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the generalized adjacency matrix

Ala, B,7) = aA+ BJ +~1 (a#0)
a+ 8 if {i,jleE

Ala, B,7)ij =18 if {i,j}¢FE,i#]
B4+~ if i=3




the generalized adjacency matrix

Ala, B,7) = aA+ BJ +~1 (a#0)
a+B it {i,jleFE

Ala, 8,7)ij =1 B if {i,j}&FE, i#]
B4+~ if i=7

A(1,0,0)= A, A(-1,1,-1)=A4, A(-2,1,-1)=S5



the generalized adjacency matrix

Ala, B,7) = aA+ BJ +~1 (a#0)
a+B it {i,jleFE
Ala, B,7)i; =18 if {i,j}¢FE, i#]
B4+~ if i=7

A(1,0,0)= A, A(-1,1,-1)=A4, A(-2,1,-1)=S5

A(a, 8,7) cospectral with A'(a, 8, )

<
A+ gJ cospectral with A" + g]



THEOREM (Johnson and Newman 1980)

The following are equivalent:

e A+ yJ is cospectral with A"+ yJ for all y € IR,

e A+ yJ and A"+ yJ are cospectral for two distinct values of v,

e There exists a regular orthogonal matrix @ such that Q 'AQ = A’.
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they are cospectal with cospectral complements (for the adjacency matrix).



THEOREM (Johnson and Newman 1980)

The following are equivalent:

e A+ yJ is cospectral with A"+ yJ for all y € IR,

e A+ yJ and A"+ yJ are cospectral for two distinct values of v,

e There exists a regular orthogonal matrix @ such that Q 'AQ = A’.

COROLLARY

Two graphs are cospectral with respect to every generalized adjacency matrix
if and only if

they are cospectal with cospectral complements (for the adjacency matrix).

The generalized spectrum of a graph G is the adjacency spectrum of G

together with the adjacency spectrum of the complement of G.



CONJECTURE 1
Almost all graphs are determined by their adjacency spectrum (DAS)
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CONJECTURE 1
Almost all graphs are determined by their adjacency spectrum (DAS)

CONJECTURE 2
Almost all graphs are determined by their generalized adjacency spec-
trum (DGS)

For regular graphs DGS is the same as DAS



Ways to prove that a given graph is DAS or DGS?

e Find structural properties from the spectrum and hope that it de-
termines the graph.

e Generate all graphs with the same number of vertices (and edges
and triangles) and check.

e (Wang and Xu) Find all regular orthogonal matrices @), such that
Q'AQ is a (0,1) matrix.



Method of Wang and Xu

Graph GG with adjacency matrix A is controllable if the walk matrix
W =1 A1 A%1 ... A" 11

is nonsingular.



Method of Wang and Xu

Graph GG with adjacency matrix A is controllable if the walk matrix
W=1A1 A1 ... A" '1]

is nonsingular.

Suppose G is controllable and Q "AQ is a (0, 1)-matrix A’ (say), for
some regular orthogonal matrix (), then

e () is unique (for fixed A”),

e () is rational,

e SNF(W) gives an integer £ such that Q) is integral,

e In many cases £ = 2 in which case () is characterized.



THEOREM
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THEOREM
O’Rourke and Touri (aryiv 2015)

Almost all graphs are controllable

THEOREM
Wang (aryiv 2014)

If det(W)/|2/2] is odd and square free, then G is DGS.



Fractions of graphs on n vertices which are not DAS, and not DGS.

n \number of graphs | not DAS not DGS |reference

1 1| 0 0

2 210 0

3 410 0

4 1110 0

5 341 0.059 0

§ 156 0.064 0

7 1044 0.105 0.038

8 12346 | 0.139 0.094

9 274668 | 0.186 0.160 | Godsil, McKay (1976)
10 12005168 | 0.213 0.201 | H, Spence (2004)
11 1018997864 | 0.211 0.208 | H, Spence (2004)
12 165091172592 0.188 Brouwer, Spence (2009)



Godsil-McKay switching produces graphs which are cospectral
with respect to the generalized adjacency matrix.




Godsil-McKay switching produces graphs which are cospectral
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Godsil-McKay switching




Godsil-McKay switching

RS



Fractions of graphs on n vertices which are not DAS,

not DGS, and with a proper GM switching set.

n  number of graphs | not DAS not DGS | GM

1 1| 0 0 0

2 210 0 0

3 410 0 0

4 1110 0 0

5 34| 0.059 0 0

6 156 | 0.064 0 0

7 1044 0.105 0.038 0.038
8 12346 | 0.139 0.094 0.085
9 274668 | 0.186 0.160 0.139
10 12005168 | 0.213 0.201 0.171
11 1018997864 | 0.211 0.208 0.174
12 165091172592| 0.188



GM-switch




GM-switch

Isomorphic after GM-switching: Petersen graph







GM-switch
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GM-switch

Suppose there exist permutation matrices P and P such that

p'XpP =X, P/BP,=B, P/NP =N

)

then  PTAP = A/ withA:{Pl O].

O P
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)
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O P



Suppose there exist permutation matrices P; and P such that

p'Xp =X, P/'BP,=B, P/NP =N
—|_ L / . . P1 O
then P'AP=A with A_{O PJ'

EXAMPLES: case | X| = 2, Petersen graph, grid.



Suppose there exist permutation matrices P; and P such that

p'Xp =X, P/'BP,=B, P/NP =N
—|_ L / . . P1 O
then P'AP=A with A_{O PJ'

EXAMPLES: case | X| = 2, Petersen graph, grid.

THEOREM (Abiad, Brouwer, H)

The converse is not true.



Useful easy necessary conditions for isomorphism after GH-switching.

e Same degree sequence.

e Same numbers of 3-vertex configurations.
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Useful easy necessary conditions for isomorphism after GH-switching.

e Same degree sequence.
Does not work for regular graphs.

e Same numbers of 3-vertex configurations.
Does not work for strongly regular graphs.



Symplectic graph Sp(2,2v). Vertex set V' = IF;V \ {0}.

v =[v]...v9,]" adjacent to w = [wy ... ws,] " whenever

(v1wg +vowy) + (V3wg +vgws) + -+ + (voy—1way + V9w, —1) = 1.

Equivalently, v Kw=1 with
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The symplectic graph Sp(2, 2v) is strongly regular with parameters

n = 22V . 1 k — 22V—17 )\ — 22V—27 ,LL — 22V—2

and adjacency matrix A= MKM ' (over IFy), where M consists

) 2V
of all nonzero vectors in IF .



The symplectic graph Sp(2, 2v) is strongly regular with parameters
n = 22V . 1 k — 22V—17 )\ — 22V—27 ,LL — 22V—2

and adjacency matrix A= MKM ' (over IFy), where M consists

) 2V
of all nonzero vectors in IF .

Note that 2-rank(A) = 2v.



The symplectic graph Sp(2, 2v) is strongly regular with parameters

n = 22V . 1 k — 22V—17 )\ — 22V—27 ,LL — 22V—2

and adjacency matrix A= MKM ' (over IFy), where M consists

of all nonzero vectors in IF;V.
Note that 2-rank(A) = 2v.

Any linear combination (over IF9) of columns of A is again a column
of A, or 0.



Godsil-McKay switching set in Sp(2,2v) (v >3, z € IF;V_6):
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Godsil-McKay switching set in Sp(2,2v) (v >3, z € IF;V_6):

<
g
<

y
0
1
0
1
1
0
Z

N ©oO+— O =k O =
N m—m O — OO =

N —m OO — —= O

v, W, X, y are mutually nonadjacent, and for u € {v,w,x,y}

u'Kv+u'Kw+u'Kx+u' Ky = u'K(v+w+x+y) =u'0 =0.
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1100 row 1
A = 11010 row 2
0110 rowl+ row?2

The sum of these three rows equals [0 000 |0 ... 0].



0011 row 1
A =10101 row 2
1001 rowl-+ row?2

The sum of these three rows equals [ 11110 ... 0]

A is not isomorphic to A", 2-rank(A’) = 2v + 2.



THEOREM Abiad and H (2015)

There exist strongly regular graphs with the parameters of Sp(2, 2v)
and 2-rank g
v, 20+2, ..., 2V+12L3J



CONGRATULATIONS DRAGOS



