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1. Introduction

◦ Aim:
Construct digraphs with the same spectrum (or the same
algebraic properties).

◦ How?
By local modifications of digraphs with some properties (as
Godsil-McKay switching leads to cospectral graphs).

◦ Which properties?
Being a locally line digraph.
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1. Introduction: Locally line digraphs

◦ In the line digraph LΓ of a digraph Γ, each vertex represents
an arc of Γ, V (LΓ) = {uv : (u, v) ∈ E(G)}, and a vertex uv
is adjacent to a vertex wz when the arc (u, v) is adjacent to
the arc (w, z): u→ v(= w)→ z.

◦ Heuchenne’s condition (1964): A digraph Γ is a line digraph if
and only if, for every pair of vertices u, v, either

Γ+(u) = Γ+(v) or Γ+(u) ∩ Γ+(v) = ∅.

◦ As LΓ = LΓ, Heuchenne’s condition can be restated in terms
of the in-neighborhoods Γ−(u) and Γ−(v).

◦ A digraph is a (U-)locally line digraph if there is a vertex
subset U , with |U | > 1, such that

Γ−(u) = Γ−(v) for every u, v ∈ U.
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1. Introduction: Some locally line digraphs

With a few exceptions, all known ‘dense’ digraphs are locally line
digraphs. These include:

◦ De Bruijn digraphs (1946)

◦ Kautz digraphs (1968)

◦ Imase-Ito digraphs (1981, 1983)

◦ Alegre digraph (Fiol, Alegre, Yebra, 1984)

◦ Partial line digraphs (Fiol, Lladó, 1992)

◦ Faber-Moore-Chen digraphs (1993)

◦ All almost Moore digraphs of diameter two (Gimbert, 2001)

◦ Multipartite Moore digraphs (Fiol, Yebra, 1990; Fiol, Gimbert,
Gómez, Wu, 2003; Fiol, Gimbert, Miller, 2006)

◦ Cyclic Kautz digraphs (Böhmová, Dalfó, Huemer, 2014)

◦ . . .

5 / 23



2. Main result

Theorem. Let Γ = (V,E) be a locally line digraph with diameter
D ≥ 2. Let X = {x1, . . . , xr} ⊂ V such that Y = Γ−(xi) for some
Y ⊂ V , and i = 1, . . . , r. Let Z = Γ+(X). Let Γ′ be the modified
digraph obtained from Γ by changing e(X,Z) to e′(X,Z):

(i) Loops in e(Y,X) (and in e(X,Z)) remain unchanged.

(ii) For the other arcs, every vertex of X has some out-going arc
to a vertex of Z, and every vertex of Z gets some in-going arc
from a vertex of X.

Assume that there is a walk of length ` ≥ 2 from u to v (u, v ∈ V )
in Γ. Then,

(a) If u 6∈ X, then there is also a walk of length ` from u to v in
Γ′.

(b) If u ∈ X, then there is a walk of length at most `+ 1 from u
to v in Γ′.
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2. Main result: Scheme of the Theorem

XY Z XY Z

G G¢

The arcs that change from Γ to Γ′ are represented with a thick line.
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2. Main result: Considering shortest walks. . .

◦ Corollary. If Γ is a digraph with diameter D, the modified
digraph Γ′ (as in the Theorem) has diameter D′ satisfying

D − 1 ≤ D′ ≤ D + 1.

◦ The case D′ = D − 1 could happen when, in Γ, all vertices
not in X have eccentricity D − 1 and in Γ′ all vertices in X
result with the same eccentricity D − 1.

◦ Examples of the case when the diameter remains unchanged,
D′ = D, are provided by the modified De Bruijn digraphs
(discussed later).
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3. Cospectral digraphs

◦ Proposition. Assume that in the modified digraph Γ′ from Γ,
every vertex of Z gets the same in-going arcs as in Γ,
|Γ′−(v)| = |Γ−(v)| for every v ∈ Z. Let A = (auv) and
A′ = (a′uv) be the adjacency matrices of Γ and Γ′,
respectively. Then, for any polynomial p ∈ R[x] without
constant term, say, p(x) = xq(x), with deg q = deg p− 1, we
have

p(A′) = A′q(A).

◦ Corollary. The digraphs Γ and Γ′ are cospectral.
Proof. Γ and Γ′ have the same characteristic polynomial.

◦ ... but not necessarily with the same Jordan normal form (see
an example later).
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3. Cospectral digraphs

Proof of the Proposition. We only need to prove that
A′A = A′A′.
Since the only modified arcs are those adjacent from the vertices of
X, we have

(A′A)uv =
∑
x∈X

a′uxaxv +
∑
x/∈X

a′uxaxv = |X ∩ Γ−(v)|+
∑
x/∈X

a′uxaxv

= |X ∩ Γ′−(v)|+
∑
x/∈X

a′uxaxv =
∑
x∈X

a′uxa
′
xv +

∑
x/∈X

a′uxa
′
xv

= (A′A′)uv,

where we used that every vertex of Z in Γ′ gets the same in-going
arcs as in Γ.
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4. Examples: Equi-reachable and UPP digraphs
◦ `-reachable or equi-reachable digraph: A digraph Γ = (V,E)

with diameter D is `-reachable if, for every pair of vertices
u, v ∈ V , there is a walk of length `(≤ D) from u to v (` is
the smallest integer).

◦ UPP digraph (Mendelsohn, 1970): A digraph Γ = (V,E) with
diameter D is UPP (Unique Path Property) if it is `-reachable
and it has d` vertices.

◦ If Γ is `-reachable and has maximum out-degree d, then its
order is at most N = d`. Then, A` = J , and, therefore, Γ is
d-regular (Hoffman and McAndrew, 1965).

◦ Example. A 3-reachable but not UPP digraph (n = 4 6= 23):
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4. Examples: UPP digraphs: De Bruijn digraphs
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De Bruijn digraphs B(2, 1), B(2, 2), B(2, 3), and B(2, 4).
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4. Examples: Modified De Bruijn digraphs

Proposition. Let Γ = B(d, `). For some fixed values xi ∈ Zd,
i = 1, 2, . . . , `− 1, not all of them being equal (to avoid loops),
consider the vertex set X = {x1x2 . . . x`−1k : k ∈ Zd}. Let αj ,
j ∈ Zd, be d permutations of 0, 1, . . . , d− 1. Let Γ′ = B′(d, `) the
modified digraph obtained by changing the out-going arcs of X is
such a way that every vertex x1x2 . . . x`−1k ∈ X is adjacent to the
d vertices

x2x3 . . . x`−1αj(k)j, k = 0, 1, . . . , d− 1.

Then, Γ′ is a d-regular digraph with diameter D′ = `, and it is
`-reachable.
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4. Examples: A modified De Bruijn digraph
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De Bruijn digraph B(2, 3) and the modified De Bruijn digraph B′(2, 3).

◦ B′(2, 3): Fiol, Alegre, Yebra, and Fàbrega (1985).

◦ B′(2, 3) 6∼= B(2, 3).

◦ spB′(2, 3) = spB(2, 3) = {07, 21}.

◦ A computer exploration shows that the only nonisomorphic
3-reachable 2-regular digraphs are

B(2, 3), B′(2, 3), and B′(2, 3).
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4. Examples: From B(2, 3) to B′(2, 3)

A =



1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1


, A′ =



1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1



J(A) =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, J(A′) =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


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4. Examples: A double modified De Bruijn digraph

De Bruijn digraph B(2, 3), the modified De Bruijn digraph B′(2, 3), and
the double modified De Bruijn digraph B′′(2, 3).

◦ spB′′(2, 3) = spB′(2, 3) = spB(2, 3) = {07, 21}.

◦ B′′(2, 3) is not a UPP digraph, in contrast with B(2, 3) and
B′(2, 3).
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4. Examples: Kautz digraphs
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The Kautz digraphs K(2, 1), K(2, 2), K(2, 3), and K(2, 4).
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4. Examples: Modified Kautz digraphs
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Kautz digraphs K(2, 3), and the modified Kautz digraphs K ′(2, 3) and
K ′′(2, 3).

◦ spK(2, 3) = spK ′(2, 3) = spK ′′(2, 3) = {−12, 09, 21}.

◦ In B(2, 3): D′ = D(= `).

◦ In K(2, 3): Computer exploration seems to show that all the
modified Kautz digraphs have diameter D′ = D + 1(= `+ 1).
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4. Examples: Cyclic Kautz digraphs

(Böhmová, Dalfó, Huemer, 2015)
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Cyclic Kautz digraphs CK(2, 3) and CK(2, 4).
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4. Examples: Modified cyclic Kautz digraph CK ′(2, 4)
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Cyclic Kautz digraphs CK(2, 4) and the modified cyclic Kautz digraph
CK ′(2, 4).

◦ spCK(2, 4) = spCK ′(2, 4).

◦ In B(2, 3): D′ = D(= `).

◦ In K(2, 3): Computer explorations seem to show that all the
modified Kautz digraphs have diameter D′ = D + 1(= `+ 1).

◦ In CK(2, 4): Computer explorations seem to show that all the
modified cyclic Kautz digraphs have diameter D′ = D + 1(= 2`).
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Open problems

◦ Can all UPP digraphs be obtained as modified De Bruijn
digraphs?

◦ Does Heuchenne’s condition show up in almost all dense
digraphs?

◦ Is the diameter of all the modified Kautz digraphs
D′ = D + 1?

◦ Is there any condition that decide whether the modified
digraphs are not isomorphic with the original ones?
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Hvala na pažnji

Thank you for your attention

Gràcies per la vostra atenció
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