Zoran Petrić

270 Minutes on Categorial Proof Theory

Abstract. The aim of these notes is to provide an introduction of basic categorial notions to a reader interested in logic and proof theory. The first part is devoted to justification of these notions through a cut elimination procedure. In the second part a classification of formulae up to isomorphism, and an example of coherence are given.

Mathematics Subject Classification (2010): Primary: 18-01, 03F07, 18A15; Secondary 03F05, 18D10.

Keywords: sequent system, cut elimination, functor, natural transformation, adjunction, isomorphism, coherence.

Contents

About these notes The three propositional languages Natural deduction and sequent systems From sequent systems to categories The classification of formulae Categories with products, coherence

$C \land A \vdash B$	$D \vdash C B \vdash E$		$C \land A \vdash B$	$B \vdash E$
$\overline{A \vdash C \to B}$	$\overline{D \land (C \to B) \vdash E}$	$D \vdash C$	$C \land A \vdash$	- <i>E</i>
<i>D</i>	$\wedge A \vdash E$		$D \wedge A \vdash E$	

$$\frac{C \land A \vdash B}{A \vdash C \rightarrow B} \xrightarrow{D \vdash C \quad B \vdash E}{D \land (C \rightarrow B) \vdash E} \longrightarrow \frac{D \vdash C}{D \land A \vdash E} \xrightarrow{D \vdash C} \frac{C \land A \vdash B \quad B \vdash E}{C \land A \vdash E}$$

$$\frac{D \land A}{E} \xrightarrow{A} \xrightarrow{D} (C \land C \land A)) \xrightarrow{D \land A} \xrightarrow{D} (C \land A) \xrightarrow{B} \xrightarrow{B} \xrightarrow{E} \xrightarrow{D} (C \land A) \xrightarrow{B} \xrightarrow{B} \xrightarrow{E} \xrightarrow{D} (C \land A) \xrightarrow{B} \xrightarrow{B} \xrightarrow{E} \xrightarrow{D} (C \land A)$$

Boolean algebra

Set

 $(B, \wedge, \vee, \ ^{c}, 1, 0)$

Boolean algebra		Set
$(B, \wedge, \lor, \ ^{c}, 1, 0)$	$\stackrel{G}{\rightarrowtail}$	В

Boolean algebra		Set
$(B, \wedge, \lor, \ ^{c}, 1, 0)$	\xrightarrow{G}	В

P

Boolean algebra		S	Set
$(B, \wedge, \lor, \ ^{c}, 1, 0)$	$\stackrel{G}{\rightarrowtail}$	1	3
Lindenbaum algebra of the propositional calculus with P as the set of propositional letters	$\stackrel{F}{\longleftrightarrow}$	Ι	D

Boolean algebra Set

$$(B, \land, \lor, \ ^{c}, 1, 0)$$
 \xrightarrow{G} B
Lindenbaum algebra of the
propositional calculus with P as \xleftarrow{F} P
the set of propositional letters
 P

 $\mathbf{Bool}(F(P), B) \cong \mathbf{Set}(P, G(B))$

 $\mathbf{Bool}(F(P), B) \cong \mathbf{Set}(P, G(B))$

If $P = \{p, q\}$, $B = \mathcal{P}(\{1, 2, 3, 4, 5\})$ and f is the function from the set P to the set G(B) defined by

$$f(p) = \{1, 3, 5\}, \qquad f(q) = \{2, 3, 4\},$$

then the corresponding homomorphism g from the Boolean algebra F(P) to the Boolean algebra B is such that

$$g(p \land q) = \{3\}, \quad g(p \lor q) = \{1, 2, 3, 4, 5\}, \quad g(p^c) = \{2, 4\}, \text{ etc.}$$

X

 $\mathbf{Top}(\Sigma X, Y) \cong \mathbf{Top}(X, \Omega Y)$

 $\mathbf{Top}(\Sigma X,Y)\cong\mathbf{Top}(X,\Omega Y)$

 $\mathbf{Top}(\Sigma X,Y)\cong\mathbf{Top}(X,\Omega Y)$

 $\mathbf{Top}(\Sigma X,Y)\cong\mathbf{Top}(X,\Omega Y)$

 $\mathbf{Top}(\Sigma X, Y) \cong \mathbf{Top}(X, \Omega Y)$

 $\mathbf{Top}(\Sigma X, Y) \cong \mathbf{Top}(X, \Omega Y)$

 $\mathbf{Top}(\Sigma X, Y) \cong \mathbf{Top}(X, \Omega Y)$

Formula

Formula

B

Formula		Formula
В	$\stackrel{C\rightarrow}{\rightarrowtail}$	$C \to B$

Formula		Formula
В	$\stackrel{C\rightarrow}{\rightarrowtail}$	$C \rightarrow B$
$C \wedge A$	$\overset{C\wedge}{\longleftrightarrow}$	A

 $\mathbf{Deriv}(C \land A, B) \cong \mathbf{Deriv}(A, C \to B)$

 $\mathbf{Deriv}(C \land A, B) \cong \mathbf{Deriv}(A, C \to B)$

 $\mathbf{Deriv}(C \land A, B) \cong \mathbf{Deriv}(A, C \to B)$

 $\mathbf{Deriv}(C \land A, B) \cong \mathbf{Deriv}(A, C \to B)$

