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Abstract

This is an introduction to general proof theory in terms of some philo-
sophical considerations. The central problem of this theory is the
problem of identity criteria for deductions. When it is treated in cate-
gorial proof theory, this problem is closely tied to categorial coherence
results, which may be understood as completeness results for systems
of equations between deductions with respect to simple model cat-
egories. With the help of the categorial notion of isomorphism, the
categorial perspective enables us to formulate in precise mathematical
terms criteria for propositional identity.
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1 Introduction

The central question of general proof theory as defined by Prawitz in [23]
may be understood as the question “What is a deduction?”, and the central
problem of this theory is the problem of identity criteria for deductions. This
problem is treated either in the typed lambda calculus or in terms of category
theory. These two approaches are up to a point convergent, the latter one
providing sometimes a deeper perspective. The categorial approach to proof
theory—categorial proof theory—is also closely tied to what in category the-
ory is called coherence results, which may be understood as completeness
results for systems of equations between deductions with respect to manage-
able models, often of a graphical kind. With the help of the categorial notion
of isomorphism, the categorial perspective enables us to formulate in precise
mathematical terms criteria for propositional identity, i.e. identity of mean-
ing for propositions. This paper consists in some introductory philosophical
considerations concerning these matters of general proof theory.

2 Proofs and deductions

The word “proof” may refer to a proof with no hypothesis (or assumption).
This is what this word does in its marked usage. In its unmarked usage, it
may refer also to a hypothetical proof, i.e. a proof from hypotheses. (In the
terminology of the Prague Linguistic Circle, “fox” in its marked usage refers
to a male animal, the male partner of a vixen, while in its unmarked usage
it refers to a male or female animal.)

General proof theory ought to be concerned with proofs in the unmarked
usage. In order to make this clear, it is wiser to opt for the synonymous term
“deduction”, which cannot be mistaken for “proof” in the marked usage. So
general proof theory ought to be about deductions.

That this precaution is not exaggerated is corroborated by the fact that
proof-theoretical investigations of intuitionistic logic are inclined to under-
stand “proof” in the marked usage. This is shown by the Curry-Howard
correspondence.

There we find typed lambda terms t as codes of natural deduction deriva-
tions. If t codes the derivation that ends with the formula B as the last
conclusion, then this may be written t : B, and we say that t is of type B.
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(Formulae are of course of the grammatical category of propositions.) Our
derivation may have uncancelled hypotheses. That will be seen by t’s hav-
ing possibly a free variable x, which codes an occurrence of a formula A as
hypothesis; i.e. we have x : A, an x of type A.

All this makes conclusions prominent, while hypotheses are veiled. Con-
clusions are clearly there to be seen as types of terms, while hypotheses are
hidden as types of free variables, which are cumbersome to write always
explicitly when the variables occur as proper subterms of terms. The desir-
able terms are closed terms, which code derivations where all the hypotheses
have been cancelled. These closed terms are supposed to play a key role in
understanding intuitionistic logic.

Another asymmetry is brought by the usual format of natural deduction,
where there can be more than one premise, but there is always a single con-
clusion. This format favours intuitionistic logic, and in this logic the coding
with typed lambda terms works really well with implication and conjunction,
while with disjunction there are problems.

An alternative to this coding would be a coding of derivations that would
allow hypotheses to be as visible as conclusions, and to be treated on an
equal footing also with respect to multiplicity. With such a coding we could
hope to deal too with classical logic, with all its Boolean symmetries, and
with disjunction as well as with conjunction.

Such an alternative coding exists in categorial proof theory. There one
writes f : A ⊢ B as a code for a derivation that starts with premise A and
ends with conclusion B. The arrow term f is an arrow term of a category—
a cartesian closed category if we want to cover the conjunction-implication
fragment of intuitionistic logic. The type of f is now not a single formula,
but an ordered pair of formulae (A,B). The notation A ⊢ B serves just
to have something more suggestive than (A,B). (In categories one usually
writes f : A → B instead of f : A ⊢ B, but → is sometimes used in logic for
implication, and we should not be led to confuse deduction with implication
just because of notation; cf. Section 4 below.)

If B happens to be derived with all hypotheses cancelled, then we will
have f : ⊤ ⊢ B, with the constant formula ⊤ standing for the empty collec-
tion of hypotheses. If we happen to have more than one hypothesis, but as
usual a finite number of them, then we will assume that with the help of
conjunction all these hypotheses have been joined into a single hypothesis.
So the categorial notation f : A ⊢ B with a single premise does not introduce
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a cramping limitation; at least not for the things intended to be said here.
The typed lambda coding of the Curry-Howard correspondence, involv-

ing finite product types and functional types, and the categorial coding in
cartesian closed categories are equivalent in a very precise sense. This has
been first shown by Lambek (see [20], [21], [7] and [9]). The import of the
two formalisms is however not exactly the same. The typed lambda calcu-
lus may suggest something different about the subject matter than category
theory. It makes prominent the proofs t : B—and we think immediately of
the marked ones, without hypotheses—while category theory is about the
deductions f : A ⊢ B.

Logic is concerned not with any deductions, but first of all with for-
mal deductions. Perhaps it is concerned only with such deductions. These
are deductions that hold in virtue of the form exhibited by keeping con-
stant some particular expressions—the logical constants (the standard list is
made of the connectives and quantifiers of first-order logic plus the binary
predicate of equality)—and replacing everything else by variables, of appro-
priate grammatical categories. The expressions of the grammatical category
of propositions that exhibit this form are called formulae.

If general proof theory is described as the theory of formal deduction, it
might seem it would cover the whole field of logic, as traditionally conceived.
Formal deductions are however hardly the subject matter of model theory,
computability theory and set theory. (In [17] it is found that model theory
could fall under the heading of theory of definition, which should be a tradi-
tional concern of logicians.) The theory of formal deduction would not cover
the whole field of logic as it is conceived since the last century. Once it is
properly developed, it could perhaps pretend to occupy a place more central
than today.

3 Deductions in general

Following Prawitz’s suggestion in [23], the primary concern of general proof
theory should then be the question “What is a deduction?”. Let us consider
this question in all its generality. So we are not concerned only with formal
deductions, where premises and conclusions are formulae, but with any de-
ductions, where premises and conclusions are propositions. What is then a
deduction in general, in this broad sense?
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There is a strong tendency to answer this question by relying on the no-
tion of proposition as more fundamental. It is as if Frege’s recommendation
from the Grundlagen der Arithmetik to look after meaning in the context
of a proposition was understood to apply not only to bits of language nar-
rower than propositions, which should be placed in the broader propositional
context, but also to something broader than propositions, as deductions, in
which propositions partake, which should be explained in terms of the nar-
rower notion of proposition.

A deduction is usually taken as something involving propositions. Re-
stricting ourselves to deductions with single premises, as we agreed to do
above, for ease of exposition, we may venture to say that a deduction con-
sists in passing from a proposition called premise to a proposition called
conclusion.

What could “passing” mean here? Another teaching of Frege from Grund-
lagen der Arithmetik would not let us understand this passing as something
happening in our head. Such an understanding would expose us to being
accused of psychologism. No, this passing should be something objective,
something done or happening independently of any particular thinking sub-
ject, something sanctioned by language and the meaning it has.

The temptation of psychologism is particularly strong here, but as a
proposition is not something mental that comes into being when one asserts
a sentence, so a deduction should not be taken as a mental activity of pass-
ing from sentences to sentences or from propositions to propositions. Such
a mental activity exists, as well as the accompanying verbal and graphical
activities, but the deduction we are interested in is none of these activities.
It is rather something in virtue of which these activities are judged to be
correctly performed or not. It is something tied to rules governing the use
of language, something based on these rules, which are derived from the
meaning of language, or which confer meaning to it.

A deduction could be compared to a move in a game like chess. We
envisage here possible moves in a particular situation on the board in a
particular game. Such moves are not moves in the physical world made with
the help of a brain and fingers. Moves in the physical world may also be
incorrectly performed. We are however concerned with the correct abstract
moves, sanctioned by the rules of the game, whose existence is objective, and
which do not owe anything to particular chess players. There are such moves
that no chess player has ever envisaged.
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This chess terminology suggests saying, as a Wittgenstein would perhaps
do, that deduction is a move in a language game. However, “move” does not
fare much better than “passing”. One smacks of psychologism, but the other
is very metaphorical, and neither is very explanatory.

4 Deductions and consequence relations

Can deductions be reduced to consequence relations? So that having a de-
duction from A to B means just that B is a consequence of A. This would
square well with the objective character of deductions we have just talked
about, because B’s being a consequence of A is something objective. “Conse-
quence” should presumably be understood here in a syntactical manner, but
because of the completeness of classical first-order logic it could even mean
semantical consequence. If our view of logic is dictated by semantics, as it is
understood in model-theoretical terms, then the objectivity of consequence
has semantical grounds.

Since B is a consequence of A whenever the implication A → B is true or
correct, there would be no essential difference between the theory of deduc-
tion and the theory of implication. A deduction is often written vertically,
with the premise above the conclusion,

A

B

and an implication is written horizontally A → B, but besides that, and
purely grammatical matters, there would not be much difference.

This reduction of deduction to implication accords well with the point
of view, which we mentioned above, where propositions are taken as a more
fundamental notion. And this is indeed the point of view of practically all of
the philosophy of logic and language in the twentieth century. Propositions
do not only play the leading role in language, but everything is reduced to
them.

This applies not only to classically minded theories where the essential,
and desirable, quality of propositions is taken to be truth, but also to other
theories, like constructivism in mathematics, or verificationism in science,
where this quality is something different. It may be deemed strange that
even in constructivism, where the quality is often described as provability,
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deductions are not more prominent. Rather than speak about deductions,
constructivists, such as intuitionists, tend to speak about something more
general covered by the magical word “construction”. (Constructions produce
mathematical objects as well as proofs of mathematical propositions , which
are about these objects.) Where above we spoke about passing and moves,
a constructivist would presumably speak about constructions.

By reducing deductions from A to B to ordered pairs (A,B) in a con-
sequence relation we would loose the need for the categorial point of view.
The f in f : A ⊢ B would become superfluous. There would be at most one
arrow with a given source and target, which means that our categories would
be preordering relations (i.e. reflexive and transitive relations). These pre-
orderings are consequence relations.

With that we would achieve something akin to what has been achieved
for the notion of function. This notion has been extensionalized. It has
been reduced to a set of ordered pairs. If before one imagined functions as
something like a passing from an argument to the value, or a move from an
argument to the value, now a function is just a set of ordered pairs made of
arguments and values. Analogously, deductions would be the ordered pairs
made of premises and conclusions.

This extensionalizing might represent a progress, but it has left in its
vicinity, in the theory of computing, an unresolved matter concerning the
notion of algorithm. While it might be desirable to extensionalize the notion
of function, is it desirable in the same manner to extensionalize the notion
of algorithm? Are all algorithms with the same input and output the same?
Common sense says no, but no developed or widely accepted theory exists
concerning this matter (see [22] and [2]).

Gentzen’s results in general proof theory concerning the normal forms of
natural deduction and sequent derivations demonstrate the technical advan-
tage of taking deductions seriously. Not so much as something irreducible
to a consequence relation, but as something vertical, certainly irreducible to
the horizontal implication.

5 Identity of deductions

The extensionalizing of the notion of deduction which consists in its reduction
to the notion of consequence relation can be called into question if we are
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able to produce examples of two different deductions with the same premise
and the same conclusion. Here are first two such examples of formal, logical,
deductions, which involve conjunction, the simplest and most basic of all
logical connectives.

From p ∧ p to p there are two deductions, one obtained by applying the
first rule of conjunction elimination, the first projection rule,

A ∧B

A

and the other obtained by applying the second projection rule

A ∧B

B

The other example is given by the two deductions from p ∧ p to p ∧ p, one
being the identity deduction, an instance of

A ∧B

A ∧B

and the other an instance of permutation

A ∧B

B ∧ A

These and other such examples from logic redeem the categorial point of
view (see [13] and [14]). In the first example we have π1 : p ∧ p ⊢ p and
π2 : p ∧ p ⊢ p with π1 ̸= π2, and in the second 1 : p ∧ p ⊢ p ∧ p and c : p ∧ p ⊢
p ∧ p with 1 ̸= c.

A category where these arrows are exemplified is C, which is the category
with binary product freely generated by a set of objects. The category C
models deductions involving only conjunction. It does so for both classical
and intuitionistic conjunction, because the deductions involving this connec-
tive do not differ in the two alternative logics. This is a common ground of
these two logics.

The notion of binary product codified in C is one of the biggest successes
of category theory. The explanation of the extremely important notion of
ordered pair in terms of this notion is the most convincing corroboration of
the point of view that mathematical objects should be characterized only up
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to isomorphism. It is remarkable that the same matter should appear at the
very beginning of what category theory has to say about deductions in logic,
in connection with the connective of conjunction.

For the category C there exists a kind of completeness theorem, which
categorists call a coherence result. There is namely a faithful functor from C
to the model category M, which is the opposite of the category of finite ordi-
nals with functions as arrows. With this functor, π1 and π2 above correspond
respectively to

∧ ∧p

π1

p p

π2

p

p p
@@ ��

while 1 and c correspond respectively to

∧ ∧

∧ ∧

p

1

p p

c

p

p pp p

���
HHH

Another example of two different formal deductions with the same premise
and the same conclusion, which involves graphs of a slightly more complicated
kind, is given by

∧ ∧p (p → p) p (p → p)

p p
@@

���

The first deduction is made by conjunction elimination, while the second by
modus ponens.

Finally we give an example where the deductions are not formal in the
logical sense (at least they are not such at first glance, before further an-
alyzing). Whoever has heard of Achilles, and knows what “faster” means,
knows that (1) Achilles is faster than anybody else, and whoever has heard
of the Tortoise, and knows what “slower” means, knows that (2) the Tortoise
is slower than anybody else. Then from the premise that Achilles and the
Tortoise have started their famous race one may deduce (pace Zeno) that
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Achilles will overtake the Tortoise. Two different deductions however lead
from our premise to this conclusion: one relies on (1), and the other on (2).

Coherence is one of the main inspirations of categorial proof theory (see
[13]). The other, older, inspiration, which works for deductions in intuition-
istic logic, comes ultimately from the notion of adjunction (see [19], [8], [9]
and [11]).

In model categories such as we find in coherence results we have models
of equational theories axiomatizing identity of deductions. These are not
models of the theorems of logic. This is often unclear, partly because of
uncertainties related to matters considered in Section 2. Moreover, some
authors seem to think that models are better if they are complicated. (They
may indeed be more likely to impress the public, and hence be better for
marketing purposes.) The primary purpose of these models is to serve to
obtain simple decision procedures for identity of deductions. So they should
be manageable and as simple as possible, as the model category M above is.

The arrows of the model categories are hardly what deductions really
are. It is not at all clear that these categories provide a real semantics of
deductions (cf. [11]).

Invoking now another principle of Frege’s Grundlagen der Arithmetik, we
might look for an answer to the question “What is a deduction?” by looking
for a criterion of identity between deductions. We would strive to define a
significant and plausible equivalence relation on derivations as coded by arrow
terms of our syntactical categories, and equivalence classes of derivations, or
equivalence classes of arrow terms, which are the arrows of our syntactical
categories, would stand for deductions.

A deduction f : A ⊢ B would be something sui generis, that does not
reduce to its type, the ordered pair (A,B). It would be represented by an
arrow in a category, to which is tied a criterion of identity given by the
system of equations that hold in the category. The category should not be a
preorder.

In the arrow term f of f : A ⊢ B, the rules of inference, the rules of
deduction, involved in building a deduction are made manifest as operations
for building this term. The theory of deduction is as a matter of fact the
theory of such operations (usually partial). It is an algebraic theory codifying
with equations the properties of these operations.

It is rather to be expected that the theory of deduction should be the
theory of the rules of deduction, as arithmetic, the theory of natural num-
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bers, is the theory of arithmetic operations (addition, multiplication etc.).
Extensionalizing the notion of deduction by reducing it to consequence (as
in the preceding section) makes us forget the rules of deduction, which are
prominent in categorial proof theory.

This would be the way to approach the question “What is a deduction?”,
and it is a mathematical way. Let us consider some philosophical aspects of
this mathematical approach.

From a classical point of view, the desirable quality of propositions, their
correctness, is their truth. If the notion of deduction is something sui generis,
not reducible to the notion of proposition, the desirable quality of deductions,
their correctness, need not be reducible to the desirable quality of proposi-
tions, which from a classical point of view is their truth, as we have just said.
A correct deduction would not be just one that preserves truth—a correct
consequence relation is that. A deduction f : A ⊢ B is not just A ⊢ B; we
also have the f . As a matter of fact, the deduction is f . It is a necessary
condition for a correct f : A ⊢ B that B be a consequence of A, but this is
not sufficient for the correctness of f . This is not what the correctness of f
consists in. The correctness of a deduction would be as the notion of deduc-
tion itself something sui generis, not to be explained by the desirable quality
of propositions.

We might perhaps even try to turn over the positions, and consider that
the desirable quality of propositions should be explained in terms of the
correctness of deductions. This is presumably congenial to a point of view like
that found in intuitionism, where the desirable quality of propositions is taken
to be provability, i.e. deducibility from an empty collection of premises. We
could however take an analogous position with a classical point of view, where
the truth of analytic propositions would be guaranteed by the correctness of
some deductions (cf. [16], p. 26). The correctness of the deductions underlies
the truth, and not the other way round.

If deductions are objective, as we have recommended in Section 3, do
incorrect deductions exist? The subjective activity of deducing may be per-
formed incorrectly, but how can the objective paradigm be incorrect? This
question seems to be analogous to the question whether propositions that are
not true exist objectively. Does the proposition 2 + 2 = 5 exist objectively?
These questions have a typically philosophical, suspect, ring; with them we
might be stepping into an ontological quagmire. Without trying to survey
this whole, dangerous, ground, let us try to see what difference there may be
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here between deductions and propositions.
A correct deduction is like a well-formed syntactical object—for example,

a formula—and an incorrect one is like a badly formed syntactical object. (In
logic, derivations, like other syntactical objects, are defined inductively, and
deductions are equivalence classes of derivations.) An incorrect deduction
does not exist as a badly formed syntactical object does not belong to the
language. On the other hand, 2 + 2 = 5 is not badly formed syntactically;
it is a well-formed formula. Such a formula may be considered incorrect for
syntactical reasons, because it is not a theorem, i.e. because it is underivable
in a formal system. From a classical point of view, it is however usually
branded as incorrect, as being untrue, for semantical reasons. For semantical
reasons, other formulae would be considered correct, i.e. true.

It seems that a deduction f : A ⊢ B too may be considered incorrect for
semantical reasons. This may be done simply because B is not a consequence
of A. It is not clear whether this may be done also because f does not
satisfy something required by a putative semantics of deduction, something
formulated perhaps in terms of models of deduction, like our category M
above.

Can f be branded as correct for semantical reasons? We said already that
this may not be done simply because B is a consequence of A. Are there
then other semantical reasons that might induce us to do that? This question
is unclear. Many things are unclear about the semantics of deduction (see
[11]). Many things are however unclear about semantics in general.

6 Isomorphism of propositions

We will now consider another philosophical aspect of our mathematical ap-
proach to the question “What is a deduction?”. This is something that may
be interesting for semantics. It has to do with the meaning of propositions.

Isomorphism between formulae should be an equivalence relation stronger
than mutual implication. This is presumably the relation underlying the
relation that holds between propositions that have the same meaning just
because of their logical form. Any propositions that are instances, with the
same substitution, of isomorphic formulae would have the same meaning,
which presumably need not be the case for formulae that are just equivalent,
i.e. which just imply each other.
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One may try to characterize isomorphic formulae by looking only into
the inner structure of formulae . This is the way envisaged by Carnap and
Church (see [4], Sections 14-15, where related work by Quine and C.I. Lewis
is mentioned, [5], [1], Section 2, and references therein).

Another way is to try to characterize isomorphism between formulae by
looking also at the outer structure in which formulae are to be found. This
outer structure may be a deductive structure, characterized in terms of cat-
egories in categorial proof theory. These are the syntactical categories envis-
aged in the preceding sections of this paper: their objects are formulae and
their arrows are deductions.

Isomorphism between formulae may then be understood exactly as iso-
morphism between objects is understood in category theory. The formulae
A and B are isomorphic when there is a deduction f : A ⊢ B, and another
deduction g : B ⊢ A, such that f composed with g, i.e. g ◦ f : A ⊢ A is equal
to the identity deduction from A to A, namely 1A : A ⊢ A, while f ◦ g : B ⊢ B
is equal to 1B : B ⊢ B. This analysis of isomorphism presupposes a criterion
of identity for deductions, which is formalized by equality between arrows in
our syntactical categories.

That A and B are isomorphic means here intuitively that they function
in the same manner in deductions. In a deduction one can replace one by
the other, either as premise or as conclusion, so that nothing is lost, nor
gained. The replacements, which are made by composing our deduction
with the deductions f and g, are such that they enable us to return to our
original deduction by further composing with g and f , since g ◦ f and f ◦ g are
identity deductions, and hence may be cancelled. (For this view concerning
isomorphic formulae and its relationship with propositional identity, see [6],
Section 9, [11], Section 5, and [15].)

The study of isomorphic formulae first started in intuitionistic logic, for
which it is widely believed that we have solid nontrivial criteria of identity
of deductions. These criteria are provided either in terms of equality in the
typed lambda calculus, via the Curry-Howard correspondence, or in terms
of equality between arrows in categories based on cartesian closed categories
(as we mentioned in Section 2).

A result exists in this area for the conjunction-implication fragment of
intuitionistic logic (see [24]), but the problem of characterizing formulae iso-
morphic in the whole of intuitionistic propositional logic (which is related to
Tarski’s high-school algebra problem; see [3]) seems to be still open. There
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is a further result characterizing isomorphic formulae in the analogous multi-
plicative fragment of linear logic, which corresponds to symmetric monoidal
closed categories, and is common to classical and intuitionistic linear logic
(see [12]).

Results characterizing isomorphic formulae in classical propositional logic
may be found in [15]. These results cover also a fragment of classical linear
propositional logic. For these results to be significant, we need for the logics
we want to cover a plausible and nontrivial notion of equality of arrows in
categories formalizing identity of deductions in these logics. A consensus for
classical linear propositional logic may be found around the multiplicative
fragment of that logic caught by proof nets, which leads to notions of category
closely related to star-autonomous category (see [14] and references therein).

For classical propositional logic, it is on the contrary widely believed that
no nontrivial notion of category would do the job. It is believed that no
nontrivial notion of Boolean category may be found. This is indeed the
case if one wants these Boolean categories to be cartesian closed (see [10],
Section 5, [13], Section 14.3, and references therein). But, whereas on the
level of theorems classical logic is an extension of intuitionistic logic, it is
not clear that this should be so at the level of deductions and of criteria
concerning their identity.

If one does not require that Boolean categories be cartesian closed cate-
gories, and bases identity of deductions in Boolean categories on coherence
results analogous to those available for classical linear propositional logic, a
nontrivial notion may arise. The coherence results in question are categorial
results analogous to the classical coherence result of Kelly and Mac Lane
for symmetric monoidal closed categories (see [18]). They reduce equality of
arrows in the syntactical category to equality of arrows in a graphical model
category.

Such a nontrivial notion of Boolean category may be found in [13] (Chap-
ter 14), and [15] deals with isomorphism of formulae engendered by that par-
ticular notion, and by another notion motivated more consistently by gener-
ality of deductions (see [10]). These results give a complete characterization
of isomorphic formulae in classical and classical linear propositional logic.
These characterizations are such that they easily lead to decision procedures
for the isomorphisms in question.
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