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Finding dominant structures

Graph theory: Modules (communities, clusters) are densely connected subgraphs that are
loosely interconnected with the rest of the network.

Applications: Groups of nodes which share common properties in the system.
- Biological systems: functional units (protein complexes, biochemical pathways)
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What are dominant graph

structures?

- Modules
- Dominant (important) cycles/pathways

Beber et al. 2012 Interface
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Outline:

e What are dominant network structures?
— definition in terms of a random walk process
— relations to spectral properties

e How do dominant structures appear?
— Eigenvalue perturbation:
e real to complex eigenvalues
e 1- and 2-cycle perturbations
e How can we find dominant network structures?

— Schur decomposition and dominant structures
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Dominant network structures:

random walk process

Graph G = (V. E) is defined with: Adjacency matrix A of a graph G is
> a set of nodes (states) V = {1,...,n}, Alx,y) = {} 0, (x.y)eE;
» aset of edges EC V x V. | =0, (x,y)¢E.

Introduce a random walk process (RW) on a graph G as a Markov chain
(X, )nen, with stochastic matrix P

Pxy) =2 d) = X Aley)

veV

Transition rule:

In every time-step,

the process jumps

to one of his neighbors
with the same probability.

Dominant structures are
metastable sets of a RW process.
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Dominant network structures:

relations to spectral properties

» In terms of the random walk process on a graph, modules are
metastable sets.

Undirected graphs:

» Use spectral clustering methods to identify modules:
number of dominant eigenvalues of P represent number of modules;
corresponding eigenvectors indicate the elements of modules.

Ar=1 Ap=0098 A3=097 AN =076 A3=041...
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Dominant network structures:

relations to spectral properties

Directed graphs:

However, for directed graphs P can have complex eigenvalues due to
cycles that appear in the graph.

Metastability of non-reversible Markov processes is NOT very well
understood.

Dominant spectrum is connected to modules and dominant cycles.
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Outline:

e How do dominant structures appear?

— Eigenvalue perturbation:
e real to complex eigenvalues
e 1-,2-and 3-cycle perturbations

e How can we find dominant network structures?

— Schur decomposition and dominant structures
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Eigenvalue perturbation:

real to complex eigenvalues

Consider the perturbation
P. =P 4+ el

with a generator matrix L, L;; > 0,i #jand > . L; =0,Vie V.
We assume the following asymptotic expansions

Re
Then, one can show:

Im
A= Aj+en+0(€) ' /’O
TS ﬁj—l—EVj—l—O(Ez]. __‘_%O
\O

» simple eigenvalue A;: n; = (u;, Luj) - a shift of A; along the real line.

remain two-fold;
> degenerate eigenvalue \j = Aj4;: split along real line;
split into complex plane.
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Eigenvalue perturbation:

real to complex eigenvalues

For a two-fold eigenvalue \; = A\j11 and \§ = \; + e + O(€%).
1; are given by the eigenvalues of the matrix

P _ ( (uj. Lup) — (uj. Luj) )

(Ujrr. Luj)  (ujer. Lujaq)

Using the anti-symmetric part [ = (L — LT)/2 of L,
A 1 0 o A A
LA:E( 5 0 ).O:ng—Lgl.

we can show that the perturbation drives the two-fold real eigenvalue into
the complex plane iff the deviation from symmetry of L is strong enough

1
5
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Eigenvalue perturbation:

real to complex eigenvalues

Consequence: perturbations of a single entry of P or of a
2-cycle can never move a double eigenvalue into the complex plane.

Example: Let us consider the reversible transition matrix

0.8566 0.1195 0.0239
P=1 0.0566 0.9195 0.0239
0.0566 0.1195 0.8239

with eigenvalues A\; =1 and A\» = A3 = 0.8.
Perturbation of P using the 2-cycle v = (1,2):

-1 1 O
Ll = 1 -1 0 ) a = 0.1242.
0 0 0

Then, eigenvalues of P, = P + €L, are real-valued:

<0.8 ife>0
M=1X=08X<{ =08 ife=0
>0.8 ife<0
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Eigenvalue perturbation:

real to complex eigenvalues

Perturbation of P using the 3-cycle v = (1.2, 3):

—1 1 0
L2 — OJ9 0 —1 1 ] 01 — 0.4119.
1 0 -1
Then, eigenvalues of P, = P + €Ly, € € [0, 1] are
0.4 . . . .
0.2} T
E o :
-0.2} oo o °
0402 0.4 0.6 0.8
Re
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Eigenvalue perturbation:

real to complex eigenvalues

From metastable sets to dominant cycles: Let us consider the
reversible transition matrix

[ 0.1437
0.0189
P = 0.0074
0.0130
\ 0.0010

0.0401
0.0740
0.0115
0.0307
0.0109

0.3494
0.2585
0.9385
0.0261
0.0365

0.4344
0.4361
0.0184
0.9094
0.0223

0.0323
0.1625
0.0242
0.0209
0.9292 )

with eigenvalues A = 1, 0.9048. 0.9048, 0.1353, 0.0498.
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Eigenvalue perturbation:

real to complex eigenvalues

After the perturbation of a 3-cycle v = (3,4.5): L =o(C,
the eigenvalues of P. = P + €L, e € [0.1] are

1

0.5 /[ 0.1437 0.0401 0.3494 0.4344 0.0323
0.0189 0.0740 0.2585 0.4861 0.1625
= 0.0074 0.0115 0.9385| 0.0184 0.0242
=0 0.0130 0.0307 0.0261 0.9094 | 0.0209
\ 0.0010 0.0109 |0.0365 0.0223 0.9292
0.5
11
Re
< —
Increasing €
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Eigenvalue perturbation:

real to complex eigenvalues

The change of dominant structures from three metastable sets (for
e = 0) to a dominant cycle (3,4,5) (for ¢ = 1) can be observed by
following changes of cycle weights (induced by visits of the RW).
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We can observe
module/cycle
transitions using our
cycle weight function
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h = W M

0 0.2 04 0.6 0.8 :

Natasa Djurdjevac Conrad SGA 2016, Belgrade



Outline:

e How can we find dominant network structures?

— Schur decomposition and dominant structures

Natasa Djurdjevac Conrad SGA 2016, Belgrade



Perturbation of the Schur decomposition

The Schur decomposition (X., R.) of P. has the form
P.X.=X.R.. st. X!'DX =Id,

so that the columns of X, form an (-, -)-orthonormal basis (as the
eigenvectors did for reversible P.) and where R, has the following form

B, U.
Re = ( 0 A, )
[ heorem

Up to first order in € the upper 2 x 2 block of the Schur form R, of Pc is
given by Alds .o + ELS where L denotes the SChur form of L (and thus
has the same eigenvalues). Thus, the Schur form L. of the projection of
L to the eigenspace of a double eigenvalue of the reversible matrix P is
sufficient to see whether the perturbation leads to a complex conjugated
pair of eigenvalues.
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Perturbation of the Schur decomposition

The Schur decomposition (X., R.) of P, has the form
P.X.=XR., st. X'DX =1Id,

so that the columns of X, form an (-, -)-orthonormal basis (as the
eigenvectors did for reversible P.) and where R, has the following form

B. U.
RE_( 0 f‘\)

» Analysis: we can use Schur form R, to conclude whether the
perturbation L forces a pair of eigenvalues into the complex plane.

Our approach:

» Algorithm: we use leading Schur vectors X. as membership
functions in spectral clustering (PCCA+).
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Summary:

Applications:

Dominant network structures can help us find
important parts of complex systems

(protein complexes, biochemical pathways)
Theory:

e Dominant network structures:

o
w

cycle weights

— often visited by random walk process
— relations to spectral properties:

modules vs. dominant cycles
e Eigenvalue perturbation:
— real to complex eigenvalues using cycle petrurbations
— measure the importance of a structure by cycle weights
e Schur decomposition and dominant structures
— alternative to the spectral decomposition
— encodes important perturbation information
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Thank you Questions?

for your attention

Email: natasa.conrad@zib.de
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