Extending Kamp’s Theorem to Model Time Granularity

ANGELO MONTANARI, Dipartimento di Matematica e Informatica, Università di Udine, Via delle Scienze 206, 33100 Udine, Italy. E-mail: montana@dimi.uniud.it

ADRIANO PERON, Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Via Cintia, 80126 Napoli, Italy. E-mail: peron@na.infn.it

ALBERTO POLICRITI, Dipartimento di Matematica e Informatica, Università di Udine, Via delle Scienze 206, 33100 Udine, Italy. E-mail: policrit@dimi.uniud.it

Abstract

In this paper, a generalization of Kamp's theorem relative to the functional completeness of the 'until' operator is proved. Such a generalization consists in showing the functional completeness of more expressive temporal operators with respect to the extension of the first-order theory of linear orders $MFO[<]$ with an extra binary relational symbol. The result is motivated by the search of a modal language capable of expressing properties and operators suitable to model time granularity in ω-layered temporal structures.

Keywords: Kamp's theorem, linear temporal logic, functional completeness, time granularity.

1 Introduction

One of the most important results in temporal logic is Kamp’s theorem on the functional completeness of the so-called (strict) 'until' operator [8]. Kamp’s theorem guarantees that any formula of the monadic first-order theory of linear orders $MFO[<]$ can be rewritten as a temporal formula using only the until operator. The result has been re-proved and generalized in many different ways (cf. [2, 6, 7]), e.g. by adding properties to the class of models for the underlying first-order language of linear orders. A particularly elegant approach is that proposed by Immerman and Kozen [7], which uses pebble games and Gabbay’s result on the first-order completeness of theories enjoying the k-variable property [5]. In this paper, we present a new kind of extension based on the addition of relational operators to $MFO[<]$. In order to prove our result we need to introduce more expressive temporal operators, that we called 'stereo' operators, capable of expressing properties of 'pairs' of segments of the underlying linear model (stereo-intervals).

Our results are motivated by the search of a formalism suitable to represent time granularity. The ability of providing and relating temporal representations at different ‘grain levels’ of the same reality is widely recognized as an important research theme for temporal logic and a major requirement for many applications, including formal specifications, artificial intelligence, temporal databases, and data mining [1, 3, 4, 13, 14]. As for the area of formal
specifications, the explicit representation of time granularity makes it possible to specify in
a concise way reactive systems whose behaviour can be naturally modelled with respect to a
(possibly infinite) set of differently-grained temporal domains. This is the case, for instance,
of the wide-ranging class of real-time reactive systems whose components have dynamic
behaviours regulated by very different—even by orders of magnitude—time constants, e.g.
days, hours, and seconds (called granular reactive systems in [9]). To explicitly represent
time granularity we put forward a number of results whose common denominator is the in-
trduction of a layered temporal structure capable to characterize the different grains we wish
to model [9, 10, 11]. A systematic framework for time granularity can be found in [9]. It
is based on a many-level view of temporal structures that replaces the flat temporal domain
of Propositional Linear Time Logic (PLTL hereafter) by a temporal universe consisting of
a (possibly infinite) set of differently-grained temporal domains. The theory of n-layered
(there exist exactly n temporal domains) k-refinable (each time point can be refined into k
time points of the immediately finer temporal domain, if any) temporal structures for time
granularity, with matching decidability results, has been investigated in [11]. The theory of
(k-refinable) upward unbounded layered structures, that is, ω-layered structures consisting of
a finest temporal domain together with an infinite number of coarser and coarser domains,
and the theory of (k-refinable) downward unbounded layered structures, that is, ω-layered
structures consisting of a coarsest domain together with an infinite number of finer and finer
domains, have been studied in [10].

In this paper, we focus on the problem of providing the first-order fragment of the the-
ory of 2-refinable upward unbounded layered structures with a temporal logic counterpart
(the generalization to k > 2 is straightforward). A (finite portion of a) 2-refinable upward
unbounded layered structure is depicted in Figure 1. Each layer T^n of the structure is isomor-
phic to $\langle \mathbb{N}, < \rangle$ and each time point—except for the ones belonging to the finest layer—can be
decomposed into two time points of the immediately finer one, thus connecting the elements of
the temporal structure into a rootless, perfectly-balanced binary tree. A total order of time
points is induced by the in-order visit of the tree-like structure. The theory of 2-refinable
upward unbounded layered structures, denoted by $MSO[<, \downarrow_0, \downarrow_1]$ (the notation is borrowed
from [16]), is a monadic second-order theory with equality endowed with the binary relation
symbols $<, \downarrow_0$, and \downarrow_1. In [10], we prove that $MSO[<, \downarrow_0, \downarrow_1]$ is (non-elementarily)
decidable by encoding its layered models into standard linear models. Such linear models,
however, need to be equipped with a language including some extra predicate (besides $<$)

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{A 2-refinable upward unbounded layered structure}
\end{figure}
that provides them with the ability of switching across layers of the original model. Such an extra relation symbol is called flip, since its second argument can be obtained by flipping the least significant digit of the binary representation of its first argument. In [10], we show that the monadic second-order theory \(\text{MSO}[\prec, \text{flip}] \), interpreted over standard linear orders, is exactly as expressive as \(\text{MSO}[\prec, 0, 1] \). In this paper, we prove the functional completeness of stereo operators with respect to the predicate \text{flip}. More precisely, we prove that the temporal logic of stereo operators is expressively complete with respect to the first-order fragment \(\text{MFO}[\prec, \text{flip}] \) of \(\text{MSO}[\prec, \text{flip}] \). Such a result also provides a temporal logic counterpart to the first-order fragment \(\text{MFO}[\prec, 0, 1] \) of \(\text{MSO}[\prec, 0, 1] \), since \(\text{MFO}[\prec, \text{flip}] \) is at least as expressive as \(\text{MFO}[\prec, 0, 1] \), as it will be shown in the next section. As in the case of PLTL, the functional completeness of stereo operators is intimately related to a separation property (with respect to stereo-intervals). Such a separation property is expressed by a suitable normal form for \(\text{MFO}[\prec, \text{flip}] \)-formulas which generalizes the normal form for \(\text{MFO}[\prec] \)-formulas outlined in [2]. Since the functional completeness result we are going to establish seems to be ultimately based on simple basic properties of the \text{flip} relation (parenthesis-like properties), we believe that it is worth investigating the expressive completeness of the general class of relational operators sharing these properties.

The paper is organized as follows. We start by giving some basic definitions and results in Section 2. Then, we introduce the notion of stereo-interval (Section 3), together with the corresponding stereo operators (Section 4). The expressive completeness of stereo operators is proved in Section 6, on the basis of the normal form theorem given in Section 5. At the end, we provide an assessment of the work done and outline future research directions. In the Appendix, we report the proofs of the most technical results.

2 On the relationships between linear and layered structures

The temporal structure underlying \text{PLTL} is the set of natural numbers \(\mathbb{N} \) with their usual ordering \(\prec \), denoted \((\mathbb{N}, \prec) \). Given a set of (atomic) proposition symbols \(AP \), a linear time model is a tuple \(\alpha = (\mathbb{N}, \prec, (Q_p)_{p \in AP}) \), where, for every \(p \in AP, Q_p \subseteq \mathbb{N} \). For each \(p \in AP, Q_p \) identifies the positions at which \(p \) holds. A linear time model \(\alpha \) can be alternatively expressed as an infinite word over the alphabet \(\text{PowerSet}(AP) \). Accordingly, for all \(i \in \mathbb{N} \), we will write \(\alpha(i) \) to denote the set \(\{ p : i \in Q_p \} \).

The theory of upward unbounded layered structures \(\text{MSO}[\prec, 0, 1] \) is a monadic second-order theory with equality, endowed with the binary relation symbols \(\prec, 0, \text{and } 1 \). The second-order language of \(\text{MSO}[\prec, 0, 1] \) is defined as follows. The vocabulary consists of individual variable symbols \(x, y, z, \ldots \), proposition (set variable) symbols \(p_1, \ldots, p_n \), and the binary relation symbols \(\prec, 0, \text{and } 1 \). Atomic formulas are of the forms \(x = y, p_i(x), x \prec y, \) and \(1 \) (\(x, y \)), where \(x \) and \(y \) are individual variables and \(i = 1, 2 \). Formulas are obtained from atomic formulas by using the Boolean connectives \(\land, \lor, \neg, \text{and } \rightarrow \), and the quantifiers \(\exists \) and \(\forall \) ranging over both individual and set variables. The relation symbol \(\prec \) is interpreted as the total ordering over the upward unbounded layered structure induced by the in-order visit of the tree-like structure, while the relation symbols \(1 \) and \(0 \) are interpreted as the left and right child functions, respectively. Since both \(1 \) and \(0 \) are functional in nature, in the following we will often write \(0 (x) = y \) (resp. \(1 (x) = y \)) for \(0 (x, y) \) (resp. \(1 (x, y) \)). Formulas of \(\text{MSO}[\prec, 0, 1] \) are interpreted in the usual way.

In [10], we describe in detail how the basic temporal operators for time granularity, namely, the displacement, contextualization, and projection operators, can be defined in
Extending Kamp’s Theorem to Model Time Granularity

\[MSO[<, \downarrow_0, \downarrow_1] \]

As an example, we report the definition of the unary predicate \(\Delta_0 \) holding at the origin of each layer. The predicate \(\Delta_0 \) is interpreted as the set of all and only the elements belonging to the left-edge of an upward unbounded layered structure, which is defined as the least set containing the element \(0_0 \) and all its ancestors \(0_1, 0_2, \ldots \) (cf. Figure 1). This predicate can be defined in \(MSO[<, \downarrow_0, \downarrow_1] \) as follows. Given a second-order formula \(\phi(p) \), with free set variable \(p \), let \(\mu(\phi(p))(x) \) be the following second-order formula, with free individual variable \(x \):

\[\exists p(p(x) \land \phi(p) \land \forall q(\phi(q) \rightarrow \forall y(p(y) \rightarrow q(y)))) \]

\(\mu(\phi(p))(x) \) evaluates to true if and only if the valuation for \(x \) belongs to the smallest valuation for \(p \) for which \(\phi(p) \) holds true. Using the operator \(\mu, \Delta_0(x) \) can be expressed as follows:

\[\mu(p(0) \land \forall y, z((p(z) \land \downarrow_0(y) = z) \rightarrow p(y)))(x), \]

where \(p(0) \) is a shorthand for \(\exists y(p(y) \land \forall z(y \leq z)) \). It is easy to verify that such a formula captures the smallest interpretation for \(p \) which contains \(0_0 \) and it is closed parent-wise.

Further, we prove that \(MSO[<, \downarrow_0, \downarrow_1] \) is strictly more expressive than \(MSO[<] \), and we show how to embed it into \(MSO[<, \text{flip}] \), a proper extension of \(MSO[<] \) with the binary relation symbol \(\text{flip} \). The language of \(MSO[<, \text{flip}] \) is defined in the standard way. The domain of interpretation is the set of natural numbers \(\mathbb{N} \). The relational symbol \(< \) is interpreted as the usual ordering over \(\mathbb{N} \), while the relational symbol \(\text{flip} \) is interpreted as a unary function \(\text{flip} \), which, for any natural number \(x > 0 \), returns the natural number \(x - x' \), where \(x' \) is the least power of 2, with a non-null coefficient, that occurs in the binary representation of \(x \).

Definition 2.1 (The function \(\text{flip} \))

The function \(\text{flip} : \mathbb{N}^+ \rightarrow \mathbb{N} \) is such that, for all \(x \in \mathbb{N}^+ \),

\[\text{flip}(x) = y \text{ iff } x = \sum_{j=0}^{n} 2^{j}, \text{ with } i_n > i_{n-1} > \ldots > i_0 \geq 0, \text{ and } y = x - 2^{i_0}. \]

The function \(\text{flip} \) is not defined for \(x = 0 \); however, totality can be recovered by extending it with \(\text{flip}(0) = 0 \). Furthermore, it is useful to add a maximum element \(\infty \) to \(\mathbb{N} \), with \(\text{flip}(\infty) = 0 \). A graphical representation of the function \(\text{flip} \) is given in Figure 2.

\[^1 \text{Notice that } \text{flip}(x) < x, \text{ for all } x \in \mathbb{N}^+, \text{ and } \text{flip}(x) \leq x, \text{ for all } x \in \mathbb{N}. \text{ Later, we will often use these properties of } \text{flip} \text{ to simplify definitions.} \]
An embedding of \(MSO[\prec, \downarrow_0, \downarrow_1]\) into \(MSO[\prec, \text{flip}]\) can be obtained as follows [10]. First, it is possible to show that any two (2-refinable) upward unbounded layered structures are isomorphic, by defining a simple correspondence \(f\) that maps each element of the first structure into an element of the second one, preserving projection and ordering relations. As an easy consequence, we have that any given formula \(\phi(p_1, \ldots, p_n)\), where \(p_1, \ldots, p_n\) are the set variables occurring free in \(\phi\), is satisfiable under an interpretation \(p_1^x, \ldots, p_n^x\) if and only if it is satisfiable under the interpretation \(f(p_1^x), \ldots, f(p_n^x)\). This allows one to replace the class of upward unbounded layered structures by a (unique) suitable concrete structure which can be easily encoded into \(\mathbb{N}\). Such a concrete upward unbounded layered structure is defined as follows:

- for all \(i \geq 0\), the \(i\)th layer \(T^i\) is the set \(\{2^i + n2^{i+1} : n \geq 0\} \subseteq \mathbb{N}\);
- for every element \(x = 2^i + n2^{i+1}\) belonging to \(T^i\), with \(i \geq 1\), \(\downarrow_0 (x) = 2^i + n2^{i+1} - 2^{i-1} = 2^{i-1} + 2n2^i\) and \(\downarrow_1 (x) = 2^i + n2^{i+1} + 2^{i-1} = 2^{i-1} + (2n + 1)2^i\);
- \(<\) is the usual ordering over \(\mathbb{N}\).

A fragment of this concrete structure is depicted in Figure 3. Notice that all odd numbers are associated with layer \(T^0\), while even numbers are distributed over the remaining layers. Notice also that the labelling of the concrete structure does not include the number 0. In the following, we will see that it is convenient to consider 0 as the label of the first node of an imaginary additional finest layer, whose remaining nodes are not labelled (notice that the node with label 0 turns out to be the left son of the node with label 1).

Both relations \(\downarrow_0\) and \(\downarrow_1\) can easily be encoded in terms of the function \(\text{flip}\) as follows. For any given even number \(x\),

\[
\downarrow_0 (x) = \max \{y : y < x, \text{flip}(y) = \text{flip}(x)\}, \quad \text{and} \\
\downarrow_1 (x) = \max \{y : \text{flip}(y) = x\}. \quad (2.1)
\]

By exploiting such a correspondence, it is possible to define a translation \(\tau\) of \(MSO[\prec, \downarrow_0, \downarrow_1]\)-formulas into \(MSO[\prec, \text{flip}]\)-formulas such that, for any formula \(\phi \in MSO[\prec, \downarrow_0, \downarrow_1]\), \(\phi\) is satisfiable if and only if \(\tau(\phi) \in MSO[\prec, \text{flip}]\) is satisfiable.

In [12], Monti and Peron prove that \(MSO[\prec, \text{flip}]\) is strictly more expressive than \(MSO[\prec]\) and that it is (non-elementarily) decidable. By exploiting the proposed embedding of \(MSO[\prec, \downarrow_0, \downarrow_1]\) into \(MSO[\prec, \text{flip}]\), the decidability of \(MSO[\prec, \downarrow_0, \downarrow_1]\) immediately follows from the decidability of \(MSO[\prec, \text{flip}]\). The same expressiveness relationships...
Given that both \(MFO[\leq] \) and \(MFO[\leq, flipl, \downarrow_0, \downarrow_1] \) are strictly more expressive than \(MFO[\leq] \) (the first-order fragment of \(MSO[\leq] \)). As an example, it is well known that the property which states that a given predicate \(p \) holds true at all odd time points is not expressible in \(MFO[\leq] \) [17]. On the contrary, such a property can easily be captured in \(MFO[\leq, flipl] \) (as well as in \(MFO[\leq, \downarrow_0, \downarrow_1] \), as shown in [10]) by means of the following formula:

\[
\forall x((\neg \exists y flipl(y) = x) \rightarrow p(x)).
\]

As another example, unlike \(MFO[\leq] \), \(MFO[\leq, flipl] \) allows one to constrain a predicate \(p \) to be satisfied at a time point \(i \) only if \(i \) is a power of two. This condition can be captured by means of the following \(MFO[\leq, flipl] \)-formula:

\[
\forall x(p(x) \rightarrow \exists y(flipl(x) = y \land y = 0)),
\]

where \(y = 0 \) is a shorthand for \(\neg \exists z(z < y) \).

Finally, it is not difficult to show that \(MFO[\leq, flipl] \) is at least as expressive as \(MFO[\leq, \downarrow_0, \downarrow_1] \). Both expressions (2.1) and (2.2) are indeed first-order definable:

\[
\begin{align*}
\downarrow_0 (x) = y & \iff y < x \land flipl(y) = flipl(x) \land \neg \exists z(y < z \land z < x \land flipl(z) = flipl(x)); \\
\downarrow_1 (x) = y & \iff flipl(y) = x \land \neg \exists z(y < z \land flipl(z) = x).
\end{align*}
\]

The relationships among the various temporal theories and logics are summarized in Figure 4, where \(UUTL \) denotes the proposed temporal logic for time granularity.

3 Replacing intervals by stereo-intervals

In order to prove the expressive completeness of the \(UUTL \) operators with respect to \(MFO[\leq, flipl] \), we first need to introduce a generalized notion of interval, called stereo-interval. Later on, we will show that the relationships between stereo-intervals and \(UUTL \) operators is analogous to the relationships between intervals and the classical until operator \(U \).

DEFINITION 3.1 (Stereo-interval)

Given \(x_1, x_2, x_3, \) and \(x_4 \) belonging to \(\mathbb{N} \), the stereo-interval \([x_1, x_2] - [x_3, x_4] \) is the set \(\{ x : x_1 \leq x \leq x_2 \lor x_3 \leq x \leq x_4 \} \), with \(x_1 \leq x_2, x_2 \leq x_3, \) and \(x_3 \leq x_4 \).

For the sake of simplicity, we assume, and unless otherwise said we will always do, that \(x_1 \neq x_4 \). Moreover, we will write \([x_1, x_4] \) for \([x_1, x_2] - [x_3, x_4] \), whenever \(x_2 = x_3 \) (degenerate stereo-intervals or mono-intervals). In the following, we will often use the term
stereo-interval to designate both proper and degenerate stereo-intervals. Finally, we will write \([x_1, x_2] = [x_3, x_4]\) (resp. for \([x_1, x_2] - [x_3, x_4]\)) for the set \(\{x : x_1 \leq x \leq x_2 \text{ or } x_3 \leq x \leq x_4\}\) (resp. \(\{x : x_1 \leq x < x_2 \text{ or } x_3 \leq x \leq x_4\}\)). In particular, we will write \([x_1, x_2] - [x_3, x_3]\) (resp. \([x_1, x_1] - [x_3, x_4]\)) for \([x_1, x_2] - [x_3, x_4]\)

The addition to the domain of a new element \(\infty\), such that, for all \(x \in \mathbb{N}\), \(x < \infty\), allows us to define right unbounded intervals. Hereafter, we write \([x_1, \infty] = [x_3, \infty]\) to denote the stereo-interval whose elements \(x\) satisfy either the condition \(x_1 \leq x \leq x_2\) or the condition \(x_3 \leq x\).

Definition 3.2 (Composition of stereo-intervals)

The composition of two stereo-intervals \([x_1, x_2] - [x_3, x_4]\) and \([x_1', x_2'] - [x_3', x_4']\), where \(x_1' = x_2\) and either \(x_3' = x_3\) or \(x_3' = 1 + x_3\), denoted by \([x_1, x_2] - [x_3, x_4]\) \(\sqcup\) \([x_1', x_2'] - [x_3', x_4']\), is the stereo interval \([x_1, x_2'] - [x_3', x_4]\).

Notice that the composition of two stereo-intervals is just the set-theoretic union of the two suitable pairs of convex intervals.

Definition 3.3 (Weakly flip-closed stereo-interval)

A stereo-interval \([x_1, x_2] - [x_3, x_4]\) is weakly flip-closed if and only if it satisfies the following two conditions:

(i) for each \(x \in [x_1, x_2] - [x_3, x_4]\), \(\text{flip}(x) \in [x_1, x_2] - [x_3, x_4]\);

(ii) for each \(x \notin (x_1, x_2] - [x_3, x_4]\), \(\text{flip}(x) \notin (x_1, x_2] - [x_3, x_4]\).

If \([x_1, x_2]\) is not empty, then the least element of \([x_1, x_2] - [x_3, x_4]\) is \(x_1\); otherwise, it is \(x_3\). From the properties of \(\text{flip}(\cdot)\), it follows that a stereo-interval \([x_1, x_2] - [x_3, x_4]\) is weakly flip-closed only if, for all \(x_1 < x \leq x_2\), it holds that \(x_1 \leq \text{flip}(x) < x_2\) and, for all \(x_3 < x \leq x_4\), it holds that either \(x_1 \leq \text{flip}(x) \leq x_2\) or \(x_3 \leq \text{flip}(x) < x_4\). Moreover, if \(x_1 \neq x_3\), then \(x_1 \leq \text{flip}(x_3) \leq x_2\). In particular, given a weakly flip-closed stereo-interval \([x_1, x_2] - [x_3, x_4]\), \(x_4 = \infty\) implies \(x_1 = 0\).

The following flip-closure properties of stereo-intervals can be easily proved (for the sake of brevity, we will omit the term weakly).

Proposition 3.4 (Flip-closure properties I)

(a) If \([x_1, x_4]\) is flip-closed, then \([x_1, x_4']\) is flip-closed, for all \(x_1 \leq x_4' \leq x_4\);

(b) If \([x_1, x_2] - [x_3, x_4]\) is flip-closed, then \([x_1, x_2'] - [x_3, x_4]\) is flip-closed, for all \(x_2 \leq x_2' \leq x_3\);

(c) If \([x_1, x_2] - [x_3, x_4]\) is flip-closed, \(v \in [x_1, x_2]\), \(w \in [x_3, x_4]\), and \(\text{flip}(w) = v\), then both \([x_1, v] - [w, x_4]\) and \([v, x_2] - [x_3, w]\) are flip-closed.

Below, we will rely on the following properties to build flip-closed mono- and stereo-intervals.

Proposition 3.5 (Flip-closure properties II)

(d) If \(\text{flip}(x_4) = x_1\), then \([x_1, x_4]\) is a flip-closed mono-interval;

(e) If \(\text{flip}(x_1) = x_1\) and \(\text{flip}(x_3) = x_2\), then \([x_1, x_2] - [x_3, x_4]\) is a flip-closed stereo-interval.

In order to prove our main result, we will focus on a proper subset of the set of weakly flip-closed stereo-intervals, which is based on the following notion of break point. For any
given point \(x \), we say that \(y > x \) is a \textit{jump} for \(x \) if and only if \(\text{flip}(y) < x(y < y) \). Given a pair \((x, y)\) of flip-related points, that is, \(\text{flip}(y) = x \), a \textit{break point} \(z \), with \(x < z < y \), is a point for which there exists no jump \(w \), with \(x < w < y \). We will denote any break point \(z \) of a flip-related pair of points \((x, y)\) by \(\text{BreakP}_{x,y}(z) \). For instance, the break points generated by the interval \((0, 16)\) are \(8, 12, 14, \) and \(15 \) (cf. Figure 2). In general, given \(x \) and \(y \) such that \(\text{flip}(y) = x \) and \(y = 2^{n_1} + \ldots + 2^{n_k} \), with \(n_k > \ldots > n_0 \), the break points of \((x, y)\) are the points \(x_i = y - 2^i \), with \(0 \leq i \leq n_0 \). In the following, we will often write \(\text{BreakP}(x, y) \) as a shorthand for \(\exists z, w(z < x < y < w \land \text{flip}(w) = z \land \text{BreakP}_{z,w}(x) \land \text{BreakP}_{z,w}(y)) \).

Definition 3.6 (Strongly flip-closed stereo-interval)
A (non-degenerate) stereo-interval \([x_1, x_2] - [x_3, x_4]\) is strongly flip-closed if and only if it satisfies the following two conditions:

1. \(\text{flip}(x_3) = x_2 \) and
2. either \(x_4 = \infty \) or \(\text{BreakP}(x_1, x_4) \) or there exists \(w \) such that \(\text{BreakP}_{x_1, w}(x_4) \).

The definition of strongly flip-closed mono-interval \([x_1, x_4]\) is obtained by removing condition 1.

From Definition 3.6, it follows that there exists a chain of flip-related points from \(x_4 \) to \(x_1 \), that is, there exist \(y_1 \ldots y_n \) such that \(y_1 = x_1 \), \(y_n = x_4 \), and \(\text{flip}(y_i) = x_{i+1} \), for all \(2 \leq i \leq n \). It is not difficult to prove that Definition 3.6 implies Definition 3.3, but not vice versa. As an example, the stereo interval \([0, 13] - [14, 16]\) is flip-closed according to Definition 3.3, but not according to Definition 3.6. In the following, we will always use the expression flip-closed intervals to refer to strongly flip-closed intervals.

Flip-closed mono- and stereo-intervals can be interpreted in terms of the concrete upward unbounded layered structure (cf. Figure 3) as follows. If \(\text{BreakP}(x_1, x_2) \), the mono-interval \([x_1, x_2]\) consists of the element of the tree rooted in \(x_1 \), devoid of the elements of the left subtree of \(x_1 \) and of the elements of the right subtree of \(x_2 \). Notice that \(\text{BreakP}(x_1, x_2) \) holds whenever \(x_1 \) and \(x_2 \) belong to the same right path, that is, to a path involving only right son edges. This is the case, for instance, of mono-intervals \([10, 11]\), with \(z = 8 \) and \(w = 12 \), and \([8, 14]\), with \(z = 0 \) and \(w = 16 \). If there exists \(w \) such that \(\text{BreakP}_{x_1, w}(x_2) \), the set of elements of the mono-interval \([x_1, x_2]\) is the union of the singleton \(\{x_1\} \) and the set of elements of the left subtree of \(w \), devoid of the elements of the right subtree of \(x_2 \). This is the case, for instance, of mono-intervals \([8, 11]\), with \(w = 12 \), and \([8, 10]\), with \(w = 12 \). Finally, the elements of a stereo-interval \([x_1, x_2] - [x_3, x_4]\) are the elements of the mono-interval \([x_1, x_4]\), determined according to the above rules, devoid of the elements of the left subtree of \(x_3 \). This is the case, for instance, of the stereo-intervals \([8, 12] - [14, 14]\), with \(z = 0 \) and \(w = 16 \), and \([0, 8] - [12, 16]\), with \(w = 32 \).

A deeper understanding of the relationships between the structure of the function \(\text{flip} \) (cf. Figure 2) and the concrete 2-refinable upward unbounded layered structure (cf. Figure 3) can be achieved by assigning a meaning to (suitable) paths over the layered structures in terms of the \(\text{flip} \). Formally, let us define \(y \) a \textit{left} (resp. \textit{right}) \textit{ancestor} of \(x \) if \(y(\neq x) \) is an ancestor of \(x \) and the path from \(y \) to \(x \) starts with a left (resp. right) edge, that is, \(x \) belongs to the left (resp. right) subtree of \(y \). Let \(y(\neq x) \) be a left (resp. right) ancestor of \(x \). The path connecting \(y \) to \(x \) is called a left (resp. right) path if all its edges are left (resp. right) edges.

The elements \(x_1 < x_2 < \ldots < x_n \) of any given (descending) left path of the concrete layered structure have the same \(\text{flip} \), that is, \(\text{flip}(x_1) = \text{flip}(x_2) = \ldots = \text{flip}(x_n) \).
The semantics of a temporal logic for time granularity

Let be a set of atomic proposition symbols. The propositional (modal) language of \(\mathit{UUTL} \) consists of the set of formulas generated by the following rules:

1. each symbol in \(\mathit{AP} \) is in \(\mathit{UUTL} \);
2. if \(\phi_1 \) and \(\phi_2 \) are in \(\mathit{UUTL} \), then \(\phi_1 \land \phi_2 \) and \(\neg \phi_1 \) are in \(\mathit{UUTL} \);
3. if \(\phi_1, \phi_2, \phi_3, \psi_1, \psi_2, \) and \(\psi_3 \) are in \(\mathit{UUTL} \), then \(\psi_1 \cdot \phi_1 U \psi_2 \land \psi_3 U \phi_2 \cdot \phi_3, \psi_1 \lor \psi_2, \) and \(\psi_1 \cdot \psi_2 \lor \psi_3 \) are in \(\mathit{UUTL} \).

We will use the standard abbreviations \(\phi_1 \lor \phi_2 \) and \(\phi_1 \rightarrow \phi_2 \) for \(\neg (\neg \phi_1 \land \neg \phi_2) \) and \(\neg \phi_1 \lor \phi_2 \), respectively.

A formula is called \(\text{general} \) if it is a Boolean combination of formulas of the forms \(\psi_1 \cdot \phi_1 U \psi_2 \land \psi_3 U \phi_2 \cdot \phi_3, \) and \(\psi_1 \cdot \psi_2 \lor \psi_3 \).

Any \(\mathit{UUTL} \)-formula is interpreted over initial segments of \(\mathbb{N} \). In addition, general formulas are also interpreted over \(\mathbb{N} \). Let \(\alpha \) be a linear time model. For all \(x \in \mathbb{N} \), we denote the prefix of \(\alpha \) over the interval \([0, x] \) by \(\langle \alpha, x \rangle \). Accordingly, we alternatively denote the whole model \(\alpha \) by \(\langle \alpha, \infty \rangle \).

Definition 4.2 (Temporal logic—semantics)
The semantics of \(\mathit{UUTL} \)-formulas is defined as follows:

1. \(\langle \alpha, x \rangle \models p \) iff \(p \in \alpha(x) \), for \(p \in \mathit{AP} \);
2. \(\langle \alpha, x \rangle \models \phi_1 \land \phi_2 \) iff \(\langle \alpha, x \rangle \models \phi_1 \) and \(\langle \alpha, x \rangle \models \phi_2 \).
3. \(\langle \alpha, \infty \rangle \models \phi_1 \land \phi_2 \) iff \(\langle \alpha, \infty \rangle \models \phi_1 \) and \(\langle \alpha, \infty \rangle \models \phi_2 \), where \(\phi_1 \) and \(\phi_2 \) are general formulas;
4. \(\langle \alpha, x \rangle \models \neg \phi_1 \) iff it is not the case that \(\langle \alpha, x \rangle \models \phi_1 \);
5. \(\langle \alpha, \infty \rangle \models \neg \phi_1 \) iff it is not the case that \(\langle \alpha, \infty \rangle \models \phi_1 \), where \(\phi_1 \) is a general formula;
6. \(\langle \alpha, x \rangle \models \psi_1 \cdot \psi_2 - \psi_3 U \psi_2 \cdot \psi_3 \) iff
 \(\exists x_1, x_2, x_3 (x_3 < x \land flip(x) = x_1 \land flip(x_3) = x_2 \land \bigwedge_{i=1}^{3} \langle \alpha, x_i \rangle \models \psi_1 \land \forall y((x_1 < y < x_2 \rightarrow \langle \alpha, y \rangle \models \phi_1) \land (x_1 < y < x \rightarrow (\langle \alpha, y \rangle \models \phi_2 \land (\exists z (x_1 \leq z \leq x_2 \land flip(y) = z) \rightarrow \langle \alpha, y \rangle \models \psi_3))))); \)
7. \(\langle \alpha, \infty \rangle \models \psi_1 \cdot \psi_2 - \psi_3 U \psi_2 \cdot \psi_3 \) iff
 \(\langle \alpha, 0 \rangle \models \psi_1 \land \exists x_2, x_3 (flip(x_3) = x_2 \land \langle \alpha, x_2 \rangle \models \psi_2 \land \langle \alpha, x_3 \rangle \models \psi_3 \land \forall y((0 < y < x_2 \rightarrow \langle \alpha, y \rangle \models \phi_1) \land (y > x_3 \rightarrow (\langle \alpha, y \rangle \models \phi_2 \land (\exists z (0 \leq z \leq x_2 \land flip(y) = z) \rightarrow \langle \alpha, y \rangle \models \psi_3))))); \)
8. \(\langle \alpha, x \rangle \models \psi_1 \circ \psi_2 \) iff
 \(\exists x_1 (x_1 < x \land BreakP(x_1, x) \land \langle \alpha, x_1 \rangle \models \psi_1 \land \forall y((x_1 < y < x \land BreakP(y, x)) \rightarrow \langle \alpha, y \rangle \models \psi_2)); \)
9. \(\langle \alpha, x \rangle \models \psi_1 \circ \psi_2 \) iff
 \(\exists x_1 (x_1 < x \land flip(x) = x_1 \land \langle \alpha, x_1 \rangle \models \psi_1 \land \forall y(x_1 < y < x \rightarrow (\langle \alpha, y \rangle \models \psi_2 \lor (\exists u (x_1 \leq z < y < u < x \land flip(u) = z \land \langle \alpha, u \rangle \models \psi_3)))); \)
10. \(\langle \alpha, 0 \rangle \models \psi_1 \circ \psi_2 \) iff
 \(\exists x_1 (x_1 < x \land flip(x) = x_1 \land \langle \alpha, x_1 \rangle \models \psi_1 \land \forall y(y > 0 \rightarrow (\langle \alpha, y \rangle \models \psi_2 \lor (\exists u (0 \leq z < y < u \land flip(u) = z \land \langle \alpha, u \rangle \models \psi_3)))); \)

Notice that, from the pair of conditions \(x_1 < x \) and \(flip(x) = x_1 \) of clause (9), it follows that any formula of the form \(\psi_1 \circ \psi_2 \) can never be satisfied in \(0 \). Since the initial position \(0 \) is the only position that does not satisfy \(True \cdot True \uparrow True \), it can be characterized by means of the formula \(\neg (True \cdot True \uparrow True) \). In the following, we will use \(0 \) as a shorthand for \(\neg (True \cdot True \uparrow True) \).

A common feature of the stereo operators \(UU, \circ, \uparrow \) is that, when evaluated at a given point \(x \), they look backwards in time. This reflects the fact that the relation \(flip \) is functional only towards the past. A graphical account of the semantics of the formula \(\psi_1 \cdot \psi_1 U \psi_2 - \psi_3 U \psi_2 \cdot \psi_3 \) is given in Figure 5. The operator \(UU \) generalizes the classical until operator \(U \) to cope with stereo-intervals (the name of the logic, \(UUTL \), is borrowed from its most significant operator \(UU \)). Point \(x_1 \), at which \(\psi_1 \) holds, represents the starting point of an interval over which a classical \(\psi_1 U \psi_2 \)-formula holds. Point \(x \) is the starting point of an interval satisfying (backwards) \(\phi_2 U \psi_3 \), that is, of an interval satisfying \(\phi_2 S \psi_3 \). Moreover, the \(flip \) operator forces \(x_1 \) and \(x \), as well as \(x_2 \) and \(x_3 \), to be flip-related. Finally, \(\psi_3 \) holds at all time points in between \(x_3 \) and \(x \) which are flip-related to time points located between \(x_1 \) and \(x_2 \). The semantics of the formula \(\psi_1 \circ \psi_2 \) is depicted in Figure 6. The operator \(\circ \) is a sort of since operator \(S \) over break points. Points \(x_1 \) and \(x \), with \(x_1 < x \), are both break points of a pair of flip-related points \(z \) and \(w \), with \(z < x_1 \) and \(x < w \), \(\psi_1 \) holds at \(x_1 \), and \(\psi_2 \) holds at all the break points of \((z, w) \) which lie between \(x_1 \) and \(x \). Finally, the operator \(\uparrow \) imposes that (i) \(x \) is flip-related to \(x_1 \), that is, \(flip(x) = x_1 \), and \(\psi_1 \) holds at \(x_1 \), (ii) \(\psi_2 \) holds at every position \(z \) such that \(BreakP_{x_1, x}(z) \), and (iii) at all other positions \(z \) in between \(x_1 \) and \(x \), either \(\psi_2 \) holds or there exists a jump \(y(x) \) for \(z \) such that \(\psi_3 \) holds at \(y \).

The following examples show how meaningful timing properties can be expressed in \(UUTL \). The first example gives a characterization of odd positions.
EXAMPLE 4.3 (Odd positions)
For any given position x, the following equivalence holds:

$$\langle \alpha, x \rangle \models True \cdot False \uparrow True \quad \text{iff} \quad x \text{ is an odd number.}$$

In the following, we will use Odd as a shorthand for $True \cdot False \uparrow True$.

In the next example, we show that the operator UU can be used to express non-regular properties, which cannot be captured in $(Q)PLTL$.

EXAMPLE 4.4 (Non-regular properties)
A well-known non-regular property is the one stating that a predicate p is satisfied at a point x only if x is a power of two. The set of positions x such that $x = 2^n$, for some $n \geq 0$, is captured by the following $UUTL$-formula:

$$True \cdot True U 0 \cdot True U True \cdot True.$$

Let us use 2^n as a shorthand for such a formula. It holds that:

$$\langle \alpha, \infty \rangle \models \neg p \cdot True U 0 \cdot 0 \cdot U p \rightarrow 2^n \cdot True \quad \text{iff} \quad p \text{ holds at } x \text{ only if } x = 2^n.$$

The last example shows that the relations \downarrow_0 and \downarrow_1 can be expressed in $UUTL$. At the end of Section 2, we proposed an embedding of both \downarrow_0 and \downarrow_1 in $MFO[<, flit]$. An alternative characterization of these relations can be given in terms of break points. It is not difficult to prove that $\downarrow_0 (x) = y$ if and only if $BreakP_{flit(y), x}(y) \land \exists z (z < y \land BreakP_{flit(y), x}(z))$. As for \downarrow_1, it is possible to show that $\downarrow_1 (x) = y$ if and only if $x < y \land \exists z, w(BreakP_{z, w}(x) \land BreakP_{z, w}(y) \land \exists u (x < u < y \land BreakP_{z, w}(u)))$. We will exploit such a characterization to capture \downarrow_0 and \downarrow_1 in $UUTL$.

EXAMPLE 4.5 (The relations \downarrow_0 and \downarrow_1)
Let $Break$ be a shorthand for the formula $True \circ True$. According to Definition 4.2, clause (8), $Break$ holds at a given point x if and only if there exists x_1 such that $x_1 < x$ and $BreakP(x_1, x)$. We also introduce $EvenPred(\varphi)$ as a shorthand for the formula $True \cdot True U True \rightarrow \varphi \cdot False \cdot True$. It is easy to check that

$$\langle \alpha, x \rangle \models EvenPred(\varphi) \quad \text{iff} \quad \text{either } x \text{ is even or } x = 1, \text{ and}$$

$$\varphi \text{ holds at the predecessor of } x.$$

As for \downarrow_0, for any given point x and $UUTL$-formulas ϕ_1 and ϕ_2, it is possible to show that $\langle \alpha, x \rangle \models \phi_1$ and $\langle \alpha, \downarrow_0 (x) \rangle \models \phi_2$ (denoted by $\langle \alpha, x \rangle \models \phi_1 \downarrow_0 \phi_2$) is equivalent to:

$$\langle \alpha, x \rangle \models \phi_1 \land (EvenPred(\phi_2 \land \neg Break) \lor EvenPred((\phi_2 \land \neg Break) \circ False)).$$
The (derived) operator \downarrow_0 allows us to introduce a notion of temporal context, or layer, in $UUTL$. For all $i \geq 0$, let Level_i be a propositional variable such that $\langle \alpha, x \rangle \models \text{Level}_i$ if and only if x belongs to the ith layer of the upward unbounded layered structure. Level_i can be inductively defined as follows: Level_0 is the formula Odd; for all $i > 0$, Level_i can be defined as $\text{True } \downarrow_0 \text{Level}_{i-1}$.

As for \downarrow_1, for any given point x and $UUTL$-formulas ϕ_1 and ϕ_2, it is not difficult to show that $\langle \alpha, x \rangle \models \phi_1$ and $\langle \alpha, y \rangle \models \phi_2$, with $\downarrow_1 (y) = x$ (denoted by $\langle \alpha, x \rangle \models \phi_1 \uparrow_1 \phi_2$), is equivalent to:

$$\langle \alpha, x \rangle \models \phi_1 \land (\phi_2 \land \text{False}).$$

It is possible to show that Level_i cannot be defined using the (derived) operator \uparrow_1. Such an operator can only be used to select the subset of elements belonging to Level_i which are right sons of elements belonging to Level_{i+1}. For all layers Level_i, these elements are indeed all and only the elements that satisfy the formula $\text{Level}_i \uparrow_1 \text{True}$.

We conclude the section by providing $UUTL$ operators with an interpretation in terms of the concrete upward unbounded layered structure (cf. Figure 3).

A node x of the concrete upward unbounded layered structure satisfies the formula $\psi_1 \cdot \phi_1 U \psi_2 - \psi_3 U \phi_2$ if and only if the following conditions hold. First, ψ_1 holds at the closest right ancestor x_1 of x, if any. If x has not a right ancestor, then it belongs to the left-edge of the structure; in such a case, ψ_1 holds at $x_1 = 0$. Second, there exists a node x_2, belonging to the left subtree of x, such that ψ_3 holds at x_2 and ψ_2 holds at the closest right ancestor x_2 of x_3. Third, ϕ_2 holds at all left ancestors of x_3, belonging to the left subtree of x. Fourth, and last, ϕ_1 (resp. ϕ_2) holds at each node less than x_2 (resp. greater than x_2) belonging to the left subtree of x. As an example, consider the labelled concrete upward unbounded layered structure depicted in Figure 7, assuming that labels belong to AP' and that the label of node 0 is a. It is easy to check that the formula $a \cdot e U b - b' U g \cdot f$ holds at nodes 16 and 24.

A node x satisfies the formula $\psi_1 \cdot \phi_1$ if there exists $y \neq x$ such that y is an ancestor of x, ψ_1 holds at y, the path connecting y to x is a right path consisting of at least two nodes, and ψ_2 holds at every node z belonging to such a path (with $z \neq y$ and $z \neq x$). With reference to Figure 7, the formula $q' \cdot q$ holds at nodes 28, 30, and 31, while the formula $\text{True } \cdot \text{True}$ holds at nodes 3, 6, 7, 14, and 15, but it does not hold at nodes 1 and 5. Furthermore, it is easy to check that the formula $(\varphi \land q') \cdot q$ (where φ is the formula $a \cdot e U b - b' U g \cdot f$ given above) holds at 28, 30, and 31.

![Figure 7](image-url)
It is worth noting that the \(\text{UU} \) operator allows one to express until-like conditions over (descending) left paths, while the \(\circ \) operator allows one to express until-like conditions over (ascending) right paths. As an example, the condition stating that a given formula \(\phi \) holds at all intermediate nodes of a left path from a node \(x \) to a node \(y \) at which \(\psi \) holds is expressed by the following \(\text{UUTL} \)-formula:

\[
\text{True} \cdot \text{False} \cong U \text{True} - \psi \text{True} \cdot \phi.
\]

With reference to Figure 7, if we assume \(\phi \) and \(\psi \) to be equal to \(f \) and \(b \), respectively, the above formula holds both at node 16 and at node 24.

Finally, a node \(x \) satisfies the formula \(\psi_1 \circ \psi_2 \uparrow \psi_3 \) if \(\psi_1 \) holds at the closest right ancestor \(x_1 \) of \(x \) (at 0, if \(x \) has not a right ancestor) and, for each node \(y \) belonging to the left subtree of \(x \), either \(\psi_2 \) holds at \(y \) or there exists a node \(z \), belonging to the left subtree of \(x \), such that \(z \) is a left ancestor of \(y \) and \(\psi_3 \) holds at \(z \). As an example, the formula \(a \cdot g \uparrow f \) holds at node 16 (cf. Figure 7).

5 A separation result for \(\text{MFO}[<, \text{flip}] \)-formulas

As in the case of PLTL, the functional completeness of the stereo operators with respect to \(\text{MFO}[<, \text{flip}] \) is based on a separation property relative to stereo-intervals.

We briefly recall the classical separation result for \(\text{MFO}[<] \) [2]. Such a result basically states that any \(\text{MFO}[<] \)-formula \(\phi(x_1, x_2) \), which refers to the elements of an interval \([x_1, x_2]\) only, can be replaced by a logically equivalent pair of formulas \(\phi(x_1, z) \) and \(\phi(z, x_2) \) (in fact, a set of pairs of this form), for some \(z \) in between \(x_1 \) and \(x_2 \), which respectively refer to the elements of the subintervals \([x_1, z]\) (the past) and \([z, x_2]\) (the present and the future) only. The situation is graphically depicted in Figure 8. More precisely, each \(\text{MFO}[<] \)-formula \(\phi(x_1, x_2) \), whose interpretation is restricted to an interval \([x_1, x_2]\), is equivalent to a finite disjunction of formulas belonging to the class of \textit{Between formulas} over \([x_1, x_2]\), denoted by \(\text{BET}(x_1, x_2) \), which is inductively defined as follows:

\begin{itemize}
 \item \textit{True}, \(p(x_i) \), with \(i = 1, 2 \) and \(p \in \text{AP} \), \(x_1 \leq x_2 \), and \(x_1 = x_2 \) are in \(\text{BET}(x_1, x_2) \);
 \item \(\text{BET}(x_1, x_2) \) is closed under Boolean connectives \(\lor, \land, \) and \(\neg \);
 \item \(\exists z(x_1 < z < x_2 \land \phi_1(x_1, z) \land \phi_2(z, x_2)) \), where \(\phi_1(x_1, z) \) belongs to \(\text{BET}(x_1, z) \) and \(\phi_2(z, x_2) \) belongs to \(\text{BET}(z, x_2) \).
\end{itemize}

In the following, we will generalize the separation result for \(\text{MFO}[<] \)-formulas to deal with \(\text{MFO}[<, \text{flip}] \)-formulas. The normal form for \(\text{MFO}[<] \)-formulas is based on the

\[
\exists z(x_1 < z < x_2 \land \phi_1(x_1, z) \land \phi_2(z, x_2))
\]
An interval formula is flip-closed if and only if it is equivalent to an $MFO[<, \text{flip}]$-formula in the form of $\psi(x, y) = \phi(x, y) \land \exists z(\text{flip}(z) = z)$. The interpretation of an interval formula de-
Any formula $\phi(x_1, \ldots, x_n)$ can be (trivially) viewed as a flip-closed formula $\phi'(x_0, x_1, \ldots, x_n, x_{n+1})$ equal to $\phi(x_1, \ldots, x_n) \land x_0 = 0 \land \forall z (z < x_{n+1})$ over the stereo-interval $[x_0, x_{n+1}] = [0, \infty]$.

Our separation result consists in showing that any (flip-closed) interval formula can be rewritten as a flip-closed formula whose subformulas are flip-closed formulas as well. The key notions are those of Mono-Between formulas (over mono-intervals) and Stereo-Between formulas (over stereo-intervals), $M\text{-BET}$ and $S\text{-BET}$ for short, respectively. $M\text{-BET}$ and $S\text{-BET}$ formulas allow us to localize temporal constraints over mono- and stereo-intervals, thus playing the same role as Between formulas in the proof of the separation result for $MFO[\varangle]$. A graphical account of Mono-Between and Stereo-Between formulas is given in Figure 9. They are formally defined as follows.

Definition 5.3 ($M\text{-BET}$ and $S\text{-BET}$ formulas)

The class of Mono-Between formulas over the mono-interval $[x_1, x_2]$, denoted by $M\text{-BET}(x_1, x_2)$, is inductively defined as follows:

1. any formula of the form True, $p(x_i)$, with $p \in AP$, and $\text{flip}(x_i) = x_i$ is an $M\text{-BET}(x_1, x_2)$-formula;
2. Boolean combination of $M\text{-BET}(x_1, x_2)$-formulas are $M\text{-BET}(x_1, x_2)$-formulas;
3. $\exists z (x_1 < z < x_2 \land \text{flip}(x_2) = z \land \phi_1 \land \phi_2)$, where ϕ_1 is an $M\text{-BET}(x_1, z)$-formula and ϕ_2 is an $M\text{-BET}(z, x_2)$-formula, is an $M\text{-BET}(x_1, x_2)$-formula (Figure 9.a);
4. $\exists w (x_1 < w < x_2 \land \text{flip}(w) = x_1 \land \phi_1 \land \phi_2)$, where ϕ_1 is an $S\text{-BET}(x_1, x_1, w, x_2)$-formula and ϕ_2 is a $M\text{-BET}(x_1, w)$-formula, is an $M\text{-BET}(x_1, x_2)$-formula (Figure 9.b);
5. $\exists z, w (x_1 < z < w < x_2 \land \text{flip}(w) = z \land \phi_1 \land \phi_2)$, where ϕ_1 is an $S\text{-BET}(x_1, z, w, x_2)$-formula and ϕ_2 is an $M\text{-BET}(z, w)$-formula, is an $M\text{-BET}(x_1, x_2)$-formula (Figure 9.c).

The class of Stereo-Between formulas over the stereo-interval $[x_1, x_2, x_3, x_4]$, denoted by $S\text{-BET}(x_1, x_2, x_3, x_4)$, is inductively defined as follows:

1. any formula of the form True, $p(x_i)$, with $p \in AP$ and $1 \leq i \leq 3$, $x_i = x_j$, with $1 \leq i, j \leq 4$, and $\text{flip}(x_j) = x_i$, with $1 \leq i < j \leq 4$, is an $S\text{-BET}(x_1, x_2, x_3, x_4)$-formula;
2. Boolean combinations of $S\text{-BET}(x_1, x_2, x_3, x_4)$-formulas are $S\text{-BET}(x_1, x_2, x_3, x_4)$-formulas;
3. $\text{flip}(x_3) = x_2 \land \phi_1 \land \phi_2$, where ϕ_1 is an $M\text{-BET}(x_1, x_2)$-formula and ϕ_2 is an $M\text{-BET}(x_3, x_4)$-formula, is an $S\text{-BET}(x_1, x_2, x_3, x_4)$-formula (Figure 9.d);
4. $\exists z (x_1 < z < x_2 \land \text{flip}(x_1) = z \land \phi_1 \land \phi_2)$, where ϕ_1 is an $S\text{-BET}(x_1, x_1, x_4)$-formula, ϕ_2 is an $S\text{-BET}(z, x_2, x_3, x_4)$-formula, and $i \in \{3, 4\}$, is an $S\text{-BET}(x_1, x_2, x_3, x_4)$-formula (Figure 9.e, with $i = 4$);
5. $\exists w (x_3 < w < x_4 \land \text{flip}(w) = x_3 \land \phi_1 \land \phi_2)$, where ϕ_1 is an $S\text{-BET}(x_1, x_3, w, x_4)$-formula, ϕ_2 is an $S\text{-BET}(x_1, x_2, x_3, w)$-formula, and $i \in \{1, 2\}$, is an $S\text{-BET}(x_1, x_2, x_3, x_4)$-formula (Figure 9.f, with $i = 1$);
6. $\exists z (x_1 < z < x_2 \land \exists w (x_3 < w < x_4 \land \text{flip}(w) = z \land \phi_1 \land \phi_2))$, where ϕ_1 is an $S\text{-BET}(x_1, z, w, x_4)$-formula and ϕ_2 is an $S\text{-BET}(z, x_2, x_3, w)$-formula, is an $S\text{-BET}(x_1, x_2, x_3, x_4)$-formula (Figure 9.g).
A simple argument can be used to prove that the process terminates.

DEFINITION 5.4 \((s\text{-formulas}) \)
The class of \(s\text{-formulas} \) is inductively defined as follows:

1. each interval formula \(\phi(x_1, x_2, x_3, x_4) \) is a basic \(s\text{-formula} \);

We now outline the main steps which we will follow to prove that any \(MFO[<, flip] \)-formula can be transformed into an equivalent combination of \((M-/S-)BET\)-formulas. We will make use of the following notion of internal (free) variable: given an interval formula \(\phi(x_1, \ldots, x_i \prec x_{i+1}, \ldots, x_n) \), we say that the free variable \(x_1 \leq x_j \leq x_n \) is an internal (free) variable if and only if \(x_j \notin \{x_1, x_i, x_{i+1}, x_n\} \).

We apply the following sequence of (pairs of) steps.

1. In the first step, we show that each interval formula \(\phi(x_1, \ldots, x_i \prec x_{i+1}, \ldots, x_n) \) can be split into a set of interval formulas devoid of internal variables (the basic \textit{structured formulas}, basic \(s\text{-formulas} \) for short, of Definition 5.4), that is, formulas in at most four free variables. Moreover, \(x_1, \ldots, x_n \) turn out to be endpoints of the stereo-intervals associated with the resulting basic \(s\text{-formulas} \) and, possibly, further endpoints can be introduced as bound variables.

2. In the second step, each resulting \(s\text{-formula} \) is singled out, its outermost quantifiers are dropped, and a formula suitable for a further (recursive) application of step 1 is produced.

A simple argument can be used to prove that the process terminates.

Figure 9. Mono-Between and Stereo-Between formulas

We apply the following sequence of (pairs of) steps.

1. In the first step, we show that each interval formula \(\phi(x_1, \ldots, x_i \prec x_{i+1}, \ldots, x_n) \) can be split into a set of interval formulas devoid of internal variables (the basic \textit{structured formulas}, basic \(s\text{-formulas} \) for short, of Definition 5.4), that is, formulas in at most four free variables. Moreover, \(x_1, \ldots, x_n \) turn out to be endpoints of the stereo-intervals associated with the resulting basic \(s\text{-formulas} \) and, possibly, further endpoints can be introduced as bound variables.

2. In the second step, each resulting \(s\text{-formula} \) is singled out, its outermost quantifiers are dropped, and a formula suitable for a further (recursive) application of step 1 is produced.

A simple argument can be used to prove that the process terminates.

Definition 5.4 (\(s\text{-formulas} \))
The class of \(s\text{-formulas} \) is inductively defined as follows:

1. each interval formula \(\phi(x_1, x_2, x_3, x_4) \) is a basic \(s\text{-formula} \);
2. \(\text{flip}(x_i) = x_i \land \phi_1(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \land \phi_2(x_{i+1}, \ldots, x_{n}) \), where \(\phi_1 \) and \(\phi_2 \) are s-formulas, is an s-formula (over the stereo-interval \([x_{i+1}, x_n]\)).

3. \(\exists z(x_i < z < x_{i+1} \land \text{flip}(x_i) = z \land \phi_1(x_1, \ldots, x_{i-1}, z, \ldots, x_n) \land \phi_2(x_{i+1}, \ldots, x_{n}) \land \text{flip}(z) = x_i \land \phi_1(x_1, \ldots, x_{i-1}, z, \ldots, x_n) \land \phi_2(x_{i+1}, \ldots, x_{n}) \)), where both \(\phi_1 \) and \(\phi_2 \) are s-formulas, is an s-formula (over the stereo-interval \([x_{i+1}, x_n]\)).

4. \(\exists z(x_i < z < x_{i+1} \land \exists w(x_i < w < x_{i+1} \land \text{flip}(w) = z \land \phi_1(x_1, \ldots, z, w, \ldots, x_n) \land \phi_2(x_{i+1}, \ldots, w)) \)), where both \(\phi_1 \) and \(\phi_2 \) are s-formulas, is an s-formula (over the stereo-interval \([x_{i+1}, x_n]\)).

Since interval formulas force the (non-strict) ordering of variables, cases 2, 3, and 4 of the above definition can actually be collapsed into the following case:

\[\exists z(\exists w(\phi_1(x_1, \ldots, z, w, \ldots, x_n) \land \phi_2(z, \ldots, x_{i-1}, w))). \]

The first step towards the normal form for \(MFO[<, \text{flip}] \) is the following lemma.

Lemma 5.5
Each flip-closed formula \(\phi(x_1, \ldots, x_k) \) (resp. \(\phi(x_1, \ldots, x_m-x_{m+1}, \ldots, x_k) \)) of quantification nesting \(n \) is equivalent to a finite disjunction of flip-closed s-formulas \(\bigvee_i \phi_i(x_1, \ldots, x_k) \) (resp. \(\bigvee_i \phi_i(x_1, \ldots, x_m-x_{m+1}, \ldots, x_k) \)) such that each basic s-formula occurring in \(\phi_i \) has quantification nesting at most \(\max\{2, n\} \).

In fact, it is also possible to show that each \(\phi_i(x_1, \ldots, x_k) \) (resp. \(\phi_i(x_1, \ldots, x_m-x_{m+1}, \ldots, x_k) \)) has quantification nesting at most \(5(k-2) + \max\{2, n\} \) (resp. \(5(k-4) + \max\{2, n\} \)).

Lemma 5.5 is proved by induction on the number of internal (free) variables of \(\phi(x_1, \ldots, x_k) \) (resp. \(\phi(x_1, \ldots, x_m-x_{m+1}, \ldots, x_k) \)) by applying the Ehrenfeucht-Fraïssé theorem. In order to manage the inductive step, we need to apply a decomposition result for stereo-intervals and a decomposition result for the Ehrenfeucht-Fraïssé games played over stereo-models (roughly speaking, a stereo-model is a model over a stereo-interval). The decomposition result for stereo-intervals is the following one.

Proposition 5.6
Given a flip-closed interval \([x_1, x_2]\) (resp. \([x_1, x_2]-[x_3, x_4]\)), \(m \) elements \(y_1 < \ldots < y_m \) such that \(x_1 < y_1 \) and \(y_m < x_2 \), (resp. \(m \) elements \(y_1 < \ldots < y_m \) as above) and \(n \) elements \(z_1 < \ldots < z_n \) such that \(x_1 < z_1 < z_n < x_2 \), the given interval can be decomposed (with respect to the operation \(\sqcup \)) in at most six flip-closed intervals, each one properly including a proper subset of \(\{y_1, \ldots, y_m\} \) (resp. \(\{y_1, \ldots, y_m, z_1, \ldots, z_n\} \)).

Proof. We first consider the case of mono-intervals, and then that of stereo-intervals.

1. Any mono-interval \([x_1, x_2]\) can be decomposed in at most two flip-closed stereo-intervals: take the pair of stereo-intervals \([x_1, y_i]-[y_i, x_2]\) and \([v, y_i]\), where \(v = \text{flip}(y_i) \) for any given \(y_i \leq y_i \leq y_n \). It is immediate to see that the two stereo-intervals are flip-closed and properly contain a proper subset of \(\{y_1, \ldots, y_m\} \).

2. Consider now the case of the stereo-interval \([x_1, x_2]-[x_3, x_4]\).

 (a) If there exist \(v \) and \(w \) such that \(x_1 \leq v \leq x_2, x_3 \leq w \leq x_4, \text{flip}(w) = v \), and \(y_1 \leq v \leq y_m \) or \(z_1 \leq w \leq z_n \), then \([x_1, v]-[w, x_4] \sqcup [v, x_2]-[x_3, w]\), where both \([x_1, v]-[w, x_4]\) and \([v, x_2]-[x_3, w]\) are flip-closed, by property (c) of Proposition 3.4, and properly contain a proper subset of \(\{y_1, \ldots, y_m, z_1, \ldots, z_n\} \).
(b) Otherwise, if there exist \(v_1 \) and \(w_1 \) such that \(\text{flip}(w_1) = v_1, x_1 \leq v_1 < y_1, \) and \(z_n < w_1 \leq x_4, \) and there exist \(v_2 \) and \(w_2 \) such that \(\text{flip}(w_2) = v_2, y_m < v_2 \leq x_2, \) and \(x_3 \leq w_2 < z_1, \) we first decompose the stereo-interval \([x_1, x_2],[x_3, x_4]\) into the three flip-closed stereo-intervals \([x_1, x_2],[x_3, x_4]\), \([v_1', v_1],[w_2, w_1']\), and \([v_2', v_2],[w_3, w_2']\), where

\[
\begin{align*}
\nu_1 &= \max\{v : \exists w \text{flip}(w) = v \land x_1 \leq v < y_1 \land z_n < w \leq x_4\}, \\
\nu_2 &= \min\{v : \exists w \text{flip}(w) = v \land y_m < v \leq x_2 \land x_3 \leq w < z_1\}, \\
\nu_1' &= \max\{v : \text{flip}(w) = v_1' \land z_n < w \leq x_4\}, \text{ and} \\
\nu_2' &= \max\{v : \text{flip}(w) = v_2' \land x_3 \leq w < z_1\}.
\end{align*}
\]

It is immediate to see that \(\{y_1, \ldots, y_m, z_1, \ldots, z_n\} \) is a (proper) subset of \([v_1', v_1],[w_2, w_1']\). Given the definitions of \(v_1', v_2', w_2', \) and \(w_1' \), it is possible to decompose \([v_1', v_2'],[w_2', w_1']\) into the two flip-closed stereo-intervals \([v_1', v_2'],[w_2', w_1']\) and \([v_2', v_2],[w_3, w_2']\). If both \(m \) and \(n \) are greater than 0, we are done. Otherwise, suppose that \(n = 0 \). In such a case, the interval \([v_1', v_2'],[w_2', w_1']\) can be decomposed into the intervals \([v_1', v_1'],[w_1', w_1']\) and \([v_2', v_2'],[w_2', w_1']\). Since \([v_1', v_2'],[w_1', w_1']\) is equal to \([v_1', v_2']\), we can proceed as in case (1). The case in which \(m = 0 \) is perfectly symmetric.

(c) Finally, if there exist \(v_2 \) and \(w_2 \) such that \(\text{flip}(w_2) = v_2, y_m < v_2 \leq x_2, \) and \(x_3 \leq w_2 < z_1, \) but there exist no \(v_1 \) and \(w_1 \) such that \(\text{flip}(w_1) = v_1, x_1 \leq v_1 < y_1, \) and \(z_n < w_1 \leq x_4, \) we can decompose the stereo-interval \([x_1, x_2],[x_3, x_4]\) into the flip-closed stereo-intervals \([x_1, x_2],[x_3, x_4]\), and \([v_2', v_2],[w_3, w_2']\), where \(v_2' \) and \(w_2' \) are defined as in case (b). The stereo-interval \([x_1, x_2],[x_3, x_4]\) can be further decomposed into the stereo-intervals \([x_1, v_1],[x_3, v_2]\) and \([v_1, v_2],[x_2, x_4]\), and we can proceed as in case (b). (Notice that it cannot happen that there exist no \(v_2 \) and \(w_2 \) such that \(\text{flip}(w_2) = v_2, y_m < v_2 \leq x_2, \) and \(x_3 \leq w_2 < z_1, \) because \([x_1, x_2],[x_3, x_4]\) is flip-closed and thus \(\text{flip}(x_3) \) belongs to \([x_1, x_2]\).)

It is worth noting that six flip-closed stereo-intervals, involving at most five new endpoints, that is, endpoints which differ from \(x_1, x_2, x_3, x_4, y_1, \ldots, y_m, z_1, \ldots, z_n \), are needed to deal with case (2b), when either \(m \) or \(n \) are equal to 0. In cases (1), (2a), and (2c), we add at most one, two and three new endpoints, respectively.

We introduce now the notion of stereo-model and the decomposition result for the Ehrenfeucht-Fraissé games played over stereo-models. A stereo-model \(w \) is a pair \(\langle I, f \rangle \), where \(I \) is a stereo-interval and \(f : I \to 2^A^P \). The notation \(w_{x_1, \ldots, x_8} \) will be used to denote a stereo-model with \(k \) distinguished positions \(x_1, \ldots, x_k \), with \(x_i \in I \) for all \(i \). Stereo-models correspond to stereo-intervals and can be thought of as (possibly finite) models for \(MFO<, flip> \). Hence, by referring to the usual notion of quantifier depth, we can define the equivalence relation \(\equiv_n \) over stereo-models as follows:

\[\langle I, f \rangle \equiv_n \langle I', f' \rangle \; \text{iff} \; \langle I, f \rangle, \langle I', f' \rangle \; \text{satisfy the same sentences of quantifier depth} \; n. \]

On the basis of \(\equiv_n \), we introduce the relation \(\equiv_{n,k} \) over stereo-models with \(k \) distinguished positions in order to deal with formulas with \(k \) free variables (cf. [15]). For any stereo-model \(w_{x_1, \ldots, x_8} \) with \(k \) distinguished positions, let \([w_{x_1, \ldots, x_8}]_{n,k} \) be the equivalence class of \(\equiv_{n,k} w_{x_1, \ldots, x_8} \) belongs to. Since our signature is finite, by the Ehrenfeucht-Fraissé theorem, we can conclude that \(\equiv_{n,k} \) is of finite index for any \(n \) and \(k \). Moreover, any equivalence class can be characterized by a single \(MFO<, flip>\)-formula of quantifier depth \(n \) and any \(MFO<, flip>\)-formula of quantifier depth \(n \) is equivalent to a finite disjunction of formulas.
associated with \(\equiv_{n,k} \) -classes. Finally, we denote by \(\approx_{n,k} \) the relation that holds between any two stereo-models \((I, f), (I', f') \) if and only if Duplicator has a winning strategy for any Ehrenfeucht-Fraïssé game of \(n \) rounds over \((I, f), (I', f') \) with \(k \) initial associations.

We also introduce a suitable notion of stereo-model composition. Given two stereo-models \(w = (I, f) \) and \(w' = (I', f') \) such that (i) there exists \(I \sqcup I' \) and (ii) \(f(x) = f'(x) \), for all \(x \in I \cap I' \), we define the composition \(w \sqcup w' \) as the pair \((I \sqcup I', f \sqcup f') \). As shown by the following proposition, the notion of composition we have introduced enjoys the congruence property, with respect to \(\approx_{n,k} \), at the ground of McNaughton and Papert theorem [15, 16]. Such a result generalizes to stereo-models the well-known results on linear (and partial) orders. To this end, we need to introduce a constraint on stereo-models (to be flip-closed), which is related to the binary flip operator, and that does not have a counterpart in standard models.

Proposition 5.7
Let \(w_{x_1^1, \ldots, x_n^1} = (I, f^I), \ w_{x_1'_{1'}, \ldots, x_n'_{1'}} = (I', f^I') \), \(w_{x_1^2, \ldots, x_n^2} = (I, f^I), \ w_{x_1'_{1'}, \ldots, x_n'_{1'}} = (I', f^I') \), and \(w_{x_1^3, \ldots, x_n^3} = (I, f^I), \ w_{x_1'_{1'}, \ldots, x_n'_{1'}} = (I', f^I') \) be four stereo-models such that each of them is flip-closed and the set of its distinguished positions includes the endpoints, and there exist both \(w_{x_1^1, \ldots, x_n^1} \sqcup w_{x_1'_{1'}, \ldots, x_n'_{1'}} \) and \(w_{x_1^2, \ldots, x_n^2} \sqcup w_{x_1'_{1'}, \ldots, x_n'_{1'}} \). It holds that

\[
\begin{align*}
 w_{x_1^1, \ldots, x_n^1} \approx_{n,k} w_{x_1'_{1'}, \ldots, x_n'_{1'}} \quad & \iff \quad w_{x_1^2, \ldots, x_n^2} \approx_{n,k} w_{x_1'_{1'}, \ldots, x_n'_{1'}} \\
 w_{x_1^3, \ldots, x_n^3} \approx_{n,l} w_{x_1'_{1'}, \ldots, x_n'_{1'}} \quad & \iff \quad w_{x_1^2, \ldots, x_n^2} \approx_{n,l} w_{x_1'_{1'}, \ldots, x_n'_{1'}}.
\end{align*}
\]

where \(k + h - 2 \leq l \leq k + h - 1 \) (if \(I \) and \(I' \) share at most two positions and at least one position; the same for \(J \) and \(J' \)).

Proof. \((\Rightarrow)\) By hypothesis, Duplicator has a winning strategy \(s_1 \) for a game over \(I \) and \(J \) as well as a winning strategy \(s_2 \) for a game over \(I' \) and \(J' \). A winning strategy of Duplicator over \(I \sqcup I' \) and \(J \sqcup J' \) can be obtained by exploiting strategy \(s_1 \) whenever Spoiler picks up an element in \(I \) or \(J \), and by exploiting strategy \(s_2 \) whenever Spoiler picks up an element in \(I' \) or \(J' \). To prove that such a strategy is a winning strategy for Duplicator we have to show that, for any pair of elements \(x, y \) picked from \(I \sqcup I' \) and the corresponding pair of elements \(x', y' \) in \(J \sqcup J' \), it holds that (i) \(x < y \) if and only if \(x' < y' \) and (ii) \(\text{flip}(y) = x \) if and only if \(\text{flip}(y') = x' \). The only nontrivial case is the case in which \(x \in I - I' \) and \(y \in I' - I \), or vice versa. Let \(I^L \) and \(I^R \) be the left and right components of the stereo-interval \(I \), respectively. Since the set of distinguished positions associated with the stereo-models includes the endpoints of the stereo-intervals, it holds that \(x \in I^L \) (resp. \(x \in I^R \)) if and only if \(x' \in J^L \) (resp. \(x' \in J^R \)), and the same for \(y, y' \). This allows us to conclude that \(x < y \) if and only if \(x' < y' \). Furthermore, since the stereo-intervals are flip-closed, \(\text{flip}(y) \neq x \) and \(\text{flip}(y') \neq x' \).

\((\Leftarrow)\) By hypothesis, Duplicator has a winning strategy \(s \) for a game over \(I \sqcup I' \) and \(J \sqcup J' \). Since the set of distinguished positions associated with the stereo-models includes the endpoints of the stereo-intervals, if the Spoiler makes his choices only in \(I \) and \(J \) (resp. \(I' \) and \(J' \)), then Duplicator is obliged to make his choices in \(I \) and \(J \) too (resp. \(I' \) and \(J' \)).

We are now able to prove Lemma 5.5. The proof is given in the Appendix.
Some further steps are needed to guarantee that an s-formula satisfies the separation property. First, s-formulas may differ from M-/S-BET-formulas on the presence of internal (free) variables. Furthermore, their basic s-formulas may fail to satisfy the separation property. Such weaknesses can be recovered as follows.

Let a preM-BET (resp. preS-BET) formula be an s-formula \(\phi \) over a mono-interval (resp. stereo-interval) such that each basic s-formula occurring in it is an M-/S-BET-formula.

Proposition 5.8

Let \(\chi(x_1, z, x_2) \) (resp. \(\phi(x_1, z, x_2, x_3, x_4) \), \(\psi(x_1, x_2, x_3, z, x_4) \)) be a preM-BET-formula (resp. a preS-BET-formula). The formula \(\exists z \chi(x_1, z, x_2) \) (resp. \(\exists z \phi(x_1, z, x_2, x_3, x_4), \exists z \psi(x_1, x_2, x_3, z, x_4) \)) is equivalent to an M-BET (resp. S-BET) formula.

The proof is given in the Appendix.

The following theorem proves the separation result for flip-closed formulas, devoid of internal (free) variables, over mono- and stereo-intervals. The subsequent corollary generalizes such a result to any flip-closed formula.

Theorem 5.9

Any flip-closed formula \(\phi(x_1, x_2) \) (resp. \(\phi(x_1, x_2, x_3, x_4) \)) is equivalent to an M-BET \((x_1, x_2)\) (resp. S-BET \((x_1, x_2, x_3, x_4)\)) formula.

Proof. The proof is by induction on the quantification nesting \(n \) of \(\phi \) and it is explicitly given only for flip-closed formulas over stereo-intervals. The easier case of flip-closed formulas over mono-intervals can be proved in a similar way.

Case \(n = 0 \). Obvious. In particular, notice that a Boolean combination of basic S-BET \((x_1, x_2, x_3, x_4)\) formulas is an S-BET \((x_1, x_2, x_3, x_4)\) formula (basic S-BET formulas are S-BET formulas defined by means of rules 1 and 3 of Definition 5.3).

Case \(n = 1 \). Since S-BET formulas are closed under the application of Boolean connectives, it suffices to prove the thesis for \(\phi(x_1, x_2, x_3, x_4) \) of the forms \(\exists z(x_1 < z < x_2 \land \psi(x_1, z, x_2, x_3, x_4)) \) or \(\exists z(x_3 < z < x_4 \land \psi(x_1, x_2, x_3, z, x_4)) \), where \(\psi(x_1, x_2, x_3, x_4) \) are conjunctions of (negated) atomic formulas. We consider formulas of the first form (formulas of the second form can be dealt with analogously). Without loss of generality, we also assume that if either \(x_i < x_j \) or \(x_j = x_i \) occur in \(\psi \), then \(j = i + 1 \), and that if either \(x_i < z \) or \(x_i = z \) or \(z < x_j \) or \(z = x_j \) occur in \(\psi \), then \(i = 1 \) and \(j = 2 \). This means that (i) \(\leq \) is rewritten in terms of \(< \) and \(= \), (ii) any application of \(< \) (resp. \(= \)) to non-consecutive pairs of points is replaced by a suitable set of applications of \(< \) (resp. \(= \)) to consecutive pairs of points (in the obvious way), and (iii) any contradiction with respect to the given ordering of points \(x_1, z, x_2, x_3 \), and \(x_4 \) is preliminarily dealt with, that is, replaced by False.

According to Proposition 5.6, given a flip-closed stereo-interval \([x_1, x_2, x_3, x_4] \) and an element \(z \) in between \(x_1 \) and \(x_2 \), \([x_1, x_2, x_3, x_4] \) can be decomposed into a set of flip-closed intervals such that at least one of them has \(z \) as one of its endpoints. We exploit such a decomposition to replace the formula \(x_1 < z < x_2 \land \psi'(x_1, x_2, x_3, x_4) \) by the equivalent formula \(x_1 < z < x_2 \land \psi'(x_1, z, x_2, x_3, x_4) \), where \(\psi'(x_1, x_2, x_3, x_4) \) is defined as follows (for the sake of readability, we isolate the six disjuncts 5.2–5.7 of \(\psi'(x_1, x_2, x_3, x_4) \)):

\[
flip(p(x_4)) = z \land \psi_{11}(x_1, z, x_4, x_4) \land \psi_{12}(z, x_2, x_3, x_4) \lor \\
\exists w(x_3 < w < x_4 \land flip(w) = z \land \psi_{21}(x_1, z, w, x_4) \land \psi_{22}(z, x_2, x_3, w))
\]
that the formula
\[
\neg(\exists k \exists w(x_1 \leq k \leq x_2 \land x_3 < w < x_4 \land flip(w) = k)) \land \\
\psi_3(x_2, x_3, x_4) \land \psi_4(x_1, x_4, x_1) \land \exists w(x_1 \leq w < x_2 \land \neg flip(w) = k) \land \\
flip(z) = w \land \psi_3,4(x_1, w-z, x_2) \land \psi_4,4(w, z) \} \lor
\]
(5.4)

Taking advantage of the decomposition of flip-closed stereo-intervals given in Proposition 5.6, since
\[
\psi_3,4(x_1, x_1-x_2, x_4) \land \psi_4,4(x_1, x_2-x_3, x_3) \land \exists w(x_1 \leq w < x_2 \land \\
flip(z) = w \land \psi_3,4(v_1, w-z, x_2) \land \psi_4,4(w, z) \}) \lor
\]
(5.5)

Extending Kamp’s Theorem to Model Time Granularity

All subformulas $\psi_i j(y_1, y_2, y_3, y_4)$ are obtained from the original formula $\psi (x_1, z, x_2-x_3, z, x_4)$ by replacing each (negated) atom $(-)\phi$ occurring in it by the formula $\gamma((-)\phi, y_1, y_2, y_3, y_4)$, which is defined as follows:

\[
\gamma((-)\phi, y_1, y_2, y_3, y_4) = (-)\phi \quad \text{if} \quad \text{var}(\phi) \subseteq \{y_1, y_2, y_3, y_4\};
\]

\[
\gamma((-)\phi, y_1, y_2, y_3, y_4) = \text{True} \quad \text{if} \quad \text{var}(\phi) \cap \{y_1, y_2, y_3, y_4\} = \emptyset;
\]

\[
\gamma(\phi, y_1, y_2, y_3, y_4) = \text{False} \quad \text{if} \quad \text{var}(\phi) \cap \{y_1, y_2, y_3, y_4\} \neq \emptyset, \quad \text{var}(\phi) \not\subseteq \{y_1, y_2, y_3, y_4\}, \quad \text{and} \quad \phi \text{ of the form } \text{flip}._=;
\]

\[
\gamma(\phi, y_1, y_2, y_3, y_4) = \text{True} \quad \text{if} \quad \text{var}(\phi) \cap \{y_1, y_2, y_3, y_4\} \neq \emptyset, \quad \text{var}(\phi) \not\subseteq \{y_1, y_2, y_3, y_4\}, \quad \text{and} \quad \phi \text{ of the form } <;
\]

\[
\gamma((-)\phi, y_1, y_2, y_3, y_4) = \text{True} \quad \text{if} \quad \text{var}(\phi) \cap \{y_1, y_2, y_3, y_4\} \neq \emptyset, \quad \text{var}(\phi) \not\subseteq \{y_1, y_2, y_3, y_4\}, \quad \text{and} \quad \phi \text{ of the form } \text{flip}._=;
\]

\[
\gamma((-)\phi, y_1, y_2, y_3, y_4) = \text{False} \quad \text{if} \quad \text{var}(\phi) \cap \{y_1, y_2, y_3, y_4\} \neq \emptyset, \quad \text{var}(\phi) \not\subseteq \{y_1, y_2, y_3, y_4\}, \quad \text{and} \quad \phi \text{ of the form } <,
\]

where var(\phi) denotes the set of variables in \phi. Notice that $\gamma((-)\text{True}, y_1, y_2, y_3, y_4) = (-)\text{True}$, since var((-)\text{True}) = \emptyset and \emptyset \subseteq \{y_1, y_2, y_3, y_4\}.

Taking advantage of the decomposition of flip-closed stereo-intervals given in Proposition 5.6, it is easy to check that $x_1 < z < x_2 \land \psi' (x_1, z, x_2-x_3, x_4)$ is a preS-BET formula which is equivalent to $x_1 < z < x_2 \land \psi (x_1, z, x_2-x_3, x_4)$. From Proposition 5.8, it follows that the formula $\exists z (x_1 < z < x_2 \land \psi' (x_1, z, x_2-x_3, x_4))$ is equivalent to an S-BET-formula.
Case \(n = 2 \). Since \(S\)-BET-formulas are closed under the application of Boolean connectives, it suffices to prove the thesis for a formula of the form \(\exists y (x_1 < z < x_2 \land \psi(x_1, z, x_2 - x_3, x_4)) \), where \(\psi(x_1, z, x_2 - x_3, x_4) \) abbreviates \(\theta(x_1, z, x_2 - x_3, x_4) \land (\neg \exists w (x_3 < w < x_4 \land \nu(z, w) \land \chi(x_1, x_2 - x_3, x_4, w, x_4)) \). Formulas \(\theta(x_1, z, x_2 - x_3, x_4), \nu(z, w) \), and \(\chi(x_1, x_2 - x_3, w, x_4) \) are a conjunction of (negated) atoms involving the variable \(z \) (and \(x_1, x_2, x_3, x_4 \)), the variables \(z \) and \(w \) (but not \(x_1, x_2, x_3, x_4 \)), and the variable \(w \) (and \(x_1, x_2, x_3, x_4 \)), respectively. In the following, we restrict our analysis to the most difficult case in which \(\psi(x_1, z, x_2 - x_3, x_4) \) has the form \(\theta(x_1, z, x_2 - x_3, x_4) \land \neg \exists w (x_3 < w < x_4 \land \nu(z, w) \land \chi(x_1, x_2 - x_3, x_4, w, x_4)) \).

As in the case \(n = 1 \) (disjuncts 5.2–5.7), given a flip-closed stereo-interval \([x_1, x_2] - [x_3, x_4]\) and an element \(z \) in between \(x_1 \) and \(x_2 \), the \(x_1, x_2, x_3, x_4 \) can be decomposed into a set of flip-closed intervals such that at least one of them has \(z \) as one of its endpoints. As an example, analogous to formula 5.3 is the formula:

\[
\exists y (x_1 < y < x_2 \land \text{flip}(y) = z \land \theta_1(x_1, z, y, x_2) \land \theta_2(z, x_1, x_2 - x_3, y) \land \\
\neg \exists w (w \land \nu(z, w) \land \chi_1(x_1, z, y, x_2) \land \chi_2(z, x_1, x_2 - x_3, y)) \land \\
\neg \exists w (w < y \land \chi_3(z, x_1, x_2 - x_3, y)) \land \\
\neg \exists w (w < y \land \chi_4(z, x_1, x_2 - x_3, y)),
\]

(5.9)

where all \(\theta_i \) (resp. \(\chi_i \)) are obtained from \(\theta \) (resp. \(\chi \)) by replacing each occurrence of a (negated) atom by its transformation through \(\gamma \) (cf. definition 5.8 of \(\gamma \)). Formulas \(\neg \exists w (w = h \land \nu(z, w) \land \chi_1(x_1, z, h, x_1) \land \chi_2(z, x_1, h, x_1)) \), \(\neg \exists w (w < h < x_4 \land \nu(z, w) \land \chi_3(z, h, w, x_4)) \), and \(\neg \exists w (w < h \land \nu(z, w) \land \chi_5(z, x_1, x_2 - x_3, h) \land \chi_6(z, h, x_4)) \) are flip-closed formulas of quantification nesting 1. As in the case \(n = 1 \), this implies that they can be replaced by equivalent \(S\)-BET formulas, thus transforming formula 5.9 into a \(\pre S\)-BET formula. The analogies of formulas 5.2 and 5.4–5.7 can be obtained by using the same technique, thus proving that the formula \(x_1 \leq z \leq x_2 \land \psi(x_1, z, x_2 - x_3, x_4) \) is equivalent to a \(\pre S\)-BET formula \(x_1 < z \leq x_2 \land \psi'(x_1, z, x_2 - x_3, x_4) \). By Proposition 5.8, the formula \(\exists z (x_1 < z < x_2 \land \psi'(x_1, z, x_2 - x_3, x_4)) \) is equivalent to an \(S\)-BET-formula.

Case \(n > 2 \). By standard manipulation of Boolean connectives, the formula \(\phi(x_1, x_2 - x_3, x_4) \) can be rewritten as \(\bigvee_i (\phi_{i,1}(x_1, x_2 - x_3, x_4) \land \ldots \land \phi_{i,n}(x_1, x_2 - x_3, x_4)) \), where every \(\phi_{i,j}(x_1, x_2 - x_3, x_4) \) is a flip-closed formula of quantification nesting at most \(n \). Each formula \(\phi_{i,j}(x_1, x_2 - x_3, x_4) \) is either a (negation of) an atomic formula or a formula of the form \((\neg \exists z (x_1 < z < x_2 \land \psi(x_1, z, x_2 - x_3, x_4)) \) (the case \(\exists z (x_3 < x_4 \land \psi(x_1, x_2 - x_3, z)) \) can be treated analogously). By Lemma 5.5, it holds that the flip-closed formula \(x_1 < z < x_2 \land \psi(x_1, z, x_2 - x_3, x_4) \) is equivalent to a finite disjunction \(\bigvee_j \chi_j(x_1, z, x_2 - x_3, x_4) \), where each \(\chi_j(x_1, z, x_2 - x_3, x_4) \) is an \(s\)-formula such that every basic \(s\)-formula occurring in it has quantification nesting at most \(n - 1 \geq 2 \). Let \(\gamma \) be a basic \(s\)-formula occurring in \(\chi_j \). By the inductive hypothesis, \(\gamma \) is equivalent to an \(S\)-BET-formula \(\gamma' \). Now, let \(\chi_j'(x_1, z, x_2 - x_3, x_4) \) be the formula obtained by replacing each occurrence of a basic \(s\)-formula \(\gamma \) in \(\chi_j(x_1, z, x_2 - x_3, x_4) \) by the equivalent \(S\)-BET-formula \(\gamma' \). Since \(\chi_j'(x_1, z, x_2 - x_3, x_4) \) is a \(\pre S\)-BET-formula, by Proposition 5.8, it holds that \(\exists z \chi_j'(x_1, z, x_2 - x_3, x_4) \) is equivalent to an \(S\)-BET-formula \(\chi_j'(x_1, x_2 - x_3, x_4) \). Therefore, \(\exists z (x_1 < z < x_2 \land \psi(x_1, x_2 - x_3, z, x_4)) \) is equivalent to the \(S\)-BET-formula \(\bigvee_j \chi_j'(x_1, x_2 - x_3, x_4) \).
Each flip-closed -formula has the form $\neg \exists z (x_1 < z < x_2 \land \psi (x_1, z, x_2, x_3, x_4))$, then it is equivalent to an -formula $\neg \psi'(x_1, x_2, x_3, x_4)$, where $\psi'(x_1, x_2, x_3, x_4)$ is an -formula equivalent to $\exists z (x_1 < z < x_2 \land \psi (x_1, z, x_2, x_3, x_4))$. It is now easy to see that $\phi(x_1, x_2, x_3, x_4) = \bigvee \phi_i (x_1, x_2, x_3, x_4) \land \ldots \land \phi_{i,n} (x_1, x_2, x_3, x_4)$ is equivalent to an -formula, since each $\phi_{i,j}$ is equivalent to an -formula.

Corollary 5.10

Each flip-closed -formula $\phi(x_1, \ldots, x_k)$ over a mono-interval (resp. $\phi(x_1, \ldots, x_m, \ldots, x_{m+1}, \ldots, x_k)$ over a stereo-interval) is equivalent to a flip-closed $preM-BET$ (resp. $preS-BET$) formula.

Corollary 5.10 easily follows from Lemma 5.5 and Theorem 5.9.

6 Expressive completeness of UUTL with respect to MFO[<, flip]

In the previous section, we have shown that each MFO[<, flip]-formula can be turned into an equivalent (pre)M-/S-BET-formula satisfying the separation property. In this section, in order to prove the expressive completeness of UUTL with respect to (the class of sentences of) MFO[<, flip], we translate (pre)M-/S-BET-formulas into a more restrictive, and somewhat technical, normal form. Intuitively, the formulas which enjoy such a new normal form, called Decomposition Formulas (M-/S-DEC-formulas for short), are MFO[<, flip]-formulas which correspond to (the semantics of) UUTL-formulas. We will show that (pre)M-/S-BET formulas can be translated into an equivalent combination of M-/S-DEC-formulas and that M-/S-DEC-formulas can be easily mapped into UUTL-formulas. The steps of the whole transformation which leads to the expressive completeness result are summarized in Figure 10.

We first define an operator $T(\gamma, x)$ which provides any UUTL-formula γ with an MFO[<, flip]-formula $\psi(x)$ which expresses the semantics of γ in the case in which γ is evaluated at the point x of the mono-interval $[0, x]$.

In order to deal with formulas over stereo-intervals (this is the case of S-BET formulas), we have to show how to interpret an UUTL-formula γ over stereo-intervals. To this end, we define a generalized version $T(\gamma, y_1, y_2, x)$ of the operator $T(\gamma, x)$ which provides any UUTL-formula γ with an MFO[<, flip]-
formula $\psi(y_1, y_2, x)$ which expresses the semantics of γ in the case in which γ is evaluated at the point x of the stereo-interval $[0, y_1] - [y_2, x]$.

Definition 6.1

For any given $UUTL$-formula ϕ, we denote by $T(\phi, y_2 - y_3, x)$ the $MFO[<, fliip]$-formula recursively defined as follows (the definition of $T(\phi, x)$ is obtained from that of $T(\phi, y_2 - y_3, x)$ by removing any constraint of the form $x_i \leq y_j$ or $y_j \leq x_i$, with $i = 1, 2, 3$ and $j = 2, 3$):

1. $T(Q_s, y_2 - y_3, x) = Q_s(x)$;
2. $T(\phi_1 \land \phi_2, y_2 - y_3, x) = T(\phi_1, y_2 - y_3, x) \land T(\phi_2, y_2 - y_3, x)$ and $T(\phi_1 \land \phi_2, y_2 - y_3, \infty) = T(\phi_1, y_2 - y_3, \infty) \land T(\phi_2, y_2 - y_3, \infty)$;
3. $T(\neg \phi, y_2 - y_3, x) = \neg T(\phi, y_2 - y_3, x)$ and $T(\neg \phi, y_2 - y_3, \infty) = \neg T(\phi, y_2 - y_3, \infty)$;
4. $T(\psi_1 \cdot \phi, y_2 - y_3, x) = \exists x_1 \cdot x_2 \cdot x_3 (x_2 \leq y_2 \leq y_3 \leq x_3 < x \land fliip(x) = x_1 \land \neg T(\psi_1, y_1, x) \land T(\phi, y_2, x_2) \land T(\psi_3, y_2 - y_3, x_3) \land \forall y((x_1 < y \land x_2 \to T(\phi, y_1, y)) \land (y < x_3 \land \neg x_2 \land fliip(y) = y) \to T(\phi, y_2, y)))$;
5. $T(\psi_1 \cdot \psi_2 \cdot \phi, y_2 - y_3, \infty) = \exists x_1 \cdot x_2 \cdot x_3 (x_2 \leq y_2 \leq y_3 \leq x_3 \land fliip(x_1) = x_2 \land T(\psi_1, 0, y_2) \land T(\psi_2, y_2) \land T(\psi_3, y_2 - y_3, y_3) \land \forall y((0 < y < x_2 \to T(\phi, y_1, y)) \land (y < x_3 \to T(\phi, y_2, y) \land (\exists z < z \leq x_2 \land fliip(z) = z) \to T(\phi, y_2 - y_3, y)))$;
6. $T(\phi \cdot \psi_1 \cdot \psi_2 \cdot \phi, y_2 - y_3, x) = \exists x_1 \cdot x_2 \cdot x_3 (x_1 < x \land BreakP(x_1, x) \land T(\psi_1, y_2 - y_3, x_2) \land \forall y((0 < y < x \land BreakP(y, x)) \to T(\phi, y)))$;
7. $T(\psi_1 \cdot \psi_2 \mid \phi, y_2 - y_3, x) = \exists x_1 \cdot x_2 \cdot x_3 (x_1 < x \land fliip(x_2) = x_1 \land T(\psi_1, x_2) \land \forall y(x_1 < y < x \to T(\psi_2, y) \land \exists z, w(x_1 \leq z < y < w \land fliip(w) = z \land T(\psi_3, w))))$;
8. $T(\psi_1 \cdot \psi_2 \mid \phi, y_2 - y_3, \infty) = T(\psi_1, 0) \land \forall y(y > 0 \to (T(\psi_2, y) \land \exists z, w(0 \leq z < y < w \land fliip(w) = z \land T(\psi_3, w))))$.

From Definition 6.1, the proposition below immediately follows.

Proposition 6.2

For any given $UUTL$-formula ϕ and model $\alpha, \langle \alpha, x \rangle \models \phi$ if and only if $\langle \alpha, x \rangle$ satisfies $T(\phi, x)$ and $\langle \alpha, \infty \rangle \models \phi$ if and only if α satisfies $T(\phi, \infty)$.

Now, we inductively define $Mono-Decomposition$ formulas, which are closely related to the semantics of $UUTL$-operators (interpreted) over mono-intervals.

Definition 6.3

The class of $Mono-Decomposition$ formulas over a mono-interval $[x_1, x_2]$, denoted by $M-DEC(x_1, x_2)$, is inductively defined as follows:

1. $fliip(x_2) = x_1 \land T(\phi, x_1) \land \forall y(x_1 < y < x_2 \to (T(\phi, y) \land \exists z, w(x_1 < z < y < w < x_2 \land fliip(w) = z \land T(\phi, w))))$;
2. $fliip(x_2) = x_1 \land \exists z(x_1 < z < x_2 \land BreakP(x_1, x_2, z) \land \delta(x_1, z) \land T(\psi, z) \land \forall y(z < y < x_2 \land BreakP(x_1, x_2, y)) \to T(\phi, y))$, where $\delta(x_1, z)$ is an $M-DEC(x_1, z)$ formula.
3. \(\neg flip(x_2) = x_1 \land \exists z(x_1 < z < x_2 \land BreakP(z,x_2) \land \delta'(x_1,z) \land T(\psi,z) \land \forall y((z < y < x_2 \land BreakP(y,x_2)) \rightarrow T(\phi,y))), \)

where \(\delta'(x_1,z) \) is an \(M\text{-DEC}(x_1,z) \) formula;

4. \(flip(x_2) = x_1 \land \exists z,w(x_1 \leq z \leq w \leq x_2 \land flip(w) = z \land \delta' (z,w) \land T(\psi,x_1) \land T(\psi', z) \land T(\psi'', w) \land \forall y(x_1 < y < z \rightarrow T(\phi,y)) \land \forall y(w < y < x_2 \rightarrow T(\phi', y)) \land \forall y((w < y < x_2 \land \exists y'(x_1 \leq y' \leq z \land flip(y') = y')) \rightarrow T(\phi'', y'))), \)

where \(\delta'(z,w) \) is an \(M\text{-DEC}(z,w) \) formula;

5. \(\neg flip(x_2) = x_1 \land \exists k(x_1 < k < x_2 \land flip(x_2) = k \land \delta'(x_1, k) \land \delta''(k,x_2)), \)

where \(\delta'(x_1, z) \) and \(\delta''(k,x_2) \) are \(M\text{-DEC}(x_1,z) \) and \(M\text{-DEC}(k,x_2) \) formulas, respectively.

Mono-decomposition formulas of the first form (\(M\text{-DEC} \) for short) can be associated with the operator \(\uparrow \), \(M\text{-DEC} \) and \(M\text{-DEC} \) can be associated with the operator \(\circ \), and \(M\text{-DEC} \) can be associated with the operator \(UU \). \(M\text{-DEC} \) allows one to recursively combine the decomposition formulas. It is worth noting that the recursive nesting of decomposition formulas is performed both in a top-down fashion, with respect to the nesting of flip-related pairs (cf. \(M\text{-DEC} \) and \(M\text{-DEC} \)), and left to right, with respect to the ordering of natural numbers (cf. \(M\text{-DEC} \), \(M\text{-DEC} \), and \(M\text{-DEC} \)).

The following definition extends the notion of decomposition formula to deal with formulas over stereo-intervals. **Stereo-Decomposition** formulas are closely related to the semantics of \(UUTL \) operators (interpreted) over stereo-intervals (cf. Definition 4.2). From a syntactical point of view, \(S\text{-DEC}(x_1,x_2,x_3,x_4) \) formulas can be viewed as \(M\text{-DEC}(x_1,x_4) \) formulas which place a hole (bounded by \(x_2 \) and \(x_3 \)) between \(x_1 \) and \(x_4 \) in a suitable way. In this respect, \(S\text{-DEC} \) generalizes \(M\text{-DEC} \), \(S\text{-DEC} \) generalizes \(M\text{-DEC} \); \(S\text{-DEC} \), \(S\text{-DEC} \), and \(S\text{-DEC} \) generalizes \(M\text{-DEC} \); \(S\text{-DEC} \) and \(S\text{-DEC} \) generalize \(M\text{-DEC} \).

Definition 6.4
The class of **Stereo-Decomposition** formulas over a stereo-interval \([x_1,x_2] - [x_3,x_4]\), written \(S\text{-DEC}(x_1,x_2,x_3,x_4) \) is inductively defined as follows:

1. \(flip(x_4) = x_1 \land flip(x_3) = x_2 \land T(\psi,x_1) \land T(\psi',x_2) \land T(\psi'',x_2,x_3,x_4) \land \forall y(x_1 < y < x_2 \rightarrow T(\phi,y)) \land \forall y(x_3 < y < x_4 \rightarrow T(\phi', y)) \land \forall y((x_3 < y < x_4 \land \exists y'(x_1 \leq y' \leq x_2 \land flip(y') = y')) \rightarrow T(\phi'', x_2-x_3,y)), \)

2. \(\neg flip(x_4) = x_1 \land x_2 = x_3 \land flip(x_3) = x_2 \land T(\psi,x_2) \land T(\psi',x_3) \land \delta(x_1,x_2), \)

where \(\delta(x_1,x_2) \) is an \(M\text{-DEC}(x_1,x_2) \) formula;

3. \(flip(x_4) = x_1 \land \exists z(z_3 \leq z < x_4 \land BreakP(z,x_4) \land \delta'(x_1,x_2-x_3,z) \land T(\psi,x_1,x_2,z) \land \forall y((z < y < x_4 \land BreakP(y,x_4)) \rightarrow T(\phi,x_2-x_3,y)), \)

where \(\delta'(x_1,x_2-x_3,z) \) is an \(S\text{-DEC}(x_1,x_2-x_3,z) \) formula;

4. \(\neg flip(x_4) = x_1 \land \exists z(x_3 \leq z < x_4 \land BreakP(z,x_4) \land \delta'(x_1,x_2-x_3,z) \land T(\psi,x_1,x_2,z) \land \forall y((z < y < x_4 \land BreakP(y,x_4)) \rightarrow T(\phi,x_2-x_3,y)), \)

where \(\delta'(x_1,x_2-x_3,z) \) is an \(S\text{-DEC}(x_1,x_2-x_3,z) \) formula;

5. \(\neg flip(x_4) = x_1 \land \exists k(x_3 \leq k < x_4 \land flip(x_4) = k \land \delta'(x_1,x_2-k,3) \land \delta''(k,x_4)), \)

where \(\delta'(x_1,x_2-k,3) \) and \(\delta''(k,x_4) \) are an \(S\text{-DEC}(x_1,x_2-k,3) \) and \(M\text{-DEC}(k,x_4) \) formula, respectively;

6. \(flip(x_4) = x_1 \land \exists z,w(x_1 \leq z \leq x_2 \leq x_3 \leq w \leq x_4 \land flip(w) = z \land \delta'(z,x_2-x_3,w) \land T(\psi,x_1) \land T(\psi',z) \land T(\psi'',x_2-x_3,w) \land \forall y(x_1 < y < z \rightarrow T(\phi,y)) \land \forall y(w <
Stereo-Decomposition formulas.
For each \(C_5\) a finite disjunction of Mono- (resp. Stereo-) Decomposition formulas.

\[T(\delta', x_2, x_3, y) \]

where \(\delta(z, x_2, x_3, w)\) is an \(S-DEC(z, x_2, x_3, w)\);

7. \(\neg \text{flip}(x_4) = x_1 \land \exists y(x_1 < x_2 \land \text{flip}(x_4) = k \land \delta'(x_1, k) \land \delta''(k, x_2, x_3, x_4))\),
where \(\delta'(x_1, z)\) is an \(M-DEC(x_1, z)\) formula and \(\delta''(k, x_2, x_3, x_4)\) is an \(S-DEC(k, x_2, x_3, x_4)\) formula;

8. \(\text{flip}(x_4) = x_1 \land \exists y(x_1 < x_4 \land \text{flip}(w) = x_1 \land T(\psi, x_2, x_3, w) \land \delta'(x_1, x_2, x_3, y) \land \forall y(w < y < x_4 \rightarrow T(\phi, y)) \land \forall y((w < y < x_4 \land \text{flip}(y) = x_1) \rightarrow T(\delta', x_2, x_3, y))\),
where \(\delta'(x_1, x_2, x_3, y)\) is an \(S-DEC(x_1, x_2, x_3, y)\) formula.

The following lemma proves that any Boolean combination of Mono-Decomposition (resp. Stereo-Decomposition) formulas is equivalent to a finite disjunction of Mono-Decomposition (resp. Stereo-Decomposition) formulas. The proof is given in the Appendix.

Lemma 6.5
Any Boolean combination of Mono- (resp. Stereo-) Decomposition formulas is equivalent to a finite disjunction of Mono- (resp. Stereo-) Decomposition formulas.

Proposition 6.6
Let \(\delta_1(x_1, x_2, x_3, x_4)\) be an \(S-DEC(x_1, x_2, x_3, x_4)\) formula and let \(\delta_2(x_2, x_3)\) (resp. \(\delta_2(x_2, x_2, x_3, x_4)\) be an \(M-DEC(x_2, x_3)\) (resp. \(S-DEC(x_2, x_3, x_4)\) formula. The formula \(\exists x_2, x_3(\text{flip}(x_3) = x_2 \land \delta_1(x_1, x_2, x_3, x_4) \land \delta_2(x_2, x_3, x_4))\) is equivalent to a disjunction of \(M-DEC(x_1, x_4)\) formulas (resp. \(S-DEC(x_1, x_2, x_3, x_4)\) formulas).

Proof. The proof is obtained by an easy structural induction on the definition of Mono- and Stereo-Decomposition formulas.

The next step is the definition of a mapping of \(M-BET(x_1, x_2)\) (resp. \(S-BET(x_1, x_2, x_3, x_4)\) formulas into \(M-DEC(x_1, x_2)\) (resp. \(S-DEC(x_1, x_2, x_3, x_4)\) formulas. To this end, we first state the following lemma, whose proof is given in the Appendix.

Lemma 6.7
Any flip-closed \(M-BET(x_1, x_2)\) (resp. \(S-BET(x_1, x_2, x_3, x_4)\) formula is equivalent to a finite disjunction of \(M-DEC(x_1, x_2)\) (resp. \(S-DEC(x_1, x_2, x_3, x_4)\) formulas, respectively.

To complete the proof we only need to show that Mono- and Stereo-Decomposition formulas can be easily translated into \(UUTL\)-formulas, as stated by the following lemma. The proof is given in the Appendix.

Lemma 6.8
For each \(M-DEC\) formula \(\delta(x_1, x_2)\), with \(x_1 < x_2\) (resp. \(S-DEC\) formula \(\delta(x_1, x_2, x_3, x_4)\), with \(x_1 < x_4\)), there exists a formula \(\gamma \in UUTL\) such that \(\exists x_1 \delta(x_1, x_2)\) is equivalent to \(T(\gamma, x_2)\) (resp. \(\exists x_1 \delta(x_1, x_2, x_3, x_4)\) is equivalent to \(T(\gamma, x_2, x_3, x_4)\)).

On the ground of the above results, we are now ready to show the expressive completeness of \(UUTL\) with respect to \(MFO[<, \text{flip}]\).

Theorem 6.9
For any \(MFO[<, \text{flip}]\)-sentence \(\phi\), there exists an \(UUTL\)-formula \(\gamma\) such that, for any model \(\alpha, \alpha \models \phi\) if and only if \(\langle \alpha, \infty \rangle \models \gamma\).
PROOF. By Theorem 5.9 and Lemma 6.7, it holds that any $MFO[<, flip]$-sentence ϕ is equivalent to a finite disjunction $\bigvee_i \delta_i(0, \infty)$ of $M-DEC(0, \infty)$-formulas. By Lemma 6.8, for every $M-DEC(0, \infty)$-formula $\delta_i(0, \infty)$, there exists a $UUTL$-formula γ_i such that $\langle \alpha, \infty \rangle \models \gamma_i$ if and only if α satisfies $\delta_i(0, \infty)$. This implies that $\langle \alpha, \infty \rangle \models \bigvee_i \gamma_i$ if and only if α satisfies $\bigvee_i \delta_i(0, \infty)$, and thus the thesis.

As a corollary of Proposition 6.2 and Theorem 6.9, we obtain the following equivalence between $UUTL$ and $MFO[<, flip]$.

Corollary 6.10

$MFO[<, flip]$ is as expressive as $UUTL$.

7 Conclusions and further work

In this paper, we proposed a temporal logic for (a certain form of) time granularity and showed that it is expressively complete with respect to the theory $MFO[<, flip]$. To this end, we provided an extension of Kamp’s theorem to linear orders with an additional binary predicate. To the best of our knowledge, this is the first generalization of Kamp’s result to the case in which a binary relation symbol, different from $<$, is included in the language. As a matter of fact, we restricted our attention to natural numbers.

We are currently investigating the minimality of the proposed set of temporal operators as well as the possibility of identifying alternative operators which are both expressively complete and natural to use in expressing properties of layered structures. In particular, we are considering a combined temporal logic approach that embeds a logic for branching within (discrete) time points into a linear temporal logic. We are also analysing the computational properties of $UUTL$ to establish whether or not the elementary decidability obtainable using the until operator in case of $PLTL$ generalizes to $UUTL$.

What we consider the most important goal of our research at this point, however, is a complete axiomatic specification of the properties enjoyed by the $flip$ operator which guarantee the validity of the functional completeness result. We believe that the ideas underlying our result can be adapted to deal with a variety of structures that enjoy a separation property which can be characterized in a general (axiomatic) way. We also believe that such a generalization will contribute to a simplification of the argument presented in this paper.

References

Appendix

A Proofs

A.1 Proofs of Section 5

LEMMA 5.5 Each flip-closed formula \(\phi(x_1, \ldots, x_k) \) (resp. \(\phi(x_1, \ldots, x_m \cdot x_{m+1}, \ldots, x_k) \)) of quantification nesting \(n \) is equivalent to a finite disjunction of flip-closed \(s \)-formulas \(\bigvee_i \phi_i(x_1, \ldots, x_k) \) (resp. \(\bigvee_i \phi_i(x_1, \ldots, x_m \cdot x_{m+1}, \ldots, x_k) \)) such that each each basic \(s \)-formula occurring in \(\phi_i \) has quantification nesting at most \(\max\{2, n\} \).

PROOF: The proof is by induction on the number \(s \) of internal variables of the formula \(\phi(x_1, \ldots, x_k) \) (resp. \(\phi(x_1, \ldots, x_m \cdot x_{m+1}, \ldots, x_k) \)). In particular, \(s = \{x_{2}, \ldots, x_{m-1}, x_{m+2}, \ldots, x_{k-1}\} \) in the case of formulas over stereo-intervals. The inductive case rests on a decomposition of formulas based on the interval decomposition given in Proposition 5.6.

Case \(s = 0 \). In both the cases of a mono- and a stereo-interval, \(\phi \) is a basic \(s \)-formula of quantification nesting \(n \).

Case \(s > 0 \) (inductive case). If \(\phi \) is not satisfiable, then it is equivalent to false.

Suppose that \(\phi \) is satisfiable. We first consider the case of a mono-interval \([x_1, x_k] \). Let \(w_{x_1}, \ldots, x_k \) be a model over the flip-closed interval \([x_1, x_k] \) of the formula \(\phi(x_1, \ldots, x_k) \). By Proposition 5.6 (case \([1] \)), there exists \(z \) such that \(\text{flip}(x_{k-1}) = z \) and \(x_i \leq z < x_{i+1} \), for some \(i = 1, 2, \ldots, k-2 \). Hence, the formula \(\phi(x_1, \ldots, x_k) \) is equivalent to the formula

\[
\exists z \bigvee_{1 \leq i < k-1} \phi_i(x_1, \ldots, x_i, z, x_{i+1}, \ldots, x_k),
\]

where \(\phi_i(x_1, \ldots, x_i, z, x_{i+1}, \ldots, x_k) \) stands for

\[
x_i \leq z < x_{i+1} \land \text{flip}(x_{k-1}) = z \land \phi(x_1, \ldots, x_k).
\]

From the Ehrenfeucht-Fraïssé theorem, it holds that the set of models of

\[
\bigvee_{1 \leq i < k-1} \phi_i(x_1, \ldots, x_i, z, x_{i+1}, \ldots, x_k)
\]

2The proof, as given here, is not constructive, but it could be made so using a suitable satisfiability algorithm, e.g. [10], as a subroutine.
is a finite union \(\bigcup \{ w_{x_1, \ldots, x_n}^{i_1, \ldots, i_n} \mid i_1, \ldots, i_n \in \mathbb{N}, k+1 \} \). Consider a specific model \(w_{x_1, \ldots, x_n}^{i_1, \ldots, i_n} \) belonging to \(\bigcup \{ w_{x_1, \ldots, x_n}^{i_1, \ldots, i_n} \mid i_1, \ldots, i_n \in \mathbb{N}, k+1 \} \). Since the interval \([x_1, x_2]\) is equal to \([x_1, z] \wedge [z, x_2] \), by Proposition 5.7, \(w_{x_1, \ldots, x_n}^{i_1, \ldots, i_n} \) is equal to \(w_{x_1, \ldots, x_n}^{i_1, \ldots, i_n} \mid h_1 \uplus w_{x_1, \ldots, x_n}^{i_1, \ldots, i_n} \mid h_2 \), with \(k_1 + k_2 = k + 3 \). Since each equivalence class \([w_{x_1, \ldots, x_n}^{i_1, \ldots, i_n}]_{k+1} \) can be described by a formula \(\psi([w_{x_1, \ldots, x_n}^{i_1, \ldots, i_n}]_{k+1}) \) of quantification degree \(n \), with \(k + 1 \) free variables, we have that

\[
\psi([w_{x_1, \ldots, x_n}^{i_1, \ldots, i_n}]_{k+1}) = \psi([w_{x_1, \ldots, x_n}^{i_1, \ldots, i_n}]_{k+1}) \wedge \psi([w_{x_1, \ldots, x_n}^{i_1, \ldots, i_n}]_{k+1})
\]

As a consequence, we have that \(\exists \psi \bigwedge_{1 \leq i \leq k-1} \phi_i(x_1, \ldots, x_i, z, x_{i+1}, \ldots, x_k) \) is equivalent to \(\exists \psi \bigwedge_{1 \leq i \leq k-1} \phi_i(x_1, \ldots, x_i, z, x_{i+1}, \ldots, x_k) \), which, in turn, is equivalent to:

\[
\exists \psi \bigwedge_{1 \leq i \leq k-1} \phi_i(x_1, \ldots, x_i, z, x_{i+1}, \ldots, x_k)
\]

By construction, \(\psi([w_{x_1, \ldots, x_n}^{i_1, \ldots, i_n}]_{k+1}) \) and \(\psi([w_{x_1, \ldots, x_n}^{i_1, \ldots, i_n}]_{k+1}) \) are flip-closed formulas, each one properly including at most \(s - 1 \) internal variables, and thus, by the inductive hypothesis, each of them can be replaced by a suitable disjunction of flip-closed interval \(s \)-formulas. For instance, the formula \(\psi([w_{x_1, \ldots, x_n}^{i_1, \ldots, i_n}]_{k+1}) \) is equivalent to a finite disjunction \(\bigvee_{1 \leq i \leq k-1} \delta_{h_i} \phi_i(x_1, \ldots, z, x_{k-1}, x_k) \), where, for each \(h_i, \delta_{h_i} \), \(\phi_i(x_1, \ldots, z, x_{k-1}, x_k) \) is an \(s \)-formula of quantification nesting at most \(n \). Hence,

\[
\exists \psi \bigvee_{1 \leq i \leq k-1} \phi_i(x_1, \ldots, x_i, z, x_{i+1}, \ldots, x_k)
\]

is equivalent to:

\[
\exists \psi \bigvee_{1 \leq i \leq k-1} \phi_i(x_1, \ldots, x_i, z, x_{i+1}, \ldots, x_k)
\]

which is equivalent to:

\[
\exists \psi \bigvee_{1 \leq i \leq k-1} \phi_i(x_1, \ldots, x_i, z, x_{i+1}, \ldots, x_k)
\]

It is immediate to see that, for all \(l, h_1, h_2 \), the disjunction \(\exists \psi \bigvee_{1 \leq i \leq k-1} \phi_i(x_1, \ldots, x_i, z, x_{k-1}, x_k) \) is (equivalent to) an \(s \)-formula, and thus the thesis.

As for the case of a stereo-interval \([x_1, x_m] - [x_{m+1}, x_k] \), let \(w_{x_1, \ldots, x_n}^{x_{m+1}, x_k} \) be a stereo-model over the flip-closed stereo-interval \([x_1, x_m] - [x_{m+1}, x_k] \). By Proposition 5.6, either (i) there exist \(v, w \) such that \(x_1 \leq v \leq x_m, x_{m+1} \leq w \leq x_k, f_{\text{flip}}(w) = v \), and \(x_2 \leq v \leq x_{m-1} \) or \(x_{m+2} \leq w \leq x_k \) (case 2a)), or (ii) there exist \(v, w \) such that \(f_{\text{flip}}(w) = v \), \(x_1 \leq v \leq x_{m+1} \), and \(x_{m+2} \leq w \leq x_k \) (case 2b), or (iii) there exist \(v, \) and \(w \) such that \(f_{\text{flip}}(w) = v \), \(x_1 \leq v \leq x_{m+1} \), and \(x_{m+2} \leq w \leq x_k \) (case 2c). Accordingly, the formula

\[
\phi(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k)
\]

is equivalent to the formula

\[
\exists \phi_i(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k)
\]

where \(\phi_i(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k) \), which captures case (2a), stands for

\[
\exists x_1 \leq x \leq x_{m+1} \wedge \exists x_2 \leq x \leq x_k \wedge f_{\text{flip}}(w) = z \wedge \phi(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k)
\]

\[
\phi_2(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k)
\]

which captures case (2b), stands for

\[
\exists x_1 \leq x \leq x_{m+1} \wedge \exists x_2 \leq x \leq x_k \wedge f_{\text{flip}}(w) = z \wedge \phi(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k)
\]

\[
\phi_2(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k)
\]

which captures case (2c), stands for

\[
\exists x_1 \leq x \leq x_{m+1} \wedge \exists x_2 \leq x \leq x_k \wedge f_{\text{flip}}(w) = z \wedge \phi(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k)
\]

\[
\phi_2(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k)
\]

\[
\phi_2(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k)
\]
Extending Kamp's Theorem to Model Time Granularity

and \(\phi_3(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k) \), which captures case (2c), stands for

\[
\exists z (x_{m-1} < z \leq x_m \land \exists w (x_{m+1} \leq w < x_{m+2} \land \text{flip}(w) = z) \land
\psi^m(x_1, \ldots, x_{m-1}, z, w, x_{m+2}, \ldots, x_k) \land
\text{close}(x_1, z, w, x_k) \land \phi(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k)),
\]

where \(\psi^m(y_1, \ldots, y_m, y_{m+1}, \ldots, y_k) \) stands for

\[
\psi^m(y_1, \ldots, y_m, y_{m+1}, \ldots, y_k) = \begin{cases}
\text{true} & \text{if } m > 2 \text{ and } k > m + 2; \\
\exists z \exists w (1 < i < m - 1 \land m + 1 \leq j \leq k - 1) \land \forall (i = 1 \lor i = m - 1) \land m + 1 \leq j \leq k - 1) \\
\phi_{i,j}(x_1, \ldots, x_i, z, x_{i+1}, \ldots, x_j, w, x_{j+1}, \ldots, x_k) \\
\end{cases}
\]

and \(\text{close}(y_1, y_2, y_3, y_k) \) stands for

\[-(\exists z \exists w (y_1 \leq z \leq y_2 \land y_3 \leq w < y_4 \land \text{flip}(w) = z)).\]

To complete the proof, it suffices to show that \(\phi_i(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k) \), for \(1 \leq i \leq 3 \), is equivalent to a finite disjunction of flip-closed \(s \)-formulas.

Let us first consider the formula \(\phi_1(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k) \), which is equivalent to:

\[
\exists z \exists w \forall (1 < i < m - 1 \land m + 1 \leq j \leq k - 1) \land \forall (i = 1 \lor i = m - 1) \land m + 1 \leq j \leq k - 1) \\
\phi_{i,j}(x_1, \ldots, x_i, z, x_{i+1}, \ldots, x_j, w, x_{j+1}, \ldots, x_k)
\]

where, for all \(i, j, \phi_{i,j}(x_1, \ldots, x_i, z, x_{i+1}, \ldots, x_j, w, x_{j+1}, \ldots, x_k) \) stands for:

\[
x_i \leq z \leq x_{i+1} \land x_j \leq w < x_{j+1} \land \text{flip}(w) = z \land \phi(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k).
\]

From the Ehrenfeucht-Fraïssé theorem, it holds that the set of models of

\[
\forall (1 < i < m - 1 \land m + 1 \leq j \leq k - 1) \land \forall (i = 1 \lor i = m - 1) \land m + 1 \leq j \leq k - 1) \\
\phi_{i,j}(x_1, \ldots, x_i, z, x_{i+1}, \ldots, x_j, w, x_{j+1}, \ldots, x_k)
\]

is a finite union \(\bigcup_{n, k=2}^{\kappa} \{w, x_1, \ldots, x_m, x_{m+1}, \ldots, x_k\} \). Since the stereo-interval \([x_1, x_m] - [x_{m+1}, x_k] \) is equal to \([x_1, z] - [w, x_k] \), we can proceed as in the case of mono-intervals to prove that \(\phi_1(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k) \) is equivalent to:

\[
\exists z \exists w \forall (1 < i < m - 1 \land m + 1 \leq j \leq k - 1) \land \forall (i = 1 \lor i = m - 1) \land m + 1 \leq j \leq k - 1) \\
\phi_{i,j}(x_1, \ldots, x_i, z, x_{i+1}, \ldots, x_j, w, x_{j+1}, \ldots, x_k)
\]

where, for all \(I, h_1, h_2 \), both \(\delta_{h_1}^{\phi_1}(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k) \) and \(\delta_{h_2}^{\phi_1}(z, \ldots, x_m, x_{m+1}, \ldots, w) \) are flip-closed \(s \)-formulas of quantification nesting \(\kappa \). The thesis immediately follows.

As for the formula \(\phi_2(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k) \), we must distinguish three different cases, depending on the value of \(\psi^m(z_1, x_2, \ldots, x_m, x_{m+1}, \ldots, x_k) \). If it is true, then \(\phi_2(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k) \) can be rewritten as follows:

\[
\exists z_1 \exists w_1 \exists z_2 \exists w_2 (x_1 \leq z_1 < x_2 \land x_{m-1} < w_1 \leq x_k \land \text{flip}(w_1) = z_1 \land
x_{m-1} < z_1 \leq x_m \land m + 1 \leq z_2 \leq w_2 < x_{m+2} \land \text{flip}(w_2) = z_2 \land
\text{close}(z_1, z_2, w_2, w_1) \land \phi(x_1, \ldots, x_m, x_m+1, \ldots, x_k).
\]

By exploiting the decomposition of the stereo-interval \([x_1, x_m] - [x_{m+1}, x_k] \) into \([x_1, z_1] - [w_1, x_1] \cup [z_2, x_2] - [w_2, x_1] \cup [x_2, x_1] - [x_{m+1}, w_2] \), we can proceed as in the previous case to prove that \(\phi_2(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k) \) is equivalent to:

\[
\forall (1 < i < m - 1 \land m + 1 \leq j \leq k - 1) \land \forall (i = 1 \lor i = m - 1) \land m + 1 \leq j \leq k - 1) \\
\phi_{i,j}(x_1, \ldots, x_i, z, x_{i+1}, \ldots, x_j, w, x_{j+1}, \ldots, x_k)
\]

where, for all \(I, h_1, h_2 \), with \(1 \leq i \leq 4 \), \(\delta_{h_1}^{\phi_2}(z_1, \ldots, z_2, w_1, w_2) \) are flip-closed \(s \)-formulas of quantification nesting equal to \(\max(2, n) \). The thesis immediately follows.
If $\psi^n \{z_1, x_2, \ldots, x_{m-1}, z_2 \prec w, x_m, x_{m+1}, \ldots, x_k, w_1 \}$ is equal to
\[
\exists z (z_1 \leq z < x_2 \land \text{frip}(x_{m-1}) = z) \lor \bigvee_{2 \leq i < m-2} \{x_i \leq z < x_{i+1} \land \text{frip}(x_{m-1}) = z\},
\]
then $\phi_j(x_1, \ldots, x_m, \ldots, x_k)$ can be rewritten as follows:
\[
\exists z \exists w \exists z \exists [x_i \leq z < x_2 \land \text{frip}(x_{m-1}) = z_1 \land
\exists x_m \land \exists x_{m+1} \leq w < x_{m+2} \land \text{frip}(w) = z_2 \land
\left(\{z_1 \leq z < x_2 \land \text{frip}(x_{m-1}) = z_1 \land \phi_j(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k)\}\right).
\]
By exploiting the decomposition of the stereo-interval $[x_1, x_m, \ldots, x_{m+1}, x_k]$ into $[x_1, x_1, \ldots, [w_1, x_k]] \equiv \left(\left\{x_1, x_1, \ldots, [w_1, x_k]\right\}\right)$ we can proceed as in the previous case to prove that $\phi_j(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k)$ is equivalent to:
\[
\bigvee_i \bigvee_j \bigvee h \bigvee k \bigvee \bigvee_{h_0} \exists z \exists w \exists z \exists [x_i \leq z < x_2 \land \text{frip}(x_{m-1}) = z_1 \land
\exists x_m \land \exists x_{m+1} \leq w < x_{m+2} \land \text{frip}(w) = z_2 \land
\left(\{z_1 \leq z < x_2 \land \text{frip}(x_{m-1}) = z_1 \land \phi_j(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k)\}\right).
\]
where, for all $l, h_1, 1 \leq i \leq 6, \delta^l_{h_1}$ are flip-closed --formulas of quantification nesting equal to $\text{max} \{2, n\}$. The thesis immediately follows.

A very similar sequence of steps can be applied to manage the last case in which $\psi^n \{z_1, x_2, \ldots, x_{m-1}, z_2 \prec w, x_m, x_{m+1}, \ldots, x_k, w_1 \}$ is equal to
\[
\exists w \{w_2 \leq w < x_{m+2} \land \text{frip}(x_{k-1}) = w\} \lor \bigvee_{x_{m+2} \leq i < k-2} \{x_i \leq z < x_{i+1} \land \text{frip}(x_{k-1}) = w\}.
\]
As for the formula $\phi_j(x_1, \ldots, x_m, x_{m+1}, \ldots, x_k)$, it is immediate to see that it is a subformula of ϕ_j, and thus this case can be dealt with as the previous one.

Proposition 5.8 Let $\chi(x_1, x_2)$ (resp. $\phi_j(x_1, x_2, x_3, x_4)$), $\psi_j(x_1, x_2, x_3, z, x_4)$ be a pre-M-BET-formula (resp. a preS-BET-formula). The formula $\exists z \chi(x_1, x_2, x_3, x_4)$ (resp. $\exists z \phi_j(x_1, x_2, x_3, z, x_4)$) is equivalent to an M-BET (resp. S-BET) formula.

Proof. We prove the thesis for the --formula $\phi_j(x_1, x_2, x_3, x_4)$. The proofs for $\chi(x_1, x_2, x_3, z, x_4)$ are analogous, and thus omitted. The proof is by induction on the structure of the formula.

Basic case. The thesis is obvious, since there exist at most two free variables x_1 and x_2 and z must be equal to one of them.

Inductive case. Assume that ϕ has the form of Definition 5.4, case 2. If z occurs both in ϕ_1 and ϕ_2, then (the interpretation of) z must be an endpoint of both the stereo-intervals associated with ϕ_1 and ϕ_2, and thus ϕ_1 and ϕ_2 are basic --formulas. Hence ϕ_1 and ϕ_2 are S-BET-formulas, and, from Definition 5.3 (S-BET-formulas, case 4, S-BET.4 for short), $\exists z \phi$ is an S-BET-formula too. If z occurs in ϕ_1, but not in ϕ_2, then $\exists z \{\text{frip}(x) = x_1 \land \phi_1 \land \phi_2\}$, with $x_1 \in \{1, 2\}$ and $x_1 \in \{3, 4\}$, is equivalent to $\text{frip}(x_1) = x_1 \land \exists z \{\phi_1 \land \phi_2\}$. Since ϕ_2 is a basic --formula, it is also an S-BET-formula. By the inductive hypothesis, $\exists z \phi_1$ is equivalent to an S-BET-formula ϕ'_1, and thus the thesis, since $\text{frip}(x_1) = x_1 \land \phi'_1 \land \phi_2$ is an S-BET-formula. The symmetric case is dealt with analogously.

Assume that ϕ has the form $\exists z \{z_3 < w < x_q \land \text{frip}(w) = z \land \phi_1(x_1, z, w, x_q) \land \phi_2(z, x_2, x_3, w)\}$. Since both $\phi_1(x_1, z, w, x_q)$ and $\phi_2(z, x_2, x_3, w)$ are S-BET-formulas, $\exists z \phi$ is an S-BET formula (S-BET-4). Consider the case in which ϕ has the form $\exists h \{x_1 < h < z \land \text{frip}(x) = h \land \phi_1(x_1, h, x_1, x_1) \land \phi_2(h, x_2, x_3, x_1)\}$, with $x_1 \in \{3, 4\}$. The formula $\exists z \phi$ is equivalent to the formula $\exists h \{x_1 < h < x_q \land \text{frip}(x) = h \land \phi_1(x_1, h, x_1, x_1) \land \phi_2(h, x_2, x_3, x_1)\}$. Since ϕ_2 is a basic --formula, it is also an S-BET-formula. By the inductive hypothesis, $\exists z \phi_1$ is equivalent to an S-BET-formula ϕ'_1, and thus the thesis, since $\text{frip}(x_1) = x_1 \land \phi'_1 \land \phi_2$ is an S-BET-formula. The symmetric case is dealt with analogously.

Assume that ϕ has the form $\exists z \{x_1 < h < x_2 \land \text{frip}(x) = h \land \phi_1(x_1, h, x_1, w, x_q) \land \phi_2(h, x_2, x_3, w)\}$. The formula $\exists z \phi$ is equivalent to the formula $\exists h \{x_1 < h < x_2 \land \text{frip}(x) = h \land \phi_1(x_1, h, x_1, w, x_q) \land \exists z \phi_2(h, x_2, x_3, w)\}$ and by inductive hypothesis $\exists z \phi_2(h, x_2, x_3, w)$ is equivalent to an S-BET-formula $\phi'_2(h, x_2, x_3, w)$. The resulting formula $\exists h \{x_1 < h < x_2 \land \text{frip}(x) = h \land \phi_1(x_1, h, x_1, w, x_q) \land \phi'_2(h, x_2, x_3, w)\}$ is an S-BET formula (S-BET-6). The other case in which $z < h < x_2$ can be handled analogously.
672 Extending Kamp’s Theorem to Model Time Granularity

A.2 Proofs of Section 6

LEMMA 6.5 Any Boolean combination of Mono- (resp. Stereo-) Decomposition formulas is equivalent to a finite disjunction of Mono- (resp. Stereo-) Decomposition formulas.

PROOF: Since the assertion trivially holds for disjunction of decomposition formulas, and conjunctions can be equivalently expressed in terms of disjunction and negations, we only give the proof for negation of decomposition formulas.

We start proving that \(\neg \delta(x_1, x_2) \) is equivalent to a disjunction of \(M-DEC \) formulas. The proof is by induction on the structure of the \(M-DEC \) formula \(\delta(x_1, x_2) \).

Base. \(\delta(x_1, x_2) \) has the form \(\text{flip}(x_2) = x_1 \land T[\sigma, x_1] \land \forall y(x_1 < y < x_2 \rightarrow T[\sigma', y] \lor \exists \omega, w(x_1 < z < y < w < x_2 \land \text{flip}(w) = z \land T[\sigma', w])) \). In this case \(\neg \delta(x_1, x_2) \) is equivalent to \(\bigvee_{i=1}^{\infty} \delta_i(x_1, x_2) \), where \(\delta_1(x_1, x_2) \) is a \(M-DEC.3 \)-formula (i.e. \(\neg \text{flip}(x_2) = x_1 \times x_2 \lor \delta_2(x_1, x_2) \)), \(\delta_2 \) is a \(M-DEC.1 \)-formula where \(\phi \) is set to \(\neg \sigma \); \(\delta_3 \) is a \(M-DEC.2 \)-formula where \(\psi \) is set to \(\neg \sigma \) (i.e. there is a break point where \(\neg \sigma \) holds); \(\delta_4 \) is a \(M-DEC.2 \)-formula where \(\psi' \) is set to \(\neg \sigma \land \neg always(\sigma) \) (with always(\sigma) = True \land \gamma \land \gamma' \) and \(\psi'' \) is set to \(\neg \sigma' \).

Inductive case.

\((M-DEC.2)\) Let us consider the case in which \(\delta(x_1, x_2) \) has the form \(\text{flip}(x_2) = x_1 \land \exists z(x_1 < z < x_2 \land \text{BreakP}_{x_1, x_2}(y) \rightarrow T[\sigma, y]) \). By inductive hypothesis \(\neg \sigma(x_1, z) \) is equivalent to a disjunction of \(M-DEC \)-formulas \(\bigvee_{i=1}^{\infty} \delta_i(x_1, z) \). By Lemma 6.8, for each \(i \), there is a \(UUTL \) formula \(\gamma_i \) such that \(\exists z \delta_i(x_1, z) \) is equivalent to \(T[\gamma_i, z] \). So, \(\neg \delta_i(x_1, x_2) \) is equivalent to \(\bigvee_{i=1}^{\infty} \delta_i \), where \(\delta_1 \) is a \(M-DEC.3 \)-formula (i.e. \(\neg \text{flip}(x_2) = x_1 \times x_2 \lor \delta_2(x_1, x_2) \)); \(\delta_2 \) is a \(M-DEC.1 \)-formula where \(\phi'' \) is set to False (i.e. there is no break point, namely \(x_2 \) is odd); \(\delta_3 \) is a \(M-DEC.2 \)-formula with \(\psi \) set to \(\neg \sigma \land \neg always(\sigma) \) and \(\phi \) set to \(\neg \sigma \) (i.e. \(T[\neg \sigma(z), \sigma'] \) holds in some break point \(z \));

\(\delta_4 \) is a \(M-DEC.2 \)-formula with \(\psi \) and \(\phi \) set to \(\neg \sigma \land \neg \psi \) and \(\phi'' \) set to \(\neg \sigma \lor \neg always(\sigma) \) and \(\sigma''(x_1, z) \) a \(M-DEC.1 \)-formula \(T[\sigma, \sigma'] \) holds in each break point \(z \).

\((M-DEC.3)\) Let us consider the case where \(\delta(x_1, x_2) \) has the form \(\text{flip}(x_2) = x_1 \land \exists z(x_1 < z < x_2 \land \text{BreakP}_{x_1, x_2}(y) \rightarrow T[\sigma, y]) \). By inductive hypothesis \(\neg \sigma(x_1, z) \) is equivalent to a disjunction of \(M-DEC \)-formulas \(\bigvee_{i=1}^{\infty} \delta_i(x_1, z) \). By Lemma 6.8, for each \(i \), there is a \(UUTL \) formula \(\gamma_i \) such that \(\exists z \delta_i(x_1, z) \) is equivalent to \(T[\gamma_i, z] \). In this case \(\neg \delta(x_1, x_2) \) is equivalent to \(\bigvee_{i=1}^{\infty} \delta_i

\((M-DEC.4)\) Let us consider the case where \(\delta(x_1, x_2) \) has the form \(\text{flip}(x_2) = x_1 \land \exists z \exists \omega(z_1 < z < \omega < x_2 \land \text{flip}(w) = \omega \land T[\sigma, z] \land T[\sigma', z] \land T[\sigma, \omega] \land \forall y(x_1 < y < x_2 \land \text{BreakP}(y, x_2)) \). By inductive hypothesis \(\neg \sigma(z, w) \) is equivalent to a disjunction of \(M-DEC \)-formulas \(\bigvee_{i=1}^{\infty} \delta_i(z, w) \). By Lemma 6.8, for each \(i \), there is a \(UUTL \) formula \(\gamma_i \) such that \(\exists z \delta_i(z, w) \) is equivalent to \(T[\gamma_i, w] \) (and in this case such a \(z \) is \(\text{flip}(x_2) \)).

The cases in which \(\neg \text{flip}(x_2) = x_1 \lor T[\neg \sigma, x_1] \) can be expressed by a \(M-DEC.3 \) or a \(M-DEC.1 \), respectively.

We consider all the possible ways in which \(T[\sigma, x] \) and \(T[\sigma', x] \) are satisfied, for \(x_1 < x_2 \).

(Case A) The case in which there is no point \(x_1 < x_2 \) such that either \(T[\sigma, x] \lor T[\sigma', x] \) is captured by a \(M-DEC.1 \) formula where \(\phi'' \) is set to \(\text{flip}(x_2) = x_1 \times x_2 \lor \delta_2(x_1, x_2) \), \(\delta_2 \) is a \(M-DEC.1 \)-formula or it is a \(M-DEC.3 \)-formula with \(\phi'' \) forced to be a \(M-DEC.1 \) formula, and with \(\psi \) and \(\phi \) set to \(\Delta \).

We consider now the case where \(\sigma \) is a break point but not the first. In this case we have a \(M-DEC.2 \) formula where \(\delta'(x_1, z) \) is a \(M-DEC.5 \) formula. The \(M-DEC.5 \) formula is as follows: \(\delta'' \) is a \(M-DEC.4 \) formula with \(\psi \) set to \(\neg \sigma \land \Delta \), \(\phi \) set to False, \(\phi'' \) set to \(\text{flip}(x_2) = x_1 \times x_2 \lor \delta_2(x_1, x_2) \), \(\delta' \) is either an arbitrary \(M-DEC.1 \) formula or it is a \(M-DEC.3 \) formula with \(\phi'' \) forced to be a \(M-DEC.1 \) formula, and with \(\psi \) and \(\phi \) set to \(\Delta \).
and ϕ set to Δ.

The case in which \mathfrak{F} is not a break point is similar and it is as follows. We have a $M-DEC.2$ formula where ψ is set to $\neg\text{always}(\mathfrak{F}) \land T(x_1, z)$ or a $M-DEC.4$ formula which satisfies the last jump) or a $M-DEC.5$ formula. Let us consider the former case. The idea is that in the considered $M-DEC.A$ formula \mathfrak{F} and \mathfrak{F} are chosen in such a way that $z < \mathfrak{F} < w$ and \mathfrak{F} is a break point of $[z, w]$. In such a situation, $\delta'(z, w)$ can be defined exactly as in the already examined case. We have also to consider the case whether there is a jump point y for w which satisfies $\neg T(\mathfrak{F}, y)$ or not. Assume that such a jump point does not exists. With this assumption the formulas ψ'' and ψ''' of the $M-DEC.A$ formula are both set to $[\neg\text{Break} \land \Gamma \lor (\text{Break} \land \Gamma \land \text{Fill}(\Delta).True \uparrow True]$) with $\text{Fill}(\Delta)$ the formula $[\neg\text{Break} \land \Delta] \lor ([\neg\text{Break} \land \Delta] \lor \Delta)$ (notice that $\text{Fill}(\Delta)$ imposes Δ in each break point).

The case in which there is a jump point y for \mathfrak{F} which satisfies $\neg T(\mathfrak{F}, y)$ can be handled similarly.

Now, let us consider the case in which $\delta'(x_1, z)$ is a $M-DEC.5$ formula. In this case, δ'' is defined exactly as in the former case and δ'' is the (disjunction of) $M-DEC$ formulas which requires the formula Δ in each break point of the interval $[x_1, z]$.

(Case C) Let us consider the case in which $T(\mathfrak{F}, x)$ holds for any $x_1 < x < x_2$ and $\neg T(\mathfrak{F}, x)$ holds for some $x_1 < x < x_2$. In this case we focus our attention on the greatest point \mathfrak{F} such that $\neg T(\mathfrak{F}, \mathfrak{F})$ holds. If \mathfrak{F} is a break point we have a $M-DEC.2$ formula where ϕ is set to $\neg(\delta' \land \text{always}(\mathfrak{F})) \land \psi$; ψ is set to $\neg\delta \land \Gamma$ and $\delta''(x_1, z)$ is an arbitrary $M-DEC$ formula.

The case in which \mathfrak{F} is not a break point is similar and it is as follows. We have a $M-DEC.2$ formula where ϕ is set as in the previous case and ψ is set to $\neg\text{always}(\mathfrak{F}) \lor \Gamma$. Now, $\delta'(x_1, z)$ is either a $M-DEC.A$ formula (\mathfrak{F} belongs to the last jump) or a $M-DEC.5$ formula. (We treat explicitly only the former case from which also the latter case can be easily derived.) We have also to consider the case whether there is a jump point y for \mathfrak{F} which satisfies $\neg T(\mathfrak{F}, y)$ or not. Assume that such a jump point does not exists. With this assumption the $M-DEC.A$ formula for $\delta'(x_1, z)$ is as follows; ψ'' is set to $\neg\delta \land \Gamma$ and ψ'' is set to $\text{EvenPred}([\neg\delta \lor \text{always}(\mathfrak{F})] \land \Gamma) \lor (\text{always}(\mathfrak{F}) \land \Delta)$. The case in which there is a jump point y for \mathfrak{F} which satisfies $\neg T(\mathfrak{F}, y)$ can be handled similarly.

(Case D) Finally, we consider the case in which for some $x_1 < x < x_2$ we have $\neg T(\mathfrak{F}, x)$ holds (let \mathfrak{F} be the least of these points) and for some $x_1 < y < x_2$ we have $T(\mathfrak{F}, x)$ holds (let \mathfrak{F} be the greatest of these points). Let us assume that $\mathfrak{F} \preceq \mathfrak{F}$. The case in which there is a break point z such that $\mathfrak{F} < z < \mathfrak{F}$ is given by a $M-DEC.2$ formula where ψ is set to

$$[\neg\delta \land \neg\text{always}(\mathfrak{F})] \land \neg\delta \land \text{always}(\mathfrak{F}) \land \text{somewhere}(\neg\delta) \land \text{True} \uparrow \text{True}$$

and ϕ is set to $\neg\delta \land \neg\text{always}(\mathfrak{F})$, with somewhere γ the formula $\neg\text{always}(\neg\gamma) \lor (\neg\gamma \land \text{always}(\neg\gamma) \land \text{True})$. The other cases in which $\mathfrak{F} \prec z < \mathfrak{F} \land \mathfrak{F} < z < \mathfrak{F}$ can be treated analogously.

If \mathfrak{F} was then we have to consider the two cases whether there exists or not a jump point k where $\neg T(\mathfrak{F}, k)$. We consider only the latter case which is given by a $M-DEC.A$ formula with ψ set to $\neg\delta$; ψ'' set to $\neg\delta$ and ψ'' set to Γ.

The other case in which $\mathfrak{F} = \mathfrak{F}$ can be dealt with analogously.

(Case E) If all the previously examined cases are excluded there are three points z, w and k such that $\mathfrak{F} < w$, k is a break point (with respect to $[z, w]$) with $z < \mathfrak{F} \leq k \leq \mathfrak{F} < w$. In this case if we assume the simplifying assumption that $T(\mathfrak{F}, k)$ holds for each jump point k of w, we have a disjunction of $M-DEC.A$ formulas where ψ'' and ψ''' are set to Γ and $\delta''(z, w)$ is a disjunction of the formulas defined in the Case D.

The case in which $\mathfrak{F} \prec \mathfrak{F}$ can be handled in a similar way.

(M-DEC.5) Let us consider the case where $\delta(x_1, x_2)$ has the form $\neg\mathfrak{F}(x_2) = x_1 \land \exists k_1 < x < x_2 \land \mathfrak{F}(x_2) = x_1 \land \delta'(x_2, k) \land \mathfrak{F}(k, x_2)$. By inductive hypothesis $\neg\delta'(x_1, k)$ and $\neg\delta'(k, x_2)$ are equivalent to a disjunct of $M-DEC$-formulas $\bigvee_{k \neq k_1} \delta'_1(x_1, k) \land \bigvee_{k \neq k_2} \delta'''_1(k, x_2)$, respectively. Therefore, $\neg\delta(x_1, x_2)$ is equivalent to $\bigvee_{k \neq k_1} \delta_1 \land \bigvee_{k \neq k_2} \delta_2$, where δ_1 is an arbitrary $M-DEC.1$ formula (i.e. $\mathfrak{F}(x_2) = x_1$); δ_{k_1} is a $M-DEC.5$ with $\delta_1(x_1, k)$ and δ_{k_2} is a $M-DEC.5$ with $\delta''_1(k, x_2)$ to set to $\delta''_1(k, x_2)$. Let us consider now $S-DEC$ formulas.

(S-DEC.1) Let us consider the case where $\delta(x_1, x_2, x_3, x_4)$ has the form $\mathfrak{F}(x_4) = x_1 \land \mathfrak{F}(x_2) = x_2 \land T(\mathfrak{F}, x_1) \land T(\mathfrak{F}, x_2) \land T(\mathfrak{F}, x_3) \land T(\mathfrak{F}, x_2, x_3, x_4) \land \forall y(x_1 < y < x_2 < T(\mathfrak{F}, y)) \land \forall y(x_1 < y < x_2 < T(\mathfrak{F}, y)) \land \forall y(x_1 < y < x_2 < T(\mathfrak{F}, y)) \land \forall y(x_1 < y < x_2 < T(\mathfrak{F}, y))$. The situation in which $\neg\mathfrak{F}(x_2) = x_1$ holds is represented by disjuncts of the form $S = \neg T(\mathfrak{F}, x_1)$ (resp. $\neg T(\mathfrak{F}, x_2)$, $\neg T(\mathfrak{F}, x_3, x_4)$, $\neg T(\mathfrak{F}, x_2, x_3, x_4)$) does not hold is expressed by a $S-DEC.1$ formula with ψ (resp. ψ'', ψ''') set to $\neg T(\mathfrak{F}, x_2)$ (resp. $\neg T(\mathfrak{F}, x_2)$, $\neg T(\mathfrak{F}, x_2)$). In order to handle in a simple way the case where there is a jump k for x_3 where...
Extending Kamp's Theorem to Model Time Granularity

Let \(T(\mathcal{G}, x_2, x_3, k) \) does not hold, one can previously show that a format which differs from \(S = DEC.6 \) only for the requirement that \(x_1 < w < x_4 \) allows to define formulas which are equivalent to disjunction of \(S = DEC \) formulas. We refer to this format as \(S = DEC.6^* \). Therefore, the case we are considering is given by a \(S = DEC.6^* \) formula with \(\psi' \) set to \(\bar{\nu} \).

We consider now the case in which there is a point \(x_1 < x < x_2 \) where \(T(\mathcal{G}, x) \) does not hold. The basic case we consider first is the one in which there is a break point \(k \) for \((x_1, x_4) \) such that either \(\mathcal{G} < k \leq x_2 \) or \(\mathcal{G} = k < x_2 \).

In the former case, we have a \(S = DEC.3 \) having the recursive parameter \(\delta'(x_1, x_2, x_3, z) \) either of the form \(S = DEC.2 \) or \(S = DEC.7 \). If we consider a \(S = DEC.2 \) formula, then \(\psi \) is set to \(\text{somewhere}(\varphi) \). If we consider a \(S = DEC.7 \) formula, then \(\psi' \) is a \(S = DEC.1 \) formula with \(\psi \) set to \(\text{somewhere}(\neg \varphi) \). In the latter case (i.e. \(\mathcal{G} = k < x_2 \)), we have a \(S = DEC.6^* \) having the recursive parameter of the form \(S = DEC.7 \). We have two possibilities for \(S = DEC.7 \): either \(\psi' \) is a \(S = DEC.1 \) formula and \(\psi \) is set to \(\neg \varphi \circ \text{True} \) or \(\psi \) is set to \(\neg \varphi \) and \(\psi' \) is \(S = DEC \) formulas guaranteeing that \(k < x_2 \) (it can be easily show that such a formula can be defined).

If such a break point \(k \) does not exist, there are \(z, w \) and \(k \) such that \(\text{flip}(w) = z \), with \(x_3 < w < k \) is a break point for \((z, w) \) and either \(\mathcal{G} < k \leq x_2 \) or \(\mathcal{G} = k < x_2 \). In this case we have a formula \(S = DEC.6^* \) where \(\delta'(z, x_2, x_3, w) \) is an element of the disjunction of \(S = DEC \) formulas obtained by handling the above considered basic case.

The symmetrical case in which there is a point \(x_3 < x < x_4 \) where \(T(\mathcal{G}, x) \) does not hold can be handled analogously.

\((S = DEC.2)\) Let us consider the case where \(\delta(x_1, x_2, x_3, x_4) \) has the form \(\neg \text{flip}(x_4) = x_1 \land x_4 = x_3 \land \text{flip}(x_2) = x_2 \land T(\mathcal{G}, x_2) \land T(\mathcal{G}, x_1) \land T(\mathcal{G}, x_2) \). The situation in which \(\text{flip}(x_2) = x_2 \) holds can be represented by a \(S = DEC.1 \) formula.

The case in which \(x_3 < x_4 \) is given either by a \(S = DEC.4 \) formula, or by a \(S = DEC.7 \) formula having as \(\psi' \) a formula of the form \(S = DEC.3 \).

The case in which \(T(\mathcal{G}, x_1) \) (resp. \(T(\mathcal{G}, x_3) \)) does not hold is treated by a \(S = DEC.1 \) formula with \(\psi \) (resp. \(\psi' \)) set to \(\neg \psi \) (resp. \(\neg \psi' \)).

Finally, as already proved, \(\neg \mathcal{G} \) is equivalent to a disjunction \(\bigvee_i \delta_i(x_1, x_2) \). Therefore the case in which \(\mathcal{G}(x_1, x_2) \) does not hold is given by a disjunction (indexed by \(j \)) of \(S = DEC.2 \) formulas with \(\delta(x_1, x_2, x_3) \) set to \(\delta_j(x_1, x_2) \).

\((S = DEC.3)\) Let us consider the case where \(\delta(x_1, x_2, x_3, x_4) \) has the form \(\text{flip}(x_4) = x_1 \land \exists z(x_3 < z < x_4 \land \text{break}(x_1, x_2, x_3, z) \land T(\mathcal{G}, x_1, x_2, x_3, z) \land \forall y(y < x_2 \land \text{break}(x_1, x_2, y) \rightarrow T(\mathcal{G}, x_2, x_3, y))) \).

By inductive hypothesis \(\neg \mathcal{G} \delta(x_1, x_2, x_3, z) \) is equivalent to a disjunction of \(S = DEC \) formulas \(\bigvee_i \delta(x_1, x_2, x_3, z) \) and by Lemma 6.8, for each \(i \), there is a \(\text{UTL} \) formula \(\gamma_i \) such that \(\exists x_1 \delta_i(x_1, x_2, x_3, z) \) is equivalent to \(T(\gamma_i, x_2, x_3, z) \).

The case in which \(\text{flip}(x_4) = x_1 \) does not hold has already been considered. The case in which there is no break point, namely \(x_4 \) is odd, is handled by a \(S = DEC.1 \) formula where \(\psi' \) is set to \(\text{Odd} \).

We consider now the case in which \(T(\mathcal{G}, x_2, x_3, z) \) holds in each break point \(z \) greater than (or equal to) \(x_3 \). In such a case we have a \(S = DEC.3 \)-formula with \(\psi \) and \(\psi' \) set to \(\bigvee_i \gamma_i \land \neg \mathcal{G} \psi \), and with \(\delta(x_1, x_2, x_3, z) \) a \(S = DEC.7 \) or a \(S = DEC \) formula.

The case in which \(T(\mathcal{G}, z) \) holds in some break point \(z \) preceding \(x_4 \) is given by a \(S = DEC.3 \) formula where \(\psi \) is set to \(\bigvee_i \gamma_i \land \neg \mathcal{G} \psi \) and \(\psi' \) an arbitrary \(S = DEC \) formula.

\((S = DEC.4)\) This case can be treated, with obvious changes, exactly as the case \(S = DEC.3 \), and it is therefore omitted.

\((S = DEC.5)\) Let us consider the case where \(\delta(x_1, x_2, x_3, x_4) \) has the form \(\neg \text{flip}(x_4) = x_1 \land \exists k(x_3 < k < x_4 \land \text{flip}(x_4) = z \land \mathcal{G}(x_1, x_2, x_3, k) \land \delta'(k, x_4)) \).

As previously proved, \(\mathcal{G}(k, x_4) \) is equivalent to a disjunction of \(M = DEC \) formulas \(\bigvee_i \delta'(i, k, x_4) \) and, by inductive hypothesis, \(\mathcal{G}(x_1, x_2, x_3, k) \) is equivalent to a disjunction of \(S = DEC \) formulas \(\bigvee_i \delta_i(x_1, x_2, x_3, k) \) and, by disjunctive laws, \(\delta(x_1, x_2, x_3, k) \) set to \(\delta_i(x_1, x_2, x_3, k) \).

The case in which \(\text{flip}(x_4) = x_1 \) holds is handled as in the previous cases. The other cases are given by a disjunction \(\bigvee_i \delta_i \land \bigvee_j \delta_j \) where each \(\delta_i \) is a \(S = DEC.5 \) formula with \(\delta'(k, x_4) \) set to \(\delta_i(k, x_4) \) and each \(\delta_j \) is a \(S = DEC.5 \) formula with \(\delta'(k, x_2, x_3, k) \) set to \(\delta_j(k, x_2, x_3, k) \).

\((S = DEC.6)\) Let us consider the case where \(\delta(x_1, x_2, x_3, x_4) \) has the form \(\text{flip}(x_4) = x_1 \land \exists w(x_1 \leq w < x_4 \land \text{flip}(w) = z \land \mathcal{G}(x_1, x_2, x_3, w) \land T(\mathcal{G}, x_1) \land T(\mathcal{G}, x_2, x_3, w) \land \forall y(y < z \rightarrow T(\mathcal{G}, y) \land \forall w(w < y \rightarrow x_4 \rightarrow T(\mathcal{G}, y)) \land \forall y(y < x_4 \rightarrow \exists y'(x_1 \leq y' \leq x_4 \land \text{flip}(y') = y')) \rightarrow T(\mathcal{G}, x_2, x_3, y')) \).

By inductive hypothesis, \(\neg \mathcal{G} \delta(x_1, x_2, x_3, k) \) is equivalent to a disjunction of \(S = DEC \) formulas \(\bigvee_i \delta_i(z, x_2, x_3, w) \), and by Lemma 6.8, for each \(j \) there is a \(\text{UTL} \) formula \(\gamma_j \) such that \(\exists z \delta_i(z, x_2, x_3, w) \) is equivalent to \(T(\gamma_j, x_2, x_3, x_4) \).
(Case A) Assume that $T[\phi, x]$ holds true for any $x_1 < x < x_2$, that $T[\phi, y]$ holds true for any $x_3 < y < x_4$ and that $T[\phi', x_2 - x_3, y]$ holds true for each jump point y of x_3. In this case, we have a $S - DEC.6$ formula as follows: ϕ' is set to $\Gamma = \bigvee_{i=1}^{n} \psi_i$ where $\psi_i = \neg \phi \land \phi'$. If such a break point follows: ϕ' is set to $\Gamma \land \phi'$. If such a break point does not exist, then z and w, such that $f_{flip}(w) = z$, k is a break point for $[z, w]$ and any $x_3 < x < x_4$. Assume also for simplicity, that $T[\phi', x_2 - x_3, y]$ holds true in each jump point y of w and the recursive argument $\delta' (x_1, x_2 - x_3, k)$ is a $S - DEC.7$ formula having as δ' a $S - DEC.1$ formula with ψ set to somewhere $\neg \psi$. The case $\phi' = k < x_2$ can be given in a similar way.

(c) Assume that the symmetric case where there is a point $x_3 < x < x_4$, such that $T[\neg \psi', \psi]$ and $T[\phi, x]$ for any $x_1 < x < x_2$, can be treated with obvious changes, exactly as case B.

(D) Let us assume that there are a least point $x_1 < x < x_2$, where $T[\phi', \psi]$ does not hold, and a greatest point $x_2 < x < x_4$, where $T[\phi', \psi]$ does not hold. Also in this case we have to deal with a basic case where there exists a break point k for $[x_1, x_4]$ such that either $\phi < k < x_2$, or $\phi = k < x_2$, or $x_3 < k < \psi$ or $x < k < \phi$. (These cases are dealt with as in case B and C.) Then we have to consider the general case in which there are z, w, with $f_{flip}(w) = z$, and a break point k for $[z, w]$ such that $z < x_2 < x_3 < w$ and one of the four conditions of the basic case is satisfied. In this case we can proceed in the standard way by exploiting a disjunction of $S - DEC.6$ formulas with ψ' set to Γ (if any jump point y for w satisfies $T[\phi', x_2 - x_3, y]$ and with $\delta' (x_1, x_2 - x_3, k)$ a $S - DEC$ formula obtained from the analysis of the basic case.

(S-DEC.7) This case can be treated, with obvious changes, exactly as the case $S - DEC.5$, and it is therefore omitted.

(S-DEC.8) This case can be treated, with obvious changes, exactly as the case $S - DEC.6$, and it is therefore omitted.

Lemma 6.7 Any flip-closed $M-BET(x_1, x_2)$ and $S-BET(x_1, x_2 - x_3, x_4)$ formula is equivalent to a finite disjunction of $M-DEC(x_1, x_2)$ formulas and $S-DEC(x_1, x_2 - x_3, x_4)$ formulas, respectively.

Proof. The proof is by induction on the structure of $M-BET$ and $S-BET$ formulas.

Base. We consider first $M-BET$ formulas.

The formula True is equivalent to $\delta_1 \lor \delta_2$, where δ_1 is a $M - DEC.1$ formula and δ_2 is a $M - DEC.3$ formula.

The formula $p(x_1)$ is equivalent to $\delta_1 \lor \delta_2$, where δ_1 is a $M - DEC.1$ formula with ψ set to p, and δ_2 is a $M - DEC.3$ formula where the recursive parameter δ' is a $M - DEC.1$ formula with ψ set to p. The formula $f_{flip}(x_2) = x_1$ is a $M - DEC.1$ formula with $\psi = \text{True}$.

We consider now the base case for $S-BET$ formulas.

The formula True is equivalent to the formula $\bigvee_{i=1}^{n} \delta_i$ which describes all of the possible flip-closed stereo intervals. In particular, δ_1 is a $S - DEC.1$ formula; δ_2 is a $S - DEC.7$ formula (a multiple-sequence stereo interval with x_2 and x_3 in the first sequence element); δ_3 is a $S - DEC.A$ formula (a multiple-sequence stereo interval with x_2 and x_3 not placed in the first sequence element).

The cases for $p(x_1)$, with $i = 1, 2, 3$, exploits a translation analogous to that we have introduced for True taking care to suitably place in such a translation a sub-formula $T[p, x_1]$. For instance the formula $p(x_2)$ is equivalent to the formula $\bigvee_{i=1}^{n} \delta_i$, where δ_1 is a $S - DEC.1$ formula with ϕ' set to p; δ_2 is a $S - DEC.7$ formula where the recursive parameter δ' has the same form as δ_1.

The formula $f_{flip}(x_2) = x_1$ is a $S - DEC.1$ formula.

The formula $f_{flip}(x_2) = x_2$ is equivalent to a disjunction $\delta_1 \lor \delta_2$, where δ_1 is a $S - DEC.1$ with $\phi = \text{False}$ (notice that $f_{flip}(x_2) = x_1$ implies $x_1 = x_2$) and δ_2 is a $S - DEC.7$ where the recursive parameter δ' has the same form as δ_1.

The formula $f_{flip}(x_2) = x_3$ is equivalent to a disjunction $\delta_1 \lor \delta_2 \lor \delta_3$, where δ_1 is a $S - DEC.1$ with ψ' set to 0 (notice that $f_{flip}(x_2) = x_1$ implies $x_1 = x_2 = x_3 = 0$); δ_2 is a $S - DEC.A$ where $\delta'(x_1, x_2 - x_3, k)$ is a
The formula \(\text{M-BET}.3 \) is equivalent to a disjunction \(\delta_1 \lor \delta_2 \), where
\(\delta_1 \) is a \(S - \text{DEC}.1 \) formula with \(\phi \) set to \(\text{False} \) and \(\psi'' \) set to \(\text{Even} \) (i.e. \(x_1 = x_2 \) and \(x_3 = z \)); \(\delta_3 \) is a \(S - \text{DEC}.A \) formula, where \(\delta'[x_1, x_2, x_3, k] \) is a \(S - \text{DEC}.2 \).

The formula \(\text{M-BET}.3 \) is equivalent to a disjunction \(\delta_1 \lor \delta_2 \), where
\(\delta_1 \) is a \(S - \text{DEC}.1 \) formula with \(\phi \) set to \(\text{False} \) (notice that \(\text{M-BET}(x_3) = x_1 \) implies \(x_1 = x_2 \) since \(\text{M-BET}(x_3) = x_2 \) by hypothesis); \(\delta_2 \) is a \(S - \text{DEC}.A \) with the recursive parameter \(\delta' \) defined as \(\delta_1 \).

The formula \(\text{M-BET}.3 \) is equivalent to a disjunction \(\bigvee_{i=1}^{n} \delta_i \), where \(\delta_1 \) is a \(S - \text{DEC}.2 \) with \(\delta'[x_1, x_2, x_3, k] \) a \(\delta'' \).

The formula \(\text{M-BET}.3 \) is equivalent to a disjunction \(\delta_1 \lor \delta_2 \), where \(\delta_1 \) is a \(S - \text{DEC}.1 \) formula with \(\phi \) set to \(\text{False} \) and \(\delta_2 \) is a \(S - \text{DEC}.A \) formula, where \(\delta'[x_1, x_2, x_3, k] \) is a \(\delta'' \).

By induction, the thesis follows from \(\text{M-BET}.2 \).

Lemma 6.6.5 Let us consider the case of \(\phi(x_1, x_2) \) having the form \(\exists x_1 < z < x_2 \land H \text{ET}(x_3) = z \lor \phi_1(x_1, z) \land \phi_2(x_2, z) \). By inductive hypothesis \(\phi_1(x_1, z) \) is equivalent to a disjunction of \(S - \text{DEC}.4 \) formulas \(\bigvee_{i} \delta_i'(x_1, z) \) and \(\phi_2 (x_2, z) \) is equivalent to a disjunction of \(M - \text{DEC}.5 \) formulas \(\bigvee_{i} \delta_i''(x_2, z) \). If \(\phi_1(x_1, z) \) has the form \(\exists x_1 < z < x_2 \land H \text{ET}(x_3) = z \lor \phi_1'(x_1, z) \land \phi_2'(x_2, z) \). If \(\phi_1'(x_1, z) \) has the form \(\exists x_1 < z < x_2 \land H \text{ET}(x_3) = z \lor \phi_1''(x_1, z) \land \phi_2''(x_2, z) \).

If \(\phi_1''(x_1, z) \) has the form \(\exists x_1 < z < x_2 \land H \text{ET}(x_3) = z \lor \phi_1'''(x_1, z) \land \phi_2'''(x_2, z) \).

Lemma 6.6.7 Let us consider the case where \(\phi'(x_1, x_2) \) has the form \(M - \text{DEC}.3 \) and \(\phi''(x_1, x_2) \) has the form \(\exists x_1 < z < x_2 \land H \text{ET}(x_3) = z \lor \phi_1(x_1, z) \land \phi_2(x_2, z) \).

If \(\phi_1(x_1, z) \) has the form \(\exists x_1 < z < x_2 \land H \text{ET}(x_3) = z \lor \phi_1'(x_1, z) \land \phi_2'(x_2, z) \).

If \(\phi_1'(x_1, z) \) has the form \(\exists x_1 < z < x_2 \land H \text{ET}(x_3) = z \lor \phi_1''(x_1, z) \land \phi_2''(x_2, z) \).

If \(\phi_1''(x_1, z) \) has the form \(\exists x_1 < z < x_2 \land H \text{ET}(x_3) = z \lor \phi_1'''(x_1, z) \land \phi_2'''(x_2, z) \).

If \(\phi_1'''(x_1, z) \) has the form \(\exists x_1 < z < x_2 \land H \text{ET}(x_3) = z \lor \phi_1''''(x_1, z) \land \phi_2''''(x_2, z) \).

Theorem 6.6.8 For each \(M - \text{DEC}.4 \) formula \(\delta(x_1, x_2) \) (with \(x_1 < x_2 \)), there exists a formula \(\gamma \in \text{UTT} \) such that \(\exists x_1 \delta(x_1, x_2) \) is equivalent to \(T(\gamma, x_2) \) (resp. \(\exists x_1 \delta(x_1, x_2) \) is equivalent to \(T(\gamma, x_2, x_3) \)).

Proof. Let us consider first \(M - \text{DEC}.4 \) formulas. The proof is by induction on their structure.

Base. If \(\delta(x_1, x_2) \) has the form \(\exists x_1 \delta(x_1, x_2) \), then \(\gamma \in \text{UTT} \) is \(\phi \cdot \phi' \).
Base. Let $\gamma' \in UUTL$ is $\gamma' \wedge \psi \circ \phi$.

By inductive hypothesis, there is γ' such that $\exists x_i \delta'(x_i, z)$ is equivalent to $T[\gamma', z]$. The formula $\gamma \in UUTL$ is $\exists x_i \delta'(x_i, z)$ is equivalent to $T[\gamma', z]$. The formula $\gamma \in UUTL$ is $\exists x_i \delta'(x_i, z)$ is equivalent to $T[\gamma', z]$.

Notice that the former disjunct is for the case $w = x_4$ and the latter disjunct is for the case $w < x_4$.

By inductive hypothesis, there are γ' and γ'' such that $\exists x_i \delta'(x_i, z)$ is equivalent to $T[\gamma', z]$ and $\exists k \delta''(k, x_2)$ is equivalent to $T[\gamma'', x_2]$. The formula $\gamma \in UUTL$ is $\exists x_i \delta'(x_i, z)$ is equivalent to $T[\gamma', z]$ and $\exists k \delta''(k, x_2)$ is equivalent to $T[\gamma'', x_2]$.

Notice that the former disjunct is for the case $x_3 = x_4$ and the latter disjunct is for the case $x_3 < x_4$.

(5) As already proved, there exists γ' such that $T[\gamma', x_2]$ is equivalent to $\exists x_i \delta(x_i, x_2)$. The formula γ' is $\psi \land (\gamma' \land \psi)$.

Inductive case.

(5) By inductive hypothesis there is γ' such that $\exists x_i \delta(x_i, x_2)$. The formula γ is $\exists x_i \delta(x_i, x_2)$.

(5) By inductive hypothesis there is $\gamma' \land \psi$ such that $T[\gamma', x_2, z]$ is equivalent to $\exists x_i \delta'(x_i, z)$.

The formula γ is $\exists x_i \delta'(x_i, z)$.

(5) By inductive hypothesis there is $\gamma' \land \psi$ such that $T[\gamma', x_2, z]$ is equivalent to $\exists x_i \delta'(x_i, z)$.

The formula γ is $\exists x_i \delta'(x_i, z)$.

(5) By inductive hypothesis there is $\gamma' \land \psi$ such that $T[\gamma', x_2, z]$ is equivalent to $\exists x_i \delta'(x_i, z)$.

The formula γ is $\exists x_i \delta'(x_i, z)$.

(5) By inductive hypothesis there is $\gamma' \land \psi$ such that $T[\gamma', x_2, z]$ is equivalent to $\exists x_i \delta'(x_i, z)$.

The formula γ is $\exists x_i \delta'(x_i, z)$.

Received 30 January 2001