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Some Concepts of Ring Theory

An ideal I is a subset of a ring R satisfying the following axioms:

I1 (I ,+) is subgroup of (R,+)

I2 ∀r ∈ R and ∀x ∈ I , x · a ∈ I ,a · x ∈ I
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Some Concepts of Ring Theory

• A maximal ideal is an ideal that is maximal (with respect to
set inclusion) amongst all proper ideals. In other words, I is a
maximal ideal of a ring R if there are no other ideals
contained between I and R.

• A ring R is a local ring if it has a unique maximal ideal.

• A ring with one element is called the null ring.
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Some Concepts of Ring Theory

• An element x of a ring R, is called nilpotent if there exists
some positive integer n such that xn = 0.

• An element r of a ring R is called a left zero divisor if there
exists a nonzero x such that ax = 0.Similarly, an element r of
a ring is called a right zero divisor if there exists a nonzero y
such that yr = 0. In commutative ring, the left and right zero
divisors are the same.

• Every nilpotent element of R is either zero or a zero-divisor.

• An integral domain is a nonzero commutative ring with no
nonzero zero divisors.

• A ring R is called a reduced ring if it has no nonzero nilpotent
elements
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Introduction to Nilpotent and Zero Divisor Graphs

Definition

[Beck,1988] The (original) zero divisor graph of a ring R is a
simple graph whose set of vertices consists of all elements of the
ring, with an edge defined between a and b if and only if ab = 0.

Example

R = Z6, V (R) = Z6 = {0, 1, 2, 3, 4, 5}

Figure:
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Introduction to Nilpotent and Zero Divisor Graphs

Definition

[Anderson,Livingston [4], 1999] The zero divisor graph of a ring R
is a simple graph whose set of vertices consists of all (non-zero)
zero divisors, with an edge defined between a and b if and only if
ab = 0. It will be denoted by Γ(R).

Example

R = Z6, V (R) = Z ∗(R) = {2, 3, 4}

Figure:
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Introduction to Nilpotent and Zero Divisor Graphs

Definition

[Chen [5], 2003] The nilpotent graph of a ring R is a simple graph
such that two vertices x and y are adjacent if and only if xy is
nilpotent.

Example

If R = Z8, then N(R) = {0, 2, 4, 6} and
V (R) = {0, 1, 2, 3, 4, 5, 6, 7}

Figure:
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Introduction to Nilpotent and Zero Divisor Graphs

Definition

[A.Li- Q.Li [6], 2010] The nilpotent graph of R, denoted by ΓN(R),
is a graph with vertex set VN(R)∗ and two distinct vertices x and
y are adjacent if and only if xy ∈ N(R), where N(R) is the set of
all nilpotent elements of R.

Example

R = Z8, VN(R) = {1, 2, 3, 4, 5, 6, 7}

Figure:
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Some Known Results for Γ(R) and ΓN(R)

Theorem

If R = A× B such that A and B are integral domain, then Γ(R) is
a complete bipartite graph.

Theorem

Let R be a finite commutative ring. If Γ(R) is complete, then
either R ∼= Z2 × Z2 or R is a local ring with charR = p or p2 and
|Γ(R)| = pn − 1 , where p is prime and n ≥ 1.
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Some Known Results for Γ(R) and ΓN(R)

All possible zero divisor graph Γ(R) with |Γ(R)| ≤ 4:

Figure: Γ(R)
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Some Known Results for Γ(R) and ΓN(R)

Theorem

(Anderson et al.) Let R be commutative ring. Then,

a Γ(R) is finite if and only if either R is finite or R is integral
domain.

b Γ(R) is connected and diam(Γ(R)) ≤ 3.

c If Γ(R) contains a cycle, then gr(Γ(R)) ≤ 4.(the length of the
shortest cycle)
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Some Known Results for Γ(R) and ΓN(R)

Theorem

(Anderson et al.) Let R be a commutative ring which is not
integral domain. Then exactly one of the following holds:

a gr(Γ(R)) ≤ 4.

b Γ(R) is a star graph.

c Γ(R) which R ∼= Z2 × Z4 or R ∼= Z2 × Z2[x ]�〈x2〉
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Some Known Results for Γ(R) and ΓN(R)

Let F be a field. The set Mn(F) is a ring under matrix addition
and matrix multiplication.

Theorem

(Nikmerh, 2013) If F is a field and n ≥ 3, then
diam(ΓN(Mn(F ))) = 2.
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Some Known Results for Γ(R) and ΓN(R)

Lemma

(Nikmerh, 2013) If F is a finite field and char(F) = 2, then
diam(ΓN(M2(F ))) = 3.

Lemma

(Nikmerh, 2013) If F is a finite field and n ≥ 2, then
gr(ΓN(Mn(F ))) = 3.
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The nilpotent graph over Zn

Theorem

(Patra-Begum, 2015) Let ΓN(Zpαq) be the nilpotent graph of the
commutative ring Zpαq, where p and q are two distinct primes and
α is an even positive integer. Then the graph ΓN(Zpαq) is

a p3n- partite, if α = 4n, n = 1, 2, 3, . . .

b p3n+1 + 1- partite, if α = 4n + 2, n = 0, 1, 2, . . .
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The nilpotent graph over Zn

Theorem

(Patra-Begum, 2015) If p and q are distinct primes and α is any
positive integer greater than one, then diam(ΓN(Zpαq)) = 2.

Theorem

(Patra-Begum, 2015) If p and q are distinct primes and α is any
positive integer greater than one, then gr(ΓN(Zpαq)) = 3.
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The nilpotent graph over Zn
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On Laplacian eigenvalues of nilpotent graph over Zn

Remark

When given the ring R = Zn, it is well known that it has a nonzero
nilpotent element if and only if n is divisible by the square of some
primes.

. From this fact, Zn does not have any non-zero nilpotent
element when n is prime number or n = p1p2...pt .
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On Laplacian eigenvalues of nilpotent graph over Zn

Remark

It is easily seen that

N(Zn) = {0, p, 2p, 3p, . . . , (pm−1 − 1)p} (1)

when n = pm, m > 1 and

N(Zn) =
{

(p1p2 . . . pt), 2(p1p2 . . . pt), . . . , (
t∏

i=1

psi−1
i −1)(p1p2 . . . pt)

}
(2)

when n =
∏t

i=1 p
si
i , t ≥ 2.
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On Laplacian eigenvalues of nilpotent graph over Zn

Lemma

Let Zn be integer ring, where n = pm and p is a prime number.
Then, the vertex set of ΓN(Zn) is

VN(Zpm)∗ = Z∗pm (3)

Moreover, we have di = pm − 2 for i ∈ N(Z∗pm) and di = pm−1 − 1

for i 6∈ N(Z∗pm).
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On Laplacian eigenvalues of nilpotent graph over Zn

Remark

By Lemma, we see that ΓN(Zpm) has two distinct degrees such
that ∆ = pm − 2 and δ = pm−1 − 1.
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On Laplacian eigenvalues of nilpotent graph over Zn

Theorem

If p is a prime number then

S(ΓN(Zpm)) =
(
0, (δ)(∆−δ), (∆ + 1)(δ)

)
(4)

where ∆ = pm − 2 and δ = pm−1 − 1.
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On Laplacian eigenvalues of nilpotent graph over Zn

Lemma

Let ΓN(Zn) be graph , where n =
∏t

i=1 p
si
i , t ≥ 2.

(i) If si = 1 for each i , then

VN(Zn)∗ =
⋃
i∈I

Spi (5)

where Spi = {pik : 1 ≤ k ≤ n
pi
− 1} and I = {1, 2, . . . , t}.

(ii) If si ≥ 2 for at least i , then

VN(Zn)∗ = Z∗n (6)
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On Laplacian eigenvalues of nilpotent graph over Zn

Remark

In Lemma 2.6 (i), we can easily see that the number of vertices of
ΓN(Zn) is n − 1− τ(n), where τ(n) is the number of positive
divisors of n.

Moreover, ΓN(Zpq) ∼= Kp−1,q−1 for p, q primes and
ΓN(Zp) ∼= K0.
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On Laplacian eigenvalues of nilpotent graph over Zn

Lemma

Let’s consider the graph ΓN(Zn) , where n =
∏t

i=1 p
si
i , t ≥ 2.

(i) di = n − 2 for all i ∈ N(Zn)

(ii) If
∏r

m=1 plm | i for i ∈ VN(Zn)∗ such that l1, . . . , lr ∈ A for
1 ≤ r ≤ k and A = {1, 2, . . . , k} , then we get

Ni =
{
z , 2z , . . . , (

n

z
− 1)z

}
(7)

i.e.
di =

n

z
− 1 (8)

where z =
∏

j pj for every j ∈ A− {l1, . . . , lr}; di and Ni are

the degree of vertex i and the set of neighbors of i ,
respectively.
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On Laplacian eigenvalues of nilpotent graph over Zn

Lemma

Let’s consider the graph ΓN(Zn) , where n =
∏t
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si
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i.e.
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− 1 (8)

where z =
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the degree of vertex i and the set of neighbors of i ,
respectively.
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On Laplacian eigenvalues of nilpotent graph over Zn
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On Laplacian eigenvalues of nilpotent graph over Zn

Lemma

Let’s consider the graph ΓN(Zn) , where n =
∏t

i=1 p
si
i , t ≥ 2.

(i) di = n − 2 for all i ∈ N(Zn)

(ii) If
∏r

m=1 plm | i for i ∈ VN(Zn)∗ such that l1, . . . , lr ∈ A for
1 ≤ r ≤ k and A = {1, 2, . . . , k} , then we get

Ni =
{
z , 2z , . . . , (

n

z
− 1)z

}
(7)

i.e.
di =

n

z
− 1 (8)

where z =
∏

j pj for every j ∈ A− {l1, . . . , lr}; di and Ni are

the degree of vertex i and the set of neighbors of i ,
respectively.
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On Laplacian eigenvalues of nilpotent graph over Zn

Lemma

(iii) If
(
i , pk

)
= 1 for all 1 ≤ k ≤ t , then we get

Ni = N(Z∗n) =
{

(p1p2 . . . pt), . . . , (
t∏

i=1

psi−1
i − 1)(p1p2 . . . pt)

}
(9)

i.e.

di =
t∏

i=1

psi−1
i − 1 (10)

where di and Ni are the degree of vertex i and the set of
neighbors of i , respectively.
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On Laplacian eigenvalues of nilpotent graph over Zn

Theorem

Let Zn be a ring , where n = ps1
1 ps2

2 . . . pstt . Then some eigenvalues
of the graph are the degree of vertices.

and largest Laplacian
eigenvalue is n-1.
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On Laplacian eigenvalues of nilpotent graph over Zn

Theorem

Let Zn be a ring , where n = ps1
1 ps2

2 . . . pstt . Then some eigenvalues
of the graph are the degree of vertices. and largest Laplacian
eigenvalue is n-1.
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Some Sample Graphs

Example

Figure: ΓN(Z12)
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Some Sample Graphs

Example

Figure: ΓN(Z18)
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Some Sample Graphs

Example

Figure: ΓN(Z36)
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Some Sample Graphs

Example

Figure: ΓN(Z60)

Remark

In this graph, eigenvalues x , y , z , k , l is not integer eigenvalues
with multiplicity 1.
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Some Sample Graphs

Example

Figure: ΓN(Z60)

Remark

In this graph, eigenvalues x , y , z , k , l is not integer eigenvalues
with multiplicity 1.
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