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ABSTRACT

The main goal of this work is to give philosophically significant
analyses of those expressions which, in most accounts of logic, are
the only expressions called "logical constants". These analyses will
be given in a language in which we speak about what we shall call
"the deductive meta-language of the object language to which logical
constants belong'", and they will have a particular form. The achievement
of this goal presupposes an understanding of the context in which our
analyses will be made and also a certain account of philosophical
analyses and their purpose.

A secondary goal is to consider the following two theses, which
provide a motivation for seeking our analyses,

Thesis [IJ A constant is logical iff it can be ultimately
analyzed in purely structural terms.

Thesis CIIJ Two logical systems are alternative iff they
differ only in their assumptions on structural deductions.

We shall try to give a partial reconstruction of the import of these
theses by making more precise the terms in which they are phrased.
(The term "structural” in them is used in the sense in which some
rules in sequent systems are usually called "structural".) We shall
also try to give some grounds for their justification. If Thesis [I]
could be justified, it would provide us with means to answer the
question "Where are the limits of logic?". If Thesis [II] could be
justified, it would help us in understanding the problems generated
by the existence of alternative logics.

The general plan of this work is the following.

Chapter 1 consists of some preliminary considerations on languages
and systems of provable sentences.

In Chapter 2 we present the deductive meta-language which
provides a context for our analyses. Next we consider structural
systems in this language. Essentially, these are a type of hier-
archical sequent systems in which sequents of various levels are
distinguished. 1In particular, we show that in these structural
systems a generalized form of the Cut rule is not eliminable.

In Chapter 3 we define the notion of structural analysis.




The main ingredient of this notion is the notion of analytic rules.
An analytic rule is of the form

B1 cee Bk
A
which is short for
Bi coe Bk , A  eee s A ,
A B] Bk

where only one constant of the object language occurs in A, and no
such constant occurs in B,.

In Chapter 4 we consider analytic rules for the propositional
constants of classical logic. We show that these analytic rules are
necessary and sufficient in a certain sense, and we also consider
whether they can be replaced by some other analytic rules or postulates
in the object language. We proceed analogously in Chapters 5-8.

In Chapter 5 we use the same analytic rules to analyze the
propositional constants of intuitionistic logic and of a relevant
logic which we shall call "intuitionistic relevant logic". Systems
with analytic rules used for these analyses differ only in their
structural part with respect to a generalized form of the Thinning
rule. We also consider a logic dual to intuitionistic logic which
we propose to interpret as a logic of refutation.

In Chapter 6 we give analytic rules for modal propositional
constants with which we shall analyze the constants of S5 and S4.
Again the analytic rules for both S5 and S4 will be the same, and
the respective systems will differ only in their structural part
with respect to a generalized form of the Thinning rule. These
analytic rules will be based on sequents of higher levels, and pro-
vide the main application of our hierarchy of sequents in this work.

In Chapter 7 we consider analytic rules for first-order quantifiers.
In this context we make some comments on an alternative approach
which would apparently make quantification and modality incompatible.

In Chapter 8 we consider analytic rules for identity. First
we give such a rule in a second-order context, and then in a first-
—order context. We also consider some single axiom-schemata for
identity which are connected with the second analytic rule above.

In Chapter 9 we consider the notion of uniqueness of expressions,
which amounts to synonymity with everything with identical syntactical
characterization. Uniqueness is another ingredient of the notion of
structural analysis. We show that, under certain natural assumptions, our
characterizations with analytic rules guarantee uniqueness, whereas
postulates in the object language for implication, and either postulates
in the object language or some usual sequent rules for the necessity
operator, do not guarantee uniqueness.

In Chapter 10 we summarize the results of our analyses and then
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consider the relation of these analyses to Thesis [IJ. We shall
also try to provide some grounds for this thesis and to consider

the general notion of analysis of which structural analysis is an
instance. Next, we introduce the notion of structurally alternative
systems, and consider the relation of this notion, together with
those of our results which can be expressed with the help of this
notion, to Thesis [II]. We shall also try to provide some grounds
for this thesis. Finally, we shall briefly compare our enquiry to
some other enquiries which have a similar goal or are in general
similar in spirit.
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Chapter 1

INTRODUCTION

The main goal of this work is to give philosophically
significant analyses of the expressions which, in most accounts of
logic, are the only expressions called "logical constants'. These
analyses will be given in a language in which we speak about what we
shall call 'the deductive meta-language of the language to which
logical constants belong', and they will have a particular form.

The achievement of this goal presupposes an understanding of the
context in which our analyses will be made and also a certain account

.of philosophical analyses and their purpose.

A secondary goal is to consider the following two theses, which

provide a motivation for seeking our analyses

Thesis [I] A constant is logical iff it can be

ultimately analyzed in purely structural terms.

Thesis [II1 Two logical systems are alternative iff

they differ only in their assumptions on structural deductions.

We shall try to give a partial reconstruction of the import of

these theses by making more precise the terms in which they are

phrased. We shall also try to give some grounds for theéeir justification.
If Thesis [I] could be justified, it would provide us with means to
answer the question, '"Where are the limits of logic?". If Thesis [II]
could be justified, it would help us in understanding the problems

generated by the existence of alternative logics.

The general plan of this work is the following. After some

preliminaries on languages and systems [in the remainder of this chapterj,
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we consider the context in which our analyses will take place
[Chapter 2] and the form of theseanalyses [Chapter 3]. Next we
consider the analyses of propositional constants [Chapters 4,5],
propositional modal constants [Chapter 6], first-order quantifiers
[Chapter 7] and identity [Chapter 8]. After considering whether

our analyses give unique characterizations of the constants analyzed,
in a sense to be made precise [v.822; Chapter 9], we try to give an
account of the general notion of analysis with which we have worked,
to show its connection with Theses [I] and [II], and to provide some

grounds for these theses [Chapter 10].

Logical constants are expressions of a language. Therefore we
shall try to set forth some of the things we are assuming about

languages for our enquiry.

We take the term '"language'" in a sense which is in accordance
with common usage and which precludes constructions of uninterpreted
formal objects being called '"languages'. That is, "language" will
be synonymous with "interpreted language'. Semantical questions about
the nature of this interpretation, or about meaning, will not be
considered here. Our discussion will be on the syntactical level, but

we shall be concerned with the syntax of languages in the above sense.

A language is made up of expressions . We shall say that a language
has a certain expression, or that a certain expression belongs to a
language, or something synonymous with that. Expressions can be

divided exhaustively into elemeéntary and complex expressions. Complex

expressions are constructed out of at least two other elementary or complex

expressions; they are ultimately arrangements of elementary expressions.

The expressions from which a complex expression is constructed occur

in this complex expression. The relation "occurs in" is reflexive
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and transitive.

A language L1 is included in a language L2 iff every expression

of L1 is an expression of L2. L1 coincides with L2 iff L1 and L2

are included in each other. L1 is properly included in L, (or is

a fragment of Lz) iff L1 is included in L2 but does not coincide with

L,. The union of L, ..., L, k > 2, is the language which includes

LL’ for every.l, 1 < £ € k, and has no expression which does not belong

to Lj’ for some §, 1 < § < k.

Expressions can also be divided exhaustively according to the

grammatical categories, or categories, tout court, to which they

belong. There are two basic categories: the category of sentences ,

named "4'", and the category of singular terms, named "{'". Besides

expressions of these two basic categories we can have in é language
expressions which serve to construct complek expressions of a certain
category from simple or complek expressions of some categories. These
expressions are functors from ekpressions of this language to expressions

of this language.

We shall use the fractional notation of categorial grammar to name
the categories of these functorial expressions. To the category~%—
will belong an expression which is a functor having as an argument an
expression of the category b-and as a value an expression of the
category a, where a and b are not necessarily basic categories. A
functor having as arguments eipressions of the categories bl’ ""bk’ k>1,
and as a value an expression of the category a, will belong to the

category a
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as an abbreviation for the name of this category we shall use
" a " . (This notation will also occasionally be used with

n P

k.z»o; ifk=0 , then Ir—fi—qg is "a".) An expression of the
1’00 k

category B——w—%———7; can have as an argument not only an expression
looo ,{:ooo k

of the category bi’ in which case its value is an expression of the

category b b b 5 but also an expression of the category
1°°P%-104+1" "k
&
rovermnt £ > 1, in which case its value is of the category
10;; 2
a
bl...B,(:-lcl.'. ’Kb/{:-’_looobk

¢ A
For example, an expression of the category 44 can have arguments

of the categories _%T and —%Z , in which case its value is of the

)
5 can have an argument

. z
of the category ~%f , in which case its value is of the category —%—.

category I;t ; or an expression of the category

These remarks should not be taken as giving a comprehensive
treatment of categorial grammar, or even a comprehensive treatment
of every possible case which might arise in our work. We only assume
that a treatment of the kind offered here éhould enable us to treat
the expressions we shall be concerned with in this work as being of
the categories specified once for all when these expressions were intro-
duced. For example,and", which is of the category 7%?7’ will be of
this category also in the expression " __ is even and _- is divisible by _",
which is of the category Z%f . It is also possible to consider that
". is even and __ is divisible by __'" was not constructed by joining
". is even'" and "__is divisible by_." with "and", but by filling the

empty places with expressions of the categoryzt, joining with '"'and",
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and then taking out the expressions of the category £. Our treatment
tries to follow in a certain sense such ''step-by-step constructions'" in other

cases too /fcf. §61/.

Expressions of both basic categories and functors can be

either elementary or complex.

Expressions can also be divided into schemata and constants.

An expression of a language L is elementary or complex, or is of a
certain grammatical category, only relative to L. But an expression
of L can be a schema relative to a language L1 which can either

coincide or not with L.

Schemata of a language L relative to a language L1 are given
in the following way. We first give constructively some expressions of
L, not necessarily elementary, of a category &, which will be

1 satisfying the proviso

P". The exact nature of the proviso P, which expressions of L1
can satisfy, will depend on the particular form of Ll; however, P

must specify that the expressions of L. in question are of the

1
category a. In the simplest case P will specify only that; basic
schemata are usually in that case elementary expressions of L and are

called "schematic letters'. Next we can give other such expressions

changing the category a and the provise - P. Expressions of L of

a category b in which occur: (1) at least some basic schemata for
expressions of Ll’ (2) possibly some expressions of Ll’ provided
these are also ekpressions of L, and (3) no other expressions, will

be called "schemata for expressions of L1 satisfying the proviso Q".
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Q must specify that the expressions of L1 in question are of the
category b. A schema can be either an elementary or a complex
expression of L.
We assume that a basic schema for expressions of L, is of
the category ¢ in L iff it is a basic schema for expressions of L1 of
the category ¢ fcf. however §68/, and that an expression of L. which

1
is also an expression of L is of the category ¢ in L1 iff it is of the
category ¢ in L. Whenever L, is included in L, we can assume that
this second requirement is met automatically. In this work we shall

consider only cases where L1 is included in L.

Next, we must assume rules which will permit us to substitute

uniformly for every occurrence of a basic schema for expressions of
L1 satisfying the proviso P,which occurs in an expression of L,
either a schema for expressions of L1 satisfying the proviso P, or an

expression of L1 satisfying the proviso P, salva a certain property.

We shall call rules of this form, where the property in question is

specified, '"rules of substitution'. Expressions obtained from an

expression € by applying a rule of substitution will be called
"instances of g'" (relative to that rule). Applications of a rule

of substitution are empty iff in € no basic schema of the required

kind occurs. (N.B. Applications in which we substitute for a basic
schema this same basic schema are not empty in this sense .) However, if
the relation '"is an instance of'" is tied to the notion of a schema,

so that only an ekpression in which a schema occurs can have instances
relative to some particular basic schema which occurs in it, empty
applications of a rule of substitution will not be permitted

(otherwise every expression would be a kind of schema and not only
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the proper schemata we have considered). Whether or not to allow
empty applications of a rule of substitution depends on the specific
purposes we have in mind fcf. Chs.7,8; sp. 873/. In general, in

this work a rule of substitution can be applied only to an expression
of L in which the basic schema involved in the rule occurs at least

once.

Some rule of substitution must be assumed, at least implicitly,
for every ekpression we want to use as a schema. In some cases we
shall have to specify the property involved and to phrase rules of
substitution more precisely than suggested above. However, in many
other cases where we use schemata, we shall presuppose an apprkhension
of such a rule in which all the details are implicitly supplied
Zindeed we have already used some schemata in §2, 83 and in this section,

e.g. "L", with subscripts, for names of languages/.

An expression of L which is a schema for expressions of L1

will be called "a schema relative to Ll". An expression of L which

is a schema relative to some language included in L will be called

"a schema of L', tout court.

Definition of constants of a language

An expression of a language L is a constant of L iff it is not

a schema of L.

As an immediate consequence of this definition we have
that an eXpression of L is a constant iff for any language included
in L it is not a schema relative to that language. We also have
that constants can be:éither elementary or complex. In principle,
a constant of L can be a schema relative to a language L1 which is

not included in L; but since we shall only consider cases where L1
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is included in L, this will be of no concern here. From the
assumption that L1 is included in L it also follows that every
expression of a language L which is a schema relative to some

language Ll'will be a schema of L in cases we shall consider.

If some ekpressions of L1 are called "2's", a schema of L

for these ekpressions will be called "an €-schema of L'".

The expressions of a language can be divided exhaustively into

schemata and constants.

Next, we assume that there are certain deducibility relations

between colléctions of sentences of a language. A collection of
sentences can be either a set of sentences, or a sequence of sentences,

or possibly something else [v. §816]. However, in practically the

whole of this work we shall be concerned only with finite (possibly empty)

sets of sentences. The deducibility relations we have in mind are
syntactical, not semantical.If a collection of sentences is deducible
from another, this will mean that there is a deduction, i.e. a
syntactical construction, in which the members of the second collection
are premises, and the members of the first conclusions. Since we

shall allow the first collection to have more than one member, these

deductions are not always the familiar constructions exemplified by

- proofs, which have a single conclusion; they will sometimes represent

a more general notion of multiple-conclusion deductions, in which

the conclusions are taken alternatively [v.§17].

The syntactical notion of deduction can correspond to a semantical

notion of consequence, in such a way that whenever two collections
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are in a deducibility relation, they are also in a general
consequential relation (and possibly also conversely). However, this

semantical notion will not be treated in this work.

A language from which we take sentences which are members of
collections in deducibility relations will be called "an object
language'. For the name of an object 1énguage we shall use the

schematic letter '"O" (possibly with subscripts).

The language in which we have sentences expressing that two
collections of sentences of O are in a deducibility relation will be
called '"the deductive meta-language of O of level 1'". The language O
itself will be called ''the deductive meta-language of O of level 0".
The deductive meta-language of level 1 of O , where O, is the deductive
meta-language of O of level n; or possibly the union of the deductive
meta-languages.of O of all levels <n, will be called '"the deductive
meta-language of O of level n + 1", The language which is the union of
the deductive meta-languages of O of all levels > O will be called '"the

deductive meta-language of 0", tout court. For the name of the deductive

meta-language of a language O we shall use the schematic letter ''D"
(possibly with indices), where we assume that it is understood from

the context what is the language O with respect to which D is the
deductive meta-language. We shall say that the language D of O is built
on 0. A sentence of the deductive meta-language of O of level n will

be called "a sentence of D of level n ".

We must also mention the language used for communication in this

work, which in particular serves to communicate investigations
concerning O and D. This language will be called "U". It is not

enough to say that U is English, for it is a specific fragment of

English, having some features additional to the linguistic apparatus
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which is supposed to be generally understood. One of these features

is the presence in U of schemata for expressions of O and D, and

other schemata. In general, these features are the presence in U

of technical terms and symbols. These features of U will not be

determined once and for all. As our work progresses we shall

introduce additional technical apparatus and symbolism, and change U

accordiﬁgly. U is not absolutely precise, but with care any

desired limited degree of precision can be attained with it. (The

form of rules of substitution mentioned above was mainly intended

for the use of schemata of U, and this justifies the imprecise

form in which we have left it.) When we are reasoning in Yy we rely

on principles of classical logic, but often our reasoning could easily

be shown compatible with principles of more stringent logics.

Some of this reasoning belongs to what would be the deductive meta-language

of D, if D were taken to be an object language and the appropriate

fragment of U were characterized explicitly. Whenever we take the

deductive meggiénguage of O of some finite level W13 O, the deductive

meta-language of level 1 of this language (i.e. the deductive meta-
-language of O of level n+l) will match a fragment of U, and a logic

systematized in it will be the same as the one used in the corresponding

fragment of U if it is, in prinéiple, classical.

Quotation marks of U serve various purposes. No attempt is
made here to distinguish them, and in general we rely on the context
of U to convey what exactly is intended. For example, when a schema
occurs in an expression which is quoted, this does not necessarily
mean that it ceases to be a schema. In some cases, where the use of
quotation marks would have been too cumbersome, and no confusion is

likely, we shall try to avoid using then.
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The constants we want to analyze will pe.treated as expressions
of a language L included in O (i.e. O itself or a language
properly included in 0), so we assume that they belong to 0. We
also assume that every expression of O belongs to one, and only one,
category and that it can effectively be decided for any given
arrangement of elementary expressions of O whether it is unambiguously
an expression of O, whether it is elementary or complex (if the
latter, out of what expressions it is consructed), to what category
it belongs, and whether it is a schema or a constant. In this sense
this language O will be formal. Next, we must assume that ip 0
we have sentences, i.e. expressions of the category 4. For a
great part of our work [Chapter529-6] we practically need not assume
anything else about 0. But some additional assumptions need to be
made concerning O for the analyses of some constants [v. Chapters 7,8].
In general O can be any language which satisfies these conditions: e.g. the
language of formal arithmetic, or the language of the propositional calculus
(using the propositional variables "p", "¢", "1"), or a fragment of
ordinary English (sometimes even a degenerate language with only one
sentence [Chapter 2]; D built on an O with no sentences can be

investigated out of curiosity, but this will not be attempted here).

0 will be properly included in D. In D we must have in

addition expressions of the categories , kR >0, for

S5...8
k

constructing singular terms which will stand for collections of
sentences, and expressions of the category —%Z- for expressing

deducibility relations between collections of sentences. If D is

built on a formal language O, D will also be a formal language.
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D will be properly included in U. As we have remarked above,
we shall have in U schemata relative to D. The question whether

U can also be formal depends on an attempted reconstruction of U.

A more precise characterization of a kind of language D built
on a given language O, and of the relevant features of U, will be
given in the following chapter. As a heuristic example, take O to

be the language of formal arithmetic. Then

2+3=25

will be a sentence of O,

{2+3=5,2+3=6}}F{2+3=0¢6}
will be a sentence of D of level 1, and

{a, B} | {B}

will be a sentence of U , where "A" and "B" are Schematic letters
of U for sentences of O, and the other symbols are interpreted in

the familiar way.

Since D and O are included in U, they can be looked upon as
specific fragments of English, separated from the main body of the
language, in certain respects precisely characterized, and able

to serve some precisely defined purposes.

One of the purposes for which D, or O, is introduced is to

construct systems of provable sentences of D, or of C. Instead of

"systems of provable sentences of L" we shall also say ''systems in
L", tout court. In general, the systems we shall consider are

given by specifying
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(1) a formal language L to which the provable sentences belong,
and
. "I["
(2) a non-empty set of expressions of U of the form vl called
"directives", where Il is a finite (possibly empty) set of

occurrences of sentences of L and C is a sentence of L.

Once we have (1) and (2), the set of provable sentences of a system
is always specified in the same manner. Using the schematic letter
"$" (possibly with indices) for names of systems, and taking for

granted certain simple notions concerning trees, we give the following

Definition of proofs

A finite tree of occurrences of sentences of a language L
is a proof in a system S in L iff for each occurrence of sentence
. . X X B .
C in the tree there is a directive - of S where I is the set of

all the occurrences of sentences immediately above C in the tree.

N.B. A sentence can occur more than once in II. If, for

example, in a proof we have a configuration of the form

A B A
\\l/
C

2
where "A", "B" and "C" are sentences of L, I is {A,A,B} and not
{A,B}. A stricter notion of directives is obtained by requiring

that Il be a sequence of occurrences of sentences.

A proof is a proof of a sentence C iff C is the sentence

occurring at the bottom of this proof.
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A sentence of L is provable in a system S in L iff there is

a proof of this sentence in S.

The length of proofs is measured in steps. A sentence is proved

in k steps iff the number of occurrences of sentences in the proof of
this sentence is k. The minimal length is obtained when k = 1. Ve
assume that for any system in L and any ekpression-%—,where I is

a finite (possibly empty) set of occurrences of sentences of L and
where C is a sentence of L, it can be decided effectively whether-%—
is a directive of this system. Hence, it can be decided effectively

whether a tree of occurrences of sentences of L is a proof in this system.

A sentence C is called "an axiom of the system S'" iff there is

a directive -%—of S . Every axiom is derivable in one step.

A directive %—of a system S is called "a primitive transition

of S" iff I # P.

Every directive corresponds exactly to one axiom or one
primitive transition. So we can give the directives by giving the axioms

and the primitive transitions, the latter as usual in the form

Pl ces Pk ,

C
where I = {Pl, e Pk}' More specifically, clause (2) for a

system S will be given in the standard way by specifying

(2.1) a finite non-empty set of postulates, where a postulate
is an axiom, or an axiom-schema, or a primitive transition,

or a primitive transition-schema.
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We shall be concerned only with systems given in the standard
way. The implicit rule of substitution assumed in connection with
axiom-schemata and transition-schemata of U is that uniform substitution
for basic schemata will preserve the property of being an axiom-schema
or axiom, or the property of being a primitive transition-schema or
primitive transition. Likewise,if we have a schema of U for sentences
provable in a system S, substitution will preserve the property

of being a provable sentence-schema or provable sentence.

The basic schemata occurring in axiom-schemata and transition-

schemata need not be elementary expressions of U. These basic

schemata will not necessarily be used only for expressions of L of

a certain category, but also for expressions of L of a certain
category, which in addition satisfy a certain proviso. Since the
property of being a directive must be effectively decidable, we

assume that given an axiom-schema, or a transition-schema, it can

be decided effectively for any ekpression of L, or any expression of U
of the form-%— (specified as above), whether or not it is an

instance of this schema,i.e. whether it can be obtained from this
schema by uniform substitution for basic schemata. For this to

be possible,the proviso of the basic schema must refer only to effectively
decidable properties of expressions of L. L is a formal language,

and we shall assume that besides the property of being of a certain
category, the properties of being elementary or complex, being
constructed in a specified way from some eXpressions, being a schema
or a constant and related syntactical properties, are also effectively

decidable.

An axiom or an axiom-schema will be called "an axiom-postulate';

and a primitive transition or a primitive transition-schema will be
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called "a primitive rule". In general we have

Definition of transitions

" "
An expression of U of the form *%ﬂ, where II is a finite non-
-empty set of occurrences of sentences of L, and C is a sentence of L,

is called "a transition in L'".

Definition of rules

A transition in L or a transition in L-schema is called '"a rule

in L".

As usual, in a rule-%— the members of II are called '"the premises',
and C "the conclusion". We shall use "R" (possibly with subscripts)

as a schema for names of rules.

Definition of formulae

A sentence of L or a sentence of L-schema is called "a formula

of L".

Definition of extensions of a system

A system 32 in L, is an extension of a system Sl in L, iff

every directive of Sl is a directive of 32 and L, is included in L,.

1

An extension S, of Sl is proper iff there is a sentence provable
in S, which is not provable in Sl' Adding directives to S need not

give rise to a proper extension.

Definition of subsystems of a system

A system Sl in L1 is a subsystem of a system 32 in L2 iff 32

is an extension of Sl'

A subsystem Sl of 32 is proper iff 82 is a proper extension of Sl'
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When an extension 32 of Sl is obtained by giving a postulate P
in addition to the postulates of Sl’ we shall say that 32 is an
extension of Sl with P (sometimes we shall also say simply that 32
is S1 with P). When a subsystem Sl of 32 is obtained by rejecting
a postulate P from the postulates of 32’ we shall say that Sl is a
subsystem of S2 without P (sometimes we shall also say simply that
S1 is 32 without P).

Definition of systems contained in other systems

A system S1 in L1 is contained in a system 32 in L,

iff every sentence provable in Sl is provable in Sz and L, is included

1
in L2.
S1 is properly contained in S, iff S1 is contained in S2 and

there is a sentence provable in S, which is not provable in Sl.

The clause "L1 is included in L2" in the definitions above

may be redundant under some assumptions.

Every system Sl is contained in an extension 32 of Sl’ but
if S1 is contained in 32,32 is not necessarily an extension of Sl.
This shows that a system should not be identified with the set of its
provable sentences. If it were identified with it, it would be
separated from the main body of U; but our account shows that a

system depends on U.

Additional technical apparatus pertaining to systems will be

introduced in the course of our work.

[83] A more comprehensive discussion of categorial grammar
needed for logic, but not necessarily in complete accordance with our

remarks, can be found in Curry 1963 and Belnap 1975. The fractional
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notation of categorial grammar was introduced by Ajdukiewicz
1935. Our remarks on the value of e.g. —%} when its argument is —g—
are influenced by Geach 1970. The notion of a ''step-by-step

construction' mentioned in §3 is treated in Dummett 1973 (Chapter 2).

[§5] Our understanding of 0,D, and U and their interrelations
is connected with Curry's conceptions concerning formal languages
and systems; an account of U (and the name '"U") can be found in
Curry 1950 (pp.l1l1ff) and Curry 1963. This does not mean that we
fully endorse Curry's elaborate theory concerning this topic, which
in many respects we think is not strictly relevant to our goals,
and which is not always easy to understand (v.Curry 1950a, 1951,
1952,1958, 1959, 1963; and also Curry § Feys 1958; Curry, Hindley

& Seldin 1972).

[§6] The unifying notion of directives of a system can be

derived from Carnap 1934 (§§31,47).
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Chapter 2

STRUCTURAL SYSTEMS

In this chapter we shall specify moreprecisely the kind of
language D built on some language O which will be of central concern
to us throughout this work. Next, we shall consider a type of systems
in this language D called '"structural systems'. We shall investigate
in this context the properties of "admissibility', "deducibility" and
"derivability" of sentences of D or of rules in D, and their inter-
connections. In particular we shall show that a rule which is an
extended form of Cut of sequent calculi is not eliminable from our
systems, whereas another rule is. We shall comment on the importance
of eliminating this other rule, where it can be eliminated. After
some considerations connected with the question of the soundness and
completeness of our structural systems, we shall consider some
alternative conceptions of the language D and the understanding of

sentences of our language D.
Suppose a language ‘O is given which has at least one sentence.
The language D built on O we shall consider will be called ''D1" .

D1 is constructed as follows

Elementary expressions of Dl

(1) all the elementary expressions of O;

(2) an infinite number of expressions

{—} &~,-}; (——-1;

19.
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(3)

(4)

k is finite and »1;

4...8°
Ny ot

20.

withﬁlargument places represented by dashes, and k-1 empty

spaces between argument places represented by commas, where

z
and are called "curly brackets";

k

the expression

P

of the category £; called autonymously '"@";

an infinite number of expressions
1 2 3

_F s s F s

these expressions are of the categories

where the superscript can be any n » 1, and the dashes stand for

two argument places; these expressions are of the category Z%T’

and are called "turnstiles'".

Complex expressions of D1

ey

(2)

(2.1) for every 4, 1 < 4 < k, m; =

All the complex expressions of O are complex expressions of

D1. The sentences of O are sentences of D1 of level O.

The elementary expression @ is 8 singular term of D1 of any
level n’gp;l. Let
A S eee 3 Ak

where k > 1, be sentences of levels Mis wees My then the

expression of the following form

m m
1 k
{Al,...,Ah}

is a complex singular term of D1 of level n + 1, provided

n, where n is a given number O

b
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(2.2)

(2.3)

(3)

(4)

term

21.

no sentence occurs more than once among
m m
All ; ; Akk s and
if
le- sz
1° e )
are the sentences
N ok
1 > Tk

taken in any order, the expression of the form

£ 2
s s Bkk }

{Bll

is the same singular term as the expression of the form

Let

be singular terms of level n, where n is a given number > 1;
then the expression of the form
r H'a

is a sentence of D1 of level n .

Nothing is a complex expression of D1 save if it can be obtained

by (1) - (3).

It should be clear from this specification that a singular

of D1 of level n, n > 1, is in a one-one correspondence with

a finite (possibly empty) set of sentences of D1 of level n - 1, @

corresponding to the empty set.
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We shall use the following basic schemata of U for sentences

of an unspecified level 1 , b » O,

If for n we substitute: O, 1, 2, ... we get basic schemata for

sentences of levels: O, 1, 2, ..., but we shall in general omit

the superscript "0'". For example, the following expression of U
{al,p1}

will be a schema for a singular term of level 2. Substitution

for these basic schemata is subject to the proviso that the resulting

expression is an expression of Dl or a schema for an expression of

D1. This means that e.g. in

a1 2 ¢
we can substitute only different expressions for npln and “Bl".

But in

! FZ{BI}
we can substitute any expressions of the required category and level
for "Al" and "Bl". The level of a sentence-schema or singular

term-schema i1s the same as the level of those of its instances which

are expressions of D1, provided these are all of the same level.

The following basic schemata of U will be used for singular

terms of any level 21

P;A,O,:,H,Z;@;W;FI;AI;

Substitution for these schemata is subject to the same proviso as
above. The allowable substitutions for a schema like "T'"' can be

inferred from the sentence-schema in which it occurs, i.e. they will be
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restricted to some levels in sentence-schemata. Though in
principle we could also note that level by a superscript, no

ambiguities can arise in a sentence-schema without that.

Since a singular term "T", or "{Al,Bl}", corresponds exactly
to a set, we shall say that it stands for a set, and
that T, or {Al,Bl}, are sets. We shall use the set-theoretical sym-

bol "U" to construct the following complex basic schemata for

singular terms of any level 21
rua; Tuave ;

A basic schema of the form

FIU...UPk, R > 2
is used for a singular term which stands for the union of the
sets Fl, cees Fh. Fl, ey Fh need not be disjoint, but we must

bear in mind that for the expression for which the basic schema

is used (2.1), (2.2) and (2.3) are satisfied.

We shall also use complex basic schemata of the following form

for singular terms of an unspecified level n,n > O,

T.U...U rkU{Ayll, Aﬁ}

1
where k > 1, £ > 1. If for n we substitute: 0,1,2, ...,we
get basic schemata for singular terms of levels: 0,1,2, ... The
following convention will be essential for this work. A basic

schema of the form above is used for a singular term which stands
for the union of the sets s ...,Fk,{AT,...,AZ} provided that

for every 4, 1 < 4 < k, fi and {A?, ...,Ag} are disjoint.
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The symbol "U'" will not be used in a singular term-schema otherwise

than as specified above. So, for example, the following

rufa™ uas{atyu tsl,cly; puruia™

are not singular term-schemata.

We cannot substitute freely for.the letters which occur in a
basic schemé but only for the whole basic schema, and in doing that
we must keep in mind the provisions we have stated, and the particular
requirements pertaining to the occurrence of other basic schemata
and superscripts in this basic schema. In principle it is possible
to give a complex basic schema as a schematic letter with a proviso
which dictates what requirement must be satisfied by the expressions

which can be substituted for this schematic letter.

When we speak about all the singular terms
"{A?, cees AZ}“, nz0, k>0, if k = 0, the singular term in

question is @.

The following

R
will be basic schemata for turnstiles. [Examples for sentence-
-schemata constructed with basic schemata, and curly brackets. and
¢ as the only expressions of D1, can be found in the primitive
rules of §10. Note that the curly brackets in A and D are expressions

of D1, whereas those in C are not.]

In a less formal context of U, as distinguished from the context
of D1 and its schemata, we shall use some other familiar set-

~theoretical notation, like
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Feh; T=aT#0; A er; A" g,

We shall also use in this context

to mean that the sentences involved are the same sentence. All
this is, of course, translatable into plain language which refers

only to the syntactical features of DI1.
We shall use schemata like

A ALT P Ay TutA™ T A ete.

to speak about formulae of D in general, i.e. both sentences
and sentence-schemata, conveying what is meant by the context.

We shall also omit quotation marks in many cases, writing e.g.

n

A is a sentence.

Definition of sequents

A formula A" is a sequent iff n > 1.

In the sequentT F"*1A 4 50, I' is called "the left set" and A "the right

. n+l .
set'". Since I |} A can be a schema, the left or right set
K
can be the set of sentence-schemata which is in.one-one

correspondence with the singular term-schema "I' or "A".

Definition of levels of rules

A rule of D1 is of level n iff the highest level of formulae

occurring in it is n.
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Definition of level-preserving rules

Aml Amk
The rule "1 °°° "k

is level-preserving iff for every
m
B

L, 0 A<k, m; = n, for some n > O.

0

Definition of horizontalizations of rules

The sequent T s n+l (8"}, k > 1, is a horizontali-
1 k

n , ,
zation of the level-preserving rule _:H iff, for every 4, 1 g 4 <k,
B

n .
an occurrence of the formula Ai belongs to II and if an occurrence of

n

a formula C" belongs to I, either c" = AJ , for some f, 1 <4 & R, o

N , , . . n
Aj’ for some f, 1 £ § £ k, is an instance of C .

. n n
N.B. A formula can occur only once in {Al, ey Ak} but more
than once in II. So a certain contraction can be involved in

producing a horizontalization. Accordingly, the correspondence

between transitions and their horizontalizations is many-one.

A transition-schema can have more than one horizontalization:

e.g. to

A B
A

correspond both {A,B} FI{A} and {A}};{A} if B can be either
different from or equal to A [cf.8816,28]. Every level-preserving

rule has at least one and at most a finite number of horizontalizations.
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Definition of expressions essential for a system

An expression of a language included in L is essential for
a system S in L iff it occurs at least once in a postulate of
S or it occurs, or is referred to, at least once in a proviso

of a postulate of S.

Definition of structural systems

A system in a language D is structural iff no constant of

0 is essential for it.

A postulate will be called '"structural' iff if can be given

for a structural system.

For the structural systems we shall consider we shall give at
least some of the following primitive rules. They are all

transition-~-schemata.

Primitive rules

n
Ascending (A) : éﬁ+1 ”'"]:ﬁ%T__ﬁ—3n >0
7 ¢ {A7}

n+l w I_Vl*l{AVL}

Descending (D): D , n>0;
T n
A
n
Tteration (I): I"—2 43 o0;
cut (©): ML k™ auiAm euiA™ME™ls  nso,
- - ruep™hus

provided either T # OU{A"} or aAu{A"} # =;

?
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n+l
Thinning (T): In+1 rp TS| C
TUGF "AUE

» 20,

provided either TUO# I'or AUE # A .

N.B. According to our convention, with C we have also the

proviso: A'¢ A and A" ¢ 0.

On the left side of the horizontal line of an instance of
a rule we write the name of the rule and the level of the instance
superscribed on this name, as we have done schematically above.

The clause '"n > 0" on the right is a proviso.

We shall also consider these rules restricted in some ways, and

in particular the following:

(1) These rules can be given only for some levels. 1In that

"A§n+1

context, e.g. " will be the name of the rule A given

only for all levels k, 1 < k < n+l,

(2) Adding to T the proviso on the right (in addition to the

proviso it already has) gives

Ie& : g must be empty;
Ieﬂ : O must be empty;

if A = @, E must be a singleton or empty,
Ton {

if A # §, E must be empty;

if T = @, © must be a singleton or empty,
Tee ° {

if T # 9, © must be empty

(the subscript "e'" stands for "empty'", "4" for "single", "a" for"right",
P pty g g

and "£" for "left").
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If O has basic schemata, some rules of substitution should
be given for structural systems in Dl1. We shall consider such rules
later when we explicitly assume that O is such a language

[v.Chapters 6 and 7].

The provisos for C and T after '"n > 0" are given to make the
rules strictly independent from each other and to forestall some

trivial considerations.

Axiom-postulates for the structural systems and other systems
in D1 we shall consider will be systematically generated from the

rules according to the following principle.

Horizontalizing of primitive rules (h)

All the horizontalizations of the primitive level-preserving

rule R are axiom-postulates.

Not every primitive level-preserving rule need be a rule R

mentioned by h, i.e. in the scope of h.

Using h is mainly a matter of economy. In principle, all the
needed axiom — postulates obtained by applying h could be listed,
their number being finite for systems given in the standard way. But h

also helps to make the articulation of our systems transparent.

The application of h can be restricted to some levels of the
rules R. 1In that context, "hfn" will be the name of h assumed only

for all levels k, 0 < k < n.

For some systems we shall consider,axiom-postulates will not

necessarily be obtained by h.
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Canonically we shall name a system S by listing the names of all of
its postulates. When we assume h for some primitive rules, we shall
not list the names of the horizontalizations, but we shall write "h"
in the name of the system with the understanding that every level-
-preserving rule to the right of "h'" is in the scope of h. Since
Aand D are not ievel-preserving, it makes no difference whether we
write them to left or right of "h".  Thus,the first structural

system in D1 we shall consider will be named by

haDICT

To designate the horizontalizations of R we shall use "h(R)".
Sometimes we shall superscribe to "h'" and '"R" the level of R or the
instance of R in question. In a ?rcnag the designation of a

horizontalization will be written on its right.
§11 © We have already defined the provable sentences [v.86]. A
sentence-schema will be called "provable"iff all its instances which

are sentences are provable. We now give some related definitions.

Definition of admissible sequents

The sequent T Fn+1A is admissible in S iff [if all the

formulae in I are provable in S, a formula in A is provable in S].

Definition of deducible sequents

A sequent T Fn+1 A is deducible in S iff T Fn+l A is admissible
in the extension of S with all the members of T (i.e. a member of A

is provable in this extension).
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Definition of horizontalizable rules

A rule in D1 is horizontalizable in the system S in D1 iff

all its horizontalizations are provable in 'S,

Definition of admissible rules

A rule R in L is admissible in the system S in L iff [if
all the premises of R are provable in S, the conclusion of R is

provable in S].

Definition of deducible rules

A rule R in L is deducible in the system S in L iff R is
admissible in the extension of S with the premises of R (i.e. the

conclusion of R is provable in this extension).

Definition of derivable transitions

A transition T in L is derivable in the system S in L iff a
proof of the conclusion of T can be exhibited in the extension of S
with the premises of T in which all the premises of T are among the

axioms, with repetitions among these premises either omitted or not.

Definition of derivable rules

A rule in L is derivable in the system S in L iff it is
either a transition derivable in S or a transition-schema whose every

instance which is a transition is derivable in S.

As an immediate consequence of definitions, we have that a level-

-preserving rule is admissible (deducible) for a system S in D1 iff all
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its horizontalizations are admissible (deducible). We can also

easily show the following

Lemma 1 1.1 If a rule is horizontalizable in an extension S

of h ADC, then it is derivable in S.

1.2 If a rule is derivable in a system, it is deducible

in that system.

1.3 If a rule is deducible in a system, it is admissible in

that system.

Demonstration: 1,1 Suppose T Fn+1 {An} is provable in S . Let

T be {BT, v BZ }, k> 1. We have in the extension of S with the

members of T

B" B
A”+1 1 .o An+1————l£—————‘
—~— ¢I_Vl+1{B1n} - ﬂl'-n"'l {B;;L} 1-.|_Vl+1 {An}

k applications of.g?+1

ph+l ? Fn+l A"

- At

The demonstration of 1.2 is obvious.

1.3 Suppose a rule —%—is deducible in 31; then C is prov-
able in the extension of S1 with the members of II. But this
extension is not proper if all the members of Il are provable in

S Hence C is provable in Sl.

1
Q.E.D.
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The converse of 1.1, or 1.2, or 1.3, is not necessarily true.

[cf.§22].

We can easily show that if a rule is derivable in a system, it is
derivable in any extension of that system. The same holds when we
replace '"derivable'" by "deducible''. For suppose -%— is deducible
in a system S; then C is provable in S with II. A fortiori it
will be provable in any extension with Il of an extension of S .
Hence,%;is deducible in any extension of S. On the other hand,
if a rule is admissible in a system, it is not necessarily admissible

in an extension of that system [v.§14].

In this chapter we shall investigate some of the interconnections

between the notions defined above in the context of structural systems.

§12 Definition of eliminable postulates

A postulate is eliminable from a system S =~ iff S is

contained in the subsystem of S without this postulate.

We can show

Lemma 2 The rule R in L is admissible in a system S in L iff

R is eliminable from the extension of S with R .

Demonstration: Take an application of R in a proof in the extension

S1 of S with R such that there are no applications of R above it.
Then the premises are provable in S, and by the left-hand side of the Lemma,
the conclusion is too. Then replace the proof of this conclusion in

S1 by its proof in S . The Lemma from left to right follows by an
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induction on the number of applications of R in a proof in Sl.

For the other direction suppose that the premises of R are
provable in S; then they are provable in Sl, and hence the conclusion
is provable in Sl. Then we use the right-hand side of the Lemma.

Q.E.D.

Lemma 3 If the rule R in D1 is admissible in a system S in D1,
then a sequent is admissible in S iff it is admissible in the extension

of S with R.

Demonstration: Assume the left-hand side. Then suppose that FF"+1 A

is admissible in S. 1If all the formulae in I' are provable in the
extension S1 of S with R, then by Lemma 2 they are provable in S,
and so a formula in A is provable in S. This formula is a fortiori
provable in Sl. Next, suppose that PF-n+1A is admissible in Sl'
If all the formulae in T are provable in S, then a fortiori they
are provable in Sl’ and so a formula in A is provable in Sl'

This formula is by Lemma 2 provable in S.

Lemma 3 shows that an eliminable primitive rule does not

increase the stock of admissible sequents.

It can easily be shown that é_is not eliminable from hADICT,
and that the rulel (not h(I)) is eliminable from any system. The rule
T will be eliminable from hADICT (where we retain h(T) as a postulate),

for we have
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wa TWA
2,6 .,\4»2. WMA'\ v\w\A\ \\-t»z.{ru e “”AU u-\-g -hu« TWH)

g \—“*" fruemaugl
- UICH S ANE

(0 1>

C of any particular level n-+ 1, n > 0, could be shown to be

n+l n+1
(C

eliminable in the same way, using h ) and C of level n + 2.

But in general, with C of all levels, we have
Lemma 4. C 'is not eliminable from hADICT.

Demonstration: We have a proof of the following form in hADICT

e fA A W (1Y)

o e MA ey

\ z\}a«'s{ vxﬂ.{{ pr §\_»_~-\{ A“}& we :*l>
fgefiaqea fndefaf e g o)
(ATF AT P 8] e o]

>3

53

But we can show that a sentence proved in such_é way is not provable

in hADIT with h(C).

First we show that D is eliminable from this system. For
suppose @} n+1tBn}-is provable in _hA_;_T_ with h(C). It cannot be
.an" axiom; I is eliminable; and if it is got by T, ¢|—n+1¢jwou1d be
provable in this system, which by inspection of the postulates can be
seen to be impossible. Hence, it can only be got by A. So D is

admissible and we use Lemma 2.



That {{{A"} "1 (A" "2 g3 "% {91 "2 g} is not provable
in hAIT with h(C) is shown as follows: it cannot be an axiom;
it cannot be got.by A; I is eliminable; and it cannot be got by T:
otherwise either %Fn+5{¢fn+2¢}, and hence ¢}ﬂ+2¢, would be provable,
or {{{An}Fn+1{An}}Fn+2¢}Fn+3¢ would be provable, which again by
inspection of the postulates can be shown to be impossible.

Q.E.D.

More precisely, this demonstration shows that it is impossible

<n+l . <n+l

hsn A<n+1 D<n+1 Isn c T ,

to eliminate C of all levels in any system

where 1l > 2, i.e. any system which has provable sentences of at

least level 3. But we can show also that in an extension of

h\<1 A62 D\<2 I‘<1 C<2 T<2 with a sentence of level O, g? is not

eliminable: we can simply start the proof of the demonstration above
with this sentence instead of'{dn}kjl+1{An}. That is, in any
extension with sentences of the object language which has provable
sentences of at least level 2, C of all levels is not eliminable.

In an extension whose provable sentences are at most of level 2, C

of level 1 can be eliminated, but C of level 2 cannot.

<2

<2 c

We have also that E? is not eliminable from Hsl A <2

D <1

<2

1 T

if there are at least two (different) sentences of level 0. In

this system the following is provable only with 9? and not without

ok YAy, (ar By, (B} 03 oo} tab.

<2 . ..
It can be shown that when O has only one sentence, 9?2 is eliminable
from this system (there are only four sentences of level 1 in this

case, and a finite number of sentences at each level). For the
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other facts about the eliminability of C or its level relativized

forms we assumed only that O has at least one sentence.

"Cut-elimination" usually consists in showing that a rule

corresponding to Q} is eliminable from a system corresponding to

hOAlDIIOCIT1 or an extension of it [v.also §13].

C of an infinite number of levels must be given in extending
hADIT plus h(C), for otherwise there would be a highest level, and

the system above would be incomplete.

That a rule is eliminable does not mean that its horizontalizations
are eliminable. For example, h(I), h(T) and h(C) are, of course,
not eliminable from hADICT. If we take the system hADIT, without

h(C), C can be shown admissible, but ChADIT would be incomplete

in a certain sense,

§13 Next we shall show that D is eliminable from hADICT as a
corollary of a more general result which is important for the rest
of our work. From now on we assume the eliminability of I to

simplify demonstrations.

Lemma 5 If FF]1+1 A is provable in hAICT, P}j1+1 A is

admissible in every extension of hAICT.

Demonstration: We shall make an induction on the length of the

proof of Pkn+1A.

+1, . . . . -
If PFn %A is an axiom-postulate the demonstration is trivial.

For the induction step suppose that if FF”+1[§ is proved in

<k steps, the Lemma holds. Let it be proved ink+ 1 steps. The last

step can be:
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1 A"

_ _ah
—BFTE;IEX—;, r=9, A={A"}.

(1 A"

Then A" is provable in every extension of hAICT, and hence

n+l1 . .. . .
rh A is admissible in every such extension;

n+l n nyyn+l
) el 1"1|- A u AT} r,u{aA"}F A,
= 1-.|_Vl+1 A ’
Fl u F2 = T, AfJAZ = A, Then if all members of I' are provable in

an extension Sof hAICT, all of Pl are provable in S, and so a

member of Allj{Aﬂ}is, by the induction hypothesis. If this is a
member of Al, a member of A is provable in S. On the other hand,
suppose A" is provable in S, Then if all of T are provable in S, all
of I', are; and since by the induction hypothesis we have that if all
of PZLJ{An}are provable in S, a member of A, is, we get that a member

of A is provable in S;

_ v n+l
(3) et rF a
- I.'__Vl +1A

Then if all members of I are provable in S, all of Pl are, and so
a member of Al is,by the induction hypothesis; hence, a member of A
is provable in S.

Q.E.D.

Then we have
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§13
Lemma 6 D is eliminable from hADICT.
R n+1 ny . .
Demonstration: Suppose @} ~ {A"} is provable in hAICT. It follows

by Lemma 5 that A" s provable. Hence, D is admissible in this

system,and we use Lemma 2.

However, D of all levels will not be eliminable from any
extension of héglgz_[we shall consider this question in 821]. It
is easily shown that D is not a deducible rule of hAICT. Later
[814] we shall make some comments on the importance of eliminating
D. In that context we shall consider mainly the system hAICT. We
note first something concerning eliminability for this system.

By adapting the demonstration of Lemma 4 we could show the following

for every n > 3, C of level »n is not eliminable from
hAICT.

This is because without D we cannot use C of some levelk + 1 to get
the effect of C of level k. Whereas in hADICT, C of any particular
level was eliminable, provided we had C of a higher level (i.e.

¢ 62, o,

. were all eliminable if we kept in every case the
rest of C), here C of any particular level >3 is not eliminable. It

remains possible only that §§2 is eliminable. We could also show that

for every n > 2, and every extension S of hAICT

with sentences of level O, C of level n is not eliminable
from S; for every n > 2, C of level n is not eliminable
from hAICT, provided there are at least two sentences of
level O;

C1 is eliminable from the S above and from hAICT;
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CSZ

sentence of level O.

is eliminable from hAICT if there is only one

Also, T ceases to be eliminable in the absence of D.

Note that our considerations on eliminability did not depend
essentially on having T and h(T) unrestricted, nor on having them

at all. In particular we could show that

D is eliminable from hADICTsh, hADICTen and hADIC.

Also, all the considerations on the non-eliminability of C would hold
true with IA&’ T, or noT at all,

§14 Now we shall give some results on the interconnections between
provable, deducible and admissible sequents, and also on provable
sequents and derivable rules, which are relevant to the soundness

and completeness of structural systems.

Lemma 7 PF"+1 A is provable in hAICT iff FF"+1A is deducible

in hAICT.

Demonstration: From left to right we have by Lemma 5 that PF"+1A

is admissible in the extension S of hAICT with the members of T.

For the other direction we shall make an induction on the length
of the proof of any A" to show that if A" is provable in S, PPJ1+1{An}

is provable in hAICT.

For the basis we have that if A" is an axiom-postulate of

hAICT:
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AVL+1 An
p"1 A"

Tn+1
T *aty .

1f A" is a proper axiom-postulate of S, then it is identical with

a member of T, and FF]I+1{An} is provable in hIT.

Suppose for the induction step that if A" is proved in S in <k
steps, F}]l+1{An} is provable in hAICT. Let it be proved in k + 1

steps.

The last step can be:
-1
€8] _A?————EE—ETT——, A" = QF}l{Bn_l]. Then no proper axiom
pF{B"" "}
of S could have been used in the proof, since they are all of level

n , and A" s provable in hAICT. Then as in the basis we get that

FF]1+1{An} is too;

(2) C————— . Then by the induction hypothesis

FF]1+1{BH} and PFjl+1{Cn} are provable in hAICT, and we have

ol TETTEY ot T e
ol iy i

- I-.I_V’.'l-l {AVL};

in this proof T, =T if C" ¢ I',and riu{c=riecter;

. Then by the induction hypothesis F}jl+l{8n}

is provable in hAICT, and we have
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. n
CVH-l 1-.|_yl +1{BV1} {Bn}}_n +1 {A”.} h)’l(l)
- I.l_n. +1' {A}'l} .
This concludes the induction. Then let AnEA. We have
o+l Tt A
_— I,I_VH-I A
Q.E.D.

As a corollary, we have that ﬂkﬂ+1 A is provable in hAIET iff

a member of A is provable in hAICT.

In Lemma 7 is given from left to right a 'verticalizing principle"

(corresponding loosely to modus ponegs), and from right to left a
"horizontalizing principle" (corresponding loosely to the Deduction
Theorem). If we take I' to be non-empty and A a singleton, Lemma 7
says that hAICT is sound and complete with respect to the deducible

level-preserving rules of hAICT. Verticalizing corresponds to soundness

and horizontalizing to completeness. D corresponds to verticalizing

and A to horizontalizing. The horizontalizing of primitive level-
-preserving rules (i.e. h) is just a particular case of this general
horizontalizing principle. To show the eliminability of D means to show
the eliminability of a verticalizing element of hADICT, and corresponds
somehow to the elimination of a certain form of Cut. (It has also a
similar effect: it shows that there need not be detours in proofs

which consist in ascending to a higher level and then descending

to ‘a" lower one, and it makes practicable the inductions on the

length of proofs.)

Lemma 5 shows that every provable sequent is admissible in

hAICT, and by Lemma 3 the same holds for hADICT. The converse is
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not the case: there are sequents admissible in hAICT which are not
.admissible in an extension of hAICT, and hence by Lemma 5 are not
provable in hAICT. (Also a sequent not admissible in hAICT can
become admissible in an extension of hAICT.) For example, every
sequent F}J'A , where T # P, is admissible in hAICT; this is
because the clause "all members of T' are provable" is always

false, no sentence of level O being provable., On the other hand,
not every PLJ'A , where T # @, is provable in hAICT. For F}-IA

is not necessarily admissible in an extension in which some, but
not all, sentences of level O are provable. Another example, which

is not somehow ''vacuous" like the preceding, is

{{{Aﬂ} ﬁ‘*‘{@“i\}'l“‘{{cwi \XM{DW@FM {{A‘t EV?FM { 6“} 2 {Q‘: E“)( *YM{BW{ |

which is admissible in hAICT but not provable [for a demonstration

v. Lemma 50].

But we can show that hAICT is sound and complete with respect
to the admissible sequents mentioned in Lemma 5:

|_Vl+ 1

Lemma 8 P}n+1 A is provable ‘in hAICT iff T A is admissible

in every extension of hAICT.

Demonstration: From left to right we have Lemma 5.

For the other direction suppose Pkn+1A is not provable in
hAICT. We shall show that in that case there is an extension of

hAICT in which PF”+1A is not admissible.
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If P}n+1 A is not admissible in hAICT, the Lemma is shown.
If,on the other hand, it is admissible in hAICT, then either not
all members of I' are provable, or a member of A is provable. But
no member of A is provable, for otherwise an+1A would be provable
with A and T. So not all members of T are provable. Let Fl be

the set of these members and let S be the extension of hAICT with

members of I';. Then all members of I' are provable in S, but no
member of A is.,  For suppose An, where AnGA, is provable in S,
Then by Lemma 7, Flkn+l A is provable in hAICT, and so is
FL”+1 A, contrary to our supposition. Hence, FL”+1A is not

admissible in S. Q.E.D.

If A # @, it is possible to show that FF”+1A is provable in

hAICT iff it is admissible in every extension of hAICT consistent at

all levels, i.e. such that for every level n > O, there is a sentence

A" which is not provable in this extension (which amounts to the

n+l1

improvability of a sentence of level O and 9} @, for everynz> 0).

By analogous arguments it is possible to show that Lemmata

- ' .
7 and 8 hold when for '"hAICT" we substitute "hAICT!n" or "hAICTen',

and require that A be at most a singleton. If'IW@dA is provable

in these latter systems, A must be a singleton. But T on the left is
needed for the results of these lemmata for we have that e.g.
'{B1}|~-2{{A}I---1 {A}} is admissible in the extension of hAIC with B!, or

in every extension of HKAIC , but is not provable in hAIC. What

we can show for hAIC is the following
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Lemma 9 I£ T # 9,TF™ 1A is provable in hAIC iff it is a
horizontalization of a derivable rule of hAIC; and if ' = @, it is

provable in hAIC iff the only member of A is provable in hAIC.

Demonstration: It can easily be shown that FF”+1A is provable

in hAIC only if A = {A"}, for some A". Suppose that Iﬂ-n+%Ap}is provable

in hAIC. If it is an axiom, the Lemma from left to right is shown.

Suppose for the induction step that if it is proved in gk steps, the

Lemma in this direction is shown. The last step can be:

n+l An
T
r He" T, u (B PR (Y
2y ™l 1F 2 a L T.UT. =T ;

- PLﬂ+1{An}

and in both cases the result easily follows. To show the other
direction suppose I' # @. There is no application of A in the proof
of A" from the axioms among which are all of TI. So every step is an
application of Qﬁland can be horizontalized. Then we use Qﬁ+l.

If T = @, we use A,

Q.E.D.

" 1" i 1 " "
Lemma 9 cannot hold for '"hAICT", or 'hAICT PRI hAICTen ,

substituted for "hAIC" , for then we have e.g.{Bl}'Fz{{A} FI{A}}.

D is not necessarily admissible in an extension of hAICT, so

that we must be careful in connecting the above results with hADICT,
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or its extensions. The same holds for the other systems with T

restricted.

In this work we shall often use a kind of translation of DI
into O. We shall here present one such translation, without,
however, assuming that O is necessarily the language on which D1 is

built.

Let O be the language of the propositional calculus with the
propositional variables p,q,%,...,and the censtants ->,&,v, 1 and T.

Then the o-translation of D1 into O is obtained as follows

o] . . .
O(Ai ) = AL’ where Ag is the A-th sentence in an

enumeration of sentences of level O and AL is the .i-th variable

in an enumeration of propositional variables;

n ny . _ Al n
3 = {O(Al)&;...&o(Ak),lf T =A{A}, ..o, k21,
T JAfT =9
o(AMv...voA™,if T = {A%, ..., A}, k> 1,
" 1 k 1 k
o(T) =
1 Lif T = @;
ot ) = 5(m) » §(0).
We use "Al & ...& An" as an abbreviation for

"(..4(A18;A2) &;r;&»An;l) &An" and homologously with v.

Next we can define a distinctive levelled wff of the language

of the propositional calculus as follows. The formulae
(A & 8 A)>(B  v..vB) 21, m>1;
(Al&...&An)-* L ,yh>1
T > (Blv...v Bm)’ mz>1 ;

T->1 s
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are:

12 An is a

sequence of propositional variables without repetition, and

(1) distinctive levelled wffs of level 1, if A

the same for B.,..., B ;
1 m

(2) distinctive levelled wffs of level k + 1, if Al’ ceus An
is a sequence of distinctive levelled wffs of level k without

repetition, and the same for Bl’ ces Bm;

(3) nothing else is a distinctive levelled wff,

It can easily be shown that c(An) is always a distinctive levelled
wff, and also that if A" is provable in hADICT, o(A™y is a distinctive
levelled tautology [cf..Lemma 19 J. But not conversely: there are
distinctive levelled tautologies o(An) such that A" is not

provable in hADICT, e.g.

(0= q) » (L ~>8)) > (((W&E] » q) > ((1&) > 4))

[v. 8§14 and Lemma 50].

This translation can incidentally also serve to prove the

consistency of hADICT at all levels.

§16 We have seen [v. Lemma 7] that every level-preserving rule
deducible in hAICT is horizontalizable in hélg[. This relation
between deducible rules and horizontalizable rules will not be found
in every extension of hADICT. For example, we shall consider
extensions in which the following level-preserving rules are
derivable, and hence deducible [the notation is familiar, but it will

also be explained later]
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A A
VxA(x)

-

oA

whereas {A}F}{DA} and {A(x)}l—1 {vxA(x)} are not provable. This is
not necessarily a weakness of D1 and systems in it. This shows only
that sequents cannot stand for any kind of deduction exemplified

in proofs, nor even for any kind of level-preserving deduction.
Later we shall discuss for what kind of deduction sequents may be
taken to stand [v.817]. 1In this section we shall indicate briefly

how the "expressive power'" of D1 could be increased.

In the specification of complex expressions of D1 any of the
clauses (2.1), (2.2) and (2.3) for singular terms could be changed.

First, we shall consider only replacing in (2.1) "m/é = n" by

n n

m, < n. In such a language D - let us call it "DC" ("C" stands
for '"cumulative'") - we could envisage horizontalizing deducible rules
which are not level-preserving. Incidentally, this could also
take care of some previously non-horizontalizable level-preserving
deducible rules. For example, we shall see that the following rule
will be horizontalizable even with our language D1

oL (A .

pp! (oa}
i.e, '{¢FJ:{A}}F2 {¢FJ“{DA}} should be provable in some system. In

the language DC we could also have the following horizontalizations

of instances of Ascending and Descending

(a2 (ol a1} ; (pFYoayy FPloa)
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so that with €ut of level 2 we could presumably get

{a}}-? {oa) .

But this sequent should be distinguished from {A}FJ'{DA},which
must remain unprovable as we shall see. It is however questionable
whether even in this context we should have {A(X)}}?fVX.A(X)}

[v.§860,65].

We shall not consider in detail how this uiore comprehensive
language DC and systems in it could be formulated. First, concerning
sequents of level 1 this language would not make any difference, and
sequents of level 1 are in a certain sense the most important in a
great part of this work. Second, with our more uniform treatment
of sequents we are able to achieve all the goals we have set to
ourselves, so that it is not clear what immediate gain we could
obtain with this more comprehensive language D. If this language
is needed for some other purposes, as it may be, we could always
try to formulate it and then consider our language D1 a fragment
of this language. The results we shall present in this work should

in principle hold in this wider context too.

Next, we can consider rejecting only (2.2) or (2.3) in order
to get singular terms which can be taken to stand for collections
of sentences which are not finite (possibly empty) sets of sentences.
One notion of singular terms which we could thus obtain would be based

on finite (possibly empty) sequences of occurrences of sentences.

That these sequences are made of occurrences of sentences, and not

sentences, means that a sentence can occur more than once in a sequence.
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This would involve rejecting both (2.2) and (2.3). For the rest,
this new language - let us call it "D2" - would be constructed

exactly as DIl.

Let us use the same basic sentence-schemata as for D1, and
expressions of the form"{L L A" AL L "
l, oo ey kl, 1, e ey /e, h1+1, eo ey k1+k2
hlz o, h2 > 0, £ > 0, as basic schemata for singular terms, where
each L stands for a sequence of occurrences of sentences of D2 of the
appropriate level. Then a system amounting in a certain sense to

hADICT will be obtained with the following primitive rules, together

with h applicable to all of those rules which are level-preserving,

15

. A n+l. n
Ascending ———— . g " {A"}
—_— n+tl, . n ’ Descending —_
oA} —_— Al
_ A W™ L, A" (L, A L)
TR T = (L L) ’
1’ 3 2) 4
L L)
Thinning el ’
T L LT, L]
(LA LY (A L)
Permutation ; 5
—_ n n n+l1 ' n+1 n,n
(LB, A LT LY L T L, BT, AT, L)
ALY A L)
Contraction i an }}jl+l{L ] s n }}jl+1{L L
1°7° 3 1 2°7 73
R Y O (L L, A L)
epetition ;

non n+1 ’ n+1 non '
L ALAL LY LY (L L, A A L)
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Everywhere we add n » 0, and possibly a proviso for Thinning to

obtain independence.

Repetition is superfluous in the presence of Thinning, but not
in its absence [v.§818, cf.Ch.5]J. Note that with D1 a certain

function of Contraction is taken up by C.

It is also possible to envisage a notion of singular terms

based on finite (possibly empty) sets of occurrences of sentences,

which would involve rejecting (2.2) and keeping (2.3). Let us
call the corresponding language "D3". For systems in D3 we could
then dispense with giving Permutation, but we should explicitly

give orreject Contraction and Repetition.

Another notion of singular terms would be based on

finite (possibly empty) sequences of sentences; this would involve

rejecting (2.3) and keeping (2.2). Let us call the corresponding
language "D4''. For systems in D4 we could then dispense with giving
Contraction and Repetition, and Cut would be modified, but we should

explicitly give or reject Permutation.

Finally, we could envisage singular terms based on infinite collections

of sentences, which would involve some obvious changes in the syntax

of D.

We can also have either of the modifications involving (2.2) and

(2.3) together with a modification of (2.1).

Working with D1 has some disadvantages. First, we have seen
that substitution for basic schemata is given with a proviso which
does not allow for complete freedom. Second, we shall see that the

analysis of some constants of O cannot be made in the context of DI.
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In a certain sense D1 pictures incompletely the deductive

framework of U. This is immediately clear from our specification

of rules in which the premises are sets of occurrences of formulae.
With an appropriate notion of horizontizations, in a language like
D3 we could establish a one-one correspondence between level-
-preserving transitions and their horizontalizations, in contrast

to the many-one correspondence of D1. Indeed we could find in D3

a one-one correspondence between level-preserving rules and the
appropriate form of their horizontalizations. With an appropriate
notion of horizontalizations, we could have a one-one correspondence

between rules and their horizontalizations in D2, provided we

worked with another notion of rules based on sequences of occurrences
of premises. Our notion of rules was chosen because it seems to be

the best suited with classical logic holding in TU.

On the other hand,working with D1 has some advantages. Though
substitution for schemata is somewhat more complicated,demonstrations
by induction on the length of proofs are simpler if we don't have
to consider Permutation, Contraction and Repetition (these
considerations would often be somewhat trivial). And though DIl
"pictures' incompletely the deductive framework of J, it pictures a
definite and in a certain sense minimal aspect of it. To show that
some customary constants can be analyzed in this minimal context
seems to be of some philosophical interest. Also, in principle,
many of the results we have established and which we shall establish

are translatable in the context of a different language D.
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In this section we shall try to consider what kind of
deducibility relations can be expressed by sequents provable in

a system in DI.

In general there is a many-one correspondence between deductions
and sequents, such that to the left set of the sequent belong

all the formulae which occur as premises in a deduction and to the

right set all the formulae which occur as conclusions in a deduction.

The appropriate notion of deduction hence must allow for more than

one conclusion (where the conclusions are taken alternatively), for

an empty set of premises, and for an empty set of conclusions. To proofs
of a system can correspond a kind of deduction for which only the second

of these things is allowed. We shall not attempt here to give an

account of deductions involving their graph-theoretical or other

similar properties. Assuming that such an account can be given, we

shall treat only of those features of deductions which can be represented
by sequents. of Dl1. This means:that only the premises and conclusions

of a deduction will be noted, all the formulae in between being

omitted; that a formula which eventually occurs more than once as

a premise (or a conclusion) will be noted only once; and that the.

order of premises and conclusions is not taken into account.

The general notion of deduction involving an empty set of
premises or conclusions,and in particular a set of conclusions with

more than one member, i.e. multiple conclusions, is to a large extent

a construction of logicians and need not be particularly intuitive.

However,a coherent account of these deductions can be given.

A deduction represented by F}ylA will be valid relative to

a certain notion of correctness of sentences of D1 iff [if all the
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sentences in ' are correct, some sentence in A is correct].

We shall not treat of this notion of correctness and the

corresponding notion of validity, which belong to semantics. But

we note that in particular cases this notion of correctness can be
interpreted syntactically. We have shown e.g. [v. 814] that the
structural system hADICT can be shown sound and complete with respect
to all the sequents which correspond to valid deductions with premises
and conclusions of the same level, where the notion of correctness

involved is identified with provability in an extension of hAICT.

These notions of correctness and validity will not be appropriate

for extensions of hADICT we shall consider.

Multiple-conclusion deductions are not exemplified in that
fragment of U which corresponds to the deductive meta-theory of a system
of provable sentences of Dl. It is this, basically, which prevents
the interpretation of any sequent of D1 in this meta-theory. On the
other hand, sequents with singleton or empty right sets are in
principle interpretable in this meta-theory. Sequents of hADICT
could be interpreted within this meta-theory because they, so to say,
only set the limits within which we can look for a single—conclusioﬁ

deduction.

A deduction with an empty set of premises and a single conclusion
corresponds to a proof, provided all the steps in the deduction are
made according to directives. In such a deduction the "premises"
of directives which correspond to axioms are counted as premises of the

deduction.

A deduction with an empty set of conclusions can correspond to

a refutation of one of the premises. A refutation need not be made
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of steps with single conclusions. In Chapter 5 we shall consider
systems in which provable sequents with empty right sets could
perhaps be interpreted as corresponding to refutations in which we
want to refute only one premise,and in which the deduction tree
branches downward towards the conclusions, the set of which is empty.

These systems will be based on the use of T , or Tt [v.8840-44],

In general, we shall see that provable sequents of extensions

of structural systems which have, ceteris paribus , (1) T, (2) Ién

or Ien’ (3) Iaﬁ or Ieﬂ’ or (4) no T at all, could be considered

as corresponding to

(1) deductions of classical logic,

(2) deductions of intuitionistic logic,

(3) decuctions of a logic of refutation, or

(4) deductions of an intuitionistic relevant logic.

However, not all deductions of these logics will be represented
by sequents of D1, but only those in which either the premises and
the conclusions are of the same level, or the set of premises or
the set of conclusions is empty. Also, only those deductions which-
can be represented by sequents of a level immediately above the level
of the premises or conclusions will be representable in D1. When
considering sequents of level 1 these deductions can be considered
to be deductions in a single-conclusion or multiple-conclusion

natural deduction calculus to which implication-introduction may be

applied to discharge the premises. This is why we shall have provable
. sequents like

{aeB} 1 (AvC)
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but no provable sequents like

(A R {oA} or  {ACOYRMAvEAQOY .

In general our systems will be interpretable as ''being about'" natural

deduction calculi.

That deductions in classical logic can have multiple conclusions
is far from being generally acknowledged, though sequent systems of
level 1 appropriate for classical logic, which have sequents with
arbitrary finite right sets, are acknowledged as a legitimate
representation of classical logic. We suggest the following as one
possible explanation of why multiple conclusions in classical logic
are not recognized, Although classical deductions have multiple

conclusions, we usually consider them only in an .enthymematic form ,

i.e., in a form in which are omitted all alternative conclusions
save one, as well as those parts of the deduction which “stem'" from
the omitted conclusions. For example, a deduction of classical

logic like

1A

A
would be the enthymematic form of

no premises

(or 11 A)

A A A

no conclusions
(or A).

Usually it is taken that the form of a deduction is enthymematic if

some correct premises are omitted; but we could as well say that in the
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enthymematic form of a deduction are omitted some incorrect

(alternative) conclusions.

§18 [6§89-10] The notion of sequents we have presented is an extension
and modification of Gentzen's notion of a sequent (Sequenz)
introduced in Gentzen 1934 (Gentzen used '"-" as the turnstile).
Hertz's work in the 1920's on expressions of the form Aps e AkF B
apparently influenced Gentzen (v. Gentzen 1932). Gentzen's sequents
would correspond to our sequents of level 1. In Gentzen's sequents
on the left-hand side (Antezedens) and right-hand side (Sukzedens)
there are finite (possibly empty) sequences of occurrences of sentences.
Sequents for which finite (possibly empty) sets of sentences or
occurrences of sentences are used, can be found in Lyndon 1966 (p.64);
Smullyan 1968; Scott 1971, 1974, 1974a;and Shoesmith & Smiley 1978.
The rules I, C and T are derived from the structural part of Gentzen's
calculus LK. The structural part of this calculus would correspond
to the system hOIOCITl.

[§11] The notion of admissible (zuldssig) rules (or also
sometimes "permissible rules") can be derived from Lorenzen 1955
(pp.19-20). The distinction between what we have called "deducible”
and 'derivable rules does not seem to be always pointed out. In
particular, it does not seem to be generally realized that the notion
of a derivable rule (or also sometimes ''derived rule"), which cawn
we]| seem common, is a notion of relevant logic, and that deducible
rules are natural in the context of classical or intuitionistic logic.
We have thought it useful to collect here various references to the

notion of admissible rules and its connection with other notions
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concerning rules: v, Kreisel § Putnam 1957; Hiz 1958, 1959;

Anderson § Belnap 1959, 1975 (pp.54, 299); Schiitte 1960 (pp.40-41),

1977 (pp.15-17); Porte 1960; Leblanc 1961, 1962; Lorenzen 1962;

Belnap, Leblanc & Thomason 1963; Curry 1963 (p.97); Harrop 1965;

1965; Pogorzelski 1968, 1971, 1975; Nints 1972; Wasserman 1974.

The distinction between what we have called horizontalizable"
rules and deducible or derivable rules which are not horizontalizable,
is hinted at in some of the works mentioned above. Some remarks on
this topic can also be found in Dummett 1973 (pp.435-436), 1977

(pp.168-170); Scott 1974; and Anderson & Belnap 1975 (pp.235-236).

Concerning admissible rules, a further distinction can be

drawn between those which are constructively admissible (i.e. such

that given a proof of the premises,there is an effective procedure
to find a proof of the conclusion), and those which are not; v.
Anderson & Belnap 1975 (pp.298-299). In a number of our
considerations concerning admissibility, '"admissible' could be

replaced by ''constructively admissible.

[812] Our results on the non-eliminability of Cut could
perhaps be compared to some remarks of Scott 1971 (pp.793-794),

and 1974a(p.414), which sound similar.

[§16] The notion of sequents appropriate to the language
D2, and the corresponding structural rules are derived from Gentzen
1934. The rule of Repetition is not mentioned by Gentzen; it is
superfluous in the presence of Thinning, but not in its absence.
In relevant logic calculi corresponding to our systems of level 1

have been studied which don't have Thinning but have Repetition.
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These are essentially the mingle systems; v. Anderson & Belnap
1975 and Smirnov 1979. Also, systems which involve rejecting
or restricting in various ways either Thinning, or Permutation,

or Contraction, or Repetition,have been studied in relevant logic.

[817] As Shoesmith § Smiley 1978 remark, the interpretation
of sequents <<has been a matter not so much of dispute as tacit
disagreement.>> (p.33) What Shoesmith & Smiley call '"the material
interpretation'" is exemplified in Gentzen 1934, where there are no
allusions to a distinction between the object language and the
deductive meta-language, but only an object language with sequents
is considered. Sequents in this language are to be taken as
abbreviations for other more conventional expressions, like those
of the o-translation of 8§15 (cf. however Gentzen 1936, I1I1.5.1,
and 1938, 1.2). Church 1956 (829), for example, takes this inter-
pretation for granted (cf. also Popper 1948, p.181, fn.7, and
Kleene 1949 for a misunderstanding along these lines). The ''meta-
-linguistic" interpretation,which we have taken for granted,is
exemplified in Curry 1963 (PP.184ff) and Prawitz 1965 (pp.90-91).
The multiple-conclusion aspects of the general notion of deduction
to which we have appealed are treated extensively in Shoesmith &
Smiley 1978, where there are also references to their origins and

some philosophical discussion of them.

Our idea concerning enthymemes can be derived from Meyer 1973,

which presupposes Anderson & Belnap 1961.
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Chapter 3

STRUCTURAL ANALYSIS

Our purpose in this chapter is to define the notion of
structural analysis with which we shall work from now on.
In order to give this definition we shall first characterize
some notions presupposed by it: in particular the notions of
analytic rules and uniqueness. We shall also consider some

related matters.

Our principal definitions will mention a language D in general,
and not any particular language D like Dl1. But our discussion will
be precise only if we substitute”Dl" for"D"everywhere. With other
languages D, like DC, D2, etc., some notions should be redefined
implicitly, by analogy with what we have in D1, so that the notions
defined here can be applicable in contexts with them [e.g. the notion
of "horizontalizations" in §24].

M " n

Let B,", ..., %',A, k>1, m, >0, 14k, n>0,

be formulae of a language D; then all the rules

m m
1 k n n
B B A A
1 k H H ’
G Bml Bmk
1 k
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called "a double-line rule'".

If "R" is the name of this double-line rule, "R{'" will be the

name of the rule

and R4 will be a designation for any of the rules

A" oAt
g"l Bm!z
1 k

Double-line rules are only an abbreviatory device of U, and are in
principle dispensable. For example, the rules A and D could have
been given by the double-line rule R
A"
‘_'VT’*_—"'"—_‘.'."..._ y»
pPo T (ah
where R¥ is A and R+ is D. In fact,a system with exactly the same

provable sentences as hADICT could have been given only with double-

-line rules, viz. the following rules and the horizontalizations of

the primitive level-preserving rules given by them

A" oA Pt ru

> > A

ot LYy A" TR+

The last of these double-line rules is in a certain sense a conflation of Cut

and Thinning.



§20 62.

Definition of analytic rules

The double-1line rule of the form

where a k > 1, and an n > O are given,is analytic iff
(1) only one constant of O occurs at only one place in the
formula An, and

(2) no constant of O occurs in the formulae B?, e Bz.

Every rule given by an analytic rule is level-preserving.
For names of expressions of O we shall use the schemata

G”B)Y)al’sl) LA 2

occasionally also with some special indices. The constant o which
is the only constant of O to occur in an analytic rule R will be

called '"the constant analyzed by R". The standard name of the analytic

rule R will be an expression of the form
(d«); or (a')k ’

where k is a subscript >0, to distinguish analytic rules in which

the constant analyzed is identical.

The level of an analytic rule will be the same as the level

of the rules given by it.

Extensions of a &§tructural system S with analytic rules and

eventually the horizontalizations of some or all of the rules given

by these analytic rules will be called "analytic extensions of S".
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The level of an analytic extension will be the same as the highest

level of its analytic rules. An analytic rule is in the

scope of h iff all the rules given by it are in the scope of h.
The horizontalizations of the rules given by an analytic rule ()
will be called '"the horizontalizations of (a)'. We shall say that

(a) is horizontalizable iff all the rules given by (o) are horizontalizable.

We shall now consider the eliminability of D, of at least some

levels, from analytic extensions of structural systems.

Lemma 10 Let S be hADICT, hADICT‘n,

hADICTan, hADICTsz, hADICTaK,
or hADIC, and let'S1 be an analytic extension of S of level k, for

some k > 0. Then Q_Of all levels 2k + 1 is eliminable from Sl'

Demonstration: Let S2 be the subsystem of S1 without D of all
Ds!z

levels >k + 1; hence,S2 has We shall show that D is admissible
for S2‘ For all levels < k the demonstration is trivial. Suppose

now that PFn A is provable in S, , where n > k + 1. We can show that

FF" A is admissible in 52 by an induction of the length of the probf
of FFn A. The only addition to be made in an induction adapted from

the one in the demonstration of Lemma 5 is in the basis where P}JlA

is a horizontalization of a primitive rule.

Then if g}" ("1} s provable in S,, it is admissible in S, ,
and hence An-1 is provable in 32. Then we use Lemma 2.

Q.E.D.
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We note that if S1 is an analytic extension of level O, D
is completely eliminable from Sl. D will also be completely
eliminable from an extension of S with sentences of level 0O and

rules of level O, eventually in the scope of h.

§22 In this section we shall consider the notions of synonymity

and uniqueness of expressions.

Let £ be a schematic letter of U for an arbitrary expression
of O of some category and let o and B be arbitrary expressions of O
of the same category as §. ( "&" is the name in U of the schematic
letter £ of U, whereas "a'" is the name in U of the expression o of 0.)

We shall use basic schemata of the form

n
AT(B)
for sentence-schemata of D in which & occurs at least once, and

basic schemata of the form
& \n
Sq AT (8)|
for formulae of D obtained from A”(g) by substituting o at the

place of every occurrence of £ in A"(g). If £ was the only

expression in A"(E) which is not an expression of O,
En
S;AT(8) |
will be a basic schema for sentences of D. Weare here interested

in ¥ only as a '"place-marker", i.e. an auxilliary of the notation

for substitution instances.
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Definition of inter-admissible (inter-deducible, inter-derivable)

formulae
The formulae A" and B" of D are inter-admissible (inter-

-deducible, inter-derivable) iff the rules given by

are admissible (deducible, derivable).

Definition of admissibly (deducibly, derivably) synonymous expressions

The expressions o and B of O are adm.-synonymous (ded.-synonymous,
der..-synonymous) in a system S in D iff for every A”(g) such that
éiAn(£)| and Sgdkg)l are formulae of D , qiﬂtgjland SEA"(E)I are

inter-admissible (inter-deducible, inter-derivable) in S.

N.B. All of these definitions of synonymity permit both

uniform and non-uniform replacements of o by B and vice versa, salva

provability.

To show the difference between the three notions of
gynonymity take a language O which has only two functors: &¢ and
{'5 y 0f the category Z/;}S" s and then take in this language the
system which has the axiom-schemata

AXA 3 ApA ’
provided neither &« nor (S occurs in A, and the primitive rules

B c _._B . _¢
B C BXC ° BRC’ BpRC °

-

In this system & and (5 are adm.-synonymous but not ded.-
-synonymous; and AXA and A(AA y for any A such that neither

X nor ('5 occurs in A, are ded.-synonymous but not der.-
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-synonymous.

If o and B are der.-synonymous in a system, they are ded.-
- synonomyous in this system; and if they are ded.-synonymous they

are adm.-synonymous [v. Lemma 1].

Which of these notions of synonymity we shall choose will
depend on the particular purposes we have in mind. However, we
shall see that for the particular systems with which we shall be
concerned, o and B will be synonymous in one of these senses iff

they are synonymous in one of the other senses [v.§877,78].

From now on, by ''synonymous', tout court, we shall understand

"adm. -synonymous". This notion embodies the intuitive notion of

interreplaceability salva provability.

Let S be a system in D and let S# be the system we obtain
when we replace everywhere in the postulates of S the expression a of
0, which occurs at least once in these postulates, by the expression a#
of O of the same category as a and different from a. SS# will be
the system obtained by giving both the postulates of S and S#;h¢{aeh“?m3°“ﬁwk
both o <% N.B. SS# is the result of introducting only one expression oc#: no

. . . # . .
simultaneous introduction of more than one o 1is envisaged.

We have an example of a system SS# if in the system above we

. #
rewrite "B" as "o ".

Definition of uniqueness of expressions

The expression o of O is unique in a system S in D iff o and a#

are synonymous in SS#.
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Later [v. Ch.9] we shall consider in more detail questions

concerning uniqueness in a particular context.

Homologous definitions of synonymity and uniqueness are obtained

when for "D" we subsitute '"Q'", above.
3y

We shall say that an expression o of O is explicitly definable

in terms of the expressions Bl,..., Bk’ k > 1, of 0 iff for every
sentence A" of D in which o occurs at least once, a sentence B" of D
can effectively be found in which there occur only: (1) all the
expressions Bl’ e Bh and (2) all the expressions occurring in Al
which remain after o has everywhere been deleted, and such that A" and

n

B" are synonymous in every system S in D.

We allow the case that k = 1 and o is identical with 81: i.e.

every expression of O is explicitly definable in terms of itself.

An expression of U which describes a procedure which enables
us to find the sentence B" whenever a sentence A" is given is called

"an explicit definition of a". An explicit definition is proper

iff o is different from BL’ for every 4, 1 € £ € k.

If o is explicitly definable in terms of Bl""’sh’ k>»1, and g; |
1 < i<k, is explicitly definable in terms of Yis +esYpo £ > 1, then

a is explicitly definable in terms of Bl,..., L-l’Yl"'"Y£’§£+l""’8k’

Our notion of explicit definition satisfies

Pascal's Condition

A definition must enable us to replace in every context a

sentence in which occurs a defined expression by a sentence provided
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by the definition, salva provability.

§24  Definition of structurally analyzed constants

The expression o is structurally analyzed by the double-line

rule (a) iff

(0) for any language L in which o is a constant there is a
language O in which L is included and which has no constant which is not a
constant of L,

(1) (o) is an analytic rule in which o is the constant analyzed,

(2) there is a system S in D built on O for which (a) and eventually
the horizontalizations of (a) are given, for which without these postulates o
is not essential and in which are provable all those, and only those,
sentences of O which are correct (provided these correct sentences

coincide with the provable sentences of a system), and

(3) o 1is unique in $ (provided O is deductively monotonic

with respect to SS#).

The notion of deductive monotonicity, used do state the
proviso of clause (3), will be defined later [§77]. The treatment
of this notion is postponed for heuristic reasons. The import of
the proviso will be that if'{A}F;{B} and'{B}Fl{A}are provable in sst,
and C2 is obtained from C1 by replacing A by B at some or all places
where A occurs in C;, then"{Cl}{—1 {c,} and '{Cz}Fl {c;} are provable

in SS# [v. also B87].

A structural analysis of o consists in specifying the languages

0 and D, and the analytic rule (o) with which a can be structurally analyzed.
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In the definition of structurally analyzed constants (1) states

the form of a structural analysis, (2) requires that a structural

analysis characterizes soundly and completely the constant analyzed,

and (3) requires that this characterization be unique. The point

of clause (0) is that for L we need to assume only that it has the
analyzed constant «a. For O we have to make additional assumptions:
e.g. the assumption that it has sentences, but we shall also make

more substantial assumptions later [v: Chapters 7,8]. If L

satisfies these assumptions, it can be taken to coincide with 0; if
not, then O is obtained from L by adding schemata for the expressions

required by the assumptions, but no new constant [v.§87, cf.§37].

The correct sentences of O can be specified independently of S,
as those which are provable in some other system, or are correct in
a semantical framework, or are possibly given in some other way.

But these correct sentences can eventually also be defined as those
which are provable in S: in this latter case S is trivially sound

and complete with respect to these sentences [cf. §92].

In principle S should also be at least sound, but not necessarily
complete, with respect to the correct sentences of levels higher than
0, and not only with respect to those of level 0. But deciding which of
these sentences of higher levels are correct will depend on the
exact interpretation of sequents. A system S will be trivially sound
and complete if S is to codify that part of the deductive meta-

-language which is, so to speak, horizontalizable in it. But we have
seen [v. Lemma 1] that in some particular cases § can be shown at
least sound in an independent manner, and it would also be possible

to show that S is sound with respect to a semantical notion of



§24 70.

consequence. In principle, the soundness and completeness of S

should be shown with respect to a natural deduction framework, and
where in S we have provable sequents with arbitrary finite collections
on the right, this natural deduction framework will involve multiple-

~conclusion deductions.

The proviso in (2) that correct sentences of O coincide with the
provable sentences of a system seems to imply that the definition of
structurally analyzed constants will be inapplicable where O does
not satisfy this proviso. Such a language O will be e.g.

a  language which includes the language of formal arithmetic. However,
in this case we can say the following. Let us distinguish two

kinds of correct sentences of formal arithmetic: those that are correct
in the standard interpretation and those that are provable in a given
system S . Then we can show that some constants of formal arithmetic
are structurally analyzed if "correct' is taken in the second sense.
That these constants are the same as those which occur in correct
sentences where "correct" is taken in the first sense, would be

shown by semantical considerations.

Definition of structural constants

A constant of QO is structural iff it is explicitly definable

in terms of some structurally analyzed constants of O.

We do not require the explicit definition of o to be proper,
i.e. o can be explicitly defined in terms of itself. Hence,a
structurally analyzed constant is. structural. If a constant is
established as structural by means of a structural analysis, we

shall call it "a primary structural constant', and if it is established
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as structural by a proper explicit definition, we shall call it "a
secondary structural constant'". A structural constant can be

both primary and secondary.

Our main purpose in the following chapters is to show that the

customary constants of classical first-order logic with identity, and

some non-classical logics, and the constants of the modal logics

S5 and S4,are structural, where the context of analysis is provided
by D1. We shall be concerned first with clauses (0), (1) and (2) of
the definition of structurally analyzed constants [Chapters 4-8]

and then with clause (3) [Chapter 9].

[820] The general notion of analytic rules is in a certain
sense implicit in Gentzen 1934. This notion was more explicitly
suggested by Ketonen 1944 (cf. also Bernays 1945 and Curry 1963,
pp.199-203). It might also be a part of what Popper wanted to
express in his work in the 1940's [v. 8§99]. It is exemplified explicitly
in Kneale 1956 and Kneale & Kneale 1962 (p.561); Scott 1971, 1973,

1974a; and Smirnov 1972, 1979.

[822] Historical remarks on uniqueness will be given in §85.

Here we note only that the system used for distinguishing various

notions of synonymity can be compared to a system of Schiltte

1977 (p.15) which serves a somewhat similar purpose.

[§23] One of the laws to be obeyed in demonstrations given
by Pascal 1658 is : <<Substituer toujours mentalement les

definitions a la place des definis, pour ne pas se tromper par
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1'equivoque des termes que les definitions ont restreints.>> (p.280;
cf. also pp.244, 279-282). Pascal's Condition is derived from
this law (v. also Beth 1959, pp.504-505 ; cf. Aristotle Topica,
7.4, 1420).
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Chapter 4

CLASSICAL PROPOSITIONAL CONSTANTS

First we introduce the propositional constants which we shall
consider in this and the following chapter. Next we give the
analytic rules of level 1 and explicit definitions for these
constants, which will constitute the canonical set of analytic
rules and explicit definitions for these constants in both classical

and non-classical logics.

We next consider the analytic rules which could be used to replace

the analytic rules of this set, in the context of classical logic.

Then we introduce an axiomatization of classical propositional
logic (and also of Heyting and Kolmogorov-Johansson propositional
logic), and we show that the analytic extensions of hADICT with the
analytic rules for propositional constants can serve to demonstraté
the soundness and completeness of our analyses of the classical
propositional constants. Finally, we consider whether this set of
analytic rules is replaceable by postulates of-this axiomatization
in 0. This topic is treated because it shows to what extent an
axiomatization in O can provide a certain sort of analysis of logical
constants when sentences of levels higher than O are also considered.
In general, results on replaceability are not our main concern in

this work, but they shed some light on a number of questions connected
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with our analyses.

Definition of propositional constants

A constant of O is propositional iff it is of the category

y; < T for some /?,20.
I * e 0
k
We assume that O has the following propositional constants

implication: >,
conjunction: &,
disjunction: v,
co-implication: >,

which are of the category —%z-,
the falsum: L,
the verum: T,

which are of the category 4, and
negation: o,

which is of the category —%—. These are not necessarily the

only constants of O, but those we assume must be in it. Occasionally

we can assume that we have in O some other propositional constants

which are not in this list.

If O has the constants above, 0 will have an infinite

number of sentences.

A constant of O will be named autonymously, in a standard way;

for example, we shall say

-+ is a constant.

Anticipating our conclusions [v.§8§94-95], we shall use the

74.

same expression of O (that is, the same symbol) for different constants

when these constants are to be shown equivalent in a sense to be made

precise later. So we shall use all of the above symbols, and also

some symbols we shall introduce later, for constants of both classical:

and non-classical logics.
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Strictly speaking we need not assume that we have parentheses
in 0: theyare only an auxiliary grammatical notation of U for
showing the argument-places of functors. We shall use them in a

standard way.

§28 We give the following analytic rules in D1 for the constants

above

ro{Al P ALSRY
TEAUVFA—BY
rYausAl rravel
FEACSARRY
HORLIN ol FA
FUSAV BRI A
oy [USAY PpOfey  CUiBEPALSAL
Y AVSA—RY ’
W - ry & ,
AN
o BuRLAN
(TLF A

(&)

9?

(v)

All these analytic rules are of level 1.

We shall not consider the analytic rule (+*), since, in the
presence of + and &, we have the following explicit definition
("=4¢" will indicate that the expression on the left is explicitly

definable by the expression on the right)
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For 1 we give the following explicit definition

MA =f A-> 1.

All these analytic rules and explicit definitions will be used
without any change for both classical and non-classical constants.

We shall see later that it is possible to give analytic rules for

negation, but not an analytic rule which will serve for the structural

analysis of negation in every context we shall consider.

We note that substitution for "A'" and "BY in the analytic rules

and explicit definitions above is free, so that A and B can be the

same formula. Hence,there will be two horizontalizations of (&)+ and

W, viz. {TFrau{al, iRl au 8332 {oF! AU {AsB}} and
{I'l—lAU {A}}|~2 {I'I-IAU {A&A}}; and homologously with (v)¥. We
note also that according to our conventions, in (»): A€, BE€A,
A->BgA; in (&): AgA, BgA, A&BZ A; and in (v): AT, BRET,

AvBgZT. But we can show that the following rules

rofalvavsia-g, et . rufAkrAu{R,A-B

CVA USA—B] T TUIAFAUSRY

FEAUVIAL®, AL TPAUSABREl T¥AULA,ARRL

CHAUSARY T rEAUIAY

3

FEALSE, AZ®,  rUSAVR AL PA  TUIAVRBIFA

e A LERY | ruSAvRIE A
CUSAAVBIEA  TU{R,AUREYA
rusAalvy a7 ruseRivA

>
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are horizontalizable in hAIC(=) (&) (V). As an example we give

)t ARy ¥iaoet X(L)

A {A-8 AL FABY

-W .§ru§ Afra §;{f %rmuSA—»g{i h(en)
{rusAieavia- g (A8, Agk—a%g{ P{rufai EAUSRR K(C)

9
® ®

%ruﬁAiu_uﬂlA—%B %’gz( {ru‘{AiFL\Ug 57{2 @
QT USAT FAUSASR BT AL A—RRL

(

a0,

which shows that the first of the rules above is horizontalizable.

We note that analogous remarks could be made for the analytic
rules we shall consider later, and we shall not comment on this topic

any more.

We shall now consider the analytic extensions of hADICT with
), (&), (v), (1) and (T). In these extensions the analytic rules
will be in the scope of h. D of all levels >»2 is eliminable from

these extensions according to Lemma 10.

First we present the following analytic rules.
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Gy _C¥autal  ruiebr A ey, A 3 ,
! FUSA—RIY A AR 3
“ FUSARIYA @ FoiAl v A .
11T US ABRIYA Y2 USARATEA
v, CFAUSA B L _TrAViAR
"Tre ALSAVEY 2T AUSAVAY
L)y 3 ‘iA (T), rrae ; .
r ¥ ugﬂs INVEREE N

Definition of replaceability

A set of postulates Hl of a system S is replaceable by
a set of rules or formulae H2 iff the subsystem of S without Hl
extended with Hz gives a system which has the same provable sentences

as S and the same deducible rules as S.

If in the definition above we delete the clause beginning

with "and", we get the definition of weak replaceability. If two

systems have the same provable sentences, they have the same admissible

rules, but not so for deducible (or derivable) rules.

When we say that an analytic rule () in the scope of h is
replaceable by a set of postulates II, this will mean that all the
postulates given by (a), and (o) and h, are replaceable by II. If a
level-preserving rule is in II, we shall presuppose that it is in the scope

of h_if not stated otherwise.
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Also,when we speak of an extension of a system with h with
some postulates II, we shall presuppose that any level-preserving

rule in II is in the scope of h if not stated otherwise.

N.B. These presuppositions are essential for the correct

understanding of what follows.

Now we shall give a number of lemmata omitting their
demonstrations, which are a matter of routine. We shall only give

a demonstration of one part of the first of these lemmata as an example.

Lemma 11 11.1(»)1 is horizontalizable in hADICT(-).

11.2 () is horizontalizable in hADICT(e)l.

Demonstration of 11.1:

yp ABiEfan ~&& W)
A {A-»ts AY P EBY
- ¢F{ At A VS REL k()
gr\-A\)ﬁA{ AR A\H%{ F&Fu A—*E’;\»Au %{lg

i e avialf v m%A—»&\\-A O§ et

B fropmgep ity g ahrofageal K(C)
¢ (rraugal, USRI FATF TUSA-REVAR 5

AR AL RO LA RN (VARSI IR LY
ERRLUAIN -r«m%A-»A} A VRY - Oty
521\—2;\ A—sﬂ BV, A-AY 1Bke Aﬁ%\ REEy

® @ Q &)
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D or

@S Fes A a3

(#rsa a-wk rofa-Be At {re avia K(Q)
%YU%A—A@;\-“A% FerrAausatl;

%9’. %2&%\—%—»’&1‘?
= {{a) ¥ faarl ruga-RP AT Firuiat ¥l R(C)
frosa-gival v {Tu R HAY.

Q.E.D.

It follows that (+) is replaceable by C+)1 in the context of

hADICT. It can also easily be shown that in this context (*) is

replaceable by the formulae
1 y ; % . 1
gF~ {A > B,A} ; {B}}-{A » B} ; {A = B,A}}"{B} ,

where substitution for "A" and '"B" is free.

Lemma 12. 12.01 (&)o is horizontalizable in hADICT(&).
12.02 (&) is horizontalizable in hADICT (&)0,
12,1 (&)1 1 and (&)1 5 are horizontalizable in hADICT(&).

12.2 (&) 1is horizontalizable in hADICT(&)1 1(&)1 2
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So, (&) 1is replaceable by (& )O’ or by (&)1 1 and (&)1 2,in the
‘context of hADICT. From 12.01 and 12.02 it follows that in this

context (&) is replaceable by the formulae
{a,BYF! {aeBY ; {A}}! {azA} ; {asBY}!{A} ; {amBY}}'{B}

where substitution for "A" and '"B" is free, except in the first

formula [cf. Lemma 20.11, 20.12).

In a language like D3 an analytic rule corresponding to (&)1 1
would be sufficient to replace (&), (&)1 5 being superfluous

({A}Fl'{A&A} would also be superfluous).

Lemma 13 13.1 (v)1 1 and (v)1 , are horizontalizable in

hADICT (V).
13.2 (v) is horizontalizable in hADICT(v)1 1(v)1 9

So, (v) is replaceable by (v)1 1 and (v)1 2 in the context of
hADICT. It can also easily be shown that in this context (v)

is replaceable by the formulae

(aYhE fave) 5 {B}RT (avBY 5 favBIR' {A,3} 5 {avalbl (A},

where substitution for "A" and "B'" is free, except in the third

formula.

In a language like D3 an analytic rule corresponding to
(V)1 1 would be sufficient to replace (V), (VOI 2 being superfluous

({AVA}FI {A} would also be superfluous).
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Lemma 14 14.1 (J.)1 is horizontalizable in hADICT(L).

14.2 (1) is horizontalizable in hADICT(l)l.

So, (1) is replaceable by (.L)1 in the context of hADICT. It
can also easily be shown that in this context (L) is replaceable

by the formula

ENIErN

Lemma 15 15.1 (T)1 is horizontalizable in hADICT(T).

15.2 (T) is horizontalizable in hADICT(T)l.

So, (T) is replaceable by (T)1 in the context of hADICT. It can
also easily be shown that in this context (T) is replaceable by

the formula
¢F1'{T} (or the formula T)
Although (), (&, (v), (L) and (T) are replaceable in the
conteit of hADICT by the above analytic rules or formulae, this
will not be the case for all these analytic rules in all the

analytic extensions of structural systems we shall consider

[v. Chapter 5].

Consider the following analytic rules

ru{atta rilag{a

@), = 5 (), ———
S IR YNTR TN 2 rytarkta

We state the following, omitting the demonstrations,
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“Lenma 16 If A =4f A~ L, (1)1 and (’1)2 are horizontalizable
in hADICT(=) (1) .
Lemma 17 17.1 C\)Z is horizontalizable in hADICT(w)l.

17.2 (ﬂ)1 is horizontalizable in hADICTCﬁ)Z.

So, (ft)1 and (_'1)2 are mutually replaceable in the context of hADICT.

It can also easily be shown that in this context (1)1 or 01)2 are

replaceable by the formulae

ol {aqAr ; {anarElo.

We shall also consider analytic extensions with Cj)l. [For

other remarks on analytic rules for classical 7V v. §37].

Consider the following rule

A A~>B
)

and the following formulae

c (A> (B~>C) > ((A>B) > (A~0C));
_—g_; A (B~>A);

Cq ((A>B) ~A) ~ A;

—’2-; (A%B) ~ A;

_P:; (A%B) ~ B;

72;_ (C~>A) > ((C»>B) »~ (C~> (A%B)));
;;— A > (AvB);

:;;. B -+ (AvB);

:; (A>C) > ((B>C ~ ((AvB) > C));
jj_ 1->-A;

vy T
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(A > B) = (OB =7A);

A -MA;

TMA > (MA > A)

& [ F

(substitution is everywhere free).

As an abbreviation of e.g. "clczcs" we shall use "cl_s".

The system

(mp)  ¢jgky 5%y 58V

will be called "CP/O" ("C" stands for '"classical", "P" for

"propositional', and "O" for ''level 0").

The system

(mp) ¢; 5 ky_ 5 @) 5 8V

will be called "HP/O" ("H" stands for 'Heyting").

The system

(mp) ¢y 5 Ry 58y 5V

will be called "KP/O" ("K" stands for "Kolmogorov-Johansson')

In CP/O, HP/O and KP/O, v is replaceable by A > T.

Systems in O, like CP/0, HP/O and KP/O, will be called

"axiomatizations in 0" or "axiomatizations'", tout court.

If the language O is the language of the propositional

calculus, CP/0O will be an axiomatization of the classical propositional
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~calculus. Since’however’we have left O undetermined, CP/O

for us should be a classical propositional system and not the
classical propositional calculus. CP/0, HP/O and KP/O are

separative. That these axiomatizations are separative means that

any provable formula in which occur certain constants is provable with
the use of only the postulates for - and these constants. The

extensions of CP/0 and HP/O with nl_ and the extension of KP/O with

3

n o preserve separativeness. When- is explicitly defined, n_z

are provable in CP/0 and HP/O, and n_

5 in KP/0. The subsystems

of these extensions without 4§ have the same provable formulae in

which 1 occurs only in =1, as CP/0, HP/O and KP/O [v.§34 for

references on these axiomatizations and extensions].

A system in O is, of course, also a system in D built on O.

§32 Definition of n-equivalence

The systems Sl and 32 in D are #n-equivalent, for a given
n s 0, iff for every sentence A" of level n, A s provable in

S1 iff A" is provable in Sz.

Our main purpose in this section is to show the O-equivalence
of CP/0 and the system

hADICT (=) (&) (V) (L) (T)

called "CP/D". This will be done in stages in order to show the

separativeness of CP/D, and its extension with (1)1.
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Lemma 18 18.1 (mp) is horizontalizable

and ¢

1.3 are provable in hADICT(»).

18.2 hl_ are provable in hADICT(+) (&) -

3

18.3 a,_

—————

are provable in hADICT(+) (v).

(2]

18.4 4 is provable in hADICT(») (1) .

18.5 v is provable in hADICT(T) .

—

18.6 n are provable in hADICT(+)C1)1.

1-3

Demonstration:

18.1 (f’)t

A-BY P {A=RY V(1)
Al AR SBY
oyt AAEmNE AT RO), fe-d e A E ()

o A=(emd) AP iR~ AN

B JaE0) ARG

Q)

(AR, nstead of @ we gek @D fa(z-0) BT Y
L SAamw v faa gl W)
o Avs, ALY 1 ® o @D

& S A~ (RAE), AR AT §CY

3 sppiicakions of ()4, end D
(A= (60— (A= B~ (A0 ;

SAL P §AL V() (AL EAL 1)

~ {ABIVIAY \ B§A~AY
(2 apyplieakows of (=) sud P.: ~ SAlFA-AY
A=A ov (o)) owd D'

A= (A=A
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e dAkEEA B o dALE 1A B (1)
cutALFiA, oY o BEIA A
BV LA ABY = ZViA A AL
@ @
oy 002 At 2] K(E)
¢ @ or@ D (A=R)—A ABIFTAY
= {A-R)- AL ¥ {a}
(=) aud D
((A-R)=AY - A

(AzRy Piazey K@)
fazRY F§AY
(=) sud D'
AazRY=>A sl komo\o%cus\ux for .fi%f
fe=al ¥ fem V() W e-siefe-at 2D
)1 LC>A, Y § A% ”ic—’&,c:g ¥ 2&}4
) Q
i§ A#R:
r-l-,4 @ T'\ @
QLEACoRAVIAY T oA 0B CTEE]
{C~A,C-B i " CARRY
D appheabons of (=)L, and D
(e=A) > (~R)= (C—(A® &)}) ,

dA=R:
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Q
@)1 %Q___,p) Cl¥ §AZBY
2 ayplicaons of (=)
T v §(c=B)- (¢~ (AZR))
- {c-»A“g Fi(c—»&) - (e (AR R)Y
(—-»)l aadl D«
(C>A)=((car) » (C>(ABRY) .

ne.2 (VM jA\l_Ei \'CCSAVBX E(‘.K:\)
AL Y SAVRY
(-—>)l &V\C& B“
A (A\/B) sanch \f\owoofﬁou&m&m @y
?A«»c} A—ch\(T)L fescir § R} Q)
gAsc A}\-% & §E—»c,($§t—fc,§ |

® @
QS A*R
T @ 'T" &)
A B AT el T (A-C Rac, RIS

l
) AT, BaC AVRE V(0]
K4 é\b,,r\\'c,e;\w"ﬁws of (‘—’\l' R Wd .D: .
(A=) (=) > (AvRY =)
¢ A=R
-2 @

§B=C,AVRY ¥ §Ck
l&&r\:;skous of (=)
B L(a~e) - ((avR)-0)}

T _fA0} ¥ §(BC)= (AR )
(=) aud D

= C) - ((R=0)— ((AVB)—! C}) )
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A2 B P R 4 i e i (D)

BOAY: § B ¥IT
-4 vEAY - T,
(=) ad D
L—A
A6, fA—-BIF fARY WD | £1R3 HOIR W)
()’gk-»@,ﬁw el (’)fga,wrswzj"
® o)
§ A #£R:
—C @

(:)‘r 1A=, A 1 Ry ¥V X
t O {A-R IRY AL
] AMQa\\'ous od (=) ,sv»o\ D"
(A->R) = (1R =-"A)Y,
i A="8: @
o0 ! TR
- §A-R,1R% ¥ §1AY
A applications of (=), snd D

(A-sgs—a(ﬂ&ﬁ"lA);
(.4 A3 ¢ Al WD) RRENE ARy
(1)34 DALAR P (-01‘ A JALE &
§ AL ¥ § 71 AY = §17A,1ATH(AT
(=) wd D 2 asn\\'c&\'ws of ()4,
A A b D

>

MA-(A-A) .
Q.E.D.
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Lemma 19 If a sentence of level O is provable in CP/D, it

is provable in CP/O.

Demonstration : Consider the following o¢,-translation:

1
0, (A% = A%

~ e VH'].

0,(I), 0,(I) and OI(PF A) are obtained by

. . ~
substituting everywhere "01" for "o" in the clauses for o(I),

n+l
F

o(T) and o(T A) [v.§15].

Suppose now that a sentence A”,nebo, is provable in CP/D.
We can show by an induction on the length of the proof of A" that

ol(An) is provable in CP/O.

For the basis we have:

1) hr_l(lﬁ"lﬁ; then we use A - A;

2) hﬁ'l(gﬁ—l); then we use

((A > (BVE))&((CEE) » D)) - ((ARC) - (BvD)),
((A + (BvE))&(E > D)) + ((A = (ByD)),
((A > E)&((C&E) » D)) +((AgC) + D),

((A > E)&(E ~ D)) » (A~+D),

if A is T, (A&C)*%-Cyand if D is 1, (ByD)--<> B;
n-1..n-1 .

3) b (T™7); then we use

(A > B) + ((ARC) + (ByD)),
(A > B) + ((A&C) » B) ,
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(A > B) » (A> (BVD)),

if A is T, (A&)<«> C, and if B is 1, (BvD) <« D;

4)  h((®)¥) and h¥(+)4); then we use
((C&) > (BvD)) <« (C>(Dv(A » B))),
((C&A) > B) < (C > (A > B)),
(A > (BvD)) <« (T » (Dv(A » B))),

(A+B) <> (T > (A~ B);

5) 11_1((&)4') and El((&)‘t); then we use
((C » (DvA))&(C + (DvB))) <> (C -~ (Dv(A&B))),
((C > A&(C + B)) « (C ~ (A&B));

6) hl ((v)¥) and hl((v)4); then we use
(((CBA) + D)R.((C&B) + D)) <> ((C&(AvB)) = D),

((A > D)&(B + D)) + ((AvB) -+ D);

7) _}ll((J.N) and _lil((L)'r); then we use

A-> A

8) b_l((TN) and h]((T)f); then we use

A > A,

For the induction step suppose that if A" is proved in < R
steps,ol(An) is provable in CP/0. Let it be proved ink + 1 steps.

The last step can be:

1 _A:" ; then we use A > (T »-A) and (mp);

2) _Dl”l ; then we use (T + A) -+ A and (mp);
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Lemma 20 -~ 20,11 (8N is horizontalizable in hAC(mp)c

92.

§33
for the other cases we use the formulae of the basis, kl-s and
(mp). This concludes the induction.
n n
If n =0, ach ) = A", and the Lemma follows.
Q.E.D.

From Lemmata 18 and 19 we get immediately

Theorem 1 CP/D and CP/O are O-equivalent.

We shall now consider whether the analytic rules of CP/D
are replaceable by postulates of CP/0. We shall consider in principle
the possibility of replacing all these analytic rules by postulates

in 0, and not these analytic rules taken one by one. We can show

1-2k3 :

20.12 (&+ are horizontalizable in hAC@qﬂkl_z.

20.21 (T¥ is horizontalizable in hT_, |

20.22 (T)4 ishorizontalizable in hACv .

20.3 (+)4 is horizontalizable in hAC(mp) .
20.4 (v)+ are horizontalizable in'hAC(mp)al_Z‘

20. . . . .
0.5 (L)¥ 1is horizontalizable in hT p OT hz;bn .

Demonstration:

20.11 A A”’@""@\&B}) \’“‘Yau& W ("‘*P\'C«—Lﬂ% H((Vl‘_?))
= VA (o (AR {A-R-(AsR) ALV R~ (AeB)
= o0 AATSe(aeR) {ao(reR)RY ¢ (ARRY Hw)
" 1A, B ALY
®
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it A=B | nstead of @, we ack AD:{A} Az Al

2 @
SEFLGY ireautal @R rofel eavias o (e

%_ §TF AUSATL P T USR] AU AR &K K
= {TRALERY, T uTRRFAUAsB]R T FAufASY,
FEALAY, TEAUSRTFIT P AUSARRY | o

§
@D
2 BVIEDY  {TPALIALED] rtay fasall K(C)

1y FAUSA i rea U{ARAYY .

>

1

.20.4.')’5\A azr)— A L,
= Br{(aeeoal  fazk)eA Azalr A} He)
a SABRY S AY

o Zriiase] ¢ial

= THFALEALRY PABREY ?Aﬂl—‘%rPL\U?Aﬂ R(C)

§TF AUSABRLL M AGS AR

aad \r\ow.o\oo‘squs\uh withh /_e_e_& )

0. (B Al iiTival B (Te)

0.2, _ T v
Alsd A
o ZRZYTR e in, v al vieeal v

= BTIVALE{B AT
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0.3
2 AR, ATF{RY Blmp)
k()

C-z_ 2P a8, AR
= {TVALIARY, (AR AT PERTTF| rufal v auiR
ITPALSA-RY P I TuiATFAUERE .

20. h

A (AVB> O a
B a~(ag]  {A-(avR), AT {AVEE K

p e
2 BESSALE §AVE h(eh)
C = {1A1P§AvRY, CLSAVER VAT iruale Al
S;rugmal \-‘A} \-"§ (‘u%A{PA} : -
é\.»éx \M\Mo\b%ous\\t widh Q,.

ZO\S % FP,Q(% v Sl r PQ.LR E(’_Y_’ca) or E(TA“,D

11>,

Q.E.D,
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Lemma 21 Let S be the extension of hADICT with the postulates
of CP/0.

21.1 (+)¥ 1is not admissible in S.

21.2 (V)+¥ ig not admissible in S.

21.3 (4)* 1is not admissible in S.

21.41 (7)1+ is not admissible in S.

21.42 (1)1+ is not admissible in S,

Demonstration: We have

A ST E SAY B (DT)
) AT Y SA B
BESAA>BY

2.2 (AT SAL R L sBIEERY WD
I SAFIARY - Seieiael
(AVRL Y S A BY

S PR RN
(.\.3\ %_L'l,\-f g ,

4 AL E LAY w(1)
v g VSA AL

2A. ko, G )mAi Fi1al W (1
gA AP &
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Then we can easily show that if PLI A is provable in S,

it is admissible in S and A # ® [cf. Lemma 10] . But the
formulae proved for 21.1, 21.2 and 21.41 are not admissible, and
in those for 21.3 and 21.42,A = . Hence these formulae are not
provable in S, though their premises are.

Q.E.D.

From Lemmata 20 and 21 we can conclude that only (&) and (T)
are replaceable by postulates of CP/0, whereas (), (v) and
(1) are not even weakly replaceable by these postulates., Moreover,
this will still hold if we restrict ourselves only to sentences of

levels O and 1.

But we can show that a certain restricted form of some of these
analytic rules is at least weakly replaceable by postulates of
CP/O if we restrict ourselves to sentences of levels O and 1.

First we show

Lemma 22 If FLl {A} is provable CP/D, it is provable in the

extension of h°Alc! with the postulates of CP/O.

Demonstration: Suppose PFI'{A} is provable in CP/D. If

= {B, ..., sk}, k > 1, we have
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Tk {a}

k applications of ()

a1 oLt (B > (By»>...> By~ 4A) ...}

Bl‘*(Bz >, .. (B[2 + A) ...)

But then by Lemma 19 this formula is provable in CP/0, and hence

also in the extension S of the Lemma. Then we have

L By By (B, > A).LL)

| >

0[-1“{31 > (B, »...> (B, > A)..)},

and we also hdave for every £, 1 < L < k,

(5 (i (BN B B (B A} Klog).

By k applications of{g} we get that FLI’{A} is provable in S.

If T = @, we have that A is provable in S and we apply é}.

Q.E.D.

Then we have

Lemma 23 Let S be the extension of hADICT with the postulates of

Ccp/o0.

n

23.1 (®)¥ is admissible in S provided A = @.

23.2 (v)¥ is admissible in S provided A = {C}, for some C.

23.3 61)1+ is admissible in S provided A = @.
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Demonstration: 23.1 Suppose TU {A}Fl {B} is provable in S .

Then by Lemma 18, it is provable in CP/D, and so FLI {A >~ B}
is provable in CP/D. Then we use Lemma 22 to show that PFI {A » B}

is provable in §.

23.2  Suppose PLJ{A}FI {C} and TU {B}Fl {c} are provable in S .
Then by Lemma 18, they are provable in CP/D, and so FlJ{AvB}Ll {c}
is provable in CP/D. Then we use Lemma 22 to show that I‘U{AvB}[—1 {c}

is provable in S,

23.3 1IfA= 9, (1)1¢ is vacuously admissible since the premise
cannot be provable in S [cf. the demonstration of Lemma 21].

Q.E.D.

The rule (*)¥ with the proviso A = @ corresponds to the
Deduction Theorem of CP/O. Later we shall see that though this
rule with this proviso is admissible, it is not deducible, and,

a fortiori, not derivable or horizontalizable, in hADICT(mp)C, , [Vv.§80.If

(*)¥ were horizontalizable inS (v)¥ would be horizontalizable too.

We can conclude that the restricted analytic rules () and (v)
are weakly replaceable if we restrict ourselves to sentences of
levels O and 1; i.e. unrestricted () and (v) are weakly replaceable
if we consider only sentences of level O and sequents of level 1 with

the right set a singleton.
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§34 [828] That parentheses can be conceived as belonging to
U rather than 0, connectives being infixes, is explained in
Smullyan 1968 (p.7). If connectives are prefixes, parentheses
are anyway superfluous. The antecendents of our canonical
set of analytic rules for propositional constants can be found in
the references of §25. We shall make a brief remark on the

explicit definition of . The definition

TA =4f A 1
would give the same effect as the well known definition we have used,
in classical and Heyting logic; i.e. for systems where L = A
is provable. But it would not be acceptable for systems lacking
1 = A, like KP/O and subsystems of it. For ekample, none of the
laws of contraposition would be provable in KP/O with this other

definition.

[829] Analytic rules like (&01.1 and (V)l.1 would seem more natural
than (&) and (V) in a context like D3 (probably because they have a single
formula above the lines). But we shall see that even in such a
conteit, these analytic rules could not be the canonical rules for
& and wv. In the absence of T these analytic rules would analyze

constants different from conjunction and disjunction  [v.§§45,49].

[831] Axiomatizations in O are also often called "Hilbert-

~-style formulations of systems'.

Except for‘féand v ,all the axioms for CP/0, HP/O and KP/O,

together with nl_3 for the first two systems, and n for the third,

1-2
are given in Kanger .1955, where separativeness is also demonstrated




100.

8§34

(cf. also Prior 1962, p.303). It is well known that ﬁ_is
sufficient for negation in CP/0 and HP/O when 7 is explicitly
defined, and that § and v preserve separativeness (v. Curry 1963,
pp.283-288, 306-307, where enough information on these matters can

be found).

The propositional calculus corresponding to KP/O is more
frequently called '"the minimal propositional calculus'". We
think that this name is unfortunate, and we prefer to name it
by its authors (Kolmogorov 1925 gave its implication-negation

fragment, and Johansson 1936 the whole calculus).
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Chapter 5

NON-CLASSICAL PROPOSITIONAL CONSTANTS

This chapter is divided into three parts. In the first part
we investigate analytic extensions of structural systems with

EQ& and T ys 1N the second analytic extensions of structural

ith
systems wi E;

of the structural system for which T is rejected completely. In

2 and Ieﬂ , and in the third analytic extensions

the first part we shall obtain systematizations of intuitionistic
propositional logics, in the second systematizations of propositional
logics dual to the intuitionistic ones, and in the third a
systematization of a relevant propositional logic related to the
logic of the system R. This last logic we propose to call

"intuitionistic relevant logic'".

In all these parts we investigate the replaceability of analytic
rules by other analytic rules, the O-equivalence of systems in D1
with aiiomatizations in 0, and in the first and third, the
replaceability of the set of analytic rules for propositional constants

by postulates in O, analogously to what we had in the previous chapter.

We also make some remarks on the intuitive interpretation of

the systems considered.
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836
INTUITIONISTIC PROPOSITIONAL CONSTANTS

First, we shall consider the analytic extensions of hADICT 1

and hADICT , with (»), (&), (v), (1) and (T).

The system

hADICT, , () (&)v) (L) (T)

will be called "HP/D'", and the system
RADICT, , (*)(®(V) (1) (T)

will be called "Kp/D'.

Concerning these systems we immediately note the following

n
Lemma 24 24,1 If T} +1 A, n > 0, is provable in HP/D, A is

either a singleton or empty.

24.2 A sentence is provable in HP/D without (L) iff it is

provable in KP/D without (l).

The demonstration of this lemma is made by inspection of the
rn
postulates given above. For 24.2 we show that if Tf +1 A is
provable in the subsystems mentioned, A is never empty (hence it

must be a singleton).

The property which HP/D, and hence also its subsystems, have

by 24.1 will be called ''the single-conclusion property".

Next we shall consider the replaceability of (=), (&), (v), (1)

and (T) in the context with T and T ..
Y —en

It can easily be shown that Lemmata 12 and 15 are still

demonstrable when instead of T we have 5 OT T .. Also the remarks

Ton °F Ton
after these lemmata still hold. That (+)1,(v)1 1 and (L)l cannot be
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-obtained in this context follows from the fact that they would

not preserve the single-conclusion property. Indeed we can show

Lemma 25 I} is horizontalizable in the system hADICT ,(*ﬂlﬁl)-

Demonstration: We have

(g 2Aty (R=AL W (1) AR SAR 1W(1°)
o’ Br{R~>A BY ~T i RaA ATR{AY

- 2 JALF AR
= P IAVEA BT , wWhere A%R

@

w(e)
o @ Jreauiayiaeiaseireasiag
= STV ALEAR ST FA,VSA RY .

Then we can easily show {I'I—-1 A}ﬁ? {PLJ'ALJS} by repeating this
proof for every BE€O, such that B#A, and applying g?. If A =0, we
have {T}-! g3L2 (TR} £} V(W)Y and

fV R R (D)
G 2
AZEGOvE}  Sreeuill, il ol Bres} 1e)
S {FF o0 LT P{r ey,
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reducing this case, with the help of g?, to the case where

A#£D.
Q.E.D.

It follows that if we further extended the system of this
lemma with (&), (v) and (T) , we would get a system O and 1-
-equivalent with CP/D. This shows that if CP/D were formulated
with (—*)1 instead of.(+), Thinning on the right of level 1, and its

horizontalization, would be eliminable.

If to the analytic rule (1)1 we add the proviso A = @,

we obtain the analytic rule

1
()5 i!iiiit:ﬁl .

PFI{WA}

We state the following omitting the demonstration

Lemma 26 If A =4f A-> 1, (‘1)3 is horizontalizable in
hADIC(») (1).
In at least some contexts (-;)3 could be used to analyze

classical negation too,since we have

Lemma 27 ('1)1 is horizontalizable in hADICT(+)(ﬂ)3.



105.

§37

Demonstration:

" §A~>7A?§\—" A-*”TA?\%(T’U {WA{P%M%};Q’?\)
{ALH ALY D) WA, AT ATE §TAL 3 1A, ALF o
Z’){A} %A'?l( = (\{AA»“?NS\_/Q(
C ;zﬂ%A A—> 1A $A—>AY F{AY

& ¥ %A)’V\ZS;

and we have also shown in this proof {A,‘lAH—-1 9.

Q.E.D.
But in general this is not the case, since we have
Lemma 28 Avi1A is not provable in hADICT(v) (‘1)3.

Demons_tratior_l: Take the ol—translation from the demonstration

of Lemma 19. We can show by an induction on the length of
proof that if An, 0 € n<1, is provable in the system S of the
Lemma, ol(An) is provable in HP/O, where 7 is explicitly defined
in this latter system. So Av1A is not provable in S.

Q.E.D.

As an immediate corollary we get that ¢}-1 {A,1 A} is not

provable in hADICT(ﬁ)S.
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Clause (0) of the definition of structurally analyzed
constants [v.§24] requires that a constant be analyzed by a
certain analytic rule relative to any language L in which it might
occur. Now suppose L has only two constants: classical disjunction
and classical negation; then by clause (0), O also has only these
two constants. Then Lemma 28 shows that classical negation cannot be

structurally analyzed with 61)3.

We shall now demonstrate the O-equivalence of HP/D and HP/O, and of

KP/D and KP/O.

Lemma 29 29.1 (mp) is horizontalizable and.ol_ are provable

2

in hADICTen(+).

29.2 _hl-S are provable in hADICTenC+)(&).

29.3 a,_5 are provable in Qéglgjen(+)(V),
29.4 1& is provable in_héglgIé&(+)(l).
29.5 v is provable in hﬁglgIen(T).
29.6 n _o are provgble in‘hAQlQIe&(+)(7)3.
29.7 ny is provable in-héglEIsn(+)(j)3‘

To demonstrate this lemma we proceed exactly as in the demonstration
of Lemma 18, replacing occasionally applications of T by

applications of T and applications of ('1)1 by applications

Ton OF Typo
of (1)3.
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Lemma 30 30.1 If a sentence of level O is provable in HP/D,

it is provable in HP/O.

30.2 If a sentence of level O is provable in KP/D, it

is provable in KP/O.

Demonstration: We proceed as in the demonstration of Lemma 19.

In the basis in case 2) only the second two formulae are ‘relevant;
in case 3) with Ien only the second; in case 4) only the second
and the fourth; and in case 5) only the second. The rest remains

unchanged.

Q.E.D.

From Lemmata 29 and 30 we get immediately

Theorem 2 2.1 HP/D and HP/O are O-equivalent.

2.2 KP/D and KP/O are O-equivalent.

We shall now consider whether the analytic rules of HP/D or .

KP/D are replaceable by postulates of HP/O or KP/O.

Lemma 20 applies also to this context, except for 20.5 which

applies only to the system with IA&' But now we have also

Lemma 31 Let S1 be the extension of hADICTA& with the postulates

of HP/O, and S, the extension of hADICT , with the postulates of

KP/0.
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31.1 (®)¥ is admissible in S1 and 32.
31.2 (V)¥ is admissible in Sl and 32.
31.3 (7)3+ is admissible in S1 and 32.

31.4 (L)¥ 1is admissible in 32.

Demonstration: We proceed in principle as for Lemma 23, using

a lemma homologous to Lemma 22. For 31.2-31.4 we have, by inspecting
the postulates of S, that every provable sequent has a singleton
on the right.

Q.E.D.

Lemma 31.4 a fortiori holds for Sl by Lemma 20. The rules (1)4
and (1)3+are not admissible in Sl and S2 for the reasons given

for 21.3 and 21.42 of Lemma 21,

From this we can conclude that (&) and (T) are replacable
by postulates of HP/O or KP/O, and that (l) is not weakly
replacable even if we restrict ourselves to sentences of levels O
and 1. With the restriction to these sentences, (*) and (v) are -
weakly replaceable by the postulates of HP/O and KP/O. The analytic
rule (v) would be replaceable in generél if we had (»)
[For the question whether the weak replaceability of (+) can be strengthened

to replaceability cf. §80.]

We can see that as far as sentences of level O are concerned

(1) is eliminable from KP/D.

Because of the single-conclusion property, the systems HP/D

and KP/D can be seen as systematizations of propositional logics of
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proof, where "proof'" stands for a somewhat more general notion

of deduction than the one exemplified by what we have called
"proofs in a system'. This notion would allow for an empty

set of premises and an empty set of conclusions. If we réject
(1), these proofs would practically coincide with proofs in a
system, since we can count the premises of the directives
corresponding to axioms as also being part of a proof. The logics

of proof can be conceived as proper parts of classical logic.

PROPOSITIONAL CONSTANTS OF THE LOGIC OF REFUTATION

"In this part of the present chapter we shall consider
the analytic extensions of héglgg;z an hADICT Zwifh -, &),
(v), (L) and (T), and a new analytic rule. We assume that O has
the following propositional constants
converse non-implication: # ,
which is of the category fﬁ{ , and

rejection: =

’

which is of the category -%—.

For # we give the following analytic rule

ry{ay}tav{s}
ru{s ¢ arkla

)

7

and for m the following explicit definition
A =df A*T.

Now we introduce two systems which will be dual to HP/D and

KP/D : the system

109.
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hADICT, , (A (&) (V) (LY (T)

called "RHP/D" ("R" stands for "refutation'"), and the system

hADICT ,, (#) (%) (¥) (1) (T)

called "RKP/D".

A number of results concerning these systems can be
obtained in virtue of the duality with HP/D and KP/D, but this
duality is not always exact. For example, we.have no general

single-premise property: we can prove for sentences PF]'A

that if they are provable in RHP/D,T" is a singleton er empty,

but not so for sentences of higher levels.

The analytic rule (+) is not appropriate in the context
with Iﬁ[ IQK’ for we have

Lemma 32 T1 is horizontalizable in the system hADICT e(+)(l).

Demonstration: IL L\#/@ ; BeAn BN\,OL A¢r y We ‘/\é\\IQ_,

)t ¢ A0 F{A- X %O(I_")
2 fa-w AT S RY
o Briae A ]
T avsaog faos Aefetie{rummtead 1)
h \-Au§ ’@Si FSTOTA VA
A PAlE T A U AR F (T
§rEAl F{TOSALY AL
I A=A, 0548 we obk\‘w{Y’PAﬁ\-‘i rojAiva
as bove awd ¥ew wee }.\:(sz sadl CF
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Then we can easily show {T' Ll A}Fz {PLJO}J'A} by repeating this

proof for every A€O, and applying g?. If A = @, we have

Rt okt ntoww) and
fruek! (k2 rueltal ntws,

reducing this case, with the help of Q?, to the case where

A #9.

Q.E.D.

It follows that the extension of RKP/D with (») would be
0 and l-equivalent with CP/D. This shows that Thinning on the
left of level 1, and its horizontalization, are eliminable from

CP/D.

Adding (») to RKP/D would not give rise to a conservative

extension of RKP/D [v.884 for the notion of conservative extension].

Because of the single-premise property of sequents of level
1, we propose to interpret the systems RHP/D and RKP/D as

systematizations of propositional logics of refutation. A

refutation would be a deduction where we have at most one premise;
from this premise we try to deduce a number of conclusions, with

the intent to show that all these conclusions are refutable, so

that the premise must be refutable too. Sequents are read backwards:
if all sentences on the right are refutable, a sentence on the

left is refutable. The present interest is to see what sentences

of the form {A}}-kﬁare provable in this logic. But first we

shall make some remarks on the replaceability of analytic rules

in this context.
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Dually to what we had with T, and Ien’ with Iézand Tor the
analytic rules (v) and (L) are replaceable by (v)1 1 and (v)1 99
and (l)l; whereas (&)0, (&)1 1 and (T)1 cannot be obtained
in this context, for they would not preserve the single-premise

property of sentences of level 1. And dually to Lemma 25, we could

show that the analytic rule

riklavial ruBlEta
(7‘)1 1
T Au{B # A}

would give us I} in the presence of (T).

With T unrestricted, i.e. in classical logic, we could give

B¢A=df (A~>B) > UL,
and both (#) and (1‘)1 would be horizontalizable and the following

formulae provable
(a}b1 (B, B# A} ; {B#AL (A} ; (B<A,BIlp

- . . 1
With IA& or Ien’ in the presnece of (T), (#) would give us I.,
dually to what we had in Lemma 32. But extending HP/D or KP/D
with (f-)1 we would not 'fall" into classical logic. Then B # A
would not be explicitly definable as above, for with (f)1 and C1)3

we would get (+)1, but as follows

BY¥A=q¢ A&B > 1),

for we have that the following double-line rules are horizontalizable

ru{sile ri-t {a} rkl e > 1}

M, = (&)
Srpl - 1)

rh! (A > 0}

112,
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Dually, we can extend RHP/D and RKP/D with (+)1 without
"falling" into classical logic. Then we could explicitly define -

as follows

A~>B=¢ (AFfTVB, i.e.

A->B =1f 5t AvB

for we have that the following double-line rules are horizontalizable

pl-lau{a) {(anrta (e-la
\%
{aa}-1a

(=) 1
{=AvB}|-" A

The explicit definiton

A+ B=4q¢ T(BFA)

would not do, for with (+)1 and (%), we would get (%)1.

By duality we also have that # in RHP/D and RKP/D is not
explicitly definable in terms of &,v,L and T; otherwise -~
would be explicitly definable in HP/D and KP/D in terms of these

constants, and familiar arguments could show that it isn't.

We have given above the analytic rule for 5),horizontalizable

in RHP/D and RKP/D. This analytic rule is dual to (1)3.

We shall now give axiomatizations in O which correspond to
RHP/D and RKP/D in such a way that whenever A is provable in one
of these axiomatizations {A}F-1¢ is provable in the corresponding
system in Dl,and vice versa. Intuitively, if A is provable in one

of these axiomatizations, this would mean that A is refutable.
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Consider the following rule (corresponding to modus tollens)

(ﬁ) é—‘g*__B_ )

the following formulae

(AFf(BF£C)) F(AFB)F(A¥CQ),;
AF (BFA,

A ¥ (AB);

B ¥ (A%B);

(A+C # (BFfCO F ((AB) # C));
(AVB) £ A ;

() ¢3 ;

(C £ A # ((C#B)F (Ct (AvB)));
1L

T + A ;

(A#fB) £ (B #=A) ;
A £ ATA;

ATA £ (DA # A)

(substitution is everywhere free).

(mt) /Lcl_:

The system

5 "‘hl—.s Hay o ng av

114,
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will be called '"RHP/0", and the system

(mt) ney , nklwz'dal—s 1

will be called "'RKP/O",

Next we give the following translation of sentences of O

into sentences of O

tl(A) = A, if 4, &,v,L,T [andd1] do not occur in A,

t (AFB) = £ (A) > 4B,

1, (ARB) = £ (A)ve, (B),

ti (AvB) = tl(A)&Il(B),

tl @8] T,

/tl (M 1

[£,(MA) =4 W],

{tl(Al), Jtl(Ah)}, if ' = {A ...,Ah}, k21,

1°
L, @M =

T,ifT =0 .

It can be shown easily by inspection of postulates

Lemma 33 33.1 A is provable in RHP/O iff II(A) is provable

in HP/O.

33.2 A is provable in RKP/O iff tl(A) is provable in KP/O.
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Next we can show

Lemma 34  34.1 rllA is provable in RHP/D iff £ (8) }-11:1(1“)
is provable in HP/D.
34.2 TR'A is provable in RKP/D iff t, (82, (1) is provable

in KP/D.

Demonstration: We first make an induction on the length of “the proof

of]?LlA to show the Lemma from left to right.
. 0,0
For the basis we have only h™(I7).

For the induction step suppose that if PLJ‘A is proved

in ¢ k steps, the Lemma holds from left to right. Let it be

2

proved in k + 1 steps. D° is eliminable; so the last step

can be an instance of:

1) é} ]é , T =@, A= {A} ; then the only
gl" {a}

way to prove A is to use Q} (I being eliminable);

2) g}; then we use the induction hypothesis and Q};

3) Iék (or I;i); tﬁen we use the induction hypothesis and
Toy (o1 I,sin) ;

4) ( ¥ ); then we use the induction hypothesis and (-);

5) (&) ; then we use £he induction hypothesis and (v);

6) (v); then we use the induction hypothesis and (&)
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7) (1) ; then we use the induction hypothesis and (T);

8)  (T); then we use the induction hypothesis and (l).

For the other direction we proceed homologously.

Q.E.D.

Theorem 3 3.1 A is provable in RHP/O0 iff '{A}Fj'ﬂ is
provable in RHP/D.
3.2 A is provable in RKP/O iff ‘{A}}J'¢ is provable

in RKP/D,

Demonstration: 3.1 By Lemma 33, A is provable in RHP/O0 iff

tl(A) is provable in HP/O. By Theorenm 2, tl(A) is provable in
HP/O iff tl(A) is provable in HP/D. tl(A) is provable in HP/D
iff QPJ:{II(A)} is. By Lemma 34, ¢L1 {tl(A)} is provable
in HP/D iff'{A}}}Q is provable in RHP/D. For 3.2 we proceed
homologously.

Q.E.D.

The translation tl serves well to find the characteristics
of RHP/O and RKP/O.by connecting them with HP/O and KP/O, but
it does not give the intuitive interpretation of the provable

sentences.

One intuitive interpretation would be given by the translation

tz in the language of intuitionistic logic, where
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zé(Ao = 1A, if #,&,vland T do not occur in A,
and the other clauses are obtained by subsituting "12" for
"tl" in all the clauses for tl except the first. It can easily
be seen that if A is provable in RHP/O (or RKP/0), IZ(AJ is
provable in HP/O (or KP/0); but the converse does not hold
necessarily. The formula tz (((A # B)Y £ A) # A) is
provable in HP/O and KP/O when +#,&,v,L and T do not
occur in A and B, since ((nA »>"B) »1A) »1A 1is provable in
both these systems. On the other hand, ((A # B) # A) ¥+ A is

not provable in RHP/O or RKP/O.

That the understanding of provable sentences of RHP/O and
RKP/0 suggested by tz should square with our expectations, can
be shown by the following considerations. Suppose A is provable
in one of these systems. This means that A is refutable. If
f;&,v,i and T do not occur in A, this means that- A, where 7
is understood intuitionistically; if A is B # C, this means
that from a refutation of B we can construct a refutation of C;

if A is B%C, this means that either B is refutable or C is

118.

refutable; if A is BvC, this means that both B and C are refutable;

if A isl, this means that something refutable is refutable, i.e.
A is provable; if A is T, this means that something unrefutable
is refutable, i.e. A is refutable (and if A is=B, this means
that from a refutation of B we can construct a refutation of
something unrefutable, i.e. this means that it.is refutable that

B is refutable).

It should also square with our expectations that the

Iz-translation goes only one way: interpreted intuitionistically,
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the logic of refutation is only a proper part of the logic of

proof.

By using the following translation ts, homologous to tz,
it is possible to give a reading of intuitionistic propositional
logic in the logic of refutation

tS(A) = WA, if -,%,v,1,T [and= ] do not occur in A,

3(A > B) = £;(A) ¥ £;(B),

ts(A&B) IS(A)VIS(B),

5(AVB) = 2, ()&t (B),

ts(L) T,

13(T) 1

[£,08) =T, (M)] .

Now if A is provable in HP/O (or KP/0), tS(A) is provable

RHP/0 (or RKP/0), but the converse does not hold necessarily.
Essentially, this amounts to interpreting '"it is provable that A"
as "it is refutable that it is refutable that A". This, of course,
preserves the validity of intuitionistic principles, but does not
square with an intuitive understanding of them. This asymmetry,
the possibility to interpret intuitively the logic of refutation
in intuitionistic logic but not conversely, might be due to the
fact that we are interested primarily in sentences that can be

affirmed in some sense. If, as it seems per impossibile,we were

interested primarily in sentences that can be denied, intuitionistic

logic could be taken to be only a part of the logic of refutation.
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The logic of refutation is a proper part of classical
logic, but in this section we shall try to show that it is
possible to interpret classical logic at level O as a logic

of refutation.

RHP/0O and RKP/O are certainly awkward systems. We are
usually not interested in systems of provable sentences which
cannot be affirmed in. some sense, but must be denied. So we
can consider what sentences of level O, or what sentences of
the form QFJ:{A}, can be proved in RHP/D and RKP/D. Then
the constants +# , &,v,L and T( and5 ) don't get their
dual reading, but correspond to their intuitive reading ( # being
the negation of converse implication, and 1, rejection, being
a kind of negation). A constant of implication can then be

explicitly defined as follows

A B = B A) .
*—-edfil(f‘)

Then we introduce the following translation for sentences which
are such that if a propositional constant occurs in them, it is
among: = ,&,v,L and T:

t4(A) = A, if no propositional constant occurs in A,

(A= B) = £, (0) > 2,(B),
1,(A8B) = £, (A)82,(B)

IA(AVB) = iﬁ(A)vt4(B),

) =41,

t4(T) T.
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We can show
Theorem 4 Let A be a sentence of level O such that if a
propositional constant occurs in A, it is among : =,%,v,lL and T;

then A is provable in RHP/D iff t4(A) is provable in CP/O.

Demonstration: A is provable in RHP/D iff Q)I-l {A} is, and

(Z)I-l {A} is provable in RHP/D if {3A} |-1 @ is. By Lemma 34.1,
{=A} I—l @ is provable in RHP/D iff (bl—-l {"l/tl(A)} is provable in
HP/D; and ¢}-1 {'M‘,l (A)} is provable in HP/D iff ‘wtl(A) is. By
Theorem 2.1, "ltl (A) is provable in HP/D iff = tl (A) . is provable

in HP/O. Then by Glivenko's Theorem, 'Itl-(A) is provable in HP/O

iff ’Ltl (A) is provable in CP/O.
Let us consider the'l/tl—translation in this contekt:

‘M‘:l (B) = 1B, if no propositional constant occurs in B,

1, (B = C) =74, Q(C £ B)) =114 (C) ~ £, (B),

¢, (B&C) = (2, (B) v, (C)),

—ltl @ arT

>

“'lf,l(T) e I
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But we have in CP/O
(€ > £, (B) = 6 (B 14, (O),
0t (B)VE; (©)) + (3t (B, (C)),
(¢, (B)&t) (€)) < Ot (B)v1L, (O)),

T > i,

1l <> T.

So, we can define a new translation ts which is like t4 except
that it prefiies -1 to every Sentence Ai occurring in A such that
no propositional constant occurs in Ai'; then we get thatth(AJ
is provable in CP/0 iff IS(A) is. By substituting ’1Ai for every
AL and using Ai “T1A;, we get that tS(A) is provable in CP/0O

iff t4(A) is provable in CP/O.

Q.E.D.

This result is dual to the result that'{A}FJ'¢ is provable in
HP/D iff'{A}LJ“¢ is provable in CP/D, which is another consequence

of Glivenko's Theorem.

We leave open the question what sentences of level O are
provable in RKP/D. (Glivenko's Theorem does not hold between
KP/O and CP/0O: in KP/O, e.g., 771 (01A + A) is not provable; but

it holds between KP/O and Johansson-Curry's system D [v. §50].)

If we don't introduce =, we can modify . t4 by giving

1y (A £ B) = (L,0B) > 4MA) ,

and an appropriate form of Theorem 4 will still hold.
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PPOPOSITIONAL CONSTANTS OF INTUITIONISTIC RELEVANT LOGIC

§45 In this part of the present chapter we shall consider the

analytic extensions of hADIC with (), (&), (v), (L) and (T).

The system

hADIC (=) (&) (V) (1) (T)
will be called "IRP/D'" ("IR" stands for ''intuitionistic relevant').

By Lemma 24.1, IRP/D has the single-conclusion property,
but contrary to RHP/D or RKP/D it does not have the single-
-premise property even for sequents of level 1. Concerning these
latter systems we had, by Lemma 32, that (=) was not appropriate,
since it would give us I}. On the other hand,'in the present context we

shall see that Ienl is not admissible .in IRP/D [v.§48].

‘Without T none of (), (&), (v), (1) and (T) are replaceable
by the alternative analytic ruleswe:have considered. Only in a
particular case we have that (T) is replaceable by (T)1 in the
presence of (). Indeed ,analytic rules eXactly corresponding to

(&)1.1 and (&)1.2, and to (V)l.l and (v) could be used in this

1.2°
context to analyze constants different from conjunction and

disjunction.
We assume that we have in O the propositional constants

intensional conjunction: o , and

intensional disjunction: +
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which are of the category'4é~ . Then we give the analytic

A
rules
~ |1 1
), Ty {A,BH-"A ), Ty {a}}-"A ’
ru{AsB}-ta ru{a-at-la
rilav{a,B} o rklauiay
(+)4 ;o ()

ril Au {a+B} rhl au {a+A}

In a language like D3, with rulesof Repetition [v.816], analytic

rules corresponding to (o)1 and (+)1 would be sufficient [cf. §29] .

The analytic rule (+)1 is not appropriate in the context of
IRP/D, for it would not preserve the single-conclusion property;
but we shall consider a closely related system to which it could

be added.

Canonically,we have given IRP/D without (0)1_2, but
we shall also consider extensions with these analytic rules. Some
properties of o and + will become apparent later [v. also 8§50

for historical remarks].

Concerning the analytic rule for 7 we can appeal to Lemma

26.

Systems without T are about a concept of deduction in which
no additional irrelevant premises and no alternative irrelevant
conclusions can be found. Every premise must be used in the
deduction of the conclusion from the premises. This concept

of deduction is made intuitively clear by natural deduction calculi
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of relevant logic using the subscri bing technique [V.§5QJ,

and a system like IRP/D could in principle be shown sound and

complete in a certain sensewith respect to such a natural deduction

calculus. This concept of deduction is not an uncommon one:

it is appealed to when we imagine proofs as trees of occurrences

of sentences in which every possible premise is .connected with the

sentence to be proved by a chain of deductive links. It is also

connected with our notion of a derivable rule, which is a standard

logical notion. We also think that the natural way in which we
~get IRP/D by gradually restricting T, lends support to the

claim that this system is important. Because of the single-
~conclusion property, and because it is a subsystem of HP/D and

KP/D, we propose to interpret IRP/D as a systematization of a

propositional logic of relevant proof .

846 We shall now give an axiomatization in O which will be
shown to be O-equivalent with IRP/D. As we have done before
with negation, we also list some axiom-postulates which are not
in the canonical aiiomatization,but will be used when we
want to show the separativeness of analytic rules, and when we

consider extensions of IRP/D.

Consider the following rules

A A-B . A B
mp) —x—— ;o (adj) ;
A&B

and the following formulae



(A> (B~>C) > ((A>B) > (A~>C)) ;
A->A;

A> B~>C))> B> (A>0) ;
(A>B) > (B>C) > (A~>C)) ;
(A&B) ~ A ;

(A%B) ~ B ;

(( C+A)&(C ~B)) ~ (C~ (A%B));
A > (AvB) ;

B + (AvB) ; .

((A» C)%(B ~ C)) > ((AvB) >~ C) ;
T 3

T>(A~>A) ;

(A > B) > (B +1A);

A>TiA

1A > A

A > (B> (A°B)), provided A # B ;
A+ (B>C)) > ((A*B) ~ C) ;

A > (A°A)

(AeA) ~ A ;

126.
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(GtA~>B) > (A+B) ;

La (A + B) > (A > B), provided A # B ;

La A-> (A + A);

La (A +A) >A

(substitution is everywhere free except for /élzl and xiaz).

The system

(mp) (adj) — eqeq _ghy _pky%) _5%4vVy

will be called "IRP/0".

The system

e A

is an axiomatization of the implicational fragment of the system

of relevant implication R. IRP/O is a proper subsystem of R.

The positive fragment of R would be obtained by ektending IRP/O0 .

without v Vl with

distr (A&(BvC)) - ((A&B)Vv(C)

It is known that distr is independent from the postulates of

IRP/0. The lack of distr in IRP/O implies the lack of
(A%(BvC)) ~ ((A%B)v(A&C)) .

(The converse of this last formula and also (Av(B&C))=((AvB)&(AVC))
are provable in IRP/O. The converse of distr is not provable

in CP/0)

127.
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The whole system R would be obtained by extending the

positive fragment of R with ny My We shall consider

extending IRP/O, which is a subsystem of KP/O, only with n

1-2°

We shall also consider the extension of IRP/0 with Ny _oMys

which will be called "CRP/0" ("C" stands for 'classical'), and

the extensions of IRP/0O with 1&1_4, and CRP/0 with th_4 and

/La.1‘4.

It is known that the positive fragment of R is a conservative

ektension of (mp)c1c4_6 , and that the addition of\Aﬁ would also

give a consérvative ektension of this last system. A fortiori,

IRP/O without vV, and IRP/O are conservative extensions of this
system. Some other facts on the separativeness of the axiomatization
of IRP/O and the extensions we have mentioned can be inferred from

some known facts on the axiomatization of R. [For references on

all these systems and the assertions we have made here v. 850

We shall now demonstrate the O-equivalence of IRP/D and

IRP/O.

Lemma 35 35.1 (mp) is horizontalizable and C1Cy_g 2are
provable in hADIC(-).
35.2 (adj) is derivable and k1_2k4 are provable in

hADIC (») (&) .

35.3 a1_2a4 are provable in hADIC(-) (&) (V).

35.4 vvl are provable in hADIC(=) (T).
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35.5 n are provab1e~in'hADIC(+0(1)3.

35.6 n, are provable in hADIC(+) (1) ;.

35.7 4k, , are provable in BADIC(*) (=), _,.

35.8 4a,_, are provable in MADIC(+) (1);(%);_,

Démonstration;'-SS 1 .For- (EE) and cl we proceed as for

Lemma 18.1; {AX Y A"’v\ }\(l)
DA s?S\»QA-»A\;
- A=A
- {A-(B-OR ¥ §A-(2~ O W (T) oy Rocf ¥l ¥
c) {A=(e~0) AL iR~} g~ efr{cy
- fA-(R—¢), B AL ¥ Ch

2 é.‘;r\(ce«\\’m»% o& (—=)) s ok _D_«
(A=~ ) = (R~>(A~Q))
§ B= A Leg e au wedawes of .’9'_5.
( i §A"‘EI( K (QA"’BZ( ]'\(1) (__,>¢ SR-el %@”cl .\'\(1>
or 1A=8, AL YR8t iR-e Biv fel
SA-R , B-C AT VSed
% éxwf\\cdwvxs of (=)} aud _B:‘
(A=) = ((R~ c)ﬁuwcg

& A< Ral

. (=)t EA‘Q Al W )

'< ) A B fA-RT (D) (o) SR8

{A-8,AT1 8] $8% e (A=}
{A—=B, R>cl ¥ g A0y ete
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1 Aop<BoC : (o LB fe-8 1)
(_))tm—»m ¥ {r—-8} k(1% (»)L%%’E’ ~Bi iy

or 1Bk BYF (8] {m} P {E-m)-BY

- | (_,)\:Z\B""S,E%.\'A ﬁ(&—»&)-—v‘&{

iR R PR —((eDB)
@ .
(& (B28)>) - (B=R)~(B-R) <
~ | A’ and (&)1

» @ 18— (&1 =B} F{R~%) (2wt
= S’} F {(R>2)(R-B)Y ke |

5.2 " A AY_B
@%“"W‘ = gviry
D‘ ﬁ\—‘%A&&g |

= AR

for 2&4,& we kroue& sy dor Lewams 18,2

| M)
PR T I I RS S G0 S0
S DTG [ Tl ST (VTGO (S R
() li@”@?@ -R), CE 1 §AY Le-AR(C8),d (8]
Se-A)(e—-R), Q] ¥ L AVRY |
2 ,,\N\(ca&(ov\g of (=) ,WCL §
(c»A)3 (e~ R) »(c—~(AxB)) .
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y(©)
()1 %(A NOLI(E (L\i + g(‘?\-» cWB—a D) 6"(]_') ® f%\ (A-ac)g(g—)c)i\:g (A~ N 2»(@—>C>?(
GO Calo| L Randd (AR PR

Z’))f L(A-Q)8(8 ), AT I} f(r-Q20) 4§

e c)a(R-c), Avel ¥ §ck
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$A e Al W(D)
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™ STIVSA—AL
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358
()b SAESAYR(D) Ly, fnanelr A e] WD)
c"A RS AIAY $TA-R,TAL PIRY
= SNABIFEA,BY
Q
if A=B ) lwstread of @ we %'U\’ ax:
A= ATESAY
N @ or &R
()b ox(: W {“\A——» BXP A+ BY
(=)t and D

QA-R)—> (A+R) ;

wimqwﬁmgﬁ W () (ﬂni—m&‘he&{ NGV
2 $A+BY YA, RY " SAAF S
~ (ArE IA] VSR
2 app'icadions of (=) ,amd D

(A+B)—> (A= R) ;

AT IAL () 4 fArALE §A+AT W(T)

(+),4 )N
SAT P A+AY b A+ALR §AY
(=) sad D (=N aad D
A>lrn) AN = A

Q. .E.D.
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Lemma 36 If a sentence of level O is provable in IRP/D, it

is provable in IRP/O.

Demonstration: Consider the following 0,-translation of

sentences of levels O and 1
OQ_ (Ao) - Ao ) A,\"(AL"”""')(A":} B>> ) (
02(%A4)‘..,A&7§¥“§B7]> { \'

) Al >
OQQV\,.)..,, Ak\\*@’) ={ o\ 6 k=0

We shall show that if A", Og<n < 1, is provable in IRP/D,
oz(A") is provable in IRP/O. We make an induction on the length

of the proof of A"

For the basis we have only 39(19), for which we use A =+ A.
Now suppose for the induction step that if A" is proved in < k
steps, oz(An) is provable in IRP/O. Let it be proved ink + 1

steps. The last step can be :

1) é}; then we use A > A;

2) Dl; then we use A - A; Q? is eliminable by Lemma 10;

3) C” ; then we have

(e, (e = (s Ay D)= (Do - > O (8-

= (e, > (8,7 > (Em = ‘3)“>>> ,

SLC‘«)"‘)C(A\LSUS(D«)“')DQVS ’-T%E,\)...)Em\ ,» WA 20
G Cay) CQ,JS Mé\ S\D«y" >DQ(§&TQ wot V\eceSSc\h'\vX C\ig{ja(@r);
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to show this we make an induction on j:

3.1) basis: A > ((A -+ B) » B) is provable in (mp) c4_5;
3.2) induction step:
(A] > (Ay > A)) > ((F> A > ((F>A) > (F+ A))),

(Ap > (Ay > A) > ((F > A)) » (A, > (F > A))),

and (A; > (A, > A)) > (A > ((F > A) > (F > Ap))

are provable in (mp)c1c4_6 5

4) (+); then we use A =+ A; the order of the sentences in the

left set is without importance due to Ces

5.1) (%)% ; then we use (adj), k4 and

((A&%B) ~ C) » (((D » A)&(D + B)) > D+ C)) ;

5.2)(&)4; then we use k1-2 and

(A+B) » ((C+»A) »~ (C~ B))

b

6.1) (v)¥ ; then we use (adj), and

4

((AB)>C) »~ (((D > A)&D + B)) » (D + O));

6.2) (v)* ; then we use a1-2’ Cg s and

(A+B) >~ ((C>A) » (C~>B)) ;

7) (1) ; then we use A »> A;

8.1) (T)¥; then we use A + (T + A) which is provable in (mp)v

135.
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8.2) (T)%; then we use (T » A) > A which is provable in
(mp)uc, -
This concludes the induction.

n

Ifn=20, OZ(An) = A", and the Lemma follows.

Q.E.D.
From Lemmata 35 and 36 we get immediately

Theorem 5 IRP/D and IRP/O are O-equivalent.

1.
T is not -

admissible in IRP/D. For suppose it is; thenl{A‘,B}l—1 {A} would

As a corollary of Theorem 5 we have that

be provable, and A + (B + A) would be provable in IRP/O. But it
is known that it isn't. As another corollary we have that (ggi)

is not horizontalizable in IRP/D.

§48 We shall now consider the replaceability of analytic rules

of IRP/D, and some of its ektensions, by postulates in O.

Lemma 20.12, 20.22, 20.3 and 20.4 can be applied in the

present context too. We also have

Lemma 37 Let S be the extension of hADIC with the postulates of

IRP/0, where (ggi) is not in the scope of h.
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37.1 ()¢
37.2  (&)¥
37.3 (v
37.4  (L)+

37.5 (D

137.

is admissible in 8.

is admissible in S.

is admissible in S.

is admissible in S.

is horizontalizable in S .

37.6 (1)3% is admissible in S.

Demonstration:

Except for .37.5, we proceed in principle

as for Lemma 23 using a lemma homologous to Lemma 22.

For 37.3 - 37.4 and 37.6 we have that if FFJ'A is provable in S,

A must be a singleton.

375 4 €= (T—>C) \gro\xe\ue_ ‘w (mp)ecu,

A

gy s e (T=) T ((wp)

¢

= {eyr{T—c} N

a gvfsaeir-al {zeid el CV\"'LS\A KT C\\g

(fTe FpFiTcy

®

@: (#FriT-gleimieied] by Lewmalos

@ @

C:l

—

AT LATY

Q. .E.D.
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Note that we cannot give E%@ggiD for S, for otherwise
TA,BH—»1 {A} would be provable. But we could give the following

form of (&)+¥

1 1
(Egil) oL+ {a} gL~ {B}
! {agB}

and this rule can be in the scope of h. The rule (adj) is

only derivable, and is not horizontalizable in IRP/D [cf.§47].

The rules (L)+* and 61)3+ are not admissible in S for the

reasons given for 21.3 and 21.42 of Lemma 21.

We can conclude that (T) is replaceable by postulates of
IRP/O. If we restrict ourselves to sentences of levels O
and 1, (»), (&) and (v) are weakly replaceable by postulates of

IRP/0.

We also state without demonstration

Lemma 38 38.1 (o are horizontalizable in hADIC(+)Lk1_4.

)1-2

38.2 (+) are horizontalizable in hADIC(+)(1)1£a

’1-2 1-4°

Hence (-o)l_2 and (+)~1_2 are replaceable by postulates in O.

§49 Consider the system

hADIC(+) (&) (V) (1) (T) ()

which we shall call “CRP/D".
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By Lemma 35, we know that CRP/O is contained in this

system. We can also show

Lemma 39 1f a sentence of level O is provable in CRP/D,

it is provable in CRP/O.

Demonstration: We use the following os-translation of sentences
of levels O and 1

0\ _ 0
03(A>’A 5

. - y.wES =(A = =(AgL-> l;é---"> LS = ) ) ,
(Bﬁ(ﬁ A, #\Q&F—%E% 4}\ QA« ( L. (j(% (j 0 J(;zcg?gglcx

and we make an induction on the length of the proof of An, Osngl,
in CRP/D, to show that O%(A ) is provable in CRP/O.

Q.E.D.

distr is not provable in CRP/D, since it is known that
distr is not provable in CRP/O. The lack of distr is the only
significant respect in which CRP/O differs from R, since we can

conservatively extend R with vvl.

CRP/D cannot be a systematization of a logic of relevant
proof , but it could be a systematization of a logic of relevant
deduction in a broader sense, if indeed it is not a hybrid

system. CRP/D provides a context in which + can be introduced.

The constants ¢ and + given with (o) and (+) are
1-2 1.2

not the usual constants o and + treated in connection with R.
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Usually (A°A) > A and A >~ (A + A) are not given, and ikl'and

Laz are given without proviso. th and Aa, are then

2 3 4

superfluous, and we can explicitly define + as follows

A+B=,.1A>B .

df

(A°A) > A and A-> (A + A) are usually given in a context

where it is possible to formulate a rule of Repetition. And

indeed, we have seen that in general rules like (o)l_2 are

better suited for a language like D3. Our only aim in treating

o and + here was to show that (o)l_2 and (¥%;2 charactetrize constants
different from & and v. That this is the case is shown by

the fact that (A°B)-» A and (A°B) > B are not provable in IRP/0O

with Lk1_4 : in this system we have (A&B) = (Ae°B) but not the

converse. Analogously,A - (A + B) and B »~ (A + B) are not

provable in CRP/O with La in this system we have (A + B) - (AvB)

1-4°

but not the converse [v.8§50 for references].

In a language like D3 o and + could appropriately be
analyzed with single analytic rules. There we could analyze the
usual o and + connected with R, with rules corresponding to (o)1
and (+)1, provided we did not assume rules of Thinning and

Repetition.

In classical logic o and + are synonymous with & and v
respectively, and in intuitionistic logic o is synonymous with &.
This explains why in the ol—translation we can use & to perform the
function of o, and v to perform the function of +. Canonically,
when we are picturing sequents in the language O, the constants

we need are », o, T, + and L:
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850 [6§26-39] The single-conclusion property as a distinguishing
mark of intuitionistic sequent systems was discovereéd by Gentzen

1934.

[§840-43] Czermak 1977 has shown some interest in
investigating a sequent calculus of level 1 with the dual,
single-premise property. Shoesmith & Smiley 1978 (pp.204-206)
consider briefly single-premise single-conclusion natural
deduction calculi. Converse non-implication in classical logic

is studied in Church 1956.

[844] Glivenko's Theorem is the second theorem of Glivenko

1929. Glivenko's Theorem in connection with KP/0,and Johansson-
-Curry's system D are treated in Johansson 1936 (pp.124, 129)

and Curry 1950, 1952 (pp.l104ff.), 1963 (pp.279, 288).

[845] The subscribing technique in natural deduction calculi,
and relevant logic in general, are treated in Anderson § Belnap

1975 (referred to in this section by "op.cit!').

[8461 The implicational fragment of R was given by Moh Shaw;
-Kwei 1950 and Church ‘1951 (v. also Church 1951a). Church 1951
doubts that this system can be extended with conjunction and
disjunction. The axiomatization (mp)cic4_6
for R v. op.cit.(ch.5);fcr ulezop.cit.(§27.1.2). Prawitz 1965

is in op.cit. (83);

(Ch.7) has proposed a natural deduction calculus for '"relevant
implication extended with minimal logic', where ''relevant implication'
is the implication of R (Urquhart 1972 has a similar proposal

with different motives).
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The calculus corresponding to IRP/0 without vvl is O-

-equivalent with the propositional part of the absolute predicate

calculus of Smirnov 1972 (rechristened "RA" in Smirnov 1979).
Smirnov has also investigated a corresponding natural deduction
calculus and corresponding sequent calculi of level 1 with a
motivation which seems to be close to ours. In particular,
Smirnov's sequent rules in one of these calculi are very similar
to our analytic rules. Smirnov has also investigated a calculus
O-equivalent with CRP/O without v, (v. Smirnov 1979). These
two propositional calculi of Smirnov have been shown decidable
by sequent calculi methods (v. Popov 1977; Smirnov 1979). The

decidability of R is one of the outstanding open questions

of relevant logic (v. Meyer 1979).

The independence of distr in the positive fragment of R
is shown in op.cit. (829.9). By trying to prove distr in IRP/D,
it can also be intuitively realized that Ien is needed for the
proof. It seems that the strongest reason given by Anderson
and Belnap for taking distr in R is their wish to make this system
as close an approkimation to classical logic as possible, short
of the "paradoxes of implication" (v. op.cit. §23.3). But distr
stands apart: for example, in the natural deduction formulation
of R, the rule corresponding to it has to be assumed in addition
to the introduction-elimination rules for & and v (v. op.cit.

§27.2, and Anderson 1963). (However, cf. op.cit. §25.2.3,where

Meyer and Dunn assert that distr is necessary for showing that

£L~%¥§di is an admissible rule in R and related systems. This. rule
. .. . A& (BvC) ..
is 2dmissible also in IRP/0, as well as TK@ES?E . This is

a consequence of the intuitionistic property that AvB is
provable in IRP/0 iff either A or B is, which can be shown
with the help of Smirnov’s sequent technigques.) The
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option to take classical negation for R seems to stem from the
same encompassing tendency, and has not remained unchallenged

(v. remarks in op.cit. and in Meyer 1974).

Remarks on the conservativeness of extensions of fragments

of R can be found in op.cit. (828.3.2).

[8491  Remarks on the constants ¢ and + in connection with
R can be found in op.cit. (8827.1.4, 29.3.1). (ArA) > A and
A > (A + A) are assumed in connection with RM (R-mingle). If
(A°A) > A were assumed in connection with R, with Lkl without

proviso and with contraction, we would get the mingle axiom

A+ (A~ A). Our proviso for Lkl serves to prevent this.
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Chapter 6

MODAL CONSTANTS

After introducing thepropositional modalconstants o,$ and -3 |
we propose a general definition of modal constants, and we give

analytic rules of level 2 for the constants o, { and 3 .

Neit we consider two analytic eitensions with these rules,
one systematizing the S5 propositional modal logic, and the other
systematizing the S4 propositional modal logic. The only difference
between these two systems is that I? is restricted in the second.
We demonstrate the O-equivalence of these systems with
axiomatizations of propositional S5 and S4, and we consider the
replaceability of the analytic rule for the necessity operator

by other postulates, in particular sequent rules of level 1.

We conclude this chapter with some remarks on the use of
systems with sequents of levels higher than 1 and on the choice

we can make of T-rules of higher levels.
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For this chapter we assume that we have in O, in addition
to what we have assumed for Chapter 4, the following propositional

constants

the necessity operator : o,
the possibility operator: ¢,
which are of the category {%—, and

strict implication: =3,

which is of the category Z%"‘

These constants will be called '"modal constants". As a

general definition of modal constants we propose the following

Definition of modal constants

A structural constant of O is modal iff it is explicitly
definable in terms of structurally analyzed constants of O
at least one of which is structurally analyzed with an analytic

rule of level 2.

As a consequence of this definition we have that constants
which are structurally analyzed with analytic rules of level 2 are
modal. We shall see that 0, {§ and -3 can all be considered to
be either primary structural modal constants or secondary structural

modal constants.

We give the following analytic rules in D1 for the constants

above
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(substitution is.free for "A" and "B" in (3)).

We can show the following

Lemma 40 IfA-3B =3£ o (A + B), () is horizontalizable in

hADIC(>) ().
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And, without demonstration, we state the following

Lemma 41 If OA =4f T3 A, (o) is horizontalizable in hADIC(T) (-2).

We can also show

Lemma 42 .~ If OA =,.107A, (0) is horizontalizable in

BabIcT! () (W) (@),

Demonstration: - We first show that ("!)1 is horizontalizable

{cf. Lemma 167

Srosal P AL rufal PALI (T frufalrav iAo

¢
LrusARFAl F{TF AU$IAY

()gdk Y W (1)

Wy &

£ ST iraioo LA 0

= {rosalrauiResrusaieal

éir\- AUZ"\A&‘-grU%P\K\“L\OL\_ﬂ D)
- {r¥av WA]\\- §ro$,A7s\—A'{ ,

Then we have
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I
(B ERL LA 2 BN h(e)
’im@& (@, nugedsotov s} Finderigie 2utovalt
(nugtateglizsotev S fnujgrisirsofe rall

— T
_ Q. 0
p fevioratre} {erSohaal K ()

L BRER nesgeusma SO Pinreuterzuionalll
dnv suGoianalr ol B inv v iy '&Uﬁ"ﬂ"*gg

®

& @ | A e v or 2} Pinrrs i puimaly ‘[—3\% ];((a)l)

> NI 20fer 2 ¢ {n ¢ 20§ ousamlv 2R ®
= %nu%%{\m’} SO e»‘gfﬁ\—"ﬁ’\ \2 2u§el—*gu§m-\AQ} ;
©

c

S Lo vl B () L)
2L {0 nuigrtall vaugeral] Plnofarepraciorg)

S\nuﬁmw&g csuferefjrinvirearioierall
m@,_,._ S
fovau mmﬁ\—{euimp«}ﬁg L\((‘\)ﬂ‘\) h(C)
ROl Snirsufevavhmall, @} ¥ ntsuiputanaty D}}
irl\:iu%@; Qoiarall] FinE2o{euinTA] P“}L

———

o ® nrtsufeuiondvelie § nuiey hali suteral L))
< JAnrafer SuimiaRI e {nuferiufiveoiersl @

¢nrzufer 2uimatiir {nuilalrgiveoseraly .

Q.E.D.

o, >,

| u,|>v,

o,
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And, without demonstration, we state the following

Lemma 43 If oA =df"1CV1A, (@) is horizontalizable in

RADICT' (+) (1) (0) .

By Lemma 40, in all the contexts concerning T we have
considered we can assume that —3 is explicitly defined in terms
of > and o . Since in this chapter we shall be concerned with
contexts which have I}, we can assume, in virtue of Lemma 42,
that ¢ is ekplicitly defined in terms of =+, 1 and . So, in the
demonstrations below it is enough if we consider the analytic
rule (O). But we shall mention also contexts in which the

explicit definitions of Lemmata 42 and 43 are not available.

§53 The system

hADICT (=) (&) (V) (1) (T) (2) (0) (=),

i.e. CP/D extended with (@), (¢) and (-=3), will be called "S5P/D".

2(

The subsystem of S5P/D where I? and I?) are replaced by

2 2 2 . : '
Iﬁn’and h' (I%n ) will be called "'S4P/D".

Note that in S4P/D the rule I? would have the same effect

en
as Ii%; only if sentences of level.l were taken to constitute

an object language and L or 7} of level 1 were analyzed by analytic
rules of level 2, a difference would arise. (As a matter of fact,

we shall see that rejecting I? completely from S4P/D would not alter

the provable sentences of level 0;)
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It can easily be shown that in S4P/D, sequents of level
2 have the single-conclusion property, or more preéisely,that
they always have a singleton right set. So, in applying (B),

(0) and (3), 2 will always be empty.

In virtue of Lemma 10, D of all levels 2> 3 is eliminable

from S5P/D and S4P/D.

Consider now the following rule

A
(nec) —a— >

and the following formulae

21 o(A > B) > (oA »> oOB);
EE DA > A

KS 10A > - OT0A;

fi DA > OODA.

The system CP/0O extended with (nec) and £ together

1-32
with the eiplicit definitions of Lemmata 40 and 42, will be called

"S5P/0". The system got from "S5P/0'" by replacing 23 by £4
will be called '"S4P/0". It is well known that £4 is provable

in S5P/0, but that 23 is not provable in S4P/0.

We shall now demomstrate that S5P/D and S5P/0, and S4P/D
and S4P/0 are O-equivalent. In this demonstration we shall also

mention the rule
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1 okl {a}

(nec™)

— ok {oA}

[cf. with the rule (adjl) in §48J.

Lemma ‘44 44.1 (necl) is horizontalizable, (nec) is

derivable and £1«_2£4 are provable in hADIC(+) (»).

44.2 £, is provable in HADICT? (+) (1) (g) .

44,4' AAGAH%\:A% r@) At A
L g P{inA E{ nAlk (e «);zs_\—%—A?

) tgrsall B igrinay ﬂfv%w&

B OA ;

e

Lgesszea}iv{Wg\—i(s’g{M(b)\) {BFIAL, SATPERY & Hi
{zl-zA—»Bi m—iA{} P viel

@
o @ (v i{efi{priosty L‘«ns_c:))
= EPSA-B (ATl ¢ {BFoeY

2 appliaows of (o)
2 g5 R(A-B), DALY fory]
fo(a-®m), DAL ¥ fQBt
2 applicakowns ot (), amd D
0(A—>R)—>(DA->0R);

\/O
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(o) 15 ¢ AP {2 viad H(T)
o ¥ § $0AL VAT
= $ DAY P §AL
(=) and B
QA—>A 3

T ((ne)
o im a2 Pioa] b ((e))  {pv{osy Pigranalt
() {BFSAY] H {2 v{naAl
o 2t ${DAL ¥ { QDAY
- $DAY ¥ {QOAL
(=) ad D

DA — DN0OA,

44.2 For the demonstration that ("1)1 is horizontalizable
V. the demonstration of Lemma 42 (in fact we need only (1) 3).

We have

@ : §{QALY Qﬂ,\—ﬂﬁvim&i B ()44

@ By oAl Figrntas] Th((nee)
® : {B¥inagd ¢ {gF§aA, ooy (T
®: {z¢ioonE £ ¥ {0s, 01080 B(T)
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(2t $10ATV Ay W ()

. {nA DAY VP
2, ge{mnnatva W)
c §¢'\—‘§nA,mQAHGA,‘\GA}v-,d?‘r}ﬁi‘mA}\%mm\%

{% ¢ {0a, oA} Fifnal FiaT oAt}
N— o — g e’

®

- s (At S BV ioaly b ((nee’)
(o 6 ¢ 1AL B oAl Bra]

» B ¥ §BrEay §0atv st @
FP 2 ¥{0AY, BV {1DALY @
BV § B ¥ oA, BYIO10AR ®

®
®

o

%\ § B¥{0A,010ay, Sr{anoalt
BV ¥ I0A, DDA
gv Heay ¥ {araAl
(QAl ¥ {010AY
(=) wad D
“0DA=- QM10A .

,Ur"oﬁ ‘D,.\ ‘op K?J

GLE.D.
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Lemma 45 45.1 If a sentence of level O is provable in SSP/DJ

it is provable in S5P/O0.
45.2 If a sentence of level O is provable in S4P/D, it

is provable in S4P/0.

Demonstration; Consider the following ca—translation

o, _ .0,
04(A ) = A7,

34(F) and 54(P) are obtained by substituting everywhere

"o," for "o" in the clauses for 0(T) and 6(T) [v§15];

0, THm) = a0, () » 6,(A));

W+2
L

n v
04(F A) = 04(F) > 04(A), n>0.

45.1 Suppose now that a sentence An, n > 0,is provable in
S5P/D. We can show by an induction on the length of

the proof of An that 04(A”) is provable in SS5P/0.

For the basis we have for cases 1) - 8) all the formulae of
cases 1) - 8) of the basis in the induction of the demonstration

of Lemma 19, and moreover

A~>B

, derivable in (mp) (nec) Kl
oA » OB -

and O0(A%B) <> (DA &OB), provable in S4P/0. The remaining cases
are :

9.1) Q?((n)+); then we use
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(Rza(t=A)-(cv G(D»Q))—»(&a(c\/m((mg/qaﬁj)) )
(a(T=a) = (eva(D=E))~>(T-(cVI(DROA~EY)
(B3AT-R)> O(O8) = (B~B((BEOA)=E),
(Q(T=A)-»O(>=E) = (T-0((bxaA)~E),

which are all provable in S5P/0 /but not in S4P/O:
the S5-diagram in the style of Hughes .€r_ Cresswell 1968

showing the S5-validity of the first formula is

] (@800 -R)=(ev BE-))= (3-(eva( D&DA>-> £))

AAa a4 144 oo C)

x
w, | (D¥ 0A)E; D=E
44141 00 410

the S4-diagram showing the S4-invé]_idity of the third formula is

v, (B&0(T=A) ~D(>=E)) > (B> 0((dx0A) - £)
A0QA40° 40 A00 0 10Q 41090 10

w, (D&(*JA)—»E
AAAA B O




§53 157.

9.2) E?((u)+); then we use the converses of the formulae of 3-1)

which are all provable in S4P/0.

For the induction step suppose that if A" is proved in
s;h steps, 04(An) is provable in S5P/0. Let it be proved in

k + 1 steps. The last step can be:

1) éﬁ ; then we use A > (T >~ A), (mp) and (nec);

2) Dn'l-l; then we use (T > A) - A, DA - A and (_I_H_P_);

for the other cases we use the formulae of the basis, k1_3

and (mp) . This concludes the induction. If n =0, 04(A”) = An,

and 45.1 follows.

45.2 Suppose that An, 0 <n< 2, is provable in S4P/D.
We can show by an induction on the length of the proof of A

that 04(An) is provable in S4P/O0.

For the basis we proceed as for 45.1 omitting cases 9.1) and

9.2).

In the induction step we prodeed as for 45.1 for all the

cases where the last step is not (@)+V. If the last step is (o)V,
we know that X must be empty, and we have by the induction
hypothesis that (84(H)&D(T - A)) > u(84(6) > 54(5)) is provable

in S4P/0. Tt follows that (0,(M&A) » (3,(0) » 0,(5)) is provable
too, and using CP/0 we get that 34(H) > ((84(0)&nA) > 54(5)) is

rovable. If I = {B} B} , k > 1, then &,(I) = oC, &...& oC
p . 1, “ oy k f) 4 s 4 1 v k,
where oC; = 0,(B;) , 1 <4< k. Then let D = ((3,(0)&0A) + 0(5));

we have
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(oC, &...& an) +D

1
o((aC; &...& oC,) + D)

(nec)

ﬁ and (mp)

u(uC1 &...& uCk) -+ oD

we use (UC1 &...& an) > l:l(l:lC1 &. ..& DCh)
which is provable in S4P/0

(uCl& ...&nmk)+ aD.

If 1O = @, we have: T~>D
D
(nec)
oD
T 0D .
Note that Q? is eliminable from S4P/D. This concludes

the induction.

Ifn= 0, 04(A”) = A" and 45.2 follows.

Q.E.D.

We could have used for the demonstration of Lemma 45 the
05~translation which is obtained by substituting "05" for "04"
in all the clauses for 0, except the last and replacing this last

clause by
0. THY28) = a6 » 6.(8), n 30,
5 5 5
in order to show that if An, n > 0, is provable in S5P/D

(or S4P/D), oS(A”) is provable in S5P/0 (or S4P/0). But the 0,-

~-translation is somewhat more economical, and it serves to mark a
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difference in the way how S5P/0 and S4P/0 can represent their

deductive meta-logic.

From Lemmata 44 and 45, Theorem 1, and the fact that we
can demonstrate Theorem 1 when we replace CP/D with the subsystem

of CP/D without I? and h?(z?), we get immediately

Theorem 6 6.1 S5P/D and S5P/0 are O-equivalent.

6.2 S4P/D and S4P/0 are O-equivalent.

As an immediate corollary of Theorem 6 we have that (nec)

is not horizontalizable in S5P/D and S4P/D.

§54 We shall now consider whether the analytic rule (o) is
replaceable by other postulates, and in particular other analytic
rules. In order to prevent the non-replaceability of analytic
rules of level 1 to influence our treatment, we shall consider
only the replaceability of (@), with analytic rules for the non-

-modal propositional constants given.

First we show the following

Lemma 46 (o)4 1is horizontalizable in hAC(necl).
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Demonstration : @) : {,QS ¥ &(A?& F?— %Qf \""%QAVK E((V‘_S'_é‘*))

@

:m@‘x 4,

= 19,§#r{nA oKoAl "‘\i— o R 33[ Ny auD &p_n ous ?]
§ §@rnal, SushlrTEior gvsgz 3) é)ugu A}P”i&‘éep 3@)

w e,

e s s TN 3 BT o

2 (i Fiaa) BuiaAlr S \-‘{@;»‘-H’\ s LQ_)
T B S arinal, GuiTAY S or 2 @
B> §8 AT, @ugm?g\::}&% @@i‘}s}

——

& h(©)
A6, j0¢2uiontor sl olfinuistiafeiod)
C
C R N S P = B
| QED.

>,

Ie

So we can replace (o)+ by (necl);but' not by (nec) (which

cannot be horizontalizable).

Next consider the following double-line rules

1,
Tl~ Ay {aA}
(5gg) —1F
Tl sy {oa}

D

provided the following is satisfied: if GET', G = oB, for some

B, and 'if DeA, D = oC, for some C ;
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PFI{A}
(DS4) P g s

! {oa)

provided the following is satisfied: if GET', G = bB, for some

B.

Since we have made no requirement concerning the occurrence
of a constant analyzed, or concerning the referring to such a
constant, in the proviso of an analytic rule, (DSS) and (DS4) could
be taken as analytic rules. Note however that they differ in
this respect from the other analytic rules used up to now. We
shall also see that (nss) and (ns4) cannot serve for the structural
analysis of O since they don't guarantee the uniqueness of o

[v.882].

We can show the following

Lemma 47  47.1 (3g;) is horizontalizable in hADICT(»-)‘(.L)(necl)zl_3

47.2 (necl) is horizontalizable and 11_3 are provable in

hADICT(+)(1)(DSS).

Demonstration: 47.1 We shall only sketch this demonstration

for the case I' = {oB} and A = {oC}. The general case can be

obtained by repeated appeals to the same principles.
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For (Qg)l we have:
@ {§osirine, Al §nnnoctsatt IN(QDF
@: ({9810} ¥ {AY 1 {a ¢ ars—»(-mc,—»A)Q
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A7.2  (mec’) (s s fnskaunce of (Qed! s
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Lemma 48 48.1 (us4) is horizontalizable in hADIC(+)(nec1)£1_2£4.

48.2 (necl) is horizontalizable and £1_2£4 are provable in

hADIC (+) (Ag,) -

Demonstration: We shall only consider the case I' = {oB}.

The general case is obtained by repeated appeals to the same

principles.

For (o.,)Jd we have:

S4)
® ot (a2 (g B > A} ml(()9);
@ {oF (o8> a2 (o Yo > w1 n' (e

next we can prove in (mp) (nec)c1c4_6£1“2£4

o(oB -~ A) » (oB -+ oA),

and we have as in the demonstration of Lemma 47.1

® (o} {o@ » AL (9} B » o))

@ {p-! {oB + oA}}-2 {{nB}l-l {oA}} gl((-m) .

Then we use () - (@) and 92.
For (ns4)+ we proceed as in the demonstration of Lemma 47.1.

48.2 In addition to what can be found in the demonstration

of Lemma 47.2, we have
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{oa}p! {oa}  nO(1%)

(B ) —
S4 '{DA}LI {ooA}

1

(>)¥ and

DA > OoA .

Q.E.D.

It follows from Lemmata 44 and 47 that (nss) is horizontalizable
in hADICT(+) (1) (@) (in fact, it is horizontalizable even if we
omit (=) and (1)), and from Lemmata 44 and 48 that (ns4) is
horizontalizable in hADIC(+) (o) (in fact, it is horizontalizable
even if we omit (+)). We also have by Lemma 46 that (o)t can
be replaced by (uss)+, or (us4)+, in the context of hADICT, or

hADIC. But we can show the following

Lemma 49 (o)¥ is not admissible in the extension of CP/0 with

(DSS).

Demonstration: We show first that every sequent of level 2 provable

in this extension is admissible (cf. the demonstration of Lemma 10).
In this extension we can prove {¢FJ‘{A}}F2'[Q Fl{Al;ﬁF}'ﬁ}, but

not ¢|—2 {¢[—1 {A},{oA} | 1 9}, since this second sequent is not
admissible.

Q.E.D.

On the other hand, if we add to (m)¥ the proviso I = @, we can
show that (o)+ is admissible in the extension of the Lemma above.

We can also show that (@)V is admissible in the extension with (DS4)
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of the system called "CS4P/D", which is the subsystem of CP/D

2 2 2 2 2 .
where IA& and }_1.(1M ) replace T° and h™ (T7). We shall first

demonstrate a more general result.

Consider the rules which are of the following form and

which we shall call '"rules of expansion' (E-rules)

gl R e S T W il L = I =)
. 2
MURRVE P8 0%, ROBF AT FEU BFE Y, BT Euty

@: S?«L)»uU@& ,L\)':WAU"lU\YQQ,WEO)’Q‘QA?O Q}(O

)

Lemma 50 E-rules are admissible in CP/D, but are not always

deducible.

2

. + . .. .
Demonstration: If £ =0, Eﬁ is admissible vacuously, since

no sequent of levels 22 with an empty right set is provable

in CP/D. If k = 0, &=Y=4.

If £ >0 and k > 0, we proceed as follows. Let (p) be
the premise and (c¢) the conclusion of an instance

of_§?+2.\ﬂé shall show by an induction on the length of the

proof of (p) that (c¢) is provable if (p) is.

For the basis we have that (p) can be an instance of
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1) hn+1(lﬁ+1)

; then (¢) is too;

2) W™y then (o) is too;

3) §?+1(IF+1); then (¢) is too;

4) hl()¥) and h1((")4); then (¢) is too;

5.1) hl((&4¥); then we have

fro §ravt,u At Firud ravyusatl W(T" |
{rud,ravt,uietiirodravruiel b (T7)

W (@b
frudrauty zAx)rug{Sr‘A_o‘Pu%&}}ﬂm@iauw)u?A&BQ

and we apply Q? (with obvious modifications if A = B);

5.2) h'((®1); then (c) is too;

6.1) b}((v)+); we proceed -analogously to 5.1);
6.2) h'((v)1); then (c) is too;

7). hl(W¥) and hl((L)4); then we use Lemma 14;

8)  hl((T¥) and h!((T)4); then we use Lemma 15.

For the induction step suppose that if (p) is proved in
< m steps, (¢) is provable. Let (p) be proved inm+ 1 steps.
The last step cannot be §ﬁ+2 since k > O, Qr+3 is eliminable,

and (), (&),(v),(l) and (T) are excluded since (p) is at least

of level 2. So the last step can be:
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n+2 e n+l Centlygne2
ed zll- z,U{A""} z.U{A Tz,
n+l
25|— z

1) C
6

n+2. _ _ .
ZSF 26 = (p), ZIUZ3 = 25, ZZlJ 24 = 26’ 24 cannot be empty;

then we apply the induction hypothesis adding QL and Wi to every

sequent Fi}]l+lA», 1 <4< k which is a member of Zl or 23, and

A

® and Y to Ay”1 and to every sequent which is a member of 22 or 24,

and we apply §?+2 to get (¢);

n+2
Tn+2 Z1 L Z2

2)
T

n+2 _
4

ZZSE 24, 22 cannot be empty; then we apply the induction hypothesis

adding ®L and ?L to every sequent F;}-n+1AL, 1 ¢ £ € k, which is
a member of 21 (if none are,we leave Zl unchanged), and ¢ and V¥
to every sequent which is a member of 22, and we apply I&+2 to get

().

This concludes the induction and the demonstration that E-rules

are admissible in CP/D.

To show that they are not always deducible, let n = O, and

let CP/D be extended with b}((gggl)).
Then {ﬂFl {A}}Fz {@F} {oa}} is provable, but

{{A}Fl {A}}I—2 {{A}Fl {oA}} is not; otherwise A - DA would be
provable in S5P/D, and by Theorem 6 we know that it is not. So,

this E-rule is not admissible in this extension, and hence it is

not deducible in it. It follows that it is not deducible in
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CP/D [v. §11].

Q.E.D.

[A demonstration for our examples of §814 and 16 can be
extracted from the preceding demonstration. Since D is admissible
in hAICT, every horizontalizable rule is deducible; so, the

formula in §14 is not provable.]

E-rules in general are not admissible in the extension of

CS4P/D with (o This follows from the end of the demonstration.

S4)°
of Lemma 50. But the E-rules where n =0, k >0, £ =1, ¥ =0,
and where for every {, 1 i< k, if F€§£, then F = oA, for some A,
can be shown admissible in this extension. To demonstrate this

we proceed in principle as for Lemma 50, with two additional cases

in the basis of the induction. Now suppose that

nu{e L {ankizu{ollsl

is provable in this extension. Z must be empty, and we have that

U {{oa} k! (a1}2 zu {ou{mal ! &}

is provable too. Then we use

{oa} ! {ea} n°(1®)
CAS k)
S e
A
B o2 ({oa} |t (a1}

1.4 -
and apply c? to get that HLZ su{ou {oA}}" E} is provable. Hence

we have
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Lemma 51 (o)¥ 1is admissible in the extension of CS4P/D with

(B54) -

In the same way we can show that the E-rules with the proviso

above would be admissible in the extension of CP/D with (uss)

and its horizontalizations. Hence we have

Lemma 52 (o)¥ is admissible in the extension of CP/D with (bss),

provided I = @.

The situation with the admissibility of (@)Y in the system

with ) and the system with (ns4) is analogous to the situation

(g5
with the admissibility of (+)¥ in the extension of hADICT with the

postulates of CP/O, and the admissibility of (»)¥ in the extension
of hADICT_n with the postulates of HP/O. There (*)¥ was not
admissible in the first system due to the presence of unrestricted
1}, which gave rise to sequents of level 1 without the single-
-conclusion property [v. Lemma 21.1]. On the other hand, it was
shown that (+)¥ is admissible in the second system, and this was
due to the single-conclusion property of sequents of level 1

[ v. Lemma 31.17. We have also shown that (+)¥ with the proviso

A =@ is admissible in the first system [v.Lemma 23.1].

With (o)! we have the following situation. In the system
with (E%S) it is not admissible due to the lack of the single-
-conclusion property of sequents of level 2[v.Lemma 49]. On the
other hand, it is admissible in the system with (DS4) due to the

single-conclusion property of seguents of level 2 [v.Lemma 51].
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It is admissible also in the system with (nSS), provided ¥ = @

[v.Lemma 52].

We can conclude that (o) is not weakly replaceable in
S5P/D by (nss) or (necljﬁl_3 even if we restrict ourselves to
sentences of levels O, 1 and 2, and that with a restriction

to these sentences, it is weakly replaceable in S4P/D by
1
(us4) or (nec )£1$2£4.

With modal constants we can see clearly why it is necessary
to take into account sequents of levels higher than 1. With
non-modal constants we have used sequents of level 2 to distinguish
level-preserving deducible rules which are horizontalizable

from those which are not, but the utility of doing that might have

been questioned.

It can still be questioned why we had assumed from the
beginning a structural system with postulates of all levels.
An alternative would have been to assume for the context in which.
we treat non-modal constants only postulates of levels O, 1 and
eventually 2, and then eventually to enlarge this system when we
came to deal with modal constants with postulates of level 3.
But our approach, which does not diffef substantially, has the
advantage of showing that it is possible to take the same
structural systems in the background, and add analytic rules

for modal constants without changing this background.

171.
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The choice to present structural systems from the outset
with sentences and postulates of all levels has obliged us
however to make some assumptions concerning various postulates
which do not affect the provability of sentences of the levels
in which we are interested. Levels irrelevant in this sense
are shown by the levels of eliminable D-rules. We have made
such assumptions, in particular, concerning T-rules and their
horizontalizations. When dealing with non-modal constants, all
T-rules of levels 22 were irrelevant, and with modal constants

all T-rules of levels 23 were in the same position.

We could have followed either of the following policies

concerning assumptions about T-rules

(1) make uniform restrictions for all levels;

(2) make minimal restrictions, i.e. make only the

restrictions needed to obtain the desired effect at those levels
in which we are interested, and at all other levels assume

T-rules without restriction;

(3) make maximal restrictions, i.e. assume only the T-rules

needed to obtain the desired effect at those levels in which

we are interested, and at all other levels assume no T-rule.

Everywhere, except with S4P/D, we have followed the uniform
restrictions policy (this policy can also coincide with another
policy). With S49D it was necessary to abandon this policy,
since T-rules of levels 1 and 2 must differ, and we have chosen

to make minimal restrictions in.this case. This is why we have
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2 2
chosen Ién rather than Ien or no I_of level 2 at all.

According to Lemma 32 and the demonstration of Lemma 44,
the maximal restrictions policy for SS5P/D would be to assume

<2

only Ieﬂ , and for S4P/D only Ieé‘

By restricting I} in some way, making some assumptions
concerning T-rules of other levels, and extending with

analytic rules for modal constants, it is possible to give systems

of various non-classical modal logics.

Two such systems with uniform restrictions on T-rules are

hADICT ,, () (&) (M (L (M) (A &),

which is a modal Heyting propositonal system, and

hADIC (=) (&) (v) (1) (T) (1) (=) )

which is an intutionistic relevant modal propositional system.

The demonstration of Lemma 44.1 shows that both of these systems

will have a certain S4 character. For these two systems the explicit
definition of Lemma 42 fails, and extending them with () would
destroy the single-conclusion property of sequents of level 1. It

is questionable whether in the second of the systems above we should

take (&) and (v) in the scope of h. For if we do, we have

o fmeial B e Y rgrsasell b (@) {@iiaediris F{M@_{(@T}

C ()1 1BF IR ST FE P Al

$orsatl ¥ § qnel Vi AT
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now suppose ‘A is provable; then oB -+ A, will be provable too,
though oB need not be used in any proof of A. With h}((v)+) and
hl((v)‘l‘) we would get 0O-iB - -A ,where A is provable. Note
that if we don't assume (&) and (v) in the scope of h, this has
no effect on the provable sentences of level O of the non-
-modal system, and. would leave (&)+4 and (v)+4 horizontalizable

[cf. §860,69].

It is clear that we could sustain various ideas about the
logic of different levels, and accordingly have systems, like
S4P/D, with T-assumptions different than those dictated by the
uniform restrictions policy. This policy presupposes that our
logic at all levels is of the same kind. The minimal restrictions
policy would presuppose that our logic is classical wherever there

are no express indications that it isn't.

T-rules are in this work in a special position when compared
with other structural rules: no restrictions for these other
rules were envisaged, and this is why we could safely assume

them for all levels,

§56 [6§52-53] The idea to treat modality with sequents of higher
levels is perhaps suggested by Kneale '&. Kneale 1962 (pp.559ff),

but the connection with our treatment is not clear.

A more direct connection is with Scott 1971 and 1974. 1In

these papers can be found the double-line rule
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{a}}-! (B}
(bl-l {A = B}

and a rule for transforming deductions of the form

1 1
(a3 {3 ... (A 3 {8, ;]
1
{An}l- {B,}

into sentences of the form

A 3 Bn_l}l'-1 {A, 3B}

{A;=3B, oo LA

It is by combining these two ideas, and defining a formal
context for sequents of levels higher than 1, that one could

be led to the double-line rules

(arfel | [BAREGed, o fAnd P B gl P H ALY 1R
g § A= BY ) @’\}{ A B AT &v\-alg FIAL- ij\i

or

srial  igviat, ., oA iy iALY |

5 TR

orioa | BPii0A,, DAL FEDALY

The modal system in O to which these two pairs of double-line rules give
rise is not S4, but a weaker system having as characteristic rules
and axiom-schemata to be added to the non-modal classical system

A

oA ; O(A > B) > (DA - DB); DA <> opA

and lacking ©A > A. However,this system - let us call it "S47' -
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is stronger than Sobociniski's $4° (v. Sobocinski 1962 and

Zeman 1973; Hughes § Cresswell 1968, p.302, are misleading

as to the origin of S4°; §*68 of Feys 1965, which is not by
Feys but by Dopp, seems to contain an outright mistake concerning
S4° when it claims that <<Sobociniski has shown that his system
S4° is deductively equivalent with the system which Feys has
called 'T' ... >>). S4° can be obtained by replacing the second
axiom-schema above by w©A -+ ooA, The formula ©DA -+ DA is not
provable in S4° (enough information to infer that can be found

in Zeman 1973). That oA -+ A, which added to S4° would give S4,
is not provable in S4  is shown by the following matrices, derived

from Group IV of Lewis & Langford 1932

»|1234 2 o
*

1{1234 14 LIl oasa.
211133 2|3 213 3222
31212 3|2 3|3
4j1111 4|1 413

So, S4 is between S4° and S4. It could be conjectured that there
is an infinity of systems between S4° and S4, having as axiom-

-schemata added to S4°

o...0A>0...0A, nx>1, k21
o — — —

n+k n

(cf. Thomas 1964 for a result of Sobocinski about an infinite

hierarchy between T and S4 obtained by adding successively to T
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The following double-line rule would give rise to S4

1 1 2 1
{ok" 1A}, ..., ok {a, B {oF" {A 1}
o7 ({on, ,..., oo, DA D)

and this naturally leads to a form of analytic rules for the

necessity operator of S4

rule (a2 {0 | 1)
T L2 {{oa) ! {81}

Of course, the double-line rules for S4  can be obtained with

the analytic rule for S4, but not the other way round.

These remarks are put loosely, but they could also be

stated precisely in the more formal context of this work.

[854] Sequent calculi for S5 and S4 having rules closely
connected with our (DSS) and (ns4) are studied in Ohnishi § 7

Matsumoto 1957 and 1959 (v. also Curry 1950, 1963; Zeman 1973).

[855] The outcome of our approach is that a consistently
intuitionistic standpoint, restricting T of all levels to
Ié& or Ie&, would give rise to a modal system with an S4 character,
and not an S5 character like the calculus of Bull 1966, And with
a consistent rejection of T at all levels, with which we have
obtained the intuitionistic relevant system, the ensuing modal
system is again of an S4 character. This perhaps justifies

Anderson & Belnap 1975, who make a case for S4 principles, and

against S5 principles, in relevant logic.

177.
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Chapter 7

FIRST-ORDER QUANTIFIERS

§57 We first make some preliminary remarks concerning the
language O and assumptions which should be made in order to

obtain a context in which first-order quantifiers can be analyzed.

Then we introduce first-order quantifiers and we give
analytic rules for them. Since these quantifiers are infinite
in'number, the primary analytic rules we give involve, unlike
the preceding analytic rules, schemata for the constants
analyzed, and not the constants themselves. Analytic rules for the

constants are obtained from these by substitution.

Next, we demonstrate the O-equivalence of the analytic
extension of CP/D with these rules and an axiomatization in
0 of classical first-order quantificational logic, and we
consider the replaceability of the analytic rules by postulates

in Q.

We then make some remarks on non-classical and modal first-
-order quantificational systems. In connection with these last
systems we consider an approach which would make different
assumptions concerning the formal framework of D1 and would

apparently make our treatments of quantification and modality
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incompatible. We shall try to assess the merits of this

approach.

§58 When dealing with propositional constants, we assumed
about O only that it has expressions of the category 4 and the
constants for which we gave analytic rules. In this chapter we

shall make some additional assumptions concerning O.

0 will be obtained in the following way. We first specify
a language called "OQKH ("ef" stands for '"closed"). For 0,p
we assume that we have in it at least some expressions of the category

£ , and at least some expressions of the categories p,, k > 1,
n o

n
4
where '"p, "' is an abbreviation for £...% (so that there will be
k —
k
at least some expressions of the category 4 in Ocl)' We also

assume that we have in it the constants for which we shall give
analytic rules. O is obtained by extending Ocﬂ with schematic
letters for expressions of 0cz of at least some (possibly all)
categories represented in Ocﬂ' These schematic letters of O will
be called '"variables'. (We shall not specify what variables look
like, as we have not given such a specification for any expression

of 0, save the constants analysed.)

So an expression of O is either an expression of Oc@ or

a schema for expressions of O The language which contains all

K

the expressions of O which are not expressions of an will be

called "Oop" ("op'" stands for '"open'").
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A broader conception of O, which we shall not consider here,
results when we allow 0QF>tO have variables of a certain category
even if there are no expressions of this category in Ocﬂ’

These variables can then be conceived as schemdtic letters for
themselves. A language O which has such variables can be conceived

as a kind of zero case of the language Q presented above, and our

structural analyses in principle can be compatible with it too.

In addition to the schemata of 1J used before, we shall use
the following schematic letters of U for expressions of O of the

category %

b

a,b,c,al, RS

These schematic letters are both for singular terms of Ocﬂ and for
variables of oop' Next we shall use the following schematic
letters of U for the variables of Oop of the category %, which

are denumerably infinite in number,

x”y’z’xl’yl’ AR

For this chapter we assume that we have only these variables in

OOP'

Basic schemata of U of the form

n
A Cxl, ooy X

.h)
n >0, R >1, will be used for sentences of D1 in which xi’ for every

L, 1 < 4 <k, occurs at least once (if n = 0, we omit the

superscript as usual). x;, for every 4, 1< 4 < k,can occur

more than once in sentences for which the schema is used, but it is



181.

8§58

listed only once. So a schema like "A(x,x)" will have no
sense in this notation. X5 »--5X, are not necessarily all
the expressions, nor all the variables, of the cateogry % which

. R
occur in A (xl, ...,xk).

As before, we shall use these basic schemata also for formulae

of D1 which satsify the requirement concerning xl, .,xk.

We shall distinguish in D1 the language D1 built on ocﬂ and

the language D1 built of Oop which are obtained by restricting O

to 0c£ and 00p respectively.

When constructing systems of provable sentences of D1 we must
in the presence of the variables of O take into account some
additional structural rules. Namely, we must ekplicitly give some
form of the rules of substitution which will permit us to pass
from sentences of D1 to their instances, salva provability. For

instances we shall use basic schemata of the form

X,
L N
S Aty -eux)|
i n
n >0, k3>1,1<4<k. Sy A (xl, ...,xk)l is the result
of substituting ¢ at the place of every occurrence of &i in A”(xl,

Note that the notation "82 A"F' will be used only if A ois Bn(x),

for some Bn(x).

Then we give the following primitive rule for structural

systems in D1

..,xk).
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n
Z-substitution (§£) . gh A

S , h > 0.
s A

Note that no empty application of this rule is possible [cf. 84].
This rule will be subject to some provisions in some contexts [v.859].
In general, it is subject to the proviso that SZ An(x)l is a sentence
of D1 [cf.§9]. As before, we shall envisage restricting this

rule only to some levels.

In this chapter we shall consider the structural system

S, hADICT

In spite of the fact that §¢ is level-preserving, it cannot

be in the scope of h. Otherwise we would have the following

L Aot (iAol - nosy)
X 1 .x
{SEAG) [ HASAM) [}

where b can be any expression of the category & of Ocﬂ'

Extending hADICT with §{

rise to a structural system essentially different from the one used

should not be understood as giving

previously. If O had Z%-variables, S, would be admissible in QAQIEI}
and even if O did not have these variables, §{ would be admissible
vacuously. It would remain admissible in the analytic extensions
considered thus far. Thus we could have assumed §{ from the

beginning. . The same holds for other rules of substitution, involving
other variables of O than +t-variables,which we shall consider later
[v.8868,74]. To assume §{ when dealing with propositional constants
would be superfluous,:in the same way that assuming other rules of

substitution would be superfluous in this chapter. But assuming §£
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for this chapter is not superfluous. §I is admissible in hADICT,
but it is not admissible in every extension of hADICT (hence

it is.not deducible in hADICT). In particular, it would not

be admissible in the analytic extensions with analytic rules we

shall consider in this chapter.

§59 We shall now introduce the constants of Oc@ called "first-

-order quantifiers" (until further notice, by "quantifier" we shall
qu q

understand "first-order quantifier'). OQuantifiers are not
elementary but complex constants. A quantifier is constructed

from a quantifier prefix which is of the form

Vx or ax

and all the k, kb > 1, occurrences of the variable x, identical
with the variable which occurs in the quantifier prefix, in a

sentence A(x) of Oo to which the quantifier prefix is prefixed. When

P

this prefixing is effected the result is a sentence of the form
VXA (x) or IxXA(x) .

A quantifier is universal if it has a prefii of the first form, and

existential if it has a prefix of the second form.

A variable which occurs in a quantifer is called '"bound".
We can obtain an infinity of quantifiers by varying the bound variable
X and the number k of occurrences of the variable bound by the
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