Oxford Journals
tools journals homepage advanced search contact help
Journal of Logic and Computation: Current Issue
 
home
browse
current
etoc
authors
subinfo
subscribers
samples

OUP > Journals > Computing/Engineer. & Mathematics/Stats. > Journal of Logic and Computation

Journal of Logic and Computation

Volume 12, Issue 6, December 2002: pp. 1017-1026

Modal Logics Between Propositional and First-order

Melvin Fitting1

1Lehman College, Department of Mathematics and Computer Science, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589, USA. E-mail: fitting@lehman.cuny.edu

One can add the machinery of relation symbols and terms to a propositional modal logic without adding quantifiers. Ordinarily this is no extension beyond the propositional. But if terms are allowed to be non-rigid, a scoping mechanism (usually written using lambda abstraction) must also be introduced to avoid ambiguity. Since quantifiers are not present, this is not really a first-order logic, but it is not exactly propositional either. For propositional logics such as K, T and D, adding such machinery produces a decidable logic, but adding it to S5 produces an undecidable one. Further, if an equality symbol is in the language, and interpreted by the equality relation, logics from K4 to S5 yield undecidable versions. (Thus transitivity is the villain here.) The proof of undecidability consists in showing that classical first-order logic can be embedded.

Keywords: Modal; propositional; decidable; non-rigid; abstraction

Table of Contents   Full-Text PDF (102 KB)

Oxford University Press
Published by Oxford University Press
Copyright ©Oxford University Press 2003
Print ISSN: 0955-792X  Online ISSN: 1465-363X.
Oxford University Press Privacy Policy and Legal Statement