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Abstract

An operad (this paper deals with non-symmetric operads) may be con-
ceived as a partial algebra with a family of insertion operations, Ger-
stenhaber’s circle-i products, which satisfy two kinds of associativity, one
of them involving commutativity. A Cat-operad is an operad enriched
over the category Cat of small categories, as a 2-category with small hom-
categories is a category enriched over Cat. The notion of weak Cat-operad
is to the notion of Cat-operad what the notion of bicategory is to the no-
tion of 2-category. The equations of operads like associativity of insertions
are replaced by isomorphisms in a category. The goal of this paper is to
formulate conditions concerning these isomorphisms that ensure coher-
ence, in the sense that all diagrams of canonical arrows commute. This
is the sense in which the notions of monoidal category and bicategory
are coherent. The coherence proof in the paper is much simplified by
indexing the insertion operations in a context-independent way, and not
in the usual manner. This proof, which is in the style of term rewrit-
ing, involves an argument with normal forms that generalizes what is
established with the completeness proof for the standard presentation of
symmetric groups. This generalization may be of an independent interest,
and related to matters other than those studied in this paper. Some of the
coherence conditions for weak Cat-operads lead to the hemiassociahedron,
which is a polyhedron related to, but different from, the three-dimensional
associahedron and permutohedron.
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1 Introduction

An operad may be conceived as a partial algebra whose elements, called operadic

operations, are of various arities; to these elements as arguments one applies
partial binary operations — these are operations applied to operadic operations,
partiality being induced by arity — which we call insertions. We have this new
name to distinguish insertions from the related partial operation of composition
in categories, which will appear together with insertions later in this paper.
Insertions correspond to Gerstenhaber’s “ ◦ i-products” (see [24], Sections I.1.3
and II.1.3, and the “circle-i” of [19], Section 2.3) or to Gentzen’s cut (see [12]).

For insertions one assumes two kinds of associativity, one of them involving
commutativity up to a certain point (see the equations (assoc 1) and (assoc 2)
in Section 2 below, and related equations given later). One assumes also a
unit operadic operation and appropriate equations tying it to insertions. When
this unit is missing we have a non-unitary operad; otherwise, the operad is
unitary (for this terminology see [24], Section II.1.3). This notion of operad,
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with which we deal in this paper, is not the original symmetric notion, but the
non-symmetric (non-Σ) notion (see [24], Section I.1.3, [25] and [19]).

A Cat-operad is an operad enriched in the category Cat of all small cate-
gories, whose arrows are functors, as a 2-category is a category enriched over
Cat (provided the hom-categories of the 2-category are small; see [22], Section
XII.3). The operadic operations of the same arity in a Cat-operad do not make
just a set, but they are the objects of a small category, and the structure of
the operad involving insertions is related by some assumptions to the categorial
structure (see the precise definition in Section 12).

The notion of weak Cat-operad will be to the notion of Cat-operad what the
notion of bicategory is to the notion of 2-category (see [22], Section XII.6). The
equations of operads like associativity of insertion are replaced by isomorphisms
in the categorial structure, and one has to make assumptions concerning these
isomorphisms to ensure coherence. Coherence means here, as in Mac Lane’s orig-
inal use of the term, that “all diagrams commute”, i.e. all diagrams of canonical
arrows do so. Coherence for weak Cat-operads is like Mac Lane’s coherence for
monoidal categories (see [22], Section VII.2), and like coherence for bicategories
of [23].

Besides this motivation from the theory of operads, this paper may be taken
as being motivated by the theory of multicategories. Multicategories, as con-
ceived by Lambek in [17] and [18], are a generalization of the notion of operad
with insertions primitive, where not only the arity of the operadic operations
counts. Instead of one-sorted operadic operations we have many-sorted oper-
ations (see also Section 12). This notion is the categorial reconstruction of
Gentzen’s sequents of [12] (singular sequents, with a single conclusion), and it
is interesting for proof theory.

For multicategories we have, as for operads with insertions primitive, two
kinds of associativity (the corresponding equations analogous to (assoc 1) and
(assoc 2) are in Lambek’s papers), and the mathematics involved in finding
a weak notion of multicategory analogous to our weak Cat-operads would not
differ essentially from what we have in this paper. That would only involve ad-
ditions not influencing in a significant way the mathematical core. Our category
WOu in Part II is not far from this notion, but in this paper we will not go
further into this matter.

Yet another motivation for the present paper would come from matters in-
vestigated in [7]. There one finds insertions as operations used to present in a
non-standard manner an algebra with a free binary operation (a groupoid in the
sense of universal algebra), with or without unit. These insertions satisfy again
the two kinds of associativity. As, by replacing the equations by isomorphisms,
the two kinds of associativity are weakened in the notion of weak Cat-operad,
so this can be done in the context of [7]. In this weakened context we would be
interested in the constructing of an element of our algebra rather than in this
element itself, which is related to matters treated in [10] and in Section 13 of
this paper.
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A motivation for this paper is also in the theory of polyhedra related to
permutohedra and associahedra (see below and Section 13).

Up to now we have been concerned with the motivation for our paper. We
will now survey its content. Our goal is to formulate a notion of weak Cat-
operad, spell out the coherence conditions, and demonstrate coherence. The
paper is organized in three parts.

In the first part (Sections 2-6) we introduce the free unitary operad O ob-
tained from a generating set G of free operadic operations. The general notion
of operad with insertions primitive is based on O (see Section 12). Next we for-
mulate a partial algebraic structure we call Oe, which is essentially a notational
variant of O. The structure of Oe is less handy for basing the general notion of
operad on it; for that O is better. The structure Oe is however handier to work
with than O when it comes to indexing the insertions.

Instead of indexing insertions by natural numbers, which stand for the num-
ber of the place where the insertion is made counting from the left, we introduce
a name for that place, which is a word in the alphabet of natural numbers, a
finite sequence of natural numbers. While the number of the place is context-
dependent — it may increase when further insertions are made on its left —
the name we introduce is context-independent; it is invariant. The arity of an
operadic operation, the ordinary numerical arity, which is just a natural number
in O and in the general notion of operad, becomes a set of our names. We call
such a set a nominal arity. The nominal arities of this paper may be conceived
as made of leaves of trees (see the examples in Section 13).

Invariance makes Oe handier in the following sense. At the cost of mak-
ing more involved the indexing of insertions, we have simplified the equations
expressing the two kinds of associativity.

This will become very important when these equations are replaced by iso-
morphisms in the second part of the paper (Sections 7-13), and in the remainder.
Expressing the coherence conditions for the isomorphisms using numerical ari-
ties, instead of our nominal arities, is possible, but it would be extremely and
unnecessarily complicated (for an example see Section 12).

We introduce also in the first part a structure more general than Oe, which
we call Ou. The structure Oe corresponds, roughly, to just one level of Ou,
which may be understood as a multicategory freely generated by some particular
generators (see the end of Section 5).

In Ou we have instead of a family of insertions, indexed by our names, just
one partial operation of insertion. This is achieved at the cost of, so to speak,
moving the indices of insertions into the structure in order to distinguish various
occurrences of the same element of the structure, various occurrences of the same
operadic operation.

Because of this diversification the structure may look more complicated.
As a matter of fact, it is still handier to work with. The advantage of having
just one insertion operation proves very big when it comes to axiomatizing the
coherence conditions, in the second part of the paper.
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With Ou the two kinds of associativity become, on the one hand, just plain
associativity and, on the other hand, associativity mixed with commutativity,
of a single insertion operation. The coherence conditions for the corresponding
isomorphisms reproduce now to a great extent the coherence conditions for
associativity and commutativity, well known from Mac Lane’s coherence results
for monoidal and symmetric monoidal categories (see [22], Chapter VII), and
from the standard presentation of symmetric groups. There are however new
coherence conditions mixing the two kinds of associativity isomorphisms; let us
call them mixed coherence conditions.

Proving that the previously known coherence conditions together with the
new mixed coherence conditions are sufficient for coherence is possible to do
with a single insertion operation, and we do that in the third, and last, part of
the paper (Sections 14-18). We suppose it would be possible to prove that also
directly in the Oe version, with a family of insertions, but it would be much more
complicated, and moreover it would be unnecessarily so. The complications
would not alter the underlying combinatorial core — they would just obscure it.

In the second part of the paper we axiomatize our coherence conditions
in the Ou and Oe versions, which results in the categories WOu and WOe.
We establish that WOu is the disjoint union of isomorphic copies of WOe,
and we use WOe to give our notion of weak Cat-operad in Section 12. In
the last section of that part, Section 13, we consider how the mixed coherence
conditions engender a new kind of polyhedron, related to, but different from, the
three-dimensional associahedron and permutohedron. Through this section our
paper is connected with important and interesting matters of algebraic topology
and combinatorics. It provides an insight into the regularity underlying the
equations with which we define weak Cat-operads.

The family to which the new polyhedron, called hemiassociahedron, belongs
(the family includes also the three-dimensional cyclohedron) is investigated in
[10] and [9] (which should be consulted for further references). The mixed
conditions may also however lead in some cases to the three-dimensional as-
sociahedron and permutohedron, which provides another perspective on these
well-known polyhedra tied to associativity and commutativity. The hemiasso-
ciahedron arises in the non-unitary structure of our weak Cat-operads, as the
associahedron and permutohedron arise in the non-unitary structure of monoidal
categories and symmetric groups.

In the third part of the paper we prove the sufficiency of our conditions
for coherence (these conditions are of course also necessary). We do that with
WOu, which, as we said, is easier to work with. We strictify first the monoidal
structure of WOu (all the arrows of that structure become identity arrows),
which leaves a category WOθ

u, equivalent with WOu, which is similar to a
symmetric strictly monoidal category.

To prove that WOθ
u is a preorder (i.e. that there is not more than one arrow

in it with a given source and target), which is what coherence here amounts
to, we reconsider the standard presentation of symmetric groups, and a proof
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that this presentation is complete. This proof, which involves a reduction to a
normal form, implicit already in Moore’s paper [26] (the first paper to deal with
the matter), yields, as a matter of fact, something more, pertaining to a wider
family of structures.

In this family we have categories we call CΓ, which generalize symmetric
strictly monoidal categories; symmetric groups belong to the family as one-
object categories. All one has in the categories CΓ comes from the symmetric
structure, but this structure may be incomplete; it may, roughly speaking, have
gaps. It need not even give a groupoid in the categorial sense (its arrows need
not be invertible, they need not be isomorphisms). The category WOθ

u is just
a particular CΓ, and that it is a preorder follows from a coherence result for an
arbitrary CΓ. This coherence involves graphs corresponding to permutations,
but in connection with WOθ

u, because of diversification (see above), the graphs
need not be mentioned. It follows that WOu is a preorder, which implies that
WOe is a preorder, and with that our notion of weak Cat-operad is justified.
(For other examples that fall within the range of this general coherence result
one may consult [8] and [11].)

Throughout the paper we distinguish matters pertaining to unitary operads
from those pertaining to non-unitary operads. The non-unitary versions of our
operads, categories and related structures have a superscript − in their names.
Whatever we established for the unitary versions can be established for the non-
unitary ones, which make the non-unitary core of our notions. As a matter of
fact, the more interesting mathematics pertains to the non-unitary notions (as
Section 13 illustrates).

Our notion of weak Cat-operad in general should be the right notion if we are
motivated by coherence involving insertions. In our definition, this coherence
has been combinatorially analyzed by our axiomatic equations. We prove that
no equation is missing.

The notion of monoidal category was introduced in a non-axiomatic way
via coherence by Bénabou in [1], and in the equational axiomatic way, such as
we favour, by Mac Lane in [21]. Mac Lane’s definition is the standard one,
while Bénabou’s is rarely mentioned. For Bénabou, coherence is built into the
definition, and for Mac Lane it is a theorem. One could analogously define the
theorems of classical propositional logic as being the tautologies (this is done,
for example, in [3], Sections 1.2-3), in which case completeness would not be a
theorem, but would be built into the definition. Analogously to what was done
for monoidal categories in [21], and later for bicategories in [23], we are not only
proposing a definition, but we are proving a coherence theorem concerning it.

One could ask whether our notion of weak Cat-operad is equivalent with the
notion of pseudo-operad of [5]. To start answering this question one would have
to consider first the difference in language, since the notion of pseudo-operad
is not based like ours on insertions. If this other notion could be based on
insertions (in the non-unitary case defining insertions would pose a problem),
the question would reduce to the question whether the notion of pseudo-operad
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requires coherence (in our and Mac Lane’s sense) involving insertions, which
seems possible. If it requires this coherence, then we believe our paper provides
a positive answer to the question. It would show that a notion, which is not like
Mac Lane’s, is equivalent with a notion in the style of Mac Lane.

The study of this matter — whether the alternative notion could be based
on insertions, and whether it requires coherence involving insertions — would
be a study of this alternative notion, conducted independently of the content of
this paper. This is a different topic, best left for a separate treatment, because,
as far as we can see, to be presented with sufficient detail this would require a
lot of space.

Part I

2 The operad O

Let G be a set, for whose members we use x, y, z, . . . , perhaps with indices,
and let αG : G→ N be a function; αG(x) is intuitively the arity of x. The
elements of G are the free, generating, primitive operadic operations of the
operad O, which is the unitary operad freely generated out of G and αG in the
following manner. (As a matter of fact, mentioning αG : G→ N is enough; it
carries the information about G.)

We define first inductively the set of terms of O; these terms will stand
for the operadic operations of O. Together with the terms of O we define
simultaneously a function α from the terms ofO toN; the values of this function
are intuitively the arity. Here are the three clauses of these two simultaneous
inductive definitions:

(0) if x ∈ G, then x is a term; α(x) = αG(x);

(1) I is a term; α(I) = 1;

(2) if ϕ and γ are terms and 1 ≤ n ≤ α(γ), then γ ⊳n ϕ is a term;
α(γ ⊳n ϕ) = α(γ)−1+α(ϕ).

Officially, in (2) we should have (γ ⊳n ϕ) instead of γ ⊳n ϕ, but, as usual, the
outermost parentheses of these and other terms later will be taken for granted,
and omitted. We use ϕ, γ, χ, . . . , perhaps with indices, for the terms of O.

The term I stands for the unit operadic operation, and ⊳k stands for a partial
operation of insertion. The expression γ ⊳n ϕ does not become a term for every
substitution for n, ϕ and γ; substitutions for n and γ are restricted. We express
this by saying that γ ⊳n ϕ is legitimate when 1 ≤ n ≤ α(γ).

Analogously, substitutions will be restricted for the equations between terms
of the operad O. As for terms, we express this by saying that ϕ = γ is legitimate
when α(ϕ) = α(γ). An equation cannot hold between terms of different arity.

The equations ofO between terms are given through an axiomatic equational
system, and the operadic operations of O will be formally equivalence classes of
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terms of O such that these equations are satisfied. Besides ϕ = ϕ, the axiomatic

equations of O are the following:

(unit) ϕ ⊳n I = ϕ, I ⊳1 ϕ = ϕ,

(assoc 1) (χ ⊳n γ) ⊳m ϕ = χ ⊳n (γ ⊳m−n+1 ϕ), provided n ≤ m < n+α(γ),

(assoc 2) (χ ⊳n γ) ⊳m ϕ = (χ ⊳m−α(γ)+1 ϕ) ⊳n γ, provided n+α(γ) ≤ m.

The proviso for (assoc 1) may be derived from the legitimacy of γ ⊳m−n+1ϕ,
for which we must have 1 ≤ m−n+1 ≤ α(γ). So, as a matter of fact, this proviso
need not have been mentioned, and in the future we will not always mention
such provisos, which may be inferred from the legitimacy of an equation, or of
our notation for terms. We assume that all the expressions for terms that occur
in an equation are legitimate.

The proviso for (assoc 2) is not derivable in this manner. This equation
could be replaced by

(χ ⊳n γ) ⊳m ϕ = (χ ⊳m ϕ) ⊳n+α(ϕ)−1 γ, provided m < n.

The remaining equations of O are derived with the help of the rules of
symmetry and transitivity of =, and of the rule of ⊳n-congruence:

from ϕ1 = ϕ2 and γ1 = γ2 derive γ1 ⊳n ϕ1 = γ2 ⊳n ϕ2,

provided both sides of the last equation are legitimate. As a matter of fact, it is
superfluous to state this proviso; we understand rules like ⊳n-congruence always
with such provisos.

Once we have defined this axiomatic equational system, it can be verified by
an easy induction on the length of derivation that for every equation ϕ = γ of
O we have α(ϕ) = α(γ). So these equations are indeed legitimate.

This concludes our definition of the operad O. This operad may be con-
ceived as a partial algebra, i.e. algebra with partial operations, 〈C(O), {⊳n |
n ∈ N

+}, I〉, with C(O), the carrier of O, being the set of operadic operations
of O.

The non-unitary operad O− freely generated out of G and αG is defined like
O save that we omit clause (1) from the definition of terms, and we omit (unit)
from the axiomatic equations.

3 The structure Oe

Before we introduce Oe we deal with preliminary matters concerning nominal
arities.

AnN
+-word is a finite (possibly empty) sequence of natural numbers greater

than 0. We use a, b, c, . . . , perhaps with indices, for N+-words; we reserve e to
denote the empty N

+-word.
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An N
+-language is a set of N+-words. An N

+-language is called a nominal

arity when there are no two distinct N
+-words of the form a and ab in it; i.e.

such that one is a proper initial segment of the other. This definition allows
also infinite nominal arities, but in this paper we have use only for finite ones.
The empty N

+-language and every singleton N
+-language are nominal arities.

We use X,Y, Z, . . . , perhaps with indices, for nominal arities.
We say that the N

+-word a is a prefix of the nominal arity X when for
every c in X we have that c is of the form ab; i.e. a is an initial segment, not
necessarily proper, of every member of X . Note that a may be e, which is a
prefix of every nominal arity. Note also that X may have more than one prefix,
of which e is always one. It is trivially satisfied that every a is a prefix of the
empty nominal arity. The set of prefixes of X is denoted by PX .

For every N
+-language M , and, in particular, for M a nominal arity, let

a ·M =df {ab | b ∈M}.

We have, of course, e ·M = M .
Every nominal arity is linearly ordered by the lexicographical order ≺, whose

definition for nominal arities is simpler, and is given by the following:

a1 ≺ a2 iff ∃a, b, c(∃n,m ∈ N
+)(a1 = anb & a2 = amc & n < m).

If a ∈ PX ∩ Y , then we define the result of inserting X in Y at a:

Y ⊳a X =df (Y −{a}) ∪X .

Note that this union is disjoint. Otherwise, for some b in Y different from a we
would have that it is in X , and hence that it has a as an initial segment; this
contradicts the assumption that Y is a nominal arity. We conclude in a similar
manner, by going through all possible cases, that Y ⊳aX is a nominal arity. The
expression Y ⊳a X is legitimate when a ∈ PX ∩ Y .

For |M | being the cardinality of the set M , we have the following.

Remark 3.1. |a ·X | = |X |, |Y ⊳a X | = |Y |−1+|X |.

For the second equation we rely on the disjointness mentioned after the definition
of ⊳a. We also have the following.

Remark 3.2. a · PX ⊆ Pa·X , PY ⊆ PY ⊳aX .

The inclusion converse to the first one holds only if a is e; if a is not e, then
e ∈ Pa·X and e /∈ a · PX . The inclusion converse to the second one does not
hold for Y = {a} and X = ∅. We also have the following two remarks.

Remark 3.3. a · (b ·X) = ab ·X , a · (Y ⊳b X) = a · Y ⊳ab a ·X .

Remark 3.4. For a ∈ Y and b ∈ Z, (Z ⊳b Y ) ⊳a X = Z ⊳b (Y ⊳a X);

for a, b ∈ Z, (Z ⊳b Y ) ⊳a X = (Z ⊳a X) ⊳b Y.
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The condition b ∈ Z is implied by the legitimacy of Z ⊳b Y on the left-hand
sides of both equations of the last remark. The condition a ∈ Y is implied by
the legitimacy of Y ⊳a X on the right-hand side of the first equation, and the
condition a ∈ Z by the legitimacy of Z⊳aX on the right-hand side of the second
equation. In the first equation we must also have that a is of the form bc, since
b ∈ PY . In the second equation this is excluded, since Z is a nominal arity.

Let n̄ =df {1, . . . , n} for n ≥ 1, and let 0̄ = ∅. It is clear that n̄ is a nominal
arity for every n ≥ 0, and Pn̄ = {e} for n > 0.

We pass now to the definition of the structure Oe. Let G and αG be as for
O (see the beginning of the preceding section). We define first inductively with
three clauses the set of terms of Oe together with a function s from these terms
to nominal arities:

(0e) if x ∈ G, then x is a term; s(x) =

{

αG(x), if αG(x) 6= 1,

{e}, if αG(x) = 1;

(1e) I is a term; s(I) = {e};

(2e) if f and g are terms and a ∈ s(g), then g ⊳a f is a term;
s(g ⊳a f) = s(g) ⊳a a · s(f).

(Why we do not have s(x) = αG(x) = {1} if αG(x) = 1 is explained after the
definition of the terms of Ou in Section 5.) We use f, g, h, . . . , perhaps with
indices, for the terms of Oe.

Here, as for O, the term I stands for the unit operadic operation, while ⊳a
stands for a partial operation of insertion. The expression g ⊳a f is legitimate
when a ∈ s(g), and f = g is legitimate when s(f) = s(g).

The equations of Oe between terms are given as for O through an axiomatic
equational system, whose axiomatic equations besides f = f are the following
equations:

(unite) f ⊳a I = f , I ⊳e f = f ,

(assoc 1e) (h ⊳b g) ⊳ba f = h ⊳b (g ⊳a f),

(assoc 2e) (h ⊳b g) ⊳a f = (h ⊳a f) ⊳b g.

As rules we have symmetry and transitivity of =, as for O, and ⊳a-congruence:

from f1 = f2 and g1 = g2 derive g1 ⊳a f1 = g2 ⊳a f2.

This concludes our definition of the equations of Oe. As for O, the operadic
operations of Oe are equivalence classes of terms such that the equations of
Oe are satisfied. The structure Oe should be conceived as a partial algebra
〈C(Oe), {⊳a | a is an N

+-word}, I〉, with the carrier C(Oe) of Oe being the set
of operadic operations of Oe.

The legitimacy of h ⊳b g on the left-hand sides of (assoc 1e) and (assoc 2e)
implies b ∈ s(h); the legitimacy of g ⊳a f on the right-hand side of (assoc 1e)
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implies a ∈ s(g), and the legitimacy of h⊳af on the right-hand side of (assoc 2e)
implies a ∈ s(h).

When the indices of (assoc 1e) are compared with those of the first equation
of Remark 3.4, one should bear in mind that we have the following:

s((h ⊳b g) ⊳ba f) = (s(h) ⊳b b · s(g)) ⊳ba ba · s(f), by definition,

= s(h) ⊳b (b · s(g) ⊳ba ba · s(f)), by Remark 3.4,

= s(h ⊳b (g ⊳a f)), by definition.

Hence we have verified that for f1 = f2 being an instance of (assoc 1e) we have
s(f1) = s(f2). This is verified analogously for the other axiomatic equations of
Oe, and this makes the basis of the induction on the length of derivation that
shows that for every equation f = g of Oe we have s(f) = s(g).

We define the non-unitary structure O−
e like Oe save that we omit clause (1e)

from the definition of terms, and we omit (unite) from the axiomatic equations.

4 O and Oe

In this section we show that O and Oe can be mapped one to the other in such
a manner that Oe may be considered just an alternative notation for O. It is
tempting to call the relationship between O and Oe an isomorphism, but for
this isomorphism to have a precise meaning as in category theory we would have
to specify the category of partial algebras to which both O and Oe belong. We
will not go into this matter in this paper.

For X a finite nominal arity, let the bijection KX : X → |X | be defined by

KX(a) = |{b ∈ X | b ≺ a}|+1.

Note that |n̄| = n, so that Kn̄ is a function from n̄ to n̄.
It is easy to see that a1 ≺ a2 impliesKX(a1) < KX(a2), provided a1, a2 ∈ X .

It is also easy to verify the following:

(K1) Kn̄ is the identity function from n̄ to n̄, K{e}(e) = 1,

(K2) Kb·X(ba) = KX(a),

(K3.1) KY ⊳bX(a) = KY (b)−1+KX(a), if a ∈ X ,

(K3.2) KY ⊳bX(a) = KY (a), if a ∈ Y and a ≺ b,

(K3.3) KY ⊳bX(a) = KY (a)−1+|X |, if a ∈ Y and b ≺ a.

Let K−1
X : |X | → X be the bijection inverse to KX . It is easy to verify for

K−1
X the following equations, which are interdeducible with those we have just

given for KX :

(K−11) K−1
n̄ = Kn̄, K−1

{e}(1) = e,

(K−12) K−1
b·X(n) = bK−1

X (n), for n ∈ |X |,
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(K−13.1) K−1
Y ⊳bX

(m) = K−1
X (m−n+1), if KY (b)= n and n ≤ m < n+|X |,

(K−13.2) K−1
Y ⊳bX

(m) = K−1
Y (m), if m < KY (b),

(K−13.3) K−1
Y ⊳bX

(m) = K−1
Y (m−|X |+1), if KY (b)+|X | ≤ m.

These equations and those given above for KX serve to explain how we
pass from the indices in the axiomatic equations of O to those in the axiomatic
equations of Oe, and vice versa. In particular the condition of (K−13.1) is
transferred to (assoc 1), while the conditions of (K−13.2) and (K−13.3) are
transferred to (assoc 2).

Next we define inductively a map ε from the terms of O to the terms of Oe,
for which we will show below (in Propositions 4.1 and 4.2) that it is a bijection:

ε(x) = x, ε(I) = I,

ε(γ ⊳n ϕ) = ε(γ) ⊳a ε(φ), for K−1
s(ε(γ))(n) = a.

We define inductively the map τ from the terms of Oe to the terms of O, for
which we will show that it is the inverse of ε:

τ(x) = x, τ(I) = I,

τ(g ⊳a f) = τ(g) ⊳n τ(f), for Ks(g)(a) = n.

Then we can establish the following propositions by straightforward induc-
tions on the complexity of ϕ and f .

Proposition 4.1. For every term ϕ of O we have that τ(ε(ϕ)) is ϕ.

Proposition 4.2. For every term f of Oe we have that ε(τ(f)) is f .

By inductions on the complexity of ϕ and f we can also straightforwardly
establish the following lemmata.

Lemma 4.3. For every term ϕ of O we have |s(ε(ϕ))| = α(ϕ).

Lemma 4.4. For every term f of Oe we have α(τ(f)) = |s(f)|.

These lemmata are used in the proof of the following two propositions, which
consist in inductions on the length of derivation. The main part of these induc-
tions is however in the basis, when we deal with axiomatic equations.

Proposition 4.5. If ϕ = γ in O, then ε(ϕ) = ε(γ) in Oe.

Proposition 4.6. If f = g in Oe, then τ(f) = τ(g) in O.

So ε and τ induce bijections inverse to each other between the operadic opera-
tions of O and Oe. This shows that Oe is just a notational variant of O.

The bijections between the terms of O− and O−
e are obtained by just re-

stricting ε and τ , and then for these bijections we can establish as well as
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Propositions 4.1 and 4.2 the analogues of Propositions 4.5 and 4.6, where O
and Oe are replaced respectively by O− and O−

e . So the relationship between
O− and O−

e is exactly analogous to that between O and Oe.

5 The structure Ou

We introduce now the structure Ou, which generalizes Oe.
Let G and αG be as for O and Oe (see the beginning of Section 2). We

define first inductively with three clauses the set of terms of Ou together with
a function s from these terms to nominal arities (this function is related to the
function s from the terms of Oe, and this is why it bears the same name) and
a function t from these terms to N

+-words:

(0u) if x ∈ G and a is an N
+-word, then a · x is a term;

s(a · x) =

{

a · αG(x), if αG(x) 6= 1,

{a}, if αG(x) = 1,
t(a · x) = a;

(1u) if a is an N
+-word, then a · I is a term; s(a · I) = {a}, t(a · I) = a;

(2u) if f and g are terms and t(f) ∈ s(g), then g ⊳ f is a term;
s(g ⊳ f) = s(g) ⊳t(f) s(f), t(g ⊳ f) = t(g).

If αG(x) = 1, then we can envisage having s(a · x) = a · αG(x) = {a1} (which
would entail s(x) = αG(x) = {1} for Oe). This way diversification (see Sec-
tion 1) would apply also to the unary members of Γ, but a difference would arise
with the treatment of I, which must have the clause above. We have preferred
however not to distinguish these two unary cases, because this is not essential.
The diversification we achieve is sufficient for our purposes (in particular for
Section 18).

In order to verify for (2u) that s(g) ⊳t(f) s(f) is legitimate if t(f) ∈ s(g), we
have first that t(a · x) ∈ Ps(a·x) and t(a · I) ∈ Ps(a·I), and we have the following
two remarks.

Remark 5.1. If t(f) ∈ Ps(f) and t(f) ∈ s(g), then s(g) ⊳t(f) s(f) is legitimate.

Remark 5.2. If t(g) ∈ Ps(g), then t(g ⊳ f) ∈ Ps(g⊳f).

To justify the last remark we have

t(g ⊳ f) = t(g) ∈ Ps(g) ⊆ Ps(g)⊳t(f)s(f)

by Remark 3.2. These two remarks, together with what we said before them for
the basis of the induction, yield that t(f) ∈ Ps(f) holds for every term f of Ou.

This concludes our definition of the terms of Ou. We use now f, g, h, . . . ,
perhaps with indices, for the terms of Ou. The expression g ⊳ f is legitimate
when t(f) ∈ s(g), and f = g is legitimate when s(f) = s(g) and t(f) = t(g).
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The equations of Ou between terms are given as before through an axiomatic
equational system, whose axiomatic equations besides f = f are the following
equations:

(unitu) f ⊳ a · I = f , t(f) · I ⊳ f = f ,

(assoc 1u) (h ⊳ g) ⊳ f = h ⊳ (g ⊳ f),

(assoc 2u) (h ⊳ g) ⊳ f = (h ⊳ f) ⊳ g.

As rules we have symmetry and transitivity of =, and ⊳-congruence, which is
like ⊳a-congruence of Oe with the subscript a omitted.

This concludes our definition of the equations of Ou, and of the operadic op-
erations ofOu (which, as before, are equivalence classes of terms). The structure
Ou should be conceived as a partial algebra 〈C(Ou), ⊳, {a·I | a is an N

+-word}〉,
with the carrier C(Ou) of Ou being the set of operadic operations of Ou.

The legitimacy of h ⊳ g on the left-hand sides of (assoc 1u) and (assoc 2u)
implies t(g) ∈ s(h), while the legitimacy of g ⊳ f on the right-hand side of
(assoc 1u) implies t(f) ∈ s(g), and the legitimacy of h ⊳ f on the right-hand
side of (assoc 2u) implies t(f) ∈ s(h). By induction on the length of derivation
we establish that for every equation f = g of Ou we have s(f) = s(g) and
t(f) = t(g).

We define the non-unitary structureO−
u likeOu save that we omit clause (1u)

from the definition of terms, and we omit (unitu) from the axiomatic equations.
The structure Ou amounts to the free multicategory generated by the multi-

graph made of the objects in {a | a is an N
+-word} and the multiarrows in

{a ·x | x ∈ G and a is an N
+-word}, with the source and target functions given

by the functions s and t (see [18], Section 3).

6 Oe and Ou

In this section we establish the correspondences that exist between Oe and some
structures derived from Ou.

For every N
+-word a we define inductively a map a· from the terms of Ou

to the terms of Ou:

a · (b · x) = ab · x, a · (b · I) = ab · I,

a · (g ⊳ f) = a · g ⊳ a · f ;

a · f stands for a · (f), and we read a · g ⊳ a · f as (a · g) ⊳ (a · f). In order to
verify that a · g ⊳ a · f is legitimate, we need to show that t(a · f) ∈ s(a · g). For
that we establish first that we have

(st a·) s(a · h) = a · s(h), t(a · h) = at(h)

for h being b · x and b · I (we use here the first equation of Remark 3.3). Next
we have the following two remarks.
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Remark 6.1. If t(a · f) = at(f), s(a · g) = a · s(g) and t(f) ∈ s(g), then
t(a · f) ∈ s(a · g).

Remark 6.2. If (st a·) holds for h being f and g, then it holds for h being
g ⊳ f .

The last remark (for which we use the second equation of Remark 3.3) is the
induction step, which together with what we said above for the basis of the
induction, yields that (st a·) holds for every term h of Ou.

It is easy to infer that for every term f of Ou we have e ·f = f and a ·(b ·f) =
ab · f . We can also easily establish the following by induction on the length of
derivation.

Remark 6.3. If f = g in Ou, then a · f = a · g in Ou.

So a· induces a map from the operadic operations of Ou to the operadic opera-
tions of Ou.

We need a· to define inductively a map U from the terms of Oe to the terms
of Ou:

U(x) = e · x, U(I) = e · I,

U(g ⊳a f) = U(g) ⊳ a · U(f).

In order to verify that U(g) ⊳ a · U(f) is legitimate if g ⊳a f is legitimate, we
need to show that t(a · U(f)) ∈ s(U(g)) follows from a ∈ s(g). For that we rely
on (st a·) and on

(st U) s(U(h)) = s(h), t(U(h)) = e,

where h is g or f , as needed. It is clear that (st U) holds for h being x and I,
and then we may establish the induction step, which yields that (st U) holds
for every term h of Oe.

If c is the N
+-word ab, then a\c is defined, and is b; i.e. a\ab = b. Since c is

ec, we have that e\c is always defined, and is c.
Then we define inductively a map E from the terms of Ou to the terms

of Oe:

E(a · x) = x, E(a · I) = I,

E(g ⊳ f) = E(g) ⊳t(g)\t(f) E(f).

We have that t(f) in the last line is of the form t(g)b because t(g) ∈ Ps(g) and
t(f) ∈ s(g). In order to verify that t(g)\t(f) ∈ s(E(g)), which we need for the
legitimacy of E(g) ⊳t(g)\t(f) E(f), we rely on

(st E) t(h) · s(E(h)) = s(h),
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where h is g. It is clear that (st E) holds for h being a ·x and a · I, and then we
may establish the induction step, which yields that (st E) holds for every term
h of Ou.

With the help of (st a·), it is easy to establish the following by induction on
the complexity of f .

Lemma 6.4. For every term f of Ou we have that E(a · f) is E(f).

This lemma, together with (st a·) and (st U), serves for the first of the following
two propositions, which are proved by inductions on the complexity of f .

Proposition 6.5. For every term f of Oe we have that E(U(f)) is f .

Proposition 6.6. For every term f of Ou we have that t(f) · U(E(f)) is f .

Next we establish the following two propositions by inductions on the length
of derivation.

Proposition 6.7. If f = g in Oe, then U(f) = U(g) in Ou.

Proposition 6.8. If f = g in Ou, then E(f) = E(g) in Oe.

The only case that is perhaps not quite straightforward is with (assoc 1u) in the
basis of the induction in the proof of Proposition 6.8. Here is how we proceed
in that case:

E((h ⊳ g) ⊳ f) = (E(h) ⊳t(h)\t(g) E(g)) ⊳t(h)\t(f) E(f),

E(h ⊳ (g ⊳ f)) = E(h) ⊳t(h)\t(g) (E(g) ⊳t(g)\t(f) E(f)).

Since we have that t(f) is of the form t(h)ba, where t(g) is t(h)b, we may apply
(assoc 1e).

As a matter of fact, the inductive proofs of Propositions 6.7 and 6.8 yield
more than what is stated in these propositions. Every derivation in the equa-
tional system of Oe is translated into a derivation in the equational system of
Ou in a “homomorphic” manner, and vice versa. This means that (assoc 1e)
goes into (assoc 1u), etc.

As corollaries of the four propositions just established, we have the following.

Proposition 6.9. f = g in Oe iff U(f) = U(g) in Ou.

Proposition 6.10. If t(f) = t(g), then f = g in Ou iff E(f) = E(g) in Oe.

Consider the following set of operadic operations of Ou for a given N
+-

word b:

C(Ou(b)) =df {f ∈ C(Ou) | t(f) = b},

and consider the structure
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Ou(b) =df 〈C(Ou(b)), {⊳a· | a is an N
+-word}, b · I〉.

The operation ⊳a· is the partial operation on operadic operations defined in Ou,
which applied to f and g yields g ⊳ a · f , provided at(f) ∈ s(g). We can prove
the following.

Proposition 6.11. The structures Oe and Ou(e) are isomorphic.

Proof. Propositions 6.5-6.8 show that, on the one hand, the map U and, on
the other hand, the map E restricted to the terms of Ou(e) (i.e. those terms of
Ou that stand for the members of C(Ou(e))) induce bijections inverse to each
other between C(Oe) and C(Ou(e)). It remains only to consider the definition
of U to establish that U , and hence E too, are homomorphisms. ⊣

For a given N
+-word b let

C(Ou(b·)) =df {f ∈ C(Ou) | t(f) = ba for some N
+-word a}

= ∪{C(Ou(ba)) | a is an N
+-word},

and consider the structure

Ou(b·) =df 〈C(Ou(b·)), ⊳, {ba · I | a is an N
+-word}〉.

Note that Ou(e·) is Ou.
We define inductively a map b\ from C(Ou(b·)) to C(Ou) by

b\(ba · x) = a · x, b\(ba · I) = a · I,

b\(g ⊳ f) = b\g ⊳ b\f ;

b\f stands for b\(f), and we read b\g ⊳ b\f as (b\g) ⊳ (b\f). In the last clause,
we have that b\f is defined because t(f) ∈ s(g) and t(g) ∈ Ps(g). We can prove
the following.

Proposition 6.12. For every N
+-word b the structures Ou and Ou(b·) are

isomorphic.

Proof. From Ou to Ou(b·) we have the map b·, and it is easy to show that b\
is its inverse. ⊣

Let O⊳
u(b) be the structure 〈C(Ou(b)), ⊳, b · I〉, which is a substructure of

Ou(b) (from the family of insertions {⊳a· | a is an N
+-word} we keep only ⊳e·,

which amounts to ⊳). It is also a substructure of Ou(b·), and is a kind of common
denominator of Ou(b) and Ou(b·). We can prove the following.

Proposition 6.13. For all N+-words a and b the structures O⊳
u(a) and O

⊳
u(ba)

are isomorphic.

Proof. We restrict the maps b· and b\, which we used for the proof of the
preceding proposition. ⊣
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As a corollary of this proposition we obtain that for every N
+-word b the struc-

tures O⊳
u(e) and O

⊳
u(b) are isomorphic.

Everything we said in this section about the relationship between Oe and
Ou can be restricted to the non-unitary structures O−

e and O−
u .

Part II

7 The category WO−u
We introduce a category that will be a weakened version of Ou, with ax-

iomatic equations replaced by isomorphisms. We deal first in this section with
the non-unitary category, and add what is required for the unitary category
in the next section. We deal in these two sections with the u versions of the
weakened notions, leaving for sections 9-10 the more complicated e versions.

The object ofWO−
u are the terms of O−

u (not the operadic operations of O−
u ;

see Section 5). We define inductively the arrow terms of WO−
u . Every arrow

term has a type, which is a pair of objects (f, g); as usual, we write u : f → g to
indicate that the arrow term u is of that type. The object f is the source, and
g the target, of u. We specify first the basic arrow terms:

1f : f → f ,

βh,g,f : (h ⊳ g) ⊳ f → h ⊳ (g ⊳ f), β−1
h,g,f : h ⊳ (g ⊳ f)→ (h ⊳ g) ⊳ f ,

θh,g,f : (h ⊳ g) ⊳ f → (h ⊳ f) ⊳ g.

We can make for these arrow terms comments on the legitimacy of expressions
for objects in their types exactly analogous to those made for the equations
(assoc 1u) and (assoc 2u) in Section 5, from which these arrow terms are derived.

Next we have the following two partial operations on arrow terms:

if u : f → f ′ and v : g → g′ are arrow terms, then v ◦u : f → g′ is an arrow
term when f ′ is g, and v ⊳ u : g ⊳ f → g′ ⊳ f ′ is an arrow term when g ⊳ f
and g′ ⊳ f ′ are legitimate.

This concludes the definition of the arrow terms of WO−
u . We use u, v, w, . . . ,

perhaps with indices, for arrow terms.
Note that ⊳ occurs now on three levels: first, at the level of nominal arities

in Y ⊳a X , which underly the objects, secondly, at the level of objects in g ⊳ f ,
which underly the arrow terms, and thirdly, at the level of arrow terms in v ⊳ u.

Since the arrow terms of WO−
u are derived from the equations of O−

u , we
obtain immediately from what we established by induction on the length of
derivation for O−

u in Section 5 that for every arrow term u : f → g of WO−
u we

have s(f) = s(g) and t(f) = t(g).
The equations ofWO−

u between arrow terms are given through an axiomatic
equational system, and the arrows of WO−

u will be formally equivalence classes
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of arrow terms such that these equations are satisfied. Besides u = u and the
categorial equations u ◦1f = u = 1g ◦ u, for u : f → g, and (w ◦ v) ◦ u = w ◦ (v ◦u),
the axiomatic equations of WO−

u are the following:

(ins 1) 1g ⊳ 1f = 1g⊳f ,

(ins 2) (v2 ◦ v1) ⊳ (u2 ◦u1) = (v2 ⊳ u2) ◦ (v1 ⊳ u1),

(β nat) βh2,g2,f2
◦ ((w ⊳ v) ⊳ u) = (w ⊳ (v ⊳ u)) ◦βh1,g1,f1 ,

(θ nat) θh2,g2,f2
◦ ((w ⊳ v) ⊳ u) = ((w ⊳ u) ⊳ v) ◦ θh1,g1,f1 ,

(ββ) β−1
h,g,f

◦ βh,g,f = 1(h⊳g)⊳f , βh,g,f ◦ β−1
h,g,f = 1h⊳(g⊳f),

(θθ) θh,f,g ◦ θh,g,f = 1(h⊳g)⊳f ,

(β pent) (1j ⊳ βh,g,f ) ◦ βj,h⊳g,f ◦ (βj,h,g ⊳ 1f) = βj,h,g⊳f ◦ βj⊳h,g,f ,

(θ YB) θj⊳f,h,g ◦ (θj,h,f ⊳ 1g) ◦ θj⊳h,g,f = (θj,g,f ⊳ 1h) ◦ θj⊳g,h,f ◦ (θj,h,g ⊳ 1f),

(βθ1) (1j ⊳ θh,g,f ) ◦ βj,h⊳g,f ◦ (βj,h,g ⊳ 1f) = βj,h⊳f,g ◦ (βj,h,f ⊳ 1g) ◦ θj⊳h,g,f ,

(βθ2) θj,h⊳g,f ◦ (βj,h,g ⊳ 1f ) = βj⊳f,h,g ◦ (θj,h,f ⊳ 1g) ◦ θj⊳h,g,f .

The name of (β pent) comes from Mac Lane’s pentagon of monoidal categories
(see [22], Section VII.1), while (θ YB) is related to the equation (YB) of Section
16.

As rules we have symmetry and transitivity of =, and for ξ being ◦ and ⊳
the congruence rules:

from u1 = u2 and v1 = v2 derive v1 ξ u1 = v2 ξ u2.

This concludes our definition of the equations of WO−
u , and of the category

WO−
u .
An equation between the arrow terms of a category is legitimate when both

sides are of the same type, and one can easily check by induction on the length
of derivation that the equations of our axiomatic system for WO−

u satisfy this
requirement for legitimacy. The same holds for the equational axiomatic system
of all the categories introduced later, and we will not mention this matter any
more.

8 The category WOu

We add now to WO−
u what is needed to obtain the unitary category WOu.

The objects ofWOu are the terms of Ou (see Section 5). The arrow terms of
WOu are defined like those of WO−

u in the preceding section with the following
additional basic arrow terms, derived from the equations (unitu) of Section 5:

µf,a : f ⊳ a · I→ f , µ−1
f,a : f → f ⊳ a · I,

λf : t(f) · I ⊳ f → f , λ−1
f : f → t(f) · I ⊳ f .
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The equation of WOu between arrow terms are defined like those of WO−
u

in the preceding section with the following additional axiomatic equations:

(µ nat) µf2,a
◦ (u ⊳ 1a·I) = u ◦µf1,a,

(λ nat) λf2
◦ (1t(f1)·I ⊳ u) = u ◦λf1 ,

(µµ) µ−1
f,a

◦µf,a = 1f⊳a·I, µf,a ◦µ−1
f,a = 1f ,

(λλ) λ−1
f

◦λf = 1t(f)·I⊳f , λf ◦λ−1
f = 1f ,

(βµλ) βh,t(f)·I,f = (1h ⊳ λ−1
f ) ◦ (µh,t(f) ⊳ 1f ),

(θµ) θh,b·I,f = µ−1
h⊳f,b

◦ (µh,b ⊳ 1f ).

9 The category WO−e

We introduce in this section the e analogue of the non-unitary category WO−
u

of Section 7.
The object of WO−

e are the terms of O−
e (see Section 3). To define induc-

tively the arrow terms of WO−
e , we specify first the basic arrow terms:

1f : f → f ,

βh,(b,g),(a,f): (h ⊳b g) ⊳ba f → h ⊳b (g ⊳a f),

β−1
h,(b,g),(a,f): h ⊳b (g ⊳a f)→ (h ⊳b g) ⊳ba f ,

θh,(b,g),(a,f) : (h ⊳b g) ⊳a f → (h ⊳a f) ⊳b g.

We can make for these arrow terms comments on the legitimacy of expressions
for objects in their types exactly analogous to those made for the equations
(assoc 1e) and (assoc 2e) in Section 3, from which these arrow terms are derived.

The operations under which the arrow terms are closed are composition ◦

and the operations ⊳a for which we have the following clause:

if u : f → f ′ and v : g → g′ are arrow terms, then v ⊳a u : g ⊳a f → g′ ⊳a f
′

is an arrow term, when g ⊳a f and g′ ⊳a f
′ are legitimate.

This concludes the definition of the arrow terms ofWO−
e . We use still u, v, w, . . . ,

perhaps with indices, for these newly introduced arrow terms. It follows imme-
diately from what we established for O−

e in Section 3 that for every arrow term
u : f → g of WO−

e we have s(f) = s(g).
The equations ofWO−

e between arrow terms are given through an axiomatic
equational system, which besides u = u and the categorial equations (as those
given in Section 7 for WO−

u ) has the following axiomatic equations :

(ins 1e) 1g ⊳a 1f = 1g⊳af ,

(ins 2e) (v2 ◦ v1) ⊳a (u2 ◦u1) = (v2 ⊳a u2) ◦ (v1 ⊳a u1),
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(β nate) βh2,(b,g2),(a,f2)
◦ ((w ⊳b v) ⊳ba u) = (w ⊳b (v ⊳a u)) ◦βh1,(b,g1),(a,f1),

(θ nate) θh2,(b,g2),(a,f2)
◦ ((w ⊳b v) ⊳a u) = ((w ⊳a u) ⊳b v) ◦ θh1,(b,g1),(a,f1),

(ββe) β−1
h,(b,g),(a,f)

◦βh,(b,g),(a,f) = 1(h⊳bg)⊳baf ,

βh,(b,g),(a,f) ◦β−1
h,(b,g),(a,f) = 1h⊳b(g⊳af),

(θθe) θh,(a,f),(b,g) ◦ θh,(b,g),(a,f) = 1(h⊳bg)⊳af ,

(β pente) (1j ⊳c βh,(b,g),(a,f)) ◦βj,(c,h⊳bg),(a,f)
◦ (βj,(c,h)(b,g) ⊳a 1f ) =

βj,(c,h),(b,g⊳af)
◦βj⊳ch,(b,g),(a,f),

(θ YBe) θj⊳af,(c,h),(b,g)
◦ (θj,(c,h),(a,f) ⊳b 1g) ◦ θj⊳ch,(b,g),(a,f) =

(θj,(b,g),(a,f) ⊳c 1h) ◦ θj⊳bg,(c,h),(a,f)
◦ (θj,(c,h),(b,g) ⊳a 1f ),

(βθ1e) (1j ⊳c θh,(b,g),(a,f)) ◦βj,(c,h⊳bg),(a,f)
◦ (βj,(c,h),(b,g) ⊳a 1f ) =

βj,(c,h⊳af),(b,g)
◦ (βj,(c,h),(a,f) ⊳b 1g) ◦ θj⊳ch,(b,g),(a,f),

(βθ2e) θj,(c,h⊳bg),(a,f)
◦ (βj,(c,h),(b,g) ⊳a 1f ) =

βj⊳af,(c,h),(b,g)
◦ (θj,(c,h),(a,f) ⊳b 1g) ◦ θj⊳ch,(b,g),(a,f).

As rules we have symmetry and transitivity of =, and the congruence rules
for ◦ and ⊳a (just put ◦ and ⊳a for ξ in the schema at the end of Section 7).
This concludes our definition of the equations of WO−

e , and of the category
WO−

e .

10 The category WOe

We add now to WO−
e what is needed to obtain the unitary category WOe.

The objects ofWOe are the terms of Oe (see Section 3). The arrow terms of
WOe are defined like those of WO−

e in the preceding section with the following
additional basic arrow terms, derived from the equations (unite) of Section 3:

µf,a : f ⊳a I→ f , µ−1
f,a : f → f ⊳a I,

λf : I ⊳e f → f , λ−1
f : f → I ⊳e f .

The equation of WOe between arrow terms are defined like those of WO−
e

in the preceding section with the following additional axiomatic equations:

(µ nate) µf2,a
◦ (u ⊳a 1I) = u ◦µf1,a,

(λ nate) λf2
◦ (1I ⊳e u) = u ◦λf1 ,

(µµe) µ−1
f,a

◦µf,a = 1f⊳aI
, µf,a ◦µ−1

f,a = 1f ,

(λλe) λ−1
f

◦λf = 1I⊳ef , λf ◦λ−1
f = 1f ,

(βµλe) βh,(b,I),(e,f) = (1h ⊳b λ
−1
f ) ◦ (µh,b ⊳b 1f ),

(θµe) θh,(b,I),(a,f) = µ−1
h⊳af,b

◦ (µh,b ⊳a 1f ).
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11 WOe and WOu

In this section we establish the relationship between WOe and WOu. We show
that WOu is the disjoint union of isomorphic copies of WOe.

For every N
+-word a we define inductively a map a· from the arrow terms

of WOu to the arrow terms of WOu:

a · νf = νa·f , where ν is 1, λ and λ−1,

a · νf,b = νa·f,ab, where ν is µ and µ−1,

a · ζh,g,f = ζa·h,a·g,a·f , where ζ is β, β−1 and θ,

a · (v ξ u) = (a · v) ξ (a · u), where ξ is ◦ and ⊳.

The definition of a· on the objects of WOu, i.e. the terms of Ou, which is
mentioned in the indices above, is given in Section 6. It is clear that a· induces
an endofunctor of WOu, since u = v in WOu clearly implies a · u = a · v in
WOu.

We need a· to define inductively a map U from the arrow terms of WOe to
the arrow terms of WOu:

U(νf ) = νU(f), where ν is 1, λ and λ−1,

U(νf,a) = νU(f),a, where ν is µ and µ−1,

U(ζh,(b,g),(a,f)) = ζU(h),b·U(g),ba·U(f), where ζ is β and β−1,

U(θh,(b,g),(a,f)) = θU(h),b·U(g),a·U(f),

U(v ◦u) = U(v) ◦U(u),

U(v ⊳a u) = U(v) ⊳ a · U(u).

The map U mentioned in the indices of this definition is the map U defined in
Section 6.

Next we define inductively a map E from the arrow terms of WOu to the
arrow terms of WOe:

E(νf ) = νE(f), where ν is 1, λ and λ−1,

E(νf,a) = νE(f),a, where ν is µ and µ−1,

E(ζh,g,f ) = ζE(h),(t(h)\t(g),E(g)),(t(g)\t(f),E(f)), where ζ is β and β−1,

E(θh,g,f ) = θE(h),(t(h)\t(g),E(g)),(t(h)\t(f),E(f)),

E(v ◦u) = E(v) ◦E(u),

E(v ⊳ u) = E(v) ⊳t(g)\t(f) E(u), for u : f → f ′ and v : g → g′.

The map E mentioned in the indices of this definition is the map E defined in
Section 6.

With the help of (st a·) and Lemma 6.4 of Section 6, it is easy to establish
the following by induction on the complexity of u.
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Lemma 11.1. For every arrow term u of WOu we have that E(a · u) is E(u).

This lemma serves for the first of the following two propositions, which are
proved by inductions on the complexity of u.

Proposition 11.2. For every arrow term u ofWOe we have that E(U(u)) is u.

Proposition 11.3. For every arrow term u : f → f ′ of WOu we have that
t(f) · U(E(u)) is u.

In the proofs of these propositions we rely on Propositions 6.5 and 6.6. As an
example, which is perhaps not quite straightforward, we give the following case
in the proof of Proposition 11.3:

t(h) · U(E(βh,g,f )) = t(h) · U(βE(h),(t(h)\t(g),E(g)),(t(g)\t(f),E(f)))

= βt(h)·U(E(h)),t(h)(t(h)\t(g))·U(E(g)),t(h)(t(h)\t(g))(t(g)\t(f))·U(E(f))

= βt(h)·U(E(h)),t(g)·U(E(g)),t(f)·U(E(f)) = βh,g,f , by Proposition 6.6.

Next we establish the following two propositions by inductions on the length
of derivation, where the main burden is in the bases of the inductions, with
axiomatic equations.

Proposition 11.4. If u = v in WOe, then U(u) = U(v) in WOu.

Proposition 11.5. If u = v in WOu, then E(u) = E(v) in WOe.

The inductive proofs of these two propositions, which are lengthy but straight-
forward, yield more than what is stated in the propositions. Every derivation in
the equational system of WOe is translated into a derivation in the equational
system of WOu in a “homomorphic” manner, and vice versa. This means, for
example, that (βθ1e) goes into (βθ1), etc. These two propositions yield that U
induces a functor fromWOe toWOu, and E a functor in the opposite direction.

Let WOe(X) be the full subcategory of WOe whose objects are all the
terms f of Oe such that s(f) = X . The category WOe is the disjoint union of
its subcategories WOe(X) for all the nominal arities X .

Let WOu(X, b) be the full subcategory of WOu whose objects are all the
terms f of Ou such that s(f) = X and t(f) = b. Let WOu(b) be the union of
the categories WOu(X, b) for all the nominal arities X (this union is disjoint).
The category WOu is the disjoint union of its subcategories WOu(b) for all
N

+-words b. We can prove the following.

Proposition 11.6. The categories WOe and WOu(e) are isomorphic.

Proof. Propositions 11.2-11.5 show that, on the one hand, the functor U and,
on the other hand, the functor E restricted toWOu(e) are inverse to each other.

⊣

23



More precisely, we have that WOe(X) and WOu(X, e) are isomorphic cate-
gories. For that we just restrict further the functors U and E.

Let WOu(b ·) be the union of the categories WOu(ba) for all N+-words a.
We define a functor b\ fromWOu(b ·) toWOu by stipulating that b\u is u with
every index ba replaced by a; moreover, b\(v ξ u) is (b\v) ξ (b\u) for ξ being ◦

and ⊳ (cf. the definition of the functor a· at the beginning of the section). We
can prove the following.

Proposition 11.7. For every N
+-word b the categories WOu and WOu(b ·)

are isomorphic.

Proof. From WOu and WOu(b ·) we have the functor b·, and it is easy to see
that the functor b\ is its inverse. ⊣

We can also prove the following.

Proposition 11.8. For all N+-words a and b the categories WOu(a) and
WOu(ba) are isomorphic.

Proof. We restrict the functors b· and b\ to the subcategoryWOu(a) ofWOu

and the subcategory WOu(ba) of WOu(b ·). ⊣

As a corollary of this proposition, we obtain that for every N
+-word b the

categories WOu(e) and WOu(b) are isomorphic, and hence, with Proposition
11.6, we have that WOe and WOu(b) are isomorphic. Since the categoryWOu

is the disjoint union of the categories WOu(b) for all N
+-words b, we may

conclude that WOu is the disjoint union of isomorphic copies of WOe.
Propositions 6.11, 6.12 and 6.13 are parallel to Propositions 11.6, 11.7 and

11.8. The propositions of Section 6 deal with algebraic structures with partial
operations satisfying various equations related to (unit), (assoc 1) and (assoc 2),
while the categories WOe and WOu do not satisfy these equations, but have
arrows that are isomorphisms instead of them. Nevertheless, the former propo-
sitions indicate how the functors of this section do not preserve only 1 and ◦ ,
but also insertion, as a partial operation both on objects and on arrows. What
is preserved is either the whole family of insertion operations indexed with N

+-
words, or just the single partial operation ⊳ (which corresponds to ⊳e). What is
preserved is also I, or objects derived from it.

Everything we said in this section about the relationship between WOe and
WOu can be restricted to the non-unitary categories WO−

e and WO−
u .

12 Operads, Cat-operads and weak Cat-operads

Definition of operad. The standard general notion of operad with insertions
primitive would be based on the operad O of Section 2. It defines a class of
partial algebras in which O is freely generated by G and αG. These algebras
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have a carrier C made of elements called operadic operations, such that for every
operadic operation ϕ of C we have an arity in N, and they have the family of
insertions {⊳k | k ∈ N

+}, which are partial operations on operadic operations,
and I with arity 1, for which equations like those of O hold. The notion of
multicategory is a generalization of this notion where an arity n is replaced by
a sequence of n occurrences of some objects, and moreover we have an object
as a target (see [18]). An operad is a one-object multicategory.

First definition of Cat-operad. A Cat-operad is an operad that in ad-
dition has arrows between operadic operations of the same arity. We have an
identity arrow for every operadic operation, and the arrows are closed under the
partial operations of composition and insertions, which are now not only partial
operations on operadic operations, but also partial operations on arrows. This
structure is a category, i.e. identity arrows and composition satisfy the catego-
rial equations (see Section 7). Since the enrichment is over Cat, the category of
all small categories, it is assumed that the hom-categories of this category are
small, but this is not an essential matter. We have moreover in this category
the equations (ins 1e) and (ins 2e) of Section 9 with a replaced by n, and the
analogues of the equations (unit), (assoc 1) and (assoc 2) for arrows (see Sec-
tion 2). In these analogues I is replaced by 1I and ϕ, γ and χ are replaced by
variables for arrows. If u is such a variable, then α(u) is the arity of the source
or target of u, which must have the same arity.

Second definition of Cat-operad. In other words, a Cat-operad can be
defined as the disjoint union of categories Ck; in Ck all the objects, called operadic
operations, have arity k. In C1 we have a special object I. We have moreover
the bifunctors ⊳n : Ck × Cl → Ck−1+l, for 1 ≤ n ≤ k, which satisfy the equations
(unit), (assoc 1) and (assoc 2), and analogous equations for arrows.

First definition of weak Cat-operad. We base our general notion of weak
Cat-operad on WOe. This general notion defines a class of categories in which
WOe is freely generated by G and αG.

A weak Cat-operad can be defined in the style of the second definition of
Cat-operad we have just given by copying this definition until we reach the
equations (unit), (assoc 1) and (assoc 2). Instead of these equations, we have
natural isomorphisms corresponding to µ, λ, β and θ and equations analogous to
the equations (βµλe), (θµe), (β pente), (θ YBe), (βθ1e) and (βθ2e) of Sections
10 and 9. For example, the equation analogous to (βθ1e) would be the following:

(1j ⊳m θh,(l,g),(k−1+α(g),f)) ◦βj,(m,h⊳lg),(k′,f) ◦ (βj,(m,h),(l′,g) ⊳k′ 1f ) =

βj,(m,h⊳kf),(l′,g)
◦ (βj,(m,h),(k+m−1,f) ⊳l′ 1g) ◦ θj⊳mh,(l′,g),(k′,f),

where k′ = k−1+α(g)+m−1 and l′ = l+m−1, with k, l and m standing
respectively for Ks(h)(a), Ks(h)(b) and Ks(h)(c) (see Section 4 for the definition
of K).
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This equation is considerably more complicated than our equation (βθ1e),
and to eschew such complications is the main reason for introducing our nom-
inal arities. To infer all the equations needed for a full definition of weak
Cat-operads, as we inferred the equation above from (βθ1e), is a lengthy, but
straightforward, matter, into which we will not go further in this paper.

We believe that listing all these equations with numerical arities, as we have
done in the example above, would not clarify matters. Moreover, we would
have more equations, because one nominal case can split into several numerical
ones. We also believe that no clarification would be brought by giving a detailed
algorithm for transforming nominal arities into numerical ones. The indications
given until now in the paper should be sufficient to realize how this passage
from nominal to numerical arities is made. If however somebody thinks that
our first definition of weak-Cat operad is not precise enough, we provide another
definition in the abstract categorial style.

Second definition of weak Cat-operad. Our second definition of the
general notion of weak Cat-operad is again related to WOe. Let 〈G,αG,G〉 be
a triple (not in the sense of monad), where G is a set, αG is a function from G

to N and G is a directed graph G
dom
←− A

cod
−→ G (in the sense of [22], Section I.2)

such that for every u in A we have

αG(dom(u)) = αG(cod(u)).

Let X be the category whose objects are such triples and whose arrows from
〈G,αG,G〉 to 〈G′, αG′ ,G′〉 are graph morphisms ϕ : G → G′ such that for every
x in G we have that αG(x) = αG′(ϕ(x)).

We define the categoryWOe〈G,αG,G〉 as we have defined WOe in Sections
9-10 based on G and αG save that in the definition of arrow terms we add the
clause

if u : x→ y is in A, then it is an arrow term.

We say that a functor F : WOe〈G,αG,G〉 → WOe〈G′, αG′ ,G′〉 preserves the
WOe structure when

for objects:

F (I) = I;

F (g ⊳a f) = Fg ⊳a′ Ff , where Ks(g)(a) = Ks(Fg)(a
′);

and for arrows:

F (βh,(b,g),(a,f)) = βFh,(b′,Fg),(a′,Ff), where Ks(g)(a) = Ks(Fg)(a
′) and

Ks(h)(b) = Ks(Fh)(b
′);

similarly for β−1, θ, µ, µ−1, λ and λ−1;

F (v ⊳a u) = Fv ⊳a′ Fu, where u : f → f ′, v : g → g′ and
Ks(g)(a) = Ks(Fg)(a

′)
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(see Section 4 for the definition of K).
Let Y be the category whose objects are all the categories WOe〈G,αG,G〉

and whose arrows are all the functors that preserve the WOe structure. Every
arrow ϕ : 〈G,αG,G〉 → 〈G′, αG′ ,G′〉 of X induces a function ϕ0 from the objects
ofWOe〈G,αG,G〉 to the objects ofWOe〈G′, αG′ ,G′〉 and a function ϕ1 from the
arrow terms ofWOe〈G,αG,G〉 to the arrow terms ofWOe〈G′, αG′ ,G′〉 in a nat-
ural way. It is straightforward to verify that for the arrow terms u and v, if u = v
in WOe〈G,αG,G〉, then ϕ1(u) = ϕ1(v) in WOe〈G′, αG′ ,G′〉. Hence the func-
tions ϕ0 and ϕ1 underlie a functor Lϕ fromWOe〈G,αG,G〉 toWOe〈G′, αG′ ,G′〉.
It is not difficult to check that Lϕ preserves the WOe structure.

Hence we have a functor L : X → Y which maps 〈G,αG,G〉 toWOe〈G,αG,G〉
and ϕ to Lϕ. On the other hand, we can define the forgetful functor R : Y → X
so that for C being WOe〈G,αG,G〉 we have that R(C) = 〈H,αH ,H〉, where

H = Ob(C), i.e. the set of terms of Oe based on G and αG,

αH(f) = |s(f)|, and

H is the directed graph underlying the category C.

We can then prove the following.

Proposition 12.1. The functor L is the left adjoint of R.

Proof. The proof that Y (WOe〈G,αG,G〉,WOe〈G′, αG′ ,G′〉) is naturally iso-
morphic to X(〈G,αG,G〉, R(WOe〈G

′, αG′ ,G′〉)) is similar to the proof that Lϕ
is a functor that preserves the WOe structure. ⊣

Our second definition of weak Cat-operad says that a weak Cat-operad is an
algebra of the monad in X defined by this adjunction.

13 WO−e and hemiassociahedra

For particular choices of the nominal arity X the categories WO−
e (X) defined

in Section 11 have an interesting shape. They become representable by polyhe-
dra of a kind analogous to associahedra and permutohedra (see [27], [28], [30],
Lecture 0, Example 0.10, and [13] for historical references concerning associ-
ahedra and permutohedra). In some cases they are exactly associahedra that
involve only β arrows, and permutohedra that involve only θ arrows. These
associahedra and permutohedra do not differ from those already considered in
the literature in connection with associativity and commutativity isomorphisms
of monoidal and symmetric strictly monoidal categories.

It is interesting however to describe associahedra and permutohedra with
β and θ arrows mixed. With these two kinds of arrows mixed we obtain also
in three dimensions another kind of polyhedron, which was called hemiassocia-

hedron in [10] (Example 5.14). That paper investigates in particular the rela-
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tionship of the hemiassociahedron to the permutohedron (from which, together
with [29], one may gather that the hemiassociahedron, conceived as an abstract
polytope, can be realized; we will however not go here into this problem, for
which one should also consult [9]).

In this section we describe nine categories WO−
e (X). The first four may be

represented by hemiassociahedra; next we have two that may be represented
by three-dimensional associahedra with β and θ mixed, and one that may be
represented by a three-dimensional permutohedron with β and θ arrows mixed.
Finally we have a category represented by a purely β associahedron, and a
category represented by a purely θ permutohedron.

In all our examples, instead of dealing with WO−
e (X) we may deal with

the isomorphic category WO−
u (X, e). In our first example, which is given with

more details, we concentrate on this category, simpler to deal with. In other
examples, with less details, we would proceed analogously.

Example 13.1. Let G = {x} and let αG(x) = 2. Let X = {111, 112, 121,
122, 21, 22}. Every object ofWO−

u (X, e), which is a term f ofO−
u with s(f) = X

and t(f) = e, records a destruction of the following binary tree, whose leaves
make X :

❍❍ ✟✟

◗◗ ✑✑ ❅�

❅� ❅�

e

1 2

11 12 21 22

111 112 121 122

For example, the object f , which is

(e · x ⊳ 2 · x) ⊳ ((1 · x ⊳ 11 · x) ⊳ 12 · x),

records the following destruction. The main insertion ⊳ of our object is first
removed. This leaves us with the O−

u terms f1 and f2, which are respectively

(1 · x ⊳ 11 · x) ⊳ 12 · x and e · x ⊳ 2 · x,

and which record destructions of the following two trees:

❍❍ ✟✟◗◗ ✑✑

❅�❅� ❅�

e1

1 211 12

21 22111 112 121 122

We have t(f1) = 1 ∈ s(f2).
Next we concentrate on the destruction recorded by f1. We remove its main

insertion, and next the insertion remaining on its left, which leaves three residual
trees:
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◗◗ ✑✑❅� ❅�
111 12

111 112 121 122 11 12

This destruction of f1 may be recorded also by (12)·(11), which indicate that we
broke the tree of f1 first at the vertex 12, and next broke one of the remaining
trees at the vertex 11.

The destruction of f2 proceeds by breaking its tree at the vertex 2, which
leaves the two trees

❍❍ ✟✟ ❅�
e

1 2

2

21 22

This destruction may also be recorded by 2, the vertex where the tree broke.
The destruction of f1 and f2 may have gone simultaneously, and we indicate

that by writing ((12) · (11))+2, which is equal to 2+((12) · (11)). On the other
hand, · is not commutative, and indicates successive steps of destruction. Both
· and + are on the other hand associative. Our complete destruction of f may
then be recorded by 1 · (((12) · (11))+2). (Every destruction is, of course, a
construction in reverse order.)

We introduce these terms with · and +, which are called S-trees in [10],
because they are in one-to-one correspondence with the terms of O−

u in our
examples, and are shorter. (Such a correspondence exists because the value of
αG is greater than or equal to 2, and αG happens to be one-one.) To shorten
them further we will write a, b, c and d for respectively 11, 12, 1 and 2. The
N

+-words a, b, c and d stand for the inner vertices of the tree of f , i.e. vertices
that are neither leaves nor roots. These vertices in this tree make the following
graph:

❅ �
c

a b

d

where the solid edge {c, a} indicates that the vertices c and a are immediately
one above the other in the tree; and analogously for the solid edge {c, b}; the
dotted edge {a, b} indicates that a and b are vertices growing out of the same
predecessor, and analogously with {c, d}.

The destruction of the tree of f may be understood as the destruction of
the graph we have just given, because in destructing the tree we break it at
inner vertices. The destruction of the graph is based on vertex removal (which
one finds in Ulam’s conjecture; see [14], Chapter 2). More details and a general
theory concerning the destruction of graphs may be found in [10].

The S-tree c · ((b · a) + d), which we had above, and which corresponds
to our object f of WO−

u (X, e), and all the other S-trees, which correspond
bijectively to all the other objects of WO−

u (X, e), make the vertices of the
following hemiassociahedron:
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b·c·(a+d)a·c·(b+d)

b·a·c·da·b·c·d

c·((b·a)+d)c·((a·b)+d)

d·c·b·ad·c·a·b

b·a·d·ca·b·d·c

b·d·c·aa·d·c·b

d·b·c·ad·a·c·b

d·a·b·c d·b·a·c

a·d·b·c b·d·a·c

β

β

β

β

β

β

β

β

β

β

The edges with the label β stand for β arrows, i.e. arrows built with 1, ⊳ and
one occurrence of β (or β−1), while the remaining edges stand for θ arrows, i.e.
arrows built with 1, ⊳ and one occurrence of θ.

In this hemiassociahedron, the two hexagonal faces with both β and θ arrows
(actually, each with four β arrows and two θ arrows) stand for the commuting
diagram corresponding to the equation (βθ1), or (βθ1e) if we are in WO−

e (X).
The remaining hexagonal face, which has only θ arrows, is analogously related
to the equation (θ YB), or (θ YBe). The four pentagonal faces are all of the β
and θ mixed type (each with two β arrows and three θ arrows), and they are
related to the equation (βθ2), or (βθ2e). The four square faces are related to
the equation (θ nat), or (θ nate).

This hemiassociahedron shows that the particular instance of (θ YB) that
corresponds to one of the hexagonal faces is derivable from the equations corre-
sponding to the other faces. However, not all instances of (θ YB) are derivable
in this manner (cf. Examples 13.4 and 13.9). The same applies to the equation
(θ YBe).

In the remaining examples we will not make comments so detailed as here.
It is however easy to recognize in the pictures of other hemiassociahedra, and of
associahedra and permutohedra, the equations related to the two-dimensional
faces. Besides equations we had in this example, we will encounter also (β pent)
and (β nat), which appear already in the next example.

Example 13.2. Let G and αG be as in the preceding example. Let X =
{1111, 1112, 112, 121, 122, 2}. Let a, b, c and d stand respectively for 12, 1, 11
and 111, which are the inner vertices of the following binary tree, whose leaves
make X :
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❅�

◗◗ ✑✑

❅�

❅� ❅�

e

1b 2

11c 12 a

1111 1112

111d 112 121 122

❅ �

❅

b

c a

d

On the right of our tree one finds the graph of the inner vertices.
The objects of WO−

e (X) correspond bijectively to the vertices of the follow-
ing hemiassociahedron:

PP
PPP

✏✏
✏✏✏

❆
❆
❆

✁
✁
✁✁

✁
✁

❆
❆
❆

✟✟
✟

❍❍
❍✁

✁
✁

❆
❆
❆✟✟

✟
❍❍

❍

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

b·c·(a+d)a·c·(b+d)

b·a·c·da·b·c·d

c·((b·a)+d)c·((a·b)+d)

d·c·b·ad·c·a·b

b·a·d·ca·b·d·c

b·d·c·aa·d·c·b

d·b·c·ad·a·c·b

d·a·b·c d·b·a·c

a·d·b·c b·d·a·c

θ

θ

θ
θ

θ

θ

θ

θ

whose edges with θ stand for θ arrows, while the remaining edges stand for β
arrows.

Example 13.3. Let G and αG be as in the preceding two examples. Let
X = {1111, 1112, 1121, 1122, 12, 2}. Let a, b, c and d stand respectively for 111,
112, 11 and 1, which are the inner vertices of the following binary tree, whose
leaves make X :

❅�

❍❍ ✟✟

❅�

❅�

❅�

e

1d 2

11c 12

1111 1112

111a 112 b

1121 1122

❅

�❅

d

c

ba

On the right of our tree one finds the graph of the inner vertices.
The objects of WO−

e (X) correspond bijectively to the vertices of the follow-
ing hemiassociahedron:
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PP
PPP

✏✏
✏✏✏

❆
❆
❆

✁
✁
✁✁

✁
✁

❆
❆
❆

✟✟
✟

❍❍
❍✁

✁
✁

❆
❆
❆✟✟

✟
❍❍

❍

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

b·c·(a+d)a·c·(b+d)

b·a·c·da·b·c·d

c·((b·a)+d)c·((a·b)+d)

d·c·b·ad·c·a·b

b·a·d·ca·b·d·c

b·d·c·aa·d·c·b

d·b·c·ad·a·c·b

d·a·b·c d·b·a·c

a·d·b·c b·d·a·c

θ

θ

θ

θ

θ

whose edges with θ stand for θ arrows, while the remaining edges stand for β
arrows.

Example 13.4. Let G = {x, y}, and let αG(x) = 2 and αG(y) = 3. Let
X = {111, 112, 12, 21, 22, 31, 32}. Let a, b, c and d stand respectively for 3, 2, 1
and 11, which are the inner vertices of the following tree, whose leaves make X :

❳❳❳
❳

✘✘✘
✘

❅� ❅� ❅�

❅�

e

1c 2b 3 a

11d 12 21 22 31 32

111 112

❅
c b a

d

On the right of our tree one finds the graph of the inner vertices.
The objects of WO−

e (X) correspond bijectively to the vertices of the follow-
ing hemiassociahedron:

PP
PPP

✏✏
✏✏✏

❆
❆
❆

✁
✁
✁✁

✁
✁

❆
❆
❆

✟✟
✟

❍❍
❍✁

✁
✁

❆
❆
❆✟✟

✟
❍❍

❍

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

b·c·(a+d)a·c·(b+d)

b·a·c·da·b·c·d

c·((b·a)+d)c·((a·b)+d)

d·c·b·ad·c·a·b

b·a·d·ca·b·d·c

b·d·c·aa·d·c·b

d·b·c·ad·a·c·b

d·a·b·c d·b·a·c

a·d·b·c b·d·a·c

β
β

β β

β
β

whose edges with β stand for β arrows, while the remaining edges stand for θ
arrows.
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Example 13.5. Let G and αG be as in Examples 13.1-13.3. Let X = {1111,
1112, 112, 12, 21, 22}. Let a, b, c and d stand respectively for 2, 1, 11 and 111,
which are the inner vertices of the following binary tree, whose leaves make X :

❍❍ ✟✟

❅�

❅�

❅�

❅�

e

1b 2 a

11c 12 21 22

111d 112

1111 1112

❅

❅

b a

c

d

On the right of our tree one finds the graph of the inner vertices.
The objects of WO−

e (X) correspond bijectively to the vertices of the follow-
ing three-dimensional associahedron:

PP
PPP

❆
❆
❆✁

✁
✁

✟✟
✟✁
✁
✁✟✟
✟

✚
✚
✚✚

☎
☎
☎
☎
☎
☎❅
❅❅

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

a·c·(b+d)

b·(a+(c·d))a·b·c·d

c·((b·a)+d)c·((a·b)+d)

d·c·b·ad·c·a·b

b·(a+(d·c))a·b·d·c

a·d·c·b

d·a·c·b

d·a·b·c d·b·(a+c)

a·d·b·c

θ

θ
θθ

θ

θ

θ

θ

θ

whose edges with θ stand for θ arrows, while the remaining edges stand for β
arrows.

Example 13.6. Let G and αG be as in Examples 13.1-13.3 and the preceding
example. Let X = {111, 112, 12, 21, 221, 222}. Let a, b, c and d stand respec-
tively for 11, 1, 2 and 22, which are the inner vertices of the following binary
tree, whose leaves make X :

❍❍ ✟✟

❅�

❅� ❅�

❅�

e

1b 2 c

11a 12 21 22 d

111 112 221 222

❅ �
b c

a d

On the right of our tree one finds the graph of the inner vertices.
The objects of WO−

e (X) correspond bijectively to the vertices of the follow-
ing three-dimensional associahedron:
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PP
PPP

❆
❆
❆✁

✁
✁

✟✟
✟✁
✁
✁✟✟
✟

✚
✚
✚✚

☎
☎
☎
☎
☎
☎❅
❅❅

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

a·c·(b+d)

b·(a+(c·d))a·b·c·d

c·((b·a)+d)c·((a·b)+d)

d·c·b·ad·c·a·b

b·(a+(d·c))a·b·d·c

a·d·c·b

d·a·c·b

d·a·b·c d·b·(a+c)

a·d·b·c

β
β

β

β

β

β

β

β

β

β

whose edges with β stand for β arrows, while the remaining edges stand for θ
arrows.

Example 13.7. Let G = {x, y}, and let αG(x) = 2 and αG(y) = 3. Let
X = {111, 112, 121, 122, 131, 132, 2}. Let a, b, c and d stand respectively for 1,
11, 12 and 13, which are the inner vertices of the following tree, whose leaves
make X :

❅✘✘✘
✘

❳❳❳
❳

✘✘✘
✘

❅� ❅� ❅�

e

1a 2

11b 12c 13 d

111 112 121 122 131 132

❍❍ ✟✟
a

b c d

On the right of our tree one finds the graph of the inner vertices.
The objects of WO−

e (X) correspond bijectively to the vertices of the follow-
ing three-dimensional permutohedron:
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❍❍
❍

✟✟
✟

❆
❆
❆

✁
✁
✁❆

❆
❆

✁
✁
✁❍❍

❍
✟✟
✟

✁
✁
✁

❆
❆
❆

❆
❆
❆

✁
✁
✁✁

✁
✁

❆
❆
❆

✟✟
✟

❍❍
❍✁

✁
✁

❆
❆
❆✟✟

✟
❍❍

❍

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

c·a·b·d c·b·a·d

c·b·d·ac·a·d·b

b·c·d·aa·c·d·b

b·c·a·da·c·b·d

b·a·c·da·b·c·d

c·d·b·ac·d·a·b

d·c·b·ad·c·a·b

b·a·d·ca·b·d·c

b·d·c·aa·d·c·b

d·b·c·ad·a·c·b

d·a·b·c d·b·a·c

a·d·b·c b·d·a·c

θ

θ

θ θ

θ

θ
θ

θ

θ θ

θ

θθ

θθ

θ
θ

θ

whose edges with θ stand for θ arrows, while the remaining edges stand for β
arrows.

Example 13.8. Let G and αG be as in Examples 13.1-13.3 and 13.5-13.6. Let
X = {11111, 11112, 1112, 112, 12, 2}. Let a, b, c and d stand respectively for
1, 11, 111 and 1111, which are the inner vertices of the following binary tree,
whose leaves make X :

❅�

❅�

❅�

❅�

❅�

e

1a 2

11b 12

111c 112

1111d 1112

11111 11112

❅

❅

❅

a

b

c

d

On the right of our tree one finds the graph of the inner vertices.
The objects of WO−

e (X) correspond bijectively to the vertices of the three-
dimensional associahedron whose edges all stand for β arrows (its picture is like
that for Examples 13.5 and 13.6 without the labels θ and β).

Example 13.9. Let G = {x, y}, and let αG(x) = 2 and αG(y) = 4. Let
X = {11, 12, 21, 22, 31, 32, 41, 42}. Let a, b, c and d stand respectively for 1, 2, 3
and 4, which are the inner vertices of the following tree, whose leaves make X :
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❵❵❵
❵❵

✥✥✥
✥✥

◗◗ ✑✑

❅� ❅� ❅� ❅�

e

1a 2b 3 c 4 d

11 12 21 22 31 32 41 42

a b c d

On the right of our tree one finds the graph of the inner vertices.
The objects of WO−

e (X) correspond bijectively to the vertices of the three-
dimensional permutohedron whose edges all stand for θ arrows (its picture is
like that for Example 13.7 without labels for edges).

Part III

14 Coherence of Monu

In [23] (Section 2) it was established that the notion of bicategory is coherent,
in the sense that all diagrams of canonical arrows commute. The proof of this
coherence result is obtained by imitating the proof of monoidal coherence (see
[22], Section VII.2).

Our purpose in this, concluding part, of the paper is to prove an analogous
coherence result for our notion of weak Cat-operad, which is analogous to the
notion of bicategory. This amounts to showing that the categoryWOe is a pre-
order (i.e. that all diagrams commute in this category, or that for a given source
and target there is not more than one arrow). This coherence result for WOe

does not rely only on monoidal coherence, as coherence for bicategories does.
Besides relying on monoidal coherence, it relies also on a generalization of co-
herence for symmetric monoidal categories, which is related to the presentation
of structures related to symmetric groups.

Coherence for WOe is a justification of our definition of this category, and
of our notion of weak Cat-operad. We will establish the coherence of WOe by
establishing the coherence ofWOu. We first introduce a categoryMonu derived
from WOu, which is analogous to a monoidal category.

The category Monu is defined like WOu save that we omit the basic arrow
terms θh,g,f and the axiomatic equations that involve θ explicitly (these are
(θ nat), (θθ), (θ YB), (βθ1) and (βθ2)). The remaining axiomatic equations are
analogous to Mac Lane’s postulates for monoidal categories (see [22], Section
VII.1); the difference is that ⊳ is a partial operation on objects and on arrows,
and is hence not a real biendofunctor, though it is analogous to such a functor.

Let an arrow term of Monu be called directed when β, µ−1 and λ−1 do not
occur in it (but β−1, µ and λ may occur). Let us call an object f of Monu, i.e.
term of Ou, normal when either all parentheses in f are associated to the left
and I does not occur in f , or f is of the form a · I. One can then prove the
following.
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Lemma 14.1. If u and v are directed arrow terms of Monu of the same type
with a normal target, then u = v in Monu.

Proof. The proof of this lemma is obtained by imitating a part of the proof of
monoidal coherence in [22] (Section VII.2, Theorem 1; see also [6], Sections 4.2,
4.3 and 4.6, Directedness Lemmata). There is nothing essentially new in this
inductive proof, which consists in showing a kind of confluence property, related
to what one has in term-rewriting. For example, if u and v are respectively of
the form u′

◦ (1j ⊳ β−1
h,g,f ) and v′ ◦ β−1

j,h,g⊳f , then, since the target of u and v is
normal, there is a w such that by the induction hypothesis

u′ = w ◦ (β−1
j,h,g ⊳ 1f ) ◦β−1

j,h⊳g,f ,

v′ = w ◦ β−1
j,h,g⊳f ;

and then by using the equation obtained from (β pent) and (ββ), analogous to
Mac Lane’s pentagonal diagram, we obtain u = v. ⊣

We can then establish the following.

Proposition 14.2. Monu is a preorder.

To prove this proposition we may proceed as for Associative Coherence in [6]
(Section 4.3).

15 The category WOθ
u

Next we define a category WOθ
u, which is WOu strictified in the monoidal

structure. This means that in WOθ
u the arrows β, µ and λ, and their inverses,

become all identity arrows, and the monoidal structure of WOθ
u is trivial. As

in the case of monoidal categories, and as in [6] (Section 3.2), by relying on
Proposition 14.2 one can show that WOu and WOθ

u are equivalent categories.
Now we will define WOθ

u syntactically. Its objects are the normal terms of
Ou as defined in the preceding section. We may identify these terms by terms
where ⊳ and parentheses are deleted, and in which I does not occur, except if
the term is of the form a · I. We use this abbreviated notation below.

As basic arrow terms we have the following:

1f : f → f , for every object f ,

θh,g,f : hgf → hfg, provided t(f) ∈ s(h) and t(g) ∈ s(h).

Next we have the operations on arrow terms as for WOu (see Section 7) save
that v ⊳ u : g ⊳ f → g′ ⊳ f ′ is written vu : gf → g′f ′. (We write v ◦u as before.)

Besides u = u and the categorial equations, and the equations (ins 1),
(ins 2), (θ nat), (θθ) and (θ YB) (all written without ⊳), the axiomatic equations

of WOθ
u are the following strictified versions of (βθ1) and (βθ2):
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(θ1) 1jθh,g,f = θjh,g,f ,

(θ2) θj,hg,f = (θj,h,f1g) ◦ θjh,g,f .

(Note that if the left-hand sides of these equations are legitimate, then the
right-hand sides are legitimate too, but not conversely.)

The rules of the equational axiomatic system are the same as forWOu. This
concludes the definition of the category WOθ

u.

16 CΓ and BCΓ

We introduce a family of categories we call CΓ and show in the next section that
every category in the family is coherent in a sense to be made precise. A partic-
ular category in the family, for a particular choice of Γ, will be shown isomorphic
to the categoryWOθ

u of the preceding section, and this will establish thatWOθ
u

is coherent, which in this particular case implies that WOθ
u is a preorder. Sym-

metric groups arise as particular members of this family, and the proof that
CΓ is coherent will proceed as a proof that would show the completeness of a
standard presentation of symmetric groups (see the next section).

Now we introduce CΓ. Let A, B, P , Q, R, S, U, . . . , perhaps with indices,
stand for finite (possibly empty) sequences, i.e. for words, in an alphabet whose
members we call atoms ; we use p, q, r, . . . , perhaps with indices, for atoms. We
use e, as before, for the empty word. The set of objects of CΓ is some set of
these words, not necessarily all. (So the objects of CΓ make a language.)

The basic arrow terms of CΓ make a set Γ, which satisfies the following. For
every object A, the arrow term A : A→ A is in Γ (we abbreviate 1A by writing
just A). We have in Γ also some arrow terms of the form

A[p, q]B : ApqB → AqpB,

provided both the source and the target are objects. All the arrow terms in Γ
are of these two kinds. Finally, Γ must satisfy the following condition:

(Γ) if the basic arrow terms on one side of the equations (C1) and (C2) below
are in Γ, then all the basic arrow terms on the other side of these equations
are in Γ too.

All the arrow terms of CΓ are defined by starting from Γ, and closing under
composition: if u : A→ B and v : B → C are arrow terms, then v ◦u : A→ C is
an arrow term. We use u, v, w, . . . , perhaps with indices, for arrow terms, and
we use the abbreviation given by the following inductive clause:

A(v ◦ u)B =df AvB ◦AuB.

Besides u = u and the categorial equations u ◦A = u = B ◦u, for u : A→ B,
and (w ◦ v) ◦u = w ◦ (v ◦u), the axiomatic equations of CΓ are the following:
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(C1) A(srU [p, q] ◦ [r, s]Upq)B = A([r, s]Uqp ◦ rsU [p, q])B,

(C2) A(s[p, r] ◦ [p, s]r ◦ p[r, s])B = A([r, s]p ◦ r[p, s] ◦ [p, r]s)B,

(C3) A([p, r] ◦ [r, p])B = ArpB.

As rules we have symmetry and transitivity of = and congruence for ◦ (see
Section 7). This concludes our definition of the equations of CΓ, and of the
category CΓ.

The axiomatic equations of CΓ are analogous to the equations of the standard
presentation of the symmetric group Sn, for n ≥ 1, with the generators σi, for
1 ≤ i < n, being the transpositions of i and i+1 (see [4], Section 6.2). The
equation (C1) corresponds to the permutability of σi and σj when i−j is at
least 2. The equation (C2) corresponds to the equation

(YB) σi+1 ◦σi ◦ σi+1 = σi ◦ σi+1 ◦σi

(YB comes from Yang-Baxter), and (C3) corresponds to the σi’s being self-
inverse.

The symmetric group Sn is CΓ that has a unique object pn, which is a
sequence of n occurrences of p, and the set Γ is made of the arrow terms
pi−1[p, p]pk, where i ≥ 1, k ≥ 0 and i+1+k = n, which correspond to σi.
Note that in general CΓ is not a group. It need not even be a groupoid (in the
categorial sense, a Brandt groupoid; see [22], Section I.5); we may have A[p, q]B
in Γ without having its inverse A[q, p]B.

To reduce the arrow terms of CΓ to normal form we introduce the category
BCΓ, a variant of CΓ, which we will show isomorphic to CΓ. The objects of BCΓ
are those of CΓ. The arrow terms of BCΓ are defined starting from the same
basic arrow terms Γ, and closing under composition and under the following:

(†) if for every s in the word S, such that S is S′sS′′, the arrow term

AS′[r, s]S′′B : AS′rsS′′B → AS′srS′′B

is in Γ, then

A[r, S]B : ArSB → ASrB

is an arrow term.

Note that according to this clause A[r, e]B : ArB → ArB is always an arrow
term. Note also that according to this definition we also have the implication
converse to (†).

The equations of BCΓ are defined like those of CΓ save that the axiomatic
equations (C1), (C2) and (C3) are replaced by the following axiomatic equa-
tions:

(BC1) A(SrU [p,Q] ◦ [r, S]UpQ)B = A([r, S]UQp ◦ rSU [p,Q])B,

provided neither Q nor S is e,

(BC2) A([p,QSrU ] ◦ pQ[r, S]U)B = A(Q[r, S]Up ◦ [p,QrSU ])B,

provided S is not e,
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(BC3) A(S[p, UrQ] ◦ [r, SpU ]Q)B = A([r, SU ]Qp ◦ rS[p, UQ])B,

(BC4) A(S[r,Q] ◦ [r, S]Q)B = A[r, SQ]B, provided neither Q nor S is e,

(BC5) A[r, e]B = ArB.

This concludes the definition of BCΓ.
The axiomatic equations of BCΓ are analogous to the equations that may

be found in [6] (Section 5.2). These equations are such as to enable us to reach
quickly a normal form for arrow terms, with which we will deal in the next
section. In the remainder of this section we will establish that CΓ and BCΓ are
isomorphic.

We show first that we have in CΓ the structure of BCΓ. We define A[r, S]B
in CΓ by the following inductive clauses:

A[r, e]B =df ArB,

A[r, sQ]B =df A(s[r,Q] ◦ [r, s]Q)B.

Then it remains to derive the equations (BC1)-(BC5) in CΓ.
We derive first (BC1) by induction on the sum n of the lengths of Q and S.

In the basis when n is 2, we use (C1), and in the induction step we just use the
induction hypothesis.

Next we derive by induction on the length n of S the equation (C2 S), which
is (C2) with s replaced by S. The basis, when n is 0, is trivial. In the induction
step, to derive our equation (read from left to right) we use (BC1) (read from
left to right), the induction hypothesis and (C2)(read from left to right).

To derive (BC2) (read from left to right) we use (BC1) (read in both direc-
tions) and (C2 S) (read from left to right).

To derive (BC3) (read from left to right) we use (C2 S), (C3) and (BC1)
(all read from left to right).

The equations (BC4) and (BC5) hold in CΓ by definition. This establishes
that we have the structure of BCΓ in CΓ.

We have noted above in parentheses when we needed the equations (C2)
and (C3) only from left to right (while (C1), via (BC1), is needed in both
directions). This may be interesting when our procedure is connected with the
reduction procedure of [16] (Section 2.1 and Appendix A).

To establish the converse — namely, that we have the structure of CΓ in BCΓ
— is an easy matter. The equations (C1), (C2) and (C3) amount to particular
cases of (BC1), (BC2) and (BC3), with the help of (BC4) and (BC5). The
definitions of A[r, e]B and A[r, sQ]B, which we introduced in CΓ, clearly hold in
BCΓ by (BC5) and (BC4). So we may conclude that CΓ and BCΓ are isomorphic.

As a consequence of the isomorphism of CΓ and BCΓ we obtain that if on
one side of the equations (BC1)-(BC5) we have arrow terms of BCΓ, then on
the other side we have such arrow terms too. The straightforward proof of that
is based essentially on (†), the implication converse to (†), and the fact that if
on one side of an equation of CΓ we have arrow terms of CΓ, then on the other
side we have such arrow terms too.
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17 Coherence of CΓ

We say that an arrow term of BCΓ is in normal form when it is of the form

A1Q1p1B1 ◦A1[p1, Q1]B1 ◦ . . . ◦An[pn, Qn]Bn,

for n ≥ 0, for the words Q1, . . . , Qn nonempty and for

|B1| > |B2| > . . . > |Bn|,

where |Bi| is the length of Bi. This, or an analogous normal form, for symmetric
groups is implicit in [26] and [2] (Note C), and occurs explicitly in [15] (Section
3.2), [16] (Section 2.1) and [6] (Section 5.2).

A survey of all possible cases shows that if an arrow term of BCΓ is not in
normal form, then it has, after perhaps applying categorial equations, a subterm
of the form of the left-hand side of one of the equations (BC1)-(BC5), and hence
one of these equations may be applied. We can then establish the following.

Lemma 17.1. Every arrow term of BCΓ is equal in BCΓ to an arrow term in
normal form.

Proof. For every arrow term of the form

Cm[rm, Sm]Dm ◦ . . . ◦C1[r1, S1]D1,

where m ≥ 2, consider the following measure of this arrow term:

m
∑

i=1

(|Ci|+1+|Si|) · i.

Then it can be checked that with each application of (BC1)-(BC4) from left
to right the measure decreases. The equation (BC5) from left to right works
together with the categorial equations u ◦A = u = B ◦u to reduce our measure.

⊣

The graph of an arrow term of BCΓ is derived from a bijection between
finite ordinals, defined as for symmetric groups or as for symmetric monoidal
categories (see [6]). This bijection induces a graph with edges connecting an
occurrence of an atom in the source to an occurrence of the same atom in the
target. The graphs of A[p, q]B, A[p,Q]B and of the identity arrow A : A → A
are given by

✁
✁
❆
❆

A q p B

A p q B

· · · · · ·
✁
✁
✁
✁
❅
❅

A Q p B

A p Q B

· · · · · ·
· · ·

A

A

· · ·
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The graphs for arrow terms with ◦ are obtained by composing the underlying
bijections. We can then prove the following.

Lemma 17.2. If the arrow terms u, v : A → B of BCΓ are in normal form and
their graphs are the same, then u and v are the same arrow term.

Proof. The proof of this lemma is analogous to the proof of the Uniqueness
Lemma in [6] (Section 5.2), to which we refer for details. Here is a sketch of the
proof.

Let u and v be respectively the arrow terms

A ◦A1[p1, Q1]B1 ◦ . . . ◦An[pn, Qn]Bn,

A ◦C1[r1, S1]D1 ◦ . . . ◦Cm[rm, Sm]Dm

in normal form. We proceed by induction on n. If n = 0, then we show that m
must be 0 too; otherwise the graphs would differ.

If n > 0, then we must have m > 0 too, as we have just shown, and
An[pn, Qn]Bn must be equal to Cm[rm, Sm]Dm; otherwise the graphs would
differ in the edges of pn and rm:

❅
❅

pn Bn

pn Bn

· · ·

· · ·

· · ·

❅
❅

rm Dm

rm Dm

· · ·

· · ·

· · ·

(see [6], Section 5.2, for details). We then conclude that

A ◦A1[p1, Q1]B1 ◦ . . . ◦An−1[pn−1, Qn−1]Bn−1,

A ◦C1[r1, S1]D1 ◦ . . . ◦Cm−1[rm−1, Sm−1]Dm−1

must have the same graph, and we apply the induction hypothesis to them. ⊣

Then we obtain the following

Proposition 17.3. For u and v arrow terms of BCΓ of the same type we have
u = v in BCΓ iff u and v have the same graph.

Proof. It is easy to establish the implication from left to right by induction
on the length of derivation. For the converse implication, we have by Lemma
17.1 that u = u′ and v = v′ in BCΓ for u′ and v′ in normal form. From the
assumption that u and v have the same graph we conclude, by the implication
from left to right, that u′ and v′ have the same graph. But then by Lemma 17.2
we have that u′ is v′, and hence u = v in BCΓ by symmetry and transitivity
of =. ⊣

From Proposition 17.3 from left to right and Lemma 17.2 we may infer that
for every arrow term u of BCΓ there is a unique arrow term u′ of BCΓ in normal
form such that u = u′ in BCΓ. Note that we did not need this kind of uniqueness
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proposition to establish coherence. Note also that we did not establish this
uniqueness proposition by syntactical means, like confluence of term rewriting.
Instead we have a semantical uniqueness proposition, our Lemma 17.2, which
is semantical because it involves graphs. Establishing uniqueness semantically
may often be more easier than doing it syntactically. The paper [16] (Section 2.1
and Appendix A) considers uniqueness of normal form established via confluence
of term rewriting.

As an alternative to the style of proof of coherence of this paper there is
the style of the original paper of [26], which one finds also in [2]. This style
works for symmetric groups, and relies on the fact that in that case one can
establish that for the symmetric group Sn there are n! normal forms and n!
permutations. Then it is enough to establish that the map from the syntax for
Sn to permutations is onto, which means that every permutation is represented
by a term of Sn, i.e. a composition of generators. (We must also establish that
the map in question is a homomorphism, which means that every equation of
the syntax holds for permutations.) It follows then that the map is one-one.

This old style of argument seems however too complicated and chaotic in
the case of CΓ. It may work for a regularly chosen Γ, but Γ may be irregular,
and it is not clear with what the number n! can be replaced. It would be a
number lesser than or equal to n!, but it may change irregularly, and preclude
an inductive argument on n.

Since CΓ and BCΓ are isomorphic, we may establish Proposition 17.3 for
CΓ, and we call that proposition the Coherence of CΓ. (The graphs for CΓ are
obtained in an obvious manner through the isomorphism with BCΓ.)

18 CΓ and WOθ
u — Coherence of WOθ

u

Let us now show that WOθ
u may be conceived as a category CΓ. The atoms are

all the terms a · x and a · I of Ou. The objects of WOθ
u are the normal terms

of Ou, which may be identified with some words made of atoms. The set Γ is
made first of the arrow terms 1f for every object f of WOθ

u; here 1f stands for
f : f → f . Next we have in Γ all the arrow terms θh,a·x,b·y1j and θh,a·x,b·y of
WOθ

u; they stand for

h[a · x, b · y]j : h(a · x)(b · y)j → h(b · y)(a · x)j

and the same without j.
We use (ins 1), (ins 2), (θ1) and (θ2) to reduce every arrow term u of

WOθ
u to the form un ◦ . . . ◦u1 where each ui is either an identity f : f → f , or

θh,a·x,b·y1j, or θh,a·x,b·y. We check next that we have the equations of CΓ in

WOθ
u. We have of course u = u and the categorial equations. For (C1) we

use essentially (θ nat), for (C2) we use essentially (θ YB), and for (C3) we use
essentially (θθ); for all that we need also (ins 2). To show that, conversely, all
the equations ofWOθ

umay be derived from the CΓ assumptions is a consequence
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of the coherence of CΓ. Finally, we check easily that the set Γ of WOθ
u satisfies

condition (Γ) (see Section 16).
So WOθ

u is a CΓ category, and hence coherence for CΓ holds for it. But in
this particular case coherence for CΓ becomes the following.

Proposition 18.1. For every arrow terms u and v of WOθ
u of the same type

we have u = v in WOθ
u.

In other words, the category WOθ
u is a preorder. This proposition is a conse-

quence of the coherence of CΓ and of the fact that inWOθ
u the type of an arrow

term determines uniquely the graph. The reason for that is that in the set Γ of
WOθ

u we do not have h[a · x, a · x]j and h[a · x, a · x].
From Proposition 18.1 and the equivalence of WOu with WOθ

u we may
conclude that WOu is a preorder. From that and from Proposition 11.6 we
conclude that the category WOe is a preorder. This establishes the coherence
of our notion of weak Cat-operad of Section 12. This notion is coherent in the
same sense in which Mac Lane’ s notion of monoidal category and the notion of
bicategory are coherent. All diagrams of canonical arrows commute in it.
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