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FOREWORD

I do not intend to write here of S. Pre§ié’s results in mathematics. There is
a glimpse of his achievments in the papers that follow. I would like to present a
personal side of my relationship with him.

I met him for the first time in 1966 when I was a pupil of the Belgrade Math-
ematical Gimnasium. He was teaching to some other class but the news about
him came to me quickly. 'He is different’ was the unanimous opinion. And indeed
he was. It was not just his lectures (although the best by far in our Gimnasium)
that made him different. He also knew how to listen to us — 17 years old novices
in mathematics. He had a way of treating us as his younger colleagues without
intimidating us with a depth of his knowledge or his quiick mind.

It was the same during my studies at the University of Belgrade. He was also
the one to review my first research papers, to support my promotions, to supervise
my masters studies. If ever I had a mathematical father — he is the one. With
everything that this implies: adoration and admiration, quarels and cooperation,
learning and maturing, growing up and getting free. Finally, there is a respect and
a recognition that it is a privilege to be his student and a coauthor of joint papers.

There is a similar story that any author of a paper from this booklet can tell.
You can find a hint of it in the papers by Z.. Mijajlovié¢ and I. Stavrev. So it
was only natural that the idea of a Conference celebrating his 65th birthday met
with unanimous agreement. Official support, by the Mathematical Faculty of the
University of Belgrade and the Mathematical Institute of the Serbian Academy of
Sciences and Arts, was assured as he has a life-long successfull involvement with
both institutions.

Although the present booklet is not coextensive with the talks delivered during
the Conference, it is certainly based on them.

The booklet consists of three parts. First, there are invited papers giving an
overview of S. Presié’s results in general or in some particular mathematical disci-
pline. Z. Mijajlovi¢ in his article writes about S. Presi¢’s life and work in mathe-
matics, particularly in mathematical logic. M. Kapetanovi¢ presents his results in
computer science and artificial inteligence, emphasizing his extension of logic pro-
gramming to any set of clauses, which need not be Horn clauses. reviewes his early
work on functional equations including the profound idea of reproductive solutions
of equations. The reproductivity is also the main theme of D. Bankovié’s paper
which deals with systems of equations on both Boolean algebras and finite sets.
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6 FOREWORD

The subject of the paper by G. Milovanovié is S. Pre§i¢’s contribution to numerical
factorization of polynomials. A striking new theory, numerical problem expressed in
a first order formula over a {=, <} with equalities restricted to segments, so called
m-M calculus, is presented by V. Kovaéevié-Vujéi¢. There are many applications of
m-M calculus: solving systems of equations and inequalities, finding n-dimensional
integrals, solving problems of constrained and unconstrained optimization, min—
maz problems, problems from interval mathematics, finding functions satisfying a
given m—M condition (functional condition, difference or differential equation) and
many others. Lj. Giri¢ writes on one of the first generalizations of the fixed point
theorem of S. Banach, found by S. Presié. This part concludes with the article by
S. Vujié on the role of S. Presié in education — at all levels ~ from the primary to
the university. Conclusion is that he is the most deserving for the introduction and
development of several modern mathematical disciplines in Serbia.

Next, there are research papers, not necessarily connected to his work, but in
the fields he was familiar with.

Finally, there are several appendices:

1. a list of his books and papers {(up to 2001),

2. an impression of him as a teacher — given by the one of his students,
3. the list of PhD’s supervised by him and

4. the list of reviewers of papers submitted for this booklet.

Professor S. Presi¢ retired in 2000 but works furiously as ever. He is giving
talks at various occasions and writing books on different (mostly mathematical)
subjects. Let us mention just a series of books on the borderline of mathematics
and methodology of scientific research under a common title: ‘Misaona vidjenja’
(‘Mind frames’).

Editor
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ON THE SCIENTIFIC WORK
OF SLAVISA B. PRESIC

Zarko Mijajlovié

Slavisa B. Presi¢ was born in 1933 in Kragujevac. In early childhood he experi-
enced the hard days of the German occupation. S. Prei¢ once said about that period
of his life: v
I remember the horrible time of the Second World War, but even today

the behaviour of my teacher Mateja Veljkovié has the effect of spiritual light.

When it was the hardest, when the German troops were in front of Stalingrad,

he encouraged us and cheered us up, and at the end of school lessons we would

sing led by him “Let’s sing with love to St. Sava”.

He finished grammar school in Kragujevac in 1952, as a distinguished pupil. Of
schoolteachers the greatest influence on him had Vitaly Hvorostansky, a strict, but
very good teacher of mathematics. In 1957 S. Presi¢ graduated the Mathematics
faculty of Belgrade University. Immediately after the graduation, he became the as-
sistant of Professor Dragoljub Markovi¢ who had great merits for introducing modern
algebra at the Mathematical Department. Very soon Professor Markovié¢ allowed his
young and talented assistant to read lectures on ‘algebra. After Professor Markovi¢’s
death in 1965, the Chair of Algebra was founded and S. Presi¢ became the head of
the Chair continuing to be in charge of ever since that time. At the beginning of
seventies Prof. Presi¢ introduced in undergraduate studies a course of mathematical
logic, and since then the Chair carries the name "the Chair of Algebra and Logic”.

S. Presi¢ has never paid too much attention to institutional and authoritative
approach to science. Let us grasp Professor S. Presi¢’s approach to science by putting
it into the following context. Today we understand that “Scientific Revolution” took
place in Europe when free thinkers began to doubt the then existing doctrines of nat-
ural philosophy, which the Church strictly adhered to. The doubt found its reflection
in the statement that the accepted dogmas did not have a rational confirmation,
and that the belief in them was mainly based on the authority of the Fathers of
the Church. At the same time free thinkers challenged and questioned these doc-
trines. These challenges resulted in the traditional dichotomy between the rational
knowledge, on the one hand, and religious belief as an irrational dogma, on the other.

As a response to this, free thinkers were punished. Giordano Bruno was burnt,
and Galilei was taken to the Inquisition court. Fortunately, things like that no longer
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happen in science, though we are witness to the fact that people are burnt or punished
for other, equally irrational, reasons.

About sixty years ago Bertrand Russell observed that there appeared indications
that natural sciences were becoming a religion based on belief without reservation,
which is incompatible with a rational standpoint. Really, four hundred years after
the beginning of the Scientific Revolution the belief in scientific doctrines was still
based, in many cases, on the authority of distinguished scientists. It is a fact that
today scientific professionalism, solidarity, institution and rules are given priority over
independent thinking, confirmation of truth and critical attitude. Expert evaluation
and thinking is dominant on every level, from the local to the global, from elementary
school to the world famous research institutions in establishing the value and the
truth. It probably must be so, but mathematicians are really fortunate, because
mathematics is, by its very nature, the purest science in this respect. However, the
history of mathematics teaches us that evaluation of mathematical results may be a
relative matter. A healthy doubt and a reasonable amount of dissatisfaction with the
present state of affairs are the main types of motive power for all changes, including
those in science.

I have every right to say that these particular qualities distinguish professor S.
Presié, which he himself emphasized on several occasions. He wrote once:

Ever since I was a little boy I have been a “doubting Thomas”, that

is, I have always been inclined to discover a shadow of prejudice, too much

habit of thought, a routine in almost every thing, which, when eliminated,

made my mind move farther, see better, and sometimes discover something
altogether new.

These distinctive features form the basis of Slavisa Pre§ié’s entire work: his
research, his books, monographs, his public speeches, no matter where they were
made — at scientific conferences, expert meetings or popular talks. In his scientific
papers and books we often come across completely new ideas and original ways of
solving mathematical problems. Mathematics, as well as other modern sciences, is
characterized by a complicated and complex language. Even a good mathematician
finds it difficult to adequately present his results to the general mathematical public,
as the main ideas often remain hidden under the heavy garment of technicalities
and formalities. S. Pre3ié’s language is clear and direct. His public speeches and
discussions are remembered not only thanks to the picturesque and vital language
with the help of which he immediately presents to the audience the essence of some
mathematical problem or theory, but also thanks to his open criticism, a criticism
without a compromise, of something that is not valid in mathematics. On such
occasions the audience never remained indifferent. The discussion would become
heated, with sharp remarks and plenty of enthusiasm. His opponents used to stay
after the lecture “to see the matter through”, and they often left with their opinion
changed or at least less convinced that their point of view was right.

Professor S. Pre§ié¢’s mathematical interests and research are universal and very
extensive. His 50 articles and 10 books deal with a large number of mathematical
disciplines. They are algebra, logic, numerical analysis, the theory of functional
equations, and the theory of equations in general. In the past 10 years he has
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been doing intensive research in the field of computer science, where he is especially
interested in the subject of artificial intelligence. His papers are written in French,
English and German.

The first decade of his research is remarkable for a great number of published
scientific papers, five of which were printed by C.R. Acad. Sci.. Later, besides
scientific papers, he published several books: three university textbooks, one of which
was written together with Marica Presié, and five monographs, one of which was
written with Marica Presié, and two — with a group of authors. From the very
start of his research work he was co-operative and ready to collaborate. Thus, about
one fourth of his papers was written together with other authors, our well-known
mathematicians. They are D. Dokovié¢, D. Mitrinovié¢, P. Vasié¢, M. Marjanovi¢, Z.
Ivkovié, B. Zarié, J. Petri¢ and M. Pregié.

The main distinctive feature of his works is their interdisciplinary character and
close connection with other branches of mathematics. Thus, for example, if the work
deals with the solution of functional equations, the methods are not simple manip-
ulations with formulas, but include the application of group theory, linear algebra,
Boolean algebra and mathematical logic. If a certain problem from the theory of
algebraic equations is analyzed, like, for example, the evaluation of a polynomial
root or factorization problem, here the methods from analysis, numerical analysis,
the number theory are likely to be used. If a logic problem is considered, it is never
studied in isolation, but in the light of the possible applications. Sometimes the ap-
plication refers to the equation theory, on other occasions — to computer science or
algebra.

Another specific feature of S. Presi¢’s works is originality and witnesses. The o-
riginality has in several cases resulted in completely new methods and theories. One
of the main examples of this kind is the reproductivity theory as one of the rare uni-
versal methods in solving general equations. The reproductivity method showed its
fruitfulness in the theory of functional equations, Boolean algebras and finite struc-
tures. The method is included into world famous monographs dealing with functional
equations theory and Boolean algebras (M. Kuczma, S. Rudeanu). Another example
is the method of solving a system of real equations, known as M-m calculus. S. Predié
developed this theory at the end of the eighties and at the beginning of the nineties.
The method is applicable to a wide class of equation systems, including all equations
of the algebraic type and many classes of transcendental equations. In principle, the
solving procedure is based on exhaustion method, and uses specific features of func-
tions of bounded variation. The idea of the method consists in exhausting subsets
of the domains which do not contain a solution, so that what is left over in the limit
is the solutions of the system. The main advantage of the method is not only its
universal character, but also the fact that with the help of the method it is possible
to determine all the roots of the given system in the assigned domain. The domain
can be described with the complicated conditions such as formulas of the first order
predicate calculus. The third example, taken from the field of artificial intelligence,
is a PL-prover — an algorithm for an automated proving of theorems. Here we deal
with a case of extension of Prolog algorithm. Namely, a standard procedure in Pro-
log, which is based on the properties of the Horn formulas, is extended on arbitrary
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formulas of the propositional type.

This does not exhaust all the themes of S. Pregi¢’s scientific opus. Among his
works we shall find papers on subjects dealing with universal algebra, fixed point
theory, theory of quasigroups and their foundations. The results of his research were
cited by the world leading authorities in various mathematical disciplines, such as
P.M. Cohn in universal algebra, S. Rudeanu in Boolean algebra, and M. Kuczma
in functional equations theory. In our country a large number of mathematicians
study and develop S. Presié’s results in their research papers, books, MSc and PhD
theses. We have every right to say that professor S. Prei¢ belongs to the narrow
circle of our mathematicians who influenced considerably the development of modern
mathematics in this country.

A greater part of Slavisa Presi¢’s scientific achievement was made in the field of
algebra and logic. Let us present some of his most important works in this field.

One part of them deals with the polynomial theory. Thus his work [25] is con-
cerned with the PhD thesis (defended in Paris) of S. Zervos, a Greek mathematician.
In the thesis Zervos proves a general and significant inequality of the upper limit of a
real polynomial root. The results of A.L. Cauchy, P. Montel, E. Landau, J.L. Jensen,
D. Markovi¢ could be made for the chosen values of the inequality parameter. In his
paper S. Presié derived Zervos’s result from one natural lemma on one page only,
thus shortening the original proof many times. The work can be said to belong to
the field of polynomial geometry, which concerns itself with the arrangement of the
zero polynomial in a complex-valued plane as well as on a real line. It should be
mentioned that Mihailo Petrovi¢ had significant results in this field. Academician
Miodrag Tomié said once that the polynomial geometry is probably Petrovi¢’s most
significant field in which his greatest achievement was made. It is probably under his
influence that several outstanding Serbian mathematicians (D. Markovié, M. Tomié,
J. Karamata, B. BaiSanski, S. Raljevi¢) did research in this field and had significan-
t and valuable results. S. Pre§ié¢’s work in some way completes the long-standing
tradition of this discipline in this country, as there are practically no more papers
published on this theme. S. Presi¢’s several works on polynomial theory deal with the
factorization of polynomials [18, 22, 42]. The first two papers give a procedure of a
polynomial factorization on the polynomial of a given degree, so that in case of linear
factors an iterative model for a simultaneous determination of all polynomial roots
could be obtained. In the third paper the following very interesting idea is intro-
duced. For a given polynomial P(x) with integer coefficients, a good natural number
M is found, so that the problem of factorization of polynomial P(z) is reduced to
the problem of factorization of the number p(M).

The paper [33] belongs to the field of universal algebras. Namely, the discussion
here is concerned with the so-called quasi-algebras, which, thanks to their properties,
become a natural instrument in implementing various significant constructions, such
as free algebras constructions, in solving word problems, as well as different problems
connected with embedding of structures. By the use of quasi-algebra all these con-
structions obtain the same form: they are reduced to the solution of appropriate term
systems of equations so that positive diagrams would naturally appear at the end as a
solution. It should be mentioned here that S. Presié is the first mathematician in this




ON THE SCIENTIFIC WORK OF SLAVISA B. PRESIC 13

country to occupy himself with universal algebra. His results had a response in the
world, he was cited, for example, by P. M. Cohn. Moreover, he introduced this and
some other related fields such as model theory, for example, as part of the curriculum
for full-time and post-graduate studies of algebra at the faculty of Natural Science
and Mathematics of Belgrade University, which brought the curriculum up-to-date.

The third part of algebra papers refers to the application of the reproductivity
idea to solving equations in algebraic structures. S. Predi¢ has published about 15
articles on this theme. As professor Bankovié¢ and professor Rudeanu will dwell on
these results, I shall only say that the most fruitful domain for the application of this
idea is represented by Boolean algebras. Namely, S. Pregi¢ observed that the property
of reproductivity could be expressed in the language of Boolean algebras, and that
thanks to it the conditions of existence and the description of general solutions of
equations over these structures are easily established. Unexpectedly a unique theory
was discovered, which united a great number of separate results obtained by Schréder,
Lowenheim and others. S. Presi¢ uses the same method successfully and elegantly in
the case of other algebraic structures such as a matrix ring, with the application in
determining a generalized inverse; semigroups; in solving functional equations, etc.
This idea is developed by the great number of authors: D. Bankovié, S. Rudeanu,
J. Ketkié, M. Presi¢, M. Bozié, S. Mili¢, B. Alimpié¢, A. Krapez, Z. Mijajlovié and
others.

Professor S. Presi¢ has concerned himself with mathematical logic and its appli-
cations for already 35 years. It is rather difficult and risky to interpret a person’s
work in the presence of the person, especially if that person is your professor.

To avoid this I shall use a roundabout way and say a few words about our old
mathematician Bogdan Gavrilovié. In his academic talk on the problem of infinity in
mathematics in 1926 he says: “Mathematics cannot tell us: space is infinite; it cannot
tell us that space is finite, either.” Gavrilovié actually thinks that in mathematics
the most important thing is demonstration or proof, and that thus obtained truths do
not in the least predict the nature of space, in spite of the fact that they are starting
assumptions. In that sense Gavrilovié¢’s point of view is close to Hilbert’s formalistic
approach, according to which infinity is a useful fiction that can be easily eliminated.
This approach is also apparent when Gavrilovi¢ says on some other occasion: “We
can think whatever we like about axioms; we can say that they are just a convention,
a priori judgements; we can accept some of them, and reject others, but when they
are accepted, what develops from them must be logically correct.”

~ One part of S. Presié¢’s papers on mathematical logic is of a theoretical character.
They mainly deal with algebraization of logical theories. Thus in work [30] it is proved
that any formal theory can be in a definite way reformulated into an equational
theory. In another paper [32], for one class of propositional calculus a corresponding
class of algebras is introduced, and then a necessary and sufficient condition is found
for the appropriate algebra to be adequate for the given propositional calculus. By
adequacy we mean that for the considered pair ’algebra — propositional calculus’ a
completeness theorem holds.

A certain part of other works refers to the application of logic in other branches of
mathematics. An example of that kind is the cited M-m calculus. It is interesting to
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note that besides the author himself, a Berkeley University publication [46] classifies
the monograph as a paper on logic.

S. Presic also wrote several books on logic. The best-known and highly influ-
ential book of that kind in our country is probably “Mathematical logic” from the
“Mathematical library” edition, which has been used at our universities for already
30 years. Another reason that makes the work remarkable is the fact that for the
first time in our country logic is presented as a mathematical discipline. Scon after
the publication of the book and thanks to S. Presi¢’s personal engagement and in-
fluence logic was introduced as a special discipline into mathematics curriculum at
our universities, while at secondary schools logic as a subject was transferred from
the philosophy subject group to the group of mathematical subjects. This was the
actual recognition of logic as a mathematical discipline in our country.

In some of his books S. Presi¢ intensively studied the problem of foundation.
Let us mention one work of that kind, a voluminous monograph “Real numbers”
published in 1985. In it S. Predi¢ creates the structure of real numbers in an original
way, as well as discusses many other aspects connected with this, probably the most
important, mathematical structure, like, for example, algebraic properties and the
problem of solving algebraic equations.

This does not complete S. Presi¢’s activities in logic. We must first of all men-
tion a seminar on mathematical logic, which is regularly held by the Mathematical
Institute of the Serbian Academy of Sciences and Arts, and which was founded by
S. Presi¢ 35 years ago. This is the oldest seminar of the Mathematical Institute, and
dozens of mathematicians from the former and present Yugoslavia took part in its
work. It is worth mentioning that Professor Duro Kurepa was a constant and active
member of the seminar up to the end of his life. The chronicles of the Mathematical
Institute say that among the guests of this seminar were the most prominent logi-
cians and mathematicians of other fields of specialization from all over the world: L.
Henkin, J. Keisler, A.V. Arhangelski, M. Magidor, T. Jech, K. Devlin, Van Benthem,
S. Negrepontis, A. Dragalin, ... . Within the limits of the seminar program numerous
specialized courses were held, which embraced almost all disciplines of mathematical
logic. Every MSc or PhD candidate that specialized in logic and algebra had to
report his main results at the seminar before the formal defense of a MSc or PhD
thesis. About ten members of the seminar, the former students of professor S. Pregié
or students of his students, are now respectable professors at well-known universities
in the USA, Canada, France. Let us also mention that more than ten PhD theses
and about 20 MSc theses were defended under professor S. Predi¢’s supervision. The
Pure and Applied Logic Society was formed as a division of the seminar. Today
professor S. Presi¢ is one of the most active members of the seminar and its spiritual
leader.

S.B. Presi¢ fathered three sons and has six grandchildren.




WORK OF SLAVISA PRESIC
IN ARTIFICIAL INTELLIGENCE

M. Kapetanovié

Slavisa Presié¢ got interested in computers mainly for practical reasons. In 1985
he began to work on his m — M-calculus (it took him 11 years to finish it!). He
himself describes it as ‘logical numerics’ and in any case it contains, among other
things, a large number of numerical algorithms. It happened so that the same
year he visited New York. There he stayed for a year using the opportunity to
work in the Courant Institute where he had an access to computers of the kind
existing at the time. Then he used a little Commodore as well as the university
mainframe and got acquainted with most of the well known programming languages.
Besides practical programming techniques 5. Pregi¢ learned LISP and Prolog, and
immediately realized the significance of symbolic languages for artificial intelligence
(though he appreciates qualities of C as well). All this brought a considerable change
in his views on mathematics: from those days on the art of design and analysis of
algorithms, algorithmics as he calls it, has been constantly a subject of his interest.
Sc he studied and discovered some fundamental algorithms (not usually found in
the standard literature) concerning programming languages, trees and databases.
In that context his interest in Prolog came as no surprise. First, problems can be
expressed in Prolog in elegant and relatively short way and second, more important,
being a logician, S. Predi¢ must have liked the fact that the theoretical basis of
Prolog is a fragment of the first order logic, known as Horn logic.

As an introduction to S. Presié¢’s presentation and use of Prolog let us give a
very short overview of the main ideas and concepts underlying the development of
Prolog. One of the original motivations was to build a declarative programming
language, i.e. a user friendly language requiring from a programmer only to define
the problem correctly stating the conditions, while Prolog would take the whole
burden of solving, using its own algorithm. This turned out to be too optimistic,
“too good to be true”, but nevertheless a new discipline was born and that was
logic programming. Although the field expanded very fast, Prolog remains at its
heart.

As already mentioned, the syntax of Prolog is based on the so called Horn
clauses. These are universal closures of the first order formulas of the form 4; A
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...AA, = B, where all A; as well as B are atomic. Special cases are also important:
when all A; are missing, logic programmers talk of B as facts, while the clauses
with L in place of B are goals. On the dynamic side there is a built-in algorithm
consisting of unification, resolution and backtracking.

Unlike some other mathematicians Slaviga Presi¢ enjoys talking about problems
he is currently working on and enjoys teaching in general. When he got involved
with Prolog it was natural that he should share his enthusiasm with his students
and colleagues. As a result a book appeared under the name PROLOG, Reiational
language, quite a long text of more than 300 pages. The book represents a careful
introduction to essential features of Prolog, with many details and worked examples.
In order to stress some syntactical aspects S. Presi¢ in fact compared three Prologs:
Micro Prolog (whose syntax owes much to LISP), LPA Prolog and Arity Prolog
with its, now widely accepted, Edinburgh syntax. We are not going to review the
whole book, but only to illustrate S. Presi¢’s own approach to the subject. The
book comprises some standard parts (usually found in textbooks on Prolog), such
as description of syntax and Prolog predicates (even some most practical advice:
how to make exe-files, for instance!), as well as some more subtle things. Thus
there is an important separate chapter on the Prolog algorithm, as S. Presié names
it, and a detailed disccussion of the important, though somewhat problematic cut
operator. There is also a chapter on databases and their treatment in Prolog,
but we choose to say few more words about Chapter 7, Horn formulas; deductive
models. The reason is not only the inclination of the author of this text towards
logic, but also the fact that these concepts do not get proper attention in books on
Prolog. Their fundamental importance was certainly appreciated by S. Presi¢ and
in the case of propositional calculus the exposititon should not be too dificult even
for a newcomer to the subject. After a brief on truth tables and formal theories he
introduces propositional Horn formulas and defines the central notion of deductive
model. The point is that although any consistent theory has a model, the more
is true about Horn theories: they have the least model! More precisely, if H is a
consistent Horn theory (meaning that all of its axioms are Horn formulas, modus
ponens is the only rule of inference and L is not deducible), set v(p) = T exactly
for those propositional variables p for which H F p. Then not only v = H, but all
these p remain true in any model of . S. Presié proves this and supplies examples
to clarify the proof. The whole idea can be presented in a more general setting
and this is also done in the book. The idea can be explained by examining the
nature of Prolog itself. Although it is seen as a relational programming language
(as the subtitle of the book suggests), what we have is in fact computation done
by term manipulation. This brings us to term models, structures whose universe,
also known as Herbrand universe, consists of all constant terms of a given first
order language. For Horn clause theories we can now repeat the above definition
of deductive model, where instead of propositional variables we take all atomic.
sentences 8 such that # F 6 and they induce the relations among terms in the
intended term model. This may be beyond comprehension of a general reader and
to overcome that S. Presi¢ not only offers examples of model construction but also
finds a close link with Prolog. Namely if a Prolog computation (displayed as a
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tree) terminates with an answer 8, we can erase all unsuccessful branches and get
what S. Presié calls ‘shortened Prolog proof’ of 8. This in turn can be transformed
into a Horn logic proof of 8. Let us end with one thing noticeable throughout the
book and typical for S. Presié: his relentless efforts to establish original Serbian
terminology in the field.

This overview of S. Presié’s book should help us understand his later concern
with logic programming. With all its depth and elegance Prolog could not satisfy
S. Presié completely. Although accclaimed as based on logic, Prolog programs may
well be “illogical”, such as the following one:

a:—b,c
b:—c
c: —a.
a:—d.
d:—e.
e.

Now the question ? — d leads to the positive answer, due to the presence of the
clauses d : — e and e in the database, but the question ? — a forces Prolog into an
infinite loop, although these two clauses together with a : — d suggest that a holds.
Of course it is the ordering of clauses that causes trouble in this case. Dissatisfied
with these peculiarities S. Presié decided to prevent such things happen by setting
up a new formal system which we here reproduce from [2]. It consists of the
following four rules:
(R1) F,lFLe—FT
(R2) }-,Qsl(p),(ﬁz(p),. .. I—p — f,¢1(.|.),¢2(l), oL
fa¢1(p),¢2(p)7' ..k -p — f?d)l(T)aqSZ(T)" S EL
(R3) F,mpV...ppbLé— Flkp,..., Fk-pg
(R4) F,THFA +— FILA
Here F is an arbitrary set of clauses, p; are literals, —p; their duals (~-p; are
identified with p;) and A is a literal or 1L . For this system S. Presi¢ proves com-
pleteness: F + o iff F |= ¢, where ¢ is a literal or L . Then he goes on to describe
a Prolog-like algorithm (extracted from the proof), named by him PL, with the
following main features:
e PL applies to arbitrary clauses, not just Horn clauses;
o the procedure always terminates and if it is applied to a Horn clause program,
the usual Prolog algorithm appears as a special case;
o the priority is given to so called relevant clauses.
Rather than going into details, we shall follow S. Presié’s style and motivate the
procedure using the above program as an example, asking again if a is a consequence
of the program. Translated into the clause form the problem reads:

aV-bV=c bV-e, ¢cV-a, aV-d, dV-e, el a.

Now we could replace a by L, and use (R2) and (R4), but we will turn that into the
following computation rule: erase all ocurrences of the literal a and erase all clauses
in which —a appears. Moreover, call the clauses in which @ occurred relevant and
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push them to the left (or to the top if we look at this sequence as a stack). This
results in the following seqent:

(1) -bV=e¢, ~d, bV-c, dV-e,e + L,

Here relevant clauses are underlined and the priority is given to the leftmost clause.
By (R3) our task is reduced to the following two:

(2) -d,bV-c, dV—-e, e F b
3) -~d,bv-c, dv-e, e + ¢
Then by the above rule (2) is transformed into
-¢, °d, dV e, eFl.
Notice that —c is now given higher priority than —~d. By (R3) we have
-d, dV —e, et c.

We could now follow the same procedure but observing that ¢ has no occurrence
in the hypotheses, we decide to give up proving b (as well as the other conjunct c)
and backtrack to the next relevant clause —d instead. This time we succeed as the
following sequence shows.

4) ~d,bV-—c, dV—-e, e F L
(5) bV-c,dV=-e, e F d
(6) —e, bV-c, e F L
(N bv-c,e F e
(8) bV-c, L F L
9) FoOT.

The clause (4) is obtained from (1) by erasing —bV —¢, (5) and (7) follow by (R3)
and (6) and (8) by the computation rule formulated above. Finally (9) follows from
(8) by (R1) proving that a indeed is a consequence of the program.

It is natural to try to extend this approach to the more general case of predxcate
formulas and S. Presi¢ showed how this could be carried out. As an illustration
consider the program

Bf(X)) = ofX)
a(a) :— f(a)
o(b)

and ask whether ?— 8(Y’) can be satisfied. Here o, # are unary predicate symbols,
f is a unary operational symbol, a,b are constants and X,Y free individual vari-
ables. Qur aim is to find a “solution” for Y, i.e. a term ¢ from Herbrand universe

{a,b, f(a), f(b), ...} such that 3(t) follows from the program. To achieve that we’

need a new ingredient, unification of terms. Transforming our problem into the
clause form

B (X)) V —a(X), a(a) V ~B(a), ab) F B(Y)
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we observe that the only chance to apply the computation rule is to make 8(f(X))
and B(Y) equal. This is done by unifying f(X) with Y, in this case simply by
assigning Y := f(X), Doing that we have
—a(X), a(a)V-B(a), ab), B(f(Z))V-a(Z) FL.
Notice another novelty: since 8(f(X)) V-a(X) is a universal formula, it should be
saved, so we made a fresh copy of it, renaming its free variable at the same time.
By (R3) we get
a(a) vV =f(a), a(b), B(f(2)) V ~a(Z) - a(X)
which calls for another unification. We first try to unify a(X) with a(a) putting
X := a which gives us
=B(a), a(b), B(f(Z))V —~a(Z) L.
By (R3) again we have
a(b), B(f(Z))V —a(Z) + B(a).
We realize now that ((a) cannot unify with 3(f{Z)), so we are forced, and this

is an important point, o backtrack to the place where X got its value, annul that

assignment and try the next clause which is a(b). The new value X := b gives us
a(e) vV -B(a), L, B(f(Z2))V-a(Z)FL,

and by (R1) this is a success. Moreover, combining the substitutions ¥ := f(X)

and X := b we get the required solution Y = f(b).

With this sketch we end our survey of S. Presié’s contributions to the field and
we would like to do it with a personal impression: S. Pregi¢’s work is far from
finished. His abilities and wide interests leave no doubt that he will pursue his
research with as much enthusiasm.
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CONTRIBUTION OF PROFESSOR S.B. PRESIC
TO FUNCTIONAL EQUATIONS

|Jovan D. Keékié|

0. Introduction

Functional equations were the main field of interest of Professor S.B. Presié¢
at the beginning of his career. His work on functional equations led him to the
discovery of what might be called “the theory of reproductivity” (see, e.g. [22]).
In this survey we shall be chiefly concerned with the results obtained in papers
[1]-[16] which are listed chronologically.

These papers can be divided into two distinct groups according to the two types
of considered equations. Namely, suppose that m variables appear in a functional
equation for unknown functions fi,..., fr in n1,... ,ni variables, respectively, and
let n = min(ng,...,nt). If n < m, we say that the equation is of type 1; such
equations are treated extensively in monograph [23]. If n = m we say that the
equation is of type 2; some such equations are treated in monograph [24]. It can be
argued that it is “easier” to solve an equation of type 1 than an equation of type 2.

Papers [1], [3], [4], [5], [6], [10], [11]} comprise the first group and are devoted to
some equations of type 1 for functions in two variables. The seven papers from this
group were published in a short interval, from 1960 till 1963; with the exception
of {1], they were all written jointly with other authors and the methods used were
more or less standard: giving certain variables fixed values.

On the other hand, papers from the second group, that is to say papers [2], [7],
(8], [9], {12}, [13], [14], [15], [16] were devoted to rather general classes of equations
of type 2. With the exception of [16], these papers were not co-authored and the
basic method used was highly original.

1. Equations of type 1

The so-called translation equation

(1.1) f(f(z,y),2) = f(z,y + 2)
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was solved in [1] on the set S of those functions f: C* — C which have the property:
for any z,t € C the equation f(z,y) = ¢ has unique solution for y. It was proved
that the general solution of (1.1) on the set S is given by

flz,y) = g7 (g(z) +y),
where ¢ is an arbitrary complex function having its inverse function g~1.

The equation

m+n
(1.2) z CT F(z1+ T2+ + T, Tt + Tz ++* + Tipgn) = 0

=1
where F;: R? — R and where C is the cyclic operator defined by
Cf(z1,72,... ,2k) = f(z2,23,... , Tk, T1)

is the subject of paper [3]. It was proved that the general continuous solution of
(1.2) is given by:

Fi(z,y) = (nz - my)f(z +y) + gi(z +y) (i=1,2,..., m+n-1)
m+n~1
Fm+n(xvy) = (TL.’E - my)f(l‘ +y) - Z g‘l("B +y)7
i=1

where f: R — R and g¢;: R — R are arbitrary continuous functions.
The remaining five papers from this group were concerned with the real equa-
tion

(1.3) F(z1,22,T3,--- ,Tm-1,Zm) + F(z1,23,%4,... ,Tm,T2) + -~
+ F(z1,Tm, T2, yTm—2,Tm-1) = 0.

The equation (1.3) with m = 2n was considered in [4], [5] and [10]. In those papers
F is made to depend upon the unknown function f in two variables. We give the
forms of the function F and the general solutions of the corresponding equations,
where g, h: R — R always denote arbitrary functions.

Paper [4]:

k n
F(zy,z2,... ,%2n) = <Z f(zzi—l,xzi)) ( Z f(zzi—hxzi)) ,
=1 i=k+1
where n > 2, 1 < k < n — 1. The general solution is:

g(u)h(v) — g(v)h(u) forn =2

(1.4) flu,v) = { h(v) — h(v) forn > 2
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Paper [5]:
n
F(z1,2a,... ,%2n) = »_ f(Tok—1,T2k),
k=1
where n > 2. The general solution is:

g(u)h(v) — g(v)h{u) forn=2
flu,v) =
0 forn > 2.
Paper [10]: Two forms of F were considered, namely

k n
F(z1,22,... ,%2a) = (Z f(wZi—lazZi)) ( > f($k+i,$k+2n+1~i)) ,
i=1

i=k+1
wheren >2;1<k<n-1and

F(z1,23,...%2n) = An—2f(21,%2) f(Tnt1, Tnt2)

n—3

+ f(@1,22) D Ai(f(Tits, Tiva) + F(T2n-1-1, T2n—i)),

i=0

where Y% =0 for n < 3.

It was proved that in both cases the general solution of the corresponding
equation (1.3) is given by (1.4).

For n = 2 all the equations considered in [4], [5] and [10] reduce to
(1.5)  f(z1,22) f(3,24) + f(21,%3) f (24, T2) + f(71,24) f(22,73) =0

and hence they can be taken to be various generalizations of the equation (1.5).
Some more equations which have the same general solutions as the equation (1.5},
that is to say

(1.6) flu,v) = g(wh(v) — g(y)h(v)  (g,h arbitrary)

were constructed in [6].. First, it was shown that (1.6) is the general solution of the

equation
(1.7
f(z1, 22 + x3) f (24 + 25,26 + 27) + f(Z1,23 + T4) f (25 + T6, T7 + Z2)

+f(x1, 24 + 25) f(T6 + T7, %2 + 3) + f(T1,T5 + x6) f (27 + T2, T3 + T4)
+f(x1, 26 + x7) f(22 + T3, 24 + 5) + f(T1,T7 + T2) f (T3 + 74,25 + 26) = 0.
When the equation (1.7) is generalized to

f(@1,0(x2, 23)) f(p(24, T5), (T8, T7))
+ f(z1, 0(73, 24)) f(0(25, T6), (a7, 72))
+ f(z1, p(24,25)) f(p(T6, T7), (22, 23))
(1.8) + f(z1, p(zs,26)) f(p(T7, T2), (23, 74))
+ f(z1, p(z6, 27)) f(P(T2, T3), (T4, T5))
+ f(z1, p(27, 22)) F(0(23, 24), @(x5, T6)) = 0,

-
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where p: R*> = R is a given function, then (1.6) is again its solution, but it need
not be general, as shown by the example when ¢(u,v) = 4 — v, in which case the
particular solution f(u,v) = u cannot be obtained from (1.6). However, if there
exists a real number a such that

(1.9) o(z,a) = pla,z) =z forall z€R,

then the general solution of (1.8) is given by (1.6). Besides ¢(u,v) = u + v, there
are other examples of the function ¢ satisfying (1.9); e.g.

e(u,v) =uv, ou,v)=u+v+uy, @)= %—5, etc.

A further extension from [6] is provided by the equation (1.3) where m = 3k+1
and

f(ulau25u37 R au3k,u3k+1) =
flur, o(uz,us, ... s uk41)) F(P(Ukt2,s - -+ s Uzkt1), P(U2k12, - -+ 5 UBK+1)),

which for k = 1, ¢(u) = u reduces to (1.5). Again (1.6) is a solution of the
corresponding equation, and it is general if there exists a real number a such that

p(u,a,a,...,a) =pla,u,a,...,a)=---=(a,a,a,... ,u) =u

for all u € R.
Finally, the equation (1.2) with

F(U]_,UQ,'U::;, R ,'U'n—laun)
flur, g1(uz,us, ..., upt1)){f(g2(vr2, Uks3, - - - s Uktt41), 93 (Ukpit2, -+ 2 Un))
+f(g3, (U2, Uk+3s- -« Uktmt1)s G2 (Uktmt2, -+, Un))}

fuy, g2(uz, uz, ..., wip1)){F(g1 (it wigs, - -+ s Ukis1), 93 (Uktig2,5 - -+, Un))
+£(g3, (W42, W43, -+ - s Utmt1), 92 (Vidmi2,--- , Un))}
flur, g3(uz, us, ... , Um1)){F (91 (Umt2, Um+3s -+« s Uktms1), 92(Uktmi2s - - - » Un))

+£(93, (Umt2:Um+3, - -+ s Ubmt1), 91 (Uirmt2, -+, Un))}
(k+1+m+1=n)

was considered in [11]. It was shown that if there exists an a € R such that
pi(u,a,...,a) =pi(a,u,a,...,a)=---=ypa,qa,...,a,u) =u,
for i = 1,2,3 and all u € R then (1.6) is the general solution of the equation in

question.
All the papers from this group are mentioned in Aczél’s monograph [23].
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2. Equations of type 2

Let £ and S be nonempty sets and suppose that g is a bijection of E. The
equation

(2.1) f(z) = f(g(x))

for the unknown function f:S — F was considered in [2].

The basic idea underlying the original method applied in this paper led its
author, S.B. Presié, to other important results and so we shall devote somewhat
more space to it.

In order to fix ideas, let E = R3, § = R, = = (z1,%2,%3), g(x1,72,T3) =
(z2,z3,z1). Then

92(1'1’932,153) = g(g(w17z27x3)) = g(w2733;11) = (1:3,.'1?]_,332),

9% (1,22, 23) = 9(9° (21,22, 23)) = g(3, %1, 22) = (21,22, 23),
i.e. g3 = i, the identity mapping. The equation (2.1) becomes
(2:2) f(z1,22,73) = f(z2,73,71)
and from (2.2) we obtain
@2, x3,71) = f(z3,21,%2), (23,71, 72) = f(71, 72, 73)
which, together with (2.2) implies
f(z1,32,23) = f(z1,72,23),

(2.3) f(z1,22,73) = f(22, 23, 71),
f(z1,22,33) = f(23,21,T2).

Adding up the equations (2.3) we get

(2.4) f(zy,22,23) = %(f($1a$2aw3) + f(z2, 23, 21) + f(z3,71,22)).

Clearly, the equations (2.2) and (2.4) are equivalent, but (2.4) has a special
property. Namely, if we replace the unknown function f : R* — R on the right
hand side of (2.4) by an arbitrary function IT : R* = R we obtain the formula

1
(2.5) f(zy,22,23) = E(H(l‘bxz,m) + [(z2, 23, 71) + (23, T1, 22))

which represents the general solution of the equation (2.2).

Indeed, it is easily verified that the function f defined by (2.5) satisfies (2.2) for
arbitrary II. Conversely, if fy is a solution of (2.2) then fo satisfies the equations
(2.3) and setting IT = fo into (2.5) we get: f(z1,%2,23) = fo(z1, 2, 73).
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Consider now the equation (2.2) where the unknown function f maps S? into
S, where S is any nonempty set. As before, from (2.2) follows (2.3), but now we
cannot, simply ”add up” those equations. We are now working on arbitrary sets
and the only tools we have are those of set theory.

So, from (2.3) we derive

{f(x]_,.'l?2,$3), f($1,$2,$3), f($1,$2,:l,'3)}
= {f(xl;z27x3)a f(CL'2,.’E3,.'L'1), f(ISaw1912)}7

that is to say
(2.6) {f(z1,22,23)} = {f (21,22, 23), f(z2,23,71), f(Z3,%1,%2)}

By the Axiom of Choice, there exists a mapping M : P(S) — S, such that a
singleton is mapped into its element, i.e. M{u} = u, for all u € S. Applying M to
(2.6) we get

(2.7) f(z1, 172,933) = M{f(zl,iﬂmxs), f(z2, 3, 71), f(z3,71, xz)}

The equations (2.2) and (2.7) are equivalent, but the equation (2.7) has the same
special property as the equation (2.5). Namely when we replace the unknown
function f on the right hand side of (2.7) by an arbitrary function IT : $% = S, we
obtain the general solution

f($1,$2,$3) = M{H(m17z2:x3)’ H($2,III3,.Z'1), H(z31m1’z2)}

of the equation (2.2).
We now return to the equation (2.1), where g : E — E is a given bijection and

f: E — S is the unknown function. From (2.1) we obtain as consequences, the

following equations
fl@)=f(g"(=) (ve2)

which imply
(2.8) {f@)} = |J{f(g" @)}

veZ

Let M : P(S) — S have the property: M{u} = u for u € S. Applying M to (2.8)
we get

(2.9) fl@)=M (J{f(¢"@)}

veZ

and the equation (2.9), which is equivalent to (2.1), shares the same special property
with the equations (2.4) and (2.7). Indeed, the general solution of (2.1) is given by

(2.10) f(@) = M | {Ti(g" (=))}

veZ
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where II : E — S is arbitrary.

The general solution (2.10) of (2.1) was obtained in [2] and various particular
examples were also displayed.

The idea which led to the solution of (2.1) was applied in [7] to a very general
equation, namely

(2.11) f(z) = H(z, f(), f(821)), ... , f(On(z))

where ©1,03,...,0, are given mappings of a nonempty set F into itself (0, is
the identity mapping), the function H : E x §™ — S, where S is another nonempty
set, is also given, whereas f : E — S is unknown.

Denote by G the semigroup generated by ©4,0s, ..., 0,. The general solution
of the equation (2.11) can be obtained if one of its consequences is an equation of

the form

f(z) = ®(z, f(z), f(01(2)), .. , flow(2)))
where 71,... ,0r € G and the function f determined by
(2.12) f(z) = 2(z,1(z), M(01(2)), . .. , Mok (z)))

satisfies (2.11) for any function II : E — S. In that case the general solution of
(2.11) is given by (2.12).

The equation (2.11) is so general that we cannot expect to be able to write
down its general solution effectively. In connection with this equation Kuczma
wrote in his survey paper [25]:

“A way to chtain the general solution of equation (2.11) has been indicated

in S. Presié [7]”
and in his later monograph [24, p. 244]:

“We shall not endeavour to give a construction of the general solution of

equation (2.11); an attempt to do this may be found in S. Presié {7}”

However, if the equation (2.11) is linear and if G is a finite group, the general
solution can effectively be obtained. This was done by S. Presi¢ in papers [8], [9]
and [14]. We shall describe here how S. Pregi¢ in [8] and [9] solved the equation

(2.13) a1(z)f(©12) + - + an(z) f(Onz) =0 (©:7 = 9;(2)),
where a; are given functions mapping a nonempty set G into a field F' of charac-

teristic 0, the given functions ©; : S — § form a group G of order n (0O, is the
identity mapping) and the function f: S — F'is unknown. The method of solving

(2.13) which follows was called by Kuczma [24, p. 268] “an elegant method given

by S. Presi¢” and he devoted some four pages of his monograph to it.
Since ©4,...,0, form a group of order n, then for all 4,5 =1,... ,n we have

(2.14) 0:(0;z) = O,z (1<p<n)
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and the index p = p;; is unambiguously defined by (2.14). If we replace z by ©;z

(t=1,...,n) in (2.13) we obtain the system of equations which has the matrix
form ‘
{2.15) Az)F(z) =0

where A(z) = [l (z)lnxn, @ij(x) = ax(O;z) with pr; = j, and F(z) is the one-
column matrix

F(z) = [f(©12)... f(©nz)|T.

S. Presié¢ looked for the general solution of (2.13) in the form
(2.16) F(zx) = B(z)®(z),

where B(z) = ||b;;(2)|lnxn, ®(z) = [[I(©;z),... , O(Opz)||¥ and I : § — F is
arbitrary.

In general, the expressions obtained from (2.16) for f(©;z) are contradictory.
If they are not, the matrix B(z) is said to be compatible with the group G. S.
Presié first proved the following lemma.

Let the matrices My = |jaf;]l, where 1 < i,5,k < n be defined by af; = 1 if
7 = pix and afj = 0 if j # pix. Then a sufficient condition for the compatibility of
B(z) with the group G is given by

B(©;z) = M;B(z)M* (xesS; i=1,...,n).
He then constructed a matrix B(z) which has the following two properties:
(Py) A(z)B(z)A(z) + A{z) =0 for all z € S
(Ps) B(z) is compatible with the group G.

The construction runs as follows. Let 7(z) be the rank of A(z). The matrix 4(x)
can be written in the form A(z) = P(z)D(z)Q(z), where P(z) and Q(z) are regular
for all z € S, while D(z) is a diagonal matrix with 1’s and 0’s on the diagonal, the
number of 1’s being equal to r(z). Now, if we put

(217 Bo(z) = —Q(z) ™' D(z)P(z)~*
(2.18) B(z) = %f_:M,;lBo(@kx)Mk (x €8),
k=1

then it can be verified that the matrix B(z) defined by (2.17) and (2.18) has the
properties (P;) and (P2).
Now the general solution of the equation (2.13) is given by

How nG1)
=@ +n|

?

£(8,2) 11(0,2)
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where B(z) has properties (P;) and (P,), I is the unit matrix, and II: S — F is
arbitrary.
This means that the general solution of (2.13) has the form

f(z) = e1(z)I(x) + c2(z)IL(O2z) + - - - + cn(2)II(Os2)

where the coefficients ¢;(z) are determined by the given functions a;(z) and II is
arbitrary.
S. Presié later generalized this result to nonhomogeneous linear equation

(2.19) a1(2)f(©12) + -+ + an(z) f(Onz) = g(2),

where a;, ©; and f are as before and ¢g: S — F is a given function. Namely, in [14]

he proved that:
(i) If B(z) is a matrix with the properties (P;) and (P), the equation (2.19)
has a solution if and only if

(2.20) (A(z)B(z) + I)llg(z) g(O22) - - 9(Onz)|I” = 0.

(ii) If the equality (2.20) is true, the general solution of (2.19) is given by

@) o(2) )
# :”) =_B(z o fx) + (B(z)A(z) + I) (:2"")
£(©nz) 9(0,7) 1(0,2)

where II: S — F is an arbitrary function.

We now teturn to the equation (2.2), where f: R® = R is the unknown function
and to the equation (2.4) which is equivalent to it. Denote, as usual, the set of all
functions which map R3 into R by R(®") and let F: R(F") - R(R) be defined by

1
ff(zla :L'2,$3) = g(f(zliz2’$3) + f(z2,$3,171) + f(.’l?g,.’l)l, 332))
Then it is easily verified that
F?f(z1,22,73) = Ff(z1,72,T3),

i.e. that F2 = F for all f € R(R"),
In other words, the equation (2.2) is equivalent to the equation

f($1,$2,-'l'3) = ff(zl,z2az3)7
where F2 = F, and its general solution is given by

f(z1, 22, 33) = FIl(xy, 72, 23),
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where IT: B3 — R (or II € R®) is arbitrary.
Similarly, it can be shown that the matrix equation (2.15) is equivalent to the
equation
F(z) = FF(z),

where the operator F which maps the set of n x 1 matrices into itself is defined by
FF(z) = (B(z)A(z) + I)F(z)

and B(z) is an n X n matrix with the properties (P;) and (P). It is easily shown
that F2 = F and the general solution of (2.15) is given by

F(z) = F1i(z),

where II is an arbitrary n x 1 matrix.

On the basis of the above facts S. Presié proved in [12] the following simple,
but far-reaching theorem: ,

Suppose that f maps a nonempty set S into itself and that f2 = f, i.e.
F(f(z)) = f(z) for all z € S. The general solution of the equation in z:

(2.21) z = f(z)

is given by = f(II), where Il € S is arbitrary.
The equation (2.21), with f? = f, is called a reproductive equation. S. Presié
also proved in [12] that for any equation in z

z = g(z),

which has at least one solution, there exists a reproductive equation which is equiv-
alent to it.

The method of reproductivity can be applied not only to functional equations
(as S. Presi¢ essentially did in [2], [8], [9] and [14]) but to equations in general.
Indeed, in [12] S. Presi¢ used reproductive equations to solve a class of linear
matrix equations and a system of Boolean equations. Various authors followed S.
Presi¢ and applied the reproductivity method to various kinds of equations. For
instance, the present author applied reproductivity to some matrix, integral and
differential equations. The work of S.B. Presi¢ on reproductive equations will be
surveyed in a separate paper. Nevertheless, we shall briefly comment the papers
[13] and [15] where the idea of reproductivity is implicitly used.

Let E; and E; be nonempty sets and let E = By x Ef where n € N. Suppose
that the mappings ©1,...,0,:FE; — E; form a group G of order n (©; is the
identity mapping) and suppose that J maps the set E into the set {T,.L}. The
so-called general group equation

(222) J(.’L‘, f(.’l?), f((")z.‘l!), v af(enz)) =T
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where f: E;y — E, is the unknown function is solved in [15]. The special case
when G is a cyclic group is treated in the previous paper [13]. We describe the
- construction of the general solution of (2.22).

The equation (2.22) is clearly equivalent to the system (conjunction)

/\ J(Orz, f(Orz), f(©2042),..., f(@nOrz)) =T

k=1
which will simply be denoted by
(223) C((E, f(.’l)), f(92z)v (AR f(@nill))
S. Presié first showed in [15] that (2.22) has a solution if and only if for any = € E;
there exist u?,... ,ud € E; such that
Clz,ul,... ,ud).

If z € E;, denote O;z by z; € E; and f(0;0;z) by ui; € Es (1,5 = 1,...,n).
Then it is easily seen that the conjunction (2.23) has the following property

(2.24) C(Ti, Ui, Uiy - -+ ,Uns) & C(Tj,u15, 825, ,Unj) (6,J=1,...,n)
which follows from the fact that G is a group and hence that Gg; = Gg; (1,5 =
1,...,n).

Introduce the set S by the following definition
(2.25) (z,u1,u9,... ,un) € S & C{z,u1,Uz,... ,Up).

From the equivalences (2.24) and (2.25) it easily follows that
(%3, U14y- - ,Uni) € S & (Tj,u15,..-,Unj) €S (G,j=1,...,n)
Define the function F' in the following way:
(1) If (xi?uli,uz,i, e ,Uni) € S then
F(:L',-,uli,um-, .. ,um-) = Ui (i = 1,2, . ,n).
(i) If (21, Uri, Uiy - - - ,Un;) € S, there exists an n-tuple (u?,ud,... ,ud) € Ep
such that C(z,u,ud,... ,u%). Then '
F(mi,uli,ugi, ‘e auni) = 'U,? (’I. = 1,2, e ,n).
 The general solution of the group equation (2.22) is given by
- f(z) = F(z,1I(z), 1(O22), ... , II(Onz))
. where the function F is defined by (i) and (ii) and II: E; — E, is arbitrary.
All the papers from this group considered up to now are in a way linked by the

implicitely present idea of reproductivity. The remaining paper [16] is different. It
contains a proof of a theorem regarding the cyclic equation

aof(2) +a1£(02) + -+ + an-1 f(O"'2) = 0

where © maps a nonemtpy set S into itself and ©"(z) = z for some n € N, a;
are real (or complex) numbers and f: S — R is unknown, originally proved in [26,
p- 369]. The proof given in [16] is much simpler than the proof given in [26].
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3. Some related results

Five more papers [17]-[21] of S.B. Presi¢ are related to the 16 papers reviewed
above. Some simple matrix equations were solved in [17] by a method which antic-
ipates the general reproductive method discovered later. Papers [18] and [21] are
devoted to equations on finite sets, paper [19] is a set-theoretic discussion of repro-
ductive solutions and paper [20] is concerned with the so-called algebraic functional
equations. Those five papers will be analysed elsewhere.

4. Concluding remarks

D.S. Mitrinovié (1908-1995) initiated the work on functional equations in Ser-
bia, he gave full support to younger mathematicians who wished to join him, and
it can be said that he founded his “school” of functional equations. A substan-
tial number of papers on functional equations were published in Belgrade by the
members of this “school”, particularly in the period 1961-1964.

As a young man, in 1959, S.B. Presi¢ got in touch with D.S. Mitrinovié; the
result of their cooperation are jointly written papers surveyed above in Section
1. But there was a distinct difference between S. Presi¢ and other assocxates of
Mitrinovié.

Some 20 years ago I was asked by the Mathematical Faculty of Skoplje to write
about Mitrinovié¢’s contribution to functional equations. I finished my article [27)
by the following text:

“As Professor Mitrinovi¢ turned over to inequalities, the Belgrade production
in functional equations began to decrease, so that nowadays only isolated results
are published from time to time. This comment cannot be applied to S.B. Presic,
whose approach to functional equations is essentially different, so that he is not
really a member of “Mitrinovié’s school”.

-Indeed, S. Presi¢ not only introduced new methods, but he was chiefly inter-
ested in general classes of functional as well as other equations. His ideas were, and
still are, used and developed by many mathematicians from Serbia and abroad, so
that it can be said that he started his own “school” of equations.

References

[1] S.B. Presi¢, Sur l’équation fonctionnelle de translation, Univ. Beograd, Publ. Elektrotehn.
Fak. Ser. Mat. Fiz. 44-48 (1960), 15-16.

[2] S.B. Presi¢, Sur I’équation fonctionnelle f(z) = f[g(z)], Univ. Beograd, Publ. Elektrotehn.
Fak. Ser. Mat. Fiz. 61-64 (1961), 29-31.

[3] S.B. Presi¢, D.Z. Dokovi¢; Sur une équation fonctionnelle, Bull. Soc. Math. Phys. Serbie 13
(1961), 149-152.

[4] D.S. Mitrinovié, S.B. Presi¢, Sur une équation fonctionnelle cyclique non linéaire, C. R.
Acad. Sci. Paris 254 (1962), 611-613.

{5] D.S. Mitrinovié¢, S.B. Prei¢, Sur une équation fonctionnelle cyclique d’ordre supérieur, Univ.
Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 70-76 (1962), 1-2.

[6] D.S. Mitrinovi¢, S.B. Presi¢, Une classe d’équations fonctionnelles homogénes du second
degré, Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 70-76 (1962), 3-6.



32 KECKIC

[7] S.B. Prefié, Sur l’équation fonctionnelle f(z) = H(z, f(z), f(©2%),. .., f(Onrx)), Univ. Be-
ograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 115-121 (1963), 17-20.

[8] S.B. Presi¢, Méthode de résolution d’une classe d’équations fonctionnelles linéaires, C. R.
Acad. Sci. Paris 257 (1963), 2224-2226.

[9] S.B. Presi¢, Méthode de résolution d’une classe d’équations fonctionnelles linéaires, Univ.
Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 115-121 (1963), 21-28.

[10] S.B. Presié, D.S. Mitrinovi¢, P.M. Vasi¢, Sur deuz équations fonctionnelles cycliques non
linéaires, Bull. Soc. Math. Phys. Serbie 15 (1963), 3-6.

[11] S.B. Presi¢, D.S. Mitrinovi¢, P.M. Vasi¢, Sur une équation fonctionnelle du second degré,
Publ. Inst. Math. (Beograd) 3(17) (1963), 57-60.

{12] S.B. Presi¢, Une classe d’équations fonctionnelles et I’équation fonctionnelle f% = f, Publ.
Inst. Math. (Beograd) 8 (22) (1968), 143-148.

[13] S.B. Presié, A method for solving a class of cyclic functional equations, Mat. Vesnik 3(20)
(1968), 373-377.

[14] S.B. Presi¢, Méthode de resolution d’une classe d’équations fonctionnelles linéaires non ho-
mogénes, Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 247-273 (1969), 67-72.

[15] S.B. Presié, Opsta grupna funkcionalna jednacdina, Mat. Vesnik 7(22) (1970), 317-320.

[16] S.B. Presi¢, B.M. Zarié, Sur une théoréme concernant le cas général d’équation fonctionnelle
cyclique, linéaire, homogéne et & coefficients constants, Publ. Inst. Math. (Beograd) 11(25)
(1971), 119-120. ]

[17] S.B. Presié, Certaines équations matricielles, Univ. Beograd, Publ. Elektrotehn. Fak. Ser.
Mat. Fiz. 115-121 (1963), 31-32.

[18] S.B. Presi¢, Une méthode de résolution des équations dont toutes les solutions appartiennent
& un ensemble funi donné, C. R. Acad. Sci. Paris 272 (1971), 654-657.

[19] S.B. Presi¢, Ein Satz dber reproduktive Losungen, Publ. Inst. Math. (Beograd) 14(28) (1972),
133-136.

[20] S.B. Presi¢, A general solving method for one class of functional equations, Proceedings of
the symposium n-ary structures, Macedonian Academy of Sciences and Arts, Skopje 1982,
1-9.

[21]) S.B. Presi¢, All reproductive solutions of finite equations, Publ. Inst. Math. (Beograd),
44(58) (1988).

[22] J.D. Kecki¢, 5.B. Presi¢, Reproductivity — a general approach to equations, Facta Universitatis
(Nis) Ser. Math. Inform. 12 (1997), 157-184.

[23] J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New
York-London 1966. ‘

[24] M. Kuczma, Functional Equations in a Single Variable, PWN, Warszawa 1968.

[25] M. Kuczma, A survey of the theory of functional eguations, Univ. Beograd, Publ. Elek-
trotehn. Fak. Ser. Mat. Fiz. 130 (1964), 1-64.

[26] M. Ghermanescu, Ecuatii functionele, Editura Academiei Republicii Populare Romaine,
Bucuresti, 1960.

[27] J.D. Ketki¢, Contribution of Professor D.S. Mitrinovié to functional equations, In the book:
Dragoslav Mitrinovié — Zivot i delo, Skopje, 1980, pp. 67-82




S.B. PRESIC’S WORK
IN REPRODUCTIVE EQUATIONS

Dragié Bankovié

ABSTRACT. We present three S. Presi¢’s papers, related to the reproduc-
tive solutions of equations, and their influence to the other authors in this
subject. In the paper [18] S. Presié initiated the study of general and re-
productive general solutions for the most general concept of equation. He
also described all reproductive general solutions of such equation.

In the paper [17] S. Presi¢ considered the case of equation over a finite
set, on which he introduced a certain algebraic structure. S. Prefié¢ gave
the formula of the reproductive general solution of this equation.

In the paper [19] S. Presi¢ considered the equation over a finite set,
where the equation was given by a term. Namely, he introduced a kind of
generalization of boolean and postian equations in one unknown.

All theorems in this article are either S. Pre$ié’s or written under the
immediate influence of S. Pre$ié’s papers.

Introduction

The concept of general solution of an equation was known in various fields of
mathematics. Schréder {25] introduced reproductive general solutions of Boolean
equations. The term “reproductive” was introduced by Léwenheim [11]. The gen-
eral solutions were very extensively studied in boolean algebras. The first result
within a set-theoretical framework was obtained by S. Presi¢ [16]. S. Presié in-
troduced the notion of reproductive equation [16] and he proved that for every
equation there exists a reproductive equation equivalent to it. The reproductive
equations are of the form £ = f(z), where the function f satisfies the condition
f? = f. In that case the formula z = f(t) represents a reproductive general so-
lution of the equation z = f(z). S. Presi¢ [18] initiated the study of general and
reproductive general solutions for the most general concept of equation. S. Presié¢

1991 Mathematics Subject Classification. Primary 04A05; Secondary 03G05, 63B50.
Key words and phrases. General solution, Reproductive general solution, Equation on finite
set. '
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[17], [19] also considered finite equations and he described all reproductive general
solutions of such equations.

General equations

S. Presi¢ studied general solutions and reproductive general solutions for the
most general equations. Namely, let r be a given unary relation of T ie. r: T —
{0,1}. S. Presi¢ considered the equation r(z) = 1. The set S of the all elements
satisfying the equation r(z) = 1 is called the solution set of r(z) = 1. The elements
of S are called the solutions of r(z) = 1. The equation r(z) = 1 is consistent if and
only if S is not empty. We state S. Presi¢’s definitions of the general solution and
reproductive general solution.

DEFINITION 1. A genera] solution of a consistent equation r(z) = 1 is a func-
tion ¢ : T — T which satisfies

(1) (VH)r(6(t)) = LA (Vo) (r(z) = 1 = (3t)(z = 6(t)))-

DEFINITION 2. A reproductive general solution of a consistent equation r{z) =
1is a function ¢ : T' — T if and only if

@) V() = LA (VD) =1 = t = (1),

If r and ¢ are determined by formulas, we say that a formula z = ¢(¢) represents
a general solution of a consistent equation r(z) = 1 if and only if the condition (1)
is fulfilled. Similarly, if 7 and 1 are determined by formulas, we say that a formula
z = 1(t) represents a reproductive general solution of a consistent equation r(z) = 1
if and only if the condition (2) is fulfilled.

LEMMA. (S. Presié [18]) A formula z = 1(t) represents a reproductive general
solution of the equation r(z) = 1 if and only if the following conditions hold:

(Vte S)(r(z) =1=z =9¢())
(Vt € S)(r(z) = 0= r(¥(t)) =1)

Supposing that a general solution of the equation r(z) = 1 is known, S. Presié¢
gave, in the next theorem, the formulas of all reproductive general solutions of this
equation.

THEOREM 1. (S. Presié¢[18)) Let g : T — T be a function such that the formula
z = g(t) represents a general solution of r(z) = 1. A formula z = f(t) , where
f: T — T, represents a reproductive general solution of r(z) = 1 if and only if
there exists a function h: T — T such that f(t) =r(t) -t + r'(t) - g(h(2)).

Proof. z = f(t) is a reproductive general solution of r(z) =1
SNV eS)(flz)=2)ANVz e T\ S)(f(z) € S)
(Lemma) .

——y
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& VzeS)(flz)=2) Az e T\ S)3Et € T)(f(z) = 9(t))

(z = g(t) is a general solution of r(x) = 1)
S NVzeS)(f(z) =2)AGh: T~ 8-> T)¥Vz T~ S)(f(x) = g(h(z))

(Axiom of choice)
& Bh:T-T)NVz e T)f(z) =r(z) -z +1'(z) g(h(z))

(h is an extension of h). O

Using Theorem+1 S. Presié¢ described all reproductive general solutions of

boolean equation in the set {0,1}. Once S. Presié¢ applied Horn formulas in or-
der to deseribe solutions of arbitrary boolean equation. This idea for the use of
Horn sentences in boolean algebras was developed in [13] by Z. Mijajlovié. S.
Presi¢’s followers described the formulas of all general reproductive and all general
solutions of the equation r(z) =1 in certain ways (Theorems 2-8).

. “THEOREM 2. (Bozié [4]) Let g : T — T be a function such that the formula
x = g(t) represents a general solution of r(z) = 1. A formula z = f(t), , where
f : T = T, represents a general solution of r(z) = 1 if and only if there exist
-functions h,k : T — T such that f =gh andg=ghky.

THEOREM 3. (Bozié¢ [4]) Let g : T — T be a function such that the formula
x = g(t) represents a general solution of r(z) = 1. A formula z = f(t) , where
f: T — T, represents a reproductive general solution of r(z) = 1 if and only if
there exist function h : T — T such that g=ghg and f =gh.

Bozi¢ [4] also solved the functional equation ¢ = ghg.

THEOREM 4. (Rudeanu [22]) Let g : T — T be a function such that the formula
x = g(t) represents a general solution of r(z) = 1. A formula z = f(t) represents
a reproductive general solution of r(x) = 1 if and only if there exists a function
h:T — T such that f(TYC S and f =gh.

THEOREM 5. (Rudeanu [22]) Let f,g : T — T be functions such that the
formula = = g(t) represents a general solution and the formula z = f(t) represents
a reproductive general solution of r(z) = 1. Theng=g f.

THEOREM 6. (Rudeanu [22]) Let f,g : T — T be functions such that the
formula z = ¢(t) represents a reproductive general solution of r(z) =1, f(T) C S
and f = g f. Then the formula z = f(t) represents a reproductive general solution
ofr(z) = 1.

In view of Theorems 4-6, the determination of all general solutions and of all
reproductive solutions is reduced to the solution of the functional equations f = gh
and f = g f, respectively. This is done in [22].

THEOREM 7. (Bankovié [1]) Let g : T — T be a function such that the formula
z = g(t) represents a general solution of the equation r(z) = 1. The formula
z = f(t), where f : T — T, represents a general solution of r(x) = 1 if and only if
there exists a function h : T — T, such that f = gh and

(Vs € f(T))(3z € T) f(h(z)) = s.
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THEOREM 8. (Bankovié [1]) Let g : T — T be a function such that the formula
z = g(t) represents a general solution of the equation r(z) = 1. The formula
z = f(t), where f : T — T, represents a reproductive general solution of r(z) = 1
if and only if there exists a function h : T' — T such that f = gh and

(Vz € S) f(h(z)) = =.

Using theorems 7 and 8, P. Smith [24] got three propositions equivalent to
the axiom of choice. Note that the use of the axiom of choice in this context was
initiated by S. Presi¢ [18].

Finite equations

S. Presi¢ considered the case of equation over finite set, on which he introduced
a certain algebraic structure. S. Presi¢ gave the formula of the reproductive general
solution of this equation. Let @ = {q,...,qn} be a finite set of m elements
and let E (JE| > 1) be the set containing element 0. S. Presi¢ considered the
equation J(z) = 0, where J : § = E. Let, foreveryge @, C; : Q = @ be a
cycle, depending on g. The following notation will be used: C%(q) = Cy(C,(q)),

Ci(a) = Cy(C3(a)); - - -
Let A: S x E™! — S be the function defined in the following way:
A(q,O, Uz, N 7Um—1) =q
A(qa ulh, 01 U37 ey Um—l) = Cq(‘])
. Alg,ur,. .- ,4i,0,Uipa, ... ;Un—1) = C’;(q)

A(q, U, oo )u1n—270) = C;n_2(Q)
A(Q7u17 e ,Um—l) = CT_I(Q)

where ¢ € S,u1,...,Um-1,U2,... ,Un—1 € Eand u1 #0,... ,um-1 #0.

THEOREM 9. (S. Presi¢ [17]) If the equation J(z) = 0 is consistent, then the
formula

(1) z =A(ta J(t)N](Ct(t)):--- ’J(Czn—z(t))

represents the reproductive general solution of the equation J(z) = 0.

Proof. Let t be an arbitrary element of Q. If the equation J(z) = 0 is consistent
then at least one of the elements J(t), J(C;(t)), .- , J(C"~1(¢)) is equal to 0. Let

J(Ci(t)) be the first term, in the previous sequence, which is equal 0. Then z ="

A(t, J(t), J(Ci(1)), - .- , J(C™2(t))) is a solution of J(x) = 0, by the definition of
the function A.

Let z be a solution of the equation J(z) = 0. If we replace, in (1), ¢ by z, we
get A(z,0,...)=z. O
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The function A is called “a solving function”. It can be determined, for in-
stance, in the following structure: let + and - be a binary operations on the set
@ U E satisfying

0-e=e-0=0-0=0, e-e=e, 0-¢g=0,
e-gq=q, ¢g+0=0+4+¢g=g¢q, 04+0=0

(g € Q, e is the fixed element from E, e #0). Let +: E - Eand —: E = E be
the functions defined by .

. {e, forz=0 _ {0, forz=0
fd T =
* 0, forz#0 e, forz #0.

The function A can be determined by

Aq Uy yUmn1) =U1-q+Us Uz - Cylg) + -+
+U;-Us - -Upg Ume1-CP ) + Uy - Us - Uy - C7 7 Hq)

where
U+V+W+---+R=(---(U+V)+W)+---+R)

and
U-V-W---R=(---(U-V)-W)---R).

ExXAMPLE. Let @ = E = {0,1} and + and - are maz and min, respectively.
Boolean equation
az + bz’ =0, (a,b,z € {0,1})

is consistent if and only if ab=0. Let e =1, z* =z, T = &', Co(z) = C1(z) = z'.
The reproductive general solution of az + bz’ =0 is

z=Jt)t+J@®)t (J() =at+bt)

i.e.
z=(at+bt) + (at+bt)t

ie.
z=ad t+bt.

As the previous Example shows, Theorem 9 gives the formula of the reproduc-
tive general solution of a given equation.

Using the function A, C. Ghilezan [6] solved the relation J(z) € D, where
D C E. The function A was also used in [7]. C. Ghilezan considered the equation
J(z1,... ,2,) =0, where J: Q™" — E.
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THEOREM 10. (Ghilezan [6]) A function J : Q™ — E can be written in the
form

J(Z1y. .o 1 Tn) =
Z xfgai(ﬂfly--- 1 Li-1y il ,-'En) + hi(z1,. ., o1, Tigr, - - »Tn)
a€S~{b} '
where b is a fixed element from Q and g,;,h: Q™! - E.

In accordance with Theorem 9, the equation J(zy,... ,z,) = 0 can be written
in the form

m
Zzg‘gil(u,... yeee1Tn) =0.
i=1

The latter equation is consistent if and only if

m .
Hgil(x21--' ’xn) = 0.

i=0

In this way, the unknown z; is eliminated. In the similar way, using successive
elimination, the equation J{(zi,... ,z,) = 0 can be solved.
S. Presi¢’s Theorem 9 was the motivation for the following Theorem.

THEOREM 11. (M. Presié [15]) Let J(x) = O be equation on Galois field
GP(p™) and let a be the generic element of the cyclic group of that field. If e-
quation J(z) = 0 is consistent then the formula

g=t+ (JO)P P +a(J@R)JE+1)P L+ o2 (J@)I(E+ )T+ 1+ )P "1+
vk P THI@) I+ JE+ 1ot aP TP
+(@ P (JO I+ + -+ JE+1+a+ - +af 3t
represents the reproductive general solution of the equation J(z) = 0, where s =
2+3e+---+(p"—1)a? 3
Further study of finite equations

S. Presié considered the equation over finite set, where the equation was given
by the term. Namely, he introduced a kind of generalization of boolean and postian
equations in one unknown. Let @ = {¢o,91,-..,9m} be a given set of m + 1
elements. Define the operations +, - and z¥ in the following way:

;'g - olg : , {1, ifz=y
7 =
1 ' 11 1' 0 1 0, otherwise (z,y € QU {0,1}).
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Assuming that
(Vz € {0,1}UQ)z+0=2A0+z=2A2-0=0Az-1=2Al-Tc=1)
S. Presi¢ considered the following z-equation
(3) 502 4812+ F 5,z =0

where s; € {0,1}, z € Q. The latter equation is consistent (has a solution) if and
only if 8¢ - 81 - -+ 8m = 0. Denote by S the solution set of the equation (3).

In the sequel - will be omitted.

One can prove that every equation over () is equivalent to an equation of the
form sg 290 +5; T +- - -+8,, ¥ = 0. Note that h(x) = so 9 +51 T +- - -+ 8, TI™
is the function which maps the set @ in the set {0,1} i.e. h: Q@ — {0,1}.

S. Presié introduced “the zero-set” Z(ag, ... ,am) of (ag,. .. ,an) in the follow-
ing way

g € Z(g,.--,am) S a;=0 (1=0,1,...,m).

THEOREM 12. (S. Presi¢ [19]) Let the equation
(3) 80.’L‘q°+slz‘71+...+smz'4m=0

be consistent (i.e. s¢$1---8m = 0). A formula z = A(t) represents a reproductive
general solution of the equation (3} if and only if A(t) is of the form

m
(4) At) = (ars) + > Fi(ao,...,am)sg ... st
k=0

ar#0,a0:-am=0

where Fi(ap,... ,am) € Z(ag,... ,am)-

Proof. Let A(t) be of the form (4). For arbitrary ¢t € @ there exists k£ €
{0,1,...,m} such that t = gz. If gx € Z(s0,51,...,5m), then the formula z = A(t)
gives t = q, because ¢; € Z(8g,... ,5m) © s =0. f qr ¢ Z(s0,51,-.- ,5m), then
the formula x = A(t) becomes = Fi(sy,...,5m). We also have Fi(sqg,...,8m)
€ Zr(s0,--- ,8m). Therefore the formula z = A(t) represents a reproductive general
solution of (3).

Let the formula z = A(t) represents a reproductive general solution of (3). If
we write the function A as

A___(Qo @ Qm>

Gy 9ix " Gim

then {giosQirs--- i} = Z(80,815...,5m). If g € Z(s0,51,...,5m), then we
determine Fy(sg,51,--. ,8m) in the following way:

Fr(50,815--« »8m) = g, (k=0,1,...,m).
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Since A represents a reproductive general solution of (3) we have
gk € Fk(SOasla ree ,Sm) = A(qk) = Gk-

Since
qk € Z(SO,SI,... ,Sm) = Sk :0¢Qk32 = q

a:nd the Sunl
m 8, am
z: lk(soasl,...,s ) Oa’o-..sm

ar=0,a0"am=0

reduces to Fi(so, 81,-.- ,8m), the function A can be written as

m
A(t) = Z(qksg + Z Fi(agy.-. yam)sa®...s2%)th. O
k=0

ar#0,a0--am=0
Let M = {0,1,... ,m}).
THEOREM 13. (Bankovi¢ [2]) Let the equation
(3) Soxqo-i’slz'ql-f--.._'_stQm:O

be consistent (i.e. sos1---8m = 0). A formula x = A(t) represents a general
solution of the equation (3) if an only if there exists a permutation h : M — M
such that .

m
A(t) ES Z(qh(k) Sg(k) + Z Fh(k) (aov,‘ vy am)sg° - s;‘l")tb" .
k=0 a;.(,.);éo,ao~~-am=0

where, for every k € M and every (m + 1)-tuple (aq, ... ,am) € {0,1}, holds

Qg Qm =0=>Fh(k)(ao,... ,Qm) € Z(ao,... , G )-

THEOREM 14. (Rudeanu [23]) Let the equation
(3) SoZ® +8;20 -+ 8pzi™ =0

be consistent (i.e. sgs1---sm = 0). A formula = = A(t) represents a general
solution of the equation (3) if an only if A(t) is of the form

m

At) =) (aner) Sty + Shoey Tr) 1
: k=0

where h: M — M is a permutation of M and ry, € S (k =0,1,...,m).
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THEOREM 15. (Rudeanu [23]) Let the equation
(3) S0P + 5120 + -+ spzt™ =0

be consistent (i.e. 8¢ 81 - 8m = 0). A formula z = A(t) represents a reproductive
general solution of the equation (3) if an only if A(t) is of the form

At) = Z(Qk s+ sk i)
k=0
wherer, € S (k=0,1,...,m).

The previous four theorems describe all reproductive general solutions and all
general solutions of a finite equation, supposing that particular solutions are known.
Next theorem, where the idea of S. Pregié’s solving function from Theorem 9 is
present, describes all general solutions (including all reproductive general solutions)
of a finite equation without the above supposition.

THEOREM 16. (Bankovi¢ [3]) Let the equation
(3) 502% + 5120 4+ -+ 8,2 =0

be consistent (i.e. sg 81 -8, = 0). A formula z = A(t) represents a (reproductive)
general solution of the equation (3) if an only if

m
— 0 X ) 0 i X . 0 X
A(t) = E (Sik,o Qiro t Bin o Siy ; ik + Sik o ik Sir,2 Tirn
k=0

, . ... g0 . . . ...g: , qx
+ slk,o 31k,1 Sik,m_l q"fk,m~l + slk,o su-,l slh,m—l qzk,m)t

under the following conditions:

(%k,0,%k,1, - - - »tk,m) are permutations of {0,1,... ,m},

(2,05 %k,15- - - »0k,m) are permutations of {0,1,...,m},
(under the conditions

(24,0, %k,1, - - - yik,m) are permutations of {0,1,... ,m},

(’io,o,’il,o, . ,im,O) = (O, 1, e ,m))
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ON S.B. PRESIC’S TYPE )
GENERALIZATION OF BANACH
CONTRACTION MAPPING PRINCIPLE

Ljubomir Cirié

Many problems in pure and applied mathematics reduce to convergence prob-
lems of corresponding sequences. For this reason the studying of convergence prob-
lems, first in the structure R of reals and later in more general spaces, is very actual
for decades. In 1965 young mathematician Slavisa Presi¢ [3], [4] gave his significant
contribution to that area. He devised a very elegant and a new way by which in
complete metric spaces he investigated the convergence problem of sequences de-
fined recursively. In such a way he also generalized in a natural way the well known
result of S. Banach (1922).

THEOREM 1. [1] Let (E,d) be a complete metric space and let f : E — E be
a mapping which satisfies the following contraction condition

(1) d(f(=), f(y)) < qd(z,y) forallz,y€ E
where q € (0,1) is a constant. Then for each zo € E, the sequence (z,) defined by
(2) Tnt1 = flzn) (n=0,1,...)

converges to a point £ € E and € is the unique fixed point of f.

Briefly said, a proof of this theorem can flow as follows.
Starting with (2) we have the following equalities

3) Tnt2 = [(Tni1),  Tnt1 = fzn)
hence we obtain ‘

4 d(Tnt2,Tnt1) = d(f(Tnt1), f(zn))
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Using (1) and the denotation A, = d(Zp+1,2Zn) we have the following inequality
(5) Ant1 < gA,

In a trivial way from (5) we obtain the following inequality

(6) A, <g™ A (n=1,2,...)

As it is well known, having this estimation for A, one can easily complete the
proof.

Having in mind a personal communication by S. Predi¢ we shall describe the
methodological idea which he used.

First, he considered a mapping f : E¥ — E, where k = 1,2,... is a constant,
and as before E is a complete metric space. Related to this f he defined a sequence
(xn) like (2)

(2,) Tntk = f(zn,xn+1,---7mn+k——l} (n’ = 1r27)

Of course, in general the convergence problem for such a sequence {z,) is very
difficult. Trying to follow steps similar to (3), (4), {5), (6) S. Presi¢ did the following
First, similarly to (3) he considered the equalities

() Tntk+1 = F(Tnt1,Tn42s - Tntk)s  Tntk = f(Tns Tty Tntk—1)
Second, similarly to (4) he formed the equality

(4")  d@nsrs1, Tnrk) = Af @nt1, Tnazs - Engk)y F(Tns Tng1, o o, Tngk—1))

But now we do not have a condition like (1). At this step S. Presi¢ generalized (1)
by the following condition

(1)

d(f(ts,ta,. .-y te), ft2,ts, - oy tht1)) < ard(ty,t2) + azd(te, ta) + -« - + ard(te, tet1)

where t1,...,%,tk+1 are any elements of E and ay,...,a; are non-negative con-
stants whose sum aj + - - - + ay, is less then 1. If k = 1 the condition (1') reduces to
(1).

Now supposing the condition (1'), from (4') we obtain
(8") Anyr L0180+ a2nqy + -+ + apApgp—

where A, is an abbreviation for d{(zn+1,z,). Unlike (5) now we have a non-trivial
inequality. One way to derive some estimation for A, is to involve the algebraic
equation z¥ = a; + agz? + --- + axz*~1, the spectrum of all its solutions, and so
on. Obviously, such a way is rather complicated.

S. Presi¢ devised a very nice way to overcome these difficulties. Namely, he
first proved the following assertion.
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ASSERTION. It the sequence A, of non-negative reals satisfies (5'), where a; >
0, a; +as +--- +ar < 1, then there exist two positive constants K4 and 0 (with
8 € (0,1)) such that the following inequality holds for every n

(7 A, < Ko™

The main problem is how to find K and §? Suppose that somewhere we have
seen the inequality (7) but now we cannot remember the values for K and 4.
Despite this, we are going to prove (7). According to the structure of (5') we use
the induction of the following type m,m+1,--- ,m+k — 1+ m + k. Hypothetical
inductive proof reads

Base of induction. The inequalities

(8) Ay < KO, Ay<K8, .- A< K6

are true!
Induction step. Suppose that (7) is true whennism, m+1,...m+k—1,1ie,
that the following inequalities

Ay <KO™, App S KO™ L Apypg < KgmHEL
hold. From these inequalities we easily infer the following one
a1 Am 4 @2A gy + -+ apAmyr-1 < K0™(ay + a2 + - - + a1
Using (5') we obtain the following inequality
Apir < KO0™(ay +agf + - + ar 857 1)
Obviously the inductive proof will be completed if the following inequalities
(9) ar+af+---+aff1 <65, 0<b<1

hold. So, the hypothetical proof will become a real proof if we can find K and 6
satisfying the inequalities (8) and (9). This can be done as follows:

First, consider the function g : R — R defined by g(z) = z* — (a; + apz +--- +
axz*1). Since g(1) > 0, there exists § € (0,1) such that (9) is satisfied.

Second, using such a 8 we define K in the following way

A A Ag
K = max (7,-0—2',...,-07)

Obviously with such K and 6 both (8) and (9) are satisfied. In such a way we
have composed the S. Pregié’s proof mentioned before.

By means of the assertion (7) S. Presi¢ proved the following theorem, a gener-
alization of Theorem 1

1 As a matter of fact, we now see that K and  must satisfy the conditions (8)
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THEOREM 2. [3], [4] Let (E,d) be a complete metric space and let f : E¥ -+ E
be a mapping satisfying the contraction condition (1'). Then there exists the unique
& € E such that f(¢,€,...,€) = & This € is the limit value of the sequence (z,,)
defined by

Tntk :f(xn,xn+1,---,zn+k—1) (n: 172)"')

where 1, ...,z are arbitrarily chosen elements of E.

Notice that in the case k = 1 this theorem reduces to Banach’s Theorem 1. As1
know, Theorem 2 is one of the first generalizations of Banach’s theorem. Also many
mathematicians were inspired by that S. Pregié’s result; for instance M. Marjanovié,
M. Taskovi¢, D. Arandjelovi¢, Lj. Ciri¢, B. C. Dhage.
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CONTRIBUTION AND INFLUENCE
OF S.B. PRESIC
TO NUMERICAL FACTORIZATION
OF POLYNOMIALS

Gradimir V. Milovanovié

ABSTRACT. This paper is devoted to contributions of S.B. Presi¢ in numerical fac-
torization of algebraic polynomials, as well as to influence of his work in this subject.
Beside a general factorization of polynomials, we consider some important special
cases and point out some accelerated iterative formulas.

1. Introduction

The numerical factorization of algebraic polynomials is a very important math-
ematical subject. There are several methods for it in the literature, beginning with
the well-known methods of Bairstow [2] and of Lin [19-20]. Many of them are
quadratically convergent, but most require a sufficiently close starting values for
factorization. In their survey paper, Householder and Stewart [14] mentioned also
the method of Graeffe and the gd algorithm, though they are not primarily for this
assignment. A number of these methods can be related to an algorithm proposed
by Sebastido e Silva [38]. Some generalizations of this algorithm were given by
Householder [11] in 1971 (see also [12], [41], [6]). In addition we mention also a
method of Samelson [36] from 1959, which generalizes the Bauer-Samelson iteration
{3]. In his paper Samelson noted that his method is related to Bairstow’s method.
Taking a nionic algebraic polynomial over the field of complex numbers, with zeros
21,22, 5 2n, 1€,

.
(L.1) P(z)= 2" +p12" 4+ pa_1z+pn = [[(2 = ),
k=1
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Samelson {36] seeks its factorization by two factors
uw(z)=(z—z1)(z—2z2) (2 — zm)

and
v(2) = (2 = 2m+1)(2 — Zm+2) - -~ (2 — 2a).

Let p and g be monic polynomials of degree m and n — m approximating v and v
repectively. Then his quadratically convergent iterative procedure defines improved
approximations p* and ¢* by the formula

(1.2) p'q+q¢'p=P+pq.

If p and q are relatively prim, then p* and ¢* are uniquely defined by (1.2) Samel-
son’s iteration was discovered independently by Stewart [39], who characterized pg*
as the linear combination of P, q, zg, ... ,2™ g that is divisible by p. Householder
and Stewart [13] gave the exact connection between these characterizations (see al-
so [14] and [40] for another derivation of Samelson’s method and the corresponding
error bounds for the iteration, as well as the paper of Schréder [37] for a connection
with Newton’s method). .

In 1966 and 1968 S.B. Presié¢ [34-35], inspired only by some results of D.
Markovié [21], gave an iterative method for numerical factorization of algebraic
polynomials by s (2 < s < n) factors. The purpose of the present paper is to show
contributions of S. Presi¢, as well as to point out an influence of S. Presi¢’s work to
this subject. The paper is organized as follows. In Section 2 we explain S. Presié’s
approach to numerical factorization of polynomials and give an example on 2 — 2
factorization of a polynomial of fourth degree. Sections 3 and 4 are dedicated to an
1~1~—---—1 factorization and some accelerated iterative formulas, respectively.

Later, in 1969 Dvoréuk [9] considered a factorization into quadratic factors,
and in 1971 Grau [10] used a Newton-type of approximation for simultaneously
improving a complete set of approximate factors for a given polynomial. Recently,
Carstensen [4] and Carstensen and Sakurai {5] gave some generalizations of this
method.

Here, we mention also that in the last period many papers have been pub-
lished on factorization of polynomials over finite fields, on factorization methods
for multivariable polynomials, as well as on factorization of matrix polynomials.

2. S. Presié’s approach to numerical factorization

Let P be a monic algebraic polynomial over the field of complex numbers given
by (1.1) and let it be expressed in a factorized form

(2.1) P(z) = Ai(2)As(z) --- As(2) (2<s5<n),

where A, (z) are monic polynomials of degree n,, i.e.,

(2:2) 4@ =S a™,  aw=1 (r=12,...,5),
=0
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s
and ). n, =n. The case s = 2 is mentioned in the previous section.
v=1 '

Assuming that zeros of (1.1) are simple, S.B. Presi¢ gave an iterative method
for numerical determination such a factorization, so-called ny — ny — - -+ ~ n, fac-
torization, in which successive iterated monic factors

ny
(2.3) AP @) =" JB =1 w=12,...,8)

1=0
are determined from the relation
AR 40 g0 AR gD ) g AR AR L 4D
~ (s - DAAP AP = P,

ie.,

3 4(k+1)
@1 AP@APE)- AP () (Z %ﬁ s+ 1) = P(2).
) z

v=1
Taking the coeflicients a,; of polynomials (2.2) as coordinates of an n-dimen-
sional vector
T
a= [011 @12 - Qiny Q21 Q2p, "+ Q22 't Qs1 Q22 asn,]
and aff? (coefficients of iterated factors (2.3)) as coordinates of the corresponding
also n-dimensional vector a‘¥), S. Presié observed that (2.4) implies a system of
linear equations of the form

(2.5) A (a®)a®**V) = b, (a®), p)

where A, is an n X n matrix depending only on a{¥, and b, is an n-dimensional
vector depending also on a(*) and on coefficients of the polynomial (1.1), p =
[p1 P2 -+ p'n]T. Further, he concluded that there exists a neighbourhood V'
of @ € C", such that (2.5) can be expressed in the following form

(2.6) a*t) = F(a®)y  (k=0,1,...; a® e V),

where F:V — V is an enough times differentiable operator (in Fréchet sense).
Practically, S. Presi¢ proved that F(a) = a and F(’a) is a zero operator, so that

la®*) —al| = O(la® ~al?)  (a= L a®).

k~+00

Thus, S. Pre§ié’s result can be sumarized as:
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THEOREM 1.1. There is an neighbourhood V of a € C" so that for an arbitrary
a®© €V, the iterative process (2.6) quadratically converges to a.

Thus,
lim AM(z)=4,(2) (¥=1,2,...,9),
k—+4o00

give the factorization (2.1).

In his paper [35], S. Presié derived formulas for a 2 — 2 — 2 factorization of
a polynomial of degree 6. Here, as an illustration, we give a simpler case when
P(z) = 2% + p1 23 + p22? + p3z + py and when we seek its 2 — 2 factorization, with

Ai(z) =22 +anz +a1s, Az(2) =2%+anz+a.

In that case the system (2.5) becomes

a§1;+1) + a(k+1) b(k)
a;';)a§'§+1)+ (k+1)+a(k) (k+1) a(k-i-l) — bgk),
agk)agliﬂ)_l_a(k) (k+1) + (k) (k+1)_|_a(k) (k+1) b(k)

ool +alfalf™ =,
where
b(lk) = D1, b(k) =p2+ 0(1’;)021 )
o) = po+ el +aald, o =+ ol

Solving this system we obtain an iterative procedure of the form (2.6). This case
(s = 2) reduces to Samelson’s iteration.
Using the previous idea on polynomial factorization, J.J. Petri¢ and S.B. Presié
[32] treated a problem of simultaneous determination of all solutions of the system
of algebraic equations
Ji(z,y) = A1z? + 2Byxy + Cry? + 2Dz + 2E 1y + Fy = 0,

Jo(z,y) = Asx? + 2Byzy + Coy® + 2Dox + 2By + F> = 0.
‘ 3. Factorization1 —1 — ... —1
In the case s =n, ie,n, =1 (v =1,2,...,n), the factors are linear
Az)=z+an=2—2 (v=1,2,...,n),
and (2.4) reduces to

(k+1)

(z - zgk))(z - zék)) o (z = 20 (2": :z_;%_ -n+ 1) = P(z2).

v=1 <% 2
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Then, the scalar form of (2.6) can be obtained easily as

(k)
(3.1) z$k+1)=z,(,k)—Tf~(ﬁ’-)— (v=1,2,...,n; k=0,1,...).
1 (=" - 2?)
j=1 !
Jv

Thus, in this important case, S. Presi¢’s factorization approach leads to the Weier-
strass’ formulas (3.1) (see [44]), which were not well-known in that period. These
formulas were obtained several times in various ways by many authors. Weierstrass
used them in a new constructive proof of fundamental theorem of algebra. In a
book on numerical solution of algebraic equations from 1960, written by French
mathematician E. Durand [8], one chapter was dedicated to iterative methods for
simultaneous finding polynomial zeros, where the author obtained formulas (3.1)
in an implicit form. It seems that Bulgarian mathematician K. Docev [7] was the
first who used these formulas in their original form for numerical calculation and
who proved their quadratic converegence.
n
Introducing Q(z) = [] (z— z](-k)), formulas (3.1) can be represented in the form
J=1

(Newtonian type)

P(z")
Q=)
Beside the polynomial Q(z) we consider also polynomials R, (z) defined by

R.}(z)=—9—(-z)——H(z—zJ(-k)) (v=1,2,...,n).

(3.2) 2(f 1) = () _ (v=12,...,n; k=0,1,...).

(k)
Z— 2y j=1
. J#v
Their expfmded forms are
Qz)=2"—c12" 1 + 622" 2 — o 4 (=1)"0p,
R,,(Z) = 1 O_gu)zn—Z + agu)zn—3 —— (_l)n—la_f:izl’
where d1,0s,... ,0, are elementary symmetric functions of zy, 22, ... , 2, (see [23,
Section 1.3.1]). For the sake of simplicity, we omit the upper index in zl(,k), and
for z8¥*1) we use the notation z,. Similarly, a{”’ aé"’,... ,a,(:_)l are also such
functions that do not involve z,. It is easy to see that @'(z,) = R.(z,) (v € I =
{1,2,...,n}). In the note [43], which was our first paper in mathematics inspired

only by the S Presi¢ paper [35], we showed: If all zeros of Q(z) are simple, then
the tnverse matriz of

0{1) 0{2) agn)

(3.3) . W=

‘7511-)-1 "1(12—)1 o ,(:_)1
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is given by
Dlzf_l —DIZ?_Z (—l)n_lDI
Dyzy™!  —Do2l™% ... (=1)""1D,
(3.4) W= _ ,
Dpzt=1! —Dpzn=%2 ... (-1)""1D,

with D, =1/Q'(z,) (v € I).
The corresponding S. Presié’s form (2.6), i.e., a vector form of (3.2) can be
written as

(3.5) 2D = T(2®y  (k=0,1,...),

where T(2) = z — e(2) and

Z1 €1
z= 2 , e(z)= € , €, = (1;((2;)), Qz) = J];[l(z - zj)
Zn €n

Taking the system of Viete’s formulas for polynomial P(z), given by (1.1),
f(z) = 0, where the i-th coordinate in the vector f(z) is equal to o;+(—1)""1p; (i =
1,2,...,n), and applying the known iterative procedure of Newton-Kantorovi¢,

(3.5) 2D = 2B -t 2By (k=0,1,...),

in order to solve the previous system of nonlinear equations, we obtain (3.5). Here,
the Jacobi matrix is exactly given by (3.3) and its inverse by (3.4). It seems that
Kerner [16] was the first who observed this fact. His proof was slightly different

from ours.
Regarding to the 1terat1ve method (3.2), in 1980 Dirk P. Laurie [18] stated the

following problem: If Z zy, = —p, prove that

v=1

It is a nice property of the method (3.2) and it was known earlier (see Docev [7]).
Relation (3.6) holds regardless of the value of )  2,. We gave now a proof of

v=1
that as an application of the Cauchy residue method and it was published in the
book (26, pp. 347-348]. Indeed, since 2, = z, — P(2,)/Q'(2), v =1,2,... ,n, we’
have

(3.7 S5, = zzy z P W

v=1
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No doubt that the S. Presi¢’s work on this area is very important and that it
has a great influence on the development of this field in our country. In the last
thirty years several mathematicians in Serbia, especially those from the University
of Ni§ and University of Novi Sad, have been very active in this field. For the
references see, for instance, [28] and [29].
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TO THE FIELD OF APPLIED MATHEMATICS
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Vera V. Kovacevié-Vujcié

ABSTRACT. We give an overview of S. Predi¢’s results related to problem-
s in different disciplines of applied mathematics such as numerical analysis,
optimization, interval mathematics, etc. In particular, we discuss results on
factorization of polynomials and the theory of m-M calculus.

1. Introduction

During his long and fruitful mathematical career Prof. Slavisa Presié¢ was at-
tracted with many areas in mathematics such as algebra, functional equations,
foundations, logic, computer science and applied mathematics, including numerical
mathematics and optimization. Qur aim is to give a brief survey of Presic’s results
in applied mathematics. The paper is organized as follows:

In Section 2 we present S. Presi¢’s results on factorization of polynomials and
solution of systems of nonlinear algebraic equations published in [3], [4], [5]. Sec-
tion 3 is devoted to the m-M calculus, the theory proposed by S. Presié in [6],
[7], [8]. This theory combines in an original way the ideas of mathematical logic
and numerical analysis and has various applications in numerical analysis, interval
mathematics, optimization, etc.

2. Factorization of polynomials and related results

During the sixties SlaviSa Presi¢ was an assistant of Prof. D. Markovi¢ who
encouraged him to study problems of solving algebraic equations. The work in this
direction has resulted in three papers which will be outlined here.

In 3] S. Presi¢ proposes an iterative method for factorization of polynomials of
degree n with complex coefficients. Let

P =P(£L‘) =z" 'i‘pn—l-'l"n_1 +--+pmz+ Do

1991 Mathematics Subject Classification. Primary 13P05, 65G10, 65K05; Secondary 26C10,
49M37, 90C30.

Key words and phrases. Factorization of polynomials, m-M calculus, global optimization,
interval mathematics, generalized minimum and maximum.



58 KOVACEVIC-VUICIC

be a given polynomial and assume that all its roots have multiplicity one. Let n
be decomposed into s + 1 summands, i.e. n =a+b+---+landlet A,B,...,L be
polynomials of degree a,b,...,[, respectively:

A=z4 o 121+ +ap

B=z’+B_ 12"+ +

L=zt +N_12" -+ X

Now the factorization problem can be formulated as follows:

(1) Determine coefficients of 4, B,...,Lsuch that P= AB---L.
S. Pre&ié proposes the following iterative procedure for obtaining A, B, ..., L. Let
fork=1,2,...

A(k) = 2° + a1 (k)z° Y + - + ap (k)
B(k) = 2° + Bp—1(k)z>" L + -+ + Bo(k)

L(k) = 2' + N—1 (B)z' ™Y + - + Ao (k)
be the sequences of polynomials defined by conditions

(2) A(k+1)B(k)---L(k) + A(k)B(k +1)---L(k) + - --
+ A(k)B(k)---L(k +1) — sA(k)B(k)---L(k) = P, k=1,2,...

If p(k) = (ag-1(k),...,00(k), Bo—1(k),..., Bo(k),..., N=1(k),..., Ao(k)), then
using (2) it is possible to express p(k + 1) as a function of p(k), i.e., it is possible
to determine function F such that p(k + 1) = F(p(k)).

The following theorems are proved in [3]:

THEOREM 1. Ifthe sequence (p(k)) converges, then limy 0o A(k), limg—soo B(k),
..., limg_, o L(k) are factors of P, i.e.,

P = lim A(k) lim B(k)--- lim L(k).
k—o0 k—o0 k—o0

THEOREM 2. There exists an open set V such that if p(1) € V, then p(k) = p,
k — o0 and moreover ||p(k + 1) — p|| = O(||p(k) — p||?).

In the case of n = 1 + --- + 1 decomposition, the factors are linear. If we
introduce notation A(k) = z — a1 (k), B(k) = z —az2(k), ..., L(k) = 2 — an(k), then
the iterative procedure can be described by simple formulas:

P(a;(k))

(3) ai(k+1)=ai(k)-m, i=1,...,n, k=1,2,...
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where Q(z) = (z—ay(k)) - - - (z — an(k)). It is interesting to note that (3) is related
to the Newton method for solving the system of nonlinear equations

a} +pn-107"  + - +po =0

ap+pn1apy '+ +po =0

8. Presi¢’s results on factorization of polynomials have been extended by M. Pre-
8i¢ who has formulated a quadratically convergent method for finding k roots of
a polynomial P of degree n (1 < k < n) [2]. It has been proved by M. Asi¢ and
V. Kovagevié that M. Presié¢’s method belongs to the class of quasi-Newton methods

[1]-
In [5] Petri¢ and S. Presi¢ generalize the method proposed in [3] to systems of
nonlinear algebraic equations of the following type:

Ji (.'L‘, y) = A1.'L'2 +2Byzy + Cly2 +2D1x+ 2B y+Fi =0

4
) Jo(z,y) = Asx? + 2Bozy + Coy® + 2D2z + 2E0y + F> = 0

It is assumed that system (4) has four different solutions (a,a), (b,3), (c,7),
(d,8). Then it is equivalent to the system

AB-CD=0
AC-BD =0

where

AB=(f~-a)(z-a)=-(b-a)ly-0)

BD = (8- B}z —b) - (d-b)(y—h)
Moreover, there exist constants A, g, p, ¢ such that

5) AB-CD + Mi(z,y) + pJo(z,y) =0
AC - BD + pJi(z,y) + pJa(z,y) =0

The iterative procedure defined in [3] can now be applied to (5) yielding equations

6 R, +AR,=0
(©) Sn+AS, =0

where

R, = Aan ' CnDn + /\njl(ma y) + ll'nJ2($7 y)
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Sn = AnCn - BaD + pui(2,9) + pnta(2,9)
AnBr = (Bn — an)(® — an) — (bn — a5)(y — an)
CnDpn = (0n = )T = ¢n) — (dn — ¢a)(¥ — Tn)
AnCr = (Tn — an)(z — an) — (cn — an)(y — an)
BpDp = (6n = Bn)(z ~ bn) = (dn — bn)(y — Bn)

and operator A refers to polynomial expressions for a,, an, bn, Bny---1 Pn; @n,
Gnt1y Qntls Onits Bntlr---s Pntl, Pnt+1- Using polynomial identities (6) it is
possible to determine ant1, ¥nt1, Ont1, Brtis---» Prtls Pn+1 as the functions of
Gn, Qn, by Br,y Cny Yoy dn, On.

The following theorem is proved in [5]:

THEOREM 3. If the sequences (a,), (@n), (bn), (Bn), (cn), (W), (dr), (8n), (An),
(4n), (pn), (¢n), converge to a, a, b, 3, ¢, v, d, 6, A, p, p, , , respectively, and
Mg — pp # 0, then (a,a), (b,08), (¢,7), (d,0), are solutions of system (4).

Numerical evidence reported at the end of [5] shows very good performance of
the proposed method in practice.
The paper [4] is related to the following result by S. Zervos:

THEOREM 4. (Zervos, 1960) Let Ii,..., I, be sets of indices and 8;; > 0 be

such that
b, =j-t j=1...,n
i el;
where t € (0,1] is fixed. Then any positive root § of the equation

n
" =aq "+ 4a, a; >0, Zai>0

i=1

ol (014 )")

j=1 i;€1;

satisfies

where M = max(M;;) and M;; are arbitrary positive numbers.

It should be pointed out that this theorem generalizes results of many mathe-
maticians (Cauchy, Landau, Montel, Jensen, Birkhoff, D. Markovi¢, Carmichael,
Walsh, Kojima, etc.), which follow for particular choices of parameters. In [4] S.
Presié proposes a short (one page) and elegant proof of this deep result.

3. The m—M calculus

The m-M calculus is an original theory proposed by S. Presi¢ in the monograph
published in 1996 [6], which has already had the second edition [5]. A brief version
of the monograph was published in 1998 [8]. In this section we shall outline the
main ideas of this widely applicable theory.
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The m~M calculus deals with the so-called m—M functions, i.e., functions f :
D - R (D = {a1,b1]%:--X[an,bs] C R"™) for which on each n-dimensional segment
A = [0q,B1] X -+ X [an, Ba] C D generalized minimum m(f)(A) and generalized
maximum M (f)(A) are effectively given. The definition of the m-M function and
some applications of that concept will be given in 3.1. Suppose now that

(7) for(:vl,...,zn,f,g,...,<,§,/\,V,—|,V,3)

is a formula built up from variables 2y, ..., z,, the symbols of real numbers, sym-
bols of m-M functions f,g,..., relational symbols <, < and the logical symbols
A,V,—,¥,3. The m~M calculus considers problems of the following type:

(8) Find all (z1,...,2,) € D for which formula (7) is satisfied.

The very general formulation (8) includes as special cases problems of solv-
ing systems of equations and inequalities, problems of unconstrained, constrained
and disjunctive optimization, problems of interval mathematics, computation of
n-dimensional integrals and solutions of differential equations, etc. In 3.2 we shall
explain the methodology used in the m-M calculus for solving (8) and point out to
the most important applications.

3.1. The notion of the m—M pair of a given function. Applications.
The key notion of the m—M calculus is introduced by the following definition:

DEFRINITION 1. The function f : D — R is an m—M function if for each n-
dimensional segment A = [o1,01] X -+ X [an,8,] C D a pair of real numbers
m(f)(A), M(f)(A) satisfying conditions

(9) m(f)(A) < f(z) < M(f)(8) forallze A

n 1/2
(10)  M()A) - m(f)A) -0, diamA = (Z(ﬁi—ai)Z) 0

i=1

is effectively given.

It is easy to see that f is an m—M function if and only if it is continuous on D.
The crucial issue in the m—M calculus is how to effectively compute an m-M pair
of a given function. To this end the following rules are introduced:

(i) m(C)(A) =C, M(C)(A) =C, (C is a constant),

m(z;)(A) = ai, M(z;)(A) =6, (i=1,...,n)
(ii) m(f +9)(A) = m(£)(A) + m(g)(A), M(f +g)(A) = M(f)(A) + M(g)(),
(i) m(=£)(A) = ~M(f)(A), M(—F)(A) = -m(f)(A),
(iv) m(£9)(A) = min(m(f)(A)m(g)(A), m(£)(A) M(9)(A), M(£)(A)m(g)(A),
M(1)(D)M(g)(A))
M(fg)(A) = max(m(f)(A)m(g)(A), m(fHA)M(g)(A), M(f)(A)m(g)(A),
M(H(Q)M(g)(A))
(v) m(min(f,9))(A) = min(m(f)(4),m()(A)),
M (min(f, g))(A) = min(M(f)(A), M(g)(A))
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(vi) m(max(f,9))(A) = max(m(f)(A), m(g)(4A)),
M (max(f, g))(A) = max(M(f)(A), M(g)(A))
(vii) m(*H/F)(A) = *%/m(f)(D), M(*F)(A)= *=/M(f)(4),
(viii) m(exp f)(A) = expm(f)(4), M(exp f)(A) = exp M(f)(B),
(ix) m(sin f)(A) =m(f)(A) - M(f)(B) +sinm(f)(A),
M (sin f)(A) = M(£)(A) ~ m(f)(A) + sin M(f)(A),
(x) m(cos f)(A) =m(f)(A) — M(f)(A) + cosm(f)(A),
M (cos f)(A) = M()(A) —m(f)(A) + cos M(f)(A),
(xd) m(1/f)(A)=1/M(f)(A),
M(1/£)(A) = 1/m(f)(A), if 0 ¢ [m(f)(A), M(f)(A)]
(xii) m{arcsin f)(A) = arcsinm(f)(A),
M (arcsin f)(A) = arcsin M(f)(4), if -1 <m(f}(A) and M(f)(A) <1
(xiii) m(In f)(A) =Inm(f)(A), M(nf)(A) =In M(f)(A), Fm(f) > 0.
(xiv) m(¥/F)(A) = ¥/m(f)(B), M(¥/F)(D) = %/M(f)(A), k>0, ke N,
if m(f) > 0.

Using these rules we can obtain m—M pairs for various elementary functions.
It is easy to show that in the case of differentiable functions m-~M pairs can be
computed using the corresponding Taylor expansion (Theorem 1.2 in [7}).

The other important notion in the m~M calculus is the so-called cell-decompo-
sition of n-dimensional segments. We shall first define a cell-decomposition of
an interval [a,b] C R. Any such decomposition D is an infinite set of segments
[@',¥] C [a, b], the so-called cells, where to each cell one of the numbers 0, 1, 2,...
(the so-called order of the decomposition) is assigned. In addition, the following
holds:

(i) {a,8] C D.

(ii) For each 7 € N there exists a finite number of cells in D of order r. The set
of all cells of order r is denoted by D,. The segment [a, b] is the unique cell
of order 0.

(iii) The union of all cells of order r, is equal to [a, b].

(iv) The interiors of two different cells of the same order r are disjoint.

(v) I d(r) denotes the maximum length of all cells of order r, then tl—lglo d(r) =0.

Notice that, by the definition of the cell-decomposition, for each decomposition
D of the segment [a, b] the following fact holds:

To each point = € [a,b] at least one sequence (Cr(z)) of r-cells is related such
that the condition (Vr € N) z € C,(z) is satisfied.

Consider now n-dimensional segment D = [a1,b1] X - -+ X [an,bp]. Let Dlas, by,
i =1,...,n be some cell-decompositions of segments [a;, b;], ¢ = 1,...,n, and let
DAD) = {P, x --- x P, | P; € D;ai,b;], i = 1,...,n}. Now cell-decomposition of
D is defined as D(D) = |, ¢y Dr(D). ,

One of the main methodological ideas of the m—M calculus can now be described
as follows:

(a) Sufficient conditions that an arbitrary n-dimensional segment A does not
contain a solution of the given problem are formulated in terms of m-M pairs.
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(b) A cell-decomposition of the initial segment is chosen and cells which do not
contain a solution are eliminated, i.e., only feasible cells are being further refined.
There are two possible outcomes of such a procedure. Either in the limit all
solutions are obtained or the conclusion that the solution does not exist is reached
in finitely many steps. As an illustration, consider the problem of solving the system

fi@i,. ., 2) 20, i=1,...,n
(Z1,..-,2n) € lar, b1] x -+ X [an, by]

(11)

Sufficient condition that a segment A does not contain a solution in this case is
given by

(12) F)M(f:)(A) <0

and it is now easy to formulate a cell-decomposition-based algorithm for solving
(11).

From the computational point of view the crucial issue is the number of cells
which is being generated by such an algorithm. Various examples presented in [7]
illustrate that this number need not grow exponentially. Consider the following:

ExAMPLE 1. Equation sinz = 1/z, z € [0,20]. Then

m(f)le,fl=a+sina—-F-1/a
M(f)[e,B] =B +sinB-a-1/8

The number of cells which are generated at steps 1,...,25 is the following: (1,1),
2,2), (3:4), (48), (5,15), (6,16), (7,16), (8,15), (9,16), (10,14), (11,14), (12,16),
(13,16), (14,15), (15,15), (16,15), (17,17), (18,16), (19,15), (20,15), (21,15), (22,15),
(23,15), (24,15), (25,15). At the 25th step all 7 solutions of the given equation are
obtained with 6 significant digits. :

Under suitable assumptions it is possible to prove that the behavior observed in
the case of Example 1 holds in the general case. Namely, the following theorem can
be proved (Theorem 2.4 in [7]):

THEOREM 5. Let fi(z1,...,2,) =0,..., falz1,...,2,) =0, (x1,...,2,) €D
be a system of equations where fi,..., fn : D = R are m—~M functions for which
(m(fi), M(f;)) are o;-Lipschitz m—M pairs.! Let ¢ = (ci,...,¢p) € D be a solution
of the given system and suppose that the following condition holds:

In some neighborhood A 3 (c1,...,c¢n) the functions fi,..., f, have continuous
partial derivatives of the first order and their Jacobian at (cy,...,cp) is different
from zero.

Let Fis(c,r) be the maximal set such that its elements are feasible r-cells, C,(c) €
Fis(c,r) and Fis(c,r) is cell-connected (each 2 elements can be connected by a

1An m~M pair of f is o-Lipschitz if there exist positive numbers ¢, K, o such that |M(f)(A)—
m(f)(A)| € K(diam A)? whenever diam A <e, A C D.
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chain of neighboring elements). Then it is possible to formulate a cell-elimination
procedure such that there exist positive constants L, ¢ and ro € N such that for
every r > ro the inequality diam(lJ Fis(c,7)) < L(d(r))° holds.

The following example illustrates the applications of m-M calculus to systems

of equations.

ExAMPLE 2. Consider the system in (z,y,2) € D C R®

e +z+siny+cosz=p
eV oz —ef=g
sinz —2)+(x+y)’ ~z—-y—z=r
where p, ¢, r are given real parameters.
Casel. p=2,¢=0,r=0,D =1,2] x [-2,1] x [-3,2]. There is exactly one

solution (z,y,z) = (0,0,0). Starting with the 6th step the number of feasible cells
is between 40 and 50. At the 24th step the following result is obtained:

—0.0000152587891 < x < 0.0000247955322
—0.0000247955322 < y < 0.0000324249268
—0.00000762939453 < z < 0.0000114440918
Case2. p=2,¢=0,r =0, D =[-5,5] x [1,5]. Step-by-step the number of
feasible cells is 1, 8, 21, 32, 24, 0. Hence in 6 steps it is concluded that the system
has no solution.

The use of the m—M calculus in solving complex equations is illustrated by the
following:

ExaMPLE 3. Complex equation e* = z , where z = z + ty. In the domain
[-20,20] x [—-20,20] this equation has 6 solutions x; + iy;, j = 1,...,6 described
as follows

2.65319109 < z; < 2.65319228 —13.94920826 < y, < —13.94920731
2.06227660 < T, < 2.06227899 —7.58863215 < y, < —7.58863020
0.31813025 < 75 < 0.31813264 —1.33723736 < y3 < —1.33723497

T4 = T3 Ya = —Ys
5 = T2 Ys = —Y2
Zg = T1 Yé = —Y1

The calculations up to the 25th step show that starting with the 6th step the

number of feasible cells is about 16. For instance at steps 24 and 25 these numbers

are 15 and 16, respectively.

The m-M calculus can also be applied to evaluation of n-dimensional integrals, as
well as to functions given by means of infinite sums or integrals, which is illustrated
" by the following examples:
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ExampLE 4. Evaluate [f,zydzdy, where C = {(z,y) e R2|0<2<2,0<
y<2 2+e(z+y+2z)>etl +evtl} _
Using a suitable cell-decomposition the following estimates can be obtained:

Step 1: 0.0000000000 000000 < I < 0.5625000000 000000
Step 2: 0.0278320312 500000 < T < 0.2424316406 250000
Step 3: 0.0950307846 069336 < I < 0.1581497192 382812
Step 4: 0.1179245151 579380 < I < 0.1341890022 158623
Step 5: 0.1239582093 403442 < I < 0.1281216432 544170
Step 6: 0.1255188694 198068 < I < 0.1265613023 800256
Step 7: 0.1259090350 460332 < I £ 0.1261702301 487544
Step 8: 0.1259090350 460332 < I < 0.1259090350 460332
Step 9: 0.1259090350 460332 < I < 0.1259090350 460332

00
EXAMPLE 5. Let f be a function defined by the equality f(z) = . = i 5
=0

Consider the equation f(z) = ¢, a < z < b, where @, b, ¢ are given parameters.
Case 1. ¢ =1.5,a =0, b= 1. At the 20th step the double inequality 0.54416 <
z < 0.54417 is obtained. The number of feasible cells at steps 1,...,20 is (1,1),
2,2), 3,3), (4,3), (5,2), (6,3), (7,2), (8,2), (9,3), (10,2), (11,3), (12,3), (13,2),
(14,2), (15,2), (16,3), (17,2), (18,3), (19,2), (20, 3).
Case 2. ¢ =1.5,a = 0.6, b = 1. At the 3rd step the number of feasible cells is 0
so that the given equation has no solutions.

EXAMPLE 6. Let f be defined by f(z) = fo mdt Consider the equation

f(z) = ¢, a < z < b, where a, b, ¢ are given parameters.

Case 1. ¢ =1, [a,b] = [0,1]. At the 13th step the double inequality 0.905029297
< z < 0.905761719 is obtained, while the number of feasible cells is: (1,1), (2,1),
(3,2), (4,2), (5,4), (6,3), (7,3), (8,3), (9, 1), (10,3), (11,3),(12,4), (13,4).

Case 2. ¢ =1, [a,b] = [3, 100]. The number of feasible cells is (1,1), (2,2), (3,2),
(4,1), (5,0), so that the given equation has no solutions.

3.2. The notion of m—M pairs of the first order <, < formulas. Ap-
plications. The most important extension of the concept of an m—M function is
that of an m-M pair of the first order formula. Briefly speaking, the first order <,
< formulas are built from some variables, the symbols of real numbers, symbols
of some m-M functions, relational symbols <, < and logical symbols A, V, =, V,
3. A variable v is free in some first order formula ¢ if v does not occur in some
part of ¢ which has the form (Vv)(-:-) or (3v)(---), where (---) denotes the scope
~ of the quantifier; otherwise v is a bounded variable in ¢. The formula ¢ is called
<-positive (<-positive) if it is built using the relational symbols < (<) and the
logical symbols A, V, ¥, 3 (without the negation symbol).

Let now ¢ be a given <, < formula whose all variables are among z;,...,z,.
Suppose that to each segment I(z;) a cell-decomposition D(I(z;)) is assigned, i =
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1,...,m. The m-M pair of ¢ with respect to the cell-decompositions D(I(z;)),
i =1,...,mis a sequence of ordered pairs (mg(p), Mo(¥)), - .., (m,(¥), Mr(¥)),. ..
obtained according to the following rules which are applied recursively. We point
out that during the process each bounded variable z; is replaced by a new variable
X;.
() melf@tyer¥0) PGy s 7)) = Me(F)Wh X - X 4) p M) (2) - x 21)
My (f(yr,-- - up) p9(21, -1 20)) = Me(f) (1 X -+ X yp) pmr(g)(21 X -+ X 29)
(p may be < or <)
Variables y1,...,¥p, 21, . . ., 2q are some of y,...,Zm, X1,..., Xmn. Denotation ’
means the following: z) denotes C,(z;), while X denotes X;
(i) mr(aAB) =me(a) Am.(8), M (aApB)=M(a)AM(B),
(iii) mr(aV B) = m(a) Vm.(8), M.(aV B) = M (a)V M, (8),
(iv) mr(-a) = ~M,(a), M (=a)=-M(a),
(v) Let a(z;) be a formula having z; as a free variable and g be quantifier V or
3. Then we have the following equalities
mr((gzi € I(z:))e(z:i)) = (aXi € Dr(I(z:)))my (X))
M, ((gz: € I(z:))olz:)) = (¢Xi € Dr(I(2:))) Mr(a(X5))

For instance, if ¢ is the formula (Vx2) f(z1,22) < g(z2,23), then m,(p), (r =
0,1,...) can be constructed as follows

me((V22) f(z1,72) < g(z2,23)) = (VX2 € Dr(I(z2)))m,(f(z1, X2) < 9(X2,23))
= (VX2 € D (I(z2)))m(f)(Cr(z1) X X2) < M(9)(X2 % Cr(z3))

Hence, m,(p) can also be treated as some first-order formula. Then X; is a
bounded variable and the symbols C(z1), Cr(z3) should be taken as its free vari-
ables. Accordingly, if we denote ¢ by ¢(z1,z3), emphasizing that z; and z3 are free
variables of ¢, then it is natural that m.(yp) is denoted by m,{)(Cr(z1), Cr(x3))-
Such notation will also be used in the general case.

The following theorem has been proved in [7] (Theorem 4.1).

THEOREM 6. Let o(21,...,Zm) (withm > 0 ) be a <, < - formula whose all
free variables are among ti,...,Zy. Then for every r € N the following double
implication is true

M. (p)(Cr(z1),-.-,Cr(zm)) = @(z1,...,Zm) = m(@)(Cr(z1),...,Cr(Tm))
provided that the variables x1,. ..,z have any values from their segments I(x;),
..., I(zm), respectively.

Intuitively speaking, m,(y) and M,(yp) are “logical” minorant and majorant of
formula ¢, respectively. '
The next theorem is important for the application of the m—-M calculus:

THEOREM 7. (Theorem 4.3 in [7]) Let all free variables in formula ¢ be among
the variables z1,...,Zy (with m > 0). Then:
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(i) if p is a <-positive formula, then the following equivalence holds:
QO(.’EI, e 1~7f'm) A (37‘ € N)MT((lp)(Cl(xl) ] C.,-(IEm))
(ii) if ¢ is a <- positive formula, then the following equivalence holds:
@(z1,---,7m) & (Vr € N)mo(0)(Cr(z1), ..., Cr(Tm))
In both cases it is supposed that the variables z1,. ..,z have any values from
their segments I(z1), ..., I{z;), respectively.

Consider now an application of the stated results on the following class of prob-
lems:
(i) If z1,...,z, are all free variables of formula ¢, find all values of z; € I(z;),
i=1,...,m for which formula ¢ is satisfied.
(ii) If formula ¢ has no free variables establish whether ¢ is true or false.
In the case (i) we can apply a procedure similar to that outlined in 3.1. In the
case (ii) the following procedure may be used:

PROCEDURE 1.
(i) Setr=0
(i) Calculate m,(¢). If m,(¢p) is false the procedure halts and the answer is: ¢ is
false. Otherwise, go to (iii).
(iit) Calculate M (p). If M, (i) is true the procedure halts and the answer is: ¢ is
true. Otherwise, go to {iv).
(iv) Replace r by r + 1 and go to (ii).

Many different problems have equivalent reformulations which have the form (i)
or (ii), which is illustrated by the following examples:

smallskip Example 7 Examine the truth of the formula (Vz € [1.4,1.5])z% >
1.8... where 1.8... is a constant satisfying 1.8 < 1.8... < 1.9. Obviously, the
problem is logically equivalent to the problem:

Is the formula (Ve € [1.8,1.9])(Vz € [1.4,1.5])z% > ¢ true or false.

EXAMPLE 8. Find z € [0,1] such that z? = ¢ where c is a constant satisfying
1.69 < ¢ < 1.96. It has been shown in [7] (Example 5.3) that the problem is
logically equivalent to the problem of the type (i):

Find z € [1,2] such that the formula (3c € [1.69, 1.96])z? = c is true.

In the conclusion let us point out that the ideas outlined in 3.1 and 3.2 can be
used for constructing various algorithms in different areas of applied mathematics,
such as:

— Solving systems of equations and inequalities
— Finding n-dimensional integrals
— Solving problems expressed by positive < - formulas. Among others
Problems of unconstrained optimization
Problems of constrained optimization
Problems of disjunctive programming
Problems of interval mathematics.

In Chapter 6 of [7] it has been shown how approximately to determine functions

satisfying a given m~M condition, which is some functional condition, or some
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difference condition, or a differential equation. This enables extensions of the m—M
calculus to the initial value problems for differential equations and other types of
functional equations. More details on the m-M calculus and its applications can
be found in [6], [7], [8].
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EDUCATIONAL AND TUTORIAL WORK
OF PROFESSOR SLAVISA B. PRESIC

Slobodan Vujié

We shall speak here today about the work of Professor Slavisa Presi¢, particu-
larly about segment of his work being performed for decades for the benefit of our
junior students of mathematics. These efforts of his include, besides teaching, long
and frequent professional discussions with students of the Faculty of Mathematics
which is today, generally speaking, one of the best schools of its kind. Together
with his prolific scientific work, which in principle represents a difficult road paved
with many unsuccessful trials and with only a few achievements, Prof. S. Preié is
always ready to find time for bringing culture and enlightenment to his public in
various ways: one cannot avoid spending one’s life, but one can dedicate parts of
it to others.

Enlightening others - words of our language quite clear in their meaning, today
sound a little obsolescent. Those activities of Prof. S. Pregi¢ include the lectures
he gave throughout this country for teachers of mathematics, writing of teachers’
handbooks, starting and managing professional journal of mathematics methodol-
ogy and pedagogy and particularly, writing textbooks for secondary schools and
university. All this was done in an effort to prove in practice advantages of a new
approach to studies of mathematics.-

The beginnings of such work of Prof. S. Pre§i¢ belong to rather distant past,
if passage of time is measured by human life-span: it was the end of the sixties
and the beginning of the seventies. A fight for new study programs was begun at
different professional commissions and panels of politicians; how those proceedings
looked like one can see from the minutes of one such meeting, where, after hours
of discussion an almost incredible question was asked by the defenders of the “old
and proven programs” : “What’s the use of implication for children?” Such old
programs and textbooks had to be strongly criticized. Even today we remember
the eloquent, decisive and rational criticism of Prof. S. Predi¢ during those long
sessions. After the victory, which duly came, it was necessary to create excellent
mathematical textbooks on the spirit of the new professional approach. The decisive
factor in this was the appearance of the “red-and-black book” by Prof. S. Presié,
which represented a cannon of good mathematics and good teaching of this subject,
although it was only a modest textbook for the first grade of secondary specialized
schools.
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Some more good book followed: Modern Approach to Teaching (1975), Text-
book by authors S. Presié, B. Alimpic (1977), journal “Mathematics”, the Textbook
of Mathematical Logic (1974), etc.

The acceptance of these textbooks was not instantaneous, and some other half-
baked products were still being published, specially among so-called “collections”
of mathematical problems. This situation, unfortunately, still exists to a degree.

The “red-and-black book”, important for being the first of the kind, and pub-
lished without a single printing error in its first edition, is still fresh and “modern”,
which is invariably the case with all worthy work. Many teachers and their students
have found in it a new much more beautiful world. We can find there fundamental
concepts of mathematical logic, set theory, notions of the function, relations, oper-
ations. An edifice called “real numbers field” was erected with rigorous attention
to detail. (here we could stop listing further items) The exposition is done with
utmost clarity and care. Some new thoughts are planed in a form adapted to the
users’ age; for example, ostensibly non-definable concept of a set he explained by
using the right and cautious words: he went from individual object to a set of such
objects by using the image of sticks and thread binding them together. We remem-
ber sardonic smiles with which “triviality”of such an approach was greeted. This
correct idea has, after right considerations, brought about a beautiful miniature.
recently presented by Prof. S. Presié, and called Algebraic Definition Of Finite Sets.
This happened to be a small subsidiary result.

Pedagogical work of Prof. S. Presi¢ is intertwined whit deep insight into Math-
ematics: the language used at this level of thought called syntax is different from
higher levels of meaning called semantics. As for the syntax side, almost nowhere
in the world can we find mathematical texts with such usage and with such effects
of written logic. In this limelight many concepts are recreated, so that we are
compelled to comprehend and view some seemingly known fields and segments of
mathematics in a new light. For example, “Varia I, II”, his newest work is full
of true Mathematics and full of true enlightenment. Ideas of great thinkers are
respected without futile reverence. Mathematics is not a finite notion, it is not
“seography-like”, which is well-known and favorite expression of Prof. S. Prefic.
This attitude goes against such presentation of mathematics in which students are
instructed that “this belongs here” and “that belongs there”, and everything is
finite and beyond any doubt.

Mathematics should be discovered, but it also should be made-teaches us Prof.
S. Presié very convincingly; in his books which bring enlightenment to us he shows
how mathematical is “made”. What is the meaning of being “modern” in teaching
mathematics? Works of Prof. S. Presi¢ bestow an honorable meaning upon that
word; it means that while teaching others one should sow ideas of true Mathematics.
in adapted form, without petrifying them. In that way we can look up from the
foot of the edifices forming Mathematics and see, beyond their tops, sky free for
new enterprise. In such intellectual environment the works we tried to speak about
are being made.
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CUT ELIMINATION IN
A CATEGORY-LIKE SEQUENT SYSTEM

Zoran Petrié
Dedicated to Professor Slavisa Preié

ABSTRACT. A sequent system L for the conjunction-implication fragment of intu-
itionistic propositional logic is introduced. Sequents of £ are of the form A + B,
where A and B are formulae, i.e. sequences of formulae with exactly one mem-
ber. With a modification of Gentzen’s procedure a cut elimination theorem for £ is
proved. Some categorial consequences of this result are pointed out.

Introduction

The work on this note was inspired by the paper of Kelly and MacLane [1971]
where the cut elimination procedure was used to prove two facts connected with
symmetric monoidal closed categories, namely the naturality of its canonical trans-
formations and the property of coherence. The authors were inspired by Lambek
(see [1968]) who was the first who has used a cut-elimination technique in catego-
ry theory. However, we stay here in the logical framework and try to clarify the
process of preparation of a logical system for further categorial purposes.

System L. The sequent system L for the conjunction-implication fragment of
intuitionistic propositional logic is introduced as follows. Formulae of the logic are
built from an infinite set of propositional letters and the constant T, by the logical
connectives A and —. The set of all formulae is denoted by F. Sequents of £ are
of the form A+ B for A and Bin F. We call A in A B the antecedent, and B
the consequent of the sequent. In order to introduce the rules of inference of £ we
need the following auxiliary notion of A-context, which corresponds to the notion
of (poly)functor in categories. A A-context is defined inductively as follows:

1° The symbol [] is a A-context.
2° If F is a A-context and A € F, then (F A A) and (A A F) are A-contexts.

1991 Mathematics Subject Classification. Primary: 03F05; Secondary: 18A23.
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3° If F and G are A-contexts, then (F A G) is a A-context.

For a A-context F' we say that it is a A;-context if the symbol O occurs in F
exactly once. For F a A-context and A € F, we obtain F(A) by substituting A for
Oin F,eg. if F=(BAO)AC, then F(A) = (BAA)AC.

The azioms of L are

ag:AFA, forevery Aec F,
The structural rules of L are

F(AN(BAC) D F((ANBYAC)+D

(8F) F(AAB)AC)FD (6F) F(AN(BAC)F D
F(AANB)FC
OF) FEAAFC
F(AAA)F B iy ECDFB
wWr) —Fa v B (%) F(A)F B
F(A)F B .. FLAANT)FB
(%) FAATIF B ) ~F v B

AFB  G(B)FC

where F' is a A; context and G is a A context.
The rules for connectives are

(A)Ai-c BFD
AANBF-CAD

) AANBFC ) AFrB CADFE
BrFA-SC (AN(B-C)YADFE

A proof of a sequent A - B in L is a binary tree with sequents in its nodes, such that
Al B is in the root, axioms are in the leaves and consecutive nodes are connected
by some of the inference rules above.

What are the differences between £ and the corresponding fragment of Gen-
tzen’s system LJ (see [1935])? In £ we have just one meta-logical symbol + in
a sequent and we omit Gentzen’s commas in the antecedents, whose role is now
covered by the logical connective A. Also, we can’t have empty either the antecedent
or the consequent of a sequent in £. The logical constant T serves to fill gaps in
antecedents. These discrepancies between £ and LJ arise because in £ we want
antecedents and consequents of sequents to be of the same sort (namely members
of F) and this enables us to look at an £ sequent as an arrow with the source being
the antecedent and the target the consequent of the sequent.

Also, the rule (A) is a rule of simultaneous introduction of the connective A
on the both sides of a sequent: there is no counterpart for this rule in LJ. This
difference is not categorially motivated. We believe that £ completely separates
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structural rules from the rules for connectives. On the other hand, the LJ rules &-IS
and&-IA (see 1.22 of [1935]) have hidden interchanges, contractions and thinnings.

Since we prove the cut-elimination theorem through elimination of mir, as
Gentzen did too, we have postulated mix rule (i) as primitive. However this mix is
something different from Gentzen’s mix. It is liberal in the sense that the A-context
G in (pg) need not to capture all factors B (see the definition below) as arguments
in G(B). The formula B may also be used in Step 2° of the construction of the
A-context G, i.e. mix need not to “swallow” all the occurrences of B in G(B). Also,
there are no categorial reasons to prefer cut to such a mix. In both cases, we do
not have categorial composition of arrows corresponding to both premises of the
rule, but a more involved composition of the right premise with an image of the
left premise under the functor corresponding to a A-context. The only difference is
that in the case of cut this is always a A;-context.

An advantage of £ is that its proofs can be easily coded. For example the proof

qtq
pkp gAT kg
(pAP=q))ATkgq
pA(p—=q) kg

is coded by
15(apAmag)

This fact helps when we want to postulate equalities that should hold between the
proofs of L.

For the proof of our main result we need the following notions of degree and
rank. The degree of a formula is the number of logical connectives in it. However,
because of the categorially motivated elimination of the comma, the symbol A plays
a double role and in order to define rank, we define as follows a set of factors of A,
for every A € F:

1° A is a factor of A,
2° if A is of the form A; A Az then every factor of A; or A is a factor of A.

Now, we introduce (in the style of DoSen) an auxiliary indexing of consequents
and factors of antecedents in a mixless proof of £, which will help us in defining the
rank of an occurrence of a formula in such a proof. First we index all the consequents
and all the factors of antecedents of axioms by 1 and inductively proceed as follows.
In all the structural rules and the rule (A) the index of the consequent in the
conclusion is increased by 1. In (A) and (x) the index of the consequent in the
conclusion is 1. Every factor of the antecedent preserved by a rule has the index
increased by 1, and all the factors introduced or modified by the rule (take care
that we always speak about occurrences of formulae and not just about formulae)
have index 1 in the conclusion. In (wr) the occurence of A4 in the conclusion is
indexed by the maximum of indices of distinguished A’s in the premise, increased



76 Petrié

by 1. In the example of the proof given above this indexing looks like
¢ rq
pEp (@PATH'HE
(@A )) AT
@’ A= 9P+

Then the rank of an occurrence of a formula in a proof is given by its index.

Cut-elimination theorem and consequences

Our main result is the following.

THEOREM. Every proof in £ can be transformed into a proof of the same
root-sequent with no applications of the rule (u).

Proof. As in the standard cut-elimination procedure it is enough to consider a
proof whose last rule is (¢) and there is no more applications of (u) in the proof.
So let our proof be of the form

1 iy
AFB  GB)FC
GA)FC

with m; and w2 mixless. Then we define the degree of this proof as the degree
of B and the rank of this proof as the sum of the left rank, i.e. the rank of the
occurrence of B in the left premise of (x), in the subproof 7, and the right rank, i.e.
the maximum of all ranks of distinguished factors B in the right premise of (1) in
the subproof 7;. Then we prove our theorem by induction on the lexicographically
ordered pairs (d,r) for the degree d and the rank r of the proof.

1. r = 2 The following situations should be considered: 1.1. m; or my are
axioms; 1.2. m; ends with (A); 1.3.1. m; ends with (x) and 7, ends with (A); 1.3.2.
7, ends with (*) and 72 ends with (7). We illustrate here just Case 1.2.

Suppose our proof is of the form

m wy
A1 [ B1 Az + By A Up]
AiNAs F By A By G(Bl/\Bg)FC u

G(A1 A Ag) FC

Then this proof is transformed into the proof

ny Ty
Tri As By G(Bl A Bz) FC
Al B G(Bl A Ag) FC

G(ALAA2)FC
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where both applications of (1) have lower degree.

2. r > 2 The following situations should be considered: 2.1. 72 ends with a
structural rule; 2.2. m, ends with (A); 2.3. my ends with (*); 2.4. m; ends with
(A); 2.5. m ends with a structural rule; 2.6. m; ends with (A). Cases 2.1-2.4
are considered under the assumption that the right rank is greater than 1, while
2.5 and 2.6 are connected with the assumption that the left rank is greater than 1.
Case 2.1 includes a lot of subcases and we illustrate one of them here.

Suppose our proof is of the form

2
1 Gi(By+C
AFB  GBFC 5
GAFC

where G is obtained from G; by substituting H A O for a subcontext (H A By) A
(B2 A B3) of Gy, and H is a A-context and B = B; A (B2 A B3). We call this new
box of G the principal boz. Then this proof is transformed into the proof

m T
AFB  G(B)FC
m Gi(A) FC .
AFB- G2(B)F C ﬁ
G(A)FC

where G, is obtained from G by substituting A for all boxes except the principal
one which remains the unique box in G2. Then the upper application of (1) has
its rank decreased by one and the right rank of the lower application of (u) is 1.

It is possible to check that all the reduction steps of our cut-elimination pro-
cedure are covered by the equalities of cartesian closed categories which can be
naturally defined in the language of £. These equations are sufficient for cut elimi-
nation, but they need not all be necessary. This is an argument for the justification
of these categories. However, the main consequence of our Theorem is another
proof of the result from [1992], which claims that all canonical transformations
from cartesian closed categories are natural in the extended sense. The fact that
all proofs of £ can be reduced to a cut-free form, directly eliminates all obstacles in
the way of naturality. This result was originally proved by the apparatus of natural
deduction, and this is an alternative, sequent system, approach.
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‘AN AUTOMATED THEOREM PROVER
FOR THE PROBABILITY LOGIC LPP

Miodrag Raskovié, Zoran Ognjanovié,
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Dedicated to Professor Slavisa Presié

ABSTRACT. We consider a propositional probability logic denoted LPP. LPP
is a conservative extension of the classical propositional logic. The language
of LPP contains probability operators of the form P>, for every real number
s € [0,1]. The intended meaning of a formula of the form P5,a is ’a holds
with the probability at least s’. We obtain a decision procedure for LPP by
reducing probability formulas to systems of linear equalities and inequalities.
We describe an automated theorem prover based on this procedure.

1. Introduction

Probabilistic reasoning has become a subject of increased interest in theoret-
ical computer sciences, artificial intelligence, analyzing distributed systems, cryp-
tography, etc. Since in [4] a method for probabilistic deduction was proposed,
various attempts to deal with such problems appeared in the literature. Some of
them concerned probability logics as a suitable framework for uncertainty reasoning
1, 2, 5, 6, 7, 8, 9, 10]. Formulas from these logics speak about probabilities,
but they remain either true or false. Thus, the probability logics are not fuzzy
logics. The propositional probability languages are obtained by adding probability
operators to the propositional language. The probability operators have (in our no-
tation) the form P>,, with the intended meaning that P>sa holds if the probability
of a is greater or equal to s.

In this paper we consider a probability logic denoted LPP. Axiomatizations
for some variants of the logic and the corresponding completeness and decidability
theorems are given in [1, 7, 8, 9]. The language of LPP contains probability
operators of the form P>, for every real number s € [0,1]. This logic allows

Supported by the Ministarstvo za nauku i tehnologiju Republike Srbije, grant 04M02 through
the Matematicki institut SANU, Beograd.
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statements like ’if a holds with the probability s, and 8 follows from « with the
probability r, then the probability of 8 is ¢, where a and 3 are events described
by classical propositional formula. We obtain a decision procedure for LPP by
reducing probability formulas to systems of linear equalities and inequalities and
describe an automated theorem prover based on this procedure.

2. Probability logic LPP

The LPP-language is obtained by adding a list of probability cperators of the
form Ps,, for every real number s € [0,1], to the classical propositional language.
Starting from a set of propositional letters ¢ = {p, g, r, ...} and the classical opera-
tors — and A, the set of classical propositional formulas For¢ is defined in the usual
way. Let us denote formulas from For¢ by @, 8, ... The set Forp of all proba-
bility formulas is defined as follows. If o € Forc, then P> a is a basic probability
formula. The set of all probability formulas is the least set Forp containing all
basic probability formulas, and closed under formation rules: if A, B € Forp, then
—A, AA B € Forp. Let formulas from Forp be denoted by A, B, ..., For¢c UForp
by For, and formulas from For by ®, ¥, ... For example, ~P>sa A P>.(a — f)
is a syntactically correct formula, while (P>ra) = 8 and P>;P>ra are not. In
other words, combinations of classical propositional and probability formulas and
iterations of probability operators are not allowed. We use the usual abbreviation
for the other classical connectives (V, —, }), and also denote —Ps;(a) by Pcy(a),
Ps1_s(—a) by Pcs(a), =P<s{a) by Pse(a), and P>o(a) A =Psq(a) by P-,(c).

Note that there are uncountably many formulas. This does not make any
problem, since we only consider decidability of the logic. On the other hand, the
completeness problem for LP P is not so straightforward. See [1] for more discussion
on this subject.

In order to give semantics to formulas from the set For, we use some notions
from the measure theory. We suppose that the reader is familiar with them.

DEFINITION 1. An LP Pyess-model is a structure (W, H, u,v) where:

e W is a set of elements called worlds,

e H is a o-algebra of subsets of W,

e u: H —[0,1] is a o-additive probability measure,

e v:Wx¢— {T,L}is avaluation which associated with every world w € W
a truth assignment v(w) on the propositional letters, and

for every propositional letter p € ¢ the set [p]lw = {w € W : v(w)(p) = T}
is measurable (i.e. [plw € H). |

The valuation v is extended to a truth assignment on all classical propositional
formulas in a usual way. Note that we insist that every set of the form [pjw
is measurable. It is easy to see that for every formula a € Forg, the set [a]w
is also measurable, i.e. that in every model every event described by a classical
propositional formula is associated with a measurable set of worlds. We call such
models - measurable models. The subscript Meas in LP Pyeas denotes that we work
with the class of all measurable models.
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DEFINITION 2. The satisfiability relation |=C LPPyeas % For fulfills the fol-
lowing conditions for every LP Pyeas-model M = (W, H, p, v):

1. for any a € For¢, M | a iff for every world w € W, v(w)(a) = T,
2. for any a € Forg, M = Ps,a iff u(la)ar) > s,

3. for any A € Forp, M = -Aiff M £ A, and

4 forall A Be Forp, M=AABIf M = Aand M = B.

A formula ® € For is satisfiable if there is an LP Pyeas-model M such that
M E ®; ¢ is valid (= ®) if for every LPPyeas-model M, M = ®. Note that
classical propositional formulas do not behave in the usual way. For example, it
follows from Definition 2, that for some o, 8 € Forc and some model M it can be
M = aV B, but that neither M |= a, nor M |= . Similarly, it can be that M [~ a
and M £ -a.

3. Decidability

In the sequel we will use +&® to denote either ® or -®. Let A € Forp, and
P1,--- ,Pn be alist of all propositional letters that appear in A. A basic-conjunction
a of A is a formula of the form £p; A...A+p,. If A contains n propositional letters,
there are 2™ basic conjunctions of A. For different basic conjunctions a; and a; we
have F a; = —a;. Thus, in every LPPyeas-model p(a; V a;) = p{a;) + p(a;). It is
easy, using propositional reasoning and the theorem

THEOREM 1. Let a, 8 € Forc. If |= a 3 3, then |= P>,a <3 P>,[3, for every
s€0,1].

to show that every probability formula A € Forp is equivalent to a formula

m kg
(1) DNF(A) = \/ A £Pss;(p1,-- ,Pn)
i=1 j=1 -
called a disjunctive normal form of A, where P>, ;(p1,... ,pn) denotes that the

propositional formula which is in the scope of the probability operator P, ; is
in the complete disjunctive normal form, i.e. that the propositional formula is a
disjunction of the basic conjunctions from A. The next theorem is proved in [9].
We give it here since our prover relies on the described decision procedure.

THEOREM 2. The logic LPP is decidable.

PRrOOF. There is a procedure for deciding satisfiability and validity for clas-
sical propositional formulas. Hence, we consider probability formulas only. A
probability formula A is equivalent to DNF(4) = VL, /\fj__l £P>,,(P1,--- ,Pn)-
A is satisfiable iff at least one disjunct from DNF(A) is satisfiable. Let the prob-
ability of the basic conjunction a; be denoted by y;. We use an expression of the
form a; € £P>4(p1, .- ,Pn) to denote that a; appears in the classical propositional
part of £P>,(p1,... ,Pn)- A formula of the form Pss(p, ... ,ps) is satisfiable in a
model M = (W, H, u,v) iff the probability of [Vat,-EP>a(P1:~-- ) Ot is at least s.
And, since basic conjunctions are mutually exclusive, u([\/ 0, €Ps o (P11 pr) aglm) >
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s holds iff 37, cp. (p,. ,p")/‘l’([ati]M) > s. Similarly, a formula of the form
~P>4(p1, .. ,pn) holds in a model M iff the probability of [V, ep. (pr.... pn) %10
is less than s iff Zae,.ePZ,(m,...,pn) w(lag]m) < s.

Thus, a disjunct D = /\;?=1 +Ps5,;(p1,--. ,pn) from DNF(A) is satisfiable iff
the following system of linear equalities and inequalities is consistent:

Z?=1 Yi = 1
yi >0,fori=1,...,2"
Z 81 lf + P>81 = P>_.,1
(2) 220i€Ps sy (91, pa)ED Ut { <sy if £ P5, =P,

{ >, if £ Psg, = Psg,

ZaeEPg.k(phu-,Pn)eD Ye <s |if £ PZSk = .P<3,n

The first equation corresponds to the fact that the measure of the set of all worlds
in a model is 1, while the set of inequalities y; > 0 corresponds to the nonnegativity
of the probability. The other inequalities correspond to formulas from D. Now, the
problem of satisfiability of an arbitrary formula A is reduced to the linear systems
solving problem, and the satisfiability problem for the L P P-logic is decidable. Since
a formula is valid iff its negation is not satisfiable, the validity problem for the LP P-
logic is decidable, too. O 0

4. An automated theorem prover

Our LPP-theorem prover is, in fact, a satisfiability checker for probability
formulas. Here is a high level description of the procedure in a Pascal-like language:

procedure CheckSatisfiability (Formula A)

begin
DNF(A) := disjunctive_normal_form(4);
for every disjunct D from DNF(A) do
begin
SYSTEM(D) := generate_system(D);
solution := solve(SYSTEM(D));
if solution is not empty then
begin
write ( ’A is satisfiable’ );
exit;
end;
end;
write ( ’A is not satisfiable’ );
end;

For example, if the input of the prover is the formula P>q.8p A Pco.op A P>0.7¢ A
P<0.8q A P>o.9(p A q), the obtained result is that the formula is not satisfiable. On
the other hand, P>¢.5p is satisfiable, as well as ~P>q.5p. Thus, neither P>q 5p nor
P> 5p are valid.

% {\»,;,;W@M
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The above procedure allows the following modification. The probability lan-
guage can be extended by a probability operator of the form P>., where z de-
notes unknown probability. Then, we can solve the corresponding linear sys-
tems (2) and find for what = they are (un)satisfiable. For example, the formula
(P>0.8P A Po.9(p —+ @) A Pcogs(p — q)) = Pcgq is valid for every z € [0.95,1].
The formula =P p is satisfiable for every x € (0,1] which means that ~P>¢p is a
contradiction, i.e. that P>op is valid, while P>p is not valid for any z > 0.

Finally, it is easy to detect inherent parallelism in the procedure CheckSat-
isflability: disjuncts from DNF(A) can be processed independently by individual
processes. Afterwards, their results can be combined to form the solution.

5. Conclusion

There are many places in artificial intelligence (expert systems, decision making
systems, fault tree analysis, ... ) where knowledge is not crisp. If we are able to
attach probabilities to uncertain information, it would be useful to have an effective
formal procedure to infer conclusions. Presented LP P-logic and the corresponding
decision procedure offer a suitable way to reason in such situations. For example,
using probability formulas we can describe some events and check whether some
events with attached probabilities are consequences of some other events. Also, we
can compute what is the probability of a consequence of some premises, and find
the most promising consequence among a set of events.
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ABSTRACT. We focus on finding general solutions of the functional equation
A(z, B(z,y)) = y in the class of groupoids where A, B are unknown groupoid
operations over the same set. We also consider functional equations symmetric
to the mentioned one, as well as systems of such functional equations.

1. Preliminaries

In what follows we present description of the general solutions of the func-
tional equation A(z, B(z,y)) = y, as well as symmetric ones: A(z,B(y,z)) = v,
A(B(y,z),z) =y, A(B(z,y),z) = y, where A and B are unknown groupoid opera-
tions over a same set. We characterize the solutions in the class of finite groupoids
and in the class of all groupoids. The main motivation to consider such functional
equations arose from the groupoid identity A(z, A(z,y)) = y [5]. Clearly, if this
identity holds in a groupoid, then the pair (4, A) is a solution to our equation,
where A denotes the operation of the groupoid. Further back, consideration of
such an identity was motivated by the fact that groupoids that satisfy it have or-
thogonal complements which are right zero (or left unit) groupoids. So, we thought
that finding the general solutions of these functional equations might be of interest.
In the sequel we frequently use the following notions. A right zero groupoid is a
groupoid satisfying the law zy = y. Every right zero groupoid is a semigroup where
each element is a right zero and a left unit. A groupoid (G; A) is said to be left
(right) cancellative groupoid if

A(a:‘, y) = A(z,2) = y==z (A(y,z) = A(2,2) = y=2)

1991 Mathematics Subject Classification. Primary 20N02, 20N05.
Key words and phrases. functional equation, (left, right zero) groupoid, (left, right)
quasigroup.
84
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for all z,y,z € G. A groupoid that is both left and right cancellative will be
called cancellative. (G;A) is called left (right) solvable groupoid if the equation
A(z,a) = b (A(a,y) = b) has a solution z (y), for every a,b € G. If (G; A) is both
left and right solvable then it is solvable. (G; A) is said to be left (right) quasigroup
if it is left (right) solvable and right (left) cancellative. The solution z (y) of the
equation A(z,a) = b (A(a,y) = b) in a left (right) quasigroup is unique, and vice
versa. {G; A) is a quasigroup if it is left and right quasigroup. Sometimes we shall
call the operation A (left, right) cancellative, solvable, quasigroup if the groupoid
(G; A) has the mentioned property. The following simple facts hold.

PROPOSITION 1.

(i) Every finite left (right) cancellative groupoid is a right (left) quasigroup.
(i) Every finite left (right) solvable groupoid is left (right) quasigroup.

If (G; A) is a quasigroup, then the quasigroup operations A~!, ~14, A*, defined
on G by A~Y(z,2) = y, “A(z,y) = z, A*(y,z) = z if A(z,y) = z, are called
parastrophes (or conjugates) of A. If (G; A) is left (right) quasigroup, then (G; A*)
is right (left) quasigroup, the left parastrophe ~!A (the right parastrophe A~!) is
defined and (G;7'A) ((G; A™1Y)) is left (right) quasigroup as well.

2. Functional equation A(z, B(z,y)) =y in the variety of groupoids

We focus our attention on the functional equation A(z, B(z,y)) = y where A
and B are unknown groupoid operations on a same set.

ProprosITION 2. If A(z, B(z,y)) = y is satisfied by some groupoid operations
A and B, then:

(i) B is left cancellative.

(i) B(z,y) =2 => A(z,z) =y.

(iii) A s right solvable.

(iv) A(z,z) =yABlz,y) =t = Alz,2) = A(z,t) =y.

(v) If B is right solvable, then A is right quasigroup.

(vi) If A is left cancellative, then B is right quasigroup.

(vii} A is right quasigroup if and only if B is right quasigroup, and when A and B
are right quasigroups then B(z,y) = z <= A(z,z) =y i.ee. A=B~! (B=
A~

PRrOOF. (i), (ii) and (iii) are obvious.

(iv) When A(z,z) = y and B(z,y) = t we have A(z,t) = A(z,B(z,y)) =y =
A(z, 2).

(v) Let A(z, z) = A(x,t). There exist y;, y2 such that B(z,y1) = z, B(z,y:) =t
and we have h= A(x,B(:c, yl)) = A(zi Z) = A(.’L‘,t) = A(.’L’,B(Z‘, yZ)) = Y2,
hence z = ¢. By (i), A is right quasigroup.

(vi) Let A be left cancellative. By (i), it is enough to prove that B is right
solvable. Let x,z be given and A(x,2) = y, B(z,y) = t. Then by (iv) we
have A(z,z) = A(z,t) = y and hence z = ¢. So, B(z,y) = =.
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(vii) The first part is a consequence of (7), (sit), (v) and (vi). Let A and B
be right quasigroups. B(z,y) = z == A(z,z) = y holds by (ii). Let
A(z,z) = y and B(z,y) = t. Then A(z,t) = y = A(z,z) by (iv), hence
z=1.

O

THEOREM 1. The solution of the equation A(z,B(z,y)) =y over the class of
all finite groupoids consists of arbitrary mutually right-inverse right quasigroups
i.e., right quasigroups satisfying A = B~1.

ProoF. If A and B form a solution of the equation and are over a finite
set then, by Proposition 2(i), B is left cancellative, and the statement follows by
Proposition 1(i) and Proposition 2(vii). On the other hand, if A and B are mutually
right-inverse right quasigroups and if B(z,y) = z, then A(z,z) =y ie. Aand B
form a solution of the equation. » , O

ExAMPLE 2.1. The following operations A and B defined on the set N of pos-
itive integers by:

Afz,y) = div(z,y) = [1], B(z,) =2y

are solutions of the functional equation. Namely, A(z, B(z,y)) = div(z,zy) = y.
Note that A is neither left nor right cancellative and B is neither left nor right
solvable. :

THEOREM 2. The solution of the functional equation
Az, B(z,y)) =y
over the class of all groupoid operations consists of any left cancellative operation B

and a corresponding right solvable operation A that satisfies the condition B(z,y) =
z = A(z,z) =y.

PROOF. If A and B form a solution then it satisfies the conditions by Propo-
sitions 2 (i), (ii), (iii). The other direction of the statement follows directly from
the assumptions. d

In the special case of the equation A(z, A(z,y)) = y we get that the solution is
a right quasigroup that is self-right-inverse. Out of symmetry similar results hold
for the functional equations

A(z,B(y,z)) =y, A(B(y,z),z) =y, A(B(z,9),2)=y.
So, we have the following properties.

THEOREM 3. The solution of the functional equation A(z, B(y,z)) = y over
the class of all groupoids consists of a right cancellative operation B and a right
solvable operation A satisfying the condition B(y,z) = z => A(z,z) =y. In the
finite case, the solution consists of a right quasigroup A and a left quasigroup B
satisfying A = (T1B)*.
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THEOREM 4. The solution of the functional equation A(B(y,z),z) = y over
the class of all groupoids consists of a right cancellative operation B and a left
solvable operation A satisfying the condition B(y,z) = 2 = Alz,z) = y. In
the finite case, the solution consists of arbitrary finite mutually left-inverse left
quasigroups i.e., left quasigroups satisfying A = ~'B.

THEOREM 5. The solution of the functional equation A(B(z,y),z) = y over
the class of all groupoids consists of a left cancellative operation B and a left solvable
operation A satisfying the condition B(z,y) = z => A(z,z) = y. In the finite
case, the solution consists of a right quasigroup B and a left quasigroup A satisfying
A= (B

3. Systems of equations

Here we note some consequences of the results in previous section, considering
systems of functional equations consisting of pairs of equations of the mentioned
types. By Theorem 2 we get the following theorem.

THEOREM 6. The solution of the system of functional equations
Alz,B(z,y)) =y, Bz, Alz,y) =y
over the class of all groupoids consists of right quasigroups A and B satisfying the
condition A = B71,
THEOREM 7. The solution of the system of functional equations
A(z,B(y,z)) =y, B(z,A(y,z)) =y
over the class of all groupoids consists of quasigroups A and B such that B = A =
—1(A—1) — (—IA)—-I’ A* = A—l = _IA.

PRrROOF. If A and B are solutions then, by Theorem 3, we have that they are
both right solvable and right cancellative. Then also B(y,z) = z = A(z,2) =
y = B(z,y) =1z = A(y,z) =2z = B(z,z) = y. Hence, A = B and
Alz, ;1) = Alz,y2) = 2 = 1 = A(z,2z) = y, i.e. A is right quasigroup.
Moreover, z = A(a,b) is the solution of the equation A(z,a) = b, therefore A is
left quasigroup, i.e. A is quasigroup. By A(z,y) = ¢ <= A(y,z) = z we have
A~! = —14. Hence, A and B are quasigroups such that B = 4, A~! = ~14, and
we only have to note that A = (471)~! = ~}(~14), A* = ~}(~14)71). O

The next two theorems are obtained in the same manner as abdve.
THEOREM 8. The solution of the system of functional equations
A(B(y,:c),z) =Y, B(A(y7$)1'z) =Yy

over the class of all groupoids consists of left quasigroups A and B satisfying A =
-1B.

THEOREM 9. The solution of the system of functional equations
A(B(z,y),7) =y, B(A(z,y),z)=y
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over the class of all groupoids consists of quasigroups A and B satisfying the con-
ditions B=A = _I(A—l) = (—IA)_I, A* = A'l = _lA,
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A GENERALIZATION
OF RECTANGULAR LOOPS

A. Krapez

Dedicated to professor Slavisa B. Presié on the occasion of his 65th birthday

ABSTRACT. It is proved that the class of groupoids which.are isotopes
of rectangular loops can be axiomatized by 18 universal equations in a
language with three binary and six unary operations. The problem of the
existence of some simpler (in particular independent) axiom system for this
class is posed.

Introduction

A left zero semigroup-is a semigroup in which every element is a left zero and
which therefore may be defined by the universal equation zy = z. The dual notion
of a right zero semigroup is defined by the universal equation zy = y. A rectangular
band is the direct product of a left zero semigroup and a right zero semigroup.

All these are important but fairly trivial types of semigroups. Not so trivial

“and even more important is a rectangular group which is the direct product of a
group and a rectangular band (see for example M. Petrich [5]).

A generalization of rectangular group called rectangular loop is defined in [4]
as the direct product of a left zero semigroup, a loop and a right zero semigroup.
The following theorem from [4] gives us an axiomatization of rectangular loops:

THEOREM 1. A groupoid (S;-) is a rectangular loop iff it is a reduct of an
algebra (S;-, /,\J, satisfying the axioms:

Q1) 2\(z-y) = (2\2) -y
(Q2) z-(z\y) = (z\z) -y
1991 Mathematics Subject Classification. Primary 20N02.

Key words and phrases. loop, rectangular loop, rectangular loop isotope, isotopy, axiomati-
zation.
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(Q3) (z-y/y=z-(y/y)
(Q4) : (/y)-y==z-(y/y)
(E1) (/z) - z=2z

(E2) : N\ =z/z

(A1) (z/z)-(y-2) = ((z/2)-y) -2
(A2) z-((yly)-2)=z-2
(A3) (z-y)-(2/z) =2 (y-(2/2))
(U1) (z-y)/(z-y) = (z/7) - (y/y)
(U2) (=\y)/(=\y) = (z/=z) - (y/y)
(U3) /y)/(z/y) = (z/z) - (y/y)

This axiom system will be denoted by ([JA) and the class of all rectangular loops
by [OA]. Algebras satisfying (OA) will be called equational rectangular loops.

Rectangular loop isotopes

EXAMPLE 1. Let (G;-,e, ') be a group (equationally defined); whlch is not
boolean (i.e. zz # e for some z) and let z/y = x -y~ 1. Then the grotpoid (G; /)
is a unipotent (z/r = e) quasigroup with right unit e. But e is not a left unit and
therefore (G; /) is not a loop.

Let L, R be nonempty sets, S = L x G x R and o, //, I operations on S defined
by: (a z,p) o (b,y,9) = (a,y,9),(a,z,p)//(b,4,9) = (a,z/y,q) and I(a,z,p) =
(a,z~},p) (for all appropriate a,b,z,y,p,q). Then (S;o0) is a rectangular group,
I is bijection and (S;//) is an isotope of (S;0) ('u,/Ap = o I(v)) which is not a
rectangular loop.

ExXAMPLE 2. Let (L;-) be a left zero semlgroup, f ;é id a permutation of L
and z oy = f(x). Then (L;0) is so called left groupoid (see [3]) which is obviously
isotopic to (L;-) but is not a rectangular loop.

Such examples inspired us to make a generalization of rectangular groups which
we call rectangular loop isotopes. The key requirement for the class of all rectangular .
loop isotopes is that it should be closed under taking isotopies, the property not
satisfied by either of the classes of all rectangular groups, rectangular loops. For
the definition and properties of the notion of isotopy of groupoids, in particular of
quasigroups, the reader may consult {1} or [2].

DEFINITION 1. The class [RLI] of all rectangular loop isotopes is the smallest
class of groupoids containing the classes [Q)] of all quasigroups, [L] of all left zero
semigroups, [R] of all right zero semigroups and closed under taking direct products
and isotopies. :

LEMMA. The class [OA] is properly contained in the class [RLI].

Proof. Trivially, [OA] C [RLI). The following example shows that the inclusion
is strict. Let S = {0,1}, f(z) =1-z and -y = f(z). Then (S;) is a left groupoid
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and consequently an isotope of the left zero semigroup (S;o),z oy = z. Hence
(S;-) € [RLI]. :

Assume that (S5;-) is a rectangular loop. Being of prime order, it should be
either a left or right zero semigroup or else a loop. But it obviously is neither. This
contradiction proves that (S;-) ¢ [OA]. O

Further, the usual rules for omitting parentheses apply. All binary operations
bind terms with equal strength, except juxtaposition which binds them stronger
(juxtaposition replaces the multiplication - in some cases).

For unary operations {(and there are only six of them: f, f~,¢9,¢7,7 and j) fz
stands for f(z) and fgr for f(g(z)) and similarly in other cases. Unary operations
always bind terms stronger then binary ones. However, we shall never write poten-
tially ambiguous expressions like fzy but use parentheses (f(zy)) or multiplication
symbol (fz -y) to enhance readability.

DEFINITION 2. A is the class of all algebras (S;-,/,\,f.f™,9,97,%,J) satisfy-
ing the system (RLI) of axioms:

(ql) z\zy = ¢(i(z) - y)

(92) z(z\y) = i(z) - 9(y)

(a3) zy/y = f(x- i)

(q4) (z/y)y = f(z) - i(y)

(e1) if(z)-g(z) =z

(e2) f@)\z = jg(x)

(e3) z/g(z) = if(z)

(e4) fTif(z) = g7 jg()

(al) ' i(z) - g(f(y) - 2) = f(i(z) - 9(v)) - 2
(a2) z-g(i(y) - 2) = zz

(a3) flz-9(y)-j(2) ==z-9(f(y) - i(2))
(ul) if(zy) = f(i(z) - § (¥))

(u2) i(z\y) = 9(i(z) - jg(v))

(u3) i(z/y) = f(if(z) - i(v))

(i1) ff(z)=z

(i2) fFflz)==

(i3) 997 (z) ==

(i4) 9 9(z)=x

By A} we denote the class of all {-}-reducts of algebras from .A. The class of
all isotopes of rectangular loops is denoted by B.
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A more detailed study of rectangular loop isotopes will be published elsewhere.
Here we prove only the main result justifying the name ‘rectangular loop isotopes’
for the groupoids from [RLI] and giving an equational axiomatization for them.

THEOREM 2. Agy = B =[RLI].

Proof. a) Let (S;-,/,\,f,f",9,97,%,j) be an algebra from A and let zoy =
fz-gy,z//y = f~(z/gy) and z\\y = g~ (fz\y). Then the algebra (S;o, //,\\) is
an equational rectangular loop. The proof requires checking axioms (Q1)-(U3). As
an example we prove just (Al):

(z/[z) o (yo2) = f(z/[z)-9(fy-92) = ff (z/9z) - 9(fy - 92) = ifz - g(fy- g2)
= flifz-gy)-gz=(ff7ifz-gy)oz=(fTifzoy)oz
=(f"(z/gz) oy) oz = ((z/[x) o y) 0 2.
Therefore (S;-) is an isotope of the rectangular loop (S;0) i.e. (S;-) € B. It follows
that A{.} C B.

b) Let (S;-) be an algebra from B. As every isotope is isomorphic to a principal
isotope, we may assume that z oy = fz - gy, where (S;0) is a rectangular loop.
By theorem 1, there is an equivalent equational rectangular loop (S;o,//,\\). Op-
erations f and g are bijections and therefore ff~ = f~f = g9~ = g~g = id for
f~, g~ inverse mappings of f, g respectivelly (and id identity mapping of S). If we
define

z/y = f(z//9~ ),

z\y = g(f~(@\\y),

i(z) = f(x)/9f ™ (z),

i(x) =gf ifg™ (),
then we can easily verify that the algebra (S;-,/,\,f,f™,9,97,1,j) satisfies all
axioms (q1)-(i4) and consequently (S;-) € A(.}. Therefore B C A ;.

c¢) Every quasigroup is an isotope of some loop which is a special rectangular
loop. Therefore an algebra obtained from a quasigroup by expanding its language
using division operations / and \, i(z) = z\z,j(z) =z/zand f=f"=g=g" =
id, belongs to 4. Similarly, the expanded versions of left (right) zero semigroups
(assuming z/y = z\y = zy) belong to A. Consequently, the class A} contains
classes [@],[L] and [R]. Being a variety, A is closed under taking direct products
and so is Ag.y. If (S;-) is an isotope of some groupoid from Ay = B, then (S;-) is
an isotope of an isotope of a rectangular loop and consequently is itself an isotope
of a rectangular loop i.e. (S;-) € B = A(;. It follows that [RLI] C A¢;.

d) We have already noted that [OA) C [RLI]. As [RLI] is closed under iso-
topies, it follows that all groupoids from B = Ay} also belong to [RLI]. O

The independence of the axioms (q1)-(i4) for the rectangular loop isotopes re-
mains an open problem (see [4] for the relatedir  vendence problem of (OA)). The
system (RLI) can be reduced trivially, replacing function j by gf~ifg~ and elim-
inating axiom (e4) (and similarly for i), but we have a more substantial reduction
in mind.
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ABSTRACT. The main purpose of this note is to study semigroups all of whose
proper ideals from an arbitrary nontrivial complete 1-sublattice of the lattice
of ideals are semilattice indecomposable or archimedean semigroups. We also
determine some conditions under which there exists the largest proper ideal
in this lattice.

A significant problem of Semigroup theory is to study semigroups all of whose
proper subsemigroups or ideals have certain properties. Semigroups whose proper
ideals are groups, commutative or archimedean semigroups were investigated by
Schwarz in [11], Tamura in [12], Bogdanovi¢ in [2, 3, 4, 5], Bogdanovi¢ and Ciri¢
in [6] and others. - In the present paper we consider any complete 1-sublattice
1d™(S) of the lattice Id(S) of ideals of a semigroup S. As was shown in [8], it
is uniquely determined by some positive quasi-order 7 on S. We study the set
M. (S) of all elements of S that generate.a proper ideal from Id"(S), for which
we show that it is an ideal and the union of all proper ideals from Id™(S), and we
find some conditions under which M, (S) is also a proper ideal of S. Finally, we
determine the conditions under which any proper ideal from Id” (S) is a semilattice
indecomposable or archimedean semigroup.

By a complete 1-sublattice of a complete lattice L we mean any complete
sublattice of L containing the unity of L. For a semigroup S, S' denotes the
semigroup obtained from S by adjoining the unity. The division relation | on S is
defined by: a|b if and only if b = zay, for some z,y € S, the relation — on S
is defined by: a — b if and only if a|b", for some natural number n, and —*°
denotes the transitive closure of —. The lattice of all ideals of S is denoted by
1d(S). Any ideal of S different than S is called a proper ideal of S. An ideal [
of S is called completely semiprime if for any a € S, a® € I implies a € I, and it
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is called completely prime if for any a,b € S, ab € I implies that a € T or b € I.
The set of all completely semiprime ideals of S, which is a complete 1-sublattice of
1d(S), is denoted by Id**(S).

By a quasi-order on a set A we mean any reflexive and transitive binary relation
# on A, and the pair (A, ) is called a quasi-ordered set. For a € A we set ax =
{z € Alawz} and for X C A we set X7 = {J,cx 7. In other words, ar and X
are the filters (dual ideals) of a quasi-ordered set (4, ) generated by {a} and X,
respectively. By 7~ we denote a relation on A defined by: a7~ if and only if
hma. The relation # = 7 N7~ is the greatest equivalence relation contained in 7
and it is called the natural eguivalence of w. As is well known, a7 b if and only if
am = br, and the set of all T-classes is partially ordered, where the partial order <
s defined by: a% < b% if and only if awbd (cf. [1] and [8]). The partially ordered
set of all quasi-orders on A is a complete lattice and it is denoted by Q(S).

Let 7 be a quasi-order on a semigroup S. We say that « is positive if aw ab
ind bwab, for all a,b € S, that it is lower-potent if a?na, for any a € S, and
hat it satisfies the cm-property (common multiple property, (13, 14]) if for any
1,b,c € S, anc and bwc implies abwc. The set of all positive quasi-orders on S
s the principal filter of the lattice Q(S) generated by the division relation on S,
vhereas the set of all positive lower-potent quasi-orders on S is the principal filter
f Q(S) generated by the quasi-order —*°. If 7 is the division relation on §, then
*is the well known Green’s J-relation, and if # =—, then 7 is the smallest
emilattice congruence on S, and the partially ordered set of all 7-classes is the
reatest semilattice homomorphic image of S (cf. [13], [14], [7] and [8]). As is well
nown, a semigroup S is semilattice indecomposable, i.e. the universal relation on
" ig the only semilattice congruence on S, if and only if @ ~—* b, for all q,6 € S
of. [13]). If @ — b for all a,b € S, then S is called an archimedean semigroup.

Let # be a positive quasi-order on a semigroup S. An ideal I of S is called a
~ideal if Im = I, i.e. if a € I implies an C I, for any a € S. In other words, I

a m-ideal of S if and only if it is an ideal of S and a filter of the quasi-ordered
% (S,7). The set of all n-ideals of S is denoted by Id"(S). As was proved in
], Id"(S) is a complete 1-sublattice of Id(S) and the mapping = — Id"(S5) is a
ual isomorphism of the lattice of all positive quasi-orders on S onto the lattice
T all complete 1-sublattices of Id(S). The same mapping also determines a dual
omorphism of the lattice of positive lower-potent quasi-orders on S onto the lattice
"all complete 1-sublattices of Id**(S). Hence, if « is the division relation on 3,
ien Id"(S) = 1d(S), and if # =—°°, then 1d"(S) = Id*(S).

For undefined notions and notations we refer to [1], [5], [6] and [10].

Let 7 be a positive quasi-order on a semigroup S. Then we set
M,(S)={a€ S|ar C S}.
The proof of the first lemma is immediate and it will be omitted.

LEMMA 1. Let 7 be a positive quasi-order on a semigroup S. Then M.(S) = @
and only if S does not have proper w-ideals.

Next we consider the case when M, (S) is nonempty.
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THEOREM 1. Let m be any positive quasi-order m on a semigroup S such that
S has a proper w-ideal. Then M. (S) is the union of all proper n-ideals of S.

If, in addition, 7 satisfies the cm-property, then My (S) is a completely prime
ideal of S.

PROOF. Let U denote the union of all proper 7-ideals of S and let I be any
proper w-ideal of S. For any a € I we have that av C I C S, so a € M,(S).
Thus, I C M,(S) and we conclude that U C M, (S). On the other hand, for any
a € M(S) we have that ar is a proper ideal of S, that isar C U, and hence a € U,
Therefore, M,(S) C U, and we have proved that M (S) =U.

Suppose now that = satisfies the cm-property, and let a,b € S such that
ab € M,(S). If a ¢ M(S) and b ¢ M,(S), ie. if ar = S and br = S, then
by Lemma 2 of [8] we have that (ab)m = am Nbr = S, which contradicts the
hypothesis ab € M,(S). Thus, we conclude that a € M,(S) or b € M;(S), so we
have proved that M;(S) is a completely prime ideal of S. O

Now we determine some conditions under which M,(S) is a proper ideal.

THEOREM 2. Let w be any positive quasi-order on a semigroup S and suppose
that S has at least one proper m-tdeal. Then the following conditions are equivalent:

(1) Mz(S) is a proper ideal of S;

(ii) S has a largest proper w-ideal; '
(iii) The partially oredered set of T-classes has a least element.

PROOF. (i)=(ii). Since Id"(S) is a complete 1-sublattice of Id(S), then by
Theorem 1 we have that M, (S) € 1d"(S). Therefore, if M (S) is a proper ideal of
S, then it is the largest proper m-ideal of S, again by Theorem 1.

(ii)=>(i). Let S has a largest m-ideal U. Then U is the union of all proper
w-ideals of S, and by Theorem 1 it follows that U = M;(S). Therefore, M, (S) is
a proper ideal of S.

(i)=(ii). Let X = S\ M(S). If a,b € X. then ar = S = bm, so by
Proposition 1 of [8] it follows that (a,b) € #. Thus, X is contained in some 7-class
C of S. On the other hand, for any ¢ € C and @ € X we have that (c,a) € 7,
whence cr =am = 5,50 ¢ € X. Therefore X = C,ie. X isa T-class of S. Let ¥
be any 7-class of S and let a € X and b € Y be arbitrary elements. Then ar = S
and b € S, whence awec. This means that X < Y in the partially ordered set of
all 7-classes of S, so we have proved that X is the least element in this partially
ordered set.

(iii))=-(i). Let X be the least element in the partially ordered set of T-classes
of S. First we prove that X = {a € S|lar = S}. Let a € X and b € S. Then
aT < bw implies anw b, s0 b € aw. This means that ar = S. Conversely, let a € S
such that ar = S and let b € X be an arbitrary element. Then ar = S yields a7 b,
whereas by b7 < a7 it follows bma. Thus (a,b) € nNa~! = 7, so we have that
a € X. Now we have that @ # X # S, since S has at least one proper w-ideal,
whence it follows that M;(S) = S\ X is a proper ideal of S. O

Note that the condition (ii) of the above theorem means that the lattice Id™(S)
has a unique dual atom.
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Let Mc(S) denote the union of all proper completely semiprime ideals of a
semigroup S. By Theorem 2 we obtain the following consequence.

COROLLARY 1. The following conditions on a semigroup S are equivalent:
(i) Mcs(S) is a proper ideal of S;
(ii) S has a largest proper completely semiprime ideal;
(i) S has a largest proper completely prime ideal;
(iii) The greatest semilattice homomorphic image of S has a unity.

By the previous corollary it follows that the largest proper completely semi-
prime ideal of a semigroup, if it exists, is completely prime.

The following theorem describes semigroups whose proper n-ideals are semi-
lattice indecomposable semigroups.

THEOREM 3. Let w be a positive quasi-order on a semigroup S and suppose
that S has at least one proper w-ideal. Then any proper mw-ideal is a semilattice
indecomposable semigroup if and only if M.(S) is a semilattice indecomposable
semigroup.

PROOF. Let any proper 7-ideal of S be a semilattice indecomposable semigroup
and let a,b € M,(S). Then ar and br are proper w-ideals of S, and they are
semilattice indecomposable. Moreover, a,ab € ar and b, ab € br, whencea —*> ab
and ab — a in aw and b —* aband ab —* b in br. Since the ideals ar and br
are contained in My (S), by Theorem 1, then we have that a —* ab —> b and
b ~—> ab —> a in M,(S). Therefore, M,(S) is a semilattice indecomposable
semigroup.

Conversely, let M,(S) be a semilattice indecomposable semigroup. For any
proper m-ideal I of S, by Theorem 1 we have that I is an ideal of M,(S), and
by Theorem 3.4 and Corollary 3.9 of [9] we have that any ideal of a semilattice
indecomposable semigroup is also semilattice indecomposable. O

In a similar way we prove the next corollary which generalizes some results
from [3], [5]) and [6].

COROLLARY 2. Let m be a positive quasi-order on a semigroup S and suppose
that S has at least one proper w-ideal. Then any proper w-ideal is an archimedean
semigroup if and only if M (S) is an archimedean semigroup.
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A NOTE ON
THE SET-THEORETIC REPRESENTATION
OF ARBITRARY LATTICES

Kosta DoSen
Dedicated to Professor Slavisa B. Presié

ABSTRACT. Every lattice is isomorphic to a lattice whose elements are sets of
sets and whose operations are intersection and the operation V* defined by
AV*B=AUBU{Z:(3X € A)(3Y € B)XNY C Z}. This representation
spells out precisely Birkhoff’s and Frink’s representation of arbitrary lattices,
which is related to Stone’s set-theoretic representation of distributive lattices.

As a generalization of his representation theory for Boolean algebras, Stone has de-
veloped in [4] a representation theory for distributive lattices. This representation
theory has set-theoretic and topological aspects. Set-theoretically, every distribu-
tive lattice L is isomorphic to a set lattice L*, i.e. a lattice whose elements are sets
and whose operations are intersection and union. In Stone’s representation, the el-
ements of L* are certain subsets of the set F(L) of prime filters of L. Topologically,
F(L) can be viewed as a Tp-space with the elements of L* constituting a subbasis.

Following ideas of Priestley’s [3], Urquhart has developed in [5] the topological
aspects of this representation theory to cover arbitrary bounded lattices. However,
Birkhoff and Frink had already in [1, section 6] a simple set-theoretic represen-
tation for arbitrary lattices, also inspired by Stone, but different from Urquhart’s
representation.

In the Birkhoff-Frink representation, every lattice L is isomorphic to a lattice
L* whose elements are sets of sets, whose meet operation is intersection and whose
join operation is a set-theoretic operation V* unspecified by Birkhoff and Frink.
The elements of L* are certain subsets of a set F(L), which may be either the set
of all filters of L, or the set of all principal filters of L, or any set of filters of L
that for every pair of distinct elements of L has a filter containing one element
of the pair but not the other. Stone’s set-theoretic representation for distributive
lattices may be viewed as a special case of the Birkhoff-Frink representation: if for
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a distributive lattice L we take F'(L) to be the set of all prime filters of L, then v*
collapses into set-theoretic union.

The aim of this note is to make precise some details of the Birkhoff-Frink
representation, which doesn’t seem to be very well known. We shall explicitly
characterize the operation V* when F(L) is the set of all filters of L, or of all
principal filters of L. The interest of this exercise is in applications that may be
found in the models of nondistributive nonclassical logics, where the semantic clause
for disjunction may be derived from the operation V*.

Let L = (D, A, V) be an arbitrary lattice, and let F(L) = {X : X is a filter of
L}. For every a € D, let f(a) = {X € F(L):a € X}. Let now D* = {f(a) :a €
D}, and let

fla) A" f(b) = f(a) N f(b),
f@ Vv i) = fla) U f(B)U{Z € F(L): (3X € f(a))(FY € f(B)X NY C Z}.

The second of these equalities corresponds to the semantic clause for disjunction
introduced in {2, section 3.2], which has since found its way into a number of papers
on models of substructural logics.

In the proof of the following proposition we assume for a € D that [a) = {b €
D : a < b}; that is, [a) is the principal filter generated by a.

PROPOSITION 1. The following equalities hold:
(L1) fla) A f(b) = f(anb),
(1.2) fa) v* f(b) = f(a VD).

ProoF. The proof of (1.1) is quite straightforward, and we only need to con-
sider the proof of (1.2). So suppose Z € f(a) V* f(b). f a € Z or b € Z, then,
since Z is a filter, a Vb € Z. I, on the other hand, for some X and Y we have
thatae X, b€ Y and X NY C Z, then, since X and Y are filters, aVbe X NY,
and so a Vb € Z. For the converse, suppose Z € flaVb), thatisavbe Z. If
c€laVvb), then aVb < ¢, and, since Z is a filter, c € Z. So [aV b) C Z, but, since
[@) N [b) = [a Vv b), we have that [a) N [b) C Z. Hence for some X, namely [a), and
some Y, namely [b), we have that a € X, b€ Y and X NY C Z, and so we have
proved (1.2). O

Since it is quite easy to see that f : D — D* is one-one and onto, we obtain
that L = (D, A, V) is isomorphic to L* = (D*,A*,V*).

Note that we obtain the isomorphism of L with L* also when F(L) is taken
to be the set of all principal filters of L, and not the set of all filters of L. Another
alternative, yielding again the isomorphism of L with L*, is to replace V* by the
operation V** defined by

AV B={Z:(3X € A@Y € B)XNnY C Z}.

We have preferred to work with V*, rather than with the more simply defined

operation V**; which coincides with vV* on D* as it was defined up to now, in
order to be able to connect smoothly the isomorphism of L and L* with Stone’s
representation theory. This connection is made by the following proposition.
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PROPOSITION 2. If L is a distributive lattice and F(L) is the set of all prime

filters of L, then f(a) V* f(b) = f(a) U f(b).

PROOF. Suppose Z € f(a)V* f(b). As in the proof of the previous proposition,
it follows that avb € Z. Since Z is prime, a € Z or b € Z, that is Z € f(a) U f(b).
The converse, namely, f(a) U f(b) C f(a) V* f(b), is trivial. O

This trivial converse can, however, be blocked if V* is replaced by v**. Indeed,
suppose a € Z; then we must show that for some prime filters X and ¥ we have
that e € X, b €Y and X NY C Z. The prime filter X can be Z, but, since b may
be the least element of L, there is no guarantee that there is a prime, i.e. proper,
filter Y such that b€ Y.

To conclude, we note that for the sake of symmetry we can define f(a) A* £(b)
either as f(a) N f(B)N{Z € F(L): (X € f(a))(FY € f(b))XUY C Z}, or as
{Z e F(L) : (3X € f{a))(AY € f(b))XUY C Z}; both of these sets are equal
to f(a) N f(b). In these new definitions of A*, unions of filters occur where in the
definitions of V* and V** we had intersections. Then remark that the set of filters
F(L), which is a semilattice with N, is not necessarily closed under U.
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NOTE ON THE METHODS FOR
NUMERICAL SOLUTION OF EQUATIONS

Bosko S. Jovanovié
Dedicated to Prof. Slavisa B. Presi¢ on the occasion of his 65" birthday

ABSTRACT. We consider iterative methods for simultaneous determination
of all roots of a given polynomial. We discuss the connection between
such methods and standard iterative methods for numerical solution of
equations, generalizations on other types of equations, and construction of
higher order iterative methods.

1. Introduction

In [16] and [17] S. B. Presi¢ proposed an iterative method for factorization of
polynomials. Let P, (z) be a monic polynomial of n—th degree on the field of com-

plex numbers, with different roots z1, z2, ..., z,. Let P, (z) allow a factorization
of the form

m
(1) P,-,,(:L') = HPni(m)a

=1

where P, (z) is monic polynomial of degree n; and ny + ne + -+ + n,, = n. One
constructs sequences of polynomials Py, x(z) (k = 0,1, 2,...), where P,, i(z)
converges to Py, (z) when k — oo.

In the case of linear factors Py, (z) one obtains

(2) Po(e) = (z —z1)(@ —22) -~ (2 — zn),
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while formulae for determining of roots are

P, (zi,k)

(3) zi,k+1=zi,k—P/ k(xik)7 i=12,...,n; k=0,1,...
n, )

where P, 1 (z) = (z — z16)(T — Z24) - (T — Znk)-

Iterative method (3) was widely used and investigated. It is known as Weier-
strass method, or Durand-Dochev-Kerner method (see [2], [3], [4], [11]). Method
(3) also may be considered as a modification of Newton method [13]

_ F(ay) _
(4) Tk+1 = F'(l‘k) ) k=0,1,...

for numerical solution of equation
(5) F(z) =0.

Possible generalizations of method (3) on more general equations are consid-
ered. For example, factorization of a trigonometric polynomial of the form

n n
Tn(z) = ao + Z(aj cosjzr +bjsinjz) = A H [sin(z + a;) + ¢
=1 J=1

is considered in {10} and iterative formulae for simultaneous approximation of pa-
rameters A, o; and c¢; are obtained. An iterative method for simultaneous finding
of k roots of equation (5), based on substitution of function F(z) with interpolation
polynomial, is proposed in [15].

2. Iterative methods of higher order
Let us consider iterative method
(6) Tk+1 ZQO(IL‘]‘;), k=0, 1,

for numerical solution of equation (5). Suppose that the sequence z; converges
to the root z, of equation. One says that (6) has order of convergence p if the
following condition is satisfied

|oks1 = 2a] = Olzk = 2.7), k= oo.

The following assertion holds.

THEOREM 1. (see [8]) Let (6) be an iterative method of order p. Let the
function p(z) be p + 1 times differentiable in the neighborhood of the limit point
z, and let ¢(z,) # p. Then

Tk — (k)
7 T = _—— k=0,1,...
( ) k+1 = Tk L ‘pl(zk)

p
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is at least an iterative method of order p + 1.

Starting from Newton method (4) and repeating the procedure given in Theo-
rem 1 one obtains a family of iterative formulae

Ap_2(zk) F(zk)

8 =g - ——————, k=0,1,2,...; p=23,...
(8) Te+1 = Tk A,_1(zr) p
where Ag(z) =1 and
9)

F'(z) F(z) 0 . 0

FII T y

2(! ) F'(z) F(x) e 0
F'"'(z) F'(z) F'(z) 0 193
e ] = 3 ’ 3t

Aj(z)y=| 31 2 ;

F(J'; () F(j—.l) (x) F(j—'z) ()

7! G- (G-2) F'(z)

Method (8) is an iterative method of order p. For p = 2 from (8) one obtains
Newton method (4). For p = 3 one obtains Halley iterative formula [5]

F(xx) F' (z)

(F'(a)k))2 — 0.5 F(z) F"(zk) ’ k=0,1,...

(10) Tpy1 = Tk —

For p = 4 the corresponding formula is

F(zk) [(F'(zx))® — 0.5 F(zy) F" (zx)]
(F'(z1))® = Fax) F'(ax) F"(mh) + & (F(ax))” F ()

Tp41 = T —

etc.

Iterative methods (8) were investigated by many mathematicians. For example
an application of Halley method for determination of matrix square root is consid-
ered in [12]. An interval version of Halley method is investigated in [14]. In [1]
formula (8) is used in the framework of Padé approximation. Notice that formula
(8) can be obtained by application of Newton method to equation

F(z)

"V Bp-2(2)

(see [9]).
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3. Higher order methods for simultaneous approximation
of all roots of polynomial

Combining results from two previous chapters we can construct iterative meth-
ods of higher order for simultaneous approximation of all roots of polynomial P, (z).
Since P, () contains k*? iterations of all roots of polynomial P, (z), it is sufficient
to substitute F(z) with P,(z) and F'(z) with P, (z) in (8) and (9). Derivatives
of higher order F)(z) can be substituted with P (z) or with P,(l’,)c (z). In such a
way one obtains the formula:

Ap_o(zik) Po(Tik)

11 i =Tk~ = )
(11) Tik+1 = Tik )
i=1,2,...,n k=0,1,2,...; p=2,3,...
where Ap(z) =1 and
P, (z) P, (z) 0 ... 0
PII
—"zilfl Py  Pa@) ... 0
. P"'(:L‘) P'(z)
Aj(z) = n3! n2! Pz .. 0 |, j=1,23,...
(7 (i—-1) (i—~2)
e P MG
J! G-t @G-2) ™
or
Pi(z)  Pu(a) 0 e 0
PII (z)
"g“! P, 4(z) Piz) ... O
_ Pow(z)  Ppi(z)
K@) =| g s Pa@ 0 o103,
Pr) Po@ POY@
J! (G- (G-2) ok

For p = 2 from (11) one obtains Weierstrass method (3). For p = 3 one obtains
imultaneous versions of Halley method:

Pp(zik) Py (zik)
(Pl o(@ik))? = 0.5 Pafwin) P(zin)

Tik+1 = Tik —
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and i
Pr(zik) Py (2i,k)
Tik+1 = Tik ; 3 - ;
Pn’k(:zz,-,k)) -0.5 Pn(z,-,k) Pn,k(miak)

i=1,2,...,n; k=0,1,...

etc. Formulae of this kind were also frequently used and investigated. For example,
safe convergence of certain modifications of simultaneous version of Halley method
is investigated in [6] and [7]. -
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Iva Stavrev

Student matematike
RAZNICE

Raznica: putnici misaonog voza

(Nakon ito se upoznaju Zadatak i
Resenje.)

Zadatak: Izgledam ponesto bedasto
pored tebe.

ReSenje: Pa ¢ekaj malo, ko zna Cega
¢e ovo predstavljati pocetak. Sto sad
tako reagujes? Zar ti se ne ¢ini da se ni
moje ni tvoje kolege bag ne razbacuju
velikim idejama?

Z: Mislim da ti ima8 priliku da na
sve to gleda3 s boljeg mesta.

R: Moze biti, ali zar ti ja nisam dao
moje uporinice. I ti si valjda putnik
misaonog voza. Nema veze §to si skoro
usao.

Z: Ali pitanje je da li je ta tvoja spo-
sobnost talenat ili se stice. Jer ako je
talenat, ostaje mi samo da se priseéam
ovih trenutaka s tobom i da se molim
da je talenat prelazan.

R: Naravno da ni ja ne znam gde ide
ovaj voz niti iko moZe to da zna. Ali
to nije nikakav razlog da ti ima§ ovakav
stav prema putovanju.

Z: Znas li §ta je problem s ovim pu-
tovanjem? Al’ nema ljutis. Sto ées ti
ne samo meni nego i mojim kolegama
biti samo onoliko dobar koliko ti to ne-
§to u nama dopusti. Pa evo ti primer:
jedan moj stariji kolega, da sad ne ka-
zem ko je, na retima ima, prili¢nu aver-
ziju prema ovom obliku putovanja. Ne
treba ni da ti napominjem da njegova
putovanja sve vise li¢e na ovo.

R: Pa dobro, ali...

Student of Mathematics

VARIA

Problem and Solution are both passen-
gers in the train of thoughts. They’ve just
met.

Problem: I look a bit foolish next to
you.

Solution: Hold on a second. Who
knows where this may lead? And why do
you react like this? No colleague of mine
or yours really throw around big ideas,
right?

P: 1 think you have a better perspective
on that from your position.

S: Maybe, but didn’t I tell you what
grounds me 7 And you are also a passen-
ger in this train, aren’t you? It doesn’t
matter that you’ve come aboard only re-
cently.

P: The question is whether your ability
is a talent or it can be acquired. For if
it’s a talent I can only remember these
moments with you and pray that talent is
contagious.

S: Nobody, myself included, can tell
where this train is heading to. But that
is no reason for having such an attitude
towards this journey.

P: Do you know what’s wrong with this
journey? I'll tell you, but no hard feelings
here, OK? The problem is that you could
help me and my colleagues up to the ex-
tent we ourselves let you help us. And
here is the example: one senior colleague
of mine (no names mentioned) would ver-
bally express quite an aversion towards
this type of journey. Needless to say, his
own journey resembles this one more and
more.
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Z: Znam! Ja znam — ja to mislim
— da su sve ideje koje si mi rekao suho
zlato, ali... Ja to moram da osetim, da
osetim kako tete kroz mene. Bojim se
da ti tu viSe ne moZes nista. To je pi-
tanje mog metabolizma, i ja ne znam,
zaista ne znam, hoce li i kad ¢ée to da
se slegne. Ne znam.

R: Kako hodes. Moram da idem i
kod drugih zadataka. Ako hoées sa
mnorm...

Z: Daj mi vremena da razmislim.

Napomena uz raznicu:

Prvi ¢as — programiranje na I godini
— ulazi profesor; predstavlja se i, na-
ravno, odmah traZi da se otvore pro-
zori. Pige po tabli: ”Algoritam uop-
§te”. Reakcije studenata su razne —
od nekritickog ispisivanja “Algoritmi-
ka” do “silna mi ¢uda!” na profesoro-
vo: “Algoritam — ja vam to radije ne
bih definisao.” &to se ovih drugih tice,
ubrzo ipak shvataju da su za njihovog
profesora te standardne programerske
priée samo pricice za malu decu ili, 3to
bi on rekao, “za domadice”. Bilo kako
bilo, veéina studenata e pamtiti taj
prvi ¢as po tome da im je nesto bilo
¢udno, i da su se smijali. Profesor se
tu malo postavlja kao zabavijac. Je-
dan dio studenata ne zna da li on ta-
ko samo sad pri¢a ili ée to tako stal-
no da bude. Neki ne znaju ni kako da
vode zabeleske — neki ih ni ne vode.
U najboljem slucaju zapisuju: “Algo-
ritam = konstruktivna funkcija” i pre-
pisuju algoritme faktorijela s table, pri
¢emu — uzgred budi reteno — profesor
funkciju n! zove Fak(n), na 3ta se ci-
jela grupa studenata smije kao detica
u pubertetu, a profesor zadovoljan sto
mu je dosetka uspela komentariSe: “Sto
mi znate engleski”. Studenti odlaze s

S: Well €K, but...

P: I know! I am aware (I think) that
all of your ideas are truly priceless, but...
It’s not enough to know that, I have to
feel it, feel it become part of me. I am
afraid you can’t do much more about it.
That’s for me to process and I don’t know,
really don’t know if and when that would
settle in me. I don’t know.

S: Well, do as you please. T have to go
now to other problems. If you want to
join me...

P: Let me have some time to think this
over.

A remark to varia:

It’s the first class of the programming
course for the freshmen. Professor enters
the classroom, introduces himself and im-
mediately asks windows to be opened. He
writes on the board: “Algorithms in gen-
eral”. Students react differently: from
blindly copying down what’s on the board
to simply “Yeah, right!” as the reaction
to professor’s: “I would rather not define
an algorithm”. Soon, though, the stu-
dents realize that the professor considers
these standard programming terms just
kids stuffi—“stories for housewives” as he
would say. In any case, for the majority
of students this first class will be some-
what of a strange experience. They will
remember that they laughed a lot. The
professor entertains more than he teach-
es. Some students wonder whether that’s
just for the first class or for the whole
course. Some also wonder how to take
notes—some don’t take them at all! At
best they write: “Algorithm = construc-
tive function” and copy down the facto-
rial function algorithm. By the way, pro-

fessor’s name for the n! is Fak(n), which

sends the whole class to adolescent gig-
gling. Professor, pleased with his witty
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tasa s retima “dobar je, dobar je”.

Sledeéi ¢as polinje sa x-termovima,
zavriava u smehu sa “jesi drvce” algo-
ritmom. Neki studenti se samo kikoéu
i ne primecuju kako im se kroz prime-
re 1 smeh poturaju vrlo suptilne ideje.
Oni, pak, koji bi da ostanu ozbiljni vre-
menom poéinju da kukaju kako ga ne
razumiju. Na Casove dolaze stariji stu-
denti koji sad polaZzu ispit. Profesor
nije nikakvo zakeralo i ispite drZi sva-
kog petka — po principu “kad naucis
javi se, ja ionako hoéu da ocenim tvoje
znanje, a ne neznanje”.

Mali studenti se smiju dok gledaju
starije kako prepisuju. Posle se kod
njih raspituju o ispitu: gledaju pita-
nja — A-operator, “Sta da mu pri¢amo
o A-operatoru kad niSta nismo ni shva-
tili”.

“Nema, $ta da se brinete”, kazu sta-
riji studenti, “objasni¢e vam on to. Vi-
decete, kad on zavrdi predavanje sve ée
vam biti super.” Mali studenti se mo-
le da to bude tako. &itaju dalje pita-
1ja... “Deduktivni mnozat”, “dodel-
1ik”, ?razre¢”, “liste u paskalu — kr-
selj”, “sortiranje nizova — maliSa na
»otetak”. Profesor je pun Zivopisnih
zraza koji su tu da ti pomognu u mi-
djenju i uvek je tu njegova ret, samo
‘e jednom citati s papira, primer, na-
avno. SaZetak Cuvenog pitanja “pe-
yjanje na brdo”, to jest, “planinarski
netod” studenti pronalaze u jednom
lanku iz novina koje su izasle tog da-
1a kad su imali predavanje. Ako ni-
ta drugo, barem ga nije Citao s ne-
og pozutelog papira na pragu raspa-
anja. Nekad, kad treba da napravi

auze izmedu misli, dopusta sebi da
a studentima prica o vezi izmedu srp-
kog jezika i sanskrta, §to se ne retko
nalo i oduZiti. Studenti uZivaju slu-
ajuéi profesora. Kako covjek da se
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notation, comments: “My, my, so many
experts in English in this room!”. Stu-
dents leave the class saying: “He is cool,
real cool.”

Next class starts with *-terms and ends
in laughter over “You-are-a-tree algorith-
m”. Some students just giggle, not re-
alizing to what extent some very sub-
tle ideas are introduced through examples
and jokes.

Some students who would like to re-
main serious start moaning that they don’t
understand the professor. This course is
not just for freshmen-this professor had
already taught some of the students in
the class. And as far as the exam goes, it
is held each Friday under slogan “Come
when you know something—I grade what
you know, not what you don’t know”.

Freshmen look at the list of questions
for the exam and lament to their upper-
classmen: “What can we say about A-
operator if we didn’t understand a thing
about it!?”

“Nothing to worry about” , they say
“professor will explain it. You’ll see, when
he finishes the course everything will be
just fine”. The freshmen pray for that.
They read on through the list: “Deduc-
tive multiplier”, “lists in Pascal—tisks”,
“array sorting—put the tiny one first”...
Professor makes his own vivid words, so
full of meaning, in order to help stu-
dents think. And he rarely reads in the
class, only examples. Once after the class,
students find his abstract of the famous
“climb-the-hill” method in the article of
that same day newspaper. If anything,
professor didn’t read it to them from some
aged-about-to-fall-apart notes.

Sometimes, as a break between tho-
ughts, professor wanders into the relation-
ship between Serbian and Sanskrit. And
that can go for quite some time! Stu-
dents enjoy listening to the professor.
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ne smije kad on pita: “Ovo se reia-
va preko radikala. Znate Ii vi koja je
to ret radikal?” Malo posle eto odgo-
vora: “radikal-root-rotkva-rotkvica”.
Studenti se smiju. Ii: "Znate li ka-
ko se kaZe cipela na sanskrtu? Upa-
nak.” Ipak, neki studenti prestaju da
idu na predavanja — ostavljaju svojim
najboljim drugovima indigo da svoje
zabeleske pisu preko njega. U isto vre-
me, oni drugi studenti prvi put ¢uju za
intuicionizam i logicizam, Markovlje-
ve algoritme i Tjuringove magine. Ute
0 nizovima, listama, drvetima — i uce
razne algoritme na jeziku nizova, lista,
drveta. Profesor pokusava da nagovori
studente da prave 3ume jer Matemati-
ka se i pravi — ali ne uspeva u tome,
"tja, to e samo programiranje” misle
studenti u sebi.

Treéa godina — Algebra 2 — stu-
denti kao malo matematicki porasli —
polozili Analizu 2 — misle ko zna §ta
su sve naucili... U sebi misle: “O, ne
opet!” kad vide “jednakosna logika” na
tabli. U stvari, zima im je jer profeso-
ru treba vazduha. Intimna atmosfera
ovog puta je neizbezna jer na preda-
vanje dolazi polovina studenata, znaéi
pet—3est njih. Studenti se pitaju kakve
sve to veze ima s algebrom ~ Ceréova
teza — to je kako mali student zami-
§lja logiku. Oni jedva tekaju da slu-
Saju teoriju Galoa. Na prvoj zgodnoj
pauzi profesor pokusava da s njima, pri-
¢a o tome — oni se boje da kazu bilo
§ta odredenije jer nisu sigurni da li po-
stoji nesto Sto ne bi trebalo da kazu.
Profesor studentima: “Vi se ne usudu-
jete raspravljati sa mnom.” Studenti:
“Mi? Profesore, to Vam se samo ¢ini.”
Studenti su tu ispali ponesto smesni.
Sedam dana kasnije, studenti ne zna-
ju kako da se postave u raspravi dvaju

It’s hard not to laugh when he asks: “We
can solve this problem using radicals. Do
you know what kind of word is that?”
And the answer comes: “Radical-root-
radish”. Laughter. Or this one: “What is
the Sanskrit word for shoe? Upanak!.”
Still, some students stop attending lec-
tures and only get Xeroxed notes. At
the same time, other discover intuition-
ism, logicism, Markov algorithms, Turing
machine. They learn about arrays, lists,
trees and pertinent algorithms. Profes-
sor makes futile attempts to persuade
students into making “forests” because
Mathematics is not something finished,
fully defined. On the contrary, he believes
that mathematics can be made, created,
that it is “alive”. “It’s only program-
ming” students think.

Junior year and Algebra 2. Students,
having passed Multivariable Calculus,

think they have mathematically matured...

They cringe when they see “Equation-
al logic” on the .board. Actually, they
are freezing since professor needs fresh air
and windows are wide open. Only half
of the class attends lectures, thus creat-
ing an intimate atmosphere. About half
a dozen students wonder how Church’s
thesis is connected to algebra—they are
impatiently waiting for the Galois theo-
ry. Professor, sensing that, tries to engage
them ic the conversation about it. Stu-
dents are afraid to volunteer all of their
thoughts since they want to be complete-
ly “PC”. Professor tries to provoke them:
“I dare you discuss this with me!”. Stu-
dents make some lame attempts to show
they are not afraid, a bit silly of them.
A week later, they still don’t know how
to take part in the discussion between
two other mathematicians. As they leave
the classroom they listen to the professor
explaining that there are hens and egg-
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drugih matematicara. Izlaze iz sale za-
jedno s profesorom i sluaju ga dok im
objagnjava kako postoje kokoske koje
nose i koje ne nose jaja — i kako se on
na njihovom mestu ne bi dvoumio.

Sledeéi mesec dana studenti se gu-
be medu pretpricama i nekim drugim
pretpri¢ama. 1 nadaju se da ¢e im se na
kraju konaéno ukazati $ta je profesor
htio reéi. “Ko vam je predavao Algeb-
ru 17” Studenti odgovore. “Pa, dobro,
on vige vue na semantiku. Nemojte vi
mene pogreino da shvatite, nemam ja
nista protiv semantike, ali sintaksa...”
Sintaksa! Tih mesec dana im stalno
pri¢a o misaonim svetovima, misaonim
spratovima, vinuéu, dunuéu i vrnudéu.
Studenti nisu sigurni da razumiju - po-
kuSavaju da se vinu, ali kad treba da
ih ponese, oduva ih ono &to duva kroz
prozore. Zato kad treba da se vrnu na
sintaksu, ne samo da se vrnu, nego i
tresnu o nju. Termi? Sve su termi.
Kako su sve termi? Kako je termovska
algebra pra-algebra?

No, eto studentima utehe — kaze
profesor: “Samo budali je sve jasno.”
Desava se da se profesor i studenti za-
pri¢aju i da ih profesorka engleskog
prekine u 4,15. Poneki put bi se sa-
mo preselili u profesorov kabinet i ras-
pravijali bi o tome da li ima jo§ koji
kurs koji na ovaj nadin pristupa odno-
su sintaksa—semantika. Nekad se desi
da u tim priéama doguraju i do toga
kako naéi burek u Njujorku ili kako u-
kiseliti kupus za jedan dan. Vremenom
su studenti zamenili ¢as Algebra 2 za
aravi rutak i dobru (protestnu) Setnju.

Cetiri meseca posle eto opet stude-
1ata i profesora. Ovog puta mora da
m se pohvali §ta je radio prethodna
‘etiri meseca, i prica im P-L algorit-
mi. Naprosto zeli da podeli odu-
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laying hens and that he wouldn’t think
twice if he were in their shoes.

Months go by and students lose them-
selves in previews of some other previews,
hoping that one day they will finally grasp
what professor is saying. “Who was your
teacher in Algebra 1?” Students respond.
“Well then, his approach emphasizes se-
mantics. Don’t get me wrong, I am all
for semantics but syntax...” Syntax! Dur-
ing that month professor constantly talks
about realms of thoughts, thought level-
s, Soaratia, Inspiratia and Comprehenti-
a. Students are not quite sure they get
it—they try to soar, but windows are still
open and before they can get swept away,
the wind blows them off. For that reason,
when the time comes to return to syntax,
not only they return, they are knocked
down. What is a term? Everything is a
term- how on Earth can that be 7! How
can algebra of terms be pre-algebra?

Professor consoles students: “Only a
fool understands everything”. It is not
unusual that professor and students get
carried away in their conversation and go
well beyond the class time, only to be
interrupted by the English professor at
4:15 pm. Sometimes they just move to
professor’s cabinet and continue their dis-
cussion. Students wonder whether any
other course treats relationship between
syntax and semantics in the similar way.
At times, these conversations answer such
questions like how one can find burek? in
New York or how one can pickle cabbage
in only one day! In time, real lunch and
a good walk (in protest) take place of Al-
gebra 2.

After four months students and pro-
fessor are again in the classroom. This
time he wants to share his enthusiasm
about what he worked on in the mean-
time. He talks about P-L algorithm. Stu-
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evljenje s njima. Studenti se ¢ude ka-
ko to sad sve izgleda tako prosto. Na-
kon dva meseca raznih pretprica i pri-
¢a, dolazi jedan ¢udesan momenat na
koji su studenti prilicno ponosni. Pro-
fesor im objasnjava slobodne algebre,
ali pre nego §to i spomene secenje po
kongruenciji studenti shvataju koliko
je sati i izmedu sebe se kikocu i govo-
re 5ta Ce sve sledeée profesor uraditi.
Kao da se sve najednom slozilo u sli-
ku, i sve je li¢ilo na profesorovu pricu
o tome kako postoje ljudi koji toliko
umeju da primaju da posle nekog vre-
mena i sami pocinju da zrae. Studenti
misle da znaju §ta je profesor hteo da
kaze kad im je pricao da nisu u stanju
svi oni koji se nazivaju matematicari-
ma da osetaju Matematiku. Profesor
pokazuje kako se ovim novim naotari-
ma mogu gledati i korenska polja i al-
gebarska zatvorenja i sve. Sve te ideje
studenti dozivljavaju kao jako dragoce-
ne i trude se da ih sve pohvataju, dok
jos imaju prilike. I uspevaju neke da
uhvate: nautili su da se Matematika i
pravi, naucili su da naprave 3to kad im
zatreba,nesto za §ta ée zaraditi kompli-
mente od asistenata, tipa: “Covete koji
ste vi monstrumi.”

Sada kada su studenti polozili Alge-
bru 2 i bliZe se zavrietku studija, sret-
nu ih neki drugi studenti i pitaju iz ko-
jih knjiga da uce Algebru 2. Dobijaju
odgovor da im nijedna knjiga neée ni
znaditi ni odrediti toliko koliko profe-
sorova predavanja. Jednog dana, ako
studenti matematike porastu, sigurno
¢e o profesoru pricati kao o nekom ko
je bio uz njih dok su oni rasii.
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dents are amazed at how simple all that
feels right now. After months of previews
and conversations the proud moment has
come for students. Professor starts ex-
plaining free algebras and before he even
mentions congruences and factor systems,
students anticipate correctly what he plan-
s to say. They giggle. It is as if all pieces
came together into one mosaic and every-
thing is as if it came straight from the
professor’s story about people who can ac-
cept so much that after a while they start
radiating. Students now think they know
what professor meant when he said that
not all who call themselves mathemati-
cians can truly feel mathematics. Profes-
sor illustrates how one can use this new
outlook to examine the field of roots and
algebraic closure, in fact everything. Stu-
dents find these ideas very valuable and
try to seize them while they still can.
They succeed with some: they know now
that Math is “alive” , that it is made and
they have learned to make what they need
when they need it—something that can
make TA's say: “Man, you are monster-
S!”

After Algebra 2 students move through
other courses and graduation is at sight.
Some new students ask them which book
to use for Algebra 2. They answer that
no book would come close to professor’s
lectures. Omne day, when students be-
come grown-up mathematically, they will
no doubt talk of the professor as of some-
body who has been there for them when
they were growing up.

1. opanaek is the traditional Serbian peasant
shoe—upanak differs by just one letter.

2. Burekis a traditional Balkan pastry usually
filled with meat or cheese.

Translated from Serbian by Barbara BlaZzek.
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