identical and of equal size [Fag09].

Following the test for equivalence of means (or medians) between multiple samples,
it is recommended to conduct a post-hoc test [Der11]. The choice of a post-hoc test de-
pends on statistical test that was used beforehand. For example, after ANOVA we can
employ t-test for pairwise comparison. After a non-parametric tests, we can utilize one
of the non-parametric two-sample tests showed in Table 7.1. For example, after Fried-
man’s test, a post-hoc test may employ Wilcox test for multiple pairwise comparison.
It is important to note that a multiple pairwise comparison demands a correction for
p-value [Cal].

To determine a level of influence of algorithm’s parameters, we used additional
measure often recommended when conducting parametric test, known as effect size.
Namely, the measure can quantify a size of an effect of one parameter on the reported
outcomes. There are different procedures on how to calculate the effect size, according
to [She04]. It is important to point out that a secure way to describe reported values
of the effect sizes is usually conducted by comparing them across the study.

7.3 Experimental analysis of BCO

7.3.1 Motivation of the BCO study

Designing a BCO method in principle implies a selection of constructive/improvement
moves, an evaluation function and setting BCO parameters to suitable values that are
usually determined by pilot studies, previously published work or even intuition. Rigor-
ous considerations of different loyalty probabilities is lacking in the existing literature,
despite being an integral component of the generic section of the method and, gener-
ally, is not problem specific. In Chapter 4 we have addressed the issue by introducing
loyalty functions and argued about their influence on the diversification and exploita-
tion of (partial) solutions. The experimental study conducted in the thesis demonstrate
how this properties are influencing the quality of response values. Furthermore, to
achieve a good alternative to reported solutions, new evaluation functions are pre-
sented and analyzed for two combinatorial problems described in Chapter 2.

In this dissertation we try to address several different goals. One is to accommo-
date restrictions coming from the real world, such as dealing with a short amount of
computer resources in contrast to remaining longer in the working process due to the
importance of the quality of a solution. Another objective is to focus on the empirical

134 Chapter 7 Methodology of experimental study of BCO

analysis of BCO by allowing larger number of repetitions to establish statistical sig-
nificance. We address this issues by careful consideration of stopping criteria. As the
stopping criterion may manifest a large impact on the results of an empirical analysis,
two different types are considered for constructive BCO: maximal number of iterations
and maximal CPU time. Empirical analysis of the BCOi is conducted by setting a max-
imal number of objective function evaluations (MAXFLIPS). Therefore, we extend the
set of BCO parameters by incorporating stopping criteria as a factor. Stopping criterion
represents a central parameter in the literature since, if set too low, it can restrain the
heuristic from finding high quality solutions, and if set to high it can waste computa-
tional resources. Special care needs to be taken to avoid the possible ceiling effect where
two algorithms can achieve the maximum level of performance, therefore, should not
be compared [Coh95, BB13].

7.3.2 Structure of the BCO study

As previously mentioned, empirical analysis of BCOc and BCOi is conducted by means
of an off-line systematic adjustments of the parameter values. The approach allows
to test robustness of the BCO algorithm to changes in both parameter values and test
instances by allocating values before the algorithm execution [DJ75]. Tools of sta-
tistical analysis, such as measures of central tendency and (non)parametric statistical
tests, are implemented in order to verify the significance of difference between the
measured outcomes. To complement or, occasionally, substitute statistical results sen-
sitivity analysis is conducted by visual representation of descriptive statistical data.
Total number of independent runs within one experiment (nrun) is based on prior
work on the problem of scheduling ([Dav12]) and recommendations from the liter-
ature [Hoo05, Tal09, Nak13].

In order to conduct practical studies of BCO we consider two well known optimiza-
tion problems: static scheduling of independent tasks on identical machines, annotated as
P ||Cmax, and the special variant of Boolean Satisfiability problem (SAT), called 3-SAT.
In Section 2.3 we briefly described and reviewed some of optimization methods com-
monly used to deal with these two problems. In the following chapter we investigate
the structure of the test instances. For scheduling problem instances we have presented
box-plots to demonstrate relation between the problem size and the average value of
the tasks’ computational times. In the chapter devoted to 3-SAT we review the struc-
ture of the corresponding test instances invoking clause-to-variable index. However,
the knowledge about test instances is not build into algorithms since their influence
is not a subject of our research. The focus is on the algorithmic parts that have the
potential to influence positively or negatively the performance of BCO.

Prior to the main experimental studies we had observed that high quality solutions
could be obtained if we "reverse" the objective of the problem. Namely, we recognized
that instigating maximization of the objective function for the P ||Cmax problem could
also lead towards reporting of high quality solutions. This initiated questions about
how to depict the corresponding evaluation process. In case of 3-SAT we departure
from common analytical definition and introduce an evaluation function as a proce-
dure. This has inspired to establish method of evaluation to distinguish between new
evaluation strategies. Method of evaluation within the BCOc algorithm is employed
to indicate mixture of different objectives. In particular, the objective of the P ||Cmax

7.3 Experimental analysis of BCO 135

problem is to minimize the schedule length (makespan, i.e., the minimal maximal load
of the processor), which we refer to as minimization principle. However, under cer-
tain restrictions, we can employ maximization principle, i.e. , where quality of partial
solutions is measured by the maximal value of the makespan. Appointing higher qual-
ity to solutions that originally have the worst quality, may provide positive flexibility
during the construction of interesting results. The approach, however unconventional,
might lead the search towards high quality or acceptable solutions. When necessary,
the new parameter replaces the evaluation function. The set of all possible methods of
evaluation is denoted asM, and its cardinality is problem specific.

7.3.3 Categorizations of BCO parameters

Parameter search space (configuration space) of BCO can be, for the most part, de-
scribed as a product of sets {L, E/M,B,NC}. L denotes a collection of loyalty func-
tions. E and M are collections of all possible evaluation functions and methods of
evaluations which might be used interchangeably (their cardinality is problem specific).
B ⊆ N is a set of countably many elements each indicating a size of a bee population,
and NC ⊂ N is a countable set that contains all possible values of parameter NC . The
cardinality of NC may be bounded, e.g., by the number of constructive moves during
generation of a complete solutions, while the size of B is usually determined arbitrary.

BCO parameters can be categorized under the classification from [Eib11] and sec-
tion 7.2.4 (pg. 129) as qualitative and quantitative. Because of their numerical nature,
B and NC represent quantitative parameters. The set of evaluation functions (E) and
of loyalty functions (L) may be considered as sets of categorical values. Consecutively,
we can establish a distinction between BCOs and the BCO instances. Two BCOs differ if
they vary in one of the qualitative parameters. For example, if they implement different
loyalty or evaluation functions. When all parameters are specified, an instance of BCO
is obtained. The quality of the set of parameters of a BCO instance is denoted as utility.
For a given instance of a problem, the quality of the reported solution is determined by
its evaluation function value and is referred to as a solution quality.

7.3.4 Hierarchy diagram of BCO parameters

For the purpose of conducting an empirical study through some meaningful steps, a
certain hierarchy of BCO components is established in terms of the design of the algo-
rithm. Hierarchy diagram of the BCO components (modules of the algorithm and/or
its parameters) is provided in Fig. 7.1. Diagram reflects importance of particular BCO
parameters and therefore helps establish a course of empirical study, particularly sta-
tistical analysis. The diagram does not encompass all possibilities of the algorithm
design, however, it reflects the most frequent situations. The top node of the diagram
represents the most significant component of the BCO algorithm regarding the design
because it reflects the choice of a procedure (deterministic or heuristic) for construc-
tion/modification of solutions. In [JK16b, JK14b] the authors show that constructive
steps within forward pass determine the main convergence properties of the BCOc.
Most often, analysis of the performance of different underlying heuristics is not cus-
tomary part of a tuning procedure, however, such scenario is not exclusive. To establish
best set of heuristic rules we conduct independent series of experiments where we com-

136 Chapter 7 Methodology of experimental study of BCO

heuristic rule to
construct/modify a solution

loyalty function

• Lp

evaluation function
(method of evaluation)

• Ev (ME)

stopping criterion

• SC

quantitative
parameters

• B
• NC

Figure 7.1: Hierarchy of parameters in the BCO algorithm design.

pare performances of several heuristic procedures to accompany development strategy
of the BCO algorithm. After we determine the best constructive/modification rules, the
evaluation function is considered as the most important among qualitative parameters
with respect to design, as it reflects the objective of the problem.

The relation between BCO components is also illustrated in diagram 7.1. The po-
sition of a component is defined by its dependency from other parameters higher in
the hierarchy. For example, selection of evaluation function depends on the choice of
heuristic rules, however, it is independent from quantitative parameters B and NC .
For the majority of the BCO implementations loyalty function would stand alone in the
hierarchy diagram (or would not appear at all) as only a particular formula for proba-
bility decision (depicted by p0,u, pg. 66) is utilized. To occasionally simplify notation
while referring to the collection of loyalty functions, we introduce qualitative parame-
ter Lp. Similarly, parameter Ev represents different possibilities of evaluation function,
and ME indicates different methods of evaluations. New parameters Lp, Ev and ME
take categorical values from the sets L, E andM, respectively. Another potential BCO
parameter is stopping criterion, marked in Figure 7.1 as SC . This categorical parame-
ter designates a type of stopping criterion, such as maximal number of iterations (Nit)
or maximal CPU time (T). We do not utilize SC in our statistical tests and we draw our
conclusion separately for each Nit and T . In particular, selection of the stopping crite-
rion for a BCO algorithm is conducted carefully during the analysis of the best heuristic
procedure and independently of other BCO parameters. It is worth noting that the
experimental study of BCO conducted in this thesis imposes new questions concerning
interactions between the loyalty and the evaluation function parameters, indicated by
dotted line in Fig. 7.1. There are indications that the choice of loyalty function might
depend on the values of the parameter Ev or ME . The most common interconnection
is between numerical value of the stopping criterion and BCO quantitative parameters,
B and NC . The interconnection originates from restricting maximal number of func-
tion evaluations or maximal CPU time. Both issues are to some extent addressed in this

7.3 Experimental analysis of BCO 137

dissertation.
The BCO parameters may be further classified on the basis of their dependency on

the structure of a problem instance, thus, we differentiate: problem-independent and
problem-dependent. Problem-independent components are: stopping criterion, size of
population B, control number of forward/backward passes NC and loyalty paramater
Lp. The second category includes parameters such as Ev or ME and the choice of
heuristic rules in the forward pass. The border between the two categories is, occasion-
ally, not obvious as it is usual to inspect each of the BCO parameters before recommen-
dation, leaving an impression that each parameter is problem specific. We may find
that strict limitations are imposed on the parameter NC , especially in the case of the
constructive BCO algorithm. Therefore, it is important to understand the properties of
each of the BCO’s components that contribute to the robustness and flexibility while
dealing with various optimization problems.

Stochastic nature of the BCO algorithm is induced by random number generator,
defined by parameter seed. It represents a nuisance factor, however, is not included into
the list of BCO parameters since it is independent from all others and is not problem
specific.

7.3.5 Experimental setup for BCO analysis

Here, we refer to important specifics of our experimental study. The same computer
system was used for empirical analysis of the BCO and its description is indicated bel-
low. In the study seed is controlled by associating its value with an index of a run within
an experiment.

7.3.5.1 Controlling experimental evaluation

Experiments are conducted by engaging one of the following stopping criterion: max-
imal number of iterations (Nit), maximal number of transformations (MAXFLIP) or
maximal CPU time (T). Specifically for BCOc we employ Nit and T to investigate the
performance. The study of BCOi is conducted using MAXFLIP or maximal CPU time
T as a stopping criterion. A performance measure is different between the two variants
of BCO, and it depends on the considered optimization problem. Stopping criteria em-
ployed in the study of BCOc has enabled utilization of measures of central tendencies
of data samples and helped provide reliable answers to our research questions. In par-
ticular, the study incorporates average value of solutions’ qualities and/or their relative
errors w.r.t. the known optimal solutions. In the study of BCOi a total number of trans-
formations (flips) necessary to solve a given problem instance (i.e., until 3-CNF formula
is satisfied) or to reach a stopping criteria is used. Furthermore, we utilize measures of
central tendencies, generated over the set of 3-SAT problem instances (i.e., the average
response values of each experiment is averaged over all problem instances).

7.3.5.2 Experimental environment

All experiments were conducted on Blade cluster with processors Intel(R) Xeon(R)
CPU E5649 @ 2.53GHz and 24GB RAM, under Red Hat Enterprise Linux Server release
6.4 (Santiago) operating system, Kernel 2.6.32-358.11.1.el6.x86_64, gcc version 4.4.7.
Implementation was done in C programming language. Compiler used is g + +, with

138 Chapter 7 Methodology of experimental study of BCO

optimization flag O3. It was noticed that the O1 flag generates slower executable
compared to O2, and that O3 was actually the fastest. Statistical tests are implemented
with R package language, version 3.2.5-1precise0 under Ubuntu 12.04.5 LTS operating
system, Kernel 3.8.0-44-generic.

7.3.6 Final remarks

It is obvious that experimental tests provide a certain amount of freedom regrading the
factors described in the first half of this chapter. A vast number of tuners for parametric
stochastic algorithms are available in the recent literature. However, as stated at the
beginning, the whole process from choosing the tuner to understanding how it works
requires time. Some of the main issues with using the existing tuners is to identify if
statistical tests are correctly implemented or if they consider all aspects of the appro-
priate design of experiments. For example, majority of the tuners are supported by
non-parametric tests, not necessarily the choice we would make. The question of a cor-
rect choice of a statistical test in OR might originate from discrepancy of opinions found
in the field of statistics. Namely, utilization of parametric tests is often disregard as it
is considered to be too conventional. In addition, researchers tend to disregard check-
ing for conditions that assist towards correct selection of a statistical test. Therefore,
employing a tuner does not relieve us from the obligation to understand the require-
ments of the properer statistical analysis. According to [Bar95] experiments should use
standard experimental techniques, designed to reduce variability of the measured out-
comes by, e.g., producing more data points. Another recommendation is to use many
instances of the corresponding problem class and provide comprehensive report of the
results of computational testing summarized by measures of central tendency and vari-
ability. Due to all these issues, the application of automatic tuners remains the subject
of future work.

We want to address here an issue of performance measure. A correct performance
measure and stopping criteria are the most important part of each study, therefore,
should be handled with caution. In the literature we can find various suggestions of
correct choice of performance measure. [McG96] describes different aspects of com-
putational experimental study of algorithms’ properties and offers some general guide-
lines for choosing a good performance measure. The author points out the relevance
of using a measure that exhibits small variability and recommends variance reduction
techniques to provide reliable results. If data samples exhibit an unusual or bimodal
distribution, it is recommended to observe the complete data (and not just estimators
such as sample means). [Bar95] distinguish three categories of performance measure:
solution quality, computational effort and robustness. Concerning the solution quality,
the authors suggest that obtained solutions should always be compared to an optimal
or a lower (upper) bound. They point out that best solution must be clearly identified
as such.

In view of all this, we decided to use our own methodology and employ statistical
tests and visual analysis that are standard in the field of statistics. We divide our study
into small steps to contribute to reproducibility of our empirical conclusions. We justify
utilization of each invoked statistical test and use large number of instances of the
corresponding benchmark set. We summarize our results by either mean and standard
deviation, in case of BCOc, or the average number of transformations averaged over the

7.4 Chapter summary 139

problem instances, in case of BCOi. Since many researches advocate reporting of the
running time [Bar95, Cof00, Joh02b], it is included in our resulting data. We provide
graphical representations of the results as often as possible.

7.4 Chapter summary
In this chapter we emphasized the importance of conducting a thorough empirical anal-
ysis of a meta-heuristic algorithm. The chapter consists of three parts. In the first part
we provide motivation of empirical study of a meta-heuristic method. We emphasize
the importance of conducting systematic investigation in order to understand and pre-
dict behavior of the considered algorithm. In the second part we provide methodology
of the experiments, gathered throughout the literature. In the third part we introduce
hierarchy diagram of the BCO algorithm as an initial step to describe possible parameter
interconnections. The diagram is also used to establish a course of empirical study.

Moreover, we provided:

• A short survey of experimental techniques for analyzing performance of meta-
heuristics.

• Different interpretations of the measure of performance.

• Typical representatives of statistical methods when comparing performance of
different (non)deterministic algorithms.

• Methodology behind the study of the BCO algorithms.

The empirical analysis represents important part of any algorithm’s design, and
therefore, in the next two chapters we concentrate on this topic. We conduct statistical
and visual analysis of the BCO algorithm implemented for dealing with two different
combinatorial problems, i.e., problem of scheduling and 3-SAT. Unexpectedly, conduct-
ing experiments and analyses of gathered results required a large amount of work in
this dissertation.

CHAPTER8
Development and empirical analysis of

BCOc

The chapter is dedicated to the development, implementation and empirical analysis
of the BCOc algorithm and, as such, is soliciting questions of design and tuning of
BCOc. Inspired by work presented in Chapter 6, where the impact of quantitative
parameters on the speedup is demonstrated, we conduct experimental analysis of the
BCOc algorithm performance. In particular, we investigate an influence of method’s
parameters along different development stages of the algorithm. For the purpose of
this chapter the empirical study is conducted on a set of randomly generated instances
of P ||Cmax (see Chapter 4). The results show that each of BCOc parameters can affect
the algorithm’s performance in different ways, leading towards outcomes that are a
priori not known or are hard to predict for the given problem set. We demonstrate that
the BCOc method exhibits good performance with respect to the solution quality and
reliability.

The chapter is organized as follows. We first state the research goals of our study.
Then, we investigate the structure of problem instances by graphical representation
of their processing times distributions. Any information about the structure is not in-
cluded in the BCOc algorithm, as it is commonly not available in real life. Before the
comprehensive study of the BCOc algorithm, we conduct a comparative analysis be-
tween four heuristic algorithms. The selection and an experimental analysis of the best
heuristic represents an important stage of the BCOc development. It helps to establish
minimal value for the stopping criterion that avoids ceiling and floor effects. The study
of BCOc proposes new evaluation function for P ||Cmax to achieve good alternatives
for reported solutions. Consequently, the empirical analysis of BCOc is extended from
the basic parameters (B and NC) to the algorithmic components, i.e., loyalty functions
and methods of evaluation. We follow two general guidelines during analysis of the
results, statistical and visual, supported by an off-line algorithm configuration strategy.
The strategy implies systematic adjustments of the BCOc parameters before the execu-
tion starts. Lastly, we use the opportunity to address important questions regarding the
dynamics of the recruitment process within the backward pass.

8.1 Sensitivity analysis of the BCOc algorithm

Empirical study of BCOc considers a static scheduling of independent tasks on identical
machines, P ||Cmax (see section 2.3.2, pg. 29). BCOc is tested on the same benchmark

142 Chapter 8 Development and empirical analysis of BCOc

set as in [Dav12], thus, providing information that we can compare to. The main objec-
tive of this thesis is to capture features of the BCOc algorithm that lead towards general
knowledge of its performance. We are motivated to prove that BCOc can produce bet-
ter results if carefully tuned. Therefore, we conduct sensitivity analysis and compare
all the loyalty functions from the literature and propose new evaluation function to ex-
amine if further improvements might be achieved. Sensitivity analysis consists of series
of tests to detect behavior of the algorithm under different conditions. The conditions
are related to problem structure, parameter values and the stopping criterion.

8.1.1 Research goals

Designed to assist the course of the research, the hierarchy diagram (Fig. 7.1, pg. 136)
demonstrates the relations between the BCOc algorithmic components. We postulate
that the optimal performance of BCOc depends on a priori selection of its qualitative
parameters. The central point of the study is, therefore, founded in search for the best
structural configuration of the BCOc parameters. However, as pointed in diagram 7.1,
the qualitative factors Lp and ME might exhibit interactions. The question is to certain
degree addressed in this chapter as we compare the results reported by various BCOcs
defined by three methods of evaluation and ten different loyalty functions operating
on configuration sub-space B × NC. Along the main study, the experiments reveal
influence of different problem instances and expose significant interactions between
quantitative BCO parameters. The purpose of this chapter is summarized in the list of
research goals.

Q1 Identify the most influential BCOc parameter.

Q2 Compare new evaluation function ev2
(1) against ev1.

Q3 Investigate robustness of BCOc parameters to structure of problem instances.

Q4 Identify the most successful loyalty functions and the reasons behind their suc-
cess.

Q5 Examine differences between results within two stopping criteria: maximal num-
ber of iterations and maximal allowed time.

Q6 Does the selected experiment provide information about the BCO performance in
general: can results of the experiment, obtained for case Nit, predict the perfor-
mance of the algorithm for longer runs?

Q7 Can we determine the maximal number of the bees? The question relates to
cases where the improvement in solution quality is noticed with an increase in
the number of bees. Therefore, we ask if the study helps to determine if there
exists a maximal number of bees after which the quality deteriorates.

Collected answers to the above research questions might help to improve the design
of the BCOc algorithm for other similar combinatorial problems.

(1)To distinguish from the notation that is commonly used for objective function, an evaluation function is
denoted as ev.

8.1 Sensitivity analysis of the BCOc algorithm 143

8.1.2 Test instances

Instances used to test BCOs and candidate heuristics are introduced in [Dav06b] for
MSPCD (see Section 2.3.1.1, pg. 27). They represent randomly generated instances de-
fined w.r.t. three different factors: number of tasks, task graph density, and number of
identical machines. The problem instances are specified as Iogra< n >_< ρ >_< m >,
where n designates number of tasks, ρ the graph density and m denotes number of
machines. Because the P ||Cmax problem does not deal with task dependencies, the
graph density is not important for presented work (is set to zero). In addition, for
independent tasks the connection between machines is irrelevant.

The structure of a problem instance can be investigated by observing distributions
of its tasks computational times. Bar charts of task processing times (task lengths) for
each m and n are provided in Figs. B.8–B.16 (Appendix B, pg. 306). By observing bar
charts we may conclude that the occurrences of tasks’ processing times evidently exhibit
extremely skewed (spread) distributions and do not follow any known distribution.
Therefore, we employ descriptive statistical tools, i.e., box-and-whiskers plot [Tuk77]
(see section A.1.2, pg. 247). Box-plots are suitable for comparisons between different
groups of data with skewed distributions. Fig. 8.1 shows box-plots for two classes of
instances (m = 12 and m = 16) and different problem-size (ranging from 100 to 500).

Figure 8.1: Box-plot for m = 12, 16 and 9 instances in relation to the n, where possible
outliers are marked with red crosses.

The box-plots in Fig. 8.1 indicate that instances for m = 16 have longer computing
times. This implies that class m = 16 is more versatile, i.e., tasks lengths range from 20
to 180 time units, whereas range of tasks’ lengths in class m = 12 goes from 30 to 130.
Another observation is that distribution of tasks’ lengths for n = 100 does not show
outliers. Namely, the processing times are nicely grouped compared to distributions of
tasks’ lengths when n > 100. Comparing between instances shows while n is growing

144 Chapter 8 Development and empirical analysis of BCOc

the number of shorter tasks is increasing at the expense of longer. In Fig. 8.1 this is
indicated by the decrease in median of the tasks’ lengths. According to [Dav06b] the
property is deliberate.

8.1.3 The first BCOc for P ||Cmax

The first implementation of the BCOc for P ||Cmax is presented in [Dav09]. The authors
use the stochastic version of the LPT rule for selecting tasks (Section 2.3.2, pg.30):
tasks with a longer processing time have a higher chance to be chosen. The machine
selection strategy is based on concepts of ES, where machines with shorter execution
times have higher probability to be selected. In [Dav12] the machine selection strat-
egy has been inspired by BPP and authors incorporate best-fit heuristic into the BCOc
model. Because implementation of the heuristic requires setting the capacity of the ma-
chines loads (C), the authors suggest an adaptive strategy. Namely, at the beginning
of an iteration variable C is equal to the theoretical lower bound of tasks’ computing
times. After the new best solution is found, C takes the value of its makespan. We
elaborate on different settings of variable C later in this chapter.

It is worth noting that, to obtain fair comparison among stochastic and a determinis-
tic algorithm on the considered benchmark set, an order in which tasks are picked and
in which they are scheduled should not, respectively, exploit original task enumeration
and the deterministic ES strategy. The reason arises from the way Iogra instances are
reported in [Dav09]. If tasks are selected in order of their appearance in the input
file and are scheduled by ES rule, the optimal solution is obtained as a first feasible
solution in matters of microseconds on any new-age CPU architecture. Therefore, their
order should be rearranged before any run.

8.2 Candidate heuristics for P ||Cmax

Development of meta-heuristics methods for the particular optimization problem re-
quires selection of a heuristic rule specifically designed to tackle the problem. For
P ||Cmax we review/develop several stochastic greedy procedures for selection of tasks
to be scheduled and the machine on which the tasks should be allocated. The results
of these rules are denoted as task-machine pairs. Selection of a task-machine pair can
be conducted in numerous ways, yielding various heuristic algorithms for P ||Cmax. We
consider algorithms implemented as stochastic iterative heuristic procedures that in-
corporate greedy rules for task-machine selection. We compare four different heuristic
procedures to determine the best one. The choice of heuristics is based on reports
about their success from the literature. The algorithms generate a complete solution at
the end of each iteration and stop upon reaching a maximal number of iterations. The
algorithms are designed to be robust to changes in the structure of the problem. At the
beginning of a single iteration most or all decisions made in previous one are forgotten,
failing to systematically explore the search space.

Our first scheduling procedure is the adaptation of the well known greedy method,
the LS algorithm, which incorporates the LPT rule. New scheduling procedure is de-
noted as sLPT+ES and consists of two parts: stochastic LPT (sLPT) and ES strategy. The
sLPT procedure deals with the task selection and is implemented in a way that tasks

8.2 Candidate heuristics for P ||Cmax 145

with longer processing time have a higher probability to be picked from the list L. In the
second step, sLPT+ES allocates the task to the least loaded machine. The second pro-
cedure we investigate replaces the deterministic scheduling with the stochastic, basing
both decision rules on probabilities. The new procedure is denoted as sLPT+sES where
the scheduler utilizes a stochastic earliest start strategy (sES): the probability to sched-
ule on a machine with minimal load is the largest. The last two heuristic procedures,
sLPT+FF and sLPT+BF, are inspired by the techniques employed for BPP. Essentially,
they consist of two steps: i) tasks are sorted following sLPT rule, and ii) each task is
assigned to a machine by utilizing either first-fit or best-fit technique. All the corre-
sponding heuristic algorithms are denoted in the same manner, and their description
(including pseudo-codes and the solution representation) is presented in Appendix A
(pg. 248).

8.2.1 Experimental evaluation of candidate heuristics

Here, we compare four heuristic algorithms with an objective to select the best can-
didate for the BCOc method. The experimental study was conducted on 12 different
problem instances, following the recommendations from Section 7.3.5 (pg. 137): an
experiment consists of 100 independent runs of a particular algorithm with the con-
trolled value of seed. Two instances are chosen (n = {100, 250}) from each class
m = {2, 4, 6, 8, 12, 16}. The corresponding results are presented in Table 8.1. The
first column identifies the type of a problem instance. The second, sixth, tenth and
fourteenth column provide the average solution’s quality (y) and the corresponding
standard deviations (s.d.) in the row bellow. Columns t̄ show average times of the
“first hit” and the corresponding s.d.. Time of the first hit represents the first time the
best solution was obtained during a single run of the algorithm. All running times are
measured in milliseconds. Columns nit show the average number of iterations to ob-
tain the best solution. The quality of the best solution found during one experiment is
reported in the last column.

Table 8.1 shows significant differences between the average quality of solutions
reported by the heuristics. If the number of machines is fixed to a small number, all test
instances are easily solved either to optimality (for m = 2) or very close to optimal (for
m = {4, 6, 8}). The same conclusion is reported in [Dav12] for both CPLEX and BCOc.
By comparing columnsywe conclude several results. For m = 12 and n = 100, sLPT+ES
generates higher quality solutions compared against the others. However, for n = 250,
the algorithm is worse than the fit-heuristics, which have performed significantly better.
For class m = 16 the sLPT+ES algorithm generates the best results w.r.t. y. sLPT+sES
can be considered as the worst heuristic in this study. Finally, when we consider the
best found solution, in majority of the cases the fit-heuristics outperform ES-strategies.

The reason why solution quality for m ≥ 12 degrades for fit-heuristics might be
due to a “slow start“. Namely, best-fit and first-fit schedulers require more iterations
than the ES-strategies to obtain the best value for the capacity (Fig. A.1, pg. 249).
The ES-strategies show stagnation in the solution quality after the initial improvement
phase. In particular, the sLPT+sES algorithm exhibits the worst performance on all the
problem instances w.r.t. the best found solution and the average performance, thus is
eliminated from the further analysis.

To compare the remaining three heuristic algorithms sLPT+BF, sLPT+FF and sLPT+ES

Table 8.1: Scheduling results for test problems with known optimal solutions appropriated from [Dav06b] with n = {100, 250}, nrun =
100, Nit = 100 and different number of machines.

Problem
sLPT+BF sLPT+FF sLPT+ES sLPT+sES

y t nit best y t nit best y t nit best y t nit best
(s.d.) (s.d.) (s.d.) (s.d.) (s.d.) (s.d.) (s.d.) (s.d.) (s.d.) (s.d.) (s.d.) (s.d.)

[10−3] [10−3] [10−3] [10−3]

Iogra100_2 800.00 0.86 6.26 800 800.21 0.47 7.68 800 800.00 0.96 13.52 800 800.00 1.08 15.22 800
± 0.00 ± 0.24 ± 5.37 ± 2.07 ± 0.50 ± 10.47 ± 0.00 ± 0.28 ± 14.74 ± 0.00 ± 0.26 ± 12.28

4 800.91 1.36 41.52 800 800.95 0.74 41.04 800 802.51 1.33 41.72 801 803.83 1.82 55.57 801
± 0.45 ± 0.36 ± 25.93 ± 0.38 ± 0.54 ± 23.55 ± 0.92 ± 0.37 ± 27.09 ± 1.36 ± 0.53 ± 28.34

6 803.04 1.66 59.70 801 803.10 1.03 56.83 801 805.36 1.28 37.88 802 810.60 1.85 56.43 805
± 0.80 ± 0.40 ± 25.10 ± 0.77 ± 0.65 ± 24.24 ± 1.24 ± 0.35 ± 25.04 ± 2.85 ± 0.58 ± 28.93

8 805.11 1.94 72.92 803 805.25 1.23 68.62 801 811.57 1.42 44.72 807 824.25 1.97 59.83 809
± 1.13 ± 0.33 ± 18.04 ± 1.21 ± 0.60 ± 18.81 ± 1.97 ± 0.47 ± 30.42 ± 5.30 ± 0.61 ± 28.00

12 833.75 2.51 94.87 818 832.85 1.80 93.83 819 826.93 1.58 49.79 816 853.75 1.78 45.33 831
± 22.30 ± 0.25 ± 7.72 ± 18.83 ± 0.57 ± 8.58 ± 3.22 ± 0.48 ± 27.36 ± 7.79 ± 0.74 ± 33.28

16 903.47 2.79 99.07 811 899.83 1.86 98.87 811 834.07 1.65 46.21 820 884.17 1.61 36.33 849
± 67.58 ± 0.21 ± 3.74 ± 67.20 ± 0.51 ± 3.14 ± 4.04 ± 0.54 ± 29.67 ± 14.20 ± 0.75 ± 33.78

Iogra250_2 1400.00 1.35 4.98 1400 1400.00 0.49 5.11 1400 1400.00 1.57 9.44 1400 1400.00 1.84 11.71 1400
± 0.00 ± 0.31 ± 4.20 ± 0.00 ± 0.54 ± 3.83 ± 0.00 ± 0.52 ± 10.28 ± 0.00 ± 0.70 ± 11.62

4 1400.84 3.34 44.78 1400 1400.85 1.73 42.09 1400 1401.74 3.10 41.22 1401 1402.64 3.99 46.13 1400
± 0.46 ± 1.32 ± 26.27 ± 0.52 ± 1.15 ± 25.72 ± 0.72 ± 1.49 ± 31.21 ± 1.25 ± 1.72 ± 27.97

6 1402.24 4.14 56.92 1401 1402.21 2.59 61.11 1400 1404.58 3.09 39.40 1401 1407.89 4.56 53.21 1402
± 0.67 ± 1.05 ± 19.51 ± 0.71 ± 1.11 ± 20.83 ± 1.00 ± 1.47 ± 28.55 ± 2.01 ± 1.72 ± 26.67

8 1404.75 5.30 73.70 1403 1404.73 3.23 72.68 1402 1407.98 3.33 41.73 1405 1417.12 4.60 51.49 1409
± 0.91 ± 1.02 ± 17.28 ± 1.04 ± 1.16 ± 17.93 ± 1.51 ± 1.46 ± 27.15 ± 3.86 ± 2.00 ± 30.19

12 1408.46 6.63 88.03 1405 1408.39 3.80 86.18 1404 1412.40 3.70 45.22 1407 1435.53 4.47 47.54 1420
± 4.33 ± 0.73 ± 11.27 ± 3.38 ± 1.04 ± 11.47 ± 1.97 ± 1.68 ± 29.50 ± 7.06 ± 2.15 ± 31.02

16 1494.73 7.84 99.35 1408 1474.32 4.07 98.06 1409 1424.38 3.85 44.86 1417 1460.48 3.52 32.35 1434
± 56.54 ± 0.28 ± 2.62 ± 57.67 ± 0.75 ± 5.52 ± 2.99 ± 1.77 ± 29.15 ± 9.64 ± 2.45 ± 33.40

8.2 Candidate heuristics for P ||Cmax 147

we conduct another study according to recommendations in [Yan13]. The experiment
is conducted on one problem instance and each algorithm runs until a stopping crite-
rion is met. We define the stopping criterion as the condition determined by a given
value of tolerance δ, such that |ygmin − y∗| ≤ δ, where ygmin is the makespan of the
best overall solution of a particular experiment and y∗ is the makespan of the optimal
solution. The number of iterations needed to satisfy the condition, nit(δ), is reported
at the end of each run. The experimental methodology is same as previously (see
also pg. 137).

The comparison of the three heuristics is based on the identification of the minimum
number of iterations needed to reach the target value for Iogra100_12 as the represen-
tative of hard instances with known optimal value (y∗ = 800). For further comparison
with BCOc, the tolerance value is set to δ = 11 and results are presented in Table 8.2.
The tolerance value corresponds to the best solution reported for BCOc and B = 5 and
NC = 10 [Dav12]. The table contains three sections, one for each reviewed heuristic
algorithms. The first column provides an average value of the number of iterations
to reach the target value (nit(δ)) and the corresponding standard deviation in the row
bellow. The second column shows an average time (t̄) and the third column an aver-
age quality of the solutions generated during the experiment (y). The average solution
quality is used because, in the most cases, the algorithms have not reached the target
value and, instead, have generated a better solution.

According to Table 8.2 sLPT+ES generate significantly differentnit(δ) than the other
two algorithms and has exhibited the worst performance. Both fit-heuristics produce
better results and in average similar outcomes for the given problem instance, reaching
the target solution in nearly the same time (≈ 0.09s). Compared to Table 8.1, reaching
the target value requires more time and larger number of iterations in each run of the
experiment. sLPT+FF requires larger number of iterations than sLPT+BF, indicated by
vales in columns nit(δ). To decide between the two algorithms, we compare standard
deviations in each column. sLPT+BF shows lower variability and therefore is used as an
underlying constructive procedure in BCOc.

Table 8.2: Minimal number of iterations needed to obtain value 811 for test instance
Iogra100_12 and nrun = 100. Time is reported in seconds.
sLPT+BF sLPT+FF sLPT+ES

nit(δ) t̄(δ) y(δ) nit(δ) t̄(δ) y(δ) nit(δ) t̄(δ) y(δ)
8001.66 0.090 810.86 8878.86 0.088 810.79 2806941.65 27.85 810.43

±5423.97 ±0.060 ±0.42 ±5639.58 ±0.055 ±0.50 ±3591269.91 ±35.60 ±0.91

8.2.2 Conclusions regarding the best heuristic

Results of previous sections motivated us to conduct an additional experimental study
of sLPT+BF. In particular, we have been interested in the complexity of problem in-
stances w.r.t. m and n. Preliminary results, reported in [Dav12] suggest that m in-
creases the complexity of the problem. Extensive analysis of sLP+BF (Section A.1.5,
pg. 253) indicate other conclusion. The second research question concerns the analysis
of the stagnation phase, i.e., the minimal value of Nit after which the algorithm does

148 Chapter 8 Development and empirical analysis of BCOc

not improve the quality of the solution. Therefore, to avoid ceiling effects during the
empirical analysis of BCOc we are concerned with producing the most suitable value of
the maximal number of iterations.

The first result of sLPT+BF study in Section A.1.5 is that algorithm generates high
quality results for all test instances and, therefore, is a robust and powerful algorithm
for dealing with P ||Cmax. To avoid ceiling effects when comparing different BCOc
instances the maximal number of iterations should be set to 100. Namely, an examina-
tion of the descriptive statistics in Tables A.1 and A.2 illustrate that the increase in the
number of iterations does not have a significant impact on performance for problem
instances n ≥ 150. Influence of different values of Nit on the solution quality is also
represented by graphics in Fig. A.5. The maximal value of iterations is 10000 and for
the majority of considered problem instances the outcomes after a 200 iterations do not
seem to be practically different.

8.3 Development of the BCOc algorithm for P ||Cmax

Based on the study from the previous section, we confirm that the selection of sLPT+BF
procedure for constructing partial solutions within the forward pass in [Dav12] is ap-
propriate. Therefore, we re-implement the BCOc algorithm with an adaptation that
assures the acceptance of all the values from the extended domain of NC . We use
the same benchmark set as in [Dav12]. The authors report the best configuration for
quantitative parameters for loyalty function p0,u, i.e., B = 5 and NC = 10. In this chap-
ter we show that, by extending configuration space, the performance of BCOc could be
improved within the same Nit. In section 8.2 we have elaborated why Nit = 100 is suit-
able for our empirical study. Moreover, we revealed that underlying heuristic of BCOc
is powerful as a standalone procedure to procure high quality sub-optimal solutions.
The objective is, therefore, to demonstrate that well tuned BCOc can produce higher-
quality results. In addition to loyalty functions described in Section 4.2.3.1, we propose
a new evaluation function (ev2) and investigate its impact on the results of BCOc. Uti-
lization of function ev2 has suggested a new line of study. In particular, inducing the
maximization strategy of an evaluation function might guide the search towards the
high-quality sub-optima. The evaluation strategies are defined as the new BCOc pa-
rameter ME , introduced previously in Section 7.3 (pg. 134). Therefore, influence of
evaluation function is studied by exploring different values of parameter ME .

Regarding the stopping criteria we propose two independent studies. The experi-
ments are developed under the maximal number of iterations (Nit) and maximal al-
lowed CPU time (T). Motivation to impose maximal allowed CPU time proceeds from
the literature. Namely, it is common to restrict the maximal number of evaluations
(Nev) while comparing two meta-heuristic methods. Parameter Nev estimates the com-
putational effort independently from the computer architecture and its environment.
However, imposing its values disregards values for one of the BCOc quantitative param-
eters. Therefore, to stay within the common framework of the BCOc design, the closest
to achieve the same results is to employ T . It is worth noting that algorithm instances
might execute several iterations more or less then the others until stopping criterion
T is satisfied. The discrepancy is a result of time functions utilization (getrusage and
gettimeofday) influenced by background processes of the computer operating system.

8.3 Development of the BCOc algorithm for P ||Cmax 149

In addition to parameter/structural tuning, the central point of our empirical study is
to learn about the mechanisms that guide the BCOc algorithm towards the high quality
solutions.

8.3.1 Experimental methodology

8.3.1.1 Solution representation

Following the conventions from [Dav12], the solution is represented as a (dynamic)
matrix Sm×n, where the element sji represents the index of the i-th task scheduled to
the j-th processor. The list of all task lengths (processing time of each task) is kept in
the vector L = (l1, . . . , ln). After allocating k < n tasks, the auxiliary list of lengths of
n − k non-scheduled tasks is saved in the vector L′. Concerning the processor loads,
two vectors are used: O = (o1, . . . , om) where element oj denotes the number of tasks
allocated to j-th processor and Y = (y1, . . . , ym) with elements yj that represent the
sum of processing times of all tasks allocated to processor j.

A solution of each bee b ∈ 1, . . . , B is, at the end of iteration, saved in the data
structure (Sb, Ob, Yb, ybmax), where ybmax indicates makespan of b-th bee solution. At
the end of each iteration, all solutions are compared and the best-so-far saved within
a global structure gbest consisting of (Sgmin, Ogmin, Ygmin, ygmin). Furthermore, data of
the best found solution xbest may be presented as (Sgmin, Ogmin, Ygmin), while ygmin
refers to its objective value. Therefore, the result generated by the BCOc instance,
corresponds to the evaluation value of the best solution, i.e., to its makespan (ygmin).

8.3.1.2 Performance measure

The study of BCOc is founded on the solution quality. Other measures, such as success
rate, could also be used, however, only when knowing what constitutes an acceptable
target result and is, therefore, disregarded. To compare BCOc instances, we use statis-
tics of central tendency of the acquired samples of data. Because highly discrete nature
of the response values, median of each experiment does not help decide on the best
results. Therefore, mean value, together with its standard deviation, is used to decide
about configurations of parameters that maximize algorithm’s performance. Moreover,
to evaluate improvements, the BCOc algorithm is compared against the underlying
heuristic sLPT+BF. Because optimal solutions are known, we frequently employ abso-
lute and relative errors(2) to generate graphics.

8.3.1.3 Stopping criteria

Specifying stopping criterion belongs to the type of BCO’s components that produces
different outcomes in performance. Therefore, we establish two independent studies
w.r.t: (1) maximal number of iterations; (2) maximal allowed CPU time.

The first study implies that Nit = 100 for several reasons. Firstly, to initiate a
fair comparison between BCOc instances we avoid potential ceiling effects. Secondly,
results in Fig. A.5 and Table A.1 demonstrate that the heuristic algorithm sLPT+BF
requires at least 100 iterations until it starts to generate high quality solutions. In

(2)Relative errors are mostly reported as percent errors, i.e., p.err = r.err×100. In order to avoid ambiguity
with the percentage errors of the standard deviation, instead percentage relative error is kept.

150 Chapter 8 Development and empirical analysis of BCOc

particular, we observe that after 200 iterations the algorithm’s performance reaches a
ceiling effect. Employing large number of bees induces an increase in the number of
evaluations, thus, yields a ceiling effect earlier then 200 iterations. Finally, restrict-
ing execution with Nit helps minimize an influence of background system process that
are running concurrently with our tests. In addition, we can explore algorithm’s per-
formance when a small amount of computational cost is provided. It is worth noting
that the BCOc algorithm requires different running times for quantitative parameter
configurations. For example, average running time for 20 bees approximately doubles
compared to B = 10. For NC the predictions are not as clear. Nevertheless, a general
trend exists as time to perform NC steps increases along the values of the parameter.

Values of Nit may be used to estimate Nev, which we demonstrate on a simple case.
Let parameters B = 10, NC = 15 and Nit = 100. Then, the evaluation function is
called B ∗ (NC − 1) ∗Nit = 10 ∗ 14 ∗ 100 = 14000 times. Moreover, limiting the number
of evaluations (operations counts) requires reporting an average time per count due to
stochastic nature of BCOc, which is another reason why we do not employ Nev.

In case of maximal allowed CPU time, values for T are determined as a function of
the problem size (n), i.e., T = n/100 [s]. Compared to Nit = 100, for each n values of T
coincide with the estimated running times of BCOc instances with the maximal values
for quantitative parameters. Therefore, in the second independent study almost all
BCOc instances acquire larger number of iterations (Nit ≥ 100), which might be used
for empirical study of BCO’s convergence properties. Furthermore, setting T procures
unbiased comparison in terms of computational effort between different BCOcs w.r.t.
B and NC .

8.3.1.4 Quantitative parameters

To collect necessary data, we cover large part of the configuration space. Elaboration
for qualitative parameters is presented in the following Section 8.3.3, while here we
focus on the quantitative parameters.

The values of quantitative parameters are restricted either subjectively or influenced
by greedy rules. To encompass parameter values from the literature the domain of pa-
rameter B is set to the interval [1, 20]. It is large enough to enable identifying an
increase/decrease in the solution quality. Values for the parameter NC are not care-
fully elaborated in [Dav12], therefore, we define its domain with regard to limitations
imposed by the dimension of the problem instance and the acceptable computational
time. Namely, problem instances with n tasks impose study of domain [1, n] of param-
eter NC . As a result, exploration of the domain for n ≥ 150 requires large amount of
computational resources. Therefore, our study is confined to NC ∈ [1, 100]. This re-
striction is best suited for test instance n = 100, as it covers the complete configuration
space.

8.3.2 Design of BCOc forward pass

The BCOc algorithm for P ||Cmax generates solutions by invoking rules of the sLPT+BF
heuristics. Iteration of the BCOc begins with an empty solution assigned to each bee.
The first task-machine pair is determined randomly. The rest of the task-machines pairs
are established following the sLPT+BF rule. The number of constructive moves in BCOc

8.3 Development of the BCOc algorithm for P ||Cmax 151

is determined as a function of parameter NC . Specifically, for P ||Cmax approximately
n/NC components are added to the current partial solution during each forward pass.
Procedure that describes the implementation of this calculation is presented in Ap-
pendix A.2.1 (Fig. 1, pg. 258). In fact, the description of the BCOc algorithm is closely
related to specifications of the sLPT+BF algorithm (see pseudo-code A.1, pg. 249).

8.3.3 Design of BCOc backward pass: qualitative parameters

Backward pass implies evaluation of partial solutions with formula (4.1) (Chapter 4,
pg. 63). In particular, probabilities to remain loyal to a found (partial) solution are
determined by one of the expressions in Sections 4.2.3.2–4.2.3.11. After resolving
on loyalty, bees enter the recruiting process as the last phase of the backward pass.
The recruiters are those bees that remain loyal to its solution. As mentioned earlier,
the remaining (uncommitted) bees are followers that must determine which recruiter’s
partial solution they will continue to construct (Sections 4.2.2.1). Commonly, to make
this decision we use roulette wheel and formula (4.5)(pg. 65). The chosen solution,
described by the structure (Sb, Ob, Yb, ybmax), is copied from the recruiter to the fol-
lower.

Important segment of our study is the structural tuning, i.e., influence of qualitative
factors Lp and ME (Ev) on the measured outcomes. Lp is the method specific and
ME is the problem specific parameter. All loyalty functions collected throughout the
literature are also considered: p0,u, p1, p2, p3,niter , p4,u, p5,u, p6,u, p7,u, p8

b and p9,u.
Unlike the standalone heuristic algorithm, where only the complete solutions are as-

sessed, in BCOc we also need to evaluate partial solutions. In this study, we considered
two evaluation functions:

(1) ev1 = ybmax (2) ev2 = ybmax
S′b

.

Evaluation function ev1, introduced in [Dav12], relies on the value of makespan of each
(partial) solution (ybmax) and is, therefore, more receptive due to lower computational
costs related to its utilization. Evaluation function ev2 depends on two parameters:
ybmax and S′. Function ev2 associates the better quality to partial solutions with larger
values of the function. Analysis of two evaluation functions initiates introduction of the
parameter ME (pg. 134).

Consequently, we distinguish four different methods of evaluations, among which
three are investigated, as it is elaborated in the remainder of this section. In case of
ev1, both maximization and minimization principles are used, therefore, producing two
methods of evaluations. Maximization principle evaluates a partial solution with the
largest makespan (the worst case w.r.t. the objective of the problem) as the best among
B partial solutions, i.e., the normalized value of the function ev1 equals 1. Normalized
value of ev1 of the partial solution with the lowest makespan is then appointed to 0. This
method of evaluation is denoted as max(ev1). In the case of minimization principle,
the lowest makespan among B partial solutions, (i.e., the best case w.r.t. the objective
of the problem), is marked as the best and the corresponding value of ev1 is normalized
to 1. The value of ev1 of the partial solution with the largest makespan is normalized to
0. This method of evaluation is denoted as min(ev1). Justification to incorporate ME
can be explained by characteristic of the underlying heuristic sLPT+BF.

152 Chapter 8 Development and empirical analysis of BCOc

Evaluation function ev2 is introduced to determine whether performance of BCOc
can be improved by incorporating knowledge about the computational time of non-
scheduled tasks. Namely, a partial solution that already contains longer tasks is set
as the better one. We follow the reasoning of LPT heuristics stating that it is easier
to schedule shorter tasks within current partial solution. We quantify this behavior as
the ratio between the current makespan of the solution an the corresponding sum of
the non-scheduled tasks S′b. Incorporation of max(ev2) might help to generate better
solutions compared against min(ev1). To test this hypothesis, in the following text we
analyze different scenarios during a scheduling process.

Let us observe two partial solutions (B = 2) and let S′b, b = 1, 2, be corresponding
sums of the processing times of non-scheduled tasks. We distinguish two scenarios:
(1) corresponding partial solutions have the same makespan ybmax = ymax and differ-
ent S′b; (2) partial solutions have the same sum of non-scheduled tasks S′b = S′. We
observe evaluation function ev2 as a function of two parameters, defined for each bee
as ev2 : Z× Z→ R for a problem of minimization of function f .

Scenario (1) describes the case of two bees with equal ybmax and different sums of
non-scheduled tasks lengths. Let partial solution of Bee1 contain shorter tasks relative
to Bee2. Therefore, the sum of non-scheduled tasks of Bee1 is larger than of Bee2, i.e.,
S′1 ≥ S′2. It holds that

S′1 ≥ S′2 ⇐⇒
1
S′1
≤ 1
S′2
⇐⇒ ymax

S′1
≤ ymax

S′2
⇐⇒ ev2(Bee1) ≤ ev2(Bee2),

i.e. , the value of ev2 of Bee2 (that has to schedule tasks with shorter sum S′b) is greater
than of Bee1. Obviously, we want that Bee2 achieves higher probability to remain loyal.
In particular, we allow partial solutions with smaller sum of non-scheduled tasks to
propagate within the population since it is easier to allocate shorter tasks after the
allocation of longer ones. However, we are not taking into account the distribution of
the tasks lengths, which might influence results in practice. In scenario (2) sums of non-
scheduled tasks lengths S′b are the same for each bee. Accordingly, sums of scheduled
tasks of each bee are also equal, while ybmax might differ. With regard to the objective
function, the previous discussion about function ev1 and the underlying heuristic, both
maximization and minimization of evaluation function may be employed.

By a group of preliminary experiments we conclude that max(ev2) strategy yields
better results than min(ev2). Therefore, we define set of methods of evaluation to be
M = {min(ev1),max(ev1),max(ev2)}.

8.3.4 Collection of results

The region of interest, on which we conduct the empirical study of BCOc for P ||Cmax,
has been established in the previous section and all the values of parameter configura-
tions are summarized in Table 8.3.

The subject of this section is to describe the first step of the empirical study of BCOc:
the collection of results. Namely, a product of each experiment is a set of data. The
data set contains a collection of measured outcomes (response values) generated by
the corresponding BCOc instance. At the end of a single run the BCOc instance reports
three different values:

8.3 Development of the BCOc algorithm for P ||Cmax 153

y – the evaluation value of the best-found solution xbest ,

t – time to obtain xbest for the first time,

nit – number of iterations needed to obtain xbest for the first time.

Moreover, the BCOc algorithm reports complement of the stopping criterion, i.e.,
maximal CPU time (T) if Nit is the stopping criterion, and total number of iterations
(Nit) if T is the stopping criterion. The response variables are summarized in Table 8.4.

Table 8.3: Parameter space for experimental analysis of BCOc.

Parameter Domain

ME {min(ev1), max(ev1), max(ev2)}
loyalty function {pα,β : α = 1, 20}
B {1, . . . , 20}
NC {1, . . . , 100}
nrun {100}
seed {1, . . . , nrun}

Table 8.4: Response values after a run of the BCOc instance.

Stopping
criterion

Best
solution

Min.
time

Min.
iter.

Total
time

Total
iter.

y t nit T Nit

Nit X X X X

T X X X X

The measured outcomes of the experiments are employed in computing descrip-
tive statistics, i.e., mean, range, minimal value, maximal value, coefficient of variation
and the corresponding standard deviations. In statistics, these values represent central
tendencies and variation for each unique configuration of the BCOc parameters and
are common in operations research community. The total number of statistics of one
experiment amounts to 24 different values. Additionally, the total number of exper-
iments is large as for the single instance we need to perform |M| · |L| · |B| · |NC| =
3 · 10 · 20 · 100 = 60000 experiments. The focus of the BCOc study is on the quality
of a solution, therefore, we mostly utilize average response value y. Nevertheless, we
document other characteristics of the BCOc performance which we address during the
course of the study. We concentrate on four average outcomes and their corresponding
variability, as shown in Table 8.5.

The average response values of the experiments are reported in Tables 8.6–8.9 and
Tables B.2–B.33, organized in the following fashion. Each table corresponds to one
problem instance and consists of three groups of data, distinguished by method of eval-
uation. Columns are arranged to show descriptive statistics of the best and the worst
experiment. The first column indicates the loyalty function. The second column indi-
cates the quality of the data, i.e., results of the best (b) and the worst (w) experiment.

154 Chapter 8 Development and empirical analysis of BCOc

Table 8.5: Overview of the response values and the corresponding descriptive statistics
of the experiment.

Mean of y Range of
y

Mean nit
± st. dev.

Mean t ±
st. dev.

Mean T ±
st. dev.

Mean Nit
± st. dev

Stop. crit. y ∆y nit± s t̄± s T ± s Nit± s

Nit X X X X X

T X X X X X

Remaining three groups of seven columns provide statistics for the most successful (up-
per row) and the worst (bottom row) among B · NC experiments conducted for the
same combination of qualitative parameters. In particular, column y shows the best
(the worst) mean value for solution quality, followed by column ∆y containing the
range, i.e., difference between minimal and maximal value of the data sample for y. To
describe variation in y we opted for range instead of standard deviation to emphasize
the span of solutions’ quality under the influence of seed. Columns B and NC show
configurations of the corresponding BCOc parameters that generate the best (worst) y.
Additionally, provided are: average value of computational effort such as number of
iterations and running time until generating the best solution for the first time, mean
of required CPU time (if stopping criterion is Nit) or mean of maximal number of it-
erations (if stopping criterion is T). The reported values of CPU time are expressed in
miliseconds.

The best experiment according to reported values in the Tables 8.6–8.9 and Ta-
bles B.2–B.33, is considered to be the one that, on average, generated the lowest value.
For each value of ME the best y is colored in orange in such a way that the most in-
tensive colored field signifies the overall best. The overall best is also marked with the
asterisks (∗). The average outcome y might be hard to identify outside the specified
tables, and its suitable indexation is as follows.

yi,j,k,l = 1
nrun

nrun∑
s=1

ys where i ∈M, j ∈ L, k ∈ B, l ∈ NC, s = seed. (8.1)

where ys refers to the final solution of the s-th run within the corresponding experi-
ment. Tables 8.6–8.9 and Tables B.2–B.33 show the best mean, i.e.,:

yi,j = min{yi,j,k,l : 1 ≤ k ≤ B, 1 ≤ l ≤ NC}. (8.2)

Since the collected data is too extensive for cross comparison among all BCOc fac-
tors, in our study we mostly rely on yi,j . Therefore, close consideration needs to be
taken when reporting average values of solution quality. In particular, the values of
means yi,j,k,l are often numerically close, which rises a suspicion in statistical and prac-
tical difference in the performance of the corresponding BCOc instances. According
to statistical results, reported in the following sections, for P ||Cmax the practical dif-
ference between two values is anywhere between 0.3 and half of unit time(3) w.r.t.
dimension of the problem instance.

(3)A unit of time is taken as a measure of tasks lengths

Table 8.6: Best and worst average solutions found by corresponding BCOc algorithms for problem instance Iogra100_12 [Dav06b]. Stopping criterion, Nit = 100.

min, ev1 max, ev1 max, ev2

pb y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s
[10−3] [10−3] [10−3] [10−3] [10−3] [10−3]

p0
b b 813.35 7 20 1 68.47 ±20.76 14.50 ±4.35 21.00 ±0.68 812.58 7 20 96 68.18 ±19.02 35.90 ±9.99 52.70 ±0.84 812.39 7 20 81 70.90 ±18.88 35.60 ±9.51 50.50 ±0.89

w 831.21 117 1 1 94.56 ±6.94 0.93 ±0.35 1.06 ± 0.37 834.02 142 2 77 94.82 ±6.88 3.38 ±0.53 3.59 ± 0.49 831.21 117 1 1 94.56 ±6.94 1.04 ±0.28 1.14 ± 0.38

p1
b b 813.35 7 20 1 68.47 ±20.76 14.50 ±4.39 21.00 ±0.84 812.88 5 20 5 76.55 ±16.05 17.80 ±3.67 23.20 ±0.70 812.43 7 20 8 77.96 ±14.01 19.70 ±3.49 25.30 ±0.75

w 831.21 117 1 1 94.56 ±6.94 1.01 ±0.26 1.07 ± 0.32 1081.97 435 18 77 99.91 ±0.90 30.90 ±0.84 30.90 ± 0.86 958.53 300 19 98 99.65 ±2.57 60.80 ±1.99 61.00 ± 1.31

p2
b b 811.80 25 20 97 76.15 ±18.51 43.00 ±10.70 56.90 ±1.42 813.13 7 20 2 69.66 ±18.52 15.20 ±4.04 21.70 ±0.61 812.52 7 20 6 81.11 ±13.96 19.40 ±3.38 23.90 ±0.72

w 831.21 117 1 1 94.56 ±6.94 1.01 ±0.33 1.07 ± 0.38 1117.42 435 20 77 100.00 ±0.00 32.30 ±0.82 32.30 ± 0.82 985.78 296 18 97 100.00 ±0.00 58.20 ±1.11 58.20 ± 1.11

p3
b b 813.35 7 20 1 68.47 ±20.76 14.50 ±4.41 21.10 ±0.71 813.35 7 20 1 68.47 ±20.76 14.60 ±4.49 21.20 ±0.66 813.33 7 20 20 70.88 ±19.68 20.40 ±5.68 28.70 ±0.78

w 831.21 117 1 1 94.56 ±6.94 1.01 ±0.26 1.11 ± 0.31 848.18 143 2 96 98.00 ±4.10 3.97 ±0.43 4.05 ± 0.38 831.21 117 1 1 94.56 ±6.94 1.01 ±0.41 1.09 ± 0.40

p4
b b 813.35 7 20 1 68.47 ±20.76 14.60 ±4.41 21.30 ±0.66 812.66 5 20 12 77.96 ±13.53 20.50 ±3.68 26.30 ±0.67 812.07 8 20 47 82.21 ±14.00 33.70 ±5.87 41.00 ±0.83

w 831.21 117 1 1 94.56 ±6.94 1.02 ±0.20 1.07 ± 0.29 939.29 300 7 70 99.99 ±0.10 12.80 ±0.48 12.80 ± 0.48 857.82 173 4 83 97.59 ±4.33 9.70 ±0.57 9.92 ± 0.37

p5
b b 813.35 7 20 1 68.47 ±20.76 14.50 ±4.42 21.10 ±0.68 813.07 5 20 6 79.00 ±16.02 18.90 ±3.82 23.90 ±0.67 812.57 8 20 8 73.26 ±16.68 18.70 ±4.20 25.40 ±0.62

w 831.21 117 1 1 94.56 ±6.94 1.01 ±0.26 1.09 ± 0.32 1078.52 451 16 54 100.00 ±0.00 26.30 ±0.77 26.30 ± 0.77 953.88 315 17 97 99.47 ±2.83 59.30 ±1.99 59.60 ± 1.05

p6
b b 813.35 7 20 1 68.47 ±20.76 14.50 ±4.37 21.10 ±0.62 812.73 7 20 8 76.36 ±13.71 19.40 ±3.48 25.20 ±0.67 812.13 7 20 9 76.21 ±16.03 20.30 ±4.20 26.50 ±0.67

w 831.21 117 1 1 94.56 ±6.94 0.97 ±0.30 1.04 ± 0.28 956.55 393 5 100 100.00 ±0.00 10.50 ±0.61 10.50 ± 0.61 879.90 258 7 98 99.29 ±2.20 22.30 ±0.80 22.40 ± 0.65

p7
b b 813.35 7 20 1 68.47 ±20.76 14.50 ±4.46 21.10 ±0.60 812.64 5 20 10 70.67 ±17.23 18.40 ±4.47 25.90 ±0.67 812.54 6 20 10 72.80 ±18.73 19.20 ±4.99 26.40 ±0.74

w 831.21 117 1 1 94.56 ±6.94 1.00 ±0.24 1.06 ± 0.24 831.21 117 1 1 94.56 ±6.94 0.99 ±0.26 1.06 ± 0.31 831.21 117 1 1 94.56 ±6.94 0.93 ±0.29 0.99 ± 0.22

p8
b b *810.29 19 20 97 74.64 ±20.06 45.10 ±12.00 61.00 ±1.49 813.05 7 18 3 77.27 ±15.81 15.60 ±3.20 20.10 ±0.63 812.46 6 20 4 73.86 ±16.78 17.10 ±4.01 23.20 ±0.74

w 831.21 117 1 1 94.56 ±6.94 1.02 ±0.24 1.06 ± 0.24 1114.98 400 20 60 100.00 ±0.00 31.90 ±0.83 31.90 ± 0.83 988.93 296 19 91 100.00 ±0.00 67.30 ±1.35 67.30 ± 1.35

p9
b b 813.35 7 20 1 68.47 ±20.76 14.60 ±4.42 21.20 ±0.61 813.00 6 20 4 76.52 ±17.77 18.00 ±4.08 23.40 ±0.69 812.49 7 20 8 75.95 ±17.48 20.40 ±4.71 26.90 ±0.70

w 831.21 117 1 1 94.56 ±6.94 1.03 ±0.30 1.06 ± 0.31 1080.91 444 20 65 99.99 ±0.10 37.90 ±0.97 37.90 ± 0.97 954.09 298 18 96 99.83 ±1.07 76.60 ±1.31 76.70 ± 1.10

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table 8.7: Best and worst average solutions found by corresponding BCOc algorithms for problem instance Iogra100_16 [Dav06b]. Stopping criterion, Nit = 100.

min, ev1 max, ev1 max, ev2

pb y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s
[10−3] [10−3] [10−3] [10−3] [10−3] [10−3]

p0
b b 809.55 4 20 1 64.74 ±20.64 16.40 ±5.24 25.30 ±1.03 808.77 4 19 90 68.09 ±19.85 37.90 ±11.20 55.90 ±0.98 808.74 5 19 60 65.70 ±20.02 31.60 ±9.56 48.10 ±1.00

w 903.25 298 1 1 99.64 ±1.69 1.19 ±0.42 1.19 ± 0.42 903.25 298 1 1 99.64 ±1.69 1.21 ±0.41 1.21 ± 0.41 903.25 298 1 1 99.64 ±1.69 1.17 ±0.42 1.18 ± 0.41

p1
b b 805.78 6 20 96 63.86 ±21.68 47.60 ±15.90 74.80 ±1.39 809.09 5 20 3 72.10 ±16.91 19.50 ±4.65 27.00 ±1.07 808.88 4 19 6 73.33 ±15.30 20.00 ±4.22 27.20 ±0.93

w 903.25 298 1 1 99.64 ±1.69 1.12 ±0.41 1.12 ± 0.41 988.51 446 5 80 99.97 ±0.30 9.57 ±0.64 9.57 ± 0.64 903.25 298 1 1 99.64 ±1.69 1.13 ±0.48 1.13 ± 0.48

p2
b b *805.55 7 20 92 60.94 ±22.46 43.70 ±16.10 72.00 ±1.19 809.13 6 19 3 77.09 ±15.69 19.10 ±4.02 24.70 ±0.93 808.89 4 20 5 71.64 ±17.22 20.20 ±4.91 28.20 ±1.04

w 903.25 298 1 1 99.64 ±1.69 1.16 ±0.44 1.17 ± 0.45 1001.00 496 10 61 99.94 ±0.60 17.40 ±0.65 17.40 ± 0.65 911.74 417 6 98 98.45 ±5.01 21.10 ±1.18 21.40 ± 0.63

p3
b b 809.21 5 19 2 66.27 ±17.77 16.10 ±4.40 24.20 ±0.96 809.21 5 19 4 69.67 ±16.94 17.70 ±4.39 25.40 ±0.86 809.00 5 20 35 68.38 ±20.75 28.10 ±8.47 41.10 ±1.07

w 903.25 298 1 1 99.64 ±1.69 1.11 ±0.37 1.12 ± 0.38 909.13 324 2 92 98.99 ±4.14 4.39 ±0.68 4.46 ± 0.62 903.25 298 1 1 99.64 ±1.69 1.12 ±0.41 1.12 ± 0.41

p4
b b 809.55 4 20 1 64.74 ±20.64 16.70 ±5.22 25.70 ±1.05 809.06 4 20 11 77.26 ±13.43 23.90 ±4.24 30.90 ±1.20 808.68 5 20 94 75.74 ±15.31 49.80 ±10.00 65.80 ±1.25

w 903.25 298 1 1 99.64 ±1.69 1.23 ±0.51 1.23 ± 0.51 920.59 298 2 60 99.24 ±2.82 3.73 ±0.47 3.78 ± 0.44 903.25 298 1 1 99.64 ±1.69 1.13 ±0.42 1.14 ± 0.42

p5
b b 805.57 7 20 97 60.06 ±23.21 48.50 ±18.80 80.90 ±1.41 809.15 4 20 5 75.12 ±16.47 21.20 ±4.61 28.30 ±1.17 808.98 5 20 7 74.20 ±16.98 22.40 ±5.10 30.10 ±0.91

w 903.25 298 1 1 99.64 ±1.69 1.15 ±0.38 1.15 ± 0.38 985.59 443 5 80 99.66 ±1.72 9.80 ±0.53 9.83 ± 0.53 904.98 282 2 86 98.43 ±5.09 6.58 ±0.59 6.68 ± 0.49

p6
b b 808.68 25 20 96 70.99 ±20.23 55.00 ±15.70 77.50 ±1.17 809.01 6 20 6 74.64 ±14.61 21.90 ±4.24 29.20 ±1.11 808.81 4 20 8 73.95 ±17.79 23.20 ±5.57 31.30 ±0.96

w 903.25 298 1 1 99.64 ±1.69 1.25 ±0.46 1.25 ± 0.46 942.51 349 2 60 99.73 ±1.29 3.89 ±0.34 3.90 ± 0.33 909.65 278 2 99 98.62 ±4.18 6.80 ±0.55 6.90 ± 0.44

p7
b b 809.18 4 20 56 64.04 ±20.22 35.30 ±11.10 55.10 ±1.01 808.83 5 19 85 63.18 ±21.98 40.50 ±14.20 64.20 ±1.10 808.89 5 20 69 63.81 ±20.04 40.10 ±12.50 62.80 ±1.21

w 903.25 298 1 1 99.64 ±1.69 1.18 ±0.41 1.18 ± 0.41 903.25 298 1 1 99.64 ±1.69 1.16 ±0.39 1.16 ± 0.39 903.25 298 1 1 99.64 ±1.69 1.15 ±0.43 1.15 ± 0.43

p8
b b 805.82 7 19 94 61.56 ±21.94 44.10 ±15.70 72.30 ±1.44 809.16 5 19 3 74.69 ±16.72 18.70 ±4.14 25.10 ±1.04 808.88 5 20 3 73.11 ±17.85 20.20 ±4.87 27.50 ±0.92

w 903.25 298 1 1 99.64 ±1.69 1.22 ±0.44 1.23 ± 0.44 1005.06 404 8 72 99.91 ±0.90 14.90 ±0.64 14.90 ± 0.64 907.09 308 11 98 98.64 ±4.45 43.30 ±1.88 43.90 ± 0.99

p9
b b 805.69 6 20 97 63.35 ±22.95 59.40 ±21.70 94.00 ±1.61 809.18 4 19 5 74.23 ±14.39 20.20 ±3.95 27.10 ±1.09 808.91 4 20 4 69.49 ±16.64 19.80 ±4.65 28.50 ±0.93

w 903.25 298 1 1 99.64 ±1.69 1.21 ±0.41 1.21 ± 0.41 984.40 408 5 77 99.83 ±1.23 10.30 ±0.60 10.30 ± 0.60 903.25 298 1 1 99.64 ±1.69 1.12 ±0.43 1.13 ± 0.44

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table 8.8: Best and worst average solutions found by corresponding BCOc algorithms for problem instance Iogra100_12 [Dav06b]. Stopping criterion, T = 0.1[s].

min, ev1 max, ev1 max, ev2

pb y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s
[10−3] [10−3] [10−3]

p0
b b 810.99 5 1 1 5008.44 ±2482.99 52.50 ±26.00 9589.42 ±177.95 809.87 6 5 7 1051.46 ±408.15 61.90 ±23.90 1706.47 ±20.36 809.93 5 5 6 960.04 ±438.50 56.10 ±25.60 1718.40 ±19.13

w 815.69 6 19 91 127.82 ±53.15 62.10 ±25.80 206.89 ± 2.80 811.73 5 19 81 129.90 ±47.87 60.40 ±22.40 216.88 ± 2.67 811.86 4 18 100 125.07 ±43.55 63.10 ±22.00 199.16 ± 2.53

p1
b b 810.03 12 10 98 235.70 ±93.17 62.60 ±24.90 377.53 ±5.15 809.01 5 5 25 1029.44 ±303.42 69.10 ±20.20 1492.62 ±18.03 809.13 6 7 12 660.77 ±238.21 62.00 ±22.40 1071.04 ±14.87

w 826.18 17 18 22 143.32 ±117.10 40.20 ±32.70 358.35 ± 5.12 905.93 287 20 95 270.38 ±11.82 99.40 ±3.50 274.23 ± 5.34 879.28 198 20 97 151.53 ±11.95 99.30 ±7.56 154.10 ± 2.35

p2
b b 808.17 11 15 97 160.51 ±52.44 66.10 ±22.10 241.68 ±4.00 808.47 3 7 25 804.91 ±207.95 72.50 ±18.80 1114.09 ±15.49 808.85 5 11 9 460.73 ±162.89 63.70 ±22.60 725.46 ±8.92

w 826.81 23 20 15 98.56 ±113.08 27.80 ±31.90 357.54 ± 5.68 918.74 242 20 93 295.31 ±9.39 100.00 ±2.24 296.71 ± 5.07 904.07 211 20 99 150.43 ±5.57 101.00 ±3.50 151.02 ± 2.17

p3
b b 810.68 6 14 2 400.89 ±157.91 59.50 ±23.50 675.54 ±8.69 810.69 5 13 2 437.92 ±168.24 61.40 ±23.70 716.28 ±8.85 810.71 7 16 2 367.76 ±125.70 63.80 ±22.00 579.26 ±6.61

w 813.65 5 19 96 140.03 ±36.58 70.80 ±18.60 199.42 ± 3.03 812.78 5 20 95 133.08 ±34.53 70.00 ±18.60 190.53 ± 2.43 812.78 6 19 90 124.42 ±38.61 63.60 ±19.90 196.96 ± 2.20

p4
b b 810.98 5 11 1 469.11 ±231.01 53.90 ±26.40 875.36 ±10.11 809.54 6 5 25 905.02 ±313.71 64.00 ±22.10 1419.52 ±17.27 809.38 4 6 45 564.31 ±187.99 65.10 ±21.80 872.10 ±11.76

w 825.67 16 19 89 96.97 ±62.55 48.90 ±31.50 200.33 ± 2.92 819.29 89 20 100 189.68 ±19.38 92.50 ±9.16 206.46 ± 3.15 811.46 6 1 95 3382.17 ±1558.79 55.40 ±25.50 6148.05 ± 98.55

p5
b b 810.60 10 9 100 232.57 ±95.11 59.50 ±24.40 392.25 ±5.30 809.01 4 6 25 829.64 ±234.13 68.60 ±19.40 1213.55 ±13.91 809.19 6 13 20 344.69 ±101.17 71.00 ±21.00 487.90 ±5.69

w 827.05 22 19 40 116.12 ±86.72 44.80 ±33.40 262.94 ± 4.10 911.23 312 20 99 250.28 ±16.71 98.80 ±5.92 255.56 ± 4.44 894.43 256 20 100 136.78 ±4.56 100.00 ±2.66 138.10 ± 2.11

p6
b b 810.99 5 5 1 1020.19 ±499.55 53.00 ±26.00 1930.43 ±22.64 809.44 5 7 9 771.97 ±255.43 68.40 ±22.60 1133.40 ±12.76 809.18 6 10 24 405.38 ±117.85 68.10 ±19.80 598.41 ±7.34

w 826.55 25 20 81 71.22 ±54.87 41.20 ±31.80 174.85 ± 2.69 837.64 156 20 99 202.07 ±15.82 97.20 ±7.25 209.56 ± 3.31 814.41 105 20 100 133.10 ±13.82 90.90 ±9.20 147.52 ± 2.84

p7
b b 810.99 5 1 1 4991.86 ±2488.48 52.30 ±26.10 9580.42 ±156.67 809.93 5 4 8 1256.01 ±492.88 61.90 ±24.40 2037.92 ±24.77 809.95 5 6 9 818.78 ±331.21 62.60 ±25.40 1311.05 ±14.29

w 813.82 6 20 84 98.07 ±38.92 58.20 ±23.20 169.54 ± 2.30 812.63 6 20 99 99.17 ±33.29 65.50 ±22.10 152.65 ± 2.12 812.74 5 17 100 108.72 ±38.70 62.50 ±22.30 175.23 ± 2.23

p8
b b *807.61 12 16 97 139.83 ±45.10 64.40 ±21.30 216.10 ±4.04 808.63 5 7 25 738.67 ±182.88 68.10 ±16.90 1089.86 ±14.62 808.85 4 12 9 415.30 ±138.42 64.60 ±21.40 645.62 ±7.85

w 824.26 23 20 15 154.06 ±109.88 45.00 ±32.20 343.49 ± 5.45 934.90 312 20 99 269.70 ±13.12 99.90 ±4.30 272.62 ± 4.27 926.40 275 20 94 136.43 ±2.64 101.00 ±0.87 136.67 ± 2.27

p9
b b 811.00 5 1 1 4912.53 ±2465.86 51.40 ±25.80 9586.96 ±173.79 809.20 4 5 32 872.01 ±256.69 66.30 ±19.60 1318.98 ±17.43 809.38 6 6 10 722.33 ±288.90 60.20 ±24.00 1204.38 ±14.12

w 826.87 30 20 43 96.16 ±69.36 47.00 ±33.80 207.41 ± 3.31 934.36 265 20 87 245.71 ±8.28 100.00 ±2.88 247.57 ± 3.58 928.34 240 20 97 115.30 ±2.73 101.00 ±1.85 115.72 ± 1.68

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table 8.9: Best and worst average solutions found by corresponding BCOc algorithms for problem instance Iogra100_16 [Dav06b]. Stopping criterion, T = 0.1[s].

min, ev1 max, ev1 max, ev2

pb y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s
[10−3] [10−3] [10−3]

p0
b b 807.73 4 2 1 2161.31 ±1093.29 50.40 ±25.50 4305.81 ±53.99 807.14 4 4 9 1101.85 ±496.42 59.10 ±26.60 1871.01 ±23.56 807.20 4 9 3 477.65 ±216.13 53.40 ±24.10 899.12 ±10.71

w 809.78 5 20 79 98.45 ±43.54 55.80 ±24.80 178.14 ± 3.70 808.49 4 19 100 100.95 ±38.74 59.30 ±22.90 171.47 ± 4.00 808.58 3 19 100 89.45 ±36.05 55.80 ±22.50 161.66 ± 2.63

p1
b b 805.15 6 20 99 78.45 ±32.26 59.00 ±24.20 133.69 ±2.59 806.92 2 5 20 861.16 ±278.22 63.70 ±20.70 1358.10 ±19.35 806.96 3 5 8 774.78 ±320.70 53.70 ±22.30 1448.15 ±14.57

w 812.18 8 20 13 160.16 ±76.44 52.60 ±24.80 307.66 ± 10.59 846.91 305 17 81 242.38 ±38.17 88.80 ±13.30 274.06 ± 7.94 829.19 267 20 99 117.62 ±15.45 90.60 ±11.60 130.96 ± 2.29

p2
b b *804.97 5 14 96 113.43 ±47.27 54.50 ±22.80 208.55 ±3.27 806.83 3 6 6 861.73 ±292.45 66.20 ±22.40 1306.18 ±15.27 806.64 3 2 82 992.72 ±371.61 60.60 ±22.90 1645.54 ±17.73

w 811.86 7 20 6 163.03 ±85.72 46.10 ±24.00 355.27 ± 14.34 876.32 358 20 81 230.11 ±22.72 95.00 ±8.21 243.96 ± 6.87 851.57 215 20 99 124.94 ±12.49 95.30 ±9.16 132.28 ± 2.11

p3
b b 807.49 3 4 3 1107.24 ±533.88 53.30 ±25.80 2086.37 ±23.80 807.46 3 6 9 670.11 ±307.68 53.70 ±24.70 1252.33 ±14.89 807.46 3 9 3 472.30 ±209.33 51.90 ±23.00 913.63 ±12.85

w 809.51 4 20 93 104.12 ±34.26 63.30 ±20.50 165.99 ± 3.50 808.97 3 16 86 136.16 ±45.21 61.60 ±20.90 220.83 ± 3.24 808.87 5 20 95 102.74 ±29.48 66.50 ±19.00 155.31 ± 2.93

p4
b b 807.72 4 3 1 1475.97 ±737.21 51.10 ±25.30 2897.49 ±38.81 807.06 4 4 23 969.51 ±369.87 60.10 ±23.10 1616.79 ±17.17 807.02 3 7 9 560.22 ±248.19 54.70 ±24.30 1026.91 ±13.73

w 812.06 11 20 75 103.61 ±41.74 60.30 ±24.40 173.27 ± 3.76 811.69 148 18 97 163.68 ±28.76 79.70 ±14.20 206.24 ± 4.26 808.31 4 20 72 118.72 ±35.55 70.20 ±20.90 170.24 ± 3.07

p5
b b 805.26 6 20 97 69.02 ±28.45 54.90 ±22.60 126.31 ±2.63 806.89 4 4 20 1030.72 ±409.66 61.50 ±24.40 1682.03 ±22.16 807.00 4 8 8 533.48 ±216.91 60.30 ±24.60 889.41 ±10.50

w 812.51 8 20 15 146.65 ±70.26 50.50 ±24.20 292.05 ± 9.17 856.75 364 20 88 198.88 ±23.67 92.70 ±10.30 215.75 ± 5.80 832.59 173 18 99 121.93 ±17.07 90.10 ±12.30 136.32 ± 2.10

p6
b b 807.72 4 3 1 1470.95 ±742.09 51.00 ±25.80 2894.18 ±37.14 807.03 4 6 9 689.96 ±265.81 57.90 ±22.40 1197.49 ±14.52 807.03 4 6 4 761.41 ±337.79 59.10 ±26.10 1295.69 ±16.19

w 811.86 7 19 40 118.54 ±53.78 54.50 ±24.80 219.70 ± 5.65 814.12 129 18 98 168.62 ±30.78 83.30 ±15.10 203.37 ± 4.23 811.54 137 20 93 105.25 ±23.97 79.30 ±18.10 133.74 ± 2.48

p7
b b 807.73 4 3 1 1461.36 ±729.35 50.70 ±25.20 2896.70 ±42.36 807.17 4 6 5 667.31 ±311.51 51.70 ±24.20 1292.36 ±16.48 807.22 4 14 3 304.10 ±137.58 54.40 ±24.70 561.44 ±7.22

w 809.20 4 17 90 98.34 ±41.62 57.50 ±24.20 172.46 ± 2.73 808.96 5 12 98 127.77 ±56.86 54.10 ±24.00 237.42 ± 2.67 808.93 4 15 99 101.47 ±39.00 57.30 ±22.00 178.19 ± 2.02

p8
b b 805.12 6 18 93 77.39 ±35.66 51.90 ±24.00 150.11 ±2.87 806.85 3 5 6 911.13 ±333.84 58.80 ±21.50 1556.32 ±18.72 806.82 4 8 8 547.26 ±212.06 61.80 ±24.10 887.77 ±10.80

w 811.52 8 20 7 173.71 ±91.30 50.80 ±26.50 342.70 ± 12.04 874.77 317 18 100 233.80 ±26.89 93.60 ±9.84 251.32 ± 7.14 871.47 261 19 100 118.03 ±11.32 96.10 ±8.82 123.99 ± 1.99

p9
b b 805.59 6 20 97 65.34 ±24.49 61.70 ±23.30 106.87 ±1.99 807.08 2 5 20 796.84 ±270.75 63.20 ±21.60 1266.73 ±16.18 807.07 4 5 8 814.03 ±331.63 59.90 ±24.50 1366.67 ±16.06

w 812.62 7 20 12 152.94 ±70.93 52.40 ±24.10 292.67 ± 8.96 858.43 374 20 100 177.92 ±20.95 93.20 ±10.40 191.96 ± 4.97 844.04 215 20 100 94.85 ±9.06 94.80 ±8.84 101.03 ± 1.55

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

8.4 Screening BCOc parameters: basic plots 159

8.4 Screening BCOc parameters: basic plots

Results in Tables 8.6–8.9 and Tables B.2–B.33 (referred to as the basic tables in the re-
mainder of this thesis) show that none of the BCOc instances is able to reach the optimal
solution, regardless of the stopping criterion. Instead, a set of solution’s quality values
(hereafter referred to as a sample or {ys : s = 1, nrun}) produced by a single experiment
exhibits a bell-shaped distribution resembling the most to the normal (Gaussian) distri-
bution. We address this subject rigorously in Section A.3.2 (see Fig. A.7). We find that
statistics of central tendency for solution quality samples provide a satisfactory mea-
sure to address questions of sensitivity analysis of BCOc. In addition, the basic tables
have already estimated the best parameter configurations of BCOc for each considered
problem instance.

According to [Rid07, pg. 23] at this stage of the empirical study it is common to
perform screening of BCOc parameters. Screening represents a method to determine
which parameters affect BCOc performance. The approach we present here is based on
3-D and 2-D basic plots established on the solution quality means, i.e, values of yi,j,k,l
for each i ∈ L and j ∈M.

8.4.1 3-D plots: qualitative parameters

We assess and compare response surface plots of parameters B and NC for different
values of qualitative factors Lp and ME (4) (Figs. 8.2, B.5 and B.6). The response surface
plots are able to demonstrate any tendencies towards local optimum of the parameter
configuration sub-space and help to make a more informed decision about the future
course of the empirical study. Namely, the valleys in the landscape mark the area of
parameter space that yield the best results. However, effect of parameter ME is hard to
identify from these figures. One way to address this issue is demonstrated in Fig. 8.3.
All graphics in the figure are generated w.r.t. problem instance and the levels of param-
eters Lp and ME . The graphics plot percentage relative errors (in remainder referred
to as simply relative errors) of the best means, i.e., of yi,j . The profile lines, especially
for problem instances n = {100, 150, 200, 250}, suggest interactions between BCOc pa-
rameters ME and Lp (see [How10, pg. 421] for definition of interactions). What we
consider under interaction is the intersection of profile lines for one problem instance
along levels of Lp. It is worth noting that utilized design points in our experimental
study do not follow a common methodology, e.g., marginal means or a random design
technique. Consequently, by using yi,j points we believe that observable effect of ME is
smaller against employing other experimental designs from the literature. The method
min(ev1) exhibits satisfying performance for two instances of class m = 16, depending
on the level of parameter Lp. Additionally, max(ev2) shows to be better than max(ev1)
for problem instance Iogra100_12. Nevertheless, we are not certain about the statisti-
cal difference between the corresponding results yi,j , especially for the rest of problem
instances.

Beside the established best configurations of B and NC in the basic tables, from
Figs. 8.2, B.5 and B.6 we may conclude several results. Namely, from 3-D basic plots
(Figs. 8.2, B.5 and B.6) the improvement in the solution quality is established for larger

(4)We refer to each value of parameter ME or Lp, as its level. A set of data samples of one parameter,
generated at a level of the other, is referred to as a group (see pg. 261).

160 Chapter 8 Development and empirical analysis of BCOc

Figure 8.2: Response landscape of 10 BCOc with min(ev1) for Iogra100_12, Nit = 100.

B, however, either for smaller values of NC or the complete domain NC and the par-
ticular loyalty function. For example, a linear improvement of solution quality is rec-
ognized in case of p0

b ,min(ev1) on the restricted domain of NC, while for the p1,2,8 the
solution quality degrades significantly when NC ≤ 50, as the population of bees is
growing. Therefore, the increase in the population of bees doesn’t necessarily lead to
increase in the solution quality. Such behavior indicates high nonlinearity and complex
interaction between algorithm’s parameters, observed in Fig. 8.3. In addition, high
nonlinearity observed in surface plots on the B×NC space is detected for loyalty func-
tions of Class II. Regarding the general conclusions, method max(ev1) (i.e., ME2) has

8.4 Screening BCOc parameters: basic plots 161

Figure 8.3: Effects of parameters ME , Lp and the problem instance characteristics. Pro-
file lines with squares denote problem instances in the class m = 12 and
with triangles the class m = 16. Different colors refer to value of n. Stop-
ping criterion is Nit = 100.

produced the largest span among yi,j,k,l values, indicated by the shape of the response
landscape in Fig. B.5. Method max(ev2) (i.e. ME3) induces less variability, however,
lacking the practical improvement (Fig. B.6). Method min(ev1) (i.e., ME1) generates
the smallest variability (Fig. 8.2) and produces improvements in the solution quality
for specific values of B and NC .

Unlike Figs. 8.2, B.5 and B.6, the relations between qualitative factors are more dis-
tinct if we compare surface plots on one graphic. We address this in Section B.1.3,
(pg. 267). In Fig. B.7 results for p0,u, p1,2,8, at the level of ME corresponding to
min(ev1), are compared. Plots are generated for relative errors. The comparison of
the loyalty functions indicate that average performance of BCOc, while utilizing p8

b ,
for B ≥ 15 and 95 ≤ NC ≤ 98, is better against other three loyalty functions. We
are motivated to visualize experimental results, however, comparing all the values of
the parameter Lp on a single figure is obviously unmanageable. Therefore, graphical
representation are in the remainder of the chaper founded on 2-D plots.

At this point we may address a couple of research question, e.g., Q1 and Q3. Re-
garding the former, parameters Lp and ME exibit the highest influence and possible
interconnection. The finding is based on two observations: (a) difference between y of
the best and y of the worst experiment is the largest under their influence; (b) success
of several loyalty functions is related to values of ME . Regarding the question of ro-
bustness (Q3) Fig. 8.3 illustrates that the problem structure exhibits high impact on the
BCOc performance. The success of the particular combination of qualitative parameters
cannot be easily identified in Fig. 8.3 since none was able to consistently outperform
the other on the complete problem set. The only direction is to observe effect of one

162 Chapter 8 Development and empirical analysis of BCOc

parameter at the level of the other.

8.4.2 2-D plots: quantitative parameters

Here, we further exploit graphical analysis of the BCOc parameters. The results are pre-
sented in Fig. 8.4. The figure illustrates influence of BCOc parameters on the reported
average solutions quality (relative error), for two problem instances. In particular, to
maintain an overview on the influence of problem instances, we eleminated one param-
eter to generate 2-D graphics. According to basic tables we omit parameter B because
the most experimental runs reported similar values for its best configurations. There-
fore, each graphic consists of set of plots that reveal the influence of loyalty function
with regard to method of evaluation, for a fixed value B and different values of NC .

The main objective of this presentation is to visually inspect improvements in the
solution quality when parameter NC changes its value w.r.t. the structural parameters
of BCOc. Graphics are arranged to distinguish influence of ME and loyalty functions
when NC ∈ [1, 100]. Each profile line in Fig. 8.4 corresponds to the value of B that has
produced the best results. Namely, B takes values from [18, 20] among the profile lines.
For example, for Iogra100_12 and min(ev1), the profiles of the best results correspond
to B = 20. On the same instance, in the case of configuration max(ev1), p9,u, the best
average result is achieved when B = 18. The color of the plot corresponds to a single
loyalty function, whereas dashed black line signifies BCOc reference case. Reference
case is used to simulate the behaviour of an underlying heuristic, i.e., instead of ex-
ecuting sLPT+BF outside the BCOc frame, the results are obtained by running BCOc
algorithm for NC = 1, B = 20. The difference between the corresponding configura-
tion of BCOc and the standalone heuristic might be exhibited forB > 1 due to overhead
caused by evaluation phase of backward pass. However, a time difference is practically
insignificant for the case of Nit = 100. Detailed elaboration about this approximation
of the reference case is given in Section (A.2.2) (pg. 258).

We draw a few compelling conclusions from Fig. 8.4. Firstly, for some cases of loy-
alty functions an impact of ME is not easy to categorize as it is the case for p0,3,7.
Namely, the three functions exhibit similar properties regardless of values of ME . Be-
side their exploratory nature, the functions converge fast toward parts of the search
space in which they dwell until end of an iteration. Therefore, it is most likely that
the search gets fast stranded in one of the local minima. The lack of perturbations in
solution quality as NC changes thus becomes obvious.

|
Unlike previous group of loyalty functions, others demonstrate a large variability

of the solution quality. The variation depends on the utilization of evaluation func-
tion (or method of evaluation) and structure of the problem instance. Although show
significant fluctuations, these loyalty functions are able to bring improvements in the
solution’s quality for at least one value of ME . Among them, loyalty functions p2

b and
p8
b perform the best in respect to the reference case. In addition, graphics also reveal

that inside of these set of loyalty functions certain groups exhibit similar behaviour.
Such groups are: p1,5,9

b , p2,8
b and p4,6

b . To distinguish the influence of loyalty functions
within a group, further analysis needs to be conducted on the properties of recruitment
process. We investigate this in Section 8.8.

Because the results are sensitive to the choice of problem instance, it is obvious

8.4 Screening BCOc parameters: basic plots 163

Figure 8.4: Representative graphic of influence of three BCO parameters (ME, LF, NC)
on solution quality for Nit = 100. Graphic represents changing of average
solutions over values of NC for each loyalty function, on problem instance
Iogra100_12. For easiness of comparing, relative error is used.

that the corresponding visual analysis on the entire problem set should be undertaken
(Fig 8.5). As previously, the value for B varies in interval [18, 20] when generating
good quality solutions, with one exception where B = 15 is reported by function p8 on
problem instance Iogra400_12. The series of graphics in Fig. 8.5 consists of Fig. 8.4
and eight more, in regard to the dimension of a problem instance. Once more it should
be noted that NC values do not cover complete parameter space for problems of di-
mension n > 100 because of high computational cost. However, we can still notice
similarities between the graphics from different groups, and draw similar conclusions
as for n = 100. The first paramount result is related to Class II type of loyalty functions,
such as pk, k ∈ {0, 3, 4, 5, 6, 7, 9}. The loyalty functions p0,u, p3,it and p7,u are the most
conservative due to small changes in the reported average solutions over the complete
interval NC ∈ [1, 100], regardless of method of evaluation. Remaining Class II loyalty
functions show high sensitivity to utilization of method of evaluation and problem in-
stance. No pattern is able to be identified in respect to NC that generates high quality
solutions. Actually, only p5 and p9 succeed to be better than the reference case for
Iogra100_12/16, Iogra150_16, Iogra200_12, Iogra250_16 and Iogra300_12/16. Fur-
thermore, these two loyalty functions exhibit similar behavior throughout the search.
Loyalty functions p1, p2, p8, show large sensitivity to changes of quantitative parame-
ters B and NC and the choice of the problem instance. Between these three, the most
unsuccessful is p1 that has generated solutions resembling to solutions of p5,9. Loyalty
functions p2 and p8 are the only one that demonstrate a certain pattern on the inspected
domain of NC which brings improvements w.r.t. the reference case.

Until this point we have dealt with the Nit = 100 case study. The new set of graph-
ics additionally covers results determined for CPU case study, i.e., when the maximal
allowed time is restricted with T = n/100[s] (Fig. 8.6). The reference case w.r.t. BCOc

164
C

hapter
8

D
evelopm

ent
and

em
piricalanalysis

ofB
C

O
cFigure 8.5: Influence of three methods of evaluation and 10 loyalty function on the performance of BCOc for P ||Cmax, when NC ∈

[1, 100] and fixed B that generated the best results. Stopping criterion is maximum number of iterations, Nit = 100.

8.4
Screening

B
C

O
c

param
eters:

basic
plots

165Figure 8.6: Influence of three methods of evaluation and 10 loyalty function on the performance of BCOc for P ||Cmax, NC ∈ [1, 100]
and fixed B that has reported the best solution. Stopping criterion is allowed CPU time T = n/100[s].

166 Chapter 8 Development and empirical analysis of BCOc

parameters is here different. Namely, the performance of the sLPT+BF heuristic imply
values NC = 1 or B = 1. According to the results of the experiments the solution
quality of the heuristic does not change for different NC at B = 1. Reference case is
therefore determined as the best result obtained by BCOc when NC = 1, B ∈ [1, 20].
Consequently, parameters Lp and ME have no impact (the backward pass does not
occur for the reference case).

To explain properties of plots in Fig. 8.6, we examine results on a case to case
basis. Namely, the graphics report lower variability of the response values for structural
parameters. For problem instances m = {12, 16} : n = {350, 450} and m = 12 :
n = 400 the method min(ev1) demonstrates the smallest variability. The reason is
that the best results for the particular problem instances is, except for p3,u, reported
by the reference case (see basic tables). This has not happen for other parameter
configurations, however, we detect that BCOc algorithms reached the ceiling effect and
reported solutions of a similar quality. Disadvantage of the particular set of results in
Fig. 8.6 is the range of parameter B for which graphics are generated. For example, in
case of m = 12 : n = 150 and min(ev1) the corresponding profile lines are produced
for large range of values of B. Contrary, instances n = {300, 400, 500} seem to be easy
because sLPT+BF produced high quality results. However, we remind that NC domain
is restricted and BCOc configurations for larger NC might produce better results.

The rest of our study is focused on investigation of simple effects with help of sta-
tistical tests. To conclude on the overall success of each method of evaluation (on the
complete problem set), we present results of Friedman’s rank and Kruskal-Wallis test in
the following section. The tests contribute to our goal to investigate general behavior
of the BCOc algorithm.

8.5 Statistical analysis: hypothesis testing
In previous sections, we emphasized the importance of establishing statistical and prac-
tical differences between the results on which we base our conclusions. There are sev-
eral other reasons that direct the study towards methodological statistical analysis. We
summarize them as follows.

• Increasing the number of figures that show solution quality response landscapes
in general does not help to address our research goals. In addition, along already
demanding basic tables, graphics require great deal of space.

• An Mk1(5) test does not reveal to which degree we consider two BCOcs different.
To establish a clear difference between the best among three BCOc algorithms,
the result of comparing values 1603.51, 1603.15 and 1603.52 from Table B.8 (for
problem instance Iogra300_12, pg. 280), commonly depends on the practitioner
making a observation.

• A number of pairwise comparisons between all BCOc instances, for a particular
problem instance, is too large to be conducted without increasing familywise error
rate [How10, pg. 151]. The error rate defines the probability of making Type I
error (making false discoveries by rejecting null hypothesis when it should not be
rejected) at least once during the pairwise comparison.

(5)Mk1 is abbreviation of Mark One Eyeball used in a military as a slang for visual inspection [Bus].

8.6 Stopping criterion: Nit 167

• Another issue concerns interactions between BCOc parameters. According to
[How10], difference between any two means might originate from: different
levels of a parameter or their interactions. From 8.2, B.5 and B.6 we can already
detect significant interactions between parameters B and NC .

Therefore, we perform multiple comparison statistical tests that help to establish
a clear difference in the performance of the BCOc instances. Due to the existence
of interactions we examine simple effects ([How10, 416]) and separate the statistical
analysis of BCOc performance among two case studies. We define the null hypothe-
sis as the statement that all means are equal (in case of parametric test) or samples
are from the same population (in case of non-parametric tests), however, we do not
explore the complete configuration sub-space. Instead, we use carefully determined
samples of data (addressed for formula 8.2, pg. 154). The first case study explores an
effect of parameter Lp for outcomes achieved at one level of the parameter ME . It is
based on multiple comparison of data samples (Section A.3.1.2, pg. 259) between the
values of the parameter Lp. We employ fixed-model ANOVA with repeated measures
(RMANOVA) for within-subject evaluation. The justification for using this paramet-
ric test is carefully elaborated in section A.3.2 (pg. 261). Moreover, to accommodate
RMANOVA we utilize post-hoc tests to conclude which loyalty function has exhibited
the greatest impact on the BCOc performance. The post-hoc test is conducted as a
two-sided Dunnett’s test with Hommel’s correction. The main advantage of parametric
test is the estimation of effects (Sec. 7.2.7, pg. 130). We compare the obtained size of
effects against the Cohen’s table (provided in Section A.3.2.4, pg. 264) and across the
study. The second case study compares three methods of evaluation for the complete
problem set using Friedman’s rank and Kruskal-Wallis non-parametric tests. The goal
is to determine the best combination of qualitative parameters and contribute to struc-
tural tuning of BCOc. In Appendix A.3.1.5 we address subject of the data samples for
the non-parametric tests in greater detail (pg. 260).

The two case studies are conducted separately for two stopping criteria. Therefore,
we distinguish four case studies in total.

8.6 Stopping criterion: Nit

In this section we continue to examine the general behavior of BCOc under the max-
imum number of the iterations. We follow two lines of questioning and define the
corresponding hypothesis of our research goals. The first study investigates if the best
means reported at different levels of factor Lp (yi,j,k,l, ∀j ∈ L and fixed i, k, l), are sig-
nificantly different for a particular problem instance. We address this question at each
level of parameter ME and define our null hypothesis as follows.

H0: Loyalty functions produce the same average quality of solutions.

H1: Loyalty functions produce different average quality of solutions.

We employ the parametric RMANOVA to determine if the null hypothesis holds and
non-parametric Friedman’s test to validate the results of the parametric test. The sam-
ples contain outliers (see Section A.3.1.2, pg 259). Moreover, data samples are paired

168 Chapter 8 Development and empirical analysis of BCOc

(Section A.3.1.3, pg. 260). The condition of sphericity, essential for RMANOVA, is in-
vestigated as an integral part of ez R package [Law15]. However, before employing
RMANOVA we examine the conditions of normality following the procedure described
in Section A.3.2.1.

The second study of this section is founded on the comparison between methods of
evaluation. The null hypothesis is:

H0: Methods of evaluation have no significant effect on the best average solution
quality of the BCOc algorithm.

H1: Methods of evaluation have significant effect on the best average solution quality
of the BCOc algorithm.

Non-parametric statical tests are employed on samples that produced response val-
ues yi,j . In other words, the effect of parameter ME is inspected on the complete
problem set and in the design points marked with orange color in the basic tables. Be-
cause performance of the BCOc algorithm varies w.r.t. problem specifications, we use
ranking procedure. This is addressed in Section A.3.3 (pg. 264).

8.6.1 Case study: the best loyalty function

Graphics of the best mean values from basic tables in Fig. 8.3 demonstrate influence
of three factors: Lp, ME and the problem size (n). However, observing the figure the
dominance of one algorithm against the other is not obvious. To constitute a fair com-
parison and distinguish the best performing BCOc instance from other the dominance
is established by observing the statistical difference and size of effects (η2

g). The topic
of dominance utilized in thesis is elaborated in Section A.3.1.4 (pg. 260). The test
of significant differences between the means is conducted at the level of significance
α = 0.05 and for the sample size n = nrun = 100.

The results of two RMANOVA and Friedman’s tests are presented in Table 8.10.
The p-values determine if we reject the null hypothesis of equivalence of means. Ta-
ble 8.10 is organized along main groups defined by parameter ME . The p-values of
the RMANOVA test are shown under column p and of Friedman’s test under column
p[f]. The size of effect of each test is provided in column η2

g . The first observation is
that groups differ, i.e., p-values indicate significant impact of ME . We summarize our
observations in Table 8.11.

Firstly, in Table 8.11 we emphasize problem instances for which we fail to reject
the null hypothesis for the equivalence of means. We denote with an asterix cases for
which the corresponding η2

g is the smallest and with double asterix cases for which
η2
g is the largest. Compared against Cohen’s table the largest effect sizes (η2

g) are ex-
hibited for min(ev1), which encompass values from the interval [0.13, 0.58]. The large
effect size indicates a practical difference, which we address in the following section.
Despite significant difference (small p-values), the parameter Lp exhibits small effects
(η2
g ∈ [0.02, 0.05]) in groups max(ev1) and max(ev2). This indicates a weak practical dif-

ference considering that the differences are less then half of unit of time. In particular
for max(ev2), statistical differences are found in a small set of problem instances.

Results of the RMANOVA and Friedman’s tests produce similar p-values and, there-
fore, similar conclusions regarding influence of parameter Lp. The results of the tests

Table 8.10: Repeated-measure ANOVA and Friedman’s test results for equivalence of means between loyalty functions of specific method
of evaluation for α = .05 and maximum number of iterations.

min(ev1) max(ev1) max(ev2)
Problem p[sph] ε̂ F p η2

p η2
g p[f] p[sph] ε̂ F p η2

p η2
g p[f] p[sph] ε̂ F p η2

p η2
g p[f]

Iogra100_12 0.000 0.842 24.00 0.0002 0.20 0.14 0.000 0.297 0.90 3.96 0.000 0.04 0.03 0.000 0.433 0.91 5.82 0.000 0.06 0.05 0.000
16 0.000 0.591 146.28 0.0001 0.60 0.58 0.000 0.605 0.91 2.36 0.012 0.02 0.02 0.007 0.859 0.93 1.06 0.393 0.01 0.01 0.383

Iogra150_12 0.000 0.701 34.62 0.0001 0.26 0.19 0.000 0.649 0.92 2.01 0.036 0.02 0.02 0.014 0.139 0.89 1.23 0.273 0.01 0.01 0.254
16 0.000 0.691 52.02 0.0001 0.34 0.32 0.000 0.516 0.92 2.34 0.013 0.02 0.02 0.0775 0.631 0.92 1.20 0.288 0.01 0.01 0.104

Iogra200_12 0.029 0.972 126.03 0.0002 0.56 0.52 0.000 0.783 0.93 1.97 0.039 0.02 0.02 0.033 0.610 0.91 1.15 0.328 0.01 0.01 0.312
16 - 1.003 0.44 0.5083 0.00 0.00 0.439 0.845 0.93 2.78 0.003 0.03 0.02 0.009 0.694 0.92 1.48 0.152 0.01 0.01 0.239

Iogra250_12 - 1.003 1.18 0.2813 0.01 0.01 0.297 0.062 0.88 2.73 0.004 0.03 0.02 0.003 0.668 0.93 0.46 0.904 0.00 0.00 0.852
16 0.000 0.932 44.08 0.0002 0.31 0.27 0.000 0.289 0.90 1.80 0.065 0.02 0.02 0.068 0.254 0.90 1.67 0.093 0.02 0.01 0.242

Iogra300_12 0.008 0.952 0.51 0.7202 0.01 0.00 0.599 0.499 0.91 6.23 0.000 0.06 0.05 0.000 0.846 0.93 0.51 0.866 0.01 0.00 0.872
16 0.000 0.912 17.10 0.0002 0.15 0.13 0.000 0.553 0.91 1.63 0.103 0.02 0.01 0.131 0.020 0.962 1.24 0.2712 0.01 0.01 0.230

Iogra350_12 - 1.003 0.69 0.4073 0.01 0.00 0.453 0.895 0.93 6.27 0.000 0.06 0.05 0.000 0.066 0.88 3.69 0.000 0.04 0.03 0.001
16 - 1.003 1.91 0.1703 0.02 0.01 0.138 0.996 0.95 1.72 0.081 0.02 0.02 0.102 0.551 0.91 1.84 0.058 0.02 0.02 0.0406

Iogra400_12 — 0.687 0.92 3.29 0.001 0.03 0.03 0.001 0.722 0.92 1.03 0.416 0.01 0.01 0.567
16 0.000 0.621 1.09 0.3131 0.01 0.01 0.0016 0.620 0.92 2.09 0.028 0.02 0.02 0.0685 0.884 0.95 2.92 0.005 0.03 0.02 0.005

Iogra450_12 - 1.003 0.34 0.5613 0.00 0.00 0.686 0.169 0.90 4.67 0.000 0.05 0.04 0.000 0.931 0.93 2.19 0.021 0.02 0.02 0.042
16 - 1.003 0.15 0.7023 0.00 0.00 0.714 0.114 0.88 5.89 0.000 0.06 0.05 0.000 0.913 0.93 6.09 0.000 0.06 0.05 0.000

Iogra500_12 0.000 0.802 86.62 0.0002 0.47 0.37 0.000 0.137 0.90 2.54 0.007 0.02 0.02 0.005 0.019 0.952 1.56 0.1372 0.02 0.01 0.192
16 — 0.043 0.952 2.96 0.0052 0.03 0.03 0.002 0.836 0.97 2.69 0.031 0.03 0.02 0.043

p[sph] - significance (p-value) of Mauchly’s statistic test of sphericity;
ε̂ - Greenhouse-Geisser estimator of sphericity;
p[f] - significance (p-value) of Friedman’s test;

1 When sphericity condition is violated (p[sph] < 0.05) proposed Greenhouse-Geisser estimator is used for correcting p-value of repeated-measures ANOVA test [Dav02];
2 When sphericity condition is violated (p[sph] < 0.05) and ε̂ > 0.75, Huynh and Feldt estimator ε̃ is used for correcting p-value of repeated-measures ANOVA test [Dav02], p. 111.
3 ’-’ When only two data groups differ sphericity condition is always satisfied.
4 ’—’ signifies that all outcomes were identical.
5 Friedman’s test failed to reject null hypothesis of equal means for α = 0.05. However, repeated-measures ANOVA reported significant effect of Lp on solution quality.
6 Repeated-measures ANOVA failed to reject null hypothesis of equality of means for α = 0.05. Friedman’s test reported significant effect of Lp on solution quality.

170 Chapter 8 Development and empirical analysis of BCOc

Table 8.11: Results of RMANOVA and Friedman’s test for Nit.

ME class Significant effect of Lp Range of
p < 0.05 η2

g

min(ev1) m = 12 n ∈ {100∗, 150, 200∗∗, 500}. 0.14∗–0.52∗∗

m = 16 n ∈ {100∗∗, 150, 250, 300∗, 400(6)}. 0.13∗–0.58∗∗

max(ev1) m = 12 n ∈ {100, . . . , 500} 0.02–0.05
m = 16 n ∈ {100, 150(5), 200, 400(5), 450, 500}. 0.02–0.05

max(ev2) m = 12 n ∈ {100, 350, 450}. 0.02–0.05
m = 16 n ∈ {350(6), 400, 450, 500}. 0.02

5 Friedman’s test failed to reject null hypothesis of equal means for α = 0.05.
However, repeated-measures ANOVA reported significant effect of Lp on so-
lution quality.

6 Repeated-measures ANOVA failed to reject null hypothesis of equality of
means for α = 0.05. Friedman’s test reported significant effect of Lp on
solution quality.

oppose on two problem instance within group max(ev1) (marked with (5)). Namely,
the Friedman’s test did not find enough evidence to distinguish selection of loyalty
function based on the best reported values, while RMANOVA did. In cases marked
with (6) RMANOVA failed to reject null hypothesis of equivalence of means. Further
analysis was conducted by Mk1 test of sample distributions (e.g. A.7) and we confirm
RMANOVA results.

8.6.1.1 Post-hoc test for RMANOVA

In previous section we have confirmed that RMANOVA provides valid results for our
hypothesis testing. The test determines if there was significant effect of the parameter
Lp, however, we still do not know which loyalty function caused this. Therefore, we
conduct a pairwise test to identify loyalty functions that caused the significant effects
reported in Table 8.10. Contrary to previous analysis, where only samples at levels of
Lp were compared, the post-hoc test includes a sample generated by the BCOc refer-
ence case (B=20,NC=1).

Because we conduct a controlled study, the multiple comparison procedure is based
on the Dunnett’s test [Dun55]. The test requires setting a control group, which in our
study, corresponds to the sample that produced the smallest response value (mean
of solutions’ quality). Dunnett’s test is suitable for reducing the number of pairwise
comparisons and avoids an increase of the Type I error. In addition, the test allows
comparison between the group with the smallest mean against other groups(6). The re-
sults of the pairwise comparison are presented in Table 8.12 for each class of problem
instances. The expression p ≥ 0.05 implies that BCOc parameters have achieved nu-
merical improvements, however, we fail to reject the null hypothesis of Dunnett’s test
at α = 0.05. The most adverse scenario is the one where all the samples are identical.
It suggests that performance of all configurations of BCOc parameters are worse than
of the sLPT+BF heuristic.
(6)Most appropriate would be Hsu’s multiple comparison test [Hsu96], however, it was not a part of R

package.

8.6 Stopping criterion: Nit 171

Table 8.12: Results of pairwise comparison test (Nit = 100): list of loyalty functions
that are not significantly different from the control group.

Problem
m=12, n min(ev1) max(ev1) max(ev2)

100 8 {0, 1, 4, 5, 6, 7, 8, 9} {0, 1, 2,4, 5, 6, 7, 8, 9}
150 8 {0, 1, 2, 4, 5, 6, 7, 8, 9} {0, 1, 2, 3,4, 5, 6, 7, 8, 9}
200 {2, 8, 9} {0, 1,4, 5, 6, 7, 8, 9} {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
250 p ≥ 0.05 {0, 1,2, 4, 5, 6, 7, 8, 9} p ≥ 0.05
300 p ≥ 0.05 {1, 2, 4, 5,8, 9} p ≥ 0.05
350 p ≥ 0.05 {0, 1, 4, 6,7} {0, 4, 6,7}
400 — {0, 1, 4, 5,6, 7, 8, 9} p ≥ 0.05
450 p ≥ 0.05 {0, 1, 4, 5,6, 7, 9} {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
500 8 {0, 1,2, 4, 5, 6, 7, 8, 9} p ≥ 0.05

Problem
m=16, n min(ev1) max(ev1) max(ev2)

100 {1,2, 5, 8, 9} {0, 1, 2, 4, 6, 7} p ≥ 0.05
150 8 {0, 1, 4, 5, 6, 7, 8, 9} p ≥ 0.05
200 p ≥ 0.05 {0, 1, 4, 5, 6, 7} p ≥ 0.05
250 {2,8} p ≥ 0.05 p ≥ 0.05
300 {1,2, 5, 8, 9} p ≥ 0.05 p ≥ 0.05
350 p ≥ 0.05 p ≥ 0.05 p ≥ 0.05
400 p ≥ 0.05 {0, 1, 3, 4, 5, 6,7, 9} {0, 6, 7, 9}
450 p ≥ 0.05 {0, 6, 7} {0, 3, 4, 7}
500 — {0, 3, 4, 5, 6, 7} {0, 3,7}

(1.) p ≥ 0.05 - Fail to reject Dunnett’s test null hypothesis of equivalence of
means at α = 0.05.

(2.) — All samples are equal and identical with the reference case (B = 20,
NC = 1).

In Table 8.10 at the level min (ev1) parameter Lp shows significant effect for problem
instances m = 12 : n ∈ {100, 150, 500} and m = 16 : n = 150. The pairwise comparison
test determines that p8 is the reason. In addition, for Iogra250_16 the Dunnett’s test
fails to distinguish its effect from p2. For the other two problem instances p2 appears as
the control group, however, the test fails to differentiate its success from several others
(see Table 8.12).

Within group max (ev1) Table 8.12 shows that BCOc achieved better performance
than the heuristic at different levels of Lp. However, statistical difference between the
corresponding response values, indicated by Table 8.10, are small. Therefore, it is hard
to distinguish one loyalty function as the most successful on the complete problem set.
For all problem instances mostly the Class II loyalty functions appear as a control group.
Compared to others the p0,u function is the most frequent. The p3

b function generates
the worst overall results since in Table 8.12 appears only two times.

Under influence of the max (ev2) evaluation method, other configurations of BCOc
parameters essentially do not generate improvements against the heuristic. In particu-
lar, both extreme cases are present: p ≥ 0.05 in Table 8.12 and small size of the effect
in Table 8.10. When summarized, the results demonstrate negligible practical effects
of Lp. It is worth noting that values of Lp, that have exhibit good results, belong to
Class II.

The statistical tests show that the Lp parameter exhibits different effects on the
generation of best means. For Nit = 100 the loyalty functions of class I (especially
p2 and p8) are the most successful at the level min(ev1) w.r.t the heuristic and class II
loyalty functions. Both demonstrate good performance w.r.t. quality of the solution and

172 Chapter 8 Development and empirical analysis of BCOc

the running time. Contrary, functions of class II are more successful at levels max(ev1)
and max(ev2). In particular, p0

b and p7
b yield high quality results compared to the rest

Class II functions. When we include results of running times, provided in basic tables,
the function p0

b demonstrates better performance against p7
b . However, it exhibits small

effects and results of low practical value.

8.6.2 Case study: the effect of ME
In this section we compare three BCOc on the complete benchmark set of problem
instances. To determine statistical difference between values of the ME parameter, we
use ranking. Since only three methods of evaluation were compared ranks from [1, 3]
are used. Computation of ranks for each problem instance is done by procedures of
multiple comparison using RMANOVA to test the hypothesis of equivalence of means,
and pairwise t-test with Hommel’s correction as a post-hoc test to resolve ties. We
address this in Section A.3.3 with detailed description of the implementation with R
(pg. 264). Results of these tests are in great part omitted because of overwhelming
number of comparisons. However, we try to provide as much information as possible
in tables of ranks.

Friedman’s and Kruska-Wallis non-parametric tests are utilized on the ranks. The
null hypothesis of the Friedman’s and Kruskal-Wallis tests is that samples come from the
same population(7). When no significant difference is detected, groups of ME are eval-
uated by average values of the corresponding relative errors and ranks. To distinguish
contributions of BCOc configurations, preliminary analysis showed that non-parametric
tests should be employed independently on two classes of problem instances. The re-
sults are organized in Tables 8.13 and 8.14.

The structure of Tables 8.13 and 8.14 is as follows. Column r.err. designates relative
errors of the corresponding best means. Column r represents ranks determined at
each level of problem class. Column y shows the overall best result and its deviation
of the corresponding method of evaluation. The average running times are given in
column t. The best configuration of quantitative BCOc parameters together with the
corresponding loyalty function are provided under columns B, NC and pb. Average
values of relative errors and ranks are placed at the bottom of a table. They provide the
first insight about the overall performance of the considered BCOc evaluation methods.
To avoid ambiguity we use symbol (1) when ever statistical tests, failed to reject null
hypothesis of equivalence of means at the 5% level of significance.

The results of two non-parametric tests conducted on ranks in Tables 8.13 and 8.14
are as follows.

Table 8.13: (a) With Friedman’s test we fail to reveal significant effect of ME on re-
porting of the best solution quality (χ2 = 2.25, p = 0.325). (b) With Kruskal-
Wallis test we fail to reveal significant effect of ME on reporting of the best solu-
tion quality (χ2 = 2.99, p = 0.224).

Table 8.14: (a) With Friedman’s test we fail to reveal significant effect of ME on re-
porting of the best solution quality (χ2 = 0.143, p = 0.71). (b) With Kruskal-

(7)The null hypothesis may also include testing equivalence of medians. However, when using Kruskal-
Wallis to test equivalence of medians, samples should come from a same distribution [McD14, pp.
157-164].

8.6 Stopping criterion: Nit 173

Table 8.13: Table of best results and its corresponding parameter configurations for
class of m = 12 of problem instances. Stopping criterion, Nit = 100.

min(ev1) max(ev1) max(ev2)

y r.err. t B NC pb r y r.err. t B NC pb r y r.err. t B NC pb r
Probl. (s.d.) (s.d.) (s.d.) (s.d.) (s.d.) (s.d.)

inst. [10−3] [10−3] [10−3]

100 810.29 1.29 45.10 20 97 p8
b 1 812.58 1.57 35.90 20 96 p0

b 3 812.07 1.51 33.70 20 47 p4
b 2

± 3.54 ± 12.00 ± 1.34 ± 9.99 ± 1.63 ± 5.87

150 1003.54 0.35 58.30 20 74 p8
b 1 1004.85 0.49 42.30 20 71 p0

b 2.5 1004.99 0.50 29.50 20 7 p4
b 2.5

± 1.25 ± 16.50 ± 0.70 ± 13.80 ± 0.82 ± 9.09

200 1202.75 0.23 59.80 19 91 p2
b 1 1204.32 0.36 50.50 20 22 p4

b 2 1204.51 0.38 45.60 20 39 p0
b

(1) 3
± 0.92 ± 22.30 ± 0.61 ± 11.30 ± 0.62 ± 16.60

250 1404.07 0.29 46.10 20 2 p3
b

(1) 2.5 1403.65 0.26 71.80 19 41 p2
b 1 1403.91 0.28 50.90 20 12 p0

b
(1) 2.5

± 0.57 ± 21.50 ± 0.55 ± 12.90 ± 0.55 ± 20.60

300 1603.51 0.22 83.00 19 85 p2
b

(1) 2.5 1603.15 0.20 90.70 20 40 p8
b 1 1603.52 0.22 59.70 20 5 p0

b
(1) 2.5

± 0.95 ± 39.20 ± 0.55 ± 17.80 ± 0.57 ± 26.30

350 1807.14 0.40 90.00 20 2 p3
b

(1) 3 1806.50 0.36 96.00 20 7 p7
b 1.5 1806.67 0.37 89.80 20 7 p7

b 1.5
± 0.80 ± 29.80 ± 0.82 ± 28.90 ± 0.81 ± 31.70

400 2004.28 0.21 103.00 20 1 p0
b

(1) 3 2003.85 0.19 132.00 20 12 p6
b 1 2004.05 0.20 109.00 20 7 p7

b
(1) 2

± 0.69 ± 34.00 ± 0.62 ± 29.60 ± 0.61 ± 33.20

450 2205.02 0.23 143.00 20 9 p3
b

(1) 3 2204.48 0.20 149.00 20 7 p6
b 1 2204.69 0.21 159.00 20 83 p0

b
(1) 2

± 0.62 ± 39.70 ± 0.64 ± 39.30 ± 0.70 ± 50.60

500 2402.58 0.11 239.00 20 96 p8
b 1 2403.36 0.14 203.00 19 63 p2

b 2 2403.62 0.15 138.00 20 9 p7
b

(1) 3
± 0.99 ± 58.00 ± 0.71 ± 30.60 ± 0.54 ± 52.80

Av. 1604.80 0.37 1605.19 0.42 1605.34 0.42

(1) Differences between best results reported by loyalty fuctions pi, i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} on this instance are statistically insignificant.
Parameters configuration that generated the best numerical value is provided.

Table 8.14: Table of best results and its corresponding parameter configurations for
class of m = 16 of problem instances. Stopping criterion, Nit = 100.

min(ev1) max(ev1) max(ev2)

y r.err. t B NC pb r y r.err. t B NC pb r y r.err. t B NC pb r
Probl. (s.d.) (s.d.) (s.d.) (s.d.) (s.d.) (s.d.)

inst. [10−3] [10−3] [10−3]

100 805.55 0.69 43.70 20 92 p2
b 1 808.77 1.10 37.90 19 90 p0

b 2.5 808.68 1.08 49.80 20 94 p4
b 2.5

± 1.41 ± 16.10 ± 0.87 ± 11.20 ± 1.04 ± 10.00

150 1005.69 0.57 66.20 20 76 p8
b 1 1008.49 0.85 42.00 20 10 p0

b 2.5 1008.42 0.84 57.40 20 95 p0
b 2.5

± 1.30 ± 19.60 ± 0.91 ± 8.09 ± 0.91 ± 17.00

200 1208.26 0.69 54.00 20 2 p3
b

(1) 3 1207.91 0.66 68.80 19 67 p0
b 1.5 1207.86 0.65 68.80 19 67 p0

b 1.5
± 0.88 ± 12.30 ± 0.83 ± 16.90 ± 0.89 ± 17.10

250 1404.19 0.30 97.00 20 90 p8
b 1 1405.83 0.42 87.10 20 72 p0

b
(1) 2.5 1405.90 0.42 88.90 19 84 p0

b 2.5
± 1.15 ± 33.40 ± 0.68 ± 23.00 ± 0.71 ± 27.00

300 1605.06 0.32 114.00 19 91 p2
b 1 1605.81 0.36 111.00 19 90 p0

b
(1) 2.5 1605.86 0.37 81.00 19 5 p7

b 2.5
± 1.13 ± 33.50 ± 0.59 ± 28.30 ± 0.60 ± 23.80

350 1805.72 0.32 104.00 20 2 p3
b 2 1805.53 0.31 137.00 20 97 p0

b
(1) 2 1805.60 0.31 130.00 20 88 p0

b
(1) 2

± 0.53 ± 29.20 ± 0.62 ± 39.60 ± 0.69 ± 37.30

400 2005.78 0.29 156.00 15 99 p8
b

(1) 2 2005.75 0.29 136.00 20 12 p7
b 2 2005.70 0.29 148.00 20 40 p0

b
(1) 2

± 2.33 ± 32.40 ± 0.65 ± 34.00 ± 0.69 ± 34.20

450 2207.76 0.35 173.00 20 2 p3
b

(1) 3 2207.23 0.33 204.00 19 97 p0
b 1.5 2207.18 0.33 200.00 20 92 p0

b 1.5
± 0.74 ± 37.40 ± 0.76 ± 34.60 ± 0.79 ± 41.40

500 2407.35 0.31 191.00 20 1 p0
b

(1) 3 2407.03 0.29 229.00 20 45 p0
b 1.5 2407.09 0.30 200.00 20 11 p7

b
(1) 1.5

± 0.70 ± 41.70 ± 0.70 ± 37.90 ± 0.75 ± 41.50

Av. 1606.15 0.43 1606.93 0.51 1606.92 0.51

(1) Differences between best results reported by loyalty fuctions pi, i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} on this instance are statistically insignificant.
Parameters configuration that generated the best numerical value is provided.

Wallis test we fail to reveal significant effect of ME on reporting of the best solu-

174 Chapter 8 Development and empirical analysis of BCOc

tion quality (χ2 = 0.25, p = 0.62).

The tests do not suggest significant difference among the considered methods of evalu-
ation for both problem classes m = {12, 16}. The reason why tests have failed to reject
the null hypothesis arises from the restrictions of the NC domain. The ties among val-
ues of ME are resolved by comparing average values of the relative errors and ranks
over all test instances. We conclude that min(ev1) for this particular problem set is the
best performing method of evaluation. Methods max(ev1) and max(ev2) exhibit similar
performance comparing across the problem set. When we restrict the observations on
the implementation of evaluation function ev2, no improvements are detected. More-
over, evaluation function ev2 has degraded the performance most often compared to
ev1.

8.6.2.1 Quantitative parameters, B and NC

We devote this part of the section to investigate values of the quantitative parameters B
and NC that contributed to previous conclusions. We observe Tables 8.13 and 8.14. For
problem instances m = 12 in 95% (of totally 27) the maximal population size (B = 20)
generates the best results. The rest 5% corresponds to B = 19. For class m = 16 68%
of the time the best results were generated for B = 20. In the rest of the cases the
population size is B = 19, with an exception of B = 15 for n = 400.

Regarding the influence of NC on the outcome, different response values are re-
ported. Tables 8.13 and 8.14 show that NC should be somewhere between [74, 99] for
parameter configuration min(ev1) : p2,8

b . For Class II loyalty functions a strong conclu-
sion can be drawn only for p7

b , since the best reported outcomes are when NC ∈ [5, 12].
Function p0

b is influenced by the size of the problem instance as there is no distinctive
pattern within values of NC , therefore, ranging between [1, 97].

8.6.2.2 Graphics of comparison between levels of ME

After evaluation of all configurations and their statistical difference we employ graph-
ical representation of the best response values reported in Tables 8.13 and 8.14. The
choice of parameters’ configuration was extensively elaborated in previous case stud-
ies and more information about the best representatives can be found in (Tables 8.13
and 8.14). As the performance measure we use the relative error. In Fig. 8.7 four profile
lines are shown for each problem class. Dotted line signifies the reference quality deter-
mined by solutions of the standalone heuristics sLPT+BF. The colored lines correspond
to solutions’ mean produced by best BCOcs, as indicated in Tables 8.13 and 8.14.

The graphics illustrate improvements of min(ev1) against other three methods. Al-
though not distinguishable, for m = 12 : n ≥ 200, n 6= 500 the method max(ev1)
provides solutions that are significantly different from results of other two methods of
evaluation. The conclusions is founded on ranks in Table 8.13. Contrary, for m = 16
the method min(ev1) is dominant in n = {100, 150, 250, 300}, while both maximiza-
tion evaluation methods generated slightly better results for the rest of problem in-
stances. The graphic also illustrates the size of difference achieved at different levels of
ME . Namely, min(ev1) improves the performance of the underlying heuristic sLPT+BF
much more than the maximization strategy. Additionally, the BCOc algorithm with the
min(ev1) succeeds to find parameter configuration in which the quality is not worse
against the sLPT+BF.

8.7 Stopping criterion: CPU time 175

Figure 8.7: Graphic of propagation of best results generated by each method of eval-
uation when maximal number of iterations is provided. Dotted line corre-
sponds to performance of sLPT+BF.

8.7 Stopping criterion: CPU time

Providing time as a stopping criterion may change the conclusions made previously.
However, we restrict CPU time to establish objective environment inside which less
care may be taken about the fairness regrading the total running time (thus number of
evaluations). It is expected that allowing more time differentiates clearly between im-
pacts of loyalty functions on the solution quality. The results of this study are presented
in the similar manner as previously. We skip some of the steps, such as RMANOVA and
Friedman’s test results for equivalence of means between loyalty functions (Table B.1,
pg. 273) and directly provide the conclusions regarding performance of parameter Lp
and ME .

8.7.1 Case study: the best loyalty function

Results in Table B.1 reveal significant effect of the parameter Lp on the response values.
Observations regarding results of RMANOVA test are summarized in Table 8.15. The
table shows that an impact of the max(ev1) has increased compared to results of Nit,
indicating improvements against the standalone heuristic. In particular, Tables 8.15
and B.1 reveal that max(ev1) has produced small p-values for each problem instance,
contrary to other two methods of evaluation. Occasionally, the RMANOVA and Fried-
man’s test disagree in the same manner as reported in Table 8.11.

Regrading the results of the Dunnett’s test (Table 8.16), in group min (ev1) the p2

improved results for problem instance m = 16 :n ∈ {150, 250}. The p8 generates high
quality results for Iogra400_16, contrary to Nit where neither value of Lp improved
results against sLPT+BF. More interesting is appearance of p3

b as the control group for
the test instances m = 12 :n = 350 and m = 16 :n ∈ {350, 450}. It achieved better
results than the standalone heuristic for cases where no significant difference was de-
tected under Nit. However, the corresponding effect size (ηg) reported in Table B.1 is
small, indicating small significance in difference between generated samples.

176 Chapter 8 Development and empirical analysis of BCOc

Table 8.15: Results of RMANOVA and Friedman’s test for T .

ME class Significant effect of Lp Range of

p < 0.05 η2
g

min(ev1) m = 12 n ∈ {100, 150, 200∗∗, 300(6), 350∗, 500}. 0.03∗–0.53∗∗

m = 16 n ∈ {100∗∗, 150, 200, 250, 300, 350, 400, 450∗}. 0.02∗–0.57∗∗

max(ev1) m = 12 n ∈ [100, . . . , 500]. 0.15–0.36
m = 16 n ∈ [100, . . . , 500]. 0.06–0.24

max(ev2) m = 12 n ∈ {100, 150(5), 350}. 0.02–0.20
m = 16 n ∈ {100, 150, 200, 250, 300(5), 450}. 0.02–0.07

5 Friedman’s test failed to reject null hypothesis of equal means for α = 0.05. How-
ever, repeated-measures ANOVA reported significant effect of Lp on solution quality.

6 Repeated-measures ANOVA failed to reject null hypothesis of equality of means for
α = 0.05. Friedman’s test reported significant effect of Lp on solution quality.

In group max (ev1) we observe that p2
b appears frequently as the control group. Cou-

pled with the corresponding results in Table B.1, we may conclude that the statistical
difference between the dominant collection of loyalty functions and the non-dominant
is significant.

In group max (ev2), the results indicate that Iogra100_12 is the only instance for
which parameter Lp demonstrates any significant impact. For the rest of problem in-
stances, difference in the performance is practically important. This concludes that
max (ev2) should not be employed within the BCOc algorithm.

Table 8.16: Results of pairwise comparison test (T = n/100[s]): list of loyalty functions
that are not significantly different from the control group.

Problem
m=12, n min(ev1) max(ev1) max(ev2)

100 {2,8} {2, 8} {1,2, 5, 6, 8}
150 8 {1,2, 5, 8, 9} {0, 1,2, 4, 5, 6, 7, 8, 9}
200 {1,2, 5, 8} {1,2, 5, 8, 9} p > 0.05
250 p > 0.05 {1,2, 5, 8, 9} p > 0.05
300 p > 0.05 {1, 2, 5, 6,8, 9} p > 0.05
350 3 {1,2, 5, 8, 9} {0, 1, 2, 4, 5, 6, 7, 8, 9}
400 p > 0.05 {1,2, 5, 6, 8, 9} p > 0.05
450 p > 0.05 {1,2, 5, 8, 9} p > 0.05
500 8 {1, 2, 5, 6,8, 9} p > 0.05

Problem
m=16, n min(ev1) max(ev1) max(ev2)

100 {1,2, 5, 8} {1,2, 4, 5, 6, 8, 9} {2, 8}
150 {2, 8} {1,2, 5, 8, 9} {2, 5, 8}
200 8 {1,2, 5, 8} {0, 1,2, 4, 5, 6, 7, 8, 9}
250 {2, 8} {1, 2, 5, 6,8, 9} {1,2, 5, 8}
300 {1,2, 5, 8} {1,2, 5, 6, 8, 9} {0, 1,2, 4, 5, 6, 7, 8}
350 3 {1,2, 4, 5, 6, 8, 9} p > 0.05
400 8 {1,2, 5, 6, 8, 9} p > 0.05
450 3 {1,2, 5, 8, 9} {0, 1, 2, 4, 5,6, 7, 8, 9}
500 p > 0.05 {1,2, 5, 8, 9} p > 0.05

1. p > 0.05 - With one-way repeated measures ANOVA we failed to
find significant effect of loyalty function on the solution quality.

8.7 Stopping criterion: CPU time 177

8.7.2 Case study: the effect of ME
The results found in basic tables are grouped in Tables 8.17 and 8.18. All ranks are
marked as bold, determined at each level of a problem instance (Section 8.6.2). The
results of two non-parametric tests conducted on ranks in Tables 8.17 and 8.18 are as
follows.

Table 8.13: (a) With Friedman’s test we fail to reveal significant effect of ME on re-
porting of the best solution quality (χ2 = 5.88, p = 0.053). (b) Kruskal-Wallis
test reveals significant effect of ME on reporting of the best solution quality
(χ2 = 0.62, p = 0.013).

Table 8.14: (a) Friedman’s test reveals significant effect of ME on reporting of the best
solution quality (χ2 = 6.2, p = 0.045). (b) Kruskal-Wallis test reveals significant
effect of ME on reporting of the best solution quality (χ2 = 8.77, p = 0.001).

The tests suggest significant effect of the parameter ME . The Friedman’s test for
m = 12 produced p-value close to 0.05 while the Kruskal-Wallis produced small p-
value. For m = 16 both tests demonstrate significance of difference in performance
of BCOcs. Contrary to the previous case study, the dominance of a particular loyalty
function is here clearer established. For m = 12 most successful is p2

b with occurring
∼37% (10 times) in Table 8.17. Another successful functions is p8

b with 8 times, p3
b with

4 times, p7
b with 2 times, p0

b with 1 time. For m = 16 and in regard to loyalty functions,
most successful is p2

b with occurring ∼63% (17 times) in Table 8.17. Another successful
functions were p8

b with 4 times, p3
b with 2 times, p7

b with 2 times, p6
b with 2 times.

8.7.2.1 Quantitative parameters, B and NC

The large (maximal) population size is considered to be all values of B ≥ 14, the
medium size when 7 ≤ B ≤ 13, and small size when B ≤ 6. For m = 12 the maximal
population size generates the best results in only 18.5% (5 cases of totally 27). The
majority of high quality results is reported for both small and medium populations, i.e.,
each appear ∼ 40.7% (11 times).

For m = 16 in 6 cases the maximal population size generates the best results in ∼
26% (7 times), all within min(ev1). The medium population size is mostly detected for
max(ev2), that is in ∼70% within the group and 22% totally. Most frequent is the small
population size with ∼48% occurrences, and 100% within the group max(ev2).

The evaluation of the NC parameter is deduced by observing results of BCOs with
ranks 1. Therefore, only results of two methods of evaluation were considered: min(ev1)
and max(ev1). For min(ev1) the values appeared in interval [72, 96]. For max(ev1) the
NC values appeared in interval [45, 78].

8.7.2.2 Graphics of comparison between levels of ME

In Fig. 8.8 when m = 12 all algorithms show similar similar tendencies in average.
For example, when n > 200, max(ev1) is dominant over the two BCOs, min(ev1)
and max(ev2) which exibit similar performances. However, for n ≤ 200 the method
min(ev1) performs much better than the other two. A more straightforward conclu-
sion can be drawn if m = 16, as min(ev1) performed the best on majority of the test

178 Chapter 8 Development and empirical analysis of BCOc

Table 8.17: Table of best results and its corresponding parameter configurations for
class of m = 12 of problem instances. Stopping criterion: CPU time.

min(ev1) max(ev1) max(ev2)

y r.err. t B NC pb r y r.err. t B NC pb r y r.err. t B NC pb r
Probl. (s.d.) (s.d.) (s.d.) (s.d.) (s.d.) (s.d.)

inst. [10−3] [10−3] [10−3]

100 807.61 0.95 64.40 16 97 p8
b 1 808.47 1.06 72.50 7 25 p2

b 2 808.85 1.11 63.70 11 9 p2
b 3

± 2.50 ± 21.30 ± 0.68 ± 18.80 ± 1.06 ± 22.60

150 1002.38 0.24 90.50 20 72 p8
b 1 1003.12 0.31 91.00 10 37 p2

b 2 1003.71 0.37 78.70 2 4 p2
b 3

± 0.82 ± 36.30 ± 0.52 ± 37.50 ± 0.60 ± 37.70

200 1202.27 0.19 86.60 20 91 p2
b 1 1202.93 0.24 97.30 8 34 p2

b 2 1203.54 0.29 88.30 6 5 p8
b

(1) 3
± 0.73 ± 45.90 ± 0.43 ± 50.40 ± 0.56 ± 52.10

250 1403.28 0.23 99.30 3 11 p3
b

(1) 2.5 1402.59 0.18 104.00 11 50 p2
b 1 1403.15 0.23 103.00 4 6 p6

b
(1) 2.5

± 0.49 ± 65.90 ± 0.49 ± 55.50 ± 0.52 ± 66.40

300 1602.81 0.18 141.00 16 70 p8
b

(1) 2.5 1602.39 0.15 142.00 11 45 p8
b 1 1602.91 0.18 131.00 12 7 p4

b
(1) 2.5

± 0.80 ± 84.40 ± 0.49 ± 71.20 ± 0.51 ± 77.30

350 1805.86 0.33 209.00 6 4 p3
b 3 1804.27 0.24 216.00 10 55 p2

b 1 1805.53 0.31 181.00 5 8 p0
b 2

± 0.76 ± 80.00 ± 0.60 ± 69.90 ± 0.68 ± 86.60

400 2003.47 0.17 178.00 2 6 p3
b

(1) 3 2002.62 0.13 198.00 11 51 p2
b 1 2003.18 0.16 203.00 3 5 p8

b
(1) 2

± 0.61 ± 103.00 ± 0.54 ± 83.60 ± 0.54 ± 93.40

450 2204.10 0.19 245.00 3 2 p3
b 3 2203.00 0.14 265.00 12 78 p2

b 1 2203.81 0.17 227.00 6 7 p7
b

(1) 2
± 0.64 ± 115.00 ± 0.55 ± 97.10 ± 0.58 ± 105.00

500 2401.71 0.07 339.00 20 96 p8
b 1 2402.43 0.10 264.00 12 67 p8

b 2 2403.05 0.13 216.00 3 8 p7
b

(1) 3
± 0.62 ± 110.00 ± 0.50 ± 113.00 ± 0.50 ± 135.00

Av. 1603.72 0.28 1603.54 0.28 1604.19 0.33

(1) Differences between best results reported by loyalty fuctions pi, i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} on this instance are statistically insignificant.
Parameters configuration that generated the best numerical value is provided.

Table 8.18: Table of best results for m = 16.

min(ev1) max(ev1) max(ev2)

y r.err. t B NC pb r y r.err. t B NC pb r y r.err. t B NC pb r
Probl. (s.d.) (s.d.) (s.d.) (s.d.) (s.d.) (s.d.)

inst. [10−3] [10−3] [10−3]

100 804.97 0.62 54.50 14 96 p2
b 1 806.83 0.85 66.20 6 6 p2

b 3 806.64 0.83 60.60 2 82 p2
b 2

± 1.23 ± 22.80 ± 0.63 ± 22.40 ± 0.71 ± 22.90

150 1004.86 0.49 86.70 19 77 p2
b 1 1006.40 0.64 89.00 5 37 p2

b 2.5 1006.35 0.64 99.10 3 67 p2
b 2.5

± 1.17 ± 28.70 ± 0.63 ± 32.00 ± 0.86 ± 30.00

200 1205.02 0.42 147.00 19 100 p8
b 1 1205.72 0.48 132.00 7 38 p2

b 2 1206.27 0.52 112.00 4 5 p2
b 3

± 1.57 ± 36.70 ± 0.63 ± 39.40 ± 0.65 ± 47.10

250 1403.61 0.26 136.00 19 98 p2
b 1 1404.42 0.32 142.00 7 25 p8

b 2.5 1404.54 0.32 145.00 4 75 p2
b 2.5

± 1.02 ± 57.40 ± 0.57 ± 52.60 ± 0.57 ± 53.90

300 1604.31 0.27 163.00 18 92 p2
b 1.5 1604.44 0.28 167.00 8 44 p2

b 1.5 1604.84 0.30 175.00 4 98 p2
b 3

± 0.86 ± 70.60 ± 0.54 ± 69.90 ± 0.63 ± 66.80

350 1804.91 0.27 167.00 3 3 p3
b 2.5 1804.29 0.24 195.00 7 51 p2

b 1 1804.83 0.27 167.00 3 9 p7
b

(1) 2.5
± 0.58 ± 94.40 ± 0.48 ± 76.00 ± 0.47 ± 86.80

400 2003.22 0.16 265.00 20 100 p8
b 1 2004.33 0.22 246.00 8 67 p2

b 2 2004.90 0.25 213.00 6 9 p6
b

(1) 3
± 1.02 ± 77.80 ± 0.53 ± 82.50 ± 0.56 ± 92.90

450 2206.31 0.29 265.00 2 33 p3
b

(1) 3 2205.10 0.23 290.00 6 71 p2
b 1 2205.90 0.27 267.00 3 10 p6

b 2
± 0.76 ± 105.00 ± 0.57 ± 92.40 ± 0.78 ± 100.00

500 2406.11 0.25 375.00 15 98 p8
b

(1) 2.5 2405.25 0.22 345.00 7 56 p2
b 1 2406.00 0.25 276.00 3 10 p7

b
(1) 2.5

± 1.58 ± 86.60 ± 0.57 ± 95.40 ± 0.73 ± 124.00

Av. 1604.81 0.34 1605.20 0.39 1605.59 0.41

(1) Differences between best results reported by loyalty fuctions pi, i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} on this instance are statistically insignificant.
Parameters configuration that generated the best numerical value is provided.

instances, while performances of max(ev1) and max(ev2) coincide. The general im-
provement over sLPT+BF heuristic is statistically and practically significant for instances

8.8 Recruitment dynamics 179

m = 12 : n = {100, 150, 200} and m = 16 : n = {100, 150, 200, 250, 400}

Figure 8.8: Graphic of propagation of best results generated by each method of eval-
uation when maximal CPU time is provided. Dotted line corresponds to
performance of sLPT+BF.

8.8 Recruitment dynamics
Before concluding the results of statistical and graphical analysis, the influence of dif-
ferent qualitative parameters of BCOc algorithm may be further analyzed by the dy-
namics behind the recruitment process. The recruitment dynamics is a process that
depends on the number of recruiters, generated during the execution of the BCOc algo-
rithm. We need to consider that the number of recruiters is different in each backward
pass and to capture all the necessary outcomes, (for each considered configuration of
parameters) is often computationally expensive. To decrease computational cost and
to examine the recruitment dynamics all the case studies were carried out for the fixed
value of parameter B. In addition, all case studies that concern recruitment process of
BCOc utilize the data generated for the stopping criterion controlled by the maximal
number of iterations. In order to capture the recruitment dynamics for different con-
figurations of BCO parameters and different seeds, we employ a new variable Re. It
represents an average number of recruiters generated over all runs of an experiment,
that is, for different values of seed. Specifically, values of Re were generated during se-
ries of experiments, each experiment defined by different value of NC , loyalty function
and method of evaluation. The experiments reveal enough information about exist-
ing tendencies or patterns behind the recruitment process. Before providing results,
it should be noted that Re does not depend on the properties of the test instance but
rather on analytical expression of objective and loyalty function. This is confirmed by
running tests on more then one problem instance. Therefore, we have conducted the
experiments for m = 12 and n = 100.

To generate values of Re, we introduce new variables, Ri and R. The procedure
of calculating these variables is as follows. Variable R is usually used to control the
backward pass (described in Section 4.2.3), therefore initialized at the beginning of
each iteration. As it changes within each backward pass, R can be presented as a

180 Chapter 8 Development and empirical analysis of BCOc

function of forward/backward pass counter, u. Since in each iteration backward pass
is called at most NC times, the average number of recruiters within iteration i of BCO
is determined as Ri:

Ri = 1
NC

NC∑
u=1

R(u), where 1 ≤ i ≤ Nit.

To further simplify examination of the recruitment process, Ri is averaged over all
iterations thus yieldingR calculated as:

R= 1
Nit

Nit∑
i=1

Ri.

We expected the influence of seed on values ofR, for the particular problem instance,
to show large variability. Nevertheless, the experiment is conducted by repeating BCOc
algorithm for different values of seed (nrun = 100 independent runs), thus generating
parameter Re as:

Re = 1
nrun

nrun∑
i=1

R.

The results of the first case study, presented in Fig. 8.9, are grouped by loyalty func-
tions, while within each group we can distinguish values provided by three methods of
evaluation. From Fig. 8.9 we observe the following. Firstly, the influence of methods
of evaluation on Re for some cases of loyalty functions is not distinguishable, such as
p0,3,7
b . In other words, these loyalty functions are robust to utilization of different evalu-

Figure 8.9: Propagation of variable Re (average number of recruiters per experiment)
over NC ∈ [1, 100] for B = 10 and instance Iogra100_12.

8.8 Recruitment dynamics 181

ation functions. Possible explanation is that that these three loyalty functions converge
fast towards the probability space where is most likely for the partial solution to re-
main in the population set used in the next forward step. Similarly, functions p4,6

b show
tendency to be insensitive to evaluation process. In addition, the two loyalty functions
had exhibit similar behavior when min(ev1) and max(ev2) are used. Secondly, conclu-
sions are made for each case of method of evaluation. It seems that utilizing max(ev1)
always provides the highest number of recruiters, regardless of the loyalty function.
Methods min(ev1) and max(ev2), however, are sensitive to the choice of loyalty func-
tion. Furthermore, as the NC is increasing, it seems that method max(ev2) reaches a
certain threshold for Re after which it remains constant. This behavior is very clear for
pib, i ∈ 1, 2, 5, 8, 9. For example, case {p2

b ,max(ev2)} shows that after NC reaches 4, the
variable Re remains almost constant (doesn’t exceed 5). This does not reflect situation
where only 4 recruiters are generated in each step of the iteration, but more that the
dynamics of recruitment remains similar on the considered domain of NC . We observe
min(ev1) for pib, i ∈ 1, 2, 5, 8, 9. It seems that this method generates more recruiters per
each forward/backward step, however, variable Re mostly doesn’t exceed 7.5. Further-
more, the tests show that the number of recruiters within iteration can range from the
smallest (0) to the largest (10).

The conclusions based solely on results in Fig. 8.9 obviously don’t provide enough
information about what is causing max(ev1) to generate such high profiles. In order
to gather new insights, a new set of tests is conducted. To provide clearer distribution
of the number of recruiters during each forward/backward phase, one needs to con-
sider two possible extreme scenarios that can lead to an increase in the recruitment
population of bees: (1) satisfiability of condition Cmin = Cmax, (2) R = B. Both cases
cause R = B, however, if the first condition is satisfied the BCO algorithm skips back-
ward pass completely, whereas the second condition is determined after second phase
of the backward pass. The first condition is named miss of the forward/backward pass.
Therefore, within BCOc algorithm three parameters were followed: Re, Rmiss, Rmax.
Specifically, to generate values ofRmiss andRmax reported at the end of an experiment,
a counter is set in the BCO instance that increased each time condition Cmin = Cmax
is satisfied before the start of backward pass, or R = B within the backward pass, re-
spectively. The results of two studies, performed in similar fashion as previously, are
presented in Fig. 8.10 and 8.11. Both figures provide more understanding of the perfor-
mance of Lp and its interaction with parameter ME . For example, inspecting Fig.8.10
becomes clear that utilizing max(ev1) coupled with p1,2,5,6,8,9

b and for NC > 10 will
most often completely skip the backward pass. Such behavior disregards the collective
exchange of information, and converges to the performance most similar to standalone
underlying heuristic. On the other hand, when coupled with p0,3,7

b , method max(ev1)
does not have the same influence. Contrary, the condition (1) will most likely never be
satisfied. In this case Fig. 8.11 provides information on mechanism that generates large
number of recruiters for p0,3,7

b . With even larger confidence, condition (2) is satisfied for
these three loyalty functions. The most revealing are profiles that almost coincide on
both figures (for p0, p3, p7), indicating negligible interaction of these loyalty functions
and the evaluation process.

Another conclusion concerns method max(ev2). When we exclude p0,3,7 the method
satisfies least likely any of the aforementioned extreme conditions. In Fig. 8.9 we ob-
serve that the average number of recruiters per iteration is lower compared to other two

182 Chapter 8 Development and empirical analysis of BCOc

Figure 8.10: Propagation of variable Rmiss (average number of misses per experiment)
reported for B = 10, NC ∈ [1, 100] and test instance Iogra100_12.

Figure 8.11: Propagation of variable Rmax (average number of times condition R =
B has occurred in backward pass per experiment) reported for B = 10,
NC ∈ [1, 100] and test instance Iogra100_12.

evaluation methods and that is sensitive to choice of loyalty function. From the same
figure, min(ev1) represents a sort of in-between case: this method exhibits balance be-

8.9 Final remarks 183

tween number of recruiters and uncommitted bees, and both extreme conditions occur,
however, depending on the choice of loyalty function. In Fig. 8.10 functions p2,8

b sat-
isfy the extreme condition (1) more often then the other loyalty functions, whereas in
Fig. 8.11 we see that the two will almost never reach the maximal number of recruiters.
Functions p4,6

b exhibit very similar behavior in the three reviewed figures. Concretely,
from Fig. 8.10 min(ev1) does not lead towards misses of the backward pass, whereas
from Fig. 8.11 we detect a small increase in the maximal number of recruiters per iter-
ation as NC is growing. In addition, the later trend is more prominent for p4,6

b than for
p1,2,5,8,9.

We refer to questions posed about max(ev1): there are two different mechanisms
that made this method robust to the choice of loyalty function, both indicating large
number of recruiters per iteration, however, completely separated. For example, in
case of p0

b method max(ev1) doesn’t induce values that would lead towards misses of
backward pass. However, the loyalty function is very conservative and therefore causes
very often for variable R to reach maximal size of population. The same conclusion
holds for p3

b and p7
b .

To conclude, the influence of loyalty functions on the solution quality of BCOc algo-
rithm can be categorized by observing similarities of graphics in Figs. 8.9–8.11. Regard-
less of method of evaluation, the loyalty functions can be grouped into four categories
as illustrated in Fig. 8.12. It is also expected that loyalty functions within each of these
categories should exhibit similar tendencies in relation to their performance on other
optimization problems.

pα,β

p2, p8p(4,u), p(6,u)p(0,u), p(3,nit), p(7,u)p1, p(5,u), p(9,u)

Figure 8.12: Grouping of loyalty functions regarding the similarities exhibited during
the recruitment process.

8.9 Final remarks

Beside the parameter ME , as the most prominent parameter of any meta-heuristics,
we may state that in case of BCOc the most important and influential parameter is
Lp. We base our conclusion on the following: (a) loyalty functions p0,3,7 generate
similar outcomes regardless of the method of evaluation, indicated by values in basic
tables and the shape of surface plots in Figs. 8.2, B.5 and B.6; (b) a correct choice
of loyalty function, coupled with parameter tuning, produces the best outcome. The
results hold in case of study founded on the average solution quality. To obtain the best
possible quality of solutions, the quantitative BCOc parameters B and NC are equally
important. With regard to the sensitivity of the response, the two parameters also
demonstrated equal importance. The conclusions is based on existence of interactions
between them, as shown in Figs. 8.2, B.5 and B.6. In particular, in Figs. B.5 and B.6

184 Chapter 8 Development and empirical analysis of BCOc

we detect deterioration of average solution quality along values of B or NC or both. In
Fig. 8.2 min(ev1) we may also observe high non-linearity of response landscapes.

There are several reasons to conduct experimental analysis for the two stopping
criteria: Nit and T . Appointing these categories of the stopping criterion to the ex-
perimental tests has primarily effected an influence of the quantitative parameters to
the BCOc performance. For example, an increase in the values of B degenerates the
quality of solutions at certain levels of Lp. The conclusion is easier to deduce when
the maximal allowed CPU time is imposed. Another advantage of our approach is the
assessment of the reliability of the parameter Lp at different levels of the parameter SC
and at ME . For min(ev1) the relation between the performances of the BCOc instances
at different levels of SC does not change, i.e., a loyalty function that performed well
under Nit also demonstrates a good performance under T . In particular in Tables 8.13,
8.14, 8.17 and 8.18 it is shown that for both stopping criteria the method of evaluation
min(ev1) influences loyalty functions p2 and p8 to report the best results for large B and
large NC . However, the conclusion changes for max(ev1|2). Here, p2 and p8 reported
best responses for different values of NC and B w.r.t. SC. Moreover, for max(ev1|2)
the best performance is recorded for class II loyalty functions. Therefore, an important
conclusion of the studies is the relation between all components of the BCOc algorithm,
especially Lp and the parameters B and NC . Considering the question of robustness,
the BCOc algorithm is quite sensitive to the properties of problem instances, however,
certain rules are possible to establish (e.g. for p2 and p8). Therefore, the robustness of
BCOc is possible to achieve after careful structural tuning.

We address the research question Q5: if setting stopping criterion as Nit = 100 do
we obtain enough information about the performances for allowed maximal CPU. The
result of our study show that the best configuration (min(ev1), p8, B ≥ 15,NC ≥ 90)
found in Nit study also applies in T study. There are other cases for which the best
configuration found under Nit was generated under T . For Iogra100_16 function p5

found the best configuration pair (B,NC) = (20, 97) under both types of stopping
criteria. However, it is expected that providing more iterations would yield better result
of other configuration pairs.

The notion of practical difference can be set arbitrary as it depends on the observer.
As the measure is mean value of the set of solutions, we have concluded that the half of
a unit time provides good practical difference (pg. 125). To capture such differences,
an effect size of RANOVA test may be used.

8.10 Chapter summary

This chapter is devoted to comprehensive experimental study of BCOc, implemented
for P ||Cmax. It presented many new results concerning the general behavior of the
BCOc algorithm. List of conclusions emphasize the importance of careful structural and
parameter tuning. In the chapter, two statistical tests were utilized for within-subject
comparison of data in order to test the hypothesis of equivalence of means between
loyalty functions. Selection of best performing loyalty function within each group is
conducted using post-hoc test in R via two-sided Dunnett’s test or pairwise test. A
number of conclusions have been reached based on the results of multiple comparison,
i.e., post-hoc tests. More precisely:

8.10 Chapter summary 185

• We investigate several known heuristic methods dealing with the corresponding
problem.

• We provide information about the structure of problem instances with box-plots
of processing times distributions.

• We conduct experimental tests in order to compare several heuristic algorithms
and determine the best candidate to be used within the implementation of the
BCOc algorithm.

• Results of statistical and visual analysis are given for two independent studies
w.r.t. the type of stopping criterion.

• We introduce different case studies regarding qualitative BCOc parameters. We
are interested in relations between parameters Lp and ME .

• We presented a series of statistical tests, where we examine effects of qualitative
BCOc parameters. The tests are accompanied with a couple of graphics.

• Our conclusion is that regarding parameter Lp for the P ||Cmax problem we rec-
ommend Class I loyalty functions.

CHAPTER9
Development and experimental analysis of

BCOi

This chapter is devoted to design and experimental analysis of BCOi for 3-SAT. We
explore different stages of the development of the BCOi algorithm through analysis
of experimental results generated by different BCOi’s parameter configurations. The
importance of selecting suitable modification rules in the forward pass of BCOi is ad-
dressed. We propose a simple algorithm design for 3-SAT with familiar procedures of
transformations of complete solutions. In particular, three elementary 3-SAT solvers
are explored: WalkSAT and two random walk techniques. The advantage of the BCO
model over a standalone solver is its exploitation of population of solutions and the
utilization of reasoning when comparing different solutions. Moreover, the population
serves to maintain knowledge that guides the search towards promising areas of the
search space. Results show that carefully designed method of evaluation can improve
an overall success of the BCOi algorithm.

At the beginning of the chapter we describe the properties of the problem instances
with clause-to-variable parameter. We then compare three 3-SAT solvers to determine
the order of magnitude a sophisticated 3-SAT solver, such as WalkSAT, outperforms the
random walk techniques. The second half of the chapter provides description of two
BCOi algorithm implementations: BCOi with random walk (randBCOi) and BCOi with
walksat modifications (WalkBCOi). Each algorithm is analyzed in a separate section
and the main conclusions are drawn from graphics of response values. Unlike the pre-
vious chapter, we have not addressed questions related to the dynamics of recruitment.
Majority of the results are for the first time presented in this thesis.

9.1 Sensitivity analysis of the BCOi algorithm
Our main research question is if BCOi framework can improve performance of the cor-
responding underlying solvers. We have tackled this problem the first time in [JK16a],
and, here, we extend the analysis by exhausting the list of the BCOi parameters. In
addition, we utilize different performance measure.

Sensitivity analysis of BCOi is not as comprehensive as for BCOc. Firstly, we do
not employ statistical analysis. Secondly, we investigate the algorithm’s behavior on a
problem-set, as opposed to investigations conducted for each problem instance seper-
ately. Contrary to the common approach to 3-SAT, we search for an assignment (model)
that satisfies a given 3-CNF formula for which we a priori know that is satisfiable. Ac-
cordingly, we deal with a problem that coincides to some extent with the well-known

188 Chapter 9 Development and experimental analysis of BCOi

MAX-3-SAT (Section 2.3.3). Problem instances that are originally designed for 3-SAT
are utilized. In particular, we exploit the well-known SATLIB library of 3-SAT instances
[Hoo00b, Stü01]. Graphics of the results are based on the two most common response
values: average number of flips and average number of unsatisfied clauses. Conclusions
of the visual analysis shows that the BCOi algorithm is influenced by different algorithm
components, especially by modification rules in the forward pass. Before demonstra-
tion of the main conclusions, we test two focused random walk and walksat algorithms
(see Section 2.3.4). Another objective is to identify parameter properties, such as type
and value of the stopping criterion, required by instructions in Section 7.3.5. Here,
we also distinguish two cases regarding the type of stopping criterion. Comparison be-
tween three 3-SAT solvers was conducted under a maximal allowed CPU time (cutoff
time, T). The cutoff time serves as a constraint to avoid the consequences of ceiling
and floor affects in the study of BCOi. However, results of investigation of the BCOi
instances were generated by setting the maximal number of flips (MAXFLIPS), similar
to maximal number of evaluations discussed in previous chapters. Statistical tests are
not employed since response values are numerically far, thus, easy to distinguish in
practical terms.

9.1.1 Research goals
Here, we briefly list research questions and goals of the dissertation. Our focus is pri-
marily to address the question if the BCOi framework contributes to the improvements
over standalone heuristics. A choice of the best parameter configuration represents
another line of the research. In particular, we postulate that the optimal performance
of BCOi depends on the correct selection of two qualitative BCO parameters: loyalty
and evaluation function. In contrast to study in Chapter 8, we do not conduct a scaling
analysis [Hoo09], i.e, emphasize influence of problem instances. The purpose of this
research is summarized as follows:

Q1 Identify the most influential BCOi paramater.

Q2 Compare two evaluation functions ev1 and ev2 for WalkBCOi.

Q3 Identify the most successful loyalty function(s) and the reasons behind its(their)
success.

Q4 Compare conclusions among randBCOi and WalkBCOi.

Q5 Investigate behavior of the BCOi algorithm w.r.t. underlying heuristic rules.

We believe that the answers to these research questions might help in design of the
BCOi algorithm for other similar combinatorial problems.

9.1.2 Swarm intelligence for SAT
Meta-heuristics are in the literature recognized as incomplete SLS solvers. As a re-
sult, they are suitable for model-finding problems because the stochastic algorithms
can not be utilized alone to prove unsatisfiability. Population-based meta-heuristic al-
gorithms have already been employed to deal with MAX-SAT [Fra94, Ran98, Abb01,
Stü01, Vil07]. In some of the articles it has been shown that the meta-heuristic al-
gorithm does not represent the best choice for MAX-SAT. For example, analysis of a

9.1 Sensitivity analysis of the BCOi algorithm 189

simple genetic algorithm (SGA) for MAX-3-SAT problems reveals that SGA does not
exhibit good results [Fra94, Ran98]. [Fra94] implemented parallel SGA and reported
that parallelism does not enhance the performance of SGA. The conclusions motivated
further investigation to find a potential reason. [Ran98] tries to identify a property
of a problem instance that leads away from the global optimum, known as deceptive-
ness of MAX-SAT problems. The authors conducted several experimental tests on the
problem set containing three randomly generated 100-variable MAX-3-SAT problems of
different hardness (α = {3, 4.3, 6}). The conclusion is that, beside being deceptive, the
problem instances contain equally good regions which direct SGA to converge towards
different regions of the search space. Poor performance of GA for MAX-SAT problems
has been reported throughout the literature which inspired [Got02] to employ addi-
tional techniques in EA. Authors of [Got02] proposed ASAP and the utilization of local
search and adaptive mechanisms. They emphasize the importance of an appropriate
evaluation function and employ refining functions that help to distinguish between so-
lutions of the same quality. Other reports of poor performance was reported for ACO. In
[Vil07] the authors implemented a novel ACO algorithm, utilizing an adaptive fitness
function (commonly used in GA) to escape local optima and show that the efficiency
of population-based meta-heuristics might be improved [Vil07, pg. 352]. [Mor12]
demonstrated that ACO with adaptive fitness function outperforms the GA implemen-
tation. Beside the TS algorithm for MAX-SAT, a single-solution meta-heuristics have
shown to be efficient for probabilistic satisfiability problems (PSAT). For example, the
VNS performed well on PSAT compared against the GA [Jov05].

Regrading the bee-inspired algorithms in [Abb01] authors show that MBO performs
better than WalkSAT. A committee of heuristics is incorporated in the MBO algorithm:
WalkSAT, random walk, randomflip, random new and 1-point crossover and compared
against the standalone implementation of WalkSAT. A similar investigation of an im-
proved MBO (employing variation of the annealing function) was tested against differ-
ent 3-SAT solvers, such as GSAT and random walk, and results presented in [Teo01].
The authors concluded that MBCO outperforms other standalone heuristics. However,
it can be easily demonstrated that different implementations of WalkSAT (as well as
other solvers) exhibit different performances, being sensitive to the type of data struc-
tures and other implementation tricks. This knowledge has motivated us to discover a
code for WalkSAT developed by Henry Kautz(1). The implementation may be executed
either as a standalone algorithm or within other state-of-the-art implementations.

9.1.3 Problem instances

As previously mentioned, experimental analysis of the BCOi algorithm is conducted on
uniform random 3-SAT family of problem instances which consist of randomly gener-
ated 3-CNF formulas [Hoo00a, Hoo00b]. The instances belong to the SATLIB library(2)

and represent a well-established problem-set of unweighted uniform k-SAT problem in-
stances to test new algorithms. SATLIB library was constructed to deal with the decision
variant of k-SAT, however, according to [Stü01] is utilized for MAX-k-SAT. We refer to
Section A.4.1 (pg. 265) for information about the motivation behind the creation of
SATLIB and to Section A.4.1.1 for classifications of k-SAT problem instances w.r.t. their

(1)http://www.cs.rochester.edu/u/kautz/walksat/
(2)http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

190 Chapter 9 Development and experimental analysis of BCOi

hardness. Hardness of a particular problem instance can be measured as a function of
the expected number of steps needed to find a solution (an assignment is found so that
formula F is true) [Hoo98b, pg. 94].

9.1.3.1 Clause-to-variable ratio

Analysis of clause-to-variable ratio of random k-SAT problems (α) was important for
discovery of the phase transition phenomenon [Coo97]. The phenomenon reveals the
existence of a threshold for α, critical value αc, so that really difficult instances from
an algorithmic perspective are those close to αc [Mer06]. The most important aspect
of this phenomenon is the transition from formulas that are satisfiable to unsatisfiable
formulas. According to [Méz02a], regardless of the number of clauses and variables,
random k-SAT problems are generally satisfiable for small α and generally unsatisfiable
for large α. The value of αc has been reported throughout the literature [Méz02a,
Méz02b, Mer06]. The latest reported value for k = 3 is αc = 4.267 [Mer06]. The
additional information about the α and its critical values might be found in [Hoo98b,
Hoo98b, Brg03, Hoo05, Gen10a].

Creators of SATLIB focus on maximizing the hardness of solvability of problems,
thus, propose instances with the corresponding phase transition region [Hoo00b, pg.
4]. It seems they have succeeded since, according to [Mit92, pg. 3], the transition
region for n = 20 (small) occurs at αc = 4.55, for n = 50 αc = 4.31 and for n = 140 the
transition happens when αc = 4.3.

9.1.3.2 Procedure for generation of hard 3-SAT instances

The procedure to randomly generate 3-CNF formulas is elaborated in [Hoo00b] and
follows steps from [Mit92]: m times (the number of clauses) 3 variables are selected
(from the set of n available) and then each is negated with the probability of 1/2.
The procedure assures that clauses, containing multiple copies of the same literal (or
multiple copies of a variable and its negation), are discarded. Values of the parameters
n and m induce different distribution of random 3-SAT instance, thus, different values
of clause-to-variable ratio. We consider only satisfiable problem instances that have
been successfully solved by various SLS algorithms. Based on the critical value, in
Table 9.1 we review ten problem sets from SATLIB. The problem instances are arranged
w.r.t. n and m (columns 3 and 4). As shown in Table 9.1, α decreases as n increases
and does not drastically change for different n, m. Secondly, it is easy to distinguish
between the set of easy and hard problem instances. Among the reported instances,
class uf20-91 contains 3-CNF formulas with 20 variables and 91 clauses (α = 4.55),
is considered the easiest and originally contains 1000 different test instances. Class
uf250-1065 contains 100 randomly generated instances with 250 variables and 1065
instances. Due to time constraints, we chose the top three problem-sets from Table 9.1
to conduct a comparison study between the candidate 3-SAT solvers.

9.1.3.3 Properties of SATLIB 3-SAT instances

A high variability in response values (i.e, the hardness of the corresponding problems)
of 6 or more orders of magnitude of various SLS algorithms dealing with randomly gen-
erated 3-SAT instances with the same critical value, has been reported in the literature

9.1 Sensitivity analysis of the BCOi algorithm 191

Table 9.1: SATLIB 3-SAT satisfiable instaces.

class setsize n m α

uf20-91∗ 1000 20 91 4.55
uf50-218∗ 1000 50 218 4.36
uf75-325∗ 100 75 325 4.33
uf100-430∗∗ 1000 100 430 4.30
uf125-538 100 125 538 4.31
uf150-645 100 150 645 4.30
uf175-753 100 175 753 4.30
uf200-860 100 200 860 4.30
uf225-960 100 225 960 4.27
uf250-1065 100 250 1065 4.26
∗ Test-instances in the experimental study of

standalone solversf.
∗∗ Test-instances in the experimental study of

BCOi.

[Gen10a, pg. 617]. The variability caused by SATLIB 3-SAT instances is elaborated
in [Hoo98b, Hoo05] [Hoo98a, pg. 108]. [Hoo05, pg. 214] shows that the inter-
instance variability of hardness of uniformly generated 3-SAT instances (i.e., inside
the same phase transition region) can be categorized. Namely, three sub-classes are
distinguished as easy, medium and hard. [Hoo05] explain that the classification is a
consequence of the landscape of the search space. How hard it is to solve a given in-
stance can be further identified with the distribution of solutions. A logical explanation
may also be found in the intrinsic property of the solver. To overcome the problems and
increase the experimental reliability, performance analysis can be conducted for special
problem instances, e.g., representatives of an equivalence class within a benchmark
problem-set [Brg03].

We note that the question of SAT problems hardness remains an open topic due to
heterogeneous and richly structured distribution of problem instances. Recently, un-
satisfied with complexity-theoretic analysis [LB14] have presented empirical hardness
models (EHM). The model estimates a running time of an algorithm and describes sim-
ple relationships between instance properties and the algorithm runtime. The model is
not considered in this thesis and is beyond the scope of this dissertation.

9.1.4 Experimental methodology

To ensure fair comparison among investigated algorithms and reproducibility of the
experiments we follow rules specified in Section 7.3.5 (pg. 137). For the most part we
repeat experimental steps from Chapter 8: blocking of seed and number of repetitions
nrun is appointed to large values to secure stable measure of the performance (seed
coincides with experiment indices). The first case study deals with an empirical analysis
of the candidate solvers. The runs in the experiments are repeated 1000 times due to
large variability in the response values and to establish the number of repetitions for
study of BCOi. The result showed that the nrun for evaluation of the BCOi algorithm

192 Chapter 9 Development and experimental analysis of BCOi

can be set to 100 as it avoids over-usage of computational resources.
Because the performance of the considered 3-SAT solvers is well established in the

literature, extensive analysis of random walk and walksat heuristics was not conducted
as was done for P ||Cmax in Chapter 8. Namely, the objective is to to emphasize the
magnitude of success of walksat algorithm against the random walk technique. Another
objective of our experiment is to test theoretical results regrading number of restarts
(reinitialization) of the random walk (3n) proposed by [Sch99]. The empirical analysis
is conducted under the same computer environment as for BCOc (see Section 7.3.5.2,
pg. 137).

9.1.4.1 Performance measure

Total number of flips (nflip) necessary for a solver to find a model of a given problem in-
stance or reach a stopping criterion, together with the corresponding descriptive statis-
tics over multiple runs, represents a typical measure in the literature when dealing with
MAX-3-SAT problems. As mentioned previously, nflip exhibits high variability in case of
uniform random problem instances [Hoo98a]. Therefore, to evaluate the performance
of our solvers we opted for average value of nflip computed as nflip =

∑nrun
s=1 nflip. The

response value assures an objective comparison between reported results from different
computer architectures. If for a value of seed solver did not find a satisfiable model, we
employ a number of unsatisfied clauses variable nuns and, consequently, average value
of unsatisfied clauses nuns = 1/nrun

∑nrun
s=1 nuns.. In [JK16a] maximal number of flips

Mflip is applied as a measure of performance, computed as Mflip = maxseed∈[1,nrun] nflip.

9.1.4.2 Stopping criterion

Two types of stopping criteria are considered: maximal allowed CPU time (T) and
maximal number of flips (MAXFLIPS) . From the literature we were not able to retrieve
running times of a simple random walk solver for instances in Table 9.1. Therefore,
we restricted maximal allowed CPU time arbitrary and set it to 5s. In the case of the
walksat solver our results showed that it finds satisfactory assignments for the majority
of the considered problem instances in a very short time (e.g. less then 0.01 seconds
for n ≤ 75). The random walk requires large amount of a running time until it finds
a model. However, increasing T is not required as it will be shown in the Section 9.2.
The cutoff time T was not imposed in the case study regarding the BCOi algorithm.
Namely, utilized time procedure gettimeofday is not able to distinguish work of com-
puter system background processes, thus, we focused on minimization of systematic
errors during the evaluation. We employ MAXFLIPS, appointed to 106 and elaborate in
greater detail in Section 9.2.

9.1.4.3 Size and choice of the problem-set

The number of problem instances for BCOi is larger than for the consider scheduling
problem of previous chapter. Moreover, comparison between the solvers is conducted
on the entire problem-set. The problem-sets can be distinguished by the number of
variables (n) and number of clauses (k), as presented in Table 9.1. There are several
reasons to expend the problem-set. Firstly, uniform random 3-SAT SATLIB instances are
commonly employed in the literature and there exist a number of research articles and

9.2 Candidate heuristics for 3-SAT 193

dissertation thesis offering different perspectives about efficient solvers. The reason we
test BCOi on the entire problem-set is to ignore particularities of a problem structure.
In addition, walksat solver exhibits robustness while dealing with the SATLIB problem
instances and the same is therefore expected for WalkBCOi.

In this thesis we distinguish three problem instances of the same size as represen-
tatives of easy, medium and hard ones, in the same manner as reported in [Hoo98a].
Selection of the instances is, to some extent, founded on results of the walksat algo-
rithm (wsat) reported in [Hoo98a, pg. 93], summarized in Table 9.2.

Table 9.2: Results of wsat for uf100-430 [Hoo98a].

hardness mean (nflip) stddev median Q75 Q90

easy 177.86 135.78 139 206 336
medium 1,877.78 1,776.33 1,333 2,510 4,133

hard 86,773.44 90,538.08 56,666 120,583 198,109

Tables of cumulative distributions are employed in the first case study to graphically
demonstrate difference between the candidate heuristics. The graphics present cumu-
lative distributions of Nflip over the problem-set. In case of BCOi we utilize a set of
instances with 100 variables and 430 clauses, provided in SATLIB library as uf100-430.
The set originally consists of 1000 instances, therefore, to decrease the total running
time of the experiment and contribute do the reproducibility, we have opted for the
first 100 instances (uf100-01.cnf – uf100-0100.cnf)

9.1.4.4 Solution representation

We briefly describe structure of the solution, and the corresponding auxiliary variables
utilized in the implementations of all candidate solvers and BCOi instances. The so-
lution is represented as a vector A = (a1, . . . , an), where the element ai contains the
value of the i-th variable. Considering the unsatisfied clauses, two vectors are ap-
plied: F = (f1, . . . , fm), a binary vector that indicates if clauses are (not) satisfied, and
dynamic vector W = (w1, . . . , wm) containing indices of all the clauses that are unsat-
isfied. Considering the break condition of the WalkSAT, after flipping i-th variable, the
number of clauses that become unsatisfied is saved in the vector C = (c1, . . . , cn).

At the end of an iteration data structure (A,C) contains the obtained solution and
the information about the unsatisfied clauses (if satisfying assignment is not obtained).

9.2 Candidate heuristics for 3-SAT

In this section we compare three 3-SAT solvers. The focused random walk belongs to
the most fundamental approaches dealing with satisfiability problems. Therefore, we
consider pure random walk elaborated in Sec. 2.3.4.1. Another version of a random
walk technique is the Schöning’s algorithm (Fig. 2.3, pg. 33), selected in order to test
results in [Pre04, Bal14a] stating that Schöning’s procedure does not perform well
in practice, despite of theoretical proof of its convergence [Sch99]. We denote our
implementations of the two random walk techniques for 3-SAT as: Rand and SchRand.

194 Chapter 9 Development and experimental analysis of BCOi

In the dissertation we utilize a code of the walksat algorithm developed by Selman
and Kautz [Sel95]. The choice is supported by the fact that the code is being regularly
maintained in order to increase the performance by involving better parameter struc-
tures and some other implementation tricks. Therefore, it contains good properties
regarding a performance and robustness for various satisfiability problems. The code
is also used as the basis for development of more sofisticated SAT solvers [Bal14a].
The latest version (51) is provided freely online (3). In addition, the authors report
that the version 51 incorporates optimization fixes suggested by Donald Knuth(4) mak-
ing it 20% faster than the previous version. Originally, the code by Selman and Kautz
contains implementations of 7 different k-SAT solvers: random, walksat, tabu, novelty,
rnovelty, novelty+ and rnovelty+. Heuristics such as random, walksat and novelty are
considered as simple solvers, commonly employed as a building stone for other heuris-
tic algorithms. As the standalone heuristics they perform well and novelty is considered
among the best for 3-SAT SATLIB instances since it utilizes more knowledge than the
other two. However, novelty was not considered in our study because it requires more
memory then the other two and, therefore, we believe it is not suitable for BCOi.

9.2.1 Experimental evaluation of candidate solvers

The main reason behind comparison of Rand, SchRand and WalkSAT is to illustrate the
size of the extent by which walksat outperforms two random walk procedures. Fol-
lowing recommendations in Section 7.3.5 (pg. 137) an experiment consists of 1000
independent runs of a particular solver and seed is controlled. We distinguish two case
studies: on a particular instances and on complete problem sets. In the first study three
types of instances are chosen, easy, medium and hard from uf50-218. An easy instance
requires the least amount of the computational resources, measured by nflip. A hard
instance represents the hardest within the experimental setup. Medium instance is the
hardest to select and represents an in-between case. The results of single comparisons
are given in Tables 9.3. Under the provided stopping criteria all three solvers manage
to find solutions under given conditions, thus, we provide descriptive statistics for re-
sponse value nflip in Table 9.3. We conclude on several observations. The span of nflip
values, required for random walk techniques to solve easy and hard instance, is large.
This illustrates the inefficiency to deal with small problem instances and already pro-
vides information about the performance for larger problem-size instances. In addition,
WalkSAT required small amount of computational resources, thus, represents the best
performing solver on the class uf50-218.

Experiments in the second study were conducted for three problem-sets of different
size: uf20-91, uf50-218 and uf75-325. The problem sets are described in the literature
as small- to medium-sized since satisfiable assignments are fast reachable by majority
of 3-SAT solvers on modern computer systems. Performance measure in this case study
is nflip. To highlight the range of the results during an experiment and for various
problem sets, we utilize RLDs for nflip (see Section 7.2.2) and we compare them in
Fig.9.1. According to long tails in Fig. 9.1 the class uf75-325 of problem instances
exhibits high variability in case of random walk solvers. The WalkSAT exhibits lower

(3)https://www.cs.rochester.edu/u/kautz/walksat/ Version 51
(4)Information about the improvement of last version is taken from the comment section of Walksat source

code.

https://www.cs.rochester.edu/u/kautz/walksat/

9.2 Candidate heuristics for 3-SAT 195

Table 9.3: Descriptive statistics for nflip reported by three candidate solvers for three
problem instances in class uf50-218, T = 5[s].

Solver hardness mean stddev median Q75 Q90

Rand easy (uf50-0635.cnf) 368.18 309.55 276 481.00 740.20
medium (uf50-0105.cnf) 16,061.19 15,125.39 11,225 22,693.00 37,733.10

hard (uf50-0690.cnf) 884,505.20 951,193.63 574,474 1,231,330.50 2,046,741.50

SchRand easy (uf50-0635.cnf) 617.84 591.88 422 862.25 1336.20
medium (uf50-0105.cnf) 38702.16 38672.04 27,776 53603.25 88766.70

hard (uf50-0745.cnf) 1,597,364.01 1,611,398.93 1,117,166 2,228,060.25 3,613,145.70

WalkSAT easy (uf50-0543.cnf) 64.17 43.87 52 83.00 120.00
medium (uf50-0105.cnf) 596.03 640.47 399 770.50 1376.80

hard (uf50-0197.cnf) 4995.69 5617.69 3256 6978.00 12025.00

variability, however, according to [Hoo98a, pg. 86], the solver demonstrates large
variability for harder problem instances. A summary of descriptive statistics for nflip, is
presented in Table 9.4. The table is arranged in the following way. We group results
by rows for each instance-set. The first column corresponds to the size of the 3-SAT
problem-set. The second column refers to the algorithm, and the third presents average
number of unsatisfied clauses for all instances within the test-set (Nuns). The next five
columns contain data regarding the descriptive statistics of the number of flips needed
to either reach optimal solution or satisfy the stopping criterion. Variables Q75 and Q90
denote the corresponding percentiles of the data. Column t̄ shows the average CPU
time needed to either solve all problem instances or to reach the predefined stopping
criterion, whereas the last column holds standard deviation for t̄.

The results in Table 9.4 show that WalkSAT is able to solve all three test-sets of
problem instances in a very short time (≤ 0.01s). Among random techniques, it can
be concluded that Rand outperforms SchRand according to the number of flips (mean,
median, Q75, Q90) required to either reach a solution (uf20-91 and uf50-218), or satisfy
stopping criterion (uf75-325). Therefore, we confirm results from the literature [Pre04,

Figure 9.1: Semi-log plots of cumulative distribution of nflip for three 3-SAT solvers and
three problem sets. The x-axis shows nflip based on 1000 runs/instance and
stopping criterion T = 5s.

196 Chapter 9 Development and experimental analysis of BCOi

Table 9.4: Results for Rand, SchRand and WalkSAT for SATLIB problem-sets. Optimality
criterion is an average number of flips.

Problem descriptive statistics for Nflips

class solver Nuns mean stddev median Q75 Q90 t̄[s] s.d.

uf20-91 Rand 0.00 434.52 353.84 324.01 585.76 919.88 0.00 0.00
SchRand 0.00 574.37 460.62 428.30 790.83 1229.77 0.00 0.00
WalkSAT 0.00 78.00 57.45 61.73 98.66 154.82 0.00 0.00

uf50-218 Rand 0.00 44864.50 76822.37 16765.03 50222.59 116259.68 0.01 0.02
SchRand 0.00 104496.10 159881.57 42396.87 127105.71 275474.68 0.03 0.04
WalkSAT 0.00 653.32 711.56 421.93 806.02 1347.98 0.00 0.00

uf75-325 Rand 0.22 1678433.80 2887571.68 511304.80 1844154.11 4578383.66 0.35 0.61
SchRand 1.74 3842645.64 4760262.65 1731620.82 5911339.67 11311854.43 0.91 1.13
WalkSAT 0.00 1850.35 2222.88 1177.91 2086.47 3700.32 0.00 0.00

Bal14a]. Although being theoretically verified and analyzed, SchRand seems not to be
of practical use. Coupled with Table 9.4, the results presented in Fig.9.1 show that
WalkSAT exhibits a clear dominance over random walk procedures by a couple of orders
of magnitude.

9.2.2 Final remarks and conclusions for candidate heuristics

Comparison and evaluation of three 3-SAT solvers was conducted within two case
studies. The first case study follows the line of research from the previous chapter
and considers individual problem instances: easy, medium and hard. It turns out that
the medium-size problem instance is the representative of the majority of problem in-
stances. As a preparation for experimental evaluation of the BCOi configurations, the
second study was conducted on the complete problem sets. Results of the both studies
have confirmed two observations reported in the literature about the random prob-
lem instances. Namely, the existence of long tails in cumulative distributions (Fig. 9.1)
demonstrates variability in hardness of problem instances of the same class (same num-
ber of variables). Furthermore, we show that shows that the WalkSAT solver outper-
forms the Rand algorithm.

Results of the conducted experiments demonstrate that appointing MAXFLIPS=106

is sufficient for empirical analysis of the BCOi algorithm for harder class, uf100-430.
The WalkSAT solver is able to find model for different values of seed, therefore, we ex-
pected that WalkBCOi exhibits equivalent or better performance. Contrary, we have de-
tected an inefficiency of random walk for problem instances of class uf50-218, thus, the
stopping criterion would not not be enough for randBCOi to solve uf100-430 problems.
Therefore, we chose to conduct the experimental evaluation of the randBCOi on two
classes of problem instances uf50-218 and uf100-430. Furthermore, we analyze if the
conclusions about the BCOi parameter configurations will change w.r.t. the problem-
size. The selection of the problem sets was also inspired by reports in [Hoo98a].

9.3 Development of BCOi for 3-SAT 197

9.3 Development of BCOi for 3-SAT

In this section the objective is to analyze conditions under which working with the pop-
ulation of solutions demonstrates an advantage over a standalone heuristic. A simple
approach would be to start a solver from different positions of the solution space and
restart the execution after a predefined restarting criterion is satisfied. In this case the
search would be highly dependent on the quality of initialization points. To make it
robust, we focus on design of the BCOi algorithm for the 3-SAT problem that benefits
from certain reasoning when comparing different solutions. Furthermore, we employ
the main steps of two considered heuristic rules, examined in previous section, and test
two version of the BCOi algorithm: randBCOi nad WalkBCOi. Success is measured by
the average number of flips until reaching satisfactory assignment or stopping criterion.
Occasionally, average number of (un)satisfied clauses is utilized if the solver required
a maximal number of flips to satisfy the stopping criterion and because of large num-
ber of problem instances and the variability that BCOi algorithm exhibits across the
problem set.

9.3.1 Design of the BCOi algorithm

Contrary to other implementations, the BCOi algorithm for 3-SAT disregards initializa-
tion of solutions at the beginning of each iteration. Instead, an initial assignment is
appointed to each bee once before the start of the search. Consequently, all solutions
reported at the end of an iteration become the initial solutions for the next iteration.
Psuedo-code of BCOi for 3-SAT is presented in Fig. 9.2. Total number of transforma-
tions within a forward pass of BCOi is not restricted for 3-SAT as it is, e.g., for p-center
problem [Dav11a]. According to [Dav11a] the restrictions originate from the number
of centers. However, restrictions for 3-SAT are not as obvious. In particular, we control
transformations during the forward pass of BCOi, with new parameter NCT . An iter-
ation of BCOi completes if a solution is found or if each bee performs NCT solution
transformations.

Without the typical initialization phase at the beginning of an iteration, the number
of successive forward/backward moves during one iteration, and controlled by param-
eter NC , does not directly influence the search trajectory. Namely, class I loyalty func-
tions do not rely on values of NC . However, we utilize NC to control the upper limit
of the counter u, being important for Class II loyalty functions. As a result, parameter
NC does not inflict the total number of evaluations.

Parameter space of BCOi is summarized in Table. 9.5, where n denotes the number
of Boolean variables. All the values of the BCOi quantitative parameters are integers.
Because of the expected overhead during the exchange of information in a recruitment
phase of BCOi, we investigate small number of the artificial bees. Values of quantitative
BCO parameters NC and NCT have been adjusted to accommodate a requirement in
which the running time should not be longer than a week. However, our objective
is to cover diversified regions of the parameter space. Therefore, NC takes discrete
steps and its upper limit has been determined with the help of analytical expression
of loyalty functions in Section 4.2.3.1. In Figs. 4.10–4.17, after NC reaches 60 the
loyalty probability pub approaches 1, resulting with behavior that might produce similar
results. Namely, it becomes almost certain that a bee remains loyal to its generated

198 Chapter 9 Development and experimental analysis of BCOi

Initialization: Read input data, formula F , number of variables x, number of clasues.

Provide random assignments to each each bee.
Do

// forward pass
(1) For (b = 0; b < B; b+ +)

(a) For (i = 0; i < NCT ; i+ +)
(a.i) Flip the variable using a heuristic.
(a.ii) if (F (x) = TRUE) stop.

// backward pass
(2) For (b = 0; b < B; b+ +)

Evaluate the solution of bee b;
(3) For (b = 0; b < B; b+ +)

Loyalty decision for bee b;
(4) For (b = 0; b < B; b+ +)

If (b not loyal), choose a recruiter by roulette wheel.
Update xbest and f(xbest)

While stopping criterion is not satisfied or solution is found.
return (xbest, f(xbest))

Figure 9.2: Pseudo-code for BCOi for satisfiability problem.

solution. According to results in Section 8.8, to avoid disregarding the main principles
of recruitment and to support exploitation, the upper limit on NC domain is set to 60.
Because the maximal value may be exceedingly large, we limited the upper value of
NCT with the n of the corresponding 3-SAT instance. For example, for 3-SAT problem
with 100 variables the BCOi solver performs 100 transformations within one iteration.
We wanted to avoid situations in which a solution is found in the first forward pass of
BCOi and before backward pass has even begun.

Table 9.5: Parameter space for experimental analysis of BCOi on 3-SAT.

Parameter Domain

evaluation numfalse, breakcount
loyalty function pi, i ∈ {0, .., 9},

B [1, 5]
NC 10 · r, r ∈ [1, 6]
NCT [1, n]

9.3.2 Backward pass of randBCOi and WalkBCOi
According to pseudo-code 9.2, numerous implementations of the BCOi algorithm for
3-SAT might be considered: it is sufficient to replace step (a.i) with any transformation
of our choice. In the dissertation we chose a simple design of BCOi that implements
either focused random walks (randBCOi) or walksat (WalkBCOi).

The randBCOi algorithm incorporates evaluation function that exploits only the
number of unsatisfied clauses. We define the evaluation function as ev1 = numfalse(b),
where variable numfalse(b) denotes the number of unsatisfied clauses for each bee b.

9.4 Empirical study of randBCOi 199

In case of WalkBCOi, beside ev1, we investigate peformance of new evaluation function
ev2 = breakcount(b). The function ev2 is inspired by walksat and exploits the first deci-
sion step of its procedure, i.e., utilizes variable break to obtain a different perspective
to quality measure. The goal is to support the efforts of walksat heuristic, contrary to
qualifying the goodness of the search space solely on a current number of unsatisfied
clauses. The evaluation function ev2 is described in Figure 9.3.

For (b = 0; b < B; b+ +)
Pick an unsatisfied clause C
For each variable x in clause C
breakcount(b) := minx∈C break(x)

Figure 9.3: Algorithmic structure of the evaluation function ev2 within BCOi.

Figure 9.3 shows that in order to utilize variable break one first needs to pick a clause.
Namely, WalkSAT concentrates the search towards variables that belong to unsatisfied
clauses. After the clause is chosen uniformly at random, the procedure determines a
minimal value of break(x) for each of the three variables from the clause. The quality
of the reported solution of each bee is evaluated with minx∈C break(x). Consequently,
a bee with the minimal value of breakcount is marked as the best one. If all the bees
have reached the solution of the same quality, each bee remains loyal to its solution.

It is worth noting that within the evaluation process we may also consider other
parameters such asmake or score or their combination. Because of time constraints, we
have not investigated other evaluation functions. In addition, possible hybrids remain
the topic of the future challenges.

9.4 Empirical study of randBCOi

The experimental study of randBCOi has been conducted for two problem-size sets:
uf50-218 and uf100-430. We begin with observations for the hard problem set (uf100-
430) and utilize an average number of unsatisfied clauses nuns as the performance
measure. The goal is to gather knowledge about the success of the BCO framework
giving the same stopping criteria as in Section 9.2.1 (MAXFLIPS=106). The results
of randBCOi for uf100-430 show that the algorithm requires large amount of elemen-
tary transformations (flips), and consequently nflip to find a satisfactory assignment of
a formula. Due to large amount of comparisons we present graphics for (nuns) aver-
aged over set of 100 instances from uf100-430, i.e., for Nuns =

∑100
i=1nunsi. Study of

randBCOi for uf50-218 considers a performance measure Nflip =
∑100
j=1nflipj .

9.4.1 Case study: randBCOi for uf100-430

The graphics of results in Figs. 9.4 and 9.5 demonstrate levels of success of the corre-
sponding BCOi instances. The graphics were generated in form of matrix-plots. The
legend separates intervals of results produced by different configurations of the BCOi
instances. The color fields indicate half-open intervals. The blue colour denotes the
best configurations of quantitative BCOi parameters B and NC, i.e., configurations that

200 Chapter 9 Development and experimental analysis of BCOi

have produced the lowest Nuns. For example, the best results fall into the interval [0, 1).
Some implementations were quite unsuccessful, such as p3 in Fig. 9.4. Here, the legend
shows where the minimal value of Nuns belongs to (the interval [13, 14)). Therefore,
for the particular parameter’s configuration only results that were generated during the
experiments are indicated.

In Fig. 9.4 we compare class I loyalty functions. The matrix-plots show that p3,nit

exhibits the worst performance. Moreover, the visual inspection of the matrix-plots
reveals that loyalty functions p2 and p8 have similar influence on the performance of
the BCOi solver and exhibit the best performance in its class. They produce Nuns ∈ [0, 1)
on complete domain of the parameter B, and different values of NCT . In particular, if
B = 2 then the best results are achieved if NCT = 1. As population-size is growing, so
does the values of NCT that generate good quality solutions. Namely, for B = 5 the
best set of configuration is NCT ∈ {1, . . . , 10} . The p1 exhibits a similar behavior, only
that if B = 5, then NCT ∈ {1, . . . , 8}. Regrading the worst case, it is shown that the
standalone heuristic Rand (if B = 1) generates the worst quality solutions, as Nuns ∈
[19, 20]. Loyalty function p1 produces the worst quality of solutions (Nuns ∈ [15, 16]) for
B > 1,NCT > 60 , while p2 and p8 generate Nuns ∈ [14, 15] if B > 1 and for particular
values of NCT > 75. All tests reported the maximal number of flips.

The results of class II functions are presented in Fig. 9.5. Due to large similarities
between p5,u and p9,u we provide matrix-plots for p5,u. Similarly, we omit matrix-

Figure 9.4: Matrix-plots of average number of unsatisfied clauses generated by BCO
with the Class I functions: p1,2,8 and p3,niter .

9.4 Empirical study of randBCOi 201

plots for p4,u because the graphic matches to results of p6,u. From the figure we may
conclude that the impact of parameter NC was not significant in case of p5,u (p9,u

correspondingly). The largest impact of NC is for p0,u, where the quality decreases as
the values of NC increase. Thus, smaller values of NC generate high quality results.
The same conclusion might be drawn for p7,u. Founded on interval coloring, we have
observed that the randBCOi solver performs well for small NCT . However, the legends’
fields do not indicate concrete values of Nuns or indicate differences in computational
coast that would split the ties when two BCOi instances generated similar response
values. To distinguish between the colored fields we need to consider other information
presented in Table 9.6. The results of experiments, not shown in the graphics of results,
are elaborated in the rest of this section.

Table 9.6 represents the best randBCOi configurations under the given conditions of
the experiments. The average running time and the average number of flips to solve
the corresponding problem instances are also presented. The quality of solution has
been determined by the smallest Nuns. Based on information in Table 9.6 we confirm
that the majority of loyalty functions exhibit the best performance for NCT = 1. The
randBCOi solver improves the workings of an underlying heuristic Rand if we employ
backward pass after only one transformation (flip). In particular and according to the
quality of solutions, p2 and p8 report the best result, i.e., Nuns = 0.08. In the text to
follow we describe other results not illustrated in the figures.

Loyalty function p5,u shows similar behavior for values of NC = {10, 20, . . . , 60}.
Moreover, for NC = 30 the best performance (Nuns = 0.11) is reported for B = 4 and
NCT = 2. For the rest the best performance (Nuns = {0.10, 0.11}) is reported for B = 3
and NCT = 1. In Table 9.6 we show the configuration that has produced Nuns = 0.10.

Loyalty functions p6,u and p5,u have exhibited a high robustness to changes of pa-
rameter NC . However, the differences between reported Nuns of the two functions are
distinguishable. Namely, the best result of p6,u has the same quality as the result of p2

and p8. Therefore, the three loyatly functions have performed equally well.
Loyalty function p7,u shows poor performance compared to the rest class II loyalty

functions excluding p3,nit . Namely, it performs the best for small NC and the quality

Table 9.6: Results of comparison between Rand and the best configurations of randBCOi
for SATLIB problem-set uf100-430. Optimality criterion is Nuns.

Lp B NC NCT Av.Time[s] Nflip Nuns

Rand - - - 0.01728 98771.18 19.80

p0,u 5 10 1 0.02742 57515.50 0.18
p1 3 - 1 0.04825 60496.26 0.11
p2 2 - 1 0.03696 40604.00 0.08
p3,nit 5 - 27 0.01767 98910.40 13.84
p4,u 3 10 1 0.02780 48246.57 0.10
p5,u 3 20 1 0.04595 58746.78 0.10
p6,u 3 10 1 0.03244 48957.84 0.08
p7,u 5 10 1 0.02717 59549.20 0.25
p8 3 - 2 0.03241 50413.77 0.08
p9,u 3 10 1 0.04432 56057.73 0.10

202 Chapter 9 Development and experimental analysis of BCOi

p
0,

u
p

4,
u

p
5,

u
p

7,
u

Figure 9.5: Matrix-plots of average number of unsatisfied clauses generated by different
BCOi instances and Class II loyalty functions for uf100 problem-set.

deteriorates significantly as NC increases. In particular, for NC = 20 it reports Nuns =
1.39.

Influence of NC for p9,u is similar to influence of p5,u. Namely, the quality of the
response values is Nuns = 0.11 and repeats for NC = {20, 30, 40, 50, 60}. In the table of
results we report parameter configuration that reported Nuns = 0.10.

The study has produced a large number of results, which we were not able to present

9.4 Empirical study of randBCOi 203

in this thesis. Imperfection of the previous presentation is the lack of information that
allows comparison of computational resources between different BCOi configurations.
Therefore, we have repeated the experimentation for the smaller size of the problem.
In addition, utilizing the same stopping criteria sa previously, the BCOi solver was able
to find satisfiable assignments in the majority of the cases. This allowed us to eliminate
repotting on Nuns and, instead, focus on one performance measure Nflip.

9.4.2 Case study: randBCOi for uf50-218
The second study of this section deals with the experimental analysis of the RandBOCi
for small-size problem set. The comparison among BCOi parameter’s configurations is
based on the variable Nflip. Stopping criteria is set as in previous studies and according
to Section 9.2.1 where we have established MAXFLIPS=106. We controlled the seed,
appointing it to indices of experimental runs.

Results are presented in form of line graphics in Fig. 9.6 and a summary of the best
results is given in Table 9.7. For class II, we present graphics for three discrete steps
NC ∈ {10, 30, 60}. Our observations are, as previously, divided among classes of loyalty
functions. Between the loyalty functions of class I, the best results have been reported
for NCT = 1 and B = 2. The most efficient w.r.t. Nflip is p8 that required 1836.62 flips,
followed by p1 with Nflip = 1859.91 who needed less time in average then p8. Loyalty
function p2 reported very similar result w.r.t. Nflip. Among the results not reported in
the graphics we distinguish two cases: NCT = 1 and NCT > 1. When NCT = 1
only B = {2, 3} find models of all 100 problem instances for all 100 seeds. Compared
against Nflip of B = 2, larger B reports smaller number of flips only when NCT ≥ 3 in
case of p1 and when NCT ≥ 5 for p2,8. However, the quality of solution demerits w.r.t.
to Nuns for NCT > 40, regrades of B.

Table 9.7: Results for randBCOi for problem-set uf50-218. Optimality criterion is Nflip.

Lp B NC NCT Av.Time Nflip Nuns

Rand - - - 0.01279 40047.64 0.0074

p0,u 3 10 1 0.00551 2760.27 0
p1 2 - 1 0.00568 1859.91 0
p2 2 - 1 0.00805 1904.79 0
p3,nit 5 - 5 0.01304 39008.69 0
p4,u 3 10 1 0.00680 2485.43 0
p5,u 2 30 1 0.00633 1887.52 0
p6,u 2 10 1 0.00499 2227.55 0
p7,u 3 10 1 0.00505 3069.17 0
p8 2 - 1 0.00634 1836.62 0
p9,u 2 40 1 0.00535 1893.41 0

Concerning class II, p0,u and p7,u exhibit the weakest performance. Based on com-
parisons among the best configurations in their class, the two functions require the
largest amount of the computational resources. Furthermore, as NC increases the over-
all efficiency decreases. Similar observation about the influence of the NC parameter
is established for other class II loyalty functions. For p5,u and p9,u the parameter has

204 Chapter 9 Development and experimental analysis of BCOi

exhibited the smallest impact . Regrading quantitative BCOi parameters, from graphics
we can conclude that configuration NCT = 1 generates the best results.

9.4.3 Conclusions for randBCOi

We conclude that the BCOi algorithm improves the performance of the underlying
solver Rand by couple of orders of magnitude w.r.t. computational resources needed
to obtain a satisfactory assignment of the corresponding 3-CNF formulas. For uf100-
430 the randBCOi solver has produced Nuns that is 257.5 times smaller than the result
of Rand. In case of uf50-218, the randBCOi solver reports the 21 times smaller Nflip
until model is found, compared against the underlying solver Rand. The best BCOi
parameter’s configurations are B = {2, 3} and NCT = 1. The best configurations are
reported for class I loyalty functions, however, for some configurations that include
class II functions we also observe high quality performance. The most successful for
uf100-430 are p2 and p8 for uf50-218.

9.5 Experimental study of WalkBCOi

The section is devoted to discussion and presentation of the results reported by the
walkBCOi solver. The study of analysis of walkBCOi was conducted under the same con-
ditions of previous Section 9.4. We conducted the analysis on the uf100-430 problem-
set. The results regrading the performance walkBCOi are presented in Fig. 9.7 and 9.8
and Tables 9.8. The figures are based on Nflip generated on all problem instances and
for different BCOi parameter configurations. The goal is to inspect the improvement
of quality of solutions by changing the evaluation function. In particular, we test two
evaluation functions ev1 and ev2, described in Section 9.3.2 with the same set of pa-
rameter’s domains indicated in Table 9.5. Therefore, we distinguish two case studies
with regrade to the type of evaluation function.

9.5.1 Case study: Evaluation function ev1

The Figure 9.7 provides information about the success of evaluation function ev1 and
ten loyalty functions. The reference case, marked with blue, depicts the performance
of WalkSAT, shown as B = 1. First conclusion is that walkBCOi is more efficient than
randBCOi for each configuration of the BCOi parameters. However, the reference case
reported the smallest Nflip. Therefore, walkBCOi with ev1 does not perform better than
the WalkSAT. To demonstrate the influence of BCOi parametes in Table 9.8 we give a
summary of results. We include descriptive statistics for the response value Nflip that
has produced the best results and the corresponding supplement information such as
running time (Av. Time) and Nuns. In the table the first row provides response values
for the reference case. To understand the influence of parameter B the best results are
determined among the parameter configurations for which B ≥ 2. As in the previous
study, the best results w.r.t. Nflip are generated for the population-size B = 2.

Contrary to the previous study, the overall best loyalty functions are of Class II: p0,um
p7,u and p3,nit . As shown in Table 9.8 for all B ≥ 2 configurations, they required the
least amount of computation’s resource to find a solution of all 3-CNF formulas from the

9.5 Experimental study of WalkBCOi 205

Table 9.8: Descriptive statistics for walkBCOi with ev1 for problem-set uf100-430. Op-
timality criterion is Nflip.

Lp B NC NCT Av.Time Nflip Nuns

WalkSAT - - - 0.001479 3671.46 ± 3548.48 0

p0,u 2 60 91 0.001848 3874.64 ± 3687.65 0
p1 2 - 98 0.002558 5550.34 ± 6169.28 0
p2 2 - 100 0.002278 6848.57 ± 8366.21 0
p3,nit 2 - 91 0.001834 3860.89 ± 3699.45 0
p4,u 2 50 94 0.002061 4353.94 ± 4374.07 0
p5,u 2 10 99 0.002467 5286.15 ± 5794.69 0
p6,u 2 60 100 0.002145 4582.22 ± 4702.06 0
p7,u 2 60 76 0.001830 3816.29 ± 3625.77 0
p8 2 - 0.002558 6305.75 ± 7198.17 0
p9,u 2 10 99 0.002472 5334.06 ± 6019.27 0

206
C

hapter
9

D
evelopm

ent
and

experim
entalanalysis

ofB
C

O
i

Figure 9.6: Evolution of average number of flips for different randBCOi instances. Problem instances belong to class uf50-218. Stopping
criteria is MAXFLIPS=106

9.5 Experimental study of WalkBCOi 207

family uf100-430. In particular, from Fig. 9.7 we see that p0.u and p7.u show similar line
profiles, thus, efficiency for different values of B and NCT . The figure also shows that
the parameter NC demonstrated a significant influence on the overall behavior. For
larger NC both p0.u and p7.u require smaller number of transformations until finding a
model. However, p3.nit was quite unresponsive to changes in quantitative parameters’
values. Namely, the results are not practically different. Another conclusion regards
efficiency of other loyalty functions. The function p1 generated better results compared
to results reported by p2 and p8. However, according to Fig. 9.7 the class I loyalty
functions are not as efficient as class II. We conclude that an increase in the number
of bees does not improve the performance of the walkBCOi solver that calls the ev1
function.

9.5.2 Case study: Evaluation function ev2

Figure 9.8 provides information of the success of the evaluation function ev2. The
summary of descriptive data for the best configurations is given Table 9.9. Our first
conclusion has been motivated by the research question Q2 at the beginning of the
chapter. Due to considerably smaller number of flips (required until finding a model)
and based on the Fig. 9.8 and Table 9.9, the ev2 function contributes to an increase
in the performance of the BCOi algorithm compared to ev1. Among all loyalty func-
tions p0.u, p7.u and p3,nit are the most successful as they solved 3-CNF formulas for
small Nflip. Furthermore, the corresponding running times in Table 9.9 are similar
to the running time of the standalone WalkSAT algorithm. In particular, the WalkSAT
algorithm solved all 3-CNF instances in 0.0015 seconds in average. Significance of
the result is found in the potential to implement parallelization strategies. As for the
other loyalty functions we have observed that all the configurations required smaller
amount of computational resources than in the previous study. The function p1 shows
an improvement in solution quality compared against p2 and p8. However, the loyalty
functions of class I demonstrated the worst performance.

Table 9.9: Descriptive statistics for walkBCOi with ev2 for problem-set uf100-430. Op-
timality criterion is Nflip.

Lp B NC NCT Av.Time Nflip Nuns

WalkSAT - - - 0.001479 3671.46 ± 3548.48 0

p0,u 2 40 100 0.001784 3769.59 ± 3512.48 0
p1 2 - 96 0.001764 4184.83 ± 4136.13 0
p2 2 - 100 0.001635 4496.78 ± 4380.62 0
p3,nit 2 - 12 0.001488 3781.24 ± 3500.07 0
p4,u 2 60 85 0.001883 3944.57 ± 3713.19 0
p5,u 2 10 90 0.002017 4216.18 ± 4056.97 0
p6,u 2 30 99 0.001680 3990.59 ± 3777.84 0
p7,u 2 60 56 0.001445 3728.48 ± 3487.10 0
p8 2 - 100 0.001500 4380.88 ± 4356.37 0
p9,u 2 10 96 0.001798 4226.60 ± 4103.61 0

208 Chapter 9 Development and experimental analysis of BCOi

9.5.3 Conclusions for walkBCOi

Total running time of the two considered case studies of walkBCOi were close to a
week on the cluster specified in Section 7.3.5.2. We emphasize that the runs of ex-
periments were distributed in the following way: each node of the cluster executes
series of experiments that correspond to a pair of qualitative parameters. The fastest
results were obtained for class I loyalty functions for the both case studies. The slowest
BCOi instance in the class II were the p5,u and p9,u loyalty functions. Our conclusion
is that the BCOi algorithm improves workings of the random walk technique by hun-
dreds of orders of magnitude. However, implementing more sophisticate modification
rules of WalkSAT in the BCOi algorithm can produce solutions of a similar quality as
the standalone solver. The results of two studies for walkBCOi demonstrate that the
improvement in the evaluation phase of the algorithm also improves the quality of the
overall results.

9.6 Final remarks

Among first empirical results reported about the Schöning’s algorithm might be found
in [Pre04]. [Bal14a, pg. 26] demonstrate that the implementation of the Schöning’s al-
gorithm exhibits weak performance. The result coincides with our observations. Specif-
ically, the reinitialization step in Schöning’s algorithm degrades efficiency of the pure
random walk procedure and the conclusion is that restarts may be avoided. Another
result of our study is that the walksat procedure is efficient for uniform random 3-SAT
instances from SATLIB. We suspect that the reason is in the utilization of variable break
that exploits knowledge about the consequences of performing a particular step during
the search. Moreover, compared to the novelty paradigm, walksat does not require the
same amount of auxiliary data, therefore, is suitable as set of rules within a population-
based meta-heuristics.

BCOi framework improves workings of the random walk solver (Rand) by couple of
orders of magnitude. In particular, the results indicate that increasing population size
leads towards high quality solutions. However, the best results were obtained when
population size is small (B = 2). Considering qualitative parameters, loyalty decision
in randBCOi computed by p2 or p8 is the most efficient on the considered problem sets.
In case of walkBCOi the best performing loyalty function is p3. However, based on
results reported by other configurations of the BCOi parameters the proposed design of
the BCOi algorithm did not improve performance of the underlying solver. Analysis of
evaluation function indicates that there is space for improvement of walkBCOi utilizing
more information during the evaluation process.

9.7 Chapter summary

The chapter is devoted to the development of the BCOi algorithm for 3-SAT. More
precisely:

• We investigate the known solvers for 3-SAT.

9.7
C

hapter
sum

m
ary

209

Figure 9.7: Evolution of average number of flips for different walkBCOi instances and the evaluation function ev1 = numfalse . Problem
instances belong to class uf100–430. Stopping criteria is MAXFLIPS=106.

210
C

hapter
9

D
evelopm

ent
and

experim
entalanalysis

ofB
C

O
i

Figure 9.8: Evolution of average number of flips for different walkBCOi instances and the evaluation function ev2 . Problem instances
belong to class uf100–430. Stopping criteria is MAXFLIPS=106.

9.7 Chapter summary 211

• We provide information about the structure of problem instances based on the
known properties reported in the literature (e.g., clause-to-variable ratio for 3-
SAT).

• We conduct experimental tests to compare several heuristic algorithms for 3-SAT
(solvers) and to determine the best candidate for modification rules within the
the BCOi algorithm.

• We conduct an extensive analysis of two BCOi algorithms, randBCOi and walkBCOi.
The first has been shown successful compared to Rand algorithm. The walkBCOi
solver has not shown better performance against the standalone solver, however,
it produced promising results that might inspire a future work. In particular,
we have demonstrated that a change of the evaluation function significantly im-
proves an overall results for all BCOi parameter configurations.

CHAPTER10
Conclusions and future work

10.1 Concluding remarks
The main goal of this dissertation is the study of the bee colony optimization method
and analysis of its characteristics from two perspectives: theoretical and experimental.
The research is divided into three directions: theoretical analysis related to asymptotic
convergence of the BCO algorithm, implementation of parallelization strategies and
empirical analysis of its performance.

Convergence analysis. The central contribution of this thesis is the theoretical veri-
fication of BCO convergence towards global optimal solution. Based on recently pub-
lished tutorials (Section 7.2) we have demonstrated that BCO is well founded and
provides a good basis for asymptotic convergence. Assuming that the considered opti-
mization problem has a solution, convergence analysis is related to the question: will
the desired optimum be found if the algorithm is given enough time. In particular, we
considered two types of convergence, best-so-far convergence and the model conver-
gence. The first refers to a question whether or not the best-so-far solution converges
to some optimal solution, as the number of iterations tends to infinity. The best-so-far
convergence is simple to prove for cases with independent iterations. Indeed, the pure
random search satisfies its necessary conditions. In case of global knowledge exchange
we established necessary notation and conditions that lead BCO towards global opti-
mum. From the tutorials we discovered that efficient meta-heuristic method should
concentrate the search more and more towards the most promising areas of the search
space exploiting the previous search experience. Therefore, the model convergence
analyzes the properties of the algorithm that direct the search process toward the sub-
spaces containing the optimal solution. The proof of the model convergence considers
exploration/exploitation tradeoff explicitly into account and only succeeds under pa-
rameter assumptions ensuring a proper balance between these two factors. We propose
four modification schemes that support establishing such balance. The modification
schemes differ by the type of the BCO algorithm and structure of the solution with re-
gard to problem characteristics. As far as further research is concerned with respect to
model convergence, convergence speed might be investigated.

Experimental study. Experimental aspect of the thesis contains two approaches: pro-
posing and investigating parallelization strategies for distributed memory processors
and experimental study of the BCO algorithm performance. The first approach exam-
ines if it is possible to improve the performance of BCOc by exploiting parallelization

214 Chapter 10 Conclusions and future work

concepts. The second approach undertakes various steps in order to explain influence
of the BCO algorithmic components on measured outcomes.

Parallelization of BCOc. The BCO method is suitable for parallelization as it operates
on a population of solutions by utilizing stochastic, either constructive or improvement,
heuristic methods. In particular, we focused on the high-level (coarse-grained) paral-
lelization strategies. The main concept was introduction of Multiple BCO (MBCO),
where we vary the values of the BCO parameters and change the stopping criterion
at the same time. We consider three strategies for parallelization of MBCO and pro-
pose five coarse-grained parallel implementations under the Message Passing Interface
(MPI). The first strategy assumes independent execution of various BCO algorithms.
Sequential versions of BCOc are executed on different processors and the best solu-
tion is collected at the end. Applied to BCOc for P ||Cmax, we obtained almost linear
speedup for a modest number of engaged processors (≤ 12). At the same time quality
of the solution is not degraded significantly (below 3% with respect to the sequen-
tial result). The second strategy is related to synchronous cooperative execution of
various BCOc instances. We implemented two synchronous cooperative variants on a
completely connected homogeneous multiprocessor system, in which processors com-
municate by exchanging messages. The one involving a less frequent knowledge ex-
change resulted in better performance for the considered BCOc. Finally, related to the
third strategy, we implemented two variants of asynchronous BCO parallelization. The
first of them includes a global memory concept, and it is implemented on master-slave
multiprocessor architecture. The second, a non-centralized asynchronous execution,
is realized on a unidirectional processor ring. On two hard test examples we showed
that, while both the synchronous and asynchronous concepts perform well on a modest
number of processors, the asynchronous concept outperforms the synchronous one as
the number of engaged processors increases. The first contribution of this thesis re-
lated to this topic is the successful development of new and efficient distributed mem-
ory parallelization strategies for BCO. To the best of our knowledge, we developed the
first asynchronous strategies for bee-inspired algorithms, and therefore, they represent
the major contribution of this thesis. Future work should focus on exploring OpenMP
benefits and designing hybrid implementations.

Empirical study of BCO. The second line of the experimental study in this disser-
tation is related to sensitivity analysis of BCOc and BCOi algorithms. We studied the
behaviour of BCOc by the means of statistical and graphical tools. We established hier-
archy diagram 7.1, which led to various research questions and case studies concerning
the BCOc performance analysis. Our main contribution concerns structural tuning of
the BCOc algorithm for the P ||Cmax scheduling problem. Four candidate heuristics
are compared and the best is used in the remainder of the study. In total four BCO
parameters were analyzed: B, NC , method of evaluation and loyalty function. The
maximal number of bees (population size) is set arbitrary, however, large enough in or-
der to detect any improvements in the solution quality. Values for NC were limited by
problem dimension (n). Established statistical results facilitated efforts to detect best
structural parameter configuration. Data for each of the configurations are compared
for the equivalence of means. Both classical stopping criteria are used, maximal num-
ber of iterations and maximum allowed time. The question of suitable value for Nit

10.2 Future work 215

is thoroughly examined in the first part of Chapter 8. Values for the maxiaml allowed
CPU time follows the established line for Nit and, furtermore, are defined as function
of problem size (n). By means of visual analysis we have conduct parameter tuning.
The surface plots help to establish size of effect of method of evaluation. We generate
interaction plot, where influence of problem properties, Lp and of ME is observable
and their interaction seem significant. Along the study of BCOc we recognized that for
some configurations of qualitative BCO parameters, an average solution quality for dif-
ferent pairs (B,NC) does not improve as B increases. Moreover, the response values
indicate non-linear surface defined on the configuration space B×NC. This suggests in-
teraction between parameters B and NC . However, the interactions were investigated
only visually. When setting Nit = 100 the choice of loyalty function within method
min(ev1) is the most significant and can greatly influence the performance of BCO. Our
study showed that on the provided set of problem instances in 50% of the cases the best
results were obtained for minimization of ev1. The results showed that p2

b and p8
b out-

performed other functions. When setting maximal CPU time (changed w.r.t. dimension
of the problem) the same conclusion manifested: method min(ev1) coupled with func-
tions p2,8

b will provide best quality solutions. The main conclusions is the dominance
of two loyalty functions p2

b and p8
b as they were clearly more successful compared to

the rest of loyalty functions. High quality solutions were obtained for larger population
of bees, that is B ∈ [18, 20], and when NC ≥ 90. Combining results of statistical and
visual analysis we conclude that configurations {min, ev1, p

2,8
b , B ∈ [18, 20], NC ≥ 90}

were the most successful. Some additional tests indicate that successful values of NC
can be restricted to [0.9n, n], which has yet to be confirmed.

Empirical study of BCOi. We studied the behavior of BCOi on the 3-SAT by uti-
liznig graphical tools. The study showed that RandBCOi improves performance of the
Rand algorithm on the considered problem set of 3-SAT instances. However, restricted
by the maximal number of flips the BCOi algorithm did not succeed to satisfy any of
100 3-CNF formulas. Contrary, WalkBCOi that utilizes walksat heuristic showed better
performance. Furthermore, we conducted two set of tests in order to compare two
evaluation functions. The conclusion is that the performance of WalkBCOi is improved
once we incorporate knowledge that assists the efforts of the underlying walksat rules.
However, the overall success of the BCOi algorithm is not practically better than of
WalkSAT. The conclusion is that presented BCOi is not suitable as 3-SAT solver and
should employ more sophisticated method of evaluation.

10.2 Future work

Besides the fact that BCO method was successfully applied to various combinatorial
problems, still enough space is left for further advancement by exploring various infor-
mation sharing mechanisms and different mechanisms of collaborations. Preliminary
work has been reported in [Alz15] where roulette, tournament, rank and disruptive
selection have been compared. In dissertation by [Nik15] heterogeneity of bee popu-
lation was implemented and showed promising results. There is more to contribute to
the theoretical aspect of the research, namely, to investigate convergence speed of the
BCO algorithm for various optimization problems. Moreover, the empirical verification

216 Chapter 10 Conclusions and future work

of proposed selection schemes in the model convergence section should be conducted
and compared against the common implementations.

Regarding experimental analysis of the performance, an imperative directions for
future work with BCO algorithms is utilization of the tuning methods reviewed in
[Eib11]. Development of exact solutions in the optimization has raised questions about
usefulness of heuristic algorithms. Each day new exact algorithms generate optimal
solutions for problems that were considered solvable only by use of randomized pro-
cedures. The future of heuristic algorithms might lay in the mixture with exact ones.
As always John Hooker has provided first insights into this new world in his paper
[Hoo13]. A compelling topic for future research is hybridization of BCO with exact
methods, MIP based in particular. Furthermore, BCO framework may harness more of
techniques of ranking different heuristics with goal to increase the robustness of the
BCO algorithm.

Practical aspects of the future work certainly refer to the application of BCO to
new and challenging optimization problems: multi-objective optimization, stochastic
optimization, problems that require multiple solutions of the equal quality and many
others.

Bibliography

[Aar88] Emile Aarts and Jan Korst: Simulated Annealing and Boltzmann Machines:
A Stochastic Approach to Combinatorial Optimization and Neural Computing.
John Wiley & Sons, 1988.

[Abb01] Hussein A. Abbass: MBO: Marriage in honey bees optimization-a Haplomet-
rosis polygynous swarming approach. In Proceedings of the 2001 Congress
on Evolutionary Computation, vol. 1, pp. 207–214. IEEE, 2001.

[Afs07] Abbass Afshar, O. Bozorg Haddad, Miguel A. Mariño, and B.J. Adams:
Honey-bee mating optimization (HBMO) algorithm for optimal reservoir
operation. Journal of the Franklin Institute, vol. 344(5): pp. 452–462, 2007.

[Alb05] Enrique Alba (ed.): Parallel Metaheuristics: A New Class of Algorithms. Wiley
Series on Parallel and Distributed Computing. John Wiley & Sons, 2005.

[Alb06] Enrique Alba and Gabriel Luque: Evaluation of parallel metaheuristics. In
Proceedings of the Workshop on Empirical Methods for the Analysis of Al-
gorithms, EMAA’06, pp. 9–14. Reykjavik, Iceland, September 2006. URL
http://www.imada.sdu.dk/~marco/EMAA/Proceedings.html.

[Alb12] Susanne Albers and Matthias Hellwig: Semi-online scheduling revisited.
Theoretical Computer Science, vol. 443: pp. 1–9, 2012.

[Ale05] Schrijver Alexander: On the History of Combinatorial Optimization (Till
1960). Handbooks in Operations Research and Management Science: Discrete
Optimization, vol. 12: pp. 1–68, 2005.

[All08] Ali Allahverdi, C.T. Ng, T.C. Edwin Cheng, and Mikhail Y. Kovalyov: A sur-
vey of scheduling problems with setup times or costs. European Journal of
Operational Research, vol. 187(3): pp. 985–1032, 2008.

[Alz15] M. Alzaqebah and Salwani Abdullah: Hybrid bee colony optimization
for examination timetabling problems. Computers & Operations Research,
vol. 54: pp. 142–154, 2015.

[And53] R. L. Anderson: Recent Advances in Finding Best Operating Conditions.
Journal of the American Statistical Association, vol. 48(264): pp. 789–798,
1953.

[Aro98] Sanjeev Arora and Shmuel Safra: Probabilistic Checking of Proofs: A New
Characterization of NP. Journal of the ACM (JACM), vol. 45(1): pp. 70–122,
1998.

http://www.imada.sdu.dk/~marco/EMAA/Proceedings.html

218 Bibliography

[Bac97] Thomas Back, David B. Fogel, and Zbigniew Michalewicz (eds.): Hand-
book of Evolutionary Computation. Oxford University Press/IOP Publishing,
1997.

[Bal95] Shumeet Baluja and Rich Caruana: Removing the Genetics from the Stan-
dard Genetic Algorithm. In Proceedings of the XII International Conference
on Machine Learning, pp. 38–46. Tahoce City, California, July 1995.

[Bal99] Dana Harry Ballard: An Introduction to Natural Computation. MIT Press,
1999.

[Bal09] Adrian Balint, Daniel Gall, Gregor Kapler, and Robert Retz: Experiment
design and administration for computer clusters for SAT-solvers (EDACC).
Journal on Satisfiability, Boolean Modeling and Computation, vol. 7: pp. 77–
82, 2009.

[Bal14a] Adrian Balint: Engineering stochastic local search for the satisfiability prob-
lem. Ph.D. thesis, Universität Ulm, Fakultät für Ingenieurwissenschaften
und Informatik, 2014.

[Bal14b] Adrian Balint, Armin Biere, Andreas Fröhlich, and Uwe Schöning: Improv-
ing Implementation of SLS Solvers for SAT and New Heuristics for k-SAT
with Long Clauses. In Theory and Applications of Satisfiability Testing–SAT
2014, pp. 302–316. Springer, 2014.

[Ban10] Anan Banharnsakun, Tiranee Achalakul, and Booncharoen Sirinaovakul:
Artificial bee colony algorithm on distributed environments. In Second
World Congress on Nature and Biologically Inspired Computing (NaBIC), pp.
13–18. IEEE, 2010.

[Bar95] Richard S. Barr, Bruce L. Golden, James P. Kelly, Mauricio G. C. Resende,
and William R. Stewart Jr.: Designing and Reporting on Computational Ex-
periments with Heuristic Methods. Journal of Heuristics, vol. 1(1): pp. 9–32,
1995.

[Bar11] David Fernández Barrero: Reliability of performance measures in tree-based
Genetic Programming: A study on Koza’s computational effort. Ph.D. thesis,
University of Alcalá, 2011.

[Bar15] Blaise Barney: Introduction to Parallel Computing. https://computing.
llnl.gov/tutorials/parallel_comp/#DesignPartitioning, 2015.

[Bat08] Roberto Battiti, Mauro Brunato, and Franco Mascia: Reactive search and
intelligent optimization, vol. 45. Springer, 2008.

[BB04] Thomas Bartz-Beielstein, Konstantinos E. Parsopoulos, and Michael N. Vra-
hatis: Design and Analysis of Optimization Algorithms Using Computa-
tional Statistics. Applied Numerical Analysis & Computational Mathematics,
vol. 1(2): pp. 413–433, 2004.

[BB06] Thomas Bartz-Beielstein: Experimental Research in Evolutionary Computa-
tion; The New Experimentalism. Natural Computing Series. Springer, 2006.

https://computing.llnl.gov/tutorials/parallel_comp/#DesignPartitioning
https://computing.llnl.gov/tutorials/parallel_comp/#DesignPartitioning

Bibliography 219

[BB13] Thomas Bartz-Beielstein and Mike Preuß: Experimental Analysis of Opti-
mization Algorithms: Tuning and Beyond. In Yossi Borenstein and Alberto
Moraglio (eds.), Theory and Principled Methods for the Design of Metaheuris-
tics, pp. 205–245. Springer, 2013.

[Bel56] Richard Bellman: Mathematical Aspects of Scheduling Theory. Journal of
the Society for Industrial & Applied Mathematics, vol. 4(3): pp. 168–205,
1956.

[Ben93] Gerardo Beni and Jing Wang: Swarm Intelligence in Cellular Robotic Sys-
tems. In Paolo Dario, Giulio Sandini, and Patrick Aebischer (eds.), Robots
and Biological Systems: Towards a New Bionics? Proceedings of the NATO Ad-
vanced Workshop on Robots and Biological System, 1989, Tuscany, Italy, vol.
102 of NATO ASI Series, pp. 703–712. Springer, 1993.

[Ber91] Hugues Bersini and Francisco J. Varela: Hints for adaptive problem solving
gleaned from immune networks. In Parallel Problem Solving from Nature,
vol. 496 of Lecture Notes in Computer Science, pp. 343–354. Springer, 1991.

[Bes04] Matthijs Leendert den Besten: Simple Metaheuristics for Scheduling: An em-
pirical investigation into the application of iterated local search to determin-
istic scheduling problems with tardiness penalties. Ph.D. thesis, Technische
Universität Darmstadt, Darmstadt, Germany, 2004. Adviser prof. Dr. Wolf-
gang Bibel.

[Bez92] James C. Bezdek: On the relationship between neural networks, pattern
recognition and intelligence. International Journal of Approximate Reason-
ing, vol. 6(2): pp. 85–107, 1992.

[Bil86] Patrick Billingsley: Convergence of Probability Measures. John Wiley & Sons,
1986.

[Bir06] Mauro Birattari, Mark Zlochin, and Marco Dorigo: Towards a theory of
practice in metaheuristics design: A machine learning perspective. RAIRO-
Theoretical Informatics and Applications, vol. 40(2): pp. 353–369, 2006.

[Bir09] Mauro Birattari: Tuning Metaheuristics: A Machine Learning Perspective, vol.
197 of Studies in Computational Intelligence. Springer, 2009.

[Bir10] Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stützle: F-
Race and Iterated F-Race: An Overview. In Thomas Bartz-Beielstein, Marco
Chiarandini, Luís Paquete, and Mike Preuss (eds.), Experimental Methods
for the Analysis of Optimization Algorithms, pp. 311–336. Springer, 2010.

[Bła83] Jacek Błażewicz, Jan Karel Lenstra, and A. H. G. Rinnooy Kan: Schedul-
ing subject to resource constraints: classification and complexity. Discrete
Applied Mathematics, vol. 5(1): pp. 11–24, 1983.

[Bła07] Jacek Błażewicz, Klaus H. Ecker, Erwin Pesch, Günter Schmidt, and Jan
Weglarz: Handbook on Scheduling: From Theory to Applications. Interna-
tional Handbook on Information Systems. Springer, 2007.

220 Bibliography

[Blu03] Christian Blum and Andrea Roli: Metaheuristics in Combinatorial Opti-
mization: Overview and Conceptual Comparison. ACM Computing Surveys
(CSUR), vol. 35(3): pp. 268–308, 2003.

[Blu08] Christian Blum and Andrea Roli: Hybrid Metaheuristics: An Introduction.
In Hybrid Metaheuristics, vol. 114 of Studies in Computational Intelligence,
pp. 1–30. Springer, 2008.

[Blu12] Christian Blum, Raymond Chiong, Maurice Clerc, Kenneth De Jong, Zbig-
niew Michalewicz, Ferrante Neri, and Thomas Weise: Evolutionary Opti-
mization. In Variants of Evolutionary Algorithms for Real-World Applications,
pp. 1–29. Springer, 2012.

[Boc09] Fayez F Boctor, Jacques Renaud, Angel Ruiz, and Simon Tremblay: Optimal
and heuristic solution methods for a multiprocessor machine scheduling
problem. Computers & Operations Research, vol. 36(10): pp. 2822–2828,
2009.

[Bol93] Massimiliano Bolondi and Massimo Bondanza: Parallelizzazione di un al-
goritmo per la risoluzione del problema del commesso viaggiatore. Master’s
thesis, Dipartimento di Elettronica e Informazione, Politecnico di Milano,
Italy, 1993.

[Bon99] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz: Swarm Intelligence:
From Natural to Artificial Systems. Oxford university press, 1999.

[Bou13] Ilhem Boussaïd, Julien Lepagnot, and Patrick Siarry: A survey on optimiza-
tion metaheuristics. Information Sciences, vol. 237: pp. 82–117, 2013.

[Box54] George E.P. Box: The Exploration and Exploitation of Response Surfaces:
Some General Considerations and Examples. Biometrics, vol. 10(1): pp.
16–60, 1954.

[Box05] George E. P. Box, J. Stuart Hunter, and William G. Hunter: Statistics for
Experimenters: Design, Innovation, and Discovery. John Wiley & Sons, 2nd
ed., 2005.

[Boy07] Stephen Boyd, Seung-Jean Kim, Lieven Vandenberghe, and Arash Has-
sibi: A tutorial on geometric programming. Optimization and engineering,
vol. 8(1): pp. 67–127, 2007.

[Brg03] Franc Brglez, Matthias F. Stallmann, and Xiao Yu Li: SATbed: A Config-
urable Environment for Reliable Performance Experiments with SAT In-
stance Classes and Algorithms. In Proceedings of the 6th International Con-
ference on Theory and Applications of Satisfiability Testing, pp. 1–15. Santa
Margherita Ligure - Portofino, Italy, 2003.

[Bri04] Jack Brimberg, Pierre Hansen, and Nenad Mladenović: Convergence of
Variable Neighborhood Search. Les Cahiers du GERAD, pp. 1–15, 2004.

[Bro58] Samuel H. Brooks: A Discussion of Random Methods for Seeking Maxima.
Operations research, vol. 6(2): pp. 244–251, 1958.

Bibliography 221

[Bro11] Jason Brownlee: Clever Algorithms: Nature-inspired Programming Recipes.
Jason Brownlee, 2011. www.CleverAlgorithms.com.

[Bru07] Peter Brucker: Scheduling Algorithms. Springer-Verlag Berlin Heidelberg,
5th ed., 2007.

[Bru09] Peter Brucker and Sigrid Knust: On the Complexity of Scheduling. In Intro-
duction to Scheduling, pp. 1–21. CRC, Taylor & Francis Group, 2009.

[Bus] WikiProject Business: Visual Inspection. Available at: https://en.
wikipedia.org/Visual_inspection. 2015.

[But64] A. V. Butrimenko: On the search for optimal routes in changing graphs. Izv.
Akad. Nauk SSSR. Ser. Tekhn. Kibern, vol. 6, 1964.

[Cal] The Regents of the University of California: What statistical analysis
should I use? @ONLINE. http://www.ats.ucla.edu/stat/mult_pkg/
whatstat/. Accessed 2015.

[Cam91] Scott Camazine and James Sneyd: A Model of Collective Nectar Source
Selection by Honey Bees: Self-organization Through Simple Rules. Journal
of theoretical Biology, vol. 149(4): pp. 547–571, 1991.

[Cas07] Leandro Nunes de Castro: Fundamentals of natural computing: an
overview. Physics of Life Reviews, vol. 4(1): pp. 1–36, 2007.

[Čer85] Vladimír Černỳ: Thermodynamical Approach to the Traveling Salesman
Problem: An Efficient Simulation Algorithm. Journal of Optimization Theory
and Applications, vol. 45(1): pp. 41–51, 1985.

[Che91] Peter Cheeseman, Bob Kanefsky, and William M. Taylor: Where the Really
Hard Problems Are. In Proceedings of the Twelfth International Joint Confer-
ece of Artificial Intellligence, IJCAI-91, 24-30 Aug, 1991, Sydney, Australia,
pp. 331–337. Morgan Kaufmann Publishers, 1991.

[Che99] Bo Chen, Chris N. Potts, and Gerhard J. Woeginger: A Review of Machine
Scheduling: Complexity, Algorithms and Approximability. In Handbook of
Combinatorial Optimization, vol. 3, pp. 21–169. Springer, 1999.

[Che04] Bo Chen: Parallel Scheduling for Early Completion. In Handbook of Schedul-
ing: Algorithms, Models, and Performance Analysis, pp. 9.1–9.10. Chap-
man & Hall/CRC, 2004.

[Che13] Junfeng Chen, Jianjun Ni, and Mingang Hua: Convergence Analysis of a
Class of Computational Intelligence Approaches. Mathematical Problems in
Engineering, vol. 2013: pp. 1–10, 2013.

[Cof78] Edward G. Coffman, Jr., Michael R. Garey, and David S. Johnson: An Ap-
plication of Bin-Packing to Multiprocessor Scheduling. SIAM Journal on
Computing, vol. 7(1): pp. 1–17, 1978.

www.CleverAlgorithms.com
https://en.wikipedia.org/Visual_inspection
https://en.wikipedia.org/Visual_inspection
http://www.ats.ucla.edu/stat/mult_pkg/whatstat/
http://www.ats.ucla.edu/stat/mult_pkg/whatstat/

222 Bibliography

[Cof00] Marie Coffin and Matthew J. Saltzman: Statistical Analysis of Computa-
tional Tests of Algorithms and Heuristics. INFORMS Journal on Computing,
vol. 12(1): pp. 24–44, 2000.

[Coh88] Jacob Cohen: Statistical Power Analysis for the Behavioral Sciences. Lawrence
Erlbaum Associates, 2nd ed., 1988.

[Coh95] Paul R. Cohen: Empirical Methods for Artificial Intelligence. The MIT Press,
1995.

[Com11] Georgia Tech College of Computing: The Waggle Dance of the Honey-
bee [Video file]. Retrieved from https://www.youtube.com/watch?v=
bFDGPgXtK-U, 2011.

[Con67] Richard W. Conway, William L. Maxwell, and Louis W. Miller: Theory of
Scheduling. Addison-Wesley, 1967.

[Coo71] Stephen A. Cook: The Complexity of Theorem-Proving Procedures. In Pro-
ceedings of the 3rd Annual ACM Symposium on Theory of Computing, May
3-5, 1971, Shaker Heights, Ohio, USA, pp. 151–158. ACM, 1971.

[Coo97] Stephen A. Cook and David G. Mitchell: Finding Hard Instances of the Satis-
fiability Problem. In Satisfiability Problem: Theory and Applications: DIMACS
Workshop, March 11-13, 1996, vol. 35, pp. 1–17. American Mathematical
Society, 1997.

[Cor01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein: Introduction to Algorithms. MIT press, 2nd ed., 2001.

[Cra05] Teodor Gabriel Crainic and Nourredine Hail: Parallel Metaheuristics Ap-
plications. In Enrique Alba (ed.), Parallel Metaheuristics: A New Class of
Algorithms, pp. 447–494. John Wiley & Sons, 2005.

[Cra07] Teodor Gabriel Crainic and Michel Toulouse: Explicit and Emergent Co-
operation Schemes for Search Algorithms. In International Conference on
Learning and Intelligent Optimization, pp. 95–109. Springer, 2007.

[Cra10] Teodor Gabriel Crainic and Michel Toulouse: Parallel Meta-heuristics. In
Michel Gendreau and Jean-Yves Potvin (eds.), Handbook of metaheuristics,
pp. 497–541. Springer, 2010.

[Cra14] Teodor Gabriel Crainic, Tatjana Davidović, and Dušan Ramljak: Designing
Parallel Meta-Heuristic Methods. In Marijana Despotović-Zrakić, Veljko Mi-
lutinović, and Aleksandar Belić (eds.), High Performance and Cloud Comput-
ing in Science and Education, pp. 260–280. 2014.

[Cro12] Carrol Croarkin and Paul Tobias: NIST/SEMATECH e-Handbook of Statistical
Methods. http://www.itl.nist.gov/div898/handbook/, 2012.

[Cun02] Van-Dat Cung, Simone L. Martins, Celso C. Ribeiro, and Catherine Rou-
cairol: Strategies for the Parallel Implementation of Metaheuristics. In Es-
says and surveys in metaheuristics, vol. 15 of Operations Research/Computer
Science Interfaces Series, pp. 263–308. Springer, 2002.

https://www.youtube.com/watch?v=bFDGPgXtK-U
https://www.youtube.com/watch?v=bFDGPgXtK-U
http://www.itl.nist.gov/div898/handbook/

Bibliography 223

[Cza04] Andrew Czarn, Cara MacNish, Kaipillil Vijayan, Berwin Turlach, and Ritu
Gupta: Statistical Exploratory Analysis of Genetic Algorithms. Evolutionary
Computation, IEEE Transactions on, vol. 8(4): pp. 405–421, 2004.

[Dag98] Leonardo Dagum and Ramesh Menon: OpenMP: An Industry Atandard API
for Shared-Memory Programming. IEEE Computational Science and Engi-
neering, vol. 5(1): pp. 46–55, 1998.

[Dav60] Martin Davis and Hilary Putnam: A Computing Procedure for Quantification
Theory. Journal of the ACM, vol. 7(3): pp. 201–215, 1960.

[Dav02] Charles S. Davis: Statistical Methods for the Analysis of Repeated Measure-
ments. Springer-Verlag New York, 2002.

[Dav06a] Tatjana Davidović: Rasporedjivanje zadataka na višeprocesorske sisteme pri-
menom metaheuristika. Ph.D. thesis, Matematički fakultet, Univerzitet u
Beogradu, 2006. Advisers prof. Dr. Nenad Mladenović and prof. Dr. Dušan
Tošić.

[Dav06b] Tatjana Davidović and Teodor Gabriel Crainic: Benchmark-Problem In-
stances for Static Scheduling of Task Graphs with Communication Delays
on Homogeneous Multiprocessor Systems. Computers & operations research,
vol. 33(8): pp. 2155–2177, 2006.

[Dav09] Tatjana Davidović, Milica Šelmić, and Dušan Teodorović: Scheduling In-
dependent Tasks: Bee Colony Optimization Approach. In Proceedings of
the 17th Mediterranean Conference on Control and Automation, MED’09, pp.
1020–1025. Thessaloniki, Greece, 2009.

[Dav11a] Tatjana Davidović, Dušan Ramljak, Milica Šelmić, and Dušan Teodorović:
Bee colony optimization for the p-center problem. Computers & Operations
Research, vol. 38(10): pp. 1367–1376, 2011.

[Dav11b] Tatjana Davidović, Dušan Ramljak, Milica Šelmić, and Dušan Teodorović:
MPI Parallelization of Bee Colony Optimization. In Proceedings of the 1st
International Symposium & 10th Balkan Conference on Operational Research,
vol. 2, pp. 193–200. 2011.

[Dav12] Tatjana Davidović, Milica Šelmić, Dušan Teodorović, and Dušan Ramljak:
Bee colony optimization for scheduling independent tasks to identical pro-
cessors. Journal of Heuristics, vol. 18(4): pp. 549–569, 2012.

[Dav13] Tatjana Davidović, Tatjana Jakšić, Dušan Ramljak, Milica Šelmić, and Dušan
Teodorović: Parallelization Strategies for Bee Colony Optimization Based
on Message Passing Communication Protocol. Optimization, vol. 62(8): pp.
1113–1142, 2013. Dedicated to BALCOR 2011.

[Dav15a] Tatjana Davidović: Bee Colony Optimization: Recent Developments and Ap-
plications. "Mircea cel Batran" Naval Academy Scientific Bulletin, vol. (Special
issue devoted to BALCOR 2015) 18(2): pp. 225–235, 2015.

224 Bibliography

[Dav15b] Tatjana Davidović, Dušan Teodorović, and Milica Šelmić: Bee Colony Opti-
mization Part I: The Algorithm Overview. Yugoslav Journal of Operational
Research, vol. 25(1): pp. 33–56, 2015.

[Deb14] Kalyanmoy Deb: Multi-objective Optimization. In Search methodologies, pp.
403–449. Springer, 2014.

[Del95] Mauro Dell’Amico and Silvano Martello: Optimal Scheduling of Tasks on
Identical Parallel Processors. ORSA Journal on Computing, vol. 7(2): pp.
191–200, 1995.

[Del12] Mauro Dell’Amico, Manuel Iori, Silvano Martello, and Michele Monaci: A
note on exact and heuristic algorithms for the identical parallel machine
scheduling problem. Journal of Heuristics, vol. 18(6): pp. 939–942, 2012.

[Der09] Ulrich Derigs (ed.): Optimization and Operations Research, vol. 1. EOLSS,
2009.

[Der11] Joaquín Derrac, Salvador García, Daniel Molina, and Francisco Herrera: A
practical tutorial on the use of nonparametric statistical tests as a methodol-
ogy for comparing evolutionary and swarm intelligence algorithms. Swarm
and Evolutionary Computation, vol. 1(1): pp. 3–18, 2011.

[Dim11] Branka Dimitrijević, Dušan Teodorović, Vladimir Simić, and Milica Šelmić:
Bee Colony Optimization Approach to Solving the Anticovering Location
Problem. Journal of Computing in Civil Engineering, vol. 26(6): pp. 759–
768, 2011.

[DJ75] Kenneth Alan De Jong: Analysis of the Behavior of a Class of Genetic Adaptive
Systems. Ph.D. thesis, University of Michigan, 1975.

[Dor92] Marco Dorigo: Optimization, Learning and Natural Algorithms. Ph.D. thesis,
1992.

[Dor99] M. Dorigo and G. Di Caro: Ant Colony Optimization: A New Meta-Heuristic.
In Proceedings of the 1999 Congress on Evolutionary Computation, 6-9 July,
1999, Washington, DC, USA, vol. 2, pp. 1470–1477. IEEE, 1999.

[Dor04] Marco Dorigo and Thomas Stützle: Ant Colony Optimization. the MIT press,
2004.

[Dor05] Marco Dorigo and Christian Blum: Ant colony optimization theory: A sur-
vey. Theoretical computer science, vol. 344: pp. 243–278, 2005.

[Dor07] Marco Dorigo and Mauro Birattari: Swarm intelligence. Scholarpedia,
vol. 2(9): p. 1462, 2007. URL http://www.scholarpedia.org/Swarm_
intelligence.

[Dor10] Marco Dorigo and Thomas Stützle: Ant Colony Optimization: Overview and
Recent Advances. In Handbook of Metaheuristics, vol. 146 of International
Series in Operations Research & Management Science, pp. 227–263. Springer,
2010.

http://www.scholarpedia.org/Swarm_intelligence
http://www.scholarpedia.org/Swarm_intelligence

Bibliography 225

[Dri05] Habiba Drias, Souhila Sadeg, and Safa Yahi: Cooperative Bees Swarm for
Solving the Maximum Weighted Satisfiability Problem. In Computational
Intelligence and Bioinspired Systems, vol. 3512 of Lecture Notes in Computer
Science, pp. 318–325. Springer, 2005.

[Dun55] Charles W. Dunnett: A multiple comparison procedure for comparing sev-
eral treatments with a control. Journal of the American Statistical Associa-
tion, vol. 50(272): pp. 1096–1121, 1955.

[Dut04] Joydeep Dutta: Optimization Theory-A Modern face of Applied Mathemat-
ics. Directions, vol. 6(3): pp. 19–24, 2004.

[Eda08] Praveen Edara, Milica Šelmić, and Dušan Teodorović: Heuristic solution
algorithms for a traffic sensor optimization problem. INFORMS, pp. 12–15,
2008.

[Eib02] Agoston E Eiben and Márk Jelasity: A Critical Note on Experimental Re-
search Methodology in EC. In Proceedings of the 2002 Congress on Evolu-
tionary Computation (CEC’2002), vol. 1, pp. 582–587. 2002.

[Eib11] Agoston E. Eiben and Selmar K. Smit: Parameter Tuning for Configuring and
Analyzing Evolutionary Algorithms. Swarm and Evolutionary Computation,
vol. 1(1): pp. 19–31, 2011.

[EO13] Jawad A. El-Omari: Efficient Learning Methods to Tune Algorithm Parameters.
Ph.D. thesis, University of Warwick, 2013. Adviser prof. Dr. Juergen Branke.

[Fag09] Morten W. Fagerland and Leiv Sandvik: The Wilcoxon–Mann–Whitney test
under scrutiny. Statistics in medicine, vol. 28(10): p. 1487, 2009.

[Fal96] Emanuel Falkenauer: A hybrid grouping genetic algorithm for bin packing.
Journal of heuristics, vol. 2(1): pp. 5–30, 1996.

[FB07] David Fernández-Baca and Balaji Venkatachalam: Sensitivity analysis in
combinatorial optimization. In Teofilo F. Gonzalez (ed.), Handbook of Ap-
proximation Algorithms and Metaheuristics, Computer and Information Sci-
ence Series, pp. 30.1–30.17. Chapman&Hall/CRC, 2007.

[Feo95] Thomas A. Feo and Mauricio G. C. Resende: Greedy Randomized Adaptive
Search Procedures. Journal of global optimization, vol. 6(2): pp. 109–133,
1995.

[Flo09] Christodoulos A. Floudas and Panos M. Pardalos (eds.): Encyclopedia of Op-
timization. Springer, 2nd ed., 2009.

[Fod12] János Fodor, Ryszard Klempous, and Carmen Paz Suárez Araujo (eds.): Re-
cent Advances in Intelligent Engineering Systems, vol. 378 of Studies in Com-
putational Intelligence. Springer, 2012.

[FP10] Luis Fanjul-Peyro and Rubén Ruiz: Iterated greedy local search methods
for unrelated parallel machine scheduling. European Journal of Operational
Research, vol. 207(1): pp. 55–69, 2010.

226 Bibliography

[Fra94] Jeremy Frank: A study of genetic algorithms to find approximate solutions
to hard 3CNF problems. In Golden West International Conference on Artificial
Intelligence. 1994.

[Fra10] Eitan Frachtenberg and Uwe Schwiegelshohn: Preface. In 15th Internation
Workshop, JSSPP 2010, Job Scheduling Strategies for Parallel Processing, pp.
V–VII. 2010.

[Gal91] Efim A. Galperin: Problem-method classification in optimization and con-
trol. Computers & Mathematics with Applications, vol. 21(6): pp. 1–6, 1991.

[Gal97] Tomas Gal and Harvey J. Greenberg (eds.): Advances in Sensitivity Analysis
and Parametric Programming. International Series in Operations Research
& Management Science. Springer, 1997.

[Gar79] Michael R. Garey and David S. Johnson: Computers and Intractability: A
Guide to the Theory of NP-Completeness. Series of books in the mathematical
sciences. W. H. Freeman and Company, 1979.

[Gas13] Saul I. Gass and Michael C. Fu (eds.): Encyclopedia of operations research
and management science. Springer, New York, 2013.

[Gen93] Ian P. Gent and Toby Walsh: Towards an understanding of hill-climbing
procedures for SAT. In Proceedings of AAAI’93, vol. 93, pp. 28–33. MIT
Press, 1993.

[Gen10a] Michel Gendreau and Jean-Yves Potvin: Handbook of metaheuristics, vol. 2.
Springer, 2010.

[Gen10b] Michel Gendreau and Jean-Yves Potvin: Tabu search. In Handbook of Meta-
heuristics, pp. 41–59. Springer, 2010.

[GG12] Esperanza Garcia-Gonzalo and Juan Luis Fernandez-Martinez: A brief his-
torical review of particle swarm optimization (PSO). Journal of Bioinfor-
matics and Intelligent Control, vol. 1(1): pp. 3–16, 2012.

[Gla94] Celia A. Glass, Chris N. Potts, and P. Shade: Unrelated parallel machine
scheduling using local search. Mathematical and Computer Modelling,
vol. 20(2): pp. 41–52, 1994.

[Glo77] Fred Glover: Heuristics for integer programming using surrogate con-
straints. Decision Sciences, vol. 8(1): pp. 156–166, 1977.

[Glo86] Fred Glover: Future paths for integer programming and links to artificial
intelligence. Computers & Operations Research, vol. 13(5): pp. 533–549,
1986.

[Glo89] Fred Glover: Tabu search-part I. ORSA Journal on computing, vol. 1(3): pp.
190–206, 1989.

[Glo97] Fred Glover and Manuel Laguna: Tabu search. Kluwer Academic Publishers,
1997.

Bibliography 227

[Gol88] Olivier Goldschmidt and Dorit S. Hochbaum: Polynomial algorithm for the
k-cut problem. In 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science, pp. 444–451. IEEE, 1988.

[Gol89] David Edward Goldberg et al.: Genetic algorithms in search, optimization,
and machine learning, vol. 412. Addison-wesley Reading Menlo Park, 1989.

[Gol99] Oded Goldreich: Introduction to Complexity Theory - Lecture Notes. Weiz-
mann Institute of Science, Israel, 1999.

[Gon07] Teofilo F. Gonzalez (ed.): Handbook of approximation algorithms and meta-
heuristics. Computer and Information Science Series. Chapman&Hall/CRC,
2007.

[Got02] Jens Gottlieb, Elena Marchiori, and Claudio Rossi: Evolutionary algorithms
for the satisfiability problem. Evolutionary Computation, vol. 10(1): pp.
35–50, 2002.

[Gou75] James L. Gould: Honey bee recruitment: the dance-language controversy.
Science, vol. 189(4204): pp. 685–693, 1975.

[Gra66] Ronald L. Graham: Bounds for certain multiprocessing anomalies. Bell Sys-
tem Technical Journal, vol. 45(9): pp. 1563–1581, 1966.

[Gra69] Ronald L. Graham: Bounds on multiprocessing timing anomalies. SIAM
journal on Applied Mathematics, vol. 17(2): pp. 416–429, 1969.

[Gra79] Ronald L. Graham, Eugene L. Lawler, Jan Karel Lenstra, and A.H.G. Rin-
nooy Kan: Optimization and approximation in deterministic sequencing
and scheduling: a survey. Annals of discrete mathematics, vol. 5: pp. 287–
326, 1979.

[Gra94] Vincent Granville, Mirko Krivánek, and J-P Rasson: Simulated annealing:
A proof of convergence. IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 16(6): pp. 652–656, 1994.

[Gra12] Boris Granovskiy, Tanya Latty, Michael Duncan, David JT Sumpter, and
Madeleine Beekman: How dancing honey bees keep track of changes: the
role of inspector bees. Behavioral Ecology, vol. 23(3): pp. 588–596, 2012.

[Gre86] John J. Grefenstette: Optimization of Control Parameters for Genetic Algo-
rithms. IEEE Transactions on systems, man, and cybernetics, vol. 16(1): pp.
122–128, 1986.

[Grö12] Martin Grötschel: Optimization Stories, vol. 1. Dt. Mathematiker-
Vereinigung, 2012.

[Gu92] Jun Gu: Efficient local search for very large-scale satisfiability problems.
SIGART Bulletin, vol. 3(1): pp. 8–12, 1992.

[Gut00] Walter J. Gutjahr: A graph-based ant system and its convergence. Future
generation computer systems, vol. 16(8): pp. 873–888, 2000.

228 Bibliography

[Gut02] Walter J. Gutjahr: ACO algorithms with guaranteed convergence to the opti-
mal solution. Information processing letters, vol. 82(3): pp. 145–153, 2002.

[Gut09] Walter J. Gutjahr: Convergence analysis of metaheuristics. In Matheuristics:
Hybridizing Metaheuristics and Mathematical Programming, pp. 159–187.
Springer, 2009.

[Gut10] Walter J. Gutjahr: Stochastic search in metaheuristics. In Handbook of Meta-
heuristics, pp. 573–597. Springer, 2010.

[Gut11] Walter J. Gutjahr: Ant Colony Optimization: Recent Developments in The-
oretical Analysis. Theory of Randomized Search Heuristics: Foundations and
Recent Developments, pp. 225–254, 2011.

[Hai10] Tina Haidborn: Dancing with bees. Max Plank Research, vol. 2: pp. 75–80,
2010.

[Haj88] Bruce Hajek: Cooling schedules for optimal annealing. Mathematics of op-
erations research, vol. 13(2): pp. 311–329, 1988.

[Han86] Pierre Hansen: The Steepest Ascent Mildest Descent Heuristic for Combi-
natorial Programming. In Congress on Numerical Methods in Combinatorial
Optimization, Capri, Italy, pp. 70–145. 1986.

[Han90] Pierre Hansen and Brigitte Jaumard: Algorithms for the maximum satisfia-
bility problem. Computing, vol. 44(4): pp. 279–303, 1990.

[Han01] Saïd Hanafi: On the convergence of tabu search. Journal of Heuristics,
vol. 7(1): pp. 47–58, 2001.

[Han03] Pierre Hansen and Nenad Mladenović: Variable neighborhood search. In
F. Glower and G. Kochenagen (eds.), Handbook of Metaheuristics, pp. 145–
184. Springer, 2003.

[Han10a] Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros: Real-
parameter black-box optimization benchmarking 2010: Experimental
setup. Tech. Rep. RR-7215, INRIA, 2010.

[Han10b] Pierre Hansen, Nenad Mladenović, Jack Brimberg, and José A. Moreno
Pérez: Variable neighborhood search. In Handbook of Metaheuristics, pp.
61–86. Springer, 2010.

[Han14] Pierre Hansen and Nenad Mladenović: Variable neighborhood search. In
Search methodologies, pp. 313–337. Springer, 2014.

[Har90] Richard F. Hartl: A Global Convergence Proof for a Class of Genetic Algo-
rithms. Tech. rep., University of Vienna, Institute of Management, 1990.

[Hau04] Randy L. Haupt and Sue Ellen Haupt: Practical Genetic Algorithms. John
Wiley & Sons, 2004.

[Hed04] Shawn Hedman: A First Course in Logic. Oxford University Press, 2004.

Bibliography 229

[Hol92] John Henry Holland: Adaptation in Natural and Artificial Aystems: An In-
troductory Analysis with Applications to Biology, Control and Artificial Intelli-
gence. MIT Press, 1992.

[Hol99] Myles Hollander, Douglas A. Wolfe, and Eric Chicken: Nonparametric statis-
tical methods. 2. John Wiley & Sons, 1999.

[Hoo94] John N. Hooker: Needed: An empirical science of algorithms. Operations
Research, vol. 42(2): pp. 201–212, 1994.

[Hoo95] John N. Hooker: Testing heuristics: We have it all wrong. Journal of Heuris-
tics, vol. 1(1): pp. 33–42, 1995.

[Hoo98a] Holger H. Hoos: Stochastic Local Search – Methods, Models, Applications.
Ph.D. thesis, Technishen Universität Darmstadt, 1998. Adviser prof. Dr.
Wolfgang Bibel.

[Hoo98b] Holger H. Hoos and Thomas Stützle: Evaluating Las Vegas Algorithms: Pit-
falls and Remedies. In Proceedings of the Fourteenth conference on Uncer-
tainty in artificial intelligence (UAI-98), pp. 238–245. Morgan Kaufmann
Publishers, 1998.

[Hoo99] Holger H. Hoos and Thomas Stützle: Towards a characterisation of the be-
haviour of stochastic local search algorithms for SAT. Artificial Intelligence,
vol. 112(1): pp. 213–232, 1999.

[Hoo00a] Holger H. Hoos and Thomas Stützle: Local search algorithms for SAT: An
empirical evaluation. Journal of Automated Reasoning, vol. 24(4): pp. 421–
481, 2000.

[Hoo00b] Holger H. Hoos and Thomas Stützle: SATLIB: An Online Resource for Re-
search on SAT. In SAT2000: Highlights of Satisfiability Research in the
Year 2000 (Frontiers in Artificial Intelligence and Applications), pp. 283–292.
2000.

[Hoo05] Holger H. Hoos and Thomas Stützle: Stochastic local search: Foundations &
applications. Elsevier, 2005.

[Hoo07] Holger H. Hoos and Thomas Stützle: Empirical Analysis of Randomized Al-
gorithms. Handbook of Approximation Algorithms and Metaheuristics, 2007.

[Hoo09] Holger H. Hoos: A Bootstrap Approach to Analysing the Scaling of Empirical
Run-time Data with Problem Size. Tech. Rep. TR-2009-16, University of
British Columbia Available, 2009.

[Hoo11] Holger H. Hoos: Automated algorithm configuration and parameter tuning.
In Youssef Hamadi, Eric Monfroy, and Frédéric Saubion (eds.), Autonomous
search, pp. 37–71. Springer, 2011.

[Hoo13] John N. Hooker: Toward unification of exact and heuristic optimization
methods. International Transactions in Operational Research, vol. 22(1): pp.
19–48, 2013.

230 Bibliography

[How10] David Howell: Statistical Methods for Psychology. Cengage Learning, 2010.

[Hsu96] Jason Hsu: Multiple comparisons: theory and methods. CRC Press, 1996.

[Hut07] Frank Hutter, Holger H. Hoos, and Thomas Stützle: Automatic algorithm
configuration based on local search. In AAAI, pp. 1152–1157. 2007.

[Hut10a] Frank Hutter, Thomas Bartz-Beielstein, Holger H. Hoos, Kevin Leyton-
Brown, and Kevin P. Murphy: Sequential model-based parameter opti-
mization: An experimental investigation of automated and interactive ap-
proaches. In Experimental Methods for the Analysis of Optimization Algo-
rithms, pp. 363–414. Springer, 2010.

[Hut10b] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown: Sequential model-
based optimization for general algorithm configuration (extended version).
Tech. Rep. TR-2010-10, University of British Columbia, Computer Science,
2010.

[Hut11] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown: Sequential model-
based optimization for general algorithm configuration. In International
Conference on Learning and Intelligent Optimization (LION’11), pp. 507–523.
2011.

[Jü11] Jüppsche and Wikimedia Commons: Bee dance. https://commons.
wikimedia.org/wiki/File:Bee_dance.svg, 2011. File: Bee_dance.svg.

[Jac04a] Sheldon H. Jacobson and Enver Yücesan: Analyzing the performance of
generalized hill climbing algorithms. Journal of Heuristics, vol. 10(4): pp.
387–405, 2004.

[Jac04b] Sheldon H. Jacobson and Enver Yücesan: Global Optimization Performance
Measures for Generalized Hill Climbing Algorithms. Journal of Global Opti-
mization, vol. 29(2): pp. 173–190, 2004.

[Jam95] Kennedy James and Eberhart Russell: Particle swarm optimization. In
Proceedings of 1995 IEEE International Conference on Neural Networks, pp.
1942–1948. 1995.

[Jia07] M. Jiang, Y.P. Luo, and S.Y. Yang: Stochastic convergence analysis and pa-
rameter selection of the standard particle swarm optimization algorithm.
Information Processing Letters, vol. 102(1): pp. 8–16, 2007.

[JK14a] Tatjana Jakšić Krüger: O konvergenciji metaheurističke metode optimizacija
kolonijom pčela. In Zbornik IV Simpozijuma "Matematika i primene", pp.
176–188. Matematički fakultet Univerziteta u Beogradu, 2014.

[JK14b] Tatjana Jakšić Krüger and Tatjana Davidović: Model Convergence Proper-
ties of the Constructive Bee Colony Optimization Algorithm. In Proceedings
of 41th Symposium on Operational Research, SYM-OP-IS 2014, pp. 340–345.
2014.

[JK16a] Tatjana Jakšić Krüger and Tatjana Davidović: Empirical Analysis of the Bee
Colony Optimization Method on 3-SAT problem. pp. 297–301. 2016.

https://commons.wikimedia.org/wiki/File:Bee_dance.svg
https://commons.wikimedia.org/wiki/File:Bee_dance.svg

Bibliography 231

[JK16b] Tatjana Jakšić Krüger, Tatjana Davidović, Dušan Teodorović, and Milica
Šelmić: The Bee Colony Optimization Algorithm and its Convergence. In-
ternational Journal of Bio-Inspired Computation, vol. 8(5): pp. 340–354,
2016.

[JK16c] Tatjana Jakšić Krüger and Davidović, Tatjana: Sensitivity analysis of the Bee
Colony Optimization Algorithm. pp. 64–80. 2016.

[Joh74] David S. Johnson, Alan Demers, Jeffrey D. Ullman, Michael R. Garey,
and Ronald L. Graham: Worst-case performance bounds for simple one-
dimensional packing algorithms. SIAM Journal on Computing, vol. 3(4):
pp. 299–325, 1974.

[Joh02a] Alan W. Johnson and Sheldon H. Jacobson: On the convergence of gener-
alized hill climbing algorithms. Discrete Applied Mathematics, vol. 119(1):
pp. 37–57, 2002.

[Joh02b] David S. Johnson: A theoretician’s guide to the experimental analysis of
algorithms. Data structures, near neighbor searches, and methodology: fifth
and sixth DIMACS implementation challenges, vol. 59: pp. 215–250, 2002.

[Joh06] Michael P. Johnson, Bryan Norman, and Nicola Secomandi: Tutorials in
Operations Research. Institute for Operations Research and the Management
Sciences (INFORMS), 2006.

[Jov05] Dejan Jovanović, Nenad Mladenović, and Zoran Ognjanović: Variable
neighborhood search for the probabilistic satisfiability problem. In Proceed-
ings of the 6th Metaheuristics International Conference (MIC2005), Vienna,
Austria, August 22-26, pp. 557–562. 2005.

[Jov09] Raka Jovanović, Milan Tuba, and Dana Simian: Analysis of Parallel Imple-
mentations of the Ant Colony Optimization Applied to the Minimum Weight
Vertex Cover Problem. In Proceedings of the 9th WSEAS International Con-
ference on Simulation, modelling and optimization, pp. 254–259. WSEAS,
2009.

[Kam09] Krithivasan Kamala: Introduction to formal languages, automata theory and
computation. Pearson Education India, 2009.

[Kao08] Ming-Yang Kao (ed.): Encyclopedia of Algorithms. Springer, 2008.

[Kar63] Dean C. Karnopp: Random search techniques for optimization problems.
Automatica, vol. 1(2): pp. 111–121, 1963.

[Kar72] Richard M. Karp: Reducibility among Combinatorial Problems. Complexity
of Computer Computations, pp. 85–103, 1972.

[Kar93] Alan F. Karr: Probability. Springer Science + Business Media, New York,
1993.

[Kar05] Dervis Karaboga: An Idea Based on Honey Bee Swarm for Numerical Opti-
mization. Tech. rep., 2005.

232 Bibliography

[Kar07] Dervis Karaboga, Bahriye Akay, and Celal Ozturk: Artificial bee colony
(ABC) optimization algorithm for training feed-forward neural networks.
In Modeling decisions for artificial intelligence, pp. 318–329. Springer, 2007.

[Ken01] James Kennedy, James F Kennedy, and Russell C Eberhart: Swarm intelli-
gence. Morgan Kaufmann, 2001.

[Kim13] Hae-Young Kim: Statistical notes for clinical researchers: assessing normal
distribution (2) using skewness and kurtosis. Restorative dentistry & en-
dodontics, vol. 38(1): pp. 52–54, 2013.

[Kir83] Scott Kirkpatrick, C. D. Gelatt, and Mario P. Vecchi: Optimization by simu-
lated annealing. Science, vol. 220(4598): pp. 671–680, 1983.

[Kir07] Roger E. Kirk: Statistics: an introduction. Thomson Wadsworth, 2007.

[Kir14] Serkan Kiranyaz, Turker Ince, and Moncef Gabbouj: Optimization Tech-
niques: An Overview. In Multidimensional Particle Swarm Optimization for
Machine Learning and Pattern Recognition, pp. 13–44. Springer, 2014.

[Köt12] Timo Kötzing, Frank Neumann, Heiko Röglin, and Carsten Witt: Theoretical
analysis of two ACO approaches for the traveling salesman problem. Swarm
Intelligence, vol. 6(1): pp. 1–21, 2012.

[Kov13] Nataša Kovač: Bee colony optimization algorithm for the minimum cost
berth allocation problem. In XI Balkan Conference on Operational Research,
Balcor, pp. 245–254. 2013.

[Lai14] Chung Yee Johnny Lai: Hybrid intelligent optimization techniques and its
industrial applications. Ph.D. thesis, The Hong Kong Polytechnic University,
2014.

[Law76] Eugene L. Lawler: Combinatorial optimization: networks and matroids.
Courier Dover Publications, 1976.

[Law15] Michael A. Lawrence: ez package. http://github.com/mike-lawrence/
ez, 2015.

[LB14] Kevin Leyton-Brown, Holger H. Hoos, Frank Hutter, and Lin Xu: Under-
standing the empirical hardness of NP-complete problems. Communications
of the ACM, vol. 57(5): pp. 98–107, 2014.

[Leh06] Erich L. Lehmann and Joseph P. Romano: Testing statistical hypotheses.
Springer Science & Business Media, 2006.

[Len77] Jan Karel Lenstra, AHG Rinnooy Kan, and Peter Brucker: Complexity of
machine scheduling problems. Annals of discrete mathematics, vol. 1: pp.
343–362, 1977.

[Les11] Stefan Lessmann, Marco Caserta, and Idel Montalvo Arango: Tuning meta-
heuristics: A data mining based approach for particle swarm optimization.
Expert Systems with Applications, vol. 38(10): pp. 12826–12838, 2011.

http://github.com/mike-lawrence/ez
http://github.com/mike-lawrence/ez

Bibliography 233

[Leu04] Jospeh Y-T Leung: Handbook of Scheduling. Chapmann & Hall/CRC, New
York, 2004.

[Lev11] T. V. Levanova and E. A. Tkachuk: Development of a Bee Colony Optimiza-
tion Algorithm for the Capacitated Plant Location Problem. In II Interna-
tional conference, Optimization and applications (OPTIMA-2011), pp. 25–09.
2011.

[LI14] Manuel López-Ibáñez and Thomas Stützle: Automatically improving the
anytime behaviour of optimisation algorithms. European Journal of Opera-
tional Research, vol. 235(3): pp. 569–582, 2014.

[Lim09] Chee Peng Lim and Lakhmi C. Jain: Advances in Swarm Intelligence. In
Innovations in Swarm Intelligence, vol. 248 of Studies in Computational In-
telligence, pp. 1–7. Springer Berlin Heidelberg, 2009.

[Liu09] Hongbo Liu, Ajith Abraham, and Václav Snásel: Convergence Analysis of
Swarm Algorithm. In NaBIC, pp. 1714–1719. 2009.

[Lou03] Helena R. Lourenço, Olivier C. Martin, and Thomas Stützle: Iterated local
search. In Handbook of metaheuristics, vol. 57, pp. 320–353. Springer, 2003.

[Lou10] Helena R. Lourenço, Olivier C. Martin, and Thomas Stützle: Iterated local
search: Framework and applications. In Handbook of Metaheuristics, pp.
363–397. Springer, 2010.

[Luč01] Panta Lučić and Dušan Teodorović: Bee system: modeling combinatorial
optimization transportation engineering problems by swarm intelligence. In
Preprints of the TRISTAN IV Triennial Symposium on Transportation Analysis,
pp. 441–445. 2001.

[Luč02a] Panta Lučić: Modeling transportation problems using concepts of swarm intel-
ligence and soft computing. Ph.D. thesis, Virginia Polytechnic Institute and
State University, 2002.

[Luč02b] Panta Lučić and Dušan Teodorović: Transportation modeling: an artificial
life approach. In Proceedings. 14th IEEE International Conference on Tools
with Artificial Intelligence, 2002.(ICTAI 2002)., pp. 216–223. IEEE, 2002.

[Luč03a] Panta Lučić and Dušan Teodorović: Computing with bees: attacking com-
plex transportation engineering problems. International Journal on Artificial
Intelligence Tools, vol. 12(03): pp. 375–394, 2003.

[Luč03b] Panta Lučić and Dušan Teodorović: Vehicle Routing Problem With Uncer-
tain Demand at Nodes: The Bee System and Fuzzy Logic Approach. In
J. L. Verdegay (ed.), Fuzzy Sets based Heuristics for Optimization, pp. 67–82.
Physica Verlag: Berlin Heidelberg, 2003.

[Lyn06] Inês Lynce and Joao Marques-Silva: SAT in Bioinformatics: Making the
Case with Haplotype Inference. In Theory and Applications of Satisfiability
Testing-SAT 2006, vol. 4121 of Lecture Notes in Computer Science, pp. 136–
141. Springer, 2006.

234 Bibliography

[Mak13] Petar Maksimović and Tatjana Davidović: Parameter Calibration in the Bee
Colony Optimization Algorithm. In Proc. 11th Balkan Conf. on Operational
Research, pp. 263–272. BALCOR, 2013.

[Man06] Max Manfrin, Mauro Birattari, Thomas Stützle, and Marco Dorigo: Parallel
Ant Colony Optimization for the Traveling Salesman Problem. In Proc. 5th
Int. Workshop on Ant Colony Optimization and Swarm Intelligence (Ants), pp.
224–234. Springer, 2006.

[Man09] Vittorio Maniezzo, Thomas Stützle, and Stefan Vos: Matheuristics: Hybridiz-
ing Metaheuristics and Mathematical Programming, vol. 10. Springer, 2009.

[Mar73] Joseph Durward Marsh: Scheduling parallel processors. Ph.D. thesis, Georgia
Institute of Technology, 1973.

[Mar97] Oded Maron and Andrew W Moore: The racing algorithm: Model selection
for lazy learners. In Lazy learning, pp. 193–225. Springer, 1997.

[Mar05] Leonid Margolin: On the convergence of the cross-entropy method. Annals
of Operations Research, vol. 134(1): pp. 201–214, 2005.

[Mar07] Goran Marković, Dušan Teodorović, and Vladanka Aćimović-Raspopović:
Routing and wavelength assignment in all-optical networks based on the
bee colony optimization. AI Communications, vol. 20(4): pp. 273–285,
2007.

[McA97] David McAllester, Bart Selman, and Henry Kautz: Evidence for invariants in
local search. In Proceedings of the Fourteenth National Conference on Artifi-
cial Intelligence and Ninth Conference on Innovative Applications of Artificial
Intelligence, pp. 321–326. AAAI Press, 1997.

[McC87] Charles E. McCulloch: Tests for equality of variances with paired data. Com-
munications in statistics-theory and methods, vol. 16(5): pp. 1377–1391,
1987.

[McD14] John H. McDonald: Handbook of biological statistics, vol. 3. Sparky House
Publishing, Baltimore, Maryland, 2014.

[McG96] Catherine C. McGeoch: Toward an Experimental Method for Algorithm Sim-
ulation. Journal on Computing, vol. 8(1): pp. 1–15, 1996.

[McN59] Robert McNaughton: Scheduling with deadlines and loss functions. Man-
agement Science, vol. 6(1): pp. 1–12, 1959.

[Mer06] Stephan Mertens, Marc Mézard, and Riccardo Zecchina: Threshold values
of random K-SAT from the cavity method. Random Structures & Algorithms,
vol. 28(3): pp. 340–373, 2006.

[Méz02a] Marc Mézard, Giorgio Parisi, and Riccardo Zecchina: Analytic and algorith-
mic solution of random satisfiability problems. Science, vol. 297(5582): pp.
812–815, 2002.

Bibliography 235

[Méz02b] Marc Mézard and Riccardo Zecchina: Random k-satisfiability problem:
From an analytic solution to an efficient algorithm. Physical Review E,
vol. 66: p. 056126, 2002.

[Mic04] Zbigniew Michalewicz and David B. Fogel: How to solve it: modern heuris-
tics. Springer, 2004.

[Mid02] Martin Middendorf, Frank Reischle, and Hartmut Schmeck: Multi colony
ant algorithms. Journal of Heuristics, vol. 8(3): pp. 305–320, 2002.

[Mit92] David Mitchell, Bart Selman, and Hector Levesque: Hard and easy distri-
butions of SAT problems. In Proceedings of the tenth national conference on
Artificial intelligence, vol. 92 of AAAI’92, pp. 459–465. AAAI Press, 1992.

[Mla95] Nenad Mladenović: A variable neighborhood algorithm-a new metaheuris-
tic for combinatorial optimization. In papers presented at Optimization Days,
p. 112. 1995.

[Mla97] Nenad Mladenović and Pierre Hansen: Variable neighborhood search. Com-
puters & Operations Research, vol. 24(11): pp. 1097–1100, 1997.

[Mok04] Ethel Mokotoff: An exact algorithm for the identical parallel machine
scheduling problem. European Journal of Operational Research, vol. 152(3):
pp. 758–769, 2004.

[Mon01] Douglas C. Montgomery: Design and analysis of experiments. John Wiley &
Sons, 2001.

[Mor46] P. M. Morse and G. E. Kimball: Methods of operations research. OEG report
54, Office of the Chief of Naval Operations, US Navy Department, Washing-
ton, DC: US Superintendent of Documents, 1946.

[Mor12] Dominik Moritz and Matthias Springer: Solving Satisfiability with Ant
Colony Optimization and Genetic Algorithms, 2012. Evaluation of project
in Statistical optimization seminar at University of Potsdam.

[Mou11] Zohreh Mousavinasab, Reza Entezari-Maleki, and Ali Movaghar: A bee
colony task scheduling algorithm in computational grids. In Digital In-
formation Processing and Communications, vol. 188 of Communications in
Computer and Information Science, pp. 200–210. Springer Berlin Heidel-
berg, 2011.

[MS08] Joao Marques-Silva: Practical applications of Boolean Satisfiability. In Pro-
ceedings of the 9th International Workshop on Discrete Event Systems, Götebor,
Sweden, May 28-30, pp. 74–80. IEEE, 2008.

[Mum09] Christine L. Mumford: Computational intelligence: collaboration, fusion and
emergence, vol. 1. Springer Science & Business Media, 2009.

[Nak03] Sunil Nakrani and Craig Tovey: On honey bees and dynamic allocation in
an internet server colony. In Proceedings of 2nd International Workshop on
the Mathematics and Algorithms of Social Insects. Citeseer, 2003.

236 Bibliography

[Nak13] Amir Nakib and Patrick Siarry: Performance analysis of dynamic opti-
mization algorithms. In Metaheuristics for dynamic optimization, pp. 1–16.
Springer, 2013.

[Nar09] Harikrishna Narasimhan: Parallel artificial bee colony (PABC) algorithm. In
World Congress on Nature & Biologically Inspired Computing, 2009. NaBIC
2009, pp. 306–311. IEEE, 2009.

[Ned09] Ranko Nedeljkovic, Slobodan Mitrovic, and Dragana Drenovac: Bee colony
optimization meta-heuristic for backup allocation problem. Proc. PosTel
XXVII, pp. 115–122, 2009. In serbian.

[Nik10] Alexander G. Nikolaev and Sheldon H. Jacobson: Simulated annealing. In
M. Gendreau and J-Y. Potvin (eds.), Handbook of Metaheuristics, pp. 1–39.
(second edition) Springer, New York Dordrecht Heidelberg London, 2010.

[Nik13a] Miloš Nikolić and Dušan Teodorović: Empirical study of the Bee Colony Op-
timization (BCO) algorithm. Expert Systems with Applications, vol. 40(11):
pp. 4609–4620, 2013.

[Nik13b] Miloš Nikolić and Dušan Teodorović: Transit network design by Bee Colony
Optimization. Expert Systems With Applications, vol. 40(15): pp. 5945–
5955, 2013.

[Nik15] Miloš Nikolić: Disruption Management in Transportation by the Bee Colony
Optimization Metaheuristic. Ph.D. thesis, University of Belgrade, Faculty of
Transport and Traffic Engineering, 2015. Adviser prof. Dr. Dušan Teodor-
ović.

[Noc99] Jorge Nocedal and Stephen J. Wright: Numerical optimization. Springer-
Verlag, USA, 1999.

[Ogn04] Zoran Ognjanović and Nenad Krdžavac: Uvod u teorijsko računarstvo.
Beograd-Kragujevac, 2004.

[Osm96a] Ibrahim H. Osman and James P Kelly: Meta-Heuristics: Theory and Applica-
tions. Boston: Kluwe Academic Publisher, 1996.

[Osm96b] Ibrahim H. Osman and Gilbert Laporte: Metaheuristics: A bibliography.
Annals of Operations Research, vol. 63(5): pp. 511–623, 1996.

[Pap91a] Christos H. Papadimitriou: On selecting a satisfying truth assignment. In
Foundations of Computer Science, 1991. Proceedings., 32nd Annual Sympo-
sium on, pp. 163–169. IEEE, 1991.

[Pap91b] Christos H. Papadimitriou and Mihalis Yannakakis: Optimization, approxi-
mation, and complexity classes. Journal of Computer and System Sciences,
vol. 43(3): pp. 425–440, 1991.

[Pap91c] Athanasios Papoulis: Probability, random variables, and stochastic processes.
McGraw-Hill, 1991.

Bibliography 237

[Pap98] Christos H. Papadimitriou and Kenneth Steiglitz: Combinatorial optimiza-
tion: algorithms and complexity. Courier Dover Publication, New York,
1998.

[Pap07] Christos H. Papadimitriou: Computational Complexity. Cram101 Incorpo-
rated, 2007.

[Par11] Rafael Stubs Parpinelli, César Manuel Vargas Benitez, and Heitor Silvério
Lopes: Parallel Approaches for the Artificial Bee Colony Algorithm. In B. K.
Panigrahi, Y. Shi, and M-H. Lim (eds.), Handbook of Swarm Intelligence, pp.
329–345. Springer, 2011.

[Ped11] Martín Pedemonte, Sergio Nesmachnow, and Héctor Cancela: A survey on
parallel ant colony optimization. Applied Soft Computing, vol. 11(8): pp.
5181–5197, 2011.

[Per11] Anggi Putri Pertiwi and Suyanto: Globally evolved dynamic bee colony op-
timization. In Knowledge-Based and Intelligent Information and Engineering
Systems, pp. 52–61. Springer, 2011.

[Pha06] Duc Truong Pham, Afshin Ghanbarzadeh, Ebubekir Koç, Sameh Otri,
S. Rahim, and Muhamad Zaidi: The bees algorithm–a novel tool for com-
plex optimisation problems. In Proceedings of the 2nd Virtual International
Conference on Intelligent Production Machines and Systems (IPROMS 2006),
pp. 454–459. 2006.

[Pin84] J´nos Pintér: Convergence properties of stochastic optimization procedures.
Optimization, vol. 15(3): pp. 405–427, 1984.

[Pin86] János Pintér: Contributions to the methodology of stochastic optimization.
In Stochastic programming, pp. 247–257. Springer, 1986.

[Pin04] Michael L. Pinedo: Offline Deterministic Sscheduling, Stochastic Schedul-
ing, and Online Deterministic Scheduling: A Comparative Overview. In
Joseph Y-T. Leung (ed.), Handbook of Scheduling, Chapman & Hall/CRC.
2004. Chapter 38.

[Pin12] Michael L. Pinedo: Scheduling: theory, algorithms, and systems. Springer
Science & Business Media, 2012.

[Pol07] Riccardo Poli, James Kennedy, and Tim Blackwell: Particle swarm optimiza-
tion. Swarm intelligence, vol. 1(1): pp. 33–57, 2007.

[Pre04] Steven David Prestwich and Colin Quirke: Local Search for Very Large SAT
Problems. In Proceedings of the SAT 2004, pp. 317–322. 2004.

[Que94] Maurice Queyranne and Andreas S. Schulz: Polyhedral approaches to ma-
chine scheduling. Tech. rep., Technische Universitat Berlin, 1994.

[Rah02] Malek Rahoual, Riad Hadji, and Vincent Bachelet: Parallel ant system for
the set covering problem. In Ant Algorithms, pp. 262–267. Springer, 2002.

238 Bibliography

[Ran98] Soraya Rana and Darrell Whitley: Genetic Aalgorithm Behavior in the
MAXSAT Domain. In International Conference on Parallel Problem Solving
from Nature, pp. 785–794. Springer, 1998.

[Rar01] Ronald L. Rardin and Reha Uzsoy: Experimental evaluation of heuristic
optimization algorithms: A tutorial. Journal of Heuristics, vol. 7(3): pp.
261–304, 2001.

[Ras63] Leonard Andreevich Rastrigin: About Convergence of Random Search
Method in Extremal Control of Multi-Parameter System. Automa-
tion and Remote Control, vol. 24(11): pp. 1467–1473, 1963.
Http://mi.mathnet.ru/at12312.

[Ras11] Reza Rastegar: On the optimal convergence probability of univariate esti-
mation of distribution algorithms. Evolutionary computation, vol. 19(2): pp.
225–248, 2011.

[Ray12] Michel Raynal: Concurrent programming: algorithms, principles, and foun-
dations. Springer Science & Business Media, 2012.

[Ree93] Colin R. Reeves: Modern heuristic techniques for combinatorial problems.
John Wiley & Sons, Inc., 1993.

[Ree10] Colin R. Reeves: Genetic algorithms. In Handbook of Metaheuristics, pp.
109–139. Springer, 2010.

[Res10] Mauricio G.C. Resende and Celso C. Ribeiro: Greedy randomized adaptive
search procedures: Advances, hybridizations, and applications. In Hand-
book of Metaheuristics, pp. 283–319. Springer, 2010.

[Ric06] John Rice: Mathematical statistics and data analysis. Thomson Brooks/Cole,
2006.

[Rid07] Enda Ridge: Design of experiments for the tuning of optimisation algorithms.
University of York, Department of Computer Science, 2007.

[Rob09] Yves Robert and Frédéric Vivien: Introduction to Scheduling. CRC, Taylor &
Francis Group, 2009.

[Roy82] J. P. Royston: An extension of Shapiro and Wilk’s W test for normality to
large samples. Journal of the Royal Statistical Society. Series C (Applied Statis-
tics), pp. 115–124, 1982.

[Rud94] Günter Rudolph: Convergence analysis of canonical genetic algorithms.
IEEE Transactions on Neural Networks, vol. 5(1): pp. 96–101, 1994.

[Rud96] Günter Rudolph: Convergence of evolutionary algorithms in general search
spaces. In In Proceedings of the Third IEEE Conference on Evolutionary Com-
putation. 1996.

[Rud12] Günter Rudolph: Stochastic convergence. In Handbook of Natural Comput-
ing, pp. 847–869. Springer, 2012.

Bibliography 239

[Sa’13] Majid Sa’idi, Navid Mostoufi, and Rahmat Sotudeh-Gharebagh: Modelling
and optimisation of continuous catalytic regeneration process using bee
colony algorithm. The Canadian Journal of Chemical Engineering, vol. 91(7):
pp. 1256–1269, 2013.

[Sam98] Diana Sammataro and Alphonse Avitabile: The beekeeper’s handbook. Cor-
nell University Press, 1998.

[Sat97] Takao Sato and Masafumih Hagiwara: Bee system: finding solution by a
concentrated search. In Systems, Man, and Cybernetics, 1997. Computational
Cybernetics and Simulation., 1997 IEEE International Conference on, vol. 4,
pp. 3954–3959. IEEE, 1997.

[Sch98] Alexander Schrijver: Theory of linear and integer programming. John Wiley
& Sons, 1998.

[Sch99] Uwe Schöning: A probabilistic algorithm for k-SAT and constraint satis-
faction problems. In Foundations of Computer Science, 1999. 40th Annual
Symposium on, pp. 410–414. IEEE, 1999.

[Sch01] Lothar M Schmitt: Theory of genetic algorithms. Theoretical Computer Sci-
ence, vol. 259(1): pp. 1–61, 2001.

[See85] Thomas D. Seeley et al.: Honeybee ecology: a study of adaptation in social
life. Princeton University Press, 1985.

[See91] Thomas D. Seeley, Scott Camazine, and James Sneyd: Collective decision-
making in honey bees: how colonies choose among nectar sources. Behav-
ioral Ecology and Sociobiology, vol. 28(4): pp. 277–290, 1991.

[See95] Thomas D. Seely: The wisdom of the hive. Harvard UniversityPress, Cam-
bridge, Massachusetts, USA, 1995.

[See00] Thomas D. Seeley, Alexander S. Mikheyev, and Gary J. Pagano: Dancing
bees tune both duration and rate of waggle-run production in relation to
nectar-source profitability. Journal of Comparative Physiology A, vol. 186(9):
pp. 813–819, 2000.

[Sel92] Bart Selman, Hector J. Levesque, and David G. Mitchell: A New Method
for Solving Hard Satisfiability Problems. In Proceedings of the tenth national
conference on Artificial intelligence, vol. 92 of AAAI’92, pp. 440–446. AAAI
Press, 1992.

[Sel94] Bart Selman, Henry A Kautz, and Bram Cohen: Noise strategies for improv-
ing local search. In Proceedings of the Twelfth AAAI National Conference on
Artificial Intelligence, AAAI’94, pp. 337–343. AAAI Press, 1994.

[Sel95] Bart Selman, Henry Kautz, Bram Cohen et al.: Local search strategies for
satisfiability testing. Cliques, coloring, and satisfiability: Second DIMACS
implementation challenge, vol. 26: pp. 521–532, 1995.

240 Bibliography

[Sel96] Bart Selman, Henry Kautz, and Bram Cohen: Local Search Strategies for
Satisfiability Testing. In Cliques, Coloring, and Satisfiability: Second DIMACS
Implementation Challenge, Workshop, October 11-13, 1993, pp. 521–532.
American Mathematical Society, 1996.

[Šel08] Milica Šelmić, Praveen Edara, and Dušan Teodorović: Bee colony optimiza-
tion approach to optimize locations of traffic sensors on highways. Tehnika,
vol. 6: pp. 9–15, 2008.

[Šel10] Milica Šelmić, Dušan Teodorović, and Katarina Vukadinović: Locating in-
spection facilities in traffic networks: an artificial intelligence approach.
Transportation Planning and Technology, vol. 33(6): pp. 481–493, 2010.

[Sev07] M. Sevkli and M.E. Aydin: Parallel variable neighbourhood search algo-
rithms for job shop scheduling problems. IMA Journal of Management Math-
ematics, vol. 18(2): pp. 117–133, 2007.

[Sha96] Alexander Shapiro and Y. Wardi: Convergence analysis of stochastic algo-
rithms. Mathematics of Operations Research, vol. 21(3): pp. 615–628, 1996.

[She04] David J. Sheskin: Handbook of parametric and nonparametric statistical pro-
cedures. Chapman & Hall/CRC, 2004.

[She11] David Sheldon: Design Space Exploration of Parameterized Systems using De-
sign of Experiments. Ph.D. thesis, University of California, Riverside, 2011.
Adviser prof. Dr. Frank Vahid.

[Sin07] Oliver Sinnen: Task scheduling for parallel systems, vol. 60. John Wiley &
Sons, 2007.

[Smi12] Selmar Kagiso Smit: Parameter tuning and scientific testing in evolutionary
algorithms. Ph.D. thesis, Vrije Universiteit, 2012.

[Smu12] Szesław Smutnicki: Optimization Technologies for Hard Problems. In János
Fodor, Ryszard Klempous, and Carmen Paz Suárez Araujo (eds.), Recent Ad-
vances in Intelligent Engineering Systems, vol. 378 of Studies in Computa-
tional Intelligence, pp. 79–104. Springer, 2012.

[Soh11] Mohammad Falahi Sohi, Morteza Shirdel, and Ali Javidaneh: Applying BCO
algorithm to solve the optimal DG placement and sizing problem. In Power
Engineering and Optimization Conference (PEOCO), 2011 5th International,
pp. 71–76. IEEE, 2011.

[Sol81] Francisco J. Solis and Roger J.-B. Wets: Minimization by random search
techniques. Mathematics of operations research, vol. 6(1): pp. 19–30, 1981.

[Sör13] Kenneth Sörensen: Metaheuristics - the metaphor exposed. International
Transactions in Operational Research, vol. 22(1): pp. 3–18, 2013.

[Spa03] James C. Spall: Introduction to stochastic search and optimization: estima-
tion, simulation, and control. John Wiley & Sons, Hoboken, New Jersey,
2003.

Bibliography 241

[Sta07] Zorica Stanimirović: Genetski algoritmi za rešavanje nekih NP-teških hab
lokacijskih problema. Ph.D. thesis, Matematički fakultet, Univerzitet u
Beogradu, 2007.

[Ste46] Stanley S. Stevens: On the theory of scales of measurement. Science, vol.
103(2684): pp. 677–680, 1946.

[Ste00] Kathleen Steinhöfel, Andreas Albrecht, and Chak-Kuen Wong: Convergence
analysis of simulated annealing-based algorithms solving flow shop schedul-
ing problems. In Algorithms and Complexity, pp. 277–290. Springer, 2000.

[Ste02] Kathleen Steinhöfel, A. Albrecht, and Chak-Kuen Wong: Fast parallel heuris-
tics for the job shop scheduling problem. Computers & Operations Research,
vol. 29(2): pp. 151–169, 2002.

[Sto13] Tatjana Stojanović, Tatjana Davidović, and Zoran Ognjanović: Bee-colony
optimization for the satisfiability problem in probabilistic logic. In Treca
nacionalna konferencija "Verovatnosne logike i njihove primene", p. 30. 2013.

[Sto15] Tatjana Stojanović, Tatjana Davidović, and Zoran Ognjanović: Bee colony
optimization for the satisfiability problem in probabilistic logic. Applied Soft
Computing, vol. 31: pp. 339–347, 2015.

[Stü98] Thomas Stützle: Parallelization strategies for ant colony optimization. In
Proceedings of PPSN-V, Fifth International Conference on Parallel Problem
Solving from Nature, vol. 1498, pp. 722–731. Springer, 1998.

[Stü01] Thomas Stützle, Holger Hoos, and Andrea Roli: A review of the literature
on local search algorithms for MAX-SAT. Tech. Rep. AIDA-01-02, Intellectics
Group, Darmstadt University of Technology, Germany, 2001.

[Stü02] Thomas Stützle and Marco Dorigo: A short convergence proof for a class of
ant colony optimization algorithms. IEEE Trans. Evolutionary Computation,
vol. 6(4): pp. 358–365, 2002.

[Stü09] Thomas Stützle, Mauro Birattari, and Holger H. Hoos (eds.): Engineering
Stochastic Local Search Algorithms. Designing, Implementing and Analyzing
Effective Heuristics, International Workshop, SLS 2009, vol. 5752. Springer,
September 2009. Preface.

[Sub11] Miloš Subotić, Milan Tuba, and Nadežda Stanarević: Different approaches
in parallelization of the artificial bee colony algorithm. International Journal
of mathematical models and methods in applied sciences, vol. 5(4): pp. 755–
762, 2011.

[Sul01] Kelly Ann Sullivan and Sheldon H. Jacobson: A convergence analysis of gen-
eralized hill climbing algorithms. IEEE Transactions on Automatic Control,
vol. 46(8): pp. 1288–1293, 2001.

[Tal09] El-Ghazali Talbi: Metaheuristics: from design to implementation, vol. 74.
John Wiley & Sons, 2009.

242 Bibliography

[Teo01] Jason Teo and Hussein A. Abbass: An annealing approach to the mating-
flight trajectories in the marriage in honey bees optimization algorithm.
Tech. rep., School of computer Science, University of New South Wales of
ADFA, 2001.

[Teo05] Dušan Teodorović and Mauro Dell’Orco: Bee colony optimization–a coop-
erative learning approach to complex transportation problems. In Advanced
OR and AI Methods in Transportation: Proceedings of 16th Mini–EURO Con-
ference and 10th Meeting of EWGT (13-16 September 2005).–Poznan: Pub-
lishing House of the Polish Operational and System Research, pp. 51–60.
2005.

[Teo06] Dušan Teodorović, Panta Lučić, Goran Marković, and Mauro Dell’Orco: Bee
colony optimization: principles and applications. In Neural Network Appli-
cations in Electrical Engineering, 2006. NEUREL 2006. 8th Seminar on, pp.
151–156. IEEE, 2006.

[Teo07] Dušan Teodorović and Milica Šelmić: The BCO algorithm for the p-median
problem. In Proceedings of the XXXIV Serbian Operations Research Conferece.
Zlatibor, Serbia (in Serbian), 2007.

[Teo08] Dušan Teodorović and Mauro Dell’Orco: Mitigating traffic congestion: solv-
ing the ride-matching problem by bee colony optimization. Transportation
Planning and Technology, vol. 31(2): pp. 135–152, 2008.

[Teo09a] Dušan Teodorović: Bee Colony Optimization (BCO). In Innovations in
Swarm Intelligence, vol. 248 of Studies in Computational Intelligence, pp.
39–60. Springer Berlin Heidelberg, 2009.

[Teo09b] Dušan Teodorović: Bee colony optimization (BCO). In Chee Peng Lim,
Lakhmi C. Jain, and Satchidananda Dehuri (eds.), Innovations in swarm
intelligence, vol. 248 of Studies in Computational Intelligence, pp. 39–60.
Springer, 2009.

[Teo13] Dušan Teodorović, Milica Šelmić, and Ljiljana Mijatović-Teodorović: Com-
bining case-based reasoning with Bee Colony Optimization for dose plan-
ning in well differentiated thyroid cancer treatment. Expert Systems with
Applications, vol. 40(6): pp. 2147–2155, 2013.

[Teo15] Dušan Teodorović, Milica Šelmić, and Tatjana Davidović: Bee Colony Op-
timization Part II: The Application Survey. Yugoslav Journal of Operational
Research, vol. 25(2): pp. 185–2019, 2015.

[The98] Arne Thesen: Design and evaluation of tabu search algorithms for multi-
processor scheduling. Journal of Heuristics, vol. 4(2): pp. 141–160, 1998.

[Tod13] Nikola Todorović and Sanja Petrović: Bee colony optimization algorithm for
nurse rostering. Systems, Man, and Cybernetics: Systems, IEEE Transactions
on, vol. 43(2): pp. 467–473, 2013.

Bibliography 243

[Tre03] Ioan Cristian Trelea: The particle swarm optimization algorithm: con-
vergence analysis and parameter selection. Information processing letters,
vol. 85(6): pp. 317–325, 2003.

[Tse73] Mikhail L’vovich Tsetlin: Automaton theory and modeling of biological sys-
tems, vol. 102. Academic Press New York, 1973.

[Tuk77] John W. Tukey: Exploratory data analysis. Addison-Wesley,Reading, Ma,
1977.

[Tur36] Alan Turing: On Computable Numbers, with an Application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, vol. 42: pp.
230–265, 1936.

[VDB06] Frans Van Den Bergh: An analysis of particle swarm optimizers. Ph.D. thesis,
University of Pretoria, 2006.

[Ver95] Marcus Gerardus Aldegonda Verhoeven and Emile HL Aarts: Parallel local
search. Journal of Heuristics, vol. 1(1): pp. 43–65, 1995.

[VF74] Karl Von Frisch: Decoding the language of the bee. Science, vol. 185(4152):
pp. 663–668, 1974.

[Vil07] Marcos Villagra and Benjamín Barán: Ant Colony Optimization with Adap-
tive Fitness Ffunction for Satisfiability Ttesting. In International Workshop
on Logic, Language, Information, and Computation, pp. 352–361. Springer,
2007.

[Voß12] Stefan Voß, Silvano Martello, Ibrahim H Osman, and Catherine Roucairol:
Meta-heuristics: Advances and trends in local search paradigms for optimiza-
tion. Springer Science & Business Media, 2012.

[Š11] Milica Šelmić: Lociranje objekata na transportnim mrežama primenom
metoda računarske inteligencije. Ph.D. thesis, Saobraćajni fakultet, Uni-
verzitet u Beogradu, 2011.

[Wan09] Xiaolei Wang: Hybrid nature-inspired computation methods for optimization.
Ph.D. thesis, Helsinki University of Technology, Faculty of Eletronics, Com-
munications and Automation, 2009.

[Wat10] Jean-Paul Watson: An introduction to fitness landscape analysis and cost
models for local search. In Handbook of metaheuristics, pp. 599–623.
Springer, 2010.

[Wed04] Horst F. Wedde, Muddassar Farooq, and Yue Zhang: BeeHive: An efficient
fault-tolerant routing algorithm inspired by honey bee behavior. In Ant
colony optimization and swarm intelligence, pp. 83–94. Springer, 2004.

[Wes95] Stephen G. West, John F. Finch, and Patrick J. Curran: Structural equation
models with nonnormal variables. Structural equation modeling: Concepts,
issues, and applications, pp. 56–75, 1995.

244 Bibliography

[Whi70] R. C. White: A survey of random methods for parameter optimization. Tech.
rep., 1970. No. 70-E-16.

[Win62] Ben James Winer: Statistical Principles in Experimental Design, vol. 1.
McGraw-Hill, 1962.

[Won09] Li-Pei Wong, Malcolm Yoke Hean Low, and Chin Soon Chong: An efficient
bee colony optimization algorithm for traveling salesman problem using
frequency-based pruning. In Industrial Informatics, 2009. INDIN 2009. 7th
IEEE International Conference on, pp. 775–782. IEEE, 2009.

[Won10a] Li-Pei Wong, Malcolm Yoke Hean Low, and Chin Soon Chong: Bee colony
optimization with local search for traveling salesman problem. International
Journal on Artificial Intelligence Tools, vol. 19(03): pp. 305–334, 2010.

[Won10b] Li-Pei Wong, Chi Yung Puan, Malcolm Yoke Hean Low, and Yi Wen Wong:
Bee colony optimisation algorithm with big valley landscape exploitation for
job shop scheduling problems. International Journal of Bio-Inspired Compu-
tation, vol. 2(2): pp. 85–99, 2010.

[Yan05] Xin-She Yang: Engineering Optimizations via Nature-inspired Virtual Bee
Algorithms. In Artificial Intelligence and Knowledge Engineering Applications:
A Bioinspired Approach, pp. 317–323. Springer, 2005.

[Yan07a] Chenguang Yang, Jie Chen, and Xuyan Tu: Algorithm of fast marriage in
honey bees optimization and convergence analysis. In 2007 IEEE Interna-
tional Conference on Automation and Logistics, pp. 1794–1799. IEEE, 2007.

[Yan07b] Xin-She Yang: A first course in finite element analysis. Luniver Press, 2007.

[Yan07c] Zhongzhen Yang, Bin Yu, and Chuntian Cheng: A parallel ant colony algo-
rithm for bus network optimization. Computer-Aided Civil and Infrastructure
Engineering, vol. 22(1): pp. 44–55, 2007.

[Yan10] Xin-She Yang: Engineering optimization: An Introduction with Metaheuristic
Applications. John Wiley & Sons, 2010.

[Yan11] Xin-She Yang: Metaheuristic optimization: algorithm analysis and open
problems. In Experimental Algorithms, pp. 21–32. Springer, 2011.

[Yan13] Xin-She Yang, Suash Deb, Martin Loomes, and Mehmet Karamanoglu: A
framework for self-tuning optimization algorithm. Neural Computing and
Applications, vol. 23(7-8): pp. 2051–2057, 2013.

[Yan14] Xin-She Yang: Swarm intelligence based algorithms: a critical analysis. Evo-
lutionary Intelligence, vol. 7(1): pp. 17–28, 2014.

[Yao99] Xin Yao: Evolutionary computation: Theory and applications. World Scien-
tific, 1999.

[Yu11] Bin Yu, Z-Z Yang, and J-X Xie: A parallel improved ant colony optimization
for multi-depot vehicle routing problem. Journal of the Operational Research
Society, vol. 62(1): pp. 183–188, 2011.

Bibliography 245

[Zen04] Jian-Chao Zeng and Zhi-Hua Cui: A Guaranteed Global Convergence Par-
ticle Swarm Optimizer [J]. Journal of computer research and development,
vol. 8: pp. 1333–1338, 2004.

[Zlo02] Mark Zlochin and Marco Dorigo: Model-based search for combinatorial
optimization: A comparative study. In Parallel Problem Solving from Na-
ture—PPSN VII, pp. 651–661. Springer, 2002.

[Zlo04] Mark Zlochin, Mauro Birattari, Nicolas Meuleau, and Marco Dorigo: Model-
based search for combinatorial optimization: A critical survey. Annals of
Operations Research, vol. 131(1-4): pp. 373–395, 2004.

APPENDIXA
Complementary material

A.1 Empirical study of BCOc

A.1.1 Time measurement

For measure of time getrusage function was used as it represents mot reliable way to
measure CPU time on UNIX-style operating systems (http://nadeausoftware.com/
articles/2012/03/c_c_tip_how_measure_cpu_time_benchmarking#times).

A.1.2 Box-plots

Box-plots are employed to graphically represent “five number summary” of the data in
order to identify the minimum value, first quartile Q1 (25%), median, third quartile
Q3 (75%) and the maximum. To generate box-plots, the data needs to be sorted in
increasing order. The lowest value of the box-plot indicates the first value of this sorted
list, which is also a minimum value of the complete dataset. It is straightforward to
determine first 25% elements of the sorted list, the largest among them specifying the
first quartile. In other words, first 25% of the sorted data resides in the range between
the minimum and the first quartile. The median symbolizes the second quartile, i.e.,
the upper value of first 50% of the sorted data. The third quartile is determined by
extracting elements of the sorted task list that are in the first 75%, and the value with
highest index element represents the third quartile.

The box within box-plot represents the range between the first and the third quartile.
In Figure 8.1 it indicates the range of processing times for at least 50% of all tasks of
a particular instance. This value is also known in descriptive statistics as IQR (inner
quartile range). For skewed data it is recommended to define outliers, i.e., data that is
further away (far out) from a centralized grouping of the tasks lengths. The outliers are
marked as red crosses and are positioned outside the interval [Q1−1.5IQR, Q3+1.5IQR].
The heights of the whiskers on box-plots indicate the first and the last data that are not
outliers.

A.1.3 Candidate heuristics for P ||Cmax

In this section we provide description of four heuristic procedures that deal with the
P ||Cmax problem, modified from original versions found in the literature.

 http://nadeausoftware.com/articles/2012/03/c_c_tip_how_measure_cpu_time_benchmar king#times
 http://nadeausoftware.com/articles/2012/03/c_c_tip_how_measure_cpu_time_benchmar king#times

248 Appendix A Complementary material

A.1.3.1 Solution representation

Following the conventions from [Dav12], the solution is represented as a (dynamic)
matrix Sm×n, where the element sji represents the index of the i-th task scheduled to
the j-th machine. The list of all task lengths (processing time of each task) is kept in
the vector L = (l1, . . . , ln). After allocating k < n tasks, the auxiliary list of lengths
of n − k non-scheduled tasks is saved in the vector L′. Concerning the machine loads,
two vectors are used: O = (o1, . . . , om), where element oj denotes the number of tasks
allocated to j-th machine and Y = (y1, . . . , ym) with elements yj that represent the
sum of processing times of all tasks allocated to machine j.

At the end of iteration, data structure (S,O, Y, ymax) contains the obtained solu-
tion. Variable ymax indicates makespan of the solution. This solution is then com-
pared with the the best-so-far (xbest), saved within a global structure gbest consisting of
(Sgmin, Ogmin, Ygmin, ygmin), where ygmin refers to its objective value.

In the forthcoming subsections, we give detailed description of four heuristics in-
troduced previously. Common characteristic of all heuristics is the initialization phase,
where the incorporated structure for solution representation is reinitialized at the be-
ginning of each iteration (arrays S, O, Y contain all zeros, while L′ = L).

A.1.3.2 Description of sLPT+BF heuristic

The heuristic algorithm sLPT+BF was inspired by well known best-fit algorithm, origi-
nally used for dealing with BPP. Best-fit algorithm dates back to the early 70s when it
was applied to one-dimensional packing problems [Joh74]. Before implementing mod-
ified best-fit algorithm for the scheduling problem, it was necessary to define capacity
of the machine loads (C). The lower bound on the makespan of tasks was used to ini-
tialize C, defined as the average of the sum of all tasks divided by the total number of
machines. The makespan of the best found solution, reported at the competition of the
iteration, is saved in the global variable ygmin, while variable y contains running loads
of all machines. In the first step of sLPT+BF the task i is chosen by stochastic LPT rule.
The second step of sLPT+BF allocates task i onto the machine on which it leaves the
least empty space, or in other words, is searching for the machine j with the smallest
gap between the capacity C and the machine load after allocation of the task i. This is
equivalent to searching for the biggest makespan of the partial solution after the allo-
cation of task i. Another important feature of this algorithm is that C is changing every
time best-so-far solution is found, i.e., C is set to be equal to the makespan (ygmin)
of the corresponding solution. This algorithm was used in the paper of Davidović et
al. [Dav12]. Pseudo-code for sLPT+BF is provided in Fig. A.1. In each iteration the
algorithm starts with an empty solution and constructs complete solutions. To select
task-machine pairs the algorithm uses sLPT+BF rule. The iterations are repeated until
a given stopping criterion is satisfied.

Some other scenarios for setting values of C were also studied and compared. For
example, if in the initialization phase the variable C wasn’t assigned a lower bound of
the tasks lengths and was, instead, assigned a value larger than the lower bound, the
algorithm generates solutions of lower quality. Moreover, if C is kept constant through-
out the execution, the quality of the reported solution is not reaching the quality of the
recommended procedure presented in Fig. A.1. The experimental tests, conducted on
different instances of the scheduling problem, indicate that the variable C needs to be

A.1 Empirical study of BCOc 249

Initialization: Read problem data and stopping criterion.
C ← (

∑n
i=1 li)/m;

ygmin = MAX_INT;
Do

Assign an empty solution;
for (i = 0; i < n; i++)

(1) Choosing task i using the roulette wheel of size
∑k
i=1 li;

(2) if (i == 0)
Allocate first task i to random machine jj;

else
mingap ← MAX_INT;
for (j = 0; j < m; j++)

gap← C − (yj + li);
if (gap > 0 && gap < mingap)

jj ← j;
mingap ← gap;

Allocate task i to machine jj;
(3) // Find makespan
ymax ← 0;
for (j = 0; j < m; j++);

if (ymax < yj)
ymax ← yj ;

(4) If best-so-far solution is found update necessary data:
if (ymax < ygmin);

ygmin ← ymax
C ← ygmin;
Update gbest;

while stopping criterion is not satisfied.
return (xbest, f(xbest)).

Figure A.1: Pseudo-code for sLPT+BF

set as suggested in Fig. A.1.

A.1.3.3 Description of sLPT+FF heuristic

Heuristic sLPT+FF represents a randomized iterative procedure that in each iteration
starts with an empty solution, and similarly to the sLPT+BF algorithm, constructs com-
plete solutions (Fig.A.2).

During the construction of the solution the algorithm goes through two steps, each
incorporating some decision-making rules concerning the partial solution. In the first
step, the decision about which tasks are to be scheduled is made by the rules of sLPT.
Second step consists of decisions referring to the location of a task, by employing first-
fit scheduler as suggested in [Joh74]. The machine selection procedure is implemented
similarly to the second step of sLPT+BF, i.e., as a loop that visits all machines, however,
placing the task onto the first machine on which it can be allocated. At the completion

250 Appendix A Complementary material

of each iteration, all global structures are updated. The best solution is reported at the
end of the execution of the algorithm.

Initialization: Read problem data and stopping criterion.
C ← (

∑n
i=1 li)/m;

ygmin = MAX_INT;
Do

Assign an empty solution;
for (i = 0; i < n; i+ +)

(1) Choosing task i using the roulette wheel of size
∑k
i=1 li;

(2) if (i == 0)
Allocate first task i to random machine jj;

else
for (j = 0; j < m; j + +)

gap← C − (yj + li);
if (gap > 0)

jj ← j;
Allocate task i to machine jj;

(3) Find current makespan ymax
(4) If best-so-far solution is found update necessary data:
if (ymax < ygmin);

ygmin ← ymax
C ← ygmin;
Update gbest;

while stopping criterion is not satisfied.
return (xbest, f(xbest)).

Figure A.2: Pseudo-code for sLPT+FF

A.1.3.4 Description of sLPT+ES

sLPT+ES heuristic is a simple algorithm that begins with an empty solution and until
the end of one iteration constructs the solution following two steps. First step is based
on the stochastic procedure inspired by the sLPT rule, where the probability of choosing
a task is proportional to its processing time. The selection of tasks was implemented
using concepts of roulette wheel (Section 4.2, pg. 72). Second step incorporates simple
earliest start scheduler. It is implemented as a loop that goes through all machines, and
once the machine with minimum load is found, second phase ends. At the end of each
iteration, global variable ygmin is updated. Pseudo-code of the algorithm is provided in
Fig. A.3.

A.1.3.5 Description of sLPT+sES algorithm

Another algorithm is studied in order to examine more variations of the scheduling
rules. This algorithm consists of two steps, stochastic LPT and the stochastic ES.
Pseudo-code is provided in Fig. A.4. The step (2) implements sES such that the ma-
chines with smallest load have higher probabilities to be chosen. This was conducted

A.1 Empirical study of BCOc 251

Initialization: Read problem data and stopping criterion.
ygmin = MAX_INT;
Do

Assign an empty solution;
for (i = 0; i < n; i+ +)

(1) Choosing task i by roulette wheel of size
∑k
i=1 li;

min← MAX_INT;
(2) if (i == 0)

Allocate first task i to random machine jj;
else

if (min > yj)
min = yj ;
jj = j;

Allocate task i to machine jj;
(3) Find current makespan ymax
(4) If best-so-far solution is found update necessary data:
if (ymax < ygmin);

ygmin ← ymax
Update gbest;

while stopping criterion is not satisfied.
return (xbest, f(xbest))

Figure A.3: Pseudo-code for sLPT+ES

by using roulette wheel with wedges being proportional to the difference between a
predefined maximal load and a current load of a machine. For that reason, capacity
C is used (introduced in sLPT+BF) and updated each time new best-so-far solution is
found.

A.1.4 Comparative study of candidate heuristics

To single out best performing heuristic procedure for the considered scheduling prob-
lem, we compare four candidate algorithms presented above. To assure systematic
experimental evaluation for the comparison between different algorithms, some of the
rules from the literature have been followed. First of all, the tests are based on com-
paring average performance of algorithm instances over a class of problem instances
[Dav06b, Dav06a].

The solution’s quality of the results generated by the BCO algorithm, corresponds to
the best found makespan value (ygmin) for each problem instance. We employ number
of iterations (Nit) as a stopping criterion.

A.1.4.1 Discussion for variable C

As mentioned in Section 8.1.3, the first implementation of BCO for the scheduling prob-
lem was presented in [Dav09]. Authors based heuristic rules on the stochastic version
of the LPT procedure, and it showed promising results. Better solutions were obtained

252 Appendix A Complementary material

Initialization: Read problem data and stopping criterion.
C ← (

∑n
i=1 li)/m;

ygmin = MAX_INT;
Do

Assign an empty solution;
for (i = 0; i < n; i+ +)

(1) Choosing task i using the roulette wheel of size
∑k
i=1 li;

(2) Scheduling i on machine j using the roulette wheel
of size

∑m
j=1(C − yj);

(3) Find current makespan ymax
(4) If best-so-far solution is found update necessary data:
if (ymax < ygmin);

ygmin ← ymax
C ← ygmin;
Update gbest;

while stopping criterion is not satisfied.
return (xbest, f(xbest))

Figure A.4: Pseudo-code for sLPT+sES algorithm.

in [Dav12], where authors incorporated best-fit heuristic for selection of processors.
They used adaptive strategy in order to change values of capacity C and direct the
search towards promising areas of the search space. Prior to implementation of best-fit
technique, we tested several possibilities of setting the value of C in order to investi-
gate its influence on the performance of the heuristic and its robustness with respect
to changes in the problem specifications. The pilot studies concerning the influence
of parameter C on the constructive moves during the execution show that it should
not be set as a constant. If C is close to known optimum, low quality solutions will
be generated since tasks that don’t pass the scheduling criterion will be allocated to
the last visited machine. Next, we appointed C with values larger than the theoreti-
cal lower bound of the processor loads at the beginning of the search. This generated
less variability in response values, however, degraded the quality of solution. Results
indicate the sLPT+BF heuristic requries well defined threshold (capacity) in order to
produce high quality results. Parameter C cannot be set provisory as the minimum
capacity corresponds to the makespan of the optimal solution. Straightforward way is
to define C in each iteration as the makespan of the best-so-far solution. Changing C
gradually might direct the search towards more prominent areas of the search space.
This way we can favor the generation of solutions that are not worse than the previous
one. Our proposal is that in first iteration parameter C is set to the theoretical lower
bound. Then, in the next iteration C is set to makespan of the best-so-far solution in
order to allow generation of solutions that might be worse then the current. Presented
mixed procedure has provided the best results. Therefore, we confirm that strategy of
[Dav12] provides best results.

In [Dav12] it was concluded that n does not influence the complexity of the prob-
lem. The studies in this thesis confirm the same conclusion. We show that the influence
of the varying number of processors on the complexity of the problem is not so straight-

A.1 Empirical study of BCOc 253

forward. This problem is referred to in greater detail in the forthcoming section.

A.1.5 Experimental evaluation of the best heuristic: sLPT+BF

In the previous part of this section we demonstrated that sLPT+BF dominates other can-
didate heuristics on the hardest test instance from [Dav12]. Experimental evaluation
of sLPT+BF on benchmark instances of [Dav06b, Dav06a] was not reported previously
in the literature. Therefore, to understand performance of BCO, it was justifiable to
conduct independent analysis of sLPT+BF for the scheduling problem. In the following,
we report results of the experimental study of the sLPT+BF. We address several objec-
tives while investigation performance of a standalone sLPT+BF. Firstly, we investigate
stagnation of the solution by increasing maximal number of iterations. Stagnation of
the solution occurs when, after reaching a certain number of iterations, heuristic does
not generate solutions of significantly better quality. This is a common property of
stochastic optimization methods. Furthermore, it is our goal to avoid so-called ceiling
effect, where two algorithms are not distinguishable when provided enough time or it-
erations to reach a sub-optimal state [Coh95, BB13]. Therefore, we use new results on
sLPT+BF to investigate a suitable value of maximal number of iterations for BCO. Lastly,
we investigate robustness of sLPT+BF to changes in instances characteristics, such as
dimension of a problem (number of tasks).

To analyze robustness of sLPT+BF a set of independent experiments was conducted
on all 18 test instances from two different problem classes, m = 12 and m = 16. In-
stances of a class differ in number of tasks that can vary from 100 to 500. The choice of
instances was based on the results from previous subsection, where it was concluded
that if the number of machines is less then 12 (m < 12), problems are being solved to
near optimality. In order to observe the influence of number of iterations on the qual-
ity of a solution, parameter Nit was set to different values within interval [100, 10000].
Therefore, one experiment corresponds to nrun = 100 independent runs of sLPT+BF
(each with different seed) for appointed number of iterations (Nit). The results of this
set of experiments are presented in Tables A.1 and A.2. Tables are organized in six
sections, grouped by value of the stopping criterion. Rows are arranged by the type
of instance, i.e., the number of tasks to be scheduled. Each row section consist of
two rows, where the first one reports the means (average values), while the second
row holds standard deviations and the number of occurrences of the best found solu-
tion. In the column sections, the first column (y) represents a mean value of the best
found solutions’ quality, averaged over nrun independent runs. Second column (t̄) rep-
resents mean value of running times needed to obtain best found solutions, reported
in miliseconds. Third column (nit) represents mean of the number of iterations needed
to generate best found solution and the forth column (best) reports the best found so-
lutions of an experiment. Additional to the reported best, in both tables we provide
percentage of its occurrence during the experiment.

A.1.5.1 Results

The analysis of responses, reported in Tables A.1 and A.2 and measured for differ-
ent values of stopping criterion, is suggesting that the sLPT+BF heuristic needs some
minimum number of iterations to reach position in the search space that increases its

Table A.1: Scheduling results - test problems with known optimal solutions adopted from [Dav06b] with m = 12, 16, nrun = 100 and a
different number of iterations (Nit = 100, . . . , 1000).

Probl. inst.
Nit=100 Nit=200 Nit=300 Nit=400 Nit=500 Nit=1000

y t̄ nit best y t̄ nit best y t̄ nit best y t̄ nit best y t̄ nit best y t̄ nit best
(s.d.) (s.d.) (s.d.) (%) (s.d.) (s.d.) (s.d.) (%) (s.d.) (s.d.) (s.d.) (%) (s.d.) (s.d.) (s.d.) (%) (s.d.) (s.d.) (s.d.) (%) (s.d.) (s.d.) (s.d.) (%)

[10−3] [10−3] [10−3] [10−3] [10−3] [10−3]

Iogra100_12 831.21 1.11 94.56 817 819.16 2.24 161.41 812 817.60 3.32 220.48 812 816.73 4.25 283.01 812 816.14 5.35 353.25 811 814.61 8.04 605.81 811
± 17.10 ± 0.55 ± 6.94 (1%) ± 2.00 ± 0.79 ± 26.76 (1%) ± 1.76 ± 1.20 ± 53.00 (1%) ± 1.68 ± 1.61 ± 81.78 (1%) ± 1.71 ± 2.01 ± 104.19 (1%) ± 1.46 ± 3.37 ± 223.59 (5%)

16 903.25 1.54 99.64 816 815.16 3.03 174.85 811 812.43 4.21 240.67 810 811.66 5.19 293.70 809 811.19 5.79 354.26 809 810.00 8.36 597.71 807
± 62.26 ± 0.62 ± 1.69 (4%) ± 5.99 ± 0.74 ± 18.19 (5%) ± 1.34 ± 1.05 ± 41.91 (8%) ± 1.12 ± 1.22 ± 57.12 (4%) ± 1.10 ± 2.08 ± 85.33 (7%) ± 0.94 ± 3.69 ± 203.72 (1%)

Iogra150_12 1022.35 2.28 94.46 1008 1008.64 4.15 157.23 1006 1007.53 5.46 217.08 1005 1007.13 6.04 264.33 1004 1006.76 7.93 322.64 1004 1005.91 12.06 578.31 1004
± 23.72 ± 0.71 ± 9.04 (2%) ± 1.12 ± 1.19 ± 32.34 (3%) ± 1.04 ± 1.90 ± 52.62 (2%) ± 0.98 ± 2.28 ± 72.06 (1%) ± 0.90 ± 3.15 ± 104.24 (1%) ± 0.78 ± 4.96 ± 231.48 (3%)

16 1106.23 2.83 99.60 1014 1015.81 5.50 180.05 1011 1011.89 7.13 238.52 1008 1010.98 8.12 300.51 1008 1010.57 9.29 346.36 1008 1009.35 15.34 649.32 1007
± 65.90 ± 0.65 ± 1.57 (1%) ± 10.34 ± 1.03 ± 18.32 (3%) ± 1.17 ± 1.63 ± 39.84 (1%) ± 1.08 ± 2.38 ± 67.71 (2%) ± 1.09 ± 3.15 ± 85.22 (4%) ± 1.03 ± 4.94 ± 222.67 (1%)

Iogra200_12 1212.94 3.43 89.09 1206 1207.20 5.37 142.22 1205 1206.60 6.90 193.26 1204 1206.17 8.59 256.12 1204 1205.91 10.00 306.37 1204 1205.29 15.36 506.29 1204
± 10.07 ± 0.90 ± 12.29 (3%) ± 0.92 ± 1.68 ± 34.76 (3%) ± 0.95 ± 2.65 ± 60.34 (3%) ± 0.86 ± 3.63 ± 91.71 (5%) ± 0.83 ± 3.64 ± 107.05 (6%) ± 0.67 ± 6.68 ± 224.53 (12%)

16 1335.63 4.45 99.74 1215 1226.18 8.05 185.23 1210 1211.61 10.40 251.74 1209 1210.74 10.98 302.08 1208 1210.17 13.09 371.36 1208 1208.80 22.85 676.39 1207
± 77.85 ± 0.73 ± 1.38 (1%) ± 30.55 ± 1.69 ± 19.30 (1%) ± 1.30 ± 2.42 ± 36.30 (4%) ± 1.05 ± 2.52 ± 61.17 (3%) ± 0.97 ± 3.33 ± 89.13 (5%) ± 0.91 ± 6.51 ± 206.55 (8%)

Iogra250_12 1408.33 4.80 86.46 1405 1405.89 6.73 137.76 1404 1405.40 8.58 186.67 1404 1405.19 9.85 223.00 1404 1405.01 11.49 265.00 1403 1404.47 20.38 484.26 1403
± 6.17 ± 1.08 ± 10.81 (3%) ± 0.75 ± 2.19 ± 33.78 (1%) ± 0.63 ± 3.47 ± 61.49 (5%) ± 0.59 ± 3.99 ± 82.77 (9%) ± 0.64 ± 4.88 ± 109.67 (1%) ± 0.64 ± 9.55 ± 235.74 (5%)

16 1499.30 6.26 99.16 1410 1416.86 10.34 182.83 1407 1408.66 12.25 242.92 1406 1407.83 14.69 301.42 1406 1407.41 17.34 360.57 1405 1406.66 26.69 583.92 1405
± 62.22 ± 0.97 ± 3.83 (4%) ± 18.31 ± 1.75 ± 20.34 (1%) ± 1.11 ± 2.16 ± 42.73 (2%) ± 0.91 ± 3.54 ± 65.75 (9%) ± 0.79 ± 4.07 ± 86.95 (1%) ± 0.70 ± 9.37 ± 216.17 (7%)

Iogra300_12 1607.53 6.74 86.32 1605 1605.37 9.77 143.95 1603 1604.92 11.84 188.98 1603 1604.65 14.38 231.84 1603 1604.40 17.02 280.79 1602 1603.98 26.90 452.81 1602
± 1.99 ± 1.50 ± 11.58 (5%) ± 0.77 ± 3.08 ± 37.08 (1%) ± 0.70 ± 3.56 ± 53.56 (2%) ± 0.67 ± 5.26 ± 82.97 (3%) ± 0.62 ± 6.84 ± 114.77 (1%) ± 0.65 ± 14.18 ± 248.74 (2%)

16 1664.35 8.71 99.27 1609 1609.24 12.51 170.99 1606 1607.75 15.52 218.19 1606 1607.29 18.63 272.14 1606 1606.97 22.58 332.69 1605 1606.44 34.44 524.69 1605
± 42.56 ± 1.60 ± 2.48 (2%) ± 2.72 ± 1.99 ± 24.33 (3%) ± 0.80 ± 3.16 ± 43.60 (7%) ± 0.75 ± 5.17 ± 77.63 (13%) ± 0.67 ± 6.42 ± 98.55 (2%) ± 0.67 ± 14.26 ± 227.76 (7%)

Iogra350_12 1826.67 8.83 95.63 1811 1810.79 13.09 158.33 1808 1809.87 17.07 213.80 1807 1809.34 21.04 273.74 1806 1808.83 26.02 341.95 1806 1807.96 40.70 552.69 1806
± 22.13 ± 1.70 ± 7.13 (7%) ± 1.25 ± 2.52 ± 26.51 (4%) ± 1.00 ± 4.20 ± 52.10 (2%) ± 1.07 ± 5.86 ± 78.97 (1%) ± 1.09 ± 7.69 ± 105.16 (2%) ± 0.89 ± 15.29 ± 216.89 (4%)

16 1850.14 10.42 99.14 1809 1808.19 14.80 163.60 1805 1807.31 18.34 215.68 1805 1806.89 22.50 265.21 1805 1806.68 25.35 303.11 1805 1806.14 40.38 495.94 1804
± 33.85 ± 1.70 ± 2.83 (2%) ± 0.89 ± 2.31 ± 25.56 (1%) ± 0.78 ± 4.19 ± 48.08 (1%) ± 0.68 ± 5.68 ± 71.69 (2%) ± 0.69 ± 7.78 ± 97.84 (3%) ± 0.66 ± 18.08 ± 232.72 (1%)

Iogra400_12 2025.39 10.99 95.59 2005 2007.14 15.29 158.58 2005 2006.37 19.36 203.27 2005 2005.87 24.70 263.50 2004 2005.54 29.86 323.77 2004 2004.75 51.06 572.16 2003
± 23.65 ± 1.81 ± 8.50 (1%) ± 0.98 ± 2.80 ± 27.89 (5%) ± 0.76 ± 4.77 ± 50.44 (12%) ± 0.69 ± 7.34 ± 84.26 (1%) ± 0.70 ± 9.14 ± 105.22 (5%) ± 0.73 ± 18.80 ± 218.31 (5%)

16 2085.98 12.91 99.49 2010 2011.56 18.81 177.10 2006 2008.19 23.99 235.45 2006 2007.67 29.02 283.54 2006 2007.20 35.26 351.08 2006 2006.37 58.56 594.30 2005
± 50.56 ± 2.06 ± 2.50 (2%) ± 7.86 ± 2.38 ± 22.48 (1%) ± 0.89 ± 4.24 ± 42.88 (2%) ± 0.85 ± 6.64 ± 65.49 (7%) ± 0.68 ± 8.71 ± 90.65 (12%) ± 0.61 ± 20.66 ± 216.57 (7%)

Iogra450_12 2235.32 12.76 96.15 2206 2208.35 18.80 161.48 2205 2207.38 24.44 217.99 2205 2206.59 31.28 283.31 2205 2206.28 36.95 337.58 2205 2205.50 62.74 582.80 2204
± 34.41 ± 2.05 ± 7.70 (1%) ± 1.24 ± 3.32 ± 28.25 (1%) ± 0.89 ± 5.54 ± 51.60 (2%) ± 0.85 ± 8.07 ± 78.08 (11%) ± 0.75 ± 9.93 ± 95.55 (12%) ± 0.69 ± 23.31 ± 224.54 (5%)

16 2349.58 13.58 99.69 2212 2239.97 23.53 191.14 2209 2211.84 31.26 258.29 2208 2210.18 37.76 316.26 2208 2209.50 44.70 377.78 2207 2208.22 78.43 670.94 2206
± 79.44 ± 1.26 ± 1.47 (1%) ± 41.99 ± 2.25 ± 14.82 (3%) ± 3.00 ± 4.40 ± 37.96 (1%) ± 1.19 ± 7.07 ± 61.27 (7%) ± 0.94 ± 9.74 ± 84.63 (2%) ± 0.81 ± 20.84 ± 184.04 (1%)

Iogra500_12 2412.72 12.78 89.11 2406 2406.04 19.82 147.04 2404 2405.43 26.30 198.24 2403 2405.09 33.52 257.51 2403 2404.85 38.12 294.43 2403 2404.31 63.80 504.30 2403
± 11.07 ± 2.24 ± 12.13 (7%) ± 0.92 ± 4.29 ± 33.07 (6%) ± 0.75 ± 6.86 ± 56.08 (1%) ± 0.66 ± 9.99 ± 80.43 (1%) ± 0.64 ± 13.40 ± 107.23 (2%) ± 0.66 ± 29.35 ± 240.83 (10%)

16 2515.92 15.59 99.71 2414 2416.10 26.70 186.12 2409 2409.92 34.57 244.89 2407 2409.21 41.95 300.99 2407 2408.77 49.73 359.18 2406 2407.86 82.42 603.14 2406
± 52.60 ± 1.27 ± 2.59 (2%) ± 11.78 ± 2.38 ± 14.48 (2%) ± 0.96 ± 5.12 ± 36.30 (1%) ± 0.79 ± 7.86 ± 58.23 (1%) ± 0.76 ± 11.14 ± 82.92 (1%) ± 0.75 ± 27.78 ± 209.96 (4%)

Table A.2: Scheduling results - test problems with known optimal solutions adopted from [Dav06b] with m = 12, 16, nrun = 100 and
different number of iterations (Nit = 2000, . . . , 10000) (cont).

Probl. inst.
Nit=2000 Nit=4000 Nit=5000 Nit=6000 Nit=8000 Nit=10000

y t̄ nit best y t̄ nit best y t̄ nit best y t̄ nit best y t̄ nit best y t̄ nit best
(s.d.) (s.d.) (s.d.) (%) (s.d.) (s.d.) (s.d.) (%) (s.d.) (s.d.) (s.d.) (%) (s.d.) (s.d.) (s.d.) (%) (s.d.) (s.d.) (s.d.) (%) (s.d.) (s.d.) (s.d.) (%)

[10−3] [10−3] [10−3] [10−3] [10−3] [10−3]

Iogra100_12 813.09 15.35 1222.34 809 812.01 27.46 2344.87 808 811.74 32.87 2799.97 808 811.50 37.59 3251.44 808 811.17 49.63 4352.36 808 810.96 58.58 5171.31 808
± 1.27 ± 5.70 ± 474.27 (1%) ± 1.23 ± 10.71 ± 952.01 (1%) ± 1.14 ± 13.66 ± 1221.15 (1%) ± 1.10 ± 16.87 ± 1517.09 (1%) ± 1.05 ± 23.00 ± 2103.30 (1%) ± 1.01 ± 28.72 ± 2612.75 (1%)

16 809.26 14.67 1043.68 807 808.45 29.69 2228.49 806 808.17 36.56 2779.86 805 807.98 42.76 3256.97 805 807.77 52.98 4092.97 805 807.60 65.09 5083.61 805
± 0.86 ± 6.74 ± 490.78 (4%) ± 0.84 ± 12.77 ± 1015.61 (1%) ± 0.87 ± 16.36 ± 1313.63 (1%) ± 0.86 ± 19.21 ± 1554.93 (1%) ± 0.81 ± 25.50 ± 2040.68 (1%) ± 0.72 ± 31.08 ± 2508.24 (1%)

Iogra150_12 1005.22 22.36 1094.62 1004 1004.74 36.12 1850.28 1003 1004.55 47.71 2470.96 1003 1004.42 53.68 2794.38 1003 1004.18 72.09 3797.58 1003 1004.04 87.45 4643.54 1003
± 0.69 ± 9.30 ± 482.26 (12%) ± 0.61 ± 18.61 ± 991.57 (2%) ± 0.61 ± 25.26 ± 1376.09 (4%) ± 0.62 ± 29.50 ± 1606.20 (7%) ± 0.61 ± 39.42 ± 2146.98 (11%) ± 0.60 ± 47.66 ± 2602.35 (16%)

16 1008.59 26.10 1124.66 1006 1007.95 46.12 2086.50 1006 1007.67 57.89 2656.31 1005 1007.49 69.32 3198.37 1005 1007.23 85.64 3986.68 1005 1007.02 111.05 5190.11 1005
± 0.84 ± 9.36 ± 447.46 (1%) ± 0.79 ± 22.21 ± 1058.68 (3%) ± 0.80 ± 27.58 ± 1320.45 (1%) ± 0.77 ± 32.95 ± 1584.25 (1%) ± 0.79 ± 42.68 ± 2038.43 (2%) ± 0.71 ± 52.95 ± 2525.87 (2%)

Iogra200_12 1204.81 28.42 953.68 1204 1204.34 53.36 1867.51 1203 1204.14 70.03 2461.02 1203 1204.02 80.81 2871.53 1203 1203.86 100.13 3572.32 1203 1203.79 113.01 4041.43 1203
± 0.54 ± 14.86 ± 529.24 (26%) ± 0.51 ± 29.92 ± 1084.00 (1%) ± 0.49 ± 36.67 ± 1322.93 (6%) ± 0.45 ± 41.64 ± 1516.61 (9%) ± 0.51 ± 56.39 ± 2060.46 (21%) ± 0.50 ± 66.01 ± 2412.35 (25%)

16 1207.93 39.24 1189.79 1206 1207.23 68.21 2131.10 1206 1207.04 81.41 2553.25 1206 1206.92 94.51 2981.28 1205 1206.67 126.07 4010.52 1205 1206.54 145.93 4653.37 1205
± 0.85 ± 12.85 ± 417.88 (4%) ± 0.68 ± 30.71 ± 994.29 (12%) ± 0.69 ± 38.63 ± 1234.25 (20%) ± 0.67 ± 45.89 ± 1490.64 (1%) ± 0.66 ± 63.94 ± 2073.81 (2%) ± 0.64 ± 77.02 ± 2496.41 (2%)

Iogra250_12 1404.10 34.68 840.79 1403 1403.64 71.79 1799.26 1403 1403.50 88.48 2239.78 1403 1403.46 95.75 2423.02 1402 1403.32 128.02 3260.74 1402 1403.25 149.11 3796.38 1402
± 0.54 ± 18.93 ± 488.53 (10%) ± 0.54 ± 42.66 ± 1101.81 (39%) ± 0.50 ± 50.71 ± 1314.66 (50%) ± 0.52 ± 56.25 ± 1458.55 (1%) ± 0.49 ± 78.03 ± 2028.61 (1%) ± 0.46 ± 95.75 ± 2467.69 (1%)

16 1406.06 45.17 1007.26 1404 1405.66 75.28 1717.19 1404 1405.49 96.19 2209.54 1404 1405.33 121.15 2801.73 1404 1405.04 182.38 4217.18 1404 1404.89 216.12 4983.94 1404
± 0.65 ± 19.03 ± 444.93 (1%) ± 0.65 ± 41.34 ± 971.42 (2%) ± 0.67 ± 56.92 ± 1332.61 (6%) ± 0.62 ± 73.85 ± 1733.98 (7%) ± 0.55 ± 97.43 ± 2282.39 (13%) ± 0.55 ± 114.58 ± 2657.18 (21%)

Iogra300_12 1603.60 50.41 860.12 1602 1603.31 84.49 1472.88 1602 1603.22 103.05 1805.70 1602 1603.07 141.88 2501.95 1602 1602.97 173.07 3041.29 1602 1602.93 188.66 3334.45 1602
± 0.58 ± 28.69 ± 515.53 (3%) ± 0.59 ± 59.01 ± 1056.65 (7%) ± 0.58 ± 74.27 ± 1329.59 (8%) ± 0.50 ± 99.88 ± 1792.14 (9%) ± 0.43 ± 120.80 ± 2156.47 (11%) ± 0.41 ± 134.58 ± 2406.08 (12%)

16 1605.92 61.34 950.69 1605 1605.44 111.04 1749.94 1604 1605.35 131.66 2079.59 1604 1605.27 149.18 2361.02 1604 1605.08 215.82 3435.39 1604 1604.96 264.82 4222.53 1604
± 0.63 ± 29.52 ± 477.47 (24%) ± 0.55 ± 63.57 ± 1021.67 (2%) ± 0.57 ± 79.22 ± 1274.48 (4%) ± 0.56 ± 93.92 ± 1507.85 (6%) ± 0.52 ± 136.84 ± 2204.03 (10%) ± 0.53 ± 168.84 ± 2721.23 (16%)

Iogra350_12 1807.06 81.75 1130.74 1805 1806.51 145.78 2038.92 1805 1806.36 169.61 2378.59 1805 1806.17 214.84 3025.31 1805 1805.88 286.72 4041.36 1804 1805.69 368.83 5205.18 1804
± 0.81 ± 36.90 ± 527.53 (2%) ± 0.71 ± 71.15 ± 1013.19 (6%) ± 0.76 ± 87.04 ± 1237.96 (13%) ± 0.71 ± 115.74 ± 1650.78 (17%) ± 0.71 ± 155.19 ± 2207.03 (3%) ± 0.74 ± 188.65 ± 2678.75 (4%)

16 1805.70 70.58 876.78 1804 1805.31 128.84 1630.24 1804 1805.21 154.55 1963.10 1804 1805.06 202.06 2574.04 1804 1804.93 244.81 3121.67 1804 1804.87 280.67 3587.77 1804
± 0.61 ± 39.75 ± 512.26 (2%) ± 0.56 ± 83.42 ± 1074.44 (5%) ± 0.53 ± 103.32 ± 1332.54 (6%) ± 0.49 ± 131.72 ± 1698.65 (9%) ± 0.50 ± 160.94 ± 2072.66 (16%) ± 0.46 ± 186.64 ± 2406.07 (18%)

Iogra400_12 2004.17 91.72 1043.40 2003 2003.71 160.81 1843.63 2003 2003.59 189.04 2169.46 2003 2003.51 214.20 2464.17 2002 2003.27 320.20 3701.25 2002 2003.18 368.10 4245.00 2002
± 0.65 ± 40.25 ± 466.54 (12%) ± 0.55 ± 83.82 ± 975.76 (34%) ± 0.49 ± 106.66 ± 1239.58 (41%) ± 0.52 ± 130.65 ± 1521.51 (1%) ± 0.51 ± 196.50 ± 2286.21 (3%) ± 0.48 ± 222.19 ± 2575.38 (4%)

16 2005.79 106.70 1101.39 2004 2005.40 172.35 1796.18 2004 2005.23 219.70 2292.77 2004 2005.14 254.03 2656.12 2004 2005.00 314.39 3297.08 2004 2004.81 429.73 4519.61 2003
± 0.57 ± 46.73 ± 495.54 (1%) ± 0.57 ± 92.96 ± 984.48 (4%) ± 0.56 ± 129.30 ± 1364.50 (7%) ± 0.53 ± 148.66 ± 1570.78 (8%) ± 0.55 ± 193.59 ± 2043.34 (15%) ± 0.50 ± 258.14 ± 2734.82 (1%)

Iogra450_12 2204.89 111.55 1056.49 2204 2204.37 207.81 1988.19 2203 2204.19 262.27 2515.77 2203 2204.09 298.45 2865.62 2203 2203.95 359.66 3459.60 2203 2203.81 442.77 4262.83 2203
± 0.61 ± 50.71 ± 491.80 (25%) ± 0.58 ± 101.64 ± 983.44 (4%) ± 0.56 ± 131.03 ± 1267.36 (8%) ± 0.55 ± 149.87 ± 1450.84 (11%) ± 0.55 ± 199.66 ± 1934.31 (18%) ± 0.50 ± 263.58 ± 2553.43 (24%)

16 2207.33 134.72 1168.50 2205 2206.60 251.24 2199.24 2205 2206.48 286.60 2515.75 2204 2206.37 328.69 2887.83 2204 2205.99 510.40 4485.24 2204 2205.88 576.34 5078.53 2204
± 0.75 ± 50.90 ± 448.08 (1%) ± 0.63 ± 111.82 ± 987.44 (5%) ± 0.69 ± 127.72 ± 1129.55 (1%) ± 0.70 ± 158.97 ± 1407.11 (1%) ± 0.61 ± 239.51 ± 2114.13 (1%) ± 0.60 ± 271.73 ± 2407.62 (1%)

Iogra500_12 2403.76 126.42 1012.87 2403 2403.34 219.27 1778.37 2402 2403.22 269.27 2183.85 2402 2403.13 313.73 2551.13 2402 2403.03 380.55 3097.69 2402 2402.98 423.45 3446.24 2402
± 0.55 ± 65.09 ± 529.74 (30%) ± 0.55 ± 123.73 ± 1013.13 (4%) ± 0.52 ± 156.40 ± 1283.20 (5%) ± 0.50 ± 188.61 ± 1545.29 (7%) ± 0.48 ± 240.19 ± 1969.81 (10%) ± 0.45 ± 280.60 ± 2295.93 (11%)

16 2407.03 156.91 1163.73 2405 2406.37 280.29 2092.59 2405 2406.22 333.76 2497.30 2404 2406.09 394.91 2957.00 2404 2405.86 533.88 3995.28 2404 2405.75 608.58 4567.99 2404
± 0.68 ± 59.62 ± 449.23 (2%) ± 0.72 ± 133.52 ± 1007.71 (8%) ± 0.70 ± 160.94 ± 1213.04 (1%) ± 0.66 ± 196.88 ± 1486.75 (1%) ± 0.63 ± 269.81 ± 2029.76 (2%) ± 0.62 ± 325.71 ± 2453.74 (2%)

256 Appendix A Complementary material

chances to find high quality solutions. Furthermore, the algorithm is robust to changes
in the structure of problem instances, since the deviation of generated solutions from
the optimal one is less then 3% in all experiments when Nit ≥ 200. Moreover, as the
number of iterations Nit is increasing, the quality of solutions increases for all prob-
lem instance. The biggest change in the quality of reported solution occurs between
Nit = 100 and Nit = 200. Another influence of stopping criterion concerns the vari-
ability of the reported solutions’ quality. Deviations of y in Tables A.1 and A.2 indicate
that the higher value of the Nit is decreasing the variability of the response value. The
conclusion becomes more evident while observing difference between standard devi-
ations of y, obtained for Nit = 100 and Nit = 200. More specifically, let Iogra100_12
be the case study. The standard deviation has decreased 9 times while solution quality
increased around 1.5%. Similary, the stabilization of variability can be detected for the
rest of problem instances within this case study.

In Fig. A.5 the dependency of solution’s quality on the value of stopping criterion is
more obvious. Each graphic represents propagation of a mean of solutions’ quality over
different values of Nit for two instances with the same number of tasks and different
m (Table A.1). It should be noted that the graphics are not scaled evenly. For each
problem instance, a slow improvement of the solution’s quality can be observed after
Nit reaches 200. Another interesting conclusion drawn from these graphics concerns
the impact of the number of machines on the hardness of instances of the corresponding
scheduling problem. It seems that the impact is not the same for all problem instances
and it depends on the maximal number of iterations. Two cases can be distinguished,
when Nit < 200 and Nit ≥ 200. In the first case, on all instances of the class m = 16,
y obtains lower quality compared to quality of solutions reported for instances of class
m = 12. However, when n = 100 and n = 350, even when Nit ≥ 200, sLPT+BF
heuristic generates better solutions on instances of class m = 16. This indicates that
the two instances are easier to solve if more machines are included in the scheduling
problem and if some minimum computational effort (number of iterations) is provided.
However, the number of machines has a large impact on a running time. Reported
values from Tables A.1 and A.2 show that, in average, more time is needed to generate
complete solution for class m = 16. Moreover, in majority of the cases, problem class
m = 16 is still more difficult to solve w.r.t. the quality of a solution.

In addition to mean values reported in Tables A.1 and A.2, in Appendix B we provide
graphics containing frequency of occurrences of all objective function values within a
single experiment of the sLPT+BF. We are interested in results when Nit ≥ 1000. The
graphics provide better perspective into the expected value of quality of the solution
later used for analysis of BCO. Results are divided between two problem classes, and
graphically presented for m = 12 in Figures B.1 and B.3, and for class m = 16 in
Figures B.2 and B.4. From these charts we can conclude that the reported estimates
in form of average values from Table A.1 are agreeing with the distribution of the fre-
quencies of reported solutions. The reported mean values and their standard deviations
represent a good statistics to describe the overall success of the sLPT+BF heuristic.

A.2 The BCO algorithm 257

Figure A.5: Propagation of solutions for different instances generated by sLPT+BF after
100, 200, 300, 400, 500 and 1000 iterations. Solid line corresponds to
class of instances when number of machines is 12, and dashed line to 16
machines.

A.2 The BCO algorithm

A.2.1 BCOc for P ||Cmax: calculate constructive moves

Parameter NC was used to determine number of alternations between forward and
backward passes. Avoiding to define new parameter, the number of components that
should be scheduled in one run of forward pass was controlled by variable n_task_all.
The values of the variable are integer, determined for number ot tasks n following the
rule:

n_task_all = b nNC c.

However, when two numbers are not divisible the reminder is then greater than
zero. For that reason the variable rest is used to hold the values of the reminder of the
division, i.e.,:

rest = n%NC .

The counter n_task_all is utilized to control the number of tasks scheduled during
each forward pass. Variable iii_count is initialized to n_task_all. If rest > 0 then

258 Appendix A Complementary material

iii_count is incremented by 1 for the first rest forward passes. The procedure states
that tasks are being scheduled one by one until iii_count is reached. Pseudo-code of
procedure in the BCO algorithm is presented in Fig. 1.

Algorithm 1 Procedure to calculate number of components for each forward pass in an
iteration of BCOc.
Precondition: Read problem data and stopping criterion.

...
i← 0;
n_task_last ← rest;
for (u = 0;u < NC ;u++) do

iii_count ← (u+ 1) · n_task_last;
if (n_task_last > 0) then

iii_task_last ++;
n_task_last −−;

end if
. forward pass
...
. backward pass
...

end for

A.2.2 Choice of reference case: heuristic vs. NC = 1
We prove that the standalone heuristic can be represented by the reference case of BCOc
algorithm (i.e., NC = 1, B = 20). To address this question we compare two sets
of data: the first generated by sLPT+bestfit, and the second by the BCO algorithm
with configuration (NC = 1, B = 20, p0

b ,min(f1
b)). We chose this configuration during

the experimental study of BCOc, soon as we noticed that all BCOc algorithms perform
equally well for NC = 1 and B ∈ [1, 20]. This is also easy to establish without ex-
periments since for NC = 1 backward pass is not employed. Therefore, qualitative
parameters of BCOc are not able to impose their influence. Additionally, for maximal
number of iterations and NC = 1 the best BCOc algorithm is acquired for the maximal
population size (B = 20).

We had reasons to expect that the standalone heuristics might achieve better perfor-
mance than the corresponding BCOc as the heuristic attains higher number of iterations
that allows frequent update of the global best solution. Thus, it learns about the appro-
priate value for ymax that would lead towards high quality solutions. In particular, we
set Nit = 2000 for sLPT+bestfit and Nit = 100 for the corresponding BCOc algorithm
for which B = 20. We do not disregard the advantage coming from the population of
solutions as the exploration component allows the search to start from different posi-
tions of the search space and, therefore, explore multiple of solutions before the start
of new iteration.

The results of comparison are represented in Fig. A.6 as a graphic of propagation of
the average best reported solution’s quality, expressed as relative error, over problem
size n. We conduct the comparison for all problem instances. From Fig. A.6 we observe

A.3 Statistical analysis of BCOc 259

Figure A.6: Graphic of propagation of the average quality of solution generated by stan-
dalone heuristic and of BCO algorithm when NC = 1, B = 20. Stopping
criteria is Nit.

that results do not differ significantly. We conclude that all comparisons between differ-
ent parameter configurations also show performance against the standalone heuristic.

A.3 Statistical analysis of BCOc

Statistical tests are founded on one performance measure, i.e., solution quality. Fur-
thermore, by controlling termination of BCOc by maximal number of iterations we do
not account running times. Therefore, T does not influence the conclusions of the
tests. We extend our study of parameter effects by restricting maximal allowed CPU
time. New results are compared against results of Nit to capture any changes in our
conclusions. Consequently, statistical analysis of BCOc is centralized in framework of
structural tunning.

A.3.1 Preliminaries

A.3.1.1 The best mean

The best mean of a particular BCOc (for fixed qualitative parameters) refers to the
smallest average quality of solutions among totally B · NC. This value is reported in
the basic table. In Section 8.3.4 we discuss about how to calculate the best mean in
(Formula (8.2), pg. 154). We remark about its corresponding data sample. A data
sample of the best mean is a set of solution quality values ys produced by the BCOc
instance w.r.t. seed.

A.3.1.2 Data sample for (non)parametric test

Parametric tests employed on the best means are based on the corresponding data
samples, where a data sample represents a product of a single experiment. In partic-
ular, in the thesis the data sample consists of nrun measured outcomes generated by

260 Appendix A Complementary material

the corresponding BCOc instance for different values of parameter seed (Section 7.2).
Because values of seed are fixed by associating them with an index of a run within
an experiment (execution counter), the data samples in our (non)parametric tests are
paired (dependent). All the samples used in this thesis contain outliers. In particular,
when the condition of normality is not satisfied we do not eliminate the outcomes that
produce the skewness.

A.3.1.3 Statistical tests for paired data

Data samples that generate the best means are paired and the null hypothesis is the
equivalence of means. During the statistical tests we are not interested in between-
subject differences, caused by values of seed as nuisance factor. Consequently, the
choice of statistical test is narrow, i.e., we may employ repeated measures ANOVA
and/or Friedman’s test(1). The parametric test represents good alternative, under con-
ditions of a normal distribution of a sample. Its advantage against the non-parametric
test, such as Friedman’s, is simplicity of obtaining size of effect.

A.3.1.4 Dominance of algorithm

Difference in the performance between two loyalty functions must satisfy condition
that one has to show clear dominance for at least one configuration pair that belongs
to B × NC. Here, by dominance we imply that there exists at least one pair (i, j),
i ∈ B, j ∈ NC for which some loyalty function performed the best compared to others.
Furthermore, compared against the best result of other loyalty function, there needs to
be clear statistical difference between two purported results. Otherwise, statistical dif-
ference in the performance between a group of loyalty functions cannot be established.
However, the dominance does not take into account sensitivity of loyalty functions to
all values of parameters B and NC . Therefore, we are not interested for which i and j
the best performance is established.

A.3.1.5 Effect of ME across the study

Here, we describe comparison between methods of evaluation on the complete problem
set for P ||Cmax. According to solution quality landscapes, presented in Section 8.4
different levels of the parameter ME may occasionally produce high quality solutions.
According to Fig. 8.3 the influence of the problem structure is evident. We will base
our study on the best configurations of (Lp, B,NC). We conduct Friedman’s rank test
to compare three methods of evaluation. It is based on ranking the best representative
among Lp · B · NC reported solutions. The first line of the study is, therefore, to
determine influence of parameter Lp, i.e., which loyalty function exhibits similarities
across the group (within the level of ME).

For Friedman’s rank test the dependent variable is method of evaluation, and prob-
lem instances an independent variables. To determine the ranks we utilize RMANOVA
with fixed set of configurations as dependent variable and seed as independent. Ordi-
narily, two-way ANOVA should be employed, however, normality assumptions are not
satisfied for all levels of dependent variable. Calculation of ranks for each problem

(1)The utilization of permutation test has increased over the years, which is the motivation to include it in
the future work.

A.3 Statistical analysis of BCOc 261

instance is conducted by procedures of multiple comparison using RMANOVA to test
the hypothesis of equivalence of means, and pairwise t-test with Hommel’s correction
as a post-hoc test. The procedure in R is shown in Section A.3.3.

A.3.2 Repeated measures ANOVA

The one-way repeated measures ANOVA is used to compare mean values for ordered
type of results across multiple related (dependent) groups. The independent variable
has categories called levels, which will be referred here as “groups”. The results, or
dependent variable, are compared between the categories of the grouping, or inde-
pendent variable, which is referred to as the within-subject factor. Typical studies that
involve RMANOVA consider changes of mean values over different time points, or when
we want to establish differences between mean values under different conditions. The
later approach was of interest in this dissertation. It is presumed that the data of
the population to which statistical inference is to be made, follow normal distribution
within each group. For k related groups the null hypothesis (H0) is that the population
mean µ of the measured results are the same for all of the related groups:

H0 : µ1 = µ2 = . . . = µk.

The alternative hypothesis (Ha) states that k related populations means are not
equal, i.e., that there is at least one mean that is different from others (there are least
two samples with different mean values). The test does not reflect where the differ-
ences between groups occurred, as it represents an omnibus statistical test. Therefore,
to investigate where exactly differences occurred, a post-hoc test has to be conducted.

A.3.2.1 RMANOVA in the BCOc study

To employ RMANOVA in our study we need to satisfy basic conditions: 1. dependency
between samples; 2. the number of data in the sample is large enough for parametric
test; 3. symmetric distributions; 4. sphericity condition. The first condition is known
as paired data samples and describes the relationship among response values gener-
ated by different BCO instances. Since the solutions are discrete, usually, during an
experiment, same solution can be generated by different seed. This causes generation
of binned data, which in this case corresponds to grouping of data of the same value.
The frequency distribution of the data is a good representative when the mean of the
frequency distribution of the sample coincides with the average value of the original
sample.

A.3.2.2 RMANOVA of Lp groups

In this section only the main effects of the statistical tests are being presented. Reason
why RMANOVA is utilized is because there is no interest in the variance cause by param-
eter seed, i.e., between-subject difference. RMANOVA test separates the effect caused
by the subject (seed) from the errors which we want to investigate. The distribution of
the response values in groups is presumed to be normally distributed, based on graphi-
cal assessment as presented in Fig. A.7. The RMANOVA tests the within-subjects effects,
i.e., if significant difference between the means generated by loyalty functions exists.

262 Appendix A Complementary material

After concluding an overall (in)significant difference in means, a series of post-hoc tests
is conducted in order to find out which of the loyalty functions caused difference.

A.3.2.3 Distribution of samples: normality test

To examine condition before applying RMANOVA test, normality tests is used. In or-
der to provide meaningful model of the sample, frequency distribution (histogram) is
chosen. Such representation is suitable to represent discrete data, as is here the case.
Moreover, one may recognize if the data sample holds some central tendency or follows
some known distribution, as detect gaps and outliers. First test of normality is con-
ducted by graphical representation of samples distribution, provided in Fig. A.7. The
graphics represent relative frequencies(2) of results for one case. The chosen collection
of results is generated when BCO parameters are set to min(ev1), pib, i ∈ [0, 9], i ∈ Z,
Nit = 100 and problem instance to Iogra100_16. In other words, each graphic denotes
a case of comparison between two samples of data generated during an experiment
by two different loyalty functions within same method of evaluation and on same test
instance. To remind, a sample of data describes a set of ymax solutions generated by
mentioned parameter configurations and the best reported configurations of B and
NC during an experiment. Histograms in Fig. A.7 are produced with R package lan-
guage, function hist, adjusted in order to show right-closed intervals (right=TRUE)
and manually setting break points on x-axes in order to provide suitable interval for
both graphics. Due to overwhelming number that would take place when comparing
all pairs of loyalty functions, the best performing pb (blue), is compared to the rest from
the group colored with green. For each histogram, a mean of a sample is provided as
ymax. The source of variability of each sample is caused by parameter seed.

The Mk1 Eyeball test(3) revealed a good fit to normal distribution in the histograms
made in R. Furthermore, the skeweness of the groups are in the acceptable range. In
addition, homogeneity of variances was analyzed by calculating ratios of largest to
smallest variation. Therefore, in Fig. A.7 all samples are model by normal probability
curve defined by the average value of the sample and its standard deviation, and col-
ored in respect to color of the sample histogram. The visual assessment is that data
distribution resemble the normal distribution.

To complement the graphical assessment of the normality, a goodness of fit with
normal distribution was tested with Shapiro-Wilk test. The null hypothesis of Shapiro
test is that a sample is normally distributed. Measured p values on all samples failed
to verify normal distribution. However, that might be since the standard Shapiro-Wilk
test for normality is not suitable for binned data [Roy82]. Another important feature of
parametric tests is the test of equality of variance between the data samples. Because
of that Leven’s non-parametric test was used, however didn’t always verify the equiv-
alence of variance between considered samples. When it failed, differences between
variance of each of the sample was compared and it was shown not to be larger than
4 ([How10, pg. 334]) in majority of cases. Where the difference in variance is larger
in shown in Fig. A.7 for p6

b . This sample has an outlier, which causes large skewness in
the data set. However, the number of outliers is very small, and the data shows clear
grouping around the mean.

(2)Relative frequencies may be generated when normal frequencies are normalized.
(3)Mk1 is abbreviation of Mark One Eyeball used in a military as a slang for visual inspection [Bus].

A.3 Statistical analysis of BCOc 263

Figure A.7: Pairwise comparison between results of the best performing loyalty func-
tion (here p2

b), and the rest of loyalty functions within the same group, on
test instance Iogra100_16.

Fig. A.7 presents, beside the assessment of normality, p-values of two different sta-
tistical tests, i.e., pt for parameteric t-test and pw for non-parametric Wilcoxon test. Tests
are conducted on the given pairs of samples with R package(4). By comparing p-values
between the tests we confirm that parametric tests are suitable to conduct empirical
evaluation of the BCOc algorithm.

Furthermore, results in Fig. A.7 show that employing RMANOVA provides reliable
conclusions of our hypothesis testing. To conduct RMANOVA test we use ezANOVA
package [Law15]. The condition of sphericity is integrated inside of the calculation of
p-value. Sphericity condition can be expressed in various ways [Dav02, pg. 109]. In
general, sphericity refers to condition where the variances of the differences between
data groups are equal [Dav02]. When conditions are not satisfied, corresponding cor-
rections are made inside of ezANOVA function. All this indications are reported in our
study, especially if sphericity condition is not satisfied, as we mark it with the reference
to the type of corrections.

(4)Default setting of t-test assumes unequal variance and applies the Welsh modifications.

264 Appendix A Complementary material

A.3.2.4 Cohen’s table

Cohen’s table for different effects for within-subjects comparison is: small (η2 = 0.0099),
medium (η2 = 0.0588), and large (η2 = 0.1379) effects [Coh88, pg. 285]. When
η2 = 0.009 about 1% of the total superpopulation variance accounted for by group
membership. This values are used only as guidance of estimating the size of effect.
Usually, the Cohen’s table is used as a last resort, and the advice is to compare calcu-
lated effect size against other effects from the literature or along the study.

A.3.3 Ranking R procedure for ME
We conduct multiple comparison using RMANOVA and generate p-value and distin-
guished three p-values: p1, p2, p3. Value p1 describes comparison of a pair min (ev1) −
max (ev1), p2 of a pair min (ev1) − max (ev2), and p3 of a pair max (ev1) − max (ev2).
If the result of RMANOVA is p >= 0.05, all three ranks are appointed to value of 2. If
p < 0.05 pairwise t-test with Hommel’s correction is used in order to capture statistical
difference between pairs of methods.

The ranking procedure is based on three samples (one sample includes nrun re-
sponse values). A mean value of each sample coincides with the best result produced
on configuration sub-space L × B × NC at each level of ME . To prepare values for
the ranking procedure, we presume three input files, each for different levels of ME .
One file contains at most 10 columns, each column representing solution quality data
sample generated at one level of Lp (we presume that columns are organized in an
increasing order along indicies of Lp). The first step is to extract from each file the col-
umn with the smallest mean value. The three new columns form matrix M . We call R
function stack on M to prepare for call of ezANOVA function that conducts RMANOVA
test. The procedure bco-stack is described in pseudo-code Alg. 2. The ranks are cal-
culated following the procedure of Alg. 3. Firstly, simple ranks are determined with
the R function rank. In case of ties (two means report similar values) established by
RMANOVA test, we average the ranks. In our study the ties occur in different occasions
w.r.t. result of RMANOVA test. The first, and the most evident is for p ≥ 0.05 at the
significance level α = 0.05. The ranks ri, i ∈ {1, 2, 3} are equal to 2. In case p ≤ 0.05 we
conduct pairwise test with Hommel’s correction and observe three reported p-values.
The ties may occur if two p-values have not detect significant differences. Here, we

Algorithm 2 Transform data available as separate columns in a data frame.
Precondition: Input file with values of matrix M

function BCO-STACK(M)
ncol ← length(M);
M .aux ← cbind(as.data.frame(1:length(M [, 1])), M);
colnames(M .aux)← c("first");
M .stack ← stack(M);
subject ← rep(M .aux$first, ncol);
M .stack[3]← subject;
colnames(M .stack)← c("values","main","subject");
return M .stack

end function

A.4 Empirical study of BCOi 265

Algorithm 3 Calculating Friedman’s ranks.
Precondition: Three input files mei ∈ME, library(ez)

function POST-HOC(me1,me2,me3)
M ← matrix with three columns representing the best from each mei;
M.s← BCO-STACK(as.data.frame(M));
a.mean ← apply(M .s, 2, mean);
a.rank ← rank(a.mean);
Meza ← ezANOVA(M .s,dv=.(values),wid=.(subject),within=.(main) ,detailed=TRUE);
ef ← unlist(Meza);
p.value ← as.numeric(ef [14]);
if p.value < 0.05 then

p.a← with(M .s,pairwise.t.test(values,main, p.adjust.method ="hommel",paired=T))
p.u ← unlist(p.a);
if (as.numeric (p.u["p.value1"]) ≥ 0.05) then

a.rank[1]← (a.rank[1] + a.rank[2]) / 2;
a.rank[2]← a.rank[1];

end if
if (as.numeric (p.u["p.value2"]) ≥ 0.05) then

a.rank[1]← (a.rank[1] + a.rank[3]) / 2;
a.rank[2]← a.rank[1];

end if
if (as.numeric (p.u["p.value4"]) ≥ 0.05) then

a.rank[1]← (a.rank[2] + a.rank[3]) / 2;
a.rank[2]← a.rank[2];

end if
end if

end function

average the ranks among the two mean values that have reported the largest p-value.

A.4 Empirical study of BCOi

A.4.1 SATLIB

The initiative to create SATLIB library started in 1998 as a co-joint work of Hoos and
Stützle [Hoo00b]. According to [Hoo00b] a motive to create SATLIB library originates
from an increased interest in the experimental studies of SAT solvers. The goal is
to help assessment of new algorithmic approaches. Furthermore, SATLIB is created to
support the constant flow of new benchmark problem instances and to serve as dynamic
environment of generating intrinsically hard SAT problems.

A.4.1.1 Categorization

Among the first to propose procedures that would distinguish randomly generated hard
problems from easy ones are Mitchell, Delman and Levesque [Mit92]. Their work has
been inspired by researchers who claimed that SAT problem can be solved in average
in O)(n2) steps (see Introduction, pg. 1). The authors discuss significance of prob-
lem categorization and suggest procedures that generate hard instances. Difficulty of

266 Appendix A Complementary material

a particular problem instance was measured with Davis Putnam (DP) procedure. Two
models of instance distributions are distinguished: 1. fixed clause-length model, and
2. constant-probability model. [Mit92] conclude that fixed clause-length model gen-
erates harder instances if the number of clauses is roughly 4.3 times larger than the
number of variables, whereas formulas with either more or fewer clauses are easy.
Consequently, generating larger formulas does not necessarily lead to harder formu-
las. Prior to their work [Che91] categorizes SAT instances as under-constrained and
over-constrained, which respectively describes formulas that have fewer clauses and
formulas with many clauses. [Mit92] conjecture that formulas, known as critically-
constrained, are much harder as they have much less satisfying assignments. They
conclude that the probability that a random SAT problem instance is satisfiable is re-
lated to the ratio of number of clauses to number of variables (clause-to-variable ratio,
α).

A.4.2 Number of transformations
The auxiliary information, omitted in the main material about BCOi does not uphold
as much text as for BCOc. Here, we give description for BCOi of computing values
of u (forward/backward pass counter) and of NCT in the last iteration while dealing
with SATLIB 3-SAT problem instances. The input data for each problem instance is
MAXFLIPS, NCT and a threshold value of parameter NC .

Since NC is not utilized as a control parameter that directs the search in the forward
pass, to control values of variable u we first determine the values of iteration counter
niter . Then,

u = mod(niter , NC).

We appoint u = NC, when u reaches value 0.
Moreover, we implemented BCOi so that the stopping criterion is defined as either

solving the 3-CNF formula, or reaching MAXFLIPS/(NCT ∗ B) iterations. The value
of NCT in the last iteration needs to be calculated for all the bees, in case that NCT ∗B
does not divide MAXFLIPS. If/when the algorithm satisfies the last condition, we check
if MAXFLIPS/(NCT ∗B) = 0. If satisfied, the algorithm finalizes. Otherwise, the rest
of transformations NCT rest as determined by:

NCT rest = (MAXFLIPS%(NCT ∗B))/B.

The procedure allows equal distribution of workload between the bees, however, per-
mits the BCOi algorithm to obtain more/less transformations than MAXFLIPS, which
we refer to as missed transformations. Because in the study we employ small number
of bees, the number of missed transformation is of practical significance.

APPENDIXB
Tables and graphics

B.1 Empirical study of BCOc

B.1.1 Analysis of the bestfit heuristic

Here, we provide additional graphics to complement conclusions from section A.1.5.1.
The graphics in Figure Fig. B.3 and B.4 represent occurrence of best found solutions
within 100 repetitions generated by sLPT+BF heuristic for nine problem instances of
the same class (same number of machines). To observe distributions of the solutions
for larger number of iterations, we used Nit = 1000 and Nit = 10000.

B.1.2 BCOc: response landscape for two methods of
evaluation

In this section we provide response landscapes of BCOcs generated over domains of
parameters B and NC for problem instance Iogra100_12. In Fig. B.5 The figure shows
influence of Lp within group max(ev1). In figure we detect a large range in solu-
tion quality generated by particular values of parameter Lp over complete domains of
quantitative BCOc factors. However, the algorithms generate high quality solutions for
small NC and, the most often, for larger values of B. In Fig. B.6 the range between the
smallest and the largest response value is smaller than in previous case. However, the
method of evaluation produces high quality solutions for same NC as earlier, i.e., when
it takes smaller values. Additionally, B should also be larger when the corresponding
method of evaluation is coupled with the loyalty function which produce highly non-
linear surfaces. Coupled with Fig. 8.2 we may state that the method of evaluation is
the most influential parameter as it generates the largest discrepancy between the best
and the worst response value over the rest of the BCOc parameters.

B.1.3 Comparison of 3-D surface plots

In Fig. B.7 the four differently colored response surfaces correspond to solution land-
scape generated by four BCOcs for problem instance Iogra100_12. In particular, method
of evaluation min(ev1) with loyalty functions p0,u, p1,2,8.

268 Appendix B Tables and graphics

Figure B.1: Occurence of best found solution of each run generated with sLPT+BF for
different instances, when Nit = 1000, m = 12.

Figure B.2: Occurrence of best found solutions of each run generated with sLPT+bestfit
for different instances, when Nit = 1000, m = 16.

B.1 Empirical study of BCOc 269

Figure B.3: Occurence of best found solution of each run generated with sLPT+BF for
different instances, when Nit = 10000, m = 12.

Figure B.4: Occurrence of best found solutions of each run generated with sLPT+bestfit
for different instances, when Nit = 10000, m = 16.

270 Appendix B Tables and graphics

Figure B.5: Response landscape of 10 BCOc with max(ev1) for Iogra100_12, Nit = 100.

B.1 Empirical study of BCOc 271

Figure B.6: Response landscape of 10 BCOc with max(ev2) for Iogra100_12, Nit = 100.

B.1.4 Case study: Maximal allowed CPU time

The results of the RMANOVA test for equivalence of means between loyalty functions,
conducted for each level of method of evaluation, are presented in Table B.1. Con-
clusions regarding results of the table are given in the main section of the dissertation
(pg. 175). Table is organized as follows. The first column identifies the type of a prob-
lem instance. The table is split between three main groups identified with parameter
ME . Result of a test is p-value, thus, we distinguish the results of RMANOVA and
Friedman’s test. A size of effect is given under η2

g .

272 Appendix B Tables and graphics

Figure B.7: Landscape of measured outcomes for four different loyalty functions, when
Nit = 100, min(ev1) and problem instance Iogra100_12.

B.2 Tables and Figures
In this section we give auxiliary graphics and tables that were omitted in the main
sections of this thesis. All the presented tables concern results of experimental study
conducted for BCOc on P ||Cmax. We distinguish two broad groups of this results by
the type of stopping criteria, i.e., Nit and T . The graphics at the end of this section
represent bar chars of the problem instances tasks P ||Cmax. Therefore, we can observe
the frequency of occurrences of tasks with the same running times.

B.2.1 Performance table
In this section we present results of experimental study of BCOc on problem P ||Cmax.
The tables are described in Chapter 8. Two groups of results are distinguished w.r.t.
stopping criteria. Each table holds results for specific problem instance.

B.2.1.1 Iterations as a stopping criteria

We provide table of results when stopping criteria is maximal number of iterations. We
start wtih Iogra150_12, followed by Iogra150_16. Therefor, we provide first form = 12
and next for m = 16, interchanging for different problem size.

B.2.1.2 Time as a stopping criteria

The maximal allowed running time, as the stopping criteria, may provide a more fair
comparison between different BCO instances. The running time was set to different
values, depending on the number of tasks to be scheduled. Namely, instances with
greater number n get more time. For example, for n = 100 and m = 12, 16, the
stopping criteria was set to 0.1[s]. In case n = 150 the running time was set to 0.15[s].
The largest value of the stopping criteria w.r.t. to the time of a execution was required
for n = 500, where T = 0.5[s].

Table B.1: Repeated-measure ANOVA and Friedman’s test results for equivalence of means between loyalty functions of specific method
of evaluation for α = .05 and maximum CPU time.

min(ev1) max(ev1) max(ev2)
Problem p[sph] ε̂ F p η2

p η2
g p[f] p[sph] ε̂ F p η2

p η2
g p[f] p[sph] ε̂ F p η2

p η2
g p[f]

Iogra100_12 0.000 0.471 65.71 0.0001 0.40 0.35 0.000 0.357 0.91 45.69 0.000 0.32 0.30 0.000 0.101 0.89 26.95 0.000 0.21 0.20 0.000
16 0.000 0.681 156.59 0.0001 0.61 0.57 0.000 0.262 0.90 6.97 0.000 0.07 0.06 0.000 0.449 0.91 8.24 0.000 0.08 0.07 0.000

Iogra150_12 0.000 0.681 52.58 0.0001 0.35 0.31 0.000 0.456 0.91 24.90 0.000 0.20 0.18 0.000 0.953 0.94 2.09 0.028 0.02 0.02 0.0835

16 0.000 0.661 88.16 0.0001 0.47 0.42 0.000 0.572 0.92 10.43 0.000 0.10 0.09 0.000 0.923 0.93 8.10 0.000 0.08 0.07 0.000
Iogra200_12 0.000 0.721 128.73 0.0001 0.57 0.53 0.000 0.010 0.952 25.61 0.0002 0.21 0.19 0.000 0.127 0.89 0.95 0.482 0.01 0.01 0.368

16 0.000 0.772 40.36 0.0002 0.29 0.23 0.000 0.518 0.91 22.27 0.000 0.18 0.17 0.000 0.244 0.90 2.75 0.004 0.03 0.02 0.004
Iogra250_12 0.000 0.521 2.82 0.0951 0.03 0.01 0.063 0.468 0.91 20.41 0.000 0.17 0.16 0.000 0.453 0.91 0.50 0.878 0.00 0.00 0.833

16 0.000 0.932 52.02 0.0002 0.34 0.31 0.000 0.439 0.91 14.41 0.000 0.13 0.12 0.000 0.667 0.92 6.31 0.000 0.06 0.05 0.000
Iogra300_12 0.000 0.701 2.36 0.0611 0.02 0.02 0.0306 0.025 0.972 19.08 0.0002 0.16 0.15 0.000 0.328 0.90 0.48 0.890 0.00 0.00 0.901

16 0.000 0.932 15.78 0.0002 0.14 0.12 0.000 0.432 0.92 20.09 0.000 0.17 0.15 0.000 0.496 0.91 2.20 0.020 0.02 0.02 0.0515

Iogra350_12 0.000 0.181 10.47 0.0011 0.10 0.03 0.000 0.608 0.92 62.36 0.000 0.39 0.36 0.000 0.059 0.89 2.11 0.027 0.02 0.02 0.005
16 0.000 0.511 5.52 0.0201 0.05 0.03 0.003 0.781 0.92 15.93 0.000 0.14 0.13 0.000 0.050 0.962 0.59 0.7972 0.01 0.01 0.756

Iogra400_12 - 1.003 0.82 0.3683 0.01 0.01 0.325 0.332 0.91 27.23 0.000 0.22 0.20 0.000 0.798 0.93 1.83 0.060 0.02 0.02 0.051
16 0.000 0.701 67.76 0.0001 0.41 0.36 0.000 0.552 0.91 17.22 0.000 0.15 0.14 0.000 0.031 0.972 0.62 0.7782 0.01 0.01 0.664

Iogra450_12 - 1.003 0.63 0.4283 0.01 0.00 0.696 0.690 0.92 43.28 0.000 0.30 0.28 0.000 0.901 0.93 1.65 0.098 0.02 0.01 0.131
16 0.000 0.541 4.48 0.0341 0.04 0.02 0.015 0.120 0.89 34.54 0.000 0.26 0.24 0.000 0.717 0.92 2.64 0.005 0.03 0.02 0.013

Iogra500_12 0.000 0.711 46.79 0.0001 0.32 0.29 0.000 0.376 0.90 22.63 0.000 0.19 0.17 0.000 0.227 0.90 0.59 0.804 0.01 0.01 0.802
16 0.000 0.741 0.53 0.5371 0.01 0.00 0.309 0.192 0.88 26.01 0.000 0.21 0.18 0.000 0.394 0.91 1.15 0.325 0.01 0.01 0.603

p[sph] - significance (p-value) of Mauchly’s statistic test of sphericity;
ε̂ - Greenhouse-Geisser estimator of sphericity;
p[f] - significance (p-value) of Friedman’s test;

1 When sphericity condition is violated (p[sph] < 0.05) proposed Greenhouse-Geisser estimator is used for correcting p-value of repeated-measures ANOVA test [Dav02];
2 When sphericity condition is violated (p[sph] < 0.05) and ε̂ > 0.75, Huynh and Feldt estimator ε̃ is used for correcting p-value of repeated-measures ANOVA test [Dav02], p. 111.
3 ’-’ When only two data groups differ sphericity condition is always satisfied.
4 ’—’ signifies that all outcomes were identical.
5 Friedman’s test failed to reject null hypothesis of equal means for α = 0.05. However, repeated-measures ANOVA reported significant effect of Lp on solution quality.
6 Repeated-measures ANOVA failed to reject null hypothesis of equality of means for α = 0.05. Friedman’s test reported significant effect of Lp on solution quality.

Table B.2: Best and worst average solutions found by corresponding BCOs for problem instance Iogra150_12 [Dav06b]. Stopping criterion, Nit = 100.

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s
[10−3] [10−3] [10−3] [10−3] [10−3] [10−3]

p0
b b 1005.32 3 20 1 61.97 ±21.39 25.20 ±8.72 40.50 ±1.23 1004.85 4 20 71 63.46 ±20.36 42.30 ±13.80 66.80 ±1.14 1005.01 3 20 50 60.67 ±21.32 37.00 ±13.10 60.90 ±1.06

w 1022.35 127 1 1 94.46 ±9.04 1.68 ±0.49 1.77 ± 0.42 1022.35 127 1 1 94.46 ±9.04 1.61 ±0.53 1.71 ± 0.47 1022.35 127 1 1 94.46 ±9.04 1.78 ±0.44 1.80 ± 0.42

p1
b b 1005.32 3 20 1 61.97 ±21.39 25.10 ±8.58 40.40 ±1.19 1005.03 3 20 5 65.79 ±17.55 28.30 ±7.44 43.10 ±1.10 1005.11 4 20 7 62.67 ±19.14 28.20 ±8.55 45.00 ±1.12

w 1022.35 127 1 1 94.46 ±9.04 1.74 ±0.46 1.80 ± 0.45 1082.71 206 5 88 98.15 ±5.34 12.50 ±0.94 12.70 ± 0.55 1029.52 128 2 70 93.36 ±10.13 6.36 ±0.81 6.81 ± 0.42

p2
b b 1005.22 17 20 74 78.98 ±17.46 62.20 ±13.80 78.60 ±1.25 1005.09 3 20 4 68.21 ±16.51 28.80 ±6.98 42.20 ±1.05 1005.05 4 19 4 66.80 ±19.02 26.90 ±7.56 40.10 ±0.83

w 1022.35 127 1 1 94.46 ±9.04 1.64 ±0.48 1.73 ± 0.44 1111.86 252 15 89 99.27 ±2.36 39.10 ±1.28 39.40 ± 0.98 1029.52 138 2 19 94.10 ±9.45 4.25 ±0.64 4.55 ± 0.52

p3
b b 1005.32 3 20 1 61.97 ±21.39 25.00 ±8.54 40.20 ±1.21 1005.20 4 20 42 68.90 ±18.68 38.70 ±10.50 56.20 ±1.02 1005.24 4 20 4 60.21 ±21.44 25.60 ±9.22 42.40 ±1.13

w 1022.35 127 1 1 94.46 ±9.04 1.74 ±0.46 1.80 ± 0.42 1036.17 133 2 99 97.38 ±5.71 5.52 ±0.68 5.69 ± 0.52 1022.35 127 1 1 94.46 ±9.04 1.75 ±0.46 1.83 ± 0.40

p4
b b 1005.32 3 20 1 61.97 ±21.39 25.20 ±8.62 40.40 ±1.23 1004.92 2 20 8 67.38 ±18.78 30.10 ±8.29 44.70 ±1.12 1004.99 4 20 7 65.78 ±20.30 29.50 ±9.09 44.80 ±1.13

w 1022.35 127 1 1 94.46 ±9.04 1.66 ±0.51 1.76 ± 0.45 1036.72 113 3 86 95.32 ±9.54 7.69 ±0.91 8.04 ± 0.51 1027.41 91 2 89 94.28 ±9.92 6.37 ±0.81 6.74 ± 0.50

p5
b b 1005.32 3 20 1 61.97 ±21.39 24.90 ±8.64 40.10 ±1.23 1004.98 4 20 8 76.40 ±16.24 34.20 ±7.34 44.80 ±1.09 1005.18 4 20 6 64.80 ±22.40 28.80 ±9.82 44.10 ±1.30

w 1022.35 127 1 1 94.46 ±9.04 1.70 ±0.48 1.82 ± 0.38 1079.10 243 10 95 98.04 ±4.72 26.50 ±1.41 27.00 ± 0.84 1028.38 119 4 60 92.02 ±13.20 12.70 ±1.92 13.80 ± 0.61

p6
b b 1005.32 3 20 1 61.97 ±21.39 24.90 ±8.45 40.20 ±1.26 1004.92 3 20 5 64.80 ±19.92 28.50 ±8.64 44.00 ±1.04 1005.01 3 20 8 64.02 ±19.22 29.90 ±8.91 46.50 ±1.00

w 1022.35 127 1 1 94.46 ±9.04 1.73 ±0.47 1.82 ± 0.41 1046.63 159 3 96 96.74 ±7.03 8.14 ±0.81 8.42 ± 0.59 1027.55 105 2 80 95.50 ±8.39 7.19 ±0.85 7.52 ± 0.52

p7
b b 1005.32 3 20 1 61.97 ±21.39 25.00 ±8.59 40.30 ±1.35 1005.02 3 20 10 60.99 ±19.23 28.10 ±8.79 45.90 ±1.21 1005.01 4 19 8 64.20 ±21.81 27.30 ±9.10 42.40 ±1.22

w 1022.35 127 1 1 94.46 ±9.04 1.72 ±0.45 1.78 ± 0.41 1022.35 127 1 1 94.46 ±9.04 1.72 ±0.47 1.81 ± 0.42 1022.35 127 1 1 94.46 ±9.04 1.77 ±0.42 1.84 ± 0.37

p8
b b *1003.54 5 20 74 70.32 ±19.70 58.30 ±16.50 83.00 ±1.27 1005.05 3 19 4 69.46 ±17.98 27.80 ±7.09 39.90 ±0.90 1005.14 3 20 4 66.59 ±18.73 28.70 ±8.01 43.20 ±1.28

w 1022.35 127 1 1 94.46 ±9.04 1.65 ±0.48 1.75 ± 0.43 1108.25 249 10 100 98.73 ±3.72 25.90 ±1.26 26.20 ± 0.85 1032.65 112 9 90 90.28 ±15.11 36.60 ±6.14 40.50 ± 0.74

p9
b b 1005.32 3 20 1 61.97 ±21.39 25.00 ±8.62 40.30 ±1.11 1005.03 4 20 6 69.05 ±17.05 30.70 ±7.52 44.60 ±1.22 1005.10 4 20 7 69.34 ±16.95 32.30 ±7.95 46.50 ±1.16

w 1022.35 127 1 1 94.46 ±9.04 1.68 ±0.47 1.78 ± 0.41 1086.51 232 7 100 98.79 ±4.17 19.60 ±1.02 19.90 ± 0.68 1029.12 124 3 28 93.84 ±10.09 7.92 ±0.96 8.42 ± 0.53

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.3: Best and worst average solutions found by corresponding BCOs for problem instance Iogra150_16 [Dav06b]. Stopping criterion, Nit = 100.

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s
[10−3] [10−3] [10−3] [10−3] [10−3] [10−3]

p0
b b 1008.95 5 20 1 66.74 ±17.77 33.20 ±8.49 49.70 ±1.82 1008.49 4 20 10 76.87 ±14.37 42.00 ±8.09 54.70 ±1.48 1008.42 5 20 95 64.07 ±18.88 57.40 ±17.00 89.90 ±1.57

w 1106.23 315 1 1 99.60 ±1.57 1.92 ±0.27 1.94 ± 0.24 1106.23 315 1 1 99.60 ±1.57 1.92 ±0.27 1.92 ± 0.27 1106.23 315 1 1 99.60 ±1.57 1.95 ±0.26 1.96 ± 0.24

p1
b b 1007.31 10 19 75 76.41 ±16.50 68.50 ±14.90 89.70 ±1.65 1008.77 4 20 2 71.86 ±18.16 36.30 ±9.08 50.60 ±1.41 1008.56 4 20 3 69.77 ±18.37 36.30 ±9.50 52.10 ±1.14

w 1106.23 315 1 1 99.60 ±1.57 1.84 ±0.39 1.84 ± 0.39 1218.04 381 6 90 100.00 ±0.00 17.30 ±0.67 17.30 ± 0.67 1144.36 292 3 79 99.97 ±0.30 12.20 ±0.66 12.20 ± 0.66

p2
b b 1006.29 19 20 74 70.00 ±20.26 67.50 ±19.30 96.90 ±1.38 1008.87 5 20 2 71.41 ±16.49 35.90 ±8.51 50.30 ±1.65 1008.64 4 20 3 71.63 ±17.35 37.20 ±9.30 52.00 ±1.24

w 1106.23 315 1 1 99.60 ±1.57 1.90 ±0.36 1.90 ± 0.36 1258.64 435 16 91 100.00 ±0.00 51.00 ±1.32 51.00 ± 1.32 1162.89 314 7 98 99.85 ±1.40 33.60 ±1.01 33.60 ± 0.90

p3
b b 1008.91 4 20 3 65.61 ±15.56 33.60 ±8.04 51.30 ±1.29 1008.85 5 20 15 72.02 ±18.68 40.70 ±10.50 56.50 ±1.37 1008.79 5 20 4 68.58 ±18.61 36.00 ±9.74 52.40 ±1.17

w 1106.23 315 1 1 99.60 ±1.57 1.90 ±0.30 1.91 ± 0.29 1127.81 277 2 100 99.67 ±1.36 6.35 ±0.55 6.37 ± 0.54 1106.23 315 1 1 99.60 ±1.57 1.93 ±0.32 1.94 ± 0.31

p4
b b 1008.95 5 20 1 66.74 ±17.77 33.60 ±9.02 50.40 ±1.30 1008.60 4 20 6 76.04 ±13.58 40.60 ±7.31 53.30 ±1.49 1008.51 5 20 11 73.51 ±14.24 41.60 ±8.21 56.60 ±1.35

w 1106.23 315 1 1 99.60 ±1.57 1.98 ±0.24 1.98 ± 0.24 1143.58 337 2 92 99.97 ±0.30 5.94 ±0.42 5.94 ± 0.42 1109.61 277 2 91 99.37 ±2.38 7.46 ±0.62 7.53 ± 0.56

p5
b b 1007.65 12 20 81 75.71 ±19.55 76.80 ±19.80 101.00 ±1.89 1008.76 4 20 2 71.07 ±17.39 36.30 ±8.91 51.10 ±1.45 1008.64 4 20 4 72.64 ±17.96 38.40 ±9.73 52.70 ±1.37

w 1106.23 315 1 1 99.60 ±1.57 1.93 ±0.29 1.94 ± 0.28 1217.30 380 16 97 100.00 ±0.00 55.30 ±1.38 55.30 ± 1.38 1145.43 369 7 92 99.68 ±2.61 33.50 ±1.28 33.60 ± 0.96

p6
b b 1008.95 5 20 1 66.74 ±17.77 33.50 ±8.86 50.20 ±1.35 1008.69 5 20 3 77.04 ±15.63 40.00 ±8.14 52.00 ±1.68 1008.55 5 20 10 75.96 ±15.65 43.50 ±9.14 57.30 ±1.19

w 1106.23 315 1 1 99.60 ±1.57 1.95 ±0.33 1.96 ± 0.31 1153.28 341 2 93 99.56 ±2.44 6.09 ±0.55 6.12 ± 0.53 1127.40 255 3 95 99.76 ±1.63 13.30 ±0.70 13.30 ± 0.68

p7
b b 1008.83 5 20 82 65.69 ±19.51 60.80 ±18.10 92.70 ±1.96 1008.52 3 20 8 73.44 ±16.47 40.50 ±9.17 55.00 ±1.23 1008.55 4 20 70 66.95 ±19.73 58.90 ±17.50 88.00 ±1.79

w 1106.23 315 1 1 99.60 ±1.57 1.89 ±0.34 1.92 ± 0.31 1106.23 315 1 1 99.60 ±1.57 1.93 ±0.29 1.94 ± 0.28 1106.23 315 1 1 99.60 ±1.57 1.94 ±0.28 1.96 ± 0.24

p8
b b *1005.69 7 20 76 66.36 ±19.68 66.20 ±19.60 100.00 ±1.64 1008.75 4 20 2 73.15 ±15.11 37.00 ±7.79 50.50 ±1.69 1008.62 4 19 3 73.18 ±16.58 35.70 ±8.23 48.80 ±1.19

w 1106.23 315 1 1 99.60 ±1.57 1.95 ±0.30 1.95 ± 0.30 1255.52 398 10 95 99.99 ±0.10 30.00 ±0.89 30.00 ± 0.90 1166.23 293 10 97 99.87 ±0.70 52.70 ±1.15 52.80 ± 1.14

p9
b b 1007.49 11 18 100 75.48 ±17.63 77.30 ±18.20 102.00 ±1.17 1008.75 4 19 3 75.34 ±16.46 37.00 ±7.92 49.10 ±1.21 1008.60 6 20 6 76.41 ±14.45 42.30 ±8.06 55.40 ±1.31

w 1106.23 315 1 1 99.60 ±1.57 1.96 ±0.31 1.97 ± 0.30 1219.71 427 13 95 99.98 ±0.20 44.60 ±1.04 44.70 ± 1.05 1142.26 345 17 85 99.60 ±1.67 97.40 ±2.21 97.80 ± 1.77

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.4: Best and worst average solutions found by corresponding BCOs for problem instance Iogra200_12 [Dav06b]. Stopping criterion, Nit = 100.

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s
[10−3] [10−3] [10−3] [10−3] [10−3] [10−3]

p0
b b 1204.92 2 20 1 55.33 ±23.40 34.50 ±14.80 62.50 ±1.71 1204.43 3 20 64 57.33 ±18.64 49.30 ±16.00 86.20 ±1.44 1204.51 3 20 39 57.94 ±20.90 45.60 ±16.60 78.80 ±1.78

w 1212.94 50 1 1 89.09 ±12.29 2.30 ±0.61 2.56 ± 0.52 1212.94 50 1 1 89.09 ±12.29 2.41 ±0.55 2.67 ± 0.49 1212.94 50 1 1 89.09 ±12.29 2.35 ±0.57 2.69 ± 0.46

p1
b b 1203.11 5 20 100 55.77 ±21.59 64.90 ±25.10 117.00 ±1.84 1204.44 3 20 7 69.88 ±16.22 45.70 ±11.00 65.50 ±1.74 1204.63 3 20 3 57.94 ±21.92 37.30 ±14.20 64.30 ±1.76

w 1212.94 50 1 1 89.09 ±12.29 2.36 ±0.57 2.64 ± 0.50 1240.38 141 3 72 98.67 ±3.68 9.82 ±0.61 9.95 ± 0.50 1231.56 123 7 99 96.31 ±6.36 35.60 ±2.54 37.00 ± 0.78

p2
b b *1202.75 4 19 91 56.05 ±20.59 59.80 ±22.30 107.00 ±1.63 1204.58 4 18 4 69.43 ±16.79 39.30 ±9.65 56.60 ±1.45 1204.61 3 20 5 63.12 ±20.08 41.10 ±13.20 65.20 ±1.77

w 1212.94 50 1 1 89.09 ±12.29 2.41 ±0.55 2.70 ± 0.46 1286.11 167 20 66 98.51 ±6.64 74.10 ±5.22 75.20 ± 1.57 1236.97 128 8 90 96.79 ±6.81 40.60 ±2.96 41.90 ± 0.91

p3
b b 1204.70 3 20 2 56.53 ±23.64 35.70 ±15.10 63.20 ±1.68 1204.63 3 20 39 64.01 ±20.39 49.40 ±15.90 77.20 ±1.72 1204.65 3 19 2 54.79 ±22.89 32.80 ±13.90 59.50 ±1.71

w 1212.94 50 1 1 89.09 ±12.29 2.37 ±0.63 2.71 ± 0.52 1215.77 97 2 83 91.65 ±10.92 6.61 ±0.89 7.24 ± 0.51 1212.94 50 1 1 89.09 ±12.29 2.33 ±0.58 2.61 ± 0.51

p4
b b 1204.92 2 20 1 55.33 ±23.40 34.70 ±14.80 62.90 ±1.61 1204.32 3 20 22 70.82 ±15.79 50.50 ±11.30 71.40 ±1.70 1204.51 3 20 7 60.09 ±24.46 40.20 ±16.40 66.90 ±1.77

w 1212.94 50 1 1 89.09 ±12.29 2.32 ±0.60 2.62 ± 0.51 1223.39 89 3 63 95.70 ±9.14 9.48 ±1.02 9.86 ± 0.47 1214.48 117 2 70 91.30 ±9.97 7.16 ±0.91 7.83 ± 0.55

p5
b b 1203.16 5 20 93 62.19 ±20.69 74.10 ±24.80 119.00 ±1.95 1204.50 3 20 5 58.39 ±18.36 38.20 ±12.20 65.60 ±1.81 1204.66 3 20 3 58.97 ±21.74 37.90 ±14.00 64.30 ±2.00

w 1212.94 50 1 1 89.09 ±12.29 2.40 ±0.58 2.71 ± 0.47 1241.04 168 4 72 98.54 ±5.00 13.10 ±0.94 13.30 ± 0.65 1230.37 116 11 91 96.55 ±6.07 58.50 ±3.92 60.50 ± 1.01

p6
b b 1204.92 2 20 1 55.33 ±23.40 34.60 ±14.80 62.40 ±1.57 1204.39 3 19 10 65.01 ±17.73 41.40 ±11.40 63.80 ±1.70 1204.57 3 20 8 61.05 ±19.70 41.60 ±13.50 68.30 ±1.95

w 1212.94 50 1 1 89.09 ±12.29 2.34 ±0.64 2.63 ± 0.56 1225.90 112 3 82 95.35 ±7.93 10.20 ±0.95 10.60 ± 0.55 1217.90 105 2 90 92.29 ±9.98 9.09 ±1.11 9.82 ± 0.50

p7
b b 1204.90 5 20 94 55.07 ±23.49 59.20 ±25.20 108.00 ±1.91 1204.45 3 20 8 63.06 ±21.22 42.00 ±14.00 66.60 ±1.93 1204.53 3 19 6 58.07 ±21.31 36.10 ±13.30 62.10 ±1.73

w 1212.94 50 1 1 89.09 ±12.29 2.40 ±0.60 2.63 ± 0.52 1212.94 50 1 1 89.09 ±12.29 2.28 ±0.58 2.55 ± 0.55 1212.94 50 1 1 89.09 ±12.29 2.33 ±0.57 2.61 ± 0.51

p8
b b 1202.84 4 20 87 54.88 ±22.54 63.50 ±26.10 116.00 ±1.79 1204.53 3 20 4 68.36 ±17.63 43.80 ±11.40 64.20 ±1.65 1204.57 3 20 3 61.32 ±22.03 39.50 ±14.20 64.40 ±1.81

w 1212.94 50 1 1 89.09 ±12.29 2.34 ±0.65 2.65 ± 0.57 1256.35 166 6 100 98.28 ±4.56 21.00 ±1.22 21.30 ± 0.80 1239.36 121 17 91 97.69 ±6.52 102.00 ±6.97 104.00 ± 1.26

p9
b b 1203.02 4 20 99 50.97 ±20.49 70.20 ±28.50 138.00 ±1.86 1204.49 3 20 6 67.50 ±20.06 45.10 ±13.40 66.70 ±1.60 1204.71 3 19 2 56.64 ±23.08 33.90 ±13.90 60.10 ±1.50

w 1212.94 50 1 1 89.09 ±12.29 2.40 ±0.58 2.67 ± 0.47 1240.49 119 3 100 98.00 ±5.65 11.00 ±0.86 11.20 ± 0.54 1229.92 107 10 95 95.86 ±8.09 61.40 ±5.32 64.10 ± 0.96

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.5: Best and worst average solutions found by corresponding BCOs for problem instance Iogra200_16 [Dav06b]. Stopping criterion, Nit = 100.

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s
[10−3] [10−3] [10−3] [10−3] [10−3] [10−3]

p0
b b 1208.34 4 20 1 70.30 ±16.84 50.60 ±12.20 72.30 ±2.96 1207.91 4 19 67 71.85 ±17.55 68.80 ±16.90 95.90 ±2.05 *1207.86 5 19 67 70.69 ±17.39 68.80 ±17.10 97.50 ±2.05

w 1335.63 342 1 1 99.74 ±1.38 2.85 ±0.43 2.85 ± 0.43 1335.63 342 1 1 99.74 ±1.38 2.81 ±0.39 2.82 ± 0.38 1335.63 342 1 1 99.74 ±1.38 2.84 ±0.42 2.85 ± 0.41

p1
b b 1208.34 4 20 1 70.30 ±16.84 51.20 ±12.30 73.00 ±2.31 1208.18 4 20 3 78.05 ±16.10 58.90 ±12.40 75.70 ±1.96 1208.09 4 20 6 80.08 ±14.82 62.20 ±11.80 77.80 ±2.09

w 1335.63 342 1 1 99.74 ±1.38 2.84 ±0.42 2.84 ± 0.42 1377.57 329 2 84 100.00 ±0.00 7.52 ±0.56 7.52 ± 0.56 1335.63 342 1 1 99.74 ±1.38 2.85 ±0.41 2.86 ± 0.40

p2
b b 1208.34 4 20 1 70.30 ±16.84 52.00 ±12.60 74.00 ±2.07 1208.34 4 20 1 70.30 ±16.84 51.60 ±12.60 73.40 ±2.84 1207.99 5 20 4 78.96 ±14.76 60.90 ±11.80 77.00 ±1.90

w 1335.63 342 1 1 99.74 ±1.38 2.84 ±0.37 2.84 ± 0.37 1411.49 423 10 96 99.60 ±2.01 41.00 ±1.37 41.10 ± 1.15 1335.63 342 1 1 99.74 ±1.38 2.85 ±0.38 2.85 ± 0.38

p3
b b 1208.26 5 20 2 72.71 ±16.33 54.00 ±12.30 74.30 ±2.02 1208.25 5 20 3 70.63 ±16.99 52.50 ±12.60 74.50 ±2.28 1208.17 4 20 33 73.15 ±17.24 65.00 ±15.40 88.80 ±2.21

w 1335.63 342 1 1 99.74 ±1.38 2.80 ±0.53 2.80 ± 0.53 1343.70 295 2 84 99.94 ±0.51 7.98 ±0.49 7.98 ± 0.49 1335.63 342 1 1 99.74 ±1.38 2.83 ±0.40 2.84 ± 0.39

p4
b b 1208.34 4 20 1 70.30 ±16.84 51.70 ±12.50 73.70 ±1.98 1208.18 4 19 5 78.14 ±14.12 56.30 ±10.40 72.20 ±2.00 1208.10 4 20 12 75.94 ±15.58 61.20 ±13.00 80.70 ±1.92

w 1335.63 342 1 1 99.74 ±1.38 2.81 ±0.42 2.82 ± 0.41 1338.04 291 2 88 99.85 ±1.20 7.62 ±0.61 7.63 ± 0.61 1335.63 342 1 1 99.74 ±1.38 2.89 ±0.42 2.89 ± 0.42

p5
b b 1208.34 4 20 1 70.30 ±16.84 52.30 ±12.70 74.40 ±1.91 1208.17 4 20 4 77.35 ±12.59 59.30 ±9.99 76.70 ±1.96 1208.15 4 20 4 72.54 ±15.91 55.30 ±12.30 76.20 ±2.10

w 1335.63 342 1 1 99.74 ±1.38 2.85 ±0.46 2.86 ± 0.45 1372.66 390 2 83 99.90 ±0.99 7.54 ±0.56 7.55 ± 0.55 1335.63 342 1 1 99.74 ±1.38 2.76 ±0.47 2.77 ± 0.47

p6
b b 1208.34 4 20 1 70.30 ±16.84 52.20 ±12.60 74.40 ±2.07 1208.10 4 20 6 79.66 ±11.98 62.00 ±9.41 77.90 ±1.70 1208.02 4 20 7 77.89 ±16.04 61.60 ±13.00 79.10 ±2.26

w 1335.63 342 1 1 99.74 ±1.38 2.92 ±0.34 2.93 ± 0.32 1347.83 297 2 88 99.63 ±2.08 7.82 ±0.46 7.85 ± 0.41 1335.63 342 1 1 99.74 ±1.38 2.88 ±0.38 2.88 ± 0.38

p7
b b 1208.34 4 20 1 70.30 ±16.84 52.10 ±12.80 74.30 ±1.84 1207.96 5 19 10 74.52 ±15.31 55.90 ±11.80 75.10 ±2.06 1207.94 4 20 12 74.18 ±15.75 60.50 ±13.00 81.50 ±1.87

w 1335.63 342 1 1 99.74 ±1.38 2.79 ±0.45 2.79 ± 0.45 1335.63 342 1 1 99.74 ±1.38 2.79 ±0.41 2.79 ± 0.41 1335.63 342 1 1 99.74 ±1.38 2.85 ±0.38 2.85 ± 0.38

p8
b b 1208.34 4 20 1 70.30 ±16.84 52.40 ±12.50 74.70 ±1.93 1208.33 3 20 2 75.96 ±14.78 56.40 ±11.10 74.50 ±2.40 1208.12 4 19 2 74.31 ±16.09 52.80 ±11.50 71.20 ±2.14

w 1335.63 342 1 1 99.74 ±1.38 2.88 ±0.35 2.88 ± 0.35 1396.84 416 5 89 99.80 ±1.53 18.90 ±0.81 18.90 ± 0.79 1335.63 342 1 1 99.74 ±1.38 2.78 ±0.46 2.80 ± 0.45

p9
b b 1208.34 4 20 1 70.30 ±16.84 52.00 ±12.20 74.50 ±1.97 1208.26 4 19 2 74.34 ±17.81 52.70 ±12.80 70.80 ±1.97 1208.19 4 19 3 71.58 ±17.28 51.40 ±12.70 71.80 ±2.03

w 1335.63 342 1 1 99.74 ±1.38 2.80 ±0.40 2.81 ± 0.39 1374.00 343 2 84 99.85 ±1.49 7.74 ±0.52 7.75 ± 0.52 1335.63 342 1 1 99.74 ±1.38 2.83 ±0.38 2.83 ± 0.38

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.6: Best and worst average solutions found by corresponding BCOs for problem instance Iogra250_12 [Dav06b]. Stopping criterion, Nit = 100.

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s
[10−3] [10−3] [10−3] [10−3] [10−3] [10−3]

p0
b b 1404.16 2 20 1 47.68 ±22.28 41.10 ±19.10 86.10 ±2.70 1403.67 3 19 42 59.11 ±19.93 57.30 ±19.60 96.80 ±2.67 1403.91 2 20 12 55.32 ±22.13 50.90 ±20.60 91.90 ±3.01

w 1408.33 62 1 1 86.46 ±10.81 3.15 ±0.70 3.62 ± 0.56 1408.33 62 1 1 86.46 ±10.81 3.08 ±0.63 3.57 ± 0.53 1408.33 62 1 1 86.46 ±10.81 3.18 ±0.71 3.67 ± 0.47

p1
b b 1404.16 2 20 1 47.68 ±22.28 41.20 ±19.20 86.60 ±2.73 1403.76 2 19 8 68.10 ±17.96 57.90 ±15.30 85.30 ±2.42 1403.96 2 20 5 57.66 ±21.95 52.00 ±20.20 90.20 ±3.36

w 1408.33 62 1 1 86.46 ±10.81 3.11 ±0.66 3.63 ± 0.59 1421.90 82 4 88 95.02 ±9.03 16.90 ±1.77 17.80 ± 0.63 1410.74 65 8 89 90.15 ±12.45 45.80 ±6.30 50.70 ± 0.99

p2
b b 1404.16 2 20 1 47.68 ±22.28 41.20 ±19.00 86.40 ±2.52 *1403.65 3 19 41 78.89 ±13.68 71.80 ±12.90 91.10 ±2.39 1403.97 2 20 2 55.81 ±22.50 48.80 ±19.70 87.20 ±3.23

w 1408.33 62 1 1 86.46 ±10.81 3.17 ±0.57 3.63 ± 0.52 1447.84 104 18 86 97.54 ±9.03 90.00 ±8.67 92.20 ± 2.42 1411.72 64 13 97 90.29 ±11.94 84.20 ±11.30 93.20 ± 1.79

p3
b b 1404.07 2 20 2 53.60 ±24.75 46.10 ±21.50 86.10 ±2.93 1403.96 3 20 33 58.57 ±22.01 58.20 ±22.20 99.20 ±2.72 1403.98 2 20 11 51.71 ±19.91 47.00 ±18.30 90.60 ±2.81

w 1408.33 62 1 1 86.46 ±10.81 3.14 ±0.55 3.58 ± 0.51 1408.61 37 2 92 88.23 ±12.37 8.21 ±1.21 9.31 ± 0.52 1408.33 62 1 1 86.46 ±10.81 3.10 ±0.54 3.57 ± 0.49

p4
b b 1404.16 2 20 1 47.68 ±22.28 41.40 ±19.30 87.10 ±2.64 1403.68 3 20 12 56.24 ±17.96 51.50 ±17.00 91.50 ±3.38 1403.92 2 20 8 60.23 ±21.54 54.80 ±19.80 91.20 ±2.86

w 1408.33 62 1 1 86.46 ±10.81 3.19 ±0.61 3.66 ± 0.47 1410.49 75 3 93 91.33 ±10.79 12.50 ±1.56 13.80 ± 0.54 1409.62 58 2 93 86.96 ±12.31 9.26 ±1.42 10.60 ± 0.59

p5
b b 1404.16 2 20 1 47.68 ±22.28 40.90 ±19.10 86.00 ±2.93 1403.77 4 20 41 79.41 ±14.24 79.20 ±14.50 99.80 ±2.48 1404.03 3 18 6 56.19 ±20.40 45.60 ±16.70 81.10 ±2.26

w 1408.33 62 1 1 86.46 ±10.81 3.07 ±0.67 3.66 ± 0.51 1421.53 94 5 85 92.47 ±11.67 20.80 ±2.60 22.50 ± 0.66 1410.95 75 3 95 90.67 ±10.22 17.90 ±2.04 19.60 ± 0.64

p6
b b 1404.16 2 20 1 47.68 ±22.28 41.30 ±19.30 86.80 ±2.67 *1403.65 2 19 10 62.69 ±17.85 54.30 ±15.70 86.60 ±2.54 1403.96 2 20 6 56.55 ±22.16 51.50 ±20.40 91.00 ±3.01

w 1408.33 62 1 1 86.46 ±10.81 3.12 ±0.59 3.63 ± 0.50 1413.47 89 3 94 93.01 ±9.45 13.00 ±1.55 13.90 ± 0.62 1409.32 39 2 57 88.18 ±11.33 9.10 ±1.25 10.30 ± 0.52

p7
b b 1404.16 2 20 1 47.68 ±22.28 41.60 ±19.70 87.20 ±2.55 1403.80 3 20 8 54.05 ±21.14 48.90 ±19.20 90.70 ±2.70 1403.91 3 20 8 49.54 ±22.42 45.80 ±21.10 92.50 ±2.67

w 1408.33 62 1 1 86.46 ±10.81 3.04 ±0.63 3.55 ± 0.61 1408.33 62 1 1 86.46 ±10.81 3.07 ±0.60 3.59 ± 0.60 1408.33 62 1 1 86.46 ±10.81 3.11 ±0.61 3.59 ± 0.53

p8
b b 1404.16 2 20 1 47.68 ±22.28 41.20 ±19.10 86.30 ±2.53 1403.71 4 19 40 79.96 ±13.07 72.80 ±12.20 91.30 ±2.51 1403.99 2 18 4 60.36 ±19.74 47.80 ±15.90 79.30 ±2.56

w 1408.33 62 1 1 86.46 ±10.81 3.15 ±0.62 3.61 ± 0.53 1436.91 141 19 85 95.97 ±9.01 95.40 ±9.24 99.50 ± 2.13 1411.71 71 12 92 89.91 ±12.97 80.20 ±11.60 89.30 ± 1.49

p9
b b 1404.16 2 20 1 47.68 ±22.28 41.30 ±19.60 86.60 ±2.53 1403.78 3 20 9 68.01 ±15.70 62.80 ±14.60 92.30 ±2.81 1404.00 2 20 7 60.38 ±20.88 55.90 ±19.50 92.90 ±3.05

w 1408.33 62 1 1 86.46 ±10.81 3.13 ±0.67 3.60 ± 0.55 1423.25 96 4 89 96.33 ±6.03 17.80 ±1.42 18.50 ± 0.71 1411.03 51 8 99 91.38 ±11.53 57.10 ±7.33 62.50 ± 0.98

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.7: Best and worst average solutions found by corresponding BCOs for problem instance Iogra250_16 [Dav06b]. Stopping criterion, Nit = 100.

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s
[10−3] [10−3] [10−3] [10−3] [10−3] [10−3]

p0
b b 1406.29 4 19 1 66.41 ±16.82 62.20 ±16.20 93.70 ±3.29 1405.83 3 20 72 67.05 ±17.78 87.10 ±23.00 130.00 ±3.68 1405.90 3 19 84 68.69 ±20.76 88.90 ±27.00 130.00 ±3.16

w 1499.30 247 1 1 99.16 ±3.83 3.88 ±0.33 3.92 ± 0.27 1499.30 247 1 1 99.16 ±3.83 3.88 ±0.33 3.90 ± 0.30 1499.30 247 1 1 99.16 ±3.83 3.88 ±0.43 3.92 ± 0.39

p1
b b 1404.78 6 20 85 62.69 ±19.94 97.90 ±31.00 156.00 ±3.76 1405.99 3 20 3 70.31 ±17.17 71.50 ±17.80 102.00 ±3.20 1406.03 4 20 5 71.79 ±14.86 75.00 ±16.00 104.00 ±3.18

w 1499.30 247 1 1 99.16 ±3.83 3.73 ±0.49 3.78 ± 0.46 1500.90 249 2 94 99.56 ±2.68 9.73 ±0.60 9.77 ± 0.55 1499.30 247 1 1 99.16 ±3.83 3.88 ±0.33 3.89 ± 0.31

p2
b b 1404.29 5 19 83 61.83 ±20.35 93.10 ±30.70 151.00 ±2.72 1405.95 3 20 3 76.24 ±14.91 78.20 ±15.40 103.00 ±2.38 1406.13 4 19 4 74.08 ±17.24 72.10 ±16.80 97.60 ±2.83

w 1499.30 247 1 1 99.16 ±3.83 3.79 ±0.52 3.82 ± 0.48 1506.28 263 2 96 99.51 ±2.09 9.84 ±0.58 9.89 ± 0.56 1499.30 247 1 1 99.16 ±3.83 3.82 ±0.50 3.86 ± 0.45

p3
b b 1406.29 4 19 1 66.41 ±16.82 62.90 ±16.70 94.70 ±2.85 1406.14 4 20 2 63.61 ±17.14 64.60 ±17.40 101.00 ±3.07 1406.08 3 20 79 66.16 ±18.16 89.90 ±25.00 136.00 ±3.20

w 1499.30 247 1 1 99.16 ±3.83 3.80 ±0.47 3.84 ± 0.44 1499.30 247 1 1 99.16 ±3.83 3.87 ±0.44 3.90 ± 0.41 1499.30 247 1 1 99.16 ±3.83 3.90 ±0.39 3.91 ± 0.38

p4
b b 1406.29 4 19 1 66.41 ±16.82 62.80 ±15.90 94.70 ±3.22 1405.93 2 20 9 74.43 ±14.68 78.40 ±16.00 106.00 ±3.02 1405.96 4 19 77 74.32 ±16.69 97.90 ±22.30 131.00 ±2.82

w 1499.30 247 1 1 99.16 ±3.83 3.73 ±0.49 3.78 ± 0.46 1499.30 247 1 1 99.16 ±3.83 3.86 ±0.42 3.89 ± 0.37 1499.30 247 1 1 99.16 ±3.83 3.80 ±0.47 3.85 ± 0.38

p5
b b 1404.94 6 20 95 64.46 ±20.04 108.00 ±33.70 168.00 ±3.47 1406.07 4 20 5 75.07 ±14.67 78.00 ±15.70 104.00 ±2.82 1406.12 3 20 5 69.11 ±17.40 72.10 ±18.30 104.00 ±3.03

w 1499.30 247 1 1 99.16 ±3.83 3.93 ±0.35 3.95 ± 0.33 1499.30 247 1 1 99.16 ±3.83 3.82 ±0.43 3.85 ± 0.41 1499.30 247 1 1 99.16 ±3.83 3.86 ±0.38 3.90 ± 0.33

p6
b b 1406.29 4 19 1 66.41 ±16.82 63.60 ±16.40 95.70 ±2.95 1406.03 2 20 4 72.79 ±15.49 75.40 ±16.30 104.00 ±3.11 1405.95 3 20 7 69.91 ±18.03 73.80 ±19.40 106.00 ±3.20

w 1499.30 247 1 1 99.16 ±3.83 3.85 ±0.43 3.87 ± 0.42 1499.30 247 1 1 99.16 ±3.83 3.85 ±0.43 3.89 ± 0.37 1499.30 247 1 1 99.16 ±3.83 3.86 ±0.38 3.90 ± 0.33

p7
b b 1406.29 4 19 1 66.41 ±16.82 63.20 ±15.90 95.10 ±3.01 1405.97 3 20 41 67.30 ±18.76 82.40 ±23.20 123.00 ±2.99 1405.92 3 20 70 65.51 ±21.11 91.70 ±29.60 140.00 ±3.83

w 1499.30 247 1 1 99.16 ±3.83 3.84 ±0.42 3.86 ± 0.38 1499.30 247 1 1 99.16 ±3.83 3.93 ±0.29 3.95 ± 0.26 1499.30 247 1 1 99.16 ±3.83 3.89 ±0.40 3.91 ± 0.38

p8
b b *1404.19 5 20 90 59.03 ±20.45 97.00 ±33.40 164.00 ±4.17 1406.07 4 20 3 76.37 ±14.09 78.90 ±14.20 103.00 ±2.49 1406.16 4 20 2 68.67 ±18.67 70.50 ±19.50 103.00 ±3.03

w 1499.30 247 1 1 99.16 ±3.83 3.84 ±0.48 3.87 ± 0.46 1500.53 305 4 97 99.47 ±2.71 20.00 ±0.90 20.10 ± 0.72 1499.30 247 1 1 99.16 ±3.83 3.81 ±0.48 3.86 ± 0.40

p9
b b 1404.99 7 20 88 65.22 ±19.16 116.00 ±34.00 177.00 ±3.34 1406.09 4 20 4 73.16 ±15.98 75.30 ±16.40 103.00 ±3.40 1406.10 4 20 6 73.02 ±17.27 77.60 ±18.40 106.00 ±3.02

w 1499.30 247 1 1 99.16 ±3.83 3.85 ±0.43 3.90 ± 0.36 1499.30 247 1 1 99.16 ±3.83 3.94 ±0.28 3.97 ± 0.22 1499.30 247 1 1 99.16 ±3.83 3.90 ±0.36 3.91 ± 0.35

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.8: Best and worst average solutions found by corresponding BCOs for problem instance Iogra300_12 [Dav06b]. Stopping criterion, Nit = 100.

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s
[10−3] [10−3] [10−3] [10−3] [10−3] [10−3]

p0
b b 1603.67 3 20 1 51.68 ±21.91 57.60 ±24.70 111.00 ±3.33 1603.45 2 20 8 48.55 ±23.49 55.50 ±26.90 115.00 ±3.50 1603.52 2 20 5 52.58 ±22.94 59.70 ±26.30 114.00 ±4.67

w 1607.53 13 1 1 86.32 ±11.58 4.09 ±0.67 4.76 ± 0.49 1607.53 13 1 1 86.32 ±11.58 4.09 ±0.71 4.75 ± 0.43 1607.53 13 1 1 86.32 ±11.58 4.15 ±0.71 4.79 ± 0.50

p1
b b 1603.57 4 19 96 50.92 ±23.79 81.70 ±38.40 160.00 ±3.30 1603.32 3 19 60 74.62 ±15.26 91.00 ±18.70 122.00 ±2.84 1603.64 3 20 7 58.21 ±22.46 68.80 ±26.90 118.00 ±4.22

w 1607.91 6 18 14 46.54 ±23.58 50.90 ±25.80 109.00 ± 3.05 1614.51 65 3 89 90.53 ±12.08 15.00 ±2.09 16.60 ± 0.63 1609.13 48 2 48 86.29 ±12.88 10.40 ±1.55 12.00 ± 0.58

p2
b b 1603.51 4 19 85 51.88 ±24.14 83.00 ±39.20 160.00 ±3.19 1603.17 2 19 59 70.35 ±14.90 83.40 ±17.60 119.00 ±2.90 1603.59 3 20 5 55.21 ±20.16 63.80 ±23.50 115.00 ±4.39

w 1607.97 7 18 13 50.01 ±25.75 54.30 ±27.90 109.00 ± 3.12 1631.79 102 14 92 90.12 ±17.08 79.60 ±15.40 88.30 ± 2.40 1609.59 59 3 44 85.38 ±14.87 15.80 ±2.82 18.50 ± 0.64

p3
b b 1603.67 3 20 1 51.68 ±21.91 57.40 ±24.40 111.00 ±3.38 1603.62 3 20 34 56.15 ±21.97 70.30 ±27.90 125.00 ±3.60 1603.65 3 20 17 54.19 ±23.18 64.10 ±27.70 118.00 ±4.09

w 1607.53 13 1 1 86.32 ±11.58 4.05 ±0.78 4.71 ± 0.52 1608.10 76 2 93 85.62 ±11.95 9.88 ±1.47 11.60 ± 0.62 1607.53 13 1 1 86.32 ±11.58 4.02 ±0.80 4.67 ± 0.49

p4
b b 1603.67 3 20 1 51.68 ±21.91 56.90 ±24.60 110.00 ±3.57 1603.36 2 20 14 59.71 ±18.08 69.90 ±21.50 117.00 ±3.55 1603.58 2 19 7 52.96 ±20.71 57.70 ±22.70 109.00 ±3.09

w 1607.53 13 1 1 86.32 ±11.58 4.18 ±0.78 4.75 ± 0.50 1609.38 63 2 91 89.26 ±11.33 10.10 ±1.31 11.20 ± 0.54 1607.74 62 2 24 81.37 ±16.14 8.55 ±1.75 10.40 ± 0.64

p5
b b 1603.53 4 20 91 53.45 ±24.43 93.30 ±42.60 174.00 ±3.66 1603.32 3 20 56 74.99 ±14.75 96.20 ±19.00 128.00 ±2.76 1603.64 3 20 5 53.53 ±22.08 61.80 ±25.70 116.00 ±4.59

w 1607.83 7 20 19 45.72 ±24.86 57.90 ±31.60 126.00 ± 3.48 1614.24 93 2 93 88.75 ±12.28 9.98 ±1.46 11.30 ± 0.51 1609.47 66 2 100 86.62 ±14.31 13.40 ±2.30 15.40 ± 0.56

p6
b b 1603.67 3 20 1 51.68 ±21.91 57.40 ±24.60 111.00 ±3.89 1603.38 3 20 99 74.41 ±17.46 106.00 ±25.00 143.00 ±3.45 1603.56 3 20 7 56.13 ±22.45 65.80 ±26.20 117.00 ±4.22

w 1607.53 13 1 1 86.32 ±11.58 4.11 ±0.69 4.76 ± 0.49 1609.83 64 2 83 88.07 ±11.05 9.97 ±1.30 11.30 ± 0.58 1608.29 66 2 62 82.38 ±14.93 10.60 ±2.00 12.80 ± 0.54

p7
b b 1603.67 3 20 1 51.68 ±21.91 57.60 ±24.60 111.00 ±3.66 1603.47 2 20 4 51.21 ±20.21 58.00 ±23.00 113.00 ±3.12 1603.57 3 20 24 52.61 ±23.05 67.10 ±29.70 128.00 ±3.17

w 1607.53 13 1 1 86.32 ±11.58 4.08 ±0.73 4.68 ± 0.53 1607.53 13 1 1 86.32 ±11.58 4.12 ±0.75 4.71 ± 0.50 1607.53 13 1 1 86.32 ±11.58 4.11 ±0.80 4.75 ± 0.48

p8
b b 1603.67 3 20 1 51.68 ±21.91 57.50 ±24.30 111.00 ±3.65 *1603.15 2 20 40 74.59 ±14.36 90.70 ±17.80 122.00 ±2.90 1603.58 2 20 5 58.66 ±19.10 69.00 ±22.60 118.00 ±5.05

w 1607.53 13 1 1 86.32 ±11.58 4.15 ±0.70 4.83 ± 0.38 1622.05 91 5 76 90.22 ±14.17 24.80 ±4.02 27.40 ± 0.80 1609.66 68 2 52 89.96 ±10.78 11.50 ±1.51 12.80 ± 0.56

p9
b b 1603.61 4 20 94 51.16 ±25.04 97.30 ±47.60 191.00 ±2.92 1603.33 3 20 75 77.44 ±14.94 104.00 ±20.50 135.00 ±3.01 1603.60 3 20 2 51.92 ±22.51 58.50 ±25.70 113.00 ±3.57

w 1608.00 8 20 22 51.91 ±22.49 71.00 ±30.80 137.00 ± 2.77 1614.02 61 3 100 90.83 ±11.58 16.00 ±2.05 17.50 ± 0.67 1609.37 52 2 25 88.11 ±11.96 10.30 ±1.49 11.60 ± 0.58

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.9: Best and worst average solutions found by corresponding BCOs for problem instance Iogra300_16 [Dav06b]. Stopping criterion, Nit = 100.

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s
[10−3] [10−3] [10−3] [10−3] [10−3] [10−3]

p0
b b 1606.15 2 20 1 59.46 ±17.84 75.70 ±22.40 127.00 ±3.97 1605.81 3 19 90 70.95 ±18.07 111.00 ±28.30 157.00 ±4.14 1605.90 3 20 85 62.04 ±19.81 104.00 ±34.00 168.00 ±3.81

w 1664.35 179 1 1 99.27 ±2.48 4.98 ±0.37 4.99 ± 0.36 1664.35 179 1 1 99.27 ±2.48 5.05 ±0.52 5.08 ± 0.48 1664.35 179 1 1 99.27 ±2.48 5.03 ±0.41 5.07 ± 0.35

p1
b b 1605.35 7 19 92 65.20 ±21.14 119.00 ±38.40 183.00 ±3.80 1605.96 3 20 5 73.71 ±13.56 96.90 ±18.30 131.00 ±3.16 1605.99 2 19 5 70.63 ±18.10 88.10 ±22.80 125.00 ±3.92

w 1664.35 179 1 1 99.27 ±2.48 5.02 ±0.42 5.07 ± 0.41 1685.19 209 2 98 99.80 ±0.99 12.20 ±0.70 12.20 ± 0.67 1668.24 186 2 63 98.69 ±5.21 13.80 ±0.89 14.00 ± 0.50

p2
b b *1605.06 5 19 91 61.91 ±17.98 114.00 ±33.50 185.00 ±3.71 1606.03 2 20 2 63.97 ±17.50 83.20 ±23.40 130.00 ±4.10 1606.05 3 20 3 67.28 ±17.37 87.50 ±22.80 130.00 ±4.32

w 1664.35 179 1 1 99.27 ±2.48 4.99 ±0.48 5.05 ± 0.41 1710.52 213 12 67 98.74 ±3.96 81.90 ±3.98 83.00 ± 2.37 1673.36 162 2 37 99.73 ±1.14 12.80 ±0.60 12.80 ± 0.60

p3
b b 1606.03 3 20 2 60.76 ±18.39 79.00 ±24.10 130.00 ±3.12 1606.05 3 20 8 63.92 ±18.55 84.20 ±24.30 132.00 ±4.05 1606.04 3 19 2 62.91 ±18.17 76.90 ±22.00 123.00 ±3.79

w 1664.35 179 1 1 99.27 ±2.48 5.03 ±0.41 5.06 ± 0.40 1664.35 179 1 1 99.27 ±2.48 5.04 ±0.53 5.08 ± 0.48 1664.35 179 1 1 99.27 ±2.48 5.07 ±0.47 5.11 ± 0.42

p4
b b 1606.15 2 20 1 59.46 ±17.84 75.50 ±22.60 127.00 ±4.07 1605.90 3 20 6 69.70 ±15.61 92.10 ±20.60 132.00 ±4.06 1605.94 2 20 3 66.97 ±18.81 87.20 ±24.70 130.00 ±3.73

w 1664.35 179 1 1 99.27 ±2.48 5.04 ±0.42 5.07 ± 0.38 1670.29 179 2 71 99.30 ±3.21 11.90 ±0.63 11.90 ± 0.52 1664.35 179 1 1 99.27 ±2.48 5.08 ±0.50 5.12 ± 0.47

p5
b b 1605.22 5 20 93 65.98 ±19.61 130.00 ±39.20 197.00 ±3.76 1605.98 3 19 4 70.29 ±15.21 87.70 ±19.10 125.00 ±3.37 1606.05 4 18 3 66.36 ±18.48 77.10 ±21.40 116.00 ±3.23

w 1664.35 179 1 1 99.27 ±2.48 5.01 ±0.52 5.05 ± 0.46 1688.02 202 2 98 99.47 ±2.33 12.30 ±0.62 12.40 ± 0.58 1668.71 183 2 100 97.28 ±8.18 16.10 ±1.56 16.50 ± 0.76

p6
b b 1606.15 2 20 1 59.46 ±17.84 76.50 ±22.80 129.00 ±3.82 1605.88 3 20 4 69.36 ±15.49 92.00 ±20.60 133.00 ±3.17 1605.95 3 20 5 67.09 ±17.26 89.60 ±23.40 134.00 ±3.62

w 1664.35 179 1 1 99.27 ±2.48 5.10 ±0.50 5.11 ± 0.49 1674.64 158 2 83 99.61 ±2.18 12.30 ±0.67 12.30 ± 0.67 1665.54 176 2 74 99.08 ±3.25 14.30 ±0.70 14.40 ± 0.56

p7
b b 1606.15 2 20 1 59.46 ±17.84 76.40 ±22.80 129.00 ±3.17 1605.84 3 19 7 67.39 ±17.36 84.30 ±21.30 125.00 ±3.98 1605.86 2 19 5 64.74 ±18.94 81.00 ±23.80 125.00 ±3.93

w 1664.35 179 1 1 99.27 ±2.48 4.98 ±0.42 5.01 ± 0.41 1664.35 179 1 1 99.27 ±2.48 5.01 ±0.46 5.04 ± 0.47 1664.35 179 1 1 99.27 ±2.48 5.11 ±0.53 5.16 ± 0.48

p8
b b 1605.33 4 19 91 60.86 ±20.80 115.00 ±39.40 188.00 ±4.17 1606.01 2 18 2 69.52 ±17.59 80.90 ±20.40 116.00 ±3.69 1606.05 2 20 2 64.94 ±19.73 84.00 ±25.60 129.00 ±4.18

w 1664.35 179 1 1 99.27 ±2.48 5.03 ±0.46 5.05 ± 0.43 1696.36 217 3 83 99.48 ±2.09 18.00 ±0.68 18.10 ± 0.63 1669.48 200 2 60 98.68 ±4.68 14.20 ±0.80 14.40 ± 0.54

p9
b b 1605.32 5 20 98 61.50 ±22.25 124.00 ±44.60 201.00 ±6.51 1605.91 2 20 5 71.51 ±15.18 94.50 ±19.90 132.00 ±4.03 1606.07 2 20 3 65.25 ±19.31 86.10 ±26.20 132.00 ±3.37

w 1664.35 179 1 1 99.27 ±2.48 5.09 ±0.53 5.13 ± 0.52 1686.33 201 2 98 99.69 ±1.28 12.40 ±0.62 12.50 ± 0.59 1668.03 181 2 55 99.16 ±2.42 14.70 ±0.63 14.80 ± 0.53

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.10: Best and worst average solutions found by corresponding BCOs for problem instance Iogra350_12 [Dav06b]. Stopping criterion, Nit = 100.

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s
[10−3] [10−3] [10−3] [10−3] [10−3] [10−3]

p0
b b 1807.24 4 20 1 63.67 ±22.61 88.00 ±31.20 139.00 ±4.66 1806.52 4 19 68 69.85 ±17.53 111.00 ±28.30 159.00 ±3.47 1806.77 4 20 40 65.70 ±20.59 106.00 ±33.30 160.00 ±3.54

w 1826.67 87 1 1 95.63 ±7.13 5.72 ±0.62 6.00 ± 0.35 1826.67 87 1 1 95.63 ±7.13 5.80 ±0.60 6.05 ± 0.30 1826.67 87 1 1 95.63 ±7.13 5.72 ±0.68 5.99 ± 0.46

p1
b b 1807.24 4 20 1 63.67 ±22.61 88.00 ±31.30 138.00 ±4.53 1806.81 4 20 7 78.58 ±13.34 113.00 ±19.60 143.00 ±4.68 1807.07 5 20 2 60.58 ±21.59 84.30 ±30.40 140.00 ±4.29

w 1826.67 87 1 1 95.63 ±7.13 5.71 ±0.59 6.01 ± 0.36 1883.57 207 3 95 99.57 ±1.84 20.70 ±0.74 20.80 ± 0.69 1870.10 156 13 100 99.25 ±3.28 131.00 ±4.68 132.00 ± 2.04

p2
b b 1807.24 4 20 1 63.67 ±22.61 88.60 ±31.90 139.00 ±4.39 1806.97 4 20 2 64.52 ±18.39 90.50 ±26.20 140.00 ±4.34 1807.08 4 20 3 69.57 ±18.19 99.00 ±26.50 142.00 ±4.38

w 1826.67 87 1 1 95.63 ±7.13 5.78 ±0.72 6.01 ± 0.52 1955.88 263 17 80 99.94 ±0.60 133.00 ±3.16 133.00 ± 3.09 1877.09 218 15 76 99.33 ±2.09 146.00 ±4.05 147.00 ± 2.77

p3
b b 1807.14 4 20 2 64.72 ±21.38 90.00 ±29.80 139.00 ±4.10 1807.06 4 20 43 69.33 ±17.95 109.00 ±28.40 158.00 ±4.08 1807.14 4 20 4 61.33 ±21.32 86.50 ±30.40 141.00 ±4.58

w 1826.67 87 1 1 95.63 ±7.13 5.84 ±0.72 6.11 ± 0.44 1832.24 166 2 98 96.63 ±6.06 13.70 ±1.16 14.20 ± 0.71 1826.67 87 1 1 95.63 ±7.13 5.79 ±0.59 6.03 ± 0.36

p4
b b 1807.24 4 20 1 63.67 ±22.61 87.50 ±31.10 138.00 ±4.18 1806.59 4 20 16 76.88 ±14.46 114.00 ±22.70 148.00 ±4.12 1806.94 4 20 8 66.63 ±18.60 98.20 ±27.90 147.00 ±5.30

w 1826.67 87 1 1 95.63 ±7.13 5.74 ±0.59 6.04 ± 0.34 1853.77 111 3 93 98.75 ±4.63 20.80 ±1.13 21.10 ± 0.66 1832.88 147 2 98 96.01 ±7.01 15.00 ±1.27 15.60 ± 0.56

p5
b b 1807.24 4 20 1 63.67 ±22.61 88.00 ±31.40 138.00 ±4.17 1806.84 5 19 7 76.88 ±14.20 104.00 ±19.80 136.00 ±4.64 1807.14 4 20 5 64.99 ±19.53 94.30 ±28.10 145.00 ±4.72

w 1826.67 87 1 1 95.63 ±7.13 5.74 ±0.66 6.00 ± 0.47 1886.41 169 4 99 99.55 ±2.36 28.00 ±1.06 28.10 ± 0.75 1870.17 153 18 100 99.56 ±2.10 193.00 ±4.76 194.00 ± 3.00

p6
b b 1807.24 4 20 1 63.67 ±22.61 87.50 ±31.50 137.00 ±5.10 1806.63 3 20 6 73.37 ±17.06 105.00 ±24.80 144.00 ±4.66 1806.89 5 20 7 66.59 ±19.84 97.40 ±29.60 146.00 ±5.09

w 1826.67 87 1 1 95.63 ±7.13 5.74 ±0.58 5.98 ± 0.35 1861.50 160 5 76 99.62 ±1.77 35.70 ±1.06 35.80 ± 0.95 1842.89 123 6 95 97.95 ±5.00 51.70 ±2.77 52.80 ± 1.07

p7
b b 1807.24 4 20 1 63.67 ±22.61 88.70 ±31.60 139.00 ±5.30 *1806.50 4 20 7 66.75 ±20.02 96.00 ±28.90 144.00 ±4.48 1806.67 4 20 7 61.10 ±21.08 89.80 ±31.70 147.00 ±5.08

w 1826.67 87 1 1 95.63 ±7.13 5.70 ±0.62 5.94 ± 0.42 1826.67 87 1 1 95.63 ±7.13 5.69 ±0.64 6.00 ± 0.49 1826.67 87 1 1 95.63 ±7.13 5.80 ±0.63 6.03 ± 0.48

p8
b b 1807.24 4 20 1 63.67 ±22.61 89.20 ±32.10 140.00 ±4.58 1806.92 4 20 3 74.20 ±16.26 105.00 ±23.10 141.00 ±3.86 1807.14 4 19 4 73.30 ±17.98 98.90 ±24.30 135.00 ±4.58

w 1826.67 87 1 1 95.63 ±7.13 5.75 ±0.57 6.02 ± 0.40 1900.07 246 7 100 99.27 ±3.53 50.10 ±2.01 50.50 ± 1.07 1875.67 192 12 63 99.25 ±2.73 112.00 ±3.73 113.00 ± 2.51

p9
b b 1807.24 4 20 1 63.67 ±22.61 88.30 ±31.80 139.00 ±4.74 1806.91 5 19 6 74.50 ±15.55 101.00 ±21.50 136.00 ±3.98 1807.10 4 20 2 67.78 ±21.30 95.20 ±30.70 140.00 ±3.69

w 1826.67 87 1 1 95.63 ±7.13 5.69 ±0.66 5.96 ± 0.42 1886.54 225 6 95 99.60 ±1.79 43.60 ±1.31 43.80 ± 0.96 1868.01 156 18 90 99.51 ±1.87 200.00 ±5.26 201.00 ± 3.44

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.11: Best and worst average solutions found by corresponding BCOs for problem instance Iogra350_16 [Dav06b]. Stopping criterion, Nit = 100.

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s
[10−3] [10−3] [10−3] [10−3] [10−3] [10−3]

p0
b b 1805.84 3 20 1 61.18 ±18.78 97.80 ±30.30 160.00 ±4.25 *1805.53 3 20 97 68.58 ±19.48 137.00 ±39.60 200.00 ±4.89 1805.60 4 20 88 65.55 ±18.87 130.00 ±37.30 199.00 ±5.11

w 1850.14 135 1 1 99.14 ±2.83 6.41 ±0.60 6.46 ± 0.59 1850.14 135 1 1 99.14 ±2.83 6.33 ±0.65 6.38 ± 0.63 1850.14 135 1 1 99.14 ±2.83 6.31 ±0.63 6.36 ± 0.59

p1
b b 1805.84 3 20 1 61.18 ±18.78 96.10 ±29.90 158.00 ±4.22 1805.62 3 20 4 72.93 ±15.58 118.00 ±25.70 162.00 ±4.66 1805.80 3 20 6 73.10 ±16.12 120.00 ±26.50 164.00 ±4.42

w 1850.14 135 1 1 99.14 ±2.83 6.30 ±0.59 6.36 ± 0.57 1882.72 197 3 97 99.79 ±1.90 22.70 ±0.92 22.80 ± 0.79 1867.22 167 2 87 99.65 ±1.73 18.20 ±0.73 18.20 ± 0.70

p2
b b 1805.84 3 20 1 61.18 ±18.78 95.30 ±28.70 156.00 ±5.91 1805.76 3 18 2 68.90 ±17.57 98.30 ±25.60 142.00 ±4.30 1805.83 3 20 2 61.01 ±15.96 98.80 ±26.70 162.00 ±4.06

w 1850.14 135 1 1 99.14 ±2.83 6.35 ±0.65 6.42 ± 0.59 1918.82 216 17 63 99.93 ±0.70 148.00 ±4.13 148.00 ± 4.04 1871.74 152 2 88 99.68 ±1.83 19.20 ±0.80 19.30 ± 0.72

p3
b b 1805.72 2 20 2 65.15 ±18.56 104.00 ±29.20 159.00 ±4.90 1805.71 3 20 22 65.15 ±15.51 110.00 ±26.70 168.00 ±5.30 1805.79 3 20 19 67.96 ±15.42 116.00 ±26.40 170.00 ±4.14

w 1850.14 135 1 1 99.14 ±2.83 6.41 ±0.62 6.44 ± 0.60 1856.71 146 2 100 99.19 ±3.79 15.40 ±0.78 15.50 ± 0.57 1850.14 135 1 1 99.14 ±2.83 6.24 ±0.57 6.30 ± 0.56

p4
b b 1805.84 3 20 1 61.18 ±18.78 98.00 ±30.00 160.00 ±3.68 1805.63 3 20 5 71.51 ±16.51 115.00 ±27.40 161.00 ±4.63 1805.74 3 20 4 69.54 ±16.99 113.00 ±28.10 162.00 ±4.62

w 1850.14 135 1 1 99.14 ±2.83 6.33 ±0.57 6.40 ± 0.53 1866.48 153 2 79 99.88 ±0.94 14.70 ±0.52 14.70 ± 0.52 1855.06 175 2 55 98.67 ±4.76 15.10 ±1.02 15.30 ± 0.69

p5
b b 1805.84 3 20 1 61.18 ±18.78 99.40 ±30.40 163.00 ±3.62 1805.65 3 18 2 68.43 ±17.03 99.60 ±24.80 145.00 ±3.37 1805.83 3 19 4 65.84 ±16.55 102.00 ±25.80 155.00 ±4.33

w 1850.14 135 1 1 99.14 ±2.83 6.31 ±0.66 6.35 ± 0.61 1879.76 183 2 95 99.17 ±5.12 14.90 ±0.98 15.00 ± 0.65 1866.47 164 11 91 99.30 ±4.41 121.00 ±6.04 122.00 ± 2.79

p6
b b 1805.84 3 20 1 61.18 ±18.78 97.80 ±30.30 160.00 ±4.78 1805.67 3 19 4 71.89 ±14.12 111.00 ±22.30 154.00 ±4.74 1805.76 3 17 6 69.04 ±17.39 96.00 ±24.60 139.00 ±4.27

w 1850.14 135 1 1 99.14 ±2.83 6.28 ±0.57 6.33 ± 0.57 1869.15 137 3 80 99.84 ±0.94 22.80 ±0.88 22.80 ± 0.87 1859.94 118 2 78 99.44 ±2.63 17.30 ±0.79 17.40 ± 0.68

p7
b b 1805.84 3 20 1 61.18 ±18.78 96.30 ±30.00 157.00 ±4.69 1805.56 3 20 61 63.99 ±19.54 124.00 ±38.50 192.00 ±5.28 1805.63 2 20 32 64.69 ±18.46 116.00 ±32.80 180.00 ±5.01

w 1850.14 135 1 1 99.14 ±2.83 6.33 ±0.53 6.38 ± 0.51 1850.14 135 1 1 99.14 ±2.83 6.27 ±0.53 6.30 ± 0.52 1850.14 135 1 1 99.14 ±2.83 6.33 ±0.60 6.38 ± 0.60

p8
b b 1805.84 3 20 1 61.18 ±18.78 98.80 ±29.90 161.00 ±4.14 1805.77 3 20 2 69.35 ±16.82 111.00 ±26.50 161.00 ±4.30 1805.83 3 19 2 65.87 ±17.06 100.00 ±26.10 152.00 ±4.44

w 1850.14 135 1 1 99.14 ±2.83 6.41 ±0.58 6.45 ± 0.57 1895.23 144 3 95 100.00 ±0.00 22.80 ±0.69 22.80 ± 0.69 1867.80 145 3 77 99.73 ±1.09 29.20 ±0.90 29.20 ± 0.80

p9
b b 1805.84 3 20 1 61.18 ±18.78 97.90 ±30.60 160.00 ±4.76 1805.61 3 20 3 68.12 ±18.25 110.00 ±29.50 161.00 ±4.71 1805.83 2 19 2 61.07 ±18.53 93.50 ±28.90 153.00 ±4.50

w 1850.14 135 1 1 99.14 ±2.83 6.38 ±0.56 6.45 ± 0.52 1880.40 153 2 98 99.88 ±0.67 15.30 ±0.60 15.30 ± 0.59 1865.26 137 2 69 99.60 ±1.98 18.80 ±0.77 18.80 ± 0.67

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.12: Best and worst average solutions found by corresponding BCOs for problem instance Iogra400_12 [Dav06b]. Stopping criterion, Nit = 100.

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s
[10−3] [10−3] [10−3] [10−3] [10−3] [10−3]

p0
b b 2004.28 3 20 1 60.29 ±20.02 103.00 ±34.00 170.00 ±4.78 2003.95 2 20 42 65.21 ±18.13 123.00 ±34.30 189.00 ±4.66 2004.07 3 19 98 63.37 ±20.91 128.00 ±42.30 202.00 ±3.86

w 2025.39 120 1 1 95.59 ±8.50 7.04 ±0.88 7.40 ± 0.63 2025.39 120 1 1 95.59 ±8.50 7.13 ±0.84 7.41 ± 0.57 2025.39 120 1 1 95.59 ±8.50 7.06 ±0.81 7.37 ± 0.64

p1
b b 2004.28 3 20 1 60.29 ±20.02 102.00 ±33.70 169.00 ±4.48 2004.05 2 19 7 73.98 ±15.93 121.00 ±26.70 164.00 ±5.58 2004.18 2 19 5 64.60 ±17.29 106.00 ±28.80 165.00 ±4.39

w 2025.39 120 1 1 95.59 ±8.50 7.14 ±0.79 7.49 ± 0.54 2031.95 140 3 97 96.52 ±6.99 24.20 ±1.88 25.10 ± 0.69 2028.03 113 3 54 94.35 ±9.10 26.10 ±2.50 27.50 ± 0.70

p2
b b 2004.28 3 20 1 60.29 ±20.02 102.00 ±34.50 170.00 ±4.38 2004.14 2 20 4 70.60 ±17.18 121.00 ±29.70 171.00 ±5.27 2004.19 3 20 5 65.88 ±18.01 116.00 ±31.60 176.00 ±4.84

w 2028.75 290 16 53 92.11 ±8.94 154.00 ±15.60 168.00 ± 3.57 2067.29 197 19 88 91.87 ±13.90 167.00 ±25.70 181.00 ± 4.01 2027.68 126 3 52 92.42 ±11.32 25.80 ±3.20 28.00 ± 0.81

p3
b b 2004.28 3 20 1 60.29 ±20.02 102.00 ±34.50 169.00 ±6.22 2004.23 3 20 11 63.08 ±22.45 109.00 ±38.90 173.00 ±4.07 2004.24 3 18 6 63.48 ±19.77 98.20 ±30.40 155.00 ±4.10

w 2025.39 120 1 1 95.59 ±8.50 7.09 ±0.86 7.39 ± 0.69 2025.39 120 1 1 95.59 ±8.50 7.15 ±0.83 7.53 ± 0.56 2025.39 120 1 1 95.59 ±8.50 7.07 ±0.85 7.39 ± 0.58

p4
b b 2004.28 3 20 1 60.29 ±20.02 102.00 ±34.00 170.00 ±5.43 2003.91 3 20 10 66.49 ±17.78 118.00 ±32.80 176.00 ±5.52 2004.11 2 19 11 64.17 ±17.97 107.00 ±30.40 167.00 ±4.33

w 2025.39 120 1 1 95.59 ±8.50 7.07 ±0.92 7.35 ± 0.62 2027.26 93 2 73 96.68 ±6.88 15.80 ±1.30 16.40 ± 0.67 2025.39 120 1 1 95.59 ±8.50 7.07 ±0.75 7.33 ± 0.55

p5
b b 2004.28 3 20 1 60.29 ±20.02 103.00 ±34.20 170.00 ±4.77 2004.02 2 19 8 72.64 ±15.98 119.00 ±26.40 164.00 ±5.09 2004.21 3 20 8 68.97 ±18.21 126.00 ±32.90 182.00 ±5.76

w 2025.39 120 1 1 95.59 ±8.50 7.10 ±0.84 7.40 ± 0.57 2032.73 153 2 97 96.49 ±6.71 16.00 ±1.25 16.60 ± 0.63 2027.81 115 3 73 94.58 ±8.59 28.30 ±2.85 29.80 ± 0.86

p6
b b 2004.28 3 20 1 60.29 ±20.02 103.00 ±34.40 170.00 ±4.76 *2003.85 3 20 12 74.06 ±16.46 132.00 ±29.60 179.00 ±4.40 2004.06 3 20 5 60.72 ±21.96 106.00 ±38.90 175.00 ±5.84

w 2025.39 120 1 1 95.59 ±8.50 7.14 ±0.79 7.48 ± 0.59 2029.11 123 2 76 94.67 ±9.77 15.50 ±1.73 16.40 ± 0.72 2025.39 120 1 1 95.59 ±8.50 7.04 ±0.91 7.32 ± 0.60

p7
b b 2004.28 3 20 1 60.29 ±20.02 102.00 ±34.30 170.00 ±4.57 2004.04 2 20 10 60.51 ±20.22 107.00 ±36.10 176.00 ±5.19 2004.05 2 20 7 62.40 ±18.96 109.00 ±33.20 176.00 ±5.45

w 2025.39 120 1 1 95.59 ±8.50 7.05 ±0.86 7.38 ± 0.63 2025.39 120 1 1 95.59 ±8.50 7.02 ±0.94 7.38 ± 0.63 2025.39 120 1 1 95.59 ±8.50 7.04 ±0.86 7.40 ± 0.60

p8
b b 2004.28 3 20 1 60.29 ±20.02 102.00 ±34.10 169.00 ±5.14 2004.05 3 20 5 74.42 ±15.44 129.00 ±27.00 173.00 ±5.14 2004.18 4 20 5 70.79 ±17.95 126.00 ±32.00 178.00 ±6.90

w 2027.44 200 15 52 92.70 ±12.05 147.00 ±19.00 158.00 ± 3.42 2035.54 160 4 81 96.42 ±7.10 32.30 ±2.53 33.50 ± 0.84 2029.40 107 3 52 95.92 ±8.71 27.40 ±2.58 28.50 ± 0.74

p9
b b 2004.28 3 20 1 60.29 ±20.02 102.00 ±33.80 170.00 ±4.40 2004.08 3 20 7 71.11 ±15.89 125.00 ±28.50 176.00 ±5.61 2004.14 4 20 6 63.98 ±19.39 114.00 ±35.30 179.00 ±5.96

w 2025.39 120 1 1 95.59 ±8.50 7.04 ±0.77 7.34 ± 0.57 2034.39 152 2 97 96.72 ±6.60 16.30 ±1.25 16.80 ± 0.61 2027.98 139 2 74 95.09 ±8.78 19.80 ±1.97 20.80 ± 0.70

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.13: Best and worst average solutions found by corresponding BCOs for problem instance Iogra400_16 [Dav06b]. Stopping criterion, Nit = 100.

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s
[10−3] [10−3] [10−3] [10−3] [10−3] [10−3]

p0
b b 2006.05 3 20 1 68.77 ±18.17 132.00 ±35.50 192.00 ±5.32 2005.77 3 20 38 72.57 ±15.25 153.00 ±32.30 212.00 ±4.41 *2005.70 3 20 40 69.40 ±16.23 148.00 ±34.20 213.00 ±5.66

w 2085.98 203 1 1 99.49 ±2.50 7.93 ±0.38 7.95 ± 0.36 2085.98 203 1 1 99.49 ±2.50 7.84 ±0.46 7.88 ± 0.41 2085.98 203 1 1 99.49 ±2.50 7.76 ±0.53 7.79 ± 0.50

p1
b b 2006.05 3 20 1 68.77 ±18.17 133.00 ±35.80 193.00 ±4.21 2005.94 2 20 2 69.63 ±16.85 135.00 ±33.60 194.00 ±5.17 2006.05 3 20 1 68.77 ±18.17 132.00 ±34.50 192.00 ±4.46

w 2085.98 203 1 1 99.49 ±2.50 7.77 ±0.60 7.82 ± 0.56 2104.11 260 2 91 99.78 ±1.00 17.80 ±0.70 17.80 ± 0.68 2090.87 191 2 38 99.47 ±2.46 18.20 ±0.88 18.30 ± 0.66

p2
b b 2006.05 3 20 1 68.77 ±18.17 133.00 ±35.30 192.00 ±4.38 2006.05 3 20 1 68.77 ±18.17 132.00 ±35.30 192.00 ±5.36 2006.05 3 20 1 68.77 ±18.17 133.00 ±35.10 193.00 ±4.82

w 2085.98 203 1 1 99.49 ±2.50 7.80 ±0.55 7.84 ± 0.48 2132.84 305 7 84 98.88 ±4.02 67.90 ±3.16 68.80 ± 1.75 2094.58 228 2 35 99.44 ±2.92 18.40 ±0.97 18.50 ± 0.67

p3
b b 2006.04 3 19 2 69.44 ±17.12 127.00 ±32.10 182.00 ±5.23 2005.97 3 20 2 70.10 ±18.65 135.00 ±35.80 192.00 ±5.78 2005.97 3 19 11 68.65 ±18.06 129.00 ±34.40 188.00 ±4.72

w 2085.98 203 1 1 99.49 ±2.50 7.88 ±0.43 7.92 ± 0.42 2085.98 203 1 1 99.49 ±2.50 7.82 ±0.43 7.87 ± 0.39 2085.98 203 1 1 99.49 ±2.50 7.80 ±0.55 7.84 ± 0.44

p4
b b 2006.05 3 20 1 68.77 ±18.17 131.00 ±34.80 190.00 ±5.82 2005.87 3 19 9 78.97 ±12.97 148.00 ±24.80 187.00 ±4.14 2005.97 3 19 8 72.46 ±15.08 136.00 ±28.70 188.00 ±5.22

w 2085.98 203 1 1 99.49 ±2.50 7.85 ±0.50 7.88 ± 0.45 2091.26 318 2 75 99.83 ±0.91 17.60 ±0.71 17.60 ± 0.71 2088.02 267 2 66 98.49 ±5.99 18.40 ±1.25 18.70 ± 0.63

p5
b b 2006.05 3 20 1 68.77 ±18.17 132.00 ±34.30 192.00 ±4.97 2005.98 3 20 5 77.29 ±14.52 153.00 ±28.90 198.00 ±4.80 2006.03 3 20 3 70.01 ±17.20 136.00 ±34.00 195.00 ±5.48

w 2085.98 203 1 1 99.49 ±2.50 7.71 ±0.50 7.74 ± 0.46 2104.05 269 2 91 99.77 ±0.96 17.80 ±0.60 17.80 ± 0.58 2093.80 225 2 26 98.85 ±3.99 17.50 ±0.91 17.70 ± 0.54

p6
b b 2006.05 3 20 1 68.77 ±18.17 132.00 ±36.00 192.00 ±5.12 2005.92 3 19 4 75.58 ±14.28 141.00 ±27.60 186.00 ±5.54 2005.94 3 20 3 69.82 ±15.84 138.00 ±32.10 198.00 ±4.47

w 2085.98 203 1 1 99.49 ±2.50 7.77 ±0.49 7.83 ± 0.43 2094.90 222 2 54 99.71 ±1.54 17.30 ±0.74 17.40 ± 0.66 2093.34 254 2 85 97.54 ±7.00 20.40 ±1.45 20.90 ± 0.58

p7
b b 2006.05 3 20 1 68.77 ±18.17 133.00 ±35.90 194.00 ±4.51 2005.75 3 20 12 67.78 ±16.96 136.00 ±34.00 201.00 ±5.09 2005.82 2 20 10 67.48 ±18.28 135.00 ±37.10 200.00 ±4.75

w 2085.98 203 1 1 99.49 ±2.50 7.72 ±0.65 7.74 ± 0.63 2085.98 203 1 1 99.49 ±2.50 7.80 ±0.58 7.85 ± 0.52 2085.98 203 1 1 99.49 ±2.50 7.78 ±0.48 7.83 ± 0.43

p8
b b 2005.78 14 15 99 79.65 ±16.07 156.00 ±32.40 196.00 ±6.44 2006.01 3 20 2 71.08 ±16.06 138.00 ±31.80 194.00 ±6.03 2006.05 3 20 1 68.77 ±18.17 133.00 ±34.80 193.00 ±4.58

w 2085.98 203 1 1 99.49 ±2.50 7.85 ±0.57 7.88 ± 0.53 2109.50 329 2 99 99.75 ±1.98 17.80 ±0.68 17.90 ± 0.63 2094.88 280 2 48 98.99 ±3.22 19.30 ±0.85 19.50 ± 0.59

p9
b b 2006.05 3 20 1 68.77 ±18.17 133.00 ±35.20 194.00 ±5.50 2005.89 3 20 4 73.54 ±14.47 144.00 ±28.90 196.00 ±5.13 2005.94 4 18 4 74.39 ±15.87 133.00 ±28.60 178.00 ±4.65

w 2085.98 203 1 1 99.49 ±2.50 7.83 ±0.55 7.88 ± 0.49 2105.24 267 2 91 99.70 ±1.59 18.10 ±0.72 18.10 ± 0.67 2094.33 246 2 38 98.99 ±4.03 19.10 ±1.05 19.30 ± 0.62

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.14: Best and worst average solutions found by corresponding BCOs for problem instance Iogra450_12 [Dav06b]. Stopping criterion, Nit = 100.

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s
[10−3] [10−3] [10−3] [10−3] [10−3] [10−3]

p0
b b 2205.07 2 19 1 61.48 ±21.64 118.00 ±42.10 193.00 ±5.00 2204.56 3 19 10 68.35 ±20.53 135.00 ±40.90 197.00 ±5.10 2204.69 3 20 83 64.70 ±20.75 159.00 ±50.60 245.00 ±5.14

w 2235.32 146 1 1 96.15 ±7.70 8.67 ±0.86 9.02 ± 0.42 2235.32 146 1 1 96.15 ±7.70 8.53 ±0.89 8.84 ± 0.54 2235.32 146 1 1 96.15 ±7.70 8.62 ±0.85 8.95 ± 0.46

p1
b b 2205.07 2 19 1 61.48 ±21.64 119.00 ±42.10 193.00 ±4.97 2204.64 3 20 5 69.11 ±16.63 143.00 ±34.70 208.00 ±6.36 2204.95 3 18 5 67.51 ±18.88 126.00 ±34.60 187.00 ±5.33

w 2235.32 146 1 1 96.15 ±7.70 8.64 ±0.81 8.95 ± 0.46 2246.23 171 2 96 97.95 ±5.99 19.40 ±1.29 19.80 ± 0.54 2237.64 164 2 55 95.63 ±10.97 20.40 ±2.25 21.30 ± 0.64

p2
b b 2205.07 2 19 1 61.48 ±21.64 119.00 ±42.20 193.00 ±4.61 2204.84 3 19 3 71.34 ±17.81 139.00 ±34.90 195.00 ±5.06 2204.93 3 20 5 71.16 ±17.15 148.00 ±35.90 208.00 ±6.63

w 2235.32 146 1 1 96.15 ±7.70 8.56 ±0.84 8.91 ± 0.58 2287.04 189 20 93 94.12 ±10.49 216.00 ±24.90 230.00 ± 5.20 2237.18 166 2 25 95.28 ±10.14 18.90 ±2.17 19.90 ± 0.46

p3
b b 2205.02 3 20 9 68.98 ±19.12 143.00 ±39.70 207.00 ±4.99 2204.92 2 20 12 64.06 ±20.01 132.00 ±41.30 206.00 ±4.97 2204.94 3 20 2 61.24 ±17.89 126.00 ±37.30 206.00 ±6.38

w 2235.32 146 1 1 96.15 ±7.70 8.60 ±0.93 8.95 ± 0.54 2235.32 146 1 1 96.15 ±7.70 8.60 ±0.84 8.96 ± 0.42 2235.32 146 1 1 96.15 ±7.70 8.61 ±0.85 8.94 ± 0.42

p4
b b 2205.07 2 19 1 61.48 ±21.64 118.00 ±41.90 192.00 ±4.92 2204.50 3 20 9 66.86 ±16.50 138.00 ±34.10 208.00 ±6.03 2204.73 3 20 7 62.95 ±19.66 134.00 ±41.90 213.00 ±6.97

w 2235.32 146 1 1 96.15 ±7.70 8.68 ±0.84 9.00 ± 0.42 2235.32 146 1 1 96.15 ±7.70 8.62 ±0.77 8.98 ± 0.40 2235.32 146 1 1 96.15 ±7.70 8.62 ±0.83 9.01 ± 0.46

p5
b b 2205.07 2 19 1 61.48 ±21.64 118.00 ±42.30 192.00 ±4.97 2204.67 3 20 7 72.66 ±16.34 151.00 ±33.70 208.00 ±6.78 2204.91 4 20 4 62.53 ±19.75 129.00 ±42.00 207.00 ±7.92

w 2235.32 146 1 1 96.15 ±7.70 8.60 ±0.91 8.96 ± 0.42 2244.45 165 2 99 97.18 ±6.34 19.20 ±1.45 19.80 ± 0.63 2235.32 146 1 1 96.15 ±7.70 8.59 ±0.86 8.95 ± 0.41

p6
b b 2205.07 2 19 1 61.48 ±21.64 118.00 ±40.80 192.00 ±4.69 *2204.48 3 20 7 71.50 ±19.01 149.00 ±39.30 209.00 ±7.01 2204.81 3 20 9 66.57 ±18.97 142.00 ±40.60 214.00 ±5.77

w 2235.32 146 1 1 96.15 ±7.70 8.59 ±0.80 8.94 ± 0.42 2236.65 132 2 94 97.58 ±6.02 19.40 ±1.38 19.90 ± 0.68 2235.32 146 1 1 96.15 ±7.70 8.54 ±0.91 8.91 ± 0.45

p7
b b 2205.07 2 19 1 61.48 ±21.64 119.00 ±42.10 193.00 ±4.53 2204.61 3 20 5 68.32 ±19.72 142.00 ±40.70 208.00 ±5.68 2204.74 3 19 6 63.84 ±19.77 125.00 ±39.20 196.00 ±5.02

w 2235.32 146 1 1 96.15 ±7.70 8.63 ±0.77 8.95 ± 0.46 2235.32 146 1 1 96.15 ±7.70 8.63 ±0.86 8.94 ± 0.56 2235.32 146 1 1 96.15 ±7.70 8.63 ±0.93 8.99 ± 0.59

p8
b b 2205.07 2 19 1 61.48 ±21.64 118.00 ±41.90 193.00 ±4.50 2204.77 3 19 4 74.91 ±14.24 146.00 ±28.70 195.00 ±5.20 2204.94 3 20 4 67.97 ±17.92 141.00 ±38.20 207.00 ±5.96

w 2235.32 146 1 1 96.15 ±7.70 8.61 ±0.77 8.93 ± 0.47 2249.49 208 7 96 95.75 ±7.68 70.90 ±5.99 74.00 ± 1.68 2236.50 142 3 26 97.11 ±5.71 29.80 ±1.85 30.60 ± 0.90

p9
b b 2205.07 2 19 1 61.48 ±21.64 119.00 ±42.80 193.00 ±5.40 2204.71 3 20 5 69.46 ±16.54 144.00 ±34.20 208.00 ±5.61 2204.92 3 19 5 64.88 ±18.44 129.00 ±36.20 199.00 ±5.10

w 2235.32 146 1 1 96.15 ±7.70 8.71 ±0.80 9.03 ± 0.39 2245.05 202 3 98 98.04 ±4.25 29.90 ±1.51 30.50 ± 0.75 2235.41 136 3 54 95.90 ±9.39 33.30 ±3.35 34.70 ± 0.84

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.15: Best and worst average solutions found by corresponding BCOs for problem instance Iogra450_16 [Dav06b]. Stopping criterion, Nit = 100.

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s
[10−3] [10−3] [10−3] [10−3] [10−3] [10−3]

p0
b b 2207.80 3 20 1 77.42 ±14.88 177.00 ±33.80 229.00 ±7.44 2207.23 4 19 97 78.67 ±12.97 204.00 ±34.60 259.00 ±6.02 *2207.18 4 20 92 74.33 ±15.13 200.00 ±41.40 271.00 ±7.94

w 2349.58 327 1 1 99.69 ±1.47 9.35 ±0.64 9.39 ± 0.61 2349.58 327 1 1 99.69 ±1.47 9.39 ±0.58 9.42 ± 0.57 2349.58 327 1 1 99.69 ±1.47 9.40 ±0.58 9.42 ± 0.57

p1
b b 2207.80 3 20 1 77.42 ±14.88 179.00 ±34.70 232.00 ±5.09 2207.71 4 18 3 81.45 ±12.58 168.00 ±25.70 206.00 ±5.42 2207.64 3 20 3 79.05 ±13.54 185.00 ±31.80 234.00 ±4.95

w 2349.58 327 1 1 99.69 ±1.47 9.43 ±0.62 9.45 ± 0.61 2349.58 327 1 1 99.69 ±1.47 9.40 ±0.63 9.43 ± 0.62 2349.58 327 1 1 99.69 ±1.47 9.36 ±0.62 9.39 ± 0.61

p2
b b 2207.80 3 20 1 77.42 ±14.88 178.00 ±34.30 230.00 ±5.31 2207.68 4 18 2 81.60 ±11.86 169.00 ±24.90 207.00 ±5.48 2207.74 5 20 3 82.26 ±14.49 192.00 ±35.30 234.00 ±6.11

w 2349.58 327 1 1 99.69 ±1.47 9.44 ±0.60 9.47 ± 0.61 2352.14 373 2 83 99.83 ±1.02 21.00 ±0.67 21.00 ± 0.62 2349.58 327 1 1 99.69 ±1.47 9.41 ±0.63 9.43 ± 0.62

p3
b b 2207.76 3 20 2 74.75 ±15.80 173.00 ±37.40 230.00 ±6.86 2207.61 4 20 12 79.88 ±12.60 189.00 ±30.70 237.00 ±5.52 2207.50 5 20 8 76.22 ±16.53 178.00 ±38.80 234.00 ±6.06

w 2349.58 327 1 1 99.69 ±1.47 9.30 ±0.66 9.34 ± 0.64 2349.58 327 1 1 99.69 ±1.47 9.36 ±0.59 9.39 ± 0.58 2349.58 327 1 1 99.69 ±1.47 9.47 ±0.64 9.50 ± 0.62

p4
b b 2207.80 3 20 1 77.42 ±14.88 177.00 ±34.60 229.00 ±6.49 2207.56 4 20 3 78.77 ±14.14 184.00 ±33.60 233.00 ±6.30 2207.39 5 20 9 80.30 ±13.49 192.00 ±32.10 239.00 ±5.71

w 2349.58 327 1 1 99.69 ±1.47 9.34 ±0.51 9.37 ± 0.50 2349.58 327 1 1 99.69 ±1.47 9.36 ±0.62 9.39 ± 0.63 2349.58 327 1 1 99.69 ±1.47 9.44 ±0.67 9.47 ± 0.66

p5
b b 2207.80 3 20 1 77.42 ±14.88 180.00 ±33.90 232.00 ±5.61 2207.66 4 19 3 82.44 ±11.56 179.00 ±25.70 216.00 ±6.54 2207.73 4 19 2 76.87 ±14.29 170.00 ±32.00 221.00 ±5.16

w 2349.58 327 1 1 99.69 ±1.47 9.38 ±0.58 9.41 ± 0.55 2349.58 327 1 1 99.69 ±1.47 9.52 ±0.64 9.55 ± 0.65 2349.58 327 1 1 99.69 ±1.47 9.57 ±0.53 9.59 ± 0.53

p6
b b 2207.80 3 20 1 77.42 ±14.88 178.00 ±34.10 230.00 ±6.44 2207.49 3 20 3 81.72 ±12.96 189.00 ±30.00 232.00 ±6.72 2207.51 5 20 10 82.72 ±12.47 200.00 ±30.80 242.00 ±5.82

w 2349.58 327 1 1 99.69 ±1.47 9.44 ±0.64 9.46 ± 0.61 2349.58 327 1 1 99.69 ±1.47 9.47 ±0.52 9.50 ± 0.50 2349.58 327 1 1 99.69 ±1.47 9.45 ±0.65 9.46 ± 0.64

p7
b b 2207.80 3 20 1 77.42 ±14.88 179.00 ±35.90 230.00 ±6.77 2207.24 4 20 9 77.50 ±14.27 184.00 ±34.10 238.00 ±5.10 *2207.18 4 20 14 77.39 ±14.40 188.00 ±36.10 243.00 ±6.25

w 2349.58 327 1 1 99.69 ±1.47 9.41 ±0.69 9.43 ± 0.68 2349.58 327 1 1 99.69 ±1.47 9.41 ±0.60 9.44 ± 0.59 2349.58 327 1 1 99.69 ±1.47 9.30 ±0.66 9.32 ± 0.65

p8
b b 2207.80 3 20 1 77.42 ±14.88 178.00 ±34.80 229.00 ±7.08 2207.80 3 20 1 77.42 ±14.88 179.00 ±35.90 231.00 ±7.15 2207.68 4 20 2 78.10 ±13.89 181.00 ±33.20 232.00 ±6.07

w 2349.58 327 1 1 99.69 ±1.47 9.36 ±0.61 9.40 ± 0.62 2349.58 327 1 1 99.69 ±1.47 9.46 ±0.62 9.48 ± 0.61 2349.58 327 1 1 99.69 ±1.47 9.43 ±0.53 9.45 ± 0.55

p9
b b 2207.80 3 20 1 77.42 ±14.88 180.00 ±35.10 232.00 ±5.08 2207.72 4 20 2 76.63 ±14.47 176.00 ±33.40 230.00 ±6.30 2207.66 4 20 4 78.95 ±13.66 185.00 ±32.70 235.00 ±7.19

w 2349.58 327 1 1 99.69 ±1.47 9.43 ±0.71 9.45 ± 0.68 2349.58 327 1 1 99.69 ±1.47 9.44 ±0.64 9.47 ± 0.62 2349.58 327 1 1 99.69 ±1.47 9.31 ±0.61 9.35 ± 0.61

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.16: Best and worst average solutions found by corresponding BCOs for problem instance Iogra500_12 [Dav06b]. Stopping criterion, Nit = 100.

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s
[10−3] [10−3] [10−3] [10−3] [10−3] [10−3]

p0
b b 2403.81 2 20 1 56.51 ±22.54 134.00 ±54.10 238.00 ±6.32 2403.49 3 19 34 58.43 ±20.49 141.00 ±49.00 241.00 ±6.55 2403.63 2 20 14 58.72 ±22.47 146.00 ±56.00 247.00 ±7.07

w 2412.72 57 1 1 89.11 ±12.13 9.51 ±1.35 10.60 ± 0.57 2412.72 57 1 1 89.11 ±12.13 9.52 ±1.40 10.60 ± 0.61 2412.72 57 1 1 89.11 ±12.13 9.55 ±1.38 10.70 ± 0.60

p1
b b 2403.81 2 20 1 56.51 ±22.54 135.00 ±53.90 239.00 ±6.27 2403.48 3 20 80 81.80 ±12.31 216.00 ±33.20 264.00 ±5.47 2403.78 3 19 2 53.81 ±19.14 122.00 ±43.60 227.00 ±5.69

w 2412.72 57 1 1 89.11 ±12.13 9.45 ±1.41 10.60 ± 0.59 2417.65 118 2 54 94.54 ±7.75 21.20 ±1.79 22.30 ± 0.66 2420.90 125 12 86 95.07 ±7.92 173.00 ±14.70 182.00 ± 4.48

p2
b b 2403.81 2 20 1 56.51 ±22.54 133.00 ±53.50 236.00 ±5.57 2403.36 4 19 63 81.97 ±11.94 203.00 ±30.60 247.00 ±5.28 2403.77 3 19 5 63.68 ±20.07 148.00 ±46.60 232.00 ±6.26

w 2412.72 57 1 1 89.11 ±12.13 9.40 ±1.37 10.60 ± 0.60 2419.09 89 2 45 94.11 ±8.88 20.90 ±2.06 22.10 ± 0.70 2424.32 91 16 96 95.34 ±9.40 249.00 ±25.10 262.00 ± 4.04

p3
b b 2403.77 3 18 2 57.39 ±23.82 124.00 ±51.70 215.00 ±5.63 2403.73 3 20 41 60.42 ±20.43 157.00 ±54.00 259.00 ±4.46 2403.80 2 20 22 61.98 ±17.72 157.00 ±45.50 253.00 ±6.56

w 2412.72 57 1 1 89.11 ±12.13 9.53 ±1.45 10.60 ± 0.56 2412.72 57 1 1 89.11 ±12.13 9.45 ±1.36 10.60 ± 0.59 2412.72 57 1 1 89.11 ±12.13 9.37 ±1.45 10.60 ± 0.57

p4
b b 2403.81 2 20 1 56.51 ±22.54 134.00 ±53.40 236.00 ±6.49 2403.47 3 20 13 65.40 ±19.96 161.00 ±49.60 246.00 ±5.86 2403.67 3 18 9 61.21 ±20.43 134.00 ±43.90 220.00 ±5.97

w 2412.72 57 1 1 89.11 ±12.13 9.49 ±1.29 10.70 ± 0.62 2415.64 92 2 95 93.26 ±10.23 21.50 ±2.45 23.00 ± 0.69 2413.55 74 2 54 90.69 ±10.60 21.40 ±2.56 23.50 ± 0.71

p5
b b 2403.81 2 20 1 56.51 ±22.54 134.00 ±53.60 237.00 ±6.46 2403.50 3 20 70 78.51 ±13.79 207.00 ±36.90 263.00 ±5.05 2403.72 3 20 3 58.88 ±22.74 145.00 ±55.80 245.00 ±9.38

w 2412.72 57 1 1 89.11 ±12.13 9.52 ±1.31 10.60 ± 0.53 2418.08 93 2 44 93.80 ±8.68 21.00 ±2.05 22.40 ± 0.67 2422.78 106 10 100 93.66 ±9.92 149.00 ±16.00 159.00 ± 3.01

p6
b b 2403.81 2 20 1 56.51 ±22.54 135.00 ±54.10 238.00 ±6.43 2403.48 3 20 7 59.45 ±18.58 144.00 ±44.40 243.00 ±5.40 2403.73 3 19 8 62.68 ±19.73 146.00 ±45.60 233.00 ±5.28

w 2412.72 57 1 1 89.11 ±12.13 9.38 ±1.44 10.50 ± 0.56 2416.46 76 2 43 92.65 ±9.66 20.90 ±2.27 22.50 ± 0.70 2415.46 91 2 99 93.52 ±7.84 25.00 ±2.15 26.80 ± 0.72

p7
b b 2403.81 2 20 1 56.51 ±22.54 134.00 ±53.10 237.00 ±5.75 2403.51 2 19 8 58.19 ±21.69 134.00 ±49.40 230.00 ±5.36 2403.62 3 20 9 55.88 ±21.11 138.00 ±52.80 247.00 ±7.54

w 2412.72 57 1 1 89.11 ±12.13 9.48 ±1.35 10.50 ± 0.65 2412.72 57 1 1 89.11 ±12.13 9.38 ±1.42 10.50 ± 0.61 2412.72 57 1 1 89.11 ±12.13 9.46 ±1.44 10.60 ± 0.53

p8
b b *2402.58 4 20 96 73.42 ±17.92 239.00 ±58.00 326.00 ±5.42 2403.38 3 20 63 79.85 ±14.60 207.00 ±38.20 259.00 ±4.79 2403.81 2 20 1 56.51 ±22.54 135.00 ±54.30 238.00 ±5.96

w 2412.72 57 1 1 89.11 ±12.13 9.53 ±1.36 10.70 ± 0.54 2416.90 123 2 54 93.57 ±8.59 20.90 ±2.04 22.40 ± 0.71 2426.49 133 10 99 94.92 ±9.92 158.00 ±16.70 166.00 ± 2.97

p9
b b 2403.81 2 20 1 56.51 ±22.54 134.00 ±54.00 238.00 ±5.97 2403.42 3 20 70 79.10 ±13.87 210.00 ±37.10 265.00 ±5.39 2403.81 2 20 1 56.51 ±22.54 135.00 ±53.90 238.00 ±7.66

w 2412.72 57 1 1 89.11 ±12.13 9.52 ±1.31 10.70 ± 0.53 2418.15 93 2 44 93.53 ±8.33 21.00 ±2.02 22.50 ± 0.83 2421.36 134 4 96 94.26 ±9.11 58.70 ±5.75 62.20 ± 1.05

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.17: Best and worst average solutions found by corresponding BCOs for problem instance Iogra500_16 [Dav06b]. Stopping criterion, Nit = 100.

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s y ∆y B NC nit ±s t̄ ±s T ±s
[10−3] [10−3] [10−3] [10−3] [10−3] [10−3]

p0
b b 2407.35 4 20 1 72.81 ±15.76 191.00 ±41.70 263.00 ±6.83 *2407.03 3 20 45 79.93 ±12.88 229.00 ±37.90 286.00 ±7.30 2407.14 2 20 11 75.76 ±15.04 206.00 ±41.70 272.00 ±5.80

w 2515.92 211 1 1 99.71 ±2.59 11.10 ±0.72 11.10 ± 0.65 2515.92 211 1 1 99.71 ±2.59 11.10 ±0.52 11.10 ± 0.49 2515.92 211 1 1 99.71 ±2.59 11.20 ±0.58 11.20 ± 0.57

p1
b b 2407.35 4 20 1 72.81 ±15.76 194.00 ±42.30 266.00 ±6.58 2407.35 4 20 1 72.81 ±15.76 193.00 ±41.80 265.00 ±6.86 2407.34 4 20 2 76.34 ±16.01 205.00 ±42.00 268.00 ±6.05

w 2515.92 211 1 1 99.71 ±2.59 11.20 ±0.55 11.20 ± 0.52 2540.04 300 2 92 100.00 ±0.00 24.70 ±0.79 24.70 ± 0.79 2544.26 246 4 99 99.99 ±0.10 59.90 ±1.35 59.90 ± 1.35

p2
b b 2407.35 4 20 1 72.81 ±15.76 193.00 ±42.30 265.00 ±7.13 2407.35 4 20 1 72.81 ±15.76 193.00 ±42.20 266.00 ±6.62 2407.35 4 20 1 72.81 ±15.76 195.00 ±42.90 268.00 ±6.20

w 2515.92 211 1 1 99.71 ±2.59 11.00 ±0.61 11.10 ± 0.58 2622.07 383 20 88 100.00 ±0.00 287.00 ±6.86 287.00 ± 6.86 2548.77 323 9 79 99.98 ±0.14 148.00 ±3.49 148.00 ± 3.48

p3
b b 2407.35 4 20 1 72.81 ±15.76 192.00 ±42.20 264.00 ±7.16 2407.23 4 20 21 76.00 ±14.03 215.00 ±40.60 282.00 ±5.13 2407.32 3 20 2 73.11 ±16.82 195.00 ±45.40 266.00 ±6.79

w 2515.92 211 1 1 99.71 ±2.59 11.10 ±0.61 11.10 ± 0.53 2515.92 211 1 1 99.71 ±2.59 11.10 ±0.66 11.20 ± 0.58 2515.92 211 1 1 99.71 ±2.59 11.10 ±0.57 11.10 ± 0.53

p4
b b 2407.35 4 20 1 72.81 ±15.76 191.00 ±41.80 262.00 ±6.34 2407.30 4 20 3 74.32 ±16.09 200.00 ±44.00 269.00 ±7.27 2407.34 4 20 2 76.34 ±16.01 206.00 ±42.40 270.00 ±6.36

w 2515.92 211 1 1 99.71 ±2.59 11.10 ±0.63 11.20 ± 0.54 2531.88 232 2 96 100.00 ±0.00 24.90 ±0.87 24.90 ± 0.87 2523.50 262 2 96 99.91 ±0.66 26.90 ±0.73 26.90 ± 0.71

p5
b b 2407.35 4 20 1 72.81 ±15.76 195.00 ±42.80 268.00 ±6.86 2407.28 4 20 2 74.03 ±15.97 198.00 ±43.20 266.00 ±6.45 2407.35 4 20 1 72.81 ±15.76 192.00 ±42.20 264.00 ±6.93

w 2515.92 211 1 1 99.71 ±2.59 11.10 ±0.59 11.10 ± 0.50 2545.07 285 2 92 100.00 ±0.00 24.70 ±0.72 24.70 ± 0.72 2545.44 310 4 94 99.76 ±2.39 63.20 ±2.00 63.40 ± 1.39

p6
b b 2407.35 4 20 1 72.81 ±15.76 193.00 ±42.30 265.00 ±6.67 2407.30 4 19 3 78.22 ±12.34 201.00 ±30.50 256.00 ±6.06 2407.35 4 20 1 72.81 ±15.76 193.00 ±41.10 265.00 ±5.69

w 2515.92 211 1 1 99.71 ±2.59 11.10 ±0.66 11.20 ± 0.58 2535.08 252 2 96 100.00 ±0.00 25.10 ±0.81 25.10 ± 0.81 2537.80 279 2 92 99.83 ±1.29 28.30 ±0.85 28.30 ± 0.74

p7
b b 2407.35 4 20 1 72.81 ±15.76 193.00 ±41.40 265.00 ±7.19 *2407.03 4 20 10 74.05 ±15.56 201.00 ±41.90 271.00 ±5.44 2407.09 3 20 11 72.27 ±15.10 200.00 ±41.50 277.00 ±6.21

w 2515.92 211 1 1 99.71 ±2.59 11.10 ±0.67 11.10 ± 0.58 2515.92 211 1 1 99.71 ±2.59 11.10 ±0.60 11.10 ± 0.52 2515.92 211 1 1 99.71 ±2.59 11.20 ±0.60 11.20 ± 0.50

p8
b b 2407.35 4 20 1 72.81 ±15.76 194.00 ±42.00 265.00 ±6.26 2407.35 4 20 1 72.81 ±15.76 195.00 ±42.00 267.00 ±5.51 2407.35 4 20 1 72.81 ±15.76 193.00 ±40.90 265.00 ±7.66

w 2515.92 211 1 1 99.71 ±2.59 11.10 ±0.60 11.10 ± 0.52 2544.20 274 2 98 99.91 ±0.90 24.70 ±0.82 24.70 ± 0.81 2551.93 277 15 96 100.00 ±0.00 249.00 ±7.60 249.00 ± 7.60

p9
b b 2407.35 4 20 1 72.81 ±15.76 197.00 ±42.40 270.00 ±5.78 2407.34 3 19 2 74.28 ±16.23 188.00 ±41.00 253.00 ±5.87 2407.35 4 20 1 72.81 ±15.76 192.00 ±41.70 263.00 ±6.50

w 2515.92 211 1 1 99.71 ±2.59 11.10 ±0.58 11.10 ± 0.55 2543.15 281 2 92 100.00 ±0.00 25.00 ±0.77 25.00 ± 0.77 2543.07 260 6 97 100.00 ±0.00 96.60 ±2.06 96.60 ± 2.06

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.18: Best and worst average solutions found by corresponding BCOs for problem instance Iogra150_12 [Dav06b]. Stopping criterion, T = 0.15[s].

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s
[10−3] [10−3] [10−3]

p0
b b 1004.13 2 6 1 670.68 ±389.43 70.60 ±41.00 1429.48 ±12.10 1003.73 3 3 9 1337.27 ±669.08 77.20 ±38.70 2605.77 ±30.11 1003.86 2 7 6 553.78 ±299.51 73.70 ±39.90 1130.23 ±10.81

w 1005.88 4 18 97 112.89 ±54.35 74.10 ±35.60 229.89 ± 4.04 1004.59 3 19 98 104.01 ±53.95 71.00 ±36.80 220.27 ± 4.01 1004.67 3 19 86 109.92 ±54.44 74.10 ±36.90 223.49 ± 3.66

p1
b b 1003.81 5 17 74 153.67 ±50.61 97.30 ±32.10 238.30 ±3.56 1003.32 2 9 50 437.93 ±174.23 91.10 ±36.40 722.47 ±6.81 1003.79 3 11 6 351.53 ±174.22 75.00 ±37.30 703.64 ±6.37

w 1009.64 7 19 14 177.56 ±83.00 79.10 ±36.90 338.21 ± 7.86 1010.48 84 20 100 209.87 ±42.53 122.00 ±24.00 259.22 ± 5.48 1006.54 7 20 91 134.46 ±31.28 114.00 ±26.70 177.18 ± 2.87

p2
b b 1003.00 5 19 73 133.10 ±46.15 95.30 ±33.00 210.75 ±3.17 1003.12 2 10 37 426.31 ±176.32 91.00 ±37.50 705.12 ±6.75 1003.71 3 2 4 2114.02 ±1014.73 78.70 ±37.70 4041.40 ±43.41

w 1010.23 8 19 14 199.90 ±89.43 89.30 ±40.10 337.15 ± 6.64 1016.83 86 20 90 245.29 ±37.86 133.00 ±20.40 278.36 ± 6.13 1007.58 128 18 100 144.64 ±30.97 116.00 ±24.80 187.65 ± 2.35

p3
b b 1004.01 2 7 2 679.10 ±311.04 84.70 ±38.70 1206.50 ±11.22 1004.03 2 4 3 978.32 ±536.56 70.90 ±38.90 2076.41 ±16.34 1004.06 3 8 4 492.62 ±267.88 72.50 ±39.50 1022.31 ±8.66

w 1005.42 3 20 100 120.01 ±43.68 90.10 ±32.60 201.21 ± 2.85 1004.90 3 20 97 109.28 ±43.88 78.00 ±32.10 208.72 ± 3.41 1004.87 3 11 94 188.11 ±91.81 72.50 ±35.10 391.14 ± 4.13

p4
b b 1004.13 2 3 1 1340.95 ±778.84 70.50 ±40.90 2859.26 ±29.35 1003.54 3 5 25 692.04 ±336.43 74.40 ±36.10 1398.37 ±14.08 1003.81 3 8 8 474.46 ±256.30 75.00 ±40.50 952.72 ±8.14

w 1009.81 6 20 98 119.99 ±46.02 93.20 ±35.80 194.25 ± 3.29 1004.42 2 1 99 2794.38 ±1606.20 68.70 ±39.80 6108.24 ± 67.65 1004.88 4 13 98 157.91 ±71.26 76.80 ±34.90 309.64 ± 3.44

p5
b b 1004.01 6 17 79 145.31 ±46.76 99.30 ±31.90 220.64 ±3.08 1003.32 2 7 37 532.25 ±227.80 82.70 ±35.50 968.29 ±8.46 1003.84 3 5 6 795.26 ±338.02 76.60 ±32.50 1560.38 ±13.66

w 1009.60 7 20 20 178.63 ±77.55 92.50 ±40.30 291.62 ± 6.38 1011.02 152 20 99 204.83 ±43.83 122.00 ±25.70 252.59 ± 5.71 1007.47 90 18 99 133.39 ±32.98 113.00 ±28.00 178.18 ± 2.06

p6
b b 1004.14 2 3 1 1327.96 ±763.33 69.80 ±40.10 2862.88 ±28.71 1003.51 2 7 30 496.91 ±223.05 80.10 ±35.80 934.27 ±7.18 1003.80 3 6 4 615.11 ±356.78 69.80 ±40.70 1326.39 ±13.28

w 1009.69 9 20 94 111.58 ±42.78 96.60 ±37.10 174.76 ± 2.62 1004.42 2 1 97 2794.38 ±1606.20 68.40 ±39.50 6136.27 ± 73.43 1005.52 5 20 95 111.25 ±35.47 96.60 ±30.70 173.81 ± 2.67

p7
b b 1004.14 2 2 1 1991.62 ±1145.04 70.00 ±40.30 4277.98 ±47.51 1003.75 3 4 4 976.56 ±546.78 72.50 ±40.70 2019.14 ±18.48 1003.86 2 5 6 767.72 ±407.94 73.90 ±39.40 1560.23 ±14.58

w 1005.26 4 18 98 95.35 ±50.60 71.90 ±38.20 199.59 ± 2.91 1004.87 2 16 100 109.34 ±53.88 72.50 ±35.40 227.57 ± 3.41 1004.92 3 17 96 101.62 ±47.16 72.90 ±33.80 210.02 ± 3.05

p8
b b *1002.38 4 20 72 113.77 ±45.45 90.50 ±36.30 189.38 ±3.30 1003.21 2 9 31 436.76 ±201.99 83.40 ±38.80 788.07 ±7.53 1003.79 3 9 3 437.74 ±227.02 73.10 ±38.00 901.12 ±8.62

w 1008.53 8 20 14 204.38 ±68.65 99.70 ±33.80 309.02 ± 7.85 1011.22 76 19 98 241.60 ±47.85 129.00 ±25.20 282.87 ± 6.34 1008.47 55 19 100 122.90 ±29.35 117.00 ±27.90 158.85 ± 2.43

p9
b b 1004.14 2 1 1 3981.40 ±2291.61 70.00 ±39.90 8544.42 ±118.97 1003.33 3 11 37 319.45 ±129.45 83.50 ±33.70 575.45 ±6.56 1003.88 3 7 4 581.52 ±295.48 77.50 ±39.40 1127.55 ±10.65

w 1009.87 8 20 16 168.98 ±82.57 87.60 ±42.80 290.74 ± 5.78 1015.31 154 20 98 188.30 ±42.58 119.00 ±26.80 239.17 ± 5.12 1010.92 114 19 99 115.59 ±24.76 121.00 ±25.90 143.86 ± 1.79

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.19: Best and worst average solutions found by corresponding BCOs for problem instance Iogra150_16 [Dav06b]. Stopping criterion, T = 0.15[s].

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s
[10−3] [10−3] [10−3]

p0
b b 1007.24 4 1 1 3920.41 ±2019.98 76.00 ±39.00 7750.36 ±80.48 1006.87 4 5 6 782.27 ±372.91 80.60 ±38.30 1459.49 ±13.69 1006.87 3 4 6 987.61 ±457.06 81.90 ±37.90 1813.23 ±17.92

w 1009.43 4 20 97 100.91 ±45.91 85.40 ±38.80 178.23 ± 4.47 1007.99 3 18 98 110.57 ±44.93 82.40 ±33.70 201.85 ± 4.28 1008.04 4 18 78 118.30 ±49.13 83.30 ±34.60 213.14 ± 4.69

p1
b b 1005.60 6 18 77 111.29 ±40.57 89.60 ±32.40 186.46 ±3.95 1006.54 3 6 30 670.73 ±219.93 94.90 ±31.30 1062.70 ±10.16 1006.69 4 4 24 876.11 ±325.26 91.50 ±34.20 1438.81 ±12.53

w 1012.55 8 20 14 135.64 ±75.51 74.10 ±41.20 274.74 ± 9.53 1102.43 388 20 97 212.50 ±25.39 143.00 ±15.50 224.09 ± 7.54 1062.14 201 20 99 142.22 ±12.78 145.00 ±12.00 148.15 ± 3.26

p2
b b *1004.86 5 19 77 99.07 ±32.84 86.70 ±28.70 171.67 ±4.17 1006.40 3 5 37 755.69 ±270.61 89.00 ±32.00 1277.33 ±12.19 1006.35 5 3 67 847.08 ±256.34 99.10 ±30.00 1288.50 ±9.66

w 1012.23 6 20 6 129.65 ±79.18 65.00 ±39.70 302.71 ± 11.77 1125.09 294 20 93 225.11 ±21.32 146.00 ±13.20 233.24 ± 7.53 1108.92 256 20 98 145.06 ±5.22 150.00 ±3.32 145.77 ± 3.78

p3
b b 1007.24 4 2 1 2001.57 ±1011.74 76.90 ±38.90 3912.91 ±39.79 1007.11 4 6 7 712.92 ±299.46 88.70 ±37.40 1209.02 ±11.62 1007.11 4 6 2 676.31 ±304.82 80.00 ±36.20 1272.72 ±10.62

w 1008.96 4 20 100 108.97 ±35.31 94.00 ±30.60 174.95 ± 4.71 1008.54 4 19 95 128.77 ±31.61 99.80 ±24.60 193.38 ± 4.84 1008.49 3 20 88 114.47 ±35.28 95.00 ±29.60 181.71 ± 4.66

p4
b b 1007.24 4 1 1 3920.41 ±2019.98 75.70 ±39.00 7787.11 ±103.25 1006.74 3 6 17 673.49 ±241.35 91.60 ±32.70 1107.44 ±11.16 1006.82 3 4 10 980.12 ±421.02 86.30 ±37.20 1709.86 ±17.64

w 1011.68 8 18 64 120.59 ±57.17 81.50 ±38.60 222.18 ± 5.29 1012.44 114 19 98 176.75 ±32.57 127.00 ±23.00 210.04 ± 5.48 1008.37 4 20 99 128.58 ±25.41 116.00 ±22.70 167.62 ± 3.82

p5
b b 1005.82 6 18 73 114.83 ±36.09 95.50 ±30.00 181.20 ±3.82 1006.56 3 5 21 799.83 ±284.53 91.40 ±32.50 1315.89 ±11.75 1006.61 4 5 29 700.83 ±245.66 99.40 ±34.90 1059.86 ±8.50

w 1012.82 6 18 13 148.04 ±84.29 71.90 ±40.60 309.94 ± 10.95 1085.88 332 20 96 208.82 ±20.76 144.00 ±12.60 219.04 ± 6.94 1066.84 202 20 98 137.03 ±8.42 148.00 ±7.62 140.01 ± 3.34

p6
b b 1007.24 4 1 1 3920.41 ±2019.98 75.70 ±38.90 7759.55 ±103.02 1006.70 3 5 30 774.09 ±276.39 96.20 ±34.40 1210.08 ±12.11 1006.78 3 6 8 635.77 ±268.48 84.20 ±35.50 1136.54 ±10.89

w 1011.71 7 19 33 135.08 ±62.39 84.80 ±39.40 240.66 ± 6.76 1020.63 92 20 98 171.51 ±28.24 132.00 ±21.60 194.96 ± 5.32 1017.02 147 19 98 142.73 ±20.73 134.00 ±19.60 160.84 ± 3.32

p7
b b 1007.23 4 1 1 3986.68 ±2038.43 77.20 ±39.60 7758.00 ±85.80 1006.89 2 4 3 1058.76 ±469.19 85.00 ±37.80 1873.53 ±14.85 1006.91 3 6 6 710.99 ±287.37 90.20 ±36.40 1185.49 ±13.59

w 1008.72 3 20 99 91.14 ±34.82 87.90 ±33.50 156.40 ± 3.45 1008.34 4 19 98 95.93 ±39.51 86.80 ±35.60 166.55 ± 3.75 1008.37 4 15 100 116.94 ±45.16 84.40 ±32.50 209.00 ± 3.30

p8
b b 1004.90 5 20 67 100.69 ±34.25 92.90 ±32.00 163.45 ±3.57 1006.42 4 6 25 687.27 ±225.05 94.30 ±31.10 1095.98 ±9.30 1006.51 3 3 65 791.35 ±268.73 94.00 ±32.00 1266.97 ±11.99

w 1012.00 6 20 9 153.06 ±76.73 79.80 ±40.00 287.92 ± 10.89 1122.50 280 20 92 226.78 ±15.53 148.00 ±8.53 231.11 ± 7.31 1114.40 279 20 96 132.91 ±4.98 150.00 ±3.96 133.87 ± 3.20

p9
b b 1005.98 7 20 75 93.41 ±25.04 100.00 ±27.00 140.96 ±2.82 1006.61 3 5 30 779.15 ±247.94 96.30 ±30.40 1217.33 ±13.06 1006.81 4 6 4 681.19 ±282.04 85.50 ±35.60 1200.18 ±12.34

w 1012.79 9 20 20 137.58 ±60.65 87.00 ±38.00 238.52 ± 8.13 1092.27 306 20 78 208.55 ±20.84 144.00 ±13.30 219.05 ± 7.51 1088.31 232 20 95 123.41 ±8.07 149.00 ±9.15 125.25 ± 2.77

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.20: Best and worst average solutions found by corresponding BCOs for problem instance Iogra200_12 [Dav06b]. Stopping criterion, T = 0.2[s].

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s
[10−3] [10−3] [10−3]

p0
b b 1203.89 2 1 1 3407.01 ±1948.06 88.40 ±50.50 7727.27 ±82.42 1203.41 3 7 9 480.49 ±265.99 94.00 ±52.10 1024.70 ±8.87 1203.56 3 4 6 922.82 ±487.77 101.00 ±53.40 1837.13 ±12.99

w 1205.24 4 18 87 107.13 ±63.26 86.60 ±51.30 248.06 ± 4.52 1204.13 3 20 98 96.63 ±49.03 89.90 ±45.30 215.37 ± 4.78 1204.23 3 20 81 98.64 ±49.36 88.70 ±44.50 223.67 ± 4.95

p1
b b 1202.49 3 20 91 85.62 ±38.17 92.10 ±41.20 185.91 ±3.66 1203.04 2 8 59 398.88 ±170.98 103.00 ±44.10 775.20 ±8.06 1203.61 3 11 5 295.23 ±151.07 91.50 ±46.80 647.13 ±8.27

w 1207.96 9 19 15 132.20 ±84.89 85.20 ±54.90 313.50 ± 8.98 1204.23 44 20 98 170.19 ±49.35 132.00 ±38.20 259.26 ± 6.31 1205.79 8 20 91 152.92 ±26.04 164.00 ±28.10 187.51 ± 3.56

p2
b b *1202.27 3 20 91 78.35 ±41.07 86.60 ±45.90 182.04 ±3.40 1202.93 2 8 34 408.10 ±211.58 97.30 ±50.40 841.60 ±7.81 1203.57 2 8 6 416.61 ±226.99 92.70 ±50.40 900.81 ±7.80

w 1207.98 6 20 7 122.53 ±96.30 77.50 ±60.90 318.20 ± 9.55 1205.60 31 20 90 203.98 ±45.81 150.00 ±33.90 273.25 ± 6.48 1206.71 50 20 96 156.38 ±21.36 173.00 ±23.90 181.11 ± 3.30

p3
b b 1203.71 3 11 13 329.85 ±162.96 106.00 ±52.00 625.65 ±9.68 1203.74 4 13 7 243.33 ±140.20 90.50 ±52.20 539.50 ±8.59 1203.74 3 8 4 375.31 ±237.64 80.30 ±51.00 937.49 ±6.94

w 1204.88 3 20 99 115.47 ±48.60 110.00 ±46.20 210.85 ± 4.41 1204.34 2 12 93 200.55 ±85.89 104.00 ±45.30 384.53 ± 5.12 1204.47 2 19 84 110.13 ±49.96 95.50 ±43.00 232.52 ± 4.66

p4
b b 1203.90 2 2 1 1697.22 ±973.83 87.50 ±50.00 3884.23 ±32.41 1203.27 2 6 57 505.11 ±250.22 100.00 ±49.80 1007.53 ±7.30 1203.60 3 12 7 297.49 ±157.65 103.00 ±54.50 579.69 ±10.43

w 1207.15 6 20 44 111.54 ±62.30 87.50 ±48.70 256.08 ± 5.17 1204.02 2 1 84 2871.53 ±1516.61 92.70 ±49.10 6207.06 ± 64.96 1204.35 2 17 79 154.88 ±58.67 119.00 ±45.60 261.66 ± 4.49

p5
b b 1202.51 4 18 97 93.10 ±50.43 95.60 ±51.80 195.12 ±3.05 1203.03 2 7 50 461.47 ±214.01 103.00 ±47.80 899.72 ±6.93 1203.64 3 7 5 468.78 ±271.20 90.10 ±52.10 1042.69 ±8.10

w 1208.22 5 20 13 114.27 ±83.17 75.80 ±55.20 301.77 ± 6.94 1204.16 2 19 89 170.59 ±52.68 125.00 ±38.60 273.38 ± 6.72 1206.18 23 20 95 143.10 ±23.47 165.00 ±26.70 174.08 ± 2.99

p6
b b 1203.89 2 1 1 3407.01 ±1948.06 88.20 ±50.40 7734.33 ±75.77 1203.18 2 5 47 552.41 ±296.54 90.10 ±48.40 1230.89 ±8.13 1203.58 3 8 9 443.45 ±223.15 103.00 ±52.20 861.06 ±7.03

w 1207.32 7 20 27 113.18 ±72.88 84.10 ±54.50 270.41 ± 6.74 1204.02 2 1 82 2871.53 ±1516.61 92.50 ±49.00 6221.81 ± 57.56 1204.67 3 20 94 122.50 ±35.63 131.00 ±38.20 187.34 ± 3.41

p7
b b 1203.90 2 1 1 3344.81 ±1907.99 86.70 ±49.60 7727.00 ±70.85 1203.46 2 4 7 744.13 ±480.98 82.50 ±53.50 1806.65 ±13.00 1203.64 3 13 4 260.29 ±137.97 96.30 ±51.40 543.83 ±9.62

w 1204.84 3 20 3 156.90 ±90.82 95.00 ±55.20 331.96 ± 8.34 1204.40 2 15 99 115.36 ±62.11 88.70 ±47.90 261.01 ± 3.52 1204.37 4 18 87 103.48 ±55.44 93.70 ±50.50 221.43 ± 4.32

p8
b b 1202.41 4 17 90 98.36 ±57.77 91.70 ±54.00 215.36 ±3.39 1202.95 2 12 49 278.45 ±109.43 107.00 ±42.30 522.78 ±7.79 1203.54 3 6 5 533.92 ±314.83 88.30 ±52.10 1212.98 ±9.99

w 1207.20 6 20 7 129.05 ±92.40 81.60 ±58.40 317.73 ± 9.74 1204.88 35 20 79 203.67 ±50.04 149.00 ±36.30 273.60 ± 7.14 1209.22 63 20 98 140.80 ±18.45 175.00 ±23.00 161.96 ± 2.72

p9
b b 1202.61 4 18 95 85.69 ±43.40 98.40 ±50.00 174.78 ±2.94 1203.05 2 8 42 419.02 ±179.29 109.00 ±46.50 770.89 ±6.60 1203.64 3 5 3 734.85 ±397.80 98.90 ±53.70 1488.59 ±11.80

w 1208.33 6 19 14 118.74 ±76.26 78.40 ±50.50 303.73 ± 6.89 1204.35 42 19 100 167.21 ±47.27 131.00 ±37.70 254.85 ± 5.94 1207.76 55 20 98 133.86 ±18.78 178.00 ±24.90 151.31 ± 2.68

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.21: Best and worst average solutions found by corresponding BCOs for problem instance Iogra200_16 [Dav06b]. Stopping criterion, T = 0.2[s].

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s
[10−3] [10−3] [10−3]

p0
b b 1206.76 3 1 1 3576.58 ±1823.31 101.00 ±51.30 7121.33 ±67.92 1206.31 3 3 28 1123.29 ±502.07 111.00 ±49.40 2034.37 ±15.37 1206.42 3 3 4 1236.09 ±574.98 108.00 ±50.30 2293.92 ±17.32

w 1208.86 4 20 88 107.70 ±46.17 111.00 ±48.00 193.71 ± 5.31 1207.30 3 20 98 114.71 ±40.65 120.00 ±42.70 191.29 ± 5.37 1207.35 3 19 85 117.35 ±46.49 114.00 ±45.30 205.82 ± 5.84

p1
b b 1206.76 3 1 1 3576.58 ±1823.31 101.00 ±51.40 7108.59 ±67.11 1205.91 3 6 34 655.58 ±181.68 131.00 ±36.30 1006.07 ±9.48 1206.35 4 7 11 494.86 ±197.23 111.00 ±44.60 891.92 ±9.28

w 1215.12 166 20 81 141.32 ±24.72 164.00 ±28.10 173.44 ± 4.71 1221.97 282 18 88 218.08 ±34.17 173.00 ±26.70 253.56 ± 6.58 1221.87 200 19 100 145.93 ±25.70 174.00 ±30.70 168.31 ± 3.47

p2
b b 1206.21 10 16 98 150.20 ±38.42 147.00 ±37.20 205.94 ±4.78 1205.72 3 7 38 569.99 ±170.95 132.00 ±39.40 865.47 ±9.67 1206.27 3 4 5 945.24 ±396.46 112.00 ±47.10 1690.97 ±12.03

w 1218.36 372 19 54 165.52 ±32.14 160.00 ±31.50 207.79 ± 5.24 1284.06 348 19 100 230.13 ±38.23 177.00 ±28.20 261.05 ± 12.27 1224.83 220 19 100 148.15 ±21.62 178.00 ±25.30 166.82 ± 5.21

p3
b b 1206.73 3 2 15 1845.05 ±892.14 114.00 ±55.20 3255.70 ±27.04 1206.70 3 2 2 1837.22 ±863.87 104.00 ±49.10 3541.54 ±30.95 1206.70 3 3 6 1255.25 ±581.24 110.00 ±51.10 2279.88 ±19.76

w 1208.18 4 20 100 125.67 ±38.73 136.00 ±41.30 185.33 ± 5.30 1207.72 4 19 95 132.96 ±40.35 130.00 ±39.80 204.77 ± 5.60 1207.64 4 18 94 124.85 ±44.63 121.00 ±43.30 208.20 ± 5.29

p4
b b 1206.76 3 1 1 3576.58 ±1823.31 101.00 ±51.30 7118.83 ±63.87 1206.08 4 7 22 577.39 ±187.35 134.00 ±43.60 865.77 ±10.57 1206.35 4 4 8 987.63 ±398.37 120.00 ±48.40 1647.17 ±13.41

w 1213.12 8 20 87 121.89 ±39.93 132.00 ±42.70 185.23 ± 5.00 1208.66 116 20 94 171.08 ±25.55 165.00 ±24.30 207.63 ± 6.25 1207.40 5 18 80 142.32 ±38.77 133.00 ±36.30 214.44 ± 5.62

p5
b b 1206.76 3 1 1 3576.58 ±1823.31 100.00 ±51.30 7128.78 ±68.99 1205.93 2 6 38 677.87 ±183.28 138.00 ±37.60 986.34 ±11.25 1206.41 4 3 10 1174.11 ±494.04 110.00 ±46.50 2133.63 ±16.94

w 1219.38 323 19 95 140.39 ±20.68 171.00 ±24.30 164.95 ± 3.26 1223.34 320 20 87 195.64 ±31.16 172.00 ±26.20 228.35 ± 6.35 1219.31 161 19 93 138.86 ±22.01 168.00 ±25.70 166.48 ± 4.23

p6
b b 1206.76 3 1 1 3576.58 ±1823.31 101.00 ±51.30 7126.70 ±62.55 1206.10 2 5 20 760.94 ±275.02 124.00 ±45.00 1227.21 ±9.48 1206.30 4 8 7 453.37 ±197.07 113.00 ±49.40 801.61 ±9.65

w 1214.33 135 20 98 123.73 ±28.69 153.00 ±34.80 163.46 ± 4.19 1208.73 41 19 92 180.47 ±31.20 164.00 ±28.00 220.92 ± 6.23 1209.46 137 20 98 127.52 ±26.22 156.00 ±32.20 164.50 ± 3.99

p7
b b 1206.76 3 1 1 3576.58 ±1823.31 101.00 ±51.40 7124.81 ±81.77 1206.39 4 4 7 865.19 ±438.80 104.00 ±52.80 1664.59 ±13.91 1206.38 3 4 7 907.22 ±408.67 110.00 ±49.40 1649.93 ±14.20

w 1208.24 4 14 4 229.09 ±103.74 107.00 ±49.00 427.71 ± 10.93 1207.58 3 20 82 108.71 ±41.60 118.00 ±45.20 184.65 ± 4.86 1207.64 4 19 99 102.26 ±39.88 117.00 ±45.60 175.26 ± 4.16

p8
b b *1205.02 9 19 100 118.95 ±29.68 147.00 ±36.70 162.35 ±3.82 1205.74 3 6 29 662.37 ±205.87 129.00 ±39.90 1029.02 ±9.54 1206.29 4 4 5 981.50 ±384.92 117.00 ±46.10 1678.95 ±14.09

w 1213.26 291 19 78 129.93 ±34.86 146.00 ±38.50 178.61 ± 4.89 1264.66 279 19 74 226.75 ±36.09 180.00 ±27.70 253.17 ± 7.94 1232.04 192 20 100 127.91 ±20.40 179.00 ±28.00 143.85 ± 3.12

p9
b b 1206.76 3 1 1 3576.58 ±1823.31 101.00 ±51.30 7116.39 ±68.00 1205.98 2 5 49 670.05 ±237.46 120.00 ±42.50 1121.48 ±10.73 1206.45 3 4 9 859.70 ±346.82 110.00 ±44.50 1569.14 ±13.09

w 1220.01 351 20 87 123.39 ±19.39 168.00 ±25.60 147.81 ± 3.63 1228.24 350 19 83 207.61 ±29.54 176.00 ±24.40 236.19 ± 8.25 1221.02 200 20 91 124.34 ±18.22 174.00 ±25.50 143.88 ± 3.57

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.22: Best and worst average solutions found by corresponding BCOs for problem instance Iogra250_12 [Dav06b]. Stopping criterion, T = 0.25[s].

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s
[10−3] [10−3] [10−3]

p0
b b 1403.39 2 1 1 2816.60 ±1747.68 100.00 ±62.40 7034.01 ±58.37 1402.98 2 5 7 590.00 ±338.44 110.00 ±63.10 1345.42 ±8.41 1403.18 2 4 9 747.94 ±483.55 113.00 ±73.00 1656.42 ±11.11

w 1404.55 3 17 94 112.50 ±70.44 109.00 ±68.00 259.03 ± 5.84 1403.53 1 18 99 100.73 ±61.67 104.00 ±63.80 243.79 ± 5.02 1403.69 2 7 95 220.31 ±148.45 81.20 ±55.10 678.84 ± 5.05

p1
b b 1403.39 2 1 1 2816.60 ±1747.68 101.00 ±62.50 7029.99 ±58.06 1402.65 2 8 52 314.37 ±174.13 106.00 ±58.30 745.90 ±6.99 1403.18 2 6 4 518.13 ±305.13 115.00 ±67.70 1128.13 ±7.43

w 1407.24 7 19 16 93.02 ±78.36 80.70 ±68.10 291.46 ± 7.17 1403.49 1 19 98 156.94 ±47.46 149.00 ±45.20 264.94 ± 6.01 1404.76 4 20 92 134.01 ±31.05 180.00 ±41.50 186.74 ± 3.34

p2
b b 1403.39 2 3 1 968.88 ±597.05 103.00 ±63.70 2346.36 ±13.58 *1402.59 1 11 50 223.72 ±119.45 104.00 ±55.50 536.33 ±8.53 1403.20 2 11 4 237.77 ±145.03 101.00 ±61.40 591.52 ±9.18

w 1407.22 6 20 9 95.45 ±94.23 82.40 ±81.40 289.25 ± 7.31 1404.72 2 20 99 172.46 ±42.17 169.00 ±41.50 257.18 ± 6.58 1404.50 3 20 86 133.87 ±29.38 179.00 ±38.80 188.02 ± 3.90

p3
b b 1403.28 2 3 11 879.44 ±583.07 99.30 ±65.90 2219.80 ±14.98 1403.25 2 5 10 569.93 ±347.79 107.00 ±65.40 1331.76 ±8.67 1403.27 2 3 2 929.34 ±590.88 99.80 ±63.60 2329.06 ±12.87

w 1404.08 2 20 95 121.03 ±51.91 140.00 ±60.20 217.22 ± 5.74 1403.78 3 16 98 111.87 ±49.46 101.00 ±45.20 276.52 ± 5.27 1403.81 2 18 89 106.41 ±57.56 110.00 ±59.80 242.65 ± 5.18

p4
b b 1403.39 2 1 1 2816.60 ±1747.68 100.00 ±62.40 7024.17 ±61.43 1402.81 2 6 48 440.22 ±224.58 111.00 ±57.10 989.00 ±7.16 1403.20 2 5 4 642.66 ±406.32 118.00 ±75.10 1358.92 ±8.88

w 1406.94 5 20 71 91.23 ±63.85 102.00 ±72.00 225.09 ± 5.00 1403.48 2 20 1 128.02 ±70.61 102.00 ±57.00 314.01 ± 9.32 1403.87 2 18 99 112.79 ±51.12 123.00 ±55.30 230.01 ± 4.13

p5
b b 1403.39 2 1 1 2816.60 ±1747.68 101.00 ±62.50 7022.39 ±55.41 1402.61 1 9 50 297.48 ±156.63 115.00 ±59.90 650.64 ±8.14 1403.23 2 4 7 678.46 ±423.22 103.00 ±64.50 1650.38 ±11.04

w 1407.33 6 20 16 94.28 ±73.06 86.20 ±66.90 273.83 ± 6.97 1403.50 2 17 2 136.37 ±86.76 92.40 ±58.70 369.20 ± 9.68 1404.63 3 20 89 128.84 ±31.34 175.00 ±43.20 184.36 ± 2.91

p6
b b 1403.40 2 1 1 2753.86 ±1707.74 97.80 ±60.80 7038.21 ±59.17 1402.79 2 9 81 277.41 ±136.76 118.00 ±58.40 589.63 ±6.14 1403.15 2 4 6 681.41 ±439.34 103.00 ±66.40 1658.76 ±12.22

w 1406.95 5 20 45 96.67 ±74.08 103.00 ±79.10 236.15 ± 5.01 1403.48 2 17 1 148.67 ±83.55 101.00 ±55.80 373.02 ± 9.15 1404.23 2 17 96 121.08 ±42.42 134.00 ±46.60 226.11 ± 3.92

p7
b b 1403.39 2 1 1 2816.60 ±1747.68 100.00 ±62.20 7030.37 ±62.06 1403.03 2 6 7 484.29 ±287.80 110.00 ±65.10 1106.12 ±8.53 1403.15 2 8 10 336.81 ±217.95 105.00 ±68.40 801.72 ±8.88

w 1404.23 2 17 4 149.68 ±102.08 104.00 ±70.30 361.27 ± 9.57 1403.73 2 20 77 81.61 ±50.56 94.40 ±58.70 216.81 ± 5.36 1403.80 2 20 81 82.09 ±45.20 99.00 ±54.70 207.58 ± 4.48

p8
b b 1403.40 2 1 1 2753.86 ±1707.74 98.30 ±61.00 7014.74 ±59.22 *1402.59 2 10 54 268.76 ±141.10 115.00 ±60.70 586.42 ±7.94 1403.20 2 8 3 339.51 ±218.27 101.00 ±64.90 842.55 ±8.13

w 1406.84 5 20 9 87.02 ±77.92 75.30 ±67.10 288.25 ± 7.12 1403.93 2 20 90 175.27 ±47.55 168.00 ±45.50 260.20 ± 6.10 1404.57 3 20 92 125.32 ±26.12 187.00 ±39.20 167.93 ± 3.10

p9
b b 1403.39 2 1 2 2816.60 ±1747.68 101.00 ±62.60 6996.62 ±54.96 1402.70 2 6 40 470.30 ±255.51 118.00 ±64.10 997.88 ±7.48 1403.23 2 8 4 374.48 ±224.69 113.00 ±67.70 831.01 ±7.93

w 1407.31 4 19 15 88.84 ±81.39 79.00 ±72.40 283.70 ± 7.74 1403.51 3 20 99 144.07 ±46.20 151.00 ±48.50 238.60 ± 5.27 1404.91 3 20 90 120.11 ±25.21 185.00 ±39.00 163.33 ± 3.38

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.23: Best and worst average solutions found by corresponding BCOs for problem instance Iogra250_16 [Dav06b]. Stopping criterion, T = 0.25[s].

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s
[10−3] [10−3] [10−3]

p0
b b 1405.23 3 2 1 1610.58 ±959.84 123.00 ±73.30 3273.22 ±22.74 1404.82 2 5 8 649.28 ±316.53 132.00 ±64.30 1231.97 ±11.08 1404.90 3 4 9 735.82 ±379.88 120.00 ±62.40 1529.59 ±12.39

w 1406.61 3 18 99 118.08 ±52.53 140.00 ±62.50 211.82 ± 4.83 1405.55 3 18 90 111.90 ±48.40 126.00 ±54.40 222.04 ± 5.98 1405.60 2 20 92 96.88 ±44.37 124.00 ±57.40 196.24 ± 5.63

p1
b b 1404.04 4 19 99 88.87 ±35.69 130.00 ±52.60 171.33 ±3.56 1404.49 3 7 50 424.78 ±157.38 137.00 ±51.00 778.50 ±9.06 1404.77 3 4 77 573.25 ±242.08 141.00 ±59.90 1016.81 ±7.42

w 1409.68 8 20 18 137.83 ±52.31 142.00 ±54.10 244.32 ± 7.64 1408.81 149 17 91 186.29 ±42.57 177.00 ±40.00 263.29 ± 8.93 1407.78 177 20 89 128.29 ±23.66 188.00 ±35.70 170.94 ± 4.16

p2
b b *1403.61 4 19 98 90.50 ±37.63 136.00 ±57.40 167.00 ±3.07 1404.43 3 8 31 391.00 ±165.92 139.00 ±58.70 706.57 ±9.50 1404.54 3 4 75 572.60 ±213.04 145.00 ±53.90 992.86 ±6.56

w 1409.76 7 20 9 135.90 ±63.29 133.00 ±62.20 257.10 ± 7.94 1422.47 189 19 88 189.85 ±42.08 197.00 ±43.90 241.71 ± 6.96 1408.64 183 20 89 129.19 ±25.81 191.00 ±38.80 169.50 ± 3.71

p3
b b 1405.10 3 2 14 1456.23 ±751.14 119.00 ±61.50 3062.49 ±19.77 1405.08 2 4 9 749.64 ±362.80 121.00 ±58.80 1548.00 ±12.83 1405.12 2 3 4 1038.57 ±604.72 122.00 ±71.00 2132.29 ±16.08

w 1406.23 4 20 92 116.30 ±41.75 149.00 ±52.70 196.83 ± 5.79 1405.77 2 16 88 138.25 ±51.94 137.00 ±51.80 252.88 ± 5.59 1405.76 2 20 97 100.01 ±38.75 134.00 ±51.10 188.30 ± 5.38

p4
b b 1405.23 3 1 1 3196.51 ±1940.32 123.00 ±74.20 6536.25 ±48.62 1404.64 3 6 64 477.03 ±190.72 139.00 ±55.80 861.02 ±9.11 1404.78 2 5 30 579.75 ±241.93 135.00 ±56.00 1077.28 ±10.64

w 1408.71 5 20 46 127.04 ±47.92 143.00 ±53.60 222.26 ± 7.50 1405.49 3 20 1 134.31 ±69.38 121.00 ±62.00 279.08 ± 9.36 1405.52 3 16 100 137.07 ±45.59 149.00 ±49.90 231.29 ± 6.31

p5
b b 1404.05 4 20 98 95.77 ±34.78 150.00 ±55.40 159.89 ±2.70 1404.50 2 9 61 337.87 ±107.37 149.00 ±46.90 565.76 ±11.04 1404.77 2 4 73 569.31 ±223.79 142.00 ±55.90 1001.82 ±9.58

w 1409.90 7 20 17 138.49 ±63.96 140.00 ±64.90 248.48 ± 7.95 1408.30 151 19 87 169.46 ±40.24 182.00 ±43.30 233.57 ± 7.77 1407.83 176 20 99 117.53 ±26.25 184.00 ±40.60 160.60 ± 3.77

p6
b b 1405.23 3 2 1 1610.58 ±959.84 123.00 ±73.50 3278.74 ±22.00 1404.62 3 6 32 473.24 ±201.49 129.00 ±55.10 921.76 ±9.36 1404.82 3 3 6 955.46 ±542.74 116.00 ±66.10 2057.75 ±14.39

w 1408.90 5 20 24 138.97 ±55.95 148.00 ±60.30 235.24 ± 6.87 1405.50 3 20 1 133.01 ±67.75 119.00 ±60.10 280.44 ± 9.06 1405.90 21 19 98 124.46 ±34.51 171.00 ±46.70 182.55 ± 4.53

p7
b b 1405.23 3 3 1 1091.42 ±628.35 125.00 ±72.30 2178.96 ±13.21 1404.85 2 3 7 936.14 ±508.69 113.00 ±61.50 2074.88 ±14.88 1404.89 2 6 8 488.83 ±251.47 122.00 ±63.20 1002.93 ±11.42

w 1406.27 5 20 4 147.24 ±67.43 131.00 ±59.70 281.31 ± 9.15 1405.75 3 19 95 96.69 ±45.24 128.00 ±59.80 189.92 ± 4.79 1405.74 2 15 97 120.88 ±50.71 128.00 ±54.00 237.35 ± 6.21

p8
b b 1403.69 5 20 90 77.62 ±36.00 119.00 ±54.80 163.77 ±4.18 1404.42 3 7 25 469.82 ±173.60 142.00 ±52.60 827.40 ±9.98 1404.68 3 4 77 558.80 ±217.04 148.00 ±57.40 947.63 ±7.04

w 1409.22 6 18 9 162.74 ±70.22 142.00 ±61.90 286.16 ± 9.13 1414.70 228 18 96 196.41 ±39.58 196.00 ±39.70 251.24 ± 6.78 1407.65 145 20 77 129.07 ±26.90 192.00 ±40.30 168.41 ± 4.30

p9
b b 1404.24 4 18 85 97.28 ±36.50 142.00 ±53.10 171.91 ±3.73 1404.53 3 5 46 562.49 ±241.14 130.00 ±56.00 1086.22 ±8.79 1404.87 2 4 78 517.64 ±202.63 146.00 ±57.40 887.37 ±6.43

w 1409.96 7 19 17 135.27 ±59.48 134.00 ±59.00 252.25 ± 6.87 1407.86 172 20 93 157.16 ±33.53 185.00 ±38.20 211.88 ± 6.31 1407.41 127 19 91 120.30 ±21.61 192.00 ±34.30 157.27 ± 3.16

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.24: Best and worst average solutions found by corresponding BCOs for problem instance Iogra300_12 [Dav06b]. Stopping criterion, T = 0.3[s].

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s
[10−3] [10−3] [10−3]

p0
b b 1603.05 2 2 1 1308.66 ±925.11 122.00 ±85.90 3230.74 ±18.45 1602.81 2 6 14 404.69 ±244.31 121.00 ±72.90 1005.45 ±7.26 1602.96 2 3 37 817.29 ±455.26 131.00 ±72.90 1879.06 ±11.80

w 1604.22 2 16 91 106.85 ±66.00 116.00 ±71.30 277.47 ± 4.78 1603.23 2 18 82 100.46 ±57.95 119.00 ±68.80 252.83 ± 4.80 1603.36 2 15 88 122.21 ±75.29 124.00 ±76.60 297.12 ± 4.94

p1
b b 1603.04 4 17 94 92.07 ±50.76 123.00 ±67.90 226.20 ±4.04 1602.46 1 11 60 198.74 ±116.12 122.00 ±71.20 488.30 ±7.96 1602.95 2 9 5 316.35 ±165.74 142.00 ±74.60 669.07 ±9.02

w 1606.87 5 19 14 102.22 ±78.14 110.00 ±83.80 279.53 ± 6.51 1603.19 2 17 2 138.55 ±88.95 121.00 ±78.30 343.37 ± 6.91 1604.00 3 19 78 127.25 ±42.01 184.00 ±60.20 208.18 ± 3.98

p2
b b 1602.93 4 14 92 111.95 ±72.24 123.00 ±79.70 274.22 ±4.05 1602.41 2 13 52 194.77 ±104.16 140.00 ±74.30 416.93 ±7.71 1602.95 2 8 5 335.49 ±183.26 132.00 ±72.10 761.88 ±6.90

w 1606.79 5 20 10 86.65 ±71.66 96.40 ±79.60 269.95 ± 6.65 1603.16 2 18 1 133.73 ±88.56 123.00 ±81.90 325.34 ± 8.15 1603.99 3 20 82 118.77 ±36.68 190.00 ±58.90 188.70 ± 3.89

p3
b b 1603.01 2 5 14 559.93 ±318.99 139.00 ±79.10 1212.48 ±8.53 1603.03 2 6 10 452.27 ±303.24 133.00 ±89.10 1023.81 ±6.98 1603.02 2 6 10 469.09 ±273.71 138.00 ±80.40 1021.81 ±8.21

w 1603.77 2 18 98 122.51 ±53.69 155.00 ±67.50 239.33 ± 5.05 1603.42 2 20 80 91.15 ±48.96 119.00 ±64.90 228.78 ± 4.98 1603.49 1 18 79 98.78 ±60.74 120.00 ±74.50 249.06 ± 5.24

p4
b b 1603.06 2 1 1 2507.71 ±1802.73 117.00 ±83.90 6455.78 ±46.23 1602.59 1 8 32 326.97 ±194.78 139.00 ±82.20 709.12 ±6.48 1602.91 2 12 7 210.03 ±124.43 131.00 ±77.30 482.71 ±8.53

w 1606.24 4 20 86 103.12 ±60.84 144.00 ±84.90 214.97 ± 4.35 1603.19 2 17 2 138.55 ±88.95 122.00 ±78.60 344.83 ± 7.70 1603.46 2 18 79 112.48 ±54.97 139.00 ±68.00 242.67 ± 5.06

p5
b b 1603.06 2 1 1 2507.71 ±1802.73 117.00 ±83.90 6452.05 ±44.47 1602.46 1 7 64 329.37 ±201.25 125.00 ±76.60 789.48 ±6.51 1602.96 2 4 5 652.38 ±367.87 126.00 ±71.40 1552.50 ±10.40

w 1606.86 5 20 14 93.22 ±70.84 105.00 ±79.90 265.67 ± 6.45 1603.18 2 13 2 162.73 ±105.06 107.00 ±69.40 457.06 ± 10.09 1604.07 2 19 83 112.17 ±39.02 172.00 ±59.50 196.94 ± 3.27

p6
b b 1603.05 2 3 1 874.72 ±614.32 122.00 ±85.90 2151.47 ±12.60 1602.53 1 7 75 322.64 ±186.05 129.00 ±74.50 750.89 ±6.54 1602.92 3 9 4 298.86 ±179.90 134.00 ±80.80 671.45 ±9.46

w 1606.52 5 20 44 101.71 ±62.63 133.00 ±82.10 230.81 ± 4.17 1603.19 2 19 2 129.93 ±82.19 128.00 ±81.80 306.23 ± 7.50 1603.68 2 15 94 116.26 ±52.99 133.00 ±60.50 262.55 ± 4.08

p7
b b 1603.06 2 1 1 2507.71 ±1802.73 117.00 ±83.90 6456.85 ±40.12 1602.83 2 4 5 640.29 ±429.19 123.00 ±82.40 1563.36 ±9.97 1602.91 2 4 7 645.29 ±437.38 126.00 ±85.50 1535.49 ±10.40

w 1603.97 2 16 3 143.80 ±100.19 119.00 ±83.00 362.47 ± 7.63 1603.46 2 15 100 102.31 ±71.95 113.00 ±79.80 271.50 ± 4.64 1603.51 2 19 99 73.11 ±51.15 106.00 ±74.40 206.78 ± 3.71

p8
b b 1602.81 3 16 70 118.23 ±70.55 141.00 ±84.40 251.12 ±3.89 *1602.39 1 11 45 236.35 ±119.28 142.00 ±71.20 501.64 ±8.73 1602.93 2 8 5 299.55 ±196.30 119.00 ±77.70 758.42 ±7.64

w 1606.31 5 20 8 100.60 ±65.66 111.00 ±72.20 273.00 ± 6.15 1603.18 2 18 2 125.74 ±84.40 117.00 ±78.60 323.67 ± 7.48 1603.99 2 19 65 128.32 ±40.91 189.00 ±59.70 204.42 ± 3.99

p9
b b 1603.05 2 2 1 1308.66 ±925.11 122.00 ±86.00 3229.90 ±18.37 1602.46 2 8 64 277.23 ±169.26 125.00 ±76.00 669.11 ±6.43 1602.94 2 5 7 528.27 ±318.15 132.00 ±79.40 1205.69 ±7.66

w 1606.87 6 20 16 110.77 ±75.35 131.00 ±88.90 255.69 ± 5.56 1603.21 2 15 3 136.12 ±95.30 105.00 ±73.70 389.06 ± 7.78 1604.13 2 20 80 116.14 ±35.02 199.00 ±60.40 175.70 ± 3.09

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.25: Best and worst average solutions found by corresponding BCOs for problem instance Iogra300_16 [Dav06b]. Stopping criterion, T = 0.3[s].

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s
[10−3] [10−3] [10−3]

p0
b b 1605.26 2 1 1 2397.20 ±1551.00 120.00 ±77.30 6025.47 ±41.43 1604.87 2 5 7 564.95 ±269.96 149.00 ±71.10 1142.28 ±11.46 1605.02 2 8 8 332.84 ±165.93 148.00 ±73.70 677.33 ±10.60

w 1606.55 4 14 94 127.13 ±68.21 135.00 ±72.50 283.31 ± 6.58 1605.51 3 18 99 107.01 ±50.38 149.00 ±70.10 216.44 ± 5.29 1605.60 3 20 99 96.80 ±41.68 150.00 ±65.40 194.43 ± 4.47

p1
b b 1604.53 5 19 96 97.47 ±38.76 167.00 ±66.80 175.05 ±3.20 1604.54 2 8 55 346.46 ±122.68 167.00 ±59.40 624.14 ±10.66 1605.05 3 4 6 723.19 ±334.35 152.00 ±70.70 1426.86 ±12.65

w 1609.34 6 20 15 109.95 ±65.50 140.00 ±83.40 236.12 ± 6.41 1606.67 107 18 97 171.35 ±39.14 214.00 ±48.10 240.33 ± 6.60 1609.87 116 20 97 136.26 ±25.58 247.00 ±45.80 166.78 ± 3.71

p2
b b *1604.31 3 18 92 97.93 ±42.59 163.00 ±70.60 181.41 ±3.79 1604.44 2 8 44 355.37 ±149.82 167.00 ±69.90 640.02 ±11.71 1604.84 3 4 98 516.25 ±196.97 175.00 ±66.80 884.79 ±6.30

w 1609.35 6 20 9 100.62 ±68.19 123.00 ±83.70 246.53 ± 8.13 1619.88 122 20 67 205.89 ±36.66 269.00 ±47.70 230.52 ± 6.55 1611.71 88 19 85 147.44 ±29.06 250.00 ±49.90 177.17 ± 3.97

p3
b b 1605.10 3 4 6 729.37 ±378.48 151.00 ±78.50 1453.20 ±10.60 1605.18 2 3 9 960.28 ±527.66 149.00 ±82.00 1934.53 ±12.00 1605.19 3 4 3 683.33 ±404.45 139.00 ±82.10 1476.79 ±12.64

w 1606.08 2 19 99 116.70 ±46.39 171.00 ±67.80 206.41 ± 5.73 1605.76 2 20 89 107.96 ±37.57 163.00 ±56.40 198.73 ± 5.61 1605.77 3 18 80 115.59 ±45.72 157.00 ±61.90 220.76 ± 5.19

p4
b b 1605.26 2 1 1 2397.20 ±1551.00 119.00 ±77.10 6032.66 ±40.15 1604.66 3 7 67 390.56 ±164.06 170.00 ±71.30 691.37 ±8.09 1605.02 2 3 10 924.84 ±472.50 147.00 ±75.20 1887.87 ±11.91

w 1608.61 5 20 65 98.03 ±47.75 147.00 ±72.40 201.23 ± 4.47 1605.39 2 13 2 178.40 ±94.65 132.00 ±69.00 409.22 ± 9.53 1605.68 3 18 82 126.93 ±40.22 178.00 ±56.70 214.47 ± 4.99

p5
b b 1604.51 3 20 96 84.98 ±33.43 160.00 ±63.80 161.27 ±4.03 1604.57 2 5 41 565.92 ±255.03 161.00 ±72.50 1054.98 ±10.14 1605.01 2 3 12 927.58 ±523.54 151.00 ±85.30 1839.57 ±11.91

w 1609.39 4 20 14 114.64 ±66.87 145.00 ±84.80 238.07 ± 7.99 1606.23 85 19 98 160.78 ±37.86 210.00 ±49.00 230.49 ± 6.11 1611.88 86 20 95 131.17 ±26.42 245.00 ±48.90 161.18 ± 3.60

p6
b b 1605.26 2 1 1 2397.20 ±1551.00 119.00 ±77.30 6040.51 ±39.38 1604.63 3 6 36 478.00 ±200.56 167.00 ±70.00 860.92 ±9.12 1605.00 2 7 6 408.42 ±189.35 156.00 ±72.60 786.66 ±11.52

w 1608.83 5 20 32 103.25 ±55.89 141.00 ±76.40 221.23 ± 6.39 1605.47 3 19 87 150.47 ±36.94 206.00 ±50.40 219.10 ± 6.05 1606.04 4 20 91 124.90 ±28.93 211.00 ±47.70 178.61 ± 4.22

p7
b b 1605.26 2 1 1 2397.20 ±1551.00 120.00 ±77.40 6025.72 ±42.43 1604.93 2 5 10 525.14 ±274.66 141.00 ±73.30 1118.80 ±12.49 1605.04 3 10 11 251.83 ±126.02 147.00 ±73.10 515.14 ±9.95

w 1606.24 2 17 4 149.69 ±74.91 148.00 ±74.00 302.85 ± 8.14 1605.68 3 20 94 87.77 ±41.98 144.00 ±69.10 184.28 ± 3.99 1605.72 3 19 94 90.02 ±43.30 144.00 ±69.00 188.92 ± 4.00

p8
b b 1604.49 4 17 92 101.58 ±46.69 158.00 ±72.80 193.56 ±4.30 1604.45 2 5 46 534.79 ±249.55 152.00 ±71.00 1056.01 ±9.83 1604.98 2 5 5 624.64 ±290.63 165.00 ±77.20 1136.38 ±11.11

w 1609.17 5 20 9 113.33 ±65.90 139.00 ±80.80 245.49 ± 7.30 1610.10 166 20 99 169.34 ±38.53 228.00 ±51.60 222.48 ± 6.03 1617.23 130 20 93 133.71 ±22.76 264.00 ±45.00 152.98 ± 3.33

p9
b b 1604.64 4 19 93 89.63 ±35.96 170.00 ±67.80 158.90 ±3.44 1604.55 3 7 53 389.51 ±163.93 165.00 ±68.60 709.93 ±9.66 1605.07 3 4 6 664.48 ±336.33 141.00 ±71.60 1414.33 ±9.25

w 1609.43 6 20 17 99.48 ±60.96 128.00 ±77.90 234.48 ± 6.47 1606.48 112 17 98 170.20 ±37.91 205.00 ±46.70 248.78 ± 6.07 1613.84 77 20 96 129.43 ±20.35 260.00 ±40.00 150.17 ± 3.40

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.26: Best and worst average solutions found by corresponding BCOs for problem instance Iogra350_12 [Dav06b]. Stopping criterion, T = 0.35[s].

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s
[10−3] [10−3] [10−3]

p0
b b 1806.20 3 1 1 2915.18 ±1591.77 171.00 ±93.70 5951.20 ±32.67 1805.20 4 4 9 740.60 ±340.99 181.00 ±83.50 1433.17 ±8.67 1805.53 3 5 8 589.26 ±281.72 181.00 ±86.60 1138.00 ±8.09

w 1808.43 3 14 83 171.80 ±77.12 191.00 ±85.40 316.41 ± 4.91 1806.33 3 17 1 171.96 ±79.65 187.00 ±87.20 321.43 ± 6.42 1806.34 3 13 1 220.15 ±101.27 181.00 ±83.20 426.51 ± 7.87

p1
b b 1806.19 3 1 3 2972.35 ±1598.14 176.00 ±94.40 5922.24 ±35.49 1804.39 2 7 61 470.12 ±164.17 220.00 ±76.70 751.14 ±5.38 1805.71 4 6 9 540.68 ±217.68 205.00 ±82.00 925.50 ±7.16

w 1817.35 22 19 48 93.40 ±81.93 139.00 ±122.00 235.27 ± 4.40 1807.41 77 19 97 199.67 ±35.49 285.00 ±50.00 245.72 ± 4.76 1813.46 99 20 98 164.32 ±17.41 321.00 ±33.60 179.90 ± 3.12

p2
b b 1806.20 3 1 1 2915.18 ±1591.77 171.00 ±93.80 5952.75 ±30.62 *1804.27 3 10 55 319.17 ±103.20 216.00 ±69.90 518.85 ±6.61 1805.72 3 6 5 540.59 ±226.50 199.00 ±83.80 948.79 ±6.13

w 1818.09 23 19 42 96.44 ±84.66 142.00 ±124.00 238.54 ± 4.52 1834.58 130 20 69 213.80 ±47.69 302.00 ±66.80 248.68 ± 5.71 1815.16 77 20 92 163.74 ±15.70 325.00 ±31.20 177.23 ± 3.17

p3
b b 1805.86 4 6 4 576.06 ±220.95 209.00 ±80.00 968.11 ±6.37 1805.82 4 6 13 482.79 ±235.19 180.00 ±87.90 938.79 ±7.38 1805.87 4 6 3 494.01 ±251.61 178.00 ±90.80 972.31 ±6.79

w 1807.21 4 20 99 138.89 ±46.22 235.00 ±77.70 208.03 ± 3.49 1806.53 4 16 90 152.82 ±61.22 196.00 ±79.60 271.28 ± 4.17 1806.73 3 20 95 125.60 ±43.14 208.00 ±71.70 212.05 ± 4.01

p4
b b 1806.20 3 1 1 2891.77 ±1595.18 170.00 ±93.70 5961.60 ±35.05 1804.70 3 5 69 623.13 ±222.99 211.00 ±75.90 1033.99 ±7.41 1805.65 3 4 16 800.09 ±321.82 203.00 ±82.10 1378.80 ±7.61

w 1815.55 13 20 98 63.92 ±62.20 111.00 ±108.00 203.24 ± 3.27 1806.35 3 19 1 150.71 ±69.35 185.00 ±85.40 286.66 ± 6.25 1806.74 4 16 98 170.34 ±49.13 233.00 ±67.50 256.32 ± 4.24

p5
b b 1806.21 3 1 1 2870.98 ±1567.88 169.00 ±92.30 5956.84 ±28.14 1804.35 3 6 54 561.10 ±201.08 223.00 ±79.90 883.72 ±6.65 1805.74 3 9 7 359.86 ±137.26 208.00 ±79.30 607.68 ±8.96

w 1817.46 22 19 56 89.56 ±78.89 139.00 ±123.00 225.47 ± 3.78 1807.97 157 20 99 193.62 ±25.72 290.00 ±38.00 234.43 ± 4.80 1813.25 58 19 100 165.40 ±18.84 317.00 ±35.50 183.02 ± 3.00

p6
b b 1806.20 3 1 1 2903.15 ±1598.43 171.00 ±93.90 5955.17 ±31.07 1804.59 3 5 96 641.41 ±211.82 227.00 ±75.10 987.87 ±6.62 1805.62 5 10 9 307.48 ±116.86 202.00 ±76.20 535.39 ±7.73

w 1816.49 17 20 91 55.75 ±59.98 98.70 ±107.00 198.69 ± 3.58 1806.33 3 18 1 163.22 ±75.19 188.00 ±86.10 304.28 ± 6.13 1807.67 5 20 97 153.72 ±25.05 285.00 ±46.10 189.59 ± 3.58

p7
b b 1806.19 3 1 1 2935.97 ±1618.10 173.00 ±95.00 5949.67 ±31.58 1805.26 3 4 7 801.47 ±356.40 197.00 ±87.40 1429.95 ±8.73 1805.54 3 4 7 735.49 ±393.71 181.00 ±97.00 1423.71 ±7.73

w 1807.96 4 20 5 141.53 ±64.36 189.00 ±86.60 263.10 ± 6.00 1806.44 2 19 88 116.02 ±50.44 189.00 ±82.70 215.03 ± 4.01 1806.49 3 19 89 115.33 ±47.53 191.00 ±78.80 211.04 ± 3.67

p8
b b 1806.19 3 1 1 2972.35 ±1598.14 175.00 ±94.10 5947.20 ±32.47 1804.30 3 6 53 521.20 ±196.15 205.00 ±77.10 892.80 ±6.78 1805.73 3 2 10 1582.89 ±760.52 198.00 ±94.90 2805.46 ±13.74

w 1815.58 18 20 27 101.01 ±82.57 152.00 ±124.00 232.90 ± 4.63 1811.48 119 20 97 199.43 ±30.28 295.00 ±44.50 237.56 ± 5.26 1818.94 124 20 97 153.71 ±14.09 327.00 ±29.40 165.05 ± 2.70

p9
b b 1806.20 3 1 1 2903.15 ±1598.43 171.00 ±94.00 5954.77 ±36.44 1804.44 3 8 56 405.57 ±127.26 223.00 ±70.30 638.13 ±6.07 1805.80 3 4 5 792.34 ±324.76 194.00 ±79.60 1427.41 ±7.56

w 1817.49 22 20 82 88.29 ±60.38 168.00 ±115.00 185.21 ± 3.39 1807.18 103 20 90 186.84 ±31.67 282.00 ±47.50 232.05 ± 4.95 1816.25 77 20 95 153.22 ±12.85 330.00 ±27.00 163.46 ± 2.53

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.27: Best and worst average solutions found by corresponding BCOs for problem instance Iogra350_16 [Dav06b]. Stopping criterion, T = 0.35[s].

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s
[10−3] [10−3] [10−3]

p0
b b 1805.09 2 1 1 2412.99 ±1640.42 151.00 ±103.00 5587.59 ±35.80 1804.66 2 4 33 621.18 ±304.27 174.00 ±85.40 1255.73 ±10.79 1804.87 2 5 21 475.48 ±240.61 166.00 ±83.60 1002.89 ±10.59

w 1806.38 2 17 99 109.49 ±52.05 173.00 ±81.80 222.84 ± 5.02 1805.28 2 18 1 124.60 ±63.40 161.00 ±82.60 272.44 ± 7.05 1805.42 2 17 99 106.69 ±51.49 170.00 ±81.30 221.40 ± 3.94

p1
b b 1805.09 2 1 3 2412.99 ±1640.42 153.00 ±104.00 5543.23 ±27.88 1804.34 2 5 44 498.61 ±253.77 176.00 ±89.60 991.79 ±10.30 1804.90 2 2 6 1335.07 ±704.24 173.00 ±91.40 2701.25 ±13.83

w 1809.43 6 20 19 100.78 ±69.10 160.00 ±111.00 220.10 ± 5.66 1807.26 64 20 89 168.99 ±29.08 285.00 ±48.50 208.29 ± 5.38 1811.53 67 20 99 149.26 ±16.90 322.00 ±36.60 162.95 ± 3.33

p2
b b 1805.09 2 1 1 2412.99 ±1640.42 151.00 ±103.00 5583.07 ±30.34 *1804.29 2 7 51 380.81 ±148.07 195.00 ±76.00 684.69 ±10.56 1804.93 2 2 6 1150.87 ±629.30 150.00 ±81.90 2692.39 ±11.91

w 1809.36 7 20 12 91.60 ±66.55 139.00 ±100.00 231.70 ± 5.89 1823.62 109 20 92 196.67 ±27.26 319.00 ±43.90 216.79 ± 5.20 1816.72 70 20 98 146.61 ±15.45 328.00 ±35.00 157.43 ± 2.71

p3
b b 1804.91 3 3 3 876.12 ±494.27 167.00 ±94.40 1834.93 ±12.10 1804.97 2 3 6 819.95 ±471.32 158.00 ±90.90 1817.25 ±10.98 1804.93 2 3 9 814.93 ±439.81 160.00 ±86.40 1789.87 ±11.95

w 1805.87 3 18 100 118.42 ±45.69 201.00 ±76.80 208.42 ± 3.77 1805.52 2 20 98 113.49 ±34.85 209.00 ±64.40 190.25 ± 3.91 1805.64 1 20 83 105.32 ±35.27 193.00 ±64.70 192.21 ± 4.24

p4
b b 1805.09 2 1 1 2412.99 ±1640.42 152.00 ±103.00 5578.23 ±33.58 1804.46 3 4 79 587.42 ±275.86 175.00 ±82.30 1176.47 ±11.01 1804.90 2 2 8 1252.97 ±726.87 163.00 ±94.70 2685.06 ±14.14

w 1809.04 5 20 81 88.14 ±54.88 164.00 ±102.00 188.38 ± 3.66 1805.27 2 18 1 126.98 ±64.26 165.00 ±83.30 273.86 ± 7.48 1805.78 2 20 90 120.94 ±35.57 230.00 ±67.60 185.14 ± 4.14

p5
b b 1805.09 2 1 1 2412.99 ±1640.42 152.00 ±103.00 5577.95 ±29.09 1804.35 3 6 59 446.69 ±197.58 197.00 ±87.60 792.73 ±10.40 1804.97 2 6 3 431.25 ±213.36 172.00 ±85.50 876.27 ±12.18

w 1809.53 8 20 19 79.92 ±63.48 127.00 ±102.00 219.14 ± 6.06 1806.94 63 20 94 168.23 ±26.70 279.00 ±45.50 211.50 ± 5.84 1812.71 61 20 96 150.78 ±14.32 326.00 ±29.30 162.80 ± 3.71

p6
b b 1805.09 2 1 1 2412.99 ±1640.42 152.00 ±103.00 5580.33 ±29.31 1804.42 3 6 53 432.66 ±176.77 193.00 ±79.00 786.76 ±9.76 1804.88 2 2 6 1283.14 ±715.15 167.00 ±93.50 2685.60 ±13.65

w 1809.12 5 20 41 84.95 ±53.31 143.00 ±89.80 209.24 ± 4.00 1805.27 2 17 1 133.07 ±69.18 160.00 ±83.30 291.24 ± 7.46 1806.30 3 18 100 141.89 ±27.33 263.00 ±49.80 189.56 ± 4.23

p7
b b 1805.09 2 1 1 2412.99 ±1640.42 152.00 ±103.00 5580.12 ±28.16 1804.68 2 4 6 575.60 ±314.84 151.00 ±83.10 1333.90 ±12.19 1804.83 2 3 9 838.91 ±434.79 167.00 ±86.80 1760.80 ±12.21

w 1806.03 3 17 4 143.04 ±67.80 178.00 ±83.50 282.70 ± 7.43 1805.43 2 18 80 92.53 ±47.48 154.00 ±78.70 209.53 ± 4.50 1805.49 2 20 97 79.81 ±35.92 157.00 ±71.10 178.80 ± 3.57

p8
b b 1805.10 2 1 1 2363.11 ±1620.17 149.00 ±102.00 5572.43 ±30.02 *1804.29 2 9 53 297.72 ±106.59 201.00 ±71.70 520.03 ±8.24 1804.93 2 3 5 862.62 ±445.38 169.00 ±87.40 1789.09 ±10.41

w 1808.78 6 20 10 85.21 ±58.38 131.00 ±89.80 227.82 ± 5.55 1813.77 69 20 88 191.57 ±28.96 309.00 ±46.30 217.90 ± 5.07 1820.53 83 20 100 140.24 ±12.01 334.00 ±29.70 147.67 ± 2.64

p9
b b 1805.09 2 1 1 2412.99 ±1640.42 151.00 ±103.00 5579.81 ±32.34 1804.38 2 7 62 375.98 ±138.75 200.00 ±74.30 658.99 ±8.77 1804.93 3 4 4 674.68 ±350.78 177.00 ±92.30 1331.28 ±12.46

w 1809.34 7 20 16 83.65 ±65.28 132.00 ±103.00 223.12 ± 6.30 1807.32 102 20 99 161.82 ±32.23 274.00 ±54.20 207.46 ± 4.25 1818.21 107 20 100 137.95 ±10.74 330.00 ±26.40 147.10 ± 2.86

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.28: Best and worst average solutions found by corresponding BCOs for problem instance Iogra400_12 [Dav06b]. Stopping criterion, T = 0.4[s].

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s
[10−3] [10−3] [10−3]

p0
b b 2003.55 2 1 1 2310.91 ±1378.01 167.00 ±100.00 5518.29 ±26.57 2003.13 2 6 8 438.68 ±243.88 200.00 ±111.00 879.44 ±6.30 2003.27 3 4 9 633.84 ±345.82 192.00 ±105.00 1324.60 ±8.71

w 2004.93 3 16 93 139.91 ±66.86 217.00 ±104.00 258.81 ± 4.22 2003.65 3 15 2 145.98 ±84.03 172.00 ±99.10 340.73 ± 6.06 2003.80 3 20 92 100.65 ±46.68 196.00 ±91.70 205.34 ± 3.15

p1
b b 2003.55 2 1 1 2310.91 ±1378.01 168.00 ±100.00 5517.87 ±26.46 2002.68 2 8 63 296.74 ±125.63 195.00 ±82.60 607.93 ±6.37 2003.30 3 3 5 875.63 ±432.45 196.00 ±96.90 1788.44 ±8.12

w 2012.84 54 20 55 167.67 ±34.62 328.00 ±68.30 205.29 ± 3.32 2003.63 3 15 2 151.25 ±87.63 178.00 ±103.00 340.45 ± 5.18 2005.36 21 20 100 133.69 ±32.99 300.00 ±74.20 179.18 ± 2.76

p2
b b 2003.55 2 1 1 2310.91 ±1378.01 168.00 ±100.00 5513.00 ±25.36 *2002.62 2 11 51 218.25 ±91.50 198.00 ±83.60 442.12 ±5.20 2003.20 3 7 5 357.31 ±190.19 191.00 ±101.00 748.59 ±6.47

w 2013.56 82 20 49 171.86 ±38.37 327.00 ±72.80 210.80 ± 4.23 2009.57 58 20 87 177.37 ±51.73 311.00 ±90.80 228.43 ± 3.50 2005.71 47 20 74 133.82 ±35.74 290.00 ±78.10 185.23 ± 2.58

p3
b b 2003.47 3 2 6 1207.14 ±700.18 178.00 ±103.00 2718.05 ±13.22 2003.45 2 3 10 802.30 ±448.33 180.00 ±101.00 1781.74 ±8.81 2003.46 3 15 16 172.51 ±75.83 212.00 ±92.80 327.85 ±4.98

w 2004.41 3 19 97 127.51 ±44.82 240.00 ±84.10 214.09 ± 3.63 2003.91 3 14 93 145.64 ±65.10 194.00 ±86.80 300.77 ± 4.58 2004.02 2 18 88 114.70 ±52.10 202.00 ±91.10 228.77 ± 3.86

p4
b b 2003.55 2 1 1 2310.91 ±1378.01 168.00 ±99.80 5517.74 ±27.46 2002.85 2 5 81 469.46 ±221.21 195.00 ±91.60 964.03 ±5.49 2003.25 3 9 7 296.10 ±144.84 209.00 ±102.00 567.61 ±7.20

w 2009.92 5 19 90 136.76 ±49.51 261.00 ±95.10 210.37 ± 3.42 2003.64 3 15 2 148.46 ±86.03 174.00 ±102.00 340.53 ± 5.61 2003.86 2 20 86 119.16 ±47.15 235.00 ±92.60 203.44 ± 3.10

p5
b b 2003.55 2 1 1 2310.91 ±1378.01 168.00 ±100.00 5519.20 ±27.42 2002.69 2 9 91 289.79 ±124.29 223.00 ±96.00 520.32 ±5.14 2003.30 3 8 10 343.78 ±152.71 218.00 ±97.10 631.20 ±5.87

w 2012.76 46 20 54 165.92 ±35.50 326.00 ±68.90 204.44 ± 3.83 2003.70 3 14 2 170.54 ±87.28 187.00 ±95.80 366.36 ± 5.72 2005.36 13 20 90 129.39 ±31.41 292.00 ±71.60 177.75 ± 2.66

p6
b b 2003.55 2 1 1 2310.91 ±1378.01 168.00 ±100.00 5518.13 ±24.01 2002.80 2 7 69 314.25 ±134.66 185.00 ±79.30 680.55 ±5.38 2003.27 2 7 8 384.49 ±201.31 209.00 ±110.00 736.29 ±6.80

w 2012.07 8 20 90 127.40 ±45.07 270.00 ±95.50 189.73 ± 2.92 2003.62 2 17 1 135.25 ±68.46 181.00 ±91.80 300.09 ± 5.94 2004.19 3 19 94 122.54 ±35.78 249.00 ±72.30 197.43 ± 3.08

p7
b b 2003.55 2 1 1 2310.91 ±1378.01 167.00 ±100.00 5519.63 ±27.15 2003.16 2 5 7 456.48 ±255.03 172.00 ±96.00 1059.45 ±6.52 2003.31 2 6 8 374.17 ±210.13 172.00 ±96.90 870.91 ±6.61

w 2004.65 3 18 3 133.89 ±68.21 193.00 ±97.90 278.72 ± 4.95 2003.86 2 19 79 101.13 ±52.43 189.00 ±98.60 214.40 ± 4.17 2003.91 3 18 99 95.88 ±46.19 180.00 ±87.20 212.91 ± 3.20

p8
b b 2003.55 2 1 2 2310.91 ±1378.01 168.00 ±100.00 5507.31 ±27.06 2002.66 3 11 45 229.14 ±88.48 208.00 ±80.60 442.35 ±6.04 2003.18 2 3 5 902.52 ±415.33 203.00 ±93.40 1784.74 ±8.61

w 2011.26 9 20 26 179.76 ±35.63 327.00 ±63.20 220.65 ± 4.38 2003.84 66 18 84 161.46 ±53.90 257.00 ±85.10 252.26 ± 4.27 2005.60 48 20 96 124.02 ±29.97 304.00 ±72.80 163.93 ± 2.52

p9
b b 2003.55 2 1 1 2310.91 ±1378.01 167.00 ±100.00 5520.85 ±26.94 2002.69 1 10 77 263.74 ±102.75 227.00 ±88.60 465.00 ±5.36 2003.35 3 10 8 249.93 ±107.84 201.00 ±87.00 499.38 ±5.52

w 2013.56 71 20 52 156.74 ±36.00 321.00 ±72.70 196.35 ± 3.76 2003.66 3 20 2 118.17 ±58.85 188.00 ±93.90 252.62 ± 4.75 2006.16 42 20 93 123.61 ±30.89 301.00 ±74.90 164.86 ± 2.04

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.29: Best and worst average solutions found by corresponding BCOs for problem instance Iogra400_16 [Dav06b]. Stopping criterion, T = 0.4[s].

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s
[10−3] [10−3] [10−3]

p0
b b 2005.20 2 1 1 2403.47 ±1430.05 186.00 ±111.00 5180.02 ±24.58 2004.75 2 5 15 503.12 ±215.84 211.00 ±90.70 957.32 ±10.07 2004.97 3 4 8 647.42 ±321.19 211.00 ±104.00 1229.29 ±11.70

w 2006.70 4 19 93 108.02 ±43.93 223.00 ±91.20 194.67 ± 3.16 2005.38 2 19 75 108.48 ±43.40 211.00 ±85.70 206.34 ± 4.49 2005.53 3 18 86 106.38 ±43.13 206.00 ±84.30 207.38 ± 4.36

p1
b b 2005.07 9 20 99 123.37 ±24.64 311.00 ±62.20 159.21 ±2.63 2004.39 3 7 60 371.35 ±146.97 233.00 ±92.70 636.18 ±7.14 2004.96 3 3 7 847.70 ±435.32 205.00 ±105.00 1654.80 ±11.19

w 2012.70 193 20 92 129.17 ±24.08 319.00 ±59.40 162.37 ± 3.02 2006.17 127 15 97 194.74 ±46.91 290.00 ±69.00 269.94 ± 5.51 2012.10 132 19 90 134.88 ±28.61 308.00 ±66.20 175.84 ± 3.58

p2
b b 2004.11 7 16 100 143.86 ±37.74 294.00 ±77.00 196.42 ±2.84 2004.33 2 8 67 338.18 ±113.60 246.00 ±82.50 550.95 ±7.62 2004.92 2 3 6 793.02 ±414.02 191.00 ±99.30 1662.44 ±10.44

w 2013.22 163 20 53 146.63 ±27.38 329.00 ±61.00 179.11 ± 3.63 2054.09 218 20 84 184.79 ±35.79 353.00 ±68.30 210.48 ± 4.34 2011.55 162 20 79 135.63 ±24.57 326.00 ±58.20 166.99 ± 3.18

p3
b b 2005.08 3 5 2 483.67 ±231.04 193.00 ±92.50 997.98 ±12.27 2005.04 2 3 9 828.81 ±418.45 198.00 ±100.00 1671.81 ±11.10 2005.07 3 4 6 581.58 ±301.99 187.00 ±96.70 1245.69 ±12.24

w 2006.09 2 20 91 114.46 ±35.39 249.00 ±76.60 185.36 ± 3.95 2005.64 3 20 88 110.64 ±37.81 230.00 ±80.40 192.50 ± 4.45 2005.69 3 19 88 104.44 ±47.86 215.00 ±97.90 195.55 ± 3.94

p4
b b 2005.20 2 1 1 2403.47 ±1430.05 186.00 ±110.00 5183.64 ±29.79 2004.59 3 4 85 589.79 ±215.52 213.00 ±77.60 1110.32 ±10.29 2004.93 2 4 7 648.21 ±317.70 211.00 ±104.00 1226.78 ±11.74

w 2009.61 6 20 76 115.57 ±43.03 246.00 ±91.40 188.47 ± 4.73 2005.59 34 20 90 155.69 ±26.44 316.00 ±54.80 198.20 ± 4.05 2005.64 3 19 89 123.20 ±36.53 259.00 ±77.00 190.75 ± 3.84

p5
b b 2005.20 2 1 1 2403.47 ±1430.05 186.00 ±110.00 5189.01 ±26.29 2004.44 3 7 72 358.51 ±129.20 229.00 ±81.70 627.79 ±6.89 2004.96 2 3 13 873.15 ±389.15 218.00 ±97.30 1606.44 ±9.46

w 2010.65 115 19 78 140.80 ±30.89 317.00 ±68.70 178.24 ± 3.04 2007.13 104 20 91 161.07 ±28.00 321.00 ±54.20 200.92 ± 4.92 2012.95 121 19 94 131.87 ±28.66 313.00 ±67.80 168.90 ± 3.65

p6
b b 2005.20 2 1 1 2403.47 ±1430.05 186.00 ±111.00 5183.81 ±24.42 2004.54 2 5 66 503.94 ±200.96 226.00 ±90.10 890.81 ±8.81 2004.90 2 6 9 418.26 ±183.15 213.00 ±92.90 789.62 ±10.05

w 2010.07 7 20 55 122.42 ±42.25 257.00 ±89.50 190.68 ± 4.00 2005.64 18 20 98 154.79 ±26.51 324.00 ±54.40 192.46 ± 4.04 2007.30 106 20 93 124.46 ±31.24 293.00 ±74.10 170.69 ± 2.70

p7
b b 2005.20 2 1 1 2403.47 ±1430.05 186.00 ±110.00 5185.06 ±23.18 2004.78 3 5 10 499.16 ±251.99 207.00 ±104.00 965.43 ±10.12 2004.95 2 4 8 588.97 ±313.98 193.00 ±103.00 1223.76 ±10.75

w 2006.36 4 20 4 115.94 ±50.61 206.00 ±89.40 225.14 ± 5.00 2005.58 3 18 83 112.22 ±42.90 220.00 ±83.50 204.18 ± 4.50 2005.60 3 20 75 94.53 ±36.78 204.00 ±79.10 185.84 ± 3.66

p8
b b *2003.22 5 20 100 99.98 ±28.94 265.00 ±77.80 152.06 ±2.73 2004.34 3 7 45 406.82 ±142.07 252.00 ±88.30 647.43 ±10.09 2004.92 2 4 6 641.79 ±288.63 210.00 ±94.10 1226.23 ±10.58

w 2009.81 5 20 9 120.26 ±50.04 222.00 ±92.30 216.98 ± 5.59 2014.34 113 19 96 173.83 ±35.50 324.00 ±66.10 215.48 ± 5.17 2012.55 127 20 92 121.58 ±22.05 322.00 ±57.50 151.65 ± 2.72

p9
b b 2005.20 2 1 1 2403.47 ±1430.05 186.00 ±111.00 5189.58 ±24.03 2004.38 2 7 68 380.28 ±123.43 246.00 ±79.90 622.22 ±7.44 2004.98 3 4 7 683.75 ±301.65 226.00 ±99.90 1211.11 ±12.81

w 2011.41 222 20 71 132.02 ±26.26 317.00 ±63.60 167.61 ± 2.73 2006.69 63 19 87 156.71 ±33.27 301.00 ±65.30 208.22 ± 4.27 2012.29 94 20 78 135.83 ±22.69 336.00 ±56.60 162.20 ± 2.86

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.30: Best and worst average solutions found by corresponding BCOs for problem instance Iogra450_12 [Dav06b]. Stopping criterion, T = 0.45[s].

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s
[10−3] [10−3] [10−3]

p0
b b 2204.17 2 1 1 2578.42 ±1310.21 226.00 ±115.00 5129.73 ±22.48 2203.66 2 4 33 635.73 ±292.54 241.00 ±111.00 1189.82 ±5.15 2203.90 2 8 4 318.39 ±166.71 231.00 ±120.00 622.01 ±5.38

w 2206.05 4 18 87 118.39 ±52.57 242.00 ±107.00 220.12 ± 2.23 2204.34 2 20 1 125.33 ±55.69 240.00 ±107.00 235.31 ± 3.23 2204.40 3 15 2 162.78 ±77.39 224.00 ±107.00 328.35 ± 3.95

p1
b b 2204.17 2 1 1 2578.42 ±1310.21 227.00 ±115.00 5127.13 ±20.95 2203.04 2 8 87 328.64 ±108.77 266.00 ±87.90 557.13 ±4.11 2203.92 3 3 7 874.62 ±390.75 237.00 ±106.00 1658.71 ±10.13

w 2215.48 14 20 53 141.05 ±49.80 319.00 ±113.00 199.74 ± 2.93 2204.34 2 20 1 125.33 ±55.69 241.00 ±106.00 235.13 ± 3.26 2206.36 52 18 99 144.36 ±37.36 332.00 ±86.10 196.30 ± 2.08

p2
b b 2204.17 2 1 1 2578.42 ±1310.21 227.00 ±115.00 5126.25 ±20.87 *2203.00 2 12 78 215.73 ±78.46 265.00 ±97.10 367.40 ±3.87 2203.93 2 3 7 884.09 ±410.25 241.00 ±112.00 1655.24 ±7.94

w 2216.37 18 20 40 143.83 ±53.95 319.00 ±119.00 203.42 ± 2.77 2221.28 82 20 97 178.18 ±46.64 382.00 ±99.50 210.85 ± 2.40 2207.17 64 20 73 144.11 ±31.17 350.00 ±75.90 185.96 ± 2.33

p3
b b 2204.10 3 3 2 920.58 ±434.65 245.00 ±115.00 1693.89 ±7.67 2204.03 2 4 53 621.04 ±283.73 244.00 ±111.00 1147.97 ±5.73 2204.11 2 13 6 215.26 ±91.37 257.00 ±109.00 377.51 ±5.13

w 2205.15 4 18 100 142.66 ±44.30 299.00 ±92.30 215.11 ± 2.21 2204.56 3 18 94 120.53 ±49.01 248.00 ±101.00 219.19 ± 2.22 2204.61 3 14 59 148.21 ±70.69 215.00 ±102.00 312.20 ± 3.21

p4
b b 2204.17 2 1 1 2578.42 ±1310.21 227.00 ±115.00 5126.37 ±20.15 2203.29 2 6 43 417.17 ±178.22 243.00 ±104.00 773.39 ±5.38 2203.89 3 6 9 413.35 ±195.16 228.00 ±108.00 816.72 ±5.92

w 2212.71 8 20 99 90.25 ±51.04 216.00 ±123.00 188.35 ± 2.15 2204.32 2 19 1 130.90 ±59.15 238.00 ±108.00 248.33 ± 3.36 2204.54 3 20 85 114.63 ±41.70 258.00 ±92.90 200.65 ± 2.25

p5
b b 2204.17 2 1 1 2578.42 ±1310.21 226.00 ±115.00 5128.98 ±24.45 2203.08 3 10 74 242.85 ±88.22 248.00 ±90.10 441.93 ±4.67 2203.91 3 4 7 621.85 ±311.11 226.00 ±114.00 1238.27 ±8.91

w 2215.82 13 20 52 139.40 ±47.79 323.00 ±111.00 194.86 ± 2.15 2204.33 2 20 1 126.72 ±56.74 242.00 ±108.00 235.76 ± 3.25 2207.11 67 19 96 133.57 ±36.34 330.00 ±89.50 183.28 ± 2.32

p6
b b 2204.17 2 1 1 2578.42 ±1310.21 226.00 ±115.00 5127.36 ±26.16 2203.22 2 7 91 349.85 ±134.60 253.00 ±97.00 624.23 ±4.09 2203.85 3 3 7 839.32 ±423.21 228.00 ±115.00 1655.48 ±8.30

w 2214.70 10 20 95 107.41 ±47.15 267.00 ±118.00 181.47 ± 2.16 2204.33 2 18 1 140.45 ±61.08 242.00 ±106.00 261.95 ± 3.09 2204.98 4 18 95 131.90 ±40.06 285.00 ±86.80 209.11 ± 1.83

p7
b b 2204.17 2 1 1 2578.42 ±1310.21 226.00 ±115.00 5130.14 ±22.53 2203.69 3 5 8 482.86 ±245.59 223.00 ±113.00 976.84 ±5.81 2203.81 3 6 7 414.60 ±192.32 227.00 ±105.00 821.29 ±6.94

w 2205.60 3 15 4 157.98 ±72.67 229.00 ±105.00 311.67 ± 2.87 2204.50 3 17 70 112.23 ±52.69 217.00 ±102.00 234.18 ± 2.27 2204.60 3 19 96 96.43 ±44.08 215.00 ±97.60 203.11 ± 2.26

p8
b b 2204.17 2 1 1 2578.42 ±1310.21 226.00 ±115.00 5130.33 ±20.15 2203.03 2 8 77 297.47 ±120.13 240.00 ±96.00 561.53 ±4.18 2203.86 2 5 8 546.67 ±241.75 251.00 ±111.00 978.55 ±8.68

w 2213.93 14 20 27 145.76 ±45.71 318.00 ±99.70 207.18 ± 2.65 2205.72 70 19 100 160.75 ±44.72 329.00 ±91.80 220.44 ± 2.90 2207.72 96 19 99 133.04 ±29.01 352.00 ±76.40 170.73 ± 1.77

p9
b b 2204.17 2 1 1 2578.42 ±1310.21 226.00 ±115.00 5130.43 ±22.86 2203.12 2 10 90 233.48 ±83.91 245.00 ±88.40 430.04 ±3.96 2203.93 3 8 9 339.61 ±148.75 255.00 ±112.00 599.03 ±5.62

w 2216.19 13 20 52 138.02 ±40.69 333.00 ±97.90 187.44 ± 1.95 2204.34 2 20 1 125.40 ±55.72 242.00 ±107.00 234.38 ± 2.73 2206.95 65 19 89 131.08 ±34.17 333.00 ±87.70 177.55 ± 1.86

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.31: Best and worst average solutions found by corresponding BCOs for problem instance Iogra450_16 [Dav06b]. Stopping criterion, T = 0.45[s].

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s
[10−3] [10−3] [10−3]

p0
b b 2206.51 4 1 1 2428.32 ±1109.50 226.00 ±103.00 4830.56 ±19.22 2205.83 3 3 11 966.76 ±362.07 282.00 ±106.00 1545.51 ±8.74 2205.94 4 3 14 857.14 ±366.10 251.00 ±107.00 1539.72 ±11.27

w 2208.79 4 19 85 128.57 ±37.31 304.00 ±87.80 191.03 ± 2.65 2206.69 4 18 1 150.26 ±49.38 285.00 ±92.90 238.44 ± 3.98 2206.66 4 18 1 153.58 ±51.87 274.00 ±93.40 252.63 ± 4.34

p1
b b 2206.51 4 1 1 2428.32 ±1109.50 226.00 ±103.00 4829.45 ±23.34 2205.26 3 7 70 376.23 ±113.71 285.00 ±86.40 593.23 ±5.09 2206.03 3 3 11 882.68 ±338.61 259.00 ±99.40 1534.38 ±10.96

w 2221.58 10 20 40 164.01 ±22.64 386.00 ±53.30 192.16 ± 2.04 2210.92 161 20 69 165.52 ±24.93 385.00 ±58.00 194.34 ± 2.85 2210.08 192 17 80 164.09 ±25.68 363.00 ±57.00 204.33 ± 2.54

p2
b b 2206.51 4 1 1 2428.32 ±1109.50 226.00 ±103.00 4830.92 ±22.77 *2205.10 3 6 71 453.16 ±144.52 290.00 ±92.40 704.03 ±6.46 2205.97 2 3 11 866.15 ±332.01 256.00 ±98.30 1525.00 ±10.34

w 2223.58 21 20 39 151.38 ±27.16 371.00 ±65.80 184.02 ± 3.50 2245.45 269 18 86 187.74 ±25.34 393.00 ±52.80 215.64 ± 2.97 2210.58 148 18 86 146.43 ±25.57 359.00 ±63.00 184.04 ± 2.46

p3
b b 2206.31 4 2 33 1332.31 ±527.97 265.00 ±105.00 2265.88 ±10.24 2206.23 3 4 29 648.80 ±241.02 265.00 ±98.80 1101.95 ±7.69 2206.30 3 2 31 1376.24 ±527.73 274.00 ±105.00 2261.66 ±14.84

w 2207.62 3 20 99 132.87 ±28.06 330.00 ±69.60 181.90 ± 2.11 2207.01 3 20 99 122.46 ±29.42 309.00 ±73.90 179.11 ± 2.12 2206.95 2 19 83 123.20 ±41.84 278.00 ±94.90 200.17 ± 2.94

p4
b b 2206.51 4 1 1 2428.32 ±1109.50 227.00 ±103.00 4829.44 ±21.80 2205.48 3 4 61 655.67 ±218.86 276.00 ±91.60 1070.78 ±6.57 2205.96 2 3 25 885.38 ±342.05 267.00 ±103.00 1493.06 ±9.66

w 2217.50 8 20 100 119.55 ±31.54 312.00 ±83.20 173.38 ± 3.84 2207.95 71 18 79 179.05 ±29.00 388.00 ±62.70 208.37 ± 3.06 2206.87 3 19 100 135.21 ±32.06 319.00 ±77.10 190.65 ± 2.85

p5
b b 2206.49 4 1 1 2470.68 ±1120.73 231.00 ±105.00 4825.34 ±24.76 2205.27 2 5 74 529.88 ±177.86 283.00 ±94.70 843.52 ±6.20 2206.09 4 5 7 571.70 ±189.07 281.00 ±93.00 917.95 ±8.30

w 2222.56 286 20 100 133.03 ±19.43 385.00 ±56.80 156.12 ± 3.01 2212.38 140 19 85 175.56 ±22.62 396.00 ±50.40 200.49 ± 2.74 2210.81 178 19 96 142.17 ±21.60 377.00 ±57.00 170.48 ± 1.73

p6
b b 2206.51 4 1 1 2428.32 ±1109.50 226.00 ±104.00 4833.92 ±20.44 2205.43 2 5 82 508.45 ±165.79 279.00 ±90.80 822.11 ±5.76 2205.90 4 3 10 907.32 ±341.83 267.00 ±100.00 1533.08 ±10.85

w 2220.34 9 20 97 123.94 ±29.50 342.00 ±81.20 163.74 ± 1.93 2208.92 38 20 87 164.96 ±21.52 391.00 ±51.50 190.54 ± 2.61 2208.03 81 20 84 136.52 ±25.95 348.00 ±65.80 177.12 ± 2.68

p7
b b 2206.51 4 1 1 2428.32 ±1109.50 227.00 ±104.00 4830.20 ±22.21 2205.89 2 4 9 641.35 ±258.94 254.00 ±103.00 1136.39 ±8.91 2205.94 4 5 11 535.70 ±216.14 264.00 ±107.00 912.50 ±8.19

w 2208.30 4 17 5 158.12 ±54.72 288.00 ±99.40 248.24 ± 3.34 2206.86 4 20 84 108.75 ±34.96 277.00 ±90.10 176.76 ± 2.81 2206.92 3 19 100 114.92 ±38.46 278.00 ±94.40 185.95 ± 2.57

p8
b b 2206.51 4 1 1 2428.32 ±1109.50 227.00 ±104.00 4825.58 ±23.02 2205.19 3 8 74 341.13 ±89.34 299.00 ±78.00 514.91 ±4.49 2205.97 3 3 10 903.97 ±356.80 266.00 ±105.00 1528.83 ±9.07

w 2224.28 389 20 88 139.93 ±16.88 405.00 ±47.60 155.99 ± 2.34 2220.57 295 19 74 185.34 ±22.27 410.00 ±48.30 204.35 ± 2.72 2211.94 57 20 96 134.97 ±19.95 392.00 ±58.70 155.36 ± 2.06

p9
b b 2206.51 4 1 1 2428.32 ±1109.50 226.00 ±104.00 4835.42 ±21.79 2205.28 3 6 69 434.80 ±134.61 284.00 ±88.60 689.40 ±6.06 2206.06 3 2 12 1435.10 ±518.96 284.00 ±103.00 2271.47 ±12.71

w 2222.59 16 20 44 151.45 ±20.27 384.00 ±50.90 178.06 ± 3.20 2211.14 73 20 74 172.02 ±24.56 402.00 ±56.70 193.14 ± 3.19 2210.91 173 19 80 143.07 ±20.60 377.00 ±54.50 171.39 ± 2.19

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.32: Best and worst average solutions found by corresponding BCOs for problem instance Iogra500_12 [Dav06b]. Stopping criterion, T = 0.5[s].

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s
[10−3] [10−3] [10−3]

p0
b b 2403.26 2 1 1 2016.65 ±1191.67 210.00 ±124.00 4800.91 ±21.35 2402.86 2 8 8 280.44 ±140.37 248.00 ±124.00 565.73 ±5.01 2403.07 2 6 7 339.54 ±184.41 223.00 ±121.00 762.32 ±5.18

w 2404.52 3 20 91 80.90 ±45.24 212.00 ±119.00 191.36 ± 2.70 2403.37 2 17 2 120.17 ±64.32 229.00 ±122.00 262.89 ± 2.94 2403.49 2 15 70 110.24 ±58.43 209.00 ±111.00 264.11 ± 3.43

p1
b b 2403.03 5 18 99 111.50 ±41.28 295.00 ±109.00 188.95 ±2.45 2402.53 1 9 82 229.62 ±110.41 244.00 ±117.00 471.52 ±4.75 2403.15 2 3 6 730.07 ±396.05 235.00 ±127.00 1555.90 ±8.82

w 2408.25 6 20 13 81.39 ±60.56 193.00 ±144.00 211.20 ± 2.43 2403.38 2 17 2 117.96 ±63.16 225.00 ±121.00 262.25 ± 3.38 2405.22 8 20 95 135.24 ±22.21 400.00 ±65.70 169.59 ± 2.29

p2
b b 2402.35 3 17 100 124.14 ±40.45 323.00 ±105.00 192.79 ±2.79 2402.46 1 12 56 178.83 ±74.59 250.00 ±104.00 357.07 ±4.30 2403.15 2 3 3 676.41 ±405.55 215.00 ±129.00 1573.38 ±7.74

w 2409.41 9 20 13 78.69 ±62.00 188.00 ±148.00 210.27 ± 3.04 2404.44 47 19 87 125.46 ±45.53 291.00 ±106.00 215.97 ± 2.77 2406.00 42 20 99 140.48 ±22.86 430.00 ±69.80 164.01 ± 2.22

p3
b b 2403.16 2 5 15 468.18 ±248.51 258.00 ±136.00 910.78 ±5.88 2403.16 2 4 35 502.72 ±299.62 225.00 ±135.00 1115.89 ±6.85 2403.13 2 3 10 722.00 ±422.94 232.00 ±136.00 1554.89 ±7.88

w 2403.94 2 20 89 111.78 ±41.38 295.00 ±109.00 190.60 ± 2.45 2403.61 2 17 92 95.80 ±44.66 211.00 ±99.30 227.01 ± 2.65 2403.70 2 18 94 112.10 ±47.33 268.00 ±112.00 210.02 ± 2.77

p4
b b 2403.25 2 1 1 2061.36 ±1212.26 215.00 ±126.00 4801.86 ±25.10 2402.66 2 6 76 332.44 ±160.27 233.00 ±112.00 715.33 ±4.97 2403.09 2 5 9 412.56 ±234.33 226.00 ±128.00 914.51 ±6.17

w 2407.78 5 20 66 91.93 ±53.93 237.00 ±139.00 194.49 ± 2.85 2403.39 2 17 2 116.14 ±61.59 222.00 ±118.00 262.35 ± 3.48 2403.72 2 19 91 105.25 ±40.97 270.00 ±105.00 195.77 ± 2.42

p5
b b 2403.24 5 19 100 105.91 ±35.86 305.00 ±104.00 174.39 ±2.01 2402.52 3 7 44 321.34 ±145.87 256.00 ±117.00 629.04 ±5.43 2403.14 2 5 9 385.58 ±214.42 212.00 ±118.00 908.85 ±5.99

w 2408.48 7 20 27 93.28 ±60.26 233.00 ±151.00 200.97 ± 2.52 2403.37 2 19 2 109.75 ±58.36 237.00 ±126.00 233.41 ± 3.68 2405.36 30 20 98 131.76 ±23.89 403.00 ±72.80 164.00 ± 1.84

p6
b b 2403.26 2 1 1 2016.65 ±1191.67 210.00 ±124.00 4799.78 ±17.71 2402.61 3 5 93 397.49 ±220.23 235.00 ±130.00 848.47 ±6.64 2403.08 2 10 5 207.71 ±110.07 233.00 ±124.00 447.44 ±4.33

w 2408.02 8 20 40 76.72 ±57.23 193.00 ±144.00 198.25 ± 2.98 2403.32 2 20 2 100.07 ±54.90 225.00 ±124.00 222.36 ± 3.79 2404.08 2 19 86 121.04 ±33.00 321.00 ±87.40 189.18 ± 2.29

p7
b b 2403.26 2 1 1 2016.65 ±1191.67 210.00 ±124.00 4797.48 ±15.94 2402.90 2 5 9 407.18 ±234.49 222.00 ±128.00 917.45 ±5.85 2403.05 2 3 8 669.31 ±417.11 216.00 ±135.00 1548.53 ±8.04

w 2404.29 2 13 5 154.60 ±84.46 226.00 ±125.00 340.64 ± 4.14 2403.50 2 15 90 105.53 ±59.56 212.00 ±119.00 249.48 ± 2.56 2403.61 3 14 96 109.46 ±66.87 209.00 ±128.00 263.12 ± 3.74

p8
b b *2401.71 2 20 96 109.88 ±35.86 339.00 ±110.00 162.56 ±2.23 2402.43 1 12 67 186.48 ±80.66 264.00 ±113.00 353.82 ±4.59 2403.11 2 2 6 1115.93 ±618.48 238.00 ±132.00 2344.28 ±10.03

w 2408.00 7 19 13 97.77 ±65.48 223.00 ±150.00 220.35 ± 2.88 2403.51 76 20 95 115.96 ±37.74 285.00 ±93.00 203.66 ± 2.81 2406.99 54 20 94 134.64 ±17.00 435.00 ±54.80 155.50 ± 1.93

p9
b b 2403.21 4 20 100 105.52 ±32.39 334.00 ±103.00 158.51 ±2.47 2402.53 1 8 69 267.38 ±123.89 252.00 ±117.00 530.45 ±4.44 2403.17 2 4 9 507.56 ±285.03 224.00 ±126.00 1132.82 ±6.14

w 2408.33 8 20 26 83.57 ±55.28 212.00 ±140.00 198.89 ± 2.81 2403.37 2 13 2 146.94 ±88.89 212.00 ±130.00 346.72 ± 4.48 2405.37 10 20 95 128.35 ±18.33 412.00 ±59.00 156.57 ± 2.01

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

Table B.33: Best and worst average solutions found by corresponding BCOs for problem instance Iogra500_16 [Dav06b]. Stopping criterion, T = 0.5[s].

min, f1
b max, f1

b max, f2
b

pb y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s y ∆y B NC nit ±s t̄ ±s Nit ±s
[10−3] [10−3] [10−3]

p0
b b 2406.26 3 1 1 2409.20 ±1139.88 265.00 ±126.00 4543.11 ±17.75 2405.81 3 3 29 813.86 ±329.98 286.00 ±117.00 1422.02 ±9.63 2406.02 3 4 24 640.54 ±241.37 306.00 ±115.00 1047.35 ±7.64

w 2408.25 4 18 93 115.92 ±44.27 299.00 ±114.00 195.09 ± 3.43 2406.58 3 18 75 113.89 ±41.05 284.00 ±103.00 201.36 ± 3.19 2406.74 4 15 91 137.05 ±47.11 294.00 ±100.00 233.96 ± 3.68

p1
b b 2406.26 3 1 1 2409.20 ±1139.88 265.00 ±126.00 4542.22 ±21.31 2405.29 3 6 64 439.96 ±148.94 327.00 ±111.00 672.82 ±7.42 2406.16 3 4 6 604.58 ±249.22 281.00 ±117.00 1077.21 ±9.98

w 2413.89 9 20 21 100.89 ±54.63 268.00 ±145.00 188.55 ± 2.87 2418.35 89 19 98 181.31 ±16.42 469.00 ±41.20 193.88 ± 4.03 2465.39 181 20 100 157.70 ±8.81 493.00 ±27.00 160.66 ± 3.74

p2
b b 2406.26 3 1 1 2409.20 ±1139.88 265.00 ±125.00 4543.31 ±20.83 *2405.25 2 7 56 399.27 ±110.22 345.00 ±95.40 578.66 ±6.50 2406.15 4 4 7 645.23 ±230.20 302.00 ±108.00 1069.85 ±8.60

w 2416.59 174 19 95 133.82 ±22.20 425.00 ±69.70 158.08 ± 2.33 2541.25 296 20 88 185.14 ±10.10 492.00 ±24.60 188.78 ± 3.35 2477.56 262 20 99 150.88 ±6.32 497.00 ±19.90 152.56 ± 2.00

p3
b b 2406.22 3 4 2 600.63 ±254.09 273.00 ±115.00 1101.31 ±8.79 2406.19 3 2 11 1160.05 ±539.00 261.00 ±122.00 2222.37 ±9.21 2406.22 4 4 3 611.00 ±262.22 278.00 ±119.00 1100.35 ±7.80

w 2407.40 3 20 99 121.96 ±32.52 355.00 ±93.70 172.92 ± 2.62 2407.02 4 20 89 117.22 ±28.19 334.00 ±78.90 175.83 ± 2.64 2407.09 3 20 98 115.02 ±26.47 333.00 ±76.30 173.31 ± 2.78

p4
b b 2406.26 3 1 1 2409.20 ±1139.88 265.00 ±125.00 4545.74 ±18.40 2405.54 3 4 85 604.75 ±208.56 302.00 ±104.00 1001.05 ±8.04 2406.03 4 2 6 1252.22 ±589.98 282.00 ±133.00 2220.18 ±11.32

w 2412.92 9 20 93 99.00 ±45.39 285.00 ±130.00 174.49 ± 2.69 2409.79 40 20 94 167.77 ±17.72 457.00 ±48.40 184.43 ± 2.88 2407.55 3 19 98 146.24 ±21.05 410.00 ±58.40 178.97 ± 2.96

p5
b b 2406.26 3 1 1 2409.20 ±1139.88 265.00 ±126.00 4546.06 ±20.43 2405.35 3 6 71 429.93 ±129.90 322.00 ±97.10 666.75 ±7.25 2406.15 3 3 5 804.15 ±351.99 274.00 ±120.00 1467.43 ±8.64

w 2413.67 10 20 25 97.26 ±51.51 263.00 ±138.00 185.81 ± 2.96 2418.48 83 20 97 172.80 ±20.50 470.00 ±54.10 184.52 ± 3.21 2467.31 188 20 97 151.48 ±6.32 496.00 ±19.00 153.25 ± 2.28

p6
b b 2406.26 3 1 1 2409.20 ±1139.88 265.00 ±126.00 4545.08 ±21.58 2405.50 3 5 90 500.78 ±161.57 319.00 ±102.00 786.45 ±7.99 2406.10 4 3 5 834.69 ±337.19 286.00 ±116.00 1461.01 ±10.91

w 2413.38 9 20 57 98.61 ±41.37 276.00 ±116.00 179.28 ± 3.56 2412.28 53 20 100 164.94 ±14.69 466.00 ±41.50 177.72 ± 2.93 2413.57 68 20 96 151.80 ±14.76 460.00 ±44.50 165.75 ± 2.65

p7
b b 2406.26 3 1 1 2409.20 ±1139.88 266.00 ±126.00 4537.74 ±19.61 2405.89 3 4 8 579.75 ±258.06 269.00 ±120.00 1078.19 ±9.46 2406.00 3 3 10 794.98 ±357.75 276.00 ±124.00 1444.56 ±11.10

w 2407.88 4 20 7 120.98 ±43.01 305.00 ±108.00 199.05 ± 3.68 2406.74 3 17 94 122.61 ±38.60 308.00 ±97.90 199.52 ± 2.68 2406.81 3 16 80 124.09 ±49.03 288.00 ±112.00 216.11 ± 3.66

p8
b b 2406.11 8 15 98 150.68 ±35.26 375.00 ±86.60 201.24 ±2.78 2405.27 3 6 49 438.89 ±134.62 323.00 ±98.80 680.12 ±8.18 2406.13 3 2 6 1151.34 ±506.62 261.00 ±115.00 2211.27 ±9.10

w 2413.18 166 19 87 129.02 ±24.78 405.00 ±78.70 159.77 ± 2.55 2441.56 192 19 94 183.98 ±17.90 469.00 ±44.60 196.63 ± 3.61 2499.37 216 20 99 140.40 ±6.43 497.00 ±20.50 141.86 ± 2.16

p9
b b 2406.26 3 1 1 2409.20 ±1139.88 265.00 ±126.00 4545.61 ±17.74 2405.38 3 7 67 378.58 ±102.32 336.00 ±90.40 565.26 ±5.85 2406.18 4 2 9 1249.82 ±500.35 288.00 ±116.00 2172.22 ±8.43

w 2413.88 7 20 22 83.43 ±51.81 226.00 ±141.00 185.27 ± 3.38 2419.38 112 20 99 175.25 ±11.37 482.00 ±30.70 182.51 ± 3.13 2477.83 192 20 94 143.97 ±5.96 497.00 ±20.10 145.50 ± 2.35

1 b = best BCO configuration,
w = worst BCO configuration.

2 Overall best solution; Best within its group (overall second best); Best within its group (overall third best);

306 Appendix B Tables and graphics

B.3 Bar-chart of instances

Figure B.8: Bar chart for Iogra100

B.3 Bar-chart of instances 307

Figure B.9: Bar chart for Iogra150

308 Appendix B Tables and graphics

Figure B.10: Bar chart for Iogra200

B.3 Bar-chart of instances 309

Figure B.11: Bar chart for Iogra250

310 Appendix B Tables and graphics

Figure B.12: Bar chart for Iogra300

B.3 Bar-chart of instances 311

Figure B.13: Bar chart for Iogra350

312 Appendix B Tables and graphics

Figure B.14: Bar chart for Iogra400

B.3 Bar-chart of instances 313

Figure B.15: Bar chart for Iogra450

314 Appendix B Tables and graphics

Figure B.16: Bar chart for Iogra500

	Acknowledgment
	Abstract
	Preliminaries
	Introduction
	Current topics in the field of meta-heuristics
	Motivation and goals of the thesis
	Structure of the thesis
	Publications and contributions
	Chapter summary

	Optimization problems and methods
	Introduction to optimization
	NP-hard problems
	Optimization problems

	Optimization methods
	Background
	Classification
	Heuristic methods

	Examples of optimization problems and their methodologies
	Scheduling problems
	Methods for P||Cmax
	Satisfiability problem
	k-SAT solvers

	Chapter summary

	Meta-heuristic methods
	Introduction to meta-heuristics
	Classification of meta-heuristics
	Nature- and bio-inspired methods
	Swarm intelligence

	Examples of meta-heuristics
	Simulated annealing
	Evolutionary computation and genetic algorithm
	Ant Colony Optimization
	Particle swarm optimization
	Artificial Bee Colony
	Tabu search
	Variable neighborhood search
	Final remarks

	Chapter summary

	Bee colony optimization method
	The development of BCO
	Bees in nature
	BCO model
	The evolution of BCO

	The BCO Algorithm
	Pseudo-code for BCO
	Variants of the BCO algorithm
	Backward pass and loyalty functions
	Comparing ABC, ACO and BCO
	Final remarks

	Chapter summary

	Methodology and contributions
	Theoretical analysis of the asymptotic convergence of the BCO method
	Motivation for theoretical analysis
	Instance- and model-based algorithms
	Theoretical background
	Best-so-far convergence
	Model convergence

	Convergence analysis of the BCO method
	Approximation of an optimal solution
	Generic BCO algorithm
	Various cases of the BCO algorithms

	Best-so-far convergence of BCO
	Model convergence of BCO
	Preliminary conditions for model convergence
	Model convergence of BCOc
	Model convergence of BCOi

	Final remarks
	Chapter summary

	Parallelization strategies for the BCO algorithm
	Motivation for parallelization of meta-heuristics
	Parallelization strategies of meta-heuristics
	Parallelization of ABC
	Parallelization of ACO

	Parallelization strategies of the BCO algorithm
	Independent execution of the BCO algorithms
	Synchronous cooperation of the BCO algorithms
	Asynchronous cooperation of the BCO algorithms

	Comparison of the results for parallel BCOc executions
	Experimental environment
	Test instances
	Comparison of independent BCOc executions
	Comparison of cooperative executions

	Final remarks
	Chapter summary

	Methodology of experimental study of BCO
	Motivation for empirical analysis
	Experimental study of meta-heuristics
	What is an experiment?
	Measure of performance
	Configuration methods
	Types of parameters
	Sensitivity analysis
	Reproducibility
	Statistical methods

	Experimental analysis of BCO
	Motivation of the BCO study
	Structure of the BCO study
	Categorizations of BCO parameters
	Hierarchy diagram of BCO parameters
	Experimental setup for BCO analysis
	Final remarks

	Chapter summary

	Development and empirical analysis of BCOc
	Sensitivity analysis of the BCOc algorithm
	Research goals
	Test instances
	The first BCOc for P||Cmax

	Candidate heuristics for P||Cmax
	Experimental evaluation of candidate heuristics
	Conclusions regarding the best heuristic

	Development of the BCOc algorithm for P||Cmax
	Experimental methodology
	Design of BCOc forward pass
	Design of BCOc backward pass: qualitative parameters
	Collection of results

	Screening BCOc parameters: basic plots
	3-D plots: qualitative parameters
	2-D plots: quantitative parameters

	Statistical analysis: hypothesis testing
	Stopping criterion: Nit
	Case study: the best loyalty function
	Case study: the effect of ME

	Stopping criterion: CPU time
	Case study: the best loyalty function
	Case study: the effect of ME

	Recruitment dynamics
	Final remarks
	Chapter summary

	Development and experimental analysis of BCOi
	Sensitivity analysis of the BCOi algorithm
	Research goals
	Swarm intelligence for SAT
	Problem instances
	Experimental methodology

	Candidate heuristics for 3-SAT
	Experimental evaluation of candidate solvers
	Final remarks and conclusions for candidate heuristics

	Development of BCOi for 3-SAT
	Design of the BCOi algorithm
	Backward pass of randBCOi and WalkBCOi

	Empirical study of randBCOi
	Case study: randBCOi for uf100-430
	Case study: randBCOi for uf50-218
	Conclusions for randBCOi

	Experimental study of WalkBCOi
	Case study: Evaluation function ev1
	Case study: Evaluation function ev2
	Conclusions for walkBCOi

	Final remarks
	Chapter summary

	Conclusions and future work
	Concluding remarks
	Future work

	Bibliography
	Complementary material
	Empirical study of BCOc
	Time measurement
	Box-plots
	Candidate heuristics for P||Cmax
	Comparative study of candidate heuristics
	Experimental evaluation of the best heuristic: sLPT+BF

	The BCO algorithm
	BCOc for P||Cmax: calculate constructive moves
	Choice of reference case: heuristic vs. NC=1

	Statistical analysis of BCOc
	Preliminaries
	Repeated measures ANOVA
	Ranking R procedure for ME

	Empirical study of BCOi
	SATLIB
	Number of transformations

	Tables and graphics
	Empirical study of BCOc
	Analysis of the bestfit heuristic
	BCOc: response landscape for two methods of evaluation
	Comparison of 3-D surface plots
	Case study: Maximal allowed CPU time

	Tables and Figures
	Performance table

	Bar-chart of instances

