ADDENDA ET CORRIGENDA

for Proof-Net Categories, Polimetrica, Monza, 2007

by Kosta Došen and Zoran Petrić
p. 18, line 16 , replace " $X_{s} \cup Y_{t}$ " by " $X^{s} \cup Y^{t}$ "
p. 18, line 10 from bottom, replace " $X, Y, Z \in \mathcal{M}$ " by " $X, Y, Z \subseteq \mathcal{M}$ "
p. 23, line 11 from bottom, and also in the Index, replace "serpentine" by "sinuosity"
p. 25, lines 10-11, the paragraph should be replaced by: "We will not go into the inductive proof of this lemma, in which we use Lemma 1D, because we need just a corollary of this lemma (Lemma 2 below), which is more easily proved directly."
p. 25 , line 5 from bottom, at the end of the paragraph add the sentence:"This lemma is easily proved by induction on the complexity of f."
p. 35, line 8 from bottom, insert the new paragraph: "(To verify that the functor F from $\mathbf{P N}\urcorner$ to $\mathbf{P N}$ is a functor we could have proceeded by establishing $\mathbf{P N}$ Coherence first, before introducing the functor F. We do not need the functor F to prove $\mathbf{P N}$ Coherence in the next section. From $f=g$ in $\mathbf{P N}{ }^{\urcorner}$we pass to $G f=G g$, from which by relying on the first paragraph of $\S 2.7$ we pass to $G F f=G F g$, which by PN Coherence implies $F f=F g$.)"
p. 37, line 3 from bottom, replace "of $\mathbf{P N}\urcorner$:" by "of $\mathbf{P N}$?, analogous to the clause defining $F \hat{\Delta}_{\neg B, A}$ above:"
p. 38, line 9 , replace "(with p replaced by A)" by "(with p replaced by B)"
p. 38, line 11, replace "of $\mathbf{P N}$?:" by "of $\mathbf{P N}$ ", analogous to the clause defining $F \hat{\Delta}_{B \wedge C, A}$ above:"
p. 83, line 4 from bottom, add "of" after "end"
p. 113 , line 11, replace "then f^{-q} is $\mathbf{1}_{A_{i}^{-x_{i}}}$." by "then $d_{B_{1}, q, B_{3}}^{-q}$ is $m_{B_{1}, B_{3}}$ or f^{-q} is $\mathbf{1}_{A_{i}^{-x_{i}}}$."
p. 113, lines $13-14$, replace " h is $\mathbf{1}_{x_{1}} "$ by " $h=\mathbf{1}_{x_{1}} "$, and " g is $\mathbf{1}_{x_{1}} "$ by " $g=\mathbf{1}_{x_{1}} "$
p. 113, line 15, insert before the paragraph the sentence: "Note that this lemma does not hold for DS, because we cannot cover $d_{B_{1}, q, B_{3}}^{-q}$."
p. 124, line 9 , replace "switching" by "switchings"
p. 136, reference [12], replace "Application" by "Applications"

