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ABSTRACT 

In standard model theory, deductions are not the things one models. But 
in general proof theory, in particular in categorial proof theory, one finds 
models of deductions, and the purpose here is to motivate a simple 
example of such models. This will be a model of deductions performed 
within an abstract context, where we don’t have any particular logical 
constant, but something underlying all logical constants. In this context, 
deductions are represented by arrows in categories involved in a general 
adjoint situation. 
 To motivate the notion of adjointness, one of the central notions of 
category theory, and of mathematics in general, it is first considered how 
some features of it occur in set-theoretical axioms and in the axioms of 
the lambda calculus. Next, it is explained how this notion arises in the 
context of deduction, where it characterizes logical constants. It is shown 
also how the categorial point of view suggests an analysis of 
propositional identity. The problem of propositional identity, i.e. the 
problem of identity of meaning for propositions, is no doubt a 
philosophical problem, but the spirit of the analysis proposed here will be 
rather mathematical. Finally, it is considered whether models of 
deductions can pretend to be a semantics. This question, which as so 
many questions having to do with meaning brings us to that wall that 
blocked linguists and philosophers during the whole of the twentieth 
century, is merely posed. At the very end, there is the example of a 
geometrical model of adjunction. Without pretending that it is a 
semantics, it is hoped that this model may prove illuminating and useful. 
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 Since the text of this talk was written in 1999, the author has 
published several papers about related matters (see ‘Identity of proofs 
based on normalization and generality’, The Bulletin of Symbolic Logic 
9(2003), pp. 477-503, corrected version available at: http:// arXiv. org/ 
math. LO/ 0208094; other titles are available in the same archive). 
 
 

1.  INTRODUCTION 

According to the traditional vocation of logic to study deductive 
reasoning, deductions should indeed be of central concern to logicians. 
However, as an object of study, deductions have really a central place in a 
rather restricted area of logic called general proof theory—namely, proof 
theory done in the tradition of Gentzen. There, by studying normalization 
of logical deductions, one is led to consider criteria of identity of 
deductions. The goal of this brand of proof theory might be to find a 
mathematical answer to the philosophical question “What is deduction?”, 
as recursion theory has found, with much success, a mathematical answer 
to the question “What is computation?”. 
 In proof theory done in the tradition of Hilbert’s program, where one 
is concerned with consistency proofs for fragments of mathematics, 
deducing is less central. The goal there is not to answer the question 
“What is deduction?”, but to prove consistency by some particular means. 
Hilbertian proof theory, incorporating the fundamental lessons of Gödel, 
was for a long time dominant in proof theory, but nowadays it seems it 
may be yielding ground. It has become a rather secluded branch of 
mathematics, where one studies intricate problems about ordinals, not 
particularly appealing to other logicians, let alone other mathematicians. 
 However, following a general trend, seclusion has become the norm in 
logic, as well as elsewhere in mathematics. The trend is quite conspicuous 
in model theory, which was no doubt the dominant branch of logic during 
a long period in the second half of the twentieth century. As the century 
was drawing to its end, so model theory, which had drifted to some 
particular branches of algebra, appeared more and more esoteric. The 
remaining two great branches of logic, recursion theory and set theory, 
leave the same impression nowadays. Logicians of these various branches 
meet at congresses, and politely listen to each other’s talks, but don’t 
seem much moved by them. 
 Although we are speaking here of the dominant branches of logic, 
deductive reasoning hardly makes their subject matter. The study of 
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deduction was for a long time confined to rather marginal fields of 
nonclassical logics. Perhaps the growth of general proof theory, and its 
connection with category theory and computer science, might bring 
deduction to the fore. (In that, the role of category theory and computer 
science would presumably not be the same, the former being otherworldly 
and the latter mundane, but—who knows—the two ways might end up 
by being in harmony.) 
 In standard model theory, deductions are not the things one models. 
But in general proof theory, in particular in categorial proof theory, one 
finds models of deductions, and my purpose in this talk is to motivate a 
simple example of such models. This will be a model of deductions 
performed within an abstract context, where we don’t have any particular 
logical constant, but something underlying all logical constants. In this 
context, deductions are represented by arrows in categories involved in a 
general adjoint situation. 
 To motivate the notion of adjointness, one of the central notions of 
category theory, and of mathematics in general, we shall first consider 
how some features of it occur in set-theoretical axioms and in the axioms 
of the lambda calculus. Next, it will be explained how this notion arises in 
the context of deduction, where it characterizes logical constants. We 
shall see also how the categorial point of view suggests an analysis of 
propositional identity. The problem of propositional identity, i.e. the 
problem of identity of meaning for propositions, is no doubt a 
philosophical problem, but the spirit of the analysis proposed here will be 
rather mathematical. Finally, we shall consider whether models of 
deductions can pretend to be a semantics. I merely ask this question, 
which as so many questions having to do with meaning, brings us to that 
wall, which blocked linguists and philosophers during the whole of the 
twentieth century. At the very end, we reach our example of a 
geometrical model of adjunction, for which I don’t pretend that it is a 
semantics. Nevertheless, I hope that this model may prove illuminating 
and useful. 

2.  TERMS, PROPOSITIONS AND INVERSION 

In logic, as well as in the philosophy of language, we are especially 
interested in two kinds of linguistic activity: referring and asserting. We 
engage in the first kind of activity with the help of terms (which 
abbreviates individual terms), while for the second we use propositions 
(or formulae). The two grammatical categories of terms and propositions 
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are basic grammatical categories, with whose help other grammatical 
categories can be defined as functional categories: predicates map terms 
into propositions, functional expressions map terms into terms, and 
connectives and quantifiers map propositions into propositions. 
 The set-abstracting expression {x : … } maps a proposition A into the 
term {x : A}. This term is significant in particular when x is free in A, but 
it makes sense for any A, too. The expression x… is a unary predicate: 
it maps a term a into the proposition xa. The ideal set theory would 
just assume that {x : … } and x… are in some sense inverse to each 
other. Namely, we would have the following postulates: 

Comprehension: x{x : A} A, 
Extensionality: {x : xa} = a, 

provided x is not free in a. In the presence of replacement of equivalents 
and of Comprehension, Extensionality is equivalent to the more usual 
extensionality principle 

x(xa1xa2) a1 = a2, 

provided x is not free in a1 and a2 (see [D. 2001], Section 2). We know 
that ideal set theory is inconsistent if in propositions we find negation, or 
at least implication. To get consistency, either {x : A} will not always be 
defined, and we replace Comprehension by a number of restricted 
postulates, or we introduce types for terms. 
 Instead of {x : … } let us now write (x … ), and instead of x… let 
us write (… x). Then Comprehension and Extensionality become 
respectively 

((x A)x) A, 
(x (ax)) = a. 

If we take that (x … ) maps a term a into the term (x a), while (… x) 
maps a term a into the term (ax), and if, furthermore, we replace 
equivalence by equality, and omit outermost parentheses, our two 
postulates become the following postulates of the lambda calculus: 

-equality: (x a)x = a, 
-equality: x (ax) = a, 

provided x is not free in a in -equality. The present form of -equality 
yields the usual form in the presence of substitution for free variables. 
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(The usual form of -equality and -equality imply -equality.) The fact 
that the lambda calculus based on -equality and -equality is consistent 
is due to the fact that the language has been restricted, either by 
preventing anything like negation or implication to occur in terms, or by 
introducing types. Without restrictions, in type-free illative theories, we 
regain inconsistency. 
 So the general pattern of Comprehension and Extensionality, on the 
one hand, and of  and -equality, on the other, is remarkably analogous. 
These postulates assert that a variable-binding expression x and 
application to a variable x are inverse to each other, in the sense that 
xx and xx are either equivalent or equal to , depending on the 
grammatical category of . It is even more remarkable that theories so 
rich and important as set theory and the lambda calculus are based on 
such a simple inversion principle. 

3.  DEDUCTIONS AND INVERSION 

Besides referring and asserting, there is a third kind of activity of 
particular interest to logic: deducing, which is also linguistic, as far as it 
consists in passing from propositions to propositions. 
 To speak about deductions we may use labelled sequents of the form 
f :  ├ B, where  is a collection of propositions making the premises, the 
proposition B is the conclusion, and the term f records the rules justifying 
the deduction. If the premises can be collected into a single proposition, 
and this is indeed the case if  is finite and we have a connective like 
conjunction, then we can restrict our attention to simple sequents of the 
form f : A ├  B, where both A and B are propositions. We can take that 
f : A ├  B is an arrow in a category in which A and B are objects. When 
we don’t need it, we omit mentioning the type A ├  B of f : A ├  B, and 
write just the arrow term f. 
 Special arrows in a category are axioms, and operations on arrows are 
rules of inference. Equalities of arrows are equalities of deductions. For 
that, categorial equalities between arrows have to make proof-theoretical 
sense, as indeed they do, by following closely reductions in a 
normalization or cut-elimination procedure in intuitionistic and 
substructural logics. 
 In categorial proof theory we are not concerned with a consequence 
relation, but with a consequence graph, where more than one arrow, i.e. 
deduction, can join the same pair of objects, i.e. propositions. This should 
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be the watershed between proof theory and the rest of logic. It is indeed a 
defect of traditional general proof theory, unaware of categories, that it is 
still very much under the spell of sequents understood in terms of 
consequence relations—as if all deductions with the same premises and 
conclusions were equal. The traditional theory has trouble in representing 
deductions and in coding them. It draws trees and has no clear criteria of 
identity of deductions. (Applying the typed lambda calculus in general 
proof theory usually brings awareness of categories.) 
 We shall now inquire whether there is something in the context of 
deductions, as they are understood in categories, which would be 
analogous to the inversion principle we encountered before in set theory 
and the lambda calculus. 
 Take a category K with a terminal object T (this object behaves like 
the constant true proposition), and take the polynomial category K [x] 
obtained by extending K with an indeterminate arrow x : T ├  A (see 
[Lambek & Scott 1986], Part I, Chapters 4-5, and [D. 2001]). We obtain 
K [x] by adding to the graph of arrows of K a new arrow x : T ├  A, and 
then by imposing on the new graph equalities required by the particular 
sort of category to which K belongs. Note that K [x] is not simply the 
free category of the required sort generated by the new graph, because 
the operations on arrows of K [x] should coincide with those of K on the 
arrows inherited from K (see [D. 2001], Section 5). We can conceive of 
K [x] as the extension of a deductive system K with a new axiom A. 
 Now consider the variable-binding expression x that assigns to every 
arrow term f : C ├  B of K [x] the arrow term x f : C ├  AB of K, 
where , which corresponds to implication, is an operation on the 
objects of K (in categories, AB is more often written BA). Passing 
from f to x f corresponds to the deduction theorem. Conversely, we have 
application to x, denoted by x, which assigns to an arrow term g : C ├  
AB of K the arrow term x g : C ├  B of K [x]. Now, passing from g 
to x g corresponds to modus ponens. If we require that 

  xx f = f, 
  xx g = g, 

we obtain a bijection between the hom-sets K (C, AB) and K [x](C, B). 
If, moreover, we require that this bijection be natural in the arguments B 
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and C, we obtain an adjunction. The left-adjoint functor in this adjunction 
is the heritage functor from K to K [x], which assigns to objects and 
arrows of K their heirs in K [x], while the right-adjoint functor is a 
functor from K [x] to K that assigns to an object B the object AB. We 
find such an adjunction in cartesian closed categories, whose arrows 
correspond to deductions of the implication-conjunction fragment of 
intuitionistic logic, and also in bicartesian closed categories, whose 
arrows correspond to deductions of the whole of intuitionistic 
propositional logic. 
 In cartesian closed and bicartesian closed categories, as well as in 
cartesian categories tout court, we also have the adjunction given by the 
bijection between the hom-sets K (A C, B) and K [x](C, B). Here the 
heritage functor is right adjoint, and a functor from K [x] to K that 
assigns to an object C the object A C is left adjoint. The binary product 
operation on objects  corresponds to conjunction, both intuitionistic and 
classical, as  corresponds to intuitionistic implication. 
 These adjunctions, which were first considered by Lambek, and which 
he called functional completeness, are a refinement of the deduction 
theorem (see [Lambek 1974], [Lambek & Scott 1986], Part I, [D. 1996] 
and [D. 2001]). Through the categorial equivalence of the typed lambda 
calculus with cartesian closed categories, which was also discovered by 
Lambek, they are closely related to the so-called Curry-Howard 
correspondence between typed lambda terms and natural-deduction 
proofs. They shed much light on this correspondence. The adjunctions of 
functional completeness may serve to characterize conjunction and 
intuitionistic implication. 

4.  LOGICAL CONSTANTS AND ADJUNCTION 

Adjointness phenomena pervade logic, as well as much of mathematics. 
An essential ingredient of the spirit of logic is to investigate inductively 
defined notions, and inductive definitions engender free structures, which 
are tied to adjointness. We find also in logic the important model-
theoretical adjointness between syntax and semantics, behind theorems of 
the “if and only if” type called semantical completeness theorems. 
However, adjunction is present in logic most specifically through its 
connection with logical constants. 
 Lawvere put forward the remarkable thesis that all logical constants 
are characterized by adjoint functors (see [Lawvere 1969]). Lawvere’s 
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thesis about logical constants is just one part of what he claimed for 
adjunction, but it is a significant part. 
 Actually, Lawvere didn’t characterize conjunction and intuitionistic 
implication through the adjunctions of functional completeness we 
mentioned in the preceding section. Instead, there is for conjunction, i.e. 
binary product in cartesian categories, the adjunction between the 
diagonal functor D : KKK as left adjoint and the internal product 
bifunctor : KKK as right adjoint. Coproduct, i.e. disjunction, is 
analogously left adjoint to the diagonal functor. The terminal and initial 
objects, which correspond respectively to the constant true proposition 
and the constant absurd proposition, may be conceived as empty product 
and empty coproduct. They are characterized by functors right and left-
adjoint, respectively, to the constant functor into the trivial category with 
a single object and a single identity arrow. Functors tied to the universal 
and existential quantifiers are, respectively, right adjoint and left adjoint 
to the substitution functor, which we find in hyperdoctrines, or fibered 
categories. 
 In all that, one of the adjoint functors carries the logical constant to be 
characterized, i.e., it involves the corresponding operation on objects and 
depends on the inner constitution of the category, while the other adjoint 
functor is a structural functor, which does not involve the inner 
operations of the category (“structural” is here used as in the “structural 
rules” of Gentzen’s proof theory). The diagonal functor and the constant 
functor are clearly structural: they make sense for any sort of category. 
The substitution functor may also be conceived as structural, and such is 
the heritage functor too. (We relied above on the presence of the terminal 
object to characterize implication through functional completeness, but 
this was done only to simplify the exposition, and is not essential.) 
 Lawvere’s way to characterize intuitionistic implication through 
adjunction is by relying on the bijection between K (A C, B) and 
K (C, AB), which can be obtained by composing the two adjunctions 
with the heritage functor mentioned in the preceding section. The 
disadvantage of this characterization is that none of the adjoint functors 
A  and A is structural (though the former resembles such a functor 
more than the latter). 
 In the late seventies (see [D. 1989], which summarizes the results of 
my doctoral thesis written ten years before), I was engaged in 
characterizing logical constants of classical, intuitionistic and 
substructural logics through equivalences between a sequent involving the 
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logical constant in question at a particular place and a structural, purely 
schematic, sequent, not involving any logical constant. A typical such 
equivalence is 

├  AB  iff  A,├  B. 

I called such equivalences analyses, and not definitions, because they 
may lack some essential traits of definitions, like conservativeness and 
replaceability by the defining expression in every context. 
 I realized more recently that my analyses were just superficial aspects 
of adjunctions. They pointed to the inversion principle, but didn’t mention 
the naturalness condition of adjunctions. This last condition may perhaps 
be taken as implicit, but I lacked a clear idea of identity of deductions. 
However, this idea is also unclear in all of traditional general proof theory 
untouched by categorial proof theory. Gentzen’s and Prawitz’s inversion 
principle for natural deduction, which says that the elimination rules can 
be recovered from the introduction rules, amounts to analytical 
equivalence, and is in the same way a superficial aspect of adjointness 
(see Gentzen’s Untersuchungen über das logische Schließen, II, § 5.13, 
and [Prawitz 1965], Chapter II). 
 However, what I did brings something which I think should be added 
to Lawvere’s thesis: namely, the functor carrying the logical constant 
should be adjoint to a structural functor recording some features of 
deduction. With this amendment the thesis might serve to separate logical 
constants from other expressions. 
 I suppose that my notion of analysis corresponds to an adjoint 
situation that does not amount to an adjoint equivalence of categories, 
while ordinary definitions are based on an equivalence of categories. 
 In some poignant passages of his book on Frege, Dummett has argued 
very convincingly that the inversion principle of natural deduction, 
discovered by Gentzen and studied by Prawitz, operates in ordinary 
language too (see [Dummett 1973], pp. 396-397, 454-455). With 
pejorative expressions this principle is broken so that sufficient conditions 
for an assertion are weaker than the conclusions we may draw from the 
assertion. “Long-winded” may be taken as a pejorative expression 
because conclusions one can infer from the assertion that somebody’s 
performance is such, like the conclusion that the matter should be 
ignored, need not be warranted by a sufficient condition for the assertion, 
which can be merely that the thing is long. Actually, the point of using 
pejoratives is to licence some otherwise unwarranted inferences. 
(Unwarranted conclusions in the case of pejoratives are condemning, 
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whereas the point of using flattery terms is to licence commending 
conclusions, which may also be unwarranted.) 
 To complete what Dummett is saying, one could add that with 
euphemisms, dually to what one has with pejoratives, the sufficient 
conditions for an assertion are stronger than the conclusions we are 
expected to draw from the assertion. A sufficient condition for asserting 
that some text is “not concise” might be that it is unbearably long, and the 
conclusion that it should be ignored, which could be drawn from this 
sufficient condition, is meant to be blocked by using the euphemism. The 
point of using euphemisms is to block unwanted inferences (or, at least, 
the speaker pretends he means to block them). 

5.  IDENTITY OF DEDUCTIONS AND PROPOSITIONAL IDENTITY 

Many successful philosophical analyses are achieved by a shift in 
grammatical categories. Such is Frege’s analysis of the predicate “exists” 
in terms of the existential quantifier, or Russell’s analysis of definite 
descriptions. We find this shift in grammatical form in the analyses of 
logical constants mentioned in the preceding section. In 

├  AB  iff  A,├  B 

the connective of implication is analyzed in terms of the turnstile, which 
stands for deducibility. 
 A simple example of a good analysis with shift in grammatical form, 
mentioned by Frege in Die Grundlagen der Arithmetik (§§ 64-68), is the 
analysis of the notion of the direction of a line a as the equivalence class 
of lines parallel to a. This amounts to the analytical equivalence 

The direction of a is equal to the direction of b iff a is parallel to b. 
What is achieved in passing from the left-hand side of this equivalence to 
the right-hand side is that we have eliminated a spurious individual term 
“the direction of a” and used instead the uncontroversial binary predicate 
“is parallel to”. 
 Leibniz’s analysis of identity, given by the equivalence 

a is identical to b iff “a” can always be replaced by “b” salva 
veritate, 

achieves a fundamental grammatical shift. It assumes as given and 
uncontroversial propositional equivalence, i.e. identity of truth value, and 
analyzes in terms of it identity of individuals. It is because of this shift that 
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Hide Ishiguro could find behind Leibniz’s analysis a form of Frege’s 
context principle, which says that we should explain the sense of a word 
in terms of the truth and falsity of propositions in which it may occur (see 
[Ishiguro 1990], Chapter II). To put it in a nutshell, Frege’s principle says 
that when it comes to explaining how language functions, asserting is 
more basic than referring (see [Dummett 1973], pp. 3-7). 
 What about deducing? Is it less or more basic than asserting or 
referring? If we surmise that it is more basic than asserting, in the order of 
explaining how language functions, we have opened the way to analyze 
propositional identity in terms of an equivalence relation between 
deductions, much as Leibniz analyzed identity of individuals in terms of 
propositional equivalence. The most plausible candidate for an 
equivalence relation that would do the job is identity of deductions as 
codified in categories. We have said that this equivalence of deductions is 
motivated by normalization in natural deduction or by cut elimination. 
 Propositional equivalence, which in classical logic is defined by 
identity of truth value, is understood as follows in a proof-theoretical 
context: 

A is equivalent to B iff there is a deduction f : A ├  B and a 
deduction g : B ├  A. 

This relation between the propositions A and B, which certainly doesn’t 
amount to the stricter relation of propositional identity, does not rely on a 
criterion of identity of deduction. 
 By relying on such a criterion, we could analyze propositional identity 
as follows, quite in tune with how category theory understands identity of 
objects: 

A is the same propositions as B iff A and B are isomorphic. 
Isomorphism is here understood in the precise way how category theory 
understands isomorphism of objects: namely, there is a deduction, i.e. 
arrow, f : A ├  B and a deduction g : B ├  A such that g composed with f 
and f composed with g are equal respectively to the identity deductions 
from A to A and from B to B. That two objects are isomorphic means that 
they behave exactly in the same manner in deductions: by composing, we 
can always extend  deductions involving one of them, either as premise or 
as conclusion, to deductions involving the other, so that nothing is lost, 
nor gained. There is always a way back. By composing further with the 
inverses, we return to the original deductions. 
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6.  IS THERE A SEMANTICS OF DEDUCTION? 

In theoretical linguistics syntactical theory was much more prosperous 
than semantical theory. Not so in logic, where semantics, i.e. model 
theory, has for a long time been preponderant over syntax. 
 Logicians are concerned with language much more than other 
mathematicians, and the old name of mathematical logic, symbolic logic, 
rightly stressed that. It is true that linguistic preoccupations are not 
foreign to some other branches of mathematics—in particular, algebra—
but their involvement with language rarely matches that of logic. 
 Proof theory is entirely within the sphere of language, and, with many 
good reasons, syntactical is usually taken as synonymous with proof-
theoretical. It is also pretty secure to consider that the set-theoretic 
models of classical model theory give the semantics of mathematical 
theories based on classical logic. But to call “semantics” the production 
of any kind of models for other sorts of systems, like the lambda calculus, 
or systems of nonclassical logics, may well be abusive, if we understand 
“semantics” à la lettre, as the theory giving an explanation of meaning. 
 Did the untyped lambda calculus really acquire meaning only when, at 
a rather late date, some sorts of models were found for it? Do the extant 
models of intuitionistic logic, or various substructural logics, give 
meaning to these logics, which are otherwise motivated mostly by proof 
theory? And what to say about various uses of the word “semantics” in 
theoretical computer science, or its borderlines, where some rather 
syntactical activities, like coding natural-deduction proofs with typed 
lambda terms, or just translating one formal language into another, are 
deemed a matter of semantics? 
 Completeness proofs are the glory of logic (though incompleteness 
proofs are even more glorious), but they should not serve as an excuse 
for the cheap question, often posed irresponsibly after colloquium talks, 
or in referee’s reports: “What can you tell us about the semantics of your 
system? What about its models?” And this question should not receive a 
cheap answer, which consists in producing anything resembling models, 
or even not resembling them, as a semantics. 
 Classical model-theoretical semantics gives meaning to referential 
expressions like terms through models, and propositions acquire truth 
values through these models, but these models can hardly serve to give 
meaning to deductions. A consequence relation may be defined with 
respect to models, but we said that we need rather a consequence graph, 
where between the same premise and conclusion there may be several 
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deductions. From the point of view of classical model theory, deductions 
are not bound to the models, but only to the language. 
 The fact that there is no room for deductions in the classical 
semantical framework, whose spirit is Platonistic, should be significant 
for the philosophy of mathematics. That part of mathematics which is 
bound to deduction—namely, logic—could be understood in a formalistic 
vein, whereas in the rest of mathematics we would have Platonism. This 
sort of formalistic conception would resemble Hilbert’s formalism in so 
far as it is not purely formalistic—it understands formalistically just one 
part of mathematics. However, it differs very much from Hilbert’s 
conception by finding formalism in logic, whereas Hilbert looked for it in 
those parts of mathematics transcending the finite. Moreover, Hilbert 
understood the foundational, finitistic, part of mathematics in a 
constructivist vein. Logic need not coincide with the finitistic part of 
mathematics, but it should presumably be found in the foundations. So 
Hilbert’s formalism would indeed be turned upside down: formalism is in 
the foundations, and Platonism above, whereas with Hilbert, 
constructivism is in the foundations, and formalism above. 
 The fact that we are not prone to speak about models of deduction, 
and that this topic has not received much attention up to now, is in 
accordance with a formalistic understanding of deduction. When we 
encounter different reconstructions of the same deductions, as happens 
when we have sequents on the one hand and natural deduction on the 
other hand, the usual inclination is not to speak about one reconstruction 
being a model of the other, but both are taken as alternative syntaxes. 
 Still, isn’t there something model-theoretical in passing from the 
calculus of sequents to natural deduction? Couldn’t one take natural 
deduction not just as an alternative syntax, but as a model giving meaning 
to the sequent calculus? 
 And what about modelling natural deduction itself? We can code 
natural-deduction proofs by typed lambda terms, according to the Curry-
Howard correspondence, but this seems to be rather a matter of finding a 
suitable syntax to describe natural-deduction proofs, though there are 
authors who speak about the typed lambda calculus as providing a 
semantics of deductions. 
 Another kind of coding of natural deduction is obtained in categories, 
by proceeding as Lambek (see [Lambek & Scott 1986] and references 
therein). The possibility of this coding is not fortuitous: one can prove 
rigorously that if we want to represent deductive systems set-theoretically 
by identifying, in the style of intuitionism, a proposition with deductions 
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leading to it, or deductions starting from it, we must end up with 
categories. In this set-theoretical representation, one can also exhibit 
effectively the duality between composition of deductions, i.e. cut, and 
the identity deduction. Composition leads us from the deductive system 
to the representing category, and the identity deduction brings us back. 
This representation, which is summarized in the theorem that every small 
category is isomorphic to a concrete category, i.e. a subcategory of the 
category of sets with functions, is an elementary aspect of the Yoneda 
representation, and is related to some aspects of Stone’s representation of 
lattice-orders and to Cayley’s representation of monoids (see [D. 1998] 
or [D. 1999], § 1.9). 
 We can always take as a model of a category the skeleton of this 
category, i.e. the category obtained by identifying isomorphic objects, but 
there are also more “dynamic” kinds of models. (“Dynamic” is often used 
in theoretical computer science and borderline areas just as a 
commending expression. It means roughly “okay”, while “static” is a 
pejorative expression.) 
 Lambek, who first realized in the sixties that categorial equality of 
arrows coincides with proof-theoretical equivalence induced by 
normalization, conjectured also that the same equivalence relation 
between deductions could be characterized by saying that the deductions 
have the same generality, by which he meant that by generalizing the 
deductions, by diversifying schematic letters as much as possible, while 
keeping the same rules, we shall end up with the same thing. Lambek’s 
way of making precise the notion of generality of deductions was not 
successful. At roughly the same time, under the influence of Gentzen and 
Lambek, the matter was approached with more success in a geometrical 
vein by Eilenberg, Kelly and Mac Lane, in connection with so-called 
coherence problems in category theory (see [Eilenberg & Kelly 1966] and 
[Kelly & Mac Lane 1971]). These are roughly decidability problems for 
the commuting of various classes of diagrams, i.e. decidability problems 
in an equational calculus of algebraic partial operations. 
 Lambek’s conjecture that generality characterizes Gentzenian 
equivalence of deductions is not true in general; in particular, it is not true 
for intuitionistic implication (as it was conclusively shown in [Petri c 
1997]). But what appears from these studies of coherence problems is 
that for categories interesting for logic, which codify deductions in 
various fragments of intuitionistic and substructural logics, we can find 
interesting geometrical models. That is, these categories can be faithfully 
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embedded in some categories of geometrical morphisms. The matter was 
rediscovered two decades latter with the proof nets of linear logic, and 
there is also a more recent rediscovery in [Buss 1991] and [Carbone 
1997]. However, proof nets are officially presented as a new kind of 
syntax, while Buss and Carbone disregard categories and don’t deal 
explicitly with identity of deductions. 
 Lambek remarks in [1999] that this geometrization of algebraic 
matters goes against the direction given to mathematics by Descartes, 
but, concerning the matter at hand, this may nevertheless be the right 
direction. 
 Do these geometrical models give a semantics of deduction? I would 
refrain from answering the question. What is certain is that they give 
models of deduction, and these models are appealing and useful. To 
corroborate that, I shall present in the last section of this talk a 
geometrical model for the general notion of adjunction. (This model is 
explored in detail in [D. 1999].) 

7.  A GEOMETRICAL MODEL OF ADJUNCTION 

Let us first briefly review one of the standard equational definitions of 
adjunction. We have two categories A and B, and two functors, F from B 
to A and G from A to B. The former functor is called left adjoint and the 
latter right adjoint. Next, we have a natural transformation  in A, called 
the counit of the adjunction, whose components are A : FGA ├  A for 
every object A of A, and a natural transformation  in B, called the unit of 
the adjunction, whose components are B : B ├  GFB for every object B 
of B. Finally, the following triangular equalities must be satisfied: 

FB ° FB = 1FB, 
GA ° GA = 1GA. 

 In logical situations we should imagine that one of the adjoint functors 
F and G is structural, and hence “invisible”. Then the unit and counit 
correspond to rules for introducing and eliminating a connective. 
 Since all the assumptions in this definition are equational (the 
equalities in question are the categorial axioms of composing with 
identity arrows and the associativity of composition, the equalities of the 
functoriality of F and G, the equalities of naturalness of  and , and the 
triangular equalities), we can take that we have here an equational 
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calculus. Out of the linguistic material of this calculus we can build the 
free adjunction generated by a set of objects. The details of this 
construction, as well as other technical details concerning matters in this 
section, are exposed in [D. 1999]. 
 To every arrow term in the free adjunction we assign a graph, which is 
made of links between occurrences of F and G in the source and target of 
the arrow term (these graphs should not be confused with the graphs of 
arrows underlying a category). Identity arrows and the components of the 
counit and unit have graphs like the following: 

 FG...FG A 

FG...FG A 

1FG...FG A

 

 GF...GF B
1GF...GF B

GF...GF B  

 FG...FGA
FG...FGA

FGFG...FGA


 

GF...GFB

GF...GFB

GFGF...GFB



 

while given the graphs for g : B1 ├  B2 and f : A1 ├  A2 we obtain the 
graphs of Fg and Gf as follows: 

FB 1

2

Fg   

FB  

GA1

2GA

Gf    

 

Composition of graphs is defined in the obvious manner; for example, for 
the first triangular equality we have 

FGFB
F

FB

FB  

FB   

 FB  

FB  

F  1

 

It is clear that the composed graph on the left-hand side is equal to the 
graph on the right-hand side. 
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 One can give a reformulation of the notion of adjunction where 
composition can be eliminated, in the style of cut elimination. For this 
reformulation one should replace the families of arrows, i.e. families of 
components, making the counit and unit of the adjunction by operations 
on arrows, as Gentzen replaced axioms like AB ├  A by rules like 

 
         A,     ├ C 
A   B ,     ├ C  

One can then obtain a composition-free normal form for arrow terms, 
which is unique for every arrow. 
 With the help of this composition-free formulation of adjunction it can 
be proved that for all arrow terms h1 and h2 we have h1 = h2 in the free 
adjunction iff the graphs of h1 and h2 are equal. This result is of the kind 
called “coherence theorems” in category theory. 
 So graphs yield a very simple decision procedure for commuting of 
diagrams in free adjunctions. They enable us also to reduce to normal 
form arrow terms in the composition-free formulation without syntactical 
reduction steps. Uniqueness of normal form can also be demonstrated 
with the help of these graphs without involving anything like the Church-
Rosser property of some reduction steps. 
 Consider, in the free adjunction, the following two pairs of arrow 
terms of the same type with different graphs: 

FGFB

FGFB

 
° FBFB

 

 
1FGF B

FGF B 

FGF B  

 

FGFGA

FGA

FGA  

FGFGA

AFG

FGA  

There are infinitely many such pairs. It can be shown that if we extend the 
notion of adjunction by equating any such pair, we would trivialize the 
notion. Namely, the resulting free adjunction would be a preorder: any 
two arrow terms of the same type would be equal. This means that all 
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these equalities of arrows with different graphs are equivalent with each 
other. 
 So the notion of adjunction is Post complete in some sense. Graphs 
are not absolutely needed to demonstrate this result, but they help to 
shorten calculations of a rather lengthy inductive argument. 
 Our coherence result for graphs in free adjunctions guarantees that 
there are faithful functors from the categories involved in the free 
adjunction to categories whose objects are finite sequences of alternating 
F’s and G’s, and whose arrows are the graphs. The faithfulness of these 
functors guarantees that we can speak of completeness with respect to 
the graph models (soundness amounts to functoriality). Our coherence 
result is exactly like a completeness theorem. 
 These categories of graphs are subcategories of categories of tangles, 
which have played recently a prominent role in the theory of quantum 
groups, in low-dimensional topology and in knot theory (see [Kassel 
1995], Chapter XII, [Kauffman & Lins 1994], and references therein). 
Equality between our graphs covers planar ambient isotopies of tangles 
without crossings. 
 Since every logical constant is characterized by an adjunction, we can 
expect to find in the geometrical models of deductions involving these 
constants various avatars of our graphs of adjunction. 
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