dr Bozidar Jovanovic Mathematical Institute SANU phone: +381-11-2630170 e-mail: bozajmi.sanu.ac.rs Curriculum Vitae (PDF, 300K) |

Born 1969 in Prizren, Serbia. |

Education |

1993 | B.Sc. in Mathematics, University of Belgrade |

1996 | B.Sc. in Astrophysics, University of Belgrade |

1996 | M.Sc. in Mathematics, University of Belgrade thesis: Geometry of integrable systems with one-sided constraintsadvisor: Vladimir Dragovic |

2000 | Ph.D. in Mechanics, University of Belgrade thesis: Integrable non-holonomic systems on Lie groupsadvisor: Vladimir Dragovic |

Employment |

Since 1994, employed at Mathematical Institute SANU. |

Awards |

1995 | obtained the award Rastko Stojanovic at XXI Yugoslav Congress of Theoretical and Applied Mechanics for the best original paper of a researcher younger than 35 at 21st Yugoslav Congress in Theoretical and Applied mechanics (sharing the award with Borislav Gajic) |

1996 | obtained the award Zaharije Brkic for the best student of Astrophysics in generation |

2008. | Award of the Mathematical society of Serbia for the best achievement of a mathematician younger than 40 in the period 2005-2008. |

Visitings |

1999-2000 | Faculty of Mechanics and Mathematics, Moscow State University |

2000-2002 | Mathematical Institute LMU, Munich, Germany |

Other academic positions and duties |

since 2015 | Deputy Editor of Theoretical and Applied Mechanics |

since 2012 | Deputy Head of the Department of Mechanics, Mathematical Institute SANU |

A member of the Executive committee of the Serbian Society of Mechanics | |

A member of the Academic Council of the Serbian Graduate School in Mathematics | |

More than 10 years of teaching in Mathematical Gymnasium, Belgrade |

References |

1 | B. Jovanovic: Noether theorem and integrability in time-dependent Hamiltonian dynamics, Theoretical and Applied Mechanics (2016) |

2 | B. Jovanovic: Invariant measures of modified LR and L+R systems, Reg. Chaotic Dyn. 20 (2015) 542-552, arXiv:1508.04913 |

3 | B. Jovanovic, V. Jovanovic: Contact flows and integrable systems, J. Geom. Phys, 87 (2015), Finite dimensional integrable systems: on the crossroad of algebra, geometry and physics, 217-232, arXiv:1212.2918 |

4 | B. Gajic, V. Dragovic, B. Jovanovic: On the completeness of the Manakov integrals, Fundam. Prikl. Mat., 20:2 (2015), 35-49, arXiv:1504.07221 |

5 | V. Dragovic, B. Gajic, B. Jovanovic: Note on Free Symmetric Rigid Body Motion, Reg. Chaotic Dyn. 20 (2015) 293-308 |

6 | B. Jovanovic, Vladimir Jovanovic: Geodesic and Billiard Flows on Quadrics in Pseudo-Euclidean Spaces: L-A Pairs and Chasles Theorem, Int. Math. Res. Notices (2015) 6618-6638, arXiv:1407.0555 |

7 | B. Jovanovic: Heisenberg model in pseudo-Euclidean spaces, Reg. Chaotic Dyn. 19 (2014) 245-250, arXiv:1405.0905 |

8 | B. Jovanovic: The Jacobi-Rosochatius Problem on an Ellipsoid: the Lax Representations and Billiards, Archive for Rational Mechanics and Analysis, 210 (2013) 101-131, arXiv:1303.6204 |

9 | Y. N. Fedorov, B. Jovanovic: Three natural mechanical systems on Stiefel varieties. J. Phys. A 45 (2012) 165204, arXiv:1202.1660 |

10 | B. Jovanovic: Noncommutative integrability and action-angle variables in contact geometry, Journal of Symplectic Geometry, 10 (2012) 535-562, arXiv:1103.3611 |

11 | Y. N. Fedorov, B. Jovanovic: Geodesic Flows and Neumann Systems on Stiefel Varieties. Geometry and Integrability, Mathematische Zeitschrift 270 (2012) 659-698, arXiv:1011.1835 |

12 | B. Jovanovic: On the principle of stationary isoeneretic action, Publications de l'Institut Math'ematique, 91(105) (2012), 63-81, arXiv:1207.0352 |

13 | B. Jovanovic: Geodesic flows on Riemannian g.o. spaces. Regul. Chaotic Dyn. 16 (2011), 504-513, arXiv:1105.3651 |

14 | B. Jovanovic: Integrability of Invariant Geodesic Flows on n-Symmetric Spaces, Annals of Global Analysis and Geometry, 38 (2010) 305-316, arXiv:1006.3693 |

15 | B. Jovanovic: Hamiltonization and Integrability of the Chaplygin Sphere in Rn, J. Nonlinear. Sci. 20 (2010) 569-593, arXiv:0902.4397 |

16 | V. Dragovic, B. Gajic, B. Jovanovic: Systems of Hess-Appel'rot Type and Zhukovskii Property, Int. Journal of Geometric Methods in Modern Physics, 6 (2009) 1253-1304, arXiv:0912.1875 |

17 | Y. Fedorov, B. Jovanovic: Hamiltonization of the Generalized Veselova LR System, Reg. Chaotic Dyn. 14 (2009) 495-505. |

18 | V. Dragovic, B. Gajic, B. Jovanovic: Singular Manakov Flows and Geodesic Flows on Homogeneous Spaces of SO(N), Transformation Groups 14 (2009) 513-530, arXiv:0901.2444 |

19 | B. Jovanovic: LR and L+R systems, J. Phys. A 42 (2009), no. 22, 225202, 18 pp, arXiv:0902.1656 |

20 | V. Dragovic, B. Gajic, B. Jovanovic: Rigid body systems of Hess-Appel'rot type and partial reductions, Proceeding of XXVIII Workshop on Geometric Methods in Physics (P. Kielanowski, S.T. Ali, A. Odzijewicz, M. Schlichenmaier, Th. Voronov eds), AIP Conf. Proc. November 30, 1191 (2009) 72-79. |

21 | A. V. Bolsinov, B. Jovanovic: Magnetic Flows on Homogeneous Spaces, Comm. Math. Helv. 83 (2008) 679-700, arXiv:math-ph/0609005 |

22 | B. Jovanovic: Symmetries and Integrability, Publications de l'Institut Mathematique, 84(98) (2008), 1-36, arXiv:0812.4398 |

23 | B. Jovanovic: Partial Reduction of Hamiltonian Flows and Hess-Appelrot Systems on SO(n), Nonlinearity 20 (2007) 221-240, arXiv:math-ph/0611062 |

24 | B. Jovanovic: On the Cartan Model of the Canonical Vector Bundles over Grassmannians, Sib. Math. Zh. 48 (2007) 772-777, arXiv:math/0602132 |

25 | Y. N. Fedorov, B. Jovanovic: Quasi-Chaplygin Systems and Nonholonimic Rigid Body Dynamics, Letters in Mathematical Physics 76 (2006) 215-230, arXiv:math-ph/0510088 |

26 | Yu. N. Fedorov, B. Jovanovic: Integrable nonholonomic geodesic flows on compact Lie groups, In: Topological methods in the theory of integrable systems (Bolsinov A.V., Fomenko A.T., Oshemkov A.A. eds) Cambrige Scientific Publ., 2006, pp. 115-152, arXiv:math-ph/0408037 |

27 | A. V. Bolsinov, B. Jovanovic: Magnetic Geodesic Flows on Coadjoint Orbits, J. Phys. A: Math. Gen. 39 (2006) L247-L252, arXiv:math-ph/0602016 |

28 | A. V. Bolsinov, B. Jovanovic, Integrable geodesic flows on Riemannian manifolds: Construction and Obstructions; In: Contemporary Geometry and Related Topics (Eds. Bokan N., Djoric M., Rakic Z., Fomenko A. T., Wess J.), World Scientific, 2004, pp. 57-103, arXiv:math-ph/0307015 |

29 | A. V. Bolsinov, B. Jovanovic: Complete involutive algebras of functions on cotangent bundles of homogeneous spaces, Mathematische Zeitschrift 246 (2004) 213-236. |

30 | Y. N. Fedorov, B. Jovanovic: Nonholonomic LR systems as Generalized Chaplygin systems with an Invariant Measure and Geodesic Flows on Homogeneous Spaces; J. Nonlinear. Sci. 14 (2004) 341-381, arXiv:math-ph/0307016 |

31 | V. Dragovic, B. Jovanovic, M. Radnovic: On elliptical billiards in the Lobachevsky space and associated geodesic hierarchies, J. Geom. Phys. 47 (2003) 221-234, arXiv:math-ph/0210019 |

32 | A. V. Bolsinov, B. Jovanovic: Non-commutative integrability, moment map and geodesic flows, Annals of Global Analysis and Geometry, 23 (2003) 305-322, arXiv:math-ph/0109031 |

33 | B. Jovanovic: Some multidimensional integrable cases of nonholonomic rigid body dynamics, Reg. Chaotic Dyn, 8 (2003) 125-132, arXiv:math-ph/0304012 |

34 | B. Jovanovic: On the integrability of geodesic flows of submersion metrics, Lett. Math. Phys. 61 (2002) 29-39, arXiv:math-ph/0204048 |

35 | V. Bolsinov, B. Jovanovic: Integrable geodesic flows on homogeneous spaces. Sb. Mat. 192 (2001) No. 7-8, 951-969 |

36 | B. Jovanovic: Geometry and integrability of Euler-Poincare-Suslov equations. Nonlinearity, 14 (2001) 1555-1657, arXiv:math-ph/0107024 |

37 | B. Jovanovic: Nonholonomic left and right flows on Lie groups, J. Phys A-Math. Gen. 32 (1999) 8293-8302 |

38 | V. Dragovic, B Gajic, B. Jovanovic: Generalizations of classical integrable nonholonomic rigid body systems, J. Phys A: Math. Gen, 31 (1998) 9861-9869 |

39 | B. Jovanovic: Nonholonomic geodesic flows on Lie groups and integrable Suslov problem on SO(4), J. Phys A-Math. Gen. 31 (1998) 1415-1422 |

40 | V. Dragovic, B. Jovanovic: On integrable potential perturbations of billiard system within ellipsoid, J. Math. Phys. 38 (1997) 3063-3068 |

41 | B. Jovanovic: Integrable perturbations of billiards on constant curvature surfaces, Phys. Lett. A. 231 (1997) 353-358 |

Popularization of mathematics and mechanics |

1 | B. Jovanovic: What are integrable Hamiltonian systems? Teaching of mathematics, 13 (2011) 1-14 |

2 | B. Jovanovic: Linearization of integrable Hamiltonian systems (in Serbian), Nastava matematike, LV (2010) No. 3-4, 22-30. |

3 | B. Jovanovic: What are completely integrable Hamiltonian systems (in Serbian), Nastava matematike LV (2010) No. 1-2, 46-54. |

Links |

Mathematical Methods of Mechanics |

Theoretical and Applied Mechanics |

Mechanics Colloquium |

Serbian Society of Mechanics |