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Preface

This is a book in categorial (or categorical) proof theory, a field of general
proof theory at the border between logic and category theory. In this field
the language, more than the methods, of category theory is applied to proof-
theoretical problems. Propositions are construed as objects in a category,
proofs as arrows between these objects, and equations between arrows, i.e.
commuting diagrams of arrows, are found to have proof-theoretical mean-
ing. They provide a reasonable notion of identity of proofs by equating
derivations that are reduced to each other in a cut-elimination or normal-
ization procedure, or they may be involved in finding a unique normal form
for derivations.

To enter into categorial proof theory one crosses what should be the
watershed between proof theory and the rest of logic. We are not interested
any more in provability only—namely, in the existence of proofs—which
corresponds to a consequence relation between premises and conclusions.
We have instead a consequence graph, where there may be more than one
different proof with the same premise and the same conclusion. We describe
these apparently different proofs, code them by terms for arrows, and find
that some descriptions stand for the same proof, i.e. the same arrow, while
others do not. Our consequence graph is a category, often of a kind that
categorists have found important for their own reasons.

On the other hand, in categorial proof theory proof-theoretical, syntac-
tical, methods are applied to problems of category theory. These are mainly
methods of normalizing in the style of Gentzen or of the lambda calculus.
(In this book, confluence techniques like those in the lambda calculus domi-
nate in the first part, while cut elimination dominates in the second, bigger,
part.) This syntactical standpoint is something that many categorists do
not favour. Instead of dealing with language, they prefer to work as if
they dealt with the things themselves. We find that for some problems of
category theory, and in particular for so-called coherence problems, which
make the subject matter of this book, paying attention to language is of
great help.

The term “coherence” covers in category theory what from a logical
point of view would be called problems of completeness, axiomatizability
and decidability. Different authors put stress on different things. For our
own purposes we will fix a particular notion of coherence, which agrees
completely with Mac Lane’s usage of the term in [99], the primordial paper
on coherence.

In the 1960’s, at the same time when coherence started being investi-
gated in category theory, the connection between category theory and logic
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was established, mainly through Lawvere’s ideas (see [94]). The roots of
categorial proof theory date from the same years—they can be found in a
series of papers by Lambek: [84], [85], [86] and [87]. Lambek introduced
Gentzen’s proof-theoretical methods in category theory, which Mac Lane
and Kelly exploited in [81] to solve a major coherence problem (see also
[101]).

There are not many books in categorial proof theory. The early attempt
to present matters in [127] has shortcomings. Proofs are not systematically
coded by terms for arrows; only the sources and targets of arrows are men-
tioned most of the time, and too much work is left to the reader. Some
claims are excessively difficult to verify, and some are not correct (see [69],
[12], Section 3, and [14], Section 1). Lambek’s and Scott’s book [90] is
only partly about categorial proof theory and coherence, understood as a
decidability problem for equality of arrows in cartesian closed categories.
(Just a short chapter of [128], Chapter 8, touches upon this topic.) The
only remaining book in categorial proof theory we know about, [38], is de-
voted to showing that cut elimination characterizes fundamental notions of
category theory, in particular the notion of adjunction. Some parts of that
book (Sections 4.10 and 5.9) are about coherence.

Papers in categorial logic often touch upon this or that point of catego-
rial proof theory, but are not very often specifically within the field. And
even when they are within this field, some authors prefer to advertise their
work as “semantical”. It should be clear, however, that this is not seman-
tics in the established model-theoretical sense—the sense in which the word
was used in logic in the twentieth century. We find this semantics of proofs
more proof-theoretical than model-theoretical.

We will try to cover with the references in our book not the whole liter-
ature of categorial proof theory, but only papers relevant to the problems
treated. To acknowledge more direct influences, we would like, however, to
mention at the outset a few authors with whom we have been in contact,
and whose ideas are more or less close to ours.

First, Jim Lambek’s pioneering and more recent work has been for us, as
for many others, a source of inspiration. Max Kelly’s papers on coherence
(see [77], [78], [54] and [79]) are less influenced by logic, though logical
matters are implicit in them. Sergei Soloviev’s contributions to categorial
proof theory (see [118], [119] and [120]) and Djordje Čubrić’s (see [28], [29]
and [30]) are close to our general concerns, though they do not deal exactly
with the subject matter of this book; the same applies to some work of
Alex Simpson (in particular, [117]).

We extend Robert Seely’s and Robin Cockett’s categorial presentation
of a fragment of linear logic, based upon what they call linear, alias weak,
distribution (see [22]; other papers will be cited in the body of the book),
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which we call dissociativity. This is an associativity principle involving two
operations, which in the context of lattices delivers distribution. While
Cockett and Seely are concerned with dissociativity as it occurs in linear
logic, and envisage also applications in the study of intuitionistic logic, we
have been oriented towards the categorification of classical propositional
logic. The subtitle of our book could be “General proof theory of classical
propositional logic”. We would have put this subtitle were it not that
a great part of the book is about fragments of this proof theory, which
are fragments of the proof theory of other logics too, and are also of an
independent interest for category theory. Besides that, we are not sure our
treatment of negation in the last chapter is as conclusive as what precedes
it. (We also prefer a shorter and handier title.)

Proofs in the conjunctive-disjunctive fragment of logic, which is related
to distributive lattices, may, but need not, be taken to be the same in clas-
sical and intuitionistic logic, and they are better not taken to be the same.
Classical proof theory should be based on plural (multiple-conclusion) se-
quents, while intuitionistic proof theory, though it may be presented with
such sequents, is more often, and more naturally, presented with singular
(single-conclusion) sequents. By extending Cockett’s and Seely’s categorial
treatment of dissociativity, we present in the central part of the book a
categorification, i.e. a generalization in category theory, of the notion of
distributive lattice, which gives a plausible notion of identity of proofs in
classical conjunctive-disjunctive logic. This notion is related to Gentzen’s
cut-elimination procedure in a plural-sequent system. By building further
on that, at the end of the book we provide a plausible categorification of
the notion of Boolean algebra, which gives a nontrivial notion of identity
of proofs for classical propositional logic, also related to Gentzen.

It is usually considered that it is hopeless to try to categorify the notion
of Boolean algebra, because all plausible candidates based on the notion
of bicartesian closed category (i.e. cartesian closed category with finite co-
products) led up to now to equating all proofs with the same premises and
conclusions. In our Boolean categories, which are built on another base, this
is not the case. The place where in our presentation of the matter classical
and intuitionistic proof theory part ways is in understanding distribution.
In intuitionistic proof theory distribution of conjunction over disjunction is
an isomorphism, while distribution of disjunction over conjunction is not.
This is how matters stand in bicartesian closed categories. We take that in
classical proof theory neither of these distributions is an isomorphism, and
restore symmetry, typical for Boolean notions.

We reach our notion of Boolean category very gradually. This grad-
ual approach enables us to shorten calculations at latter stages. More-
over, along the way we prove coherence for various more general notions
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of category, entering into the notion of Boolean category or related to it.
Coherence is understood in our book as the existence of a faithful structure-
preserving functor from a freely generated category, built out of syntactical
material, into the category whose arrows are relations between finite ordi-
nals. This is a limited notion of coherence, and our goal is to explore the
limits of this particular notion within the realm of classical propositional
logic. We are aware that other notions of coherence exist, and that even
our notion can be generalized by taking another category instead of the
category whose arrows are relations between finite ordinals. These other
notions and these generalizations are, however, outside the confines of our
book, and we will mention them only occasionally (see, in particular, §12.5
and §14.3)

Mac Lane’s primordial coherence results for monoidal and symmetric
monoidal categories in [99] are perfectly covered by our notion of coher-
ence. When the image of the faithful functor is a discrete subcategory of
the category whose arrows are relations between finite ordinals, coherence
amounts to showing that the syntactical category is a preordering relation,
i.e. that “all diagrams commute”. This is the case sometimes, but not al-
ways, and not in the most interesting cases. Mac Lane’s coherence results
are scrutinized in our book, and new aspects of the matter are made mani-
fest. We also generalize previous results of [72] (Section 1) on strictification,
i.e. on producing equivalent categories where some isomorphisms are turned
into identity arrows. Our strictification is useful, because it facilitates the
recording of lengthy calculations.

For categories with dissociativity, which cover proofs in the multiplica-
tive conjunctive-disjunctive fragment of linear logic, and also proofs in the
conjunctive-disjunctive fragment of classical logic, we provide new coher-
ence results, and we prove coherence for our Boolean categories. These
coherence theorems, which are the main results of the book, yield a simple
decision procedure for the problem whether a diagram of canonical arrows
commutes, i.e. for the problem whether two proofs are identical.

The most original contribution of our book may be that we take into
account union, or addition, of proofs in classical logic. This operation on
proofs with the same premise and same conclusion is related to the mix
principle of linear logic. It plays an important role in our Boolean cate-
gories, and brings them close to linear algebra. Taking union of proofs into
account saves Gentzen’s cut-elimination procedure for classical logic from
falling into triviality, as far as identity of proofs is concerned. This modi-
fied cut elimination is the cornerstone of the proof of our main coherence
theorem for classical propositional logic.

We take into account also the notion of zero proof, a notion related to
union of proofs—a kind of dual of it. With union of proofs hom-sets become
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semilattices with unit, but we envisage also that they be just commutative
monoids, as in additive and abelian categories. Zero proofs, which are like
a leap from any premise to any conclusion, are mapped into the empty
relation in establishing coherence. Although they enable us to prove any-
thing as far as provability is concerned, they are conservative with respect
to the previously established identity of proofs in logic. We will show that
envisaging zero proofs is useful. It brings logic closer to linear algebra, and
facilitates calculations. We find also that the notion of zero proof may be
present in logic even when we do not allow passing from any premise to any
conclusion, but restrict ourselves to the types of the acceptable deductions
connecting premises and conclusions, i.e. stick to provability in classical
logic. Negation may be tied to such restricted zero proofs.

Zero proofs resemble what Hilbert called ideal mathematical objects,
like imaginary numbers or points at infinity. If our concern is not with
provability, but with proofs—namely, identity of proofs—zero proofs are
useful and harmless. We don’t think we have exhausted the advantages
of taking them into account in general proof theory. We believe, however,
we have fulfilled to a great extent the promises made in the programmatic
survey [40] (summarized up to a point in the first chapter of the book),
which provides further details about the context of our research.

We suppose our principal public should be a public of logicians, such as
we are, but we would like no less to have categorists as readers. So we have
strived to make our exposition self-contained, both on the logical and on
the categorial side. This is why we go into details that logicians would take
for granted, and into other details that categorists would take for granted.
Only for the introductory first chapter, whose purpose is to give motivation,
and for some asides, in particular at the very end, we rely on notions not
defined in the book, but in the standard logical and categorial literature.

We suppose that the results of this book should be interesting not only
for logic and category theory, but also for theoretical computer science. We
do not control very well, however, the quickly growing literature in this
field, and we will refrain from entering into it. We do not pretend to be
experts in that area. Some of the investigations of proofs of classical logic
that appeared since 1990 in connection with modal translations into linear
logic or with the lambda-mu calculus, in which the motivation, the style
and the jargon of computer science dominate, seem to be concerned with
identity of proofs, but it is not clear to us how exactly these concerns are
related to ours. We leave for others to judge.

This is more a research monograph than a textbook, but the text could
serve nevertheless as the base for a graduate course in categorial proof
theory. We provide after the final chapter a list of problems left open. To
assist the reader, we also provide at the end of the book a list of axioms
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and definitions, and a list of categories treated in the book (which are
quite numerous), together with charts for these categories indicating the
subcategory relations established by our coherence results.

We would like to thank in particular Alex Simpson and Sergei Soloviev
for encouraging and useful comments on the preprint of this book, which
was distributed since May 2004. We would like to thank also other col-
leagues who read this preprint and gave compliments on it, or helped us in
another manner.

Dov Gabbay was extremely kind to take care of the publishing of the
book. We are very grateful to him and to Jane Spurr for their efforts and
efficiency.

The results of this book were announced previously in a plenary lecture
at the Logic Colloquium in Münster in August 2002, and in a talk at the
International Congress MASSEE in Borovets in September 2003, with the
support of the Alexander von Humboldt Foundation. We are indebted to
Slobodan Vujošević and Milojica Jaćimović for the invitation to address the
Eleventh Congress of the Mathematicians of Serbia and Montenegro, held
in Petrovac in September 2004, with a talk introducing matters treated in
the book. We had the occasion to give such introductory talks also at the
Logic Seminar in Belgrade in the last two years and, thanks to Mariangiola
Dezani-Ciancaglini and the Types project of the European Union, at the
Types conference in Jouy-en-Josas in December 2004.

We would like to thank warmly the Mathematical Institute of the Ser-
bian Academy of Sciences and Arts in Belgrade and the Faculty of Phi-
losophy of the University of Belgrade for providing conditions in which we
could write this book. Our work was generously supported by a project of
the Ministry of Science of Serbia (1630: Representation of Proofs).

Belgrade, December 2004



CONTENTS

Preface i

Chapter 1. Introduction 1

§1.1. Coherence 1

§1.2. Categorification 6

§1.3. The Normalization Conjecture in general proof theory 10

§1.4. The Generality Conjecture 15

§1.5. Maximality 24

§1.6. Union of proofs and zero proofs 26

§1.7. Strictification 29

Chapter 2. Syntactical Categories 33

§2.1. Languages 34

§2.2. Syntactical systems 36

§2.3. Equational systems 39

§2.4. Functors and natural transformations 42

§2.5. Definable connectives 44

§2.6. Logical systems 47

§2.7. Logical categories 51

§2.8. C-functors 53

§2.9. The category Rel and coherence 59

Chapter 3. Strictification 65

§3.1. Strictification in general 65

§3.2. Direct strictification 78

§3.3. Strictification and diversification 84

Chapter 4. Associative Categories 87

§4.1. The logical categories K 88

§4.2. Coherence of semiassociative categories 89

§4.3. Coherence of associative categories 93

§4.4. Associative normal form 96

§4.5. Strictification of associative categories 98

§4.6. Coherence of monoidal categories 101

§4.7. Strictification of monoidal categories 103

vii



viii Contents

Chapter 5. Symmetric Associative Categories 107

§5.1. Coherence of symmetric associative categories 107

§5.2. The faithfulness of GH 110

§5.3. Coherence of symmetric monoidal categories 112

Chapter 6. Biassociative Categories 115

§6.1. Coherence of biassociative and bimonoidal categories 115

§6.2. Form sequences 117

§6.3. Coherence of symmetric biassociative categories 117

§6.4. Coherence of symmetric bimonoidal categories 119

§6.5. The category S′ 121

Chapter 7. Dissociative Categories 127

§7.1. Coherence of dissociative categories 128

§7.2. Net categories 132

§7.3. Coherence of net categories 133

§7.4. Net normal form 142

§7.5. Coherence of semidissociative biassociative categories 143

§7.6. Symmetric net categories 145

§7.7. Cut elimination in GDS 148

§7.8. Invertibility in GDS 156

§7.9. Linearly distributive categories 163

Chapter 8. Mix Categories 167

§8.1. Coherence of mix and mix-dissociative categories 167

§8.2. Coherence of mix-biassociative categories 169

§8.3. Coherence of mix-net categories 173

§8.4. Coherence of mix-symmetric net categories 176

§8.5. Coherence of mix-symmetric biassociative categories 182

Chapter 9. Lattice Categories 185

§9.1. Coherence of semilattice categories 185

§9.2. Coherence of cartesian categories 191

§9.3. Maximality of semilattice and cartesian categories 194

§9.4. Coherence of lattice categories 199

§9.5. Maximality of lattice categories 205

§9.6. Coherence for dicartesian and sesquicartesian categories 207

§9.7. Relative maximality of dicartesian categories 213



Contents ix

Chapter 10. Mix-Lattice Categories 219

§10.1. Mix-lattice categories and an example 219

§10.2. Restricted coherence of mix-lattice categories 223

§10.3. Restricted coherence of mix-dicartesian categories 227

Chapter 11. Distributive Lattice Categories 231

§11.1. Distributive lattice categories and their Gentzenization 232

§11.2. Cut elimination in D 246

§11.3. Coherence of distributive lattice categories 263

§11.4. Legitimate relations 268

§11.5. Coherence of distributive dicartesian categories 270

Chapter 12. Zero-Lattice Categories 275

§12.1. Zero-lattice and zero-dicartesian categories 276

§12.2. Coherence of zero-lattice and zero-dicartesian categories 282

§12.3. Maximality of zero-lattice and zero-dicartesian categories 285

§12.4. Zero-lattice and symmetric net categories 286

§12.5. Zero-identity arrows 287

Chapter 13. Zero-Mix Lattice Categories 295

§13.1. Coherence of zero-mix lattice categories 296

§13.2. Zero-mix lattice and distributive lattice categories 301

§13.3. Coherence of zero-mix dicartesian categories 304

§13.4. The category Semilat∗ 306

Chapter 14. Categories with Negation 309

§14.1. De Morgan coherence 310

§14.2. Boolean coherence 316

§14.3. Boolean categories 322

§14.4. Concluding remarks 328

Problems Left Open 331

List of Equations 332

List of Categories 345

Charts 354

Bibliography 359

Index 371





Chapter 1

Introduction

In this introductory chapter we provide in an informal manner motivation

for the main themes of the book, without giving an exhaustive summary of

its content (such summaries are provided at the beginning of every chapter).

A great deal of the chapter (§§1.3-6) is based on the survey [40].

While in the body of the book, starting from the next chapter, our

exposition, except for some asides, will be self-contained, both from a logical

and from a categorial point of view, here we rely on some acquaintance with

proof theory (which the reader may have acquired in classic texts like [60],

[111] and [82], Chapter 15, or in the more recent textbook [128]), and on

some notions of category theory (which may be found in [100] and [90]).

Many, but not all, of the notions we need for this introduction will be

defined later in the book.

To have read the present chapter is not essential for reading the rest of

the book. A reader impatient for more precision can move to Chapter 2,

where the book really starts, and return to this introduction later on.

§1.1. Coherence

It seems that what categorists call coherence logicians would, roughly speak-

ing, call completeness. This is the question whether we have assumed

for a particular brand of categories all the equations between arrows we

should have assumed. Completeness need not be understood here as com-

pleteness with respect to models. We may have a syntactical notion of

1
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completeness—something akin to the Post completeness of the classical

propositional calculus—but often some sort of model-theoretical complete-

ness is implicit in coherence questions. Matters are made more complicated

by the fact that categorists do not like to talk about syntax, and do not

perceive the problem as being one of finding a match between syntax and

semantics. They do not talk of formal systems, axioms and models.

Moreover, questions that logicians would consider to be questions of

decidability, which is not the same as completeness, are involved in what

categorists call coherence. A coherence problem often involves the question

of deciding whether two terms designate the same arrow, i.e. whether a

diagram of arrows commutes—we will call this the commuting problem—

and sometimes it may involve the question of deciding whether there is in

a category an arrow of a given type, i.e. with a given source and target—

we will call this the theoremhood problem (cf. [38], Sections 0.2 and 4.6.1).

Coherence is understood mostly as solving the commuting problem in [90]

(see p. 117, which mentions [84] and [85] as the origin of this understanding).

The commuting problem seems to be involved also in the understanding of

coherence of [79] (Section 10).

Completeness and decidability, though distinct, are, of course, not for-

eign to each other. A completeness proof with respect to a manageable

model may provide, more or less immediately, tools to solve decision prob-

lems. For example, the completeness proof for the classical propositional

calculus with respect to the two-element Boolean algebra provides imme-

diately a decision procedure for theoremhood.

The simplest coherence questions are those where it is intended that all

arrows of the same type should be equal, i.e. where the category envisaged

is a preorder. The oldest coherence problem is of that kind. This problem

has to do with monoidal categories, and was solved by Mac Lane in [99]

(where early related work by Stasheff and D.B.A. Epstein is mentioned; see

[122] for historical notes, and also [123], Appendix B, co-authored with S.

Shnider). The monoidal category freely generated by a set of objects is a

preorder. So Mac Lane could claim that showing coherence is showing that

“all diagrams commute”. We provide in Chapter 4 a detailed analysis of

Mac Lane’s coherence result for monoidal categories.

In cases where coherence amounts to showing preorder, i.e. showing that
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from a given set of equations, assumed as axioms, we can derive all equa-

tions (provided the equated terms are of the same type), from a logical

point of view we have to do with axiomatizability. We want to show that

a decidable set of axioms (and we wish this set to be as simple as possible,

preferably given by a finite number of axiom schemata) delivers all the in-

tended equations. If preorder is intended, then all equations are intended.

Axiomatizability is in general connected with logical questions of complete-

ness, and a standard logical notion of completeness is completeness of a set

of axioms. Where all diagrams should commute, coherence does not seem

to be a question of model-theoretical completeness, but even in such cases

it may be conceived that the model involved is a discrete category (cf. the

end of §2.9).
Categorists are interested in axiomatizations that permit extensions.

These extensions are in a new language, with new axioms, and such ex-

tensions of the axioms of monoidal categories need not yield preorders any

more. Categorists are also interested, when they look for axiomatizations,

in finding the combinatorial building blocks of the matter. The axioms are

such building blocks, as in knot theory the Reidemeister moves are the com-

binatorial building blocks of knot and link equivalence (see [97], Chapter 1,

or any other textbook in knot theory).

In Mac Lane’s second coherence result of [99], which has to do with

symmetric monoidal categories, it is not intended that all equations be-

tween arrows of the same type should hold. What Mac Lane does can be

described in logical terms in the following manner. On the one hand, he

has an axiomatization, and, on the other hand, he has a model category

where arrows are permutations; then he shows that his axiomatization is

complete with respect to this model. It is no wonder that his coherence

problem reduces to the completeness problem for the usual axiomatization

of symmetric groups.

Algebraists do not speak of axiomatizations, but of presentations by gen-

erators and relations. All the axiomatizations in this book will be purely

equational axiomatizations, as in algebraic varieties. Such were the axiom-

atizations of [99]. Categories are algebras with partial operations, and we

are here interested in the equational theories of these algebras.

In Mac Lane’s coherence results for monoidal and symmetric monoidal



4 CHAPTER 1. INTRODUCTION

categories one has to deal only with natural isomorphisms. Coherence ques-

tions in the area of n-categories are usually restricted likewise to natural

isomorphisms (see [96]). However, in the coherence result for symmetric

monoidal closed categories of [81] there are already natural and dinatural

transformations that are not isomorphisms.

A natural transformation is tied to a relation between the argument-

places of the functor in the source and the argument-places of the functor in

the target. This relation corresponds to a relation between finite ordinals,

and in composing natural transformations we compose these relations (see

§2.4 and §2.9). With dinatural transformations the matter is more compli-

cated, and composition poses particular problems (see [109]). In this book

we deal with natural transformations, and envisage only in some comments

coherence for situations where we do not have natural transformations. Our

general notion of coherence does not, however, presuppose naturality and

dinaturality.

Our notion of coherence result is one that covers Mac Lane’s and Kelly’s

coherence results mentioned up to now, but it is more general. We call

coherence a result that tells us that there is a faithful functor G from a cat-

egory S freely generated in a certain class of categories to a “manageable”

categoryM. This calls for some explanation.

It is desirable, though perhaps not absolutely necessary, that the func-

tor G be structure-preserving, which means that it preserves structure at

least up to isomorphism (see §1.7 below, and, in particular, §2.8). In all

coherence results we will consider, the functor G will preserve structure

strictly, i.e. “on the nose”. The categories S and M will be in the same

class of categories, and G will be obtained by extending in a unique way a

map from the generators of S intoM.

The categoryM ismanageable when equations of arrows, i.e. commuting

diagrams of arrows, are easier to consider in it than in S. The best is if the
commuting problem is obviously decidable inM, while it was not obvious

that it is such in S.
With our approach to coherence we are oriented towards solving the

commuting problem, and we are less interested in the theoremhood prob-

lem. In this book, we deal with the latter problem only occasionally, mostly

when we need to solve it in order to deal with the commuting problem (see
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§4.2, §7.1, §§7.3-5, §§8.2-3 and §11.4). This should be stressed because

other authors may give a more prominent place to the theoremhood prob-

lem. We find that the spirit of the theoremhood problem is not particularly

categorial: this problem can be solved by considering only categories that

are preorders. And ordinary, or perhaps less ordinary, logical methods for

showing decidability of theoremhood are here more useful than categorial

methods. For the categories in this book, the decidability of the theorem-

hood problem is shown by syntactical or semantical logical tools. Among

the latter we also have sometimes simply truth tables. We have used on

purpose the not very precise term “manageable” for the categoryM to leave

room for modifications of our notion of coherence, which would be oriented

towards solving another problem than the commuting problem. Besides the

theoremhood problem, one may perhaps also envisage something else, but

our official notion of coherence is oriented towards the commuting problem.

In this book, the manageable categoryM will be the category Rel with

arrows being relations between finite ordinals, whose connection with natu-

ral transformations we have mentioned above. The commuting problem in

Rel is obviously decidable. We do, however, consider briefly categories that

may replace Rel—in particular, the category whose arrows are matrices (see

§12.5).
The freely generated category S will be the monoidal category freely

generated by a set of objects, or the symmetric monoidal category freely

generated by a set of objects, or many others of that kind. The generating

set of objects may be conceived as a discrete category. In our understand-

ing of coherence, replacing this discrete generating category by an arbitrary

category would prevent us to solve coherence—simply because the commut-

ing problem in the arbitrary generating category may be undecidable. Far

from having more general, stronger, results if the generating category is

arbitrary, we may end up by having no result at all.

The categories S in this book are built ultimately out of syntactic mate-

rial, as logical systems are built. Categorists are not inclined to formulate

their coherence results in the way we do—in particular, they do not deal

often with syntactically built categories (but cf. [131], which comes close to

that). If, however, more involved and more abstract formulations of coher-

ence that may be found in the literature (for early references on this matter
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see [80]) have practical consequences for solving the commuting problem,

our way of formulating coherence has these consequences as well.

That there is a faithful structure-preserving functor G from the syntac-

tical category S to the manageable categoryM means that for all arrows

f and g of S with the same source and the same target we have

f = g in S iff Gf = Gg inM.

The direction from left to right in this equivalence is contained in the func-

toriality of G, while the direction from right to left is faithfulness proper.

If S is conceived as a syntactical system, while M is a model, the

faithfulness equivalence we have just stated is like a completeness result in

logic. The left-to-right direction, i.e. functoriality, is soundness, while the

right-to-left direction, i.e. faithfulness, is completeness proper.

In this book we will systematically separate coherence results involving

special objects (such as unit objects, terminal objects and initial objects)

from those not involving them. These objects tend to cause difficulties,

and the statements and proofs of the coherence results gain by having these

difficulties kept apart. When coherence is obtained both in the absence and

in the presence of special objects, our results become sharper.

§1.2. Categorification

By categorification one can understand, very generally, presenting a math-

ematical notion in a categorial setting, which usually involves generalizing

the notion and making finer distinctions. In this book, however, we have

something more specific in mind. We say that we have a categorification of

the notion of algebraic structure in which there is a preordering, i.e. reflex-

ive and transitive, relation R when we replace R with arrows in a category,

and obtain thereby a more general categorial notion instead of the initial

algebraic notion. If the initial algebraic structure is a completely free alge-

bra of terms, like the algebra of formulae of a propositional language, the

elements of the algebra just become objects in a free category in the class

of categories resulting from the categorification. Otherwise, some splitting

of the objects is involved in categorification.
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Categorification is not a technical notion we will rely on later, and so

we will not try to define it more precisely. What we have in mind should

be clear from the following examples.

By categorifying the algebra of formulae of conjunctive logic with the

constant true proposition, where the preordering relation R is induced by

implication, we may end up with the notion of cartesian category. We

may end up with the same notion by categorifying the notion of semilattice

with unit, where the relation R is the partial ordering of the semilattice.

A semilattice with unit is a cartesian category that is a partial order, i.e.

in which whenever we have arrows from a to b and vice versa, then a and

b are the same object. In the same sense, the notion of monoidal category

is a categorification of the notion of monoid, and the notion of symmet-

ric monoidal category is a categorification of the notion of commutative

monoid, the preordering relation R in these two cases being equality.

There are other conceptions of categorification except that one. One

may categorify an algebra by taking its objects to be arrows of a category.

The notion of category is a categorification in this sense of the notion of

monoid, monoids being categories with a single object. In that direction,

one obtains more involved notions of categorification in the n-categorial

setting (see [2] and [27]).

The motivation for categorification may be internal to category theory,

but it may come from other areas of mathematics, like algebraic topol-

ogy and mathematical physics—in particular, quantum field theory (many

references are given in [2]). Our motivation comes from proof theory, as

we will explain in latter sections of this introduction. We are replacing a

consequence relation, which is a preordering relation, by a category, where

arrows stand for proofs. In comparing our approach to others, note that

the slogan “Replace equality by isomorphisms!”, which is sometimes heard

in connection with categorification, does not describe exactly what we are

doing. Our slogan “Replace preorder by arrows!” implies, however, the

other one, and so the same categorial notions, like, for example, the notion

of monoidal category, may turn up under both slogans.

In this book one may find, in particular, categorifications, in our re-

stricted sense, of the notions of distributive lattice and Boolean algebra. Al-

ternatively, these may be taken as categorifications of conjunctive-disjunctive
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logic, or of the classical propositional calculus. Previously, a categorification

of the notion of distributive lattice was obtained with so-called distributive

categories, i.e. bicartesian categories with distribution arrows from a∧(b∨c)
to (a∧ b)∨ (a∧ c) that are isomorphisms (see [95], pp. 222-223 and Session

26, and [20]). Bicartesian closed categories, i.e. cartesian closed categories

with finite coproducts (see [90], Section I.8), are distributive categories in

this sense.

In our categorification of the notion of distributive lattice, distribution

arrows of the type above need not be isomorphisms. This rejection of

isomorphism is imposed by our wish to have coherence with respect to the

category Rel of the preceding section, since the relation underlying the

following diagram:

( a ∧ b ) ∨ ( a ∧ c )

a ∧ ( b ∨ c )

( a ∧ b ) ∨ ( a ∧ c )

@
@
Q
QQ
����

�
�

�
�
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�
��

A
A

namely the relation underlying the diagram on the left-hand side below, is

not the identity relation underlying the diagram on the right-hand side:

( a ∧ b ) ∨ ( a ∧ c )

( a ∧ b ) ∨ ( a ∧ c )

PPPPPP

������

( a ∧ b ) ∨ ( a ∧ c )

( a ∧ b ) ∨ ( a ∧ c )

Our categorification of the notion of distributive lattice is based on

arrows from a ∧ (b ∨ c) to (a ∧ b) ∨ c, which Cockett and Seely studied in

their categorial treatment of a fragment of linear logic (see [22]; further

references are given in §7.1 and §7.9). At first, they called the principle

underlying these arrows weak distribution, and then changed this to linear

distribution in [25]. Since this is a principle that delivers distribution in the

context of lattices, but is in fact an associativity involving two operations,

we have coined the name dissociativity for it, to prevent confusion with

what is usually called distribution. Cockett and Seely were concerned with
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establishing some sort of coherence for dissociativity with respect to proof

nets.

Before appearing in proof nets and in categories, dissociativity was pre-

figured in universal algebra and logic (see §7.1 for references). Dissociativ-

ity is related to the modularity law of lattices (see §7.1), and we will see

in §11.3 how in a context that is a categorification of the notion of lattice

this two-sorted associativity delivers distribution arrows of the usual types,

from a ∧ (b ∨ c) to (a ∧ b) ∨ (a ∧ c) and from (a ∨ b) ∧ (a ∨ c) to a ∨ (b ∧ c)
(the arrows of the converse types are there anyway), of which neither need

to be an isomorphism. The arrows from (a∨ b)∧ (a∨ c) to a∨ (b∧ c) need
not be isomorphisms in bicartesian closed categories too.

The categorification of the notion of Boolean algebra is usually deemed

to be a hopeless task (see §14.3), because it is assumed this categorifica-

tion should be based on the notion of bicartesian closed category. In that

notion, as we said above, we have arrows corresponding to distribution of

conjunction over disjunction that are isomorphisms. Natural assumptions

in this context lead to triviality, i.e. to categories that are preorders. Our

categorification of the notion of Boolean algebra is not trivial in this sense.

It incorporates the notion of bicartesian category (i.e. category with finite

products and coproducts), but does not admit cartesian closure. Its essen-

tial ingredient is our categorification of distributive lattices, in which the

arrows corresponding to distribution of conjunction over disjunction are not

isomorphisms.

We think it is a prejudice to assume that there must be an isomorphism

behind distribution of conjunction over disjunction. It would likewise be

a prejudice to assume that behind the idempotency law a ∧ a = a or the

absorption law a ∧ (a ∨ b) = a of lattices we must have isomorphisms. The

categorification of the notion of lattice in bicartesian categories is not under

the spell of the latter two assumptions, but the isomorphism correspond-

ing to distribution of conjunction over disjunction is usually presupposed.

This is presumably because in the category Set of sets with functions—the

central category there is—distribution of cartesian product over disjoint

union is an isomorphism. In the categorification of the notion of distribu-

tive lattice with distributive categories, where a ∧ (b ∨ c) is isomorphic

to (a ∧ b) ∨ (a ∧ c), it is not required that a ∨ (b ∧ c) be isomorphic to
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(a∨ b)∧ (a∨ c), presumably because the latter isomorphism need not exist

in Set. We assume neither of these isomorphisms in our categorification of

the notion of distributive lattice.

§1.3. The Normalization Conjecture in general proof
theory

Categorification is interesting for us because of its connection with general

proof theory. The question “What is a proof?” was considered by Prawitz

in [112] (Section I) to be the first question of general proof theory. To

keep up with the tradition, we speak of “proof”, though we could as well

replace this term by the more precise term “deduction”, since we have in

mind deductive proofs from assumptions (including the empty collection

of assumptions). Together with the question “What is a proof?”, Prawitz

envisaged the following as one of the first questions to be considered in

general proof theory (see [112], p. 237):

In the same way as one asks when two formulas define the same

set or two sentences express the same proposition, one asks when

two derivations represent the same proof; in other words, one

asks for identity criteria for proofs or for a “synonymity” (or

equivalence) relation between derivations.

An answer to the question of identity criteria for proofs might lead to

an answer to the basic question “What is a proof?”. A proof would be the

equivalence class of a derivation. The related question “What is an algo-

rithm?” could be answered by an analogous factoring through an equiv-

alence relation on representations of algorithms. (Moschovakis stressed in

[107], Section 8, the fundamental interest of identity criteria for algorithms.)

Prawitz did not only formulate the question of identity criteria for proofs

very clearly, but also proposed a precise mathematical answer to it.

Prawitz considered derivations in natural deduction systems and the

equivalence relation between derivations that is the reflexive, transitive and

symmetric closure of the immediate-reducibility relation between deriva-

tions. Of course, only derivations with the same premises and the same

conclusion may be equivalent. Prawitz’s immediate-reducibility relation is
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the one involved in reducing a derivation to normal form—a matter he

studied previously in [111]. As it is well known, the idea of this reduc-

tion stems from Gentzen’s thesis [60]. A derivation reduces immediately

to another derivation (see [112], Section II.3.3) when the latter is obtained

from the former either by removing a maximum formula (i.e. a formula

with a connective α that is the conclusion of an introduction of α and the

major premise of an elimination of α), or by performing one of the permuta-

tive reductions tied to the eliminations of disjunction and of the existential

quantifier, which enables us to remove what Prawitz calls maximum seg-

ments. There are some further reductions, which Prawitz called immediate

simplifications; they consist in removing eliminations of disjunction where

no hypothesis is discharged, and there are similar immediate simplifica-

tions involving the existential quantifier, and “redundant” applications of

the classical absurdity rule. Prawitz also envisaged reductions he called

immediate expansions, which lead to the expanded normal form where all

the minimum formulae are atomic (minimum formulae are those that are

conclusions of eliminations and premises of introductions).

Prawitz formulates in [112] (Section II.3.5.6) the following conjecture,

for which he gives credit (in Section II.5.2) to Martin-Löf, and acknowledges

influence by ideas of Tait:

Conjecture. Two derivations represent the same proof if and

only if they are equivalent.

We call this conjecture the Normalization Conjecture.

This conjecture, together with another conjecture, which will be con-

sidered in the next section, was examined in the survey [40]. The present

section and the next three sections give an updated, somewhere shortened

and somewhere expanded, variant of that survey, to which we refer for fur-

ther, especially historical and philosophical, remarks. (Some other bits of

that survey are in §14.3, where a mistaken statement is also corrected at

the end of the section.)

The normalization underlying the Normalization Conjecture need not

be understood always in the precise sense envisaged by Prawitz. For intu-

itionistic logic Prawitz’s understanding of normalization, which is derived

from Gentzen, is perhaps optimal. There are, however, other logics, and,
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in particular, there is classical logic, to which natural deduction is not so

closely tied, and for which we may still have a notion of normalization,

perhaps related to Prawitz’s, but different. What comes to mind immedi-

ately for classical logic is Gentzen’s plural, i.e. multiple-conclusion, sequent

systems (see below) and cut elimination for them.

Presumably, the notion of normalization we can envisage in the Nor-

malization Conjecture cannot be based on an arbitrary notion of normal

form. It is desirable that this normal form be unique, at least up to some

superficial transformations (like alpha conversion in the lambda calculus).

But uniqueness should not be enough. This normal form and the lan-

guage for which it is formulated must be significant, where it is difficult to

say what “significant” means exactly. The normal form and the language

for which it is formulated should not be just a technical device, but they

must be deeply tied to the logic, and exhibit its essential features. In the

case of Prawitz’s normal form for derivations in intuitionistic natural de-

duction, besides philosophical reasons having to do with the meaning of

logical connectives, there are important ties with independently introduced

mathematical structures.

The Normalization Conjecture was formulated by Prawitz at the time

when the Curry-Howard correspondence between derivations in natural de-

duction and typed lambda terms started being recognized more and more

(though the label “Curry-Howard” was not yet canonized). Prawitz’s equiv-

alence relation between derivations corresponds to beta-eta equality be-

tween typed lambda terms, if immediate expansions are taken into account,

and to beta equality otherwise.

Besides derivations in natural deduction and typed lambda terms, where

according to the Curry-Howard correspondence the latter can be conceived

just as codes for the former, there are other, more remote, formal repre-

sentations of proofs. There are first Gentzen’s sequent systems, which are

related to natural deduction, but are nevertheless different, and there are

also representations of proofs as arrows in categories. The sources and

targets of arrows are taken to be premises and conclusions respectively,

and equality of arrows with the same source and target, i.e. commuting

diagrams of arrows, should now correspond to identity of proofs via a con-

jecture analogous to the Normalization Conjecture.
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The fact proved by Lambek (see [87] and [90], Part I; see also [39],

[37] and [43]) that the category of typed lambda calculuses with functional

types and finite product types, based on beta-eta equality, is equivalent to

the category of cartesian closed categories, and that hence equality of typed

lambda terms amounts to equality between arrows in cartesian closed cat-

egories, lends additional support to the Normalization Conjecture. Equal-

ity of arrows in bicartesian closed categories corresponds to equivalence of

derivations in Prawitz’s sense in full intuitionistic propositional logic (see

[109], Section 3, for a detailed demonstration that the equations of bicarte-

sian closed categories deliver cut elimination for intuitionistic propositional

logic). The notion of bicartesian closed category is a categorification in the

sense of the preceding section of the notion of Heyting algebra. The partial

order of Heyting algebras is replaced by arrows in this categorification.

In category theory, the Normalization Conjecture is tied to Lawvere’s

characterization of the connectives of intuitionistic logic by adjoint situa-

tions. Prawitz’s equivalence of derivations, in its beta-eta version, corre-

sponds to equality of arrows in various adjunctions tied to logical connec-

tives (see [94], [38], Section 0.3.3, [41] and [39]). Adjunction is the unifying

concept for the reductions envisaged by Prawitz.

The fact that equality between lambda terms, as well as equality of

arrows in cartesian closed categories, were first conceived for reasons inde-

pendent of proofs is remarkable. This tells us that we are in the presence

of a solid mathematical structure, which may be illuminated from many

sides.

Prawitz formulated the Normalization Conjecture having in mind nat-

ural deduction, and so mainly intuitionistic logic. For classical logic we

envisage something else. Our categorification of the notion of Boolean al-

gebra, as the categorification of the notion of Heyting algebra with bicarte-

sian closed categories, covers a notion of identity of proofs suggested by

normalization via cut elimination in a plural-sequent system (see Chapters

11 and 14). This is in spite of the fact that for us distribution of conjunc-

tion over disjunction does not give rise to isomorphisms, as in bicartesian

closed categories. This disagreement over the isomorphism of distribution

may be explained as follows.
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Classical and intuitionistic logic do not differ with respect to the conse-

quence relation between formulae in the conjunction-disjunction fragment

of propositional logic. In other words, they do not differ with respect to

provable sequents of the form A ⊢ B where A and B are formulae of the

conjunction-disjunction fragment. But, though these two logics do not

differ with respect to provability, they may differ with respect to proofs.

The standard sequent formulation of classical logic, the formulation that

imposes itself by its symmetry and regularity, is based on plural sequents

Γ ⊢ ∆, where ∆ may be a collection with more than one formula, whereas

the standard sequent formulation of intuitionistic logic is based on singular,

i.e. single-conclusion, sequents Γ ⊢ ∆, where ∆ cannot have more than one

formula, while Γ can. There are presentations of intuitionistic logic with

plural sequents (see [103] and [32], Section 5C4, with detailed historical

remarks on pp. 249-250; cf. also [31], where the idea is already present),

but they are not standard, and they do not correspond to natural deduc-

tion, as those with singular sequents do. Moreover, in these plural-sequent

formulations of intuitionistic logic, a restriction based on singularity is kept

for introduction of implication on the right-hand side, which corresponds

to the deduction theorem. The deduction theorem enables the deductive

metalogic to be mirrored with the help of implication in the object lan-

guage, and when it comes to this mirroring, plural-sequent formulations of

intuitionistic logic avow that their deductive metalogic is based on singular

sequents.

The connection of intuitionistic logic with natural deduction, where

there are possibly several premises, but never more than one conclusion,

goes very deep. There are many reasons to hold that the meaning of intu-

itionistic connectives is explained in the framework of natural deduction,

as suggested by Gentzen (see [60], Section II.5.13). Singular sequents are

asymmetric, i.e. they have a plurality of premises versus a single conclusion.

The asymmetries of intuitionistic logic, and, in particular, the asymmetry

between conjunction and disjunction, can be explained by the asymmetry of

singular sequents that underly this logic. One can suppose that the asym-

metry of bicartesian closed categories, which consists in having a ∧ (b ∨ c)
isomorphic to (a ∧ b) ∨ (a ∧ c) without having a ∨ (b ∧ c) isomorphic to

(a ∨ b) ∧ (a ∨ c), has the same roots.
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The dissociativity principle of the arrow that goes from a ∧ (b ∨ c) to

(a ∧ b) ∨ c (see §1.2 and §7.1) delivers arrows that go from a ∧ (b ∨ c) to

(a ∧ b) ∨ (a ∧ c) and from (a ∨ b) ∧ (a ∨ c) to a ∨ (b ∧ c) (see §11.3; we have

arrows of the converse types without assuming distribution), but neither

of these arrows need to be isomorphisms. So symmetry, which is typical

for Boolean notions, is restored. (Another possibility to restore symmetry

would be to take that a∧(b∨c) is isomorphic to (a∧b)∨(a∧c) and a∨(b∧c)
is isomorphic to (a ∨ b) ∧ (a ∨ c), which is not the case in Set, but we will

not explore that possibility in this book.)

The dissociativity principle, which is an essential ingredient of our cat-

egorification of the notions of distributive lattice and Boolean algebra, is

built into the plural-sequent formulation of classical logic. It is tied to the

cut rule of plural sequents (see §11.1, and also §7.7).
Prawitz envisaged the Normalization Conjecture for classical logic, but

in a natural deduction formulation, i.e. with singular sequents. This is not

the same as considering this conjecture with plural sequents.

§1.4. The Generality Conjecture

At the same time when Prawitz formulated the Normalization Conjecture,

in a series of papers ([84], [85], [86] and [87]) Lambek was engaged in a

project where arrows in various sorts of categories were construed as repre-

senting proofs. The source of an arrow corresponds to the premise, and the

target to the conclusion. (Proofs where there is a finite number of premises

different from one are represented by proofs with a single premise with

the help of connectives like conjunction and the constant true proposition.)

With this series of papers Lambek inaugurated the field of categorial proof

theory.

The categories Lambek considered in [84] and [85] are first those that

correspond to his substructural syntactic calculus of categorial grammar

(these are monoidal categories where the functors a⊗ . . . and . . .⊗ a have

right adjoints). Next, he considered monads, which besides being funda-

mental for category theory, cover proofs in modal logics of the S4 kind. In

[86] and [87], Lambek dealt with cartesian closed categories, which cover

proofs in the conjunction-implication fragment of intuitionistic logic. He
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also envisaged bicartesian closed categories, which cover the whole of intu-

itionistic propositional logic.

Lambek’s insight is that equations between arrows in categories, i.e.

commuting diagrams of arrows, guarantee cut elimination, i.e. composition

elimination, in an appropriate language for naming arrows. (In [38] it is

established that for some basic notions of category theory, and in particular

for the notion of adjunction, the equations assumed are necessary and suf-

ficient for composition elimination.) Since cut elimination is closely related

to Prawitz’s normalization of derivations, the equivalence relation envis-

aged by Lambek should be related to Prawitz’s. (An early presentation of

the connection between Prawitz and Lambek is in [105].)

The normalization of cut elimination does not involve only eliminating

cuts, but also equations between cut-free terms for arrows, which may guar-

antee their uniqueness. (This is like adding the eta equations to the beta

equations in the typed lambda calculus and natural deduction.)

Lambek’s work is interesting not only because he worked with an equiva-

lence relation between derivations amounting to Prawitz’s, but also because

he envisaged another kind of equivalence relation. Lambek’s idea is best

conveyed by considering the following example. In [86] (p. 65) he says that

the first projection arrow
∧
k1p,p: p ∧ p ⊢ p and the second projection arrow

∧
k2p,p: p∧ p ⊢ p, which correspond to two derivations of conjunction elimina-

tion, have different generality, because they generalize to
∧
k1p,q: p∧q ⊢ p and

∧
k2p,q: p∧ q ⊢ q respectively, and the latter two arrows do not have the same

target; on the other hand,
∧
k1p,q: p∧ q ⊢ p and

∧
k2q,p: q∧ p ⊢ p do not have the

same source. The idea of generality may be explained roughly as follows.

We consider generalizations of derivations that diversify variables without

changing the rules of inference. Two derivations have the same generality

when every generalization of one of them leads to a generalization of the

other, so that in the two generalizations we have the same premise and

conclusion (see [84], p. 257). In the example above, this is not the case.

Generality induces an equivalence relation between derivations. Two

derivations are equivalent if and only if they have the same generality.

Lambek does not formulate so clearly as Prawitz a conjecture concerning

identity criteria for proofs, but he suggests that two derivations represent
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the same proof if and only if they are equivalent in the new sense. We will

call this conjecture the Generality Conjecture.

Lambek’s own attempts at making the notion of generality precise (see

[84], p. 316, where the term “scope” is used instead of “generality”, and

[85], pp. 89, 100) need not detain us here. In [86] (p. 65) he finds that these

attempts were faulty.

The simplest way to understand generality is to use graphs whose ver-

tices are occurrences of propositional letters in the premise and the con-

clusion of a derivation. We connect by an edge occurrences of letters that

must remain occurrences of the same letter after generalizing, and do not

connect those that may become occurrences of different letters. So for the

first and second projection above we would have the two graphs

∧ ∧p
∧
k1p,p

p p
∧
k2p,p

p

p p
@@ ��

When the propositional letter p is replaced by an arbitrary formula A we

have an edge for each occurrence of propositional letter in A.

The generality of a derivation is such a graph. According to the Gener-

ality Conjecture, the first and second projection derivations from p ∧ p to

p represent different proofs because their generalities differ.

One defines an associative composition of such graphs, and there is also

an obvious identity graph with straight parallel edges, so that graphs make

a category, which we call the graphical category. If on the other hand it

is taken for granted that proofs also make a category, which we will call

the syntactical category, with composition of arrows being composition of

proofs, and identity arrows being identity proofs (an identity proof com-

posed with any other proof, either on the side of the premise or on the side

of the conclusion, is equal to this other proof), then the Generality Con-

jecture may be rephrased as the assertion that there is a faithful functor

from the syntactical category to the graphical category. So the Generality

Conjecture is analogous to a coherence theorem of category theory. The

manageable category is a graphical category.

The coherence result of [81] proves the Generality Conjecture for the
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multiplicative conjunction-implication fragment of intuitionistic linear logic

(modulo a condition concerning the multiplicative constant true proposi-

tion, i.e. the unit with respect to multiplicative conjunction), and, inspired

by Lambek, it does so via a cut-elimination proof. The syntactical category

in this case is a free symmetric monoidal closed category, and the graphical

category is of a kind studied in [54]. The graphs of this graphical category

are closely related to the tangles of knot theory. In tangles, as in braids, we

distinguish between two kinds of crossings, but here we need just one kind,

in which it is not distinguished which of the two crossed edges is above

the other. (For categories of tangles see [134], [129] and [73], Chapter 12.)

Tangles with this single kind of crossing are like graphs one encounters in

Brauer algebras (see [15] and [132]). Here is an example of such a tangle:

�
�
�
�
�
�
�
�
�

����
� �

(p ⊗ (q ⊗ (r → r)))⊗ (s → s)

((p → q) ⊗ p) ⊗ p

Tangles without crossings at all serve in [38] (Section 4.10; see also [42])

to obtain a coherence result for the general notion of adjunction, which

according to Lawvere’s Thesis underlies all the connectives of intuitionistic

logic, as we mentioned in the preceding section. In terms of combinatorial

low-dimensional topology, the mathematical content of the general notion

of adjunction is caught by the Reidemeister moves of planar ambient iso-

topy. An analogous coherence result for self-adjunctions, where a single

endofunctor is adjoint to itself, is proved in [49]. Through this latter result

we reach the theory of Temperley-Lieb algebras, which play a prominent

role in knot theory and low-dimensional topology, due to Jones’ represen-

tation of Artin’s braid groups in these algebras (see [74], [97], [110] and

references therein).

In [49] one finds also coherence results for self-adjunctions where the

graphical category is the category of matrices, i.e. the skeleton of the cate-

gory of finite-dimensional vector spaces over a fixed field with linear trans-
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formations as arrows. Tangles without crossings may be faithfully repre-

sented in matrices by a representation derived from the orthogonal group

case of Brauer’s representation of Brauer algebras (see also [132], Section 3,

and [70], Section 3). This representation is based on the fact that the

Kronecker product of matrices gives rise to a self-adjoint functor in the cat-

egory of matrices, and this self-adjointness is related to the fact that in this

category, as well as in the category Rel, whose arrows are binary relations

between finite ordinals, finite products and coproducts are isomorphic.

Graphs like graphs of the tangle type were tied to sequent derivations of

classical logic in [18] and [19], but without referring to categories, coherence

or the question of identity criteria for proofs.

In [108] there are several coherence results, which extend [99], for the

multiplicative-conjunction fragments of substructural logics. But less us

concentrate now on coherence results for classical and intuitionistic logic.

The Normalization Conjecture and the Generality Conjecture agree only

for limited fragments of these two logics. They agree for purely conjunctive

logic, with or without the constant true proposition ⊤ (see [46] and §§9.1-2
below). Proofs in conjunctive logic are the same for classical and intu-

itionistic logic. Here the Normalization Conjecture is taken in its beta-eta

version. By duality, the two conjectures agree for purely disjunctive logic,

with or without the constant absurd proposition ⊥. If we have both con-

junction and disjunction, but do not yet have distribution, and have neither

⊤ nor ⊥, then the two conjectures still agree for both logics, provided the

graphical category is the category Rel whose arrows are relations between

finite ordinals (see [48] and §9.4). And here it seems we have reached the

limits of agreement as far as intuitionistic logic is concerned. With more

sophisticated notions of graphs, matters may stand differently, and the area

of agreement for the two conjectures may perhaps be wider, but it can be

even narrower, as we will see below.

It may be questioned whether the intuitive idea of generality is caught by

the category Rel in the case of conjunctive-disjunctive logic. The problem is

that if
∧
wp: p ⊢ p∧p is a component of the diagonal natural transformation,

and
∨
k1q,p: q ⊢ q∨p is a first injection, then in categories with finite products
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and coproducts we have

(1q∨
∧
wp) ◦

∨
k1q,p =

∨
k1q,p∧p,

where the left-hand side cannot be further generalized, but the right-hand

side can be generalized to
∨
k1q,p∧r. The intuitive idea of generality seems to

require that in
∧
wp: p ⊢ p∧p we should not have only a relation between the

domain and the codomain, as on the left-hand side below, but an equiv-

alence relation on the union of the domain and the codomain, as on the

right-hand side:

��
�
�
A
A

�
�
A
A

p ∧ p p ∧ p

p p

(see [50], and also [51]). With such equivalence relations, we can still get co-

herence for conjunctive logic, and for disjunctive logic, taken separately, but

for conjunctive-disjunctive logic the left-to-right direction, i.e. the sound-

ness part, of coherence would fail (see §14.3). So for conjunctive-disjunctive

logic the idea of generality with which we have coherence is not quite the

intuitive idea suggested by Lambek, but only something close to it, which

involves the categorial notion of natural transformation (cf. the end of

§14.3).
Even when we stay within the confines of the category Rel, our un-

derstanding of generality does not match exactly the intuitive notion of

generality for conjunctive-disjunctive logic. Intuitively, the relations R of

Rel corresponding to generality should satisfy difunctionality in the sense of

[114]; namely, we should have R ◦R−1 ◦R ⊆ R. But this requirement is not

satisfied for our images in Rel under G of proofs in conjunctive-disjunctive

logic, even in the absence of distribution (see the end of §14.3). Generality

is caught by Rel only for fragments of logic. Altogether, generality serves

only as a loose motivation for taking Rel as our graphical category. Real

grounds for Rel are in the notion of natural transformation, which has to

do with permuting rules in derivations.

The Normalization Conjecture and the Generality Conjecture agree nei-

ther for the conjunction-disjunction fragment of intuitionistic logic with ⊤
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and ⊥ (see [47] and §9.6), nor for the conjunction-implication fragment of

this logic. We do not have coherence for cartesian closed categories if the

graphs in the graphical category are taken to be of the tangle type Kelly

and Mac Lane had for symmetric monoidal closed categories combined with

the graphs we have in Rel for cartesian categories—both the soundness part

and the completeness part of coherence fail (for soundness see a counterex-

ample in §14.3, with ¬p ∨ p replaced by p → p, and for completeness see

[125]). The soundness part of coherence fails also for distributive bicartesian

categories, and a fortiori for bicartesian closed categories. The problem is

that in these categories distribution of conjunction over disjunction is taken

to be an isomorphism, and Rel does not deliver that, as we have seen in

§1.2.
The problem with the soundness part of coherence for cartesian closed

categories may be illustrated with typed lambda terms in the following

manner. By beta conversion and alpha conversion, we have the following

equation:

λx⟨x, x⟩λyy = ⟨λyy, λzz⟩

for y and z of type p, and x of type pp (which corresponds to p→ p). The

closed terms on the two sides of this equation are both of type pp×pp. The
type of the term on the left-hand side cannot be further generalized, but

the type of the term ⟨λyy, λzz⟩, can be generalized to pp×qq. The problem
noted here does not depend essentially on the presence of surjective pairing

⟨ , ⟩ and of product types; it arises also with purely functional types. This

problem depends essentially on the multiple binding of variables, which we

have in λx⟨x, x⟩; that is, it depends on the structural rule of contraction.

This throws some doubt on the right-to-left direction of the Normalization

Conjecture, which Prawitz found relatively unproblematic. It might be

considered strange that two derivations represent the same proof if, without

changing inference rules, one can be generalized in a manner in which the

other cannot be generalized.

The area of agreement between the Normalization Conjecture and the

Generality Conjecture may be wider for classical logic, provided normaliza-

tion is understood in the sense of cut elimination for plural sequent systems

and generality is understood in the sense of the category Rel. It extends
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first to conjunctive-disjunctive logic without distribution (see [48] and §9.4
below). Next, in conjunctive-disjunctive logic with distribution, with or

without ⊤ and ⊥, the agreement also holds (see Chapter 11). And it covers

also the whole classical propositional calculus, with a particular way of un-

derstanding normalization involving zero proofs (see §1.6 and §§14.2-3). We

do not pretend this particular way of understanding normalization in the

presence of negation is the only possible one, but in the absence of negation

we feel pretty secure, and the match between the two conjectures is indeed

very good. Gentzen’s cut elimination procedure for plural-sequent systems

needs only to be modified in a natural way by admitting union of proofs, a

rule that in this context amounts to the mix rule of linear logic (see Chap-

ters 8 and 10). Admitting union of proofs saves Gentzen’s cut-elimination

procedure from falling into preorder and triviality. Our cut-elimination pro-

cedure differs also from Gentzen’s in the way how it treats the structural

rule of contraction, but in this respect it is more in the spirit of Gentzen.

(We will point down at appropriate places in §§11.1-2 how our procedure

is related to Gentzen’s.)

Zero proofs (which were mentioned already in the preface) come up with

negation. Their appearance is imposed by our wish to have coherence with

respect to Rel. With other graphical categories they may disappear, but at

the cost of many problems (which we discuss in §14.3). In particular, the

match between the Normalization and the Generality Conjectures would

be impaired (see §14.3). The price we have to pay with our categorification

of the notion of Boolean algebra is that not all connectives will be tied

to adjoint functors, as required by Lawvere. Conjunction and disjunction

are tied to the usual adjunctions with the diagonal functor (the product

bifunctor is right-adjoint to the diagonal functor, and the coproduct bifunc-

tor is left-adjoint to the diagonal functor), but distribution is an additional

matter, not delivered by these adjunctions, and classical negation and impli-

cation do not come with the usual adjunctions. (There are perhaps hidden

adjunctions of some kind here.) Another price we have to pay with zero

proofs is that all theorems, i.e. all propositions proved without hypotheses,

will have zero proofs. So the theorems of classical propositional logic, in

contradistinction to their intuitionistic counterparts, do not serve to encode

the deductive metatheory of classical propositional logic. This metatheory
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exists, nevertheless, and its categorification is not given by categories that

are preorders.

When we compare the two conjectures we should say something about

their computational aspects. With the Normalization Conjecture we have

to rely in intuitionistic logic on reduction to a unique normal form in

the typed lambda calculus in order to check equivalence of derivations in

the conjunction-implication fragment of intuitionistic propositional logic.

Nothing more practical than that is known, and such syntactical methods

may be tiresome. Outside of the conjunction-implication fragment, in the

presence of disjunction and negation, such methods become uncertain.

Methods for checking equivalence of derivations in accordance with the

Generality Conjecture, i.e. methods suggested by coherence results, often

have a clear advantage. This is like the advantage truth tables have over

syntactical methods of reduction to normal form in order to check tauto-

logicality. However, the semantical methods delivered by coherence results

have this advantage only if the graphical category is simple enough, as our

category Rel is. When we enter into categories suggested by knot the-

ory, this simplicity may be lost. Then, on the contrary, syntax may help

us to decide equality in the graphical category. The Normalization Con-

jecture has made a foray in theoretical computer science, in the area of

typed programming languages. It is not clear whether one could expect the

Generality Conjecture to play a similar role.

The reflexive and transitive closure of the immediate-reducibility rela-

tion involved in normalization may be deemed more important than the

equivalence relation engendered by immediate reducibility, which we have

considered up to now. This matter leads outside our topic, which is identity

of proofs, but it is worth mentioning. We may “categorify” the identity re-

lation between proofs, and consider not only other relations between proofs,

but maps between proofs. The proper framework for doing that seems to

be the framework of weak 2-categories, where we have 2-arrows between

arrows; or we could even go to n-categories, where we have n+1-arrows be-

tween n-arrows (one usually speaks of cells in this context). Composition of

1-arrows is associative only up to a 2-arrow isomorphism, and analogously

for other equations between 1-arrows. Identity of 1-arrows is replaced by

2-arrows satisfying certain coherence conditions. In the context of the Gen-
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erality Conjecture, we may also find it natural to consider 2-arrows instead

of identity. The orientation would here be given by passing from a graph

with various “detours” to a graph that is more “straight”, which need not

be taken any more as equal to the original graph.

With all this we would enter into a very lively field of category theory,

interacting with other disciplines, mainly topology (see [96] and papers cited

therein). The field looks very promising for general proof theory, both from

Prawitz’s and from Lambek’s point of view, but, as far as we know, it has

not yet yielded to proof theory much more than promises.

§1.5. Maximality

The fragments of logic mentioned in the preceding section where the Nor-

malization Conjecture and the Generality Conjecture agree for intuitionistic

logic all possess a property called maximality. Let us say a few words about

this important property.

For the whole field of general proof theory to make sense, and in partic-

ular for considering the question of identity criteria for proofs, we should

not have that any two derivations with the same premise and conclusion

are equivalent. Otherwise, our field would be trivial.

Now, categories with finite nonempty products, cartesian categories and

categories with finite nonempty products and coproducts have the following

property. Take, for example, cartesian categories, and take any equation in

the language of free cartesian categories that does not hold in free cartesian

categories. If a cartesian category satisfies this equation, then this category

is a preorder. We have an exactly analogous property with the other sorts

of categories we mentioned (see §9.3 and §9.5). This property is a kind of

syntactical completeness, analogous to the Post completeness of the usual

axiomatizations of the classical propositional calculus. Any extension of

the equations postulated leads to collapse.

Translated into logical language, this means that Prawitz’s equivalence

relation for derivations in conjunctive logic, disjunctive logic and conjunctive-

disjunctive logic without distribution and without ⊤ and ⊥, which in all

these cases agrees with our equivalence relation defined via generality in

the sense of Rel, is maximal. Any strengthening, any addition, would yield
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that any two derivations with the same premise and the same conclusion

are equivalent.

If the right-to-left direction of the Normalization Conjecture holds, with

maximality we can efficiently justify the left-to-right direction, which Pra-

witz found problematic in [112], and about which Kreisel was thinking

in [83]. In the footnote on p. 165 of that paper Kreisel mentions that

Barendregt suggested this justification via maximality. Suppose the right-

to-left direction of the Normalization Conjecture holds, suppose that for

some premise and conclusion there is more than one proof, and suppose

the equivalence relation is maximal. Then if two derivations represent the

same proof, they are equivalent. Because if they were not equivalent, we

would never have more than one proof with a given premise and a given

conclusion. Nothing can be missing from our equivalence relation, because

whatever is missing, by maximality, leads to collapse on the side of the

equivalence relation, and, by the right-to-left direction of the conjecture, it

also leads to collapse on the side of identity of proofs.

Prawitz in [112] found it difficult to justify the left-to-right direction of

the Normalization Conjecture, and Kreisel was looking for mathematical

means that would provide this justification. Maximality is one such means.

Establishing the left-to-right direction of the Normalization Conjecture

via maximality is like proving the completeness of the classical propositional

calculus with respect to any kind of nontrivial model via Post completeness

(which is proved syntactically by reduction to conjunctive normal form).

Actually, the first proof of this completeness with respect to tautologies was

given by Bernays and Hilbert exactly in this manner (see [135], Sections

2.4 and 2.5; see also [66], Section I.13, and §9.3 below).

Maximality for the sort of categories mentioned above is proved with the

help of coherence in [46] and [48] (which is established proof-theoretically,

by normalization, cut elimination and similar methods; see Chapter 9).

Coherence is helpful in proving maximality, but maximality can also be

proved by other means, as this is done for cartesian closed categories via a

typed version of Böhm’s theorem in [121], [117] and [45]. This justifies the

left-to-right direction of the Normalization Conjecture also for the impli-

cational and the conjunction-implication fragments of intuitionistic logic.

The maximality of bicartesian closed categories, which would justify the
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left-to-right direction of the Normalization Conjecture for the whole of in-

tuitionistic propositional logic is, as far as we know, an open problem. (A

use for maximality similar to that propounded here and in [45] and [46] is

envisaged in [133].)

In [38] (Section 4.11) it is proved that the general notion of adjunction is

also maximal in some sense. The maximality we encountered above, which

involves connectives tied to particular adjunctions, cannot be derived from

the maximality of the general notion of adjunction, but these matters should

not be foreign to each other.

Since we find maximality an interesting property, we pay attention to

it in this book where we could establish it with the help of our coherence

results, and where it is not a trivial property. Besides the maximality results

from Chapter 9, mentioned above, there are analogous results in §12.3, §12.5
and §13.3. We also pay attention to maximality in cases where it cannot

be established (see §10.3 and §11.5). In some cases where it does not hold,

we still have relative maximality results (see §9.7, §11.5 and §12.5).

§1.6. Union of proofs and zero proofs

Gentzen’s plural-sequent system for classical logic has implicitly a rule of

union, or addition, of derivations, which is derived as follows:

contractions

f : A ⊢ B

θRCf : A ⊢ B,C

g : A ⊢ B

θLCg : C,A ⊢ B

cut(θRCf, θ
L
Cg) : A,A ⊢ B,B

f ∪ g : A ⊢ B

Here θRCf and θLCg are obtained from f and g respectively by thinning on

the right and thinning on the left, and cut(θRCf, θ
L
Cg) may be conceived as

obtained by applying to f and g a limit case of Gentzen’s multiple-cut rule

mix, where the collection of mix formulae is empty. A related principle was

considered under the name mix in linear logic (see §8.1).
In a cut-elimination procedure like Gentzen’s, f ∪ g is reduced either

to f or to g (see [60], Sections III.3.113.1-2). If we have f ∪ g = f and

f ∪ g = g, then we get immediately f = g, that is collapse and triviality.
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In [64] (Appendix B.1 by Y. Lafont; see also [67], Section 1) this is taken

as sufficient ground to conclude that cut elimination in the plural-sequent

system for classical logic must lead to preorder and collapse. (In [64], the

inevitability of this collapse is compared to the argument presented after

Proposition 1 of §14.3, which shows that a plausible assumption about clas-

sical negation added to bicartesian closed categories leads to preorder, but

these are different matters.) To evade collapse we may try keeping only one

of the equations f ∪g = f and f ∪g = g, and reject the other; then we must

also reject the commutativity of ∪, but it seems such decisions would be

arbitrary. (For similar reasons, even without assuming the commutativity

of ∪, the assumptions of [127], p. 232, C.12, lead to preorder.) There is,

however, a way to evade collapse here that is not arbitrary. The modifica-

tion of Gentzen’s cut-elimination procedure expounded in Chapter 11 (see

also §12.5) and our coherence results (more precisely, the easy, soundness,

i.e. functoriality, parts of these results) testify to that.

The Generality Conjecture tells us that we should have neither f∪g = f

nor f ∪ g = g. The union of two graphs may well produce a graph differing

from each of the graphs entering into the union. It also tells us that union

of proofs should be associative and commutative. The idempotency law

f∪f = f is imposed by Rel, but it stands apart, and with another graphical

category, we may do without it (see §12.5). Without idempotency, union of

proofs is rather addition of proofs. Our way out of the problematic situation

Gentzen found himself in is to take into account union or addition of proofs.

(Besides [40], section 7, the paper [5], which deals with cut elimination in

affine logic, also makes a similar suggestion.)

If we have union of proofs, it is natural to assume that we also have

for every formula A and every formula B a zero proof 0A,B : A ⊢ B, with

an empty graph, which with union of proofs makes at least a commutative

monoid; with idempotency, it gives the unit of a semilattice. We may

envisage having zero proofs 0A,B : A ⊢ B only for those A and B where

there is also a nonzero proof from A to B, as we do in our categorification of

the notion of Boolean algebra, but the more sweeping assumption involving

every A and every B makes sense too.

We should immediately face the complaint that with such zero proofs we

have entered into inconsistency, since everything is provable. That is true,
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but not all proofs have been made identical, and we are here not interested

in what is provable, but in what proofs are identical. If it happens—and

with the Generality Conjecture it will happen indeed—that introducing

zero proofs is conservative with respect to identity of proofs that do not

involve zero proofs, then it is legitimate to introduce zero proofs, provided it

is useful for some purpose. This is like extending our mathematical theories

with what Hilbert called ideal objects; like extending the positive integers

with zero, or like extending the reals with imaginary numbers.

The use of union of proofs is that it saves the agreement between the

Normalization and Generality Conjectures in the presence of distribution,

as we said in §1.4. The use of zero proofs is that it does the same in

the presence of negation. The idempotency of union is essential in the

absence of zero proofs, but not in their presence. Without idempotency

our graphical category in the case of conjunctive-disjunctive logic turns up

to be a category whose arrows are matrices, rather than the category Rel.

Composition becomes matrix multiplication, and union is matrix addition.

And in the presence of zero matrices, we obtain a unique normal form like

in linear algebra: every matrix is the sum of matrices with a single 1 entry.

A number of logicians have sought a link between logic and linear alge-

bra, and here is such a link. We have it not for an alternative logic, but for

classical logic. We have it, however, not at the level of provability, but at

the level of identity of proofs.

The unique normal form suggested by linear algebra is not unrelated

to cut elimination. In the graphical category of matrices the result of

cut elimination is obtained by multiplying matrices, and the equations of

this category yield a cut-elimination procedure. They yield it even in the

absence of zero proofs, provided we have 1+1 = 1. Unlike Gentzen’s

cut-elimination procedures for classical logic, the new procedure admits a

commutative addition or union of proofs without collapse. So, in classical

logic, the Generality Conjecture is not foreign to cut elimination, and hence

it is not foreign to the Normalization Conjecture, provided we understand

the equivalence relation involved in this conjecture in a manner different

from Prawitz’s.

This need not exhaust the advantages of having zero proofs. They may

be used also to analyze disjunction elimination. Without pursuing this
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topic very far, let us note that passing from A ∨ B to A involves a zero

proof from B to A, and passing from A∨B to B involves a zero proof from

A to B. If next we are able to reach C both from A and from B, we may

add our two proofs from A∨B to C, and so to speak “cancel” the two zero

proofs.

Logicians were, and still are, interested mostly in provability, and not

in proofs. This is so even in proof theory. When we address the question

of identity of proofs we have certainly left the realm of provability, and

entered into the realm of proofs. This should become clear in particular

when we introduce zero proofs.

§1.7. Strictification

Strictification is inverse to categorification. While categorification usually

(but not always) involves splitting objects, strictification involves identify-

ing objects. Factoring a set through an equivalence relation, i.e. replacing

the objects of a set by equivalence classes of objects of this set, is a simple

example of strictification. Logicians are very used to a kind of strictifi-

cation that may be called “lindenbaumization”, by which the algebra of

formulae of conjunctive logic is replaced by a freely generated semilattice,

or the algebra of formulae of intuitionistic propositional logic is replaced by

a freely generated Heyting algebra, or the algebra of formulae of classical

propositional logic is replaced by a freely generated Boolean algebra. The

equivalence relation involved in these strictifications is mutual implication.

In this book we are, however, interested in strictification of categories.

Precise notions of strictification, which we need for our work, will be intro-

duced in Chapter 3. Let us say for the time being that the simpler of these

notions is a kind of partial skeletization of a category. An equivalence rela-

tion, induced by a subcategory that is a groupoid and a preorder, is used to

replace the objects of the category by equivalence classes of objects. In the

other, more general and more involved notion, the partial skeletization is

applied to a category generated out of a given category. (We are aware this

preliminary rough description of the matter cannot be very informative.)

After strictification, objects are replaced by equivalence classes, which may

correspond to sequences, or multisets, or sets, or structures of that kind.
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The idea is to obtain a strictified category equivalent to the initially

given category in which computations are easier to record, because some

arrows that were not identity arrows, like, typically, associativity isomor-

phisms, are replaced by identity arrows (see Chapters 5-8 and 11). This

equivalence of categories is not meant to be any equivalence, but an equiv-

alence via functors that preserve a particular categorial structure at least

up to isomorphism. For that we will define precisely what it means for a

functor to preserve a structure, such as interests us, up to isomorphism (see

§2.8).
We were inspired by previous attempts to define this notion of functor

for monoidal categories, and by the ensuing strictification results of Joyal

and Street in [72] (Section 1) and of Mac Lane in [102] (Sections XI.2-

3). We do not, however, find these definitions and results sufficient for

our purposes, even when only the monoidal structure is strictified. We

need something more general. We envisage strictifying structures other

than just monoidal, and we will have occasion in this book to strictify also

with respect to symmetry (see §6.5, §7.6 and §8.4). Another limitation of

previous strictification results for monoidal categories is that they do not

take into account that the monoidal structure may be just a part of a more

complex ambient structure, and that the functors involved in equivalence

should preserve this ambient, not strictified, structure up to isomorphism.

To have just the monoidal structure preserved is rather useless from our

point of view (see §3.1).
Our results on strictification will be much more general, but they are

not such that they could not be further generalized. In particular, in defin-

ing the categorial structure preserved by our functors up to isomorphism

we have presupposed that this structure is defined only with covariant bi-

nary endofunctors. A natural generalization is to take here into account

also endofunctors of arbitrary arity, covariant in some argument-places and

contravariant in others. We suppose that our results can be extended to

cover such situations too. For the applications we need it was, however,

enough to cover the simpler situation, excluding contravariance, and we

did just that. We were afraid of complicating further a matter already full

of details, to prove results for which we have no immediate application. (As

Mac Lane says in [100], p. 103: “... good general theory does not search
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for the maximum generality, but for the right generality.”)

So our notion of logical system in the next chapter involves only con-

junction and disjunction as binary connectives, together with the constants

⊤ and ⊥. Implication is excluded, and negation is left for the end of the

book. To cover these other connectives, we would need to extend our no-

tion of logical structure to permit contravariance. We assume this can be

done in a straightforward manner at the cost of complicating notation. We

refrain, however, from doing so in this book, whose central piece is about

conjunctive-disjunctive logic, and where negation appears only at the end.

Anyway, as far as strictification goes, this limited notion of logical system

is sufficient for our purposes.

Classical implication, defined in the usual way in terms of disjunction

and negation, does not come out as a very important connective in our

proof-theoretical perspective. It is not much of an implication, if the role of

implication is to help in mirroring the deductive metatheory in the object

language. Intuitionistic implication plays that role better.

Our results on strictification are still somewhat more general than what

we strictly need. In strictifying a binary connective like conjunction, purely

conjunctive formulae may be replaced by equivalence classes that corre-

spond to sequences, or multisets, or sets, of the atomic formulae joined by

conjunction. For our purposes, we could have stuck to the first two stric-

tifications, but with our general treatment we cover also the third. With

that, we stay within the limits of covariance.

Strictification, though an interesting topic on its own, is not absolutely

essential for our main topic—coherence. It is for us just a tool, we could

have dispensed with in principle. That would, however, be at the cost of

making already pretty long records even longer. So strictification is for us

a rather useful tool.

It is a tool more useful for recording computations than for discovering

how they should be done. Blurring distinctions may sometimes hinder this

discovery.

It is remarkable that the general notion of strictification may be found

implicit in Gentzen’s sequent systems, as we will try to explain in §11.1, in
the central chapter of the book.





Chapter 2

Syntactical Categories

In this chapter, which is of a preliminary character, we define the notions of

syntactical categories needed for our work. In particular, we introduce the

notion of logical category (which should not be confused with the homony-

mous notion of [104], Section 3.4). Logical categories are obtained from

logical systems in a propositional language by replacing derivations with

equivalence classes of derivations. The equivalence producing these classes

is of general mathematical interest, but it has also proof-theoretical mean-

ing, so that the equivalence classes may be identified with proofs. This

presupposes some notions of logic and category theory, which will be duly

defined.

Many of these notions are quite standard, and we go over them just

to fix terminology. Something less standard may be found in the section

on definable connectives, where some intricacies inherent in this notion are

made manifest. A new matter is also detailed definitions of notions of

functors preserving the structure of a logical category. We are interested

in particular in those of these functors that preserve the structure up to

isomorphism. These definitions prepare the ground for Chapter 3. We treat

these matters in generality greater than we strictly need after that chapter.

It is not essential to master all the details we go into in order to follow the

exposition later on.

After these syntactical matters, we introduce at the end of the chapter

a category that will serve as the main model of our logical categories. This

model, which is in the realm of a semantics of proofs, and not in the realm

33
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of the usual semantics of propositions, is the category whose arrows are

relations between finite ordinals—a category tied to the notion of natural

transformation. This category will serve for our coherence results. Our

syntax is linked to this model by functors that preserve the structure “on

the nose”, i.e. up to an isomorphism that is identity.

§2.1. Languages

A language is a set of words, each word being a finite (possibly empty)

sequence of symbols. A symbol is a mathematical object of any kind. The

length of a word is the number of occurrences of symbols in it, and this

is the most standard measure of the complexity of a word. In particular

cases, however, we may rely on various other measures of complexity, like,

for example, the number of occurrences of some particular kind of symbol.

We introduce first several languages of the kind logicians call propo-

sitional languages. Such languages are generated from a set P of symbols

called letters; logicians would call them propositional letters or propositional

variables. Sometimes we require that P be infinite (see the end of §2.8),
but P can also be finite, and even empty. Since nothing in particular is

assumed about P, the symbols of P can be arbitrary mathematical objects,

and the definitions of notions built on P (such as that of logical system and

logical category; see §§2.6-7 below) do not depend on the particular P that

was chosen.

Let π be a symbol of the kind called in logic n-ary connective, for n ≥ 0.

A 0-ary, i.e. nullary, connective is more commonly known as a propositional

constant; 1-ary are unary connectives and 2-ary connectives are binary con-

nectives. We assume, as usual, that P is disjoint from the set of connectives.

Then a language L such as we need is built up with inductive clauses of the

following kind:

(P) P ⊆ L,

(π) if A1, . . . , An ∈ L, then πA1. . . An ∈ L.

It is assumed here that π is an n-ary connective. If n = 0, then A1. . . An is

the empty sequence, and π ∈ L. We have an analogous convention for all
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sorts of sequences that will appear in this work: if n = 0, then x1. . . xn or

x1, . . . , xn is the empty sequence, and {x1, . . . , xn} is the empty set ∅.
The elements of L are called formulae; logicians would say propositional

formulae. We use p, q, . . . , sometimes with indices, as variables for letters,

i.e. elements of P, and A, B, . . . , sometimes with indices, as variables for

formulae. The elements of P and nullary connectives are called atomic

formulae. The letter length of a formula is the number of occurrences of

letters in it.

We reserve ζ for nullary connectives and ξ for binary connectives. The

formula ξξpqp, which is in the Polish, prefix, notation, is more commonly

written ((p ξ q) ξ p), and we will favour this common, infix, notation for

binary connectives. Polish notation is handy for dealing with n-ary con-

nectives where n ≥ 3, but in the greatest part of this work we will have just

nullary and binary connectives. A unary connective appears in Chapter 14.

(Notation for unary connectives that would not be Polish, like Hilbert’s

negation Ā, is uncommon in propositional logic; for nullary connectives

there is no alternative.) We assume that we have as auxiliary symbols the

right parenthesis ) and the left parenthesis (, which are neither letters nor

connectives, with whose help we formulate the clause

if A,B ∈ L, then (A ξ B) ∈ L.

This clause replaces (π) for binary connectives. As usual, we take the

outermost parentheses of formulae for granted, and omit them.

Consider a binary relation T on a set of elements called nodes such that

when xTy we say x is the predecessor of y, or y is the successor of x. A path

from a node x to a node y is a sequence x1. . . xn, with n ≥ 1, such that x

is x1 and y is xn, while for every i ∈ {1, . . . , n−1} we have xiTxi+1. A root

is a node without predecessors, and a leaf a node without successors. We

say that a node is of n-ary branching, with n ≥ 0, when it has n successors.

So leaves are of nullary branching.

A finite tree is such a relation T where the set of nodes is finite, there is

exactly one root and every node except the root has exactly one predecessor.

It is clear that in every finite tree there is exactly one path from the root

to each node.
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The height of a node in a finite tree is the number of nodes in the path

from the root to this node. A finite tree is planar when all nodes of the same

height n ≥ 1 are linearly ordered by a relation <n such that if x1Tx2 and

y1Ty2 and x1 <n y1, then x2 <n+1 y2. When for two nodes x and y of the

same height we have x <n y with this linear order, we say that x is on the

left-hand side of y. Every formula of a language corresponds to a planar

finite tree whose leaves are labelled with letters and nullary connectives,

and whose remaining nodes are labelled with n-ary connectives for n ≥ 1.

The language Lπ1,...,πm has exactly π1, . . . , πm as connectives. We are

in particular interested in the languages where ξ ∈ {∧,∨} and ζ ∈ {⊤,⊥}.
These are the languages L∧, L∨, L∧,⊤, L∨,⊥, L∧,∨ and L∧,∨,⊤,⊥.

We use the word subword as usual: every word is a subword of itself,

and if w1w2 is a subword of a word w, then w1 and w2 are subwords of

w. A proper subword of a word w is a subword of w different from w. A

subformula of a formula is a subword that is a formula. The subformulae A

and B are the main conjuncts of A ∧B, and the main disjuncts of A ∨B.

Let w(A) be the word obtained by deleting all parentheses in a formula

A of a language L. We say that the formulae A and B of L are comparable

when w(A) and w(B) are the same word.

A place in A is a subword w′ of w(A). There is an obvious deleting map

δ from subwords of A to places in A. We say that a subword v of A is at a

place w′ when δ(v) = w′. (Note that different subwords of A can be at the

same place.) For A and B comparable, a subword w1 of A and a subword

w2 of B are at the same place when δ(w1) = δ(w2).

We say, as usual, that an occurrence y of a symbol is within the scope of

an occurrence x of an n-ary connective in a formula A when in A we have a

subformula of the form xA1. . . An with y being in Ai for one i ∈ {1, . . . , n}.
We say that y is within the immediate scope of x when y is within the scope

of x and there is no occurrence of a connective z within the scope of x such

that y is within the scope of z.

§2.2. Syntactical systems

A graph is a pair of functions, called the source function and the target

function, from a set of elements called arrows to a set of elements called
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objects. We use f , g, . . . , sometimes with indices, as variables for arrows

and a, b, . . . , sometimes with indices, as variables for objects. In many cases

in this work, objects will be formulae of a language such as we introduced

in the preceding section, but we also need the more general notion.

The expression f : a ⊢ b means that the source function assigns a to f

and the target function assigns b to f ; we call a and b the source and target

of f , respectively. In category theory, ⊢ is usually written →, but we keep

→ for other purposes (for functions and implication), and we stress with

the logical turnstile symbol ⊢ the proof-theoretical interpretation of our

work. We call a ⊢ b, which is just a peculiar notation for the ordered pair

(a, b), the type of f : a ⊢ b. A hom-set in a graph is the set of all arrows

of the same type for a given type. A graph where for every f, g : a ⊢ b we
have f = g, i.e. where hom-sets are either empty or singletons, amounts to

a binary relation R on the set of its objects such that (a, b) ∈ R iff there is

an arrow of type a ⊢ b in the graph.

For a given graph G, the dual graph Gop is defined by interchanging the

source and target functions; namely, the source function of Gop is the target

function of G, and the target function of Gop is the source function of G,
while the sets of objects and arrows are the same. An object b in a graph

G is terminal when for every object a in G there is a unique arrow of G of

a type a ⊢ b, and b is initial in G when it is terminal in Gop.
A deductive system (in the sense of [90], Section I.1) is a graph that

must have for every object a an identity arrow 1a : a ⊢ a, and whose arrows

are closed under the partial operation of composition:

f : a ⊢ b g : b ⊢ c

g ◦ f : a ⊢ c

This fractional notation, taken over from the notation for rules in logic,

conveys that if f : a ⊢ b and g : b ⊢ c are in the deductive system, then

g ◦ f : a ⊢ c is in the deductive system. We use an analogous notation in

other cases.

A deductive system is discrete when all of its arrows are identity ar-

rows. A deductive system is a preorder when for every f, g : a ⊢ b in this

deductive system we have f = g. A deductive system that is a preorder

amounts to a preordering, i.e. reflexive and transitive, relation on the set
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of its objects. A preorder is a partial order when the preordering relation is

antisymmetric. Every discrete deductive system is a preorder, but not vice

versa. In principle, one can envisage the empty deductive system, with an

empty set of arrows and an empty set of objects, but we have no interest

in it for our work, and we will exclude it.

The notion of deductive system is a generalization of the notion of cat-

egory. A category is a deductive system in which the following equations,

called categorial equations, hold between arrows:

(cat 1) f ◦1a = 1b ◦ f = f : a ⊢ b,
(cat 2) h ◦ (g ◦ f) = (h ◦ g) ◦ f.

This notion of category covers only small categories, but in this work, where

we have no foundational ambitions, we have no need for categories whose

collections of objects or arrows are bigger than sets. When we speak oc-

casionally of the category Set of sets with functions, we assume that the

collection of objects of this category is the domain of a model of first-order

axiomatic set theory, and hence it is a set. The functions between the ele-

ments of this domain also make a set. We make an analogous assumption

for other categories mentioned in this book that seem not to be small.

A syntactical system is a particular kind of deductive system where

arrows make an inductively defined language, whose members are called

arrow terms. Arrow terms are words defined inductively out of primitive

arrow terms with the help of symbols tied to partial or total finite operations

on arrow terms and the auxiliary symbols of right and left parentheses. A

subterm of a term is a subword that is a term.

Among the primitive arrow terms we must have the identity arrow

terms, which make the identity arrows of the deductive system (so we must

have them for every object), and among the symbols for operations on

arrow terms we must have one tied to composition:

f : a ⊢ b g : b ⊢ c

(g ◦ f) : a ⊢ c

(As we said above, this is read: “If f of type a ⊢ b and g of type b ⊢ c are
arrow terms, then the word (g ◦ f) is an arrow term of type a ⊢ c.”) So,

officially, parentheses in arrow terms involving ◦ are compulsory; but, as
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usual, we will omit outermost parentheses, and other parentheses if this can

be done without engendering ambiguity. Note that here ◦ is just a symbol.

The operation of composition tied to this symbol is the operation assigning

to the pair of words (f, g), of the types a ⊢ b and b ⊢ c respectively, the

word (g ◦ f), of type a ⊢ c.
We say that a graph G1 is a subgraph of a graph G2 when the objects

and arrows of G1 are included respectively in the objects and arrows of G2
and the arrows of G1 have in G1 the same source and target as in G2.

A deductive system D1 is a subsystem of a deductive system D2 when

D1 is a subgraph of D2, the identity arrows of D1 are identity arrows in D2

and for every pair of arrows (f : a ⊢ b, g : b ⊢ c) of D1 their composition in

D1 is equal to their composition in D2. A subcategory is a subsystem of a

category. A subcategory must be a category.

An arrow f in a deductive system is mono when for every g and h the

equation f ◦ g = f ◦h implies g = h, and f is epi when for every g and h

the equation g ◦ f = h ◦ f implies g = h.

An arrow f : a ⊢ b in a deductive system D is an isomorphism when

there is an arrow g : b ⊢ a in D such that g ◦ f = 1a and f ◦ g = 1b. The

arrows f and g are here inverses of each other. Isomorphisms in categories

are mono and epi. A category in which every arrow is an isomorphism is a

groupoid. If there is an isomorphism of type a ⊢ b, then a and b are said to

be isomorphic.

A subsystem D1 of a deductive system D2 is full when for every arrow

f : a ⊢ b of D2 if the objects a and b are in D1, then f is in D1. The partial

skeleton A′ of a category A is a full subcategory of A such that for every

object a of A there is in A′ an object a′ isomorphic to a in A. (So every

category is a partial skeleton of itself.) If in this definition we require that

the object a′ be unique, then A′ is called simply a skeleton. A skeleton is

unique up to isomorphism of categories (see §2.4); so it is usual to speak

about the skeleton of a category.

§2.3. Equational systems

An equation in a syntactical system S is a word f = g where f and g are

arrow terms of S of the same type. An equational system E in S is a set of
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equations in S such that the following conditions are satisfied:

(re ) f = f is in E for every arrow term f of S;

(sy ) if f = g is in E , then g = f is in E ;

(tr ) if f = g and g = h are in E , then f = h is in E ;

(co ) if f1 = g1, . . . , fn = gn for n ≥ 1 are in E , then of1. . . fn = og1. . . gn

is in E , where of1. . . fn and og1. . . gn are arrow terms of S produced

by an n-ary operation o on arrow terms.

For the congruence condition (co ) to make sense, the operation o must be

such that if fi is of the same type as gi, for i ∈ {1, . . . , n}, then of1. . . fn is

of the same type as og1. . . gn. We envisage only operations of this kind.

As in propositional languages above, when the arity of o is not greater

than 2, we favour the infix notation with parentheses; so we write f1of2

(with outermost parentheses omitted) instead of of1f2.

Consider the smallest relation ≡ on the arrow terms of S that satisfies

f ≡ g if f = g is in E , which happens to be the equivalence relation ≡ on

the arrow terms of S such that f ≡ g iff f = g is in E . With the help of ≡
we build a deductive system called S/E . The objects of S/E are the objects

of S, and its arrows are equivalence classes [f ] of the arrow terms f of S
with respect to ≡. The identity arrows of S/E are the equivalence classes

of the identity arrow terms of S, and for every n-ary operation o of S,
including in particular composition, we define an operation on equivalence

classes by

o[f1] . . . [fn] =df [of1. . . fn].

The condition (co ) above guarantees the correctness of this definition.

Most often, we do not write concrete equations, but equations with

variables, like the categorial equations in the preceding section, where f , g

and h are variables for arrows, while a and b are variables for objects. As

usual, we call equations with variables simply equations. We say that such

an equation belongs to an equational system E in S when every instance of

it, with arrow terms of S substituted for variables for arrows and names

of objects of S substituted for variables for objects, is an element of E .
In producing these instances we, of course, pay attention to types. For
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example, in instances of the categorial equation (cat 1) we have that a is

the source of f , while b is its target, and in instances of (cat 2) we have

that f , g and h have types that permit composition.

We say that an equation with variables holds in a graph G when every

substitution instance of it holds in G. (That such an instance holds in G
means, of course, that the names on the two sides of the equation sign

= name the same thing.) It is quite common to understand holding of

equations with variables in this universal manner, and that is how we will

understand it, unless stated otherwise. That is how we understood holding

for the categorial equations in the definition of category. Instead of saying

that an equation holds in G, we may say, synonymously, that it is satisfied

in G, or, simply, that we have it in G.
To name the arrows of S/E , we use the arrow terms of S, so that an

arrow term names the equivalence class to which it belongs. Synonyms of

name are designate, denote and stand for. Then every equation of E will

hold in S/E . We say that the arrow terms f1 and f2 of S are equal in S/E
when f1 = f2 holds in S/E , which is equivalent with the equation f1 = f2

belonging to E .
If the categorial equations belong to E , then S/E is a category, and, since

such categories arise out of syntactical systems, we call them syntactical

categories. We say that the category S/E is in the system S. If only

instances of f = f are in E , then S/E is S itself.

A set of axioms Ax of an equational system E is a proper subset of the

set of equations E such that E may be generated from Ax by closing under

the rules (sy ), (tr ) and (co ). The set of axioms need not be finite, and it

will usually be infinite in this work. Every equation of E is either an axiom

in Ax or derived from previously obtained equations by applying one of the

rules. More formally, a derivation is a finite tree of equations whose leaves

are axioms, and where each node that is not a leaf is obtained from its

successors, i.e. from nodes immediately above, by applying the rules. The

root of the tree is the equation derived.

Instead of saying that an equation holds in S/E because we can derive

it in E , we will sometimes say more simply that we can derive the equation

for S/E . This way of speaking will often prove handier later in the book,

and should not cause confusion.
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§2.4. Functors and natural transformations

A graph-morphism F from a graph G1 to a graph G2 is a pair of maps, both

denoted by F , from the objects of G1 to the objects of G2 and from the

arrows of G1 to the arrows of G2, respectively, such that for every arrow

f : a ⊢ b of G1 the type of the arrow Ff of G2 is Fa ⊢ Fb.
A graph-morphism F from a graph G1 to a graph G2 is faithful when,

for every pair (f, g) of arrows of G1 of the same type, if Ff = Fg in G2,
then f = g in G1.

A functor F from a deductive system D1 to a deductive system D2 is

a graph-morphism from D1 to D2 such that in D2 the following equations

hold:

(fun 1) F1a = 1Fa,

(fun 2) F (g ◦ f) = Fg ◦Ff.

Note that this definition of functor is more general than the usual one,

which envisages only functors between categories. Otherwise, it is the same

definition. We generalize similarly other notions introduced below.

The productD1×D2 of the deductive systemsD1 andD2 is the deductive

system whose objects are pairs (a1, a2) such that a1 is an object of D1 and

a2 an object of D2, and analogously for arrows. The identity arrows of

D1 ×D2 are of the form (1a1 ,1a2), and composition is defined by

(g1, g2) ◦ (f1, f2) =df (g1 ◦ f1, g2 ◦ f2).

A functor B from D1 × D2 to D is called a bifunctor ; for bifunctors,

(fun 1) and (fun 2) amount to the following equations respectively:

(bif 1) B(1a,1b) = 1B(a,b),

(bif 2) B(g1 ◦ f1, g2 ◦ f2) = B(g1, g2) ◦B(f1, f2),

which we call the bifunctorial equations.

Let D0 be the trivial deductive system with a single object ∗ and a

single arrow 1∗ : ∗ ⊢ ∗. (This deductive system is a category.) Let Dn+1

be Dn × D. It is clear that D1 is isomorphic to D. A functor from Dn to

D will be called an n-endofunctor in D. An object of D may be identified
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with a 0-endofunctor. We call a 1-endofunctor also just endofunctor, and a

2-endofunctor biendofunctor.

The identity functor I of D is the endofunctor in D for which we have

Ia = a and If = f . A functor from D1 to Dop
2 is called a contravariant

functor from D1 to D2.

A natural transformation from a functor F1 from D1 to D2 to a functor

F2 from D1 to D2 is a family τ of arrows of D2 indexed by objects of D1

such that τa is of the type F1a ⊢ F2a, and the following equations hold in

D2 for f : a ⊢ b an arrow of D1:

F2f ◦ τa = τb ◦F1f.

Consider now an m-endofunctor M and an n-endofunctor N in D, and
two functions µ : {1, . . . ,m} → {1, . . . , k} and ν : {1, . . . , n} → {1, . . . , k}
where m,n ≥ 0 and k ≥ 0 (if m = 0, then {1, . . . ,m} = ∅; if k = 0, then

we must have m = n = 0). Then Mµ defined by

Mµ(x1, . . . , xk) =df M(xµ(1), . . . , xµ(m))

and Nν defined analogously are k-endofunctors in D. (If m = 0, then

M(f1, . . . , fm) is M(1∗).)

A family α of arrows of D such that for every sequence a1, . . . , ak

of objects of D there is an arrow αa1,...,ak
of the type Mµ(a1, . . . , ak) ⊢

Nν(a1, . . . , ak) is called a transformation of D of arity k. We say that the

arrows f1, . . . , fk of D, such that for i ∈ {1, . . . , k} the arrow fi is of the

type ai ⊢ bi, flow through α in D when the following equation holds in D:

(α nat) Nν(f1, . . . , fk) ◦αa1,...,ak
= αb1,...,bk

◦Mµ(f1, . . . , fk).

By the definition of natural transformation, a transformation α is a natural

transformation from the k-endofunctor Mµ of D to the k-endofunctor Nν

of D when every k-tuple of arrows of D flows through α in D. We say

that αa1,...,ak
is natural in a1, . . . , ak when it is a member of a natural

transformation. The equations (α nat) will be called naturality equations.

A natural transformation τ in a deductive system D is a natural isomor-

phism when each member of the family τ is an isomorphism. Two functors
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are naturally isomorphic when there is a natural isomorphism from one to

the other.

We say that the deductive systems D1 and D2 are equivalent via a

functor F2 from D1 to D2 and a functor F1 from D2 to D1 when the

composite functor F1F2 is naturally isomorphic to the identity endofunctor

ofD1 and the composite functor F2F1 is naturally isomorphic to the identity

endofunctor of D2. It is easy to conclude that the functors via which two

categories are equivalent are faithful functors.

The deductive systems D1 and D2 are isomorphic via a functor F2 from

D1 to D2 and a functor F1 from D2 to D1 when the composite functor

F1F2 is equal to the identity endofunctor of D1 and the composite functor

F2F1 is equal to the identity endofunctor of D2. Two deductive systems

are said to be equivalent when there is a pair of functors via which they are

equivalent, and analogously for isomorphic deductive systems.

Suppose we have two syntactical systems Si, for i ∈ {1, 2}, together
with the equational systems E i in Si. A graph-morphism F from S1 to

S2 induces an obvious graph-morphism from S1/E1 to S2/E2, such that

F [f ] = [Ff ], provided f = g in E1 implies Ff = Fg in E2. (We do not

write [f ] usually, but use the arrow term f to designate [f ].) When F from

S1 to S2 is a functor, then F is a functor from S1/E1 to S2/E2.
When we have the graph-morphisms F1 from S2 to S1 and F2 from S1

to S2 such that S1/E1 and S2/E2 are isomorphic deductive systems via

functors induced by F1 and F2, we say that S1 and S2 are synonymous up

to E1 and E2 via F1 and F2. A stronger notion of synonymity of syntactical

systems, which we will usually encounter, is when F1 and F2 are functors

between S1 and S2, and not any graph-morphisms.

§2.5. Definable connectives

Let L stand for one of the languages L∧, L∨, L∧,⊤, L∨,⊥, L∧,∨ and L∧,∨,⊤,⊥
of §2.1, generated by an arbitrary set of letters P, and let L2 stand for the

language with the same connectives as L generated by the set of letters

{2}. We use M , N, . . . , sometimes with indices, for elements of L2. Let

|M | = m ≥ 0 be the number of occurrences of 2 in M , and let w1, . . . , wm

be a sequence of m arbitrary words. Later on in this work, these words will
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denote either the objects or the arrows of a category. ThenM(w1, . . . , wm)

is the word obtained by putting wi, where i ∈ {1, . . . ,m}, for the i-th

occurrence of 2 in M , counting from the left.

Let Lcon be a set of pairs (M,µ), which we abbreviate by Mµ, where

M ∈ L2 and |M | = m ≥ 0, while µ is a function from {1, . . . ,m} to

{1, . . . , k} for some k ≥ 0. The arity ofMµ is k. We defineMµ(w1, . . . , wk)

as M(wµ(1), . . . , wµ(m)) (cf. the definition of Mµ in the preceding section).

When w1, . . . , wk are formulae of L, the elements of Lcon stand for

the definable connectives of L. Let us consider some examples of defin-

able connectives. A primitive connective ξ ∈ {∧,∨} of L is represented

in Lcon by the definable connective (2ξ2)ι{1,2} where ι{1,2} is the iden-

tity function on {1, 2}, while ζ ∈ {⊤,⊥} is represented by ζι∅ where ι∅ is

the identity function on ∅, which is the empty function (the only possible

function from ∅ to ∅). If ι{1} is the identity function on {1} (the only

possible function from {1} to {1}), then 2
ι{1} is the identity unary con-

nective, for which we have 2
ι{1}(A) = A. If µ is the function from {1, 2}

to {1, 2} such that µ(x) = 3−x, then for the definable connective (2ξ2)µ

we have (2ξ2)µ(A,B) = (2ξ2)(B,A) = B ξ A. If µ is the only possible

function from {1, 2} to {1}, then for the definable connective (2ξ2)µ we

have (2ξ2)µ(A) = (2ξ2)(A,A) = A ξ A. If µ is the constant function with

value 1 from {1} to {1, 2}, then for the definable connective 2
µ we have

2
µ(A,B) = 2(A) = A.

For Mµ, Nν1
1 , . . . , Nνk

k elements of Lcon, we want to define the element

Mµ(Nν1
1 , . . . , Nνk

k ) of Lcon resulting from the substitution of Nν1
1 , . . . , Nνk

k

within Mµ. In other words, we want to define generalized composition

of elements of Lcon. This notion is rather simple when µ is an identity

function, but in the general case we have the following, more involved,

definition.

LetMµ be of arity k such that |M | = m, and let Nνi
i , for i ∈ {1, . . . , k},

be of arity li with |Ni| = ni. To define the element Mµ(Nν1
1 , . . . , Nνk

k ) of

Lcon of arity ∑
1≤j≤k

lj

we must first define what it means to substitute the functions ν1, . . . , νk
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within the function µ.

Let

π(i) =
∑

1≤j≤i

nµ(j), λ(i) =
∑

1≤j≤i

lj ,

and let β : {1, . . . , π(m)} → {1, . . . ,m} be defined by

β(x) =df min{i | x ≤ π(i)}.

Next we define the function µ(ν1, . . . , νk) : {1, . . . , π(m)} → {1, . . . , λ(k)}
by

µ(ν1, . . . , νk)(x) =df νµ(β(x))(x−π(β(x)−1)) + λ(µ(β(x))−1).

With the help of µ(ν1, . . . , νk) we define Mµ(Nν1
1 , . . . , Nνk

k ) as

Mµ(N1, . . . , Nk)
µ(ν1,...,νk), which is equal toM(Nµ(1), . . . , Nµ(m))

µ(ν1,...,νk).

The definition of µ(ν1, . . . , νk) is pretty opaque, and we must make a

few comments on it. We will consider as an example a simple case of

µ(ν1, . . . , νk), which covers most of our needs in this book.

Let the function ν1 + ν2 : {1, . . . , n1 + n2} → {1, . . . , l1 + l2} be defined

by

(ν1 + ν2)(x) =df

{
ν1(x) if x ≤ n1
ν2(x−n1) + l1 if x > n1.

Then one can check that when m = k and µ is the identity function on

{1, . . . ,m} we have

µ(ν1, . . . , νk) = ν1 + . . .+ νk.

The complications of the general definition of µ(ν1, . . . , νk) above come

from the fact that we want to substitute within the function µ the functions

ν1, . . . , νk so that for every ordered pair (x, y) in µ we have a copy of

νy. These complications are not essential for many of the latter parts

of our work. In many cases, we will have for Mµ ∈ Lcon that µ is the

identity function ι{1,...,m} on {1, . . . ,m}. We introduce the convention that

M ι{1,...,m} is abbreviated by M . With that in mind, the reader can forget

about the indices µ in Mµ in many places. We have preferred, however, to

state our results later on in greater generality.
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§2.6. Logical systems

We will consider in this work a particular kind of syntactical system called

logical system. A logical system C has as objects the formulae of a language

L, as in the preceding section. We say that such a logical system C is in L.
The primitive arrow terms of C come in families α. The members of α are

indexed by sequences A1, . . . , Ak, with k ≥ 0, of objects of C. With every

family α we associate two elementsM and N of L2, such that |M | = m and

|N | = n, and two functions µ : {1, . . . ,m} → {1, . . . , k} and ν : {1, . . . , n} →
{1, . . . , k}. The type of αA1,...,Ak

is Mµ(A1, . . . , Ak) ⊢ Nν(A1, . . . , Ak). So

an α is a transformation in C.
In Table 1 we present most of the transformations α we need for our

work. In this table, ∅ denotes the empty function from the empty set. The

types of the members of α are as in Table 2. In the leftmost column of

that table we write down the name of the union of the families α on the

right-hand side. So the b family includes the families, i.e. transformations,
∧
b→,

∧
b←,

∨
b← and

∨
b→. Within the family b we have the subfamily

∧
b, which

includes
∧
b→ and

∧
b←, and the subfamily

∨
b, which includes

∨
b← and

∨
b→.

We have, analogously, the subfamilies
∧
δ -

∧
σ and

∨
δ -

∨
σ of the δ-σ family, and

analogously in other cases.

Of course, an α from L∧ may be found also in a wider language L∧,∨.
In practice, one of µ and ν will be the identity function, as in the trans-

formations in Table 1, but we allow for greater generality. For the sake

of uniformity, we decided to take always µ as the identity function in the

transformations with L∧ and L⊤, and ν as the identity function in the

transformations with L∨ and L⊥, but for
∧
c and

∨
c we could have done

otherwise. The difference in indexing
∧
cA,B and

∨
cB,A sometimes requires

additional care when passing from matters involving ∧ to matters involving

∨, but it helps to enhance the duality underlying ∧ and ∨.
The labels b, c, w and k are borrowed from the combinators B, C, W

and K of combinatory logic, d comes from “dissociativity” (see §1.2) and

m from “mix” (see §8.1). The Greek labels δ, σ and κ involve ⊤ and ⊥.
As every syntactical system, a logical system C will have the family 1

from Tables 1 and 2, which delivers its identity arrow terms. If we work

with a language in which we have ξ ∈ {∧,∨}, then for building the arrow
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L α k M N m n µ(x) ν(x)

L∧
∧
b→ 3 2 ∧ (2 ∧2) (2 ∧2) ∧2 3 3 x x

L∧
∧
b← 3 (2 ∧2) ∧2 2 ∧ (2 ∧2) 3 3 x x

L∨
∨
b→ 3 2 ∨ (2 ∨2) (2 ∨2) ∨2 3 3 x x

L∨
∨
b← 3 (2 ∨2) ∨2 2 ∨ (2 ∨2) 3 3 x x

L∧,⊤
∧
δ→ 1 2 ∧ ⊤ 2 1 1 x x

L∧,⊤
∧
δ← 1 2 2 ∧ ⊤ 1 1 x x

L∧,⊤
∧
σ→ 1 ⊤ ∧2 2 1 1 x x

L∧,⊤
∧
σ← 1 2 ⊤ ∧2 1 1 x x

L∨,⊥
∨
δ→ 1 2 ∨ ⊥ 2 1 1 x x

L∨,⊥
∨
δ← 1 2 2 ∨ ⊥ 1 1 x x

L∨,⊥
∨
σ→ 1 ⊥ ∨2 2 1 1 x x

L∨,⊥
∨
σ← 1 2 ⊥ ∨2 1 1 x x

L∧
∧
c 2 2 ∧2 2 ∧2 2 2 x 3−x

L∨
∨
c 2 2 ∨2 2 ∨2 2 2 3−x x

L∧
∧
w 1 2 2 ∧2 1 2 x 1

L∨
∨
w 1 2 ∨2 2 2 1 1 x

L∧
∧
k1 2 2 ∧2 2 2 1 x 1

L∧
∧
k2 2 2 ∧2 2 2 1 x 2

L∨
∨
k1 2 2 2 ∨2 1 2 1 x

L∨
∨
k2 2 2 2 ∨2 1 2 2 x

L⊤
∧
κ 1 2 ⊤ 1 0 x ν = ∅

L⊥
∨
κ 1 ⊥ 2 0 1 µ = ∅ x

L∧,∨ dL 3 2 ∧ (2 ∨2) (2 ∧2) ∨2 3 3 x x
L∧,∨ dR 3 (2 ∨2) ∧2 2 ∨ (2 ∧2) 3 3 x x
L∧,∨ m 2 2 ∧2 2 ∨2 2 2 x x
L∧,∨ m−1 2 2 ∨2 2 ∧2 2 2 x x
any 1 1 2 2 1 1 x x

Table 1
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b
∧
b→A,B,C : A∧(B∧C) ⊢ (A∧B)∧C

∨
b→A,B,C : A∨(B∨C) ⊢ (A∨B)∨C

∧
b←A,B,C : (A∧B) ∧C ⊢ A∧(B∧C)

∨
b←A,B,C : (A∨B)∨C ⊢ A∨(B∨C)

δ-σ
∧
δ→A : A ∧ ⊤ ⊢ A

∨
δ→A : A ∨ ⊥ ⊢ A

∧
δ←A : A ⊢ A ∧ ⊤

∨
δ←A : A ⊢ A ∨ ⊥

∧
σ→A : ⊤ ∧A ⊢ A ∨

σ→A : ⊥ ∨A ⊢ A
∧
σ←A : A ⊢ ⊤ ∧A ∨

σ←A : A ⊢ ⊥ ∨A
c

∧
cA,B : A ∧B ⊢ B ∧A

∨
cB,A: A ∨B ⊢ B ∨A

w-k
∧
wA: A ⊢ A ∧A

∨
wA: A ∨A ⊢ A

∧
k1A,B : A ∧B ⊢ A

∨
k1A,B : A ⊢ A ∨B

∧
k2A,B : A ∧B ⊢ B

∨
k2A,B : B ⊢ A ∨B

κ
∧
κ A : A ⊢ ⊤ ∨

κ A : ⊥ ⊢ A
d dLA,B,C : A ∧ (B ∨ C) ⊢ (A ∧B) ∨ C

dRC,B,A : (C ∨B) ∧A ⊢ C ∨ (B ∧A)
mA,B : A ∧B ⊢ A ∨B
m−1A,B : A ∨B ⊢ A ∧B

1A : A ⊢ A

Table 2
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terms of C we have the following clause corresponding to a total operation

on arrow terms:

f : A ⊢ D g : B ⊢ E

f ξ g : A ξ B ⊢ D ξ E

together with the clause corresponding to the partial operation of compo-

sition mentioned in §1.2, with a, b and c replaced by A, B and C. This

concludes our definition of logical system.

If β is one of the families of primitive arrow terms we have introduced,

except the family 1, then we call β-terms the set of arrow terms introduced

inductively as follows: every member of β is a β-term; if f is a β-term, then

for every A in L we have that 1A ξ f and f ξ 1A are β-terms.

In every β-term there is exactly one subterm that belongs to β, which is

called the head of the β-term in question. For example, the head of the
∧
c-

term 1A∧(
∧
cB,C ∨1D) is

∧
cB,C . An analogous definition where β is 1, yields

arrow terms called complex identities (which are headless). Every complex

identity is equal to an identity arrow term in the presence of bifunctorial

equations.

If we build a language L(B) with the same connectives as L but with

the generating set P replaced by a set B of the same cardinality as P, then
we obtain an isomorphic copy of L. If B is not of the same cardinality

as P, then L(B) and L are not isomorphic, but one can be isomorphically

embedded into the other. So we have a function that assigns to B the

language L(B), and we call L(P) simply L.
Our notion of logical system is such that for a logical system C in L

we have a logical system C(B) in L(B). The logical system C(B) will be

isomorphic to C if P and B are of the same cardinality. The possibility to

build C(B) is ensured by requiring that the transformations α be indexed

by all k-tuples of objects of C or C(B).
So what we have really defined with C in L is not a single logical system,

but a function that assigns to an arbitrary generating set P a logical system

C(P) in L(P), which we have chosen to denote by C and L, respectively,
not mentioning P. Applied to a different generating set B of letters this

function gives the logical system C(B) in L(B).
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§2.7. Logical categories

For an equational system E in a logical system C in L, we assume whatever

we have assumed for equational systems in a syntactical system, namely

the conditions (re ), (sy ), (tr ) and (co ), plus an additional condition. For

an arrow term f : A ⊢ B of C, let fpc : Ap
C ⊢ B

p
C be the arrow term of C

obtained by uniformly replacing every occurrence of a letter p of P in f

and in its type A ⊢ B by the formula C of L. Then we assume closure of

E under substitution; namely,

(su ) if f = g is in E , then fpC = gpC is in E .

Closure under (su ) means that the letters of L behave like variables for

objects.

The equations of E will be introduced by axiomatic equations with vari-

ables in which letters of P do not occur. So we can assume these equations

for an arbitrary set P. This will also guarantee that E is closed under (su ).

When the categorial equations belong to the equational systems E in

a logical system C, so that C/E is a category, and, moreover, for every

ξ ∈ {∧,∨} in the language L of C we have in E the bifunctorial equations

(bif 1) and (bif 2) of §2.4 with B instantiated by ξ ; namely, the following

equations:

(ξ 1) 1A ξ 1B = 1A ξ B ,

(ξ 2) (g1 ◦ f1) ξ (g2 ◦ f2) = (g1 ξ g2) ◦ (f1 ξ f2),

so that C/E has the biendofunctor ξ , we call the syntactical category C/E
a logical category. We say that a logical category C/E is in L when C is

in the language L, and we also say that the category C/E is in the logical

system C.
If for the families α of C the naturality equations (α nat) of §2.4 with

a1, . . . ak and b1, . . . bk replaced by A1, . . . , Ak and B1, . . . , Bk, respectively,

belong to E , then in a logical category C/E we will have the natural trans-

formations α from the k-endofunctor Mµ to the k-endofunctor Nν in C/E .
That Mµ and Nν are k-endofunctors in C/E is guaranteed by the bifuncto-

rial equations. When the naturality equations belong to E for every α of C
and C/E is a logical category we say that C/E is a natural logical category.
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We separate naturality from bifunctoriality in our definition of logical

category because there are reasons to envisage logical categories that need

not be natural (cf. §14.3), though in this book bifunctoriality and naturality

will go hand in hand. (We do not envisage rejecting bifunctoriality for

logical categories, as some authors do; see §14.3.)
Here are the naturality equations for the transformations α in the tables

of the preceding section, with f : A ⊢ D, g : B ⊢ E and h : C ⊢ F :

(
∧
b→ nat) ((f ∧ g) ∧ h) ◦

∧
b→A,B,C =

∧
b→D,E,F

◦ (f ∧ (g ∧ h)),

(
∧
b← nat) (f ∧ (g ∧ h)) ◦

∧
b←A,B,C =

∧
b←D,E,F

◦ ((f ∧ g) ∧ h),

(
∨
b→ nat) ((f ∨ g) ∨ h) ◦

∨
b→A,B,C =

∨
b→D,E,F

◦ (f ∨ (g ∨ h)),

(
∨
b← nat) (f ∨ (g ∨ h)) ◦

∨
b←A,B,C =

∨
b←D,E,F

◦ ((f ∨ g) ∨ h),

(
∧
δ→ nat) f ◦

∧
δ→A =

∧
δ→D ◦ (f ∧ 1⊤), (

∨
δ→ nat) f ◦

∨
δ→A =

∨
δ→D ◦ (f ∨ 1⊥),

(
∧
δ← nat) (f ∧ 1⊤) ◦

∧
δ←A =

∧
δ←D ◦ f, (

∨
δ← nat) (f ∨ 1⊥) ◦

∨
δ←A =

∨
δ←D ◦ f,

(
∧
σ→ nat) f ◦

∧
σ→A =

∧
σ→D ◦ (1⊤ ∧ f), (

∨
σ→ nat) f ◦

∨
σ→A =

∨
σ→D ◦ (1⊥ ∨ f),

(
∧
σ← nat) (1⊤ ∧ f) ◦

∧
σ←A =

∧
σ←D ◦ f, (

∨
σ← nat) (1⊥ ∨ f) ◦

∨
σ←A =

∨
σ←D ◦ f,

(
∧
c nat) (g ∧ f) ◦

∧
cA,B =

∧
cD,E ◦ (f ∧ g),

(
∨
c nat) (g ∨ f) ◦

∨
cB,A =

∨
cE,D ◦ (f ∨ g),

(
∧
w nat) (f ∧ f) ◦

∧
wA =

∧
wD ◦ f, (

∨
w nat) f ◦

∨
wA =

∨
wD ◦ (f ∨ f),

(
∧
k1 nat) f ◦

∧
k1A,B =

∧
k1D,E

◦ (f ∧ g), (
∨
k1 nat) (g ∨ f) ◦

∨
k1B,A =

∨
k1E,D

◦ g,

(
∧
k2 nat) g ◦

∧
k2A,B =

∧
k2D,E

◦ (f ∧ g), (
∨
k2 nat) (g ∨ f) ◦

∨
k2B,A =

∨
k2E,D

◦ f,

(
∧
κ nat) 1⊤ ◦

∧
κA =

∧
κD ◦ f, (

∨
κ nat) f ◦

∨
κA =

∨
κD ◦1⊥,

(dL nat) ((f ∧ g) ∨ h) ◦ dLA,B,C = dLD,E,F
◦ (f ∧ (g ∨ h)),

(dR nat) (h ∨ (g ∧ f)) ◦ dRC,B,A = dRF,E,D
◦ ((h ∨ g) ∧ f),

(m nat) (f ∨ g) ◦mA,B = mD,E ◦ (f ∧ g),
(m−1 nat) (f ∧ g) ◦m−1A,B = m−1D,E

◦ (f ∨ g),

(1 nat) f ◦1A = 1D ◦ f.

One side of the equations (
∧
κ nat) and (

∨
κ nat) can, of course, be shortened

by using the categorial equations (cat 1), and (1 nat) is contained in (cat 1).
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An arrow term of the form fn ◦ . . . ◦ f1, where n ≥ 1, with parenthe-

ses tied to ◦ associated arbitrarily, such that for every i ∈ {1, . . . , n} we

have that fi is composition-free is called factorized. In a factorized arrow

term fn ◦ . . . ◦ f1 the arrow terms fi are called factors. A factorized ar-

row term fn ◦ . . . ◦ f1 is developed when f1 is of the form 1A and for every

i ∈ {2, . . . , n} we have that fi is a β-term for some β.

Then by using the categorial and bifunctorial equations we can eas-

ily prove by induction on the length of f the following lemma for logical

categories C/E .

Development Lemma. For every arrow term f there is a developed arrow

term f ′ such that f = f ′.

Note that for a logical category C/E our way of introducing E by ax-

iomatic equations with variables in which letters of the generating set P do

not occur is such that when P is replaced by another generating set B we

have instructions for building another logical category C/E(B) in the logical

system C(B) in the language L(B). This logical category C/E(B) will be

isomorphic to C/E if P and B are of the same cardinality. The axiomatic

equations with variables assumed for E are applied to the arrow terms of

C(B). We have really defined a function that assigns to an arbitrary gen-

erating set B a logical category C/E(B), the logical category C/E(P) being
denoted simply by C/E (cf. the end of the preceding section).

When the equational system E of a logical category C/E has as axioms

the elements of a set Ax of equations, and we speak of derivations of equa-

tions of E , we need not count (su ) among the rules of derivation if Ax is

closed under (su ). When later we produce sets of axioms, we always assume

that they are closed under (su ), so that the rules of derivation are just (sy ),

(tr ) and (co ). Hence, in general, Ax will be an infinite set of equations,

though these equations are instances of a finite number of equations with

variables.

§2.8. C-functors

Let C be a logical system in L. Deductive systems that have
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an operation ξ on objects and an operation ξ on arrows for every ξ

of L such that for f : a ⊢ d and g : b ⊢ e we have f ξ g : a ξ b ⊢ d ξ e,

an object ζ for every ζ of L, and

a transformation α for every α of C

are called deductive systems of the C kind. A bifunctorial category of the

C kind is a category of the C kind in which the bifunctorial equations hold

for every ξ of C.
Let A1 and A2 be bifunctorial categories of the C kind. The operations

ξ , the objects ζ and the transformations α are indexed by 1 and 2 when

they are in A1 and A2 respectively. The type of αi
a1,...,ak

, where i ∈ {1, 2},
is Mµ

i (a1, . . . , ak) ⊢ Nν
i (a1, . . . , ak).

A C-functor from A1 to A2 is made of

a functor F from A1 to A2,

for every ξ of C a family ψ2ξ2 of arrows of A2 indexed by objects of

A1 whose members are

ψ2ξ2
a,b : Fa ξ2 Fb ⊢ F (a ξ1 b),

for every ζ of C an arrow ψζ : ζ2 ⊢ F ζ1 of A2.

In practice, when we refer to a C-functor, we mention only F , taking the

families ψ for granted. They will be mentioned explicitly when this is

required.

A dual C-functor from A1 to A2 is obtained from the definition of C-
functor by replacing ψ2ξ2

a,b by

ψ̄2ξ2
a,b : F (a ξ1 b) ⊢ Fa ξ2 Fb

and ψζ by ψ̄ζ : F ζ1 ⊢ ζ2.

For every C-functor from A1 to A2 and every Mµ ∈ Lcon (see §2.5),
we define in A2 the family of arrows ψMµ

by induction, with the following

clauses:
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(ψMµ

1) ψ2
a = 1Fa,

(ψMµ

2) ψMξN
a⃗,⃗b

= ψ2ξ2

M(a⃗),N (⃗b)
◦ (ψM

a⃗ ξ2 ψN
b⃗
),

where a⃗ and b⃗ stand for a1, . . . , am and b1, . . . , bn respectively,

(ψMµ

3) ψMµ

a1,...,ak
= ψM

aµ(1),...,aµ(m)
.

We have a dual definition of ψ̄Mµ

for dual C-functors, where the clauses
(ψMµ

1) and (ψMµ

3) have just ψ replaced by ψ̄, while the clause (ψMµ

2)

is replaced by

ψ̄MξN
a⃗,⃗b

= (ψ̄M
a⃗ ξ2 ψ̄N

b⃗
) ◦ ψ̄2ξ2

M(a⃗),N (⃗b)
.

We say that the members of ψMµ

are ψ-arrows.

Let Mµ
i be obtained from Mµ by replacing ξ and ζ by ξi and ζi respec-

tively. From the bifunctoriality of ξi in Ai we can deduce that Mµ
i defines

a k-endofunctor in Ai. The word 2ξi2 stands for the 2-endofunctor ξi,

the word 2 for the identity 1-endofunctor of Ai, and the word ζi for the

0-endofunctor ζi of Ai.

From the inductive definition of ψMµ

we can deduce the following equa-

tion of A2 for every C-functor:

(ψMµ

) ψ
Mµ(L

λ1
1 ,...,L

λk
k

)

a⃗1,...,a⃗k
= ψMµ

L
λ1
1 (a⃗1),...,L

λk
k

(a⃗k)
◦Mµ

2 (ψ
L

λ1
1

a⃗1
, . . . , ψ

L
λk
k

a⃗k
)

where a⃗i stands for a sequence b1, . . . , bl, with l ≥ 0, of objects of A1, and

the Lλi
i from the indices of ψMµ

on the right-hand side are also from A1.

It is easier to derive (ψMµ

) when the functions µ, λ1, . . . , λk are all identity

functions, and this easier equation is then used in the derivation of the

general (ψMµ

) equation.

We say that a C-functor from A1 to A2 preserves an Mµ of C (i.e. an

Mµ of Lcon, for C in L) when ψMµ

a1,...,ak
is natural in a1, . . . , ak (see §2.4);

this means that the following equation holds in A2:

(ψ nat) FMµ
1 (f1, . . . , fk) ◦ψMµ

a1,...,ak
= ψMµ

b1,...,bk
◦Mµ

2 (Ff1, . . . , Ffk).

It can be checked that it is enough to assume the following instance of

(ψ nat) for every ξ in Mµ:
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(ψ2ξ2 nat) F (f1 ξ1 f2) ◦ψ2ξ2
a1,a2

= ψ2ξ2
b1,b2

◦ (Ff1 ξ2 Ff2)

to derive by induction that F preserves Mµ. The following instances of

(ψ nat):

F1ζ1
◦ψζ = ψζ ◦1ζ2 ,

Ff ◦ψ2
a = ψ2

b
◦Ff

follow from the functoriality of F and categorial equations.

We say that a C-functor from A1 to A2 preserves an α of C when the

following equation holds in A2:

(ψα) Fα1
a⃗

◦ψMµ

a⃗ = ψNν

a⃗
◦α2

F⃗ a

where if a⃗ is a1, . . . , ak, then F⃗ a is Fa1, . . . , Fak. We apply an analogous

convention concerning a⃗ and F⃗ a also later.

We say that a C-functor is partial when it preserves everyMµ and every

α of C.
We say that a C-functor from A1 to A2 is fluent in an α of C when every

k-tuple of ψ arrows flows through α in A2 (see §2.4).
For every C-functor from A1 to A2 that preserves α and is fluent in α

we have the following equation in A2:

(ψαL) Fα1

L
λ1
1 (a⃗1),...,L

λk
k

(a⃗k)
◦ψ

Mµ(L
λ1
1 ,...,L

λk
k

)

a⃗1,...,a⃗k
=

ψ
Nν(L

λ1
1 ,...,L

λk
k

)

a⃗1,...,a⃗k
◦α2

L
λ1
1 ( ⃗Fa1),...,L

λk
k

( ⃗Fak)

where the Lλi
i in the indices of α1 are from A1, while those in the indices of

α2 are from A2. To derive (ψαL) we just apply (ψMµ

), (ψα) and fluency

in α. The equation (ψα) is the instance of (ψαL) where every Lλi
i is 2,

that is 2ι{1} .

We are aware that the condition (ψαL), with its multiple indexing, may

look forbidding. Fortunately, in cases we deal with in this book, it will be

equivalent to the simpler fluency in α condition, as we will see in a moment.

A C-functor is called total when it preserves every Mµ of C and (ψαL)

holds for every α of C. Every total C-functor is a partial C-functor. It
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can be verified that the composition of two partial C-functors is a partial

C-functor, and the composition of two total C-functors is a total C-functor.
The arrow ψ2ξ2

a,b tied to the functor F3F2 is defined as F3ψ
22ξ2

a,b
◦ψ32ξ2

F2a,F2b,

and the arrow ψζ tied to the functor F3F2 as F3ψ
2ζ

◦ψ3ζ
.

We say that a C-functor is groupoidal when it is a C-functor and a dual

C-functor with ψMµ

a⃗ and ψ̄Mµ

a⃗ being inverses of each other. For C-functors
where the ψMµ

arrows are mono, (ψαL) implies fluency in α, so that for

groupoidal partial C-functors, (ψαL) is equivalent to fluency in α. The

composition of two groupoidal C-functors is a groupoidal C-functor.
Let us call maps from the set of letters P into the objects of a deductive

system Di of the C kind valuations into Di. A valuation vi into Di is

extended to two maps, both called vi, from the objects and arrow terms of

C to the objects and arrows, respectively, of Di with the obvious clauses

vi(A ξ B) = vi(A) ξ vi(B),

vi(ζ) = ζ,

vi(αA1,...,Ak
) = αvi(A1),...,vi(Ak),

vi(f ξ g) = vi(f) ξ vi(g),

vi(g ◦ f) = vi(g) ◦ vi(f).

We can prove the following.

Proposition. Let A1 and A2 be bifunctorial categories of the C kind.

If F is a total C-functor from A1 to A2, then for every arrow term f :

M(p1, . . . , pm) ⊢ N(q1, . . . , qn) of C, for every valuation v1 into A1 and for

every valuation v2 into A2 such that v2(p) = Fv1(p), in A2 we have

(ψt) Fv1(f) ◦ψM
v1(p1),...,v1(pm) = ψN

v1(q1),...,v1(qn)
◦ v2(f).

Proof. We proceed by induction on the length of f . If f is

α
L

λ1
1 (p⃗1),...,L

λk
k

(p⃗k)
,

then we use (ψαL). If f is f1 ξ f2, then we use (ψ nat), the bifunctorial

equations for ξ and the induction hypothesis. If f is f2 ◦ f1, then we use

(fun 2) for F and the induction hypothesis. ⊣

Only a C-functor that satisfies (ψt) may be said to preserve the C-
structure properly, up to ψ. But not everything in the definition of total
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C-functor is a consequence of (ψt). In particular, (ψ nat) with f1, . . . , fk

foreign to the C-structure is not such a consequence.

A groupoidal total C-functor is called strong. A C-functor F from A1

to A2 is called strict when Fa ξ2 Fb = F (a ξ1 b), ζ2 = F ζ1 and ψ2ξ2
a,b and ψζ

are identity arrows of A2. Every strict C-functor is, of course, strong.
For a strict C-functor F the equations (ψ nat) and (ψt) become

FMµ
1 (f1, . . . , fk) =Mµ

2 (Ff1, . . . , Ffk),

Fv1(f) = v2(f), where v2(p) = Fv1(p),

while (ψαL) is an easy consequence of (ψα). Strict C-functors preserve the
C structure on the nose . (The expression “on the nose” is used in other

analogous situations, when a structure is homomorphically preserved in an

obvious manner.)

According to what we have said above about the composition of total

C-functors and groupoidal C-functors, the composition of two strong C-
functors is a strong C-functor. The composition of two strict C-functors is,
of course, a strict C-functor.

These definitions are on the lines of Mac Lane’s definition of monoidal

functor of [102] (cf. [7]). For example, with α being
∧
b→, the equation (ψα)

and the inductive clauses for ψM yield the following equation:

F
∧
b→a,b,c ◦ψ2∧2

a,b∧1c
◦ (1Fa ∧2 ψ2∧2

b,c ) = ψ2∧2
a∧1b,c

◦ (ψ2∧2
a,b ∧2 1Fc) ◦

∧
b→Fa,Fb,Fc,

which is used in [102] (Section XI.2) to define monoidal functors. Fluency

is, however, only implicit for Mac Lane. Besides that, our definition, which

does not presuppose as Mac Lane’s that monoidal functors are between

monoidal categories only, will enable us later to define monoidal categories

via monoidal functors (see §4.6). We have analogous definitions via strict

C-functors for other sorts of categories too.
When every valuation into a bifunctorial category A of the C kind can

be extended to a strict C-functor from a logical category C/E to A we say

that A is a C/E-category relative to P. The logical system C is here a logical

system in the language L generated by the set of letters P.
If something is a C/E-category relative to an infinite set of letters P,

then it must be a C/E(B)-category relative to any other generating set
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B. (Depending on the number of different variables for formulae in the

axiomatic equations with variables assumed for E , we could do here with

a finite set P of at least a certain cardinality instead of an infinite set P,
but, assuming uniformly that P is infinite, we are on the safe side.) A C/E-
category relative to an infinite set P is then called simply a C/E-category.

If C/E is a natural logical category, then a C/E-category A is a natural

C/E-category when for every α in C the naturality equations hold in A.
The bifunctorial equations for every ξ of C are guaranteed in every C/E-
category, and fluency in every α of C is guaranteed for every C-functor into
a natural C/E-category.

When for f and g arrow terms of C of the same type we say that the

equation f = g holds in a deductive system A of the C kind, we understand
the letters p, q, . . . of L as variables for objects. If A is a C/E-category, then
that f = g holds in A amounts to saying that Ff = Fg holds for every

strict C-functor F from C/E to A. Every equation of E holds in this sense

in a C/E-category A, but additional equations f = g, not in E , may hold

in A too.

§2.9. The category Rel and coherence

The objects of the category Rel are finite ordinals (we have 0 = ∅ and

n+1 = n ∪ {n}), and its arrows are relations between finite ordinals. We

write either (x, y) ∈ R or xRy, as usual. In this category, 1n : n ⊢ n is the

identity relation, i.e. identity function, on n. If n = 0, then 1∅ : ∅ ⊢ ∅ is the
empty relation ∅, with domain ∅ and codomain ∅.

For R1 : n ⊢ m (that is, R1 ⊆ n×m) and R2 : m ⊢ k, the set of ordered

pairs of the compositionR2 ◦R1 : n ⊢ k is {(x, y) | ∃z(xR1z and zR2y)}. For
R1 : n ⊢ m and R2 : k ⊢ l, let the set of ordered pairs of R1+R2 : n+k ⊢ m+l

be

R1 ∪ {(x+n, y+m) | (x, y) ∈ R2}.

With addition on objects, this operation on arrows gives a biendofunctor

in Rel.

The category Rel is a category of the C kind for every logical system

C whose families α are from Tables 1 and 2 of §2.6, and, moreover, the
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appropriate bifunctorial and naturality equations will hold in Rel. The

biendofunctor ξ for every ξ ∈ {∧,∨} is +, and the object ζ for every

ζ ∈ {⊤,⊥} is 0. The natural transformation α for every α included in the

families b, δ-σ, d, m, m−1 or 1 is the family 1 of Rel. In other cases, we

have the following:

(x, y) ∈ ∧
cn,m iff (y, x) ∈ ∨

cn,m iff (x+m = y or x = y+n);

(x, y) ∈ ∧
wn iff (y, x) ∈ ∨

wn iff x ≡ y (mod n);

(x, y) ∈
∧
k1n,m iff (y, x) ∈

∨
k1n,m iff x = y;

(x, y) ∈
∧
k2n,m iff (y, x) ∈

∨
k2n,m iff x = y+n;

the relations
∧
κn: n ⊢ ∅ and

∨
κn: ∅ ⊢ n are the empty relations.

It is not difficult to check that all these families α in Rel are natural

transformations. This is clear from the diagrammatical representation of

relations in Rel. Here are a few examples of such diagrammatical represen-

tations, with domains written at the top and codomains at the bottom:
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For the identity relation, i.e. the identity function, 1n we have, of course,

q q q
· · ·

q q q

0 1 n−1

0 1 n−1

Such diagrams are composed in an obvious manner by putting them one

below another; for example,
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∨
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∧
k14,1

The equation

(
∧
w nat) (f ∧ f) ◦

∧
wn =

∧
wm ◦ f,
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which is an instance of (α nat), and which we take as an example, is justified

in the following manner via diagrams:
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f f

f

m

n

m

∧
wn

∧
wm

We can now define a function G from the objects of C to the objects of

Rel such that for p ∈ P, ζ ∈ {⊤,⊥} and ξ ∈ {∧,∨} we have

Gp = 1,

Gζ = 0,

G(A ξ B) = GA+GB.

Hence GA is just the letter length of A.

We can also define a function, called G too, from the arrow terms of C
to the arrow terms of Rel such that

GαA1,...,Ak
= αGA1,...,GAk

,

G(f ξ g) = Gf +Gg,

G(g ◦ f) = Gg ◦Gf.

It is easy to check that for f : A ⊢ B we have that Gf is of type GA ⊢ GB.

It is also easy to check that if for f : A ⊢ B we have (x, y) ∈ Gf , then the

(x+1)-th occurrence of letter in A, counting from the left, and the (y+1)-th

occurrence of letter in B are occurrences of the same letter.

For many logical categories C/E considered in this work, the two func-

tions G we have just defined induce a strict C-functor G from C/E to Rel

such that G[f ] = Gf (see the penultimate paragraph of §2.4). Whenever

G is such a functor, it is straightforward to show that fact just by checking

that Rel satisfies the equations of E (with A, B, . . . replaced by n,m, . . .),

and we will not dwell on the proof of that.

The greatest part of our work consists in demonstrating the faithfulness

of such functors G. We call these faithfulness results coherence theorems,

and say that C/E is coherent.
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If the image of C/E under the functor G is a discrete subcategory of Rel,

which is the case when we exclude c, w, k and κ, then C/E is coherent iff

C/E is a preorder. So, in such cases, our coherence theorems will state that

C/E is a preorder (which is the narrow sense in which Mac Lane understood

coherence originally in [99]).

It is clear that if C/E is coherent in the sense just specified, then it is

decidable whether arrow terms of C are equal in C/E . In logical terms,

one would say that the coherence of C/E implies the decidability of the

equational system E . This is because equality of arrows is clearly decidable

in Rel. So, in the terminology of §1.1, coherence here implies a solution to

the commuting problem.





Chapter 3

Strictification

This chapter is devoted to strictification (a topic announced in §1.7). Our

results are about categories that have as a subcategory a groupoid that

is a preorder. For such a category we find an equivalent strictified cate-

gory where the arrows of the groupoid are collapsed into identity arrows.

The functors on which this equivalence of categories is based are functors

that preserve structure up to isomorphism. The interest of strictification

is that it shortens the coding of arrows, and facilitates the recording of

computations.

§3.1. Strictification in general

We will prove a general theorem concerning the possibility of finding for a

C/E-category B a C/E-category BG equivalent to B via strong C-functors
such that some isomorphisms of the C/E structure of B, which make a

subcategory G of C/E , become identity arrows in BG , and may hence be

omitted according to the equation (cat 1) (see Chapter 11). So, instead of

computing in B we can pass to BG , where computations become shorter,

and their recording is simplified. The category BG is here called strict with

respect to the isomorphisms that have become identity arrows, and the

procedure of passing from B to BG is called strictification.

Our theorem will generalize considerably analogous strictification results

of Joyal and Street in [72] (Section 1) and of Mac Lane in [102] (Section

XI.3). First, we strictify with respect to wider classes of isomorphisms

65
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G, such as we will encounter in our work, and not only with respect to

monoidal isomorphisms (for monoidal categories see §4.6). Secondly, even

when we strictify only with respect to monoidal isomorphisms—i.e. when G
is a free monoidal category—our C-functors may preserve a wider structure,

and not just the monoidal structure. They are not just monoidal functors.

As suggested by [72] and [102], strictification opens the way to alter-

native proofs of coherence results, in the sense of results about certain

categories being preorders. (Some authors go so far as to call strictification

results coherence results, but we believe this usage is confusing.) We will

obtain such alternative proofs of coherence in some cases, but in general

we favour the direct approach to proofs of coherence, in the style of [99]

and [100] (Section VII.2), which is not more difficult. (The alternative

proofs of coherence via strictification may look shorter when their presen-

tation is sketchy.) The prime reason why we deal with strictification is not

the production of alternative proofs of coherence—this is only an occasional

byproduct. Our prime reason is a handy recording of lengthy computations,

as mentioned above. Strictification enables us to have shorter records after

coherence has been proved.

We formulate our strictification results with respect to a language L such

as we specified at the beginning of §2.5, because it is mainly in this context

that we mean to apply them. It will be clear, however, that analogous

results hold also for contexts with richer languages.

Let L be a language such as in §2.5, and let the following condition be

satisfied:

(IB) B is a category that for every connective ξ and ζ of L has, re-

spectively, a binary and a nullary operation on objects, denoted

by ξ and ζ.

Let L(Bob) be the language with the same connectives as L generated by

the set Bob of the objects of B instead of P. The elements of L(Bob) are

also formulae. To distinguish the ξ and ζ of L(Bob) from those of Bob we

write ξG and ζG for the connectives ξ and ζ of L(Bob). The connectives ξG

and ζG are new connectives, not to be confused with the operations ξ and

ζ involved in the objects of B.
Let ≡G be an equivalence relation on L(Bob) such that if a and b are



§3.1. Strictification in general 67

objects of B we have a ≡G b only if a is the same object as b. We call such

an equivalence relation generatively discrete. Let [A] be the equivalence

class of the formula A of L(Bob) with respect to ≡G .
Out of B we build a category BG in the following manner. The objects

of BG are all the classes [A] for A ∈ L(Bob). We use X, Y , Z, . . . , sometimes

with indices, for the objects of BG .
Consider the map E from L(Bob) to Bob defined inductively by

Ea = a if a ∈ Bob,

EζG = ζ,

E(A ξG B) = EA ξ EB,

where ζ and ξ on the right-hand side are the ζ and ξ of B. With the help

of E we define a map F from the objects of BG to Bob in the following

manner. We choose first a fixed representative formula AF ∈ [A] so that

if A is an object a of B, then AF is a. We have guaranteed above by

generative discreteness that in [a] we have no object of B different from a.

Otherwise, the choice of the representative AF is arbitrary. Then we define

F [A] as EAF .

The arrows of BG are all the triples (f,X, Y ) such that f : FX ⊢ FY
is an arrow of B. The arrow (f,X, Y ) is of type X ⊢ Y in BG . The arrow

(1FX , X,X) is an identity arrow of BG , and for (f,X, Y ) and (g, Y, Z)

arrows of BG we define their composition in BG as (g ◦ f,X,Z). This defines

the category BG .
Out of the map on objects F we define a functor F from BG to B by

setting F (f,X, Y ) = f .

We define a functor FG from B to BG by

FGa = [a],

FGf = (f, FGa, FGb), for f : a ⊢ b.

For the definition of FGf to be correct we must have that the type of f is

FFGa ⊢ FFGb and this is guaranteed by FFGc = F [c] = c. It is trivial to

check that F and FG are indeed functors.

Let (I) be the collective name for (IB) and the condition that ≡G is gen-

eratively discrete (i.e. the name for the conjunction of these two conditions).

Then we can prove the following lemma.
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Lemma 1. If (I) holds, then the categories B and BG are equivalent via the

functors FG and F .

Proof. We have FFGa = a, as we noted above, and we have also FFGf =

f . On the other hand, FGF [A] = FGEAF = [EAF ]. Note that EAF is a

generator in L(Bob), and though [A] = [AF ], the object [A] may well differ

from [EAF ]. However, we have in BG the natural isomorphism τ whose

members are τX = (1FX , F
GFX,X). ⊣

Note that to prove this lemma, we use just f ◦1a = 1b ◦ f and 1a ◦1a = 1a,

which are consequences of (cat 1), so that we could generalize the lemma

to deductive systems B that are not categories.

Let the following conditions, called collectively (II), which strengthen

(I), be satisfied:

(IIC) C is a logical system in L;
(IIB) B is a bifunctorial category of the C kind;

(IIG) ≡G is a generatively discrete equivalence relation on L(Bob).

We define, as before, the category BG and the functors F and FG start-

ing from the equivalence relation ≡G on L(Bob). We ensure that BG is a

bifunctorial category of the C kind with the following definitions:

X1 ξ′ X2 =df F
G(FX1 ξ FX2), where ξ is the ξ of B,

= [FX1 ξ FX2],

(f1, X1, Y1) ξ′ (f2, X2, Y2) =df F
G(F (f1, X1, Y1) ξ F (f2, X2, Y2))

= FG(f1 ξ f2), where ξ is the ξ of B,
= (f1 ξ f2, X1 ξ′ X2, Y1 ξ′ Y2).

ζ′ =df F
Gζ = [ζ], where ζ is the ζ of B.

It is easy to check that the bifunctorial equations hold for ξ′ in BG , because
they are inherited from B. Then we define the k-endofunctor (M ′)µ out

of the k-endofunctor Mµ, where Mµ ∈ Lcon, just by replacing ξ and ζ

everywhere by ξ′ and ζ′ respectively, so that we have (M ′)µ(X1, . . . , Xk) =

FGMµ(FX1, . . . , FXk). The following:

α′X1,...,Xk
=df (αFX1,...,FXk

, (M ′)µ(X1, . . . , Xk), (N
′)ν(X1, . . . , Xk))
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completes the definition of the C structure. It is easy to obtain that

F (M ′)µ(X1, . . . , Xk) =Mµ(FX1, . . . , FXk), and analogously for Nν .

Let B with the C-structure be denoted by ⟨B,M, α⟩ and let BG with the

C-structure we have just defined be denoted by ⟨BG ,M ′, α′⟩. Then we can

check the following lemma in a straightforward manner.

Lemma 2. If (II) holds, then the functors FG and F are strict C-functors
from ⟨B,M, α⟩ to ⟨BG ,M ′, α′⟩ and vice versa, respectively.

As a corollary of Lemma 2 we obtain that if ⟨B,M, α⟩ is a C/E-category
for a logical category C/E , then ⟨BG ,M ′, α′⟩ is a C/E-category too. A little

bit of work is required only to demonstrate the bifunctorial equations for

ξ′, which follow from the definitions of BG and ξ′, as we noted above.

It is easy to see that if (II) holds, and for an α of C we have that α is a

natural transformation in B, then α′ is a natural transformation in BG .
We call a logical system C generatively discrete when for every arrow

term of C of type p ⊢ q we have that p is the same letter as q.

Let the following conditions, called collectively (III), which strengthen

(II), be satisfied:

(IIIC) C is a logical system in L and C′ is a generatively discrete sub-

system of C also in L, so that C and C′ have both as objects the

formulae of L; we abbreviate this condition involving C, C′ and
L by C′ ≼L C;

(IIIG) G is a logical category of the C′ kind that is a groupoid;

(IIIB) B is a G-category and ⟨B,M, α⟩ is a category of the C kind.

Since G is a logical category, it is equal to C′/E ′ for an equational system

E ′ in C′.
Let G(B) be defined as G save that the letters of P are replaced by the

objects of B (see §2.7). More precisely, we proceed as follows. First, instead

of L generated by P we have L(Bob) generated by the set Bob of objects

of B, as above, with new ξG and ζG. The set L(Bob) is the set of objects

of G(B). Next, we build the arrow terms of the logical system C′(Bob) by

indexing every α of C′ with k-tuples of formulae of L(Bob) instead of k-

tuples of formulae of L, and then closing under ξG for every ξ of C′ and
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composition. Finally, the axiomatic equations with variables assumed for

E ′ in C′ are now interpreted in C′(Bob). The variables for formulae range

over the objects of C′(Bob), and the connectives ξ and ζ in these equations

now apply to ξG and ζG of L(Bob). The logical category C′/E ′(Bob) is G(B)
(see the end of §2.7).

Let ≡G be the binary relation on the objects of G(B) defined by A ≡G B
iff there is an arrow of G(B) of type A ⊢ B. Since G, and hence also G(B), are
groupoids, ≡G is an equivalence relation. Since C′ is generatively discrete,

the relation ≡G is generatively discrete; i.e., no two different objects of B
are in the relation ≡G . Let [A] be, as before, the equivalence class of an

object of G(B) with respect to ≡G .
If (III) is fulfilled, then B, which is a G-category, is a G(B)-category too

(see the end of §2.8), and so the valuation that assigns to every generating

object a of G(B) the object a of B itself can be extended to a strict C′-
functor E from G(B) to B. Intuitively, E erases every superscript G in ξG

and ζG. We already introduced, when we defined the functor F from B to

BG , the function E on objects of the functor E.

For every object A of G(B) we have an isomorphism φA : AF ⊢ A of

G(B) where AF is the chosen representative from [A]. The inverse of φA

is the arrow φ−1A : A ⊢ AF of G(B). A natural choice for φAF
: AF ⊢ AF ,

and in particular for φa : a ⊢ a, would be identity arrows, but this choice

is not essential for the time being. It is also not essential to define φA by

induction on the complexity of A. (Such an inductive definition of φA is

possible if the representative AF is chosen in a particular canonical way;

cf. §4.5.) If, however, G, and hence also G(B), are preorders, then φAF

must be 1AF
. For every isomorphism φA of G(B) we have the isomorphism

EφA : EAF ⊢ EA in B.
We can then define the following C structure in BG , different from the

⟨BG ,M ′, α′⟩ structure. On objects we have

[A] ξ′′ [B] =df [A ξG B] = [AF ξG BF ],

ζ′′ =df [ζG].

That the definition of ξ′′ is correct is guaranteed by the fact that if we have

the isomorphisms f : A ⊢ A1 and g : B ⊢ B1 of G(B), then we have also the

isomorphism f ξG g : A ξG B ⊢ A1 ξG B1.
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We define the following arrows of BG :

ψ2ξ2
[A],[B] =df (EφAF ξGBF

, [A] ξ′′ [B], [A] ξ′ [B]),

ψζ =df (EφζG , ζ′′, ζ′),

ψ̄2ξ2
[A],[B] =df (Eφ

−1
AF ξGBF

, [A] ξ′ [B], [A] ξ′′ [B]),

ψ̄ζ =df (Eφ
−1
ζG
, ζ′, ζ′′).

It is easy to check that the source of EφAF ξGBF
is F ([A] ξ′′ [B]), and its

target F ([A] ξ′ [B]). The source of EφζG is F ζ′′ and its target is F ζ′ (which

is equal to ζ). Note that in the definition of ψ2ξ2 and ψ̄2ξ2 we need the

arrows φA and φ−1A only for A being of the form AF ξG BF and ζG. We have

no use for other φ and φ−1 arrows.

We define the following operation on the arrows of BG :

(f1, X1, Y1) ξ′′ (f2, X2, Y2) =df ψ̄
2ξ2
Y1,Y2

◦ ((f1, X1, Y1) ξ′ (f2, X2, Y2)) ◦ψ2ξ2
X1,X2

.

It is clear that, since EφA is an isomorphism, the bifunctorial equations

hold for ξ′′ in BG .
For every Mµ ∈ Lcon, let (M ′′)µ be obtained by replacing ξ and ζ

with ξ′′ and ζ′′. Starting from ψ2ξ2
X1,X2

and ψζ, with the help of ξ′′, we de-

fine ψMµ

X1,...,Xk
: (M ′′)µ(X1, . . . , Xk) ⊢ (M ′)µ(X1, . . . , Xk) by the inductive

clauses ψ2
X = 1X = (1FX , X,X), which replaces (ψMµ

1), and the clauses

(ψMµ

2), with ξ2 replaced by ξ′′, and (ψMµ

3) of §2.8. We define analo-

gously with the help of ξ′′ the inverse ψ̄Mµ

X1,...,Xk
of ψMµ

X1,...,Xk
. Then we have

the following definition in BG :

α′′X1,...,Xk
=df ψ̄

Nν

X1,...,Xk
◦α′X1,...,Xk

◦ψMµ

X1,...,Xk
.

This defines the C structure in BG , and we can conclude that ⟨BG ,M ′′, α′′⟩
is a bifunctorial category of the C kind.

It is straightforward to show by induction on M ∈ L2 that in BG we

have

(M ′′) (M ′′)µ((f1, X1, Y1), . . . , (fk, Xk, Yk)) =

ψ̄Mµ

Y1,...,Yk
◦ (M ′)µ((f1, X1, Y1), . . . , (fk, Xk, Yk)) ◦ψMµ

X1,...,Xk
.

We introduce the following definitions:
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ψ′
2ξ2
X1,X2

=df ψ̄
2ξ2
X1,X2

, ψ′
ζ
=df ψ̄

ζ,

ψ̄′
2ξ2

X1,X2
=df ψ

2ξ2
X1,X2

, ψ̄′
ζ
=df ψ

ζ.

Then starting from ψ′
2ξ2
X1,X2

and ψ′
ζ
, with the help of ξ′, and not ξ′′, we

define

ψ′
Mµ

X1,...,Xk
: (M ′)µ(X1, . . . , Xk) ⊢ (M ′′)µ(X1, . . . , Xk)

by the inductive clauses ψ′
2
X = 1X , which replaces (ψMµ

1), and the clauses

(ψMµ

2) and (ψMµ

3). We define analogously with the help of ξ′ the inverse

ψ̄′
Mµ

X1,...,Xk
of ψ′

Mµ

X1,...,Xk
. Then we have the following in BG :

ψ′
Mµ

X1,...,Xk
= ψ̄Mµ

X1,...,Xk
,

ψ̄′
Mµ

X1,...,Xk
= ψMµ

X1,...,Xk
.

To show these equations, we use the equation (ψMµ

) of §2.8, its dual for ψ̄,
and the equation (M ′′) above.

It follows now immediately that in BG we have the following:

α′′X1,...,Xk
= ψ′

Nν

X1,...,Xk
◦α′X1,...,Xk

◦ ψ̄′
Mµ

X1,...,Xk
.

Since the ψ′ arrows are defined in terms of ξ′, which is easier to handle

than ξ′′, we will have occasion to apply later this equation, which we call

the alternative definition of α′′. We can prove the following lemma.

Lemma 3. If (III) holds, then the identity functor IBG of BG with ψ2ξ2 and

ψζ is a groupoidal partial C-functor from ⟨BG ,M ′, α′⟩ to ⟨BG ,M ′′, α′′⟩, and
IBG with ψ̄2ξ2 and ψ̄ζ is a groupoidal partial C-functor from ⟨BG ,M ′′, α′′⟩
to ⟨BG ,M ′, α′⟩.

Proof. The equations (ψ nat) follow from (M ′′), while the equations (ψα)

follow immediately from the definition of α′′, or the alternative definition

of α′′. ⊣

Note that with Lemma 3 we have asserted that ξ′ and ξ′′ are naturally

isomorphic biendofunctors of BG . Showing that ψ2ξ2 and ψ̄2ξ2 involved in
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this isomorphism are natural transformations does not presuppose that the

φ and φ−1 arrows in terms of which we define ψ2ξ2 and ψ̄2ξ2 are members

of natural transformations. We just assume that φ and φ−1 arrows are

isomorphisms of G(B).
Suppose C′ ≼L C, as in (IIIC). For every logical category C/E we can

determine out of C/E and C′ a logical subcategory C′/E ′ of C/E by restricting

the equations of E to the transformations α of C′.
We say that C′/E ′ flows through C/E when for every α of C every k-

tuple of arrows of C′/E ′ flows through α in C/E . If C/E is a natural logical

category, then for every subsystem C′ of C we have that C′/E ′ flows through
C/E .

Suppose C′ ≼L C. For any deductive system B of the C kind there is

a least subsystem of B of the C′ kind, which we call the C′-core of B. We

build the C′-core of B by taking for objects all the objects of B; for arrows
we take the members of the transformations α of B for every α of C′ with
the same sources and targets as in B, and then close under composition

and the operations on arrows ξ of B for every ξ of C′, i.e. of L. Note that

the C′-core of B need not be a syntactical system: it inherits the equations

between arrows of B. As a limit case, we can determine also the C-core of

B, which need not coincide with B.
If B is a bifunctorial category of the C-kind, then its C′-core is a bi-

functorial category of the C′-kind; if B is a C/E-category, then its C′-core
is a C′/E ′-category; and if B is a natural C/E-category, then its C′-core is a

natural C′/E ′-category. The C′-core of C/E is C′/E ′.
Consider now the following conditions, called collectively (IV), which

strengthen (III):

(IVC) C′ ≼L C, as in (IIIC), and C/E is a logical category in L;

(IVG) the C′-core C′/E ′ = G of C/E is a groupoid and G flows through

C/E ;

(IVB) ⟨B,M, α⟩ is a C/E-category.

Lemma 3 holds if (III) is replaced by (IV) and “groupoidal partial C-
functor” is replaced by “strong C-functor”. Here is this new version of

Lemma 3.
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Lemma 3(IV). If (IV) holds, then the identity functor IBG of BG with ψ2ξ2

and ψζ is a strong C-functor from ⟨BG ,M ′, α′⟩ to ⟨BG ,M ′′, α′′⟩, and IBG

with ψ̄2ξ2 and ψ̄ζ is a strong C-functor from ⟨BG ,M ′′, α′′⟩ to ⟨BG ,M ′, α′⟩.

Proof. We appeal to Lemma 3, and check, moreover, the fluency of the

identity functor, with the arrows ψMµ

or ψ̄Mµ

, in every α, or we check

directly (ψαL) (which is slightly more complicated). ⊣

As a corollary, we obtain the following lemma.

Lemma 4. If (IV) holds, then the functor FG, with ψ2ξ2 and ψζ, and the

functor F , with Fψ̄2ξ2 and Fψ̄ζ, are strong C-functors from ⟨B,M, α⟩ to
⟨BG ,M ′′, α′′⟩ and vice versa, respectively.

Proof. As we noted in §2.8, the composition of two strong C-functors is a
strong C-functor. Since strict C-functors are strong, Lemmata 2 and 3(IV)

deliver our lemma. ⊣

If in Lemma 4 the condition (IV) is replaced by (III), then we can only

affirm that the functors in question are groupoidal partial C-functors. If

(IV) holds, then from Lemma 1 we obtain that ⟨B,M, α⟩ and ⟨BG ,M ′′, α′′⟩
are equivalent categories via the two strong C-functors of Lemma 4. We

can prove the following lemma.

Lemma 5. If (IV) holds, then ⟨BG ,M ′′, α′′⟩ is a C/E-category.

Proof. Note first that the bifunctorial equations hold for ξ′′ in BG , as
noted after the definition of ξ′′ on arrows. So ⟨BG ,M ′′, α′′⟩ is a bifunctorial

category of the C kind.

Then take a valuation v that maps the letters of P into the objects of

BG . As mentioned after Lemma 2, the valuation v can be extended to a

strict C-functor v′ from C/E to ⟨BG ,M ′, α′⟩ such that v′(p) = v(p).

Suppose that the equation f = g for f, g :M(p1, . . . , pm) ⊢ N(q1, . . . , qn)

belongs to E . Then we know that v′(f) = v′(g) holds in BG , and hence we

have in BG the following equation too:

ψ̄N
v′(q1),...,v′(qn)

◦ v′(f) ◦ψM
v′(p1),...,v′(pm) = ψ̄N

v′(q1),...,v′(qn)
◦ v′(g) ◦ψM

v′(p1),...,v′(pm).

By Lemma 3(IV) and the Proposition of §2.8, we conclude that for the
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maps v′′ from the objects and arrow terms of C to the objects and arrows

of ⟨BG ,M ′′, α′′⟩ defined by v′′(p) = v(p) and the inductive clauses as for vi,

which we gave just before that Proposition, we have v′′(f) = v′′(g). So the

valuation v is extended to a strict C-functor v′′ from C/E to ⟨BG ,M ′′, α′′⟩,
which proves the lemma. ⊣

It is easy to see that if (III) holds, and for an α of C we have that α′ is

a natural transformation in BG , then α′′ is a natural transformation in BG .
So, together with the comment we made before introducing (III), we can

conclude that if (III) holds, and for an α in L we have that α is a natural

transformation in B, then α′′ is a natural transformation in BG .
A deductive system A of the C kind is called C-strict when for ev-

ery α of C we have that the members of the transformation α in A are

identity arrows. This presupposes that the objects Mµ(a1, . . . , ak) and

Nν(a1, . . . , ak) are equal in a C-strict deductive system, though in C the

formulae Mµ(A1, . . . , Ak) and Nν(A1, . . . , Ak) need not be equal. A bi-

functorial category A of the C-kind is C-strict iff its C-core is discrete. We

can now prove the following lemma.

Lemma 6. If (IV) holds and G is a preorder, then ⟨BG ,M ′′, α′′⟩ is C′-strict.

Proof. Suppose G is a preorder and take an α of C′. Then in G(B) we have
an arrow αA1,...,Ak

: (MG)
µ
(A1, . . . , Ak) ⊢ (NG)

ν
(A1, . . . , Ak) where (M

G)
µ

and (NG)
ν
are obtained from Mµ, Nν ∈ Lcon by replacing ξ and ζ by

ξG and ζG respectively. Hence [(MG)
µ
(A1, . . . , Ak)] = [(NG)

ν
(A1, . . . , Ak)]

and hence (M ′′)
µ
([A1], . . . , [Ak]) = (N ′′)

ν
([A1], . . . , [Ak]).

The arrow α′′[A1],...,[Ak]
is so of the type Y ⊢ Y for some object Y of

BG . So the arrow Fα′′[A1],...,[Ak]
of B is of the type FY ⊢ FY , and since

this arrow belongs to the C′-core of B, with G being a preorder we ob-

tain Fα′′[A1],...,[Ak]
= 1FY in B. From that we obtain that α′′[A1],...,[Ak]

is

(1FY , Y, Y ), which is an identity arrow in BG . ⊣

Lemmata 1, 4, 5 and 6 yield the following theorem.

Strictification Theorem. If (IV) holds and G is a preorder, then

⟨B,M, α⟩ is equivalent to the C′-strict C/E-category ⟨BG ,M ′′, α′′⟩ via the

strong C-functors FG and F .
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As a corollary we obtain the following.

Strictification Corollary. If C′/E is a natural logical category that is

a groupoid and a preorder, then every C′/E-category ⟨B,M, α⟩ is equivalent
to the C′-strict C′/E-category ⟨BG ,M ′′, α′′⟩ via the strong C′-functors FG

and F .

In [72] and [102] one finds the instance of this corollary where C′/E is the
free monoidal category generated by P, i.e. our category

∧
L⊤ of §4.6. (From

[72] and [102] one could get the wrong impression that something peculiar to

monoidal categories has been discovered, while a more general result, stated

in our Strictification Theorem and Strictification Corollary, looms behind.)

We have no use, however, for the Strictification Corollary. Instead, we will

rely on the stronger Strictification Theorem to record long computations

concerning B with the help of BG , as mentioned at the beginning of the

section (cf. Chapter 11). The corollary is not sufficient for that, because

it does not take into account the unstrictified C structure foreign to the

strictified C′ structure. This structure is not preserved by a functor that is

just a C′-functor and not also a C-functor.
Suppose C′ ≼L C, as in (IIIC). Then we say that a C/E-category B can

be (C/E , C′)-strictified when there is a C′-strict C/E-category B∗ equivalent
to B via two strong C-functors. We can prove the following lemma.

Lemma 7. If C′ ≼L C holds and every C/E-category can be (C/E , C′)-
strictified, then for the C′-core of C/E we have that every arrow in it is an

isomorphism of C/E, this C′-core flows through C/E and it is a preorder.

Proof. If every C/E-category can be (C/E , C′)-strictified, then the logi-

cal category C/E itself can be so strictified. So there is a C′-strict C/E-
category (C/E)∗ equivalent to C/E via the strong C-functors ⟨F,ψ2ξ2, ψζ⟩
from (C/E)∗ to C/E and ⟨F ∗, ψ∗2ξ2, ψ∗ζ⟩ from C/E to (C/E)∗. Let σ be the

natural isomorphism of C/E whose members are σA : FF ∗A ⊢ A, and let

σ−1A be the inverse of σA. Since (C/E)∗ is a C/E-category, every valuation

from P to the objects of (C/E)∗ can be extended to a strict C-functor. Let
v∗ be the strict C-functor from C/E to (C/E)∗ such that v∗(p) = F ∗p. (Note

that the functors v∗ and F ∗ need not coincide.)
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Let f : M(p⃗) ⊢ N(q⃗) be an arrow of the C′-core of C/E . Then v∗(f) :

v∗M(p⃗) ⊢ v∗N(q⃗) is in the C′-core of (C/E)∗, and is hence an identity arrow

of (C/E)∗. By the Proposition of §2.8, we have in (C/E)∗

F ∗f = ψ∗Nq⃗ ◦ v∗(f) ◦ ψ̄∗
M
p⃗ = ψ∗Nq⃗ ◦ ψ̄∗

M
p⃗ .

(The functor corresponding to v1 in (ψt) of the Proposition of §2.8 is here

the identity functor of C/E .) Hence,

f = σ−1N(q⃗)
◦FF ∗f ◦σM(p⃗) = σ−1N(q⃗)

◦F (ψ∗Nq⃗ ◦ ψ̄∗
M
p⃗ ) ◦σM(p⃗),

which proves that f is an isomorphism of C/E .
For f1, . . . , fk in the C′-core of C/E , with fi of type Ki(p⃗i) ⊢ Li(q⃗i) for

i ∈ {1, . . . , k}, by using the Proposition of §2.8 and (ψ nat), we have in

(C/E)∗

F ∗(Nν(f1, . . . , fk) ◦αK1(p⃗1),...,Kk(p⃗k))

= ψ∗
Nν(L1,...,Lk)
q⃗1,...,q⃗k

◦ ψ̄∗
Nν(K1,...,Kk)
p⃗1,...,p⃗k

◦F ∗αK1(p⃗1),...,Kk(p⃗k)

= ψ∗
Nν(L1,...,Lk)
q⃗1,...,q⃗k

◦ v∗(αK1(p⃗1),...,Kk(p⃗k)) ◦ ψ̄∗
Mµ(K1,...,Kk)
p⃗1,...,p⃗k

= F ∗(αK1(p⃗1),...,Kk(p⃗k)
◦Mµ(f1, . . . , fk)).

From that we easily infer, by applying F to both sides and composing with

members of σ and σ−1, that the C′-core of C/E flows through C/E .
Take now f, g : M(p⃗) ⊢ N(q⃗) in the C′-core of C/E . Since v∗(f) and

v∗(g) are the same identity arrow of the C′-core of (C/E)∗, we obtain, as

above,

F ∗f = ψ∗Nq⃗ ◦ ψ̄∗
M
p⃗ = F ∗g,

from which f = g follows. ⊣

It is easy to infer from our Strictification Theorem and Lemma 7 the

following proposition.

Strictification-Coherence Equivalence. If (IV) holds, then every

C/E-category can be (C/E , C′)-strictified iff the C′-core of C/E is a preorder.
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As a corollary of this equivalence we have that if C is generatively dis-

crete and C/E is a natural logical category that is a groupoid, then every

C/E-category can be (C/E , C)-strictified iff C/E is a preorder. Such a state-

ment was suggested by [72] and [102] for the particular case when C/E is

the free monoidal category generated by P.
A result analogous to Strictification-Coherence Equivalence is the fol-

lowing proposition:

If (IV) holds, then C/E can be (C/E , C′)-strictified iff the C′-core
of C/E is a preorder.

We can also infer the following:

If (IV) holds, then every C/E-category can be (C/E , C′)-strictified
iff C/E can be (C/E , C′)-strictified.

If our goal is to use strictification to prove preorder, then appealing to

the possibility of strictifying every C/E-category is irrelevant. The following

statement, which is a corollary of Lemma 7, suffices.

Strictification-Coherence Implication. If C is generatively discrete,

C/E is a natural logical category that is a groupoid and C/E can be (C/E , C)-
strictified, then C/E is a preorder.

We will rely on this implication to give alternative proofs of Associative

Coherence and Monoidal Coherence in §4.5 and §4.7.

§3.2. Direct strictification

The procedure of strictification of the preceding section can be simplified

if the category B we want to strictify is a logical category. Then we can

build a C′-strict category simpler than BG equivalent to B via two strong

C-functors, one of which is even strict. This category replacing BG , though
not logical, will be a syntactical category, like the logical category B.

Suppose the conditions (IVC) and (IVG) of the preceding section are

fulfilled. Let ≡G be the binary relation on L defined by A ≡G B iff there is

an arrow of type A ⊢ B in G. Since G is a groupoid, ≡G is an equivalence
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relation. Since C′ is generatively discrete, no two different letters of P are

in the relation ≡G .
The objects of the syntactical system CG are all the equivalence classes

|[A]| with respect ≡G for A a formula of L. We denote such classes by

X, Y , Z, . . . , sometimes with indices. On the objects of CG we define the

operations ξ and ζ by

|[A]| ξ |[B]| =df |[A ξ B]|, ζ =df |[ζ]|.

The definition of ξ is correct because G is a logical system in L.
For every arrow term f of C let fG be the arrow term obtained by

replacing every letter p of P in the indices of f by |[p]|. If the arrow term f

of C is of type A ⊢ B, then the arrow term fG of CG is of type |[A]| ⊢ |[B]|.
The arrow terms of CG are the arrow terms fG for every arrow term f of

C. As a subsystem of CG we have the syntactical system C′G obtained from

C′ as CG is obtained from C. Since G is a groupoid, every arrow term of C′G
is of the type |[A]| ⊢ |[A]| for some A in L. The equational system EG in CG
is obtained from the axiomatic equations with variables assumed for E (so

that for every equation f = g in E we have fG = gG in EG) by adding for

every arrow term fG : |[A]| ⊢ |[A]| of C′G the equation fG = 1|[A]|, which we

call a strictifying equation, and then closing under (sy ), (tr ) and (co ) (see

§2.3).
It is clear that the syntactical category CG/EG is a C/E-category. If

C/E is a natural logical category, then CG/EG is a natural C/E-category.
Moreover, CG/EG is C′-strict. We will show that when G is a preorder the

syntactical category CG/EG is equivalent to C/E via two strong C-functors,
one of which, going from C/E to CG/EG , is even strict.

First we define as follows a graph-morphism HG from C to CG :

HGA =df |[A]|,
HGf =df fG .

This graph-morphism induces a functor HG from C/E to CG/EG (see the

penultimate paragraph of §2.4).
To define a functor from CG/EG to C/E we first choose in every |[A]| a

fixed representative AH , so that the representative of |[p]| is p for every p of
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P. Because of the generative discreteness of C′, this choice for |[p]| can be

made unambiguously.

Next, we can choose for every A in L an isomorphism φA : AH ⊢ A of G,
whose inverse is φ−1A : A ⊢ AH . A natural choice for φAH : AH ⊢ AH , and

φp : p ⊢ p in particular, is identity arrows, but this choice is not essential

for the time being. If, however, G is a preorder, then φAH must be 1AH .

Then we define as follows a graph-morphism H from CG to C:

H|[A]| =df AH ,

HαX1,...,Xk
=df φ

−1
Nν(HX1,...,HXk)

◦αHX1,...,HXk
◦φMµ(HX1,...,HXk),

H(f1G ξ f2G) =df φ
−1
HY1ξHY2

◦ (Hf1G ξ Hf2G) ◦φHX1ξHX2 , for f
i
G : Xi ⊢ Yi,

H(gG ◦ fG) =df HgG ◦HfG .

It is clear that for fG : |[A]| ⊢ |[B]| we have that the type of HfG is AH ⊢ BH ,

that is H|[A]| ⊢ H|[B]|. We can prove the following lemma.

Lemma 1. If (IVC) and (IVG) hold and G is a preorder, then for every

arrow term f : A ⊢ B of C, in C/E we have

HHGf = φ−1B
◦ f ◦φA.

Proof. We proceed by induction on the length of f . If f is αA1,...,Ak
, then

HHGαA1,...,Ak
= Hα|[A1]|,...,|[Ak]|

= φ−1Nν(A1H ,...,AkH)
◦αA1H ,...,AkH

◦φMµ(A1H ,...,AkH)

= φ−1Nν(A1H ,...,AkH)
◦Nν(φ−1A1

, . . . , φ−1Ak
) ◦αA1,...,Ak

◦

◦Mµ(φA1 , . . . , φAk
) ◦φMµ(A1H ,...,AkH),

since φ is an isomorphism and G flows through C/E ,

= φ−1Nν(A1,...,Ak)
◦αA1,...,Ak

◦φMµ(A1,...,Ak), by the preordering of G.

In the induction step, for f i : Ai ⊢ Bi where i ∈ {1, 2}, we have

HHG(f
1 ξ f2) = φ−1H|[B1]|ξH|[B2]| ◦ (HHGf

1 ξ HHGf
2) ◦φH|[A1]|ξH|[A2]|

= φ−1
B1

H
ξB2

H

◦ (φ−1B1 ξ φ−1B2) ◦ (f1 ξ f2) ◦ (φA1 ξ φA2) ◦φA1
H

ξA2
H
,

by the induction hypothesis and the bifunctoriality of ξ ,
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= φ−1B1ξB2
◦ (f1 ξ f2) ◦φA1ξA2 , by the preordering of G;

HHG(g ◦ f) = φ−1C
◦ g ◦φB ◦φ−1B

◦ f ◦φA, by the induction hypothesis,

= φ−1C
◦ g ◦ f ◦φA, since φ is an isomorphism. ⊣

We can then prove the following lemma.

Lemma 2. If fG = gG in EG, then HfG = HgG in C/E.

Proof. We proceed by induction on the length of the derivation of fG = gG

in EG . If fG = gG is in EG because f = g is in E , then in C/E we have

φ−1B
◦ f ◦φA = φ−1B

◦ g ◦φA,

and by Lemma 1 we obtain HfG = HgG . If fG = 1|[A]| is a strictifying

equation of EG , then, by Lemma 1 and the preordering of G, we have HfG =

1AH . The induction step, where fG = gG is obtained by (sy ), (tr ) or (co ),

is straightforward. ⊣

Lemma 2 guarantees that the graph-morphism H from CG to C induces a

functor from CG/EG to C/E .
Let ψ2ξ2

X,Y be the arrow φ−1HXξHY of G and let ψζ be the arrow φ−1ζ of G.
Then we have the following theorem.

Direct-Strictification Theorem. If (IVC) and (IVG) hold and G
is a preorder, then C/E is equivalent to the C′-strict C/E-category CG/EG
via the strict C-functor HG from C/E to CG/EG and the strong C-functor
⟨H,ψ2ξ2, ψζ⟩ from CG/EG to C/E.

Proof. We have HGH|[A]| = HGAH = |[AH ]| = |[A]|, and we also have

HGHfG = HGHHGf

= HG(φ
−1
B

◦ f ◦φA), by Lemma 1,

= HGφ
−1
B

◦HGf ◦HGφA,

= fG , by the strictifying equations.

On the other hand, HHGA = AH . We have in C/E , of which G is a subcat-

egory, the isomorphism φA : AH ⊢ A. That φ is a natural transformation
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from HHG to the identity functor follows immediately from Lemma 1. So

C/E and CG/EG are equivalent via HG and H.

It is clear that HG is a strict C-functor. It remains to show only that

⟨H,ψ2ξ2, ψζ⟩ is a strong C-functor. That (ψ2ξ2 nat) holds is built into the

definition of H(f1G ξ f2G).

To prove (ψαL) for ⟨H,ψ2ξ2, ψζ⟩, note first that HMµ(Z1, . . . , Zk) =

(Mµ(HZ1, . . . ,HZk))H . So ψMµ

Z1,...,Zk
= φ−1Mµ(HZ1,...,HZk)

by the preorder-

ing of G. Then (ψαL) follows by applying (ψMµ

) and the facts that φ

is an isomorphism and that G flows through C/E . Since it is clear that

⟨H,ψ2ξ2, ψζ⟩ is a groupoidal C-functor, it follows that it is a strong C-
functor. ⊣

As a consequence of this theorem, we have that f = g in C/E iff fG = gG

in CG/EG . So instead of computing in C/E , we can pass to CG/EG , in which

equations between arrow terms are easier to record. By omitting according

to (cat 1) arrow terms equated with identity arrow terms, equations become

shorter. We will avail ourselves of this opportunity provided by the Direct-

Strictification Theorem in Chapters 5-8.

Consider the following subcategory (C/E)at of (C/E)G , where (C/E)G is

defined as in the preceding section by taking that B is C/E . The objects

of (C/E)at are obtained from all the objects [p] and ζ′′ of (C/E)G by closing

under the operations ξ′′. The category (C/E)at is the full subcategory of

(C/E)G with these objects.

The category (C/E)at is isomorphic to CG/EG . It is easy to show that

there is a bijection between the objects of (C/E)at and CG/EG . For the

arrows of these two categories we have the following bijections. To every

arrow (f, [A], [B]) of (C/E)at, with f : AF ⊢ BF an arrow of C/E , we assign

the arrow HGf : |[AF ]| ⊢ |[BF ]| of CG/EG ; and to every arrow fG : |[A]| ⊢ |[B]| of
CG/EG we assign the arrow (φBF

◦HfG ◦φ−1AF
: AF ⊢ BF , X, Y ) of (C/E)at,

where X and Y are obtained from |[A]| and |[B]|, respectively, by replacing

ξ and ζ in A and B by ξG and ζG, and the brackets ]| and |[ by ] and [.

It seems rather natural to assume that a construction like our construc-

tion of CG/EG out of C/E will yield a category equivalent to C/E , and indeed

this assumption may have been made tacitly by Mac Lane in [99] (proof

of Theorem 4.2, p. 39) and [102] (Section XI.1, proof of Theorem 1, p.
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254), where he establishes coherence for symmetric monoidal categories. A

rather obvious interpretation of his text is that he constructs CG/EG out

of the symmetric monoidal category C/E freely generated by P. A more

explicit assumption of a construction similar to our construction of CG/EG
out of C/E is in [116] (proof of Theorem 6.1, p. 98; no details are given, and

no justification that the construction will yield an equivalent category).

Though the assumption that C/E and CG/EG are equivalent is natural,

this assumption is not warranted without assumptions concerning C/E , like
our assumptions (IVC), (IVG) and the condition that G is a preorder. The

main assumption here is that C/E is freely generated, out of a generating

set P. This set can be conceived as a discrete category, and one may

envisage free generation also out of other categories (which does not differ

significantly from what we have been doing). Free generation is, however,

essential.

Without our assumptions, or assumptions of the same kind, a construc-

tion analogous to our construction of CG/EG out of C/E need not yield an

equivalent category, as it is shown by the following counterexample, which

stems from Isbell (see [100], Section VII.1, p. 160).

Consider the logical system C in L∧ whose primitive arrow terms be-

sides identity arrow terms are from the
∧
b and

∧
w-

∧
k families, and consider the

equational system E in C for which we assume all the equations that hold

in the category
∧
A (see §4.3; these are equations that hold in monoidal cat-

egories), the equations (
∧
k1 nat) and (

∧
k2 nat) (see §2.7) and, for i ∈ {1, 2},

the following additional equations (which hold in cartesian categories, and

which we will encounter in §9.1):

(
∧
w

∧
k)

∧
kiA,A

◦
∧
wA = 1A.

We build now a syntactical system S of the C-kind that has a single

object N . The operation ∧ on the objects of S satisfies N ∧N = N . The

primitive arrow terms of S are 1N ,
∧
b→N,N,N ,

∧
b←N,N,N ,

∧
k1N,N ,

∧
k2N,N and

∧
wN ,

all of type N ⊢ N . With the help of the equational system E above we

obtain the syntactical category S/E , which is a C/E-category.
We want to show first that S/E is not a preorder. Consider the skeleton

Card of the category Set of sets with functions such that the set of natural

numbers N is in Card. The category Card is equivalent to Set.
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Consider then the functor S that maps S/E into Card such that SN is

N , while for ι : N ⊢ N ×N being a chosen isomorphism between N and

N×N we have S
∧
kiN,N =

∧
kiN ,N

◦ ι, where
∧
k1N ,N and

∧
k2N ,N are respectively

the first and second projection in Set, and S
∧
wN = ι−1 ◦

∧
wN , where

∧
wN is

the diagonal map of Set for which
∧
wN (n) = (n, n). The image of S/E in

Card under S is not a preorder, and hence S/E is not a preorder.

For C′ being the logical subsystem of C with the
∧
b arrow terms, let

G = C′/E ′ be the C′-core of C/E . Let us build out of the equations of E a

category SG/EG , analogously to what we did to obtain CG/EG out of C/E ,
which boils down to adding the equations

∧
b→N,N,N =

∧
b←N,N,N = 1N to E to

obtain EG . The unique object of SG/EG may be identified with N . We have

in SG/EG

(f ∧ g) ∧ h = f ∧ (g ∧ h), by (
∧
b nat) and (cat 1),

(f ∧ g) ◦
∧
k1N,N = f ◦

∧
k1N,N , by (

∧
k1 nat),

f ∧ g = f, by (
∧
w

∧
k).

We derive analogously f ∧ g = g, starting from h ∧ (f ∧ g) = (h ∧ f) ∧ g
and by using (

∧
k2 nat). So f = g, and SG/EG is a preorder. Hence SG/EG is

not equivalent to S/E . This shows that direct strictification is not always

innocuous.

Note that S/E is not freely generated out of a set P, and does not satisfy

our assumption (IVC), since it is not a logical category. The strictification

of S/E as a C/E-category, in the sense of the Strictification Theorem of

the preceding section, is however allowed. The category (S/E)G is not a

preorder, and it is equivalent to S/E . For (S/E)G we cannot, however, find

its (S/E)at subcategory.

§3.3. Strictification and diversification

For A and B formulae of a language L, let the type A ⊢ B be called

balanced when there is a bijection between the occurrences of letters in A

and the occurrences of letters in B that maps the occurrence of a letter

to an occurrence of the same letter. Let C be a logical system in L such

that for each transformation α of C the type of the arrow term αA1,...,Ak
:

Mµ(A1, . . . , Ak) ⊢ Nν(A1, . . . , Ak) is balanced. This is guaranteed if µ and
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ν are bijections. It is easy to show by induction that the type of every

arrow term of C is balanced.

Let a formula A of L be called diversified when every letter occurs in

A at most once. It is clear that for a balanced type A ⊢ B we have that

A is diversified iff B is diversified. A type A ⊢ B is called diversified when

A and B are diversified, and an arrow term is diversified when its type is

diversified.

Let the conditions (IVC) and (IVG) of §3.1 be satisfied. Let Epr be an

equational system that is an extension of the equational system E such that

C′/Epr ′ is a preorder and for every equation f = g in Epr that is not in E
we have that the type of f and g is not diversified.

Let (C/E)div be the full subcategory of C/E whose objects are the diver-

sified formulae of L, and let (C/Epr)div be the analogous full subcategory

of C/Epr whose objects are all the diversified formulae of L.
Then it is straightforward to show that the categories (C/E)div and

(C/Epr)div are isomorphic. On objects, this isomorphism is just identity,

and the identity map on the arrow terms of C gives rise to a functor from

(C/E)div to (C/Epr)div and to a functor from (C/Epr)div to (C/E)div. To

show the latter, it is enough to appeal to the fact that if f = g in Epr for

f and g diversified, then f = g in E .
Then we can check that (IVC) and (IVG) hold when C/E is replaced

by C/Epr. Now the C′-core G of C/Epr is a preorder. So we can apply

the Direct-Strictification Theorem of the preceding section to obtain the

C′-strict C/Epr-category CG/EGpr equivalent to C/Epr.
So, for diversified arrow terms f and g of C of the same type, we have

f = g in C/E iff f = g in (C/E)div, iff f = g in (C/Epr)div, iff f = g in

C/Epr, iff fG = gG in CG/EGpr. And it is easier to compute in CG/EGpr, as
explained after the Direct-Strictification Theorem. We will take advantage

of that in §§7.6-8 and §8.4.





Chapter 4

Associative Categories

In this chapter we scrutinize Mac Lane’s proof of coherence, in the sense

of preordering, for monoidal categories (see [99] and [100], Section VII.2),

and present a differently organized proof, making finer distinctions. We

separate from this proof a proof of coherence for categories like monoidal

categories that lack the unit object, but, in this respect, we do not differ

from Mac Lane, who did the same in [99]. Throughout the book, it will be

our policy to proceed in this manner, by separating coherence results with

and without special objects such as unit objects. Besides obtaining sharper

results in situations where we have coherence both with and without the

special objects, this policy allows us to obtain coherence without the special

objects in cases where adding the special objects causes difficulties.

We give a new proof of coherence for subcategories of monoidal cate-

gories where associativity arrows are not isomorphisms. Associativity goes

just in one direction, and for coherence we need just naturality and Mac

Lane’s pentagonal coherence condition. The proof of Mac Lane’s monoidal

coherence may be built on this more basic coherence result, but it has

also a shorter proof, such as Mac Lane’s. Associativity that is not an

isomorphism is interesting because of its relationship with dissociativity in-

vestigated from Chapter 7 on. Dissociativity is an associativity principle

involving two operations, which is not an isomorphism.

We also explain in this chapter the effect of strictifying the monoid-

al structure of a category (which may have extra structure besides this

monoidal structure), in accordance with the results of the preceding chap-

87
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ter. The methods of this chapter are based, as Mac Lane’s, on confluence

techniques, like those that may be found in the lambda calculus.

§4.1. The logical categories K

For C a logical system in L, let EnatC be the least set of equations we must

have in every equational system in C to make C/EnatC a natural logical

category (see §2.7). So EnatC has as axioms (re ) (see §2.3), the categorial

equations, the bifunctorial equations for every ξ of L and the naturality

equations for every α of C.
We will consider in this work a number of natural logical categories

K. Every such K will be C(K)/E(K) for a logical system C(K) and an

equational system E(K). To determine C(K) we will have to specify only

the language L of C(K) and the transformations α of C(K). To determine

E(K) it is enough to specify what equations besides those in EnatC(K) have to be
assumed as axioms. We call these equations specific equations. We always

take for granted closure of the arrow terms of C(K) under the operations

ξ and composition, the presence in E(K) of (re ) and of bifunctorial and

naturality equations, and the closure of E(K) under (sy ), (tr ), (co ) and

(su ) of §2.3 and §2.7.
We will first deal with a number of categories K in the language L∧.

These will make a hierarchy by having transformations α included in sub-

families involving ∧ of the families specified below. The label K in such

cases is as in the following table, sometimes with additional indices:

K I A S L

α 1 1, b 1, b, c 1, b, c, w-k

When we come to natural logical categories K in L∧,∨, we take the whole

families mentioned. The label I is derived from “identity”, A from “asso-

ciativity”, S from “symmetry”, and L from “lattice”.

If K is one of our logical categories in a language L without ⊤ and ⊥,
then K⊤, K⊥ or K⊤,⊥ will be obtained from K by adding to L either ⊤ or

⊥, or both, and by adding to C(K) transformations α included in δ-σ, as

appropriate. To obtain E(K⊤), E(K⊥) or E(K⊤,⊥), we enlarge E(K). Our
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categories K where C(K) has transformations included in the family d will

be named by prefixing D to I, A, S and L; in those where C(K) has m we

prefix M, which comes from “mix”, and where C(K) has m−1 we prefix Z,

which comes from “zero”. The categories K we will deal with are presented

in the List of Categories at the end of the book.

It is easy to see that if we have proved coherence for the category K
generated by an infinite set of letters P, then we have proved coherence also

for K generated by any set of letters P. (If not more than n ≥ 0 different

letters occur in f = g, then, by substituting, every derivation of f = g can

be transformed into one in which not more than n different letters occur.)

So we assume, when this is needed to prove coherence, that K is generated

by an infinite set of letters P.
Our first logical category K will be called

∧
I. The logical system C(

∧
I)

is in the language L∧ and its only transformation α is 1. The equational

system E(
∧
I) is just EnatC for C being C(

∧
I), with no additional equations. (The

naturality equations follow here from categorial equations.) It is trivial to

show that
∧
I is discrete, and hence a preorder. So

∧
I is coherent (see the end

of Chapter 2).

A logical category closely related to
∧
I is I, where C(I) is in the language

L∧,∨, and where the only transformation α is again 1. The equational

system E(I) is just EnatC(I), and, as trivially as for
∧
I, we show that I is discrete.

So I is coherent too.

§4.2. Coherence of semiassociative categories

For the label K of the preceding section being
∧
A
→
, let the logical system

C(
∧
A
→
) be in L∧ with the transformations α being 1 and

∧
b→. The specific

equations of E(
∧
A
→
) are the instances of

(
∧
b 5)

∧
b→A∧B,C,D

◦
∧
b→A,B,C∧D = (

∧
b→A,B,C ∧ 1D) ◦

∧
b→A,B∧C,D

◦ (1A ∧
∧
b→B,C,D).

This is Mac Lane’s pentagonal equation of [99] (Section 3; see also [100],

Section VII.1).

We call natural
∧
A
→
-categories (in the sense of §2.8) semiassociative

categories. These categories where envisaged explicitly in [93] and implicitly

in [8] and [34]. Semiassociative categories differ from Mac Lane’s monoidal
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categories by lacking
∧
b← and ⊤. We are now going to prove coherence for

the category
∧
A
→
. This coherence was proved in different manners, which

we find more complicated, in [93] and [34], and it can be deduced from a

very general theorem of [8] (Theorem 5.2.4), whose proof is only sketched

in that paper, with substantial parts missing.

For every formula A of L and for x and y two different occurrences of

∧ in A we write xRAy when BxC is a subformula of A such that y occurs

in C. If A and B are formulae of L∧ that may differ only with respect to

parentheses, then A and B are comparable (see §2.1), and we may take that

RA and RB are relations between the same sets of occurrences of ∧, and
compare these relations. Formally, we could proceed as follows. Let w(A)

be, as in §2.1, the word obtained from A by deleting all parentheses. Then

RA gives rise to a relation RwA between occurrences of ∧ in w(A) such that

we have x′RwA
y′ iff x′ and y′ are occurrences of ∧ in w(A) corresponding

respectively to the occurrences x and y of ∧ in A and xRAy. Then we do

not compare RA and RB , but RwA and RwB . However, to switch all the

time from RA to RwA
and back would be tedious, and we will not mention

RwA
. It is easy to see that for every arrow term f : A ⊢ B of C(

∧
A
→
) the

formulae A and B are comparable (namely, w(A) and w(B) are the same

word), and RB ⊆ RA (which means, officially, RwB
⊆ RwA

). Moreover, if
∧
b→ occurs in f , then RB is a proper subset of RA; otherwise, RA = RB.

Since RA and RB are conceived as defined on the same sets when A and

B are comparable, we may denote with the same symbol x the occurrences

of ∧ or of a letter in A and B that are at the same place (for the notion of

place see §2.1). We proceed analogously in other similar cases in the future

(cf. §7.1, §7.3, §7.5 and §8.3). We can prove the following.

Extraction Lemma. Let A be a formula of L∧ with a subword A1 ∧ (mq,
where (m stands for a sequence of m ≥ 0 left parentheses. Then there is

an arrow term g : A ⊢ C of C(
∧
A
→
) such that in C we have as a subword

A1 ∧ q at the place where A has A1 ∧ (mq. In addition,

(∗) if x is not the occurrence of ∧ in the two subwords above, then

xRAy implies xRCy;

(∗∗) the first index of every
∧
b→ in g is A1.
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Proof. We proceed by induction on m. If m = 0, then g is 1A : A ⊢ A.
Suppose nowm > 0. Then in A we have a subword of the form A1∧(A2∧A3)

where A2 is either q or beginning with (m−1q. Then there is a
∧
b→-term

h : A ⊢ A′, whose head is
∧
b→A1,A2,A3

. In A′ we have (A1 ∧ A2) ∧ A3 at the

place where A has A1 ∧ (A2 ∧ A3), and hence in A′ we have A1 ∧ (m−1q

at the place where A has A1 ∧ (mq. We apply the induction hypothesis to

A′, and obtain an arrow term g′ : A′ ⊢ C of C(
∧
A
→
) such that in C we have

A1 ∧ q at the place where A has A1 ∧ (mq, and if x is not our occurrence of

∧, then xRA′y implies xRCy.

Suppose now x is not our occurrence of ∧, and suppose xRAy. Then we

can conclude that xRA′y, and we take that g is g′ ◦h : A ⊢ C. From this

the lemma follows. ⊣

Theoremhood Proposition. There is an arrow term f : A ⊢ B of

C(
∧
A
→
) iff A and B are comparable formulae of L∧ and RB ⊆ RA.

Proof. The direction from left to right is easy, as we noted above. For the

other direction, we proceed by induction on the letter length n ≥ 1 of A,

which is equal to the letter length of B, because A and B are comparable.

If n = 1, then RA = RB = ∅, and f is 1p : p ⊢ p.
Let n > 1. So in B there must be a subword of the form (p∧q). Then we

show that RB ⊆ RA implies that A must have at the same place a subword

p ∧ (mq for m ≥ 0. Otherwise, A would have a subword ∧p)n) ∧ (mq with

n ≥ 0 at the place where B has ∧(l(p ∧ q) with l ≥ 0. From that it would

follow that RB ̸⊆ RA, since for x being the left ∧ in ∧(l(p ∧ q) and y the

right ∧ we have xRBy, but we do not have xRAy.

Then, by the Extraction Lemma, there is an arrow term g : A ⊢ C of

C(
∧
A
→
) such that in C we have as a subword (p ∧ q) at the place where B

has (p∧q), and, by (∗), if x is not the occurrence of ∧ in (p∧q), then xRAy

implies xRCy. We replace (p∧ q) in B and C by r, and obtain respectively

Br and Cr. We have RBr ⊆ RCr , and, by the induction hypothesis, there

is an arrow term f ′ : Cr ⊢ Br of C(
∧
A
→
). Let f ′′ : C ⊢ B be obtained

from this arrow term by putting back (p ∧ q) at the place of r. Then f is

f ′′ ◦ g : A ⊢ B. ⊣

It is clear that there is an arrow term of a given type A ⊢ B in a logical
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system C iff there is an arrow of type A ⊢ B in C/E . So, in the terminology

of §1.1, with the Theoremhood Proposition we obtain a solution to the

theoremhood problem for the category
∧
A
→
. The questions whether A and

B are comparable and whether RB ⊆ RA are clearly decidable. This is

not a very difficult theoremhood problem, and we deal with it not so much

because of its intrinsic interest, but because we need it for the proof of

Semiassociative Coherence below. Besides that, it is a good introduction to

our analogous treatment of other theoremhood problems in §7.1, §§7.3-5 and
§8.3, some of which are less trivial. As here, analogues of the Theoremhood

Proposition will be applied in establishing coherence results.

Note that the existential quantifier in the Theoremhood Proposition, as

well as the existential quantifier in the Extraction Lemma, is constructive;

namely, when the conditions are satisfied, we can actually construct the

arrow term of the required type. This applies also to latter versions of the

Extraction Lemma and of the Theoremhood Proposition.

Let d(A) be the cardinality of the set of ordered pairs RA. If f : A ⊢ B
of

∧
A
→

is not equal to 1A : A ⊢ A, then RB is a proper subset of RA and

d(B) < d(A). We can then prove the following result of [93].

Semiassociative Coherence. The category
∧
A
→

is a preorder.

Proof. Let f, g : A ⊢ B be arrow terms of C(
∧
A
→
). We proceed by

induction on d(A)−d(B) to show that f = g in
∧
A
→
. (Until the end of this

proof, we assume that equality between arrow terms is equality in
∧
A
→
.) If

d(A) = d(B), then we conclude that A and B are the same formula, and

f = g = 1A.

Suppose d(B) < d(A). By the Development Lemma (see §2.7) we have

that f = f2 ◦ f1 and g = g2 ◦ g1 for some
∧
b→-terms f1 : A ⊢ C and g1 : A ⊢ D,

and some arrow terms f2 : C ⊢ B and g2 : D ⊢ B of C(
∧
A
→
). We have here

d(C), d(D) < d(A). Let the head of f1 be
∧
b→E,F,G, and let the head of g1 be

∧
b→H,I,J . The following cases may arise.

(1) The formulae E ∧ (F ∧ G) and H ∧ (I ∧ J) have no occurrences of

letters in common within A. Then we use (∧ 2) of §2.7 to obtain two
∧
b→-

terms f ′2 : C ⊢ B′ and g′2 : D ⊢ B′ such that f ′2 ◦ f1 = g′2 ◦ g1. We infer that

RC ∩ RD = RB′ , from which it follows by the Theoremhood Proposition
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that RB ⊆ RB′ . Hence, again by the Theoremhood Proposition, there is

an arrow term h : B′ ⊢ B of C(
∧
A
→
). By applying the induction hypothesis,

we obtain that f2 = h ◦ f ′2 and g2 = h ◦ g′2, from which f = g follows.

(2) Suppose E∧(F∧G) is a subformula ofH or I or J in A; or, conversely,

H ∧ (I ∧ J) is a subformula of E or F or G in A. Then we proceed as in

case (1) by using the equation (
∧
b→ nat).

(3) The subformulae E ∧ (F ∧G) and H ∧ (I ∧ J) coincide in A. Then C

is D and f1 = g1. We then apply the induction hypothesis to f2, g2 : C ⊢ B
and obtain f = g.

(4) The subformula F ∧G is H ∧ (I ∧ J) or I ∧ J is E ∧ (F ∧G). Then
we proceed as in case (1) by using the equation (

∧
b 5). ⊣

The technique used in the proof above is related to the Church-Rosser,

or confluence, property of reductions in the lambda calculus (see [4], Chap-

ter 3). Analogous techniques will be exploited in §7.1, §7.3, §7.5 and §8.3,
where one finds proofs of coherence analogous to our proof of Semiassocia-

tive Coherence.

It is not difficult to see that RA = RB implies that A and B are the

same formula of L∧. Because, if RA = RB, then, by the Theoremhood

Proposition, there is an arrow term f : A ⊢ B of C(
∧
A
→
), in which

∧
b→ cannot

occur, since RB is not a proper subset of RA. Hence f must stand for an

identity arrow. So there is a bijection between the formulae A of L∧ and

the relations RA, that is RwA . (A relation is not just a set of ordered pairs,

but its domain and codomain must be specified; so w(A) will be mentioned

in specifying RwA .) From Semiassociative Coherence, we can conclude that
∧
A
→

is isomorphic to the category whose objects are the relations RA, and

where an arrow exists between RA and RB when RB ⊆ RA. Note that this

means that the category
∧
A
→

is not just a preorder, but a partial order.

§4.3. Coherence of associative categories

To obtain the natural logical category
∧
A, we have that the logical system

C(
∧
A) is in L∧, with the transformations α included in 1 and

∧
b. The specific

equations of E(
∧
A) are those of E(

∧
A
→
) plus
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(
∧
b

∧
b)

∧
b←A,B,C

◦
∧
b→A,B,C = 1A∧(B∧C),

∧
b→A,B,C

◦
∧
b←A,B,C = 1(A∧B)∧C .

Note that it is enough to assume one of the equations (
∧
b→ nat) and

(
∧
b← nat) to derive the other one with the help of (

∧
b

∧
b), and (

∧
b

∧
b) enables us

also to derive an equation analogous to (
∧
b 5) involving

∧
b←. The equations

(
∧
b

∧
b), together with (

∧
b→ nat) and (

∧
b← nat), say that

∧
b→ and

∧
b← are natural

isomorphisms.

We call natural
∧
A-categories associative categories. Associative cate-

gories are not necessarily monoidal in the sense of [100] (Section VII.1),

because they may lack the unit object (see §4.6). The objects of an asso-

ciative category that is a partial order make a semigroup.

A formula A of L∧ is said to be in normal form when RA, defined as in

the preceding section, is empty; i.e., when d(A) = 0. Such an A is of the

form (. . . ((p1 ∧ p2) ∧ p3) ∧ . . . ∧ pn).
We can show that

∧
A is a preorder by relying on the proof of Semias-

sociative Coherence of the preceding section, based on the Theoremhood

Proposition, but we can establish more easily another, weaker, lemma. To

formulate this lemma, we say that the arrow terms of C(
∧
A) that are also

arrow terms of C(
∧
A
→
) are →-directed. (This terminology will be extended

later to arrow terms other than those of C(
∧
A); see §4.6, §6.1 and §14.1.)

Then the following lemma holds in the category
∧
A
→
, and hence also in

∧
A.

Directedness Lemma. If f, g : A ⊢ B are →-directed arrow terms and B

is in normal form, then f = g.

The proof of this lemma, which is due to Mac Lane (see [99], Section 3),

is a simplification of our proof of Semiassociative Coherence in the preceding

section. The simplification consists in not having to refer to the full force

of the Theoremhood Proposition, but only to a trivial case of it where RB

is empty.

Then we prove the following result of [99] (Section 3).

Associative Coherence. The category
∧
A is a preorder.

Proof. For f : A ⊢ B an arrow term of C(
∧
A), there are two →-directed
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arrow terms g : A ⊢ C and h : B ⊢ C such that C is in normal form

(these arrow terms are not uniquely determined). By the Development

Lemma (see §2.7), the arrow term f is equal to a developed arrow term

fn ◦ . . . ◦ f1. We proceed by induction on n to show that f = h−1 ◦ g, where

h−1 is obtained from the arrow term h by inverting order in composition,

and by replacing
∧
b→ by

∧
b← and vice versa.

If n = 1, then, since f1 is 1A, by the Directedness Lemma we have

g = h, from which f = h−1 ◦ g follows.

For n > 1 and fn : B′ ⊢ B, we have by the induction hypothesis that

fn−1 ◦ . . . ◦ f1 : A ⊢ B′ is equal to (h′)−1 ◦ g for g : A ⊢ C and h′ : B′ ⊢ C.
If fn is a

∧
b→-term, then, for h : B ⊢ C, by the Directedness Lemma we

have h ◦ fn = h′, and f = h−1 ◦ g follows. If fn is a
∧
b←-term, then by the

Directedness Lemma we have h′ ◦ f−1n = h, and f = h−1 ◦ g follows again.

For f ′ : A ⊢ B we obtain in the same manner f ′ = h−1 ◦ g, and so

f = f ′. ⊣

One might suppose that Semiassociative Coherence can be inferred di-

rectly from Associative Coherence. This would be so if we could find an

independent proof that
∧
A
→

is isomorphic to a subcategory of
∧
A, a proof

that would not rely on Semiassociative Coherence. In fact, we use Semi-

associative Coherence to conclude that
∧
A
→

is isomorphic to a subcategory

of
∧
A. That

∧
A
→

is isomorphic to a subcategory of
∧
A amounts to showing

that for f and g arrow terms of C(
∧
A
→
) we have f = g in

∧
A
→

iff f = g in
∧
A. That f = g in

∧
A
→

implies f = g in
∧
A is clear without appealing to co-

herence, but for the converse implication we use Semiassociative Coherence

(cf. §14.4).
In the proof of Associative Coherence above, we rely essentially on the

normal form of formulae, and use both
∧
b→-terms and

∧
b←-terms. This

is why for the proof of Semiassociative Coherence we could not rely on

the Directedness Lemma, but we needed the Theoremhood Proposition of

the preceding section. The proof of Semiassociative Coherence is not very

difficult, but it is more difficult than the proof of Associative Coherence

based on the Directedness Lemma. The proof of Associative Coherence

can be based on Semiassociative Coherence, but it has also this simpler

proof.



96 CHAPTER 4. ASSOCIATIVE CATEGORIES

§4.4. Associative normal form

Once we have proved Associative Coherence, we can ascertain that every

arrow term is equal to an arrow term in a normal form, which we are going

to define. This normal form is unique, in the sense that arrow terms in

normal form are equal in
∧
A (i.e., they stand for the same arrow of

∧
A) iff

they are the same arrow term.

First we prove the following analogue of the Extraction Lemma of §4.2
(see §2.1 for the notion of scope).

Extraction Lemma. If there is an occurrence z of ∧ in a formula A of

L∧, then there is a formula A1 z A2 of L∧ such that there is an arrow term

g : A ⊢ A1 z A2 of C(
∧
A). In addition,

(∗) for all occurrences x and y of ∧ in Ai, where i ∈ {1, 2}, we have

that y is in the scope of x in A iff y is in the scope of x in Ai;

(∗∗) every subterm of g of the form
∧
b→D,E,F is of the type D∧(E z F ) ⊢

(D ∧E) z F , and every subterm of g of the form
∧
b←F,E,D is of the

type (F z E) ∧D ⊢ F z (E ∧D).

Proof. We proceed by induction on the number n ≥ 0 of occurrences of

connectives in A. If n = 0, then the antecedent of the lemma is false, and

the lemma is trivially true.

If n > 0, then A is A′ uA′′ with u an occurrence of ∧. If u is z, then

g is 1A. So suppose u is not z, and suppose z is in A′. Then, by the

induction hypothesis, we have an arrow term g′ : A′ ⊢ A′1 z A
′
2 of C(

∧
A)

satisfying the primed version of (∗). The arrow term g′ ∧1A′′ is of the type

A ⊢ (A′1 z A
′
2)uA

′′, and we have the arrow term
∧
b←A′

1,A
′
2,A

′′ ◦ (g′∧1A′′) : A ⊢

A′1 z (A
′
2 uA

′′) of C(
∧
A).

To verify (∗), suppose x and y are two occurrences of ∧ in A′1. It is clear

that y is in the scope of x in A iff it is in the scope of x in A′. So, by (∗)
of the induction hypothesis, we have that y is in the scope of x in A iff it

is in the scope of x in A′1. We settle easily in a similar manner cases where

x and y are both in A′2 or A′′. If x is u, then (∗) follows easily again.

The case where z is in A′′ is settled analogously by using the arrow term
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∧
b→A′,A′′

1 ,A
′′
2
: A′ u (A′′1 z A

′′
2) ⊢ (A′ uA′′1) z A

′′
2 . We easily check (∗∗) by going

over the proof above. ⊣

The analogue for
∧
A of the Theoremhood Proposition of §4.2 would state

simply that there is an arrow term of C(
∧
A) of type A ⊢ B iff the formulae

A and B are comparable.

We do not need the assertion (∗) of the Extraction Lemma of this section

for the proof of the Associative Normal-Form Proposition below. We stated

this assertion, nevertheless, because it is analogous to the assertion (∗) of

the Extraction Lemma of §4.2.
We need some preliminary notions to introduce our normal form. For

every formula A of L∧ we assign to every subformula of A a natural number

n ≥ 2 in the following manner. We assign to every occurrence of a letter p

in A a prime number iA(p) ≥ 2, each occurrence having a different number

from all other occurrences. (Note that this assignment is not unique.) Next,

for a subformula B∧C of A, we have iA(B∧C) = iA(B) · iA(C). For every
subformula D of A, we define I(D) as follows:

if D is p, then I(D) is p;

if D is B ∧ C, then I(D) is I(B) ∧iA(B∧C) I(C).

So I(D) is like a formula, but with subscripted occurrences of ∧.
Let A be a formula comparable with B, and let x be an occurrence of

∧ in A. The formula B has an occurrence of ∧ at the same place, and we

call that occurrence of ∧ also x. Let A∗ be obtained from A by adding to

every x of A the subscript that x has in I(B). This subscripting gives rise

to a formula C∗ with subscripted occurrences of ∧ for every subformula C

of A. For every arrow term f : A1 ⊢ A2 of C(
∧
A) such that both A1 and A2

are comparable with B, we have an arrow term f∗ : A∗1 ⊢ A∗2 obtained by

replacing every index C of f by C∗. Then we have the following proposition.

Associative Normal-Form Proposition. If A and B are comparable

formulae, then there is an arrow term f : A ⊢ B of C(
∧
A) such that every

subterm of f∗ : A∗ ⊢ I(B) of the form
∧
b→D,E,F is of the type D∧l (E ∧k F ) ⊢

(D ∧l E) ∧k F where for every ∧n in D ∧l E and F we have that n divides

k; analogously, every subterm of f∗ : A∗ ⊢ I(B) of the form
∧
b←F,E,D is of the
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type (F ∧k E) ∧l D ⊢ F ∧k (E ∧l D) where for every ∧n in F and E ∧l D
we have that n divides k.

Proof. We proceed by induction on the number m of occurrences of

connectives in B. If m = 0, then f is 1p : p ⊢ p. If m > 1, then B

is of the form B1 z B2 for z an occurrence of ∧, and in I(B) we have zk

with k = l · n for l, n ≥ 2, where l is any other subscript of ∧ in I(B).

Then, by the Extraction Lemma of this section, there is an arrow term

g : A ⊢ A1 z A2 of C(
∧
A) such that (∗∗) is satisfied. This guarantees that all

the subterms of g from the family
∧
b are as required in the statement of the

proposition. By the induction hypothesis, we have arrow terms f1 : A1 ⊢ B1

and f2 : A2 ⊢ B2 that satisfy the conditions of the proposition, and f : A ⊢ B
is (f1 ∧ f2) ◦ g : A ⊢ B. ⊣

The procedure of the proof of this proposition, which presupposes the

Extraction Lemma of this section, gives rise to a unique arrow term, which

we may consider to be in normal form. We may transform this arrow term

into a developed arrow term by replacing (f1 ∧ f2) ◦ g in the proof above by

(f1 ∧ 1B2) ◦ (1A1 ∧ f2) ◦ g, or by (1B1 ∧ f2) ◦ (f1 ∧ 1A2) ◦ g, when neither of

f1 and f2 is an identity arrow term.

§4.5. Strictification of associative categories

According to our definition of §3.1, an
∧
A-category, and in particular an

associative category, is C(
∧
A)-strict when for all objects a, b and c we have

a ∧ (b ∧ c) = (a ∧ b) ∧ c,
∧
b→a,b,c =

∧
b←a,b,c = 1a∧(b∧c).

The category Rel of §2.9 with ∧ being + is a C(
∧
A)-strict associative cate-

gory.

For G being
∧
A, our construction of BG in §3.1 covers a construction

exposed in [102] (pp. 257ff) and [72] (pp. 29-30), which builds out of an

associative category B a C(
∧
A)-strict associative category BG equivalent to

B via two strong C(
∧
A)-functors. As a matter of fact, [102] and [72] are

about monoidal categories, i.e. natural
∧
A⊤-categories (see the next section),

with whose strictification we deal in §4.7. The result one can extract from
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[102] and [72] is that every
∧
A-category can be (

∧
A, C(

∧
A))-strictified (

∧
A is

C(
∧
A)/E(

∧
A)). We have shown something more than that in §3.1. We have

shown, namely, that if B is a C/E-category for a logical category C/E where

C(
∧
A) ≼L∧ C and the C(

∧
A)-core G of C/E , which flows through C/E and is a

preorder, is
∧
A, then B can be (C/E , C(

∧
A))-strictified. One passes from our

construction to that of [102] (pp. 257ff) and [72] (pp. 29-30) by realizing

that for G being
∧
A, and A and B formulae of G(B) we have A ≡G B iff

after deleting every ∧G in A and B we obtain the same finite nonempty

sequence of objects of B. So there is a one-to-one correspondence between

the classes [A] with respect to ≡G and finite nonempty sequences of objects

of B. We are passing from the free groupoid generated by the objects of B
to the free semigroup generated by these objects. The objects of the free

semigroup may be represented by nonempty words.

When G is
∧
A, and [A] corresponds to the sequence a1. . . an of objects

of B in the sense just specified, we can take as the representative AF of [A]

when n ≥ 2 the formula (. . . (a1 ∧G a2) . . . ∧G an) (where parentheses are

associated to the left). Then, instead of choosing the arrows φA : AF ⊢ A
and φ−1A : A ⊢ AF of G(B) arbitrarily, as we did in §3.1, we can define

them inductively in the following manner. First, we define by induction

the arrows φAF∧GBF
: (A ∧G B)F ⊢ AF ∧G BF and φ−1

AF∧GBF
: AF ∧G BF ⊢

(A ∧G B)F (note that (A ∧G B)F = (AF ∧G BF )F ):

φAF∧Gb = φ−1
AF∧Gb

= 1AF∧Gb, for b an object of B,

φAF∧G(CF∧Gb) =
∧
b←AF ,CF ,b

◦ (φAF∧GCF
∧G 1b),

φ−1
AF∧G(CF∧Gb)

= (φ−1
AF∧GCF

∧G 1b) ◦
∧
b→AF ,CF ,b .

We have no need for other φ and φ−1 arrows except these to define ψ2ξ2

and ψ−1
2ξ2

(see §3.1), but, for the sake of completeness, we can define

inductively as follows φA and φ−1A for every object A of G(B):

φa = φ−1a = 1a, for a an object of B,
φA∧GB = (φA ∧G φB) ◦φAF∧GBF

,

φ−1
A∧GB

= φ−1
AF∧GBF

◦ (φ−1A ∧G φ
−1
B ).

To check the correctness of these definitions it is enough to verify that

φAF
= φ−1AF

= 1AF
. Note that φA and φ−1A are defined with arrow terms
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that, after deleting identity arrow terms, are in the associative normal form

of the preceding section.

In Lemmata 1-5 of §3.1 we did not appeal to the preordering of G. In

Lemma 6, we had this assumption. We can prove, however, the following

corollary of this lemma without appealing to the preordering of
∧
A, i.e. to

its coherence.

Lemma. For G being
∧
A, the category ⟨

∧
A
G
,M ′′, α′′⟩ is C(

∧
A)-strict.

Proof. For X and Y objects of
∧
A
G
, let us write XY for X ∧′′ Y , since

∧′′ in
∧
A
G
corresponds to concatenation of sequences of formulae of L∧. We

have, of course, X ∧′′ (Y ∧′′ Z) = (X ∧′′ Y ) ∧′′ Z = XY Z.

Let
∧
φ[A],[B] stand for EφAF∧GBF

: E(A∧GB)F ⊢ E(AF ∧GBF ) (see §3.1
for the functor E). Since E(A ∧G B)F is F ([A][B]) and E(AF ∧G BF ) is

F [A]∧F [B], the type of
∧
φX,Y is F (XY ) ⊢ FX ∧FY . If

∧
φ
−1
[A],[B] stands for

Eφ−1
AF∧GBF

, then
∧
φ
−1
X,Y : FX ∧ FY ⊢ F (XY ) is the inverse of

∧
φX,Y in

∧
A.

To show that for α being
∧
b→ we have α′′X,Y,Z = 1XY Z in

∧
A
G
we proceed

as follows. We make an induction on the length of the sequence correspond-

ing to Z, and we use the alternative definition of α′′ from §3.1.
If Z is a, then by the definition of

∧
φU,V and the fact that it is an

isomorphism, we have

∧
φ
−1
XY,a

◦ (
∧
φ
−1
X,Y ∧ 1a) ◦

∧
b→FX,FY,a

◦ (1FX ∧
∧
φY,a) ◦

∧
φX,Y a

= (
∧
φ
−1
X,Y ∧ 1a) ◦

∧
b→FX,FY,a

◦
∧
φX,Y a

= 1F (XY a).

If Z is Ua, then we have

∧
φ
−1
XY,Ua

◦ (
∧
φ
−1
X,Y ∧ 1F (Ua)) ◦

∧
b→FX,FY,F (Ua)

◦ (1FX ∧
∧
φY,Ua) ◦

∧
φX,Y Ua

= (
∧
φ
−1
XY,U ∧ 1a) ◦ ((

∧
φ
−1
X,Y ∧ 1FU ) ∧ 1a) ◦

∧
b→FX∧FY,FU,a

◦
∧
b→FX,FY,FU∧a ◦

◦ (1FX∧
∧
b←FY,FU,a) ◦

∧
b←FX,FY∧FU,a

◦ ((1FX∧
∧
φY,U ) ∧ 1a) ◦ (

∧
φX,Y U ∧ 1a),

by definition, (
∧
b

∧
b) and naturality equations,

= (
∧
φ
−1
XY,U ∧ 1a) ◦ ((

∧
φ
−1
X,Y ∧ 1FU ) ∧ 1a) ◦ (

∧
b→FX,FY,FU ∧ 1a) ◦

◦ ((1FX∧
∧
φY,U ) ∧ 1a) ◦ (

∧
φX,Y U ∧ 1a), by (

∧
b
∧
b) and (

∧
b 5),

= 1F (XY Ua), by bifunctoriality and the induction hypothesis.
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We proceed analogously when α is
∧
b←. ⊣

So
∧
A can be (

∧
A, C(

∧
A))-strictified, and by the Strictification-Coherence

Implication of §3.1, we can conclude that
∧
A is a preorder.

§4.6. Coherence of monoidal categories

To obtain the natural logical category
∧
A⊤, we have that the logical system

C(
∧
A⊤) is in L∧,⊤, with the transformations α included in 1,

∧
b and

∧
δ -

∧
σ .

The specific equations of E(
∧
A⊤) are those of E(

∧
A) plus

(
∧
δ

∧
δ )

∧
δ←A ◦

∧
δ→A = 1A∧⊤,

∧
δ→A ◦

∧
δ←A = 1A,

(
∧
σ

∧
σ)

∧
σ←A ◦

∧
σ→A = 1⊤∧A,

∧
σ→A ◦

∧
σ←A = 1A,

(
∧
b

∧
δ

∧
σ)

∧
b→A,⊤,C = (

∧
δ←A ∧ 1C) ◦ (1A ∧

∧
σ→C ).

From these equations one infers

(
∧
b

∧
δ )

∧
b→A,B,⊤ =

∧
δ←A∧B ◦ (1A ∧

∧
δ→B ),

(
∧
b

∧
σ)

∧
b→⊤,B,C = (

∧
σ←B ∧ 1C) ◦

∧
σ→B∧C ,

(
∧
δ

∧
σ)

∧
δ→⊤ =

∧
σ→⊤

(see [75], Theorems 6 and 7, and §9.1 below).

The specific equations of E(
∧
A) are introduced, as all our equations for

logical categories, by axiomatic equations with variables. These equations

with variables are now assumed for E(
∧
A⊤) (see §2.3 and §2.7). The equa-

tional system E(
∧
A⊤) will be closed under (su ) for formulae C of L∧,⊤,

and not only of L∧. We assume tacitly from now on that we proceed in

an analogous manner whenever we pass from an equational system formu-

lated originally with respect to a poorer language to an equational system

formulated with respect to a richer language.

The equations (
∧
δ

∧
δ ) and (

∧
σ

∧
σ) above, together with the naturality equa-

tions for arrow terms in the family
∧
δ -

∧
σ , say that in subfamilies of this

family we find natural isomorphisms.

The natural
∧
A⊤-categories are commonly called monoidal categories

(see [100], Section VII.1), and sometimes tensor categories (as in [71] and
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[72]; in [7] they are called categories with multiplication). The objects of a

monoidal category that is a partial order make a monoid.

For every formula A of L∧,⊤ let k(A) be the number of occurrences of

⊤ in A as main conjuncts in subformulae of A (i.e. the visible occurrences

of ⊤ in subformulae of A of the form B ∧ ⊤ or ⊤ ∧ B). So in L∧,⊤ we do

not count ⊤ only if A itself is ⊤, but our definition of k(A) is adapted to

other languages L too (cf. the end of §6.1). We say that A is in normal

form when d(A) = 0 and k(A) = 0 (where d(A) is defined in §4.2). So, for
example, (p ∧ q) ∧ r and ⊤ are in normal form.

An arrow term of C(
∧
A⊤) is called →-directed when neither of

∧
b←,

∧
δ←

and
∧
σ← occurs in it. (This definition extends the definition of →-directed

arrow terms of C(
∧
A) in §4.3.) Then, by extending the proof of the Directed-

ness Lemma of §4.3, which is a simplification of our proof of Semiassociative

Coherence of §4.2, we can prove the following.

Directedness Lemma. If f, g : A ⊢ B are →-directed arrow terms of

C(
∧
A⊤) and B is in normal form, then f = g in

∧
A⊤.

Proof. We proceed by induction on d(A)+k(A). In the induction step

we have the following new cases for f = f2 ◦ f1 and g = g2 ◦ g1 for some

→-directed arrow terms f2 : C ⊢ B and g2 : D ⊢ B:

(I) f1 : A ⊢ C is a
∧
b→-term and g1 : A ⊢ D is a

∧
δ→-term,

(II) f1 : A ⊢ C is a
∧
b→-term and g1 : A ⊢ D is a

∧
σ→-term,

(III) f1 : A ⊢ C and g1 : A ⊢ D are
∧
δ→-terms,

(IV) f1 : A ⊢ C and g1 : A ⊢ D are
∧
σ→-terms,

(V) f1 : A ⊢ C is a
∧
δ→-term and g1 : A ⊢ D is a

∧
σ→-term,

With (I), the only interesting additional case is when the head of f1 is
∧
b→E,F,⊤ and the head of g1 is

∧
δ→F , where we apply (

∧
b

∧
δ ).

With (II), the only interesting additional cases are when the head of f1

is
∧
b→E,⊤,G and the head of g1 is

∧
σ→G , where we apply (

∧
b

∧
δ

∧
σ), and when the

head of f1 is
∧
b→⊤,F,G and the head of g1 is

∧
σ→F∧G, where we apply (

∧
b

∧
σ).

In the other, uninteresting cases, of (I) and (II), which are in principle

covered by what we had in the proof of Semiassociative Coherence in §4.2,
we apply bifunctorial and naturality equations.
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We apply these equations also in cases (III), (IV) and (V); for the last

case we also need the equation (
∧
δ

∧
σ). The remaining cases are as in §4.2. ⊣

From this Directedness Lemma we infer the following result of [99] and

[100] (Section VII.2), whose proof is analogous to the proof of Associative

Coherence in §4.3.

Monoidal Coherence. The category
∧
A⊤ is a preorder.

§4.7. Strictification of monoidal categories

In a C(
∧
A⊤)-strict

∧
A⊤-category for every object a we have

a ∧ ⊤ = ⊤ ∧ a = a,
∧
δ→a =

∧
δ←a =

∧
σ→a =

∧
σ←a = 1a,

in addition to what was mentioned at the very beginning of §4.5. The cat-

egory Rel of §2.9 with ∧ being + and ⊤ being 0 is a C(
∧
A⊤)-strict monoidal

category.

What we have said at the beginning of §4.5 concerning the strictifica-

tion of associative categories and previous results of [102] and [72], applies

mutatis mutandis to the present context. One has to replace “associative”

by “monoidal” and
∧
A by

∧
A⊤.

For G being
∧
A⊤, the objects [A] of BG correspond bijectively now to

arbitrary finite sequences of objects of B, including the empty sequence.

The class [⊤G ] corresponds to the empty sequence, and we can take ⊤G as

the representative AF of [⊤G ].
The inductive definition of φA of §4.5 can now be extended with the

following clauses:

φ⊤G = φ−1⊤G = 1⊤G ,

φAF∧G⊤G =
∧
δ←AF

, φ−1
AF∧G⊤G =

∧
δ→AF

,

φ⊤G∧GAF
=

∧
σ←AF

, φ−1⊤G∧GAF
=

∧
σ→AF

.

The correctness of these definitions for the case φ⊤G∧G⊤G and φ−1⊤G∧G⊤G is

guaranteed by (
∧
δ

∧
σ).
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We can prove as before the following analogue of the Lemma of §4.5,
without presupposing the preordering of

∧
A⊤.

Lemma. For G being
∧
A⊤, the category ⟨

∧
A
G
⊤,M

′′, α′′⟩ is C(
∧
A⊤)-strict.

Proof. We proceed as for the proof of the Lemma of §4.5, with the

following additions.

Let us write ∅ instead of [⊤G ]. To show that for α being
∧
b→ the equation

α′′X,Y,Z = 1XY Z holds in
∧
A
G
⊤, we have to consider new cases when X, Y or

Z are ∅.

I. If X is ∅, then

∧
φ
−1
Y,Z

◦ (
∧
φ
−1
∅,Y ∧ 1FZ) ◦

∧
b→⊤,FY,FZ

◦ (1⊤ ∧
∧
φY,Z) ◦

∧
φ∅,Y Z

=
∧
φ
−1
Y,Z

◦ (
∧
σ→FY ∧ 1FZ) ◦

∧
b→⊤,FY,FZ

◦ (1⊤ ∧
∧
φY,Z) ◦

∧
σ←F (Y Z)

= 1F (Y Z), by (
∧
b

∧
σ), naturality and isomorphisms.

II. If Y is ∅, then

∧
φ
−1
X,Z

◦ (
∧
φ
−1
X,∅ ∧ 1FZ) ◦

∧
b→FX,⊤,FZ

◦ (1FX ∧
∧
φ∅,Z) ◦

∧
φX,Z

=
∧
φ
−1
X,Z

◦ (
∧
δ→FX ∧ 1FZ) ◦

∧
b→FX,⊤,FZ

◦ (1FX ∧
∧
σ←FZ) ◦

∧
φX,Z

= 1F (XZ), by (
∧
b

∧
δ

∧
σ) and isomorphisms.

III. If Z is ∅, then

∧
φ
−1
XY,∅ ◦ (

∧
φ
−1
X,Y ∧ 1⊤) ◦

∧
b→FX,FY,⊤ ◦ (1FX ∧

∧
φY,∅) ◦

∧
φX,Y

=
∧
δ→F (XY )

◦ (
∧
φ
−1
X,Y ∧ 1⊤) ◦

∧
b→FX,FY,⊤ ◦ (1FX ∧

∧
δ←FY ) ◦

∧
φX,Y

= 1F (XZ), by (
∧
b

∧
δ ), naturality and isomorphisms.

To show that for α being
∧
δ→ the equation α′′X = 1X holds in

∧
A
G
⊤, we

have
∧
δ→FX

◦
∧
φX,∅ = 1FX , since

∧
δ→ is an isomorphism, and analogously for

∧
σ→. ⊣

So
∧
A⊤ can be (

∧
A⊤, C(

∧
A⊤))-strictified, and we can conclude that

∧
A⊤ is

a preorder by the Strictification-Coherence Implication of §3.1.
In the presence of the unit object ⊤, when we deal with monoidal cate-

gories, there is a C(
∧
A⊤)-strict monoidal category alternative to BG , inspired
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by Cayley’s representation of monoids (see [72], pp. 26-27, and [102], p. 260,

Exercises 1-3). This is a functor category in which ∧ on objects is com-

position of functors. It is not clear how to adapt this functor category to

cases where we have two monoidal structures, while BG covers that and

much more. Moreover, the proof of Proposition 1.3 of [72] (p. 27), which

states the faithfulness of a functor into the functor category, seems to rely

essentially on the presence of the unit object ⊤. On the other hand, the ap-

proach through the category BG is, of course, possible in situations without

unit objects.

The first proof proposed for the (
∧
A⊤, C(

∧
A⊤))-strictification of monoidal

categories in [72], viz. the proof of Corollary 1.4 on p. 27, does not stand,

since the full image of the functor L in the functor category is not closed

under composition of functors. The other proof of Corollary 1.4 in [72],

on p. 30, is closer to what we have been doing in this section and in §4.5.
(In the presentation of [102], pp. 255ff, which is more accessible than that

in [72], there is a lapsus on p. 259; one should have there 12G2 and not

G221.)





Chapter 5

Symmetric Associative
Categories

We present in this chapter a proof of coherence, with and without unit

objects, for symmetric monoidal categories—a proof more thorough than

Mac Lane’s proof (see [99] and [102], Section XI.1), from which it stems.

We provide with it a proof of the completeness of the usual axiomatization

of symmetric groups via the normal form that stems from Burnside. We

also make explicit the strictification of the monoidal structure involved in

the proof, on which Mac Lane presumably also relies (as we noted in §3.2).
Mac Lane seems to presuppose that this strictification is allowed, while we

justify it by the results of Chapter 3.

§5.1. Coherence of symmetric associative categories

To obtain the natural logical category
∧
S, we have that the logical system

C(
∧
S) is in L∧, with the transformations α included in 1,

∧
b and

∧
c. The

specific equations of E(
∧
S) are those of E(

∧
A) plus

(
∧
c

∧
c)

∧
cB,A ◦

∧
cA,B = 1A∧B ,

(
∧
b

∧
c)

∧
cA,B∧C =

∧
b→B,C,A

◦ (1B ∧
∧
cA,C) ◦

∧
b←B,A,C

◦ (
∧
cA,B ∧ 1C) ◦

∧
b→A,B,C .

The equation (
∧
c

∧
c), together with (

∧
c nat), says that

∧
c is a natural isomor-

phism, while the equation (
∧
b

∧
c) amounts to Mac Lane’s hexagonal equation

of [99] (Section 4; see also [100], Section VII.7, and [102], Section XI.1).

107
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An alternative way to obtain
∧
S is to extend C(

∧
A
→
) with the transfor-

mation
∧
c, and assume the following definition:

∧
b←A,B,C =df

∧
cB∧C,A ◦

∧
b→B,C,A

◦
∧
cC∧A,B ◦

∧
b→C,A,B

◦
∧
cA∧B,C ,

together with the equations E(
∧
S) of

∧
S. In that context the equations (

∧
b

∧
b)

become

∧
cB∧C,A ◦

∧
b→B,C,A

◦
∧
cC∧A,B ◦

∧
b→C,A,B

◦
∧
cA∧B,C ◦

∧
b→A,B,C = 1A∧(B∧C),

∧
b→A,B,C

◦
∧
cB∧C,A ◦

∧
b→B,C,A

◦
∧
cC∧A,B ◦

∧
b→C,A,B

◦
∧
cA∧B,C = 1(A∧B)∧C ,

while the equation (
∧
b

∧
c) amounts to

∧
b→C,A,B

◦
∧
cA∧B,C ◦

∧
b→A,B,C = (

∧
cA,C ∧ 1B) ◦

∧
b→A,C,B

◦ (1A ∧
∧
cB,C).

We call natural
∧
S-categories symmetric associative categories. Sym-

metric associative categories differ from Mac Lane’s symmetric monoidal

categories, which we will consider in §5.3, by not necessarily having the

unit object ⊤. The objects of a symmetric associative category that is a

partial order make a commutative semigroup.

It is easy to check that the two maps G of §2.9, defined on objects and

on arrows, give rise to a strict C(
∧
S)-functor from

∧
S to Rel. For that, it is

enough to check that for f = g being one of the equations (
∧
c nat), (

∧
c

∧
c)

and (
∧
b

∧
c) we have Gf = Gg in Rel (for the remaining equations in the

axiomatization of
∧
S this is trivial). It is clear that Gf corresponds to a

permutation of a finite nonempty domain. Our goal is to prove coherence

for the category
∧
S with respect to Rel; namely, we will prove the following

result of [99] (Section 4).

Symmetric Associative Coherence. The functor G from
∧
S to Rel is

faithful.

Coherence here does not mean, as for
∧
A
→
,

∧
A and

∧
A⊤, that

∧
S is a preorder.

We do not have G
∧
cp,p = G1p∧p, and hence, by the functoriality of G, we

do not have
∧
cp,p = 1p∧p in

∧
S.

For G being
∧
A and C/E being

∧
S, we have that the conditions (IVC)

and (IVG) of §3.1 are satisfied, and G is moreover a preorder. To verify
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that
∧
A is generatively discrete, we appeal to the fact that for every arrow

term f : A ⊢ B of C(
∧
A) we have that Gf is a bijection whose ordered

pairs correspond to occurrences of the same letter in A and B. We have

analogous arguments to establish generative discreteness in other cases of

strictification, which we will encounter later, and we will not dwell on this

matter any more.

Then we can apply the Direct-Strictification Theorem of §3.2 to obtain

a category CG/EG , which we will call
∧
Sst. We call CG here C(

∧
Sst). The

category
∧
Sst is equivalent to

∧
S via the strict C(

∧
S)-functor HG from

∧
S to

∧
Sst,

and the strong C(
∧
S)-functor ⟨H,ψ2ξ2⟩ from

∧
Sst to

∧
S.

Consider the composite functor GH from
∧
Sst to Rel. It is easy to see

that GH|[A]| = GA, since all the formulae in |[A]| have the same letter

length, and we also have

GHα|[A1]|,...,|[Ak]| = GαA1,...,Ak
.

We can conclude that G is equal to the composite functor GHHG . Hence

it is enough to establish that GH is faithful to conclude that G is faithful,

because we know that HG is faithful.

Note that since in
∧
Sst the equation (

∧
b

∧
c) becomes

∧
cX,Y ∧Z = (1Y ∧

∧
cX,Z) ◦ (

∧
cX,Y ∧1Z),

and since we also have

∧
cX∧Y,Z = (

∧
cX,Z ∧1Y ) ◦ (1X ∧

∧
cY,Z),

every arrow term of C(
∧
Sst) will be equal to a developed arrow term in which

every
∧
c-term is of one of the following forms:

∧
c |[p]|,|[q]|,

∧
c |[p]|,|[q]| ∧1X , 1X ∧

∧
c |[p]|,|[q]|, (1X ∧

∧
c |[p]|,|[q]|) ∧ 1Y .

The
∧
c-terms of C(

∧
Sst) and their heads are defined analogously to what we

had in §2.6.
For the first two arrow terms in this list we use the abbreviation s1, and

for the third and fourth we use si+1, where i = GHX. So our developed

arrow term may be written in the form si1 ◦ . . . ◦ sin ◦1X , where n ≥ 0.
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It is easy to check that in
∧
Sst we have the equations

(s1) si ◦ si = 1,

(s2) si+k ◦ si = si ◦ si+k, for k ≥ 2,

(s3) si ◦ si+1 ◦ si = si+1 ◦ si ◦ si+1,

where 1 stands for 1X for some X. The equation (s3) is derived with the

help of (
∧
b

∧
c) and (

∧
c nat) (see [102], Section XI.1, p. 254).

It is well known that the equations (s1), (s2) and (s3), together with the

equations corresponding to the categorial equations (cat 1) and (cat 2)—

namely, the equations of monoids—axiomatize symmetric groups (i.e., give

a presentation of these groups by generators and relations; see [26], Section

6.2). A reader with this knowledge may now conclude that the functor GH

is faithful. However, to make the matter self-contained, we will justify this

conclusion in the next section.

§5.2. The faithfulness of GH

Let s[i,j] be an abbreviation for si ◦ si−1 ◦ . . . ◦ sj+1 ◦ sj if i > j, while s[i,i]

stands for si. For n ≥ 0, and 1 standing for 1X for some X, we say that

s[i1,j1] ◦ . . . ◦ s[in,jn] ◦1

is in normal form when i1 < i2 < . . . < in (this normal form is implicit in

[17], Note C, pp. 464-465).

Then from (cat 1), (cat 2), (s1), (s2) and (s3) we can prove the following

equations for i ≥ k:

s[i,j] ◦ s[k,l] = s[k,l] ◦ s[i,j], if k+1 < j,

= s[i,l], if k+1 = j,

= s[k−1,l] ◦ s[i,j+1], if k = j, i > j and k > l,

= s[i,j+1], if k = j, i > j and k = l,

= s[k−1,l], if k = j, i = j and k > l,

= 1, if k = j, i = j and k = l,

= s[k−1,l] ◦ s[i,j+1], if k > j ≥ l,
= s[k−1,l−1] ◦ s[i,j], if k > j < l.
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(Note that (s1) is the sixth equation, (s2) is an instance of the first equation,

and (s3) is an instance of the last equation.) From these equations we easily

infer the following.

Normal-Form Lemma. Every arrow term of C(
∧
Sst) is equal in

∧
Sst to an

arrow term in normal form.

We can also prove the following.

Uniqueness Lemma. If the arrow terms f, g : X ⊢ Y of C(
∧
Sst) are in

normal form and GHf = GHg, then f and g are the same arrow term.

Proof. Let f and g be s[i1,j1] ◦ . . . ◦ s[in,jn] ◦1 and s[k1,l1]
◦ . . . ◦ s[km,lm] ◦1

respectively. Note that GHs[i,j] corresponds to the following diagram:

0 j−2 j−1 i−2 i−1 i i+1 GHX−1

0 j−2 j−1 j i−1 i i+1 GHX−1

· · ·

· · ·

· · ·

· · ·

�
�
�
�

�
�
�
�

�
�
�
�

aa
aa

aa
aa

aa

So, for n > 0, we have in GHf the ordered pair (jn−1, in), with jn−1 < in,

which we call the last falling slope of GHf . Note that for l > in we have

in GHf the ordered pairs (l, l).

Then we proceed by induction on n. If n = 0, then m = 0; otherwise,

in GHf we would have only the ordered pairs (i, i), and in GHg we would

have (lm−1, km) for lm−1 < km.

If n > 0, then, as we have just shown, m > 0, while in = km and

jn = lm; otherwise, the last falling slopes of GHf and GHg would differ.

Since for e being sjn ◦ sjn+1 ◦ . . . ◦ sin−1 ◦ sin we have

GHf ◦GHe = GHg ◦GHe,

we can conclude that for f ′ and g′ being s[i1,j1] ◦ . . . ◦ s[in−1,jn−1]
◦1 and

s[k1,l1]
◦ . . . ◦ s[km−1,lm−1]

◦1 respectively we have GHf ′ = GHg′, and we

have by the induction hypothesis that f ′ and g′ are the same arrow term.

Hence f and g are the same arrow term. ⊣
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As a matter of fact, it would be enough to prove instead of the Unique-

ness Lemma that if f is in normal form and GHf = GH1, then f is 1.

(Altogether, this proof would not be shorter than the proof of the Unique-

ness Lemma.)

From the Normal-Form Lemma, the functoriality ofGH and the Unique-

ness Lemma we infer easily that GH is faithful. An alternative proof of

this faithfulness is obtained without the Uniqueness Lemma. Instead we

establish that the number of different arrow terms f : X ⊢ Y in normal

form is n! for n = GHX = GHY , and that for every permutation π of

an ordinal n > 0 (this permutation is an arrow of Rel ) there is an arrow

f : X ⊢ Y of
∧
Sst such that GHX = GHY = n and GHf = π. Then

we use the fact that every onto function from n! to n! is also one-one. A

proof in this alternative style is suggested by [17] (Note C, pp. 464-465).

Our proof in this section is easily converted into a proof of completeness of

the standard axiomatization of symmetric groups with respect to groups of

permutations—a proof alternative to the proof in [17], mentioned above.

§5.3. Coherence of symmetric monoidal categories

To obtain the natural logical category
∧
S⊤, we have that the logical system

C(
∧
S⊤) in L∧,⊤, with the transformations α included in 1,

∧
b,

∧
c and

∧
δ -

∧
σ .

The specific equations of E(
∧
S⊤) are obtained by taking the union of those

of E(
∧
S) and E(

∧
A⊤).

One can derive for
∧
S⊤ the following equation:

(
∧
c

∧
δ

∧
σ)

∧
cA,⊤ =

∧
σ←A ◦

∧
δ→A

(see [75], Theorem 8). This equation says that one of
∧
δ and

∧
σ is superfluous:

it can be defined in terms of the other with the help of
∧
c. Note that in the

presence of (
∧
c

∧
δ

∧
σ), the instance of (

∧
b

∧
c) where A is ⊤, namely

∧
c⊤,B∧C =

∧
b→B,C,⊤ ◦ (1B ∧

∧
c⊤,C) ◦

∧
b←B,⊤,C ◦ (

∧
c⊤,B ∧ 1C) ◦

∧
b→⊤,B,C ,

is derivable without using (
∧
b

∧
c) (we apply (

∧
b

∧
δ ), (

∧
b

∧
δ

∧
σ) and (

∧
b

∧
σ)), and anal-

ogously for the instances of (
∧
b

∧
c) where B or C is ⊤.
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Natural
∧
S⊤-categories are usually called symmetric monoidal categories.

The objects of a symmetric monoidal category that is a partial order make

a commutative monoid.

The following result is from [99] (Section 5).

Symmetric Monoidal Coherence. The functor G from
∧
S⊤ to Rel is

faithful.

The proof of this faithfulness is easily obtained by extending our proof of

Symmetric Associative Coherence in the two preceding sections. To obtain

the category
∧
Sst
⊤, we take

∧
A⊤ to be G. Then in

∧
Sst
⊤ we have

∧
c |[A]|,|[⊤]|= 1|[A]|.

Although the categories
∧
Sst and

∧
Sst
⊤ are not preorders, the categories

∧
S
div

and
∧
S
div
⊤ are preorders (for the definition of these last two categories

see §3.3). This follows from Symmetric Associative Coherence and Sym-

metric Monoidal Coherence. So extending E(
∧
Sst) and E(

∧
Sst
⊤) with the equa-

tion
∧
cA,A = 1A∧A, which yields preordering (see §6.5), does not add new

equations to
∧
S
div

and
∧
S
div
⊤ . We will rely on that in §7.6.





Chapter 6

Biassociative Categories

In this chapter we prove coherence, in the sense of preordering, for cat-

egories that have two monoidal structures, with or without unit objects.

We explain what are the effects of strictifying this double monoidal struc-

ture. With the help of that, we establish also coherence for categories with

two symmetric monoidal structures. The proofs of the present chapter are

based on the proofs of the preceding two chapters.

§6.1. Coherence of biassociative and bimonoidal cate-
gories

Let
∨
A be the natural logical category in L∨ isomorphic to

∧
A of §4.3. The

only difference is that ∧ is everywhere replaced by ∨. The primitive arrow

terms of C(
∨
A) are included in 1 and

∨
b, while the equations of E(

∨
A) are

obtained by replacing ∧ by ∨ in those of E(
∧
A) (see the List of Equations

and the List of Categories at the end of the book).

To obtain the natural logical categoryA, we have that the logical system

C(A) is in L∧,∨, with the transformations α included in the families 1 and

b. The specific equations of E(A) are obtained by taking the union of those

of E(
∧
A) and E(

∨
A). We call natural A-categories biassociative categories.

An arrow term of C(A) is called →-directed when neither of
∧
b← and

∨
b←

occurs in it.

We define inductively as follows formulae of L∧,∨ in normal form:

every letter is in normal form;

115
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if A and B are in normal form and B is not of the form B1∧B2, then

A ∧B is in normal form;

if A and B are in normal form and B is not of the form B1∨B2, then

A ∨B is in normal form.

So all parentheses within conjunctions and disjunctions are associated to

the left as much as possible.

Then we can easily prove the Directedness Lemma of §4.3 for A by

extending the proof in §4.3. From that we infer as before the following.

Biassociative Coherence. The category A is a preorder.

Let
∨
A⊥ be the natural logical category in L∨,⊥ isomorphic to

∧
A⊤ of

§4.6. The only difference is that ∧ and ⊤ are everywhere replaced by ∨ and

⊥ respectively. The primitive arrow terms of C(
∨
A⊥) are included in 1,

∨
b

and
∨
δ -

∨
σ , while the equations of E(

∨
A⊥) are obtained by replacing ∧ and ⊤

by ∨ and ⊥ respectively in those of E(
∧
A⊤) (see the List of Equations and

the List of Categories).

To obtain the natural logical category A⊤,⊥, we have that the logical

system C(A⊤,⊥) is in L∧,∨,⊤,⊥, with the transformations α included in the

families 1, b and δ-σ. The specific equations of E(A⊤,⊥) are obtained by

taking the union of those of E(
∧
A⊤) and E(

∨
A⊥). We call natural A⊤,⊥-

categories bimonoidal categories.

An arrow term of C(A⊤,⊥) is called→-directed when neither of
∧
b←,

∨
b←,

∧
δ←,

∨
δ←,

∧
σ← and

∨
σ← occurs in it.

We define inductively as follows formulae of L∧,∨,⊤,⊥ in normal form:

every letter and the nullary connectives ⊤ and ⊥ are in normal form;

if A and B are in normal form, B is not of the form B1 ∧ B2 and

neither A nor B is ⊤, then A ∧B is in normal form;

if A and B are in normal form, B is not of the form B1 ∨ B2 and

neither A nor B is ⊥, then A ∨B is in normal form.

So, as for the normal form of formulae of L∧,∨, all parentheses within

conjunctions and disjunctions are associated to the left as much as possible,

and, moreover, the conjuncts ⊤ and disjuncts ⊥ are deleted.
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Then we can prove the Directedness Lemma of §4.3 for A⊤,⊥ by extend-

ing the proof in §4.3 and §4.6. From that we infer as before the following.

Bimonoidal Coherence. The category A⊤,⊥ is a preorder.

§6.2. Form sequences

The classes [A] involved in (C/E ,
∧
A)-strictification correspond bijectively to

finite nonempty sequences of objects (see §3.1 and §4.5). With (C/E ,A)-

strictification the classes [A] correspond analogously to a more complicated

notion of sequence where we distinguish concatenation of the ∧ kind from

concatenation of the ∨ kind. To define this notion, let X be an arbitrary

set, and let ξ ∈ {∧,∨}. If ξ is ∧, then ξc is ∨, and if ξ is ∨, then ξc is ∧.
We define inductively as follows the notion of form sequence of X of

colour ξ :

(1) every x ∈ X is a form sequence of X of colour ξ ;

(2) if X1. . . Xn, where n ≥ 2, is a sequence of form sequences of colour

ξc, then the ordered pair (X1. . . Xn, ξ) is a form sequence of X of

colour ξ .

(Finite nonempty form sequence would be a more precise, but less concise,

denomination for the notion of form sequence just introduced. We will

introduce below a more general notion of form sequence that covers also

empty form sequences of both colours.)

It is easy to see that every form sequence of X of colour ξ corresponds

to a planar finite tree (see §2.1) with nodes of n-ary branching where n ≥ 2,

such that every leaf is labelled by an element of X , every node that is not

a leaf is labelled by ∧ or ∨, for every node labelled β ∈ {∧,∨} its successor
is labelled βc, provided this successor is not a leaf, and the root is labelled

ξ , provided this root is not a leaf.

We introduce now an alternative notation for form sequences, which is

obtained by writing (X1 ξ X2 ξ . . . ξ Xn) for (X1. . . Xn, ξ) in clause (2) of

the definition above. We call this notation, which we will need in latter

sections, the natural notation for form sequences. The natural notation
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for [A] may be conceived as obtained from any formula in [A] by deleting

parentheses corresponding to ξ in the immediate scope of ξ . For example,

we replace ((p∧q)∧r)∨s by (p∧q∧r)∨s. Note that for form sequences in

natural notation the variables for form sequences X, Y, . . . stand in different

contexts for different syntactic objects. For example, if X is the form

sequence (p ∧ q ∧ r), then in X ∧ s, the variable X stands for p ∧ q ∧ r,
while in X ∨ s it stands for (p∧ q∧ r). As usually done, with other kinds of

formulae and terms, we omit the outermost parentheses in natural notation.

In the context of (C/E ,A)-strictification, we may use as arrow terms for

arrows of the directly strictified category, arrow terms in natural notation,

i.e. arrow terms in which parentheses corresponding to ξ in the immediate

scope of ξ are deleted, as above. For example, we replace (((f1∧f2)∧f3)∨
f4) ◦ f5 by ((f1 ∧ f2 ∧ f3)∨ f4) ◦ f5. Such arrow terms correspond to planar

finite trees if ◦ does not occur in them.

If Bob is the set of objects of a C/E category B, and if G is A, and

is related to C/E as in (IVC) and (IVG) of §3.1, then the objects of BG

correspond to form sequences of Bob of both colours. If X,X1, . . . , X
′
1, . . .

stand for form sequences of Bob of colour ξc (if X ∈ Bob, then X is both

of colour ξc and ξ), then we define the operations ξ′′ ∈ {∧′′,∨′′} on the

objects of BG in the following manner:

X1 ξ′′ X2 =df (X1X2, ξ),

X ξ′′ (X1. . . Xn, ξ) =df (XX1. . . Xn, ξ),

(X1. . . Xn, ξ) ξ′′ X =df (X1. . . XnX, ξ),

(X1. . . Xn, ξ) ξ′′ (X ′1. . . X
′
m, ξ) =df (X1. . . XnX

′
1. . . X

′
m, ξ),

for n,m ≥ 2. The operation ξ′′ is, intuitively, concatenation of the ξ kind.

For the classes [A] involved in (C/E ,A⊤,⊥)-strictification, we have to

extend the notion of form sequence to take into account the empty sequences

of colours ∧ and ∨. For the formal definition that follows, let X be an

arbitrary set, and let ξc for ξ ∈ {∧,∨} be as before.

A form sequence of X of colour ξ is defined inductively, as before, with

the clauses (1), (2) and the following additional clause:

(0) if ∅ is the empty sequence of elements of X , then (∅, ξ) is a form

sequence of X of colour ξ .
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When we need to distinguish the previous notion of form sequence from the

new notion just introduced, we call the former notion nonextended and the

latter one extended. Planar trees corresponding to form sequences in the

extended sense have leaves labelled by elements of X or by (∅, ξ).
For G being A⊤,⊥, we define the operations ξ′′ and ζ′′ on the objects

of BG conceived as form sequences in the extended sense in the following

manner. For ⊤′′ we take (∅,∧), which corresponds to [⊤G ], and for ⊥′′ we
take (∅,∨), which corresponds to [⊥G ]. For ξ′′ we enlarge the definition

above with

Y ξ′′ (∅, ξ) =df Y,

(∅, ξ) ξ′′ Y =df Y,

for Y any form sequence of Bob.

§6.3. Coherence of symmetric biassociative categories

Let
∨
S be the natural logical category in L∨ isomorphic to

∧
S of §5.1. The

difference is that ∧ is everywhere replaced by ∨. The primitive arrow terms

of C(
∨
S) are included in 1,

∨
b and

∨
c, while the equations of E(

∨
S) are obtained

by replacing ∧ by ∨, and by permuting the indices of c in the equations of

E(
∧
S). So we obtain the equations (

∨
c

∨
c) and (

∨
b

∨
c) (see the List of Equations

and the List of Categories).

To obtain the natural logical category S, we have that the logical system

C(S) is in L∧,∨, with the transformations α included in the families 1, b and

c. The specific equations of E(S) are obtained by taking the union of those

of E(
∧
S) and E(

∨
S). We call natural S-categories symmetric biassociative

categories.

For G being A and C/E being S, we have that (IVC) and (IVG) of §3.1
are satisfied, and G is moreover a preorder. Thus we can apply the Direct-

Strictification Theorem of §3.2 to obtain a category CG/EG , which we will

call Sst. We call CG here C(Sst).

As in §3.2, we have the functor GH from Sst to Rel, and it is enough

to show that this functor is faithful to conclude the following.

Symmetric Biassociative Coherence. The functor G from S to Rel is

faithful.
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In the remainder of this section we prove that the functor GH from Sst to

Rel is faithful.

For ξ ∈ {∧,∨}, a ξ

c-term of C(Sst) is called atomized when, for every

arrow term 1X occurring in it, X is |[p]| for some letter p of P. Atom-

ized
ξ

c-terms may be designated by composition-free arrow terms in natural

notation, as explained in the preceding section, and these arrow terms cor-

respond to planar finite trees analogous to those that correspond to form

sequences. To every atomized
ξ

c-term we assign a planar finite tree with

nodes of n-ary branching, where n ≥ 2, such that exactly one leaf λ is la-

belled with the head
ξ

cX,Y of our
ξ

c-term, and all the other leaves are labelled

with arrow terms of the form 1p. Nodes that are not leaves are labelled

with ∧ or ∨, and for every node labelled β ∈ {∧,∨} its successor is labelled
βc, provided this successor is not a leaf.

Let νλ be either the leaf λ above when the predecessor of λ is labelled

with ξc or λ is the root, or else let νλ be the predecessor of λ labelled with

ξ . The level l(f) of an atomized
ξ

c-term f is the height of νλ (see §2.1 for

this notion of height). The span s(f) of an atomized
ξ

c-term f is the number

of nodes of the same height as νλ on the left-hand side of νλ.

It is easy to see that with the help of the bifunctorial and naturality

equations every arrow term of C(Sst) is equal in Sst to a developed arrow

term fn ◦ . . . ◦ f1 ◦1X where every factor fi is an atomized
ξ

c-term, and if

1 ≤ i < j ≤ n, then l(fi) ≤ l(fj) and s(fi) ≤ s(fj). It is also easy to

see that for every arrow term f : X ⊢ Y of C(Sst) there is an arrow term

f−1 : Y ⊢ X of C(Sst) such that f−1 ◦ f = 1X and f ◦ f−1 = 1Y in Sst.

From that we conclude that to show the faithfulness of GH it is enough to

prove for f : X ⊢ X that if GHf = GH1X , then f = 1X in Sst.

Let f : X ⊢ X be the developed arrow term fn ◦ . . . ◦ fk ◦ . . . ◦ f1 ◦1X of

the kind described above, such that l(fn) = . . . = l(fk), s(fn) = . . . = s(fk),

and either l(fk) > l(fk−1) or s(fk) > s(fk−1). Suppose GHf = GH1X .

If GH(fn ◦ . . . ◦ fk) = GH1X , then by the faithfulness of GH proved in

§5.2 we can conclude that fn ◦ . . . ◦ fk = 1X in Sst, and we must have

GH(fn ◦ . . . ◦ fk) = GH1X , because, otherwise, according to our conditions

on l and s, we could not have GHf = GH1X . We repeat this reasoning

with fk−1 ◦ . . . ◦ f1 ◦1X , until we obtain that f = 1X in Sst. This concludes

the demonstration of the faithfulness ofGH, from which we infer Symmetric
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Biassociative Coherence.

§6.4. Coherence of symmetric bimonoidal categories

Let
∨
S⊥ be the natural logical category in L∨,⊥ isomorphic to

∧
S⊤ of §5.3.

The difference is that ∧ and ⊤ are everywhere replaced by ∨ and ⊥ re-

spectively. The primitive arrow terms of C(
∨
S⊥) are included in 1,

∨
b,

∨
c and

∨
δ -

∨
σ , while the equations of E(

∨
S⊥) are obtained by replacing ∧ and ⊤ by ∨

and ⊥ respectively, and by permuting the indices of c in the equations of

E(
∧
S⊤).

To obtain the natural logical category S⊤,⊥, we have that the logical

system C(S⊤,⊥) is in L∧,∨,⊤,⊥, with the transformations α included in the

families 1, b, c and δ-σ. The specific equations of E(S⊤,⊥) are obtained by

taking the union of those of E(
∧
S⊤) and E(

∨
S⊥) plus

(
∧
c⊥) ∧

cC,C = 1C∧C ,

(
∨
c⊤) ∨

cC,C = 1C∨C ,

provided C is a letterless formula of L∧,∨,⊤,⊥.
From (

∧
c⊥) and (

∨
c⊤) we can derive the following equations. If h : C ⊢ D

and h−1 : D ⊢ C are mutually inverse arrows of S⊤,⊥, with C and D

letterless formulae of L∧,∨,⊤,⊥, then in E(S⊤,⊥) we have

(
∧
c h)

∧
cC,D = (h ∧ 1C) ◦ (1C ∧ h−1),

(
∨
c h)

∨
cD,C = (h ∨ 1C) ◦ (1C ∨ h−1).

To derive (
∧
c h) we have

(h ∧ 1C) ◦ (1C ∧ h−1) = (h ∧ 1C) ◦
∧
cC,C ◦ (1C ∧ h−1), by (

∧
c ⊥)

=
∧
cC,D,

by naturality equations, bifunctorial equations, and by h being an isomor-

phism; we proceed analogously for (
∨
c h). Conversely, we obtain (

∧
c⊥) and

(
∨
c⊤) from (

∧
c h) and (

∨
c h) by putting 1C : C ⊢ C for h and h−1.

We call natural S⊤,⊥-categories symmetric bimonoidal categories.

The category Set of sets with functions is a bimonoidal category with

∧ being cartesian product, ∨ being disjoint union, ⊤ being a singleton and

⊥ being the empty set. But, although the instance
∧
c⊥,⊥ = 1⊥∧⊥ of (

∧
c⊥)
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holds in Set, the instance
∨
c⊤,⊤ = 1⊤∨⊤ of (

∨
c ⊤) does not hold. So Set is

not a symmetric bimonoidal category in the sense just specified, though it

is a symmetric biassociative category.

Let the category Sst
⊤,⊥ be obtained as Sst in the preceding section by

taking that G is A⊤,⊥ instead of A, and that C/E is S⊤,⊥. We call CG here

C(Sst
⊤,⊥).

A constant object of Sst
⊤,⊥ is |[A]| where A is a letterless formula of

L∧,∨,⊤,⊥. The remaining objects of Sst
⊤,⊥ are called variable objects. The

constant objects of Sst
⊤,⊥ are denumerable.

The arrow term
ξ

cX,Y of C(Sst
⊤,⊥), for ξ ∈ {∧,∨}, is called basic when

the following two conditions are satisfied: first, the form sequences (in the

extended sense) corresponding to X and Y are of colour ξc, and, secondly,

if the objects X and Y are both constant, then there is no arrow term

of C(Sst
⊤,⊥) of type X ⊢ Y (hence there is neither an arrow term of type

Y ⊢ X).

A developed arrow term fn ◦ . . . ◦ f1 ◦1Z of C(Sst
⊤,⊥) such that for every

i ∈ {1, . . . , n} the head of fi is a basic arrow term
ξ

cX,Y is called basically

developed. We can prove the following.

Basic-Development Lemma 1. Every arrow term of C(Sst
⊤,⊥) is equal in

Sst
⊤,⊥ to a basically developed arrow term.

Proof. For f : X ⊢ Y an arrow term of C(Sst
⊤,⊥), we proceed by induction

on the number n ≥ 1 of nodes in the planar finite tree corresponding to

X (which must be equal to the number of nodes in the planar finite tree

corresponding to Y ). If n = 1, then X = Y , and f must be equal to 1|[p]| or

1(∅,ξ). For the induction step, we find first a developed arrow term equal

to f , and then, by using the equations (
ξ

b
ξ

c), (
ξ

c
ξ

δ
ξ

σ) and (
ξ

c h), together with

the induction hypothesis, we transform this arrow term into a basically

developed one. ⊣

Analogously to what we had in the preceding section, we find for every
ξ

c-term f its level l(f). (Atomization is not here essential, since it leaves

the level invariant.) Then we have the following.

Basic-Development Lemma 2. Every arrow term of C(Sst
⊤,⊥) is equal in
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Sst
⊤,⊥ to a basically developed arrow term hk ◦ . . . ◦h1 ◦1X such that k ≥ 0

and, if k > 1, then for 1 ≤ i < j ≤ k we have l(hi) ≤ l(hj).

To prove this lemma, we use Basic-Development Lemma 1 together with

bifunctorial and naturality equations, which do not spoil basic development.

Basic-Development Lemma 3. Every arrow term f : (X1. . . Xn, ξ) ⊢
(Y1. . . Yn, ξ) of C(Sst

⊤,⊥), with n ≥ 2, is equal in Sst
⊤,⊥ to an arrow term of

the form

(. . . (f1 ξ f2) ξ . . . ξ fn) ◦hk ◦ . . . ◦h1 ◦1X

such that fi, for i ∈ {1, . . . , n}, is of type Xπ(i) ⊢ Yi for π a permutation

of {1, . . . , n}, while hk ◦ . . . ◦h1 ◦1X , with k ≥ 0, is basically developed and

l(hj) = 1 for every j ∈ {1, . . . , k}.

To prove this lemma we just apply Basic-Development Lemma 2 and bi-

functorial equations. Now we can prove the following.

Symmetric Bimonoidal Coherence. The functor G from S⊤,⊥ to Rel

is faithful.

Proof. As before, it is enough to prove that the functor GH from Sst
⊤,⊥

to Rel is faithful. As in the preceding section, it is enough to show for

f : X ⊢ X that if GHf = GH1X , then f = 1X in Sst
⊤,⊥.

We proceed by induction on the number n ≥ 1 of nodes in the pla-

nar finite tree corresponding to X. If n = 1, then f is equal to 1|[p]| or

1(∅,ξ). For the induction step, suppose X corresponds to the form sequence

(X1. . . Xn, ξ) with n ≥ 2. Then, by Basic-Development Lemma 3, we

have that f is equal in Sst
⊤,⊥ to (. . . (f1 ξ f2) ξ . . . ξ fn) ◦h where h, which

is hk ◦ . . . ◦h1 ◦1X , is an instance of an arrow term

h′ : |[(. . . (p1 ξ p2) ξ . . . ξ pn)]| ⊢ |[(. . . (pπ(1) ξ pπ(2)) ξ . . . ξ pπ(n))]|

of C(
ξ

Sst), and the type of fi is Xπ(i) ⊢ Xi, for i ∈ {1, . . . , n}.
For every i ∈ {1, . . . , n} we must have π(i) = i. If Xi is a variable

object of Sst
⊤,⊥, then this follows from the fact that f is of type X ⊢ X

and GHf = GH1X . If Xi is a constant object of Sst
⊤,⊥, then this follows

from the fact that h is basically developed. Otherwise, there would be in
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h an arrow term
ξ

cXj ,Xπ(j)
or

ξ

cXπ(j),Xj for some j ∈ {1, . . . , n}; but this is

impossible since fj is of type Xπ(j) ⊢ Xj . So GHh
′ = GH1|[A]| for A being

(. . . (p1 ξ p2) ξ . . . ξ pn). By the faithfulness of GH from
ξ

Sst to Rel, we have

h′ = 1|[A]|, from which it follows that h = 1X in Sst
⊤,⊥. We have also that fi

is of type Xi ⊢ Xi, and since GHfi = GH1Xi , by applying the induction

hypothesis we obtain fi = 1Xi . It follows that f = 1X in Sst
⊤,⊥. ⊣

In the induction step of this proof we deal with the least level, while in

the induction step of the proof of the faithfulness of GH from Sst to Rel

in the preceding section we dealt with the greatest level. Because of that,

we had to introduce there the notion of span. The preceding proof could,

however, be reworked in the style of the present section—with the least

level.

§6.5. The category S′

To obtain the natural logical category S′, we take the logical system C(S)
in L∧,∨ of §6.3. The specific equations of E(S′) are those of E(S) plus the
equations

(
ξ

c1)
ξ

cA,A= 1AξA

for ξ ∈ {∧,∨}. We call S′ the natural logical category C(S)/E(S′). The

equations (
ξ

c h) of the preceding section hold in S′ with A and B being any

formulae of L∧,∨ such that h : A ⊢ B and h−1 : B ⊢ A are mutually inverse

arrows of S′. Conversely, we obtain (
ξ

c1) from (
ξ

c h) by putting 1A : A ⊢ A
for h and h−1.

To show that S′ is a preorder we proceed analogously to what we had

in the preceding section. Let S′st be obtained as Sst by taking that G is

A and C/E is S′. Here CG is C(Sst). Basic arrow terms
ξ

cX,Y of C(Sst) are

those where X and Y are of colour ξc and there is no arrow term of C(Sst)

of type X ⊢ Y . Basically developed arrow terms are then defined as in

the preceding section, and we take over also the notion of level. We can

then prove analogues of Basic-Development Lemmata 1-3 of the preceding

section.
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To conclude the proof that S′ is a preorder, we prove that every arrow

term f : X ⊢ X of C(Sst) is equal in S′st to 1X . We proceed by induction

on the number n ≥ 1 of nodes in the planar finite tree corresponding to X.

This proof is analogous to the proof of Symmetric Bimonoidal Coherence

in the preceding section. In the induction step, we reason as in the case

where Xi is a constant object.

Note that, since G
ξ

cA,A ̸= G1AξA, we have no functor G from S′ to

Rel. The fact that S′ is a preorder cannot be reformulated as a coherence

theorem stating that G is faithful.

The natural logical category
∧
S′, whose logical system is C(

∧
S) in L∧, has

the specific equations of E(
∧
S) with

∧
cA,A = 1A∧A added. We can show that

∧
S′ is a preorder by simplifying the argument above.





Chapter 7

Dissociative Categories

In this chapter we prove coherence, in the sense of preordering, for cate-

gories with a double monoidal structure without unit objects and with the

linear distribution arrows of [22]. Linear distribution is an associativity

principle involving two binary operations, and we have coined for it the

name dissociativity. This principle will yield arrows based on the usual dis-

tribution principle in Chapter 11, where the two monoidal structures are

made of a product and a coproduct.

We prove beforehand coherence for categories such as those mentioned

above that lack the ordinary associativity arrows. We also prove coherence

in cases where dissociativity is allowed only on one side. Our method in

these proofs is based on confluence techniques, like those that may be found

in the lambda calculus.

Next we prove coherence for the case where the two monoidal structures

with dissociativity are symmetric, and we still lack the unit objects. Here

the method of proof is more involved. It is based on a cut-elimination pro-

cedure in a sequent system strictified in the symmetric monoidal structure.

We justify this strictification by the results of Chapters 3-6.

We are here at the watershed as far as method is concerned. Up to

this chapter, confluence techniques predominated, while, from now on, cut

elimination, or its simpler version, composition elimination, will take over

the stage. (The two approaches are still mixed in the next chapter.) Cut

elimination could have been employed in the first part of this chapter too.

For the categories treated there, both approaches are available, and we

127
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opted for the first, the second being well illustrated in the second part of

the chapter.

At the end of the chapter, we consider adding the unit objects, and we

present the linearly distributive categories of [22], for which coherence in

our sense does not obtain. Linearly distributive categories without unit

objects, with which we deal in this chapter, do not seem to have been

considered separately before.

§7.1. Coherence of dissociative categories

To obtain the natural logical category DI, we have that the logical system

C(DI) is in L∧,∨, with the transformations α included in 1 and d. The

equations E(DI) are just those of EnatC(DI) (see §4.1). We call natural DI-

categories dissociative categories.

We have given in §1.2 our reasons for calling dissociativity the principle

underlying the arrow terms in d. This principle may be found in [1] (Section

15.2), [65], [89] (Section 8), [52] (Section 6.9) and [16]. In category theory

it has been introduced by Cockett and Seely (see [21] and [22]; see also [68],

Section 3.2). The dissociativity principle underlying the arrow terms in d

resembles the modularity law for lattices:

if c ≤ a, then a ∧ (b ∨ c) ≤ (a ∧ b) ∨ c

(see [9], Section I.7). The condition a ∧ (b ∨ c) ≤ (a ∧ b) ∨ c, without the

assumption c ≤ a, has the same force as distribution in lattices (cf. §11.3).
For x and y occurrences of ξ ∈ {∧,∨} in a formula A of L∧,∨ we define

the relation Sξ
A such that xSξ

Ay when x is in the scope of y in A. (For the

notion of scope see §2.1.) Note that for f : A ⊢ B being a member of the

family d we have that S∧B is a proper subset of S∧A and S∨A a proper subset

of S∨B . This holds also for f being any arrow term of C(DI) in which a

member of the family d occurs; otherwise Sξ
A = Sξ

B . Here A and B are

comparable formulae of L∧,∨ (namely, formulae that yield the same word

after deleting parentheses; see §2.1), and the relations SA and SB can be

compared, as the relations RA and RB were compared in §4.2. It is clear

that the following holds.
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Remark. Let the formula A of L∧,∨ be of the form A1 ξ A2 for ξ ∈ {∧,∨}.
Then, for x and y being occurrences of ∧ or ∨ in Ai, where i ∈ {1, 2}, we
have that x is in the scope of y in A iff x is in the scope of y in Ai.

We have the following analogue of the Extraction Lemma of §4.4, which
is proved by imitating the proof in §4.4.

Extraction Lemma. If there is an occurrence z of ∨ in a formula A of

L∧,∨ such that there is no u with zS∨Au, then there is a formula A1 z A2

of L∧,∨ such that there is an arrow term g : A ⊢ A1 z A2 of C(DI). In

addition,

(∗) for all occurrences x and y of ∧ or ∨ in Ai, where i ∈ {1, 2}, we
have that y is in the scope of x in A iff y is in the scope of x in

Ai;

(∗∗) every subterm of g of the form dLD,E,F is of the type D∧(E z F ) ⊢
(D ∧E) z F , and every subterm of g of the form dRF,E,D is of the

type (F z E) ∧D ⊢ F z (E ∧D).

We do not need (∗∗) for the proof of the Theoremhood Proposition be-

low, but we stated this condition because it is analogous to (∗∗) of previous
Extraction Lemmata in §4.2 and §4.4. The following lemma is analogous

to the Theoremhood Proposition of §4.2.

Theoremhood Proposition. There is an arrow term f : A ⊢ B of C(DI)

iff A and B are comparable formulae of L∧,∨, and we have S∧B ⊆ S∧A and

S∨A ⊆ S∨B.

Proof. The direction from left to right is easy. For the other direction,

we proceed by induction on the letter length n ≥ 1 of A. If n = 1, then

Sξ
A = Sξ

B = ∅, and f is 1p : p ⊢ p.
If n > 1 and B is B1 xB2 for x being an occurrence of ∧, then from

S∧B ⊆ S∧A it follows that A is of the form A1 xA2. Then, by the Remark,

we have S∧Bi
⊆ S∧Ai

and S∨Ai
⊆ S∨Bi

for i ∈ {1, 2}, and so, by the induction

hypothesis, we have the arrow terms fi : Ai ⊢ Bi of C(DI). The arrow term

f is f1 ∧ f2.
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If n > 1 and B is B1 z B2 for z being an occurrence of ∨, then from

S∨A ⊆ S∨B we conclude that there is no u such zS∨Au. So, by the Extraction

Lemma of this section, there is an arrow term g : A ⊢ A1 z A2 of C(DI) such

that (∗) of the Extraction Lemma holds. Since for x and y in Ai we have

xSξ
Ai
y iff xSξ

Ay, by the induction hypothesis and the Remark we have the

arrow terms fi : Ai ⊢ Bi of C(DI), and f is (f1 ∨ f2) ◦ g. ⊣

As explained after the proof of the Theoremhood Proposition of §4.2, with
the Theoremhood Proposition we have just proved we have solved the the-

oremhood problem for the category DI.

For a formula A let d(A) be the cardinality of the set of ordered pairs

S∧A. If f : A ⊢ B of DI is not equal to 1A : A ⊢ A, then d(B) < d(A). We

can prove the following.

Dissociative Coherence. The category DI is a preorder.

Proof. Let f, g : A ⊢ B be arrow terms of C(DI). We proceed by induction

on d(A)−d(B) to show that f = g in DI. (Until the end of this proof, we

assume that equality of arrow terms is equality in DI.) If d(A) = d(B),

then we conclude that f = g = 1A.

Suppose d(B) < d(A). By the Development Lemma of §2.7, we have

that f = f2 ◦ f1 and g = g2 ◦ g1 for some d-terms f1 : A ⊢ C and g1 : A ⊢ D,

and some arrow terms f2 : C ⊢ B and g2 : D ⊢ B of C(DI). We have

d(C), d(D) < d(A). The following cases may arise.

(LL) The head of f1 is dLE,F,G, and the head of g1 is dLH,I,J . Under (LL),

we have the following subcases.

(LL1) The subformulae E∧(F ∨G) and H∧(I∨J) have no occurrences of

letters in common within A. Then we use bifunctorial equations to obtain

two d-terms f ′2 : C ⊢ B′ and g′2 : D ⊢ B′ such that f ′2 ◦ f1 = g′2 ◦ g1. Then

we can infer that S∧C ∩ S∧D = S∧B′ and S∨C ∪ S∨D = S∨B′ , from which it

follows from the Theoremhood Proposition of this section that S∧B ⊆ S∧B′

and S∨B′ ⊆ S∨B. Hence, again by the Theoremhood Proposition, there is an

arrow term h : B′ ⊢ B of C(DI). By applying the induction hypothesis, we

obtain that f2 = h ◦ f ′2 and g2 = h ◦ g′2, from which f = g follows.

(LL2) Suppose E ∧ (F ∨ G) is a subformula of H or of I or of J ; or,
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conversely, suppose that H ∧ (I ∨ J) is a subformula of E or of F or of G.

Then we proceed as in (LL1) by using (dL nat).

(LL3) Suppose, finally, that E is H, F is I, and G is J . Then C is D,

and f1 = g1. We then apply the induction hypothesis to f2, g2 : C ⊢ B and

obtain f = g.

(LR) The head of f1 is dLE,F,G, and the head of g1 is dRJ,I,H . Under (LR),

we have two subcases that are settled analogously to (LL1) and (LL2).

There are no remaining subcases under (LR). It might seem that E could

be J ∨ I, while F ∨ G is H; in other words, E ∧ (F ∨ G) and (J ∨ I) ∧H
would the same subformula of A of the form (J x I) ∧ (F y G) for x and

y occurrences of ∨. Then we would have xS∨Cy and yS∨Dx, and, by the

Theoremhood Proposition of this section, we would have both xS∨By and

yS∨Bx, which is a contradiction.

It remains to consider the following cases.

(RR) The head of f1 is dRG,F,E , and the head of g1 is dRJ,I,H .

(RL) The head of f1 is dRG,F,E , and the head of g1 is dLH,I,J .

The case (RR) is settled analogously to (LL), while the case (RL) is the

same as (LR). ⊣

It is not difficult to see that S∧A = S∧B and S∨A = S∨B implies that A

and B are the same formula of L∧,∨. Because, if S∧A = S∧B and S∨A = S∨B,

then, by the Theoremhood Proposition of this section, there is an arrow

term f : A ⊢ B of C(DI), in which dL and dR cannot occur, because S∧B
is not a proper subset of S∧A and S∨A is not a proper subset of S∨B . Hence

f must stand for an identity arrow. So there is a bijection between the

objects A of DI and the pairs of relations (S∧A, S
∨
A). From Dissociative

Coherence, we can conclude that DI is isomorphic to the category whose

objects are such pairs, and where an arrow exists between (S∧A, S
∨
A) and

(S∧B , S
∨
B) when S

∧
B ⊆ S∧A and S∨A ⊆ S∨B . Note that, as the category

∧
A
→

of

§4.2, the category DI is not just a preorder, but a partial order.
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§7.2. Net categories

To obtain the natural logical category DA, we have that the logical system

C(DA) is in L∧,∨ with the transformations α included in 1, b and d. The

specific equations of E(DA) are those of E(A) plus

(dL∧) dLA∧B,C,D = (
∧
b→A,B,C ∨ 1D) ◦ dLA,B∧C,D

◦ (1A ∧ dLB,C,D) ◦
∧
b←A,B,C∨D,

(dL∨) dLD,C,B∨A =
∨
b←D∧C,B,A

◦ (dLD,C,B ∨ 1A) ◦ dLD,C∨B,A
◦ (1D ∧

∨
b→C,B,A),

(dR∧) dRD,C,B∧A = (1D ∨
∧
b←C,B,A) ◦ dRD,C∧B,A

◦ (dRD,C,B ∧ 1A) ◦
∧
b→D∨C,B,A,

(dR∨) dRA∨B,C,D =
∨
b→A,B,C∧D ◦ (1A ∨ dRB,C,D) ◦ dRA,B∨C,D

◦ (
∨
b←A,B,C ∧ 1D),

(d
∧
b) dRA∧B,C,D

◦ (dLA,B,C ∧ 1D) = dLA,B,C∧D ◦ (1A ∧ dRB,C,D) ◦
∧
b←A,B∨C,D,

(d
∨
b) (dRA,B,C ∨ 1D) ◦ dLA∨B,C,D =

∨
b→A,B∧C,D

◦ (1A ∨ dLB,C,D) ◦ dRA,B,C∨D.

Note that, after replacing ∨ by ∧, the arrow term dLA,B,C is of the same

type as
∧
b→A,B,C , and, after replacing ∧ by ∨, it is of the same type as

∨
b→A,B,C .

Dually, dRA,B,C is of the type of
ξ

b←A,B,C after these replacements. After such

replacements, the equations (dL nat) and (dR nat) become the equations

(
∧
b nat) and (

∨
b nat) (see §2.7), while all the specific equations of E(DA)

that are added to those of E(A) are related to the pentagonal equations

(
∧
b 5) and (

∨
b 5) (see §4.2 and the List of Equations at the end of the book).

We may obtain all of these equations by starting from (
∧
b 5) and replacing

one or two occurrences of ∧ by ∨ in each of the types, at the same place.

When only one occurrence is replaced, this forces three or four
∧
b-terms to

become dL-terms or dR-terms, and yields the equations (dL∧), (dR∧) and
(d

∧
b). The remaining three equations are obtained analogously from (

∨
b 5)

by replacing one occurrence of ∨ by ∧. This covers all replacements of ∧ by

∨ in (
∧
b 5), since the replacements in (

∨
b 5) may be conceived as replacements

of two occurrences of ∧ by ∨ in (
∧
b 5). (When all the three occurrences of ∧

are replaced by ∨ in (
∧
b 5), we obtain (

∨
b 5).) There are many symmetries in

these equations.

We call natural DA-categories net categories. Officially, in our nomen-

clature they would be called dissociative biassociative categories. A reason

for switching to the handy denomination “net” is in the connection with

the proof nets of linear logic (see [63] and [33]). The linearly distributive
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categories of [22] (the old denomination of these categories is “weakly dis-

tributive”; cf. [25] for the renaming) are net categories in the sense above,

and all the specific equations of E(DA) may be found in [22] (Section 2.1;

see [21], Section 2.1, for an announcement). However, linearly distribu-

tive categories have also two objects ⊤ and ⊥, with which one obtains a

bimonoidal structure (see §7.9).

§7.3. Coherence of net categories

For G being A and C/E being DA, we have that the conditions (IVC)
and (IVG) of §3.1 are satisfied, and G is moreover a preorder. Thus we

can apply the Direct-Strictification Theorem of §3.2 to obtain the category

CG/EG , which we call DAst. We call CG here C(DAst).

Coherence forDA, which amounts toDA being a preorder, can perhaps

be deduced from a very general theorem of [8] (Theorem 5.2.4), whose proof

is only sketched in that paper, with substantial parts missing. It is not clear

whether our proof was envisaged in [8].

In order to prove that DA is a preorder, it is enough to prove that DAst

is a preorder. Our proof of the latter will be to a considerable extent anal-

ogous to the proofs of Semiassociative Coherence in §4.2 and Dissociative

Coherence in §7.1.
We identify the objects of DAst with form sequences of P (in the nonex-

tended sense; see §6.2), which we call form sequences of letters, or, to sim-

plify the exposition, simply form sequences. In this and in the next chapter,

“form sequence” will mean “form sequence of letters”. For these form se-

quences we use the variables X,Y, . . . , sometimes with indices. For every

form sequence X in natural notation, we define a relation RX between the

set of occurrences of ∧ in X and the set of occurrences of ∨ in X. For that

we need some preliminary notions.

For every occurrence x of ∧ in a form sequence X in natural notation, if

y′ is the rightmost occurrence of ∨ in X such that X has a subword y′(X ′)

with x in the form sequence X ′, then l(x) is the leftmost occurrence of

letter in X ′; if there are no such occurrences of ∨ in X, then l(x) is the

leftmost occurrence of letter in X. Dually, if y′′ is the leftmost occurrence

of ∨ in X such that X has a subword (X ′′)y′′ with x in the form sequence
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X ′′, then r(x) is the rightmost occurrence of letter in X ′′; if there are no

such occurrences of ∨ in X, then r(x) is the rightmost occurrence of letter

in X. For example, we have

p ∨ (( q ∨ r ∨ s ) ∧ (( t ∧ u ) ∨ v ))
y1 l(x1)

l(x2)

y2 y3 x2 x1 r(x1) y4 r(x2)

Then for an occurrence x of ∧ in X and an occurrence y of ∨ in X we

stipulate that xRXy when y is on the right-hand side of l(x) and on the

left-hand side of r(x). If X is the form sequence in the example above, then

we have RX = {(x1, y2), (x1, y3), (x2, y2), (x2, y3), (x2, y4)}.
We can infer the following from the definitions of l(x) and r(x).

Nonoverlapping Lemma. A form sequence in which in natural notation

an occurrence x1 of ∧ is on the left-hand side of an occurrence x2 of ∧
cannot have a subword of the form

l(x1) w1 l(x2) w r(x1) w2 r(x2).

Proof. By the definition of r(x1) and l(x2), we have a subword (X1)∨
with X1 containing x1 and ending in r(x1), and a subword ∨(X2) with X2

containing x2 and beginning with l(x2). Then either (X1)∨ is a proper

subword of X2, or ∨(X2) is a proper subword of X1. This is because x1 is

on the left-hand side of x2, and l(x2) is on the left-hand side of r(x1).

Suppose ∨(X2) is a proper subword of X1. Then r(x2) must be in X1,

because (X1)∨ has x2 as a subword. But r(x2) cannot be in X1, because

it is on the right-hand side of r(x1), which is the last occurrence of letter

in X1. We conclude analogously that (X1)∨ cannot be a proper subword

of X2. ⊣

Note that we cannot prove the Nonoverlapping Lemma without the

assumption that x1 is on the left-hand side of x2. Here is a counterexample:

( p ∨ ( q ∧ r )) ∧ (( s ∧ t ) ∨ v )
l(x1) l(x2) x2 x1 r(x1) r(x2)

Note also that it is excluded that a form sequence in natural notation

has a subword of the form
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l(x1) w1 r(x1) w2 r(x2)

with l(x2) being r(x1). Otherwise, for p being r(x1) and l(x2), we would

have in our form sequence a word (np)m with n,m ≥ 1. (Here (n is a

sequence of n left parentheses, and )m a sequence of m right parentheses,

as in the Extraction Lemma of §4.2.)
When X and Y are the same form sequence, or a pair of form sequences

that in natural notation differ only with respect to parentheses, we say that

X and Y are comparable form sequences. For comparable form sequences

X and Y , we may take that RX and RY are relations between the same

sets, and compare these relations (we did something analogous in §4.2). It
is easy to see that for every arrow term f : X ⊢ Y of C(DAst), the form

sequences X and Y are comparable, and RY ⊆ RX . Moreover, if dL or dR

occurs in f , then RY is a proper subset of RX ; otherwise, RX = RY . For

example, with dLp,q,r ∧ 1s : p∧ (q ∨ r)∧ s ⊢ ((p∧ q)∨ r)∧ s, if x1 and x2 are

respectively the left and right ∧, and y is the ∨, in p ∧ q ∨ r ∧ s, then we

have Rp∧(q∨r)∧s = {(x1, y), (x2, y)} and R((p∧q)∨r)∧s = {(x2, y)}.
Two comparable form sequences X and Y in natural notation corre-

spond to the same words w(X) and w(Y ) written in letters, ∧ and ∨,
which are obtained from X and Y respectively by deleting all parentheses.

A place in X is a subword w′ of w(X). There is an obvious deleting map

δ from subwords of X to places in X. We say that a subword v of X is at

a place w′ when δ(v) = w′. (Note that different subwords of X can be at

the same place.) A subword x of X and a subword y of Y are at the same

place when δ(x) = δ(y). (These definitions are analogous to those we had

in §2.1.) It is easy to see that the following holds.

Remark. Let X in natural notation be of the form X1 ξ X2 for ξ ∈ {∧,∨}.
Then, for x and y occurrences of ∧ and ∨ respectively in Xi, for i ∈ {1, 2},
we have xRXy iff xRXiy.

The following lemma is analogous to the Extraction Lemmata of §4.2,
§4.4 and §7.1.

Extraction Lemma. If there is an occurrence z of ∨ in the form sequence
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X, then there is a form sequence X1 z X2 in natural notation such that there

is an arrow term g : X ⊢ X1 z X2 of C(DAst). In addition,

(∗) for every occurrence x of ∧ in Xi and every occurrence y of ∨ in

Xi, where i ∈ {1, 2}, if xRXy, then xRXi
y;

(∗∗) every subterm of g of the form dLY,Z,U is of the type Y ∧(Z z U) ⊢
(Y ∧ Z) z U , and every subterm of g of the form dRU,Y,Z is of the

type (U z Y ) ∧ Z ⊢ U z (Y ∧ Z).

Proof. We proceed by induction on the number n ≥ 1 of occurrences of

letters in X. If n = 1, then the antecedent of the lemma is false, and the

lemma is trivially satisfied.

If n > 1, then X is X ′ ξ X ′′ for ξ ∈ {∧,∨}. If ξ is z, then g is 1X .

Suppose ξ is not z, and suppose first ξ is ∧ and z is in X ′. Then, by the

induction hypothesis, we have an arrow term g′ : X ′ ⊢ X ′1 z X ′2 of C(DAst)

satisfying the primed version of (∗). The arrow term g′ ∧ 1X′′ is of type

X ⊢ (X ′1 z X
′
2) ∧X ′′, and we have the arrow term dRX′

1,X
′
2,X

′′ ◦ (g′ ∧ 1X′′) :

X ⊢ X ′1 z (X ′2 ∧X ′′) of C(DAst).

Suppose x is an occurrence of ∧ and y an occurrence of ∨, and suppose

xRXy.

If x and y are both in X ′1, then xRX′y by the Remark above, and

hence, by the induction hypothesis, (x, y) ∈ RX′
1
. We settle easily in a

similar manner, with the help of the Remark, cases where x and y are both

in X ′2 or both in X ′′.

If x is in X ′2 and y is in X ′′, then r(x) in X ′1 z (X
′
2∧X ′′) is the rightmost

occurrence of letter of X ′′. Otherwise, r(x) would be a letter p in a subword

p)ly′ of X ′2 such that y′ is an occurrence of ∨. Then, since xRXy and y′ is

in between x and y, we must have xRXy
′, and, by the induction hypothesis

and the Remark, we would have (x, y′) ∈ RX′
1 z (X′

2∧X′′), which contradicts

the fact that p in p)ly′ is r(x).

If x is in X ′′ and y is in X ′2, then l(x) in X ′2 ∧ X ′′ is the leftmost

occurrence of letter of X ′2, and so (x, y) ∈ RX′
2∧X′′ .

The case where z is in X ′′ is settled analogously by using dLX′,X′′
1 ,X′′

2
.

It remains to consider the case where ξ is ∨ but is not z. Suppose

z is in X ′. Then, by the induction hypothesis, we have an arrow term
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g′ : X ′ ⊢ X ′1 z X ′2 of C(DAst) satisfying the primed version of (∗). So we

have the arrow term g′ ∨ 1X′′ : X ′ ξ X ′′ ⊢ X ′1 z X ′2 ξ X ′′ of C(DAst).

Then we verify (∗) by the induction hypothesis and the Remark. The

assertion (∗∗) is easily checked by going over the proof above. ⊣

Note that the implication converse to (∗) in the Extraction Lemma

above holds trivially. We do not need (∗∗) for the proof of the Theorem-

hood Proposition below, but we stated this condition because it is analo-

gous to (∗∗) of previous Extraction Lemmata. Here is the analogue of the

Theoremhood Propositions of §4.2 and §7.1.

Theoremhood Proposition. There is an arrow term f : X ⊢ Y of

C(DAst) iff X and Y are comparable form sequences and RY ⊆ RX .

Proof. We have already verified above the easy direction from left to

right. For the other direction, we proceed by induction on the number

n ≥ 1 of occurrences of letters in X. If n = 1, then RY = RX = ∅, and f
is 1p : p ⊢ p.

If n > 1 and Y is Y1 xY2 for x being an occurrence of ∧, then, since for

every occurrence y of ∨ in Y we have xRY y, we have xRXy, which means

that X is of the form X1 xX2. Then, by the Remark, we have RYi ⊆ RXi

for i ∈ {1, 2}, and, by the induction hypothesis, we have the arrow terms

fi : Xi ⊢ Yi of C(DAst). The arrow term f is f1 ∧ f2.
If n > 1 and Y is Y1 z Y2 for z being an occurrence of ∨, then, by the

Extraction Lemma of this section, there is an arrow term g : X ⊢ X1 z X2

of C(DAst) such that the assertion (∗) of the Extraction Lemma holds. If

xRYiy, then, since RY ⊆ RX , by the Remark we have xRXy. By (∗), we
conclude that xRXiy. So, by the induction hypothesis, we have the arrow

terms fi : Xi ⊢ Yi of C(DAst), and f is (f1 ∨ f2) ◦ g. ⊣

As explained after the proof of the Theoremhood Proposition of §4.2, with
the Theoremhood Proposition we have just proved we have solved the the-

oremhood problem for the category DAst. This yields also a solution of

the theoremhood problem for the category DA, but we will examine this

latter problem separately in the next section.

For a form sequence X, let d(X) be the cardinality of the set of ordered
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pairs RX . If f : X ⊢ Y of DAst is not equal to 1X : X ⊢ X, then RY is a

proper subset of RX and d(Y ) < d(X). We prove the following.

Net Coherence. The category DA is a preorder.

Proof. It is enough to show that DAst is a preorder. Let f, g : X ⊢ Y be

arrow terms of C(DAst). We proceed by induction on d(X)−d(Y ) to show

that f = g in DAst. (Until the end of this proof, we assume that equality

of arrow terms is equality in DAst.) If d(X) = d(Y ), then we conclude

that X is Y , and f = g = 1X .

Suppose d(Y ) < d(X). By the Development Lemma of §2.7, we have

that f = f2 ◦ f1 and g = g2 ◦ g1 for some d-terms f1 : X ⊢ Z and g1 : X ⊢ U ,

and some arrow terms f2 : Z ⊢ Y and g2 : U ⊢ Y of C(DAst). We have here

d(Z), d(U) < d(X). The following cases may arise.

(LL) The head of f1 is dLE,F,G, and the head of g1 is dLH,I,J . (Here E, F ,

G, H, I and J stand for form sequences.) Due to the presence of (dL∧)
and (dL∨), we can assume that E and H are not of the form (X1. . . Xn,∧)
and G and J are not of the form (X1. . . Xn,∨). Under (LL), we have the

following subcases.

(LL1) The form sequences E∧(F ∨G) and H∧(I∨J) have no occurrences

of letters in common within X. Then we use (∧ 2) and (∨ 2) to obtain two

d-terms f ′2 : Z ⊢ Y ′ and g′2 : U ⊢ Y ′ such that f ′2 ◦ f1 = g′2 ◦ g1. Then we

can infer that RZ ∩RU = RY ′ , from which it follows by the Theoremhood

Proposition of this section that RY ⊆ RY ′ . Hence, again by the Theorem-

hood Proposition, there is an arrow term h : Y ′ ⊢ Y of DAst. By applying

the induction hypothesis, we obtain that f2 = h ◦ f ′2 and g2 = h ◦ g′2, from

which f = g follows.

(LL2) Suppose E ∧ (F ∨G), in natural notation, is a subword of H or of

I or of J ; or, conversely, suppose that H ∧ (I ∨ J) is a subword of E or of

F or of G. Then we proceed as in (LL1) by using (dL nat).

(LL3) Suppose, finally, that E is H and G is J . So F is I. (Due to our

assumptions about E, H, G and J , there are no other remaining subcases

under (LL).) Then Z is U , and f1 = g1. We then apply the induction

hypothesis to f2, g2 : Z ⊢ B, and obtain f = g.
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(LR) The head of f1 is dLE,F,G, and the head of g1 is dRJ,I,H . Due to the

presence of (dL∧), (dL∨), (dR∧) and (dR∨), we can assume that E and

H are not of the form (X1. . . Xn,∧) and G and J are not of the form

(X1. . . Xn,∨).

Under (LR), we have the following subcases. There are first two sub-

cases that are settled analogously to (LL1) and (LL2). The remaining

subcases are:

(LR 4) E is J ∨ I and F ∨G is H,

and when F ∨G is J ∨ I we have the following two subcases:

(LR 5) F is J (so G is I),

(LR 6) F is J ∨ F ′′ (so I is F ′′ ∨G).

(There is no subcase named (LR 3), which would be analogous to (LL3).)

(LR 4) Then by (d
∨
b) we have

(dRJ,I,F ∨ 1G) ◦ dLE,F,G = (1J ∨ dLI,F,G) ◦ dRJ,I,H .

Let f ′2 and g
′
2 be obtained from g1 by replacing its head dRJ,I,H by dRJ,I,F ∨1G

and 1J ∨ dLI,F,G respectively. It is clear that f ′2 ◦ f1 = g′2 ◦ g1 : X ⊢ Y ′. Then
we infer that RZ ∩ RU = RY ′ , and we continue reasoning as in (LL1), by

applying the Theoremhood Proposition.

(LR 5) Then by (d
∧
b) we have

dRE∧F,G,H
◦ (dLE,F,G ∧ 1H) = dLE,F,G∧H ◦ (1E ∧ dRF,G,H).

Let f ′2 and g′2 be obtained from g1 by replacing 1E ∧ dRF,G,H by dRE∧F,G,H

and dLE,F,G∧H respectively. It is clear that f ′2 ◦ f1 = g′2 ◦ g1 : X ⊢ Y ′. Then

we infer that RZ ∩ RU = RY ′ , and we continue reasoning as in (LL1), by

applying the Theoremhood Proposition.

(LR 6) We prove first that there is an occurrence z of ∨ in J ∨ F ′′ ∨ G
such that for every occurrence x of ∧ in E ∧ (J ∨ F ′′ ∨ G) ∧H we do not

have xRY z.

Let u be an occurrence of ∧ in the word E ∧. For every such u the

occurrence of letter r(u) in Y is either in J or in F ′′. Let p be the rightmost

of these occurrences of letters.
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If p is in J , then we take z to be the ∨ between J and F ′′. By the

definition of r(u), there is no occurrence u of ∧ in E ∧ such that uRY z.

Since RY ⊆ RX , there is no occurrence x of ∧ in J such that xRY z, and,

since RY ⊆ RU , there is no occurrence x of ∧ in the word F ′′∨G)∧H such

that xRY z.

If p is in F ′′, then we take z to be the occurrence of ∨ on the right-hand

side of p nearest to p. This z is either in F ′′, or it is the ∨ between F ′′ and

G. By the definition of r(u), there is no occurrence u of ∧ in E ∧ such that

uRY z. Since RY ⊆ RX , there is no occurrence x of ∧ in J such that xRY z.

If there is an occurrence x of ∧ in F ′′ ∨ G) ∧ H such that xRY z, then in

Y we have that l(x) is on the left-hand side of p, which is r(u) for some

occurrence u of ∧ in E ∧. (As we said after the proof of the Nonoverlapping

Lemma, it is excluded that l(x) coincides with r(u).) Since RY ⊆ RU , we

must have that l(u) is on the left-hand side of l(x), and, since xRY z, we

must have that r(x) is on the right-hand side of r(u). Since x is on the

right-hand side of u, all this contradicts the Nonoverlapping Lemma. Hence

we do not have xRY z.

There are now two possibilities for the z we have found. Suppose first

that J ∨ F ′′ ∨G is of the form KzL. Then we have three subcases:

(LR 6.1) K is J (so L is F ′′ ∨G),
(LR 6.2) L is G (so K is J ∨ F ′′),
(LR 6.3) K is J ∨ F ′′1 and L is F ′′2 ∨G (so F ′′ is F ′′1 ∨ F ′′2 ).

(LR 6.1) Then by (dL∨) we have

dLE,J,I ∧ 1H = ((dLE,J,F ′′ ∨ 1G) ∧ 1H) ◦ (dLE,F,G ∧ 1H).

Let f ′1 and f ′′1 be obtained from g1 by replacing 1E ∧ dRJ,I,H by dLE,J,I ∧ 1H

and (dLE,J,F ′′ ∨ 1G) ∧ 1H respectively. It is clear that f ′1 = f ′′1 ◦ f1 : X ⊢ Z ′.
Suppose xRY y. If x is not in E ∧ (J y F ′′ ∨G) ∧H, then it is easy to infer

that xRZ′y. If x is in E ∧ (J y F ′′ ∨G) ∧H, then it is either in E ∧ (J or

in F ′′ ∨G)∧H. In the first case, y is on the left-hand side of z, and in the

second case, it is on the right-hand side of z. In both cases, we get xRZ′y.

So RY ⊆ RZ′ , and, by the Theoremhood Proposition of this section, we

obtain an arrow term f ′2 : Z
′ ⊢ Y of C(DAst). By the induction hypothesis,
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we have that f2 = f ′2 ◦ f ′′1 , where d(Z) < d(X). We continue reasoning as

in subcase (LR 5), starting from f ′1 and g1. There we apply (d
∧
b).

The subcase (LR 6.2) is settled analogously to (LR 6.1) by using (dR∨),
and for subcase (LR 6.3) we use both (dL∨) and (dR∨) to reduce it to

(LR 5), where we apply (d
∧
b).

Suppose now that J ∨ F ′′ ∨ G is not of the form K z L. So z is in F ′′,

but F ′′ is not of the form F ′′1 z F
′′
2 . Then, by the Extraction Lemma of

this section, there is a form sequence F ′′′ of the form F ′′′1 z F ′′′2 in natural

notation such that there is an arrow term h : F ′′ ⊢ F ′′′ of C(DAst) with (∗)
being satisfied. Let f ′1, g

′
1, h

′, f ′′2 and g′′2 be obtained from g1 by replacing

1E ∧ dRJ,I,H respectively by

dLE,J∨F ′′′,G ∧ 1H ,

1E ∧ dRJ,F ′′′∨G,H ,

1E ∧ (1J ∨ h ∨ 1G) ∧ 1H ,

((1E ∧ (1J ∨ h)) ∨ 1G) ∧ 1H ,

1E ∧ (1J ∨ ((h ∨ 1G) ∧ 1H)).

Then, by (dL nat) and (dR nat), we have that f ′1 ◦h′ = f ′′2 ◦ f1 and g′1 ◦h′ =

g′′2 ◦ g1. For h′ being of the type X ⊢ X ′, we have that RY ⊆ RX′ , which

follows easily from our assumption about z and from (∗) of the Extraction

Lemma. For f ′′2 being of the type Z ⊢ Z ′ and g′′2 of the type U ⊢ U ′, we
infer that RZ′ = RZ ∩RX′ and RU ′ = RU ∩RX′ . So, by the Theoremhood

Proposition of this section, we have the arrow terms f ′2 : Z
′ ⊢ Y and g′2 :

U ′ ⊢ Y of C(DAst). Then we apply the induction hypothesis to f2, f
′
2

◦ f ′′2 :

Z ⊢ Y and g2, g
′
2

◦ g′′2 : U ⊢ Y , and also to f ′2 ◦ f ′1, g
′
2, g
′
1 : X

′ ⊢ Y , where

d(Z), d(U), d(X ′) < d(X).

It remains to consider the following cases:

(RR) the head of f1 is dRG,F,E , and the head of g1 is dRJ,I,H ;

(RL) the head of f1 is dRG,F,E , and the head of g1 is dLH,I,J .

The case (RR) is settled analogously to (LL), while the case (RL) is the

same as (LR). ⊣

It is not difficult to see that RX = RY implies that the form sequences

X and Y coincide. Because, if RX = RY , then, by the Theoremhood
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Proposition of this section, there is an arrow term f : X ⊢ Y of C(DAst), in

which dL and dR cannot occur, because RY is not a proper subset of RX .

Hence f must stand for an identity arrow. So there is a bijection between

the objects X of DAst and the relations RX . From Net Coherence, we

can conclude that DAst is isomorphic to the category whose objects are

the relations RX , and where an arrow exists between RX and RY when

RY ⊆ RX .

§7.4. Net normal form

In this section we will examine the theoremhood problem (in the sense of

§1.1) for the category DA, and we will find a solution for it different from

that suggested by the Theoremhood Proposition of the preceding section.

This solution will also yield a unique normal form for arrow terms of C(DA),

i.e. a normal form such that arrow terms of C(DA) in normal form are equal

in DA iff they are the same arrow term.

Consider a formula B of L∧,∨. Let B∧ be obtained from B by replacing

every ∨ by ∧. Let I(B) be obtained from I(B∧) (see §4.4) by putting back

the occurrences of ∨ where they were in B, while keeping the subscripts of

I(B∧).

Let A be a formula comparable with B (which means that A and B are

the same after deleting parentheses). Next, let A∗ be obtained from A by

adding to every occurrence x of ∧ or ∨ in A the subscript x has in I(B).

Then we have the following proposition.

Theoremhood Proposition. There is an arrow term f : A ⊢ B of

C(DA) iff A and B are comparable formulae of L∧,∨ and

(†) in A∗ defined with respect to I(B), for every n,m ≥ 2 there is

no ∧nm in the scope of ∨n.

Proof. From left to right, suppose we have an arrow term f : A ⊢ B of

C(DA) such that (†) fails in A∗. Then for fG : X ⊢ Y in DAst we can find

in X and Y an occurrence x of ∧ corresponding to ∧nm and an occurrence

y of ∨ corresponding to ∨n. Since (†) fails in A∗, we do not have xRXy,

but the subscripts of I(B) tell us that we have xRY y, which contradicts

the easy, left-to-right, direction of the Theoremhood Proposition of §7.3.
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For the other direction, we proceed as follows. By the Associative

Normal-Form Proposition of §4.4, there is an arrow term f∧ : A∧ ⊢ B∧

of C(
∧
A) such that in (f∧)∗ : (A∧)∗ ⊢ I(B∧) for every subterm of the form

∧
b→D,E,F of type D ∧l (E ∧k F ) ⊢ (D ∧l E) ∧k F , and every subterm of the

form
∧
b←F,E,D of type (F ∧k E) ∧l D ⊢ F ∧k (E ∧l D), we have that l and

every subscript in D, E and F divides k. We build out of (f∧)∗ an arrow

term f∗ : A∗ ⊢ I(B) by putting back ∨ at some places, as required by

A and B. In transforming (f∧)∗ into f∗, some subterms of (f∧)∗ in the

family
∧
b may remain in that family, and some may be transformed into

arrow terms in the families
∨
b, dL or dR. It is excluded that the type of a

subterm of (f∧)∗ in the family
∧
b becomes D∨l (E ∧k F ) ⊢ (D∨lE)∧k F or

(F ∧k E)∨lD ⊢ F ∧k (E ∨lD), which would prevent its being transformed

in an arrow term in the families
∧
b,

∨
b, dL or dR. This is guaranteed by

(†), and by the fact that for every subterm of (f∧)∗ in the family
∧
b of a

type (G∧)∗ ⊢ (H∧)∗ we have that H∗ satisfies (†), as A∗ does. We obtain

f : A ⊢ B by deleting the subscripts of f∗. ⊣

The procedure of the proof of the right-to-left direction of this propo-

sition, which presupposes the results of §4.4, gives rise to a unique arrow

term, which we may consider to be in normal form.

We could imagine a proof of Net Coherence where instead of relying on

the Theoremhood Proposition of the preceding section, we would rely on a

strictified version of the Theoremhood Proposition of this section.

§7.5. Coherence of semidissociative biassociative cate-
gories

To obtain the natural logical categoryDLA, we have that the logical system

C(DLA) is in L∧,∨, with the transformations α included in 1, b and dL. So,

in contradistinction to C(DA), we do not have dR. The specific equations

of E(DLA) are those of E(A) plus (dL∧) and (dL∨) of §7.2. We call natural

DLA-categories semidissociative biassociative categories.

For G being A and C/E being DLA, we have that the conditions (IVC)
and (IVG) of §3.1 are satisfied, and G is moreover a preorder. Thus we

can apply the Direct-Strictification Theorem of §3.2 to obtain a category
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CG/EG , which we call DLAst. We call CG here C(DLAst).

Our proof that DLAst is a preorder is to a considerable extent analogous

to the proof that DAst is a preorder, and we assume the notions defined in

§7.3. The new proof is somewhat more complicated as far as the definitions

of the relation RX is concerned.

For every object X of DLAst, i.e. for every form sequence X in the

natural notation of §6.2, we define two relations Rl
X and Rr

X between the

set of occurrences of ∧ in X and the set of occurrences of ∨ in X. We have

xRl
Xy when the occurrence y of ∨ is in between l(x) and the occurrence x

of ∧, and we have xRr
Xy when y is between x and r(x). It is clear that RX

is the disjoint union of Rl
X and Rr

X .

It is easy to verify that, for every arrow term f : X ⊢ Y of C(DLAst),

we have Rr
Y ⊆ Rr

X and Rl
X = Rl

Y . Moreover, if dL occurs in f , then Rr
Y

is a proper subset of Rr
X . It is also easy to verify that the Remark of §7.3

holds when we replace R by Rl and Rr. Then we can prove the following

analogue of the Extraction Lemma of §7.3.

Extraction Lemma. If there is an occurrence z of ∨ in the form sequence

X such that there is no occurrence x of ∧ in X with xRlz, then there is a

form sequence X1 z X2 in natural notation such that there is an arrow term

g : X ⊢ X1 z X2 of C(DLAst). In addition,

(∗) for every occurrence x of ∧ in Xi and every occurrence y of ∨
in Xi, where i ∈ {1, 2}, if xRr

Xy, then xR
r
Xi
y; moreover, Rl

X =

Rl
X1 z X2

,

(∗∗) every subterm of g of the form dLY,Z,U is of the type Y ∧(Z z U) ⊢
(Y ∧ Z) z U .

The proof is obtained by excluding the case where ξ is ∧ and z is in X ′ in

the proof of the Extraction Lemma of §7.3.
Next we state the analogue of the Theoremhood Proposition of §7.3.

Theoremhood Proposition. There is an arrow term f : X ⊢ Y of

C(DLAst) iff X and Y are comparable form sequences, and we have Rr
Y ⊆

Rr
X and Rl

X = Rl
Y .
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The proof is again a slight modification of the proof of the Theoremhood

Proposition of §7.3.
The proof that the category DLAst is a preorder is then obtained by

proceeding as in the proof of Net Coherence of §7.3. We keep just the cases

analogous to (LL) cases. So we have the following.

Semidissociative Biassociative Coherence. The category DLA is a

preorder.

Analogously to what we had at the end of §4.2, §7.1 and §7.3, with the

help of Semidissociative Biassociative Coherence, we obtain that DLAst is

isomorphic to a category whose objects are pairs of relations (Rr
X , R

l
X), and

where an arrow exists between (Rr
X , R

l
X) and (Rr

Y , R
l
Y ) when Rr

Y ⊆ Rr
X

and Rl
X = Rl

Y .

§7.6. Symmetric net categories

To obtain the natural logical category DS, we have that the logical system

C(DS) is in L∧,∨, with the transformations α included in 1, b, c and d.

The specific equations of E(DS) are obtained by taking the union of those

of E(DA) and E(S) plus

(dRc) dRC,B,A =
∨
cC,B∧A ◦ (

∧
cA,B ∨ 1C) ◦ dLA,B,C

◦ (1A ∧
∨
cB,C) ◦

∧
cC∨B,A .

We call natural DS-categories symmetric net categories. In §12.4 we

will give a concrete example of a symmetric net category in which ∧ and ∨
are not isomorphic. (See §11.3 for the question whether the category Set

of sets with functions is a symmetric net category.)

In the presence of (dRc), the equations (dR nat), (dR∧) and (dR∨) be-
come derivable from the remaining equations. Note that (dRc) may be

conceived as a definition of dR in terms of dL,
∧
c and

∨
c. So we may as

well assume that in C(DS) we do not have dR, but only dL, and that dR is

defined by (dRc). We make this assumption in §§7.6-8, and we write simply

d for dL, omitting the superscript L. This convention will be in force also

later on whenever we have (dRc) (especially in Chapter 11).

To give some alternative axioms for E(DS) we introduce the following

definitions:
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∧
eA,B,C,D =df dA,D,B∧C ◦ (1A ∧

∨
cD,B∧C) ◦ (1A ∧ dB,C,D) ◦

∧
b←A,B,C∨D

is of type (A ∧B) ∧ (C ∨D) ⊢ (A ∧D) ∨ (B ∧ C);

∧
e′A,B,C,D =df

∧
eA,B,D,C ◦ (1A∧B ∧

∨
cD,C)

is of type (A ∧B) ∧ (C ∨D) ⊢ (A ∧ C) ∨ (B ∧D).

Dually, we have that

∨
eD,C,B,A =df

∨
b←D∧C,B,A

◦ (dD,C,B ∨ 1A) ◦ (
∧
cC∨B,D ∨ 1A) ◦ dC∨B,D,A

is of type (C ∨B) ∧ (D ∨A) ⊢ (D ∧ C) ∨ (B ∨A);

∨
e′D,C,B,A =df (

∧
cC,D ∨ 1B∨A) ◦

∨
eC,D,B,A

is of type (D ∨B) ∧ (C ∨A) ⊢ (D ∧ C) ∨ (B ∨A).

Then we can state the following equations:

(
∧
e)

∨
cB∧C,A∧D ◦

∧
eA,B,C,D =

∧
e′B,A,C,D

◦ (
∧
cA,B ∧ 1C∨D),

(
∨
e) (1D∧C ∨

∨
cB,A) ◦

∨
e′D,C,A,B =

∨
eD,C,B,A ◦

∧
cD∨A,C∨B .

These two equations are mirror images of each other. The equation (
∧
e) can

replace (d
∧
b), and the equation (

∨
e) can replace (d

∨
b), in our axiomatization

of E(DS).

For every transformation α in the logical system C(DS) we have that

in αA1,...,Ak
: Mµ(A1, . . . , Ak) ⊢ Nν(A1, . . . , Ak) the functions µ and ν

are bijections, and hence the type Mµ(A1, . . . , Ak) ⊢ Nν(A1, . . . , Ak) is

balanced (see §3.3). Therefore, the type of every arrow term of C(DS) is

balanced.

For C/E being C(DS)/E(DS), that is DS, and C′ being C(S) of §6.3,
we have that the condition (IVC) of §3.1 is satisfied. Next, let G be the

C′-core C′/E ′ of C/E . By Symmetric Biassociative Coherence, and by the

fact that if f = g in E(DS), then Gf = Gg in Rel, we can conclude that

G is the natural logical category S. The category G is a groupoid, and it

flows through DS, so that the condition (IVG) of §3.1 is satisfied.

Let Epr be the equational system obtained by extending E(DS) with the

equation (
ξ

c 1) of §6.5, namely
ξ

cA,A= 1AξA for ξ ∈ {∧,∨}. We know that
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C′/Epr ′, that is C(S)/Epr ′, which is the category S′ of §6.5, is a preorder.

Next, for every equation f = g in Epr that is not in E(DS), we can show

that the type of f and g is not diversified. We prove by induction on the

length of derivation that if f = g is in Epr and the arrow terms f and g

are diversified, then every derivation of f = g is made of equations between

diversified arrow terms. (The only problem is when in such a derivation we

pass from f1 = f2 and g1 = g2 to g1 ◦ f1 = g2 ◦ f2, in which case we appeal

to the fact that the types of arrow terms of C(DS) are always balanced.)

Then, as in §3.3, we have that (IVC) and (IVG) hold when C(DS)/E(DS)

is replaced by C(DS)/Epr. Now the C′-core G of C(DS)/Epr is a preorder.

By the Direct-Strictification Theorem of §3.2, we obtain the C(S)-strict
C(DS)/Epr-category C(DS)G/EprG equivalent to C(DS)/Epr. As in §3.3, for
diversified arrow terms f and g of C(DS) of the same type, we have f = g

in DS iff fG = gG in C(DS)G/EprG .

Since the type of every arrow term of C(DS) is balanced, for every arrow

term f : A ⊢ B of C(DS) there is a diversified arrow term fdiv : Adiv ⊢ Bdiv

of C(DS) such that f is obtained by substituting uniformly letters for some

letters in fdiv : Adiv ⊢ Bdiv. Namely, f is a letter-for-letter substitution

instance of fdiv. Here we assume that the generating set P is infinite (see

§4.1).
Our purpose is to show the following.

Symmetric Net Coherence. The functor G from DS to Rel is faithful.

According to what we said above, to prove this coherence we can proceed

as follows. Suppose Gf = Gg in Rel for the arrow terms f and g of C(DS)

of the same type. Then we can find fdiv and gdiv of the same type, and we

will prove

(div ) fdivG = gdivG in C(DS)G/EprG ,

which implies fdiv = gdiv in DS, from which we can conclude, by applying

(su ) (see §2.7), that f = g in DS. So, to prove Symmetric Net Coherence,

we have only to prove (div ) under the assumption Gf = Gg.

We proceed with this proof in the next two sections. In §7.7, we prove a
theorem that says that the equations of C(DS)G/EprG cover a normalization
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procedure analogous to Gentzen’s cut-elimination procedure of [60]. In

§7.8, we prove additional results, which together with our cut elimination

will yield (div ) under the assumption Gf = Gg. In logic, these results

correspond to inverting rules in derivations, i.e. passing from conclusions

to premises. This invertibility is guaranteed by the possibility to permute

rules, i.e. change their order in derivations, and we show for that permuting

that it is covered by the equations that hold in C(DS)G/EprG . This means

that the equations of DS also cover a cut elimination and invertibility, but

this cut elimination and invertibility are more cumbersome to record within

DS than within C(DS)G/EprG .

§7.7. Cut elimination in GDS

To formulate the cut-elimination result announced at the end of the preced-

ing section, we need some preliminary notions. The objects of the category

C(DS)G/EprG (see the preceding section) correspond bijectively to something

we will call form multisets of letters. We define this notion as follows.

We say that the form sequences of letters X and Y are c-equivalent

when there is an arrow term of C(S)G of type X ⊢ Y . It is clear that

c-equivalence is an equivalence relation congruent with the operations ξ′′

on form sequences of letters for ξ ∈ {∧,∨}. A form multiset of letters

is the equivalence class of a form sequence of letters with respect to c-

equivalence. (We exclude here the empty form sequences (∅, ξ).) As before

in this chapter, we presuppose that form multisets and form sequences are

of letters, i.e. of P, and omit mentioning that all the time. We can use

form sequences, and, in particular, form sequences in natural notation, to

designate form multisets. For example, p∧q∧(p∨r∨p) in natural notation

stands for the same form multiset as q ∧ (r ∨ p ∨ p) ∧ p.
For A a diversified formula of L∧,∨ (see §3.3), the form multiset |[A]| is

such that every letter of P occurs in it at most once. Such a form multiset

is called a form set.

Let GDS be the full subcategory of C(DS)G/EprG whose objects are

all the objects that correspond to form sets of letters. We write G in

the name of GDS because of the relationship we are going to establish

between this category and Gentzen’s sequent systems. The category GDS
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is a syntactical category in a syntactical system called C(GDS), which is a

subsystem of C(DS)G .

In this section, X, Y , Z, . . ., X1, . . . will be form sequences of letters that

stand for form sets of letters, and the operations ξ′′ on form sequences, for

ξ ∈ {∧,∨}, will be written simply ξ , with ′′ omitted.

We define by induction a set of terms for arrows of GDS, which we call

Gentzen terms. First, we stipulate that for every letter p the term 1p : p ⊢ p,
which denotes the arrow 1|[p]| of GDS, is a Gentzen term. The remaining

Gentzen terms are obtained by closing under the following operations on

Gentzen terms, which we call Gentzen operations. We present these oper-

ations by inductive clauses in fractional notation, which are interpreted as

saying that if the terms above the horizontal line are Gentzen terms, then

the term below the horizontal line is a Gentzen term (cf. §2.2). The schema

on the left-hand side of the =dn sign stands for the Gentzen term, while the

schema on the right-hand side stands for the arrow denoted by this term.

Our Gentzen operations correspond to Gentzen’s rules for cut, introduction

of conjunction on the right and introduction of disjunction on the left:

f : U ⊢ X ∨ Z g : X ∧ Y ⊢W

cutX(f, g) =dn (g ∨ 1Z) ◦ dY,X,Z ◦ (f ∧ 1Y ) : U ∧ Y ⊢ Z ∨W

f : U ⊢ X g : X ∧ Y ⊢W

cutX(f, g) =dn g ◦ (f ∧ 1Y ) : U ∧ Y ⊢W

f : U ⊢ X ∨ Z g : X ⊢W

cutX(f, g) =dn (g ∨ 1Z) ◦ f : U ⊢W ∨ Z

f : U ⊢ X g : X ⊢W

cutX(f, g) =dn g ◦ f : U ⊢W

f1 : U1 ⊢ X1 ∨ Z1 f2 : U2 ⊢ X2 ∨ Z2

∧X1,X2(f1, f2) : U1 ∧ U2 ⊢ (X1 ∧X2) ∨ Z1 ∨ Z2

where ∧X1,X2(f1, f2) =dn (dX2,X1,Z1 ∨ 1Z2) ◦ dX1∨Z1,X2,Z2
◦ (f1 ∧ f2),
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f1 : U1 ⊢ X1 ∨ Z1 f2 : U2 ⊢ X2

∧X1,X2(f1, f2) =dn dX2,X1,Z1
◦ (f1 ∧ f2) : U1 ∧ U2 ⊢ (X1 ∧X2) ∨ Z1

f1 : U1 ⊢ X1 f2 : U2 ⊢ X2

∧X1,X2(f1, f2) =dn f1 ∧ f2 : U1 ∧ U2 ⊢ X1 ∧X2

f1 : X1 ∧ Z1 ⊢ U1 f2 : X2 ∧ Z2 ⊢ U2

∨X1,X2(f1, f2) : (X1 ∨X2) ∧ Z1 ∧ Z2 ⊢ U1 ∨ U2

where ∨X1,X2(f1, f2) =dn (f1 ∨ f2) ◦ dZ2,X2,X1∧Z1
◦ (dZ1,X1,X2 ∧ 1Z2),

f1 : X1 ∧ Z1 ⊢ U1 f2 : X2 ⊢ U2

∨X1,X2(f1, f2) =dn (f1 ∨ f2) ◦ dZ1,X1,X2 : (X1 ∨X2) ∧ Z1 ⊢ U1 ∨ U2

f1 : X1 ⊢ U1 f2 : X2 ⊢ U2

∨X1,X2(f1, f2) =dn f1 ∨ f2 : X1 ∨X2 ⊢ U1 ∨ U2

Note that ∧X1,X2(f1, f2) = ∧X2,X1(f2, f1) holds in GDS. (In case we have

f1 : U1 ⊢ X1 ∨ Z1 and f2 : U2 ⊢ X2 ∨ Z2, we apply (d
∨
b) of §7.2.) We will

consider the terms on the two sides of this equation as the same Gentzen

term. Analogously, ∨X1,X2(f1, f2) = ∨X2,X1(f2, f1) holds in GDS. (In

case we have f1 : X1 ∧ Z1 ⊢ U1 and f2 : X2 ∧ Z2 ⊢ U2, we apply (d
∧
b) of

§7.2.) We will consider also the terms on the two sides of this equation

as the same Gentzen term. We do something analogous for arrow terms

of C(GDS) built with ∧ and ∨. Namely, we may omit some parentheses

without ambiguity, and order is irrelevant. For example, f ∧ g ∧ h stands

for (f ∧ g) ∧ h, or g ∧ (f ∧ h), etc., because all these arrow terms are equal

in GDS.

In all the inductive clauses of Gentzen operations above, the Gentzen

terms defined must denote arrows ofGDS. So, for example, for f1 : U1 ⊢ X1

and f2 : U2 ⊢ X2 in ∧X1,X2(f1, f2) : U1 ∧ U2 ⊢ X1 ∧X2, we must have that

U1 ∧ U2 and X1 ∧X2 correspond to form sets of letters, which means that
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U1 and U2 cannot have letters in common, and the same for X1 and X2.

So all our Gentzen operations are partial operations.

We can then prove the following lemma.

Gentzenization Lemma. Every arrow of GDS is denoted by a Gentzen

term.

Proof. We show by induction on the number of letters in the form set X

that 1X is denoted by a Gentzen term. For that, we rely on the following

equations of GDS:

1X1ξX2 = 1X1 ξ 1X2 , for ξ ∈ {∧,∨},
(∗∧) f1 ∧ f2 = ∧X1,X2(f1, f2), for f1 : U1 ⊢ X1 and f2 : U2 ⊢ X2,

(∗∨) f1 ∨ f2 = ∨X1,X2(f1, f2), for f1 : X1 ⊢ U1 and f2 : X2 ⊢ U2,

provided f1 and f2 are Gentzen terms (the equations (∗∧) and (∗∨) are

trivial).

If for any form set X we have that 1X stands for a Gentzen term, then

we have in GDS

dY,X,Z = cutX(1X∨Z ,1X∧Y ) = ∧Y,X(1Y ,1X∨Z) = ∨Z,X(1Z ,1X∧Y ).

It remains only to note that, besides the equations (∗∧) and (∗∨) above,

we have in GDS the equation g ◦ f = cutX(f, g) for the Gentzen terms

f : U ⊢ X and g : X ⊢W . ⊣

AGentzen term is cut-free when it has no subterm of the form cutX(f, g).

A Gentzen term of the form cutX(f, g) such that f and g are cut-free is

called a topmost cut.

We define inductively the depth of a subterm of a Gentzen term:

f is a subterm of f of depth 0;

if γ is cutX or ∧X1,X2 or ∨X1,X2 , and γ(f1, f2) is a subterm of f of

depth n, then f1 and f2 are subterms of f of depth n+ 1.

For a topmost cut cutX(f, g) such that X is of colour ∧ and is not a

letter, we say that the ∧-rank of cutX(f, g) is n ≥ 0 when f has a subterm

∧X1,X2(f1, f2) of depth n such that X is X1 ∧X2. Because the objects of
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GDS are form sets, i.e., they are “diversified”, there can be at most one

subterm of f of that form. For a topmost cut cutX(f, g) such that X is of

colour ∨ and is not a letter, we say that the ∨-rank of cutX(f, g) is n ≥ 0

when g has a subterm ∨X1,X2(g1, g2) of depth n such that X is X1 ∨ X2.

For a topmost cut cutp(f, g), note that 1p must be a subterm of both f and

g, which occurs in each of them exactly once, because of “diversification”.

We say that the p-rank of cutp(f, g) is n ≥ 0 when n is the sum of the depth

of 1p in f and of the depth of 1p in g.

The rank of a topmost cut cutX(f, g) is either its ∧-rank, or ∨-rank, or
p-rank, depending on X.

The complexity of a topmost cut cutX(f, g) is (m,n) where m ≥ 1 is

the number of letters in X and n ≥ 0 is the rank of this cut. Complexities

are ordered lexicographically; i.e., we have (m1, n1) < (m2, n2) iff either

m1 < m2, or m1 = m2 and n1 < n2.

We can prove the following theorem for GDS.

Cut-Elimination Theorem. For every Gentzen term t there is a cut-free

Gentzen term t′ such that t = t′ in GDS.

Proof. By induction on the complexity of a topmost cut cutX(f, g), we

prove that cutX(f, g) is equal in GDS to a cut-free Gentzen term. From

this the theorem follows. In the remainder of this proof we assume that

equality between arrow terms is equality in GDS.

For the basis we have that if the complexity of cutX(f, g) is (1, 0), then

cutX(f, g) is of the form cutp(1p,1p), which is equal to 1p.

Suppose now the complexity is (m, 0) for m > 1, and suppose X is of

colour ∧. Then cutX(f, g) is of the form cutX1∧X2(∧X1,X2(f1, f2), g), and

we have the following cases.

(∧1.1) Consider the Gentzen term

f1 : U1 ⊢ X1 ∨ Z1 f2 : U2 ⊢ X2 ∨ Z2

∧X1,X2
(f1, f2) : U1 ∧ U2 ⊢ (X1 ∧X2) ∨ Z1 ∨ Z2 g : X1 ∧X2 ∧ Y ⊢W

cutX1∧X2(∧X1,X2(f1, f2), g) : U1 ∧ U2 ∧ Y ⊢W ∨ Z1 ∨ Z2

Then consider the Gentzen term
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f2 : U2 ⊢ X2 ∨ Z2

f1 : U1 ⊢ X1 ∨ Z1 g : X1 ∧X2 ∧ Y ⊢W

cutX1(f1, g) : U1 ∧X2 ∧ Y ⊢W ∨ Z1

cutX2(f2, cutX1(f1, g)) : U1 ∧ U2 ∧ Y ⊢W ∨ Z1 ∨ Z2

We show that

(∗) cutX1∧X2(∧X1,X2(f1, f2), g) = cutX2(f2, cutX1(f1, g)),

and the Gentzen term on the right-hand side has a topmost cut cutX1(f1, g)

of lower complexity (m′, n′) than the Gentzen term on the left-hand side;

here m′ < m. Hence, by the induction hypothesis, it is equal to a cut-free

Gentzen term h, and cutX2(f2, h) is a topmost cut of lower complexity, to

which we can also apply the induction hypothesis.

To show (∗), we have to show

(g ∨ 1Z1∨Z2) ◦ dY,X1∧X2,Z1∨Z2
◦

◦ (((dX2,X1,Z1 ∨ 1Z2) ◦ dX1∨Z1,X2,Z2
◦ (f1 ∧ f2)) ∧ 1Y ) =

(((g ∨ 1Z1) ◦ dY ∧X2,X1,Z1
◦ (f1 ∧ 1Y ∧X2))∨ 1Z2) ◦ dU1∧Y,X2,Z2

◦ (f2 ∧ 1U1∧Y ),

and to derive this equation for GDS we use essentially (dL∧) of §7.2.

(∧1.2) If we have g : X1 ∧X2 ⊢W , while f1 and f2 are as in (∧1.1), then
to show (∗) we have to show

(g ∨ 1Z1∨Z2) ◦ (dX2,X1,Z1 ∨ 1Z2) ◦ dX1∨Z1,X2,Z2
◦ (f1 ∧ f2) =

((g ∨ 1Z1) ◦ dX2,X1,Z1
◦ (f1 ∧ 1X2)) ∨ 1Z2) ◦ dU1,X2,Z2

◦ (f2 ∧ 1U1),

which follows readily with the help of (dL nat).

(∧2.1) If we have f1 : U1 ⊢ X1, while f2 and g are as in (∧1.1), then to

show (∗) we have to show

(g ∨ 1Z2) ◦ dY,X1∧X2,Z2
◦ ((dX1,X2,Z2

◦ (f1 ∧ f2)) ∧ 1Y ) =

((g ◦ (f1 ∧ 1Y ∧X2)) ∨ 1Z2) ◦ dU1∧Y,X2,Z2
◦ (f2 ∧ 1U1∧Y ),

which follows by using essentially (dL∧).

(∧2.2) If we have f1 : U1 ⊢ X1, g : X1 ∧X2 ⊢W and f2 as in (∧1.1), then
to show (∗) we have to show
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(g ∨ 1Z2) ◦ dX1,X2,Z2
◦ (f1 ∧ f2) =

((g ◦ (f1 ∧ 1X2)) ∨ 1Z2) ◦ dU1,X2,Z2
◦ (f2 ∧ 1U1),

which follows readily with the help of (dL nat).

(∧3.1) If we have f1 : U1 ⊢ X1, f2 : U2 ⊢ X2 and g as in (∧1.1), then to

show (∗) we have to show

g ◦ (f1 ∧ f2 ∧ 1Y ) = g ◦ (f1 ∧ 1Y ∧X2) ◦ (f2 ∧ 1U1∧Y ),

which follows from bifunctorial equations.

(∧3.2) If we have f1 : U1 ⊢ X1, f2 : U2 ⊢ X2 and g : X1 ∧X2 ⊢W , then to

show (∗) we have to show

g ◦ (f1 ∧ f2) = g ◦ (f1 ∧ 1X2) ◦ (f2 ∧ 1U1),

which follows again from bifunctorial equations.

If the complexity of cutX(f, g) is (m, 0) for m > 1, and X is of colour

∨, then we proceed analogously.

Suppose now the complexity of cutX(f, g) is (m,n) withm,n ≥ 1. Then

we have the following cases.

(∧4) The form set X is of colour ∧ (it may be of the form X1 ∧X2 or p)

and f is ∧V1,V2(f1, f2). So, since n ≥ 1, we have

f1 : U1 ⊢ V1 ∨X ∨ Z1 f2 : U2 ⊢ V2 ∨ Z2

∧V1,V2(f1, f2) : U1 ∧ U2 ⊢ (V1 ∧ V2) ∨X ∨ Z1 ∨ Z2 g : X ∧ Y ⊢W

cutX(∧V1,V2(f1, f2), g) : U1 ∧ U2 ∧ Y ⊢ (V1 ∧ V2) ∨ Z1 ∨ Z2 ∨W

Then consider the Gentzen term

f1 : U1 ⊢ V1 ∨X ∨ Z1 g : X ∧ Y ⊢W

cutX(f1, g) : U1 ∧ Y ⊢ V1 ∨ Z1 ∨W f2 : U2 ⊢ V2 ∨ Z2

∧V1,V2(cutX(f1, g), f2) : U1 ∧ U2 ∧ Y ⊢ (V1 ∧ V2) ∨ Z1 ∨ Z2 ∨W

We show that
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(∗∗) cutX(∧V1,V2(f1, f2), g) = ∧V1,V2(cutX(f1, g), f2),

and the complexity (m,n−1) of the topmost cut cutX(f1, g) is lower than

(m,n), so that we may apply the induction hypothesis.

To show the equation (∗∗), we have to show

(g ∨ 1(V1∧V2)∨Z1∨Z2
) ◦ dY,X,(V1∧V2)∨Z1∨Z2

◦

◦ (((dV2,V1,X∨Z1
∨ 1Z2

) ◦ dV1∨X∨Z1,V2,Z2
◦ (f1 ∧ f2)) ∧ 1Y ) =

(dV2,V1,Z1∨W ∨ 1Z2) ◦ dV1∨Z1∨W,V2,Z2
◦

◦ (((g ∨ 1V1∨Z1) ◦ dY,X,V1∨Z1
◦ (f1 ∧ 1Y )) ∧ f2).

To derive this equation for GDS, we use essentially (d
∧
b) and (d

∨
b), besides

(dL nat), (dL∧) and (dL∨) (see §7.2). We have also to consider cases where

we have f1 : U1 ⊢ V1 ∨ X, or f2 : U2 ⊢ V2, or g : X ⊢ W (analogously to

what we had in (∧1.1)-(∧3.2)). In all of them, (∗∗) amounts to equations

simpler than the equation above, which all hold in GDS.

(∧5) The form set X is of colour ∧, and f is ∨V1,V2(f1, f2), so that we

have f1 : V1 ∧ U1 ⊢ X ∨ Z1, f2 : V2 ∧ U2 ⊢ Z2 and g : X ∧ Y ⊢ W . Then we

have to show the equation

(∗∗∗) cutX(∨V1,V2(f1, f2), g) = ∨V1,V2(cutX(f1, g), f2)

with the complexity (m,n − 1) of cutX(f1, g) lower than (m,n). To show

this equation, we have to show

(g ∨ 1Z1∨Z2) ◦ dY,X,Z1∨Z2
◦

◦ (((f1 ∨ f2) ◦ dU2,V2,V1∧U1
◦ (dU1,V1,V2 ∧ 1U2)) ∧ 1V ) =

(((g ∨ 1Z1) ◦ dY,X,Z1
◦ (f1 ∧ 1Y )) ∨ f2) ◦ dU2,V2,V1∧U1∧Y ◦ (dU1∧Y,V1,V2 ∧ 1U2),

and to derive that for GDS we use essentially (d
∧
b). We have also to

consider cases where we have f1 : V1 ⊢ X ∨ Z1, or f1 : V1 ∧ U1 ⊢ X, or

f1 : V1 ⊢ X, or f2 : V2 ⊢ Z2, or g : X ⊢W . In all of them (∗∗∗), amounts to

simpler equations, which all hold in GDS.

It remains to consider cases with complexity (m,n) where m,n ≥ 1, and

X is of colour ∨ (it may be of the form X1 ∨ X2 or p). These additional
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cases are settled dually to cases (∧4) and (∧5). Note that in cases with

complexity (m,n) where m,n ≥ 1 and X is a letter (hence m = 1) we have

that X is of both colours, and hence in these cases we can proceed either

as in (∧4) and (∧5), or as in cases dual to (∧4) and (∧5) we have just

mentioned. ⊣

§7.8. Invertibility in GDS

In this section, we prove the invertibility results announced at the end of

§7.6. First, we cover some preliminary matters. We will need later the

following equations of GDS:

(∧ ∧ 1) ∧W1∧W2,W3(∧W1,W2(f1, f2), f3) = ∧W1,W2∧W3(f1,∧W2,W3(f2, f3))

for fi of type Hi ⊢Wi ∨ Ji or Hi ⊢Wi, where i ∈ {1, 2, 3},

(∧ ∧ 2) ∧R1,R3(∧W1,W2(f1, f2), f3) = ∧W1,W2(∧R1,R3(f1, f3), f2)

for f1 of type H1 ⊢W1 ∨R1 ∨ J1 or H1 ⊢W1 ∨R1,

f2 of type H2 ⊢W2 ∨ J2 or H2 ⊢W2, and

f3 of type H3 ⊢ R3 ∨ J3 or H3 ⊢ R3,

(∨ ∨ 1) ∨W1∨W2,W3(∨W1,W2(f1, f2), f3) = ∨W1,W2∨W3(f1,∨W2,W3(f2, f3))

for fi of type Wi ∧ Ji ⊢ Hi or Wi ⊢ Hi, where i ∈ {1, 2, 3},

(∨ ∨ 2) ∨R1,R3(∨W1,W2(f1, f2), f3) = ∨W1,W2(∨R1,R3(f1, f3), f2),

for f1 of type W1 ∧R1 ∧ J1 ⊢ H1 or W1 ∧R1 ⊢ H1,

f2 of type W2 ∧ J2 ⊢ H2 or W2 ⊢ H2, and

f3 of type R3 ∧ J3 ⊢ H3 or R3 ⊢ H3,

(∧∨) ∧W2,W3(∨V1,V2(f1, f2), f3) = ∨V1,V2(f1,∧W2,W3(f2, f3)),

for f1 of type V1 ∧H1 ⊢ J1 or V1 ⊢ J1,
f2 of type V2 ∧H2 ⊢W2 ∨ J2 or V2 ∧H2 ⊢W2 or

f2 of type V2 ⊢W2 ∨ J2 or V2 ⊢W2, and

f3 of type H3 ⊢W3 ∨ J3 or H3 ⊢W3.
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The equations (∧∧ 1) and (∧∧ 2), or alternatively (∨∨ 1) and (∨∨ 2), are
analogous to the two associativity equations for the cut operation one finds

in multicategories (see [85] and [88], Section 3).

To derive these equations for GDS is a rather straightforward, though

pretty lengthy, exercise. We always derive the most complex case, with

all possible parameters present (for (∧ ∧ 1) this means that fi is of type

Hi ⊢Wi∨Ji), and the remaining cases are obtained by simplifying this most

complex case. For example, to derive the most complex case of (∧ ∧ 1) for

GDS we use essentially (dL∧), (dL nat) and Net Coherence.

Let let (X) be the set of letters occurring in the form set X. It is clear

that we have the following.

Balance Remark. For every arrow f : X ⊢ Y of GDS, we have let (X) =

let (Y ).

A pair of form sets (X1 ∧ . . . ∧ Xn, Y1 ∨ . . . ∨ Yn), where n ≥ 2, is

splittable when let (Xi) = let (Yi) for every i ∈ {1, . . . , n}. A sequence

of form sets X1, . . . , Xn, Y1, . . . , Yn is a total split of the pair of form sets

(X1 ∧ . . .∧Xn, Y1 ∨ . . .∨ Yn) when let (Xi) = let (Yi) and none of the pairs

(Xi, Yi) is splittable. For every splittable pair of form sets there is a total

split.

We say that an arrow f : X ⊢ Y of GDS is splittable when its type

(X,Y ) is splittable, and we say that a total split of (X,Y ) is a total split

of f .

Splitting Remark. Take an arrow f of GDS of type

X ∧X1 ∧ . . . ∧Xn ⊢ Z ∨ Y1 ∨ . . . ∨ Yn
or X ∧X1 ∧ . . . ∧Xn ⊢ Z ∨R′ ∨ Y1 ∨ . . . ∨ Yn

and an arrow g of GDS of type

V ∧ V1 ∧ . . . ∧ Vm ⊢ U ∨W1 ∨ . . . ∨Wm

or V ∧ V1 ∧ . . . ∧ Vm ⊢ U ∨R′′ ∨W1 ∨ . . . ∨Wm

with n +m ≥ 1 (if n = 0, then the subword ∧X1 ∧ . . . ∧Xn is

just omitted, and analogously in other cases).
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Let ∧Z,U (f, g) be splittable with the total split

X ∧ V,X1, . . . , Xn, V1, . . . , Vm, Y, Y1, . . . , Yn,W1, . . . ,Wm

where Y is Z ∧U or (Z ∧U)∨R, and R is R′ or R′′ or R′ ∨R′′.
If n ≥ 1, then f is splittable, and if m ≥ 1, then g is splittable.

Here (X,Z) or (X,Z ∨R′) may be splittable, and hence the

forms of the type of f above do not show the total split tied to

this type. If (X,Z ∨ R′) is splittable and S1, . . . , Sk, T1, . . . , Tk

is its total split, then for every j ∈ {1, . . . , k} we have let (Z) ∩
let (Tj) ̸= ∅. (Otherwise, the total split of ∧Z,U (f, g) mentioned

above would not be a total split.) We have an analogous remark

for (V,U), (V,U ∨R′′) and g.

An analogous remark holds for ∨Z,U (f, g).

It follows from the Splitting Remarks that, for ξ ∈ {∧,∨}, if ξZ,U (f, g)

is splittable, then f or g is splittable. Since 1p is not splittable, we can

easily conclude the following with the help of the Cut-Elimination Theorem

of the preceding section.

Splitting Corollary. No arrow of GDS is splittable.

This corollary is related to the connectedness condition of proof nets (see

[33]).

Next we prove the following lemma for GDS.

Invertibility Lemma for ∧. (i) If f : U1 ∧U2 ⊢ (X1 ∧X2)∨Z1 ∨Z2 is a

cut-free Gentzen term such that let (Ui) = let (Xi) ∪ let (Zi) for i ∈ {1, 2},
then there are two cut-free Gentzen terms f1 : U1 ⊢ X1 ∨ Z1 and f2 : U2 ⊢
X2 ∨ Z2 such that f = ∧X1,X2(f1, f2).

(ii) If f : U1 ∧ U2 ⊢ (X1 ∧ X2) ∨ Z1 is a cut-free Gentzen term such that

let (U1) = let (X1) ∪ let (Z1) and let (U2) = let (X2), then there are two

cut-free Gentzen terms f1 : U1 ⊢ X1 ∨ Z1 and f2 : U2 ⊢ X2 such that

f = ∧X1,X2(f1, f2).

(iii) If f : U1 ∧U2 ⊢ X1 ∧X2 is a cut-free Gentzen term such that let (Ui) =

let (Xi) for i ∈ {1, 2}, then there are two cut-free Gentzen terms f1 : U1 ⊢
X1 and f2 : U2 ⊢ X2 such that f = ∧X1,X2(f1, f2).
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Proof. We proceed by induction on the length of the cut-free Gentzen

term f . If f is 1p, the lemma holds trivially, since f cannot be of the

required type.

Suppose next that f is ∧Y a,Y b(fa, f b) for fa : W a ⊢ Ra and f b : W b ⊢
Rb. Then, under the assumptions of (i), we have two cases:

(∧ i I) X1 ∧X2 is Y a ∧ Y b,

(∧ i II) X1 ∧X2 is different from Y a ∧ Y b.

We deal first with (∧ i I).

The cases where let (X1) ∪ let (X2) ⊆ let (W a) or let (X1) ∪ let (X2) ⊆
let (W b) are impossible.

If let (X1) ⊆ let (W a) and let (X2) ⊆ let (W b), then we must have

let (Z1) ⊆ let (W a) and let (Z2) ⊆ let (W b). All the other cases are excluded

by the Splitting Corollary. For example, if let (Z1) ∪ let (Z2) ⊆ let (W a),

then W a must be U1 ∧ Ua
2 , R

a must be X1 ∨ Z1 ∨ Z2, W
b must be U b

2 ,

and Rb must be X2, where U2 is Ua
2 ∧ U b

2 . Then, since let (Ua
2 ) = let (Z2),

the arrows fa and f would be splittable, which contradicts the Splitting

Corollary. In the only possible case mentioned above, we take fa for f1 and

f b for f2.

The case where let (X1) ⊆ W b and let (X2) ⊆ W a is analogous to the

case just settled.

Let ρ(X,Y, Z) abbreviate the conjunction of the following conditions:

let (X) ⊆ let (Y ) ∪ let (Z),

let (X) ∩ let (Y ) ̸= ∅,
let (X) ∩ let (Z) ̸= ∅.

If let (X1) ⊆ let (W a) and ρ(X2,W
a,W b), then we have as possible cases

let (Z1) ⊆ let (W a) together with

(1) let (Z2) ⊆ let (W a), or

(2) let (Z2) ⊆ let (W b), or

(3) ρ(Z2,W
a,W b).

The remaining cases are excluded by the Splitting Corollary.

We deal first with (3). Then fa is of the type U1 ∧ Ua
2 ⊢ (X1 ∧Xa

2 ) ∨
Z1∨Za

2 , while f
b is of the type U b

2 ⊢ Xb
2∨Zb

2, where U
a
2 ∧U b

2 is U2, X
a
2 ∧Xb

2
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is X2 and Za
2 ∨Zb

2 is Z2. By the induction hypothesis, fa = ∧X1,Xa
2
(fa1 , f

a
2 )

for fa1 : U1 ⊢ X1 ∨Z1 and fa2 : U
a
2 ⊢ Xa

2 ∨Za
2 . Then by the equation (∧∧ 1)

we have

∧X1∧Xa
2 ,X

b
2
(∧X1,Xa

2
(fa1 , f

a
2 ), f

b) = ∧X1,X2(f
a
1 ,∧Xa

2 ,X
b
2
(fa2 , f

b)),

and we take that f1 is fa1 , while f2 is ∧Xa
2 ,X

b
2
(fa2 , f

b). In cases (1) and

(2) we proceed analogously, using again (∧ ∧ 1) (less complex cases of this

equation, with less parameters).

The three cases where we have let (X1) ⊆ let (W b) and ρ(X2,W
a,W b),

or let (X2) ⊆ let (W a) and ρ(X1,W
a,W b), or let (X2) ⊆ let (W b) and

ρ(X1,W
a,W b), are all settled analogously to the case we have just dealt

with.

The remaining case of (∧ i I) is when ρ(X1,W
a,W b) and ρ(X2,W

a,W b).

Then either let (Zi) ⊆ let (W a), or let (Zi) ⊆ let (W b), or ρ(Zi,W
a,W b),

and we always apply the induction hypothesis and equation (∧ ∧ 1) three

times; namely, we use the equation

∧Xa
1∧X

a
2 ,X

b
1∧X

b
2
(∧Xa

1 ,X
a
2
(fa1 , f

a
2 ),∧Xb

1 ,X
b
2
(f b1 , f

b
2)) =

∧Xa
1∧X

b
1 ,X

a
2∧X

b
2
(∧Xa

1 ,X
b
1
(fa1 , f

b
1),∧Xa

2 ,X
b
2
(fa2 , f

b
2)).

Under the assumption (∧ i II), we have the cases

(∧ i II.1) Z1 is Z ′1 ∨ (Y a ∧ Y b),

(∧ i II.2) Z1 is Y a ∧ Y b,

and two more cases obtained by replacing the index 1 in Z1 and Z ′1 by 2.

For (∧ i II.1), we have as possible cases let (X1 ∧X2) ∪ let (Z2) ⊆ let (W a)

together with

(1) let (Z1) ⊆ let (W a), or

(2) let (Z ′1) ⊆ let (W b), or

(3) ρ(Z ′1,W
a,W b),

and three more cases with let (X1 ∧ X2) ∪ let (Z2) ⊆ let (W b). All the

remaining cases are excluded by the Splitting Corollary.

We deal first with (3). Then fa is of the type Ua
1 ∧ U2 ⊢ Y a ∨ (X1 ∧

X2) ∨ Za
1 ∨ Z2, while f

b is of the type U b
1 ⊢ Y b ∨ Zb

1, where U
a
1 ∧ U b

1 is U1

and Za
1 ∨ Zb

1 is Z ′1. By the induction hypothesis, fa = ∧X1,X2(f
a
1 , f

a
2 ) for
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fa1 : Ua
1 ⊢ Y a ∨ X1 ∨ Za

1 and fa2 : U2 ⊢ X2 ∨ Z2. Then, by the equation

(∧ ∧ 2), we have

∧Y a,Y b(∧X1,X2(f
a
1 , f

a
2 ), f

b) = ∧X1,X2(∧Y a,Y b(fa1 , f
b), fa2 )),

and we take that f1 is ∧Y a,Y b(fa1 , f
b), while f2 is f b2 . In cases (1) and (2),

and cases obtained by interchanging a and b, we proceed analogously.

For (∧ i II.2), we have as possible cases let (X1∧X2)∪let (Z2) ⊆ let (W a)

and let (X1 ∧ X2) ∪ let (Z2) ⊆ let (W b), for which we apply again the in-

duction hypothesis and the equation (∧ ∧ 2). All the remaining cases are

excluded by the Splitting Corollary.

We proceed analogously when we have (∧ i II) and Z2 is either Z ′2 ∨
(Y a ∧ Y b) or Y a ∧ Y b. With that we have settled (∧ i II), and also (i).

Under the assumptions of (ii), we have again two cases:

(∧ ii I) X1 ∧X2 is Y a ∧ Y b,

(∧ ii II) X1 ∧X2 is different from Y a ∧ Y b.

We deal with these cases as above, with simplifications in cases already

considered.

Under the assumptions of (iii), we must have that X1 ∧X2 is Y a ∧ Y b,

and we have cases simplifying again cases already considered. With that

we have finished dealing with the assumption that f = ∧Y a,Y b(fa, f b).

Suppose now f is ∨Y a,Y b(fa, f b) for fa : W a ⊢ Ra and f b : W b ⊢ Rb.

Then under the assumptions of (i) we have the cases:

(∨ i 1) U1 is U ′1 ∧ (Y a ∨ Y b),

(∨ i 2) U1 is Y a ∨ Y b,

and two more cases with the index 1 of U1 and U ′1 replaced by 2.

For (∨ i 1), we have as possible cases let (X1 ∧X2)∪ let (Z2) ⊆ let (W a)

together with

(α) let (Z1) ⊆ let (W b), or

(β) ρ(Z1,W
a,W b),

and together with

(1) let (U ′1) ⊆ let (W a), or

(2) let (U ′1) ⊆ let (W b), or

(3) ρ(U ′1,W
a,W b),
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and six more analogous cases with let (X1∧X2)∪let (Z2) ⊆ let (W b) together

with

let (Z1) ⊆ let (W a), or

ρ(Z1,W
a,W b).

All the remaining cases are excluded by the Splitting Corollary, or because

let (Y a ∨ Y b) ⊆ let (X1 ∧X2) ∪ let (Z1).

We deal first with (β) together with (3). Then fa is of the type Y a ∧
Ua
1 ∧ U2 ⊢ (X1 ∧ X2) ∨ Za

1 ∨ Z2, while f
b is of the type Y b ∧ U b

1 ⊢ Zb
1,

where Ua
1 ∧ U b

1 is U1 and Za
1 ∨ Zb

1 is Z1. By the induction hypothesis,

fa = ∧X1,X2(f
a
1 , f

a
2 ) for fa1 : Y a ∧ Ua

1 ⊢ X1 ∨ Za
1 and fa2 : U2 ⊢ X2 ∨ Z2.

Then, by the equation (∧∨), we have

∨Y a,Y b(f b,∧X1,X2(f
a
1 , f

a
2 )) = ∧X1,X2(∨Y b,Y a(f b, fa1 ), f

a
2 ),

and we take that f1 is ∨Y b,Y a(f b, fa1 ), while f2 is fa2 . In all the remaining

cases, we proceed analogously, as well as in (∨ i 2). This settles (i).

Under the assumptions of (ii), we have cases analogous to those already

treated with Z2 omitted. So we apply again the equation (∧∨).
The assumptions of (iii) are excluded if f = ∨Y a,Y b(fa, f b). ⊣

We prove analogously the following lemma for GDS.

Invertibility Lemma for ∨. (i) If f : (X1 ∨ X2) ∧ Z1 ∧ Z2 ⊢ U1 ∨ U2

is a cut-free Gentzen term such that let (Ui) = let (Xi) ∪ let (Zi) for i ∈
{1, 2}, then there are two cut-free Gentzen terms f1 : X1 ∧ Z1 ⊢ U1 and

f2 : X2 ∧ Z2 ⊢ U2 such that f = ∨X1,X2(f1, f2).

(ii) If f : (X1 ∨ X2) ∧ Z1 ⊢ U1 ∨ U2 is a cut-free Gentzen term such that

let (U1) = let (X1) ∪ let (Z1) and let (U2) = let (X2), then there are two

cut-free Gentzen terms f1 : X1 ∧ Z1 ⊢ U1 and f2 : X2 ⊢ U2 such that

f = ∨X1,X2(f1, f2).

(iii) If f : X1 ∨X2 ⊢ U1 ∨U2 is a cut-free Gentzen term such that let (Ui) =

let (Xi) for i ∈ {1, 2}, then there are two cut-free Gentzen terms f1 : X1 ⊢
U1 and f2 : X2 ⊢ U2 such that f = ∨X1,X2(f1, f2).
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Let the quantity of letters in an arrow f : X ⊢ Y of GDS be the

cardinality of let (X) (which is equal to the cardinality of let (Y )). Then we

can prove the following theorem for GDS.

Cut-Free Preordering. For every pair of cut-free Gentzen terms f1, f2 :

X ⊢ Y we have f1 = f2.

Proof. We proceed by induction on the quantity of letters in f1 (which is

equal to the quantity of letters in f2). If n = 1, then f1 = f2 = 1p.

Suppose n > 1. If f1 is ∧Z1,Z2(f
′
1, f
′′
1 ), then by the Invertibility Lemma

for ∧ we have that f2 = ∧Z1,Z2(f
′
2, f
′′
2 ) for f

′
2 and f ′′2 of the same types as

f ′1 and f ′′1 respectively. By the induction hypothesis, f ′1 = f ′2 and f ′′1 = f ′′2 ,

and hence f1 = f2. We proceed analogously if f1 is ∨Z1,Z2(f
′
1, f
′′
1 ). ⊣

As a corollary of the Cut-Elimination Theorem and of Cut-Free Pre-

ordering, we obtain that GDS is a preorder, which, under the assumption

Gf = Gg, implies the assertion (div ) of §7.6. This proves Symmetric Net

Coherence.

Net Coherence of §7.3 could also have been proved via a Cut-Elimination

Theorem and Cut-Free Preordering. Strictification, however, would be in

the associative structure only, and not in the symmetric associative struc-

ture.

The category DS corresponds to the multiplicative conjunction-disjunc-

tion fragment of linear logic, for which proof nets were developed (see [63]

and [33]). Proof nets, however, serve mainly to solve the theoremhood

problem, while coherence in our sense is maybe implicitly presupposed with

them. The theoremhood problem for DS can also be solved via our results

for GDS in this and in the preceding section, based on cut elimination,

and we do not find this solution in the style of Gentzen more complicated

than the solution provided by proof nets.

§7.9. Linearly distributive categories

To obtain the natural logical category DA⊤,⊥, we have that the logical

system C(DA⊤,⊥) is in L∧,∨,⊤,⊥, with the transformations α included in 1,

b, δ-σ and d. The specific equations of E(DA⊤,⊥) are obtained by taking
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the union of those of E(DA) and E(A⊤,⊥) plus

(
∧
σ dL) dL⊤,B,C = (

∧
σ←B ∨ 1C) ◦

∧
σ→B∨C ,

(
∨
δ dL) dLA,B,⊥ =

∨
δ←A∧B ◦ (1A ∧

∨
δ→B ),

(
∧
δ dR) dRC,B,⊤ = (1C ∨

∧
δ←B ) ◦

∧
δ→C∨B ,

(
∨
σ dR) dR⊥,B,A =

∨
σ←B∧A ◦ (

∨
σ→B ∧ 1A).

Natural DA⊤,⊥-categories are called linearly distributive categories in

[25] (the original name from [22] is weakly distributive categories). Ac-

cording to our nomenclature, they could be called dissociative bimonoidal

categories. All of the specific equations above may be found in [22] (Sec-

tion 2.1). (These equations should be compared with the equations (d
∧
k)

and (d
∨
k) of §11.1.)

We have still a functor G from DA⊤,⊥ to Rel, but according to [11]

(Section 4.2, pp. 275-278), for

εA =df
∨
σ→A ◦ (

∧
δ→⊥ ∨ 1A) ◦ dL⊥,⊤,A,

ηA =df d
R
⊤,⊥,A ◦ (

∨
δ←⊤ ∧ 1A) ◦

∧
σ←A ,

the equations

η⊤∨A ◦ (1⊤ ∨ εA) = 1⊤∨(⊥∧(⊤∨A)),

(1⊥ ∧ ηA) ◦ ε⊥∧A = 1⊥∧(⊤∨(⊥∧A))

do not hold in DA⊤,⊥, although, when f and g are respectively the left-

hand side and right-hand side of one of these equations, we have Gf = Gg

in Rel. So G is not faithful, and coherence fails. The faithfulness of G in

this case would yield preordering, and DA⊤,⊥ is not a preorder.

Note that in DA⊤,⊥ we have

(1⊤ ∨ εA) ◦ η⊤∨A = 1⊤∨A,

ε⊥∧A ◦ (1⊥ ∧ ηA) = 1⊥∧A,

which are the triangular equations of an adjunction (for the notion of ad-

junction see [100], Chapter 4; the functor ⊥∧ is left-adjoint to the functor

⊤∨). What fails is the isomorphism between ⊤∨ (⊥∧ (⊤∨A)) and ⊤∨A,
and between ⊥∧ (⊤∨ (⊥∧A)) and ⊥∧A ([119] deals with a related prob-

lem in symmetric monoidal closed categories). We do not know what other
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equations, if any, besides those that deliver these isomorphisms, should be

added to the axioms of DA⊤,⊥ in order to obtain coherence.

A sort of coherence for linearly distributive categories (symmetric and

not symmetric, without the isomorphisms above) in the context of proof

nets has been investigated in a number of papers (see [22], [11], [23] and

[115]). Coherence in this sense is not quite foreign to what we mean by

coherence, but it is not the same thing. The investigations of [22] appeal

to a connection with the polycategories of [126].





Chapter 8

Mix Categories

In this chapter, we consider categories having what linear logicians call

mix—namely, a natural transformation between the two bifunctors of the

double monoidal structure. The double monoidal structure has or does not

have associativity, symmetry and dissociativity. We prove coherence for

such categories that lack unit objects. The mix principle is an important

addition to Gentzen’s plural sequent formulation of classical logic, and this

is why we pay particular attention to it.

Our proofs are variations on the cut-elimination theme, and on the tech-

niques of the preceding chapters. There are proofs based on composition-

free languages for our categories, and a proof based on an extension of the

cut-elimination procedure of the preceding chapter.

§8.1. Coherence of mix and mix-dissociative categories

To obtain the natural logical category MI, we have that the logical system

C(MI) is in L∧,∨, with the transformations α being 1 andm. The equations

E(MI) are just those of EnatC(MI) (see §4.1). We call natural MI-categories

mix categories.

A logical principle called mix amounting to mA,B : A ∧ B ⊢ A ∨ B
was considered in [63] (Section V.4), [33] (Section 3.3), [56], [10] and [23].

Gentzen called Mischung in German—which is usually translated as mix—

a rule that generalizes the cut rule of sequent systems; an instance of Mi-

schung is

167
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Γ1 ⊢ ∆1,Θ Θ,Γ2 ⊢ ∆2

Γ1,Γ2 ⊢ ∆1,∆2

where Θ is a nonempty sequence of occurrences of the same formula (see

[60], Section III.3.1). The mix principle of mA,B is related to the Mischung

rule above where Θ is the empty sequence. (Gentzen did not envisage

this mix principle because he could prove the conclusion from one of the

premises with the help of the structural rules of thinning on the left and

thinning on the right.)

In C(MI) we define as follows the binary total operation 3 on arrow

terms:

f : A ⊢ D g : B ⊢ E

f 3 g =df (f ∨ g) ◦mA,B : A ∧B ⊢ D ∨ E

for which in MI we have the equations

(3) (g1 3 g2) ◦ (f1 ∧ f2) = (g1 ∨ g2) ◦ (f1 3 f2) = (g1 ◦ f1)3 (g2 ◦ f2).

From the equation (m nat) of §2.7, in MI we obtain immediately f 3 g =

mD,E ◦ (f ∧ g), which gives an alternative definition of 3.

A syntactical system C(3MI) synonymous with C(MI) is obtained by

taking as objects the formulae of L∧,∨, as primitive arrow terms identity

arrow terms only, and as operations on arrow terms ◦ , ∧, ∨ and 3. The

equational system E(3MI) is obtained by assuming the categorial and bi-

functorial equations for ∧ and ∨, and the equations (3). The category

3MI is C(3MI)/E(3MI).

With the definition

mA,B =df 1A 31B

in C(MI), we obtain two obvious functors from C(MI) to C(3MI), and vice

versa, which preserve the respective structures on the nose (see §2.8), and
these functors induce functors that give the isomorphism of MI and 3MI.

This means that C(MI) and C(3MI) are synonymous (see the end of §2.4
for the notion of synonymity of syntactical systems). Note that officially
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C(3MI) is not a logical system, because 3 is not of the ξ kind: it is not a

bifunctor in MI.

We can prove the following proposition for 3MI simply by relying on

the equations (3) and bifunctorial equations.

Composition Elimination. For every arrow term h there is a composition-

free arrow term h′ such that h = h′.

This result is a simple kind of cut-elimination result, such as we had in

§7.7.
The composition-free arrow term h′ can be put into a unique normal

form by applying the bifunctorial equations ( ξ 1) so that every arrow term

1A in h′ has a letter for A. From that, we obtain immediately that two

different arrow terms in normal form must be of different types. So 3MI

is a preorder, from which we conclude the following.

Mix Coherence. The category MI is a preorder.

To obtain the natural logical category MDI, we have that the logical

system C(MDI) is in L∧,∨, with the transformations α included in 1, d

and m. The equations E(MDI) are just those of EnatC(MDI). We call natural

MDI-categories mix-dissociative categories.

To prove that MDI is a preorder, we proceed as in §7.1 for DI by mod-

ifying the relations Sξ
A. In xS

ξ
Ay we have as before that y is an occurrence

of ξ in A, while x can be an occurrence of ∧, ∨ or of a letter. With the

help of this relation we proceed analogously to what we had in §7.1. So we

have the following.

Mix-Dissociative Coherence. The category MDI is a preorder.

§8.2. Coherence of mix-biassociative categories

To obtain the natural logical category MA, we have that the logical system

C(MA) is in L∧,∨, with the transformations α included in 1, b and m. The

specific equations of E(MA) are those of E(A) plus

(bm) (mA,B ∨ 1C) ◦mA∧B,C ◦
∧
b→A,B,C =

∨
b→A,B,C

◦mA,B∨C ◦ (1A ∧mB,C).
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We call natural MA-categories mix-biassociative categories.

With 3 primitive in a syntactical system synonymous with C(MA), the

equation (bm) is replaced by

((f 3 g)3h) ◦
∧
b→A,B,C =

∨
b→D,E,F

◦ (f 3 (g3h)).

For G being A and C/E being MA, we have that the conditions (IVC)
and (IVG) of §3.1 are satisfied, and G is moreover a preorder. Thus we

can apply the Direct-Strictification Theorem of §3.2 to obtain a category

CG/EG , which we will call MAst, or 3MAst when 3 is primitive. The

categories MAst and 3MAst are isomorphic, as MI and 3MI are (see

the preceding section). We call CG here C(MAst), and C(3MAst) is the

synonymous syntactical system where 3 is primitive.

We can easily prove the Composition Elimination proposition of the

preceding section for MAst. Here is a sketch of how we proceed. By the

Development Lemma of §2.7, there is for every arrow term of C(MA) a

developed arrow term. For a
∧
b-term f and a

∨
b-term or m-term g we have

in MA that f ◦ g = g′ ◦ f ′ for a
∧
b-term f ′ and a

∨
b-term or m-term g′. So

we may say that
∧
b-terms can be moved to the right. Analogously,

∨
b-terms

can be moved to the left. Eventually, we obtain an arrow term of the form

f1 ◦ f2 ◦ f3 ◦1A, where in f1 there are no
∧
b-terms and m-terms, in f2 there

are no
∧
b-terms and

∨
b-terms and in f3 there are no

∨
b-terms and m-terms.

Then it is enough to apply the Composition Elimination for 3MI of the

preceding section to the arrow term of C(3MAst) corresponding to f2 to

obtain Composition Elimination for 3MAst.

A composition-free arrow term of C(3MAst) is atomized when for every

occurrence of 1|[A]| in it we have that A is a letter. We will write 1p instead

of 1|[p]|.

For an atomized composition-free arrow term f of C(3MAst) let w(f)

be the word obtained from f by deleting parentheses. We already defined

w(X) for a form sequence X in §7.3; it is, analogously, the word obtained

from X by deleting parentheses.

To every pair of parentheses in a form sequence of letters X in natural

notation (see §6.2 and §7.3), we can associate a pair of occurrences of letters

(x, y) in X, where x is the first occurrence of a letter on the right-hand side

of the left parenthesis and y is the first occurrence of a letter on the left-hand
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side of the right parenthesis. For example, in p ∧ (p ∨ (q ∧ r)), to the outer

pair of parentheses written down we associate (x, y) where x is the second p

counting from the left and y is r. We suppose that atomized composition-

free arrow terms of C(3MAst) are written in natural notation (see §6.2),
and we associate analogously pairs (1x,1y) to pairs of parentheses in such

arrow terms. (Such arrow terms correspond to a kind of form sequence of

three colours: ∧, ∨ and 3.)

For every atomized composition-free arrow term f : X ⊢ Y of C(3MAst)

there are obvious bijections between occurrences of the same letters in X,

Y and f , or in w(X), w(Y ) and w(f). We say that such occurrences

correspond obviously to each other. For example, in (1p1 31p2) ∧ 1p3 :

p1 ∧ p2 ∧ p3 ⊢ (p1 ∨ p2) ∧ p3 the three occurrences of pi, for i ∈ {1, 2, 3},
correspond obviously to each other.

For the proof of the following proposition we rely on the notion of im-

mediate scope of §2.1.

Proposition 1. Let β ∈ {∧,∨,3}, and let the atomized composition-

free arrow term f : X ⊢ Y of C(3MAst), where f , X and Y are written

in natural notation, have a subterm (f1β . . . βfn), for n ≥ 2, such that

(1x1 ,1x2) is associated to the outermost parentheses of this subterm. Then

there is a pair of parentheses in at least one of X and Y such that (y1, y2)

is associated to this pair of parentheses, and, for i ∈ {1, 2}, the occurrence

of letter yi corresponds obviously to the occurrence of the same letter xi in

1xi .

Proof. If f is (f1β . . . βfn), then the assertion is trivial. (We usually omit,

however, such outermost parentheses.) Suppose then that (f1β . . . βfn) is

a proper subterm of f .

If β is ∧ and is within the immediate scope of ∨, then we have both in

X and in Y the required pair of parentheses. If β is ∧ and is within the

immediate scope of 3, then we have in Y the required pair of parentheses.

If β is 3 and is within the immediate scope of ∧, then we have in Y the

required pair of parentheses. If β is 3 and is within the immediate scope

of ∨, then we have in X the required pair of parentheses.

It remains to consider two cases where β is ∨, which are dual to the two
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cases above where it is ∧. ⊣

Proposition 2. Let f : X ⊢ Y be an atomized composition-free arrow

term of C(3MAst), and let f , X and Y be written in natural notation.

Then for every pair of parentheses in the form sequences X or Y to which

(y1, y2) is associated there is a pair of parentheses in f to which (1x1 ,1x2)

is associated such that, for i ∈ {1, 2}, the occurrence of letter yi corresponds

obviously to the occurrence of the same letter xi in 1xi
.

Proof. If the pair of parentheses selected inX or Y is outermost (which we

usually do not write), then the assertion is trivial. If the pair of parentheses

selected is in X and belongs to ∧ within the immediate scope of ∨, then in

f we must have the required pair of parentheses, which belongs to ∧ or 3

within the immediate scope of ∨. If the pair of parentheses selected is in Y

and belongs to ∧ within the immediate scope of ∨, then in f we must have

the required pair of parentheses, which belongs to ∧ within the immediate

scope of ∨ or 3. The cases where ∨ is within the immediate scope of ∧ are

dual. ⊣

Building on Propositions 1 and 2, we can obtain a criterion for the

existence of an arrow of 3MAst of a given type X ⊢ Y , which solves the

theoremhood problem for 3MAst (see §1.1). Let

(1) w(X) and w(Y ) coincide save that in w(Y ) we can have an oc-

currence of ∨ at a place where in w(X) we have an occurrence

of ∧.

Let u be obtained from w(X) and w(Y ) by

(2.1) writing 3 at the places where w(X) and w(Y ) differ,

(2.2) adding the parentheses of both X and Y in an obvious manner

(here, two pairs of parentheses, one in X and the other in Y ,

associated to pairs of occurrences of letters that correspond ob-

viously to each other yield a single pair of parentheses added to

u),

(2.3) replacing every occurrence of a letter p by 1p.

Then there is an arrow of 3MAst of type X ⊢ Y iff (1) is fulfilled and u
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is an arrow term of C(3MAst) in natural notation. If u is such an arrow

term, then it stands for the required arrow of 3MAst of type X ⊢ Y . This

will yield a criterion for the existence of arrows of a given type in MA.

We need the following proposition to prove coherence for MA.

Proposition 3. If f1 : X1 ⊢ Y1 and f2 : X2 ⊢ Y2 are different atomized

composition-free arrow terms of C(3MAst), then X1 is different from X2

or Y1 is different from Y2.

Proof. If w(f1) is different from w(f2), then it is clear that w(X1) is

different from w(X2) or w(Y1) is different from w(Y2). If w(f1) coincides

with w(f2), but f1 and f2 are different arrow terms, then f1 and f2 must

differ with respect to parentheses. In that case, Propositions 1 and 2 yield

the assertion. ⊣

From Composition Elimination and Proposition 3 we infer that 3MAst

is a preorder. So we have the following.

Mix-Biassociative Coherence. The category MA is a preorder.

§8.3. Coherence of mix-net categories

To obtain the natural logical category MDA, we have that the logical

system C(MDA) is in L∧,∨, with the transformations α included in 1, b, d

and m. The specific equations of E(MDA) are those of E(DA) plus

(
∧
bmL) mA∧B,C ◦

∧
b→A,B,C = dLA,B,C

◦ (1A ∧mB,C),

(
∨
bmL)

∨
b→A,B,C

◦mA,B∨C = (mA,B ∨ 1C) ◦ dLA,B,C ,

(
∧
bmR) mC,B∧A ◦

∧
b←C,B,A = dRC,B,A

◦ (mC,B ∧ 1A),

(
∨
bmR)

∨
b←C,B,A

◦mC∨B,A = (1C ∨mB,A) ◦ dRC,B,A.

We call natural MDA-categories mix-net categories.

The specific equation (bm) of E(MA) is derived as follows for MDA:
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(mA,B ∨ 1C) ◦mA∧B,C ◦
∧
b→A,B,C

= (mA,B ∨ 1C) ◦ dLA,B,C
◦ (1A ∧mB,C), by (

∧
bmL),

=
∨
b→A,B,C

◦mA,B∨C ◦ (1A ∧mB,C), by (
∨
bmL).

Alternatively, we could have used (
∧
bmR) and (

∨
bmR).

For G being A and C/E being MDA, we have that the conditions (IVC)
and (IVG) of §3.1 are satisfied, and G is moreover a preorder. Thus we can

apply the Direct-Strictification Theorem of §3.2 to obtain a category CG/EG ,
which we will call MDAst. We call CG here C(MDAst).

For every object X of MDAst, i.e. for every form sequence of letters

X in natural notation (see §6.2 and §7.3), we introduce a relation R′X
between the set of occurrences of ∧ in X and the set of occurrences of ∧,
∨ and letters in X. We define xR′Xy as xRXy in §7.3 save that y need not

be an occurrence of ∨, but may be an occurrence of ∧, ∨ or of a letter (cf.

the version of Sξ
A in §8.1). More precisely, y is an occurrence of ∧, ∨ or

of a letter on the right-hand side of l(x) and on the left-hand side of r(x);

here y can also be l(x) or r(x). We define the occurrences of letters l(x)

and r(x) exactly as before (see §7.3).
Let v(X) be the word obtained from a form sequence X by deleting

every parenthesis and replacing every occurrence of ∧ or ∨ in X by a single

arbitrary new symbol γ. When for the form sequences X and Y we have

that v(X) and v(Y ) coincide, we say that X and Y are MDA-comparable.

It is clear that R′X gives rise to a relation R′vX on occurrences of symbols

in v(X) such that we have x′R′vXy
′ when x′ is the occurrence of γ in v(X)

corresponding to an occurrence x of ∧ in X, while y′ is an occurrence of γ

or of a letter p corresponding to an occurrence y of ∧, ∨ or p in X, and we

have x′R′Xy
′.

Then it can be checked that for every arrow term f : X ⊢ Y of C(MDAst)

the form sequencesX and Y areMDA-comparable and R′vY ⊆ R
′
vX . More-

over, if dL, dR or m occurs in f , then R′vY is a proper subset of R′vX ;

otherwise, R′vX
= R′vY

. For example, with mp,q : p ∧ q ⊢ p ∨ q we have

v(p ∧ q) = v(p ∨ q) = pγq, while R′vp∧q
= {(γ, p), (γ, q)} and R′vp∨q

= ∅.
A place in X is a subword of v(X). We define when subwords of MDA-
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comparable form sequences are at the same place as in §7.3 and §2.1.
We have a Remark analogous to that of §7.3 with R replaced by R′, and

a lemma analogous to the Extraction Lemma of §7.3 with DAst replaced

by MDAst and (∗) that reads:

(∗) for every occurrence x of ∧ in Xi and every occurrence y of ∧,
∨ or of a letter in Xi, where i ∈ {1, 2}, if x′ is an occurrence

of ∧ in X at the same place where X1 z X2 has x, while y′ is an

occurrence of ∧, ∨ or of a letter in X at the same place where

X1 z X2 has y, and x′R′Xy
′, then xR′Xi

y.

A more precise formulation of (∗) in the Extraction Lemma of §7.3 would

be analogous to this version of (∗), but there we identified x and y with x′

and y′. Note that here X and X1 z X2 are comparable and not only MDA-

comparable. This means that y and y′ are occurrences of the same symbol.

The proofs of the Extraction Lemma of §7.3 and of its analogue for MDAst

do not involve the transformation m. They are based on considerations

concerning l(x) and r(x), which are the same both for the relation R and

for the relation R′.

With the help of this analogue of the Extraction Lemma, we can prove

the following analogue of the Theoremhood Proposition of §7.3.

Theoremhood Proposition. There is an arrow term f : X ⊢ Y of

C(MDAst) iff X and Y are MDA-comparable form sequences and R′vY
⊆

R′vX
.

Proof. We enlarge the proof of the Theoremhood Proposition of §7.3. If

n > 1 and Y is Y1 z Y2 for z an occurrence of ∨, then there is no guarantee

that X has an occurrence of ∨ at the same place. If it has it, then we

proceed as before, applying the analogue of the Extraction Lemma. If, on

the other hand, X has an occurrence u of ∧ at that place, then we first take

an arrow term h : X ⊢ X ′ of C(MDAst) made of m, 1 and the operations

∧ and ∨ on arrow terms such that X ′ differs from X just by having an

occurrence of ∨ instead of u. It is clear that if we exclude from R′vX all

those pairs (u′, y′), where u′ corresponds to u in v(X), then we obtain R′vX′ .

We continue again as in the proof of the Theoremhood Proposition of §7.3,
and f is (f1 ∨ f2) ◦ g ◦h. ⊣
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For a form sequence X, let d(X) be now the cardinality of R′X . We can

prove the following.

Mix-Net Coherence. The category MDA is a preorder.

Proof. We proceed as in the proof of Net Coherence in §7.3 with the

following additional cases.

(Lm) The head of f1 is dLE,F,G and the head of g1 is mH,I . Due to the

presence of (
∨
bmL), we may assume that I is not of the form (X1. . . Xn,∨),

and so I cannot be F ∨ G. It remains to consider subcases analogous

to (LL1) and (LL2), which are settled with the help of bifunctorial and

naturality equations.

(Rm) The head of f1 is dRG,F,E and the head of g1 is mI,H . Here we

invoke (
∨
bmR), and deal as in (Lm).

(mm) The head of f1 is mE,F and the head of g1 is mH,I . Due to the

presence of (
∧
b mL) and (

∧
b mR), we may assume that E, F , H and I are

not of the form (X1. . . Xn,∧). So, with the previous assumption based

on (
∨
b mL) and (

∨
b mR), they must be occurrences of letters. We have the

following subcase.

(mm1) The occurrence of letter F coincides with H. Then by (bm),

(m nat), (
∨
bmL) and (

∨
bmR) we have

(1E ∨mF,I) ◦ dRE,F,I
◦ (mE,F ∧ 1I) = (mE,F ∧ 1I) ◦ dLE,F,I

◦ (1E ∨mF,I).

We continue reasoning by applying the Theoremhood Proposition of this

section. The remaining subcases are settled with the help of bifunctorial

and naturality equations. ⊣

§8.4. Coherence of mix-symmetric net categories

To obtain the natural logical category MDS, we have that the logical sys-

tem C(MDS) is in L∧,∨, with the transformations α included in 1, b, c,

d and m. The specific equations of E(MDS) are obtained by taking the

union of those of E(MDA) and E(DS) plus

(cm) mB,A ◦
∧
cA,B =

∨
cB,A ◦mA,B .
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We call natural MDS-categories mix-symmetric net categories.

With 3 as in §8.1, the equation (cm) amounts to the equation

(g3 f) ◦
∧
cA,B =

∨
cE,D ◦ (f 3 g).

In the arrow terms of C(MDS) we write d instead of dL, as we did for

C(DS), and we take dR as defined by the equation (dRc) of §7.6. Among

the specific equations (
∧
bmL), (

∨
bmL), (

∧
bmR) and (

∨
bmR) of E(MDA) (see

§8.3), it is enough to keep (
∧
b mL) and (

∨
b mL); the equations (

∧
b mR) and

(
∨
bmR) are derivable.

We build the syntactical category GMDS in the syntactical system

C(GMDS) out of MDS as we built GDS out of DS in §§7.6-7. The only

difference is that we replace everywhere DS by MDS. As before, it is

enough to prove that GMDS is a preorder in order to infer the following.

Mix-Symmetric Net Coherence. The functor G from MDS to Rel is

faithful.

We define the Gentzen terms for arrows of GMDS as for GDS, in §7.7,
with the following additional Gentzen operation:

f : U ⊢ Z g : Y ⊢W

mix (f, g) =dn (f ∨ g) ◦mU,Y : U ∧ Y ⊢ Z ∨W

An alternative notation for mix (f, g) is f 3 g, which we used in §§8.1-2,
but mix (f, g) is handier in the present context. Note that due to (cm) we

have mix (f, g) = mix (g, f) in GMDS. So we will consider the terms on

the two sides of this equation as the same Gentzen term.

Then by enlarging the proof of the Gentzenization Lemma of §7.7 we

can prove that every arrow of GMDS is denoted by a Gentzen term. The

only addition is that mX,Y = mix (1X ,1Y ).

In the definition of depth of §7.7, we now have that γ can be also mix .

The notions of cut-free Gentzen term, topmost cut, rank and complexity

of a topmost cut are exactly as in §7.7. We can then prove as follows the

Cut-Elimination Theorem where GDS is replaced by GMDS.

Proof of the Cut-Elimination Theorem for GMDS. We proceed as

in the proof of §7.7 until we suppose that the complexity of the topmost cut
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cutX(f, g) is (m,n) with m,n ≥ 1. Then we have the following additional

case.

(∧6) The form set X is of colour ∧ (it may be of the form X1 ∧X2 or p)

and f is mix (f1, f2). So we have

f1 : U1 ⊢ X ∨ V1 f2 : U2 ⊢ V2
mix (f1, f2) : U1 ∧ U2 ⊢ X ∨ V1 ∨ V2 g : X ∧ Y ⊢W

cutX(mix (f1, f2), g) : U1 ∧ U2 ∧ Y ⊢W ∨ V1 ∨ V2

Then consider the Gentzen term

f1 : U1 ⊢ X ∨ V1 g : X ∧ Y ⊢W

cutX(f1, g) : U1 ∧ Y ⊢W ∨ V1 f2 : U2 ⊢ V2
mix (cutX(f1, g), f2) : U1 ∧ U2 ∧ Y ⊢W ∨ V1 ∨ V2

We show that

(∗∗∗) cutX(mix (f1, f2), g) = mix (cutX(f1, g), f2),

and the complexity (m,n−1) of the topmost cut cutX(f1, g) is lower than

(m,n), so that we may apply the induction hypothesis.

To show the equation (∗∗∗), we have to show

(g ∨ 1V1∨V2) ◦ dY,X,V1∨V2
◦ ((mX∨V1,V2

◦ (f1 ∧ f2)) ∧ 1Y ) =

mW∨V1,V2
◦ (((g ∨ 1V1) ◦ dY,X,V1

◦ (f1 ∧ 1Y )) ∧ f2).

To derive this equation for GMDS, we use essentially (
∧
bmL) of the preced-

ing section and (cm) (forGMDS, the latter equation readsmX,Y = mY,X).

We have to consider also subcases where we have f1 : U1 ⊢ X or g : X ⊢
W . In all of them, (∗∗∗) amounts to equations simpler than the equation

above, which all hold in GMDS.

If in cutX(f, g) with complexity (m,n) where m,n ≥ 1 the form set X

is of colour ∨ and g is mix (g1, g2), then we have an additional case treated

dually to (∧6). In that case, the equation (
∨
bmL) of the preceding section,

together with (cm), plays an essential role. ⊣

To prove the analogue of the Invertibility Lemmata of §7.8 for GMDS

we need the following equations of GMDS:
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(∧mix) ∧X,Y (mix (f, h), g) = mix (∧X,Y (f, g), h)

for f of type U ⊢ X ∨ V or U ⊢ X, and

(∨mix) ∨X,Y (mix (f, h), g) = mix (∨X,Y (f, g), h)

for f of type X ∧ V ⊢ U or X ⊢ U . To derive these equations for GMDS

we use essentially (
∧
bmL) and (

∨
bmL) of the preceding section.

Note that (∧mix) and (∨mix) hold just with the types indicated for f .

For other types, analogous equations need not hold; take, for example,

∧p∨q,r(mix (1p,1q),1r) : p ∧ q ∧ r ⊢ (p ∨ q) ∧ r.

We will need also the following equation:

(mixmix) mix (mix (f, g), h) = mix (f,mix (g, h)),

which we derive for GMDS with the help of the equation (bm) of §8.2 (see

the preceding section).

We define inductively the following abbreviation:

Mix (f) =df f,
Mix (f1, . . . , fk−1, fk) =df mix (Mix (f1, . . . , fk−1), fk), for k ≥ 2.

Due to the equation (mixmix), for k ≥ 2 we could have also

Mix (f1, . . . , fk−1, fk) =df mix (f1,Mix (f2, . . . , fk)).

With the help of (∧mix), (∨mix) and (mixmix) we can derive forGMDS

the following equations:

(∧Mix) ∧X,Y (Mix (f, f1, . . . , fn),Mix (g, g1, . . . , gm)) =

Mix (∧X,Y (f, g), f1, . . . , fn, g1, . . . , gm)

where n,m ≥ 0 (if n = 0, then f1, . . . , fn is just omitted, and analogously if

m = 0), while f is of type U ⊢ X ∨V or U ⊢ X, and g is of type W ⊢ Y ∨S
or W ⊢ Y . We have also the equation (∨Mix) where ∧ is replaced by ∨,
while f is of type X ∧ V ⊢ U or X ⊢ U , and g is of type Y ∧ S ⊢ W or

Y ⊢W .
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The Splitting Remark of §7.8 holds for GMDS as it holds for GDS.

Note that the splittability of f need not entail the splittability of ∧Z,U (f, g).

A counterexample is provided with mix (1p,1q) : p∧q ⊢ p∨q, which is split-

table, and ∧p∨q,r(mix (1p,1q),1r), mentioned above, which is not splittable.

A cut-free Gentzen term f for arrows ofGMDS such that every subterm

ξX,Y (f1, f2) of f for ξ ∈ {∧,∨} is not splittable is called split-normalized.

Let the quantity of letters for an arrow f : X ⊢ Y of GMDS be the

cardinality of let (X), as for GDS in §7.8. We can prove the following.

Split-Normalization Lemma. For every Gentzen term h for arrows of

GMDS there is a split-normalized Gentzen term h′ such that h = h′ in

GMDS.

Proof. We proceed by induction on the quantity of letters in h. In the

basis of the induction, when this quantity is 1 and h = 1p : p ⊢ p, the

lemma holds trivially.

Suppose that h is equal inGMDS to a cut-free Gentzen term ∧Z,U (f, g)

with f and g of the same types as in the Splitting Remark of §7.8, and with

the total split mentioned there. Then we apply the induction hypothesis to

f and g to obtain f ′ and g′ split-normalized. If ∧Z,U (f
′, g′) is not splittable,

we are done. If ∧Z,U (f
′, g′) is splittable, then we proceed as follows.

If n ≥ 1, then the cut-free Gentzen term f ′ is splittable and can be

written in the form Mix (u, u1, . . . , un) with u of type X ⊢ Z or X ⊢ Z ∨R′

and ui : Xi ⊢ Yi, for i ∈ {1, . . . , n} and all of u, u1, . . . , un split-normalized.

To put f ′ in this form, we may need to use (mixmix), and we also use the fact

that the subterms of a split-normalized Gentzen term are split-normalized.

Here ui is not splittable and is not of the form mix (u′, u′′), but u may

be splittable. If u is splittable, and is hence of the form mix (u′, u′′) with

u′ : X ′ ⊢ Y ′ and u′′ : X ′′ ⊢ Y ′′, then we must have let (Z)∩ let (Y ′) ̸= ∅ and
let (Z) ∩ let (Y ′′) ̸= ∅. This follows from the Splitting Remark. If n = 0,

then f ′ is not splittable, and can be written as Mix (f).

We put g′ analogously in the form Mix (v, v1, . . . , vm), and we apply

(∧Mix) to obtain that ∧Z,U (f, g) is equal to

Mix (∧Z,U (u, v), u1, . . . , un, v1, . . . , vm),

which is split-normalized, because ∧Z,U (u, v) is not splittable. If ∧Z,U (u, v)
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were splittable, then by the Splitting Remark, either u, which is split-

normalized, would be of the form mix (u′, u′′) with u′ : X ′ ⊢ Y ′, u′′ : X ′′ ⊢
Y ′′ and let (Z)∩ let (Y ′) = ∅ or let (Z)∩ let (Y ′′) = ∅, or v would be of such

a form, which is impossible, as we said above.

We proceed analogously if h is equal in GMDS to a cut-free Gentzen

term ∨Z,U (f, g). If h is equal in GMDS to a cut-free Gentzen term

mix (f, g), then we just apply the induction hypothesis to f and g. ⊣

The Invertibility Lemma for ∧ is formulated for GMDS as in §7.8,
save that we assume for f not only that it is cut-free, but that it is split-

normalized too. The proof of this lemma proceeds, as before, by induction

on the length of f . In the induction step, when f is ∧Y a,Y b(fa, f b) or

∨Y a,Y b(fa, f b), we work as in the proof in §7.8, save that when we elimi-

nated some cases by appealing to the Split Corollary, now these cases are

eliminated by appealing to the fact that f is split-normalized, and hence

not splittable. It remains to consider the case where f is mix (fa, f b). It

is, however, easy to conclude that we may apply the induction hypothesis

either to fa or to f b in order to obtain a cut-free Gentzen term ∧X1,X2(g, h)

equal to this term in GMDS. Then we apply (∧mix).

We proceed analogously to prove the Invertibility Lemma for ∨ for

GMDS. We also have for GMDS the following new lemma of the same

kind.

Invertibility Lemma for mix . If f : U1 ∧ U2 ⊢ Z1 ∨ Z2 is a split-

normalized Gentzen term such that let (Ui) = let (Zi) for i ∈ {1, 2}, then
there are two split-normalized Gentzen terms f1 : U1 ⊢ Z1 and f2 : U2 ⊢ Z2

such that f = mix (f1, f2).

Proof. We proceed by induction on the length of f . The basis of this

induction, when f is 1p, is trivial, as before.

For the induction step, because f is split-normalized, f must be of the

form mix (fa, f b) for fa : W a ⊢ Ra and f b : W b ⊢ Rb. Then we have the

following cases:

(1) W a is U1 and W b is U2,

(2) W a is U1 ∧ Ua
2 and W b is U b

2 , for U2 being Ua
2 ∧ U b

2 ,
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(3) W a is Ua
1 ∧ Ua

2 and W b is U b
1 ∧ U b

2 , for Ui being U
a
i ∧ U b

i , where

i ∈ {1, 2},

and cases analogous to these. In case (1), we take fa for f1 and f b for

f2. In case (2), we apply the induction hypothesis to fa to obtain a split-

normalized Gentzen termmix (fa′, fa′′) equal to fa inGMDS for fa′ : U1 ⊢
Z1 and fa′′ : Ua

2 ⊢ Za
2 . Then we take f1 and f2 to be fa′ and mix (fa′′, f b),

respectively, and we apply (mixmix). In case (3), we proceed analogously,

by applying (mixmix) three times (cf. the proof of the Invertibility Lemma

for ∧ in §7.8). ⊣

We can now prove Cut-Free Preordering of §7.8 for GMDS. The

proof is analogous to the proof of §7.8, with an additional case when f1

is mix (f ′1, f
′′
1 ), which is settled with the help of the Invertibility Lemma for

mix . As a corollary of the Cut-Elimination Theorem for GMDS and of

Cut-Free Preordering for GMDS, we obtain that the category GMDS is

a preorder, which implies Mix-Symmetric Net Coherence.

§8.5. Coherence of mix-symmetric biassociative cate-
gories

To obtain the natural logical category MS, we have that the logical system

C(MS) is in L∧,∨, with the transformations α included in 1, b, c andm. The

specific equations of E(MS) are obtained by taking the union of those of

E(MA) and E(S) plus the equation (cm). SoMS is analogous toMDS, but

with d missing. We call natural MS-categories mix-symmetric biassociative

categories.

We can prove the following.

Mix-Symmetric Biassociative Coherence. The functor G from MS

to Rel is faithful.

We prove this assertion as for MDS via a Cut-Elimination Theorem and

Invertibility Lemmata. We keep in the proofs of the preceding section just

the easy cases.

We do not consider here something that would be called mix-bimonoidal

categories, symmetric or not symmetric, dissociative or not dissociative.
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(Some kinds of mix-dissociative bimonoidal categories are considered in

[23], Sections 6-7.) We have left open in §7.9 the problem of what axioms

should be added to those of linearly distributive categories in order to ob-

tain coherence with respect to Rel. Mix brings in its own problems in the

presence of ⊤ and ⊥. These problems remain in the next two chapters, and

will disappear in Chapter 11 and later.





Chapter 9

Lattice Categories

This chapter is about coherence for categories with a double cartesian struc-

ture, i.e. with finite products and finite coproducts. We take this as a cate-

gorification of the notion of lattice. As before, we distinguish cases with and

without special objects, which are here the empty product and the empty

coproduct, i.e. the terminal and initial objects. The results presented are

taken over from [46], [48] and the revised version of [47].

We pay particular attention in this chapter to questions of maximal-

ity, i.e. to the impossibility of extending our axioms without collapse into

preorder, and hence triviality. This maximality is a kind of syntactical

completeness. (The sections on maximality, §9.3, §9.5 and §9.7, improve

upon results reported in [46], [48] and [47].)

The techniques of this chapter are partly based on a composition elimi-

nation for conjunctive logic, related to normalization in natural deduction,

and on a simple composition elimination for conjunctive-disjunctive logic,

implicit in Gentzen’s cut elimination.

§9.1. Coherence of semilattice categories

To obtain the natural logical category
∧
L, we have that the logical system

C(
∧
L) is in L∧, with the transformations α included in 1,

∧
b,

∧
c and

∧
w-

∧
k. The

specific equations of E(
∧
L) are those of E(

∧
S) plus

185
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(
∧
b

∧
w)

∧
b→A,A,A

◦ (1A ∧
∧
wA) ◦

∧
wA = (

∧
wA ∧ 1A) ◦

∧
wA,

(
∧
c

∧
w)

∧
cA,A ◦

∧
wA =

∧
wA,

for
∧
cmA,B,C,D =df

∧
b→A,C,B∧D ◦ (1A ∧ (

∧
b←C,B,D

◦ (
∧
cB,C ∧1D) ◦

∧
b→B,C,D)) ◦

∧
b←A,B,C∧D

of type (A ∧B) ∧ (C ∧D) ⊢ (A ∧ C) ∧ (B ∧D),

(
∧
b

∧
c

∧
w)

∧
wA∧B =

∧
cmA,A,B,B

◦ (
∧
wA ∧

∧
wB),

(
∧
b

∧
k) (

∧
k1A,B ∧ 1C) ◦

∧
b→A,B,C = 1A ∧

∧
k2B,C ,

(
∧
c

∧
k)

∧
k2A,B =

∧
k1B,A

◦
∧
cA,B ,

(
∧
w

∧
k)

∧
kiA,A

◦
∧
wA = 1A, for i ∈ {1, 2}.

We call natural
∧
L-categories semilattice categories. Usually, they are

called categories with finite nonempty products. The objects of a semilat-

tice category that is a partial order make a semilattice.

The equation (
∧
b

∧
c

∧
w) is the octagonal equation of [43] (Section 2) and [44]

(Section 1) (cf. [53], Proposition 3.29, p. 235, and, for
∧
cm, cf. [55], Section

III.3, p. 517).

The equation (
∧
b

∧
k) is related to the equation (

∧
b

∧
δ

∧
σ) of §4.6. By using

essentially this equation, we derive for
∧
L the equations

(
∧
b

∧
k1)

∧
k1A∧B,C = (1A ∧

∧
k1B,C) ◦

∧
b←A,B,C ,

(
∧
b

∧
k2)

∧
k2C,B∧A = (

∧
k2C,B ∧ 1A) ◦

∧
b→C,B,A,

which are related respectively to the equations (
∧
b

∧
δ ) and (

∧
b

∧
σ) of §4.6. To

derive (
∧
b

∧
k1), we derive first

∧
k1A∧B,C ∧1(A∧B)∧C = ((1A ∧

∧
k1B,C) ◦

∧
b←A,B,C) ∧ 1(A∧B)∧C

with the help of (
∧
b 5) of §4.2 and other equations; since for f : E ⊢ D we

have
∧
k1D,E

◦ (f ∧ 1E) ◦
∧
wE = f , we have (

∧
b

∧
k1). We proceed analogously for

(
∧
b

∧
k2). Conversely, from (

∧
b

∧
k1) and (

∧
b

∧
k2) we can derive (

∧
b

∧
k) with the help

of (
∧
b

∧
c) from §5.1 and (

∧
c

∧
k).

The equation (
∧
c

∧
k), which is related to the equation (

∧
c

∧
δ

∧
σ) of §5.3, says

that
∧
k1 and

∧
k2 are interdefinable. In the presence of (

∧
c

∧
w) and (

∧
c

∧
k), we can
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derive
∧
k2A,A

◦
∧
wA = 1A from

∧
k1A,A

◦
∧
wA = 1A, and vice versa, so that instead

of (
∧
w

∧
k) we could have assumed just one of these two equations.

We can also derive for
∧
L the equation

(
∧
w

∧
k

∧
k) (

∧
k1A,B ∧

∧
k2A,B) ◦

∧
wA∧B = 1A∧B.

For that we use (
∧
b

∧
c

∧
w), (

∧
b

∧
k), (

∧
b

∧
k1), (

∧
b

∧
k2), (

∧
c

∧
k) and (

∧
w

∧
k).

For fi : C ⊢ Ai, where i ∈ {1, 2}, we have in C(
∧
L) the definition

(⟨ , ⟩) ⟨f1, f2⟩ =df (f1 ∧ f2) ◦
∧
wC .

Then for f : A ⊢ D and g : B ⊢ E the following equations hold in
∧
L:

(∧) f ∧ g = ⟨f ◦
∧
k1A,B , g ◦

∧
k2A,B⟩,

(
∧
b→)

∧
b→A,B,C = ⟨1A ∧

∧
k1B,C ,

∧
k2B,C

◦
∧
k2A,B∧C⟩,

(
∧
b←)

∧
b←C,B,A = ⟨

∧
k1C,B

◦
∧
k1C∧B,A,

∧
k2C,B ∧1A⟩,

(
∧
c)

∧
cA,B = ⟨

∧
k2A,B ,

∧
k1A,B⟩,

(
∧
w)

∧
wA = ⟨1A,1A⟩.

This shows that with the operation ⟨ , ⟩ on arrow terms primitive, together

with
∧
ki, where i ∈ {1, 2}, we could take the arrow terms on the left-hand

sides of these equations as defined. With these alternative primitives, all

the equations of E(
∧
L) can be derived from the categorial equations and the

following equations of E(
∧
L):

(∧β)
∧
kiA1,A2

◦ ⟨f1, f2⟩ = fi,

(∧η) ⟨
∧
k1A1,A2

◦h,
∧
k2A1,A2

◦h⟩ = h,

for h : C ⊢ A1 ∧ A2 (for these equations see [90], Section I.3). In other

words, we would obtain a syntactical system synonymous with C(
∧
L) (see

the end of §2.4 for this notion of synonymity).

Another alternative is to have
∧
ki and

∧
w primitive, together with the

operation ∧ on arrow terms. Then we can assume, besides categorial, bi-

functorial and naturality equations, the equations (
∧
w

∧
k) and (

∧
w

∧
k

∧
k) in order

to obtain a logical system synonymous with C(
∧
L).

Synonymity with these alternative syntactical systems can be demon-

strated directly, but this is a lengthy exercise. The coherence result for
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semilattice categories we are going to prove will easily yield this synonymity

in an indirect way.

We introduce next still another syntactical system synonymous with

C(
∧
L), which will be formulated in the style of Gentzen, and will enable us to

prove a composition-elimination result, i.e. a simple kind of cut-elimination

result, such as we had in §8.1. Let C(G
∧
L) be the syntactical system with

formulae of L∧ as objects, with the primitive arrow terms being only iden-

tity arrow terms, and with the following operations on arrow terms, besides

the operation ◦ :

f1 : C ⊢ A1 f2 : C ⊢ A2

⟨f1, f2⟩ : C ⊢ A1 ∧A2

g1 : A1 ⊢ C
∧
K1

A2
g1 : A1 ∧A2 ⊢ C

g2 : A2 ⊢ C
∧
K2

A1
g2 : A1 ∧A2 ⊢ C

To obtain the equations of E(G
∧
L), we assume the categorial equations and

the following equations, for i ∈ {1, 2}:

(
∧
K1) g ◦

∧
Ki

A f =
∧
Ki

A (g ◦ f),

(
∧
K2)

∧
Ki

A g ◦ ⟨f1, f2⟩ = g ◦ fi,

(
∧
K3) ⟨g1, g2⟩ ◦ f = ⟨g1 ◦ f, g2 ◦ f⟩,

(
∧
K4) 1A∧B = ⟨

∧
K1

B 1A,
∧
K2

A1B⟩,

with appropriate types assigned to f , g, fi and gi. The equation (
∧
K2) is

related to (∧β), while (
∧
K3) and (

∧
K4) are related to (∧η). The syntactical

category G
∧
L is C(G

∧
L)/E(G

∧
L).

It is a straightforward, though somewhat lengthy, exercise to check that

with the definitions corresponding to the equations (∧), (
∧
b→), (

∧
b←), (

∧
c),

(
∧
w), and the additional definitions

∧
k1A1,A2

=df

∧
K1

A2
1A1

,
∧
k2A1,A2

=df

∧
K2

A1
1A2

,

on the one hand, and the definitions (⟨ , ⟩) and

∧
K1

A2
g1 =df g1 ◦

∧
k1A1,A2

,
∧
K2

A1
g2 =df g2 ◦

∧
k2A1,A2

,
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on the other hand, we can prove that
∧
L and G

∧
L are isomorphic categories,

and that hence C(
∧
L) and C(G

∧
L) are synonymous syntactical systems.

We can prove as follows Composition Elimination (see §8.1) for G
∧
L.

Proof of Composition Elimination for G
∧
L. Take a subterm g ◦ f of

an arrow term of C(G
∧
L) such that both f and g are composition-free. We

call such a subterm a topmost cut. We show that g ◦ f is equal either to a

composition-free arrow term or to an arrow term all of whose compositions

occur in topmost cuts of strictly smaller length than the length of g ◦ f .

The possibility of eliminating composition in topmost cuts, and hence every

composition, follows by induction on the length of topmost cuts.

The cases where f or g are 1A are taken care of by (cat 1); the cases

where f is
∧
Ki

A f
′ are taken care of by (

∧
K1); and the case where g is ⟨g1, g2⟩

is taken care of by (
∧
K3). The following cases remain.

If f is ⟨f1, f2⟩, then g is either of a form covered by cases above, or g is
∧
Ki

A g
′, and we apply (

∧
K2). ⊣

Note that we do not use the equations (cat 2) and (
∧
K4) in this proof.

An arrow term of C(G
∧
L) is said to be in normal form when it is

composition-free and there are no subterms of it of the forms 1A∧B and
∧
Ki

A ⟨f, g⟩. In G
∧
L we have the equations (

∧
K4) and, for i ∈ {1, 2},

(
∧
K5)

∧
Ki

A ⟨f, g⟩ = ⟨
∧
Ki

A f,
∧
Ki

A g⟩,

which is obtained with the help of (cat 1), (
∧
K1) and (

∧
K3). With Composi-

tion Elimination and these equations, it can be shown that for every arrow

term of C(G
∧
L) there is an arrow term f ′ of C(G

∧
L) in normal form such

that f = f ′ in G
∧
L. Namely, the following holds for G

∧
L.

Normal-Form Lemma. Every arrow term is equal to an arrow term in

normal form.

(The proof of this lemma is incorporated in the proof of the Normal-Form

Lemma for G
∧
L⊤ in the next section.)

The functor G from
∧
L to Rel yields with the isomorphism from G

∧
L to

∧
L a functor, which we also call G, from G

∧
L to Rel. We can then prove the

following for arrow terms of C(G
∧
L).
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Uniqueness Lemma. For every arrow term f there is a unique arrow term

f ′ in normal form such that Gf = Gf ′.

Proof. Let f be of type A ⊢ B. It follows from the Normal-Form Lemma

and the functoriality of G that there is at least one arrow term f ′ in normal

form such that Gf = Gf ′. To show that f ′ is unique we proceed by

induction on the number n(B) of occurrences of ∧ in B.

If n(B) = 0, then we make an auxiliary induction on n(A). If n(A) = 0,

then f ′ can be only of the form 1p. If n > 0, then A must be of the form

A1 ∧ A2, and f
′ can be only of the form

∧
K1

A2
g or

∧
K2

A1
h. Since there are

no g and h such that G
∧
K1

A2
g = G

∧
K2

A1
h, the arrow term f ′ is uniquely

determined.

Suppose now n(B) > 0. Then B must be of the form B1 ∧ B2, and f
′

can be only of the form ⟨f1, f2⟩ for f1 : A ⊢ B1 and f2 : A ⊢ B2 arrow terms

in normal form. We have that

G
∧
K1

B2
f = G

∧
K1

B2
⟨f1, f2⟩ = Gf1,

and so, by the induction hypothesis, f1 is unique. Analogously, G
∧
K2

B1
f =

Gf2, and f2 is unique. So ⟨f1, f2⟩ is unique. ⊣

(This Uniqueness Lemma is analogous, but not completely analogous, to

the homonymous lemma of §5.2: in the former lemma we do not presuppose

the Normal-Form Lemma, while in the formulation of the present one we

do. Since, however, we have the Normal-Form Lemma in both cases, the

difference is more in the style of exposition than in mathematical content.)

We can then prove the following (for references concerning this result,

see the references mentioned in the next section before Cartesian Coher-

ence).

Semilattice Coherence. The functor G from
∧
L to Rel is faithful.

Proof. We prove that the functor G from G
∧
L to Rel is faithful. This

yields Semilattice Coherence.

Suppose that for f1, f2 : A ⊢ B arrow terms of C(G
∧
L) we have Gf1 =

Gf2. By the Normal-Form Lemma, for i ∈ {1, 2}, there is an arrow term

f ′i in normal form such that fi = f ′i . Then from Gf ′1 = Gf1 = Gf2 = Gf ′2
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and the Uniqueness Lemma we conclude that f ′1 and f ′2 are the same arrow

term, and hence f1 = f2 in G
∧
L. ⊣

§9.2. Coherence of cartesian categories

To obtain the natural logical category
∧
L⊤, we have that the logical system

C(
∧
L⊤) is in L∧,⊤, with the transformations α included in 1,

∧
b,

∧
c,

∧
w-

∧
k and

∧
δ -

∧
σ . The specific equations of E(

∧
L⊤) are obtained by taking the union of

those of E(
∧
L) and E(

∧
S⊤) plus

(
∧
k

∧
δ )

∧
k1A,⊤ =

∧
δ→A .

There are some redundancies in this axiomatization. The equation

(
∧
b

∧
δ

∧
σ) is derivable with the help of (

∧
b

∧
k). In E(

∧
L⊤) we can derive the

following:

(
∧
w

∧
δ )

∧
w⊤ =

∧
δ←⊤ .

Natural
∧
L⊤-categories are called cartesian categories. These are cate-

gories with all finite products, including the empty product. The objects

of a cartesian category that is a partial order make a semilattice with unit.

In C(
∧
L⊤) we have the definition

∧
κA =df

∧
k2A,⊤ ◦

∧
δ←A ,

and for
∧
L⊤ we have the equations (

∧
κ nat) and

(
∧
κ1)

∧
κ⊤ = 1⊤.

The equations (
∧
κ nat) and (

∧
κ1) amount to

(
∧
κ)

∧
κA = f, for f : A ⊢ ⊤,

which says that ⊤ is a terminal object in
∧
L⊤ (see §2.2 for the notion of

terminal object).

A logical system synonymous with C(
∧
L⊤) is obtained by taking as prim-

itive
∧
κ instead of

∧
δ -

∧
σ . This is based on the following equations of

∧
L⊤:
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∧
δ←A = ⟨1A,

∧
κA⟩,

∧
σ←A = ⟨∧κA,1A⟩.

Another alternative logical system synonymous with C(
∧
L⊤) is obtained

by taking as primitives
∧
δ -

∧
σ and

∧
κ instead of

∧
k1 and

∧
k2. This is based on

the following equations of
∧
L⊤:

∧
k1A,B =

∧
δ→A ◦ (1A ∧

∧
κB),

∧
k2A,B =

∧
σ→B ◦ (

∧
κA ∧ 1B).

If the operation ⟨ , ⟩ is primitive together with
∧
k1 and

∧
k2, then we can

take
∧
κ as primitive, and assume besides the categorial equations, (∧β) and

(∧η) just (∧
κ).

Let C(G
∧
L⊤) be the syntactical system defined as C(G

∧
L) save that L∧ is

replaced by L∧,⊤, and besides identity arrow terms we have the arrow terms
∧
κA: A ⊢ ⊤ as primitive arrow terms. The equations of E(G

∧
L⊤) are those of

E(G
∧
L) plus (

∧
κ). The syntactical category G

∧
L⊤ is C(G

∧
L⊤)/E(G

∧
L⊤). It is

easy to ascertain that
∧
L⊤ and G

∧
L⊤ are isomorphic, and that hence C(

∧
L⊤)

and C(G
∧
L⊤) are synonymous syntactical systems.

We can prove Composition Elimination for G
∧
L⊤ by enlarging the proof

of the preceding section. The additional cases are where g is
∧
κA, which is

taken care of by (
∧
κ), and where f is

∧
κA. In the latter case, g is either 1⊤,

or
∧
κ⊤, or ⟨g1, g2⟩, which are cases already covered.

An arrow term of C(G
∧
L⊤) is said to be in normal form when it is

composition-free and has no subterms of the forms 1A∧B ,
∧
Ki

A ⟨f, g⟩, 1⊤
and

∧
Ki

A
∧
κB . Then we can prove the Normal-Form Lemma of the preceding

section for G
∧
L⊤.

Proof of the Normal-Form Lemma for G
∧
L⊤. In G

∧
L⊤ we have the

equations (
∧
K4) and (

∧
K5) of the preceding section, and also

1⊤ =
∧
κ⊤,

∧
K1

B
∧
κA =

∧
κA∧B,

∧
K2

A
∧
κB =

∧
κA∧B,
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which are all instances of (
∧
κ) (the first of these equations is (

∧
κ1)).

For f a composition-free arrow term of C(G
∧
L⊤), let n1 be the number

of occurrences of ∧ and ⊤ in the indices of subterms of f that are identity

arrow terms. Next, let n2 be the number of subterms of f of the form

⟨f1, f2⟩ or
∧
κC such that there is a subterm

∧
Ki

D f
′ of f with ⟨f1, f2⟩ or

∧
κC

a subterm of f ′. Let the grade of f be (n1, n2), and let these grades be

lexicographically ordered (see §7.7, before the Cut-Elimination Theorem).

Then every replacement of subterms of f justified by one of the equations

above reduces the grade of f , and so by induction we obtain that there is

an arrow term f ′ of C(G
∧
L⊤) in normal form such that f = f ′ in G

∧
L⊤. It

remains only to appeal to Composition Elimination for G
∧
L⊤ to obtain the

Normal-Form Lemma. ⊣

As in the preceding section, we obtain the functor G from G
∧
L⊤ to Rel,

with which we can prove the Uniqueness Lemma of the preceding section

for G
∧
L⊤.

Proof of the Uniqueness Lemma for G
∧
L⊤. We proceed by induction

n(B) with an auxiliary induction on n(A) in the basis, as in the proof of

the preceding section. If n(B) = n(A) = 0, then f ′ can be either of the

form 1p, or
∧
κp, or

∧
κ⊤, which exclude each other because of their types.

If n(B) = 0 and n(A) > 0, then f ′ can be either of the form
∧
K1

A2
g, or

∧
K2

A1
h or

∧
κA, which exclude each other because of their types or for reasons

mentioned in the proof of the preceding section. For that we use the fact,

easily shown by induction on the length of A, that
∧
κA is the only arrow

term in normal form of type A ⊢ ⊤, and the fact that Gf is a function

from GB to GA. For the rest of the proof we proceed as in the preceding

section. ⊣

We can then infer as in the preceding section the following result, which

stems from [77] (see p. 129, where the result is announced), [106] (Theorem

2.2), [128] (Theorem 8.2.3, p. 207), [108] (Section 7) and [46].

Cartesian Coherence. The functor G from
∧
L⊤ to Rel is faithful.

It is noteworthy that the functor Gmaps every arrow of
∧
L⊤ to a function
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from the target to the source. (We used that fact in the proof of the

Uniqueness Lemma of this section.) The same holds, of course, for
∧
L.

§9.3. Maximality of semilattice and cartesian categories

A natural logical category C/E is called maximal when every natural C/E-
category that satisfies an equation between arrow terms of C that is not in

E is a preorder. In other words, if E ′ is a proper extension of E , then every

natural C/E ′-category is a preorder. Maximality is an interesting property

when C/E itself is not a preorder, and we will show in this section that
∧
L

and
∧
L⊤ are maximal in this sense—in the interesting way. (We take over

these results from [46].)

The maximality property above is analogous to the property of usual

formulations of the classical propositional calculus called Post complete-

ness. That this calculus is Post complete means that if we add to it any

new axiom-schema in the language of the calculus, then we can prove every

formula. An analogue of Böhm’s Theorem in the typed lambda calculus

implies, similarly, that the typed lambda calculus cannot be extended with-

out falling into triviality, i.e. without every equation (between terms of the

same type) becoming derivable (see [117], [45] and references therein; see

[4], Section 10.4, for Böhm’s Theorem in the untyped lambda calculus).

Let us now consider several examples of common algebraic structures

with analogous maximality properties. First, we have that semilattices are

maximal in the following sense.

Let a and b be terms made exclusively of variables and of a binary

operation ·, which we interpret as meet or join. That the equation a = b

holds in a semilattice S means that every instance of a = b obtained by

substituting names of elements of S for variables holds in S (cf. §2.3).
Suppose a = b does not hold in a free semilattice SF (so it is not the case

that a = b holds in every semilattice). Hence there must be an instance

of a = b obtained by substituting names of elements of SF for variables

such that this instance does not hold in SF . It is easy to conclude that

in a = b there must be at least two variables, and that SF must have at

least two free generators. Then every semilattice in which a = b holds is

trivial—namely, it has a single element.



§9.3. Maximality of semilattice and cartesian categories 195

Here is a short proof of that. If a = b does not hold in SF , then there

must be a variable x in one of a and b that is not in the other. Then from

a = b, by substituting y for every variable in a and b different from x, and

by applying the semilattice equations, we infer either x = y or x · y = y. If

we have x = y, we are done, and, if we have x · y = y, then we have also

y · x = x, and hence x = y.

Semilattices with unit, distributive lattices, distributive lattices with

top and bottom, and Boolean algebras are maximal in the same sense. The

equations a = b in question are equations between terms made exclusively

of variables and the operations of the kind of algebra we envisage: semi-

lattices with unit, distributive lattices, etc. That such an equation holds

in a particular structure means, as above, that every substitution instance

of it holds. However, the number of variables in a = b and the number of

generators of the free structure mentioned need not always be at least two.

If we deal with semilattices with unit 1, then a = b must have at least

one variable, and the free semilattice with unit must have at least one free

generator. We substitute 1 for every variable in a and b different from x in

order to obtain x = 1, and hence triviality. So semilattices with unit are

maximal in the same sense.

The same sort of maximality can be proven for distributive lattices,

whose operations are ∧ and ∨, which we call conjunction and disjunction,

respectively. Then every term made of ∧, ∨ and variables is equal to a

term in disjunctive normal form (i.e. a multiple disjunction of multiple con-

junctions of variables; see §10.2 for a precise definition), and to a term in

conjunctive normal form (i.e. a multiple conjunction of multiple disjunc-

tions of variables; see §10.2). These normal forms are not unique. If a = b,

in which we must have at least two variables, does not hold in a free dis-

tributive lattice DF with at least two free generators, then either a ≤ b

or b ≤ a does not hold in DF . Suppose a ≤ b does not hold in DF . Let

a′ be a disjunctive normal form of a, and let b′ be a conjunctive normal

form of b. So a′ ≤ b′ does not hold in DF . From that we infer that for a

disjunct a′′ of a′ and for a conjunct b′′ of b′ we do not have a′′ ≤ b′′ in DF .

This means that there is no variable in common in a′′ and b′′; otherwise,

the conjunction of variables a′′ would be lesser than or equal in DF to the

disjunction of variables b′′. If in a distributive lattice a = b holds, then
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a′′ ≤ b′′ holds too, and hence, by substitution, we obtain x ≤ y. So x = y.

For distributive lattices with top ⊤ and bottom ⊥, we proceed analo-

gously via disjunctive and conjunctive normal form. Here a = b may be

even without variables, and the free structure may have even an empty set

of free generators. The additional cases to consider are when in a′′ ≤ b′′ we
have that a′′ is ⊤ and b′′ is ⊥. In any case, we obtain ⊤ ≤ ⊥, and hence

our structure is trivial.

The same sort of maximality can be proven for Boolean algebras, i.e.

complemented distributive lattices. Boolean algebras must have top and

bottom. In a disjunctive normal form now the disjuncts are conjunctions

of variables x or terms x̄, where ¯ is complementation, or the disjunctive

normal form is just ⊤ or ⊥; analogously for conjunctive normal forms. Then

we proceed as for distributive lattices with an equation a = b that may be

even without variables, until we reach that a′′ ≤ b′′, which does not hold

in a free Boolean algebra BF , whose set of free generators may be even

empty, holds in our Boolean algebra. If x is a conjunct of a′′, then in b′′ we

cannot have a disjunct x; but we may have a disjunct x̄. The same holds

for the conjuncts x̄ of a′′. It is excluded that both x and x̄ are conjuncts

of a′′, or disjuncts of b′′; otherwise, a′′ ≤ b′′ would hold in BF . Then for

every conjunct x in a′′ and every disjunct ȳ in b′′ we substitute ⊤ for x

and y, and for every other variable we substitute ⊥. In any case, we obtain

⊤ ≤ ⊥, and hence our Boolean algebra is trivial. This is essentially the

proof of Post completeness for the classical propositional calculus, due to

Bernays and Hilbert (see [135], Section 2.4, and [66], Section I.13), from

which we can infer the ordinary completeness of this calculus with respect

to valuations in the two-element Boolean algebra—namely, with respect to

truth tables—and also completeness with respect to any nontrivial model.

As examples of common algebraic structures that are not maximal in

the sense above, we have semigroups, commutative semigroups, lattices,

and many others. What is maximal for semilattices and is not maximal

for lattices is the equational theory of the structures in question. The

equational theory of semilattices cannot be extended without falling into

triviality, while the equational theory of lattices can be extended with the

distributive law, for example.

The maximality of
∧
L as defined at the beginning of the section differs
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from the maximality of semilattices, distributive lattices, etc., we have just

considered, because in
∧
L we have types, so that f = g is excluded if f and g

are of different types. Hence, the analogue of the trivial semilattice, which

was a one-element structure, is for categories, like
∧
L, a preorder.

The maximality of
∧
L is, of course, a quite separate result from the

maximality of semilattices we have shown above. None of these results

can be inferred from the other. After some strictification, any semilattice

category yields a semilattice category that is a partial order, and whose

objects will make a semilattice. The maximality of semilattices has to do

with these objects, while the maximality of
∧
L has to do with the arrows

between these objects. We will now proceed with the proof of the latter

maximality.

Maximality of
∧
L. The category

∧
L is maximal.

Proof. Suppose A and B are formulae of L∧ in which only p occurs as a

letter. Suppose f1, f2 : A ⊢ B are arrow terms of C(
∧
L) such that Gf1 ̸= Gf2.

As we noted after Cartesian Coherence, at the end of the preceding section,

Gf1 and Gf2 may be conceived as functions from GB to GA. So there must

be an n ∈ GB such that Gf1(n) ̸= Gf2(n). This means that we must have

GA ≥ 2 (i.e., there must be at least two occurrence of p in A), and we have,

of course, GB ≥ 1.

Then there is an arrow term hw : p ∧ p ⊢ A of C(
∧
L) made of possi-

bly multiple occurrences of arrow terms in 1,
∧
b,

∧
c and

∧
w, together with

the operations ∧ and ◦ on arrow terms, such that Ghw(Gf1(n)) = 0 and

Ghw(Gf2(n)) = 1. There is also an arrow term hk : B ⊢ p of C(
∧
L) that is

either 1p or a possibly iterated composition of arrow terms in
∧
k1 and

∧
k2

such that Ghk(0) = n. Then, for i ∈ {1, 2}, we have that hk ◦ fi ◦hw is

of type p ∧ p ⊢ p and G(hk ◦ fi ◦hw) = G
∧
kip,p. Therefore, by Composition

Elimination for G
∧
L (see §9.1) and by the functoriality of G, we obtain that

hk ◦ fi ◦hw =
∧
kip,p in

∧
L. (This follows from Semilattice Coherence too.) So

in E(
∧
L) extended with f1 = f2 we can derive the equation

(
∧
k

∧
k)

∧
k1p,p =

∧
k2p,p .

If this equation holds in a semilattice category A, then A is a preorder.
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This is shown as follows. For f, g : a ⊢ b in A we have

∧
k1b,b ◦ ⟨f, g⟩ =

∧
k2b,b ◦ ⟨f, g⟩,

and so f = g in A by the equation (∧β) of §9.1.
If for some arrow terms g1 and g2 of C(

∧
L) of the same type we have

that g1 = g2 is not in E(
∧
L), then by Semilattice Coherence (see §9.1) we

have Gg1 ̸= Gg2. If we take the substitution instances g′1 of g1 and g′2 of g2

obtained by replacing every letter by a single letter p, then we obtain again

Gg′1 ̸= Gg′2. If g1 = g2 holds in a semilattice category A, then g′1 = g′2 holds

too, and A is a preorder, as we have shown above. ⊣

We have also the following.

Maximality of
∧
L⊤. The category

∧
L⊤ is maximal.

To prove that we proceed as for
∧
L. The only modification is that in con-

structing hw we envisage also arrow terms in
∧
δ← and

∧
σ←.

Note that the maximality of
∧
L implies that in any semilattice category

A that is not a preorder we can falsify any equation between arrow terms of

C(
∧
L) that does not hold in

∧
L. This does not mean, however, that there must

be a faithful functor from
∧
L to A, which would falsify all such equations

“simultaneously”. The existence of such a functor is possible for particular

semilattice categories A, but it is another result, which does not follow from

and does not imply maximality. In the case of
∧
L and

∧
L⊤, the category Set of

sets with functions, with ∧ being cartesian product and ⊤ being a singleton,

is an A such that there is a faithful functor from
∧
L and

∧
L⊤ to A (see [30]

and [117]).

Maximality holds also trivially for all logical categories K that are pre-

orders, because we cannot extend E(K) properly in such cases. The logical

categories that are not preorders that we have considered up to now are

symmetric, i.e. they have
∧
c in C(K). Before

∧
L and

∧
L⊤, however, the sym-

metric logical categories K from previous chapters that are coherent are not

maximal, in spite of coherence, for the following reason.

All the types of arrow terms of C(K) are balanced (in the sense of §3.3).
Let the balance weight of an equation f = g where f, g : A ⊢ B are arrow

terms of C(K) be the letter length of A or B. Then it can be shown that
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if E ′ is the extension of E(K) with an equation f = g that is not in E(K),
with a single letter occurring in A (and hence also in B), and the balance

weight of f = g is n, then all the equations E ′ that are not in E(K) must

have a balance weight greater than or equal to n.

The notions of maximality envisaged in this section were extreme (or

should we say “maximal”), in the sense that we envisaged collapsing only

into preorder. (For semilattices, distributive lattices, etc., this is also pre-

order for a one-object category.) We may, however, envisage relativizing

our notion of maximality by replacing preorder with a weaker property,

such that structures possessing it are trivial, but not so trivial (cf. [38],

Section 4.11). We will encounter maximality in such a relative sense in

§9.7.
As an example of relative maximality in a common algebraic structure

we can take symmetric groups. The axioms for the symmetric group Sn,
where n ≥ 2, with the generators si, for i ∈ {1, . . . , n−1}, were given in §5.1.
If to Sn for n ≥ 5 we add an equation a = 1 where a is built exclusively of

the generators si of Sn with composition, and a = 1 does not hold in Sn,
then we can derive si = sj . This does not mean that the resulting structure

will be a one-element structure, i.e. the trivial one-element group. It will

be such if a is an odd permutation, and if a is an even permutation, then

we will obtain a two-element structure, which is S2. This can be inferred

from facts about the normal subgroups of Sn. Simple groups are maximal

in the nonrelative sense, envisaged above for semilattices.

§9.4. Coherence of lattice categories

Let
∨
L be the natural logical category in L∨ isomorphic to the category

∧
Lop

(which is
∧
L with source and target functions interchanged; see §2.2). We

just replace ∧ by ∨, so that the primitive arrow terms of C(
∨
L) are included

in 1,
∨
b,

∨
c and

∨
w-

∨
k, while the equations of E(

∨
L) are duals of those of E(

∧
L)

(see the List of Equations and the List of Categories at the end of the

book). Natural
∨
L-categories would usually be called categories with finite

nonempty coproducts.

Let C(G
∨
L) be the syntactical system with formulae of L∨ as objects,

with the primitive arrow terms being only identity arrow terms, and with
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the following operations on arrow terms, dual to those of C(G
∨
L), besides

the operation ◦ (cf. §9.1):

g1 : A1 ⊢ C g2 : A2 ⊢ C

[g1, g2] : A1 ∨A2 ⊢ C

f1 : C ⊢ A1

∨
K1

A2
f1 : C ⊢ A1 ∨A2

f2 : C ⊢ A2

∨
K2

A1
f2 : C ⊢ A1 ∨A2

To obtain the equations of E(G
∨
L), we assume the categorial equations and

the following equations for i ∈ {1, 2}, obtained by dualizing the equations

(
∧
K1)-(

∧
K4) of §9.1:

(
∨
K1)

∨
Ki

A g ◦ f =
∨
Ki

A (g ◦ f),

(
∨
K2) [g1, g2] ◦

∨
Ki

A f = gi ◦ f,

(
∨
K3) g ◦ [f1, f2] = [g ◦ f1, g ◦ f2],

(
∨
K4) 1A∨B = [

∨
K1

B 1A,
∨
K2

A1B ],

with appropriate types assigned to f , g, fi and gi. The syntactical category

G
∨
L is C(G

∨
L)/E(G

∨
L). It is clear that G

∨
L is isomorphic to

∨
L, and also to

∧
Lop and G

∧
Lop. For later use, we note that in C(

∨
L) we have the definitions

[g1, g2] =df
∨
wC ◦ (g1 ∨ g2),

∨
K1

A2
f1 =df

∨
k1A1,A2

◦ f1,
∨
K2

A1
f2 =df

∨
k2A1,A2

◦ f2.

(We introduce G(
∨
L) with so much detail for the sake of notation.)

To obtain the natural logical category L, we have that the logical system

C(L) is in L∧,∨, with the transformations α included in 1, b, c and w-k.

The specific equations of E(L) are obtained by taking the union of those of

E(
∧
L) and E(

∨
L).

We call natural L-categories lattice categories. Usually, they would be

called categories with finite nonempty products and finite nonempty co-

products. The objects of a lattice category that is a partial order make a

lattice.
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The syntactical system C(GL) has as objects the formulae of L∧,∨,
as primitive arrow terms the identity arrow terms, and as operations on

arrow terms those of C(G
∧
L) and C(G

∨
L). For the equations of E(GL) we

assume the equations of E(G
∧
L) and E(G

∨
L). The syntactical category GL

is C(GL)/E(GL), and it is isomorphic to L. This isomorphism is based on

the isomorphism of
∧
L with G

∧
L, and the isomorphism of

∨
L with G

∨
L.

We can then prove Composition Elimination for GL by enlarging the

proof in §9.1.

Proof of Composition Elimination for GL. We have first the cases

where f or g are 1A, where f is
∧
Ki

A f
′ and where g is ⟨g1, g2⟩. For these

cases we proceed as before. We have next cases dual to the last two, where

g is
∨
Ki

A g
′, which is taken care of by (

∨
K1), and where f is [f1, f2], which

is taken care of by (
∨
K3). In the remaining cases, if f is ⟨f1, f2⟩, then g is

either of a form already covered by cases above, or g is
∧
Ki

A g
′, and we apply

(
∧
K2). Finally, if f is

∨
Ki

A f
′, then g is either of a form already covered by

cases above, or g is [g1, g2], and we apply (
∨
K2). ⊣

Note that we do not use the equations (
∧
K4) and (

∨
K4) in this proof (which

is taken over from [48], Section 3). We can then prove the following.

Invertibility Lemma for ∧. Let f : A1 ∧ A2 ⊢ B be an arrow term of

C(GL). If for every (x, y) ∈ Gf we have that x ∈ GA1, then f is equal in

GL to an arrow term of the form
∧
K1

A2
f ′, and if for every (x, y) ∈ Gf we

have that x−GA1 ∈ GA2, then f is equal in GL to an arrow term of the

form
∧
K2

A1
f ′.

Proof. By Composition Elimination for GL, we can assume that f is

composition-free, and then we proceed by induction on the length of the

target B (or on the length of f). If B is a letter, then f must be equal in

L to an arrow term of the form
∧
Ki

A3−i
f ′. The condition on Gf dictates

whether i here is 1 or 2.

If B is B1 ∧ B2 and f is not of the form
∧
Ki

A3−i
f ′, then f must be

of the form ⟨f1, f2⟩ (the condition on Gf precludes that f be an identity

arrow term). We apply the induction hypothesis to f1 : A1 ∧A2 ⊢ B1 and

f2 : A1 ∧A2 ⊢ B2, and use the equation (
∧
K5).
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If B is B1 ∨ B2 and f is not of the form
∧
Ki

A3−i
f ′, then f must be

of the form
∨
Kj

B3−j
g, for j ∈ {1, 2}. We apply the induction hypothesis to

g : A1 ∧A2 ⊢ Bi, and use the equation

∨
Kj

B3−j

∧
Ki

A3−i
g′ =

∧
Ki

A3−i

∨
Kj

B3−j
g′,

which follows from (cat 1), (
∧
K1), (

∨
K1) and (cat 2). ⊣

We have a dual Invertibility Lemma for ∨. We can then prove the

following result of [48] (Section 4).

Lattice Coherence. The functor G from L to Rel is faithful.

Proof. Suppose f, g : A ⊢ B are arrow terms of C(L) and Gf = Gg. We

proceed by induction on the sum of the lengths of A and B to show that

f = g in L. If A and B are both letters, then we conclude by Composition

Elimination for GL that an arrow term of C(L) of the type A ⊢ B exists iff

A and B are the same letter p, and we must have f = g = 1p in L. Note

that we do not need here the assumption Gf = Gg.

If B is B1∧B2, then for i ∈ {1, 2} we have that
∧
kiB1,B2

◦ f and
∧
kiB1,B2

◦ g

are of type A ⊢ Bi. We also have

G(
∧
kiB1,B2

◦ f) = G
∧
kiB1,B2

◦Gf = G
∧
kiB1,B2

◦Gg = G(
∧
kiB1,B2

◦ g),

whence, by the induction hypothesis, we have
∧
kiB1,B2

◦ f =
∧
kiB1,B2

◦ g in L.

Then we infer

⟨
∧
k1B1,B2

◦ f,
∧
k2B1,B2

◦ f⟩ = ⟨
∧
k1B1,B2

◦ g,
∧
k2B1,B2

◦ g⟩,

from which f = g follows with the help of the equation (∧η) of §9.1. We

proceed analogously if A is A1 ∨A2.

Suppose now that A is A1 ∧A2 or a letter, and B is B1 ∨B2 or a letter,

but A and B are not both letters. Then by Composition Elimination for

GL we have that f is equal in L to an arrow term of C(L) that is either

of the form f ′ ◦
∧
kiA1,A2

or of the form
∨
kiB1,B2

◦ f ′. Suppose f = f ′ ◦
∧
k1A1,A2

.

Then for every (x, y) ∈ Gf we have x ∈ GA1.

By the Invertibility Lemma for ∧, which we have proved above, it follows

that g is equal in L to an arrow term of the form g′ ◦
∧
k1A1,A2

. From Gf = Gg
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we can infer easily that Gf ′ = Gg′, and so by the induction hypothesis

f ′ = g′, and hence f = g.

We reason analogously when f = f ′ ◦
∧
k2A1,A2

. If f =
∨
kiB1,B2

◦ f ′, then

again we reason analogously, applying the Invertibility Lemma for ∨. ⊣

This proof of Lattice Coherence is simpler than a proof given in [48].

In the course of that previous proof one has also coherence results for two

auxiliary categories related to L. We need these categories for §9.6, but we
do not need these coherence results. For the sake of completeness, however,

we record them here too.

Let
∧
L∨ be the natural logical category in L∧,∨ obtained as

∧
L. The only

difference is that the arrow terms of C(
∧
L∨) are closed under the operation

∨ on arrow terms, besides being closed under the operations ∧ and ◦ ,

and for E(
∧
L∨) we have in addition to the equations assumed for E(

∧
L) the

bifunctorial equations for ∨. Let G
∧
L∨ be the syntactical category whose

objects are formulae of L∧,∨, which is obtained as G
∧
L save that in addition

to the operations on arrow terms of C(G
∧
L) we have also the operation ∨

on arrow terms, and for E(G
∧
L∨) we assume the bifunctorial equations for

∨ in addition to what we had for E(G
∧
L). The categories

∧
L∨ and G

∧
L∨ are

isomorphic, and, hence, C(
∧
L∨) and C(G

∧
L∨) are synonymous syntactical

systems.

The categories
∨
L∧ and G

∨
L∧ are isomorphic to

∧
Lop
∨ and G

∧
Lop
∨ , and to

each other. In them, the ∧ and ∨ of
∧
L∨ and G

∧
L∨ are interchanged, and

they are obtained by extending
∨
L and G

∨
L with the bifunctor ∧.

One can easily prove Composition Elimination for G
∧
L∨ (and hence

also for G
∨
L∧) by abbreviating the proof of Composition Elimination for L

above. For G
∧
L∨ we do not have the cases where f is [f1, f2] or

∨
Ki

A f
′, but

f can be f1 ∨ f2. Then, if g is not of a form already covered by the proof

in §9.1, it must be g1 ∨ g2, and we apply the bifunctorial equation (∨ 2).

A composition-free arrow term of C(G
∧
L∨) may be reduced to a unique

normal form, which can then be used to demonstrate coherence for
∧
L∨, i.e.

the fact that the functor G from
∧
L∨ to Rel is faithful (see [48], Section 4).

With the help of Lattice Coherence we can easily verify that the follow-

ing equation holds in L:
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(in-out) ⟨[f, g], [h, j]⟩ = [⟨f, h⟩, ⟨g, j⟩].

If in C(L) we define ckA,B,C,D : (A ∧ B) ∨ (C ∧D) ⊢ (A ∨ C) ∧ (B ∨D)

as follows:

ckA,B,C,D =df ⟨
∧
k1A,B ∨

∧
k1C,D,

∧
k2A,B ∨

∧
k2C,D⟩,

then we can easily check that in L we have

ckA,B,C,D = [
∨
k1A,C ∧

∨
k1B,D,

∨
k2A,C ∧

∨
k2B,D],

which gives an alternative definition of ckA,B,C,D. One passes from one of

these two definitions to the other with the help of the equations (∧) of §9.1
and (∨) of the List of Equations, together with the equation (in-out):

ckA,B,C,D = ⟨[
∨
k1A,C

◦
∧
k1A,B ,

∨
k2A,C

◦
∧
k1C,D], [

∨
k1B,D

◦
∧
k2A,B ,

∨
k2B,D

◦
∧
k2C,D]⟩

= [⟨
∨
k1A,C

◦
∧
k1A,B ,

∨
k1B,D

◦
∧
k2A,B⟩, ⟨

∨
k2A,C

◦
∧
k1C,D,

∨
k2B,D

◦
∧
k2C,D⟩].

We can also show by Lattice Coherence that in L we have

∧
wA∨B = ckA,A,B,B

◦ (
∧
wA ∨

∧
wB),

∨
wA∧B = (

∨
wA ∧

∨
wB) ◦ ckA,B,A,B ,

∧
cmA,B,C,D = ⟨

∧
k1A,B ∧

∧
k1C,D,

∧
k2A,B ∧

∧
k2C,D⟩,

∨
cmD,C,B,A = [

∨
k1D,C ∨

∨
k1B,A,

∨
k2D,C ∨

∨
k2B,A]

(see §9.1 for
∧
cm, and the List of Equations for

∨
cm). The last two equa-

tions should be compared with the definition of ckA,B,C,D and its alternative

definition. The arrows ckA,B,C,D will be prominent in Chapter 11 (see also

§13.2).
Arrows of the type of ckA,B,C,D play in [3] an important role in the

understanding of 2-fold loop spaces. In that paper, one finds a coherence

result in our sense for bimonoidal categories where ⊤ = ⊥ to which ck

is added with appropriate specific equations. As a matter of fact, this

coherence result, for which a long proof is presented, covers a hierarchy of ck

principles involving the binary connectives ξ i and ξ j where 1 ≤ i < j ≤ n,
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which are needed for n-fold loop spaces. The role of arrows of the type

of ckA,B,C,D in understanding braiding is considered in [72] (Section 5). In

that context, arrows of the type of ckA,B,C,D may become arrows of the type

of
ξ

cmA,B,C,D (cf. [3], Remarks 1.5-6).

§9.5. Maximality of lattice categories

In this section we prove that L is maximal in the sense of §9.3. (This result
is taken over from [48], Section 5.)

Suppose A and B are formulae of L∧,∨ in which only p occurs as a letter.

If for some arrow terms f1, f2 : A ⊢ B of C(L) we have Gf1 ̸= Gf2, then for

some x ∈ GA and some y ∈ GB we have (x, y) ∈ Gf1 and (x, y) ̸∈ Gf2, or
vice versa. Suppose (x, y) ∈ Gf1 and (x, y) ̸∈ Gf2.

For every subformula C of A and every formula D let AC
D be the formula

obtained from A by replacing the particular occurrence of the formula C in

A by D. It can be shown that for every subformula A1 ∨ A2 of A we have

a
∨
kj-term h : AA1∨A2

Aj
⊢ A of C(L), whose head is

∨
kjA1,A2

, such that there

is an x′ ∈ GAA1∨A2

Aj
for which (x′, x) ∈ Gh. Hence, for such an h, we have

(x′, y) ∈ G(f1 ◦h) and (x′, y) ̸∈ G(f2 ◦h).

We compose fi repeatedly with such
∨
kj-terms until we obtain the arrow

terms f ′i : p ∧ . . . ∧ p ⊢ B of C(L) such that parentheses are somehow

associated in p∧ . . .∧p and for some z ∈ G(p∧ . . .∧p) we have (z, y) ∈ Gf ′1
and (z, y) ̸∈ Gf ′2. The formula p ∧ . . . ∧ p may also be only p. We may

further compose f ′i with
∧
b-terms and

∧
c-terms in order to obtain the arrow

terms f ′′i of type p∧A′ ⊢ B or p ⊢ B such that A′ is of the form p∧ . . .∧ p
with parentheses somehow associated, and (0, y) ∈ Gf ′′1 but (0, y) ̸∈ Gf ′′2 .

By working dually on B with
∧
kj-terms, and by composing perhaps fur-

ther with
∨
b-terms and

∨
c-terms, we obtain the arrow terms f ′′′i of C(L) of

type p∧A′ ⊢ p∨B′, for A′ of the form p∧. . .∧p and B′ of the form p∨. . .∨p,
or of type p ∧ A′ ⊢ p, or of type p ⊢ p ∨ B′, such that (0, 0) ∈ Gf ′′′1 and

(0, 0) ̸∈ Gf ′′′2 . (We cannot obtain that f ′′′1 and f ′′′2 are of type p ⊢ p, since,
otherwise, by Composition Elimination for GL, f ′′′2 would not exist.)

There is an arrow term h∧ : p ⊢ p ∧ . . . ∧ p of C(L) defined in terms of
∧
w-terms such that for every x ∈ G(p ∧ . . . ∧ p) we have (0, x) ∈ Gh∧. We

define analogously with the help of
∨
w-terms an arrow term h∨ : p∨. . .∨p ⊢ p
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of C(L) such that for every x ∈ G(p ∨ . . . ∨ p) we have (x, 0) ∈ Gh∨. The

arrow terms h∧ and h∨ may be 1p : p ⊢ p.
If f ′′′i is of type p ∧A′ ⊢ p ∨B′, let f†i : p ∧ p ⊢ p ∨ p be defined by

f†i =df (1p ∨ h∨) ◦ f ′′′i ◦ (1p ∨ h∧).

By Composition Elimination forGL, we have that Gf†i must be a singleton.

If (1, 0) or (1, 1) belongs to Gf†2 , then for f∗i : p∧p ⊢ p defined as
∨
wp ◦ f†i we

have (0, 0) ∈ Gf∗1 and (0, 0) ̸∈ Gf∗2 . If (0, 1) or (1, 1) belongs to Gf
†
2 , then

for f∗i : p ⊢ p ∨ p defined as f†i ◦
∧
wp we have (0, 0) ∈ Gf∗1 and (0, 0) ̸∈ Gf∗2 .

If f ′′′i is of type p∧A′ ⊢ p, then for f∗i : p∧p ⊢ p defined as f ′′′i ◦ (1p∨h∧)
we have (0, 0) ∈ Gf∗1 and (0, 0) ̸∈ Gf∗2 .

If f ′′′i is of type p ⊢ p∨B′, then for f∗i : p ⊢ p∨p defined as (1p∨h∨) ◦ f ′′′i
we have (0, 0) ∈ Gf∗1 and (0, 0) ̸∈ Gf∗2 . In all that we have by Composition

Elimination for GL that Gf∗i must be a singleton.

In cases where f∗i is of type p ∧ p ⊢ p, by Composition Elimination for

GL, by the conditions on Gf∗1 and Gf∗2 , and by the functoriality of G, we

obtain in L the equation f∗i =
∧
kip,p. (This follows from Lattice Coherence

too.) So in E(L) extended with f1 = f2 we can derive
∧
k1p,p =

∧
k2p,p; namely,

the equation (
∧
k

∧
k), mentioned in the proof of Maximality of

∧
L in §9.3.

In cases where f∗i is of type p ⊢ p ∨ p, we conclude analogously that we

have in L the equation f∗i =
∨
kip,p, and so in E(L) extended with f1 = f2 we

can derive

(
∨
k

∨
k)

∨
k1p,p =

∨
k2p,p .

If either of (
∧
k

∧
k) and (

∨
k

∨
k) holds in a lattice category A, then A is a

preorder. We use for that the equation (∧β) of §9.1, or its dual with ∨ (see

the proof of Maximality of
∧
L in §9.3).

It remains to remark that if for some arrow terms g1 and g2 of C(L)
of the same type we have that g1 = g2 is not in E(L), then by Lattice

Coherence we have Gg1 ̸= Gg2. If we take the substitution instances g′1
of g1 and g′2 of g2 obtained by replacing every letter by a single letter p,

then we obtain again Gg′1 ̸= Gg′2. If g1 = g2 holds in a lattice category

A, then g′1 = g′2 holds too, and A is a preorder, as we have shown above.

This concludes the proof of maximality for L. (In the original presentation
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of this proof in [48], Section 5, there are some slight inaccuracies in the

definition of f∗i .)

§9.6. Coherence for dicartesian and sesquicartesian cat-
egories

Let
∨
L⊥ be the natural logical category in L∨,⊥ isomorphic to the category

∧
Lop
⊤ . We just replace ∧ and ⊤ by ∨ and ⊥ respectively, so that the primitive

arrow terms of C(
∨
L⊥) are included in 1,

∨
b,

∨
c,

∨
w-

∨
k and

∨
δ -

∨
σ , while the

equations of E(
∨
L⊥) are duals of those of E(

∧
L⊤) (see the List of Equations

and the List of Categories; cf. the beginning of §9.4). We have in C(
∨
L⊥)

the definition

∨
κA =df

∨
δ→A ◦

∨
k2A,⊥,

and in
∨
L⊥ the equations (

∨
κ nat) and

(
∨
κ1)

∨
κ⊥ = 1⊥.

The equations (
∨
κ nat) and (

∨
κ1) amount to

(
∨
κ)

∨
κA = f, for f : ⊥ ⊢ A,

which says that ⊥ is an initial object in
∨
L⊥ (see §2.2 for the notion of initial

object).

Natural
∨
L⊥-categories would usually be called categories with finite co-

products, including the empty coproduct. Another possible name would be

cocartesian categories.

To obtain the natural logical category L⊤,⊥, we have that the logical

system C(L⊤,⊥) is in L∧,∨,⊤,⊥, with the transformations α included in 1, b,

c, w-k and δ-σ. The specific equations of E(L⊤,⊥) are obtained by taking

the union of those of E(L), E(
∧
L⊤) and E(

∨
L⊥) plus the equations (

∧
c ⊥) and

(
∨
c ⊤) of §6.4.

We could replace the last two equations in this definition by their in-

stances

(
∧
⊥) ∧

c⊥,⊥ = 1⊥∧⊥,

(
∨
⊤) ∨

c⊤,⊤ = 1⊤∨⊤.
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Another possibility is to have instead the following two equations:

(
∧
k⊥)

∧
k1⊥,⊥ =

∧
k2⊥,⊥,

(
∨
k⊤)

∨
k1⊤,⊤ =

∨
k2⊤,⊤ .

It is easy to see that from the last two equations we obtain that the

members of the pairs

∧
k1⊥,⊥ =

∧
k2⊥,⊥: ⊥ ∧⊥ ⊢ ⊥ and

∨
κ⊥∧⊥ =

∧
w⊥: ⊥ ⊢ ⊥ ∧ ⊥,

∨
k1⊤,⊤ =

∨
k2⊤,⊤: ⊤ ⊢ ⊤ ∨ ⊤ and

∧
κ⊤∨⊤ =

∨
w⊤: ⊤ ∨⊤ ⊢ ⊤

are inverses of each other. This shows that every letterless formula of

L∧,∨,⊤,⊥ is isomorphic in L⊤,⊥ either to ⊤ or to ⊥, and this is why above

we could replace (
∧
c ⊥) and (

∨
c ⊤) by their instances (

∧
⊥) and (

∨
⊤).

We call natural L⊤,⊥-categories dicartesian categories. The objects of

a dicartesian category that is a partial order make a lattice with top and

bottom. By omitting the equations (
∧
c ⊥) and (

∨
c ⊤) in the definition of

L⊤,⊥ we would obtain the natural logical category L′⊤,⊥, and natural L′⊤,⊥-

categories are usually called bicartesian categories (cf. [90], Section I.8).

Dicartesian categories were considered under the name coherent bicartesian

categories in the printed version of [47]. We previously believed wrongly

that we have proved coherence for dicartesian, alias coherent bicartesian

categories. Lemma 5.1 of the printed version of [47] is however not correct.

We prove here only a restricted coherence result for dicartesian categories,

which is sufficient for our needs later on. A study of equality of arrows in

bicartesian categories may be found in [24].

Suppose that in the definition of L⊤,⊥ we omit one of ⊤ and ⊥ from

L∧,∨,⊤,⊥, so that we have L∧,∨,⊥ or L∧,∨,⊤. This means that in C(L⊤,⊥)
and E(L⊤,⊥) we omit all the arrow terms and equations involving the omit-

ted nullary connective. When we omit ⊤, we obtain the natural logical

category L⊥, and when we omit ⊥, we obtain the natural logical category

L⊤. It is clear that L⊥ is isomorphic to Lop
⊤ . In the printed version of [47]

natural L⊥-categories were called coherent sesquicartesian categories. We

call them here just sesquicartesian categories.

The category Set, whose objects are sets and whose arrows are functions,

with cartesian product × as ∧, disjoint union + as ∨, a singleton set {∗} as
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⊤ and the empty set ∅ as ⊥, is a bicartesian category, but not a dicartesian

category. It is, however, a sesquicartesian category in the L⊥ sense, but

not in the L⊤ sense. This is because in Set we have that ∅ × ∅ is equal to
∅, but {∗}+ {∗} is not isomorphic to {∗}.

We have an unrestricted coherence result for sesquicartesian categories,

whose proof is taken over from the revised version of [47]. (This proof differs

from the proof in the printed version of [47], which relied also on Lemma

5.1, and is not correct.)

Sesquicartesian Coherence. The functor G from L⊥ to Rel is faithful.

The proof of this result is obtained by enlarging the proof of Lattice Coher-

ence in §9.4, and we will give here just a summary of it. (A detailed proof

may be found in the revised version of [47].)

The syntactical category GL⊤,⊥ is obtained as GL save that we have in

addition the primitive arrow terms
∧
κA: A ⊢ ⊤ and

∨
κA: ⊥ ⊢ A, the equations

(
∧
κ) and (

∨
κ), and also the equations

(
∧
K⊥)

∧
K1
⊥1⊥ =

∧
K2
⊥1⊥,

(
∨
K⊤)

∨
K1
⊤1⊤ =

∨
K2
⊤1⊤.

We can prove Composition Elimination for GL⊤,⊥ by enlarging the proofs

in §§9.1-2. Note that we do not need the equations (
∧
K⊥) and (

∨
K⊤) for

this proof, so that we have also Composition Elimination for GL′⊤,⊥ based

on L′⊤,⊥.

Let the category
∧
L∨,⊤,⊥ be defined like the category

∧
L∨ of §9.4 save

that it involves also
∧
κ and the equations (

∧
κ) and (

∧
k⊥), and let the category

∨
L∧,⊤,⊥ be defined like the category

∨
L∧ of §9.4 save that it involves also

∨
κ

and the equations (
∨
κ) and (

∨
k⊤). Composition Elimination is provable for

syntactical categories isomorphic to
∧
L∨,⊤,⊥ and

∨
L∧,⊤,⊥.

An arrow term of C(L⊤,⊥) is in standard form when it is of the form

g ◦ f for f an arrow term C(
∧
L∨,⊤,⊥) and g an arrow term of C(

∨
L∧,⊤,⊥). We

can then prove the following.

Standard-Form Lemma. Every arrow term of C(L⊤,⊥) is equal in L⊤,⊥

to an arrow term in standard form.
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Proof. By categorial and bifunctorial equations, we may assume that we

deal with a factorized arrow term f none of whose factors is a complex

identity (see §§2.6-7 for these notions). We may assume moreover that b

and c do not occur in f . For that we use the equations (
∧
b→), (

∧
b←) and (

∧
c)

of §9.1, and the dual equations with ∨. We may also assume that every

factor of f is either an arrow term of C(
∧
L∨,⊤,⊥), and then we call it a

∧-factor, or an arrow term of C(
∨
L∧,⊤,⊥), when we call it a ∨-factor.

Suppose f : B ⊢ C is a ∧-factor and g : A ⊢ B is a ∨-factor. We show

by induction on the length of f ◦ g that in L⊤,⊥

(∗) f ◦ g = g′ ◦ f ′ or f ◦ g = f ′ or f ◦ g = g′

for f ′ a ∧-factor and g′ a ∨-factor.
We will consider various cases for f . In all such cases, if g is

∨
wB, then

we use (
∨
w nat). If f is

∧
wB , then we use (

∧
w nat). If f is

∧
kiD,E and g is

g1 ∧ g2, then we use (
∧
ki nat). If f is f1 ∧ f2 and g is g1 ∧ g2, then we use

bifunctorial and categorial equations and the induction hypothesis.

If f is f1 ∨ f2, then we have the following cases. If g is
∨
kiB1,B2

, then

we use (
∨
ki nat). If g is g1 ∨ g2, then we use bifunctorial and categorial

equations and the induction hypothesis.

Finally, cases where f is
∧
κB or g is

∨
κB are taken care of by the equations

(
∧
κ) and (

∨
κ). This proves (∗), and it is clear that (∗) is sufficient to prove

the lemma. ⊣

We can also prove Composition Elimination and an analogue of the

Standard-Form Lemma for L⊥. Next we have the following lemmata for

L⊤,⊥ and L⊥.

Lemma 1. If for f, g : A ⊢ B either A or B is isomorphic to ⊤ or ⊥, then
f = g.

Proof. If A is isomorphic to ⊥ or B is isomorphic to ⊤, then the matter

is trivial. Suppose i : B ⊢ ⊥ is an isomorphism. Then from

∧
k1⊥,⊥ ◦ ⟨i ◦ f, i ◦ g⟩ =

∧
k2⊥,⊥ ◦ ⟨i ◦ f, i ◦ g⟩

we obtain i ◦ f = i ◦ g, which yields f = g. We proceed analogously if A is

isomorphic to ⊤. ⊣
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Lemma 2. If for f, g : A ⊢ B we have Gf = Gg = ∅, then f = g.

Proof. This proof depends on the Standard-Form Lemma above. We

write down f in the standard form f2 ◦ f1 for f1 : A ⊢ C and g in the

standard form g2 ◦ g1 for g1 : A ⊢ D. Since
∨
ki and

∨
κ do not occur in f1,

for every z ∈ GC we have an x ∈ GA such that (x, z) ∈ Gf1, and since
∧
ki and

∧
κ do not occur in f2, for every z ∈ GC we have a y ∈ GB such

that (z, y) ∈ Gf2. So if C were not letterless, Gf would not be empty. We

conclude analogously that D, as well as C, is a letterless formula.

If both C and D are isomorphic to ⊤ or ⊥, then we have an isomorphism

i : C ⊢ D, and f = f2 ◦ i−1 ◦ i ◦ f1. By Lemma 1, we have i ◦ f1 = g1 and

f2 ◦ i−1 = g2, from which f = g follows. If i : C ⊢ ⊥ and j : ⊤ ⊢ D are

isomorphisms, then by Lemma 1 we have

f2 ◦ f1 = g2 ◦ j ◦
∧
κ⊥ ◦ i ◦ f1 = g2 ◦ g1,

and so f = g. (Note that
∧
κ⊥ =

∨
κ⊤.) ⊣

To prove now Sesquicartesian Coherence we have Lemma 2 for the case

when Gf = Gg = ∅, and when Gf = Gg ̸= ∅, we proceed as in the proof

of Lattice Coherence in §9.4, appealing if need there is to Lemma 2, until

we reach the case when A is A1 ∧ A2 or a letter, and B is B1 ∨ B2 or a

letter, but A and B are not both letters. In that case, by Composition

Elimination, the arrow term f is equal in L⊥ either to an arrow term of

the form f ′ ◦
∧
kiA1,A2

, or to an arrow term of the form
∨
kiB1,B2

◦ f ′. Suppose

f = f ′ ◦
∧
k1A1,A2

. Then for every (x, y) ∈ Gf we have x ∈ GA1. (We reason

analogously when f = f ′ ◦
∧
k2A1,A2

.)

By Composition Elimination too, g is equal in L⊥ either to an arrow

term of the form g′ ◦
∧
kiA1,A2

, or to an arrow term of the form
∨
kiB1,B2

◦ g′. In

the first case we must have g = g′ ◦
∧
k1A1,A2

, becauseGg = G(f ′ ◦
∧
k1A1,A2

) ̸= ∅,
and then we apply the induction hypothesis to derive f ′ = g′ fromGf ′ = Gg′.

Hence f = g in L⊥.

Suppose g =
∨
k1B1,B2

◦ g′. (We reason analogously when g =
∨
k2B1,B2

◦ g′.)

Let f ′′ : A1 ⊢ B1 ∨B′′2 be the substitution instance of f ′ : A1 ⊢ B1 ∨B2 ob-

tained by replacing every occurrence of propositional letter in B2 by ⊥.
There is an isomorphism i : B′′2 ⊢ ⊥, and f ′′ exists because in Gf , which is
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equal to G(
∨
k1B1,B2

◦ g′), there is no pair (x, y) with y ≥ GB1. So we have

an arrow f ′′′ : A1 ⊢ B1, which we define as
∨
δ→B1

◦ (1B1 ∨ i) ◦ f ′′. It is easy

to verify that G(
∨
k1B1,B2

◦ f ′′′) = Gf ′, and that G(f ′′′ ◦
∧
k1A1,A2

) = Gg′. By

the induction hypothesis, we obtain
∨
k1B1,B2

◦ f ′′′ = f ′ and f ′′′ ◦
∧
k1A1,A2

= g′,

from which we derive f = g. We reason analogously when f =
∨
kiB1,B2

◦ f ′.

From Sesquicartesian Coherence we infer coherence for L⊤, which is

isomorphic to Lop
⊥ .

For dicartesian categories we prove here only a simple restricted coher-

ence result sufficient for our needs later on in the book. A more general,

but still restricted, coherence result with respect to Rel, falling short of full

coherence, may be found in the revised version of [47] (Section 7, Restricted

Dicartesian Coherence II).

We define inductively formulae of L∧,∨,⊤,⊥ in disjunctive normal form

(dnf ): every formula of L∧,⊤,⊥ is in dnf, and if A and B are both in dnf,

then A ∨B is in dnf. We define dually formulae of L∧,∨,⊤,⊥ in conjunctive

normal form (cnf ): every formula of L∨,⊤,⊥ is in cnf, and if A and B are

both in cnf, then A ∧B is in cnf.

Restricted Dicartesian Coherence. Let f, g : A ⊢ B be arrow terms

of C(L⊤,⊥) such that A is in dnf and B in cnf. If Gf = Gg, then f = g in

L⊤,⊥.

Proof. If Gf = Gg = ∅, then we apply Lemma 2. If Gf = Gg ̸= ∅, then
we proceed as in the proof of Lattice Coherence in §9.4, by induction on the

sum of the lengths of A and B, appealing if need there is to Lemma 2, until

we reach the case when A is A1∧A2 or a letter, and B is B1∨B2 or a letter,

but A and B are not both letters. In that case there is no occurrence of ∨
in A and no occurrence of ∧ in B. We then rely on the composition-free

form of f and g in GL⊤,⊥ and on the equation
∧
Ki

C

∨
Kj

D h =
∨
Kj

D

∧
Ki

C h. ⊣

Note that if K is one of the categories
∧
A,

∧
A⊤,

∧
S and

∧
S⊤, then K is

isomorphic to Kop, while if K is one of the categories
∧
L and

∧
L⊤, then

K is not isomorphic to Kop. The categories
∧
A,

∧
A⊤,

∧
S and

∧
S⊤ besides

being isomorphic respectively to
∨
Aop,

∨
Aop
⊥ ,

∨
Sop and

∨
Sop
⊥ , are isomorphic

respectively to
∨
A,

∨
A⊥,

∨
S and

∨
S⊥ too, while

∧
L and

∧
L⊤ are isomorphic
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respectively only to
∨
Lop and

∨
Lop
⊥ , and not to

∨
L and

∨
L⊥. So the symmetry

between ∧ and ∨ is deeper in A, A⊤,⊥, S and S⊤,⊥ than in L and L⊤,⊥.

§9.7. Relative maximality of dicartesian categories

The category L⊤,⊥ is not maximal in the sense in which
∧
L,

∧
L⊤ and L are

maximal (see §9.3 and §9.5). This is shown with the following counterex-

ample.

Let Set∗ be the category whose objects are sets with a distinguished

element ∗, and whose arrows are ∗-preserving functions f between these

sets; namely, f(∗) = ∗. This category is isomorphic to the category of sets

with partial functions. The following definitions serve to show that Set∗ is

a category of the C(L⊤,⊥) kind:

I = {∗}, a′ = {(x, ∗) | x ∈ a− I}, b′′ = {(∗, y) | y ∈ b− I},

a⊗ b = ((a− I)× (b− I)) ∪ I,

a 2× b = (a⊗ b) ∪ a′ ∪ b′′,
a 2+ b = a′ ∪ b′′ ∪ I.

Note that a 2× b is isomorphic in Set to the cartesian product a × b; the
element ∗ of a 2× b corresponds to the element (∗, ∗) of a× b.

The functions
∧
kia1,a2

: a1 2× a2 → ai, for i ∈ {1, 2}, are defined by

∧
kia1,a2

(x1, x2) = xi,
∧
kia1,a2

(∗) = ∗;

for fi : c→ ai, the function ⟨f1, f2⟩ : c→ a1 2× a2 is defined by

⟨f1, f2⟩(z) =
{

(f1(z), f2(z)) if f1(z) ̸= ∗ or f2(z) ̸= ∗
∗ if f1(z) = f2(z) = ∗;

and the function
∧
κa: a → I is defined by

∧
κa (x) = ∗. Having in mind

the isomorphism between a 2× b and a × b mentioned above, the functions
∧
kia1,a2

: a1 2× a2 → ai correspond to the projection functions, while ⟨ , ⟩
corresponds to the usual pairing operation on functions.

The functions
∨
kia1,a2

: ai → a1 2+ a2 are defined by

∨
k1a1,a2

(x) = (x, ∗),
∨
k2a1,a2

(x) = (∗, x), for x ̸= ∗,
∨
kia1,a2

(∗) = ∗;
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for gi : ai → c, the function [g1, g2] : a1 2+ a2 → c is defined by

[g1, g2](x1, x2) = gi(xi), for xi ̸= ∗,
[g1, g2](∗) = ∗;

finally, the function
∨
κa: I→ a is defined by

∨
κa (∗) = ∗.

If we take that ∧ is 2× and ∨ is 2+, then it can be checked in a straight-

forward manner that Set∗ and Set∗ without I are lattice categories, and if

in Set∗ we take further that both ⊤ and ⊥ are I, then Set∗ is a dicartesian

category.

Consider now the category Set∅∗, which is obtained by adding to Set∗

the empty set ∅ as a new object, and the empty functions ∅a : ∅ → a as new

arrows. The identity arrow 1∅ is ∅∅. For Set∅∗, we enlarge the definitions

above by

∅ 2× a = a 2× ∅ = ∅,
∅ 2+ a = a 2+ ∅ = a,
∧
kia1,a2

= ∅ai
, for a1 = ∅ or a2 = ∅,

⟨∅a1
, ∅a2
⟩ = ∅a12×a2

,
∧
κ∅ = ∅I,

∨
kia1,a2

= ∅a12+a2 , for ai = ∅,
[f1, ∅c] = f1, [∅c, f2] = f2,

and define now the function
∨
κa: ∅ → a by

∨
κa = ∅a. Then it can be checked

that Set∅∗ where ∧ is 2× and ∨ is 2+ as before, while ⊤ is I and ⊥ is ∅, is
a dicartesian category too.

In L⊤,⊥ the equation
∧
k1p,⊥=

∨
κp ◦

∧
k2p,⊥ does not hold, because G

∧
k1p,⊥ ̸= ∅

and G(
∨
κp ◦

∧
k2p,⊥) = ∅, but in Set∅∗ this equation holds, because both sides

are equal to ∅∅. Since Set∅∗ is not a preorder, we can conclude that L⊤,⊥ is

not maximal.

Although this maximality fails, the category L⊤,⊥ may be shown maxi-

mal in a relative sense (cf. the end of §9.3). This relative maximality result,

which we are going to demonstrate now, says that every dicartesian cate-

gory that satisfies an equation f = g between arrow terms of C(L⊤,⊥) such
that Gf ̸= Gg (which implies that f = g is not in E(L⊤,⊥)) satisfies also

some particular equations. These equations do not give preorder in general,
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but a kind of “contextual” preorder. Moreover, when E(L⊤,⊥) is extended
with some of these equations we obtain a maximal natural logical category.

If for some arrow terms f1, f2 : A ⊢ B of C(L⊤,⊥) we have Gf1 ̸= Gf2,

then for some x ∈ GA and some y ∈ GB we have (x, y) ∈ Gf1 and (x, y) ̸∈
Gf2, or vice versa. Suppose (x, y) ∈ Gf1 and (x, y) ̸∈ Gf2. Suppose the

(x+1)-th occurrence of letter in A, counting from the left, is an occurrence

of p. So the (y+1)-th occurrence of letter in B must be an occurrence of p.

Let A′ be the formula obtained from the formula A by replacing the

(x+1)-th occurrence of letter in A by p ∧ ⊥, and every other occurrence

of letter or ⊤ by ⊥. Dually, let B′ be the formula obtained from B by

replacing the (y+1)-th occurrence of letter in B by p ∨⊤, and every other

occurrence of letter or ⊥ by ⊤. Then it can be shown that there is an

arrow term hA : A′ ⊢ A of C(L⊤,⊥) such that GhA = {(0, x)}, and an

arrow term hB : B ⊢ B′ of C(L⊤,⊥) such that GhB = {(y, 0)}. We build

hA with
∧
k1p,⊥: p ∧ ⊥ ⊢ p and instances of

∨
κC : ⊥ ⊢ C, with the help of

the operations ∧ and ∨ on arrow terms. Analogously, hB is built with
∨
k1p,⊤: p ⊢ p ∨ ⊤ and instances of

∧
κC : C ⊢ ⊤. It can also be shown that

there are arrow terms jA : p ∧ ⊥ ⊢ A′ and jB : B′ ⊢ p ∨ ⊤ of C(L⊤,⊥) such
that GjA = GjB = {(0, 0)}. These arrow terms stand for isomorphisms of

L⊤,⊥.

Then it is clear that for f ′i being

jB ◦hB ◦ fi ◦hA ◦ jA : p ∧ ⊥ ⊢ p ∨ ⊤,

with i ∈ {1, 2}, we have Gf ′1 = {(0, 0)}, while Gf ′2 = ∅. Hence, by Compo-

sition Elimination for GL⊤,⊥ and by the functoriality of G, we obtain in

L⊤,⊥ the equations

f ′1 =
∨
k1p,⊤ ◦

∧
k1p,⊥,

f ′2 =
∨
κp∨⊤ ◦

∧
k2p,⊥ =

∨
k2p,⊤ ◦

∧
κp∧⊥ .

(This follows from Restricted Dicartesian Coherence too.) If we write 0⊥,⊤

for
∧
κ⊥, which is equal to

∨
κ⊤ in L⊤,⊥, then in L⊤,⊥ we have

f ′2 =
∨
k2p,⊤ ◦0⊥,⊤ ◦

∧
k2p,⊥ .

So in E(L⊤,⊥) extended with f1 = f2 we can derive
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(
∧
k

∨
k)

∨
k1p,⊤ ◦

∧
k1p,⊥ =

∨
k2p,⊤ ◦0⊥,⊤ ◦

∧
k2p,⊥ .

The equation

(
∧
k

∨
κ)

∧
k1p,⊥ =

∨
κp ◦

∧
k2p,⊥,

which holds in Set∅∗, and which we have used above for showing the non-

maximality of L⊤,⊥, clearly yields (
∧
k

∨
k), which hence holds in Set∅∗, and

which hence we could have also used for showing this nonmaximality.

If we refine the procedure above by building A′ and B′ out of A and B

more carefully, then in some cases we could derive (
∧
k

∨
κ) or its dual

(
∨
k

∧
κ)

∨
k1p,⊤ =

∨
k2p,⊤ ◦

∧
κp

instead of (
∧
k

∨
k). We do not replace the x+1-th p by p ∧ ⊥ in building A′,

and we can proceed more selectively with other occurrences of letters and

⊤ in A in order to obtain an A′ isomorphic to p if possible. We can proceed

analogously when we build B′ out of B to obtain a B′ isomorphic to p if

possible.

Note that we have the following:

∨
κp∧⊥ ◦

∧
k2p,⊥ = ⟨∨κp,1⊥⟩ ◦

∧
k2p,⊥

= ⟨
∧
k1p,⊥,

∧
k2p,⊥⟩, with (

∧
k

∨
κ),

= 1p∧⊥.

In the other direction, it is clear that the equation derived yields (
∧
k

∨
κ). So

with (
∧
k

∨
κ) we have that C∧⊥ and ⊥ are isomorphic, and, analogously, with

(
∨
k

∧
κ) we have that C ∨ ⊤ and ⊤ are isomorphic. It can be shown that the

natural logical category defined as L⊤,⊥ save that we assume in addition

both (
∧
k

∨
κ) and (

∨
k

∧
κ) is maximal. (This is achieved by eliminating letterless

subformulae from C and D in g1, g2 : C ⊢ D such that Gg1 ̸= Gg2, and

falling upon the argument used for the maximality of L in §9.5.)
If f : a ⊢ b is any arrow of a dicartesian category A and (

∧
k

∨
k) holds in

A, then we have in A
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∨
k1b,⊤ ◦ f ◦

∧
k1a,⊥ =

∨
k1b,⊤ ◦

∧
k1b,⊥ ◦ (f ∧ 1⊥)

=
∨
k2b,⊤ ◦0⊥,⊤ ◦

∧
k2a,⊥,

and hence for f, g : a ⊢ b we have in A

(
∧
k

∨
k fg)

∨
k1b,⊤ ◦ f ◦

∧
k1a,⊥ =

∨
k1b,⊤ ◦ g ◦

∧
k1a,⊥ .

So, although L⊤,⊥ is not maximal, it is maximal in the relative sense

that every dicartesian category that satisfies an equation f = g between

arrow terms of C(L⊤,⊥) such that Gf ̸= Gg satisfies also (
∧
k

∨
k) and (

∧
k

∨
k fg).

Some of these dicartesian categories may satisfy more than just (
∧
k

∨
k) and

(
∧
k

∨
k fg). They may satisfy (

∧
k

∨
κ) or (

∨
k

∧
κ), which yields

f ◦
∧
k1a,⊥ = g ◦

∧
k1a,⊥ or

∨
k1b,⊤ ◦ f =

∨
k1b,⊤ ◦ g,

and some may be preorders.





Chapter 10

Mix-Lattice Categories

In this chapter we consider categories with finite products and coproducts

in which there is an operation of union on arrows with the same source

and target, so that hom-sets are semilattices with this operation. This is

what the mix principle of Chapter 8 amounts to in the present context. An

example of such a category is the category of semilattices with semilattice

homomorphisms.

We prove restricted coherence results for these categories, the restriction

being on the sources and targets of arrows, which must be in disjunctive or

conjunctive normal form. These coherence results are just an auxiliary for

the proofs of coherence in the next chapter. The technique of proof here is

again based on composition elimination.

§10.1. Mix-lattice categories and an example

To obtain the natural logical category ML, we have that the logical system

C(ML) is in L∧,∨, with the transformations α included in 1, b, c, w-k and

m. The specific equations of E(ML) are obtained by taking the union of

those of E(MS) and E(L) plus

(wm)
∨
wA ◦mA,A ◦

∧
wA = 1A.

We call natural ML-categories mix-lattice categories.

Let C(GML) be the syntactical system with the formulae of L∧,∨ as

objects, with the primitive arrow terms being only identity arrow terms,

219
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and with the operations on arrow terms being those of C(GL) plus the

following one:

f : A ⊢ B g : A ⊢ B

f ∪ g : A ⊢ B

To obtain the equations of E(GML), we assume the equations of E(GL)

and the following equations:

(∪ ◦) (f ∪ g) ◦h = (f ◦h) ∪ (g ◦h), h ◦ (f ∪ g) = (h ◦ f) ∪ (h ◦ g),

(∪ assoc) f ∪ (g ∪ h) = (f ∪ g) ∪ h,
(∪ com) f ∪ g = g ∪ f,
(∪ idemp) f ∪ f = f.

The last equation, (∪ idemp), can be replaced by 1A ∪ 1A = 1A. The

syntactical category GML is C(GML)/E(GML).

It is straightforward to show (by relying on Lattice Coherence of §9.4)
that with the following definition in C(ML):

f ∪ g =df
∨
wB ◦ (f 3 g) ◦

∧
wA

(f 3 g is (f∨g) ◦mA,A, as in §8.1), and the following definition in C(GML):

mA,B =df

∨
K1

B

∧
K1

B 1A ∪
∨
K2

A

∧
K2

A1B ,

together with the definitions involved in showing the synonymity of C(L)
and C(GL), we have that ML and GML are isomorphic categories, and

that, hence, C(ML) and C(GML) are synonymous syntactical systems (see

the end of §2.4 for this notion of synonymity).

It can be checked that for the functor G from ML to Rel we have

G(f ∪ g) = Gf ∪Gg,

where ∪ on the left-hand side is defined in C(ML) as above, and ∪ on the

right-hand side is union of relations with the same domain and codomain

(remember that GmA,B is an identity relation, i.e. identity function; see

§2.9).
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According to the equations (∪ assoc), (∪ com) and (∪ idemp), the hom-

sets in any mix-lattice category are semilattices with the operation ∪. In

ML the following equations hold:

(∪ ξ) (f1 ∪ f2) ξ (g1 ∪ g2) = (f1 ξ g1) ∪ (f2 ξ g2),

for ξ ∈ {∧,∨}. The derivation of these equations is based on the following

equations of ML:

ckA,C,B,D
◦mA∧C,B∧D ◦

∧
cmA,B,C,D = mA,B ∧mC,D,

∨
cmA,B,C,D

◦mA∨C,B∨D ◦ ckA,B,C,D = mA,B ∨mC,D,

for whose checking we can use Semilattice Coherence of §9.1 (see §9.1 and

the List of Equations for the definitions of
∧
cm and

∨
cm, and §9.4 for the

definition of ck).

As an example of a mix-lattice category, we have the category Setsl∗ ,

whose objects are semilattices with unit ⟨a, ·, ∗⟩ such that x ·y = ∗ iff x = ∗
and y = ∗, and whose arrows are homomorphisms f with trivial kernels;

that is, f(x) = ∗ iff x = ∗. The unit ∗ may be conceived either as top or as

bottom. This category is a subcategory of the category Set∗ of §9.7.
We define ⟨a1, ·, ∗⟩ ∧ ⟨a2, ·, ∗⟩ as the semilattice with unit ⟨a1 ⊗ a2, ·, ∗⟩,

where ⊗ is as in §9.7, and we have

(x1, x2) · (y1, y2) = (x1 · y1, x2 · y2),
(x1, x2) · ∗ = ∗ · (x1, x2) = (x1, x2),

∗ · ∗ = ∗.

We define ⟨a1, ·, ∗⟩ ∨ ⟨a2, ·, ∗⟩ as the semilattice with unit ⟨a1 2× a2, ·, ∗⟩,
where 2× , which corresponds to cartesian product, is defined as in §9.7,
and we have for · and ∗ the same clauses as above.

The functions
∧
kia1,a2

: a1 ⊗ a2 → ai, for i ∈ {1, 2}, are defined by

∧
kia1,a2

(x1, x2) = xi,
∧
kia1,a2

(∗) = ∗;

for fi : c→ ai, the function ⟨f1, f2⟩ : c→ a1 ⊗ a2 is defined by

⟨f1, f2⟩(z) =
{

(f1(z), f2(z)) if z ̸= ∗
∗ if z = ∗.
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The functions
∨
kia1,a2

: ai → a1 2× a2 are defined by

∨
k1a1,a2

(x) = (x, ∗),
∨
k2a1,a2

(x) = (∗, x), for x ̸= ∗,
∨
kia1,a2

(∗) = ∗;

for gi : ai → c, the function [g1, g2] : a1 2× a2 → c is defined by

[g1, g2](x1, x2) = g1(x1) · g2(x2),
[g1, g2](∗) = ∗.

(The clauses in the definitions of
∧
kia1,a2

and
∨
kia1,a2

are taken over from §9.7,
and we could have also taken over from there the clause for ⟨f1, f2⟩, but the
operations in the domains and codomains are changed, and the functions

defined are not the same; the clause for [g1, g2] is new.)

We define the function ma,b : a⊗ b→ a 2× b by

ma,b(x1, x2) = (x1, x2), ma,b(∗) = ∗,

or for the functions f, g : a→ b we define the function f ∪ g : a→ b by

(f ∪ g)(x) = f(x) · g(x).

It can be checked in a straightforward manner that with these defini-

tions, and with ∧ being ⊗ and ∨ being 2× , the category Setsl∗ is a mix-lattice

category (it is easier to rely on ∪ than on m in this context). A category

isomorphic to Setsl∗ is the category Semilat, whose objects are semilattices

and whose arrows are semilattice homomorphisms. We just reject ∗ from

the domains of the objects of Setsl∗ , and the pairs (∗, ∗) from the sets of

ordered pairs of the arrows of Setsl∗ . The mix-lattice structure of Semilat is

then inherited from Setsl∗ . The domain of ⟨a1, ·, ∗⟩ ∧ ⟨a2, ·, ∗⟩ is now a1× a2
instead of a1⊗a2, while the domain of ⟨a1, ·, ∗⟩∨⟨a2, ·, ∗⟩ is (a1×a2)+a1+a2
instead of a1 2× a2, which corresponded to a1×a2 (here + is disjoint union).

It is, however, more practical to introduce the mix-lattice structure in Setsl∗ ,

with ∗ serving as an auxiliary, than directly in Semilat.

If we replace semilattices above by commutative semigroups, i.e., if we

reject the idempotency law, then we will verify all the specific equations of

ML except (wm) (which amounts to (∪ idemp)).
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§10.2. Restricted coherence of mix-lattice categories

To prove a restricted coherence result for ML, we prove first Composition

Elimination for GML by extending the proof for GL in §9.4. We use

essentially here the equations (∪ ◦).

Next, analogously to what we had in §9.6, we define inductively formulae

of L∧,∨ in disjunctive normal form (dnf ): every formula of L∧ is in dnf,

and if A and B are both in dnf, then A ∨ B is in dnf. We define dually

formulae of L∧,∨ in conjunctive normal form (cnf ): every formula of L∨ is

in cnf, and if A and B are both in cnf, then A ∧B is in cnf.

We define inductively composition-free arrow terms of C(GML) of type

A ⊢ B, for A in dnf and B in cnf, that are in normal form. We do that

gradually, relying on two preliminary inductive definitions.

Arrow terms of the form P1. . . PnQ1. . . Qm1p, where n,m ≥ 0, and Pi

for i ∈ {1, . . . , n} is of the form
∨
K1

C or
∨
K2

C , while Qj for j ∈ {1, . . . ,m} is
of the form

∧
K1

C or
∧
K2

C , are in atomic bracket-free normal form.

Every arrow term in atomic bracket-free normal form is in bracket-free

normal form. If f : D ⊢ E and g : D ⊢ E are in bracket-free normal form,

then f ∪ g : D ⊢ E is in bracket-free normal form.

Every arrow term in bracket-free normal form is in angle normal form.

If f : D ⊢ E and g : D ⊢ F are in angle normal form, then ⟨f, g⟩ : D ⊢ E∧F
is in angle normal form.

Every arrow term in angle normal form is in normal form. If f : E ⊢ D
and g : F ⊢ D are in normal form, then [f, g] : E ∨F ⊢ D is in normal form.

We have also the following definitions. Let f be an arrow term of

C(GML) in normal form, and let f ′ be a subterm of f such that f ′ is

in atomic bracket-free normal form, and there is no subterm f ′′ of f in

atomic bracket-free normal form with f ′ a proper subterm of f ′′. Then we

say that f ′ is an atomic component of f .

An arrow term f of C(GML) in normal form is said to be in settled

normal form when there are no subterms of f in bracket-free normal form

in which an atomic component occurs more than once.

Let us illustrate all these definitions with an example. The following

arrow terms of C(GML):
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α1 =df

∧
K1

q 1p : p ∧ q ⊢ p,

α2 =df

∨
K1

s

∧
K2

p1q : p ∧ q ⊢ q ∨ s,

α3 =df

∨
K1

p∨t
∧
K1

q 1p : p ∧ q ⊢ p ∨ (p ∨ t),

α4 =df

∨
K2

p

∨
K1

t

∧
K1

q 1p : p ∧ q ⊢ p ∨ (p ∨ t),

β1 =df

∧
K1

s

∧
K1

p1p : (p ∧ r) ∧ s ⊢ p,

β2 =df

∨
K2

q

∧
K2

p∧r 1s : (p ∧ r) ∧ s ⊢ q ∨ s,

β3 =df

∨
K1

p∨t
∧
K1

s

∧
K1

r 1p : (p ∧ r) ∧ s ⊢ p ∨ (p ∨ t),

β4 =df

∨
K2

p

∨
K1

t

∧
K1

s

∧
K1

r 1p : (p ∧ r) ∧ s ⊢ p ∨ (p ∨ t)

are all in atomic bracket-free normal form. The arrow terms α2∪α2, β3∪β4,
(α2 ∪ α2) ∪ (β3 ∪ β4), etc., are in bracket-free normal form. Next,

⟨α1, ⟨α2 ∪ α2, α3⟩⟩ : p ∧ q ⊢ p ∧ ((q ∨ s) ∧ (p ∨ (p ∨ t))),
⟨β1, ⟨β2, β3 ∪ β4⟩⟩ : (p ∧ r) ∧ s ⊢ p ∧ ((q ∨ s) ∧ (p ∨ (p ∨ t)))

are in angle normal form, and

γ =df [[⟨α1, ⟨α2, α3⟩⟩, ⟨β1, ⟨β2, β3 ∪ β4⟩⟩], ⟨α1, ⟨α2, α4⟩⟩] :
((p ∧ q) ∨ ((p ∧ r) ∧ s)) ∨ (p ∧ q) ⊢ p ∧ ((q ∨ s) ∧ (p ∨ (p ∨ t)))

is in settled normal form. This normal from would not be settled if, for

example, α2 in γ were replaced by α2∪α2. The set of occurrences of atomic

components of γ is made of the two occurrences of α1, the two occurrences

of α2, and of the occurrences of α3, α4, β1, β2, β3 and β4.

We can then prove the following.

Normal-Form Lemma. Every arrow term f : A ⊢ B of C(GML) for A

in dnf and B in cnf is equal in GML to an arrow term in settled normal

form.

Proof. We make an induction on the number of occurrences of ∨ in A

and ∧ in B. If there are no such occurrences of ∧ and ∨, then we eliminate

compositions, and by applying the following equations of GML:

ξ

Ki
A (f ∪ g) =

ξ

Ki
A f∪

ξ

Ki
A g,

∧
Ki

A

∨
Kj

B f =
∨
Kj

B

∧
Ki

A f,
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we obtain an arrow term in bracket-free normal form equal to the original

arrow term.

If there are no occurrences of ∨ in A, and B is B1 ∧ B2, then f =

⟨
∧
K1

B2
1B1

◦ f,
∧
K2

B1
1B2

◦ f⟩ in GML, and, by the induction hypothesis, we

have that
∧
K1

B2
1B1

◦ f and
∧
K2

B1
1B2

◦ f must be equal respectively to f ′ and

f ′′ in normal form, which must be in angle normal form, because ∨ does

not occur in A. Hence f = ⟨f ′, f ′′⟩, and ⟨f ′, f ′′⟩ is in normal form.

If A is A1 ∨ A2, then f = [f ◦
∨
K1

A2
1A1 , f ◦

∨
K2

A1
1A2 ] in GML, and,

by the induction hypothesis, f ◦
∨
K1

A2
1A1 and f ◦

∨
K2

A1
1A2 must be equal

respectively to f ′ and f ′′ in normal form. Hence f = [f ′, f ′′], and [f ′, f ′′]

is in normal form.

We easily pass from the normal form to the settled normal form by

applying (∪ assoc), (∪ com) and (∪ idemp). ⊣

For an arrow term f of C(GML) in settled normal form, there is a one-

to-one correspondence between the set of occurrences of atomic components

of f and the set of ordered pairs of Gf . For example, if f is the arrow term

γ we had above, then we have the following correspondence:

left α1 left α2 α3 β1 β2 β3 β4 right α1 right α2 α4

(0, 0) (1, 1) (0, 3) (2, 0) (4, 2) (2, 3) (2, 4) (5, 0) (6, 1) (5, 4)

which can be drawn as follows:

p ∧ ((q ∨ s) ∧ (p ∨ (p ∨ t)))

0 1 2 3 4 5

((p ∧ q) ∨ ((p ∧ r) ∧ s)) ∨ (p ∧ q)

0 1 2 3 4 5 6
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This one-to-one correspondence has a finer structure, which we are going

to explain now. For A in dnf let a minimal disjunct of A be a subformula

D of A that belongs to L∧ such that there is no subformula of A in L∧ of

which D would be a proper subformula. We define analogously the minimal

conjuncts of a formula B in cnf, by replacing ∧ by ∨.
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Let A be the source ((p ∧ q) ∨ ((p ∧ r) ∧ s)) ∨ (p ∧ q), and let B be the

target p∧ ((q∨ s)∧ (p∨ (p∨ t))), of the arrow term γ we had as an example

above. Then the minimal disjuncts of A are A1, which is the left occurrence

of p∧ q, next A2, which is (p∧ r)∧ s, and A3, which is the right occurrence

of p ∧ q. The minimal conjuncts of B are B1, which is the leftmost p, next

B2, which is q ∨ s, and B3, which is p ∨ (p ∨ t).

For an arrow term f : A ⊢ B of C(GML) in normal form (not necessarily

settled), consider subterms in bracket-free normal form that are not proper

subterms of subterms of f in bracket-free normal form. We call such sub-

terms the molecular components of f . There is a one-to-one correspondence

between the set of occurrences of molecular components of f and the set

of ordered pairs (Ai, Bj) for Ai a minimal disjunct of A and Bj a minimal

conjunct of B. We call this correspondence the molecular correspondence.

For example, the molecular component β3 ∪ β4 of γ corresponds by the

molecular correspondence to the ordered pair (A2, B3).

If f : A ⊢ B is an arrow term of C(GML) in settled normal form, then

for every molecular component f ′ of f , the set of ordered pairs of Gf ′ is in

one-to-one correspondence with the set of atomic components in f ′. We call

this correspondence the atomic correspondence. For example, if f ′ is the

molecular component β3 ∪ β4 of γ, then Gf ′ = {(0, 0), (0, 1)}, where (0, 0)

corresponds by the atomic correspondence to β3 and (0, 1) corresponds to

β4.

We can then prove the following.

Restricted Mix-Lattice Coherence. Let f, g : A ⊢ B be arrow terms

of C(ML) such that A is in dnf and B in cnf. If Gf = Gg, then f = g in

ML.

Proof. By the Normal-Form Lemma, we have that f = f ′ and g = g′ in

GML for f ′ and g′ in settled normal form. Since Gf = Gf ′ and Gg = Gg′,

because G is a functor, we have that Gf = Gg implies Gf ′ = Gg′. If Gf ′ =

Gg′, then for the molecular components f ′′ of f ′ and g′′ of g′ such that f ′′

and g′′ correspond by the molecular correspondence to the same ordered

pair (Ai, Bj), for Ai a minimal disjunct of A and Bj a minimal conjunct of

B, we must have Gf ′′ = Gg′′. Hence, by the atomic correspondence, there
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is a one-to-one correspondence between the atomic components f ′′′ in f ′′

and the atomic components g′′′ in g′′ such that f ′′′ and g′′′ correspond to

the same ordered pair of Gf ′′, that is Gg′′. Since Gf ′′′ = Gg′′′, we may

conclude, by Lattice Coherence, that f ′′′ = g′′′ in GL, and hence also in

GML. (As a matter of fact, f ′′′ and g′′′ must be the same arrow term of

C(GL).) Then, by using the equations (∪ assoc) and (∪ com), we must be

able to show that f ′′ = g′′ in GML. Since this holds for every pair f ′′ and

g′′ of corresponding molecular components, we obtain f ′ = g′, and so f = g

in ML. ⊣

We will not try to establish here an unrestricted coherence result for

ML, or perhaps a category with E(ML) extended. The result we have

above is sufficient for applications in the next chapter, which are our main

concern.

§10.3. Restricted coherence of mix-dicartesian cate-
gories

To obtain the natural logical category ML⊤,⊥, we have that the logical

system C(ML⊤,⊥) is in L∧,∨,⊤,⊥, with the transformations α included in

1, b, c, w-k, m and δ-σ. The specific equations of E(ML⊤,⊥) are obtained

by taking the union of those of E(ML) and E(L⊤,⊥) plus

(m⊤) mA,⊤ =
∨
k1A,⊤ ◦

∧
k1A,⊤,

(m⊥) mA,⊥ =
∨
k1A,⊥ ◦

∧
k1A,⊥ .

It is easy to see that in E(ML⊤,⊥) we have the equations

mA,C =
∨
k1A,C

◦
∧
k1A,C ,

mC,A =
∨
k2C,A

◦
∧
k2C,A

for any letterless formula C of L∧,∨,⊤,⊥. It is clear that, by relying on the

equation (cm) of §8.4, we could replace (m⊤) above bym⊤,A =
∨
k2⊤,A ◦

∧
k2⊤,A,

while (m⊥) could be replaced by m⊥,A =
∨
k2⊥,A ◦

∧
k2⊥,A.

We call natural ML⊤,⊥-categories mix-dicartesian categories.

The syntactical category GML⊤,⊥ synonymous with ML⊤,⊥ is ob-

tained as GL⊤,⊥ save that we have in addition the operation ∪ on arrow
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terms of the same type, and the equations (∪ ◦), (∪ assoc), (∪ com) and

(∪ idemp) of E(GML) (see §9.6 and §10.1), plus the equations

(∪0⊤) 1A∨⊤ ∪
∨
K2

A
∧
κA∨⊤ = 1A∨⊤,

(∪0⊥) 1A∧⊥ ∪
∧
K2

A
∨
κA∧⊥ = 1A∧⊥.

That (∪0⊤) holds in ML⊤,⊥ is shown as follows:

1A∨⊤ ∪ (
∨
k2A,⊤ ◦

∧
κA∨⊤)

=
∨
wA∨⊤ ◦ (1A∨⊤∨

∨
k2A,⊤) ◦mA∨⊤,⊤ ◦ (1A∨⊤∧

∧
κA∨⊤) ◦

∧
wA∨⊤, by (m nat),

= 1A∨⊤, with (m⊤).

We proceed analogously for (∪0⊥) by using (m⊥).
To show that (m⊤) holds in GML⊤,⊥, we have

mA,⊤=
∨
K1
⊤

∧
K1
⊤1A ∪

∨
K2

A

∧
K2

A1⊤

= (1A∨⊤ ∪
∨
K2

A
∧
κA∨⊤) ◦

∨
K1
⊤

∧
K1
⊤1A, with (∪ ◦),

=
∨
K1
⊤

∧
K1
⊤1A, by (∪0⊤) and (cat 1).

We proceed analogously for (m⊥) by using (∪0⊥).
The category Setsl∗ has a terminal object ⊤, which is the two-element

semilattice {∗, x}; this is the free semilattice with unit with a single free

generator x. The initial object ⊥ of Setsl∗ is the trivial semilattice with unit

{∗}; this is the free semilattice with unit with an empty set of generators.

The function
∧
κa: a→ ⊤ is defined by

∧
κa (y) =

{
x if y ̸= ∗
∗ if y = ∗,

while for
∨
κa: ⊥ → a we have

∨
κa (∗) = ∗. The category Setsl∗ , with the struc-

ture defined in §10.1 and here, is a sesquicartesian category in the L⊥ sense,

but not a dicartesian category, because in Setsl∗ the object ⊤∨⊤ is not iso-

morphic to ⊤. Note that in Setsl∗ the equation (m⊥) holds, but (m⊤) does
not hold. In the category Semilat, which is isomorphic to Setsl∗ , the terminal

object ⊤ is the trivial semilattice with a single element, while the initial

object ⊥ is the empty semilattice, i.e. the empty set.

To prove restricted coherence forML⊤,⊥, we need first some preliminary

notions.
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A null term is an arrow term g : A ⊢ B of C(L⊤,⊥) such that Gg is the

empty relation. Let C be a formula of L∧,⊤,⊥ and D a formula of L∨,⊤,⊥.
Then g : C ⊢ D is a null term only if for some C ′ of L∧ and some D′ of L∨
we have that either C is isomorphic to C ′ ∧⊥ or D is isomorphic to D′ ∨⊤
in L⊤,⊥. This follows easily from Composition Elimination for GL⊤,⊥ (see

§9.6).
To show that for any such null term g : C ⊢ D, where i : C ′ ∧ ⊥ ⊢ C is

an isomorphism of L⊤,⊥, and for any arrow term f : C ⊢ D of C(L⊤,⊥), we
have in ML⊤,⊥ the equation

(∪0g) f ∪ g = f,

we rely on the following instance of (∪0⊥):

1C′∧⊥ ∪ (
∨
κC′∧⊥ ◦

∧
k2C′,⊥) = 1C′∧⊥.

From this equation we obtain

f ◦ i ◦ (1C′∧⊥ ∪ (
∨
κC′∧⊥ ◦

∧
k2C′,⊥)) ◦ i−1 = f ◦ i ◦ i−1,

and (∪0g) follows with the help of (∪ ◦) and Lemma 2 of §9.6 (we have

G(f ◦ i ◦
∨
κC′∧⊥ ◦

∧
k2C′,⊥ ◦ i−1) = Gg). We proceed analogously to derive

(∪0g) for a null term g : C ⊢ D where D is isomorphic to D′ ∨ ⊤ in L⊤,⊥,

and any arrow term f : C ⊢ D of C(L⊤,⊥).
Relying on the definition of dnf and cnf of §9.6, we have the following.

Restricted Mix-Dicartesian Coherence. Let f, g : A ⊢ B be arrow

terms of C(ML⊤,⊥) such that A is in dnf and B in cnf. If Gf = Gg, then

f = g in ML⊤,⊥.

To prove this result, we proceed as follows. First, by extending the proof

of Composition Elimination for GL⊤,⊥ (see §9.6), we obtain Composition

Elimination for GML⊤,⊥.

We define inductively composition-free arrow terms of C(GML⊤,⊥) of

type A ⊢ B, for A in dnf and B in cnf, that are in normal form. The only

difference with respect to the definition we had in the preceding section

is that arrow terms in atomic bracket-free normal form can now have
∧
κp,



230 CHAPTER 10. MIX-LATTICE CATEGORIES

∨
κp,

∧
κ⊤,

∨
κ⊥ or 0⊥,⊤ instead of 1p; here 0⊥,⊤ stands for either

∧
κ⊥ or

∨
κ⊤,

which are equal in L⊤,⊥. Arrow terms in atomic bracket-free normal form

in which we do not have 1p, but
∧
κp,

∨
κp,

∧
κ⊤,

∨
κ⊥ or 0⊥,⊤ are called zero

atomic bracket-free terms, and those with 1p nonzero atomic bracket-free

terms. We use the same terminology of “zero” and “nonzero” for atomic

components. Zero atomic bracket-free terms are null terms in the sense

specified above, and all such arrow terms of the same type are equal in

L⊤,⊥ by Lemma 2 of §9.6.
An arrow term f of C(GML⊤,⊥) in normal form is in settled normal

form when, as before, there are no subterms of f in bracket-free normal form

in which an atomic component occurs more than once, and, moreover, we

do not have subterms of f of the form g ∪ h where one of g and h is a

zero atomic component. There is a one-to-one correspondence between the

set of occurrences of nonzero atomic components of an arrow term f of

C(GML⊤,⊥) in settled normal form and the set of ordered pairs of Gf .

Then, by proceeding as in the preceding section, we can prove the

Normal-Form Lemma where GML is replaced by GML⊤,⊥. We use here

also the equations 1⊤ =
∧
κ⊤ and 1⊥ =

∨
κ⊥. To pass from the normal form

to the settled normal form we apply the equations (∪ assoc), (∪ com),

(∪ idemp) and (∪0g). We can then prove Restricted Mix-Dicartesian Co-

herence as Restricted Mix-Lattice Coherence in the preceding section. In

that proof we use Restricted Dicartesian Coherence where previously we

used Lattice Coherence. As for ML, we will not try to establish here

an unrestricted coherence result for ML⊤,⊥, or perhaps a category with

E(ML⊤,⊥) extended.

We will not discuss here the maximality of ML and ML⊤,⊥, but we

conjecture that ML is not maximal in the sense in which L was (see §9.5
and §9.3). For example, one could presumably add to E(ML) the equation

mp,p = mp,p ◦
∧
cp,p, where Gmp,p ̸= G(mp,p ◦

∧
cp,p), without falling into

preorder. There are other such equations, but we will not go here into the

problem of their classification.



Chapter 11

Distributive Lattice Categories

This is the central chapter of the book. We define in it the notion that we

take as the categorification of the notion of distributive lattice. Distribu-

tion is here based on the dissociativity of Chapter 7, which delivers arrows

corresponding to the common distributions of conjunction over disjunction

and of disjunction over conjunction, but neither of these distributions hap-

pens to be an isomorphism (in bicartesian closed categories, the former

distribution is an isomorphism, but the latter is not). For our categorifica-

tion of distributive lattices, we prove coherence with respect to the category

whose arrows are relations between finite ordinals, as before. We have this

coherence both in the presence and in the absence of terminal and initial

objects.

The essential ingredient of our proof is a cut-elimination theorem for a

category corresponding to a plural sequent system for classical conjunctive-

disjunctive logic. This category is obtained by strictifying the double carte-

sian structure so that arrows of the monoidal structure, i.e. associativity

isomorphisms and isomorphisms tied to the terminal and initial objects,

become identity arrows. This is very much in the spirit of Gentzen, who

based his sequents on sequences of formulae, and Gentzen’s intuition is here

vindicated by the strictification results of Chapter 3. Our cut-elimination

procedure differs, however, from Gentzen’s in that it takes into account

union of proofs. Gentzen’s own procedure would lead to collapse, i.e. pre-

order. We also differ from Gentzen in how we deal with the structural rule

of contraction. We eliminate cut directly, and do not introduce Gentzen’s

231
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generalized cut rule, which may be understood as involving several cuts, or

as blending contraction with cut. (Our approach here differs from previ-

ously published procedures of eliminating cut directly.)

We believe that one of the achievements of this chapter is notational.

From the very beginning of categorial proof theory, equations imposed by

cut elimination have been a guiding inspiration, but recording these equa-

tions precisely proved to be a rather difficult task.

§11.1. Distributive lattice categories and their Gentzen-
ization

The categories we are going to investigate in this chapter, which we call

distributive lattice categories, may be conceived as obtained by the cate-

gorification of the notion of distributive lattice. Freely generated categories

of this kind may be conceived as codifying equality of derivations in the

conjunction-disjunction fragment of logic (with or without the empty con-

junction ⊤ and the empty disjunction ⊥). This fragment of logic coincides

in classical and intuitionistic logic, as far as provable sequents of the form

A ⊢ B are concerned (cf. §1.3). Categories we have considered previously

codify analogously equality of derivations in more restricted fragments of

logic, which were sometimes fragments of nonclassical and nonintuitionistic

logics. In particular, the free symmetric net category of §7.6 corresponds

to a fragment of linear logic (in the jargon of that field, we have there the

multiplicative conjunction-disjunction fragment of linear logic).

It is remarkable that equations between arrows in the free distribu-

tive lattice category cover a procedure of cut elimination in a plural, i.e.

multiple-conclusion, sequent system. A sequent Γ ⊢ ∆ is a singular, or

single-conclusion, sequent when ∆ has a single member or is empty; with-

out this restriction, it is a plural, or multiple-conclusion, sequent. The fact

that we are within the realm of plural sequents for conjunctive-disjunctive

logic allows us to assume that we are dealing with classical, rather than

intuitionistic, logic (see the last part of §1.3).
Gentzen’s cut-elimination theorem of [60] could be phrased as saying

that for every term t coding a derivation of Γ ⊢ ∆ there is a term t′ coding

a cut-free derivation of Γ ⊢ ∆. As in the Cut-Elimination Theorem of
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§7.7, we prove something more in this chapter. We show also that t = t′

in a particular category D. Gentzen did not care about equality between

these terms—he did not even introduce terms to code his derivations. His

intuition was, however, good in most cases, and we may copy his procedure

to a great extent. But we cannot copy it completely, because if we did so,

then our category D would be a preorder.

We want equality of arrows in D to correspond to equality of arrows

in the freely generated distributive lattice category, and D should not be

a preorder. Therefore our cut-elimination procedure will not be exactly

Gentzen’s procedure of [60] restricted to conjunctive-disjunctive logic, but

a modification of it, and we will point out later where precisely we differ

from Gentzen. The main difference is that we take into account the mix

principle, which in this context yields the operation of union of derivations,

corresponding to the operation ∪ on arrow terms of §10.1. The problematic

situation in [60], mentioned at the beginning of §1.6, was noted in [64] (Ap-

pendix B1, by Y. Lafont), where it was supposed that there is no alternative

to Gentzen’s way of dealing with it, and that preorder and triviality are in-

escapable in the proof theory of classical logic (see also [67], Section 1). We

show that this is not the case, and obtain a coherence result for distributive

lattice categories with respect to the category Rel.

Distributive lattice categories are not the only candidate for codifying

equality of derivations in conjunctive-disjunctive logic. An alternative cod-

ification is in a fragment of bicartesian closed categories. The equations of

these categories also cover a cut-elimination procedure in a single-conclusion

sequent system (see [109]). With this alternative codification, we do not

have, however, a coherence result with respect to Rel (see §1.2, [48], Sec-
tion 1, and [109], Section 1; cf. [76], pp. 95-97). The distribution arrow of

type A ∧ (B ∨ C) ⊢ (A ∧ B) ∨ (A ∧ C) is an isomorphism in bicartesian

closed categories. In our distributive lattice categories we have an arrow of

this type, and of the inverse type, but we need not have an isomorphism of

this type. We pass now to the definition of distributive lattice category.

To obtain the natural logical category DL, we have that the logical

system C(DL) is in L∧,∨, with the transformations α included in 1, b, c,

w-k, m and d. The specific equations of E(DL) are obtained by taking the

union of those of E(DS) and E(ML) plus
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(d
∧
k)

∧
k2A,B∨C = (

∧
k2A,B ∨ 1C) ◦ dA,B,C ,

(d
∨
k)

∨
k1C∧B,A = dC,B,A ◦ (1C ∧

∨
k1B,A),

(dm) mA,C = (
∧
k1A,B ∨ 1C) ◦ dA,B,C ◦ (1A ∧

∨
k2B,C),

(m
∧
e) ckA,C,B,D

◦
∧
e′A,B,C,D = mA,B ∧ 1C∨D,

(m
∨
e)

∨
e′D,C,B,A

◦ ckD,C,B,A = 1D∧C ∨mB,A

(see §7.6 for
ξ

e′, and §9.4 for ck). In the arrow terms of C(DL) we write d

instead of dL, as we did for C(DS) and C(MDS), and we take dR as defined

by the equation (dRc) of §7.6.
We call natural DL-categories distributive lattice categories. The ob-

jects of a distributive lattice category that is a partial order make a dis-

tributive lattice. InDL, the dissociativity arrows dA,B,C enable us to define

arrows of the type of the common distribution principles of ∧ over ∨ and of

∨ over ∧ (see §11.3). These distribution arrows are, however, not isomor-

phisms. Note that our distributive lattice categories are not distributive

categories in the sense of [95] (pp. 222-223 and Session 26) or [20], where

distribution of ∧ over ∨ must be an isomorphism.

The cartesian linearly distributive categories of [22] are symmetric net

categories and are lattice categories, but they are not necessarily distribu-

tive lattice categories. The specific equation (wm) is not envisaged in that

paper, nor in [23]. The equations (d
∧
k) and (d

∨
k) hold in cartesian linearly

distributive categories as a consequence of the presence of the equations

(
∧
σ dL) and (

∨
δ dL) of §7.9 in these categories (see §11.5). The equations

(dm), (bm), (cm), (m
∧
e) and (m

∨
e) hold in these categories (as can be gath-

ered from the derivations for DL′ below and from §11.5), though they are

not explicitly mentioned in [22] and [23]. We know the equation (wm) need

not hold in these categories (see §12.5).
We do not know how to derive (m

∧
e) and (m

∨
e) from the remaining

axioms of E(DL). We can however derive from the remaining axioms the

following immediate consequences of (m
∧
e) and (m

∨
e):

ckA,C,B,D
◦

∧
e′A,B,C,D

◦ (1A∧B ∧mC,D) = mA,B ∧mC,D,

(mD,C ∨ 1B∨A) ◦
∨
e′D,C,B,A

◦ ckD,C,B,A = mD,C ∨mB,A
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(see the derivation of (m
∧
cm) in this section, and §13.2). Equations that

for the presentation of DL could replace (m
∧
e) and (m

∨
e) are

(
∧
k1A,C ∨

∧
k1B,D)◦

∧
e′A,B,C,D = mA,B ◦

∧
k1A∧B,C∨D,

∨
e′D,C,B,A

◦ (
∨
k2D,B ∧

∨
k2C,A) =

∨
k2D∧C,B∨A ◦mB,A,

and equations that could replace (m
∧
e), (m

∨
e) and (wm) are the following

two equations:

(wm
∧
e) (

∨
wA ∧ 1C∨D) ◦ ckA,C,A,D

◦
∧
e′A,A,C,D

◦ (
∧
wA ∧ 1C∨D) = 1A∧(C∨D),

(wm
∨
e) (1D∧C ∨

∨
wA) ◦

∨
e′D,C,A,A

◦ ckD,C,A,A
◦ (1D∧C ∨

∧
wA) = 1(D∧C)∨A.

It is clear that these two equations follow from (m
∧
e), (m

∨
e) and (wm).

To show the converse, for f being (
∧
k1A,C ∨

∧
k1B,D) ◦

∧
e′A,B,C,D and g being

(
∨
wA∧B ∧ 1C∨D) ◦ ckA∧B,C,A∧B,D, we have

f ◦ g = f ◦
∨
w(A∧B)∧(C∨D) ◦ ((1A∧B∧

∨
k1C,D) ∨ (1A∧B∧

∨
k2C,D)),

by Lattice Coherence of §9.4,
= mA,B ◦

∨
wA∧B ◦ (

∧
k1A∧B,C ∨

∧
k1A∧B,D), with (dm) and by

Symmetric Net Coherence of §7.6,
= mA,B ◦

∧
k1A∧B,C∨D ◦ g, by Lattice Coherence,

and then we apply (wm
∧
e) to obtain (m

∧
e). We proceed analogously for

(m
∨
e). From either (wm

∧
e) or (wm

∨
e) we derive (wm) by applying (m

∧
e) or

(m
∨
e) (see §11.5 and §13.2 for further comments on (m

∧
e) and (m

∨
e)).

There are redundancies in our presentation of DL. A synonymous log-

ical system C(DL′) is obtained by omitting m from C(DL). We introduce

m in C(DL′) by (dm) understood as a definition. The specific equations of

E(DL′) are obtained by taking the union of those of E(DS) and E(L) plus
(wm), (d

∧
k), (d

∨
k), (m

∧
e) and (m

∨
e), where m is defined. The category DL′

is C(DL′)/E(DL′). To prove this synonymity, i.e. the isomorphism of DL

with DL′ (see the end of §2.4 for the notion of synonymity of syntactical

systems), we have the following.

First, we derive for DL′ the equation

(
∧
k1A,D ∨ 1C) ◦ dA,D,C ◦ (1A ∧

∨
k2D,C) = (

∧
k1A,B ∨ 1C) ◦ dA,B,C ◦ (1A ∧

∨
k2B,C),

which yields the equation (dm) for DL′, because the left-hand side may be

replaced by mA,C . We have, by using naturality equations,
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(
∧
k1A,D ∨ 1C) ◦ dA,D,C ◦ (1A ∧

∨
k2D,C)

= (
∧
k1A,D ∨ 1C) ◦ dA,D,C ◦ (1A ∧ (

∧
k1D,B ∨ 1C)) ◦ (1A ∧

∨
k2D∧B,C)

= (
∧
k1A,D∧B ∨ 1C) ◦ dA,D∧B,C ◦ (1A ∧

∨
k2D∧B,C)

= (
∧
k1A,B ∨ 1C) ◦ ((1A ∧

∧
k2D∧B) ∨ 1C) ◦ dA,D∧B,C ◦ (1A ∧

∨
k2D∧B,C)

= (
∧
k1A,B ∨ 1C) ◦ dA,B,C ◦ (1A ∧

∨
k2B,C).

Next, we derive the equation (
∧
bmL) (see §8.3) for DL′:

dA,B,C ◦ (1A ∧mB,C)

= dA,B,C ◦ (1A ∧ (
∧
k1B,D ∨ 1C)) ◦ (1A ∧ dB,D,C) ◦

◦ (1A ∧ (1B ∧
∨
k2D,C)), by (dm),

= ((1A ∧
∧
k1B,D) ∨ 1C) ◦ (

∧
b←A,B,D ∨ 1C) ◦ dA∧B,D,C ◦

∧
b→A,B,D∨C ◦

◦ (1A ∧ (1B ∧
∨
k2D,C)), by naturality and (dL∧) of §7.2,

= (
∧
k1A∧B,D ∨ 1C) ◦ dA∧B,D,C ◦ (1A∧B ∧

∨
k2D,C) ◦

∧
b→A,B,C ,

by (
∧
b

∧
k1) of §9.1 and naturality,

= mA∧B,C ◦
∧
b→A,B,C , by (dm),

and we proceed analogously for (
∨
b mL). Hence we have also (

∧
b mR) and

(
∨
bmR) (see §8.3). We can then derive the equation (bm) (see §8.2) for DL′

as we derived it for MDA (see §8.3).
We derive as follows the equation (cm) (see §8.4) for DL′. We have the

equation

(
∨
wA ∨ 1C) ◦ ((1A ∨

∧
k1A,C) ∨ 1C) ◦ (dRA,A,C ∨ 1C) ◦ dA∨A,C,C ◦ (

∨
k1A,A ∧

∨
k2C,C) =

(1A ∨
∨
wC) ◦ (1A ∨ (

∧
k2A,C ∨ 1C)) ◦ (1A ∨ dA,C,C) ◦ dRA,A,C∨C ◦ (

∨
k1A,A ∧

∨
k2C,C),

by (d
∨
b) (see §7.2) and Lattice Coherence of §9.4. We obtain that the two

sides of this equation are equal respectively to the two sides of the following

equation:

(
∧
k1A,C ∨ 1C) ◦ dA,C,C ◦ (1A ∧

∨
k2C,C) = (1A ∨

∧
k2A,C) ◦ dRA,A,C

◦ (
∨
k1A,A ∧1C),

by using (d
∧
k), Lattice Coherence, naturality and bifunctorial equations,

and from that equation we derive (cm).
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It is easy to derive (m nat) for defined m in E(DL′), so that we have

in E(DL′) all the equations of E(MDS). We have also in E(DL′) all the

equations of E(ML). Since all the equations of E(DL′) are clearly in E(DL),

we obtain that DL and DL′ are isomorphic.

Note that for DL we can derive

mA,C = (1A ∨
∧
k2B,C) ◦ dRA,B,C

◦ (
∨
k1A,B ∧ 1C),

which is related to (cm). We can also derive for DL the following equations:

(m
∧
cm) mA∧C,B∧D ◦

∧
cmA,B,C,D =

∧
e′A,B,C,D

◦ (1A∧B ∧mC,D),

(m
∨
cm)

∨
cmD,C,B,A

◦mD∨B,C∨A = (mD,C ∨ 1B∨A) ◦
∨
e′D,C,B,A,

which we will use in §11.2 (see also §13.2). Here is a derivation of (m
∧
cm):

mA∧C,B∧D ◦
∧
cmA,B,C,D

= mA∧C,B∧D ◦
∧
b→A,C,B∧D ◦ (1A ∧

∧
b←C,B,D) ◦ (1A ∧ (

∧
cB,C ∧ 1D)) ◦

◦ (1A ∧
∧
b→B,C,D) ◦

∧
b←A,B,C∧D

= dA,C,B∧D ◦ (1A ∧mC,B∧D) ◦ (1A ∧
∧
cB∧D,C) ◦ (1A ∧

∧
b→B,D,C) ◦

◦
∧
b←A,B,D∧C ◦ (1A∧B ∧

∧
cC,D), by (

∧
bmL) and

Symmetric Biassociative Coherence of §6.3,
= dA,C,B∧D ◦ (1A ∧

∨
cC,B∧D) ◦ (1A ∧ dB,D,C) ◦ (1A ∧ (1B ∧mD,C)) ◦

◦
∧
b←A,B,D∧C ◦ (1A∧B ∧

∧
cC,D), by (cm) and (

∧
bmL),

=
∧
e′A,B,C,D

◦ (1A∧B ∧mC,D), by (
∧
b← nat) and (cm),

and we proceed analogously for (m
∨
cm).

Let C and C′ be respectively the logical systems C(DL) and C(A), while

E is E(DL). Next, let B be C/E , that is DL. Then it is easy to see that

the conditions (IVC) and (IVB) of §3.1 are satisfied. Since the C′-core of

C/E is the category A, by Biassociative Coherence of §6.1, we have that

the condition (IVG) of §3.1 is also satisfied. So (IV) holds, and since A is a

preorder by Biassociative Coherence, we can apply the Strictification The-

orem of §3.1 to obtain that the category DLA, that is DLG , is equivalent

to DL via two strong C(DL)-functors. Remember that according to §6.2
the objects of DLA may be identified with form sequences of L∧,∨ in the

nonextended sense. (For understanding the category DLA, see also §4.5.)
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Let D be the category obtained as the disjoint union of DLA and of the

trivial category with a single object ∅ (intuitively this is the empty form

sequence of both colour) and a single arrow 1∅ : ∅ ⊢ ∅. The adding of ∅ to
DLA is made for practical reasons, to simplify the exposition of our cut-

elimination proof by subsuming several cases under a single schema. We

could also do without ∅ at the cost of considering more cases in the proof.

The operations ξ′′ ∈ {∧′′,∨′′} on the objects of DLA, i.e. on the form

sequences of L∧,∨, are extended in the following manner to operations that

apply also to ∅. For X an object of DLA or ∅, we have

X ξ′′ ∅ = ∅ ξ′′ X = X.

So all the objects of D are closed under the operations ξ′′. The operations

ξ′′ ∈ {∧′′,∨′′} on arrows are extended to operations that apply also to 1∅

by stipulating that

f ξ′′ 1∅ = 1∅ ξ′′ f = f

(the variable f here ranges also over 1∅). So all the arrows of D are closed

under the operations ξ′′.

The category D will not have the structure of a DL-category. We lack

in D the arrows
ξ

k1∅,X and
ξ

k2X,∅ for X different from ∅. However,
ξ

w∅ may be

identified with 1∅, and the arrows
ξ

b→X,Y,Z ,
ξ

b←X,Y,Z and
ξ

cX,Y where one of the

subscripts stands for ∅ may also be identified with identity arrows. (So D
would have the structure of something that could be called a relevant net

category; see [43] and [108]; cf. §14.4).
A basic sequence of colour ξ ∈ {∧,∨} of D is either a form sequence

of L∧,∨ of the form (A1. . . An, ξ), for n ≥ 2 and Ai, where i ∈ {1, . . . , n},
a formula of L∧,∨, or it is a formula of L∧,∨, or it is ∅. So the object

∅, as well as the formulae of L∧,∨, is both of colour ∧ and of colour ∨.
A basic sequence is a basic sequence of either colour. The members of a

basic sequence (A1. . . An, ξ) are the occurrences of formulae A1, . . . , An;

the only member of the basic sequence A is A; and the basic sequence ∅
has no members.

We use Γ and Φ, with or without indices, as variables for basic sequences

of colour ∧, and we use ∆ and Ψ, with or without with indices, for basic
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sequences of colour ∨. For basic sequences in general, we use Θ and Ξ,

with or without indices. We write 1Θ for (1FΘ,Θ,Θ) when Θ is not ∅;
otherwise, 1Θ is 1∅.

A sequent arrow of D is an arrow whose type is Γ ⊢ ∆, for Γ and ∆

basic sequences different from ∅. According to the convention above, Γ is

of colour ∧ and ∆ is of colour ∨. The type of a sequent arrow is a sequent

(this agrees with Gentzen’s notion of sequent).

Let Θ1
ξ Θ2 . . .

ξ Θn be an abbreviation for (. . . (Θ1 ξ′′ Θ2) . . . ξ′′ Θn), and

f1
ξf2 . . .

ξfn an abbreviation for (. . . (f1 ξ′′ f2) . . . ξ′′ fn), where n ≥ 2.

Next, let Θ ξf and f ξΘ be abbreviations for 1Θ ξ′′ f and f ξ′′ 1Θ, respec-

tively. Sometimes we will also write, ambiguously, 1 ξf and f ξ1 for 1Θ
ξf

and f ξ1Θ, where Θ can be recovered from the context.

We use the following abbreviations:

ξ

cΘ,Ξ =df

{
ξ

c ′′Θ,Ξ if Θ ̸= ∅ and Ξ ̸= ∅
1Θ ξΞ if Θ = ∅ or Ξ = ∅,

ξ

wΘ =df

{
ξ

w′′Θ if Θ ̸= ∅
1Θ if Θ = ∅,

∧
yΓ1,Γ2,Γ,Θ =df (Γ1

∧ ∧
cΓ2,Θ

∧Θ∧Γ) ◦ (Γ1
∧Γ2

∧ ∧
wΘ

∧Γ):

Γ1
∧Γ2

∧Θ∧Γ ⊢ Γ1
∧Θ∧Γ2

∧Θ∧Γ,

∨
yΘ,∆,∆2,∆1

=df (∆
∨ ∨
wΘ

∨∆2
∨∆1) ◦ (∆∨Θ∨ ∨

cΘ,∆2
∨∆1) :

∆∨Θ∨∆2
∨Θ∨∆1 ⊢ ∆∨Θ∨∆2

∨∆1.

For n ≥ 3, consider the abbreviations defined inductively as follows:

∧
yΓ1,Γ2,Γ3,...,Γn,Γ,Θ =df

∧
yΓ1,Γ2,Γ3

∧Θ∧...∧Γn
∧Θ∧Γ,Θ

◦
∧
yΓ1

∧Γ2,Γ3,...,Γn,Γ,Θ:

Γ1
∧Γ2

∧Γ3
∧ . . . ∧Γn

∧Θ∧Γ ⊢ Γ1
∧Θ∧Γ2

∧Θ∧Γ3
∧Θ∧ . . . ∧Γn

∧Θ∧Γ,

∨
yΘ,∆,∆n,...,∆3,∆2,∆1

=df
∨
yΘ,∆,∆n,...,∆3,∆2

∨∆1
◦

∨
yΘ,∆∨Θ∨∆n

∨...∨Θ∨∆3,∆2,∆1
:

∆∨Θ∨∆n
∨ . . . ∨Θ∨∆3

∨Θ∨∆2
∨Θ∨∆1 ⊢ ∆∨Θ∨∆n

∨ . . . ∨∆3
∨∆2

∨∆1.

We also have the following abbreviations:

dΘ,A,Ξ =df

{
d′′Θ,A,Ξ if Θ ̸= ∅ and Ξ ̸= ∅
1Θ∧(A∨Ξ) if Θ = ∅ or Ξ = ∅,
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∧
e′Γ2,Γ1,B,A =df dΓ2,B,Γ1

∧A ◦ (Γ2
∧ ∨
cB,Γ1

∧A) ◦ (Γ2
∧dΓ1,A,B) ◦ (Γ2

∧Γ1
∧ ∨
cA,B) :

Γ2
∧Γ1

∧(B ∨A) ⊢ (Γ2
∧B)∨(Γ1

∧A),

∨
e′A,B,∆1,∆2

=df (
∧
cB,A

∨∆1
∨∆2) ◦ (dB,A,∆1

∨∆2) ◦ (
∧
cA∨∆1,B

∨∆2) ◦dA∨∆1,B,∆2:

(A ∨∆1)
∧(B ∨∆2) ⊢ (A ∧B)∨∆1

∨∆2

(note that
∧
e′∅,∅,B,A = 1B∨A and

∨
e′A,B,∅,∅ = 1A∧B),

mΘ,Ξ =df (
∧
k1′′Θ,B

∨Ξ) ◦dΘ,B,Ξ ◦ (Θ∧
∨
k2′′B,Ξ)

(note that for mΘ,Ξ we must have Θ ̸= ∅ and Ξ ̸= ∅),

ckΘ1,Θ2,Θ3,Θ4
=df

∨
w(Θ1

∨Θ3)∧(Θ2
∨Θ4)

◦ ((
∨
k1′′Θ1,Θ3

∧
∨
k1′′Θ2,Θ4

)∨(
∨
k2′′Θ1,Θ3

∧
∨
k2′′Θ2,Θ4

))

(note that none of Θ1, Θ2, Θ3 and Θ4 can be ∅ in the subscripts of ck).

Finally, let 1i
A ξB stand for (1AξB , A

ξB,A ξ B), while 1e
A ξB stands for

(1AξB, A ξ B,A ξB). We do not introduce the notation
ξ

k1
Θ,Ξ, because we

could not interpret it when Θ is ∅ and Ξ is not ∅, and analogously with
ξ

k2
Ξ,Θ.

We will now define by induction a set of terms for sequent arrows of D,
which we call Gentzen terms. First, we stipulate that for every letter p the

term 1′′p : p ⊢ p, which denotes the arrow (1p, p, p) of D, is a Gentzen term.

The remaining Gentzen terms are obtained by closing under the following

operations on Gentzen terms, which we call Gentzen operations. As in

§7.7, we present these operations by inductive clauses in fractional notation,

which are interpreted as saying that if the terms above the horizontal line

are Gentzen terms, then the term below the horizontal line is a Gentzen

term (cf. §2.2). The schema on the left-hand side of the =dn sign stands for

the Gentzen term, while the schema on the right-hand side stands for the

arrow denoted by this term. First, we have the operations that correspond

to Gentzen’s structural rules:

f : Γ1
∧Γ2

∧Γ3
∧Γ4 ⊢ ∆

cLΓ1,Γ2,Γ3,Γ4
f =dn f ◦ (Γ1

∧ ∧
cΓ3,Γ2

∧Γ4) : Γ1
∧Γ3

∧Γ2
∧Γ4 ⊢ ∆

provided Γ2 and Γ3 are not ∅ (one of the indices Γ1 and Γ4 is superfluous

as an index of cL; it is recoverable from the source of f),
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f : Γ ⊢ ∆4
∨∆3

∨∆2
∨∆1

cR∆4,∆3,∆2,∆1
f =dn (∆4

∨ ∨
c∆2,∆3

∨∆1) ◦ f : Γ ⊢ ∆4
∨∆2

∨∆3
∨∆1

provided ∆2 and ∆3 are not ∅ (one of ∆1 and ∆4 is superfluous as an index

of cR),

f : Γ ⊢ ∆

kLAf =dn f ◦
∧
k1′′Γ,A : Γ ∧A ⊢ ∆

f : Γ ⊢ ∆

kRAf =dn

∨
k2′′A,∆

◦ f : Γ ⊢ A ∨∆

f : Γ1
∧A∧ . . . ∧Γn

∧A∧Γ ⊢ ∆

wL
Γ1,...,Γn,Γf =dn f ◦

∧
yΓ1,...,Γn,Γ,A: Γ1

∧ . . . ∧Γn
∧A∧Γ ⊢ ∆

, n ≥ 2,

f : Γ ⊢ ∆∨A ∨∆n
∨ . . . ∨A ∨∆1

wR
∆,∆n,...,∆1

f =dn
∨
yA,∆,∆n,...,∆1

◦ f : Γ ⊢ ∆∨A ∨ ∆n
∨ . . . ∨∆1

, n ≥ 2,

f : Γ3 ⊢ ∆2
∨A ∨∆1 g : Γ1

∧A ∧ Γ2 ⊢ ∆3

cut Γ2,∆2(f, g) : Γ1
∧Γ2

∧Γ3 ⊢ ∆3
∨∆2

∨∆1

where cut Γ2,∆2(f, g) denotes

(g ∨∆2
∨∆1) ◦ ((Γ1

∧ ∧
cΓ2,A)

∨∆2
∨∆1) ◦dΓ1

∧Γ2,A,∆2
∨∆1

◦

◦ (Γ1
∧Γ2

∧(
∨
cA,∆2

∨∆1)) ◦ (Γ1
∧Γ2

∧f),

and A is called the cut formula of cut Γ2,∆2(f, g),

f : Γ1 ⊢ ∆1 g : Γ2 ⊢ ∆2

mix (f, g) =dn (g ∨∆1) ◦mΓ2,∆1
◦ (Γ2

∧f) : Γ2
∧Γ1 ⊢ ∆2

∨∆1

Note that by (m nat) in D we have

mix (f, g) = m∆2,∆1
◦ (g ∧f) = (g ∨f) ◦mΓ2,Γ1 .
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If we write dΓ2,∅,∆1
instead of mΓ2,∆1 , then mix (f, g) can be conceived as

cut ∅,∅(f, g) where the cut formula A is replaced by ∅.
Had we favoured dR, rather than dL, for f : Γ1 ⊢ ∆3

∨A ∨∆2 and g :

Γ2
∧A ∧ Γ3 ⊢ ∆1 we could take that cut Γ1,∆1(f, g) : Γ1

∧Γ2
∧Γ3 ⊢ ∆3

∨∆2
∨∆1

denotes

(∆3
∨∆2

∨g) ◦ (∆3
∨∆2

∨(
∧
cA,Γ2

∧Γ3)) ◦dR
∆3

∨∆2,A,Γ2
∧Γ3

◦

◦ ((∆3
∨ ∨
c∆2,A)

∧Γ2
∧Γ3) ◦ (f ∧Γ2

∧Γ3)

where dR stands for dR
′′
if ∆3

∨∆2 and Γ2
∧Γ3 are not ∅, and otherwise for

1. This would prevent the Γ’s and ∆’s of f and g to switch from right to

left, as in our official definition of the Gentzen operation cut . But since

we favour dL, we have to tolerate this switch, which does not cause serious

trouble, anyway. We have made the same switch in our Gentzen operation

mix , to make it parallel to our cut .

Here are the remaining Gentzen operations, which correspond to rules

for ∧ and ∨:

f : Γ ∧A ∧B ⊢ ∆

∧Lf =dn f ◦ (Γ ∧1e
A∧B) : Γ

∧(A ∧B) ⊢ ∆

f : Γ1 ⊢ A ∨∆1 g : Γ2 ⊢ B ∨∆2

∧R(f, g) =dn (1i
A∧B

∨∆1
∨∆2) ◦

∨
e′A,B,∆1,∆2

◦ (f ∧g) : Γ1
∧Γ2 ⊢ (A ∧B)∨∆1

∨∆2

g : Γ2
∧B ⊢ ∆2 f : Γ1

∧A ⊢ ∆1

∨L(g, f) =dn (g ∨f) ◦
∧
e′Γ2,Γ1,B,A

◦ (Γ2
∧Γ1

∧1e
B∨A) : Γ2

∧Γ1
∧(B ∨A) ⊢ ∆2

∨∆1

f : Γ ⊢ B ∨A ∨∆

∨Rf =dn (1i
B∨A

∨∆) ◦ f : Γ ⊢ (B ∨A)∨∆

This concludes the list of Gentzen operations.

For n ≥ 2, we introduce the following abbreviations by induction:

wL∅
Γ1,...,Γn,Γ

f =df f , for f : Γ1
∧ . . . ∧Γn

∧Γ ⊢ ∆,
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wLA∧Φ
Γ1,...,Γn,Γ

f =df w
L
Γ1,...,Γn,ΦΓw

LΦ
Γ1

∧A,...,Γn
∧A,Γf ,

for f : Γ1
∧A∧Φ∧ . . . ∧Γn

∧A∧Φ∧Γ ⊢ ∆,

wR∅
∆,∆n,...,∆1

f =df f , for f : Γ ⊢ ∆∨∆n
∨ . . . ∨∆1,

wRΨ∨A
∆,∆n,...,∆1

f =df w
R
∆Ψ,∆n,...,∆1

wRΨ
∆,A∨∆n,...,A∨∆1

f ,

for f : Γ ⊢ ∆∨Ψ∨A ∨∆n
∨ . . . ∨Ψ∨A ∨∆1.

By Semilattice Coherence of §9.1 (in fact, we use here the relevant coherence

result of [108], Section 5), we have in D the equations

(w y) wLΦ
Γ1,...,Γn,Γf = f ◦

∧
yΓ1,...,Γn,Γ,Φ, wRΨ

∆,∆n,...,∆1
f =

∨
yΨ,∆,∆n,...,∆1

◦ f.

To lighten the burden of notation, in proofs we will sometimes omit

subscripts in Gentzen terms or other terms for arrows of D. A reader

checking the proofs should be able to restore these subscripts. We will also

sometimes take for granted the subscripts of Gentzen operations, and omit

them. We do this in cases where no confusion is likely, and the subscripts

serve no particular purpose. We use γ, γ1, γ2, . . . as variables for Gentzen

operations (with subscripts omitted or not).

Note that Gentzen terms codify derivations in a plural sequent system

for conjunctive-disjunctive classical propositional logic. (We have men-

tioned at the beginning of the section that we believe that we are within

classical, rather than intuitionistic, logic; cf. also §1.3.) We have in this

sequent system rules for connectives of the multiplicative kind, to use the

terminology of linear logic. In this terminology, Gentzen’s rules for conjunc-

tion and disjunction of [60] would be called additive. This is not, however,

an essential difference. We could have worked with additive rules as well.

We took multiplicative rules for practical reasons, which have to do with

our way of dealing with the structural rule of contraction. This difference

does not bar comparing our cut-elimination procedure with Gentzen’s, and

it will turn out that, though the two procedures have much in common,

they are not the same.

The main difference is that we take into account the mix principle, which

yields union of derivations (see §8.1 and §10.1). Gentzen did not take this

principle into account, because, for his more limited purposes, he did not
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need to do so. This mix principle should not be confused with Gentzen’s

generalized cut, Mischung, also called mix in English (see §8.1), which is

derivable in our system with the help of contractions, that is wL and wR.

We also differ from Gentzen in the way how we deal with contraction,

embodied in the operations wL and wR. We eliminate cut directly, and do

not introduce as Gentzen his generalized cut Mischung, which he used to

deal with problems caused by contraction (see [14], Sections 1 and 2). Elim-

inating cut directly is handier for notational reasons, because Gentzen’s

Mischung is more difficult to code in our categorial setting. (Our proce-

dure of direct cut elimination differs from similar procedures in [12], [14],

[130] and [13]; except for [14], where categories are mentioned occasion-

ally, these papers are not concerned with categorial proof theory and the

difficulties of notation for arrow terms.)

Another difference with Gentzen is that we distinguish “conjunctive

commas”, our ∧ (which abbreviates ∧′′), from “disjunctive commas”, our ∨

(which abbreviates ∨′′), whereas Gentzen has just one kind of comma. In

other words, we have two-coloured form sequences, whereas Gentzen has

just ordinary sequences. Indeed, if we stay at the level of sequent arrows of

D, then the fact that a sequence is on the left-hand side or on the right-hand

side of ⊢ dictates whether it is of colour ∧ or ∨, and then we could do as

Gentzen. But we do not pay attention only to sequents, as Gentzen does.

For example, in building a sequent arrow denoted by cut Γ2,∆2(f, g) we refer

to arrows of D like
∧
cΓ2,A, or dΓ1

∧Γ2,A,∆2
∨∆1 , etc., which are not sequent

arrows. With d, we even have that conjunctive commas are nested within

disjunctive commas and vice versa. Gentzen did not have these problems

because he was not considering explicitly arrows and equality between them,

but only types of arrows and, moreover, just sequent types. Gentzen stays

somewhere near the lowest level of D, while we take somewhat more of D
into account when we compute equality of sequent arrows.

In principle, we could have worked with directly strictified DL in the

sense of §3.2, but then we would be less close to Gentzen. In that case, we

would not have operations corresponding to ∧L and ∨R, but at the price of
complications in the computation of rank. We do this computation below

very much in the style of Gentzen. (Cut elimination in something corre-

sponding to our directly strictified DL, but without taking into account
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equality of derivations, may be found in [16].)

Instead of directly strictifying, we have produced D according to the

recipe of §3.1, §4.5 and §6.2. We find it is interesting to locate Gentzen’s

sequents within this strictified biassociative structure constructed in the

style of Joyal, Street and Mac Lane (the last author was close to Gentzen

in his youth). This tells us that Gentzen had a sound premonition that

nothing is lost by strictifying with respect to associativity.

Every arrow of D denoted by a Gentzen term is a sequent arrow. We

show in the following lemma that these are all the sequent arrows of D.

Gentzenization Lemma. Every sequent arrow of D is denoted by a

Gentzen term.

Proof. We prove first that every sequent arrow (f,A,B) of D is denoted

by a Gentzen term. After that we will pass to the sequent arrows (f,Γ,∆)

for Γ and ∆ with more than one member.

We show by induction on the lenght of A that (1A, A,A) is denoted by

a Gentzen term. If A is p, then (1p, p, p) is denoted by 1′′p . If A is A1 ∧A2,

and (1Ai , Ai, Ai) is denoted by the Gentzen term 1′′Ai
, for i ∈ {1, 2}, then

(1A, A,A) is denoted by ∧L∧R(1′′A1
,1′′A2

). If A is A1 ∨A2, then (1A, A,A)

is denoted by ∨R∨L(1′′A1
,1′′A2

). We write, in general, 1′′A for the Gentzen

term denoting (1A, A,A).

We have that (
∧
b→A,B,C , A ∧ (B ∧ C), (A ∧B) ∧ C) is denoted by

∧L∧L∧R(∧R(1′′A,1′′B),1′′C),

according to Associative Coherence of §4.3.
The inverse arrow (

∧
b←A,B,C , (A ∧B) ∧ C,A ∧ (B ∧ C)) is denoted by

∧LcL∅,C,A∧B,∅∧Lc
L
∅,A∧B,C,∅∧R(1

′′
A,∧R(1′′B ,1′′C)),

according to Symmetric Associative Coherence of §5.1.
We have that (

∧
cA,B , A∧B,B∧A) is denoted by ∧LcL∅,B,A,∅∧

R(1′′B,1
′′
A),

and (
∧
wA, A,A∧A) is denoted by wL∧R(1′′A,1′′A). Next, (

∧
k1A,B , A∧B,A) is

denoted by ∧LkLB1′′A, while (
∧
k2A,B , A∧B,B) is denoted by ∧LcL∅,B,A,∅k

L
A1
′′
B.

We proceed analogously for
∨
b→,

∨
b←,

∨
c,

∨
w and

∨
ki by using ∨L and ∨R.
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We have that (dA,B,C , A ∧ (B ∨ C), (A ∧B) ∨ C) is denoted by

∨R∧L∨L(∧R(1′′A,1′′B),1′′C) or ∧L∨R∧R(1′′A,∨L(1′′B ,1′′C)).

If the Gentzen terms f ′′ and g′′ denote the sequent arrows (f,A,B) and

(g, C,D) respectively, then ∧L∧R(f ′′, g′′) denotes (f ∧ g,A ∧ C,B ∧ D),

while ∨R∨L(f ′′, g′′) denotes (f ∨ g,A∨C,B ∨D). If the Gentzen terms f ′′

and g′′ denote the sequent arrows (f,A,B) and (g,B,C) respectively, then

cut ∅,∅(f
′′, g′′) denotes (g ◦ f,A,C).

Take now a sequent arrow (f,A1
∧ . . . ∧An, Bm

∨ . . . ∨B1) of D where

n,m ≥ 2. We have proved above that, for F defined as in §4.5, the sequent
arrow (f, F (A1

∧ . . . ∧An), F (Bm
∨ . . . ∨B1)) is denoted by a Gentzen term

f ′′. Then for g and h being respectively ∧R(. . .∧R(1′′A1
,1′′A2

) . . . ,1′′An
) and

∨L(1′′Bm
, . . .∨L(1′′B2

,1′′B1
) . . .), the Gentzen term cut ∅,∅(cut ∅,∅(g, f

′′), h) de-

notes the sequent arrow (f,A1
∧ . . . ∧An, Bm

∨ . . . ∨B1). ⊣

§11.2. Cut elimination in D

In this section we will prove a cut-elimination theorem for the Gentzen

terms of D. Before stating and proving this result, we introduce some

technical notions and prove some auxiliary results.

A cut is a Gentzen term of the form cut Γ,∆(f, g). A cut-free Gentzen

term is a Gentzen term none of whose subterms is a cut. A cut cut Γ,∆(f, g)

is called topmost when f and g are cut-free.

We say that a Gentzen term is k-atomized when for every subterm of

it of the form kLA or kRA we have that A is an atomic formula, which here

means that it is a letter. Then we have the following lemma.

Atomic-k Lemma. For every Gentzen term g there is a k-atomized Gen-

tzen term g′ such that g = g′ in D. Moreover, if g is cut-free, then g′ is

cut-free.

Proof. By Semilattice Coherence of §9.1, in D we have

kLA∧Bf = ∧LkLBkLAf.

We show next that for f : Γ ⊢ ∆ we have in D
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kLA∨Bf = wR∆
∅,∅,∅ w

LΓ
∅,∅,A∨B∨L(k

L
Af, k

L
Bf).

The right-hand side (RHS) of this equation is equal to

∨
w∆ ◦ ((f ◦

∧
k1′′Γ,A)

∨(f ◦
∧
k1′′Γ,B)) ◦

∧
e′Γ,Γ,A,B

◦ (Γ ∧Γ ∧1e
A∨B) ◦ (

∧
wΓ

∧(A ∨B)),

by the equations (w y) of the preceding section. Next we have

RHS = f ◦
∨
wΓ ◦

∧
k1′′Γ,A∨B

◦ ckΓ,A,Γ,B
◦

∧
e′Γ,Γ,A,B

◦ (
∧
wΓ

∧(A ∨B)) ◦ (Γ ∧1e
A∨B),

by Lattice Coherence of §9.4,

= f ◦
∧
k1′′Γ,A∨B

◦ (
∨
wΓ

∧(A ∨B)) ◦ (mΓ,Γ
∧(A ∨B)) ◦ (

∧
wΓ

∧(A ∨B)) ◦

◦ (Γ ∧1e
A∨B), by (

∧
k1 nat) and (m

∧
e),

= f ◦
∧
k1′′Γ,A∨B, by (mw) and (

∧
k1 nat).

For kRA∨B and kRA∧B we proceed analogously. ⊣

We call leaf formulae of a Gentzen term h the following occurrences of

formulae in the type of h:

when h is 1′′p , the two occurrences of p in the type p ⊢ p of h,

when h is kLAf , or ∧Lf , or ∨L(f, g), the rightmost member of the

source of h,

when h is kRAf , or ∧R(f, g), or ∨Rf , the leftmost member of the target

of h.

For example, the rightmost occurrence of A in the source Γ ∧A of kLAf :

Γ ∧A ⊢ ∆ is a leaf formula of kLAf .

The occurrence of A in the type of wL
Γ1,...,Γn,Γ

f (i.e. in the source of

wL
Γ1,...,Γn,Γ

f), recognized according to the index Γ, is called the lower con-

traction formula of wL
Γ1,...,Γn,Γ

f . For every lower contraction formula A of

wLf there are two or more occurrences of A in the type of f (i.e. in the

source of f), recognized according to the indices Γ1, . . . , Γn, Γ, which we call

the upper contraction formulae of wL
Γ1,...,Γn,Γ

f . We determine analogously
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the lower and upper contraction formulae of wR
∆,∆n,...,∆1

f (the difference is

that they are now in the targets of wR
∆,∆n,...,∆1

f and f).

For every unary Gentzen operation γ1 and every Gentzen term γ1f ,

according to the indices of γ1 we can recognize in the type of γ1f what

basic sequences are the basic sequences Γ, Γ1, . . . ,Γn, ∆, ∆1, . . . ,∆n men-

tioned in the inductive clause for γ1. We call these basic sequences the

lower parametric basic sequences of γ1f . Our inductive clauses for unary

Gentzen operations are such that for every lower parametric basic sequence

Θ of γ1f there is a unique basic sequence Θ in the type of f , recognized

according to the indices of γ1 and the inductive clause for γ1, which we call

an upper parametric basic sequence of γ1f . We determine analogously the

lower and upper parametric basic sequences of γ2(f, g) for a binary Gentzen

operation γ2. Note that our inductive clauses for binary Gentzen opera-

tions are such that every lower parametric basic sequence Θ of γ2(f, g) leads

unambiguously to a unique upper parametric basic sequence Θ of γ2(f, g)

in the type of f or in the type of g. (In terms of linear logic, these clauses

correspond to rules for connectives of the multiplicative kind.)

For any Gentzen term h : Γ ⊢ ∆, and x a member of Γ or ∆, we have

that x is either a leaf formula of h, or a lower contraction formula of h,

or a member of a lower parametric basic sequence of h. We define the

notion of cluster of x in the following manner (this notion, called Bund in

German, stems from Gentzen; see [61], Section 3.41, [103], Section 2.621,

[36], Section 5, and [44], Section 2).

The cluster of x in h is a finite tree whose nodes are occurrences of the

same formula in the types of subterms of h. We assign to every node a label,

which is a subterm h′ of h such that the node occurs in the type of h′. The

root of the cluster of x in h is x, and the label of the root is h. If a node y is

a leaf formula of its label, then y is a leaf; i.e., it has no successors. If a node

y is the lower contraction formula of its label wL
Γ1,...,Γn,Γ

f or wR
∆,∆n,...,∆1

f ,

then y has as successors the upper contraction formulae of wL
Γ1,...,Γn,Γ

f or

wR
∆,∆n,...,∆1

f . These successors, of which there are at least two, all have f

as labels. If a node y is a member of a lower parametric basic sequence Θ

of its label h′, then y has a single successor, which is the occurrence of the

same formula as y, at the same place, as a member of the upper parametric

basic sequence Θ of h′. If h′ is here γ1f , then the label of the successor is
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f , and if h′ is γ2(f, g), then the label of the successor is f or g, depending

on whether the upper parametric basic sequence Θ occurs in the type of f

or in the type of g. With that, we have defined the cluster of x in h.

For a cut cut Γ2,∆2
(f, g), the two occurrences of the cut formula A in the

target of f and in the source of g, recognized according to the indices Γ2 and

∆2, are called respectively the left cut formula and the right cut formula of

cut Γ2,∆2(f, g). (Note that the left cut formula is on the right-hand side of

⊢, while the right cut formula is on the left-hand side of ⊢.)
For any Gentzen term h : Γ ⊢ ∆, and x a member of Γ or ∆, let ρh(x)

be the number of nodes in the cluster of x in h. The left rank of a cut

cut Γ2,∆2(f, g) is ρf (x) where x is the left cut formula of cut Γ2,∆2(f, g), and

the right rank of cut Γ2,∆2(f, g) is ρg(y) where y is the right cut formula

of cut Γ2,∆2(f, g). The rank of a cut is the sum of its left and right ranks.

The least rank of a cut is 2, and in that case the left rank and the right

rank are both 1. This definition of rank is analogous to Gentzen’s, except

that Gentzen counts the number of nodes in the longest path, while we

count the total number of nodes—either measure is good. (A very formal

definition of rank may be found in [14], Section 3.) As a matter of fact, we

are interested only in ranks of topmost cuts, but our definition applies to

any cut.

We announced in the preceding section (after the equations (w y)) that

we will sometimes omit the subscripts of Gentzen operations. In the defi-

nition below, and sometimes later on, we take for granted the subscripts of

wL
Γ1,...,Γn,Γ

, and write just wL. We do the same with wR, and other Gentzen

operations, when their subscripts are cumbersome, but not important.

We say that a Gentzen term of the form wLf is a wL term. Subterms

that are wL terms are called wL subterms. We have an analogous terminol-

ogy with wR. The rank of a wL term wLf is ρwLf (x) for x being the lower

contraction formula of wLf , and analogously for wR terms. We are inter-

ested below only in ranks of cut-free wL terms, but our definition applies

to any wL term.

Let x be the left cut formula and y the right cut formula of the cut

cut Γ,∆(f, g). Then we say that a wL subterm h of g is tied to cut Γ,∆(f, g)

when h is the label of a node of n-ary branching for n ≥ 2 in the cluster of y

in g, and we say analogously that a wR subterm h of f is tied to cut Γ,∆(f, g)
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when h is the label of a node of n-ary branching for n ≥ 2 in the cluster of

x in f .

We say that a wL term is blocked when it is of one of the following forms:

(w γ 1) wL
Γ′′
1 ,Γ

′′
2
∧Γ′

1,Γ
′
2
mix (f, g) : Γ′′1

∧Γ′′2
∧Γ′1

∧C∧Γ′2 ⊢ ∆′′∨∆′

for f : Γ′1
∧C∧Γ′2 ⊢ ∆′ and g : Γ′′1

∧C∧Γ′′2 ⊢ ∆′′,

(w γ 2) wL
Γ′
1,Γ

′
2
∧Γ′′

1 ,Γ
′′
2
∧R(f, g) : Γ′1∧Γ′2

∧Γ′′1
∧C∧Γ′′2 ⊢ (A ∧B)∨∆′∨∆′′

for f : Γ′1
∧C∧Γ′2 ⊢ A ∨∆′ and g : Γ′′1

∧C∧Γ′′2 ⊢ B ∨∆′′,

(w γ 3) wL
Γ′
1,Γ

′
2
∧Γ′′

1 ,Γ
′′
2
∧(A∨B)∨

L(f, g) : Γ′1
∧Γ′2

∧Γ′′1
∧C∧Γ′′2

∧(A ∨B) ⊢ ∆′∨∆′′

for f : Γ′1
∧C∧Γ′2

∧A ⊢ ∆′ and g : Γ′′1
∧C∧Γ′′2

∧B ⊢ ∆′′,

(w ∧ 1) wL
Γ1,Γ2,∅∧

Lf : Γ1
∧Γ2

∧(A ∧B) ⊢ ∆

for f : Γ1
∧(A ∧B)∧Γ2

∧A∧B ⊢ ∆,

(w ∨ 1) wL
Γ′
1,Γ

′
2
∧Γ′′,∅∨

L(f, g) : Γ′1
∧Γ′2

∧Γ′′∧(A ∨B) ⊢ ∆′∨∆′′

for f : Γ′1
∧(A ∨B)∧Γ′2

∧A ⊢ ∆′ and g : Γ′′∧B ⊢ ∆′′,

(w ∨ 2) wL
Γ′∧Γ′′

1 ,Γ
′′
2 ,∅
∨L(f, g) : Γ′∧Γ′′1∧Γ′′2

∧(A ∨B) ⊢ ∆′∨∆′′

for f : Γ′∧A ⊢ ∆ and g : Γ′′1
∧(A ∨B)∧Γ′′2

∧B ⊢ ∆′′,

(w ∨ 3) wL
Γ′
1,Γ

′
2
∧Γ′′

1 ,Γ
′′
2 ,∅
∨L(f, g) : Γ′1∧Γ′2

∧Γ′′1
∧Γ′′2

∧(A ∨B) ⊢ ∆′∨∆′′

for f : Γ′1
∧(A ∨B)∧Γ′2

∧A ⊢ ∆′ and g : Γ′′1
∧(A ∨B)∧Γ′′2

∧B ⊢ ∆′′.

A wL subterm wLh of f2 tied to a topmost cut cut Γ,∆(f1, f2) is reducible

when it is not blocked and every wL subterm wLt of f2 tied to cut Γ,∆(f1, f2)

such that wLh is a subterm of t is blocked. We can prove the following

lemma.

Reducibility Lemma. For every reducible wLh there is a cut-free Gentzen

term h′ such that wLh = h′ in D and after replacing wLh in cut Γ,∆(f1, f2)

by h′ all the reducible wL subterms of h′ are of rank lesser than the rank of

wLh.

Proof. We proceed by cases depending on the form of h.
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(W1) First we have cases where wLh is wL
Γ′
1,...,Γ

′
n,Γ

′h while h is γf :

Γ′1
∧A∧ . . . ∧Γ′n

∧A∧Γ′ ⊢ ∆′ for f : Γ1
∧A∧ . . . ∧Γn

∧A∧Γ ⊢ ∆ and γ is either

one of cL, cR, kR, wR and ∨R, or kL, wL and ∧L with the occurrences of

A displayed in Γ′1
∧A∧ . . . ∧Γ′n

∧A∧Γ′ ⊢ ∆′ members of the lower parametric

basic sequences of γf . Then, by Semilattice Coherence of §9.1, we have

either wLγf = γwLf or wLcLf = wLf .

(W2) For f : Γ1
∧A∧ . . . ∧Γn

∧A∧Γ ⊢ ∆, by Semilattice Coherence, we have

that

wL
Γ1,...,Γn,Γ,∅k

L
Af = cLΓ1

∧...∧Γn,Γ,A,∅w
L
Γ1,...,Γn,Γf.

(W3) Suppose we have f : Γ1
∧A∧ . . . ∧Γn

∧A∧Γ ⊢ ∆ and

wL
Γ1,...,Γn,Γf : Γ

′
1
∧A∧ . . . ∧Γ′m

∧A∧Γ′ ⊢ ∆,

where Γ′1
∧A∧ . . . ∧Γ′m

∧A∧Γ′ and Γ1
∧ . . . ∧Γn

∧A∧Γ are designations of the

same basic sequence, and one of the occurrences of A displayed in the first

designation is the occurrence of A displayed in the second. Then we have

that

wL
Γ′
1,...,Γ

′
m,Γ′wL

Γ1,...,Γn,Γf = wLf

with appropriate subscripts for wL in wLf . If the rank of wL
Γ1,...,Γn,Γ

f is

k+1, and the rank of wL
Γ′
1,...,Γ

′
m,Γ′wL

Γ1,...,Γn,Γ
f is k+1+l+m, then the rank

of wLf on the right-hand side is k+l+1. (Here we have m ≥ 2.)

(W4) For f : Γ1
∧(A ∧B)∧ . . . ∧Γn

∧(A ∧B)∧Γ ∧A∧B ⊢ ∆ we have that

wL
Γ1,...,Γn,Γ,∅∧

Lf = wL
Γ1

∧...∧Γn,Γ,∅∧
LwL

Γ1,...,Γn,Γ∧A∧Bf

by Semilattice Coherence. Here, the right-hand side is blocked according

to (w ∧ 1). The wL term wL
Γ1,...,Γn,Γ∧A∧Bf need not be blocked and may

be reducible, but it is of lower rank than the left-hand side (the difference

is n+1).

(W5) For f : Φ ⊢ Ψ and g : Γ1
∧A∧ . . . ∧Γn

∧A∧Γ ⊢ ∆ we have that

wL
Γ1,...,Γn,Γ∧Φmix (f, g) = mix (f, wL

Γ1,...,Γn,Γg)



252 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

by Semilattice Coherence and (m nat). We proceed analogously when

mix (g, f) replaces mix (f, g).

For f : Φ1
∧A∧ . . . ∧Φm

∧A∧Φ ⊢ Ψ and g as above we have that

wL
Γ1,...,Γn,Γ∧Φ1,Φ2,...,Φm,Φmix (f, g) =

wL
Γ1

∧...∧Γn,Γ∧Φ1
∧...∧Φm,Φmix (wL

Φ1,...,Φm,Φf, w
L
Γ1,...,Γn,Γ

g)

by Semilattice Coherence and (m nat). Here, the right-hand side is blocked

according to (w γ 1). The wL terms wL
Φ1,...,Φm,Φf and wL

Γ1,...,Γn,Γ
g need not

be blocked and may be reducible, but they are both of lower rank than the

left-hand side.

We proceed as in case (W5) when wLh is wL∧R(f, g) (one of these cases
involves a blocked wL term according to (w γ 2)). We have cases analogous

to (W5) also when wLh is wL∨L(f, g) (here we apply Semilattice Coherence

and (dL nat), and one of these cases involves a blocked wL term according

to (w γ 3)). We have three additional cases when wLh is wL∨L(f, g), which
all yield blocked wL terms according to (w ∨ 1), (w ∨ 2) and (w ∨ 3). One

of these cases is the following.

(W6) For the Gentzen terms f : Γ′1
∧(A ∨B)∧ . . . ∧Γ′n

∧(A ∨B)∧Γ′∧A ⊢ ∆′

and g : Γ′′1
∧(A ∨B)∧ . . . ∧Γ′′m

∧(A ∨B)∧Γ′′∧B ⊢ ∆′′ we have that

wL
Γ′
1,...,Γ

′
n,Γ

′∧Γ′′
1 ,Γ

′′
2 ,...,Γ

′′
m,Γ′′,∅∨

L(f, g) =

wL
Γ′
1
∧...∧Γ′

n,Γ
′∧Γ′′

1
∧...∧Γ′′

m,Γ′′,∅∨
L(wL

Γ′
1,...,Γ

′
n,Γ

′∧Af, w
L
Γ′′
1 ,...,Γ

′′
m,Γ′′∧Bg)

by Semilattice Coherence and (dL nat). Here, the right-hand side is blocked

according to (w ∨ 3). The wL terms wL
Γ′
1,...,Γ

′
n,Γ

′∧Af and wL
Γ′′
1 ,...,Γ

′′
m,Γ′′∧Bg

need not be blocked and may be reducible, but they are both of lower rank

than the left-hand side.

To conclude the proof of the lemma we have only to check that the

condition on ranks is satisfied in all cases, even in those where we have not

noted the fact. ⊣

We have an analogous definition of blocked wR terms and of reducible wR

subterms. With that, we prove for wR terms a lemma exactly analogous to

the Reducibility Lemma. As a corollary of these two Reducibility Lemmata,

we have the following lemma.
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Blocked-w Lemma. Every topmost cut Γ,∆(f, g) is equal in D to a top-

most cut Γ,∆(f
′, g′) in which all wL and wR subterms tied to cut Γ,∆(f

′, g′)

are blocked.

The proof of this corollary is based on a multiset-ordering induction, which

stems from Gentzen (see [61] and [35]).

The degree of a cut is the number of occurrences of connectives (in this

case, the number of occurrences of ∧ and ∨) in the cut formula.

The complexity of a topmost cut is a pair (d, r) where d is the degree of

this cut and r is its rank. These complexities are ordered lexicographically

(i.e., we have (d1, r1) < (d2, r2) iff either d1 < d2, or d1 = d2 and r1 < r2;

cf. §7.7).
According to the Atomic-k Lemma and the Blocked-w Lemma, every

topmost cut cut Γ,∆(f, g) is equal to a topmost cut cut Γ,∆(f
′, g′) with the

same cut formula such that f ′ and g′ are k-atomized and every wL or wR

subterm of f ′ and g′ tied to cut Γ,∆(f
′, g′) is blocked. We call topmost cuts

such as cut Γ,∆(f
′, g′) clean cuts.

We can then prove the following theorem.

Cut-Elimination Theorem. For every Gentzen term t there is a cut-free

Gentzen term t′ such that t = t′ in D.

Proof. We show by induction on the complexity of clean cuts that they

are equal in D to cut-free Gentzen terms. This will suffice to prove the

theorem.

For the basis of this induction, take a clean cut of complexity (0, 2). This

means that this clean cut is of one of the forms displayed on the left-hand

side of the following equations of D:

cut ∅,∅(1
′′
p ,1
′′
p) = 1′′p ,

cut ∅,∅(1
′′
p , k

L
p g) = kLp g,

cut ∅,∅(k
R
p f,1

′′
p) = kRp f,

cut ∅,∅(k
R
p f, k

L
p g) = mix (f, g).

For the first three equations we use (cat 1), while the fourth holds by defi-

nition. With that, we have proved the basis of the induction.
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Note that with the first three equations we proceed as Gentzen, but not

with the fourth. Instead of reducing the left-hand side of this equation to

the right-hand side, Gentzen would reduce it to a cut-free term obtained

either from f with a number of kL, cL and kR operations, or from g with a

number of kR, cR and kL operations (cf. [60], Section III.3.113.1-2). Such

reductions are, however, not supported by equations of D.
We pass now to the induction step. Suppose first that the complexity

of our clean cut is (d, 2) for d > 0. When the cut formula is of the form

A ∧B, our clean cut must be of the form

cut ∅,∅(∧R(f, g),∧Lh),

for f : Γ1 ⊢ A ∨∆1, g : Γ2 ⊢ B ∨∆2 and h : Γ ∧A ∧B ⊢ ∆. Then we have in D
the equation

cut ∅,∅(∧R(f, g),∧Lh) = cR∆,∆2,∆1,∅c
L
Γ,Γ2,Γ1,∅cut Γ2,∅(f, cut ∅,∅(g, h)).

To show that this equation holds in D, we have that, with subscripts

omitted, the left-hand side is equal to

(h∨1) ◦ ((1∧1e)∨1) ◦d ◦ (1∧(1i∨1)) ◦ (1∧ ∨
e′) ◦ (1∧f ∧g) =

(h∨1) ◦d ◦ (1∧ ∨
e′) ◦ (1∧f ∧g),

by (dL nat) and the fact that 1i and 1e are isomorphisms, while, again with

subscripts omitted, for the right-hand side we have

(1∨∨
c) ◦ (h∨1) ◦ (d ∨1) ◦ ((1Γ

∧1∧g)∨1) ◦ ((1Γ
∧ ∧
c)∨1) ◦d ◦ (1∧f) ◦ (1∧ ∧

c) =

(h∨1) ◦ (1∨∨
c) ◦ (d ∨1) ◦ ((1Γ

∧ ∧
c)∨1) ◦d ◦ (1∧ ∧

c) ◦ (1∧f ∧g),

by the bifunctorial equation (∨2) of §2.7, (∧
c nat) and (dL nat). It suffices

to note now that

d ◦ (1∧ ∨
e′) = (1∧ ∨

c) ◦ (d ∨1) ◦ ((1∧ ∧
c)∨1) ◦d ◦ (1∧ ∧

c)

holds by Symmetric Net Coherence of §7.6. When Γ is ∅, we have essentially
a case of the equation (

∨
e) of §7.6.

We replaced a clean cut cut ∅,∅(∧R(f, g),∧Lh) of complexity (d, 2) by
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cR∆,∆2,∆1,∅c
L
Γ,Γ2,Γ1,∅cut Γ2,∅(f, cut ∅,∅(g, h)).

According to the Atomic-k Lemma and the Blocked-w Lemma, the topmost

cut cut ∅,∅(g, h) is equal to a clean cut cut ∅,∅(g
′, h′) of complexity (d′, r) with

d′ < d, because the cut formula is now B instead of A∧B. By the induction

hypothesis, cut ∅,∅(g
′, h′) = s for a cut-free Gentzen term s. The topmost

cut cut Γ2,∅(f, s) is equal to a clean cut cut Γ2,∅(f
′, s′) of complexity (d′′, r)

with d′′ < d, because the cut formula is now A instead of A∧B. So we can

apply again the induction hypothesis.

We proceed analogously when the cut formula is of the form A ∨ B.

With that, we are over with the cases where the complexity of our clean

cut is (d, 2) for d > 0. We dealt with them in the spirit of Gentzen.

Suppose now that the complexity of our clean cut is (d, r) for r > 2,

and suppose the right rank of this clean cut is greater than 1. We proceed

analogously if the left rank is greater than 1, and we need not consider this

case separately.

Suppose first that in our clean cut cut Γ2,∆2
(f, γg) the cut formula occurs

in a lower parametric basic sequence of γg. Depending on various cases for

the unary Gentzen operation γ, we want to show that one of the following

two equations holds in D:

(†) cut Γ2,∆2(f, γg) = γcut Γ′
2,∆2

(f, g),

(††) cut Γ2,∆2(f, γg) = cLγcut Γ′
2,∆2

(f, g)

for a clean cut cut Γ′
2,∆2

(f, g) of complexity (d, r′) with r′ = r−1. The

subscripts omitted in γ need not be the same on the two sides of (†) or

(††), and often they are not such. We have the following cases.

(1) If γ is cL, then (†) holds by Symmetric Net Coherence.

(2) If γ is cR, or kR, or wR, or ∨R, then (†) holds by the bifunctorial

equation (∨2).

(3) If γ is kL, then (††) holds. To show that, we distinguish two cases. In

both cases, we have g : Γ1
∧A∧Γ′2 ⊢ ∆3 and kLBg : Γ1

∧A∧Γ′2
∧B ⊢ ∆3 where

Γ′2
∧B is Γ2. In the first case, the basic sequence Γ1

∧Γ′2 is not ∅, and in the

second case it is ∅.
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In the first case, for the left-hand side of (††) we have

(g∨1) ◦ (
∧
k1′′Γ1

∧A∧Γ′
2,B

∨1) ◦ ((1∧ ∧
cΓ′

2
∧B,A)

∨1) ◦d ◦ (1∧(
∨
c ∨1)) ◦ (1∧f),

while for the right-hand side of (††) we have

(g∨1) ◦ ((1∧ ∧
c)∨1) ◦d ◦ (1∧(

∨
c ∨1)) ◦ (1∧f) ◦

∧
k1′′Γ1

∧Γ′
2
∧Γ3,B

◦ (1∧ ∧
cB,Γ3)

= (g∨1) ◦ ((1∧ ∧
c)∨1) ◦d ◦ (1∧(

∨
c ∨1)) ◦

∧
k1′′Γ1

∧Γ′
2
∧(∆2

∨A∨∆1),B
◦

◦ (1∧ ∧
cB,∆2

∨A∨∆1) ◦ (1∧f)

= (g∨1) ◦ ((1∧ ∧
c)∨1) ◦d ◦ (1∧(

∨
c ∨1)) ◦ (

∧
k1′′Γ1

∧Γ′
2,B

∧1∆2
∨A∨∆1) ◦ (1∧f),

by Semilattice Coherence (this step cannot be made

if Γ1
∧Γ′2 is ∅, since

∧
k1′′Γ1

∧Γ′
2,B

would not be defined),

= (g∨1) ◦ ((1∧ ∧
cΓ′

2,A
)∨1) ◦ ((

∧
k1′′Γ1

∧Γ′
2,B

∧1)∨1) ◦d ◦ (1∧(
∨
c ∨1)) ◦ (1∧f),

which is equal to the left-hand side by Semilattice Coherence.

In the second case, when Γ1
∧Γ′2 is ∅, for the left-hand side of (††) we

have

(g∨1) ◦ (
∧
k1A,B

∨1) ◦ (
∧
cB,A

∨1) ◦d ◦ (1∧(
∨
c ∨1)) ◦ (1∧f),

while for the right-hand side we have

(g∨1) ◦ (
∨
c ∨1) ◦ f ◦

∧
k1′′Γ3,B

◦
∧
cB,Γ3

= (g∨1) ◦
∧
k2′′B,A∨∆2

∨∆1
◦ (1∧(

∨
c ∨1)) ◦ (1∧f)

= (g∨1) ◦ (
∧
k2′′B,A

∨1∆2
∨∆1) ◦dB,A,∆2

∨∆1
◦ (1∧(

∨
c ∨1)) ◦ (1∧f), by (d

∧
k),

which is equal to the left-hand side by (
∧
c

∧
k) (see §9.1).

(4) If γ is wL or ∧L, then (†) holds by various bifunctorial and naturality

equations.

Suppose next that in our clean cut cut Γ2,∆2(f, γ(g, h)), the cut formula

A occurs in a lower parametric basic sequence of γ(g, h) (here, γ is a binary

Gentzen operation).

(5) If γ is mix , then for f : Γ3 ⊢ ∆2
∨A ∨∆1, g : Γ

′′
2 ⊢ ∆′′3 and h : Γ1

∧A∧Γ′2 ⊢
∆′3 we have in D the equation
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cut Γ′
2
∧Γ′′

2 ,∆2
(f,mix (g, h)) =

cR∆′
3,∆2

∨∆1,∆′′
3 ,∅
cLΓ1

∧Γ′
2,Γ3,Γ′′

2 ,∅
mix (g, cut Γ′

2,∆2
(f, h)),

where the complexity of the clean cut cut Γ′
2,∆2

(f, h) is (d, r′) with r′ = r−1.
By bifunctorial and naturality equations, the left-hand side of this equa-

tion is equal to (h∨1) ◦LHS ∗ ◦ (1∧g ∧f) where

LHS ∗ = (mΓ1
∧A∧Γ′

2,∆
′′
3

∨1) ◦ ((1∧ ∧
c)∨1) ◦d ◦ (1∧(

∨
c ∨1)),

while the right-hand side is equal to (h∨1) ◦RHS ∗ ◦ (1∧g ∧f) where

RHS ∗ = (1∨ ∨
c) ◦ ((1∧ ∧

c)∨1) ◦ (d ∨1) ◦ ((1∧(
∨
c ∨1))∨1) ◦

◦mΓ1
∧Γ′

2
∧(∆2

∨A∨∆1),∆′′
3

◦ (1∧ ∧
c).

We have LHS ∗ = RHS ∗ by Mix-Symmetric Net Coherence of §8.4. We

proceed analogously if g and h have types interchanged.

(6) If γ is ∧R, then we have in D one of the following two equations:

cut (f,∧R(g, h)) = cRcL∧R(cut (f, g), h),
cut (f,∧R(g, h)) = ∧R(g, cut (f, h)),

where the complexity of the clean cuts cut (f, g) and cut (f, h) is (d, r′)

with r′ = r−1, and appropriate subscripts are assigned to cut. Both of

these equations are justified by Symmetric Net Coherence. We proceed

analogously if γ is ∨L.

With that, we are over with the cases of a clean cut cut Γ2,∆2(f, γg) or

cut Γ2,∆2(f, γ(g, h)) of complexity (d, r) with r > 2 where the cut formula

occurs in a lower parametric basic sequence of γg or γ(g, h). All these cases

are dealt with in the spirit of Gentzen, except for the case with mix , which

Gentzen did not envisage.

Now we proceed with the cases of complexity (d, r) with r > 2 where

the cut formula does not occur in this manner in a lower parametric basic

sequence. Then our clean cut must be of the form cut (f, wLg) with blocked

wLg tied to our clean cut, and we have to go through the cases (w γ 1),

(w γ 2), . . . , (w ∨ 3) for blocked wL terms.

(w γ 1) For f : Γ′1
∧C∧Γ′2 ⊢ ∆′, g : Γ′′1

∧C∧Γ′′2 ⊢ ∆′′ and h : Γ ⊢ ∆1
∨C ∨∆2,

where Γ′ is Γ′1
∧Γ′2, while Γ′′ is Γ′′1

∧Γ′′2 , and ∆ is ∆1
∨∆2, we have in D the

equation
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cut Γ′′
2 ,∆1

(h,wL
Γ′
1,Γ

′
2
∧Γ′′

1 ,Γ
′′
2
mix (g, f)) =

cR∆′,∆,∆′′,∅w
R∆
∆′,∆′′,∅w

LΓ
Γ′,Γ′′,∅mix (cut Γ′′

2 ,∆1
(h, g), cut Γ′

2,∆1
(h, f)),

where the complexity of the clean cut cut Γ′
2,∆1

(h, f) is (d, r′) with r′ < r,

and analogously for the clean cut cut Γ′′
2 ,∆1

(h, g).

If f ′ : Γ′∧C ⊢ ∆′ is f ◦ (1∧ ∧
cΓ′

2,C
), while g′ : Γ′′∧C ⊢ ∆′′ is g ◦ (1∧ ∧

cΓ′′
2 ,C

),

and h′ is (
∨
cC,∆1

∨1) ◦h, then, by Semilattice Coherence and bifunctorial and

naturality equations, the left-hand side of our equation is equal to

(m∆′,∆′′
∨1) ◦ ((f ′ ∧g′)∨1) ◦LHS ∗ ◦ (1∧h′)

where LHS ∗ is ((1Γ′∧
∧
cΓ′′,C

∧1C)
∨1∆) ◦ ((1∧ ∧

wC)
∨1) ◦d, while the right-

hand side is equal to

(1∨ ∨
w∆) ◦ (1∆′∨

∨
c∆′′,∆

∨1∆) ◦m∆′∨∆,∆′′∨∆ ◦ ((f ′ ∨1)∧(g′ ∨1)) ◦ (d ∧d) ◦

◦ (1∧ ∧
c ∧1) ◦ (1∧ ∧

wC∨∆) ◦ (1∧h′).

By the equation (m
∨
cm) of the preceding section, we have

(1∆′
∨ ∨
c∆′′,∆

∨1∆) ◦m∆′∨∆,∆′′∨∆ = (m∆′,∆′′
∨1∆∨∆) ◦

∨
e′∆′,∆′′,∆,∆.

So the right-hand side is equal to

(m∆′,∆′′
∨1) ◦ ((f ′ ∧g′)∨1) ◦RHS ∗ ◦ (1∧h′)

where

RHS ∗ = (1∨ ∨
w∆) ◦

∨
e′Γ′∧C,Γ′′∧C,∆,∆

◦ (d ∧d) ◦ (1∧ ∧
c ∧1) ◦ (1∧ ∧

wC∨∆)

= (1∨ ∨
w∆) ◦

∨
e′ ◦ (d ∧d) ◦ (1∧ ∧

c ∧1) ◦ (1∧ck) ◦ (1∧(1∨ ∧
w∆)) ◦

◦ (1∧(
∧
wC

∨1)), by Lattice Coherence, provided ∆ is not ∅,

= (1∨ ∨
w∆) ◦ ((1∧ ∧

c ∧1)∨1) ◦d ◦ (1∧ ∨
e′) ◦ (1∧ck) ◦ (1∧(1∨ ∧

w∆)) ◦

◦ (1∧(
∧
wC

∨1)), by Symmetric Net Coherence,

= (1∨ ∨
w∆) ◦ ((1∧ ∧

c ∧1)∨1) ◦d ◦ (1∧(1∨m∆,∆)) ◦ (1∧(1∨ ∧
w∆)) ◦

◦ (1∧(
∧
wC

∨1)), by (m
∨
e),

= ((1∧ ∧
c ∧1)∨1) ◦d ◦ (1∧(

∧
wC

∨1)), by bifunctorial and naturality

equations, and (wm),

= LHS ∗, by (dL nat).
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If ∆ is ∅, then LHS ∗ = RHS ∗ by Semilattice Coherence.

(w γ 2) For f : Γ′1
∧C∧Γ′2 ⊢ A ∨∆′, g : Γ′′1

∧C∧Γ′′2 ⊢ B ∨∆′′ and h : Γ ⊢
∆1

∨C ∨∆2, with Γ′, Γ′′ and ∆ as in (w γ 1), we have in D the equation

cut Γ′′
2 ,∆1

(h,wL
Γ′
1,Γ

′
2
∧Γ′′

1 ,Γ
′′
2
∧R(f, g)) =

cRA∧B ∨∆′,∆,∆′′,∅w
R∆
A∧B ∨∆′,∆′′,∅w

LΓ
Γ′,Γ′′,∅∧

R(cut Γ′
2,∆1

(h, f), cut Γ′′
2 ,∆1

(h, g)),

where the complexity of the clean cut cut Γ′
2,∆1

(h, f) is (d, r′) with r′ < r,

and analogously for the clean cut cut Γ′′
2 ,∆1

(h, g).

For f ′ : Γ′∧C ⊢ A ∨∆′, g′ : Γ′′∧C ⊢ B ∨∆′′ and h′ : Γ ⊢ C ∨∆ defined as in

(w γ 1), we have by Semilattice Coherence and bifunctorial and naturality

equations that the left-hand side of our equation is equal to

(1i
A∧B

∨1) ◦ (
∨
e′A,B,∆′,∆′′

∨1) ◦ ((f ′ ∧g′)∨1) ◦LHS ∗ ◦ (1∧h′)

where LHS ∗ is ((1∧ ∧
c ∧1)∨1) ◦ ((1∧ ∧

wC)
∨1) ◦d, while the right-hand side is

equal to

(1∨ ∨
w∆) ◦ (1∨ ∨

c ∨1) ◦ (1i∨1) ◦
∨
e′A,B,∆′∨∆,∆′′∨∆

◦ ((f ′ ∨1)∧(g′ ∨1)) ◦ (d ∧d) ◦

◦ (1∧h′∧1∧h′) ◦ (1∧ ∧
c ∧1) ◦ (1∧ ∧

wΓ).

We have by Symmetric Net Coherence that

∨
e′A,B,∆′∨∆,∆′′∨∆ = (1(A∧B)∨∆′

∨ ∨
c∆,∆′′ ∨1∆) ◦ (

∨
e′A,B,∆′,∆′′

∨1∆∨∆) ◦

◦
∨
e′A∨∆′,B∨∆′′,∆,∆.

Then, by bifunctorial and naturality equations, and (
∨
c

∨
c) (see the List of

Equations), the right-hand side is equal to

(1i
A∧B

∨1) ◦ (
∨
e′A,B,∆′,∆′′

∨1) ◦ ((f ′ ∧g′)∨1) ◦RHS ∗ ◦ (1∧h′)

where

RHS ∗ = (1∨ ∨
w∆) ◦

∨
e′Γ′∧C,Γ′′∧C,∆,∆

◦ (d ∧d) ◦ (1∧ ∧
c ∧1) ◦ (1∧ ∧

wC∨∆)

= LHS ∗, as in (w γ 1).

(w γ 3) For f : Γ′1
∧C∧Γ′2

∧A ⊢ ∆′, g : Γ′′1
∧C∧Γ′′2

∧B ⊢ ∆′′ and h : Γ ⊢
∆1

∨C ∨∆2, with Γ′, Γ′′ and ∆ as in (w γ 1), we have in D the equation
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cut Γ′′
2
∧A∨B,∆1

(h,wL
Γ′
1,Γ

′
2
∧Γ′′

1 ,Γ
′′
2
∧A∨B∨L(f, g)) =

cLΓ′∧Γ′′,Γ,A∨B,∅c
R
∆′,∆,∆′′,∅w

R∆
∆′,∆′′,∅w

LΓ
Γ′,Γ′′,A∨B

∨L(cLΓ′,A,Γ,∅cut Γ′
2
∧A,∆1

(h, f), cLΓ′′,B,Γ,∅cut Γ′′
2
∧B,∆1

(h, g)),

where the complexity of the clean cut cut Γ′
2
∧A,∆1

(h, f) is (d, r′) with r < r′,

and analogously for the clean cut cut Γ′′
2
∧B,∆1

(h, g).

For h′ : Γ ⊢ C ∨∆ defined as in (w γ 1), we have by Semilattice Coherence

and bifunctorial and naturality equations that the left-hand side of our

equation is equal to

(f ∨g∨1) ◦LHS ∗ ◦ (1∧h′) ◦ (1∧1e
A∨B

∧1)

where LHS ∗ is (
∧
e′∨1) ◦ ((1∧ ∧

c ∧1)∨1) ◦ ((1∧ ∧
c)∨1) ◦d ◦ (1∧(

∧
wC

∨1)), while

the right-hand side is equal to

(f ∨g∨1) ◦RHS ∗ ◦ (1∧h′) ◦ (1∧1e
A∨B

∧1)

where

RHS ∗ = (1∨ ∨
w∆) ◦ (1∨ ∨

c ∨1) ◦ ((1∧ ∧
c)∨1∨(1∧ ∧

c)∨1) ◦ (d ∨d) ◦

◦ ((1∧ ∧
c)∨(1∧ ∧

c)) ◦
∧
e′ ◦ (1∧ ∧

c) ◦ (1∧ ∧
c ∧1) ◦ (1∧ ∧

wC∨∆)

= (1∨ ∨
w∆) ◦ (

∧
e′∨1) ◦ ((1∧ ∧

c ∧1)∨1) ◦ ((1∧ ∧
c)∨1) ◦d ◦ (1∧ ∨

e′) ◦

◦ (1∧ ∧
wC∨∆), by Symmetric Net Coherence,

= (1∨ ∨
w∆) ◦ (

∧
e′∨1) ◦ ((1∧ ∧

c ∧1)∨1) ◦ ((1∧ ∧
c)∨1) ◦d ◦ (1∧ ∨

e′) ◦

◦ (1∧ck) ◦ (1∧(1∨ ∧
w∆)) ◦ (1∧(

∧
wC

∨1)),

by Lattice Coherence, provided ∆ is not ∅,
= LHS ∗, by (m

∨
e), (wm) and bifunctorial and naturality equations

(cf. the case (w γ 1)).

If ∆ is ∅, then we obtain that LHS ∗ = RHS ∗ by Semilattice Coherence, in

a simplified version of the derivation above.

(w ∧ 1) For f : Γ′1
∧A ∧ B∧Γ′2

∧A∧B ⊢ ∆′ and h : Γ ⊢ ∆1
∨A ∧ B∨∆2, with

Γ′ and ∆ as in (w γ 1), we have in D the equation

cut ∅,∆1
(h,wL

Γ′
1,Γ

′
2,∅
∧Lf) =

wR∆
∆′,∅,∅w

LΓ
Γ′,∅,∅cut ∅,∆1

(h,∧LcLΓ′,A∧B,Γ,∅cut Γ′
2
∧A∧B,∆1

(h, f)),
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where the complexity of the clean cut cut Γ′
2
∧A∧B,∆1

(h, f) is (d, r′) with

r′ < r.

Then, by the induction hypothesis, cut Γ′
2
∧A∧B,∆1

(h, f) = f ′, for a cut-

free Gentzen term f ′, which by the Atomic-k Lemma we may assume to be

k-atomized. (As a matter of fact, our procedure of cut elimination is such

that it produces out of a clean cut a k-atomized cut-free Gentzen term.)

The topmost cut cut ∅,∆1
(h,∧LcLΓ′,A∧B,Γ,∅f

′), whose right rank is 1, is clean,

and its complexity is (d, r′) with r′ < r.

To justify the equation displayed above, we proceed as follows. For

h′ : Γ ⊢ A ∧ B ∨∆ defined as in (w γ 1), we have by Semilattice Coherence

and bifunctorial and naturality equations that the left-hand side of our

equation is equal to

(f ∨1) ◦ ((1∧1e
A∧B)

∨1) ◦LHS ∗ ◦ (1∧h′),

where LHS ∗ is ((1∧ ∧
c ∧1)∨1) ◦d ◦ (1∧(

∧
wA∧B

∨1)), while the right-hand side

is equal to

(f ∨1) ◦ ((1∧1e
A∧B)

∨1) ◦RHS ∗ ◦ (1∧h′)

where

RHS ∗ = (1∨ ∨
w∆) ◦ ((1∧ ∧

c)∨1) ◦ (d ∨1) ◦ ((1∧ ∧
c)∨1) ◦d ◦ (1∧ ∧

wA∧B ∨∆)

= (1∨ ∨
w∆) ◦ ((1∧ ∧

c ∧1)∨1) ◦d ◦ (1∧ ∨
e′) ◦ (1∧ ∧

wA∧B ∨∆),

by Symmetric Net Coherence,

= (1∨ ∨
w∆) ◦ ((1∧ ∧

c ∧1)∨1) ◦d ◦ (1∧ ∨
e′) ◦ (1∧ck) ◦ (1∧(1∨ ∧

w∆)) ◦

◦ (1∧(
∧
wA∧B

∨1)), by Lattice Coherence, provided ∆ is not ∅,
= LHS ∗, by (m

∨
e), (wm) and bifunctorial and naturality equations

(cf. the case (w γ 1)).

If ∆ is ∅, then we obtain that LHS ∗ = RHS ∗ by Semilattice Coherence, in

a simplified version of the derivation above.

(w ∨ 1) For f : Γ′1
∧A ∨ B∧Γ′2

∧A ⊢ ∆′, g : Γ′′∧B ⊢ ∆′′ and h : Γ ⊢
∆1

∨A ∨B ∨∆2, with Γ′ and ∆ as in (w γ 1), we have in D the equation

cut ∅,∆1
(h,wL

Γ′
1,Γ

′
2
∧Γ′′,∅∨

L(f, g)) =

cR∆′,∆,∆′′,∅w
R∆
∆′,∆′′,∅w

LΓ
Γ′,Γ′′,∅cut ∅,∆1

(h,∨L(cLΓ′,A,Γ,∅cut Γ′
2
∧A,∆1

(h, f), g)),
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where the complexity of the clean cut cut Γ′
2
∧A,∆1

(h, f) is (d, r′) with r′ < r.

Then, by the induction hypothesis, cut Γ′
2
∧A,∆1

(h, f) = f ′ for a cut-free

Gentzen term f ′, which by the Atomic-k Lemma we may assume to be

k-atomized. The topmost cut cut ∅,∆1
(h,∨L(cLΓ′,A,Γ,∅f

′, g)), whose rank is

1, is clean, and its complexity is (d, r′) with r′ < r.

To justify the equation displayed above, we proceed as follows. For

h′ : Γ ⊢ A ∨ B ∨∆ defined as in (w γ 1), we have by Semilattice Coherence

and bifunctorial and naturality equations that the left-hand side of our

equation is equal to (f ∨g∨1) ◦LHS ∗ ◦ (1∧h′) where LHS ∗ is

(
∧
e′∨1)((1∧ ∧

c ∧1)∨1) ◦d ◦ (1∧((1∧1e
A∨B)

∨1)) ◦ (1∧(
∧
wA∨B

∨1)),

while the right-hand side is equal to (f ∨g∨1) ◦RHS ∗ ◦ (1∧h′) where

RHS ∗ = (1∨ ∨
w∆) ◦ (1∨ ∨

c ∨1) ◦ ((1∧ ∧
c)∨1) ◦ (d ∨1) ◦ ((1∧ ∧

c)∨1) ◦ (
∧
e′∨1) ◦d ◦

◦ (1∧ ∧
c ∧1) ◦ (1∧(1e

A∨B
∨1)) ◦ (1∧ ∧

wA∨B ∨∆)

= (1∨ ∨
w∆) ◦ (

∧
e′∨1) ◦ ((1∧ ∧

c ∧1)∨1) ◦d ◦ (1∧ ∨
e′) ◦ (1∧(1e

A∨B
∨1)) ◦

◦ (1∧ ∧
wA∨B ∨∆), by Symmetric Net Coherence,

= (1∨ ∨
w∆) ◦ (

∧
e′∨1) ◦ ((1∧ ∧

c ∧1)∨1) ◦d ◦ (1∧ ∨
e′) ◦ (1∧(1e

A∨B
∨1)) ◦

◦ (1∧ck) ◦ (1∧(1∨ ∧
w∆)) ◦ (1∧(

∧
wA∨B

∨1)),

by Lattice Coherence, provided ∆ is not ∅,
= LHS ∗, by (m

∨
e), (wm) and bifunctorial and naturality equations

(cf. the case (w γ 1)).

If ∆ is ∅, then we obtain that LHS ∗ = RHS ∗ by Semilattice Coherence, in

a simplified version of the derivation above.

We proceed analogously in the case (w ∨ 2).

(w ∨ 3) For f : Γ′1
∧A ∨ B ∧Γ′2

∧A ⊢ ∆′, g : Γ′′1
∧A ∨ B ∧Γ′′2

∧B ⊢ ∆′′ and

h : Γ ⊢ ∆1
∨A ∨ B ∨∆2, with Γ′, Γ′′ and ∆ as in (w γ 1), we have in D the

equation

cut ∅,∆1
(h,wL

Γ′
1,Γ

′
2
∧Γ′′

1 ,Γ
′′
2 ,∅
∨L(f, g)) = cR∆′,∆,∆′′,∅w

R∆
∆′,∆′′,∅,∅w

LΓ
Γ′,Γ′′,∅,∅

cut ∅,∆1
(h,∨L(cLΓ′,A,Γ,∅cut Γ′

2
∧A,∆1

(h, f), cLΓ′′,B,Γ,∅cut Γ′′
2
∧B,∆1

(h, g)),

where the complexity of the clean cut cut Γ′
2
∧A,∆1

(h, f) is (d, r′) with r′ < r,

and analogously for the clean cut cut Γ′′
2
∧B,∆1

(h, g).
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Then, by the induction hypothesis, these two cuts are equal to the cut-

free Gentzen terms f ′ and g′, respectively, which by the Atomic-k Lemma

we may assume to be k-atomized. The topmost cut

cut ∅,∆1
(h,∨L(cLΓ′,A,Γ,∅f

′, cLΓ′′,B,Γ,∅g
′)),

whose right rank is 1, is clean, and its complexity is (d, r′) with r′ < r.

To justify the equation displayed above we proceed as follows. For

h′ : Γ ⊢ A ∨ B ∨∆ defined as in (w γ 1), we have by Semilattice Coherence

and bifunctorial and naturality equations that the left-hand side of our

equation is equal to (f ∨g∨1) ◦LHS ∗ ◦ (1∧h′) where LHS ∗ is

(
∧
e′∨1) ◦ ((1∧ ∧

c ∧1)∨1) ◦ ((1∧ ∧
c ∧1)∨1) ◦d ◦ (1∧((1∧1e

A∨B)
∨1)) ◦

◦ (1∧((1∧ ∧
wA∨B)

∨1)) ◦ (1∧(
∧
wA∨B

∨1)),

while the right-hand side is equal to (f ∨g∨1) ◦RHS ∗ ◦ (1∧h′) where

RHS ∗ = (1∨ ∨
w∆) ◦ (1∨ ∨

w∆) ◦ (1∨ ∨
c ∨1) ◦ ((1∧ ∧

c)∨1∨(1∧ ∧
c)∨1) ◦ (d ∨d ∨1) ◦

◦ ((1∧ ∧
c)∨(1∧ ∧

c)∨1) ◦ (
∧
e′∨1) ◦d ◦ (1∧ ∧

c ∧1) ◦ (1∧(1e
A∨B

∨1)) ◦

◦ (1∧ ∧
wA∨B ∨∆) ◦ (1∧ ∧

wA∨B ∨∆)

= (1∨ ∨
w∆) ◦ (1∨ ∨

w∆) ◦ (
∧
e′∨1) ◦ ((1∧ ∧

c ∧1)∨1) ◦ ((1∧ ∧
c ∧1)∨1) ◦d ◦

◦ (1∧ ∨
e′) ◦ (1∧ ∨

e′) ◦ (1∧(1e
A∨B

∨1)) ◦ (1∧ ∧
wA∨B ∨∆) ◦ (1∧ ∧

wA∨B ∨∆),

by Symmetric Net Coherence,

= LHS ∗, by Lattice Coherence, (m
∨
e), (wm) and bifunctorial and

naturality equations, provided ∆ is not ∅ (cf. the case (w γ 1)).

If ∆ is ∅, then we obtain that LHS ∗ = RHS ∗ by Semilattice Coherence, in

a simplified version of the derivation above.

Note that the cases (w γ 2), (w γ 3), (w∧ 1), (w∨ 1), (w∨ 2) and (w∨ 3)
are dealt with in the spirit of Gentzen. The case (w γ 1), which involves

mix, was not envisaged by him. This concludes the proof. ⊣

§11.3. Coherence of distributive lattice categories

The essential ingredient in our proof of coherence for the category DL is

the Cut-Elimination Theorem of the preceding section. Another ingredient

is Restricted Mix-Lattice Coherence of §10.2. Before proving coherence for
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DL, we consider some matters that serve to connect DL with the category

ML, but are also of an independent interest.

With the abbreviations

∧
sA,C,D =df

∧
e′A,A,C,D

◦ (
∧
wA ∧ 1C∨D) : A ∧ (C ∨D) ⊢ (A ∧ C) ∨ (A ∧D),

∨
sD,C,A =df (1D∧C ∨

∨
wA) ◦

∨
e′D,C,A,A : (D ∨A) ∧ (C ∨A) ⊢ (D ∧ C) ∨A,

∧
tA,C,D =df (

∨
wA ∧ 1C∨D) ◦ ckA,C,A,D : (A ∧ C) ∨ (A ∧D) ⊢ A ∧ (C ∨D),

∨
tD,C,A =df c

k
D,C,A,A

◦ (1D∧C ∨
∧
wA) : (D ∧ C) ∨A ⊢ (D ∨A) ∧ (C ∨A),

we obtain the following equations in DL as an immediate consequence of

(m
∧
e), (m

∨
e) and (wm):

∧
tA,C,D

◦
∧
sA,C,D = 1A∧(C∨D),

∨
sD,C,A

◦
∨
tD,C,A = 1(D∧C)∨A.

This means that
∧
sA,C,D is a right inverse (i.e. section) of

∧
tA,C,D, while

∨
sD,C,A is a left inverse (i.e. retraction) of

∨
tD,C,A (see [100], Section I.5). It

is easy to see that
∧
tA,C,D and

∧
sA,C,D are not inverse to each other in DL,

since G(
∧
sA,C,D

◦
∧
tA,C,D) is different from G(1(A∧C)∨(A∧D)); analogously,

∨
tD,C,A and

∨
sD,C,A are not inverse to each other. The types of the arrow

terms in the families
∧
s and

∨
s give what is usually called distribution of ∧

over ∨ and distribution of ∨ over ∧. However, these arrow terms do not

stand for isomorphisms in DL.

For every formula A of L∧,∨, let Adnf be any formula of L∧,∨ in dis-

junctive normal form (dnf ; see §10.2) such that there is an arrow term
∧
tA: Adnf ⊢ A of C(L) and an arrow term

∧
sA: A ⊢ Adnf of C(DL) for which

in DL we have
∧
tA ◦

∧
sA = 1A. (We do not require the uniqueness of

∧
tA and

∧
sA, as we did not require the uniqueness of Adnf.) That for every formula

A of L∧,∨ there is a formula Adnf is shown by an easy induction on the

number of occurrences of ∨ in the scope of an occurrence of ∧.
Dually, for every formula A of L∧,∨, let Acnf be any formula in con-

junctive normal form (cnf ; see §10.2) such that there is an arrow term
∨
tA: A ⊢ Acnf of C(L) and an arrow term

∨
sA: Acnf ⊢ A of C(DL) for which
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in DL we have
∨
sA ◦

∨
tA = 1A. That for every formula A of L∧,∨ there is a

formula Acnf is shown by an easy induction, as above.

For ξ ∈ {∧,∨}, the arrow terms
ξ

t
A
are built out of arrow terms of the

form
ξ

tB,C,D and arrow terms of C(S) with the help of the operations ∧, ∨
and ◦ on arrow terms, while the arrow terms

ξ

sA are built out of arrow terms

of the form
ξ

sB,C,D and arrow terms of C(S) with the help of the operations

∧, ∨, and ◦ on arrow terms. For example, if A is p∧ ((q∨ (r∧ s))∨ q), and
Adnf is ((p∧ q)∨ ((p∧ r)∧ s))∨ (p∧ q) (this is the source of the arrow term

γ we had as an example in §10.2), then we can take that
∧
tA is

∧
tp,q∨(r∧s),q ◦ (

∧
tp,q,r∧s ∨1p∧q) ◦ ((1p∧q ∨

∧
b←p,r,s) ∨ 1p∧q),

while
∧
sA is

((1p∧q ∨
∧
b→p,r,s) ∨ 1p∧q) ◦ (

∧
sp,q,r∧s ∨ 1p∧q) ◦

∧
sp,q∨(r∧s),q .

It is easy to verify, by referring to definitions, that a cut-free Gentzen

term of D of the type A ⊢ B for A in L∧ and B in L∨ denotes an arrow

(f,A,B) of D such that f is an arrow term of C(ML). As a consequence

of that and of the Cut-Elimination Theorem of the preceding section, we

obtain the following.

Proposition. For A in L∧ and B in L∨, every arrow term of C(DL) of

type A ⊢ B is equal in DL to an arrow term of C(ML).

Then we can prove the following lemma, which appeals to the notion of

settled normal form of §10.2.

Normal-Form Lemma. Every arrow term f : Adnf ⊢ Bcnf of C(DL) is

equal in DL to an arrow term of C(GML) in settled normal form.

Proof. As in the proof of the Normal-Form Lemma of §10.2, we make

an induction on the number of occurrences of ∨ in A and ∧ in B. If there

are no such occurrences of ∧ and ∨, then we apply the Proposition above

and the Normal-Form Lemma of §10.2. For the remainder of the proof we

proceed as in the proof of that lemma in §10.2. ⊣

Then we can prove the following.
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Distributive Lattice Coherence. The functor G from DL to Rel is

faithful.

Proof. Suppose f, g : A ⊢ B are arrow terms of C(DL). If Gf = Gg, then

G(
∨
tB ◦ f ◦

∧
tA) = G(

∨
tB ◦ g ◦

∧
tA). By the Normal-Form Lemma above, we

have in DL that
∨
tB ◦ f ◦

∧
tA = f ′ and

∨
tB ◦ g ◦

∧
tA = g′ for f ′ and g′ arrow

terms of C(ML). By Restricted Mix-Lattice Coherence of §10.2, we have

that f ′ = g′ in ML, and hence also in DL. So in DL we have

∨
sB ◦

∨
tB ◦ f ◦

∧
tA ◦

∧
sA =

∨
sB ◦

∨
tB ◦ g ◦

∧
tA ◦

∧
sA,

and hence f = g. ⊣

A logical system synonymous with C(DL) may be obtained by taking
∧
e or

∧
e′ as primitive transformations instead of d, since in DL we have the

equation

dA,B,C = (1A∧B ∨
∧
k2A,C) ◦

∧
e′A,A,B,C

◦ (
∧
wA ∧ 1B∨C),

which can easily be checked by Distributive Lattice Coherence. Analo-

gously, we could take
∨
e or

∨
e′ as primitive, since in DL we have

dC,B,A = (1C∧B ∨
∨
wA) ◦

∨
e′C,B,A,A

◦ (
∨
k1C,A ∧ 1B∨A).

Alternative primitive transformations are
∧
s and

∨
s , whose members occur

in the two equations above. With such alternative primitives, however, we

have not managed to find an axiomatization simpler than what we have for

E(DL) and E(DL′).

A primitive of the same type as
∧
s was considered in [91] and [92] as an

addition to S⊤,⊥ extended with the isomorphism of A ∧ ⊥ with ⊥. In the

presence of this isomorphism, we cannot expect coherence with respect to

Rel with a functor such as our functors G. The coherence result of [91] is

a restricted coherence result in the sense of preorder, while the coherence

result of [92] is a result about a faithful functor into Rel, which differs from

our functor G with respect to ∧. The equations of those papers without ⊤
and ⊥ hold, however, in DL.

If to E(DL) we add the equation
∧
sA,C,D

◦
∧
tA,C,D = 1(A∧C)∨(A∧D) or

the equation
∨
tD,C,A

◦
∨
sD,C,A = 1(D∨A)∧(C∨A), then we can derive that all
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arrow terms of the same type are equal. Here is a proof of that fact for the

first equation. (We proceed analogously with the second equation.)

We have that

α =
∧
sA,B,B

◦
∧
tA,B,B = 1(A∧B)∨(A∧B),

β = (
∧
cB,A ∨

∧
cB,A) ◦

∧
sB,A,A

◦
∧
tB,A,A

◦ (
∧
cA,B ∨

∧
cA,B) = 1(A∧B)∨(A∧B).

So α ∪ β = 1(A∧B)∨(A∧B), by (∪ idemp). By Distributive Lattice Coher-

ence, we infer that

[
∨
k1A∧B,A∧B ∪

∨
k2A∧B,A∧B ,

∨
k1A∧B,A∧B ∪

∨
k2A∧B,A∧B ] = 1(A∧B)∨(A∧B);

therefore, with (∨β) (see the List of Equations), we have

∨
k1A∧B,A∧B =

∨
k1A∧B,A∧B ∪

∨
k2A∧B,A∧B =

∨
k2A∧B,A∧B .

For f, g : A ⊢ B, we have

[f ∧ 1A, g ∧ 1A] ◦
∨
k1A∧A,A∧A = [f ∧ 1A, g ∧ 1A] ◦

∨
k2A∧A,A∧A

f ∧ 1A = g ∧ 1A, by (∨β),

f ◦
∧
k1A,A = g ◦

∧
k1A,A, by (

∧
k1 nat),

from which we infer f = g with (
∧
w

∧
k) (see §9.1). So

ξ

s and
ξ

t cannot be

inverses of each other in the context of DL without preorder, i.e. triviality.

(For a result of the same kind, see [22], Proposition 3.1.)

The category Set of sets with functions is a lattice category with ∧ being

cartesian product × and ∨ being disjoint union + (cf. §9.6). Products and
coproducts are unique up to isomorphism (see [100], Sections IV.1-2), and

so there is no alternative lattice-category structure in Set. Since Set is,

of course, not a preorder, we can conclude, according to what we said

above, that it is not a distributive lattice category with
∧
sa,b,c: a× (b+ c) ⊢

(a × b) + (a × c) and
∧
ta,b,c: (a × b) + (a × c) ⊢ a × (b + c) being up to

associativity like identity arrows (for example, with x ∈ a and y ∈ b, we have
∧
sa,b,c((x, (y, ∗))) = ((x, y), ∗)). With da,b,c defined as (1a×b ∨

∧
k2a,c) ◦

∧
sa,b,c,

the equation (d
∨
b) of §7.2 does not hold in Set, as noted in [22] (Section 3;

the remaining specific equations of E(DA) hold in Set). At the same place,
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an argument is presented that Set with ∧ and ∨ being × and + cannot

satisfy (d
∨
b) for any definition of dL and dR. Here is another argument to

the same effect.

The category Set is not a distributive lattice category. If it were that,

then we would have in it for every set a a function ma,a : a × a → a + a

that satisfies the following instance of the equation (cm) of §8.4:

ma,a ◦
∧
ca,a =

∨
ca,a ◦ma,a.

If a = {x}, then, since a× a = {(x, x)} is a terminal object, we obtain

ma,a =
∨
ca,a ◦ma,a.

There are only two functions from a × a to a + a = {(x, ∗), (∗, x)}, and
none of them satisfies the last equation, because

∨
ca,a (x, ∗) = (∗, x) and

∨
ca,a (∗, x) = (x, ∗). This argument shows also that Set is not a mix-lattice

category.

§11.4. Legitimate relations

At the end of §9.2, we made a brief comment on the image under the

functor G of the categories
∧
L⊤ and

∧
L. Once we have proved Distributive

Lattice Coherence, it is of some interest to consider the image under G of

the category DL. We will devote the present section to this matter.

For A and B formulae of L∧,∨, we will say that a relation R ⊆ GA×GB
is legitimate when there is an arrow term f : A ⊢ B of C(DL) such that

Gf = R. We will prove two propositions that will enable us to decide

whether a relation is legitimate.

For k and l finite ordinals, let k+l be the set {n+ l | n ∈ k}. Other

notions mentioned in the statements and proofs of our two propositions are

defined in the preceding section and in §10.2.

Proposition 1. In GAdnf = k1 + . . . + kn, for n ≥ 1, and GBcnf =

l1 + . . . + lm, for m ≥ 1, let ki, for i ∈ {1, . . . , n}, be GAi for a minimal

disjunct Ai of Adnf, and let lj, for j ∈ {1, . . . ,m}, be GBj for a minimal

conjunct Bj of Bcnf. Then a relation R ⊆ GAdnf × GBcnf is legitimate

iff for every i ∈ {1, . . . , n} and every j ∈ {1, . . . ,m} the relation R ∩
(k

+k1+...+ki−1

i × l+l1+...+lj−1

j ) is not empty.
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Proof. Suppose R is legitimate; i.e., there is an arrow term f : Adnf ⊢ Bcnf

of C(DL) such that Gf = R. By the Normal-Form Lemma of the preced-

ing section, f is equal in DL to an arrow term of C(GML) in normal

form. Then the molecular correspondence (see §10.2) is enough to prove

the proposition from left to right, because for every molecular component

f ′ we have that Gf ′ is not empty. For the other direction, we build out

of the relations R ∩ (k
+k1+...+ki−1

i × l+l1+...+lj−1

j ) arrow terms of C(GML)

in bracket-free normal form, which we then combine, as molecular compo-

nents, to build an f in normal form such that Gf = R. ⊣

We can check that the relation Gγ, which we have drawn in §10.2,
satisfies the condition equivalent to legitimacy stated in Proposition 1. For

example, for the couple (A2, B3) we have {(2, 3), (2, 4)} ⊆ Gγ ∩ (3+2 ×
3+1+2). The molecular component of γ corresponding to (A2, B3) is β3∪β4.

For the second of our two propositions, remember that, according to

the definition of §2.9, we write composition of relations from right to left,

as composition of functions.

Proposition 2. The relation R ⊆ GA × GB is legitimate iff the relation

G
∨
tB ◦R ◦G

∧
tA ⊆ GAdnf ×GBcnf is legitimate.

Proof. The left-to-right direction of the proposition is trivial. For the

other direction, suppose G
∨
tB ◦R ◦G

∧
tA is legitimate. Then

G
∨
sB ◦G

∨
tB ◦R ◦G

∧
tA ◦G

∧
sA,

which is equal to R, is legitimate. ⊣

By combining Propositions 1 and 2 we can decide whether any relation

R ⊆ GA×GB is legitimate.

For the maximal relation Rmax ⊆ GA×GB we have (i, j) ∈ Rmax when

the i+1-th occurrence of letter in A (counting from the left) and the j+1-th

occurrence of letter in B are occurrences of the same letter. For γ : A ⊢ B
being our arrow term of §10.2, we have that Gγ is not Rmax ⊆ GA×GB. If

γ′ is obtained from γ by replacing α3 and α4 by α3∪α4, then Gγ
′ coincides

with Rmax ⊆ GA×GB.

We can use maximal relations to solve the theoremhood problem for the
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category DL. If any relation R ⊆ GA × GB is legitimate, then Rmax ⊆
GA×GB is legitimate. So, to check whether there is an arrow of type A ⊢ B
in DL, it is enough to check whether Rmax ⊆ GA×GB is legitimate. The

theoremhood problem for DL is, however, solved in a much more familiar

way by noting that there is an arrow of type A ⊢ B inDL iff the implication

A→ B is a tautology.

§11.5. Coherence of distributive dicartesian categories

To obtain the natural logical category DL⊤,⊥, we have that the logical

system C(DL⊤,⊥) is in L∧,∨,⊤,⊥, with the transformations α included in 1,

b, c, w-k, m, d and δ-σ. The specific equations of E(DL⊤,⊥) are obtained

by taking the union of those of E(DL) and E(L⊤,⊥) minus the equations

(m
∧
e) and (m

∨
e). We call natural DL⊤,⊥-categories distributive dicartesian

categories. The objects of a distributive dicartesian category that is a

partial order make a distributive lattice with top and bottom.

Note that the equations (
∧
σ dL), (

∨
δ dL), (

∧
δ dR) and (

∨
σ dR) of §7.9 hold

in DL⊤,⊥. It suffices to derive the first two of these equations:

(
∧
σ dL) d⊤,B,C = (

∧
σ←B ∨ 1C) ◦

∧
σ→B∨C ,

(
∨
δ dL) dA,B,⊥ =

∨
δ←A∧B ◦ (1A ∧

∨
δ→B );

the remaining two equations then follow easily. For (
∧
σ dL), since

∧
σ→B∨C =

∧
k2⊤,B∨C , we have that the right-hand side is equal to

(
∧
σ←B ∨ 1C) ◦ (

∧
k2⊤,B ∨ 1C) ◦ d⊤,B,C

by (d
∧
k), and this is equal to d⊤,B,C . Conversely, as we noted in §11.1, one

can derive (d
∧
k) from (

∧
σ dL) by precomposing with

∧
κA ∧1B∨C . We proceed

analogously for (
∨
δ dL).

With the help of (d
∧
k), (d

∨
k) and Lemma 2 of §9.6 we obtain the following

equations of DL⊤,⊥:

(d⊤⊤) dA,⊤,⊤ =
∨
k1A∧⊤,⊤ ◦ (1A ∧

∧
κ⊤∨⊤),

(d⊥⊥) d⊥,⊥,C = (
∨
κ⊥∧⊥ ∨ 1C) ◦

∧
k2⊥,⊥∨C .
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With the help of (
∧
σ dL) or (d⊤⊤), together with Restricted Dicartesian

Coherence, we obtain that the equation (m⊤) of ML⊤,⊥ (see §10.3) holds
in DL⊤,⊥. For (m⊥) (see §10.3), we rely on (

∨
δ dL) or (d⊥⊥), and Re-

stricted Dicartesian Coherence. So in E(DL⊤,⊥) we have all the equations

of E(ML⊤,⊥).

The equations (m
∧
e) and (m

∨
e) of §11.1 are derivable for DL⊤,⊥. To

derive (m
∧
e), we first establish this equation for C and D being ⊤. We can

achieve that by relying on

m⊤,⊤ ◦ [
∧
δ←⊤ ,

∧
δ←⊤ ] = 1⊤∨⊤,

for which we use (d⊤⊤). So we have

(
∧
k1A,⊤ ∨

∧
k1B,⊤) ◦

∧
e′A,B,⊤,⊤ = mA,B ◦

∧
k1A∧B,⊤∨⊤.

Then we use

∧
k1A,C=

∧
k1A,⊤ ◦ (1A ∧

∧
κC),

∧
k1B,D=

∧
k1B,⊤ ◦ (1B ∧

∧
κD),

∧
k1A∧B,C∨D=

∧
k1A∧B,⊤∨⊤ ◦ (1A∧B ∧ (

∧
κC ∨

∧
κD)).

We proceed analogously for (m
∨
e).

Let C and C′ be respectively the logical systems C(DL⊤,⊥) and C(A⊤,⊥),
while E is E(DL⊤,⊥). Next, let B be C/E , that is DL⊤,⊥. Then it is easy

to see that the conditions (IVC) and (IVB) of §3.1 are satisfied. Since

the C′-core of C/E is the category A⊤,⊥, by Bimonoidal Coherence of §6.1,
we have that the condition (IVG) of §3.1 is also satisfied. So (IV) holds,

and since A⊤,⊥ is a preorder, by Bimonoidal Coherence, we can apply

the Strictification Theorem of §3.1 to obtain that the category DL
A⊤,⊥
⊤,⊥ ,

that is DLG⊤,⊥, is equivalent to DL⊤,⊥ via two strong C(DL⊤,⊥)-functors.

According to §6.2, the objects of DL
A⊤,⊥
⊤,⊥ may be identified with form

sequences of L∧,∨,⊤,⊥ in the extended sense.

Let D be now the category DL
A⊤,⊥
⊤,⊥ . We use the terminology of §11.1

with the following changes.

A basic sequence of colour ξ ∈ {∧,∨} of D is a form sequence of L∧,∨,⊤,⊥
in the extended sense that is either of the form (A1 . . . An, ξ), for n ≥ 2

and Ai, where i ∈ {1, . . . , n}, a formula of L∧,∨,⊤,⊥, or it is a formula of

L∧,∨,⊤,⊥, or it is (∅, ξ). The basic sequence (∅, ξ) has no members.
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We define Gentzen terms by induction as in §11.1 with the following

additions. Besides 1′′p : p ⊢ p, which, as before, denotes the arrow (1p, p, p)

of D, we put among atomic Gentzen terms 1i
⊤ : (∅,∧) ⊢ ⊤, which denotes

(1⊤, (∅,∧),⊤), and 1e
⊥ : ⊥ ⊢ (∅,∨), which denotes (1⊥,⊥, (∅,∨)). The

Gentzen operations cL, cR, kL, kR, wL, wR, cut , mix , ∧L, ∧R, ∨L and ∨R

are defined as before, save that c, w and d are now replaced by c′′, w′′ and

d′′. In D we have now the equations

ξ

c ′′Θ,Ξ = 1ΘξΞ, if Θ = (∅, ξ) or Ξ = (∅, ξ), by (
ξ

c
ξ

δ
ξ

σ) (see §5.3),
ξ

w ′′(∅,ξ) = 1(∅,ξ), by (
ξ

w
ξ

δ) (see §9.2),

d′′Θ,A,Ξ = 1Θ∧(A∨Ξ), if Θ = (∅,∧) or Ξ = (∅,∨), by (
∧
σ dL) or (

∨
δ dL).

Note that now
ξ

k1′′(∅,ξ),Ξ and
ξ

k2′′Ξ,(∅,ξ) are defined in D, and they are equal

to
ξ

κ ′′Ξ. With this in mind, we may continue using the other abbreviations

we had before.

If 1e
⊤ denotes (1⊤,⊤, (∅,∧)), and 1i

⊥ denotes (1⊥, (∅,∨),⊥), then for

f : Γ ⊢ ∆ we have in D the equations

(⊤) kL⊤f = f ◦
∧
k1′′Γ,⊤ = f ◦ (Γ ∧ ∧

κ ′′⊤) = f ◦ (Γ ∧1e
⊤),

(⊥) kR⊥f =
∨
k2′′⊥,∆ ◦ f = (

∨
κ ′′⊥

∨∆) ◦ f = (1i
⊥

∨∆) ◦ f.

For (⊤), we rely on the fact that
∧
k2A,B =

∧
σ→B ◦ (

∧
κA ∧ 1B) in

∧
L⊤ and

∧
σ→′′X = 1X in D, and analogously for (⊥).

We prove the Gentzenization Lemma as in §11.1, with the following

additions. We have that (1⊤,⊤,⊤) is denoted by kL⊤1
i
⊤, while (1⊥,⊥,⊥) is

denoted by kR⊥1
e
⊥. To show that, we rely on the equations (⊤) and (⊥). We

also have that (
∧
κA, A,⊤) is denoted by kLA1

i
⊤, while (

∨
κA,⊥, A) is denoted

by kRA1
e
⊥. (We can define the arrow terms in the family δ-σ in terms of

those in the family κ; see §9.2.) If we have a sequent arrow (f,Γ,∆) and Γ

is (∅,∧) or ∆ is (∅,∨), then we proceed as before by using 1i
⊤ or 1e

⊥.

As before, a Gentzen term is k-atomized when for every subterm of it

of the form kLA or kRA we have that A is a an atomic formula, which now

means that it is a letter or ⊤ or ⊥. We prove the Atomic-k Lemma of §11.2
exactly as before.
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Note that we keep the Gentzen operations kL⊥ and kR⊤, which need not

be in the spirit of Gentzen. For f : Γ ⊢ ∆, Gentzen would perhaps equate

kL⊥f with an arrow obtained from 1e
⊥ : ⊥ ⊢ (∅,∨) by thinning with Γ on the

left and ∆ on the right, and he would equate kR⊤f with an arrow obtained

from 1i
⊤ : (∅,∧) ⊢ ⊤ by thinning with Γ on the left and ∆ on the right. We

do not do that.

To define clusters and rank, we now count among the leaf formulae of

h also the occurrences of ⊤ and ⊥ in the types of 1i
⊤ : (∅,∧) ⊢ ⊤ and

1e
⊥ : ⊥ ⊢ (∅,∨) when h is one of these Gentzen terms.

With the definition of blocked wL and wR subterms copied from what

we had in §11.2, we can prove the Blocked-w Lemma as before. The degree

of a cut is as before the number of occurrences of connectives in the cut

formula; here we count ⊤ and ⊥ among these connectives. We can then

prove the Cut-Elimination Theorem for the new category D.

Proof of the Cut-Elimination Theorem. We enlarge the proof in

§11.2 with the following cases.

If the complexity of our clean cut is (d, 2) for d > 0 and the cut formula is

⊤, then our clean cut can be of the form cut ∅,∅(1
i
⊤, k

L
⊤f), which for f : Γ ⊢ ∆

is equal to f in D by relying on (⊤) and the equation d′′Γ,⊤,(∅,∨) = 1Γ∧⊤ of

D, which we obtain by using the equation (
∨
δ dL). The remaining possible

form of our clean cut can be cut ∅,∅(k
R
⊤g, k

L
⊤f), which is equal to mix (f, g)

in D. (This last step is not in the spirit of Gentzen, who did not envisage

our mix .)

If the complexity of our clean cut is (d, 2) for d > 0 and the cut formula

is ⊥, then we proceed analogously. We rely now on the equations (⊥) and
(
∧
σ dL).

If the complexity of our clean cut is (d, r) for r > 2 and the right rank

of this clean cut is greater than 1, then we proceed as in the proof of the

Cut-Elimination Theorem in §11.2. Note that
∧
k1′′(∅,∧),B is defined in D and

is equal to
∧
κ ′′B. So case (3) can now be handled without distinguishing

cases as in §11.2.
We proceed analogously if the left rank is greater than 1, and the re-

mainder of the proof follows the proof of the Cut-Elimination Theorem of

§11.2. ⊣
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We can then prove the following.

Distributive Dicartesian Coherence. The functor G from DL⊤,⊥ to

Rel is faithful.

We proceed as for the proof of Distributive Lattice Coherence in §11.3. In
the Proposition and in the Normal-Form Lemma of §11.3, and at other

appropriate places, we replace L∧, L∨, DL and ML by L∧,⊤,⊥, L∨,⊤,⊥,
DL⊤,⊥ and ML⊤,⊥, respectively. We now use Restricted Mix-Dicartesian

Coherence of §10.3 instead of Restricted Mix-Lattice Coherence.

When we look for conditions of legitimacy of relations, we take over for

DL⊤,⊥ Proposition 2 of the preceding section as it stands. Proposition 1 of

that section can now have R∩ (k+k1+...+ki−1

i × l+l1+...+lj−1

j ) empty, provided

either ⊥ is in Ai or ⊤ is in Bj .

As far as the maximality of DL and DL⊤,⊥ is concerned, we conjecture

that DL is not maximal. We conjectured at the end of §10.3 that we could

extend E(ML) with mp,p = mp,p ◦
∧
cp,p without falling into preorder. We

conjecture the same thing for E(DL). There are other such equations,

which we will not try to classify here. For DL⊤,⊥ we can show that it is

relatively maximal in the same sense in which L⊤,⊥ is maximal (see §9.7).
Namely, every distributive dicartesian category that satisfies an equation

between arrow terms of C(DL⊤,⊥) that is not in E(DL⊤,⊥) satisfies also

the equations (
∧
k

∨
k) and (

∧
k

∨
k fg). The argument in §9.7 can be transferred

to the present context to demonstrate this fact. Some of these distributive

dicartesian categories may, of course, satisfy more, as indicated at the end

of §9.7.
It can be shown that the arrows of DL that are isomorphisms are de-

noted by arrow terms of C(S). So S catches the isomorphisms fragment

of DL (cf. [44] for an analogous result showing that
∧
S catches the isomor-

phisms fragment of
∧
L, and

∧
S⊤ the isomorphisms fragment of

∧
L⊤). That

can be established by an argument based on coherence and on distinguished

disjunctive and conjunctive normal forms.



Chapter 12

Zero-Lattice Categories

A kind of dual of the operation of union of proofs is the notion of zero proof.

With zero proofs, which are mapped into empty relations in establishing

coherence, we disregard provability in logic. With a zero proof we can pass

from any premise to any conclusion.

We first prove coherence for categories with finite products and coprod-

ucts to which we add zero arrows, i.e. arrows that correspond to zero proofs.

We call such categories zero-lattice categories. Zero arrows amount in this

context to the inverse of the mix principle of Chapter 8. Our technique for

the proof of coherence is based on composition elimination. Maximality,

i.e. the impossibility to extend axioms without collapse into preorder, is

easy to establish for zero-lattice categories.

As an example of a zero-lattice category in which the operations cor-

responding to conjunction and disjunction are not isomorphic, we have

the category Set∗ of sets with a distinguished object ∗ and ∗-preserving
functions. By inverting the operations corresponding to conjunction and

disjunction, we have as a subcategory in every zero-lattice category, and in

Set∗ in particular, a symmetric double monoidal category with dissociativ-

ity, and without unit objects, such as those for which we proved coherence

in Chapter 7.

We also consider adding only zero arrows that correspond to proofs

in conjunctive-disjunctive logic, in the sense that we have also non-zero

proofs with the same premises and conclusions. We call such zero arrows

zero-identity arrows. We prove coherence when zero-identity arrows are

275
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added to the categories of Chapter 11, and restricted coherence when they

are added to the categories of Chapter 10. These categories are interesting

because Gentzen’s procedure can be modified to incorporate zero-identity

arrows. The modified procedure can yield coherence not only with respect

to the category whose arrows are relations between finite ordinals, but also

with respect to the category whose arrows are matrices, where composition

is matrix multiplication.

§12.1. Zero-lattice and zero-dicartesian categories

To obtain the natural logical category ZL, we have that the logical system

C(ZL) is in L∧,∨, with the transformations α included in 1, b, c, w-k and

m−1. The specific equations of E(ZL) are those of E(L) plus

(m−1 0)
∧
k2A,B

◦m−1A,B
◦

∨
k1A,B =

∧
k1B,A

◦m−1B,A
◦

∨
k2B,A,

(m−1 1)
∧
k1A,B

◦m−1A,B
◦

∨
k1A,B =

∧
k2B,A

◦m−1B,A
◦

∨
k2B,A = 1A.

We call natural ZL-categories zero-lattice categories. The reason for this

name will become clear below.

Note first that in ZL we have the equation

(cm−1) m−1B,A
◦

∨
cB,A =

∧
cA,B ◦m−1A,B ,

which is dual to the equation (cm) of §8.4. We derive (cm−1) as follows,

with subscripts omitted:

m−1 ◦
∨
c = [m−1 ◦

∨
k2,m−1 ◦

∨
k1], by (

∨
c) and (

∨
K 3),

= ⟨[
∧
k1 ◦m−1 ◦

∨
k2,

∧
k1 ◦m−1 ◦

∨
k1], [

∧
k2 ◦m−1 ◦

∨
k2,

∧
k2 ◦m−1 ◦

∨
k1]⟩,

by (∧η) and (
∨
K 3),

= ⟨[
∧
k2 ◦m−1 ◦

∨
k1,

∧
k2 ◦m−1 ◦

∨
k2], [

∧
k1 ◦m−1 ◦

∨
k1,

∧
k1 ◦m−1 ◦

∨
k2]⟩,

by (m−1 0) and (m−1 1),

= [⟨
∧
k2 ◦m−1 ◦

∨
k1,

∧
k1 ◦m−1 ◦

∨
k1⟩, ⟨

∧
k2 ◦m−1 ◦

∨
k2,

∧
k1 ◦m−1 ◦

∨
k2⟩],

by (in-out),

=
∧
c ◦m−1, by (

∧
K 3), (∨η) and (

∧
c)

(see the List of Equations at the end of the book for all the equations

mentioned in this derivation).
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We can derive analogously the following dual of the equation (bm) of

§8.2:

(bm−1) (m−1A,B ∧1C) ◦m−1A∨B,C
◦

∨
b→A,B,C =

∧
b→A,B,C

◦m−1A,B∧C ◦ (1A ∨m−1B,C).

The equations (bm) and (cm) are specific equations for the category MS

of §8.5. The remaining specific equations of E(MS) are delivered by the

equations of E(L). Since we have a functor G from ZL to Rel, and we

have coherence for MS, i.e. the faithfulness of G from MS to Rel, we

can conclude that ZL has a subcategory isomorphic to MSop, with the

isomorphism being identity on objects.

If we assume the equation (cm−1) as primitive for E(ZL), then the

equation (m−1 0) becomes superfluous, and from the equations (m−1 1) it is

enough to keep either
∧
k1A,B

◦m−1A,B
◦

∨
k1A,B = 1A or

∧
k2B,A

◦m−1B,A
◦

∨
k2B,A = 1A.

A logical system C(0ZL) synonymous with C(ZL) (see the end of §2.4
for this notion of synonymity) is obtained by having as primitive instead

of m−1 the transformation 0 whose members 0A,B : A ⊢ B are called zero

arrow terms. Zero arrow terms, which denote zero arrows, are defined in

terms of m−1 by

0A,B =df

∧
k2A,B

◦m−1A,B
◦

∨
k1A,B

=
∧
k1B,A

◦m−1B,A
◦

∨
k2B,A, by (m−1 0),

and m−1 is defined in terms of 0 by

m−1A,B =df ⟨[1A,0B,A], [0A,B ,1B ]⟩
= [⟨1A,0A,B⟩, ⟨0B,A,1B⟩], by (in-out).

It is clear that G0A,B is the empty relation ∅ ⊆ GA×GB.

The specific equations of E(0ZL) are those of E(L) plus

f ◦0A,A = 0B,B ◦ f = 0A,B ,

for f : A ⊢ B. These equations deliver immediately the more general

equations

(0) f ◦0C,A = 0C,B , 0B,C ◦ f = 0A,C ,
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and they also deliver that the arrows 0A,A make a natural transforma-

tion from the identity functor to the identity functor; namely, one of these

equations is

(0 nat) f ◦0A,A = 0B,B ◦ f,

which becomes (1 nat) when 0A,A and 0B,B are replaced by 1A and 1B

respectively. It is straightforward to check that ZL and 0ZL are isomorphic

categories. (The notion of zero arrow satisfying (0) is considered in [100],

Section VIII.2, and [95], p. 279.)

Note that in 0ZL, and hence also in ZL, we have the equations

(0 ξ) 0A,C ξ 0B,D = 0AξB,CξD,

for ξ ∈ {∧,∨}. To derive (0∧) we have

0A,C ∧ 0B,D = ⟨0A,C ◦
∧
k1A,B ,0B,D ◦

∧
k2A,B⟩, by (∧),

= ⟨
∧
k1C,D,

∧
k2C,D⟩ ◦0A∧B,C∧D, by (0) and (

∧
K 3),

= 0A∧B,C∧D, by (∧η) and (cat 1), or by (0),

and we proceed analogously for (0∨). The equations (0 ξ), which are anal-

ogous to the bifunctorial equations ( ξ 1) of §2.7, are null cases of the equa-
tions (∪ ξ) of §10.1.

Another logical system C(d−1ZL) synonymous with C(ZL), and hence

also with C(0ZL), is obtained by having as primitive instead of m−1, or 0,

the transformation d−1 whose members are

d−1A,B,C : A ∨ (B ∧ C) ⊢ (A ∨B) ∧ C.

The type of d−1A,B,C is converse to the type of dRA,B,C . The specific equations

of E(d−1ZL) are those of E(L) plus

(d−1 1)
∧
k1A∨B,C

◦ d−1A,B,C
◦

∨
k1A,B∧C =

∨
k1A,B ,

(d−1 2)
∧
k2A∨B,C

◦ d−1A,B,C
◦

∨
k2A,B∧C =

∧
k2B,C ,

(d−1 3)
∧
k1A∨B,C

◦ d−1A,B,C
◦

∨
k2A,B∧C =

∨
k2A,B

◦
∧
k1B,C .

That 0ZL and d−1ZL are isomorphic is demonstrated with the following

definitions:
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0A,C =df

∧
k2A∨B,C

◦ d−1A,B,C
◦

∨
k1A,B∧C ,

d−1A,B,C =df ⟨1A ∨
∧
k1B,C , [0A,C ,

∧
k2B,C ]⟩

= [⟨
∨
k1A,B ,0A,C⟩,

∨
k2A,B ∧ 1C ].

This demonstration is quite straightforward; we will here just check that in

d−1ZL we have

d−1A,B,C = ⟨1A ∨
∧
k1B,C , [

∧
k2A∨B,C

◦ d−1A,B,C
◦

∨
k1A,B∧C ,

∨
k2B,C ]⟩.

We show first with the help of (d−1 1), (d−1 2) and (d−1 3) that the right-

hand side RHS of this equation is equal to the following arrow term with

subscripts omitted:

⟨[
∧
k1 ◦ d−1 ◦

∨
k1,

∧
k1 ◦ d−1 ◦

∨
k2], [

∧
k2 ◦ d−1 ◦

∨
k1,

∧
k2 ◦ d−1 ◦

∨
k2]⟩.

Then it is enough to establish that

∧
kiA∨B,C

◦RHS =
∧
kiA∨B,C

◦ d−1A,B,C ,

for i ∈ {1, 2}, and use (∧η).
In C(ZL) we define d−1A,B,C by combining the definition of d−1 in terms

of 0 and the definition of 0 in terms of m−1, or by the following arrow term:

(1A∨B ∧ (
∧
k2A,C

◦m−1A,C)) ◦ ckA,A,B,C
◦ (

∧
wA ∨ 1B∧C).

That we can do so will be clear after we have established coherence for ZL

with respect to Rel. Note that Gd−1A,B,C is an identity relation, i.e. identity

function, in Rel.

The dissociativity principle of the type A ∨ (B ∧ C) ⊢ (A ∨ B) ∧ C
of d−1A,B,C is contained in the trivial part of the modularity law, which is

satisfied in any lattice:

if a ≤ c, then a ∨ (b ∧ c) ≤ (a ∨ b) ∧ c

(see [9], Sections I.5 and I.7). In the presence of an arrow f : A ⊢ C, we
have in the logical category L an arrow g : A ∨ (B ∧ C) ⊢ (A ∨ B) ∧ C,
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which is defined like d−1A,B,C in terms of 0 save that 0A,C in this definition

is replaced by f . The relation Gg, however, is not an identity relation in

that case, while Gd−1A,B,C is an identity relation.

With ZL we have abandoned the realm of conjunctive-disjunctive logic

as far as provability is concerned. The type A ∨ B ⊢ A ∧ B of m−1 does

not correspond in general to a logical consequence; namely, the implication

A ∨ B → A ∧ B is not a tautology. In ZL we have 0A,B : A ⊢ B for any

formulae A and B. This does not mean, however, that we have abandoned

the realm of logic as far as equality of proofs is concerned. The coherence

results that we have show that adding zero arrows will not enable us to

demonstrate new equations between arrow terms in which 0 does not occur;

namely, the extension with zero arrows is conservative. And this extension

can be useful to facilitate calculations (cf. §13.1).
Bits of zero arrows already existed in all our categories whenever we had

⊤ and ⊥, and this not only in the δ-σ and κ families, but in other families

α as well. For example, 1⊤ : ⊤ ⊢ ⊤,
∧
k2A,⊤: A ∧ ⊤ ⊢ ⊤ and

∧
w⊤: ⊤ ⊢ ⊤ ∧ ⊤

all have an empty image in Rel under G, and behave like zero arrows.

We have seen in §8.1 that m is like Gentzen’s mix (Mischung) where Θ

is the empty sequence. In a similar vein, m−1 is related to the following

version of Gentzen’s mix:

Γ1 ⊢ ∆1,Θ Θ,Γ2 ⊢ ∆2

Γ1,Γ2 ⊢ ∆1,∆2

where either ∆1 or Γ2 is empty, while Θ is any nonempty sequence of for-

mulae, and not necessarily a sequence of occurrences of the same formula,

as Gentzen requires. Such a principle is not logically valid as far as prov-

ability is concerned, as we have seen above. It is, however, safe to introduce

it if we are interested not in provability, but in equality of proofs.

Note that the following arrow term of C(L):

⟨ ∨
wA,

∨
wA⟩ : A ∨A ⊢ A ∧A,

which is equal in L to [
∧
wA,

∧
wA] and to (

∨
wA ∧

∨
wA) ◦ ckA,A,A,A

◦ (
∧
wA ∨

∧
wA),

stands behind Gentzen’s mix, with Θ a sequence of occurrences of the same

formula. However, G⟨ ∨
wA,

∨
wA⟩ is different from Gm−1A,A.
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It is pointless to addm−1 to the categories I, A and S, with appropriate

equations that guarantee coherence, since the resulting categories would be

isomorphic to MI, MA and MS. We just interchange ∧ and ∨. On the

other hand, the categories ZL and ML are not isomorphic. (Compare this

with the remark on the symmetries of A, S and L, made at the end of

§9.6.)
To obtain the natural logical category ZL⊤,⊥, we have that the logical

system C(ZL⊤,⊥) is in L∧,∨,⊤,⊥, with the transformations α included in 1,

b, c, w-k, δ-σ and m−1. The specific equations of E(ZL⊤,⊥) are obtained by

taking the union of those of E(ZL) and E(L⊤,⊥). We call natural ZL⊤,⊥-

categories zero-dicartesian categories.

Note that in ZL⊤,⊥ the following equations hold:

∧
κA = f = 0A,⊤, for f : A ⊢ ⊤,
∨
κA = f = 0⊥,A, for f : ⊥ ⊢ A,
∧
κ⊥ =

∨
κ⊤ = 0⊥,⊤,

∧
κ⊤ = 1⊤ = 0⊤,⊤,

∨
κ⊥ = 1⊥ = 0⊥,⊥,

∧
k1⊥,⊥ =

∧
k2⊥,⊥ = 0⊥∧⊥,⊥,

∨
k1⊤,⊤ =

∨
k2⊤,⊤ = 0⊤,⊤∨⊤.

The arrow 0⊤,⊥ : ⊤ ⊢ ⊥ is the inverse of 0⊥,⊤ : ⊥ ⊢ ⊤, and so ⊤ and ⊥
are isomorphic in ZL⊤,⊥. Hence ⊤ and ⊥ are both terminal and initial

objects in ZL⊤,⊥, which means that they are null objects in the sense of

[100] (Section I.5).

We also have in ZL⊤,⊥ the equation

(0⊤⊥) 0A,B =
∨
κB ◦0⊤,⊥ ◦

∧
κA,

according to which 0⊤,⊥ could be taken as an alternative primitive. The

equations (0) are derivable from (0⊤⊥). So ZL⊤,⊥ can be conceived as

obtained from L⊤,⊥ just by adding the arrow 0⊤,⊥, without any new equa-

tion, the equation (0⊤⊥) being taken as a definition. In this context, the

equations (
∧
k ⊥) and (

∨
k ⊤) of §9.6 become derivable from the remaining

equations.

We can also conceive of ZL⊤,⊥ as being obtained from ZL whose objects

are formulae of L∧,∨,⊤,⊥ with the additional equations 1⊤ = 0⊤,⊤ and

1⊥ = 0⊥,⊥, and the definitions
∧
κA =df 0A,⊤ and

∨
κA =df 0⊥,A.
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§12.2. Coherence of zero-lattice and zero-dicartesian
categories

Our purpose now is to prove the following.

Zero-Lattice Coherence. The functor G from ZL to Rel is faithful.

We proceed by enlarging the proof of Lattice Coherence in §9.4. Through-
out this section, we assume that ZL stands for 0ZL, where 0 is primitive.

The syntactical system C(GZL) is defined as C(GL) of §9.4, save that it
has as primitive arrow terms also the arrow terms 0A,B : A ⊢ B. The equa-

tions of E(GZL) are obtained by adding the equations (0) to the equations

of E(GL). The syntactical category GZL, which is C(GZL)/E(GZL),

is isomorphic to ZL. The syntactical category GZL⊤,⊥, isomorphic to

ZL⊤,⊥, is defined as GZL: we just replace L everywhere by L⊤,⊥.

We can prove Composition Elimination for GZL and GZL⊤,⊥ by en-

larging the proofs of Composition Elimination in §§9.1-2 and §9.4. The

equations (0) take care of all the additional cases.

Let a zero term of C(ZL) be defined inductively by: 1A and 0A,B are

zero terms for every A and B; if f and g are zero terms, then f ξ g for

ξ ∈ {∧,∨} is a zero term. A proper zero term is a zero term in which 0

occurs at least once.

It is easy to show by induction on the sum of the lengths of h1 : A ⊢ B
and h2 : B ⊢ C that if h1 and h2 are zero terms, then h2 ◦h1 is equal in ZL

to a zero term. (If at least one of h1 and h2 is a proper zero term, then

h2 ◦h1 is equal to a proper zero term.)

An arrow term g ◦h ◦ f of C(ZL) is in standard form when f is an arrow

term of C(
∧
L∨) and g is an arrow term of C(

∨
L∧), while h is a zero term (cf.

§9.4). Then we can prove the following.

Standard-Form Lemma. Every arrow term of C(ZL) is equal in ZL to

an arrow term in standard form.

Proof. We proceed as in the proof of the Standard-Form Lemma of §9.6,
save for the following additional cases involving 0. If in the proof of (∗) we
have for f ◦ g that f : B ⊢ C is 0B,C or g : A ⊢ B is 0A,B , then we apply

the equations (0). Here we treat zero terms first as ∧-factors, and next as
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∨-factors, or vice versa. We also appeal to the fact noted above that the

composition of two zero terms is equal in ZL to a zero term. ⊣

We can also prove the following lemma.

Zero-Term Lemma. For h : A ⊢ B a zero term of C(ZL), if Gh = ∅, then
h = 0A,B in ZL.

Proof. We proceed by induction on the length of h. If h is 0A,B , then

we are done. Here h cannot be 1A, for if it were 1A, then Gh would

not be empty. If h is h1 ξ h2 for ξ ∈ {∧,∨}, then from Gh = ∅ we infer

Gh1 = Gh2 = ∅, and by the equation (0 ξ) of the preceding section we

obtain h = 0A,B . ⊣

We have also the following strengthening of this lemma.

Empty-Relation Lemma. For h : A ⊢ B an arrow term of C(ZL), if

Gh = ∅, then h = 0A,B in ZL.

Proof. By the Standard-Form Lemma above, we have h = h3 ◦h2 ◦h1 in

ZL, where h1 is an arrow term of C(
∧
L∨) and h3 is an arrow term of C(

∨
L∧),

while h2 : C ⊢ D is a zero term. From Gh = ∅ we conclude that Gh2 must

also be empty. So h2 = 0C,D by the Zero-Term Lemma, and hence, by (0),

we obtain that h = 0A,B . ⊣

This last lemma entails Lemma 2 of §9.6 for ZL; namely, the assertion

that if for f, g : A ⊢ B we have Gf = Gg = ∅, then f = g in ZL. From that

we easily obtain the following.

Invertibility Remark for ∧. Let f : A1 ∧ A2 ⊢ B be an arrow term of

C(GL). If Gf = ∅, then f is equal in ZL to an arrow term of the form
∧
K1

A2
f ′, and to an arrow term of the form

∧
K2

A1
f ′′.

This holds because if Gf = ∅, then f =
∧
K1

A2
0A1,B =

∧
K2

A1
0A2,B .

By relying on that, we can prove the analogue of the Invertibility Lemma

for ∧ of §9.6 where L is replaced by ZL and it is assumed that Gf ̸= ∅. We

proceed as in the proof in §9.4, save in the case when B is B1 ∧B2 and f is

not of the form
∧
Ki

A3−i
f ′. Then f must be of the form ⟨f1, f2⟩ (the condition
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on Gf precludes that f be an identity arrow term or a zero arrow term).

We apply either the induction hypothesis or the Invertibility Remark for ∧
to f1 : A1 ∧A2 ⊢ B1 and f2 : A1 ∧A2 ⊢ B2, and use the equation (

∧
K3).

We have, of course, for ZL a dual Invertibility Lemma for ∨, based on

a dual Invertibility Remark for ∨. We can then imitate the proof of Lattice

Coherence in §9.4 to prove Zero-Lattice Coherence.

We can also prove the following in an analogous manner.

Zero-Dicartesian Coherence. The functor G from ZL⊤,⊥ to Rel is

faithful.

Zero terms are defined as before, and, as before, the composition of

two zero terms is equal in ZL⊤,⊥ to a zero term. We have a definition of

standard form for arrow terms of C(ZL⊤,⊥) analogous to that for C(ZL),
and the analogue of the Standard-Form Lemma for ZL⊤,⊥.

We can also prove the Zero-Term Lemma with ZL replaced by ZL⊤,⊥.

In the basis of the induction, we have to consider the case where h is 1C

for a letterless formula C. This C is isomorphic in ZL⊤,⊥ both to ⊤ and

to ⊥. For i : C ⊢ ⊤ and i−1 : ⊤ ⊢ C being inverse to each other, in ZL⊤,⊥

we have

1C = i−1 ◦ i

= i−1 ◦0⊤,⊤ ◦ i, since 1⊤ = 0⊤,⊤,

= 0C,C , by (0).

From the Standard-Form Lemma and the Zero-Term Lemma for ZL⊤,⊥

we infer as above the Empty-Relation Lemma with ZL replaced by ZL⊤,⊥.

For the remainder of the proof of Zero-Dicartesian Coherence, we imitate

the proof of Zero-Lattice Coherence.

An alternative, and presumably simpler, way to prove Zero-Dicartesian

Coherence is to rely on the fact that every object of ZL⊤,⊥ is isomorphic

to an object of ZL, or to ⊤ and ⊥. Then we use Composition Elimination

for GZL⊤,⊥ and Zero-Lattice Coherence.
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§12.3. Maximality of zero-lattice and zero-dicartesian
categories

In this section, we show that ZL and ZL⊤,⊥ are maximal in the sense of

§9.3. We deal first with ZL.

Suppose that for some arrow terms f1, f2 : A ⊢ B of C(ZL) we have

Gf1 ̸= Gf2. Suppose that for some x ∈ GA and some y ∈ GB we have

(x, y) ∈ Gf1 and (x, y) ̸∈ Gf2. Then with the help of the arrow terms
∨
kiA1,A2

: Ai ⊢ A1 ∨A2, for i ∈ {1, 2}, together with

⟨1A1 ,0A1,A2⟩ : A1 ⊢ A1 ∧A2,

⟨0A2,A1 ,1A2⟩ : A2 ⊢ A1 ∧A2

and the operation of composition, we can build an arrow term h1 : p ⊢ A
of C(ZL) such that Gh1 = {(0, x)}. The (x+1)-th occurrence of letter in

A counting from the left is an occurrence of p. Analogously, with the help

of
∧
kiB1,B2

: B1 ∧B2 ⊢ Bi, together with

[1B1 ,0B2,B1 ] : B1 ∨B2 ⊢ B1,

[0B1,B2 ,1B2 ] : B1 ∨B2 ⊢ B2

and composition, we build an arrow term h2 : B ⊢ p of C(ZL) such that

Gh2 = {(y, 0)}. The (y+1)-th occurrence of letter in B counting from the

left is an occurrence of the same p we had for h1 : p ⊢ A. This must be

the case because (x, y) ∈ Gf1. Then for h2 ◦ fi ◦h1 : p ⊢ p, where i ∈ {1, 2},
we have that G(h2 ◦ f1 ◦h1) = {(0, 0)}, while G(h2 ◦ f2 ◦h1) = ∅. It follows

from Composition Elimination for GZL and from the functoriality of G

that in ZL we have

h2 ◦ f1 ◦h1 = 1p,

h2 ◦ f2 ◦h1 = 0p,p.

(This follows from Zero-Lattice Coherence too.) So, if we extend E(ZL)
with f1 = f2, then we can derive 1p = 0p,p.

If an equation f1 = f2 that is not in E(ZL) holds in a zero-lattice

category A, then by Zero-Lattice Coherence we have Gf1 ̸= Gf2. So 1p =

0p,p holds in A. Then for f, g : a ⊢ b in A, with 1a = 0a,a and the equations

(0) we obtain
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f = f ◦0a,a = 0a,b = g ◦0a,a = g,

and hence A is a preorder. This proves the maximality of ZL.

Exactly the same argument serves to prove the maximality of ZL⊤,⊥.

We just replace ZL by ZL⊤,⊥, and appeal to Zero-Dicartesian Coherence.

§12.4. Zero-lattice and symmetric net categories

The category ZL has a subcategory isomorphic to the category DS of §7.6.
We define a functor F from DS to ZL in the following manner:

Fp = p,

F (A ∧B) = FA ∨ FB, F (A ∨B) = FA ∧ FB,

F1A = 1FA,

F
∧
b→A,B,C =

∨
b→FA,FB,FC , F

∨
b→A,B,C =

∧
b→FA,FB,FC

F
∧
b←A,B,C =

∨
b←FA,FB,FC , F

∨
b←A,B,C =

∧
b←FA,FB,FC ,

F
∧
cA,B =

∨
cFB,FA, F

∨
cA,B =

∧
cFB,FA,

FdA,B,C = d−1FA,FB,FC ,

F (f ∧ g) = Ff ∨ Fg, F (f ∨ g) = Ff ∧ Fg,

F (g ◦ f) = Fg ◦Ff.

To show that F is indeed a functor, we have to check that if f = g holds

in DS, then Ff = Fg holds in ZL (cf. the penultimate paragraph of §2.4).
So suppose that f = g holds in DS; then Gf = Gg in Rel, and we have

GFf = Gf = Gg = GFg in Rel. By Zero-Lattice Coherence, we obtain

that Ff = Fg holds in ZL.

It is clear that F establishes a one-to-one correspondence on objects.

To show that F is faithful, which here implies that F is one-one on arrows,

suppose that for f, g : A ⊢ B arrow terms of C(DS) we have Ff = Fg in

ZL. Hence in Rel we have Gf = GFf = GFg = Gg, and, by Symmetric
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Net Coherence, we obtain that f = g in DS. So the subcategory of ZL

that is the image under F of DS is isomorphic to DS.

It was shown in §9.7 that Set∗ is a lattice category with ∧ being 2× and

∨ being 2+. If we define the function 0a,b : a → b by 0a,b(x) = ∗, then it is

easy to check that Set∗ is a zero-lattice category. It is also a zero-dicartesian

category with both ⊤ and ⊥ being {∗}.
By what we have shown above, a subcategory of Set∗ is a symmetric net

category with ∧ being 2+ and ∨ being 2×. The claim made in [22] (end of Sec-

tion 3) that Set∗ with ∧ being 2× and ∨ being 2+ is a cartesian linearly (alias

weakly) distributive category, which would imply that it is a symmetric

net category, is not correct. The functions da,b,c : a 2× (b 2+ c)→ (a 2× b) 2+ c

defined at that place, which are there called δLL , and for which one has

da,b,c(x, (∗, z)) = ∗ and da,b,c(x, ∗) = ((x, ∗), ∗) for every x ∈ a and every

z ∈ c, do not make a natural transformation d. Take a = {x, ∗}, b = {∗}
and c = {z, ∗}, and let the function h : c→ c be defined by h(z) = h(∗) = ∗.
Then we have

da,b,c((1a 2× (1b 2+ h))(x, (∗, z))) = ((x, ∗), ∗),
((1a 2× 1b) 2+ h)(da,b,c(x, (∗, z))) = ∗.

The category Set∗ with ∧ being 2× and ∨ being 2+ is trivially a sym-

metric net category when we take that da,b,c is defined as 0a2×(b2+c),a2×(b2+c).

With that definition, however, it is neither a distributive lattice category, in

our sense, nor a linearly distributive category, in the sense of §7.9, because
the equations (d

∧
k) and (d

∨
k), or (

∧
σ dL) and (

∨
δ dL), would not hold. For the

same reason, it is also not a cartesian linearly distributive category in the

sense of [22]. That no other definition of da,b,c : a 2× (b 2+ c))→ (a 2× b) 2+ c

can make of Set∗ a distributive lattice category or a cartesian linearly dis-

tributive category is shown in §13.2.

§12.5. Zero-identity arrows

Let the natural logical category ZIL in L∧,∨ be defined as 0ZL save that

the transformation 0 has as members 0A : A ⊢ A (we write here 0A instead

of 0A,A), which are zero-identity arrow terms that stand for zero-identity

arrows, and instead of the equations (0) we have only the following conse-

quence of (0):
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(0I) f ◦0A = 0B ◦ g

for f, g : A ⊢ B. By putting g for f , this equation delivers that 0 is a natural

transformation from the identity functor to the identity functor; namely,

we obtain the equation (0 nat) of §12.1 with 0A,A and 0B,B replaced by

0A and 0B respectively. As other consequences of (0I), we have

f ◦0A = g ◦0A,

0B ◦ f = 0B ◦ g,

and the following equation:

(00) 0A ◦0A = 0A.

In ZIL we define 0A,B by

0A,B =df f ◦0A

for some arrow term f : A ⊢ B of C(ZIL). This definition is correct because

we have f ◦0A = g ◦0A, as remarked above. We do not have, however,

0A,B in ZIL for every A and B of L∧,∨, as we had it in ZL, but only for

those pairs (A,B) where there is an arrow of L of type A ⊢ B. It is easy

to show, as in §12.1, that the following instance of (0 ξ):

(0I ξ) 0A ξ 0B = 0AξB

holds in ZIL, and if 0A,C and 0B,D are defined, then (0 ξ) holds too.

We cannot define in ZIL every m−1A,B : A ∨ B ⊢ A ∧ B of ZL, but only

those where there are arrows of the types A ⊢ B and B ⊢ A in L; and we

cannot define in ZIL every d−1A,B,C : A ∨ (B ∧ C) ⊢ (A ∨B) ∧ C of ZL, but

only those where there is an arrow of type A ⊢ C in L.

The natural logical category ZIL⊤,⊥ in L∧,∨,⊤,⊥ is defined as ZIL save

that it is based on L⊤,⊥ instead of L. With ZIL and ZIL⊤,⊥, contrary to

what we had with ZL and ZL⊤,⊥, we stay within the realm of conjunctive-

disjunctive logic as far as provability is concerned (see §12.1).
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Problems arise for proving coherence for ZIL and ZIL⊤,⊥ with equa-

tions like

∨
k1(A∨p)∧q,p ◦ ((

∧
k1A,q∨0p) ∧ 0q) = ((

∨
k1A,p∧0q) ∨ 0p) ◦

∧
k1(A∧q)∨p,q

(cf. the end of the revised version of [47] and §7.9 above). We will not

consider this question here.

Let the natural logical categories ZIML and ZIML⊤,⊥ be obtained

from ML and ML⊤,⊥ respectively by adding the zero-identity arrow terms

and the equations (0I) and

(∪0) f ∪ 0A,B = f

for every arrow term f : A ⊢ B of C(ZIML) or C(ZIML⊤,⊥). The arrow

terms 0A,B are defined in terms of 0A as above. Instead of (∪0), we could

alternatively assume its instance

1A ∪ 0A = 1A,

which yields (∪0). In ZIML and ZIML⊤,⊥, a hom-set whose arrows are

of type A ⊢ B is a semilattice with the unit 0A,B (which can be conceived

as either top or bottom).

Restricted Zero-Identity Mix-Lattice Coherence is formulated as Re-

stricted Mix-Lattice Coherence in §10.2, save that ZIML replaces ML.

To prove this coherence result for ZIML we proceed as for ML, with the

following modifications.

The syntactical category GZIML differs from the category GML by

having in C(GZIML) the primitive arrow terms 0A : A ⊢ A besides 1A :

A ⊢ A; moreover, we assume for it in addition to the equations of E(GML)

the equations (0I) and (∪0).
For A in dnf and B in cnf, arrow terms of C(GZIML) of type A ⊢ B

that are in normal form are defined as in §10.2 save that we allow 0p to

replace 1p in arrow terms in atomic bracket-free normal form. Arrow terms

in atomic bracket-free normal form where instead of 1p we have 0p are

called zero atomic bracket-free terms, and those with 1p nonzero atomic

bracket-free terms. We use the same terminology of “zero” and “nonzero”



290 CHAPTER 12. ZERO-LATTICE CATEGORIES

for atomic components. An analogous terminology was used in §10.3. The
settled normal form is defined as for GML⊤,⊥ in §10.3.

We prove Composition Elimination for GZIML by extending the proof

for GML. In that proof we apply the equation (00) and the following

equations of GZIML:

∧
Ki

Aj
f ◦0A1∧A2 =

∧
Ki

Aj
(0B ◦ f),

0A1∨A2
◦

∨
Ki

Aj
g =

∨
Ki

Aj
(g ◦0B),

for i, j ∈ {1, 2} such that i ̸= j, which are easily derived with the help of

(0I) and (
ξ

K 1), as well as

0A1∧A2
◦ ⟨g1, g2⟩ = ⟨g1 ◦0C , g2 ◦0C⟩,

[f1, f2] ◦0A1∨A2 = [0C ◦ f1,0C ◦ f2],

which are easily derived with the help of (0I) and (
ξ

K 3), for ξ ∈ {∧,∨}.
To prove the Normal-Form Lemma of §10.2 with GML replaced by

GZIML, we proceed as in the proof in §10.2, and we use in addition the

equation f ∪ g = f for any zero atomic component g. This equation, which

is analogous to the equation (∪0g) of §10.3, is derivable from (0I) and

(∪0). We can then prove Restricted Zero-Identity Mix-Lattice Coherence

as Restricted Mix-Lattice Coherence in §10.2. We use in that proof the fact

that if f ′′ and g′′ are zero atomic components of the same type, then they

are equal in GZIML by (0I) and (∪0).
Restricted Zero-Identity Mix-Dicartesian Coherence is formulated anal-

ogously by replacing ZIML with ZIML⊤,⊥ (cf. also §10.3), and is proved

in the same manner. The equations

∧
κ⊤ = 1⊤ = 0⊤,
∨
κ⊥ = 1⊥ = 0⊥

hold in ZIL⊤,⊥, and hence also in ZIML⊤,⊥.

Let the natural logical categories ZIDL and ZIDL⊤,⊥ be obtained from

DL and DL⊤,⊥ respectively by adding the zero-identity arrow terms and

the equation (0I). In these categories, we have an arrow of type A ⊢ B iff

the implication A→ B is a tautology.

We define 0A,B by f ◦0A, as before, and we can now derive (∪0) in the

following manner. We have in ZIDL and ZIDL⊤,⊥
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1A ∪ 0A =
∨
wA ◦ (

∧
k1A,A ∨ 1A) ◦ dA,A,A ◦ (1A ∧

∨
k2A,A) ◦ (1A ∧ 0A) ◦

∧
wA

=
∨
wA ◦ (

∧
k1A,A ∨ 1A) ◦ dA,A,A ◦ (1A ∧

∨
k1A,A) ◦ (1A ∧ 0A) ◦

∧
wA, with (0I),

=
∨
wA ◦ (

∧
k1A,A ∨ 1A) ◦

∨
k1A∧A,A

◦ (1A ∧ 0A) ◦
∧
wA, by (d

∨
k) of §11.1,

= 1A,

by Zero-Identity Lattice Coherence, or by applying (
ξ

k1 nat) and (
ξ

w
ξ

k), for

ξ ∈ {∧,∨} (see §9.1 and the List of Equations). From 1A ∪ 0A = 1A we

easily obtain (∪0), as we remarked above.

Then we can prove the following.

Zero-Identity Distributive Lattice Coherence. The functor G

from ZIDL to Rel is faithful.

Zero-Identity Distributive Dicartesian Coherence. The functor

G from ZIDL⊤,⊥ to Rel is faithful.

Let D be now the category obtained as the disjoint union of the stricti-

fied category ZIDLA and the trivial category with the single object ∅ and
the single arrow 1∅ : ∅ ⊢ ∅ (cf. §11.1). The Gentzen terms for this category

D are defined as in §11.1 with the addition in the basis of the inductive

definition that 0′′p : p ⊢ p, which denotes the arrow (0p, p, p) of D, is a

Gentzen term. We prove the Gentzenization Lemma of §11.1 and the Cut-

Elimination Theorem of §11.2 as before. In the proof of the Gentzenization

Lemma, we rely on (0I ξ). To define clusters and rank, we count among

leaf formulae the occurrences of p in the type p ⊢ p of 0′′p . In the proof of

the Cut-Elimination Theorem, we have as the only additional cases, when

the complexity of our clean cut is (0, 2), the left-hand sides of the following

equations of D:

cut ∅,∅(0
′′
p ,1
′′
p) = 0′′p ,

cut ∅,∅(1
′′
p ,0
′′
p) = 0′′p ,

cut ∅,∅(0
′′
p ,0
′′
p) = 0′′p ,

cut ∅,∅(0
′′
p , k

L
p g) = kLp g,

cut ∅,∅(k
R
p f,0

′′
p) = kRp f.
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For the first two equations we use (cat 1), for the third (00), for the fourth

(
∧
k1 nat), and for the fifth (

∨
k2 nat).

For the remainder of the proof of the Cut-Elimination Theorem, we can

proceed as before, but we can also proceed differently in the cases where

our clean cut is of the form cut (f, wLg) with blocked wLg tied to our clean

cut. In all these cases—namely, (w γ 1), (w γ 2), . . . , (w∨3)—we applied an

equation of D where on the left-hand side we have a single occurrence of

h : Γ ⊢ ∆, while on the right-hand side we have more than one occurrence

of h; this is always two occurrences of h, except in case (w ∨ 3), where we

have three occurrences of h. Now, we can put h on the right-hand side

for exactly one old occurrence of h, and replace the others by the cut-free

Gentzen term h0 obtained from the cut-free Gentzen term h by replacing

every 1′′p in h by 0′′p . It can be shown, by induction on the length of the cut-

free Gentzen term h, that in D we have h0 = 0′′∆ ◦h. This new procedure

would dispense us from applying the equation (wm) in the remainder of

the proof. Instead, we would rely on the following equations of ZIDL:

∨
wA ◦ (0A ∨ 1A) ◦mA,A ◦

∧
wA = 1A,

∨
wA ◦ (1A ∨ 0A) ◦mA,A ◦

∧
wA = 1A,

which amount to (∪0).
For the remainder of the proof of Zero-Identity Distributive Lattice Co-

herence, we proceed as for the proof of Distributive Lattice Coherence,

relying on Restricted Zero-Identity Mix-Lattice Coherence. We proceed

analogously for the proof of Zero-Identity Distributive Dicartesian Coher-

ence, relying on Restricted Zero-Identity Mix-Dicartesian Coherence.

It can be proved that ZIDL is maximal by imitating the proof of the

maximality of ZL in §12.3. The only difference in the proof is that for

f1, f2 : A ⊢ B we assume that only one letter p occurs in A and B (cf. the

proofs of maximality for
∧
L and L in §9.3 and §9.5). The category ZIDL⊤,⊥

is maximal in the relative sense in which L⊤,⊥ is maximal (see §9.7).
Consider the natural logical categories ZIDL− and ZIDL−⊤,⊥ that differ

from ZIDL and ZIDL⊤,⊥ respectively by rejecting the equation (wm) for

m, or alternatively the idempotency equation (∪ idemp) for ∪. In these cat-

egories hom-sets are not necessarily semilattices with unit—they must be

only commutative monoids. Union of arrows becomes now disjoint union of
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arrows, or addition of arrows. The possibility indicated above to prove the

Cut-Elimination Theorem by not relying on (wm), but on (∪0) instead, in-
dicates that we could prove that there are faithful functors G from ZIDL−

and ZIDL−⊤,⊥ not into Rel, but into the category Mat, which is isomorphic

to the skeleton of the category whose objects are finite-dimensional vector

spaces over a fixed number field, and whose arrows are linear transforma-

tions. (Note that this category of vector spaces is a subcategory of the

category Set∗ of §9.7, where the null vector is ∗.)
More precisely, the objects of the category Mat are finite ordinals, i.e.

natural numbers (the dimensions of our vector spaces), and an arrow of type

n ⊢ m is an n ×m matrix. Matrices that are images under the functor G

will have entries that are natural numbers. Composition of arrows is matrix

multiplication, and the identity arrow 1n : n ⊢ n is the n×n identity matrix

with the entries 1n(i, j) = δ(i, j), where δ is the Kronecker delta.

Every n×m matrix M whose entries are only 0 and 1 may be identified

with a binary relation RM ⊆ n ×m such that M(i, j) = 1 iff (i, j) ∈ RM .

Multiplication of such matrices is the same as composition of relations if

we assume that 1+1 = 1.

For the proof of the faithfulness of G from ZIDL− and ZIDL−⊤,⊥ into

Mat we would rely on restricted coherence results for the natural logical

categories ZIML− and ZIML−⊤,⊥, which are obtained from ZIML and

ZIML⊤,⊥ respectively by rejecting the equation (wm). These restricted

coherence results are of the same type as those we had for ML, ML⊤,⊥,

ZIML and ZIML⊤,⊥. In producing the settled normal form, we just do

not rely on the equation (∪ idemp).

The fact that (wm) does not hold inMat shows that this equation cannot

be derived from the remaining equations we have used to axiomatize the

equations of ZIDL and ZIDL⊤,⊥.

We conclude our consideration of zero-identity arrows with some re-

marks on formulae that are isomorphic in their presence. In ZIML we

have the isomorphism

⟨[1A,0A], [0A,1A]⟩ : A ∨A ⊢ A ∧A,

whose inverse is mA,A. Let A and B be formulae of the language L{p}∧,∨,
which is the language L∧,∨ generated by P = {p}. Then it is clear that
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there are in the category L arrows of type A ⊢ B and B ⊢ A, and hence in

ZIML we have the isomorphism

⟨[1A,0B,A], [0A,B ,1B ]⟩ : A ∨B ⊢ A ∧B,

whose inverse is mA,B . It is the easy to conclude that in ZIML and ZIDL

for every pair (C,D) of formulae of L{p}∧,∨ such that in each of C and D

there are n ≥ 1 occurrences of p we have that C and D are isomorphic.

(The category ZIML generated by {p} is isomorphic to the category ZML

of §13.1 generated by {p}.) If pn stands for any of these formulae, then the

functoriality of G from ZIML and ZIDL to Rel implies that pn and pm

cannot be isomorphic in ZIML and ZIDL for n ̸= m. This characterizes

completely the formulae of L{p}∧,∨ isomorphic in ZIML and ZIDL.

Let L{p}∧,∨,⊤,⊥ be the language L∧,∨,⊤,⊥ generated by P = {p}. Then

every formula of L{p}∧,∨,⊤,⊥ is isomorphic in ZIDL⊤,⊥ to one of the form pn

for n ≥ 1, or pm∧⊥, or pm∨⊤ for m ≥ 0, where if m = 0, then pm∧⊥ is ⊥
and pm∨⊤ is ⊤. To prove that, we use various isomorphisms of ZIDL⊤,⊥,

among which isomorphisms of the following types are prominent:

pn ∨ (pm ∧ ⊥) ⊢ pn+m,

pn ∧ (pm ∨ ⊤) ⊢ pn+m,

(A ∧ ⊥) ∨ (B ∧ ⊥) ⊢ (A ∨B) ∧ ⊥,
(A ∨ ⊤) ∧ (B ∨ ⊤) ⊢ (A ∧B) ∨ ⊤,
(A ∧ ⊥) ∨ ⊤ ⊢ A ∨ ⊤,
(A ∨ ⊤) ∧ ⊥ ⊢ A ∧ ⊥.

For example, the following isomorphism is of the last of these types:

((
∨
δ→A ◦ (1A ∨

∧
σ→⊥ ) ◦ dRA,⊤,⊥) ∧ 1⊥) ◦

∧
b→A∨⊤,⊥,⊥ ◦ (1A∨⊤ ∧

∧
w⊥).

Since in classical logic formulae in the classes pn, pm ∧ ⊥ and pm ∨ ⊤
are equivalent respectively to p, ⊥ and ⊤, formulae from distinct classes

among these three cannot be isomorphic. And that, within each class,

formulae with different superscripts n or m cannot be isomorphic is shown

by appealing to the functoriality of G from ZIDL⊤,⊥ to Rel.



Chapter 13

Zero-Mix Lattice Categories

Zero-mix lattice categories are categories with finite products and coprod-

ucts, with or without the terminal and initial objects, to which we add the

union operation on arrows of Chapter 10 and the zero arrows of Chapter 12.

This amounts to making products isomorphic to coproducts. In zero-mix

lattice categories hom-sets are semilattices with unit, and these categories

are related to categories whose hom-sets are commutative monoids, like

linear categories, preadditive categories, additive categories and abelian

categories. In zero-mix lattice categories we have dissociativity, and these

categories are distributive lattice categories in the sense of Chapter 11. We

prove coherence for zero-mix lattice categories with the help of composition

elimination and a unique normal form inspired by linear algebra. Zero-mix

lattice categories are maximal, in the sense that it is impossible to extend

their axioms without collapse into preorder.

The category whose arrows are relations between finite ordinals, on

which we relied throughout the book for our coherence results, is a zero-mix

lattice category. This category is isomorphic to a subcategory of another

zero-mix lattice category—namely, the category of semilattices with unit,

which is itself a subcategory of the category Set∗ of sets with a distinguished

object ∗, whose arrows are ∗-preserving functions.

295
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§13.1. Coherence of zero-mix lattice categories

To obtain the natural logical category ZML, we have that the logical system

C(ZML) is in L∧,∨, with the transformations α included in 1, b, c, w-k, m

and m−1. The specific equations of E(ZML) are obtained by taking the

union of those of E(ML) and E(ZL) plus

(mm−1) m−1A,B
◦mA,B = 1A∧B , mA,B ◦m−1A,B = 1A∨B .

So in ZML we have that A ∧B and A ∨B are isomorphic. The equations

(m nat) and (m−1 nat) entail each other in the presence of (mm−1).

We call natural ZML-categories zero-mix lattice categories. The hom-

sets in a zero-mix lattice category are semilattices with unit (see §13.3 for

references concerning related kinds of categories).

According to what we had in §10.1 and §12.1, we can take for ZML

primitives alternative to m and m−1; for example, we can take ∪ and 0,

which are defined in ZML as before (see §10.1 and §12.1).
In ZML the following equations hold:

(
∧
km)

∧
k1A,B = [1A,0B,A] ◦mA,B ,

∧
k2A,B = [0A,B ,1B] ◦mA,B ,

(
∨
km)

∨
k1A,B = mA,B ◦ ⟨1A,0A,B⟩,

∨
k2A,B = mA,B ◦ ⟨0B,A,1B⟩.

Here is a derivation of the first (
∧
km) equation:

∧
k1A,B

◦m−1A,B = [
∧
k1A,B

◦m−1A,B
◦

∨
k1A,B ,

∧
k1A,B

◦m−1A,B
◦

∨
k2A,B ], by (∨η),

= [1A,0B,A], by (m−1 1) and (m−1 0) of §12.1;

then we apply (mm−1) (for (∨η) see the List of Equations at the end of the

book). Alternatively, we can rely on the following equation of ZL:

m−1A,B = ⟨[1A,0B,A], [0A,B ,1B]⟩.

We proceed analogously for the remaining three equations of (
∧
k m) and

(
∨
km).

For f : A ⊢ B, let us use the following abbreviations for arrow terms of

C(ZML):
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∧
Z1

C f =df m
−1
B,C

◦
∨
k1B,C

◦ f,
∨
Z1

C f =df f ◦
∧
k1A,C

◦m−1A,C ,
∧
Z2

C f =df m
−1
C,B

◦
∨
k2C,B

◦ f,
∨
Z2

C f =df f ◦
∧
k2C,A

◦m−1C,A.

With the equations (
∧
km) and (

∨
km), it is clear that in ZML we have

∧
Z1

C f = ⟨f,0A,C⟩ : A ⊢ B ∧ C,
∨
Z1

C f = [f,0C,B ] : A ∨ C ⊢ B,
∧
Z2

C f = ⟨0A,C , f⟩ : A ⊢ C ∧B,
∨
Z2

C f = [0C,B , f ] : C ∨A ⊢ B.

Then we can infer that for fi : C ⊢ Ai and gi : Ai ⊢ C, where i ∈ {1, 2},
the following equations hold in ZML:

(
∧
Z ) ⟨f1, f2⟩ =

∧
Z1

A2
f1 ∪

∧
Z2

A1
f2,

(
∨
Z ) [g1, g2] =

∨
Z1

A2
g1 ∪

∨
Z2

A1
g2.

For (
∧
Z ) we have

∨
k1C,C ∪

∨
k2C,C =

∨
wC∨C ◦ (

∨
k1C,C ∨

∨
k2C,C) ◦mC,C ◦

∧
wC

= mC,C ◦
∧
wC ,

and from that, with (mm−1), we obtain

∧
wC = m−1C,C

◦ (
∨
k1C,C ∪

∨
k2C,C),

which yields (
∧
Z ). We derive (

∨
Z ) analogously via

∨
wC = (

∧
k1C,C ∪

∧
k2C,C) ◦m−1C,C .

For every arrow term f : A ⊢ B of C(ZML), in ZML we have also the

equation

(∪0) f ∪ 0A,B = f,

which we encountered already in the preceding chapter (see §12.5). Here is

a derivation of this equation:

1A ∪ 0A,A =
∨
wA ◦ (1A ∨ 0A,A) ◦mA,A ◦

∧
wA

= [1A,0A,A] ◦mA,A ◦
∧
wA

= 1A, by (
∧
km) and (

∧
w

∧
k) of §9.1;
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from that we easily obtain (∪0) with the help of (∪ ◦).

Conversely, we can derive (mm−1) from (∪0). Here is derivation, with

subscripts omitted, of the first equation of (mm−1):

m−1 ◦m = [⟨1,0⟩, ⟨0,1⟩] ◦ ((
∨
k1 ◦

∧
k1) ∪ (

∨
k2 ◦

∧
k2))

= ((
∧
k1 ∧ 0) ∪ (0 ∧

∧
k2)) ◦

∧
w, with (∪ ◦) of §10.1,

= 1, with (∪ ξ) of §10.1 and (∪0);

we proceed analogously for the second one by using m−1 = ⟨[1,0], [0,1]⟩.
So (∪0), or 1A ∪ 0A,A = 1A, could replace (mm−1) for the axiomatization

of E(ZML). The axiom (∪0) is more appropriate than (mm−1) if ∪ and 0

are primitive instead of m and m−1.

To prove the coherence of ZML with respect to Rel we introduce, in

the style of the preceding chapters, a syntactical category isomorphic to

ZML for which we can prove Composition Elimination. The syntactical

system C(GZML) is formulated by combining what we had for C(GML)

in §10.1 and for C(GZL) in §12.2 (which is based on §9.4), together with

the primitive operations
ξ

Zi
C on arrow terms, for ξ ∈ {∧,∨} and i ∈ {1, 2}.

The equations of E(GZML) are obtained by assuming in addition to the

equations of E(GML) and E(GZL) the equation (∪0) and the four equa-

tions given above immediately after the definitions of
ξ

Zi
C in C(ZML). Note

that in the presence of (∪0), which is f ∪ 0A,B = f , and of the analogous

equation 0A,B ∪ f = f , we can replace (∪ assoc) and (∪ com) by the single

equation

(f1 ∪ f2) ∪ (f3 ∪ f4) = (f1 ∪ f3) ∪ (f2 ∪ f4).

The syntactical category GZML is C(GZML)/E(GZML), and it is iso-

morphic to ZML.

We can prove Composition Elimination for GZML by extending the

proofs for GML and GZL, which are based on the proof of Composition

Elimination for GL in §9.4 and §9.1.
Next we introduce some definitions analogous up to a point to those

we had in Chapter 10 and §12.5. Arrow terms of C(GZML) of the form

P1. . . PnQ1. . . Qmθ, where n,m ≥ 0, and θ is of the form 1p or 0p,q, for

some letters p and q, while Pi for i ∈ {1, . . . , n} is of the form
∨
K1

C , or
∨
K2

C ,
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or
∧
Z1

C , or
∧
Z2

C , and Qj for j ∈ {1, . . . ,m} is of the form
∧
K1

C , or
∧
K2

C , or
∨
Z1

C ,

or
∨
Z2

C , are called atomic terms. We have a zero atomic term when θ is of

the form 0p,q (where p and q can be the same letter), and a nonzero atomic

term when θ is of the form 1p.

Arrow terms of C(GZML) in normal form are defined inductively by

stipulating that atomic terms are in normal form, and that if f and g are

in normal form, then f ∪ g is in normal form.

Let f be an arrow term of C(GZML) in normal form, and let f ′ be a

subterm of f such that f ′ is an atomic term, and there is no atomic subterm

f ′′ of f with f ′ a proper subterm of f ′′. Then we say that f ′ is an atomic

component of f .

Let p occur in a formula A of L∧,∨ as the x+1-th occurrence of letter

counting from the left. Then there is a unique atomic term Q1. . . Qm1p :

A ⊢ p such that G(Q1. . . Qm1p) = {(x, 0)}. We say that the word Q1. . . Qm

is bound to (x, 0).

Let q occur in a formula B of L∧,∨ as the y+1-th occurrence of letter

counting from the left. Then there is a unique atomic term P1. . . Pn1q :

q ⊢ B such that G(P1. . . Pn1q) = {(0, y)}. We say that the word P1. . . Pn

is bound to (0, y).

Hence there is a unique word P1. . . PnQ1. . . Qm such that Q1. . . Qm is

bound to (x, 0) and P1. . . Pn is bound to (0, y). We say that the word

P1. . . PnQ1. . . Qm is bound to (x, y) ∈ GA×GB.

An arrow term f : A ⊢ B of C(GZML) is in settled normal form when it

is in normal form and there is a one-to-one correspondence between the set

GA×GB and the set of atomic components of f , such that for every atomic

component P1. . . PnQ1. . . Qmθ we have that P1. . . PnQ1. . . Qm is bound to

the ordered pair in GA × GB corresponding to it. To every ordered pair

in GA × GB corresponds either a zero or a nonzero atomic component

depending on whether θ is of the form 0p,q or 1p. Then we can prove the

following.

Normal-Form Lemma. Every arrow term of C(GZML) is equal in

GZML to an arrow term in settled normal form.

Proof. Take an arrow term f : A ⊢ B of C(GZML). By Composition
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Elimination for GZML there is a composition-free arrow term f ′ : A ⊢ B
of C(GZML) equal to f in GZML.

Then we apply the equations (
∧
K 4) and (

∨
K 4) (see §9.1 and §9.4), and

the following equations of GZML:

0A∧B,C =
∧
K1

B 0A,C , 0A∨B,C =
∨
Z1

B 0A,C ,

0C,A∧B =
∧
Z1

B 0C,A, 0C,A∨B =
∨
K1

B 0C,A,

in order to obtain a composition-free arrow term f ′′ of C(GZML), equal

to f ′ in GZML, in which every 1 and and every 0 have subscripts that are

letters. This procedure is arbitrary as far as zero arrow terms are concerned:

we could as well base it on
ξ

K2 and
ξ

Z2 instead of
ξ

K1 and
ξ

Z1. (We could

also use (∪0) to omit zero arrow terms, which will reappear through (∪0)
in another garb afterwards; see below.)

Next we apply to f ′′ the equations (
ξ

Z ) and the following equations of

GZML:

ξ

Xi
A (f ∪ g) =

ξ

Xi
A f ∪

ξ

Xi
A g,

∧
Ki

A

∨
Kj

B f =
∨
Kj

B

∧
Ki

A f,
∨
Zi

A

∨
Kj

B f =
∨
Kj

B

∨
Zi

A f,

∧
Ki

A

∧
Zj

B f =
∧
Zj

B

∧
Ki

A f,
∨
Zi

A

∧
Zj

B f =
∧
Zj

B

∨
Zi

A f,

for X ∈ {K,Z}, i, j ∈ {1, 2} and ξ ∈ {∧,∨}, to obtain an arrow term f ′′′

of C(GZML) in normal form equal to f ′′ in GZML.

To transform f ′′′ into an arrow term in settled normal form, we apply the

equations (0) and (∪0) to put in the missing atomic components, and delete

the atomic components P1. . . PnQ1. . . Qm0p,p for which we have already the

atomic components P1. . . PnQ1. . . Qm1p. ⊣

It is easy to establish that if f, g : A ⊢ B are arrow terms of C(GZML)

in settled normal form and Gf = Gg, then the set of atomic components

of f and the set of atomic components of g must be the same set of atomic

terms. We can then easily prove the following.

Zero-Mix Lattice Coherence. The functor G from ZML to Rel is

faithful.
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Proof. Suppose f, g : A ⊢ B are arrow terms of C(GZML) in settled

normal form such that Gf = Gg. By the Normal-Form Lemma, we have

the arrow terms f ′ and g′ in settled normal form such that f = f ′ and g = g′

in GZML. By the functoriality of G, we have Gf = Gf ′ and Gg = Gg′;

hence Gf ′ = Gg′. So f ′ and g′ have equal sets of atomic components,

and they must be equal in GZML by applying (∪ assoc), (∪ com) and

(∪ idemp). Therefore, f = g in GZML. ⊣

We could have used (∪ assoc), (∪ com) and (∪ idemp) to find a unique

term in settled normal form equal to an arrow term of GZML. The ad-

vantage ZML has over DL is that, due to zero arrows, we can reach this

unique composition-free normal form. For DL, a unique cut-free normal

form was not forthcoming.

We will see in the next section that DL is isomorphic to a subcategory

of ZML. For that we rely on Distributive Lattice Coherence and Zero-Mix

Lattice Coherence. The unique normal form we have for ZML can serve

as a substitute for the missing unique normal form of DL. For every arrow

term of C(DL) we take the arrow term of C(GZML) in normal form whose

image under G is the same.

§13.2. Zero-mix lattice and distributive lattice cate-
gories

To obtain the natural logical category ZDL, we have that the logical system

C(ZDL) is in L∧,∨, with the transformations α included in 1, b, c, w-k, d

and m−1. The specific equations of E(ZDL) are obtained by taking the

union of those of E(DS) and E(ZL) plus (d
∧
k) and (d

∨
k) of §11.1 and (wm)

of §10.1 for mA,A defined by (dm) of §11.1 understood as a definition. Note

that we do not assume here the equations (m
∧
e) and (m

∨
e), which would

deliver immediately the equations of E(DL′), and hence of E(DL) (see

§11.1). We will see below, however, that all the equations of E(DL) are in

E(ZDL).

We will show that the categories ZML and ZDL are isomorphic with

the definition

(md) dA,B,C =df mA∧B,C ◦
∧
b→A,B,C

◦ (1A ∧m−1B,C)
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in C(ZML) (this definition is derived from the equation (
∧
bmL) of §8.3; an

alternative definition can be obtained from (
∨
b mL)), and the definition of

mA,B in C(ZDL) corresponding to the equation (dm) of §11.1.
It is easy to conclude from Zero-Mix Lattice Coherence of the preceding

section that with (md) all the equations of E(ZDL) plus (dm) hold in

ZML. To show that with the definition of mA,B corresponding to (dm) all

the equations of E(ZML) hold in ZDL, first we derive easily (m nat) for

ZDL, by using naturality equations of ZDL. Then we infer with the help

of (
ξ

w
ξ

k
ξ

k) for ξ ∈ {∧,∨} (see §9.1 and the List of Equations) that in ZDL

we have (
∨
k1 ◦

∧
k1)∪ (

∨
k2 ◦

∧
k2) = m, with subscripts omitted. Next we derive

easily (∪ ◦) for ZDL with the help of naturality and bifunctorial equations.

The equation (∪ ξ) of §10.1 is derived for ZDL as indicated in §10.1, and
(∪0) is derived for ZDL as we derived it for ZIDL in §12.5. With all

that, we obtain (mm−1) in ZDL as in the preceding section. Since in ZDL

we have all the equations of E(ZL), we have also (bm−1) and (cm−1) (see

§12.1), which together with (mm−1) yield (bm) and (cm) in ZDL. (The

equation (m nat) follows from (m−1 nat) with the help of (mm−1), but we

relied on (m nat) in the derivation of (mm−1).) It remains only to derive

for ZDL the equation obtained from (md) by replacing mA∧B,C according

to (dm); namely,

dA,B,C = (
∧
k1A∧B,D ∨1C) ◦ dA∧B,D,C ◦ (1A∧B∧

∨
k2D,C) ◦

∧
b→A,B,C

◦ (1A ∧m−1B,C).

For that it is enough to derive (
∧
b mL), as we did it for DL′ in §11.1, and

use moreover (mm−1). We can then conclude that ZML and ZDL are

isomorphic categories.

We can infer from Zero-Mix Lattice Coherence that all the equations of

E(DL) are in E(ZDL). Because of the question concerning the indepen-

dence of the equations (m
∧
e) and (m

∨
e) in our axiomatization of DL (see

§11.1), it is, however, of some interest to see how these equations are de-

rived in E(ZDL). We derive the equations (
∧
bmL), (

∨
bmL) and (cm) as we

did it for DL′ in §11.1. Then we derive the equations (m
∧
cm) and (m

∨
cm)

as we did it for DL in §11.1. Note that we do not need the equations (m
∧
e)

and (m
∨
e) for all these derivations. With (mm−1), we easily obtain from

(m
∧
cm) and (m

∨
cm) the following equations:
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∧
e′A,B,C,D = mA∧C,B∧D ◦

∧
cmA,B,C,D

◦ (1A∧B ∧m−1C,D),
∨
e′D,C,B,A = (m−1D,C ∨ 1B∨A) ◦

∨
cmD,C,B,A

◦mD∨B,C∨A.

We also have in ZDL

ckA,C,B,D
◦

∧
e′A,B,C,D

◦ (1A∧B ∧mC,D)

= ((
∧
k1A,C ∨

∧
k1B,D) ∧ (

∧
k2A,C ∨

∧
k2B,D)) ◦

∧
w(A∧C)∨(B∧D) ◦mA∧C,B∧D ◦

◦
∧
cmA,B,C,D, by (m

∧
cm),

= mA,B ∧mC,D, by naturality equations and Lattice Coherence,

from which (m
∧
e) follows easily with the help of (mm−1). We proceed

analogously for (m
∨
e) by using (m

∨
cm).

We have seen in §12.4 that Set∗ is a zero-lattice category with ∧ being

2× and ∨ being 2+. (It is also a symmetric net category with ∧ being

2+ and ∨ being 2×.) If Set∗ with ∧ being 2× and ∨ being 2+ were also a

symmetric net category, and (d
∧
k) and (d

∨
k) were moreover satisfied, then

a 2× b and a 2+ b would be isomorphic in Set∗, which is not the case. Note

that the equation (wm) played no role in inferring above that A ∧ B and

A ∨ B are isomorphic in ZDL; namely, in deriving the equation (mm−1)

for ZDL. Since the equations (d
∧
k) and (d

∨
k) hold in the cartesian linearly

distributive categories of [22] (cf. §11.5), this shows that no definition of

da,b,c : a 2× (b 2+ c) → (a 2× b) 2+ c in Set∗ can support the claim made in

[22] (end of Section 3), which we have already considered in §12.4. Since

products and coproducts are unique up to isomorphism (see [100], Sections

IV.1-2), there is no alternative lattice-category structure to the lattice-

category structure provided by 2× and 2+ in Set∗. (This invalidates also

Proposition 3.4 of [22].)

In ZML, the arrow ckA,C,B,D : (A∧C)∨ (B∧D) ⊢ (A∨B)∧ (C∨D) has

an inverse clA,B,C,D : (A ∨ B) ∧ (C ∨D) ⊢ (A ∧ C) ∨ (B ∧D). The natural

transformation cl could be taken as a primitive instead of m and m−1, or

∪ and 0, because, for f, g : C ⊢ B, in ZML we have the equations

f ∪ g = [
∧
k1B,A,

∧
k2A,B ] ◦ clB,A,A,B

◦ ⟨
∨
k1B,A

◦ f,
∨
k2A,B

◦ g⟩,

0A,B = [
∧
k1B,A,

∧
k2A,B ] ◦ clB,A,A,B

◦ ⟨
∨
k2B,A,

∨
k1A,B⟩,

which are easily checked with the help of Zero-Mix Lattice Coherence.
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There are many ways to define clA,B,C,D in ZML. One way is

clA,B,C,D =df
∧
e′A,B,C,D

◦ (m−1A,B ∧ 1C∨D),

and another

clD,B,C,A =df (1D∧C ∨m−1B,A) ◦
∨
e′D,C,B,A.

These two definitions show that the equations (m
∧
e) and (m

∨
e) of §11.1 are

in ZML immediate consequences of

ckA,C,B,D
◦ clA,B,C,D = 1(A∨B)∧(C∨D),

clA,C,B,D
◦ ckA,B,C,D = 1(A∧B)∨(C∧D).

§13.3. Coherence of zero-mix dicartesian categories

To obtain the natural logical category ZML⊤,⊥, we have that the logical

system C(ZML⊤,⊥) is in L∧,∨.⊤,⊥, with the transformations α included in

1, b, c, w-k, δ-σ, m and m−1. The specific equations of E(ZML⊤,⊥) are

obtained by taking the union of those of E(ZML) and E(L⊤,⊥). We call

natural ZML⊤,⊥-categories zero-mix dicartesian categories.

Zero-mix dicartesian categories are linear categories in the sense of [95]

(p. 279). The difference is that linear categories need not satisfy (wm),

which amounts to (∪ idemp). So the hom-sets of linear categories are com-

mutative monoids, and not necessarily semilattices with unit, as in zero-

mix dicartesian categories (cf. the categories ZML− and ZML−⊤,⊥ below).

Closely related notions are the notions of Ab-category (or preadditive cat-

egory) and additive category, where the hom-sets are abelian groups (see

[100], Sections I.8 and VIII.2, and [57], p. 60). These notions enter into the

notion of abelian category (see [100], Section VIII.3, [57], Chapter 2, and

[59], Section 1.591).

The syntactical category GZML⊤,⊥ is defined by combining what we

had for GZML and GL⊤,⊥ in §9.6. We can then prove Composition Elim-

ination for GZML⊤,⊥ as for GZML.

We define the atomic terms of C(GZML⊤,⊥) as we did for C(GZML)

in §13.1, save that the indices p and q of 0p,q (but not those of 1p) can

be replaced by ⊤ or ⊥. Arrow terms of C(GZML⊤,⊥) in normal form,



§13.3. Coherence of zero-mix dicartesian categories 305

and their atomic components, are then defined analogously to what we had

in §13.1. Let the settled normal form for an arrow term f : A ⊢ B of

C(GZML⊤,⊥) be defined as for C(GZML) when GA ̸= ∅ and GB ̸= ∅. If
either GA = ∅ or GB = ∅, then f is in settled normal form when it is 0A,B .

We can prove as in §13.1 the Normal-Form Lemma where GZML is

replaced by GZML⊤,⊥, with the following additions. We use the following

equations of GZML⊤,⊥:

∧
κA = 0A,⊤,

∨
κA = 0⊥,A,

1⊤ = 0⊤,⊤, 1⊥ = 0⊥,⊥,

together with (0) and (∪0), to remove superfluous atomic components. We

can then prove as before the following.

Zero-Mix Dicartesian Coherence. The functor G from ZML⊤,⊥ to

Rel is faithful.

We prove the maximality of ZML and ZML⊤,⊥ as we proved the max-

imality of ZL and ZL⊤,⊥ in §12.3.
Let ZML− and ZML−⊤,⊥ differ from ZML and ZML⊤,⊥ by omitting

(wm), or alternatively (∪ idemp), from the specific equations. In these

categories hom-sets are not necessarily semilattices with unit—they must

be only commutative monoids. We can prove that there are faithful functors

from ZML− and ZML−⊤,⊥ into the category Mat of §12.5. For these proofs
we proceed as for ZML and ZML⊤,⊥. Note that we did not need (wm) for

Composition Elimination in GZML and GZML⊤,⊥. (We needed (wm) for

the cut elimination of DL in Chapter 11, but not for the cut elimination of

ZIDL in Chapter 12; see §12.5.) The settled normal form is now defined

by making every ordered pair from GA × GB correspond to a nonempty

set of atomic components bound to that pair; more precisely, a nonempty

set of occurrences of a single arrow term bound to that pair such that each

occurrence is an atomic component (cf. §13.1). This is a multiset based

on a singleton. Whether zero atomic components are duplicated in this

multiset is without importance, but we count the number of nonzero atomic

components; this number corresponds to an entry n ≥ 1 in the matrix. The

categories ZML− and ZML−⊤,⊥ are clearly not maximal, since we can add

the equation (wm) without falling into preorder.
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§13.4. The category Semilat∗

In this section we will consider as an example of a zero-mix dicartesian

category the category Semilat∗, whose objects are semilattices with unit,

and whose arrows are unit-preserving semilattice homomorphisms. This

category is a subcategory of the category Set∗ of §9.7. Note that Semilat∗ is

not the category Setsl∗ of §10.1, which is isomorphic to the category Semilat

of semilattices with semilattice homomorphisms.

We want to summarize matters in this section; so we give again the

following definitions from §9.7:

I = {∗}, a′ = {(x, ∗) | x ∈ a− I}, b′′ = {(∗, y) | y ∈ b− I},

a⊗ b = ((a− I)× (b− I)) ∪ I,

a 2× b = (a⊗ b) ∪ a′ ∪ b′′,
a 2+ b = a′ ∪ b′′ ∪ I.

If ⟨a1, ·, ∗⟩ and ⟨a2, ·, ∗⟩ are semilattices with unit, then we define the

semilattice with unit ⟨a1, ·, ∗⟩ ξ ⟨a2, ·, ∗⟩, for ξ ∈ {∧,∨}, as ⟨a1 2× a2, ·, ∗⟩,
where 2× corresponds to cartesian product. For · and ∗ we have the following
clauses (taken over from §10.1):

(x1, x2) · (y1, y2) = (x1 · y1, x2 · y2),
(x1, x2) · ∗ = ∗ · (x1, x2) = (x1, x2),

∗ · ∗ = ∗.

We have that ⊤ = ⊥ = I = {∗} is the trivial semilattice with unit.

The functions
∧
kia1,a2

: a1 2× a2 → ai, for i ∈ {1, 2}, are defined by

∧
kia1,a2

(x1, x2) = xi,
∧
kia1,a2

(∗) = ∗;

for fi : c→ ai, the function ⟨f1, f2⟩ : c→ a1 2× a2 is defined by

⟨f1, f2⟩(z) =
{

(f1(z), f2(z)) if f1(z) ̸= ∗ or f2(z) ̸= ∗
∗ if f1(z) = f2(z) = ∗;

and the function
∧
κa: a→ I is defined by

∧
κa (x) = ∗.

The functions
∨
kia1,a2

: ai → a1 2× a2 are defined by
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∨
k1a1,a2

(x) = (x, ∗),
∨
k2a1,a2

(x) = (∗, x), for x ̸= ∗,
∨
kia1,a2

(∗) = ∗;

for gi : ai → c, the function [g1, g2] : a1 2× a2 → c is defined by

[g1, g2](x1, x2) = g1(x1) · g2(x2),
[g1, g2](∗) = ∗;

and the function
∨
κa: I → a is defined by

∨
κa (∗) = ∗. (The clauses in the

definitions of
∧
kia1,a2

, ⟨f1, f2⟩,
∧
κa and

∨
κa are taken over from §9.7, where

they were given for Set∗, while the clauses for
∨
kia1,a2

and [g1, g2] are taken

over from §10.1, where they were given for Setsl∗ .)

For f, g : a→ b, we define the function f ∪ g : a→ b by

(f ∪ g)(x) = f(x) · g(x)

(as for Setsl∗ in §10.1), and, finally, we have the function 0a,b : a→ b defined

by

0a,b(x) = ∗

(as for Set∗ in §12.4). It is straightforward to check that with all these

definitions Semilat∗ is a zero-mix dicartesian category.

The category Semilat∗ is a subcategory of the category ComMon of

commutative monoids with monoid homomorphisms. By repeating what we

had above, we can show that ComMon, with both ∧ and ∨ being cartesian

product, and both ⊤ and ⊥ being the trivial single-element monoid, is a

natural ZML−⊤,⊥-category. The category Mat of §12.5 is isomorphic to a

subcategory of ComMon, which is itself a subcategory of Set∗.

Let us summarize in a table the connections between the three subcate-

gories of Set∗ that we had as examples for various kinds of lattice categories

(see §9.7, §10.1, §10.3 and §12.4):

category ∧ ∨ ⊤ ⊥

Setsl∗
∼= Semilat mix-lattice ⊗ 2× I ∪{x} I

Set∗ zero-dicartesian 2× 2+ I I

Semilat∗ zero-mix dicartesian 2× 2× I I
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Note that Setsl∗ is not a dicartesian category, but only a sesquicartesian

category with ⊤ and ⊥ as in the table. We also had in §9.7 the dicartesian

category Set∅∗, where, in contradistinction to Set∗, we had that ⊥ is ∅; but
this category is not a zero-lattice category.

The category Rel is a zero-mix dicartesian category with both ∧ and ∨
being +, and both ⊤ and ⊥ being 0; the operation ∪ in Rel is union, and

the zero arrows are empty relations.

The category Rel is isomorphic to a subcategory of Semilat∗. We define

a functor F from Rel to Semilat∗ by

Fn = ⟨Pn,∪, ∅⟩,

where Pn is the power set of the ordinal n and ∪ is binary union of sets;

for R ⊆ n×m and X ∈ Pn we have

(FR)(X) = {y ∈ m | for some x ∈ X,xRy}.

It is straightforward to check that F is a faithful functor from Rel to

Semilat∗, which is one-one on objects. So the image under F in Semilat∗ is

isomorphic to Rel. The functor F is a strong, but not strict, C(ZML⊤,⊥)-

functor (see §2.8). The semilattice with unit ⟨Pn,∪, ∅⟩ is, up to isomor-

phism, the free semilattice with unit with n free generators.

It is known that Rel is the skeleton of a category isomorphic to the

Kleisli category of the power-set monad (or triple) on the category of finite

sets with functions (see [90], Section 0.6, p. 32). In this isomorphism, every

relation R ⊆ n × m is mapped to a function fR : n → Pm such that

y ∈ fR(x) iff xRy, and fR can then be extended in a unique way to an

∅-preserving semilattice homomorphism FR from ⟨Pn,∪, ∅⟩ to ⟨Pm,∪, ∅⟩.



Chapter 14

Categories with Negation

In this, final, chapter of the book we bring to completion our proposed

codification of the proof theory of classical propositional logic. We first

prove a general coherence result that enables us to pass from coherence

proved in the absence of negation to coherence with a De Morgan negation

added. De Morgan negation is involutive negation that satisfies the De

Morgan laws, but does not yet amount to Boolean negation.

To obtain Boolean negation, i.e. an operation corresponding to comple-

mentation, we need extra assumptions, which, if we want coherence with

respect to the category whose arrows are relations between finite ordinals,

must be zero arrows. The effect of having these zero arrows, which yield the

zero-identity arrows of Chapter 12, is that all theorems, i.e. all propositions

proved without hypotheses, will have zero proofs. Then we prove coherence

for our Boolean categories, by reducing it to a previously proved coherence

result of Chapter 12.

We end this chapter with comments on alternatives to our approach

in categorifying the proof theory of Boolean propositional logic. Besides

the approach through bicartesian closed categories, i.e. cartesian closed

categories with finite coproducts, which with natural assumptions about

negation collapses into preorder, there are alternatives with relations be-

tween finite ordinals being replaced by a more complex kind of relation on

the sum of the ordinals in the domain and codomain. We discuss problems

that arise with these alternatives.

We conclude that if our codification of the general proof theory of clas-

309



310 CHAPTER 14. CATEGORIES WITH NEGATION

sical propositional logic is acceptable, then this proof theory is simpler than

the general proof theory of intuitionistic propositional logic, codified in bi-

cartesian closed categories, or, equivalently, in a typed lambda calculus

with product and coproduct types. In particular, equality of derivations is

easily decidable for classical logic. The categorial structure of this classical

proof theory is, however, quite rich. It covers all the categorial structures

considered in this book, except the zero-mix lattice structure of Chapter

13, and extends them conservatively with respect to identity of proofs. It

comes close to the zero-mix lattice structure, through which it is related to

linear algebra.

§14.1. De Morgan Coherence

If L is one of the languages L∧,∨ and L∧,∨,⊤,⊥, then let L¬ be the language

obtained by assuming in the definition of L that we have in addition the

unary (that is, 1-ary) connective ¬ of negation. The language L¬p is, on

the other hand, defined like L save that the set of letters P is replaced by

the union of P and the set P¬ = {¬p | p ∈ P}.
The syntactical system C(I¬) is defined by taking first for its objects

the formulae of L¬∧,∨; next, for every A,B ∈ L¬∧,∨ we have the primitive

arrow terms

1A : A ⊢ A,
n→A : ¬¬A ⊢ A, n←A : A ⊢ ¬¬A,

∧
r→A,B : ¬(A ∧B) ⊢ ¬A ∨ ¬B,

∧
r←A,B : ¬A ∨ ¬B ⊢ ¬(A ∧B),

∨
r→A,B : ¬(A ∨B) ⊢ ¬A ∧ ¬B,

∨
r←A,B : ¬A ∧ ¬B ⊢ ¬(A ∨B),

and as the operations on arrow terms we have composition, ∧ and ∨. Let

the family n-r be the union of the families n→, n←,
∧
r→,

∧
r←,

∨
r→ and

∨
r←.

The equations E(I¬) are obtained by assuming the categorial equations,

the bifunctorial equations for ∧ and ∨, and the isomorphism equations

n←A ◦n→A = 1¬¬A, n→A ◦n←A = 1A,

∧
r←A,B

◦
∧
r→A,B = 1¬(A∧B),

∧
r→A,B

◦
∧
r←A,B = 1¬A∨¬B ,

∨
r←A,B

◦
∨
r→A,B = 1¬(A∨B),

∨
r→A,B

◦
∨
r←A,B = 1¬A∧¬B .
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The syntactical category I¬ is C(I¬)/E(I¬). Due to the presence of cat-

egorial and bifunctorial equations, we can easily prove the Development

Lemma (see §2.7) for I¬ (this presupposes a definition of β-term where β

can be one of the families n→, n←,
∧
r→, etc.).

An arrow term of C(I¬) is called →-directed when ← does not occur as

a superscript in it. The formulae of L¬∧,∨ that are also formulae of L¬p∧,∨
are said to be in normal form. We can then prove the Directedness Lemma

(see §4.3) for I¬. The proof of this lemma is obtained by relying on the

bifunctorial equations for ∧ and ∨. This lemma enables us to prove the

following.

I¬ Coherence. The category I¬ is a preorder.

The proof is analogous to the proof of Associative Coherence in §4.3.
Consider the following definitions in C(I¬):

¬1A =df 1¬A, ¬n→A =df n
←
¬A, ¬n←A =df n

→
¬A,

¬ ∧
r→A,B =df n←A∧B ◦ (n→A ∧ n→B ) ◦

∨
r→¬A,¬B ,

¬ ∧
r←A,B =df

∨
r←¬A,¬B ◦ (n←A ∧ n←B ) ◦n→A∧B ,

¬ ∨
r→A,B =df n←A∨B ◦ (n→A ∨ n→B ) ◦

∧
r→¬A,¬B ,

¬ ∨
r←A,B =df

∧
r←¬A,¬B ◦ (n←A ∨ n←B ) ◦n→A∨B ,

¬(g ◦ f) =df ¬f ◦¬g,

¬(f ∧ g) =df
∧
r←A,B

◦ (¬f ∨ ¬g) ◦
∧
r→D,E ,

¬(f ∨ g) =df
∨
r←A,B

◦ (¬f ∧ ¬g) ◦
∨
r→D,E .

It is easy to see that ¬ is a functor from I¬ to I¬op, i.e. a contravariant

functor from I¬ to I¬. It follows easily from I¬ Coherence that n→, n←,
ξ

r
→

and
ξ

r
←
, for ξ ∈ {∧,∨}, define natural transformations between functors

defined in terms of the identity functor, the contravariant functor ¬ and

the bifunctors ξ . Our official definition of logical category does not cover

I¬, but it is clear how we can extend this definition to cover also categories

like I¬.
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The syntactical category I¬⊤,⊥ is defined as I¬ save that its objects are

from L¬∧,∨,⊤,⊥, and we have in C(I¬⊤,⊥) the additional primitive arrow terms

∧
ρ→: ¬⊤ ⊢ ⊥, ∧

ρ←: ⊥ ⊢ ¬⊤,
∨
ρ→: ¬⊥ ⊢ ⊤, ∨

ρ←: ⊤ ⊢ ¬⊥,

and in E(I¬⊤,⊥) the additional isomorphism equations

∧
ρ← ◦

∧
ρ→ = 1¬⊤,

∧
ρ→ ◦

∧
ρ← = 1⊥,

∨
ρ← ◦

∨
ρ→ = 1¬⊥,

∨
ρ→ ◦

∨
ρ← = 1⊤.

We call ρ the union of the families
∧
ρ→,

∧
ρ←,

∨
ρ→ and

∨
ρ←.

By extending the proof of I¬ Coherence, we easily obtain the following.

I¬⊤,⊥ Coherence. The category I¬⊤,⊥ is a preorder.

In C(I¬⊤,⊥) we can introduce the definition of ¬f as in C(I¬) with the

following additions:

¬ ∧
ρ→ =df n

←
⊤ ◦

∨
ρ→, ¬ ∧

ρ← =df
∨
ρ← ◦n→⊤ ,

¬ ∨
ρ→ =df n

←
⊥ ◦

∧
ρ→, ¬ ∨

ρ← =df
∧
ρ← ◦n→⊥ ,

and obtain a functor from I¬⊤,⊥ to I¬op⊤,⊥.

Let K be a logical category in L. Then the syntactical category K¬,
whose objects are formulae of L¬, will be obtained from K as I¬ is obtained

from the variant of I in the language L∧,∨, or as I¬⊤,⊥ is obtained from the

variant of I in the language L∧,∨,⊤,⊥. For example, in the syntactical

system C(DL¬⊤,⊥), whose objects are formulae of L¬∧,∨,⊤,⊥, we will have

besides the primitive arrow terms in the families 1, b, c, w-k, δ-σ, m and

d, those in the families n-r and ρ, and the equations of E(DL¬⊤,⊥) will be

obtained by assuming the union of those of E(DL⊤,⊥) and E(I¬⊤,⊥).
We define a functor F from K¬ to K in the language L¬p; we call

the latter category K¬p. The category K¬p is exactly like the old logical

category K save that it is generated not by P but by P ∪ P¬ (see the end

of §2.7).
We define a functor F from K¬ to K¬p by the following graph-morphism

from C(K¬) to C(K¬p):
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Fp = p,

F ζ = ζ, for ζ ∈ {⊤,⊥},
F (A ξ B) = FA ξ FB, for ξ ∈ {∧,∨},

F¬p = ¬p,
F¬⊤ = ⊥, F¬⊥ = ⊤,
F¬¬A = FA,

F¬(A ∧B) = F¬A ∨ F¬B, F¬(A ∨B) = F¬A ∧ F¬B;

for f : A ⊢ B in the families n-r and ρ,

Ff = 1FA (here FA is equal to FB),

FαA1,...,An = αFA1,...,FAn ,

F (g ◦ f) = Fg ◦Ff ,

F (f ξ g) = Ff ξ Fg, for ξ ∈ {∧,∨}.

It is easy to check that F is indeed a functor; namely, f = g in K¬ implies

Ff = Fg in K¬p (cf. the penultimate paragraph of §2.4).
Next, we define a functor F¬ from K¬p to K¬ by the graph-morphism

from C(K¬p) to C(K¬) for which we have F¬A = A, and F¬f = f . It is

clear that F and F¬ are strict C(K)-functors.
We define by induction on the length of A ∈ L¬∧,∨ the arrow terms

iA : A ⊢ FA and i−1A : FA ⊢ A of C(I¬):

iA = i−1A = 1A, if A is p or ¬p,

iA1ξA2 = iA1 ξ iA2 , for ξ ∈ {∧,∨},

i¬¬B = iB ◦n→B ,

i¬(A1∧A2) = (i¬A1 ∨ i¬A2) ◦
∧
r→A1,A2

, i¬(A1∨A2) = (i¬A1 ∧ i¬A2) ◦
∨
r→A1,A2

,

i−1A1ξA2
= i−1A1

ξ i−1A2
, for ξ ∈ {∧,∨},

i−1¬¬B = n←B ◦ i−1B ,

i−1¬(A1∧A2)
=

∧
r←A1,A2

◦ (i−1¬A1
∨ i−1¬A2

), i−1¬(A1∨A2)
=

∨
r←A1,A2

◦ (i−1¬A1
∧ i−1¬A2

).

If A ∈ L¬∧,∨,⊤,⊥, then we define the arrow terms iA : A ⊢ FA and i−1A :

FA ⊢ A of C(I¬⊤,⊥) with the additional clauses:
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iζ = 1ζ , for ζ ∈ {⊤,⊥},

i¬⊤ =
∧
ρ→, i¬⊥ =

∨
ρ→,

i−1¬⊤ =
∧
ρ←, i−1¬⊥ =

∨
ρ←.

It is clear that we have i−1A
◦ iA = 1A and iA ◦ i−1A = 1FA in I¬ or I¬⊤,⊥. We

can prove the following.

Auxiliary Lemma. For every arrow term f : A ⊢ B of C(K¬) we have

f = i−1B
◦Ff ◦ iA in K¬.

Proof. We proceed by induction on the length of f .

If f : A ⊢ B is in the families n-r and ρ, we have that f = i−1B
◦Ff ◦ iA

by I¬ Coherence or I¬⊤,⊥ Coherence.

If f is αA1,...,Ak
:Mµ(A1, . . . , Ak) ⊢ Nν(A1, . . . , Ak), then iMµ(A1,...,Ak)

is Mµ(iA1 , . . . , iAk
) and i−1Nν(A1,...,Ak)

is Nν(i−1A1
, . . . , i−1Ak

); we obtain f =

i−1B
◦Ff ◦ iA by using (α nat).

If f is f2 ◦ f1, then we have

f2 ◦ f1 = i−1B
◦Ff2 ◦ iC ◦ i−1C

◦Ff1 ◦ iA, by the induction hypothesis,

= i−1B
◦F (f2 ◦ f1) ◦ iA.

If f is f1 ξ f2, for ξ ∈ {∧,∨}, then iA1ξA2 is iA1 ξ iA2 and i−1B1ξB2
is

i−1B1
ξ i−1B2

; we obtain f = i−1B
◦Ff ◦ iA by using bifunctorial equations. ⊣

K¬-K¬p-Equivalence. The categories K¬ and K¬p are equivalent via the

functors F and F¬.

Proof. We have FF¬A = A and FF¬f = f . That i is a natural iso-

morphism from the identity functor of K¬ to the composite functor F¬F

is shown by the Auxiliary Lemma. ⊣

Let the functor G from K¬ to Rel be defined by extending the definition

of the functor G from K to Rel with the clauses

G¬A = GA,

Gf = 1GA,

for every arrow term f : A ⊢ B in the n-r and ρ families. Here GA must

be equal to GB, and 1GA is the identity relation, i.e. identity function, on

GA. Then we can prove the following.
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De Morgan Coherence. If G from K to Rel is faithful, then G from K¬

to Rel is faithful.

Proof. Suppose that for the arrow terms f, g : A ⊢ B of C(K¬) we have

Gf = Gg. Then we have GFf = GFg, where F is the functor from K¬

to K¬p we have defined above. Since G from K to Rel is faithful, we have

that G from K¬p to Rel is faithful and hence Ff = Fg in K¬p. From

K¬-K¬p-Equivalence we conclude that f = g in K¬. ⊣

We can define the functor ¬ from K¬ to K¬op by extending the defini-

tions we have for I¬ and I¬⊤,⊥ with the following clauses, provided C(K¬)
has the required arrow terms on the right-hand side:

¬
∧
b→A,B,C =df

∧
r←A,B∧C ◦ (1¬A ∨

∧
r←B,C) ◦

∨
b←¬A,¬B,¬C ◦ (

∧
r→A,B ∨ 1¬C) ◦

∧
r→A∧B,C ,

¬
∧
b←A,B,C =df

∧
r←A∧B,C

◦ (
∧
r←A,B ∨ 1¬C) ◦

∨
b→¬A,¬B,¬C ◦ (1¬A ∨

∧
r→B,C) ◦

∧
r→A,B∧C ,

¬ ∧
cA,B =df

∧
r←A,B

◦
∨
c¬A,¬B ◦

∧
r→B,A,

¬ ∧
wA =df

∨
w¬A ◦

∧
r→A,A,

¬
∧
kiA,B =df

∧
r←A,B

◦
∨
ki¬A,¬B, for i ∈ {1, 2},

¬dLA,B,C =df
∧
r←A,B∨C ◦ (1¬A ∨

∨
r←B,C) ◦ dR¬A,¬B,¬C ◦ (

∧
r→A,B ∧ 1¬C) ◦

∨
r→A∧B,C ,

¬dRC,B,A =df
∧
r←C∨B,A

◦ (
∨
r←C,B ∨ 1¬A) ◦ dL¬C,¬B,¬A ◦ (1¬C ∧

∧
r→B,A) ◦

∨
r→C,B∧A,

¬mA,B =df
∧
r←A,B

◦m¬A,¬B ◦
∨
r→A,B ,

¬m−1A,B =df
∨
r←A,B

◦m−1¬A,¬B ◦
∧
r→A,B ,

¬(f ∪ g) =df ¬f ∪ ¬g,
¬0A,B =df 0¬B,¬A;

the clauses for ¬
∨
b→A,B,C and ¬

∨
b←A,B,C are obtained from the clauses for

¬
∧
b→A,B,C and ¬

∧
b←A,B,C respectively by interchanging ∧ and ∨;

¬ ∨
cA,B =df

∨
r←B,A

◦
∧
c¬A,¬B ◦

∨
r→A,B ,

¬ ∨
wA =df

∨
r←A,A

◦
∧
w¬A,

¬
∨
kiA,B =df

∧
ki¬A,¬B ◦

∨
r→A,B , for i ∈ {1, 2};
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¬
∧
δ→A =df

∧
r←A,⊤ ◦ (1¬A ∨

∧
ρ←) ◦

∨
δ←¬A,

¬
∧
δ←A =df

∨
δ→¬A ◦ (1¬A ∨

∧
ρ→) ◦

∧
r→A,⊤,

¬ ∧
σ→A =df

∧
r←⊤,A ◦ (

∧
ρ← ∨ 1¬A) ◦

∨
σ←¬A,

¬ ∧
σ←A =df

∨
σ→¬A ◦ (

∧
ρ→ ∨ 1¬A) ◦

∧
r→⊤,A;

the clauses for ¬
∨
δ→A , ¬

∨
δ←A , ¬ ∨

σ→A and ¬ ∨
σ←A are obtained from the last

four clauses by interchanging ∧ with ∨, and ⊤ with ⊥;

¬ ∧
κA =df

∨
κ¬A ◦

∧
ρ→, ¬ ∨

κA =df
∨
ρ→ ◦

∧
κ¬A.

The coherence of K¬ is a sufficient (though not a necessary) condition for

the correctness of these definitions. By the coherence of K¬, we also obtain

that n→, n←,
ξ

r
→

and
ξ

r
←

for ξ ∈ {∧,∨} define natural transformations

between functors defined in terms of the identity functor, the contravariant

functor ¬ and the bifunctor ξ .

The category DL¬ corresponds in the following sense to the system Efde

of tautological entailments of [1] (Section 15, and Section 18 by J.M. Dunn;

see also [6]): there is an arrow of type A ⊢ B in DL¬ iff A→ B is a theorem

of Efde. The algebraic models with respect to which Efde is complete are

called De Morgan lattices, distributive involution lattices or quasi-Boolean

algebras (see [1], Section 18, and references therein; see also [113], Section

III.3). Complementation in De Morgan lattices is not in general Boolean

complementation (see the next section).

§14.2. Boolean Coherence

The syntactical system C(B) is defined by taking first for its objects the

formulae of L¬∧,∨,⊤,⊥; next, the primitive arrow terms of C(B) are those of

C(ZIDL¬⊤,⊥), i.e. those in the families 1, b, c, w-k, δ-σ, m, d, 0 (whose

members are 0A : A ⊢ A), n-r and ρ, plus

ηA : ⊤ ⊢ ¬A ∨A,
εA : A ∧ ¬A ⊢ ⊥,

for every A in L¬∧,∨,⊤,⊥, and the operations on arrow terms are composition,

∧ and ∨. The equations of E(B) are obtained by assuming the union of those
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of E(ZIDL⊤,⊥), i.e. those of E(DL⊤,⊥) plus (0I), and those of E(I¬⊤,⊥). The
syntactical category B is C(B)/E(B). Here, B comes from Boolean.

We define 0A,B in B by f ◦0A, as we did in ZIDL⊤,⊥, and we can infer

that the following equation holds in B:

ηA = ηA ◦1⊤,

= ηA ◦0⊤, since 1⊤ =
∧
κ⊤ = 0⊤,⊤,

= 0⊤,¬A∨A.

We derive analogously εA = 0A∧¬A,⊥. Since ηA and εA are zero arrows, we

assume that GηA and GεA are empty relations.

The following equation holds in B:

(0ηε) 0A =
∨
σ→A ◦ (εA ∨ 1A) ◦ dA,¬A,A ◦ (1A ∧ ηA) ◦

∧
δ←A ,

since

εA = εA ◦0A∧¬A

= εA ◦ (0A ∧ 0¬A), by (0I ξ) of §12.5,

which with naturality and bifunctorial equations yields that the right-hand

side RHS of (0ηε) is equal to RHS ◦0A. The equation (0ηε) shows that we

need not take 0A as a primitive arrow term: we can take it as defined in

terms of ηA and εA. We could then conceive of B as obtained by extending

DL¬⊤,⊥ with the arrows ηA and εA and the equations (0I) for defined 0A.

The following equations too hold in B:

(η∧) ηB∧A = (
∧
r←B,A ∨ 1B∧A) ◦

∨
c¬B∨¬A,B∧A ◦

∨
e′B,A,¬B,¬A◦

◦ (
∨
cB,¬B ∧

∨
cA,¬A) ◦ (ηB ∧ ηA) ◦

∧
δ←⊤ ,

(η∨) ηB∨A = (
∨
r←B,A ∨ 1B∨A) ◦

∨
e′¬B,¬A,B,A

◦ (ηB ∧ ηA) ◦
∧
δ←⊤ ,

(ε∧) εA∧B =
∨
δ→⊥ ◦ (εA ∨ εB) ◦

∧
e′A,B,¬A,¬B ◦ (1A∧B ∧

∧
r→A,B),

(ε∨) εA∨B =
∨
δ→⊥ ◦ (εA ∨ εB) ◦ (

∧
c¬A,A ∨

∧
c¬B,B) ◦

∧
e′¬A,¬B,A,B

◦

◦
∧
cA∨B,¬A∧¬B ◦ (1A∨B ∧

∨
r→A,B),

(η⊤) η⊤ = (
∧
ρ← ∨ 1⊤) ◦

∨
σ←⊤ , (ε⊤) ε⊤=

∧
σ→⊥ ◦ (1⊤ ∧

∧
ρ→),

(η⊥) η⊥ = (
∨
ρ← ∨ 1⊥) ◦

∨
δ←⊤ , (ε⊥) ε⊥=

∧
δ→⊥ ◦ (1⊥ ∧

∨
ρ→).
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The syntactical system C(C) is defined by taking first for its objects

the formulae of L¬p∧,∨,⊤,⊥, namely L∧,∨,⊤,⊥ generated by P ∪P¬; next, the
primitive arrow terms of C(C) are those of C(ZIDL⊤,⊥), i.e. those in the

families 1, b, c, w-k, m, d, δ-σ and 0 (whose members are 0A : A ⊢ A) plus

ηp : ⊤ ⊢ ¬p ∨ p,
εp : p ∧ ¬p ⊢ ⊥,

for every p ∈ P, and the operations on arrow terms are composition, ∧
and ∨. As equations of E(C) we assume those of E(ZIDL⊤,⊥), i.e. those of

E(DL⊤,⊥) plus (0I). The syntactical category C is C(C)/E(C).

We define 0A,B in C by f ◦0A, as we did in ZIDL⊤,⊥ and B, and as in

B we infer ηp = 0⊤,¬p∨p, εp = 0p∧¬p,⊥ and (0ηε) with A replaced by p.

The category C¬ is obtained from C as I¬⊤,⊥ is obtained from I⊤,⊥;

namely, we have as objects the formulae of L¬∧,∨,⊤,⊥, we add to C the

arrows n-r and ρ, and we assume in addition the equations of E(I¬⊤,⊥).
The category C¬ is isomorphic to the category B. We define ηA and

εA in C¬ inductively with the help of (η ξ) and (ε ξ) for ξ ∈ {∧,∨}, and
(ηζ) and (εζ) for ζ ∈ {⊤,⊥}. Our purpose now is to show that the functor

G from C to Rel is faithful, and use this coherence result, together with

results analogous to K¬-K¬p-Equivalence and De Morgan Coherence, to

infer that G from B to Rel is faithful, i.e. that B is coherent.

Let A[⊤] be a formula of L¬p∧,∨,⊤,⊥ with a particular occurrence of ⊤,
and let A[B] be obtained from A[⊤] by replacing this particular occurrence

of ⊤ by the formula B of L¬p∧,∨,⊤,⊥. Then it is clear that there is an η-term

A[ηp] : A[⊤] ⊢ A[¬p ∨ p].
We define the arrow term

∧
gA[B]: A[⊤] ∧ B ⊢ A[B] of C(DL⊤,⊥) by

induction on the length of A[⊤]:

∧
gB =

∧
σ→B : ⊤ ∧B ⊢ B,

∧
gC∧A[B] = (1C ∧

∧
gA[B]) ◦

∧
b←C,A[⊤],B : (C ∧A[⊤]) ∧B ⊢ C ∧A[B],

∧
gA[B]∧C = (

∧
gA[B] ∧ 1C) ◦ (

∧
cB,A[⊤] ∧ 1C) ◦

∧
b→B,A[⊤],C ◦

∧
cA[⊤]∧C,B :

(A[⊤] ∧ C) ∧B ⊢ A[B] ∧ C,
∧
gC∨A[B] = (1C ∨

∧
gA[B]) ◦ dRC,A[⊤],B : (C ∨A[⊤]) ∧B ⊢ C ∨A[B],
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∧
gA[B]∨C = (

∧
gA[B] ∨ 1C) ◦ (

∧
cB,A[⊤] ∨ 1C) ◦ dLB,A[⊤],C ◦

∧
cA[⊤]∨C,B :

(A[⊤] ∨ C) ∧B ⊢ A[B] ∨ C.

Then we can prove that the following equations hold in C:

(gη) A[ηp] =
∧
gA[¬p∨p] ◦ (1A[⊤] ∧ 0¬p∨p) ◦ (1A[⊤] ∧ ηp) ◦

∧
δ←A[⊤] .

We proceed by induction on the length of A[⊤]. If A is ⊤, then

∧
σ→¬p∨p ◦ (1⊤ ∧ 0¬p∨p) ◦ (1⊤ ∧ ηp) ◦

∧
δ←⊤

= 0¬p∨p ◦ ηp, by (
∧
δ

∧
σ) and naturality equations,

= ηp, by (0I) and 0⊤ =
∧
κ⊤= 1⊤.

If A is C ∧D[⊤], then

(1C ∧
∧
gD[B]) ◦

∧
b←C,D[⊤],B ◦ (1C∧D[⊤] ∧ 0¬p∨p) ◦ (1C∧D[⊤] ∧ ηp) ◦

∧
δ←C∧D[⊤]

= (1C ∧
∧
gD[B]) ◦ (1C ∧ (1D[⊤] ∧ 0¬p∨p)) ◦ (1C ∧ (1D[⊤] ∧ ηp)) ◦

◦ (1C ∧
∧
δ←D[⊤]), by (

∧
b← nat), (

∧
b

∧
δ ) and isomorphisms,

= 1C ∧D[ηp], by the induction hypothesis.

We proceed analogously when A is D[⊤] ∧ C, C ∨D[⊤] and D[⊤] ∨ C,
by applying naturality equations and Distributive Dicartesian Coherence.

For A[⊥] a formula of L¬p∧,∨,⊤,⊥ with a particular occurrence of ⊥, and
A[B] obtained from A[⊥] by replacing this particular occurrence of ⊥ by

B, we have an ε-term A[εq] : A[q ∧ ¬q] ⊢ A[⊥].
We define the arrow term

∨
gA[B]: A[B] ⊢ A[⊥] ∨B of C(DL⊤,⊥) by

∨
gB =

∨
σ←B : B ⊢ ⊤ ∨B,

∨
gC∨A[B] =

∨
b→C,A[⊥],B ◦ (1C ∨

∨
gA[B]) : C ∨A[B] ⊢ (C ∨A[⊥]) ∨B,

∨
gA[B]∨C =

∨
cA[⊥]∨C,B ◦

∨
b←B,A[⊥],C ◦ (

∨
cB,A[⊥] ∨ 1C) ◦ (

∨
gA[B] ∨ 1C) :

A[B] ∨ C ⊢ (A[⊥] ∨ C) ∨B,

∨
gC∧A[B] = dLC,A[⊥],B ◦ (1C ∧

∨
gA[B]) : C ∧A[B] ⊢ (C ∧A[⊥]) ∨B,

∨
gA[B]∧C =

∨
cA[⊥]∧C,B ◦ dRB,A[⊥],C ◦ (

∨
cB,A[⊥] ∧ 1C) ◦ (

∨
gA[B] ∧ 1C) :

A[B] ∧ C ⊢ (A[⊥] ∧ C) ∨B.
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Then, in a dual manner, we can prove by induction on the length of

A[⊥] that the following equations, analogous to (gη), hold in C:

(gε) A[εq] =
∨
δ→A[⊥] ◦ (1A[⊥] ∨ εq) ◦ (1A[⊥] ∨ 0q∧¬q) ◦

∨
gA[q∧¬q] .

From (gη) and (gε), we easily infer with naturality and bifunctorial equa-

tions the following equations of C:

for f : B ⊢ A[⊤],

(gηf) A[ηp] ◦ f =
∧
gA[¬p∨p] ◦ (f ∧ 0¬p∨p) ◦ (1B ∧ ηp) ◦

∧
δ←B ,

for f : A[⊥] ⊢ C,

(gεf) f ◦A[εq] =
∨
δ→C ◦ (1C ∨ εq) ◦ (f ∨ 0q∧¬q) ◦

∨
gA[q∧¬q].

Note that in the relations G(A[ηp] ◦ f) and G(
∧
gA[¬p∨p] ◦ (f ∧0¬p∨p)) we

have the same sets of ordered pairs, and in the relations G(f ◦A[εq]) and

G((f ∨ 0q∧¬q) ◦
∨
gA[q∧¬q]) we also have the same sets of ordered pairs.

Suppose now that we have two arrow terms f1, f2 : B ⊢ C of C(C) such

that Gf1 = Gf2. Let p1, . . . , pn, with n ≥ 0, be the set of all occurrences of

letters that are subscripts of subterms of f1 and f2 of the form ηpi , where

i ∈ {1, . . . , n}, and let q1, . . . , qm, with m ≥ 0, be the set of all occurrences

of letters that are subscripts of subterms of f1 and f2 of the form εqj ,

where j ∈ {1, . . . ,m} (the same letter may be repeated in p1, . . . , pn, or

q1, . . . , qm).

We introduce the following abbreviations by induction:

η0 = 1B , ε0 = 1C ,

ηk+1 = ηk ∧ ηpk+1
, εk+1 = εk ∨ εqk+1

,

∧
0 0 = 1B ,

∨
0 0 = 1C ,

∧
0 k+1 =

∧
0 k ∧ 0¬pk+1∨pk+1

,
∨
0 k+1 =

∨
0 k ∨ 0qk+1∧¬qk+1

,

∧
B 0
⊤ = B,

∨
C 0
⊥ = C,

∧
B k+1
⊤ =

∧
B k
⊤ ∧⊤,

∨
C k+1
⊥ =

∨
C k
⊥ ∨⊥,

∧
δ0 = 1B ,

∨
δ0 = 1C ,

∧
δk+1 =

∧
δ←∧
B k

⊤

◦
∧
δk,

∨
δk+1 =

∨
δk ◦

∨
δ→∨
C k

⊥

,



§14.2. Boolean Coherence 321

∧
B 0

p = B,
∨
C 0

q = C,
∧
B k+1

p =
∧
B k

p ∧(¬pk+1 ∨ pk+1),
∨
C k+1

q =
∨
C k

q ∨(qk+1 ∧ ¬qk+1),

∧
h0f = 1B ,

∨
h0f = 1C ,

∧
hk+1
f =


∧
hkf ∧ 1¬pk+1∨pk+1

if ηpk+1
is in f

∧
hkf ◦

∧
k1∧
B k

p ,¬pk+1∨pk+1

if ηpk+1
is not in f ,

∨
hk+1
f =


∨
hkf ∨ 1qk+1∨¬qk+1

if εqk+1
is in f

∨
k1∨
C k

q ,qk+1∧¬qk+1

◦
∨
hkf if εqk+1

is not in f .

Then, by relying on (gηf) and (gεf), for i ∈ {1, 2} we obtain in C the

equations

fi =
∨
δm ◦ εm ◦

∨
0m ◦

∨
hmfi ◦ f ′i ◦

∧
hnfi ◦

∧
0n ◦ ηn ◦

∧
δn

where f ′i is an arrow term of C(ZIDL¬p⊤,⊥), and for f ′′i being

∨
0m ◦

∨
hmfi ◦ f ′i ◦

∧
hnfi ◦

∧
0n

we have Gf ′′1 = Gf ′′2 . Since f
′′
1 and f ′′2 are also arrow terms of C(ZIDL¬p⊤,⊥),

by Zero-Identity Distributive Dicartesian Coherence of §12.5 we conclude

that f ′′1 = f ′′2 in ZIDL¬p⊤,⊥, and hence f1 = f2 in C. This establishes that

the functor G from C to Rel is faithful.

We prove as in the preceding section K¬-K¬p Equivalence for K¬p being

C and K¬ being C¬. (We stipulate that Fβp = βp and F¬βp = βp for

β ∈ {η, ε}.) Then, as in the proof of De Morgan Coherence, we use the

faithfulness of G from C to Rel and K¬-K¬p Equivalence to establish that

G from C¬ to Rel is faithful. The isomorphism of the categories C¬ and

B then yields the following.

Boolean Coherence. The functor G from B to Rel is faithful.

We can define the functor ¬ from B to Bop by extending the definitions

in the preceding section with
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¬ηA =df
∧
ρ← ◦ εA ◦ (n→A ∧ 1¬A) ◦

∨
r→¬A,A,

¬εA =df
∧
r←A,¬A ◦ (1¬A ∨ n←A ) ◦ ηA ◦

∨
ρ→ .

The transformations η and ε are dinatural transformations (see [100],

Section IX.4), which means that for f : A ⊢ B we have

(1¬A ∨ f) ◦ ηA = (¬f ∨ 1B) ◦ ηB,

εA ◦ (1A ∧ ¬f) = εB ◦ (f ∧ 1¬B).

These equations are satisfied trivially in B, because ηA, ηB , εA and εB are

zero arrows.

We leave open the question of maximality for the category B. In the

light of the results of §9.7, it seems natural to conjecture that this category is

not maximal. Note, however, that the category ZIDL, which is isomorphic

to a subcategory of B (see Chart 3), and covers the conjunction-disjunction

fragment of classical propositional logic, is maximal (see §12.5). For the

conjunction-disjunction fragment of classical propositional logic with the

constants ⊤ and ⊥, we have the category ZIDL⊤,⊥, which is also isomor-

phic to a subcategory of B, and is maximal in the relative sense in which

L⊤,⊥ is maximal (see §9.7 and §12.5). The technique of §9.7 suggests how

to prove some sort of relative maximality also for B.

§14.3. Boolean categories

A distributive dicartesian category A for which we have a functor ¬ from

A to Aop, natural isomorphisms like those in the families n-r and ρ, and

dinatural transformations ε and η will be called a Boolean category.

A Boolean category is called a zero-identity Boolean category when for

every 0a defined by (0ηε) of the preceding section, where A is replaced by

the object a, we have for every f, g : a ⊢ b the equation (0I), namely f ◦0a =

0b ◦ g. The category B is the zero-identity Boolean category generated by

P.
The connection of Boolean categories with Boolean algebras is the fol-

lowing. We have an arrow of type A ⊢ B in B iff A→ B is a tautology of

propositional logic. This is how B is connected to classical propositional
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logic. A partially ordered Boolean category, which must be a zero-identity

Boolean category, is a Boolean algebra (in which top and bottom are not

necessarily distinct).

Note that the equations of B cover cut elimination—i.e. they enable us

to prove a cut-elimination theorem, such as we had in §11.2. They cover

first the cut elimination of ZIDL⊤,⊥. As far as negation is concerned, the

key equation is (0ηε), whose right-hand side corresponds to the cut

f : (∅,∧) ⊢ ¬A∨A g : A∧¬A ⊢ (∅,∨)

cut (∅,∧),(∅,∨)(f, g) : A ⊢ A

With (0ηε), we have that cut (∅,∧),(∅,∨)(f, g) is not equal to 1A : A ⊢ A, but
to 0A : A ⊢ A.

To prove a cut-elimination theorem, we can rely on Gentzen terms like

those in §11.1, to which we would add dual primitive Gentzen terms and

Gentzen operations where ¬A ∧ ¬B, ¬A ∨ ¬B, ⊤ and ⊥ are replaced re-

spectively by ¬(A ∨ B), ¬(A ∧ B), ¬⊥ and ¬⊤. For example, we would

have the operation

f : Γ∧¬A∧¬B ⊢ ∆

¬ ∨L f =dn f ◦ (Γ∧1e
A∧B) ◦ (Γ∧∨

r→′′A,B) : Γ
∧¬(A ∨B) ⊢ ∆

Our strictification result should be adjusted to support such operations. As

additional primitive Gentzen terms, we would have 1′′¬p : ¬p ⊢ ¬p, 0′′p : p ⊢ p,
0′′¬p : ¬p ⊢ ¬p, η′′p : (∅,∧) ⊢ ¬p∨p and ε′′p : p

∧¬p ⊢ (∅,∨), and we would have

the additional Gentzen operations

f : Γ∧A ⊢ ∆

¬¬Lf =dn f ◦ (Γ∧n→′′A) : Γ
∧¬¬A ⊢ ∆

f : Γ ⊢ A∨∆

¬¬Rf =dn (n←′′A
∨∆) ◦ f : Γ ⊢ ¬¬A∨∆

A similar idea underlies a sequent system in [1] (Section 17) for tautological

entailments, which correspond to De Morgan lattices.

The usual introduction and elimination rules for negation:
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f : Γ ⊢ A∨∆

¬Lf : Γ∧¬A ⊢ ∆

f : Γ∧A ⊢ ∆

¬Rf : Γ ⊢ ¬A∨∆

would be admissible in the cut-free system; i.e., we can find cut-free Gentzen

terms that define ¬Lf and ¬Rf . This does not mean that the operations

¬L and ¬R are defined in terms of the postulated Gentzen operations; in

such a case, we would speak of derivable rules. The arrow terms ¬Lf and

¬Rf involve zero arrow terms.

Zero-identity arrows make equal in B many arrow terms of the same

type involving negation. In particular, all arrow terms of the type ⊤ ⊢ A
where A is a tautology are equal. However, B is far from being a preorder.

There is an argument from which it is usually concluded that it is hope-

less to try to find a categorification of Boolean algebras. All plausible

candidates seem to be categories that are preorders. To present this ar-

gument, we rely on notions defined in [90]. The argument is based on the

fact that in every bicartesian closed category (i.e. cartesian closed category

with finite coproducts), for every object a there is at most one arrow of

type a ⊢ ⊥, for ⊥ an initial object. In [90] the discovery of that fact is

credited to Joyal (p. 116), and the fact is established (on p. 67, Proposition

8.3) by relying on a proposition of Freyd (see [58], p. 7, Proposition 1.12)

to the effect that if in a cartesian closed category the hom-set Hom(a,⊥)
is not empty, then a ∼= ⊥; that is, a is isomorphic to ⊥. Here is a simpler

proof of the same fact (from [40], Section 5).

Proposition 1. In every cartesian closed category with an initial object

⊥ we have that Hom(a,⊥) is either empty or a singleton.

Proof. In every cartesian closed category with ⊥ we have
∧
k1⊥,⊥ =

∧
k2⊥,⊥:

⊥ ∧ ⊥ ⊢ ⊥, because Hom(⊥ ∧ ⊥,⊥) ∼= Hom(⊥,⊥⊥). Then for f, g : a ⊢ ⊥
we have

∧
k1⊥,⊥ ◦ ⟨f, g⟩ =

∧
k2⊥,⊥ ◦ ⟨f, g⟩, and so f = g. ⊣

In [90] (p. 67) it is concluded from Proposition 1 that if in a bicartesian

closed category for every object a we have a ∼= ¬¬a, where the negation ¬b
is ⊥b (which corresponds to b→ ⊥), then this category is a preorder.

If the requirement a ∼= ¬¬a is deemed too strong, here are other simi-
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lar propositions (taken over from [40], Section 5), in which preordering is

inferred from other natural requirements.

Proposition 2. Every cartesian closed category with an initial object ⊥ in

which we have a natural transformation whose members are n→a : ¬¬a ⊢ a
is a preorder.

Proof. Take f, g : ¬¬a ⊢ b, and take the canonical arrow n←a : a ⊢ ¬¬a,
which we have by the cartesian closed structure of our category. Then we

have ¬¬(f ◦n←a ) = ¬¬(g ◦n←a ) by Proposition 1, and from

n→b ◦¬¬(f ◦n←a ) = n→b ◦¬¬(g ◦n←a ),

by the naturality of n→, we infer

f ◦n←a ◦n→a = g ◦n←a ◦n→a .

Since n←a ◦n→a = 1¬¬a by Proposition 1, we have f = g.

Then, for ⊤ terminal, we have

Hom(c, d) ∼= Hom(⊤, dc)
∼= Hom(¬¬⊤, dc),

since ⊤ ∼= ¬¬⊤, and Hom(¬¬⊤, dc) is at most a singleton, as we have

shown above. ⊣

Proposition 3. Every bicartesian closed category in which we have a

dinatural transformation whose members are ηa : ⊤ ⊢ ¬a ∨ a is a preorder.

Proof. Take f, g : ⊤ ⊢ a. Then ¬f = ¬g by Proposition 1, and from

(¬f ∨ 1a) ◦ ηa = (¬g ∨ 1a) ◦ ηa,

by the dinaturality of η we infer

(1¬⊤ ∨ f) ◦ η⊤ = (1¬⊤ ∨ g) ◦ η⊤.

Since η⊤ : ⊤ ⊢ ¬⊤ ∨ ⊤ is an isomorphism, we obtain 1¬⊤ ∨ f = 1¬⊤ ∨ g,
from which f = g follows with the help of

∨
σ←. ⊣
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(For an argument along similar lines, based on De Morgan isomorphisms,

see [124].)

With Boolean categories, and with B in particular, we have, however,

that A is isomorphic to ¬¬A, and we have also that n→ is a natural trans-

formation and η a dinatural transformation, without falling into preorder.

We believe that our notion of Boolean category, which does not imply pre-

order, gives a reasonable categorification of the concept of Boolean algebra.

Moreover, this notion delivers cut elimination, as we have indicated above.

That ηA and εA ended up by being zero arrows in B is dictated by

Rel, since we have no other choice in Rel for GηA and GεA save the empty

relation. With another category, replacing Rel for coherence results, we

need not take ηA and εA as zero arrows.

A category that could replace Rel is the category whose objects are

finite ordinals and whose arrows are split equivalence relations (see [50] and

[51]). These are equivalence relations defined on the sum of the ordinals in

the source and target. For that category, Gηp and Gεp would correspond

to the diagrams

�� ��
¬p ∨ p ⊥

⊤ p ∧¬p
Gηp Gεp

In that context, the left-hand side 0A of (0ηε) would be replaced by 1A,

and that equation would become similar to a triangular equation of adjunc-

tion (see [100], Section IV.1). But in this direction there is a heavy price

to pay. The transformations in the families w-k, δ-σ and κ cannot remain

natural if we want coherence. (Lack of naturality for these transformations

jeopardizes cut elimination.) For example, for the following instance of

(
∧
w nat):

∧
w¬p∨p ◦ ηp = (ηp ∧ ηp) ◦

∧
w⊤

we would not have that G(
∧
w¬p∨p ◦ ηp) is equal to G((ηp ∧ η¬p) ◦

∧
w⊤), as

can be seen from the diagrams
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��
�� ��

�
�
�
�
Q
QQ

Q
QQ

(¬p ∨ p) ∧ (¬p ∨ p)

¬p ∨ p

⊤

G
∧
w¬p∨p

Gηp

(¬p ∨ p) ∧ (¬p ∨ p)

⊤ ∧ ⊤

⊤

G(ηp ∧ ηp)

G
∧
w⊤

One may perhaps envisage a categorification of Boolean algebras where

these transformations are not always natural, as they are in our Boolean

categories. (In [67], Section 5.4, rejecting bifunctoriality is envisaged for the

same purpose; we have no reason to reject bifunctoriality here.) Problems

would, however, not cease once naturality is rejected for w-k, δ-σ and κ in

the presence of negation.

The question is should G
∧
wp be the relation in the left one or in the

right one of the following two diagrams:

��
�
�
A
A

�
�
A
A

p ∧ p p ∧ p

p p

The second option, induced by dealing with equivalence relations, or by

connecting all letters that must remain the same in generalizing proofs,

would lead to abolishing the naturality of
∧
w even in the absence of negation.

For example, in the following instance of (
∧
w nat):

∧
wp ◦

∨
κp = (

∨
κp ∧

∨
κp) ◦

∧
w⊥

we do not have that G(
∧
wp ◦

∨
κp) is equal to G((

∨
κp ∧

∨
κp) ◦

∧
w⊥):

��
�
�
A
A

p ∧ p

p

⊥

p ∧ p

⊥ ∧ ⊥

⊥

G
∧
wp

G
∨
κp G

∧
w⊥

G(
∨
κp ∧

∨
κp)

We obtain similarly that
∨
κ cannot be natural.

If, on the other hand, we keep for G
∧
wp the relation in the left diagram—

the same we had in Rel—there would still be problems. We foresee problems

for cut elimination based on equality of arrow terms, such as we understood
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it in this book. This would, however, involve dealing with matters outside

of the scope of the book.

Although in the introduction we have motivated the category Rel by

the Generality Conjecture, it should be stressed that this category does not

always correspond to the intuitive idea of generality. This is so even if we do

not consider the split equivalence relations of [50] and [51], but stay within

Rel. For arrows of Rel capturing generality it is natural to assume that

they are difunctional in the sense of [114] (Section 7), a binary relation R

being difunctional when R ◦R−1 ◦R ⊆ R (in other words, if xRz, yRz and

yRu, then xRu). It is easy to see that the image under G of an arrow of DL

is not necessarily difunctional. For example, G(mp,p ∪ (
∨
k1p,p ◦

∧
k2p,p)) is not

a difunctional relation. The claim made in [40] (Section 4) that the image

under G of any arrow of L is difunctional is not correct. A counterexample

is provided by G⟨[
∧
k1p,p,1p], [

∧
k2p,p,1p]⟩, which is not difunctional.

The category Rel captures, however, the intuitive idea of generality for

all categories in Chart 1 except for L and the three categories above L. It

captures this idea for the category MDS, too, and for all categories below

MDS in Chart 2.

§14.4. Concluding remarks

Our coherence results show that a number of logical categories that we have

investigated here are isomorphic to subcategories of the Boolean category

B, and B is isomorphic to a subcategory of ZML¬⊤,⊥. We record all these

results about subcategories in Charts 1-3. Such results about subcategories

are sometimes taken for granted, and, indeed, they are not surprising, but

it is not trivial to establish them. One means of proving them is via coher-

ence, which, as we have seen, is often established with considerable effort.

(Another means can be via maximality.)

In general, we have the following situation. Suppose a syntactical system

S ′ is a subsystem of a syntactical system S. Suppose also that we have the

syntactical categories S ′/E ′ and S/E such that the set of equations E ′ is
a subset of E , the functor G from S ′/E ′ to Rel is faithful, and there is a

functor from S/E to Rel that extends G. Then S ′/E ′ is isomorphic to a

subcategory of S/E , with the isomorphism being identity on objects.
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To show that, it is enough to show that the identity maps on the objects

and arrow terms of S ′ induce a functor from S ′/E ′ to S/E that is inclusion

on objects and one-one on arrows (see the penultimate paragraph of §2.4).
This amounts to showing that for f and g arrow terms of S ′ of the same

type we have f = g in S ′/E ′ iff f = g in S/E . It is clear that f = g in

S ′/E ′ implies f = g in S/E , since E ′ is included in E . For the converse,

from f = g in S/E we infer Gf = Gg, and then, by the faithfulness of G

assumed above, we obtain that f = g in S ′/E ′ (cf. the end of §4.3). Note

that S ′/E ′ is only isomorphic to a subcategory of S/E , and is not actually

a subcategory of S/E , because an arrow term f of S ′ stands in S ′/E ′ for an
equivalence class of arrow terms (this is an arrow of S ′/E ′) that is a subset,

maybe proper, of the equivalence class for which f stands in S/E (see §2.3).
Note that if for S ′ a subsystem of S and E ′ a subset of E we have that

S ′/E ′ is a preorder, then we can ascertain that S ′/E ′ is isomorphic to a

subcategory of S/E without appealing to the functor G and Rel. We have

such a situation with many of our categories where coherence amounts to

preorder, but we also have it where preorder does not amount to coherence,

as with the categories S′ and
∧
S′ of §6.5.

There are coherence results with respect to Rel, related to the coherence

results of this book, about categories that have arrows of the w kind, but

not those of the k kind, and vice versa, about categories that have arrows

of the k kind, but not those of the w kind. These categories are tied to

substructural logics: the former to relevant logic, and the latter to affine

logic. These coherences are proved in [108] for logical categories in the

language L∧,⊤ in between
∧
S⊤ and

∧
L⊤.

Speaking of categories tied to relevant logic, there is in the neighbour-

hood a sort of category interesting for strictification. If to the relevant

natural logical category in L∧, which is like
∧
L save that it lacks the natural

transformations
∧
ki, we add the natural isomorphism

∧
w−1, whose members

are
∧
w−1A : A ∧ A ⊢ A, and whose inverse is

∧
w, then we obtain a groupoid

that is a preorder. (The logical principle standing behind
∧
w−1 is called

mingle in relevant logic; see [1], Section 8.15.) If this groupoid, which is

a preorder, happens to be the category G involved in the strictification of

some category, the equivalence classes introduced by strictification will cor-

respond to finite nonempty sets. When G is
∧
S plus

∧
cA,A= 1A∧A, then we
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have multisets instead of sets (cf. §7.7), and with
∧
A we have sequences (see

§4.5).
We need not, however, assume that

∧
w−1 is an isomorphism. We can keep

just
∧
w−1A

◦
∧
wA= 1A, reject

∧
wA ◦

∧
w−1A = 1A∧A, and have only equations that

will yield coherence with respect to Rel with the assumption that G
∧
w−1A is

equal to G(
∧
k1A,A ∪

∧
k2A,A). Defining

∧
w−1A by

∧
k1A,A ∪

∧
k2A,A we have all these

equations in DL, and hence also in B. (Another possibility is to define
∧
w−1A

as just
∧
k1A,A, or just

∧
k2A,A.)

If we are right that B provides a reasonable notion of identity of proofs

in classical propositional logic, and if bicartesian closed categories provide

the notion of identity of proofs in intuitionistic propositional logic, we can

conclude that the general proof theory of the former logic is simpler than

that of the latter. Equality of derivations in classical propositional logic,

i.e. equality of arrow terms in B, would be decided via Rel, in an elementary

way. It was assumed before that classical general proof theory should be

simpler, because it was assumed that all derivations with the same premise

and conclusion are equal in classical logic. In other words, it was assumed

that for a given premise and conclusion we cannot have more than one proof.

We do not agree with that, and though we provide withB a relatively simple

codification of that proof theory, it is not that simple.

It is true that all theorems, i.e. all propositions proved without hypothe-

ses, will have zero proofs, which is not the case in the standard formulations

of intuitionistic general proof theory. If we are right, with the theorems of

classical logic we do not find a record of the deductive metatheory. But

this metatheory of proofs from hypotheses exists, and it is not trivial. Our

charts (see Charts 1-3) give an idea of the number of important mathe-

matical structures that enter into the notion of Boolean category. We can

also note in Chart 3 how with B we have come close to ZML¬⊤,⊥, which is

related to linear algebra.



Problems Left Open

1) How to axiomatize the equations E such that C(DA⊤,⊥)/E is a pre-

order (see §7.9)?

2) Let C(DS⊤,⊥) be like C(DA⊤,⊥) with the transformation c added.

How to axiomatize the equations E such that C(DS⊤,⊥)/E is coherent

with respect to Rel (see §7.9)?

3) How to axiomatize equations for mix-bimonoidal categories, symmet-

ric or not symmetric, dissociative or not dissociative, for which one

could prove coherence with respect to Rel (see Chapter 8)?

4) How to axiomatize the equations E such that C(L⊤,⊥)/E is coher-

ent with respect to Rel (see §9.6, and the revised version of [47]—in

particular the end)?

5) For K being ZIL or ZIL⊤,⊥, how to axiomatize the equations E such

that C(K)/E is coherent with respect to Rel (see §12.5)?

6) Can one prove coherence with respect to Rel forML, ML⊤,⊥, ZIML

and ZIML⊤,⊥ (see §§10.2-3 and §12.5)? If not, what extended ax-

iomatization delivers coherence?

7) For K being ML, ML⊤,⊥, DL or DL⊤,⊥, prove that one could prop-

erly extend E(K) without falling into preorder (see §10.3 and §11.5).
Classify the equations that give such extensions.

8) Can one derive the equations (m
∧
e) and (m

∨
e) from the remaining

axioms of E(DL) (see §11.1)?

9) Find concrete examples, distinct from DL, DL⊤,⊥ and B, of distribu-

tive lattice, distributive dicartesian and Boolean categories in which

∧ and ∨ are not isomorphic (see Chapters 11 and 14).

10) Consider the maximality question for the category B (see the end of

§14.2).
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List of Equations

We list here the equations assumed as axioms for the logical categories
in our book. Besides that, we list prominent equations and definitions
that were used in derivations or alternative axiomatizations. We mention
in parentheses the sections where the equations were first introduced. A
number of equations for ∨ were not stated explicitly in the main text, but
appear here for the first time. We put the equations for ∨ immediately
below the dual equations for ∧. Otherwise, the list follows the order in
which the equations appear in the book.

Categorial equations:

(cat 1) f ◦1a = 1b ◦ f = f : a ⊢ b (§2.2)

(cat 2) h ◦ (g ◦ f) = (h ◦ g) ◦ f (§2.2)

Bifunctorial equations:

(∧1) 1A ∧ 1B = 1A∧B (§2.7)

(∨1) 1A ∨ 1B = 1A∨B (§2.7)

(∧2) (g1 ◦ f1) ∧ (g2 ◦ f2) = (g1 ∧ g2) ◦ (f1 ∧ f2) (§2.7)

(∨2) (g1 ◦ f1) ∨ (g2 ◦ f2) = (g1 ∨ g2) ◦ (f1 ∨ f2) (§2.7)

Naturality equations (for f : A ⊢ D, g : B ⊢ E and h : C ⊢ F ):

(
∧
b→ nat) ((f ∧ g) ∧ h) ◦

∧
b→A,B,C =

∧
b→D,E,F

◦ (f ∧ (g ∧ h)) (§2.7)

(
∨
b→ nat) ((f ∨ g) ∨ h) ◦

∨
b→A,B,C =

∨
b→D,E,F

◦ (f ∨ (g ∨ h)) (§2.7)

(
∧
b← nat) (f ∧ (g ∧ h)) ◦

∧
b←A,B,C =

∧
b←D,E,F

◦ ((f ∧ g) ∧ h) (§2.7)

(
∨
b← nat) (f ∨ (g ∨ h)) ◦

∨
b←A,B,C =

∨
b←D,E,F

◦ ((f ∨ g) ∨ h) (§2.7)

(
∧
δ→ nat) f ◦

∧
δ→A =

∧
δ→D ◦ (f ∧ 1⊤) (§2.7)

(
∨
δ→ nat) f ◦

∨
δ→A =

∨
δ→D ◦ (f ∨ 1⊥) (§2.7)

(
∧
δ← nat) (f ∧ 1⊤) ◦

∧
δ←A =

∧
δ←D ◦ f (§2.7)

(
∨
δ← nat) (f ∨ 1⊥) ◦

∨
δ←A =

∨
δ←D ◦ f (§2.7)

332
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(
∧
σ→ nat) f ◦

∧
σ→A =

∧
σ→D ◦ (1⊤ ∧ f) (§2.7)

(
∨
σ→ nat) f ◦

∨
σ→A =

∨
σ→D ◦ (1⊥ ∨ f) (§2.7)

(
∧
σ← nat) (1⊤ ∧ f) ◦

∧
σ←A =

∧
σ←D ◦ f (§2.7)

(
∨
σ← nat) (1⊥ ∨ f) ◦

∨
σ←A =

∨
σ←D ◦ f (§2.7)

(
∧
c nat) (g ∧ f) ◦

∧
cA,B =

∧
cD,E ◦ (f ∧ g) (§2.7)

(
∨
c nat) (g ∨ f) ◦

∨
cB,A =

∨
cE,D ◦ (f ∨ g) (§2.7)

(
∧
w nat) (f ∧ f) ◦

∧
wA =

∧
wD ◦ f (§2.7)

(
∨
w nat) f ◦

∨
wA =

∨
wD ◦ (f ∨ f) (§2.7)

(
∧
k1 nat) f ◦

∧
k1A,B =

∧
k1D,E

◦ (f ∧ g) (§2.7)

(
∨
k1 nat) (g ∨ f) ◦

∨
k1B,A =

∨
k1E,D

◦ g (§2.7)

(
∧
k2 nat) g ◦

∧
k2A,B =

∧
k2D,E

◦ (f ∧ g) (§2.7)

(
∨
k2 nat) (g ∨ f) ◦

∨
k2B,A =

∨
k2E,D

◦ f (§2.7)

(
∧
κ nat) 1⊤ ◦

∧
κA =

∧
κD ◦ f (§2.7)

(
∨
κ nat) f ◦

∨
κA =

∨
κD ◦1⊥ (§2.7)

(dL nat) ((f ∧ g) ∨ h) ◦ dLA,B,C = dLD,E,F
◦ (f ∧ (g ∨ h)) (§2.7)

(dR nat) (h ∨ (g ∧ f)) ◦ dRC,B,A = dRF,E,D
◦ ((h ∨ g) ∧ f) (§2.7)

(m nat) (f ∨ g) ◦mA,B = mD,E ◦ (f ∧ g) (§2.7)

(m−1 nat) (f ∧ g) ◦m−1A,B = m−1D,E
◦ (f ∨ g)

Specific and other equations:

(
∧
b 5)

∧
b→A∧B,C,D

◦
∧
b→A,B,C∧D = (

∧
b→A,B,C ∧ 1D) ◦

∧
b→A,B∧C,D

◦ (1A ∧
∧
b→B,C,D)

(§4.2)
(
∨
b 5)

∨
b→A∨B,C,D

◦
∨
b→A,B,C∨D = (

∨
b→A,B,C ∨ 1D) ◦

∨
b→A,B∨C,D

◦ (1A ∨
∨
b→B,C,D)

(
∧
b

∧
b)

∧
b←A,B,C

◦
∧
b→A,B,C = 1A∧(B∧C),

∧
b→A,B,C

◦
∧
b←A,B,C = 1(A∧B)∧C (§4.3)

(
∨
b

∨
b)

∨
b←A,B,C

◦
∨
b→A,B,C = 1A∨(B∨C),

∨
b→A,B,C

◦
∨
b←A,B,C = 1(A∨B)∨C

(
∧
δ

∧
δ )

∧
δ←A ◦

∧
δ→A = 1A∧⊤,

∧
δ→A ◦

∧
δ←A = 1A (§4.6)

(
∨
δ

∨
δ )

∨
δ←A ◦

∨
δ→A = 1A∨⊥,

∨
δ→A ◦

∨
δ←A = 1A
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(
∧
σ

∧
σ)

∧
σ←A ◦

∧
σ→A = 1⊤∧A,

∧
σ→A ◦

∧
σ←A = 1A (§4.6)

(
∨
σ

∨
σ)

∨
σ←A ◦

∨
σ→A = 1⊥∨A,

∨
σ→A ◦

∨
σ←A = 1A

(
∧
b

∧
δ

∧
σ)

∧
b→A,⊤,C = (

∧
δ←A ∧ 1C) ◦ (1A ∧

∧
σ→C ) (§4.6)

(
∨
b

∨
δ

∨
σ)

∨
b→A,⊥,C = (

∨
δ←A ∨ 1C) ◦ (1A ∨

∨
σ→C )

(
∧
b

∧
δ )

∧
b→A,B,⊤ =

∧
δ←A∧B ◦ (1A ∧

∧
δ→B ) (§4.6)

(
∨
b

∨
δ )

∨
b→A,B,⊥ =

∨
δ←A∨B ◦ (1A ∨

∨
δ→B )

(
∧
b

∧
σ)

∧
b→⊤,B,C = (

∧
σ←B ∧ 1C) ◦

∧
σ→B∧C (§4.6)

(
∨
b

∨
σ)

∨
b→⊥,B,C = (

∨
σ←B ∨ 1C) ◦

∨
σ→B∨C

(
∧
δ

∧
σ)

∧
δ→⊤ =

∧
σ→⊤ (§4.6)

(
∨
δ

∨
σ)

∨
δ→⊥ =

∨
σ→⊥

(
∧
c

∧
c)

∧
cB,A ◦

∧
cA,B = 1A∧B (§5.1)

(
∨
c

∨
c)

∨
cA,B ◦

∨
cB,A = 1A∨B

(
∧
b

∧
c)

∧
cA,B∧C =

∧
b→B,C,A

◦ (1B ∧
∧
cA,C) ◦

∧
b←B,A,C

◦ (
∧
cA,B ∧ 1C) ◦

∧
b→A,B,C

(§5.1)
(
∨
b

∨
c)

∨
cB∨C,A =

∨
b→B,C,A

◦ (1B ∨
∨
cC,A) ◦

∨
b←B,A,C

◦ (
∨
cB,A ∨ 1C) ◦

∨
b→A,B,C

(
∧
c

∧
δ

∧
σ)

∧
cA,⊤ =

∧
σ←A ◦

∧
δ→A (§5.3)

(
∨
c

∨
δ

∨
σ)

∨
c⊥,A =

∨
σ←A ◦

∨
δ→A

(
∧
c⊥) ∧

cC,C = 1C∧C , for letterless C (§6.4)

(
∨
c⊤) ∨

cC,C = 1C∨C , for letterless C (§6.4)

(
∧
c 1)

∧
cA,A = 1A∧A (§6.5)

(
∨
c 1)

∨
cA,A = 1A∨A (§6.5)

(dL∧) dLA∧B,C,D = (
∧
b→A,B,C ∨ 1D) ◦ dLA,B∧C,D

◦ (1A ∧ dLB,C,D) ◦
∧
b←A,B,C∨D

(§7.2)
(dL∨) dLD,C,B∨A =

∨
b←D∧C,B,A

◦ (dLD,C,B ∨ 1A) ◦ dLD,C∨B,A
◦ (1D ∧

∨
b→C,B,A)

(§7.2)
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(dR∧) dRD,C,B∧A = (1D ∨
∧
b←C,B,A) ◦ dRD,C∧B,A

◦ (dRD,C,B ∧ 1A) ◦
∧
b→D∨C,B,A

(§7.2)
(dR∨) dRA∨B,C,D =

∨
b→A,B,C∧D ◦ (1A ∨ dRB,C,D) ◦ dRA,B∨C,D

◦ (
∨
b←A,B,C ∧ 1D)

(§7.2)
(d

∧
b) dRA∧B,C,D

◦ (dLA,B,C ∧ 1D) = dLA,B,C∧D ◦ (1A ∧ dRB,C,D) ◦
∧
b←A,B∨C,D

(§7.2)
(d

∨
b) (dRA,B,C ∨ 1D) ◦ dLA∨B,C,D =

∨
b→A,B∧C,D

◦ (1A ∨ dLB,C,D) ◦ dRA,B,C∨D
(§7.2)

(dRc) dRC,B,A =
∨
cC,B∧A ◦ (

∧
cA,B ∨ 1C) ◦ dLA,B,C

◦ (1A ∧
∨
cB,C) ◦

∧
cC∨B,A

(§7.6)
∧
eA,B,C,D =df dA,D,B∧C ◦ (1A∧

∨
cD,B∧C) ◦ (1A∧ dB,C,D) ◦

∧
b←A,B,C∨D:

(A ∧B) ∧ (C ∨D) ⊢ (A ∧D) ∨ (B ∧ C) (§7.6)
∧
e′A,B,C,D =df

∧
eA,B,D,C ◦ (1A∧B ∧

∨
cD,C) :

(A ∧B) ∧ (C ∨D) ⊢ (A ∧ C) ∨ (B ∧D) (§7.6)

(
∧
e)

∨
cB∧C,A∧D ◦

∧
eA,B,C,D =

∧
e′B,A,C,D

◦ (
∧
cA,B ∧ 1C∨D) (§7.6)

∨
eD,C,B,A =df

∨
b←D∧C,B,A

◦ (dD,C,B ∨ 1A) ◦ (
∧
cC∨B,D∨1A) ◦ dC∨B,D,A:

(C ∨B) ∧ (D ∨A) ⊢ (D ∧ C) ∨ (B ∨A) (§7.6)
∨
e′D,C,B,A =df (

∧
cC,D ∨ 1B∨A) ◦

∨
eC,D,B,A:

(D ∨B) ∧ (C ∨A) ⊢ (D ∧ C) ∨ (B ∨A) (§7.6)

(
∨
e) (1D∧C ∨

∨
cB,A) ◦

∨
e′D,C,A,B =

∨
eD,C,B,A ◦

∧
cD∨A,C∨B (§7.6)

(
∧
σ dL) dL⊤,B,C = (

∧
σ←B ∨ 1C) ◦

∧
σ→B∨C (§7.9)

(
∨
δ dL) dLA,B,⊥ =

∨
δ←A∧B ◦ (1A ∧

∨
δ→B ) (§7.9)

(
∧
δ dR) dRC,B,⊤ = (1C ∨

∧
δ←B ) ◦

∧
δ→C∨B (§7.9)

(
∨
σ dR) dR⊥,B,A =

∨
σ←B∧A ◦ (

∨
σ→B ∧ 1A) (§7.9)

f 3 g =df (f ∨ g) ◦mA,B , for f : A ⊢ D and g : B ⊢ E (§8.1)

(3) (g1 3 g2) ◦ (f1 ∧ f2) = (g1 ∨ g2) ◦ (f1 3 f2) = (g1 ◦ f1)3 (g2 ◦ f2)

(§8.1)

mA,B =df 1A 31B (§8.1)
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(bm) (mA,B ∨ 1C) ◦mA∧B,C ◦
∧
b→A,B,C =

∨
b→A,B,C

◦mA,B∨C ◦ (1A ∧mB,C)

(§8.2)
((f 3 g)3h) ◦

∧
b→A,B,C =

∨
b→D,E,F

◦ (f 3 (g3h)) (§8.2)

(
∧
bmL) mA∧B,C ◦

∧
b→A,B,C = dLA,B,C

◦ (1A ∧mB,C) (§8.3)

(
∨
bmL)

∨
b→A,B,C

◦mA,B∨C = (mA,B ∨ 1C) ◦ dLA,B,C (§8.3)

(
∧
bmR) mC,B∧A ◦

∧
b←C,B,A = dRC,B,A

◦ (mC,B ∧ 1A) (§8.3)

(
∨
bmR)

∨
b←C,B,A

◦mC∨B,A = (1C ∨mB,A) ◦ dRC,B,A (§8.3)

(cm) mB,A ◦
∧
cA,B =

∨
cB,A ◦mA,B (§8.4)

(g3 f) ◦
∧
cA,B =

∨
cE,D ◦ (f 3 g) (§8.4)

(
∧
b

∧
w)

∧
b→A,A,A

◦ (1A ∧
∧
wA) ◦

∧
wA = (

∧
wA ∧1A) ◦

∧
wA (§9.1)

(
∨
b

∨
w)

∨
wA ◦ (1A ∨

∨
wA) ◦

∨
b←A,A,A =

∨
wA ◦ (

∨
wA ∨ 1A)

(
∧
c

∧
w)

∧
cA,A ◦

∧
wA =

∧
wA (§9.1)

(
∨
c

∨
w)

∨
wA ◦

∨
cA,A =

∨
wA

∧
cmA,B,C,D =df

∧
b→A,C,B∧D ◦ (1A ∧ (

∧
b←C,B,D

◦ (
∧
cB,C ∧ 1D) ◦

∧
b→B,C,D)) ◦

∧
b←A,B,C∧D:

(A ∧B) ∧ (C ∧D) ⊢ (A ∧ C) ∧ (B ∧D) (§9.1)

(
∧
b

∧
c

∧
w)

∧
wA∧B =

∧
cmA,A,B,B

◦ (
∧
wA ∧

∧
wB) (§9.1)

∨
cmA,B,C,D =df

∨
b→A,B,C∨D ◦ (1A ∨ (

∨
b←B,C,D

◦ (
∨
cB,C ∨ 1D) ◦

∨
b→C,B,D)) ◦

∨
b←A,C,B∨D:

(A ∨ C) ∨ (B ∨D) ⊢ (A ∨B) ∨ (C ∨D)

(
∨
b

∨
c

∨
w)

∨
wA∨B = (

∨
wA ∨

∨
wB) ◦

∨
cmA,A,B,B

(
∧
b

∧
k) (

∧
k1A,B ∧ 1C) ◦

∧
b→A,B,C = 1A ∧

∧
k2B,C (§9.1)

(
∨
b

∨
k)

∨
b←A,B,C

◦ (
∨
k1A,B ∨ 1C) = 1A ∨

∨
k2B,C

(
∧
c

∧
k)

∧
k2A,B =

∧
k1B,A

◦
∧
cA,B (§9.1)

(
∨
c

∨
k)

∨
k2A,B =

∨
cA,B ◦

∨
k1B,A

(
∧
w

∧
k)

∧
kiA,A

◦
∧
wA = 1A, for i ∈ {1, 2} (§9.1)

(
∨
w

∨
k)

∨
wA ◦

∨
kiA,A = 1A, for i ∈ {1, 2}
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(
∧
b

∧
k1)

∧
k1A∧B,C = (1A ∧

∧
k1B,C) ◦

∧
b←A,B,C (§9.1)

(
∨
b

∨
k1)

∨
k1A∨B,C =

∨
b→A,B,C

◦ (1A ∨
∨
k1B,C)

(
∧
b

∧
k2)

∧
k2C,B∧A = (

∧
k2C,B ∧ 1A) ◦

∧
b→C,B,A (§9.1)

(
∨
b

∨
k2)

∨
k2C,B∨A =

∨
b←C,B,A

◦ (
∨
k2C,B ∨ 1A)

(
∧
w

∧
k

∧
k) (

∧
k1A,B ∧

∧
k2A,B) ◦

∧
wA∧B = 1A∧B (§9.1)

(
∨
w

∨
k

∨
k)

∨
wA∨B ◦ (

∨
k1A,B ∨

∨
k2A,B) = 1A∨B

(⟨ , ⟩) ⟨f1, f2⟩ =df (f1 ∧ f2) ◦
∧
wC , for f1 : C ⊢ A1 and f2 : C ⊢ A2 (§9.1)

[g1, g2] =df
∨
wC ◦ (g1 ∨ g2), for g1 : A1 ⊢ C and g2 : A2 ⊢ C (§9.4)

(∧) f ∧ g = ⟨f ◦
∧
k1A,B , g ◦

∧
k2A,B⟩, for f : A ⊢ D and g : B ⊢ E (§9.1)

(∨) f ∨ g = [
∨
k1D,E

◦ f,
∨
k2D,E

◦ g], for f : A ⊢ D and g : B ⊢ E

(
∧
b→)

∧
b→A,B,C = ⟨1A ∧

∧
k1B,C ,

∧
k2B,C

◦
∧
k2A,B∧C⟩ (§9.1)

(
∨
b←)

∨
b←A,B,C = [1A ∨

∨
k1B,C ,

∨
k2A,B∨C ◦

∨
k2B,C ]

(
∧
b←)

∧
b←C,B,A = ⟨

∧
k1C,B

◦
∧
k1C∧B,A,

∧
k2C,B ∧1A⟩ (§9.1)

(
∨
b→)

∨
b→C,B,A = [

∨
k1C∨B,A

◦
∨
k1C,B ,

∨
k2C,B ∨1A]

(
∧
c)

∧
cA,B = ⟨

∧
k2A,B ,

∧
k1A,B⟩ (§9.1)

(
∨
c)

∨
cA,B = [

∨
k2A,B ,

∨
k1A,B ]

(
∧
w)

∧
wA = ⟨1A,1A⟩ (§9.1)

(
∨
w)

∨
wA = [1A,1A]

(∧β)
∧
kiA1,A2

◦ ⟨f1, f2⟩ = fi, for fi : C ⊢ Ai and i ∈ {1, 2} (§9.1)

(∨β) [g1, g2] ◦
∨
kiA1,A2

= gi, for gi : Ai ⊢ C and i ∈ {1, 2}

(∧η) ⟨
∧
k1A1,A2

◦h,
∧
k2A1,A2

◦h⟩ = h, for h : C ⊢ A1 ∧A2 (§9.1)

(∨η) [h ◦
∨
k1A1,A2

, h ◦
∨
k2A1,A2

] = h, for h : A1 ∨A2 ⊢ C
∧
K1

A2
g1 =df g1 ◦

∧
k1A1,A2

, for g1 : A1 ⊢ C (§9.1)
∨
K1

A2
f1 =df

∨
k1A1,A2

◦ f1, for f1 : C ⊢ A1 (§9.4)
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∧
K2

A1
g2 =df g2 ◦

∧
k2A1,A2

, for g2 : A2 ⊢ C (§9.1)
∨
K2

A1
f2 =df

∨
k2A1,A2

◦ f2, for f2 : C ⊢ A2 (§9.4)

for i ∈ {1, 2}, and f , g, fi and gi of appropriate types,

(
∧
K1) g ◦

∧
Ki

A f =
∧
Ki

A (g ◦ f) (§9.1)

(
∨
K1)

∨
Ki

A g ◦ f =
∨
Ki

A (g ◦ f) (§9.4)

(
∧
K2)

∧
Ki

A g ◦ ⟨f1, f2⟩ = g ◦ fi (§9.1)

(
∨
K2) [g1, g2] ◦

∨
Ki

A f = gi ◦ f (§9.4)

(
∧
K3) ⟨g1, g2⟩ ◦ f = ⟨g1 ◦ f, g2 ◦ f⟩ (§9.1)

(
∨
K3) g ◦ [f1, f2] = [g ◦ f1, g ◦ f2] (§9.4)

(
∧
K4) 1A∧B = ⟨

∧
K1

B 1A,
∧
K2

A1B⟩ (§9.1)

(
∨
K4) 1A∨B = [

∨
K1

B 1A,
∨
K2

A1B ] (§9.4)

(
∧
K5)

∧
Ki

A ⟨f, g⟩ = ⟨
∧
Ki

A f,
∧
Ki

A g⟩ (§9.1)

(
∨
K5)

∨
Ki

A [f, g] = [
∨
Ki

A f,
∨
Ki

A g]
∧
k1A1,A2

=df

∧
K1

A2
1A1 (§9.1)

∨
k1A1,A2

=df

∨
K1

A2
1A1

∧
k2A1,A2

=df

∧
K2

A1
1A2 (§9.1)

∨
k2A1,A2

=df

∨
K2

A1
1A2

(
∧
k

∧
δ )

∧
k1A,⊤ =

∧
δ→A (§9.2)

(
∨
k

∨
δ )

∨
k1A,⊥ =

∨
δ←A

(
∧
w

∧
δ )

∧
w⊤ =

∧
δ←⊤ (§9.2)

(
∨
w

∨
δ )

∨
w⊥ =

∨
δ→⊥

∧
κA =df

∧
k2A,⊤ ◦

∧
δ←A (§9.2)

∨
κA =df

∨
δ→A ◦

∨
k2A,⊥ (§9.6)

(
∧
κ1)

∧
κ⊤ = 1⊤ (§9.2)

(
∨
κ1)

∨
κ⊥ = 1⊥ (§9.6)
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(
∧
κ)

∧
κA = f , for f : A ⊢ ⊤ (§9.2)

(
∨
κ)

∨
κA = f , for f : ⊥ ⊢ A (§9.6)
∧
δ←A = ⟨1A,

∧
κA⟩ (§9.2)

∧
σ←A = ⟨∧κA,1A⟩ (§9.2)
∧
k1A,B =

∧
δ→A ◦ (1A ∧

∧
κB) (§9.2)

∧
k2A,B =

∧
σ→B ◦ (

∧
κA ∧ 1B) (§9.2)

(
∧
k

∧
k)

∧
k1p,p =

∧
k2p,p (§9.3)

(
∨
k

∨
k)

∨
k1p,p =

∨
k2p,p (§9.5)

(in-out) ⟨[f, g], [h, j]⟩ = [⟨f, h⟩, ⟨g, j⟩] (§9.4)

ckA,B,C,D =df ⟨
∧
k1A,B ∨

∧
k1C,D,

∧
k2A,B ∨

∧
k2C,D⟩ :

(A ∧B) ∨ (C ∧D) ⊢ (A ∨ C) ∧ (B ∨D) (§9.4)

ckA,B,C,D = [
∨
k1A,C ∧

∨
k1B,D,

∨
k2A,C ∧

∨
k2B,D] (§9.4)

∧
wA∨B = ckA,A,B,B

◦ (
∧
wA ∨

∧
wB) (§9.4)

∨
wA∧B = (

∨
wA ∧

∨
wB) ◦ ckA,B,A,B (§9.4)

∧
cmA,B,C,D = ⟨

∧
k1A,B ∧

∧
k1C,D,

∧
k2A,B ∧

∧
k2C,D⟩ (§9.4)

∨
cmD,C,B,A = [

∨
k1D,C ∨

∨
k1B,A,

∨
k2D,C ∨

∨
k2B,A] (§9.4)

(
∧
⊥) ∧

c⊥,⊥ = 1⊥∧⊥ (§9.6)

(
∨
⊤) ∨

c⊤,⊤ = 1⊤∨⊤ (§9.6)

(
∧
k⊥)

∧
k1⊥,⊥ =

∧
k2⊥,⊥ (§9.6)

(
∨
k⊤)

∨
k1⊤,⊤ =

∨
k2⊤,⊤ (§9.6)

(
∧
K⊥)

∧
K1
⊥1⊥ =

∧
K2
⊥1⊥ (§9.6)

(
∨
K⊤)

∨
K1
⊤1⊤ =

∨
K2
⊤1⊤ (§9.6)

(
∧
k

∨
k)

∨
k1p,⊤ ◦

∧
k1p,⊥ =

∨
k2p,⊤ ◦0⊥,⊤ ◦

∧
k2p,⊥, for 0⊥,⊤ =

∧
κ⊥=

∨
κ⊤ (§9.7)

(
∧
k

∨
κ)

∧
k1p,⊥ =

∨
κp ◦

∧
k2p,⊥ (§9.7)

(
∨
k

∧
κ)

∨
k1p,⊤ =

∨
k2p,⊤ ◦

∧
κp (§9.7)

(
∧
k

∨
k fg)

∨
k1b,⊤ ◦ f ◦

∧
k1a,⊥ =

∨
k1b,⊤ ◦ g ◦

∧
k1a,⊥, for f, g : a ⊢ b (§9.7)
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(wm)
∨
wA ◦mA,A ◦

∧
wA = 1A (§10.1)

f ∪ g =df
∨
wB ◦ (f 3 g) ◦

∧
wA, for f, g : A ⊢ B (§10.1)

mA,B =df

∨
K1

B

∧
K1

B 1A ∪
∨
K2

A

∧
K2

A1B (§10.1)

(∪ ◦) (f ∪ g) ◦h = (f ◦h) ∪ (g ◦h), h ◦ (f ∪ g) = (h ◦ f) ∪ (h ◦ g) (§10.1)

(∪ assoc) f ∪ (g ∪ h) = (f ∪ g) ∪ h (§10.1)

(∪ com) f ∪ g = g ∪ f (§10.1)

(∪ idemp) f ∪ f = f (§10.1)

(∪∧) (f1 ∪ f2) ∧ (g1 ∪ g2) = (f1 ∧ g1) ∪ (f2 ∧ g2) (§10.1)

(∪∨) (f1 ∪ f2) ∨ (g1 ∪ g2) = (f1 ∨ g1) ∪ (f2 ∨ g2) (§10.1)

ckA,C,B,D
◦mA∧C,B∧D ◦

∧
cmA,B,C,D = mA,B ∧mC,D (§10.1)

∨
cmA,B,C,D

◦mA∨C,B∨D ◦ ckA,B,C,D = mA,B ∨mC,D (§10.1)

(m⊤) mA,⊤ =
∨
k1A,⊤ ◦

∧
k1A,⊤ (§10.3)

(m⊥) mA,⊥ =
∨
k1A,⊥ ◦

∧
k1A,⊥ (§10.3)

mA,C =
∨
k1A,C

◦
∧
k1A,C , for letterless C (§10.3)

mC,A =
∨
k2C,A

◦
∧
k2C,A, for letterless C (§10.3)

(∪0⊤) 1A∨⊤ ∪
∨
K2

A
∧
κA∨⊤ = 1A∨⊤ (§10.3)

(∪0⊥) 1A∧⊥ ∪
∧
K2

A
∨
κA∧⊥ = 1A∧⊥ (§10.3)

(∪0g) f ∪ g = f , for a null term g (§10.3)

(d
∧
k)

∧
k2A,B∨C = (

∧
k2A,B ∨ 1C) ◦ dA,B,C (§11.1)

(d
∨
k)

∨
k1C∧B,A = dC,B,A ◦ (1C ∧

∨
k1B,A) (§11.1)

(dm) mA,C = (
∧
k1A,B ∨ 1C) ◦ dA,B,C ◦ (1A ∧

∨
k2B,C) (§11.1)

mA,C = (1A ∨
∧
k2B,C) ◦ dRA,B,C

◦ (
∨
k1A,B ∧ 1C) (§11.1)

(m
∧
e) ckA,C,B,D

◦
∧
e′A,B,C,D = mA,B ∧ 1C∨D (§11.1)

(m
∨
e)

∨
e′D,C,B,A

◦ ckD,C,B,A = 1D∧C ∨mB,A (§11.1)
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(
∧
k1A,C ∨

∧
k1B,D) ◦

∧
e′A,B,C,D = mA,B ◦

∧
k1A∧B,C∨D (§11.1)

∨
e′D,C,B,A

◦ (
∨
k2D,B ∧

∨
k2C,A) =

∨
k2D∧C,B∨A ◦mB,A (§11.1)

(wm
∧
e) (

∨
wA ∧ 1C∨D) ◦ ckA,C,A,D

◦
∧
e′A,A,C,D

◦ (
∧
wA ∧ 1C∨D) = 1A∧(C∨D)

(§11.1)

(wm
∨
e) (1D∧C ∨

∨
wA) ◦

∨
e′D,C,A,A

◦ ckD,C,A,A
◦ (1D∧C ∨

∧
wA) = 1(D∧C)∨A

(§11.1)

(m
∧
cm) mA∧C,B∧D ◦

∧
cmA,B,C,D =

∧
e′A,B,C,D

◦ (1A∧B ∧mC,D) (§11.1)

(m
∨
cm)

∨
cmD,C,B,A

◦mD∨B,C∨A = (mD,C ∨ 1B∨A) ◦
∨
e′D,C,B,A (§11.1)

∧
sA,C,D =df

∧
e′A,A,C,D

◦ (
∧
wA ∧ 1C∨D) : A ∧ (C ∨D) ⊢ (A ∧ C) ∨ (A ∧D)

(§11.3)
∨
sD,C,A =df (1D∧C ∨

∨
wA) ◦

∨
e′D,C,A,A : (D ∨A) ∧ (C ∨A) ⊢ (D ∧ C) ∨A

(§11.3)
∧
tA,C,D =df (

∨
wA ∧ 1A∨D) ◦ ckA,C,A,D : (A ∧ C) ∨ (A ∧D) ⊢ A ∧ (C ∨D)

(§11.3)
∨
tD,C,A =df c

k
D,C,A,A

◦ (1D∧C ∨
∧
wA) : (D ∧ C) ∨A ⊢ (D ∨A) ∧ (C ∨A)

(§11.3)
∧
tA,C,D

◦
∧
sA,C,D = 1A∧(C∨D) (§11.3)

∨
sD,C,A

◦
∨
tD,C,A = 1(D∧C)∨A (§11.3)

dA,B,C = (1A∧B ∨
∧
k2A,C) ◦

∧
e′A,A,B,C

◦ (
∧
wA ∧ 1B∨C) (§11.3)

dC,B,A = (1C∧B ∨
∨
wA) ◦

∨
e′C,B,A,A

◦ (
∨
k1C,A ∧ 1B∨A) (§11.3)

(d⊤⊤) dA,⊤,⊤ =
∨
k1A∧⊤,⊤ ◦ (1A ∧

∧
κ⊤∨⊤) (§11.3)

(d⊥⊥) d⊥,⊥,C = (
∨
κ⊥∧⊥ ∨ 1C) ◦

∧
k2⊥,⊥∨C (§11.3)

(m−1 0)
∧
k2A,B

◦m−1A,B
◦

∨
k1A,B =

∧
k1B,A

◦m−1B,A
◦

∨
k2B,A (§12.1)

(m−1 1)
∧
k1A,B

◦m−1A,B
◦

∨
k1A,B =

∧
k2B,A

◦m−1B,A
◦

∨
k2B,A = 1A (§12.1)

(bm−1) (m−1A,B ∧ 1C) ◦m−1A∨B,C
◦

∨
b→A,B,C =

∧
b→A,B,C

◦m−1A,B∧C ◦ (1A ∨m−1B,C)

(§12.1)

(cm−1) m−1B,A
◦

∨
cB,A =

∧
cA,B ◦m−1A,B (§12.1)
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0A,B =df

∧
k2A,B

◦m−1A,B
◦

∨
k1A,B =

∧
k1B,A

◦m−1B,A
◦

∨
k2B,A (§12.1)

m−1A,B=df ⟨[1A,0B,A], [0A,B ,1B ]⟩=[⟨1A,0A,B⟩, ⟨0B,A,1B⟩] (§12.1)

f ◦0A,A = 0B,B ◦ f = 0A,B , for f : A ⊢ B (§12.1)

(0) f ◦0C,A = 0C,B , 0B,C ◦ f = 0A,C , for f : A ⊢ B (§12.1)

(0 nat) f ◦0A,A = 0B,B ◦ f , for f : A ⊢ B (§12.1)

(0∧) 0A,C ∧ 0B,D = 0A∧B,C∧D (§12.1)

(0∨) 0A,C ∨ 0B,D = 0A∨B,C∨D (§12.1)

d−1A,B,C =df ⟨1A∨
∧
k1B,C , [0A,C ,

∧
k2B,C ]⟩ = [⟨

∨
k1A,B ,0A,C⟩,

∨
k2A,B ∧1C ] :

A ∨ (B ∧ C) ⊢ (A ∨B) ∧ C (§12.1)

0A,C =df

∧
k2A∨B,C

◦ d−1A,B,C
◦

∨
k1A,B∧C (§12.1)

(d−1 1)
∧
k1A∨B,C

◦ d−1A,B,C
◦

∨
k1A,B∧C =

∨
k1A,B (§12.1)

(d−1 2)
∧
k2A∨B,C

◦ d−1A,B,C
◦

∨
k2A,B∧C =

∧
k2B,C (§12.1)

(d−1 3)
∧
k1A∨B,C

◦ d−1A,B,C
◦

∨
k2A,B∧C =

∨
k2A,B

◦
∧
k1B,C (§12.1)

∧
κA = f = 0A,⊤, for f : A ⊢ ⊤ (§12.1)
∨
κA = f = 0⊥,A, for f : ⊥ ⊢ A (§12.1)
∧
κ⊥ =

∨
κ⊤ = 0⊥,⊤ (§12.1)

∧
κ⊤ = 1⊤ = 0⊤,⊤ (§12.1)
∨
κ⊥ = 1⊥ = 0⊥,⊥ (§12.1)
∧
k1⊥,⊥ =

∧
k2⊥,⊥ = 0⊥∧⊥,⊥ (§12.1)

∨
k1⊤,⊤ =

∨
k2⊤,⊤ = 0⊤,⊤∨⊤ (§12.1)

(0⊤⊥) 0A,B =
∨
κB ◦0⊤,⊥ ◦

∧
κA (§12.1)

(0I) f ◦0A = 0B ◦ g, for f, g : A ⊢ B (§12.5)

f ◦0A = g ◦0A, for f, g : A ⊢ B (§12.5)

0B ◦ f = 0B ◦ g, for f, g : A ⊢ B (§12.5)

(00) 0A ◦0A = 0A (§12.5)

0A,B =df f ◦0A, for f : A ⊢ B (§12.5)
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(0I∧) 0A ∧ 0B = 0A∧B (§12.5)

(0I∨) 0A ∨ 0B = 0A∨B (§12.5)

(∪0) f ∪ 0A,B = f , for f : A ⊢ B (§12.5)

1A ∪ 0A = 1A (§12.5)

(mm−1) m−1A,B
◦mA,B = 1A∧B , mA,B ◦m−1A,B = 1A∨B (§13.1)

(
∧
km)

∧
k1A,B = [1A,0B,A] ◦mA,B ,

∧
k2A,B = [0A,B ,1B] ◦mA,B (§13.1)

(
∨
km)

∨
k1A,B = mA,B ◦ ⟨1A,0A,B⟩,

∨
k2A,B = mA,B ◦ ⟨0B,A,1B⟩ (§13.1)

for f : A ⊢ B,
∧
Z1

C f =df m
−1
B,C

◦
∨
k1B,C

◦ f = ⟨f,0A,C⟩ : A ⊢ B ∧ C (§13.1)
∨
Z1

C f =df f ◦
∧
k1A,C

◦m−1A,C = [f,0C,B ] : A ∨ C ⊢ B (§13.1)
∧
Z2

C f =df m
−1
C,B

◦
∨
k2C,B

◦ f = ⟨0A,C , f⟩ : A ⊢ C ∧B (§13.1)
∨
Z2

C f =df f ◦
∧
k2C,A

◦m−1C,A = [0C,B , f ] : C ∨A ⊢ B (§13.1)

(
∧
Z ) ⟨f1, f2⟩ =

∧
Z1

A2
f1 ∪

∧
Z2

A1
f2, for f1 : C ⊢ A1 and f2 : C ⊢ A2 (§13.1)

(
∨
Z ) [g1, g2] =

∨
Z1

A2
g1 ∪

∨
Z2

A1
g2, for g1 : A1 ⊢ C and g2 : A2 ⊢ C (§13.1)

∧
wC = m−1C,C

◦ (
∨
k1C,C ∪

∨
k2C,C) (§13.1)

∨
wC = (

∧
k1C,C ∪

∧
k2C,C) ◦m−1C,C (§13.1)

(f1 ∪ f2) ∪ (f3 ∪ f4) = (f1 ∪ f3) ∪ (f2 ∪ f4) (§13.1)

(md) dA,B,C =df mA∧B,C ◦
∧
b→A,B,C

◦ (1A ∧m−1B,C) (§13.2)
∧
e′A,B,C,D = mA∧C,B∧D ◦

∧
cmA,B,C,D

◦ (1A∧B ∧m−1C,D) (§13.2)
∨
e′D,C,B,A = (m−1D,C ∨ 1B∨A) ◦

∨
cmD,C,B,A

◦mD∨B,C∨A (§13.2)

clA,B,C,D =df
∧
e′A,B,C,D

◦ (m−1A,B ∧ 1C∨D) :

(A ∨B) ∧ (C ∨D) ⊢ (A ∧ C) ∨ (B ∧D) (§13.2)

clD,B,C,A =df (1D∧C ∨m−1B,A) ◦
∨
e′D,C,B,A (§13.2)

f ∪ g = [
∧
k1B,A,

∧
k2A,B ] ◦ clB,A,A,B

◦ ⟨
∨
k1B,A

◦ f,
∨
k2A,B

◦ g⟩ (§13.2)

0A,B = [
∧
k1B,A,

∧
k2A,B ] ◦ clB,A,A,B

◦ ⟨
∨
k2B,A,

∨
k1A,B⟩ (§13.2)
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ckA,C,B,D
◦ clA,B,C,D = 1(A∨B)∧(C∨D) (§13.2)

clA,C,B,D
◦ ckA,B,C,D = 1(A∧B)∨(C∧D) (§13.2)

n←A ◦n→A = 1¬¬A (§14.1)

n→A ◦n←A = 1A (§14.1)
∧
r←A,B

◦
∧
r→A,B = 1¬(A∧B) (§14.1)

∧
r→A,B

◦
∧
r←A,B = 1¬A∨¬B (§14.1)

∨
r←A,B

◦
∨
r→A,B = 1¬(A∨B) (§14.1)

∨
r→A,B

◦
∨
r←A,B = 1¬A∧¬B (§14.1)

∧
ρ← ◦

∧
ρ→ = 1¬⊤ (§14.1)

∧
ρ→ ◦

∧
ρ← = 1⊥ (§14.1)

∨
ρ← ◦

∨
ρ→ = 1¬⊥ (§14.1)

∨
ρ→ ◦

∨
ρ← = 1⊤ (§14.1)

(0ηε) 0A =
∨
σ→A ◦ (εA ∨ 1A) ◦ dA,¬A,A ◦ (1A ∧ ηA) ◦

∧
δ←A (§14.2)

(η∧) ηB∧A = (
∧
r←B,A ∨ 1B∧A) ◦

∨
c¬B∨¬A,B∧A ◦

∨
e′B,A,¬B,¬A◦

◦ (
∨
cB,¬B ∧

∨
cA,¬A) ◦ (ηB ∧ ηA) ◦

∧
δ←⊤ (§14.2)

(η∨) ηB∨A = (
∨
r←B,A ∨ 1B∨A) ◦

∨
e′¬B,¬A,B,A

◦ (ηB ∧ ηA) ◦
∧
δ←⊤ (§14.2)

(ε∧) εA∧B =
∨
δ→⊥ ◦ (εA ∨ εB) ◦

∧
e′A,B,¬A,¬B ◦ (1A∧B ∧

∧
r→A,B) (§14.2)

(ε∨) εA∨B =
∨
δ→⊥ ◦ (εA ∨ εB) ◦ (

∧
c¬A,A ∨

∧
c¬B,B) ◦

∧
e′¬A,¬B,A,B

◦

◦
∧
cA∨B,¬A∧¬B ◦ (1A∨B ∧

∨
r→A,B) (§14.2)

(η⊤) η⊤ = (
∧
ρ← ∨ 1⊤) ◦

∨
σ←⊤ (§14.2)

(η⊥) η⊥ = (
∨
ρ← ∨ 1⊥) ◦

∨
δ←⊤ (§14.2)

(ε⊤) ε⊤ =
∧
σ→⊥ ◦ (1⊤ ∧

∧
ρ→) (§14.2)

(ε⊥) ε⊥ =
∧
δ→⊥ ◦ (1⊥ ∧

∨
ρ→) (§14.2)

(1¬A ∨ f) ◦ ηA = (¬f ∨ 1B) ◦ ηB , for f : A ⊢ B (§14.2)

εA ◦ (1A ∧ ¬f) = εB ◦ (f ∧ 1¬B), for f : A ⊢ B (§14.2)



List of Categories

We list in the table below the logical categories and some other related
categories we deal with in the book. We present the categories involving ∨
immediately below the dual categories involving ∧. Otherwise, we follow
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Charts

The charts we present on the next three pages are to be read as follows.

When the category A is joined by an upward-going line to the category B,
this means that A is isomorphic to a subcategory of B, with the isomor-

phism being identity on objects. The assertion that A is isomorphic to a

subcategory of B is established by appealing to the fact that A is a pre-

order or that A is coherent with respect to Rel, as explained in §14.4. The
three charts could be combined into a single chart by pasting them together

in growing order over the parts in which they overlap. For practical, and

aesthetical, reasons we have preferred not to make this pasting, and have

three separate charts.

We have established coherence with respect to Rel for all categories in

the charts except
∧
S′, S′, DA⊤,⊥, L⊤,⊥, ML, ML⊤,⊥, ZIL, ZIL⊤,⊥, ZIML

and ZIML⊤,⊥. For
∧
S′ and S′ we have that they are preorders, though they

are not coherent with respect to Rel (see §6.5). The category DA⊤,⊥ was

considered in §7.9. For L⊤,⊥, ML, ML⊤,⊥, ZIML and ZIML⊤,⊥ we have

proved only a restricted form of coherence (see §9.6, §§10.2-3 and §12.5).
This explains the absence of some lines in Charts 2 and 3.

Of the categories with negation, we have mentioned only two, B and

ZML¬⊤,⊥, at the top of Chart 3, which is also the top of all the charts pasted

together. We have, however, coherence for categories with negation where

we have coherence without negation (see §14.1), and there are replicas of

Charts 2 and 3 involving such categories.
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(1963), pp. 1887-1890 [§2.8, §4.6]
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