

TWO NOTES ON THE FOUNDATIONS OF THERMODYNAMICS: OBJECTIVITY OF ENTROPY AND THE ORIGIN OF GIANT FLUCTUATIONS

Juan M. R. Parrondo

Dept. Estructura de la Materia, Física Térmica y Electrónica and GISC,
Universidad Complutense de Madrid, Madrid, Spain

ABSTRACT

The standard formulations of statistical mechanics and the explanations of irreversibility rely on the way we describe physical systems. They use concepts such as coarse-graining, macroscopic states, and probabilistic states that depend on the observables we measure, the precision with which we measure them, or the information we have about the microstate of a system. Some of these elements of arbitrariness can be removed from the formulation of statistical mechanics using an observable-dependent entropy that was already used by Einstein in his studies of fluctuations [1]. The observable-dependent entropy, together with the ergodic hypothesis, characterizes the irreversible behavior of specific observables, both micro- or macroscopic [2]. On the other hand, equilibrium and the entropy of a system cannot be defined without choosing the observables used to describe its state, and this choice seems to involve an unavoidable arbitrariness. Finally, we present a new mechanism for the origin of states with low entropy based on symmetry-breaking transitions [2,3]. This mechanism replaces the controversial "past hypothesis" [4], namely, the assumption that the universe started in a low-entropy state, with the simpler scenario of an environment with decreasing temperature.

REFERENCES

- [1] A. Einstein, *Theorie der opaleszenz von homogenen flüssigkeiten und flüssigkeitsgemischen in der Nähe des kritischen Zustandes*, Annalen der Physik 338, 1275–1298 (1910).
- [2] J.M.R. Parrondo, *Two notes on the foundations of thermodynamics: Objectivity of entropy and the origin of giant fluctuations*, <https://youtu.be/1RcyCrRZp5I>
- [3] E Roldán, I. A. Martínez, J. M. R. Parrondo, and D. Petrov, *Universal features in the energetics of symmetry breaking*, Nature Physics 10, 457–461 (2014).
- [4] J. Earman, *The "Past Hypothesis": Not even false*, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37, 399–430 (2006).