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1 The Physics of Gauge Theory

Since the early part of the twentieth century, it has been understood that quantum mechanics is
needed to describe nature at the subatomic scale. In quantum mechanics, the position and velocity
of a particle are noncommuting operators acting on a Hilbert space, and classical notions such as
“the trajectory of a particle” do not apply.

But quantum mechanics of particles is not the whole story. In nineteenth and early twentieth
century physics, many aspects of nature were described in terms of fields – the electric and magnetic
fields that enter in Maxwell’s equations, and the gravitational field governed by Einstein’s equations.
It was clear by the late 1920’s that, since fields interact with particles, to give an internally coherent
account of nature, the quantum concepts must be applied to fields as well as particles.

When this is done, quantities such as the components of the electric field at different points
in spacetime become noncommuting operators. When one constructs a Hilbert space in which
these operators act, one finds many surprises. The distinction between fields and particles breaks
down, since the Hilbert space of a quantum field is constructed in terms of particle-like excitations.
Conventional particles, such as electrons, are reinterpreted as arising from the quantization of a
field. In the process, one finds the prediction of “antimatter”; for every particle, there must be
a corresponding antiparticle, with the same mass and opposite electric charge. Soon after being
predicted by P. A. M. Dirac on the basis of quantum field theory, the “positron” or oppositely
charged antiparticle of the electron was discovered in cosmic rays.

The Quantum Field Theories (QFT’s) that have proved to be most important in describing
elementary particle physics are gauge theories. The classical example of a gauge theory is the
theory of electromagnetism. The gauge group is the abelian group U(1). If A denotes the U(1)
gauge connection, which locally can be regarded as a one-form on spacetime, then the curvature or
electromagnetic field tensor is the two-form F = dA, and Maxwell’s equations read 0 = dF = d∗F .
Here ∗ is the Hodge duality operator; Hodge indeed introduced his celebrated theory of harmonic
forms as a generalization to p-forms of Maxwell’s equations. Maxwell’s equations describe large
scale electric and magnetic fields and also – as Maxwell discovered – the propagation of light waves,
at a characteristic velocity, the speed of light.

Yang-Mills theory or non-abelian gauge theory can, at the classical level, be described similarly,
with U(1) replaced by a more general compact gauge group G. The definition of the curvature must
be modified to F = dA+A∧A, and Maxwell’s equations are modified to the Yang-Mills equations,
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0 = dAF = dA ∗ F , where dA is the gauge-covariant extension of the exterior derivative. These
equations can be derived from the Yang-Mills Lagrangian

L =
1

4g2

∫
TrF ∧ ∗F, (1)

where Tr denotes an invariant quadratic form on the Lie algebra of G. The Yang-Mills equations
are nonlinear, so, in contrast to the Maxwell equations, but like the Einstein equations for the
gravitational field, they are not explicitly soluble in general. But they have certain properties in
common with the Maxwell equations, and in particular, they describe at the classical level massless
waves that travel at the speed of light.

By the 1950’s, when Yang-Mills theory was introduced, it was known that the quantum ver-
sion of Maxwell theory – known as Quantum Electrodynamics or QED – gave a very accurate
account of quantum behavior of electromagnetic fields and forces. The question arose of whether
the non-abelian analog was important for describing other forces in nature, notably the weak force
(responsible among other things for certain forms of radioactivity) and the strong or nuclear force
(responsible among other things for the binding of protons and neutrons into nuclei). The mass-
lessness of classical Yang-Mills waves was a serious obstacle to applying Yang-Mills theory to the
other forces, for the weak and nuclear forces are not associated with long range fields or massless
particles.

In the 1960’s and 1970’s, these obstacles to physical applications of nonabelian gauge theory
were overcome. In the case of the weak force, this was accomplished by the Weinberg-Salam-
Glashow electroweak theory [38, 31] with gauge group H = SU(2) × U(1). The masslessness of
classical Yang-Mills waves was avoided by elaborating the theory with an additional “Higgs field.”
This is a scalar field, transforming in a two-dimensional representation of H, whose non-zero and
approximately constant value in the vacuum state reduces the structure group from H to a U(1)
subgroup (diagonally embedded in SU(2)× U(1)). This theory describes both the electromagnetic
and weak forces, in a more or less unified way; because of the reduction of the structure group to
U(1), the long range fields are those of electromagnetism only, in accord with what we see in nature.

The solution of the problem of massless Yang-Mills fields for the strong interactions was of a
completely different nature. The solution was not obtained by adding additional fields to Yang-Mills
theory but by discovering a remarkable property of the quantum Yang-Mills theory itself, that is,
of the quantum theory whose classical Lagrangian has been given in (1). This property [18, 30] is
called “asymptotic freedom.” When a quantum theory is asymptotically free, this means, roughly,
that the quantum behavior at short distances is very similar to the classical behavior, but that the
classical theory is not a good guide to the quantum behavior at long distances.

Asymptotic freedom, together with other experimental and theoretical discoveries made in the
1960’s and 70’s, made it possible to describe the nuclear force by a non-abelian gauge theory
in which the gauge group is G = SU(3). The additional fields describe, at the classical level,
“quarks,” which are spin 1/2 objects somewhat analogous to the electron, but transforming in the
fundamental representation of SU(3). The non-abelian gauge theory of the strong force is called
Quantum Chromodynamics (QCD).



3

The use of QCD to describe the strong force was motivated by a whole series of experimental
and theoretical discoveries made in the 1960’s and 70’s, involving the symmetries and high energy
behavior of the strong interactions. But classical nonabelian gauge theory is very different from the
observed world of strong interactions; for QCD to successfully describe the strong force, it must
have at the quantum level the following three properties, each of which is dramatically different
from the behavior of the classical theory:

(1) It must have a “mass gap,” that is, there must be some strictly positive constant ∆ such that
every excitation of the vacuum has energy at least ∆.

(2) It must have “quark confinement,” that is, even though the theory is described in terms of
elementary fields, such as the quarks, that transform non-trivially under SU(3), the physical
particle states – such as the proton, neutron, and pion – are SU(3)-invariant.

(3) It must have “chiral symmetry breaking,” which means that the vacuum is potentially invari-
ant (in the limit that the quark bare masses vanish) only under a certain subgroup of the full
symmetry group that acts on the quark fields.

The first point is necessary to explain why the nuclear force is strong but short-ranged; the second
is needed to explain why we never see individual quarks; and the third is needed to account for the
“current algebra” theory of soft pions that was developed in the 1960’s.

Both experiment – since QCD has numerous successes in confrontation with experiment – and
computer simulations [5] carried out since the late 1970’s have given strong encouragement that
QCD does have the properties cited above. These properties can be seen, to some extent, in
theoretical calculations carried out in a variety of highly oversimplified models (like strongly coupled
lattice gauge theory [39]). But they are not fully understood theoretically; there does not exist a
convincing, even if not mathematically complete, theoretical computation demonstrating any of the
three properties in QCD, as opposed to a severely simplified truncation of it.

2 Quest For Mathematical Understanding

In surveying the physics of gauge theories in the last section, we have considered both classical
properties – such as the Higgs mechanism for the electroweak theory – and quantum properties that
do not have classical analogs – like the mass gap and confinement for QCD. Classical properties
of gauge theory are within the reach of established mathematical methods, and indeed classical
non-abelian gauge theory has played a very important role in mathematics in the last twenty years,
especially in the study of three- and four-dimensional manifolds. On the other hand, one does not
yet have a mathematical understanding of the quantum behavior of four-dimensional gauge theory,
or even a precise definition of quantum gauge theory in four dimensions. Will this change in the
twenty-first century? We hope so!

At times, mathematical structures of importance have first appeared in physics before their
mathematical importance was fully recognized. This happened with the discovery of calculus, which
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was needed to develop Newtonian mechanics, with functional analysis and group representation
theory, topics whose importance became clearer with quantum mechanics, and even with the study
of Riemannian geometry, whose development was greatly intensified once it became clear, through
Einstein’s invention of General Relativity to describe gravity, that this subject plays a role in the
description of nature.

Quantum Field Theory (QFT) became increasingly central in physics throughout the twentieth
century. There are reasons to believe that it may be important in twenty-first century mathematics.
Indeed, many mathematical subjects that have been actively studied in the last few decades can
be naturally formulated – at least at a heuristic level – in terms of QFT. New structures spanning
analysis, algebra, and geometry have emerged.

On the analytic side, a byproduct of the mathematical construction of certain quantum field the-
ories was the construction of a new class of measures: non-gaussian, quasi-invariant Borel measures
on generalized functions. These measures are quasi-invariant under the action of the Euclidean
group. Renormalization theory arises from the physics of quantum field theory and statistical
physics, and provides the basis for the mathematical investigation of the local (ultra-violet) regu-
larity and of the global decay (infra-red regularity) of quantum field theories. Surprisingly the ideas
from renormalization theory also apply in other areas of mathematics, including in classic work on
the convergence of Fourier series, and in recent progress on classical dynamical systems.

On the algebraic side, investigations of soluble models of quantum field theory and statisti-
cal mechanics have led to many new discoveries involving topics such as Yang-Baxter equations,
quantum groups, bose-fermi equivalence in two dimensions, and rational conformal field theory.

Geometry abounds with new mathematical structures rooted in quantum field theory, many
of them very actively studied in the last twenty years. Examples include Donaldson theory of
four-manifolds, the Jones polynomial of knots and its generalizations, mirror symmetry of complex
manifolds, elliptic cohomology, and SL(2,Z) symmetry in the theory of affine Kac-Moody algebras.

QFT has in certain cases suggested new perspectives on mathematical problems, while in other
cases its mathematical value up to the present time is motivational. In the case of the geometric
examples cited above, a mathematical definition of the relevant QFT’s (or one in which the relevant
physical techniques can be justified) is not yet at hand. Existence theorems that put QFT’s on
a solid mathematical footing are needed to make the geometrical applications of QFT into a full-
fledged part of mathematics. Regardless of the future role of QFT in pure mathematics, it is a great
challenge for mathematicians to understand the physical principles that have been so important and
productive throughout the twentieth century.

Finally, QFT is the jumping off point for a quest that may prove central in twenty-first century
physics – the effort to unify gravity and quantum mechanics, perhaps in string theory. For math-
ematicians to participate in this quest, or even to understand the possible results, QFT must be
developed as a mathematical subject.
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3 The Problem

For all of these reasons, the Clay Mathematics Institute has chosen to formulate a Millenium
Problem involving the quest for mathematical insight into four-dimensional QFT. This problem
requires understanding one of the deep unsolved physics mysteries about the behavior of QFT and
producing a mathematical framework for its solution.

The problem that has been chosen involves quantum gauge theory in four dimensions. This has
been selected because of the great physical importance of four-dimensional quantum gauge theory
and because of the importance of four-dimensional gauge theory in geometry.

A quantum field, or local quantum field operator, is an operator-valued generalized function on
spacetime obeying certain axioms. The quantum fields act in a Hilbert space H that furnishes a
positive energy representation of the Poincaré group (or inhomogeneous Lorentz group). Among
other things, we require that H contains a vacuum vector Ω, namely a unit vector that is invariant
under the representation of the Poincaré group and unique up to multiplication by a phase. The
properties required of the quantum fields are described at a physical level of precision in many
textbooks, see for example [22]. Mathematically precise systems of axiom have been given for
quantum field theories on R4 with a Minkowski signature by Wightman, see [36], and on R4 with a
Euclidean signature by Osterwalder and Schrader [29]. One of the achievements of twentieth century
axiomatic quantum field theory was the proof of theorems showing how to convert a Euclidean
quantum field theory to a Lorentzian one, and vice-versa. Under certain technical assumptions on
the growth of the n-point Euclidean Green’s functions as a function of n, Osterwalder and Schrader
prove the equivalence of these two axiom schemes. The continued mathematical exploration of
quantum field theory may possibly lead to refinements of the axiom sets that have been in use up
to now, perhaps to incorporate properties considered important by physicists such as the existence
of an operator product expansion or of a local stress-energy tensor. At any rate, for purposes of
the CMI Millenium Problem, an existence proof for a quantum field theory must establish axioms
at least as strong as those cited in [36, 29].

To establish existence of four-dimensional quantum gauge theory with gauge groupG, one should
define (in the sense of the last paragraph) a quantum field theory with local quantum field operators
in correspondence with the gauge-invariant local polynomials in the curvature F and its covariant
derivatives, such as TrFijFkl(x). (A natural 1−1 correspondence between such classical ‘differential
polynomials’ and quantized operators does not exist, since the correspondence has some standard
subtleties involving renormalization [22]. The space of classical differential polynomials of dimension
≤ d does correspond to the space of local quantum operators of dimension ≤ d.) Correlation
functions of the quantum field operators should agree at short distances with the predictions of
asymptotic freedom and perturbative renormalization theory, as described in textbooks. Those
predictions include among other things the existence of a stress tensor and an operator product
expansion, having perscribed local singularities predicted by asymptotic freedom.

The Hamiltonian H of a quantum field theory is the element of the Lie algebra of the Poincaré
group that generates time translations. Since the vacuum vector Ω is Poincaré invariant, it is
an eigenstate with zero energy, namely HΩ = 0. The positive energy axiom asserts that in any



6

quantum field theory, the spectrum of H is supported in the region [0,∞). A quantum field theory
has a mass gap if H has no spectrum in the interval (0,∆) for some ∆ > 0. The supremum of such
∆ is called the mass m.

Now we can state the Millenium Problem:

Yang-Mills Existence And Mass Gap: Prove that for any compact simple gauge group G,
quantum Yang-Mills theory on R4 exists and has a mass gap ∆ > 0.

An important consequence of the existence of a mass gap is that for any positive constant C < ∆
and for any local quantum field operator O such that 〈Ω,OΩ〉 = 0, one has

|〈Ω,O(x)O(y)Ω〉| ≤ exp(−C|x− y|) , (2)

as long as |x− y| is sufficiently large (depending on C and O). This gives a locality property that,
roughly speaking, may make it possible to apply results on R4 to any four-manifold, as argued at a
heuristic level (for a supersymmetric extension of four-dimensional gauge theory) in [40]. Thus, it
may be important in mathematical applications of four-dimensional quantum gauge theories. The
importance of the mass gap of four-dimensional gauge theory for physics has already been explained
in the introduction.

There are many natural extensions of the Millenium Problem. Among other things, one would
like to prove to prove confinement as well as the mass gap, to prove existence of various gen-
eralizations of four-dimensional quantum gauge theory in which one incorporates additional fields
(preserving asymptotic freedom), and to understand dynamical questions (such as the possible mass
gap, confinement, and chiral symmetry breaking) in these more general theories, and to extend the
existence theorems from R4 to an arbitrary four-manifold.

But a solution of the existence and mass gap problem as stated above would be a turning point
in the mathematical understanding of quantum field theory, with a chance of opening new horizons
for its applications.

4 Remarks, Known Results, and Other Directions

We review here some results on the existence and physical properties of QFT’s obtained by methods
of constructive quantum field theory (CQFT). This work concerns quantum fields in two and in
three space-time dimensions. We aim to give the reader an orientation and a set of references for
background material. The final section sketches some existing ideas that may be useful in the study
of the Yang-Mills problem.

Since the inception of quantum field theory, two central methods have emerged to show the
existence of quantum fields on non-compact configuration space (such as Minkowski space). These
known methods are:

(i) Find an exact solution in closed form.

(ii) Establish convergence of a sequence of solutions to a sequence of approximate problems.
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The first method, which is only useful in very special cases, arises in the study of problems without
interaction (linear quantum fields); it has been used to investigate examples that are integrable; and
it also arises in examples that can be solved by a clever change of variables. The second method
lies at the basis of constructive quantum field theory or CQFT, and it relies on establishing uniform
a priori estimates. These estimates give quantitative control over the deviation of the limiting
solution to a sequence of approximations, as well as eventually leading to convergence of these
approximate solutions. Often these estimates are sufficient to establish the existence of a uniform
mass gap in the sequence of approximating problems, and also to show that this gap persists in the
limiting solution.

Two schemes for establishing estimates are

(ii.a) Correlation inequalities.

(ii.b) Convergent expansions.

The correlation inequality methods have an advantage of being general, and when applicable
hold for all coupling constants. But their disadvantage is that they rely on special properties of
scalar bosons or abelian gauge theories, and are not applicable to all interactions.

4.1 Small Coupling Constants

The rest of this discussion focuses on expansion methods. A powerful set of expansion methods
have been developed to establish the existence of certain examples, to exhibit uniqueness or non-
uniqueness of these solutions, as well as to establish properties of the small-energy spectrum of the
Hamiltonians for these theories. These methods are limited to cases where one can establish the
existence of a convergent expansion about an approximate solution; this means they apply to weak
coupling — in an appropriate parameterization of the coupling constants.

These expansion methods, known as cluster expansions, are based on iterative analysis of degrees
of freedom on different length scales. These methods occur in two generic settings: in Hilbert space
and in functional integrals. Quantum theory is based on the existence of a Hilbert space of physical
states, and Hilbert space methods are central to many mathematical constructions. Operator
methods are complemented by estimates established using functional integration. The intimate
connection between quantum theory (operators) and probability theory (functional integration) is
beautifully summarized in the formulations of Nelson and of Osterwalder and Schrader.

There is another convergence method that one can characterize as weak. These methods rely on
compactness arguments, and they end up proving the convergence of subsequences of approxima-
tions, without actually establishing convergence. But using a weak method may lead to lost control
over properties of the limiting solution: for example, properties of the spectrum that hold in each
approximating theory (such as a uniform mass gap), do not necessarily carry over to the limit. For
this reason, we exclude weak existence results from consideration as a part of the solution to this
prize problem.

In many cases, proofs of a uniform gap in a solution obtained through method (ii) involve a
semi-classical approximation. Often this semi-classical approximation can be made directly, while in
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other cases, the semi-classical approximation is only possible after a change of variables, replacing
the original field by a function of this field. We illustrate these possibilities by examples that
have been investigated in detail in space-time dimension two or three. The easiest cases concern
a small perturbation of the massive free field ϕ. Let us first consider the simple example with a
normal-ordered energy density

λϕ4 + ϕ2 , with 0 < λ� 1 . (3)

It has been shown in [16, 15] that this field theory exists, is unique, and has a mass gap equal to

m =
√
2 +O(λ2) . (4)

Assume that the operators A have the property that the vectors AΩ are dense inH. The proof of
the existence of the mass gap relies on proving an estimate: given any constant C <

√
2, there exists

a constant λ0 > 0, and constants B depending on A, such that for all A ∈ A, and all 0 ≤ λ ≤ λ0,
the expectation of e−tH decays exponentially,

〈
AΩ, e−tHAΩ

〉
≤ B e−Ct , for 1 ≤ t . (5)

The states of a single particle are eigenstates of a “mass” operator acting on the Hilbert space,
with the corresponding eigenvalue equal to the particle’s mass. According to special relativity, the
mass M , energy H and momentum P are commuting operators related (in units with the velocity
of light equal to one) by M =

√
H2 − P 2. For this example, much is known, and elaborations of

the cluster expansion allow more detailed study of the spectrum of M . In fact, m is an isolated
eigenvalue in the spectrum ofM , and the corresponding eigenvalues are the states of one observable
particle [16]. These states transform under an irreducible representation of the Poincaré group.

The estimate (5) shows that for any ε > 0, the gap satisfies ∆ >
√
2 − ε for sufficiently small

λ. However, it neither establishes the existence of a particle (of mass m), nor the asymptotic
expansion (4) of the mass in λ. In [16] one develops an expansion yielding a linear operator E2 that
is approximately a projection onto vectors in H that have energy less than the mass of 2 particles.
One shows that there exists E2 whose range is spanned by vectors of the form Ω and e−sHϕΩ, and
for which the exponential rate of decay in (5) can be improved to twice its value,

∣∣∣
〈
AΩ, e−tH(I − E2)AΩ

〉∣∣∣ ≤ B e−2Ct , for 1 ≤ t . (6)

This “two-particle” decay, along with an analysis of the states of the form e−sHϕΩ leads to the proof
of the existence of the isolated eigenvalue m of M satisfying (4), as well as to the existence of an
upper gap in the spectrum of M . In fact, using correlation inequalities valid only for this example,
one can show that on the subspace of H of vectors even under ϕ→ −ϕ symmetry, the Hamiltonian
has no spectrum in the interval (0, 2m) [14]. In the language of physics, this establishes the absence
of bound states and the repulsiveness of forces in this λϕ4 + ϕ2 example with small λ.

The existence of an isolated eigenvalue m for M , in addition to the validity of the Wightman
axioms, justifies the applicability of two standard forms of scattering theory: the Haag and Ruelle
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theory (a wave operator approach), and the Lehmann, Symanzik, and Zimmermann theory (based
on matrix elements). The consequence of applying these scattering theories is the existence of
asymptotic states with an arbitrary number of particles, see the discussion in [15]. Leaving aside
the important open question of asymptotic completeness, i.e. whether these asymptotic states span
the Hilbert space H, this gives a full particle interpretation for these examples.

Existence and an isolated one-particle spectrum is also known for more general polynomial
interactions of the form λP(ϕ) + ϕ2 on R2, with P bounded from below and with 0 < λ < λ0 � 1.
(These examples are known in the literature as P(ϕ)2 models with small coupling, with the subscript
denoting the space-time dimension.) In these examples, the presence or the absence of a bound
states depends on the details of P. A field theory with a bound state would have a mass operator
M whose spectrum has the mass gap (0,m) and the upper gap (m,mb), with m < mb < 2m, while
the bound state would occur as an isolated eigenvalue mb. The binding energy is 2m − mb > 0,
and this binding energy vanishes as λ→ 0. For references, see [35, 6, 15]. In the three-dimensional
case, there is a solution for interaction λϕ4 + ϕ2. A major step in this example was the proof of
stability for this Hamiltonian, after appropriate renormalization [12]. Feldman and Osterwalder
completed the construction of the ϕ4

3 field theory, establishing existence, uniqueness, and a mass
gap for sufficiently small λ [7].

The existence of boson-fermion interactions is also known. It was carried out in two dimensions
for Yukawa-type interactions of the form ψψϕ and their generalization of the sort P(ϕ)+ψψQ′′(ϕ),
with appropriate renormalization, see [15]. The supersymmetric case arises from P = |Q′|2, and
requires extra care in dealing with cancellations of divergences, see [23] for references. Partial results
on the three-dimensional Yukawa interaction (the case P = 0, Q′′ = ϕ) have been established, see
[25], as well in other more singular interactions [10].

The proof of these results depends on an analysis of ultra-violet regularization (smoothing) and
infra-red regularization (compactification). One removes these regularizations after establishing a
priori estimates. Both operator inequalities as well as methods based on functional integration play
a role, and these two methods are related through Feynman-Kac representations for the regular-
ized examples. It is important to understand the contribution to estimates arising from degrees
of freedom (Fourier components of the field ) corresponding to approximate localizations in both
configuration space and Fourier space. This philosophy of phase-cell localization generally applied
iteratively, forms the basis of proving all but the most straightforward estimates, see [16, 15, 12].
In the two-dimensional and three-dimensional examples, one obtains a local field theory, a repre-
sentation of the canonical commutation relations for the initial data, and also a representation of
the inhomogeneous Lorentz group. In the two-dimensional P(ϕ)2 examples the representation of
the canonical commutation relations in each bounded region of space-time is unitarily equivalent
to the representation on Fock space [11], but it is globally inequivalent to the Fock representation.
In contrast, in the three-dimensional ϕ4

3 example, the representation of the commutation relations
is locally unitarily inequivalent to the Fock representation [12].

Some gauge theory examples have also been considered. In two dimensional space-time, the
interaction of an abelian gauge field with a complex (charged) scalar field with a quartic self coupling
is known as the Higgs model. Charge invariance of the interaction is associated with a U(1)
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symmetry, whose breaking leading to a mass for the gauge boson, the Higgs effect, see [3].
In three dimensional space-time, the pure Yang-Mills theory has been studied on a toroidal

lattice, especially by Balban [1]. Estimates on the effective action has been established, uniform
estimates in the lattice spacing, however, the Wightman axioms have not been proved for the
Yang-Mills theory in three-dimensional space-time. Over the past few years there has also been
substantial progress toward the proof of existence of a Yang Mills theory on a compactified four-
dimensional space-time, namely on studying Yang-Mills theory on T4, the toroidal compactification
of R4. Balaban studied this question on a toroidal lattice [2]; other work centered on non-gauge
invariant approximations in the continuum [24]. This represents a major advance in understanding
the behavior of the renormalization of the Yang-Mills action, and in obtaining the structure of the
effective action for large values of the gauge field. In the lattice theory, one starts by constructing
a classical configuration obtained by minimizing the action in a particular local choice of gauge.
Then one applies a renormalization transformation integrating out fluctuations about this classical
solution. The main feature of this progress is obtaining analytic control over effective actions after
the action of a renormalization transformation. These results make plausible that with sufficient
new work a proof of the existence of Yang-Mills theory might be given on T4. They do not, however,
shed light on the mass gap and for that reason they do not give any information about the limit as
T4 → R4.

4.2 Large Coupling Constant

The field theory with energy density λϕ4+ϕ2 exists on R2 for all positive λ, a result that has been
proved using correlation inequality methods and monotonicity in the volume. For sufficiently large
λ, this interaction has (at least) two different solutions. Each solution corresponds to a solution to
the Wightman axioms with a unique, Poincaré-invariant vacuum state. These bosonic field theories
in a finite spatial volume have a unique ground state, represented by a positive wave function. The
distinct ground states in infinite spatial volume appear as a bifurcation of the unique solutions, as
one passes to the limit of infinite volume. This phenomenon is called a phase transition. In the
case that 〈Ω, ϕΩ〉 = 0 in each approximating theory with spatial volume R <∞, the limit R→ ∞
does not yield an expectation that is a pure state; rather it gives an even statistical mixture of the
two pure states that characterize the individual phases. Some intermediate value λc of the coupling
constant provides a boundary between the uniqueness of the solution (for λ < λc) and the existence
of a phase transition λ > λc, and λc is known as the critical point. As λ increases to λc, the mass gap
m = m(λ) decreases monotonically and continuously to zero [19, 13, 27]; furthermore, the function
m(λ) is known to be a positive, increasing function of λ for λ� λc [17]. The behavior of the field
theory in the neighborhood of λ = λc is the most difficult to analyze, since there are no known
asymptotic expansions of the Green’s functions or the mass about this point. It is not even known
mathematically whether the mass is monotonic increasing for all λ > λc. However, physicists have a
qualitative picture based on the assumed fractional power-law behavior m(λ) ∼ |λc − λ|ν above or
below the critical point, where the exponent ν is a function of the dimension. The critical coupling
λc corresponds to the largest effective forces between the particles in the theory. In this example it
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is known that there is a particle interpretation for λ < λc and for λ � λc. While one expects this
behavior for all λ �= λc, and not for λ = λc in two dimensions, this remains to be proved. See [15]
for further discussion and for references.

Just as the interaction λϕ4 + ϕ2 with large coupling λ � 1 has two solutions, the interaction
λ′ϕ4−ϕ2, with small coupling 0 < λ′ � 1 also has two solutions. Each solution has a mass gap and
a unique vacuum. The solutions for λ′ϕ4 − ϕ2 correspond to a field localized in one of two minima
of the quartic energy density, with minima separated by O(λ′−1/2). In this example, the different
solutions for a given λ break the ϕ → −ϕ symmetry of the Hamiltonian. The proof of these facts
was implemented by developing a cluster expansion about a quadratic interaction approximating
one of the minima of the potential, and obtaining a sufficiently small estimate of the probability to
tunnel into the other ground state. This expansion also leads to the mass gap ∆ > 0. A choice of
boundary conditions selects a particular ground state Ω+ or Ω−. This choice both breaks ϕ→ −ϕ
symmetry of the energy density, and also leads to the expectation 〈Ω±, ϕΩ±〉 = ± (2λ′)−1/2+O(λ′).
Each solution has a mass gap m = 2 +O(λ′2), see [17].

While this example with a quartic potential exhibits both a phase transition and symmetry
breaking, these concepts are not necessarily connected with one another. In theories with an energy
density that is a sum of two polynomials P(ϕ) + Q(ϕ), with degQ < degP, one can vary the
coefficients of the polynomial Q(ϕ) in order to obtain a wide variety of phases [21].

4.3 Possible Approaches to the Yang-Mills Problem

One approach to the existence problem for four-dimensional gauge theory is to begin with a lattice
regularization and to demonstrate the existence of a limit as the lattice spacing tends to zero.
The gauge invariant action [39] can be defined on a toroidal Euclidean space-time, yielding a well-
defined path integral. From this point of view, one must verify the existence of limits of appropriate
expectations of gauge-invariant observables as the lattice spacing tends to zero and the volume
tends to infinity.

Because four-dimensional gauge theory is a theory in which the mass gap is not visible classically,
to demonstrate it may require a non-classical change of variables, known to physicists as a duality
transformation. An example in which a duality has been used to establish a mass gap is the
problem of a Coulomb gas, where the mass gap is known as Debye screening. A neutral Coulomb
gas is composed of charges that at a microscopic level interact pairwise with a force determined by
the long-range Coulomb potential (the Green’s function for the Laplacian). But macroscopically,
test charges interact by a force that decays exponentially with the distance between them. The
mathematical proof of this phenomenon relies on a duality transformation relating the long-range
Coulomb interaction of particles with the short-range cos(λϕ) (Sine-Gordon) interaction of fields.
This duality, investigated by Stratonovich in 1957, forms the basis of the proof of Debye screening
[4].

One view of the mass gap in Yang-Mills theory involves it as arising from the quartic potential
(A∧A)2 in the action, where F = dA+gA∧A, see [8]. This elementary picture can be interpreted as
arising from curvature space of connections, see [34]. In fact, certain quantum mechanics problems
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with potentials having flat directions (directions for which the potential remains bounded as |x| →
∞) do lead to bound states [33]. However, a mathematical analysis leading to such an effective
potential in Yang-Mills theory remains currently out of reach.

A prominent speculation about a duality that might shed light on dynamical properties of four-
dimensional gauge theory involves the 1/N expansion [20]. It is suspected that four-dimensional
quantum gauge theory with gauge group SU(N) (or SO(N), or Sp(N)) may be equivalent to a
string theory with 1/N as the string coupling constant. Such a description might give a clear-cut
explanation of the mass gap and confinement, and perhaps a good starting point for a rigorous proof
(for sufficiently large N). There has been surprising progress along these lines for certain strongly
coupled four-dimensional gauge systems with matter [26] but as of yet, no effective approach to the
pure four-dimensional gauge theory. Investigations of supersymmetric theories and string theories
have given a variety of other approaches to understanding the mass gap in certain four-dimensional
gauge theories with matter fields; for example, see [32].
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[9] Jürg Fröhlich, Konrad Osterwalder, and Erhard Seiler, On virtual representations of sym-
metric spaces and their analytic continuation, Ann. of Math. 118 (1983), 461–489.



13

[10] Kryzstof Gawedzki, Renormalization of a non-renormalizable quantum field theory, Nucl.
Phys. B262 (1985), 33–48.

[11] James Glimm and Arthur Jaffe, The λϕ4
2 quantum field theory without cut-offs, III. The

physical vacuum, Acta Math. 125 (1970), 203–267.

[12] James Glimm and Arthur Jaffe, Positivity of the ϕ4
3 Hamiltonian, Fortschr. Phys. 21 (1973),

327–376.

[13] James Glimm and Arthur Jaffe, ϕ4
2 quantum field model in the single phase region: differ-

entiability of the mass and bouns on critical exponents, Phys. Rev. 10 (1974), 536–539.

[14] James Glimm and Arthur Jaffe, A remark on the existence of ϕ4
4, Phys. Rev. Lett. 33

(1974), 440–442.

[15] James Glimm and Arthur Jaffe, Quantum Physics, Second Edition, Springer Verlag 1987,
and Selected Papers, Volumes I and II, Birkhäuser Boston, 1985. (Volume II includes
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