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Abstract

A characterization of simplicial objects in categories with finite prod-
ucts obtained by the reduced bar construction is given. The condition that
characterizes such simplicial objects is a strictification of Segal’s condition
guaranteeing that the loop space of the geometric realization of a simplicial
space X and the space X1 are of the same homotopy type. A general-
ization of Segal’s result appropriate for bisimplicial spaces is given. This
generalization gives conditions guaranteing that the double loop space of
the geometric realization of a bisimplicial space X and the space X11 are of
the same homotopy type.
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1 Introduction

This paper is based on the author talks delivered in 2014 at the Fourth Math-
ematical Conference of the Republic of Srpska and at the CGTA Colloquium of
the Faculty of Mathematics in Belgrade. Its first part gives a condition which is
necessary and sufficient for a simplicial object to be obtained by the reduced bar
construction. It turns out that this condition is a strictification of Segal’s condi-
tion guaranteeing that the loop space of the geometric realization of a simplicial
space X and the space X1 are of the same homotopy type.

The second part of this paper is devoted to a generalization of Segal’s result.
This generalization gives conditions guaranteing that the double loop space of the
geometric realization of a bisimplicial space X and the space X11 are of the same
homotopy type. We refer to [8] for a complete generalization of Segal’s result.
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2 Monoids and the reduced bar construction

A strict monoidal category (M,⊗, I) is a categoryM with an associative bifunc-
tor ⊗ :M×M→M,

(A⊗B)⊗ C = A⊗ (B ⊗ C) and (f ⊗ g)⊗ h = f ⊗ (g ⊗ h),

and an object I, which is a left and right unit for ⊗,

A⊗ I = A = I ⊗A and f ⊗ 1I = f = 1I ⊗ f.

A strict monoidal functor between strict monoidal categories is a functor that
preserves strict monoidal structure “on the nose”, i.e., F (A⊗B) = F (A)⊗F (B),
F (I) = I, etc.

Algebraist’s simplicial category ∆ is an example of strict monoidal category.
The objects of ∆ are all finite ordinals 0 = ∅, 1 = {0}, . . . , n = {0, . . . , n − 1},
etc. The arrows of ∆ from n to m are all order preserving functions from the set
n to the set m, i.e., f : n→ m satisfying: if i < j and i, j ∈ n, then f(i) ≤ f(j).
We use the standard graphical presentation for arrows of ∆. For example, the
unique arrows from 2 to 1 and from 0 to 1 are graphically presented as:

qq q
0

0 1

A
A
�
�2→ 1 q

0

0→ 1

A bifunctor ⊗ : ∆ ×∆ → ∆ is defined on objects as addition and on arrows
as placing “side by side”, i.e., for f : n→ m and f ′ : n′ → m′

(f ⊗ f ′)(i) =

{
f(i), when 0 ≤ i ≤ n− 1,

m+ f ′(i− n), when n ≤ i ≤ n+ n′ − 1,

and 0 serves as the unit I.
A monoid in a strict monoidal category (M,⊗, I) is a triple (M,µ : M⊗M →

M,η : I →M) such that

µ ◦ (µ⊗ 1M ) = µ ◦ (1M ⊗ µ) and µ ◦ (1M ⊗ η) = 1M = µ ◦ (η ⊗ 1M ).

For example, (1, A�qq q
, q ) is a monoid in ∆, where A�qq q

and q are the above graphical
presentations of the arrows of ∆ from 2 to 1, and from 0 to 1. The following result,
taken over from [3, VII.5, Proposition 1], shows the “universal” property of this
monoid.

Proposition 2.1. Given a monoid (M,µ, η) in a strict monoidal category M,
there is a unique strict monoidal functor F : ∆ → M such that F (1) = M ,
F ( A�qq q

) = µ and F ( q ) = η.

Let ∆par be the category with the same objects as ∆, whose arrows are order
preserving partial functions. Then (1, A�qq q

, q ) is a monoid in the strict monoidal
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category ∆par with the same tensor and unit as ∆. The empty partial function
from 1 to 0 is graphically presented as

q
. By [7, Proposition 6.2] we have the

following universal property of this monoid.

Proposition 2.2. Given a monoid (M,µ, η) in a strict monoidal category M
whose monoidal structure is given by finite products, there is a unique strict
monoidal functor F : ∆par → M such that F (1) = M , F ( A�qq q

) = µ, F ( q ) = η
and F (

q
) is the unique arrow from M to the unit (a terminal object of M).

Topologist’s simplicial category is the full subcategory of ∆ on nonempty
ordinals as objects. We identify this category with the subcategory of Top. The
object n+ 1 is identified with the standard ordered simplex

∆n = {(t0, . . . , tn) | t0, . . . , tn ≥ 0,
∑
i

ti = 1},

and an arrow f : n+1→ m+1 is identified with the affine map defined by

f(t0, . . . , tn) = (s0, . . . , sm), where sj =
∑

f(i)=j

ti.

We denote by ∆op the opposite of topologist’s simplicial category and rename
its objects so that the ordinal n + 1 is denoted by [n], i.e., [n] = {0, . . . , n}. Let
∆Int be the subcategory of ∆ whose objects are finite ordinals greater or equal
to 2 and whose arrows are interval maps, i.e., order-preserving functions, which
preserve, moreover, the first and the last element.

The categories ∆op and ∆Int are isomorphic by the functor J (see [7, Sec-
tion 6]). This functor maps the object [n] to n + 2 and it maps the generating
arrows of ∆op in the following way.

q q q qq q a q q
0 i−1 i n−1

0 i−1 i i+1 n

�
�

�
�. . . . . . 7→ q q q q qq q q q q q

0 i n

0 i i+1 n+1

�
�
�
�

�
�. . . . . .

q q q qq q q q q
0 i−1 i n−1

0 i−1 i i+1 n

S
S

S
S

. . . . . . 7→
q q q qq q a q q
0 i n

0 i i+1 n+1

S
S

S
S

. . . . . .

The functor J may be visualized as the following embedding of ∆op into ∆. (I
am grateful to Matija Bašić for this remark.)

∆op ↪→ ∆ . . . q q q q q→
→
→

←
←
←
←

→
→
←
←
←

→←← ←
01234

[0][1][2]
(1)
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Throughout this paper, we represent the arrows of ∆op by the graphical presen-
tations of their J images in ∆Int.

We have a functor H : ∆Int → ∆par defined on objects as H(n) = n−2, and
on arrows, for f : n→ m, as

H(f) = q qa aq q
1 m−3

0 1 m−2 m−1

. . .
◦ f ◦ q qa aq q

0 1 n−2 n−1

0 n−3

. . .

(Intuitively, H(f) is obtained by omitting the vertices 0, n−1 from the source,
and 0, m−1 from the target in the graphical presentation of f together with all
the edges incident to these vertices.) It is not difficult to see that H(1n) = 1n−2,
and that for a pair of arrows f : n→ m and g : m→ k of ∆Int we have

H(g)◦H(f)(i) =

{
g(f(i+ 1))− 1, f(i+1) ̸∈ {0,m−1} ∧ g(f(i+1)) ̸∈ {0, k−1}
undefined, otherwise,

and

H(g ◦ f)(i) =

{
g(f(i+ 1))− 1, g(f(i+1)) ̸∈ {0, k−1}
undefined, otherwise.

Since g(f(i+1)) ̸∈ {0, k−1} implies f(i+1) ̸∈ {0,m−1}, we have that H(g) ◦
H(f)(i) = H(g ◦ f)(i), and H so defined is indeed a functor.

A simplicial object X in a category M is a functor X : ∆op → M. The
following proposition is a corollary of Proposition 2.2.

Proposition 2.3. Given a monoid (M,µ, η) in a strict monoidal category M
whose monoidal structure is given by finite products, there is a simplicial object
X in M such that X([n]) = Mn, X( A�qq qq qq q

) = µ, X( qq qq q
) = η.

Proof. Take X to be the composition F ◦H ◦ J , for F as in Proposition 2.2. ⊣

Note that both A�qq q qq and A�qq qqq are mapped by X to the unique arrow from M
to the unit M0 (a terminal object of M). We say that a simplicial object in M
obtained as the composition F ◦H◦J , for F as in Proposition 2.2, is the reduced
bar construction based on M (see [10] and [7]).

For X a simplicial object, we abbreviate X([n]) by Xn. Also, for f an arrow
of ∆op, we abbreviate X(f) by f whenever the simplicial object X is determined
by the context.

For n ≥ 2, consider the arrows i1, . . . , in : [n] → [1] of ∆op graphically pre-
sented as follows.

i1 : q q qq q q . . . q q
0 1 2

0 1 2 n n+1

�
�
�

!!!!!
i2 : q q qq q q q . . . q

0 1 2

0 1 2 3 n+1

�
�

�
�
����

�
� . . . in : q q qq q q q. . . q

0 1 2

0 1 n−1 n n+1

�
�

����

����

����

(It would be more appropriate to denote these arrows by in1 , . . . , i
n
n, but we omit

the upper indices taking them for granted.)
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For arrows f : C → A and g : C → B of a strict monoidal category M whose
monoidal structure is given by finite products, we denote by ⟨f, g⟩ : C → A × B
the arrow obtained by the universal property of product inM. For X a simplicial
object inM, we denote by p0 the unique arrow from X0 to the unit, i.e., a terminal
object (X1)

0 of M, and we denote by p1 the identity arrow from X1 to X1. For
n ≥ 2 and the above mentioned arrows i1, . . . , in : [n]→ [1] of ∆op, we denote by
pn the arrow

⟨i1, . . . , in⟩ : Xn → (X1)
n,

where by our convention, ij abbreviates X(ij).
Let X be the reduced bar construction based on a monoid M . Since X0 is the

unit M0 and for n ≥ 2, the arrow ij : M
n → M is the jth projection, we have

that for every n ≥ 0, the arrow pn is the identity. We show that this property
characterizes the reduced bar construction based on a monoid inM.

Proposition 2.4. Let M be a strict monoidal category whose monoidal struc-
ture is given by finite products. A simplicial object X in M is the reduced bar
construction based on a monoid in M if and only if for every n ≥ 0, the arrow
pn : Xn→(X1)

n is the identity.

Proof. The “only if” part of the proof is given in the paragraph preceding this
proposition. For the “if” part of the proof, let us denote X1 by M . By our
convention, the X images of arrows of ∆op are denoted just by their names or
graphical presentations. We show that

(M, A�qq qq qq q
, qq qq q

)

is a monoid in M. Let k1M2,M : M2 ×M → M2 and k2M2,M : M2 ×M → M be
the first and the second projection respectively. Since p3 = ⟨i1, i2, i3⟩ : M3 →M3

is the identity, we have that k1M2,M = ⟨i1, i2⟩ and k2M2,M = i3 = A�qqq q qq qq .
For arrows f : C → A, g : C → B, h : D → C, f1 : A1 → B1, f2 : A2 → B2

and projections k1A1,A2
: A1 × A2 → A1 and k2A1,A2

: A1 × A2 → A2, the following
equations hold inM

⟨f ◦ h, g ◦ h⟩ = ⟨f, g⟩ ◦ h, f1 × f2 = ⟨f1 ◦ k1A1,A2
, f2 ◦ k2A1,A2

⟩.

We have

k1M2,M = ⟨i1, i2⟩ = ⟨ A�qqq qqq qq , A� A�qq q qqq q q⟩ = ⟨ A�
A�qq qq qq qq q q q q

,
A�

A�qq qq qq qq q q q q
⟩ = p2 ◦ A�qq qqq qq qq .

Hence, k1M2,M = A�qq qqq qq qq . Analogously, we prove that k2M,M2 = A�qq q qq qq qq. Also,

µ×1 = ⟨µ◦k1M2,M , k2M2,M ⟩ = ⟨ A�
A�qq qqq qqq q q q q

, A�qqq q qq qq ⟩ = ⟨ A�
A�qq qq qq qq q qq q

,
A�
A�qq qq qq qq q qq q

⟩ = p2◦ A�q q q qq q qq q
.

Hence, µ × 1 = A�q q q qq q qq q
. Analogously, we prove that 1 × µ = A�q q q qq q q q q

. Now,
µ ◦ (µ× 1) = µ ◦ (1× µ), since

A�
A�q q qq q q qq q qq q

=
A�
A�q q qq q q qq qq q q

5



That k1M,M0 = 1 = q q qq q q
, and k2M,M0 = A�qq q qq follows from the fact that M0 is

the strict unit and a terminal object ofM. Hence,

1×η = ⟨k1M,M0 , η◦k2M,M0⟩ = ⟨ q q qq q q
, A�q q qq qq q q

⟩ = ⟨
A�q q qq q q qq q q

,
A� q qqq q q qq q q

⟩ = p2◦ q q q qq q q
= q q q qq q q

.

Now, µ ◦ (1× η) = 1, since

A�q q qq q q qq q q
= q q qq q q

= 1.

Analogously, we prove that µ ◦ (η × 1) = 1, and conclude that M is a monoid
inM.

Let Y be the reduced bar construction based on M . We show that X = Y .
It is clear that the object parts of the functors X and Y coincide. We prove that
for every arrow f : [m]→ [n] of ∆op, the arrows X(f) and Y (f) are equal inM.

If n = 0, then this is trivial since X0, which is equal to M0, is a terminal
object ofM. If n = 1, then f has one of the following forms

A� A�qq q q qq qp p p p p p
or A� A�qq q qq qq qp p p p p p

or A� A� A�qq q qq q qq qp p p p p p p p p
In the first case, f =

A� A�qq q qq qq q qp p p p p p
and the X and Y images of the upper part are

equal as in the case n = 0, while X( qq qq q
) = Y ( qq qq q

) by the definition of Y .
In the second case, f is either identity and X(f) = Y (f) holds, or f is ij for

some 1 ≤ j ≤ m. From ⟨X(i1), . . . , X(im)⟩ = 1, we conclude that X(ij) is the
jth projection from Mm to M . On the other hand, by the definition of Y , we
have that Y (ij) is the jth projection from Mm to M . Hence X(f) = Y (f).

In the third case, when f is A� @� A�qq q qq q q qqp p p p p p p p pl︷︸︸︷
, we proceed by induction on l ≥ 2.

In the proof we use the fact that two arrows g, h : C → M2 are equal in M iff
k1M,M ◦ g = k1M,M ◦ h and k2M,M ◦ g = k2M,M ◦ h, where k1M,M and k2M,M are the
first and the second projection from M2 to M . Also, we know from above that

k1M,M = X( A�q q qq q q q
) = Y ( A�q q qq q q q

), k2M,M = X( A� q qqq q q q
) = Y ( A� q qqq q q q

).

If l = 2, then f is equal to
A�

A�
A�qqq q qq qq q qqq qp p p p p p

. Since X( A�qq qq qq q
) = Y ( A�qq qq qq q

), in order
to prove that X(f) = Y (f), it suffices to prove that g = X( A� A�qq q q qq q qq qp p p p p p

) is equal to
h = Y ( A� A�qq q q qq q qq qp p p p p p

). By relying on the second case for †, we have that

k1M,M ◦ g = X(
A�

A� A�q q qqq q q qq q qq qp p p p p p
)

†
= Y (

A�
A� A�q q qqq q q qq q qq qp p p p p p

) = k1M,M ◦ h.

Analogously, we prove that k2M,M ◦ g = k2M,M ◦ h. Hence, g = h.

If l > 2, then f is equal to
A�

A�
A� A�qqq q qq qq q q qqq qp p p p p p p p p

, and it suffices to prove that g =

X( A� A� A�qq q q qq q q qq qp p p p p p p p p
) is equal to h = Y ( A� A� A�qq q q qq q q qq qp p p p p p p p p

). By relying on the induction hy-
pothesis for †, we have that

k1M,M ◦ g = X( A�
A�

A� A�qqq q qq qq q q q qq qp p p p p p p p p
)

†
= Y ( A�

A�
A� A�qqq q qq qq q q q qq qp p p p p p p p p

) = k1M,M ◦ h.
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By relying on the second case for †, we have that

k2M,M ◦ g = X( A�
SS��

A� A�qqq q q qq qq q q qq qp p p p p p p p p
)

†
= Y ( A�

SS��
A� A�qqq q q qq qq q q qq qp p p p p p p p p

) = k2M,M ◦ h.

Hence, g = h. This concludes the case when f maps [m] to [1].
Suppose now that f : [m]→ [n] is an arrow of ∆op and n ≥ 2. As in the case

when n = 1, we conclude that for every 1 ≤ j ≤ n,

X(ij ◦ f) = Y (ij ◦ f).

Since,
⟨X(i1), . . . , X(in)⟩ = ⟨Y (i1), . . . , Y (in)⟩ = 1Mn ,

we have that

X(f) = ⟨X(i1), . . . , X(in)⟩ ◦X(f) = ⟨X(i1) ◦X(f), . . . , X(in) ◦X(f)⟩
= ⟨Y (i1) ◦ Y (f), . . . , Y (in) ◦ Y (f)⟩ = ⟨Y (i1), . . . , Y (in)⟩ ◦ Y (f)

= Y (f). ⊣

3 Segal’s simplicial spaces

Let Top be the category of compactly generated Hausdorff spaces. For a simplicial
object in Top, i.e., a simplicial space X, a relaxed form of the condition

for every n, pn : Xn→(X1)
n is the identity,

reads
for every n, pn : Xn→(X1)

n is a homotopy equivalence.

Segal, [9], used simplicial spaces satisfying this relaxed condition for his de-
looping constructions and we call them Segal’s simplicial spaces. (Note that, for
the sake of simplicity, this notion is weaker than the one defined in [8].) Essentially
as in the proof of Proposition 2.4, one can show the following.

Proposition 3.1. If X : ∆op → Top is Segal’s simplicial space, then X1 is a
homotopy associative H-space whose multiplication is given by the composition

(X1)
2 p−1

2−→ X2
d21−→ X1,

where p−1
2 is an arbitrary homotopy inverse to p2, and whose unit is s10(x0), for

an arbitrary x0 ∈ X0.

(A complete proof of this proposition is given in [8, Appendix, Proof of Lemma 3.1].)

The realization of a simplicial space X, is the quotient space

|X| =

(⨿
n

Xn ×∆n

)/
∼,
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where ∼ is the smallest equivalence relation on
⨿

nXn ×∆n such that for every
f : [n]→ [m] of ∆, x ∈ Xm and t ∈ ∆n

(fop(x), t) ∼ (x, f(t)).

A simplicial map is a natural transformation between simplicial spaces. Note
that the realization is functorial, i.e., it is defined also for simplicial maps. For
simplicial spaces X and Y the product X×Y is defined so that (X×Y )n = Xn×Yn
and (X × Y )(f) = X(f) × Y (f). The nth component of the first projection
k1 : X×Y → X is the first projection k1n : Xn×Yn → Xn and analogously for the
second projection. The realization functor preserves products of simplicial spaces
(see [4, Theorem 14.3], [2, III.3, Theorem] and [5, Corollary 11.6]) in the sense
that

⟨|k1|, |k2|⟩ : |X × Y | → |X| × |Y |

is a homeomorphism.
The following two propositions stem from [9, Proposition 1.5 (b)] and from [6,

Appendix, Theorem A4 (ii)] (see also [8, Lemma 2.11]).

Proposition 3.2. Let X : ∆op → Top be Segal’s simplicial space such that for
every m, Xm is a CW-complex. If X1 with respect to the H-space structure is
grouplike, then X1 ≃ Ω|X|.

Proposition 3.3. Let f : X → Y be a simplicial map of simplicial spaces such
that for every m, Xm and Ym are CW-complexes. If each fm : Xm → Ym is a
homotopy equivalence, then |f | : |X| → |Y | is a homotopy equivalence.

4 Segal’s bisimplicial spaces

A bisimplicial space is a functor X : ∆op ×∆op → Top and it may be visualized
as the following graph (see the red subgraph of (1)).

↓ ↓ ↓↑ ↑ ↓ ↓ ↓↑ ↑ ↓ ↓ ↓↑ ↑

↑↓ ↓ ↑↓ ↓ ↑↓ ↓

...
...

...
. . . X22

→
→
→
←
← X12

→
→← X02

. . . X21

→
→
→
←
← X11

→
→← X01

. . . X20

→
→
→
←
← X10

→
→← X00

Let Yn, for n ≥ 0, be the realization of the nth column, i.e., Yn = |Xn |. Since
the realization is functorial, we obtain the simplicial space Y .

. . . Y2
→
→
→
←
← Y1

→
→← Y0
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The realization |X| of the bisimplicial space X is the realization |Y | of the sim-
plicial space Y .

If the simplicial space X1 is Segal’s, then, by Proposition 3.1, X11 is a ho-
motopy associative H-space and this is the H-space structure we refer to in the
following proposition.

Proposition 4.1. If X : ∆op ×∆op → Top is a bisimplicial space such that X1

is Segal’s, X11 with respect to the H-space structure is grouplike, for every m ≥ 0,
X m is Segal’s, and for every n,m ≥ 0, Xnm and Yn are CW-complexes, then
X11 ≃ Ω2|X|.

Proof. Since X1 is Segal’s simplicial space such that for every m, X1m is
a CW-complex and X11 with respect to the H -space structure is grouplike, by
Proposition 3.2 we have that X11 ≃ Ω|X1 | = ΩY1.

For every m, X m is Segal’s. Hence, for every n, the map pnm : Xnm →
(X1m)n, is a homotopy equivalence. The map p0m is the unique map from X0m

to (X1m)0, the map p1m is the identity on X1m, and for n ≥ 2, the map pnm is

⟨(i1,m), . . . , (in,m)⟩ : Xnm → (X1m)n.

Also, for every f : [m]→ [m′] of ∆op and every n the following diagram commutes:

Xnm
- (X1m)n

pnm

Xnm′ - (X1m′)n
pnm′? ?(n, f) (1, f)n

Hence, for every n, pn is a simplicial map.

Xn2
- (X12)

npn2

Xn1
- (X11)

npn1

Xn0
- (X10)

npn0

↑ ↑↓ ↓ ↓ ↑ ↑↓ ↓ ↓

↑↓ ↓ ↑↓ ↓

...
...

Every (X1m)n is a CW-complex since the product of CW-complexes in Top
is a CW-complex. By Proposition 3.3, for every n, |pn | : Yn → |(X1 )n| is a
homotopy equivalence. Since |(X1 )0| is a singleton it is homeomorphic to (Y1)

0

and we have that p0 : Y0 → (Y1)
0, as a composition of a homeomorphism with

|p0 |, is a homotopy equivalence. The map p1 : Y1 → Y1 is the identity. For n ≥ 2,
⟨|k1|, . . . , |kn|⟩ : |(X1 )n| → |X1 |n is a homeomorphism and for 1 ≤ j ≤ n,
|(ij , )| = |X(ij , )| = Y (ij). Hence, the map

pn = ⟨Y (i1), . . . , Y (in)⟩ = ⟨|k1|, . . . , |kn|⟩ ◦ |⟨(i1, ), . . . , (in, )⟩|,
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as a composition of a homeomorphism with |pn |, is a homotopy equivalence
between Yn and (Y1)

n. We conclude that Y is Segal’s, and by Proposition 3.1, Y1
is a homotopy associative H-space.

If a simplicial space is Segal’s, then its realization is path-connected. This
is because its value at [0] is contractible and therefore path-connected (see [5,
Lemma 11.11]). Since X1 is Segal’s, we conclude that Y1 is path-connected.
Moreover, it is grouplike since every path-connected homotopy associative H-
space, which is a CW-complex, is grouplike (see [1, Proposition 8.4.4]).

Applying Proposition 3.2 to Y , we obtain that Y1 ≃ Ω|Y |. Hence,

X11 ≃ ΩY1 ≃ Ω(Ω|Y |) = Ω2|X|. ⊣
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