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The Laplace matrix of a graph

e finite simple undirected Graph G = (N, E), 1

nodes N = {1,...,n},

edges EC {{ij}:ijeNi#j) licel &7 ° °
N 2-1-1 0
deg(i) 7= -1 2-1 0
e Laplacian [L(G)];j = ¢ -1 ijeE L= 1.1 3.1
0 otherwise

0 0-1 1
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edges EC {{ij}:ijeNi#j) licel &7 ° °
N 2-1-1 0
deg(i) 7= -1 2-1 0
e Laplacian [L(G)];j = ¢ -1 ijeE L= 1.1 3.1
0 otherwise 0 0-1 1

e weighted Laplacian for w > 0:
1 =11
LW(G):ZWUEU Ej = |: -1 1 ]j

jeE



Introduction

The Laplace matrix of a graph

e finite simple undirected Graph G = (N, E), 1
nodes N = {1,...,n}, 2 /]
edges EC {{i.j}:ijeN.i#j} [icE]l

N 2-1-1 0
deg(i) 7 =] 1 2-1 0
e Laplacian [L(G)];j = ¢ -1 jek L= :1 -1 _3 -1
0 otherwise 0 0-1 1

e weighted Laplacian for w > 0:

1 17
Lu(G) =D wiE;  Ej= [ 11 ]j = (ei —&)(ei — &))"
j€E

e Properties: L, = 0 (sym., pos. semidef.)

uTLyu = E wijj uTE,-J-u = E W,-J-(u,-—uj)2 >0
ijeE ijeE

A1(Ly) =0 with EV 1, X2(Ly) > 0 iff G, is connected
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The Laplacian is ubiquitous

e graph bisection [B1987,PR1995,FJ1998]
e maximum cut [DP1993,GW1995]
e TSP [CvCK1999]

e mixing rates of Markov chains/random walks
[SBXD2006,W2000]

e expander graphs [HLW2006,L1994]

e maximum variance unfolding [WS2004|

e graph embeddings [LLR1995,BC2007]

e tensegrities and rigidity theory [C1999,C2005]

e the Colin de Verdiére graph parameter [CdV1998,vdHLS1999]
e spectral graph theory [CDS1995,M1991,Ch1997,M2004,. . .|

Connections to mathematical physics via discrete Schrodinger
operators, spin models, percolation ... (infinite graphs)
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Redistribute the weights on the edges so as to optimize the eigenvalues
and study the eigenspaces of these optimized eigenvalues.



Introduction

My motivation: Why are eigenvectors to A, useful in graph bisection?
More generally,. .. [CvRS1997,BH2011,5t2015]

What connections exist between
eigenvectors (of extremal eigenvalues)
and structural properties of the graph?

Optimization helps to make characteristic properties even more apparent.

Central idea (already in [F1989]):
Redistribute the weights on the edges so as to optimize the eigenvalues
and study the eigenspaces of these optimized eigenvalues.

In particular
® minimizing the maximum eigenvalue and

e maximizing the second smallest eigenvalue
(and further ones)

are convex problems solvable by Semidefinite Programming (SDP).
SDP duality offers a new view on eigenvectors.
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LP < SDP

min (¢, x) min  (C, X)
st. (aj,x) = b; st. (A, X) = b
x>0 X>=0
x € RY. nonneg. orthant X €8}  pos. semidef. matrices
(polyhedral) (non-polyhedral)

(e,x) =3 ; cixi (C,X) = Zi,j Gij Xij



SDP/EV-Opt.

min (¢, x)
s.t. <a,-,x> = b;
x>0

LP < SDP

min  (C, X)
st. (A, X)=b;
X=0

x € RD. nonneg. orthant
(polyhedral)

X €8}  pos. semidef. matrices

(non-polyhedral)

(e,x) =3 ; cixi (C,X) = Zi,j Gij Xij
dual problem
max (b, y) max (b, y)
st. Y ,ayitz=c st. Y Ayi+Z=C
z>0 Z>0



SDP/EV-Opt.

LP <> SDP
min (¢, x) min  (C, X)
sit. (aj,x) = b; st. (A, X)=b;
x>0 X>=0
x € RD. nonneg. orthant X €8}  pos. semidef. matrices
(polyhedral) (non-polyhedral)
(e, x) =2, cixi (C,X) =221 GiXj
dual problem
max (b,y) max (b, y)
st. Y ,ayitz=c st. Y Ayi+Z=C
z>0 Z>0

primal and dual optima satisfy (if they exist)

without regularity condition with strict feasibility on one side
<C7X*> = <b’y*> <C7X*>:<b7y*>
complementarity (x*,z*) =0 complementarity X*Z* =0
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Example
min  (C, X) max y
st. (L, X)=1 st. yl+Z2=C
X =0 Z >0
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st. (I,LX)=1 st. yl+Z2=C
X=0 Zx0

dual [Z=C—yl =0 max Ast. Al X C = optimal A = A\pin(C)
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min  (C, X) max y
st. (I,LX)=1 st. yl+Z2=C
X=0 Zx0

dual [Z=C—yl =0 max Ast. Al X C = optimal A = A\pin(C)

{X=0:(,X)=1} = conv{va:<l,va>:vTv=1}
and min <C,va> = min v Cv = Amin(C)
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SDP/EV-Opt.

Example
min  (C, X) max y
st. (I,LX)=1 st. yl+Z2=C
X=0 Zx0

dual [Z=C—yl =0]: max Ast. Al = C = optimal A = Anin(C)

{X=0:(,X)=1} = conv{va:<l,va>:vTv=1}
and min <C,va> = min v Cv = Amin(C)

lIviz=1 lIvii=1

set of primal optimal solutions
conv{va : <I,VVT> :1,VTCV:)\min(C)} [v = Pu]
= conv{Puu"PT: {l,uu") =1}
= {PUPT : (I,U)y=1,U = 0}

columns of P form an orthonormal basis of the eigenspace of Ayin(C),



SDP/EV-Opt.

Example
min  (C, X) max y
st. (I,LX)=1 st. yl+Z2=C
X=0 Zx0

dual [Z=C—yl =0 max Ast. Al X C = optimal A = A\pin(C)

{X=0:(,X)=1} = conv{va : <I,va> =viv= 1}

and ”rﬂin1<C,vVT> = HmHin1 viCv = Amin(0)

set of primal optimal solutions

conv {w' : (I,w") =1,vT Cv = \nin(C)} [v = Pu]
= conv{Puu"PT: {l,uu") =1}
= {PUPT : (I,U)y=1,U = 0}

columns of P form an orthonormal basis of the eigenspace of Ayin(C)
each optimal X = PUPT satisfies complementarity (Amin/ — C)X =0
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The Absolute Algebraic Connectivity as SDP

introduced by [Fiedler 1989]
(see also: fastest mixing Markov process on a graph [SBXD2006])

max A2(Lw) W= {weRE: ZEW,J =1} [= |E| orig.]
e
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The Absolute Algebraic Connectivity as SDP

introduced by [Fiedler 1989]
(see also: fastest mixing Markov process on a graph [SBXD2006])

max A2(Lw) W= {weRE: Z w; =1} [= |E| orig.]
icE
reformulated as a (dual) SDP: [M = L, + p11T for p large enough]
max A

st YowyEj+pllT — X =0

ZW,'J':].
wij >0 (ij € E), ,pueR
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The Absolute Algebraic Connectivity as SDP

introduced by [Fiedler 1989]
(see also: fastest mixing Markov process on a graph [SBXD2006])

max A2(Lw) W= {weRE: Z w; =1} [= |E] orig.]
icE
reformulated as a (dual) SDP: [M = L, + p11T for p large enough]
max A
st YowyEj+pllT — X =0
2wy =1

wij >0 (ij € E), ,pueR

A connected graph G yields A* > 0



Introduction SDP/EV-Opt. Embeddings Eigenvectors and Separators  Tree-Width  Rotational Dimension  Outlook

The Absolute Algebraic Connectivity as SDP

introduced by [Fiedler 1989]
(see also: fastest mixing Markov process on a graph [SBXD2006])

max A2(Lw) W= {weRE: Z w; =1} [= |E] orig.]
icE
reformulated as a (dual) SDP: [M = L, + p11T for p large enough]
max A

E. T_ min > wjj
st 2wkt plT = A =0 sl SR 1T

§W,-j:1 .10 ..
E3 >
wij >0 (jeE), ,peR ’ wj 20 (j € E), peR

A connected graph G yields A\* > 0 e minimize weights for Aa(Ly,) = 1.
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The Absolute Algebraic Connectivity as SDP

introduced by [Fiedler 1989]
(see also: fastest mixing Markov process on a graph [SBXD2006])

max A2(Lw) W= {weRE: Z w; =1} [= |E] orig.]
icE
reformulated as a (dual) SDP: [M = L, + p11T for p large enough]
max A

E. T_ min > wjj
st 2wkt pllT =M =0 e S e 1T X

§W,-j:1 .10 ..
E3 >
wij >0 (jeE), ,peR ’ wj 20 (j € E), peR

A connected graph G yields A\* > 0 e minimize weights for Aa(Ly,) = 1.

(1, %)
(117, X) =0
(Ej, X) < 1(ij € E)
X =0

max
s.t.
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The Absolute Algebraic Connectivity as SDP

introduced by [Fiedler 1989]
(see also: fastest mixing Markov process on a graph [SBXD2006])

max A2(Lw) W= {weRE: Z w; =1} [= |E] orig.]
icE
reformulated as a (dual) SDP: [M = L, + p11T for p large enough]
max A

= T _\ > minzwij
st 2wkt pllT =M =0 e S e 1T X

§W,-j:1 .10 ..
E3 >
wij >0 (jeE), ,peR ’ wj 20 (j € E), peR

A connected graph G yields A\* > 0 e minimize weights for Aa(Ly,) = 1.

max (I, X)

s.t. <1TX>_0
E5, X) 1 (ij € E)
X =0

Optima have the form X* = PUPT for an eigenspace basis P of \a(L, ).
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Embedding Interpretation of this SDP [GHW2008]
idea based on vector labellings of [L1979], see also [LLR1995]

min ([, X)

s.t. <11T,X>:O
(Ej, X) <1 (jj € E)
X >0

For X = VTV = 0 the Gram matrix of V = [vi,...,v,] we have

=yl
XU_Vi Vi,
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Embedding Interpretation of this SDP [GHW2008]
idea based on vector labellings of [L1979], see also [LLR1995]

min ([, X)

s.t. <11T,X>:O
(Ej, X) <1 (jj € E)
X >0

For X = VTV = 0 the Gram matrix of V = [vi,...,v,] we have

Xj=vilv, so Xi=|vi* and (X)) =3 |vl?

1

[recall (A, B) = 3=, ; AijBjl-
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min ([, X)
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Embedding Interpretation of this SDP [GHW2008]
idea based on vector labellings of [L1979], see also [LLR1995]

min ([, X) min e vil? =1

st. (117, X) =0 ., st YienVvi=0
(Ej, X) <1 (j € E) lvi = vjlI> <1 (ij € E)
X >0 vi e R" (i € N)

For X = VTV = 0 the Gram matrix of V = [v1,...,v,] we have

Xj=vilv, so Xi=|vi|* and (X)) =3 |vl?

1

[recall (A, B) =3, ; AjiBjj]. Likewise,

(Ej, X) = ill* = 2vTv; + [ ]1* = llvi = 117

(117, X) =1TvTV1=0, thus V1= v; =0
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Embedding Interpretation of this SDP [GHW2008]
idea based on vector labellings of [L1979], see also [LLR1995]

min ([, X) min ZieNHV"HZ:]'

st. (117, X) =0 ., st YienVvi=0
(Ej, X) <1(j € E) lvi — il <1 (ij € E)
X >0 vi e R" (i € N)

For X = VTV = 0 the Gram matrix of V = [v1,...,v,] we have

Xj=vilvi, so Xi=|vl*> and (I,X)=3vl?
[recall (A, B) =3, ; AjiBjj]. Likewise,
(Ejp, X) = [lvill> = 2 v; + v 1? = [lvi — I
(117, X) =1TvTV1=0, thus V1= v; =0

Spread out v; € R" for i € N as far apart as possible with
barycenter in the origin and distances at most 1 for, ij € E.
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Tensegrities [Connelly1998|

Bars, cables or struts link vertices
under tension so as to form an integrity

— graph with edges of fixed/max/min length

andydoro.com /tensegrity
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Tensegrities [Connelly1998|

Bars, cables or struts link vertices
under tension so as to form an integrity

— graph with edges of fixed/max/min length

andydoro.com /tensegrity

In equilibrium, all tensions wj; (positive/negative) along the edges ij
must cancel out in each vertex v; € R" (i € N),

forie N: Z wii(vi—vj) =0 [compl.]
JijeE

Such wj; define an equilibrium stress and lead to stress matrix €2
with Qj = —wj; for ij € E, Qj; =3 ;g wj and = 0 otherwise.
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Tensegrities [Connelly1998|

Bars, cables or struts link vertices
under tension so as to form an integrity

— graph with edges of fixed/max/min length

andydoro.com /tensegrity

In equilibrium, all tensions wj; (positive/negative) along the edges ij
must cancel out in each vertex v; € R" (i € N),

forie N: Z wii(vi—vj) =0 [compl.]
Jij€E
Such wj; define an equilibrium stress and lead to stress matrix €2
with Q; = —wj; for ij € E, Qji = > ;.. g wjj and = 0 otherwise.

Note: 2 = L, and the tensions w may be interpreted as Lagrange
multipliers of a corresponding optimization problem.

jeE
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Example for max,cw A2(Ly):
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original graph (random)
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a rotational embedding (2D)
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Example for max,cw A2(Ly):

original graph (random)

e wj; show the tension on edges,
w;;=0 for non tight edges

Tree-Width  Rotational Dimension  Outlook

® 4

0T 02 03 o4 05 08 07 08 0o 1

1
25|
9
28
15} o
1 ’ 2030
03] p <
o °
17,18
03]
itz —
1
a5 2
15}
5
2|
25|

ETI - T [

a rotational embedding (2D)
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Example for max,cw A2(Lw):

original graph (random)
e wj; show the tension on edges,
w;;=0 for non tight edges

e embedding V = [vi,...,v,] € Rkx"
and p € R yield eigenvector u = VTp

— “map” of eigenvectors to A
(need not be the entire eigenspace)

a rotational embedding (2D)
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Example for max,cw A2(Lw):

{

® 2]

original graph (random) optimal weights for \»
e wj; show the tension on edges,
w;;=0 for non tight edges f

o embedding V = [v1,...,v)] e RF*" 1 —~_

and p € R yield eigenvector u = V'p - i} o
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— "map” of eigenvectors to A» 1 Na
(need not be the entire eigenspace)

25|

e interpretation as oscillation (?) S
a rotational embedding (2D)



Embeddings

Example for max,cw A2(Lw):

{

® 2]

original graph (random) optimal weights for \»
e wj; show the tension on edges,
w;;=0 for non tight edges f

o embedding V = [v1,...,v)] e RF*" 1 —~_

and p € R¥ yield eigenvector u = V'p | I .

“os|

— "map” of eigenvectors to A» 1 Na
(need not be the entire eigenspace)

25|

e interpretation as oscillation (?) R
o What about A\pax? a rotational embedding (2D)



Embeddings

Symmetric arguments lead to an embedding for .« [GHR2012]

maxywew A2(Lw)

minWEW Ama><(LW)

as SDP:
max A min A
s.t. ZijGE W,'J'E,'j—‘rull-r = Al s.t. ZijeE W,JE =M
1"w=1,w>0 1"w=1,w>0
divide by Agpe >0
min 17w max 17w
s.t. ZijEE WUEU + ,ullT =1 s.t. Z/jeE W,JEU =<1
w>0 w>0
dualize
max (I, X) .
! min  (/, X)
< ?
st <E’J’X>*1’ jek st. (E;p,X)>1, jekE
{17, X) = X0
X =0 -
embedding: set X = VTV with V = [vy,..., v,]
max 3 [|v|? min 3 [lvi]?
st. vi-ylP<1, jeE st vi-vlP=1, ek
ZV;:O,V;ER" v; € R”
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Example comparing max,, A\2(L,) to min, Amax(Ly)

1

s 7

-2 27

an

1

2030

i1z %

ETEa— s o0 05 1 15 2 25

optimal Ax-embedding (2D!)

cables, G folds “outwards”

an

of O A,
\ 22
LE y
e
o1
o
b
agl 7 4
7
o8 .
27 6
ot €7 )
o3
02 .
g
o
e T

optimal Apax-embedding (14D7)
struts, G folds “inwards”
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What connections exist between
eigenvectors of extremal eigenvalues
and structural properties of the graph?
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wgy Aalbw)

Connections to structural properties . ..

While extremal eigenvalues are related to cuts,
the corresponding eigenvectors seem related to vertex separators.
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While extremal eigenvalues are related to cuts,
the corresponding eigenvectors seem related to vertex separators.

S C N is a (vertex) separator of G = (N, E), if deleting S and its
incident edges increases the number of connected components.

S



Eigenvectors and Separators

What connections exist between
eigenvectors of extremal eigenvalues
and structural properties of the graph?

Ly
wgy Aalbw)

Connections to structural properties . ..

While extremal eigenvalues are related to cuts,
the corresponding eigenvectors seem related to vertex separators.

S C N is a (vertex) separator of G = (N, E), if deleting S and its
incident edges increases the number of connected components.

2

A



Introduction  SDP/EV-Opt Embeddings Eigenvectors and Separators  Tree-Width  Rotational Dimension  Outlook

Recall, projection onto any one-dimensional subspace yields an EV

70,1142

25 -2 -15 1 -05 0 05 1 15 2 25

original graph

optimal weights for s
G folds outwards
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Rotational view: nodes are hinges, separated parts dangle outwards

ot 91,12 26 oot €

4,15 20

25 -2 -15 1 -05 0 05 1 15 2 25

original graph

optimal weights for s
G folds outwards
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Rotational view: nodes are hinges, separated parts dangle outwards

29,30

=2 6,11,12 26

4,15 20

optimal weights for s
G folds outwards

original graph
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Rotational view: nodes are hinges, separated parts dangle outwards

e 1112 &N

2 222 o4

B
w5 20 o9
15 VA 0
2 o1
25 5

25 2 15 1 05 0 05 1 15 2 25

’ original graph
optimal weights for A snate

G folds outwards

If the origin is the sun,
the convex hull of the separator blocks the light for separated nodes,
“separated parts lie in the shadow of the separator”.



Eigenvectors and Separators

Separators and Optimality of Embeddings [GHW08,GHR12]

Given optimal v; € R", i € N, of a connected graph G = (N, E)
and a separator S C N separating G into node sets C;, (; so that
no edges run between C; and G, let 8 ={v;:i € S}.

A2(Lw) Amax(Lw)
Separator-Shadow Th.
For at least one j € {1,2}
[vi,0]Nconv8 # 0 Vie G




Eigenvectors and Separators

Separators and Optimality of Embeddings [GHW08,GHR12]

Given optimal v; € R", i € N, of a connected graph G = (N, E)
and a separator S C N separating G into node sets C;, (; so that
no edges run between C; and G, let 8 ={v;:i € S}.

A2(Lw) Amax(Lw)
Separator-Shadow Th.
For at least one j € {1,2}
[vi,0]Nconv8 # 0 Vie G

geometric proof idea:
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Sketch of Proof:

Assume, for contradiction, the theorem does not hold, then w.l.o.g.
there are points vy, v, with 1 € G, 2 € G and [0, ]NS8 =0 = [0, ] NS.
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Sketch of Proof:

Assume, for contradiction, the theorem does not hold, then w.l.o.g.
there are points vy, v, with 1 € G, 2 € G and [0, ]NS8 =0 = [0, ] NS.

bT x < B; separates [0, v;] from 8 choose « € [0,1] so that both
CGN{x:b"x<pB}#0

b b b
[5 ] _a{ﬂi } +(1_a)[5§] >-vi =0 = lin. dep., thus h exists

Verify: epsilon movement improves solution = contradiction to optimality [
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Separators and Optimality of Embeddings [GHW08,GHR12]

Given optimal v; € R", i € N, of a connected graph G = (N, E)
and a separator S C N separating G into node sets C;, (; so that
no edges run between C; and G, let 8 ={v;:i € S}.

A2(Lw) Amax(Lw)
Separator-Shadow Th.
For at least one j € {1,2}
[vi,0]Nconv8 # 0 Vie G

geometric proof idea:
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Separators and Optimality of Embeddings [GHW08,GHR12]

Given optimal v; € R", i € N, of a connected graph G = (N, E)
and a separator S C N separating G into node sets C;, (; so that
no edges run between C; and G, let 8 ={v;:i € S}.

A2(Ly) Amax(Lw)

Separator-Shadow Th. Separator’s Sunny Side Th.
For at least one j € {1,2} Let v; = %},‘Ziecj vi, j € {1,2},
[vi,0] Nconv8 # 0 Vie G be the barycenter of C;, then

v; € aff(8) — cone(8) for j € {1,2}
geometric proof idea: geometric proof idea:




Tree-Width

When do there exist
optimal embeddings of small dimension?

an optimal Ao-embedding an optimal Apmax-embedding
2D! 14D7?



Tree-Width

Tree-Width [Halin1976(cf. Diestel2000),RS]

Given G = (N, E),
let T=(N,¢&) be atree with N C 2V and € C (j;f) so that

(i) N= UUeN U.

(i) For every e € E thereis a U € N with e C U.

(III) If Ui, Uy, U3 € N with Us on the T—path from U; to Us,

then U; N U3 C Us.

Then T is called a tree-decomposition of G.
The width of T is the number max{|U| —1: U € N}.
The tree-width tw(G) is the least width of any tree-decomposition.

DI

[e9)

Any U €N and any UN U’ with {U,U'} € € is a separator of G.
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Existence of low dimensional solutions [GHW08,GHR12]
)\2(LW) )\max(Lw)

Tree-Width Bound

There exists an optimal embedding of
dimension at most
tw(G)+1




Tree-Width

Existence of low dimensional solutions [GHW08,GHR12]
)\2(LW) )\max(LW)

Tree-Width Bound

There exists an optimal embedding of
dimension at most
tw(G)+1

needs separator shadow + involved
result for separators with 0 € conv 8

algorithmic proof idea:

given a tree decomposition,
start at a 0-node,

try to flatten all adjacent nodes
or move on to the next 0-node




(ii)

(iii)

Tree-Width

Theorem [Separators Containing the Origin] [GHWO03]
Let v; € R" for i € N be an optimal solution of (EMB) for a connected
graph G = (N,E) and let S C N with 0 € S = conv{vs : s € S} be a
separator in G inducing a partition (S, Cy, ..., C,) of N so that no node

in C; is adjacent to a node in G, for j # h, j,he M= {1,...,m}. Set

£ =span$ and, for j € M, §; =3 ¢ [lpg+ (vi)l]-

If 65> > jemn g3 0 for one ] € M then there exist h € £+ and an optimal
embedding v/ € R" of (EMB) with v/ = v; for i € S,

vi € L+span{h,vi:i€ G}forie Gand v € L+{63 ;cc v/ 16 >0} for
i € Ujem g5 G- If. in addition, there exists b e span{v; : i € G}, ||b]| =1
so that (b, v;) > 0 for all i € Cj, then such an embedding exists with h = 0.
If 05 < 35 ;cmn g5 0 for all 7 € M then there exist vectors di, da, d3 € £,
||d1|| = ||d2H = ||d3H =1 With dlm span{d17d2, d3} S 2, bj S {dl,dz, d3},

J € M, and an optimal embedding v/ € R", i € N, of (EMB) with v/ = v; for
i € S so that for each j € M we have v/ € £L 4 {0b; : 6 > 0} for all i € C.
One may assume b; = d; for at most one j € M.

If, in case (ii), the index 7 € M is the only j € M satisfying b; = d; and at
most |S| — 1 nodes of S are adjacent to nodes in Cj, then there is an optimal
embedding of dimension at most |S|.




Tree-Width
initial embedding (o1 >0+...4+m
— dim(S, 7)

(i) 01 <2+ ...+ m (iii) if (ii) A j single A |Sj] < |S]
— dim(S) +1
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Existence of low dimensional solutions [GHW08,GHR12]
)\2(LW) )\max(LW)

Tree-Width Bound

There exists an optimal embedding of
dimension at most
tw(G)+1

needs separator shadow + involved
result for separators with 0 € conv 8

algorithmic proof idea:

given a tree decomposition,
start at a 0-node,

try to flatten all adjacent nodes
or move on to the next 0-node




Tree-Width

Existence of low dimensional solutions [GHW08,GHR12]

A2(Lw)

)\max(Lw)

Tree-Width Bound

There exists an optimal embedding of
dimension at most
tw(G)+1

Tree-Width Bound

There exists an optimal embedding of
dimension at most
tw(G) +1

needs separator shadow + involved
result for separators with 0 € conv 8

algorithmic proof idea:

given a tree decomposition,
start at a 0-node,

try to flatten all adjacent nodes
or move on to the next 0-node

Obs.: in separated sets no forces
interact outside separator space.

algorithmic proof idea:

given a tree decomposition, find a node
S with maximal dim(lin(8)).

For adjacent nodes U,

rotate basis of U outside lin(S N V)
into lin(8), continue recursively




Tree-Width

The Tree-Width bounds are sharp [GHWO08,GHR12]

A2(Lw)

)\max(Lw)

For n > 4, connect three
vertices completely to K,
tw(G)=n, dim=n+1

W/

4

7

/5
g

Connect n vertices completely to
K, delete a perfect matching
tw(G)=n, dim=n+1




Tree-Width
Computing Weights Combinatorially
)\2(LW) )\max(Lw)

separator shadow for trees
— absolute center of gravity
[F1990,W2013]
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S

explicit formulas for double
brooms [RR2016]




Tree-Width

Computing Weights Combinatorially

)‘2(LW)

)\max(Lw)

separator shadow for trees
— absolute center of gravity
[F1990,W2013]

S —eo oco—3 3

S

explicit formulas for double
brooms [RR2016]

3 1-dim opt. emb. iff bipartite
[GHR2012,HRS2015]

U§X
v
w y
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Computing Weights Combinatorially

A2(Ly)

)\max(Lw)

separator shadow for trees

— absolute center of gravity
[F1990,W2013]

——eeo—3 —3

S

explicit formulas for double
brooms [RR2016]

3 1-dim opt. emb. iff bipartite
[GHR2012,HRS2015]

U§X

v

w y

splits bipartite graphs into balanced

components [F1993, HRS2015]
1

2

N[

I[
I
x

u
v,

E

o—*oy

2
3

Wl




Introduction SDP/EV-Opt Embeddings  Eigenvectors and Separators  Tree-Width Rotational Dimension  Outlook
Computing Weights Combinatorially
)\2(LW) )\max(Lw)

separator shadow for trees

— absolute center of gravity 3 1-dim opt. emb. iff bipartite
[F1990,W2013] [GHR2012,HRS2015]

u X
S —eo oco—3 3 v
w ;:y
splits bipartite graphs into balanced
components [F1993, HRS2015]

_1 1
explicit formulas for double uO2‘—‘2x
brooms [RR2016] ViWo———==ey

Wl

3
comb. alg. for trees and bipartite
graphs [HRS2015] (cmp. [P1995])

_1 1
2 2
o0—0———0—9
_1 2
3 3
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Rotational Dimension of a Graph [GHW2011]

Given connected G = (N, E), node weights s; > 0, edge lengths /;; > 0,

max Y sillvill®
s.t. Z si;vi =0
EMB(s, / ieN
(=) Vi-vlP<l ek
vi € R" for i € N.
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Rotational Dimension of a Graph [GHW2011]

Given connected G = (N, E), node weights s; > 0, edge lengths /;; > 0,

max 32 cp sillvill?

s.t. ZIEN sivi=0
li—vlP<ly jeE
vi € R" for i € N.

EMB(s, /)

Minimal dimension of an optimal solution for weights s and length /
dimg(s, /) = min{dimspan{v; : i € N} : v; optimal for EMB(s, /)}
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Rotational Dimension of a Graph [GHW2011]

Given connected G = (N, E), node weights s; > 0, edge lengths /;; > 0,

max 3 sillvill?

s.t. ZIEN si;vi =0
li—vlP<ly jeE
vi € R" for i € N.

EMB(s, /)

Minimal dimension of an optimal solution for weights s and length /
dimg(s, /) = min{dimspan{v; : i € N} : v; optimal for EMB(s, /)}

Rotational Dimension of G = (N, E):

e G connected: rotdim(G) = max{dlmG(s N:sezl 1ezt}
=(0,0) rotdim(G) :=
(G

e G not connected: rotdim(G) := max{rotdlm(C) : C is a component of G}




Rotational Dimension

Rotational Dimension of a Graph [GHW2011]
Given connected G = (N, E), node weights s; > 0, edge lengths /;; > 0,
max 3 sillvill?

s.t. Z si;vi =0
EMB(s, / ieN
(51) Vi—ulR<l  GeE

vi € R" for i € N.
Minimal dimension of an optimal solution for weights s and length /
dimg(s, /) = min{dimspan{v; : i € N} : v; optimal for EMB(s, /)}

Rotational Dimension of G = (N, E):
e G connected: rotdim(G) := max{dimg(s,/) : s € ZV,1 € ZE}

o G =(0,0) rotdim(G) := —1

e G not connected: rotdim(G) := max{rotdim(C) : C is a component of G}

One can prove (for connected G):

rotdim(G) = max{dimg(s,/):s € RY 1 e RE}
= max{dimg(s,/) : s e RY /e RE_}

Observation The rotational dimension is a minor monotone graph.parameter.




Rotational Dimension

Results for the Rotational Dimension [GHW2011]
Theorem [Separator-Shadow]

Let v; € R", i € N, be optimal for EMB(s, /) for a connected G = (N, E),
let CG;GUSUG, partition N so that no node in C; is adjacent to a node in G,.
Then, for at least one j € {1,2}, for every i € C; the straight line segment
[0, v;] intersects the convex hull of the points in S.

Theorem [Tree-Width]

Given a connected graph G = (N, E) with node weights s € RY and edge
lengths / € RE, there exists on optimal solution of EMB(s, /) having
dimension at most tree-width of G plus one.

Forbidden Minor Characterizations
o rotdim(G) < 0 < all components are nodes (forbidden K>)

e rotdim(G) < 1 < all components are paths (forbidden K3, Ki3)
o rotdim(G) < 2 < all components are outerplanar (forbidden Ky, K3 3)
Open: rotdim(G) < 37 [forbidden K5, but rotdim(Ks33) = 3]
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Conclusion and Outlook

e Semidefinite optimization helps to analyze and understand
spectral graph properties related to extremal eigenvalues.
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Gram dimension of a graph [LV2014].
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Conclusion and Outlook

Semidefinite optimization helps to analyze and understand
spectral graph properties related to extremal eigenvalues.

Eigenvectors to extremal eigenvalues show tight connections to
vertex separators.

See [HR2010] for an embedding formulation for unweighted A,
and Amax.

Many results can be transferred to weightings minimizing the
spectral width Apax — A2 — sparsest cut? [GHR2013].
For which graph classes is it possible to improve the tree-width
bound on the existence of low-dimensional solutions?

The rotational dimension (worst minimal Az-dimension over all
node-weights and edge-lengths) seems tightly related to the

Colin de Verdiére graph parameter p (is rotdim < p?) and the
Gram dimension of a graph [LV2014].

What is the forbidden minor characterization for rotdim < 37
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Thank You for Your attention!
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Thank You for Your attention!

Many happy returns!
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A Graph Realization for Fiedler Vectors [HR2010]

Fiedler vectors: eigenvectors to \x(L(G))
Idea: Try to spread out the vertices even further by redistributing
the edge lengths — [; for jj € E
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A Graph Realization for Fiedler Vectors [HR2010]

Fiedler vectors: eigenvectors to \x(L(G))

Idea: Try to spread out the vertices even further by redistributing
the edge lengths — [; for jj € E

To obtain an SDP: bound the edge lengths by > /,-12- < |E]

max  >Z;c [ vill?
st vi—yl <l (j€E),
(F) ZIEN vé: 07
jee lj < |EI;
I €RE, v; e R" (i € N)
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A Graph Realization for Fiedler Vectors [HR2010]
Fiedler vectors: eigenvectors to \x(L(G))
Idea: Try to spread out the vertices even further by redistributing

the edge lengths — [; for jj € E
To obtain an SDP: bound the edge lengths by > /,-12- < |E]

112
n;atx HZV’G—N\UWL /- (,J c E) |w~~ min \E|p T
.t. ; < [; ’ ,
(F) Z'EN {/,' — OJ |/LJ s.t. ZUGE W’JE’J +Mee t I7
' , e — .
Zi'EE /12 < |E|7 |p p_WUE—O fOI’I_]E E7
’ ' W€R+7PZO7LLER

I €RE, v; e R" (i € N)
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A Graph Realization for Fiedler Vectors [HR2010]
Fiedler vectors: eigenvectors to \x(L(G))
Idea: Try to spread out the vertices even further by redistributing

the edge lengths — [; for jj € E
To obtain an SDP: bound the edge lengths by > /,-12- < |E]

2112
.t. f < [; ’ ’
(F) Z'EN :/,' — OJ |/LJ s.t. ZUGE W’JE’J +Mee t /7
' , e — .
ZlHEE /12 < |E|7 |p p_WUE—O fOI’I_]E E7
’ ' W€R+7PZO7LLER

leRE, v; e R" (i € N)

Theorem. For G = (N, E) connected and V = [w, ..., v,] optimal for (F),

Sien lVill? = /\2(‘LE(|G)) and V' Tuis an eigenvector of A\o(L(G)) for u € R".




A Graph Realization for Fiedler Vectors [HR2010]

Fiedler vectors: eigenvectors to \x(L(G))

Idea: Try to spread out the vertices even further by redistributing
the edge lengths — [; for jj € E

To obtain an SDP: bound the edge lengths by > /,-12- < |E]

2112
.t. f < [; 7 ’
(F) Z'EN (/,' — OJ |/LJ s.t. ZUGE W’JEU +Mee t /7
' , e — .
Z/'EE /12 < |E|7 |p p_WUE—O fOI’I_]E E7
’ ' W€R+7PZO7LLER

leRE, v; e R" (i € N)

Theorem. For G = (N, E) connected and V = [w, ..., v,] optimal for (F),

Sien lVill? = /\2(‘LE(|G)) and  VTuis an eigenvector of \(L(G)) for u € R,

Theorem. G = (N, E) connected, u € R”, ||u|| = 1 eigenvector to X2(L(G)),
then X = )\Z(If(‘c))uu—r and /,-12- = %(u; — uj)?, ij € E is optimal for (F).




A Graph Realization for Fiedler Vectors [HR2010]

Fiedler vectors: eigenvectors to \x(L(G))

Idea: Try to spread out the vertices even further by redistributing
the edge lengths — [; for jj € E

To obtain an SDP: bound the edge lengths by > /,-12- < |E]

max >3y [[vil?

.. min |E|p
st. |lvi—v|| <l (HeE), |w;
(F) HZ’ {/H: 0” ( ) IHU st > jce Wiy + pee =1,
ieNn p—w; =0 forij€E,
Z/jeE /,_, S |E|a |p J

E
I€RE, v; e R" (i € N) weRE p>0,peR

Theorem. For G = (N, E) connected and V = [w, ..., v,] optimal for (F),

Sien lVill? = /\2(‘LE(|G)) and V' Tuis an eigenvector of A\o(L(G)) for u € R".

Theorem. G = (N, E) connected, u € R”, ||u|| = 1 eigenvector to X2(L(G)),

then X = )\Z(If(‘c))uu—r and /,-12- = %(u; — uj)?, ij € E is optimal for (F).

= Maximum rank optimal solution gives a map of the eigenspace of A\(L(G)).

The same works out for Amax, as well.
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