
Locating the eigenvalues for graphs of small clique-width

Locating the eigenvalues for graphs of small
clique-width

Martin Fürer
Institut für Theoretische Informatik, ETHZ
Visiting from Pennsylvania State University

Joint work with David P. Jacobs an Vilmar Trevisan

May 19, 2016



Locating the eigenvalues for graphs of small clique-width

Introduction

Tree-width and clique-width

Tree-width

The subject started with Gaussian elimination for sparse
matrices.

Want to minimize fill-in.

Intensive study of tree-width by Robertson and Seymour.

Existence of polynomial time algorithms proved, without
providing such algorithms.

Minor closed classes of graphs. (A minor is obtained by vertex
and edge deletions and edge contractions.)



Locating the eigenvalues for graphs of small clique-width

Introduction

Tree-width and clique-width

Why tree-width?

Many combinatorial graph problems are NP-hard.

Usually, they are easy for trees.

One wants to extend feasibility to a somewhat more general
classes of graphs.

The tree-width measures similarity to trees.

Low tree-width usually implies efficient algorithms.



Locating the eigenvalues for graphs of small clique-width

Introduction

Tree-width and clique-width

Tree-width

Defined with the help of a tree-decomposition.

Tree-width tw(G): Smallest k, having a tree decomposition
with all bags of size ≤ k + 1.

There are many efficient algorithms for graphs of small
tree-width.

Courcelles (1993) theorem: O(f(k) n) time algorithms (linear
FPT) for all Monadic Second Order properties of vertices and
edges.



Locating the eigenvalues for graphs of small clique-width

Introduction

Tree-width and clique-width

Wanted: More powerful graph classes

Bounded tree-width graphs are sparse.

Most problems are easy for simple dense graphs like Kn or
Kpq.

Extend to a nice class?

Intuitive property: Easily formed by adding all edges between
two sets of vertices.

Clique-width measures the complexity of such constructions.

It is a more recently defined width parameter.



Locating the eigenvalues for graphs of small clique-width

Introduction

Tree-width and clique-width

k-expression defining a labeled graph

Label set = [k] = {1, 2, . . . , k}.
Operations:

i(v) create vertex v with label i .
ηi ,j create all edges between the vertices labeled i

and the vertices labeled j (for i 6= j).
ρi→j change all labels i to j .
⊕ disjoint union of two graphs

At the end, forget the labels.

Clique-width cw(G ) = smallest number of labels that can
produce G .

E.g., a clique of any size has clique-width 2.



Locating the eigenvalues for graphs of small clique-width

Introduction

Locating eigenvalues with Sylvester’s law of inertia

Locating eigenvalues

The number of eigenvalues grater than c is equal to the
number of positive eigenvalues of B = A− c I .

Thus the number of eigenvalues in an interval can be
determined by computing the number of positive and negative
eigenvalues of two matrices.

For regular P, the matrix PTBP is congruent to B.

Sylvester: Congruent matrices have the same number of
positive (negative) eigenvalues.

Transform B into a congruent diagonal matrix.



Locating the eigenvalues for graphs of small clique-width

The result

The result

Theorem

For graphs of bounded clique-width with a given k-expression, the
number of eigenvalues in an interval can be computed in linear
time.



Locating the eigenvalues for graphs of small clique-width

The algorithm

The shape of the matrix

The shape of the matrix Bq (congruent to B0)

Bq =



b−q+1

. . . 0
b0

0

b11 . . . b1p β1
...

...
...

...
...

...
bp1 . . . bpp βp

βT1 . . . βTp β





Locating the eigenvalues for graphs of small clique-width

The algorithm

Methodology

Methodology

For clique-width k , we focus on a small p × p submatrix
(square box), where p ≤ 2k.

Idea: We aim at the submatrix containing the rows and
columns of one representative vertex per label.

The algorithm uses the parse tree of a k-expression, and
performs matrix operations corresponding to the operations in
the k-expression.

We only use congruence operations that add a multiple of a
row and column to an other row and column respectively.



Locating the eigenvalues for graphs of small clique-width

The algorithm

The simple operations

The simple operations



β1

Box
...
βp

βT
1 . . . β

T
p


β′
1

Box′
...
β′
p

β′T
1 . . . β′T

p


⇒



β1

Box
...
βp
β′
1

Box′
...
β′
p

βT
1 . . . β

T
p β′T

1 . . . β′T
p


i(v): Focus on the 1× 1 square box of vertex v .

⊕: Focus on square box around the two given square boxes.

ηi,j : Insert some 1’s in the square box.

ρi→j record the new label.



Locating the eigenvalues for graphs of small clique-width

The algorithm

Congruency operations

Two vertices, say 1 and i have the same label: First step


a0 b0 · · · β1
b0 c0 · · · β2
...

...
...
βp

βT1 β
T
2 . . . β

T
p

⇒


a b · · · ~0
b c · · · β2
...

...
...
βp

~0TβT2 . . . β
T
p


In pictures, we omit the already diagonalized part for
simplicity.

The box represents the interesting submatrix.
~0 and the βi are (currently uninteresting) row-vectors.

We show the first step when vertices 1 and i have the same
label, implying β1 = βi .

Subtract row/column i from row/column 1.



Locating the eigenvalues for graphs of small clique-width

The algorithm

Congruency operations

Case distinction


a b · · · ~0
b c · · · β2
...

...
...
βp

~0TβT2 . . . β
T
p


Case 1: a 6= 0: Clear first row and column except for a in

diagonal.

Case 2: Top row is all 0: 0 in diagonal.

Case 3: a = 0, top row not all 0, w.l.o.g. b 6= 0.



Locating the eigenvalues for graphs of small clique-width

The algorithm

Congruency operations

The interesting Case 3


0 b · · · ~0
b c · · · β2
...

...
...
βp

~0TβT2 . . . β
T
p

⇒


0 b ~0 ~0
b c · · · β2

~0T
...

...
β′p

~0TβT2 . . . β
′T
p


Only Case 3 (a = 0) needs more work.

Add appropriate multiples of row/column 2 to clear
column/row 1 after position 2.

For some constants c3, . . . , cp, (β3, . . . , βp) gets replaced by
(β′3, . . . , β

′
p) = (β3 + c3β2, . . . , βp + cpβ2).



Locating the eigenvalues for graphs of small clique-width

The algorithm

Congruency operations

The interesting Case 3


0 b ~0 ~0
b c · · · β2

~0T
...

...
β′
p

~0TβT
2 . . . β

′T
p

⇒

−b 0 ~0 ~0

0 b ~0 ~0

~0T ~0T
...
β′
p

~0T ~0T . . . β′T
p


Add multiples of row/column 1 to clear column/row 2 after position
2.

Add (1− c/b)/2 times row/column 1 to row/column 2. Now c is b.

Add multiples of row/column 1 to all rows/colums after 2 to clear
column/row 2 after position 2.

Subtract row/column 2 from row/column 1.

Now the first two rows and columns are diagonalized.



Locating the eigenvalues for graphs of small clique-width

The algorithm

Congruency operations

Complication

Bq =


−b 0 ~0 ~0

0 b ~0 ~0

~0T ~0T
...
β′
p

~0T ~0T . . . β′T
p


β2 has disappeared as its own row vector. It is unrepresented by the
matrix Bq

It shows up in other rows as β′
i = βi + ciβ2 for i > 2.

Thus, as more entries of β2 get known, β′
i has to be updated.

When another vertex later shows up with label 2, and thus with row
vector β2, then βi can be reconstructed by subtracting ciβ2 from β′

i .



Locating the eigenvalues for graphs of small clique-width

The algorithm

Congruency operations

More complications

At the beginning, we assumed two vertices, 1 and i have the same
label and hence β1 = βi . Thus ~0 has been created by subtraction.

In reality, we subtact β′
i from β′

i .

Instead of ~0, we obtain a linear combination of the vectors of the
unrepresented vertices.

Instead of aiming at having just one row (and column) per label, we
represent up to u additional rows, where u is the number of
unrepresented vertices (which is less than the clique-width k).

The additional rows are intuitively close to ~0. They are just linear
combinations of the vectors of the unrepresented vertices.

If one more additional row is obtained, then ~0 can be linearly
combined, and we can continue as in the typical case where the
earlier Case 3 never happened.



Locating the eigenvalues for graphs of small clique-width

The algorithm

Congruency operations

The end

Thank you!


