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Notation and basic definitions

Notation

e G=(V(G),E(G)) is a simple graph of order n and size m, vertex set
V(G) and edge set E(G).

e Ag = (aj) is the adjacency matrix of G, that is, is the n x n matrix
. [ 1 ifije E(G)
with a; = { 0 otherwise ’

@ D¢ is the diagonal matrix whose diagonal elements are the degrees
di,...,d, of the vertices of G;

o Lc = Dg — Ag is the Laplacian matrix of G.
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Notation (cont.)

e The eigenvalues of Ag and L¢ are indexed in nonincreasing order, i.e.,
° M(G) > X(G) > -+ > As(G);
° 11(G) = p2(G) = -+ = pn(G) = 0.

Domingos M. Cardoso (Univ. of Aveiro) .. . lexicographic powers of graphs



Notation and basic definitions

Notation (cont.)

e The eigenvalues of Ag and L¢ are indexed in nonincreasing order, i.e.,
)\1(G) > )\Q(G) >0 > )\n(G);

11(G) = 12(G) > - > j1n(G) = 0.

Notice that since Ag and L are symmetric, all their eigenvalues are real
and, by Ger3gorin's theorem, the eigenvalues of L are nonnegative.
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Notation (cont.)

e The eigenvalues of Ag and L¢ are indexed in nonincreasing order, i.e.,
° 2M(G) > 2a(G) > -+ > An(G):
° 11(G) = p2(G) = -+ = pn(G) = 0.

Notice that since Ag and L are symmetric, all their eigenvalues are real
and, by Gersgorin's theorem, the eigenvalues of Ls are nonnegative.

e The eigenvalue 11,_1(G) is the algebraic connectivity of G.
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Notation and basic definitions

Notation (cont.)

e The eigenvalues of Ag and L¢ are indexed in nonincreasing order, i.e.,
° M(G) > Xa(G) > -+ > A(G);
° 11(G) = p2(G) = -+ = pn(G) = 0.

Notice that since Ag and L are symmetric, all their eigenvalues are real
and, by GerSgorin's theorem, the eigenvalues of L are nonnegative.

e The eigenvalue 11,_1(G) is the algebraic connectivity of G.

e The all one vector j is the eigenvector of L associated to 1,(G) and
the multiplicity of 11,(G) is equal to the number of components of G.
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Notation and basic definitions

Lexicographic product

Definition

The lexicographic product of two graphs H and G is the graph H - G (also
called the graph composition and denoted H[G]) where

@ its vertex set is the cartesian product V(H) x V(G)

@ and (x1,y1) ~ (X2, ¥2) whenever x; ~ xp or (x1 = x2 and y1 ~ y»).
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Notation and basic definitions

Lexicographic product

Definition

The lexicographic product of two graphs H and G is the graph H - G (also
called the graph composition and denoted H[G]) where

@ its vertex set is the cartesian product V(H) x V(G)

@ and (x1,y1) ~ (X2, ¥2) whenever x; ~ xp or (x1 = x2 and y1 ~ y»).

This operation was introduced by Harary(1959) and Sabidussi (1959).
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Notation and basic definitions

Lexicographic product

Definition

The lexicographic product of two graphs H and G is the graph H - G (also
called the graph composition and denoted H[G]) where

@ its vertex set is the cartesian product V(H) x V(G)

@ and (x1,y1) ~ (x2,y2) whenever x; ~ x» or (x1 = x2 and y1 ~ y»).

The lexicographic product is associative but it is not commutative.

& @
@ @
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Notation and basic definitions

Lexicographic product

Definition

The lexicographic product of two graphs H and G is the graph H - G (also
called the graph composition and denoted H[G]) where

@ its vertex set is the cartesian product V(H) x V(G)

@ and (x1,y1) ~ (x2,y2) whenever x; ~ x» or (x1 = x2 and y1 ~ y»).

G=K H=G

H g

Domingos M. Cardoso (Umv of Aveiro)

. lexicographic powers of graphs Belgrade, May 18-20 5/19



Notation and basic definitions

Lexicographic product

Definition

The lexicographic product of two graphs H and G is the graph H - G (also
called the graph composition and denoted H[G]) where

@ its vertex set is the cartesian product V(H) x V(G)

@ and (x1,y1) ~ (x2,y2) whenever x; ~ x» or (x1 = x2 and y1 ~ y»).

G=K H=G

1 ¢ o

Domingos M. Cardoso (Umv of Aveiro)

. lexicographic powers of graphs Belgrade, May 18-20 5/19



Notation and basic definitions

Lexicographic product

Definition

The lexicographic product of two graphs H and G is the graph H - G (also
called the graph composition and denoted H[G]) where

@ its vertex set is the cartesian product V(H) x V(G)

@ and (x1,y1) ~ (x2,y2) whenever x; ~ x» or (x1 = x2 and y1 ~ y»).

G=K H=G

1 d o

Domingos M. Cardoso (Umv of Aveiro)

. lexicographic powers of graphs Belgrade, May 18-20 5/19



Notation and basic definitions

Lexicographic product

Definition

The lexicographic product of two graphs H and G is the graph H - G (also
called the graph composition and denoted H[G]) where

@ its vertex set is the cartesian product V(H) x V(G)

@ and (x1,y1) ~ (x2,y2) whenever x; ~ x» or (x1 = x2 and y1 ~ y»).

G=K H=G

1§

Domingos M. Cardoso (Umv of Aveiro)

. lexicographic powers of graphs Belgrade, May 18-20 5/19



Notation and basic definitions

Lexicographic product

Definition

The lexicographic product of two graphs H and G is the graph H - G (also
called the graph composition and denoted H[G]) where

@ its vertex set is the cartesian product V(H) x V(G)

@ and (x1,y1) ~ (x2,y2) whenever x; ~ x» or (x1 = x2 and y1 ~ y»).

G=K H=G

1§

Domingos M. Cardoso (Umv of Aveiro)

. lexicographic powers of graphs Belgrade, May 18-20 5/19



Notation and basic definitions

Lexicographic product

Definition

The lexicographic product of two graphs H and G is the graph H - G (also
called the graph composition and denoted H[G]) where

@ its vertex set is the cartesian product V(H) x V(G)

@ and (x1,y1) ~ (x2,y2) whenever x; ~ x» or (x1 = x2 and y1 ~ y»).

G=K H=G

1§

Domingos M. Cardoso (Umv of Aveiro)

. lexicographic powers of graphs Belgrade, May 18-20 5/19



Notation and basic definitions

Lexicographic product

Definition

The lexicographic product of two graphs H and G is the graph H - G (also
called the graph composition and denoted H[G]) where

@ its vertex set is the cartesian product V(H) x V(G)

@ and (x1,y1) ~ (x2,y2) whenever x; ~ x» or (x1 = x2 and y1 ~ y»).

G=K H=G

1§

Domingos M. Cardoso (Umv of Aveiro)

. lexicographic powers of graphs Belgrade, May 18-20 5/19



Notation and basic definitions

Lexicographic product

Definition

The lexicographic product of two graphs H and G is the graph H - G (also
called the graph composition and denoted H[G]) where

@ its vertex set is the cartesian product V(H) x V(G)

@ and (x1,y1) ~ (x2,y2) whenever x; ~ x» or (x1 = x2 and y1 ~ y»).

G=K H=G

0§ .

Domingos M. Cardoso (Umv of Aveiro)

. lexicographic powers of graphs Belgrade, May 18-20 5/19



Notation and basic definitions

Lexicographic product

Definition

The lexicographic product of two graphs H and G is the graph H - G (also
called the graph composition and denoted H[G]) where

@ its vertex set is the cartesian product V(H) x V(G)

@ and (x1,y1) ~ (x2,y2) whenever x; ~ x» or (x1 = x2 and y1 ~ y»).

G=K H=G

B

Domingos M. Cardoso (Umv of Aveiro)

. lexicographic powers of graphs Belgrade, May 18-20 5/19



Notation and basic definitions

Lexicographic product

Definition

The lexicographic product of two graphs H and G is the graph H - G (also
called the graph composition and denoted H[G]) where

@ its vertex set is the cartesian product V(H) x V(G)

@ and (x1,y1) ~ (x2,y2) whenever x; ~ x» or (x1 = x2 and y1 ~ y»).

G=K H=G

i

Domingos M. Cardoso (Umv of Aveiro)

. lexicographic powers of graphs Belgrade, May 18-20 5/19



Notation and basic definitions

Lexicographic product

Definition

The lexicographic product of two graphs H and G is the graph H - G (also
called the graph composition and denoted H[G]) where

@ its vertex set is the cartesian product V(H) x V(G)

@ and (x1,y1) ~ (x2,y2) whenever x; ~ x» or (x1 = x2 and y1 ~ y»).

G=K H=G

B

Domingos M. Cardoso (Umv of Aveiro)

. lexicographic powers of graphs Belgrade, May 18-20 5/19



Notation and basic definitions

Lexicographic product

Definition

The lexicographic product of two graphs H and G is the graph H - G (also
called the graph composition and denoted H[G]) where

@ its vertex set is the cartesian product V(H) x V(G)

@ and (x1,y1) ~ (x2,y2) whenever x; ~ x» or (x1 = x2 and y1 ~ y»).

G=K H=G

By

Domingos M. Cardoso (Umv of Aveiro)

. lexicographic powers of graphs Belgrade, May 18-20 5/19



Notation and basic definitions

Lexicographic product

Definition

The lexicographic product of two graphs H and G is the graph H - G (also
called the graph composition and denoted H[G]) where

@ its vertex set is the cartesian product V(H) x V(G)

@ and (x1,y1) ~ (x2,y2) whenever x; ~ x» or (x1 = x2 and y1 ~ y»).

G=K H=G

Domingos M. Cardoso (Univ. of Aveiro) ... lexicographic powers of graphs Belgrade, May 18-20 5/19



Notation and basic definitions

Lexicographic product

Definition

The lexicographic product of two graphs H and G is the graph H - G (also
called the graph composition and denoted H[G]) where

@ its vertex set is the cartesian product V(H) x V(G)

@ and (x1,y1) ~ (x2,y2) whenever x; ~ x» or (x1 = x2 and y1 ~ y»).

G=K H=G

| ]

Domingos M. Cardoso (Univ. of Aveiro)

. . . lexicographic powers of graphs Belgrade, May 18-20 5/19



Notation and basic definitions

Lexicographic product

Definition

The lexicographic product of two graphs H and G is the graph H - G (also
called the graph composition and denoted H[G]) where

@ its vertex set is the cartesian product V(H) x V(G)

@ and (x1,y1) ~ (x2,y2) whenever x; ~ x» or (x1 = x2 and y1 ~ y»).

G=K H=G

Domingos M. Cardoso (Univ. of Aveiro) ... lexicographic powers of graphs Belgrade, May 18-20 5/19



Notation and basic definitions

Lexicographic product

Definition

The lexicographic product of two graphs H and G is the graph H - G (also
called the graph composition and denoted H[G]) where

@ its vertex set is the cartesian product V(H) x V(G)

@ and (x1,y1) ~ (x2,y2) whenever x; ~ x» or (x1 = x2 and y1 ~ y»).

G=K H=G

| ]

Domingos M. Cardoso (Univ. of Aveiro)

. . . lexicographic powers of graphs Belgrade, May 18-20 5/19



Notation and basic definitions

Lexicographic product

Definition

The lexicographic product of two graphs H and G is the graph H - G (also
called the graph composition and denoted H[G]) where

@ its vertex set is the cartesian product V(H) x V(G)

@ and (x1,y1) ~ (x2,y2) whenever x; ~ x» or (x1 = x2 and y1 ~ y»).

G =Ko H=C G- Kz = G[Ko]
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The spectra of the lexicographic product

From [C., Freitas, Martins, Robbiano, 2013] we can deduce the theorem.
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Iterated lexicographic composition of graphs BRI EEIES

The spectra of the lexicographic product

From [C., Freitas, Martins, Robbiano, 2013] we can deduce the theorem.

If G is a p-regular graph of order m and H is graph of order n, then
oa(H[G]) = n(0a(G) \ {p}) Ua(mAn + pl),

where n(ca(G) \ {p}) means that the multiset (ca(G) \ {p}) is repeated
n times.
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Iterated lexicographic composition of graphs The spectra

The spectra of the lexicographic product

From [C., Freitas, Martins, Robbiano, 2013] we can deduce the theorem.

Theorem
If G is a p-regular graph of order m and H is graph of order n, then

oa(H[G]) = n(aa(G) \ {p}) Ua(mAy + pl),

where n(ca(G) \ {p}) means that the multiset (ca(G) \ {p}) is repeated
n times.

In our example:
oa(K2) ={1, -1}

UA(C4) = {27 0,0, _2} UA(K2) \ {1} = { }
m=2 So with multiplicity n =
n—

p=1
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Iterated lexicographic composition of graphs The spectra

The spectra of the lexicographic product

From [C., Freitas, Martins, Robbiano, 2013] we can deduce the theorem.

Theorem
If G is a p-regular graph of order m and H is graph of order n, then

oa(H[G]) = n(aa(G) \ {p}) Ua(mAy + pl),

where n(ca(G) \ {p}) means that the multiset (ca(G) \ {p}) is repeated
n times.

In our example:

oa(K2) ={1, 1} =
oa(G) =1{2,0,0,-2} Uv/\jig:fzihliitji&y{ n :}

nm_:2 S0 2x2+1=5

p=1
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Iterated lexicographic composition of graphs The spectra

The spectra of the lexicographic product

From [C., Freitas, Martins, Robbiano, 2013] we can deduce the theorem.

Theorem
If G is a p-regular graph of order m and H is graph of order n, then

oa(H[G]) = n(aa(G) \ {p}) Ua(mAy + pl),

where n(ca(G) \ {p}) means that the multiset (ca(G) \ {p}) is repeated
n times.

In our example:

oalko) = {1, 1} oalKo) \ {1} = {1}
oa(Cy) =42,0,0,-2} with multiplicity n =
m=2 So 2x241=5

n= 2x041=1 (twice)
p=1
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Iterated lexicographic composition of graphs The spectra

The spectra of the lexicographic product

From [C., Freitas, Martins, Robbiano, 2013] we can deduce the theorem.

Theorem
If G is a p-regular graph of order m and H is graph of order n, then

oa(H[G]) = n(aa(G) \ {p}) Ua(mAy + pl),

where n(ca(G) \ {p}) means that the multiset (ca(G) \ {p}) is repeated
n times.

In our example:

oalke) = {1, 1} oalko) \ {1} = {1}
oa(Cy) =42,0,0,-2} with multiplicity n =
m=2 So 2x241=5

n= 2x041=1 (twice)
p=1 2x(-2)4+1=-3
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Iterated lexicographic composition of graphs The spectra

The spectra of the lexicographic product
From [C., Freitas, Martins, Robbiano, 2013] we can deduce the theorem.

Theorem

If G is a p-regular graph of order m and H is graph of order n, then

oa(H[G]) = n(oa(G) \ {p}) Ua(mAn + pl),

where n(ca(G) \ {p}) means that the multiset (ca(G) \ {p}) is repeated
n times.

In our example:

oa(Kz) ={1, 1} oa(K)\ {1} = { 1}

oa(Cy) =42,0,0,-2} with multiplicity n =

m=2 So 2x241=5

n= 2x041=1 (twice)

p=1 2x(-2)4+1=-3
UA(C4[K2]) = {571717_37 ) ) ) }
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Iterated lexicographic composition of graphs BRI EEIES

Arbitrary number of iterations of the lexicographic product

H[G] = G,
H[G] = HIG]
H?[G] = HIH[G]],

H (6] . HIH[G]]

( we assume that the graph H is connected, and then, for k > 1, H¥[G] is
connected).
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Iterated lexicographic composition of graphs The spectra

Example: Adjacency Matrix and graph for Cf[Kj]
k=1
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Iterated lexicographic composition of graphs The spectra

Example: Adjacency Matrix and graph for Cf[Kj]
k=2

1 10 20 3z
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Iterated lexicographic composition of graphs The spectra

Example: Adjacency Matrix and graph for Cf[Kj]
k=3
]

a0 100 128
15 ;

1

a0 {50

100 100

128 b
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The spectra
Example: Adjacency Matrix and graph for Cf[Kj]

k=4
1 200 00 512
1 1

200 200

00 010

512 512
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Iterated lexicographic composition of graphs The spectra

lterated lexicographic products of graphs

Let G be a connected p-regular graph of order m with s distinct
eigenvalues such that o4(G) = {p, A[ng](G), . .,)\LgS](G)} and let H be a
connected g-regular graph of order n with t distinct eigenvalues such that
oa(H) =g, )\[th](H), e /\[tht](H)}, then H*[G] is a ry-regular graph of
order vy, such that

nk—1 .
re = mq + p, v = mn*,
n—1
k k nk _ 1
“A(”k[G]):{A[z”g”(c),...,AL"gﬂ(c)}u{mq = +p}um
where, for k > 1,
k—1 ' ‘ | |
Ay = U {(mn’)\g(H) + r,-)[nkfr'hQ]7 o (mnf(H) + r,_)[,,kﬂf,ht]}'
i=0

v
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The spectra
Example: the spectrum of H*[G] = Cf[Ka].

Notice that H = G4 and G = Koy(m =2, n=4, p=1and g = 2)

Vg = 2 V1 = 8 Vy = 32
nn = 1 n = 5 rp = 21
o {17 _1} {57(1)[2]¢(_1)[4]’(_3)} {21’(5)[2]7(1)[8]7(_1)[16]’(_3)[4]’_11}
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VLIS
Spectra of powers of lexicographic products of graphs

Corollary

Let H be a connected g-regular graph of order n with t distinct
eigenvalues such that oa(H) = {q, )\[ZhZ](H), ey )\[tht](H)}.
Then H* is a ri-regular graph of order v, such that

nk—1
n—1"

Vk:nk

k717
oa(H¥) :( U {7 2a(H) + )l (i x(H) + r,-)[”k_l_ih‘]}>u{rk}
i=0

e = ¢q

for k > 1.

v

The number of distinct eigenvalues of H* is not greater that (t — 1)k + 1.
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The spectra
Powers of the Petersen Graph P: o4(P) = {21 1P 3}
k=1;

2

n=10

1

L e L= N o N O 7 T o Y

sy

24 & 6 ¥ &8 9 10

= W M =

L
= O o - m h
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The spectra
Powers of the Petersen Graph P: o4(P) = {21 1P 3}
k=2; n =102

1 20 40 G0 a0 100

1F 4
T
A
z0} t:‘* {z0
b
L
40 S ) Jan
LA
i &0
oot {0
100 |, . | ] | % {100
1 @0 40 BO S0 100

oa(P?) = {33, 2040 11501 _1704] 13051}
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The spectra
Powers of the Petersen Graph P: o4(P) = {21 1P 3}

k=3;: n=103
1 200 400 GO0 200 000

. . : d : 1000
1 200 400 800 200 000

oa(P?) = {333, —214001 115001 _17[40] 131501 167041 13301}

Domingos M. Cardoso (Univ. of Aveiro) ... lexicographic powers of graphs Belgrade, May 18-20 12 /19



The spectra
Powers of the Petersen Graph P: o4(P) = {21 1P 3}
And, ... for k =10 ; n= 1010

oa(P0) = { 3333333333, —2[4000000000] { [5000000000]
—171400000000] {3[500000000]
_167140000000] 133[50000000]
—166714000000] 1333[5000000]

_16667[400000] 1 3333(500000] :

— 1666671400001 133333[50000]
— 166666740001 1333333(5000]
— 166666671400 133333335001
— 166666667, 13333333301

— 16666666671 13333333330 }
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Iterated lexicographic composition of graphs BRI EEIES

Powers of the Petersen Graph P: o4(P) = {24 15l 3}

k Spectrum of Pk
k=1 3, 101 —ol4
k=2 |33, 13051 1[50, —o0l - _1704]
k=3 | 333, 13301 1300l 1[500]  _p[400] _77[40] _ 1674
99
3 X Z ].Oi, 1[5><].099]7 _2[4><1099]'
i=0
k = 100 m-1 \ [Bx1077
< 107 +3) 10’ . m=1,...,99,
i=0
m—1 [4x10%~m]
—(7+10m+6210"> ., m=1,...,99.
i=1

Notice that the graph P* has 10X vertices, in particular

P00 has the

googol number of vertices 101%. All the computations were done by

Mathematica and lasted just a few seconds.
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Rl
The Laplacian spectra of lexicographic compositions

From [C., Freitas, Martins, Robbiano, 2013] we can also deduce the
following result.

Let G be a graph of order m and H a graph of order n, then

n

or(H[G]) = U (mdn(j) + (00(6) \ {0})) | U may(H).
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Iterated lexicographic composition of graphs The Laplacian spectra

The Laplacian spectra of lexicographic compositions

Theorem

Let G be a connected graph of order m and H be a connected graph of

order n. Then H*[G] is a graph of order v, = mn¥, and

oL(H*[G]) = Q& L Ql,

where

K

Qt = U (UL(G)\{0}+mZ n"’ldH(j,-))
Ut o2y--- o) €] i=1

K

k
%-U( U (m 2o\ +m Y a1l ) U met (k)
=2 (fiyeonfi) E[n]F—H1 r=i
for kK > 1.
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Iterated lexicographic composition of graphs The Laplacian spectra

The Laplacian spectra of lexicographic compositions
Example: H*[G] with H = Ky 3, G = P3

O'L(K173):{4,1,1,0}; O'L(P3):{3,1,0}; n:4; m=23
v =12

vy = 192
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Iterated lexicographic composition of graphs The Laplacian spectra

The Laplacian spectra of lexicographic compositions
Example: H*[G] with H = Ky 3, G = P3

O'L(K173):{4,1,1,0}; O'L(P3):{3,1,0}; n:4; m=23
v =12

vy = 192

ol(H[G]) = {192[41, 190, 186%), 184131 183021 168!%1 166°11621°1, 16011, 159[61,
1562, 961°1 94831 90l 88l 8716l 720181 7011 66271 641271 630181,
60191, 48121, 0}
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Rl
Lexicographic powers of graphs

Now, let us consider the case G = H.

Corollary

Let H be a connected graph of order n. Then H* is a graph of order
vy = n¥, such that

k—1 k—1
O'L(Hk) = U U (ni_IO'L(H) \ {0} + Z n’dH(j,)> U nk_IO'L(H)

=1\ Uiy e jk—1) €[]k

r=i

for kK > 1.
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Iterated lexicographic composition of graphs BRIENETETEEN R IIETE]

Lexicographic powers of graphs
Example: H = Ki3:
n=4,
o1(Ki3) ={4,1,1,0}.
H3 = K1373 is a graph of order

vy =4 = 64

with

2
a(kis)=UJ| U <4' ‘or(Kis)\ {0} +Z4rdH i > J4%0ou(Kis)

=1\ (i2) €[4~ r=i
which gives (K7 3) =

{64BL619L56PL53WL529L325L295L24PL21ﬂﬂ,2oWL169Lo}
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Some combinatorial properties of H*

o Laplacian index
p1(H ) = n* i (H).
o Algebraic connectivity
pok—1(HY) = "1 (H).
@ Minimum and maximum degree

nk — nk—1

5(Hk)_6(H) — L and A(H*) = A(H)
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Some combinatorial properties of H*

e Stability number
As a(H[G]) = a(H) a(G) [Geller, 1975], where G is an arbitrary
graph
a(H*) = a(H).
Furthermore, from the spectral upper bound [(Godsil (2008) and Lu
(2007)] for an arbitrary graph G

m(G) —46(G)
flel=n e
we obtain,
pa(H9) — 5(H¥)
aH) = ot p1(Hk)
s pa(H) = 3(H)
p(H)
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Some combinatorial properties of H*

@ Vertex connectivity
As the lexicographic product H[G] is connected if and only if H is a
connected graph [Harary and Wilcox, 1967] if both G and H are not
complete [Geller and Stahl, 1975 |

v(H[G]) = m v(H),
where v(H) denotes the vertex connectivity of H. So,
v(H*) = n*“Lu(H).

Furthermore, we may conclude that when H is connected not
complete (and then H* is also connected not complete),

nk—1
n—1"

n“n_1(H) < v(H*) < 6(H)
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Some combinatorial properties of H*

@ Chromatic number
It is well known the following lower bound due to Hoffman

As direct consequence, if a graph H is g-regular of order n,

HY > 1 Tk
AR WD)

nk—1

nk—1 ((n— 1)# + 1) 1

- 1-
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Some combinatorial properties of H*

Proposition

Let H be a connected not complete graph and let G be an arbitrary graph
of order m. For every k € N

diam(H*™1) = diam(H¥[G]) = diam(H).
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THANK YOU!

Ten years after, congratulations again Professor Dragos Cvetkovié
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