On Laplacian Spectrum of Nilpotent Graph over \mathbb{Z}_n

Sezer SORGUN

Nevsehir Haci Bektas Veli University, Turkey srgnrzs@gmail.com

> May 18-20, 2016 SERBIA

Sezer SORGUN On Laplacian Spectrum of Nilpotent Graph over \mathbb{Z}_n

マロト イヨト イヨト

・ロト ・回ト ・ヨト ・ヨト

æ

- 1. Some Concepts of Ring Theory
- 2. Introduction to Nilpotent and Zero Divisor Graphs

- 1. Some Concepts of Ring Theory
- 2. Introduction to Nilpotent and Zero Divisor Graphs
- 3. Some Known Results for $\Gamma(R)$ and $\Gamma_N(R)$

- 1. Some Concepts of Ring Theory
- 2. Introduction to Nilpotent and Zero Divisor Graphs
- 3. Some Known Results for $\Gamma(R)$ and $\Gamma_N(R)$
- 4. The nilpotent graph over \mathbb{Z}_n

- 1. Some Concepts of Ring Theory
- 2. Introduction to Nilpotent and Zero Divisor Graphs
- 3. Some Known Results for $\Gamma(R)$ and $\Gamma_N(R)$
- 4. The nilpotent graph over \mathbb{Z}_n
- 5. On Laplacian Eigenvalues of Nilpotent Graph over \mathbb{Z}_n

An ideal *I* is a subset of a ring *R* satisfying the following axioms: I_1 (*I*,+) is subgroup of (*R*,+)

- 4 同 6 4 日 6 4 日 6

3

An ideal *I* is a subset of a ring *R* satisfying the following axioms: I_1 (*I*,+) is subgroup of (*R*,+) I_2 $\forall r \in R$ and $\forall x \in I, x \cdot a \in I, a \cdot x \in I$

- (目) - (日) - (日)

An ideal *I* is a subset of a ring *R* satisfying the following axioms: I_1 (*I*,+) is subgroup of (*R*,+) I_2 $\forall r \in R$ and $\forall x \in I, x \cdot a \in I, a \cdot x \in I$

- (目) - (日) - (日)

• A maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all proper ideals. In other words, *I* is a maximal ideal of a ring *R* if there are no other ideals contained between *I* and *R*.

- A maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all proper ideals. In other words, *I* is a maximal ideal of a ring *R* if there are no other ideals contained between *I* and *R*.
- A ring *R* is a local ring if it has a unique maximal ideal.

- A maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all proper ideals. In other words, *I* is a maximal ideal of a ring *R* if there are no other ideals contained between *I* and *R*.
- A ring *R* is a local ring if it has a unique maximal ideal.
- A ring with one element is called the null ring.

・ 回 ・ ・ ヨ ・ ・ ヨ ・

- A maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all proper ideals. In other words, *I* is a maximal ideal of a ring *R* if there are no other ideals contained between *I* and *R*.
- A ring *R* is a local ring if it has a unique maximal ideal.
- A ring with one element is called the null ring.

・ 回 ・ ・ ヨ ・ ・ ヨ ・

 An element x of a ring R, is called nilpotent if there exists some positive integer n such that xⁿ = 0.

イロト イポト イヨト イヨト

- An element x of a ring R, is called nilpotent if there exists some positive integer n such that xⁿ = 0.
- An element r of a ring R is called a left zero divisor if there exists a nonzero x such that ax = 0.Similarly, an element r of a ring is called a right zero divisor if there exists a nonzero y such that yr = 0. In commutative ring, the left and right zero divisors are the same.

- An element x of a ring R, is called nilpotent if there exists some positive integer n such that xⁿ = 0.
- An element r of a ring R is called a left zero divisor if there exists a nonzero x such that ax = 0.Similarly, an element r of a ring is called a right zero divisor if there exists a nonzero y such that yr = 0. In commutative ring, the left and right zero divisors are the same.
- Every nilpotent element of *R* is either zero or a zero-divisor.

- An element x of a ring R, is called nilpotent if there exists some positive integer n such that xⁿ = 0.
- An element r of a ring R is called a left zero divisor if there exists a nonzero x such that ax = 0.Similarly, an element r of a ring is called a right zero divisor if there exists a nonzero y such that yr = 0. In commutative ring, the left and right zero divisors are the same.
- Every nilpotent element of *R* is either zero or a zero-divisor.
- An integral domain is a nonzero commutative ring with no nonzero zero divisors.

- An element x of a ring R, is called nilpotent if there exists some positive integer n such that xⁿ = 0.
- An element r of a ring R is called a left zero divisor if there exists a nonzero x such that ax = 0.Similarly, an element r of a ring is called a right zero divisor if there exists a nonzero y such that yr = 0. In commutative ring, the left and right zero divisors are the same.
- Every nilpotent element of *R* is either zero or a zero-divisor.
- An integral domain is a nonzero commutative ring with no nonzero zero divisors.
- A ring *R* is called a reduced ring if it has no nonzero nilpotent elements

- An element x of a ring R, is called nilpotent if there exists some positive integer n such that xⁿ = 0.
- An element r of a ring R is called a left zero divisor if there exists a nonzero x such that ax = 0.Similarly, an element r of a ring is called a right zero divisor if there exists a nonzero y such that yr = 0. In commutative ring, the left and right zero divisors are the same.
- Every nilpotent element of *R* is either zero or a zero-divisor.
- An integral domain is a nonzero commutative ring with no nonzero zero divisors.
- A ring *R* is called a reduced ring if it has no nonzero nilpotent elements

Definition

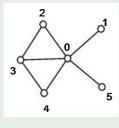
[Beck,1988] The (original) zero divisor graph of a ring R is a simple graph whose set of vertices consists of all elements of the ring, with an edge defined between a and b if and only if ab = 0.

Definition

[Beck,1988] The (original) zero divisor graph of a ring R is a simple graph whose set of vertices consists of all elements of the ring, with an edge defined between a and b if and only if ab = 0.

Example

$$R = \mathbb{Z}_6, V(R) = \mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$$



Definition

[Anderson,Livingston [4], 1999] The zero divisor graph of a ring R is a simple graph whose set of vertices consists of all (non-zero) zero divisors, with an edge defined between a and b if and only if ab = 0. It will be denoted by $\Gamma(R)$.

Definition

[Anderson,Livingston [4], 1999] The zero divisor graph of a ring R is a simple graph whose set of vertices consists of all (non-zero) zero divisors, with an edge defined between a and b if and only if ab = 0. It will be denoted by $\Gamma(R)$.

Example

$$R = \mathbb{Z}_6, V(R) = Z^*(R) = \{2, 3, 4\}$$

On Laplacian Spectrum of Nilpotent Graph over \mathbb{Z}_n

Definition

[Chen [5], 2003] The nilpotent graph of a ring R is a simple graph such that two vertices x and y are adjacent if and only if xy is nilpotent.

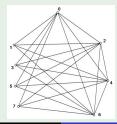
イロト イポト イヨト イヨト

Definition

[Chen [5], 2003] The nilpotent graph of a ring R is a simple graph such that two vertices x and y are adjacent if and only if xy is nilpotent.

Example

If
$$R = \mathbb{Z}_8$$
, then $N(R) = \{0, 2, 4, 6\}$ and $V(R) = \{0, 1, 2, 3, 4, 5, 6, 7\}$



Definition

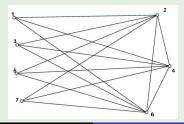
[A.Li- Q.Li [6], 2010] The nilpotent graph of R, denoted by $\Gamma_N(R)$, is a graph with vertex set $V_N(R)^*$ and two distinct vertices x and y are adjacent if and only if $xy \in N(R)$, where N(R) is the set of all nilpotent elements of R.

Definition

[A.Li- Q.Li [6], 2010] The nilpotent graph of R, denoted by $\Gamma_N(R)$, is a graph with vertex set $V_N(R)^*$ and two distinct vertices x and y are adjacent if and only if $xy \in N(R)$, where N(R) is the set of all nilpotent elements of R.

Example

$$R = \mathbb{Z}_8, V_N(R) = \{1, 2, 3, 4, 5, 6, 7\}$$



Sezer SORGUN On Laplacian Spectrum of Nilpotent Graph over \mathbb{Z}_n

Theorem

If $R = A \times B$ such that A and B are integral domain, then $\Gamma(R)$ is a complete bipartite graph.

- 4 同 2 4 日 2 4 日 2

Theorem

If $R = A \times B$ such that A and B are integral domain, then $\Gamma(R)$ is a complete bipartite graph.

Theorem

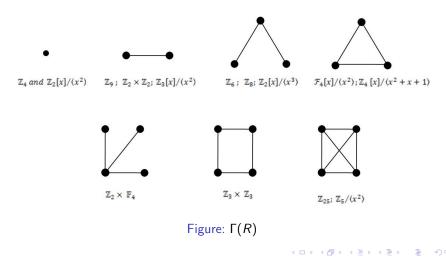
Let R be a finite commutative ring. If $\Gamma(R)$ is complete, then either $R \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ or R is a local ring with charR = p or p^2 and $|\Gamma(R)| = p^n - 1$, where p is prime and $n \ge 1$.

All possible zero divisor graph $\Gamma(R)$ with $|\Gamma(R)| \le 4$:

<ロ> (日) (日) (日) (日) (日)

3

All possible zero divisor graph $\Gamma(R)$ with $|\Gamma(R)| \le 4$:



Theorem

(Anderson et al.) Let R be commutative ring. Then,

Sezer SORGUN On Laplacian Spectrum of Nilpotent Graph over \mathbb{Z}_n

イロト イヨト イヨト イヨト

3

Theorem

(Anderson et al.) Let R be commutative ring. Then,

a $\Gamma(R)$ is finite if and only if either R is finite or R is integral domain.

イロト イポト イヨト イヨト

Theorem

(Anderson et al.) Let R be commutative ring. Then,

- a $\Gamma(R)$ is finite if and only if either R is finite or R is integral domain.
- b $\Gamma(R)$ is connected and diam $(\Gamma(R)) \leq 3$.

Theorem

(Anderson et al.) Let R be commutative ring. Then,

- a $\Gamma(R)$ is finite if and only if either R is finite or R is integral domain.
- b $\Gamma(R)$ is connected and diam $(\Gamma(R)) \leq 3$.
- c If $\Gamma(R)$ contains a cycle, then $gr(\Gamma(R)) \le 4$.(the length of the shortest cycle)

- A 同 ト - A 三 ト - A 三 ト

Theorem

(Anderson et al.) Let R be a commutative ring which is not integral domain. Then exactly one of the following holds:

- 4 同 ト - 4 三 ト

Theorem

(Anderson et al.) Let R be a commutative ring which is not integral domain. Then exactly one of the following holds:

a
$$gr(\Gamma(R)) \leq 4$$
.

- (目) - (日) - (日)

Theorem

(Anderson et al.) Let R be a commutative ring which is not integral domain. Then exactly one of the following holds:

a
$$gr(\Gamma(R)) \leq 4$$
.

b $\Gamma(R)$ is a star graph.

- 4 周 ト - 4 日 ト - 4 日 ト

Theorem

(Anderson et al.) Let R be a commutative ring which is not integral domain. Then exactly one of the following holds:

- a $gr(\Gamma(R)) \leq 4$.
- b $\Gamma(R)$ is a star graph.
- c $\Gamma(R)$ which $R \cong \mathbb{Z}_2 \times \mathbb{Z}_4$ or $R \cong \mathbb{Z}_2 \times \mathbb{Z}_2[x] / \langle x^2 \rangle$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Let \mathbb{F} be a field. The set $M_n(\mathbb{F})$ is a ring under matrix addition and matrix multiplication.

(1日) (1日) (日)

Let \mathbb{F} be a field. The set $M_n(\mathbb{F})$ is a ring under matrix addition and matrix multiplication.

Theorem

(Nikmerh, 2013) If \mathbb{F} is a field and $n \ge 3$, then $diam(\Gamma_N(M_n(F))) = 2$.

Lemma

(Nikmerh, 2013) If \mathbb{F} is a finite field and char(\mathbb{F}) = 2, then diam($\Gamma_N(M_2(F))$) = 3.

(ロ) (同) (E) (E) (E)

Lemma

(Nikmerh, 2013) If \mathbb{F} is a finite field and char(\mathbb{F}) = 2, then diam($\Gamma_N(M_2(F))$) = 3.

Lemma

(Nikmerh, 2013) If \mathbb{F} is a finite field and $n \ge 2$, then $gr(\Gamma_N(M_n(F))) = 3$.

(ロ) (同) (E) (E) (E)

Theorem

(Patra-Begum, 2015) Let $\Gamma_N(\mathbb{Z}_{p^{\alpha}q})$ be the nilpotent graph of the commutative ring $\mathbb{Z}_{p^{\alpha}q}$, where p and q are two distinct primes and α is an even positive integer. Then the graph $\Gamma_N(\mathbb{Z}_{p^{\alpha}q})$ is

< 🗇 > < 🖃 >

Theorem

(Patra-Begum, 2015) Let $\Gamma_N(\mathbb{Z}_{p^{\alpha}q})$ be the nilpotent graph of the commutative ring $\mathbb{Z}_{p^{\alpha}q}$, where p and q are two distinct primes and α is an even positive integer. Then the graph $\Gamma_N(\mathbb{Z}_{p^{\alpha}q})$ is

a
$$p^{3n}$$
- partite, if $\alpha = 4n$, $n = 1, 2, 3, ...$

< A > < > >

Theorem

(Patra-Begum, 2015) Let $\Gamma_N(\mathbb{Z}_{p^{\alpha}q})$ be the nilpotent graph of the commutative ring $\mathbb{Z}_{p^{\alpha}q}$, where p and q are two distinct primes and α is an even positive integer. Then the graph $\Gamma_N(\mathbb{Z}_{p^{\alpha}q})$ is a p^{3n} - partite, if $\alpha = 4n$, n = 1, 2, 3, ...b $p^{3n+1} + 1$ - partite, if $\alpha = 4n + 2$, n = 0, 1, 2, ...

- 4 回 ト 4 ヨ ト 4 ヨ ト

The nilpotent graph over \mathbb{Z}_n

Theorem

(Patra-Begum, 2015) If p and q are distinct primes and α is any positive integer greater than one, then diam $(\Gamma_N(\mathbb{Z}_{p^{\alpha}q})) = 2$.

イロン イヨン イヨン イヨン

The nilpotent graph over \mathbb{Z}_n

Theorem

(Patra-Begum, 2015) If p and q are distinct primes and α is any positive integer greater than one, then diam $(\Gamma_N(\mathbb{Z}_{p^{\alpha}q})) = 2$.

Theorem

(Patra-Begum, 2015) If p and q are distinct primes and α is any positive integer greater than one, then $gr(\Gamma_N(\mathbb{Z}_{p^{\alpha}q})) = 3$.

Remark

When given the ring $R = \mathbb{Z}_n$, it is well known that it has a nonzero nilpotent element if and only if n is divisible by the square of some primes.

Remark

When given the ring $R = \mathbb{Z}_n$, it is well known that it has a nonzero nilpotent element if and only if n is divisible by the square of some primes. From this fact, \mathbb{Z}_n does not have any non-zero nilpotent element when n is prime number or $n = p_1 p_2 \dots p_t$.

A (1) > A (1) > A

Remark

It is easily seen that

$$N(\mathbb{Z}_n) = \{\overline{0}, \overline{p}, 2\overline{p}, 3\overline{p}, \dots, (p^{m-1}-1)\overline{p}\}$$
(1)

- 4 同 2 4 日 2 4 日 2

Remark

It is easily seen that

$$N(\mathbb{Z}_n) = \{\overline{0}, \overline{p}, 2\overline{p}, 3\overline{p}, \dots, (p^{m-1}-1)\overline{p}\}$$
(1)

when $n = p^m$, m > 1 and

イロト イヨト イヨト イヨト

Remark

It is easily seen that

$$N(\mathbb{Z}_n) = \{\overline{0}, \overline{p}, 2\overline{p}, 3\overline{p}, \dots, (p^{m-1}-1)\overline{p}\}$$
(1)

when
$$n = p^m$$
, $m > 1$ and

$$N(\mathbb{Z}_n) = \{\overline{(p_1 p_2 \dots p_t)}, 2\overline{(p_1 p_2 \dots p_t)}, \dots, (\prod_{i=1}^t p_i^{s_i - 1} - 1)\overline{(p_1 p_2 \dots p_t)}\}$$

$$(2)$$
when $n = \prod_{i=1}^t p_i^{s_i}, t \ge 2.$

A (B) > A (B) > A (B)

Lemma

Let \mathbb{Z}_n be integer ring, where $n = p^m$ and p is a prime number. Then, the vertex set of $\Gamma_N(\mathbb{Z}_n)$ is

$$V_N(\mathbb{Z}_{p^m})^* = \mathbb{Z}_{p^m}^* \tag{3}$$

Moreover, we have $d_{\overline{i}} = p^m - 2$ for $\overline{i} \in N(\mathbb{Z}_{p^m}^*)$ and $d_{\overline{i}} = p^{m-1} - 1$ for $\overline{i} \notin N(\mathbb{Z}_{p^m}^*)$.

イロト イポト イヨト イヨト

Remark

By Lemma, we see that $\Gamma_N(\mathbb{Z}_{p^m})$ has two distinct degrees such that $\Delta = p^m - 2$ and $\delta = p^{m-1} - 1$.

イロン イヨン イヨン イヨン

Theorem

If p is a prime number then

$$S(\Gamma_N(\mathbb{Z}_{p^m})) = (0, (\delta)^{(\Delta - \delta)}, (\Delta + 1)^{(\delta)})$$
(4)

where $\Delta = p^m - 2$ and $\delta = p^{m-1} - 1$.

(ロ) (同) (E) (E) (E)

Lemma

Let $\Gamma_N(\mathbb{Z}_n)$ be graph , where $n = \prod_{i=1}^t p_i^{s_i}$, $t \ge 2$.

Sezer SORGUN On Laplacian Spectrum of Nilpotent Graph over \mathbb{Z}_n

(4月) (4日) (4日)

Lemma

Let $\Gamma_N(\mathbb{Z}_n)$ be graph , where $n = \prod_{i=1}^t p_i^{s_i}$, $t \ge 2$. (i) If $s_i = 1$ for each *i*, then

$$V_N(\mathbb{Z}_n)^* = \bigcup_{i \in I} S_{p_i}$$
(5)

where $S_{p_i} = \{p_i k : 1 \le k \le \frac{n}{p_i} - 1\}$ and $I = \{1, 2, \dots, t\}.$

- 4 同 6 4 日 6 4 日 6

Lemma

Let $\Gamma_N(\mathbb{Z}_n)$ be graph , where $n = \prod_{i=1}^t p_i^{s_i}$, $t \ge 2$. (i) If $s_i = 1$ for each *i*, then

$$V_N(\mathbb{Z}_n)^* = \bigcup_{i \in I} S_{\rho_i}$$
(5)

where $S_{p_i} = \{p_i k : 1 \le k \le \frac{n}{p_i} - 1\}$ and $I = \{1, 2, ..., t\}$. (ii) If $s_i \ge 2$ for at least *i*, then

$$V_N(\mathbb{Z}_n)^* = \mathbb{Z}_n^* \tag{6}$$

- 4 同 6 4 日 6 4 日 6

Remark

In Lemma 2.6 (i), we can easily see that the number of vertices of $\Gamma_N(\mathbb{Z}_n)$ is $n - 1 - \tau(n)$, where $\tau(n)$ is the number of positive divisors of n.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Remark

In Lemma 2.6 (i), we can easily see that the number of vertices of $\Gamma_N(\mathbb{Z}_n)$ is $n-1-\tau(n)$, where $\tau(n)$ is the number of positive divisors of n. Moreover, $\Gamma_N(\mathbb{Z}_{pq}) \cong K_{p-1,q-1}$ for p, q primes and $\Gamma_N(\mathbb{Z}_p) \cong K_0$.

- 4 周 ト - 4 日 ト - 4 日 ト

Lemma

Let's consider the graph $\Gamma_N(\mathbb{Z}_n)$, where $n = \prod_{i=1}^t p_i^{s_i}$, $t \ge 2$.

Lemma

Let's consider the graph $\Gamma_N(\mathbb{Z}_n)$, where $n = \prod_{i=1}^t p_i^{s_i}$, $t \ge 2$. (i) $d_{\overline{i}} = n - 2$ for all $\overline{i} \in N(\mathbb{Z}_n)$

(日) (同) (三) (三)

Lemma

Let's consider the graph $\Gamma_N(\mathbb{Z}_n)$, where $n = \prod_{i=1}^t p_i^{s_i}$, $t \ge 2$. (i) $d_{\overline{i}} = n - 2$ for all $\overline{i} \in N(\mathbb{Z}_n)$ (ii) If $\prod_{m=1}^{r} p_{l_m} \mid \overline{i}$ for $\overline{i} \in V_N(\mathbb{Z}_n)^*$ such that $l_1, \ldots, l_r \in A$ for $1 \leq r \leq k$ and $A = \{1, 2, \ldots, k\}$, then we get $N_{\overline{i}} = \left\{z, 2z, \ldots, \left(\frac{n}{z} - 1\right)z\right\}$ (7)i.e. $d_{\overline{i}} = \frac{n}{z} - 1$ (8)where $z = \prod_{i} p_{j}$ for every $\overline{j} \in A - \{l_{1}, \ldots, l_{r}\}$; d_{i} and $N_{\overline{i}}$ are the degree of vertex \overline{i} and the set of neighbors of \overline{i} , respectively.

Lemma

Let's consider the graph $\Gamma_N(\mathbb{Z}_n)$, where $n = \prod_{i=1}^t p_i^{s_i}$, $t \ge 2$. (i) $d_{\overline{i}} = n - 2$ for all $\overline{i} \in N(\mathbb{Z}_n)$ (ii) If $\prod_{m=1}^{r} p_{l_m} \mid \overline{i}$ for $\overline{i} \in V_N(\mathbb{Z}_n)^*$ such that $l_1, \ldots, l_r \in A$ for $1 \leq r \leq k$ and $A = \{1, 2, \ldots, k\}$, then we get $N_{\overline{i}} = \left\{z, 2z, \ldots, \left(\frac{n}{z} - 1\right)z\right\}$ (7)i.e. $d_{\overline{i}} = \frac{n}{z} - 1$ (8)where $z = \prod_{i} p_{j}$ for every $\overline{j} \in A - \{l_{1}, \ldots, l_{r}\}$; d_{i} and $N_{\overline{i}}$ are the degree of vertex \overline{i} and the set of neighbors of \overline{i} , respectively.

Lemma

(iii) If
$$(\overline{i}, p_k) = 1$$
 for all $1 \le k \le t$, then we get

$$N_{\overline{i}} = N(\mathbb{Z}_n^*) = \{\overline{(p_1 p_2 \dots p_t)}, \dots, (\prod_{i=1}^t p_i^{s_i - 1} - 1)\overline{(p_1 p_2 \dots p_t)}\}$$
(9)

i.e.

$$d_{\bar{i}} = \prod_{i=1}^{t} p_{i}^{s_{i}-1} - 1$$
 (10)

(4月) (4日) (4日)

where $d_{\overline{i}}$ and $N_{\overline{i}}$ are the degree of vertex \overline{i} and the set of neighbors of \overline{i} , respectively.

Theorem

Let \mathbb{Z}_n be a ring , where $n = p_1^{s_1} p_2^{s_2} \dots p_t^{s_t}$. Then some eigenvalues of the graph are the degree of vertices.

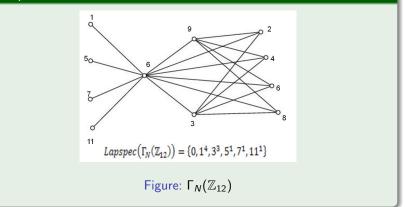
(不同) とうき くうう

Theorem

Let \mathbb{Z}_n be a ring , where $n = p_1^{s_1} p_2^{s_2} \dots p_t^{s_t}$. Then some eigenvalues of the graph are the degree of vertices. and largest Laplacian eigenvalue is n-1.

(不同) とうき くうう

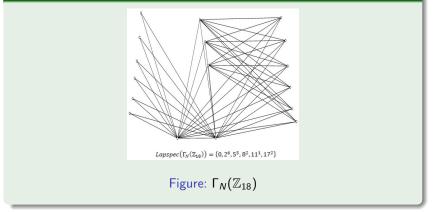
Example



< □ > < □ > < □ >

æ

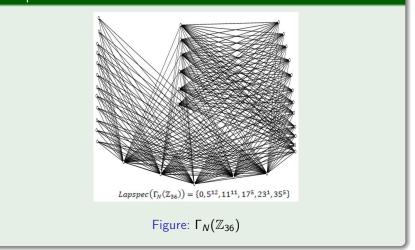
Example



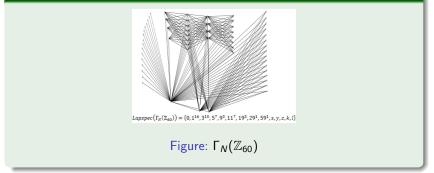
イロト イヨト イヨト イヨト

æ

Example



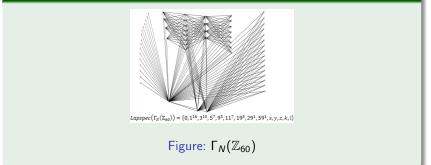
Example



イロト イヨト イヨト イヨト

æ

Example



Remark

In this graph, eigenvalues x, y, z, k, l is not integer eigenvalues with multiplicity 1.

æ

References

[1] R. Belshoff, J. Chapman, Planar zero-divisor graphs, J. Algebra. 316 (2007) 471–480.

[2] M. F. Atiyah, I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company. 1969.

[3] I. Beck, Coloring of commutative rings, J. Algebra. 116 (1988) 208-226.

[4] D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra. 217 (1999) 434-447.

[5] P. W. Chen, A kind of graph structure of rings, Algebra Colloq.. 10 (2003) 229-238.

[6] A. Li and Q. Li, A kind of graph of structure on von-Neumann regular rings, Inter. J. Algebra. 14 (6) (2010) 291-302.

[7] M. J. Nikmerh, S. Khojasteh, On the nilpotent graph of a ring, Turkish Journal of Mathematics. 37 (2013) 553 559.

[8] K. Patra, S. Begum, On the Structure of Nil, Graph of, a. 🛓 👘

THANK YOU!

Sezer SORGUN On Laplacian Spectrum of Nilpotent Graph over \mathbb{Z}_n

イロン イヨン イヨン イヨン

æ