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MODAL FUNCTIONAL COMPLETENESS

INTRODUCTION

This paper is a companion to [3], where it was shown how a modal version of the
deduction theorem induces modal extensions of substructural logics. Here we shall
prove some of the results announced in the concluding section of [3]. Namely, we
shall prove modal functional completeness for categories corresponding to the main
modal substructural propositional logics. This modal functional completeness is
related to the modal version of the deduction theorem of [3] as functional complete-
ness for bicartesian closed categories is related to the deduction theorem for intu-
itionistic propositional logic. Roughly speaking, the deduction theorem says that
the system is strong enough to express its own deductive metatheory. Functional
completeness says that the deductive metatheory can be embedded in the system.

Functional completeness for categories is a property of the same kind as com-
binatorial completeness for systems of combinators. Combinatorial completeness
permits us to define functional abstraction and demonstrate the equivalence with
systems of lambda terms. Functional completeness permits us similarly to find sys-
tems of typed lambda terms as internal languages of closed categories. A well-.
known use of typed lambda terms in proof theory, which goes by the name of the
Curry-Howard correspondence, is to serve as codes of natural-deduction proofs.
If categories are conceived as logical systems with an equivalence relation among
proofs, which is induced by normalization, this coding and extracting the internal
language boil down to the same thing.

We learned about these matters from [6] and refer to that book for a demonstra-
tion of the importance of functional completeness. We shall try to follow the style
of [6], so that our results may be compared with the standard functional complete-
ness results proved there for cartesian, cartesian closed and bicartesian closed cat-
egories. An acquaintance with [6] may also help to grasp the proof-theoretical im-
port of what we will present here—a matter about which we don’t have space to
say much. Further logical motivation may be found in the aforementioned paper
[3] and in [4]. We refer to these works only for motivation. Otherwise, our paper
will be rather self-contained.



For our functional completeness results we concentrate on categories corres-
ponding to what we take to be the minimal substructural logic: namely, Lambek’s
nonassociative calculus. The modal postulates assumed for these categories are
those of S4 plus modalized versions of the missing structural rules—the same kind
of modal postulates one finds in usual presentations of linear logic. The modal
functional completeness theorem proved for these categories can easily be extended
to categories corresponding to better-known substructural logics, like linear and
relevant logic, as we indicate in Section 6. Working with the minimal substructural
logic has technical advantage and should help dispelling the impression that this
sort of theorem, as well as some others, is exclusively tied to a particular substruc-
tural logic. Results about linear logic are often presented in a fashion that fosters
such misleading impressions. For example, modal translation results (which are
not foreign to the matter we are treating) are presented as if they had to do with lin-
ear logic specifically, though analogous results may be obtained as easily for other
substructural logics.

We shall devote a section to a transformation of our proof of modal functional
completeness into a proof of ordinary, nonmodal, functional completeness for
cartesian, cartesian closed and bicartesian closed categories axiomatized in a non-
standard manner. Namely, instead of having as primitives projection arrows and
a pairing operation on arrows, we have arrows corresponding to structural rules,
and we show how with arrows corresponding to the structural rules of thinning and
contraction, Mac Lane’s axiomatization of symmetric monoidal categories, which
among other things has arrows corresponding to association and permutation, can
be extended to an axiomatization of cartesian categories. This means putting carte-
sian categories in a substructural perspective, where we envisage rejecting struc-
tural rules.

We produce such nonmodal substructural categories when in a separate section,
at the end, we consider restricted nonmodal functional completeness for them. The
restrictions in question are obtained by having special notions of what in the ter-
minology of [6] is called polynomials in polynomial categories. This is related to
having restricted classes of typed lambda terms as codes of proofs in substructural
logics. We leave for the future a more thorough investigation of this and some other
matters mentioned in the concluding section.

We also devote a section to justifying the assumptions made for our categories,
and, in particular, assumptions related to structural rules. We shall show for a num-
ber of them, and in particular the more abstruse, that they are not only sufficient, but
also necessary for functional completeness. Most of these assumptions are quite
well known and can be found in Mac Lane’s book [7]. There they are motivated
differently: they appear in connection with coherence problems (cf. the very end of
our paper). We motivate the same assumptions by functional completeness. Though



coherence may also be related to logic, we believe the sort of motivation we provide
does more justice to the logical character of our categories. Anyway, it should be
better than just taking over these assumptions from category theory, as it is some-
times done when categories are presented as ‘models’ for logics.

However, we didn’t find in the literature all of these assumptions: some of those
tied to the structural rule of contraction may be new. Among them we single out
something we shall call octagonal equation, a principle we shall use quite often,
which is comparable to Mac Lane’s pentagonal and hexagonal diagrams of natural
associativity and commutativity.

To end this introduction, let us mention a notational and terminological matter.
Though we shall in general imitate the style of [6], we shall diverge somewhat in
notation. In particular, we write arrows in categories with a turnstile, as f : A - B,
instead of f : A — B. This we do because we reserve — for implication, an oper-
ation on objects, for which category theory uses an exponential notation or square
brackets. We prefer to stay close to logical notation because our motivation is in
logic. We want to suggest that objects in categories correspond to formulae, op-
erations on objects to connectives, arrows to sequents, special arrows to axioms,
operations on arrows to rules of inference, and equations between arrows to con-
versions of proofs, like those we make in normalization. However, we dont want
to diverge from category theory also in terminology. Sowecall f : A + B an
arrow, rather than a sequent. This hybrid between logical notation and categorial
terminology may be slightly awkward, both from the point of view of logic and of
category theory, but it just reflects the nature of our work. We use categories to say
something about logical systems.

Because of its connection with the deduction theorem and proof theory, func-
tional completeness could perhaps be called deductive completeness. But, to follow
the policy exposed in the previous paragraph, and to prevent misunderstanding, we
prefer to stick to the established terminology.

1 NL CATEGORIES

A graph consists of a class of arrows and a class of objects, together with the func-
tions that to every arrow assign the objects that are its source and target. We use
f,9,h, ..., possibly with indices, for arrows, and A, B, C, ..., possibly with in-
dices, for objects. We write f : A F B to say that A is the source of f and B the
target of f. For such an f we say that it is of type A  B.

A deductive system is a graph in which we have a special arrow for every object



14:AFA

and the binary (partial) operation of composition of arrows:

f:AFB g:B+C
gf:AFC

A category is a deductive system in which the following equations between ar-
rows are satisfied:

(catl) Forf:AF B, 1gf=f, fla={.

(cat2) Forf:A+B,g:BFCandh:CF D, h(gf) = (hg)f.

An NL deductive system (‘NL’ stands for ‘nonassociative Lambek’) has the fol-
lowing in addition to what every deductive system must have:

binary operations on objects: ,—,,\,V
special objects: 1, T, L1

special arrows for every object A and B:

oa:leAFA da:AelIlF A

o’f,‘:.Al-IoA 5f4:Al-AoI

exap:Ae(A—-B)FB exp:(B+ A)eAFB

TAB:AANBFA m,p ANBFB
TA:AFT

kaB:AFAVB nk’B:BI-AVB
ta:LlFA

(‘o’ is to be associated with ‘sinister’, ‘6° with ‘dexter’, ‘7’ with ‘terminal’, ‘.’ with
‘initial’, and the superscript ‘s’ stands for ‘inverse’ or, maybe, ‘introduction’; the
remaining notation for arrows and operations on them is modelled after [6])



operations on arrows:

f:AFB g:CkD

feg:AeCFHBeD
f:AeCHFHB f:CeA+B

*f:CHA-> B ff:CFB« A
f:C+HA ¢g:C+HB

(f.g):CHANAB

f:A+C g:BFC
[f.9]:AVBFC

The minimal NL deductive system is an extension of Lambek’s nonassociative
calculus with the propositional constant I, the lattice connectives A,V, T and L
(lattice connectives are called ‘additive’ in the terminology of linear
logic), and the associated arrows and operations on arrows. Note that the exten-
sion with I and the o, o*, § and §* arrows amounts to adding some structural rules;
namely, rules for dealing with the empty collection of premises. Hence, it
shouldn’tbe surprising that this extension is not conservative (it enables us to prove,
for example, (A - A) — B + B). We shall call the g, 0%, § and &° arrows o4 ar-
rows.

An NL category is an NL deductive system that is a category in which the fol-
lowing equations between arrows are satisfied:

e equations

(0)‘ For f1 : Al F Bl,gl . Bl + Cl,f2 : A2 F Bz andgz : B2 F
C2, (91 092)(f1ef2) =(g1f1) @ (92f2)-

(1) 1yelp=14.p
06 equations

(o) Forf: A+ B, foa=og(lief).
) Forf: A+ B, féa=0p(felj).

(00%) o0l =1g4, 0404 = llea
(66%) 5,45";1 = 14, (5345,4 = 1401
(00) o1=4;

closure equations



(= PB) Forf:AeCFB, exp(lae*f)=f.

(—=n) Forg:CHrA— B, *(ezp(laeg)) =g

(+pB) Forf:CeAF B, egp(frels)=Ff.

(+n) Forg:CrFB+ A, (e;p(gela)) =g

bicartesian equations

(AB) Forf:CkAandg:CF B,map(f,9)=f =4p(f,9)=g
(An) Forh:CFAAB, (maph,mygh)=nh.

(M Forf:AFT, 1m4=1f.

(V@) Forf:ArCandg:BFC,[f,glkas=f [figlkhp=0.
(vp) Forh:AVBFC, [hka,B,hKyp]=nh

€L) Forf:1lFA, wa=f.

With the help of either (— ) or (¢ ) we can derive (¢1): we have

IA ° 13 = SZ,A.B(IA [ ] *]-AoB)(lA L] lB), with (cat 1) and (—) ﬁ)
= 1448, With (e), (cat 1) and (— B)

and can proceed analogously with («+ (). However, we have preferred to include
(1) among the e equations so that we may have it even in the absence of — and
+ (see Section 4).

With the definitions

Def=glpef
feD=y4 folp

we can derive the following equations by using (cat 1) and (e):

(2) De(g9f)=(Deg)(Def), (9f)eD = (geD)(feD)
(ebifunctor) (fi @ B2)(Aj e f2) = (B e f2)(f1 0 As)

Conversely, if the unary operations on arrows D e _and _e D are primitive instead
of the binary operation on arrows _ e _, we can define the latter by either of the
following two definitions

J1 e f2 =ar (f1 # B2)(Ay @ f2)
Ji e fa =ar (B1 e f2)(f1 0 A2)



and derive (o) by using (#2) and (ebifunctor). With these unary operations primi-
tive, (e1)is replaced by

Delg =1p,sB, 140D =144p.

When it is more convenient to work with D e _and _ e D instead of _ e _, we may
freely avail ourselves of this opportunity.

The first six 0d equations assert that ¢ and § are natural isomorphisms. They
can be replaced by the four equations

(I8) op(lie floy =f, dp(fel)dy=f
(In) ogfoa=11ef, Bfoa=fel]

which are more parallel with the closure and bicartesian equations. The letters ‘3’
and ‘n’ in the names of all these equations should point towards the analogy with
B and 7 conversion in the lambda calculus, which are themselves analogous to the
conversions of two types of detours in natural deduction: introduction followed by
elimination and elimination followed by introduction. However, the g equations
as we have given them are more transparent. These equations are assumed by Mac
Lane [7, VIL1] for monoidal categories. The difference is that for e in NL cate-
gories we need not have a natural associativity isomorphism.

For an NL category C, the operations _ e _ on objects and arrows determine a
functor from C x C to C, i.e. a bifunctor, whereas D o _and _e D are functors from
C to C. With the definitions

D — f =4t *(fep,a)
f < D=4 (fep a)*

we obtain the functors D — _and - + D from C to C. We also have the definitions

ep(A) =arep s €p(A) =acep.a
np (A) =daf *1pea 15 (A) =ar 1aeD*

(conversely, we can define * f as (D — f)np (A), and f* as (f « D)np (A)).

The o and closure equations amount to asserting that _e _ is a bifunctor, that for
every object D the functors D e _and D — _ are adjoined, the first being left ad-
joined and the second right adjoined, with the natural transformations e, and np
being the counit and unit of the adjunction, and analogously with the functors _e D



and _ < D and the natural transformations €, and np; . All this may be expressed
by saying that NL categories are biclosed. The bicartesian equations amount to as-
serting that NL categories are bicartesian with respect to the operations A and V,
their terminal object being T and their initial object L.

The equations (— 77) and (+ 7) can be replaced by the equations

(*) Forf:AeDFBandg:CkFD, *(f(1aeg))=(*f)g.
Forf:DeAFBandg:CF D, (f(ge1a))* =(f*)g.

(*e) “exp=1la-s, €a8" =1B-a.

The style of these equations is comparable to the style of the equation (o) and
the second (00*) equation (or (§) and the second (d4*) equation): the equations (*)
say how the operations * permute with composition, whereas the equations (&)
exhibit the result of eliminating and then reintroducing an implication. Similarly,
the equations (An) and (V7)) can be replaced by the equations:

(fh,gh) = (f,9)h, (Ta,B, T4 g) =1lann
[hfv h‘g] = h[f) g]a ["‘:A,B’ "":4,3] = lavs.

The equations (T) and (L) can be replaced by the equations:

FOl’f:Al‘B, TA=TBf, T =17.
Forf: BF A, ta=fip, ty1 =1;.

2 NLO CATEGORIES

To define the modal NLO deductive systems and NLO categories we need the fol-
lowing piece of terminology. First we define inductively the factors of an object
in a deductive system that has the binary operation e on objects: A is a factor of A;
if B o C is a factor of A, then B and C are factors of A. An atomic factor of A is
a factor of A that has no factors save itself. Let us consider deductive systems that
have the binary operation e and a unary operation [J on objects, and also the special
object I. We shall say that an object A in such a deductive system is boxed. An
object is modalized if and only if each of its atomic factors is either boxed or else
itis L.

An NLO deductive system is an NL deductive system that, moreover, has the
following:



unary operation on objects: O
special arrows:

ra:0AF A, for every object A,

bypc:Ae(BeC)l(AeB)eC, provided Aor B or C is modalized,
bipc:(AeB)eCH Ae(BeC(), provided Aor B orC is modalized,

cap:AeBFBeA provided A or B is modalized.
ka:AFI, provided A is modalized,
wa:AF Ae A, provided A is modalized,

operation on arrows:

f:BFA

S B —— provided B is modalized.
f-:BFOA

Note immediately that for modalized objects A we have the arrows ID
A F OA. These and the r arrows would enable us to formulate the provisos for
the b™, b, ¢, k and w arrows by restricting ourselves to boxed objects A, B or
C, rather than any modalized objects. However, for technical reasons, it is more
convenient to have the provisos in the equivalent form above.

The b~, b, ¢,k and w arrows are related to the combinators usually named
with the corresponding capital letters. A b™ arrow is used to obtain the arrow

**(EX,B(GE,A ’1A—‘B)baC~A,A—»B) :A—- Bl (C — A) - (C b d B)

which corresponds to the functional type of the combinator B taking arguments on
the left-hand side, whereas b~ is used for

(E‘A—,B(IBQ_A .eaA)bEF—A,A‘—C,C)** B+« Al (B «~ C) — (A «— C)

which corresponds to the functional type of B taking arguments on the right-hand
side. This explains the upper indices of b~ and b~. The b™ and b~ arrows will
be called b arrows.

The b, ¢, k and w arrows are related to structural rules, too: b arrows to asso-
ciation, ¢ arrows to permutation, k arrows to thinning and w arrows to contraction
(to give the full force of thinning, k arrows have to cooperate with d arrows), So
we shall call these arrows structural arrows. We have said in the previous section



that the o6 arrows may be taken as structural. Such are also the arrows 1 4, which
correspond to the combinator I. However, when we say here structural arrows, we
mean the b, ¢, k and w arrows.

An NLO deductive system has modalized forms of the structural rules missing
from NL deductive systems; moreover, it has S4 modal postulates. We can replace
the operation on arrows o by special arrows of types

OA—-B)+-OA—-0OB
0OAF0O0A

and the restricted form of U where B is I; this form of U corresponds to the modal
rule of necessitation. An alternative is to replace U by special arrows of types

OAeDOBF O(Ae B)
I+0O1

and the restricted form of O where B is boxed (cf. the derivation of 5 in Section
5). Still another alternative is to replace U by special arrows of the last two types
plus OA I OOA and the operation on arrows

f:AFB
Of:0A+OB

An NLO category is an NLO deductive system that is an NL category in which
the following equations between arrows are satisfied:

O equations:

(OB) Forf:BFA, raff=f
(On) Forf:BFOA, (raf)B=f

b equations:

(b) Forf:A+D,g: BFEandh:CF+ F (feg)eh)brps =
by g r(fe(geh)).

(bb) bZpcbapc =1laeBrec: bipcbapc =1lasBec)
(0’(5‘)) ((5,4 o lB)bZ,I,B =1lp00B



(b5)  bZ.p,c,0PaB,cep = (P2 Ec®lD)bE Bec,p(la®bEcp)

¢ equations:

(c) Forf:A+Candg:B}\ D, (g f)ca,B =cc,p(fe9).
(cc) cp,ACa,B=1l4eB
(0’50) OACAI = 5,4

(bc6) baA,BcAOB»CbX,B,C = (cace® lB)bZ,C,B(lA ecp)
k equations:

(k) Forf:A+B, ku=Kkgf.

(1k) k=1
W equations:

(w) Forf:ArB, (fef)lwa=wgf.
(06w) orwr = 1

(bw) bz s a(laewa)ws=(waelg)wy
(cw) caawa =wy

(bew8) Ifc g o p =dat b2 ¢, pep(la®(bg g p(cB,c*1D)bE c,p))PA B,CoD
CZL,B,A,BWA’B =Wy oWpg.

(O‘kW) JA(kA L] lA)WA = lA (ka) 5,4(1,4 [ kA)WA =14
Of course, the arrows f in (OG) and (On) must have B modalized, and, like-

wise, the other equations involve arrows with provisos for modalized objects. The
equation ([Jn) can be replaced by the two equations

O (f9)" =Y

Or) P =1ga4



which is quite parallel to replacing (— 7) and (« 7) by (*) and (*¢); the r arrows
are analogous to the € arrows, and the operation on arrows - is analogous to *. For
the sake of example, let us derive (1):

fag=1"fg

ra(fg)" =rafPg, with (OB)
(ra(fg)?)2 = (rafBg)H
(f9)P = B, with (On).

It follows immediately from (O), (©) and (Cr) that for modalized A the arrow
19 : A OA is an isomorphism, its inverse being r 4.

If for f : A+ B we define Of as (frA)D and t 4 as IBA, then the functor (J_,
the r arrows and the t arrows make a comonad (or cotriple). It is easy to check that
the r and t arrows are natural transformations and that we have equations corre-
sponding to the three commutative diagrams of [7, V1.1, p. 135] (r corresponds to
Mac Lane’s €, and t to Mac Lane’s §). However, the r and t arrows and the opera-
tion on arrows CJ_ don’t suffice to define our operation on arrows _J. As we have
already noted, we need moreover arrows of types JAeO0B + O(AeB) and I - I
(which in the axiomatization of [8, 9.7, pp. 87— 90] must be recuperated in a round-
about way, via isomorphisms between [JA ¢ (0B and O0(A A B), and between I and
OT; in the absence of k and w arrows, which are recuperated similarly, such an
axiomatization becomes impracticable).

The equations (b) and (bb) can be replaced by the two equations

bper(fe(geh)brpc=(feg)eh
bB,E,F((f eg)e h)bX,B,C =fe(goh)

(analogous to (I8) and(In) from Section 1), but (b) and (bb) make it more trans-
parent we are dealing with a natural isomorphism. Similarly, (¢) and (cc) can be
replaced by

cpc(geflcas=feg

but, again, (c) and (cc) make it more transparent we are dealing with a natural iso-
morphism. Of course, from (b) and (bb) we obtain immediately

(fe(geh)bypc=bprr((feg)eh)

and this equation could replace (b).



The equation (b) can be replaced by the three equations

(b1) ((feB)eC)bypc=bppc(fe(BeC))
(b) ((Aeg)eC)bypc=bypc(Ae(geC))
(b) ((AeB)eh)by pc=Dbypr(Ae(Beh))

where De fislpe fandf e Dis f e 1p, as we have defined them in Section 1.
Similarly, (c) can be replaced by either of the two equations

(c1) (Bef)cas=cc,B(feB)
(c2) (99 A)caB=cap(Aeg).

It is natural to assume these substitute equations if the unary operations on arrows
D e _and _e D are primitive instead of the binary operation on arrows _e _, though
(b) and (c) would do as well. The equation (w) then reads

(feB)(Ae f)wa=wgf.
From (odb), which amounts to
by = 8y e0p
we can derive (without using ¢ arrows) the following two analogous equations:

(0b) (0a®lp)bisp=04eB
(Jb) ‘SA‘BbZ,B,I = lA [ ] 63

[7, VIL1, p. 16.1 R Exe;cise 1]. We call these three equations, and those derived from
them with (o0*), (66*) and (bb), triangular equations, because Mac Lane assumes
(o6b) for monoidal categories as a triangular commutative diagram [7, VIL1, p.
159].

The equation (b5) is Mac Lane’s pentagonal diagram for monoidal categories
[7, VIL.1, p. 158]. We call this equation, and equations derived from it with (bb),
pentagonal equations.

The equation (oéc), assumed by Mac Lane for symmetric monoidal categories
[7, VIL.7, p. 180], enables us to define the § and & arrows in terms of the ¢ and o*
arrows, or the other way round. With this equation, it is superfluous to assume in
Section 1 the equations (6) and (66°), or () and (00*). From (séc) and (g0?) it



follows thatc4 1 = 0546 A, which with (¢4) and (aai) yields c1,1 = 1ye1. This last
equation with (odc) immediately yields (¢4).

The equation (bc6) is Mac Lane’s hexagonal diagram for symmetric monoidal
categories [7, VIL7, p. 180]. It says, intuitively, that permutation of products like
AeBinca.p,c can be replaced by permutation of the factors A and B in c4,¢c and
cB,c. We call (be6), and equations derived from it with (bb) and (cc), hexagonal
equations.

If we forget about the provisos for modalized objects, the b equations together
with the e and 04 equations of Section 1 axiomatize monoidal categories. If to
that we add the ¢ equations, we obtain symmetric monoidal categories. The clo-
sure equations of Section 1 transform the former into monoidal biclosed categories
and the latter into symmetric monoidal closed categories (cf. Section 6).

The k equations can be replaced by the single equation:
Forf:AFIL ka=f.

At the end of Section 1 we have noted something quite analogous concerning the
equation (T). The k equations say that I is a terminal object when we restrict our-
selves to arrows from modalized objects. Formulating these equations as we did
makes clearer the parallelism with the b, ¢ and w equations. The equation (k) cor-
responds to (b), (c) and (w): when written 11k 4 = kp f, it says that Kk is a natural
transformation from the identity functor to the constant functor that maps objects
into I and arrows into 1j. Of course, k need not be an isomorphism as b and ¢ are.
The equation (1k) should be compared with

by g = 64 e op and b} | = of e 01, which are related to (¢6b) and (v6),
cal = af46 4 and c1,1 = 1pe1, which are related to (céc) and (06),

w1 = o} and wy = §, which are related to (¢6w) and (04),

but it may also be compared with (bb) and (cc).

The equation (w) says that w is a natural transformation from the identity func-
tor to the square functor that maps objects A into A e A and arrows f into f e f.
However, w need not be an isomorphism.

The equation (cdw) has ‘4’ in its name because through (o'd) it involves dy.
The equations (6éw), (bw), (cw), (ckw) and (6kw) say, intuitively, how o, §, b,
c and k arrows behave if they are composed with w arrows. Though ¢y 1 equals 1,1,
the arrow c 4,4 need not be equal to 14, 4; but it behaves like 14,4 if composed



with w 4. (We can derive c;1 = 11e1 from (cw), (06w) and (00*), which is dif-
ferent from the derivation we gave above.) Similarly, b , 4 need not be equal to
CA,AeA, but from (bw), (cw) and (c) it follows that

b7 aa(laewa)wa =cs aea(laews)wa.

From that with (¢6w) and (co*) we obtain, however, bi} 1 = c1,1e1 (We have said
already that by} | is equal to o} e a1). The equation (bw) is obtained by reversing
the arrows of the first diagram for monoids in [7, VIL3, p. 166, diagram (1)].

The arrow
capcp:(AeB)e(CeD)F(AeC)e(BeD)
for which, with (e), (b) and (c), we can prove

((feh)e(gej))ch Bc,p="CFc,u((feg)e(hej)

is, like c4, B, a natural isomorphism (the upper index ‘m’ stands for ‘middle’). In
the equation (bcw8) it enables us, intuitively, to replace contraction of products
like A e B in w 4,5 by contraction of the factors A and B in w4 and wpg. In this
sense, this equation is analogous to Mac Lane’s hexagonal equations. We shall call
(bcw8), and equations derived from it with (bb) and (cc), octagonal equations, be-
cause the commutative diagram corresponding to

b;l:A,BoB(lA b b:i_,B,B)(lA *(cpaelp))(lae bE,A,B)bX,B,AoBWAoB =
(Waelgep)(laewp)

has eight sides. There are two main octagonal equations: (bcw8) and
¢4 4,8,8(WA®WB) =Wa.p.
As (bw) is obtained by reversing the arrows of a diagram for monoids, so
the equations (ckw) and (6kw) are obtained from the remaining diagrams for

monoids in [7, VIL3, p. 166, diagram (2)] by the same procedure (which involves
replacing o by o* and 4 by 6*). These equations can be replaced by the equations:

Forf: AF B, op(kae f)\wa=f, op(feka)wa=f.

Ifpap:AeBl Aandp), p: Ae Bt Aare defined by

Pa,B =af 6a(la®kB), P p=arop(kaelp)



then (ckw) becomes pfA'AwA = 14 and (6kw) becomes pgawa = 14. It
follows from (1k) that 04 = p{, aand 64 = pa, (cf. Section 4). In the presence
of ¢ arrows, (ckw) and (6kw) are not independent: one can be derived from the
other.

The equation (¢'6), i.e. o1 = 1 , becomes superfluous in the presence of (k) and
(1k). Likewise, (cdw) follows from (1k) and (ckw). However, these superfluous
equations may be needed even if we dont have k arrows (see Section 6), and be-
cause of that we keep them as primitive. In the same spirit, we have assumptions
for both o and é arrows, though these assumptions are not mutually independent in
the presence of the ¢ arrows, as we have noted above. From the beginning, we also
have the superfluous equation (e1).

3 MODAL FUNCTIONAL COMPLETENESS FOR NLO CATEGORIES

Given an NLO category C and an object A of C, we build the polynomial NLO cat-
egory C[z] with an ‘indeterminate’ arrow z : I - A by a procedure described in [6,
L5, p. 57]. Namely, we add a new arrow = : I - A to the underlying graph of C
and then build the NLO category freely generated by the new graph. That this will
succeed is guaranteed by the fact that NLO categories are equationally presented,
i.e. that all our assumptions about arrows are equations. We shall not rehearse here
this procedure, which is explained in sufficient detail in [6]. It is also covered by
theorems in universal algebra concerning equationally presented algebras with par-
tial operations [5, Section 5, p. 124, corollary to Lemma 3], and [1, Section 7, p.
129, Corollary 1 to Proposition 18]. The name ‘polynomial category’ is explained
by thinking about the arrows of C[z] as polynomials in z.

We can now state the central result of this paper:

MODAL FUNCTIONAL COMPLETENESS THEOREM.

For every arrow ¢ : B & C of the polynomial NLO category C|z] built over the
NLO category C with x : 1+ A, there is a unique arrow f : DA e B - C of C such
that f(z° e 1p)o’y = o holds in C[z).

We also have the following:

COROLLARY

For every arrow ¢ : 1 + C of the polynomial NLO category C[z] built over the
NLO category C with x : 1 I A, there is a unique arrow g : DA + C of C such that
gz8 = ¢ holds in C[z].



If B is I in the Modal Functional Completeness Theorem, then in C[z] we have

f@Belnoi =9 ‘
fo,425 = ¢, with (06), (6) and (46°).

So, in the Corollary, we shall take g to be f&%,. Actually, as with cartesian
closed categories in [6, 1.6, p. 61], the Corollary entails the Theorem, since the
arrows ¢ : B F C of C[z] are in one-one correspondence with the arrows *(pdp) :
I+ B — C (or (poB)* : I+ C + B). This one—one correspondence also entails
that our restriction of x to arrows of type I - A is surmountable (cf. [6, 1.2, p. 52,
Exercise 1]). However, the Theorem has a better form than the Corollary for the
proof we are going to present. The remainder of this section will be devoted to this
proof of the Modal Functional Completeness Theorem.

If ¢ ranges over arrows of the polynomial NLO category C[z] built over the
NLO category C with x : I F A, whereas f ranges over the arrows of type
OA e B C of C, for some objects B and C, and

fz=ar f(a" 0 15)05

then the Modal Functional Completeness Theorem asserts that ‘z is an onto and
one-one function from the f arrows to the ¢ arrows (from the definition of ‘z it is
clear that it is a function). Our proof of the Modal Functional Completeness The-
orem (inspired by the proof of functional completeness for cartesian closed cate-
gories in [6, 1.6]) will proceed by defining a function y, from the ¢ arrows to the f
arrows and showing that p,, is the inverse of ‘x. Applying p, to ¢ is related to ap-
plying the functional abstraction operator Az. Syntactically, x£; binds the variables
z that may occur in the polynomial ¢. Semantically, it extracts from ¢ a function
that may be applied to z in the sense of ‘: if u, is like functional abstraction, ‘z
is like application to x. The analogue of u, in [6, 1.2, 1.6] is k¢ 4, Whereas the
analogue of ‘z is (zOp, 15).

We define the function p, by the following inductive clauses, which cover all
possible forms an arrow of C[z] may have:
(#0.1) pzx =radga
(1#0.2) Forh: D F E an arrow of C,

pzh = hop(kga ®1p)
= hpI’:IA,D'



(p1)

(12)

(p8.1)

(13.2)

(14)

(65)

(u6)

Fory: DFEandé:EF F,
e (§9) = pe€(1oa @ #2¥)bga oa,p(Woa @ 1p).

Fory:DF Eandé: F G,

Bz 0 §) = (Ba ® pz€)cfia,0a,p,r(WOA ® 1DeF).
Fory: EeDFF,

bz(*¥) = *(u2¥b{a, g, p(cE,04 ® 1D)DE M, D)-
Fory: DeEF F,

z(¥") = (H=¥b3a,p,p)*-
For¢):DFEand¢:DFF,

pz (¥, €) = (12, paf)-

Fory:EFD,{: FFDanddg,g,r:Ge(EVF)F (GeE)V(GeF)
defined by dg,E,F =df €5 (GeE)v(Ge F)(la *[*kGeE,GoF)" KGep,GeF))>

b0, €] = [, t€ldpa, g, F-
For % : D + E with D modalized,

1 (¥5) = (o9)".

Let us first deduce that the following equations hold in C:

(#1.1) Foryy: D+ Eandh: EF F anarrow of C,

pz(hp) = hpzp.

(#11.2) Forh: DF EanarrowofCand§: EF F,

I-l/a:(fh) = /-"a:ﬁ(IDA d h)



We could as well have taken (1:1.1) and (121.2) as clauses in the definition of .,
but then we would have to show that they are compatible with (1) and (x0.2), and
this compatibility is demonstrated by deducing them from (x1) and (10.2). For
(11.1) we have

bz (hp)= hop(kga ¢ 1)(1ga ® ﬂzw)bEA,DA,D(WDA e1lp), with (ul)
and (p0.2)

= hog(l1 ® ps¥)(koa ® 104ep)bga 04, p(Waa  1p), with (o)

= hpz9onaepbrns p((koa @ 104) @ 1p)(woa @ 1p), with (0)

and (b)

= hﬂz¢((aﬂA(kDA 4 IDA)WDA) b ]-D)’With (Ub), (bb) and (.)

Then we apply (ckw) and (e1). For (11.2) we have

rz(Eh)= ps€(1oa @ (hop(koa @ 10)))bg,s gap(Woa @ 1p),  with (ul)
and (10.2)

= p=£(104 ® h)(1oa ® op)bg, ; p((1oa * kaa) @ 1p)(Woa @ 1p),

with (s) and (b)

= pz€(1oa @ h)((dna(loa e koa)woa) e 1p),  with (odb), d(t()b))

and (e).

It remains to apply (6kw) and (e1).

In a rather similar manner, with the help of (10.2), (ckw) and (6kw), we derive
from (u2):

(u2.1) Fory:DF F,

Hz(E 0 9) = (E o )by pleoa,e ® D)bgs g, p-
(u2.2) Fory:DF F,

te(¥ ® E) = (ks ® E)bgy p g

In these clauses we write De f for 1 pe f and feD for felp. If the unary operations
on arrows D e _and _ e D are primitive instead of the binary operation on arrows
_ e _, then we can derive (12) from (12.1) and (12.2). These substitute clauses,
which are often simpler to work with than (u2), will also serve for the results of
Sections 5 and 6.

Then we have to check that pi. b is well-defined for arrows h in C. For example,
we must check for h =ts,s: D - Eandt : E + F, that an equation correspond-
ing to clause (1), namely,

hPga,p = tPoa,p(l04 * (SPOA,p))PTOA0A,p(WOA © 1D)



holds in C. This amounts to the deduction of (u1.1). We have to check similar
equations corresponding to clauses (p2)—(u6). We shall not go into the details of
this lengthy, but rather straightforward, exercise. However, let us note as a hint that
it may be easier to check such equations with D e _and _e D, rather than with _e _.
In that case, instead of (u2) we use (12.1) and (42.2). Let us note as another hint
that when we check the equation corresponding to (u5), we use the fact that the
distribution arrow dg, g, F is an isomorphism (actually, a natural isomorphism), its
inverse being [1g ® kg, F, 1 ® '9'3,5']-

Next we check that . is indeed a function:

LEMMA 1. If ¢ = 9 holds in C[z), then pzp = pz3 holds in C.

Proof. From the inductive definition of y, it follows immediately that if p,p =

Uz holds in C, then i, (£p) = 1 (€9) and p, (p€) = pg (¥€) hold in C. We have
analogous implications for the other operations on arrows of NLO categories.

If  and 1 are arrows of C and ¢ = 9 holds in C[z], then ¢ = 1 holds in C. So,
we have in C

(P:u':clB = "/)/-"le
Bz = pz¥, by (u1.1) and (cat 1)

(we could as well have used (u1.2)).

It remains to check that for all the equations ¢ = 1 we have assumed for NLO
categories, in which arrows of C[z] not in C may occur, ;¢ = pz% holdsin C.

The equations of (cat 1) are covered by (u1.1) and (1.2). For (cat 2) we have
p=(€(¥e))

= p=€(1pa ® (k=9¥(loa @ ﬂz‘P)bEA,DA,B(WDA A 18)))bEA,DA,B(WDA e13)
= pz€(1oa @ p=¥)(10a * (104 ® #=9)) (104 * bHA 04, 8)PEACAeDA,B
((lna ®wpa) e 18)(wpa @ 18), with () and (b);

then we have the pentagonal equation
(104 *b0a,04,5)P04,04004,8 = b04,04,0405P0A04,04,5(PTa,04,04¢15)
which with the help of (bw) and (b) yields

k(€)= us€(loa @ Ha¥)bGa na,c(l0aenia ® H29) (WO ® 1046B)
bEA,UA,B(WEIA elp)

= ”z((&‘p)(p)’ with (.)



For (e) it is again easier (and more instructive for what we do in Sections 5 and
6) to work with D e _and _e D instead of e _, i.e. with (12.1) and (u2.2) instead
of (12), and check (¢2) and (e bifunctor). For the first equation of (¢2) we need
pentagonal and hexagonal equations, whereas for the second we need only a pen-
tagonal equation. For (e bifunctor) we need (cw) besides pentagonal and hexagonal
equations in order to check that

c8a ,Ap,04, AngAoAI,EIA A2 (coa,04e4, ® Az)bg, J0AeA Ay (DAebg, Ay A,)
bHA 04,4704, (WO4 @ (A1 0 A2)) = Wgy o (A1 0 As).

For (o) and (6) we apply (11.1) and (11.2). Among the remaining equations for
NL categories that need checking, namely, the closure and bicartesian equations, let
us consider (L).

For ¢ : L + B, we have to show p,tp = p;¢0. With (L) we have

*(betB) = Da-B
*(bztB) = *(pz9p)
GEA,DAﬁa(IDA o *(/J'a:LB)) = SEA,DA_.B(IEIA * *(uzp))
BotB = Pz, With (= B).

A similar trick involving * is applied when we show that the distribution arrow d
is an isomorphism, and this we need when we check the lemma for (V7).

It remains to check (OB), (On), (b), (c), (k) and (w). The cases with (OG) and
(On) follow readily by applying (©1.1) and (6). For the case with (b) it is eas-
ier and more instructive to break the checking into checking (b;), (b2) and (bs)
with the clauses (p2.1) and (u2.2). Then for (b;) we need the pentagonal equa-
tion (b5) (see the justification of pentagonal equations in Section 5). For (bz) we
use two pentagonal equations, and for (bs) one hexagonal equation besides three
pentagonal equations. To check (c; ) or (c2) we need a hexagonal equation (see the
justification of hexagonal equations in Section 5). For (k) we just use the fact that
the object I is terminal for arrows from modalized objects. Finally, for (w) we have

pz((pop)wp = (uzpe ﬂz‘P)CBADA,B,B(WDA *ewg),
with (12) and (p1.2)
= (uz ® Hz0)WDAaeB, With an octagonal equation
= pz(Wep), with (w) and (p1.1).

The following two lemmata assert that u, is the inverse of ‘z. As p, corre-
sponds to functional abstraction and ‘z to application, so Lemma 2 corresponds to



B-conversion and Lemma 3 to 7-conversion.

LEMMA 2. For ¢ : B\ C an arrow of C[z), the equation (uzp)‘c = ¢ holds in
Clz).

Proof. We proceed by induction on the complexity of . For the basis we have:

0.1) Ifpisz,then

(Hzz)'c  =radga(z® e 11)af, by definition
=r 4256810}, with (6) .
= z, with (08), (66) and (00*)

(0.2) If pis an arrow h of C, then, by definition,

(ueh)'z = hop(koa ¢ 18)(z" ¢ 15)0%

and we use (¢), kgaz" = 1j and (00) to show that the right-hand side is equal
to h.

In the induction step we shall only consider the following case as an example:

(1) Ifpis &y, withyp : B+ Eand € : E | C, then by the induction hypothesis
we have (u.%)‘c = 9 and (p.£)‘c = . We need to prove (1 (&) =
&, which amounts to #zf(IDAOItﬁ/’)bEA,UA,B(WDA013)($D°1B)0i3 =
€ (a:‘:l ol E)o}';uzz/)(zm ol B)aiB. For the left-hand side (lhs) of this equa-
tion we have

lhs = po€(loa @ we¥)bi, na,p((c" 0 25) 0 15)(Wre 15)0},
with (e) and (w)
= (104 @ petp)(zD 0 (25 o 15))bf1 p(W1e15)oh, with(b)
= p=£(z” 0 1£) (11 @ (no9p(z” 0 15)))b{} p(0f @ 18)0h,
with (e), (6dw) and (oo*)
which, with (o) and a triangular equation derived from (ob) with (¢o*) and
(bb), is equal to the right- hand side.

As alengthy exercise, it remains to check cases corresponding to clauses (u2)—(u6)
(for ease, it may be preferable to work with (42.1) and (12.2) instead of (2); see
the justification of (¢b) and (o6b) in Section 5). a

LEMMA 3. For f : OA e B |- C an arrow of C, the equation ui.(f‘z) = f holds
inC.



Proof. By using (u1.1), (11.2), (#2.2), (u6) and (20.1) we obtain

ba(f'z) = f((rA‘SDA)D b lB)bEA,I,B(lQA i UiB)
=f(boae lB)baA,I,B(lﬂA * 0}z), with (On);

with the triangular equation (a6b), () and (c0*), the right-hand side is equal to
f ]

As a corollary of Lemma 2 we can easily obtain a more general statement;
namely, for every arrow @ : I A of C[z] the equation (u.p)‘a = ¢Z holds in
C[z]. In this equation, which corresponds exactly to 3-conversion, f‘a is defined
analogously to f‘z, and ¢Z is obtained from ¢ by uniformly substituting a for z.
We shall not define this substitution with more precision since we don’t need the
corollary here. Lemma 2 suffices; i.e., Lemmata 1-3 immediately give the Modal
Functional Completeness Theorem.

4 FUNCTIONAL COMPLETENESS FOR CARTESIAN, CARTESIAN
CLOSED AND BICARTESIAN CLOSED CATEGORIES

An NLO category in which every object A is isomorphic with A is a cartesian
category with respect to e and I, a cartesian closed category with respect to e, —
and I, and a bicartesian closed category with respect to ¢, —,1, v and L. From our
axiomatization of NLO categories in Sections 1 and 2 one can easily extract non-
standard axiomatizations of these sorts of category by selecting the assumptions
tied with the mentioned operations and objects (of course, we always assume that
we have the 14 arrows, composition, (cat 1) and (cat 2); i.e. that we are in a cate-
gory).

As a matter of fact, to axiomatize bicartesian closed categories in such a non-
standard way, all we have to do is forget about OJ in Section 2, without making any
selection among our assumptions. Namely, let us assume whatever is assumed in
Section 1 for NL categories, and let us, moreover, assume the structural arrows b,
¢, k and w without provisos concerning modalized objects. We forget about the r
arrows and the operation on arrows U: the arrow r 4 may be identified with 14 and
fB is just f. For the structural arrows without provisos we assume the equations
of Section 2.

Remember that we have defined the p and p’ arrows at the end of Section 2 by

Pa,B =af 6a(laekp),  p)yp=arop(kaelp).



In the same spirit, we define the binary operation on arrows

f:CHA ¢g:CFHB
{f,9}:CHAeB

by

{f,9} =ar (feg)we.

Then we can show first that (p 4,5, P;, p) is a natural isomorphism from A e B
to A A B, its inverse being {7 4,5, p}. The essential step in checking

{ma,B, ™A p}(PA,B,P4,B) = laeB
is to show {p4,5,P)s p} = laes, ie.
(00kw) ((6a(laokp))e(0p(ka®1B)))WaeB = laeB.

In this equation is hidden the octagonal principle: with an octagonal equation, the
left-hand side is equal to

(6aeoB)cyy1,8((1aeka) e (kpelp))(waewp)

which with ‘37{,1,1, B = l(AeI)e(10 B) (an equation related to c1,; = 1y,1, mentioned
in Section 2), (6kw), (ckw), () and (1) is equal to 14, 5.

We can also prove equations that correspond exactly to (A3) and (An):

(o8) pasifigt=f pPas{fig}=g
(en) Forh:CtF AeB, {pa,h,p) gh}=nh.

For (e7n) we use (00kw). Note that, with (e), the equation (cdkw) yields also

{fPaB.gPa g} =feg.

To show all that we don’tneed —, +, T, V, L and the assumptions tied with them.
The equation last displayed permits us to give (« () and (« 7) the form they



have in [6, 1.3, p. 53, E4a, E4b]. Of course, we can analogously rewrite (— ()
and (— 7).

Next we show that 7y is a natural isomorphism from I to T, its inverse being k.
For that we need only (T) and the k equations.

Finally, we show that we can keep — and reject <; actually, it does not mat-
ter which one of the two implications we keep while rejecting the other. This fol-
lows from the fact that (s;:Bc A—B,A)* is a natural isomorphism from A — B to
B < A, itsinverse being * (¢ pca,B4). To demonstrate that, we need only (e),
closure equations, (c¢) and (cc).

So we have indeed an axiomatization of cartesian closed categories, which, given
that we also have the assumptions for V and L, amounts to an axiomatization of bi-
cartesian closed categories. We can forget in this nonstandard axiomatization about
¢+, A, T and the assumptions tied with them.

Our proof of the Modal Functional Completeness Theorem then yields an alter-
native proof of ordinary, nonmodal, functional completeness for bicartesian closed
categories. We only have to forget about 0. That means that in the statement of the
Functional Completeness Theorem we shallhave f : AeB - C and f(zelp)ol =
p,ie. f'zis f(ze1lp)a’ (cf. the Substructural Functional Completeness Theorem
in Section 6). In the definition of y, in clause (10.1) we shall have

Mo = 1404
=64

whereas in the other clauses we just delete O wherever it occurs (clause (u6) is
omitted). Then it may be checked that our new y, may be identified with K,¢ 4 of
[6, 1.2, p. 51]. For example, since

keeA(§Y) = Kzeal(ma, D) Kzea®)

the connection with clause (11) in the new definition of y,, is achieved by verifying

(1a®pz¥)by o p(Waelp) = {pa,p, ¥}

which is done with the help of an octagonal equation.

It should be clear that we also have an alternative proof of ordinary functional
completeness for cartesian and cartesian closed categories. As we have already re-
marked, from our nonstandard axiomatization of bicartesian closed categories we



obtain a nonstandard axiomatization of cartesian closed categories by rejecting the
assumptions tied with the bicartesian equations. For cartesian categories we reject
moreover the assumptions tied with the closure equations. In our nonstandard ax-
iomatization of bicartesian closed categories, the essentially nonstandard part is the
cartesian part, which is given by the operation e on objects, the object I, the ar-
rows 14, the 0§ arrows, the structural arrows b, ¢, k and w without provisos for
modalized objects, the operations composition and e on arrows, and the equations
between arrows: (cat 1), (cat 2), the e equations, the 0 equations and the b, ¢, k
and w equations.

In the same style, we can make as nonstandard the axiomatization of the part in-
volving the coproduct V and the initial object L in bicartesian categories.
Namely, we would have special arrows analogous to the o4, b and ¢ arrows in which
e isreplaced everywhere by V and I by L. Instead of k and w arrows we would have
ta: L+ Aandw) : AV AF A. We would assume for these arrows equations
analogous to the e equations, the 04 equations and the b, ¢, k and w equations.
In the equations involving w" and ¢ the order would have to be reversed and the
analogues of o and ¢ replaced by the analogues of ¢* and &° (the equations corre-
sponding to the k equations would state that L is an initial object; we have written
down these equations at the very end of Section 1).

In our nonstandard axiomatization of cartesian categories there are redundancies
among the special arrows (there are also redundancies among the equations, as we
have noted at the end of Section 2; however, (1) is not redundant now: we use
it to derive (60kw)). Actually, since the definition of p is given in terms of § and
k, the definition of p’ in terms of o and k, and the definition of the curly brackets
in terms of w, we can keep only the special arrows 14, 0,4,k and w, and define
all the others with p, p’ and the curly brackets, as this is done with the standard
axiomatization of cartesian categories. Namely, we would have

oYy =ar {ka,1a}, 0% =ar {1a,ka}

b/T,B,C =4t {{P4,Bec, pB,CPiA,BoC}) PGB,CP'A,B.C}
by ¢ =df {PA,BPA«B,C) {P)s pPAeB.C,Pen c}}
ca,B =df {Pla,p:P4,B}-

The equations behind these definitions all hold in our nonstandard axiomatization
of cartesian categories (for the first two we use (ckw) and (6kw), whereas for
the last three we use octagonal equations). Note that the last definition says that
in Gentzen’s sequent systems we can derive permutation from thinning and con-
traction, provided we are allowed to contract sequences of formulae, rather than
single formulae only. Here is a permutation obtained by two thinnings followed by



a contraction:

B,A+C
A,B,AFC
A,B,A,B+C
ABFC

To obtain cartesian categories with this reduced stock of special arrows we have
to assume (cat 1), (cat 2), (o), (0), (8), (k), (1K), (W), (ckw), (6)kw) and (od0kw).
The octagonal equations enter into this axiomatization via (¢cékw). By the way,
the ¢™ arrows have the following symmetrical definition in terms of p, p’ and the
curly brackets:

cm —
A,B,C,D —df , , , ,
{{pP4,BPAsB,CoD; pC,DpAoB,CoD}7 {PA,BPAoB,CoD’ PC,DPA.B,C.D}}-

We cannot economize similarly on o*,6*, b and ¢ arrows with the restricted,
modalized, versions of the arrows k and w in Section 2. With the definitions of
0',6',b and ¢ given above, o% and 4% would be lacking if A is not
modalized, whereas b’ g -, b} g ¢ and c4,p would be lacking if A,B and C
are not all modalized. For example, W 4, g hidden in the curly brackets of {p/ g,
Pa,B} is not available if A and B are not both modalized, whereas in Sections 2
and 3 we need c4,p even in cases where only A or only B is modalized, and simi-
larly with b arrows (the arrows % with B not necessarily modalized are involved
in the formulation of the Modal Functional Completeness Theorem).

Another axiomatization of cartesian categories may be obtained by taking the
special arrows p or p’ as primitive instead of k. With p primitive, we define k 4 as
pl,Aai‘ and Pi«\,B as pp,aca,p. A further possibility is to define 64 as p4,1 and
04 aspaicr, 4. We shall not investigate here what reshuffling of our equations this
change of primitives would require. Let us only note that in Section 2 we may have
taken p4,p as primitive instead of k 4 provided B is modalized. Still another pos-
sibility is to take the curly brackets operation on arrows as primitive instead of the
w arrows and define w4 as {14,14}. In Section 2, we would have to require that
with f : CF Aand g : C + B we have {f, g} only if C is modalized. However,
as we have explained in the previous paragraph, having p and these restricted curly
brackets primitive would not permit us to economize on b and ¢ arrows in Section
2.



5 NECESSITY OF ASSUMPTIONS FOR NLO CATEGORIES

We have seen that what we have assumed for NLO categories is sufficient to de-
monstrate modal functional completeness. We want now to address the question
whether these assumptions are also necessary. This is not a question we can an-
swer in an absolute sense, but only relatively to some presuppositions. These pre-
suppositions are contained in the particular notion of category without functional
completeness that we extend to obtain a notion of category with functional com-
pleteness, as our notion of NL category was extended to the notion of NLO cate-
gory. But, foremost, the exact form of the functional completeness theorem carries
presuppositions about what are polynomial arrows ¢ and about the type of the ar-
row f (the arrow f is of type DA e B |- C rather than B e A I C, or some other
type). Moreover, we require that a particular function from the f arrows to the ¢
arrows be onto and one—one. We shall see in the next section that we may under-
stand functional completeness in different ways by restricting the notion of poly-
nomial (still another way to restrict functional completeness is briefly mentioned
in the concluding section).

For the time being we assume we have NL categories, axiomatized as in Sec-
tion 1, and we shall try to see to what extent the additional assumptions for NLO
categories, in Section 2, are necessary for proving modal functional completeness
as this is done in Section 3. After that we shall try to see whether at least some
assumptions about NL categories in Section 1 are necessary in the same sense.

That in NLO categories we must have the special arrows r, the modalized struc-
tural arrows b, ¢, k and w, and the operation on arrows 5, follows, as explained in
[3], from the Modal Deduction Theorem and its converse, which are both conse-
quences of the Modal Functional Completeness Theorem. The Modal Deduction
Theorem says:

(O ]) For every arrow ¢ : B F C of the polynomial NLO category C[z] built
over the NLO category C withz : I - A, thereisan arrow f : DAe B+ C
of C.

Itis clear that to prove (O ) it is enough to take for f the arrow .. The converse
of the Modal Deduction Theorem says:

(O1) Forevery atrow f : 0OA e B  C of the NLO category C, there is an
arrow ¢ : B - C of the polynomial NLO category C[z] built over C with
z:IF A

It is clear that to prove (O 1) it is enough to take for ¢ the arrow f‘z. It is also



clear that though we may infer (O ) and (O 1) from the Modal Functional Com-
pleteness Theorem, this theorem does not follow from (O |) and (O 1) alone. In
(O }) and (O 1) nothing is said about y,, and ‘z, and their functional character.

Although this is something proven in [2, 3], we shall show again in more detail,
and in a way adapted to the present context, how (O |) and (O 1) deliver the special
modal arrows and the operation on arrows U of NLO categories. For that it will be
useful to have the abbreviations:

Forg:CFA— B, °g=g4 623(1,4 °g).
Forg:CkF A<+ B, ¢°=arcyp(laeg).

r) SinceinC[z] wehavez : I+ 4, by (O l) we musthave f : JAeIF Ain
C, and we take fd; 4 tobera.

b) Since in C we have
1Qaeyec” :OAe B (QAeB)eC) « C
by (O 1) we must have in C[z], where z : T+ A,
p:BF((0DAeB)e(C)«+C
and hence also ¢° : Be C I (OA e B) ¢ C. Then, by (O ), we must have in C
f:OAe(BeC)F(OAeB)eC

and we take this f to be b5, p -

Since in C we have
*(1(ae0B)ec*)omp : OB eI A = (((AeOB) ¢ C) - C)
by (O 1) we must have in C[z], where z : I+ B,
¢:1F A= ((AeOB)eC) « C)

and hence also *((°pd%)°) : C+ A = ((AeOB) ¢ C). Then, by (O |), we must
have in C

f:OBeCFA— ((AeOB)e(C)



and we take ° f tobe b’ -

Since in C we have
*1(aeB)encdnc : OC o1+ (Ae B) = ((Ae B) ¢ OC)
by (O 1) we must have in C[z], where z : I - C,
¢:1F(AeB)— ((AeB)e0C)

and hence also *(*(°pd%,5)08) : I+ B = (A — ((A e B) ¢ O0C)). Then, by
(@ 1), we must have in C

f:0CeIFB— (A— ((AeB)eOC))

and we take °°(f&5) to be b g oc- We proceed analogously for the b arrows.

¢) Since in C we have
*1Be0ab0a : OA eI+ B — (B e0A)
by (O 1) we must have in C[z], where z : I - A,
p:1F B — (BeOA)

and hence also (°pds0p)* : 1+ (B e OA) + B. Then, by (O }), we must have
inC

f:0Aell (BeOA) + B

and we take ( fJE, 4)° to be c4 op. We proceed analogously for ¢4 0.

k) Since in C[z] we have 11, by (O {) in C we musthave f : DAeIH 1. We
take fop, tobe kg,

w) Since in C we have 4, by (O 1) we must have ¢ : I+ OA in C[z], where
z : I+ A. Then in C[z] we have (p @ )} : I+ (OA e 0A), and by (O ), inC
we must have f : DA eI+ (OA e 0A). We take f55 , to be wa.

U) Since in C we have 6g 4, by (O 1) wemusthave o : I+ OAinC [x], where
z : T+ A. We take this ¢ to be z5. So we have © applying to arrows of type I - A.



We want to show that we have also & applying to arrows of type B - A where B
is any modalized object.

Since in the polynomial NLO category C[z][y] built with y : I I B over the
polynomial NLO category C[z], which was itself built over the NLO category C
withz : I+ A, we have

(xoy)o})P :IFDO(Ae B)

by (O {) we must have g : OB ¢ I - O(A e B) in C[z], and hence also
9055 :OBFDO(AeB).

Then, again by (O }), we must have in C
f:OAeOBFDO(Ae B).

We also have 1T in C.

Suppose that we have in C an arrow h : OC I A, and hence also hdpe. Then
by (O 1) we must have ¢ : I - A in C[z], where  : I - C. Hence we have ¢
in C[z], and by (O |) we must have f : OC oI  OA and f84, : OC + OA
in C. Taking f&, to be hB, we have U applying to arrows of type OC + A. To
have full U, applying to arrows of type B I A where B is any modalized object, it
remains to show that for modalized B we have in C an arrow of type B I OB, and
this we do by induction on the complexity of B, using the arrows and operations
on arrows we have already secured.

The fact that for modalized A we have an arrow of type A - 0JA, as well asr 4,
gives us the structural arrows b, ¢, k and w with the provisos involving any modal-
ized objects, as we have assumed them in Section 2, and not only boxed objects, as
we have inferred them above.

Now we shall justify to a certain extent the equations of Section 2. In this justifi-
cation we presuppose the equations (b), (bb), (¢), (cc), (k) and (w); i.e., we presup-
pose that the b and ¢ arrows are natural isomorphisms and that the k and w arrows
are natural transformations. We also presuppose the equation (=), which is of the
same sort as (b), (c), (k) and (w). Proof- theoretically, it amounts to permuting the
rule U with cut. We presuppose that modalized objects A are isomorphic with 0 A;
i.e., for modalized A we presuppose the equations

ral9 =14 1%ra=104.



These equations are of the same sort as (bb) and (cc). They amount to the conver-
sion of some detours in proofs. Furthermore, we presuppose that the definitions of
‘c and p, are given and that p, satisfies also clauses (pl.1),(u1.2),
(#2.1) and (2.2). Finally, we presuppose Lemmata 1-3, i.e. that y,, is a function
and that it is the inverse of ‘. Our derivation of the remaining equations of Section
2 from modal functional completeness will depend on all these presuppositions.

In some cases our derivation will fall short of obtaining the required equation in
full generality in which it holds. This will happen with the pentagonal equations,
the hexagonal equations, the triangular equation (¢db) and the equation (oéc¢). For
them we shall push our derivation only up to instances of these equations where
particular indices are modalized. We shall indicate at what places other instances
are required, if such is the case.

First we derive (O8). As aconsequence of Lemma 2 (see case (0.1) in the proof)
we have

(OBz) raz® =z
Then for f : B + A with B modalized and y : I - B we have

rafPy =ra(fy)", with (O)

£4fCy = fy, with (OBz)

ty(rafPy) = py(fy), by Lemma 1
rafPrpdop = frydop, with (ul1.1) and (u0.1)

which with (66%) and rp18 = 15 yields (O0B). The equation (O0n) amounts to ()
and l'i’r A = 1ga, which we have presupposed.

Next we justify the pentagonal equations. From Lemma 1 and from the equation
(b), more precisely (by), it follows that we must have

Hz(((¥ @ 1¢) ® 1p)bE ¢ p) = te(bE,c,p(¥ * (1c ® 1p)))

which by using (p1.1), (21.2), (42.2) and (b) gives

((ne @ 1c) @ 1p) (b4 5.c ® 1D)bT 4, pec,p(lDa * bE o p) =
((us¥ @ 1c) # 1D)bg4.5.0,0PT 4, 8,000

Then we substitute 15 4, 5‘x for ¢ and, by Lemma 3, obtain the pentagonal equa-
tion (b5) with A boxed. Since a modalized object A is isomorphic with A, we



have the pentagonal equation (b5) for modalized A, too. This is not the full pen-
tagonal equation (b5), because, in the full one, A need not be modalized provided
two objects among B, C and D are modalized. Other forms of pentagonal equa-
tions, not covered by (b5) with A modalized, are involved in the proof of Lemma
1 when we derive the equations obtained by prefixing y, to the two sides of (ba)
and (bg), instead of (b;) as above.

At this place we can make the following remark. By going carefully over our
proof of the Modal Functional Completeness Theorem, one finds that we never
need the arrows by’ - and by g  where C' is modalized, but only where A or
B is modalized, except when in the proof of Lemma 1 we derive the equation ob-
tained by prefixing u, to the two sides of (bz). This has to do with the fact that
Wz is taken to be of type DA e B |- C, rather than BeOA F C. We might as well
have defined an analogous p,. ¢ of this other type. Then for the first index of the b
arrows and the equation’(b; ) we would have the same thing that we have now for
the third index and (bz). However, with our definition of y., we could not exclude
the b arrows in which only the object in the third index is modalized because these
are definable as follows in terms of ¢ arrows and the remaining b arrows:

bZ B,c =dtf €c,4eBbC 4,8(ca,c *18)bY ¢ B(la®cBC)

where only C is modalized. The equation installed by this definition is a hexagonal
equation.

Next we justify the hexagonal equations. From Lemma 1 and the equation (c),
more precisely (c;), it follows that we must have

pz((¥ @ 1c)ec,B) = pa(ce,p(lc @ ¥))

which by using (1.1), (11.2), (12.1), (#2.2) and (c) gives

(Hatp o ]'C)baA,B,C(IDA ecc,B)= (Mo 1C)CC,DAoBbaDA,B(CDA,C M
1B)b6A,C,B'

Then we substitute 144, 5‘z for ¢ and, by Lemma 3, obtain a hexagonal equa-
tion. The same hexagonal equation is induced by prefixing p, to the two sides of
(c2). As before, O A can be replaced by modalized A. This doesn’t yet amount to
the full hexagonal equation (bc6), because, there, A need not be modalized if C
is (it is not enough that only B be modalized). A hexagonal equation where only
C is modalized is involved in the proof of Lemma 1 when we derive the equation
obtained by prefixing . to the two sides of (b3). Such an equation is also installed
by the definition of b}’ g  where only C is modalized, which we gave in the pre-
ceding paragraph.



To derive the octagonal equations it is enough to consider the case with (w) in
the proof of Lemma 1 and proceed as for the pentagonal and hexagonal equations.
The octagonal equations are completely justified by that (unlike the pentagonal and
hexagonal equations, whose justification we have pushed only up to a point).

Let us now justify the triangular equations and (0dc). As a consequence of
Lemma 2 we have that

bz (Y o 1g) 'z = (u-9'z) @ 1

which, by substituting 154, p‘z for ¢, and by using (12.2) and Lemma 3, reduces
to

bg p, E(x hd 1DoE)0D.E =((z9 o 1p)op) e lg
(25 0 1p) @ 15)bip gober = (= @ 1p) ® 1£)(0% @ 15), with (b) and (s).

By prefixing u, to the two sides of the last equation, as Lemma 1 allows, with
(£1.2), (12.2), (u6), (10.1) and (On) we obtain -

(((bga ® 1D)l”l:m I, p)*® 1E)bEIA IeD, g(loae (bl D, E9DeE)) =
(((bga e lD)bDA I, D) o IE)bI:IA IeD, E(IEIA . (UD o 1g)).

With (66¢), (bb) and (e) this reduces to.
1ga ® (bip,e0ber) = loa ® (o) * 15)

from which, by taking A to be I and by using (e) and r{1g;1Y = 15, we obtain
11 e (be,EaiDoE) =110 (0h e 1E).

By prefixing 0(1. p)e £ to both sides, with (o) and (c0*) we derive the triangular
equation

(o'b) be,EUfJ.E =ohelg

which, with (o0*) and (e), amounts to (¢b). (The triangular equation (db), in
which, however, A is modalized, is derivable by prefixing p. to the two sides of

(6).)



As a consequence of Lemma 2 we also have
kz(1p @ ¥)'z = 1g o (u:9'z)

which, by substituting 1o, p*z for 9, and by using (12.1) and Lemma 3, reduces
to
bg o1, p(conLe @ lp)bal'E,D(a:D . lE.D)O":E.D =1ge ((:::l:I e1p)oh) ‘
(15 ¢ (z7 o 1p))bg 1, p(cLE ® 10)biE,p0kep = (15 @ (z° 0 1p))(1£ 0 o)),
with (b), (c), and (e).

By prefixing p to both sides and proceeding as in the last paragraph, with (o*b)
and (e) we obtain

b1 p((cLEok) e 1p) =1 e o
which, with (ga*), (bb), (cc) and (e), amounts to

(ocob) ((cece1) e 1p)bE 1 p=1ge0D.

This would be the triangular equation (odb) if we had ogcg 1 = O, i.e. (0dc).

Now, let us see what we can do for (¢dc). From Lemma 3 (see the proof of the
lemma) we can derive

(JI:IE ° lD)baE,I,D =1pngeop
dng  1p = (opgcnE,1) ® 1p, with (ocob) and (bb).

By taking D to be I and prefixing g to both sides, with (&) and (66°) we obtain

dnE = opecoE-

So, we have (odc) for modalized A.

In our proof of modal functional completeness, we actually dont need (o6b) and
(odc) except when A is modalized, provided we have assumed other triangular and
pseudotriangular equations, like (ob) and (¢cab). However, such a reduced stock
of triangular and pseudotriangular equations works only because we have taken
1z to be of type 0A @ B | C, rather than B ¢ JA | C. With this other type we
would need other equations. (With the first type, o is preponderant over §; with the



second, it is the other way round.) Our tidier, more symmetric, axiomatization of
NLO categories, in which (6b) and (odc) hold for nonmodalized A too, is insen-
sitive to this change of type for .. It works equally well with either type. This
slight generalization has repercussions on the underlying nonmodal part of NLO
categories, i.e. the NL part, because ¢ and 4, which were not linked in it, are now
linked through ¢. Formerly independent assumptions for o and 4 can now be de-
rived from each other, as we noted in Section 2.

To derive (1k), we have as a consequence of Lemma 2 (see case (0.2) in the
proof)

Lior(kpa o 11)(zP e I)of = 1;

and then we use (0'6), (8), (co*) and (k).

It remains to derive (adw), (bw), (cw), (ckw) and (6kw). We derive (cdw)
from the case we have considered in the induction step of the proof of Lemma 2
(case (1)), together with equations we already have, in particular (¢b), which we
have derived in full generality. We derive (bw) by prefixing u, to the two sides
of (cat 2) and using equations we already have, in particular a pentagonal equation
with A modalized (see the proof of Lemma 1). Similarly, we derive (cw) by pre-
fixing p. to the two sides of (ebifunctor) and using equations we already have, in
particular pentagonal and hexagonal equations with A modalized. Finally, to de-
rive (ckw), take 19 to be 1g441°c and h to be 1y 441 in the last equation displayed
in our derivation of (11.1) in Section 3, so as to obtain

(ooalkna e lga)woa) e li=1pag e 11

Then we prefix 4 to the two sides of this equation; with (§) and (§6%) this gives
(ckw). (We could as well have taken 1) to be 0 4 ‘). For (0kw) we proceed anal-
ogously using the last equation displayed in the derivation of (11.2). Note that we
already have all the equations used in the derivations of (11.1) and (x1.2) up to
the last displayed equations; in particular, we have (¢b) and (¢6b) with A modal-
ized. (We use (ckw) and (6kw) also in the derivation of (x2.1) and (u2.2) from
(42).) With these derivations, (1k), (cdw), (bw), (cw), (ckw) and (6kw) are
completely justified, and we have accomplished our partial justification of the as-
sumptions made for NL[J categories in Section 2.

Can we justify in a similar manner the assumptions of Section 1? The exist-
ence of an operation e on objects and arrows follows from the formulation of the
Modal Functional Completeness Theorem. That there is a functor behind these op-
erations is something we have to presuppose, as we presupposed about the struc-



tural arrows that they are natural isomorphisms or natural transformations (proof-
theoretically, the equation (o) amounts to permuting the rule e with cut). The as-
sumptions concerning e can be understood as structural assumptions, too. Such are
also the assumptions about the arrows 14 and composition. (The equations (cat 1)
imply that the arrows 1 4 are natural isomorphisms from the identity functor to the
identity functor; proof-theoretically, these equations amount to eliminating some
cuts, whereas (cat 2) amounts to permuting cut with itself.)

Since they involve the modalized object I, and are related to structural rules, the
o6 arrows might be understood as modal structural arrows, on a par with b, ¢, k and
w arrows. So, perhaps the assumptions concerning oé arrows could be shifted to
Section 2, and would need to be justified as much as the modal assumptions of that
section. (We put, however, 04 arrows in Section 1 because they don’t involve 0O,
and because I makes sense in the absence of [J, too.) The arrows ¢ are needed for
the definition of the function ‘z (they are in the formulation of the Modal Functional
Completeness Theorem), whereas o and § arrows are needed for the definition of
¢ the first for (120.2) and the second for (40.1). The §° arrows are not absolutely
needed (as we have remarked above, ¢ is preponderant over 4), but this is only be-
cause we take p,p to be of type JA ¢ B - C, rather than B ¢ JA  C. The
equations (o) and (8) are comparable to (b), (c), (k) and (w), whereas (o0*) and
(66%) are comparable to (bb) and (cc). They have the same proof-theoretical im-
port. We presuppose these 0 equations as we presupposed the corresponding b,
¢, k and w equations earlier in this section.

We can, however, derive (04) from modal functional completeness. As a con-
sequence of Lemma 2 (see case (0.1) in the proof) we have

rIJDI(:L‘D [ 11)0{ =T

rizP610f = z, with (6)

pe (r12B010%) = pyz, by Lemma 1

ri(riéon) " (1oy @ (610§)) = riday, with (p1.1), (41.2), (46) and (10.1)
éo1(1oy @ (810)) = &, with 10r; = 1gp and (F)

which, with (66%), (¢), r11g1F = 11, (0) and (oc?) yields (06). (Note that we
.have used (0d) in the justification of (O8); here we dont use ((JB), but only the
isomorphism between I and O1.)

The assumptions concerning —, <, A, T,V and L are obviously independent
from modal functional completeness. Note, however, that we wouldn’t have func-
tional completeness with V if we didnt have —, or without a primitive distribution
arrow d (with p, ¢ of type Be[JA |- C instead of JA e B - C, we would need «+,
or a distribution arrow of type (EV F) e G (E ¢ G) V (F ¢ G)). A related fact
(about which we heard from Djordje Cubric) is that a bicartesian category is func-



tionally complete in the ordinary sense if and only if it is distributive; in that case
A, usually written X, plays the role of e for formulating functional completeness.

To conclude this section, let us note that for a weakened form of modal func-
tional completeness where we would be happy with asserting that ‘z is onto, with-
out necessarily being one—one, we would need far less assumptions for our cate-
gories. In the justification above we could appeal only to Lemma 2, and for proving
this lemma we dont need l'ﬂr 4 = 104, the pentagonal, hexagonal and octagonal
equations, (bw), (cw), (ckw) and (dkw).

6 SUBSTRUCTURAL FUNCTIONAL COMPLETENESS

Let us now take NL deductive systems with the unary operations on arrows De_and
—e D primitive instead of the binary operation on arrows _e _, and let us consider the
following hierarchy of nonmodal deductive systems, obtained by assuming, in ad-
dition to what we have for NL deductive systems, the structural arrows mentioned
in parentheses without provisos concerning modalized objects:

AL deductive systems (b arrows)

M deductive systems (b and c arrows)
BCK deductive systems (b, ¢ and k arrows)
R deductive systems (b, ¢ and w arrows)

H deductive systems (b, c, k and w arrows).

For easier comparison, we use the labels introduced in [3]. The label ‘AL’ stands
for ‘associative Lambek’, ‘M’ for ‘multiset’ (in the light of latter-day developments,
it would be more intelligible if we called these systems linear—more precisely, in-
tuitionistic linear), ‘R’ for ‘relevant’ (intuitionistic and without distribution of A
over V) and ‘H’ for ‘Heyting’. The label ‘BCK’ is pretty standard (the linear logic
trade has recently produced some ersatz names for BCK systems; the BCK systems
we consider here are of an intuitionistic sort).

Let us write S for NL, AL, M, BCK, R or H (the variable ‘S’ stands for ‘sub-
structural’) and let S categories be S deductive systems that are NL categories and
satisfy moreover the equations between arrows of Section 2, which, of course, ap-
ply only if the arrows in question are present in the deductive system. So, AL cat-
egories must satisfy b equations, M categories b and ¢ equations, BCK categories
b, ¢ and k equations, R categories b, ¢ and w equations except (ckw) and (6kw),
and H categories all the b, ¢, k and w equations.



For all S categories except NL and AL categories, we have that A — B is nat-
urally isomorphic to B + A, as in Section 4. However, for none except H cate-
gories, which are the bicartesian closed categories of Section 4, we need have that
A e B is isomorphic to A A B. Only for BCK and H categories I must be naturally
isomorphic to T. The AL categories are monoidal biclosed with respect to e, I, —
and +, and M categories are symmetric monoidal closed with respect to e,I and
—. However, they are all also bicartesian with respect to A and V, their terminal
object being T and their initial object L.

We can extend the axiomatization of S categories to the axiomatization of the
corresponding SO categories as we extended the axiomatization of NL categories
to the axiomatization of NLO categories: we just add the missing modal assump-
tions from Section 2. For example, the axiomatization of M categories is extended
to the axiomatization of MO categories by adding the operation on objects 0, the
r arrows, the operation on arrows U and the modal structural arrows ks and wy,
with the proviso for modalized A, together with the (J, k and w equations (the b
and c¢ equations are already assumed for the unrestricted structural arrows of M
categories). The MO categories correspond to intuitionistic modal linear propo-
sitional logic. For them we can prove modal functional completeness as we did
for NLO categories, and similarly- with other SO categories. For HOJ categories
we have to add just the r arrows, the operation on arrows 5 and the O equations,
which gives categories corresponding to intuitionistic S4 propositional logic. For
these categories we can prove modal functional completeness, but ordinary, non-
modal, functional completeness fails, though we have it for H categories, as shown
in Section 4 (otherwise we would always have arrows of type A F OA in HO cat-
egories). We can also infer the necessity of assumptions for our modal categories
as we did in Section 5.

We want now to state a general functional completeness theorem, which as a spe-
cial case covers ordinary functional completeness for H categories, i.e. bicartesian
closed categories, and in other cases yields restricted functional completeness for
other S categories. To state this theorem we need special notions of polynomials in
polynomial categories, which we proceed to define.

Given an S category C, we build the polynomial S category C[z] withz : I+ A
as before. This we can always do because, for every S, the S categories are equa-
tionally presented. If all arrows of C[z] are called polynomials, then our notion of
polynomial satisfies the following clauses (parallel with the inductive clauses for
W in Section 3):

(P0.1) The arrow z is a polynomial.

(P0.2) Evéry arrow of C is a polynomial.



(P1) If¢Y:DF Eandf: E I F are polynomials, then {7 is a polynomial.

(P1.1) Ifv: D Eisapolynomialand h : E - F' is an arrow of C, then hi is
a polynomial.

(P1.2) If h: DF Eisanarrow of Cand £ : E | F is a polynomial, then &h is a
polynomial.

(P2.1) If 4 is a polynomial, then E e 9 is a polynomial.

(P2.2) If ¢ is a polynomial, then ¢ e E is a polynomial.

(P3.1) If¢: Ee D} F is apolynomial, then *1 is a polynomial.

(P3.2) If4: D e EF F is apolynomial, then 3* is a polynomial.

(P4) Ify:DF Eand€: Dt F are polynomials, then (1, £) is a polynomial.
(P5) IfYy: EF Dand€: FF D are polynomials, then [1, €] is a polynomial.

Clauses (P1.1) and (P1.2) are redundant in the presence of (P0.2) and (P1), but
we have listed them nevertheless because we need them for the inductive definitions
of restricted notions of polynomials. These notion are obtained by assuming the
clauses mentioned in parentheses:

M polynomial (all clauses save (P0.2) and (P1))
BCK polynomial (all clauses save (P1))

R polynomial (all clauses save (P0.2))

H polynomial (all clauses)

(NL and AL polynomials will be considered below). Of course, H polynomials are
not restricted: they coincide with all the arrows of C[z]. (As we have just noted
above, we may omit clauses (P1.1) and (P1.2) from their definition.) However, the
other notions of polynomial reject some arrows of C[z].

Before looking into that, let us make a point concerning the nature of the arrow
z in C[z]. This arrow must be new to C (otherwise, with NLO categories we would
need the equation 5k, = 14 to make (10.1) and (10.2) match; with H cat-
egories we would need k4 = 14, which doesn’t hold necessarily in cartesian
categories). However, nothing prevents us from introducing a new arrow z of type
I F I, which in the course of constructing C[z] will be identified with 11 for some
categories (in NLO categories we have llukgl = 1 because kp = ry; in BCK
and H categories, and NLO categories as well, we have k; = 1j). So, in some S
categories, an arrow of C[z] may qualify as a polynomial on more than one ground:



in BCK, and hence also H, categories z : I I- I will be a polynomial both by (P0.1)
and (P0.2).

It can easily be checked that if we exclude the operations on arrows mentioned
in clauses (P4) and (P5), an M polynomial is an arrow of C[z] in whose construction
z occurs exactly once, a BCK polynomial an arrow of C[z] in whose construction =
occurs at most once, and an R polynomial an arrow of C[z] in whose construction
x occurs at least once.

Note that for R and H polynomials we obtain as a derived clause:
(P2) 1If ¢ and £ are polynomials, then 1 e £ is a polynomial.

This is because 1 o £ is equal by definition to (1) e E)(F ¢ £) in all S categories (we
have taken the unary operations on arrows D e _and _ e D as primitive), and the
arrow (1) @ E)(F e £) is an R polynomial by (P2.1), (P2.2) and (P1). Since we lack
(P1) for M and BCK polynomials, we shall also lack (P2). This is parallel with the
fact that if we replace clause (12) by (12.1) and (12.2), the w arrows enter into the
definition of p, only via clause (u1). The k arrows enter into this definition only
via clause (10.2).

Let now the function ‘z be defined as it was defined in Section 4:
Forz:I+Aandf: Ae BFC, f'z=4 f(zelp)ok.
For p, as in Section 4, we replace clause (10.1) by
Mo =04

and assume (p1.1), (p1.2), (12.1), (12.2), (u3.1), (43.2), (44) and (u5) with O
deleted everywhere. Clause (1:0.2) with O deleted will be assumed only in the pres-
ence of k arrows, which in the present context means only for S being BCK or H.
Similarly, clause (1) with O deleted will be assumed only in the presence of b
and w arrows, which in the present context means only for S being R or H. When
we refer to the p clauses from now on, we assume these are the newly introduced,
nonmodal, clauses. If S is R, clause (1) is independent from (x1.1) and (u1.2),
because arrows of C dont qualify as polynomials. If S is H, we have to show this
clause is compatible with (p1.1), (1.2) and (10.2); this we do by deriving (x1.1)
and (p1.2) from (1) and (u0.2), quite analogously to what we did in Section 3.
Since D o _and _e D are primitive, instead of _e _, we shall have clause (u2) with
O deleted only as a derived clause when b, ¢ and w arrows are present, and, again,
this will happen only for S being R or H. That (12) can actually replace (u2.1)



and (u2.2) will be the case only for H (we use (10.2), (ckw) and (6kw) to derive
(12.1) and (p2.2) from (p2)).

We can now state our general functional completeness theorem:

Substructural Functional Completeness Theorem If S is M, BCK, R or H, then
for every S polynomial ¢ : B I C of the polynomial S category C[z] built over the
S category C with z : I - A, there is a unique arrow f : A @ B I C of C such that
f(z e 1p)o%y = ¢ holds in C[z].

In other words, the function ‘z is an onto and one—one function from the arrows
f:AeBF CofC tothe S polynomials of C[z].

We can prove this theorem by a straightforward adaptation of the argument in
Section 3. For example, for M categories, we have to check that for an M polyno-
mial ¢ the k and w arrows are not involved in p;¢, and that Lemmata 1-3 can be
demonstrated for M polynomials ¢ and %, and M categories C. For other S cate-
gories covered by the theorem, we similarly have to check that for an S polynomial
( the structural arrows rejected in S categories are not involved in g ¢, and that
the proofs of Lemmata 1-3 work.

In analogy with the demonstration of necessity of Section 5, we can show that
structural arrows and equations we have assumed for them are necessary. This is
now simpler than in Section 5, since the complications involving modalized objects
are eschewed. In particular, we can completely justify pentagonal, hexagonal and
triangular equations.

In [3], our restrictions concerning polynomials are matched by restrictions con-
cerning structural rules in the deductive metalogic, and it is demonstrated that if the
metalogic is appropriately restricted, BCK logic is minimal in the presence of A for
proving the deduction theorem and its converse. The discrepancy between that and
the Substructural Functional Completeness Theorem, which covers also M and R,
is explained by the fact that [3] always allows the polynomials (%, h) and (h, )
where 9 is a polynomial of C[z] and h an arrow of C. Here, we allow that for BCK
and H polynomials, but not for M and R polynomials.

The Substructural Functional Completeness Theorem does not cover NL and AL
categories. The corresponding notions of polynomial should presumably be

NL polynomial (all clauses save (P0.2), (P1), (P2.1), (P2.2), (P3.1)
and (P3.2))
AL polynomial  (all clauses save (P0.2), (P1), (P2.1) and (P3.1))



because, without (12), the b arrows enter into the definition of y, via clauses
(1), (p2.1), (42.2), (p3.1) and (u3.2), and the ¢ arrows via clauses (u2.1) and
(u3.1). Iffor ¢ : B + C, the arrow pgp were redefined so as to be of type
Be A} Cinstead of A e B |- C, then for AL polynomials we would reject (P2.2)
and (P3.2) instead of (P2.1) and (P3.1). With NL and AL polynomials we shall run
into trouble in the proof of Lemma 1, because, for example, the NL and AL poly-
nomial zoy is equal to o 4(I @ z), by (0), and p;(ca(I @ 2)) is, by (u1.1), (u2.1)
and (10.1), equal to

oca(Ieda)bi 4 (carel)by

which involves both b and ¢ arrows. The problem is that for S being NL or AL,
the class of S polynomials considered as arrows in an S deductive system is not
closed under equality of arrows in S categories (since we lack (P2.1), the arrow
o A(Ie z) is neither an NL nor an AL polynomial), whereas for S being M, BCK, R
or H, this is the case. The proof of Lemma 3, too, does not work for NL categories,
because of an essential use of b arrows: f‘z is not an NL polynomial. However,
the proof of Lemma 2 works, and we can demonstrate a weakened version of the
Substructural Functional Completeness Theorem with NL or AL substituted for S
if we dont require that f be unique; i.e. ‘z is onto, but not necessarily one—one.

7 CONCLUSION

We conclude this paper by brief indications about matters related to our results that
we intend to treat in the future.

There is another way of restricting functional completeness, different from the
way of the Substructural Functional Completeness Theorem. We may redefine y,
so that for an arbitrary polynomial ¢ : B - C (i.e. an H polynomial), the arrow p,. ¢
is not necessarily of type Ae B I~ C (nor Be A I C), but of some type B[A] - C,
where B[A] is obtained from B by replacing factors D of Bby Ae Dor D e A,
there are as many A’s in B[A] as there are z’s in ¢, and these A’s are distributed in
BJ[A] in a way matching the distribution of z’s in ¢. This distribution requirement
becomes unnecessary in the presence of b and ¢ arrows, whereas there can be more
A’s in B[A] than z’s in ¢ in the presence of k arrows, and less in the presence
of w arrows. With such a 1, we may also be able to prove restricted functional
completeness for various S categories.

Next, as functional completeness for cartesian closed categories enables us to
extract systems of typed lambda terms as the internal languages of these categories,
so modal functional completeness should lead to a kind of system of lambda terms



with modalized types, such a system being the internal language of an SO category.
On the other hand, the restricted functional completeness of Section 6 leads to sys-
tems of typed lambda terms with restricted functional abstraction (for example, we
may bind with a lambda operator exactly one variable, or not more than one, or at
least one).

At the end of [3] it is supposed that freely extending a nonmodal S category to
an SO category might result in the former being a full subcategory of the latter. We
suppose this could be demonstrated by a normalization technique, perhaps inspired
by Gentzen’s methods, or lambda conversion.

Another matter we will try to consider is the relationship between functional
completeness and coherence. It is remarkable that assumptions about categories
that Mac Lane needed to prove coherence for monoidal and symmetric monoidal
categories should reappear as necessary for proving functional completeness. We
conjecture that some sort of equivalence between coherence and functional com-
pleteness could be established. The reason for this equivalence should be that in
functional completeness we transform a polynomial ¢ : B F C into p,¢ :
A e B | C irrespectively of where x occurs in ¢. This requires that certain di-
agrams whose nodes are obtained from B by replacing factors D of B by Ae D of
D o A should commute. And the commuting of these diagrams should be sufficient
for functional completeness.
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NOTE ADDED IN PRINT

The proof of Lemma 1 is incomplete as it stands, because it is not necessarily the
case, as claimed in the second paragraph of that proof, that if ¢ and ¢ are arrows
of C and ¢ = 9 holds in C{z}, then ¢ = 9 holds in C. When this is not the case,
the proof should be phrased as the corresponding part of the proof of Proposition
6.1 in [6, chapter 1.6]. The calculations of the proof of Lemma 1 are sufficient for
this rephrasing.

In the comments about the bijection ‘z one should bear in mind that if JA e _
is not one-one on objects, the bijection is only local; i.e., it exists only between the
arrows f : JA e B I C and the polynomials ¢ : B  C for B given in advance
(and the same with A e _instead of [JA e ).
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