
Proof-Net Categories

Kosta Došen and Zoran Petrić

March 2005

Preface

This study is the continuation of a project in categorial proof theory, which
occupied us in the last few years and yielded the book [22]. This is a kind
of appendix to that book, whose results are applied here. An acquaintance
with that previous book is not absolutely necessary, provided the reader
is prepared to trust the results on which we rely. It is, however, very
desirable. Practically no other literature is presupposed, except for the
sake of motivation. We rely only on very standard notions of logic and
category theory, which, if by any chance they are not already known to the
reader, may be found in [22].

The aim and context of our work are set forth in the introductory
chapter. Our results should be of general interest to graduate students
and researchers in general proof theory. They demonstrate how general-
ity of proofs provides a criterion of identity for proofs. We believe these
results bring something also to categorists interested in coherence ques-
tions, to whom they may illustrate the usefulness of syntactical methods
in category theory. They should be of particular interest to investigators
of linear logic, symmetric monoidal closed categories and star-autonomous
categories. These or related matters seem to be interesting too in the bor-
derline areas of theoretical computer science. This is, however, not a text
belonging to that science. Our aims, our terminology and our style come
from the related but, nevertheless, different and older field of logic.

The writing of this study, which started in September 2004, was sup-
ported by a project of the Ministry of Science of Serbia (1630: Representa-
tion of Proofs) and by the Mathematical Institute of the Serbian Academy
of Sciences and Arts in Belgrade.

Belgrade, March 2005

v

CONTENTS

Preface v

Chapter 1. Introduction 1

§1.1. Aim and context 1

§1.2. Summary 5

Chapter 2. Coherence of Proof-Net Categories 9

§2.1. The category DS 10

§2.2. The category PN¬ 12

§2.3. The category Br 17

§2.4. Some properties of DS 23

§2.5. The category PN 26

§2.6. The equivalence of PN¬ and PN 32

§2.7. PN Coherence 37

§2.8. The contravariant functor ¬ 41

Chapter 3. Star-Autonomous Categories 45

§3.1. The category SMC 46

§3.2. The category SA 49

§3.3. The category SA′ 50

§3.4. SA′ in SA 52

§3.5. The category PN¬→⊥ 59

§3.6. SA in SA′ 61

§3.7. The isomorphism of SA and SA′ 63

§3.8. The categories SAs and SA′s 66

Chapter 4. Proof-Net and Star-Autonomous Categories 71

§4.1. The Gentzenization of SA′s 72

§4.2. Cut elimination in SA′s 77

§4.3. SAc Coherence 83

Chapter 5. Involutive Adjunctions and Proof-Net Categories 95

§5.1. Self-adjunctions 96

§5.2. Involutive adjunctions 98

§5.3. Self-adjunctions and involutive adjunctions 100

§5.4. Trivial involutive adjunctions and proof-net categories 103

vii

viii Contents

Chapter 6. Coherence of Mix-Proof-Net Categories 105

§6.1. The category MDS 105

§6.2. MPN¬ Coherence 109

Chapter 7. Proof Nets 113

§7.1. Proof nets and proof-net categories 113

§7.2. Proof nets in general proof theory 119

Bibliography 127

Index 132

Chapter 1

Introduction

In this introductory chapter we state the aim of this work, and present the

context, i.e. previous work related to the subject matter we treat. We also

give a summary of the whole text.

§1.1. Aim and context

The aim of this work is to give a systematic account of the connection

that exists between star-autonomous categories and the Kelly-Mac Lane

graphs implicit in proof nets for the multiplicative fragment without propo-

sitional constants of linear logic. Star-autonomous categories are sym-

metric monoidal closed categories that have an object ⊥ such that the

canonical natural transformation from the identity functor to the functor

(→ ⊥) → ⊥ is a natural isomorphism (see §§3.1-2 and §3.8; here →
is the internal hom-bifunctor).

For some results of this work it will perhaps be claimed that they are

known—that they have already been established. We do not believe this

claim is justified, and we have decided to present matters anew because

we are not satisfied with the treatment they have received up to now. But

even if it were true that these results are known, we think that they deserve

a systematic and detailed presentation, following the canons of rigour that

used to be the rule in logic. We feel there is a need for such a presentation,

and we want to supply it.

There are in mathematics theorems that are more difficult to conjecture

1

2 CHAPTER 1. INTRODUCTION

than to prove. Such is, for example, the Theorem of Pythagoras, or the

theorem that
√
2 is not rational. There are, on the other hand, theorems

that are more difficult to prove than to conjecture (and there are no doubt

theorems were the conjecture and the proof are of equal difficulty).

The results we are going to present are of a kind called in logic com-

pleteness theorems. Such theorems are often not difficult to conjecture, but

their proofs can be quite demanding. The prime example of such a result is

the completeness theorem for first-order predicate logic. The axiomatiza-

tion of this logic existed long before a precise completeness proof was given

by Gödel, and throughout this period it was assumed the axiomatization is

complete, with a more or less precise notion of completeness being envis-

aged. Nearer to our topic, we have the coherence theorem for symmetric

monoidal closed categories proved by Kelly and Mac Lane in [32] (see the

end of §3.1), where it also seems it was easier to conjecture the theorem

than to prove it.

From the inception of proof nets in the late 1980s (see [26] and [13]),

it could have been realized that they are connected with the graphs one

finds in Kelly’s and Mac Lane’s coherence theorem. The earliest explicit

reference for that we know about is [4] (see also [5]). It was also soon

suggested that the multiplicative fragment of classical linear logic, which

has an involutive negation that satisfies De Morgan laws, is closely related

to Barr’s star-autonomous categories, which stem from [1] (see [33], [42]

and [2]). A number of results have been proposed since as completeness

results connecting proof nets and particular categories (see the beginning

of [28] for a recent survey). It seems to be an accepted opinion nowadays

that, in the words of [28], “...the identifications [of proofs imposed by proof

nets] correspond to coherences of free star-autonomous categories”. The

purpose of our work is to examine this opinion, and find out how much

truth there is in it.

The problem with this opinion is that on the side of proof nets we do not

have in the standard treatment the multiplicative propositional constants,

while on the side of star-autonomous categories we have the correspond-

ing unit objects. In the presence of these units, an unrestricted coherence

theorem with respect to graphs of the Kelly-Mac Lane kind is not forthcom-

ing. Kelly and Mac Lane had for their coherence theorem for symmetric

§1.1. Aim and context 3

monoidal closed categories of [32] a proviso concerning the unit object of

the monoidal structure (see the end of §3.1, and see [43] for further work

concerning this proviso), but we are not aware that a similar coherence

involving a proviso for the units of star-autonomous categories has been

proved up to now. (We provide such a result in Chapter 4 below.)

Two courses are open in this situation. The first course, which we will

follow, is to reject the units on the side of star-autonomous categories,

define precisely the resulting notion of category, and prove a standard, un-

restricted, coherence result for it, akin to Kelly’s and Mac Lane’s coherence.

(We do that in Chapter 2.) It is desirable to show here that the proposed

notion of star-autonomous category without units catches exactly the cor-

responding fragment of star-autonomous categories, in a sense to be made

precise in terms of category theory. (We do that in Chapters 3 and 4.) After

that only, one can establish a match between the equations assumed for the

categories and those imposed by the proof nets without the multiplicative

propositional constants, and so vindicate the established opinion.

Relying on the unrestricted coherence for star-autonomous categories

without units, one can obtain a restricted coherence theorem for standard

star-autonomous categories. This coherence theorem has a proviso concern-

ing the units: they are allowed to occur only in places such that the objects

in which they are involved are isomorphic either to objects not involving

the units or to one of the units. (This is the coherence result of Chapter 4

mentioned above, which will be phrased precisely in that chapter.) We will

show that this proviso is of the same kind as the proviso that Kelly and

Mac Lane had.

The second course is to add the multiplicative propositional constants

without restriction on the side of proof nets, and claim that a completeness

result connecting the modified proof nets and star-autonomous categories

is the desired coherence result. This second course is more favoured in the

existing literature, cited below and in Chapter 7. We should immediately

notice that with this course coherence cannot be understood in the sense of

Kelly and Mac Lane. Also, no precise notion of star-autonomous category

without units arises.

As far as we know, the only coherence result in the style of Kelly and

Mac Lane proved up to now for star-autonomous categories is still Kelly’s

4 CHAPTER 1. INTRODUCTION

and Mac Lane’s own result of [32], which is, as we said above, about sym-

metric monoidal closed categories with a proviso concerning the unit object

of the monoidal structure. Richard Blute in [5] purports to prove a gen-

eral coherence result, which should yield coherence for star-autonomous

categories without units with respect to Kelly-Mac Lane graphs. We find,

however, this proof excessively wanting. The notion of star-autonomous

category without units is not precisely defined. We do not know what is

the “usual theory without units” of star-autonomous categories (mentioned

in [5], pp. 9, 15), and one of our purposes in this work is to supply a lan-

guage of arrow terms for that theory and the appropriate equations between

these arrow terms. We could not find either of these in [5], or anywhere else.

Recently, attempts have been made in [35] and [27] to define a notion of

star-autonomous category without units, but the approach of these papers,

different from ours, is not equational (at least not in our sense).

It is not, however, the case that once the notion of star-autonomous

category without units is made precise, one obtains from the sketch in [5]

(p. 23, right-to-left direction of Theorem 10.2) a recipe for proving coherence

for this notion. A substantial part of the proof is covered by the sentence:

“This amounts to a straightforward case analysis.” This sentence occurs

in a context where no specific equations are stated, and it is claimed that

these equations cover a cut-elimination procedure. This is usually the most

arduous part of a proof of coherence (see, for example, [32]).

Robert Seely and Robin Cockett in [12] (p. 104) consider coherence

for star-autonomous categories without units to be “fairly straightforward,

even trivial”, and they refer to [5] and [6] for an exposition. We have already

discussed [5], while in [6] we find neither a definition of star-autonomous

category without units, nor a coherence result for them in the sense of

Kelly and Mac Lane. Instead, the latter paper is about coherence for star-

autonomous categories with units (and it is presumed that these are the

weakly distributive categories of [11] with negation added) with respect to

an extension of proof nets with multiplicative propositional constants. The

subject of our work is to a great extent this matter previously dismissed as

straightforward, or even trivial.

We will give an equational formulation of the notion of star-autonomous

category without units, which we call proof-net category, and we will prove

§1.2. Summary 5

coherence for this notion with respect to Kelly-Mac Lane graphs, which

means that there is a faithful functor from the proof-net category freely

generated by a set of objects into the category whose arrows are these

graphs. Another possibility would be to define the notion of proof-net

category by coherence, i.e. by the existence of the faithful functor into the

category whose arrows are graphs. This way, however, we would have no

information about the axioms, which are the combinatorial building blocks

of our notion.

The notion of monoidal category was introduced in such a nonaxiomatic

way, via coherence, by Bénabou in [3], and in the axiomatic way, such as

we favour, by Mac Lane in [37]. For Bénabou, coherence is built into the

definition, and for Mac Lane it is a theorem. One could analogously define

the theorems of classical propositional logic as being the tautologies (this is

done, for example, in [9], Sections 1.2-3), in which case completeness would

not be a theorem, but would be built into the definition.

To take another example, we could easily define nonaxiomatically a no-

tion of Boolean category with respect to graphs of the Kelly-Mac Lane kind.

(In this notion, conjunction would not be a product, because the diagonal

arrows and the projections would not make natural transformations, and,

analogously, disjunction would not be a coproduct; see [22], Section 14.3.)

The resulting notion would not be trivial—the resulting freely generated

categories would not be preorders—, but its nonaxiomatic definition would

be trivial. We are looking for nontrivial axiomatic definitions. Such def-

initions give information about the combinatorial building blocks of our

notions, as Reidemeister moves give information about the combinatorial

building blocks of knot equivalence (see [8], Chapter 1). Our axiomatic

equational definition of proof-net category is of this nontrivial, combina-

torially informative, kind. Coherence of proof-net categories is for us a

theorem, whose proof requires considerable effort.

§1.2. Summary

This study is a continuation of [22], whose ideas and style we have followed

in general. Many notions we need are exposed more systematically in that

book, which the reader may consult for more detailed explanations and

6 CHAPTER 1. INTRODUCTION

definitions, and also for motivation from the perspective of general proof

theory or categorial proof theory. At some key points, we rely on results

proved before. In Chapter 2 we rely on matters proved in [20], [21] and [22],

and in particular on a coherence result from [22] (Symmetric Net Coherence

of Section 7.6). In Chapter 3 we rely on the coherence result of Kelly and

Mac Lane for symmetric monoidal closed categories of [32]. We rely also

on some well-known elementary notions of category theory, which may all

be found in [38] or [22], and for the sake of motivation we rely on some

acquaintance with linear logic and the proof nets of [26]. Except for that,

we have strived to make our exposition self-contained to a great extent.

First, we give in Chapter 2 a precise definition of a notion that may be

considered to correspond to star-autonomous categories without units. This

notion, which we call proof-net category, is obtained by extending with an

operation that corresponds to negation the notion of symmetric net cate-

gory of [22] (Section 7.6); the notion of symmetric net category corresponds

to the notion of linear (alias weakly) distributive category of [11] without

units. For proof-net categories we prove in Chapter 2 a coherence result

with respect to Kelly-Mac Lane graphs.

In Chapter 3, we prove precisely in categorial terms the equivalence of

the notion of star-autonomous category with a notion amounting to the

notion of linearly distributive category with negation of [11]. The latter

notion is obtained by extending with the units our notion of proof net cate-

gory. This categorial equivalence result was foreshadowed in [11] (Section 4,

Theorem 4.5), but there its “straightforward” proof was said to depend on

“pretty horrid” diagrams, and practically the whole of it was left “to the

faith of the reader”. The proof we supply is indeed pretty lengthy, though

we have shortened it considerably by relying on Kelly’s and Mac Lane’s

coherence for symmetric monoidal closed categories and on our coherence

from Chapter 2 for proof-net categories. We can only imagine how “horrid”

it would be without these tools, which are not mentioned in [11].

In Chapter 4, we prove that with the notion of proof-net category we

have not only caught the notion of star-autonomous category without units,

but with its help we can also obtain a coherence result for star-autonomous

categories with respect to Kelly-Mac Lane graphs—a result of the same kind

as Kelly’s and Mac Lane’s coherence result for symmetric monoidal closed

§1.2. Summary 7

categories. This result involves a proviso concerning the units, but does

not exclude them completely (as we announced in the preceding section).

This coherence of star-autonomous categories is a powerful tool for verifying

whether a diagram of arrows commutes in star-autonomous categories.

After all that, the established opinion on the connection between proof

nets and star-autonomous categories, which we mentioned in the preced-

ing section, may be rephrased as the statement that the identifications of

proofs imposed by proof nets correspond well to the equations of proof-net

categories, and since proof-net categories catch the unit-free portion of star-

autonomous categories, the opinion seems vindicated. We find that before

it was accepted just on faith.

It is not true, however, that the identifications of proofs imposed by

proof nets stem only from the cut-elimination procedure. There are also

equations that serve to equate different cut-free proofs. These are equations

similar to the so-called permutative reductions of natural deduction, which

permute the order of rules in cut-free proofs, and also equations that atom-

ize the identity axiomatic sequents. Such equations are indeed incorporated

in the usual notion of proof net, and are there invisible, but in modifica-

tions of this notion they may reappear (cf. [24]). It is, in general, tricky to

justify equations just by reference to cut elimination, because cut elimina-

tion tends to be sensitive to a particular syntax, and also to a particular

procedure (cf. [14], Section 0.3.1 and passim). A justification independent

of the vagaries of syntax is obtained by coherence theorems in the style of

Mac Lane.

In Chapter 5, we consider how the assumptions concerning the involutive

unary operation corresponding to negation, which we have in proof-net

categories and star-autonomous categories, are tied to a particular kind of

adjunction where an endofunctor is adjoint to itself.

In Chapter 6, we consider proof-net categories that have arrows corre-

sponding to the mix principle of linear logic, and we prove coherence for the

resulting notion by adapting the coherence proof for proof-net categories of

Chapter 2.

In Chapter 7, the final chapter, we discuss the relationship between the

Kelly-Mac Lane graphs and proof nets, which justifies the name we have

given to proof-net categories. In general proof theory, one of the main

8 CHAPTER 1. INTRODUCTION

problems is the investigation of identity of proofs (see [15] or [22], Sections

1.3-4), and it is desirable to find efficient means to check this identity. We

approach coherence questions in that spirit, and we expect coherence theo-

rems to yield a decision procedure (preferably easy) to answer the question

whether a diagram of arrows commutes. From that standpoint, Kelly-Mac

Lane graphs are the relevant core of proof nets, which we can use to answer

efficiently the question whether two proofs are equal in the multiplicative

fragment without propositional constants of linear logic, and also, accord-

ing to the coherence theorem of Chapter 4, in a larger fragment of linear

logic, where the multiplicative propositional constants occur at particular

places. At the very end, we discuss further papers related to our work, and

express some opinions on proof nets in the context of general proof theory.

Chapter 2

Coherence of Proof-Net
Categories

In this chapter we define our notion of proof-net category. This notion is

based on the notion of symmetric net category of [22] (Section 7.6); these

are categories with two multiplications, ∧ and ∨, associative and commu-

tative up to isomorphism, which have moreover arrows of the dissociativity

type A ∧ (B ∨ C) → (A ∧B) ∨ C (called linear or weak distribution by the

authors of [11]). The symmetric net category freely generated by a set of

objects is called DS. To symmetric net categories we add an operation on

objects corresponding to negation, which is involutive up to isomorphism.

With these operations come appropriate arrows. A number of equations

between arrows, of the kind called coherence conditions in category theory,

are satisfied in proof-net categories.

We introduce a category Br whose arrows are called Brauerian split

equivalences of finite ordinals. These equivalence relations, which stem from

results in representation theory from the 1930s, amount to the graphs used

by Kelly and Mac Lane for their coherence theorem of symmetric monoidal

categories. Brauerian split equivalences express generality of proofs in linear

logic (see [20] and [21]).

The coherence theorem for proof-net categories says that there is a faith-

ful functor from the proof-net category PN¬ freely generated by a set of

objects into Br. We call theorems of this kind coherence theorems. The

coherence theorem for PN¬ yields an elementary decision procedure for

9

10 CHAPTER 2. COHERENCE OF PROOF-NET CATEGORIES

verifying whether a diagram of arrows commutes in PN¬, and hence also

in every proof-net category. This is a very useful tool, which will facilitate

calculations later on.

The coherence theorem for PN¬ is proved by finding a category PN,

equivalent to PN¬, in which negation can be applied only to the generating

objects, and coherence is first established for PN by relying on coherence

for symmetric net categories, previously established in [22] (Chapter 7),

and on an additional normalization procedure involving negation.

§2.1. The category DS

The objects of the category DS are the formulae of the propositional lan-

guage L∧,∨, generated from a set P of propositional letters, which we call

simply letters, with the binary connectives ∧ and ∨. We use p, q, r, . . . ,

sometimes with indices, for letters, and A,B,C, . . . , sometimes with indices,

for formulae. As usual, we omit the outermost parentheses of formulae and

other expressions later on.

To define the arrows of DS, we define first inductively a set of expres-

sions called the arrow terms of DS. Every arrow term of DS will have a

type, which is an ordered pair of formulae of L∧,∨. We write f : A ⊢ B when

the arrow term f is of type (A,B). (We use the turnstile ⊢ instead of the

more usual →, which we reserve for a connective and a bifunctor.) We use

f, g, h, . . . , sometimes with indices, for arrow terms.

For all formulae A, B and C of L∧,∨ the following primitive arrow terms:

1A : A ⊢ A,
∧
b→A,B,C : A ∧ (B ∧ C) ⊢ (A ∧B) ∧ C,

∨
b→A,B,C : A ∨ (B ∨ C) ⊢ (A ∨B) ∨ C,

∧
b←A,B,C : (A ∧B) ∧ C ⊢ A ∧ (B ∧ C),

∨
b←A,B,C : (A ∨B) ∨ C ⊢ A ∨ (B ∨ C),

∧
cA,B : A ∧B ⊢ B ∧A,

∨
cA,B : B ∨A ⊢ A ∨B,

dA,B,C : A ∧ (B ∨ C) ⊢ (A ∧B) ∨ C

are arrow terms of DS. If g : A ⊢ B and f : B ⊢ C are arrow terms of DS,

then f ◦ g : A ⊢ C is an arrow term of DS; and if f : A ⊢ D and g : B ⊢ E are

arrow terms of DS, then f ξ g : A ξ B ⊢ D ξ E, for ξ ∈ {∧,∨}, is an arrow

term of DS. This concludes the definition of the arrow terms of DS.

§2.1. The category DS 11

Next we define inductively the set of equations of DS, which are expres-

sions of the form f = g, where f and g are arrow terms of DS of the same

type. We stipulate first that all instances of f = f and of the following

equations are equations of DS:

(cat 1) f ◦1A = 1B ◦ f = f : A ⊢ B,

(cat 2) h ◦ (g ◦ f) = (h ◦ g) ◦ f ,

for ξ ∈ {∧,∨},

(ξ 1) 1A ξ 1B = 1AξB ,

(ξ 2) (g1 ◦ f1) ξ (g2 ◦ f2) = (g1 ξ g2) ◦ (f1 ξ f2),

for f : A ⊢ D, g : B ⊢ E and h : C ⊢ F ,

(
ξ

b→ nat) ((f ξ g) ξ h) ◦
ξ

b→A,B,C =
ξ

b→D,E,F ◦ (f ξ (g ξ h)),

(
∧
c nat) (g ∧ f) ◦

∧
cA,B =

∧
cD,E ◦ (f ∧ g),

(
∨
c nat) (g ∨ f) ◦

∨
cB,A =

∨
cE,D ◦ (f ∨ g),

(d nat) ((f ∧ g) ∨ h) ◦ dA,B,C = dD,E,F ◦ (f ∧ (g ∨ h)),

(
ξ

b
ξ

b)
ξ

b→A,B,C ◦
ξ

b←A,B,C = 1(AξB)ξC ,
ξ

b←A,B,C ◦
ξ

b→A,B,C = 1Aξ(BξC),

(
ξ

b 5)
ξ

b←A,B,CξD
◦

ξ

b←AξB,C,D = (1A ξ
ξ

b←B,C,D) ◦
ξ

b←A,BξC,D
◦ (

ξ

b←A,B,C ξ 1D),

(
∧
c

∧
c)

∧
cB,A ◦

∧
cA,B = 1A∧B,

(
∨
c

∨
c)

∨
cA,B ◦

∨
cB,A = 1A∨B ,

(
∧
b

∧
c) (1B ∧ ∧

cC,A) ◦
∧
b←B,C,A ◦

∧
cA,B∧C ◦

∧
b←A,B,C ◦ (

∧
cB,A ∧ 1C) =

∧
b←B,A,C ,

(
∨
b

∨
c) (1B ∨ ∨

cA,C) ◦
∨
b←B,C,A ◦

∨
cB∨C,A ◦

∨
b←A,B,C ◦ (

∨
cA,B ∨ 1C) =

∨
b←B,A,C ,

(d∧) (
∧
b←A,B,C ∨ 1D) ◦ dA∧B,C,D = dA,B∧C,D ◦ (1A ∧ dB,C,D) ◦

∧
b←A,B,C∨D,

(d∨) dD,C,B∨A ◦ (1D ∧
∨
b←C,B,A) =

∨
b←D∧C,B,A ◦ (dD,C,B ∨ 1A) ◦ dD,C∨B,A,

for dRC,B,A =df
∨
cC,B∧A ◦ (

∧
cA,B ∨ 1C) ◦ dA,B,C ◦ (1A ∧ ∨

cB,C) ◦
∧
cC∨B,A:

(C ∨B) ∧A ⊢ C ∨ (B ∧A),

(d
∧
b) dRA∧B,C,D ◦ (dA,B,C ∧ 1D) = dA,B,C∧D ◦ (1A ∧ dRB,C,D) ◦

∧
b←A,B∨C,D,

(d
∨
b) (1D ∨ dC,B,A) ◦ dRD,C,B∨A =

∨
b←D,C∧B,A ◦ (dRD,C,B ∨ 1A) ◦ dD∨C,B,A.

12 CHAPTER 2. COHERENCE OF PROOF-NET CATEGORIES

The set of equations of DS is closed under symmetry and transitivity

of equality and under the rules

(cong ξ)
f = f1 g = g1

f ξ g = f1 ξ g1

where ξ ∈ { ◦ ,∧,∨}; if ξ is ◦ , then f ◦ g is defined (namely, f and g have

appropriate, composable, types), and analogously for f1 ◦ g1.

On the arrow terms of DS we impose the equations of DS. This means

that an arrow of DS is an equivalence class of arrow terms of DS defined

with respect to the smallest equivalence relation such that the equations of

DS are satisfied (see [22], Section 2.3, for details).

The equations (ξ 1) and (ξ 2) are called bifunctorial equations. They

say that ∧ and ∨ are biendofunctors (i.e. 2-endofunctors in the terminology

of [22], Section 2.4).

It is easy to show that for DS we have the equations

(
ξ

b← nat) (f ξ (g ξ h)) ◦
ξ

b←A,B,C =
ξ

b←D,E,F ◦ ((f ξ g) ξ h),

(dR nat) (h ∨ (g ∧ f)) ◦ dRC,B,A = dRF,E,D ◦ ((h ∨ g) ∧ f).

We call these equations and other equations with “nat” in their names, like

those in the list above, naturality equations. Such equations say that
∧
b→,

∧
b←,

∧
c, etc. are natural transformations.

The equations (d∧), (d∨), (d
∧
b) and (d

∨
b) stem from [11] (Section 2.1; see

[10], Section 2.1, for an announcement). The equation (d
∨
b) of [22] (Section

7.2) amounts with (
∨
b

∨
b) to the present one.

§2.2. The category PN¬

The categoryPN¬ is defined asDS save that we make the following changes

and additions. Instead of L∧,∨, we have the propositional language L¬,∧,∨,
which has in addition to what we have for L∧,∨ the unary connective ¬.

To define the arrow terms of PN¬, in the inductive definition we had

for the arrow terms of DS we assume in addition that for all formulae A

and B of L¬,∧,∨ the following primitive arrow terms:

§2.2. The category PN¬ 13

∧
∆B,A: A ⊢ A ∧ (¬B ∨B),
∨
ΣB,A: (B ∧ ¬B) ∨A ⊢ A,

are arrow terms of PN¬. We call the index B of
∧
∆B,A and

∨
ΣB,A the crown

index, and A the stem index. The right conjunct ¬B ∨B in the target of
∧
∆B,A: A ⊢ A ∧ (¬B ∨B) is the crown of

∧
∆B,A, and the left disjunctB ∧ ¬B

in the source of
∨
ΣB,A: (B ∧ ¬B) ∨A ⊢ A is the crown of

∨
ΣB,A. We have

analogous definitions of crown and stem indices, and crowns, for
∧
Σ,

∧
∆
′
,

∧
Σ
′
,

∨
∆,

∨
Σ
′
and

∨
∆
′
, which will be defined below. (The symbol ∆ should be

associated with the Latin dexter, because in
∧
∆B,A,

∧
∆
′
B,A,

∨
∆B,A and

∨
∆
′
B,A

the crown is on the right-hand side of the stem; analogously, Σ should be

associated with sinister.)

To define the arrows of PN¬, we assume in the inductive definition we

had for the equations of DS the following additional equations, which we

call the PN equations (and not PN¬ equations):

(
∧
∆ nat) (f ∧ 1¬B∨B) ◦

∧
∆B,A =

∧
∆B,D ◦ f ,

(
∨
Σ nat) f ◦

∨
ΣB,A =

∨
ΣB,D ◦ (1B∧¬B ∨ f),

(
∧
b

∧
∆)

∧
b←A,B,¬C∨C ◦

∧
∆C,A∧B = 1A ∧

∧
∆C,B ,

(
∨
b

∨
Σ)

∨
ΣC,B∨A ◦

∨
b←C∧¬C,B,A =

∨
ΣC,B ∨ 1A,

for
∧
ΣB,A =df

∧
cA,¬B∨B ◦

∧
∆B,A : A ⊢ (¬B ∨B) ∧A,

(d
∧
Σ) d¬A∨A,B,C ◦

∧
ΣA,B∨C =

∧
ΣA,B ∨ 1C ,

for
∨
∆B,A =df

∨
ΣB,A ◦

∨
cB∧¬B,A : A ∨ (B ∧ ¬B) ⊢ A,

(d
∨
∆)

∨
∆A,C∧B ◦ dC,B,A∧¬A = 1C ∧

∨
∆A,B ,

(
∨
Σ

∧
∆)

∨
ΣA,A ◦ dA,¬A,A ◦

∧
∆A,A = 1A,

for
∧
∆
′
B,A =df (1A ∧ ∨

cB,¬B) ◦
∧
∆B,A : A ⊢ A ∧ (B ∨ ¬B) and

∨
Σ
′
B,A =df

∨
ΣB,A ◦ (

∧
c¬B,B ∨ 1A) : (¬B ∧B) ∨A ⊢ A,

(
∨
Σ
′ ∧
∆
′
)

∨
Σ
′
A,¬A ◦ d¬A,A,¬A ◦

∧
∆
′
A,¬A = 1¬A.

It is easy to show that for PN¬ we have the equations

14 CHAPTER 2. COHERENCE OF PROOF-NET CATEGORIES

(
∧
Σ nat) (1¬B∨B ∧ f) ◦

∧
ΣB,A =

∧
ΣB,D ◦ f ,

(
∨
∆ nat) f ◦

∨
∆B,A =

∨
∆B,D ◦ (f ∨ 1B∧¬B).

The naturality equations (
∧
∆ nat) and (

∨
Σ nat) together with these say that

∧
∆,

∨
Σ,

∧
Σ and

∨
∆ are natural transformations in the stem index only, i.e. in

the second index.

We also have the following abbreviations:

∧
Σ
′
B,A =df

∧
cA,B∨¬B ◦

∧
∆
′
B,A : A ⊢ (B ∨ ¬B) ∧A,

∨
∆
′
B,A=df

∨
Σ
′
B,A

◦
∨
c¬B∧B,A : A ∨ (¬B ∧B) ⊢ A.

If Ξ stands for either ∆ or Σ and ξ ∈ {∧,∨}, then for every (
ξ

Ξ nat) equation

we have in PN¬ the equation (
ξ

Ξ
′
nat), which differs from (

ξ

Ξ nat) by re-

placing
ξ

Ξ by
ξ

Ξ
′
, and the index of 1 by the appropriate index. For example,

we have

(
∧
∆
′
nat) (f ∧ 1B∨¬B) ◦

∧
∆
′
B,A =

∧
∆
′
B,D

◦ f .

As alternative primitive arrow terms for defining PN¬ we could take one

of
∧
Ξ or

∧
Ξ
′
and one of

∨
Ξ or

∨
Ξ
′
.

We can also derive for PN¬ the following equations:

(
∧
b

∧
∆

∧
Σ)

∧
b←A,¬B∨B,C ◦ (

∧
∆B,A ∧ 1C) = 1A ∧

∧
ΣB,C ,

(
∧
b

∧
Σ)

∧
b→¬C∨C,B,A ◦

∧
ΣC,B∧A =

∧
ΣC,B ∧ 1A.

For the first equation, with indices omitted, we have

∧
b← ◦ (

∧
∆ ∧ 1) =

∧
b← ◦

∧
c ◦ (1 ∧

∧
∆) ◦

∧
c, by (

∧
c

∧
c) and (

∧
c nat),

=
∧
b← ◦

∧
c ◦

∧
b← ◦

∧
∆ ◦

∧
c, by (

∧
b

∧
∆),

= (1 ∧ ∧
c) ◦

∧
b← ◦

∧
∆, with (

∧
∆ nat) and (

∧
b

∧
c),

= 1 ∧
∧
Σ, by (

∧
b

∧
∆),

and for the second equation we have

§2.2. The category PN¬ 15

∧
b→ ◦

∧
Σ =

∧
b→ ◦

∧
c ◦

∧
b→ ◦ (1 ∧

∧
∆), with (

∧
b

∧
∆),

= (
∧
c ∧ 1) ◦

∧
b→ ◦ (1 ∧ ∧

c) ◦ (1 ∧
∧
∆), by (

∧
b

∧
c),

=
∧
Σ ∧ 1, with (

∧
b

∧
∆

∧
Σ).

We derive analogously with the help of (
∨
b

∨
Σ) the equations

(
∨
b

∨
∆

∨
Σ) (

∨
∆B,A ∨ 1C) ◦

∨
b→A,B∧¬B,C = 1A ∨

∨
ΣB,C ,

(
∨
b

∨
∆)

∨
∆C,A∨B ◦

∨
b→A,B,C∧¬C = 1A ∨

∨
∆C,B .

The arrows
∧
∆B,A: A ⊢ A ∧ (¬B ∨B) and

∧
ΣB,A: A ⊢ (¬B ∨ B) ∧ A are

analogous to the arrows of types A ⊢ A ∧ ⊤ and A ⊢ ⊤ ∧A that one finds

in monoidal categories. However,
∧
∆B,A and

∧
ΣB,A do not have inverses in

PN¬. The equations (
∧
b

∧
∆), (

∧
b

∧
∆

∧
Σ), (

∧
b

∧
Σ) are analogous to equations that

hold in monoidal categories (see [38], Section VII.1, [22], Section 4.6, and

§3.1 below). An analogous remark can be made for
∨
ΣB,A and

∨
∆B,A.

We can also derive for PN¬ the following equations by using essentially

(d
∧
Σ) and (d

∨
∆):

(dR
∧
∆) dRC,B,¬A∨A ◦

∧
∆A,C∨B = 1C ∨

∧
∆A,B ,

(dR
∨
Σ)

∨
ΣA,B∧C ◦ dRA∧¬A,B,C =

∨
ΣA,B ∧ 1C .

These two equations could replace (d
∧
Σ) and (d

∨
∆) for defining PN¬. The

analogues of the equations (d
∧
Σ), (d

∨
∆), (dR

∧
∆) and (dR

∨
Σ) may be found

in [11] (Section 2.1), where they are assumed for linearly (alias weakly)

distributive categories with negation (cf. [22], Section 7.9).

It is easy to infer that in PN¬ we have analogues of the equations (
∧
b

∧
∆),

(
∧
b

∧
∆

∧
Σ), (

∧
b

∧
Σ), (

∨
b

∨
Σ), (

∨
b

∨
∆

∨
Σ), (

∨
b

∨
∆), (d

∧
Σ), (d

∨
∆), (dR

∧
∆) and (dR

∨
Σ) obtained

by replacing
ξ

Ξ by
ξ

Ξ
′
, and the indices of the form ¬B ∨B and B ∧ ¬B by

B ∨ ¬B and ¬B ∧B respectively. For example, we have

(
∧
b

∧
∆
′
)

∧
b←A,B,C∨¬C ◦

∧
∆
′
C,A∧B = 1A ∧

∧
∆
′
C,B .

We can also derive for PN¬ the following equations by using essentially

(
∨
Σ

∧
∆) and (

∨
Σ
′ ∧
∆
′
):

16 CHAPTER 2. COHERENCE OF PROOF-NET CATEGORIES

(
∨
∆
′ ∧
Σ
′
)

∨
∆
′
A,A

◦ dRA,¬A,A ◦
∧
Σ
′
A,A = 1A,

(
∨
∆

∧
Σ)

∨
∆A,¬A ◦ dR¬A,A,¬A ◦

∧
ΣA,¬A = 1¬A.

These two equations could replace (
∨
Σ

∧
∆) and (

∨
Σ
′ ∧
∆
′
) for defining PN¬. The

equations (
∨
Σ

∧
∆), (

∨
Σ
′ ∧
∆
′
), (

∨
∆
′ ∧
Σ
′
) and (

∨
∆

∧
Σ) are related to the triangular

equations of an adjunction (see [38], Section IV.1, and §5.1 below; see also

the next section). The analogues of these equations may be found in [11]

(Section 4).

A proof-net category is a category with two biendofunctors ∧ and ∨, a
unary operation ¬ on objects, and the natural transformations

∧
b→,

∧
b←,

∨
b→,

∨
b←,

∧
c,

∨
c, d,

∧
∆ and

∨
Σ that satisfy the equations (

ξ

b 5), (
ξ

b
ξ

b), . . . , (
∨
Σ
′ ∧
∆
′
) of

PN¬. The category PN¬ is up to isomorphism the free proof-net category

generated by the set of letters P (the set P may be understood as a discrete

category).

If β is a primitive arrow term of PN¬ except 1B , then we call β-terms

of PN¬ the set of arrow terms defined inductively as follows: β is a β-term;

if f is a β-term, then for every A in L∧,∨ we have that 1A ξ f and f ξ 1A,

where ξ ∈ {∧,∨}, are β-terms.

In a β-term the subterm β is called the head of this β-term. For example,

the head of the
∧
b→B,C,D-term 1A ∧ (

∧
b→B,C,D ∨ 1E) is

∧
b→B,C,D.

We define 1-terms as β-terms by replacing β in the definition above by

1B . So 1-terms are headless.

An arrow term of the form fn ◦ . . . ◦ f1, where n ≥ 1, with parentheses

tied to ◦ associated arbitrarily, such that for every i ∈ {1, . . . , n} we have

that fi is composition-free is called factorized. In a factorized arrow term

fn ◦ . . . ◦ f1 the arrow terms fi are called factors. A factor that is a β-term

for some β is called a headed factor. A factorized arrow term is called

headed when each of its factors is either headed or a 1-term. A factorized

arrow term fn ◦ . . . ◦ f1 is called developed when f1 is a 1-term and if n > 1,

then every factor of fn ◦ . . . ◦ f2 is headed. It is sometimes useful to write

the factors of a headed arrow term one above the other, as it is done for

example in Figure 1 at the end of §2.5.
By using the categorial equations (cat 1) and (cat 2) and bifunctorial

equations we can easily prove by induction on the length of f the following

§2.3. The category Br 17

lemma.

Development Lemma. For every arrow term f there is a developed arrow

term f ′ such that f = f ′ in PN¬.

Analogous definitions of β-term and developed arrow term can be given for

DS, and an analogous Development Lemma can be proved for DS.

§2.3. The category Br

We are now going to introduce a category called Br, which will serve to

prove our main coherence result for proof-net categories. We will show

that there is a faithful functor from PN¬ to Br. The name of the category

Br comes from “Brauerian”. The arrows of this category correspond to

graphs, or diagrams, that were introduced in [7] in connection with Brauer

algebras (see [45]). Analogous graphs were investigated in [23], and in [32]

Kelly and Mac Lane relied on them to prove their coherence result for

symmetric monoidal closed categories (see §3.1).
Let M be a set whose subsets are denoted by X, Y , Z, . . . For i ∈ {s, t}

(where s stands for “source” and t for “target”), let Mi be a set in one-

to-one correspondence with M, and let i : M → Mi be a bijection. Let Xi

be the subset of Mi that is the image of the subset X of M under i. If

u ∈ M, then we use ui as an abbreviation for i(u). We assume also that

M, Ms and Mt are mutually disjoint.

For X,Y ⊆ M, let a split relation of M be a triple ⟨R,X, Y ⟩ such that

R ⊆ (Xs ∪ Y t)2. The set Xs ∪ Y t may be conceived as the disjoint union

of X and Y . We denote a split relation ⟨R,X, Y ⟩ more suggestively by

R : X ⊢ Y .

A split relation R : X ⊢ Y is a split equivalence when R is an equivalence

relation. We denote by part(R) the partition of Xs ∪ Y t corresponding to

the split equivalence R : X ⊢ Y .

We say that a split equivalence R : X ⊢ Y is Brauerian when every mem-

ber of part(R) is a two-element set. For R : X ⊢ Y a Brauerian split equiva-

lence, every member of part(R) is either of the form {us, vt}, in which case

it is called a transversal, or of the form {us, vs}, in which case it is called a

cup, or, finally, of the form {ut, vt}, in which case it is called a cap.

18 CHAPTER 2. COHERENCE OF PROOF-NET CATEGORIES

For X,Y, Z ⊆ M, we want to define the composition P ∗R : X ⊢ Z of

the split relations R : X ⊢ Y and P : Y ⊢ Z of M. For that we need some

auxiliary notions.

For X,Y ⊆ M, let the function φs : X ∪ Y t → Xs ∪ Y t be defined by

φs(u) =

{
us if u ∈ X
u if u ∈ Y t,

and let the function φt : Xs ∪ Y → Xs ∪ Y t be defined by

φt(u) =

{
u if u ∈ Xs

ut if u ∈ Y.

For a split relation R : X ⊢ Y , let the relations R−s ⊆ (X ∪ Y t)2 and

R−t ⊆ (Xs ∪ Y)2 be defined by

(u, v) ∈ R−i iff (φi(u), φi(v)) ∈ R

for i ∈ {s, t}. Finally, for an arbitrary binary relation R, let Tr(R) be the

transitive closure of R.

Then we define P ∗R by

P ∗R =df Tr(R
−t ∪ P−s) ∩ (Xs ∪ Zt)2.

It is easy to conclude that P ∗R : X ⊢ Z is a split relation of M, and that

if R : X ⊢ Y and P : Y ⊢ Z are (Brauerian) split equivalences, then P ∗R
is a (Brauerian) split equivalence.

We now define the category Br. The objects of Br are the members of

the set of finite ordinals N . (We have 0 = ∅ and n+1 = n ∪ {n}, while N

is the ordinal ω.) The arrows of Br are the Brauerian split equivalences

R : m ⊢ n of N . The identity arrow 1n : n ⊢ n of Br is the Brauerian split

equivalence such that

part(1n) = {{ms,mt} | m < n}.

Composition in Br is the operation ∗ defined above.

That Br is indeed a category (i.e. that ∗ is associative and that 1n is

an identity arrow) is proved in [20] and [21]. This proof is obtained via

an isomorphic representation of Br in the category Rel, whose objects are

§2.3. The category Br 19

the finite ordinals and whose arrows are all the relations between these

objects. Composition in Rel is the ordinary composition of relations. A

direct formal proof would be more involved, though what we have to prove

is rather clear if we represent Brauerian split equivalences geometrically (as

this is done in [7], [23], and also in categories of tangles; see [31], Chapter

12, and references therein).

For example, for R ⊆ (3s ∪ 9t)2 and P ⊆ (9s ∪ 1t)2 such that

part(R) = {{0s, 0t}, {1s, 3t}, {2s, 6t}} ∪ {{nt, (n+1)t} | n ∈ {1, 4, 7}},

part(P) = {{2s, 0t}} ∪ {{ns, (n+1)s} | n ∈ {0, 3, 5, 7}},

the composition P ∗R ⊆ (3s ∪ 1t)2, for which we have

part(P ∗R) = {{0s, 0t}, {1s, 2s}},

is obtained from the following diagram:

�
�
��

@
@

@@

HHHHHHHH

q
q q q q q q q q q
q q q

��
��

����
��

��
��

0

0 1 2 3 4 5 6 7 8

0 1 2

R

P

Every bijection f fromXs to Y t corresponds to a Brauerian split equiva-

lence R : X ⊢ Y such that the members of part(R) are of the form {u, f(u)}.
The composition of such Brauerian split equivalences, which correspond to

bijections, is then a simple matter: it amounts to composition of these

bijections. If in Br we keep as arrows only such Brauerian split equiv-

alences, then we obtain a subcategory of Br isomorphic to the category

Bij whose objects are again the finite ordinals and whose arrows are the

bijections between these objects. The category Bij is a subcategory of the

category Rel (which played an important role in [22]), whose objects are the

finite ordinals and whose arrows are all the relations between these objects.

Composition in Bij and Rel is the ordinary composition of relations. The

20 CHAPTER 2. COHERENCE OF PROOF-NET CATEGORIES

category Rel is isomorphic to a subcategory of the category whose arrows

are split relations of finite ordinals, of whom Br is also a subcategory.

We define a functor G from PN¬ to Br in the following way. On objects,

we stipulate that GA is the number of occurrences of letters in A. (If A

has n = {0, 1, . . . , n−1} occurrences of letters, then the first occurrence

corresponds to 0, the second to 1, etc.)On arrows, we have first that Gα is

an identity arrow of Br for α being 1A,
ξ

b→A,B,C ,
ξ

b←A,B,C and dA,B,C , where

ξ ∈ {∧,∨}.
Next, for i, j ∈ {s, t}, we have that {mi, nj} belongs to part(G

∧
cA,B) iff

{ni,mj} belongs to part(G
∨
cA,B), iff i is s and j is t, while m,n < GA+GB

and

(m−n−GA)(m−n+GB) = 0.

In the following example, we haveG(p ∨ q) = 2 = {0, 1} andG((q∨¬r)∨q)=
3 = {0, 1, 2}, and we have the diagrams

@
@

@
@

@
@

@
@

@
@

@
@

�
�

�
�
�
�

�
�
�
�

�
�

J
J

J
J

J
JJ

J
J

J
J

J
JJ

J
J

J
J

J
JJ

q q q q q q q q q q

q q q q q q q q q q

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

G
∧
cp∨q,(q∨¬r)∨q G

∨
cp∨q,(q∨¬r)∨q

(p ∨ q) ∧ ((q ∨ ¬r) ∨ q)

((q ∨ ¬r) ∨ q) ∧ (p ∨ q)

((q ∨ ¬r) ∨ q) ∨ (p ∨ q)

(p ∨ q) ∨ ((q ∨ ¬r) ∨ q)

We have that {mi, nj} belongs to part(G
∧
∆B,A) iff either

i is s and j is t, while m,n < GA and m = n, or

i and j are both t, while m,n ∈ {GA, . . . , GA+2GB−1} and

|m−n| = GB.

In the following example, for A being (q ∨ ¬r) ∨ q and B being p ∨ q, we

have

§2.3. The category Br 21

q q q q q q q

q q q

0 1 2 3 4 5 6

0 1 2

'$'$G
∧
∆p∨q,(q∨¬r)∨q

((q ∨ ¬r) ∨ q) ∧ (¬(p ∨ q) ∨ (p ∨ q))

(q ∨ ¬r) ∨ q

We have that {mi, nj} belongs to part(G
∨
ΣB,A) iff either

i is s and j is t, while m ∈ {2GB, . . . , 2GB+GA−1}, n < GA

and m−2GB = n, or

i and j are both s, while m,n < 2GB and |m−n| = GB.

For A and B being as in the previous example, we have

q q q q q q q

q q q

0 1 2 3 4 5 6

0 1 2

& %& %
G

∨
Σp∨q,(q∨¬r)∨q

(q ∨ ¬r) ∨ q

((p ∨ q) ∧ ¬(p ∨ q)) ∨ ((q ∨ ¬r) ∨ q)

Let G(f ◦ g) = Gf ∗Gg. To define G(f ξ g), for ξ ∈ {∧,∨}, we need an

auxiliary notion.

Suppose bX is a bijection from X to X1 and bY a bijection from Y to

Y1. Then for R ⊆ (Xs ∪ Y t)2 we define RbXbY ⊆ (Xs
1 ∪ Y t

1)
2 by

(ui, vj) ∈ RbXbY iff (i(b−1U (u)), j(b−1V (v))) ∈ R,

where (i, U), (j, V) ∈ {(s,X), (t, Y)}.
If f : A ⊢ D and g : B ⊢ E, then for ξ ∈ {∧,∨} the set of ordered pairs

G(f ξ g) is

Gf ∪Gg+GA+GD

22 CHAPTER 2. COHERENCE OF PROOF-NET CATEGORIES

where +GA is the bijection from GB to {n+GA | n ∈ GB} that assigns

n+GA to n, and +GD is the bijection from GE to {n+GD | n ∈ GE}
that assigns n+GD to n.

It is not difficult to check that G so defined is indeed a functor from

PN¬ to Br. For that, we determine by induction on the length of derivation

that for every equation f = g of PN¬ we have Gf = Gg in Br.

Consider, for example, the following diagram, which illustrates an in-

stance of (
∨
Σ

∧
∆):

�
�
�
�

�
�
�
�

#
#
#
#
#

#
#
#
#
#

& %& %

'$'$

∨
Σp∧q,p∧q

dp∧q,¬(p∧q),p∧q

∧
∆p∧q,p∧q

p ∧ q

((p ∧ q) ∧ ¬(p ∧ q))∨(p ∧ q)

(p ∧ q)∧(¬(p ∧ q) ∨ (p ∧ q))

p ∧ q

This diagram shows that the equation (
∨
Σ

∧
∆), as well as the equation (

∨
Σ
′ ∧
∆
′
),

which is illustrated by analogous diagrams, is related to triangular equations

of adjunctions (cf. [14], Section 4.10, and [16], Section 7). The triangular

equations of adjunctions are essentially about “straightening a sinuosity”,

and this straightening is based on planar ambient isotopies of knot theory

(cf. [8], Section 1.A).

We have shown by this induction that Br is a proof-net category, and

the existence of a structure-preserving functor G from PN¬ to Br follows

from the freedom of PN¬.

We can define analogously to G a functor, which we also call G, from the

category DS to Br. We just omit from the definition of G above the clauses

involving
∧
∆B,A and

∨
ΣB,A. The image of DS by G in Br is the subcategory

of Br isomorphic to Bij, which we mentioned above. The following is proved

in [22] (Section 7.6).

§2.4. Some properties of DS 23

DS Coherence. The functor G from DS to Br is faithful.

It follows immediately from this coherence result that DS is isomorphic to

a subcategory of PN¬ (cf. [22], Section 14.4).

Up to the end of §2.7 we will be occupied with proving the following.

PN¬ Coherence. The functor G from PN¬ to Br is faithful.

For this proof, we must deal first with some preliminary matters.

§2.4. Some properties of DS

In this section we will prove some results about the category DS, which we

will use to ascertain that particular equations hold in PN¬. We need these

results also for the proof of PN¬ Coherence.

First we introduce a definition. Suppose x is the n-th occurrence of

a letter (counting from the left) in a formula A of L¬,∧,∨, and y is the

m-th occurrence of the same letter in a formula B of L¬,∧,∨. Then we say

that x and y are tied in an arrow f : A ⊢ B of PN¬ when in the partition

part(Gf) we have {(n−1)s, (m−1)t} as a member. (Note that to find

the n-th occurrence we count starting from 1, but the ordinal n > 0 is

{0, . . . , n−1}.) We have an analogous definition of tied occurrences of the

same letter for DS: we just replace L¬,∧,∨ by L∧,∨ and PN¬ by DS.

It is easy to establish by induction on the complexity of f that for every

arrow term f : A ⊢ B ofDS we haveGA = GB. Moreover, every occurrence

of letter in A is tied to exactly one occurrence of the same letter in B, and

vice versa. This is related to the fact that every arrow term f : A ⊢ B of

DS may be obtained by substituting letters for letters out of an arrow term

f ′ : A′ ⊢ B′ of DS such that every letter occurs in A′ at most once, and the

same for B′ (see [22], Sections 3.3 and 7.6).

Suppose for Lemmata 1D and 2D below that f : A ⊢ B is an arrow term

of DS such that A has a subformula D in which ∧ does not occur and B

has a subformula D′ in which ∧ does not occur, and suppose that every

occurrence of a letter in D is tied to an occurrence of a letter in D′ and

vice versa. Then we can prove the following.

Lemma 1D. The source A of f is D iff the target B of f is D′.

24 CHAPTER 2. COHERENCE OF PROOF-NET CATEGORIES

This follows from the fact, noted above, that GA = GB. The arrow term f

in this case can have as subterms that are primitive arrow terms only arrow

terms of the forms 1E ,
∨
b→E,F,G,

∨
b←E,F,G or

∨
cE,F . We also have the following.

Lemma 2D. If D ∧A′ or A′ ∧D is a subformula of A, then D′ ∧B′ or

B′ ∧D′ is a subformula of B for some B′.

We will not go into the inductive proof of this lemma, in which we use

Lemma 1D, because we need just a corollary of this lemma (Lemma 2

below), which is more easily proved directly.

Suppose for Lemmata 1C and 2C below that f : A ⊢ B is an arrow term

of DS such that B has a subformula C in which ∨ does not occur and A

has a subformula C ′ in which ∨ does not occur, and suppose that every

occurrence of a letter in C is tied to an occurrence of a letter in C ′ and vice

versa. Then we have the following duals of Lemmata 1D and 2D, proved

in an analogous manner.

Lemma 1C. The target B of f is C iff the source A of f is C ′.

Lemma 2C. If C ∨B′ or B′ ∨ C is a subformula of B, then C ′ ∨A′ or

A′ ∨ C ′ is a subformula of A for some A′.

Suppose for the following lemma, which is a corollary of either Lemma 2D

or Lemma 2C, that f : A ⊢ B is an arrow term of DS such that an occur-

rence x of a letter p in A is tied to an occurrence y of p in B. This lemma

is easily proved by induction on the complexity of f .

Lemma 2. It is impossible that A has a subformula x ∧A′ or A′ ∧ x and

B has a subformula y ∨B′ or B′ ∨ y.

Suppose for Lemmata 3D, 3C, 3 and 4 below that f : A ⊢ B is an arrow

term of DS, and for i ∈ {1, 2} let xi in A and yi in B be occurrences of the

letter pi tied in f (here p1 and p2 may also be the same letter).

Lemma 3D. If in A we have a subformula A1 ∨A2 such that xi occurs in

Ai, then in B we have a subformula B1 ∨B2 or B2 ∨B1 such that yi occurs

in Bi.

§2.4. Some properties of DS 25

This is easily proved by induction on the complexity of the arrow term f .

We prove analogously the following.

Lemma 3C. If in B we have a subformula B1 ∧B2 such that yi occurs in

Bi, then in A we have a subformula A1 ∧A2 or A2 ∧A1 such that xi occurs

in Ai.

As a corollary of either Lemma 3D or Lemma 3C we have the following.

Lemma 3. It is impossible that A has a subformula x1 ∨ x2 or x2 ∨ x1 and

B has a subformula y1 ∧ y2 or y2 ∧ y1.

The following lemma, dual to Lemma 3, is a corollary of Lemma 2.

Lemma 4. It is impossible that A has a subformula x1 ∧ x2 or x2 ∧ x1 and

B has a subformula y1 ∨ y2 or y2 ∨ y1.

Lemma 3 is related to the acyclicity condition of proof nets, while Lemma 4

is related to the connectedness condition (see §7.1).
Next we can prove the following lemma.

p-q-r Lemma. Let f : A ⊢ B be an arrow of DS, let xi for i ∈ {1, 2, 3}
be occurrences of the letters p, q and r, respectively, in A, and let yi be

occurrences of the letters p, q and r, respectively, in B, such that xi and

yi are tied in f . Let, moreover, x2 ∨ x3 be a subformula of A and y1 ∧ y2

a subformula of B. Then there is a dp,q,r-term h : A′ ⊢ B′ such that x′i are

occurrences of the letters p, q and r, respectively, in the source p ∧ (q ∨ r) of

the head of h and y′i are occurrences of the letters p, q and r, respectively, in

the target (p ∧ q) ∨ r of the head of h, such that for some arrows fx : A ⊢ A′

and fy : B
′ ⊢ B of DS we have f = fy ◦h ◦ fx in DS, and xi is tied to x′i in

fx, while y′i is tied to yi in fy.

Proof. The proof of this lemma, of which we give just a sketch, relies on a

cut-elimination and related results of [22] (Sections 7.7-8). We first find in

the category GDS introduced in [22] (Section 7.7) a cut-free Gentzen term

f ′ : X ⊢ Y , which corresponds to f , by the relationship that exists between

DS andGDS. According to the equations at the beginning of Section 7.8 of

[22], which are used for the proof of the Invertibility Lemmata in the same

26 CHAPTER 2. COHERENCE OF PROOF-NET CATEGORIES

section, in GDS we have the equation f ′ = f ′′ for a Gentzen term f ′′ that

has as a subterm either ∧p,q(1p,∨q,r(1q,1r)) or ∨q,r(∧p,q(1p,1q),1r) both
of type p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ r. By the relationship that exists between

DS and GDS, we can find starting from f ′′ an arrow term fy ◦h ◦ fx equal

to f in DS, which satisfies the conditions of the lemma. ⊣

The full force of the Cut-Elimination Theorem of Section 7.7 of [22] is

not essential for this proof, but applying this theorem simplifies the proof.

§2.5. The category PN

We now introduce a category calledPN, which is equivalent toPN¬. In the

objects of PN, the negation connective ¬ will be prefixed only to letters,

and hence
∧
∆B,A and

∨
ΣB,A will be primitive only for the crown index B

being a letter. Here is the formal definition of PN.

For P being the set of letters that we used to generate L∧,∨ and L¬,∧,∨
in §§2.1-2, let P¬ be the set {¬p | p ∈ P}. The objects of PN are the

formulae of the propositional language L¬p∧,∨ generated from P ∪ P¬ with

the binary connectives ∧ and ∨. To define the arrow terms of PN, in

the inductive definition we had for the arrow terms of DS we assume in

addition that for every formula A of L¬p∧,∨ and every letter p

∧
∆p,A: A ⊢ A ∧ (¬p ∨ p),
∨
Σp,A: (p ∧ ¬p) ∨A ⊢ A

are primitive arrow terms of PN.

To define the arrows of PN, we assume as additional equations in the

inductive definition we had for the equations of DS the PN equations of

§2.2 restricted to the arrow terms
∧
∆p,A and

∨
Σp,A. This means that in

(
∧
∆ nat) and (

∨
Σ nat) the crown index B will be p, in (

∧
b

∧
∆) and (

∨
b

∨
Σ) the

crown index C will be p, and in (d
∧
Σ), (d

∨
∆), (

∨
Σ

∧
∆) and (

∨
Σ
′ ∧
∆
′
) the crown

index A will be p. We define
∧
Σp,A,

∨
∆p,A,

∧
∆
′
p,A,

∨
Σ
′
p,A,

∧
Σ
′
p,A and

∨
∆
′
p,A for

PN as they were defined in PN¬ in terms of
∧
∆p,A and

∨
Σp,A.

The following equations of PN, and hence also of PN¬, which we call

stem-increasing equations, enable us to have in developed arrow terms only
∧
∆A,B-terms and

∨
ΣA,B-terms that coincide with their heads:

§2.5. The category PN 27

(1 ∧
∧
∆) 1A ∧

∧
∆p,B =

∧
b←A,B,¬p∨p ◦

∧
∆p,A∧B , by (

∧
b

∧
∆),

(
∧
∆ ∧ 1)

∧
∆p,B ∧ 1A =

∧
cA,B∧(¬p∨p) ◦

∧
b←A,B,¬p∨p ◦ (

∧
cB,A ∧ 1¬p∨p) ◦

∧
∆p,B∧A,

by (
∧
c

∧
c), (

∧
c nat), (1 ∧

∧
∆) and (

∧
∆ nat),

(1 ∨
∧
∆) 1A ∨

∧
∆p,B = dRA,B,¬p∨p ◦

∧
∆p,A∨B, by (dR

∧
∆),

(
∧
∆ ∨ 1)

∧
∆p,B ∨ 1A =

∨
cB∧(¬p∨p),A ◦ dRA,B,¬p∨p ◦ (

∨
cA,B ∧ 1¬p∨p) ◦

∧
∆p,B∨A,

by (
∨
c

∨
c), (

∨
c nat), (1 ∨

∧
∆) and (

∧
∆ nat),

(
∨
Σ ∨ 1)

∨
Σp,B ∨ 1A =

∨
Σp,B∨A ◦

∨
b←p∧¬p,B,A, by (

∨
b

∨
Σ),

(1 ∨
∨
Σ) 1A ∨

∨
Σp,B =

∨
Σp,A∨B ◦ (1p∧¬p∨

∨
cA,B) ◦

∨
b←p∧¬p,B,A ◦

∨
c(p∧¬p)∨B,A,

by (
∨
c

∨
c), (

∨
c nat), (

∨
Σ ∨ 1) and (

∨
Σ nat),

(
∨
Σ ∧ 1)

∨
Σp,B ∧ 1A =

∨
Σp,B∧A ◦ dRp∧¬p,B,A, by (dR

∨
Σ),

(1 ∧
∨
Σ) 1A ∧

∨
Σp,B =

∨
Σp,A∧B ◦ (1p∧¬p ∨

∧
cB,A) ◦ dRp∧¬p,B,A ◦

∧
cA,(p∧¬p)∨B ,

by (
∧
c

∧
c), (

∧
c nat), (

∨
Σ ∧ 1) and (

∨
Σ nat).

Note that in the stem-increasing equations the stem index B of
∧
∆ and

∨
Σ

becomes more complex on the right-hand sides, whereas the crown index p

does not change. We have analogous stem-increasing equations for
∧
Σ,

∧
∆
′
,

∧
Σ
′
,

∨
∆,

∨
Σ
′
and

∨
∆
′
.

We will next prove several lemmata concerning PN, which we will find

useful for calculations later on. For these lemmata we need the following.

Let DS¬p be the category defined as DS save that it is generated not

by P, but by P ∪ P¬. So the objects of DS¬p are formulae of L¬p∧,∨, i.e.
the objects of PN. For A and B formulae of L¬p∧,∨, we define when an

occurrence of p in A is tied to an occurrence of p in B in an arrow f : A ⊢ B

of DS¬p analogously to what we had at the beginning of the preceding

section.

Let
ξ

Ξ for ξ ∈ {∧,∨} stand for either
ξ

∆, or
ξ

∆
′
, or

ξ

Σ, or
ξ

Σ
′
, and let a

ξ

ΞB,A-term be defined as a β-term in §2.2, save that β is replaced by
ξ

ΞB,A.

We use also Θ as a variable alternative to Ξ. Then we have the following.

28 CHAPTER 2. COHERENCE OF PROOF-NET CATEGORIES

∧
Ξ-Permutation Lemma. Let g : C ⊢ D be a

∧
Ξp,B-term of PN such that

x1 and ¬x2 are respectively the occurrences within D of p and ¬p in the

crown of the head
∧
Ξp,B of g, and let f : D ⊢ E be an arrow term of DS¬p

such that we have an occurrence y1 of p and an occurrence ¬y2 of ¬p within

a subformula of E of the form y1 ∨ ¬y2 or ¬y2 ∨ y1, and xi is tied to yi for

i ∈ {1, 2} in f . Then there is a
∧
Θp,B′-term g′ : D′ ⊢ E of PN the crown of

whose head is y1 ∨ ¬y2 or ¬y2 ∨ y1, and there is an arrow term f ′ : C ⊢ D′

of DS¬p such that in PN we have f ◦ g = g′ ◦ f ′.

Proof. By the Development Lemma we can assume that f is a developed

arrow term, and then it is enough to consider the case when f is either a

β-term for β a primitive arrow term of DS¬p or f is 1E . Note that in the

developed arrow term fn ◦ . . . ◦ f1, which is equal to f , we have that f1 is

1D, and that f2, if it exists, cannot be a dB,p,¬p-term or a dB,¬p,p-term

such that x1 and ¬x2 are the occurrences of p and ¬p in the right conjunct

of the source B ∧ (¬p ∨ p) or B ∧ (p ∨ ¬p) of the head of f2. Otherwise, in

the target of the head of f2 we would obtain as the left disjunct B ∧ ¬p or

B ∧ p, which together with Lemma 2 would contradict the conditions put on

f , and hence also on fn ◦ . . . ◦ f1, in the formulation of the
∧
Ξ-Permutation

Lemma.

The case when f is 1E is trivial, and there are also many easy cases

settled by bifunctorial and naturality equations. The remaining, more in-

teresting, cases are settled by the following equations of PN:

∧
b→A,B,¬p∨p ◦ (1A ∧

∧
∆p,B) =

∧
∆p,A∧B , by (

∧
b

∧
∆),

∧
b←B1,B2,¬p∨p

◦
∧
∆p,B1∧B2 = 1B1 ∧

∧
∆p,B2 , by (

∧
b

∧
∆),

∧
b→A,¬p∨p,B ◦ (1A ∧

∧
Σp,B) =

∧
∆p,A ∧ 1B, by (

∧
b

∧
∆

∧
Σ),

∧
b←B,¬p∨p,A ◦ (

∧
∆p,B ∧ 1A)= 1B ∧

∧
Σp,A, by (

∧
b

∧
∆

∧
Σ),

∧
b→¬p∨p,B1,B2

◦
∧
Σp,B1∧B2 =

∧
Σp,B1 ∧ 1B2 , by (

∧
b

∧
Σ),

∧
b←¬p∨p,B,A ◦ (

∧
Σp,B ∧ 1A) =

∧
Σp,B∧A, by (

∧
b

∧
Σ),

∧
cB,¬p∨p ◦

∧
∆p,B =

∧
Σp,B , by definition,

∧
c¬p∨p,B ◦

∧
Σp,B =

∧
∆p,B , by definition and (

∧
c

∧
c),

§2.5. The category PN 29

(1B ∧ ∨
cp,¬p) ◦

∧
∆p,B =

∧
∆
′
p,B , by definition,

(
∨
cp,¬p ∧ 1B) ◦

∧
Σp,B =

∧
Σ
′
p,B , by definition and (

∧
c nat),

d¬p∨p,B1,B2
◦

∧
Σp,B1∨B2 =

∧
Σp,B1 ∨ 1B2 , by (d

∧
Σ).

Besides these equations, we have analogous equations where ¬p ∨ p is re-

placed by p ∨ ¬p, while
∧
∆ and

∧
Σ are replaced by

∧
∆
′
and

∧
Σ
′
respectively,

and vice versa. ⊣

We prove analogously the following dual of the preceding lemma.

∨
Ξ-Permutation Lemma. Let g : D ⊢ C be a

∨
Ξp,B-term of PN such that

x1 and ¬x2 are respectively the occurrences within D of p and ¬p in the

crown of the head
∨
Ξp,B of g, and let f : E ⊢ D be an arrow term of DS¬p

such that we have an occurrence y1 of p and an occurrence ¬y2 of ¬p within

a subformula of E of the form y1 ∧ ¬y2 or ¬y2 ∧ y1, and yi is tied to xi for

i ∈ {1, 2} in f . Then there is a
∨
Θp,B′-term g′ : E ⊢ D′ of PN the crown of

whose head is y1 ∧ ¬y2 or ¬y2 ∧ y1, and there is an arrow term f ′ : D′ ⊢ C

of DS¬p such that in PN we have g ◦ f = f ′ ◦ g′.

Next we prove the following lemma, which involves the p-q-r Lemma of

the preceding section.

p-¬p-p Lemma. Let x1, ¬x2 and x3 be occurrences of p, ¬p and p, respec-

tively, in a formula A of L¬p∧,∨, and let y1, ¬y2 and y3 be occurrences of p,

¬p and p, respectively, in a formula B of L¬p∧,∨. Let ¬x2 ∨ x3 or x3 ∨ ¬x2

be a subformula of A and y1 ∧ ¬y2 or ¬y2 ∧ y1 a subformula of B. Let

g1 : A
′ ⊢ A be a

∧
Ξp,C-term of PN such that ¬x2 ∨ x3 or x3 ∨ ¬x2 is the

crown of the head of g1, let g2 : B ⊢ B′ be a
∨
Θp,D-term of PN such that

y1 ∧ ¬y2 or ¬y2 ∧ y1 is the crown of the head of g2, and let f : A ⊢ B be

an arrow term of DS¬p such that xi and yi are tied in f for i ∈ {1, 2, 3}.
Then g2 ◦ f ◦ g1 is equal in PN to an arrow term of DS¬p.

Proof. By the p-q-r Lemma, f : A ⊢ B is equal in DS¬p, and hence also

in PN, to an arrow term of the form fy ◦h ◦ fx, where h is a dp,¬p,p-term,

and the other conditions of the p-q-r Lemma are satisfied. So in PN we

30 CHAPTER 2. COHERENCE OF PROOF-NET CATEGORIES

have

g2 ◦ f ◦ g1 = g2 ◦ fy ◦h ◦ fx ◦ g1 = f ′y ◦ g′2 ◦h ◦ g′1 ◦ f ′x,

by the
ξ

Ξ-Permutation Lemmata above. Here the head of g′1 must be
∧
∆p,p: p ⊢ p ∧ (¬p ∨ p), the head of h is dp,¬p,p : p ∧ (¬p ∨ p) ⊢ (p ∧ ¬p) ∨ p,

and the head of g′2 must be
∨
Σp,p: (p ∧ ¬p) ∨ p ⊢ p. By applying (

∨
Σ

∧
∆), and

perhaps bifunctorial equations, we obtain that g′2 ◦h ◦ g′1 is equal in PN to

an arrow term of the form 1A, and hence we have g2 ◦ f ◦ g1 = f ′y ◦ f ′x in PN,

which proves the lemma. ⊣

To give an example of the application of the p-¬p-p Lemma, consider the

diagram in Figure 1. This diagram corresponds to G(
∨
Σq,p∧q ◦h ◦

∧
∆q,p∧q)

for an arrow term h of PN, which is of the form g2 ◦ f ◦ g1 for g1 being

1p∧q ∧ (1¬q ∨
∧
Σp,q), g2 being (1q∧

∨
Σp,¬q) ∨ 1p∧q and f an arrow term of

DS¬p. Then by applying the p-¬p-p Lemma we obtain an arrow term f ′ of

DS¬p equal to g2 ◦ f ◦ g1 in PN, and next by applying the p-¬p-p Lemma

(as a matter of fact, the q-¬q-q Lemma), we obtain an arrow term h′ of

DS¬p equal to
∨
Σq,p∧q ◦ f ′ ◦

∧
∆q,p∧q in PN. By DS Coherence of §2.3, we

may conclude that h′, and hence also
∨
Σq,p∧q ◦h ◦

∧
∆q,p∧q, is equal to 1p∧q

in PN.

Here is a lemma analogous to the p-¬p-p Lemma.

¬p-p-¬p Lemma. Let ¬x1, x2 and ¬x3 be occurrences of ¬p, p and ¬p,
respectively, in a formula A of L¬p∧,∨, and let ¬y1, y2 and ¬y3 be occurrences

of ¬p, p and ¬p, respectively, in a formula B of L¬p∧,∨. Let g1 : A
′ ⊢ A be a

∧
Ξp,C-term of PN such that x2 ∨ ¬x3 or ¬x3 ∨ x2 is the crown of the head

of g1, let g2 : B ⊢ B′ be a
∨
Θp,D-term of PN such that ¬y1 ∧ y2 or y2 ∧ ¬y1

is the crown of the head of g2, and let f : A ⊢ B be an arrow term of DS¬p

such that xi and yi are tied in f for i ∈ {1, 2, 3}. Then g2 ◦ f ◦ g1 is equal

in PN to an arrow term of DS¬p.

To prove this lemma we proceed as for the p-¬p-p Lemma, relying on the

equation (
∨
Σ
′ ∧
∆
′
) of PN.

§2.5. The category PN 31

p ∧ q

(q ∧ ¬q) ∨ (p ∧ q)

(q ∧ ((p ∧ ¬p) ∨ ¬q)) ∨ (p ∧ q)

(q ∧ (p ∧ (¬p ∨ ¬q))) ∨ (p ∧ q)

((q ∧ p) ∧ (¬p ∨ ¬q)) ∨ (p ∧ q)

((p ∧ q) ∧ (¬p ∨ ¬q)) ∨ (p ∧ q)

(p ∧ q) ∧ ((¬p ∨¬q) ∨ (p ∧ q))

(p ∧ q) ∧ ((¬q ∨ ¬p) ∨ (p ∧ q))

(p ∧ q) ∧ (¬q ∨ (¬p ∨ (p ∧ q)))

(p ∧ q) ∧ (¬q∨ ((¬p ∨ p)∧q))

(p ∧ q) ∧ (¬q ∨ q)

p ∧ q

�
�
@

@

�
�
@

@

aaaaa

aaaaa

��
� �

��
� �

∨
Σq,p∧q

(1q ∧
∨
Σp,¬q) ∨ 1p∧q

(1q ∧ dp,¬p,¬q) ∨ 1p∧q

∧
b←q,p,¬p∨¬q ∨ 1p∧q

(
∧
cp,q ∧ 1¬p∨¬q) ∨ 1p∧q

dp∧q,¬p∨¬q,p∧q

1p∧q ∧ (
∨
c¬p,¬q ∨ 1p∧q)

1p∧q ∧
∨
b→¬q,¬p,p∧q

1p∧q ∧ (1¬q ∨ dR¬p,p,q)

1p∧q ∧ (1¬q ∨
∧
Σp,q)

∧
∆q,p∧q

Figure 1

32 CHAPTER 2. COHERENCE OF PROOF-NET CATEGORIES

§2.6. The equivalence of PN¬ and PN

In this section we show that the categories PN¬ and PN are equivalent

categories. We define inductively a functor F from the category PN¬ to

PN in the following manner. On objects we have

Fp = p, for p a letter,

F (A ξ B) = FA ξ FB, for ξ ∈ {∧,∨},

F¬p = ¬p, for p a letter,

F¬¬A = FA,

F¬(A ∧B) = F¬A ∨ F¬B,

F¬(A ∨B) = F¬A ∧ F¬B.

On arrows we have

FαA1,...,An = αFA1,...,FAn ,

for αA1,...,An being 1A,
ξ

b→A,B,C ,
ξ

b←A,B,C ,
ξ

cA,B or dA,B,C where ξ ∈ {∧,∨},

F
∧
∆p,A =

∧
∆p,FA: FA ⊢ FA ∧ (¬p ∨ p),

F
∨
Σp,A =

∨
Σp,FA: (p ∧ ¬p) ∨ FA ⊢ FA,

F
∧
∆¬B,A = (1FA ∧ ∨

cFB,F¬B) ◦F
∧
∆B,A: FA ⊢ FA ∧ (FB ∨ F¬B),

F
∨
Σ¬B,A = F

∨
ΣB,A ◦ (

∧
cF¬B,FB ∨ 1FA) : (F¬B ∧ FB) ∨ FA ⊢ FA,

F
∧
∆B∧C,A = (1FA ∧ ((

∨
cF¬B,F¬C ∨ 1FB∧FC) ◦

∨
b→F¬C,F¬B,FB∧FC ◦

◦ (1F¬C ∨ (dRF¬B,FB,FC ◦
∧
cFC,F¬B∨FB ◦F

∧
∆B,C)))) ◦F

∧
∆C,A:

FA ⊢ FA ∧ ((F¬B ∨ F¬C) ∨ (FB ∧ FC)),

F
∨
ΣB∧C,A = F

∨
ΣC,A ◦ ((1FC ∧ (F

∨
ΣB,¬C ◦ dFB,F¬B,F¬C)) ◦

◦
∧
b←FC,FB,F¬B∨F¬C ◦ (

∧
cFB,FC ∧1F¬B∨F¬C)) ∨ 1FA) :

((FB ∧ FC) ∧ (F¬B ∨ F¬C)) ∨ FA ⊢ FA,

§2.6. The equivalence of PN¬ and PN 33

F
∧
∆B∨C,A = (1FA ∧ ((

∧
cF¬C,F¬B ∨ 1FB∨FC) ◦

∨
b←F¬C∧F¬B,FB,FC ◦

◦ ((dF¬C,F¬B,FB ◦F
∧
∆B,¬C) ∨ 1FC))) ◦F

∧
∆C,A:

FA ⊢ FA ∧ ((F¬B ∧ F¬C) ∨ (FB ∨ FC)),

F
∨
ΣB∨C,A = F

∨
ΣC,A ◦ (((F

∨
ΣB,C ◦

∨
cFB∧F¬B,FC ◦ dRFC,FB,F¬B)∧1F¬C)◦

◦
∧
b→FC∨FB,F¬B,F¬C ◦ (

∨
cFC,FB ∧ 1F¬B∧F¬C)) ∨ 1FA) :

((FB ∨ FC) ∧ (F¬B ∧ F¬C)) ∨ FA ⊢ FA,

F (f ◦ g) = Ff ◦Fg,

F (f ξ g)= Ff ξ Fg, for ξ ∈ {∧,∨}.

It is easy to infer

F
∧
∆¬B,A = F

∧
∆
′
B,A, F

∨
Σ¬B,A = F

∨
Σ
′
B,A,

F
∧
∆
′
¬B,A = F

∧
∆B,A, F

∨
Σ
′
¬B,A = F

∨
ΣB,A,

F
∧
∆B,A = F

∧
∆B,FA, F

∨
ΣB,A = F

∨
ΣB,FA.

To ascertain that F so defined is indeed a functor, we have to verify

that if f = g is an instance of one of the PN equations, then Ff = Fg

holds in PN. This is done by induction on the number od occurrences of

connectives in the crown indices occurring in these equations.

For (
∧
∆ nat) and (

∨
Σ nat) this is a very easy matter. For (

∧
b

∧
∆), (

∨
b

∨
Σ),

(d
∧
Σ) and (d

∨
∆) we use essentially naturality equations. (In that context,

it might be easier to rely on the equations (dR
∧
∆) and (dR

∨
Σ), which are

alternative to (d
∧
Σ) and (d

∨
∆).)

To verify (
∨
Σ

∧
∆) in cases where A is of the form B ∧ C or B ∨ C, we rely

on the induction hypothesis that if f = g is an instance of a PN equation

such that the crown indices are B and C, then we have Ff = Fg in PN.

This induction hypothesis entails that we can proceed as in the proof of the

p-¬p-p Lemma in the preceding section, first for p replaced by B, and then

for p replaced by C. Finally, we apply DS Coherence (see the example at

the end of the preceding section). To verify (
∨
Σ

∧
∆) in case A is of the form

¬B, we rely on the induction hypothesis for the equation (
∨
Σ
′ ∧
∆
′
).

To verify (
∨
Σ
′ ∧
∆
′
) we proceed analogously. In case A is B ∧ C or B ∨ C,

we rely on the proof of the ¬p-p-¬p Lemma in the preceding section, and

34 CHAPTER 2. COHERENCE OF PROOF-NET CATEGORIES

in case A is ¬B we rely on the induction hypothesis for the equation (
∨
Σ

∧
∆).

This concludes the verification that F is a functor from PN¬ to PN.

(To verify that the functor F from PN¬ to PN is a functor we could

have proceeded by establishing PN Coherence first, before introducing the

functor F . We do not need the functor F to prove PN Coherence in the

next section. From f = g in PN¬ we pass to Gf = Gg, from which by

relying on the first paragraph of §2.7 we pass to GFf = GFg, which by

PN Coherence implies Ff = Fg.)

In the definition of F , there is some freedom in choosing the clauses for

F
ξ

ΞBψC,A, where Ξ ∈ {∆,Σ} and ξ , ψ ∈ {∧,∨}. We chose ours to be able

to apply easily the p-¬p-p and ¬p-p-¬p Lemmata in verifying that F is a

functor.

We define a functor F¬ from PN to PN¬ by stipulating that F¬A = A

and F¬f = f . It is clear that if f = g in PN, then F¬f = F¬g in PN¬;

so F¬ is indeed a functor.

Our purpose is to show that PN¬ and PN are equivalent categories via

the functors F and F¬. It is clear that FF¬A = A and FF¬f = f . Since

F¬FA = FA, we have to define in PN¬ an isomorphism iA : A ⊢ FA. For

that we need the following auxiliary definitions in PN¬:

n→A =df

∨
Σ
′
¬A,A ◦ d¬¬A,¬A,A ◦

∧
∆A,¬¬A : ¬¬A ⊢ A,

n←A =df

∨
ΣA,¬¬A ◦ dA,¬A,¬¬A ◦

∧
∆
′
¬A,A : A ⊢ ¬¬A,

∧
r→A,B =df

∨
Σ
′
A∧B,¬A∨¬B ◦ d¬(A∧B),A∧B,¬A∨¬B◦ (1¬(A∧B) ∧ ((1A∧B∨

∨
c¬A,¬B)◦

◦
∨
b←A∧B,¬B,¬A ◦ ((dA,B,¬B ◦

∧
∆
′
B,A) ∨ 1¬A))) ◦

∧
∆
′
A,¬(A∧B) :

¬(A ∧B) ⊢ ¬A ∨ ¬B,

∧
r←A,B =df

∨
Σ
′
A,¬(A∧B)

◦ ((((
∨
∆
′
B,¬A ◦ dR¬A,¬B,B) ∧ 1A) ◦

∧
b→¬A∨¬B,B,A ◦

◦ (1¬A∨¬B ∧ ∧
cA,B)) ∨ 1¬(A∧B)) ◦ d¬A∨¬B,A∧B,¬(A∧B) ◦

∧
∆
′
A∧B,¬A∨¬B :

¬A ∨ ¬B ⊢ ¬(A ∧B),

§2.6. The equivalence of PN¬ and PN 35

∨
r→A,B =df

∨
Σ
′
A∨B,¬A∧¬B ◦ d¬(A∨B),A∨B,¬A∧¬B ◦ (1¬(A∨B)∧((

∨
cA,B∨1¬A∧¬B)◦

◦
∨
b→B,A,¬A∧¬B ◦ (1B ∨ (dRA,¬A,¬B ◦

∧
Σ
′
A,¬B)))) ◦

∧
∆
′
B,¬(A∨B) :

¬(A ∨B) ⊢ ¬A ∧ ¬B,

∨
r←A,B =df

∨
Σ
′
B,¬(A∨B)

◦ (((1¬B ∧ (
∨
Σ
′
A,B

◦ d¬A,A,B)) ◦
∧
b←¬B,¬A,A∨B ◦

◦ (
∧
c¬A,¬B ∧ 1A∨B)) ∨ 1¬(A∨B)) ◦ d¬A∧¬B,A∨B,¬(A∨B) ◦

∧
∆
′
A∨B,¬A∧¬B :

¬A ∧ ¬B ⊢ ¬(A ∨B).

It can be shown that in PN¬ we have the following equations:

n→A ◦n←A = 1A, n←A ◦n→A = 1¬¬A,

∧
r→A,B ◦

∧
r←A,B = 1¬A∨¬B ,

∧
r←A,B ◦

∧
r→A,B = 1¬(A∧B),

∨
r→A,B ◦

∨
r←A,B = 1¬A∧¬B ,

∨
r←A,B ◦

∨
r→A,B = 1¬(A∨B),

which means that n→ and n←, as well as
ξ

r
→

and
ξ

r
←

are inverses of each

other. To derive these equations in PN¬, we use essentially (
∧
∆ nat),

(
∨
Σ nat), the p-¬p-p and ¬p-p-¬p Lemmata, and DS Coherence. (If an

equation holds in PN, then every substitution instance of it obtained by

replacing letters uniformly by formulae of L¬,∧,∨ holds in PN¬; this en-

ables us to apply the p-¬p-p and ¬p-p-¬p Lemmata.) The definitions of

n→, n←,
ξ

r
→

and
ξ

r
←
, for ξ ∈ {∧,∨}, are such that they enable an easy

application of the p-¬p-p and ¬p-p-¬p Lemmata.

Then we define iA : A ⊢ FA and its inverse i−1A : FA ⊢ A by induction

on the complexity of the formula A of L¬,∧,∨ (cf. [22], Section 14.1):

iA = i−1A = 1A, if A is p or ¬p, for p a letter,

iA1ξA2 = iA1 ξ iA2 , i−1A1ξA2
= i−1A1

ξ i−1A2
, for ξ ∈ {∧,∨},

i¬¬B = iB ◦n→B , i−1¬¬B = n←B ◦ i−1B ,

i¬(A1∧A2) = (i¬A1 ∨ i¬A2) ◦
∧
r→A1,A2

, i−1¬(A1∧A2)
=

∧
r←A1,A2

◦ (i−1¬A1
∨ i−1¬A2

),

i¬(A1∨A2) = (i¬A1 ∧ i¬A2) ◦
∨
r→A1,A2

, i−1¬(A1∨A2)
=

∨
r←A1,A2

◦ (i−1¬A1
∧ i−1¬A2

).

We can then prove the following (cf. [22], Section 14.1).

Auxiliary Lemma. For every arrow term f : A ⊢ B of PN¬ we have

f = i−1B ◦Ff ◦ iA in PN¬.

36 CHAPTER 2. COHERENCE OF PROOF-NET CATEGORIES

Proof. We proceed by induction on the complexity of the arrow term

f . If f is a primitive arrow term 1A,
ξ

b→A,B,C ,
ξ

b←A,B,C ,
ξ

cA,B or dA,B,C , for

ξ ∈ {∧,∨}, then we use naturality equations, and the fact that iD is an

isomorphism.

If f is
∧
∆D,A, then we proceed by induction on the complexity of D.

(This is an auxiliary induction in the basis of the main induction.) If D is

p, then we use (
∧
∆ nat) and the fact that iA is an isomorphism.

If D is ¬B, then we rely on the following equation of PN¬, analogous

to the clause defining F
∧
∆¬B,A above:

(
∧
∆n)

∧
∆¬B,A = (1A ∧ (n←B ∨ 1¬B)) ◦

∧
∆
′
B,A,

together with the induction hypothesis. To derive (
∧
∆n) we have

(1A ∧ (n←B ∨ 1¬B)) ◦
∧
∆
′
B,A

= (1A ∧ (
∨
ΣB,¬¬B ∨ 1¬B)) ◦ (1A ∧ (dB,¬B,¬¬B ∨ 1¬B)) ◦

◦ (1A ∧ (
∧
∆
′
¬B,B ∨ 1¬B)) ◦

∧
∆
′
B,A, by bifunctorial equations,

= (1A ∧ (
∨
ΣB,¬¬B ∨1¬B)) ◦ (1A ∧ ((dB,¬B,¬¬B ∨ 1¬B) ◦

◦
∨
cB∧(¬B∨¬¬B),¬B ◦ dR¬B,B,¬B∨¬¬B ◦ (

∨
c¬B,B ∧ 1¬B∨¬¬B))) ◦

◦
∧
b←A,¬B,B∨¬B ◦ (

∧
∆
′
B,A ∧ 1¬B∨¬¬B) ◦ (1A ∧ ∨

c¬B,¬¬B) ◦
∧
∆¬B,A,

by stem-increasing equations involving
∧
∆
′
analogous to (1 ∨

∧
∆) and (1 ∧

∧
∆)

of the preceding section, and also (
∧
∆
′
nat). The equation (

∧
∆n) follows by

applying the ¬p-p-¬p Lemma (with p replaced by B), and DS Coherence.

If D is B ∧ C, then we rely on the following equation of PN¬, analogous

to the clause defining F
∧
∆B∧C,A above:

(
∧
∆r)

∧
∆B∧C,A = (1A ∧ (((

∧
r←B,C ◦

∨
c¬B,¬C) ∨ 1B∧C) ◦

∨
b→¬C,¬B,B∧C ◦

◦ (1¬C ∨ (dR¬B,B,C ◦
∧
ΣB,C)))) ◦

∧
∆C,A,

together with the induction hypothesis. To show that (
∧
∆r) holds in PN¬

we proceed as above, by applying essentially stem-increasing equations to-

gether with the p-¬p-p Lemma. We proceed analogously when D is B ∨ C.

The cases we have if f is
∨
ΣD,A are dual to those we had above for f

being
∧
∆D,A. In all these cases we proceed in an analogous manner. This

concludes the basis of the induction.

§2.7. PN Coherence 37

If f is f2 ◦ f1, then by the induction hypothesis we have

f2 ◦ f1 = i−1B ◦Ff2 ◦ iC ◦ i−1C ◦Ff1 ◦ iA

which yields f = i−1B ◦Ff ◦ iA, by the fact that iC is an isomorphism and

by the functoriality of F .

If f is f1 ξ f2, for ξ ∈ {∧,∨}, then iA1ξA2 is iA1 ξ iA2 and i−1B1ξB2
is

i−1B1
ξ i−1B2

; we obtain f = i−1B ◦Ff ◦ iA by using bifunctorial equations. ⊣

The Auxiliary Lemma shows that iA is an isomorphism natural in A,

and so we may conclude that PN¬ and PN are equivalent categories.

§2.7. PN Coherence

We define a functor G from PN to Br as we defined it from PN¬ to Br.

In the clauses for
∧
∆B,A and

∨
ΣB,A we just restrict B to a letter p. For f

an arrow term of PN¬ we have that GFf coincides with Gf where F is

the functor from PN¬ to PN of the preceding section, G in GFf is the

functor G from PN to Br and G in Gf is the functor G from PN¬ to Br.

To show that, it is essential to check that GF
∧
∆B,A and GF

∨
ΣB,A coincide

with G
∧
∆B,A and G

∨
ΣB,A respectively.

In this section we will prove that G from PN to Br is faithful. This

will imply that G from PN¬ to Br is faithful too.

Analogously to what we had at the beginning of §2.4, we define when an

occurrence x of a letter p in A is tied to an occurrence y of the same letter

p in B in an arrow f : A ⊢ B of PN. We say that x and y are directly tied

in a headed factorized arrow term fn ◦ . . . ◦ f1 of PN when x and y are tied

in the arrow fn ◦ . . . ◦ f1, and for every i ∈ {2, . . . , n} if fi is a
∨
Σp,C-term

and z is one of the two occurrences of p in the crown p ∧ ¬p of the head of

fi, then x and z are not tied in the arrow fi−1 ◦ . . . ◦ f1 (see the end of §2.2
for the definition of headed factorized arrow term).

An alternative definition of directly tied x and y in a headed factorized

arrow term f1 ◦ . . . ◦ fn of PN is obtained by stipulating that x and y are

tied in the arrow f1 ◦ . . . ◦ fn, and for every i ∈ {2, . . . , n} if fi is a
∧
∆p,D-

term and z is one of the two occurrences of p in the crown ¬p ∨ p of the

head of fi, then z and y are not tied in the arrow f1 ◦ . . . ◦ fi−1.

38 CHAPTER 2. COHERENCE OF PROOF-NET CATEGORIES

For example, the occurrence of q in the source p ∧ q and the occurrence

of q in the target q ∧ p of

∧
cp,q ◦ (

∨
Σp,p ∧ 1q) ◦ (dp,¬p,p ∧ 1q) ◦ (

∧
∆p,p ∧ 1q)

are directly tied in this headed factorized arrow term of PN, while the two

occurrences of p in its source and target are not directly tied.

Take a headed factorized arrow term of PN of the form g2 ◦ f ◦ g1 where

g1 is a
∧
∆p,D-term and g2 is

∨
Σp,C-term. Let ¬x1 ∨ x2 be the crown of the

head of g1 (so x1 and x2 are both occurrences of p) and let y2 ∧ ¬y1 be

the crown of the head of g2 (so y1 and y2 are also occurrences of the same

letter p). We say that g1 and g2 are confronted through f when xi and yi

are directly tied for some i ∈ {1, 2} in the arrow term f .

Let a
∧
∆p,A-term that is a factor of a factorized arrow term f be called a

∧
∆-factor. We have an analogous definition of

∨
Σ-factor obtained by replacing

∧
∆ by

∨
Σ. We can then prove the following lemma.

Confrontation Lemma. For every headed factorized arrow term g2 ◦ f ◦ g1

of PN such that g1 and g2 are confronted through f there is a headed fac-

torized arrow term h of PN with a subterm of the form g′2 ◦ f ′ ◦ g′1 such that

g′1 is a
∧
∆-factor, g′2 is a

∨
Σ-factor, g′1 and g′2 are confronted through f ′, and,

moreover,

(1) f ′ is an arrow term of DS¬p,

(2) g2 ◦ f ◦ g1 = h in PN,

(3) the number of
∧
∆-factors is equal in g2 ◦ f ◦ g1 and h, and the same

for the number of
∨
Σ-factors.

Proof. We proceed by induction on the number n of factors of f that are
∧
∆-factors or

∨
Σ-factors. If n = 0, then the arrow term f ′ coincides with the

arrow term f .

If n > 0, then let g2 ◦ f ◦ g1 be of the form f2 ◦ g ◦ f1 for g a
∧
∆q,E-term

(we proceed analogously when g is a
∨
Σq,E-term). According to the stem-

increasing equations of §2.5, we may assume that g coincides with its head
∧
∆q,E . Then by (

∧
∆ nat) we obtain in PN

g2 ◦ f ◦ g1 = f2 ◦ (f1 ∧ 1¬q∨q) ◦
∧
∆q,E′ .

§2.7. PN Coherence 39

After f1 ∧ 1¬q∨q in f2 ◦ (f1 ∧ 1¬q∨q) is replaced by a headed factorized ar-

row term g2 ◦ f ′′ ◦ (g1 ∧ 1¬q∨q), we may apply the induction hypothesis to

this arrow term, because it can easily be seen that g1 ∧ 1¬q∨q and g2 are

confronted through f ′′, and f ′′ has one
∧
∆-factor less than f . ⊣

A headed factorized arrow term of PN that has no subterm of the

form g2 ◦ f ◦ g1 with g1 and g2 confronted through f is called pure. For a

pure arrow term f there is a one-to-one correspondence, which we call the
∧
∆-cap bijection, between the

∧
∆-factors of f and the caps of the partition

part(Gf). In this bijection, a cap ties, in an obvious sense, the occurrences

of p in the crown ¬p∨p of the head of the corresponding
∧
∆-factor. There is

an analogous one-to-one correspondence, which we call the
∨
Σ-cup bijection,

between the
∨
Σ-factors of f and the cups of part(Gf) (see §2.3 for the notions

of cup and cap). Intuitively speaking, this follows from the fact that in a

sequence of cups and caps tied to each other as in the following example:

����

��
��

∗

∗

cups and caps must alternate. For a pair made of a cap and a cup that is

its immediate neighbour, like those marked with ∗ in the picture, we can

find a subterm g2 ◦ f ◦ g1 such that g1 and g2 are confronted through f .

We can then prove the following.

Purification Lemma. Every arrow term of PN is equal in PN to a pure

arrow term of PN.

Proof. We apply first the Development Lemma of §2.2. If in the resulting

developed arrow term h we have a subterm g2 ◦ f ◦ g1 with g1 and g2 con-

fronted through f , then we apply first the Confrontation Lemma to obtain

40 CHAPTER 2. COHERENCE OF PROOF-NET CATEGORIES

a developed arrow term h′ with a subterm of the form g′2 ◦ f ′ ◦ g′1 where g′1
and g′2 are confronted through f ′, and f ′ is an arrow term of DS¬p.

Suppose that ¬x2 ∨ x3 is the crown of the head of g′1, and y1 ∧ ¬y2 is

the crown of the head of g′2. Suppose x2 is tied to y2 in f ′. Then, by

Lemma 3 of §2.4, it is impossible that x3 is tied to y1, and so there must

be an occurrence x1 of p different from x3 in the source of f ′ such that x1

is tied to y1 in f ′, and there must be an occurrence y3 of p different from

y1 in the target of f ′ such that x3 is tied to y3 in f ′. Next we apply the

p-¬p-p Lemma of §2.5 to conclude that g′2 ◦ f ′ ◦ g′1 is equal to an arrow term

h′′ of DS¬p.

After replacing g′2 ◦ f ′ ◦ g′1 in h′ by h′′, we obtain a headed factorized

arrow term in which there is one
∧
∆-factor and one

∨
Σ-factor less than in h′,

and hence also than in h, by clause (3) of the Confrontation Lemma.

If x3 is tied to y1, then we reason analogously by applying Lemma 3 of

§2.4 and the ¬p-p-¬p Lemma of §2.5.
We can iterate this procedure, which must terminate, because the num-

ber of
∧
∆-factors and

∨
Σ-factors in h is finite. ⊣

We can then prove the following.

PN Coherence. The functor G from PN to Br is faithful.

Proof. Suppose for f and g arrow terms of PN of the same type A ⊢ B

we have Gf = Gg. By the Purification Lemma, we can assume that f and

g are pure arrow terms. Since Gf = Gg, by the
∧
∆-cap and

∨
Σ-cup bijections

we must have the same number n ≥ 0 of
∧
∆-factors in f and g and the same

number m ≥ 0 of
∨
Σ-factors in f and g. We proceed by induction on n+m.

If n+m = 0, then we just apply DS Coherence. Suppose now n > 0.

So there is a
∧
∆-factor in f and a

∧
∆-factor in g that correspond by the

∧
∆-cap bijections to the same cap of part(Gf), which is equal to part(Gg).

By using the stem-increasing equations of §2.5, together with (
∧
∆ nat), we

obtain in PN

f = f ′ ◦
∧
∆p,A, g = g′ ◦

∧
∆p,A

for f ′ and g′ pure arrow terms of the same type A ∧ (¬p ∨ p) ⊢ B, and such

that the number of
∧
∆-factors in f ′ and g′ is n−1 in each, and the number

§2.8. The contravariant functor ¬ 41

of
∨
Σ-factors in f ′ and g′ is m in each, the same number we had for the

∨
Σ-factors in f and g. So we have

G(f ′ ◦
∧
∆p,A) = Gf = Gg = G(g′ ◦

∧
∆p,A).

We can show that Gf ′ = Gg′. This is because we obtain Gf ′ from

G(f ′ ◦
∧
∆p,A) in the following manner. We first remove from the partition

part(G(f ′ ◦
∧
∆p,A)) a cap {kt, lt}, where the k+1-th occurrence of letter in B

is an occurrence of p in a subformula ¬p of B, and the l+1-th occurrence

of letter in B is an occurrence of p that is not in a subformula ¬p of B

(here we have either k < l or l < k). After this removal, we add two new

transversals:

{GAs, kt}, {(GA+1)s, lt},

and this yields part(Gf ′). Since Gg′ is obtained from G(g′ ◦
∧
∆p,A), which is

equal toG(f ′ ◦
∧
∆p,A) in exactly the same manner, we obtain thatGf ′ = Gg′.

Then, by the induction hypothesis, we have that f ′ = g′ in PN, which

implies that f = g in PN. We proceed analogously in the induction step

when m > 0, via
∨
Σ-factors. ⊣

From PN Coherence and the equivalence between the categories PN¬

and PN, proved in the preceding section, we may conclude in the following

manner that the functor G from PN¬ to Br is faithful.

Proof of PN¬ Coherence. Suppose that for f and g arrows of PN¬

of the same type we have Gf = Gg. Then, as we noted at the beginning of

this section, we have GFf = GFg, and hence Ff = Fg in PN by PN Co-

herence. It follows that f = g in PN¬ by the equivalence of the categories

PN¬ and PN. ⊣

So we have proved PN¬ Coherence, announced at the end of §2.3.

§2.8. The contravariant functor ¬

In every proof-net category A we can define a contravariant ¬ functor from

A to A by relying on the following definition. For f : A ⊢ B, we have

42 CHAPTER 2. COHERENCE OF PROOF-NET CATEGORIES

¬f =df

∨
Σ
′
B,¬A ◦ d¬B,B,A ◦ (1¬B ∧ (f ∨ 1¬A)) ◦

∧
∆
′
A,¬B : ¬B ⊢ ¬A.

It is easy to check that we have

(¬) ¬f =
∨
∆B,¬A ◦ dR¬A,B,¬B ◦ ((1¬A ∨ f) ∧ 1¬B) ◦

∧
ΣA,¬B ,

which gives an alternative definition of ¬f .
To verify that ¬ is a contravariant functor we have first

(¬1) ¬1A = 1¬A

by PN¬ Coherence (namely, we use here the equation (
∨
Σ
′ ∧
∆
′
), or alterna-

tively (
∨
∆

∧
Σ), of §2.2).

Next, for f : A ⊢ B we have the following equation:

(
∨
Σ dinat)

∨
ΣA,C ◦ ((1A ∧ ¬f) ∨ 1C) =

∨
ΣB,C ◦ ((f ∧ 1¬B) ∨ 1C),

which together with (
∨
Σ nat) says that

∨
Σ is a dinatural transformation in

the sense of [38] (Section IX.4). To verify (
∨
Σ dinat) we have

∨
ΣA,C ◦ ((1A ∧ ¬f) ∨ 1C)

=
∨
ΣA,C ◦ ((1A ∧ (

∨
∆B,¬A ◦ dR¬A,B,¬B)) ∨ 1C) ◦ ((1A ∧ (((1¬A ∨ f) ∧ 1¬B) ◦

◦
∧
ΣA,¬B)) ∨ 1C), by (¬),

=
∨
ΣB,C ◦ ((((

∨
ΣA,B ◦ dA,¬A,B) ∧ 1¬B) ◦

∧
b→A,¬A∨B,¬B) ∨ 1C) ◦

◦ ((1A ∧ (((1¬A ∨ f) ∧ 1¬B) ◦
∧
ΣA,¬B)) ∨ 1C), by PN¬ Coherence,

=
∨
ΣB,C ◦ ((f ∧ 1¬B ∨ 1C),

by bifunctorial and naturality equations, and PN¬ Coherence. We verify

analogously the equation

(
∧
∆ dinat) (1C ∧ (¬f ∨ 1B)) ◦

∧
∆B,C = (1C ∧ (1¬A ∨ f)) ◦

∧
∆A,C ,

From these equations we derive easily other analogous equations, which

we call dinaturality equations, for
∧
Σ,

∨
∆,

∧
∆
′
,

∨
Σ
′
,

∧
Σ
′
and

∨
∆
′
. For example, we

have

(
∧
Σ dinat) ((¬f ∨ 1B) ∧ 1C) ◦

∧
ΣB,C = ((1¬A ∨ f) ∧ 1C) ◦

∧
ΣA,C ,

(
∨
Σ
′
dinat)

∨
Σ
′
A,C

◦ ((¬f ∧ 1A) ∨ 1C) =
∨
Σ
′
B,C

◦ ((1¬B ∧ f) ∨ 1C),

§2.8. The contravariant functor ¬ 43

We can derive now the following equation:

(¬2) ¬(f1 ◦ f2) = ¬f2 ◦¬f1

for f1 : A ⊢ B and f2 : C ⊢ A. We have

¬f2 ◦¬f1

=
∨
Σ
′
A,¬C ◦ ((¬f1 ∧ 1A) ∨ 1¬C) ◦ d¬B,A,¬C ◦ (1¬B ∧ (f2 ∨ 1¬C)) ◦

∧
∆
′
C,¬B ,

by (
∧
∆
′
nat), (∧2) and (d nat),

=
∨
Σ
′
B,¬C ◦ ((1¬B ∧ f1) ∨ 1¬C) ◦ d¬B,A,¬C ◦ (1¬B ∧ (f2 ∨ 1¬C)) ◦

∧
∆
′
C,¬B ,

by (
∨
Σ
′
dinat),

= ¬(f1 ◦ f2), by (d nat) and (∧2).

This proves that for every proof-net category A we have that ¬ is a con-

travariant functor from A to A.

In every proof-net category A, for every object A and for ξ ∈ {∧,∨},
we have a functor A ξ from A to A, i.e. an endofunctor (1-endofunctor

in the terminology of [22], Section 2.4), which on arrows is the operation

1A ξ . It can easily be shown with the help of PN¬ Coherence that in every

proof-net category A∧ is left adjoint to ¬A∨, and ¬A∧ is left adjoint to

A∨ (cf. §3.6 below; see [38], Section IV.1, or §5.1 below, for the notion of

adjunction).

Chapter 3

Star-Autonomous Categories

The goal of this chapter is to prove the categorial equivalence between the

star-autonomous category SAs freely generated by a set of objects and the

proof-net category with units SA′s freely generated by the same set of ob-

jects. Our notion of proof-net category with units, which is obtained by

extending the notion of proof-net category with unit objects and appropri-

ate arrows and equations between these arrows, amounts to the notion of

linearly distributive category with negation introduced in [11].

This chapter is rather technical. It demonstrates the equivalence of two

notions of category formulated in two different languages, which happens

to involve some pretty complex syntactical matters.

Since the language for star-autonomous categories we rely on only over-

laps with the language for proof-net categories with units, we introduce two

auxiliary freely generated categories called SA and SA′, for which we have

the union of these two different languages. The proof of equivalence of SAs

with SA′s is broken into proofs of equivalence of SAs with SA and SA′s
with SA′, and a proof of isomorphism of SA with SA′.

In the proofs of these equivalences and of this isomorphism, we rely heav-

ily on Kelly’s and Mac Lane’s coherence theorem for symmetric monoidal

closed categories, on our coherence theorem for PN¬ from the preceding

chapter, and on a coherence theorem for a freely generated categoryPN¬→⊥,

intermediary between PN¬ and SA′, which is equivalent with PN¬. With-

out these tools, the computations needed would be excessively difficult, as

it was prefigured in the literature (see [11], Section 4, Theorem 4.5).

45

46 CHAPTER 3. STAR-AUTONOMOUS CATEGORIES

In the course of these proofs, we define in §3.4 a nonsymmetric net

structure in the sense of [22] (Section 7.2) in the category Set of sets with

functions, and a nonassociative semiassociative structure in the sense of

[22] (Section 4.2) in the same category.

§3.1. The category SMC

First we define the category SMC, which is the symmetric monoidal closed

category (see [38], Section VII.7) freely generated by the set of letters P.

The objects of the category SMC are the formulae of the propositional

language L⊤,∧,→ generated by P with the nullary connective (i.e. proposi-

tional constant) ⊤ and the binary connectives ∧ and →.

To define the arrows of SMC, we define inductively the arrow terms of

SMC by assuming as primitive arrow terms 1A,
∧
b→A,B,C ,

∧
b←A,B,C ,

∧
cA,B (see

§2.1), plus

∧
δ→A : A ∧ ⊤ ⊢ A,

∧
δ←A : A ⊢ A ∧ ⊤,

εA,B : A ∧ (A → B) ⊢ B, ηA,B : B ⊢ A → (A ∧B);

as operations on arrow terms we have ◦ and ∧ (which we know from DS;

see §2.1) and the unary operations A →, for every object A, such that for

f : B ⊢ C we have the arrow term A → f : A → B ⊢ A → C. This concludes

the definition of the arrow terms of SMC.

The equations of SMC are obtained by assuming besides f = f the

following equations: (cat 1), (cat 2), (∧ 1), (∧ 2) (see §2.1), plus

(A → 1) A → 1B = 1A→B ,

(A → 2) A → (f ◦ g) = (A → f) ◦ (A → g),

(
∧
b→ nat), (

∧
c nat) (see §2.1), plus for f : A ⊢ B

(
∧
δ→ nat) f ◦

∧
δ→A =

∧
δ→B ◦ (f ∧ 1⊤),

(ε nat) f ◦ εC,A = εC,B ◦ (1C ∧ (C → f)),

(η nat) (C → (1C ∧ f)) ◦ ηC,A = ηC,B ◦ f ,

(
∧
b

∧
b), (

∧
b 5), (

∧
c

∧
c), (

∧
b

∧
c) (see §2.1), plus

§3.1. The category SMC 47

(
∧
δ

∧
δ)

∧
δ→A ◦

∧
δ←A = 1A,

∧
δ←A ◦

∧
δ→A = 1A∧⊤,

(
∧
b

∧
δ)

∧
b←A,B,⊤ ◦

∧
δ←A∧B = 1A ∧

∧
δ←B ,

(εη ∧) εA,A∧B ◦ (1A ∧ ηA,B) = 1A∧B ,

(εη →) (A → εA,B) ◦ ηA,A→B = 1A→B.

The equations (A → 1) and (A → 2) say that A → is a functor, while the

last two equations are the triangular equations of an adjunction (see [38],

Section IV.1, or §5.1 below).

The set of equations of SMC is closed under symmetry and transitivity

of equality, under the rules (cong ξ) for ξ ∈ { ◦ ,∧} (see §2.1), and also

under the rules

f = g

A → f = A → g

This defines the equations of SMC.

It is easy to see that for SMC we have the naturality equation

(
∧
δ← nat) (f ∧ 1⊤) ◦

∧
δ←A =

∧
δ←B ◦ f.

With the definitions

∧
σ→A =df

∧
δ→A ◦

∧
c⊤,A,

∧
σ←A =df

∧
cA,⊤ ◦

∧
δ←A ,

we obtain that
∧
σ→A and

∧
σ←A are inverse to each other. Note that there

is an analogy between
∧
∆B,A: A ⊢ A ∧ (¬B ∨B) and

∧
δ←: A ⊢ A ∧ ⊤, and

between
∧
ΣB,A: A ⊢ (¬B ∨B) ∧A and

∧
σ←: A ⊢ ⊤ ∧A, though

∧
∆B,A and

∧
ΣB,A are not isomorphisms. This analogy, which is the reason for our

notation, is manifested by comparing the equation (
∧
b

∧
∆) of §2.2 and (

∧
b

∧
δ)

above. (Note that the equation (
∧
b

∧
δ) above is not exactly the equation (

∧
b

∧
δ)

of Section 4.6 of [22], but the two equations follow from each other in the

presence of isomorphism equations.)

For g : A ⊢ D and f : B ⊢ C, we introduce the following definition in

SMC:

g → f =df (A → (εD,C ◦ (g ∧ (D → f)))) ◦ ηA,D→B : D → B ⊢ A → C.

48 CHAPTER 3. STAR-AUTONOMOUS CATEGORIES

With the help of (ε nat), (A → 2) and (εη →) we obtain that

1A → f = A → f.

(For the sake of uniformity, we will later prefer to write 1A → f , rather

than A → f .) We then obtain

(→ 1) 1A → 1B = 1A→B ,

(→ 2) (f1 ◦ g1) → (g2 ◦ f2) = (g1 → g2) ◦ (f1 → f2);

for (→ 1) we use (A → 1), while for (→ 2) we use essentially (A → 2), (∧2),
(εη ∧), (ε nat) and (η nat). So → is a bifunctor from SMCop × SMC to

SMC (see [38], Section IV.7, Theorem 3).

For f : A ⊢ B, we derive in SMC

(ε dinat) εA,C ◦ (1A ∧ (f → 1C)) = εB,C ◦ (f ∧ 1B→C),

(η dinat) (1A → (f ∧ 1C)) ◦ ηA,C = (f → 1B∧C) ◦ ηB,C ;

for (ε dinat) we use (ε nat) and (εη ∧), while for (η dinat) we use (η nat),

(εη ∧) and bifunctorial equations. We call these two equations dinaturality

equations for ε and η. Together with (ε nat) and (η nat), these dinaturality

equations show that ε and η are dinatural transformations in the sense of

[38] (Section IX.4).

We define a functor G from SMC to Br by using the appropriate clauses

we had for the functor G from PN¬ to Br in §2.3, to which we add that

Gα is an identity arrow of Br also when α is
∧
δ→A and

∧
δ←A , and the following

clauses:

GεA,B = G
∨
ΣA,B ,

GηA,B = G
∧
ΣA,B

(see §2.3). We define G(f ◦ g) and G(f1 ∧ f2) as we did in §2.3. For

f : B ⊢ C, the set of ordered pairs of G(A → f) is

G1A ∪Gf+GA
+GA

(see §2.3 for Gf+GA
+GA).

For a Brauerian split equivalence R ⊆ (Xs ∪ Y t)2, we define the Braue-

rian split equivalence Rop ⊆ (Y s ∪Xt)2 by replacing every ordered pair

§3.2. The category SA 49

(ui, vj) of R by (ui′ , vj′) where i, j ∈ {s, t}, while s′ = t and t′ = s. With

that, for g : A ⊢ D and f : B ⊢ C it can be checked that the set of ordered

pairs of G(g → f) is

Ggop ∪Gf+GD
+GA .

We call a formula A of L⊤,∧,→ consequential when for every subformula

B → C of A we have that either B is letterless or C has letters occurring

in it. An alternative way to characterize consequential formulae is to say

that these are formulae A of L⊤,∧,→ for which there is an isomorphism of

type A ⊢ A′ of SMC such that either ⊤ does not occur in A′ or A′ is ⊤.

(To establish the equivalence of these two characterizations, one may rely

on the results of [17].)

Let SMCc be the full subcategory of SMC whose objects are conse-

quential formulae. (The category SMCc is a replete subcategory of SMC

in the sense of [29], Section A1.1; namely, every object of SMC isomorphic

to an object of SMCc is in SMCc.) The functor G from SMC to Br may

be restricted to a functor G from SMCc to Br. The following result is

proved by Kelly and Mac Lane in [32].

SMCc Coherence. The functor G from SMCc to Br is faithful.

§3.2. The category SA

The objects of the category SA are the formulae of the propositional lan-

guage L⊤,⊥,¬,∧,∨,→ generated by P with the nullary connectives (i.e. propo-

sitional constants) ⊤ and ⊥, the unary connective ¬ and the binary con-

nectives ∧, ∨ and →.

To define the arrows of SA, we define inductively the arrow terms of

SA by assuming as primitive arrow terms all the primitive arrow terms we

had for SMC (with A, B and C ranging over the formulae of L⊤,⊥,¬,∧,∨,→)

plus

ν→A : (A → ⊥) → ⊥ ⊢ A,

λ→A : ¬A ⊢ A → ⊥, λ←A : A → ⊥ ⊢ ¬A,

υ→A,B : A ∨B ⊢ (A → ⊥) → B, υ←A,B : (A → ⊥) → B ⊢ A ∨B;

50 CHAPTER 3. STAR-AUTONOMOUS CATEGORIES

the operations on these arrow terms are as for SMC.

The equations of SA are obtained by assuming all the equations we

have assumed for SMC, plus for

ν←A,B =df (1A→B → (εA,B ◦
∧
cA→B,A)) ◦ ηA→B,A : A ⊢ (A → B) → B

the equations

(νν) ν→A ◦ ν←A,⊥= 1A, ν←A,⊥ ◦ ν→A = 1(A→⊥)→⊥,

(λλ) λ→A ◦λ←A = 1A→⊥, λ←A ◦λ→A = 1¬A,

(υυ) υ→A,B ◦ υ←A,B = 1(A→⊥)→B , υ←A,B ◦ υ→A,B = 1A∨B.

The set of equations of SA is closed under the same rules as the set of

equations of SMC.

The equations (νν) assert that ν←A,⊥ is an isomorphism. This is the

assumption used by Barr in [2] (Section 2) to define star-autonomous cat-

egories. The isomorphism equations (λλ) and (υυ) are auxiliary, and will

be discarded in a language where ¬ and ∨ are not primitive (see §3.8).

§3.3. The category SA′

The objects of the category SA′ are as for SA the formulae of the propo-

sitional language L⊤,⊥,¬,∧,∨,→ generated by P. As primitive arrow terms

we have 1A,
∧
b→A,B,C ,

∧
b←A,B,C ,

∧
cA,B ,

∨
b→A,B,C ,

∨
b←A,B,C ,

∨
cA,B , dA,B,C (see §2.1),

∧
∆B,A,

∨
ΣB,A (see §2.2),

∧
δ→A ,

∧
δ←A (see §3.1), plus

∨
δ→A : A ∨ ⊥ ⊢ A,

∨
δ←A : A ⊢ A ∨ ⊥,

π→A,B : A → B ⊢ ¬A ∨B, π←A,B : ¬A ∨B ⊢ A → B.

These primitive arrow terms together with the operations on arrow terms

◦ , ∧ and ∨ (the same we had for DS and PN¬ in §§2.1-2) define the arrow
terms of SA′.

The equations of SA′ are obtained by assuming all the equations we

have assumed for PN¬ (which are the equations of DS of §2.1 plus the

PN equations of §2.2), plus (
∧
δ→ nat), (

∧
δ

∧
δ), (

∧
b

∧
δ) (see §3.1), with the dual

equations

§3.3. The category SA′ 51

(
∨
δ→ nat) f ◦

∨
δ→A =

∨
δ→B ◦ (f ∨ 1⊥),

(
∨
δ

∨
δ)

∨
δ→A ◦

∨
δ←A = 1A,

∨
δ←A ◦

∨
δ→A = 1A∨⊥,

(
∨
b

∨
δ)

∨
b←A,B,⊥ ◦

∨
δ←A∨B = 1A ∨

∨
δ←B ,

and, finally, with
∧
σ←A defined as in §3.1, the following equations:

(d
∧
σ) d⊤,B,C ◦

∧
σ←B∨C =

∧
σ←B ∨ 1C ,

(d
∨
δ)

∨
δ→C∧B ◦ dC,B,⊥ = 1C ∧

∨
δ→B ,

(ππ) π→A,B ◦π←A,B = 1¬A∨B , π←A,B ◦π→A,B = 1A→B.

The set of equations of SA′ is closed under symmetry and transitivity of

equality and under the rules (cong ξ) for ξ ∈ { ◦ ,∧,∨} (see §2.1). This

defines the equations of SA′.

It is clear that in SA′ we have the naturality equations (
∧
δ← nat) (see

§3.1) and

(
∨
δ← nat) (f ∨ 1⊥) ◦

∨
δ←A =

∨
δ←B ◦ f.

Analogously to what we had in §3.1, we define
∧
σ→A and

∨
σ→A =df

∨
δ→A ◦

∨
cA,⊥,

∨
σ←A =df

∨
c⊥,A ◦

∨
δ←A ,

which give isomorphisms in SA′. Note that
∨
σ→A : ⊥ ∨A ⊢ A is analogous to

∨
ΣB,A: (B ∧ ¬B) ∨A ⊢ A, though

∨
ΣB,A is not an isomorphism. The equa-

tion (
∧
b

∨
Σ) of §2.2 is analogous to the following equation of SA′ (an equation

of monoidal categories):

∨
σ→B∨A ◦

∨
b←⊥,B,A =

∨
σ→B ∨ 1A.

The equations (d
∧
σ) and (d

∨
δ), which amount to the equations (

∧
σ dL)

and (
∨
δ dL) of Section 7.9 of [22] (these equations stem from [11], Section

2.1), are analogous to the equations (d
∧
Σ) and (d

∨
∆) of §2.2. The equations

(ππ) are auxiliary, and will be discarded in a language where → is not

primitive (see §3.8).

52 CHAPTER 3. STAR-AUTONOMOUS CATEGORIES

§3.4. SA′ in SA

Our purpose now is to define the SA′ structure in SA, and then show that

the equations of SA′ hold in SA for this defined structure.

To define
∨
b→A,B,C and

∨
b←A,B,C in SA we need some preliminary definitions.

We note first that in SMC, and hence also in SA, we can introduce the

following definitions:

i→A,B,C =df (1A→ ((1B→ (εA∧B,C ◦ (
∧
cB,A ∧ 1(A∧B)→C) ◦

∧
b→B,A,(A∧B)→C)) ◦

◦ ηB,A∧((A∧B)→C))) ◦ ηA,(A∧B)→C : (A ∧B) → C ⊢ A → (B → C),

i←A,B,C =df (1A∧B → (εB,C ◦ (1B ∧ εA,B→C) ◦
∧
b←B,A,A→(B→C)

◦

◦ (
∧
cA,B ∧ 1C))) ◦ ηA∧B,A→(B→C) : A → (B → C) ⊢ (A ∧B) → C.

By SMCc Coherence of §3.1, we can immediately conclude that in SMC,

and hence also in SA, the arrows i→A,B,C and i←A,B,C are isomorphisms in-

verse to each other. By applying naturality and dinaturality equations, we

can also conclude that i→ and i← are natural transformations of SMC and

SA in all their three indices A, B and C.

In SA we have the following definitions:

j→A,B =df ν→A∧(B→⊥) ◦ (i→A,B→⊥,⊥ → 1⊥) ◦ ((1A → ν→B) → 1⊥) :

(A → B) → ⊥ ⊢ A ∧ (B → ⊥),

j←A,B,C =df ((1A → ν←B,C) → 1C) ◦ (i←A,B→C,C → 1C) ◦ ν←A∧(B→C),C :

A ∧ (B → C) ⊢ (A → B) → C.

The definition of j←A,B,C can be given already in SMC, but not the definition

of j→A,B . It is easy to see that in SA we have that j→A,B and j←A,B,⊥ are

isomorphisms inverse to each other.

We also have the following definitions in SA:

∨
b→A,B,C =df (j→A,B → 1C) ◦ i←A,B→⊥,C :

A → ((B → ⊥) → C) ⊢ ((A → B) → ⊥) → C,

∨
b←A,B,C,D =df i→A,B→D,C ◦ (j←A,B,D → 1C) :

((A → B) → D) → C ⊢ A → ((B → D) → C).

§3.4. SA′ in SA 53

The second of these definitions can be given already in SMC. It is easy

to see that in SA we have that
∨
b→A,B,C and

∨
b←A,B,C,⊥ are isomorphisms

inverse to each other.

If ⊥ is an arbitrary object, and we define A ∨B as (A → ⊥) → B and

f ∨ g as (f → 1⊥) → g, then we can check that in SMC, and hence also in

every symmetric monoidal closed category, we have for this defined ∨ the

bifunctorial equations (∨1) and (∨2) (see §2.1), while for
∨
b←A,B,C replaced

by
∨
b←A→⊥,B,C,⊥ we have (

∨
b← nat) and (

∨
b 5) of §2.1. So every symmetric

monoidal closed category is a semiassociative category in the sense of Sec-

tion 4.2 of [22]. Therefore, every cartesian closed category, and in particular

the category Set of sets with functions, is a semiassociative category with

A ∨B being (A → ⊥) → B, commonly written B(⊥A), where ⊥ is an arbi-

trary set, not necessarily the initial object ∅ of Set. For ⊥ distinct from ∅
and from a singleton, we have that A ∨ (B ∨ C) need not be isomorphic to

(A ∨B) ∨ C.

With A ∨B being (A → ∅) → B, the category Set is an associative cat-

egory in the sense of Section 4.3 of [22]. We can check that in Set the

arrow
∨
b←A,B,C , defined as

∨
b←A→∅,B,C,∅, is an isomorphism, and hence in Set

we have a natural transformation whose members are of type

(A → ∅) → ((B → ∅) → C) ⊢ (((A → ∅) → B) → ∅) → C;

this defines the inverse
∨
b→A,B,C of

∨
b←A,B,C , i.e. of

∨
b←A→∅,B,C,∅.

Then we have the following definitions in SA:
∨
b→A,B,C =df υ←A∨B,C ◦ ((υ←A,B → 1⊥) → 1C) ◦

∨
b→A→⊥,B,C ◦ (1A→⊥ → υ→B,C) ◦

◦ υ→A,B∨C : A ∨ (B ∨ C) ⊢ (A ∨B) ∨ C,

∨
b←A,B,C =df υ←A,B∨C ◦ (1A→⊥ → υ←B,C) ◦

∨
b←A→⊥,B,C,⊥ ◦ ((υ→A,B → 1⊥) → 1C) ◦

◦ υ→A∨B,C : (A ∨B) ∨ C ⊢ A ∨ (B ∨ C).

To define
∨
cA,B : B ∨A ⊢ A ∨B in SA, we need some further preliminary

definitions. In SMC we have

sA,B,C =df (1B→C → (1A → (εB,C ◦ (εA,B ∧ 1B→C) ◦
∧
b→A,A→B,B→C)) ◦

◦ ηA,(A→B)∧(B→C) ◦
∧
cB→C,A→B)) ◦ ηB→C,A→B :

A → B ⊢ (B → C) → (A → C).

54 CHAPTER 3. STAR-AUTONOMOUS CATEGORIES

By applying naturality and dinaturality equations, we can verify that s is

a natural transformation of SA in its first two indices A and B, and a

dinatural transformation in its third index C.

We have in SA the following definitions based on s:

∨
cA,B =df (1A→⊥ → ν→B) ◦ sB→⊥,A,⊥ : (B → ⊥) → A ⊢ (A → ⊥) → B,

∨
cA,B =df υ←A,B ◦

∨
cA,B ◦ υ→B,A : B ∨A ⊢ A ∨B.

Next we have in SMC:

dA,B,C,D =df (i→A,B,D → 1C) ◦ j←A,B→D,C :

A ∧ ((B → D) → C) ⊢ ((A ∧B) → D) → C,

dRC,B,A,D =df (1C→D → ((εC→D,B ∧ 1A) ◦
∧
b→C→D,(C→D)→B,A)) ◦

◦ ηC→D,((C→D)→B)∧A :

((C → D) → B) ∧A ⊢ (C → D) → (B ∧A).

Note that both d and dR are natural transformations in all their four

indices.

If, as above, we define A ∨B in Set as (A → ∅) → B, and
∨
b←A,B,C as

∨
b←A→∅,B,C,∅, while

∨
b→A,B,C is its inverse, and if, moreover, ∧ is cartesian

product, while dLA,B,C is dA,B,C,∅ and dRC,B,A is dRC,B,A,∅, then we can check

that Set with this structure is a net category in the sense of Section 7.2

of [22]. To verify the equations of net categories (which stem from [11]),

it here helps a lot to apply SMCc Coherence. In this net structure of

Set all arrows with the same source and target are equal, i.e. all diagrams

commute; this follows from the Net Coherence of [22] (Section 7.3). This

net structure of Set is not symmetric, because (A → ∅) → B need not be

isomorphic to (B → ∅) → A. Note that Set with ∧ being cartesian product

and ∨ being disjoint union cannot be a net category for any definition of

dL and dR (see [11], Section 3, and [22], Section 11.3).

With the help of dA,B,C,⊥, we have the following definition in SA:

dA,B,C =df υ←A∧B,C ◦dA,B,C,⊥ ◦ (1A ∧ υ→B,C) : A ∧ (B ∨ C) ⊢ (A ∧B) ∨ C,

and for f : A ⊢ D and g : B ⊢ E also the following:

§3.4. SA′ in SA 55

f ∨ g =df υ←D,E ◦ ((f → 1⊥) → g) ◦ υ→A,B : A ∨B ⊢ D ∨ E.

With that we have finished defining what was missing to obtain the DS

structure in SA. (We already have in SA the arrows 1A,
∧
b→A,B,C ,

∧
b←A,B,C

and
∧
cA,B , and the operations on arrows ◦ and ∧.)

To define
∧
∆B,A: A ⊢ A ∧ (¬B ∨B) and

∨
ΣB,A: (B ∧ ¬B) ∨A ⊢ A in SA

we introduce first the following preliminary definitions in SMC:

∧
∆B,A =df (1A ∧ ((1B →

∧
δ→B) ◦ ηB,⊤)) ◦

∧
δ←A : A ⊢ A ∧ (B → B),

for E being B ∧ (B → C),
∨
ΣB,A,C =df εE→E,A ◦

∧
c(E→E)→A,E→E ◦

∧
∆E,(E→E)→A ◦

◦ ((1E → εB,C) → 1A) : ((B ∧ (B → C)) → C) → A ⊢ A.

These definitions are not the only possible. It is easy to see with the help of

SMCc Coherence that many other definitions would do, and, in particular,

shorter definitions of
∨
ΣB,A,C are possible. (The present one was chosen to

facilitate calculation in §3.7 below.)

Then we have the following definitions in SA:

∧
∆B,A =df (1A ∧ (υ←¬B,B ◦ ((ν→B ◦ (λ←B → 1⊥)) → 1B))) ◦

∧
∆B,A :

A ⊢ A ∧ (¬B ∨B),

∨
ΣB,A =df

∨
ΣB,A,⊥ ◦ (((1B ∧ λ→B) → 1⊥) → 1A) ◦ υ→B∧¬B,A :

(B ∧ ¬B) ∨A ⊢ A.

For the remainder of the SA′ structure we have the following definitions

in SA:

∨
δ→A =df ν→A ◦ υ→A,⊥ : A ∨ ⊥ ⊢ A,

∨
δ←A =df υ←A,⊥ ◦ ν←A,⊥ : A ⊢ A ∨ ⊥,

π→A,B =df υ←¬A,B ◦ ((ν→A ◦ (λ←A → 1⊥)) → 1B) : A → B ⊢ ¬A ∨B,

π←A,B =df (((λ→A → 1⊥) ◦ ν←A,⊥) → 1B) ◦ υ→¬A,B : ¬A ∨B ⊢ A → B.

56 CHAPTER 3. STAR-AUTONOMOUS CATEGORIES

Note that with π→A,B defined as above we have

∧
∆B,A =df (1A ∧ π→B,B) ◦

∧
∆B,A .

With that we have finished defining what was missing to obtain the SA′

structure in SA.

It remains now to verify that the equations of SA′ hold for this defined

structure in SA. The equations (∨1), (∨2), (
∨
b→ nat), (

∨
c nat) and (

∨
b

∨
b) of

§2.1 are trivial to check. (We rely here and later on isomorphism equa-

tions without mentioning that explicitly.) For (
∨
b 5) we appeal to SMCc

Coherence, while for (
∨
c

∨
c) we need some preparation.

We have the following equations in SA:

(ν←A→⊥,⊥) ν←A→⊥,⊥ = ν→A → 1⊥,

(ν→A→⊥) ν→A→⊥ = ν←A,⊥ → 1⊥.

To prove these equations it is enough to establish

(ν←A,B → 1B) ◦ ν←A→B,B = 1A→B,

which follows from SMCc Coherence, and then use isomorphism equations.

To verify (
∨
c

∨
c) we use the following:

∨
cA,B ◦

∨
cB,A = (1A→⊥ → ν→B) ◦ sB→⊥,A,⊥ ◦ (1B→⊥ → ν→A) ◦ sA→⊥,B,⊥

= (1A→⊥ → ν→B) ◦ ((ν→A → 1⊥) → 1(B→⊥)→⊥) ◦ sB→⊥,(A→⊥)→⊥,⊥ ◦

◦ sA→⊥,B,⊥, by the naturality of s,

= (1A→⊥ → ν→B) ◦ (ν←A→⊥,⊥ → 1(B→⊥)→⊥) ◦ sB→⊥,(A→⊥)→⊥,⊥ ◦

◦ sA→⊥,B,⊥, by (ν←A→⊥,⊥),

= (1A→⊥ → ν→B) ◦ (1A→⊥ → ν←B,⊥), by SMCc Coherence,

= 1(A→⊥)→B.

To verify (
∨
b

∨
c) we use the following equation of SA:

(1B→⊥ → ∨
cA,C) ◦

∨
b←B→⊥,C,A,⊥ ◦

∨
c(B→⊥)→C,A ◦

∨
b←A→⊥,B,C,⊥ ◦

◦ ((
∨
cA,B → 1⊥) → 1C) =

∨
b←B→⊥,A,C,⊥.

§3.4. SA′ in SA 57

To verify this equation we use the naturality of
∨
b← and s, and the equation

(ν←A→⊥,⊥) where A is instantiated by A and B. In this verification, for the

arrow g(p, q, r) of SMC defined as

(1q→⊥→ ((ν←p→⊥,⊥→ 1(r→⊥)→⊥) ◦ sr→⊥,(p→⊥)→⊥,⊥)) ◦
∨
b←q→⊥,r,(p→⊥)→⊥,⊥ ◦

◦ sp→⊥,(q→⊥)→r,⊥ ◦ (1p→⊥→ (ν←q→⊥,⊥→ 1r)) ◦
∨
b←p→⊥,(q→⊥)→⊥,r,⊥ ◦

◦ ((sq→⊥,p,⊥→ 1⊥) → 1r),

where ⊥ is an arbitrary letter, we have that Gg(p, q, r) corresponds to the

diagram

��
(q → ⊥)→((p → ⊥)→((r → ⊥) → ⊥))

(((q → ⊥) → p) → ⊥) → r

and so, by SMCc Coherence, the following holds:

g(A,B,C) = (1B→⊥ → (1A→⊥ → ν←C,⊥)) ◦
∨
b←B→⊥,A,C,⊥ .

The equation (d nat) is easily inferred from the naturality of d in all

its four indices. To verify the equations (d∧) and (d∨) we apply SMCc

Coherence.

For the equations (d
∧
b) and (d

∨
b) we verify first that for

dRC,B,A =df
∨
cC,B∧A ◦ (

∧
cA,B ∨ 1C) ◦ dA,B,C ◦ (1A ∧ ∨

cB,C) ◦
∧
cC∨B,A

of type (C ∨B) ∧A ⊢ C ∨ (B ∧A) (see §2.1) we have in SA

dRC,B,A = υ←C,B∧A ◦dRC,B,A,⊥ ◦ (υ→C,B ∧ 1A).

For that we use the naturality of s and d, the equation (ν←A→⊥,⊥), and

SMCc Coherence. After this verification, we use essentially SMCc Coher-

ence to obtain (d
∧
b) and (d

∨
b) in SA. With that we have all the equations

of DS in SA.

We pass now to the PN equations of §2.2. It is trivial to check in SA

the equations (
∧
∆ nat) and (

∨
Σ nat). For the equations (

∧
b

∧
∆), (

∨
b

∨
Σ) and (d

∧
Σ)

we apply various naturality equations and SMCc Coherence.

58 CHAPTER 3. STAR-AUTONOMOUS CATEGORIES

For the equation (d
∨
∆) we verify first that we have

ν←C∧B,⊥ = dC,B,⊥,⊥◦ (1C ∧ ν←B,⊥),

by SMCc Coherence; so in SA we have

ν←C∧B,⊥ ◦ (1C ∧ ν→B) = dC,B,⊥,⊥.

We use this equation, together with the naturality of
∨
Σ and SMCc Coher-

ence, to verify for E being A ∧ (A → ⊥)

∨
ΣA,C∧B,⊥ ◦ (1E→⊥ → ν→C∧B) ◦ s(C∧B)→⊥,E,⊥ ◦dC,B,E,⊥ =

1C ∧ (
∨
ΣA,B,⊥ ◦ (1E→⊥ → ν→B) ◦ sB→⊥,E,⊥),

from which (d
∨
∆) follows.

For (
∨
Σ

∧
∆) it is enough to verify the following:

∨
ΣA,A,⊥ ◦dA,A→⊥,A,⊥ ◦ (1A ∧ (ν→A → 1A)) ◦

∧
∆A,A

= εA,A ◦ (1A ∧ (ν←A,⊥ → 1A)) ◦ (1A ∧ (ν→A → 1A)) ◦
∧
∆A,A,

by SMCc Coherence,

= 1A, by (νν) and SMCc Coherence.

For (
∨
Σ
′ ∧
∆
′
) it is enough to verify the following:

∨
ΣA,A→⊥,⊥ ◦ ((

∧
cA→⊥,A → 1⊥) → 1A→⊥) ◦dA→⊥,A,A→⊥,⊥ ◦

◦ (1A→⊥ ∧ ((1A→⊥ → ν→A→⊥) ◦ s(A→⊥)→⊥,A,⊥ ◦ (ν→A → 1A))) ◦
∧
∆A,A→⊥ =

1A→⊥,

which is done by using the equation (ν→A→⊥), the naturality of s, the first

(νν) equation and SMCc Coherence. With that we have finished verifying

the PN equations in SA.

It remains to deal with the equations introduced in the preceding sec-

tion. It is trivial to verify in SA the equations (
∨
δ→ nat) and (

∨
δ

∨
δ), while

for (
∨
b

∨
δ) we apply the naturality of ν← and SMCc Coherence. For (d

∧
σ)

we rely again on SMCc Coherence, which also delivers readily

∨
δ←C∧B = dC,B,⊥ ◦ (1C ∧

∨
δ←B)

§3.5. The category PN¬→⊥ 59

—an equation that, in the presence of (
∨
δ

∨
δ), amounts to (d

∨
δ). It is trivial

to verify the equations (ππ), and with that we have finished verifying all

the equations of SA′ in SA.

§3.5. The category PN¬
→⊥

As an auxiliary for the proof of the isomorphism of the categories SA and

SA′, which will be completed in §3.7, we introduce a category intermediary

between PN¬ and SA′ equivalent with PN¬, which we call PN¬→⊥. As

a consequence of the equivalence of PN¬→⊥ with PN¬, we will obtain a

coherence result for PN¬→⊥ with respect to Br, and this will enable us to

shorten very considerably calculations in SA′ in the next two sections.

The objects of the category PN¬→⊥ are all the formulae of the language

L⊤,⊥,¬,∧,∨,→ generated by P in which ⊤ does not occur and in which ⊥
occurs only in subformulae of the form A → ⊥. The arrow terms of PN¬→⊥
are defined as those of PN¬ (in the extended language of formulae), save

that among the primitive arrow terms we also have

π→A,B : A → B ⊢ ¬A ∨B, π←A,B : ¬A ∨B ⊢ A → B,

where B cannot be ⊥, since ¬A ∨ ⊥ is not an object of PN¬→⊥,

λ→A : ¬A ⊢ A → ⊥, λ←A : A → ⊥ ⊢ ¬A.

The equations of PN¬→⊥ are defined as those of PN¬ plus the equations

(ππ) of §3.3 and (λλ) of §3.2. All the equations of PN¬→⊥ will hold in

SA′ once λ→A and λ←A are defined in SA′ as in the next section. This is an

important fact for the applications we will make of the coherence of PN¬→⊥
in the next two sections.

We will now show thatPN¬ andPN¬→⊥ are equivalent categories. From

PN¬ to PN¬→⊥ we have a functor I such that IA is A for every object A

of PN¬→⊥, and If is f for every arrow term f of PN¬. From PN¬→⊥ to

PN¬ we have a functor H defined inductively as follows. On objects we

have

Hp = p , for p a letter,

H¬A = ¬HA,

60 CHAPTER 3. STAR-AUTONOMOUS CATEGORIES

H(A ξ B) = HA ξ HB, for ξ ∈ {∧,∨},
H(A → B) = ¬HA ∨HB, if B is not ⊥,

H(A → ⊥) = ¬HA.

On arrow terms we have

HαA1,...,An = αHA1,...,HAn ,

for αA1,...,An a primitive arrow term different from π→A,B , π
←
A,B , λ

→
A and λ←A ,

Hπ→A,B = Hπ←A,B = 1¬HA∨HB ,

Hλ→A = Hλ←A = 1¬HA,

H(f ξ g) = Hf ξ Hg, for ξ ∈ { ◦ ,∧,∨}.

It is clear that for every object A of PN¬ we have thatHIA = HA = A.

For every object A of PN¬→⊥ we have IHA = HA, and we define an arrow

hA : HA ⊢ A of PN¬→⊥, which is a member of a natural isomorphism of

PN¬→⊥ (natural in A), with inverse h−1A : A ⊢ HA. The arrows hA and h−1A
are defined inductively as follows:

hp = h−1p = 1p, for p a letter,

hAξB = hA ξ hB , h−1AξB = h−1A ξ h−1B ,

for ξ ∈ {∧,∨},

h¬A = ¬h−1A , h−1¬A = ¬hA,
where the operation ¬ on arrows is defined as in §2.8,

hA→B = π←A,B ◦ (¬h−1A ∨ hB), h−1A→B = (¬hA ∨ h−1B) ◦π→A,B ,

if B is not ⊥,

hA→⊥ = λ→A ◦¬h−1A , h−1A→⊥ = ¬hA ◦λ←A .

For f : A ⊢ B we prove that we have

f ◦hA = hB ◦Hf

in PN¬→⊥ by induction on the complexity of the arrow term f of PN¬→⊥. In

this induction we rely on various bifunctorial, naturality and isomorphism

§3.6. SA in SA′ 61

equations. We rely on (
∧
∆ dinat) and (

∨
Σ dinat) of §2.8, in addition to

(
∧
∆ nat) and (

∨
Σ nat) of §2.2, when f is

∧
∆B,A and

∨
ΣB,A. This establishes

that h is a natural isomorphism, and it follows that the categories PN¬→⊥
and PN¬ are equivalent via the functors H and I.

Let Gα be an identity arrow of Br when α is π→A,B , π
←
A,B , λ

→
A or λ←A .

With other clauses for G being as for PN¬ we obtain a functor G from

PN¬→⊥ to Br. Note that GA = GHA. For every arrow f of PN¬→⊥ we

have that Gf = GHf . Then we can prove the following (cf. the proof at

the end of §2.7).

PN¬→⊥ Coherence. The functor G from PN¬→⊥ to Br is faithful.

Proof. Suppose that for f and g arrows of PN¬→⊥ of the same type

we have Gf = Gg. Then GHf = GHg, and Hf = Hg in PN¬ by PN¬

Coherence. It follows that f = g in PN¬→⊥ by the equivalence of PN¬→⊥
with PN¬. ⊣

Note that in PN¬→⊥ we can define υ→A,B : A ∨B ⊢ (A → ⊥) → B and

υ←A,B : (A → ⊥) → B ⊢ A ∨B as in SA′ in the next section, and it is easy

to see that the equations (υυ) of §3.2 hold for these defined arrows.

§3.6. SA in SA′

This section is opposite to §3.4. We will define in it the SA structure in

SA′, and then we will show that the equations of SA hold in SA′ for this

defined structure.

First, we have the following definitions in SA′:

εA,B =df

∨
ΣA,B ◦ dA,¬A,B ◦ (1A ∧ π→A,B) : A ∧ (A → B) ⊢ B,

ηA,B =df π←A,A∧B ◦ dR¬A,A,B ◦
∧
ΣA,B : B ⊢ A → (A ∧B),

A → f =df π←A,C ◦ (1¬A ∨ f) ◦π→A,B : A → B ⊢ A → C, for f : B ⊢ C.

With that we have defined what was missing to obtain the SMC structure

in SA′. (We already have in SA′ the arrows 1A,
∧
b→A,B,C ,

∧
b←A,B,C ,

∧
cA,B ,

∧
δ→A

and
∧
δ←A , and the operations on arrows ◦ and ∧.)

62 CHAPTER 3. STAR-AUTONOMOUS CATEGORIES

For the remainder of the SA structure we have the following definitions

in SA′:

λ→A =df π←A,⊥ ◦
∨
δ←¬A : ¬A ⊢ A → ⊥,

λ←A =df

∨
δ→¬A ◦π→A,⊥ : A → ⊥ ⊢ ¬A,

ν→A =df n→A ◦¬λ→A ◦λ←A→⊥ : (A → ⊥) → ⊥ ⊢ A,

υ→A,B =df π←A→⊥,B ◦ ((¬λ←A ◦n←A) ∨ 1B) : A ∨B ⊢ (A → ⊥) → B,

υ←A,B =df ((n→A ◦¬λ→A) ∨ 1B) ◦π→A→⊥,B : (A → ⊥) → B ⊢ A ∨B,

where the operation ¬ on arrows is defined as in §2.8, the arrows λ→A , λ←A
and λ←A→⊥ on the right-hand sides are defined as above, while n→A : ¬¬A ⊢ A

and n←A : A ⊢ ¬¬A are defined as in §2.6. With that we have finished

defining what was missing to obtain the SA structure in SA′.

It is not difficult to show with the help of (
∧
Σ dinat) and PN¬ Coherence

that for g : A ⊢ D and f : B ⊢ C in SA′ we have the equation

g → f = π←A,C ◦ (¬g ∨ f) ◦π→D,B

where g → f on the left-hand side is defined in SA′ as in §3.1 in terms

of εD,C , ηA,D→B and the operations A → and D →, which are themselves

defined in SA′.

We verify next that the equations of SA hold for the defined SA struc-

ture in SA′. For the equations of SMC of §3.1 we have that (A → 1)

and (A → 2) are trivial to check, (ε nat) and (η nat) follow from various

naturality equations, while (εη ∧) and (εη →) follow from PN¬ Coherence.

For the equations of §3.2 we have that (λλ) follow from (
∨
δ

∨
δ) and (ππ) of

§3.3, while for (υυ) we use (ππ), (λλ), the isomorphism of n→A (see §2.6)
and (¬2) of §2.8.

It remains only to verify (νν) of §3.2. We will do that after some

preparation, which will enable us to apply the PN¬→⊥ Coherence of the

preceding section.

We have the following equation in SA′:

(1 → ε) 1A → εB,⊥ = λ→A ◦
∨
∆B,¬A ◦ (1¬A ∨ (1B ∧ λ←B)) ◦π→A,B∧(B→⊥)

§3.7. The isomorphism of SA and SA′ 63

where εB,⊥ and → on the left-hand side 1A → εB,⊥, which is equal to

A → εB,⊥, are defined in SA′, and so are λ→A and λ←B on the right-hand

side. By definitions and isomorphism equations, for g being

∨
δ→¬A ◦ (1¬A ∨

∨
ΣB,⊥) ◦ (1¬A ∨ (dB,¬B,⊥ ◦ (1B ∧

∨
δ←¬B))),

in SA′ we have

1A → εB,⊥ = λ→A ◦ g ◦ (1¬A ∨ (1B ∧ λ←B)) ◦π→A,B∧(B→⊥).

Next we have

g =
∨
δ→¬A ◦ (

∨
∆B,¬A ∨ 1⊥) ◦

∨
b→¬A,B∧¬B,⊥ ◦ (1¬A ∨

∨
δ←B∧¬B),

by (
∨
b

∨
∆

∨
Σ) and (d

∨
δ),

=
∨
∆B,¬A, by (

∨
δ→ nat), (

∨
b

∨
δ) and (

∨
δ

∨
δ),

which establishes the equation (1 → ε).

We can now verify (νν) by establishing in SA′ the equation

ν←A,⊥ = λ→A→⊥ ◦¬λ←A ◦n←A .

The left-hand side ν←A,⊥ of this equation is equal to

(1A→⊥ → εA,⊥) ◦ (1A→⊥ → ∧
cA→⊥,A) ◦ ηA→⊥,A

(see §3.2), where we can replace 1A→⊥ → εA,⊥ according to the equation

(1 → ε), and then apply PN¬→⊥ Coherence. With that we have finished

verifying all the equations of SA in SA′.

§3.7. The isomorphism of SA and SA′

In this section we will show that SA and SA′ are isomorphic categories.

We have a functor F from SA′ to SA that is identity on objects and that

maps every arrow of SA′ to the homonymous arrow in the defined SA′

structure of SA. For example,

F
∨
b→A,B,C=

∨
b→A,B,C ,

64 CHAPTER 3. STAR-AUTONOMOUS CATEGORIES

where the
∨
b→A,B,C on the right-hand side is defined as in §3.4. We define

analogously a functor F ′ from SA to SA′ which is identity on objects and

which maps every arrow of SA to the homonymous arrow in the defined

SA structure of SA′. That F and F ′ are indeed functors follows from what

was established in §3.4 concerning the equations of SA′ in SA, and in the

preceding section concerning the equations of SA in SA′.

It is trivial that F ′FA and FF ′A are both A. We will show next that

F ′Ff = f in SA′, and FF ′f = f in SA, from which it will follow that SA

and SA′ are isomorphic categories.

To verify F ′Ff = f in SA′, we have to verify this equation for f being
∨
b→A,B,C ,

∨
b←A,B,C ,

∨
cA,B , dA,B,C ,

∧
∆B,A,

∨
ΣB,A,

∨
δ→A ,

∨
δ←A , π→A,B and π←A,B , and

we also have to verify that in SA′ we have

(F ′F ξ) F ′F (f ξ g) = F ′Ff ξ F ′Fg

for ξ being ∨. It is trivial that in SA′ the equation F ′Ff = f holds for

f being 1A,
∧
b→A,B,C ,

∧
b←A,B,C ,

∧
cA,B ,

∧
δ→A and

∧
δ←A ; the equations (F ′F ξ) for

ξ ∈ { ◦ ,∧} hold trivially too.

To verify F ′Ff = f in SA′ for f being
∨
b→A,B,C ,

∨
b←A,B,C , etc. we need

some preparation. We have for f : A ⊢ B the following equation in SA′:

(f → 1) f → 1⊥ = λ→A ◦¬f ◦λ←B ,

with the help of the equation (g → f) of the preceding section, together with

the definitions of λ→A and λ←B , and the equations (
∨
δ→ nat) and (

∨
δ

∨
δ). The

equation (f → 1), together with the equation (1 → ε) established for SA′

in the preceding section, will enable us to apply below PN¬→⊥ Coherence

of §3.5.
By PN¬→⊥ Coherence we have that F ′Ff = f holds in SA′ for f being

∨
b→A,B,C ,

∨
cA,B , dA,B,C , π→A,B and π←A,B . We only have to check by using

(1 → ε) and (f → 1) that the arrow term F ′Ff is equal in SA′ to an

arrow term of PN¬→⊥. This is a lengthy, but straightforward, exercise. We

also need to verify that GF ′Ff = Gf .

Once we have shown that F ′F
∨
b→A,B,C =

∨
b→A,B,C in SA′, we can use that

to obtain the following:

§3.7. The isomorphism of SA and SA′ 65

F ′F
∨
b←A,B,C = F ′F

∨
b←A,B,C ◦

∨
b→A,B,C ◦

∨
b←A,B,C

= F ′F
∨
b←A,B,C ◦F ′F

∨
b→A,B,C ◦

∨
b←A,B,C

=
∨
b←A,B,C ,

by the functoriality of F ′ and F , though F ′F
∨
b←A,B,C =

∨
b←A,B,C can also be

verified directly with the help of PN¬→⊥ Coherence (this is not such a short

verification).

For F ′F
∧
∆B,A =

∧
∆B,A we have a verification very much analogous to

the verification of (1 → ε) in the preceding section. In this verification we

establish that in SA′ we have

(
∧
∆)

∧
∆B,A = (1A ∧ π←B,B) ◦

∧
∆B,A,

and then, by using the equations (f → 1) and (
∧
∆), together with PN¬→⊥

Coherence, we obtain F ′F
∧
∆B,A =

∧
∆B,A. For F ′F

∨
ΣB,A =

∨
ΣB,A we use

(1 → ε), (f → 1) and (
∧
∆), together with PN¬→⊥ Coherence.

For F ′F
∨
δ→A =

∨
δ→A we use

λ←A→⊥ =
∨
δ→¬(A→⊥) ◦ π→A→⊥,⊥,

which holds in SA′ by definition (see the preceding section), and then

we apply (
∨
δ→ nat), (¬2) of §2.8, and isomorphism equations. We obtain

F ′F
∨
δ←A =

∨
δ←A from F ′F

∨
δ→A =

∨
δ→A (see the verification of F ′F

∨
b←A,B,C =

∨
b←A,B,C above).

It remains to derive (F ′F ∨) in SA′. For this rather straightforward

derivation we use (¬2) and (
∨
δ← nat), together with isomorphism and bi-

functorial equations.

To verify FF ′f = f in SA, we have to verify this equation for f being

εA,B , ηA,B , ν
→
A , λ→A , λ←A , υ→A,B and υ←A,B , and we also have to verify that

in SA we have

FF ′(A → g) = FF ′A → FF ′g.

For that we rely on lengthy, but also rather straightforward, derivations,

in which we apply various bifunctorial, naturality, dinaturality and isomor-

phism equations. We also use the equations (ν←A→⊥,⊥) and (ν→A→⊥) of §3.4,

66 CHAPTER 3. STAR-AUTONOMOUS CATEGORIES

and we apply SMCc Coherence of §3.1. It is trivial that in SA the equa-

tion FF ′f = f holds for f being 1A,
∧
b→A,B,C ,

∧
b←A,B,C ,

∧
cA,B ,

∧
δ→A and

∧
δ←A ;

the equations obtained from (F ′F ξ) for ξ ∈ { ◦ ,∧} by replacing F ′F by

FF ′ hold trivially too. With that we have finished establishing that SA

and SA′ are isomorphic categories.

§3.8. The categories SAs and SA′
s

The objects of the category SAs are the formulae of the propositional lan-

guage L⊤,⊥,∧,→ generated by P, which are the formulae of the propositional

language L⊤,⊥,¬,∧,∨,→ of §3.2 in which ¬ and ∨ do not occur. The arrow

terms of SAs are defined as those of SA save that we omit in the defini-

tion the primitive arrow terms λ→A , λ←A , υ→A,B and υ←A,B . The equations of

SAs are defined as those of SA save that we omit the equations (λλ) and

(υυ). This means that to the equations assumed for SMC we add only the

equation (νν). The category SAs is the free star-autonomous category in

the sense of [2] (Section 2) generated by P.

We will establish that SA and SAs are equivalent categories. From

SAs to SA we have a functor I such that IA is A for every object A of

SAs, and If is f for every arrow term f of SAs.

From SA to SAs we have a functor H defined inductively as follows.

On objects we have

HA = A , for A a letter, or ⊤, or ⊥,

H¬A = HA → ⊥,

H(A ξ B) = HA ξ HB, for ξ ∈ {∧,→},
H(A ∨B) = (HA → ⊥) → HB.

On arrow terms we have

HαA1,...,An = αHA1,...,HAn ,

for αA1,...,An a primitive arrow term different from λ→A , λ←A , υ→A,B and υ←A,B ,

Hλ→A = Hλ←A = 1HA→⊥,

Hυ→A,B = Hυ←A,B = 1(HA→⊥)→HB ,

§3.8. The categories SAs and SA′s 67

H(f ξ g) = Hf ξ Hg, for ξ ∈ { ◦ ,∧},

H(A → f) = HA → Hf .

It is clear that for every object A of SAs we have that HIA = HA = A.

For every object A of SA we have IHA = HA, and we define an arrow

hA : HA ⊢ A of SA, which is a member of a natural isomorphism of SA

(natural in A), with inverse h−1A : A ⊢ HA. The arrows hA and h−1A are

defined inductively as follows:

hA = h−1A = 1A, for A a letter, or ⊤, or ⊥

h¬A = λ←A ◦ (h−1A → 1⊥), h−1¬A = (hA → 1⊥) ◦λ→A ,

hA∧B = hA ∧ hB , h−1A∧B = h−1A ∧ h−1B ,

hA∨B = υ←A,B ◦ ((hA → 1⊥) → hB), h−1A∨B = ((h−1A → 1⊥) → h−1B) ◦ υ→A,B ,

hA→B = h−1A → hB , h−1A→B = hA → h−1B .

For f : A ⊢ B we prove that we have

f ◦hA = hB ◦Hf

in SA by induction on the complexity of the arrow term f of SA. In this

induction we rely on various bifunctorial, naturality, dinaturality and iso-

morphism equations. This establishes that h is a natural isomorphism, and

it follows that the categories SA and SAs are equivalent via the functors

H and I.

From this equivalence we can deduce that SAs is isomorphic to a full

subcategory of SA. For every object A of SAs we have that HA = A and

hA = 1A. So, for A and B objects of SAs and f : A ⊢ B an arrow term of

SA, there is an arrow term Hf : A ⊢ B of SAs such that in SA we have

f = Hf , because hA = 1A and hB = 1B.

The objects of the category SA′s are the formulae of the propositional

language L⊤,⊥,¬,∧,∨ generated by P, which are the formulae of the propo-

sitional language L⊤,⊥,¬,∧,∨,→ of §3.2 in which → does not occur. The

arrow terms of SA′s are defined as those of SA′ save that we omit in the

definition the primitive arrow terms π→A,B and π←A,B . The equations of SA
′
s

are defined as those of SA′ save that we omit the equations (ππ).

With the definitions

68 CHAPTER 3. STAR-AUTONOMOUS CATEGORIES

τLB =df
∧
σ→¬B∨B ◦

∧
∆B,⊤ : ⊤ ⊢ ¬B ∨B,

γRB =df

∨
ΣB,⊥ ◦

∨
δ←B∧¬B : B ∧ ¬B ⊢ ⊥,

in SA′s, on the one hand, and

∧
∆B,A =df (1A ∧ τLB) ◦

∧
δ←A : A ⊢ A ∧ (¬B ∨B),

∨
ΣB,A =df

∨
σ→A ◦ (γRB ∨ 1A) : (B ∧ ¬B) ∨A ⊢ A,

on the other hand, it can easily be established that SA′s is isomorphic to the

free symmetric linearly (alias weakly) distributive category with negation in

the sense of [11] (Section 4, Definition 4.3) generated by P.

We will establish that SA′ and SA′s are equivalent categories. From

SA′s to SA′ we have a functor I such that IA is A for every object A of

SA′s, and If is f for every arrow term f of SA′s.

From SA′ to SA′s we have a functor H defined inductively as follows.

On objects we have

HA = A , for A a letter, or ⊤, or ⊥,

H¬A = ¬HA,

H(A ξ B) = HA ξ HB, for ξ ∈ {∧,∨}
H(A → B) = ¬HA ∨HB.

On arrow terms we have

HαA1,...,An = αHA1,...,HAn ,

for αA1,...,An a primitive arrow term different from π→A,B and π←A,B ,

Hπ→A,B = Hπ←A,B = 1¬HA∨HB ,

H(f ξ g) = Hf ξ Hg, for ξ ∈ { ◦ ,∧,∨}.

It is clear that for every object A of SA′s we have that HIA = HA = A.

For every object A of SA′ we have IHA = HA, and we define an arrow

hA : HA ⊢ A of SA′, which is a member of a natural isomorphism of SA′

(natural in A), with inverse h−1A : A ⊢ HA. The arrows hA and h−1A are

defined inductively as follows:

§3.8. The categories SAs and SA′s 69

hA = h−1A = 1A, for A a letter, or ⊤, or ⊥

h¬A = ¬h−1A , h−1¬A = ¬hA,

hA ξ B = hA ξ hB , h−1
A ξ B = h−1A ξ h−1B , for ξ ∈ {∧,∨},

hA→B = π←A,B ◦ (¬h−1A ∨ hB), h−1A→B = (¬hA ∨ h−1B) ◦π→A,B .

We check as before that h is indeed a natural isomorphism, which es-

tablishes that the categories SA′ and SA′s are equivalent via the functors

H and I. As we established that SAs is isomorphic to a full subcategory

of SA, so we establish that SA′s is isomorphic to a full subcategory of SA′.

By combining the equivalences of SA with SAs and of SA′ with SA′s
and the isomorphism of SA with SA′, established in the preceding section,

we obtain that SAs and SA′s are equivalent categories. This is presumably

what was meant in [11] (Section 4, Theorem 4.5) by saying that the notion

of symmetric linearly distributive category with negation and the notion of

star-autonomous category “coincide”.

To establish the equivalence of SAs and SA′s directly, without proceed-

ing via SA and SA′ as we did, is possible, but this cannot be easier than

what we did (as a matter of fact, this seems to us much more tangled).

One cannot escape that way all the calculations we made in verifying the

isomorphism of SA and SA′. These calculations must be made at least

implicitly. We were able to shorten them via SMCc Coherence of §3.1 and

our PN¬→⊥ Coherence of §3.5, which is based on PN¬ Coherence.

Chapter 4

Proof-Net and
Star-Autonomous Categories

In this chapter we prove that the free proof-net category PN¬ is isomor-

phic to a full subcategory of the free proof-net category with units SA′s,

and hence also to full subcategories of the categories SA′ and SA of the

previous chapter. All these categories are freely generated by the same set

of objects. The proof is based on a Gentzen sequent formulation of SA′s,

a cut-elimination theorem for this formulation, and a key technical lemma

(Lemma 3 of §4.3). The proof of the cut-elimination is facilitated very much

by relying on coherence for proof-net categories.

As a corollary, we obtain a coherence theorem with respect to Br for

the category SAc, which is the full subcategory of SA whose objects are

isomorphic either to objects in which units do not occur, i.e. to objects of

PN¬, or to one of the units. The restriction on the objects of SA brought by

this coherence theorem for SAc is of the same kind as the proviso concerning

the unit object that Kelly and Mac Lane had in their coherence theorem

for symmetric monoidal closed categories of [32] (see the end of §3.1). This
restricted coherence of star-autonomous categories is a very useful tool for

deciding whether a diagram of arrows commutes in these categories.

71

72 CHAPTER 4. PROOF-NET AND STAR-AUTONOMOUS...

§4.1. The Gentzenization of SA′
s

We will now define a new language of arrow terms to denote the arrows of

the category SA′s of §3.8. We call these arrow terms Gentzen terms, and

we prove for Gentzen terms a result analogous to Gentzen’s cut-elimination

theorem, which we will use to prove that the category PN¬ is isomorphic

to a full subcategory of SA′s.

As the arrow terms of SA′s, Gentzen terms will be defined inductively

starting from primitive Gentzen terms. As primitive Gentzen terms we

have 1A : A ⊢ A, for A being a letter, or ⊤, or ⊥. To define the opera-

tions on Gentzen terms, called Gentzen operations, which are mostly partial

operations, we need some preparation.

We define inductively a notion that for ξ ∈ {∧,∨} we call a ξ -context:

is a ξ -context;

if Z is a ξ -context and A an object of SA′s, then Z ξ A and A ξ Z are

ξ -contexts.

A ξ -context is called proper when it is not .

Next we define inductively what it means for a ξ -context Z to be applied

to an object B of SA′s, which we write Z(B), or to an arrow term f of SA′s,

which we write Z(f):

(B) = B, (f) = f ,

(Z ξ A)(B) = Z(B) ξ A, (Z ξ A)(f) = Z(f) ξ 1A,

(A ξ Z)(B) = A ξ Z(B); (A ξ Z)(f) = 1A ξ Z(f).

We use X, perhaps with indices, as a variable for ∧-contexts, and Y , per-

haps with indices, as a variable for ∨-contexts.
Then we have the Gentzen operation

∧
B←X , which involves types specified

by

f : X(A ∧ (B ∧ C)) ⊢ D
∧
B←Xf : X((A ∧B) ∧ C) ⊢ D

This is read “if f is a Gentzen term, then
∧
B←Xf is a Gentzen term”, all that

of the required types. We use this rule notation for operations also in the

§4.1. The Gentzenization of SA′s 73

future. The Gentzen term
∧
B←X f denotes the arrow of SA′s named on the

right-hand side of the =dn sign below:

∧
B←Xf =dn f ◦X(

∧
b←A,B,C).

We also have the following Gentzen operation:

f : D ⊢ Y (A ∨ (B ∨ C))
∨
B→Y f =dn Y (

∨
b→A,B,C) ◦ f : D ⊢ Y ((A ∨B) ∨ C)

and the following four analogous Gentzen operations, where the types can

be easily guessed:

∧
B→Xf =dn f ◦X(

∧
b→A,B,C),

∨
B←Y f =dn Y (

∨
b←A,B,C) ◦ f ,

∧
CXf =dn f ◦X(

∧
cA,B),

∨
CY f =dn Y (

∨
cA,B) ◦ f .

We also have the Gentzen operations in the following list:

f : A ⊢ B

⊤→f =dn f ◦
∧
σ→A : ⊤ ∧A ⊢ B

f : B ⊢ A

⊥←f =dn

∨
δ←A ◦ f : B ⊢ A ∨ ⊥

g : ⊤ ∧A ⊢ B

⊤←g =dn g ◦
∧
σ←A : A ⊢ B

g : B ⊢ A ∨ ⊥

⊥→g =dn

∨
δ→A ◦ g : B ⊢ A

for
∨
e′D,C,B,A =df (

∧
cC,D ∨ 1B∨A) ◦

∨
b←C∧D,B,A ◦ ((dC,D,B ◦

∧
cD∨B,C) ∨ 1A) ◦

◦ dD∨B,C,A : (D ∨B) ∧ (C ∨A) ⊢ (D ∧ C) ∨ (B ∨A),

f1 : B1 ⊢ A1 ∨ C1 f2 : B2 ⊢ A2 ∨ C2

∧(f1, f2) =dn
∨
e′A1,A2,C1,C2

◦ (f1 ∧ f2) : B1 ∧B2 ⊢ (A1 ∧A2) ∨ (C1 ∨ C2)

for
∧
e′A,B,C,D =df dA,C,B∧D ◦ (1A ∧ (

∨
cC,B∧D ◦ dB,D,C)) ◦

∧
b←A,B,D∨C ◦

◦ (1A∧B ∧ ∨
cD,C) : (A ∧B) ∧ (C ∨D) ⊢ (A ∧ C) ∨ (B ∧D),

f1 : C1 ∧A1 ⊢ B1 f2 : C2 ∧A2 ⊢ B2

∨(f1, f2) =dn (f1 ∨ f2) ◦
∧
e′C1,C2,A1,A2

: (C1 ∧ C2) ∧ (A1 ∨A2) ⊢ B1 ∨B2

74 CHAPTER 4. PROOF-NET AND STAR-AUTONOMOUS...

(see [22], Section 7.6, for
∨
e′ and

∧
e′),

f : B ⊢ A ∨ C

¬Lf =dn

∨
Σ
′
A,C

◦ d¬A,A,C ◦
∧
cA∨C,¬A ◦ (f ∧ 1¬A) : B ∧ ¬A ⊢ C

f : C ∧A ⊢ B

¬Rf =dn (1¬A ∨ f) ◦
∨
c¬A,C∧A ◦ dC,A,¬A ◦

∧
∆
′
A,C : C ⊢ ¬A ∨B

To define the remaining Gentzen operations, we need some preparation.

For every proper ∧-context X we define inductively as follows an object

EX of SA′s:

E ∧B = EB∧ = B,

EX∧B = EX ∧B, for X proper,

EB∧X = B ∧ EX , for X proper.

For every proper ∧-context X and every object A of SA′s we define induc-

tively as follows an arrow term
∧
τX,A: EX ∧A ⊢ X(A) of SA′s:

∧
τB∧ ,A =df 1B∧A : B ∧A ⊢ B ∧A,

∧
τB∧X,A =df (1B ∧ ∧

τX,A) ◦
∧
b←B,EX ,A

: (B ∧ EX) ∧A ⊢ B ∧X(A),

for X proper,

∧
τ ∧B,A =df

∧
cB,A : B ∧A ⊢ A ∧B,

∧
τX∧B,A =df (

∧
τX,A ∧ 1B) ◦

∧
b→EX ,A,B

◦ (1EX ∧ ∧
cB,A) ◦

∧
b←EX ,B,A

:

(EX ∧B) ∧A ⊢ X(A) ∧B, for X proper.

For every proper ∨-context Y we define inductively as follows an object

DY of SA′s:

D ∨B = DB∨ = B,

DY ∨B = DY ∨B, for Y proper,

DB∨Y = B ∨DY , for Y proper.

For every proper ∨-context Y and every object A of SA′s we define induc-

tively as follows an arrow term
∨
τY,A: Y (A) ⊢ A ∨DY of SA′s:

§4.1. The Gentzenization of SA′s 75

∨
τ ∨B,A =df 1A∨B : A ∨B ⊢ A ∨B,

∨
τY ∨B,A =df

∨
b←A,DY ,B

◦ (
∨
τY,A ∨ 1B) : Y (A) ∨B ⊢ A ∨ (DY ∨B),

for Y proper,

∨
τB∨ ,A =df

∨
cA,B : B ∨A ⊢ A ∨B,

∨
τB∨Y,A =df

∨
b←A,B,DY

◦ (
∨
cA,B ∨ 1DY

) ◦
∨
b→B,A,DY

◦ (1B ∨ ∨
τY,A) :

B ∨ Y (A) ⊢ A ∨ (B ∨DY), for Y proper.

For f : A ⊢ B, the following equations hold in SA′s:

(
∧
τ nat) X(f) ◦

∧
τX,A =

∧
τX,B ◦ (1EX ∧ f),

(
∨
τ nat) (f ∨ 1DY) ◦

∨
τY,A =

∨
τY,B ◦Y (f);

they are proved by applying naturality equations.

It is clear that for ξ ∈ {∧,∨} and
ξ

τX,A: A1 ⊢ A2 there is an arrow term
ξ

τ−1X,A: A2 ⊢ A1 of SA′s, which is a “mirror image” of
ξ

τX,A, such that in

SA′s we have

ξ

τ−1X,A ◦
ξ

τX,A = 1A1 ,
ξ

τX,A ◦
ξ

τ−1X,A = 1A2 .

For example, with

∧
τF∧((C∧)∧B),A = (1F ∧ (

∧
b→C,A,B ◦ (1C ∧ ∧

cB,A) ◦
∧
b←C,B,A)) ◦

∧
b←F,C∧B,A

we have

∧
τ−1F∧((C∧)∧B),A =

∧
b→F,C∧B,A ◦ (1F ∧ (

∧
b→C,B,A ◦ (1C ∧ ∧

cA,B) ◦
∧
b←C,A,B)).

Officially,
ξ

τ−1X,A is defined inductively as
ξ

τX,A, in a dual manner.

Next, we introduce the following abbreviation:

dX,A,Y =df
∨
τ−1Y,X(A)

◦ (
∧
τX,A ∨ 1DY

) ◦ dEX ,A,DY
◦ (1EX

∧ ∨
τY,A) ◦

∧
τ−1X,Y (A) :

X(Y (A)) ⊢ Y (X(A)).

When X or Y is , then we assume that dX,A,Y stands for 1X(Y (A)), which

is of type X(Y (A)) ⊢ Y (X(A)), i.e. Y (A) ⊢ Y (A) or X(A) ⊢ X(A).

We can finally define the remaining Gentzen operations, which are all

of the following form:

76 CHAPTER 4. PROOF-NET AND STAR-AUTONOMOUS...

g : B ⊢ Y (A) f : X(A) ⊢ C

cutX,Y (f, g) =dn Y (f) ◦ dX,A,Y ◦X(g) : X(B) ⊢ Y (C)

This concludes the definition of Gentzen operations. The set of Gentzen

terms is the smallest set containing primitive Gentzen terms and closed

under the Gentzen operations above.

It is easy to infer fromDS Coherence of §2.3 that the following equations
hold in SA′s:

(d∧X) dA∧X,C,Y = dA∧ ,X(C),Y ◦ (1A ∧ dX,C,Y),

(dX∧) dX∧A,C,Y = d ∧A,X(C),Y ◦ (dX,C,Y ∧ 1A),

(d∨Y) dX,C,A∨Y = (1A ∨ dX,C,Y) ◦ dX,Y (C),A∨ ,

(dY ∨) dX,C,Y ∨A = (dX,C,Y ∨ 1A) ◦ dX,Y (C), ∨A.

The equation (d∧X) is analogous to the equation (d∧) of §2.1, while (d∨Y)

is analogous to (d∨) of §2.1.
We can then prove the following.

Gentzenization Lemma. Every arrow of SA′s is denoted by a Gentzen

term.

Proof. We first show by induction on the complexity of A that for every

A the arrow 1A : A ⊢ A is denoted by a Gentzen term. For A being a letter,

or ⊤, or ⊥, this is trivial. For the induction step we use the following

equations of SA′s:

(∧) ⊥→⊥→
∨
B→∧(⊥←f1,⊥←f2) = f1 ∧ f2,

(∨) ⊤←⊤←
∧
B→∨(⊤→f1,⊤→f2) = f1 ∨ f2.

For (∧) we use

∨
e′A1,A2,⊥,⊥ = (1A1∧A2 ∨

∨
δ←⊥) ◦

∨
δ←A1∧A2

◦ (
∨
δ→A1

∧
∨
δ→A2

),

which follows essentially from (
∨
b

∨
δ) and (d

∨
δ) of §3.3 (we may apply here

the Symmetric Bimonoidal Coherence of [22], Section 6.4, which reduces to

§4.2. Cut elimination in SA′s 77

Mac Lane’s symmetric monoidal coherence of [37]; see [38], Section VII.7,

and [22], Section 5.3). We proceed analogously for (∨).
We also have for the induction step the following equations of SA′s:

⊥→¬R
∧
C ¬L⊥←1A = ⊤←¬L

∨
C ¬R⊤→1A = 1¬A,

for which we use (d
∨
δ), (

∨
b

∨
Σ
′
) and (

∨
Σ
′ ∧
∆
′
), among other obvious equations.

The Gentzen term that denotes 1A is written 1A.

Next we have the following in SA′s:

∧
B→1(A∧B)∧C =dn

∧
b→A,B,C ,

∨
B→1A∨(B∨C) =dn

∨
b→A,B,C ,

∧
B←1A∧(B∧C) =dn

∧
b←A,B,C ,

∨
B←1(A∨B)∨C =dn

∨
b←A,B,C ,

∧
C 1B∧A =dn

∧
cA,B ,

∨
C 1B∨A =dn

∨
cA,B ,

cutA∧ , ∨C(1A∧B ,1B∨C) =dn dA,B,C ;

by using abbreviations according to (∧) and (∨) above,

⊤←
∧
C (1A ∧ ¬R⊤→1B) =dn

∧
∆B,A,

⊥→
∨
C (¬L⊥←1B ∨ 1A) =dn

∨
ΣB,A,

∧
C ⊤→1A =dn

∧
δ→A , ⊥→1A∨⊥ =dn

∨
δ→A ,

⊤←
∧
C 1A∧⊤ =dn

∧
δ←A , ⊥←1A =dn

∨
δ←A .

(For the equations involving
∧
∆B,A and

∨
ΣB,A we rely on (d

∧
σ) and (d

∨
δ) of

§3.3, and on the stem-increasing equations of §2.5.)
For composition we have the following equation of SA′s:

cut , (f, g) = f ◦ g,

and for the operations ∧ and ∨ on arrows we have the equations (∧) and

(∨) above. ⊣

§4.2. Cut elimination in SA′
s

For the proof of the Cut-Elimination Theorem below we will introduce ana-

logues of Gentzen’s notions of rank and degree. We need some preliminary

definitions to define these notions.

78 CHAPTER 4. PROOF-NET AND STAR-AUTONOMOUS...

For ξ ∈ {∧,∨}, we define first by induction the notion of ξ -superficial

subformula of a formula of L⊤,⊥,¬,∧,∨:

if A is of the form p, ⊥, A1 ∨ A2, or ¬A′, then A is a ∧-superficial
subformula of A;

if A is of the form p, ⊤, A1 ∧ A2, or ¬A′, then A is a ∨-superficial
subformula of A;

if A is a ξ -superficial subformula of B, then A is a ξ -superficial sub-

formula of B ξ C and C ξ B.

Consider a Gentzen term f of the form

∧(f1, f2) : B1 ∧B2 ⊢ (A1 ∧A2) ∨ (C1 ∨ C2).

The ∨-superficial subformula A1 ∧A2 that is the left disjunct of the target

of f is called the leaf of f . All the other ∨-superficial subformulae of the

target of f , which are subformulae of C1 or C2, and all the ∧-superficial
subformulae of the source of f , which are subformulae of B1 or B2, are

called lower parameters of f .

To every lower parameter x of f , there corresponds unambiguously

a subformula y in the target or the source of either f1 : B1 ⊢ A1 ∨ C1 or

f2 : B2 ⊢ A2 ∨ C2, which we call the upper parameter of f corresponding to

x. The lower parameter x is a ∧-superficial subformula of the source of

f iff the corresponding upper parameter y is a ∧-superficial subformula of

the source of either f1 or f2 (it cannot be in both), and analogously for

parameters that are ∨-superficial subformulae of targets. If y is in the type

of f1, then f1 is called the subterm of f for the upper parameter y, and

analogously for f2.

For example, if f is

∧(1p∨q,⊥←1r) : (p ∨ q) ∧ r ⊢ (p ∧ r) ∨ (q ∨ ⊥),

then p∧ r in the target is the leaf of f , while q in the target of f and p ∨ q

and r in the source of f are lower parameters of f . To the lower parameter

q of f corresponds the upper parameter of f that is the occurrence of q in

the target of the subterm 1p∨q : p ∨ q ⊢ p ∨ q for this upper parameter; to

§4.2. Cut elimination in SA′s 79

the lower parameter p ∨ q of f corresponds the upper parameter of f that

is the source of the subterm 1p∨q for this upper parameter; and to the lower

parameter r of f corresponds the upper parameter of f that is the source

of the subterm ⊥←1r : r ⊢ r ∨ ⊥ for this upper parameter. Note that the

subformula ⊥ in the target of f is not a ∨-superficial subformula of this

target, and hence is not a lower parameter of f .

If the Gentzen term f is of the form

∨(f1, f2) : (C1 ∧ C2) ∧ (A1 ∨A2) ⊢ B1 ∨B2,

then the ∧-superficial subformula A1 ∨A2 that is the right conjunct of the

source of f is the leaf of f , while all the other ∧-superficial subformulae of

the source of f and the ∨-superficial subformulae of the target of f are the

lower parameters of f . The upper parameters of f corresponding to these

lower parameters, and the subterms of f for these upper parameters, are

defined analogously to what we had in the previous case.

The leaf of ¬Lf : B ∧ ¬A ⊢ C is the ∧-superficial subformula ¬A that

is the right conjunct of its source, while the leaf of ¬Rf : C ⊢ ¬A ∨B is

the ∨-superficial subformula ¬A that is the left disjunct of its target. In

both cases, the remaining ∧-superficial subformulae of the source or the

remaining ∨-superficial subformulae of the target are lower parameters, to

whom correspond, analogously to what we had before, upper parameters

in the source or target of the subterm f for these upper parameters.

If our Gentzen term is of the form

∧
B←Xf,

∧
B→Xf,

∨
B→Y f,

∨
B←Y f,

∧
CXf,

∨
CY f,⊤→f,⊤←f,⊥←f,⊥→f, or cutX,Y (f, g),

then it has no leaves, and all the ∧-superficial subformulae of its source

and all the ∨-superficial subformulae of its target are lower parameters, to

which upper parameters correspond in an obvious manner.

Finally, the Gentzen term 1p : p ⊢ p has two leaves, which are its source

p and its target p. There are no parameters of 1p, neither lower nor upper.

The Gentzen term 1⊤ : ⊤ ⊢ ⊤ has as its leaf the target⊤, and no parameters

(the source ⊤ of 1⊤ is not a ∧-superficial subformula of itself). The Gentzen

term 1⊥ : ⊥ ⊢ ⊥ has as its leaf the source ⊥, and no parameters (the target

⊥ of 1⊥ is not a ∨-superficial subformula of itself).

80 CHAPTER 4. PROOF-NET AND STAR-AUTONOMOUS...

Let x be a ∧-superficial subformula of the source of a Gentzen term f

or a ∨-superficial subformula of the target of f . Then the cluster of x in f

is a sequence of occurrences of formulae defined inductively as follows:

if x is a leaf of f , then the cluster of x in f is x,

if x is not a leaf of f , then x is a lower parameter of f , and for y1

being the upper parameter of f corresponding to x, take the cluster

y1 . . . yn, where n ≥ 1, of y1 in the proper subterm f ′ of f that is

the subterm of f for the upper parameter y1 (the sequence y1 . . . yn

is already defined, by the induction hypothesis); the cluster of x in f

is the sequence xy1 . . . yn.

All occurrences of formulae in a cluster are ξ -superficial subformulae for

ξ being one of ∧ and ∨. If ξ is ∧, then the cluster is a source cluster, and

if ξ is ∨, then it is a target cluster.

A cut is a Gentzen term of the form cutX,Y (f, g). For g : B ⊢ Y (A)

and f : X(A) ⊢ C let the formula A be called the cut formula of the cut

cutX,Y (f, g). Let x be the displayed occurrence of A in the source X(A) of

f , and let s be the length of the cluster of x in f (we write s because we

have here a source cluster). Let y be the displayed occurrence of A in the

target Y (A) of g, and let t be the length of the cluster of y in g (we write

t because we have here a target cluster).

Depending on the form of A, we define a number r, which we call the

rank of the cut cutX,Y (f, g). If the cut formula A is of the form p or ¬A′,
then

r = min(s, t)−1, if A is p,

r = s+t−2, if A is ¬A′.

(As a matter of fact, when A is p, we could stipulate that r is either s+t−2,

as when it is ¬A′, or s−1, or t−1, but the computation of rank we have

introduced makes the cut-elimination procedure run faster, and does not

complicate the proof.)

If the cut formula A is of the form ⊤ or A1 ∧ A2, then r = t−1. If,

finally, the cut formula A is of the form ⊥ or A1 ∨A2, then r = s−1.

We define the degree d of a cut as the number of occurrences of ∧, ∨ and

¬ in its cut formula. The complexity of a cut is the ordered pair (d, r), where

§4.2. Cut elimination in SA′s 81

d is its degree and r its rank. The complexities of cuts are lexicographically

ordered (i.e., (d1, r1) < (d2, r2) iff d1 < d2, or d1 = d2 and r1 < r2).

A Gentzen term is called cut-free when no subterm of it is a cut. A

cut cutX,Y (f, g) is topmost when f and g are cut-free. (Since in the proof

below, we compute the rank only for topmost cuts, our definition of cluster

can be shortened a little bit by not considering the parameters of cuts; but

this is not a substantial shortening.)

We can then prove the following.

Cut-Elimination Theorem. For every Gentzen term h there is a cut-free

Gentzen term h′ such that h = h′ in SA′s.

Proof. It suffices to prove the theorem when h is a topmost cut. We

proceed by induction on the complexity (d, r) of this topmost cut.

Suppose r = 0 and d = 0. Then h can be of one of the following forms:

cutX, (f,1A) for A being p or ⊤,

cut ,Y (1A, g) for A being p or ⊥,

and we have in SA′s

cutX, (f,1A) = f ,

cut ,Y (1A, g) = g.

This settles the basis of the induction.

Suppose r = 0 and d > 0. Then the cut formula must be of the form

A1 ∧A2 or A1 ∨A2 or ¬A′. In the first case, for f : X(A1 ∧A2) ⊢ D,

g1 : B1 ⊢ A1 ∨ C1 and g2 : B2 ⊢ A2 ∨ C2 we have the equation

cutX, ∨(C1∨C2)(f,∧(g1, g2)) =
∨
B←cutX′′, ∨C2

(cutX′, ∨C1
(f, g1), g2)

where X ′(C) is X(C ∧A2) and X ′′(C) is X(B1 ∧ C). To prove this equa-

tion we apply naturality equations and DS Coherence.

The complexity of the topmost cut cutX′, ∨C1
(f, g1) is (d′, r′) with

d′ < d, and we can apply the induction hypothesis to obtain a cut-free

Gentzen term f ′ equal to it in SA′s. The complexity of the topmost cut

cutX′′, ∨C2
(f ′, g2) is (d

′′, r′′) with d′′ < d, and we can again apply the in-

duction hypothesis.

82 CHAPTER 4. PROOF-NET AND STAR-AUTONOMOUS...

In case the cut formula is A1 ∨A2, we have an analogous equation, for

which we use again DS Coherence, and we reason analogously, applying

the induction hypothesis twice.

In case the cut formula is ¬A′, for f : D ∧A′ ⊢ E and g : B ⊢ A′ ∨ C we

have the equation

cutB∧ , ∨E(¬Lg,¬Rf) =
∨
C

∧
C cutD∧ , ∨C(f, g),

which holds by naturality equations and PN¬ Coherence. Then we apply

the induction hypothesis to the topmost cut on the right-hand side, which

has a smaller degree.

Suppose now r > 0. If r was computed as s−1, or as s+t−2, where

s > 1, then we may apply equations of SA′s of the following form

(∗) cutX,Y (γf
′, g) = γ1 . . . γncutX′,Y (f

′, g)

for γ, γ1, . . . , γn unary Gentzen operations. If (d, r) is the complexity of

the topmost cut cutX,Y (γf
′, g), then the complexity of the topmost cut

cutX′,Y (f
′, g) is (d, r − 1), and so we may apply to it the induction hypoth-

esis.

If γ is a unary Gentzen operation different from ⊤→, ⊤←, ⊥← and ⊥→,

then so are γ1, . . . , γn, and to prove (∗) we apply naturality equations and

PN¬ Coherence (sometimes DS Coherence suffices, depending on γ). We

have analogous equations involving binary Gentzen operations, which are

proved analogously, relying on DS Coherence (cf. [22], Section 11.2, Case

(6), where on p. 251, in the second line ∧R(f, cut(g, h)) should be replaced

by ∧R(g, cut(f, h)), and in the third line cut(g, h) should be replaced by

cut(f, h)).

If γ in (∗) is ⊤→, then n = 1 and γ1 is ⊤→. To prove (∗), we then apply

essentially the equation

Y (
∧
σ→X(A)) ◦ dT∧X,A,Y = dX,A,Y ◦

∧
σ→X(Y (A)),

which we obtain with the help of (d∧X) of the preceding section, (d
∧
σ)

of §3.3, and (
∨
τ nat) of the preceding section (as a matter of fact, we may

apply here the Symmetric Bimonoidal Coherence of [22], Section 6.4). We

proceed analogously if γ is ⊤←.

§4.3. SAc Coherence 83

If γ in (∗) is ⊥← or ⊥→, then we apply essentially Mac Lane’s symmetric

monoidal coherence of [37] (see also [38], Section VII.7, and [22], Section

5.3).

If r was computed as t−1, or as s+t−2, where t > 1, then we proceed

in a dual manner. Instead of (∗), we have equations of SA′s of the following
form:

cutX,Y (f, γg
′) = γ1 . . . γncutX,Y ′(f, g′).

This concludes the proof of the theorem. ⊣

§4.3. SAc Coherence

There is a functor G from the category SA′ of §3.3 to Br, which is defined

as the functor G from PN¬ to Br (see §2.3) with the additional clauses

that say that Gα is an identity arrow of Br for α being
ξ

δ→A ,
ξ

δ←A , π→A,B and

π←A,B , where ξ ∈ {∧,∨}. There is analogously a functor G from SA′s to Br,

which is defined as G from SA′ to Br save that we do not have the clauses

for π→A,B and π←A,B . It follows from the existence of these functors and PN¬

Coherence that PN¬ is isomorphic to subcategories of SA′ and SA′s (cf.

[22], Section 14.4).

Our purpose in this section is to prove the following theorem.

Conservativeness Theorem. If A and B are objects of PN¬, then for

every arrow f : A ⊢ B of SA′s there is an arrow term f ′ : A ⊢ B of PN¬

such that f = f ′ in SA′s.

This theorem implies that PN¬ is isomorphic to a full subcategory of SA′s,

from which, according to what we established in §§3.7-8, we can conclude

that PN¬ is isomorphic to a full subcategory of SA′, and of SA too. In

these isomorphisms every object of PN¬ is mapped to itself, and so every

object of PN¬ in SA′s, SA
′ or SA is in the image of PN¬.

Let the functor G from SA to Br be defined as G from SMC to Br (see

§3.1) with the additional clauses that say that Gα is an identity arrow of

Br for α being ν→A , λ→A , λ←A , υ→A,B and υ←A,B . One can easily check that this

functor G restricted to the subcategory of SA isomorphic to PN¬ satisfies

all the clauses of the definition of the functor G from PN¬ to Br (see §2.3).

84 CHAPTER 4. PROOF-NET AND STAR-AUTONOMOUS...

Let SA′′ be the full subcategory of SA whose objects are all the objects

A of SA such that there is an isomorphism of type A ⊢ A′ of SA for A′

an object of PN¬. (The category SA′′ is a replete subcategory of SA; cf.

the end of §3.1.) Then we can restrict the functor G from SA to Br to a

functor G from SA′′ to Br, for which we can prove the following, relying on

the Conservativeness Theorem.

SA′′ Coherence. The functor G from SA′′ to Br is faithful.

Proof. Suppose A and B are objects of SA′′, and let jA : A ⊢ A′ and

jB : B ⊢ B′ be isomorphisms of SA for A′ and B′ objects of PN¬. Suppose

that f1, f2 : A ⊢ B are arrows of SA, i.e. of SA′′, such that Gf1 = Gf2.

Since PN¬ is isomorphic to a full subcategory of SA such that every

object of PN¬ in SA is in the image of PN¬, we have in SA that

jB ◦ fi ◦ j−1A = f ′i

for i ∈ {1, 2} and f ′i an arrow term of PN¬. It follows that Gf ′1 = Gf ′2, and,

according to what we said immediately after the definition of the functor

G from SA to Br, by PN¬ Coherence we have that f ′1 = f ′2 in PN¬, and

hence also in SA. So f1 = f2 in SA. ⊣

The category SA′′ is a category equivalent to PN¬, and its coherence

is a consequence of PN¬ Coherence. We can find full subcategories of

SA′′, some of which are full subcategories of SAs too, that are not only

equivalent, but also isomorphic to PN¬.

Let SAc be the full subcategory of SA whose objects are all the objects

A of SA such that there is an isomorphism of type A ⊢ A′ of SA for A′

being either an object of PN¬, or ⊤, or ⊥. (The category SAc is as SA′′ a

replete subcategory of SA.) Then we can restrict the functor G from SA

to Br to a functor G from SAc to Br, for which we can prove the following,

relying on the Conservativeness Theorem and on SA′′ Coherence.

SAc Coherence. The functor G from SAc to Br is faithful.

Proof. There is no arrow of type ⊤ ⊢ ⊥ in SA. (Otherwise, classical

propositional logic would be inconsistent.) There is also no arrow of type

§4.3. SAc Coherence 85

⊥ ⊢ ⊤ in SA. If f : ⊥ ⊢ ⊤ were such an arrow, then we would have in SA

the arrow

((
∧
δ→p ◦ (1p ∧ f)) ∨ 1q) ◦ dp,⊥,q ◦ (1p ∧

∨
σ←q) : p ∧ q ⊢ p ∨ q.

Hence, by the Conservativeness Theorem, there would be an arrow term

f ′ : p ∧ q ⊢ p ∨ q of PN¬, and that such an f ′ does not exist can be shown

by appealing to the connectedness condition of proof nets (see §7.1).
Suppose A and B are objects of SAc; so A and B are isomorphic in SA

to respectively A′ and B′, each of which is either an object of PN¬, or ⊤,

or ⊥. Suppose that f1, f2 : A ⊢ B are arrows of SA, i.e. of SAc, such that

Gf1 = Gf2.

As we have seen above, it is excluded that one of A′ and B′ is ⊤ while

the other is ⊥. If A′ and B′ are objects of PN¬, then we apply SA′′

Coherence.

Let SA+p be SA generated by P ∪ {p} for a letter p foreign to P, and

hence also to A and B. Let SA′′+p be the SA′′ subcategory of SA+p. In the

remaining cases, if either A′ or B′ is ⊤, then G(f1 ∧ 1p) = G(f2 ∧ 1p). It

is easy to see that f1 ∧ 1p, f2 ∧ 1p : A ∧ p ⊢ B ∧ p are arrows of SA′′+p, and

so f1 ∧ 1p = f2 ∧ 1p in SA+p by SA′′ Coherence applied to SA′′+p. Then in

SA generated by P we have f1 ∧ 1⊤ = f2 ∧ 1⊤ (we just substitute ⊤ for p

in the derivation of f1 ∧ 1p = f2 ∧ 1p in SA+p), and so we have in SA

f1 = f1 ◦
∧
δ→A ◦

∧
δ←A , by (

∧
δ

∧
δ),

=
∧
δ→B ◦ (f1 ∧ 1⊤) ◦

∧
δ←A , by (

∧
δ→ nat),

=
∧
δ→B ◦ (f2 ∧ 1⊤) ◦

∧
δ←A

= f2.

If either A′ or B′ in the remaining cases is ⊥, then G(f1 ∨ 1p) = G(f2 ∨ 1p),

and we proceed analogously. ⊣

Both SA′′ Coherence and SAc Coherence are analogous to Kelly’s and Mac

Lane’s SMCc Coherence (see the end of §3.1); for SAc Coherence the anal-
ogy is complete.

Note that many computations of equality of arrows in Chapter 3, which

we could not settle previously by SMCc Coherence or PN¬ Coherence

86 CHAPTER 4. PROOF-NET AND STAR-AUTONOMOUS...

alone, are now settled by simple applications of SAc Coherence. As a mat-

ter of fact, SA′′ Coherence suffices. (Of course, we used these computations

to establish SAc Coherence, and we can judge now only retrospectively

that they are dispensable in the presence of this coherence.) With SAc Co-

herence we have found a powerful tool to establish equality of arrows in a

considerable fragment of SA, and also of SAs. This covers the {∧,→} frag-

ment, the {¬,∧,∨} fragment, and also other fragments of star-autonomous

categories involving ⊤ and ⊥ at some particular places.

Coherence with respect to Br for the whole of SA or SAs presumably

does not hold. According to [6] (Sections 4.2, 2.3), in SAs we do not have

ν←A→⊤,⊤ ◦ (ν←A,⊤ → 1⊤) = 1((A→⊤)→⊤)→⊤

(cf. [32], [43]), nor

∧
c⊥,⊥ = 1⊥∧⊥,

∨
c⊤,⊤ = 1⊤∨⊤,

while if f = g is one of these equations we have Gf = Gg. (The claim made

in [6], Section 2.3, that the category of sets with functions is a linearly

distributive category is not correct.)

The remainder of this section is devoted to the proof of the Conser-

vativeness Theorem. This will be accomplished with the help of several

lemmata, for whose formulation we introduce the following terminology.

An object of SA′s, i.e. a formula of L⊤,⊥,¬,∧,∨, is constant-free when

neither ⊤ nor ⊥ occurs in it. In other words, the constant-free objects of

SA′s are the objects of PN¬.

An object of SA′s is called literate when at least one letter occurs in it;

otherwise, it is letterless. Every constant-free formula is literate (but not

conversely).

For ξ ∈ {∧,∨}, we define inductively when a formula of L⊤,⊥,¬,∧,∨ is

ξ -nice:

⊤ is ∧-nice and ⊥ is ∨-nice;
constant-free objects of SA′s are ξ -nice;

if A and B are ξ -nice, then A ξ B is ξ -nice.

For a ξ -nice formula A we define inductively an arrow term
ξ

ρA: A ⊢ Ar

of SA′s such that Ar is constant-free if A is literate, Ar is ⊤ if A is letterless

and ∧-nice, and Ar is ⊥ if A is letterless and ∨-nice:

§4.3. SAc Coherence 87

∧
ρ⊤ = 1⊤,

∨
ρ⊥= 1⊥,

ξ

ρA = 1A, for A constant-free,
ξ

ρAξB =
ξ

ρA ξ
ξ

ρB , for A and B literate,

ξ

ρAξB =
ξ

δ→A ◦ (
ξ

ρA ξ
ξ

ρB), for B letterless,
ξ

ρAξB =
ξ

σ→B ◦ (
ξ

ρA ξ
ξ

ρB), for A letterless.

It is clear that
ξ

ρA is an isomorphism of SA′s, with inverse
ξ

ρ−1A : Ar ⊢ A.

We can then prove the following lemma.

Lemma 1. Let f : A ⊢ B be a
ξ

b→C,D,E-term for C, D and E literate ξ-nice

formulae. Then there is
ξ

b→Cr,Dr,Er -term fr : Ar ⊢ Br for Cr, Dr and Er

constant-free such that
ξ

ρB ◦ f = fr ◦
ξ

ρA .

Proof. We proceed by induction on the complexity of f . If f is
ξ

b→C,D,E ,

then we have that

ξ

ρ(CξD)ξE = (
ξ

ρC ξ
ξ

ρD) ξ
ξ

ρE ,

and we apply (
ξ

b→ nat). For the induction step, suppose f is g ξ 1F : G ξ F ⊢
H ξ F (we proceed analogously when f is 1F ξ g). Then we have two cases.

If F is literate, then
ξ

ρHξF =
ξ

ρH ξ
ξ

ρF , and we just apply bifunctorial

equations and the induction hypothesis.

If F is letterless, then for ζ ∈ {⊤,⊥} we have

ξ

ρHξF
◦ (g ξ 1F) =

ξ

δ→H ◦ (
ξ

ρH ξ
ξ

ρF) ◦ (g ξ 1F)

=
ξ

δ→H ◦ (gr ξ 1ζ) ◦ (
ξ

ρG ξ
ξ

ρF),

by bifunctorial equations and the induction hypothesis. Then we apply

(
ξ

δ→ nat) to obtain gr ◦
ξ

ρGξF . ⊣

We have analogous lemmata, which we call also Lemma 1, when f is a
ξ

b←C,D,E-term or a
ξ

cC,D-term. We also have the following.

88 CHAPTER 4. PROOF-NET AND STAR-AUTONOMOUS...

Lemma 2. Let f : A ⊢ B be a
ξ

b→C,D,E-term,
ξ

b←C,D,E-term or
ξ

cC,D-term for

C or D or E being a letterless ξ-nice formula, or let f be a
ξ

σ→F -term,
ξ

σ←F -term,
ξ

δ←F -term or
ξ

δ→F -term for F being ξ-nice. Then

ξ

ρB ◦ f =
ξ

ρA .

Proof. We proceed either by induction, applying essentially the following

equations of monoidal categories:

ξ

b→C,D,ζ =
ξ

δ←CξD
◦ (1C ξ

ξ

δ→D),

ξ

b→C,ζ,E =
ξ

δ←C ξ
ξ

σ→E ,

ξ

b→ζ,D,E = (
ξ

σ←D ξ 1E) ◦
ξ

σ→DξE ,

where ζ is ⊤ if ξ is ∧, and ⊥ if ξ is ∨,
∧
c⊤,A =

∧
δ←A ◦

∧
σ→A ,

∨
c⊥,A =

∨
σ←A ◦

∨
δ→A ,

or we infer that under the conditions of the lemma Ar and Br must be equal,

and then we apply essentially Mac Lane’s symmetric monoidal coherence

of [37] (see also [38], Section VII.7, and [22], Section 5.3). ⊣

We prove next the key lemma of this section, whose corollary is the Con-

servativeness Theorem (we just instantiate statement (1) of this lemma).

Lemma 3. Let f : A ⊢ B be an arrow of SA′s such that A is ∧-nice and B

is ∨-nice.

(1) If both A and B are literate, then there is an arrow term fr :

Ar ⊢ Br of PN¬ such that in SA′s we have

∨
ρB ◦ f ◦

∧
ρ−1A = fr.

(2) If A is letterless and B is literate, then for every constant-free

C there is an arrow term fr : C ⊢ C ∧Br of PN¬ such that in

SA′s we have

(1C ∧ (
∨
ρB ◦ f ◦

∧
ρ−1A)) ◦

∧
δ←C = fr.

§4.3. SAc Coherence 89

(3) If A is literate and B is letterless, then for every constant-free

C there is an arrow term fr : Ar ∨ C ⊢ C of PN¬ such that in

SA′s we have

∨
σ→C ◦ ((

∨
ρB ◦ f ◦

∧
ρ−1A) ∨ 1C) = fr.

Before we start the proof of this lemma, note that it is impossible that A

and B be both letterless. Otherwise, we would have an arrow of the type

⊤ ⊢ ⊥ in SA′s.

Proof of Lemma 3. By the Gentzenization Lemma and the Cut-Elimina-

tion Theorem of the preceding two sections, we may suppose that f is a

cut-free Gentzen term. Then we proceed by induction on the complexity

of f .

In the basis, we have that f can only be 1p : p ⊢ p. It cannot be

1⊤ : ⊤ ⊢ ⊤ or 1⊥ : ⊥ ⊢ ⊥, because ⊤ is not ∨-nice and ⊥ is not ∧-nice.
Then fr is also 1p, and statement (1) of the lemma is satisfied, since
∨
ρp =

∧
ρ−1p = 1p.

Suppose f is of the form Sf1 for f1 : A1 ⊢ B1 and S being
∧
B←X ,

∧
B→X ,

∨
B→Y ,

∨
B←Y ,

∧
CX ,

∨
CY , ⊤→, ⊤←, ⊥← or ⊥→. Then, by the induction hypothesis,

we have either statement (1), or (2), or (3), of the lemma for f replaced by

f1, and A and B replaced by A1 and B1.

Suppose (1) is the case for f1. Then by Lemmata 1 and 2 above we

have that

∨
ρB ◦Sf1 ◦

∧
ρ−1A

is equal in SA′s to one of the following arrow terms of SA′s:

∨
ρB ◦ f1 ◦

∧
ρ−1A1

◦ gr, for B being B1,

gr ◦
∨
ρB1

◦ f1 ◦
∧
ρ−1A , for A being A1,

∨
ρB1

◦ f1 ◦
∧
ρ−1A1

,

where gr is a
ξ

b→C,D,E-term, or
ξ

b←C,D,E-term, or
ξ

cC,D-term, with ξ being ∧ in

the first arrow term and ∨ in the second arrow term. In either case, by the

induction hypothesis, we infer (1) for f .

If (2) is the case for f1, then by Lemmata 1 and 2 we have that

90 CHAPTER 4. PROOF-NET AND STAR-AUTONOMOUS...

(1C ∧ (
∨
ρB ◦Sf1 ◦

∧
ρ−1A)) ◦

∧
δ←C

is equal in SA′s to one of the following arrow terms of SA′s:

(1C ∧ gr) ◦ (1C ∧ (
∨
ρB1

◦ f1 ◦
∧
ρ−1A)) ◦

∧
δ←C , for A being A1,

(1C ∧ (
∨
ρB1

◦ f1 ◦
∧
ρ−1A1

)) ◦
∧
δ←C ,

where gr is as above with ξ being ∨. In either case, we apply the induction

hypothesis, and infer (2) for f . We proceed analogously if (3) is the case

for f1.

Suppose that for fi : Bi ⊢ Ai ∨ Ci, where i ∈ {1, 2}, we have that f is

∧(f1, f2) : B1 ∧B2 ⊢ (A1 ∧A2) ∨ (C1 ∨ C2).

Here A1 and A2 must be constant-free; otherwise, the target of f would

not be ∨-nice. Let g be

∨
ρ(A1∧A2)∨(C1∨C2)

◦
∨
e′A1,A2,C1,C2

.

Depending on whether Ci is literate or letterless, we have the following

equations in SA′s:

if C1 and C2 are both literate, then

(I) g =
∨
e′A1,A2,Cr

1 ,C
r
2

◦ (
∨
ρA1∨C1

∧ ∨
ρA2∨C2

);

if C1 is literate and C2 is letterless, then

(II) g = (
∧
cA2,A1 ∨ 1Cr

1
) ◦ dA2,A1,Cr

1
◦

∧
cA1∨Cr

1 ,A2
◦ (

∨
ρA1∨C1

∧ ∨
ρA2∨C2

),

by applying essentially (
∨
b

∨
δ) and (d

∨
δ);

if C1 is letterless and C2 is literate, then

(III) g = dA1,A2,Cr
2

◦ (
∨
ρA1∨C1

∧ ∨
ρA2∨C2

),

by applying essentially

(1A2∧A1 ∨
∨
σ→C2

) ◦
∨
b←A2∧A1,⊥,C2

=
∨
δ→A2∧A1

∨ 1C2

(cf. the second equation displayed in the proof of Lemma 2) and (d
∨
δ);

§4.3. SAc Coherence 91

if C1 and C2 are both letterless, then

(IV) g =
∨
ρA1∨C1

∧ ∨
ρA2∨C2

, by applying essentially (
∨
b

∨
δ) and (d

∨
δ).

Suppose statement (1) of the lemma holds for both f1 and f2. Then B1

and B2 are literate, and we have

∨
ρ(A1∧A2)∨(C1∨C2)

◦∧(f1, f2) ◦
∧
ρ−1B1∧B2

= g ◦ (f1 ∧ f2) ◦ (
∧
ρ−1B1

∧ ∧
ρ−1B2

)

= h ◦ (fr1 ∧ fr2)

for h a PN¬-term; here we apply one of (I)-(IV) and the induction hypoth-

esis. So (1) holds for f .

Suppose (1) holds for f1 and (2) holds for f2. Then B1 is literate and

B2 is letterless, and we have

∨
ρ(A1∧A2)∨(C1∨C2)

◦∧(f1, f2) ◦
∧
ρ−1B1∧B2

= g ◦ (f1 ∧ f2) ◦ (
∧
ρ−1B1

∧ ∧
ρ−1B2

) ◦
∧
δ←Br

1

= h ◦ (fr1 ∧ 1(A2∨C2)r) ◦ fr2

for h a PN¬-term; here we apply again one of (I)-(IV) and the induction

hypothesis, which for f2 yields

(1Br
1
∧ (

∨
ρA2∨C2

◦ f2 ◦
∧
ρ−1B2

)) ◦
∧
δ←Br

1
= fr2 .

So (1) holds for f .

If (2) holds for f1 and (1) holds for f2, then we proceed analogously to

what we had in the previous case. Here, the induction hypothesis for f1

yields

((
∨
ρA1∨C1

◦ f1 ◦
∧
ρ−1B1

) ∧ 1Br
2
) ◦

∧
σ←Br

2
=

∧
cBr

2 ,(A1∨C1)r
◦ fr1 .

Suppose (2) holds for both f1 and f2. Then both B1 and B2 are letter-

less, and we have

(1C ∧ (
∨
ρ(A1∧A2)∨(C1∨C2)

◦∧(f1, f2) ◦
∧
ρ−1B1∧B2

)) ◦
∧
δ←C

= (1C ∧ (g ◦ (f1 ∧ f2) ◦ (
∧
ρ−1B1

∧ ∧
ρ−1B2

) ◦
∧
δ←⊤)) ◦

∧
δ←C

= (1C ∧ h) ◦ (1C ∧ ((1(A1∨C1)r ∧ (
∨
ρA2∨C2

◦ f2 ◦
∧
ρ−1B2

)) ◦
∧
δ←(A1∨C1)r

)) ◦

◦ (1C ∧ (
∨
ρA1∨C1

◦ f1 ◦
∧
ρ−1B1

)) ◦
∧
δ←C

= (1C ∧ h) ◦ (1C ∧ fr2) ◦ fr1 ,

92 CHAPTER 4. PROOF-NET AND STAR-AUTONOMOUS...

for h a PN¬-term; here we apply again one of (I)-(IV) and the induction

hypothesis. So (2) holds for f . Since statement (3) of the lemma cannot

hold for f1 and f2, this exhausts all possible cases when f is ∧(f1, f2).
If f is ∨(f1, f2), then we proceed in a manner dual to the case when f is

∧(f1, f2), relying on statement (3) of the lemma in places where previously

we relied on statement (2).

Suppose that for f1 : C ∧A ⊢ B we have that f is ¬Rf1 : C ⊢ ¬A ∨ B.

Here Amust be constant-free; otherwise the target of f would not be ∨-nice.
We derive first the following equations of SA′s:

(V)
∨
c¬A,C∧A ◦ dC,A,¬A ◦

∧
∆
′
A,C

◦
∧
ρ−1C =

(1¬A ∨ (
∧
ρ−1C ∧ 1A)) ◦

∨
c¬A,Cr∧A ◦ dCr,A,¬A ◦

∧
∆
′
A,Cr ,

(VI) (1D ∧ (
∨
c¬A,⊤∧A ◦ d⊤,A,¬A ◦

∧
∆
′
A,⊤)) ◦

∧
δ←D =

(1D ∧ (1¬A ∨ ∧
σ←A)) ◦

∧
∆A,D,

by applying naturality equations for (V), and essentially (
∧
b

∧
∆
′
) and (d

∧
σ)

for (VI).

We have to consider four cases:

(i) both B and C are literate,

(ii) B is literate and C is letterless,

(iii) B is letterless and C is literate,

(iv) both B and C are letterless.

In case (i), we obtain easily by using (V) and the induction hypothesis

that statement (1) of the lemma holds for f .

In case (ii), for D constant-free we have

(1D ∧ (
∨
ρ¬A∨B ◦¬Rf1 ◦

∧
ρ−1C)) ◦

∧
δ←D =

(1D ∧ (1¬A ∨ (
∨
ρB ◦ f1 ◦ (

∧
ρ−1C ∧ 1A) ◦

∧
σ←A)) ◦

∧
∆A,D,

by using (V) and (VI), and from that, by applying

(
∧
ρ−1C ∧ 1A) ◦

∧
σ←A =

∧
ρ−1C∧A

§4.3. SAc Coherence 93

and the induction hypothesis, we obtain that statement (2) of the lemma

holds for f .

In case (iii), we obtain that statement (1) of the lemma holds for f by

applying (V) and the induction hypothesis, which yields

∨
σ→¬A ◦ ((

∨
ρB ◦ f1 ◦

∧
ρ−1C∧A) ∨ 1¬A) = fr1 .

In case (iv), we obtain that statement (2) of the lemma holds for f by

applying (V), (VI) and the induction hypothesis.

The only remaining case is when f is ¬Lf1, and this is settled dually to

the previous case, where f is ¬Rf1. ⊣

Chapter 5

Involutive Adjunctions and
Proof-Net Categories

One finds in the notion of star-autonomous category the well-known adjunc-

tion of symmetric monoidal closed categories involving the tensor (multi-

plicative conjunction), denoted by ∧ in §3.1, and exponentiation (linear

implication), denoted by → in §3.1. The functor A∧ is left adjoint to the

functor A → (see §3.1). In proof-net categories, the functor A∧ is left ad-

joint to the functor ¬A∨, and the functor ¬A∧ is left adjoint to the functor

A∨ (see the end of §2.8).

There is also in proof-net categories, and hence also implicitly in star-

autonomous categories, something generalizing the notion of adjunction,

which involves dissociativity dA,B,C : A ∧ (B ∨ C) ⊢ (A ∧ B) ∨ C, and is

perceived on another level, where the objects A and ¬A are conceived as

functors. We have remarked in §§2.2-3 that the equations (
∨
Σ

∧
∆), (

∨
Σ
′ ∧
∆
′
),

(
∨
∆
′ ∧
Σ
′
) and (

∨
∆

∧
Σ) are related to the triangular equations of an adjunction.

The goal of this chapter is to show that there is in proof-net categories

yet another phenomenon of adjunction. The assumptions of proof-net cat-

egories involving only negation are a particular, trivial, case of an adjoint

situation that we call an involutive adjunction. The notion of involutive

adjunction amounts, in a sense to be made precise, to adjunction where an

endofunctor is adjoint to itself, which in [18] is called self-adjunction.

95

96 CHAPTER 5. INVOLUTIVE ADJUNCTIONS...

§5.1. Self-adjunctions

To fix notation and terminology, we will rely on the following definition of

the notion of adjunction (cf. [38], Section IV.1, and [14], Section 4.1.3).

An adjunction is a sextuple ⟨A,B, F,G, φ, γ⟩ where

A and B are categories,

F from B to A and G from A to B are functors,

φ is a natural transformation of A from the composite functor

FG to the identity functor of A, which means that the following

equation holds in A for every arrow f : A1 ⊢ A2 of A:

(φ nat) f ◦φA1 = φA2
◦FGf ,

γ is a natural transformation of B from the identity functor of

B to the composite functor GF , which means that the following

equation holds in B for every arrow g : B1 ⊢ B2 of B:
(γ nat) GFg ◦ γB1 = γB2

◦ g,

the following triangular equations hold in A and B respectively:

(φγF) φFB ◦FγB = 1FB ,

(φγG) GφA ◦ γGA = 1GA.

A self-adjunction is a quadruple ⟨S, L, φ, γ⟩ where ⟨S,S, L, L, φ, γ⟩ is

an adjunction (this notion is taken over from [18], Section 10). So, in a

self-adjunction, L is an endofunctor, and the equations (φ nat) and (γ nat)

become

f ◦φA1 = φA2
◦LLf ,

LLf ◦ γA1 = γA2
◦ f ,

while the triangular equations become

(φγL) φLA ◦LγA = LφA ◦ γLA = 1LA.

A K-self-adjunction is a self-adjunction that satisfies the additional

equation

§5.1. Self-adjunctions 97

(φγK) L(φA ◦ γA) = φLA ◦ γLA,

and a J -self-adjunction is a self-adjunction that satisfies the additional

equation

(φγJ) φA ◦ γA = 1A

(these notions are also from [18], Section 10). It is easy to see that every

J -self-adjunction is a K-self-adjunction (the converse need not hold).

A J -self-adjunction that satisfies

(γφ) γA ◦φA = 1LLA

is called a trivial self-adjunction. Note that for trivial self-adjunctions it

is superfluous to assume the equations (γ nat) and (φγG), or alternatively

(φ nat) and (φγF); these equations can be derived from the remaining ones.

The free self-adjunction ⟨S, L, φ, γ⟩ generated by {p} (we call p a letter,

as before) is defined as follows. The category S has as objects the formulae

of the propositional language generated by {p} with a unary connective

L. We may identify the formulae p, Lp, LLp,. . . of this language with the

natural numbers 0, 1, 2,. . .

The arrow terms of S are defined inductively out of the primitive arrow

terms

1A : A ⊢ A, φA : LLA ⊢ A, γA : A ⊢ LLA,

for every object A of S, with the help of the operations of composition ◦

and the unary operation that assigns to the arrow term f : A ⊢ B the arrow

term Lf : LA ⊢ LB. On these arrow terms we impose the equations of self-

adjunctions (cf. §2.1). In the set of these equations we have of course all

the equations f = f , and this set is closed under symmetry and transitivity

of equality, under the rule (cong ξ) for ξ being ◦ (see §2.1), and also under

the rule

(cong L)
f = g

Lf = Lg

We define analogously the free K-self-adjunction, the free J -self-adjunc-

tion and the free trivial self-adjunction generated by {p}, just by imposing

additional equations.

98 CHAPTER 5. INVOLUTIVE ADJUNCTIONS...

§5.2. Involutive adjunctions

Consider a category A and a contravariant functor ¬ from A to A, which

means that for f : A ⊢ B inA we have ¬f : ¬B ⊢ ¬A inA, and the equations

(¬1) and (¬2) of §2.8 are satisfied. The contravariant functor ¬ may be

conceived either as a functor from the category Aop to A, which we denote

by ¬ too, or as a functor from A to Aop, which we denote by ¬op.
Suppose that for every object A of A we have an arrow n→A : ¬¬A ⊢ A

of A. The arrow n→A becomes the arrow n→ op
A : A ⊢ ¬¬A in Aop.

We say that ⟨A,¬, n→⟩ is an n→-adjunction when

⟨A,Aop,¬,¬op, n→, n→ op⟩

is an adjunction. This means that in A we have for every f : A1 ⊢ A2 the

equation

(n→ nat) f ◦n→A1
= n→A2

◦¬¬f ,

alternatively written f ◦n→A1
= n→A2

◦¬¬opf , which also delivers (n→ op nat)

in Aop, and the equation

(n→ triang) n→¬A ◦¬n→A = 1¬A,

which delivers both the equation (φγF), i.e. (n→n→ op ¬), in A, and the

equation (φγG), i.e. (n→n→ op ¬op), in Aop.

Suppose now that we have as before a category A and a contravariant

functor ¬ from A to A, and that for every object A of A we have an arrow

n←A : A ⊢ ¬¬A of A. The arrow n←A becomes the arrow n← op
A : ¬¬A ⊢ A in

Aop.

We say that ⟨A,¬, n←⟩ is an n←-adjunction when

⟨Aop,A,¬op,¬, n← op, n←⟩

is an adjunction. This means that in A we have for every f : A1 ⊢ A2 the

equation

(n← nat) ¬¬f ◦n←A1
= n←A2

◦ f ,

which also delivers (n← op nat) in Aop, and the equation

§5.2. Involutive adjunctions 99

(n← triang) ¬n←A ◦n←¬A = 1¬A,

which delivers both the equation (φγF), i.e. (n← opn← ¬op), in Aop, and

the equation (φγG), i.e. (n← opn← ¬), in A. Note that what we call n←-

adjunction is called self-adjunction in [40] (Section 3.1; cf. also [39], Section

I.8), which should not be confused with our notion of self-adjunction in the

preceding section.

We say that ⟨A,¬, n→, n←⟩ is an involutive adjunction when ⟨A,¬, n→⟩
is an n→-adjunction and ⟨A,¬, n←⟩ is an n←-adjunction.

A K-involutive adjunction is an involutive adjunction that satisfies the

additional equation

(n→n←K) ¬(n→A ◦n←A) = n→¬A ◦n←¬A,

and a J -involutive adjunction is an involutive adjunction that satisfies the

additional equation

(n→n←J) n→A ◦n←A = 1A.

It is easy to see that every J -involutive adjunction is a K-involutive ad-

junction (the converse need not hold).

A J -involutive adjunction that satisfies

(n←n→) n←A ◦n→A = 1¬¬A

is called a trivial involutive adjunction.

Note that for trivial involutive adjunctions it is superfluous to assume

the equations (n← nat) and (n← triang), or alternatively (n→ nat) and

(n→ triang); these equations can be derived from the remaining ones. In

trivial involutive adjunctions we have the equations

n←¬A = ¬n→A ,

n→¬A = ¬n←A ,

which should be compared with the equations (ν←A→⊥,⊥) and (ν→A→⊥) of

§3.4.

100 CHAPTER 5. INVOLUTIVE ADJUNCTIONS...

The free involutive adjunction ⟨A,¬, n→, n←⟩ generated by {p} is de-

fined as follows. The category A has as objects the formulae of the propo-

sitional language generated by {p} with a unary connective ¬. We may

identify these formulae with the natural numbers.

The arrow terms of A are defined inductively out of the primitive arrow

terms

1A : A ⊢ A, n→A : ¬¬A ⊢ A, n←A : A ⊢ ¬¬A,

for every object A of A, with the help of the operations of composition

◦ and the unary operation that assigns to the arrow term f : A ⊢ B the

arrow term ¬f : ¬B ⊢ ¬A. On these arrow terms we impose the equations

of involutive adjunctions (cf. §2.1 and the preceding section). In the set of

these equations we have of course all the equations f = f , and this set is

closed under symmetry and transitivity of equality, under the rule (cong ξ)

for ξ being ◦ (see §2.1), and also under the rule

(cong ¬)
f = g

¬f = ¬g

We define analogously the free K-involutive adjunction, the free J -

involutive adjunction and the free trivial involutive adjunction generated

by {p}, just by imposing additional equations.

Note that the category of the free involutive adjunction generated by

an arbitrary set having more than one letter would be the disjoint union

of isomorphic copies of the category A of the free involutive adjunction

generated by {p}. An analogous remark applies to the category of the free

self-adjunction generated by an arbitrary set having more than one member:

it would be the disjoint union of isomorphic copies of the category S of the

free self-adjunction generated by {p}.

§5.3. Self-adjunctions and involutive adjunctions

We are now going to prove that in the free self-adjunction ⟨S, L, φ, γ⟩ and
the free involutive adjunction ⟨A,¬, n→, n←⟩, both generated by {p}, the
categories S and A are isomorphic categories.

§5.3. Self-adjunctions and involutive adjunctions 101

First, we define ¬, n→ and n← in S in the following manner. On objects

we have that ¬ is L, while for the arrow term f : A ⊢ B of S we define the

arrow term ¬f : ¬B ⊢ ¬A of S inductively as follows:

¬1A = L1A = 1LA = 1¬A,

¬φA = LγA,

¬γA = LφA,

¬(f ◦ g) = ¬g ◦¬f ,
¬Lf = L¬f .

That this defines an operation ¬ on the arrows of S is shown by verifying

that if f = g in S, then ¬f = ¬g in S; we verify, namely, that the equations

of S are closed under the rule (cong ¬) of the preceding section. This is

done by a straightforward induction on the length of the derivation of f = g

in S. For that we use the fact that for every arrow term f of S the arrow

term ¬f is equal in S to an arrow term of the form Lf ′.

Finally, we have

n→A =df φA, n←A =df γA.

Next, we define L, φ and γ in A in the following manner. On objects

we have that L is ¬, while for the arrow term f : A ⊢ B of A we define the

arrow term Lf : LA ⊢ LB of A inductively as follows:

L1A = ¬1A = 1¬A = 1LA,

Ln→A = ¬n←A ,

Ln←A = ¬n→A ,

L(f ◦ g) = Lf ◦Lg,

L¬f = ¬Lf .

That this defines an operation L on the arrows of A is shown by verifying

that if f = g in A, then Lf = Lg in A; we verify, namely, that the equa-

tions of A are closed under the rule (cong L) of §5.1. This is done by a

straightforward induction on the length of the derivation of f = g in A. For

that we use the fact that for every arrow term f of A the arrow term Lf

is equal in A to an arrow term of the form ¬f ′.

102 CHAPTER 5. INVOLUTIVE ADJUNCTIONS...

Finally, we have

φA =df n→A , γA =df n←A .

We verify easily by induction on the complexity of the arrow term f

that both in S and in A we have the equation

(LL¬¬) LLf = ¬¬f .

Next we verify that the equations of involutive adjunctions hold for the

defined ¬, n→ and n← in S. This is done in a straightforward manner by

induction on the length of derivation. In the basis of this induction, we use

(LL¬¬), (φ nat) and (γ nat) to verify (n→ nat) and (n← nat), while the

equations (n→ triang) and (n← triang) reduce to (φγL). In the induction

step, we rely on the closure of S under (cong ¬), which we established

above.

We verify also that the equations of self-adjunctions hold for the defined

L, φ and γ in A. This is done again in a straightforward manner by

induction on the length of derivation. In the basis of this induction, we use

(LL¬¬), (n→ nat) and (n← nat) to verify (φ nat) and (γ nat), while the

equations (φγL) reduce to (n→ triang) and (n← triang). In the induction

step, we rely on the closure of A under (cong L), which we established

above.

We have a functor FA from S to A that maps the object of S corre-

sponding to the natural number n to the object of A corresponding to n,

and that maps every arrow of S to the homonymous arrow in the defined

S structure of A. For example,

FA φLLp = φ¬¬p = n→¬¬p .

We define analogously a functor FS from A to S (cf. the functors F and

F ′ in §3.7). That FA and FS are indeed functors follows from what we

established above.

It is trivial that on objects we have that FSFAA is A, and that FAFSB

is B. We show next by induction on the complexity of f that in S we have

FSFA f = f.

§5.4. Trivial involutive adjunctions and proof-net categories 103

When f is of the form Lf ′, we make an auxiliary induction on the com-

plexity of f ′, in which we use (LL¬¬). We show analogously that in A we

have

FAFS g = g.

This concludes the proof that S and A are isomorphic categories.

We demonstrate analogously that the categories of, respectively,

the free K-self-adjunction and the free K-involutive adjunction,

the free J -self-adjunction and the free J -involutive adjunction,

the free trivial self-adjunction and the free trivial involutive ad-

junction,

all generated by {p}, are isomorphic categories.

The interest of considering K and J versions of self-adjunctions and

involutive adjunctions comes from connections with Temperley-Lieb alge-

bras and the associated geometrical interpretation (see [18] and references

therein). Roughly speaking, K is what we find in Temperley-Lieb algebras,

where only the number of circles (which correspond to φA ◦ γA or n→A ◦n←A)

counts, while in J circles are disregarded. (How these circles arise may be

grasped from the first diagram in §2.3, where there is a circle involving 7

and 8.)

The free trivial self-adjunction, and hence also the free trivial involutive

adjunction, are preorders; namely, all arrows with the same source and

target are equal. This follows from the results of [18] (unabridged version)

or [19].

§5.4. Trivial involutive adjunctions and proof-net
categories

In every proof-net category we encounter a trivial involutive adjunction,

where ¬ is defined as in §2.8, while n→ and n← are defined as in §2.6.
That all the equations of trivial involutive adjunctions are satisfied with

these definitions in proof-net categories is easily verified with what we have

in §2.8, naturality equations and PN¬ Coherence. According to what we

established in the preceding section, in every proof-net category we have a

104 CHAPTER 5. INVOLUTIVE ADJUNCTIONS...

subcategory that is a trivial self-adjunction. This does not mean, however,

that in every proof-net category, and in PN¬ in particular, we can define

the endofunctor L of the trivial self-adjunction.

The notion of star-autonomous category arises out of the notion of

symmetric monoidal closed category by assuming in addition the arrows

ν→A : (A → ⊥) → ⊥ ⊢ A and the isomorphism equations (νν) that tie these

arrows to the arrows ν←A,⊥ : A ⊢ (A → ⊥) → ⊥ of the symmetric monoidal

closed structure (see §3.2). For every symmetric monoidal closed category

A we have that ⟨A, →⊥, ν←,⊥⟩ is an n←-adjunction. With ν→ added

together with the equations (νν), we obtain a trivial involutive adjunction

(see §5.2).
A non-equational definition of star-autonomous category is obtained by

assuming instead of the arrows ν→A and the equations (νν) just that A

and (A → ⊥) → ⊥ are naturally isomorphic. That ν←A,⊥ is an isomorphism

follows then from a lemma in [30] (Lemma 1.3; see also [29], Section A1.1,

Lemma 1.1.1) and the fact that ⟨A, →⊥, ν←,⊥⟩ is an n←-adjunction.

If iA : (A → ⊥) → ⊥ ⊢ A is a member of a natural isomorphism, then the

inverse of ν←A,⊥ : A ⊢ (A → ⊥) → ⊥ is

iA ◦ (((i−1A → 1⊥) ◦ ν←A→⊥,⊥) → 1⊥) : (A → ⊥) → ⊥ ⊢ A.

Since i is a natural isomorphism, we have i(A→⊥)→⊥ = (iA → 1⊥) → 1⊥.

Chapter 6

Coherence of Mix-Proof-Net
Categories

In this chapter we add mix arrows of the type A ∧B ⊢ A ∨B to proof-

net categories, with appropriate conditions that will enable us to prove

coherence with respect to Br for the resulting categories, which we call

mix-proof-net categories. The mix arrows, which underly the mix principle

of linear logic, were treated extensively in [22] (Chapters 8, 10, 11, 13).

The proof of coherence for mix-proof-net categories is an adaptation of the

proof of coherence for proof-net categories given in Chapter 2.

§6.1. The category MDS

The category MDS is defined as the category DS in §2.1 save that we have

the additional primitive arrow terms

mA,B : A ∧B ⊢ A ∨B

for all objects, i.e. for all formulae, A and B of L∧,∨, and we assume the

following additional equations:

(m nat) (f ∨ g) ◦mA,B = mD,E ◦ (f ∧ g), for f : A ⊢ D and g : B ⊢ E,

(
∧
bm) mA∧B,C ◦

∧
b→A,B,C = dA,B,C ◦ (1A ∧mB,C),

(
∨
bm)

∨
b→C,B,A ◦mC,B∨A = (mC,B ∨ 1A) ◦ dC,B,A,

(cm) mB,A ◦
∧
cA,B =

∨
cB,A ◦mA,B .

105

106 CHAPTER 6. COHERENCE OF MIX-PROOF-NET...

The proof-theoretical principle underlying mA,B is called mix (see [22],

Section 8.1, and references therein).

To obtain the functor G from MDS to Br, we extend the definition of

the functor G from DS to Br (see §2.3) by adding the clause that says that

GmA,B is the identity arrow 1GA+GB of Br. Then we have the following

result of [22] (Section 8.4).

MDS Coherence. The functor G from MDS to Br is faithful.

In the remainder of this section we will prove some lemmata concerning

MDS, which we will use for the proof of coherence in the next section. For

that we need some preliminaries.

For x a particular proper subformula of a formula A of L∧,∨, and ξ ∈
{∧,∨}, we define A−x inductively as follows:

(B ξ x)−x = (x ξ B)−x = B,

for x a proper subformula of C,

(B ξ C)−x= B ξ C−x,

(C ξ B)−x= C−x ξ B.

For i ∈ {1, 2}, let Ai be a formula of L∧,∨ with a proper subformula

xi, which is an occurrence of a letter q, and let xi be the ni-th occur-

rence of letter counting from the left. We define the following functions

µi : N − {ni−1} → N :

µi(n) =df

{
n if n < ni−1
n−1 if n > ni−1.

The definition of tied occurrence of a letter in an arrow of MDS is

analogous to what we had in §2.4. Then we can prove the following.

Lemma 1. For every arrow term f : A1 ⊢ A2 of MDS such that x1 and x2

are tied in the arrow f , there is an arrow term f−q : A−x1
1 ⊢ A−x2

2 of MDS

such that the members of part(Gf−q) are {s(µ1(m1)), t(µ2(m2))} for each

{s(m1), t(m2)} in part(Gf), provided mi ̸= ni−1.

Proof. We proceed by induction on the complexity of the arrow term f .

If f is a primitive arrow term αB1,...,Bm , then for some j ∈ {1, . . . ,m} we

§6.1. The category MDS 107

have that xi occurs in a subformula Bj of Ai. If xi is a proper subformula

of this subformula Bj , then B−xi
j is defined, and f−q is

α
B1,...,Bj−1,B

−xi
j

,Bj+1,...,Bm

(note that B−x1
j and B−x2

j are the same formula). If xi is not a proper

subformula of the subformula Bj , then d−qB1,q,B3
is mB1,B3 or f−q is 1

A
−xi
i

.

If f is g ◦h, then f−q is g−q ◦h−q, and if f is g ξ h for ξ ∈ {∧,∨}, then
f−q is either g−q ξ h, or g ξ h−q, or g when h = 1x1 , or h when g = 1x1 . ⊣

Note that this lemma does not hold for DS, because we cannot cover

d−qB1,q,B3
.

Here is an example of the application of Lemma 1. If f : A1 ⊢ A2 is

((mq,p∧q ◦ (1q ∧
∧
cq,p) ◦

∧
cq∧p,q) ∨ 1p) ◦ dq∧p,q,p ◦

∧
b→q,p,q∨p ◦

∧
cp∧(q∨p),q:

(p ∧ (q ∨ p)) ∧ q ⊢ (q ∨ (p ∧ q)) ∨ p,

where x1 is the second (rightmost) occurrence of q in (p∧ (q∨p))∧ q, while

x2 is the second occurrence of q in (q∨ (p∧ q))∨ p, then f−q : A−q1 ⊢ A−q2 is

((mq,p ◦ (1q ∧ 1p) ◦
∧
cp,q) ∨ 1p) ◦ dp,q,p ◦1p∧(q∨p) ◦1p∧(q∨p) :

p ∧ (q ∨ p) ⊢ (q ∨ p) ∨ p,

which is equal to ((mq,p ◦
∧
cp,q) ∨ 1p) ◦ dp,q,p. As another example, we have

that (((mq,p ◦
∧
cp,q) ∨ 1p) ◦ dp,q,p)

−q is equal to mp,p.

We define inductively a notion we call a context (analogous up to point

to notions introduced in §4.1):

is a context;

if Z is a context and A a formula of L∧,∨, then Z ξ A and A ξ Z are

contexts for ξ ∈ {∧,∨}.

Note that now we have contexts like p ∧ (q ∨), which are neither ∧-
contexts nor ∨-contexts in the sense of §4.1. We define Z(B) and Z(f) as

in §4.1, and we use X, Y , Z, . . . for contexts.

For f : A ⊢ C an arrow of MDS, we say that an occurrence x of a

formula B as a subformula of A and an occurrence y of the same formula

108 CHAPTER 6. COHERENCE OF MIX-PROOF-NET...

B as a subformula of C are tied in f when the n-th letter in x is tied in f

to the n-th letter in y.

Let f : X(p) ∧B ⊢ Y (p ∧B) be an arrow term of MDS such that the

displayed occurrences of p in the source and target, and also the displayed

occurrences of B, are tied in the arrow f . Then, by successive applications

of Lemma 1, for each occurrence of a letter in B, we obtain the arrow term

f−B : X(p) ⊢ Y (p) of MDS, and the displayed occurrences of p in X(p)

and Y (p) are tied in the arrow f−B .

Let f† : X(p ∧B) ⊢ Y (p ∧B) be the arrow term of MDS obtained from

f−B by replacing the occurrences of p that correspond to those displayed

in X(p) and Y (p) by occurrences of p ∧B. This replacement is made in the

indices of primitive arrow terms that occur in f−B , and it need not involve

all the occurrences of p in these indices. For example, if X is ∧ (q ∨ p)

and Y is (q ∨) ∨ p, while f−B is

((mq,p ◦
∧
cp,q) ∨ 1p) ◦ dp,q,p : p ∧ (q ∨ p) ⊢ (q ∨ p) ∨ p,

then f† is

((mq,p∧B ◦
∧
cp∧B,q) ∨ 1p) ◦ dp∧B,q,p : (p ∧B) ∧ (q ∨ p) ⊢ (q ∨ (p ∧B)) ∨ p.

Then we can prove the following.

Lemma 2∧. Let f : X(p) ∧B ⊢ Y (p ∧B) and f† : X(p ∧B) ⊢ Y (p ∧B) be

as above. Then there is an arrow term hX : X(p) ∧B ⊢ X(p ∧B) of DS

such that f = f† ◦hX in MDS.

Proof. We construct the arrow term hX of DS by induction on the

complexity of the context X. For the basis we have that h is 1p∧B. In

the induction step we have

hZ∧A = (hZ ∧ 1A) ◦
∧
cA,Z(p)∧B ◦

∧
b←A,Z(p),B

◦ (
∧
cZ(p),A ∧ 1B),

hZ∨A = (hZ ∨ 1A) ◦
∨
cZ(p)∧B,A ◦ dRA,Z(p),B

◦ (
∨
cA,Z(p) ∧ 1B),

hA∧Z = (1A ∧ hZ) ◦
∧
b←A,Z(p),B ,

hA∨Z = (1A ∨ hZ) ◦ dRA,Z(p),B .

It is easy to see that Gf = G(f† ◦hX), and then the lemma follows by

applying MDS Coherence. ⊣

§6.2. MPN¬ Coherence 109

Let f : Y (B ∨ p) ⊢ B ∨X(p) be an arrow term of MDS such that the

displayed occurrences of p in the source and target, and also the displayed

occurrences of B, are tied in the arrow f . Then, as above by Lemma 1,

we obtain the arrow term f−B : Y (p) ⊢ X(p) of MDS, and the displayed

occurrences of p in Y (p) and X(p) are tied in the arrow f−B.

Let f† : Y (B ∨ p) ⊢ X(B ∨ p) be the arrow term of MDS obtained from

f−B by replacing the occurrences of p that correspond to those displayed

in Y (p) and X(p) by occurrences of B ∨ p (cf. the example above). Then

we can prove the following, analogously to Lemma 2∧.

Lemma 2∨. Let f : Y (B ∨ p) ⊢ B ∨X(p) and f† : Y (B ∨ p) ⊢ X(B ∨ p) be

as above. Then there is an arrow term hX : X(B ∨ p) ⊢ B ∨X(p) of DS

such that f = hX ◦ f† in MDS.

§6.2. MPN¬ Coherence

The category MPN¬ is defined as the category PN¬ in §2.2 save that

we have the additional primitive arrow terms mA,B : A ∧B ⊢ A ∨B for all

objects A and B of PN¬, and we assume as additional equations (m nat),

(
∧
bm), (

∨
bm) and (cm) of the preceding section. To obtain the functor G

from MPN¬ to Br, we extend the definition of the functor G from PN¬

to Br by adding the clause that says that GmA,B is the identity arrow

1GA+GB of Br.

A mix-proof-net category is defined as a proof-net category (see §2.2)
that has in addition a natural transformation m satisfying the equations

(
∧
bm), (

∨
bm) and (cm). The category MPN¬ is up to isomorphism the free

mix-proof-net category generated by P.

The category MPN is defined as the category PN in §2.5 save that we

have the additional primitive arrow terms mA,B for all objects of PN, and

we assume as additional equations (m nat), (
∧
bm), (

∨
bm) and (cm). We can

prove that MPN¬ and MPN are equivalent categories as in §2.6. (We

have an additional case involving mA,B in the proof of the analogue of the

Auxiliary Lemma of §2.6, and similar trivial additions elsewhere; otherwise

the proof is quite analogous.)

We have a functor G from MPN to Br defined by restricting the defi-

110 CHAPTER 6. COHERENCE OF MIX-PROOF-NET...

nition of the functor G from MPN¬ to Br (cf. the beginning of §2.7), and
we will prove the following.

MPN Coherence. The functor G from MPN to Br is faithful.

The proof of this coherence proceeds as the proof of PN Coherence

in §2.7. The only difference is in the
∧
Ξ-Permutation and

∨
Ξ-Permutation

Lemmata of §2.5.
The formulation of the

∧
Ξ-Permutation Lemma is modified by replacing

PN and DS¬p by respectively MPN and MDS¬p, where the category

MDS¬p is defined as MDS save that it is generated not by P, but by

P ∪ P¬ (cf. §2.5); moreover, we assume that y1 and ¬y2 occur in E within

a subformula of the form p ∧ (¬y2 ∨ y1) or ¬p ∧ (y1 ∨ ¬y2). We modify the

proof of this lemma as follows.

If in E we have p ∧ (¬y2 ∨ y1), then by the stem-increasing equations

of §2.5 we have that the
∧
Ξp,B-term g : C ⊢ D is equal to f ′′ ◦

∧
∆p,C for

f ′′ : C ∧ (¬p ∨ p) ⊢ D an arrow term ofDS¬p, and so for f : D ⊢ E an arrow

term of MDS¬p satisfying the conditions of the lemma we have in MPN

f ◦ g = f ◦ f ′′ ◦
∧
∆p,C .

Then we apply Lemma 2∧ of the preceding section to

f ◦ f ′′ : C ∧ (¬p ∨ p) ⊢ E,

where C is X(p), ¬p ∨ p is B and E is Y (p ∧ (¬p ∨ p)). So for

hX : X(p) ∧ (¬p ∨ p) ⊢ X(p ∧ (¬p ∨ p))

an arrow term of DS¬p, and

(f ◦ f ′′)† : X(p ∧ (¬p ∨ p)) ⊢ Y (p ∧ (¬p ∨ p))

we have

f ◦ f ′′ = (f ◦ f ′′)† ◦hX .

By the
∧
Ξ-Permutation Lemma of §2.5 we have

hX ◦
∧
∆p,C = g′ ◦ f ′

§6.2. MPN¬ Coherence 111

where g′ is the
∧
∆p,p-term X(

∧
∆p,p), and by bifunctorial and naturality equa-

tions we have

(f ◦ f ′′)† ◦X(
∧
∆p,p) = Y (

∧
∆p,p) ◦ (f ◦ f ′′)−(¬p∨p).

Note that (f ◦ f ′′)† is obtained from (f ◦ f ′′)−(¬p∨p) : X(p) ⊢ Y (p) by re-

placement of p.

So we have in MPN

f ◦ g = f ◦ f ′′ ◦
∧
∆p,C

= (f ◦ f ′′)† ◦hX ◦
∧
∆p,C

= (f ◦ f ′′)† ◦X(
∧
∆p,p) ◦ f ′

= Y (
∧
∆p,p) ◦ f ′′′

for f ′′′, which is (f ◦ f ′′)−(¬p∨p) ◦ f ′, an arrow term of MDS¬p.

We proceed analogously if in E we have ¬p ∧ (y1 ∨ ¬y2); instead of
∧
∆p,p we then have

∧
∆
′
p,p. We have an analogous reformulation of the

∨
Ξ-

Permutation Lemma of §2.5, with a proof based on Lemma 2∨ of the pre-

ceding section.

Instead of Lemma 2∧ of the preceding section, we could have proved,

with more difficulty, an analogous lemma where f is of type

Z(X1(p) ∧X2(B)) ⊢ Y (p ∧B),

and f† is of one of the following types:

Z(X1(p ∧B) ∧ (X2(B))−B) ⊢ Y (p ∧B),

Z(X1(p ∧B)) ⊢ Y (p ∧B).

Then in the proof of the
∧
Ξ-Permutation Lemma modified for MPN we

would not need to pass from g to f ′′ ◦
∧
∆p,C via stem-increasing equations,

but this alternative approach is altogether less clear.

Note that we have no analogue of Lemma 2 of §2.4 for MDS. The lack

of this lemma, on which we relied in §2.5 for the proof of the
∧
Ξ-Permutation

and
∨
Ξ-Permutation Lemmata, is tied to the modifications we made for these

lemmata with MPN. We have also no analogue of Lemma 4 of §2.4, but
the analogue of Lemma 3 of §2.4 does hold.

112 CHAPTER 6. COHERENCE OF MIX-PROOF-NET...

From MPN Coherence and the equivalence of the categories MPN¬

and MPN we can then infer the following.

MPN¬ Coherence. The functor G from MPN¬ to Br is faithful.

If we extend the definition of the category SA′ with the primitive arrow

terms mA,B : A ∧B ⊢ A ∨B, together with the equations (m nat), (
∧
bm),

(
∨
bm) and (cm), we obtain a star-autonomous category of the mix kind. In

this category we have arrows of the types ⊥ ∧A ⊢ A and A ⊢ A ∨ ⊤, and

also ⊥ ⊢ ⊤. (Arrows of type ⊥ ⊢ ⊤ may be used to define arrows of the

type of mA,B ; see the proof of SAc Coherence in §4.3.)

Chapter 7

Proof Nets

In this, final, chapter we justify the name we have given to proof-net cat-

egories. We show how they are related to a two-sided version of the proof

nets of [26], such as have already been considered in the literature. Roughly

speaking, the Brauerian split equivalences of §2.3 are the graph core of proof

nets. As we have shown previously, we need just this core to prove coher-

ence for proof-net categories (see Chapter 2) and restricted coherence for

star-autonomous categories (see §4.3).

We discuss next the usefulness of proof nets in general proof theory.

While they may be useful to decide the question whether there is an arrow

of a particular kind (of a given type, or of a given type with a given graph),

we do not find proof nets very useful to answer the question whether a

diagram of arrows commutes. We find that this question, which is one of

the central questions of general proof theory, is answered more efficiently

by the graph core of proof nets.

§7.1. Proof nets and proof-net categories

The connection between proof-net categories and the proof nets of [26] is

the following.

For an object C of the category PN of §2.5, we define inductively the

target tree t(C) of C in the following manner:

113

114 CHAPTER 7. PROOF NETS

t(p) and t(¬p) are the one-node tree labelled by respectively p and ¬p;

t(A ∧B) is qq q
�
�

@
@

A ∧B

t(A) t(B)

and t(A ∨B) is qq qp p p p p p p p p ppppppppppp
A ∨B

t(A) t(B)

We define the source tree s(C) of C inductively in a dual manner:

s(p) and s(¬p) are the one-node tree labelled by respectively p and ¬p;

s(A ∧B) is q q qp p p p p p p p p ppppppppppp
A ∧B

s(A) s(B)

and s(A ∨B) is q q q@
@

�
�

A ∨B

s(A) s(B)

We have in target trees and source trees edges of two kinds: solid edges, like

those in the clauses for t(A∧B) and s(A∨B), and dotted edges, like those

in the clauses for t(A∨B) and s(A∧B). Nodes are labelled by subformulae

of C.

An occurrence x of a letter in an object A of the category PN is called

negative when ¬x is a subformula of A; otherwise, the occurrence is positive.

An arrow φ : GA ⊢ GB of the category Br of §2.3 is said to respect A

and B when every member of the partition part(φ) satisfies the following:

if it is of the form {ms, nt}, then the m+1-th occurrence of letter in

A (counting from the left) and the n+1-th occurrence of letter in B

are occurrences of the same letter, and they are either both positive

or both negative;

if it is of the form {mi, ni} for i ∈ {s, t}, then the m+1-th and the

n+1-th occurrences of letter in A, when i is s, or in B, when i is t,

are occurrences of the same letter, and one of them is positive while

the other is negative.

We call proof structures graphs of the form

§7.1. Proof nets and proof-net categories 115

J
J

JJ

J
J

JJ

t(B)

φ

s(A)

where φ : GA ⊢ GB is an arrow of Br that respects A and B. The leaf of

t(B) labelled by the n-th occurrence of letter in B is identified with n−1 in

the target GB of φ (more precisely, with (n−1)t in GBt), and analogously

with s(A) and the source GA of φ. So all the nodes of this graph are nodes

of the trees s(A) and t(B), while φ provides only edges, which are solid.

A proof structure where φ is Gf for some arrow f : A ⊢ B of PN is

called a proof net. This notion of proof net is a two-sided version of the

notion, like notions that may be found in [6], [11] and [41].

A two-sided proof net, such as we have introduced above, is transformed

into a one-sided proof net, such as those of [26], in the following manner:

J
J

JJ

J
J

JJ

' $' $
s(A) t(B)

Gf

The source tree s(A) is now conceived as being tied to F¬A (see §2.6), and
the semicircles in Gf are called axiom links.

There are one-sided proof nets in [26] which are not obtained in this

manner from our two-sided proof nets. For example, proof nets like

p p p p p p p p p p pppppppppppp
'$

¬p ∨ p

¬p p

G1p

�
�
�

Q
Q

Q

p p p p p p p p p p pppppppppppp p p p p p p p p p p pppppppppppp
'$'$

(¬p ∨ p) ∧ (¬q ∨ q)

¬p ∨ p ¬q ∨ q

¬p p ¬q q

G1p G1q

116 CHAPTER 7. PROOF NETS

These proof nets are not tied to the category PN, but to the arrows of SA′s
or SA′ whose source is ⊤ and whose target is an object of PN. We cover

only one-sided proof nets corresponding to the sequents ⊢ ¬A,B, but this

is not an essential departure from the format of [26].

Composition, i.e. cut, of our two-sided proof nets is reduced to compo-

sition in Br in the following manner:

J
J

JJ

J
J

JJ

t(C)

Gg

s(B)

J
J

JJ

J
J

JJ

t(B)

Gf

s(A)

J
J

JJ

J
J

JJ

t(C)

Gg

Gf

s(A)

With one-sided proof nets one has instead

J
J

JJ

J
J

JJ

' $' $
s(A) t(B)

Gf

J
J

JJ

J
J

JJ

' $' $
s(B) t(C)

Gg

& %
where

J
J

JJ

t(B)

J
J

JJ

s(B)

& %

GB GB

is transformed into a strip of semicircles

§7.1. Proof nets and proof-net categories 117

& %& %& %& %
GB GB

called cut links. So applying cut to one-sided proof nets also reduces to

composition in Br.

One-sided proof nets serve to answer the question whether a given for-

mula is provable in the multiplicative fragment of linear logic without propo-

sitional constants. (This question can also be answered, with apparently

not more difficulty, by using standard sequent tools.) Formulated in terms

of two-sided proof nets and categories, this is the question whether for a

given type A ⊢ B there is an arrow of this type. We call this the theorem-

hood problem. A variant of the theoremhood problem, which we call the

graph-theoremhood problem, is the problem whether for a given type A ⊢ B

and a given arrow φ : GA ⊢ GB of Br there is an arrow f : A ⊢ B such that

Gf = φ. Proof nets may serve to solve also this problem (which is of lesser

complexity than the general theoremhood problem) for the categories PN

and PN¬. Both the general and the graph-theoremhood problem can be

understood either constructively or nonconstructively, depending on the

reading of the quantifier “there is” in the formulation of these problems.

When only one φ respects A and B (and this is the case when A ⊢ B is

diversified ; i.e., when each letter occurs in it exactly twice), then solving

the general theoremhood problem for A ⊢ B reduces to solving the graph-

theoremhood problem.

Proof nets are connected more remotely with the question whether two

arrow terms f and g of the same type A ⊢ B stand for the same arrow.

To answer this latter question, which makes what we call the commuting

problem, we do not need s(A) and t(B). One could say that in that context

s(A) and t(B) are irrelevant material. As our PN Coherence shows, it is

enough to check whether Gf is equal to Gg to answer this question: PN

Coherence solves the commuting problem for the category PN.

The theoremhood problem for the category PN is solved by the acyclic-

ity and connectedness conditions of proof nets (see [13]; another condition,

equivalent to these two, may be found in [26]). A switching is a graph

118 CHAPTER 7. PROOF NETS

obtained from a proof structure by erasing for each pair of dotted edges

growing in the same direction out of a common node one of these edges.

A proof structure is called acyclic when each of its switchings is an acyclic

graph, and it is called connected when each of its switchings is a connected

graph.

It follows from [13] that a proof structure is acyclic and connected iff

it is a proof net. Acyclicity implies Lemma 3 of §2.4, while connectedness

implies Lemma 4 of §2.4. When we pass from PN to the category MPN of

§6.2, so that in proof nets Gf arises out of an arrow f of MPN instead of

PN, then connectedness is rejected and acyclicity is kept only. A solution

of the theoremhood problem for PN and MPN yields a solution of this

problem for the categories PN¬ and MPN¬.

As far as we know, a definition of the category PN¬ of §2.2, and of the

general notion of proof-net category, has first been given in this study. This

is an equational definition. The same applies to the category PN. (It is

not clear whether the non-equationally defined star-autonomous categories

without units of [35] amount to our proof-net categories; the authors of [27]

conjecture that their definition is equivalent to ours.) Related categories

with the units ⊤ and ⊥ have, however, been defined previously. These

are either the symmetric linearly distributive categories with negation of

[11], or the star-autonomous categories of [1] or [2] (see §3.8 for these two

notions). Results that might be interpreted as coherence theorems for these

categories with respect to proof nets, instead of the category Br, are stated

in [11] and [6]. To these papers should be added as the most recent [24],

[25] and [34], which are contemporaneous with our work.

In all these papers the categories envisaged have the units, and coher-

ence in our sense with the units is not forthcoming (cf. §4.3). It is not clear
how the results of [24], which are about proof nets with ⊤ and ⊥, overcome

the difficulties brought in by adding ⊤ and ⊥ to PN¬, of which the authors

of [6] are aware. Another approach for overcoming these difficulties may be

found in [34].

These papers do not state that proof nets bring in irrelevant material

for the study of the commuting problem, though this may be gathered from

[5] (which we have considered in §1.1). It is not even clear whether these

papers are oriented towards solving the commuting problem, rather than

§7.2. Proof nets in general proof theory 119

some form of the theoremhood problem, or perhaps another problem.

We were clearly oriented towards solving the commuting problem, and

our coherence results with respect to Br do that. Equality of arrows in Br

is decidable in an elementary way, and the commuting problem is hence de-

cidable in an elementary way in every category for which we have coherence

with respect to Br.

Our approach differs also in style from these other papers. We have

strived to present proofs as complete as possible. We do rely on previous

results, but they may all be found exposed in detail in [22]. We find that

proofs in the papers cited above can hardly qualify as complete. Sometimes,

as in [5], the equations for the categories are not even stated, and have to

be guessed. In [24] and [34], the previous results of [5] and [6] are not taken

for granted, but other proofs are supplied.

If it is claimed that the category PN¬, though it has not been previously

defined equationally, has been defined by coherence, then we are in the

situation that we have described at the end of §1.1. For us, as for Mac

Lane, coherence is not built into the definition, but it is a theorem.

We would also not be satisfied with defining the category PN¬ as the

full subcategory on the objects of PN¬ of the free symmetric linearly dis-

tributive category with negation (i.e. of the category SA′s of §3.8). That

PN¬ is such a subcategory is for us a theorem, which we prove in §4.3, and
is not built into the definition.

§7.2. Proof nets in general proof theory

Natural deduction is sometimes presented as being more practical than

sequent systems because it involves less writing, less copying. Sequent

systems note explicitly undischarged hypotheses, and keep copying them.

Here is, for example, a proof of the dissociativity principle, corresponding

to the type of dp,q,r, in natural deduction format and in sequent format:

q ∨ r

p �q
1

p ∧ q

(p ∧ q) ∨ r

�r
1

(p ∧ q) ∨ r

(p ∧ q) ∨ r
1

120 CHAPTER 7. PROOF NETS

p ⊢ p q ⊢ q

p, q ⊢ p ∧ q

p, q ⊢ (p ∧ q) ∨ r

r ⊢ r

r ⊢ (p ∧ q) ∨ r

p, q ∨ r ⊢ (p ∧ q) ∨ r

The natural deduction proof involves 8 formulae, while the sequent proof

involves 17 of them.

This advantage of natural deduction over sequents vanishes when we

reach the standpoint of general proof theory, where we are interested in

proofs and not in provability (see [15]). From that standpoint, it is not

correct to say that a proof in natural deduction is a tree whose nodes are

formulae. This is not precise enough. One should not forget about the rules

used for building the trees, and in particular about the very important rules

for discharging hypotheses in the leaves of the trees. We had such a rule

in our example with disjunction elimination, and we noted the discharging

with the label 1. It is more correct to say that a proof in natural deduction

is the building of a tree. The tree itself provides just an incomplete record

of this building, part of the information. Rules, i.e. operations (usually

partial), for making proofs are not explicit in the tree, and we are very

much interested in these operations. We want to see the operations, and

do not want to keep guessing about them. We want to see how proofs are

inductively built.

In general proof theory one studies inference rules, i.e. operations for

building proofs, as in arithmetic one studies operations on natural numbers.

A language for arithmetic in which operations would not be explicitly noted

could hardly be suitable.

Complete information about proofs in natural deduction is obtained by

introducing codes for proofs, in a notation usually inspired by the lambda

calculus (following ideas of Curry and Howard). In our example we have

u : q ∨ r

x : p y : q

⟨x, y⟩ : p ∧ q

ι1⟨x, y⟩ : (p ∧ q) ∨ r

z : r

ι2z : (p ∧ q) ∨ r

δy,z(u, ι
1⟨x, y⟩, ι2z) : (p ∧ q) ∨ r

§7.2. Proof nets in general proof theory 121

where δy,z is a ternary partial operation binding y and z. The tree of

formulae contains now just the record of the types of the subterms of the

term that codes the proof. This term, rather than the tree of formulae,

stands for the proof.

We can incorporate the information about types in the term itself so

that the tree of formulae disappears—or, rather, becomes implicit in the

tree of the term:

δyq,zr (uq∨r, ι
1
r⟨xp, yq⟩, ι2p∧qzr).

In the same way, complete information about the sequent proof is ob-

tained by coding. Here is a coding of the sequent proof above:

1p : p ⊢ p 1q : q ⊢ q

∧R(1p,1q) : p, q ⊢ p ∧ q

ι1r∧R(1p,1q) : p, q ⊢ (p ∧ q) ∨ r

1r : r ⊢ r

ι2p∧q1r : r ⊢ (p ∧ q) ∨ r

∨L(ι1r∧R(1p,1q), ι2p∧q1r) : p, q ∨ r ⊢ (p ∧ q) ∨ r

and the Gentzen term

∨L(ι1r∧R(1p,1q), ι2p∧q1r),

in which the tree of sequents is implicit, is not more complicated than the

term

δyq,zr (uq∨r, ι
1
r⟨xp, yq⟩, ι2p∧qzr)

above. (Actually, it is slightly shorter.)

The sequent proof becomes recorded with another Gentzen term when

it is modified in the style of linear logic, so that the rules for ∨ are “multi-

plicative”, as was the rule for introducing ∧ on the right-hand side:

1p : p ⊢ p 1q : q ⊢ q

∧R(1p,1q) : p, q ⊢ p ∧ q 1r : r ⊢ r

∨L(∧R(1p,1q),1r) : p, q ∨ r ⊢ p ∧ q, r

∨R∨L(∧R(1p,1q),1r) : p, q ∨ r ⊢ (p ∧ q) ∨ r

After introducing, multiplicatively, a conjunction on the left-hand side, we

obtain a Gentzen term that should be equal to the DS arrow term

122 CHAPTER 7. PROOF NETS

dp,q,r : p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ r.

When they appeared nearly twenty years ago, proof nets were adver-

tized as a new syntax bringing an economy over the sequent calculus, similar

to the economy natural deduction brings. Proof nets were said to involve

even less copying—even less “bureaucracy”. As for natural deduction, this

advantage vanishes from the standpoint of general proof theory. Unfor-

tunately, proof nets never quite reached that standpoint. For the time

being, they are approximately where natural deduction would be if typed

lambda terms were not introduced to code derivations in natural deduction.

Lambek has established in [36] a clear connection between cartesian closed

categories and natural-deduction proofs in the conjunction-implication frag-

ment of intuitionistic logic by proving an equivalence between the category

of cartesian closed categories and the category of typed lambda calculuses.

Could one obtain such a result without introducing typed lambda terms?

We would know that proof nets had reached the standpoint of general

proof theory if codes were introduced to record the building of proof nets.

Because what corresponds to a proof is not a proof net, but rather the

building of a proof net. We want to see the operations for building proofs.

If such codes were introduced, then we would see that the advantage over

sequents vanishes. For example, here is a one-sided proof net corresponding

to the proof of p, q ∨ r ⊢ (p ∧ q) ∨ r:

@
@

�
�

@
@

�
�

pppppppppp p p p p p p p p p p

� �' $' $

¬p ¬q ∧ ¬r (p ∧ q) ∨ r

¬q ¬r p ∧ q r

p q

and here is a code recording its building:

§7.2. Proof nets in general proof theory 123

1p : ¬p, p 1q : ¬q, q

∧p,q(1p,1q) : ¬p,¬q, p ∧ q 1r : ¬r, r

∧¬q,¬r(∧p,q(1p,1q),1r) : ¬p,¬q ∧ ¬r, p ∧ q, r

∨p∧q,r ∧¬q,¬r (∧p,q(1p,1q),1r) : ¬p,¬q ∧ ¬r, (p ∧ q) ∨ r

As far as length is concerned, the term

∨p∧q,r ∧¬q,¬r (∧p,q(1p,1q),1r)

bears no advantage over the Gentzen term

∨R∨L(∧R(1p,1q),1r),

which we had above. The proof net is a substitute for the tree of sequents,

which is of secondary importance in general proof theory. The term coding

the building of the proof net is not shorter than the term coding the building

of the tree of sequents. In general proof theory, these terms occupy the

centre of the stage, and not their types, which are implicit in the terms.

Proof nets do bring something more than just the types. It is as if

besides A ⊢ B we were also given an arrow φ : GA ⊢ GB of Br that respects

A and B. From our point of view, proof nets are not really syntax. In

addition to the type, they bring something that belongs to the category

Br, which is for us a model of our syntactical categories, with respect to

which we prove completeness with our coherence theorems. Still, with a

proof net we do not yet have an analogue of an arrow term f of type A ⊢ B.

Such arrow terms, like our arrow terms of PN, are syntax for us.

In some of the early papers of categorial proof theory, and in particular

in the book [44], the types of arrow terms were more prominent than the

arrow terms, which were often not mentioned. The readers were left to

guess the arrow terms out of the types. This has serious disadvantages if

the theory is concerned with commuting diagrams of arrows, i.e. equations

between arrow terms that stand for proofs. The theory of proof nets suffered

up to now from a similar disadvantage when it was proposed as a tool for

recording equations between proofs. Again, we have to guess the syntax.

124 CHAPTER 7. PROOF NETS

We have to guess the terms from the proof nets, which now replace the

types.

Proponents of proof nets claim that theirs is a syntax with an advan-

tage over ordinary syntax. Terms introduce an order on the application of

operations, which is deemed unimportant. The term

∨p∧q,r ∧¬q,¬r (∧p,q(1p,1q),1r),

which we had above, and the term

∧¬q,¬r ∨p∧q,r (∧p,q(1p,1q),1r)

stand for the same proof net, drawn above, granted that the order of appli-

cation of operations is unimportant. We can, however, introduce an equiva-

lence relation on terms, which would make equivalent these two terms, and

deal with equivalence classes of terms. This seems wiser than to relinquish

completely the use of terms, and keep guessing what the terms are. Equa-

tions between terms, or equations between equivalence classes of terms, are

more easily written down, and better understood, than equations between

objects that are not syntactical in the ordinary sense, but are some sort of

complicated graphs.

Here we touch upon deep questions. Why is it that we prefer languages

made of sequences of symbols, rather than other structures of symbols, such

as trees, or graphs of another sort (or simpler collections of symbols like

multisets or sets)? This may have to do with the fact that we speak in

time, which is one-dimensional, and not in something two-dimensional or

three-dimensional. We do write in space, but nevertheless writing keeps to a

great extent the one-dimensional organization of speech. Without that one-

dimensional organization, written language is more difficult to understand.

It is usually easier for pupils to absorb matters written on a blackboard by

following them as they are being written down, than to face a blackboard

fully filled before the lesson. This is so even when the matter on the black-

board is not one-dimensional, as in geometrical drawings. It is probably

not fortuitous that Frege’s two-dimensional notation for formulae, where

formulae are drawn as trees, has not become standard in logic. (Although

the tree structure implicit in formulae is very important, and Frege was not

mistaken to stress it.)

§7.2. Proof nets in general proof theory 125

We do not think, however, this is only a psychological or typographical

problem. There may be mathematical reasons to prefer ordinary syntax.

Variables are essential for the language of mathematics, and there is some-

thing in the ease with which we introduce variables for ordinary syntactical

objects, and perform substitution for these variables, in a handy and very

precise way, which seems to be lost by passing to a nonstandard syntax

of more complicated graphs. What are variables for proof nets? As an

analogue for that, one finds in the literature some sort of empty boxes with

wires going out of them, which are not particularly easy to draw or handle,

and for which the rules of substitution are not entirely explicit and precise.

A related matter is that we want syntactical notions to be decidable

in an elementary way. The notions of term, formula and derivation in a

formal system are decidable in this way in standard logic. The notion of

proof net is not decidable in an elementary way. It may require considerable

effort to recognize that a proof structure is a proof net. This is yet another

disadvantage of proof nets taken as syntax.

For these reasons, we do not believe that proofs, as syntactical objects,

should be identified with graphs like proof nets. They could perhaps be

identified with the building of these graphs, in which building the order of

application of operations would be unimportant, but we want to have these

operations recorded nevertheless, and this recording is still achieved in the

most secure way by sequences of symbols, i.e. terms.

A disadvantage of proof nets from the point of view of category theory

is that with one-sided proof nets we do not have a clear information about

the source and the target, but this can be remedied with two-sided proof

nets. Still another disadvantage is excessive flexibility, verging on impreci-

sion, when the order of formulae in proof nets is in question. If this order

is disregarded, then we lose information about the arrows of Br implicit

in proof nets, and lose a tool for solving the commuting problem. (This

order can be disregarded sometimes, with diversified types, but this has

to be justified; cf. [22], Section 3.3.) Sometimes the disadvantage of proof

nets consists in bringing in irrelevant material, as we have indicated in the

previous section, but this is when proof nets are taken as belonging to the

model rather than to syntax.

This does not mean that proof nets cannot be useful for some purposes

126 CHAPTER 7. PROOF NETS

in general proof theory. They may serve to solve the graph-theoremhood

problem for proof-net categories (see the preceding section). They have

merit too for having attracted attention to coherence questions in logic,

though they were not alone in doing that (interest in the generality of

proofs has as much, if not more, merit; see [15] or [22], Sections 1.3-4),

and though coherence may be, and usually is, proved without appealing to

them, as this was done in [22] and in this work. (We appealed to proof

nets only once, to decide a question of theoremhood in the proof of SAc

Coherence in §4.3, but this was not indispensable; we could have used a

sequent system, or ordinary model-theoretical tools.)

In some circles at the border of logic and theoretical computer science,

the belief is still spread with much enthusiasm that proof nets are an in-

dispensable tool. We do not call into question here the role proof nets may

play outside general proof theory. We have examined only to a certain

extent what they brought up to now to this particular region of logic.

Bibliography

[§...] The sections where a reference is mentioned are listed at the end in
square brackets.

[1] M. Barr, ∗-Autonomous Categories, Lecture Notes in Mathemat-
ics, vol. 752, Springer, Berlin, 1979 [§1.1, §7.1]

[2] ——–, ∗-Autonomous categories and linear logic, Mathematical
Structures in Computer Science , vol. 1 (1991), pp. 159-178 [§1.1,
§3.2, §3.8, §7.1]

[3] J. Bénabou, Catégories avec multiplication, Comptes Rendus de
l’Académie des Sciences, Paris, Série I, Mathématique, vol. 256
(1963), pp. 1887-1890 [§1.1]

[4] R. Blute, Proof nets and coherence theorems, Category Theory
and Computer Science (D.H. Pitt et al., editors), Lecture Notes in
Computer Science, vol. 530, Springer, Berlin, 1991, pp. 121-137 [§1.1]

[5] ——–, Linear logic, coherence and dinaturality, Theoretical Com-
puter Science , vol. 115 (1993), pp. 3-41 [§1.1, §7.1]

[6] R. Blute, J.R.B. Cockett, R.A.G. Seely and T.H. Trimble,
Natural deduction and coherence for weakly distributive categories,
Journal of Pure and Applied Algebra , vol. 113 (1996), pp. 229-
296 [§1.1, §4.3, §7.1]

[7] R. Brauer, On algebras which are connected with the semisimple con-
tinuous groups, Annals of Mathematics, vol. 38 (1937), pp. 857-872
[§2.3]

[8] G. Burde and H. Zieschang, Knots, de Gruyter, Berlin, 1985 [§1.1,
§2.3]

127

128 Bibliography

[9] C.C. Chang and H.J. Keisler, Model Theory , North-Holland,
Amsterdam, 1973 [§1.1]

[10] J.R.B. Cockett and R.A.G. Seely, Weakly distributive categories,
Applications of Categories in Computer Science (M.P. Four-
man et al., editors), Cambridge University Press, Cambridge, 1992,
pp. 45-65 [§2.1]

[11] ——–, Weakly distributive categories, Journal of Pure and Applied
Algebra , vol. 114 (1997), pp. 133-173 (updated version available at:
http://www.math.mcgill.ca/rags) [§§1.1-2, Chapter 2, §2.1-2, Chap-
ter 3, §§3.3-4, §3.8, §7.1]

[12] ——–, Proof theory for full intuitionistic linear logic, bilinear logic
and mix categories, Theory and Applications of Categories, vol.
3 (1997), pp. 85-131 [§1.1]

[13] V. Danos and L. Regnier, The structure of multiplicatives, Archive
for Mathematical Logic, vol. 28 (1989), pp. 181-203 [§1.1, §7.1]

[14] K. Došen, Cut Elimination in Categories, Kluwer, Dordrecht,
1999 [§1.2, §2.3, §5.1]

[15] ——–, Identity of proofs based on normalization and generality, The
Bulletin of Symbolic Logic, vol. 9 (2003), pp. 477-503 (version with
corrected remark on difunctionality available at: http://arXiv.org/
math.LO/0208094) [§1.2, §7.2]

[16] ——–, Simplicial endomorphisms, Communications in Algebra ,
vol. 36 (2008), pp. 2681-2709 (available at: http://arXiv.org/math.
GT/0301302) [§2.3]

[17] K. Došen and Z. Petrić, Isomorphic objects in symmetric monoidal
closed categories, Mathematical Structures in Computer Sci-
ence , vol. 7 (1997), pp. 639-662 [§3.1]

[18] ——–, Self-adjunctions and matrices, Journal of Pure and Applied
Algebra , vol. 184 (2003), pp. 7-39 (unabridged version available at:
http://arXiv.org/math.GT/0111058) [Chapter 5, §5.1, §5.3]

[19] ——–, The geometry of self-adjunction, Publications de l’Institut
Mathématique (N.S), vol. 73(87) (2003), pp. 1-29 (incorporated in
the unabridged version of [18]) [§5.3]

Bibliography 129

[20] ——–, Generality of proofs and its Brauerian representation, The
Journal of Symbolic Logic, vol. 68 (2003), pp. 740-750 (available
at: http://arXiv.org/math.LO/0211090) [§1.2, Chapter 2, §2.3]

[21] ——–, A Brauerian representation of split preorders, Mathematical
Logic Quarterly , vol. 49 (2003), pp. 579-586 (misprints corrected
in text available at: http://arXiv.org/math.LO/0211277) [§1.2, Chap-
ter 2, §2.3]

[22] ——–, Proof-Theoretical Coherence , KCL Publications, London,
2004 (revised version available at: http://www.mi.sanu.ac.yu/∼kosta/
publications.htm) [Preface, §§1.1-2, Chapter 2, §§2.1-4, §2.6, §2.8,
Chapter 3, §3.1, §§3.3-4, §§4.1-3, Chapter 6, §6.1, §§7.1-2]

[23] S. Eilenberg and G.M. Kelly, A generalization of the functorial
calculus, Journal of Algebra , vol. 3 (1966), pp. 366-375 [§2.3]

[24] C. Führmann and D. Pym, Order-enriched categorical models of the
classical sequent calculus, preprint, 2004 [§1.2, §7.1]

[25] ——–, On categorical models of classical logic and the geometry of
interaction, preprint, 2005 [§7.1]

[26] J.-Y. Girard, Linear logic, Theoretical Computer Science , vol.
50 (1987), pp. 1-101 [§§1.1-2, Chapter 7, §7.1]

[27] R. Houston, D. Hughes and A. Schalk, Modelling linear logic
without units (Preliminary results), preprint, 2005 (available at:
http://arXiv.org/math.CT/0504037) [§1.1, §7.1]

[28] D. Hughes and R. van Glabbek, Proof nets for unit-free multipli-
cative-additive linear logic (extended abstract), Proceedings of the
18th Annual IEEE Symposium on Logic in Computer Sci-
ence , Ottawa, 2003, pp. 1-10 [§1.1]

[29] P.T. Johnstone, Sketches of an Elephant: A Topos Theory
Compendium , 2 volumes, Oxford University Press, Oxford, 2002
[§3.1, §5.4].

[30] P.T. Johnstone and I. Moerdijk, Local maps on toposes, Pro-
ceedings of the London Mathematical Society , vol. 58 (1989),
pp. 281-305 [§5.4]

[31] C. Kassel, Quantum Groups, Springer, Berlin, 1995 [§2.3]

130 Bibliography

[32] G.M. Kelly and S. Mac Lane, Coherence in closed categories,
Journal of Pure and Applied Algebra , vol. 1 (1971), pp. 97-140,
219 [§§1.1-2, §2.3, §3.1, Chapter 4, §4.3]

[33] Y. Lafont, Logiques, catégories et machines, doctoral disser-
tation, Université de Paris VII, 1988 (we know this work only from
references) [§1.1]

[34] F. Lamarche and L. Straßburger, From proof nets to the free
∗-autonomous category, preprint, 2004 [§7.1]

[35] ——–, Constructing free Boolean categories, preprint, 2005 [§1.1, §7.1]

[36] J. Lambek, Functional completeness of cartesian categories, Annals
of Mathematical Logic, vol. 6 (1974), pp. 259-292 [§7.2]

[37] S. Mac Lane, Natural associativity and commutativity, Rice Uni-
versity Studies, Papers in Mathematics, vol. 49 (1963), pp. 28-46
[§1.1, §§4.1-3]

[38] ——–, Categories for the Working Mathematician , Springer,
Berlin, 1971 (expanded second edition, 1998) [§1.2, §2.2, §2.8, §3.1,
§4.1-3, §5.1]

[39] S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic:
A First Introduction to Topos Theory , Springer, Berlin, 1992
[§5.2]

[40] D. Pavlović, Chu I: cofree equivalences, dualities and ∗-autonomous
categories, Mathematical Structures in Computer Science , vol.
7 (1997), pp. 49-73 [§5.2]

[41] E. Robinson, Proof nets for classical logic, Journal of Logic and
Computation , vol. 13 (2003), pp. 777-797 [§7.1]

[42] R.A.G. Seely, Linear logic, ∗-autonomous categories and cofree coal-
gebras, Categories in Computer Science and Logic (J.W. Gray
and A. Scedrov, editors), Contemporary Mathematics, vol. 92, Amer-
ican Mathematical Society, Providence, 1989, pp. 371-382 [§1.1]

[43] S.V. Soloviev, On the conditions of full coherence in closed cate-
gories, Journal of Pure and Applied Algebra , vol. 69 (1990), pp.
301-329 (Russian version in Matematicheskie metody postroeniya
i analiza algoritmov , A.O. Slisenko and S.V. Soloviev, editors,
Nauka, Leningrad, 1990, pp. 163-189) [§1.1, §4.3]

Bibliography 131

[44] M.E. Szabo, Algebra of Proofs, North-Holland, Amsterdam, 1978
[§7.2]

[45] H. Wenzl, On the structure of Brauer’s centralizer algebras, Annals
of Mathematics, vol. 128 (1988), pp. 173-193 [§2.3]

Index

A formula, 10
A category, 96
A → functor, 46, 61
(A → 1) equation, 46
(A → 2) equation, 46
acyclic proof structure, 118
acyclicity condition, 118
adjunction, 96
arrow →, 46
arrow bifunctor →, 47
arrow term, 10
(→ 1) equation, 48
(→ 2) equation, 48
axiom links, 115

B formula, 10
∧
b→ arrow, 10
∧
b← arrow, 10
∧
B→ Gentzen operation, 73
∧
B← Gentzen operation, 73

(
∧
b→ nat) equation, 11

(
∧
b← nat) equation, 12

(
∧
b 5) equation, 11

(
∧
b

∧
b) equation, 11

(
∧
b

∧
c) equation, 11

(
∧
b

∧
∆) equation, 13

(
∧
b

∧
∆
′
) equation, 15

(
∧
b

∧
∆

∧
Σ) equation, 14

(
∧
b

∧
δ) equation, 47

(
∧
b m) equation, 105

(
∧
b

∧
Σ) equation, 14

∨
b→ arrow, 10, 53
∨
b→ arrow, 52
∨
b← arrow, 10, 53
∨
b← arrow, 52
∨
B→ Gentzen operation, 73
∨
B← Gentzen operation, 73

(
∨
b→ nat) equation, 11

(
∨
b← nat) equation, 12

(
∨
b 5) equation, 11

(
∨
b

∨
b) equation, 11

(
∨
b

∨
c) equation, 11

(
∨
b

∨
∆) equation, 15

(
∨
b

∨
∆

∨
Σ) equation, 15

(
∨
b

∨
δ) equation, 51

(
∨
b m) equation, 105

(
∨
b

∨
Σ) equation, 13

β-term, 16
ξ

b→ arrow, 10
ξ

b← arrow, 10

(
ξ

b→ nat) equation, 11

(
ξ

b← nat) equation, 12

(
ξ

b 5) equation, 11

(
ξ

b
ξ

b) equation, 11
Barr, M., 2, 50

132

Index 133

Bénabou, J., 5
biendofunctor, 12
bifunctorial equations, 12
Bij category, 19
Blute, R., 4
bottom Gentzen operations ⊥← and

⊥→, 73
bottom propositional constant ⊥, 49
Br category, 18
Brauerian split equivalence, 17
building a proof net, 122
building a tree, 120

C formula, 10
(cat 1) equation, 11
(cat 2) equation, 11
∧
c arrow, 10
∧
C Gentzen operation, 73
(

∧
c

∧
c) equation, 11

(
∧
c nat) equation, 11

∨
c arrow, 10, 54
∨
C Gentzen operation, 73
∨
c arrow, 54
(

∨
c

∨
c) equation, 11

(
∨
c nat) equation, 11
(cm) equation, 105
cap, 17
cluster, 80
Cockett, J.R.B., 4
coherence, 9
commuting problem, 117
complexity of a cut, 80
composition ◦ , 10
composition of proof nets, 116
Confrontation Lemma, 38
confronted arrow terms, 38
(cong L) rule, 97
(cong ¬) rule, 100
(cong ξ) rule, 12
conjunction ∧, 10
∧ biendofunctor, 12

∧-context, 72
∧ Gentzen operation, 73
∧-nice formula, 86
∧-superficial subformula, 78
(∧ 1) equation, 11
(∧ 2) equation, 11
connected proof structure, 118
connectedness condition, 118
consequential formula, 49
Conservativeness Theorem, 83
constant-free formula, 86
context, 72, 107
crown, 13
crown index, 13
cup, 17
Curry, H.B., 120
cut, 80
Cut-Elimination Theorem, 81
cut formula, 80
cut-free Gentzen term, 81
cut Gentzen operation, 76
cut links, 117
cut of proof nets, 116

d arrow, 10, 54, 75
d degree, 80
d arrow, 54

(d
∧
b) equation, 11

(d
∨
b) equation, 11

(d∧) equation, 11
(d∧X) equation, 76

(d
∨
∆) equation, 13

(d
∨
δ) equation, 51

(d∨) equation, 11
(d∨Y) equation, 76
(d nat) equation, 11

(d
∧
Σ) equation, 13

(d
∧
σ) equation, 51

dR arrow, 11
dR arrow, 54

134 Index

(dR
∧
∆) equation, 15

(dR nat) equation, 12

(dR
∨
Σ) equation, 15

(dX∧) equation, 76
(dY ∨) equation, 76
∧
∆ arrow, 13, 26, 55, 56, 68
∧
∆ arrow, 55

(
∧
∆) equation, 65
∧
∆-cap bijection, 39

(
∧
∆ dinat) equation, 42
∧
∆-factor, 38

(
∧
∆ n) equation, 36

(
∧
∆ nat) equation, 13

(
∧
∆ r) equation, 36
∧
∆
′
arrow, 13

(
∧
∆
′
nat) equation, 14

∨
∆ arrow, 13

(
∨
∆ nat) equation, 14
∨
∆
′
arrow, 14

(
∨
∆
′ ∧
Σ
′
) equation, 16

(
∨
∆

∧
Σ) equation, 16

∧
δ→ arrow, 46
∧
δ← arrow, 46

(
∧
δ→ nat) equation, 46

(
∧
δ← nat) equation, 47

(
∧
δ

∧
δ) equation, 47

∨
δ→ arrow, 50, 55
∨
δ← arrow, 50, 55

(
∨
δ→ nat) equation, 51

(
∨
δ← nat) equation, 51

(
∨
δ

∨
δ) equation, 51

degree of a cut, 80
developed factorized arrow term, 16
Development Lemma, 17

dinaturality equations, 42, 48
directly tied occurrences of letter, 37
disjunction ∨, 10
∨ biendofunctor, 12, 55
∨-context, 72
∨ Gentzen operation, 73
∨-nice formula, 86
∨-superficial subformula, 78
(∨ 1) equation, 11
(∨ 2) equation, 11
dissociativity, 9, 95, 119
diversified type, 117
dotted edges, 114
DS category, 10
DS Coherence, 23
DS¬p category, 27

∧
e′ arrow, 73
∨
e′ arrow, 73
ε arrow, 46, 61
(ε dinat) equation, 48
(ε nat) equation, 46
(εη →) equation, 47
(εη ∧) equation, 47
η arrow, 46, 61
(η dinat) equation, 48
(η nat) equation, 46
endofunctor, 43

F functor, 32, 63
f arrow, 10
FA functor, 102
F¬ functor, 34
F ′ functor, 64
FS functor, 102
factor, 16
factorized arrow term, 16
finite ordinals, 18
free involutive adjunction, 100
free J -involutive adjunction, 100
free J -self-adjunction, 97

Index 135

free K-involutive adjunction, 100
free K-self-adjunction, 97
free self-adjunction, 97
free trivial involutive adjunction, 100
free trivial self-adjunction, 97
Frege, G., 124

G functor, 20, 22, 37, 48, 49, 61, 83,
84, 106, 109

g arrow, 10
γ arrow, 96
(γ nat) equation, 96
(γφ) equation, 97
γR arrow, 68
general proof theory, 7
Gentzen operations, 72
Gentzen terms, 72
Gentzen, G., 71
Gentzenization Lemma, 76
Gödel, K., 2
graph-theoremhood problem, 117

H functor, 59, 66, 68
h arrow, 10
hA arrow, 60, 67, 68
h−1A arrow, 60, 67, 68
hX arrow, 108
head, 16
headed factor, 16
headed factorized arrow term, 16
Howard, W.A., 120

I functor, 59, 66, 68
iA arrow, 35
i−1A arrow, 35
i→ arrow, 52
i← arrow, 52
identity arrow 1, 10
identity arrow of Br 1n, 18
identity term 1-term, 16
impose equations, 12
involutive adjunction, 99

J -involutive adjunction, 99
J -self-adjunction, 97
j→ arrow, 52
j← arrow, 52

K-involutive adjunction, 99
K-self-adjunction, 96
Kelly, G.M., 1–9, 17, 45, 49, 71, 85

L endofunctor, 96
(LL¬¬) equation, 102
λ→ arrow, 49, 59, 62
λ← arrow, 49, 59, 62
(λλ) equation, 50
L∧,∨ language, 10
L¬p∧,∨ language, 26
L¬,∧,∨ language, 12
L⊤,⊥,∧,→ language, 66
L⊤,⊥,¬,∧,∨ language, 67
L⊤,⊥,¬,∧,∨,→ language, 49
L⊤,∧,→ language, 46
Lambek, J., 122
leaf, 78
letter, 10
letterless formula, 86
linear distribution, 9
literate formula, 86
lower parameter, 78

m arrow, 105
(m nat) equation, 105
Mac Lane, S., 1–9, 17, 45, 49, 71, 77,

83, 85, 88, 119
MDS category, 105
MDS Coherence, 106
mix, 105, 106
mix-proof-net category, 109
MPN category, 109
MPN Coherence, 110
MPN¬ category, 109
MPN¬ Coherence, 112

136 Index

N finite ordinals, 18
n→ arrow, 34
n→-adjunction, 98
(n→ nat) equation, 98
(n→n←J) equation, 99
(n→n←K) equation, 99
(n→ triang) equation, 98
n← arrow, 34
n←-adjunction, 98
(n←n→) equation, 99
(n← nat) equation, 98
(n← triang) equation, 99
ν→ arrow, 49, 62
(ν→A→⊥) equation, 56
ν← arrow, 50
(ν←A→⊥,⊥) equation, 56
(νν) equation, 50
naturality equations, 12
negation ¬, 12
¬ contravariant endofunctor, 41, 98
¬L Gentzen operation, 74
¬R Gentzen operation, 74
(¬1) equation, 42
(¬2) equation, 43
negative occurrence of letter, 114
nice formula, 86

one-sided proof net, 115

P set of letters, 10
P¬ set, 26
p letter, 10
p-¬p-p Lemma, 29
¬p-p-¬p Lemma, 30
π→ arrow, 50, 55, 59
π← arrow, 50, 55, 59
(ππ) equation, 51
φ arrow, 96
(φγF) equation, 96
(φγG) equation, 96
(φγJ) equation, 97
(φγK) equation, 97

(φγL) equation, 96
(φ nat) equation, 96
PN category, 26
PN Coherence, 40
PN equations, 13
PN¬ category, 12
PN¬ Coherence, 23
PN¬→⊥ category, 59
PN¬→⊥ Coherence, 61
positive occurrence of letter, 114
p-q-r Lemma, 25
primitive arrow term, 50
primitive arrow terms, 10, 12, 46, 49,

66, 67
primitive Gentzen terms, 72
proof net, 115
proof structure, 114
proof-net category, 16
proper ∧-context, 72
proper ∨-context, 72
proper ξ -context, 72
pure arrow term, 39
Purification Lemma, 39
Pythagoras, 2

q letter, 10

r letter, 10
r rank, 80
∧
r→ arrow, 34
∧
r← arrow, 34
∨
r→ arrow, 35
∨
r← arrow, 35
∧
ρ arrow, 86
∨
ρ arrow, 86
ξ

ρ arrow, 86
rank of a cut, 80
Reidemeister, K., 5
Rel category, 18, 19
replete subcategory, 49
respect (arrow respects), 114

Index 137

s arrow, 53
s source, 17
s source tree, 114
S category, 96
∧
Σ arrow, 13

(
∧
Σ dinat) equation, 42

(
∧
Σ nat) equation, 14

∧
Σ
′
arrow, 14

∨
Σ arrow, 13, 26, 55, 68
∨
Σ-cup bijection, 39
∨
Σ-factor, 38
∨
Σ arrow, 55

(
∨
Σ

∧
∆) equation, 13

(
∨
Σ dinat) equation, 42

(
∨
Σ nat) equation, 13

∨
Σ
′
arrow, 13

(
∨
Σ
′ ∧
∆
′
) equation, 13

(
∨
Σ
′
dinat) equation, 42

∧
σ→ arrow, 47
∧
σ← arrow, 47
∨
σ→ arrow, 51
∨
σ← arrow, 51
SA category, 49
SA′ category, 50
SA′s category, 67
SAs category, 66
SA′′ category, 84
SA′′ Coherence, 84
SAc category, 84
SAc Coherence, 84
Seely, R.A.G., 4
self-adjunction, 96
sequences of symbols, 124
Set category, 53, 54
sinuosity, 22
SMC category, 46
SMCc category, 49
SMCc Coherence, 49

solid edges, 114
source cluster, 80
source tree, 114
split equivalence, 17
split relation, 17
star-autonomous category, 50, 66, 104
star-autonomous category of the mix

kind, 112
stem index, 13
stem-increasing equations, 26
straightening a sinuosity, 22
superficial subformula, 78
switching, 117
symmetric linearly distributive cate-

gory with negation, 68
symmetric monoidal closed category,

46

t target, 17
t target tree, 113
∧
τ arrow, 74
(

∧
τ nat) equation, 75

∨
τ arrow, 74
(

∨
τ nat) equation, 75
τL arrow, 68
Θ arrow, 27
target cluster, 80
target tree, 113
theoremhood problem, 117
tied occurrences of letter, 23
tied subformulae, 108
top Gentzen operations⊤→ and⊤←,

73
top propositional constant ⊤, 46
topmost cut, 81
transversal, 17
triangular equations, 96
trivial involutive adjunction, 99
trivial self-adjunction, 97
turnstile ⊢, 10
two-sided proof net, 115
type, 10

138 Index

upper parameter, 78

X context, 107
X ∧-context, 72
Ξ arrow, 14
ξ connective, 10
ξ -context, 72
ξ -nice formula, 86
ξ -superficial subformula, 78
(ξ 1) equation, 11
(ξ 2) equation, 11
∧
Ξ arrow, 14, 27
∧
Ξ-Permutation Lemma, 28, 110
∧
Ξ
′
arrow, 14

∨
Ξ arrow, 14, 27
∨
Ξ-Permutation Lemma, 29, 111
∨
Ξ
′
arrow, 14

ξ

Ξ arrow, 14, 27

(
ξ

Ξ nat) equation, 14
ξ

Ξ
′
arrow, 14

(
ξ

Ξ
′
nat) equation, 14

ξ

ΞB,A-term, 27

Y context, 107
Y ∨-context, 72
υ→ arrow, 49, 62
υ← arrow, 49, 62
(υυ) equation, 50

Z context, 107

