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Introduction to the Geometric-Arithmetic index

◮ Abstract. The geometric-arithmetic indexGA(G) of a graph
is defined as sum of weights of all edges of graph. The weight
of one edge is quotient of the geometric and arithmetic mean of

degrees of its end vertices2
√
dudv

du+dv
. The predictive power of GA

for physico-chemical properties is somewhat better than the
predictive power of other connectivity indices. LetG(k, n) be
the set of connected simple n-vertex graphs with minimum
vertex degreek. We give a conjecture about lower bounds and
structure of extremal graphs of this index forn-vertex graphs
with given minimum degreek.
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structure of extremal graphs of this index forn-vertex graphs
with given minimum degreek.
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Introduction to the Geometric-Arithmetic index

◮ G = G(k, n) – simple connectedn-vertex graphs with
δ(G) = k.
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17 D. Vukičevíc, B. Furtula,Topological index based on the
ratios of geometrical and arithmetical means of end -vertex
degrees of edges, Journal of Mathematical Chemistry, Vol. 46,
Issue 2 (2009), 1369-1376.
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Introduction to the Geometric-Arithmetic index

◮ G = G(k, n) – simple connectedn-vertex graphs with
δ(G) = k.

◮ u - a vertex ofG, d(u) - the degree of this vertex.(uv) -an edge
whose endpoints are the verticesu andv.

17 D. Vukičevíc, B. Furtula,Topological index based on the
ratios of geometrical and arithmetical means of end -vertex
degrees of edges, Journal of Mathematical Chemistry, Vol. 46,
Issue 2 (2009), 1369-1376.

◮ The Geometric-Arithmetic is:

GA(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
,

where the summation goes over all edgesuv of G.
Conference 2016 – p. 3/35



Introduction to the Geometric-Arithmetic index
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Introduction to the Geometric-Arithmetic index

◮ In fact, this index belongs to wider class of so-called
geometric-arithmetic general topological indices. A class of
geometric-arithmetic general topological indices is defined in
[9]

GAgeneral(G) =
∑

uv∈E(G)

2
√
QuQv

Qu +Qv

,

whereQu is some quantity that (in a unique manner) can be
associated with the vertexu of the graphG.

It is easy to recognize thatGA is the first representative of this
class obtained by settingQu = du.

Conference 2016 – p. 5/35



Introduction to the Geometric-Arithmetic index

◮ In fact, this index belongs to wider class of so-called
geometric-arithmetic general topological indices. A class of
geometric-arithmetic general topological indices is defined in
[9]

GAgeneral(G) =
∑

uv∈E(G)

2
√
QuQv

Qu +Qv

,

whereQu is some quantity that (in a unique manner) can be
associated with the vertexu of the graphG.

It is easy to recognize thatGA is the first representative of this
class obtained by settingQu = du.

◮ [9] G. Fath-Tabar, B. Furtula, I. Gutman,A new
geometric-arithmetic index, Journal of Mathematical
Chemistry, Vol. 47, Issue 1 (2010), 477-486.
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Introduction to the Geometric-Arithmetic index

◮ The second member of this class was considered by Fath-Tabar
et al. [9] by settingQu to be the numbernu of vertices ofG
lying closer to the vertexu than to the vertexv for the edgeuv
of the graphG:

GA2(G) =
∑

uv∈E(G)

2
√
nunv

nu + nv

.
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lower and upper bounds.
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◮ The second member of this class was considered by Fath-Tabar
et al. [9] by settingQu to be the numbernu of vertices ofG
lying closer to the vertexu than to the vertexv for the edgeuv
of the graphG:

GA2(G) =
∑

uv∈E(G)

2
√
nunv

nu + nv

.

◮ In [9] the main properties ofGA2 were established, including
lower and upper bounds.

◮ Zhou et al. [19] proposed a third member of the class of
GAgeneral by settingQu to be the numbermu of the edges of
G, lying closer to vertexu than to vertexv.
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Known results for the Geometric-Arithmetic index

◮ It is noted in [17] that the predictive power ofGA for
physico-chemical properties ( boiling point, entropy, enthalpy
and standard enthalpy of vaporisation, enthalpy of formation,
acentric factor ) is somewhat better than the predictive power
of the Randíc connectivity index.
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◮ It is noted in [17] that the predictive power ofGA for
physico-chemical properties ( boiling point, entropy, enthalpy
and standard enthalpy of vaporisation, enthalpy of formation,
acentric factor ) is somewhat better than the predictive power
of the Randíc connectivity index.

◮ In [17] Vukičevíc and Furtula gave the lower and upper bounds
for theGA, identified the trees with the minimum and the
maximumGA indices, which are the star and the path
respectively.

◮ In [18] Yuan, Yhou and Trinajsić gave the lower and upper
bounds forGA index of molecular graphs using the numbers of
vertices and edges. They also determined then-vertex
molecular trees with the first, second and third minimum and
maximumGA indices. Conference 2016 – p. 7/35



Known results for the Geometric-Arithmetic index

◮ The Randíc connectivity index was studied by chemists and
mathematicians and there are a lot of papers about it. Several
books are devoted to the Randić index. Recently, the
geometric-arithmetic index attracted attention of
mathematicians also, but there are few papers about it,
dedicated to molecular graphs ([8], [12]).
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◮ In [5],K. Das, I. Gutman, B. Furtula,Survey on Geometric -
Arithmetic Indices of Graphs, MATCH-Communications in
Mathematical and in Computer Chemistry, 65 (2011), 595-644,
authors are collected all obtained results on class GA indices.
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Known results for the Geometric-Arithmetic index

◮ The Randíc connectivity index was studied by chemists and
mathematicians and there are a lot of papers about it. Several
books are devoted to the Randić index. Recently, the
geometric-arithmetic index attracted attention of
mathematicians also, but there are few papers about it,
dedicated to molecular graphs ([8], [12]).

◮ In [5],K. Das, I. Gutman, B. Furtula,Survey on Geometric -
Arithmetic Indices of Graphs, MATCH-Communications in
Mathematical and in Computer Chemistry, 65 (2011), 595-644,
authors are collected all obtained results on class GA indices.

◮ In [6] T. Divnić, M. Milivojevi ć, Lj. Pavlovíc,Extremal
graphs for the geometric-arithmetic index with given
minimum degree, Discrete Applied Mathematics, Vol. 162,
2014, 386-390, authors found extremal graphs for GA index
for some given minimum degree. Conference 2016 – p. 8/35



Conjecture about the extremal graphs

◮ Denote byft(k) =
(n−t)(k−t)

2
+

2
√

k(n−t)

k+n−t
t(n− t) for 0 ≤ t ≤ k,

k ≤ k0 and bykt ∈ [0, k0] a unique root of equation
ft+1 − ft = 0.
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Conjecture about the extremal graphs

◮ Denote byft(k) =
(n−t)(k−t)

2
+

2
√

k(n−t)

k+n−t
t(n− t) for 0 ≤ t ≤ k,

k ≤ k0 and bykt ∈ [0, k0] a unique root of equation
ft+1 − ft = 0.

◮ Conjecture. If G is a connected simple n vertex graphs
with minimum vertex degree k, then
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Conjecture about the extremal graph

◮ GA ≥
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√
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k+n−t
t(n− t), ⌈kt⌉ ≤ k ≤ ⌊kt−1⌋,

...
...

2
√

k(n−k)

k+n−k
k(n− k), k ≤ ⌊kk−1⌋.
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Conjecture about the extremal graphs

◮ Remark. If ⌈kt(n)⌉ ≤ k ≤ ⌊kt−1(n)⌋ and (n− t)(k − t) is
even, the lower bound is attained on graphs Gk,n−t which
have nk = n− t, nn−t = t, xk,n−t = t(n− t),

xk,k =
(n−t)(k−t)

2
and all other xij = 0.
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Conjecture about the extremal graphs

◮ Remark. If ⌈kt(n)⌉ ≤ k ≤ ⌊kt−1(n)⌋ and (n− t)(k − t) is
even, the lower bound is attained on graphs Gk,n−t which
have nk = n− t, nn−t = t, xk,n−t = t(n− t),

xk,k =
(n−t)(k−t)

2
and all other xij = 0.

◮ Extremal graph Gk,n−t is complete join G1 +G2 of graphs
G1 and G2. G1 is regular graph on n− t vertices with
degree k − t and G2 is graph on t isolated vertices (with
degree 0). The complete join of two graphs is their graph
union with all the edges that connect the vertices of the
first graph with the vertices of the second graph.
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A quadratic programming model of the problem

min GA(G) =
∑

k≤i≤n−1

i≤j≤n−1

2
√
ij

i+ j
xi,j

◮

2xk,k + xk,k+1 + · · · + xk,n−1 = knk,

xk,k+1 + 2xk+1,k+1 + · · · + xk+1,n−1 = (k + 1)nk+1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xk,n−1 + xk+1,n−1 + · · · + 2xn−1,n−1 = (n− 1)nn−1,
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xi,i ≤
(

ni

2

)

, k ≤ i ≤ n− 1,
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◮ A quadratic programming model of the problem
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◮

2xk,k + xk,k+1 + · · · + xk,n−1 = knk,

xk,k+1 + 2xk+1,k+1 + · · · + xk+1,n−1 = (k + 1)nk+1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xk,n−1 + xk+1,n−1 + · · · + 2xn−1,n−1 = (n− 1)nn−1,

nk + nk+1 + · · · + nn−1 = n,◮

xi,j ≤ ninj, k ≤ i < j ≤ n− 1,
◮

xi,i ≤
(

ni

2

)

, k ≤ i ≤ n− 1,
◮

xi,j , ni are non-negative integers, fork ≤ i ≤ j ≤ n− 1.
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◮ The main results

◮ Theorem 1. If k ≥ ⌈k0⌉, where k0 = q0(n− 1), q0 ≈ 0.088
is the unique positive root of equation
q
√
q + q + 3

√
q − 1 = 0 and if G ∈ G(k, n), then

GA(G) ≥ kn

2
.

If k or n are even, this value is attained by regular graphs
of degree k.
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Extremal graph fork ≥ ⌈k0⌉

◮
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Fig. 1. Shape of extremal graph fork = 4.
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Proof

◮ We will consider the problem of linear programming

min GA(G) =
∑

k≤i≤n−1

i≤j≤n−1

2
√
ij

i+ j
xi,j

subject to

2xk,k + xk,k+1 + · · · + xk,n−1 = knk,

xk,k+1 + 2xk+1,k+1 + · · · + xk+1,n−1 = (k + 1)nk+1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xk,n−1 + xk+1,n−1 + · · · + 2xn−1,n−1 = (n− 1)nn−1,
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Proof

◮ We will consider the problem of linear programming

min GA(G) =
∑

k≤i≤n−1

i≤j≤n−1

2
√
ij

i+ j
xi,j

subject to

2xk,k + xk,k+1 + · · · + xk,n−1 = knk,

xk,k+1 + 2xk+1,k+1 + · · · + xk+1,n−1 = (k + 1)nk+1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xk,n−1 + xk+1,n−1 + · · · + 2xn−1,n−1 = (n− 1)nn−1,

nk + nk+1 + · · · + nn−1 = n,◮

◮

xi,j ≥ 0, k ≤ i ≤ j ≤ n−1, ni ≥ 0, k ≤ i ≤ n−1.
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Proof

◮ The basic variables areni, k ≤ i ≤ n− 1 andxk,k.

ni =
xk,i + · · · + 2xi,i + · · · + xi,n−1

i
, k + 1 ≤ i ≤ n− 1.
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◮ Proof

◮ The basic variables areni, k ≤ i ≤ n− 1 andxk,k.

ni =
xk,i + · · · + 2xi,i + · · · + xi,n−1

i
, k + 1 ≤ i ≤ n− 1.

nk = n−
n−1
∑

i=k+1

1

i
xk,i −

∑

k+1≤i≤j≤n−1

(

1

i
+

1

j

)

xi,j.
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◮ Proof

◮ The basic variables areni, k ≤ i ≤ n− 1 andxk,k.

ni =
xk,i + · · · + 2xi,i + · · · + xi,n−1

i
, k + 1 ≤ i ≤ n− 1.

nk = n−
n−1
∑

i=k+1

1

i
xk,i −

∑

k+1≤i≤j≤n−1

(

1

i
+

1

j

)

xi,j.

◮

xk,k =
kn

2
− 1

2

n−1
∑

i=k+1

(

1 +
k

i

)

xk,i −
1

2

∑

k+1≤i≤j≤n−1

(

k

i
+

k

j

)

xi,j.
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◮ Proof

◮ Then

GA(G) =
kn

2
+

n−1
∑

i=k+1

(

2
√
ki

k + i
− k

2

(

1

k
+

1

i

)

)

xk,i

+
∑

k+1≤i≤j≤n−1

(

2
√
ij

i+ j
− k

2

(

1

i
+

1

j

))

xi,j.
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Proof

◮ Since allai,j ≥ 0 for k ≤ i ≤ j ≤ n− 1, we conclude that
geometric-arithmetic index will attains its minimum valuekn

2
if

we putxi,j = 0 for all k ≤ i ≤ j ≤ n− 1, except forxk,k.
Thus, we have proved

GA(G) ≥ kn

2
.

Geometric-arithmetic index attains minimum valuekn
2

if k or n

are even, on graphs forxk,k =
kn
2

, nk = n and all otherxi,j = 0
andni = 0.
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Casenk = n− 1

◮ Theorem 2. If nk = n− 1 and k ≤ ⌊k0⌋, where
k0 = q0(n− 1), q0 ≈ 0.0874 is the unique positive root of
equation q3 + 5q2 + 11q − 1 = 0, then

GA ≥ (n− 1)(k − 1)

2
+

2(n− 1)
√

k(n− 1)

k + n− 1
= f1.

If (n− 1)(k − 1) is even, the lower bound attains on graph
Gk,n−1 which has nn−1 = 1, xk,n−1 = n− 1,

xk,k =
(n−1)(k−1)

2
and all others xij = 0.
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Extremal graph fornk = n− 1

◮
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Fig. 2. Shape of extremal graph fork = 5.
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Proof of Casenk = n− 1

◮ In this casenk+1 + · · · + nn−1 = 1, which implies that exists
k + 1 ≤ j ≤ n− 1, such thatnj = 1. If nk = n− 1, then

xk,k ≥ nk(nk−n+k)
2

= (n−1)(k−1)
2

. Putxk,k =
(n−1)(k−1)

2
+ yk,k.

We have
2xk,k + xk,j = knk,

xk,j + 2xj,j = jnj.
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Proof of Casenk = n− 1

◮ In this casenk+1 + · · · + nn−1 = 1, which implies that exists
k + 1 ≤ j ≤ n− 1, such thatnj = 1. If nk = n− 1, then

xk,k ≥ nk(nk−n+k)
2

= (n−1)(k−1)
2

. Putxk,k =
(n−1)(k−1)

2
+ yk,k.

We have
2xk,k + xk,j = knk,

xk,j + 2xj,j = jnj.

◮ After substitution ofxk,k, and sincexj,j = 0, nj = 1, we get

2yk,k + xk,j = (n− 1),

xk,j = j.

We haveyk,k =
n−1−j

2
andxk,k =

(n−1)(k−1)
2

+ n−1−j

2
.

Conference 2016 – p. 21/35



Proof of Casenk = n− 1

◮ Geometric-arithmetic index is:

GA =
(n− 1)(k − 1)

2
+

n− 1− j

2
+

2j
√
kj

k + j
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Proof of Casenk = n− 1

◮ Geometric-arithmetic index is:

GA =
(n− 1)(k − 1)

2
+

n− 1− j

2
+

2j
√
kj

k + j

◮ Since∂2GA
∂j2

≤ 0, GA(j) is concave function forj ≥ k and
attains its minimum value forj = n− 1 or j = k,

GA(n− 1) =
(n− 1)(k − 1)

2
+

2(n− 1)
√

k(n− 1)

k + n− 1
= f1,

GA(k) =
nk

2
= f0.
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Proof of Casenk = n− 1

◮

f1 − f0 =
−(n− 1 + k)2 + 4(n− 1)

√

k(n− 1)

2(k + n− 1)
.
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Proof of Casenk = n− 1

◮

f1 − f0 =
−(n− 1 + k)2 + 4(n− 1)

√

k(n− 1)

2(k + n− 1)
.

◮ f1 − f0 ≤ 0 if k ≤ ⌊k0⌋, wherek0 = q0(n− 1), q0 ≈ 0.0874 is
the unique positive root of equationq3 + 5q2 + 11q − 1 = 0,
that is of q

√
q + q + 3

√
q − 1 = 0.
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Casenk = n− 2

◮ Theorem 3. If nk = n− 2 and k ≤ ⌊k1⌋, where k1, is the
unique positive root of equation f2 − f1 = 0, then

GA ≥ (n− 2)(k − 2)

2
+
2(n− 2)

√

k(n− 1)

k + n− 2
2(n−2) = f2.

If (n− 2)(k − 2) is even, the lower bound attains on graph
Gk,n−2 which has

nn−2 = 2, xk,n−2 = 2(n− 2), xk,k =
(n−2)(k−2)

2
and all

others xij = 0.
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Extremal graph fornk = n− 2

◮
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Fig. 3. Shape of extremal graph fork = 4
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Sketch of the proof of Theorem 3

◮ We consider three cases:a) nn−1 = 2, b) nn−1 = 1 and
c) nn−1 = 0.
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Sketch of the proof of Theorem 3

◮ We consider three cases:a) nn−1 = 2, b) nn−1 = 1 and
c) nn−1 = 0.

◮ 2a. In this case we have
xk,k =

(n−2)(k−2)
2

, xk,n−1 = 2(n− 2), xn−1,n−1 = 1. We get

GA2 =
(n− 2)(k − 2)

2
+

2
√

k(n− 1)

k + n− 1
2(n− 2) + 1.
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Sketch of the proof of Theorem 3

◮ 2b. In this case there isk + 1 ≤ j ≤ n− 2, such thatnj = 1.

Thenxk,k =
(n−2)(k−2)

2
+ yk,k, xk,n−1 = nknn−1 =

n− 2, xj,j = 0, xj,n−1 = njnn−1 = 1.
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Sketch of the proof of Theorem 3

◮ 2b. In this case there isk + 1 ≤ j ≤ n− 2, such thatnj = 1.

Thenxk,k =
(n−2)(k−2)

2
+ yk,k, xk,n−1 = nknn−1 =

n− 2, xj,j = 0, xj,n−1 = njnn−1 = 1.

◮ Similarly as in the casenk = n− 1, GA attains minimum value
GA1(k) for j = k or GA1(n− 2) for j = n− 2.

GA1(k) =
(n− 1)(k − 1)

2
+

2(n− 1)
√

k(n− 1)

k + n− 1
= f1,

GA1(n− 2) =
(n− 2)(k − 2)

2
+

1

2
+

2
√

k(n− 2)

k + n− 2
(n− 3)

+
2
√

k(n− 1)

k + n− 1
(n− 2) +

2
√

(n− 2)(n− 1)

n− 2 + n− 1
.
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Sketch of the proof of Theorem 3

◮ 2c. We solve the next problem of linear programming

min
∑

k≤i≤j≤n−2

2
√
ij

i+ j
xij

2yk,k + xk,k+1 + · · · + xk,n−2 = 2(n− 2),

xk,k+1 + 2xk+1,k+1 + · · · + xk+1,n−2 = (k + 1)nk+1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xk,i + xk+1,i + · · · + xi,n−2 = ini,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xk,n−2 + xk+1,n−2 + · · · + 2xn−2,n−2 = (n− 2)nn−2,

nk+1 + nk+2 + · · · + nn−2 = 2
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Sketch of the proof of Theorem 3

◮ We get

GA ≥ (n− 2)(k − 2)

2
+

2
√

k(n− 2)

k + n− 2
2(n− 2) = f2.
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Sketch of the proof of Theorem 3

◮ We get

GA ≥ (n− 2)(k − 2)

2
+

2
√

k(n− 2)

k + n− 2
2(n− 2) = f2.

◮ Sincef2 ≤ GA2, f2 ≤ f1 andf2 ≤ GA1(n− 2), we get thatf2
is minimum value of GA index in this case.
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7 T. Divnić, Lj. Pavlovíc,Proof of the first part of the
conjecture of Aouchiche and Hansen about the Randić
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conjecture of Aouchiche and Hansen about the Randić
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