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Bojana Borovićanin (PMF Kragujevac) On the extremal Zagreb indices 20th May 2016 2 / 23



Introduction

G = (V (G ),E (G )) a simple graph

n = |V (G )| number of vertices, m = |E (G )| number of edges

v ∈ V (G ) → d(v) vertex degree

π = (d1, d2, . . . , dn) degree sequence of G if di = dG (v)
(i = 1, . . . , n) holds for some v ∈ V (G )
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Introduction

Zagreb indices of graphs

M1(G ) =
∑

v∈V (G)

d2
v , M2(G ) =

∑

uv∈E(G)

dudv

1 I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of
alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535-538.
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On the maximum and minimum Zagreb indices of trees

with a given number of maximum degree vertices

Theorem (Gutman, Das)

Among n-vertex trees, the star K1,n−1 has the maximum, and the path Pn

has the minimum value of the first (second) Zagreb index. If Tn is an
n-vertex tree, different from the star or the path, then

M1(Pn) < M1(Tn) < M1(K1,n−1)

and
M2(Pn) < M1(Tn) < M2(K1,n−1).
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vertices having the maximum degree ∆

Pn is the unique element of Tn,n−2 ⇒ k 6 n − 3
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B. Borovićanin, T. Aleksić Lampert, On the maximum and minimum
Zagreb indices of trees with a given number of vertices of maximum
degree,MATCH Commun. Math. Comput. Chem. 74 (2015), 8196.
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Trees with a given number of maximum degree vertices

whose M1 is minimum

Theorem (B. Borovićanin, T.A. Lampert)

Let T ∈ Tn,k , where 1 ≤ k ≤ n
2 − 1. Then

M1(T ) > 2k + 4n − 6 (1)

with equality if and only if T has the degree sequence

(3, . . . , 3
︸ ︷︷ ︸

k

, 2, . . . , 2
︸ ︷︷ ︸

n−2k−2

, 1, . . . , 1
︸ ︷︷ ︸

k+2

) (2)
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Trees with a given number of maximum degree vertices

whose M1 is maximum

Theorem (B. Borovićanin, T.A. Lampert)

Let T ∈ Tn,k , where 1 ≤ k ≤ n
2 − 1. Then

M1(T ) 6 k∆2 + p(∆− 1)2 + µ2 + n− k − p − 1, (3)

with equality if and only if T has the degree sequence

(∆, . . . ,∆
︸ ︷︷ ︸

k

,∆ − 1, . . . ,∆− 1
︸ ︷︷ ︸

p

, µ, 1, . . . , 1
︸ ︷︷ ︸

n−k−p−1

), (4)

where ∆ = ⌊n−2
k

⌋+ 1, p = ⌊n−2−k(∆−1)
∆−2 ⌋ and

µ = n − 1− k(∆− 1)− p(∆− 2).
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Theorem (B. Borovićanin, T.A. Lampert)

Let T ∈ Tn,k , where 1 ≤ k ≤ n
2 − 1. Then

M2(T ) >

{

3k + 4n − 10, if n ≥ 3k + 1

6k + 3n − 9, if n < 3k + 1.
(5)

The equality holds if and only if the following three conditions are
satisfied.

(i) The tree T has the vertex degree sequence
(3, . . . , 3
︸ ︷︷ ︸

k

, 2, . . . , 2
︸ ︷︷ ︸

n−2k−2

, 1, . . . , 1
︸ ︷︷ ︸

k+2

).

(ii) Between any two vertices of degree 3 in T there should be at least
one vertex of degree 2, if possible.

(iii) The remaining vertices of degree 2 (if they exist) in T are placed
between two vertices of degree 2, or between a vertex of degree 2 and
a vertex of degree 3.
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Theorem (B. Borovićanin, T.A. Lampert)

Let T ∈ Tn,k , where 1 ≤ k ≤ n
2 − 1. Then

M2(T ) ≤ (k−1)∆2+2p(∆−1)2+µ(∆+µ−1)+∆(n−k−(∆−1)p−µ),
(6)

where ∆ = ⌊n−2
k

⌋+ 1, p = ⌊n−2−k(∆−1)
∆−2 ⌋ and

µ = n − 1− k(∆− 1)− p(∆− 2). The equality holds if and only if the
following conditions are satisfied.

(i) The tree T has the vertex degree sequence
(∆, . . . ,∆
︸ ︷︷ ︸

k

,∆− 1, . . . ,∆− 1
︸ ︷︷ ︸

p

, µ, 1, . . . , 1
︸ ︷︷ ︸

n−k−p−1

).

(ii) Every vertex of degree ∆− 1 is adjacent to a vertex of degree ∆ and
to ∆− 2 pendent vertices.

(iii) The vertex of degree µ (when µ > 1) is adjacent to a vertex of the
degree ∆ and to µ− 1 pendent vertices.

(iv) The remaining pendent vertices are attached to the vertices of degree
∆.
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On the extremal trees with a given domination number

A subset D of V (G ) such that each vertex of G that is not contained
in D is adjacent to at least one vertex of D is called dominating set of
G
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γ(T ) = 1 if and only if T ∼= K1,n−1

γ(T ) 6 n
2 and the equality holds only for C4 and for graphs of the

form H ◦ K1, for some H.

B. Borovićanin, B. Furtula, On extremal Zagreb indices of trees with given domination
number, Appl. Math. Comput. 279 (2016), 208218.
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On the maximum Zagreb indices of trees with a given

domination number

Theorem (B. Borovićanin, B. Furtula)

Let T be a tree with domination number γ. Then

M1(T ) 6 (n − γ)(n − γ + 1) + 4(γ − 1) (7)

and
M2(T ) 6 2(n − γ + 1)(γ − 1) + (n − γ)(n − 2γ + 1). (8)

Equality in both cases hold if and only if T ∼= Sn,n−γ , where Sn,n−γ is a
spur obtained from the star K1,n−γ by attaching a pendent edge to its
γ − 1 pendent vertices.
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Trees with a given domination number whose M1 is

minimum

1 6 γ 6 n/3
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D(n, γ) is a set of n-vertex trees T with domination number γ such
that T consists of the stars of orders ⌊n−γ

γ
⌋ and ⌈n−γ

γ
⌉ with exactly

γ − 1 pairs of adjacent leaves in neighboring stars
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Trees with a given domination number whose M1 is

minimum

1 6 γ 6 n/3

D(n, γ) is a set of n-vertex trees T with domination number γ such
that T consists of the stars of orders ⌊n−γ

γ
⌋ and ⌈n−γ

γ
⌉ with exactly

γ − 1 pairs of adjacent leaves in neighboring stars

Theorem (B. Borovićanin, B. Furtula)

Let T be a tree on n vertices with domination number γ, where
1 6 γ 6 n

3 . Then,

M1(T ) > −γ

⌊
n− 1

γ

⌋2

+ (2n − γ)

⌊
n − 1

γ

⌋

+ 6(γ − 1) . (9)

The equality holds if and only if T ∈ D(n, γ).
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Trees with a given domination number whose M1 is

minimum

n
3 6 γ 6 n

2

G(n, γ) is a set of trees T on n vertices with domination number γ,
such that every vertex from T has at most one pendent neighbor and
(i) there exists a minimum dominating set D of T containing
3γ − n − 2 vertices of degree 3 and 2n − 4γ vertices of degree 2,
while the set D contains n − 2γ + 2 vertices of degree 2 and 3γ − n

pendent vertices, or
(ii) there exists a minimum dominating set D of T containing n − 2γ
vertices of degree 2 and 3γ − n pendent vertices, while the set D
contains 2n − 4γ + 2 vertices of degree 2, 3γ − n− 2 vertices of
degree 3 and every vertex from D has exactly one neighbor in D.
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Trees with a given domination number whose M1 is

minimum

Theorem (B. Borovićanin, B. Furtula)

Let T be a tree on n vertices with domination number γ, where
n
3 6 γ 6

n
2 . Then,

M1(T ) >







4n − 6 if γ =
⌈n

3

⌉

2n + 6γ = 10 if
n + 3

3
6 γ 6

n

2

(10)

with equality if and only if T ∼= Pn, for γ = ⌈
n

3
⌉, or T ∈ G(n, γ),

otherwise.
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Extremal trees with a given number of segments

A branching vertex is a vertex of degree at least three
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Extremal trees with a given number of segments

A branching vertex is a vertex of degree at least three

A segment of a tree T is a path-subtree S whose terminal vertices are
pendent or branching vertices of T , i.e., an internal vertex of a
segment S has degree two

sT the number of segments of a tree T

Let S(T ) be a tree obtained from T by replacing each segment of T by
an edge, it is called the squeeze of T
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Extremal trees with a given number of segments

1 M. Goubko, Minimizing degree-based topological indices for trees with given number of
pendent vertices, MATCH Commun. Math. Comput. Chem. 71 (2014), 33-46.

2 M.Goubko, T.Réti, Note on minimizing degree-based topological indices of trees with
given number of pendent vertices, MATCH Commun. Math. Comput. Chem. 72 (2014),
633-639.

3 I.Gutman, M. Goubko, Trees with fixed number of pendent vertices with minimal first
Zagreb index, Bulletin of International Mathematical Virtual Institute 3 (2013), 161-164.

4 M. Goubko, I. Gutman, Degree-based topological indices: Optimal trees with given
number of pendents, Appl. Math. Comput. 240 (2014), 387-398.
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Extremal trees with a given number of segments

ST n,k the set of all n-vertex trees with exactly k segments

Bojana Borovićanin (PMF Kragujevac) On the extremal Zagreb indices 20th May 2016 18 / 23



Extremal trees with a given number of segments

ST n,k the set of all n-vertex trees with exactly k segments

Pn is the unique element of ST n,1; K1,n−1 is the unique element of
ST n,n−1; ST n,2 = ∅
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Extremal trees with a given number of segments

ST n,k the set of all n-vertex trees with exactly k segments

Pn is the unique element of ST n,1; K1,n−1 is the unique element of
ST n,n−1; ST n,2 = ∅

ST n,k for 3 ≤ k ≤ n − 2

A tree is said to be a starlike of degree k if it contains exactly one
vertex of degree greater than two (the central vertex), and the central
vertex has degree k (k ≥ 3)
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The upper bound for M2 of trees with a given number of

sements

Theorem (B. Borovićanin)

Let T ∈ ST n,k , where 3 ≤ k ≤ n − 2, then

M2(T ) 6

{
2k2 − 6k + 4n − 4 , n ≥ 2k + 1

k(n − 3) + 2n − 2 , n < 2k + 1
(11)

The upper bound is attained if and only if T is an n-vertex starlike tree of
degree k , such that an arbitrary pendent vertex is adjacent to a vertex of
degree 2, for 2k + 1 ≤ n, or the central vertex of degree k has exactly
2k + 1− n pendent neighbors, for n < 2k + 1.
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The lower bound for M2 of trees with a given number of

segments

Denote by STO(n, k), for odd k , the set of all n-vertex trees with the
degree sequence

(3, . . . , 3
︸ ︷︷ ︸

k−1
2

, 2, . . . , 2
︸ ︷︷ ︸

n−k−1

, 1, . . . , 1
︸ ︷︷ ︸

k+3
2

) (12)

such that there is at least one vertex of degree 2 between any two vertices
of degree 3, and the remaining vertices of degree 2 (if exist) can be placed
arbitrarily either between two vertices of degree 2 or between a vertex of
degree 2 and a vertex of degree 3.
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The lower bound for M2 of trees with a given number of

segments

Denote by STE (n, k), for even k , the set of all n-vertex trees with the
degree sequence

(4, 3, . . . , 3
︸ ︷︷ ︸

k−4
2

, 2, . . . , 2
︸ ︷︷ ︸

n−k−1

, 1, . . . , 1
︸ ︷︷ ︸

k+4
2

) (13)

such that the unique vertex of degree 4 has three pendent neighbors and a
neighbor of degree 2. The vertices of degree 2 are placed between the
vertices of degree 3 (at least one vertex between any two vertices of
degree 3, if possible) and the remaining vertices of degree 2 are placed
either between two vertices of degree 2 or between the vertex of degree 4
and a vertex of degree 2, or between a vertex of degree 3 and a vertex of
degree 2.
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The lower bound for M2 of trees with a given number of

segments

Theorem (B. Borovićanin)

Let T ∈ ST n,k , where 3 ≤ k ≤ n − 2, then

M2(T ) >







8n + 3k − 23

2
, n ≥ 3k−1

2 and k odd

3n + 3k − 12 , n < 3k−1
2 and k odd

8n + 3k − 18

2
, n ≥ 3k−2

2 and k even

3n + 3k − 10 , n < 3k−2
2 and k even

(14)

The equality holds if and only if T ∈ STO(n, k), for odd k , or
T ∈ STE (n, k), for even k .
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