
The Poincar�e Conjecture

In 1904, Henri Poincar�e [17, pp. 486, 498] asked the following question. \Consid�erons
maintenant une vari�et�e [ferm�ee] V �a trois dimensions � � � Est-il possible que le groupe

fondamental de V se r�eduise �a la substitution identique, et que pourtant V ne soit pas

simplement connexe?" Translated both into English and into more modern terminology,
this becomes:

Consider a compact 3-dimensional manifold V without boundary. Is it possi-

ble that the fundamental group of V could be trivial, even though V is not

homeomorphic to the 3-dimensional sphere?

He commented, with considerable foresight, \Mais cette question nous entrâ�nerait trop loin".

Since then, the hypothesis that every simply connected closed 3-manifold is homeomorphic
to the 3-sphere has been known as the Poincar�e conjecture. It has inspired topologists ever
since, leading to many false proofs, but also to many advances in our understanding of the
topology of manifolds.

Early Missteps.

Four years earlier, Poincar�e [17, p. 370] had stated the following false theorem \dont la

d�emonstration demanderait quelques d�eveloppements".

Every compact polyhedral manifold with the homology of an n-dimensional sphere

is actually homeomorphic to the n-dimensional sphere.

(Again, I have restated his assertion in more modern language.) However, by 1904 he had
developed the concept of fundamental group, and constructed a beautiful counterexample
to this statement. His example can be described as the coset space M3 = SO(3)=I60 where

I60 is the group of rotations which carry a regular icosahedron onto itself. (In other words,
M3 can be identi�ed with the space whose elements are regular icosahedra of unit diameter
centered at the origin in 3-space.) This space has a non-trivial fundamental group �1(M

3)
of order 120.

T1 T0́

The next important false theorem was by Henry Whitehead in 1934. As part of a
purported proof of the Poincar�e conjecture, he claimed that every contractible open 3-

dimensional manifold is homeomorphic to Euclidean space. Following in Poincar�e's footsteps,
he then discovered a counterexample to his own theorem, and thus substantially increased
our understanding of the topology of manifolds. (See [26, pp. 21-50].) His counterexample
can be briey described as follows. Start with two disjoint solid tori T1 and T 0

0 in the

3-sphere which are embedded as shown, with linking number zero. Since T 0

0 is unknotted,
its complement T0 = S3 r interior(T 0

0) is also a solid torus, with T0 � T1 , but with
�1(T0 r T1) nonabelian. Choose a homeomorphism h of the 3-sphere which maps T0 onto

1



T1 . We then inductively construct closed unknotted solid tori

� � � � T�1 � T0 � T1 � T2 � � � �

in S3 , where Tn+1 = h(Tn) . The complement S3 r
T
Tn (or the union

S
T�n ) is the

required Whitehead counterexample, a contractible manifold which is not simply connected

at in�nity.

For a delightful presentation of some of the further pitfalls of 3-dimensional topology,

see Bing. For a representative collection of attacks on the Poincar�e conjecture, see the
papers by Birman, Gabai, Gillman and Rolfsen, Jakobsche, Papakyriakopoulos, Rourke,
and Thickstun, as listed below.

Higher Dimensions.

The late 1950's and early 1960's saw an avalanche of progress with the discovery that
higher dimensional manifolds are actually easier to work with than 3-dimensional ones. (One
reason for this is the following: The fundamental group plays an important role in all di-
mensions even when it is trivial, and relations in the fundamental group correspond to

2-dimensional disks, mapped into the manifold. In dimension 5 or more, such disks can be
put into general position so that there are no self-intersections, but in dimension 3 or 4 it
may not be possible to avoid self-intersections, leading to serious diÆculties.)

Stephen Smale announced a proof of the Poincar�e conjecture in high dimensions in 1960.
He was quickly followed by John Stallings, who used a completely di�erent method, and by
Andrew Wallace, who had been working along lines quite similar to those of Smale.

Let me �rst describe the Stallings result, which has a weaker hypothesis and easier proof,
but also a weaker conclusion. He assumed that the dimension is seven or more, but Zeeman

later extended his argument to dimensions �ve and six.

Stallings-Zeeman Theorem. If Mn is a �nite simplicial complex of dimen-

sion n � 5 which has the homotopy type of the sphere Sn and is locally piecewise

linearly homeomorphic to the Euclidean space R
n , then Mn is homeomorphic

to Sn under a homeomorphism which is piecewise linear except at a single point.

In other words, the complement Mn
r(point) is piecewise linearly homeomorphic

to R
n .

(The method of proof consists of pushing all of the diÆculties o� towards a single point,
so that there can be no control near that point.)

The Smale proof, and the closely related proof given shortly afterwards by Wallace, de-

pended rather on di�erentiable methods, building a manifold up inductively, starting with
an n-dimensional ball, by successively adding handles. Here a k -handle can added to a
manifold Mn with boundary by �rst attaching a k -dimensional cell, using an attaching
homeomorphism from the (k� 1)-dimensional boundary sphere into the boundary of Mn ,

and then thickening and smoothing corners so as to obtain a larger manifold with bound-
ary. The proof is carried out by rearranging and cancelling such handles. (Compare the
presentation in [13].)
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3-dimensional ball with a 1-handle attached.

Smale Theorem. If Mn is a di�erentiable homotopy sphere of dimension

n � 5 , then Mn is homeomorphic to Sn . In fact Mn is di�eomorphic to a

manifold obtained by gluing together the boundaries of two closed n-balls under

a suitable di�eomorphism.

This was also proved by Wallace, at least for n � 6 . (It should be noted that the
5-dimensional case is particularly diÆcult.)

The much more diÆcult 4-dimensional case had to wait twenty years, for the work of
Michael Freedman. Here the di�erentiable methods used by Smale and Wallace and the
piecewise linear methods used by Stallings and Zeeman do not work at all. Freedman used
wildly non-di�erentiable methods, not only to prove the 4-dimensional Poincar�e conjecture,

but also to give a complete classi�cation of closed simply connected topological 4-manifolds.
The integral cohomology group H2 of such a manifold is free abelian. Freedman needed
just two invariants: The cup product � : H2


H2
! H4 �= Z is a symmetric bilinear form

with determinant �1 , while the Kirby-Siebenmann invariant � is an integer mod 2 which
vanishes if and only if the product manifold M4

�R can be given a di�erentiable structure.

Freedman Theorem. Two closed simply connected 4-manifolds are homeo-

morphic if and only if they have the same bilinear form � and the same Kirby-

Siebenmann invariant � . Any � can be realized by such a manifold. If �(x
x)
is odd for some x 2 H2 , then either value of � can be realized also. However,

if �(x
 x) is always even, then � is determined by � , being congruent to one

eighth of the signature of � .

In particular, if M4 is a homotopy sphere, then H2 = 0 and � = 0 , so M4 is
homeomorphic to S4 . It should be noted that the piecewise linear or di�erentiable theories
in dimension 4 are much more diÆcult. In particular, it is not known which 4-manifolds with

� = 0 actually possess di�erentiable structures, and it is not known when this structure is
essentially unique. The major results on these questions are due to Donaldson. As one
indication of the complications, Freedman showed, using Donaldson's work, that R4 admits
uncountably many inequivalent di�erentiable structures. (Compare Gompf.)

The Thurston Program.

In dimension three, the discrepancies between topological, piecewise linear, and di�eren-
tiable theories disappear (see Hirsch, Munkres, Moise), but diÆculties with the fundamental
group become severe.

A far reaching conjecture by Thurston holds that every three manifold can be cut up

along 2-spheres and tori so as to decompose into essentially unique pieces, each of which has
a simple geometrical structure. There are eight 3-dimensional geometries in Thurston's pro-
gram. Six of these are now well understood, and there has been a great deal of progress with
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the geometry of constant negative curvature. However, the eighth geometry, corresponding
to constant positive curvature, remains largely untouched. For this geometry, we have the
following extension of the Poincar�e conjecture.

Thurston Elliptization Conjecture. Every closed 3-manifold with �nite fun-

damental group has a metric of constant positive curvature, and hence is home-

omorphic to a quotient S3=� , where � � SO(4) is a �nite group of rotations

which acts freely on S3 .

(The Poincar�e conjecture corresponds to the special case where � �= �1(M
3) is trivial.)

The possible subgroups � � SO(4) were classi�ed long ago by Hopf, but this conjecture

remains wide open. (For references up to 1995 on the Thurston Program, see [12, p. 93]. For
a recent attack, see [1].)
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