On the maximum and minimum Zagreb indices of some classes of trees

Bojana Borovićanin

Faculty of Science, University of Kragujevac, Serbia

20th May 2016

Bojana Borovićanin (PMF Kragujevac)

On the extremal Zagreb indices

20th May 2016 1 / 23

• • = • • =

• G = (V(G), E(G)) a simple graph

Bojana Borovićanin (PMF Kragujevac)

- G = (V(G), E(G)) a simple graph
- n = |V(G)| number of vertices, m = |E(G)| number of edges

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

- G = (V(G), E(G)) a simple graph
- n = |V(G)| number of vertices, m = |E(G)| number of edges
- $v \in V(G) \rightarrow d(v)$ vertex degree

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

- G = (V(G), E(G)) a simple graph
- n = |V(G)| number of vertices, m = |E(G)| number of edges
- $v \in V(G)
 ightarrow d(v)$ vertex degree
- $\pi = (d_1, d_2, \dots, d_n)$ degree sequence of G if $d_i = d_G(v)$ $(i = 1, \dots, n)$ holds for some $v \in V(G)$

- G = (V(G), E(G)) a simple graph
- n = |V(G)| number of vertices, m = |E(G)| number of edges
- $v \in V(G)
 ightarrow d(v)$ vertex degree
- $\pi = (d_1, d_2, \dots, d_n)$ degree sequence of G if $d_i = d_G(v)$ $(i = 1, \dots, n)$ holds for some $v \in V(G)$
- $\Delta = \max_{v \in V(G)} d(v)$

- G = (V(G), E(G)) a simple graph
- n = |V(G)| number of vertices, m = |E(G)| number of edges
- $v \in V(G)
 ightarrow d(v)$ vertex degree
- $\pi = (d_1, d_2, \dots, d_n)$ degree sequence of G if $d_i = d_G(v)$ $(i = 1, \dots, n)$ holds for some $v \in V(G)$
- $\Delta = \max_{v \in V(G)} d(v)$
- A tree $T \leftrightarrow$ connected graph on *n* vertices and n-1 edges

- G = (V(G), E(G)) a simple graph
- n = |V(G)| number of vertices, m = |E(G)| number of edges
- $v \in V(G)
 ightarrow d(v)$ vertex degree
- $\pi = (d_1, d_2, \dots, d_n)$ degree sequence of G if $d_i = d_G(v)$ $(i = 1, \dots, n)$ holds for some $v \in V(G)$
- $\Delta = \max_{v \in V(G)} d(v)$
- A tree $T \leftrightarrow$ connected graph on *n* vertices and n-1 edges
- P_n the path, $K_{1,n-1}$ the star

Zagreb indices of graphs

$$M_1(G) = \sum_{v \in V(G)} d_v^2, \ M_2(G) = \sum_{uv \in E(G)} d_u d_v$$

Zagreb indices of graphs

$$M_1(G) = \sum_{v \in V(G)} d_v^2, \ M_2(G) = \sum_{uv \in E(G)} d_u d_v$$

- I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π -electron energy of alternant hydrocarbons, *Chem. Phys. Lett.* **17** (1972), 535-538.
- I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975), 3399-3405.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Zagreb indices of graphs

$$M_1(G) = \sum_{v \in V(G)} d_v^2, \ M_2(G) = \sum_{uv \in E(G)} d_u d_v$$

- I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, *Chem. Phys. Lett.* **17** (1972), 535-538.
- I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975), 3399-3405.
- A. T. Balaban, I. Motoc, D. Bonchev, O. Mekenyan, Topological indices for structure-activity correlations, *Topics Curr. Chem.* 114 (1983), 21-55.

< ロト < 同ト < ヨト < ヨト

Zagreb indices of graphs

$$M_1(G) = \sum_{v \in V(G)} d_v^2, \ M_2(G) = \sum_{uv \in E(G)} d_u d_v$$

Bojana Borovićanin (PMF Kragujevac)

On the extremal Zagreb indices

■ ◆ ■ ▶ ■ クへで 20th May 2016 4 / 23

・ロト ・聞ト ・ヨト ・ヨト

Zagreb indices of graphs

$$M_1(G) = \sum_{v \in V(G)} d_v^2, \ M_2(G) = \sum_{uv \in E(G)} d_u d_v$$

- I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83–92.
- S. Nikolić, G. Kovačević, A. Milićević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113–124.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Gutman, Das)

Among *n*-vertex trees, the star $K_{1,n-1}$ has the maximum, and the path P_n has the minimum value of the first (second) Zagreb index. If T_n is an *n*-vertex tree, different from the star or the path, then

$$M_1(P_n) < M_1(T_n) < M_1(K_{1,n-1})$$

and

$$M_2(P_n) < M_1(T_n) < M_2(K_{1,n-1}).$$

Theorem (Gutman, Das)

Among *n*-vertex trees, the star $K_{1,n-1}$ has the maximum, and the path P_n has the minimum value of the first (second) Zagreb index. If T_n is an *n*-vertex tree, different from the star or the path, then

$$M_1(P_n) < M_1(T_n) < M_1(K_{1,n-1})$$

and

$$M_2(P_n) < M_1(T_n) < M_2(K_{1,n-1}).$$

- B. Zhou, I. Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 233-239.
- C. M. da Fonseca, D. Stevanović, Further properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 72 (2014), 655–668.

Bojana Borovićanin (PMF Kragujevac)

On the extremal Zagreb indices

20th May 2016 5 / 23

イロト イポト イヨト イヨト

T_{n,k} the set of trees with *n* vertices that have exactly *k*(≤ *n* − 2) vertices having the maximum degree Δ

(4回) (日) (日)

- *T_{n,k}* the set of trees with *n* vertices that have exactly *k*(≤ *n* − 2) vertices having the maximum degree Δ
- P_n is the unique element of $\mathcal{T}_{n,n-2} \Rightarrow k \leqslant n-3$

・ロト ・雪 ・ ・ ヨ ・

- *T_{n,k}* the set of trees with *n* vertices that have exactly *k*(≤ *n* − 2) vertices having the maximum degree Δ
- P_n is the unique element of $\mathcal{T}_{n,n-2} \Rightarrow k \leqslant n-3$
- $1 \leq k \leq \frac{n}{2} 1$

・ロン ・四 ・ ・ ヨン

- *T_{n,k}* the set of trees with *n* vertices that have exactly *k*(≤ *n* − 2) vertices having the maximum degree Δ
- P_n is the unique element of $\mathcal{T}_{n,n-2} \Rightarrow k \leqslant n-3$
- $1 \leq k \leq \frac{n}{2} 1$

B. Borovićanin, T. Aleksić Lampert, On the maximum and minimum Zagreb indices of trees with a given number of vertices of maximum degree, *MATCH Commun. Math. Comput. Chem.* **74** (2015), 8196.

Bojana Borovićanin (PMF Kragujevac)

イロト イポト イヨト イヨト

Trees with a given number of maximum degree vertices whose M_1 is minimum

Theorem (B. Borovićanin, T.A. Lampert) Let $T \in \mathcal{T}_{n,k}$, where $1 \le k \le \frac{n}{2} - 1$. Then $M_1(T) \ge 2k + 4n - 6$ (1)

with equality if and only if T has the degree sequence

$$\underbrace{(\underbrace{3,\ldots,3}_{k},\underbrace{2,\ldots,2}_{n-2k-2},\underbrace{1,\ldots,1}_{k+2})}_{(2)}$$

Bojana Borovićanin (PMF Kragujevac)

On the extremal Zagreb indices

- 4 回 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 1 □

Trees with a given number of maximum degree vertices whose M_1 is maximum

Theorem (B. Borovićanin, T.A. Lampert)
Let
$$T \in \mathcal{T}_{n,k}$$
, where $1 \le k \le \frac{n}{2} - 1$. Then
 $M_1(T) \le k\Delta^2 + p(\Delta - 1)^2 + \mu^2 + n - k - p - 1$, (3)

with equality if and only if T has the degree sequence

$$(\underbrace{\Delta, \dots, \Delta}_{k}, \underbrace{\Delta-1, \dots, \Delta-1}_{p}, \mu, \underbrace{1, \dots, 1}_{n-k-p-1}),$$
(4)
here $\Delta = \lfloor \frac{n-2}{k} \rfloor + 1, p = \lfloor \frac{n-2-k(\Delta-1)}{\Delta-2} \rfloor$ and
 $= n-1-k(\Delta-1)-p(\Delta-2).$

w μ

20th May 2016 8 / 23

Theorem (B. Borovićanin, T.A. Lampert) Let $T \in \mathcal{T}_{n,k}$, where $1 \le k \le \frac{n}{2} - 1$. Then

$$M_2(T) \ge \begin{cases} 3k + 4n - 10, & \text{if } n \ge 3k + 1 \\ 6k + 3n - 9, & \text{if } n < 3k + 1. \end{cases}$$

The equality holds if and only if the following three conditions are satisfied.

- (i) The tree *T* has the vertex degree sequence $(\underbrace{3, \ldots, 3}_{k}, \underbrace{2, \ldots, 2}_{n-2k-2}, \underbrace{1, \ldots, 1}_{k+2}).$
- (ii) Between any two vertices of degree 3 in T there should be at least one vertex of degree 2, if possible.
- (iii) The remaining vertices of degree 2 (if they exist) in *T* are placed between two vertices of degree 2, or between a vertex of degree 2 and a vertex of degree 3.

(5)

Theorem (B. Borovićanin, T.A. Lampert)
Let
$$T \in \mathcal{T}_{n,k}$$
, where $1 \le k \le \frac{n}{2} - 1$. Then
 $M_2(T) \le (k-1)\Delta^2 + 2p(\Delta-1)^2 + \mu(\Delta+\mu-1) + \Delta(n-k-(\Delta-1)p-\mu)$, (6)
where $\Delta = \lfloor \frac{n-2}{k} \rfloor + 1$, $p = \lfloor \frac{n-2-k(\Delta-1)}{\Delta-2} \rfloor$ and
 $\mu = n - 1 - k(\Delta - 1) - p(\Delta - 2)$. The equality holds if and only if the
following conditions are satisfied.

(i) The tree
$$T$$
 has the vertex degree sequence $(\Delta, \dots, \Delta, \Delta, \Delta-1, \dots, \Delta-1, \mu, \underbrace{1, \dots, 1}_{n-k-p-1}).$

- (ii) Every vertex of degree $\Delta-1$ is adjacent to a vertex of degree Δ and to $\Delta-2$ pendent vertices.
- (iii) The vertex of degree μ (when $\mu > 1$) is adjacent to a vertex of the degree Δ and to $\mu 1$ pendent vertices.
- (iv) The remaining pendent vertices are attached to the vertices of degree Δ .

 A subset D of V(G) such that each vertex of G that is not contained in D is adjacent to at least one vertex of D is called *dominating set* of G

- A subset D of V(G) such that each vertex of G that is not contained in D is adjacent to at least one vertex of D is called *dominating set* of G
- Domination number $\gamma(G)$ of a graph G is the minimum cardinality of a dominating set D of G

A (10) A (10)

- A subset D of V(G) such that each vertex of G that is not contained in D is adjacent to at least one vertex of D is called *dominating set* of G
- Domination number $\gamma(G)$ of a graph G is the minimum cardinality of a dominating set D of G
- $\gamma(T) = 1$ if and only if $T \cong K_{1,n-1}$

- 4 周 ト 4 日 ト 4 日 ト

- A subset D of V(G) such that each vertex of G that is not contained in D is adjacent to at least one vertex of D is called *dominating set* of G
- Domination number γ(G) of a graph G is the minimum cardinality of a dominating set D of G
- $\gamma(T) = 1$ if and only if $T \cong K_{1,n-1}$
- γ(T) ≤ ⁿ/₂ and the equality holds only for C₄ and for graphs of the form H ∘ K₁, for some H.

・ロト ・雪ト ・ヨト

- A subset D of V(G) such that each vertex of G that is not contained in D is adjacent to at least one vertex of D is called *dominating set* of G
- Domination number γ(G) of a graph G is the minimum cardinality of a dominating set D of G
- $\gamma(T) = 1$ if and only if $T \cong K_{1,n-1}$
- γ(T) ≤ ⁿ/₂ and the equality holds only for C₄ and for graphs of the form H ∘ K₁, for some H.
- B. Borovićanin, B. Furtula, On extremal Zagreb indices of trees with given domination number, *Appl. Math. Comput.* **279** (2016), 208218.

On the maximum Zagreb indices of trees with a given domination number

Theorem (B. Borovićanin, B. Furtula)

Let T be a tree with domination number γ . Then

$$M_1(T) \leqslant (n-\gamma)(n-\gamma+1) + 4(\gamma-1) \tag{7}$$

and

$$M_2(T) \leq 2(n-\gamma+1)(\gamma-1) + (n-\gamma)(n-2\gamma+1). \tag{8}$$

Equality in both cases hold if and only if $T \cong S_{n,n-\gamma}$, where $S_{n,n-\gamma}$ is a spur obtained from the star $K_{1,n-\gamma}$ by attaching a pendent edge to its $\gamma - 1$ pendent vertices.

(日) (四) (日) (日) (日)

• $1 \leqslant \gamma \leqslant n/3$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- $1 \leqslant \gamma \leqslant n/3$
- $\mathcal{D}(n,\gamma)$ is a set of *n*-vertex trees *T* with domination number γ such that *T* consists of the stars of orders $\lfloor \frac{n-\gamma}{\gamma} \rfloor$ and $\lceil \frac{n-\gamma}{\gamma} \rceil$ with exactly $\gamma 1$ pairs of adjacent leaves in neighboring stars

- $1 \leqslant \gamma \leqslant n/3$
- $\mathcal{D}(n,\gamma)$ is a set of *n*-vertex trees *T* with domination number γ such that *T* consists of the stars of orders $\lfloor \frac{n-\gamma}{\gamma} \rfloor$ and $\lceil \frac{n-\gamma}{\gamma} \rceil$ with exactly $\gamma 1$ pairs of adjacent leaves in neighboring stars

Theorem (B. Borovićanin, B. Furtula)

Let T be a tree on n vertices with domination number γ , where $1\leqslant\gamma\leqslant\frac{n}{3}$. Then,

$$M_{1}(T) \geq -\gamma \left\lfloor \frac{n-1}{\gamma} \right\rfloor^{2} + (2n-\gamma) \left\lfloor \frac{n-1}{\gamma} \right\rfloor + 6(\gamma-1).$$
 (9)

The equality holds if and only if $T \in \mathcal{D}(n, \gamma)$.

< 17 ▶

- $\frac{n}{3} \leqslant \gamma \leqslant \frac{n}{2}$
- G(n, γ) is a set of trees T on n vertices with domination number γ, such that every vertex from T has at most one pendent neighbor and (i) there exists a minimum dominating set D of T containing 3γ − n − 2 vertices of degree 3 and 2n − 4γ vertices of degree 2, while the set D contains n − 2γ + 2 vertices of degree 2 and 3γ − n pendent vertices, or

(ii) there exists a minimum dominating set D of T containing $n - 2\gamma$ vertices of degree 2 and $3\gamma - n$ pendent vertices, while the set \overline{D} contains $2n - 4\gamma + 2$ vertices of degree 2, $3\gamma - n - 2$ vertices of degree 3 and every vertex from \overline{D} has exactly one neighbor in D.

- $\frac{n}{3} \leqslant \gamma \leqslant \frac{n}{2}$
- G(n, γ) is a set of trees T on n vertices with domination number γ, such that every vertex from T has at most one pendent neighbor and (i) there exists a minimum dominating set D of T containing 3γ − n − 2 vertices of degree 3 and 2n − 4γ vertices of degree 2, while the set D contains n − 2γ + 2 vertices of degree 2 and 3γ − n pendent vertices, or

(ii) there exists a minimum dominating set D of T containing $n - 2\gamma$ vertices of degree 2 and $3\gamma - n$ pendent vertices, while the set \overline{D} contains $2n - 4\gamma + 2$ vertices of degree 2, $3\gamma - n - 2$ vertices of degree 3 and every vertex from \overline{D} has exactly one neighbor in D.

Theorem (B. Borovićanin, B. Furtula)

Let T be a tree on n vertices with domination number γ , where $\frac{n}{3}\leqslant\gamma\leqslant\frac{n}{2}$. Then,

$$M_1(T) \geqslant \begin{cases} 4n-6 & \text{if } \gamma = \left\lceil \frac{n}{3} \right\rceil \\ 2n+6\gamma = 10 & \text{if } \frac{n+3}{3} \leqslant \gamma \leqslant \frac{n}{2} \end{cases}$$
(10)

with equality if and only if $T \cong P_n$, for $\gamma = \lceil \frac{n}{3} \rceil$, or $T \in \mathcal{G}(n, \gamma)$, otherwise.

Bojana Borovićanin (PMF Kragujevac)

(日) (四) (日) (日) (日)

• A branching vertex is a vertex of degree at least three

・ロト ・聞ト ・ヨト ・ヨト

- A branching vertex is a vertex of degree at least three
- A segment of a tree T is a path-subtree S whose terminal vertices are pendent or branching vertices of T, i.e., an internal vertex of a segment S has degree two

→ □ → → □ → → □

- A branching vertex is a vertex of degree at least three
- A segment of a tree T is a path-subtree S whose terminal vertices are pendent or branching vertices of T, i.e., an internal vertex of a segment S has degree two
- s_T the number of segments of a tree T

A (10) A (10)

- A branching vertex is a vertex of degree at least three
- A segment of a tree T is a path-subtree S whose terminal vertices are pendent or branching vertices of T, i.e., an internal vertex of a segment S has degree two
- s_T the number of segments of a tree T

Let S(T) be a tree obtained from T by replacing each segment of T by an edge, it is called *the squeeze* of T

Bojana Borovićanin (PMF Kragujevac)

- M. Goubko, Minimizing degree-based topological indices for trees with given number of pendent vertices, MATCH Commun. Math. Comput. Chem. 71 (2014), 33-46.
- M.Goubko, T.Réti, Note on minimizing degree-based topological indices of trees with given number of pendent vertices, MATCH Commun. Math. Comput. Chem. 72 (2014), 633-639.
- I.Gutman, M. Goubko, Trees with fixed number of pendent vertices with minimal first Zagreb index, Bulletin of International Mathematical Virtual Institute 3 (2013), 161-164.
- M. Goubko, I. Gutman, Degree-based topological indices: Optimal trees with given number of pendents, Appl. Math. Comput. 240 (2014), 387-398.

イロト イポト イヨト イヨト

- M. Goubko, Minimizing degree-based topological indices for trees with given number of pendent vertices, MATCH Commun. Math. Comput. Chem. 71 (2014), 33-46.
- M.Goubko, T.Réti, Note on minimizing degree-based topological indices of trees with given number of pendent vertices, MATCH Commun. Math. Comput. Chem. 72 (2014), 633-639.
- I.Gutman, M. Goubko, Trees with fixed number of pendent vertices with minimal first Zagreb index, Bulletin of International Mathematical Virtual Institute 3 (2013), 161-164.
- M. Goubko, I. Gutman, Degree-based topological indices: Optimal trees with given number of pendents, Appl. Math. Comput. 240 (2014), 387-398.

H. Lin, On segments, vertices of degree two and the first Zagreb index of trees, *MATCH Commun. Math. Comput. Chem.* **72** (2014), 825-834.

イロト イポト イヨト イヨト

- M. Goubko, Minimizing degree-based topological indices for trees with given number of pendent vertices, MATCH Commun. Math. Comput. Chem. 71 (2014), 33-46.
- M.Goubko, T.Réti, Note on minimizing degree-based topological indices of trees with given number of pendent vertices, MATCH Commun. Math. Comput. Chem. 72 (2014), 633-639.
- I.Gutman, M. Goubko, Trees with fixed number of pendent vertices with minimal first Zagreb index, Bulletin of International Mathematical Virtual Institute 3 (2013), 161-164.
- M. Goubko, I. Gutman, Degree-based topological indices: Optimal trees with given number of pendents, Appl. Math. Comput. 240 (2014), 387-398.

H. Lin, On segments, vertices of degree two and the first Zagreb index of trees, *MATCH Commun. Math. Comput. Chem.* **72** (2014), 825-834.

B. Borovićanin, On the extremal Zagreb indices of trees with given number of segments or given number of branching vertices, *MATCH Commun. Math. Comput. Chem.*, **74**(2015) 55-79.

Bojana Borovićanin (PMF Kragujevac)

• $\mathcal{ST}_{n,k}$ the set of all *n*-vertex trees with exactly *k* segments

イロト イポト イヨト イヨト

- $\mathcal{ST}_{n,k}$ the set of all *n*-vertex trees with exactly *k* segments
- P_n is the unique element of $ST_{n,1}$; $K_{1,n-1}$ is the unique element of $ST_{n,n-1}$; $ST_{n,2} = \emptyset$

・ロト ・聞ト ・ヨト ・ヨト

- $\mathcal{ST}_{n,k}$ the set of all *n*-vertex trees with exactly *k* segments
- P_n is the unique element of $ST_{n,1}$; $K_{1,n-1}$ is the unique element of $ST_{n,n-1}$; $ST_{n,2} = \emptyset$
- $\mathcal{ST}_{n,k}$ for $3 \le k \le n-2$

・ロン ・四 ・ ・ ヨン

- $\mathcal{ST}_{n,k}$ the set of all *n*-vertex trees with exactly *k* segments
- P_n is the unique element of $ST_{n,1}$; $K_{1,n-1}$ is the unique element of $ST_{n,n-1}$; $ST_{n,2} = \emptyset$
- $\mathcal{ST}_{n,k}$ for $3 \le k \le n-2$
- A tree is said to be a *starlike of degree k* if it contains exactly one vertex of degree greater than two (the central vertex), and the central vertex has degree k (k ≥ 3)

イロト イポト イヨト イヨト

The upper bound for M_2 of trees with a given number of sements

Theorem (B. Borovićanin) Let $T \in ST_{n,k}$, where $3 \le k \le n-2$, then

$$M_2(T) \leqslant \begin{cases} 2k^2 - 6k + 4n - 4, & n \ge 2k + 1\\ k(n-3) + 2n - 2, & n < 2k + 1 \end{cases}$$
(11)

The upper bound is attained if and only if T is an *n*-vertex starlike tree of degree k, such that an arbitrary pendent vertex is adjacent to a vertex of degree 2, for $2k + 1 \le n$, or the central vertex of degree k has exactly 2k + 1 - n pendent neighbors, for n < 2k + 1.

(日) (同) (王) (日)

The lower bound for M_2 of trees with a given number of segments

Denote by $ST_O(n, k)$, for odd k, the set of all *n*-vertex trees with the degree sequence

$$\underbrace{(\underbrace{3,\ldots,3}_{\frac{k-1}{2}},\underbrace{2,\ldots,2}_{n-k-1},\underbrace{1,\ldots,1}_{\frac{k+3}{2}})}_{(12)}$$

such that there is at least one vertex of degree 2 between any two vertices of degree 3, and the remaining vertices of degree 2 (if exist) can be placed arbitrarily either between two vertices of degree 2 or between a vertex of degree 2 and a vertex of degree 3.

(1日) (1日) (日)

The lower bound for M_2 of trees with a given number of segments

Denote by $ST_E(n, k)$, for even k, the set of all *n*-vertex trees with the degree sequence

$$(4, \underbrace{3, \dots, 3}_{\frac{k-4}{2}}, \underbrace{2, \dots, 2}_{n-k-1}, \underbrace{1, \dots, 1}_{\frac{k+4}{2}})$$
(13)

such that the unique vertex of degree 4 has three pendent neighbors and a neighbor of degree 2. The vertices of degree 2 are placed between the vertices of degree 3 (at least one vertex between any two vertices of degree 3, if possible) and the remaining vertices of degree 2 are placed either between two vertices of degree 2 or between the vertex of degree 4 and a vertex of degree 2, or between a vertex of degree 3 and a vertex of degree 2.

The lower bound for M_2 of trees with a given number of segments

Theorem (B. Borovićanin) Let $T \in ST_{n,k}$, where $3 \le k \le n - 2$, then

$$M_{2}(T) \geqslant \begin{cases} \frac{8n+3k-23}{2}, & n \ge \frac{3k-1}{2} \text{ and } k \text{ odd} \\ 3n+3k-12, & n < \frac{3k-1}{2} \text{ and } k \text{ odd} \\ \frac{8n+3k-12}{2}, & n \ge \frac{3k-2}{2} \text{ and } k \text{ even} \\ 3n+3k-10, & n < \frac{3k-2}{2} \text{ and } k \text{ even} \end{cases}$$
(14)

The equality holds if and only if $T \in ST_O(n, k)$, for odd k, or $T \in ST_E(n, k)$, for even k.

Bojana Borovićanin (PMF Kragujevac)

3

イロト イポト イヨト イヨト

THANK YOU FOR YOUR ATTENTION!

Bojana Borovićanin (PMF Kragujevac)

On the extremal Zagreb indices

20th May 2016 23 / 23

э

イロト イヨト イヨト イヨト