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Defintion

Graph: Γ = (V ,E) where V vertex set, E ⊆
(V

2

)
edge set.

All graphs in this talk are simple.
x ∼ y if xy ∈ E .
x 6∼ y if xy 6∈ E .
d(x , y): length of a shortest path connecting x and y .

D(Γ): diameter (maximal distance in Γ), if the graph Γ is
connected.
The adjacency matrix A of a graph Γ is the matrix whose
rows and columns are indexed by its vertices such that
Axy = 1 if xy is an edge and 0 otherwise.
The eigenvalues of Γ are the eigenvalues of its adjacency
matrix.
In this talk I will be mainly interested in the smallest
eigenvalue of Γ, denoted by λmin.
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A structure theory for graphs with fixed smallest
eigenvalue?

In this talk I will try to convince you that there should be a
rich structure theory for graphs with fixed smallest
eigenvalue.

I will give some ideas for this theory in this talk.
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Smallest eigenvalue −2

Definition
We say a connected graph with smallest eigenvalue at least −2
and adjacency matrix A is a generalised line graph if there
exists an integral matrix N such that A + 2I = NNT .

Note that if I can take N a matrix with only 0′s and 1′s then the
graph is a line graph. So a generalized line graph is a
generalization of a line graph.
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The following beautiful result was shown by Cameron,
Goethals, Seidel, Shult (1976):

Theorem
Let Γ be a connected graph with smallest eigenvalue at least
−2. Then either Γ has at most 36 vertices or Γ is a generalised
line graph.

We give now a sketch of proof for this result.
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Sketch of proof

Let Γ be a connected graph with smallest eigenvalue at
least −2.

Then A + 2I is positive semidefinite, so it is a Gram matrix
A + 2I = NNT .
Let Λ be the integral lattice generated by the rows of N.
Then Λ is an even lattice, generated by norm square root
of two vectors, so it is a root lattice and it is irreducible as Γ
is connected.
The irreducible root lattices were classified by Witt, and are
of type An, Dn or E6,E7,E8.
The first two cases give us generalised line graphs, and for
the last three lattices one can show that the number of
vertices is at most 36.
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Below −2

For the result of Cameron et al., the classification of the
irreducible root lattices is essential.

We do not have a similar classification for lattices
generated by square root 3 vectors.
Note that if Γ has λmin ≥ −λ for λ a positive integer, then Γ
can not contain an induced (λ2 + 1)-claw.
Let K̃2t be a K2t with one extra vertex adjacent to half of
the vertices of the K2t .
Then it is easy to see that limt→∞ λmin(K̃2t ) = −∞. (Use
the equitable partition with quotient matrix

Q =

 t − 1 t 0
t t − 1 1
0 t 0

)
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Bounded smallest eigenvalue

This means that there exists a t = t(λ) such that Γ can not
contain an induced K̃2t .

Hoffman (1973) showed that also the converse of the
above is true.

Theorem
Let Γ be a graph with smallest eigenvalue λmin. Then the
following hold.

1 For a real number λ ≥ 1 there exists a positive integer
t = t(λ) such that Γ contains neither a K̃2t nor a t-claw K1,t
as an induced subgraph if the minimal eigenvalue of Γ
satisfies λmin(Γ) ≥ −λ.

2 For a positive integer t there exists a positive real number
λ = λ(t) such that if Γ contains neither a K̃2t nor a t-claw
K1,t as an induced subgraph, then λmin(Γ) ≥ −λ.
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The main idea is that in order to bound the smallest eigenvalue,
you need to obtain some structure in the graph. This structure
is of independent interest. But first I will discuss another result
of Hoffman which proof used the structure as described above.
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Smallest eigenvalue −1−
√

2

Hoffman (1977) also showed the following result:

Theorem

Let 2 < λ < 1 +
√

2. Then there is constant K = K (λ) such that
if Γ is a connected graph with minimal valency at least K and
smallest eigenvalue λmin ≥ −λ, then Γ is a generalised line
graph. In particular λmin ≥ −2.

Hoffman did not use the classification of irreducible root
lattices, but he needed to pay the price by assuming large
minimal valency.
Woo and Neumaier (1995) generalised this result by
Hoffman by going slightly below −1−

√
2.

K., Yang and Yang obtained a result for graphs with
smallest eigenvalue at least −3. We will see this below.
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Hoffman Graphs 1

Hoffman graphs were introduced by Woo and Neumaier (1995)
formalising the concepts Hoffman used for his 1977-result.

Hoffman Graph

A Hoffman Graph G = (G = (V ,E), ` : V → {f , s}), such
that any two vertices with label f are non-adjacent. In other
words, it is a graph with a distinguished independent set
F = {v ∈ V | `(v) = f} of vertices.

The vertices in the independent set F , we will call fat and
the rest of the vertices we will call slim.
A Hoffman graph H is called fat if every slim vertex has at
least one fat neighbour.
The subgraph induced on S := {v ∈ V | `(v) = s} is called
the slim subgraph of H.
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Hoffman Graphs 2

Hoffman Graph 2
The way to think about Hoffman graphs is that they are just
(slim) graphs with some fat vertices attached.

Hoffman graphs and especially fat Hoffman graphs give a
good way to construct graphs with unbounded number of
vertices such that the smallest eigenvalue is at least a fixed
number.
We will later construct fat Hoffman graphs from graphs by
representing some dense subgraphs by fat vertices.
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Examples

H3, λmin = −3 H6, λmin = −4 H4, λmin = −3
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Eigenvalues

Eigenvalues of Hoffman graphs

Let H be a Hoffman graph with fat vertex set F and slim
vertex set S.
The adjacency matrix A of H can be written in the following
form:

A :=

 B | C
CT | 0

 ,

where the block B corresponds to the adjacency matrix on
the set S, and so on.

The eigenvalues of H are the eigenvalues of the special
matrix Sp := B − CCT .
As CCT is a positive semidefinite matrix λmin(B) ≥ λmin(H).
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Replacing fat vertices by cliques

One reason for the definition of the smallest eigenvalue of a
Hoffman graph is the following theorem of Hoffman and
Ostrowski (1960’s):

Theorem
Let H be a Hoffman graph with at least one fat vertex. Define
the graph Gn as follows: Replace the fat vertices with complete
graphs Cf (f ∈ F ) with n vertices and each vertex of Cf has the
same neighbours in S as f . Then limn→∞ λmin(Gn) = λmin(H).
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Direct sums

In order to state our second result we need to introduce direct
sums.

Direct sum
Let H have special matrix

Sp =

 Sp1 | 0
0 | Sp2

 .

Let Hi be the induced Hoffman subgraph of H with special
matrix Spi for i = 1,2. We say that H is the direct sum of H1
and H2 and write H = H1 ⊕ H2.
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A more combinatorial (but equivalent) definition is as follows:

Direct sums
Let H′ = (F ′ ∪ S′,E ′) and H′′ = (F ′′ ∪ S′′,E ′′) be two Hoffman
graphs, such that

S′ ∩ S′′ = ∅;
s′ ∈ S′ and s′′ ∈ S′′ have at most one common fat
neighbour in F ′ ∩ F ′′.

The Hoffman graph H′ ⊕ H′′ has as vertex set S ∪ F where
S = S′ ∪ S′′ and F = F ′ ∪ F ′′.
The induced subgraphs on S′ ∪ F ′ resp. S′′ ∪ F ′′ are H′
resp. H′′.
s′ ∈ S′ and s′′ ∈ S′′ are adjacent if and only if they have
exactly one common fat neighbour.
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exactly one common fat neighbour.



Introduction Results of Hoffman Hoffman graphs Our main result(s) Applications Grassmann graphs

Example

Decomposing a line graph.



Introduction Results of Hoffman Hoffman graphs Our main result(s) Applications Grassmann graphs

Theorem (Woo & Neumaier)

Let H = H′ ⊕ H′′ where H′ and H′′ are Hoffman graphs.
Then λmin(H) = min(λmin(H′), λmin(H′′)).

This means that I can construct large graphs with smallest
eigenvalue at least a fixed number using the direct sum
construction.
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F-line graph

Let F be a family of Hoffman graphs. A graph is called F-line
graph if it is an induced subgraph of the slim subgraph of
⊕t

i=1Fi where Fi ∈ F .
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Line and generalised line graphs

A {H1}-line graph is exactly the same as a line graph.
A {H1,H2}-line graph is exactly the same as a generalised
line graph. (You can also take this as the definition of a
generalised line graph)

H1, λmin = −2 H2, λmin = −2
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We need the following fat Hoffman graphs for the next result:

H5 H4 H3
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`-plex
A `-plex is a graph whose complement has maximal valency at
most `. They are studied in network theory to understand these
networks better.

Theorem
Let G be a connected graph with smallest eigenvalue at
least −3.
There exist positive integers ` and C such that if

the valency kx of any vertex x is at least `;
and the order of any 10-plex containing a vertex x is at
most kx − C,

then G is a {H3,H4,H5}-line graph.

We can generalise this result to −4,−5, . . .
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A similar result as above.

Theorem
Let G be a connected graph with smallest eigenvalue at
least −3.
There exist positive integers ` and C such that if

the valency kx of any vertex x is at least `;
and the average valency of the local graph in vertex x is at
most kx − C,

then G is a {H3,H4,H5}-line graph.



Introduction Results of Hoffman Hoffman graphs Our main result(s) Applications Grassmann graphs

You will need a local condition to obtain results as above.

One reason is that there are infinitely many −3-irreducible
fat Hoffman graphs with smallest eigenvalue −3.
In Jang, K., Munemasa and Taniguchi (2014) we did some
work towards the classification of these fat Hoffman
graphs.
I am working with Yan Ran Li to complete the work of Jang
et al.
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How can you check whether a graph satisfies the local
condition in one of the two above results?

If you know your graph is regular (you can see this from the
spectrum) and the second largest eigenvalue is not too
large then by a similar argument as for the Hoffman
coclique bound, it is sometimes possible to obtain a good
upper bound for the number of vertices of a t-plex. I will
give an example below.
If you graph is regular and has at most 4 distinct
eigenvalues, then it is walk-regular. This means that the
number of triangles through a vertex x does not depend on
the vertex x . We will see examples below.
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The Hamming graph H(3,q)

The Hamming graph H(D,q) has as vertex set QD where
Q is a set with cardinality q.
Two vertices are adjacent if they differ in exactly one
position.

H(3,q) has spectrum
[3q − 3]1, [2q − 3]3q−3, [q − 3]3(q−1)2

, [−3](q−1)3
.

Hence any graph G cospectral with H(3,q) is walk-regular
and the local graph has average valency q − 2.
Applying our theorem gives that G is locally 3× Kq−1 if q is
very large.
Bang et al. (2008) showed earlier that this is the case for
q ≥ 36, and that they are determined by their spectrum if
q ≥ 36.
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The Johnson graph J(n,3)

The Johnson graph J(n, t) has as vertex set
(N

t

)
where N

is a set with cardinality n.
Two t-sets A and B are adjacent if #A ∩ B = t − 1.

J(n,3) has spectrum
[3(n−3)]1, [2(n−4)−1]n−1, [n−7]n(n−1)/2, [−3]n(n−1)(n−5)/6.
Hence any graph G cospectral with J(n,3) is walk-regular
and the local graph has average valency n − 2.
Using our result shows that J(n,3) is the point graph of a
partial linear space with three lines through any point, if n
is very large.
Van Dam et al. (2006) gave two constructions to obtain
graphs cospectral with J(n,3), one used Godsil-McKay
switching, the other construction used partial linear spaces.
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2-clique extension of a grid graph

The 2-clique extension of the t1 × t2-grid (with t1 ≥ t2) G
has five distinct eigenvalues unless t1 = t2.

So we do not have walk-regularity.
The largest eigenvalue of G is equal to 2(t1 + t2)− 3 and
second largest eigenvalue is equal to 2t1 − 3.
Let H be a graph cospectral to G.
Using the Hoffman bound, we see that we can apply the
first result in this case as long as t2 is large enough.
Then we obtain that H is a {H3,H4,H5}-line graph.
Using this fact, Aida Abiad, QianQian Yang and myself
showed that the 2-clique extension of the t × t-grid is
determined by its spectrum if t large enough.
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Grassmann graphs

The Grassmann graph Jq(n,D) is the graph with vertex set
the set of the D-dimensional subspaces of an
n-dimensional vector space over the finite field with q
elements, where q is a prime power and n ≥ 2D are
positive integers.

Metsch showed that the Grassmann graph Jq(n,D) is
characterised as a distance-regular graph if n ≥ 2D + 2,
unless q ≤ 3.
Van Dam and K. constructed the twisted Grassmann
graphs in 2005, which have the same intersection numbers
as Jq(2D + 1,D). So the Grassmann graph Jq(2D + 1,D)
is not characterised by its intersection numbers.
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Grassmann graphs, 2

What do we know for Jq(2D,D)?
With Gavrilyuk (201?) we showed that the local subgraph
(that is, the graph induced on the neighbours of a fixed
vertex) of a distance-regular graph with the same
intersection numbers as Jq(2D,D), has the same spectrum
as the q-clique extension of a certain square grid.

If we know that q-clique extension of a square (t × t)-grid
is characterised by its spectrum we can show that the
corresponding Grassman graph is determined by its
intersection numbers.
For t small compared to q, these q-clique extensions are
NOT characterised by their spectrum, but I suspect they
are if t is large compared to q.
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2-clique extension of a square grid

We have seen: The 2-clique extension of the (t × t)-grid is
characterized by its spectrum if t >> 0.

This implies that J2(2D,D) is determined by its intersection
numbers if D is large enough.
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Thank you for your attention.
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