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Addenda and Corrigenda 
 

January 2008 
 

for Cut-Elimination in Categories, by Kosta Došen, 

Trends in Logic vol. 6, Kluwer, Dordrecht, 1999 
 
 

p. viii, line 12 bottom, add “§ 5.11. The links of adjunctions and the links of 
comonads” 

p. 6, line 6, replace “definable” by “explicitly definable” 

p. 28, line 2, replace “about them” by “around” 

p. 50, line 2 bottom, replace “Gt” by “G” 

p. 60, line 13 bottom, p. 78, line 4 bottom, p. 101, line 8, p. 178, line 11, replace 
“§ 1.7” by “§ 1.8.1” 

p. 118, line 8, delete “topmost” 

p. 118, lines 9-10, delete parenthetical text 

p. 136, replace penultimate paragraph by: 
 
 Note that for h : C1 C2 every F or G in C1 or C2 is linked in (h) to exactly one 
other occurrence of F or G in C1 or C2. 
 The links we have just defined are related to the graphs of [Eilenberg & Kelly 
1966], which one also finds in [Kelly & Mac Lane 1971] (see also [D. & Petric 1997, 
section 2]). The term “link” is used in knot theory for a collection of knots, and this is, 
of course, a different notion from our notion of link. In knot theory, a set of our links 
is a special kind of tangle (see [Murasugi 1996, Chapter 9]). Categories of tangles 
have played recently a prominent role in the theory of quantum groups, in low-
dimensional topology and in knot theory (see [Kassel 1995, Chapter 12], [Kauffman 
& Lins 1994], and references therein). 
 

p.158, line 12, replace “omitted” by “omitted it” 

p. 170, lines 8-9, delete parentheses, and add at the end of the paragraph: “(Matters of 
this section and of the preceding one should be compared with [Pumplün 1970] and 
[Auderset 1974].)” 

p. 193, line 13, replace “does not hold” by “is not satisfied” 

p.194, add new section at the end: 
 

§ 5.11.  THE LINKS OF ADJUNCTIONS AND THE LINKS OF COMONADS 

We have remarked in § 4.5.1 that the graphs of categories in free adjunctions 
generated by arrowless graphs are disjoint unions of graphs of categories involved in 
free adjunctions generated by pairs of graphs (G,H) where one of G and H is 
arrowless with a single object and the other is the empty graph. Take now the free 
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adjunction A,B, F, G,,  generated by (G,H) where G is arrowless with a single 

object C and H is empty. The objects of A are then of the form (FG)nC, where (FG)n, 
with n ≥ 0, stands for a possibly empty sequence of n blocks of FG. The objects of B 
are the objects of A with G prefixed. 
 It follows from Propositions 2 and 3 of § 5.2.2 that B is isomorphic to AF, the 
delta category of the comonad of the adjunction. The objects of the subcategory AF 

of A are (FG)nC with n ≥ 1, i.e. all the objects of A except C. It follows easily that the 
adjunction A,B, F, G,,  is isomorphic to the adjunction A,AF, I, FG,, FG, 
where I is inclusion. This isomorphism is based on the functor F, which maps B 
isomorphically onto AF. 

 Take now the free comonad A, D, ,  generated by the arrowless graph G with a 
single object C. We can show that this comonad is isomorphic to the comonad of the 
adjunction above by the comonofunctor that maps D to FG,  to  and  to FG. This 
isomorphism (which was considered from a 2-categorial point of view by [Auderset 
1974] and [Schanuel & Street 1986]) is demonstrated most easily with the help of the 
links of § 5.9 and § 4.10.1. It suffices to correlate the links on the left-hand side with 
those on the right-hand side: 



DA

A

A

    A 

FGA 

A

 



DA

DDA

A

              FGFGA 

FGA 

FGA

 

 So the links of comonads of § 5.4 can replace the links of A of our free adjunction. 
For the links of B it suffices to note that they have an isomorphic copy in AF, and 
these links reduce again to the links of comonads. When our free adjunction is 
generated by an empty G and an arrowless H with a single object, we rely 
analogously on the links of monads, which are obtained by reversing the links of 
comonads. So the links of adjunctions of § 4.10.1 could be replaced by the links of 
comonads of § 5.9. We have nevertheless preferred to introduce the former links 
because the approach through them is more direct, and because of their connection 
with the graphs of [Eilenberg & Kelly 1966] and with the theory of tangles mentioned 
in § 4.10.1. By the same token, we could use the links of adjunctions to work with the 
free comonad. 
 The maximality of adjunction of § 4.11 can now be deduced from the maximality 
of comonad of § 5.10. Adding any further equality to the free adjunction makes 
idempotent the comonad of the adjunction, and this yields the preordering equalities. 
Our direct proof of the maximality of adjunction in § 4.11 shows however that we can 
obtain the same result by relying on syntactical methods and cut elimination. (Matters 
of this section are treated in [D. 2008].) 
 

p. 195, line 14, replace “were” by “where” 
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p. 205, replace the last paragraph by: 
 
 Strong normalization for these reductions is a consequence of the fact that cuts in 
contracta either disappear or are of strictly smaller degree than cuts in the redexes, and 
of the fact that the degree of contracta of the last three kinds is strictly smaller than the 
degree of the corresponding redexes. More precisely, we can take as the complexity 
measure of an arrow term f a triple n1, n2, n3 where n1 is the number of cuts in f that 
are not topmost; next, if d1,…, dk are the degrees of all the topmost cuts in f, then n2 = 
3d1+…+3dk (if there are no topmost cuts in f, and hence no cuts, then n2 = 0), and n3 
is the degree of f. The triples n1, n2, n3 are lexicographically ordered by an order of 
type 3 with the definition n1, n2, n3< m1, m2, m3 iff n1 < m1 or (n1 = m1 and 
n2 < m2) or (n1 = m1 and n2 = m2 and n3 < m3). In the first two reductions, n1 either 
decreases, or it is kept constant while n2 decreases. In all other reductions n1 is kept 
constant. It is clear that in the reductions corresponding to (K1a 1), (K1a), (K2a 1) and 
(K2a) the number n2 decreases (while n3 decreases or is kept constant, which is 
without importance). The number n2 decreases in a (distr) reduction too, because if 
d1 < d and d2 < d, then 3d1+3d2 < 3d (although d1+d2 might be strictly greater than d). 
 This is inspired by a trick of Gentzen from [1938]; the general fact is that if for 
every i such that 1≤ i ≤ k we have mi < m, then k

i=1(k+1) mi  < (k+1)m. The fact that n3 
increases in a (distr) reduction is of no consequence. In the (K1aK2a), (K1a distr) and 
(K2a distr) reductions the number n2 decreases or is kept constant while n3 decreases. 
(We could have used a complexity measure of this kind for proving strong 
normalization in § 4.6.3 and § 5.8.3, but there we could do with a simpler kind; the 
complications we have here are due to the (distr) reductions.) 
 

p. 207, replace the penultimate paragraph by: 
 
 We can also extend the foregoing to obtain a decision procedure for the commuting 
problem in the graph A* of a free -category generated by an arbitrary graph. We 
have first to redefine normal form as having all cuts molecular, instead of being cut-
free, besides lacking subterms of the special forms we had before. Right-normal form 
has all cuts right-molecular. Our collection of reductions now applies to topmost 
nonmolecular cuts and is enlarged by (cat 2 mol) reductions. To demonstrate strong 
normalization, the complexity measure of an arrow term f will be n1, n2, n3, n4 where 
n1, n2 and n3 are as above and n4 is obtained as in the parenthetical remark after the 
introduction of (cat 2 mol) reductions in § 4.6.4. With every right parenthesis in a 
molecular subterm h of f we associate the number of cuts in h on the right of this 
parenthesis. Then n4 is the sum of all these numbers; n4 is zero for an arrow term in 
right-normal form. The quartets n1, n2, n3, n4 are ordered lexicographically. The 
Church-Rosser property is established as before.  
 

p. 211, line 9 bottom, delete “the end of” 

p. 221 and later, add new references: 

Auderset, C. [1974] Adjonctions et monades au niveau des 2-catégories, Cahiers de 
Topologie et Géométrie Différentielle vol. 15, pp. 3-20. 
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Došen, K. [2008] Simplicial endomorphisms, Communications in Algebra vol. 36, pp. 2681-
2709 (available at: http://arXiv.org/math.GT/0301302). 

Kassel, C. [1995] Quantum Groups, Springer, Berlin. 

Kauffman, L.H., and Lins, S.L. [1994] Temperley-Lieb Recoupling Theory and Invariants of 
3-Manifolds, Princeton University Press, Princeton. 

Murasugi, K. [1996] Knot Theory and its Applications, Birkhäuser, Boston. 

Pumplün, D. [1970] Eine Bemerkung über Monaden und adjungierte Funktoren, 
Mathematische Annalen vol. 185, pp. 329-337. 

Schanuel, S., and Street, R. [1986] The free adjunction, Cahiers de Topologie et Géométrie 
Différentielle Catégoriques vol. 27, pp. 81-83. 

 

p. 228, line 4 bottom, replace “4.14” by “4.1.4” 

 

 

added in July 2013: 

p. 114, line 18, after “special adjunction” add “(for references concerning this notion, 
which is called in various ways, see [Clark & Wisbauer 2011], 3.5 Remarks, and 
[Herrlich & Hušek 1990], section 4)“ 

 

p. 221 and later, add new references: 

Clark, J., and Wisbauer, R. [2011] Idempotent monads and *-functors, Journal of Pure and 
Applied Algebra vol. 215, pp. 145-153 (available at arXiv) 

Herrlich, H., and Hušek, M. [1990] Galois connections categorically, Journal of Pure and 
Applied Algebra vol. 68, pp. 165-180 

 

I am grateful to Tatsuji Kawai for telling me about the second of these references. 


