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A polynomial relation f(x, y) = 0 in two variables defines a curve C. If the coefficients

of the polynomial are rational numbers then one can ask for solutions of the equation

f(x, y) = 0 with x, y ∈ Q, in other words for rational points on the curve. If we consider

a non-singular projective model C of the curve then over C it is classified by its genus.

Mordell conjectured, and in 1983 Faltings proved, the following deep result

Theorem [F1]. If the genus of C is greater than or equal to two, then C(Q) is finite.

As yet the proof is not effective so that one does not possess an algorithm for finding the

rational points. (There is an effective bound on the number of solutions but that does not

help much with finding them.)

The case of genus zero curves is much easier. A Hasse principle argument shows that

in this case C(Q) is non-empty if and only if C has p-adic points for all primes p, and

this in turn is determined by a finite number of congruences. If C(Q) is non-empty then

C is parametrized by rational functions and there are infinitely many rational points. For

conics this goes back to Legendre.

The most elusive case is that of genus 1. There may or may not be rational solutions

and no method is known for determining which is the case for any given curve. Moreover

when there are rational solutions there may or may not be infinitely many. If C has a

rational point then C is called an elliptic curve and the set of rational points has a natural

structure as an abelian group as was observed by Poincaré [P]. In 1922 Mordell ([M]) proved

that this group is finitely generated, thus fulfilling an implicit assumption of Poincaré.



Theorem. If C is an elliptic curve over Q then

C(Q) � Zr ⊕ (finite group).

In the case where C is of genus 1 and C(Q) �= ∅ we can find an affine model for the

curve in Weierstrass form

C: y2 = x3 + ax + b

with a, b ∈ Z. We let ∆ denote the discriminant of the cubic and set

Np := #{solutions of y2 ≡ x3 + ax + b mod p}
ap := p − Np.

then we can define the incomplete L-series of C (incomplete because we omit the Euler

factors for primes p|2∆) by

L(C, s) :=
∏

p�2∆

(1 − app
−s + p1−2s)−1.

We view this as a function of the complex variable s and this Euler product is then known

to converge for Re(s) > 3/2. A conjecture going back to Hasse (see the commentary

on 1952(d) in [We1]) predicted that L(C, s) should have a holomorphic continuation as a

function of s to the whole complex plane. This has now been proved ([W], [TW], [BCDT]).

We can now state the problem:

Conjecture (Birch and Swinnerton-Dyer). The Taylor expansion of L(C, s) at s = 1 has

the form

L(C, s) = c(s − 1)r + higher order terms

with c �= 0 and r = rank(C(Q)).

In particular this conjecture asserts that L(C, 1) = 0 ⇔ C(Q) is infinite.
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Remarks. 1. There is a refined version of this conjecture. In this version one has to define

Euler factors at primes p|2∆ to obtain the completed L-series, L∗(C, s). The conjecture

then predicts that L∗(C, s) ∼ c∗(s − 1)r with

c∗ = |XC |R∞w∞
∏

p|2∆
wp.

Here |XC | is the order of the Tate-Shafarevich group of the elliptic curve C, a group

which is not known in general to be finite although it is conjectured to be so. It counts the

number of equivalence classes of homogeneous spaces of C which have points in all local

fields. The term R∞ is a regulator, in other words a determinant whose matrix entries are

given by a height pairing applied to a system of generators of C(Q)/C(Q)tors. The wp’s

are elementary local factors and w∞ is a simple multiple of the real period of C. For a

precise definition of these factors see [T1] or [T3]. It is hoped that a proof of the conjecture

would also yield a proof of the finiteness of XC .

2. The conjecture can also be stated over any number field as well as for abelian

varieties, see [T1]. Since the original conjecture was stated much more elaborate conjec-

tures concerning special values of L-functions have appeared, due to Tate, Deligne, Bloch,

Beilinson and others, see [T2], [Bl] and [Be]. In particular these relate the ranks of groups

of algebraic cycles to the order of vanishing (or the order of poles) of suitable L-functions.

3. There is an analogous conjecture for elliptic curves over function fields. It has been

proved in this case by Artin and Tate [T1] that the L-series has a zero of order at least r,

but the conjecture itself remains unproved. In the function field case it is now known to

be equivalent to the finiteness of the Tate-Shafarevich group, [T1], [Mi] corollary 9.7.

4. If proven the conjecture (at least in the stronger form) would give an effective

means of finding generators for groups of rational points. This was shown by Manin [Ma]

subject to the condition that the elliptic curves were modular, a property which is now

known for all elliptic curves by [W], [TW], [BCDT]. (A modular elliptic curve is one which

occurs as a factor of the Jacobian of a modular curve.)
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Early History

Problems on curves of genus 1 feature prominently in Diophantus’ Arithmetica. It is

easy to see that a straight line meets an elliptic curve in three points (counting multiplicity)

so that if two of the points are rational then so is the third.1 In particular if a tangent

is taken to a rational point then it meets the curve again in a rational point. Diophantus

implicitly uses this method to obtain a second solution from a first. However he does

not iterate this process and it is Fermat who first realizes that one can sometimes obtain

infinitely many solutions in this way. Fermat also introduced a method of ‘descent’ which

sometimes permits one to show that the number of solutions is finite.

One problem considered in antiquity was the congruent number problem. One way of

stating it is to ask which rational integers can occur as the areas of right-angled triangles

with rational length sides. Such integers are called congruent numbers. For example,

Fibonacci was challenged in the court of Frederic II with the problem for n = 5 and he

succeeded in finding such a triangle. He claimed moreover that there was no such triangle

for n = 1 but the proof was fallacious and the first correct proof was given by Fermat.

The problem dates back at least to Arab manuscripts of the 10th century (for the history

see [We2] chapter 1, §VII and [Di] chapter XVI). This problem is closely related to the

problem of determining the rational points on the curve Cn: y2 = x3 − n2x. Indeed

Cn(Q) is infinite ⇐⇒ n is a congruent number

Assuming the Birch and Swinnerton-Dyer conjecture (or even the weaker statement that

Cn(Q) is infinite ⇔ L(Cn, 1) = 0) one can show that any n ≡ 5, 6, 7 mod 8 is a congruent

number and moreover Tunnell has shown, again assuming the conjecture, that for n odd

and square-free

n is a congruent number ⇐⇒
#{x,y, z ∈ Z: 2x2 + y2 + 8z2 = n}

= 2 × #{x, y, z ∈ Z: 2x2 + y2 + 32z2 = n},
with a similar criterion if n is even ([Tu]). Tunnell proved the implication right to left

unconditionally with the help of the main theorem of [CW] described below.

1 This was apparently first explicitly pointed out by Newton.
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Recent History

It was the 1901 paper of Poincaré which started the modern theory of rational points

on curves and which first raised questions about the minimal number of generators of C(Q).

The conjecture itself was first stated in the form we have given in the early 1960’s (see [BS]).

It was found experimentally using one of the early computers EDSAC at Cambridge. The

first general result proved was for elliptic curves with complex multiplication. The curves

with complex multiplication fall into a finite number of families including {y2 = x3 −Dx}
and {y2 = x3 − k} for varying D, k �= 0. This theorem was proved in 1976 and is due to

Coates and Wiles [CW]. It states that if L(C, 1) �= 0 then C(Q) is finite. In 1983 Gross and

Zagier showed that if C is a modular elliptic curve and L(C, 1) = 0 but L′(C, 1) �= 0, then

an old construction of Heegner actually gives a rational point of infinite order. Using new

ideas together with this result, Kolyvagin showed in 1990 that for modular elliptic curves,

if L(C, 1) �= 0 then r = 0 and if L(C, 1) = 0 but L′(C, 1) �= 0 then r = 1. In the former

case Kolyvagin needed an analytic hypothesis which was confirmed soon afterwards; see

[Da] for the history of this and for further references. Finally as noted in remark 4 above it

is now known that all elliptic curves over Q are modular so that we now have the following

result:

Theorem. If L(C, s) ∼ c(s − 1)m with c �= 0 and m = 0 or 1 then the conjecture holds.

In the cases where m = 0 or 1 some more precise results on c∗ (which of course depends

on the curve) are known by work of Rubin and Kolyvagin.

Rational Points on Higher Dimensional Varieties

We began by discussing the diophantine properties of curves, and we have seen that

the problem of giving a criterion for whether C(Q) is finite or not is only an issue for

curves of genus 1. Moreover according to the conjecture above, in the case of genus 1,

C(Q) is finite if and only if L(C, 1) �= 0. In higher dimensions if V is an algebraic variety,

it is conjectured (see [L]) that if we remove from V (the closure of) all subvarieties which

are images of P1 or of abelian varieties then the remaining open variety W should have
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the property that W (Q) is finite. This has been proved in the case where V is itself a

subvariety of an abelian variety by Faltings [F2].

This suggests that to find infinitely many points on V one should look for rational

curves or abelian varieties in V . In the latter case we can hope to use methods related to

the Birch and Swinnerton-Dyer conjecture to find rational points on the abelian variety.

As an example of this consider the conjecture of Euler from 1769 that x4 + y4 + z4 = t4

has no non-trivial solutions. By finding a curve of genus 1 on the surface and a point of

infinite order on this curve, Elkies [E] found the solution,

26824404 + 153656394 + 187967604 = 206156734

His argument shows that there are infinitely many solutions to Euler’s equation.

In conclusion, although there has been some success in the last fifty years in limiting

the number of rational points on varieties, there are still almost no methods for finding

such points. It is to be hoped that a proof of the Birch and Swinnerton-Dyer conjecture

will give some insight to this general problem.
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