
The Typed Böhm Theorem

Kosta Došen
University of Toulouse III, IRIT

31062 Toulouse cedex, France and Mathematical Institute
Knez Mihailova 35, P.O. Box 367

11001 Belgrade, Yugoslavia
email: kosta@mi.sanu.ac.yu

Zoran Petrić
Mathematical Institute

Knez Mihailova 35, P.O. Box 367
11001 Belgrade, Yugoslavia
email: zpetric@mi.sanu.ac.yu

Abstract

A new proof is given of the analogue of Böhm’s Theorem in the typed lambda calculus with
functional types.

Mathematics Subject Classification (2000): 03B40

1 Introduction

We give a new proof of the analogue of Böhm’s Theorem in the typed lambda calculus with only
functional types. This result was already established in [11] (Theorem 2), without mentioning
Böhm’s Theorem. Statman has even a semantic notion of consistent extension, rather than a
syntactic notion, such as we have, following Böhm. (The two notions happen to be equivalent,
however.) Our analogue of Böhm’s Theorem in the typed lambda calculus is closer to standard
formulations of this theorem, and our proof is different from Statman’s, which relies on the type-
reducing result of [10] (Theorem 3). Our approach provides an alternative proof of this type-
reducing result. We rely on a different result from the same paper [10] (Theorem 2), proved
previously in [9] (Theorem 2), which is a finite-model property for the typed lambda calculus.
There are, however, some analogies in the general spirit of these proofs. In order to use the finite
model property for the typed lambda calculus, we define the sets of P -functionals starting from
a finite set P , with the help of exponentiation (BA is the set of all functions from A to B). We
show that they are all lambda-definable in the sense that for two lambda terms a and b whose
interpretations in a finite model based on P are not equal, there is a syntactical procedure deriving
[m] = [n] from some type instance a = b, where [m] and [n] are Church numerals for m ̸= n. We
hope that our method might shed some new light on the matter.

The possibility of proceeding as we do is indicated briefly in [8] (last paragraph of section 5).
Simpson says: “It is an interesting fact that an alternative direct proof of Theorem 3 is possible
using a typed version of the Böhm-out technique [1] (Chapter 10). The details are beyond the
scope of this paper.” We don’t know what Böhm-out technique Simpson had in mind, but he
assured us his approach is different from ours. Anyway, we couldn’t find such a technique by
imitating [1]. Our technique has some intrinsic difficulties, but presumably not more than the

1



technique of [11]. Our presentation takes a little bit more space because we have tried to help
the reader by going into more details. These details, which were beyond the scope of Simpson’s
paper, fall exactly within the scope of ours.

2 Böhm’s Theorem

Böhm’s Theorem in the untyped lambda calculus says that if a and b are two different lambda
terms in βη normal form, and c and d are arbitrary lambda terms, then one can construct terms
h1, . . . , hn, n ≥ 0, and find variables x1, . . . , xm, m ≥ 0, such that

(λx1...xma)h1 . . . hn = c,

(λx1...xmb)h1 . . . hn = d

are provable in the β lambda calculus (see [1], Chapter 10, §4, Theorem 10.4.2; [4], Chapter 11F,
§8, Theorem 5; [6], Chapitre V, Théorème 2; we know the original paper of Böhm [3] only from
references). As a corollary of this theorem one obtains that if a and b are two lambda terms
having a normal form such that a = b is not provable in the βη lambda calculus and this calculus
is extended with a = b, then one can prove every equality in the extended calculus.

Here we demonstrate the analogue of Böhm’s Theorem in the typed lambda calculus with only
functional types. The standard proof of Böhm’s Theorem, which may be found for example in [1],
cannot be transferred to the typed case. At crucial places it introduces lambda terms that cannot
be appropriately typed. For example, for λxyxy and λxyx(xy) (i.e., the Church numerals for 1
and 2) with x of type p → p and y of type p there is no appropriate permutator of type p → p
with whose help these two terms can be transformed into terms with a head original head normal
form (see [1], Chapter 10, §3). A more involved example is given with the terms λxxλy(xλzy) and
λxxλy(xλzz) with x of type (p → p) → p and y and z of type p (we deal with these two typed
terms in the Example of Section 6).

One cannot deduce our analogue of Böhm’s Theorem for the typed lambda calculus from
Böhm’s Theorem for the untyped lambda calculus. The typed calculus has a more restricted
language and does not allow everything permitted in the untyped case. Conversely, one cannot
deduce Böhm’s Theorem for the untyped lambda calculus from our typed version of this theorem.
Our result covers only cases where a and b are typable by the same type.

3 The typed lambda calculus

The formulation of the typed lambda calculus with only functional types we rely on is rather
standard (see, for example, [1], Appendix 1, or [5]). However, we sketch this formulation briefly,
to fix notation and terminology.

Types are defined inductively by a nonempty set of atomic types and the clause “if A and B
are types, then (A→ B) is a type”. For atomic types we use the schematic letters p, q, r, . . ., p1,
. . ., and for all types we use the schematic letters A, B, C, . . ., A1, . . . We write Ap

B for the result
of substituting B for p in A. (Substitution means as usual uniform replacement.)

Terms are defined inductively in a standard manner. We have infinitely many variables of
each type, for which we use the schematic letters x, y, z, . . ., x1, . . . For arbitrary terms we
use the schematic letters a, b, c, . . ., a1, . . . That a term a is of type A is expressed by a : A.
However, for easier reading, we will not write types inside terms, but will specify the types of
variables separately. For application we use the standard notation, with the standard omitting of
parentheses. For lambda abstraction we will write λx with subscripted x, instead of λx (this way
we can do without dots in λxx, which is otherwise written λx.x). We abbreviate λx1 . . . λxna by
λx1...xna, as usual. We write axb for the result of substituting b for x in a, provided b is free for x
in a.

If a is a term, let a type-instance of a be obtained by substituting some types for the atomic
types in the variables of a.

2



A formula of the typed lambda calculus Λ is of the form a = b where a and b are terms of the
same type.

The calculus Λ of βη equality is axiomatized with the usual axioms

(β) (λxa)b = axb , provided b is free for x in a,

(η) λxax = a, provided x is not free in a,

and the axioms and rules for equality, i.e. a = a and the rule of replacement of equals. It is
not usually noted that the equality of α conversion can be proved from the remaining axioms as
follows:

λxa = λy(λxa)y, by (η),

= λya
x
y , by (β),

where y is a variable not occurring in a.

4 Lambda terms for P-functionals

Let P be a finite ordinal. In what follows an interesting P will be greater than or equal to the
ordinal 2. The set of P -types is defined inductively by specifying that P is a P -type and that if
A and B are P -types, then A → B, i.e. the set of all functions with domain A and codomain B,
is a P -type. Symbols for P -types are types with a single atomic type P . It is clear that for P
nonempty a P -type cannot be named by two different P -type symbols.

An element of a P -type is called a P -functional. It is clear that every P -functional is finite
(i.e., its graph is a finite set of ordered pairs) and that in every P -type there are only finitely many
P -functionals. For P -functionals we use the Greek letters φ, ψ, . . ., φ1, . . .

Our aim is to define for every P -functional a closed term defining it, in a sense to be made
precise. But before that we must introduce a series of preliminary definitions. In these definitions
we take that the calculus Λ is built over types with a single atomic type, which we call p.

Let the type A0 be p and let the type An+1 be An → An. For i ≥ 0, let the type Ni be Ai+2,
i.e. (Ai → Ai) → (Ai → Ai).

Let x0(y) be y and let xn+1(y) be x(xn(y)). The terms [n]i, called Church numerals of type
Ni, are defined by

[n]i =def λxyx
n(y)

for x : Ai+1 and y : Ai.
For x, y and z all of type Ni, u : Ai+1, and v and w of type Ai, let

Ci =def λxyzuvx(λwzuv)(yuv).

These are conditional function combinators, because in the calculus Λ one can prove

Ci[n]iab =

{
a if n = 0
b if n ̸= 0

For x : Ni+1, y and z of type Ai+1, and u and v of type Ai, let

Ri =def λxyx(λzuy(zu))(λvv).

These combinators reduce the types of numerals; namely, in Λ one can prove

Ri[n]i+1 = [n]i.

For x and y of type Ni+1, let the exponentiation combinators be defined by

Ei =def λxyx(Riy).

3



In Λ one can prove
Ei[n]i+1[m]i+1 = [mn]i.

For Eiab we use the abbreviation ba.
For x and y of type Ni, z : Ai+1 and u : Ai, let the addition and multiplication combinators

be defined by
Si =def λxyzuxz(yzu),

Mi =def λxyzux(yz)u.

In Λ one can prove
Si[n]i[m]i = [n+m]i,

Mi[n]i[m]i = [n ·m]i.

For Miab we use the abbreviation a·b.
For x, y and z of type Ni, and u : Ni+1, let the pairing and projection combinators be defined

by
Πi =def λxyzCizxy,

π1
i =def λuu[0]i,

π2
i =def λuu[1]i.

In Λ one can prove
π1
i (Πiab) = a,

π2
i (Πiab) = b.

For x : Ni+1 and y : Ni+3, let

Ti =def λxΠi(Si[1]i(π
1
i x))(π

1
i x),

Hi =def λyyTi(Πi[0]i[0]i),

Pi =def λyπ
2
i (Hiy).

The terms Ti and Hi are auxiliary, while the terms Pi are predecessor combinators, because, for
n ≥ 1, one can prove in Λ

Pi[n]i+3 = [n− 1]i,

Pi[0]i+3 = [0]i.

Typed terms corresponding to all the terms Ci, Ri, up to Pi, may be found in [2] (cf. [7]).
For x and y of type Ni, z : Ai+1, and u and v of type Ai, let

Zi+1 =def λxyzux(λvyzu)(zu).

These combinators raise the types of numerals for 0 and 1; namely, in Λ one can prove

Zi+1[0]i = [0]i+1,

Zi+1[1]i = [1]i+1.

The equality (η) is essential to prove this.
For x : Ni, let

D0
i =def λxCix[0]i[1]i

and for k ≥ 1 and i ≥ 3k let

Dk
i =def λxCix[1]iZi(Zi−1(Zi−2(D

k−1
i−3 (Pi−3x)))).

4



These combinators check whether a numeral stands for k; namely, for n ≥ 0, one can prove in Λ

Dk
i [n]i =

{
[0]i if n = k
[1]i if n ̸= k.

For every P -type symbol A, let Ai be the type obtained from A by substituting Ni for P . Now
we are ready to define for every P -functional φ ∈ A a closed term φλ : Ai.

Take a P -functional φ ∈ A, where A is B1 → (. . . → (Bk → P ) . . .). By induction on the
complexity of the P -type symbol A we define a natural number κ(φ) and for every i ≥ κ(φ) we
define a term φλ : Ai.

If A is P , then φ is an ordinal n in P . Then κ(n) = 0 and nλ : Ni is [n]i for every i ≥ 0.
Suppose k ≥ 1 and B1 is B → (C → P ). It is enough to consider this case, which gives

the gist of the proof. When B1 is C1 → (C2 → . . . (Cl → P ) . . .) for l different from 2 we
proceed analogously, but with more notational complications if l ≥ 3. For B = {β1, . . . , βm}
and C = {γ1, . . . , γr}, by the induction hypotheses, we have defined κ(β1), . . ., κ(βm), κ(γ1), . . .,
κ(γr), for every i ≥ κ(β1) we have defined βλ

1 , and analogously for β2, . . ., βm, γ1, . . ., γr. For
B1 = {ψ1, . . . , ψq}, let φ(ψj) = ξj ∈ B2 → (. . . → (Bk → P ) . . .). (Note that φ is not necessarily
one-one.) By the induction hypothesis, we have defined κ(ξ1), . . . , κ(ξq), for every i ≥ κ(ξ1) we
have defined ξλ1 , and analogously for ξ2, . . . , ξq.

Let now

(ψ1(β1))(γ1) = d1∈P, (ψ1(β2))(γ1) = dr+1∈P, . . . (ψ1(βm))(γ1) = d(m−1)r+1∈P
(ψ1(β1))(γ2) = d2∈P, (ψ1(β2))(γ2) = dr+2∈P, . . . (ψ1(βm))(γ2) = d(m−1)r+2∈P

..

.
..
.

..

.
(ψ1(β1))(γr) = dr∈P, (ψ1(β2))(γr) = d2r∈P, . . . (ψ1(βm))(γr) = dmr∈P

Let n1 = 2d1 · 3d2 · . . . · pdmr
mr , where pmr is the mr-th prime number. Analogously, we obtain the

natural numbers n2, . . . , nq, all different, that correspond to ψ2, . . . , ψq.
We can now define κ(φ) as

max{3 ·max{n1, . . . , nq}+ 1, κ(β1), . . . , κ(βm), κ(γ1), . . . , κ(γr), κ(ξ1), . . . , κ(ξq)}.

For every i ≥ κ(φ) and for x1 : Bi
1, let the term t be defined as

[2]
x1β

λ
1 γ

λ
1

i · [3]x1β
λ
1 γ

λ
2

i · . . . · [pmr]
x1β

λ
mγ

λ
r

i : Ni−1.

For x2 : Bi
2, . . . , xk : Bi

k, let

Q1 =def Ci(Zi(D
n1
i−1t))(ξ

λ
1 x2 . . . xk)Q2,

Q2 =def Ci(Zi(D
n2
i−1t))(ξ

λ
2 x2 . . . xk)Q3,

...

Qq−1 =def Ci(Zi(D
nq−1

i−1 t))(ξλq−1x2 . . . xk)(ξ
λ
q x2 . . . xk).

We can now, finally, define φλ as λx1...xk
Q1.

Next we define by induction on the complexity of the P -type symbol A, when a P -functional
φ ∈ A is i-defined by a term a : Ai.

We say that a closed term a : Ni i-defines an ordinal n ∈ P iff in Λ we can prove a = [n]i.
For a P -functional φ ∈ B → C we say that a : Bi → Ci i-defines φ iff, for every ψ ∈ B and

every b : Bi, if b i-defines ψ, then ab : Ci i-defines φ(ψ) ∈ C.
We can now prove the following lemma.

Lemma 4.1 For every i ≥ κ(φ), the P -functional φ ∈ A is i-defined by φλ : Ai.

Proof: We proceed by induction on the complexity of the P -type symbol A. The case when A
is P is trivial.

5



Let now A be of the form B1 → (. . . → (Bk → P ) . . .) for k ≥ 1, let B1 = {ψ1, . . . , ψq}, and
let everything else be as in the inductive step of the definition of φλ. Suppose b1 : Bi

1 i-defines ψ1.
We have to check that φλb1 i-defines φ(ψ1) = ξ1.

By the induction hypothesis we have that βλ
1 , . . ., β

λ
m, γλ1 , . . ., γ

λ
r , ξ

λ
1 , . . ., ξ

λ
q i-define

β1, . . . , βm, γ1, . . . , γr, ξ1, . . . , ξq, respectively. Then we have

φλb1 = (λx1...xk
Ci(Zi(D

n1
i−1t))(ξ

λ
1 x2 . . . xk)Q2)b1

= λx2...xk
Ci(Zi(D

n1
i−1t

x1

b1
))(ξλ1 x2 . . . xk)(Q2)

x1

b1
.

For the closed term tx1

b1
we have

tx1

b1
= [2]

b1β
λ
1 γ

λ
1

i · [3]b1β
λ
1 γ

λ
2

i · . . . · [pmr]
b1β

λ
mγ

λ
r

i .

It follows by the induction hypothesis that b1β
λ
1 γ

λ
1 i-defines d1, which means that in Λ we can

prove b1β
λ
1 γ

λ
1 = [d1]i. We proceed analogously with the other exponents. So in Λ we can prove

tx1

b1
= [n1]i−1. Hence in Λ we have Dn1

i−1t
x1

b1
= [0]i−1, and we conclude that

φλb1 = λx2...xk
ξλ1 x2 . . . xk

= ξλ1 , by (η).

So φλb1 i-defines ξ1.
Suppose now b2 : Bi

1 i-defines ψ2. Then in Λ we have

φλb2 = λx2...xk
Ci(Zi(D

n1
i−1t

x1

b2
))(ξλ1 x2 . . . xk)(Ci(Zi(D

n2
i−1t

x1

b2
))(ξλ2 x2 . . . xk)(Q3)

x1

b2
).

Since in Λ we can prove tx1

b2
= [n2]i−1, we can also prove Dn1

i−1t
x1

b2
= [1]i−1, and we conclude that

φλb2 = λx2...xk
Ci(Zi(D

n2
i−1[n2]i−1))(ξ

λ
2 x2 . . . xk)(Q3)

x1

b2
.

Finally, we obtain as above that φλb2 i-defines ξ2. We proceed analogously for ψ3, . . . , ψq. 2

This lemma does not mean that we can i-define all P -functionals simultaneously for some i.
But we can always find such an i for finitely many P -functionals.

5 P-models

A model based on P = {0, . . . , h− 1}, with h ≥ 2, for the calculus Λ built over types with a single
atomic type p will be defined as in [5].

An assignment is a function f assigning to a variable x : A of Λ a functional f(x) in the P -type
Ap

P , where A
p
P is obtained from A by substituting P for p. For an assignment f and a variable y,

the assignment fyα is defined by

fyα(x) =

{
α if x is y
f(x) if x is not y.

If F is the set of all P -functionals, then the P -model is a pair ⟨F, V ⟩ such that V maps the
pairs (a, f), with a a term and f an assignment, into F . We write Va,f instead of V (a, f). The
function V must satisfy the conditions

Vx,f = f(x),

Vab,f = Va,f (Vb,f ),

for x : A and α : Ap
P , Vλxa,f (α) = Va,fx

α
.

6



There is exactly one such function V .
Let a : A be a term such that x1 : A1, . . . , xn : An are all the variables, both free and bound,

occurring in a. Let f be an assignment, and for every j ∈ {1, . . . , n} let bj i-define f(xj). Finally,
let a be the type-instance of a obtained by substituting Ni for p. The type of a is (Ap

P )
i. Then

we can prove the following lemma.

Lemma 5.1 The term a
x1 . . . xn
b1 . . . bn

i-defines Va,f .

The proof proceeds by a straightforward induction on the complexity of the term a.
Of course, when a is closed, Va,f does not depend on f , and has the same value for all assign-

ments f . So, for closed terms a, we can write Va instead of Va,f , and we shall do so from now
on.

As an immediate corollary of Lemma 5.1 we obtain the following lemma.

Lemma 5.2 If a is closed, then a i-defines Va.

6 Böhm’s Theorem with types

We are now ready to prove our analogue of Böhm’s Theorem for the typed lambda calculus Λ,
which is not necessarily built over types with a single atomic type.

Theorem 6.1 If a and b are of the same type and a = b is not provable in Λ, then for every two
terms c and d of the same type one can construct type-instances a′ and b′ of a and b, respectively,
and terms h1, . . . , hn, n ≥ 0, and also find variables x1, . . . , xm, m ≥ 0, such that

(λx1...xma
′)h1 . . . hn = c,

(λx1...xmb
′)h1 . . . hn = d

are provable in Λ.

Proof: Let a1 and b1 be type-instances of a and b, respectively, obtained by substituting p for
all atomic types. It is easy to see that a = b is provable in Λ iff a1 = b1 is provable in Λ.

Let x1, . . . , xm be all the free variables in a1 or b1. Then since a1 = b1 is not provable in Λ, the
equality λx1...xm

a1 = λx1...xm
b1 is not provable in Λ. Let a2 be λx1...xm

a1 and let b2 be λx1...xm
b1.

It follows from a theorem of [9] (Theorem 2, p. 187) and [10] (Theorem 2, p. 21) that if a2 = b2
is not provable in Λ, then there exists a P -model ⟨F, V ⟩ such that Va2

̸= Vb2 . Soloviev’s and
Statman’s theorem doesn’t mention exactly P -models, which are based on the full type structure
built over an ordinal P , but instead it mentions completely analogous models based on the full
type structure built over a finite set S.

We can always name the elements of S by ordinals so that S becomes an ordinal P . Moreover,
for every two distinct elements s1 and s2 of S we can always name the elements of S so that s1 is
named by 0 and s2 is named by 1. This means that the elements of S can always be named by
elements of P so that in the P -model ⟨F, V ⟩ above there are P -functionals φ1, . . . , φk, k ≥ 0, such
that

((Va2(φ1))(φ2)) . . . (φk) = 0,

((Vb2(φ1))(φ2)) . . . (φk) = 1.

Take an even i ≥ max{κ(φ1), . . . , κ(φk)}. By Lemma 4.1, the closed terms φλ
1 , . . . , φ

λ
k i-define

φ1, . . . , φk, respectively. By Lemma 5.2, the term a2 i-defines Va2 and b2 i-defines Vb2 . It follows
that in Λ we can prove a2φ

λ
1 . . . φ

λ
k = [0]i and b2φ

λ
1 . . . φ

λ
k = [1]i.

For x : Ai, y : Ai−1 and z : Ai−2 we can prove in Λ

[0]i(λxyzyz)(λyzz) = [0]i−2,

[1]i(λxyzyz)(λyzz) = [1]i−2.

7



So there are closed terms c1, . . . , ci such that in Λ we can prove

a2φ
λ
1 . . . φ

λ
kc1 . . . ci = [0]0,

b2φ
λ
1 . . . φ

λ
kc1 . . . ci = [1]0.

Let the left-hand sides of these two equalities be a3 and b3, respectively.
Take now c and d of type A and take the type-instances a4 and b4 of a3 and b3, respectively,

obtained by substituting A for p. For u : A we can prove in Λ

a4(λud)c = c,

b4(λud)c = d.

The terms a4 and b4 are of the form (λx1...xna
′)h1 . . . hk+i and (λx1...xnb

′)h1 . . . hk+i. If (Ni)
p
A is

obtained by substituting A for p in Ni, then a′ is a type-instance of a obtained by substituting
(Ni)

p
A for every atomic type. 2

Since the procedure for constructing h1, . . . , hn in the proof of Theorem 6.1 can be pretty
involved, it may be useful to illustrate this procedure with an example. For this example we take
two terms unequal in Λ that we mentioned in Section 2 (this is the more involved of the examples
given there).

Example: Let a and b be λxxλy(xλzy) and λxxλy(xλzz), respectively, with x : (p → p) → p,
y : p and z : p. Since all the atomic types of a and b are already p, and since these two terms are
closed, we have that a2 is a and b2 is b.

The P -model falsifying a = b has P = {0, 1} and P → P = {ψ1, ψ2, ψ3, ψ4}, where

ψ1(0) = ψ1(1) = 0,
ψ2(0) = ψ2(1) = 1,
ψ3(0) = 0, ψ3(1) = 1,
ψ4(0) = 1, ψ4(1) = 0.

For φ ∈ (P → P ) → P defined by

φ(ψ1) = 1, φ(ψ2) = φ(ψ3) = φ(ψ4) = 0

we have Va(φ) = 0 and Vb(φ) = 1.
Then

n1 = 20 · 30 = 1 corresponds to ψ1,
n2 = 21 · 31 = 6 corresponds to ψ2,
n3 = 20 · 31 = 3 corresponds to ψ3,
n4 = 21 · 30 = 2 corresponds to ψ4,

and κ(φ) = 19. For every i ≥ 19 and for x1 : Ni → Ni, the term t is defined as

[2]
x1[0]i
i · [3]x1[1]ii : Ni−1. The term φλ is defined as

λx1Ci(Zi(D
1
i−1t))[1]i(Ci(Zi(D

6
i−1t))[0]i(Ci(Zi(D

3
i−1t))[0]i[0]i)).

The terms a and b are like a and b with x : (N20 → N20) → N20, y : N20 and z : N20, and let
i in φλ be 20. Then in Λ we can prove aφλ = [0]20 and bφλ = [1]20. The remaining steps in the
construction of a3 and b3 are straightforward, and we shall not pursue this example further.

By taking that for x and y of the same type the term c is λxyx and d is λxyy, we obtain the
following refinement of Theorem 6.1.

Theorem 6.2 If a and b are of the same type and a = b is not provable in Λ, then for every two

8



terms e and f of the same type one can construct type-instances a′ and b′ of a and b, respectively,
and closed terms h1, . . . , hl, l ≥ 0, and also find variables x1, . . . , xm, m ≥ 0, such that

(λx1...xma
′)h1 . . . hlef = e,

(λx1...xmb
′)h1 . . . hlef = f

are provable in Λ.

It is clear that if a and b are closed, we need not mention in this theorem the variables x1, . . . , xm
and we can omit the λ-abstraction λx1...xm .

Although our proof of Theorem 6.1 relies on the equality (η) at some key steps (as we noted
in connection with the combinator Zi+1), it is possible to derive a strengthening of this theorem,
as well as of Theorem 6.2, where Λ is replaced by Λβ , which is Λ minus (η) and plus the equality
of α conversion. We learned how to obtain this strengthening from Alex Simpson.

First note that if a term a is in both contracted and expanded βη normal form, and a = b in
Λ, then a = b in Λβ . For if a = b in Λ, then, since a is in contracted βη normal form, there is a
term a′ such that b β-reduces to a′ and a′ η-reduces by contractions to a. But then, since a is also
in expanded βη normal form, a′ must be the same term as a. So a = b in Λβ .

Then, as we did to derive Theorem 6.2, take in Theorem 6.1 that c is λxyx and d is λxyy for x
and y of atomic type p. The terms c and d are then in both contracted and expanded βη normal
form, and hence it is easy to infer Simpson’s strengthening mentioned above by instantiating p
with an arbitrary type.

To formulate below a corollary of Theorem 6.1 we must explain what it means to extend Λ with
a new axiom. Let a and b be of type A, and let a′ and b′ be type-instances of a and b respectively.
Then assuming a = b as a new axiom in Λ means assuming also a′ = b′. In other words, a = b is
assumed as an axiom schema, atomic types being understood as schematic letters. The postulate
(β) and (η) are also assumed as axiom schemata, in the same sense. We could as well add to Λ
a new rule of substitution for atomic types. The calculus Λ is closed under this substitution rule
(i.e., this rule is admissible, though not derivable from the other rules). And any extension of Λ
we envisage should be closed under this rule. The rule of substitution of types says that atomic
types are variables.

We can now state the following corollary of Theorem 6.1.

Corollary If a = b is not provable in Λ, then in Λ extended with a = b we can prove every
formula c = d.

Acknowledgement. We would like to thank Alex Simpson for reading a previous version of this
paper, and for making a very helpful suggestion (noted in Section 6). We are also grateful to
Slobodan Vujošević for his careful reading of the text and for his comments.

References

[1] H.P. Barendregt, The Lambda Calculus: Its Syntax and Semantics, North-Holland, Amsterdam,
1981, revised edition 1984.

[2] E. Barendsen, Representation of Logic, Data Types and Recursive Functions in Typed Lambda
Calculi, Doctoraal Scripte, Faculteit Wiskunde en Informatica, Katholicke Universiteit Ni-
jmegen, 1989.

[3] C. Böhm, Alcune proprietà delle forme β-η-normali nel λ-K-calcolo, Pubblicazioni dell’Istituto
per le Applicazioni del Calcolo, Rome, 696 (1968), 19 pp.

[4] H.B. Curry, J.R. Hindley and J.P. Seldin, Combinatory Logic, Volume II, North-Holland,
Amsterdam, 1972.

[5] H. Friedman, Equality between functionals, in: R. Parikh ed., Logic Colloquium ’73, Lecture
Notes in Math. 453, Springer, Berlin, 1975, 22-37.

9



[6] J.-L. Krivine, Lambda-calcul: Types et modèles, Masson, Paris, 1990 (English translation, Ellis
Horwood, 1993).

[7] H. Schwichtenberg, Definierbare Funktionen im Lambda-Kalkül mit Typen, Arch. math. Logik
Grundlagenforsch. 17 (1976), 113-114. (We know this paper only from references.)

[8] A.K. Simpson, Categorical completeness results for the simply-typed lambda-calculus, in: M.
Dezani-Ciancaglini and G. Plotkin eds, Typed Lambda Calculi and Applications (Edinburgh,
1995), Lecture Notes in Comput. Sci. 902, Springer, Berlin, 1995, 414-427.

[9] S.V. Soloviev, The category of finite sets and cartesian closed categories (in Russian), Zapiski
nauchn. sem. LOMI 105 (1981), 174-194 (English translation in J. Soviet Math. 22, 1983,
1387-1400).

[10] R. Statman, Completeness, invariance and λ-definability, J. Symbolic Logic 47 (1982), 17-26.

[11] R. Statman, λ-definable functionals and βη-conversion, Arch. math. Logik Grundlagenforsch.
23 (1983), 21-26.

10


