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Some Fundamental Definitions

In this talk, we report some bounds for the normalized Laplacian
energy and Randić energy of a connected (bipartite) graph. Firstly,
we give some fundamental definitions which are used in our results.

Let G be undirected and simple graph with |V (G )| = n vertices
and |E (G )| = m edges. Furthermore, for i = 1, 2, · · · , n, the
degree of a vertex vi in V (G ) will be denoted by di .

If any vertices vi and vj are adjacent, then we use the notation
vi∼vj .

Ayşe Dilek Maden On the Normalized Laplacian Energy(Randić Energy)
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Ayşe Dilek Maden On the Normalized Laplacian Energy(Randić Energy)
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Some Fundamental Definitions

It is known that we also have the Laplacian matrix related to the
adjacency and diagonal matrices. In fact, for a diagonal matrix
D(G ) whose (i , i)-entry is di , the Laplacian matrix L(G ) of G is
defined as L(G ) = D(G )−A(G ). Since A(G ) and L(G ) are all real
symmetric matrices, their eigenvalues are real numbers. So we
assume that

λ1(G ) ≥ λ2(G ) ≥ · · · ≥ λn−1(G ) ≥ λn(G )

(µ1(G ) ≥ µ2(G ) ≥ · · · ≥ µn−1(G ) ≥ µn(G ))

are the adjaceny (Laplacian) eigenvalues of G .
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Some Fundamental Definitions

Because the graph G is assumed to be connected, it has no isolated
vertices and therefore the matrix D(G )−1/2 is well defined. Then

L∗ = L∗(G ) = D(G )−1/2L(G )D(G )−1/2

is called the normalized Laplacian matrix of the graph G . Its
eigenvalues are

ρ1(G ) ≥ ρ2(G ) ≥ · · · ≥ ρn−1(G ) ≥ ρn(G ).
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It is convenient to write the normalized Laplacian matrix as In − R,
where R is the so-called Randić matrix , whose (i , j)-entry is

rij =

{
1√
didj

, if vi∼vj

0 , otherwise

[ Maden et al.-2010 ]

The Randić eigenvalues q1(G ), q2(G ),..., qn(G ) of the graph G are
the eigenvalues of its Randić matrix. Since R is real symmetric
matrix, its eigenvalues are real number. So we can order them so
that

q1(G ) ≥ q2(G ) ≥ · · · ≥ qn(G ).
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Some Fundamental Definitions

M-energy of G is

EM(G ) =
n∑

i=1

∣∣∣∣λi (M)− tr(M)

n

∣∣∣∣,
where tr(M) is the trace of M. The energy of a graph was
introduced by Gutman in 1978 as

E (G ) =
n∑

i=1

|λi (G )|.

Recently, the adjacency enery, Laplacian energy, Randić energy and
normalized Laplacian energy of a graph has received much interest.
Along the some lines, the energy of more general matrices and
sequences has been studied.
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Some Fundamental Definitions
Preliminary Results

Main Results
References

Some Fundamental Definitions

Using the above equality with M taken to be L∗, the normalized
Laplacian energy and Randić energy of a graph G is

EL ∗ (G ) =
n∑

i=1

|ρi − 1|andER(G ) =
n∑

i=1

|qi |,

respectively. Since L∗ = In − R, it easy to see that this is
equivalent to

EL ∗ (G ) =
n∑

i=1

|qi | = ER(G ).

In the literature, some basic properties of EL ∗ (G ) may be found.
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Some Fundamental Definitions
Preliminary Results

Main Results
References

Some Fundamental Definitions

Now, recall that the Randić index of a graph G is defined as

Rα = Rα(G ) =
∑
vi∼vj

(didj)
α,

where the summation is over all edges vivj in G , and α 6= 0 is a
fixed real number.

The general Randić index when α = −1 is

R−1 = R−1(G ) =
∑
vi∼vj

1

didj
,
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Preliminary Results

Now, we recall some results from spectral graph theory and state a
few analytical spectral inequalities for our work.

Lemma (2.2)

[ F. Chung -1997 ] Let the normalized Laplacian eigenvalues of G
be given as

ρ1 ≥ ρ2 ≥ · · · ≥ ρn = 0.

Then
0 ≤ ρi ≤ 2.

Morover ρ1 = 2 if and only if G has a connected bipartite
nontrivial component.
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Preliminary Results

Lemma (2.3)

[ P. Zumstein -2005 ] Let G be a graph with n vertices and
normalized Laplacian matrix L∗ without isolated vertices. Then

n∑
i=1

ρi = n

and
n∑

i=1

ρi
2 = n + 2R−1.
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Preliminary Results

Lemma (2.4)

[ L. Shi -2009 ] Let G be a graph of order n with no isolated
vertices. Suppose that G has minimum verwerte degree equal to
dmin and maximum vertex degree equal to dmax . Then

n

2dmax
≤ R−1 ≤

n

2dmin

Equality occurs in both bounds if and only if G is a regular graph.
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Main Results

After all above materials, we are ready to present our main results.
The following results are also valid for Randić energy.
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Main Results

Theorem (3.1)

Let G be undirected , simple and connected graph with n,n ≥ 3
vertices . Then

1 +

√
2R−1 + (n − 1)(n − 2)∆

2
n−1 ≤ EL∗(G ) = ER(G )

≤ 1 +

√
(n − 2)(2R−1 − 1) + (n − 1)∆

2
n−1 (1)

where ∆ = det(In − L∗).
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Main Results

Remark

In [ Hakimi-Nezhaad et al.-2014 ], Hakimi-Nezhaad et al. obtained
the following lower bound for the normalized Laplacian energy :

EL∗(G ) ≥ 1 +

√
n

dmax
− 1 + 2

(
n − 1

2

)
∆

2
n−1 . (2)

From Lemma (2.4), the lower bound (1) is better than (2).
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Main Results

Considering Lemma (2.4) and the inequality (1), we arrive at the
following result.

Corollary

Let G be a graph of order n with no isolated vertices. Suppose
that G has minimum vertex degree equal to dmin and maximum
vertex degree equal to dmax . Then

1 +

√
n

dmax
− 1 + (n − 1)(n − 2)∆

2
n−1 ≤ EL∗(G ) = ER(G )

≤ 1 +

√
(n − 2)

(
n

dmin
− 1

)
+ (n − 1)∆

2
n−1 (3)

where ∆ = det(In − L∗).
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Main Results

Remark

It can be easily to see that the bound (1) is better than all results

which was obtained for EL∗(G ) in [ Gutman et al. -2015 ] and

[ Cavers et al.-2010 ] on many examples.

We consider the graph G = (V ,E ) with vertex set
V = {v1, v2, v3, v4} and the edge set E = {v1v2, v2v3, v1v3, v3v4}.
For this graph, EL∗(G ) = 2.4574. While the bound (1) gives

EL∗(G ) ≥ 2.406, the lower bounds in [ Gutman et al. -2015, (3.8) ]

and [ Cavers et al.-2010, Theorem 16 ] give EL∗(G ) ≥ 1 and
EL∗(G ) ≥ 2.3016, respectively. Similarly, while the upper bound
(1) gives EL∗(G ) ≤ 2.59, the upper bound in

[ Cavers et al.-2010, Lemma 1 ] gives EL∗(G ) ≤ 2.708.
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Main Results

If G has k connected components, in particular, G1,G2, ...,Gk , then

EL∗(G ) =
k∑

i=1

EL∗(Gi )

Now, we present a bound on the normalized Laplacian energy of a
graph with k connected components.
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Theorem (3.2)

Let G be a graph of order n with k connected components and no
isolated vertices. Then

k +

√
2R−1 − k + (n − k − 1)(n − k)∆

2
n−k ≤ EL∗(G ) = ER(G )

≤ k +

√
(n − k − 1)(2R−1 − k) + (n − k)∆

2
n−k

where ∆ = det(In − L∗).
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Main Results

Taking k = 2 in Theorem (3.2), we obtain the following result for
the normalized Laplacian energy (Randić energy) of connected
bipartite graphs.
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Main Results

Corollary

Let G be a connected bipartite graph with n ≥ 3 vertices. Then

2 +

√
2R−1 − 2 + (n − 3)(n − 2)∆

2
n−2 ≤ EL∗(G ) = ER(G )

≤ 2 +

√
(n − 3)(2R−1 − 2) + (n − 2)∆

2
n−2

where ∆ = det(In − L∗).
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Main Results

Recently, the concept of Randić energy was studied intensively in
the literature. One can easily see that the bound (1) is better than
the some previous results.

For example, the lower bound which was obained for Randić energy
in [ Das et al. -2014 ] is same with the bound (3). But as we
mentioned in the begining of this work, the lower bound (1) is

better than (3). Again, in [ Bozkurt et al. -2013 ] and

[ Li et al. -2015 ], it was presented the following upper bound for
Randić energy

ER(G ) ≤ 1 +
√

(n − 1)(2R−1 − 1). (4)
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Main Results

Using the arithmetic-geometric mean inequality, it follows that the
upper bound (1) is better than the upper bound (4).
Also, for the other results which was obtained over Randić energy
previously, it can be seen that the bound (1) is better on many
examples.
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