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PREFACE

The theory of linear degenerate Volterra integro-differential equations is in its
very early stage. The present monograph is probably the first one that is specif-
ically dedicated to abstract degenerate Volterra integro-differential equations and
abstract degenerate (multi-term) fractional differential equations. It is a logical
continuation of my previously published books entitled “Generalized Semigroups
and Cosine Funtions” (Mathematical Institute SANU, Belgrade, 2011; [291]) and
“Abstract Volterra Integro-Differential Equations” (CRC Press, Boca Raton, FL,
2015; [292]). Decomposition of material into chapters, sections and subsections, as
well as the style used for presenting bibliographic information are almost the same
as those already employed in [292].

Fractional calculus and fractional differential equations are rapidly growing
fields of research, having invaluable importance in modeling of various problems
appearing in physics, engineering, chemistry, biology, medicine and many other sci-
ences. Degenerate fractional differential equations have not attracted the attention
of a large number of authors working in the field of applied science; fractional mod-
els of some well known degenerate equations of mathematical physics considered
in this monograph still do not have reasonable interpretations in the world of real
phenomena. Although formulated in the general setting of (infinite-dimensional)
sequentially complete locally convex spaces, a great part of our results on degen-
erate Volterra equations and degenerate fractional differential equations seems to
be new even in the setting of Banach spaces. Throughout the book, we use four
different kinds of fractional derivatives: the Caputo derivative, which is the most
commonly used, the Riemann–Liouville derivative, the modified Liouville right-
sided fractional derivative and the Weyl fractional derivative. The (multivalued)
linear operators employed in our analyses need not be densely defined, in general.

Although the often large, we are sure that list of references is not complete.
The book is not compulsively detailed and there is a large number of important
topics that will not be analyzed here. Selection is based on the personal views and
aspirations of the author, who pays special attention on examining possibilities to
apply various types of convoluted or 𝐶-regularized families of solution operators in
the analysis of abstract degenerate equations under consideration.

The target audiences are researchers and experts interested in getting to know
the basic methods of linear theory of abstract degenerate Volterra integro-differen-
tial equations; the book can be also useful for graduate students in mathematics,
physics or engineering science. The required mathematical preparation is no higher
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PREFACE 2

than basic functional analysis, complex analysis in one variable, integration theory
and elementary partial differential equations.

There is a long list of people deserving my thanks. First of all, I would like to
express sincere thanks to my family, closest friends and colleagues for permanent
support of my work. I would also like to extend my sincere appreciation to Prof.
V. Fedorov (Chelyabinsk, Russia), Prof. D. Velinov (Skopje, Macedonia), Prof. P.
J. Miana, L. Abadias (Zaragoza, Spain), Prof. M. Murillo-Arcila, J. A. Conejero,
A. Peris, J. Bonet (Valencia, Spain), Prof. D. Sidorov (Moscow State University,
Russia), Prof A. Favaron (Milano, Italy), Prof. B. Chaouchi (Khemis Miliana, Al-
geria), Prof. M. Li, C. Chen, C.-G. Li (Chengdu, China), Prof. R. Ponce (Talca,
Chile), Prof. C. Bianca (Paris, France), Prof. V. Keyantuo (Rio Piedras Campus,
Puerto Rico, USA), Prof. T. Diagana (Huntsville, USA) and G. M. N’Guérékata
(Baltimor, USA), Prof. E. M. A. El-Sayed (Alexandria, Egypt), Prof. M. S. Mosle-
hian (Mashhad, Iran), Prof. C.-C. Kuo (New Taipei City, Taiwan) and C.-C. Chen
(Taichung, Taiwan), for many stimulating discussions during the research. Special
thanks go to Prof. S. Pilipović (Novi Sad, Serbia).

Loznica/Novi Sad
December, 2019 Marko Kostić



NOTATION

N, Z, Q, R, C: the natural numbers, integers, rationals, reals, complexes.
For any 𝑠 ∈ R, we denote ⌊𝑠⌋ = sup{𝑙 ∈ Z : 𝑠 > 𝑙} and ⌈𝑠⌉ = inf{𝑙 ∈ Z : 𝑠 6 𝑙}.
Re 𝑧, Im 𝑧: the real and imaginary part of a complex number 𝑧 ∈ C; |𝑧|: the modul
of 𝑧, arg(𝑧): the argument of a complex number 𝑧 ∈ Cr {0}.
C+ = {𝑧 ∈ C : Re 𝑧 > 0}.
𝐵(𝑧0, 𝑟) = {𝑧 ∈ C : |𝑧 − 𝑧0| 6 𝑟} (𝑧0 ∈ C, 𝑟 > 0).
Σ𝛼 = {𝑧 ∈ Cr {0} : | arg(𝑧)| < 𝛼}, 𝛼 ∈ (0, 𝜋].
card(𝐺): the cardinality of 𝐺.
N0 = N ∪ {0}.
N𝑛 = {1, · · · , 𝑛}.
N0

𝑛 = {0, 1, · · · , 𝑛}.
R𝑛: the real Euclidean space, 𝑛 > 2.
The Euclidean norm of a point 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 is denoted by |𝑥| = (𝑥21 +
· · ·+ 𝑥2𝑛)

1/2.
If 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ N𝑛

0 is a multi-index, then we denote |𝛼| = 𝛼1 + · · ·+ 𝛼𝑛.
𝑥𝛼 = 𝑥𝛼1

1 . . . 𝑥𝛼𝑛
𝑛 for 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 and 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ N𝑛

0 .
𝑓 (𝛼) := 𝜕|𝛼|𝑓/𝜕𝑥𝛼1

1 . . . 𝜕𝑥𝛼𝑛
𝑛 ; 𝐷𝛼𝑓 := (−𝑖)|𝛼|𝑓 (𝛼).

In (𝑋, 𝜏) is a topological space and 𝐹 ⊆ 𝑋, then the interior, the closure, the
boundary, and the complement of 𝐹 with respect to 𝑋 are denoted by int(𝐹 ) (or
𝐹 ∘), 𝐹 , 𝜕𝐹 and 𝐹 𝑐, respectively.
Let Γ be a Jordan curve in the Eucliean plane R2. Then we denote by 𝑖𝑛𝑡(Γ)
(𝑒𝑥𝑡(Γ)) the bounded (unbounded) connected component of R2 r Γ.
If 𝑋 is a vector space over the field F ∈ {R, C}, then for each non-empty subset 𝐹
of 𝑋 by 𝑠𝑝𝑎𝑛(𝐹 ) we denote the smallest linear subspace of 𝑋 which contains 𝐹 .
~: the abbreviation for the fundamental system of seminorms which defines the
topology of a sequentially complete locally convex space 𝐸.
SCLCS: shorthand used to denote a sequentially complete locally convex space.
𝐿(𝐸,𝑋): the space of all continuous linear mappings from 𝐸 into another SCLCS
𝑋, 𝐿(𝐸) = 𝐿(𝐸,𝐸).
ℬ: the family of bounded subsets of 𝐸.
𝐸*: the dual space of 𝐸.
𝐸**: the bidual of 𝐸.
𝐴: a linear operator on 𝐸.
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NOTATION 4

𝒜: a multivalued linear operator on 𝐸 (MLO).
𝐶: a continuous linear operator on 𝐸.
If 𝐹 is a subspace of 𝐸, then we denote by 𝒜|𝐹 the part of 𝒜 in 𝐹 .
𝒜*: the adjoint operator of 𝒜.
𝐷(𝒜), 𝑅(𝒜), 𝜌(𝒜), 𝜎(𝒜): the domain, range, resolvent set and spectrum of 𝒜.
𝑁(𝒜) or Kern(𝒜): the null space of 𝒜.
𝒜: the closure of 𝒜.
𝑛(𝒜): the stationarity of 𝒜.
𝜎𝑝(𝒜): the point spectrum of 𝒜.
𝜌𝐶(𝒜): the 𝐶-resolvent set of 𝒜.
Let 𝐴 be a closed linear operator on 𝐸. Then [𝐷(𝐴)] denotes the sequentially com-
plete locally convex space 𝐷(𝐴) equipped with the following system of seminorms
𝑝𝐴(𝑥) = 𝑝(𝑥) + 𝑝(𝐴𝑥), 𝑥 ∈ 𝐷(𝐴), 𝑝 ∈ ~.
𝐷∞(𝐴) =

⋂︀
𝑛>1𝐷(𝐴𝑛).

𝜒Ω(·): the characteristic function, defined to be identically one on Ω and zero else-
where.
Γ(·): the Gamma function.
If 𝛼 > 0, then 𝑔𝛼(𝑡) = 𝑡𝛼−1/Γ(𝛼), 𝑡 > 0; 𝑔0(𝑡) ≡ the Dirac delta distribution.
𝒟 = 𝐶∞

0 (R), ℰ = 𝐶∞(R): the Schwartz spaces of test functions.
𝒮(R𝑛): the Schwartz space of rapidly decreasing functions (𝑛 ∈ N); 𝒮 ≡ 𝒮(R).
𝒟0: the subspace of 𝒟 which consists of those functions whose support is contained
in [0,∞).
𝒟′(𝐸) = 𝐿(𝒟, 𝐸), ℰ ′(𝐸) = 𝐿(ℰ , 𝐸), 𝒮 ′(𝐸) := 𝐿(𝒮, 𝐸): the spaces of continuous
linear functions 𝒟 → 𝐸, ℰ → 𝐸 and 𝒮 → 𝐸, respectively.
𝒟′

0(𝐸), ℰ ′
0(𝐸), 𝒮 ′

0(𝐸): the subspaces of 𝒟′(𝐸), ℰ ′(𝐸) and 𝒮 ′(𝐸), respectively, con-
taining the elements whose support is contained in [0,∞).
If 1 6 𝑝 < ∞, (𝑋, ‖ · ‖) is a complex Banach space, and (Ω,ℛ, 𝜇) is a mea-
sure space, then 𝐿𝑝(Ω, 𝑋, 𝜇) denotes the space which consists of those strongly
𝜇-measurable functions 𝑓 : Ω → 𝑋 such that ‖𝑓‖𝑝 := (

∫︀
Ω
‖𝑓(·)‖𝑝𝑑𝜇)1/𝑝 is finite;

𝐿𝑝(Ω, 𝜇) ≡ 𝐿𝑝(Ω,C, 𝜇).
𝐿∞(Ω, 𝑋, 𝜇): the space which consists of all strongly 𝜇-measurable, essentially
bounded functions.
‖𝑓‖∞ = 𝑒𝑠𝑠 sup𝑡∈Ω ‖𝑓(𝑡)‖, the norm of a function 𝑓 ∈ 𝐿∞(Ω, 𝑋, 𝜇).
𝐿𝑝(Ω : 𝑋) ≡ 𝐿𝑝(Ω, 𝑋) ≡ 𝐿𝑝(Ω, 𝑋, 𝜇), if 𝑝 ∈ [1,∞] and 𝜇 = 𝑚 is the Lebesgue
measure; 𝐿𝑝(Ω) ≡ 𝐿𝑝(Ω : C).
𝐿𝑝
𝑙𝑜𝑐(Ω : 𝑋): the space which consists of those Lebesgue measurable functions 𝑢(·)

such that, for every bounded open subset Ω′ of Ω, one has 𝑢|Ω′ ∈ 𝐿𝑝(Ω′ : 𝑋);
𝐿𝑝
𝑙𝑜𝑐(Ω) ≡ 𝐿𝑝

𝑙𝑜𝑐(Ω : C) (1 6 𝑝 6∞).
𝐶0(R𝑛): the space consisted of those functions 𝑓 ∈ 𝐶(R𝑛) for which
lim|𝑥|→∞ |𝑓(𝑥)| = 0, topologized by the norm |𝑓 | := sup𝑥∈R𝑛 |𝑓(𝑥)|.
𝐶𝑏(R𝑛) (𝐵𝑈𝐶(R𝑛)): the space of bounded continuous functions (bounded uni-
formly continuous functions) on R𝑛, topologized by the norm |𝑓 | := sup𝑥∈R𝑛 |𝑓(𝑥)|.
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𝐶𝜎(R𝑛): the space of bounded Hölder continuous functions on R𝑛, topologized by
the norm |𝑓 |𝜎 := sup𝑥∈R𝑛 |𝑓(𝑥)|+ sup𝑥,𝑦∈R𝑛,𝑥 ̸=𝑦

|𝑓(𝑥)−𝑓(𝑦)|
|𝑥−𝑦|𝜎 (0 < 𝜎 < 1).

If 𝑋 is a Banach space, then the abbreviation 𝐴𝐶𝑙𝑜𝑐([0,∞) : 𝑋) (𝐵𝑉𝑙𝑜𝑐([0,∞) : 𝑋))
stands for the space of all 𝑋-valued functions that are absolutely continuous (of
bounded variation) on any closed subinterval of [0,∞).
𝐴𝐶𝑙𝑜𝑐([0,∞)) ≡ 𝐴𝐶𝑙𝑜𝑐([0,∞) : C), 𝐵𝑉𝑙𝑜𝑐([0,∞)) ≡ 𝐵𝑉𝑙𝑜𝑐([0,∞) : C).
𝐵𝑉 [0, 𝑇 ], 𝐵𝑉𝑙𝑜𝑐([0, 𝜏)), 𝐵𝑉𝑙𝑜𝑐([0, 𝜏) : 𝑋): the spaces of functions of bounded vari-
ation.
𝐶𝑘(Ω : 𝐸): the space of 𝑘-times continuously differentiable functions (𝑘 ∈ N0) from
a non-empty subset Ω ⊆ C into 𝐸; 𝐶(Ω : 𝐸) ≡ 𝐶0(Ω : 𝐸).
If 𝑘 ∈ N, 𝑝 ∈ [1,∞] and Ω is an open non-empty subset of R𝑛, then we denote
by 𝑊 𝑘,𝑝(Ω : 𝑋) the Sobolev space which consists of those 𝑋-valued distributions
𝑢 ∈ 𝒟′(Ω : 𝑋) such that, for every 𝑖 ∈ N0

𝑘 and for every 𝛼 ∈ N𝑛
0 with |𝛼| 6 𝑘, one

has 𝐷𝛼𝑢 ∈ 𝐿𝑝(Ω : 𝑋); 𝐻𝑘(R𝑛 : 𝑋) ≡𝑊 𝑘,2(R𝑛 : 𝑋).
𝑊 𝑘,𝑝

𝑙𝑜𝑐 (Ω : 𝑋): the space of those 𝑋-valued distributions 𝑢 ∈ 𝒟′(Ω : 𝑋) such that,
for every bounded open subset Ω′ of Ω, one has 𝑢|Ω′ ∈𝑊 𝑘,𝑝(Ω′ : 𝑋).
S𝛼,𝑝(R𝑛): the fractional Sobolev space of order 𝛼 > 0 (𝑝 ∈ [1,∞]).
ℒ, ℒ−1: the Laplace transform and its inverse transform; 𝑓(𝜆) ≡ ℒ𝑓(𝜆).
ℱ , ℱ−1: the Fourier transform and its inverse transform.
𝐿𝑇 − 𝐸: we say that a function ℎ(·) belongs to the class 𝐿𝑇 − 𝐸 if there exists a
function 𝑓 ∈ 𝐶([0,∞) : 𝐸) such that for each 𝑝 ∈ ~ there exists 𝑀𝑝 > 0 satisfying
𝑝(𝑓(𝑡)) 6𝑀𝑝𝑒

𝑎𝑡, 𝑡 > 0 and ℎ(𝜆) = (ℒ𝑓)(𝜆), 𝜆 > 𝑎.
If a function 𝐾(𝑡) satisfies the condition (P1) stated in Section 1.2, then we denote
abs(𝐾) = inf{Re𝜆 : �̃�(𝜆) exists}.
𝐿1
𝑙𝑜𝑐([0,∞)), resp. 𝐿1

𝑙𝑜𝑐([0, 𝜏)): the space of scalar valued locally integrable func-
tions on [0,∞), resp. [0, 𝜏).
𝐽𝛼
𝑡 : the Riemann–Liouville fractional integral of order 𝛼 > 0.
𝐷𝛼

𝑡 : the Riemann–Liouville fractional derivative of order 𝛼 > 0.
D𝛼

𝑡 : the Caputo fractional derivative of order 𝛼 > 0.
𝑊𝛼

+ : the Weyl fractional derivative of order 𝛼.
𝐷𝛽

−𝑢(𝑠): the modified Liouville right-sided fractional derivative of order 𝛽 > 0.
𝐸𝛼,𝛽(𝑧): the Mittag-Leffler function (𝛼 > 0, 𝛽 ∈ R); 𝐸𝛼(𝑧) ≡ 𝐸𝛼,1(𝑧).
Ψ𝛾(𝑡): the Wright function (0 < 𝛾 < 1).
℘(𝑅): the set which consists of all subgenerators of an (𝑎, 𝑘)-regularized 𝐶-resolvent
family (𝑅(𝑡))𝑡∈[0,𝜏).
𝑎*,𝑛(𝑡): the 𝑛-th convolution power of function 𝑎(𝑡).
𝛿𝑗,𝑙: Kronecker’s delta.
supp(𝑓): the support of function 𝑓(𝑡).

The notation of various spaces of generalized (asymptotically) almost periodic func-
tions will be explained in Section 3.11 and Section 3.12.



INTRODUCTION

The main purpose of this monograph is to provide an overview of the recent
research on abstract degenerate Volterra integro-differential equations and abstract
degenerate fractional differential equations in sequentially complete locally convex
spaces. Considering only linear equations, we also contribute to the theories of
abstract degenerate differential equations of first and second order. Some results
of ours seem to be new even for abstract non-degenerate differential equations.

The organization and main ideas of this monograph, which is composed of three
chapters, are given as follows. In order to make it useful for self-study, in Chapter 1
we have collected together in one place the mathematical preliminaries and diverse
tools required for reading the material from Chapter 2 and Chapter 3. In Section
1.1, we remind ourselves of basic things concerning sequentially complete locally
convex spaces (SCLCSs), closed linear operators, analytical functions with values in
SCLCSs, integration of functions with values in SCLCSs, function spaces used, and
complex powers of almost 𝐶-nonnegative operators. We present the most important
definitions and results from the theory of multivalued linear operators (MLOs) in
Section 1.2; in a separate subsection, we give some new results about hypercyclic
and disjoint hypercyclic classes of multivalued linear operators. In Section 1.3,
we explore a new theoretical approach to the Laplace transform of functions with
values in SCLCSs [312] and collect various properties of vector-valued Laplace
transform needed for our further work. The operators of fractional differentiation,
Mittag-Leffler and Wright functions are investigated in Section 1.4.

The second chapter is consisted from twelve sections. One of the main subjects
considered in this chapter is the following abstract degenerate Cauchy problem:

(1) 𝐵𝑢(𝑡) = 𝑓(𝑡) +

∫︁ 𝑡

0

𝑎(𝑡− 𝑠)𝐴𝑢(𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝜏),

where 0 < 𝜏 6 ∞, 𝑡 ↦→ 𝑓(𝑡), 𝑡 ∈ [0, 𝜏) is a continuous mapping with values in a
Hausdorff sequentially complete locally convex space 𝐸 over the field of complex
numbers, 𝑎 ∈ 𝐿1

𝑙𝑜𝑐([0, 𝜏)) and 𝐴, 𝐵 are closed linear operators with domain and
range contained in 𝐸. The reader may consult the monograph [459] by J. Prüss,
the author’s one [292] and the references cited there for the general theory of
abstract non-degenerate Volterra equations in Banach and sequentially complete
locally convex spaces, i.e., the theory of various types of resolvent (sometimes also
called solution) families for (1), with 𝐵 = 𝐼. Compared with non-degenerate case,
increasingly less has been said about the well-posedness of abstract degenerate

6
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Cauchy problem (1). The study of (1) starts presumably with the papers [195,196]
by A. Favini and H. Tanabe (for some other references on degenerate integro-
differential equations, one may refer e.g. to [91,92,173,175,182,183,188,189,
207,280,305,309,311,319,321,327,397] and [524]), who have analyzed the well-
posedness of equation (1) in the setting of Banach spaces, considering separately
the so-called hyperbolic case

(2) sup
𝑠>0,𝑘∈N

‖(𝐵(𝑠𝐵 +𝐴)−1)𝑘‖ <∞

and the parabolic case

(3) sup
Re𝜆>0

(1 + |𝜆|)−1‖𝐵(𝜆𝐵 +𝐴)−1‖ <∞.

Blank hypothesis in [195] is that the operator 𝑇 = 𝐵𝐴−1 is a bounded linear
operator on 𝐸, as well as that the space 𝐸 has a direct decomposition representation
𝐸 = 𝑁(𝑇 ) ⊕ 𝑅(𝑇 ) (similar assumptions have been used in [424, Sections 1.1.5–
1.1.6], where the authors have investigated degenerate integrated semigroups, as
well as in many other research papers concerning abstract degenerate differential
equations).

Example 0.0.1. [195]
(i) Let Ω be a bounded domain in R𝑛 with smooth boundary, and let 𝑚 ∈

𝐶2(Ω̄) be a nonnegative superharmonic function. Set 𝐸 := 𝐿2(Ω), 𝐴 :=
−Δ with the Dirichlet boundary conditions, 𝐷(𝐵) := {𝑓 ;𝑚𝑓 ∈ 𝐸} and
𝐵𝑓 := 𝑚𝑓 (𝑓 ∈ 𝐷(𝐵)). Then (2) holds, with the corresponding supremum
being less than or equal to 1.

(ii) Let Ω be a bounded domain in R𝑛 with smooth boundary, let 𝑚 ∈ 𝐶(Ω̄)
be a nonnegative function, and let 𝐵 be a multiplication operator by𝑚(𝑥),
acting in 𝐸 := 𝐻−1(Ω). Set 𝐷(𝐴) := 𝐻1

0 (Ω) and 𝐴 := −Δ. Then (3)
holds.

Section 2.1 is devoted to the study of (𝐶,𝐵)-resolvents of closed linear oper-
ators. The material from Section 2.2 is taken from [306] and [319]. Following
the approach of T.-J. Xiao and J. Liang (cf. [542, Definition 1.4] for the case
𝑎(𝑡) = 𝑘(𝑡) = 1, and [543, Definition 2.3] for the case 𝑎(𝑡) = 𝑔𝑛(𝑡), 𝑘(𝑡) = 1),
we introduce the notion of an exponentially equicontinuous (𝑎, 𝑘)-regularized 𝐶-
resolvent family for (1). Generally, in our approach, the resolvent set of 𝐴 does not
contain 0 and can be even the empty set, which clearly implies that the operator
𝑇 need not be defined. Although providing only partial information about the
𝐶-wellposedness of the problem (1), it is worth noting that our method has some
advantages compared with other existing because we do not use any assumption
on the decomposition of the state space 𝐸. For the introduced class, we analyze
Hille–Yosida type theorems, subordination principles and perturbations in Sub-
section 2.2.1, as well as differential and analytical properties in Subsection 2.2.2.
Abstract degenerate time-fractional differential equations of Caputo order 𝛼 ∈ (0, 2]
are investigated in Subsection 2.2.3–Subsection 2.2.4, while semilinear degenerate
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relaxation equations associated with abstract differential operators are investigated
in Subsection 2.2.5.

Unless specified otherwise, by 𝐸 we denote a Hausdorff sequentially complete lo-
cally convex space over the field of complex numbers and by 𝐴 := 𝐴0, 𝐴1, . . . , 𝐴𝑛−1,
𝐴𝑛 := 𝐵 we denote closed linear operators acting on 𝐸. Let 𝑛 ∈ N r {1},
0 6 𝛼1 < · · · < 𝛼𝑛, 𝑓 : [0,∞) → 𝐸 be a continuous function, and let D𝛼

𝑡 denote
the Caputo fractional derivative of order 𝛼 [61, 292]. The well-posedness of the
following multi-term fractional differential equation has been analyzed in a series of
recent papers (cf. [292, Section 2.10] for an extensive survey of results on abstract
multi-term fractional differential equations with Caputo fractional derivatives):

D𝛼𝑛
𝑡 𝑢(𝑡) +

𝑛−1∑︁
𝑖=1

𝐴𝑖D
𝛼𝑖
𝑡 𝑢(𝑡) = 𝑓(𝑡), 𝑡 > 0; 𝑢(𝑗)(0) = 𝑢𝑗 , 𝑗 = 0, . . . , ⌈𝛼𝑛⌉ − 1.

Define N𝑛−1 := {1, . . . , 𝑛 − 1}, N0
𝑛−1 := {0, 1, . . . , 𝑛 − 1}, 𝑚𝑖 := ⌈𝛼𝑖⌉, 𝑖 ∈ N𝑛−1,

𝑇𝑖,𝐿𝑢(𝑡) := 𝐴𝑖D
𝛼𝑖
𝑡 𝑢(𝑡), if 𝑡 > 0, 𝑖 ∈ N𝑛−1 and 𝛼𝑖 > 0, and 𝑇𝑖,𝑅𝑢(𝑡) := D𝛼𝑖

𝑡 𝐴𝑖𝑢(𝑡),
if 𝑡 > 0 and 𝑖 ∈ N𝑛−1. For every 𝑡 > 0 and 𝑖 ∈ N𝑛−1, we denote by 𝑇𝑖𝑢(𝑡) either
𝑇𝑖,𝐿𝑢(𝑡) or 𝑇𝑖,𝑅𝑢(𝑡). In Section 2.3, the principal object of investigation is the
following abstract degenerate multi-term problem:

(4)
𝑛−1∑︁
𝑖=1

𝑇𝑖𝑢(𝑡) = 𝑓(𝑡), 𝑡 > 0.

Set ℐ := {𝑖 ∈ N𝑛−1 : 𝛼𝑖 > 0 and 𝑇𝑖,𝐿𝑢(𝑡) appears on the left hand side of (4)},
𝑄 := max ℐ, if ℐ ≠ ∅ and 𝑄 := 𝑚𝑄 := 0, if ℐ = ∅. We subject the following initial
conditions to the equation (4); cf. [308] for more details:

(5) 𝑢(𝑗)(0) = 𝑢𝑗 , 0 6 𝑗 6 𝑚𝑄 − 1 and (𝐴𝑖𝑢)
(𝑗)(0) = 𝑢𝑖,𝑗 if 𝑚𝑖 − 1 > 𝑗 > 𝑚𝑄.

If 𝑇𝑛−1𝑢(𝑡) = 𝑇𝑛−1,𝐿𝑢(𝑡), then (5) reads as follows:

𝑢(𝑗)(0) = 𝑢𝑗 , 0 6 𝑗 6 𝑚𝑛−1 − 1.

From a theoretical point of view, the problem [(4)–(5)] is not most general and later
we will see how it can be further generalized. The analysis of problem [(4)–(5)] oc-
cupies a great deal of our attention and, for the sake of better exposition and
understanding, we will be forced sometimes to repeat the basic things from its defi-
nition (sometimes the summation index on the left hand side of (4) runs differently
and sometimes the time-variable will be denoted by 𝑠). It is our strong belief that
this will not cause any form of plagiarism and inconsistency.

The most important subcases of problem [(4)–(5)] are the following fractional
Sobolev equations:

(DFP)𝑅 :

{︃
D𝛼

𝑡 𝐵𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0,

𝐵𝑢(0) = 𝐵𝑥; (𝐵𝑢)(𝑗)(0) = 0, 1 6 𝑗 6 ⌈𝛼⌉ − 1,

and

(DFP)𝐿 :

{︃
𝐵D𝛼

𝑡 𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0,

𝑢(0) = 𝑥; 𝑢(𝑗)(0) = 0, 1 6 𝑗 6 ⌈𝛼⌉ − 1,
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where 𝛼 > 0. These problems are generalizations of the usual Sobolev linear de-
generate equations of first order:

𝐵
𝑑

𝑑𝑡
𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡), 𝑢(0) = 𝑢0 (𝑡 > 0)

and
𝑑

𝑑𝑡
𝐵𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡), 𝐵𝑢(0) = 𝐵𝑢0 (𝑡 > 0).

For further information concerning the wellposedness of Sobolev first order degen-
erate equations, the reader may consult the monographs by G. V. Demidenko,
S. V. Uspenskii [140], A. Favini, A. Yagi [199], S. G. Krein [361], R. W. Car-
roll, R. E. Showalter [95], I. V. Melnikova, A. Filinkov [424], A. G. Sveshnikov,
A. B. Al’shin, M. O. Korpusov, Yu. D. Pletner [503] and G. A. Sviridyuk, V.
Fedorov [210], as well as the papers [6, 25, 49, 50, 90, 180, 197, 202, 219, 247,
258, 396, 420, 453, 454, 507, 517, 518] and [542]. The well-posedness of var-
ious types of degenerate second-order Sobolev equations has been analyzed in
[14, 95, 199, 203, 306, 317, 421, 431, 490, 525, 543] and [555]. The correspond-
ing results on degenerate Sobolev equations with integer higher-order derivatives
can be found in [16,18,43,210,305,515,543] and [199, Section 5.7]; concerning
abstract degenerate fractional differential equations, we may refer to [42,210,214,
271,306,317,321,325,379] and [558].

We continue by explaining the organization of material in Section 2.3; cf.
[307, 311, 314] and [327]. Various types of solutions of abstract Cauchy prob-
lem [(4)–(5)] and its integral analogues are presented in Subsection 2.3.1. For the
purpose of study of abstract multi-term problem [(4)–(5)], we introduce the classes
of exponentially equicontinuous 𝑘-regularized 𝐶-resolvent (𝑖, 𝑗)-propagation fami-
lies (Subsection 2.3.2) and exponentially equicontinuous (𝑘;𝐶)-regularized resolvent
(𝑖, 𝑗)-propagation families (Subsection 2.3.3). We investigate subordination princi-
ples, regularity properties, existence and uniqueness of solutions of problem [(4)–(5)]
and related Cauchy problems obtained by integration; following the approach of N.
H. Abdelaziz and F. Neubrander [6] for abstract degenerate equations of first order,
in Subsection 2.3.3 we introduce and analyze the classes of exponentially equicon-
tinuous (𝑎, 𝑘)-regularized 𝐶-resolvent families generated by a pair of operators and
exponentially equicontinuous (𝑘;𝐶)-regularized resolvent (𝑖, 𝑗)-propagation families
for [(4)–(5)], clarifying also some new results on the 𝐶-wellposedness of the equa-
tion (DFP)𝐿 with abstract differential operators. In Theorem 2.3.20, we reconsider
the assertion of [292, Theorem 2.3.3] for systems of abstract degenerate differential
equations involving polynomial matrices of abstract differential operators. Later
on, we explain how we can use this result in the analysis of existence and uniqueness
of entire solutions of some well known degenerate differential equations of mathe-
matical physics, like the Rossby wave equation, the Sobolev equation, the internal
wave equation in the Boussinesq approximation, the gravity-gyroscopic wave equa-
tion, and the equation of small amplitude oscillations of a rotating viscous fluid.
In Subsection 2.3.4–Subsection 2.3.5, we take up the study of the following special
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case of problem [(4)–(5)]:

(6)
𝐵D𝛼𝑛

𝑡 𝑢(𝑡) +

𝑛−1∑︁
𝑖=1

𝐴𝑖D
𝛼𝑖
𝑡 𝑢(𝑡) = 𝐴D𝛼

𝑡 𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0;

𝑢(𝑗)(0) = 𝑢𝑗 , 𝑗 = 0, . . . , ⌈𝛼𝑛⌉ − 1,

where 0 6 𝛼 < 𝛼𝑛. Following the method employed in our joint papers with
C.-G. Li and M. Li [346,347], we introduce the class of degenerate 𝑘-regularized
(𝐶1, 𝐶2)-existence and uniqueness propagation families for (6), the class of de-
generate 𝑘-regularized (𝐶1, 𝐶2)-existence and uniqueness families, and the class of
(𝑘,𝐶2)-uniqueness families for (6). We present some applications to abstract de-
generate equations analyzed by M. V. Falaleev and S. S. Orlov in [174], as well as
an illustrative example of abstract degenerate Cauchy problem (6) whose solution
can be defined only locally. We investigate subordination principles and pertur-
bation results for the introduced classes. In the remainder of Subsection 2.3.5, we
analyze entire and analytical solutions of (6), and apply our theoretical results in
the study of abstract Boussinesq-Love equation, which is important in the mod-
eling the longitudinal waves in an elastic bar with the transverse inertia, and the
abstract Barenblatt–Zheltov–Kochina equation, which is important in the study of
fluid filtration in fissured rocks, as well as in the studies of moisture transfer in
soil and the process of two-temperature heat conductivity. We also analyze some
fractional analogues of these equations.

Denote by 𝐷𝛼
𝑡 the Riemann–Liouville fractional derivative of order 𝛼 [61,315,

345]. In Section 2.4, we analyze the following abstract multi-term fractional dif-
ferential equation:

(7) 𝐵𝐷𝛼𝑛
𝑡 𝑢(𝑡) +

𝑛−1∑︁
𝑗=1

𝐴𝑗𝐷
𝛼𝑗

𝑡 𝑢(𝑡) = 𝐴𝐷𝛼
𝑡 𝑢(𝑡) + 𝑓(𝑡), 𝑡 ∈ (0, 𝜏),

in a complex Banach space 𝐸. If 𝛼𝑛 > 1 (𝛼𝑛 = 1, 𝛼𝑛 < 1), then we say that (7) is of
type (SC1) ((SC2), (SC3)). Depending on type of (7), we subject initial conditions
to (7) and carry out further analyses. The main result of Section 2.4 is Theorem
2.4.9, in which we analyze some applications of certain subclasses of 𝑘-regularized
(𝐶1, 𝐶2)-existence and uniqueness families in the study of unique solvability of (7).

Section 2.5 conveys results of a joint research study [213] with V. E. Fedorov.
Suppose that 𝑛 ∈ N, 𝜁 ∈ (0, 1], 𝑝0, 𝑝1, . . . , 𝑝𝑛 and 𝑞0, 𝑞1, . . . , 𝑞𝑛 are given non-
negative integers satisfying 𝑝0 = 𝑞0 = 0 and 0 < 𝑝1 + 𝑞1 6 𝑝2 + 𝑞2 6 . . . 6 𝑝𝑛 + 𝑞𝑛.
Set 𝑇𝑖𝑢(𝑠) := (D𝜁

𝑠)
𝑝𝑖𝐴𝑖(D

𝜁
𝑠)

𝑞𝑖𝑢(𝑠), 𝑠 > 0, 𝑖 ∈ N0
𝑛, 𝑆𝑙 := {𝑖 ∈ N𝑛 : 𝑞𝑖 > 1},

𝑆𝑟 := {𝑖 ∈ N𝑛 : 𝑝𝑖 > 1}, and conventionally, max(∅) := ∅, N0
∅ := ∅. We analyze the

following abstract degenerate Cauchy problem:

(8)
𝑛∑︁

𝑖=0

𝑇𝑖𝑢(𝑠) = 0, 𝑠 > 0,

accompanied with the following initial conditions:

((D𝜁
𝑠)

𝑗𝑢(𝑠))𝑠=0 = 𝑢𝑗 , 𝑗 ∈ N0
max{𝑞𝑖−1:𝑖∈𝑆𝑙}, and(9)
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((D𝜁
𝑠)

𝑗𝐴𝑖(D
𝜁
𝑠)

𝑞𝑖𝑢(𝑠))𝑠=0 = 𝑢𝑖,𝑗 (𝑖 ∈ 𝑆𝑟, 𝑗 ∈ N0
𝑝𝑖−1).

Although not visible at first glance, the study of problem [(8)–(9)] taken up in this
section leans heavily on the method used in our previous paper [303] on regulariza-
tion of ultradistribution semigroups and ultradistribution sines of Beurling class.
The crucial thing is the existence and polynomial boundedness of the operators
𝑃−1
𝜆 , where

𝑃𝜆 := 𝜆(𝑝𝑛+𝑞𝑛)𝜁𝐵 +

𝑛−1∑︁
𝑖=0

𝜆(𝑝𝑖+𝑞𝑖)𝜁𝐴𝑖, 𝜆 ∈ Cr {0},

on an appropriate ultra-logarithmic region Λ𝛼,𝛽,𝑙 (cf. J. Chazarain [99], 1971).
Assume now that 𝑛 ∈ N, 0 < 𝜁 6 2, 𝑞0, 𝑞1, . . . , 𝑞𝑛 are given non-negative inte-

gers satisfying 𝑞0 = 0 and 0 < 𝑞1 6 𝑞2 6 . . . 6 𝑞𝑛, as well as that 𝑝𝑖 = 0 for all 𝑖 ∈
N0

𝑛. Hence, 𝑇𝑖𝑢(𝑠) = 𝐴𝑖(D
𝜁
𝑠)

𝑞𝑖𝑢(𝑠), 𝑠 > 0, 𝑖 ∈ N0
𝑛 and 𝑃𝜆 = 𝜆𝑞𝑛𝜁𝐵 +

∑︀𝑛−1
𝑖=0 𝜆

𝑞𝑖𝜁𝐴𝑖,
𝜆 ∈ C r {0}. In Section 2.6, we investigate the abstract degenerate multi-term
Cauchy problem (8) accompanied with the initial conditions of the following form:

((D𝜁
𝑠)

𝑗𝑢(𝑠))𝑠=0 = 𝑢𝑗 , 𝑗 ∈ N0
𝑞𝑛−1, if 𝜁 ∈ (0, 1], resp.,

((D𝜁
𝑠)

𝑗𝑢(𝑠))𝑠=0 = 𝑢𝑗 , 𝑗 ∈ N0
𝑞𝑛−1;

(︁ 𝑑

𝑑𝑠
(D𝜁

𝑠)
𝑗𝑢(𝑠)

)︁
𝑠=0

=𝑣𝑗 , 𝑗 ∈ N0
𝑞𝑛−1, if 𝜁 ∈ (1, 2].(10)

In Definition 2.6.1, we introduce the notion of an entire (analytic) solution of prob-
lem [(8), (10)]. Denote by W (W𝑒) the subspace of 𝐸𝑞𝑛 , resp. 𝐸2𝑞𝑛 , consisting of
all initial values (𝑢0, . . . , 𝑢𝑞𝑛−1) ∈ 𝐸𝑞𝑛 , resp. (𝑢0, . . . , 𝑢𝑞𝑛−1; 𝑣0, . . . , 𝑣𝑞𝑛−1) ∈ 𝐸2𝑞𝑛 ,
subjected to some analytical solution 𝑢(·) of problem (8) on the region Cr (−∞, 0]
(entire solution 𝑢(·) of problem (8)). The main result of Section 2.6 is Theorem
2.6.2, which asserts that the set W is dense in (𝐶(

⋂︀𝑛
𝑗=0𝐷(𝐴𝑗)))

𝑞𝑛 for the topology
of 𝐸𝑞𝑛 , provided that 0 < 𝜁 < 1, resp. (𝐶(

⋂︀𝑛
𝑗=0𝐷(𝐴𝑗)))

2𝑞𝑛 for the topology of
𝐸2𝑞𝑛 , provided that 1 < 𝜁 < 2. Similar statements hold for the equations with inte-
ger order derivatives, when we have that the set W𝑒 is dense in (𝐶(

⋂︀𝑛
𝑗=0𝐷(𝐴𝑗)))

𝑞𝑛

for the topology of 𝐸𝑞𝑛 , provided that 𝜁 = 1, resp. (𝐶(
⋂︀𝑛

𝑗=0𝐷(𝐴𝑗)))
2𝑞𝑛 for the

topology of 𝐸2𝑞𝑛 , provided that 𝜁 = 2. The class of 𝐶-regularized semigroups of
growth order 𝑟 > 0 has recently been introduced in [103] following the ideas of
G. Da Prato [126] (1966). In Section 2.7, we continue our previous research stud-
ies [101,103] by investigating abstract incomplete Cauchy problems degenerate in
time. For that purpose, we introduce the concept of degenerate (𝐵,𝐶)-regularized
semigroups of growth order 𝑟 > 0 and clarify their most important structural prop-
erties. In Theorem 2.7.4, we deal with the following abstract incomplete degenerate
differential equations with modified Liouville right-sided fractional derivatives:

(𝐹𝑃𝛼1,𝛽1,𝜃) :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢 ∈ 𝐶∞((0,∞) : 𝐸),

𝐷𝛼1
− 𝐵𝐷𝛽1

− 𝑢(𝑠) = 𝑒𝑖𝜃/𝛾𝐴𝑢(𝑠), 𝑠 > 0,

lim𝑠→0+𝐵𝑢(𝑠) = 𝐶𝑥,

the set {𝐵𝑢(𝑠) : 𝑠 > 0} is bounded in 𝐸
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and

(𝐹𝑃𝛼1,𝛽1,𝜃)
′ :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑢 ∈ 𝐶∞((0,∞) : 𝐸),

𝐷𝛼1
− 𝐵𝐷𝛽1

− 𝑢(𝑠) = 𝑒𝑖𝜃/𝛾𝐴𝑢(𝑠), 𝑠 > 0,

lim𝑠→0+𝐵𝑢(𝑠) = 𝐶𝑥,

the sets {(1 + 𝑠−(𝑞+1)/𝛾)−1𝑢(𝑠) : 𝑠 > 0}
and {(1 + 𝑠−(𝑞+1)/𝛾)−1𝐵𝑢(𝑠) : 𝑠 > 0} are bounded in 𝐸;

here, 0 < 𝛾 < 1/2, 𝛼1 > 0, 𝛽1 > 0, 𝛼1 + 𝛽1 = 1/𝛾, 𝜃 ∈ (𝛾𝜋 − (𝜋/2), (𝜋/2) − 𝛾𝜋),
𝐶 ∈ 𝐿(𝐸) is injective, 𝐴 belongs to the class ℳ𝐵,𝐶,𝑞 defined later, and 𝑞 > −1,
resp. −1 − 𝛾 < 𝑞 6 −1, in the case of consideration of problem (𝐹𝑃𝛼1,𝛽1,𝜃),
resp. (𝐹𝑃𝛼1,𝛽1,𝜃)

′. In Theorem 2.7.5, we treat the following abstract incomplete
degenerate Cauchy problem of second order

(𝑃2,𝑞,𝐵) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢 ∈ 𝒜(Σ(𝜋/2)−(𝜔/2) : 𝐸), 𝐵𝑢 ∈ 𝒜(Σ(𝜋/2)−(𝜔/2) : 𝐸),

𝐵𝑢′′(𝑧) = 𝑑2

𝑑𝑧2𝐵𝑢(𝑧) = 𝐴𝑢(𝑧), 𝑧 ∈ Σ(𝜋/2)−(𝜔/2),

lim𝑧→0,𝑧∈Σ𝛿
𝐵𝑢(𝑧) = 𝐶𝑥, for every 𝛿 ∈ (0, (𝜋/2)− (𝜔/2)),

the sets {(1 + |𝑧|−(2𝑞+2))−1𝑢(𝑧) : 𝑧 ∈ Σ𝛿} and
{(1 + |𝑧|−(2𝑞+2))−1𝐵𝑢(𝑧) : 𝑧 ∈ Σ𝛿} are bounded in 𝐸
for every 𝛿 ∈ (0, (𝜋/2)− (𝜔/2)),

where (−3)/2 < 𝑞 < (−1)/2, 𝒜(Σ(𝜋/2)−(𝜔/2) : 𝐸) denotes the set consisting of
all analytic functions from the sector Σ(𝜋/2)−(𝜔/2) = {𝜆 ∈ C r {0} : | arg(𝜆)| <
(𝜋/2)−(𝜔/2)} into 𝐸, and the condition (H) specified later holds with some number
𝜔 ∈ [0, 𝜋). We raise a question of finding some sufficient conditions guaranteeing
the uniqueness of solutions of problem (𝑃2,𝑞,𝐵). The main aim of Section 2.8 is to
present the most important results from our second joint research study with V. E.
Fedorov [214]. In this section, we follow the methods employed in the monograph
G. A. Sviridyk–V. E. Fedorov [509], which are maybe insufficiently reconsidered for
abstract degenerate Volterra integro-differential equations so far (cf. Section 2.12
for more details). The notion of a regular resolvent set of a closed linear operator
𝐴 acting on 𝐸 plays an important role in this section: let us recall that the regular
resolvent set of 𝐴, 𝜌𝑟(𝐴) shortly, is defined as the union of those complex numbers
𝜆 ∈ 𝜌(𝐴) for which (𝜆−𝐴)−1 ∈ 𝑅(𝐸), where 𝑅(𝐸) denotes the set consisting of all
regular bounded linear operators 𝐷 ∈ 𝐿(𝐸), i.e., the operators 𝐷 ∈ 𝐿(𝐸) for which
there exists a positive constant 𝑐 > 0 such that for each seminorm 𝑝 ∈ ~ there exists
another seminorm 𝑞 ∈ ~ such that 𝑝(𝐷𝑛𝑥) 6 𝑐𝑛𝑞(𝑥), 𝑥 ∈ 𝐸, 𝑛 ∈ N (infimum of
such constants is said to be constant of regularity of 𝐷). Here, ~ is the abbreviation
for the fundamental system of seminorms which defines the topology of 𝐸. Assume
now that 𝑋, 𝑌 are two SCLCSs as well as that 𝐴 and 𝐵 are two closed linear
operators acting between the spaces 𝑋 and 𝑌 . Set 𝑅𝐵

𝜆 (𝐴) := (𝜆𝐵 − 𝐴)−1𝐵 and
𝐿𝐵
𝜆 (𝐴) := 𝐵(𝜆𝐵−𝐴)−1. By a regular 𝐵-resolvent set of the operator 𝐴, 𝜌𝐵𝑟 (𝐴) for

short, we mean the set

𝜌𝐵𝑟 (𝐴) := {𝜆 ∈ C : (𝜆𝐵 −𝐴)−1 ∈ 𝐿(𝑌,𝑋), 𝑅𝐵
𝜆 (𝐴) ∈ 𝐿(𝑋), 𝐿𝐵

𝜆 (𝐴) ∈ 𝐿(𝑌 )}.
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It is said that the operator 𝐴 is (𝐵, 𝜎)-regular, or equivalently, that a pair of
operators (𝐴,𝐵) is 𝜎-regular, iff there exists a finite number 𝑎 > 0 such that, for
every 𝜆 ∈ C with |𝜆| > 𝑎, we have 𝜆 ∈ 𝜌𝐵𝑟 (𝐴). We also define the notion of a (𝐵, 𝑝)-
regular operator 𝐴 (a 𝑝-regular pair of operators (𝐴,𝐵)), where 𝑝 ∈ N0. The main
result of Section 2.8 is Theorem 2.8.6, where we give some sufficient conditions for
the existence of a unique strong solution of the following inhomogeneous degenerate
Cauchy problem

(DF)𝑓 :

{︃
D𝛼

𝑡 𝐵𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0,

𝑢(𝑘)(0) = 𝑥𝑘, 0 6 𝑘 6 ⌈𝛼⌉ − 1,

under the assumption on (𝐵, 𝑝)-regularity of operator 𝐴. In [459, Chapter II], J.
Prüss has studied abstract non-scalar Volterra equations. Applications have been
given in the analysis of viscoelastic Timoshenko beam model, Midlin–Timoshenko
plate model and viscoelastic Kirchhoff plate model, with the corresponding mate-
rials being non-synchronous, as well as in the analysis of some problems appearing
in the theories of linear thermoviscoelasticity and electrodynamics. Section 2.9 is
written in an expository manner (we do have obligation to say that Subsection
2.3.5, Section 2.4, Section 2.8 and Subsection 3.6.4 are also written without giving
the proofs of structural results; the only exception is Theorem 2.4.6) and its aim
is to show how the techniques established in [459] and [299] can be helpful in
the analysis of a substantially large class of abstract degenerate Volterra integral
equations of non-scalar type [318]. More precisely, we treat the following linear
degenerate Volterra equation:

(11) 𝐵𝑢(𝑡) = 𝑓(𝑡) +

∫︁ 𝑡

0

𝐴(𝑡− 𝑠)𝑢(𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝜏),

where 𝑋 and 𝑌 are two complex Banach spaces satisfying that 𝑌 is continuously
embedded in 𝑋, 𝐵 is a closed linear operator with domain and range contained in
𝑋, 𝜏 ∈ (0,∞], 𝑓 ∈ 𝐶([0, 𝜏) : 𝑋) and 𝐴 ∈ 𝐿1

𝑙𝑜𝑐([0, 𝜏) : 𝐿(𝑌,𝑋)). In Definition 2.9.1,
we introduce the notion of a strong (mild) solution of problem (11) as well as the
notion of (𝑘𝐶)-wellposedness of (11); here, 𝑘(𝑡) is a scalar-valued kernel on [0, 𝜏)
and the operator 𝐶 ∈ 𝐿(𝑋) is injective. For the purpose of research of (11), we
introduce the classes of (weak) (𝐴, 𝑘,𝐵)-regularized 𝐶-pseudoresolvent families and
(𝐴, 𝑘,𝐵)-regularized 𝐶-resolvent families in Definition 2.9.2. After that, we inves-
tigate the generation of (𝐴, 𝑘,𝐵)-regularized 𝐶-pseudoresolvent families, the main
solution concept considered, as well as their analytical properties and hyperbolic
perturbation results.

The main aim of Section 2.10 is to continue our previous researches of hyper-
cyclic and topologically mixing properties of abstract non-degenerate (multi-term)
fractional differential equations with Caputo derivatives (cf. [292, Chapter 3] for a
comprehensive survey of results). It is our strong belief that our study of (disjoint)
hypercyclic and (disjoint) topologically mixing extensions of multivalued linear op-
erators (binary relations) will receive some attention of the authors working in the
field of linear topological dynamics. Concerning the other subjects, we would like
to note that we are not primarily concerned with studying new concepts in the
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theory of hypercyclicity and that some of our results have origins in the theory of
hypercyclic single valued operators. The most important assertions, from the view-
point of possible applications, will be those in which we reconsider the well known
Desch–Schappacher–Webb and Banasiak–Moszyński criteria for chaos of strongly
continuous semigroups.

Suppose, for the time being, that 𝐸 is a separable infinite-dimensional Fréchet
space over the field K ∈ {R, C}, whose topology is induced by the fundamental
system (𝑝𝑛)𝑛∈N of increasing seminorms. Then the translation invariant metric
𝑑 : 𝐸 × 𝐸 → [0,∞), defined by

𝑑(𝑥, 𝑦) :=

∞∑︁
𝑛=1

1

2𝑛
𝑝𝑛(𝑥− 𝑦)

1 + 𝑝𝑛(𝑥− 𝑦)
, 𝑥, 𝑦 ∈ 𝐸,

satisfies, among many other properties, the following:

𝑑(𝑥+ 𝑢, 𝑦 + 𝑣) 6 𝑑(𝑥, 𝑦) + 𝑑(𝑢, 𝑣) and 𝑑(𝑐𝑥, 𝑐𝑦) 6 (|𝑐|+ 1)𝑑(𝑥, 𝑦),

for any 𝑐 ∈ K and 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝐸. A linear mapping 𝑇 : 𝐸 → 𝐸 is said to be hy-
percyclic, resp. cyclic, iff there exists an element 𝑥 ∈ 𝐸 whose orbit Orb(𝑥, 𝑇 ) :=
{𝑇𝑛𝑥 : 𝑛 ∈ N0} is dense in 𝐸, resp. iff there exists an element 𝑥 ∈ 𝐸 such that the
linear span of Orb(𝑥, 𝑇 ) is dense in 𝐸, while 𝑇 is said to be topologically transitive
iff for for any pair of open non-empty subsets 𝑈 , 𝑉 of 𝐸 there exists 𝑛 ∈ N such
that 𝑇𝑛(𝑈) ∩ 𝑉 ̸= ∅. Using a simple Baire Category argument, it readily follows
that 𝑇 is hypercyclic iff 𝑇 is topologically transitive (G. D. Birkhoff [77], 1929).
Furthermore, a linear mapping 𝑇 : 𝐸 → 𝐸 is said to be chaotic (supercyclic, resp.
positively supercyclic) iff 𝑇 is hypercyclic and the set of periodic points of 𝑇 , de-
fined by {𝑥 ∈ 𝐸 : there exists 𝑛 ∈ N such that 𝑇𝑛𝑥 = 𝑥}, is dense in 𝐸 (iff there
exists an element 𝑥 ∈ 𝐸 whose projective orbit {𝑐𝑇𝑛𝑥 : 𝑛 ∈ N0, 𝑐 ∈ K}, resp.
positive projective orbit {𝑐𝑇𝑛𝑥 : 𝑛 ∈ N0, 𝑐 > 0}, is dense in 𝐸). Chronologically,
the first example of a hypercyclic operator was constructed by G. D. Birkhoff in
the afore-mentioned paper [77]. In actual fact, there were proved that the trans-
lation operator 𝑓 ↦→ 𝑓(· + 𝑎), 𝑓 ∈ H(C), 𝑎 ∈ C r {0} is hypercyclic in H(C); the
hypercyclicity of the derivative operator 𝑓 ↦→ 𝑓 ′, 𝑓 ∈ H(C) was proved by G. R.
MacLane [403] in 1952. The first example of a hypercyclic operator acting on a
Banach space was constructed by S. Rolewicz [464] in 1969; the state space in
his analysis is chosen to be 𝑙2(N). The most commonly used criterion for proving
hypercyclicity of single operators, the so-called Hypercyclicity Criterion, was dis-
covered independently by C. Kitai [284] (1982) and R. M. Gethner, J. Shapiro [224]
(1987). From the period 1987 onwards, the study of hypercyclicity of single valued
operators and various generalizations of this concept have experimented a great
development. For further information concerning dynamical properties of single
operators, we refer the reader to the monographs [238] by K.-G. Grosse-Erdmann,
A. Peris and [60] by F. Bayart, E. Matheron.

Although the first examples of chaotic semigroups were given by C. R. MacCluer
[402] and V. Protopopescu, Y. Azmy [458] already in 1992, the hypercyclic and
chaotic properties of strongly continuous semigroups were studied in a systematic
way for the first time in the paper [143] by W. Desch, W. Schappacher and G. F.



INTRODUCTION 15

Webb (1997). The study of hypercyclicity of second order non-degenerate equations
starts with the paper [85] by A. Bonilla and P. J. Miana (2008), while the study
of hypercylicity of non-degenerate fractional differential equations goes back to
author’s paper [300] (2012).

The non-existence of an appropriate reference which treats the hypercyclicity
of abstract degenerate PDEs may has been a strong motivational factor that influ-
enced us to write the papers [308,309], from which the material of Section 2.10
is taken; our results seem to be new even for abstract degenerate differential equa-
tions of first and second order. The analysis we have carried out indicates that the
class of hypercyclic abstract degenerate equations is, by all means, substantially
larger than the corresponding class of non-degenerate equations. Hypercyclic and
topologically mixing properties of solutions of abstract (multi-term) fractional dif-
ferential equations with Riemann–Liouville derivatives can be analyzed similarly,
and we will only refer the reader to the papers [345] and [382] for more details
about this topic.

Distributional chaos is a very popular field of research in the theory of topo-
logical dynamics of linear operators. Let us recall that the notion of distributional
chaos for interval maps was introduced by B. Schweizer and J. Smítal [481] in
1994. Distributional chaos was firstly considered in the setting of linear operators
when studying a quantum harmonic oscillator [159] (1999) and [441] (2006). A
systematic study of distributional chaos for backward shifts operators was initiated
in [414], while an example of a backward shift operator with a full scrambled set
appeared in [415]. For some other relevant references on distributional chaos, one
may refer e.g. to [46,66,68,440] and [499]. A linear continuous operator 𝑇 acting
on a Fréchet space 𝐸 is said to be distributionally chaotic iff there exist an un-
countable set 𝑆 ⊆ 𝐸 (scrambled set) and 𝜎 > 0 such that for each 𝜀 > 0 and for
each pair 𝑥, 𝑦 ∈ 𝑆 of distinct points we have that

𝑑𝑒𝑛𝑠({𝑘 ∈ N : 𝑑(𝑇 𝑘𝑥, 𝑇 𝑘𝑦) > 𝜎}) = 1 and

𝑑𝑒𝑛𝑠({𝑘 ∈ N : 𝑑(𝑇 𝑘𝑥, 𝑇 𝑘𝑦) < 𝜀}) = 1,

where 𝑑(·, ·) denotes the metric on 𝐸 and the upper density of a set 𝐷 ⊆ N is
defined by

𝑑𝑒𝑛𝑠(𝐷) := lim sup
𝑛→+∞

card(𝐷 ∩ [1, 𝑛])

𝑛
.

If we can choose 𝑆 to be dense in 𝐸, then we say that 𝑇 is densely distributionally
chaotic. The notion of a (densely) distributionally chaotic strongly continuous semi-
group on Fréchet space has recently been introduced in [112] (joint work with J. A.
Conejero, P. J. Miana and M. Murillo-Arcila; cf. also [13,55,56] and [116] for fur-
ther information concerning distributionally chaotic strongly continuous semigroups
on Banach spaces) as follows: A strongly continuous semigroup (𝑇 (𝑡))𝑡>0 ⊆ 𝐿(𝐸)
is said to be distributionally chaotic iff there are an uncountable set 𝑆 ⊆ 𝐸 and
𝜎 > 0 such that for each 𝜀 > 0 and for each pair 𝑥, 𝑦 ∈ 𝑆 of distinct points we
have that

𝐷𝑒𝑛𝑠({𝑡 > 0 : 𝑑(𝑇 (𝑡)𝑥, 𝑇 (𝑡)𝑦) > 𝜎}) = 1 and
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𝐷𝑒𝑛𝑠({𝑡 > 0 : 𝑑(𝑇 (𝑡)𝑥, 𝑇 (𝑡)𝑦) < 𝜀}) = 1,

where the upper density of a set 𝐷 ⊆ [0,∞) is defined now by

𝐷𝑒𝑛𝑠(𝐷) := lim sup
𝑡→+∞

𝑚(𝐷 ∩ [0, 𝑡])

𝑡
,

with 𝑚(·) being the Lebesgue measure on [0,∞). If, moreover, we can choose 𝑆 to
be dense in 𝐸, then (𝑇 (𝑡))𝑡>0 is said to be densely distributionally chaotic. The
question of whether an operator 𝑇 ∈ 𝐿(𝑋) or a strongly continuous semigroup
(𝑇 (𝑡))𝑡>0 ⊆ 𝐿(𝑋) is distributionally chaotic or not is closely connected with the
existence of distributionally irregular vectors, i.e., those elements 𝑥 ∈ 𝑋 such that
for each 𝜎 > 0

𝑑𝑒𝑛𝑠({𝑘 ∈ N : 𝑑(𝑇 𝑘𝑥, 0) > 𝜎}) = 1 and

𝑑𝑒𝑛𝑠({𝑘 ∈ N : 𝑑(𝑇 𝑘𝑥, 0) < 𝜎}) = 1,

respectively,

𝐷𝑒𝑛𝑠({𝑡 > 0 : 𝑑(𝑇 (𝑡)𝑥, 0) > 𝜎}) = 1 and

𝐷𝑒𝑛𝑠({𝑡 > 0 : 𝑑(𝑇 (𝑡)𝑥, 0) < 𝜎}) = 1.

For the basic information concerning distributionally chaotic properties of ill-posed
abstract non-degenerate equations of first order, we refer the reader to [112]. Dis-
tributionally chaotic properties of abstract non-degenerate fractional differential
equations in Banach spaces has recently been analyzed in [320], where it has been
pointed out that the notion of distributional chaos is much more appropriate for
dealing with fractional equations than that of the usually considered Devaney chaos.
The main purpose of Section 2.11 is to analyze a class of distributionally chaotic
abstract degenerate (multi-term) fractional differential equations. For further infor-
mation about (distributional) chaos of general binary relations, multivalued linear
operators and abstract integro-differential equations, we refer the reader to the
recent monograph of M. Kostić [294].

In this monograph, we will not discuss linear topological dynamics of abstract
degenerate differential equations associated with the use of backward shift opera-
tors. For more details concerning discrete case, we refer the reader to the doctoral
dissertation of Ö. Martin [409] and references cited therein.

We believe that our researches will enjoy reading Section 2.10 and Section
2.11. In order to make our monograph a convenient reference, we have concluded
the second and third chapter with a concise summary and further guidance notes.
Appendices to the second chapter are given in Section 2.12.

A large number of research papers, starting presumably with that of A. Yagi
[549], written over the last twenty five years, have concerned applications of mul-
tivalued linear operators to abstract degenerate differential equations (cf. [199] for
the basic source of information on this subject). In the third chapter of monograph,
we investigate the abstract degenerate Volterra integro-differential equations in se-
quentially complete locally convex spaces by using multivalued linear operators and
vector-valued Laplace transform. We follow the method which is based on the use
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of (𝑎, 𝑘)-regularized 𝐶-resolvent families generated by multivalued linear operators
(cf. [366,367,421,423,424] and [482] for some special cases of this notion) and
which suggests a very general way of approaching abstract Volterra equations. We
also introduce and analyze the class of (𝑎, 𝑘)-regularized (𝐶1, 𝐶2)-existence and
uniqueness families. The results presented in Chapter 3, which is composed of thir-
teen sections, are completely new even for abstract degenerate Caputo fractional
inclusions in Banach spaces.

In Section 3.1, we analyze the following abstract degenerate Volterra inclusion:

(12) ℬ𝑢(𝑡) ⊆ 𝒜
∫︁ 𝑡

0

𝑎(𝑡− 𝑠)𝑢(𝑠)𝑑𝑠+ ℱ(𝑡), 𝑡 ∈ [0, 𝜏),

where 𝑎 ∈ 𝐿1
𝑙𝑜𝑐([0, 𝜏)), 𝑎 ̸= 0, 𝒜 : 𝑋 → 𝑃 (𝑌 ) and ℬ : 𝑋 → 𝑃 (𝑌 ) are given multival-

ued linear operators acting between sequentially complete locally convex spaces 𝑋
and 𝑌 , and ℱ : 𝑋 → 𝑃 (𝑌 ) is a given mutivalued mapping, as well as the following
fractional Sobolev inclusions:

(DFP)R :

{︃
D𝛼

𝑡 𝐵𝑢(𝑡) ∈ 𝒜𝑢(𝑡) + ℱ(𝑡), 𝑡 > 0,

(𝐵𝑢)(𝑗)(0) = 𝐵𝑥𝑗 , 0 6 𝑗 6 ⌈𝛼⌉ − 1,

where we assume that 𝐵 = ℬ is single-valued, and

(DFP)L :

{︃
ℬD𝛼

𝑡 𝑢(𝑡) ⊆ 𝒜𝑢(𝑡) + ℱ(𝑡), 𝑡 > 0,

𝑢(𝑗)(0) = 𝑥𝑗 , 0 6 𝑗 6 ⌈𝛼⌉ − 1.

We define various types of solutions of problems (12), (DFP)R and (DFP)L. In
Theorem 3.1.3 and Theorem 3.1.5, we reconsider the main results of research of M.
Kim [280], while in Theorem 3.1.6 we prove an extension of [285, Theorem 3.5] for
abstract degenerate fractional differential inclusions. Subordination principles are
clarified in Theorem 3.1.8 and Theorem 3.1.9 following the methods proposed by J.
Prüss [459, Section 4] and E. Bazhlekova [61, Section 3] (cf. [210,314] and [327]
for similar results known in the degenerate case).

Following the ideas of R. deLaubenfels [132], in Section 3.2 we introduce and
analyze the class of (𝑎, 𝑘)-regularized (𝐶1, 𝐶2)-existence and uniqueness families
(see [292, Section 2.8] for non-degenerate case). Later on, we single out the class
of (𝑎, 𝑘)-regularized 𝐶-resolvent families for special considerations. We focus our
attention on the analysis of Hille–Yosida’s type theorems for (𝑎, 𝑘)-regularized 𝐶-
resolvent families generated by multivalued linear operators (as in all previous re-
searches of non-degenerate case, we introduce the notion of a subgenerator of an
(𝑎, 𝑘)-regularized 𝐶-resolvent family and investigate the most important properties
of subgenerators). It is well known (see e.g. [199, Theorem 2.4], [285, Theorem
3.6] and [280, p. 169]) that Hille–Yosida’s type estimates for the resolvent of a
multivalued operator 𝒜 immediately implies that 𝒜 is single-valued in a certain
sense. In part (ii) of Theorem 3.2.12, we will prove a similar assertion provided
that the Hille–Yosida condition (288) below holds. For the validity of Theorem
3.2.12(ii), we have found the condition 𝑘(0) ̸= 0 very important to be satisfied; in
other words, the existence of above-mentioned single-valued branch of 𝒜 can be
proved exactly in non-convoluted or non-integrated case, so that we have arrived
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to a diametrically opposite conclusion to that stated on l. 7-13, p. 169 of [280].
Nevertheless, the existence or non-existence of such a single-valued branch of 𝒜
is not sufficient for obtaining a fairly complete information on the well-posednesss
of inclusion (12) with ℬ = 𝐼 (the reading of papers [280] and [285] has strongly
influenced us to write [312], which contains a great part of our results presented in
Section 3.1–Section 3.2; compared with the results of [280], here we do not need
the assumption that 𝑎(𝑡) is a normalized function of local bounded variation). In
the remainder of Section 3.2, we enquire into the possibility to extend the most im-
portant results from [292, Section 2.1, Section 2.2] to (𝑎, 𝑘)-regularized 𝐶-resolvent
families generated by multivalued linear operators, and present several examples
and possible applications of our abstract theoretical results. We clarify the com-
plex characterization theorem for the generation of exponentially equicontunuous
(𝑎, 𝑘)-regularized 𝐶-resolvent families, the generalized variation of parameters for-
mula, and subordination principles; in a separate subsection, we analyze differential
and analytical properties of (𝑎, 𝑘)-regularized 𝐶-resolvent families. Furthermore,
we investigate the following degenerate Volterra integral inclusion:

0 ∈ ℬ𝑢(𝑡) +
𝑛−1∑︁
𝑗=0

𝒜𝑗(𝑎𝑗 * 𝑢)(𝑡) + ℱ(𝑡), 𝑡 ∈ [0, 𝜏),

where 𝑛 ∈ N, 0 < 𝜏 6 ∞, ℱ : [0, 𝜏) → 𝑃 (𝑌 ), 𝑎0, · · · , 𝑎𝑛−1 ∈ 𝐿1
𝑙𝑜𝑐([0, 𝜏)), and

𝒜 ≡ 𝒜0, · · · ,𝒜𝑛−1,ℬ ≡ 𝒜𝑛 are multivalued linear operators acting between the
sequentially complete locally convex spaces 𝑋 and 𝑌 ( [327]). In Subsection 3.2.2,
we analyze the situation in which some of the regularizing operators 𝐶2 or 𝐶 is
not injective, and introduce the notion of an (𝑎, 𝑘, 𝐶)-subgenerator of arbitrary
strongly continuous operator family (𝑍(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑋), where 0 < 𝜏 6 ∞. The
main aim of Subsection 3.2.3 is to clarify the most important results about degener-
ate 𝐾-convoluted 𝐶-semigroups and degenerate 𝐾-convoluted 𝐶-cosine functions
in locally convex spaces. In this subsection, degenerate operator families under
examination are defined locally or globally and their subgenerators are allowed to
be multivalued linear operators. We thus provide a new unification concept in the
theory of abstract degenerate differential equations of first and second order, paying
special attention to explain, in a brief and concise manner, how we can improve
our structural results from the second chapter of monograph [291] to degener-
ate operator families. We analyze the basic properties of subgenerators, extension
and adjoint type theorems, real and complex characterization theorems, as well as
generation of local degenerate 𝐾-convoluted 𝐶-semigroups (𝐾-convoluted 𝐶-cosine
functions). Following P. C. Kunstmann [363], we introduce the notion of station-
arity of a multivalued linear operator and give some estimates on the upper bounds
for stationarity of generators of degenerate fractionally integrated semigroups and
cosine functions. The study of degenerate 𝐾-convoluted 𝐶-groups is without the
scope of this monograph.

It is well known that the class of distribution semigroups in Banach spaces was
introduced by J. L. Lions [391] in 1960 as an attempt to seek for the solutions of
abstract first order differential equations that are not well-posed in the usual sense,
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i.e., whose solutions are not governed by strongly continuous semigroups of linear
operators. From then on, distribution semigroups have attracted the attention of
a large number of mathematicians. The class of distribution semigroups with not
necessarily densely defined generators has been introduced independently by P. C.
Kunstmann [364] and S. W. Wang [530], while the class of 𝐶-distribution semi-
groups has been introduced by the author in [332]. Ultradistribution semigroups
in Banach spaces, with densely or non-densely defined generators, and abstract
Beurling spaces have been analyzed in the papers of R. Beals [64, 65], J. Chaz-
arain [99], I. Ciorănescu [109], H. A. Emami-Rad [167] and H. Komatsu [289] (cf.
also [291,351,365] and [424]). On the other hand, the study of distribution semi-
groups in locally convex spaces has been initiated by R. Shiraishi, Y. Hirata [488],
T. Ushijima [522] and M. Ju Vuvunikjan [528]. In our recent joint research study
with S. Pilipović and D. Velinov [354], we have introduced and systematically ana-
lyzed the classes of 𝐶-distribution semigroups and 𝐶-ultradistribution semigroups
in locally convex spaces. The main aim of Section 3.3 is to explore the classes of de-
generate 𝐶-distribution semigroups and degenerate 𝐶-ultradistribution semigroups
in locally convex spaces [352,353]. Section 3.4 is devoted to the study of degenerate
𝐶-distribution cosine functions and degenerate 𝐶-ultradistribution cosine functions
in locally convex spaces (cf. [331,333,348] and [428] for single-valued case). Even
in non-degenerate case, with 𝐶 being the identity operator and the pivot space
being one of Banach’s, the results presented in Section 3.4 are completely new in
ultradistributional case [523].

In Section 3.5, we continue the analysis of A. Favini, A. Yagi [199, Chapter
III] and numerous other authors by investigating subordinated fractional resolvent
families with removable singularities at zero and semilinear degenerate fractional
differential inclusions [324, 325]. Our main contributions are contained in Sub-
section 3.5.2, where we also analyze a new class of abstract relaxation differential
equations that are not degenerate in time.

The main ideas and organization of Section 3.6, where we reconsider our pre-
viously established results on hypercyclic and topologically mixing properties of
abstract degenerate (multi-term) time-fractional equations by using the multival-
ued linear operators approach [321], will be explained within themselves. Let us
only note, for now, that this section is consisted from four subsections and that an
interesting application has been made in the study of topologically mixing proper-
ties of the Poisson heat equation in 𝐶2(R). Chronologically, G. A. Sviridyuk and
N. A. Manakova were the first to investigate perturbations of a class of abstract
degenerate differential equations of first order [510], 2003. Using the perturba-
tion theory for strongly continuous semigroups and the theory developed by G.
A. Sviridyuk [507], V. E. Fedorov and O. A. Ruzakova have analyzed in [219]
the unique solvability for the Cauchy problem and Showalter problem for a class
of perturbations of abstract degenerate differential equations of first order. The
paper [219] contains a great number of applications to initial boundary value prob-
lems and we can freely say that this is the first systematic study of perturbations
of abstract degenerate differential equations. Recently, A. Favini [186] has looked
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into inverse problems of degenerate differential equations by using perturbation re-
sults for linear relations (cf. also M. A. Horani, A. Favini [15] and A. Favaron, A.
Favini, H. Tanabe [184]). The main aim of Section 3.7 is to reconsider perturbation
results for abstract non-degenerate Volterra integro-differential equations [292, Sec-
tion 2.6] from the point of view of the theory of multivalued linear operators [323].
We provide several illustrative applications of our results, primarily to degenerate
fractional differential equations with Caputo derivatives. We also provide a few
instructive examples emphasizing that certain perturbation properties of abstract
degenerate Volterra integro-differential equations can be analyzed by using the re-
sults from the perturbation theory for non-degenerate equations.

Approximation theory is an established field of mathematics whose focus is
primarily on the approximation of real-valued continuous functions by some sim-
pler class of functions. Concerning the theory of strongly continuous semigroups,
of particular interest is the well-known Trotter–Kato theorem, which makes a re-
lationship between the convergence of a sequence of infinitesimal generators (their
resolvents) to the convergence of associated semigroups of operators. Briefly told,
the main aim of Section 3.8 [316] is to prove some Trotter–Kato type formu-
lae for degenerate (𝑎, 𝑘)-regularized 𝐶-resolvent families in locally convex spaces
(cf. [25,50,79,95,187,199,370,509] and [519] for the basic references on approx-
imation of abstract degenerate differential equations), as well as to investigate the
Laguerre expansions of degenerate (𝑎, 𝑘)-regularized 𝐶-resolvent families (cf. [2] for
the study of Laguerre expansions of non-degenerate strongly continuous semigroups
in Banach spaces).

The first results about fractional powers of non-negative multivalued linear op-
erators was given by El H. Alaarabiou [11,12] in 1991. In these papers, he extended
the well known Hirsch functional calculus to the class ℳ of non-negative multi-
valued linear operators in a complex Banach space. Unfortunately, the method
proposed in [11,12] had not allowed one to consider the product formula and the
spectral mapping theorem for powers. Nine years later, in 2000, C. Martínez, M.
Sanz and J. Pastor [411] improved a functional calculus established in [11,12], pro-
viding a new definition of fractional powers. A very stable and consistent theory of
fractional powers of the operators belonging to the class ℳ has been constructed,
including within itself the above-mentioned product formula, spectral mapping the-
orem, as well as almost all other fundamental properties of fractional powers of
non-negative single-valued linear operators. Some later contributions have been
given by J. Pastor [444], who considered relations between the multiplicativity and
uniqueness of fractional powers of non-negative multivalued linear operators.

In order to motivate our research in Section 3.9, let us first look into the class
consisting of multivalued linear operators 𝒜, acting on a complex Banach space
(𝑋, ‖ · ‖), for which (−∞, 0] ⊆ 𝜌𝒜 and there exist finite numbers 𝑀1 > 1, 𝛽 ∈ (0, 1]
such that

(13) ‖𝑅(𝜆 : 𝒜)‖ 6𝑀1(1 + |𝜆|)−𝛽 , 𝜆 6 0.

Assuming that (13) is true, we can apply the usual von Neumann’s expansion in
order to see that there exist positive real constants 𝑐 > 0 and 𝑀 > 0 such that
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the resolvent set of 𝒜 contains an open region Ω𝑐,𝑀 ⊇ Ω′
𝑐,𝑀 := {𝜆 ∈ C : | Im𝜆| 6

(2𝑀)−1(𝑐 − Re𝜆)𝛽 , Re𝜆 6 𝑐}, where we have the estimate ‖𝑅(𝜆 : 𝒜)‖ = 𝑂((1 +
|𝜆|)−𝛽), 𝜆 ∈ Ω𝑐,𝑀 . Let Γ′ be the upwards oriented curve {𝜉 ± 𝑖(2𝑀)−1(𝑐 − 𝜉)𝛽 :
−∞ < 𝜉 6 𝑐}. In [199], cf. also Subsection 1.2.1, A. Favini and A. Yagi define the
fractional power 𝒜−𝜃, for Re 𝜃 > 1− 𝛽, by

𝒜−𝜃 :=
1

2𝜋𝑖

∫︁
Γ′
𝜆−𝜃(𝜆−𝒜)−1𝑑𝜆,

𝒜𝜃 := (𝒜−𝜃)−1 (Re 𝜃 > 1 − 𝛽); then 𝒜−𝜃 ∈ 𝐿(𝐸) for Re 𝜃 > 1 − 𝛽, and the
semigroup properties 𝒜−𝜃1𝒜−𝜃2 = 𝒜−(𝜃1+𝜃2), 𝒜𝜃1𝒜𝜃2 = 𝒜𝜃1+𝜃2 of powers hold for
Re 𝜃1,Re 𝜃2 > 1− 𝛽. The case 𝛽 ∈ (0, 1) occurs in many applications and then we
cannot define satisfactorily the power 𝒜𝜃 for |Re 𝜃| 6 1 − 𝛽. As explained in the
introductory part of paper [184] by A. Favaron and A. Favini, the method of closed
extensions used in the pioneering works [44] by A. Balakrishnan and [290] by H.
Komatsu cannot be used here for construction of power 𝒜𝜃 (Re 𝜃 ∈ (0, 1− 𝛽)). In
this place, we would like to observe that the method proposed by F. Periago, B.
Straub [447] and C. Martinez, M. Sanz, A. Redondo [413] (cf. also [101]) cannot be
of any help for construction of power 𝒜𝜃 (Re 𝜃 ∈ (0, 1−𝛽)), as well. In [184, Section
9], the fractional power 𝒜𝜃 has been constructed for |Re 𝜃| 6 1 − 𝛽, provided the
validity of condition [184, (H3)]. In general case 𝛽 ∈ (0, 1), the condition (H3) does
not hold.

Assume now that 𝛼 > −1 and a closed multivalued linear operator 𝒜 satisfies:
(♦) (0,∞) ⊆ 𝜌(𝒜) and

(♦♦) sup𝜆>0(1 + |𝜆|)−𝛼||𝑅(𝜆 : 𝒜)|| <∞.
Given 𝛽 > −1, 𝜀 ∈ (0, 1], 𝑑 ∈ (0, 1], 𝑐′ ∈ (0, 1) and 𝜃 ∈ (0, 𝜋], put 𝐵𝑑 := {𝑧 ∈ C :
|𝑧| 6 𝑑}, Σ𝜃 := {𝑧 ∈ C : 𝑧 ̸= 0, arg(𝑧) ∈ (−𝜃, 𝜃)} and 𝑃𝛽,𝜀,𝑐′ := {𝜉+ 𝑖𝜂 : 𝜉 > 𝜀, 𝜂 ∈
R, |𝜂| 6 𝑐′(1+𝜉)−𝛽}. Then is checked at once that the hypotheses (♦)–(♦♦) imply
the existence of numbers 𝑑 ∈ (0, 1], 𝑐 ∈ (0, 1), 𝜀 ∈ (0, 1] and 𝑀 > 0 such that:

(S) 𝑃𝛼,𝜀,𝑐 ∪𝐵𝑑 ⊆ 𝜌(𝒜), (𝜀, 𝑐(1 + 𝜀)−𝛼) ∈ 𝜕𝐵𝑑 and
(SS) ‖𝑅(𝜆 : 𝒜)‖ 6𝑀(1 + |𝜆|)𝛼, 𝜆 ∈ 𝑃𝛼,𝜀,𝑐 ∪𝐵𝑑.
Suppose now that 𝑋 is a Hausdorff sequentially complete locally convex space

over the field of complex numbers, SCLCS for short. Keeping in mind the above
analysis (the notion will be explained later), it seems reasonable to introduce the
following condition:

(H)0 : Let 𝐶 ∈ 𝐿(𝑋) be not necessarily injective, let 𝒜 be closed, and let 𝐶𝒜 ⊆
𝒜𝐶. There exist real numbers 𝑑 ∈ (0, 1], 𝑐 ∈ (0, 1), 𝜀 ∈ (0, 1] and 𝛼 > −1
such that 𝑃𝛼,𝜀,𝑐 ∪ 𝐵𝑑 ⊆ 𝜌𝐶(𝒜), the operator family {(1 + |𝜆|)−𝛼(𝜆 −
𝒜)−1𝐶 : 𝜆 ∈ 𝑃𝛼,𝜀,𝑐 ∪ 𝐵𝑑} ⊆ 𝐿(𝑋) is equicontinuous, the mapping 𝜆 ↦→
(𝜆−𝒜)−1𝐶 is strongly analytic on int(𝑃𝛼,𝜀,𝑐∪𝐵𝑑) and strongly continuous
on 𝜕(𝑃𝛼,𝜀,𝑐 ∪𝐵𝑑).

The first aim of Subsection 3.9.1 is to construct the complex power (−𝒜)𝑏,
𝑏 ∈ C of a multivalued linear operator 𝒜 satisfying the condition (H)0. Although
very elegant and elementary, our construction has some serious disadvantages be-
cause the introduced powers behave very badly (for example, we cannot expect
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the additivity property of powers clarified in [103, Remark 2.11]) in the case that
the regularizing operator 𝐶1, defined in this subsection, is not injective (since the
resolvents and 𝐶-resolvents of a really multivalued linear operator are not injective,
this is the main case in our examinations). The method proposed for construction
of power (−𝒜)𝑏 is different from that already employed in the single-valued linear
case [334]; in Subsection 3.9.1, we first apply regularization with the operator 𝐶1

and follow after that the approach from our joint research paper with C. Chen, M.
Li and M. Žigić [103]. In particular, we define any complex power of a multivalued
linear operator satisfying (13) and not the above-mentioned condition (H3).

The following sectorial analogue of (H) is most important in applications:

(HS)0 : Let 𝐶 ∈ 𝐿(𝑋) be not necessarily injective, let 𝒜 be closed, and let 𝐶𝒜 ⊆
𝒜𝐶. There exist real numbers 𝑑 ∈ (0, 1], 𝜗 ∈ (0, 𝜋/2) and 𝛼 > −1 such
that Σ𝜗 ∪𝐵𝑑 ⊆ 𝜌𝐶(𝒜), the operator family {(1+ |𝜆|)−𝛼(𝜆−𝒜)−1𝐶 : 𝜆 ∈
Σ𝜗 ∪ 𝐵𝑑} ⊆ 𝐿(𝑋) is equicontinuous, the mapping 𝜆 ↦→ (𝜆 − 𝒜)−1𝐶 is
strongly analytic on int(Σ𝜗 ∪𝐵𝑑) and strongly continuous on 𝜕(Σ𝜗 ∪𝐵𝑑).

The construction of power (−𝒜)𝑏, 𝑏 ∈ C of a multivalued linear, non-sectorial,
operator 𝒜 for which 0 /∈ int(𝜌𝐶(𝒜)) is not trivial and we will not discuss this
theme here. For some other approaches concerning the construction of fractional
powers, the reader may consult [101,138] and [502].

In Section 3.9, we will also see that a great number of resolvent equations and
generalized resolvent equations clarified in Section 1.2 holds for 𝐶-resolvents of
multivalued linear operators, where 𝐶 is non-injective, in general. The third and,
probably, the main aim of Section 3.9 is to continue our researches of abstract in-
complete fractional degenerate differential equations with modified Liouville right-
sided fractional derivatives [292] and abstract incomplete degenerate differential
equations of second order (cf. Section 2.7). We investigate fractionally integrated
𝐶1-regularized semigroups generated by the negatives of introduced powers, and
provide a few relevant applications of our theoretical results to abstract incomplete
degenerate PDEs.

Chronologically speaking, R. deLaubenfels proved in 1988 that any injective
infinitesimal generator 𝐴 of a bounded analytic 𝐶0-semigroup in Banach space 𝐸
has the property that the inverse operator 𝐴−1 also generates a bounded analytic
𝐶0-semigroup of the same angle [133]. In this paper, the author asked whether
any injective infinitesimal generator 𝐴 of a bounded 𝐶0-semigroup in 𝐸 has the
property that the inverse operator 𝐴−1 generates a 𝐶0-semigroup. As we know
today, the answer is negative in general: a simple counterexample is given by H.
Komatsu already in 1966, who constructed an injective infinitesimal generator of
a contraction semigroup on the Banach space 𝑐0, for which the inverse operator is
not an infinitesimal generator of a 𝐶0-semigroup [233,290]. Concerning the inverse
generator problem, it should be noted that A. Gomilko, H. Zwart and Y. Tomilov
proved in 2007 that the answer to R. deLaubenfels’s question is negative in the
state space 𝑙𝑝, where 1 < 𝑝 < ∞ and 𝑝 ̸= 2 (see [233]), as well as that S. Fackler
proved in 2016 that the answer to this question is negative in the state space 𝐿𝑝(R),
where 1 < 𝑝 <∞ and 𝑝 ̸= 2 (see [172]). We do not yet know whether there exists
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an injective infinitesimal generator 𝐴 of a bounded 𝐶0-semigroup in a Hilbert space
𝐻 such that 𝐴−1 does not generate a 𝐶0-semigroup in 𝐻 (it is well known that
for any injective infinitesimal generator 𝐴 of a contraction 𝐶0-semigroup in 𝐻, the
inverse operator 𝐴−1 likewise generates a contraction 𝐶0-semigroup in 𝐻 by the
Lumer-Phillips theorem; see the paper [394] by R. Liu for the fractional analogue
of this result). For further information about the inverse generator problem, we
refer the reader to the papers [135] by R. deLaubenfels, [162] by T. Eisner, H.
Zwart, [563,564] by H. Zwart and the recent survey [232] by A. Gomilko.

We would like to note that the complexity of inverse generator problem lies also
in the fact that the use of real or complex representation theorems for the Laplace
transform does not take a satisfactory effect. To explain this in more detail, assume
that 𝐴 is injective and generates a bounded 𝐶0-semigroup in the Banach space 𝐸
equipped with the norm ‖ · ‖. Then a simple calculation involving the Hille–Yosida
theorem yields that, for every 𝜆 > 0 and 𝑛 ∈ N, we have

𝑑𝑛

𝑑𝜆𝑛
[(𝜆−𝐴−1)−1] = (−1)𝑛𝑛![𝜆−1 − 𝜆−2(𝜆−1 −𝐴)−1]𝑛+1

= (−1)𝑛𝑛!
𝑛+1∑︁
𝑘=0

(−1)𝑘
(︂
𝑛+ 1

𝑘

)︂
𝜆−(𝑛+1+𝑘)(𝜆−1 −𝐴)−𝑘,

so that ⃦⃦⃦ 𝑑𝑛
𝑑𝜆𝑛

[(𝜆−𝐴−1)−1]
⃦⃦⃦
6
𝑀𝑛!

𝜆𝑛+1
· 2𝑛+1.

Since the multiplication with number 2𝑛+1 has appeared above, this estimate is
completely useless if one wants to prove that the operator 𝐴−1 generates an expo-
nentially bounded 𝑟-times integrated semigroup for some real number 𝑟 > 0 (see
also [232, Proposition 3.1, Theorem 3.2, Theorem 3.4]). On the other hand, a sim-
ple computation shows that the resolvent of 𝐴−1 is bounded in norm by Const ·|𝜆|
on any right half plane {𝑧 ∈ C : Re 𝑧 > 𝑎}, where 𝑎 > 0, so that the complex
characterization theorem for the Laplace transform immediately yields that the op-
erator 𝐴−1 generates an exponentially bounded 𝑟-times integrated semigroup for
any real number 𝑟 > 2. In 2007, S. Piskarev and H. Zwart proved that the op-
erator 𝐴−1 generates an exponentially bounded once integrated semigroup [449],
while M. Li, J. Pastor and S. Piskarev improved this result in 2018 by showing that
the operator 𝐴−1 generates a tempered 𝑟-times integrated semigroup for any real
number 𝑟 > 1/2. Moreover, they formulated a corresponding result for tempered
fractional resolvent operator families of order 𝛼 ∈ (0, 2]; see [383] for more details.

Up to now, we do not have any relevant reference which treats the inverse
generator problem for abstract degenerate Volterra integro-differential equations,
even for abstract degenerate differential equations of first order. In contrast to
non-degenerate differential equations, we have found the inverse generator problem
much more important from the point of view of possible applications. The main
aim of Section 3.10 is to analyze the inverse generator problem for the classes of
mild (𝑎, 𝑘)-regularized (𝐶1, 𝐶2)-existence and uniqueness families, where the opera-
tor 𝐶2 is not necessarily injective, and (𝑎, 𝑘)-regularized 𝐶-resolvent families, where
the operator 𝐶 is not necessarily injective [343]; see, especially, Subsection 3.10.1,
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where we investigate degenerate time-fractional equations with abstract differential
operators. We reconsider some results from [134] and [383] for abstract degenerate
Volterra integro-differential equations in Theorem 3.10.9 and Theorem 3.10.11. We
also investigate the situation in which we do not assume the existence of 𝐶-resolvent
of a corresponding multivalued linear operator 𝒜 on some right half plane. More-
over, we observe that the existence of 𝐶-resolvent set of 𝒜 at infinity does not play
any role for the generation of certain classes of (𝑎, 𝑘)-regularized 𝐶-resolvent op-
erator families, 𝐶-(ultra)distribution semigroups and 𝐶-(ultra)distribution cosine
functions by the inverse of a closed multivalued linear operator 𝒜; sometimes it is
crucial to investigate the behaviour of 𝐶-resolvent set of 𝒜 around zero, only (see
e.g. Proposition 3.10.5 and Example 3.10.8).

The theory of almost periodic and almost automorphic type functions is un-
avoidable nowdays. The existing literature on various types of almost periodic
(automorphic) properties and asymptotically almost periodic (automorphic) prop-
erties of abstract non-degenerate Volterra integro-differential equations in Banach
spaces is enormous. For a basic source of information in this direction, we re-
fer the reader to [20,87,93,119,256,274,434,435,478] and [501]. Concerning
degenerate case, mention should be made of papers by V. Barbu-A. Favini [49],
A. Favini-G. Marinoschi [191], S. Q. Bu [91,92], N. T. Lan [371], C. Lizama-R.
Ponce [396,397] and R. Ponce [455].

The most relevant details of research studies [49,191] and [396] are described
as follows. In [49], V. Barbu and A. Favini have considered 1-periodic solutions of
abstract degenerate differential equation (𝑑/𝑑𝑡)(𝐵𝑢(𝑡)) = 𝐴𝑢(𝑡), 𝑡 > 0, subjected
with inital condition (𝐵𝑢)(0) = (𝐵𝑢)(1), by using P. Grisvard’s sum of operators
method and some results from investigation of J. Prüss [461] in non-degenerate
case (here, 𝐴 and 𝐵 are closed linear operators acting on a Banach space 𝑋).
The authors have used the multivalued linear approach to degenerate differential
equations (cf. the next chapter for further information) and reduce the above
problem to 𝑣′(𝑡) ∈ 𝒜𝑣(𝑡), 𝑡 > 0, 𝑣(0) = 𝑣(1), where the multivalued linear op-
erator 𝒜 is defined by 𝒜 = 𝐴𝐵−1. The main problem in the whole analysis is
the question of whether the inclusion 1 ∈ 𝜌(𝒜) holds or not; in connection with
this, we would like to remind ourselves [461] that 1 ∈ 𝜌(𝐴) iff 2𝜋𝑖Z ⊆ 𝜌(𝐴) and
sup({‖(2𝜋𝑖𝑛 − 𝐴)−1‖ : 𝑛 ∈ Z}) < ∞, provided that 𝐴 generates a non-degenerate
strongly continuous semigroup. Applications are given to the Poisson heat equation
in 𝐻−1(Ω) and 𝐿2(Ω), as well as to some systems of ordinary differential equations.
In [191], A. Favini and G. Marinoschi have continued the analysis from [49] by as-
suming the possible non-linearity of (multi-valued) operator 𝐴. C. Lizama and R.
Ponce [396] have applied the Fourier multipliers techniques for establishment the
necessary and sufficient conditions for the existence of 2𝜋-periodic solutions to the
following abstract inhomogeneous linear equation

(14)
𝑑

𝑑𝑡
(𝐵𝑢(𝑡)) = 𝐴𝑢(𝑡) +

∫︁ 𝑡

−∞
𝑎(𝑡− 𝑠)𝐴𝑢(𝑠)𝑑𝑠+ 𝑓(𝑡), 𝑡 > 0,

subjected with the initial condition (𝐵𝑢)(0) = (𝐵𝑢)(2𝜋). Here, 𝑓 : [0,∞) → 𝑋
is a 2𝜋-periodic function and 𝑎 ∈ 𝐿1([0,∞)) is a scalar-valued kernel on [0,∞).
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The authors also showed some results on the maximal regularity of (14) in periodic
Besov, Triebel–Lizorkin and Lebesgues vector-valued function spaces.

For a basic source of information about almost automorphic solutions of ab-
stract non-degenerate integro-differential equations, the reader may consult the
monograph [293], as well as the papers [7, 9, 10, 124, 125, 146, 147] and [239].
In [293], I have investigated the almost periodic and almost automorphic type solu-
tions of various classes of abstract degenerate Volterra integro-differential equations
and abstract degenerate fractional differential equations in Banach spaces, as well.
This is probably the first research monograph regarding this problematic. After the
final release of the monograph [293], I have written several new research papers in
this field. Two of them, [148] and [149], have been completed in co-autorship with
Professor T. Diagana. The material of [148] is presented in Section 3.12, while the
material of [149] will appear as a chapter in the forthcoming edited book “Recent
Studies in Differential Equations” by Nova Science Publishers, Inc. (New York). It
is worth noting here that the concept of almost periodicity (respectively, almost
automorphy, pseudo-almost periodicity, and pseudo-almost automorphy) in the
Lebesgue space with variable exponent 𝐿𝑝(𝑥)(𝐼,𝑋) was first introduced and studied
by T. Diagana and M. Zitane [150, 151]. However, the translation-invariance of
these newly introduced spaces depends heavily upon the function 𝑝 ∈ 𝐶([0,∞)).
To remove such a restriction, in Section 3.12 we introduce some new concepts so
that the obtained almost periodic (respectively, asymptotically almost periodic) in
𝐿𝑝(𝑥)(𝐼,𝑋) are automatically translation-invariant. Among other things, it will be
shown that these new functions generalize in a natural fashion the classical notion
of almost periodicity (respectively, asymptotic almost periodicity). Many proper-
ties of the new functions are analyzed including their compositions. Further, we
will make extensive use of these new functions to study some abstract Volterra
integro-differential equations in Banach spaces including multi-valued ones.

In Section 3.11, we present the material from my recent paper [344] concerning
quasi-asymptotically almost periodic functions in Banach spaces and related appli-
cations. The organization and main ideas of this section are given as follows. The
concept introduced by H. Weyl [534] suggests a very general way of approaching
almost periodicity. To the best knowledge of the author, the question whether the
class of asymptotically Stepanov 𝑝-almost periodic functions, introduced by H. R.
Henríquez [249], is contained in the class of Weyl-𝑝-almost periodic functions taken
without any ergodic components, has not been examined elsewhere by now. In this
section, we introduce the class of Stepanov 𝑝-quasi-asymptotically almost periodic
functions and prove later that this class contains all asymptotically Stepanov 𝑝-
almost periodic functions and make a subclass of the class consisting of all Weyl
𝑝-almost periodic functions (taken in the sense of A. S. Kovanko’s approach [356],
which is also followed in the definition of a quasi-asymptotically almost periodic
function [336]). In such a way, we initiate the study of generalized (asymptotical)
almost periodicity that intermediate Stepanov and Weyl concept. Further on, in
Subsection 3.11.1 and Subsection 3.11.2, we recall the basic definitions and results
about asymptotically almost periodic type functions, asymptotically almost auto-
morphic type functions and evolution systems, Green’s functions, respectively. In



INTRODUCTION 26

Definition 3.11.9, we recall the notion of a quasi-asymptotically almost periodic
(q-aap., for short) function, defined on the interval 𝐼, where 𝐼 = R or 𝐼 = [0,∞).
After providing some observations and illustrative examples, in Theorem 3.11.13
we prove that any asymptotically almost automorphic (aaa.) function which is also
q-aap. needs to be asymptotically almost periodic (aap.). We present a simple
example of a q-aap. function that is uniformly continuous and whose range is not
relatively compact in 𝑋 (this is a simple modification of [251, Example 3.1]); we
also show that there exists a q-aap. function that is uniformly continuous and
not aap.. The notion of a Stepanov 𝑝-q-aap. function is introduced in Definition
3.11.17, while an analogue of Theorem 3.11.18 for Stepanov class has been proved
in Theorem 3.11.18. The (Stepanov) class of S-asymptotically 𝜔-periodic functions,
introduced by H. R. Henríquez, M. Pierri and P. Táboas in [251], is a subclass of
the class consisting of the (Stepanov) class of q-aap. functions (see Proposition
3.11.15). The main structural properties of (Stepanov) q-aap. functions are proved
in Theorem 3.11.21 and Proposition 3.11.23. In Example 3.11.24 and Example
3.11.25, we verify that the class of (Stepanov) q-aap. functions is not closed under
pointwise products with bounded scalar-valued (Stepanov) q-aap. functions, while
in Example 3.11.26 we show that (Stepanov) q-aap. functions do not form vec-
tor spaces equipped with the usual operations of addition and multiplication with
scalars, unfortunately. Subsection 3.11.4 is devoted to the analysis of (Stepanov)
q-aap. functions depending on two parameters and related composition principles.
In Theorem 3.11.28 and Theorem 3.11.29, we analyze the composition principles for
q-aap. functions depending on two parameters following the approach presented in
the monograph of T. Diagana [144] for aap. functions. The main objective in The-
orem 3.11.31 and Theorem 3.11.32 is to prove corresponding results for Stepanov
q-aap. functions; at these places, we follow the approach of W. Long and S.-H.
Ding from [399].

Concerning applications, our main results are given in Subsection 3.11.5, where
we analyze the invariance of quasi-asymptotical almost periodicity under the action
of convolution products. We do not require the non-degeneracy of solution opera-
tor families in Subsection 3.11.5, so that the results established in this subsection
can be simply incorporated in the analysis of certain classes of abstract degener-
ate inhomogeneous fractional inclusions and abstract degenerate inhomogeneous
Volterra integro-differential inclusions in Banach spaces. With a view to motivate
our researchers for the analyses of evolution systems and abstract quasi-linear dif-
ferential equations of first order, in Subection 3.11.6 we investigate the existence
and uniqueness of q-aap. solutions of abstract (semilinear) nonautonomous dif-
ferential equations of first order. In Subection 3.11.6, we analyze the abstract
nonautonomous differential equations

𝑢′(𝑡) = 𝐴(𝑡)𝑢(𝑡) + 𝑓(𝑡), 𝑡 ∈ R,
𝑢′(𝑡) = 𝐴(𝑡)𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0; 𝑢(0) = 𝑥

and their semilinear analogues; here, the operator family 𝐴(·) is consisted of closed
linear operators with domain and range contained in 𝑋, the condition (H1) clarified
below holds and the evolution system 𝑈(·, ·) generated by 𝐴(·) is hyperbolic, i.e,
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the condition (H2) clarified below holds. In Theorem 3.11.37 (Theorem 3.11.39),
the inhomogenity 𝑓(·) is Stepanov 𝑝-q-aap. and the associated Green’s function
satisfies the condition (451) ((453)). In contrast to this, in our investigations of
semilinear analogues of the abstract Cauchy problems (449) and (450) carried out in
Subsection 3.11.7, we assume that the corresponding function 𝐹 (·, ·) is q-aap.. This
is essentially caused by the fact that the Stepanov 𝑞-q-aap. of function 𝐹 (·, 𝑥(·)),
established in composition principles Theorem 3.11.31 and Theorem 3.11.32, holds
only if we additionally assume that the range of function 𝑥(·) is relatively compact,
which need not be true for q-aap. functions and their Stepanov generalizations.
Further study of semilinear nonautonomous differential equations with forcing term
𝐹 (·, ·) belonging to Stepanov class of q-aap. functions is without scope of this book.
Finally, in Example 3.11.44, we provide an instructive example of applications of
our abstract theoretical results obtained, continuing thus the analyses raised by T.
Diagana in [145, Section 4] and the author [338, Example 3.1].

Some notes and appendices to the third chapter are given in Section 3.13.
Some failures of the monograph are described as follows. Subordination prin-

ciples are very actual and important theme in the theory of abstract Volterra
integro-differential equations, degenerate or non-degenerate in time, and we will
be imperatively forced to reconsider the statements like Theorem 2.2.6 and The-
orem 2.2.13 several times throughout the book; some kind of duplicating, which
we have tried to reduce to the minimum level, can be also easily recognized while
reading the parts about differential and analytical properties of various types of de-
generate operator families of solving operators, analytical properties of 𝐶-resolvents
of multivalued linear operators, and while introducing the fundamental definitions
of hypercyclic and topologically mixing properties of abstract degenerate equations
under our consideration. In order to ensure better readability, we have decided to
repeat some of the equations mentioned in the introductory part once more, but
with different labels.

For the sake of brevity and better exposition, and because of some similarity
with our previous researches of non-degenerate case, we have been forced to write
the third chapter of monograph in a half-expository manner, including only the
most relevant details of proofs of our structural results.



CHAPTER 1

PRELIMINARIES

1.1. Selected topics on vector-valued functions and closed linear
operators

Vector-valued functions, closed operators. Unless specified otherwise, by
𝐸 we denote a Hausdorff sequentially complete locally convex space over the field of
complex numbers, SCLCS for short. The abbreviation ~ stands for the fundamen-
tal system of seminorms which defines the topology of 𝐸; if 𝐸 is a Banach space
and 𝐴 is linear operator on 𝐸, then the norm of an element 𝑥 ∈ 𝐸 is denoted by
‖𝑥‖. Assuming that 𝑋 is another SCLCS, then by 𝐿(𝐸,𝑋) we denote the space
consisting of all continuous linear mappings from 𝐸 into 𝑋; 𝐿(𝐸) ≡ 𝐿(𝐸,𝐸). Let
ℬ be the family of bounded subsets of 𝐸, let ~𝑋 denote the fundamental system
of seminorms which defines the topology of 𝑋, and let 𝑝𝐵(𝑇 ) := sup𝑥∈𝐵 𝑝(𝑇𝑥),
𝑝 ∈ ~𝑋 , 𝐵 ∈ ℬ, 𝑇 ∈ 𝐿(𝐸,𝑋). Then 𝑝𝐵(·) is a seminorm on 𝐿(𝐸,𝑋) and the
system (𝑝𝐵)(𝑝,𝐵)∈~𝑋×ℬ induces the Hausdorff locally convex topology on 𝐿(𝐸,𝑋).
Consequently, the Hausdorff locally convex topology on 𝐸*, the dual space of 𝐸,
defines the system (| · |𝐵)𝐵∈ℬ of seminorms on 𝐸*, where |𝑥*|𝐵 := sup𝑥∈𝐵 |⟨𝑥*, 𝑥⟩|,
𝑥* ∈ 𝐸*, 𝐵 ∈ ℬ. Here ⟨ , ⟩ denotes the duality bracket between 𝐸 and 𝐸*, some-
times we shall also write ⟨𝑥, 𝑥*⟩ or 𝑥*(𝑥) to denote the value of ⟨𝑥*, 𝑥⟩. It is well
known that the spaces 𝐿(𝐸,𝑋) and 𝐸* are sequentially complete provided that 𝐸
is barreled [419]. By 𝐸** we denote the bidual of 𝐸. If 𝑋 and 𝑌 are two SCLCSs
such that 𝑌 is continuously embedded in 𝑋, then we write 𝑌 →˓ 𝑋. A linear
operator 𝐴 : 𝐷(𝐴) → 𝐸 is said to be closed if the graph of the operator 𝐴, defined
by 𝐺𝐴 := {(𝑥,𝐴𝑥) : 𝑥 ∈ 𝐷(𝐴)}, is a closed subset of 𝐸 × 𝐸. We identify 𝐴 with
its graph if there is no risk for confusion. The resolvent set, spectrum and range
of 𝐴 are denoted by 𝜌(𝐴), 𝜎(𝐴) and 𝑅(𝐴), respectively. The null space of 𝐴 is
denoted by either 𝑁(𝐴) or Kern(𝐴). As is well known, a necessary and sufficient
condition for a linear operator 𝐴 : 𝐷(𝐴) → 𝐸 to be closed is that, for every net
(𝑥𝜏 )𝜏∈𝐼 in 𝐷(𝐴) such that lim𝜏→∞ 𝑥𝜏 = 𝑥 and lim𝜏→∞𝐴𝑥𝜏 = 𝑦, the following
holds: 𝑥 ∈ 𝐷(𝐴) and 𝐴𝑥 = 𝑦 [419]. A linear operator 𝐴 is said to be closable
iff there exists a closed linear operator 𝐵 such that 𝐴 ⊆ 𝐵. Let us recall that
the closability of the operator 𝐴 is equivalent to say that, for every net (𝑥𝜏 )𝜏∈𝐼 in
𝐷(𝐴) such that lim𝜏→∞ 𝑥𝜏 = 𝑥 and lim𝜏→∞𝐴𝑥𝜏 = 0, we have 𝑦 = 0 [419]. We
assume the closedness of 𝐴 in the sequel of this section, if not stated otherwise.
We introduce the Hausdorff sequentially complete locally convex topology on 𝐷(𝐴)

(𝐷(𝐴)) by the following system of seminorms: 𝑝𝐴(𝑥) =: 𝑝(𝑥) + 𝑝(𝐴𝑥), 𝑥 ∈ 𝐷(𝐴),

28
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𝑝 ∈ ~ ((𝑝|𝐷(𝐴)
)𝑝∈~). We denote the first of above spaces simply by [𝐷(𝐴)] (if 𝐸 is

a Banach space, then ‖ · ‖[𝐷(𝐴)] := ‖ · ‖ + ‖𝐴 · ‖ is known in the literature as the
graph norm); a subspace 𝑌 ⊆ 𝐷(𝐴) is called a core for 𝐴 iff 𝑌 is dense in 𝐷(𝐴)
with respect to the graph norm. For any injective operator 𝐶 ∈ 𝐿(𝐸), we define
the 𝐶-resolvent set of 𝐴, 𝜌𝐶(𝐴) for short, by

𝜌𝐶(𝐴) := {𝜆 ∈ C : 𝜆−𝐴 is injective and (𝜆−𝐴)−1𝐶 ∈ 𝐿(𝐸)}.

By the closed graph theorem [419], the following holds: If 𝐸 is a webbed bornolog-
ical space (this, in particular, holds if 𝐸 is a Fréchet space), then any mapping
𝐴 : 𝐸 → 𝐸 whose graph 𝐺(𝐴) is closed in 𝐸 × 𝐸 must be continuous on 𝐸, and
the 𝐶-resolvent set of 𝐴 consists of those complex numbers 𝜆 for which the op-
erator 𝜆 − 𝐴 is injective and 𝑅(𝐶) ⊆ 𝑅(𝜆 − 𝐴). If 𝐹 is a linear submanifold
of 𝐸, then the part of 𝐴 in 𝐹 , denoted by 𝐴|𝐹 , is a linear operator defined by
𝐷(𝐴|𝐹 ) := {𝑥 ∈ 𝐷(𝐴) ∩ 𝐹 : 𝐴𝑥 ∈ 𝐹} and 𝐴|𝐹𝑥 := 𝐴𝑥, 𝑥 ∈ 𝐷(𝐴|𝐹 ). Suppose
𝐴 : 𝐷(𝐴) → 𝐸 is a linear operator. The power 𝐴𝑛 of 𝐴 is defined usually (𝑛 ∈ N0).
Put 𝐷∞(𝐴) :=

⋂︀
𝑛>1𝐷(𝐴𝑛). For a closed linear operator 𝐴 acting on 𝐸, we intro-

duce the subset 𝐴* of 𝐸* × 𝐸* by

𝐴* := {(𝑥*, 𝑦*) ∈ 𝐸* × 𝐸* : 𝑥*(𝐴𝑥) = 𝑦*(𝑥) for all 𝑥 ∈ 𝐷(𝐴)}.

If 𝐴 is densely defined, then 𝐴* is also known as the adjoint operator of 𝐴 and it
is a closed linear operator on 𝐸*. If 𝛼 ∈ C r {0}, 𝐴 and 𝐵 are linear operators,
then we define the operators 𝛼𝐴, 𝐴 + 𝐵 and 𝐴𝐵 in the usual way. A family Λ
of continuous linear operators on 𝐸 is said to be equicontinuous if for each 𝑝 ∈ ~
there exist 𝑐𝑝 > 0 and 𝑞𝑝 ∈ ~ such that

𝑝(𝐴𝑥) 6 𝑐𝑝𝑞𝑝(𝑥), 𝑥 ∈ 𝐸, 𝐴 ∈ Λ.

The Gamma function will be denoted by Γ(·) and the principal branch will be
always used to take the powers. Set, for every 𝛼 > 0, 𝑔𝛼(𝑡) := 𝑡𝛼−1/Γ(𝛼), 𝑡 > 0,
𝑔0(𝑡) ≡ the Dirac delta distribution and, by common consent, 0𝜁 := 0. The 𝑛-th
convolution power of a locally integrable function 𝑎(𝑡) ∈ 𝐿1

𝑙𝑜𝑐([0,∞)) is denoted by
𝑎*,𝑛(𝑡). Then 𝑎*,𝑛 ∈ 𝐿1

𝑙𝑜𝑐([0,∞)). Given two numbers 𝑠 ∈ R and 𝑛 ∈ N in advance,
set ⌊𝑠⌋ := sup{𝑙 ∈ Z : 𝑠 > 𝑙}, ⌈𝑠⌉ := inf{𝑙 ∈ Z : 𝑠 6 𝑙}, N𝑛 := {1, . . . , 𝑛} and
N0

𝑛 := {0, 1, . . . , 𝑛}.

Function spaces. The Schwartz spaces of test functions 𝒟 = 𝐶∞
0 (R) and ℰ =

𝐶∞(R) are equipped with the usual inductive limit topologies; the topology of the
space of rapidly decreasing functions 𝒮 defines the following system of seminorms

𝑝𝑚,𝑛(𝜓) := sup
𝑥∈R

|𝑥𝑚𝜓(𝑛)(𝑥)|, 𝜓 ∈ 𝒮, 𝑚, 𝑛 ∈ N0.

If ∅ ≠ Ω ⊆ R, then we denote by 𝒟Ω the subspace of 𝒟 consisting of those functions
𝜙 ∈ 𝒟 for which supp(𝜙) ⊆ Ω; 𝒟0 ≡ 𝒟[0,∞). If 𝜙, 𝜓 : R → C are measurable
functions, then we define the convolution products 𝜙 * 𝜓 and 𝜙 *0 𝜓 by

𝜙 * 𝜓(𝑡) :=
∫︁ ∞

−∞
𝜙(𝑡− 𝑠)𝜓(𝑠)𝑑𝑠 and 𝜙 *0 𝜓(𝑡) :=

∫︁ 𝑡

0

𝜙(𝑡− 𝑠)𝜓(𝑠)𝑑𝑠, 𝑡 ∈ R.
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Sometimes we will use the symbol * to denote the finite convolution product, if
no confusion seems likely. Notice that 𝜙 * 𝜓 = 𝜙 *0 𝜓, provided that supp(𝜙) and
supp(𝜓) are subsets of [0,∞). Given 𝜙 ∈ 𝒟 and 𝑓 ∈ 𝒟′, or 𝜙 ∈ ℰ and 𝑓 ∈ ℰ ′, we
define the convolution 𝑓 * 𝜙 by (𝑓 * 𝜙)(𝑡) := 𝑓(𝜙(𝑡− ·)), 𝑡 ∈ R. For 𝑓 ∈ 𝒟′, or for
𝑓 ∈ ℰ ′, define 𝑓 by 𝑓(𝜙) := 𝑓(𝜙(−·)), 𝜙 ∈ 𝒟 (𝜙 ∈ ℰ). Generally, the convolution of
two distributions 𝑓 , 𝑔 ∈ 𝒟′, denoted by 𝑓 * 𝑔, is defined by (𝑓 * 𝑔)(𝜙) := 𝑔(𝑓 * 𝜙),
𝜙 ∈ 𝒟. Then we know that 𝑓 * 𝑔 ∈ 𝒟′ and supp(𝑓 * 𝑔) ⊆supp(𝑓)+supp(𝑔).

The spaces 𝒟′(𝐸) := 𝐿(𝒟, 𝐸), ℰ ′(𝐸) := 𝐿(ℰ , 𝐸) and 𝒮 ′(𝐸) := 𝐿(𝒮, 𝐸) are
consisted of all continuous linear functions 𝒟 → 𝐸, ℰ → 𝐸 and 𝒮 → 𝐸, respec-
tively; 𝒟′

Ω(𝐸), ℰ ′
Ω(𝐸) and 𝒮 ′

Ω(𝐸) denote the subspaces of 𝒟′(𝐸), ℰ ′(𝐸) and 𝒮 ′(𝐸),
respectively, containing 𝐸-valued distributions whose supports are contained in Ω;
𝒟′

0(𝐸) ≡ 𝒟′
[0,∞)(𝐸), ℰ ′

0(𝐸) ≡ ℰ ′
[0,∞)(𝐸), 𝒮 ′

0(𝐸) ≡ 𝒮 ′
[0,∞)(𝐸). In the case that

𝐸 = C, then the above spaces are also denoted by 𝒟′, ℰ ′, 𝒮 ′, 𝒟′
Ω, ℰ ′

Ω, 𝒮 ′
Ω, 𝒟′

0,
ℰ ′
0 and 𝒮 ′

0. Let 𝐺 be an 𝐸-valued distribution, and let 𝑓 : R → 𝐸 be a locally
integrable function (cf. [292, Definition 1.1.4, Definition 1.1.5]). As in the scalar-
valued case, we define the 𝐸-valued distributions 𝐺(𝑛) (𝑛 ∈ N) and ℎ𝐺 (ℎ ∈ ℰ);
the regular 𝐸-valued distribution f is defined by f(𝜙) :=

∫︀∞
−∞ 𝜙(𝑡)𝑓(𝑡)𝑑𝑡 (𝜙 ∈ 𝒟).

Suppose that 0 < 𝜏 6∞, 𝑛 ∈ N. If 𝑓 : (0, 𝜏) → 𝐸 is a continuous function and∫︁ 𝜏

0

𝜙(𝑛)(𝑡)𝑓(𝑡)𝑑𝑡 = 0, 𝜙 ∈ 𝒟(0,𝜏),

then we know that there exist elements 𝑥0, . . . , 𝑥𝑛−1 in 𝐸 such that 𝑓(𝑡)=
∑︀𝑛−1

𝑗=0 𝑡
𝑗𝑥𝑗 ,

𝑡 ∈ (0, 𝜏). Let 𝜏 > 0, and let 𝑋 be a general Hausdorff locally convex space (not
necessarily sequentially complete). Following L. Schwartz [479,480], it will be said
that a distribution 𝐺 ∈ 𝒟′(𝑋) is of finite order on the interval (−𝜏, 𝜏) iff there exist
an integer 𝑛 ∈ N0 and an 𝑋-valued continuous function 𝑓 : [−𝜏, 𝜏 ] → 𝑋 such that

𝐺(𝜙) = (−1)𝑛
∫︁ 𝜏

−𝜏

𝜙(𝑛)(𝑡)𝑓(𝑡)𝑑𝑡, 𝜙 ∈ 𝒟(−𝜏,𝜏).

In the case that 𝑋 is a quasi-complete (DF)-space, then we know from [479, Corol-
larie 2, p. 90] that each 𝑋-valued distribution is of finite order on any finite interval
(−𝜏, 𝜏). Furthermore, if 𝐺(𝜙) = 0 for all 𝜙 ∈ 𝒟(−∞,𝜏1), where 0 < 𝜏1 < 𝜏 , then
𝑓(𝑡) can be chosen so that 𝑓(𝑡) = 0 for 𝑡 < 𝜏1. As it is well known, the above holds
not only in quasi-complete (DF)-spaces but also in Banach spaces.

If (𝑀𝑝)𝑝∈N0 is a sequence of positive real numbers with 𝑀0 = 1, then we use the
following conditions from the theory of ultradistributions (Komatsu’s approach):
(𝑀.1): 𝑀2

𝑝 6𝑀𝑝+1𝑀𝑝−1, 𝑝 ∈ N,
(𝑀.2): 𝑀𝑝 6 𝐴𝐻𝑝 min𝑝1,𝑝2∈N,𝑝1+𝑝2=𝑝𝑀𝑝1

𝑀𝑝2
, 𝑛∈N, for some 𝐴>1 and 𝐻>1,

(𝑀.3)′:
∑︀∞

𝑝=1
𝑀𝑝−1

𝑀𝑝
<∞, and

(𝑀.3): sup𝑝∈N
∑︀∞

𝑞=𝑝+1
𝑀𝑞−1𝑀𝑝+1

𝑝𝑀𝑝𝑀𝑞
<∞.

Recall that the condition (𝑀.3) is slightly stronger than (𝑀.3)′ and that, for every
𝑠 > 1, the Gevrey sequence (𝑝!𝑠) satisfies (𝑀.1)–(𝑀.3).

We assume a priori that (𝑀𝑝) satisfies only the first of these conditions, (𝑀.1);
any employment of conditions (𝑀.2), (𝑀.3)′ or (𝑀.3) will be explicitely empha-
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sized. The associated function of sequence (𝑀𝑝) is defined by𝑀(𝜌) := sup𝑝∈N ln 𝜌𝑝

𝑀𝑝
,

𝜌 > 0; 𝑀(0) := 0, 𝑀(𝜆) := 𝑀(|𝜆|), 𝜆 ∈ C r [0,∞). Set 𝑚𝑝 := 𝑀𝑝/𝑀𝑝−1,
𝑝 ∈ N. Then the condition (𝑀.1) implies that the sequence (𝑚𝑝) is increasing. It
is worth noting that the function 𝑡 ↦→ 𝑀(𝑡), 𝑡 > 0 is increasing as well as that
lim𝜆→∞𝑀(𝜆) = ∞ and the function 𝑀(·) vanishes in some open neighborhood of
zero. Denote by 𝑚(𝜆) the number of 𝑚𝑝 6 𝜆. Since (𝑀𝑝) satisfies (𝑀.1), it follows
that (cf. [286, p. 50]) 𝑀(𝑡) =

∫︀ 𝑡

0
𝑚(𝜆)
𝜆 𝑑𝜆, 𝑡 > 0. Hence, the mapping 𝑡 ↦→ 𝑀(𝑡),

𝑡 > 0 is absolutely continuous and the mapping 𝑡 ↦→𝑀(𝑡), 𝑡 ∈ [0,∞)r{𝑚𝑝 : 𝑝 ∈ N}
is continuously differentiable with 𝑀 ′(𝑡) = 𝑚(𝑡)

𝑡 , 𝑡 ∈ [0,∞)r {𝑚𝑝 : 𝑝 ∈ N}.
Suppose now that (𝑀𝑝) satisfies (𝑀.1), (𝑀.2) and (𝑀.3)′. Let us recall that the

spaces of Beurling, respectively, Roumieu ultradifferentiable functions are defined
by 𝒟(𝑀𝑝) := 𝒟(𝑀𝑝)(R) := indlim𝐾bbR 𝒟(𝑀𝑝)

𝐾 , respectively, 𝒟{𝑀𝑝} := 𝒟{𝑀𝑝}(R) :=
indlim𝐾bbR 𝒟{𝑀𝑝}

𝐾 , where 𝒟(𝑀𝑝)
𝐾 := projlimℎ→∞ 𝒟𝑀𝑝,ℎ

𝐾 , respectively, 𝒟{𝑀𝑝}
𝐾 :=

indlimℎ→0 𝒟
𝑀𝑝,ℎ
𝐾 ,

𝒟𝑀𝑝,ℎ
𝐾 := {𝜑 ∈ 𝐶∞(R) : supp(𝜑) ⊆ 𝐾, ‖𝜑‖𝑀𝑝,ℎ,𝐾 <∞} and

‖𝜑‖𝑀𝑝,ℎ,𝐾 := sup
{︁ℎ𝑝|𝜑(𝑝)(𝑡)|

𝑀𝑝
: 𝑡 ∈ 𝐾, 𝑝 ∈ N0

}︁
.

Henceforth the asterisk * stands for the Beurling case (𝑀𝑝) or for the Roumieu
case {𝑀𝑝}. Let ∅ ≠ Ω ⊆ R. The space of vector-valued ultradistributions of *-class
𝒟′*(𝐸) := 𝐿(𝒟*, 𝐸) is consisted of all continuous linear mappings from 𝒟* into 𝐸;
𝒟*

Ω denotes the subspace of 𝒟* containing ultradifferentiable functions of *-class
whose supports are compact subsets of Ω (𝒟*

0 ≡ 𝒟*
[0,∞)), while the symbol ℰ ′*

Ω

denotes the space consisting of all scalar valued ultradistributions of *-class whose
supports are compact subsets of Ω (ℰ ′*

0 ≡ ℰ ′*
[0,∞)). Similarly we define the spaces

𝒟′*
Ω (𝐸) and 𝒟′*

0 (𝐸). An entire function of the form 𝑃 (𝜆) =
∑︀∞

𝑝=0 𝑎𝑝𝜆
𝑝, 𝜆 ∈ C is of

class (𝑀𝑝), respectively, of class {𝑀𝑝}, if there exist 𝑙 > 0 and 𝐶 > 0, respectively,
for every 𝑙 > 0 there exists a constant 𝐶 > 0, such that |𝑎𝑝| 6 𝐶𝑙𝑝/𝑀𝑝, 𝑝 ∈
N; cf. [286] for further information. The corresponding ultradifferential operator
𝑃 (𝐷) =

∑︀∞
𝑝=0 𝑎𝑝𝐷

𝑝 is of class (𝑀𝑝), respectively, of class {𝑀𝑝}. Since (𝑀𝑝)

satisfies (𝑀.2), the ultradifferential operator 𝑃 (𝐷) of *-class

⟨𝑃 (𝐷)𝐺,𝜙⟩ := ⟨𝐺,𝑃 (−𝐷)𝜙⟩, 𝐺 ∈ 𝒟′*(𝐸), 𝜙 ∈ 𝒟*,

is a continuous linear mapping from 𝒟′*(𝐸) into 𝒟′*(𝐸). The multiplication of a
vector-valued ultradistribution 𝐺 of *-class by a function 𝑎 ∈ ℰ*(Ω) is defined as
in the scalar case. For every 𝑡 ∈ R, we define the scalar-valued (ultra-)distribution
𝛿𝑡 ∈ 𝒟′ (𝛿𝑡 ∈ 𝒟′*) by 𝛿𝑡(𝜙) := 𝜙(𝑡), 𝜙 ∈ 𝒟 (𝜙 ∈ 𝒟*). For more details about vector-
valued (ultra-)distribution spaces used henceforth, see [291, Section 1.3], [292,354,
Section 1.1] and the references cited therein.

A function 𝑓 : [0, 𝑇 ] → 𝑋, where 0 < 𝑇 < ∞, is said to be Hölder continuous
with the exponent 𝑟 ∈ (0, 1] iff for each 𝑝 ∈ ~𝑋 there exists 𝑀 > 1 such that
𝑝(𝑓(𝑡)− 𝑓(𝑠)) 6𝑀 |𝑡− 𝑠|𝑟, provided 0 6 𝑡, 𝑠 6 𝑇 , while a function 𝑓 : [0,∞) → 𝑋
is said to be locally Hölder continuous with the exponent 𝑟 iff its restriction on any
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finite interval [0, 𝑇 ] is Hölder continuous with the same exponent. Define 𝐶𝑟([0, 𝑇 ] :
𝑋) to be the vector space consisting of Hölder continuous functions 𝑓 : [0, 𝑇 ] → 𝑋

with the exponent 𝑟; if 𝑟′ ∈ (0,∞)rN, then we define 𝐶𝑟′([0, 𝑇 ] : 𝑋) as the vector
space consisting of those functions 𝑓 : [0, 𝑇 ] → 𝑋 for which 𝑓 ∈ 𝐶⌊𝑟′⌋([0, 𝑇 ] : 𝑋)

and 𝑓 (⌊𝑟
′⌋) ∈ 𝐶𝑟′−⌊𝑟′⌋([0, 𝑇 ] : 𝑋). Assume that 𝑋 is a Banach space. Then

the space of all 𝑋-valued functions that are absolutely continuous (of bounded
variation) on any closed subinterval of [0,∞) will be denoted by 𝐴𝐶𝑙𝑜𝑐([0,∞) : 𝑋)
(𝐵𝑉𝑙𝑜𝑐([0,∞) : 𝑋)). By 𝐶𝑘(Ω : 𝐸) we denote the space of 𝑘-times continuously
differentiable functions (𝑘 ∈ N0)from a non-empty subset Ω ⊆ C into a general
sequentially complete locally convex space 𝐸, 𝐶(Ω : 𝐸) ≡ 𝐶0(Ω : 𝐸). If 𝑋 = C,
then we also write 𝐴𝐶𝑙𝑜𝑐([0,∞)) (𝐵𝑉𝑙𝑜𝑐([0,∞))) in place of 𝐴𝐶𝑙𝑜𝑐([0,∞) : 𝑋)
(𝐵𝑉𝑙𝑜𝑐([0,∞) : 𝑋)); the spaces 𝐵𝑉 [0, 𝑇 ], 𝐵𝑉𝑙𝑜𝑐([0, 𝜏)), 𝐵𝑉𝑙𝑜𝑐([0, 𝜏) : 𝑋), as well as
the space 𝐿𝑝

𝑙𝑜𝑐(Ω : 𝑋) for 1 6 𝑝 6 ∞ are defined in a very similar way (𝑇, 𝜏 > 0);
𝐿𝑝
𝑙𝑜𝑐(Ω) ≡ 𝐿𝑝

𝑙𝑜𝑐(Ω : C). Let 𝑘 ∈ N, let 𝑝 ∈ [1,∞], and let Ω be an open non-
empty subset of R𝑛. Then the Sobolev space 𝑊 𝑘,𝑝(Ω : 𝑋), sometimes also denoted
by 𝐻𝑘,𝑝(Ω : 𝑋), consists of those 𝑋-valued distributions 𝑢 ∈ 𝒟′(Ω : 𝑋) such
that, for every 𝑖 ∈ N0

𝑘 and for every multi-index 𝛼 ∈ N𝑛
0 with |𝛼| 6 𝑘, we have

𝐷𝛼𝑢 ∈ 𝐿𝑝(Ω, 𝑋). It is needless to say that the derivative 𝐷𝛼 is taken in the sense
of distributions. The subspace of 𝒟′(Ω : 𝑋) consisting of all 𝑋-valued distributions
of the form

(15) 𝑢 =
∑︁
|𝛼|6𝑘

𝑢(𝛼)𝛼 ,

where 𝑢𝛼 ∈ 𝐿𝑝(Ω : 𝑋), is denoted by 𝑊−𝑘,𝑝(Ω : 𝑋) (𝐻−𝑘,𝑝(Ω : 𝑋)). In this space,
we introduce the norm

‖𝑢‖−𝑘,𝑝,𝑋 := inf

{︂(︂ ∑︁
|𝛼|6𝑘

‖𝑢𝛼‖𝑝𝐿𝑝(Ω,𝑋)

)︂1/𝑝}︂
,

where the infimum is taken over all representations of distibution 𝑢 of form (15);
𝑊−𝑘(Ω : 𝑋) ≡ 𝑊−𝑘,2(Ω : 𝑋) (𝐻−𝑘(Ω : 𝑋) ≡ 𝐻−𝑘,2(Ω : 𝑋)). It is worth noting
that 𝑊−𝑘,𝑝(Ω : 𝑋) is a Banach space and 𝑊−𝑘(Ω : 𝑋) is a Hilbert space. By
𝑊 𝑘,𝑝

𝑙𝑜𝑐 (Ω : 𝑋) (𝐻𝑘,𝑝
𝑙𝑜𝑐 (Ω : 𝑋)) we denote the space of those 𝑋-valued distributions

𝑢 ∈ 𝒟′(Ω : 𝑋) such that, for every bounded open subset Ω′ of Ω, one has 𝑢|Ω′ ∈
𝑊 𝑘,𝑝(Ω′ : 𝑋).

Integration of functions with values in locally convex spaces. By Ω we
denote a locally compact and separable metric space, and by 𝜇 we denote a locally
finite Borel measure defined on Ω.

Definition 1.1.1. (i) It is said that a function 𝑓 : Ω → 𝐸 is simple iff
there exist 𝑘 ∈ N, elements 𝑧𝑖 ∈ 𝐸, 1 6 𝑖 6 𝑘 and pairwise disjoint Borel
measurable subsets Ω𝑘, 1 6 𝑖 6 𝑘 of Ω, such that 𝜇(Ω𝑖) < ∞, 1 6 𝑖 6 𝑘
and

(16) 𝑓(𝑡) =

𝑘∑︁
𝑖=1

𝑧𝑖𝜒Ω𝑖(𝑡), 𝑡 ∈ Ω.
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(ii) It is said that a function 𝑓 : Ω → 𝐸 is (strongly) 𝜇-measurable, (strongly)
measurable for short, iff there exists a sequence (𝑓𝑛) in 𝐸Ω such that, for
every 𝑛 ∈ N, 𝑓𝑛(·) is a simple function and lim𝑛→∞ 𝑓𝑛(𝑡) = 𝑓(𝑡) for a.e.
𝑡 ∈ Ω.

(iii) A function 𝑓 : Ω → 𝐸 is said to be weakly 𝜇-measurable, weakly measur-
able for short, iff for every 𝑥* ∈ 𝐸*, the function 𝑡 ↦→ 𝑥*(𝑓(𝑡)), 𝑡 ∈ Ω is
measurable.

(iv) A function 𝑓 : Ω → 𝐸 is said to be 𝜇-measurable by seminorms, measur-
able by seminorms for short, iff for every 𝑝 ∈ ~ there exists a sequence
(𝑓𝑝𝑛) in 𝐸Ω such that lim𝑛→∞ 𝑝(𝑓𝑝𝑛(𝑡)− 𝑓(𝑡)) = 0 a.e. 𝑡 ∈ Ω.

It is clear that every strongly measurable function is also weakly measurable and
that the converse statement is not true in general. We define the Bochner integral
of a simple function 𝑓 : Ω → 𝐸, given by (16), as follows

∫︀
Ω
𝑓 𝑑𝜇 :=

∑︀𝑘
𝑖=1 𝑧𝑖𝜇(Ω𝑖).

Let us observe that this definition does not depend on the representation (16).
Let 1 6 𝑝 < ∞, let (𝑋, ‖ · ‖) be a complex Banach space, and let (Ω,ℛ, 𝜇) be

a measure space. Then the space 𝐿𝑝(Ω, 𝑋, 𝜇) consists of all strongly 𝜇-measurable
functions 𝑓 : Ω → 𝑋 such that ‖𝑓‖𝑝 := (

∫︀
Ω
‖𝑓(·)‖𝑝𝑑𝜇)1/𝑝 is finite, we also use the

abbreviation 𝐿𝑝(Ω, 𝜇) in the case that𝑋 = C. The space 𝐿∞(Ω, 𝑋, 𝜇) consists of all
strongly 𝜇-measurable, essentially bounded functions and is equipped with the norm
‖𝑓‖∞ :=ess sup𝑡∈Ω ‖𝑓(𝑡)‖, 𝑓 ∈ 𝐿∞(Ω, 𝑋, 𝜇). The functions that are equal 𝜇-almost
everywhere on Ω will be identified; furthermore, if 𝜇 is the Lebesgue measure on the
real line, then, for every 𝑝 ∈ [1,∞], the space 𝐿𝑝(Ω, 𝑋, 𝜇) will be also denoted by
𝐿𝑝(Ω : 𝑋). The Riesz–Fischer theorem states that (𝐿𝑝(Ω, 𝑋, 𝜇), ‖ · ‖𝑝) is a Banach
space for all 𝑝 ∈ [1,∞]; as is well known, (𝐿2(Ω, 𝑋, 𝜇), ‖ · ‖2) is a Hilbert space.
Assuming that the Banach space 𝑋 is reflexive, the space 𝐿𝑝(Ω, 𝑋, 𝜇) is reflexive
for all 𝑝 ∈ (1,∞) and its dual is isometrically isomorphic to 𝐿

𝑝
𝑝−1 (Ω, 𝑋, 𝜇).

Definition 1.1.2. (C. Martinez, M. Sanz [410, pp. 99–102]; cf. [292, Section
1.2] for more details)

(i) Let 𝐾 ⊆ Ω be a compact set, and let a function 𝑓 : 𝐾 → 𝐸 be strongly
measurable. Then it is said that 𝑓(·) is (𝜇-)integrable iff there is a sequence
(𝑓𝑛)𝑛∈N of simple functions such that lim𝑛→∞ 𝑓𝑛(𝑡) = 𝑓(𝑡) a.e. 𝑡 ∈ 𝐾 and
for all 𝜀 > 0 and each 𝑝 ∈ ~ there is a number 𝑛0 = 𝑛0(𝜀, 𝑝) such that

(17)
∫︁
𝐾

𝑝(𝑓𝑛 − 𝑓𝑚)𝑑𝜇 6 𝜀 (𝑚,𝑛 > 𝑛0).

In this case, we define∫︁
𝐾

𝑓 𝑑𝜇 := lim
𝑛→∞

∫︁
𝐾

𝑓𝑛𝑑𝜇.

(ii) A function 𝑓 : Ω → 𝐸 is said to be locally 𝜇-integrable iff, for every
compact set 𝐾 ⊆ Ω, the restriction 𝑓|𝐾 : 𝐾 → 𝐸 is 𝜇-integrable.

(iii) A function 𝑓 : Ω → 𝐸 is said to be 𝜇-integrable iff it is locally integrable
and

(18)
∫︁
Ω

𝑝(𝑓)𝑑𝜇 <∞, 𝑝 ∈ ~.
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If this is the case, we define∫︁
Ω

𝑓 𝑑𝜇 := lim
𝑛→∞

∫︁
𝐾𝑛

𝑓 𝑑𝜇,

with (𝐾𝑛)𝑛∈N being an expansive sequence of compact subsets of Ω with
the property that

⋃︀
𝑛∈N𝐾𝑛 = Ω.

The definition in (ii) makes sense and does not depend on the choice of a
sequence (𝐾𝑛)𝑛∈N. Moreover,

(19) 𝑝

(︂∫︁
Ω

𝑓 𝑑𝜇

)︂
6
∫︁
Ω

𝑝(𝑓)𝑑𝜇, 𝑝 ∈ ~

and the 𝜇-integrability of a function 𝑓 : 𝐾 → 𝑋, resp. 𝑓 : Ω → 𝑋, implies that for
each 𝑥* ∈ 𝑋*, one has:

(20)
⟨
𝑥*,

∫︁
𝐾

𝑓 𝑑𝜇

⟩
=

∫︁
𝐾

⟨𝑥*, 𝑓⟩𝑑𝜇, resp.
⟨
𝑥*,

∫︁
Ω

𝑓 𝑑𝜇

⟩
=

∫︁
Ω

⟨𝑥*, 𝑓⟩𝑑𝜇.

Any continuous function 𝑓 : Ω → 𝐸 satisfying (18) is 𝜇-integrable and the
following holds.

Theorem 1.1.3. (i) (The Dominated Convergence Theorem) Suppose
that (𝑓𝑛) is a sequence of 𝜇-integrable functions from 𝐸Ω and (𝑓𝑛) con-
verges pointwisely to a function 𝑓 : Ω → 𝐸. Assume that, for every 𝑝 ∈ ~,
there exists a 𝜇-integrable function 𝐹𝑝 : Ω → [0,∞) such that 𝑝(𝑓𝑛) 6 𝐹𝑝,
𝑛 ∈ N. Then 𝑓(·) is a 𝜇-integrable function and lim𝑛→∞

∫︀
Ω
𝑓𝑛𝑑𝜇 =∫︀

Ω
𝑓 𝑑𝜇.

(ii) Let 𝑌 be an SCLCS, and let 𝑇 : 𝑋 → 𝑌 be a continuous linear mapping.
If 𝑓 : Ω → 𝑋 is 𝜇-integrable, then 𝑇𝑓 : Ω → 𝑌 is likewise 𝜇-integrable and

(21) 𝑇

∫︁
Ω

𝑓 𝑑𝜇 =

∫︁
Ω

𝑇𝑓 𝑑𝜇.

(iii) Let 𝑌 be an SCLCS, and let 𝑇 : 𝐷(𝑇 ) ⊆ 𝑋 → 𝑌 be a closed linear map-
ping. If 𝑓 : Ω → 𝐷(𝑇 ) is 𝜇-integrable and 𝑇𝑓 : Ω → 𝑌 is likewise 𝜇-
integrable, then

∫︀
Ω
𝑓 𝑑𝜇 ∈ 𝐷(𝑇 ) and (21) holds.

Assume that 𝜇 = 𝑑𝑡 is the Lebesgue measure on Ω = [0,∞) and 𝑓 : [0,∞) →
𝐸 is a locally Lebesgue integrable function. As in the Banach space case, we
will denote the space consisting of such functions by 𝐿1

𝑙𝑜𝑐([0,∞) : 𝐸); similarly
we define the space 𝐿1([0, 𝜏 ] : 𝐸) for 0 < 𝜏 < ∞. It is clear that (20) implies
⟨𝑥*, 𝑓(·)⟩ ∈ 𝐿1

𝑙𝑜𝑐([0,∞)) for 𝑥* ∈ 𝐸*. The first normalized antiderivative 𝑡 ↦→
𝑓 [1](𝑡) := 𝐹 (𝑡) :=

∫︀ 𝑡

0
𝑓(𝑠)𝑑𝑠, 𝑡 > 0 of 𝑓(·) is continuous for 𝑡 > 0, and we have that∫︀ 𝑡

0
𝑝(𝑓)𝑑𝜇 < ∞ for any 𝑝 ∈ ~ and 𝑡 > 0. Set 𝑓 [𝑛](𝑡) :=

∫︀ 𝑡

0
𝑔𝑛(𝑡 − 𝑠)𝑓(𝑠)𝑑𝑠, 𝑡 > 0.

The formula for partial integration in the third part of subsequent theorem will be
of crucial importance in our analysis of operational properties of Laplace transform
of non-continuous functions with values in SCLCSs.

Theorem 1.1.4. (i) Suppose that 𝑔 ∈ 𝐶([0,∞)) and 𝑓 ∈ 𝐿1
𝑙𝑜𝑐([0,∞) :

𝐸). Then 𝑔𝑓 ∈ 𝐿1
𝑙𝑜𝑐([0,∞) : 𝐸).
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(ii) If 𝑔 ∈ 𝐿1
𝑙𝑜𝑐([0,∞)) and 𝑓 ∈ 𝐶([0,∞) : 𝐸), then 𝑔𝑓 ∈ 𝐿1

𝑙𝑜𝑐([0,∞) : 𝐸).
(iii) (The partial integration) Suppose that 𝑔 ∈ 𝐴𝐶𝑙𝑜𝑐([0,∞)) and

𝑓 ∈ 𝐿1
𝑙𝑜𝑐([0,∞) : 𝐸). Then, for every 𝜏 > 0, we have

(22)
∫︁ 𝜏

0

𝑔(𝑡)𝑓(𝑡)𝑑𝑡 = 𝑔(𝜏)𝐹 (𝜏)−
∫︁ 𝜏

0

𝑔′(𝑡)𝐹 (𝑡)𝑑𝑡.

Proof. Fix a number 𝜏 ∈ (0,∞). Let (𝑓𝑛)𝑛∈N be a sequence of simple func-
tions in 𝐸[0,𝜏 ] such that lim𝑛→∞ 𝑓𝑛(𝑡) = 𝑓(𝑡) a.e. 𝑡 ∈ 𝐾 = [0, 𝜏 ] and for all
𝜀 > 0 and each 𝑝 ∈ ~ there is a number 𝑛0 = 𝑛0(𝜀, 𝑝) such that (17) holds.
Then

∫︀ 𝜏

0
𝑓(𝑡)𝑑𝑡 = lim𝑛→∞

∫︀ 𝜏

0
𝑓𝑛(𝑡)𝑑𝑡 and the sequence (𝑝(𝑓𝑛))𝑛∈N is convergent in

𝐿1[0, 𝜏 ]. By the proof of [410, Proposition 4.4.1], there exists a sequence (𝑠𝑛)𝑛∈N of
simple functions in C[0,𝜏 ] such that lim𝑛→∞ ‖𝑠𝑛−𝑔‖𝐿∞[0,𝜏 ] = 0, sup𝑛∈N ‖𝑠𝑛‖𝐿∞[0,𝜏 ]

6 ‖𝑔‖𝐿∞[0,𝜏 ] and that for all 𝜀 > 0 and 𝑝 = | · | there is a number 𝑛0 = 𝑛0(𝜀, 𝑝) such
that (17) holds with the functions 𝑓𝑛(·) and 𝑓𝑚(·) replaced respectively with 𝑠𝑛(·)
and 𝑠𝑚(·). Clearly, (𝑠𝑛𝑓𝑛)𝑛∈N is a sequence of simple functions in 𝐸[0,𝜏 ] such that
lim𝑛→∞ 𝑠𝑛(𝑡)𝑓𝑛(𝑡) = 𝑔(𝑡)𝑓(𝑡) a.e. 𝑡 ∈ [0, 𝜏 ]. Furthermore, it can be easily seen that∫︁ 𝑡

0

𝑝(𝑠𝑛(𝑡)𝑓𝑛(𝑡)− 𝑠𝑚(𝑡)𝑓𝑚(𝑡))𝑑𝑡

6 ‖𝑠𝑛‖𝐿∞[0,𝜏 ]

∫︁ 𝑡

0

𝑝(𝑓𝑛(𝑡)− 𝑓𝑚(𝑡))𝑑𝑡+ ‖𝑠𝑛 − 𝑠𝑚‖𝐿∞[0,𝜏 ]

∫︁ 𝑡

0

𝑝(𝑓𝑚(𝑡))𝑑𝑡

6 ‖𝑔‖𝐿∞[0,𝜏 ]

∫︁ 𝑡

0

𝑝(𝑓𝑛(𝑡)− 𝑓𝑚(𝑡))𝑑𝑡

+ (‖𝑠𝑛 − 𝑔‖𝐿∞[0,𝜏 ] + ‖𝑠𝑚 − 𝑔‖𝐿∞[0,𝜏 ])

∫︁ 𝑡

0

𝑝(𝑓𝑚(𝑡))𝑑𝑡, 𝑚, 𝑛 ∈ N.

This proves (i). To prove (ii), observe first that using Definition 1.1.2 we can
directly prove that a function 𝑔1𝑓1(·) belongs to the space 𝐿1([0, 𝜏 ] : 𝐸), pro-
vided that 𝑓1 : [0, 𝜏 ] → 𝐸 is a simple function and 𝑔1 ∈ 𝐿1[0, 𝜏 ]. By the proof
of [410, Proposition 4.4.1] once more, we can find a sequence (𝑓𝑛)𝑛∈N of sim-
ple functions in 𝐸[0,𝜏 ] such that, for every 𝑝 ∈ ~, lim𝑛→∞ 𝑝(𝑓𝑛 − 𝑓)𝐿∞[0,𝜏 ] = 0,
sup𝑛∈N 𝑝(𝑓𝑛)𝐿∞[0,𝜏 ] 6 𝑝(𝑓)𝐿∞[0,𝜏 ] and that for all 𝜀 > 0 there is a number 𝑛0 =

𝑛0(𝜀, 𝑝) such that (17) holds. Therefore, (𝑔𝑓𝑛)𝑛∈N is a sequence in 𝐿1([0, 𝜏 ] : 𝐸)
and lim𝑛→∞ 𝑔(𝑡)𝑓𝑛(𝑡) = 𝑔(𝑡)𝑓(𝑡) a.e. 𝑡 ∈ [0, 𝜏 ]. Making use of the dominated con-
vergence theorem (Theorem 1.1.3(i)), we get that 𝑔𝑓 ∈ 𝐿1

𝑙𝑜𝑐([0,∞) : 𝐸), as claimed.
By (i) and (ii), the both integrals in (22) are well-defined. Let 𝑥* ∈ 𝐸*. Using the
partial integration in the Lebesgue integral and (20), we get that∫︁ 𝜏

0

𝑔(𝑡)⟨𝑥*, 𝑓(𝑡)⟩𝑑𝑡 = 𝑔(𝜏)⟨𝑥*, 𝐹 (𝜏)⟩ −
∫︁ 𝜏

0

𝑔′(𝑡)⟨𝑥*, 𝐹 (𝑡)⟩𝑑𝑡.

Since 𝑥* was arbitrary, it readily follows on account of (20) that (22) holds. The
proof of the theorem is thereby complete. �

Analytical properties of functions with values in SCLCSs. A function
𝑓 : Ω → 𝐸, where Ω is an open subset of C, is said to be analytic iff it is locally
expressible in a neighborhood of any point 𝑧 ∈ Ω by a uniformly convergent power
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series with coefficients in 𝐸. It is well known that the analyticity of 𝑓(·) is equivalent
with the weak analyticity of 𝑓(·); in other words, the mapping 𝜆 ↦→ 𝑓(𝜆), 𝜆 ∈ Ω
is analytic iff the mapping 𝜆 ↦→ ⟨𝑥*, 𝑓(𝜆)⟩, 𝜆 ∈ Ω is analytic for every 𝑥* ∈ 𝐸*. If
the mapping 𝑓 : Ω → 𝐸 is analytic, then the mapping 𝜆 ↦→ 𝑓(𝜆), 𝜆 ∈ Ω is infinitely
differentiable and

𝑓 (𝑛)(𝑧) =
𝑛!

2𝜋𝑖

∮︁
Γ

𝑓(𝜆)

(𝜆− 𝑧)𝑛+1
𝑑𝜆, 𝑧 ∈ Ωr Γ, IndΓ(𝑧) = 1, 𝑛 ∈ N0,

which simply implies that the equality

𝑓(𝑧) =

∞∑︁
𝑛=0

(𝑧 − 𝑧0)
𝑛 𝑓

(𝑛)(𝑧0)

𝑛!

holds in a neighborhood of point 𝑧0 ∈ Ω. The identity theorem for analytic functions
[27, Proposition A.2, p. 456] continues to hold in the case that𝑋 is a general locally
convex space.

We need the following extension of Weierstrass theorem.

Lemma 1.1.5. (E. Jordá [261, Theorem 3, p. 742]) Let ∅ ≠ Ω ⊆ C be open
and connected, and let 𝑓𝑛 : Ω → 𝐸 be an analytic function (𝑛 ∈ N). Assume further
that, for every 𝑧0 ∈ Ω, there exists 𝑟 > 0 such that the set

⋃︀
𝑛∈N 𝑓𝑛(𝐵(𝑧0, 𝑟)) is

bounded and the set Ω0 := {𝑧 ∈ Ω : lim𝑛→∞ 𝑓𝑛(𝑧) exists} has a limit point in Ω.
Then there exists an analytic function 𝑓 : Ω → 𝐸 such that (𝑓𝑛) converges locally
uniformly to 𝑓 .

Complex powers of almost 𝐶-nonnegative operators. Let 𝑚 ∈ R, let 𝐴
be a closed linear operator with domain and range contained in 𝐸, and let 𝐶 ∈ 𝐿(𝐸)
be an injective operator satisfying 𝐶𝐴 ⊆ 𝐴𝐶. Then it is said that the operator 𝐴
belongs to the class ℳ𝐶,𝑚 iff (−∞, 0) ⊆ 𝜌𝐶(𝐴) and the family

{(𝜆−1 + 𝜆𝑚)−1(𝜆+𝐴)−1𝐶 : 𝜆 > 0} ⊆ 𝐿(𝐸)

is equicontinuous. Furthermore, it is said that 𝐴 is almost 𝐶-nonnegative iff there
exists 𝑚 ∈ R such that 𝐴 belongs to the class ℳ𝐶,𝑚. It will be necessary to remind
us of the following facts concerning the fractional powers of almost 𝐶-nonnegative
operators; for further information, see [292, Section 2.9]. Set 𝑝𝑛(𝑥) :=

∑︀𝑛
𝑖=0 𝑝(𝐴

𝑖𝑥)
(𝑥 ∈ 𝐷∞(𝐴), 𝑝 ∈ ~, 𝑛 ∈ N0), 𝐴∞ := 𝐴|𝐷∞(𝐴) and 𝐶∞ := 𝐶|𝐷∞(𝐴). Then
the system (𝑝𝑛)𝑝∈~,𝑛∈N0 induces a Hausdorff sequentially complete locally convex
topology on 𝐷∞(𝐴), 𝐴∞ ∈ 𝐿(𝐷∞(𝐴)) and 𝐶∞ ∈ 𝐿(𝐷∞(𝐴)) is injective.

In [292, Definition 2.9.11], we have generalized the notion of Balakrishnan’s
operators [44] as follows: Let 𝛼 ∈ C+ and 𝐴 ∈ ℳ𝐶,−1. Then:

(i) If 0 < Re𝛼 < 1, 𝐷(𝐽𝛼
𝐶) := 𝐷(𝐴) and

𝐽𝛼
𝐶𝑥 :=

sin𝛼𝜋

𝜋

∫︁ ∞

0

𝜆𝛼−1(𝜆+𝐴)−1𝐶𝐴𝑥𝑑𝜆, 𝑥 ∈ 𝐷(𝐴).

(ii) If Re𝛼 = 1, 𝐷(𝐽𝛼
𝐶) := 𝐷(𝐴2) and

𝐽𝛼
𝐶𝑥 :=

sin𝛼𝜋

𝜋

∫︁ ∞

0

𝜆𝛼−1
[︁
(𝜆+𝐴)−1𝐶 − 𝜆𝐶

𝜆2 + 1

]︁
𝐴𝑥𝑑𝜆+ sin

𝛼𝜋

2
𝐶𝐴𝑥,



1.2. MULTIVALUED LINEAR OPERATORS 37

for any 𝑥 ∈ 𝐷(𝐴2).
(iii) If 𝑛 < Re𝛼 < 𝑛+ 1, 𝑛 ∈ N, 𝐷(𝐽𝛼

𝐶) := 𝐷(𝐴𝑛+1) and

𝐽𝛼
𝐶𝑥 := 𝐽𝛼−𝑛

𝐶 𝐴𝑛𝑥, 𝑥 ∈ 𝐷(𝐴𝑛+1).

(iv) If Re𝛼 = 𝑛+ 1, 𝑛 ∈ N, 𝐷(𝐽𝛼
𝐶) := 𝐷(𝐴𝑛+2) and

𝐽𝛼
𝐶𝑥 := 𝐽𝛼−𝑛

𝐶 𝐴𝑛𝑥, 𝑥 ∈ 𝐷(𝐴𝑛+2).

Then we know, for every 𝛼 ∈ C+, the operator 𝐽𝛼
𝐶 is closable. Set 𝐴𝐶,𝛼 := 𝐶−1𝐽𝛼

𝐶

(𝛼 ∈ C+).
Consider now the case in which 𝐴 belongs to the class ℳ𝐶,𝑚 for some 𝑚 > −1.

Due to [292, Proposition 2.9.20], we have that the operator 𝐴∞ is 𝐶∞-nonnegative
in the space 𝐷∞(𝐴), i.e., that 𝐴∞ ∈ ℳ𝐶∞,−1. Therefore, we can construct the
power 𝐴∞,𝛼 ≡ (𝐴∞)𝐶∞,𝛼 in the space 𝐷∞(𝐴) (𝛼 ∈ C+). In [292, Proposition
2.9.23], we have proved that 𝐶2(𝐷(𝐴2𝑝+𝑛)) ⊆ 𝐷(𝐴∞,𝛼), provided that 𝛼 ∈ C+

satisfies 0 < Re𝛼 < 𝑛 for some 𝑛 ∈ N (𝑝 ≡ ⌊𝑚 + 2⌋). This is the most important
auxiliary result which enables us to introduce the power 𝐴𝛼:

Definition 1.1.6. Suppose 𝑚 > −1, 𝑛 ∈ N, 𝑝 = ⌊𝑚+ 2⌋, 𝐴 ∈ ℳ𝐶,𝑚, 𝛼 ∈ C+

and 0 < Re𝛼 < 𝑛. Then we define the power 𝐴𝛼 as follows

𝐴𝛼 := 𝐶−2((1 +𝐴)−1𝐶)−𝑛(𝑝+1)−𝑝𝐴∞,𝛼((1 +𝐴)−1𝐶)𝑛(𝑝+1)+𝑝𝐶2.

It is worth noting that Definition 1.1.6 does not depend on the particular
choice of numbers 𝑚 and 𝑛, as well as that 𝐴𝛼 is a closed linear operator on 𝐸.
Furthermore, the injectiveness of 𝐴 implies the injectiveness of 𝐴𝛼. If this is the
case, we define:

𝐴−𝛼 := (𝐴𝛼)
−1, 𝐴0 := 𝐼 and

𝐴𝑖𝜏 := 𝐶−3((1 +𝐴)−1𝐶)−(3𝑝+3)𝐴−1𝐴1+𝑖𝜏 ((1 +𝐴)−1𝐶)3𝑝+3𝐶3.

The construction of fractional powers of the operator 𝐴 which belongs to the
class 𝐴 ∈ ℳ𝐶,𝑚 for some real number𝑚 < −1 strongly depends on the injectiveness
of 𝐴: it is still an open problem to construct the power 𝐴𝛼 (𝛼 ∈ C+) in the case
that 𝐴 ∈ ℳ𝐶,𝑚 for some real number 𝑚 < −1, and 𝐴 is not injective. On
the other hand, if the operator 𝐴 is injective, then the operator 𝐴−1 belongs to
the class ℳ𝐶,−𝑚−2 and we can simply define the power 𝐴𝛼 (𝛼 ∈ C) by setting
𝐴𝛼 := (𝐴−1)−𝛼 (𝛼 ∈ C). Observe only that −𝑚− 2 > −1 if 𝑚 < −1.

1.2. Multivalued linear operators

In this section, we present a brief overview of the necessary definitions and
properties of multivalued linear operators that will be necessary for our further
work. In a separate subsection, we exhibit our original contributions on hyper-
cyclic and disjoint hypercyclic multivalued linear operators (this is a part of a joint
research study with C.-C. Chen, J. A. Conejero and M. Murillo-Arcila [107]; see
also [108]). For more details about multivalued linear operators, we refer the reader
to the monographs [120,139,199] as well as to the papers [21,30] and [200].

Let 𝑋 and 𝑌 be two SCLCSs. A multivalued map (multimap) 𝒜 : 𝑋 → 𝑃 (𝑌 )
is said to be a multivalued linear operator (MLO) iff the following holds:
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(i) 𝐷(𝒜) := {𝑥 ∈ 𝑋 : 𝒜𝑥 ̸= ∅} is a linear subspace of 𝑋;
(ii) 𝒜𝑥+𝒜𝑦 ⊆ 𝒜(𝑥+ 𝑦), 𝑥, 𝑦 ∈ 𝐷(𝒜) and 𝜆𝒜𝑥 ⊆ 𝒜(𝜆𝑥), 𝜆 ∈ C, 𝑥 ∈ 𝐷(𝒜).

If 𝑋 = 𝑌 , then we say that 𝒜 is an MLO in 𝑋. An almost immediate consequence
of definition is that 𝒜𝑥 + 𝒜𝑦 = 𝒜(𝑥 + 𝑦) for all 𝑥, 𝑦 ∈ 𝐷(𝒜) and 𝜆𝒜𝑥 = 𝒜(𝜆𝑥)
for all 𝑥 ∈ 𝐷(𝒜), 𝜆 ̸= 0. Furthermore, for any 𝑥, 𝑦 ∈ 𝐷(𝒜) and 𝜆, 𝜂 ∈ C with
|𝜆| + |𝜂| ≠ 0, we have 𝜆𝒜𝑥 + 𝜂𝒜𝑦 = 𝒜(𝜆𝑥 + 𝜂𝑦). If 𝒜 is an MLO, then 𝒜0 is a
linear manifold in 𝑌 and 𝒜𝑥 = 𝑓 +𝒜0 for any 𝑥 ∈ 𝐷(𝒜) and 𝑓 ∈ 𝒜𝑥. Set 𝑅(𝒜) :=
{𝒜𝑥 : 𝑥 ∈ 𝐷(𝒜)}. The set 𝒜−10 = {𝑥 ∈ 𝐷(𝒜) : 0 ∈ 𝒜𝑥} is called the kernel of 𝒜
and it is denoted henceforth by 𝑁(𝒜) or Kern(𝒜). The inverse 𝒜−1 of an MLO is
defined by 𝐷(𝒜−1) := 𝑅(𝒜) and 𝒜−1𝑦 := {𝑥 ∈ 𝐷(𝒜) : 𝑦 ∈ 𝒜𝑥}. It is checked at
once that 𝒜−1 is an MLO in 𝑋, as well as that 𝑁(𝒜−1) = 𝒜0 and (𝒜−1)−1 = 𝒜. If
𝑁(𝒜) = {0}, i.e., if 𝒜−1 is single-valued, then 𝒜 is said to be injective. It is worth
noting that 𝒜𝑥 = 𝒜𝑦 for some two elements 𝑥 and 𝑦 ∈ 𝐷(𝒜), iff 𝒜𝑥 ∩ 𝒜𝑦 ̸= ∅;
moreover, if 𝒜 is injective, then the equality 𝒜𝑥 = 𝒜𝑦 holds iff 𝑥 = 𝑦. For any
mapping 𝒜 : 𝑋 → 𝑃 (𝑌 ) we define 𝒜 := {(𝑥, 𝑦) : 𝑥 ∈ 𝐷(𝒜), 𝑦 ∈ 𝒜𝑥}. Then 𝒜 is
an MLO iff 𝒜 is a linear relation in 𝑋 ×𝑌 , i.e., iff 𝒜 is a linear subspace of 𝑋 ×𝑌 .

If 𝒜,ℬ : 𝑋 → 𝑃 (𝑌 ) are two MLOs, then we define its sum 𝒜+ℬ by𝐷(𝒜+ℬ) :=
𝐷(𝒜) ∩𝐷(ℬ) and (𝒜+ ℬ)𝑥 := 𝒜𝑥+ ℬ𝑥, 𝑥 ∈ 𝐷(𝒜+ ℬ). It can be simply verified
that 𝒜+ ℬ is likewise an MLO.

Let 𝒜 : 𝑋 → 𝑃 (𝑌 ) and ℬ : 𝑌 → 𝑃 (𝑍) be two MLOs, where 𝑍 is an SCLCS.
The product of 𝒜 and ℬ is defined by 𝐷(ℬ𝒜) := {𝑥 ∈ 𝐷(𝒜) : 𝐷(ℬ)∩𝒜𝑥 ̸= ∅} and
ℬ𝒜𝑥 := ℬ(𝐷(ℬ)∩𝒜𝑥). Then ℬ𝒜 : 𝑋 → 𝑃 (𝑍) is an MLO and (ℬ𝒜)−1 = 𝒜−1ℬ−1.
The scalar multiplication of an MLO 𝒜 : 𝑋 → 𝑃 (𝑌 ) with the number 𝑧 ∈ C, 𝑧𝒜
for short, is defined by 𝐷(𝑧𝒜) := 𝐷(𝒜) and (𝑧𝒜)(𝑥) := 𝑧𝒜𝑥, 𝑥 ∈ 𝐷(𝒜). It is
clear that 𝑧𝒜 : 𝑋 → 𝑃 (𝑌 ) is an MLO and (𝜔𝑧)𝒜 = 𝜔(𝑧𝒜) = 𝑧(𝜔𝒜), 𝑧, 𝜔 ∈ C.
Suppose that 𝑋 ′ is a linear subspace of 𝑋, and 𝒜 : 𝑋 → 𝑃 (𝑌 ) is an MLO. Then
we define the restriction of operator 𝒜 to the subspace 𝑋 ′, 𝒜|𝑋′ for short, by
𝐷(𝒜|𝑋′) := 𝐷(𝒜)∩𝑋 ′ and 𝒜|𝑋′𝑥 := 𝒜𝑥, 𝑥 ∈ 𝐷(𝒜|𝑋′). Clearly, 𝒜|𝑋′ : 𝑋 → 𝑃 (𝑌 )
is an MLO. It is well known that an MLO 𝒜 : 𝑋 → 𝑃 (𝑌 ) is injective (resp., single-
valued) iff 𝒜−1𝒜 = 𝐼|𝐷(𝒜) (resp., 𝒜𝒜−1 = 𝐼𝑌|𝑅(𝒜)).

The integer powers of an MLO 𝒜 : 𝑋 → 𝑃 (𝑋) is defined recursively as follows:
𝒜0 =: 𝐼; if 𝒜𝑛−1 is defined, set

𝐷(𝒜𝑛) := {𝑥 ∈ 𝐷(𝒜𝑛−1) : 𝐷(𝒜) ∩ 𝒜𝑛−1𝑥 ̸= ∅},

and
𝒜𝑛𝑥 := (𝒜𝒜𝑛−1)𝑥 =

⋃︁
𝑦∈𝐷(𝒜)∩𝒜𝑛−1𝑥

𝒜𝑦, 𝑥 ∈ 𝐷(𝒜𝑛).

We can prove inductively that (𝒜𝑛)−1 = (𝒜𝑛−1)−1𝒜−1 = (𝒜−1)𝑛 =: 𝒜−𝑛, 𝑛 ∈ N
and 𝐷((𝜆 − 𝒜)𝑛) = 𝐷(𝒜𝑛), 𝑛 ∈ N0, 𝜆 ∈ C. Moreover, if 𝒜 is single-valued,
then the above definitions are consistent with the usual definition of powers of 𝒜.
If 𝒜 : 𝑋 → 𝑃 (𝑌 ) and ℬ : 𝑋 → 𝑃 (𝑌 ) are two MLOs, then we write 𝒜 ⊆ ℬ iff
𝐷(𝒜) ⊆ 𝐷(ℬ) and 𝒜𝑥 ⊆ ℬ𝑥 for all 𝑥 ∈ 𝐷(𝒜). Assume now that a linear single-
valued operator 𝑆 : 𝐷(𝑆) ⊆ 𝑋 → 𝑌 has domain 𝐷(𝑆) = 𝐷(𝒜) and 𝑆 ⊆ 𝒜, where
𝒜 : 𝑋 → 𝑃 (𝑌 ) is an MLO. Then 𝑆 is called a section of 𝒜; if this is the case, we
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have 𝒜𝑥 = 𝑆𝑥 + 𝒜0, 𝑥 ∈ 𝐷(𝒜) and 𝑅(𝒜) = 𝑅(𝑆) + 𝒜0. We say that an MLO
operator 𝒜 : 𝑋 → 𝑃 (𝑌 ) is closed if for any nets (𝑥𝜏 ) in 𝐷(𝒜) and (𝑦𝜏 ) in 𝑌 such
that 𝑦𝜏 ∈ 𝒜𝑥𝜏 for all 𝜏 ∈ 𝐼 we have that the suppositions lim𝜏→∞ 𝑥𝜏 = 𝑥 and
lim𝜏→∞ 𝑦𝜏 = 𝑦 imply 𝑥 ∈ 𝐷(𝒜) and 𝑦 ∈ 𝒜𝑥.

Following C. Knuckles and F. Neubrander [285], we introduce the notion of a
relatively closed MLO as follows. We say that an MLO 𝒜 : 𝑋 → 𝑃 (𝑌 ) is relatively
closed iff there exist auxiliary SCLCSs 𝑋𝒜 and 𝑌𝒜 such that 𝐷(𝒜) ⊆ 𝑋𝒜 →˓ 𝑋,
𝑅(𝒜) ⊆ 𝑌𝒜 →˓ 𝑌 and 𝒜 is closed in 𝑋𝒜×𝑌𝒜; i.e., the assumptions 𝐷(𝒜) ∋ 𝑥𝜏 → 𝑥
as 𝜏 → ∞ in 𝑋𝒜 and 𝒜𝑥𝜏 ∋ 𝑦𝜏 → 𝑦 as 𝜏 → ∞ in 𝑌𝒜 implies that 𝑥 ∈ 𝐷(𝒜) and
𝑦 ∈ 𝒜𝑥. A relatively closed operator will also be called 𝑋𝒜 × 𝑌𝒜-closed. By way
of illustration, let 𝐴,𝐵 : 𝐷 ⊆ 𝑋 → 𝑌 be closed linear operators with the same
domain 𝐷. Then the operator 𝐴 + 𝐵 is not necessarily closed but it is always
[𝐷(𝐴)] × 𝑌 -closed (cf. [280, p. 170]). Examples presented in [285] can be simply
reformulated for operators acting on locally convex spaces, as well:

Example 1.2.1. (i) If 𝒜 : 𝑋 → 𝑃 (𝑌 ) is an MLO, then 𝒜 : 𝑋 → 𝑃 (𝑌 ) is
likewise an MLO. This shows that any MLO has a closed linear extension,
in contrast to the usually considered single-valued linear operators.

(ii) Let 𝐴 : 𝐷(𝐴) ⊆ 𝑋 → 𝑌 be a single-valued linear operator that is 𝑋𝐴×𝑌𝐴-
closed, let ℬ : 𝑋 → 𝑃 (𝑌 ) be an MLO that is𝑋ℬ×𝑌ℬ-closed, and let 𝑌𝐴 →˓
𝑌ℬ. Then the MLO 𝑆 = 𝐴+ℬ is 𝑋𝑆×𝑌ℬ-closed, where 𝑋𝑆 := 𝐷(𝐴)∩𝑋ℬ
and the topology on 𝑋𝑆 is induced by the system (𝑠𝑝,𝑞,𝑟) of fundamental
seminorms, defined as follows: 𝑠𝑝,𝑞,𝑟(𝑥) =: 𝑝(𝑥) + 𝑝(𝐴𝑥) + 𝑞(𝑥) + 𝑟(𝐴𝑥),
𝑥 ∈ 𝑋𝑆 (𝑝 ∈ ~𝑋 , 𝑞 ∈ ~𝑋ℬ , 𝑟 ∈ ~𝑌𝐴

).
(iii) Let 𝐴 : 𝐷(𝐴) ⊆ 𝑋 → 𝑌 be a single-valued linear operator that is 𝑋𝐴×𝑌𝐴-

closed, let ℬ : 𝑌 → 𝑃 (𝑍) be an MLO that is 𝑌ℬ × 𝑍ℬ-closed, and let
𝑌ℬ →˓ 𝑌𝐴. Then the MLO 𝐶 = ℬ𝐴 : 𝑋 → 𝑃 (𝑍) is 𝑋𝐶 ×𝑍ℬ-closed, where
𝑋𝐶 := {𝑥 ∈ 𝐷(𝐴) : 𝐴𝑥 ∈ 𝑌ℬ} and the topology on 𝑋𝐶 is induced by the
system (𝑠𝑝,𝑞) of fundamental seminorms, defined as follows: 𝑠𝑝,𝑞(𝑥) =:
𝑝(𝑥) + 𝑝(𝐴𝑥) + 𝑞(𝐴𝑥), 𝑥 ∈ 𝑋𝐶 (𝑝 ∈ ~𝑋 , 𝑞 ∈ ~𝑌ℬ).

(iv) Let 𝐴 : 𝐷(𝐴) ⊆ 𝑋 → 𝑌 and 𝐵 : 𝐷(𝐵) ⊆ 𝑋 → 𝑌 be two single-valued
linear operators. Set

𝒜 := 𝐵−1𝐴 = {(𝑥, 𝑦) : 𝑥 ∈ 𝐷(𝐴), 𝑦 ∈ 𝐷(𝐵) and 𝐴𝑥 = 𝐵𝑦}.

Then 𝒜 is an MLO in 𝑋, and the following holds:
(a) If one of the operators 𝐴, 𝐵 is bounded and the other closed, then

𝒜 is closed.
(b) If 𝐴 is closed and 𝐵 is 𝑋𝐵 ×𝑌 -closed, then 𝒜 is [𝐷(𝐴)]×𝑋𝐵-closed.
(c) If 𝐵 is closed and 𝐴 is 𝑋𝐴×𝑌 -closed, then 𝒜 is 𝑋𝐴× [𝐷(𝐵)]-closed.
(d) If 𝐴 is 𝑋𝐴 × 𝑌𝐴-closed and 𝐵 is 𝑋𝐵 × 𝑌𝐵-closed, where 𝑌𝐵 →˓ 𝑌𝐴,

then 𝒜 is 𝑋𝐶 ×𝑋𝐵-closed, where 𝑋𝐶 is defined as in (iii).

If 𝒜 : 𝑋 → 𝑃 (𝑌 ) is an MLO, then we define the adjoint 𝒜* : 𝑌 * → 𝑃 (𝑋*) of
𝒜 by its graph

𝒜* := {(𝑦*, 𝑥*) ∈ 𝑌 * ×𝑋* : ⟨𝑦*, 𝑦⟩ = ⟨𝑥*, 𝑥⟩ for all pairs (𝑥, 𝑦) ∈ 𝒜}.
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It is simpy verified that 𝒜* is a closed MLO, and that ⟨𝑦*, 𝑦⟩ = 0 whenever 𝑦* ∈
𝐷(𝒜*) and 𝑦 ∈ 𝒜0. Furthermore, the equations [199, (1.2)–(1.6)] continue to hold
for adjoints of MLOs acting on locally convex spaces.

The following important lemma can be proved by means of the Hahn–Banach
theorem and the argumentation from [47].

Lemma 1.2.2. Suppose that 𝒜 : 𝑋 → 𝑃 (𝑌 ) is an MLO and 𝒜 is 𝑋𝒜 × 𝑌𝒜-
closed. Assume, further, that 𝑥0 ∈ 𝑋, 𝑦0 ∈ 𝑌 and ⟨𝑥*, 𝑥0⟩ = ⟨𝑦*, 𝑦0⟩ for all
pairs (𝑥*, 𝑦*) ∈ 𝑋*

𝒜 × 𝑌 *
𝒜 satisfying that ⟨𝑥*, 𝑥⟩ = ⟨𝑦*, 𝑦⟩ whenever 𝑦 ∈ 𝒜𝑥. Then

𝑦0 ∈ 𝒜𝑥0.

With Lemma 1.2.2 in view, we can simply prove the following extension of
Theorem 1.1.3(iii) for relatively closed MLOs in locally convex spaces. Here, by
Ω we denote a locally compact and separable metric space and by 𝜇 we denote a
locally finite Borel measure defined on Ω.

Theorem 1.2.3. Suppose that 𝒜 : 𝑋 → 𝑃 (𝑌 ) is an MLO and 𝒜 is 𝑋𝒜 × 𝑌𝒜-
closed. Let 𝑓 : Ω → 𝑋𝒜 and 𝑔 : Ω → 𝑌𝒜 be 𝜇-integrable, and let 𝑔(𝑥) ∈ 𝒜𝑓(𝑥),
𝑥 ∈ Ω. Then

∫︀
Ω
𝑓 𝑑𝜇 ∈ 𝐷(𝒜) and

∫︀
Ω
𝑔 𝑑𝜇 ∈ 𝒜

∫︀
Ω
𝑓 𝑑𝜇.

Now we will analyze the 𝐶-resolvent sets of MLOs in locally convex spaces. Our
standing assumptions will be that 𝒜 is an MLO in 𝑋, as well as that 𝐶 ∈ 𝐿(𝑋) is
injective and 𝐶𝒜 ⊆ 𝒜𝐶 (this is equivalent to say that, for any (𝑥, 𝑦) ∈ 𝑋 ×𝑋, we
have the implication (𝑥, 𝑦) ∈ 𝒜 ⇒ (𝐶𝑥,𝐶𝑦) ∈ 𝒜; by induction, we immediately get
that 𝐶𝒜𝑘 ⊆ 𝒜𝑘𝐶 for all 𝑘 ∈ N). Then the 𝐶-resolvent set of 𝒜, 𝜌𝐶(𝒜) for short,
is defined as the union of those complex numbers 𝜆 ∈ C for which

(i) 𝑅(𝐶) ⊆ 𝑅(𝜆−𝒜);
(ii) (𝜆−𝒜)−1𝐶 is a single-valued linear continuous operator on 𝑋.

The operator 𝜆 ↦→ (𝜆 − 𝒜)−1𝐶 is called the 𝐶-resolvent of 𝒜 (𝜆 ∈ 𝜌𝐶(𝒜)); the
resolvent set of 𝒜 is defined by 𝜌(𝒜) := 𝜌𝐼(𝒜), 𝑅(𝜆 : 𝒜) ≡ (𝜆−𝒜)−1 (𝜆 ∈ 𝜌(𝒜)).
We can almost trivially construct examples of MLOs for which 𝜌(𝒜) = ∅ and
𝜌𝐶(𝒜) ̸= ∅: Let 𝑌 be a proper closed linear subspace of 𝑋, let 𝒜 be an MLO
in 𝑌 , and let 𝜆 ∈ C so that (𝜆 − 𝒜)−1 ∈ 𝐿(𝑌 ). Taking any injective operator
𝐶 ∈ 𝐿(𝑋) with 𝑅(𝐶) ⊆ 𝑌 , and looking 𝒜 = 𝒜𝑋 as an MLO in 𝑋, it is clear
that 𝜆 ∈ 𝜌𝐶(𝒜𝑋) and 𝜌(𝒜𝑋) = ∅. In general case, if 𝜌𝐶(𝒜) ̸= ∅, then for any
𝜆 ∈ 𝜌𝐶(𝒜) we have 𝒜0 = 𝑁((𝜆𝐼 − 𝒜)−1𝐶), as well as 𝜆 ∈ 𝜌𝐶(𝒜), 𝒜 ⊆ 𝐶−1𝒜𝐶
and ((𝜆−𝒜)−1𝐶)𝑘(𝐷(𝒜𝑙)) ⊆ 𝐷(𝒜𝑘+𝑙), 𝑘, 𝑙 ∈ N0; here it is worth noting that the
equality 𝒜 = 𝐶−1𝒜𝐶 holds provided, in addition, that 𝜌(𝒜) ̸= ∅ (see e.g. the
proofs of [138, Proposition 2.1, Lemma 2.3]). The basic properties of 𝐶-resolvent
sets of single-valued linear operators [291,292] continue to hold in our framework
(observe, however, that there exist certain differences that we will not discuss here).
For example, if 𝜌(𝒜) ̸= ∅, then 𝒜 is closed; it is well known that this statement
does not hold if 𝜌𝐶(𝒜) ̸= ∅ for some 𝐶 ̸= 𝐼 (cf. [138, Example 2.2]). Arguing as
in the proofs of [199, Theorem 1.7-Theorem 1.9], we can deduce the validity of the
following theorem.
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Theorem 1.2.4. (i) We have

(𝜆−𝒜)−1𝐶𝒜 ⊆ 𝜆(𝜆−𝒜)−1𝐶 − 𝐶 ⊆ 𝒜(𝜆−𝒜)−1𝐶, 𝜆 ∈ 𝜌𝐶(𝒜).

The operator (𝜆−𝒜)−1𝐶𝒜 is single-valued on 𝐷(𝒜) and (𝜆−𝒜)−1𝐶𝒜𝑥 =
(𝜆−𝒜)−1𝐶𝑦, whenever 𝑦 ∈ 𝒜𝑥 and 𝜆 ∈ 𝜌𝐶𝒜.

(ii) Suppose that 𝜆, 𝜇 ∈ 𝜌𝐶(𝒜). Then the resolvent equation

(𝜆−𝒜)−1𝐶2𝑥− (𝜇−𝒜)−1𝐶2𝑥 = (𝜇− 𝜆)(𝜆−𝒜)−1𝐶(𝜇−𝒜)−1𝐶𝑥, 𝑥 ∈ 𝑋

holds good. In particular, [(𝜆−𝒜)−1𝐶][(𝜇−𝒜)−1𝐶] = [(𝜇−𝒜)−1𝐶][(𝜆−
𝒜)−1𝐶].

(iii) Suppose that 𝒜 and ℬ are two given MLOs, as well as that 𝐶ℬ ⊆ ℬ𝐶 and
0 ∈ 𝜌𝐶(𝒜) ∩ 𝜌𝐶(ℬ). Then we have

(𝜆−𝒜)−1𝐶3𝑥− (𝜇− ℬ)−1𝐶3𝑥 = [𝜆(𝜆−𝒜)−1𝐶 − 𝐶]

× [ℬ−1𝐶 −𝒜−1𝐶][𝜆(𝜆− ℬ)−1𝐶 − 𝐶], 𝜆 ∈ 𝜌𝐶(𝒜) ∩ 𝜌𝐶(ℬ).

The following proposition can be proved by induction.

Proposition 1.2.5. Suppose that 𝜆 ∈ 𝜌𝐶(𝒜), 𝑛 ∈ N, 𝑥∈𝐷(𝒜𝑛)=𝐷((𝜆−𝒜)𝑛)
and 𝑦 ∈ (𝜆−𝒜)𝑛𝑥. Then we have

((𝜆−𝒜)−1𝐶)𝑛(𝜆−𝒜)𝑛𝑥 = {((𝜆−𝒜)−1𝐶)𝑛𝑦} = {𝐶𝑛𝑥}.

By Theorem 1.2.4(i), it readily follows that the operator 𝜆(𝜆 − 𝒜)−1𝐶 − 𝐶 ∈
𝐿(𝑋) is a bounded linear section of the MLO 𝒜(𝜆 − 𝒜)−1𝐶 (𝜆 ∈ 𝜌𝐶(𝒜)). In-
ductively, we can prove that, for every 𝑥 ∈ 𝑋, 𝑛 ∈ N0 and 𝜆 ∈ 𝜌𝐶(𝒜), we have
card((𝜆 − 𝒜)−𝑛𝐶𝑥) 6 1. Having in mind this fact, as well as the argumentation
already seen many times in our previous research studies of 𝐶-resolvents of single-
valued linear operators, we can prove the following extension of [292, Proposition
2.1.14] for MLOs in locally convex spaces.

Proposition 1.2.6. Let ∅ ≠ Ω ⊆ 𝜌𝐶(𝒜) be open, and let 𝑥 ∈ 𝑋.
(i) The local boundedness of the mapping 𝜆 ↦→ (𝜆−𝒜)−1𝐶𝑥, 𝜆 ∈ Ω, resp. the

assumption that 𝑋 is barreled and the local boundedness of the mapping
𝜆 ↦→ (𝜆 − 𝒜)−1𝐶, 𝜆 ∈ Ω, implies the analyticity of the mapping 𝜆 ↦→
(𝜆 − 𝒜)−1𝐶3𝑥, 𝜆 ∈ Ω, resp. 𝜆 ↦→ (𝜆 − 𝒜)−1𝐶3, 𝜆 ∈ Ω. Furthermore, if
𝑅(𝐶) is dense in 𝑋, resp. if 𝑅(𝐶) is dense in 𝑋 and 𝑋 is barreled, then
the mapping 𝜆 ↦→ (𝜆 − 𝒜)−1𝐶𝑥, 𝜆 ∈ Ω is analytic, resp. the mapping
𝜆 ↦→ (𝜆−𝒜)−1𝐶, 𝜆 ∈ Ω is analytic.

(ii) Suppose that 𝑅(𝐶) is dense in 𝑋. Then the local boundedness of the
mapping 𝜆 ↦→ (𝜆 − 𝒜)−1𝐶𝑥, 𝜆 ∈ Ω implies its analyticity as well as
𝐶𝑥 ∈ R((𝜆−𝒜)𝑛), 𝑛 ∈ N and

(23)
𝑑𝑛−1

𝑑𝜆𝑛−1
(𝜆−𝒜)−1𝐶𝑥 = (−1)𝑛−1(𝑛− 1)!(𝜆−𝒜)−𝑛𝐶𝑥 𝑛 ∈ N.

Furthermore, if 𝑋 is barreled, then the local boundedness of the mapping
𝜆 ↦→ (𝜆−𝒜)−1𝐶, 𝜆 ∈ Ω implies its analyticity as well as 𝑅(𝐶) ⊆ 𝑅((𝜆−
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𝒜)𝑛), 𝑛 ∈ N and

(24)
𝑑𝑛−1

𝑑𝜆𝑛−1
(𝜆−𝒜)−1𝐶 = (−1)𝑛−1(𝑛− 1)!(𝜆−𝒜)−𝑛𝐶 ∈ 𝐿(𝑋), 𝑛 ∈ N.

(iii) The continuity of mapping 𝜆 ↦→ (𝜆−𝒜)−1𝐶𝑥, 𝜆 ∈ Ω implies its analyticity
and (23). Furthermore, if 𝑋 is barreled, then the continuity of mapping
𝜆 ↦→ (𝜆−𝒜)−1𝐶, 𝜆 ∈ Ω implies its analyticity and (24).

It is well known that 𝜌𝐶(𝐴) need not be an open subset of C if 𝐶 ̸= 𝐼 and 𝐴 is a
single-valued linear operator in 𝑋 (cf. [138, Example 2.5]) and that 𝜌(𝒜) is an open
subset of C, provided that 𝑋 is a Banach space and 𝒜 is an MLO in 𝑋 (cf. [199,
Theorem 1.6]). The regular 𝐶-resolvent set of 𝒜, 𝜌𝑟𝐶(𝒜) for short, is defined as
the union of those complex numbers 𝜆 ∈ 𝜌𝐶(𝒜) for which (𝜆 − 𝒜)−1𝐶 ∈ 𝑅(𝑋),
where 𝑅(𝑋) denotes the set of all regular bounded linear operators 𝐴 ∈ 𝐿(𝑋),
i.e., the operators 𝐴 ∈ 𝐿(𝑋) for which there exists a positive constant 𝑐 > 0 such
that for each seminorm 𝑝 ∈ ~ there exists another seminorm 𝑞 ∈ ~ such that
𝑝(𝐴𝑛𝑥) 6 𝑐𝑛𝑞(𝑥), 𝑥 ∈ 𝑋, 𝑛 ∈ N; the regular resolvent set of 𝒜, 𝜌𝑟(𝒜) for short,
is then defined by 𝜌𝑟(𝒜) := 𝜌𝑟𝐼(𝒜). By the proof of [199, Theorem 1.6], it readily
follows that 𝜌𝑟(𝒜) is always an open subset of C. If 𝒜 is an MLO, then for each
complex numbers 𝑧1, 𝑧2, . . . , 𝑧𝑛 ∈ C we have

(𝒜− 𝑧1)(𝒜− 𝑧2) . . . (𝒜− 𝑧𝑛) = 𝒜𝑛 +

𝑛∑︁
𝑘=1

𝑎𝑛−𝑘𝒜𝑛−𝑘,

where 𝑎𝑛−𝑘 =
∑︀

16𝑖1<𝑖2<···<𝑖𝑘6𝑛 𝑧𝑖1𝑧𝑖2 . . . 𝑧𝑖𝑘 . The following polynomial spectral
mapping theorem holds for multivalued linear operators in locally convex spaces
(cf. [537, Theorem 7.5.3] for the case that 𝐶 = 𝐼 and 𝑋 is a Banach space):

Theorem 1.2.7. Suppose that 𝑃𝑛(𝑧) =
∑︀𝑛

𝑘=0 𝑎𝑘𝑧
𝑘 is a non-zero complex poly-

nomial of degree 𝑛 ∈ N0, and

𝜆− 𝑃𝑛(𝑧) = (−1)𝑛+1𝑎𝑛(𝑓1(𝜆)− 𝑧)(𝑓2(𝜆)− 𝑧) . . . (𝑓𝑛(𝜆)− 𝑧), 𝜆, 𝑧 ∈ C.

Let ∅ ≠ Ω ⊆ 𝜌𝐶(𝒜), and let 𝜆 ∈ C be such that 𝑓1(𝜆), 𝑓2(𝜆), . . . , 𝑓𝑛(𝜆) ∈ Ω. Then
𝜆 ∈ 𝜌𝐶𝑛(𝑃𝑛(𝒜)) and

(𝜆− 𝑃𝑛(𝒜))−1𝐶𝑛 = (−1)𝑛+1𝑎𝑛(𝑓1()−𝒜)−1𝐶(𝑓2(𝜆)−𝒜)−1𝐶 . . . (𝑓𝑛(𝜆)−𝒜)−1𝐶.

We continue by observing that the generalized resolvent equations hold for 𝐶-
resolvents of multivalued linear operators. More precisely, we have the following
theorem which can be proved by induction.

Theorem 1.2.8. (i) Let 𝑥 ∈ 𝑋, 𝑘 ∈ N0 and 𝜆, 𝑧 ∈ 𝜌𝐶(𝒜) with 𝑧 ̸= 𝜆.
Then the following holds:

(𝑧 −𝒜)−1𝐶((𝜆−𝒜)−1𝐶)𝑘𝑥 =
(−1)𝑘

(𝑧 − 𝜆)𝑘
(𝑧 −𝒜)−1𝐶𝑘+1𝑥

+

𝑘∑︁
𝑖=1

(−1)𝑘−𝑖((𝜆−𝒜)−1𝐶)𝑖𝐶𝑘+1−𝑖𝑥

(𝑧 − 𝜆)𝑘+1−𝑖
.
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(ii) Let 𝑘 ∈ N0, 𝑥, 𝑦 ∈ 𝑋, 𝑦 ∈ (𝜆0 − 𝒜)𝑘𝑥 and 𝜆0, 𝑧 ∈ 𝜌𝐶(𝒜) with 𝑧 ̸= 𝜆0.
Then the following holds:

(𝑧 −𝒜)−1𝐶𝑘+1𝑥 =
(−1)𝑘

(𝑧 − 𝜆0)𝑘
(𝑧 −𝒜)−1𝐶𝑘+1𝑦

+

𝑘∑︁
𝑖=1

(−1)𝑘−𝑖((𝜆0 −𝒜)−1𝐶)𝑖𝐶𝑘+1−𝑖𝑦

(𝑧 − 𝜆0)𝑘+1−𝑖
.

1.2.1. Fractional powers. In this subsection, we assume that 𝑋 is a Banach
space, (−∞, 0] ⊆ 𝜌(𝒜) as well as that there exist finite numbers 𝑀 > 1 and
𝛽 ∈ (0, 1] such that

‖𝑅(𝜆 : 𝒜)‖ 6𝑀(1 + |𝜆|)−𝛽 , 𝜆 6 0.

Then there exist two positive real constants 𝑐 > 0 and 𝑀1 > 0 such that the
resolvent set of 𝒜 contains an open region Ω = {𝜆 ∈ C : | Im𝜆| 6 (2𝑀1)

−1(𝑐 −
Re𝜆)𝛽 , Re𝜆 6 𝑐} of complex plane around the nonpositive half-line (−∞, 0], and
we have the estimate ‖𝑅(𝜆 : 𝒜)‖ = 𝑂((1 + |𝜆|)−𝛽), 𝜆 ∈ Ω.

Let Γ′ be the upwards oriented curve {𝜉 ± 𝑖(2𝑀1)
−1(𝑐 − 𝜉)𝛽 : −∞ < 𝜉 6 𝑐}.

We define the fractional power

𝒜−𝜃 :=
1

2𝜋𝑖

∫︁
Γ′
𝜆−𝜃(𝜆−𝒜)−1𝑑𝜆 ∈ 𝐿(𝐸)

for 𝜃 > 1 − 𝛽. Set 𝒜𝜃 := (𝒜−𝜃)−1 (𝜃 > 1 − 𝛽). Then the semigroup properties
𝒜−𝜃1𝒜−𝜃2 = 𝒜−(𝜃1+𝜃2) and 𝒜𝜃1𝒜𝜃2 = 𝒜𝜃1+𝜃2 hold for 𝜃1, 𝜃2 > 1 − 𝛽 (it is worth
noting here that the fractional power 𝒜𝜃 need not be injective and that the meaning
of 𝒜𝜃 is understood in the MLO sense for 𝜃 > 1− 𝛽).

We endow the vector space 𝐷(𝒜) with the norm

‖ · ‖[𝐷(𝒜)] := inf
𝑦∈𝒜·

‖𝑦‖.

Then (𝐷(𝒜), ‖ · ‖[𝐷(𝒜)]) is a Banach space and, since 0 ∈ 𝜌(𝒜), the norm ‖ · ‖[𝐷(𝒜)]

is equivalent with the following one ‖ · ‖+ ‖ · ‖[𝐷(𝒜)]. Since 0 ∈ 𝜌(𝒜𝜃), (𝐷(𝒜𝜃), ‖ ·
‖[𝐷(𝒜𝜃)]) is likewise a Banach space and we have the equivalence of norms ‖·‖[𝐷(𝒜𝜃)]

and ‖ · ‖+ ‖ · ‖[𝐷(𝒜𝜃)] for 𝜃 > 1− 𝛽 (cf. the proof of [199, Proposition 1.1]).
For any 𝜃 ∈ (0, 1), the vector space

𝐸𝜃
𝒜 :=

{︁
𝑥 ∈ 𝐸 : sup

𝜉>0
𝜉𝜃‖𝜉(𝜉 +𝒜)−1𝑥− 𝑥‖ <∞

}︁
becomes one of Banach’s when endowed with the norm

‖ · ‖𝐸𝜃
𝒜
:= ‖ · ‖+ sup

𝜉>0
𝜉𝜃‖𝜉(𝜉 +𝒜)−1 · − · ‖.

It is clear that 𝐸𝜃
𝒜 is continuously embedded in 𝐸. We refer the reader to [181,

411,444] and Section 2.12 for further information concerning interpolation spaces
and fractional powers of multivalued linear operators. In Section 2.12, we will see
that the main properties of 𝐶-resolvent sets of multivalued linear operators hold
even if the injectivity of regularizing operator 𝐶 is disregarded.
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1.2.2. Hypercyclic and disjoint hypercyclic multivalued linear op-
erators. The basic facts about topological dynamics of linear continuous oper-
ators in Banach and Fréchet spaces can be obtained by consulting the mono-
graphs [60] by F. Bayart, E. Matheron and [238] by K.-G. Grosse-Erdmann, A.
Peris. Hypercyclicity and disjoint hypercyclicity of multivalued linear operators
are relatively new topics in the field of linear topological dynamics. In this subsec-
tion, we also inquire into the topological transitivity, topologically mixing property
and chaoticity of multivalued linear operators, as well as their disjoint analogues
(cf. [67, 69, 71, 73, 106, 108, 137, 292, 390, 409, 470, 471] and [489] for further
information on single-valued linear case).

In this subsection, 𝑋 and 𝑌 will be two separable SCLCSs. Set 𝑆𝐿𝑝(𝑥, 𝜀) :=
{𝑦 ∈ 𝑋 : 𝑝(𝑥− 𝑦) < 𝜀}, 𝜀 > 0, 𝑥 ∈ 𝑋, 𝑝 ∈ ~. Assume that 𝐶 ∈ 𝐿(𝑋) is injective.
Put 𝑝𝐶(𝑥) := 𝑝(𝐶−1𝑥), 𝑝 ∈ ~, 𝑥 ∈ 𝑅(𝐶). Then 𝑝𝐶(·) is a seminorm on 𝑅(𝐶) and
the calibration (𝑝𝐶)𝑝∈~ induces a locally convex topology on 𝑅(𝐶); we denote the
above space by [𝑅(𝐶)]~. Notice that [𝑅(𝐶)]~ is a separable SCLCS, and [𝑅(𝐶)]~ is
a (Fréchet, Banach space) provided that 𝑋 is. Set S1 := {𝑧 ∈ C : |𝑧| = 1}. Suppose
that 𝒜 is an MLO in 𝑋. Then we say that a point 𝜆 ∈ C is an eigenvalue of 𝒜 iff
there exists a vector 𝑥 ∈ 𝑋 r {0} such that 𝜆𝑥 ∈ 𝒜𝑥; we call 𝑥 an eigenvector of
operator 𝒜 corresponding to the eigenvalue 𝜆. Observe that, in purely multivalued
case, a vector 𝑥 ∈ 𝑋 r {0} can be an eigenvector of operator 𝒜 corresponding to
different values of scalars 𝜆. The point spectrum of 𝒜, 𝜎𝑝(𝒜) for short, is defined as
the union of all eigenvalues of 𝒜. Let 𝑘 ∈ N. Then we define the MLO 𝒜⊕ · · · ⊕ 𝒜⏟  ⏞  

𝑘

on 𝑋 ⊕ · · · ⊕𝑋⏟  ⏞  
𝑘

by 𝐷(𝒜⊕ · · · ⊕ 𝒜⏟  ⏞  
𝑘

) := 𝐷(𝒜)⊕ · · · ⊕𝐷(𝒜)⏟  ⏞  
𝑘

and

𝒜⊕ · · · ⊕ 𝒜⏟  ⏞  
𝑘

(𝑥1, 𝑥2, . . . , 𝑥𝑘) := {(𝑦1, 𝑦2, . . . , 𝑦𝑘) : 𝑦𝑖 ∈ 𝒜𝑥𝑖 for all 𝑖 = 1, 2, . . . , 𝑘}.

We would like to propose the following definitions (for the sake of clearness and
better exposition of material, we will not treat the subspace dynamical properties
of MLOs here; cf. J. Banasiak, M. Moszyński [48] and [292, Chapter 3] for more
details):

Definition 1.2.9. Let (𝒜𝑛)𝑛∈N be a sequence of multivalued linear operators
acting between the spaces 𝑋 and 𝑌 , let 𝒜 be an MLO in 𝑋, and let 𝑥 ∈ 𝑋. Then
we say that:

(i) 𝑥 is a hypercyclic vector of the sequence (𝒜𝑛)𝑛∈N iff 𝑥 ∈
⋂︀

𝑛∈N𝐷(𝒜𝑛)
and for each 𝑛 ∈ N0 there exists an element 𝑦𝑛 ∈ 𝒜𝑛𝑥 such that the set
{𝑦𝑛 : 𝑛 ∈ N} is dense in 𝑌 ; (𝒜𝑛)𝑛∈N is said to be hypercyclic iff there
exists a hypercyclic vector of (𝒜𝑛)𝑛∈N;

(ii) 𝒜 is hypercyclic iff the sequence (𝒜𝑛)𝑛∈N is hypercyclic; 𝑥 is said to be
a hypercyclic vector of 𝒜 iff 𝑥 is a hypercyclic vector of the sequence
(𝒜𝑛)𝑛∈N;

(iii) 𝑥 is a periodic point of 𝒜 iff 𝑥 ∈ 𝐷∞(𝒜) and there exists an integer 𝑛 ∈ N
such that 𝑥 ∈ 𝒜𝑛𝑥;
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(iv) 𝒜 is topologically transitive iff for every two open non-empty subsets 𝑈 ,
𝑉 of 𝑋 there exists 𝑛 ∈ N such that

(25) 𝑈 ∩ 𝒜−𝑛(𝑉 ) ̸= ∅;
(v) 𝒜 is topologically mixing iff for every two open non-empty subsets 𝑈 , 𝑉

of 𝑋 there exists 𝑛0 ∈ N such that (25) holds for 𝑛 > 𝑛0.
(vi) 𝒜 is chaotic iff 𝒜 is topologically transitive and the set constituted of all

periodic points of 𝒜 is dense in 𝑋.

Definition 1.2.10. Suppose that 𝑁 ∈ N, (𝒜𝑗,𝑛)𝑛∈N is a sequence of multival-
ued linear operators acting between the spaces 𝑋 and 𝑌 (1 6 𝑗 6 𝑁), 𝒜𝑗 is an
MLO in 𝑋 (1 6 𝑗 6 𝑁) and 𝑥 ∈ 𝑋. Then we say that:

(i) 𝑥 is a d-hypercyclic vector of the sequences (𝒜1,𝑛)𝑛∈N, . . . , (𝒜𝑁,𝑛)𝑛∈N iff
for each 𝑛 ∈ N there exist elements 𝑦𝑗,𝑛 ∈ 𝒜𝑗,𝑛𝑥 (1 6 𝑗 6 𝑁) such
that the set {(𝑦1,𝑛, 𝑦2,𝑛, . . . , 𝑦𝑁,𝑛) : 𝑛 ∈ N} is dense in 𝑌 𝑁 ; the se-
quences (𝒜1,𝑛)𝑛∈N, . . . , (𝒜𝑁,𝑛)𝑛∈N are called d-hypercyclic iff there exists
a d-hypercyclic vector of (𝒜1,𝑛)𝑛∈N, . . . , (𝒜𝑁,𝑛)𝑛∈N;

(ii) 𝑥 is a d-hypercyclic vector of the operators 𝒜1, . . . ,𝒜𝑁 iff 𝑥 is a d-
hypercyclic vector of the sequences (𝒜𝑛

1 )𝑛∈N, . . . , (𝒜𝑛
𝑁 )𝑛∈N; the operators

𝒜1, . . . ,𝒜𝑁 are called d-hypercyclic iff there exists a d-hypercyclic vector
of 𝒜1, . . . ,𝒜𝑁 .

Definition 1.2.11. Suppose that 𝑁 ∈ N, (𝒜𝑗,𝑛)𝑛∈N is a sequence of multival-
ued linear operators acting between the spaces 𝑋 and 𝑌 (1 6 𝑗 6 𝑁), and 𝒜𝑗 is
an MLO in 𝑋 (1 6 𝑗 6 𝑁). Then we say that:

(i) the sequences (𝒜1,𝑛)𝑛∈N, . . . , (𝒜𝑁,𝑛)𝑛∈N are d-topologically transitive iff
for every open non-empty subset 𝑈 of 𝑋 and for every open non-empty
subsets 𝑉1, . . . , 𝑉𝑁 of 𝑌 , there exists 𝑛 ∈ N such that

(26) 𝑈 ∩ 𝒜−1
1,𝑛(𝑉1) ∩ · · · ∩ 𝒜−1

𝑁,𝑛(𝑉𝑁 ) ̸= ∅;
(ii) the sequences (𝒜1,𝑛)𝑛∈N, . . . , (𝒜𝑁,𝑛)𝑛∈N are d-topologically mixing iff for

every open non-empty subset 𝑈 ⊆ 𝑋 and for every open non-empty sub-
sets 𝑉1, . . . , 𝑉𝑁 of 𝑌 , there exists 𝑛0 ∈ N such that, for every 𝑛 > 𝑛0, we
have that (26) holds;

(iii) the operators 𝒜1, . . . ,𝒜𝑁 are d-topologically transitive (d-topologically
mixing) iff the sequences (𝒜𝑛

1 )𝑛∈N, . . . , (𝒜𝑛
𝑁 )𝑛∈N are d-topologically tran-

sitive (d-topologically mixing).

Definition 1.2.12. Given 𝑁 > 2, the multivalued linear operators 𝒜1, . . . ,𝒜𝑁

acting on𝑋 are said to be d-chaotic iff 𝒜1, . . . ,𝒜𝑁 are d-topologically transitive and
the set of periodic elements, denoted by 𝒫(𝒜1,𝒜2, . . . ,𝒜𝑁 ) := {(𝑥1, 𝑥2, . . . , 𝑥𝑁 ) ∈
𝑋𝑁 : ∃𝑛 ∈ N with 𝑥𝑗 ∈ 𝒜𝑛

𝑗 𝑥𝑗 , 𝑗 ∈ N𝑁}, is dense in 𝑋𝑁 .

Remark 1.2.13. (i) Let the sequences (𝒜1,𝑛)𝑛∈N, . . . , (𝒜𝑁,𝑛)𝑛∈N be d-
hypercyclic (d-topologically transitive, d-topologically mixing). Then for
each 𝑗 ∈ N𝑁 the single operator sequence (𝒜𝑗,𝑛)𝑛∈N is hypercyclic (topo-
logically transitive, topologically mixing).
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(ii) Suppose that 𝑥 is a periodic point of 𝒜. Then 𝑥 ∈ 𝐷∞(𝒜) and there exists
an integer 𝑛 ∈ N such that 𝑥 ∈ 𝒜𝑛𝑥. This implies the existence of elements
𝑦𝑗 ∈ 𝑋 (1 6 𝑗 6 𝑛−1) such that (𝑥, 𝑦1) ∈ 𝒜, (𝑦1, 𝑦2) ∈ 𝒜, . . . , (𝑦𝑛−1, 𝑥) ∈
𝒜. Repeating this sequence, we easily get that 𝑥 ∈ 𝒜𝑘𝑛𝑥 for all 𝑘 ∈ N, so
that the periodic points of 𝒜 form a linear submanifold of 𝑋. Similarly,
the set 𝒫(𝒜1,𝒜2, . . . ,𝒜𝑁 ) is a linear submanifold of 𝑋𝑁 .

(iii) Suppose that Ω is an open connected subset of K = C satisfying Ω∩S1 ̸=
∅, as well as that 𝑁 > 2 and the multivalued linear operators 𝒜1, . . . ,𝒜𝑁

act on 𝑋. Let 𝑓 : Ω → 𝑋r{0} be an analytic mapping such that 𝜆𝑓(𝜆) ∈
𝒜𝑗𝑓(𝜆) for all 𝜆 ∈ Ω and 𝑗 ∈ N𝑁 . Set �̃� := 𝑠𝑝𝑎𝑛{𝑓(𝜆) : 𝜆 ∈ Ω}. Then it is
very simple to show that, for every 𝑙 ∈ N, the set 𝒫((𝒜1|�̃�)𝑙, . . . , (𝒜𝑁 |�̃�)𝑙)

is dense in �̃�𝑁 ; cf. also the proof of Theorem 1.2.17 below.

Remark 1.2.14. In Definition 1.2.9–Definition 1.2.12, our assumptions on 𝑋
and 𝑌 , as well as on (𝒜𝑛)𝑛∈N, 𝒜, (𝒜𝑗,𝑛)𝑛∈N and 𝒜𝑗 can be substantially relaxed
(1 6 𝑗 6 𝑁). It suffices to suppose that 𝑋 and 𝑌 are topological spaces as well as
that 𝒜𝑛 and 𝒜𝑗,𝑛 (𝒜 and 𝒜𝑗) are binary relations from 𝑋 to 𝑌 (binary relations
on 𝑋). To make this precise, we need to recall some basic facts about binary
relations and their compositions. Suppose, for the time being, that 𝑋, 𝑌, 𝑍 and
𝑇 are given non-empty sets. The notion of reflexivity, symmetry, anti-symmetry
and transitivity of a binary relation 𝜌 ⊆ 𝑋 × 𝑌 is defined in the usual way; the
classes of RST relations and partial order relations on the set 𝑋 are well-known.
If 𝜌 ⊆ 𝑋 × 𝑌 and 𝜎 ⊆ 𝑍 × 𝑇 with 𝑌 ∩ 𝑍 ̸= ∅, then we define 𝜌−1 ⊆ 𝑌 ×𝑋 and
𝜎 ∘ 𝜌 ⊆ 𝑋 × 𝑇 by 𝜌−1 := {(𝑦, 𝑥) ∈ 𝑌 ×𝑋 : (𝑥, 𝑦) ∈ 𝜌} and

𝜎 ∘ 𝜌 := {(𝑥, 𝑡) ∈ 𝑋 × 𝑇 : ∃𝑦 ∈ 𝑌 ∩ 𝑍 such that (𝑥, 𝑦) ∈ 𝜌 and (𝑦, 𝑡) ∈ 𝜎},

respectively. Domain and range of 𝜌 are defined by 𝐷(𝜌) := {𝑥 ∈ 𝑋 : ∃𝑦 ∈
𝑌 such that (𝑥, 𝑦) ∈ 𝑋 × 𝑌 } and 𝑅(𝜌) := {𝑦 ∈ 𝑌 : ∃𝑥 ∈ 𝑋 such that (𝑥, 𝑦) ∈
𝑋 × 𝑌 }, respectively; 𝜌(𝑥) := {𝑦 ∈ 𝑌 : (𝑥, 𝑦) ∈ 𝜌} (𝑥 ∈ 𝑋), 𝑥, 𝜌, 𝑦 ⇔ (𝑥, 𝑦) ∈ 𝜌.

Assuming 𝜌 is a binary relation on 𝑋 and 𝑛 ∈ N, we define 𝜌𝑛 := 𝜌 ∘ ∘ ∘ 𝜌
𝑛-times inductively; 𝜌−𝑛 := (𝜌𝑛)−1 and 𝜌0 := Δ𝑋 := {(𝑥, 𝑥) : 𝑥 ∈ 𝑋}.

Set 𝐷∞(𝜌) :=
⋂︀

𝑛∈N𝐷(𝜌𝑛) and observe that the integer powers of an MLO 𝒜 in
an SCLCS are introduced, actually, by using the above definition for powers of the
associated linear relation 𝒜. Keeping in mind these notions, it is almost trivial to
restate Definition 1.2.9–Definition 1.2.12 for (sequences of) binary relations between
the topological spaces 𝑋 and 𝑌 . In general, we do not assume that 𝑋 or 𝑌 has
a linear vector space structure; unquestionably, this assumption is not so pleasant
because we are no longer in a position to clarify various types of (d-)hypercyclic
and (d-)spectral criteria ensuring some kind of hypercyclic or topologically mixing
behaviour of considered binary relations (cf. the continuation of this subsection for
more details). In what follows, we will present a few illustrative examples:

(i) Let 𝜌 be an RST relation on 𝑋. Then it is clear that 𝜌 is hypercyclic iff
there exists an element 𝑥 ∈ 𝑋 such that 𝐶𝑥 := {𝑦 ∈ 𝑋 : 𝑥 𝜌 𝑦} contains a
sequence that is dense in 𝑋. If so, then any element of 𝐶𝑥 is a hypercyclic
element of 𝜌.



1.2. MULTIVALUED LINEAR OPERATORS 47

(ii) Let 𝑋 = 𝐺 be finite and equipped with the discrete topology, let |𝐺| > 1,
and let 𝜌 be a symmetric relation on 𝐺 such that, for every 𝑔 ∈ 𝐺, we
have (𝑔, 𝑔) /∈ 𝜌. As is well-known, (𝐺, 𝜌) is said to be a simple graph
[448]. It can be simply proved that the graph 𝐺 is connected iff 𝐺 is
hypercyclic iff 𝐺 is chaotic; if this is the case, then any element of 𝐺 is a
hypercyclic element of 𝜌. Choosing some different topologies on 𝐺, as in
part (iii) below, Definition 1.2.9 can be used to generalize the notion of
connectivity of simple graphs. It is also worth noting that 𝜌 need not be
topologically mixing if it is topologically transitive; for example, if 𝐺 is
a square 𝑥1𝑥2𝑥3𝑥4, then there does not exist an odd number 𝑛 ∈ N such
that 𝑥3 ∈ 𝜌𝑛(𝑥1); cf. Definition 1.2.9(v) with 𝑈 = {𝑥3} and 𝑉 = {𝑥1}.

(iii) Let 𝑋 = 𝐺 be finite, let (𝐺, 𝜌) be a simple graph without isolated ver-
texes, and let 𝜏 be the topology on𝐺. Denote by𝐺1, . . . , 𝐺𝑘 the connected
components of graph (𝐺, 𝜌), where 𝑘 ∈ N. Then 𝜌 is hypercyclic iff there
exists a number 𝑖 ∈ N𝑘 such that 𝐺𝑖 is dense in (𝐺, 𝜏), when any element
of 𝐺𝑖 is a hypercyclic element of 𝜌. For example, let 𝐺 = {𝑎, 𝑏, 𝑐, 𝑑},
and let 𝜏1 = {∅, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑐, 𝑑}} and
𝜏2 = {∅, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑐, 𝑑}} (according to Wikipedia, there exist 355 dis-
tinct topologies on 𝐺 but only 33 inequivalent). Set

𝜌 := {(𝑎, 𝑑), (𝑑, 𝑎), (𝑏, 𝑐), (𝑐, 𝑏)}.

Then 𝜌 is not hypercyclic in (𝐺, 𝜏1) and 𝜌 is hypercyclic in (𝐺, 𝜏2). Ob-
serve, finally, that 𝜌 is topologically transitive iff for every two open non-
empty subsets 𝑈 , 𝑉 of 𝑋 there exists 𝑖 ∈ N𝑘 such that 𝑈 ∩ 𝐺𝑖 ̸= ∅ and
𝑉 ∩𝐺𝑖 ̸= ∅.

Hypercyclic and disjoint hypercyclic extensions of binary relations, introduced here
for multivalued linear operators, can be also analyzed; cf. our research study [108]
for further information concerning this question. In that paper, we will scruti-
nize hypercyclic and disjoint hypercyclic properties of operators on Cayley graphs,
as well.

Before proceeding further, it should be worthwhile to mention that, in single-
valued linear case, J. Bés and A. Peris called the notion introduced in Definition
1.2.10 by d-universality (cf. also [236, Definition 2]).

Example 1.2.15. It is clear that any multivalued linear extension of a hyper-
cyclic (chaotic) single-valued linear operator is again hypercyclic (chaotic). It is
also worth noting that Definition 1.2.9 prescribes some very strange situations in
which even zero can be a hypercyclic vector: Let 𝒜 := {0} ×𝑊 , where 𝑊 is a
dense linear submanifold of 𝑋. Then 𝒜 is hypercyclic, zero is the only hypercyclic
vector of 𝒜 and there is no single-valued linear restriction of 𝒜 that is hypercyclic
(in particular, a hypercyclic MLO need not be densely defined and the inverse of
a hypercyclic MLO need not be hypercyclic, in contrast to the single-valued lin-
ear case, see also [73, Problem 1]); furthermore, Definition 1.2.10 is very strange
in multivalued linear operators setting because the operators 𝒜, . . . ,𝒜 are all the
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same and d-hypercyclic with zero being its only d-hypercyclic vector (as the analy-
sis performed by J. Bés and A. Peris on p. 299 of [73] shows, a single-valued linear
operator 𝐴 and its constant multiple 𝑐𝐴 cannot be d-hypercyclic, 𝑐 ∈ K). Observe,
finally, that the non-triviality of submanifold 𝒜0 is not so directly and essentially
connected with the hypercyclicity of 𝒜 : Let 𝒜 := 𝑋 ×𝑊 , where 𝑊 is a non-dense
linear submanifold of 𝑋. Then 𝒜 cannot be hypercyclic (topologically transitive).

Let (𝑂𝑛)𝑛∈N be an open base of the topology of 𝑋, and let 𝑂𝑛 ̸= ∅ for every
𝑛 ∈ N. Then the set consisting of hypercyclic vectors of an arbitrary multivalued
linear operator 𝒜, denoted shortly by HC(𝒜), can be computed by

(27) HC(𝒜) =
⋂︁
𝑛∈N

⋃︁
𝑘∈N

𝒜−𝑘(𝑂𝑛).

Similarly, the set consisting of all d-hypercyclic vectors of arbitrary multivalued
linear operators 𝒜1, . . . ,𝒜𝑁 , denoted shortly by HC(𝒜1, . . . ,𝒜𝑁 ), can be computed
by

(28) HC(𝒜1, . . . ,𝒜𝑁 ) =
⋂︁

𝑗1,𝑗2,...,𝑗𝑁∈N

⋃︁
𝑘∈N

𝑁⋂︁
𝑙=1

𝒜−𝑘
𝑙 (𝑂𝑗𝑙).

The formulae (27)–(28) become most important in the case that the powers of
operator 𝒜 (operators 𝒜1, . . . ,𝒜𝑁 ) are continuous; cf. [120, Section II.3] for the
notion, and [236] for more details about this subject and universal families of con-
tinuous linear operators. The study of some important subcases of universality, like
supercyclicity and positive supercyclicity, is also without the scope of our analysis
(cf. [291,292,390,462] and references cited therein for more details on the subject).

Suppose now that 𝒜 is an MLO in 𝑋, as well as that 𝑌 is another SCLCS and
𝜑 : 𝑋 → 𝑌 is a linear topological homeomorphism (cf. also [236, Proposition 4]
and [409, Proposition 1.3.10]). Then we define the operator 𝒜𝑌 in 𝑌 by

𝐷(𝒜𝑌 ) := 𝜑(𝐷(𝒜)) and 𝒜𝑌 (𝜑(𝑥)) := 𝜑(𝒜𝑥), 𝑥 ∈ 𝐷(𝒜).

It is checked at once that 𝒜𝑌 is an MLO in 𝑌 . Keeping this fact in mind, we can
formulate a great number of (d-)hypercyclic comparision principles for multivalued
linear operators. We leave these questions to the interesed reader.

It is an elementary fact that the point spectrum of adjoint of a hypercyclic
continuous single-valued linear operator has to be empty [284]. As the next propo-
sition shows, the same thing holds for hypercyclic multivalued linear operators:

Proposition 1.2.16. Let 𝒜 be a hypercyclic MLO in 𝑋. Then 𝜎𝑝(𝒜*) = ∅.

Proof. Let 𝑥 be a hypercyclic vector of 𝒜; hence, for every 𝑛 ∈ N, there exists
an element 𝑦𝑛 ∈ 𝒜𝑛𝑥 such that the set {𝑦𝑛 : 𝑛 ∈ N} is dense in 𝑋. Suppose to
the contrary that there exist 𝜆 ∈ K and 𝑥* ∈ 𝑋* r {0} such that 𝜆𝑥* ∈ 𝒜*𝑥*, i.e.,
that ⟨𝑥*, 𝑦⟩ = 𝜆⟨𝑥*, 𝑥⟩, whenever 𝑦 ∈ 𝒜𝑥. It is clear that ⟨𝑥*, 𝑦𝑛⟩ = 𝜆𝑛⟨𝑥*, 𝑥⟩ for
all 𝑛 ∈ N, so that the assumption ⟨𝑥*, 𝑥⟩ = 0 implies ⟨𝑥*, 𝑦𝑛⟩ = 0 for all 𝑛 ∈ N, and
therefore, 𝑥* = 0. So, ⟨𝑥*, 𝑥⟩ ≠ 0. If |𝜆| 6 1, then |⟨𝑥*, 𝑦𝑛⟩| = |𝜆𝑛⟨𝑥*, 𝑥⟩| 6 |⟨𝑥*, 𝑥⟩|
for all 𝑛 ∈ N; this would imply |⟨𝑥*, 𝑢⟩| 6 |⟨𝑥*, 𝑥⟩| for all 𝑢 ∈ 𝑋, which is a
contradiction since |⟨𝑥*, 𝑛𝑢⟩| → +∞ for any 𝑢 ∈ 𝑋 such that ⟨𝑥*, 𝑢⟩ ≠ 0. If
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|𝜆| > 1, then |⟨𝑥*, 𝑦𝑛⟩| = |𝜆𝑛⟨𝑥*, 𝑥⟩| > |⟨𝑥*, 𝑥⟩| for all 𝑛 ∈ N; this would imply
|⟨𝑥*, 𝑢⟩| > |⟨𝑥*, 𝑥⟩| for all 𝑢 ∈ 𝑋, which is a contradiction since |⟨𝑥*, 𝑢/𝑛⟩| → 0 for
any 𝑢 ∈ 𝑋, and ⟨𝑥*, 𝑥⟩ ≠ 0. �

The following theorem extends the well-known result of R. M. Aron, J. B.
Seoane-Sepúlveda and A. Weber [31, Theorem 2.1]. This is, actually, a kind of
Godefroy–Shapiro and Dech–Schappacher–Webb Criterion (continuous version) for
multivalued linear operators.

Theorem 1.2.17. Suppose that Ω is an open connected subset of K = C sat-
isfying Ω ∩ S1 ̸= ∅. Let 𝑓 : Ω → 𝑋 r {0} be an analytic mapping such that
𝜆𝑓(𝜆) ∈ 𝒜𝑓(𝜆) for all 𝜆 ∈ Ω. Set �̃� := 𝑠𝑝𝑎𝑛{𝑓(𝜆) : 𝜆 ∈ Ω}. Then the opera-
tor 𝒜|�̃� is topologically mixing in the space �̃� and the set of periodic points of 𝒜|�̃�

is dense in �̃�.

Proof. The proof of theorem is very similar to that of Theorem 2.10.3 and
we will only outline the most relevant details. Without loss of generality, we may
assume that �̃� = 𝑋. If Ω0 is an arbitrary subset of Ω which admits a cluster
point in Ω, then the (weak) analyticity of mapping 𝜆 ↦→ 𝑓(𝜆), 𝜆 ∈ Ω shows that
Ψ(Ω0) := span{𝑓(𝜆) : 𝜆 ∈ Ω0} is dense in 𝑋. Further on, it is clear that there exist
numbers 𝜆0 ∈ Ω∩S1 and 𝛿 > 0 such that any of the sets Ω0,+ := {𝜆 ∈ Ω : |𝜆−𝜆0| <
𝛿, |𝜆| > 1} and Ω0,− := {𝜆 ∈ Ω : |𝜆 − 𝜆0| < 𝛿, |𝜆| < 1} admits a cluster point
in Ω. Suppose that 𝑈 and 𝑉 are two open non-empty subsets of 𝑋. Then there
exist 𝑦, 𝑧 ∈ 𝑋, 𝜀 > 0, 𝑝, 𝑞 ∈ ~ such that 𝑆𝐿𝑝(𝑦, 𝜀) ⊆ 𝑈 and 𝑆𝐿𝑞(𝑧, 𝜀) ⊆ 𝑉 . We
may assume that 𝑦 ∈ Ψ(Ω0,−), 𝑧 ∈ Ψ(Ω0,+), 𝑦 =

∑︀𝑛
𝑖=1 𝛽𝑖𝑓(𝜆𝑖), 𝑧 =

∑︀𝑚
𝑗=1 𝛾𝑗𝑓(𝜆𝑗),

where 𝛼𝑖, 𝛽𝑗 ∈ Cr {0}, 𝜆𝑖 ∈ Ω0,− and 𝜆𝑗 ∈ Ω0,+ for 1 6 𝑖 6 𝑛 and 1 6 𝑗 6 𝑚. Put
𝑧𝑡 :=

∑︀𝑚
𝑗=1

𝛾𝑗

𝜆𝑗
𝑡 𝑓(𝜆𝑗) and 𝑥𝑡 := 𝑦+𝑧𝑡, 𝑡 > 0. Then {𝑥𝑡, 𝑦, 𝑧𝑡} ⊆ 𝐷∞(𝒜), 𝑡 > 0 and

it can be easily seen that 𝑧 ∈ 𝒜𝑛𝑧𝑛, 𝑛 ∈ N and 𝜔𝑛 := 𝑧 +
∑︀𝑛

𝑖=1 𝛽𝑖𝜆
𝑛
𝑖 𝑓(𝜆𝑖) ∈ 𝒜𝑛𝑥𝑛,

𝑛 ∈ N, as well as that there exists 𝑛0(𝜀) ∈ N such that, for every 𝑛 > 𝑛0(𝜀),
𝑥𝑛 ∈ 𝑆𝐿𝑝(𝑦, 𝜀) and 𝑤𝑛 ∈ 𝑆𝐿𝑞(𝑧, 𝜀). Therefore, 𝒜 is topologically mixing. Since
the set Ω ∩ exp(2𝜋𝑖Q) has a cluster point in Ω, the proof that the set of periodic
points of 𝒜 is dense in 𝑋 can be given as in that of [31, Theorem 2.1]. �

Remark 1.2.18. It is clear that the validity of implication:
⟨𝑥*, 𝑓(𝜆)⟩ = 0, 𝜆 ∈ Ω for some 𝑥* ∈ 𝑋* ⇒ 𝑥* = 0

yields that �̃� = 𝑋.

Now we would like to illustrate Theorem 1.2.17 with a concrete example that
is very similar to Example 2.10.6. It provides the existence of a substantially large
class of topologically mixing multivalued linear operators with dense set of periodic
points.

Example 1.2.19. Suppose that 𝐴 is a closed linear operator on 𝑋 satisfying
that there exist an open connected subset ∅ ̸= Λ of C and an analytic mapping
𝑔 : Λ → 𝑋 r {0} such that 𝐴𝑔(𝜈) = 𝜈𝑔(𝜈), 𝜈 ∈ Λ. Let 𝑃 (𝑧) and 𝑄(𝑧) be non-
zero complex polynomials, let 𝑅 := {𝑧 ∈ C : 𝑃 (𝑧) = 0}, Λ′ := Λ r 𝑅, and let
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�̃� := 𝑠𝑝𝑎𝑛{𝑔(𝜆) : 𝜆 ∈ Λ}. Suppose that

𝑄

𝑃
(Λ′) ∩ 𝑆1 ̸= ∅.

Then Theorem 1.2.17 implies that the parts of multivalued linear operators
𝑄(𝒜)𝑃 (𝒜)−1 and 𝑃 (𝒜)−1𝑄(𝒜) in �̃� are topologically mixing in the space �̃�,
and that the sets of periodic points of these operators are dense in �̃�.

It is worth noting that L. Bernal-González investigated in [67, Theorem 4.3]
a disjoint analogue of Theorem 1.2.17 for continuous linear operators. Now we
will state the following version of afore-mentioned theorem for multivalued linear
operators without going into full details concerning the case in which there exists
an integer 𝑝0 ∈ N0

𝑁 for which the set 𝐷𝑝0
is not total in 𝑋. The proof goes similarly

and therefore omitted.

Theorem 1.2.20. Suppose that 𝑁 ∈ N and 𝒜1, . . . ,𝒜𝑁 are given MLOs acting
on 𝑋. Let for each 𝑝 ∈ N0

𝑁 there exists a total set 𝐷𝑝 (that is, the linear span of
𝐷𝑝 is dense in 𝑋) such that the following conditions hold:

(i) Any element of the set 𝐷𝑝 is an eigenvector of any operator 𝒜𝑗 (𝑝 ∈ N0
𝑁 ,

𝑗 ∈ N𝑁 ); if 𝑒 ∈ 𝐷𝑝, then there exists an eigenvalue 𝜆𝑗,𝑝(𝑒) of the operator
𝒜𝑗 for which 𝜆𝑗,𝑝(𝑒)𝑒 ∈ 𝒜𝑗𝑒 and (ii)–(iii) hold, where:

(ii) 𝜆𝑗,0(𝑒) ∈ int(S1), 𝑗 ∈ N𝑁 , 𝑒 ∈ 𝐷0 and 𝜆𝑗,𝑗(𝑒) ∈ ext(S1), 𝑗 ∈ N𝑁 , 𝑒 ∈ 𝐷𝑗;
(iii) Suppose 𝑖, 𝑗 ∈ N𝑁 and 𝑖 ̸= 𝑗. Then, for every 𝑒 ∈ 𝐷𝑖, we have |𝜆𝑗,𝑖(𝑒)| <

|𝜆𝑖,𝑖(𝑒)|.
Then the operators 𝒜1, . . . ,𝒜𝑁 are d-topologically mixing.

Now we will illustrate Theorem 1.2.20 with a simple example pointing out that
the continuity of operators can be neglected from the formulation of [67, Theorem
4.3] (the metrizability of state space 𝑋 is also inrelevant in our approach), as well
as that there exists a great number of Banach function spaces where this extended
version of afore-mentioned theorem can be applied (cf. also [67, Final questions,
2.]). Numerous other examples involving multivalued linear operators can be given
similarly, by using the analysis from Example 1.2.19; cf. also [35], Example 2.11.6
and [457] for certain unbounded differential operators that we can employ here.

Example 1.2.21. [259] Suppose that 𝑝 > 2. Let 𝑋 be a symmetric space
of non-compact type and rank one, let 𝑃𝑝 be the parabolic domain defined in
the proof of [259, Theorem 3.1], and let 𝑐𝑝 > 0 be the apex of 𝑃𝑝. Then we
know that 𝑖𝑛𝑡(𝑃𝑝) ⊆ 𝜎𝑝(Δ

♮
𝑋,𝑝), where Δ♮

𝑋,𝑝 denotes the corresponding Laplace–
Beltrami operator acting on 𝐿𝑝

♮ (𝑋); furthermore, there exists an analytic function
𝑔 : 𝑖𝑛𝑡(𝑃𝑝) → 𝐿𝑝

♮ (𝑋) such that Δ♮
𝑋,𝑝𝑔(𝜆) = 𝜆𝑔(𝜆), 𝜆 ∈ 𝑖𝑛𝑡(𝑃𝑝) and the set Ψ(Ω) :=

{𝑔(𝜆) : 𝜆 ∈ Ω} is total in 𝑋 for any open, non-empty subset Ω of 𝑖𝑛𝑡(𝑃𝑝). Suppose
that 𝑁 > 2, −1 − 𝑐𝑝 < 𝑎1 < 𝑎2 < · · · < 𝑎𝑁 < 1 − 𝑐𝑝 and, for every 𝑖 ∈ N𝑁 , there
exists a point 𝜆𝑖 ∈ 𝑖𝑛𝑡(𝑃𝑝) such that |𝜆𝑖+𝑎𝑖| > max(1, |𝜆𝑖+𝑎𝑗 |) for all 𝑗 ∈ N𝑁r{𝑖}
(this case can really occur). An application of Theorem 1.2.20 (with 𝐷𝑖 = Ψ(Ω𝑖),
Ω0 is a small ball around 𝑐𝑝+ and Ω𝑖 is a small ball around 𝜆𝑖, 𝑖 ∈ N𝑁 ) shows
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that the operators Δ♮
𝑋,𝑝+ 𝑎1,Δ

♮
𝑋,𝑝+ 𝑎2, . . . ,Δ

♮
𝑋,𝑝+ 𝑎𝑁 are d-topologically mixing;

furthermore, by Remark 1.2.13, the set 𝒫(Δ♮
𝑋,𝑝 + 𝑎1, . . . ,Δ

♮
𝑋,𝑝 + 𝑎𝑁 ) is dense in

(𝐿𝑝
♮ (𝑋))

𝑁 . Hence, the operators Δ♮
𝑋,𝑝+𝑎1,Δ

♮
𝑋,𝑝+𝑎2, . . . ,Δ

♮
𝑋,𝑝+𝑎𝑁 are d-chaotic.

It is almost straigtforward to state a continuous version of Theorem 1.2.20 for
abstract degenerate fractional inclusions in separable SCLCSs (see also Theorem
3.6.3 below).

The Hypercyclicity Criterion for single-valued linear operators has been discov-
ered independently by C. Kitai [284] and R. M. Gethner, J. H. Shapiro [224]. It is
worth noting that this criterion can be formulated, in a certain way, for multivalued
linear operators and that we do not need any type of continuity or closedness of
operators under examination for its validity; the proof of next proposition can be
obtained by the methods of Theorem 2.10.7 (continuous version), which is omitted
here.

Proposition 1.2.22. (Hypercyclicity Criterion for MLOs) Let 𝒜 be an MLO
in 𝑋. Suppose that (𝑎𝑛)𝑛∈N is a strictly increasing sequence of positive integers.
Let the set 𝑋0, consisting of those elements 𝑦 ∈ 𝑋 for which there exists a sequence
(𝑦𝑛)𝑛∈N in 𝑋 such that 𝑦𝑛 ∈ 𝒜𝑎𝑛𝑦, 𝑛 ∈ N and lim𝑛→∞ 𝑦𝑛 = 0, be dense in
𝑋. Furthermore, let the set 𝑋∞, consisting of those elements 𝑧 ∈ 𝑋 for which
there exist a null sequence (𝜔𝑛)𝑛∈N in 𝑋 and a sequence (𝑢𝑛)𝑛∈N in 𝑋 such that
𝑢𝑛 ∈ 𝒜𝑎𝑛𝜔𝑛, 𝑛 ∈ N and lim𝑛→∞ 𝑢𝑛 = 𝑧, be also dense in 𝑋. Then 𝒜⊕ · · · ⊕ 𝒜⏟  ⏞  

𝑘

is
topologically transitive (𝑘 ∈ N).

The question of whether any continuous hypercyclic single-valued linear op-
erator on Banach space satisfies the Hypercyclicity Criterion was open for a long
time; as is well-known, the negative answer was given by M. De La Rosa and C.
Read in [129]. Now we will state a version of d-Hypercyclicity Criterion for MLOs;
see [73, Proposition 2.6, Theorem 2.7, Remark 2.8] for single-valued linear case.

Proposition 1.2.23. (d-Hypercyclicity Criterion for MLOs) Let 𝑁 ∈ N, and
let 𝒜𝑗 be an MLO in 𝑋 (1 6 𝑗 6 𝑁). Suppose that (𝑎𝑛)𝑛∈N is a strictly in-
creasing sequence of positive integers. Let the set 𝑋0, consisting of those ele-
ments 𝑦 ∈ 𝑋 satisfying that for each 𝑗 ∈ N𝑁 there exists a sequence (𝑦𝑛,𝑗)𝑛∈N
in 𝑋 such that 𝑦𝑛,𝑗 ∈ 𝒜𝑎𝑛

𝑗 𝑦, 𝑛 ∈ N and lim𝑛→∞ 𝑦𝑛,𝑗 = 0, be dense in 𝑋.
Furthermore, let for each 𝑗 ∈ N𝑁 there exists a dense set 𝑋∞,𝑗, consisting of
those elements 𝑧 ∈ 𝑋 for which there exist elements 𝜔𝑛,𝑖(𝑧) and 𝑢𝑛,𝑖,𝑗(𝑧) in 𝑋
(𝑛 ∈ N, 1 6 𝑖 6 𝑁) such that (𝜔𝑛,𝑗(𝑧))𝑛∈N is a null sequence in 𝑋, 𝑢𝑛,𝑖,𝑗(𝑧) ∈
𝒜𝑎𝑛

𝑗 𝜔𝑛,𝑖(𝑧), 𝑛 ∈ N and lim𝑛→∞ 𝑢𝑛,𝑖,𝑗 = 𝛿𝑖,𝑗𝑧 (1 6 𝑖 6 𝑁). Then the operators
𝒜1 ⊕ · · · ⊕ 𝒜1⏟  ⏞  

𝑘

, . . . ,𝒜𝑁 ⊕ · · · ⊕ 𝒜𝑁⏟  ⏞  
𝑘

are d-topologically transitive (𝑘 ∈ N).

Proof. We will only outline the main details of proof. Since for any multival-
ued linear operator 𝒜 we have(︁

𝒜⊕ · · · ⊕ 𝒜⏟  ⏞  
𝑘

)︁𝑛
= 𝒜𝑛 ⊕ · · · ⊕ 𝒜𝑛⏟  ⏞  

𝑘

, 𝑘, 𝑛 ∈ N,
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we may assume without loss of generality that 𝑘 = 1 (otherwise, we can pass to the
subsets 𝑋𝑘

0 , 𝑋𝑘
∞,𝑗 (1 6 𝑗 6 𝑁), as well as to the tuples (𝑧, . . . , 𝑧), (𝑦𝑛,𝑗 , . . . , 𝑦𝑛,𝑗),

(𝜔𝑛,𝑖, . . . , 𝜔𝑛,𝑖), (𝑢𝑛,𝑖,𝑗 , . . . , 𝑢𝑛,𝑖,𝑗), each of which have exactly 𝑘 components (1 6
𝑗 6 𝑁)). The remainder of the proof can be given by repeating verbatim the
corresponding part of proof of [73, Proposition 2.6]. �

Observe that the assertions of Proposition 1.2.22 and Proposition 1.2.23 can
be formulated for the sequences of multivalued linear operators (cf. [73, Remark
2.8] and the proof of Theorem 1.2.24 below), as well as that Proposition 1.2.22
and Proposition 1.2.23 give sufficient conditions for (d-)topological transitivity of
operators. A sufficient condition for hypercyclicity of linear operators in Banach
spaces, the real Hypercyclicity Criterion for linear operators, if we could say some-
thing like that, was stated for the first time by J. Bès, K. C. Chen and S. M.
Seubert [69, Theorem 2.1] (cf. also R. deLaubenfels, H. Emamirad and K.-G.
Grosse-Erdmann [137, Theorem 2.3]). As mentioned on p. 49 of [137], neither of
the assertions [69, Theorem 2.1] and [137, Theorem 2.3] is not contained in the
other. We continue by stating the following d-hypercyclic analogue of [137, Theo-
rem 2.3] for single-valued linear operators in Fréchet spaces:

Theorem 1.2.24. Suppose that 𝑋 is a Fréchet space, 𝑇1, . . . , 𝑇𝑁 are single-
valued linear operators on 𝑋 (1 6 𝑗 6 𝑁) and 𝐶 ∈ 𝐿(𝑋) is injective. Suppose
that there exists a subset 𝑋0 of 𝐷∞(𝑇1) ∩ · · · ∩ 𝐷∞(𝑇𝑁 ), dense in 𝑋, as well as
dense subsets 𝑋1, . . . , 𝑋𝑁 of 𝑋 and mappings 𝑆𝑗,𝑛 : 𝑋𝑗 → 𝐷∞(𝑇1)∩ · · · ∩𝐷∞(𝑇𝑁 )
(1 6 𝑗 6 𝑁 , 𝑛 ∈ N) such that:

(i) lim𝑛→∞ 𝑇𝑛
𝑗 𝑥0 = 0, 𝑥0 ∈ 𝑋0,

(ii) lim𝑛→∞ 𝑆𝑗,𝑛𝑥𝑗 = 0, 𝑥𝑗 ∈ 𝑋𝑗, 1 6 𝑗 6 𝑁 ,
(iii) lim𝑛→∞[𝑇𝑛

𝑗 𝑆𝑖,𝑛𝑥𝑗 − 𝛿𝑗,𝑖𝑥𝑗 ] = 0, 𝑥𝑗 ∈ 𝑋𝑗, 1 6 𝑖, 𝑗 6 𝑁 ,
(iv) 𝑅(𝐶) ⊆ 𝐷∞(𝑇1) ∩ · · · ∩𝐷∞(𝑇𝑁 ) and 𝑇𝑛

𝑗 𝐶 ∈ 𝐿(𝑋), 1 6 𝑗 6 𝑁 ,
(v) 𝐶𝑇𝑗𝑥 = 𝑇𝑗𝐶𝑥, 𝑥 ∈ 𝐷∞(𝑇𝑗), 1 6 𝑗 6 𝑁 ,
(vi) 𝑅(𝐶) is dense in 𝑋.

Then the operators 𝑇1, . . . , 𝑇𝑁 are d-hypercyclic.

Proof. Define the operators T𝑗,𝑛 ∈ 𝐿([𝑅(𝐶)]~, 𝑋) by T𝑗,𝑛(𝐶𝑥) := 𝑇𝑛
𝑗 𝐶𝑥,

𝑥 ∈ 𝑋 (cf. (iv)). It suffices to show that the sequences (T1,𝑗)𝑗∈N, . . . , (T𝑁,𝑗)𝑗∈N are
d-hypercyclic. Since the final conclusions of [73, Remark 2.8] also hold for sequences
of continuous linear operators acting between different spaces, we need to prove
the existence of a dense subset 𝑋 ′

0 of [𝑅(𝐶)]~, dense subsets 𝑋 ′
1, . . . , 𝑋

′
𝑁 of 𝑋 and

mappings 𝑆′
𝑗,𝑛 : 𝑋

′
𝑗 → [𝑅(𝐶)] (1 6 𝑗 6 𝑁 , 𝑛 ∈ N) such that the following holds:

(a) lim𝑛→∞ T𝑗,𝑛𝑥
′
0 = 0, 𝑥′0 ∈ 𝑋 ′

0,
(b) lim𝑛→∞ 𝑆′

𝑗,𝑛𝑥
′
𝑗 = 0, 𝑥′𝑗 ∈ 𝑋 ′

𝑗 , 1 6 𝑗 6 𝑁 , and
(c) lim𝑛→∞[T𝑗,𝑛𝑆

′
𝑖,𝑛𝑥

′
𝑗 − 𝛿𝑗,𝑖𝑥

′
𝑗 ] = 0, 𝑥′𝑗 ∈ 𝑋 ′

𝑗 , 1 6 𝑖, 𝑗 6 𝑁 .
Set 𝑋 ′

𝑗 := 𝐶(𝑋𝑗), 𝑗 ∈ N0
𝑁 and 𝑆′

𝑗,𝑛 : 𝑋
′
𝑗 → 𝑅(𝐶) by 𝑆′

𝑗,𝑛(𝐶𝑥𝑗) := 𝐶𝑆𝑗,𝑛𝑥, 𝑥𝑗 ∈ 𝑋𝑗

(1 6 𝑗 6 𝑁 , 𝑛 ∈ N). By (vi) and the density of 𝑋𝑗 in 𝑋, we get that 𝑋 ′
0 is dense in

[𝑅(𝐶)]~ and 𝑋 ′
𝑗 is dense in 𝑋 (1 6 𝑗 6 𝑁). The property (b) follows immediately

from (ii) and definition of 𝑆′
𝑗,𝑛. The property (a) follows by making use the fact
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that 𝑋0 belongs to 𝐷∞(𝑇1) ∩ · · · ∩𝐷∞(𝑇𝑁 ), as well as from (v), (i) and definition
of T𝑗,𝑛. By (iii), (v) and inclusion 𝑅(𝑆𝑗,𝑛) ⊆ 𝐷∞(𝑇1) ∩ · · · ∩𝐷∞(𝑇𝑁 ), we have

lim
𝑛→∞

[T𝑛
𝑗 𝑆

′
𝑖,𝑛𝑥

′
𝑗 − 𝛿𝑗,𝑖𝑥

′
𝑗 ] = lim

𝑛→∞
[𝑇𝑛

𝑗 𝐶𝑆𝑖,𝑛𝑥𝑗 − 𝐶𝛿𝑗,𝑖𝑥𝑗 ]

= lim
𝑛→∞

𝐶[𝑇𝑛
𝑗 𝑆𝑖,𝑛𝑥𝑗 − 𝛿𝑗,𝑖𝑥𝑗 ]

= 𝐶 lim
𝑛→∞

[𝑇𝑛
𝑗 𝑆𝑖,𝑛𝑥𝑗 − 𝛿𝑗,𝑖𝑥𝑗 ] = 0,

provided that 𝑥′𝑗 = 𝐶𝑥𝑗 ∈ 𝑋 ′
𝑗 , 1 6 𝑗 6 𝑁 . The proof of the theorem is thereby

complete. �

Now we would like to provide an illustrative application of Theorem 1.2.24.
Let the requirements of Example 1.2.21 hold. Then we can simply prove with the
help of Theorem 1.2.24 that the operators Δ♮

𝑋,𝑝+ 𝑎1,Δ
♮
𝑋,𝑝+ 𝑎2, . . . ,Δ

♮
𝑋,𝑝+ 𝑎𝑁 are

d-hypercyclic, as well, by taking the injective operator

𝐶 :=
1

2𝜋𝑖

∫︁
Γ

𝑒−(−𝜆)𝑏
(︀
𝜆+ 𝜔 +Δ♮

𝑋,𝑝

)︀−1
𝑑𝜆, 𝜔 > 0 suff. large, 𝑏 ∈ (0, 1/2) fixed

under advisement; here, Γ is the upwards oriented boundary of Σ𝛼 ∪ {𝑧 ∈ C : |𝑧| 6
𝑑} with suitable chosen numbers 𝛼 ∈ (0, 𝜋/2) and 𝑑 ∈ (0, 1]. Then it is well known
that (iv)–(vi) hold, see [292]; (i)–(iii) follows from the analyses already carried out
in Example 1.2.21.

Now we want to turn our attention to the following theme:

1.3. Hypercyclic and disjoint hypercyclic MLO extensions

Let 𝒜 be an MLO in 𝑋. In what follows, we will often identify 𝒜 and its
associated linear relation 𝒜, which will be denoted by the same symbol.

It is clear that 𝒜 is contained in 𝑋 × 𝑋, which is hypercyclic, chaotic and
topologically mixing (transitive). Denote

𝑆(𝒜) := {𝑍 : 𝑍 is a linear subspace of 𝑋 ×𝑋 and 𝒜 ⊆ 𝑍}.

We say that an MLO ℬ is a hypercyclic (chaotic, topologically mixing, topologically
transitive) extension of 𝒜 iff ℬ ∈ 𝑆(𝒜) and ℬ is hypercyclic (chaotic, topologically
mixing, topologically transitive).

Further on, let 𝑁 ∈ N, and let 𝒜1, . . . ,𝒜𝑁 be given MLOs in 𝑋. Then the
MLOs 𝑋 × 𝑋, . . . ,𝑋 × 𝑋, totally counted 𝑁 times, are d-hypercyclic, d-chaotic
and d-topologically mixing (transitive). Denote

𝑆(𝒜1, . . . ,𝒜𝑁 ) := {(ℬ1, . . . ,ℬ𝑁 ) : ℬ𝑖 is a linear subspace of 𝑋 ×𝑋

and 𝒜𝑖 ⊆ ℬ𝑖 for all 𝑖 ∈ N𝑁}.

We say that the tuple (ℬ1, . . . ,ℬ𝑁 ) of MLOs in 𝑋 is a d-hypercyclic (d-chaotic,
d-topologically mixing, d-topologically transitive) extension of (𝒜1, . . . ,𝒜𝑁 ) iff
(ℬ1, . . . ,ℬ𝑁 ) ∈ 𝑆(𝒜1, . . . ,𝒜𝑁 ) and the operators ℬ1, . . . ,ℬ𝑁 are d-hypercyclic (d-
chaotic, d-topologically mixing, d-topologically transitive).

We proceed with a simple example.
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Example 1.3.1. (i) Suppose that 𝑋 := C𝑛 and 𝒜 := 𝐴 ∈ 𝐿(𝑋). Then
𝒜 is not hypercyclic, and C𝑛×C𝑛 is the only hypercyclic (chaotic, topolog-
ically mixing, topologically transitive) extension of 𝒜; a similar statement
holds for finite-dimensional spaces.

(ii) Suppose that 𝑋 is infinite-dimensional, 𝑊 is a non-dense linear subspace
of 𝑋 and 𝒜 = 𝑋 ×𝑊 . Then any hypercyclic MLO extension of 𝒜 has
the form 𝑋 ×𝑊 ′, where 𝑊 ′ is a dense linear subspace of 𝑋 containing
𝑊 .

Consider now the following MLO extension of 𝒜:

𝒜 :=
⋂︁

{𝑍 ∈ 𝑆(𝒜) : 𝑍 is hypercyclic}.

We call 𝒜 the quasi-hypercyclic extension of 𝒜 and similarly define the quasi-chaotic
(quasi-topologically transitive, quasi-topologically mixing) extension of 𝒜.

Example 1.3.2. Suppose that 𝑋 is infinite-dimensional, {𝑦𝑘 : 𝑘 ∈ N} is a
dense subset of 𝑋, and 𝐴 ∈ 𝐿(𝑋). Then any MLO extension 𝒜 of 𝐴 has the form
𝒜𝑥 = 𝐴𝑥+𝑊 , where 𝑊 = 𝒜0 is a linear submanifold of 𝑋. Inductively,

(29) 𝒜𝑛𝑥 = 𝐴𝑛𝑥+

𝑛−1∑︁
𝑗=0

𝐴𝑗(𝑊 ), 𝑛 ∈ N, 𝑥 ∈ 𝑋.

Denote by T the set consisting of all linear manifolds 𝑊 ′ of 𝑋 such that there exists
an element 𝑥 ∈ 𝑋 with the property that, for every 𝑛 ∈ N, there exist elements
𝑧𝑛,𝑗 in 𝑊 ′ (0 6 𝑗 6 𝑛− 1) such that the set {𝐴𝑛𝑥+

∑︀𝑛−1
𝑗=0 𝐴

𝑗𝑧𝑛,𝑗 : 𝑛 ∈ N} is dense
in 𝑋. Then T is non-empty because 𝑋 ∈ T (with 𝑥 = 0, 𝑧𝑛,𝑗 = 0, 1 6 𝑗 6 𝑛 − 1,
𝑧𝑛,0 = 𝑦𝑛), and 𝒜 = 𝐴+

⋂︀
T. Now we will scrutinize some particular cases:

(i) Let 𝑋 be an infinite-dimensional complex Hilbert space with the complete
orthonormal basis {𝑒𝑛 : 𝑛 ∈ N}. Define 𝐴

∑︀∞
𝑛=1 𝑥𝑛𝑒𝑛 :=

∑︀∞
𝑛=1 𝑥𝑛𝑒𝑛+1,

for any 𝑥 =
∑︀∞

𝑛=1 𝑥𝑛𝑒𝑛 ∈ 𝑋. Then ‖𝐴‖ = 1 and therefore 𝒜 is not
hypercyclic. It can be easily seen that any linear manifold 𝑊 ′ belonging
T has to contain the linear span of {𝜔}, for some element 𝜔 of 𝑋 such
that ⟨𝜔, 𝑒1⟩ ≠ 0. Let 𝑊 be the linear span of {𝑒1}. In what follows, we
will prove that 𝐴+𝑊 is a hypercyclic extension of 𝐴, with zero being the
corresponding hypercyclic vector. It is clear that there exists a strictly
increasing sequence (𝑛𝑘)𝑘∈N of positive integers such that⃦⃦⃦⃦

𝑦𝑘 −
𝑛𝑘−1∑︁
𝑗=0

𝛼𝑛𝑘,𝑗𝑒𝑗+1

⃦⃦⃦⃦
< 2−𝑘,

for some scalars 𝛼𝑛𝑘,𝑗 (0 6 𝑗 6 𝑛𝑘 − 1). Clearly, the linear span of
{𝑒1, . . . , 𝑒𝑙} is contained in

∑︀𝑙−1
𝑗=0𝐴

𝑗(𝑊 ), for any 𝑙 ∈ N. Plugging 𝑧𝑛,𝑗 :=
0, 0 6 𝑗 6 𝑛 − 1, if 𝑛 ̸= 𝑛𝑘 for all 𝑘 ∈ N, and 𝑧𝑛,𝑗 := 𝛼𝑛𝑘,𝑗𝑒1 (0 6 𝑗 6
𝑛𝑘 − 1), if 𝑛 = 𝑛𝑘 for some 𝑘 ∈ N, we can simply deduce that zero is a
hypercyclic vector of 𝐴+𝑊 , as claimed.
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(ii) Any hypercyclic MLO extension 𝒜 of the identity operator 𝐼 on 𝑋 has the
form 𝒜𝑥 = 𝑥 +𝑊 , 𝑥 ∈ 𝑋, where 𝑊 = 𝒜0 is a dense linear submanifold
of 𝑋 (when any element 𝑥 ∈ 𝑋 is a hypercyclic vector of 𝒜).

(iii) Let 𝑋 := 𝑙2(Z), let (𝑎𝑛)𝑛∈Z be a bounded subset of (0,∞), and let

(30) 𝐴

∞∑︁
𝑛=−∞

𝑥𝑛𝑒𝑛 :=

∞∑︁
𝑛=−∞

𝑥𝑛𝑎𝑛𝑒𝑛+1 for any 𝑥 =

∞∑︁
𝑛=−∞

𝑥𝑛𝑒𝑛 ∈ 𝑋;

here, {𝑒𝑛 : 𝑛 ∈ Z} denotes the complete orthonormal basis of 𝑋. The
hypercyclicity of bilateral weighted shift 𝐴 has been characterized by H.
Salas in [470, Theorem 2.1]: Given 𝜀 > 0 and 𝑞 ∈ N, there exists a
sufficiently large integer 𝑛 ∈ N such that

∏︀𝑛−1
𝑠=0 𝑎𝑠+𝑗 < 𝜀 and

∏︀𝑛
𝑠=1 𝑎𝑗−𝑠 >

1/𝜀. Suppose that this condition does not hold. Then it can be simply
verified with the help of (29) that span({𝑒𝑛𝑘

: 𝑘 ∈ N}) ∈ T for any strictly
decreasing sequence (𝑛𝑘)𝑘∈N of negative integers. Hence, 𝐴 = 𝐴.

(iv) Suppose that 𝑊 is a dense linear submanifold of 𝑋, and 𝒜𝑥 = 𝐴𝑥+𝑊 ,
𝑥 ∈ 𝑋. Let 𝑈 and 𝑉 be two arbitrary open non-empty subsets of 𝑋.
Then (29) implies that, for every 𝑛 ∈ N and 𝑢 ∈ 𝑈 , there exists an element
𝜔 ∈ 𝑊 such that 𝐴𝑛𝑢 + 𝜔 ∈ 𝑉 ∩ 𝒜𝑛𝑢; in particular, 𝒜 is topologically
mixing.

(v) Suppose that 𝑊 is a linear submanifold of 𝑋, 𝒜𝑥 = 𝐴𝑥 +𝑊 , 𝑥 ∈ 𝑋,
and for each 𝜔 ∈ 𝑊 there exist an integer 𝑛 ∈ N and elements 𝜔𝑗 ∈ 𝑊

(1 6 𝑖 6 𝑛− 1) such that
∑︀𝑛−1

𝑗=1 𝐴
𝑗𝜔𝑗 = −𝐴𝑛𝜔 (this, in particular, holds

provided that there exists an integer 𝑛 ∈ N such that 𝐴𝑛(𝑊 ) ⊆ 𝑊 ).
Then (29) implies that 𝜔 ∈ 𝒜𝑛𝜔, 𝑤 ∈ 𝑊 , so that 𝑊 is consisted solely
of periodic points of 𝒜. Suppose now that 𝑅(𝐴) is dense in 𝑋, hence
𝑅(𝐴𝑗) is dense in 𝑋 for all 𝑗 ∈ N. Using this fact and (iv), we get that
𝒜𝑥 = 𝐴𝑥+𝑅(𝐴𝑗), 𝑥 ∈ 𝑋 is a chaotic extension of 𝐴 for all 𝑗 ∈ N; this is
no longer true if 𝑅(𝐴) is not dense in 𝑋, even if dimension of 𝑋 r 𝑅(𝐴)
equals 1, cf. (i). In the case that the operator 𝐴 is nilpotent and 𝑊 is a
dense submanifold of 𝑋, then it can be easily seen that 𝒜𝑥 = 𝐴𝑥 +𝑊 ,
𝑥 ∈ 𝑋 is a chaotic extension of 𝐴.

We can similarly introduce the notion of a d-quasi-hypercyclic extension
˜(𝒜1, . . . ,𝒜𝑁 ) (d-quasi-topologically transitive extension, d-quasi-topologically mix-

ing extension) of any MLO tuple (𝒜1, . . . ,𝒜𝑁 ):

˜(𝒜1, . . . ,𝒜𝑁 ) :=
⋂︁

{(ℬ1, . . . ,ℬ𝑁 ) ∈ 𝑆(𝒜1, . . . ,𝒜𝑁 ) : ℬ1, . . . ,ℬ𝑁}.

are d-hypercyclic
The following is a continuation of Example 1.3.2:

Example 1.3.3. Suppose that 𝑋 is infinite-dimensional and 𝐴1, . . . , 𝐴𝑁 ∈
𝐿(𝑋). Then any MLO extension of tuple (𝐴1, . . . , 𝐴𝑁 ) has the form (𝐴1+𝑊1, . . . ,
𝐴𝑁+𝑊𝑁 ), where 𝑊𝑖 is a linear submanifold of 𝑋 (1 6 𝑖 6 𝑁). Using (29), we have
that (𝐴1+𝑊1, . . . , 𝐴𝑁+𝑊𝑁 ) is d-hypercyclic iff there exists an element 𝑥 ∈ 𝑋 with
the property that, for every 𝑛 ∈ N, there exist elements 𝑧𝑛,𝑗,𝑙 in 𝑊𝑙 (0 6 𝑗 6 𝑛− 1,
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1 6 𝑙 6 𝑁) such that the set {(𝐴𝑛
1𝑥+

∑︀𝑛−1
𝑗=0 𝐴

𝑗
1𝑧𝑛,𝑗,1, . . . , 𝐴

𝑛
𝑁𝑥+

∑︀𝑛−1
𝑗=0 𝐴

𝑗
𝑁𝑧𝑛,𝑗,𝑁 ) :

𝑛 ∈ N} is dense in 𝑋𝑁 ; for example, (𝐴1 +𝑋, . . . , 𝐴𝑁 +𝑋) is d-hypercyclic with
𝑥 = 0 being the corresponding d-hypercyclic vector. This immediately implies the
profilation of ˜(𝒜1, . . . ,𝒜𝑁 ). Arguing as in Example 1.3.2, it can be easily seen that
the following holds:

(i) Let 𝐴 be the operator examined in Example 1.3.2(i). Then (𝐴+𝑊1, 𝐴
2+

𝑊2, . . . , 𝐴
𝑁 +𝑊𝑁 ) is a d-hypercyclic extension of tuple (𝐴,𝐴2, . . . , 𝐴𝑁 ),

where 𝑊𝑖 is the linear span of {𝑒1, 𝑒2, . . . , 𝑒𝑖} (1 6 𝑖 6 𝑁).
(ii) Any d-hypercyclic extension of the tuple (𝐼, . . . , 𝐼) has the form (𝐼 +

𝑊1, . . . , 𝐼+𝑊𝑁 ), where𝑊𝑖 is a dense linear submanifold of𝑋 (1 6 𝑖 6 𝑁).
(iii) Let 𝑋 := 𝑙2(Z), let (𝑎𝑛)𝑛∈Z be a bounded subset of (0,∞), and let 𝐴

be defined through (30). Suppose that (𝑛𝑘,𝑖)𝑘∈N is any strictly decreasing
sequence of negative integers possessing the property that, for every 𝑠 ∈ N
and 𝑗 ∈ N0

𝑖−1, there exists 𝑙 ∈ Z such that 𝑙 < −𝑠 and 𝑛𝑙,𝑖 ≡ 𝑗 (mod
𝑖), 1 6 𝑖 6 𝑁 . Set 𝑊𝑖 :=span({𝑒𝑛𝑘,𝑖

: 𝑘 ∈ N}), 1 6 𝑖 6 𝑁 . Then
(𝐴+𝑊1, 𝐴

2+𝑊2, . . . , 𝐴
𝑁 +𝑊𝑁 ) is a d-hypercyclic extension of the tuple

(𝐴,𝐴2, . . . , 𝐴𝑁 ).
(iv) Let (𝒜1, . . . ,𝒜𝑁 ) = (𝐴1 +𝑊1, . . . , 𝐴𝑁 +𝑊𝑁 ), where 𝑊𝑖 is a dense linear

submanifold of 𝑋 (1 6 𝑖 6 𝑁). Then (𝒜1, . . . ,𝒜𝑁 ) is a d-topologically
mixing extension of (𝐴1, . . . , 𝐴𝑁 ).

(v) Suppose that the range of 𝐴𝑖 is dense in 𝑋 (1 6 𝑖 6 𝑁). Then (𝐴1 +

𝑅(𝐴𝑗1
1 ), . . . , 𝐴𝑁 +𝑅(𝐴𝑗𝑁

𝑁 )) is a d-chaotic extension of (𝐴1, . . . , 𝐴𝑁 ) for all
𝑗1, . . . , 𝑗𝑁 ∈ N. In the case that the operator 𝐴𝑖 is nilpotent and 𝑊𝑖 is
a dense submanifold of 𝑋 (1 6 𝑖 6 𝑁), then it can be easily seen that
(𝐴1 +𝑊1, . . . , 𝐴𝑁 +𝑊𝑁 ) is a d-chaotic extension of (𝐴1, . . . , 𝐴𝑁 ).

Further analysis of hypercyclic and disjoint hypercyclic extensions of multival-
ued linear operators is without scope of this book. Fairly precise specification of
chaotic and disjoint chaotic extensions of multivalued linear operators seems to be
a more delicate problem.

We close this section with the observation that disjoint hypercyclic and disjoint
topologically mixing properties of degenerate fractional differential equations have
recently been considered in a joint paper with V. Fedorov [215].

1.4. Laplace transform of functions with values in SCLCSs

Without any doubt, two most important monographs on the Laplace transform
of scalar valued functions are written by G. Doetsch [158] (1937) and D. V. Widder
[536] (1941). The following conditions on a scalar valued function 𝑘(𝑡) will be used
in the sequel:

(P1): 𝑘(𝑡) is Laplace transformable, i.e., it is locally integrable on [0,∞) and
there exists 𝛽 ∈ R such that 𝑘(𝜆) := ℒ(𝑘)(𝜆) := lim𝑏→∞

∫︀ 𝑏

0
𝑒−𝜆𝑡𝑘(𝑡)𝑑𝑡 :=∫︀∞

0
𝑒−𝜆𝑡𝑘(𝑡)𝑑𝑡 exists for all 𝜆 ∈ C with Re𝜆 > 𝛽. Put abs(𝑘) :=inf{Re𝜆 :

𝑘(𝜆) exists}, and denote by ℒ−1 the inverse Laplace transform.
(P2): 𝑘(𝑡) satisfies (P1) and 𝑘(𝜆) ̸= 0, Re𝜆 > 𝛽 for some 𝛽 > abs(𝑘).
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For the basic theory of Laplace transform of Banach space valued functions, we refer
the reader to the monograph [27] by W. Arendt, C. J. K. Batty, M. Hieber and F.
Neubrander. As mentioned in [292, Section 1.2], the Laplace transform of functions
with values in sequentially complete locally convex spaces has attracted much less
attention so far. The main purpose of this section is to introduce a relatively
simple and new theoretical concept useful in the analysis of operational properties of
Laplace transform of non-continuous functions with values in sequentially complete
locally convex spaces. This concept extends the corresponding one introduced
by T.-J. Xiao and J. Liang [546], 1997, and coincides with the classical concept
of vector-valued Laplace transform in the case that the state space 𝑋 is one of
Banach’s [27].

We are concerned with the existence of Laplace integral

(ℒ𝑓)(𝜆) := 𝑓(𝜆) :=

∫︁ ∞

0

𝑒−𝜆𝑡𝑓(𝑡)𝑑𝑡 := lim
𝜏→∞

∫︁ 𝜏

0

𝑒−𝜆𝑡𝑓(𝑡)𝑑𝑡,

for 𝜆 ∈ C. If 𝑓(𝜆0) exists for some 𝜆0 ∈ C, then we define the abscissa of convergence
of 𝑓(·) by

abs𝑋(𝑓) := inf{Re𝜆 : 𝑓(𝜆) exists};
otherwise, abs𝑋(𝑓) := +∞. It is said that 𝑓(·) is Laplace transformable, or equiva-
lently, that 𝑓(·) belongs to the class (P1)-𝑋, iff abs𝑋(𝑓) <∞. Assuming that there
exists a number 𝜔 ∈ R such that for each seminorm 𝑝 ∈ ~ there exists a number
𝑀𝑝 > 0 satisfying that 𝑝(𝑓(𝑡)) 6 𝑀𝑝𝑒

𝜔𝑡, 𝑡 > 0, we define 𝜔𝑋(𝑓) ∈ [−∞,∞) as
the infimum of all numbers 𝜔 ∈ R with the above property; if there is no such a
number 𝜔 ∈ R, then we define 𝜔𝑋(𝑓) := +∞. Further on, we abbreviate 𝜔𝑋(𝑓)
(abs𝑋(𝑓)) to 𝜔(𝑓) (abs(𝑓)), if no confusion seems likely. Define

𝑤 abs(𝑓) := inf

{︂
𝜆 ∈ R : sup

𝑡>0

⃒⃒⃒⃒ ∫︁ 𝑡

0

𝑒−𝜆𝑠⟨𝑥*, 𝑓(𝑠)⟩𝑑𝑠
⃒⃒⃒⃒
<∞ for all 𝑥* ∈ 𝑋*

}︂
,

𝐹∞ := lim𝜏→∞ 𝐹 (𝜏), if the limit exists in 𝑋, and 𝐹∞ := 0, otherwise.
Keeping in mind Theorem 1.1.4, we can repeat verbatim the argumentation

from [27, Section 1.4, pp. 27-30] in order to see that the following theorem holds
good (the only essential difference occurs on l. 6, p. 29, where we can use [419,
Mackey’s theorem 23.15] in place of the uniform boundedness principle):

Theorem 1.4.1. Let 𝑓 ∈ 𝐿1
𝑙𝑜𝑐([0,∞) : 𝑋). Then the following holds:

(i) The Laplace integral 𝑓(𝜆) converges if Re𝜆 > abs(𝑓) and diverges if
Re𝜆 < abs(𝑓). If Re𝜆 = abs(𝑓), then the Laplace integral may or may
not be convergent.

(ii) 𝑤 abs(𝑓) = abs(𝑓).
(iii) Suppose that 𝜆 ∈ C and the limit lim𝑡→+∞

∫︀ 𝑡

0
𝑒−𝜆𝑠𝑝(𝑓(𝑠))𝑑𝑠 exists for any

𝑝 ∈ ~. Then 𝑓(𝜆) exists, as well.
(iv) We have

abs(𝑓) 6 abs(𝑝(𝑓)) 6 𝜔(𝑓), 𝑝 ∈ ~.
In general, any of these two inequalities can be strict.
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(v) We have

(31) abs(𝑓) = 𝜔(𝐹 − 𝐹∞),

(32) 𝑓(𝜆) = 𝐹∞ + 𝜆

∫︁ ∞

0

𝑒−𝜆𝑡(𝐹 (𝑡)− 𝐹∞)𝑑𝑡, Re𝜆 > 𝜔(𝐹 − 𝐹∞),

(33) 𝑓(𝜆) = 𝜆𝐹 (𝜆), Re𝜆 > max(abs(𝑓), 0)

and
abs(𝑓) 6 𝜔 ⇔ 𝜔(𝐹 ) 6 𝜔 (if 𝜔 > 0).

In particular, 𝑓(·) is Laplace transformable iff 𝜔(𝐹 ) <∞.

Recall [541], a function ℎ(·) belongs to the class 𝐿𝑇 − 𝑋 iff there exist a
function 𝑔 ∈ 𝐶([0,∞) : 𝑋) and a number 𝜔 ∈ R such that 𝜔(𝑔) 6 𝜔 < ∞
and ℎ(𝜆) = (ℒ𝑔)(𝜆) for 𝜆 > 𝜔; as observed in [292, Section 1.2], the assumption
ℎ ∈ 𝐿𝑇 − 𝑋 immediately implies that the function 𝜆 ↦→ ℎ(𝜆), 𝜆 > 𝜔 can be
analytically extended to the right half plane {𝜆 ∈ C : Re𝜆 > 𝜔}. In the sequel, the
set of all originals 𝑔(·) whose Laplace transform belongs to the class 𝐿𝑇 −𝑋 will be
abbreviated to 𝐿𝑇𝑜𝑟 −𝑋. Keeping the above observation and the equations (31)–
(32)) in mind, we can simply prove that the mapping 𝜆 ↦→ 𝑓(𝜆), Re𝜆 > abs(𝑓) is
analytic, provided that 𝑓 ∈ (P1)−𝑋. If this is the case, the following formula holds:

(34)
𝑑𝑛

𝑑𝜆𝑛
𝑓(𝜆) = (−1)𝑛

∫︁ ∞

0

𝑒−𝜆𝑡𝑡𝑛𝑓(𝑡)𝑑𝑡, 𝑛 ∈ N, 𝜆 ∈ C, Re𝜆 > abs(𝑓).

In the following theorem, we will collect various operational properties of
vector-valued Laplace transform.

Theorem 1.4.2. Let 𝑓 ∈(P1)-𝑋, 𝑧 ∈ C and 𝑠 > 0.
(i) Put 𝑔(𝑡) := 𝑒−𝑧𝑡𝑓(𝑡), 𝑡 > 0. Then 𝑔(·) is Laplace transformable, abs(𝑔) =

abs(𝑓)− Re 𝑧 and 𝑔(𝜆) = 𝑓(𝜆+ 𝑧), 𝜆 ∈ C, Re𝜆 > abs(𝑓)− Re 𝑧.
(ii) Put 𝑓𝑠(𝑡) := 𝑓(𝑡 + 𝑠), 𝑡 > 0, ℎ𝑠(𝑡) := 𝑓(𝑡 − 𝑠), 𝑡 > 𝑠 and ℎ𝑠(𝑡) := 0, 𝑠 ∈

[0, 𝑡]. Then abs(𝑓𝑠) = abs(ℎ𝑠) = abs(𝑓), ̃︀𝑓𝑠(𝜆) = 𝑒𝜆𝑠(𝑓(𝜆)−
∫︀ 𝑠

0
𝑒−𝜆𝑡𝑓(𝑡)𝑑𝑡)

and ̃︁ℎ𝑠(𝜆) = 𝑒−𝜆𝑠𝑓(𝜆) (𝜆 ∈ C, Re𝜆 > 𝑎).
(iii) Let 𝑇 ∈ 𝐿(𝑋,𝑌 ). Then 𝑇 ∘ 𝑓 ∈ (P1)-𝑌 and 𝑇𝑓(𝜆) = ˜(𝑇 ∘ 𝑓)(𝜆) for

𝜆 ∈ C, Re𝜆 > abs(𝑓).
(iv) Suppose that 𝒜 : 𝑋 → 𝑃 (𝑌 ) is an MLO and 𝒜 is 𝑋𝒜×𝑌𝒜-closed, as well

as 𝑓 ∈ (P1)−𝑋𝒜, 𝑙 ∈ (P1)−𝑌𝒜 and (𝑓(𝑡), 𝑙(𝑡)) ∈ 𝒜 for a.e. 𝑡 > 0. Then
(𝑓(𝜆), �̃�(𝜆)) ∈ 𝒜, 𝜆 ∈ C for Re𝜆 > max(abs(𝑓), abs(𝑙)).

(v) Suppose, in addition, 𝜔(𝑓) <∞. Put

𝑗(𝑡) :=

∫︁ ∞

0

𝑒−𝑠2/4𝑡

√
𝜋𝑡

𝑓(𝑠)𝑑𝑠 := lim
𝜏→∞

∫︁ 𝜏

0

𝑒−𝑠2/4𝑡

√
𝜋𝑡

𝑓(𝑠)𝑑𝑠, 𝑡 > 0

and

𝑘(𝑡) :=

∫︁ ∞

0

𝑠𝑒−𝑠2/4𝑡

2
√
𝜋𝑡

3
2

𝑓(𝑠)𝑑𝑠 := lim
𝜏→∞

∫︁ 𝜏

0

𝑠𝑒−𝑠2/4𝑡

2
√
𝜋𝑡

3
2

𝑓(𝑠)𝑑𝑠, 𝑡 > 0.
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Then 𝑗(·) and 𝑘(·) are Laplace transformable,

max(abs(𝑗), abs(𝑘)) 6 (max(𝜔(𝑓), 0))2, �̃�(𝜆) =
𝑓
(︀√
𝜆
)︀

√
𝜆

and 𝑘(𝜆) = 𝑓
(︀√
𝜆
)︀

for all 𝜆 ∈ C with Re𝜆 > (max(𝜔(𝑓), 0))2.
(vi) Let 𝑓 ∈ (P1)-𝑋, 𝑎 ∈ 𝐿1

𝑙𝑜𝑐([0,∞)) and abs(|𝑎|) <∞. Suppose, in addition,
that 𝑓 ∈ 𝐶([0,∞) : 𝑋). Then the mapping 𝑡 ↦→ (𝑎 * 𝑓)(𝑡) =

∫︀ 𝑡

0
𝑎(𝑡 −

𝑠)𝑓(𝑠)𝑑𝑠, 𝑡 > 0 is continuous, 𝑎 * 𝑓 ∈ (P1)-𝑋, and

𝑎 * 𝑓(𝜆) = �̃�(𝜆)𝑓(𝜆), 𝜆 ∈ C, Re𝜆 > max(abs(|𝑎|), abs(𝑓)).

Proof. Factorizing in Theorem 1.1.4, Theorem 1.1.3(ii) and Theorem 1.2.3,
the assertions (i)–(iv) can be proved as in the Banach space case (cf. [27, Propo-
sition 1.6.1–Proposition 1.6.3] for more details). Consider now part (v). Let
𝜆 ∈ C with Re𝜆 > (max(𝜔(𝑓), 0))2 be fixed. Then Re(

√
𝜆) > max(𝜔(𝑓), 0) >

max(𝜔(𝐹 ), 0) so that [292, Theorem 1.2.1(v)] implies in combination with (33)
that 𝑓(

√
𝜆) exists, as well as that

𝑓
(︀√
𝜆
)︀
=
𝐹
(︀√
𝜆
)︀

√
𝜆

=

∫︁ ∞

0

𝑒−𝜆𝑡

∫︁ ∞

0

𝑒−𝑠2/4𝑡

√
𝜋𝑡

𝑓(𝑠)𝑑𝑠 𝑑𝑡.

On the other hand, we can simply prove with the help of dominated convergence
theorem that the mapping 𝑡 ↦→ 𝑘(𝑡), 𝑡 > 0 is continuous as well as that for each
seminorm 𝑝 ∈ ~ there exists a finite number 𝑚𝑝 > 0 such that 𝑝(𝑘(𝑡)) 6 𝑚𝑝𝑡

(−1)/2,
𝑡 ∈ (0, 1]. This simply implies 𝑘 ∈ 𝐿1

𝑙𝑜𝑐([0,∞) : 𝑋). Since

(35)
∫︁ ∞

0

𝑒−𝜆𝑡⟨𝑥*, 𝑘(𝑡)⟩𝑑𝑡 =
∫︁ ∞

0

𝑒−
√
𝜆𝑡⟨𝑥*, 𝑓(𝑡)⟩𝑑𝑡, 𝑥* ∈ 𝑋*,

we obtain that

lim
𝜏→∞

⟨
𝑥*,

∫︁ 𝜏

0

𝑒−𝜆𝑡𝑘(𝑡)𝑑𝑡

⟩
=
⟨︀
𝑥*, 𝑓

(︀√
𝜆
)︀⟩︀
, 𝑥* ∈ 𝑋*.

By Theorem 1.1.4(i), we get that the mapping 𝜏 ↦→
∫︀ 𝜏

0
𝑒−𝜆𝑡𝑘(𝑡)𝑑𝑡, 𝜏 > 0 is con-

tinuous so that the previous equality implies sup𝜏>0 |⟨𝑥*,
∫︀ 𝜏

0
𝑒−𝜆𝑡𝑘(𝑡)𝑑𝑡⟩| < ∞ for

all 𝑥* ∈ 𝑋*. Therefore, Theorem 1.4.1(ii) shows that 𝜆 >𝑤 abs(𝑘) = abs(𝑘) and
𝑘(𝜆) exists. Using again (35), it readily follows that 𝑘(𝜆) = 𝑓(

√
𝜆), as claimed.

Similarly we can prove that �̃�(𝜆) = 𝑓(
√
𝜆)/

√
𝜆. Suppose, finally, that the require-

ments of (vi) hold. Then it is very simple to prove that the mapping 𝑡 ↦→ (ℎ*𝑓)(𝑡),
𝑡 > 0 is continuous as well as that 𝜔(1 * ℎ * 𝑓) = 𝜔(ℎ * (1 * 𝑓)) < ∞. An ap-
plication of Theorem 1.4.1(v) yields that ℎ * 𝑓 ∈ (P1)-𝑋. Fix now a number
𝜆 ∈ C with Re𝜆 > max(abs(|ℎ|), abs(𝑓)). Since abs(⟨𝑥*, 𝑓(·)⟩) 6 abs(𝑓) for all
𝑥* ∈ 𝑋*, [27, Proposition 1.6.4] implies that (ℒ(ℎ * ⟨𝑥*, 𝑓(·)⟩))(𝜆) exists. Using
this fact, it readily follows that

sup
𝑡>0

⃒⃒⃒⃒ ∫︁ 𝑡

0

𝑒−𝑠Re𝜆(ℎ * ⟨𝑥*, 𝑓(·)⟩)(𝑠)𝑑𝑠
⃒⃒⃒⃒
<∞, 𝑥* ∈ 𝑋*.
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By Theorem 1.4.1(ii), we get that ℎ̃ * 𝑓(𝜆) exists. The equality ℎ̃ * 𝑓(𝜆) = ℎ̃(𝜆)𝑓(𝜆)
can be proved in a routine manner. �

The non-possibility of establishing Fubini–Tonelli theorem in this concept of
integration does not able us to fully transfer some assertions from the Banach space
case to the general locally convex space case; for example, in Theorem 1.4.2(vi) we
consider the Laplace transform of finite convolution product and there it is almost
inevitable to impose the condition that the function 𝑓(𝑡) is continuous (this is not
the case in Fréchet space, when we can use the well-known extension of Bochner
concept of integration; see [410, p. 100]). In a great number of our structrural re-
sults stated in the monograph [292], we have incorrectely applied Theorem 1.4.2(vi)
by assuming only that the function 𝑎(𝑡) satisfies (P1). Strictly speaking, in all these
assertions, we have to assume that abs(|𝑎|) <∞. For the sequel, we need the notion
of a Lebesgue point of a function 𝑓 ∈ 𝐿1

𝑙𝑜𝑐([0,∞) : 𝑋). A point 𝑡 > 0 is said to be
a Lebesgue point of 𝑓(·) iff for each seminorm 𝑝 ∈ ~, we have

(36) lim
ℎ→0

1

ℎ

∫︁ 𝑡+ℎ

𝑡

𝑝(𝑓(𝑠)− 𝑓(𝑡))𝑑𝑠 = 0.

It is clear that any point of continuity of function 𝑓(·) is one of Lebesgue’s points of
𝑓(·), as well as that the mapping 𝑡 ↦→ 𝐹 (𝑡), 𝑡 > 0 is differentiable at any Lebesgue’s
point of 𝑓(·). Furthermore, a slight modification of the proof of [27, Proposition
1.2.2; a)/b)] shows that the following holds:

(Q1) For each seminorm 𝑝 ∈ ~ there exists a set 𝑁𝑝 ⊆ [0,∞) of Lebesgue’s
measure zero such that

lim
ℎ→0

𝑝

(︂
1

ℎ

∫︁ 𝑡+ℎ

𝑡

𝑓(𝑠)𝑑𝑠− 𝑓(𝑡)

)︂
= 0, 𝑡 ∈ [0,∞)r𝑁𝑝

and (36) holds for 𝑡 ∈ [0,∞)r𝑁𝑝.
In the case that 𝑋 is a Fréchet space, (Q1) immediately implies that almost every
point 𝑡 > 0 is a Lebesgue point of 𝑓(·). Using the proof of [27, Theorem 1.7.7],
Theorem 1.1.4(iii), as well as the equations (19) and (34), we can simply prove that
the Post–Widder inversion formula holds in our framework:

Theorem 1.4.3. (Post–Widder) Suppose 𝑓 ∈ (P1)−𝑋 and 𝑡 > 0 is a Lebesgue
point of 𝑓(·). Then

𝑓(𝑡) = lim
𝑛→∞

(−1)𝑛
1

𝑛!

(︁𝑛
𝑡

)︁𝑛+1

𝑓 (𝑛)
(︁𝑛
𝑡

)︁
.

The situation is much more complicated if we analyze the Phragmén–Doetsch
inversion formula for the Laplace transform of functions with values in SCLCSs.
The following result of this type will be sufficiently general for our purposes:

Theorem 1.4.4. Let 𝑓 ∈ (P1)-𝑋 and 𝑡 > 0. Then the following holds:

𝑓 [2](𝑡) = lim
𝜆→∞

∞∑︁
𝑛=1

(−1)𝑛−1𝑛!−1𝑒𝑛𝜆𝑡
𝑓(𝑛𝜆)

𝑛𝜆
.



1.4. LAPLACE TRANSFORM OF FUNCTIONS WITH VALUES IN SCLCSS 61

Proof. In view of Theorem 1.4.1(v), we have 𝐹 ∈ 𝐶([0,∞) : 𝑋) and 𝜔(𝐹 ) <
∞. The result now follows easily from [292, Theorem 1.2.1(ix)]. �

Now we will state and prove the following uniqueness type theorem for the
Laplace transform.

Theorem 1.4.5. (The uniqueness theorem for the Laplace transform) Suppose
𝑓 ∈ (𝑃1) − 𝑋, 𝜆0 > abs(𝑓) and 𝑓(𝜆) = 0 for all 𝜆 > 𝜆0. Then 𝐹 (𝑡) = 0,
𝑡 > 0, 𝑓(𝑡) = 0 if 𝑡 > 0 is a Lebesgue point of 𝑓(·), and for each seminorm 𝑝 ∈ ~
there exists a set 𝑁𝑝 ⊆ [0,∞) of Lebesgue’s measure zero such that 𝑝(𝑓(𝑡)) = 0,
𝑡 ∈ [0,∞)r𝑁𝑝. In particular, if 𝑋 is a Fréchet space, then 𝑓(𝑡) = 0 for a.e. 𝑡 > 0.

Proof. The function 𝑡 ↦→ 𝐹 (𝑡), 𝑡 > 0 is continuous and by Theorem 1.4.1(v)
we get that 𝜔(𝐹 ) <∞ and 𝐹 (𝜆) = 0, 𝜆 > max(𝜆0, 0). Now we can apply Theorem
1.4.3 in order to see that 𝐹 (𝑡) = 0, 𝑡 > 0. The remainder of the proof is simple and
therefore omitted. �

Remark 1.4.6. Suppose that 𝑓 ∈ 𝐿1
𝑙𝑜𝑐([0,∞) : 𝑋) and for each seminorm 𝑝 ∈ ~

there exists a set 𝑁𝑝 ⊆ [0,∞) of Lebesgue’s measure zero such that 𝑝(𝑓(𝑡)) = 0,
𝑡 ∈ [0,∞) r 𝑁𝑝. Then abs(𝑓) =abs(𝑝(𝑓)) = −∞ (𝑝 ∈ ~) and 𝑓(𝜆) = 0 for all
𝜆 ∈ C.

The following converse of Theorem 1.4.2(iv) simply follows from an application
of Theorem 1.4.4.

Proposition 1.4.7. Suppose that 𝒜 : 𝑋 → 𝑃 (𝑌 ) is an MLO and 𝒜 is 𝑋𝒜×𝑌𝒜-
closed, as well as 𝑓 ∈ (P1) − 𝑋𝒜, 𝑙 ∈ (P1) − 𝑌𝒜 and (𝑓(𝜆), �̃�(𝜆)) ∈ 𝒜, 𝜆 ∈ C for
Re𝜆 > max(abs(𝑓), abs(𝑙)). Then 𝑙[1](𝑡) ∈ 𝒜𝑓 [1](𝑡), 𝑡 > 0 and 𝑙(𝑡) ∈ 𝒜𝑓(𝑡) for any
𝑡 > 0 which is a Lebesgue point of both functions 𝑓(𝑡) and 𝑙(𝑡).

Now we would like to briefly explain how we can extend the definition of Laplace
transformable functions to the multivalued ones. Let 0 < 𝜏 6 ∞ and ℱ : [0, 𝜏) →
𝑃 (𝑋). A single-valued function 𝑓 : [0, 𝜏) → 𝑋 is called a section of ℱ iff 𝑓(𝑡) ∈ ℱ(𝑡)
for all 𝑡 ∈ [0, 𝜏). We denote the set of all sections, resp., all continuous sections,
of ℱ by sec(ℱ), resp., sec𝑐(ℱ). Suppose now that 𝜏 = ∞ and any function 𝑓 ∈
sec(ℱ) belongs to the class (P1)-𝑋. Then we define abs𝑋(ℱ) := sup{abs𝑋(𝑓) : 𝑓 ∈
sec(𝑣)}; ℱ(·) is said to be Laplace transformable iff abs𝑋(ℱ) <∞.

The method proposed by T.-J. Xiao and J. Liang in [546] provides a sufficiently
enough framework for the theoretical study of real and complex inversion methods
for the Laplace transform of functions with values in SCLSCs, as well as for the
studies of analytical properties and approximation of Laplace transform (see e.g.
[541, Section 1.1.1] and [292, Section 1.2] for more details); this method can be
successfully applied in the analysis of subordination principles for abstract time-
fractional inclusions, as well (cf. Theorem 3.1.8 below). It is also worth noting that
there exists a great number of theoretical results from the monograph [27], not
mentioned so far, which can be reconsidered for the Laplace transformable functions
with values in SCLSCs; for example, all structural results from [27, Section 4.1]
continue to hold in our framework. Due primarily to the space limitations, we
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will not consider here numerous important questions concerning the vector-valued
Laplace transform of functions with values in SCLCSs.

The complex inversion theorem for the vector-valued Laplace transform reads
as follows.

Theorem 1.4.8. Assume 𝑎 > 0, 𝑟 ∈ R, 𝑞 : {𝜆 ∈ C : Re𝜆 > 𝑎} → 𝐸 is analytic,
and for each 𝑝 ∈ ~ there exists 𝑀𝑝 > 0 such that

𝑝(𝑞(𝜆)) 6𝑀𝑝|𝜆|𝑟, Re𝜆 > 𝑎.

Then for each 𝛼 > 1 there exists a function 𝑓𝛼 ∈ 𝐶([0,∞) : 𝐸) with 𝑓𝛼(0) = 0 and

𝑝(ℎ𝛼(𝑡)) 6𝑀𝛼𝑀𝑝𝑒
𝑎𝑡, 𝑝 ∈ ~, 𝑡 > 0,

𝑞(𝜆) = 𝜆𝛼+𝑟

∫︁ ∞

0

𝑒−𝜆𝑡ℎ𝛼(𝑡)𝑑𝑡, Re𝜆 > 𝑎,

where 𝑀𝛼 is independent of 𝑝 and 𝑞(·).

The following extension of Arendt–Widder theorem has been proved by T.-J.
Xiao and J. Liang (see e.g. [541]).

Theorem 1.4.9. Let 𝑎 > 0, 𝑟 ∈ (0, 1], 𝜔 ∈ (−∞, 𝑎], 𝑀𝑝 > 0 for each 𝑝 ∈ ~,
and let 𝑞 : (𝑎,∞) → 𝐸 be an infinitely differentiable function. Then we have the
equivalence of statements (i) and (ii), where:

(i) One has 𝑝
(︀
(𝜆− 𝜔)𝑘+1 𝑞(𝑘)(𝜆)

𝑘!

)︀
6𝑀 , 𝑝 ∈ ~, 𝜆 > 𝑎, 𝑘 ∈ N0.

(ii) There exists a function 𝐹𝑟 ∈ 𝐶([0,∞) : 𝐸) satisfying 𝐹𝑟(0) = 0,

𝑞(𝜆) = 𝜆𝑟
∫︁ ∞

0

𝑒−𝜆𝑡𝐹𝑟(𝑡)𝑑𝑡, 𝜆 > 𝑎,

𝑝

(︂∫︁ 𝑡+ℎ

0

(𝑡+ ℎ− 𝑠)−𝑟

Γ(1− 𝑟)
𝐹𝑟(𝑠)𝑑𝑠−

∫︁ 𝑡

0

(𝑡− 𝑠)−𝑟

Γ(1− 𝑟)
𝐹𝑟(𝑠)𝑑𝑠

)︂
6𝑀𝑝ℎ𝑒

𝜔𝑡 max(𝑒𝜔ℎ, 1),

for any 𝑡 > 0, ℎ > 0 and 𝑝 ∈ ~, if 𝑟 ∈ (0, 1), and

𝑝(𝐹𝑟(𝑡+ ℎ)− 𝐹𝑟(𝑡)) 6𝑀𝑝ℎ𝑒
𝜔𝑡 max(𝑒𝜔ℎ, 1), 𝑡 > 0, ℎ > 0, 𝑝 ∈ ~,

if 𝑟 = 1. Moreover, in this case,

𝑝(𝐹𝑟(𝑡+ ℎ)− 𝐹𝑟(𝑡)) 6
2𝑀𝑝

𝑟Γ(𝑟)
ℎ𝑟 max(𝑒𝜔(𝑡+ℎ), 1), 𝑡 > 0, ℎ > 0, 𝑝 ∈ ~.

Recall that Σ𝛼 = {𝑧 ∈ Cr{0} : | arg(𝑧)| < 𝛼} (𝛼 ∈ (0, 𝜋]). The most important
analytical properties of Laplace transform of functions with values in SCLCSs are
collected in the following theorem.

Theorem 1.4.10. [296]
(i) Let 𝛼 ∈

(︀
0, 𝜋2

]︀
, 𝜔 ∈ R and 𝑞 : (𝜔,∞) → 𝐸. Then the following assertions

are equivalent:
(a) There exists an analytic function 𝑓 : Σ𝛼 → 𝐸 such that 𝑞(𝜆) = 𝑓(𝜆),

𝜆 ∈ (𝜔,∞) and the set {𝑒−𝜔𝑧𝑓(𝑧) : 𝑧 ∈ Σ𝛽} is bounded for all
𝛽 ∈ (0, 𝛼).
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(b) The function 𝑞(·) admits an analytic extension 𝑞 : 𝜔 + Σ𝜋
2 +𝛼 → 𝐸

which satisfies that the set {(𝜆− 𝜔)𝑞(𝜆) : 𝜆 ∈ 𝜔 +Σ𝜋
2 +𝛼} is bounded

for all 𝛾 ∈ (0, 𝛼).
If this is the case, then we have that, for every 𝑘 ∈ N and 𝛽 ∈ (0, 𝛼), the
set {𝑧𝑘𝑒−𝜔𝑧𝑓 (𝑘)(𝑧) : 𝑧 ∈ Σ𝛽} is bounded.

(ii) Let 𝛼 ∈ (0, 𝜋] and let 𝑓 : Σ𝛼 → 𝐸 be an analytic function which satisfies
that, for every 𝛽 ∈ (0, 𝛼), the set {𝑓(𝑧) : 𝑧 ∈ Σ𝛽} is bounded. Let 𝑥 ∈ 𝐸.
Then the following holds:
(a) The assumption lim𝑡→+∞ 𝑓(𝑡) = 𝑥 implies lim𝑧→∞,𝑧∈Σ𝛽

𝑓(𝑧) = 𝑥 for
all 𝛽 ∈ (0, 𝛼).

(b) The assumption lim𝑡→0+ 𝑓(𝑡) = 𝑥 implies lim𝑧→0,𝑧∈Σ𝛽
𝑓(𝑧) = 𝑥 for

all 𝛽 ∈ (0, 𝛼).
(iii) Assume 𝑥 ∈ 𝐸, 𝛼 ∈ (0, 𝜋2 ], 𝜔 ∈ R, 𝑞 : (𝜔,∞) → 𝐸 and let (i)(a) of this

theorem hold. Then:
(a) lim𝑡→0+ 𝑓(𝑡) = 𝑥 iff lim𝜆→∞ 𝜆𝑞(𝜆) = 𝑥.
(b) Let 𝜔 = 0. Then lim𝑡→+∞ 𝑓(𝑡) = 𝑥 iff lim𝜆→0 𝜆𝑞(𝜆) = 𝑥.

We also need the following theorem on approximation of Laplace transform.

Theorem 1.4.11. [296] Let 𝑓𝑛 ∈ 𝐶([0,∞) : 𝐸), 𝑛 ∈ N, let the set {𝑒−𝜔𝑡𝑓𝑛(𝑡) :
𝑛 ∈ N, 𝑡 > 0} be bounded for some 𝜔 ∈ R, and let 𝜆0 > 𝜔. Then the following
assertions are equivalent:

(i) The sequence (𝑓𝑛) converges pointwise on (𝜆0,∞) and the sequence (𝑓𝑛)
is equicontinuous at each point 𝑡 > 0.

(ii) The sequence (𝑓𝑛) converges uniformly on compact subsets of [0,∞).
Assuming (ii) holds and lim𝑛→∞ 𝑓𝑛(𝑡) = 𝑓(𝑡), 𝑡 > 0, one has lim𝑛→∞ 𝑓𝑛(𝜆) = 𝑓(𝜆),
𝜆 > 𝜆0.

Finally, it would be worthwhile to record the following slight extension of [459,
Proposition 0.1, Theorem 0.4, p. 10–12].

Theorem 1.4.12. [296]
(i) Assume 𝑔 : C+ → 𝐸 is analytic and satisfies that the sets {𝜆𝑔(𝜆) : 𝜆 ∈ C+}

and {𝜆2𝑔′(𝜆) : 𝜆 ∈ C+} are bounded. Then the set {𝑛!−1𝜆𝑛+1𝑔(𝑛)(𝜆) : 𝜆 ∈
C+, 𝑛 ∈ N0} is bounded as well.

(ii) Assume 𝑘 ∈ N0, 𝑔 : C+ → 𝐸 is analytic and satisfies that the set
{𝜆𝑛+1𝑔(𝑛)(𝜆) : 𝜆 ∈ C+, 0 6 𝑛 6 𝑘 + 1} is bounded. Then there exists a
function 𝑢 ∈ 𝐶𝑘((0,∞) : 𝐸) such that 𝑔(𝜆) = �̃�(𝜆), 𝜆 ∈ C+ and the sets
{𝑡𝑛𝑢(𝑛)(𝑡) : 𝑡 > 0, 0 6 𝑛 6 𝑘} and {(𝑡− 𝑠)−1(1 + ln 𝑡

𝑡−𝑠 )
−1(𝑡𝑘+1𝑢(𝑘)(𝑡)−

𝑠𝑘+1𝑢(𝑘)(𝑠)) : 0 6 𝑠 < 𝑡 <∞} are bounded.

1.5. Operators of fractional differentiation, Mittag-Leffler and Wright
functions

The first congress on fractional calculus was held at the University of New
Haven, in 1974 [131]. From then on, several applications of fractional calculus and
fractional differential equations have emerged in engineering, physics, chemistry,
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biology and other sciences. For the basic information about fractional calculus
and non-degenerate fractional differential equations, the reader may consult the
monographs by M. H. Annaby, Z. S. Mansour [23], T. M. Atanacković, S. Pilipović,
B. Stanković, D. Zorica [36,37], D. Baleanu, K. Diethelm, E. Scalas, J. Trujillo [45],
K. Diethelm [153], R. Hilfer [255], A. A. Kilbas, H. M. Srivastava, J. J. Trujillo
[279], V. Kiryakova [281], F. Mainardi [405], K. B. Oldham, J. Spanier [439], I.
Podlubny [452], S. G. Samko, A. A. Kilbas, O. I. Marichev [472], V. E. Tarasov
[516] and the author [291,292]; we also hope that the doctoral dissertations of E.
Bazhlekova [61] and Yu. V. Bogacheva [82], as well as the references [8,33,34,102,
105,157,165,166,169,227,231,270,271,274,277,345,382,477,529,550], and
those from author’s ones [295,355], may be of some help to the reader. For the basic
information on the history of fractional calculus, the reader may consult [160], [292,
Section 1.3], [439] and [472].

Suppose that 𝛼 > 0, 𝑚 = ⌈𝛼⌉ and 𝐼 = (0, 𝑇 ) for some 𝑇 ∈ (0,∞]. Then the
Riemann–Liouville fractional integral 𝐽𝛼

𝑡 of order 𝛼 is defined by

𝐽𝛼
𝑡 𝑓(𝑡) := (𝑔𝛼 * 𝑓)(𝑡), 𝑓 ∈ 𝐿1(𝐼 : 𝐸), 𝑡 ∈ 𝐼,

while the Caputo fractional derivative D𝛼
𝑡 𝑢(𝑡) is defined for those functions 𝑢 ∈

𝐶𝑚−1([0,∞) : 𝐸) for which 𝑔𝑚−𝛼 * (𝑢−
∑︀𝑚−1

𝑘=0 𝑢𝑘𝑔𝑘+1) ∈ 𝐶𝑚([0,∞) : 𝐸), by

D𝛼
𝑡 𝑢(𝑡) =

𝑑𝑚

𝑑𝑡𝑚

[︂
𝑔𝑚−𝛼 *

(︂
𝑢−

𝑚−1∑︁
𝑘=0

𝑢𝑘𝑔𝑘+1

)︂]︂
.

The existence of Caputo fractional derivative D𝜁
𝑡𝑢 for 𝑡 > 0 implies 𝑢∈𝐶⌈𝜁⌉((0,∞) :

𝐸) ∩ 𝐶𝜁([0, 𝑇 ] : 𝑋), for each finite number 𝑇 > 0. Suppose now, just for a few
moments, that 𝐸 is a Banach space. Then the Sobolev space 𝑊𝑚,1(𝐼 : 𝐸) can be
introduced in the following way (see e.g. [61, p. 7]):

𝑊𝑚,1(𝐼 : 𝐸) :=

{︂
𝑓 | ∃𝜙 ∈ 𝐿1(𝐼 : 𝐸)∃𝑐𝑘 ∈ C (0 6 𝑘 6 𝑚− 1)

𝑓(𝑡) =

𝑚−1∑︁
𝑘=0

𝑐𝑘𝑔𝑘+1(𝑡) + (𝑔𝑚 * 𝜙)(𝑡) for a.e. 𝑡 ∈ (0, 𝜏)

}︂
.

If so, then we have 𝜙(𝑡) = 𝑓 (𝑚)(𝑡) in the distributional sense, and 𝑐𝑘 = 𝑓 (𝑘)(0)
(0 6 𝑘 6 𝑚 − 1). The Riemann–Liouville fractional derivative 𝐷𝛼

𝑡 of order 𝛼 is
defined for those functions 𝑓 ∈ 𝐿1(𝐼 : 𝐸) for which 𝑔𝑚−𝛼 * 𝑓 ∈𝑊𝑚,1(𝐼 : 𝐸), by

𝐷𝛼
𝑡 𝑓(𝑡) :=

𝑑𝑚

𝑑𝑡𝑚
𝐽𝑚−𝛼
𝑡 𝑓(𝑡), 𝑡 ∈ 𝐼.

Due to [61, Theorem 1.5], the Riemann–Liouville fractional integrals and deriva-
tives satisfy the following equalities:

𝐽𝛼
𝑡 𝐽

𝛽
𝑡 𝑓(𝑡) = 𝐽𝛼+𝛽

𝑡 𝑓(𝑡), 𝐷𝛼
𝑡 𝐽

𝛼
𝑡 𝑓(𝑡) = 𝑓(𝑡),
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for 𝑓 ∈ 𝐿1(𝐼 : 𝐸) and

(37) 𝐽𝛼
𝑡 𝐷

𝛼
𝑡 𝑓(𝑡) = 𝑓(𝑡)−

𝑚−1∑︁
𝑘=0

(𝑔𝑚−𝛼 * 𝑓)(𝑘)(0)𝑔𝛼+𝑘+1−𝑚(𝑡)

for any 𝑓 ∈ 𝐿1(𝐼 : 𝐸) with 𝑔𝑚−𝛼 * 𝑓 ∈ 𝑊𝑚,1(𝐼 : 𝐸). We are returning to the
case in which 𝐸 is a general SCLCS. Let 𝛽 > 0 and 𝛽 /∈ N. Then the Liou-
ville right-sided fractional derivative of order 𝛽 (see [279, (2.3.4)] for the scalar-
valued case) is defined for those continuous functions 𝑢 : (0,∞) → 𝐸 for which
lim𝑇→∞

∫︀ 𝑇

𝑠
𝑔⌈𝛽⌉−𝛽(𝑡− 𝑠)𝑢(𝑡)𝑑𝑡 =

∫︀∞
𝑠
𝑔⌈𝛽⌉−𝛽(𝑡− 𝑠)𝑢(𝑡)𝑑𝑡 exists and defines a ⌈𝛽⌉-

times continuously differentiable function on (0,∞), by

D𝛽
−𝑢(𝑠) := (−1)⌈𝛽⌉

𝑑⌈𝛽⌉

𝑑𝑠⌈𝛽⌉

∫︁ ∞

𝑠

𝑔⌈𝛽⌉−𝛽(𝑡− 𝑠)𝑢(𝑡)𝑑𝑡, 𝑠 > 0.

We define the modified Liouville right-sided fractional derivative of order 𝛽, 𝐷𝛽
−𝑢(𝑠)

shortly, for those continuously differentiable functions 𝑢 : (0,∞) → 𝐸 for which
lim𝑇→∞

∫︀ 𝑇

𝑠
𝑔⌈𝛽⌉−𝛽(𝑡−𝑠)𝑢′(𝑡)𝑑𝑡 =

∫︀∞
𝑠
𝑔⌈𝛽⌉−𝛽(𝑡−𝑠)𝑢′(𝑡)𝑑𝑡 exists and defines a ⌈𝛽−

1⌉-times continuously differentiable function on (0,∞), by

𝐷𝛽
−𝑢(𝑠) := (−1)⌈𝛽⌉

𝑑⌈𝛽−1⌉

𝑑𝑠⌈𝛽−1⌉

∫︁ ∞

𝑠

𝑔⌈𝛽⌉−𝛽(𝑡− 𝑠)𝑢′(𝑡)𝑑𝑡, 𝑠 > 0;

if 𝛽 = 𝑛 ∈ N, then D𝑛
−𝑢 and 𝐷𝑛

−𝑢 are defined for all 𝑛-times continuously differen-
tiable functions 𝑢(·) on (0,∞), by D𝑛

−𝑢 := 𝐷𝑛
−𝑢 := (−1)𝑛𝑑/𝑑𝑛, where 𝑑/𝑑𝑛 denotes

the usual derivative operator of order 𝑛 (cf. also [279, (2.3.5)]).
Let 𝛼 ∈ (0,∞)rN, 𝑓 ∈ 𝒮 and 𝑛 = ⌈𝛼⌉. Let us recall that the Weyl fractional

derivative 𝑊𝛼
+ of order 𝛼 is defined by

𝑊𝛼
+𝑓(𝑡) :=

(−1)𝑛

Γ(𝑛− 𝛼)

𝑑𝑛

𝑑𝑡𝑛

∫︁ ∞

𝑡

(𝑠− 𝑡)𝑛−𝛼−1𝑓(𝑠)𝑑𝑠, 𝑡 ∈ R.

If 𝛼 = 𝑛 ∈ N0, then we set 𝑊𝑛
+ := (−1)𝑛 𝑑𝑛

𝑑𝑡𝑛 . It is well known that the following
equality holds: 𝑊𝛼+𝛽

+ 𝑓 =𝑊𝛼
+𝑊

𝛽
+𝑓 , 𝛼, 𝛽 > 0, 𝑓 ∈ 𝒮.

As already mentioned, in this book we will use the Caputo fractional deriva-
tives, the Riemann–Liouville fractional derivatives, the modified Liouville right-
sided fractional derivatives and Weyl fractional derivatives; for the brief summary
of definitions of fractional order derivatives and integrals that usually appear in frac-
tional calculus, we refer the reader to the recent paper [131] by E. C. de Oliveira
and J. A. T. Machado.

The basic properties of Caputo fractional derivatives can be obtained by con-
sulting [61] and [292, Preliminaries, Section 1.3]. For the later use, it would be
very important to remind ourselves of the following facts. Suppose that 𝛽 > 0,
𝛾 > 0 and D𝛽+𝛾

𝑡 𝑢(𝑡) is defined. Then the Caputo fractional derivative D𝜁
𝑡𝑢(𝑡) is

defined for any number 𝜁 ∈ (0, 𝛽 + 𝛾) but the equality D𝛽+𝛾
𝑡 𝑢 = D𝛽

𝑡 D
𝛾
𝑡 𝑢 does not

hold in general (cf. [292, Preliminaries, Section 1.3, p. 14] and the equation (92)
below). The validity of this equality can be proved in the following cases:

(1) 𝛾 ∈ N,
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(2) ⌈𝛽 + 𝛾⌉ = ⌈𝛾⌉,
(3) 𝑢(𝑗)(0) = 0 for ⌈𝛾⌉ 6 𝑗 6 ⌈𝛽 + 𝛾⌉ − 1.

If 𝑢 ∈ 𝐶([0,∞) : 𝐸), resp. 𝑢 ∈ 𝐶𝑚−1([0,∞) : 𝐸) and 𝑔𝑚−𝛼 * (𝑢−
∑︀𝑚−1

𝑘=0 𝑢𝑘𝑔𝑘+1) ∈
𝐶𝑚([0,∞) : 𝐸), then the following equality holds:

(38) D𝛼
𝑡 𝐽

𝛼
𝑡 𝑢(𝑡) = 𝑢(𝑡), 𝑡 > 0, resp. 𝐽𝛼

𝑡 D
𝛼
𝑡 𝑢(𝑡) = 𝑢(𝑡)−

𝑚−1∑︁
𝑘=0

𝑢(𝑘)(0)𝑔𝑘+1(𝑡), 𝑡 > 0.

The Laplace transform of function D𝛼
𝑡 𝑢(𝑡) is computed by

(39)
∫︁ ∞

0

𝑒−𝜆𝑡D𝛼
𝑡 𝑢(𝑡)𝑑𝑡 = 𝜆𝛼�̃�(𝜆)−

𝑚−1∑︁
𝑘=0

𝑢(𝑘)(0)𝜆𝛼−1−𝑘;

cf. the identity [292, (16)] for precise formulation.
The Mittag-Leffler and Wright functions are known to play a fundamental role

in seeking of solutions of fractional differential equations. Let 𝛼 > 0 and 𝛽 ∈ R.
Then the Mittag-Leffler function 𝐸𝛼,𝛽(𝑧) is defined by

𝐸𝛼,𝛽(𝑧) :=

∞∑︁
𝑛=0

𝑧𝑛

Γ(𝛼𝑛+ 𝛽)
, 𝑧 ∈ C.

Here we assume that 1/Γ(𝛼𝑛+ 𝛽) = 0 if 𝛼𝑛+ 𝛽 ∈ −N0. Set, for short,

𝐸𝛼(𝑧) := 𝐸𝛼,1(𝑧), 𝑧 ∈ C.

Like the function 𝐸1(𝑧) = 𝑒𝑧, for which the differential relation (𝑑/𝑑𝑡)𝑒𝜔𝑡 = 𝜔𝑒𝜔𝑡

holds, the function 𝐸𝛼(𝑧) satisfies that D𝛼
𝑡 𝐸𝛼(𝜔𝑡

𝛼) = 𝜔𝐸𝛼(𝜔𝑡
𝛼). For 𝛼 = 1/2,

𝐸1/2(𝑧) is the error function: 𝐸1/2(𝑧) = exp(𝑧2) erfc(−𝑧), and for 𝛼 = 2, 𝐸2(𝑧)

is the hyperbolic cosine: 𝐸2(𝑧) = cosh(
√
𝑧). The asymptotic expansion of the

entire function 𝐸𝛼,𝛽(𝑧) is given in the following important theorem (see e.g. [539,
Theorem 1.1]):

Theorem 1.5.1. Let 0 < 𝜎 < 1
2𝜋. Then, for every 𝑧 ∈ Cr{0} and 𝑚 ∈ Nr{1},

𝐸𝛼,𝛽(𝑧) =
1

𝛼

∑︁
𝑠

𝑍1−𝛽
𝑠 𝑒𝑍𝑠 −

𝑚−1∑︁
𝑗=1

𝑧−𝑗

Γ(𝛽 − 𝛼𝑗)
+𝑂(|𝑧|−𝑚),

where 𝑍𝑠 is defined by 𝑍𝑠 := 𝑧1/𝛼𝑒2𝜋𝑖𝑠/𝛼 and the first summation is taken over all
those integers 𝑠 satisfying | arg(𝑧) + 2𝜋𝑠| < 𝛼(𝜋2 + 𝜎).

If 𝛼 ∈ (0, 2)r {1}, 𝛽 > 0 and 𝑁 ∈ Nr {1}, then we have the following special
cases of Theorem 1.5.1:

(40) 𝐸𝛼,𝛽(𝑧) =
1

𝛼
𝑧(1−𝛽)/𝛼𝑒𝑧

1/𝛼

+ 𝜀𝛼,𝛽(𝑧), | arg(𝑧)| < 𝛼𝜋/2,

and

(41) 𝐸𝛼,𝛽(𝑧) = 𝜀𝛼,𝛽(𝑧), | arg(−𝑧)| < 𝜋 − 𝛼𝜋/2,
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where

(42) 𝜀𝛼,𝛽(𝑧) =

𝑁−1∑︁
𝑛=1

𝑧−𝑛

Γ(𝛽 − 𝛼𝑛)
+𝑂(|𝑧|−𝑁 ), |𝑧| → ∞.

Perhaps the most interesting property of the Mittag-Leffler function 𝐸𝛼,𝛽(𝑧) is that

(43)
∫︁ ∞

0

𝑒−𝜆𝑡𝑡𝛽−1𝐸𝛼,𝛽(𝜔𝑡
𝛼)𝑑𝑡 =

𝜆𝛼−𝛽

𝜆𝛼 − 𝜔
, Re𝜆 > 𝜔1/𝛼, 𝜔 > 0.

Recall that the function 𝑡 ↦→ 𝐸𝛼,𝛽(−𝑡), 𝑡 > 0 is completely monotonic (i.e., that
(−1)𝑛(𝑑𝑛/𝑑𝑡𝑛)𝐸𝛼,𝛽(−𝑡) > 0, 𝑡 > 0, 𝑛 ∈ N0) provided that 𝛼 ∈ (0, 1] or 𝛽 > 𝛼 [405].
Among a huge variety of identities for the Mittag-Leffler functions, we will single
out the following ones:

(i) For every 𝑗 ∈ N and 𝛼 > 0, there exist uniquely determined real numbers
𝑐𝑙,𝑗,𝛼 (1 6 𝑙 6 𝑗) such that:

(44) 𝐸(𝑗)
𝛼 (𝑧) =

𝑗∑︁
𝑙=1

𝑐𝑙,𝑗,𝛼𝐸𝛼,𝛼𝑗−(𝑗−𝑙)(𝑧), 𝑧 ∈ C.

(ii) Let 𝛼 > 0, 𝛽 > 0 and 𝑟 ∈ N. Then 𝑧𝑟𝐸𝛼,𝛽+𝑟𝛼(𝑧)=𝐸𝛼,𝛽(𝑧)+
∑︀𝑟−1

𝑛=0
𝑧𝑛

Γ(𝛽+𝑛𝛼)

for all 𝑧 ∈ C.
(iii) If 𝑚 ∈ N and 𝑛 ∈ N, then 𝐸𝑚

𝑛
(𝑧) = 1

𝑚

∑︀𝑚−1
𝑟=1 𝐸 1

𝑛
(𝑧1/𝑚 exp(2𝜋𝑖𝑟/𝑚) for

all 𝑧 ∈ C.
The Mittag-Leffler function 𝐸𝛼,𝛽(𝑧) has the integral representation in the form

𝐸𝛼,𝛽(𝑧) =
1

2𝜋𝑖

∫︁
𝐺

𝜆𝛼−𝛽𝑒𝜆

𝜆𝛼 − 𝑧
𝑑𝜆, 𝑧 ∈ C,

where 𝐺 is a contour (the Hankel path) which starts and ends at −∞ and encircles
the disc |𝜆| 6 |𝑧|1/𝛼 counter-clockwise.

Let 𝛾 ∈ (0, 1). Then the Wright function Φ𝛾(·) is defined by

Φ𝛾(𝑡) := ℒ−1(𝐸𝛾(−𝜆))(𝑡), 𝑡 > 0.

The Wright function Φ𝛾(·) can be analytically extended to the whole complex plane
by the formula

Φ𝛾(𝑧) =

∞∑︁
𝑛=0

(−𝑧)𝑛

𝑛!Γ(1− 𝛾 − 𝛾𝑛)
, 𝑧 ∈ C,

and the following holds:
(i) Φ𝛾(𝑡) > 0, 𝑡 > 0,
(ii)

∫︀∞
0
𝑒−𝜆𝑡𝛾𝑠𝑡−1−𝛾Φ𝛾(𝑡

−𝛾𝑠)𝑑𝑡 = 𝑒−𝜆𝛾𝑠, 𝜆 ∈ C+, 𝑠 > 0, and
(iii)

∫︀∞
0
𝑡𝑟Φ𝛾(𝑡)𝑑𝑡 =

Γ(1+𝑟)
Γ(1+𝛾𝑟) , 𝑟 > −1.

The asymptotic expansion of the Wright function Φ𝛾(·), as |𝑧| → ∞ in the sector
| arg(𝑧)| 6 min((1− 𝛾)3𝜋/2, 𝜋)− 𝜀 is given by

Φ𝛾(𝑧) = 𝑌 𝛾−1/2𝑒−𝑌

(︂𝑀−1∑︁
𝑚=0

𝐴𝑚𝑌
−𝑀 +𝑂(|𝑌 |−𝑀 )

)︂
,



1.5. OPERATORS OF FRACTIONAL DIFFERENTIATION, MITTAG-LEFFLER... 68

where 𝑌 = (1 − 𝛾)(𝛾𝛾𝑧)1/(1−𝛾), 𝑀 ∈ N and 𝐴𝑚 are certain real numbers (see
e.g. [61]). The Wright function Φ𝛾(·) can be integrally represented by the formula

Φ𝛾(𝑧) =
1

2𝜋𝑖

∫︁
𝐺

𝜆𝛾−1 exp(𝜆− 𝑧𝜆𝛾)𝑑𝜆, 𝑧 ∈ C,

where 𝐺 is the Hankel path mentioned above.
We also need the following class of Wright type functions

𝜑(𝜌, 𝜈; 𝑧) :=

∞∑︁
𝑛=0

𝑧𝑛

𝑛!Γ(𝜌𝑛+ 𝜈)
, 𝑧 ∈ C (𝜌 > −1, 𝜈 ∈ C),

which is well known because of the following Laplace transform identity:

(45)
∫︁ ∞

0

𝑒−𝜆𝑡𝑡𝑣𝜌𝜑(𝜌, 1 + 𝜌𝑣,−𝑠𝑡𝜌)𝑑𝑡 = 𝜆−1−𝜌𝑣𝑒−𝑠𝜆−𝜌

,

which is valid for 𝑠 > 0, Re𝜆 > 0 and 1 + 𝜌𝑣 > 0. If 0 < 𝜌 < 1, then we know that
there exist two finite real constants 𝑐 > 0 and 𝐿 > 0 such that

(46) |𝜑(𝜌, 𝜈;−𝑟)| 6 𝐿𝑒−𝑐𝑟1/(1+𝜌)

, 𝑟 > 0;

if 𝜌 = 1/2, then the function 𝜑(𝜌, 𝜈;−𝑟) can be represented in terms of the well
known special functions erf(𝑟), erfc(𝑟) and daw(𝑟). For more details about the
Wright functions, see [234] and [401].

In the continuation, we will also use the Bessel functions of first kind. Let us
recall that the Bessel function of order 𝜈 > 0, denoted by 𝐽𝜈 , is defined by

𝐽𝜈(𝑧) :=
(︁𝑧
2

)︁𝜈 ∞∑︁
𝑛=0

(−1)𝑘(𝑧/2)2𝑘

𝑘!Γ(𝜈 + 𝑘 + 1)
, 𝑧 ∈ C.

Then for each 𝜈 > 0 we have the existence of a finite real constant 𝑀 > 0 such that
lim𝑟→+∞ |𝑟1/2𝐽𝜈(𝑟)| = 0. Then the following Laplace transform identity holds true
for each 𝛽 > 0:

(47)
∫︁ ∞

0

𝑒−𝜆𝑡𝐽1+𝛽

(︀
2
√
𝑠𝑡
)︀
𝑠(1+𝛽)/2𝑑𝑠 = 𝑡(1+𝛽)/2𝜆−2−𝛽𝑒−𝑡/𝜆, Re𝜆 > 0, 𝑡 > 0.



CHAPTER 2

ABSTRACT DEGENERATE VOLTERRA
INTEGRO-DIFFERENTIAL EQUATIONS IN

LOCALLY CONVEX SPACES

In this chapter, we investigate abstract (non-scalar) degenerate Volterra inte-
gro-differential equations and abstract (multi-term) fractional differential equations
in sequentially complete locally convex spaces. We use different methods to achieve
what we are aiming for. Special attention is paid to the analysis of hypercyclic,
topologically mixing and distributionally chaotic classes of abstract degenerate
integro-differential equations.

Unless stated otherwise, throughout this chapter we assume that 𝐸 is an
infinite-dimensional sequentially complete locally convex space over the field C,
SCLCS for short, and that 𝐴 and 𝐵 are two closed linear operators acting on 𝐸.
The abbreviation ~ stands for the fundamental system of seminorms which induces
the topology on 𝐸; 𝐼 denotes the identity operator on 𝐸, and 𝐶 ∈ 𝐿(𝐸) denotes
an injective operator satisfying 𝐶𝐴 ⊆ 𝐴𝐶. In some sections, we need to have two
different pivot spaces, so that we sometimes use the symbols 𝑋,𝑌, 𝑍 . . . in place of
𝐸. We start our work by investigating the basic properties of (𝐶,𝐵)-resolvents of
closed linear operators.

2.1. (𝐶,𝐵)-resolvents

In this section, we would like to inscribe a few noteworthy facts about the main
structural properties of (𝐶,𝐵)-resolvents. We assume that:

1. 𝐴 : 𝐷(𝐴) ⊆ 𝐸 → 𝐸 and 𝐵 : 𝐷(𝐵) ⊆ 𝐸 → 𝐸 are closed linear operators;
2. 𝐶 ∈ 𝐿(𝐸) is an injective operator satisfying 𝐶𝐴 ⊆ 𝐴𝐶 and 𝐶𝐵 ⊆ 𝐵𝐶;
3. The closed graph theorem holds for mappings from 𝐸 into 𝐸.

Then the set
𝜌𝐵𝐶(𝐴) := {𝜆 ∈ C : (𝜆𝐵 −𝐴)−1𝐶 ∈ 𝐿(𝐸)}

is called the (𝐶,𝐵)-resolvent set of 𝐴; the (𝐶,𝐵)-spectrum of 𝐴 is defined by
𝜎𝐵
𝐶 (𝐴) := C r 𝜌𝐵𝐶(𝐴). Sometimes we also write 𝜌𝐶(𝐴,𝐵) (𝜎𝐶(𝐴,𝐵)) for 𝜌𝐵𝐶(𝐴)

(𝜎𝐵
𝐶 (𝐴)); 𝜌𝐵(𝐴) ≡ 𝜌𝐵𝐼 (𝐴) and 𝜎𝐵(𝐴) ≡ 𝜎𝐵

𝐼 (𝐴). If 𝐶 ̸= 𝐼, then the (𝐶,𝐵)-resolvent
set of the operator 𝐴 need not be open (for a counterexample of this type, with
𝐵 = 𝐼, 𝐸 being the Hardy space 𝐻2({𝑧 ∈ C : |𝑧| 6 1}), 𝐴 ∈ 𝐿(𝐸) being injective
and 𝐶 = 𝐴, see [138, Example 2.5]). For any 𝜆 ∈ 𝜌𝐵𝐶(𝐴), we define the right (𝐶,𝐵)-
resolvent of 𝐴, 𝑅𝐶,𝐵

𝜆 (𝐴) for short, and the left (𝐶,𝐵)-resolvent of 𝐴, 𝐿𝐶,𝐵
𝜆 (𝐴) for

69
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short, by

𝑅𝐶,𝐵
𝜆 (𝐴) := (𝜆𝐵 −𝐴)−1𝐶𝐵 and 𝐿𝐶,𝐵

𝜆 (𝐴) := 𝐵(𝜆𝐵 −𝐴)−1𝐶 ∈ 𝐿(𝐸).

It is checked at once that the existence of operator 𝐵−1 ∈ 𝐿(𝐸) implies the closed-
ness of the operator 𝐴𝐵−1, with domain and range contained in 𝐸, as well as that
𝜌𝐵𝐶(𝐴) ⊆ 𝜌𝐶(𝐴𝐵

−1) and

(48) (𝜆−𝐴𝐵−1)−1𝐶 = 𝐵(𝜆𝐵 −𝐴)−1𝐶, 𝜆 ∈ 𝜌𝐵𝐶(𝐴).

Now we would like to draw our attention to the case in which 𝜌𝐵𝐶(𝐴) ̸= ∅, the
operator 𝐵 is injective and 𝐵−1 /∈ 𝐿(𝐸). Fix temporarily a number 𝜆 ∈ 𝜌𝐵𝐶(𝐴).
Suppose that (𝑥𝜏 ) is a net in 𝐸 as well as that 𝑥𝜏 → 𝑥 as 𝜏 → ∞ and 𝐴𝐵−1𝑥𝜏 → 𝑦
as 𝜏 → ∞. This simply implies 𝐵(𝜆𝐵−𝐴)−1𝐶𝑥𝜏 → 𝐵(𝜆𝐵−𝐴)−1𝐶𝑥 as 𝜏 → ∞ and
𝐵(𝜆𝐵−𝐴)−1𝐶(𝜆−𝐴𝐵−1)𝑥𝜏 = 𝐵(𝜆𝐵−𝐴)−1𝐶(𝜆𝐵−𝐴)𝐵−1𝑥𝜏 = 𝐶𝑥𝜏 → 𝐵(𝜆𝐵−
𝐴)−1𝐶(𝜆𝑥− 𝑦) as 𝜏 → ∞. Hence, 𝐶𝑥 = 𝐵(𝜆𝐵 −𝐴)−1𝐶(𝜆𝑥− 𝑦), 𝐶𝑥 ∈ 𝐷(𝐴𝐵−1)
and 𝐴𝐵−1𝐶𝑥 = 𝐴𝐵−1𝐵(𝜆𝐵 −𝐴)−1𝐶(𝜆𝑥− 𝑦) = 𝐴(𝜆𝐵 −𝐴)−1𝐶(𝜆𝑥− 𝑦). Further
on, 𝐵(𝜆𝐵−𝐴)−1𝐶𝑦 = 𝜆𝐵(𝜆𝐵−𝐴)−1𝐶𝑥−𝐶𝑥 = 𝐴(𝜆𝐵−𝐴)−1𝐶𝑥, (𝜆𝐵−𝐴)−1𝐶𝑦 =
𝐵−1𝐴(𝜆𝐵 −𝐴)−1𝐶𝑥 = −𝐵−1𝐶𝑥+ 𝜆(𝜆𝐵 −𝐴)−1𝐶𝑥, whence it easily follows that
𝐶𝑦 = −(𝜆𝐵 − 𝐴)𝐵−1𝐶𝑥+ 𝐶𝑥 and 𝐶𝑦 = 𝐴𝐵−1𝐶𝑥. Hence, the operator 𝐴𝐵−1 is
closable and the supposition 𝐶−1 ∈ 𝐿(𝐸) implies that the operator 𝐴𝐵−1 is closed;
before proceeding further, we want to observe that the operator 𝐴𝐵−1 need not be
closed if the above requirements hold and 𝐶−1 /∈ 𝐿(𝐸) (let 𝐴 = 𝐵 = 𝐶, and let
𝑅(𝐶) be a proper dense subspace of 𝐸; then 𝐶𝐶−1 = 𝐼 ̸= 𝐶𝐶−1, see [138, Example
2.2]). It is not problematic to verify that the operator 𝐴𝐵−1 commutes with the
operator 𝐵(𝜆𝐵−𝐴)−1𝐶 (𝜆 ∈ 𝜌𝐵𝐶(𝐴)), and that the operator 𝜆+𝐴𝐵−1 is injective
(𝜆 ∈ 𝜌𝐵𝐶(𝐴)). By the foregoing, we have 𝜌𝐵𝐶(𝐴) ⊆ 𝜌𝐶(𝐴𝐵−1) and the following
modification of (48):

(49) (𝜆−𝐴𝐵−1)−1𝐶 = 𝐵(𝜆𝐵 −𝐴)−1𝐶, 𝜆 ∈ 𝜌𝐵𝐶(𝐴).

If the operator 𝐵 is not injective, then 𝐴𝐵−1 is an MLO in 𝐸 and, in this case, we
can simply prove that 𝜌𝐵𝐶(𝐴) ⊆ 𝜌𝐶(𝐴𝐵

−1) and (48) continues to hold. Therefore,
we have arrived at the following propositions.

Proposition 2.1.1. Suppose that 𝜌𝐵𝐶(𝐴) ̸= ∅ and the operator 𝐵 is injective.
(i) If 𝐵−1 ∈ 𝐿(𝐸) or 𝐶−1 ∈ 𝐿(𝐸), then the operator 𝐴𝐵−1 is closed,

𝜌𝐵𝐶(𝐴) ⊆ 𝜌𝐶(𝐴𝐵
−1) and (48) holds.

(ii) Suppose 𝐵−1 /∈ 𝐿(𝐸) and 𝐶−1 /∈ 𝐿(𝐸). Then the operator 𝐴𝐵−1 is
closable, 𝜌𝐵𝐶(𝐴) ⊆ 𝜌𝐶(𝐴𝐵−1) and (49) holds.

Proposition 2.1.2. Suppose that the operator 𝐵 is not injective. Then 𝐴𝐵−1

is an MLO in 𝐸, 𝜌𝐵𝐶(𝐴) ⊆ 𝜌𝐶(𝐴𝐵
−1) and (48) holds in the sense of multivalued

linear operators.

The inclusion 𝜌𝐶(𝐴𝐵
−1) ⊆ 𝜌𝐵𝐶(𝐴) also holds in some cases (for example, if

𝐵 ∈ 𝐿(𝐸)), but we will not go into further details concerning this question here.
Using the trivial identities

(𝜆𝐵 −𝐴)(𝜇𝐵 −𝐴)−1𝐶 = 𝐶 + (𝜆− 𝜇)𝐵(𝜇𝐵 −𝐴)−1𝐶, 𝜇 ∈ 𝜌𝐵𝐶(𝐴), 𝜆 ∈ C,
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(𝜇𝐵 −𝐴)−1𝐶(𝜆𝐵 −𝐴)𝑥 = 𝐶𝑥+ (𝜆− 𝜇)𝐵(𝜇𝐵 −𝐴)−1𝐶𝑥,

𝜇 ∈ 𝜌𝐵𝐶(𝐴), 𝜆 ∈ C, 𝑥 ∈ 𝐷(𝐴) ∩𝐷(𝐵),

and observing that for each 𝜆 ∈ 𝜌𝐵𝐶(𝐴) we have 𝐵(𝜆𝐵−𝐴)−1𝐶2 = 𝐶𝐵(𝜆𝐵−𝐴)−1𝐶,
the following version of Hilbert resolvent equation readily follows:

(50) (𝜆𝐵 −𝐴)−1𝐶2 − (𝜇𝐵 −𝐴)−1𝐶2 = (𝜇− 𝜆)(𝜇𝐵 −𝐴)−1𝐶𝐵(𝜆𝐵 −𝐴)−1𝐶,

for any 𝜆, 𝜇 ∈ 𝜌𝐵𝐶(𝐴). From this, we may conclude the following:
(RE1) Suppose 𝜆, 𝜇 ∈ 𝜌𝐵𝐶(𝐴). Then

(51) 𝐿𝐶,𝐵
𝜆 (𝐴)𝐶 − 𝐿𝐶,𝐵

𝜇 (𝐴)𝐶 = (𝜇− 𝜆)𝐿𝐶,𝐵
𝜇 (𝐴)𝐿𝐶,𝐵

𝜆 (𝐴)

and
𝐿𝐶,𝐵
𝜇 (𝐴)𝐿𝐶,𝐵

𝜆 (𝐴) = 𝐿𝐶,𝐵
𝜆 (𝐴)𝐿𝐶,𝐵

𝜇 (𝐴).

Hence, the nonemptiness of set 𝜌𝐵𝐶(𝐴) implies that the function 𝜆 ↦→ 𝐿𝐶,𝐵
𝜆 (𝐴) ∈

𝐿(𝐸), 𝜆 ∈ 𝜌𝐵𝐶(𝐴) is a 𝐶-pseudoresolvent in the sense of [384, Definition 3.1] and
the following holds [384]:

(RE1)’ The spaces 𝑁(𝐿𝐶,𝐵
𝜆 (𝐴)), 𝐶−1(𝑅(𝐿𝐶,𝐵

𝜆 (𝐴))), 𝑁(𝐶 − 𝜆𝐿𝐶,𝐵
𝜆 (𝐴)) and

𝐶−1(𝑅(𝐶 − 𝜆𝐿𝐶,𝐵
𝜆 (𝐴))) are independent of 𝜆 ∈ 𝜌𝐵𝐶(𝐴).

(RE1)” Suppose, additionally, that 𝑁(𝐿𝐶,𝐵
𝜆 (𝐴)) = {0} for some 𝜆 ∈ 𝜌𝐵𝐶(𝐴). Then

we can define the closed linear operator 𝑊 on 𝐸 by

𝐷(𝑊 ) := 𝐶−1(𝑅(𝐿𝐶,𝐵
𝜆 (𝐴))) and 𝑊𝑥 := (𝜆− (𝐿𝐶,𝐵

𝜆 (𝐴))−1𝐶)𝑥 for 𝑥 ∈ 𝐷(𝑊 );

observe that (RE1)’ implies that the definition of 𝑊 is independent of
𝜆 ∈ 𝜌𝐵𝐶(𝐴). Then 𝐶−1𝑊𝐶 = 𝑊 , 𝜌𝐵𝐶(𝐴) ⊆ 𝜌𝐶(𝑊 ) and 𝐿𝐶,𝐵

𝜆 (𝐴) =
(𝜆−𝑊 )−1𝐶, 𝜆 ∈ 𝜌𝐵𝐶(𝐴).

It is well known that the existence of operator 𝑊 from (RE1)" cannot be proved in
the case that there exists 𝜆 ∈ 𝜌𝐵𝐶(𝐴) such that the kernel space of operator 𝐿𝐶,𝐵

𝜆 (𝐴)
is non-trivial (cf. also Example 2.1.6 below; then (RE1)" holds). It is not difficult
to prove that

𝐴(𝜆𝐵 −𝐴)−1𝐶𝐵𝑥 = 𝐵(𝜆𝐵 −𝐴)−1𝐶𝐴𝑥, 𝑥 ∈ 𝐷(𝐴) ∩𝐷(𝐵), 𝜆 ∈ 𝜌𝐵𝐶(𝐴),

and (see the second equality in [509, Lemma 2.1.2] with 𝐶 = 𝐼):

𝑁(𝐿𝐶,𝐵
𝜆 (𝐴)) = 𝐶−1[{𝐴𝑥 : 𝑥 ∈ 𝐷(𝐴) ∩𝑁(𝐵)}], 𝜆 ∈ 𝜌𝐵𝐶(𝐴).

The proof of following resolvent equation follows from (reqefhil and the fact
that, for every 𝑥 ∈ 𝐷(𝐵), one has 𝐵(𝜆𝐵 −𝐴)−1𝐶𝐵𝐶𝑥 = 𝐶𝐵(𝜆𝐵 −𝐴)−1𝐶𝐵𝑥:

(RE2) Suppose 𝜆, 𝜇 ∈ 𝜌𝐵𝐶(𝐴) and 𝑥 ∈ 𝐷(𝐵). Then

𝑅𝐶,𝐵
𝜆 (𝐴)𝐶𝑥−𝑅𝐶,𝐵

𝜇 (𝐴)𝐶𝑥 = (𝜇− 𝜆)𝑅𝐶,𝐵
𝜇 (𝐴)𝑅𝐶,𝐵

𝜆 (𝐴)𝑥

and
𝑅𝐶,𝐵

𝜇 (𝐴)𝑅𝐶,𝐵
𝜆 (𝐴)𝑥 = 𝑅𝐶,𝐵

𝜆 (𝐴)𝑅𝐶,𝐵
𝜇 (𝐴)𝑥.

Taking into account (RE2) and proceeding as in the proofs of [384, Lemma 3.2,
Lemma 3.3], we can deduce the following:
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(RE2)’ The spaces 𝑁(𝑅𝐶,𝐵
𝜆 (𝐴)), 𝐶−1(𝑅(𝑅𝐶,𝐵

𝜆 (𝐴))) ∩ 𝐷(𝐵), 𝑁(𝐶 − 𝜆𝑅𝐶,𝐵
𝜆 (𝐴))

and 𝐶−1(𝑅(𝐶 − 𝜆𝑅𝐶,𝐵
𝜆 (𝐴))) ∩𝐷(𝐵) are independent of 𝜆 ∈ 𝜌𝐵𝐶(𝐴).

Furthermore, if 𝐵 ∈ 𝐿(𝐸) is injective, then it is not difficult to show that the
operator 𝐵−1𝐴 is closed, as well as that 𝜌𝐶(𝐵−1𝐴) = 𝜌𝐵𝐶(𝐴) and

(𝜆−𝐵−1𝐴)−1𝐶𝑥 = (𝜆𝐵 −𝐴)−1𝐶𝐵𝑥, 𝑥 ∈ 𝐸;

cf. also (RE1)”, [384, Theorem 3.4] and [199, Theorem 1.15]. Making use of [296,
Lemma 3.3], (50) and the argumentation from [138, Section 2] (cf. [138, Proposition
2.6, Remark 2.7]), we can prove the following:

Proposition 2.1.3. Let ∅ ≠ Ω ⊆ 𝜌𝐵𝐶(𝐴) be open, and let 𝑥 ∈ 𝐸.
(i) The local boundedness of mapping 𝜆 ↦→ 𝐵(𝜆𝐵 − 𝐴)−1𝐶𝑥, 𝜆 ∈ Ω, resp.

the assumption that 𝐸 is barreled and local boundedness of mapping 𝜆 ↦→
𝐵(𝜆𝐵 − 𝐴)−1𝐶 ∈ 𝐿(𝐸), 𝜆 ∈ Ω, implies the analyticity of mappings 𝜆 ↦→
(𝜆𝐵 − 𝐴)−1𝐶3𝑥, 𝜆 ∈ Ω and 𝜆 ↦→ 𝐵(𝜆𝐵 − 𝐴)−1𝐶3𝑥, 𝜆 ∈ Ω, resp. 𝜆 ↦→
(𝜆𝐵 − 𝐴)−1𝐶3 ∈ 𝐿(𝐸), 𝜆 ∈ Ω and 𝜆 ↦→ 𝐵(𝜆𝐵 − 𝐴)−1𝐶3 ∈ 𝐿(𝐸), 𝜆 ∈
Ω. Furthermore, if 𝑅(𝐶) is dense in 𝐸, resp. if 𝑅(𝐶) is dense in 𝐸
and 𝐸 is barreled, then the mappings 𝜆 ↦→ (𝜆𝐵 − 𝐴)−1𝐶𝑥, 𝜆 ∈ Ω and
𝜆 ↦→ 𝐵(𝜆𝐵 − 𝐴)−1𝐶𝑥, 𝜆 ∈ Ω are analytic, resp. the mappings 𝜆 ↦→
(𝜆𝐵 − 𝐴)−1𝐶 ∈ 𝐿(𝐸), 𝜆 ∈ Ω and 𝜆 ↦→ 𝐵(𝜆𝐵 − 𝐴)−1𝐶 ∈ 𝐿(𝐸), 𝜆 ∈ Ω
are analytic.

(ii) The continuity of mapping 𝜆 ↦→ 𝐵(𝜆𝐵 − 𝐴)−1𝐶𝑥, 𝜆 ∈ Ω implies its
analyticity. The continuity of mappings 𝜆 ↦→ 𝐵(𝜆𝐵 − 𝐴)−1𝐶𝑥, 𝜆 ∈ Ω
and 𝜆 ↦→ (𝜆𝐵 − 𝐴)−1𝐶𝑥, 𝜆 ∈ Ω implies the analyticity of mapping 𝜆 ↦→
(𝜆𝐵 − 𝐴)−1𝐶𝑥, 𝜆 ∈ Ω; the strong continuity of mapping 𝜆 ↦→ (𝜆𝐵 −
𝐴)−1𝐶 ∈ 𝐿(𝐸), 𝜆 ∈ Ω (𝜆 ↦→ (𝜆𝐵 − 𝐴)−1𝐶𝐵, 𝜆 ∈ Ω; with the meaning
clear) implies the analyticity of mapping 𝜆 ↦→ (𝜆𝐵−𝐴)−1𝐶𝑥, 𝜆 ∈ Ω (𝜆 ↦→
(𝜆𝐵 −𝐴)−1𝐶𝐵𝑥, 𝜆 ∈ Ω, provided that 𝑥 ∈ 𝐷(𝐵)), as well. Furthermore,
if 𝐸 is barreled, then the continuity of mapping 𝜆 ↦→ (𝜆𝐵−𝐴)−1𝐶 ∈ 𝐿(𝐸),
𝜆 ∈ Ω (𝜆 ↦→ 𝐵(𝜆𝐵 − 𝐴)−1𝐶 ∈ 𝐿(𝐸), 𝜆 ∈ Ω) implies its analyticity; the
same conclusion holds for the mapping 𝜆 ↦→ (𝜆𝐵 − 𝐴)−1𝐶𝐵 ∈ 𝐿(𝐸),
𝜆 ∈ Ω, provided that 𝐸 is barreled and 𝐵 ∈ 𝐿(𝐸).

For clarity’s sake, we will prove parts (i) and (ii) of the following extension
of [138, Corollary 2.8].

Proposition 2.1.4. Let ∅ ≠ Ω ⊆ 𝜌𝐵𝐶(𝐴) be open, and let 𝑥 ∈ 𝐸.
(i) Suppose that the mapping 𝜆 ↦→ (𝜆𝐵 −𝐴)−1𝐶𝑥, 𝜆 ∈ Ω is analytic. Then

(𝜆𝐵 −𝐴)
𝑑𝑛

𝑑𝜆𝑛
(𝜆𝐵 −𝐴)−1𝐶𝑥 = (−𝑛)𝐵 𝑑𝑛−1

𝑑𝜆𝑛−1
(𝜆𝐵 −𝐴)−1𝐶𝑥, 𝑛 ∈ N, 𝜆 ∈ Ω,

𝐶𝑥 ∈ 𝐷(((𝜆𝐵 − 𝐴)−1𝐵)𝑛−1(𝜆𝐵 − 𝐴)−1), 𝑛 ∈ N, 𝜆 ∈ Ω, and for each
𝑛 ∈ N and 𝜆 ∈ Ω,

𝑑𝑛−1

𝑑𝜆𝑛−1
(𝜆𝐵 −𝐴)−1𝐶𝑥 = (−1)𝑛−1(𝑛− 1)!((𝜆𝐵 −𝐴)−1𝐵)𝑛−1(𝜆𝐵 −𝐴)−1𝐶𝑥.
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If, in addition, the mapping 𝜆 ↦→ 𝐵(𝜆𝐵−𝐴)−1𝐶𝑥, 𝜆 ∈ Ω is analytic, then
for each 𝑛 ∈ N and 𝜆 ∈ Ω, 𝐶𝑥 ∈ 𝐷(𝐵((𝜆𝐵 − 𝐴)−1𝐵)𝑛−1(𝜆𝐵 − 𝐴)−1),
and

𝑑𝑛−1

𝑑𝜆𝑛−1
𝐵(𝜆𝐵 −𝐴)−1𝐶𝑥 = (−1)𝑛−1(𝑛− 1)!𝐵((𝜆𝐵 −𝐴)−1𝐵)𝑛−1(𝜆𝐵 −𝐴)−1𝐶𝑥.

(ii) Suppose that the mapping 𝜆 ↦→ 𝐵(𝜆𝐵−𝐴)−1𝐶𝑥, 𝜆 ∈ Ω is analytic. Then
for each 𝑛 ∈ N and 𝜆 ∈ Ω, ((𝜆𝐵 − 𝐴)−1𝐵)𝑛−1(𝜆𝐵 − 𝐴)−1𝐶2𝑥 ∈ 𝑅(𝐶),
𝑛 ∈ N, 𝜆 ∈ Ω and

𝑑𝑛−1

𝑑𝜆𝑛−1
𝐵(𝜆𝐵−𝐴)−1𝐶𝑥 = 𝐶−1(−1)𝑛−1(𝑛−1)!𝐵((𝜆𝐵−𝐴)−1𝐵)𝑛−1(𝜆𝐵−𝐴)−1𝐶2𝑥.

(iii) Suppose that 𝐸 is barreled, and the mapping 𝜆 ↦→ (𝜆𝐵 − 𝐴)−1𝐶 ∈ 𝐿(𝐸),
𝜆 ∈ Ω is analytic, resp., 𝐵 ∈ 𝐿(𝐸) and the mapping 𝜆 ↦→ (𝜆𝐵−𝐴)−1𝐶𝐵 ∈
𝐿(𝐸), 𝜆 ∈ Ω is analytic. Then for each 𝑛 ∈ N and 𝜆 ∈ Ω, 𝑅(𝐶) ⊆
𝐷(((𝜆𝐵 −𝐴)−1𝐵)𝑛−1(𝜆𝐵 −𝐴)−1), resp.,
𝑅(𝐶𝐵) ⊆ 𝐷(((𝜆𝐵 −𝐴)−1𝐵)𝑛−1(𝜆𝐵 −𝐴)−1), and

𝑑𝑛−1

𝑑𝜆𝑛−1
(𝜆𝐵 −𝐴)−1𝐶 = (−1)𝑛−1(𝑛− 1)!((𝜆𝐵 −𝐴)−1𝐵)𝑛−1(𝜆𝐵 −𝐴)−1𝐶 ∈ 𝐿(𝐸),

resp.,

𝑑𝑛−1

𝑑𝜆𝑛−1
(𝜆𝐵−𝐴)−1𝐶𝐵 = (−1)𝑛−1(𝑛−1)!((𝜆𝐵−𝐴)−1𝐵)𝑛−1(𝜆𝐵−𝐴)−1𝐶𝐵 ∈ 𝐿(𝐸).

(iv) Suppose that 𝐸 is barreled and the mapping 𝜆 ↦→ 𝐵(𝜆𝐵−𝐴)−1𝐶 ∈ 𝐿(𝐸),
𝜆 ∈ Ω is analytic. Then 𝑅(((𝜆𝐵 − 𝐴)−1𝐵)𝑛−1(𝜆𝐵 − 𝐴)−1𝐶2) ⊆ 𝑅(𝐶),
𝑛 ∈ N, 𝜆 ∈ Ω and

𝑑𝑛−1

𝑑𝜆𝑛−1
𝐵(𝜆𝐵 −𝐴)−1𝐶 = 𝐶−1(−1)𝑛−1(𝑛− 1)!

×𝐵((𝜆𝐵 −𝐴)−1𝐵)𝑛−1(𝜆𝐵 −𝐴)−1𝐶2 ∈ 𝐿(𝐸), 𝑛 ∈ N, 𝜆 ∈ Ω.

Proof. Let 𝑛 ∈ N, let 𝜆 ∈ Ω, and let Γ be a positively oriented circle around
𝜆 that is contained in Ω. Making use of the Cauchy integral formula, we get that

𝑑𝑛

𝑑𝜆𝑛
(𝜆𝐵 −𝐴)−1𝐶𝑥 =

𝑛!

2𝜋𝑖

∮︁
Γ

(𝑧𝐵 −𝐴)−1𝐶𝑥

(𝑧 − 𝜆)𝑛+1
𝑑𝑧.

Since the operators 𝐴 and 𝐵 are closed, we get from the above that 𝑑𝑛

𝑑𝜆𝑛 (𝜆𝐵 −
𝐴)−1𝐶𝑥 ∈ 𝐷(𝐴) ∩𝐷(𝐵). Applying again the Cauchy integral formula, and taking
into account that the operators 𝐶−1(𝜆𝐵 −𝐴)𝐶 and 𝐵 are closed, we get that

(𝜆𝐵 −𝐴)
𝑑𝑛

𝑑𝜆𝑛
(𝜆𝐵 −𝐴)−1𝐶𝑥 = 𝐶−1(𝜆𝐵 −𝐴)𝐶

𝑛!

2𝜋𝑖

∮︁
Γ

(𝑧𝐵 −𝐴)−1𝐶𝑥

(𝑧 − 𝜆)𝑛+1
𝑑𝑧

=
𝑛!

2𝜋𝑖

∮︁
Γ

𝐶−1(𝜆𝐵 −𝐴)𝐶(𝑧𝐵 −𝐴)−1𝐶𝑥

(𝑧 − 𝜆)𝑛+1
𝑑𝑧

=
𝑛!

2𝜋𝑖

∮︁
Γ

(𝜆𝐵 −𝐴)(𝑧𝐵 −𝐴)−1𝐶𝑥

(𝑧 − 𝜆)𝑛+1
𝑑𝑧
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=

∮︁
Γ

𝐶𝑥

(𝑧 − 𝜆)𝑛+1
𝑑𝑧 −

∮︁
Γ

𝐵(𝑧𝐵 −𝐴)−1𝐶𝑥

(𝑧 − 𝜆)𝑛+1
𝑑𝑧

= −
∮︁
Γ

𝐵(𝑧𝐵 −𝐴)−1𝐶𝑥

(𝑧 − 𝜆)𝑛+1
𝑑𝑧

= −𝐵
∮︁
Γ

(𝑧𝐵 −𝐴)−1𝐶𝑥

(𝑧 − 𝜆)𝑛
𝑑𝑧

= (−𝑛)𝐵 𝑑𝑛−1

𝑑𝜆𝑛−1
(𝜆𝐵 −𝐴)−1𝐶𝑥,

which proves the first equality in (i). This implies

𝑑𝑛

𝑑𝜆𝑛
(𝜆𝐵 −𝐴)−1𝐶𝑥 = (−𝑛)[(𝜆𝐵 −𝐴)−1𝐵]

𝑑𝑛−1

𝑑𝜆𝑛−1
(𝜆𝐵 −𝐴)−1𝐶𝑥,

and now the remainder of (i) simply follows by induction. To prove (ii), suppose
that 𝜆0 ∈ Ω. Since the mapping 𝜆 ↦→ 𝐵(𝜆𝐵 − 𝐴)−1𝐶𝑥, 𝜆 ∈ Ω is analytic, the
Hilbert resolvent equation (50) shows that the mapping 𝜆 ↦→ [(𝜆0𝐵−𝐴)−1𝐶]𝐵(𝜆𝐵−
𝐴)−1𝐶𝑥 = (1/(𝜆0−𝜆))[(𝜆𝐵−𝐴)−1𝐶2𝑥−(𝜆0𝐵−𝐴)−1𝐶2𝑥], 𝜆 ∈ Ωr{𝜆0} is analytic,
as well. From this, we may conclude that the mapping 𝜆 ↦→ (𝜆𝐵−𝐴)−1𝐶2𝑥, 𝜆 ∈ Ω
is analytic. By our assumption, the mapping 𝜆 ↦→ 𝐵(𝜆𝐵 − 𝐴)−1𝐶2𝑥, 𝜆 ∈ Ω is
likewise analytic so that part (ii) follows almost directly from (i). The proofs of
(iii) and (iv) are simple and therefore omitted. �

Summa summarum, Proposition 2.1.3 and Proposition 2.1.4 taken together
provide a generalization of [296, Proposition 2.16] for degenerate (𝐶,𝐵)-resolvents.

Remark 2.1.5. In the case that 𝐶 = 𝐼 and 𝐸 is a Banach space, it is well
known that the (𝐼,𝐵)-resolvent set of 𝐴 is open, as well as that the (𝐼,𝐵)-resolvent,
right (𝐼,𝐵)-resolvent and left (𝐼,𝐵)-resolvent of the operator 𝐴 are analytic in
𝜌𝐵(𝐴) [509]. The corresponding statement in locally convex spaces has recently
been analyzed in [214, Theorem 1].

Let us consider again the following abstract degenerate Volterra integral equa-
tion:

(52) 𝐵𝑢(𝑡) = 𝑓(𝑡) +

∫︁ 𝑡

0

𝑎(𝑡− 𝑠)𝐴𝑢(𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝜏),

where 0 < 𝜏 6 ∞, 𝑡 ↦→ 𝑓(𝑡), 𝑡 ∈ [0, 𝜏) is a continuous mapping with values in
a complex SCLCS 𝐸, 𝑎 ∈ 𝐿1

𝑙𝑜𝑐([0, 𝜏)) and 𝐴, 𝐵 are closed linear operators with
domain and range contained in 𝐸.

Example 2.1.6. Let the function 𝑎(𝑡) be a kernel on [0, 𝜏) and let the operator
𝑊 generate a (local) (𝑎, 𝑘)-regularized 𝐶-resolvent family (𝑅(𝑡))𝑡∈[0,𝜏) satisfying
𝑊
∫︀ 𝑡

0
𝑎(𝑡− 𝑠)𝑅(𝑠)𝑥 𝑑𝑠 = 𝑅(𝑡)𝑥− 𝑘(𝑡)𝐶𝑥, 𝑥 ∈ 𝑋, 𝑡 ∈ [0, 𝜏) (the use of operator 𝑊

here seems to be much better than the use of operator 𝐴𝐵−1, provided that 𝐵 is
injective and 𝐶 ̸= 𝐼; cf. [292] for the notion and (49)). Then a simple computation
involving the definition of operator 𝑊 shows that for each element 𝑦 ∈ 𝐸 such that



2.2. DEGENERATE (𝑎, 𝑘)-REGULARIZED 𝐶-RESOLVENT FAMILIES... 75

the element 𝑥 = 𝐶−1𝐿𝐶,𝐵
𝜆 (𝐴)𝑦 is well-defined, we have

𝑅(𝑡)𝐶−1𝐿𝐶,𝐵
𝜆 (𝐴)𝑦 − 𝑘(𝑡)𝐿𝐶,𝐵

𝜆 (𝐴)𝑦 =

∫︁ 𝑡

0

𝑎(𝑡− 𝑠)𝑅(𝑠)[𝐶−1𝐴(𝜆𝐵 −𝐴)−1𝐶𝑦]𝑑𝑠,

for any 𝑡 ∈ [0, 𝜏). In particular, if 𝑦 = (𝜆𝐵 −𝐴)𝑧 for some 𝑧 ∈ 𝐷(𝐴) ∩𝐷(𝐵), then
the above requirements hold and we get

𝑅(𝑡)𝐵𝑧 − 𝑘(𝑡)𝐶𝐵𝑧 =

∫︁ 𝑡

0

𝑎(𝑡− 𝑠)𝑅(𝑠)𝐴𝑧 𝑑𝑠, 𝑡 ∈ [0, 𝜏).

Assuming additionally that 𝑅(𝑡) commutes with 𝐴 and 𝐵 for all 𝑡 ∈ [0, 𝜏), the
above implies that the function 𝑢(𝑡) := 𝑅(𝑡)𝑧, 𝑡 ∈ [0, 𝜏) is a unique strong solution
of the abstract degenerate Volterra equation (52), with 𝑓(𝑡) = 𝑘(𝑡)𝐶𝐵𝑧, 𝑡 ∈ [0, 𝜏).

Remark 2.1.7. Assume that the functions 𝑘(𝑡) and |𝑎|(𝑡) satisfy the condition
(P1), as well as that the operator 𝐵 is injective. Using the definition of operator 𝑊 ,
properties stated in (RE1)” and [292, Theorem 2.1.5], we have that 𝑊 generates a
global exponentially equicontinuous (𝑎, 𝑘)-regularized 𝐶-resolvent family (𝑅(𝑡))𝑡>0

(cf. [292] for the notion) provided that there exists a sufficiently large real number
𝜔 > 0 such that the family {𝑒−𝜔𝑡𝑅(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝐸) is equicontinuous as well as
that for each 𝜆 ∈ C with 𝑘(𝜆)�̃�(𝜆) ̸= 0 and Re𝜆 > 𝜔, the operator 𝐵 − �̃�(𝜆)𝐴 is
injective and

𝑘(𝜆)𝐵(𝐵 − �̃�(𝜆)𝐴)−1𝐶𝑥 =

∫︁ ∞

0

𝑒−𝜆𝑡𝑅(𝑡)𝑥 𝑑𝑡, 𝑥 ∈ 𝐸.

Combined with the conclusions clarified in the above example, we are in a position
to prove Theorem 2.2.8(ii) in a much simpler way provided the injectiveness of 𝐵.
It is also worth noting that we can use [292, Theorem 2.1.6, Proposition 2.1.7,
Theorem 2.1.29, Proposition 2.1.32] here.

2.2. Degenerate (𝑎, 𝑘)-regularized 𝐶-resolvent families in locally convex
spaces

The main aim of this section is to present our recent results on degenerate (𝑎, 𝑘)-
regularized 𝐶-resolvent families in locally convex spaces and semilinear degenerate
relaxation differential equations with abstract differential operators [306,319].

Before starting our work, we need to remind ourselves of some well known facts
and definitions. A nonnegative infinitely differentiable function 𝜙 : (0,∞) → R
is called a Bernstein function iff the function 𝜙′(·) is completely monotonic, i.e.,
(−1)𝑛𝜙(𝑛+1)(𝑡) > 0, 𝑛 ∈ N0, 𝑡 > 0. Following [459, Definition 4.4], it will be
said that a function 𝑎 : (0,∞) → R is a creep function iff 𝑎(𝑡) is nonnegative,
nondecreasing and concave. A creep function 𝑎(𝑡) has the standard form

𝑎(𝑡) = 𝑎0 + 𝑎∞𝑡+

∫︁ 𝑡

0

𝑎1(𝑠)𝑑𝑠,

where 𝑎0 = 𝑎(0+) > 0, 𝑎∞ = lim𝑡→∞ 𝑎(𝑡)/𝑡 = inf𝑡>0 𝑎(𝑡)/𝑡 > 0, and 𝑎1(𝑡) =
𝑎′(𝑡) − 𝑎∞ is nonnegative, nonincreasing and lim𝑡→∞ 𝑎1(𝑡) = 0. Recall that, for
every 𝑗 ∈ N and 𝛼 > 0, there exist uniquely determined real numbers 𝑐𝑙,𝑗,𝛼 (1 6
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𝑙 6 𝑗) such that the equation (44) holds for the Mittag-Leffler function 𝐸𝛼(𝑧). A
function 𝑎 ∈ 𝐿1

𝑙𝑜𝑐([0,∞)) is said to be completely positive iff for any 𝜂 > 0, the
solutions of the convolution equations

𝑠(𝑡) + 𝜂(𝑎 * 𝑠)(𝑡) = 1 and 𝑟(𝑡) + 𝜂(𝑎 * 𝑟)(𝑡) = 𝑎(𝑡)

satisfy 𝑠(𝑡) > 0 and 𝑟(𝑡) > 0 on [0, 𝑇 ]; cf. also [459, Definition 4.5, p. 96] and [395,
Remark 3.6, (3.3)].

Let 0 < 𝜏 6 ∞ and 𝑎 ∈ 𝐿1
𝑙𝑜𝑐([0, 𝜏)). Then we say that the function 𝑎(𝑡) is

a kernel on [0, 𝜏) iff for each 𝑓 ∈ 𝐶([0, 𝜏)) the assumption
∫︀ 𝑡

0
𝑎(𝑡 − 𝑠)𝑓(𝑠)𝑑𝑠 = 0,

𝑡 ∈ [0, 𝜏) implies 𝑓(𝑡) = 0, 𝑡 ∈ [0, 𝜏). If 𝜏 = ∞ and 𝑎 ̸= 0 in 𝐿1
𝑙𝑜𝑐([0,∞)),

then the famous Titchmarsh theorem [520, Theorem VII] implies that the function
𝑎(𝑡) is automatically a kernel on [0,∞); the situation is quite different in the case
that 𝜏 < ∞, then we can apply the Titchmarsh–Foiaş theorem [40, Theorem 2.1]
(cf. also [291, Theorem 3.4.40]) in order to see that the function 𝑎(𝑡) is a kernel
on [0, 𝜏) iff 0 ∈ supp(𝑎). In this place, it is worth noting that, for any function
𝑎(𝑡) satisfying (P1), the condition 0 ∈ supp(𝑎) is necessary and sufficient for the
equality lim sup𝜆→∞ 𝜆−1 ln |�̃�(𝜆)| = 0 to be true, or equivalently, for the convolution
mapping 𝒦 : 𝑓 ↦→ 𝑎 * 𝑓 to be an injective operator on 𝐶([0,∞)) with dense range
in the Fréchet space 𝐶*([0,∞)) of all continuous functions 𝑔 : [0,∞) ↦→ C such
that 𝑔(0) = 0, equipped with the seminorms ‖𝑔‖𝑛 := sup𝑡∈[0,𝑛] |𝑔(𝑡)| (𝑛 ∈ N); see
e.g. [27, p. 106].

In this section, we assume that 𝑎 ̸= 0 in 𝐿1
𝑙𝑜𝑐([0,∞)) and 𝑘 ̸= 0 in 𝐶([0,∞)),

so that the functions 𝑎(𝑡) and 𝑘(𝑡) will be kernels on [0,∞).

2.2.1. The main structural properties of degenerate (𝑎, 𝑘)-regularized
𝐶-resolvent families. We start this subsection by introducing the following def-
inition (cf. [292, Subsection 2.1.1] and [459] for the case 𝐵 = 𝐼):

Definition 2.2.1. Let 0 < 𝜏 6∞. A function 𝑢 ∈ 𝐶([0, 𝜏) : 𝐸) is said to be:
(i) a (mild) solution of (52) iff (𝑎 * 𝑢)(𝑡) ∈ 𝐷(𝐴), 𝑡 ∈ [0, 𝜏), 𝐴(𝑎 * 𝑢)(𝑡) =

𝐵𝑢(𝑡)−𝑓(𝑡), 𝑡 ∈ [0, 𝜏) and the mapping 𝑡 ↦→ 𝐵𝑢(𝑡), 𝑡 ∈ [0, 𝜏) is continuous,
(ii) a strong solution of (52) iff the mapping 𝑡 ↦→ 𝐴𝑢(𝑡), 𝑡 ∈ [0, 𝜏) is continuous,

(𝑎*𝐴𝑢)(𝑡) = 𝐵𝑢(𝑡)−𝑓(𝑡), 𝑡 ∈ [0, 𝜏) and the mapping 𝑡 ↦→ 𝐵𝑢(𝑡), 𝑡 ∈ [0, 𝜏)
is continuous,

(iii) a weak solution of (52) iff for every (𝑥*, 𝑦*) ∈ 𝐴* and for every 𝑡 ∈ [0, 𝜏),
one has ⟨𝑥*, 𝐵𝑢(𝑡)⟩ = ⟨𝑥*, 𝑓(𝑡)⟩+ ⟨𝑦*, (𝑎 * 𝑢)(𝑡)⟩, 𝑡 ∈ [0, 𝜏).

It is clear that any strong solution of (52) is also a mild solution of the same
problem; the converse statement is not true in general. Since [295, Lemma 2.4]
continues to hold in SCLCSs, the concepts mild and weak solution of (52) coincide
actually.

We introduce the notion of an exponentially equicontinuous (𝑎, 𝑘)-regularized
𝐶-resolvent family for (52) as follows.

Definition 2.2.2. Suppose that the functions 𝑎(𝑡) and 𝑘(𝑡) satisfy (P1), as
well as that 𝑅(𝑡) : 𝐷(𝐵) → 𝐸 is a linear mapping (𝑡 > 0). Let 𝐶 ∈ 𝐿(𝐸) be
injective, and let 𝐶𝐴 ⊆ 𝐴𝐶. Then the operator family (𝑅(𝑡))𝑡>0 is said to be an
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exponentially equicontinuous (𝑎, 𝑘)-regularized 𝐶-resolvent family for (52) iff there
exists 𝜔 > max(0, abs(𝑎), abs(𝑘)) such that the following holds:

(i) The mapping 𝑡 ↦→ 𝑅(𝑡)𝑥, 𝑡 > 0 is continuous for every fixed element
𝑥 ∈ 𝐷(𝐵).

(ii) The family {𝑒−𝜔𝑡𝑅(𝑡) : 𝑡 > 0} is equicontinuous, i.e., for every 𝑝 ∈ ~,
there exist 𝑐 > 0 and 𝑞 ∈ ~ such that

(53) 𝑝(𝑒−𝜔𝑡𝑅(𝑡)𝑥) 6 𝑐𝑞(𝑥), 𝑥 ∈ 𝐷(𝐵), 𝑡 > 0.

(iii) For every 𝜆 ∈ C with Re𝜆 > 𝜔 and 𝑘(𝜆) ̸= 0, the operator 𝐵 − �̃�(𝜆)𝐴 is
injective, 𝐶(𝑅(𝐵)) ⊆ 𝑅(𝐵 − �̃�(𝜆)𝐴) and

(54) 𝑘(𝜆)(𝐵 − �̃�(𝜆)𝐴)−1𝐶𝐵𝑥 =

∫︁ ∞

0

𝑒−𝜆𝑡𝑅(𝑡)𝑥 𝑑𝑡, 𝑥 ∈ 𝐷(𝐵).

If 𝑘(𝑡) = 𝑔𝑟+1(𝑡) for some 𝑟 > 0, then it is also said that (𝑅(𝑡))𝑡>0 is an ex-
ponentially equicontinuous 𝑟-times integrated (𝑎,𝐶)-regularized resolvent family
for (52); an exponentially equicontinuous 0-times integrated (𝑎,𝐶)-regularized re-
solvent family for (52) is also said to be an exponentially equicontinuous (𝑎,𝐶)-
regularized resolvent family for (52).

Remark 2.2.3. (i) If 𝐵 = 𝐼, then the above simply means that 𝐴 is
a subgenerator of the exponentially equicontinuous (𝑎, 𝑘)-regularized 𝐶-
resolvent family (𝑅(𝑡))𝑡>0 in the sense of [296, Definition 2.1]; cf. also
[296, Theorem 2.7]. The case 𝐵 ̸= 𝐼 is more difficult to deal with; for ex-
ample, the validity of some very simple equalities, like 𝑅(𝑡)𝐴𝑥 = 𝐴𝑅(𝑡)𝑥,
𝑡 > 0 or 𝑅(𝑡)𝐵𝑥 = 𝐵𝑅(𝑡)𝑥, 𝑡 > 0, cannot be proved without making some
new assumptions. Furthermore, it is not clear how one can define, by us-
ing a method similar to that employed in Definition 2.2.2, the notion of
an exponentially equicontinuous (𝑎, 𝑘)-regularized (𝐶1, 𝐶2)-existence and
uniqueness family for (52) in a satisfactory way.

(ii) In contrast to [542,543], we do not assume in Definition 2.2.2 that 𝐶𝐵 ⊆
𝐵𝐶 or 𝑅(𝐶) ⊆ 𝑅(𝐵 − �̃�(𝜆)𝐴) (Re𝜆 > 𝜔, 𝑘(𝜆) ̸= 0).

(iii) The uniqueness theorem for Laplace transform implies that there exists
at most one exponentially equicontinuous (𝑎, 𝑘)-regularized 𝐶-resolvent
family for (52).

(iv) If 𝐸 is complete and 𝐵 is densely defined, then [419, Lemma 22.19] com-
bined with (ii) of Definition 2.2.2 implies that, for every 𝑡 > 0 and for
every 𝜆 ∈ C with Re𝜆 > 𝜔 and 𝑘(𝜆) ̸= 0, there exist two operators
�̂�(𝑡), 𝐺(𝜆) ∈ 𝐿(𝐸) such that �̂�(𝑡)𝑥 = 𝑅(𝑡)𝑥, 𝑥 ∈ 𝐷(𝐵) and 𝐺(𝜆)𝑥 =

(𝐵 − �̃�(𝜆)𝐴)−1𝐶𝐵𝑥, 𝑥 ∈ 𝐷(𝐵). The operator family (�̂�(𝑡))𝑡>0 ⊆ 𝐿(𝐸)
is strongly continuous and, for every 𝑝 ∈ ~, there exist 𝑐 > 0 and 𝑞 ∈ ~
such that (53) holds for all 𝑥 ∈ 𝐸 and 𝑡 > 0, with (𝑅(𝑡))𝑡>0 replaced by
(�̂�(𝑡))𝑡>0. Furthermore, 𝑘(𝜆)𝐺(𝜆)𝑥 =

∫︀∞
0
𝑒−𝜆𝑡𝑅(𝑡)𝑥 𝑑𝑡, 𝑥 ∈ 𝐸.

(v) The notion of a (local) (𝑎, 𝑘)-regularized 𝐶-resolvent family (𝑅(𝑡))𝑡∈[0,𝜏)

for (52) can be defined in many different ways, but it seems that there
is no satisfactory option that would provide us a general approach to the
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Volterra problems of the kind (52). Observe also that we can simply
construct a great number of examples of strongly continuous operator
families (𝑅(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝐸) for which neither 𝑅(𝑡)𝐴 ⊆ 𝑅(𝑡)𝐴, 𝑡 ∈ [0, 𝜏)
nor 𝑅(𝑡)𝐵 ⊆ 𝑅(𝑡)𝐵, 𝑡 ∈ [0, 𝜏), or only 𝑅(𝑡)𝐵 * 𝑅(𝑡)𝐵, 𝑡 ∈ [0, 𝜏), but the
solution of (52) exists and has the form 𝑢(𝑡) = 𝑅(𝑡)𝑥, 𝑡 ∈ [0, 𝜏) for some
𝑥 ∈ 𝐸; see e.g. [292, Example 2.8.11] and [295, Example 2.31]. Because
of that, in the sequel of this section we tend to pay attention primarily to
the notion introduced in Definition 2.2.2.

The proof of following proposition is omitted for the sake of brevity (cf. [296,
Proposition 2.4] for more details).

Proposition 2.2.4. (i) Let (𝑅(𝑡))𝑡>0 be an exponentially equicontinuous
(𝑎, 𝑘)-regularized 𝐶-resolvent family for (52), and let 𝑏 ̸= 0 in 𝐿1

𝑙𝑜𝑐([0,∞)).
If there exist 𝑀 > 1 and 𝜔 > 0 such that

∫︀ 𝑡

0
|𝑏(𝑠)|𝑑𝑠 6𝑀𝑒𝜔𝑡, 𝑡 > 0, then

((𝑏 *𝑅)(𝑡))𝑡>0 is an exponentially equicontinuous (𝑎, 𝑘 * 𝑏)-regularized 𝐶-
resolvent family for (52).

(ii) Let (𝑅𝑖(𝑡))𝑡>0 be an exponentially equicontinuous (𝑎, 𝑘𝑖)-regularized 𝐶-
resolvent family for (52), 𝑖 = 1, 2. Then (𝑘2 * 𝑅1)(𝑡)𝑥 = (𝑘1 * 𝑅2)(𝑡)𝑥,
𝑡 > 0, 𝑥 ∈ 𝐷(𝐵).

(iii) Let (𝑅(𝑡))𝑡>0 be an exponentially equicontinuous (𝑎, 𝑘)-regularized 𝐶-re-
solvent family for (52). Suppose that 𝑘(0) ̸= 0, 𝑏(𝑡) satisfies (P1), (𝑏 *
𝑘)(𝑡) + 𝑘(𝑡)𝑘(0)−1 = 1, 𝑡 > 0 and the function 𝑡 ↦→

∫︀ 𝑡

0
|𝑏(𝑠)|𝑑𝑠, 𝑡 > 0 is

exponentially bounded. Then (𝑆(𝑡)· ≡ 𝑘(0)−1𝑅(𝑡) ·+(𝑏*𝑅(·)·)(𝑡))𝑡>0 is an
exponentially equicontinuous (𝑎,𝐶)-regularized resolvent family for (52).

It should be noted that our analysis covers many important subjects that have
not been considered in [542, 543]. For example, we are in a position to clarify
Hille–Yosida’s type theorems for degenerate exponentially equicontinuous (𝑎, 𝑘)-
regularized 𝐶-resolvent families.

Theorem 2.2.5. (cf. [292, Theorem 2.1.6] for the case 𝐵 = 𝐼)

(i) Let 𝜔0 > max(0, abs(𝑎), abs(𝑘)), and let 𝑎(𝑡) and 𝑘(𝑡) satisfy (P1). As-
sume that, for every 𝜆 ∈ C with Re𝜆 > 𝜔0 and 𝑘(𝜆) ̸= 0, the operator
𝐵−�̃�(𝜆)𝐴 is injective and 𝐶(𝑅(𝐵)) ⊆ 𝑅(𝐵−�̃�(𝜆)𝐴). If for each 𝑥 ∈ 𝐷(𝐵)
there exists a function ϒ𝑥 : {𝜆 ∈ C : Re𝜆 > 𝜔0} → 𝐸 which satisfies:
(a) ϒ𝑥(𝜆) = 𝑘(𝜆)(𝐵 − �̃�(𝜆)𝐴)−1𝐶𝐵𝑥, Re𝜆 > 𝜔0, 𝑘(𝜆) ̸= 0,
(b) the mapping 𝜆 ↦→ ϒ𝑥(𝜆), Re𝜆 > 𝜔0 is analytic, and
(c) there exists 𝑟 > −1 such that for each 𝑝 ∈ ~ there exist 𝑀𝑝 > 0 and

𝑞𝑝 ∈ ~ satisfying

𝑝(ϒ𝑥(𝜆)) 6𝑀𝑝𝑞𝑝(𝑥)|𝜆|𝑟, Re𝜆 > 𝜔0, 𝑥 ∈ 𝐷(𝐵),

then, for every 𝛼 > 1, there exists an exponentially equicontinuous (𝑎, 𝑘 *
𝑔𝛼+𝑟)-regularized 𝐶-resolvent family (𝑅𝛼(𝑡))𝑡>0 for (52), and there exists
a constant 𝑐𝛼 > 0 such that

𝑝(𝑅𝛼(𝑡)𝑥) 6 𝑐𝛼𝑀𝑝𝑞𝑝(𝑥)𝑒
𝜔0𝑡, 𝑝 ∈ ~, 𝑥 ∈ 𝐷(𝐵), 𝑡 > 0.
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(ii) Let 𝜔 ∈ R, 𝜔0 > max(0, 𝜔, abs(𝑎), abs(𝑘)), and let 𝑎(𝑡) and 𝑘(𝑡) satisfy
(P1). Assume that for each 𝑥 ∈ 𝐷(𝐵) there exists an infinitely differen-
tiable function ϒ𝑥 : {𝜆 ∈ C : Re𝜆 > 𝜔0} → 𝐸 which satisfies the item
(i)(a) for real values of parameter 𝜆, as well as that for each 𝑝 ∈ ~ there
exist 𝑐𝑝 > 0 and 𝑞𝑝 ∈ ~ such that

𝑝
(︁
𝑛!−1(𝜆− 𝜔)𝑛+1 𝑑

𝑛

𝑑𝜆𝑛
ϒ𝑥(𝜆)

)︁
6 𝑐𝑝𝑞𝑝(𝑥),

provided 𝑘(𝜆) ̸= 0, 𝜆 > 𝜔0, 𝑥 ∈ 𝐷(𝐵), 𝑛 ∈ N0. Then, for every 𝑟 ∈
(0, 1], there exists an exponentially equicontinuous (𝑎, 𝑘 * 𝑔𝑟)-regularized
𝐶-resolvent family (𝑅𝑟(𝑡))𝑡>0 for (52), and

𝑝(𝑅𝑟(𝑡+ ℎ)𝑥−𝑅𝑟(𝑡)𝑥) 6
2𝑐𝑝𝑞𝑝(𝑥)

𝑟Γ(𝑟)
max(𝑒𝜔(𝑡+ℎ), 1)ℎ𝑟,

provided 𝑝 ∈ ~, 𝑡 > 0, ℎ > 0, 𝑥 ∈ 𝐷(𝐵). Furthermore, if 𝐵 is densely
defined and the mapping 𝑡 ↦→ 𝑅1(𝑡)𝑥, 𝑡 > 0 is continuously differentiable
for all 𝑥 ∈ 𝐷(𝐵), then there exists an exponentially equicontinuous (𝑎, 𝑘)-
regularized 𝐶-resolvent family for (52).

In the subsequent theorem (cf. [1, 61, 63, 395, 459, 460] and [292] for more
details), we analyze subordination principles for degenerate (𝑎, 𝑘)-regularized 𝐶-
resolvent families.

Theorem 2.2.6. (i) Let 𝑎(𝑡), 𝑏(𝑡) and 𝑐(𝑡) satisfy (P1) and let∫︀∞
0
𝑒−𝛽𝑡|𝑏(𝑡)|𝑑𝑡 <∞ for some 𝛽 > 0. Let

𝛼 = 𝑐−1
(︁ 1
𝛽

)︁
if
∫︁ ∞

0

𝑐(𝑡)𝑑𝑡 >
1

𝛽
, 𝛼 = 0 otherwise,

and let �̃�(𝜆) = �̃�( 1
𝑐(𝜆) ), 𝜆 > 𝛼. Assume that there exists an exponentially

equicontinuous (𝑏, 𝑘)-regularized 𝐶-resolvent family (𝑅𝑏(𝑡))𝑡>0 for (52),
with 𝑎(𝑡) replaced by 𝑏(𝑡), satisfying that the family {𝑒−𝜔𝑏𝑡𝑅𝑏(𝑡) : 𝑡 > 0}
is equicontinuous for some 𝜔𝑏 > 0 (with the meaning clear). Assume,
further, that 𝑐(𝑡) is completely positive and there exists a function 𝑘1(𝑡)
satisfying (P1) and

̃︀𝑘1(𝜆) = 1

𝜆𝑐(𝜆)
𝑘
(︁ 1

𝑐(𝜆)

)︁
, 𝜆 > 𝜔0, 𝑘

(︁ 1

𝑐(𝜆)

)︁
̸= 0, for some 𝜔0 > 0.

Let

𝜔𝑎 = 𝑐−1
(︁ 1

𝜔𝑏

)︁
if
∫︁ ∞

0

𝑐(𝑡)𝑑𝑡 >
1

𝜔𝑏
, 𝜔𝑎 = 0 otherwise.

Then, for every 𝑟 ∈ (0, 1], there exists an exponentially equicontinuous
(𝑎, 𝑘1 * 𝑔𝑟)-regularized 𝐶-resolvent family (𝑅𝑟(𝑡))𝑡>0 for (52), satisfying
that the family {𝑒−𝜔𝑎𝑡𝑅𝑟(𝑡) : 𝑡 > 0} is equicontinuous, if 𝜔𝑏 = 0 or
𝜔𝑏𝑐(0) ̸= 1, resp., for every 𝜀 > 0, there exists 𝑀𝜀 > 1 such that the
family {𝑒−𝜀𝑡𝑅𝑟(𝑡) : 𝑡 > 0} is equicontinuous, if 𝜔𝑏 > 0 and 𝜔𝑏𝑐(0) = 1.
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(ii) Suppose 𝛼 > 0 and there exists an exponentially equicontinuous (1, 𝑔𝛼)-
regularized 𝐶-resolvent family for 52. Assume, further, that 𝑎(𝑡) and 𝑘(𝑡)
satisfies (P1), as well as that 𝑘(𝜆) = �̃�(𝜆)𝛼 for 𝜆 sufficiently large, and
𝑎(𝑡) is completely positive. Then, for every 𝑟 ∈ (0, 1], there exists an
exponentially equicontinuous (𝑎, 𝑘 * 𝑔𝑟)-regularized 𝐶-resolvent family for
(52) ((𝑎, 𝑎*,𝑛 * 𝑔𝑟)-regularized 𝐶-resolvent family for (52) if 𝛼 = 𝑛 ∈ N,
resp. (𝑎, 𝑔𝑟+1)-regularized 𝐶-resolvent family if 𝛼 = 0).

(iii) Suppose 𝛼 > 0 and there exists an exponentially equicontinuous (𝑔2, 𝑔𝛼)-
regularized 𝐶-resolvent function for (52). Let 𝐿1

𝑙𝑜𝑐([0,∞)) ∋ 𝑐 be com-
pletely positive and let 𝑎(𝑡) = (𝑐 * 𝑐)(𝑡), 𝑡 > 0. (Recall that for any
function 𝑎 ∈ 𝐿1

𝑙𝑜𝑐([0,∞)) given in advance, such a function 𝑐(𝑡) always
exists provided 𝑎(𝑡) is completely positive or 𝑎(𝑡) ̸= 0 is a creep function
and 𝑎1(𝑡) is log-convex). Assume 𝑘(𝑡) satisfies (P1) and 𝑘(𝜆) = 𝑐(𝜆)𝛼/𝜆,
𝜆 sufficiently large. Then, for every 𝑟 ∈ (0, 1], there exists an expo-
nentially equicontinuous (𝑎, 𝑘 * 𝑔𝑟)-regularized 𝐶-resolvent family for (52)
((𝑎, 𝑐*,𝑛 * 𝑔𝑟)-regularized 𝐶-resolvent family for (52) if 𝛼 = 𝑛 ∈ N, resp.
(𝑎, 𝑔𝑟+1)-regularized 𝐶-resolvent family for (52) if 𝛼 = 0).

Remark 2.2.7. In the case that 𝐵 = 𝐼 and 𝐴 is densely defined, the mapping
𝑡 ↦→ 𝑅1(𝑡)𝑥, 𝑡 > 0, which appears in the formulation of Theorem 2.2.5(ii), is
continuously differentiable for all 𝑥 ∈ 𝐸 and, in the situation of Theorem 2.2.6(i),
there exists an exponentially equicontinuous (𝑎, 𝑘1)-regularized 𝐶-resolvent family
(𝑅(𝑡))𝑡>0 for (52) satisfying that the family {𝑒−𝜔𝑎𝑡𝑅𝑟(𝑡) : 𝑡 > 0} is equicontinuous,
resp., for every 𝜀 > 0, the family {𝑒−𝜀𝑡𝑅𝑟(𝑡) : 𝑡 > 0} is equicontinuous (similar
statements hold in the case of Theorem 2.2.6(ii)–(iii), cf. [292, Theorem 2.1.8] for
further information). It is not clear whether the above results can be reformulated
for abstract degenerate Volterra equations.

The following theorem provides an extension of [542, Theorem 1.6] and [543,
Theorem 3.1].

Theorem 2.2.8. Let 𝜏 = ∞, let the functions |𝑎|(𝑡) and 𝑘(𝑡) satisfy (P1),
and let (𝑅(𝑡))𝑡>0 be an exponentially equicontinuous (𝑎, 𝑘)-regularized 𝐶-resolvent
family for (52), satisfying (ii) of Definition 2.2.2 with 𝜔 > max(0, abs(|𝑎|), abs(𝑘)).

(i) Suppose that 𝑣0 ∈ 𝐷(𝐵) and the following condition holds:
(i.1) for every 𝑥 ∈ 𝐷(𝐵), there exist a number 𝜔0 > 𝜔 and a function

ℎ(𝜆;𝑥) ∈ 𝐿𝑇 − 𝐸 such that ℎ(𝜆;𝑥) = 𝑘(𝜆)𝐵(𝐵 − �̃�(𝜆)𝐴)−1𝐶𝐵𝑥

provided Re𝜆 > 𝜔0 and 𝑘(𝜆) ̸= 0.
Then the function 𝑢(𝑡) = 𝑅(𝑡)𝑣0, 𝑡 > 0 is a mild solution of (52) with
𝑓(𝑡) = 𝑘(𝑡)𝐶𝐵𝑣0, 𝑡 > 0. The uniqueness of mild solutions holds if we
suppose additionally that 𝐶𝐵 ⊆ 𝐵𝐶 and the function 𝑘(𝑡) satisfies (P2).

(ii) Suppose that 𝑣0 ∈ 𝐷(𝐴) ∩𝐷(𝐵), 𝐶𝐵 ⊆ 𝐵𝐶, and the following condition
holds:

(ii.1) for every 𝑥 ∈ 𝐸, there exist a number 𝜔1 > 𝜔 and a function ℎ(𝜆;𝑥) ∈
𝐿𝑇 −𝐸 such that ℎ(𝜆;𝑥) = 𝑘(𝜆)𝐵(𝐵− �̃�(𝜆)𝐴)−1𝐶𝑥 provided Re𝜆 >

𝜔1 and 𝑘(𝜆) ̸= 0.
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Then the function 𝑢(𝑡) = 𝑅(𝑡)𝑣0, 𝑡 > 0 is a strong solution of (52) with
𝑓(𝑡) = 𝑘(𝑡)𝐶𝐵𝑣0, 𝑡 > 0. The uniqueness of strong solutions holds if we
suppose additionally that the function 𝑘(𝑡) satisfies (P2).

Proof. Let 𝑣0 ∈ 𝐷(𝐵). Then, for every 𝜆 ∈ C with Re𝜆 > 𝜔 and 𝑘(𝜆) ̸= 0,
we have

(55) �̃�(𝜆)𝑘(𝜆)𝐴(𝐵 − �̃�(𝜆)𝐴)−1𝐶𝐵𝑣0 = 𝑘(𝜆)[−𝐶𝐵𝑣0 +𝐵(𝐵 − �̃�(𝜆)𝐴)−1𝐶𝐵𝑣0].

Taking into account (i.1), the equation (54), as well as the closedness of 𝐵 and the
uniqueness theorem for Laplace transform, it can be simply proved that 𝑅(𝑡)𝑣0 ∈
𝐷(𝐵) for all 𝑡 > 0, as well as that the mapping 𝑡 ↦→ 𝐵𝑅(𝑡)𝑣0, 𝑡 > 0 is continuous
and

𝑘(𝜆)𝐵(𝐵 − �̃�(𝜆)𝐴)−1𝐶𝐵𝑣0 =

∫︁ ∞

0

𝑒−𝜆𝑡𝐵𝑅(𝑡)𝑣0𝑑𝑡, Re𝜆 > 𝜔0, 𝑘(𝜆) ̸= 0.

The previous equality in combination with (55) and the uniqueness theorem for
Laplace transform implies that

(56) 𝐴(𝑎 *𝑅)(𝑡)𝑣0 = 𝐵𝑅(𝑡)𝑣0 − 𝑘(𝑡)𝐶𝐵𝑣0, 𝑡 > 0,

so that the function 𝑡 ↦→ 𝑢(𝑡) ≡ 𝑅(𝑡)𝑣0, 𝑡 > 0 is a mild solution of (52) with
𝑓(𝑡) = 𝑘(𝑡)𝐶𝐵𝑣0, 𝑡 > 0. In order to prove (ii), fix an element 𝑣0 ∈ 𝐷(𝐴) ∩𝐷(𝐵).
Since we have assumed that 𝐶𝐵 ⊆ 𝐵𝐶, it readily follows that

𝑘(𝜆)𝐵(𝐵 − �̃�(𝜆)𝐴)−1𝐶𝐵𝑣0 − 𝑘(𝜆)𝐵𝐶𝑣0 = 𝑘(𝜆)�̃�(𝜆)𝐵(𝐵 − �̃�(𝜆)𝐴)−1𝐶𝐴𝑣0,

for any 𝜆 ∈ C with Re𝜆 > 𝜔 and 𝑘(𝜆) ̸= 0. By (ii.1), we know that there exists a
continuous function 𝑡 ↦→ 𝐺(𝑡), 𝑡 > 0 such that

(57)
∫︁ ∞

0

𝑒−𝜆𝑡𝐺(𝑡)𝑑𝑡 = 𝑘(𝜆)𝐵(𝐵 − �̃�(𝜆)𝐴)−1𝐶𝐴𝑣0,

for any 𝜆 ∈ C with Re𝜆 > 𝜔1 and 𝑘(𝜆) ̸= 0. With the help of (56)–(57) we can
show that:∫︁ ∞

0

𝑒−𝜆𝑡𝐴

∫︁ 𝑡

0

𝑎(𝑡− 𝑠)𝑅(𝑠)𝑣0𝑑𝑠 𝑑𝑡 =

∫︁ ∞

0

𝑒−𝜆𝑡[𝐵𝑅(𝑡)𝑣0 − 𝑘(𝑡)𝐶𝐵𝑣0]𝑑𝑡

=

∫︁ ∞

0

𝑒−𝜆𝑡

∫︁ 𝑡

0

𝑎(𝑡− 𝑠)𝐺(𝑠)𝑑𝑠 𝑑𝑡,

for any 𝜆 ∈ C with Re𝜆 > 𝜔1. By the uniqueness theorem for Laplace transform,
we get that 𝐴

∫︀ 𝑡

0
𝑎(𝑡 − 𝑠)𝑅(𝑠)𝑣0𝑑𝑠 =

∫︀ 𝑡

0
𝑎(𝑡 − 𝑠)𝐺(𝑠)𝑑𝑠, 𝑡 > 0. Let (𝑥*, 𝑦*) ∈ 𝐴*.

Then ⟨𝑥*, (𝑎 * 𝐺)(𝑡)⟩ = ⟨𝑦*, (𝑎 * 𝑅(·)𝑣0)(𝑡)⟩, 𝑡 > 0, i.e.,
∫︀ 𝑡

0
𝑎(𝑡 − 𝑠)⟨𝑥*, 𝐺(𝑠)⟩𝑑𝑠 =∫︀ 𝑡

0
𝑎(𝑡 − 𝑠)⟨𝑦*, 𝑅(𝑠)𝑣0⟩𝑑𝑠, 𝑡 > 0. Since the function 𝑎(𝑡) is a kernel on [0,∞),

we obtain that ⟨𝑥*, 𝐺(𝑡)⟩ = ⟨𝑦*, 𝑅(𝑡)𝑣0⟩, 𝑡 > 0. Because of that, the equality
𝐴𝑅(𝑡)𝑣0 = 𝐺(𝑡) holds for any 𝑡 > 0, and the function 𝑢(𝑡) = 𝑅(𝑡)𝑣0, 𝑡 > 0 is a
strong solution of (52) with 𝑓(𝑡) = 𝑘(𝑡)𝐶𝐵𝑣0, 𝑡 > 0. It remains to be proved the
uniqueness of mild solutions under the additional assumptions 𝐶𝐵 ⊆ 𝐵𝐶 and the
function 𝑘(𝑡) satisfies (P2). Towards this end, suppose that the function 𝑡 ↦→ 𝑢(𝑡),
𝑡 > 0 is a mild solution of (52) with 𝑓(𝑡) ≡ 0. Put 𝑣(𝑡) := 𝐶𝑢(𝑡), 𝑡 > 0. Since
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𝐶𝐵 ⊆ 𝐵𝐶, the function 𝑣(𝑡) is also a mild solution of (52) with 𝑓(𝑡) ≡ 0. Since
abs(|𝑎|) < ∞, we have that there exist constants 𝑀 > 1 and 𝜔2 > 0 such that∫︀ 𝑡

0
|𝑎(𝑟)|𝑑𝑟 6𝑀𝑒𝜔2𝑡, 𝑡 > 0. Then, for every 𝜎 > 0, we have

(58)
∫︁ 𝑡

0

∫︁ ∞

𝑠

𝑒𝜆(𝑠−𝑟−𝜎)|𝑎(𝑟)|𝑑𝑟 𝑑𝑠 = 𝑒−𝜆𝜎

∫︁ 𝑡

0

∫︁ ∞

0

𝑒−𝜆𝜂|𝑎(𝑠+ 𝜂)|𝑑𝜂 𝑑𝑠

= 𝑒−𝜆𝜎

∫︁ ∞

0

∫︁ 𝑡

0

𝑒−𝜆𝜂|𝑎(𝑠+ 𝜂)|𝑑𝑠 𝑑𝜂 = 𝑒−𝜆𝜎

∫︁ ∞

0

𝑒−𝜆𝜂

∫︁ 𝑡+𝜂

𝜂

|𝑎(𝑟)|𝑑𝑟 𝑑𝜂

6𝑀𝑒𝜔2𝑡−𝜆𝜎

∫︁ ∞

0

𝑒−(𝜆−𝜔2)𝜂𝑑𝜂 =𝑀𝑒𝜔2𝑡−𝜆𝜎/(𝜆− 𝜔2), 𝑡 > 0, 𝜆 suff. large.

Moreover,

(𝐵 − �̃�(𝜆)𝐴)(𝑒𝜆· * 𝑎 * 𝑣)(𝑡) = 𝐵(𝑒𝜆· * 𝑎 * 𝑣)(𝑡)− �̃�(𝜆)(𝑒𝜆· *𝐵𝑣)(𝑡)

= −
(︂
𝐵𝑣(·) *

∫︁ ∞

·
𝑒𝜆(·−𝑠)𝑎(𝑠)𝑑𝑠

)︂
(𝑡), Re𝜆 > 𝜔, 𝑡 > 0.

Combined with (54), the above implies:

(59) (𝑒𝜆· * 𝑎 * 𝑣)(𝑡) = −
(︂∫︁ ∞

0

𝑒−𝜆𝑟𝑅(𝑟)𝑢(·)𝑑𝑟 *
∫︁ ∞

·
𝑒𝜆(·−𝑠)𝑎(𝑠)𝑑𝑠

)︂
(𝑡),

for Re𝜆 > 𝜔 and 𝑡 > 0. By (58)–(59), and (ii) of Definition 2.2.2, we get that for
each 𝑝 ∈ ~ there exist 𝑐 > 0 and 𝑞 ∈ ~ such that

(60) 𝑒−𝜆𝜎𝑝((𝑒𝜆· * 𝑎 * 𝑣)(𝑡)) 6 𝑐𝑒−𝜆𝜎

|𝑘(𝜆)|(𝜆− 𝜔)

∫︁ 𝑡

0

∫︁ ∞

𝑠

𝑒𝜆(𝑠−𝑟)|𝑎(𝑟)|𝑞(𝑢(𝑡− 𝑠))𝑑𝑟 𝑑𝑠,

for 𝜆 > 𝜔, 𝑡 > 0 and 𝜎 > 0. On the other hand, we can always find constants
𝜎0 > 0 and 𝑀 > 1 such that

(61)
𝑒−𝜆𝜎0

|𝑘(𝜆)|
6𝑀, 𝜆 > 𝜔 + 1.

If not so, then there exists a sequence (𝜆𝑛)𝑛∈N in (𝜔 + 1,∞) such that |𝑘(𝜆𝑛)| 6
𝑒−𝑛𝜆𝑛 , 𝑛 ∈ N. Making use of the condition (P2) and the Bolzano–Weierstrass
theorem, it can be easily seen that the sequence (𝜆𝑛)𝑛∈N must be unbounded;
hence, lim sup𝜆→+∞(ln |𝑘(𝜆)|/𝜆) = −∞ and [27, Proposition 2.4.3] implies that
𝑘(𝑡) = 0, 𝑡 > 0, which is a contradiction. Applying now (60)–(61), we obtain
that lim𝜆→+∞ 𝑒−𝜆𝜎𝑝((𝑒𝜆· * 𝑎 * 𝑣)(𝑡)) = 0, 𝑡 > 0, 𝑝 ∈ ~. Proceeding as in the proof
of [542, Theorem 1.6], it readily follows that (𝑎*𝑣)(𝑡) = 0, 𝑡 > 0. Since the function
𝑎(𝑡) is a kernel on [0,∞) and 𝐶 is injective, we get that 0 = 𝑣(𝑡) = 𝐶𝑢(𝑡) = 𝑢(𝑡),
𝑡 > 0. �

Remark 2.2.9. (i) Suppose 𝑣0 ∈ 𝐷(𝐵) and, instead of (i.1), a slightly
stronger condition

(i.1)’ for every 𝑥 ∈ 𝐷(𝐵), there exist a number 𝜔0 > 𝜔 and two functions
ℎ1(𝜆;𝑥), ℎ2(𝜆) ∈ 𝐿𝑇 − 𝐸 such that ℎ1(𝜆;𝑥) = 𝑘(𝜆)�̃�(𝜆)−1𝐵(𝐵 −
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�̃�(𝜆)𝐴)−1𝐶𝐵𝑥 and ℎ2(𝜆) = 𝑘(𝜆)�̃�(𝜆)−1, provided 𝑥 ∈ 𝐷(𝐵), Re𝜆 >
𝜔0 and 𝑘(𝜆) ̸= 0.

Then we can simply prove with the help of closedness of 𝐴 and resol-
vent equation that there exists a function ℎ3(𝜆;𝑥) ∈ 𝐿𝑇 − 𝐸 such that
ℎ3(𝜆;𝑥) = 𝑘(𝜆)𝐴(𝐵 − �̃�(𝜆)𝐴)−1𝐶𝐵𝑥, provided 𝑥 ∈ 𝐷(𝐵), Re𝜆 > 𝜔0 and
𝑘(𝜆) ̸= 0. Keeping in mind the uniqueness theorem for Laplace transform,
it readily follows that the mapping 𝑡 ↦→ 𝐴𝑅(𝑡)𝑣0, 𝑡 > 0 is well defined and
continuous. In conclusion, the function 𝑢(𝑡) = 𝑅(𝑡)𝑣0, 𝑡 > 0 is a strong
solution of (52) with 𝑓(𝑡) = 𝑘(𝑡)𝐶𝐵𝑣0, 𝑡 > 0.

(ii) Observe that we must impose the condition abs(|𝑎|) < ∞ here because
we need to apply Theorem 1.4.2(vi).

(iii) Regarding the question of whether the function 𝑘(𝑡) satisfies (P2) or
not, the following comment should be made: Suppose that the asser-
tion of [445, Lemma 4.1.1, p. 100] continues to hold with the sequence
𝜆𝑛 = 𝑛 replaced by any strictly increasing sequence (𝜆𝑛)𝑛∈N of positive
real numbers tending to infinity (yet unproven or unsworn hypothesis,
unknown in the existing literature to the best knowledge of the author).
Then the uniqueness of solutions clarified in Theorem 2.2.8 holds even if
the function 𝑘(𝑡) does not satisfy (P2), and this can be proved by using
the estimate (60) and the fact that there exist a positive real number
𝜎′ > 0 and a strictly increasing sequence (𝜆𝑛)𝑛∈N of positive real numbers
such that lim𝑛→∞ 𝜆𝑛 = ∞ and |𝑘(𝜆𝑛)| > 𝑒−𝜎′𝜆𝑛 , 𝑛 ∈ N (cf. [27, Proposi-
tion 2.4.3]).

In the subsequent proposition, we state a rescaling result for degenerate 𝐾-
convoluted 𝐶-semigroups in locally convex spaces; observe, however, that it is
very difficult to say something more about perturbation properties of exponen-
tially equicontinuous (𝑎, 𝑘)-regularized 𝐶-resolvent families introduced in this sec-
tion (cf. [296, Theorem 4.2(ii)] and [292, Section 2.6] for further information con-
cerning non-degenerate case).

Proposition 2.2.10. (i) Suppose 𝑧 ∈ C, 𝐾(𝑡) satisfy (P1), 𝐹 (𝑡) is ex-
ponentially bounded, 𝑘(𝑡) =

∫︀ 𝑡

0
𝐾(𝑠)𝑑𝑠, 𝑡 > 0, there exists 𝜔0 > 0 such

that

�̃�(𝜆)− �̃�(𝜆+ 𝑧)

�̃�(𝜆+ 𝑧)
=

∫︁ ∞

0

𝑒−𝜆𝑡𝐹 (𝑡)𝑑𝑡, Re𝜆 > 𝜔0, �̃�(𝜆+ 𝑧) ̸= 0,

and there exists an exponentially equicontinuous 𝐾-convoluted 𝐶-semi-
group (𝑆𝐾(𝑡))𝑡∈[0,𝜏) for (52), i.e., (𝑎, 𝑘)-regularized 𝐶-resolvent family
for (52) with 𝑎(𝑡) = 1. Then there exists an exponentially equicontinuos
𝐾-convoluted 𝐶-semigroup (𝑆𝐾,𝑧(𝑡))𝑡∈[0,𝜏) for (52), with 𝐴 replaced by
𝐴− 𝑧𝐵. Furthermore,

𝑆𝐾,𝑧(𝑡)𝑥 = 𝑒−𝑡𝑧𝑆𝐾(𝑡)𝑥+

∫︁ 𝑡

0

𝐹 (𝑡− 𝑠)𝑒−𝑧𝑠𝑆𝐾(𝑠)𝑥 𝑑𝑠, 𝑡 > 0, 𝑥 ∈ 𝐷(𝐵).
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(ii) Suppose 𝑧 ∈ C, 𝛼 > 0 and there exists an exponentially equicontinu-
ous 𝛼-times integrated 𝐶-semigroup (𝑆𝛼(𝑡))𝑡∈[0,𝜏) for (52), i.e. (𝑎, 𝑘)-
regularized 𝐶-resolvent family for (52) with 𝑎(𝑡) = 1 and 𝑘(𝑡) = 𝑔𝛼+1(𝑡).
Then there exists an exponentially equicontinuous 𝛼-times integrated 𝐶-
semigroup (𝑆𝛼,𝑧(𝑡))𝑡∈[0,𝜏) for (52), with 𝐴 replaced by 𝐴 − 𝑧𝐵. Further-
more,

𝑆𝛼,𝑧(𝑡)𝑥 = 𝑒−𝑧𝑡𝑆𝛼(𝑡)𝑥+

∫︁ 𝑡

0

∞∑︁
𝑛=1

(︂
𝛼

𝑛

)︂
𝑧𝑛𝑡𝑛−1

(𝑛− 1)!
𝑒−𝑧𝑠𝑆𝛼(𝑠)𝑥 𝑑𝑠, 𝑡 > 0, 𝑥 ∈ 𝐷(𝐵).

2.2.2. Differential and analytical properties of degenerate (𝑎, 𝑘)-regu-
larized 𝐶-resolvent families. In this subsection, we clarify the most important
differential and analytical properties of degenerate (𝑎, 𝑘)-regularized 𝐶-resolvent
families. Let us recall that Σ𝛼 = {𝑧 ∈ Cr {0} : | arg(𝑧)| < 𝛼} (𝛼 ∈ (0, 𝜋]).

Definition 2.2.11. (cf. [296, Definition 3.1] for the case 𝐵 = 𝐼) Suppose
that the functions 𝑎(𝑡) and 𝑘(𝑡) satisfy (P1), as well as that 𝐶 ∈ 𝐿(𝐸) is an
injective mapping satisfying 𝐶𝐴 ⊆ 𝐴𝐶. Let (𝑅(𝑡))𝑡>0 be an exponentially equicon-
tinuous (𝑎, 𝑘)-regularized 𝐶-resolvent family for (52), and let 0 < 𝛼 6 𝜋. Then
it is said that (𝑅(𝑡))𝑡>0 is an exponentially equicontinuous (equicontinuous), an-
alytic (𝑎, 𝑘)-regularized 𝐶-resolvent family for (52), of angle 𝛼, iff there exists
𝜔 > max(0, abs(𝑎), abs(𝑘)) (𝜔 = 0) such that the following holds:

(i) For every 𝑥 ∈ 𝐷(𝐵), the mapping 𝑡 ↦→ 𝑅(𝑡)𝑥, 𝑡 > 0 can be analytically
extended to the sector Σ𝛼; since no confusion seems likely, we shall denote
the extension by the same symbol.

(ii) For every 𝑥 ∈ 𝐷(𝐵) and 𝛽 ∈ (0, 𝛼), one has lim𝑧→0,𝑧∈Σ𝛽
𝑅(𝑧)𝑥 = 𝑅(0)𝑥.

(iii) The family {𝑒−𝜔𝑧𝑅(𝑧) : 𝑧 ∈ Σ𝛽} is equicontinuous for all 𝛽 ∈ (0, 𝛼), i.e.,
for every 𝑝 ∈ ~, there exist 𝑐 > 0 and 𝑞 ∈ ~ such that

𝑝(𝑒−𝜔𝑧𝑅(𝑧)𝑥) 6 𝑐𝑞(𝑥), 𝑥 ∈ 𝐷(𝐵), 𝑧 ∈ Σ𝛽 .

Before going any further, we would like to observe that the assertion of [296,
Theorem 3.6] cannot be transferred to degenerate (𝑎, 𝑘)-regularized 𝐶-resolvent
families without imposing some restrictive assumptions, including by all means the
injectivity of the operator 𝐵. This is not the case with the assertion of [296,
Theorem 3.7], as the following theorem shows.

Theorem 2.2.12. Assume that |𝑎|(𝑡) and 𝑘(𝑡) satisfy (P1), 𝐴 and 𝐵 are closed
linear operators, 𝜔 > max(0, abs(|𝑎|), abs(𝑘)), 𝛼 ∈ (0, 𝜋/2], 𝐶 ∈ 𝐿(𝐸) is injective
and satisfies 𝐶𝐴 ⊆ 𝐴𝐶. Assume, further, that for every 𝜆 ∈ C with Re𝜆 > 𝜔 and
𝑘(𝜆) ̸= 0, we have that the operator 𝐵 − �̃�(𝜆)𝐴 is injective and 𝐶(𝑅(𝐵)) ⊆ 𝑅(𝐵 −
�̃�(𝜆)𝐴). Let for each 𝑥 ∈ 𝐷(𝐵) there is an analytic function 𝑞𝑥 : 𝜔 + Σ𝜋

2 +𝛼 → 𝐸
such that

𝑞𝑥(𝜆) = 𝑘(𝜆)(𝐵 − �̃�(𝜆)𝐴)−1𝐶𝐵𝑥, Re𝜆 > 𝜔, 𝑘(𝜆) ̸= 0.

Suppose that, for every 𝛽 ∈ (0, 𝛼) and 𝑝 ∈ ~, there exist 𝑐𝑝,𝛽 > 0 and 𝑟𝑝,𝛽 ∈
~ such that 𝑝((𝜆 − 𝜔)𝑞𝑥(𝜆)) 6 𝑐𝑝,𝛽𝑟𝑝,𝛽(𝑥), 𝑥 ∈ 𝐷(𝐵), 𝜆 ∈ 𝜔 + Σ𝛽+(𝜋/2) and
that, for every 𝑥 ∈ 𝐷(𝐵), there exists the limit lim𝜆→+∞ 𝜆𝑞𝑥(𝜆) in 𝐸. Then
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there exists an exponentially equicontinuous, analytic (𝑎, 𝑘)-regularized 𝐶-resolvent
family (𝑅(𝑡))𝑡>0 for (52), of angle 𝛼, and for each 𝛽 ∈ (0, 𝛼) the family {𝑒−𝜔𝑧𝑅(𝑧) :
𝑧 ∈ Σ𝛽} is equicontinuous.

Subordination principle [292, Theorem 2.4.2] can be reformulated for degener-
ate (𝑎, 𝑘)-regularized 𝐶-resolvent families, as well:

Theorem 2.2.13. Assume that 𝑘𝛽(𝑡) satisfies (P1), 0 < 𝛼 < 𝛽, 𝛾 = 𝛼/𝛽
and there exists an exponentially equicontinuous (𝑔𝛽 , 𝑘𝛽)-regularized 𝐶-resolvent
family (𝑅𝛽(𝑡))𝑡>0 for (52), with 𝑎(𝑡) = 𝑔𝛽(𝑡) and 𝑘(𝑡) = 𝑘𝛽(𝑡), satisfying that
the family {𝑒−𝜔𝑡𝑅𝛽(𝑡) : 𝑡 > 0} is equicontinuous for some 𝜔 > max(0, abs(𝑘𝛽)).
Assume that there exist a function 𝑘𝛼(𝑡) satisfying (P1) and a number 𝜂 > 0

such that 𝑘𝛼(0) = 𝑘𝛽(0) and 𝑘𝛼(𝜆) = 𝜆𝛾−1𝑘𝛽(𝜆
𝛾), 𝜆 > 𝜂. Then there exists an

exponentially equicontinuous (𝑔𝛼, 𝑘𝛼)-regularized 𝐶-resolvent family (𝑅𝛼(𝑡))𝑡>0 for
(52), with 𝑎(𝑡) = 𝑔𝛼(𝑡) and 𝑘(𝑡) = 𝑘𝛼(𝑡), satisfying that the family {𝑒−𝜔1/𝛾𝑡𝑆𝛼(𝑡) :
𝑡 > 0} is equicontinuous and

𝑅𝛼(𝑡)𝑥 =

∫︁ ∞

0

𝑡−𝛾Φ𝛾(𝑠𝑡
−𝛾)𝑅𝛽(𝑠)𝑥 𝑑𝑠, 𝑥 ∈ 𝐷(𝐵), 𝑡 > 0.

Furthermore, for every 𝜁 > 0, the equicontinuity of the family {𝑒−𝜔𝑡(1+𝑡𝜁)−1𝑅𝛽(𝑡) :
𝑡 > 0}, resp. {𝑒−𝜔𝑡𝑡−𝜁𝑅𝛽(𝑡) : 𝑡 > 0}, implies the equicontinuity of the fam-
ily {𝑒−𝜔1/𝛾𝑡(1 + 𝑡𝛾𝜁)−1(1 + 𝜔𝑡𝜁(1−𝛾))−1𝑅𝛼(𝑡) : 𝑡 > 0}, resp. {𝑒−𝜔1/𝛾𝑡𝑡−𝛾𝜁(1 +
𝜔𝑡𝜁(1−𝛾))−1𝑅𝛼(𝑡) : 𝑡 > 0}, and the following holds:

(i) The mapping 𝑡 ↦→ 𝑅𝛼(𝑡)𝑥, 𝑡 > 0 admits an analytic extension to the sector
Σmin(( 1

𝛾 −1)𝜋
2 ,𝜋) for all 𝑥 ∈ 𝐷(𝐵).

(ii) If 𝜔 = 0 and 𝜀 ∈ (0,min(( 1𝛾 − 1)𝜋2 , 𝜋)), then the family {𝑅𝛼(𝑧) : 𝑧 ∈
Σmin(( 1

𝛾 −1)𝜋
2 ,𝜋)−𝜀} is equicontinuous and lim𝑧→0,𝑧∈Σ

min(( 1
𝛾

−1)𝜋
2

,𝜋)−𝜀

𝑅𝛼(𝑧)𝑥 = 𝑅𝛼(0)𝑥 for all 𝑥 ∈ 𝐷(𝐵).
(iii) If 𝜔 > 0 and 𝜀 ∈ (0,min(( 1𝛾 −1)𝜋2 ,

𝜋
2 )), then there exists 𝛿𝛾,𝜀 > 0 such that

the family {𝑒−𝛿𝛾,𝜀 Re 𝑧𝑅𝛼(𝑧) : 𝑧 ∈ Σmin(( 1
𝛾 −1)𝜋

2 ,𝜋2 )−𝜀} is equicontinuous.
Moreover, lim𝑧→0,𝑧∈Σ

min(( 1
𝛾

−1)𝜋
2

, 𝜋
2

)−𝜀
𝑅𝛼(𝑧)𝑥 = 𝑅𝛼(0)𝑥 for all 𝑥 ∈ 𝐷(𝐵).

Concerning differential properties of degenerate (𝑎, 𝑘)-regularized 𝐶-resolvent
families, the following statements can be verified to be true based on the information
provided in the final part of the proof of [291, Theorem 3.2.15] (cf. also [296,
Theorem 3.18], [296, Theorem 3.20] with 𝑚 = 2, the proof of [291, Theorem
2.4.8]), and Theorem 2.2.5(i); recall only that for each sequence (𝑀𝑛) of positive
real numbers satisfying 𝑀0 = 1, (𝑀.1), (𝑀.2) and (𝑀.3)′, we define the function
𝜔𝐿(·) by 𝜔𝐿(𝑡) :=

∑︀∞
𝑛=0

𝑡𝑛

𝑀𝑛
, 𝑡 > 0.

Theorem 2.2.14. Suppose 𝐴 and 𝐵 are closed linear operators, |𝑎|(𝑡) and 𝑘(𝑡)
satisfy (P1), 𝑟 > −1 and there exists 𝜔 > max(0, abs(|𝑎|), abs(𝑘)) such that, for
every 𝑧 ∈ {𝜆 ∈ C : Re𝜆 > 𝜔, 𝑘(𝜆) ̸= 0}, the operator 𝐵 − �̃�(𝑧)𝐴 is injective
and 𝐶(𝑅(𝐵)) ⊆ 𝑅(𝐵 − �̃�(𝑧)𝐴). Suppose, additionally, that for every 𝜎 > 0 and
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𝑥 ∈ 𝐷(𝐵), there exist a number 𝑐𝜎,𝑥 > 0, an open neighborhood Ω𝜎,𝑥,𝜔 of the region

Λ𝜎,𝑥,𝜔 := {𝜆 ∈ C : Re𝜆 6 𝜔, Re𝜆 > −𝜎 ln | Im𝜆|+ 𝑐𝜎,𝑥} ∪ {𝜆 ∈ C : Re𝜆 > 𝜔},

and an analytic function ℎ𝜎,𝑥 : Ω𝜎,𝑥,𝜔 → 𝐿(𝐸) such that

ℎ𝜎,𝑥(𝜆) = 𝑘(𝜆)(𝐵 − �̃�(𝜆)𝐴)−1𝐶𝐵𝑥, Re𝜆 > 𝜔, 𝑘(𝜆) ̸= 0

and the set
{|𝜆|−𝑟ℎ𝜎,𝑥(𝜆) : 𝜆 ∈ Λ𝜎,𝑥,𝜔, Re𝜆 6 𝜔}

is bounded. If, for every 𝜎 > 0 and 𝑝 ∈ ~, there exist 𝑐𝑝 > 0 and 𝑞𝑝 ∈ ~ such
that 𝑝(ℎ𝜎,𝑥(𝜆)) 6 𝑐𝑝|𝜆|𝑟𝑞𝑝(𝑥), Re𝜆 > 𝜔, 𝑥 ∈ 𝐷(𝐵), then, for every 𝜁 > 1, there
exists an exponentially equicontinuous (𝑎, 𝑘 * 𝑔𝜁+𝑟)-regularized 𝐶-resolvent family
(𝑅𝜁(𝑡))𝑡>0 for (52), satisfying that the mapping 𝑡 ↦→ 𝑅𝜁(𝑡)𝑥, 𝑡 > 0 is infinitely
differentiable for all 𝑥 ∈ 𝐷(𝐵).

Theorem 2.2.15. (i) Suppose that |𝑎|(𝑡) and 𝑘(𝑡) satisfy (P1), there ex-
ists an exponentially equicontinuous (𝑎, 𝑘)-regularized 𝐶-resolvent family
(𝑅(𝑡))𝑡>0 for (52), satisfying (ii) of Definition 2.2.2 with some number
𝜔 > max(0, abs(|𝑎|), abs(𝑘)). Let 𝜔0 > 𝜔. Denote, for every 𝑥 ∈ 𝐷(𝐵),
𝜀 ∈ (0, 1), and a corresponding 𝐾𝜀,𝑥 > 0,

𝐹𝜀,𝜔0,𝑥 := {𝜆 ∈ C : Re𝜆 > − ln𝜔𝐿(𝐾𝜀,𝑥| Im𝜆|) + 𝜔0}.

Assume that, for every 𝑥 ∈ 𝐷(𝐵) and 𝜀 ∈ (0, 1), there exist 𝐾𝜀,𝑥 > 0,
an open neighborhood 𝑂𝜀,𝜔0,𝑥 of the region 𝐺𝜀,𝜔0,𝑥 := {𝜆 ∈ C : 𝑅𝑒𝜆 >
𝜔0, 𝑘(𝜆) ̸= 0} ∪ {𝜆 ∈ 𝐹𝜀,𝜔0

: Re𝜆 6 𝜔0} and the analytic mappings
ℎ𝜀,𝑥 : 𝑂𝜀,𝜔0,𝑥 → 𝐸, 𝑓𝜀,𝑥 : 𝑂𝜀,𝜔0,𝑥 → C, 𝑔𝜀,𝑥 : 𝑂𝜀,𝜔0,𝑥 → C such that:
(a) 𝑓𝜀,𝑥(𝜆) = 𝑘(𝜆), Re𝜆 > 𝜔0; 𝑔𝜀,𝑥(𝜆) = �̃�(𝜆), Re𝜆 > 𝜔0,
(b) for every 𝜆 ∈ 𝐹𝜀,𝜔0,𝑥, the operator 𝐵 − 𝑔𝜀,𝑥(𝜆)𝐴 is injective and

𝐶(𝑅(𝐵)) ⊆ 𝑅(𝐵 − 𝑔𝜀,𝑥(𝜆)𝐴),
(c) for every 𝑥 ∈ 𝐷(𝐵), ℎ𝜀,𝑥(𝜆) = 𝑓𝜀,𝑥(𝜆)(𝐵 − 𝑔𝜀,𝑥(𝜆)𝐴)

−1𝐶𝐵𝑥, 𝜆 ∈
𝐺𝜀,𝜔0,𝑥,

(d) the set {(1 + |𝜆|)−𝑚𝑒−𝜀|Re𝜆|ℎ𝜀,𝑥(𝜆) : 𝜆 ∈ 𝐹𝜀,𝜔, Re𝜆 6 𝜔0} is
bounded.

Then, for every 𝑥 ∈ 𝐷(𝐵), the mapping 𝑡 ↦→ 𝑅(𝑡)𝑥, 𝑡 > 0 is infinitely
differentiable and, for every compact set 𝐾 ⊆ (0,∞), there exists ℎ𝐾 > 0

such that the set {ℎ𝑛
𝐾

𝑑𝑛

𝑑𝑡𝑛 𝑅(𝑡)𝑥

𝑀𝑛
: 𝑡 ∈ 𝐾, 𝑛 ∈ N0} is bounded; furthermore, if

𝐾𝜀,𝑥 is independent of 𝑥 ∈ 𝐷(𝐵) and if for each 𝑝 ∈ ~ there exist 𝑐𝑝 > 0

and 𝑞𝑝 ∈ ~ such that 𝑝((1+ |𝜆|)−𝑚𝑒−𝜀|Re𝜆|ℎ𝜀,𝑥(𝜆)) 6 𝑐𝑝𝑞𝑝(𝑥), 𝑥 ∈ 𝐷(𝐵),

𝜆 ∈ 𝐹𝜀,𝜔0 , Re𝜆 6 𝜔0, then the family {ℎ𝑛
𝐾

𝑑𝑛

𝑑𝑡𝑛 𝑅(𝑡)

𝑀𝑛
: 𝑡 ∈ 𝐾, 𝑛 ∈ N0} is

equicontinuous.
(ii) Suppose that |𝑎|(𝑡) and 𝑘(𝑡) satisfy (P1), there exists an exponentially

equicontinuous (𝑎, 𝑘)-regularized 𝐶-resolvent family (𝑅(𝑡))𝑡>0 for (52),
satisfying (ii) of Definition 2.2.2 with 𝜔 > max(0, abs(|𝑎|), abs(𝑘)). Let
𝜔0 > 𝜔. Denote, for every 𝑥 ∈ 𝐷(𝐵), 𝜀 ∈ (0, 1), 𝜌 ∈ [1,∞) and a
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corresponding 𝐾𝜀,𝑥 > 0,

𝐹𝜀,𝜔0,𝜌,𝑥 := {𝜆 ∈ C : Re𝜆 > −𝐾𝜀,𝑥| Im𝜆|1/𝜌 + 𝜔0}.

Assume that, for every 𝑥 ∈ 𝐷(𝐵) and 𝜀 ∈ (0, 1), there exist 𝐾𝜀,𝑥 > 0,
an open neighborhood 𝑂𝜀,𝜔0,𝑥 of the region 𝐺𝜀,𝜔0,𝜌,𝑥 := {𝜆 ∈ C : Re𝜆 >
𝜔0, 𝑘(𝜆) ̸= 0} ∪ {𝜆 ∈ 𝐹𝜀,𝜔0,𝜌,𝑥 : Re𝜆 6 𝜔0}, and analytic mappings
ℎ𝜀,𝑥 : 𝑂𝜀,𝜔0,𝑥 → 𝐸, 𝑓𝜀,𝑥 : 𝑂𝜀,𝜔0,𝑥 → C and 𝑔𝜀 : 𝑂𝜀,𝜔0,𝑥 → C such that
the conditions (i)(a)–(d) of this theorem hold with 𝐹𝜀,𝜔0,𝑥, resp. 𝐺𝜀,𝜔0,𝑥,
replaced by 𝐹𝜀,𝜔0,𝜌,𝑥, resp. 𝐺𝜀,𝜔0,𝜌,𝑥. Then, for every 𝑥 ∈ 𝐷(𝐵), the
mapping 𝑡 ↦→ 𝑅(𝑡), 𝑡 > 0 is infinitely differentiable and, for every compact

set 𝐾 ⊆ (0,∞), there exists ℎ𝐾 > 0 such that the set {ℎ𝑛
𝐾

𝑑𝑛

𝑑𝑡𝑛 𝑅(𝑡)𝑥

𝑛!𝜌 : 𝑡 ∈
𝐾, 𝑛 ∈ N0} is equicontinuous; furthermore, if 𝐾𝜀,𝑥 is independent of
𝑥 ∈ 𝐷(𝐵) and if for each 𝑝 ∈ ~ there exist 𝑐𝑝 > 0 and 𝑞𝑝 ∈ ~ such
that 𝑝((1 + |𝜆|)−𝑚𝑒−𝜀|Re𝜆|ℎ𝜀,𝑥(𝜆)) 6 𝑐𝑝𝑞𝑝(𝑥), 𝑥 ∈ 𝐷(𝐵), 𝜆 ∈ 𝐹𝜀,𝜔0,𝜌,𝑥,

Re𝜆 6 𝜔0, then the family {ℎ𝑛
𝐾

𝑑𝑛

𝑑𝑡𝑛 𝑅(𝑡)

𝑛!𝜌 : 𝑡 ∈ 𝐾, 𝑛 ∈ N0} is equicontinuous.

Theorem 2.2.16 (The abstract Weierstrass formula). (i) Assume that
𝑎(𝑡) and 𝑘(𝑡) satisfy (P1), and there exist 𝑀 > 0 and 𝜔 > 0 such that
|𝑘(𝑡)| 6 𝑀𝑒𝜔𝑡, 𝑡 > 0. Assume, further, that there exist a number 𝜔′ > 𝜔

and a function 𝑎1(𝑡) such that abs(𝑎1) <∞ and ̃︀𝑎1(𝜆) = �̃�(
√
𝜆), Re𝜆 > 𝜔′

(Let us recall that the above holds if 𝑎(𝑡) is exponentially bounded; in this

case, 𝑎1(𝑡) =
∫︀∞
0
𝑠 𝑒−𝑠2/4𝑡

2
√
𝜋𝑡3/2

𝑎(𝑠)𝑑𝑠, 𝑡 > 0.) Let there exist an exponen-
tially equicontinuous (𝑎, 𝑘)-regularized 𝐶-resolvent family (𝐶(𝑡))𝑡>0 for
(52). Then there exists an exponentially equicontinuous, analytic (𝑎1, 𝑘1)-
regularized 𝐶-resolvent family (𝑅(𝑡))𝑡>0 for (52), with 𝑎(𝑡) replaced by
𝑎1(𝑡), of angle 𝜋

2 , where:

(62) 𝑘1(𝑡) :=

∫︁ ∞

0

𝑒−𝑠2/4𝑡

√
𝜋𝑡

𝑘(𝑠)𝑑𝑠, 𝑡 > 0, 𝑘1(0) := 𝑘(0), and

(63) 𝑅(𝑡)𝑥 :=

∫︁ ∞

0

𝑒−𝑠2/4𝑡

√
𝜋𝑡

𝐶(𝑠)𝑥 𝑑𝑠, 𝑡 > 0, 𝑥 ∈ 𝐷(𝐵), 𝑅(0)𝑥 := 𝐶(0)𝑥, 𝑥 ∈ 𝐷(𝐵).

(ii) Assume that 𝑘(𝑡) satisfy (P1), 𝛽 > 0 aw well as there exist 𝑀 > 0 and
𝜔 > 0 such that |𝑘(𝑡)| 6 𝑀𝑒𝜔𝑡, 𝑡 > 0. Let there exist an exponen-
tially equicontinuous (𝑔2𝛽 , 𝑘)-regularized 𝐶-resolvent family (𝐶(𝑡))𝑡>0 for
(52). Then there exists an exponentially equicontinuous, analytic (𝑔𝛽 , 𝑘1)-
regularized 𝐶-resolvent family (𝑅(𝑡))𝑡>0 for (52), with 𝑎(𝑡) replaced by
𝑎1(𝑡), of angle 𝜋

2 , where 𝑘1(𝑡) and 𝑅(𝑡) are defined through (62)–(63).

Remark 2.2.17. As Theorem 2.2.8 shows, the existence of an exponentially
equicontinuous (𝑎, 𝑘)-regularized 𝐶-resolvent family (𝑅(𝑡))𝑡>0 for (52) does not
automatically imply the existence of mild (strong) solutions of this problem; we
need to impose the conditions like (i.1), (i.1)’ or (ii.1). Regarding this question,
the following facts should be stated:
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1. Proposition 2.2.4(i): If the function 𝑏(𝑡) satisfies the prescribed assump-
tions and (𝑅(𝑡))𝑡>0 satisfies any of the conditions (i.1), (i.1)’ or (ii.1),
then ((𝑏 *𝑅)(𝑡))𝑡>0 satisfies the same condition as well, with the function
𝑘(𝑡) replaced by (𝑏 * 𝑘)(𝑡); Proposition 2.2.4(iii): If the functions 𝑘(𝑡) and
𝑏(𝑡) satisfy the prescribed assumptions and (𝑅(𝑡))𝑡>0 satisfies any of the
conditions (i.1), (i.1)’ or (ii.1), then (𝑆(𝑡))𝑡>0 satisfies the same condition
as well, with the function 𝑘(𝑡) replaced by 1.

2. In the formulations of Theorem 2.2.5(i)–(ii), as well as Theorem 2.2.12
and Theorems 2.2.14-2.2.15, we must add some very natural conditions
ensuring the validity of (i.1), (i.1)’ or (ii.1) for the corresponding resolvent
families.

3. The conditions (i.1) and (ii.1) are invariant under the action of subordina-
tion principles stated in Theorem 2.2.6, while some additional assumptions
must be imposed for the invariance of the condition (i.1)’.

4. The rescaling of degenerate 𝐾-convoluted 𝐶-semigroups (cf. Proposition
2.2.10) preserves the conditions (i.1), (i.1)’ and (ii.1).

5. Due to the proof of [61, Theorem 3.1], it is not difficult to verify that
the conditions (i.1), (i.1)’ and (ii.1) are invariant under the action of
subordination principles stated in Theorem 2.2.13 and Theorem 2.2.16.

Now we want to illustrate our results with a concrete example.

Example 2.2.18. (cf. [291, Example 2.8.3(iii)] and [292, Example 2.6.10]) Let
𝑠 > 1,

𝐸 :=
{︁
𝑓 ∈ 𝐶∞[0, 1] ; ‖𝑓‖ := sup

𝑝>0

‖𝑓 (𝑝)‖∞
𝑝!𝑠

<∞
}︁

and
𝐴 := −𝑑/𝑑𝑠, 𝐷(𝐴) := {𝑓 ∈ 𝐸 ; 𝑓 ′ ∈ 𝐸, 𝑓(0) = 0}.

If 𝑓 ∈ 𝐸, 𝑡 ∈ [0, 1] and 𝜆 ∈ C, set 𝑓1𝜆(𝑡) :=
∫︀ 𝑡

0
𝑒−𝜆(𝑡−𝑠)𝑓(𝑠)𝑑𝑠 and 𝑓2𝜆(𝑡) :=∫︀ 𝑡

0
𝑒𝜆(𝑡−𝑠)𝑓(𝑠)𝑑𝑠. Then 𝑓1𝜆(·) and 𝑓2𝜆(·) ∈ 𝐸, 𝜆 ∈ C; moreover, there exist 𝑏′ > 0

and 𝑀 > 1, independent of 𝑓(·), such that

(64) ‖𝑓1𝜆(·)‖ 6𝑀‖𝑓‖𝑒𝑏
′|𝜆|1/𝑠 , Re𝜆 > 0, 𝑓 ∈ 𝐸.

Furthermore, for each 𝜂 > 1 there exists 𝑀𝜂 > 1, independent of 𝑓(·), such that

(65) ‖𝑓2𝜆(·)‖ 6𝑀𝜂‖𝑓‖𝑒𝜂|𝜆|, Re𝜆 > 0, 𝑓 ∈ 𝐸.

Let 𝑃1(𝑧) =
∑︀𝑁1

𝑗=0 𝑎𝑗,1𝑧
𝑗 , 𝑧 ∈ C, 𝑎𝑁1,1 ̸= 0 be a complex non-zero polynomial, and

let 𝑃2(𝑧) =
∑︀𝑁2

𝑗=0 𝑎𝑗,2𝑧
𝑗 , 𝑧 ∈ C, 𝑎𝑁2,2 ̸= 0 be a complex non-zero polynomial so

that 𝑁1 = 𝑑𝑔(𝑃1) > 1 + 𝑑𝑔(𝑃2) = 1 + 𝑁2. For any complex non-zero polynomial
𝑃 (𝑧), we define the operator 𝑃 (𝐴) in the obvious way; then

(66) 𝜌(𝑃 (𝐴)) = C and 𝑅(𝜆 : 𝐴)𝑓 = 𝑓1𝜆, 𝑓 ∈ 𝐸, 𝜆 ∈ C.

Set 𝑃𝜆(𝑧) := 𝜆𝑃2(𝑧) − 𝑃1(𝑧), 𝑧 ∈ C (𝜆 ∈ C). Let {𝑧1, . . . , 𝑧𝑠} be the set which
consists of joint multiple roots of polynomials 𝑃1(𝑧) and 𝑃2(𝑧). Then there exist
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uniquely determined integers 𝑘1, . . . , 𝑘𝑠 ∈ N such that

𝑃𝜆(𝑧) = (𝑧 − 𝑧1)
𝑘1 . . . (𝑧 − 𝑧𝑠)

𝑘𝑠(𝜆𝑄2(𝑧)−𝑄1(𝑧)), 𝑧 ∈ C, 𝜆 ∈ C,
with 𝑄1(𝑧) and 𝑄2(𝑧) being two non-zero complex polynomials without joint mul-
tiple roots, satisfying additionally that 𝑑𝑔(𝑄1) > 𝑑𝑔(𝑄2) + 1. This implies that
there exists 𝑑 > 0 such that, for every 𝜆 ∈ C with |𝜆| > 𝑑, the polynomial
𝑄𝜆(𝑧) := 𝜆𝑄2(𝑧) − 𝑄1(𝑧) is square-free. Denote by 𝑧1,𝜆, . . . , 𝑧𝑁1,𝜆 the roots of
𝑃𝜆(𝑧) (𝜆 ∈ C). Using [252, Corollary 5.6] (this is an elementary result on root lo-
calization of complex polynomials), we get the existence of a positive real number
𝜗 > 1 such that

(67) |𝑧𝑖,𝜆| 6 𝜗(1 + |𝜆|)
1

𝑁1−𝑁2 , 1 6 𝑖 6 𝑁1 (𝜆 ∈ C).
It is quite easy to prove that the operator 𝜆𝑃2(𝐴)−𝑃1(𝐴) has the bounded inverse
for all 𝜆 ∈ C, as well as that

(68) (𝜆𝑃2(𝐴)− 𝑃1(𝐴))
−1 = (−1)𝑁1+1𝑎−1

𝑁1,1
𝑅(𝑧1,𝜆 : 𝐴) . . . 𝑅(𝑧𝑁1,𝜆 : 𝐴), 𝜆 ∈ C.

Observe further that, for every 𝜆 ∈ C with |𝜆| > 𝑑, the discriminant of polyno-
mial 𝑄𝜆(𝑧), for which it is well known that can be represented by a homogenous
polynomial of degree 2(𝑑𝑔(𝑄1)− 1) in the coefficients of 𝑄𝜆(𝑧), is a complex non-
zero polynomial in 𝜆. Hence, there exist numbers 𝑑1 > 𝑑 and 𝜂 > 0 such that
|𝐷(𝑄𝜆(𝑧))| > 𝜂, |𝜆| > 𝑑1. Making use of this fact and [467, Theorem 1], we obtain
the existence of a sufficiently small number 𝜁 > 0 such that, for every 𝜆 ∈ C with
|𝜆| > 𝑑1, and for every two distinct roots 𝑧𝑖,𝜆, 𝑧𝑗,𝜆 of polynomial 𝑄𝜆(𝑧), we have
|𝑧𝑖,𝜆 − 𝑧𝑗,𝜆| > 𝜁. Then the calculation contained in the analysis made in [292, Ex-
ample 2.6.10], combined with the equality (68) and the above fact, shows that the
norm of operator (𝜆𝑃2(𝐴) − 𝑃1(𝐴))

−1 does not exceed 𝑀
∑︀

‖𝑅(𝑧𝑗,𝜆 : 𝐴)‖, where
the summation is taken over all roots 𝑧𝑗,𝜆 of polynomial 𝑄𝜆(𝑧). Taken together
with (64)–(67) and the generalized resolvent equation, the above implies that there
exist numbers 𝑏 > 0, 𝑐 > 0 and 𝜁 > 0 such that

‖(𝜆𝑃2(𝐴)− 𝑃1(𝐴))
−1‖ = 𝑂(𝑒𝑏|𝜆|

1/(𝑁1−𝑁2)𝑠+𝑐|𝜆|1/(𝑁1−𝑁2)

), 𝜆 ∈ C,
and

(69) ‖(𝜆𝑃2(𝐴)− 𝑃1(𝐴))
−1𝑃2(𝐴)𝑓‖ 6 𝜁‖𝑓‖𝑒𝑏|𝜆|

1/(𝑁1−𝑁2)𝑠+𝑐|𝜆|1/(𝑁1−𝑁2)

,

for all 𝜆 ∈ C and 𝑓 ∈ 𝐷(𝑃2(𝐴)). Before proceeding further, it should be noted that
the above estimates can be used in proving the existence of convoluted solutions of
fractional analogues of the linearized Benney–Luke equation (sometimes also called
Dzektser equation)

(𝜆−Δ)𝑢𝑡 = 𝛼Δ− 𝛽Δ2 (𝛼, 𝛽 > 0, 𝜆 ∈ R),
in contrast with the assertions of Theorem 2.2.20–Theorem 2.2.21 below, which can
be applied only in the case that 𝜆 > 0 (cf. [307] for more details); as is well known,
this equation is important in evolution modeling of some problems appearing in
the theory of liquid filtration, see e.g. [199, p. 6]. Suppose 𝑁1 − 𝑁2 > 𝛼 > 1,
𝛿 ∈ (0, 𝜋/2], (𝜋/2 + 𝛿)𝛼/(𝑁1 − 𝑁2) < 𝜋/2, 𝜚 > 𝑐/ cos((𝜋/2 + 𝛿)𝛼/(𝑁1 − 𝑁2))

and 𝑘(𝑡) = ℒ−1(𝑒−𝜚𝜆𝛼/𝑛

)(𝑡), 𝑡 > 0. By Theorem 2.2.12 and (69), there exists an
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exponentially bounded, analytic (𝑔𝛼, 𝑘)-regularized resolvent family (𝑅𝛼(𝑡))𝑡>0 for
the corresponding problem (52), of angle 𝛿; it is clear that the conditions (i.1)’ and
(ii.1) stated in Theorem 2.2.8 and Remark 2.2.9(i) holds for (𝑅𝛼(𝑡))𝑡>0. Observe
finally that the case 𝑁1 = 𝑁2 + 1 is critical and that we always have the existence
of integrated solution families in the case 𝑁2 > 𝑁1 (this follows from the above
analysis and the fact that, for every 𝜆 ∈ C with |𝜆| > 𝑑, the roots 𝑧1,𝜆, . . . , 𝑧𝑁2,𝜆 of
polynomial 𝑃𝜆(𝑧) belong to a compact set 𝐾 ⊆ C which does not depend on 𝜆; see
e.g. [252, Theorem 5.4]). Computing the optimal rate of integration is a non-trivial
problem which will not be discussed here.

2.2.3. Degenerate time-fractional equations associated with abstract
differential operators. With the exceptions of Remark 2.2.23 and Remark
2.2.26(ii), we assume in this subsection, and the next one, that 𝑛 ∈ N and 𝑖𝐴𝑗 , 1 6
𝑗 6 𝑛 are commuting generators of bounded 𝐶0-groups on a Banach space 𝐸. De-
note by 𝒮(R𝑛) the Schwartz space of rapidly decreasing functions on R𝑛. Put 𝑘 :=
1 + ⌊𝑛/2⌋, 𝐴 := (𝐴1, . . . 𝐴𝑛) and 𝐴𝜂 := 𝐴𝜂1

1 . . . 𝐴𝜂𝑛
𝑛 for any 𝜂 = (𝜂1, . . . , 𝜂𝑛) ∈ N𝑛

0 .
Denote by ℱ and ℱ−1 the Fourier transform on R𝑛 and its inverse transform, respec-
tively. For every 𝜉 = (𝜉1, . . . , 𝜉𝑛) ∈ R𝑛 and 𝑢 ∈ ℱ𝐿1(R𝑛) = {ℱ𝑓 : 𝑓 ∈ 𝐿1(R𝑛)}, we
set |𝜉| := (

∑︀𝑛
𝑗=1 𝜉

2
𝑗 )

1/2, (𝜉, 𝐴) :=
∑︀𝑛

𝑗=1 𝜉𝑗𝐴𝑗 and

𝑢(𝐴)𝑥 :=

∫︁
R𝑛

ℱ−1𝑢(𝜉)𝑒−𝑖(𝜉,𝐴)𝑥 𝑑𝜉, 𝑥 ∈ 𝐸.

Then 𝑢(𝐴) ∈ 𝐿(𝐸), 𝑢 ∈ ℱ𝐿1(R𝑛) and there exists a finite constant 𝑀 > 1 such
that

‖𝑢(𝐴)‖ 6𝑀‖ℱ−1𝑢‖𝐿1(R𝑛), 𝑢 ∈ ℱ𝐿1(R𝑛).

Let 𝑁 ∈ N, and let 𝑃 (𝑥) =
∑︀

|𝜂|6𝑁 𝑎𝜂𝑥
𝜂, 𝑥 ∈ R𝑛 be a complex polynomial. Then

we define 𝑃 (𝐴) :=
∑︀

|𝜂|6𝑁 𝑎𝜂𝐴
𝜂 and 𝐸0 := {𝜑(𝐴)𝑥 : 𝜑 ∈ 𝒮(R𝑛), 𝑥 ∈ 𝐸}. We

know that the operator 𝑃 (𝐴) is closable and the following holds (cf. [292,375,561]
and [304] for further information):

(◁) 𝐸0 = 𝐸, 𝐸0 ⊆
⋂︀

𝜂∈N𝑛
0
𝐷(𝐴𝜂), 𝑃 (𝐴)|𝐸0

= 𝑃 (𝐴) and
𝜑(𝐴)𝑃 (𝐴) ⊆ 𝑃 (𝐴)𝜑(𝐴) = (𝜑𝑃 )(𝐴), 𝜑 ∈ 𝒮(R𝑛).

Assuming that 𝐸 is a function space on which translations are uniformly bounded
and strongly continuous, the obvious choice for 𝐴𝑗 is −𝑖𝜕/𝜕𝑥𝑗 (notice also that 𝐸
can be consisted of functions defined on some bounded domain [132,375,561], [560,
pp. 101-103]). If 𝑃 (𝑥) =

∑︀
|𝜂|6𝑁 𝑎𝜂𝑥

𝜂, 𝑥 ∈ R𝑛 and 𝐸 is such a space (for example,
𝐿𝑝(R𝑛) with 𝑝 ∈ [1,∞), 𝐶0(R𝑛) or 𝐵𝑈𝐶(R𝑛)), then 𝑃 (𝐴) is nothing else but
the operator

∑︀
|𝜂|6𝑁 𝑎𝜂(−𝑖)|𝜂|𝜕|𝜂|/𝜕𝑥𝜂1

1 . . . 𝜕𝑥𝜂𝑛
𝑛 ≡

∑︀
|𝜂|6𝑁 𝑎𝜂𝐷

𝜂, acting with its
maximal distributional domain. Recall that 𝑃 (𝑥) is called 𝑟-coercive (0 < 𝑟 6 𝑁)
if there exist 𝑀,𝐿 > 0 such that |𝑃 (𝑥)| > 𝑀 |𝑥|𝑟, |𝑥| > 𝐿; by a corollary of the
Seidenberg–Tarski theorem, the equality lim|𝑥|→∞ |𝑃 (𝑥)| = ∞ implies in particular
that 𝑃 (𝑥) is 𝑟-coercive for some 𝑟 ∈ (0, 𝑁 ] (cf. [27, Remark 8.2.7]). In the sequel
of this subsection, 𝑀 > 0 denotes a generic constant whose value may change from
line to line.
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Let 𝑝 ∈ [1,∞]. Following L. Hörmander [257], it will be said that a function
𝑢 ∈ 𝐿∞(R𝑛) is a Fourier multiplier on 𝐿𝑝(R𝑛) iff ℱ−1(𝑢ℱ𝜑) ∈ 𝐿𝑝(R𝑛) for all
𝜑 ∈ 𝒮(R𝑛) and

‖𝑢‖ℳ𝑝
:= sup{‖ℱ−1(𝑢ℱ𝜑)‖𝐿𝑝(R𝑛) : 𝜑 ∈ 𝒮(R𝑛), ‖𝜑‖𝐿𝑝(R𝑛) 6 1} <∞.

We use the abbreviation ℳ𝑝 for the space of all Fourier multipliers on 𝐿𝑝(R𝑛); cf.
[254] for more details. Then ℳ𝑝 is a Banach algebra under pointwise multiplication
and ℱ𝐿1(R𝑛) is continuously embedded in ℳ𝑝. We need the following lemma (see
e.g. [541, Lemma 5.2, Lemma 5.4, pp. 20-22]).

Lemma 2.2.19. (i) Let 1 6 𝑝 6 ∞, 𝑗, 𝑛 ∈ N, 𝑗 > 𝑛/2 and {𝑓𝑡}𝑡>0 be a
family of 𝐶𝑗(R𝑛)-functions. Assume that for each 𝑥 ∈ R𝑛, 𝜂 ∈ N𝑛

0 with
|𝜂| 6 𝑗, 𝑡 ↦→ 𝐷𝛼𝑓𝑡(𝑥), 𝑡 > 0 is continuous and that there exist 𝑎 > 0,
𝑟 > 𝑛| 1𝑝 − 1

2 | and 𝑀𝑡 > 0 (𝑀𝑡 is bounded on compacts of 𝑡 > 0) such that

|𝐷𝜂𝑓𝑡(𝑥)| 6𝑀 |𝜂|
𝑡 (1 + |𝑥|)(𝑎−1)|𝜂|−𝑎𝑟, |𝜂| 6 𝑗, 𝑥 ∈ R𝑛, 𝑡 > 0.

Then, for any 𝑡 > 0, 𝑝 = 1, ∞ (resp. 1 < 𝑝 <∞), we have 𝑓𝑡 ∈ ℱ𝐿1(R𝑛)
(resp. 𝑓𝑡 ∈ ℳ𝑝), 𝑡 ↦→ 𝑓𝑡, 𝑡 > 0 is continuous with respect to || · ||ℱ𝐿1(R𝑛)

(resp. || · ||ℳ𝑝
) and there exists a constant 𝑀 > 0 independent of 𝑡 > 0

such that

‖𝑓𝑡‖ℱ𝐿1(R𝑛) (resp. ‖𝑓𝑡‖ℳ𝑝
) 6𝑀𝑀

𝑛| 1𝑝−
1
2 |

𝑡 , 𝑡 > 0.

(ii) Let 1 < 𝑝 < ∞, 𝑗, 𝑛 ∈ N, 𝑗 > 𝑛/2 and 𝑓 ∈ 𝐶𝑗(R𝑛). Assume that there
exist 𝑎 > 0, 𝑟 > 𝑛| 1𝑝 − 1

2 |, 𝑀𝑓 > 1 and 𝐿𝑓 > 0 such that

|𝐷𝜂𝑓(𝑥)| 6 𝐿𝑓𝑀
|𝜂|
𝑓 (1 + |𝑥|)(𝑎−1)|𝜂|−𝑎𝑟, |𝜂| 6 𝑗, 𝑥 ∈ R𝑛, 𝑡 > 0.

Then 𝑓 ∈ ℳ𝑝 and there exists a constant 𝑀 > 0 independent of 𝑓(·) such
that

‖𝑓‖ℳ𝑝
6𝑀𝐿𝑓𝑀

𝑛| 1𝑝−
1
2 |

𝑓 .

Suppose now that 𝑃1(𝑥) and 𝑃2(𝑥) are non-zero complex polynomials in 𝑛 vari-
ables and 0 < 𝛼 6 2; put 𝑁1 := 𝑑𝑔(𝑃1(𝑥)), 𝑁2 := 𝑑𝑔(𝑃2(𝑥)) and 𝑚 := ⌈𝛼⌉. We
investigate the generation of some very specific classes of (𝑔𝛼, 𝐶)-regularized resol-
vent families associated with the following fractional degenerate abstract Cauchy
problem

(DFP) :

{︃
D𝛼

𝑡 𝑃2(𝐴)𝑢(𝑡) = 𝑃1(𝐴)𝑢(𝑡), 𝑡 > 0,

𝑢(0) = 𝐶𝑥; 𝑢(𝑗)(0) = 0, 1 6 𝑗 6 ⌈𝛼⌉ − 1.

Convoluting both sides of (DFP) with 𝑔𝛼(𝑡), and using the equality (38) it follows
that every solution of (DFP) is, in fact, a strong solution of problem (52) with
𝐵 = 𝑃2(𝐴), 𝜏 = ∞, 𝑎(𝑡) = 𝑔𝛼(𝑡) and 𝑓(𝑡) ≡ 𝑃2(𝐴)𝐶𝑥. It can be easily checked
that any such a solution of problem (52) is also a strong solution of problem (DFP);
cf. Definition 2.3.1 below. A continuous 𝐸-valued function 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 is said to
be a mild solution of (DFP) iff 𝑃1(𝐴)(𝑔𝛼 *𝑢)(𝑡) = 𝑃2(𝐴)𝑢(𝑡)−𝑃2(𝐴)𝐶𝑥, 𝑡 > 0. We
start by stating the following extension of [304, Theorem 2.1]; observe only that we
do not assume here the coercivity of 𝑃1(𝑥) or 𝑃2(𝑥), and that in the formulation
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of the afore-mentioned theorem we have that 𝑃1(𝑥) = 𝑄(𝑥) = 𝑃 (𝑥) and 𝑃2(𝑥) = 1
(𝑥 ∈ R𝑛).

Theorem 2.2.20. Suppose 0 < 𝛼 < 2, 𝜔 > 0, 𝑃1(𝑥) and 𝑃2(𝑥) are non-zero
complex polynomials 𝑁1 = 𝑑𝑔(𝑃1(𝑥)), 𝑁2 = 𝑑𝑔(𝑃2(𝑥)), 𝑁 ∈ N and 𝑟 ∈ (0, 𝑁 ].
Let 𝑄(𝑥) be an 𝑟-coercive complex polynomial of degree 𝑁 , 𝑎 ∈ C r 𝑄(R𝑛), 𝛾 >
𝑛max(𝑁,

𝑁1+𝑁2
min(1,𝛼)

)

2𝑟 (resp. 𝛾 = 𝑛
𝑟 |

1
𝑝 − 1

2 |max(𝑁, 𝑁1+𝑁2

min(1,𝛼) ), if 𝐸 = 𝐿𝑝(R𝑛) for some
1 < 𝑝 <∞), 𝑃2(𝑥) ̸= 0, 𝑥 ∈ R𝑛 and

(70) sup
𝑥∈R𝑛

Re
(︁(︁𝑃1(𝑥)

𝑃2(𝑥)

)︁1/𝛼)︁
6 𝜔.

Set

𝑅𝛼(𝑡) :=
(︁
𝐸𝛼

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁
(𝑎−𝑄(𝑥))−𝛾

)︁
(𝐴), 𝑡 > 0.

Then (𝑅𝛼(𝑡))𝑡>0 ⊆ 𝐿(𝐸) is a global exponentially bounded (𝑔𝛼, 𝑅𝛼(0))-regularized
resolvent family for (DFP), (𝑅𝛼(𝑡))𝑡>0 is norm continuous provided

𝛾 >
𝑛max(𝑁,

𝑁1+𝑁2
min(1,𝛼)

)

2𝑟 , and the following holds:

‖𝑅𝛼(𝑡)‖ 6𝑀(1 + 𝑡max(1,𝛼)𝑛/2)𝑒𝜔𝑡, 𝑡 > 0, resp.,(71)

‖𝑅𝛼(𝑡)‖ 6𝑀(1 + 𝑡max(1,𝛼)𝑛| 1𝑝−
1
2 |)𝑒𝜔𝑡, 𝑡 > 0.

Proof. Put 𝐶 := 𝑅𝛼(0). Then 𝐶 is injective and it can be easily proved
with the help of (◁) that 𝐶𝑃 (𝐴) ⊆ 𝑃 (𝐴)𝐶 for any complex polynomial 𝑃 (𝑥); see
e.g. [304]. Furthermore, sup𝑥∈R𝑛 |𝑃2(𝑥)|−1 <∞ and, for every multi-index 𝜂 ∈ N𝑛

0

with |𝜂| > 0, there exists 𝑐𝜂 > 0 such that

(72)
⃒⃒⃒
𝐷𝜂
(︁𝑃1(𝑥)

𝑃2(𝑥)

)︁⃒⃒⃒
6 𝑐𝜂(1 + |𝑥|)|𝜂|(𝑁1+𝑁2−1), 𝑥 ∈ R𝑛.

By induction, one can prove that, for every multi-index 𝜂 ∈ N𝑛
0 with |𝜂| > 0, the

following holds:

(73) 𝐷𝜂𝐸𝛼

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁
=

|𝜂|∑︁
𝑗=1

𝑡𝛼𝑗𝐸(𝑗)
𝛼

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁
𝑅𝜂,𝑗(𝑥), 𝑡 > 0, 𝑥 ∈ R𝑛,

where 𝑅𝜂,𝑗(𝑥) can be represented as a finite sum of terms like
∏︀𝑠𝑗

𝑤=1𝐷
𝜂𝑗,𝑤(𝑃1(𝑥)

𝑃2(𝑥)
)

with |𝜂𝑗,𝑤| > 0 (1 6 𝑤 6 𝑠𝑗) and |𝜂𝑗,1|+· · ·+|𝜂𝑗,𝑠𝑗 | 6 |𝜂|. Consider now the assertion
of Theorem 1.5.1. Taking the number 𝜎 > 0 sufficiently small, and keeping in mind
that 0 < 𝛼 < 2, we obtain that, for every 𝑚 ∈ Nr {1} and for every 𝑡 > 0, 𝑥 ∈ R𝑛

with |𝑡𝛼𝑃1(𝑥)/𝑃2(𝑥)| > 1, the term⃒⃒⃒
𝐸𝛼,𝛼𝑗−(𝑗−𝑙)

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁
− 1

𝛼

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁(1−(𝛼𝑗−(𝑗−𝑙)))/𝛼

𝑒(𝑡
𝛼𝑃1(𝑥)/𝑃2(𝑥))

1/𝛼

−
𝑚−1∑︁
𝑗=1

(𝑡𝛼𝑃1(𝑥)/𝑃2(𝑥))
−𝑗

Γ(𝛼𝑗 − (𝑗 − 𝑙)− 𝛼𝑗)

⃒⃒⃒
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can be majorized by 𝑀 |𝑡𝛼𝑃1(𝑥)/𝑃2(𝑥)|−𝑚. Clearly, the function 𝐸𝛼,𝛼𝑗−(𝑗−𝑙)(·) is
bounded on compacts of C, and (70) implies that Re((𝑡𝛼(𝑃1(𝑥)/𝑃2(𝑥))

1/𝛼) 6 𝜔𝑡,
𝑡 > 0, 𝑥 ∈ R𝑛. As in the proof of [296, Theorem 2.1], the above implies that, for
every 𝑡 > 0, 𝑥 ∈ R𝑛 and 1 6 𝑙 6 𝑗 6 𝑘,

(74) |𝐸𝛼,𝛼𝑗−(𝑗−𝑙)(𝑡
𝛼𝑃1(𝑥)/𝑃2(𝑥))| 6𝑀

[︀
1 + 𝑡1−(𝛼𝑗−(𝑗−𝑙))|𝑃1(𝑥)/𝑃2(𝑥)|

1−(𝛼𝑗−(𝑗−𝑙))
𝛼 𝑒𝜔𝑡]︀.

By (44), (72)–(73) and the boundedness of derivatives of the Mittag-Leffler func-
tion 𝐸𝛼(·) on compacts of C, we obtain that, for every 𝑡 > 0 and 𝑥 ∈ R𝑛 with
|𝑡𝛼𝑃1(𝑥)/𝑃2(𝑥)| 6 1:

(75)
⃒⃒⃒
𝐷𝜂𝐸𝛼

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁⃒⃒⃒
6𝑀(𝑡𝛼 + 𝑡𝛼|𝜂|)(1 + |𝑥|)|𝜂|(𝑁1+𝑁2−1), 0 < |𝜂| 6 𝑘.

If 0 < |𝜂| 6 𝑘, 𝑡 > 0, 𝑥 ∈ R𝑛 and |𝑡𝛼𝑃1(𝑥)/𝑃2(𝑥)| > 1, then the following holds (cf.
(74) and [304, (2.6)–(2.7)]):⃒⃒⃒
𝐷𝜂𝐸𝛼

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁⃒⃒⃒
6𝑀

|𝜂|∑︁
𝑗=1

𝑡𝛼𝑗
𝑗∑︁

𝑙=1

[︀
1 + |𝑡𝛼𝑃1(𝑥)/𝑃2(𝑥)|

1−(𝛼𝑗−(𝑗−𝑙))
𝛼 𝑒𝜔𝑡

]︀
(1 + |𝑥|)|𝜂|(𝑁1+𝑁2−1)

6𝑀
|𝜂|∑︁
𝑗=1

𝑡𝛼𝑗
𝑗∑︁

𝑙=1

[1 + 𝑒𝜔𝑡(1 + 𝑡1−(𝛼𝑗−(𝑗−𝑙)))](1 + |𝑥|)|𝜂|(
𝑁1+𝑁2
min(1,𝛼)

−1)

6𝑀(1 + 𝑡max(1,𝛼)|𝜂|)𝑒𝜔𝑡(1 + |𝑥|)|𝜂|(
𝑁1+𝑁2
min(1,𝛼)

−1).

Taking into account (75), we obtain from the previous estimate that, for every 𝑡 > 0
and 𝑥 ∈ R𝑛,

(76)
⃒⃒⃒
𝐷𝜂𝐸𝛼

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁⃒⃒⃒
6𝑀(1+𝑡max(1,𝛼)|𝜂|)𝑒𝜔𝑡(1+|𝑥|)|𝜂|(

𝑁1+𝑁2
min(1,𝛼)

−1), 0 < |𝜂| 6 𝑘;

observe that the inequality Re((𝑡𝛼𝑃1(𝑥)/𝑃2(𝑥))
1/𝛼) 6 𝜔𝑡, 𝑡 > 0, 𝑥 ∈ R𝑛 and

Theorem 1.5.1 together imply that the previous estimate also holds in the case that
|𝜂| = 0. Set 𝑓𝑡(𝑥) := 𝐸𝛼(𝑡

𝛼𝑃1(𝑥)/𝑃2(𝑥))(𝑎 − 𝑄(𝑥))−𝛾 , 𝑡 > 0, 𝑥 ∈ R𝑛. It is clear
that there exists 𝐿 > 0 such that |𝑄(𝑥)| >𝑀 |𝑥|𝑟, |𝑥| > 𝐿 and |𝑎−𝑄(𝑥)| >𝑀 |𝑥|𝑟,
|𝑥| > 𝐿. Using [380, (3.19)], (76) and the product rule, it readily follows that, for
every 𝑡 > 0, 𝑥 ∈ R𝑛, and for every 𝜂 ∈ N𝑛

0 with |𝜂| 6 𝑘,

(77)
⃒⃒⃒
𝐷𝜂
(︁
𝐸𝛼

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁
(𝑎−𝑄(𝑥))−𝛾

)︁⃒⃒⃒
6𝑀(1 + 𝑡max(1,𝛼)|𝜂|)𝑒𝜔𝑡(1 + |𝑥|)|𝜂|(max(𝑁,

𝑁1+𝑁2
min(1,𝛼)

)−1)−𝑟𝛾 .

We obtain similarly that, for every 𝑡 > 0, 𝑥 ∈ R𝑛, and for every 𝜂 ∈ N𝑛
0 with |𝜂| 6 𝑘,

(78)
⃒⃒⃒
𝐷𝜂
(︁
𝑃2(𝑥)

−1𝐸𝛼

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁
(𝑎−𝑄(𝑥))−𝛾

)︁⃒⃒⃒
6𝑀(1 + 𝑡max(1,𝛼)|𝜂|)𝑒𝜔𝑡(1 + |𝑥|)|𝜂|(max(𝑁,

𝑁1+𝑁2
min(1,𝛼)

)−1)−𝑟𝛾 .
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Suppose first that 𝛾 >
𝑛max(𝑁,

𝑁1+𝑁2
min(1,𝛼)

)

2𝑟 . By performing the Laplace transform and
using (43) we get that for each 𝑡 > 0 and 𝑥 ∈ R𝑛,

(𝑎−𝑄(𝑥))−𝛾𝑃2(𝑥) = 𝑃2(𝑥)𝐸𝛼

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁
(𝑎−𝑄(𝑥))−𝛾

−
∫︁ 𝑡

0

𝑔𝛼(𝑡− 𝑠)𝑃1(𝑥)𝐸𝛼

(︁
𝑠𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁
(𝑎−𝑄(𝑥))−𝛾𝑑𝑠.

Keeping in mind this equality, Lemma 2.2.19 and the fact that 𝑅𝛼(𝑡)𝑃 (𝐴) ⊆
𝑃 (𝐴)𝑅𝛼(𝑡), 𝑡 > 0 for any complex polynomial 𝑃 (𝑥), we can repeat verbatim the
arguments used in the proof of [304, Theorem 2.1] so as to conclude that

𝑃1(𝐴)

∫︁ 𝑡

0

𝑔𝛼(𝑡− 𝑠)𝑅𝛼(𝑠)𝑥 𝑑𝑠 = 𝑅𝛼(𝑡)𝑃2(𝐴)𝑥− 𝐶𝑃2(𝐴)𝑥, 𝑡 > 0, 𝑥 ∈ 𝐷(𝑃2(𝐴)),

which clearly implies by Theorem 2.2.8 that for each 𝑥 ∈ 𝐷(𝑃2(𝐴)) (𝑥 ∈ 𝐷(𝑃1(𝐴))∩
𝐷(𝑃2(𝐴))) the function 𝑡 ↦→ 𝑢(𝑡) ≡ 𝑅𝛼(𝑡)𝑥, 𝑡 > 0 is a mild (strong) solution of
(DFP). In general case, the proof of theorem can be completed by performing the
Laplace transform once more. The proof is quite similar if 𝐸 = 𝐿𝑝(R𝑛) for some
1 < 𝑝 < ∞, and the only non-trivial thing in this case is to show the strong
continuity of the operator family (𝑅𝛼(𝑡))𝑡>0. The arguments used in the proof
of [304, Theorem 2.1] show that the mapping 𝑡 ↦→ 𝑅𝛼(𝑡)𝑓 , 𝑡 > 0 is continuous
for every 𝑓 ∈ 𝑅(𝑃2(𝐴)). But, 𝑃2(𝐴)|𝒮(R𝑛) is a linear topological homeomorphism
of the space 𝒮(R𝑛), which along with the exponential boundedness of (𝑅𝛼(𝑡))𝑡>0

implies the continuity of mapping 𝑡 ↦→ 𝑅𝛼(𝑡)𝑓 , 𝑡 > 0 for any 𝑓 ∈ 𝐿𝑝(R𝑛). �

We can prove in a similar way the following extension of [304, Theorem 2.2];
let us only note that the choice of regularizing operator 𝐶 is slightly different now.

Theorem 2.2.21. Suppose 0 < 𝛼 < 2, 𝜔 > 0, 𝑃1(𝑥) and 𝑃2(𝑥) are non-zero
complex polynomials, 𝑁1 = 𝑑𝑔(𝑃1(𝑥)), 𝑁2 = 𝑑𝑔(𝑃2(𝑥)), 𝛽 > 𝑛

2
(𝑁1+𝑁2)
min(1,𝛼) (resp.

𝛽 > 𝑛| 1𝑝 −
1
2 |

(𝑁1+𝑁2)
min(1,𝛼) , if 𝐸 = 𝐿𝑝(R𝑛) for some 1 < 𝑝 <∞), 𝑃2(𝑥) ̸= 0, 𝑥 ∈ R𝑛 and

(70) holds. Set

𝑅𝛼(𝑡) :=
(︁
𝐸𝛼

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁
(1 + |𝑥|2)−𝛽/2

)︁
(𝐴), 𝑡 > 0.

Then (𝑅𝛼(𝑡))𝑡>0 ⊆ 𝐿(𝐸) is a global exponentially bounded (𝑔𝛼, 𝑅𝛼(0))-regularized
resolvent family for (DFP), (𝑅𝛼(𝑡))𝑡>0 is norm continuous provided 𝛽 > 𝑛

2
(𝑁1+𝑁2)
min(1,𝛼) ,

and (71) holds.

Remark 2.2.22. (i) The assumption 𝑃2(𝑥) ̸= 0, 𝑥 ∈ R𝑛 implies that the
operator 𝑃2(𝐴) is injective so that the character of degeneracy of problems
considered in Subsection 2.2.3 is very mild. In actual fact, the assumption
𝑃2(𝐴)𝑓 = 0, in combination with (◁) and the fact that 𝑃2(·)−1𝜑(·) ∈
𝒮(R𝑛), 𝜑 ∈ 𝒮(R𝑛) implies that 𝜑(𝐴)𝑓 = 0, 𝜑 ∈ 𝒮(R𝑛); hence, 𝑓 = 0.
Consider now the situation of Theorem 2.2.20, with 𝐸 being a general
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space and 𝛾 >
𝑛max(𝑁,

𝑁1+𝑁2
min(1,𝛼)

)

2𝑟 . Set 𝐺𝛼(𝑡) := (𝑃2(·)−1𝑓𝑡(·))(𝐴), 𝑡 > 0.
Applying again (◁), we get that 𝑃2(𝐴)𝐺𝛼(𝑡)𝑥 = 𝑅𝛼(𝑡)𝑥, 𝑡 > 0, 𝑥 ∈ 𝐸0.
By the closedness of 𝑃2(𝐴), the above equality holds for any 𝑥 ∈ 𝐸 so
that 𝐺𝛼(𝑡) = 𝑃2(𝐴)

−1
𝑅𝛼(𝑡), 𝑡 > 0; furthermore, (𝐺𝛼(𝑡))𝑡>0 ⊆ 𝐿(𝐸) is a

strongly continuous operator family. Then the Laplace transform and the
identity 𝑃1(𝐴)(𝑔𝛼 *𝐺𝛼)(𝑡)𝑥 = 𝑅𝛼(𝑡)𝑥− 𝐶𝑥, 𝑡 > 0, 𝑥 ∈ 𝐸 can be used to
prove that 𝜆𝛼−1(𝜆𝛼𝐵 − 𝐴)−1𝐶𝑥 =

∫︀∞
0
𝑒−𝜆𝑡𝐺𝛼(𝑡)𝑥 𝑑𝑡 for any 𝑥 ∈ 𝐸 and

𝜆 > 0 sufficiently large; therefore, the condition (ii.1) stated in Theorem
2.2.8 holds, with 𝑎(𝑡) = 𝑔𝛼(𝑡) and 𝑘(𝑡) = 1, which continues to hold in
any case set out in Theorem 2.2.20–Theorem 2.2.21 and Remark 2.2.23
below. It should be also observed that (𝐺𝛼(𝑡))𝑡>0 is an exponentially
equicontinuous (𝑔𝛼, 𝐶)-regularized resolvent family generated by 𝑃1(𝐴),
𝑃2(𝐴) (cf. the next section for the notion and more details), and that for
each 𝑓 ∈ 𝐷(𝑃1(𝐴)) ∩ 𝐷(𝑃2(𝐴)), the function 𝑢(𝑡) := 𝑅𝛼(𝑡)𝑥, 𝑡 > 0 is a
unique solution of the following Cauchy problem:

(𝑃 )𝐿 :

⎧⎪⎨⎪⎩
𝑢 ∈ 𝐶([0,∞) : [𝐷(𝑃1(𝐴))]) ∩ 𝐶([0,∞) : [𝐷(𝑃2(𝐴))]),

𝑃2(𝐴)D
𝛼
𝑡 𝑢(𝑡) = 𝑃1(𝐴)𝑢(𝑡), 𝑡 > 0,

𝑢(0) = 𝐶𝑥; 𝑢(𝑗)(0) = 0, 1 6 𝑗 6 ⌈𝛼⌉ − 1.

A similar result holds for the second order degenerate equations in the
next subsection, and for the first order degenerate equations in the case
that the requirements of Theorem 2.2.21 hold; cf. [307].

(ii) It is worth noting that Theorem 2.2.20 and Theorem 2.2.21 can be
strengthened in the following way. Suppose that the estimate (72) holds
with the number 𝑁1 + 𝑁2 replaced by some other number 𝜎 > 0, and
|𝑃1(𝑥)/𝑃2(𝑥)| 6 𝑀(1 + |𝑥|)𝜎1 , 𝑥 ∈ R𝑛 for some 𝜎1 ∈ [0, 𝑁1]. Put
𝑊 := 𝜎 + 𝜒(0,1)(𝛼)𝜎1(𝛼

−1 − 1). Based on the evidence used in prov-
ing the estimate (76), along with the inequality [380, (3.19)] and the first
estimate appearing in the proof of [380, Theorem 4.3], implies that the
following holds:

Theorem 2.2.20: The assertion of this theorem continues to hold for any number
𝛾 > 𝑛max(𝑁,𝑊 )/2𝑟 (resp. 𝛾 = 𝑛

𝑟 |
1
𝑝 −

1
2 |max(𝑁,𝑊 ), if 𝐸 = 𝐿𝑝(R𝑛)

for some 1 < 𝑝 <∞).
Theorem 2.2.21: The assertion of this theorem continues to hold for any number 𝛽 >

𝑛𝑊
2 (resp. 𝛽 = 𝑛| 1𝑝 − 1

2 |𝑊 , if 𝐸 = 𝐿𝑝(R𝑛) for some 1 < 𝑝 <∞).
If 𝑉2 > 0 and if for each 𝜂 ∈ N𝑛

0 there exists 𝑀𝜂 > 0 such that

|𝐷𝜂(𝑃2(𝑥)
−1)| 6𝑀𝜂(1 + |𝑥|)|𝜂|(𝑉2−1), 𝑥 ∈ R𝑛

(this holds with 𝑉2 = 𝑁2), then similarly as in the first part of this
remark we can prove that the condition (ii.1) stated in Theorem 2.2.8
holds, with 𝑎(𝑡) = 𝑔𝛼(𝑡) and 𝑘(𝑡) = 1, if: 𝛾 > 𝑛max(𝑁,𝑉2,𝑊 )

2𝑟 , resp. 𝛾 >
𝑛
𝑟 |

1
𝑝 − 1

2 |max(𝑁,𝑉2,𝑊 ) (Theorem 2.2.20); 𝛽 > 𝑛max(𝑉2,𝑊 )
2 , resp. 𝛽 >

𝑛| 1𝑝 − 1
2 |max(𝑉2,𝑊 ) (Theorem 2.2.21). Observe, finally, that there is
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a great number of concrete examples where we can further refine the
obtained theoretical results by using direct calculations [291].

(iii) The estimate (70) is very restrictive in the case that 𝛼 ∈ (0, 1). If 1 <
𝛼 < 2 and 𝜔 > 0, then by the proof of [380, Theorem 4.2], cf. also [304,
Remark 2.1(i)], the condition 𝑃1

𝑃2
(R𝑛) ⊆ C r (𝜔 + Σ𝛼𝜋/2) implies the

validity of (70).
(iv) Let 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 be a mild solution of the problem (52) with the

operators 𝐴 and 𝐵 replaced respectively by 𝑃1(𝐴) and 𝑃2(𝐴). Then it can
be simply proved that the variation of parameters formula (𝑅𝛼 * 𝑓)(𝑡) =
(𝐶𝑃2(𝐴) * 𝑢)(𝑡) holds for any 𝑡 > 0. This implies that we can look into
the 𝐶-wellposedness of the inhomogeneous degenerate Cauchy problem
(DFP)𝑓 , obtained by adding the term 𝑓(𝑡) on the right hand side of (DFP).
All this has been seen many times and we shall skip details for the sake
of brevity; the interested reader may consult [292, Subsection 2.1.1] for
further information concerning the 𝐶-wellposedness of abstract fractional
Cauchy problems.

(v) Let 0 < 𝛼0 < 𝛼 < 2, and let the assumptions of Theorem 2.2.20 (Theorem
2.2.21) hold. Using Theorem 2.2.13(ii), it readily follows that there ex-
ists an exponentially bounded, analytic (𝑔𝛼0

, 𝑅𝛼0
(0))-regularized resolvent

family (𝑅𝛼0
(𝑡))𝑡>0 ⊆ 𝐿(𝐸) for (DFP), of angle min(((𝛼/𝛼0)−1)𝜋/2, 𝜋/2);

furthermore, if 𝐸 = 𝐿2(R𝑛) and 𝜔 = 0, then the angle of analyticity equals
min(((𝛼/𝛼0)− 1)𝜋/2, 𝜋) and can be strictly greater than 𝜋/2.

Remark 2.2.23. In this remark, we would like to explain how one can refor-
mulate the assertions of Theorem 2.2.20 and Theorem 2.2.21 in 𝐸𝑙-type spaces. Let
𝐸 be one of the spaces 𝐿𝑝(R𝑛) (1 6 𝑝 6 ∞), 𝐶0(R𝑛), 𝐶𝑏(R𝑛), 𝐵𝑈𝐶(R𝑛) and let
0 6 𝑙 6 𝑛. Let us recall that the space 𝐸𝑙 is defined by 𝐸𝑙 := {𝑓 ∈ 𝐸 : 𝑓 (𝛼) ∈
𝐸 for all 𝛼 ∈ N𝑙

0}. The totality of seminorms (𝑞𝛼(𝑓) := ||𝑓 (𝛼)||𝐸 , 𝑓 ∈ 𝐸𝑙; 𝛼 ∈ N𝑙
0)

induces a Fréchet topology on 𝐸𝑙. Let T𝑙⟨·⟩ possess the same meaning as in [542],
let 𝑎𝜂 ∈ C, 0 6 |𝜂| 6 𝑁1, and let 𝑏𝜂 ∈ C, 0 6 |𝜂| 6 𝑁2. Assume that the operators
𝑃1(𝐷)𝑓 ≡

∑︀
|𝜂|6𝑁1

𝑎𝜂𝐷
𝜂𝑓 and 𝑃2(𝐷)𝑓 ≡

∑︀
|𝜂|6𝑁2

𝑏𝜂𝐷
𝜂𝑓 act with their maximal

distributional domains. Then 𝑃1(𝐷) and 𝑃2(𝐷) are closed linear operators on 𝐸𝑙;
in the sequel, we assume that 𝑃1(𝐷) ̸= 0 and 𝑃2(𝐷) ̸= 0. Let 𝜔 > 0 be such
that (70) holds. Then it can be easily seen that 𝑃 (𝐷) generates an exponentially
equicontinuous (𝑔𝛼, 𝐼)-regularized resolvent family (𝑆𝛼(𝑡))𝑡>0 in the space 𝐸𝑛 and
the condition (ii.1) stated in Theorem 2.2.8 holds, with 𝑎(𝑡) = 𝑔𝛼(𝑡) and 𝑘(𝑡) = 1.
Let 𝛾 (𝛽) have the same value as in the formulation of Theorem 2.2.20 (Theorem
2.2.21). Then the estimates (77)–(78) continue to hold, and slight modifications
of the proofs of [542, Theorem 2.2, Theorem 2.4] show that the following holds
(in our opinion, the proofs of Theorem 2.2.20 and Theorem 2.2.21 are much sim-
pler than those of [542, Theorem 2.2, Theorem 2.4] in the case that 𝑙 = 0 and
𝐸 ̸= 𝐿∞(R𝑛), 𝐸 ̸= 𝐶𝑏(R𝑛)):

(i) Theorem 2.2.20: Set 𝑅𝛼(𝑡) =: Tl⟨𝐸𝛼(𝑡
𝛼𝑃1(𝑥)/𝑃2(𝑥))(𝑎−𝑄(𝑥))−𝛾⟩, 𝑡 > 0.

Then (𝑅𝛼(𝑡))𝑡>0 is an exponentially equicontinuous (𝑔𝛼, 𝑅𝛼(0))-regular-
ized resolvent family for (DFP), (𝑅𝛼(𝑡))𝑡>0 is ‘norm continuous’ provided
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𝛾 >
𝑛max(𝑁,

𝑁1+𝑁2
min(1,𝛼)

)

2𝑟 , in the sense that, for every bounded subset 𝐵 of
𝐸𝑙 and for every 𝜂 ∈ N𝑙

0, the mapping 𝑡 ↦→ sup𝑓∈𝐵 𝑞𝜂(𝑅𝛼(𝑡)𝑓), 𝑡 > 0 is
continuous. The estimate (71) reads as follows:

𝑞𝜂(𝑅𝛼(𝑡)𝑓) 6𝑀(1 + 𝑡max(1,𝛼)𝑛/2)𝑒𝜔𝑡𝑞𝜂(𝑓), 𝑡 > 0, 𝑓 ∈ 𝐸𝑙, 𝜂 ∈ N𝑙
0, resp.,(79)

𝑞𝜂(𝑅𝛼(𝑡)𝑓) 6𝑀(1 + 𝑡max(1,𝛼)𝑛| 1𝑝−
1
2 |)𝑒𝜔𝑡𝑞𝜂(𝑓), 𝑡 > 0, 𝑓 ∈ 𝐸𝑙, 𝜂 ∈ N𝑙

0,

with 𝑀 being independent of 𝑓 ∈ 𝐸𝑙 and 𝜂 ∈ N𝑙
0.

(ii) Theorem 2.2.21: Set 𝑅𝛼(𝑡) =: Tl⟨𝐸𝛼(𝑡
𝛼𝑃1(𝑥)/𝑃2(𝑥))(1 + |𝑥|2)−𝛽/2⟩, 𝑡 >

0. Then (𝑅𝛼(𝑡))𝑡>0 is an exponentially equicontinuous (𝑔𝛼, 𝑅𝛼(0))-regular-
ized resolvent family for (DFP), (𝑅𝛼(𝑡))𝑡>0 is ‘norm continuous’ provided
𝛽 > 𝑛

2
(𝑁1+𝑁2)
min(1,𝛼) and (79) holds.

Notice also that (𝑔𝛼, 𝑅𝛼(0))-regularized resolvent families for (DFP), constructed in
this remark (Theorem 2.2.20–Theorem 2.2.21), satisfy 𝑅𝛼(𝑡)𝑅𝛼(𝑠) = 𝑅𝛼(𝑠)𝑅𝛼(𝑡),
𝑡, 𝑠 > 0, as well as that 𝑅𝛼(𝑡)𝑃 (𝐷) ⊆ 𝑃 (𝐷)𝑅𝛼(𝑡), 𝑡 > 0 (𝑅𝛼(𝑡)𝑃 (𝐴) ⊆ 𝑃 (𝐴)𝑅𝛼(𝑡),
𝑡 > 0) for any complex polynomial 𝑃 (𝑥). The final conclusions of Remark 2.2.22(ii)
remain true for (𝑔𝛼, 𝑅𝛼(0))-regularized resolvent families for (DFP) in the setting
of 𝐸𝑙-type spaces.

Before proceeding to the next subsection, it would be worthwhile to note that
Theorem 2.2.20 and Theorem 2.2.21 can be successfully applied in the analysis
of the fractional analogues of the Barenblatt–Zheltov–Kochina equation in infinite
domains (cf. [140, Example 1.6, p. 50] and [52]):

(𝜂Δ− 1)D𝛼
𝑡 𝑢(𝑡) + Δ𝑢 = 0 (𝜂 > 0),

where 0 < 𝛼 < 2 and cos(𝜋/𝛼) 6 0. Details can be left to the reader.

2.2.4. Degenerate second order equations associated with abstract
differential operators. The main objective in this subsection is to prove some
results on the 𝐶-wellposedness of the following abstract degenerate Cauchy problem
of second order

(𝐷𝐹𝑃 )2 :

{︃
𝑑2

𝑑𝑡2𝑃2(𝐴)𝑢(𝑡) = 𝑃1(𝐴)𝑢(𝑡), 𝑡 > 0,

𝑢(0) = 𝐶𝑥, 𝑢′(0) = 0.

Keeping in mind the results clarified by now, as well as the analyses contained in the
papers [559] and [542,543], the consideration of degenerate second order equations
is similar to that of degenerate fractional equations of order 𝛼 ∈ (0, 2); because of
that, we shall only outline the main details and omit the proofs. As before, we
assume that 𝑃1(𝑥) and 𝑃2(𝑥) are non-zero complex polynomials in 𝑛 variables, as
well as that 𝑁1 = 𝑑𝑔(𝑃1(𝑥)) and 𝑁2 = 𝑑𝑔(𝑃2(𝑥)). Set 𝐹𝑡(𝑧) := 𝐸2(𝑡

2𝑧), 𝑡 > 0,
𝑧 ∈ C, and Ω(𝜔) := {𝜆2 : Re𝜆 > 𝜔}, if 𝜔 > 0 and Ω(𝜔) := C r (−∞,−𝜔2], if
𝜔 6 0. Given 𝑙 > 0 and 𝑡 > 0 in advance, set

𝑄𝑙(𝑡) :=

⎧⎪⎨⎪⎩
(1 + 𝑡𝑙)𝑒𝜔𝑡, if 𝜔 > 0,

1 + 𝑡2𝑙, if 𝜔 = 0,

1 + 𝑡𝑙, if 𝜔 < 0.
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Suppose now that 𝑃2(𝑥) ̸= 0, 𝑥 ∈ R𝑛 and 𝑃1(𝑥)/𝑃2(𝑥) /∈ Ω(𝜔), 𝑥 ∈ R𝑛. Then, for
every 𝜂 ∈ N𝑛

0 with |𝜂| > 0, the equation (73) reads as follows:

(80) 𝐷𝜂𝐸2

(︁
𝑡2
𝑃1(𝑥)

𝑃2(𝑥)

)︁
=

|𝜂|∑︁
𝑗=1

𝐹
(𝑗)
𝑡

(︁𝑃1(𝑥)

𝑃2(𝑥)

)︁
𝑅𝜂,𝑗(𝑥), 𝑡 > 0, 𝑥 ∈ R𝑛,

where 𝑅𝜂,𝑗(𝑥) is a finite sum of terms like
∏︀𝑠𝑗

𝑤=1𝐷
𝜂𝑗,𝑤(𝑃1(𝑥)

𝑃2(𝑥)
) with |𝜂𝑗,𝑤| > 0

(1 6 𝑤 6 𝑠𝑗) and |𝜂𝑗,1| + · · · + |𝜂𝑗,𝑠𝑗 | 6 |𝜂|. Due to the computation established
in [559, Lemma 2.1], we have that, for every 𝑙 ∈ N0, |𝐹 (𝑙)

𝑡 (𝑃1(𝑥)/𝑃2(𝑥))| 6𝑀𝑄𝑙(𝑡),
𝑡 > 0, 𝑥 ∈ R𝑛. Combining this estimate with (80), and repeating verbatim the
arguments given in the proof of Theorem 2.2.20 (cf. also Remark 2.2.22), it can be
easily seen that the following two theorems hold good.

Theorem 2.2.24. Suppose that 𝑃1(𝑥) and 𝑃2(𝑥) are non-zero complex polyno-
mials, 𝑁1 = 𝑑𝑔(𝑃1(𝑥)), 𝑁2 = 𝑑𝑔(𝑃2(𝑥)), 𝑃2(𝑥) ̸= 0, 𝑥 ∈ R𝑛, 𝜔 ∈ R, 𝑃1(𝑥)/𝑃2(𝑥) /∈
Ω(𝜔), 𝑥 ∈ R𝑛, 𝑁 ∈ N and 𝑟 ∈ (0, 𝑁 ]. Let 𝑄(𝑥) be an 𝑟-coercive complex polynomial
of degree 𝑁 , 𝑎 ∈ C r 𝑄(R𝑛), let for each 𝜂 ∈ R𝑛 with |𝜂| > 0 the estimate (72)
hold with the number 𝑁1 +𝑁2 replaced by 𝜎 > 0 (the choice 𝜎 = 𝑁1 +𝑁2 is always
possible), and let 𝛾 > 𝑛max(𝑁,𝜎)

2𝑟 (resp. 𝛾 = 𝑛
𝑟 |

1
𝑝 −

1
2 |max(𝑁, 𝜎), if 𝐸 = 𝐿𝑝(R𝑛) for

some 1 < 𝑝 <∞). Set

𝑅2(𝑡) :=
(︁
𝐸2

(︁
𝑡2
𝑃1(𝑥)

𝑃2(𝑥)

)︁
(𝑎−𝑄(𝑥))−𝛾

)︁
(𝐴), 𝑡 > 0.

Then (𝑅2(𝑡))𝑡>0 ⊆ 𝐿(𝐸) is a global exponentially bounded (𝑔2, 𝑅2(0))-regularized re-
solvent family for (DFP)2, (𝑅2(𝑡))𝑡>0 is norm continuous provided 𝛾 > 𝑛max(𝑁,𝜎)

2𝑟 ,
and the following holds:

(81) ‖𝑅2(𝑡)‖ 6𝑀𝑄𝑛/2(𝑡), 𝑡 > 0, resp., ‖𝑅2(𝑡)‖ 6𝑀𝑄𝑛| 1𝑝−
1
2 |
(𝑡), 𝑡 > 0.

Theorem 2.2.25. Suppose that 𝑃1(𝑥) and 𝑃2(𝑥) are non-zero complex poly-
nomials, 𝑁1 = 𝑑𝑔(𝑃1(𝑥)), 𝑁2 = 𝑑𝑔(𝑃2(𝑥)), 𝑃2(𝑥) ̸= 0, 𝑥 ∈ R𝑛, 𝜔 ∈ R and
𝑃1(𝑥)/𝑃2(𝑥) /∈ Ω(𝜔), 𝑥 ∈ R𝑛. Let for each 𝜂 ∈ R𝑛 with |𝜂| > 0 the estimate
(72) hold with the number 𝑁1 +𝑁2 replaced by 𝜎 > 0 (the choice 𝜎 = 𝑁1 +𝑁2 is
always possible), and let 𝛽 > 𝑛𝜎

2 (resp. 𝛽 = 𝑛| 1𝑝 − 1
2 |𝜎, if 𝐸 = 𝐿𝑝(R𝑛) for some

1 < 𝑝 <∞). Set

𝑅2(𝑡) :=
(︁
𝐸2

(︁
𝑡2
𝑃1(𝑥)

𝑃2(𝑥)

)︁
(1 + |𝑥|2)−𝛽/2

)︁
(𝐴), 𝑡 > 0.

Then (𝑅2(𝑡))𝑡>0 ⊆ 𝐿(𝐸) is a global exponentially bounded (𝑔2, 𝑅2(0))-regularized
resolvent family for (DFP)2, (𝑅2(𝑡))𝑡>0 is norm continuous provided 𝛽 > 𝑛𝜎

2 , and
(81) holds.

Remark 2.2.26. (i) Suppose that

Re(𝑃1(𝑥)/𝑃2(𝑥)) 6 −𝜁|𝑥|𝑟 + 𝜁1, 𝑥 ∈ R𝑛,

for some positive real numbers 𝑟, 𝜁, 𝜁1 > 0. Then the Lagrange mean
value theorem for vector-valued functions implies that 𝜎 > 𝑟, and by
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the proof of [559, Lemma 2.1], we have that there exist numbers 𝐿 > 1
and 𝑀 > 1 such that, for every 𝑗 ∈ N0 with 𝑗 < 𝑛/2, the following
holds |𝐹 (𝑗)

𝑡 (𝑃1(𝑥)/𝑃2(𝑥))| 6 𝑀𝑄𝑗(𝑡)(1 + |𝑥|)−𝑗𝑟/2, 𝑡 > 0, |𝑥| > 𝐿. Un-
fortunately, the above does not guarantee that we can refine the results
clarified in Theorem 2.2.24 and Theorem 2.2.25 by replacing the number
𝜎 with 𝜎 − (𝑟/2), unless 𝑃2(𝑥) ≡ 1. Observe, however, that the refine-
ment of this type is possible if 𝜔 6 0 (in this case we can estimate the
derivatives of function 𝐸2(𝑡

2𝑃1(𝑥)/𝑃2(𝑥)) by using the formula appearing
in the second line of the proof of [543, Theorem 4.1]).

(ii) Let 𝑉2 > 0. If for each 𝜂 ∈ N𝑛
0 there exists 𝑀𝜂 > 0 such that

|𝐷𝜂(𝑃2(𝑥)
−1)| 6 𝑀𝜂(1 + |𝑥|)|𝜂|(𝑉2−1), 𝑥 ∈ R𝑛 (recall that the choice

𝑉2 = 𝑁2 is always possible), and if we replace, in the formulations of
Theorem 2.2.24 and Theorem 2.2.25, the number 𝜎 with max(𝜎, 𝑉2), then
condition (ii.1) stated in Theorem 2.2.8 holds, with 𝑎(𝑡) = 𝑡 and 𝑘(𝑡) = 1.

(iii) The assertions of Theorem 2.2.24 and Theorem 2.2.25, as well as the
conclusions stated in the first and second part of this remark, continue
to hold with suitable modifications in the setting of 𝐸𝑙-type spaces; cf.
also [543, Theorem 4.1-Theorem 4.2].

Before closing this subsection with an illustrative example, it is our duty to
say that the results from Subsection 2.1.3–Subsection 2.1.4 are inapplicable in the
analysis of a great number of equations of mathematical physics that are not solv-
able relative to the highest-order time-derivative (cf. Example 2.3.22 for further
information in this direction).

Example 2.2.27. (i) Let 1 < 𝑝 <∞, 0 < 𝛼 < 2, 𝑙 ∈ N, 𝐸 = 𝐿𝑝(R2), and
let the fractional Sobolev space S𝛼,𝑝(R2) be defined in the sense of [410,
Definition 12.3.1, p. 297]; that is,

S𝛼,𝑝(R2) := 𝐷((1−Δ𝑝)
𝛼/2),

where Δ𝑝 acts on 𝐿𝑝(R2) with its maximal distributional domain. Con-
sider the following degenerate fractional Cauchy problem:

(𝑃 ) :

{︃
D𝛼

𝑡 [𝑢𝑥𝑥 + 𝑢𝑥𝑦 + 𝑢𝑦𝑦 − 𝑢] = 𝑒−𝑖𝛼𝜋
2

[︀
(−1)𝑙+1 𝜕2𝑙

𝜕𝑥2𝛼𝑢+ 𝑢𝑦𝑦
]︀
, 𝑡 > 0,

𝑢(0, 𝑥) = 𝜑(𝑥); 𝑢𝑡(0, 𝑥) = 0 if 𝛼 > 1,

cf. Theorem 2.2.21 with 𝑃1(𝑥, 𝑦) = 𝑒−𝑖𝛼𝜋
2 (𝑥2𝑙 + 𝑦2), 𝑃2(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦+

𝑦2 + 1 and 𝜔 = 0. Then it can be easily seen that the conditions stated
in Remark 2.1.23(ii) hold with 𝜎 = 𝜎1 = 2𝑙 − 2, so that for each 𝛽 >
𝑛| 1𝑝 −

1
2 |(2𝑙−2)(1+𝜒(0,1)(𝛼)(𝛼

−1−1)) there exists a global exponentially
bounded (𝑔𝛼, 𝑅𝛼(0))-regularized resolvent family for the corresponding
problem (DFP), obeying the property (ii.1) of Theorem 2.2.8 with 𝑎(𝑡) =
𝑔𝛼(𝑡) and 𝑘(𝑡) = 1. Hence, there exists a unique strong solution of problem
(P) provided that 𝜑 ∈ S2𝑙+𝛽,𝑝(R2).
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(ii) Let 1 < 𝑝 < ∞, 𝐸 = 𝐿𝑝(R𝑛) and 𝑄 ∈ N r {1}. Consider the following
degenerate second order Cauchy problem:

(𝑃2) :

{︃
𝜕2

𝜕𝑡2 (Δ𝑢(𝑡, 𝑥)− 𝑢(𝑡, 𝑥)) =
∑︀

|𝜂|6𝑄 𝑎𝜂𝐷
𝜂𝑢(𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ R𝑛,

𝑢(0, 𝑥) = 𝜑(𝑥), 𝑢𝑡(0, 𝑥) = 0;

then 𝑃1(𝑥) =
∑︀

|𝜂|6𝑄 𝑎𝜂𝑥
𝜂 and 𝑃2(𝑥) = −1 − |𝑥|2 (𝑥 ∈ R𝑛). Assum-

ing that the polynomial 𝑃1(𝑥) is positive, as well as that the estimate
(72) holds with some number 𝜎 > 0 and the condition stated in Remark
2.2.26(ii) holds with some number 𝑉2 > 0, then there exists a unique
strong solution of problem (𝑃2) provided that

𝜑 ∈ S𝑄+𝑛| 1𝑝−
1
2 |max(𝜎,𝑉2),𝑝(R𝑛).

2.2.5. Semilinear degenerate relaxation equations associated with
abstract differential operators. In this subsection, we shall present our re-
cent results from [310] and [319] concerning the existence and uniqueness of mild
solutions of the following semilinear degenerate relaxation equation

(DFP)𝑠𝑙 :

{︃
D𝛼

𝑡 𝑃2(𝐴)𝑢(𝑡) = 𝑃1(𝐴)𝑢(𝑡) + 𝑓(𝑡, 𝑢(𝑡)), 𝑡 > 0,

𝑢(0) = 𝑥,

where 0 < 𝛼 < 1, the function 𝑓(·, ·) satisfies certain properties and 𝑖𝐴𝑗 , 1 6 𝑗 6 𝑛
are commuting generators of bounded 𝐶0-groups on a Banach space 𝐸.

We need the following definition.

Definition 2.2.28. Let 0 < 𝛼 < 1, let 𝐶 ∈ 𝐿(𝐸) be injective and let
𝐶−1𝑃1(𝐴)𝐶 = 𝑃1(𝐴), 𝐶−1𝑃2(𝐴)𝐶 = 𝑃2(𝐴). A strongly continuous operator fam-
ily (𝑃𝛼(𝑡))𝑡>0 ⊆ 𝐿(𝐸) is said to be an (𝛼, 𝛼, 𝑃1(𝐴), 𝑃2(𝐴), 𝐶)-resolvent family iff
there exist 𝑀 > 1 and 𝜔 > 0 such that the mapping 𝑡 ↦→ ‖𝑡1−𝛼𝑃𝛼(𝑡)‖, 𝑡 ∈ (0, 1] is
bounded, ‖𝑃𝛼(𝑡)‖ 6𝑀𝑒𝜔𝑡, 𝑡 > 1 and

(𝜆𝛼𝑃2(𝐴)− 𝑃1(𝐴))
−1𝐶𝑥 =

∫︁ ∞

0

𝑒−𝜆𝑡𝑃𝛼(𝑡)𝑥 𝑑𝑡, Re𝜆 > 𝜔, 𝑥 ∈ 𝐸.

The following theorem is backbone of this subsection.

Theorem 2.2.29. Suppose 0 < 𝛼 < 1, 𝜔 > 0, 𝑃1(𝑥) and 𝑃2(𝑥) are non-zero
complex polynomials, 𝑁1 = 𝑑𝑔(𝑃1(𝑥)) and 𝑁2 = 𝑑𝑔(𝑃2(𝑥)).

(i) Let 𝑁 ∈ N, 𝑟 ∈ (0, 𝑁 ], let 𝑄(𝑥) be an 𝑟-coercive complex polynomial

of degree 𝑁 , 𝑎 ∈ C r 𝑄(R𝑛), 𝛾 >
𝑛max(𝑁,

𝑁1+𝑁2
𝛼 )

2𝑟 (resp. 𝛾 = 𝑛
𝑟 |

1
𝑝 −

1
2 |max(𝑁, 𝑁1+𝑁2

𝛼 ), if 𝐸 = 𝐿𝑝(R𝑛) for some 1 < 𝑝 <∞),

𝛾′ >
max(𝑁,

𝑁1+𝑁2
𝛼 )

𝑟
𝑛
2 + 𝑁1+𝑁2

𝑟𝛼 (1 − 𝛼) (𝛾′ = 𝑛| 1𝑝 − 1
2 |

max(𝑁,
𝑁1+𝑁2

𝛼 )

𝑟 +
𝑁1+𝑁2

𝑟𝛼 (1− 𝛼), if 𝐸 = 𝐿𝑝(R𝑛) for some 1 < 𝑝 < ∞), 𝑃2(𝑥) ̸= 0, 𝑥 ∈ R𝑛,
and let (70) hold. Set

𝑅𝛼,𝛾(𝑡) :=
(︁
𝐸𝛼

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁
(𝑎−𝑄(𝑥))−𝛾

)︁
(𝐴), 𝑡 > 0,



2.2. DEGENERATE (𝑎, 𝑘)-REGULARIZED 𝐶-RESOLVENT FAMILIES... 101

𝐶 := 𝑅𝛼,𝛾′(0) and

𝑃𝛼,𝛾′(𝑡) := 𝑡𝛼−1
(︁
𝑃2(𝑥)

−1𝐸𝛼,𝛼

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁
(𝑎−𝑄(𝑥))−𝛾′

)︁
(𝐴), 𝑡 > 0.

Then (𝑅𝛼,𝛾(𝑡))𝑡>0 ⊆ 𝐿(𝐸) is a global exponentially bounded (𝑔𝛼, 𝑅𝛼,𝛾(0))-
regularized resolvent family for (DFP), (𝑃𝛼,𝛾′(𝑡))𝑡>0 ⊆ 𝐿(𝐸) is a global
(𝛼, 𝛼, 𝑃1(𝐴), 𝑃2(𝐴), 𝐶)-resolvent family, (𝑅𝛼,𝛾(𝑡))𝑡>0 is norm continuous

provided 𝛾 >
𝑛max(𝑁,

𝑁1+𝑁2
𝛼 )

2𝑟 , (𝑃𝛼,𝛾′(𝑡))𝑡>0 is norm continuous provided

𝛾′ >
max(𝑁,

𝑁1+𝑁2
𝛼 )

𝑟
𝑛
2 + 𝑁1+𝑁2

𝑟𝛼 (1− 𝛼), (71) holds with (𝑅𝛼(𝑡))𝑡>0 replaced
by (𝑅𝛼,𝛾(𝑡))𝑡>0 therein, and

‖𝑃𝛼,𝛾′(𝑡)‖ 6𝑀𝑡𝛼−1(1 + 𝑡1−𝛼+𝑛
2 )𝑒𝜔𝑡, 𝑡 > 0, resp.,(82)

‖𝑃𝛼,𝛾′(𝑡)‖ 6𝑀𝑡𝛼−1(1 + 𝑡1−𝛼+𝑛| 1𝑝−
1
2 |)𝑒𝜔𝑡, 𝑡 > 0.

(ii) Suppose 𝛽 > 𝑛
2
(𝑁1+𝑁2)

𝛼 (resp. 𝛽 > 𝑛| 1𝑝 − 1
2 |

(𝑁1+𝑁2)
𝛼 , if 𝐸 = 𝐿𝑝(R𝑛) for

some 1 < 𝑝 < ∞), 𝛽′ > (1 − 𝛼 + 𝑛
2 )

(𝑁1+𝑁2)
𝛼 (resp. 𝛽′ > (1 − 𝛼 + 𝑛| 1𝑝 −

1
2 |)

(𝑁1+𝑁2)
𝛼 , if 𝐸 = 𝐿𝑝(R𝑛) for some 1 < 𝑝 <∞), 𝑃2(𝑥) ̸= 0, 𝑥 ∈ R𝑛 and

(70) holds. Set

𝑅𝛼,𝛽(𝑡) :=
(︁
𝐸𝛼

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁
(1 + |𝑥|2)−𝛽/2

)︁
(𝐴), 𝑡 > 0

𝐶 := 𝑅𝛼,𝛽′(0), and

𝑃𝛼,𝛽′(𝑡) := 𝑡𝛼−1
(︁
𝑃2(𝑥)

−1𝐸𝛼,𝛼

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁
(1 + |𝑥|2)−𝛽′/2

)︁
(𝐴), 𝑡 > 0.

Then (𝑅𝛼,𝛽(𝑡))𝑡>0 ⊆ 𝐿(𝐸) is a global exponentially bounded (𝑔𝛼, 𝑅𝛼,𝛽(0))-
regularized resolvent family for (DFP), (𝑃𝛼,𝛽′(𝑡))𝑡>0 ⊆ 𝐿(𝐸) is a global
(𝛼, 𝛼, 𝑃1(𝐴), 𝑃2(𝐴), 𝐶)-resolvent family, (𝑅𝛼,𝛽(𝑡))𝑡>0 is norm continuous
provided 𝛽 > 𝑛

2
(𝑁1+𝑁2)

𝛼 , (𝑃𝛼,𝛽′(𝑡))𝑡>0 is norm continuous provided 𝛽′ >

(1 − 𝛼 + 𝑛
2 )

(𝑁1+𝑁2)
𝛼 , (71) holds with (𝑅𝛼(𝑡))𝑡>0 replaced by (𝑅𝛼,𝛽(𝑡))𝑡>0

therein, and (82) holds with (𝑃𝛼,𝛾′(𝑡))𝑡>0 replaced by (𝑃𝛼,𝛽′(𝑡))𝑡>0 therein.

Proof. Recall that 𝑘 = 1 + ⌊𝑛/2⌋. The results for (𝑅𝛼,𝛾(𝑡))𝑡>0 and
(𝑅𝛼,𝛽(𝑡))𝑡>0 have been proved in Theorem 2.2.20 and Theorem 2.2.21, respectively.
In either choice of the regularizing operator 𝐶, we have 𝐶−1𝑃1(𝐴)𝐶 = 𝑃1(𝐴) and
𝐶−1𝑃2(𝐴)𝐶 = 𝑃2(𝐴) [304]. Furthermore, for every 𝑗 ∈ N, there exist uniquely
determined real numbers 𝑐𝑙,𝑗,𝛼 (1 6 𝑙 6 𝑗) such that 𝐸′

𝛼(𝑧) = 𝛼−1𝐸𝛼,𝛼(𝑧), 𝑧 ∈ C,
as well as that 𝐸(𝑗)

𝛼 (𝑧) =
∑︀𝑗

𝑙=1 𝑐𝑙,𝑗,𝛼𝐸𝛼,𝛼𝑗−(𝑗−𝑙)(𝑧), 𝑧 ∈ C (cf. (44)). Using these
facts and the proof of Theorem 2.2.20, we may conclude that:

1. For every multi-index 𝜂 ∈ N𝑛
0 with |𝜂| > 0, there exists 𝑐𝜂 > 0 such that⃒⃒⃒

𝐷𝜂
(︁𝑃1(𝑥)

𝑃2(𝑥)

)︁⃒⃒⃒
6 𝑐𝜂(1 + |𝑥|)|𝜂|(𝑁1+𝑁2−1), 𝑥 ∈ R𝑛.
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2. For every multi-index 𝜂 ∈ N𝑛
0 with |𝜂| > 0, for every 𝑡 > 0 and for every

𝑥 ∈ R𝑛, we have:

𝐷𝜂𝐸𝛼,𝛼

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁
=

|𝜂|∑︁
𝑗=1

𝑡𝛼𝑗𝐸(𝑗)
𝛼,𝛼

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁
𝑅𝜂,𝑗(𝑥)(83)

=

|𝜂|∑︁
𝑗=1

𝑡𝛼𝑗
𝑗+1∑︁
𝑙=1

𝛼𝑐𝑙,𝑗+1,𝛼𝐸𝛼,𝛼𝑗−𝑗+𝑙+𝛼−1

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁
𝑅𝜂,𝑗(𝑥),(84)

where 𝑅𝜂,𝑗(𝑥) can be represented as a finite sum of terms like∏︀𝑠𝑗
𝑞=1𝐷

𝜂𝑗,𝑞 (𝑃1(𝑥)
𝑃2(𝑥)

) with |𝜂𝑗,𝑞| > 0 (1 6 𝑞 6 𝑠𝑗) and |𝜂𝑗,1|+· · ·+|𝜂𝑗,𝑠𝑗 | 6 |𝜂|.
In the remainder of the proof, by 𝑀 we denote a generic constant whose value may
vary at each occurrence. Owing to [1./2.], we get that

(85) |𝑅𝜂,𝑗(𝑥)| 6𝑀(1+ |𝑥|)|𝜂|(𝑁1+𝑁2−1), provided 1 6 𝑗 6 |𝜂| 6 𝑘 and 𝑥 ∈ R𝑛.

Arguing as in the proof of [296, Theorem 2.1], we can prove that, for every 𝑡 > 0,
𝑥 ∈ R𝑛, and for every 𝑗, 𝑙 ∈ N such that 1 6 𝑗 6 𝑘 and 1 6 𝑙 6 𝑗 + 1, the following
holds:

(86) |𝐸𝛼,𝛼𝑗−(𝑗−𝑙)+𝛼−1(𝑡
𝛼𝑃1(𝑥)/𝑃2(𝑥))|

6𝑀
[︀
1 + 𝑡1−(𝛼𝑗−(𝑗−𝑙)+𝛼−1)|𝑃1(𝑥)/𝑃2(𝑥)|

1−(𝛼𝑗−(𝑗−𝑙)+𝛼−1)
𝛼 𝑒𝜔𝑡

]︀
.

If 𝑡 > 0 and 𝑥 ∈ R𝑛 satisfies |𝑡𝛼𝑃1(𝑥)/𝑃2(𝑥)| 6 1, then the equation (83) yields:

|𝐷𝜂(𝐸𝛼,𝛼(𝑡
𝛼𝑃1(𝑥)/𝑃2(𝑥)))| 6𝑀(𝑡𝛼 + 𝑡𝛼|𝜂|)(1 + |𝑥|)|𝜂|(𝑁1+𝑁2−1), |𝜂| 6 𝑘.

Suppose now that 1 6 𝑙 6 𝑗 + 1, 1 6 𝑗 6 |𝜂| 6 𝑘, 𝑡 > 0, 𝑥 ∈ R𝑛 and
|𝑡𝛼𝑃1(𝑥)/𝑃2(𝑥)| > 1. Then it can be easily seen that the supposition 1− (𝛼𝑗− (𝑗−
𝑙) + 𝛼− 1) > 0 implies

(𝑁1 +𝑁2)
1− (𝛼𝑗 − (𝑗 − 𝑙) + 𝛼− 1)

𝛼
+ |𝜂|(𝑁1 +𝑁2 − 1)

6 |𝜂|
(︁𝑁1 +𝑁2

𝛼
− 1
)︁
+ (𝑁1 +𝑁2)

1− 𝛼

𝛼
.

Using this estimate and (85), it readily follows that

|𝑡𝛼𝑃1(𝑥)/𝑃2(𝑥)|
1−(𝛼𝑗−(𝑗−𝑙)+𝛼−1)

𝛼 (1 + |𝑥|)|𝜂|(𝑁1+𝑁2−1)

6𝑀𝑡1−(𝛼𝑗−(𝑗−𝑙)+𝛼−1)(1 + |𝑥|)|𝜂|(
𝑁1+𝑁2

𝛼 −1)+(𝑁1+𝑁2)
1−𝛼
𝛼 ,

provided 1− (𝛼𝑗 − (𝑗 − 𝑙) + 𝛼− 1) > 0. On the other hand, it is clear that

(87) |𝑡𝛼𝑃1(𝑥)/𝑃2(𝑥)|
1−(𝛼𝑗−(𝑗−𝑙)+𝛼−1)

𝛼 (1+|𝑥|)|𝜂|(𝑁1+𝑁2−1) 6𝑀(1+|𝑥|)|𝜂|(𝑁1+𝑁2−1),

provided 1− (𝛼𝑗 − (𝑗 − 𝑙) + 𝛼 − 1) 6 0. Then, for 𝑡 > 0, 𝑥 ∈ R𝑛 and 0 < |𝜂| 6 𝑘,
the following holds (cf. (84), (86)–(87) and [304, (2.6)–(2.7)]):

(88)
⃒⃒⃒
𝐷𝜂𝐸𝛼,𝛼

(︁
𝑡𝛼

𝑃1(𝑥)

𝑃2(𝑥)

)︁⃒⃒⃒
6𝑀(1 + 𝑡1−𝛼)(1 + 𝑡|𝜂|)𝑒𝜔𝑡(1 + |𝑥|)|𝜂|(

𝑁1+𝑁2
𝛼

−1)+(𝑁1+𝑁2)
1−𝛼
𝛼 ;
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observe that the inequality Re((𝑡𝛼𝑃1(𝑥)/𝑃2(𝑥))
1/𝛼) 6 𝜔𝑡, 𝑡 > 0, 𝑥 ∈ R𝑛 and

Theorem 1.5.1 together imply that the previous estimate also holds in the case
that |𝜂| = 0. Set

𝐺𝛼,𝛾′(𝑡) :=
(︁
𝑃2(𝑥)

−1𝐸𝛼

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁
(𝑎−𝑄(𝑥))−𝛾′

)︁
(𝐴), 𝑡 > 0,

in the case of examination of (i), resp.

𝐺𝛼,𝛽′(𝑡) :=
(︁
𝑃2(𝑥)

−1𝐸𝛼

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁
(1 + |𝑥|2)−𝛽′/2

)︁
(𝐴), 𝑡 > 0,

in the case of examination of (ii). Then the identity

𝐸𝛼(𝑡
𝛼𝑃1(𝑥)/𝑃2(𝑥)) =

∫︁ 𝑡

0

𝑔1−𝛼(𝑡− 𝑠)𝑠𝛼−1𝐸𝛼,𝛼(𝑠
𝛼𝑃1(𝑥)/𝑃2(𝑥))𝑑𝑠, 𝑡 > 0, 𝑥 ∈ R𝑛

(cf. [529, p. 212, l.4] and the proof of [310, Theorem 2.1]), shows that

𝐺𝛼,𝛾′(𝑡) = (𝑔1−𝛼 * 𝑃𝛼,𝛾′)(𝑡), 𝑡 > 0 and 𝐺𝛼,𝛽′(𝑡) = (𝑔1−𝛼 * 𝑃𝛼,𝛽′)(𝑡), 𝑡 > 0.

The proof can be completed routinely by using the estimate (88), the above equali-
ties and the argumentation used in the proofs of Theorem 2.2.20 and [304, Theorem
2.1]; see also Remark 2.1.23(i). �

It is worth noting that the assertion of Theorem 2.2.29 continues to hold, with
appropriate technical modifications, in the case that 𝐸 = 𝐶𝑏(R𝑛) or 𝐸 = 𝐿∞(R𝑛),
and that the additional refinement of lower bounds for the numbers 𝛾, 𝛾′, 𝛽, 𝛽′ can
be proved following the approach from Remark 2.1.23(ii). Suppose now that 𝑇 > 0,
the requirements of Theorem 2.2.29(i) or Theorem 2.2.29(ii) hold, 𝐶 := 𝑅𝛼,𝛾′(0)
(𝐶 := 𝑅𝛼,𝛽′(0)) in the case of consideration Theorem 2.2.29(i) (Theorem 2.2.29(ii))
and 𝑥 ∈ 𝑅(𝐶). Following the analyses of non-degenerate case from [529] and [277]
(another way to see that the subsequent definition of a mild solution of the problem
(DFP)𝑠𝑙 is correct in the case that 𝑓(𝑡, 𝑢(𝑡)) = 𝑓(𝑡) satisfies (P1) is to take the
Laplace transform of both sides of the equality D𝛼

𝑡 𝑃2(𝐴)𝑢(𝑡) = 𝑃1(𝐴)𝑢(𝑡) + 𝑓(𝑡)
by making use of the formula (39), on the one hand, and to compute the Laplace
transform of the right hand side of equality (89) below, on the other hand), it will
be said that a continuous function 𝑡 ↦→ 𝑢(𝑡), 𝑡 ∈ [0, 𝑇 ] is a mild solution of the
semilinear abstract degenerate Cauchy problem (DFP)𝑠𝑙 on [0, 𝑇 ] iff the mapping
𝑡 ↦→ 𝐶−1𝑓(𝑡, 𝑢(𝑡)), 𝑡 ∈ [0, 𝑇 ] is well-defined and continuous, as well as

(89) 𝑢(𝑡) = 𝑅𝛼(𝑡)𝐶
−1𝑥+

∫︁ 𝑡

0

𝑃𝛼(𝑡− 𝑠)𝐶−1𝑓(𝑠, 𝑢(𝑠))𝑑𝑠, 𝑡 ∈ [0, 𝑇 ].

Define the operator 𝑄𝛼 : 𝐶([0, 𝑇 ] : 𝐸) → 𝐶([0, 𝑇 ] : 𝐸) by

(𝑄𝛼𝑢)(𝑡) := 𝑅𝛼(𝑡)𝐶
−1𝑥+

∫︁ 𝑡

0

𝑃𝛼(𝑡− 𝑠)𝐶−1𝑓(𝑠, 𝑢(𝑠))𝑑𝑠, 𝑡 ∈ [0, 𝑇 ].

The most common technique to proving existence and uniqueness of mild solutions
of semilinear fractional evolution equations is to apply some of the fixed point
theorems; in our concrete situation, we must prove that the mapping 𝑄𝛼(·) has
a unique fixed point. Not aspiring completeness of analysis here, we shall only
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state and prove the following adaptation of [445, Theorem 1.2, p. 184] to close the
whole section.

Theorem 2.2.30. Let 𝑇 > 0, let 𝑥 ∈ 𝑅(𝐶), and let the requirements of Theo-
rem 2.2.29(i) or Theorem 2.2.29(ii) hold. Put 𝐶 := 𝑅𝛼,𝛾′(0), in the case of Theo-
rem 2.2.29(i), and 𝐶 := 𝑅𝛼,𝛽′(0), in the case of Theorem 2.2.29(ii). Suppose that
the mapping 𝐶−1𝑓 : [0, 𝑇 ]×𝐸 → 𝐸 is continuous in 𝑡 on [0, 𝑇 ] and uniformly Lip-
schitz continuous (with constant L) on 𝐸. Then the semilinear fractional Cauchy
problem (DFP)𝑠𝑙 has a unique mild solution 𝑢 ∈ 𝐶([0, 𝑇 ] : 𝐸). Moreover, the
mapping 𝑥 → 𝑢(·) is Lipschitz continuous from 𝑅(𝐶) (endowed with the norm
‖ · ‖𝑅(𝐶) := ‖𝐶−1 · ‖, 𝑅(𝐶) becomes a Banach space) into 𝐶([0, 𝑇 ] : 𝐸).

Proof. Set 𝑀 := max𝑡∈(0,𝑇 ](𝑡
1−𝛼Γ(𝛼)‖𝑃𝛼(𝑡)‖). Arguing as in the proof of

[445, Theorem 1.2, p. 184], we get that, for every 𝑢, 𝑣 ∈ 𝐶([0, 𝑇 ] : 𝐸),

‖(𝑄𝑛
𝛼𝑢)(𝑡)− (𝑄𝑛

𝛼𝑣)(𝑡)‖𝐶([0,𝑇 ]:𝐸) 6
(𝑀𝐿𝑇𝛼)𝑛

Γ(𝑛𝛼+ 1)
‖𝑢− 𝑣‖𝐶([0,𝑇 ]:𝐸), 𝑛 ∈ N, 𝑡 ∈ [0, 𝑇 ].

For a sufficiently large number 𝑛 ∈ N, one has
(𝑀𝐿𝑇𝛼)𝑛

Γ(𝑛𝛼+ 1)
< 1,

so that a well known extension of the Banach contraction principle implies that
the mapping 𝑄𝛼(·) has a unique fixed point, finishing the proof of existence and
uniqueness of mild solutions of problem (DFP)𝑠𝑙 on [0, 𝑇 ]. Keeping in mind a
Gronwall-type inequality [153, Lemma 6.19, p. 111], the remainder of the proof
follows similarly as in that of [445, Theorem 1.2, p. 184]. �

2.3. Degenerate multi-term fractional differential equations in locally
convex spaces

Suppose that 𝑛 ∈ N r {1}, 0 6 𝛼1 < · · · < 𝛼𝑛, let 𝐴1, . . . , 𝐴𝑛−1 are closed
linear operators on a Hausdorff sequentially complete locally convex space 𝐸, and
𝑓 : [0,∞) → 𝐸 is a continuous function. Let us recall (cf. the introductory part)
that 𝑚𝑖 := ⌈𝛼𝑖⌉, 𝑖 ∈ N𝑛−1, 𝑇𝑖,𝐿𝑢(𝑡) := 𝐴𝑖D

𝛼𝑖
𝑡 𝑢(𝑡), if 𝑡 > 0, 𝑖 ∈ N𝑛−1 and 𝛼𝑖 > 0,

and 𝑇𝑖,𝑅𝑢(𝑡) := D𝛼𝑖
𝑡 𝐴𝑖𝑢(𝑡), if 𝑡 > 0 and 𝑖 ∈ N𝑛−1. Henceforth it will be assumed

that, for every 𝑡 > 0 and 𝑖 ∈ N𝑛−1, 𝑇𝑖𝑢(𝑡) denotes either 𝑇𝑖,𝐿𝑢(𝑡) or 𝑇𝑖,𝑅𝑢(𝑡). As
already announced, we will deal with the following degenerate multi-term problem:

(90)
𝑛−1∑︁
𝑖=1

𝑇𝑖𝑢(𝑡) = 𝑓(𝑡), 𝑡 > 0.

Set

𝑃𝜆 :=

𝑛−1∑︁
𝑖=1

𝜆𝛼𝑖−𝛼𝑛−1𝐴𝑖, 𝜆 ∈ Cr {0},

ℐ := {𝑖 ∈ N𝑛−1 : 𝛼𝑖 > 0 and 𝑇𝑖,𝐿𝑢(𝑡) appears on the left hand side of (90)}, 𝑄 :=
max ℐ, if ℐ ≠ ∅ and 𝑄 := 𝑚𝑄 := 0, if ℐ = ∅. Assume that 𝛼 > 0 and 𝑚 = ⌈𝛼⌉. The
following facts can be proved by using the equality (38), induction and closedness
of 𝐴:
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(a) Suppose that 𝑙 ∈ N and 𝑢,𝐴𝑢 ∈ 𝐶𝑙([0,∞) : 𝐸). Then 𝑢(𝑗)(𝑡) ∈ 𝐷(𝐴),
𝑡 > 0 and 𝐴𝑢(𝑗)(𝑡) = (𝐴𝑢)(𝑗)(𝑡), 𝑡 > 0 (0 6 𝑗 6 𝑙).

(b) Suppose that the Caputo fractional derivatives D𝛼
𝑡 𝑢 and D𝛼

𝑡 𝐴𝑢 are de-
fined. Then 𝑢(𝑗)(𝑡) ∈ 𝐷(𝐴), 𝑡 > 0, 𝐴𝑢(𝑗)(𝑡) = (𝐴𝑢)(𝑗)(𝑡), 𝑡 > 0 (0 6 𝑗 6
𝑚− 1), D𝛼

𝑡 𝑢(𝑡) ∈ 𝐷(𝐴), 𝑡 > 0,

𝐴D𝛼
𝑡 𝑢(𝑡) = D𝛼

𝑡 𝐴𝑢(𝑡), 𝑡 > 0,

and

𝐽𝛼
𝑡 𝐴D

𝛼
𝑡 𝑢(𝑡) = 𝐽𝛼

𝑡 D
𝛼
𝑡 𝐴𝑢(𝑡) = 𝐴𝑢(𝑡)−

𝑚−1∑︁
𝑗=0

𝐴𝑢(𝑗)(0)𝑔𝑗+1(𝑡), 𝑡 > 0.

Taking into account (a)–(b), it seems reasonable to consider the equation (90) with
the initial conditions

(91) 𝑢(𝑗)(0) = 𝑢𝑗 , 0 6 𝑗 6 𝑚𝑄 − 1 and (𝐴𝑖𝑢)
(𝑗)(0) = 𝑢𝑖,𝑗 if 𝑚𝑖 − 1 > 𝑗 > 𝑚𝑄.

If 𝑇𝑛−1𝑢(𝑡) = 𝑇𝑛−1,𝐿𝑢(𝑡), then (91) takes the following simple form: 𝑢(𝑗)(0) = 𝑢𝑗 ,
0 6 𝑗 6 𝑚𝑛−1 − 1. If this is not the case, then the choice (91) may be non-
optimal, the index 𝑖 ∈ N𝑛−1 has to satisfy the inequality 𝑚𝑖 − 1 > 𝑚𝑄 in the
second equality appearing in (91), and we cannot expect the existence of solutions
of problem [(90)–(91)], in general (consider, for example, the case 𝑛 = 3, 𝐴2 = 𝐴1

and 𝑢2,0 ̸= 𝑢1,0); furthermore, for any index 𝑖 ∈ N𝑛−1 satisfying the inequality
𝑚𝑖 − 1 > 𝑚𝑄 and for every non-negative integer 𝑘 ∈ [𝑚𝑄,𝑚𝑖 − 1], we need to
introduce exactly one initial value 𝑢𝑖,𝑘. Throughout the section, we assume that
the function 𝑘(𝑡) is a scalar-valued continuous kernel on [0,∞). We will use the
following fact about Caputo fractional derivatives: Assume that 𝛼 > 0, 𝑚 = ⌈𝛼⌉,
𝛽 ∈ (0, 𝛼) and the Caputo fractional derivative D𝛼

𝑡 𝑢(·) is defined. Then the Caputo
fractional derivative D𝛽

𝑡 𝑢(·) is also defined and the following equality holds:

(92) D𝛽
𝑡 𝑢(𝑡) = (𝑔𝛼−𝛽 *D𝛼

𝑡 𝑢(·))(𝑡) +
𝑚−1∑︁
𝑗=⌈𝛽⌉

𝑢(𝑗)(0)𝑔𝑗+1−𝛽(𝑡), 𝑡 > 0.

2.3.1. Abstract Cauchy problem [(90)–(91)]. Let us recall that 𝑛 ∈ N r
{1}, 0 6 𝛼1 < · · · < 𝛼𝑛−1, as well as that 𝐴1, . . . , 𝐴𝑛−1 are closed linear operators
on 𝐸 and 𝑓 : [0,∞) → 𝐸 is a continuous function. Let the set ℐ and number 𝑄 be
defined as above.

Suppose, for the time being, that the initial values 𝑢𝑗 ∈ 𝐸 (0 6 𝑗 6 𝑚𝑄 − 1)
satisfy 𝑢𝑗 ∈ 𝐷(𝐴𝑖), provided 𝑖 ∈ N𝑛−1, 𝑇𝑖𝑢(𝑡) = 𝑇𝑖,𝑅𝑢(𝑡) and 0 6 𝑗 6 𝑚𝑖 − 1 (put
𝑢𝑖,𝑗 := 𝐴𝑖𝑢𝑗 in this case), and 𝑢𝑖,𝑗 ∈ 𝐸, provided 𝑖 ∈ N𝑛−1, 𝑇𝑖𝑢(𝑡) = 𝑇𝑖,𝑅𝑢(𝑡) and
𝑚𝑖 − 1 > 𝑗 > 𝑚𝑄. We start this section by introducing the notion of a strong
solution of problem [(90)–(91)].

Definition 2.3.1. A function 𝑢 ∈ 𝐶([0,∞) : 𝐸) is said to be a strong solution
of problem [(90)–(91)] iff the term 𝑇𝑖𝑢(𝑡) is well defined and continuous for any
𝑡 > 0, 𝑖 ∈ N𝑛−1, and [(90)–(91)] holds identically on [0,∞).
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Now we would like to observe the following fact. If 𝑄 > 0, then we can consider
the problem obtained from the problem (90) by replacing some of terms 𝑇𝑖,𝑅(𝑡),
for 1 6 𝑖 6 𝑄, with the corresponding terms of form 𝑇𝑖,𝐿(𝑡). By (92) and (b), it
readily follows that a strong solution of problem [(90)–(91)] is also a strong solution
of the problem described above, when endowed with the initial conditions (91).

Define, for every 𝑖 ∈ N𝑛−1 and 𝑡 > 0,

𝒯𝑖,𝐿𝑢(𝑡) := 𝑔𝛼𝑛−1−𝛼𝑖 *𝐴𝑖

[︂
𝑢(·)−

𝑚𝑖−1∑︁
𝑗=0

𝑢𝑗𝑔𝑗+1(·)
]︂
(𝑡),

if 𝑇𝑖𝑢(𝑡) = 𝑇𝑖,𝐿𝑢(𝑡), and

𝒯𝑖,𝑅𝑢(𝑡) := 𝑔𝛼𝑛−1−𝛼𝑖
*
[︂
𝐴𝑖𝑢(·)−

𝑚𝑖−1∑︁
𝑗=0

𝑢𝑖,𝑗𝑔𝑗+1(·)
]︂
(𝑡),

if 𝑇𝑖𝑢(𝑡) = 𝑇𝑖,𝑅𝑢(𝑡). Let 𝒯𝑖𝑢(𝑡) denote exactly one of terms 𝒯𝑖,𝐿𝑢(𝑡) or 𝒯𝑖,𝑅𝑢(𝑡).
Integrating the equation (90) 𝛼𝑛−1 times, the foregoing arguments imply that any
strong solution 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 of problem [(90)–(91)] satisfies the following integral
equation

(93)
𝑛−1∑︁
𝑖=1

𝒯𝑖𝑢(𝑡) = (𝑔𝛼𝑛−1
* 𝑓)(𝑡), 𝑡 > 0.

This motivates us to introduce the following definition.

Definition 2.3.2. Let 𝑢𝑗 ∈ 𝐸 (0 6 𝑗 6 𝑚𝑄 − 1), let 𝑢𝑖,𝑗 ∈ 𝐸, provided
𝑖 ∈ N𝑛−1, 𝑇𝑖𝑢(𝑡) = 𝑇𝑖,𝑅𝑢(𝑡) and 0 6 𝑗 6 𝑚𝑖 − 1, and let 𝒱 ⊆ N𝑛−1. Then a
continuous 𝐸-valued function 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 is said to be a 𝒱-mild solution of (93)
iff (i)–(v) hold, where:

(i) 𝑔𝛼𝑛−1−𝛼𝑖
* [𝑢(·)−

∑︀𝑚𝑖−1
𝑗=0 𝑢𝑗𝑔𝑗+1(·)](𝑡) ∈ 𝐷(𝐴𝑖) for all 𝑡 > 0 and 𝑖 ∈ ℐ ∩𝒱,

the mapping 𝑡 ↦→ 𝐴𝑖(𝑔𝛼𝑛−1−𝛼𝑖
* [𝑢 −

∑︀𝑚𝑖−1
𝑗=0 𝑢𝑗𝑔𝑗+1])(𝑡), 𝑡 > 0 is well-

defined and continuous for all 𝑖 ∈ ℐ ∩ 𝒱,
(ii) the mapping 𝑡 ↦→ (𝑔𝛼𝑛−1−𝛼𝑖

*𝐴𝑖[𝑢−
∑︀𝑚𝑖−1

𝑗=0 𝑢𝑗𝑔𝑗+1])(𝑡), 𝑡 > 0 is continuous
for all 𝑖 ∈ ℐ r 𝒱,

(iii) (𝑔𝛼𝑛−1−𝛼𝑖 *𝑢)(𝑡) ∈ 𝐷(𝐴𝑖) for all 𝑡 > 0 and 𝑖 ∈ (N𝑛−1rℐ)∩𝒱, the mapping
𝑡 ↦→ 𝐴𝑖(𝑔𝛼𝑛−1−𝛼𝑖

* 𝑢)(𝑡), 𝑡 > 0 is continuous for all 𝑖 ∈ (N𝑛−1 r ℐ) ∩ 𝒱,
(iv) the mapping 𝑡 ↦→ (𝑔𝛼𝑛−1−𝛼𝑖

*𝐴𝑖𝑢)(𝑡), 𝑡 > 0 is well-defined and continuous
for all 𝑖 ∈ (N𝑛−1 r ℐ)r 𝒱,

(v) for every 𝑡 > 0, the following holds:

(94)
∑︁

𝑖∈ℐ∩𝒱
𝐴𝑖

(︂
𝑔𝛼𝑛−1−𝛼𝑖

*
[︂
𝑢(·)−

𝑚𝑖−1∑︁
𝑗=0

𝑢𝑗𝑔𝑗+1(·)
]︂)︂

(𝑡)

+
∑︁

𝑖∈ℐr𝒱

(︂
𝑔𝛼𝑛−1−𝛼𝑖 *𝐴𝑖

[︂
𝑢(·)−

𝑚𝑖−1∑︁
𝑗=0

𝑢𝑗𝑔𝑗+1(·)
]︂)︂

(𝑡)
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+
∑︁

𝑖∈(N𝑛−1rℐ)r𝒱

(𝑔𝛼𝑛−1−𝛼𝑖
*𝐴𝑖𝑢)(𝑡) +

∑︁
𝑖∈(N𝑛−1rℐ)∩𝒱

𝐴𝑖(𝑔𝛼𝑛−1−𝛼𝑖
* 𝑢)(𝑡)

=
∑︁

𝑖∈N𝑛−1rℐ

∑︁
𝑗∈N0

𝑚𝑖−1

𝑔𝛼𝑛−1−𝛼𝑖+1+𝑗(𝑡)𝑢𝑖,𝑗 + (𝑔𝛼𝑛−1
* 𝑓)(𝑡), 𝑡 > 0.

If 𝒱 = ∅ (𝒱 = N𝑛−1), then we also say that 𝑢(𝑡) is a strong (mild) solution of (93).

Any strong solution of problem [(90)–(91)] is also a strong solution of problem
(93), and any 𝒱-mild solution of problem (93) is also a 𝒱 ′-mild solution of (93)
provided that 𝒱,𝒱 ′ ⊆ N𝑛−1 and 𝒱 ⊆ 𝒱 ′. As already observed in [308] for the
problem (DFP)𝐿, a sufficiently smooth strong solution of the problem (93) need
not be a strong solution of problem [(90)–(91)] in the case that ℐ ≠ ∅. The situation
is quite intricate even if ℐ = ∅ because then we can only prove that a strong solution
of problem (93) satisfies the equation∑︁
𝑖∈N𝑛−1

(︂
𝑔𝑚𝑛−1−𝑚𝑖

*𝑔𝑚𝑖−𝛼𝑖
*
[︂
𝐴𝑖𝑢(·)−

𝑚𝑖−1∑︁
𝑗=0

𝑢𝑖,𝑗𝑔1+𝑗(·)
]︂)︂

(𝑡) = (𝑔𝛼𝑛−1
*𝑓)(𝑡), 𝑡 > 0,

which does not imply, in general, that the function

𝑡 ↦→ 𝑔𝑚𝑖−𝛼𝑖
*
[︂
𝐴𝑖𝑢−

𝑚𝑖−1∑︁
𝑗=0

𝑢𝑖,𝑗𝑔1+𝑗

]︂
(𝑡), 𝑡 > 0

is 𝑚𝑖-times continuously differentiable for 𝑖 ∈ N𝑛−1 (the problem (DFP)𝑅 is an ex-
ception, cf. [308]). Because of that, we shall primarily consider degenerate integral
equation (93) in the sequel.

Remark 2.3.3. It should be observed that we can further generalize the ab-
stract form of problem (90) by assuming that some of terms 𝑇𝑖𝑢(𝑡) can be expressed
as sums of terms like 𝐴′

𝑖D
𝛼𝑖
𝑡 (𝐵′

𝑖D
𝛽𝑖

𝑡 𝑢(𝑡)) and D𝛼𝑖
𝑡 𝐴

′′
𝑖 (D

𝛽𝑖

𝑡 𝐵
′′
𝑖 𝑢(𝑡)), with 𝐴′

𝑖, 𝐵′
𝑖, 𝐴′′

𝑖 ,
𝐵′′

𝑖 being closed linear operators on 𝐸 and 𝛽𝑖 > 0 (cf. [490, Chapter VI] for a great
number of such examples of degenerate equations of second order possessing a cer-
tain physical meaning). It would take too long to go into further details concerning
this topic here.

2.3.2. Exponentially equicontinuous 𝑘-regularized 𝐶-resolvent (𝑖, 𝑗)-
propagation families. Following the method employed in the papers [542,543]
and [306], we introduce the notion of an exponentially equicontinuous 𝑘-regularized
𝐶-resolvent propagation family for problem [(90)–(91)] as follows (cf. the problem
(93) with ℐ = ∅, 𝑥 = 𝑢𝑖,𝑗 , the other initial values being zeroes, and then apply the
formula (39) for the Laplace transform of Caputo derivatives of the 𝛼th order).

Definition 2.3.4. Suppose that the function 𝑘(𝑡) satisfies (P1), as well as
that 1 6 𝑖 6 𝑛 − 1, 0 6 𝑗 6 𝑚𝑖 − 1 and 𝑅𝑖,𝑗(𝑡) : 𝐷(𝐴𝑖) → 𝐸 is a linear mapping
(𝑡 > 0). Let the operator 𝐶 ∈ 𝐿(𝐸) be injective. Then the operator family
(𝑅𝑖,𝑗(𝑡))𝑡>0 is said to be an exponentially equicontinuous 𝑘-regularized 𝐶-resolvent
(𝑖, 𝑗)-propagation family for problem [(90)–(91)] iff there exists 𝜔 > max(0, abs(𝑘))
such that the following holds:
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(i) The mapping 𝑡 ↦→ 𝑅𝑖,𝑗(𝑡)𝑥, 𝑡 > 0 is continuous for every fixed element
𝑥 ∈ 𝐷(𝐴𝑖).

(ii) The family {𝑒−𝜔𝑡𝑅𝑖,𝑗(𝑡) : 𝑡 > 0} is equicontinuous, i.e., for every 𝑝 ∈ ~,
there exist 𝑐 > 0 and 𝑞 ∈ ~ such that

𝑝(𝑒−𝜔𝑡𝑅𝑖,𝑗(𝑡)𝑥) 6 𝑐𝑞(𝑥), 𝑥 ∈ 𝐷(𝐴𝑖), 𝑡 > 0.

(iii) For every 𝜆 ∈ C with Re𝜆 > 𝜔 and 𝑘(𝜆) ̸= 0, the operator 𝑃𝜆 is injective,
𝐶(𝑅(𝐴𝑖)) ⊆ 𝑅(𝑃𝜆) and

(95) 𝜆𝛼𝑖−𝛼𝑛−1−𝑗𝑘(𝜆)𝑃−1
𝜆 𝐶𝐴𝑖𝑥 =

∫︁ ∞

0

𝑒−𝜆𝑡𝑅𝑖,𝑗(𝑡)𝑥 𝑑𝑡, 𝑥 ∈ 𝐷(𝐴𝑖).

If 𝑘(𝑡) = 𝑔𝑟+1(𝑡) for some 𝑟 > 0, then it is also said that (𝑅𝑖,𝑗(𝑡))𝑡>0 is an exponen-
tially equicontinuous 𝑟-times integrated 𝐶-regularized resolvent (𝑖, 𝑗)-propagation
family for [(90)–(91)]; an exponentially equicontinuous 0-times integrated 𝐶-reg-
ularized resolvent (𝑖, 𝑗)-propagation family for [(90)–(91)] is also said to be an
exponentially equicontinuous 𝐶-regularized resolvent (𝑖, 𝑗)-propagation family for
[(90)–(91)].

Before we state the following important extension of [543, Theorem 3.1], it is
worth noting that we do not use here the condition 𝐶𝐴𝑖 ⊆ 𝐴𝑖𝐶, in contrast to
the corresponding definitions from [542,543] and [306], and that the existence of
an exponentially equicontinuous 𝑘-regularized 𝐶-resolvent (𝑖, 0)-propagation fam-
ily for problem [(90)–(91)] implies the existence of an exponentially equicontin-
uous 𝑘-regularized 𝐶-resolvent (𝑖, 𝑗)-propagation family for problem [(90)–(91)]
(𝑗 ∈ N0

𝑚𝑖−1); if this is the case, we have 𝑅𝑖,𝑗(𝑡)𝑥 = (𝑔𝑗 * 𝑅𝑖,0(·)𝑥)(𝑡), 𝑡 > 0,
𝑗 ∈ N0

𝑚𝑖−1, 𝑥 ∈ 𝐷(𝐴𝑖). Observe also that the uniqueness theorem for Laplace
transform implies that there exists at most one exponentially equicontinuous 𝑘-
regularized 𝐶-resolvent (𝑖, 𝑗)-propagation family for problem [(90)–(91)] and that
the assertions of [306, Remark 2.3(iv), Proposition 2.4, Theorem 2.5] can be refor-
mulated in our context.

Theorem 2.3.5. Suppose that 1 6 𝑖 6 𝑛− 1, 0 6 𝑗 6 𝑚𝑖 − 1 and there exists
an exponentially equicontinuous 𝑘-regularized 𝐶-resolvent (𝑖, 𝑗)-propagation family
(𝑅𝑖,𝑗(𝑡))𝑡>0 for problem [(90)–(91)].

(i) Assume that there exists 𝑙 ∈ N𝑛−1 such that the following condition:
(C.1) For every 𝑣 ∈ N𝑛−1r{𝑙} and 𝑥 ∈ 𝐷(𝐴𝑖), there exist a number 𝜔0 > 𝜔

and a continuous 𝐸-valued function 𝑡 ↦→ 𝑓𝑖,𝑗,𝑣(𝑡;𝑥), 𝑡 > 0 such that,
for every 𝑝 ∈ ~, there exists 𝑀𝑝 > 0 with 𝑝(𝑓𝑖,𝑗,𝑣(𝑡;𝑥)) 6 𝑀𝑝𝑒

𝜔𝑡,
𝑡 > 0 (𝑣 ∈ N𝑛−1r {𝑙}) and that, for every 𝜆 ∈ C with Re𝜆 > 𝜔0 and
𝑘(𝜆) ̸= 0,∫︁ ∞

0

𝑒−𝜆𝑡𝑓𝑖,𝑗,𝑣(𝑡;𝑥)𝑑𝑡 = 𝜆𝛼𝑖−𝛼𝑛−1−𝑗+𝛼𝑣−𝛼𝑛−1𝑘(𝜆)𝐴𝑣𝑃
−1
𝜆 𝐶𝐴𝑖𝑥
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holds. Then for each 𝑣0 ∈ 𝐷(𝐴𝑖) the function 𝑢(𝑡) := 𝑅𝑖,𝑗(𝑡)𝑣0, 𝑡 > 0 is
a mild solution of the integral equation

(96)
𝑛−1∑︁
𝑣=1

𝐴𝑣(𝑔𝛼𝑛−1−𝛼𝑣
* 𝑢)(𝑡) = (𝑔𝛼𝑛−1−𝛼𝑖+𝑗 * 𝑘)(𝑡)𝐶𝐴𝑖𝑣0, 𝑡 > 0,

defined in the same way as in Definition 2.3.2(ii).
(ii) Let ∅ ≠ 𝒦 ⊆ N𝑛−1. If the conditions:

(C.2) For every 𝑙 ∈ 𝒦 and 𝑥 ∈ 𝐷(𝐴𝑖), and for every 𝑣 ∈ N𝑛−1 r {𝑙}, there
exist a number 𝜔𝑙,𝑣 > 𝜔 and a continuous 𝐸-valued function 𝑡 ↦→
𝑔𝑖,𝑗,𝑙,𝑣(𝑡;𝑥), 𝑡 > 0 such that, for every 𝑝 ∈ ~, there exists 𝑀𝑝,𝑙,𝑣 > 0
with 𝑝(𝑔𝑖,𝑗,𝑙,𝑣(𝑡;𝑥)) 6𝑀𝑝,𝑙,𝑣𝑒

𝜔𝑙,𝑣𝑡, 𝑡 > 0 (𝑙 ∈ 𝒦, 𝑣 ∈ N𝑛−1 r {𝑙}) and
that, for every 𝜆 ∈ C with Re𝜆 > 𝜔𝑙,𝑣 and 𝑘(𝜆) ̸= 0,∫︁ ∞

0

𝑒−𝜆𝑡𝑔𝑖,𝑗,𝑙,𝑣(𝑡;𝑥)𝑑𝑡 = 𝜆𝛼𝑖−𝛼𝑛−1−𝑗+𝛼𝑣−𝛼𝑙𝑘(𝜆)𝐴𝑣𝑃
−1
𝜆 𝐶𝐴𝑖𝑥

and
(C.3) For every 𝑙 ∈ 𝒦, there exist a number 𝜔𝑙 > 𝜔 and a continuous

function ℎ𝑙 : [0,∞) → C satisfying (P1) and̃︀ℎ𝑙(𝜆) = 𝑘(𝜆)𝜆𝛼𝑖−𝛼𝑙−𝑗 , Re𝜆 > 𝜔𝑙,

holds, then for each 𝑣0 ∈ 𝐷(𝐴𝑖) the function 𝑢(𝑡) = 𝑅𝑖,𝑗(𝑡)𝑣0, 𝑡 > 0
satisfies that the mappings 𝑡 ↦→ 𝐴𝑙𝑢(𝑡), 𝑡 > 0 are well-defined, continuous
and that for each 𝑝 ∈ ~ there exist 𝑀𝑝 > 0 and 𝜔0 > 𝜔 with 𝑝(𝐴𝑙𝑢(𝑡) −
ℎ𝑙(𝑡)𝐶𝐴𝑖𝑣0) 6𝑀𝑝𝑒

𝜔0𝑡, 𝑡 > 0 (𝑙 ∈ 𝒦). Furthermore, for every 𝑡 > 0,

(97)
∑︁
𝑙∈𝒦

(𝑔𝛼𝑛−1−𝛼𝑙
*𝐴𝑙𝑢)(𝑡) +

∑︁
𝑙∈N𝑛−1r𝒦

𝐴𝑙(𝑔𝛼𝑛−1−𝛼𝑙
* 𝑢)(𝑡)

= (𝑔𝛼𝑛−1−𝛼𝑖+𝑗 * 𝑘)(𝑡)𝐶𝐴𝑖𝑣0.

(iii) Suppose that (C.1) holds. Let 𝑣0 ∈
⋂︀𝑛−1

𝑖=1 𝐷(𝐴𝑖), let ∅ ≠ 𝒦 ⊆ N𝑛−1, and
let 𝐶𝐴𝑝 ⊆ 𝐴𝑝𝐶 for all 𝑝 ∈ N𝑛−1. If the condition:

(C.4) For every 𝑙 ∈ 𝒦 and for every 𝑣 ∈ N𝑛−1 r {𝑖}, there exist a number
𝜔𝑙,𝑣 > 𝜔 and a continuous function ℎ𝑙,𝑣 : [0,∞) → 𝐸 satisfying that,
for every 𝑝 ∈ ~, there exists 𝑀𝑝,𝑙,𝑣 > 0 with 𝑝(ℎ𝑙,𝑣(𝑡)) 6𝑀𝑝,𝑙,𝑣𝑒

𝜔𝑙,𝑣𝑡,
𝑡 > 0 and̃︂ℎ𝑙,𝑣(𝜆) = 𝑘(𝜆)𝜆𝛼𝑣−𝛼𝑛−1−𝑗𝐴𝑙𝑃

−1
𝜆 𝐶𝐴𝑣𝑣0, Re𝜆 > 𝜔𝑙,𝑣, 𝑘(𝜆) ̸= 0

holds, then the function 𝑢(𝑡) = 𝑅𝑖,𝑗(𝑡)𝑣0, 𝑡 > 0 satisfies that the mappings
𝑡 ↦→ 𝐴𝑙𝑢(𝑡), 𝑡 > 0 are well-defined, continuous and that for each 𝑝 ∈ ~
there exist 𝑀𝑝 > 0 and 𝜔0 > 𝜔 with 𝑝(𝐴𝑙𝑢(𝑡)−(𝑔𝑗*𝑘)(𝑡)𝐶𝐴𝑙𝑣0) 6𝑀𝑝𝑒

𝜔0𝑡,
𝑡 > 0 (𝑙 ∈ 𝒦). Furthermore, for every 𝑡 > 0, (97) holds.

(iv) Suppose that 𝐶𝐴𝑝 ⊆ 𝐴𝑝𝐶, 𝑝 ∈ N𝑛−1 and 𝑘(𝑡) satisfies (P2), as well as
that 𝑛 = 3 or that 𝑛 > 4 and the following condition holds:
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(C.5) For every 𝑝 ∈ ~ and 𝑙 ∈ N𝑛−1r{𝑖}, there exist numbers 𝜆𝑝,𝑙, 𝜎𝑝,𝑙 > 0,
a seminorm 𝑞𝑝,𝑙 ∈ ~ and a function ℎ𝑝,𝑙 : (𝜆𝑝,𝑙,∞) → (0,∞) such
that:

𝑝(𝑃−1
𝜆 𝐶𝐴𝑙𝑥) 6 [𝑞𝑝,𝑙(𝑥) + 𝑞𝑝,𝑙(𝐴𝑙𝑥)]ℎ𝑝,𝑙(𝜆), 𝜆 > 𝜆𝑝,𝑙, 𝑥 ∈ 𝐷(𝐴𝑙),

and
lim

𝜆→+∞
𝑒−𝜆𝜎𝑝,𝑙ℎ𝑝,𝑙(𝜆) = 0.

Then the function 𝑢(𝑡) = 𝑅𝑖,𝑗(𝑡)𝑣0, 𝑡 > 0 is a unique mild solution of the
integral equation (96), provided that 𝑣0 ∈ 𝐷(𝐴𝑖) and the assumptions of
(i) hold. Furthermore, the function 𝑢(𝑡) = 𝑅𝑖,𝑗(𝑡)𝑣0, 𝑡 > 0 is a unique
function satisfying that the mapping 𝑡 ↦→ 𝐴𝑙𝑢(𝑡), 𝑡 > 0 is well-defined,
continuous (𝑙 ∈ 𝒦) and that (97) holds, provided that 𝑣0 ∈ 𝐷(𝐴𝑖) and the
assumptions of (ii) hold, resp. 𝑣0 ∈

⋂︀𝑛−1
𝑖=1 𝐷(𝐴𝑖) and the assumptions of

(iii) hold.

Proof. Let 𝑣0 ∈ 𝐷(𝐴𝑖). Due to the condition (C.1) and the uniqueness
theorem for Laplace transform, we have that the function 𝑡 ↦→ 𝐴𝑣(𝑔𝛼𝑛−1−𝛼𝑣

*
𝑅𝑖,𝑗(·)𝑣0)(𝑡), 𝑡 > 0 is well-defined, continuous and for each 𝑝 ∈ ~ there exist 𝑀 ′

𝑝 > 0

and 𝜔′ > 𝜔 with 𝑝(𝐴𝑣(𝑔𝛼𝑛−1−𝛼𝑣
* 𝑅𝑖,𝑗(·)𝑣0)(𝑡)) 6 𝑀 ′

𝑝𝑒
𝜔′𝑡, 𝑡 > 0 (𝑣 ∈ N𝑛−1 r {𝑙});

furthermore,∫︁ ∞

0

𝑒−𝜆𝑡𝐴𝑣(𝑔𝛼𝑛−1−𝛼𝑣
*𝑅𝑖,𝑗(·)𝑣0)(𝑡)𝑑𝑡 = 𝑘(𝜆)𝜆𝛼𝑖−𝛼𝑛−1−𝑗+𝛼𝑣−𝛼𝑛−1𝐴𝑣𝑃

−1
𝜆 𝐶𝐴𝑖𝑣0,

for any 𝑣 ∈ N𝑛−1 r {𝑙} and for any 𝜆 ∈ C with Re𝜆 > 𝜔′ and 𝑘(𝜆) ̸= 0. Using the
identity

(98) 𝑘(𝜆)𝜆𝛼𝑖−𝛼𝑛−1−𝑗+𝛼𝑙−𝛼𝑛−1𝐴𝑙𝑃
−1
𝜆 𝐶𝐴𝑖𝑣0

= 𝑘(𝜆)𝜆𝛼𝑖−𝛼𝑛−1−𝑗

[︂
𝐶𝐴𝑖𝑣0 −

∑︁
𝑣∈N𝑛−1r{𝑙}

𝜆𝛼𝑣−𝛼𝑛−1𝐴𝑣𝑃
−1
𝜆 𝐶𝐴𝑖𝑣0

]︂
,

for any 𝜆 ∈ C with Re𝜆 > 𝜔′ and 𝑘(𝜆) ̸= 0, and the uniqueness theorem for Laplace
transform, it readily follows that the function 𝑡 ↦→ 𝐴𝑙(𝑔𝛼𝑛−1−𝛼𝑙

*𝑅𝑖,𝑗(·)𝑣0)(𝑡), 𝑡 > 0
is well-defined, continuous and

𝐴𝑙(𝑔𝛼𝑛−1−𝛼𝑙
*𝑅𝑖,𝑗(·)𝑣0)(𝑡) = (𝑔𝛼𝑛−1−𝛼𝑖+𝑗 * 𝑘)(𝑡)𝐶𝐴𝑖𝑣0

−
∑︁

𝑣∈N𝑛−1r{𝑙}

𝐴𝑙(𝑔𝛼𝑛−1−𝛼𝑣
*𝑅𝑖,𝑗(·)𝑣0)(𝑡), 𝑡 > 0,

proving that the function 𝑢(𝑡) = 𝑅𝑖,𝑗(𝑡)𝑣0, 𝑡 > 0 is a mild solution of the integral
equation (96). Suppose now that the conditions (C.2)–(C.3) hold, as well as 𝑣0 ∈
𝐷(𝐴𝑖) and ∅ ≠ 𝒦 ⊆ N𝑛−1. Clearly, (C.2) implies (C.1) with any 𝑙 ∈ 𝒦. Similarly
as in the proof of (i), the conditions (C.2)–(C.3) in combination with the equation
(98), multiplied by 𝜆𝛼𝑛−1−𝛼𝑙 , imply that there exists a sufficiently large number
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𝜔′
𝑙 > 𝜔 such that

𝐴𝑙

∫︁ ∞

0

𝑒−𝜆𝑡𝑅𝑖,𝑗(𝑡)𝑣0𝑑𝑡 = ̃︀ℎ𝑙(𝜆)𝐶𝐴𝑖𝑣0 −
∫︁ ∞

0

𝑒−𝜆𝑡
∑︁

𝑣∈N𝑛−1r𝒦

𝑔𝑖,𝑗,𝑙,𝑣(𝑡; 𝑣0)𝑑𝑡,

for any 𝑙 ∈ 𝒦 and for any 𝜆 ∈ C with Re𝜆 > 𝜔′
𝑙. Then we can use the assertion

(i) and the uniqueness theorem for Laplace transform to complete the proof of (ii).
In order to prove (iii), observe first that the assumptions 𝑣0 ∈

⋂︀𝑛−1
𝑖=1 𝐷(𝐴𝑖) and

𝐶𝐴𝑝 ⊆ 𝐴𝑝𝐶, 𝑝 ∈ N𝑛−1 imply

(99) 𝑃−1
𝜆 𝐶(𝜆𝛼𝑖−𝛼𝑛−1𝐴𝑖𝑣0)+

∑︁
𝑣∈N𝑛−1r{𝑖}

𝑃−1
𝜆 𝐶(𝜆𝛼𝑣−𝛼𝑛−1𝐴𝑣𝑣0) = 𝑃−1

𝜆 𝐶𝑃𝜆𝑣0 = 𝐶𝑣0,

provided Re𝜆 > 𝜔 and 𝑘(𝜆) ̸= 0. Making use of (95) and (99), we obtain that, for
any such a value of complex parameter 𝜆, the following holds:

𝐴𝑙

∫︁ ∞

0

𝑒−𝜆𝑡𝑅𝑖,𝑗(𝑡)𝑣0𝑑𝑡 = 𝜆−𝑗𝑘(𝜆)𝐴𝑙𝑃
−1
𝜆 𝐶(𝜆𝛼𝑖−𝛼𝑛−1𝐴𝑖𝑣0)

= 𝜆−𝑗𝑘(𝜆)𝐴𝑙

[︂
𝐶𝑣0 −

∑︁
𝑣∈N𝑛−1r{𝑖}

𝜆𝛼𝑣−𝛼𝑛−1𝑃−1
𝜆 𝐶𝐴𝑣𝑣0

]︂
.

Keeping in mind the last equation, as well as the condition (C.4) and the uniqueness
theorem for Laplace transform, the proof of (iii) follows instantly. We will prove the
uniqueness of solutions in (iv) only in the case that 𝑣0 ∈ 𝐷(𝐴𝑖) and the assumptions
of (i) hold. Let 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 be a mild solution of the integral equation (96) with
𝑣0 = 0. Convoluting the function 𝑢(·) with 𝑔𝜉(·), for a sufficiently large number
𝜉 > 0, we may assume without of generality that, for every 𝑣 ∈ N𝑛−1, the mapping
𝑡 ↦→ 𝐴𝑣𝑢(𝑡), 𝑡 > 0 is well-defined and continuous. Set, for every 𝑡 > 0 and 𝜁 > 0,
𝑣𝑡,𝜁(𝜆) := (𝑔𝜁 * 𝑒𝜆·)(𝑡) − 𝜆−𝜁𝑒𝑡𝜆, 𝜆 > 0; 𝑣𝑡,0(𝜆) := 0 (𝑡 > 0, 𝜆 > 0). Then the
mapping 𝑡 ↦→ 𝑣𝑡,𝜁(𝜆) is continuous in 𝑡 > 0, for any fixed numbers 𝜁 > 0 and 𝜆 > 0,
and by [541, Lemma 1.5.5, p. 23], there exists 𝑀 > 1 such that the mapping
𝜆 ↦→ 𝑣𝑡,𝜁(𝜆), 𝜆 > 0 satisfies

(100) |𝑣𝑡,𝜁(𝜆)| 6𝑀 [(1 + 𝑡)𝜁−1𝜆−1(1 + 𝜆1−𝜁) + 𝑡𝜁−1𝜆−1], 𝜆 > 0, 𝑡 > 0, 𝜁 > 0.

Keeping in mind that 𝐶𝐴𝑝 ⊆ 𝐴𝑝𝐶, 𝑝 ∈ N𝑛−1, we have that, for every 𝑡 > 0 and
𝜆 > 0,

𝜆𝛼𝑖−𝛼𝑛−1

∫︁ 𝑡

0

𝑒𝜆(𝑡−𝑠)𝐴𝑖𝐶𝑢(𝑠)𝑑𝑠+

∫︁ 𝑡

0

𝑣𝑡−𝑠,𝛼𝑛−1−𝛼𝑖
(𝜆)𝐴𝑖𝐶𝑢(𝑠)𝑑𝑠

= 𝐶

∫︁ 𝑡

0

𝑒𝜆(𝑡−𝑠)(𝑔𝛼𝑛−1−𝛼𝑖
*𝐴𝑖𝑢)(𝑠)𝑑𝑠

= (−𝐶)
∑︁

𝑣∈N𝑛−1r{𝑖}

∫︁ 𝑡

0

𝑒𝜆(𝑡−𝑠)(𝑔𝛼𝑛−1−𝛼𝑣
*𝐴𝑣𝑢)(𝑠)𝑑𝑠

=−
∑︁

𝑣∈N𝑛−1r{𝑖}

[︂
𝜆𝛼𝑣−𝛼𝑛−1

∫︁ 𝑡

0

𝑒𝜆(𝑡−𝑠)𝐴𝑣𝐶𝑢(𝑠)𝑑𝑠+

∫︁ 𝑡

0

𝑣𝑡−𝑠,𝛼𝑛−1−𝛼𝑣
(𝜆)𝐴𝑣𝐶𝑢(𝑠)𝑑𝑠

]︂
,
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which clearly implies that, for every 𝜆 > 𝜔, 𝜎 > 0 and 𝑡 > 0, the following holds:

(101) 𝜆𝛼𝑖−𝛼𝑛−1−𝑗𝑘(𝜆)𝑒−𝜆𝜎

∫︁ 𝑡

0

𝑒𝜆(𝑡−𝑠)𝐶𝑢(𝑠)𝑑𝑠

= −𝜆𝛼𝑖−𝛼𝑛−1−𝑗𝑘(𝜆)𝑒−𝜆𝜎𝑃−1
𝜆 𝐶

∫︁ 𝑡

0

𝑣𝑡−𝑠,𝛼𝑛−1−𝛼𝑖
(𝜆)𝐴𝑖𝑢(𝑠)𝑑𝑠

− 𝜆𝛼𝑖−𝛼𝑛−1−𝑗𝑘(𝜆)𝑒−𝜆𝜎
∑︁

𝑣∈N𝑛−1r{𝑖}

𝑃−1
𝜆 𝐶

∫︁ 𝑡

0

𝑣𝑡−𝑠,𝛼𝑛−1−𝛼𝑣
(𝜆)𝐴𝑣𝑢(𝑠)𝑑𝑠.

By (95) and (101), we obtain that, for every 𝜆 > 𝜔, 𝜎 > 0 and 𝑡 > 0, the following
holds:

𝑒−𝜆𝜎

∫︁ 𝑡

0

𝑒𝜆(𝑡−𝑠)𝐶𝑢(𝑠)𝑑𝑠

= −𝜆
𝛼𝑛−1+𝑗−𝛼𝑖𝑒−𝜆𝜎

𝑘(𝜆)

∫︁ ∞

0

𝑒−𝜆𝑠𝑅𝑖,𝑗(𝑠)

(︂∫︁ 𝑡

0

𝑣𝑡−𝑟,𝛼𝑛−1−𝛼𝑖(𝜆)𝑢(𝑟)𝑑𝑟

)︂
𝑑𝑠

− 𝑒−𝜆𝜎
∑︁

𝑣∈N𝑛−1r{𝑖}

𝑃−1
𝜆 𝐶𝐴𝑣

∫︁ 𝑡

0

𝑣𝑡−𝑠,𝛼𝑛−1−𝛼𝑣
(𝜆)𝑢(𝑠)𝑑𝑠.

For the estimation of the first addend on the right hand side of the above equality,
we can use the already employed fact that there exist numbers 𝜎0 > 0 and 𝑀 ′ > 1
such that

(102)
𝑒−𝜆𝜎0

|𝑘(𝜆)|
6𝑀 ′, 𝜆 > 𝜔 + 1.

Keeping in mind (100) and (102), it can be simply proved that, for every 𝜎 > 𝜎0
and for every 𝑝 ∈ ~, we have

(103) lim
𝜆→+∞

𝑝

(︂
𝜆𝛼𝑛−1+𝑗−𝛼𝑖𝑒−𝜆𝜎

𝑘(𝜆)

∫︁ ∞

0

𝑒−𝜆𝑠𝑅𝑖,𝑗(𝑠)

(︂∫︁ 𝑡

0

𝑣𝑡−𝑟,𝛼𝑛−1−𝛼𝑖(𝜆)𝑢(𝑟)𝑑𝑟

)︂
𝑑𝑠

)︂
= 0.

If 𝑛 > 4, then the condition (C.5) in combination with the previous equality and
(100) shows that, for every 𝑝 ∈ ~, there exists a sufficiently large number 𝜎𝑝 > 0
such that lim𝜆→+∞ 𝑒−𝜆𝜎𝑝𝑝((𝑒𝜆· * 𝐶𝑢)(𝑡)) = 0, 𝑡 > 0; the same holds in the case
that 𝑛 = 3 because then we can use, instead of condition (C.5), the equation (99)
and the arguments already seen in proving the equation (103), to conclude that

lim
𝜆→+∞

𝑝

(︂
𝑒−𝜆𝜎

∑︁
𝑣∈N𝑛−1r{𝑖}

𝑃−1
𝜆 𝐶𝐴𝑣

∫︁ 𝑡

0

𝑣𝑡−𝑠,𝛼𝑛−1−𝛼𝑣
(𝜆)𝑣(𝑠)𝑑𝑠

)︂
= 0,

for any 𝜎 > 𝜎0 and 𝑡 > 0. In such a way, we obtain that for each 𝑝 ∈ ~
the following holds: lim𝜆→+∞

∫︀ 𝑡

0
𝑒𝜆(𝑡−𝑠−𝜎)𝐶𝑢(𝑠)𝑑𝑠 = 0, 𝑡 > 0, 𝜎 > 𝜎𝑝. By the

dominated convergence theorem, it readily follows that for each 𝑝 ∈ ~ we have:
lim𝜆→+∞ 𝑝(

∫︀ 𝑡−𝜎

0
𝑒𝜆(𝑡−𝑠−𝜎)𝐶𝑢(𝑠)𝑑𝑠) = 0, 𝑡 > 𝜎 > 𝜎𝑝. Therefore,

lim
𝜆→+∞

∫︁ 𝑡

0

𝑒𝜆(𝑡−𝑠)𝐶𝑢(𝑠)𝑑𝑠 = 0, 𝑡 > 0.
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Since 𝐶 is injective, we can apply [292, Lemma 2.1.33(iii)] (cf. [445, Lemma 1.4.4,
p. 100] for the Banach space case) to complete the proof. �

The uniqueness of solutions of integral equation (96), resp. (97), can be proved
even in the case of non-existence of an exponentially equicontinuous 𝑘-regularized
𝐶-resolvent (𝑖, 𝑗)-propagation family for problem [(90)–(91)]. Strictly speaking, the
proof of Theorem 2.3.5 implies the following uniqueness type theorem for degen-
erate multi-term problems (cf. [197, Theorem 3.1] for a pioneering result on the
uniqueness of solutions to abstract degenerate first-order equations):

Theorem 2.3.6. Suppose that 𝐶𝐴𝑝 ⊆ 𝐴𝑝𝐶 for all 𝑝 ∈ N𝑛−1, 𝒱 ⊆ N𝑛−1 and
the requirements in (C.5) hold for every seminorm 𝑝 ∈ ~ and for every number
𝑙 ∈ N𝑛−1. Then there exists at most one mild solution 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 of the
integral equation (96) with 𝑣0 = 0, resp. there exists at most one continuous 𝐸-
valued function 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 satisfying that the mapping 𝑡 ↦→ 𝐴𝑙𝑢(𝑡), 𝑡 > 0 is
well-defined, continuous (𝑙 ∈ 𝒦) and (97) holds with 𝑣0 = 0. In particular, there
exists at most one 𝒱-mild solution of problem (93) and there exists at most one
strong solution of problem [(90)–(91)].

Remark 2.3.7. Suppose again that the general assumptions of Theorem 2.3.5
hold, i.e., that 1 6 𝑖 6 𝑛 − 1, 0 6 𝑗 6 𝑚𝑖 − 1 and there exists an exponentially
equicontinuous 𝑘-regularized 𝐶-resolvent (𝑖, 𝑗)-propagation family (𝑅𝑖,𝑗(𝑡))𝑡>0 for
problem [(90)–(91)].

(i) Suppose that 𝑘(𝑡) satisfies (P2) and, for every 𝑙 ∈ N𝑛−1r{𝑖}, there exists
𝑗𝑙 ∈ N0

𝑚𝑙−1 such that there exists an exponentially equicontinuous 𝑘-
regularized 𝐶-resovent (𝑙, 𝑗𝑙)-propagation family for problem [(90)–(91)].
By the proof of Theorem 2.3.5(iv), we have that the condition (C.5) au-
tomatically holds.

(ii) The uniqueness of solutions of non-degenerate integral equations has re-
cently been considered in [347]. It ought to be observed that we must
impose the additional condition 𝐶𝐴𝑝 ⊆ 𝐴𝑝𝐶, 𝑝 ∈ N0

𝑛−1 in the formulation
of Theorem 3.2 in [347] in order for its proof to work.

(iii) Let ∅ ̸= 𝒦 ⊆ N𝑛−1. Suppose that 𝑣0 ∈ 𝐷(𝐴𝑖) and the conditions
(C.2)–(C.3) hold, or 𝑣0 ∈

⋂︀𝑛−1
𝑖=1 𝐷(𝐴𝑖), 𝐶𝐴𝑝 ⊆ 𝐴𝑝𝐶 for all 𝑝 ∈ N𝑛−1,

and the conditions (C.1) and (C.4) hold. Let 𝑢(𝑡) be the solution of (97),
satisfying the properties stated above. Consider now the equation (93)
and the notion introduced in Definition 2.3.2 with indexes 𝑖, 𝑗 replaced
by 𝑖′, 𝑗′. Then the following holds:
(a) If 𝑖 ∈ N𝑛−1 r ℐ, 𝑘(𝑡) = 1, 𝑢𝑗′ = 0 (0 6 𝑗′ 6 𝑚𝑖′ − 1), 𝑢𝑖′,𝑗′ = 𝐶𝐴𝑖𝑣0,

provided 𝑖′ = 𝑖 and 𝑗′ = 𝑗, and 𝑢𝑖′,𝑗′ = 0, otherwise, then 𝑢(𝑡) is a
(N𝑛−1 r𝒦)-mild solution of (93) with 𝑓(𝑡) = 0.

(b) If 𝑖 ∈ ℐ, 𝑘(𝑡) = 1, 𝑢𝑖′,𝑗′ = 0 (𝑖′ ∈ N𝑛−1, 𝑗′ ∈ N0
𝑚𝑖′−1), 𝑢𝑗′ = 𝐶𝑣0,

provided 𝑗′ = 𝑗, 𝑢𝑗′ = 0, otherwise, and 𝐶𝐴𝑖 ⊆ 𝐴𝑖𝐶, then 𝑢(𝑡) is
a (N𝑛−1 r 𝒦)-mild solution of (93) with 𝑓(𝑡) = 0, provided that for
each 𝑖′ ∈ {𝑠 ∈ ℐ r {𝑖} : 𝑚𝑠 − 1 > 𝑗} one has 𝐴𝑖′𝐶𝑣0 = 0.
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(iv) Making use of [541, Theorem 1.1.9], the uniqueness theorem for Laplace
transform and the formula (39), we can clarify some sufficient conditions
for the existence of terms 𝐴𝑝D

𝛼𝑝

𝑡 𝑢(𝑡) and D
𝛼𝑝

𝑡 𝐴𝑝𝑢(𝑡) (𝑝 ∈ N𝑛−1). Un-
fortunately, it is very hard to verify these conditions in practical situ-
ations because we do not know the precise values of elements 𝑅𝑖,𝑗(0)𝑥,
𝑅′

𝑖,𝑗(0)𝑥, . . . (𝑥 ∈ 𝐷(𝐴𝑖)).

The notion of an exponentially equicontinuous (equicontinuous), analytic 𝑘-
regularized 𝐶-resolvent (𝑖, 𝑗)-propagation family (𝑅𝑖,𝑗(𝑡))𝑡>0 for problem [(90)–(91)]
is introduced in the following definition.

Definition 2.3.8. Suppose that 1 6 𝑖 6 𝑛 − 1, 0 6 𝑗 6 𝑚𝑖 − 1, 0 < 𝛼 6 𝜋
and there exists an exponentially equicontinuous 𝑘-regularized 𝐶-resolvent (𝑖, 𝑗)-
propagation family (𝑅𝑖,𝑗(𝑡))𝑡>0 for problem [(90)–(91)]. Suppose, further, that the
function 𝑘(𝑡) satisfies (P1), as well as 𝐶 ∈ 𝐿(𝐸) is an injective mapping. Then
it is said that (𝑅𝑖,𝑗(𝑡))𝑡>0 is an exponentially equicontinuous (equicontinuous),
analytic 𝑘-regularized 𝐶-resolvent (𝑖, 𝑗)-propagation family (𝑅𝑖,𝑗(𝑡))𝑡>0 for problem
[(90)–(91)], of angle 𝛼, iff the following holds:

(i) For every 𝑥 ∈ 𝐷(𝐴𝑖), the mapping 𝑡 ↦→ 𝑅𝑖,𝑗(𝑡)𝑥, 𝑡 > 0 can be analytically
extended to the sector Σ𝛼; since no confusion seems likely, we denote the
extension by the same symbol.

(ii) For every 𝑥 ∈ 𝐷(𝐴𝑖) and 𝛽 ∈ (0, 𝛼), one has lim𝑧→0,𝑧∈Σ𝛽
𝑅𝑖,𝑗(𝑧)𝑥 =

𝑅𝑖,𝑗(0)𝑥.
(iii) For every 𝛽 ∈ (0, 𝛼), there exists 𝜔𝛽 > max(0, abs(𝑘)) (𝜔𝛽 = 0) such that

the family {𝑒−𝜔𝛽𝑧𝑅𝑖,𝑗(𝑧) : 𝑧 ∈ Σ𝛽} is equicontinuous, i.e., for every 𝑝 ∈ ~,
there exist 𝑐 > 0 and 𝑞 ∈ ~ such that

𝑝(𝑒−𝜔𝛽𝑧𝑅𝑖,𝑗(𝑧)𝑥) 6 𝑐𝑞(𝑥), 𝑥 ∈ 𝐷(𝐴𝑖), 𝑧 ∈ Σ𝛽 .

The proof of following theorem can be deduced similarly as that of [296, The-
orem 3.7].

Theorem 2.3.9. Assume that the function 𝑘(𝑡) satisfies (P1), 1 6 𝑖 6 𝑛 − 1,
0 6 𝑗 6 𝑚𝑖 − 1, 𝜔 > max(0, abs(𝑘)), 𝛼 ∈ (0, 𝜋/2] and the operator 𝐶 ∈ 𝐿(𝐸)

is injective. Assume, further, that for every 𝜆 ∈ C with Re𝜆 > 𝜔 and 𝑘(𝜆) ̸= 0,
we have that the operator 𝑃𝜆 is injective and 𝐶(𝑅(𝐴𝑖)) ⊆ 𝑅(𝑃𝜆). Let for each
𝑥 ∈ 𝐷(𝐴𝑖) there is an analytic function 𝑞𝑥 : 𝜔 +Σ𝜋

2 +𝛼 → 𝐸 such that

𝑞𝑥(𝜆) = 𝜆𝛼𝑖−𝛼𝑛−1−𝑗𝑘(𝜆)𝑃−1
𝜆 𝐶𝐴𝑖𝑥, Re𝜆 > 𝜔, 𝑘(𝜆) ̸= 0.

Suppose that, for every 𝛽 ∈ (0, 𝛼) and 𝑝 ∈ ~, there exist 𝑐𝑝,𝛽 > 0 and 𝑟𝑝,𝛽 ∈ ~
such that 𝑝((𝜆 − 𝜔)𝑞𝑥(𝜆)) 6 𝑐𝑝,𝛽𝑟𝑝,𝛽(𝑥), 𝑥 ∈ 𝐷(𝐴𝑖), 𝜆 ∈ 𝜔 + Σ𝛽+(𝜋/2) and, for
every 𝑥 ∈ 𝐷(𝐴𝑖), there exists the limit lim𝜆→+∞ 𝜆𝑞𝑥(𝜆) in 𝐸. Then there exists
an exponentially equicontinuous 𝑘-regularized 𝐶-resolvent (𝑖, 𝑗)-propagation family
(𝑅𝑖,𝑗(𝑡))𝑡>0 for problem [(90)–(91)], of angle 𝛼, and for each 𝛽 ∈ (0, 𝛼) the family
{𝑒−𝜔𝑧𝑅𝑖,𝑗(𝑧) : 𝑧 ∈ Σ𝛽} is equicontinuous.

Differential properties of exponentially equicontinuous (analytic) 𝑘-regularized
𝐶-resolvent (𝑖, 𝑗)-propagation families in locally convex spaces can be clarified fol-
lowing the method employed in Section 2.2. In the following theorem, we state the
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subordination principle for exponentially equicontinuous 𝑘-regularized 𝐶-resolvent
(𝑖, 𝑗)-propagation families.

Theorem 2.3.10. Suppose that 1 6 𝑖 6 𝑛 − 1, 0 6 𝑗 6 𝑚𝑖 − 1, 0 < 𝛾 < 1,
0 6 𝑗′ 6 𝑚𝑖 − 1, and there exists an exponentially equicontinuous 𝑘-regularized
𝐶-resolvent (𝑖, 𝑗)-propagation family (𝑅𝑖,𝑗(𝑡))𝑡>0 for problem [(90)–(91)] satisfying
that the family {𝑒−𝜔𝑡𝑅𝑖,𝑗(𝑡) : 𝑡 > 0} is equicontinuous for some 𝜔 > max(0, abs(𝑘)).
Assume that 𝑘(𝑡) satisfies (P1) and there exist a scalar-valued continuous kernel
𝑘𝛾(𝑡) on [0,∞), satisfying (P1), and a positive real number 𝜂 > 0 such that

̃︁𝑘𝛾(𝜆) = 𝜆𝛾−1+𝑗′−𝛾𝑗𝑘(𝜆𝛾), 𝜆 > 𝜂.

Then there exists an exponentially equicontinuous 𝑘-regularized 𝐶-resolvent (𝑖, 𝑗′)-
propagation family (𝑅𝑖,𝑗′,𝛾(𝑡))𝑡>0 for problem [(90)–(91)], with 𝛼𝑖 replaced by 𝛾𝛼𝑖

(𝑖 ∈ N𝑛−1) , and (𝑅𝑖,𝑗′,𝛾(𝑡))𝑡>0 is given by 𝑅𝑖,𝑗′,𝛾(0) := 𝑅𝑖,𝑗(0),

𝑅𝑖,𝑗′,𝛾(𝑡)𝑥 :=

∫︁ ∞

0

𝑡−𝛾Φ𝛾(𝑠𝑡
−𝛾)𝑅𝑖,𝑗(𝑠)𝑥 𝑑𝑠, 𝑥 ∈ 𝐷(𝐴𝑖), 𝑡 > 0.

Furthermore, the family {𝑒−𝜔1/𝛾𝑡𝑅𝑖,𝑗′,𝛾(𝑡) : 𝑡 > 0} is equicontinuous and, for
every 𝜁 > 0, the equicontinuity of the family {𝑒−𝜔𝑡(1 + 𝑡𝜁)−1𝑅𝑖,𝑗(𝑡) : 𝑡 > 0},
resp. {𝑒−𝜔𝑡𝑡−𝜁𝑅𝑖,𝑗(𝑡) : 𝑡 > 0}, implies the equicontinuity of the family {𝑒−𝜔1/𝛾𝑡(1+

𝑡𝛾𝜁)−1(1 + 𝜔𝑡𝜁(1−𝛾))−1𝑅𝑖,𝑗′,𝛾(𝑡) : 𝑡 > 0}, resp. {𝑒−𝜔1/𝛾𝑡𝑡−𝛾𝜁(1 + 𝜔𝑡𝜁(1−𝛾))−1

𝑅𝑖,𝑗′,𝛾(𝑡) : 𝑡 > 0}, and the following holds:

(i) The mapping 𝑡 ↦→ 𝑅𝑖,𝑗′,𝛾(𝑡)𝑥, 𝑡 > 0 admits an analytic extension to the
sector Σmin(( 1

𝛾 −1)𝜋
2 ,𝜋) for all 𝑥 ∈ 𝐷(𝐴𝑖).

(ii) If 𝜔 = 0 and 𝜀 ∈ (0,min(( 1𝛾 − 1)𝜋2 , 𝜋)), then the family {𝑅𝑖,𝑗′,𝛾(𝑧) : 𝑧 ∈
Σmin(( 1

𝛾 −1)𝜋
2 ,𝜋)−𝜀} is equicontinuous and

lim𝑧→0,𝑧∈Σ
min(( 1

𝛾
−1)𝜋

2
,𝜋)−𝜀

𝑅𝑖,𝑗′,𝛾(𝑧)𝑥 = 𝑅𝑖,𝑗′,𝛾(0)𝑥 for all 𝑥 ∈ 𝐷(𝐴𝑖).

(iii) If 𝜔 > 0 and 𝜀 ∈ (0,min(( 1𝛾 − 1)𝜋2 ,
𝜋
2 )), then there exists 𝛿𝛾,𝜀 > 0 such

that the family {𝑒−𝛿𝛾,𝜀 Re 𝑧𝑅𝑖,𝑗′,𝛾(𝑧) : 𝑧 ∈ Σmin(( 1
𝛾 −1)𝜋

2 ,𝜋2 )−𝜀} is equicon-
tinuous. Moreover, lim𝑧→0,𝑧∈Σ

min(( 1
𝛾

−1)𝜋
2

, 𝜋
2

)−𝜀
𝑅𝑖,𝑗′,𝛾(𝑧)𝑥 = 𝑅𝑖,𝑗′,𝛾𝑥 for all

𝑥 ∈ 𝐷(𝐴𝑖).

Remark 2.3.11. Using the proof of [61, Theorem 3.1], it can be simply verified
that any of conditions (C.1)–(C.5) is invariant under the action of subordination
principle described in Theorem 2.3.10.

Example 2.3.12. (cf. also [346, Example 5.1(i)]) Suppose that 𝑐𝑙 ∈ C r 0
(1 6 𝑙 6 𝑛− 1), as well as 𝐴 and 𝐵 are closed linear operators on 𝐸, and 𝐴𝑙 = 𝑐𝑙𝐵
for 1 6 𝑙 6 𝑛− 1. We consider the following degenerate multi-term problem:

(104) D𝛼𝑛
𝑡 𝐵𝑢(𝑡) +

𝑛−1∑︁
𝑙=1

𝑐𝑙D
𝛼𝑙
𝑡 𝐵𝑢(𝑡) = D𝛼

𝑡 𝐴𝑢(𝑡), 𝑡 > 0,
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equipped with the initial conditions of the form (91). Here 0 6 𝛼1 < · · · < 𝛼𝑛,
0 6 𝛼 < 𝛼𝑛, and

𝑃𝜆 =

𝑛−1∑︁
𝑙=1

𝑐𝑙𝜆
𝛼𝑙−𝛼𝑛𝐵 − 𝜆𝛼−𝛼𝑛𝐴+𝐵, 𝜆 ∈ Cr {0}.

(i) (a) Suppose 0 < 𝛿 6 2, 𝜎 > 1, 𝜋𝛿
2(𝛼𝑛−𝛼) − 𝜋

2 > 0, 0 6 𝑗 6 ⌈𝛼𝑛⌉ − 1,
and there exists an exponentially equicontinuous (𝜎 − 1)-times in-
tegrated 𝐶-resolvent propagation family (𝑅(𝑡))𝑡>0 for problem (52),
with 𝑎(𝑡) = 𝑔𝛿(𝑡). Put 𝜎′ := max(1, 1− 𝑗 + (𝛼𝑛 − 𝛼)(𝜎 − 1)𝛿−1) and
𝜃 := min(𝜋2 ,

𝜋𝛿
2(𝛼𝑛−𝛼) −

𝜋
2 ). Then, for every sufficiently small num-

ber 𝜀 > 0, there exists 𝜔𝜀 > 0 such that 𝐶(𝑅(𝐵)) ⊆ 𝑅(𝑃𝜆) for all
𝜆 ∈ 𝜔𝜀 + Σ𝜋

2 𝛿−𝜀 and the family {|𝜆| 𝛿−𝜎
𝛿 (1 + |𝜆| 1𝛿 )(𝜆𝐵 − 𝐴)−1𝐶𝐵𝑥 :

𝜆 ∈ 𝜔𝜀 +Σ𝜋
2 𝛿−𝜀, 𝑥 ∈ 𝐷(𝐵)} is equicontinuous. Noticing also that

arg

(︂
𝜆𝛼𝑛−𝛼 +

𝑛−1∑︁
𝑙=1

𝑐𝑙𝜆
𝛼𝑙−𝛼

)︂
≈ (𝛼𝑛 − 𝛼) arg(𝜆), 𝜆→ ∞, arg(𝜆) <

𝜋

𝛼𝑛 − 𝛼
,

our choice of 𝜃 implies that, for every sufficiently small number 𝜀 > 0,
there exists 𝜔′

𝜀 > 0 such that, for every 𝜆 ∈ 𝜔′
𝜀 +Σ𝜋

2 +𝜃−𝜀, one has:

𝜆𝛼𝑛−𝛼 +

𝑛−1∑︁
𝑙=1

𝑐𝑙𝜆
𝛼𝑙−𝛼 ∈ 𝜔𝜀 +Σ𝜋

2 𝛿−𝜀.

Put now, for every 𝑥 ∈ 𝐷(𝐵) and 𝜆 ∈ 𝜔′
𝜀 +Σ𝜋

2 +𝜃−𝜀,

𝑞𝑥(𝜆) := 𝜆−𝑗−𝜎′
𝑃−1
𝜆 𝐶𝐵𝑥.

Then 𝑞𝑥 : 𝜔
′
𝜀 + Σ𝜋

2 +𝜃−𝜀 → 𝐸 is an analytic function and, for ev-
ery 𝛽 ∈ (0, 𝜃) and 𝑝 ∈ ~, there exist 𝑐𝑝,𝛽 > 0 and 𝑟𝑝,𝛽 ∈ ~
such that 𝑝((𝜆 − 𝜔′

𝜀)𝑞𝑥(𝜆)) 6 𝑐𝑝,𝛽𝑟𝑝,𝛽(𝑥), 𝑥 ∈ 𝐷(𝐵), 𝜆 ∈ 𝜔′
𝜀 +

Σ𝜋
2 +𝜃−𝜀. By the proof of [27, Proposition 4.1.3, p. 248], we have

that limRe𝜆→+∞ 𝜆𝛿−𝜎+1(𝜆𝛿𝐵 − 𝐴)−1𝐶𝐵𝑥 = 𝑅𝑖,𝑗(0)𝑥, 𝑥 ∈ 𝐷(𝐵),
which simply implies that, for every 𝑥 ∈ 𝐷(𝐵), there exists the limit
lim𝜆→+∞ 𝜆𝑞𝑥(𝜆) in 𝐸. Therefore, Theorem 2.3.9 implies that there
exists an exponentially equicontinuous, analytic (𝜎′ − 1)-times inte-
grated 𝐶-resolvent (𝑛, 𝑗)-propagation family (𝑅𝑛,𝑗(𝑡))𝑡>0 for problem
(104), of angle 𝜃 (with the clear meaning).

(b) Suppose 0 < 𝛿 6 2, 𝜎 > 1, 0 6 𝑗 6 ⌈𝛼𝑛⌉ − 1, 𝛾 ∈ (0, 𝜋2 ] and
𝛿(𝜋

2 +𝛾)

(𝛼𝑛−𝛼) − 𝜋
2 > 0. Put 𝜎1 := 𝜎′ and 𝜃1 := min(𝜋2 ,

𝛿(𝜋
2 +𝛾)

(𝛼𝑛−𝛼) − 𝜋
2 ).

Arguing similarly as in (a), one can prove the following: Suppose
that for each 𝜀 ∈ (0, 𝜋2 + 𝛾) there exists 𝜔𝜀 > 0 such that for each
𝑥 ∈ 𝐷(𝐵) there exists an analytic function 𝑞𝑥 : 𝜔𝜀 + Σ𝜋

2 +𝛾−𝜀 → 𝐸
satisfying that

𝑞𝑥(𝜆) = 𝜆𝛿−𝜎(𝜆𝛿𝐵 −𝐴)−1𝐶𝐵𝑥, 𝜆 ∈ 𝜔𝜀 +Σ𝜋
2 +𝛾−𝜀, 𝑥 ∈ 𝐷(𝐵),
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and for each 𝑝 ∈ ~ there exist 𝑐𝑝 > 0 and 𝑞𝑝 ∈ ~ so that

𝑝(𝑞𝑥(𝜆)) 6 𝑐𝑝
𝑞𝑝(𝑥)

1 + |𝜆|
, 𝜆 ∈ 𝜔𝜀 +Σ𝜋

2 +𝛾−𝜀, 𝑥 ∈ 𝐷(𝐵).

Then the existence of limit limRe𝜆→+∞ 𝜆𝛿−𝜎+1(𝜆𝛿𝐵 − 𝐴)−1𝐶𝐵𝑥 in
𝐸, for all 𝑥 ∈ 𝐷(𝐵), implies that there exists an exponentially
equicontinuous, analytic (𝜎1−1)-times integrated 𝐶-resolvent (𝑛, 𝑗)-
propagation family (𝑅𝑛,𝑗(𝑡))𝑡>0 for problem (104), of angle 𝜃1; if
there is an element 𝑥 ∈ 𝐷(𝐵) such that the limit limRe𝜆→+∞ 𝜆𝛿−𝜎+1

(𝜆𝛿𝐵 − 𝐴)−1𝐶𝐵𝑥 does not exist in 𝐸, then the above holds with
any number 𝜎2 > 𝜎1. For the purpose of illustration of obtained
results, assume now that 𝑛 ∈ N and 𝑖𝐴′

𝑙, 1 6 𝑙 6 𝑛 are commut-
ing generators of bounded 𝐶0-groups on a Banach space 𝐸. Put
𝐴′ := (𝐴′

1, . . . , 𝐴
′
𝑛); cf. the previous section for the definition of

a closable operator 𝑃 (𝐴′), where 𝑃 (𝑥) is a complex polynomial in
𝑛 variables. Suppose 0 < 𝛿 < 2, 𝜔 > 0, 𝑃1(𝑥) and 𝑃2(𝑥) are
non-zero complex polynomials, 𝑁1 = 𝑑𝑔(𝑃1(𝑥)), 𝑁2 = 𝑑𝑔(𝑃2(𝑥)),
𝛽 > 𝑛

2
(𝑁1+𝑁2)
min(1,𝛿) (resp. 𝛽 > 𝑛| 1𝑝 − 1

2 |
(𝑁1+𝑁2)
min(1,𝛿) , if 𝐸 = 𝐿𝑝(R𝑛) for some

1 < 𝑝 < ∞), 𝑃2(𝑥) ̸= 0, 𝑥 ∈ R𝑛 and (70) holds with the number 𝛼
replaced by 𝛿 therein. Set

(105) 𝑅𝛿(𝑡) :=
(︁
𝐸𝛿

(︁
𝑡𝛿
𝑃1(𝑥)

𝑃2(𝑥)

)︁
(1 + |𝑥|2)−𝛽/2

)︁
(𝐴′), 𝑡 > 0.

By Theorem 2.2.21, we know that (𝑅𝛿(𝑡))𝑡>0 ⊆ 𝐿(𝐸) is a global ex-
ponentially bounded (𝑔𝛿, 𝑅𝛿(0))-regularized resolvent family for the
problem (52) with 𝐵 = 𝑃2(𝐴′), 𝐴 = 𝑃1(𝐴′) and 𝑎(𝑡) = 𝑔𝛿(𝑡). By
the conclusion stated in (a), it readily follows that there exists an ex-
ponentially equicontinuous, analytic 𝐶-resolvent (𝑛, 𝑗)-propagation
family (𝑅𝑛,𝑗(𝑡))𝑡>0 for problem (104), of angle 𝜃 = min(𝜋2 ,

𝜋𝛿
2(𝛼𝑛−𝛼) −

𝜋
2 ). Since the condition (ii.1) given in the formulation of Theorem
2.2.8 holds, with 𝑎(𝑡) = 𝑔𝛿(𝑡) and 𝑘(𝑡) = 1, it is not problematic
to show, with the help of our previous consideration and the results
concerning the Laplace transform of vector-valued analytic functions
(see e.g. Theorem 1.4.10 and [296, Section 3]) that the conditions
(C.1) and (C.5) hold for (104), as well as that the condition (C.4)
holds for (104) provided that 𝛼𝑛−1 6 𝛼; we need the last condition
because the inclusion 𝜆𝛼𝑛−1−𝛼𝑛−1𝐴𝑃−1

𝜆 𝐶𝑥 ∈ 𝐿𝑇 −𝐸 has to be satis-
fied (𝑥 ∈ 𝐸). It is also worth noting that we do not need the condition
𝛼𝑛−1 6 𝛼 for the existence of solutions of the integral equation

𝐵𝑢(𝑡) +

𝑛−1∑︁
𝑙=1

𝑐𝑙(𝑔𝛼𝑛−𝛼𝑙
*𝐵𝑢)(𝑡) = 𝐴(𝑔𝛼𝑛−𝛼 * 𝑢)(𝑡) + 𝐶𝐵𝑣0, 𝑡 > 0;

cf. (97). It is also worth noting that we can refine the results on
𝐶-wellposedness of equation (104) by using the estimates quoted in
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Remark 2.1.23(ii) and that we can similarly consider the equation
(104) in 𝐸𝑙-type spaces.

(ii) (cf. [346, Example 5.1(i)–(b)] and Example 2.2.18 for more details)
Let 𝑠 > 1, 0 6 𝑗 6 ⌈𝛼𝑛⌉ − 1, 𝑘𝑎,𝑏(𝑡) := ℒ−1(exp(−𝑎𝜆𝑏))(𝑡), 𝑡 > 0
(𝑎 > 0, 𝑏 ∈ (0, 1)),

𝐸 :=
{︁
𝑓 ∈ 𝐶∞[0, 1] ; ‖𝑓‖ := sup

𝑝>0

‖𝑓 (𝑝)‖∞
𝑝!𝑠

<∞
}︁

and

𝐴′ := −𝑑/𝑑𝑠, 𝐷(𝐴′) := {𝑓 ∈ 𝐸 ; 𝑓 ′ ∈ 𝐸, 𝑓(0) = 0}.

Let 𝑃1(𝑧) =
∑︀𝑁1

𝑙=0 𝑎𝑙,1𝑧
𝑙, 𝑧 ∈ C, 𝑎𝑁1,1 ̸= 0 be a complex non-zero

polynomial, and let 𝑃2(𝑧) =
∑︀𝑁2

𝑙=0 𝑎𝑙,2𝑧
𝑙, 𝑧 ∈ C, 𝑎𝑁2,2 ̸= 0 be a

complex non-zero polynomial so that 𝑁1 = 𝑑𝑔(𝑃1) > 1 + 𝑑𝑔(𝑃2) =
1 + 𝑁2. Set 𝐴 := 𝑃1(𝐴

′) and 𝐵 := 𝑃2(𝐴
′). We have proved so far

that there exist numbers 𝑏 > 0 and 𝑐 > 0 such that

(106) ‖(𝜆𝐵 −𝐴)−1‖ = 𝑂(𝑒𝑏|𝜆|
1/(𝑁1−𝑁2)𝑠+𝑐|𝜆|1/(𝑁1−𝑁2)

), 𝜆 ∈ C,

and, for every complex non-zero polynomial 𝑃 (𝑧) with 𝑑𝑔(𝑃 ) 6 𝑁1,
there exists 𝜁 > 0 such that

(107) ‖(𝜆𝐵 −𝐴)−1𝑃 (𝐴′)𝑓‖ 6 𝜁‖𝑓‖𝑒𝑏|𝜆|
1/(𝑁1−𝑁2)𝑠+𝑐|𝜆|1/(𝑁1−𝑁2)

,

for all 𝜆 ∈ C and 𝑓 ∈ 𝐷(𝑃 (𝐴′)). Let 𝜃 ∈ (0, 𝜋/2], 𝑏′ = (𝛼𝑛 −
𝛼)/(𝑁1−𝑁2) and let 𝑏′ 6 𝜋/(𝜋+2𝜃). Owing to (106)–(107) and The-
orem 2.3.9, we obtain that there is a sufficiently large number 𝑎′ >
0 such that there exists an exponentially equicontinuous, analytic
𝑘𝑎′,𝑏′ -regularized 𝐼-resolvent (𝑛, 𝑗)-propagation family (𝑅𝑛,𝑗(𝑡))𝑡>0

for problem (104), of angle 𝜃, satisfying the conditions (C.1)–(C.5).
Denote, as before, 𝑇𝑙,𝐿𝑢(𝑡) = 𝐵D𝛼𝑙

𝑡 𝑢(𝑡), 𝑡 > 0 if 𝑙 ∈ N𝑛 and 𝛼𝑙 > 0,
𝑇𝑙,𝑅𝑢(𝑡) = D𝛼𝑙

𝑡 𝐵𝑢(𝑡), 𝑡 > 0 if 𝑙 ∈ N𝑛, 𝑇0,𝐿𝑢(𝑡) = 𝐴D𝛼
𝑡 𝑢(𝑡), 𝑡 > 0

if 𝛼 > 0, and 𝑇0,𝑅𝑢(𝑡) = D𝛼
𝑡 𝐴𝑢(𝑡), 𝑡 > 0. Let 𝑇𝑙𝑢(𝑡) be either

𝑇𝑙,𝐿𝑢(𝑡) or 𝑇𝑙,𝑅𝑢(𝑡) (𝑙 ∈ N0
𝑛). Then it can be easily seen that for

each 𝑥 ∈ 𝐷(𝐵) the function 𝑢(𝑡) = 𝑅𝑛,𝑗(𝑡)𝑥, 𝑡 > 0 is a unique strong
solution of problem

𝑇𝑛𝑢(𝑡) +

𝑛−1∑︁
𝑙=1

𝑐𝑙𝑇𝑙𝑢(𝑡) = 𝑇0𝑢(𝑡) +
(︀
𝑘
(𝑚𝑛)
𝑎′,𝑏′ * 𝑔𝑗+𝑚𝑛−𝛼𝑛

)︀
(𝑡), 𝑡 > 0,

with all initial values chosen to be zeroes. Observe, finally, that the
analysis contained in [346, Example 5.4] can be used for the con-
struction of hypoanalytic exponentially equicontinuous 𝑘-regularized
𝐼-resolvent (𝑛, 𝑗)-propagation families for the problem∑︁

𝑙∈𝒦

𝑃𝑙(𝐴
′)D𝛼𝑙

𝑡 𝑢(𝑡) +
∑︁

𝑙∈N𝑛−1r𝒦

D𝛼𝑙
𝑡 𝑃𝑙(𝐴

′)𝑢(𝑡) = 0, 𝑡 > 0,
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where 𝑃1(𝑧), . . . , 𝑃𝑛−1(𝑧) are complex non-zero polynomials satisfy-
ing certain properties, and 𝒦 ⊆ N𝑛−1.

2.3.3. Exponentially equicontinuous (𝑎, 𝑘)-regularized 𝐶-resolvent
families generated by 𝐴, 𝐵; exponentially equicontinuous (𝑘;𝐶)-regular-
ized resolvent (𝑖, 𝑗)-propagation families. In this subsection, our main task
will be to investigate the 𝐶-wellposedness of problem (DFP)𝐿 with 𝐴 and 𝐵 being
closed linear operators on 𝐸. Following the examination from [6, Section 2], we
introduce the following definition.

Definition 2.3.13. Suppose that the functions 𝑎(𝑡) and 𝑘(𝑡) satisfy (P1), as
well as 𝑅(𝑡) ∈ 𝐿(𝐸, [𝐷(𝐵)]) for all 𝑡 > 0. Let 𝐶 ∈ 𝐿(𝐸) be injective, and let
𝐶𝐴 ⊆ 𝐴𝐶 and 𝐶𝐵 ⊆ 𝐵𝐶. Then the operator family (𝑅(𝑡))𝑡>0 is said to be an
exponentially equicontinuous (𝑎, 𝑘)-regularized 𝐶-resolvent family generated by 𝐴,
𝐵 iff there exists 𝜔 > max(0, abs(𝑎), abs(𝑘)) such that the following holds:

(i) The mappings 𝑡 ↦→ 𝑅(𝑡)𝑥, 𝑡 > 0 and 𝑡 ↦→ 𝐵𝑅(𝑡)𝑥, 𝑡 > 0 are continuous
for every fixed element 𝑥 ∈ 𝐸.

(ii) The family {𝑒−𝜔𝑡𝑅(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝐸, [𝐷(𝐵)]) is equicontinuous, i.e., for
every 𝑝 ∈ ~, there exist 𝑐 > 0 and 𝑞 ∈ ~ such that

𝑝(𝑒−𝜔𝑡𝑅(𝑡)𝑥) + 𝑝(𝑒−𝜔𝑡𝐵𝑅(𝑡)𝑥) 6 𝑐𝑞(𝑥), 𝑥 ∈ 𝐸, 𝑡 > 0.

(iii) For every 𝜆 ∈ C with Re𝜆 > 𝜔 and 𝑘(𝜆) ̸= 0, the operator 𝐵 − �̃�(𝜆)𝐴 is
injective, 𝑅(𝐶) ⊆ 𝑅(𝐵 − �̃�(𝜆)𝐴) and

𝑘(𝜆)(𝐵 − �̃�(𝜆)𝐴)−1𝐶𝑥 =

∫︁ ∞

0

𝑒−𝜆𝑡𝑅(𝑡)𝑥 𝑑𝑡, 𝑥 ∈ 𝐸.

If 𝑘(𝑡) = 𝑔𝑟+1(𝑡) for some 𝑟 > 0, then it is also said that (𝑅(𝑡))𝑡>0 is an exponen-
tially equicontinuous 𝑟-times integrated (𝑎,𝐶)-regularized resolvent family gener-
ated by 𝐴, 𝐵; an exponentially equicontinuous 0-times integrated (𝑎,𝐶)-regularized
resolvent family generated by 𝐴, 𝐵 is also said to be an exponentially equicontin-
uous (𝑎,𝐶)-regularized resolvent family generated by 𝐴, 𝐵.

Before going any further, it should be noticed that we have already constructed
some examples of (𝑔𝛼, 𝑘)-regularized 𝐶-resolvent families generated by 𝐴, 𝐵 in
Example 2.3.12(ii).

Remark 2.3.14. Suppose that the functions 𝑎(𝑡) and 𝑘(𝑡) satisfy (P1), as well
as that 𝐶𝐴 ⊆ 𝐴𝐶 and 𝐶𝐵 ⊆ 𝐵𝐶.

(i) It is clear that an exponentially equicontinuous (𝑎, 𝑘)-regularized 𝐶-re-
solvent family generated by 𝐴, 𝐵, if exists, must be unique.

(ii) If for each 𝜆 ∈ C with Re𝜆 > 𝜔 and 𝑘(𝜆) ̸= 0 the operator 𝐵 commutes
with (𝐵 − �̃�(𝜆)𝐴)−1𝐶, then the operator family (𝐵𝑅(𝑡))𝑡>0 is an expo-
nentially equicontinuous (𝑎, 𝑘)-regularized 𝐶-resolvent family for (52), and
the condition (ii.1) stated in the formulation of Theorem 2.2.8 holds. Fur-
thermore, for each 𝑡 > 0 the operator 𝐵𝑅(𝑡) can be continuously extended
from 𝐷(𝐵) to the whole space 𝐸.
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(iii) Assume (𝑅(𝑡))𝑡>0 is an exponentially equicontinuous (𝑎, 𝑘)-regularized 𝐶-
resolvent family for (52) and there exists a strongly continuous operator
family (�̂�(𝑡))𝑡>0 ⊆ 𝐿(𝐸) such that �̂�(𝑡)𝑥 = 𝑅(𝑡)𝑥, 𝑡 > 0, 𝑥 ∈ 𝐷(𝐵)
(the last condition automatically holds provided that 𝐸 is complete and
𝐵 is densely defined). If 𝐵−1 ∈ 𝐿(𝐸) and 𝐵𝑅(𝑡) ⊆ 𝑅(𝑡)𝐵, 𝑡 > 0,
then (𝑅(𝑡)𝐵−1)𝑡>0 is an exponentially equicontinuous (𝑎, 𝑘)-regularized
𝐶-resolvent family generated by 𝐴, 𝐵.

The proof of following theorem can be deduced by using slight modifications
of the proofs of [6, Proposition 2.1, Lemma 2.2] and the fact that the assertion
of [295, Lemma 2.4] continues to hold in SCLCSs.

Theorem 2.3.15. Let (𝑅(𝑡))𝑡>0 be an exponentially equicontinuous (𝑎, 𝑘)-reg-
ularized 𝐶-resolvent family generated by 𝐴, 𝐵, and let abs(|𝑎|) < ∞. Then the
following holds:

(i) For every 𝑥 ∈ 𝐸 and for every 𝜆 ∈ C with Re𝜆 > 𝜔 and 𝑘(𝜆) ̸= 0, we
have:

𝑘(𝜆)𝐵(𝐵 − �̃�(𝜆)𝐴)−1𝐶𝑥 =

∫︁ ∞

0

𝑒−𝜆𝑡𝐵𝑅(𝑡)𝑥 𝑑𝑡.

(ii) 𝑅(𝑡)𝐵𝑥 = 𝑘(𝑡)𝐶𝑥+
∫︀ 𝑡

0
𝑎(𝑡− 𝑠)𝑅(𝑠)𝐴𝑥𝑑𝑠, 𝑡 > 0, 𝑥 ∈ 𝐷(𝐴) ∩𝐷(𝐵).

(iii)
∫︀ 𝑡

0
𝑎(𝑡− 𝑠)𝑅(𝑠)𝑥 𝑑𝑠 ∈ 𝐷(𝐴) ∩𝐷(𝐵), 𝑡 > 0, 𝑥 ∈ 𝐸.

(iv) 𝐵𝑅(𝑡)𝑥 = 𝑘(𝑡)𝐶𝑥+𝐴
∫︀ 𝑡

0
𝑎(𝑡− 𝑠)𝑅(𝑠)𝑥 𝑑𝑠, 𝑡 > 0, 𝑥 ∈ 𝐸.

(v) 𝑅(𝑡)𝐵(𝐷(𝐴) ∩𝐷(𝐵)) ⊆ 𝐷(𝐴) ∩𝐷(𝐵), 𝑡 > 0.
(vi) 𝐵(𝐵− �̃�(𝜆)𝐴)−1𝐶𝐴𝑥 = 𝐴(𝐵− �̃�(𝜆)𝐴)−1𝐶𝐵𝑥 for every 𝑥 ∈ 𝐷(𝐴)∩𝐷(𝐵)

and for every 𝜆 ∈ C with Re𝜆 > 𝜔 and 𝑘(𝜆) ̸= 0; 𝐴𝑅(𝑡)𝐵𝑥 = 𝐵𝑅(𝑡)𝐴𝑥,
𝑡 > 0, 𝑥 ∈ 𝐷(𝐴) ∩𝐷(𝐵).

(vii) Suppose that the function 𝑘(𝑡) is differentiable in a point 𝑡0 > 0 and
𝑎 ∈ 𝐴𝐶𝑙𝑜𝑐([0,∞)). If 𝜆 ∈ C satisfies Re𝜆 > 𝜔 and 𝑘(𝜆) ̸= 0, then for
every 𝑗 ∈ N0, 𝑧 ∈ C and for every complex polynomial 𝑃 (·), we have:

(108)
(︁ 𝑑
𝑑𝑡

[(𝑧(𝐵 − �̃�(𝜆)𝐴)−1𝐶 − 𝑃 (𝐶))𝑗𝑅(𝑡)𝐵𝑥]
)︁
𝑡=𝑡0

= (𝑧(𝐵 − �̃�(𝜆)𝐴)−1𝐶 − 𝑃 (𝐶))𝑗
(︁ 𝑑
𝑑𝑡
𝑅(𝑡)𝐵𝑥

)︁
𝑡=𝑡0

.

(viii) Let 𝑥 ∈ 𝐷(𝐴) ∩ 𝐷(𝐵). Then the function 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0, defined by
𝑢(𝑡) := 𝑅(𝑡)𝐵𝑥, 𝑡 > 0 satisfies 𝑢 ∈ 𝐶([0,∞) : [𝐷(𝐴)])∩𝐶([0,∞) : [𝐷(𝐵)])
and

𝐵𝑢(𝑡) = 𝑘(𝑡)𝐶𝐵𝑥+

∫︁ 𝑡

0

𝑎(𝑡− 𝑠)𝐴𝑢(𝑠)𝑑𝑠, 𝑡 > 0.

Remark 2.3.16. (i) Suppose that 𝑥 ∈ 𝐷(𝐴)∩𝐷(𝐵), 𝛼 > 0 and there ex-
ists an exponentially equicontinuous (𝑔𝛼, 𝐶)-regularized resolvent family
(𝑅(𝑡))𝑡>0 generated by 𝐴, 𝐵. Using the identity 𝑅(𝑡)𝐵𝑥 = 𝐶𝑥+

∫︀ 𝑡

0
𝑔𝛼(𝑡−

𝑠)𝑅(𝑠)𝐴𝑥𝑑𝑠, 𝑡 > 0, it readily follows that the mapping 𝑡 ↦→ 𝑅(𝑡)𝐵𝑥, 𝑡 > 0
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is (𝑚−1)-times continuously differentiable on [0,∞), where𝑚 = ⌈𝛼⌉. Fur-
thermore, it can be easily verified that the Caputo derivative D𝛼

𝑡 𝑅(𝑡)𝐵𝑥
is well defined as well as that D𝛼

𝑡 𝑅(𝑡)𝐵𝑥 = 𝑅(𝑡)𝐴𝑥, 𝑡 > 0. Keeping in
mind Remark 2.3.7(ii) and Proposition 2.3.15(vi), we get that the func-
tion 𝑢(𝑡) := 𝑅(𝑡)𝐵𝑥, 𝑡 > 0 is a unique solution of the following Cauchy
problem:⎧⎪⎨⎪⎩
𝑢 ∈ 𝐶([0,∞) : [𝐷(𝐴)]) ∩ 𝐶([0,∞) : [𝐷(𝐵)]) ∩ 𝐶𝑚−1([0,∞) : 𝐸),

𝐵D𝛼
𝑡 𝑢(𝑡) = 𝐴𝑢(𝑡), 𝑡 > 0,

𝑢(0) = 𝐶𝑥; 𝑢(𝑗)(0) = 0, 1 6 𝑗 6 𝑚− 1.

In Theorem 2.3.18, we shall extend this result to the class of exponentially
equicontinuous (𝑔𝛼, 𝑔𝛼𝑙+1)-regularized 𝐶-resolvent families generated by
𝐴, 𝐵 (𝑙 ∈ N).

(ii) Now we would like to illustrate the conclusion deduced in the first part of
this remark to degenerate fractional equations associated with the abstract
differential operators. For the sake of simplicity, we shall only consider
the equations of order 𝛼 ∈ (0, 2); the case 𝛼 = 2 has been considered
in [306, Subsection 4.1] and here we only want to point out that the
results from Subsection 2.1.4 and this remark can be also applied in the
analysis of equation

𝜕2

𝜕𝑡2
(𝑢𝑧𝑧 − 𝛽2𝑢) + 𝜔2

0𝑢𝑦𝑦 = 0 (𝛽 > 0, 𝜔0 > 0 is the Väisälä–Brunt frequency),

which is important in the linear theory of internal waves in stratified fluid
( [483]), and the Boussinesq equation (see e.g. [140, Example 1.5, p. 50])

(𝜎2Δ− 1)𝑢𝑡𝑡 + 𝛾2Δ𝑢 = 0 (𝜎 > 0, 𝛾 > 0).

Assume that 𝑛 ∈ N and 𝑖𝐴𝑗 , 1 6 𝑗 6 𝑛 are commuting generators of
bounded 𝐶0-groups on a Banach space 𝐸. Suppose again that 0 < 𝛼 <
2, 𝜔 > 0, 𝑃1(𝑥) and 𝑃2(𝑥) are non-zero complex polynomials, 𝑁1 =

𝑑𝑔(𝑃1(𝑥)), 𝑁2 = 𝑑𝑔(𝑃2(𝑥)), 𝛽 > 𝑛
2
(𝑁1+𝑁2)
min(1,𝛼) (resp. 𝛽 > 𝑛| 1𝑝 −

1
2 |

(𝑁1+𝑁2)
min(1,𝛼) , if

𝐸 = 𝐿𝑝(R𝑛) for some 1 < 𝑝 <∞), 𝑃2(𝑥) ̸= 0, 𝑥 ∈ R𝑛 and (70) holds with
𝛿 replaced by 𝛼. Define (𝑅𝛼(𝑡))𝑡>0 as in (105), with 𝛿 replaced by 𝛼; 𝐶 ≡
𝑅𝛼(0). Then we know that (𝑅𝛼(𝑡))𝑡>0 ⊆ 𝐿(𝐸) is a global exponentially
bounded (𝑔𝛼, 𝑅𝛼(0))-regularized resolvent family for the problem

(𝑃 )𝑅 :

{︃
D𝛼

𝑡 𝑃2(𝐴)𝑢(𝑡) = 𝑃1(𝐴)𝑢(𝑡), 𝑡 > 0,

𝑢(0) = 𝐶𝑥; 𝑢(𝑗)(0) = 0, 1 6 𝑗 6 ⌈𝛼⌉ − 1.

Furthermore, the analysis contained in Remark 2.1.23(i) implies that
there exists an exponentially bounded, strongly continuous operator fam-
ily (𝐺𝛼(𝑡))𝑡>0 such that 𝐺𝛼(𝑡)𝑥 = 𝑃2(𝐴)

−1
𝑅𝛼(𝑡)𝑥, 𝑡 > 0, 𝑥 ∈ 𝐸 and

𝜆𝛼−1(𝜆𝛼𝐵 − 𝐴)−1𝐶𝑥 =
∫︀∞
0
𝑒−𝜆𝑡𝐺𝛼(𝑡)𝑥 𝑑𝑡 for any 𝑥 ∈ 𝐸 and 𝜆 > 0

sufficiently large. Hence, (𝐺𝛼(𝑡))𝑡>0 is an exponentially equicontinuous
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(𝑔𝛼, 𝐶)-regularized resolvent family generated by 𝑃1(𝐴), 𝑃2(𝐴), as an-
nounced before. The consideration is quite similar in the case that the
requirements of Theorem 2.2.21 hold.

We employ the following auxiliary lemma in the proof of Theorem 2.3.18 men-
tioned above.

Lemma 2.3.17. (cf. [292, Corollary 2.1.20]) Suppose 𝛼 > 0, 𝑙 ∈ N, 𝑧 ∈ C,
𝐴 is a subgenerator of an exponentially equicontinuous (𝑔𝛼, 𝑔𝑙𝛼+1)-regularized 𝐶-
resolvent family (𝑆𝑙,𝛼(𝑡))𝑡>0 on 𝐸, 𝑧 − 𝐴 is injective, 𝑅(𝐶) ⊆ 𝑅((𝑧 − 𝐴)𝑙) and
(𝑧 −𝐴)−1𝐶 ∈ 𝐿(𝐸), . . . , (𝑧 −𝐴)−𝑙𝐶 ∈ 𝐿(𝐸). Set, for every 𝑥 ∈ 𝐸 and 𝑡 > 0,

𝑆𝛼(𝑡)𝑥 := (−1)𝑙𝑆𝑙,𝛼(𝑡)𝑥+

𝑙−1∑︁
𝑗=0

(−1)𝑗+1

(︂
𝑙

𝑗

)︂
𝑧𝑙−𝑗

[︁
ℒ−1

(︁ 𝑟𝛼𝑗

(𝑟𝛼 − 𝑧)𝑙

)︁
* 𝑆𝑙,𝛼(·)𝑥

]︁
(𝑡)

+

𝑙∑︁
𝑗=1

(−1)𝑙−𝑗ℒ−1
(︁ 𝑟𝛼−1

(𝑟𝛼 − 𝑧)𝑙+1−𝑗

)︁
(𝑡)(𝑧 −𝐴)−𝑗𝐶𝑥.

Then (𝑆𝛼(𝑡))𝑡>0 is an exponentially equicontinuous (𝑔𝛼, (𝑧 − 𝐴)−𝑙𝐶)-regularized
resolvent family with a subgenerator 𝐴.

Now we state the following important extension of [6, Theorem 2.2].

Theorem 2.3.18. Suppose that 𝛼 > 0, 𝑙 ∈ N, 𝑧 ∈ C, there exists an exponen-
tially equicontinuous (𝑔𝛼, 𝑔𝑙𝛼+1)-regularized 𝐶-resolvent family (𝑆𝑙,𝛼(𝑡))𝑡>0 gener-
ated by 𝐴, 𝐵, the operator 𝑧𝐵 − 𝐴 is injective and 𝑥 ∈ 𝐷(𝐴) ∩𝐷(𝐵) ∩𝐷(((𝑧𝐵 −
𝐴)−1𝐵)𝑙𝐶). Define

𝑢(𝑡) := (−1)𝑙𝑆𝑙,𝛼(𝑡)𝐵𝑥+

𝑙−1∑︁
𝑗=0

(−1)𝑗+1

(︂
𝑙

𝑗

)︂
𝑧𝑙−𝑗

[︁
ℒ−1

(︁ 𝑟𝛼𝑗

(𝑟𝛼 − 𝑧)𝑙

)︁
* 𝑆𝑙,𝛼(·)𝐵𝑥

]︁
(𝑡)

+

𝑙∑︁
𝑗=1

(−1)𝑙−𝑗ℒ−1
(︁ 𝑟𝛼−1

(𝑟𝛼 − 𝑧)𝑙+1−𝑗

)︁
(𝑡)((𝑧𝐵 −𝐴)−1𝐵)𝑗𝐶𝑥, 𝑡 > 0.

Then the function 𝑢(𝑡) is a unique solution of the problem (DFP)𝐿 with 𝑓(𝑡) ≡ 0
and the initial value 𝑥 replaced by ((𝑧𝐵−𝐴)−1𝐵)𝑙𝐶𝑥 (we will designate this problem
by (DFP)𝐿,𝑙 in the sequel).

Proof. The uniqueness of solutions follows similarly as in Remark 2.3.16(i)
and we will only prove that the function 𝑢(𝑡) is a solution of the problem (DFP)𝐿,𝑙.
Denote 𝑥𝑗 := ((𝑧𝐵 − 𝐴)−1𝐵)𝑗𝐶𝑥 (𝑗 ∈ N0

𝑙 ), 𝐹𝑗,𝑙(𝑡) := ℒ−1( 𝑟𝛼𝑗

(𝑟𝛼−𝑧)𝑙
)(𝑡), 𝑡 > 0

(0 6 𝑗 6 𝑙 − 1) and 𝐺𝑗,𝑙(𝑡) := ℒ−1( 𝑟𝛼−1

(𝑟𝛼−𝑧)𝑙+1−𝑗 )(𝑡), 𝑡 > 0 (1 6 𝑗 6 𝑙). Then the
function 𝐹𝑗,𝑙(𝑡) is continuous on (0,∞), locally integrable on [0,∞) and exponen-
tially bounded on [1,∞) (0 6 𝑗 6 𝑙 − 1), while the function 𝐺𝑗,𝑙(𝑡) is continuous
and exponentially bounded on [0,∞) (1 6 𝑗 6 𝑙); cf. [292]. Set 𝑚 := ⌈𝛼⌉. By
Theorem 2.3.15(ii), we have that the mapping 𝑡 ↦→ 𝑆𝑙,𝛼(𝑡)𝐵𝑥, 𝑡 > 0 is (𝑚−1)-times
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continuously differentiable and

𝑑𝑚−1

𝑑𝑡𝑚−1
𝑆𝑙,𝛼(𝑡)𝐵𝑥 = 𝑔𝛼𝑙+2−𝑚(𝑡)𝐶𝑥+

∫︁ 𝑡

0

𝑔𝛼+1−𝑚(𝑡− 𝑠)𝑆𝑙,𝛼(𝑠)𝐴𝑥𝑑𝑠, 𝑡 > 0;

hence ( 𝑑𝑗

𝑑𝑡𝑗 𝑆𝑙,𝛼(𝑡)𝐵𝑥)𝑡=0 = 0, 0 6 𝑗 6 𝑚−1. This simply implies that the mapping
𝑡 ↦→ [𝐹𝑗,𝑙 * 𝑆𝑙,𝛼(·)𝐵𝑥](𝑡), 𝑡 > 0 is (𝑚 − 1)-times continuously differentiable as well
as

𝑑𝑚−1

𝑑𝑡𝑚−1
[𝐹𝑗,𝑙 * 𝑆𝑙,𝛼(·)𝐵𝑥](𝑡) =

[︁
𝐹𝑗,𝑙 *

𝑑𝑚−1

𝑑𝑡𝑚−1
𝑆𝑙,𝛼(·)𝐵𝑥

]︁
(𝑡), 𝑡 > 0,

provided 0 6 𝑗 6 𝑙 − 1; hence, ( 𝑑𝑝

𝑑𝑡𝑝 [𝐹𝑗,𝑙 * 𝑆𝑙,𝛼(·)𝐵𝑥](𝑡))𝑡=0 = 0, 0 6 𝑝 6 𝑚 − 1
(0 6 𝑗 6 𝑙 − 1). Now it is very simple to show that

D𝛼
𝑡 𝑆𝑙,𝛼(𝑡)𝐵𝑥 = 𝑔𝑙𝛼+1−𝛼(𝑡)𝐶𝑥+ 𝑆𝑙,𝛼(𝑡)𝐴𝑥, 𝑡 > 0,

and

D𝛼
𝑡 [𝐹𝑗,𝑙 * 𝑆𝑙,𝛼(·)𝐵𝑥](𝑡) = 𝑔𝑙𝛼+1−𝛼(𝑡)𝐶𝑥+ 𝑆𝑙,𝛼(𝑡)𝐴𝑥, 𝑡 > 0 (0 6 𝑗 6 𝑙 − 1).

Suppose, for the time being, that the assumptions of Lemma 2.3.17 hold. Since
for each 𝑥 ∈ 𝐷(𝐴) the function 𝑣(𝑡) := 𝑆𝛼(𝑡)𝑥, 𝑡 > 0 is a unique solution of the
problem {︃

D𝛼
𝑡 𝑣(𝑡) = 𝐴𝑣(𝑡), 𝑡 > 0,

𝑣(0) = 𝐶𝑥; 𝑣(𝑗)(0) = 0, 1 6 𝑗 6 𝑚− 1,

we may conclude from the above (by plugging 𝑙 = 1, 2, . . . successively in Lemma
2.3.17) that for each 𝑗 ∈ N𝑙 the function 𝐺𝑗,𝑙(𝑡) is (𝑚 − 1)-times continuously
differentiable on [0,∞) as well as that ( 𝑑𝑝

𝑑𝑡𝑝𝐺𝑗,𝑙(𝑡))𝑡=0 = 0, 1 6 𝑝 6 𝑚 − 1 (1 6
𝑗 6 𝑙) and the Caputo derivative D𝛼

𝑡 𝐺𝑗,𝑙(𝑡) is well defined (1 6 𝑗 6 𝑙). Since
𝐺𝑙,𝑙(𝑡) = 𝐸𝛼(𝑧𝑡

𝛼), 𝑡 > 0, it readily follows that the function 𝑢(𝑡) satisfies 𝑢(0) = 𝑥𝑙
and 𝑢(𝑗)(0) = 0, 1 6 𝑗 6 𝑚− 1. It remains to be proved that 𝐵D𝛼

𝑡 = 𝐴𝑢(𝑡), 𝑡 > 0.
Carrying out a straightforward computation, it can be easily seen that this equality
holds iff

(−1)𝑙𝑔𝛼𝑙+1−𝛼(𝑡)𝐵𝐶𝑥+

𝑙−1∑︁
𝑗=0

(−1)𝑗+1

(︂
𝑙

𝑗

)︂
𝑧𝑙−𝑗 [𝐹𝑗,𝑙 * 𝑔𝛼𝑙+1−𝛼](𝑡)𝐵𝐶𝑥

+

𝑙∑︁
𝑗=1

(−1)𝑙−𝑗D𝛼
𝑡 𝐺𝑗,𝑙(𝑡)𝐵𝑥𝑗 =

𝑙∑︁
𝑗=1

(−1)𝑙−𝑗𝐺𝑗,𝑙(𝑡)𝐴𝑥𝑗 , 𝑡 > 0

iff

(−1)𝑙𝑔𝛼𝑙+1−𝛼(𝑡)𝐵𝐶𝑥+

𝑙−1∑︁
𝑗=0

(−1)𝑗+1

(︂
𝑙

𝑗

)︂
𝑧𝑙−𝑗 [𝐹𝑗,𝑙 * 𝑔𝛼𝑙+1−𝛼](𝑡)𝐵𝐶𝑥

+

𝑙∑︁
𝑗=1

(−1)𝑙−𝑗D𝛼
𝑡 𝐺𝑗,𝑙(𝑡)𝐵𝑥𝑗 =

𝑙∑︁
𝑗=1

(−1)𝑙−𝑗𝐺𝑗,𝑙(𝑡)[𝑧𝐵𝑥𝑗 −𝐵𝑥𝑗−1], 𝑡 > 0.

This is true because the coefficients of 𝐵𝑥𝑗 , for every fixed number 𝑗 ∈ N0
𝑙 , on both

sides of previous equality are equal (cf. also the proof of [292, Theorem 2.1.19]). �
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Suppose that the operator 𝐵 is injective, 𝑥 ∈ 𝐷(𝐴𝐵−1), 𝛼 > 0 and there ex-
ists an exponentially equicontinuous (𝑔𝛼, 𝐶)-regularized resolvent family (𝑅(𝑡))𝑡>0

generated by 𝐴, 𝐵. Then it is readily seen that the function 𝑢(𝑡) := 𝑅(𝑡)𝑥, 𝑡 > 0
is a unique solution of problem (DFP)𝐿 with 𝑓(𝑡) ≡ 0 and the initial value 𝑥 re-
placed by 𝐶𝐵−1𝑥. We leave to the interested reader the problem of transferring
this conclusion, as well as the others from [6, Remark 2.4], to degenerate fractional
equations whose solutions are governed by (𝑔𝛼, 𝑔𝛼𝑙+1)-regularized 𝐶-resolvent fam-
ilies generated by 𝐴, 𝐵 (𝑙 ∈ N).

Assume now that 𝑛 ∈ N r {1}, 0 6 𝛼1 < · · · < 𝛼𝑛−1, and 𝐴1, . . . , 𝐴𝑛−1

are closed linear operators on 𝐸. In the analysis of existence and uniqueness of
integral equations associated with the problem [(90)–(91)], we can also use the
notion of an exponentially equicontinuous (analytic) (𝑘;𝐶)-regularized resolvent
(𝑖, 𝑗)-propagation family:

Definition 2.3.19. (cf. Definition 2.3.4 and Definition 2.3.8) Suppose that
the function 𝑘(𝑡) satisfies (P1), as well as 1 6 𝑖 6 𝑛 − 1, 0 6 𝑗 6 𝑚𝑖 − 1 and
𝑅𝑖,𝑗(𝑡) ∈ 𝐿(𝐸, [𝐷(𝐴𝑖)]) for all 𝑡 > 0. Let the operator 𝐶 ∈ 𝐿(𝐸) be injective.

(i) Then the operator family (𝑅𝑖,𝑗(𝑡))𝑡>0 is said to be an exponentially
equicontinuous (𝑘;𝐶)-regularized resolvent (𝑖, 𝑗)-propagation family for
problem [(90)–(91)] iff there exists 𝜔 > max(0, abs(𝑘)) such that the fol-
lowing holds:
(a) The mappings 𝑡 ↦→ 𝑅𝑖,𝑗(𝑡)𝑥, 𝑡 > 0 and 𝑡 ↦→ 𝐴𝑖𝑅𝑖,𝑗(𝑡)𝑥, 𝑡 > 0 are

continuous for every fixed element 𝑥 ∈ 𝐸.
(b) The family {𝑒−𝜔𝑡𝑅𝑖,𝑗(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝐸, [𝐷(𝐴𝑖)]) is equicontinuous,

i.e., for every 𝑝 ∈ ~, there exist 𝑐 > 0 and 𝑞 ∈ ~ such that

𝑝(𝑒−𝜔𝑡𝑅𝑖,𝑗(𝑡)𝑥) + 𝑝(𝑒−𝜔𝑡𝐴𝑖𝑅𝑖,𝑗(𝑡)𝑥) 6 𝑐𝑞(𝑥), 𝑥 ∈ 𝐸, 𝑡 > 0.

(c) For every 𝜆 ∈ C with Re𝜆 > 𝜔 and 𝑘(𝜆) ̸= 0, the operator 𝑃𝜆 is
injective, 𝑅(𝐶) ⊆ 𝑅(𝑃𝜆) and

𝜆𝛼𝑖−𝛼𝑛−1−𝑗𝑘(𝜆)𝑃−1
𝜆 𝐶𝑥 =

∫︁ ∞

0

𝑒−𝜆𝑡𝑅𝑖,𝑗(𝑡)𝑥 𝑑𝑡, 𝑥 ∈ 𝐸.

(ii) Let (𝑅𝑖,𝑗(𝑡))𝑡>0 be an exponentially equicontinuous (𝑘;𝐶)-regularized re-
solvent (𝑖, 𝑗)-propagation family for problem [(90)–(91)]. Then it is said
that (𝑅𝑖,𝑗(𝑡))𝑡>0 is an exponentially equicontinuous (equicontinuous), an-
alytic (𝑘;𝐶)-regularized resolvent (𝑖, 𝑗)-propagation family for problem
[(90)–(91)], of angle 𝛼, iff the following holds:
(a) For every 𝑥 ∈ 𝐸, the mappings 𝑡 ↦→ 𝑅𝑖,𝑗(𝑡)𝑥, 𝑡 > 0 and 𝑡 ↦→

𝐴𝑖𝑅𝑖,𝑗(𝑡)𝑥, 𝑡 > 0 can be analytically extended to the sector Σ𝛼;
since no confusion seems likely, we denote these extensions by the
same symbols.

(b) For every 𝑥 ∈ 𝐸 and 𝛽 ∈ (0, 𝛼), one has lim𝑧→0,𝑧∈Σ𝛽
𝑅𝑖,𝑗(𝑧)𝑥 =

𝑅𝑖,𝑗(0)𝑥 and lim𝑧→0,𝑧∈Σ𝛽
𝐴𝑖𝑅𝑖,𝑗(𝑧)𝑥 = 𝐴𝑖𝑅𝑖,𝑗(0)𝑥.

(c) For every 𝛽 ∈ (0, 𝛼), there exists 𝜔𝛽 > max(0, abs(𝑘)) (𝜔𝛽 = 0)
such that the family {𝑒−𝜔𝛽𝑧𝑅𝑖,𝑗(𝑧) : 𝑧 ∈ Σ𝛽} ⊆ 𝐿(𝐸, [𝐷(𝐴𝑖)]) is
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equicontinuous, i.e., for every 𝑝 ∈ ~, there exist 𝑐 > 0 and 𝑞 ∈ ~
such that

𝑝(𝑒−𝜔𝛽𝑧𝑅𝑖,𝑗(𝑧)𝑥) + 𝑝(𝑒−𝜔𝛽𝑧𝐴𝑖𝑅𝑖,𝑗(𝑧)𝑥) 6 𝑐𝑞(𝑥), 𝑥 ∈ 𝐸, 𝑧 ∈ Σ𝛽 .

Exponentially equicontinuous (analytic) (𝑘;𝐶)-regularized resolvent (𝑖, 𝑗)-prop-
agation families yield results very similar to those obtained by𝑘-regularized 𝐶-
resolvent (𝑖, 𝑗)-propagation families. Without going into a deeper analysis, we shall
only observe that the assertions of Theorem 2.3.5(i)–(iii), Remark 2.3.7(i),(iii), The-
orem 2.3.9 and Theorem 2.3.10 can be restated for exponentially equicontinuous
(𝑘;𝐶)-regularized resolvent (𝑖, 𝑗)-propagation families. Details can be left to the
interested reader.

Before we move to the next subsection, it would be worthwhile to reconsider
the assertion of [292, Theorem 2.3.3] for systems of abstract degenerate differential
equations here. In order to do that, assume that 𝑛 ∈ N and 𝑖𝐴𝑗 , 1 6 𝑗 6 𝑛 are
commuting generators of bounded 𝐶0-groups on a Banach space 𝐸, as well that
𝐴 = (𝐴1, . . . , 𝐴𝑛); cf. Subsection 2.2.3 for more details. Denote by C𝑚,𝑚 the
ring of 𝑚 × 𝑚 matrices over C, and by 𝐼𝑚 the identity matrix of format 𝑚 × 𝑚
(𝑚 ∈ N). If 𝑃 (𝑥) = [𝑝𝑖𝑗(𝑥)] is an 𝑚 × 𝑚 matrix of polynomials of 𝑥 ∈ R𝑛,
then there exist 𝑑 ∈ N and matrices 𝑃𝜂 ∈ C𝑚,𝑚 such that 𝑃 (𝑥) =

∑︀
|𝜂|6𝑑 𝑃𝜂𝑥

𝜂,
𝑥 ∈ R𝑛. Then we know that the operator 𝑃 (𝐴) :=

∑︀
|𝜂|6𝑑 𝑃𝜂𝐴

𝜂 is closable on 𝐸𝑚

(cf. [132, Theorem 14.1]).
Now we are ready to formulate the following theorem.

Theorem 2.3.20. Let (𝐸, ‖·‖) be a complex Banach space and let 𝑖𝐴𝑗 , 1 6 𝑗 6 𝑛
be commuting generators of bounded 𝐶0-groups on 𝐸. Suppose 𝛼 > 0, 𝑑 ∈ N and
𝑃𝑖(𝑥) =

∑︀
|𝜂|6𝑑 𝑃𝜂,𝑖𝑥

𝜂 (𝑃𝜂,𝑖 ∈ C𝑚,𝑚, 𝑥 ∈ R𝑛, 𝑖 = 1, 2) are two given polynomial
matrices. Suppose that for each 𝑥 ∈ R𝑛 the matrix 𝑃2(𝑥) is regular. Then there
exists a dense subset 𝐸𝛼,𝑚 of 𝐸𝑚 such that, for every �⃗� ∈ 𝐸𝛼,𝑚, there exists a
unique solution of the following abstract Cauchy problem:

(DFP)′ :

{︃
D𝛼

𝑡 𝑃2(𝐴)�⃗�(𝑡) = 𝑃2(𝐴)D
𝛼
𝑡 �⃗�(𝑡) = 𝑃1(𝐴)�⃗�(𝑡), 𝑡 > 0,

�⃗�(0) = �⃗�; �⃗�(𝑗)(0) = 0, 1 6 𝑗 6 ⌈𝛼⌉ − 1.

Furthermore, for every �⃗� ∈ 𝐸𝛼,𝑚, the mapping 𝑡 ↦→ �⃗�(𝑡), 𝑡 > 0 can be extended to
the whole complex plane (the extension of this mapping will be denoted by the same
symbol in the sequel), and the following holds:

(i) The mapping 𝑧 ↦→ �⃗�(𝑧), 𝑧 ∈ Cr (−∞, 0] is analytic.
(ii) The mapping 𝑧 ↦→ �⃗�(𝑧), 𝑧 ∈ C is entire provided that 𝛼 ∈ N.

Proof. Let us recall that 𝑘 = 1+⌊𝑛/2⌋. Suppose that 𝑃1(𝑥)=[𝑝𝑖𝑗;1(𝑥)]16𝑖,𝑗6𝑚

and 𝑃2(𝑥) = [𝑝𝑖𝑗;2(𝑥)]16𝑖,𝑗6𝑚 (𝑥 ∈ R𝑛), and 𝑑 is the maximal degree of all non-zero
polynomials 𝑝𝑖𝑗;1(𝑥) and 𝑝𝑖𝑗;2(𝑥) (1 6 𝑖, 𝑗 6 𝑚). Then sup𝑥∈R𝑛(det(𝑃2(𝑥)))

−1 <∞
and we can inductively prove that there exist numbers 𝑀1 > 1 and 𝑀2 > 1 such
that for each 𝑙 ∈ N0 there exist polynomials 𝑅𝑖𝑗;𝑙(𝑥) (1 6 𝑖, 𝑗 6 𝑚) of degree 6 𝑙𝑚𝑑
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satisfying that

(𝑃2(𝑥)
−1𝑃1(𝑥))

𝑙 =
[𝑅𝑖𝑗;𝑙(𝑥)]16𝑖,𝑗6𝑚

(det(𝑃2(𝑥)))𝑙
, 𝑥 ∈ R𝑛

and the following holds:⃒⃒⃒
𝐷𝜂
(︁ 𝑅𝑖𝑗;𝑙(𝑥)

(det(𝑃2(𝑥)))𝑙

)︁⃒⃒⃒
+
⃒⃒⃒
𝐷𝜂
(︁
𝑝𝑖𝑗;1(𝑥)

𝑅𝑖𝑗;𝑙(𝑥)

(det(𝑃2(𝑥)))𝑙

)︁⃒⃒⃒
(109)

+
⃒⃒⃒
𝐷𝜂
(︁
𝑝𝑖𝑗;2(𝑥)

𝑅𝑖𝑗;𝑙(𝑥)

(det(𝑃2(𝑥)))𝑙

)︁⃒⃒⃒
6𝑀 𝑙

1(1 + |𝑥|)𝑙𝑚𝑑𝑀2 ,

provided 𝑙 ∈ N0, 𝑥 ∈ R𝑛, 0 6 |𝜂| 6 𝑘 and 1 6 𝑖, 𝑗 6 𝑚. It is very simple to prove
that there exists a sufficiently large natural number 𝑘′ satisfying 2|𝑘′ and

(110) lim
𝑙→+∞

(︀
Γ( 2𝑀2(𝑙+1)𝑚𝑑+𝑛

𝑘′𝑑 )
)︀1/2𝑙

(Γ(𝛼𝑙 + 1))1/𝑙
= 0.

Let 𝑎 > 0 be fixed. Set 𝐶 := (𝑒−𝑎|𝑥|𝑘
′𝑑
)(𝐴) and 𝐸𝛼,𝑚 := (𝑅(𝐶))𝑚. Then 𝐶 ∈ 𝐿(𝐸),

𝐶 is injective and 𝐷∞(𝐴2
1 + · · ·+𝐴2

𝑛) ⊇ 𝑅(𝐶) is dense in 𝐸 [132]. Define

(111) 𝑊𝛼(𝑧) :=

[︂ ∞∑︁
𝑙=0

𝑧𝛼𝑙

Γ(𝛼𝑙 + 1)

(︁ 𝑅𝑖𝑗;𝑙(𝑥)

(det(𝑃2(𝑥)))𝑙
𝑒−𝑎|𝑥|𝑘

′𝑑
)︁
(𝐴)

]︂
16𝑖,𝑗6𝑚

, 𝑧 ∈ C.

Using (109)–(110) and the proof of [292, Theorem 2.3.3], it readily follows that
𝑊𝛼(𝑧) ∈ 𝐿(𝐸𝑚) for all 𝑧 ∈ C, as well as that the expressions[︂ ∞∑︁

𝑙=0

𝑚∑︁
𝑣=1

𝑧𝛼𝑙

Γ(𝛼𝑙 + 1)

(︁
𝑝𝑖𝑣;2(𝑥)

𝑅𝑣𝑗;𝑙+1(𝑥)

(det(𝑃2(𝑥)))𝑙+1
𝑒−𝑎|𝑥|𝑘

′𝑑
)︁
(𝐴)

]︂
16𝑖,𝑗6𝑚

and [︂ ∞∑︁
𝑙=0

𝑚∑︁
𝑣=1

𝑧𝛼𝑙

Γ(𝛼𝑙 + 1)

(︁
𝑝𝑖𝑣;1(𝑥)

𝑅𝑣𝑗;𝑙(𝑥)

(det(𝑃2(𝑥)))𝑙
𝑒−𝑎|𝑥|𝑘

′𝑑
)︁
(𝐴)

]︂
16𝑖,𝑗6𝑚

define the bounded linear operators on 𝐸𝑚 (𝑧 ∈ C). Furthermore, the mapping
𝑧 ↦→ 𝑊𝛼(𝑧), 𝑧 ∈ C r (−∞, 0] is analytic, and the mapping 𝑧 ↦→ 𝑊𝛼(𝑧), 𝑧 ∈ C is
entire provided that 𝛼 ∈ N. Suppose now �⃗� ∈ 𝐸𝛼,𝑚. Then there exists 𝑥′ ∈ 𝐸𝑚

such that �⃗� = 𝐶𝑚𝑥′, where 𝐶𝑚 = 𝐶𝐼𝑚. Setting �⃗�(𝑧) := 𝑊𝛼(𝑧)𝑥′, 𝑧 ∈ C, we
immediately obtain that (i) and (ii) hold. It is not difficult to prove that D𝛼

𝑡 (𝑡)�⃗�(𝑡)
is well-defined, as well as that

D𝛼
𝑡 (𝑡)�⃗�(𝑡) =

[︂ ∞∑︁
𝑙=1

𝑡𝛼(𝑙−1)

Γ(𝛼(𝑙 − 1) + 1)

(︁ 𝑅𝑖𝑗;𝑙(𝑥)

(det(𝑃2(𝑥)))𝑙
𝑒−𝑎|𝑥|𝑘

′𝑑
)︁
(𝐴)

]︂
16𝑖,𝑗6𝑚

𝑥′, 𝑡 > 0,

and �⃗�(0) = �⃗�, �⃗�(𝑗)(0) = 0, 1 6 𝑗 6 ⌈𝛼⌉ − 1. Since 𝑃1(𝐴) and 𝑃2(𝐴) are closed,
we can prove with the help of (◁) that �⃗�(𝑡) ∈ 𝐷(𝑃1(𝐴)) ∩ 𝐷(𝑃2(𝐴)), D𝛼

𝑡 �⃗�(𝑡) ∈
𝐷(𝑃2(𝐴)), the term D𝛼

𝑡 𝑃2(𝐴)�⃗�(𝑡) is well defined, with

𝑃2(𝐴)D
𝛼
𝑡 �⃗�(𝑡) = D𝛼

𝑡 𝑃2(𝐴)�⃗�(𝑡)
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=

[︂ ∞∑︁
𝑙=0

𝑚∑︁
𝑣=1

𝑧𝛼𝑙

Γ(𝛼𝑙 + 1)

(︁
𝑝𝑖𝑣;2(𝑥)

𝑅𝑖𝑣;𝑙+1(𝑥)

(det(𝑃2(𝑥)))𝑙+1
𝑒−𝑎|𝑥|𝑘

′𝑑
)︁
(𝐴)

]︂
16𝑖,𝑗6𝑚

𝑥′

and

𝑃1(𝐴)�⃗�(𝑡) =

[︂ ∞∑︁
𝑙=0

𝑚∑︁
𝑣=1

𝑧𝛼𝑙

Γ(𝛼𝑙 + 1)

(︁
𝑝𝑖𝑣;1(𝑥)

𝑅𝑖𝑣;𝑙(𝑥)

(det(𝑃2(𝑥)))𝑙
𝑒−𝑎|𝑥|𝑘

′𝑑
)︁
(𝐴)

]︂
16𝑖,𝑗6𝑚

𝑥′,

for any 𝑡 > 0. Since

𝑃2(𝑥)
[𝑅𝑖𝑗;𝑙+1(𝑥)]16𝑖,𝑗6𝑚

(det(𝑃2(𝑥)))𝑙+1
= 𝑃1(𝑥)

[𝑅𝑖𝑗;𝑙(𝑥)]16𝑖,𝑗6𝑚

(det(𝑃2(𝑥)))𝑙
, 𝑙 ∈ N0, 𝑥 ∈ R𝑛,

a simple matricial calculation shows that the function 𝑡 ↦→ �⃗�(𝑡), 𝑡 > 0 is a solu-
tion of problem (DFP)’. Now we will prove the uniqueness of solutions of problem
(DFP)’. Let 𝑡 ↦→ �⃗�(𝑡), 𝑡 > 0 be a solution of (DFP)’ with �⃗� = 0⃗. Integrating
𝛼-times (DFP)’, we get that 𝑃2(𝐴)�⃗�(𝑡) =

∫︀ 𝑡

0
𝑔𝛼(𝑡 − 𝑠)𝑃1(𝐴)�⃗�(𝑠)𝑑𝑠, 𝑡 > 0. Us-

ing this equality, as well as the fact that 𝑃2(𝐴)𝑊𝛼(𝑡) − 𝑃2(𝐴)𝐶𝑚 = 𝑃1(𝐴)(𝑔𝛼 *
𝑊𝛼(·))(𝑡) ∈ 𝐿(𝐸𝑚), 𝑡 > 0, and the proof of [459, Proposition 1.1], we obtain
that 0 = (𝑊𝛼 * 0)(𝑡) = (𝑃2(𝐴)𝐶𝑚 * �⃗�)(𝑡), 𝑡 > 0, so that it suffices to prove that
the operator 𝑃2(𝐴) is injective. Suppose that 𝑃2(𝐴)�⃗� = 0⃗ for some �⃗� ∈ 𝐸𝑚.
By [561, Lemma 1.1(a)], we may assume without loss of generality that �⃗� ∈ 𝐸𝑚

0

(cf. (◁)). It is clear that there exist polynomials 𝑞𝑖𝑗(𝑥) (1 6 𝑖, 𝑗 6 𝑚) such
that 𝑃2(𝑥)

−1 = (det(𝑃2(𝑥)))
−1[𝑞𝑖𝑗(𝑥)]16𝑖,𝑗6𝑚. Using (◁), one can prove that

[(det(𝑃2(𝑥)))(𝐴)𝐼𝑚][𝜑(𝐴)𝐼𝑚]�⃗� = [(𝜑(𝑥)𝑞𝑖𝑗(𝑥))(𝐴)]16𝑖,𝑗6𝑚𝑃2(𝐴)�⃗� = 0⃗, 𝜑 ∈ 𝒮(R𝑛).
By [306, Remark 4.4(i)], the operator (det(𝑃2(𝑥)))(𝐴) is injective, whence we may
conclude that [𝜑(𝐴)𝐼𝑚]�⃗� = 0⃗, 𝜑 ∈ 𝒮(R𝑛). This, in turn, implies �⃗� = 0⃗ and com-
pletes the proof of theorem. �

Remark 2.3.21. (i) Suppose that𝑚 = 1, 𝑃1(𝑥) =
∑︀

|𝛼|6𝑑 𝑎𝛼𝑥
𝛼, 𝑃2(𝑥) =∑︀

|𝛼|6𝑑 𝑏𝛼𝑥
𝛼, 𝑥 ∈ R𝑛 (𝑎𝛼, 𝑏𝛼 ∈ C), 𝑃2(𝑥) ̸= 0, 𝑥 ∈ R𝑛 and 𝐸 is a function

space on which translations are uniformly bounded and strongly contin-
uous (for example, 𝐿𝑝(R𝑛) with 𝑝 ∈ [1,∞)). Then the obvious choice
for 𝐴𝑗 is 𝑖𝜕/𝜕𝑥𝑗 (1 6 𝑗 6 𝑛) and then we have that 𝑃1(𝐴) and 𝑃2(𝐴)

are just the operators
∑︀

|𝛼|6𝑑 𝑎𝛼𝑖
|𝛼|(𝜕/𝜕𝑥)𝛼 and

∑︀
|𝛼|6𝑑 𝑏𝛼𝑖

|𝛼|(𝜕/𝜕𝑥)𝛼,
respectively, acting with their maximal distributional domains. Making
use of Theorem 2.3.20 and a slight modification of the formula appearing
on l. 1, p. 49 of [292], we can prove that for each 𝛼 > 0 there exists a
dense subset 𝐸𝛼,1 of 𝐿𝑝(R𝑛) such that the abstract Cauchy problem:∑︁

|𝛼|6𝑑

𝑏𝛼𝑖
|𝛼|(𝜕/𝜕𝑥)𝛼D𝛼

𝑡 𝑢(𝑡, 𝑥) = D𝛼
𝑡

∑︁
|𝛼|6𝑑

𝑏𝛼𝑖
|𝛼|(𝜕/𝜕𝑥)𝛼𝑢(𝑡, 𝑥)

=
∑︁
|𝛼|6𝑑

𝑎𝛼𝑖
|𝛼|(𝜕/𝜕𝑥)𝛼𝑢(𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ R𝑛;

𝜕𝑙

𝜕𝑡𝑙
𝑢(𝑡, 𝑥)|𝑡=0 = 𝑓𝑙(𝑥), 𝑥 ∈ R𝑛, 𝑙 = 0, 1, . . . , ⌈𝛼⌉ − 1,
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has a unique solution provided 𝑓𝑙(·) ∈ 𝐸𝛼,1, 𝑙 = 0, 1, . . . , ⌈𝛼⌉ − 1. A
similar assertion can be formulated in 𝐸𝑙-type spaces [541]; we can also
move to the spaces 𝐿∞(R𝑛), 𝐶𝑏(R𝑛) or 𝐶𝜎(R𝑛) (0 < 𝜎 < 1) by using
distributional techniques.

(ii) Denote Ω(𝜔) = {𝜆2 : Re𝜆 > 𝜔}, if 𝜔 > 0, and Ω(𝜔) = C r (−∞,−𝜔2], if
𝜔 6 0. In the previous part of Section 2.1 and Section 2.2, we have con-
sidered the 𝐶-wellposedness of the abstract degenerate Cauchy problem

(DFP)2 :

{︃
D𝛼

𝑡 𝑃2(𝐴)𝑢(𝑡) = 𝑃2(𝐴)D
𝛼
𝑡 𝑢(𝑡) = 𝑃1(𝐴)𝑢(𝑡), 𝑡 > 0,

𝑢(0) = 𝐶𝑥; 𝑢(𝑗)(0) = 0, 1 6 𝑗 6 ⌈𝛼⌉ − 1,

where 0 < 𝛼 6 2, 𝑃1(𝑥) and 𝑃2(𝑥) are complex polynomials, 𝑃2(𝑥) ̸= 0,
𝑥 ∈ R𝑛, 𝑖𝐴𝑗 , 1 6 𝑗 6 𝑛 are commuting generators of bounded 𝐶0-groups
on a Banach space 𝐸, and 𝐴 = (𝐴1, . . . , 𝐴𝑛). The basic assumption was
that (70) holds for 0 < 𝛼 < 2, and that 𝑃1(𝑥)/𝑃2(𝑥) /∈ Ω(𝜔), 𝑥 ∈ R𝑛,
provided 𝛼 = 2. Observe that our results from the part (i) of this remark
can be applied in the analysis of problem (DFP) in the general case 𝛼 > 0,
and also in the case that 0 < 𝛼 6 2 and the above-mentioned requirements
are not satisfied.

(iii) The assertion of [292, Theorem 2.3.5] can be reformulated in the degen-
erate case, as well. We leave the precise details as an exercise for the
interested reader.

Example 2.3.22. Unfortunately, Theorem 2.3.20 and the conclusions from the
parts of (i) and (ii) of former remark cannot be applied in the analysis of 𝐿𝑝-
wellposedness of a great number of very important degenerate equations of mathe-
matical physics, like (cf. the monograph by G. V. Demidenko–S. V. Uspenskii [140]
for more details):

(a) (The Rossby wave equation, 1939)

Δ𝑢𝑡 + 𝛽𝑢𝑦 = 0 (𝑛 = 2), 𝑢(0, 𝑥, 𝑦) = 𝑢0(𝑥, 𝑦);

(b) (The Sobolev equation, 1940)

Δ𝑢𝑡𝑡 + 𝜔2𝑢𝑧𝑧 = 0 (𝑛 = 3),

𝑢(0, 𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦, 𝑧), 𝑢𝑡(0, 𝑥, 𝑦, 𝑧) = 𝑢1(𝑥, 𝑦, 𝑧),

here 𝜔/2 is the angular velocity;
(c) (The internal wave equation in the Boussinesq approximation, 1903)

Δ𝑢𝑡𝑡 +𝑁2(𝑢𝑥𝑥 + 𝑢𝑦𝑦) = 0 (𝑛 = 3),

𝑢(0, 𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦, 𝑧), 𝑢𝑡(0, 𝑥, 𝑦, 𝑧) = 𝑢1(𝑥, 𝑦, 𝑧);

(d) (The gravity-gyroscopic wave equation, cf. [222] and [535])

Δ𝑢𝑡𝑡 +𝑁2(𝑢𝑥𝑥 + 𝑢𝑦𝑦) + 𝜔2𝑢𝑧𝑧 = 0 (𝑛 = 3),

𝑢(0, 𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦, 𝑧), 𝑢𝑡(0, 𝑥, 𝑦, 𝑧) = 𝑢1(𝑥, 𝑦, 𝑧);



2.3. DEGENERATE MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATIONS... 129

(e) (Small amplitude oscillations of a rotating viscous fluid)

Δ𝑢𝑡𝑡 − 2𝜈Δ2𝑢𝑡 + 𝑣2Δ3𝑢+ 𝜔2𝑢𝑧𝑧 = 0 (𝑛 = 3),

𝑢(0, 𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦, 𝑧), 𝑢𝑡(0, 𝑥, 𝑦, 𝑧) = 𝑢1(𝑥, 𝑦, 𝑧).

Here 𝜔/2 is the angular velocity and 𝜈 > 0 is the viscosity coefficient.
Before including some details on the wellposedness of equations (a)–(e) in 𝐿𝑝

spaces, we need to explain how one can reformulate the assertion of Theorem 2.3.20
in the case that there exist a vector 𝑥0 ∈ R𝑛 and a non-empty compact subset 𝐾
of R𝑛 such that the matrix 𝑃2(𝑥0) is singular and {𝑥 ∈ R𝑛 : det(𝑃2(𝑥)) = 0} ⊆ 𝐾;
some fractional analogues of (a)–(e) can be analyzed similarly. Denote by 𝒢 the
class consisting of those 𝐶∞(R𝑛)-functions 𝜑(·) satisfying that there exist two open
relatively compact neighborhoods Ω and Ω′ of 𝐾 in R𝑛 such that 𝜑(𝑥) = 0 for
all 𝑥 ∈ Ω and 𝜑(𝑥) = 1 for all 𝑥 ∈ R𝑛 r Ω′. Since the estimate (109) holds for
all 𝑥 ∈ R𝑛 r Ω, for each 𝑧 ∈ C we can define the matricial operator 𝑊𝛼(𝑧) (cf.
the proof of Theorem 2.3.20) by replacing the function 𝑒−𝑎|𝑥|𝑘

′𝑑
in (111) with the

function 𝜑(𝑥)𝑒−𝑎|𝑥|𝑘
′𝑑

. Setting 𝐶𝜑 := (𝜑(𝑥)𝑒−𝑎|𝑥|𝑘
′𝑑
)(𝐴) for 𝜑 ∈ 𝒢 (then we do not

know any longer whether the set
⋃︀

𝜑∈𝒜𝑅(𝐶𝜑) is dense in 𝐸, and we cannot clarify
whether the operator 𝐶𝜑 is injective or not) and 𝐸′

𝛼,𝑚 := (
⋃︀

𝜑∈𝒜𝑅(𝐶𝜑))
𝑚, and

assuming additionally the injectivity of matricial operator 𝑃2(𝐴) on 𝐸𝑚, then for
each �⃗� ∈ 𝐸′

𝛼,𝑚 there exists a unique solution 𝑡 ↦→ �⃗�(𝑡), 𝑡 > 0 of the abstract Cauchy
problem (DFP)’, which can be extended to the whole complex plane, and (i)-(ii)
from the formulation of Theorem 2.3.20 continues to hold. Rewriting any of the
equations (a)–(e) in the matricial form, and using the following

Lemma 2.3.23. Suppose that 1 6 𝑝 < ∞, 𝑛 ∈ N and 𝐸 := 𝐿𝑝(R𝑛). Denote
by Δ𝑝,𝑛 the operator Δ acting on 𝐸 with its maximal distributional domain. Then
Δ𝑝,𝑛 is injective.

Proof. If 1 < 𝑝 < ∞, then the statement immediately follows from the fact
that the operator −Δ𝑝,𝑛 is non-negative, with dense domain and range (cf. [412, pp.
256, 266]). Suppose now that 𝑝 = 1 and Δ𝑝,𝑛𝑓 = 0 for some 𝑓 ∈ 𝐸. Then [412,
Lemma 3.2] implies that, for every 𝜙 ∈ 𝒟(R𝑛) and for every multi-index 𝜂 ∈ N𝑛

0 ,
the function 𝜙 * 𝑓 belongs to the space 𝒯 consisting of those 𝐶∞(R𝑛)-functions
whose any partial derivative belongs to 𝐿1(R𝑛) ∩ 𝐿∞(R𝑛). Since Δ𝑝,𝑛(𝜙 * 𝑓) =
𝜙 *Δ𝑝,𝑛𝑓 = 0, 𝜙 ∈ 𝒟(R𝑛) and the operator Δ𝒯 is injective by [412, Remark 3.3],
we have that 𝜙 * 𝑓 = 0, 𝜙 ∈ 𝒟(R𝑛). Hence, 𝑓 = 0. �

We obtain that there exists a non-trivial subspace 𝐸′
1,1 of 𝐿𝑝(R2), resp. 𝐸′

1,2 of
𝐿𝑝(R3)×𝐿𝑝(R3), such that the equation (a), resp. any of the equations (b)–(e), has
a unique entire solution provided 𝑢0(𝑥, 𝑦) ∈ 𝐸′

1,1, resp. (𝑢0(𝑥, 𝑦, 𝑧), 𝑢1(𝑥, 𝑦, 𝑧)) ∈
𝐸′

1,2. In the present situation, we do not know whether the subspace 𝐸′
1,1, resp.

𝐸′
1,2, can be chosen to be dense in 𝐿𝑝(R2), resp. 𝐿𝑝(R3)× 𝐿𝑝(R3).

2.3.4. Degenerate 𝑘-regularized (𝐶1, 𝐶2)-existence and uniqueness
propagation families for (112). The main purpose of this subsection is to re-
port how the techniques established in a joint paper of C.-G. Li, M. Li and the
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author [346] can be successfully applied in the analysis of a wide class of abstract
degenerate multi-term fractional differential equations with Caputo derivatives. We
propose an important theoretical novelty method capable of seeking of solutions of
some very atypical degenerate differential equations in 𝐿𝑝-spaces. Furthermore, we
provide generalizations of [347, Theorem 2.3, Theorem 3.1] for degenerate multi-
term problems.

We assume that 𝑛 ∈ N r {1}, 0 6 𝛼1 < · · · < 𝛼𝑛, 𝑚 = ⌈𝛼⌉, 𝛼0 = 𝛼 and
𝑚𝑖 = ⌈𝛼𝑖⌉, 𝑖 ∈ N0

𝑛. Set 𝐷𝑖 := {𝑗 ∈ N𝑛−1 : 𝑚𝑗 − 1 > 𝑖} (𝑖 ∈ N0
𝑚𝑛−1). The state

space 𝑋 is an SCLCS and 𝐴 = 𝐴0, 𝐴1, . . . , 𝐴𝑛−1, 𝐴𝑛 = 𝐵 denote closed linear
operators acting on 𝑋. Let 𝑇 > 0 and 𝑓 ∈ 𝐶([0, 𝑇 ] : 𝑋). Consider the following
degenerate multi-term problem:

(112)
𝐵D𝛼𝑛

𝑡 𝑢(𝑡) +

𝑛−1∑︁
𝑖=1

𝐴𝑖D
𝛼𝑖
𝑡 𝑢(𝑡) = 𝐴D𝛼

𝑡 𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0;

𝑢(𝑗)(0) = 𝑢𝑗 , 𝑗 = 0, . . . , ⌈𝛼𝑛⌉ − 1,

where 0 6 𝛼 < 𝛼𝑛. By a strong solution of problem (112) on the interval [0, 𝑇 ]
we mean any continuous function 𝑡 ↦→ 𝑢(𝑡), 𝑡 ∈ [0, 𝑇 ] satisfying that the term
𝐴𝑖D

𝛼𝑖
𝑡 𝑢(𝑡) is well-defined and continuous on [0, 𝑇 ] (𝑖 ∈ N0

𝑛), as well as that (112)
holds identically on [0, 𝑇 ]. Convoluting both sides of (112) with 𝑔𝛼𝑛(𝑡), we get that:

(113) 𝐵

[︂
𝑢(·)−

𝑚𝑛−1∑︁
𝑘=0

𝑢𝑘𝑔𝑘+1(·)
]︂
+

𝑛−1∑︁
𝑗=1

𝑔𝛼𝑛−𝛼𝑗
*𝐴𝑗

[︂
𝑢(·)−

𝑚𝑗−1∑︁
𝑘=0

𝑢𝑘𝑔𝑘+1(·)
]︂

= 𝑔𝛼𝑛−𝛼 *𝐴
[︂
𝑢(·)−

𝑚−1∑︁
𝑘=0

𝑢𝑘𝑔𝑘+1(·)
]︂
+ (𝑔𝛼𝑛

* 𝑓)(·), 𝑡 ∈ [0, 𝑇 ].

By a mild solution of (112) on [0, 𝑇 ] we mean any continuous 𝑋-valued function
𝑡 ↦→ 𝑢(𝑡), 𝑡 ∈ [0, 𝑇 ] satisfying

𝐵

[︂
𝑢(·)−

𝑚𝑛−1∑︁
𝑘=0

𝑢𝑘𝑔𝑘+1(·)
]︂
+

𝑛−1∑︁
𝑗=1

𝐴𝑗

(︂
𝑔𝛼𝑛−𝛼𝑗

*
[︂
𝑢(·)−

𝑚𝑗−1∑︁
𝑘=0

𝑢𝑘𝑔𝑘+1(·)
]︂)︂

= 𝐴

(︂
𝑔𝛼𝑛−𝛼 *

[︂
𝑢(·)−

𝑚−1∑︁
𝑘=0

𝑢𝑘𝑔𝑘+1(·)
]︂)︂

+ (𝑔𝛼𝑛 * 𝑓)(·), 𝑡 ∈ [0, 𝑇 ].

Consider the following inhomogeneous equation:

(114) 𝐵𝑢(𝑡) +
𝑛−1∑︁
𝑗=1

(𝑔𝛼𝑛−𝛼𝑗
*𝐴𝑗𝑢)(𝑡) = 𝑓(𝑡) + (𝑔𝛼𝑛−𝛼 *𝐴𝑢)(𝑡), 𝑡 ∈ [0, 𝑇 ].

It is said that a function 𝑢 ∈ 𝐶([0, 𝑇 ] : 𝑋) is:

(i) a strong solution of (114) iff 𝐴𝑗𝑢 ∈ 𝐶([0, 𝑇 ] : 𝑋), 𝑗 ∈ N0
𝑛−1 and (114)

holds for every 𝑡 ∈ [0, 𝑇 ].
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(ii) a mild solution of (114) iff (𝑔𝛼𝑛−𝛼𝑗
* 𝑢)(𝑡) ∈ 𝐷(𝐴𝑗), 𝑡 ∈ [0, 𝑇 ], 𝑗 ∈ N0

𝑛−1

and

𝐵𝑢(𝑡) +

𝑛−1∑︁
𝑗=1

𝐴𝑗(𝑔𝛼𝑛−𝛼𝑗 * 𝑢)(𝑡) = 𝑓(𝑡) +𝐴(𝑔𝛼𝑛−𝛼 * 𝑢)(𝑡), 𝑡 ∈ [0, 𝑇 ].

A mild (strong) solution of problem (112), resp. (114), on [0,∞) is defined analo-
gously.

We will be interested in the following notions.

Definition 2.3.24. (cf. [346, Definition 2.2] for the case 𝐵 = 𝐼) Suppose
0 < 𝜏 6∞, 𝑘 ∈ 𝐶([0, 𝜏)), 𝐶,𝐶1, 𝐶2 ∈ 𝐿(𝑋), 𝐶 and 𝐶2 are injective.

(i) A sequence ((𝑅0(𝑡))𝑡∈[0,𝜏), . . . , (𝑅𝑚𝑛−1(𝑡))𝑡∈[0,𝜏)) of strongly continuous
operator families in 𝐿(𝑋, [𝐷(𝐵)]) is called a (local, if 𝜏 <∞) 𝑘-regularized
𝐶1-existence propagation family for (112) iff the following holds:

𝐵[𝑅𝑖(·)𝑥− (𝑘 * 𝑔𝑖)(·)𝐶1𝑥] +
∑︁
𝑗∈𝐷𝑖

𝐴𝑗 [𝑔𝛼𝑛−𝛼𝑗
* (𝑅𝑖(·)𝑥− (𝑘 * 𝑔𝑖)(·)𝐶1𝑥)]

+
∑︁

𝑗∈N𝑛−1r𝐷𝑖

𝐴𝑗(𝑔𝛼𝑛−𝛼𝑗 *𝑅𝑖)(·)𝑥

=

{︃
𝐴(𝑔𝛼𝑛−𝛼 *𝑅𝑖)(·)𝑥, 𝑚− 1 < 𝑖, 𝑥 ∈ 𝑋,

𝐴[𝑔𝛼𝑛−𝛼 * (𝑅𝑖(·)𝑥− (𝑘 * 𝑔𝑖)(·)𝐶1𝑥)](·), 𝑚− 1 > 𝑖, 𝑥 ∈ 𝑋,

for any 𝑖 = 0, . . . ,𝑚𝑛 − 1.
(ii) A sequence ((𝑅0(𝑡))𝑡∈[0,𝜏), . . . , (𝑅𝑚𝑛−1(𝑡))𝑡∈[0,𝜏)) of strongly continuous

operator families in 𝐿(𝑋) is called a (local, if 𝜏 < ∞) 𝑘-regularized 𝐶2-
uniqueness propagation family for (112) iff

[𝑅𝑖(·)𝐵𝑥− (𝑘 * 𝑔𝑖)(·)𝐶2𝐵𝑥] +
∑︁
𝑗∈𝐷𝑖

𝑔𝛼𝑛−𝛼𝑗 * [𝑅𝑖(·)𝐴𝑗𝑥− (𝑘 * 𝑔𝑖)(·)𝐶2𝐴𝑗𝑥]

+
∑︁

𝑗∈N𝑛−1r𝐷𝑖

(𝑔𝛼𝑛−𝛼𝑗
*𝑅𝑖(·)𝐴𝑗𝑥)(·)

=

{︃
(𝑔𝛼𝑛−𝛼 *𝑅𝑖(·)𝐴𝑥)(·), 𝑚− 1 < 𝑖,

𝑔𝛼𝑛−𝛼 * [𝑅𝑖(·)𝐴𝑥− (𝑘 * 𝑔𝑖)(·)𝐶2𝐴𝑥](·), 𝑚− 1 > 𝑖,

for any 𝑥 ∈
⋂︀

06𝑗6𝑛𝐷(𝐴𝑗) and 𝑖 ∈ N0
𝑚𝑛−1.

(iii) A sequence ((𝑅0(𝑡))𝑡∈[0,𝜏), . . . , (𝑅𝑚𝑛−1(𝑡))𝑡∈[0,𝜏)) of strongly continuous
operator families in 𝐿(𝑋) is called a (local, if 𝜏 < ∞) 𝑘-regularized 𝐶-
resolvent propagation family for (112), in short 𝑘-regularized 𝐶-propaga-
tion family for (112), iff ((𝑅0(𝑡))𝑡∈[0,𝜏), . . . , (𝑅𝑚𝑛−1(𝑡))𝑡∈[0,𝜏)) is a 𝑘-regu-
larized 𝐶-uniqueness propagation family for (112), and for every 𝑡 ∈ [0, 𝜏),
𝑖 ∈ N0

𝑚𝑛−1 and 𝑗 ∈ N0
𝑛, one has 𝑅𝑖(𝑡)𝐴𝑗 ⊆ 𝐴𝑗𝑅𝑖(𝑡), 𝑅𝑖(𝑡)𝐶 = 𝐶𝑅𝑖(𝑡) and

𝐶𝐴𝑗 ⊆ 𝐴𝑗𝐶.

In case 𝑘(𝑡) = 𝑔𝜁+1(𝑡), where 𝜁 > 0, it is also said that ((𝑅0(𝑡))𝑡∈[0,𝜏), . . . ,
(𝑅𝑚𝑛−1(𝑡))𝑡∈[0,𝜏)) is a 𝜁-times integrated 𝐶1-existence propagation family for (112);
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0-times integrated 𝐶1-existence propagation family for (112) is simply called 𝐶1-
existence propagation family for (112). For a 𝑘-regularized 𝐶1-existence propaga-
tion family ((𝑅0(𝑡))𝑡∈[0,𝜏), . . . , (𝑅𝑚𝑛−1(𝑡))𝑡∈[0,𝜏)), it is said that is locally equicon-
tinuous (exponentially equicontinuous) iff each single operator family
(𝑅0(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑋, [𝐷(𝐵)]), . . . , (𝑅𝑚𝑛−1(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑋, [𝐷(𝐵)]) is;
((𝑅0(𝑡))𝑡>0, . . . , (𝑅𝑚𝑛−1(𝑡))𝑡>0) is said to be an exponentially equicontinuous, an-
alytic 𝑘-regularized 𝐶1-existence propagation family for problem (112), of angle
𝛼 ∈ (0, 𝜋/2], iff the following holds:

(a) For every 𝑥 ∈ 𝑋 and 𝑖 ∈ N0
𝑚𝑛−1, the mappings 𝑡 ↦→ 𝑅𝑖(𝑡)𝑥, 𝑡 > 0 and

𝑡 ↦→ 𝐵𝑅𝑖(𝑡)𝑥, 𝑡 > 0 can be analytically extended to the sector Σ𝛼; the
extensions will be denoted by the same symbols.

(b) For every 𝑥 ∈ 𝑋, 𝛽 ∈ (0, 𝛼) and 𝑖 ∈ N0
𝑚𝑛−1, we have lim𝑧→0,𝑧∈Σ𝛽

𝑅𝑖(𝑧)𝑥 =
𝑅𝑖(0)𝑥 and lim𝑧→0,𝑧∈Σ𝛽

𝐵𝑅𝑖(𝑧)𝑥 = 𝐵𝑅𝑖(0)𝑥.
(c) For every 𝛽 ∈ (0, 𝛼) and 𝑖 ∈ N0

𝑚𝑛−1, there exists 𝜔𝛽 > max(0, abs(𝑘))
(𝜔𝛽 = 0) such that the family {𝑒−𝜔𝛽𝑧𝑅𝑖(𝑧) : 𝑧 ∈ Σ𝛽} ⊆ 𝐿(𝑋, [𝐷(𝐵)]) is
equicontinuous.

The above terminological agreements and abbreviations are also introduced for
the classes of 𝑘-regularized 𝐶2-uniqueness propagation families for (112) and 𝑘-
regularized 𝐶-propagation families for (112).

Immediately from definition of a 𝑘-regularized 𝐶1-existence propagation family
for (112) (𝑘-regularized 𝐶2-uniqueness propagation family for (112)), we can state
some obvious facts about the existence and uniqueness of mild (strong) solutions
of problem (114); details can be skipped.

The proof of following extension of [346, Proposition 2.3] is omitted, too.

Proposition 2.3.25. Let 𝑖 ∈ N0
𝑚𝑛−1 and ((𝑅0(𝑡))𝑡∈[0,𝜏), . . . , (𝑅𝑚𝑛−1(𝑡))𝑡∈[0,𝜏))

be a locally equicontinuous 𝑘-regularized 𝐶1-existence propagation family for (112).
If 𝑅𝑖(𝑡)𝐴𝑗 ⊆ 𝐴𝑗𝑅𝑖(𝑡) (𝑗 ∈ N0

𝑛, 𝑡 ∈ [0, 𝜏)), 𝑅𝑖(𝑡)𝐶1 = 𝐶1𝑅𝑖(𝑡) (𝑡 ∈ [0, 𝜏)), 𝐶1 is
injective, 𝑘(𝑡) is a kernel on [0, 𝜏) and 𝐶1𝐴𝑗 ⊆ 𝐴𝑗𝐶1 (𝑗 ∈ N0

𝑛), then the following
holds:

(i) The equality

(115) 𝑅𝑖(𝑡)𝑅𝑖(𝑠) = 𝑅𝑖(𝑠)𝑅𝑖(𝑡), 0 6 𝑡, 𝑠 < 𝜏

holds, provided that 𝑚− 1 < 𝑖 and the condition
(◇) The assumption 𝐵𝑓(𝑡) +

∑︀
𝑗∈𝐷𝑖

𝐴𝑗(𝑔𝛼𝑛−𝛼𝑗
* 𝑓)(𝑡) = 0, 𝑡 ∈ [0, 𝜏) for

some 𝑓 ∈ 𝐶([0, 𝜏) : 𝑋), implies 𝑓(𝑡) = 0, 𝑡 ∈ [0, 𝜏),
holds.

(ii) The equality (115) holds provided that 𝑚− 1 > 𝑖, N𝑛−1 r𝐷𝑖 ̸= ∅, and the
condition
(◇◇) If

∑︀
𝑗∈N𝑛−1r𝐷𝑖

𝐴𝑗(𝑔𝛼𝑛−𝛼𝑗 * 𝑓)(𝑡) = 0, 𝑡 ∈ [0, 𝜏), for some 𝑓 ∈
𝐶([0, 𝜏) : 𝑋), then 𝑓(𝑡) = 0, 𝑡 ∈ [0, 𝜏),

holds.
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The assertions of [346, Proposition 2.5, Proposition 2.6] can be reformulated
for degenerate multi-term problems; the same holds for the generalized variation of
parameters formula [346, Proposition 2.8]:

Theorem 2.3.26. Let 𝐶2 ∈ 𝐿(𝑋) be injective. Suppose ((𝑅0(𝑡))𝑡∈[0,𝜏), . . . ,
(𝑅𝑚𝑛−1(𝑡))𝑡∈[0,𝜏)) is a locally equicontinuous 𝑘-regularized 𝐶2-uniqueness propaga-
tion family for (112), 𝑇 ∈ (0, 𝜏) and 𝑓 ∈ 𝐶([0, 𝑇 ] : 𝑋). Then the following holds:

(i) If 𝑚− 1 < 𝑖, then any strong solution 𝑢(𝑡) of (114) satisfies the equality:

(𝑅𝑖 * 𝑓)(𝑡) = (𝑘 * 𝑔𝑖 * 𝐶2𝐵𝑢)(𝑡) +
∑︁
𝑗∈𝐷𝑖

(𝑔𝛼𝑛−𝛼𝑗+𝑖 * 𝑘 * 𝐶2𝐴𝑗𝑢)(𝑡),

for any 𝑡 ∈ [0, 𝑇 ]. Therefore, there is at most one strong (mild) solution
for (114), provided that 𝑘(𝑡) is a kernel on [0, 𝜏) and (◇) holds.

(ii) If 𝑚− 1 > 𝑖, then any strong solution 𝑢(𝑡) of (114) satisfies the equality:

(𝑅𝑖 * 𝑓)(𝑡) = −
∑︁

𝑗∈N𝑛−1r𝐷𝑖

(𝑔𝛼𝑛−𝛼𝑗+𝑖 * 𝑘 * 𝐶2𝐴𝑗𝑢)(𝑡), 𝑡 ∈ [0, 𝑇 ].

Therefore, there is at most one strong (mild) solution for (114), provided
that 𝑘(𝑡) is a kernel on [0, 𝜏), N𝑛−1 r𝐷𝑖 ̸= ∅ and (◇◇) holds.

As explained in [292, Section 2.10], the notion of a 𝑘-regularized 𝐶1-existence
propagation family is probably the best theoretical concept for the investigation
of integral solutions of non-degenerate abstract time-fractional equation (112) with
𝐴𝑗 ∈ 𝐿(𝐸), 1 6 𝑗 6 𝑛− 1. If 𝐴𝑗 /∈ 𝐿(𝐸) for some 𝑗 ∈ N𝑛−1, then the vector-valued
Laplace transform cannot be so easily applied, which certainly implies that there
exist some limitations to this class of propagation families. A similar problem
appears in the analysis od degenerate multi-term fractional differential equation
(112); because of that, we will only leave as an interesting problem to the reader
to try to reconsider the assertions of [346, Theorem 2.9(i), Theorem 2.10–Theorem
2.12] in our new framework. In contrast to the above, it is very simple to reformulate
the assertion of [346, Theorem 2.9(ii)] to degenerate equations, without imposing
any additional barriers at:

Theorem 2.3.27. Suppose 𝑘(𝑡) satisfies (P1), 𝜔 > max(0, abs(𝑘)), (𝑅𝑖(𝑡))𝑡>0

is strongly continuous, and the family {𝑒−𝜔𝑡𝑅𝑖(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑋) is equicontinu-
ous, provided 0 6 𝑖 6 𝑚𝑛 − 1. Let 𝐶2 ∈ 𝐿(𝑋) be injective. Then ((𝑅0(𝑡))𝑡>0, . . . ,
(𝑅𝑚𝑛−1(𝑡))𝑡>0) is a global 𝑘-regularized 𝐶2-uniqueness propagation family for (112)
iff, for every 𝜆 ∈ C with Re𝜆 > 𝜔, and for every 𝑥 ∈

⋂︀
06𝑗6𝑛𝐷(𝐴𝑗), the following

equality holds:∫︁ ∞

0

𝑒−𝜆𝑡[𝑅𝑖(𝑡)𝐵𝑥− (𝑘 * 𝑔𝑖)(𝑡)𝐶2𝐵𝑥]𝑑𝑡

+
∑︁
𝑗∈𝐷𝑖

𝜆𝛼𝑗−𝛼𝑛

∫︁ ∞

0

𝑒−𝜆𝑡[𝑅𝑖(𝑡)𝑥− (𝑘 * 𝑔𝑖)(𝑡)𝐶2𝐴𝑗𝑥]𝑑𝑡

+
∑︁

𝑗∈N𝑛−1r𝐷𝑖

𝜆𝛼𝑗−𝛼𝑛

∫︁ ∞

0

𝑒−𝜆𝑡𝑅𝑖(𝑡)𝐴𝑗𝑥 𝑑𝑡
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=

{︃
𝜆𝛼−𝛼𝑛

∫︀∞
0
𝑒−𝜆𝑡𝑅𝑖(𝑡)𝐴𝑥𝑑𝑡, 𝑚− 1 < 𝑖,

𝜆𝛼−𝛼𝑛
∫︀∞
0
𝑒−𝜆𝑡[𝑅𝑖(𝑡)𝐴𝑥− (𝑘 * 𝑔𝑖)(𝑡)𝐶2𝐴𝑥]𝑑𝑡, 𝑚− 1 > 𝑖.

Now we would like to present an instructive example of a local 𝑘-regularized
𝐼-resolvent propagation family for (112):

Example 2.3.28. (cf. [346, Example 5.2] for non-degenerate case) Suppose 1 6
𝑝 6∞, 𝐸 := 𝐿𝑝(R), 𝑚 : R → C is measurable, 𝑎𝑗 ∈ 𝐿∞(R), (𝐴𝑗𝑓)(𝑥) := 𝑎𝑗(𝑥)𝑓(𝑥),
𝑥 ∈ R, 𝑓 ∈ 𝐸 (1 6 𝑗 6 𝑛), (𝐴𝑓)(𝑥) := 𝑚(𝑥)𝑓(𝑥), 𝑥 ∈ R, with maximal domain, and
𝛼 = 0. Assume 𝑠 ∈ (1, 2), 𝛿 = 1/𝑠, 𝑀𝑝 = 𝑝!𝑠 and 𝑘𝛿(𝑡) = ℒ−1(exp(−𝜆𝛿))(𝑡), 𝑡 > 0.
Denote by 𝑀(𝑡) the associated function of sequence (𝑀𝑝) and put Λ′

𝛼′,𝛽′,𝛾′ := {𝜆 ∈
C : Re𝜆 > 𝛾′−1𝑀(𝛼′𝜆) + 𝛽′}, 𝛼′, 𝛽′, 𝛾′ > 0. Clearly, there exists a constant 𝐶𝑠 > 0
such that 𝑀(𝜆) 6 𝐶𝑠|𝜆|1/𝑠, 𝜆 ∈ C. Assume that the following condition holds:

(CH): For every 𝜏 > 0, there exist 𝛼′ > 0, 𝛽′ > 0 and 𝑑 > 0 such that
𝜏 6

cos( 𝛿𝜋
2 )

𝐶𝑠(𝛼′)1/𝑠
and⃒⃒⃒⃒ 𝑛∑︁

𝑗=1

𝜆𝛼𝑗−𝛼𝑎𝑗(𝑥)−𝑚(𝑥)

⃒⃒⃒⃒
> 𝑑, 𝑥 ∈ R, 𝜆 ∈ Λ𝛼′,𝛽′,1.

Notice that the above condition holds provided 𝑛 = 2, 𝛼2 = 2, 𝛼1 = 1, 𝑐1 ∈ 𝐿∞(R),
|𝑐1(𝑥)| > 𝑑1 > 0 for a.e. 𝑥 ∈ R, 𝑎2(𝑥) ∈ 𝐿∞(R), 𝑎2(𝑥) = 0, 𝑥 ∈ (−1, 1), 𝑎1(𝑥) =
𝑎2(𝑥)𝑐1(𝑥) and 𝑚(𝑥) = 1

4𝑐
2
1(𝑥)𝑎2(𝑥)− 1

16𝑐
4
1(𝑥)𝑎2(𝑥)−𝑎2(𝑥), 𝑥 ∈ R (cf. [346, (5.7)]),

and that the validity of condition (CH) does not imply, in general, the essential
boundedness of function 𝑚(·) or the injectivity of the operator 𝐵. We will prove
that there exists a global (not exponentially bounded, in general) 𝑘𝛿-regularized 𝐼-
resolvent propagation family ((𝑅0(𝑡))𝑡>0, . . . , (𝑅𝑚𝑛−1(𝑡))𝑡>0) for (112). Clearly, it
suffices to show that, for every 𝜏 > 0, there exists a local 𝑘𝛿-regularized 𝐼-resolvent
propagation family for (112) on [0, 𝜏). Suppose 𝜏 > 0 is given in advance, and
𝛼′ > 0, 𝛽′ > 0 and 𝑑 > 0 satisfy (CH), with this 𝜏 . Let Γ denote the upwards
oriented boundary of ultra-logarithmic region Λ𝛼′,𝛽′,1. Put, for every 𝑡 ∈ [0, 𝜏),
𝑓 ∈ 𝐸 and 𝑥 ∈ R,

(𝑅𝑖(𝑡)𝑓)(𝑥) :=
1

2𝜋𝑖

∫︁
Γ

𝑒𝜆𝑡−𝜆𝛿

[︀
𝜆𝛼𝑛−𝛼−𝑖𝑎𝑛(𝑥) +

∑︀
𝑗∈𝐷𝑖

𝜆𝛼𝑗−𝛼−𝑖𝑎𝑗(𝑥)
]︀
𝑓(𝑥)

𝜆𝛼𝑛−𝛼𝑎𝑛(𝑥) +
∑︀𝑛−1

𝑗=1 𝜆
𝛼𝑗−𝛼𝑎𝑗(𝑥)−𝑚(𝑥)

𝑑𝜆.

Then the analysis contained in [346, Example 5.2] shows that ((𝑅0(𝑡))𝑡∈[0,𝜏), . . . ,
(𝑅𝑚𝑛−1(𝑡))𝑡∈[0,𝜏)) is a local 𝑘𝛿-regularized 𝐼-resolvent propagation family for (112),
as well as that, for every compact set 𝐾 ⊆ [0,∞), there exists ℎ𝐾 > 0 such that

sup
𝑡∈𝐾,𝑝∈N0,𝑖∈N0

𝑚𝑛−1

⃦⃦
ℎ𝑝𝑘

𝑑𝑝

𝑑𝑡𝑝𝑅𝑖(𝑡)
⃦⃦

𝑝!𝑠
<∞.

We can similarly consider the existence of local 𝑘1/2-regularized 𝐼-resolvent prop-
agation families for (112) which obey slight modifications of the properties stated
above with 𝑠 = 2, and with the operators 𝐴𝑗 not belonging to the space 𝐿(𝐸) for
some indexes 𝑗 ∈ N𝑛. Furthermore, we can similarly construct some examples of
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(local) 𝑘-regularized 𝐼-resolvent propagation family for (112) in certain classes of
Fréchet function spaces.

2.3.5. Degenerate 𝑘-regularized (𝐶1, 𝐶2)-existence and uniqueness
families. In this subsection, we assume that 𝑋 and 𝑌 are two Hausdorff sequen-
tially complete locally convex spaces over the field of complex numbers. By ~𝑋

(~, if there is no risk for confusion), we denote the fundamental system of semi-
norms which defines the topology of 𝑋. The fundamental system of seminorms
which defines the topology on 𝑌 is denoted by ~𝑌 . The symbol 𝐼 denotes the
identity operator on 𝑋. Let 0 < 𝜏 6 ∞. A strongly continuous operator family
(𝑊 (𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑌,𝑋) is said to be locally equicontinuous iff, for every 𝑇 ∈ (0, 𝜏)
and for every 𝑝 ∈ ~𝑋 , there exist 𝑞𝑝 ∈ ~𝑌 and 𝑐𝑝 > 0 such that 𝑝(𝑊 (𝑡)𝑦) 6 𝑐𝑝𝑞𝑝(𝑦),
𝑦 ∈ 𝑌 , 𝑡 ∈ [0, 𝑇 ]; the notion of equicontinuity of (𝑊 (𝑡))𝑡∈[0,𝜏) is defined similarly.
Notice that (𝑊 (𝑡))𝑡∈[0,𝜏) is always locally equicontinuous in the case that the space
𝑌 is barreled.

In the following definition, we will generalize the notion introduced in [346,
Definition 3.1] (cf. also R. deLaubenfels [136] and T.-J. Xiao–J. Liang [545] for
some other known concepts in the case 𝐵 = 𝐼).

Definition 2.3.29. Suppose 0 < 𝜏 6 ∞, 𝑘 ∈ 𝐶([0, 𝜏)), 𝐶1 ∈ 𝐿(𝑌,𝑋), and
𝐶2 ∈ 𝐿(𝑋) is injective.

(i) A strongly continuous operator family (𝐸(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑌,𝑋) is said to be
a (local, if 𝜏 <∞) 𝑘-regularized 𝐶1-existence family for (112) iff, for every
𝑦 ∈ 𝑌 , the following holds: 𝐸(·)𝑦 ∈ 𝐶𝑚𝑛−1([0, 𝜏) : [𝐷(𝐵)]), 𝐸(𝑖)(0)𝑦 = 0
for every 𝑖 ∈ N0 with 𝑖 < 𝑚𝑛−1, 𝐴𝑗(𝑔𝛼𝑛−𝛼𝑗

*𝐸(𝑚𝑛−1))(·)𝑦 ∈ 𝐶([0, 𝜏) : 𝑋)
for 0 6 𝑗 6 𝑛, and

𝐵𝐸(𝑚𝑛−1)(𝑡)𝑦 +

𝑛−1∑︁
𝑗=1

𝐴𝑗(𝑔𝛼𝑛−𝛼𝑗
* 𝐸(𝑚𝑛−1))(𝑡)𝑦(116)

−𝐴(𝑔𝛼𝑛−𝛼 * 𝐸(𝑚𝑛−1))(𝑡)𝑦 = 𝑘(𝑡)𝐶1𝑦,

for any 𝑡 ∈ [0, 𝜏).
(ii) A strongly continuous operator family (𝑈(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑋) is said to be

a (local, if 𝜏 < ∞) 𝑘-regularized 𝐶2-uniqueness family for (112) iff, for
every 𝜏 ∈ [0, 𝜏) and 𝑥 ∈

⋂︀
06𝑗6𝑛𝐷(𝐴𝑗), the following holds:

𝑈(𝑡)𝐵𝑥+

𝑛−1∑︁
𝑗=1

(𝑔𝛼𝑛−𝛼𝑗
* 𝑈(·)𝐴𝑗𝑥)(𝑡)(117)

− (𝑔𝛼𝑛−𝛼 * 𝑈(·)𝐴𝑥)(𝑡)𝑦 = (𝑘 * 𝑔𝑚𝑛−1)(𝑡)𝐶2𝑥.

(iii) A strongly continuous family ((𝐸(𝑡))𝑡∈[0,𝜏), (𝑈(𝑡))𝑡∈[0,𝜏)) ⊆ 𝐿(𝑌,𝑋) ×
𝐿(𝑋) is said to be a (local, if 𝜏 <∞) 𝑘-regularized (𝐶1, 𝐶2)-existence and
uniqueness family for (112) iff (𝐸(𝑡))𝑡∈[0,𝜏) is a 𝑘-regularized 𝐶1-existence
family for (112), and (𝑈(𝑡))𝑡∈[0,𝜏) is a 𝑘-regularized 𝐶2-uniqueness family
for (112).
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(iv) Suppose 𝑌 = 𝑋 and 𝐶 = 𝐶1 = 𝐶2. Then a strongly continuous op-
erator family (𝑅(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑋) is said to be a (local, if 𝜏 < ∞) 𝑘-
regularized 𝐶-resolvent family for (112) iff (𝑅(𝑡))𝑡∈[0,𝜏) is a 𝑘-regularized
𝐶-uniqueness family for (112), 𝑅(𝑡)𝐴𝑗 ⊆ 𝐴𝑗𝑅(𝑡), for 0 6 𝑗 6 𝑛 and
𝑡 ∈ [0, 𝜏), as well as 𝑅(𝑡)𝐶 = 𝐶𝑅(𝑡), 𝑡 ∈ [0, 𝜏), and 𝐶𝐴𝑗 ⊆ 𝐴𝑗𝐶, for
0 6 𝑗 6 𝑛.

If 𝑘(𝑡) = 𝑔𝜁+1(𝑡), where 𝜁 > 0, then it is also said that (𝐸(𝑡))𝑡∈[0,𝜏) is a 𝜁-times
integrated 𝐶1-existence family for (112); 0-times integrated 𝐶1-existence family for
(112) is also said to be a 𝐶1-existence family for (112). The above terminological
agreement can be simply understood for all other classes of uniqueness and resolvent
families introduced in Definition 2.3.29.

Albeit the choice of an SCLCS space 𝑌 different from 𝑋 can produce a larger
set of initial data for which the abstract Cauchy problem (112) has a strong solution
(see e.g. [545, Example 2.5]), in our further work the most important case will be
that in which 𝑌 = 𝑋. Keeping in mind that the operators 𝐴, 𝐵, 𝐴1, . . . , 𝐴𝑛−1 are
closed, we can integrate the both sides of (116) sufficiently many times in order to
see that:
(118)

𝐵𝐸(𝑙)(𝑡)𝑦+

𝑛−1∑︁
𝑗=1

𝐴𝑗(𝑔𝛼𝑛−𝛼𝑗 *𝐸(𝑙))(𝑡)𝑦−𝐴(𝑔𝛼𝑛−𝛼 *𝐸(𝑙))(𝑡)𝑦 = (𝑘 * 𝑔𝑚𝑛−1−𝑙)(𝑡)𝐶1𝑦,

for any 𝑡 ∈ [0, 𝜏), 𝑦 ∈ 𝑌 and 𝑙 ∈ N0
𝑚𝑛−1.

Proposition 2.3.30. Suppose that ((𝐸(𝑡))𝑡∈[0,𝜏), (𝑈(𝑡))𝑡∈[0,𝜏)) is a 𝑘-regular-
ized (𝐶1, 𝐶2)-existence and uniqueness family for (112), and (𝑈(𝑡))𝑡∈[0,𝜏) is locally
equicontinuous. Then 𝐶2𝐸(𝑡)𝑦 = 𝑈(𝑡)𝐶1𝑦, 𝑡 ∈ [0, 𝜏), 𝑦 ∈ 𝑌 .

Proof. The proof of proposition is almost the same as the corresponding proof
of [346, Proposition 3.2]. Observe only that we can always assume, without loss of
generality, that the number 𝛼 is less than or equal to 𝛼1. �

Definition 2.3.31. (cf. [346, Definition 3.3]) Suppose 0 6 𝑖 6 𝑚𝑛 − 1. Then
we define 𝐷′

𝑖 := {𝑗 ∈ N0
𝑛−1 : 𝑚𝑗 − 1 > 𝑖}, 𝐷′′

𝑖 := N0
𝑛−1 r𝐷′

𝑖 and

D𝑖 :=

{︂
𝑥 ∈

⋂︁
𝑗∈𝐷′′

𝑖

𝐷(𝐴𝑗) : 𝐴𝑗𝑢𝑖 ∈ 𝑅(𝐶1), 𝑗 ∈ 𝐷′′
𝑖

}︂
.

It is not so predictable that [346, Theorem 3.4] continues to hold in the de-
generate case without any terminological changes, and that the operator 𝐵 does
not appear in the definition of set D𝑖, for which it is well known that represents,
in non-degenerate case, the set which consists of all initial values for which the ho-
mogeneous counterpart of abstract Cauchy problem (112), with 𝐵 = 𝐼 and 𝑢𝑗 = 0,
𝑗 ∈ N0

𝑚𝑛−1 r {𝑖}, has a strong solution (provided that there exists a 𝐶1-existence
family for (112)). It is also worth nothing that we do not use the injectiveness of
the operator 𝐵 in (ii):
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Theorem 2.3.32. (i) Suppose (𝐸(𝑡))𝑡∈[0,𝜏) is a 𝐶1-existence family for
(112), 𝑇 ∈ (0, 𝜏), and 𝑢𝑖 ∈ D𝑖 for 0 6 𝑖 6 𝑚𝑛 − 1. Then the function

𝑢(𝑡) =

𝑚𝑛−1∑︁
𝑖=0

𝑢𝑖𝑔𝑖+1(𝑡)−
𝑚𝑛−1∑︁
𝑖=0

∑︁
𝑗∈N𝑛−1r𝐷𝑖

(𝑔𝛼𝑛−𝛼𝑗
* 𝐸(𝑚𝑛−1−𝑖))(𝑡)𝑣𝑖,𝑗(119)

+

𝑚𝑛−1∑︁
𝑖=𝑚

(𝑔𝛼𝑛−𝛼 * 𝐸(𝑚𝑛−1−𝑖))(𝑡)𝑣𝑖,0, 0 6 𝑡 6 𝑇,

is a strong solution of the problem (112) on [0, 𝑇 ], with 𝑓(𝑡) ≡ 0, where
𝑣𝑖,𝑗 ∈ 𝑌 satisfy 𝐴𝑗𝑢𝑖 = 𝐶1𝑣𝑖,𝑗 for 0 6 𝑗 6 𝑛− 1.

(ii) Suppose (𝑈(𝑡))𝑡∈[0,𝜏) is a locally equicontinuous 𝑘-regularized 𝐶2-unique-
ness family for (112), and 𝑇 ∈ (0, 𝜏). Then there exists at most one
strong (mild) solution of (112) on [0, 𝑇 ], with 𝑢𝑖 = 0, 𝑖 ∈ N0

𝑚𝑛−1.

Proof. We will provide all the relevant details for the sake of completeness.
Making use of (118), it can be easily verified that:

𝐵

[︂
𝑢(·)−

𝑚𝑛−1∑︁
𝑖=0

𝑢𝑖𝑔𝑖+1(·)
]︂
+

𝑛−1∑︁
𝑗=1

𝐴𝑗

(︂
𝑔𝛼𝑛−𝛼𝑗

*
[︂
𝑢(·)−

𝑚𝑗−1∑︁
𝑖=0

𝑢𝑖𝑔𝑖+1(·)
]︂)︂

= −
𝑚𝑛−1∑︁
𝑖=0

∑︁
𝑗∈N𝑛−1r𝐷𝑖

(𝑔𝛼𝑛−𝛼𝑗 *𝐵𝐸(𝑚𝑛−1−𝑖))(·)𝑣𝑖,𝑗

+

𝑚𝑛−1∑︁
𝑖=𝑚

(𝑔𝛼𝑛−𝛼 *𝐵𝐸(𝑚𝑛−1−𝑖))(·)𝑣𝑖,0

+

𝑛−1∑︁
𝑗=1

𝐴𝑗

(︂
𝑔𝛼𝑛−𝛼𝑗 *

{︂𝑚𝑛−1∑︁
𝑖=𝑚𝑗

𝑔𝑖+1(·)𝑢𝑖 −
𝑚𝑛−1∑︁
𝑖=0

∑︁
𝑙∈N𝑛−1r𝐷𝑖

(𝑔𝛼𝑛−𝛼𝑙
* 𝐸(𝑚𝑛−1−𝑖))(·)𝑣𝑖,𝑙

+

𝑚𝑛−1∑︁
𝑖=𝑚

(𝑔𝛼𝑛−𝛼 * 𝐸(𝑚𝑛−1−𝑖))(·)𝑣𝑖,0
}︂)︂

= −
𝑚𝑛−1∑︁
𝑖=0

∑︁
𝑗∈N𝑛−1r𝐷𝑖

(𝑔𝛼𝑛−𝛼𝑗 *𝐵𝐸(𝑚𝑛−1−𝑖))(·)𝑣𝑖,𝑗

+

𝑚𝑛−1∑︁
𝑖=𝑚

(𝑔𝛼𝑛−𝛼 *𝐵𝐸(𝑚𝑛−1−𝑖))(·)𝑣𝑖,0

+

𝑛−1∑︁
𝑗=1

𝑚𝑛−1∑︁
𝑖=𝑚𝑗

𝐶1𝑣𝑖,𝑗𝑔𝛼𝑛−𝛼𝑗+𝑖+1(·)−
𝑚𝑛−1∑︁
𝑖=0

∑︁
𝑙∈N𝑛−1r𝐷𝑖

𝑔𝛼𝑛−𝛼𝑙
* [−𝐵𝐸(𝑚𝑛−1−𝑖)(·)𝑣𝑖,𝑙

+𝐴(𝑔𝛼𝑛−𝛼 * 𝐸(𝑚𝑛−1−𝑖))(·)𝑣𝑖,𝑙 + 𝑔𝑖+1(·)𝐶1𝑣𝑖,𝑙]

+

𝑚𝑛−1∑︁
𝑖=𝑚

𝑔𝛼𝑛−𝛼 * [−𝐵𝐸(𝑚𝑛−1−𝑖)(·)𝑣𝑖,0
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+𝐴(𝑔𝛼𝑛−𝛼 *𝑅(𝑚𝑛−1−𝑖))(·)𝑣𝑖,0 + 𝑔𝑖+1(·)𝐶1𝑣𝑖,0]

= 𝑔𝛼𝑛−𝛼 *𝐴
[︂
𝑢(·)−

𝑚−1∑︁
𝑖=0

𝑢𝑖𝑔𝑖+1(·)
]︂
,

since
𝑛−1∑︁
𝑗=1

𝑚𝑛−1∑︁
𝑖=𝑚𝑗

𝐶1𝑣𝑖,𝑗𝑔𝛼𝑛−𝛼𝑗+𝑖+1(·) =
𝑚𝑛−1∑︁
𝑖=0

∑︁
𝑗∈N𝑛−1r𝐷𝑖

𝐶1𝑣𝑖,𝑗𝑔𝛼𝑛−𝛼𝑗+𝑖+1(·).

This implies that 𝑢(𝑡) is a mild solution of (112) on [0, 𝑇 ]. In order to complete
the proof of (i), it suffices to show that D𝛼𝑛

𝑡 𝑢(𝑡) ∈ 𝐶([0, 𝑇 ] : 𝑋) and 𝐴𝑖D
𝛼𝑖
𝑡 𝑢 ∈

𝐶([0, 𝑇 ] : 𝑋) for all 𝑖 ∈ N0
𝑛. Towards this end, notice that the partial integration

implies that, for every 𝑡 ∈ [0, 𝑇 ],

𝑔𝑚𝑛−𝛼𝑛 *
[︂
𝑢(·)−

𝑚𝑛−1∑︁
𝑖=0

𝑢𝑖𝑔𝑖+1(·)
]︂
(𝑡) =

𝑚𝑛−1∑︁
𝑖=𝑚

(𝑔𝑚𝑛−𝛼+𝑖 * 𝐸(𝑚𝑛−1))(𝑡)𝑣𝑖,0

−
𝑚𝑛−1∑︁
𝑖=0

∑︁
𝑗∈N𝑛−1r𝐷𝑖

(𝑔𝑚𝑛−𝛼𝑗+𝑖 * 𝐸(𝑚𝑛−1))(𝑡)𝑣𝑖,𝑗 .

Therefore, D𝛼𝑛
𝑡 𝑢 ∈ 𝐶([0, 𝑇 ] : 𝑋) and, for every 𝑡 ∈ [0, 𝑇 ],

D𝛼𝑛
𝑡 𝑢(𝑡) =

𝑑𝑚𝑛

𝑑𝑡𝑚𝑛

{︂
𝑔𝑚𝑛−𝛼𝑛 *

[︂
𝑢(·)−

𝑚𝑛−1∑︁
𝑖=0

𝑢𝑖𝑔𝑖+1(·)
]︂
(𝑡)

}︂
(120)

=

𝑚𝑛−1∑︁
𝑖=𝑚

(𝑔𝑖−𝛼 * 𝐸(𝑚𝑛−1))(𝑡)𝑣𝑖,0 −
𝑚𝑛−1∑︁
𝑖=0

∑︁
𝑗∈N𝑛−1r𝐷𝑖

(𝑔𝑖−𝛼𝑗 * 𝐸(𝑚𝑛−1))(𝑡)𝑣𝑖,𝑗 ,

whence we may directly conclude that 𝐵D𝛼𝑛
𝑡 𝑢 ∈ 𝐶([0, 𝑇 ] : 𝑋). Suppose, for the

time being, 𝑖 ∈ N0
𝑛−1. Then 𝐴𝑖𝑢𝑗 ∈ 𝑅(𝐶1) for 𝑗 > 𝑚𝑖. Moreover, the inequality

𝑙 > 𝛼𝑗 holds provided 0 6 𝑙 6 𝑚𝑛 − 1 and 𝑗 ∈ N𝑛−1 r 𝐷𝑙, and 𝐴𝑗(𝑔𝛼𝑛−𝛼𝑗 *
𝐸(𝑚𝑛−1))(·)𝑦 ∈ 𝐶([0, 𝑇 ] : 𝑋) for 0 6 𝑗 6 𝑛− 1 and 𝑦 ∈ 𝑌 . Using (120), we have:

𝐴𝑖D
𝛼𝑖
𝑡 𝑢(·) =

𝑚𝑛−1∑︁
𝑗=𝑚𝑖

𝑔𝑗+1−𝛼𝑖
(·)𝐴𝑖𝑢𝑗

−
𝑚𝑛−1∑︁
𝑙=0

∑︁
𝑗∈N𝑛−1r𝐷𝑙

[𝑔𝑙−𝛼𝑗
*𝐴𝑖(𝑔𝛼𝑛−𝛼𝑖

* 𝐸(𝑚𝑛−1))](·)𝑣𝑙,𝑗

+

𝑚𝑛−1∑︁
𝑙=𝑚

[𝑔𝑙−𝛼 *𝐴𝑖(𝑔𝛼𝑛−𝛼𝑖
* 𝐸(𝑚𝑛−1))](·)𝑣𝑙,0 ∈ 𝐶([0, 𝑇 ] : 𝑋),

finishing the proof of (i). The second part of theorem can be proved as follows.
Suppose 𝑢(𝑡) is a strong solution of (112) on [0, 𝑇 ], with 𝑢𝑖 = 0, 𝑖 ∈ N0

𝑚𝑛−1. Making
use of (117) and the equality∫︁ 𝑡

0

∫︁ 𝑡−𝑠

0

𝑔𝛼𝑛−𝛼𝑗 (𝑟)𝑈(𝑡−𝑠−𝑟)𝐴𝑗𝑢(𝑠)𝑑𝑟 𝑑𝑠 =

∫︁ 𝑡

0

∫︁ 𝑠

0

𝑔𝛼𝑛−𝛼𝑗 (𝑟)𝑈(𝑡−𝑠)𝐴𝑗𝑢(𝑠−𝑟)𝑑𝑟 𝑑𝑠,



2.3. DEGENERATE MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATIONS... 139

holding for any 𝑡 ∈ [0, 𝑇 ] and 𝑗 ∈ N0
𝑛−1, imply that

(𝑈𝐵 * 𝑢)(𝑡) = (𝑘 * 𝑔𝑚𝑛−1𝐶2 * 𝑢)(𝑡)

+

∫︁ 𝑡

0

∫︁ 𝑡−𝑠

0

[𝑔𝛼𝑛−𝛼𝑗 (𝑟)𝑈(𝑡− 𝑠− 𝑟)𝐴𝑗𝑢(𝑠)− 𝑔𝛼𝑛−𝛼(𝑟)𝑈(𝑡− 𝑠− 𝑟)𝐴𝑢(𝑠)]𝑑𝑟 𝑑𝑠

= (𝑘 * 𝑔𝑚𝑛−1𝐶2 * 𝑢)(𝑡) + (𝑈 *𝐵𝑢)(𝑡), 𝑡 ∈ [0, 𝑇 ].

Therefore, (𝑘 * 𝑔𝑚𝑛−1𝐶2 * 𝑢)(𝑡) = 0, 𝑡 ∈ [0, 𝑇 ] and 𝑢(𝑡) = 0, 𝑡 ∈ [0, 𝑇 ]. �

The standard proof of following theorem is omitted.

Theorem 2.3.33. Suppose 𝑘(𝑡) satisfies (P1), (𝐸(𝑡))𝑡>0⊆𝐿(𝑌,𝑋), (𝑈(𝑡))𝑡>0⊆
𝐿(𝑋), 𝜔 > max(0, abs(𝑘)), 𝐶1 ∈ 𝐿(𝑌,𝑋) and 𝐶2 ∈ 𝐿(𝑋) is injective. Set P𝜆 :=

𝐵 +
∑︀𝑛−1

𝑗=1 𝜆
𝛼𝑗−𝛼𝑛𝐴𝑗 − 𝜆𝛼−𝛼𝑛𝐴, 𝜆 ∈ Cr {0}.

(i) (a) Let (𝐸(𝑡))𝑡>0 be a 𝑘-regularized 𝐶1-existence family for (112), let
the family {𝑒−𝜔𝑡𝐸(𝑡) : 𝑡 > 0} be equicontinuous, and let the family
{𝑒−𝜔𝑡𝐴𝑗(𝑔𝛼𝑛−𝛼𝑗

*𝐸)(𝑡) : 𝑡 > 0} be equicontinuous (0 6 𝑗 6 𝑛). Then
the following holds:

P𝜆

∫︁ ∞

0

𝑒−𝜆𝑡𝐸(𝑡)𝑦 𝑑𝑡 = 𝑘(𝜆)𝜆1−𝑚𝑛𝐶1𝑦, 𝑦 ∈ 𝑌, Re𝜆 > 𝜔.

(b) Let the operator P𝜆 be injective for every 𝜆 > 𝜔 with 𝑘(𝜆) ̸= 0.
Suppose, additionally, that there exist strongly continuous operator
families (𝑊 (𝑡))𝑡>0 ⊆ 𝐿(𝑌,𝑋) and (𝑊𝑗(𝑡))𝑡>0 ⊆ 𝐿(𝑌,𝑋) such that
{𝑒−𝜔𝑡𝑊 (𝑡) : 𝑡 > 0} and {𝑒−𝜔𝑡𝑊𝑗(𝑡) : 𝑡 > 0} are equicontinuous
(0 6 𝑗 6 𝑛) as well as that:∫︁ ∞

0

𝑒−𝜆𝑡𝑊 (𝑡)𝑦 𝑑𝑡 = 𝑘(𝜆)P−1
𝜆 𝐶1𝑦

and ∫︁ ∞

0

𝑒−𝜆𝑡𝑊𝑗(𝑡)𝑦 𝑑𝑡 = 𝑘(𝜆)𝜆𝛼𝑗−𝛼𝑛𝐴𝑗P
−1
𝜆 𝐶1𝑦,

for every 𝜆 ∈ C with Re𝜆 > 𝜔 and 𝑘(𝜆) ̸= 0, 𝑦 ∈ 𝑌 and 𝑗 ∈
N0

𝑛. Then there exists a 𝑘-regularized 𝐶1-existence family for (112),
denoted by (𝐸(𝑡))𝑡>0. Furthermore, 𝐸(𝑚𝑛−1)(𝑡)𝑦 = 𝑊 (𝑡)𝑦, 𝑡 > 0,
𝑦 ∈ 𝑌 and 𝐴𝑗(𝑔𝛼𝑛−𝛼𝑗

* 𝐸(𝑚𝑛−1))(𝑡)𝑦 = 𝑊𝑗(𝑡)𝑦, 𝑡 > 0, 𝑦 ∈ 𝑌 ,
𝑗 ∈ N0

𝑛−1.
(ii) Suppose (𝑈(𝑡))𝑡>0 is strongly continuous and the operator family

{𝑒−𝜔𝑡𝑈(𝑡) : 𝑡 > 0} is equicontinuous. Then (𝑈(𝑡))𝑡>0 is a 𝑘-regularized
𝐶2-uniqueness family for (112) iff, for every 𝑥 ∈

⋂︀𝑛
𝑗=0𝐷(𝐴𝑗), the follow-

ing holds:∫︁ ∞

0

𝑒−𝜆𝑡𝑈(𝑡)P𝜆𝑥 𝑑𝑡 = 𝑘(𝜆)𝜆1−𝑚𝑛𝐶2𝑥, Re𝜆 > 𝜔.
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The assertion of [346, Theorem 3.7], concerning the inhomogeneous Cauchy
problem (112), can be stated for degenerate multi-term problems without any ter-
minological changes, as well:

Theorem 2.3.34. Suppose (𝐸(𝑡))𝑡∈[0,𝜏) is a locally equicontinuous 𝐶1-existence
family for (112), 𝑇 ∈ (0, 𝜏), and 𝑢𝑖 ∈ D𝑖 for 0 6 𝑖 6 𝑚𝑛−1. Let 𝑓 ∈ 𝐶([0, 𝑇 ] : 𝑋),
let 𝑔 ∈ 𝐶([0, 𝑇 ] : 𝑌 ) satisfy 𝐶1𝑔(𝑡) = 𝑓(𝑡), 𝑡 ∈ [0, 𝑇 ], and let 𝐺 ∈ 𝐶([0, 𝑇 ] : 𝑌 )
satisfy (𝑔𝛼𝑛−𝑚𝑛+1 * 𝑔)(𝑡) = (𝑔1 *𝐺)(𝑡), 𝑡 ∈ [0, 𝑇 ]. Then the function

(121) 𝑢(𝑡) =

𝑚𝑛−1∑︁
𝑖=0

𝑢𝑖𝑔𝑖+1(𝑡)−
𝑚𝑛−1∑︁
𝑖=0

∑︁
𝑗∈N𝑛−1r𝐷𝑖

(𝑔𝛼𝑛−𝛼𝑗 * 𝐸(𝑚𝑛−1−𝑖))(𝑡)𝑣𝑖,𝑗

+

𝑚𝑛−1∑︁
𝑖=𝑚

(𝑔𝛼𝑛−𝛼 * 𝐸(𝑚𝑛−1−𝑖))(𝑡)𝑣𝑖,0 +

∫︁ 𝑡

0

𝐸(𝑡− 𝑠)𝐺(𝑠)𝑑𝑠, 0 6 𝑡 6 𝑇,

is a mild solution of the problem (113) on [0, 𝑇 ], where 𝑣𝑖,𝑗 ∈ 𝑌 satisfy 𝐴𝑗𝑢𝑖 =

𝐶1𝑣𝑖,𝑗 for 0 6 𝑗 6 𝑛−1. If, additionally, 𝑔∈𝐶1([0, 𝑇 ] : 𝑌 ) and (𝐸(𝑚𝑛−1)(𝑡))𝑡∈[0,𝜏)⊆
𝐿(𝑌,𝑋) is locally equicontinuous, then the solution 𝑢(𝑡), given by (121), is a strong
solution of (112) on [0, 𝑇 ].

Contrary to the assertion of [346, Theorem 3.7], the final conclusions of [346,
Remark 3.8] cannot be proved for degenerate equations without imposing some
additional conditions.

Concerning the action of subordination principles, we can state the following
analogue of [346, Theorem 4.1] for degenerate multi-term problems (the final con-
clusions of [346, Remark 4.2] can be restated in our new setting, too).

Theorem 2.3.35. Suppose 𝐶1 ∈ 𝐿(𝑌,𝑋), 𝐶2 ∈ 𝐿(𝑋) is injective and
𝛾 ∈ (0, 1).

(i) Let 𝜔 > max(0, abs(𝑘)), and let the assumptions of Theorem 2.3.33(i)–(b)
hold. Put

(122) 𝑊𝛾(𝑡) :=

∫︁ ∞

0

𝑡−𝛾Φ𝛾(𝑡
−𝛾𝑠)𝑊 (𝑠)𝑦 𝑑𝑠, 𝑡 > 0, 𝑦 ∈ 𝑌 and 𝑊𝛾(0) :=𝑊 (0).

Define, for every 𝑗 ∈ N0
𝑛 and 𝑡 > 0, 𝑊𝑗,𝛾(𝑡) by replacing 𝑊 (𝑡) in (122)

with 𝑊𝑗(𝑡). Suppose that there exist a number 𝜈 > 0 and a continuous ker-
nel 𝑘𝛾(𝑡) on [0,∞) satisfying (P1) and ̃︁𝑘𝛾(𝜆) = 𝜆𝛾−1𝑘(𝜆𝛾), 𝜆 > 𝜈. Then
there exists an exponentially equicontinuous 𝑘𝛾-regularized 𝐶1-existence
family (𝐸𝛾(𝑡))𝑡>0 for (112), with 𝛼𝑗 replaced by 𝛼𝑗𝛾 therein (0 6 𝑗 6 𝑛).
Furthermore, the family {(1+𝑡⌈𝛼𝑛𝛾⌉−2)−1𝑒−𝜔1/𝛾𝑡𝐸𝛾(𝑡) : 𝑡 > 0} is equicon-
tinuous.

(ii) Suppose (𝑈(𝑡))𝑡>0 is a 𝑘-regularized 𝐶2-uniqueness family for (112), and
the family {𝑒−𝜔𝑡𝑈(𝑡) : 𝑡 > 0} is equicontinuous. Define, for every 𝑡 >
0, 𝑈𝛾(𝑡) by replacing 𝑊 (𝑡) in (122) with 𝑈(𝑡). Suppose that there ex-
ist a number 𝜈 > 0 and a continuous kernel 𝑘𝛾(𝑡) on [0,∞) satisfying
(P1) and ̃︁𝑘𝛾(𝜆) = 𝜆𝛾(2−𝑚𝑛)−2+⌈𝛼𝑛𝛾⌉𝑘(𝜆𝛾), 𝜆 > 𝜈. Then there exists a
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𝑘𝛾-regularized 𝐶2-uniqueness family for (112), with 𝛼𝑗 replaced by 𝛼𝑗𝛾

therein (0 6 𝑗 6 𝑛). Furthermore, the family {𝑒−𝜔1/𝛾𝑡𝑈𝛾(𝑡) : 𝑡 > 0} is
equicontinuous.

Of importance is the following abstract degenerate Volterra equation:

(123) 𝐵𝑢(𝑡) = 𝑓(𝑡) +

𝑛−1∑︁
𝑗=0

(𝑎𝑗 *𝐴𝑗𝑢)(𝑡), 𝑡 ∈ [0, 𝜏),

where 0 < 𝜏 6 ∞, 𝑓 ∈ 𝐶([0, 𝜏) : 𝑋), 𝑎0, . . . , 𝑎𝑛−1 ∈ 𝐿1
𝑙𝑜𝑐([0, 𝜏)), and 𝐴 =

𝐴0, . . . , 𝐴𝑛−1, 𝐵 are closed linear operators on 𝑋. By a mild solution, resp. strong
solution, of (123), we mean any function 𝑢 ∈ 𝐶([0, 𝜏) : [𝐷(𝐵)]) such that 𝐴𝑗(𝑎𝑗 *
𝑢)(𝑡) ∈ 𝐶([0, 𝜏) : 𝑋), 𝑗 ∈ N0

𝑛−1 and

𝐵𝑢(𝑡) = 𝑓(𝑡) +

𝑛−1∑︁
𝑗=0

𝐴𝑗(𝑎𝑗 * 𝑢)(𝑡), 𝑡 ∈ [0, 𝜏),

resp. any function 𝑢 ∈ 𝐶([0, 𝜏) : [𝐷(𝐵)]) such that 𝑢(𝑡) ∈
⋂︀𝑛−1

𝑗=0 𝐷(𝐴𝑗), 𝑡 ∈ [0, 𝜏),
the mapping 𝑡 ↦→ 𝐴𝑗𝑢(𝑡), 𝑡 ∈ [0, 𝜏) is continuous for 𝑗 ∈ N0

𝑛−1, and (123) holds.
The following definition plays a crucial role in our investigation of problem

(123).

Definition 2.3.36. (cf. [346, Definition 4.3] for the case 𝐵 = 𝐼) Suppose
0 < 𝜏 6∞, 𝑘 ∈ 𝐶([0, 𝜏)), 𝐶1 ∈ 𝐿(𝑌,𝑋), and 𝐶2 ∈ 𝐿(𝑋) is injective.

(i) A strongly continuous operator family (𝐸(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑌, [𝐷(𝐵)]) is said
to be a (local, if 𝜏 <∞) 𝑘-regularized 𝐶1-existence family for (123) iff

𝐵𝐸(𝑡)𝑦 = 𝑘(𝑡)𝐶1𝑦 +

𝑛−1∑︁
𝑗=0

𝐴𝑗(𝑎𝑗 * 𝐸)(𝑡)𝑦, 𝑡 ∈ [0, 𝜏), 𝑦 ∈ 𝑌.

(ii) A strongly continuous operator family (𝑈(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑋) is said to be
a (local, if 𝜏 <∞) 𝑘-regularized 𝐶2-uniqueness family for (123) iff

𝑈(𝑡)𝐵𝑥 = 𝑘(𝑡)𝐶2𝑥+

𝑛−1∑︁
𝑗=0

(𝑎𝑗 *𝐴𝑗𝑈)(𝑡)𝑥, 𝑡 ∈ [0, 𝜏), 𝑥 ∈
𝑛⋂︁

𝑗=0

𝐷(𝐴𝑗).

As in non-degenerate case, we have the following:
(i) Suppose (𝐸(𝑡))𝑡∈[0,𝜏) is a 𝑘-regularized 𝐶1-existence family for (123).

Then, for every 𝑦 ∈ 𝑌 , the function 𝑢(𝑡) = 𝐸(𝑡)𝑦, 𝑡 ∈ [0, 𝜏) is a mild
solution of (123) with 𝑓(𝑡) = 𝑘(𝑡)𝐶1𝑦, 𝑡 ∈ [0, 𝜏).

(ii) Let (𝑈(𝑡))𝑡∈[0,𝜏) be a locally equicontinuous 𝑘-regularized 𝐶2-uniqueness
family for (123). Then there exists at most one mild (strong) solution
of (123).

The most important structural properties of 𝑘-regularized 𝐶1-existence fami-
lies for (123) and 𝑘-regularized 𝐶2-uniqueness families for (123) are stated in the
following analogue of Theorem 2.3.33.
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Theorem 2.3.37. Suppose 𝑘(𝑡) and |𝑎0|(𝑡), . . . , |𝑎𝑛−1|(𝑡) satisfy (P1),
(𝐸(𝑡))𝑡>0 ⊆ 𝐿(𝑌,𝑋), (𝑈(𝑡))𝑡>0 ⊆ 𝐿(𝑋), 𝜔 > max(0, abs(𝑘), abs(|𝑎0|), . . . ,
abs(|𝑎𝑛−1|)), 𝐶1 ∈ 𝐿(𝑌,𝑋) and 𝐶2 ∈ 𝐿(𝑋) is injective. Set

𝒫𝜆 := 𝐵 −
𝑛−1∑︁
𝑗=0

̃︀𝑎𝑗(𝜆)𝐴𝑗 , Re𝜆 > 𝜔.

(i) (a) Let (𝐸(𝑡))𝑡>0 be a 𝑘-regularized 𝐶1-existence family for (123), let the
family {𝑒−𝜔𝑡𝐸(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑌, [𝐷(𝐵)]) be equicontinuous, and let
the family {𝑒−𝜔𝑡𝐴𝑗(𝑎𝑗 * 𝐸)(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑌,𝑋) be equicontinuous
(0 6 𝑗 6 𝑛− 1). Then the following holds:

𝒫𝜆

∫︁ ∞

0

𝑒−𝜆𝑡𝐸(𝑡)𝑦 𝑑𝑡 = 𝑘(𝜆)𝐶1𝑦, 𝑦 ∈ 𝑌, Re𝜆 > 𝜔.

(b) Let the operator 𝒫𝜆 be injective for every 𝜆 > 𝜔 with 𝑘(𝜆) ̸= 0. Sup-
pose, additionally, that there exist strongly continuous operator fam-
ilies (𝐸(𝑡))𝑡>0 ⊆ 𝐿(𝑌,𝑋), (𝐸𝐵(𝑡))𝑡>0 ⊆ 𝐿(𝑌,𝑋), and (𝐸𝑗(𝑡))𝑡>0 ⊆
𝐿(𝑌,𝑋) such that the operator families {𝑒−𝜔𝑡𝐸(𝑡) : 𝑡 > 0},
{𝑒−𝜔𝑡𝐸𝐵(𝑡) : 𝑡 > 0}, and {𝑒−𝜔𝑡𝐸𝑗(𝑡) : 𝑡 > 0} are equicontinuous
(0 6 𝑗 6 𝑛− 1) as well as that:∫︁ ∞

0

𝑒−𝜆𝑡𝐸(𝑡)𝑦 𝑑𝑡 = 𝑘(𝜆)𝒫−1
𝜆 𝐶1𝑦,

∫︁ ∞

0

𝑒−𝜆𝑡𝐸𝐵(𝑡)𝑦 𝑑𝑡 = 𝑘(𝜆)𝐵𝒫−1
𝜆 𝐶1𝑦

and ∫︁ ∞

0

𝑒−𝜆𝑡𝐸𝑗(𝑡)𝑦 𝑑𝑡 = 𝑘(𝜆) ̃︀𝑎𝑗(𝜆)𝐴𝑗𝒫−1
𝜆 𝐶1𝑦,

for every 𝜆 > 𝜔 with 𝑘(𝜆) ̸= 0, 𝑦 ∈ 𝑌 and 𝑗 ∈ N0
𝑛−1. Then

(𝐸(𝑡))𝑡>0 is a 𝑘-regularized 𝐶1-existence family for (123). Further-
more, 𝐵𝐸(𝑡)𝑦 = 𝐸𝐵(𝑡)𝑦, 𝑡 > 0, 𝑦 ∈ 𝑌 and 𝐴𝑗(𝑎𝑗 * 𝐸)(𝑡)𝑦 = 𝐸𝑗(𝑡)𝑦,
𝑡 > 0, 𝑦 ∈ 𝑌 , 𝑗 ∈ N0

𝑛−1.
(ii) Suppose (𝑈(𝑡))𝑡>0 is strongly continuous and the operator family

{𝑒−𝜔𝑡𝑈(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑋) is equicontinuous. Then (𝑈(𝑡))𝑡>0 is a 𝑘-
regularized 𝐶2-uniqueness family for (123) iff, for every 𝑥 ∈

⋂︀𝑛
𝑗=0𝐷(𝐴𝑗),

the following holds:∫︁ ∞

0

𝑒−𝜆𝑡𝑈(𝑡)𝒫𝜆𝑥 𝑑𝑡 = 𝑘(𝜆)𝐶2𝑥, Re𝜆 > 𝜔.

The proof of following subordination principle is standard and therefore omit-
ted; observe that we correct here some inconsistencies made in the formulation
of [346, Theorem 4.4].

Theorem 2.3.38. (i) Suppose that the requirements of Theorem 2.3.37
(i)–(b) hold. Let 𝑐(𝑡) be completely positive, let 𝑐(𝑡), 𝑘(𝑡), 𝑘1(𝑡), |𝑎0|(𝑡), . . . ,
|𝑎𝑛−1|(𝑡) and |𝑏0|(𝑡), . . . , |𝑏𝑛−1|(𝑡) satisfy (P1), and let 𝜔0 > 0 be such that,
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for every 𝜆 > 𝜔0 with 𝑐(𝜆) ̸= 0 and 𝑘(1/𝑐(𝜆)) ̸= 0, the following holds:

(124) ̃︀𝑎𝑗(1/𝑐(𝜆)) = ̃︀𝑏𝑗(𝜆), 𝑗 ∈ N0
𝑛−1 and ̃︀𝑘1(𝜆) = 1

𝜆𝑐(𝜆)
̃︀𝑘(1/𝑐(𝜆)).

Then for each 𝑟 ∈ (0, 1] there exists a locally Hölder continuous (with
exponent 𝑟), exponentially equicontinuous (𝑘1*𝑔𝑟)-regularized 𝐶1-existence
family for

(125) 𝐵𝑢(𝑡) = 𝑓(𝑡) +

𝑛−1∑︁
𝑗=0

(𝑏𝑗 *𝐴𝑗𝑢)(𝑡), 𝑡 ∈ [0, 𝜏).

(ii) Suppose that the requirements of Theorem 2.3.37(ii) hold. Let 𝑐(𝑡) be com-
pletely positive, let 𝑐(𝑡), 𝑘(𝑡), 𝑘1(𝑡), |𝑎0|(𝑡), . . . , |𝑎𝑛−1|(𝑡) and |𝑏0|(𝑡), . . . ,
|𝑏𝑛−1|(𝑡) satisfy (P1), and let 𝜔0 > 0 be such that, for every 𝜆 > 𝜔0

with 𝑐(𝜆) ̸= 0 and 𝑘(1/𝑐(𝜆)) ̸= 0, (124) holds. Then for each 𝑟 ∈ (0, 1]
there exists a locally Hölder continuous (with exponent 𝑟), exponentially
equicontinuous (𝑘1 * 𝑔𝑟)-regularized 𝐶2-uniqueness family for (125).

The interested reader may try to transfer the final conclusions of [347, Theorem
2.1, Theorem 2.2, Remark 2.1, Proposition 2.1] to degenerate multi-term fractional
differential equations. Concerning [347, Theorem 2.3], we first need to introduce
the following notion.

Definition 2.3.39. A strongly continuous operator family (𝑈(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑋)
is said to be a (local, if 𝜏 < ∞) (𝑘,𝐶2)-uniqueness family for (112) iff, for every
𝑡 ∈ [0, 𝜏) and 𝑥 ∈

⋂︀
06𝑗6𝑛𝐷(𝐴𝑗), the following holds:

𝑈(𝑡)𝐵𝑥+

𝑛−1∑︁
𝑗=1

(𝑔𝛼𝑛−𝛼𝑗
* 𝑈(·)𝐴𝑗𝑥)(𝑡)− (𝑔𝛼𝑛−𝛼 * 𝑈(·)𝐴𝑥)(𝑡)𝑥 = 𝑘(𝑡)𝐶2𝑥.

Then it is clear that for any strongly continuous operator family (𝑈(𝑡))𝑡∈[0,𝜏)

the following equivalence relation holds: (𝑈(𝑡))𝑡∈[0,𝜏) is a (local) (𝑘 * 𝑔𝑚𝑛−1, 𝐶2)-
uniqueness family for (112) iff (𝑈(𝑡))𝑡∈[0,𝜏) is a (local) 𝑘-regularized 𝐶2-uniqueness
family for (112).

Consider now the perturbed equation:

(126)
𝐵D𝛼𝑛

𝑡 𝑢(𝑡) +

𝑛−1∑︁
𝑖=1

(𝐴𝑖 + 𝐹𝑖)D
𝛼𝑖
𝑡 𝑢(𝑡) = (𝐴+ 𝐹 )D𝛼

𝑡 𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0;

𝑢(𝑗)(0) = 𝑢𝑗 , 𝑗 = 0, . . . , ⌈𝛼𝑛⌉ − 1,

where 𝐹𝑖 ∈ 𝐿(𝑋) for 0 6 𝑖 6 𝑛 − 1 and 𝐹0 ≡ 𝐹 . A similar line of reasoning
as in the proof of [347, Theorem 2.3] shows that the following result about the
𝐶-wellposedness of problem (126) holds good (observe that the employed method
is based on the arguments contained in the proof of [459, Theorem 6.1], which
does not work any longer if we replace the term 𝐵D𝛼𝑛

𝑡 𝑢(𝑡), in (126), with (𝐵 +
𝐹𝑛)D

𝛼𝑛
𝑡 𝑢(𝑡)):
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Theorem 2.3.40. (i) Suppose 𝑌 = 𝑋, (𝐸(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑋) is a (local)
𝐶1-existence family for (112), 𝐸𝑗 ∈ 𝐿(𝑋) and 𝐹𝑗 = 𝐶1𝐸𝑗 (𝑗 ∈ N0

𝑛−1).
Suppose that the following conditions hold:
(a) For every 𝑝 ∈ ~𝑋 and for every 𝑇 ∈ (0, 𝜏), there exists 𝑐𝑝,𝑇 > 0 such

that

𝑝(𝐸(𝑚𝑛−1)(𝑡)𝑥) 6 𝑐𝑝,𝑇 𝑝(𝑥), 𝑥 ∈ 𝑋, 𝑡 ∈ [0, 𝑇 ].

(b) For every 𝑝 ∈ ~𝑋 , there exists 𝑐𝑝 > 0 such that

𝑝(𝐸𝑗𝑥) 6 𝑐𝑝𝑝(𝑥), 𝑗 ∈ N0
𝑛−1, 𝑥 ∈ 𝑋.

(c) 𝛼𝑛 − 𝛼𝑛−1 > 1 and 𝛼𝑛 − 𝛼 > 1.
Then there exists a (local) 𝐶1-existence propagation family (𝑅(𝑡))𝑡∈[0,𝜏)

for (126). If 𝜏 = ∞ and if, for every 𝑝 ∈ ~𝑋 , there exist 𝑀 > 1 and
𝜔 > 0 such that

(127) 𝑝(𝐸(𝑚𝑛−1)(𝑡)𝑥) 6𝑀𝑒𝜔𝑡𝑝(𝑥), 𝑡 > 0, 𝑥 ∈ 𝑋,

respectively (127) and

(128) 𝑝(𝐵𝐸(𝑚𝑛−1)(𝑡)𝑥) 6𝑀𝑒𝜔𝑡𝑝(𝑥), 𝑡 > 0, 𝑥 ∈ 𝑋,

then (𝑅(𝑡))𝑡>0 is exponentially equicontinuous, and moreover, (𝑅(𝑡))𝑡>0

also satisfies the condition (127), repectively (127) and (128), with possibly
different numbers 𝑀 > 1 and 𝜔 > 0.

(ii) Suppose 𝑌 = 𝑋, (𝑈(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑋) is a (local) (1, 𝐶2)-uniqueness fam-
ily for (112), 𝐸𝑗 ∈ 𝐿(𝐸) and 𝐹𝑗 = 𝐸𝑗𝐶2 (𝑗 ∈ N0

𝑛−1). Suppose that (b)–(c)
hold, and that (a) holds with (𝐸(𝑚𝑛−1)(𝑡))𝑡∈[0,𝜏) replaced by (𝑈(𝑡))𝑡∈[0,𝜏)

therein. Then there exists a (local) (1, 𝐶2)-uniqueness family (𝑊 (𝑡))𝑡∈[0,𝜏)

for (126). If 𝜏 = ∞ and if, for every 𝑝 ∈ ~𝑋 , there exist 𝑀 > 1 and
𝜔 > 0 such that (127) holds, then (𝑊 (𝑡))𝑡>0 is exponentially equicon-
tinuous, and moreover, (𝑊 (𝑡))𝑡>0 also satisfies the condition (127), with
possibly different numbers 𝑀 > 1 and 𝜔 > 0.

Concerning the existence of strong solutions of (112), we can prove the fol-
lowing slight extension of [347, Theorem 3.1]; this result can be viewed of some
independent interest and details of proof will be given later, when we will be analyz-
ing abstract degenerate multi-term fractional differential equations with Riemann–
Liouville derivatives.

Theorem 2.3.41. (cf. alsoTheorem 2.4.6) Suppose 𝐴, 𝐵, 𝐴1, . . . , 𝐴𝑛−1 are
closed linear operators on 𝑋, 𝜔 > 0, 𝐿(𝑋) ∋ 𝐶 is injective and 𝑢0, . . . , 𝑢𝑚𝑛−1 ∈ 𝑋.
Set 𝑃𝜆 := 𝜆𝛼𝑛−𝛼𝐵+

∑︀𝑛−1
𝑗=1 𝜆

𝛼𝑗−𝛼𝐴𝑗 −𝐴, 𝜆 ∈ Cr{0}. Let the following conditions
hold:

(i) The operator 𝑃𝜆 is injective for 𝜆 > 𝜔 and 𝐷(𝑃−1
𝜆 𝐶) = 𝑋, 𝜆 > 𝜔.

(ii) If 0 6 𝑗 6 𝑛, 0 6 𝑘 6 𝑚𝑛 − 1, 𝑚 − 1 < 𝑘, 1 6 𝑙 6 𝑛, 𝑚𝑙 − 1 > 𝑘 and
𝜆 > 𝜔, then 𝐶𝑢𝑘 ∈ 𝐷(𝑃−1

𝜆 𝐴𝑙),
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(129) 𝐴𝑗

{︂
𝜆𝛼𝑗

[︂
𝜆𝛼𝑛−𝛼−𝑘−1𝑃−1

𝜆 𝐵𝐶𝑢𝑘 +
∑︁
𝑙∈𝐷𝑘

𝜆𝛼𝑙−𝛼−𝑘−1𝑃−1
𝜆 𝐴𝑙𝐶𝑢𝑘

]︂

−
𝑚𝑗−1∑︁
𝑙=0

𝛿𝑘𝑙𝜆
𝛼𝑗−1−𝑙𝐶𝑢𝑘

}︂
∈ 𝐿𝑇 −𝑋

and

(130) 𝜆𝛼𝑛

[︂
𝜆𝛼𝑛−𝛼−𝑘−1𝑃−1

𝜆 𝐵𝐶𝑢𝑘 +
∑︁
𝑙∈𝐷𝑘

𝜆𝛼𝑙−𝛼−𝑘−1𝑃−1
𝜆 𝐴𝑙𝐶𝑢𝑘

]︂
− 𝜆𝛼𝑛−1−𝑘𝐶𝑢𝑘 ∈ 𝐿𝑇 −𝑋.

(iii) If 0 6 𝑗 6 𝑛, 0 6 𝑘 6 𝑚𝑛− 1, 𝑚− 1 > 𝑘, N𝑛−1r𝐷𝑘 ̸= ∅, 𝑠 ∈ N𝑛−1r𝐷𝑘

and 𝜆 > 𝜔, then 𝐶𝑢𝑘 ∈ 𝐷(𝐴𝑠),
∑︀

𝑙∈N𝑛−1r𝐷𝑘
𝜆𝛼𝑙−𝛼−𝑘−1𝐴𝑙𝐶𝑢𝑘 ∈ 𝐷(𝑃−1

𝜆 ),

(131) 𝐴𝑗

{︂
𝜆𝛼𝑗

[︂
𝜆−𝑘−1𝐶𝑢𝑘 − 𝑃−1

𝜆

∑︁
𝑙∈N𝑛−1r𝐷𝑘

𝜆𝛼𝑙−𝛼−𝑘−1𝐴𝑙𝐶𝑢𝑘

]︂

−
𝑚𝑗−1∑︁
𝑙=0

𝛿𝑘𝑙𝜆
𝛼𝑗−1−𝑙𝐶𝑢𝑘

}︂
∈ 𝐿𝑇 −𝑋

and

(132) 𝜆𝛼𝑛

[︂
𝜆−𝑘−1𝐶𝑢𝑘 − 𝑃−1

𝜆

∑︁
𝑙∈N𝑛−1r𝐷𝑘

𝜆𝛼𝑙−𝛼−𝑘−1𝐴𝑙𝐶𝑢𝑘

]︂
− 𝜆𝛼𝑛−1−𝑘𝐶𝑢𝑘 ∈ 𝐿𝑇 −𝑋.

Then the abstract Cauchy problem (112) has a strong solution, with 𝑢𝑘 replaced by
𝐶𝑢𝑘 (0 6 𝑘 6 𝑚𝑛 − 1).

Remark 2.3.42. Let 0 6 𝑘 6 𝑚𝑛 − 1 and 𝑚 − 1 < 𝑘. Then Theorem 2.3.41
continues to hold if we replace the term

𝜆𝛼𝑛−𝛼−𝑘−1𝑃−1
𝜆 𝐵𝐶𝑢𝑘 +

∑︁
𝑙∈𝐷𝑘

𝜆𝛼𝑙−𝛼−𝑘−1𝑃−1
𝜆 𝐴𝑙𝐶𝑢𝑘

i.e., the Laplace transform of 𝑢𝑘(𝑡), in (129)–(130) by

𝜆−𝑘−1𝐶𝑢𝑘 −
∑︁

𝑙∈N𝑛−1r𝐷𝑘

𝜆𝛼𝑙−𝛼−𝑘−1𝑃−1
𝜆 𝐴𝑙𝐶𝑢𝑘 + 𝜆−𝑘−1𝑃−1

𝜆 𝐴𝐶𝑢𝑘;

in this case, it is indispensable to assume that 𝐶𝑢𝑘 ∈ 𝐷(𝑃−1
𝜆 𝐴𝑙), provided 0 6 𝑙 6

𝑛 − 1, 𝑘 > 𝑚𝑙 − 1 and 𝜆 > 𝜔. Let us also observe that a similar modification can
be made in the case 0 6 𝑘 6 𝑚𝑛 − 1 and 𝑚 − 1 > 𝑘. Strictly speaking, one can
replace the term

𝜆−𝑘−1𝐶𝑢𝑘 − 𝑃−1
𝜆

∑︁
𝑙∈N𝑛−1r𝐷𝑘

𝜆𝛼𝑙−𝛼−𝑘−1𝐴𝑙𝐶𝑢𝑘
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i.e., the Laplace transform of 𝑢𝑘(𝑡), in (131)–(132) by

𝜆𝛼𝑛−𝛼−𝑘−1𝑃−1
𝜆 𝐵𝐶𝑢𝑘 +

∑︁
𝑙∈𝐷𝑘

𝜆𝛼𝑙−𝛼−𝑘−1𝑃−1
𝜆 𝐴𝑙𝐶𝑢𝑘 − 𝜆−𝑘−1𝑃−1

𝜆 𝐴𝐶𝑢𝑘;

in this case, one has to assume that 𝐶𝑢𝑘 ∈ 𝐷(𝑃−1
𝜆 𝐴𝑙), provided 0 6 𝑙 6 𝑛,

𝑚𝑙 − 1 > 𝑘 and 𝜆 > 𝜔.

This is the right time to illustrate our results with some examples.

Example 2.3.43. Suppose 1 6 𝑝 <∞, ∅ ≠ Ω ⊆ R𝑛 is an open bounded domain
with smooth boundary, and 𝑋 := 𝐿𝑝(Ω). Consider the equation

(133)
(𝛼−Δ)𝑢𝑡𝑡 = 𝛽Δ𝑢𝑡 +Δ𝑢+

∫︁ 𝑡

0

𝑔(𝑡− 𝑠)Δ𝑢(𝑠, 𝑥)𝑑𝑠, 𝑡 > 0, 𝑥 ∈ Ω;

𝑢(0, 𝑥) = 𝜑(𝑥), 𝑢𝑡(0, 𝑥) = 𝜓(𝑥),

where 𝑔 ∈ 𝐿1
𝑙𝑜𝑐([0,∞)), 𝛼 ∈ R and 𝛽 ∈ R r {0}. As explained by M. V. Falaleev

and S. S. Orlov in [174], the equation (133) appears in the models of nonlinear
viscoelasticity provided 𝑛 = 3. Integrating (133) twice with the respect to the
time-variable 𝑡, we obtain the associated integral equation

(𝛼−Δ)𝑢(𝑡) = (𝛼+ (𝛽 − 1)Δ)𝜑(𝑥) + 𝑡(𝛼−Δ)𝜓 + 𝛽Δ(𝑔1 * 𝑢)(𝑡)(134)
+Δ(𝑔2 * 𝑢) + Δ(𝑔2 * 𝑔 * 𝑢)(𝑡),

which is of the form (123) with 𝐵 := 𝛼 − Δ, 𝐴2 := 𝛽Δ, 𝐴1 = 𝐴0 := Δ (acting
with the Dirichlet boundary conditions) and 𝑎2(𝑡) := 𝑔1(𝑡), 𝑎1(𝑡) := 𝑔2(𝑡), 𝑎0(𝑡) :=
(𝑔2 * 𝑔)(𝑡). Then

𝒫𝜆 =
𝜆2 + 𝛽𝜆+ 𝑔(𝜆) + 1

𝜆2

[︂
𝛼𝜆2

𝜆2 + 𝛽𝜆+ 𝑔(𝜆) + 1
−Δ

]︂
.

(i) In the first part of our analysis, we assume that 𝛼 > 0 and 𝑔(𝑡) is of the
following form:

𝑔(𝑡) =

𝑙∑︁
𝑗=0

𝑐𝑗𝑔𝛽𝑗 (𝑡) + 𝑓(𝑡), 𝑡 > 0,

where 𝑙 ∈ N, 𝑐𝑗 ∈ C (0 6 𝑗 6 𝑙), 0 < 𝛽1 < · · · < 𝛽𝑙 < 1 and the function
𝑓(𝑡) satisfies the requirements of [296, Theorem 3.4(i)-(a)] with 𝛼 = 𝜋/2
and 𝜔 > 0 sufficiently large. Using the fact that the operator Δ generates
a bounded analytic 𝐶0-semigroup of angle 𝜋/2, and the resolvent equation,
it can be simply verified that

1

𝜆
𝒫−1
𝜆 ∈ 𝐿𝑇−𝐿(𝑋),

1

𝜆
𝐵𝒫−1

𝜆 ∈ 𝐿𝑇−𝐿(𝑋) and
̃︀𝑎𝑗(𝜆)
𝜆

𝒫−1
𝜆 ∈ 𝐿𝑇−𝐿(𝑋), 𝑗 = 0, 1, 2.

This implies by Theorem 2.3.37 that there exists an exponentially bounded
𝐼-existence family (𝐸(𝑡))𝑡>0 for (134), satisfying additionally that for each
𝑓 ∈ 𝑋 the mappings 𝑡 ↦→ 𝐸(𝑡)𝑓 , 𝑡 > 0, 𝑡 ↦→ 𝐵𝐸(𝑡)𝑓 , 𝑡 > 0 and 𝑡 ↦→
𝐴𝑗(𝑎𝑗 * 𝐸)(𝑡)𝑓 , 𝑡 > 0 can be analytically extended to the sector Σ𝜋/2;
furthermore, (𝐸(𝑡))𝑡>0 is an exponentially bounded 𝐼-uniqueness family



2.3. DEGENERATE MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATIONS... 147

for (134). Therefore, for every 𝜑, 𝜓 ∈ 𝑊 2,𝑝(Ω) ∩𝑊 1,𝑝
0 (Ω), there exists a

unique strong solution

𝑢(𝑡) = 𝐸(𝑡)(𝛼+ (𝛽 − 1)Δ)𝜑+

∫︁ 𝑡

0

𝐸(𝑠)(𝛼−Δ)𝜓 𝑑𝑠, 𝑡 > 0,

of the integral equation (134), and 𝑢(𝑡) can be analytically extended to
the sector Σ𝜋/2.

(ii) Denote by {𝜆𝑘} [= 𝜎(Δ)] the eigenvalues of the Dirichlet Laplacian Δ in
𝐿2(Ω) (recall that 0 < −𝜆1 6 −𝜆2 . . . 6 −𝜆𝑘 6 · · · → +∞ as 𝑘 → ∞; cf.
Example 2.3.48-Example 2.3.53 for more details); by {𝜑𝑘} ⊆ 𝐶∞(Ω) we
denote the corresponding set of mutually orthogonal [in the sense of 𝐿2(Ω)]
eigenfunctions. In this part, we will delve into the case in which 𝛼 = 𝜆𝑘0

∈
𝜎(Δ) for some 𝑘0 ∈ N and the function 𝑔(𝑡) satisfies (P1). Then there exist
finite constants 𝑀 > 1 and 𝜔 > 0 such that |

∫︀ 𝑡

0
𝑔(𝑠)𝑑𝑠| 6 𝑀𝑒𝜔𝑡, 𝑡 > 0

and 𝜆
∫︀∞
0
𝑒−𝜆𝑡

∫︀ 𝑡

0
𝑔(𝑠)𝑑𝑠 𝑑𝑡 =

∫︀∞
0
𝑒−𝜆𝑡𝑔(𝑡)𝑑𝑡, 𝜆 > 𝜔 [27], which simply

implies that the set {𝑔(𝜆) : 𝜆 > 𝜔 + 1} is bounded. Define 𝐷 : 𝐿2(Ω) →
𝐿2(Ω) by 𝐷𝑓 := (−1)𝛽−1

∑︀∞
𝑘=1⟨𝜑𝑘, 𝑓⟩𝜑𝑘, 𝑓 ∈ 𝐿2(Ω). Using Parseval’s

equality, it can be simply verified that 𝐷, 𝐵𝐷 ∈ 𝐿(𝐿2(Ω)); furthermore,
‖𝑅(𝜆 : Δ)‖ = 𝑂(|𝛼−𝜆|−1) as 𝜆→ 𝛼 (see e.g. Example 2.3.48). Using the
resolvent equation and these facts, we obtain the existence of a sufficiently
large real number 𝑅 > 0 such that P−1

𝜆 ∈ 𝐿(𝐿2(Ω)) for |𝜆| > 𝑅, as well
as that

(135) |𝜆|−2

[︂
‖P−1

𝜆 ‖+ ‖𝐵P−1
𝜆 ‖+

2∑︁
𝑗=0

‖ ̃︀𝑎𝑗(𝜆)𝐴𝑗P
−1
𝜆 ‖
]︂
6𝑀, |𝜆| > 𝑅,

lim|𝜆|→∞ 𝜆−1P−1
𝜆 𝑓 = 𝐷𝑓 , lim|𝜆|→∞ 𝜆−1𝐵P−1

𝜆 𝑓 = 𝐵𝐷𝑓 and
lim|𝜆|→∞ 𝜆−1𝑎𝑗(𝜆)P

−1
𝜆 𝑓 = 0, 0 6 𝑗 6 2 (𝑓 ∈ 𝐿2(Ω)). Making use of

Theorem 2.3.37, we obtain that there exists an exponentially bounded
once integrated 𝐼-existence family (𝐸1(𝑡))𝑡>0 for (134), satisfying addi-
tionally that for each 𝑓 ∈ 𝐿2(Ω) the mappings 𝑡 ↦→ 𝐸1(𝑡)𝑓 , 𝑡 > 0,
𝑡 ↦→ 𝐵𝐸1(𝑡)𝑓 , 𝑡 > 0 and 𝑡 ↦→ 𝐴𝑗(𝑎𝑗 * 𝐸1)(𝑡)𝑓 , 𝑡 > 0 can be analytically
extended to the sector Σ𝜋/2; furthermore, (𝐸1(𝑡))𝑡>0 is an exponentially
bounded once integrated 𝐼-uniqueness family for (134). Therefore, for
every 𝜑, 𝜓 ∈ 𝐻2(Ω) ∩𝐻1

0 (Ω), there exists a unique strong solution of the
associated once integrated problem

(𝛼−Δ)𝑢(𝑡) = 𝑡(𝛼+ (𝛽 − 1)Δ)𝜑(𝑥) +
𝑡2

2
(𝛼−Δ)𝜓(136)

+ 𝛽Δ(𝑔1 * 𝑢)(𝑡) + Δ(𝑔2 * 𝑢) + Δ(𝑔2 * 𝑔 * 𝑢)(𝑡), 𝑡 > 0,

given by 𝑢(𝑡) = 𝐸1(𝑡)(𝛼 + (𝛽 − 1)Δ)𝜑 +
∫︀ 𝑡

0
𝐸1(𝑠)(𝛼 − Δ)𝜓 𝑑𝑠, 𝑡 > 0. It

should be noticed that the mappings 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 and 𝑡 ↦→ 𝐵𝑢(𝑡),
𝑡 > 0 can be analytically extended to the sector Σ𝜋/2 and that it is not
clear whether there exist analytical extensions of these mappings to the
sector Σ𝜋 in our general choice of function 𝑔(𝑡) (in [174, Theorem 5],
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the authors have investigated the existence and uniqueness of generalized
(𝐶2([0,∞) : 𝐿2(Ω))) solutions of problem (134)). On the other hand,
(135), the equality lim|𝜆|→∞ 𝜆−1𝐵𝒫−1

𝜆 𝑓 = 𝐵𝐷𝑓 , Theorem 3.2.19 and
Remark 3.1.2(v) taken together imply that for each 𝜃 ∈ (−𝜋, 𝜋] the MLO
𝑒𝑖𝜃𝐴𝐵−1 generates an exponentially bounded, analytic once integrated
(𝑏+𝑔2(𝑡)+(𝑔2*𝑔)(𝑡), 𝐼)-regularized resolvent family (𝐸1,𝐵(𝑡) ≡ 𝐵𝐸1(𝑡))𝑡>0

of angle 𝜋/2; cf. Section 3.2 for the notion. Since [292, Theorem 2.1.29(ii)]
holds in the MLO framework, this immediately yields some results on the
existence and uniqueness of analytical (entire) solutions of the problem
(136) with the term 𝑡(𝛼+(𝛽− 1)Δ)𝜑+ 𝑡2

2 (𝛼−Δ)𝜓 replaced by a general
inhomogeneity 𝑓(𝑡).

(iii) Consider the equation

(137)
(𝜈 −Δ)𝑢𝑡 = Δ𝑢+

∫︁ 𝑡

0

𝑔(𝑡− 𝑠)Δ𝑢(𝑠, 𝑥)𝑑𝑠, 𝑡 > 0, 𝑥 ∈ Ω;

𝑢(0, 𝑥) = 𝜑(𝑥), 𝑥 ∈ Ω,

in 𝐿2(Ω), where 𝑔 ∈ 𝐿1
𝑙𝑜𝑐([0,∞)) and 𝜈 = 𝜆𝑘0

∈ 𝜎(Δ). This equation
appears in the study of non-linear dynamics of hereditarily elastic bodies
(cf. [174, Theorem 4]). Clearly, in our new setting, we have that 𝐵 =
𝑣 − Δ, 𝑛 = 1, 𝑎0(𝑡) = 𝑔1(𝑡), 𝑎1(𝑡) = (𝑔1 * 𝑔)(𝑡) and 𝐴0 = 𝐴1 = Δ.
Concerning the function 𝑔(𝑡), we assume that abs(|𝑔|) < ∞. Arguing as
in (ii), we get that there exists an exponentially bounded once integrated
𝐼-existence family (𝐸1(𝑡))𝑡>0 for (137), satisfying additionally that for
each 𝑓 ∈ 𝐿2(Ω) the mappings 𝑡 ↦→ 𝐸1(𝑡)𝑓 , 𝑡 > 0, 𝑡 ↦→ 𝐵𝐸1(𝑡)𝑓 , 𝑡 > 0 and
𝑡 ↦→ 𝐴𝑗(𝑎𝑗 *𝐸1)(𝑡)𝑓 , 𝑡 > 0 can be analytically extended to the sector Σ𝜋/2,
as well as that (𝐸1(𝑡))𝑡>0 is an exponentially bounded once integrated 𝐼-
uniqueness family for (137). This, in turn, implies that there exists a
unique strong solution 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 of the associated once integrated
equation:

(𝑣 −Δ)𝑢(𝑡) = 𝑡(𝑣 −Δ)𝜑+Δ(𝑔1 * 𝑢)(𝑡) + Δ(𝑔1 * 𝑔 * 𝑢), 𝑡 > 0.

Furthermore, the mappings 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 and 𝑡 ↦→ 𝐵𝑢(𝑡), 𝑡 > 0 can be
analytically extended to the sector Σ𝜋/2.

Example 2.3.44. Suppose 1 < 𝑝 < ∞, 𝑋 := 𝐿𝑝(R𝑛), 1/2 < 𝛾 6 1, 𝑄 ∈
N r {1}, 𝑃1(𝑥) =

∑︀
|𝜂|6𝑄 𝑎𝜂𝑥

𝜂, 𝑃2(𝑥) = −1 − |𝑥|2 (𝑥 ∈ R𝑛), 𝑃1(𝑥) is positive,
𝜎 > 0, the estimate⃒⃒⃒

𝐷𝜂
(︁𝑃1(𝑥)

𝑃2(𝑥)

)︁⃒⃒⃒
6 𝑐𝜂(1 + |𝑥|)|𝜂|(𝜎−1), 𝑥 ∈ R𝑛

holds for each multi-index 𝜂 ∈ N𝑛
0 with |𝜂| > 0, 𝑉2 > 0 and for each 𝜂 ∈ N𝑛

0

there exists 𝑀𝜂 > 0 such that |𝐷𝜂(𝑃2(𝑥)
−1)| 6 𝑀𝜂(1 + |𝑥|)|𝜂|(𝑉2−1), 𝑥 ∈ R𝑛. Set

𝐴2 := Δ − 𝐼, 𝐴0𝑓 :=
∑︀

|𝜂|6𝑄 𝑎𝜂𝐷
𝜂𝑓 with maximal distributional domain, where

𝐷𝜂 ≡ (−𝑖)|𝜂|𝑓𝜂, and 𝐶1 := (𝐼−Δ)−
𝑛
2 | 1𝑝−

1
2 |max(𝜎,𝑉2). Let 𝐸𝑖 ∈ 𝐿(𝑋) and 𝐹𝑖 = 𝐶1𝐸𝑖

(𝑖 = 0, 1). Then we know (cf. [306,307]) that 𝜆(𝜆2𝐴2 − 𝐴0)
−1𝐶1 ∈ 𝐿𝑇 − 𝐿(𝑋)
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and 𝜆𝐴2(𝜆
2𝐴2 − 𝐴0)

−1𝐶1 ∈ 𝐿𝑇 − 𝐿(𝑋), which implies by Theorem 2.3.37(i)–(b)
that there exists an exponentially bounded 𝐶1-existence family (𝐸(𝑡))𝑡>0 for the
following degenerate second order Cauchy problem:{︃

(Δ− 𝐼)𝑢𝑡𝑡(𝑡, 𝑥) =
∑︀

|𝜂|6𝑄 𝑎𝜂𝐷
𝜂𝑢(𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ R𝑛,

𝑢(0, 𝑥) = 𝑢0(𝑥) = 𝜑(𝑥), 𝑢𝑡(0, 𝑥) = 𝑢1(𝑥) = 𝜓(𝑥),

obeying the properties (127)–(128) stated in the formulation of Theorem 2.3.40.
Applying Theorem 2.3.40, we get there exists an exponentially bounded 𝐶1-exis-
tence family (𝑅(𝑡))𝑡>0 for the following degenerate second order Cauchy problem:

(𝑃 )′ :

{︃
(Δ−𝐼)𝑢𝑡𝑡(𝑡, 𝑥) + 𝐹1𝑢𝑡(𝑡, 𝑥)=(

∑︀
|𝜂|6𝑄 𝑎𝜂𝐷

𝜂+𝐹0)𝑢(𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ R𝑛,

𝑢(0, 𝑥) = 𝑢0(𝑥) = 𝜑(𝑥), 𝑢𝑡(0, 𝑥) = 𝑢1(𝑥) = 𝜓(𝑥).

Then Theorem 2.3.32(i) shows that there exists a strong solution of problem (𝑃 )′

provided that

𝜑, 𝜓 ∈ S𝑄+𝑛| 1𝑝−
1
2 |max(𝜎,𝑉2),𝑝(R𝑛), (𝐴0 + 𝐹 )𝜑 ∈ S𝑛|

1
𝑝−

1
2 |max(𝜎,𝑉2),𝑝(R𝑛),

𝐹1𝜓 ∈ S𝑛|
1
𝑝−

1
2 |max(𝜎,𝑉2),𝑝(R𝑛) and (𝐴0 + 𝐹 )𝜓 ∈ S𝑛|

1
𝑝−

1
2 |max(𝜎,𝑉2),𝑝(R𝑛).

If we denote by 𝑈(𝑡, 𝑥), resp. 𝑉 (𝑡, 𝑥), the corresponding strong solution of problem
(𝑃 )′ with the initial values 𝜑(𝑥) and 𝜓(𝑥) ≡ 0, resp. 𝜑(𝑥) ≡ 0 and 𝜓(𝑥), then one
can simply verify that the function

𝑢(𝑡, 𝑥) :=

∫︁ ∞

0

𝑡−𝛾Φ𝛾(𝑠𝑡
−𝛾)𝑈(𝑠, 𝑥)𝑑𝑠+

∫︁ 𝑡

0

𝑔1−𝛾(𝑡−𝑠)
∫︁ ∞

0

𝑠−𝛾Φ𝛾(𝑟𝑠
−𝛾)𝑉 (𝑟, 𝑥)𝑑𝑟 𝑑𝑠,

is a strong solution of the following integral equation

(138) 𝐴2[𝑢(𝑡, 𝑥)− 𝜑(𝑥)− 𝑡𝜓(𝑥)] + 𝐹1

∫︁ 𝑡

0

𝑔𝛾(𝑡− 𝑠)[𝑢(𝑠, 𝑥)− 𝜑(𝑥)]𝑑𝑠

=

∫︁ 𝑡

0

𝑔2𝛾(𝑡− 𝑠)(𝐴0 + 𝐹 )𝑢(𝑠, 𝑥)𝑑𝑠, 𝑡 > 0, 𝑥 ∈ R𝑛;

furthermore, the function 𝑡 ↦→ 𝑢(𝑡, ·) ∈ 𝑋 can be analytically extended to the
sector Σ( 1

𝛾 −1)𝜋
2
. In the present situation, we can only prove that there is at most

one strong solution of the integral equation (138) provided that 𝑝 = 2. Strictly
speaking, suppose that 𝑢(𝑡, 𝑥) is a strong solution of (138) with 𝜑(𝑥) ≡ 𝜓(𝑥) ≡ 0.
Then 𝐴−1

2 ∈ 𝐿(𝑋), 𝐶1 = 𝐼 and the function 𝑣(𝑡, 𝑥) := 𝐴2𝑢(𝑡, 𝑥) is a strong solution
of the following non-degenerate integral equation

(139) 𝑢(𝑡, 𝑥) +

∫︁ 𝑡

0

𝑔𝛾(𝑡− 𝑠)𝐹1𝐴
−1
2 𝑢(𝑠, 𝑥)𝑑𝑠

=

∫︁ 𝑡

0

𝑔2𝛾(𝑡− 𝑠)(𝐴0𝐴
−1
2 + 𝐹𝐴−1

2 )𝑢(𝑠, 𝑥)𝑑𝑠, 𝑡 > 0, 𝑥 ∈ R𝑛.

Since 𝜆(𝜆2 − 𝐴0𝐴
−1
2 )−1 = 𝜆𝐴2(𝜆

2𝐴2 − 𝐴0)
−1 ∈ 𝐿𝑇 − 𝐿(𝑋), the operator 𝐴0𝐴

−1
2

generates a cosine operator function and we can apply Theorem 2.3.40(ii) in order to
see that there exists an exponentially bounded (1, 𝐼)-uniqueness family for (139),
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with the meaning clear. This proves the claimed assertion on the uniqueness of
strong solutions of problem (138). In general case 𝑝 ̸= 2, it is not clear how we
can prove that there is at most one strong solution of the integral equation (138)
without assuming that 𝐹1 and 𝐹 take some specific forms.

In the remainder of this section, we analyze entire and analytical properties of
degenerate resolvent operator families introduced above and apply obtained results
in the study of abstract Boussinesq-Love equation and the abstract Barenblatt–
Zheltov–Kochina equation (cf. also Example 2.11.19 and the paragraph directly be-
fore Subsection 2.2.4; for some other references, one may refer e.g. to [96] and [98]).
We reconsider some results obtained by G. A. Sviridyuk and A. A. Zamyshlyaeva
in [515, Section 5], and slightly improve the assertion of [509, Theorem 5.1.3(ii)]
in 𝐿2 type spaces. We divide our investigation into two parts. In the first part, our
standing hypothesis is that the orders 𝛼, 𝛼1, . . . , 𝛼𝑛 of Caputo derivatives D𝛼

𝑡 𝑢(𝑡),
D𝛼1

𝑡 𝑢(𝑡), . . . ,D𝛼𝑛
𝑡 𝑢(𝑡), appearing in (112), are non-negative integers; in the second

part, where we analyze some fractional analogues of the abstract Boussinesq–Love
equation and the abstract Barenblatt–Zheltov–Kochina equation, some of orders 𝛼,
𝛼1, . . . , 𝛼𝑛 can be purely fractional numbers.

Definition 2.3.45. (cf. also Definition 2.3.50 and Definition 2.6.1 below) Let
𝛼𝑖 ∈ N0 for all 𝑖 ∈ N0

𝑛, and let the function 𝑢 ∈ 𝐶𝛼𝑛−1([0,∞) : 𝑋) be a strong
solution of problem (112). Then we say that 𝑢(·) is an entire solution of problem
(112) iff the functions 𝑢(·) and 𝐵𝑢(𝛼𝑛)(·), 𝐴1𝑢

(𝛼1)(·), . . . , 𝐴𝑛−1𝑢
(𝛼𝑛−1)(·), 𝐴𝑢(𝛼)(·)

can be analytically extended from the interval [0,∞) to the whole complex plane.

Now we are ready to formulate the following theorem.

Theorem 2.3.46. Suppose 𝑘(𝑡) satisfies (P1), 𝐶1 ∈ 𝐿(𝑌,𝑋) and 𝐶2 ∈ 𝐿(𝑋)
is injective. Let 𝛼𝑖 ∈ N0 for all 𝑖 ∈ N0

𝑛, and let there exist a locally equicontinuous
𝑘-regularized 𝐶2-uniqueness family for (112). Let the following hold:

∙ Suppose that there exists a sufficiently large number 𝑅 > 0 such that
the operator P𝑧 is injective for |𝑧| > 𝑅, as well as that the operator
families {P−1

𝑧 𝐶1 : |𝑧| > 𝑅} ⊆ 𝐿(𝑌,𝑋) and {𝑧𝛼𝑗−𝛼𝑛𝐴𝑗P
−1
𝑧 𝐶1 : |𝑧| > 𝑅,

𝑗 ∈ N0
𝑛} ⊆ 𝐿(𝑌,𝑋) are equicontinuous.

∙ Let the mappings 𝑧 ↦→ P−1
𝑧 𝐶1𝑦 ∈ 𝑋, |𝑧| > 𝑅 and 𝑧 ↦→ 𝑧𝛼𝑗−𝛼𝑛𝐴𝑗P

−1
𝑧 𝐶1𝑦 ∈

𝑋, |𝑧| > 𝑅 be analytic for any 𝑦 ∈ 𝑌 , 𝑗 ∈ N0
𝑛, and let there exist oper-

ators 𝐷,𝐷0, 𝐷1, . . . , 𝐷𝑛 ∈ 𝐿(𝑌,𝑋) such that lim𝑧→∞ P−1
𝑧 𝐶1𝑦 = 𝐷𝑦 and

lim𝑧→∞ 𝑧𝛼𝑗−𝛼𝑛𝐴𝑗P
−1
𝑧 𝐶1𝑦 = 𝐷𝑗𝑦 for any 𝑦 ∈ 𝑌 , 𝑗 ∈ N0

𝑛.
∙ Suppose that 𝑢𝑖 ∈ D𝑖 for 0 6 𝑖 6 𝑚𝑛 − 1, 𝑣𝑖,𝑗 ∈ 𝑌 satisfy 𝐴𝑗𝑢𝑖 = 𝐶1𝑣𝑖,𝑗

for 0 6 𝑗 6 𝑛 − 1, as well as that 𝑔 ∈ 𝐶1([0,∞) : 𝑌 ) and 𝐶1𝑔(𝑡) = 𝑓(𝑡),
𝑡 > 0.

Then there exists a unique strong solution of (112).
∙ Assume, additionally, that the function 𝑡 ↦→ 𝑔(𝑡), 𝑡 > 0 can be analytically

extended to the whole complex plane, resp., to a continuously differentiable
function R ↦→ 𝑌 .

Then there exists a unique entire solution 𝑢(·) of (112), resp., the function 𝑡 ↦→
𝑢(𝑡), 𝑡 > 0 can be extended to an 𝛼𝑛-times continuously differentiable function
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R ↦→ 𝑋 and the functions 𝐵𝑢(𝛼𝑛)(·), 𝐴1𝑢
(𝛼1)(·), . . . , 𝐴𝑛−1𝑢

(𝛼𝑛−1)(·), 𝐴𝑢(𝛼)(·) can
be extended to continuously differentiable functions R ↦→ 𝑋. Furthermore, in any
case set out above, the existence of a positive real number 𝜔′ > 0 such that the set
{𝑒−𝜔′𝑠𝑔(𝑠) : 𝑠 > 0}, resp., {𝑒−𝜔′𝑧𝑔(𝑧) : 𝑧 ∈ C} ({𝑒−𝜔′|𝑠|𝑔(𝑠) : 𝑠 ∈ R}) is bounded
in 𝑌 , implies the existence of a positive real number 𝜔′′ > 0 such that the set
{𝑒−𝜔′′𝑠𝑢(𝑠) : 𝑠 > 0}, resp., {𝑒−𝜔′′𝑧𝑢(𝑧) : 𝑧 ∈ C} ({𝑒−𝜔′′|𝑠|𝑢(𝑠) : 𝑠 ∈ R}) is bounded
in 𝑋.

Proof. Let 𝛽 ∈ (−𝜋, 𝜋]. Then, for every 𝜃 ∈ (0, 𝜋/2), there exists a sufficiently
large number 𝜔𝛽,𝜃 > 0 satisfying that the function 𝑞𝛽,𝜃(𝑧) := 𝑧−1P−1

𝑧𝑒−𝑖𝛽𝐶1 ∈
𝐿(𝑌,𝑋), 𝑧 ∈ 𝜔𝛽,𝜃 + Σ𝜃+(𝜋/2) is well-defined, strongly analytic and that for each
𝜃′ ∈ (0, 𝜃) the operator family {𝑧−1(𝑧 − 𝜔𝛽,𝜃)P

−1
𝑧𝑒−𝑖𝛽𝐶1 : 𝑧 ∈ 𝜔𝛽,𝜃 + Σ𝜃′+(𝜋/2)} ⊆

𝐿(𝑌,𝑋) is equicontinuous. By Theorem 1.4.10(i), we obtain that for each 𝑦 ∈ 𝑌
there exists an 𝑋-valued analytic mapping 𝑧 ↦→ 𝑊𝛽,𝑦(𝑧), 𝑧 ∈ Σ𝜋/2 satisfying that,
for every 𝜃 ∈ (0, 𝜋/2), we have that

∫︀∞
0
𝑒−𝑧𝑡𝑊𝛽,𝑦(𝑡)𝑑𝑡 = 𝑧−1P−1

𝑧𝑒−𝑖𝛽𝐶1𝑦, Re 𝑧 > 𝜔𝛽,𝜃

and the set {𝑒−𝜔𝛽,𝜃𝑧𝑊𝛽,𝑦(𝑧) : 𝑧 ∈ Σ𝜃′} is bounded in 𝑋 (𝑦 ∈ 𝑌 , 𝜃′ ∈ (0, 𝜃)).
Define 𝑊𝛽(𝑧)𝑦 := 𝑊𝛽,𝑦(𝑧), 𝑧 ∈ Σ𝜋/2, 𝑦 ∈ 𝑌 . By the uniqueness theorem for
Laplace transform, it readily follows that 𝑊𝛽(𝑧) : 𝑌 → 𝑋 is a linear mapping
(𝑧 ∈ Σ𝜋/2); furthermore, we can argue as in the proofs of [292, Theorem 2.2.5] and
[27, Theorem 2.6.1] so as to conclude that, for every 𝜃 ∈ (0, 𝜋/2), {𝑒−𝜔𝛽,𝜃𝑧𝑊𝛽(𝑧) :
𝑧 ∈ Σ𝜃′} ⊆ 𝐿(𝑌,𝑋) is an equicontinuous operator family (𝜃′ ∈ (0, 𝜃)). Since
lim𝑧→∞ P−1

𝑧 𝐶1𝑦 = 𝐷𝑦 (𝑦 ∈ 𝑌 ), we can apply Theorem 1.4.10(ii)/(iii) in order to
see that, for every 𝑦 ∈ 𝑌 and 𝜃 ∈ (0, 𝜋/2), we have lim𝑧→0,𝑧∈Σ𝜃

𝑊𝛽(𝑧)𝑦 = 𝐷𝑦. Now
we will prove that, for every 𝑧 ∈ Σ𝜋/2∩𝑒𝑖𝜋/2Σ𝜋/2, we have 𝑊0(𝑧) =𝑊𝜋/2(𝑧𝑒

−𝑖𝜋/2).
Let 𝑦 ∈ 𝑌 be fixed, and let arg(𝑧) = 𝜃. Set Γ𝜃 := {𝑒𝑖𝜃𝑡 : 𝑡 > 0}. Using Cauchy’s
formula, it is not difficult to see that, for all sufficiently large values of positive real
parameter 𝑠 > 0, we have∫︁ ∞

0

𝑒−𝑠𝑡𝑊0(𝑒
𝑖𝜃𝑡)𝑦 𝑑𝑡 = 𝑒−𝑖𝜃

∫︁
Γ𝜃

𝑒−𝑠𝑒−𝑖𝜃𝑣𝑊0(𝑣)𝑦 𝑑𝑣

= 𝑒−𝑖𝜃

∫︁ ∞

0

𝑒−𝑠𝑒−𝑖𝜃𝑣𝑊0(𝑣)𝑦 𝑑𝑣 = 𝑠−1P−1
𝑠𝑒−𝑖𝜃𝐶1𝑦, 𝑦 ∈ 𝑌.

Similarly,
∫︀∞
0
𝑒−𝑠𝑡𝑊𝜋/2(𝑒

𝑖(𝜃−𝜋/2)𝑡)𝑦 𝑑𝑡 = 𝑠−1P−1
𝑠𝑒𝑖𝜃

𝐶1𝑦, 𝑦 ∈ 𝑌 so that the unique-
ness theorem for Laplace transform implies that 𝑊0(𝑒

𝑖𝜃𝑡) = 𝑊𝜋/2(𝑒
𝑖(𝜃−𝜋/2)𝑡) for

all 𝑡 > 0. Plugging 𝑡 = |𝑧|, we get that 𝑊0(𝑧) = 𝑊𝜋/2(𝑧𝑒
−𝑖𝜋/2), as claimed. A

similar line of reasoning shows that the operator family (𝑊 (𝑧))𝑧∈C, where

𝑊 (𝑧) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑊0(𝑧), 𝑧 ∈ Σ𝜋/2,

𝑊𝜋/2(𝑧𝑒
−𝑖𝜋/2), if 𝑧 ∈ 𝑒𝑖𝜋/2Σ𝜋/2,

𝑊−𝜋/2(𝑧𝑒
𝑖𝜋/2), if 𝑧 ∈ 𝑒−𝑖𝜋/2Σ𝜋/2,

𝑊𝜋(𝑧𝑒
−𝑖𝜋), if 𝑧 ∈ 𝑒𝑖𝜋Σ𝜋/2,

𝐷, if 𝑧 = 0,

is well-defined. By the foregoing, we obtain that there exists 𝜔 > 0 such that the
operator family {𝑒−𝜔𝑧𝑊 (𝑧) : 𝑧 ∈ C} ⊆ 𝐿(𝑌,𝑋) is equicontinuous as well as that, for
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every 𝑦 ∈ 𝑌 , the mapping 𝑧 ↦→𝑊 (𝑧)𝑦, 𝑧 ∈ C is entire (because it is weakly entire;
this follows from the fact that for each 𝑥* ∈ 𝑋* the mapping 𝑧 ↦→ ⟨𝑥*,𝑊 (𝑧)𝑦⟩,
𝑧 ∈ Cr{0} is analytic and has the limit ⟨𝑥*, 𝐷𝑦⟩ as 𝑧 → 0). Replacing the function
𝑧 ↦→ 𝑞𝛽,𝜃(𝑧) = 𝑧−1P−1

𝑧𝑒−𝑖𝛽𝐶1 ∈ 𝐿(𝑌,𝑋), 𝑧 ∈ 𝜔𝛽,𝜃 + Σ𝜃+(𝜋/2) with the function
𝑧 ↦→ 𝑞𝛽,𝜃,𝑗(𝑧) := 𝑧−1(𝑧𝑒−𝑖𝛽)𝛼𝑗−𝛼𝑛𝐴𝑗P

−1
𝑧𝑒−𝑖𝛽𝐶1 ∈ 𝐿(𝑌,𝑋), 𝑧 ∈ 𝜔𝛽,𝜃+Σ𝜃+(𝜋/2) in the

first part of proof (𝜃 ∈ (0, 𝜋/2), 𝑗 ∈ N0
𝑛), for each 𝑦 ∈ 𝑌 we can define an 𝑋-valued

analytic mapping 𝑧 ↦→ 𝑊𝛽,𝑗,𝑦(𝑧), 𝑧 ∈ Σ𝜋/2 satisfying that, for every 𝜃 ∈ (0, 𝜋/2),
we have that

∫︀∞
0
𝑒−𝑧𝑡𝑊𝛽,𝑗,𝑦(𝑡)𝑑𝑡 = 𝑧−1(𝑧𝑒−𝑖𝛽)𝛼𝑗−𝛼𝑛𝐴𝑗P

−1
𝑧𝑒−𝑖𝛽𝐶1𝑦, Re 𝑧 > 𝜔𝛽,𝜃

and the set {𝑒−𝜔𝛽,𝜃𝑧𝑊𝛽,𝑗,𝑦(𝑧) : 𝑧 ∈ Σ𝜃′} is bounded in 𝑋 (𝑦 ∈ 𝑌 , 𝜃′ ∈ (0, 𝜃)).
Define now 𝑊𝛽,𝑗(𝑧)𝑦 :=𝑊𝛽,𝑗,𝑦(𝑧), 𝑧 ∈ Σ𝜋/2, 𝑦 ∈ 𝑌 , and 𝑊 𝑗(·) by replacing 𝑊0(·),
𝑊𝜋/2(·), 𝑊−𝜋/2(·), 𝑊𝜋(·) and 𝐷 in the definition of 𝑊 (·) with 𝑊0,𝑗(·), 𝑊𝜋/2,𝑗(·),
𝑊−𝜋/2,𝑗(·), 𝑊𝜋,𝑗(·) and 𝐷𝑗 , respectively (𝑗 ∈ N0

𝑛). Then there exists 𝜔𝑗 > 0 such
that the operator family {𝑒−𝜔𝑗𝑧𝑊 𝑗(𝑧) : 𝑧 ∈ C} ⊆ 𝐿(𝑌,𝑋) is equicontinuous and,
for every 𝑦 ∈ 𝑌 , the mapping 𝑧 ↦→ 𝑊 𝑗(𝑧)𝑦, 𝑧 ∈ C is entire (𝑗 ∈ N0

𝑛). By Theorem
2.3.33(i)/(b), we get that there exists an exponentially equicontinuous 𝐶1-existence
family for (112), denoted by (𝐸(𝑡))𝑡>0. Furthermore, for every 𝑦 ∈ 𝑌 , the mapping
𝑡 ↦→ 𝐸(𝑡)𝑦, 𝑡 > 0 can be analytically extended to the whole complex plane so that
𝐸(𝛼𝑛−1)(𝑧)𝑦 = 𝑊 (𝑧)𝑦, 𝑧 ∈ C, 𝑦 ∈ 𝑌 and 𝐴𝑗(𝑔𝛼𝑛−𝛼𝑗

* 𝐸(𝛼𝑛−1))(𝑧)𝑦 = 𝑊 𝑗(𝑧)𝑦,
𝑧 ∈ C, 𝑦 ∈ 𝑌 , 𝑗 ∈ N0

𝑛. Making use of the closedness of operators 𝐴𝑗 for 𝑗 ∈ N0
𝑛, the

above implies that the functions 𝑧 ↦→ 𝐴𝑗𝐸
(𝛼𝑛−1)(𝑧)𝑦, 𝑧 ∈ C are well-defined and

entire (𝑦 ∈ 𝑌 , 𝑗 ∈ N0
𝑛). By Theorem 2.3.34 and Theorem 2.3.33(ii), we get that

the function 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0, given by (121), with 𝑔(𝑡) = 𝐺(𝑡), 𝑡 > 0, is a unique
strong solution of problem (112). Define 𝑣(𝑡) := 𝑢(𝑡)−

∫︀ 𝑡

0
𝐸(𝑡− 𝑠)𝑔(𝑠)𝑑𝑠, 𝑡 > 0. By

the proof of Theorem 2.3.32(i), we have:

𝑣(𝛼𝑛)(·) =
𝑚𝑛−1∑︁
𝑖=𝑚

(𝑔𝑖−𝛼 * 𝐸(𝑚𝑛−1))(·)𝑣𝑖,0

−
𝑚𝑛−1∑︁
𝑖=0

∑︁
𝑗∈N𝑛−1r𝐷𝑖

(𝑔𝑖−𝛼𝑗
* 𝐸(𝑚𝑛−1))(·)𝑣𝑖,𝑗 ∈ 𝐶([0,∞) : 𝑋),

𝐵𝑣(𝛼𝑛)(·) ∈ 𝐶([0,∞) : 𝑋) and

𝐴𝑖𝑣
(𝛼𝑖)(·) =

𝑚𝑛−1∑︁
𝑗=𝑚𝑖

𝑔𝑗+1−𝛼𝑖
(·)𝐴𝑖𝑢𝑗

−
𝑚𝑛−1∑︁
𝑙=0

∑︁
𝑗∈N𝑛−1r𝐷𝑙

[︁
𝑔𝑙−𝛼𝑗

*𝐴𝑖(𝑔𝛼𝑛−𝛼𝑖
* 𝐸(𝑚𝑛−1))

]︁
(·)𝑣𝑙,𝑗

+

𝑚𝑛−1∑︁
𝑙=𝑚

[︁
𝑔𝑙−𝛼 *𝐴𝑖(𝑔𝛼𝑛−𝛼𝑖

* 𝐸(𝑚𝑛−1))
]︁
(·)𝑣𝑙,0 ∈ 𝐶([0,∞) : 𝑋),

for all 𝑖 ∈ N0
𝑛−1. These representation formulae imply that the functions 𝑣(·)

and 𝐵𝑣(𝛼𝑛)(·), 𝐴1𝑣
(𝛼1)(·), . . . , 𝐴𝑛−1𝑣

(𝛼𝑛−1)(·), 𝐴𝑣(𝛼)(·) can be analytically ex-
tended from the interval [0,∞) to the whole complex plane. Furthermore, (𝑢 −
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𝑣)(𝛼𝑛−1)(𝑡) =
∫︀ 𝑡

0
𝐸(𝛼𝑛−1)(𝑡 − 𝑠)𝑔(𝑠)𝑑𝑠, 𝑡 > 0 and (𝑢 − 𝑣)(𝛼𝑛)(𝑡) =

∫︀ 𝑡

0
𝐸(𝛼𝑛−1)(𝑡 −

𝑠)𝑔′(𝑠)𝑑𝑠+ 𝐸(𝛼𝑛−1)(𝑡)𝑔(0), 𝑡 > 0. Now it is quite simple to prove that if the func-
tion 𝑡 ↦→ 𝑔(𝑡), 𝑡 > 0 can be analytically extended to the whole complex plane, resp.,
to a continuously differentiable function R ↦→ 𝑌 , then 𝑢(·) is an entire solution of
problem (112), resp., the function 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 can be extended to an 𝛼𝑛-times
continuously differentiable function R ↦→ 𝑋 and the functions 𝐵𝑢(𝛼𝑛)(·), 𝐴1𝑢

(𝛼1)(·),
. . . , 𝐴𝑛−1𝑢

(𝛼𝑛−1)(·), 𝐴𝑢(𝛼)(·) can be extended to continuously differentiable func-
tions R ↦→ 𝑋. The rest of the proof can be left to the reader. �

Remark 2.3.47. (i) Suppose that 𝑌 =𝑋, 𝐶1∈𝐿(𝑋) is injective, 𝐶1𝐴𝑗 ⊆
𝐴𝑗𝐶1, 𝑗 ∈ N0

𝑛, as well as the operator families {P−1
𝑧 𝐶1 : |𝑧| > 𝑅} ⊆ 𝐿(𝑋)

and {𝑧𝛼𝑗−𝛼𝑛𝐴𝑗P
−1
𝑧 𝐶1 : |𝑧| > 𝑅, 𝑗 ∈ N0

𝑛} ⊆ 𝐿(𝑋) are equicontinuous and
strongly continuous. Then the analyticity of mappings 𝑧 ↦→ P−1

𝑧 𝐶1𝑥 ∈ 𝑋,
|𝑧| > 𝑅 and 𝑧 ↦→ 𝑧𝛼𝑗−𝛼𝑛𝐴𝑗P

−1
𝑧 𝐶1𝑥 ∈ 𝑋, |𝑧| > 𝑅 automatically follows

for any 𝑥 ∈ 𝑋, 𝑗 ∈ N0
𝑛 (cf. the proof of Lemma 2.6.3 below).

(ii) Suppose that 𝑔 ∈ 𝐶∞([0,∞) : 𝑌 ), resp., 𝑔(·) can be extended to an
infinitely differentiable function R ↦→ 𝑌 . Then 𝑢 ∈ 𝐶∞([0,∞) : 𝑋) and
𝐵𝑢(𝛼𝑛), 𝐴1𝑢

(𝛼1), . . . , 𝐴𝑛−1𝑢
(𝛼𝑛−1), 𝐴𝑢(𝛼) ∈ 𝐶∞([0,∞) : 𝑋), resp., the

functions 𝑢(·) and 𝐵𝑢(𝛼𝑛)(·), 𝐴1𝑢
(𝛼1)(·), . . . , 𝐴𝑛−1𝑢

(𝛼𝑛−1)(·), 𝐴𝑢(𝛼)(·) can
be extended to infinitely differentiable functions R ↦→ 𝑋.

(iii) Let 0 6 𝑖 6 𝑚𝑛 − 1, 0 6 𝑗 6 𝑛 − 1 and 𝑖 > 𝛼𝑗 . If a strong solution 𝑢(·)
of problem (112) has the property that 𝑢 ∈ 𝐶∞([0,∞) : 𝑋) and 𝐵𝑢(𝛼𝑛),
𝐴1𝑢

(𝛼1), . . . , 𝐴𝑛−1𝑢
(𝛼𝑛−1), 𝐴𝑢(𝛼) ∈ 𝐶∞([0,∞) : 𝑋), then it can be easily

seen that the mapping 𝑡 ↦→ 𝐴𝑗𝑢
(𝛼′

𝑗)(𝑡), 𝑡 > 0 is well-defined and infinitely
differentiable for 𝛼′

𝑗 > 𝛼𝑗 ; hence, 𝑢𝑖 ∈ 𝐷(𝐴𝑗) for 0 6 𝑖 6 𝑚𝑛 − 1, 𝑗 ∈ 𝐷′′
𝑖

and our result on the well-posedness of (112) is optimal provided that
𝑅(𝐶1) = 𝑋.

Now we would like to present how Theorem 2.3.46 can be applied in the analysis
of abstract Boussinesq–Love equation in finite domains.

Example 2.3.48. Suppose that ∅ ≠ Ω ⊆ R𝑛 is a bounded domain with smooth
boundary 𝜕Ω. In the cylinder R × Ω, we consider the following Cauchy–Dirichlet
problem for linearized Boussinesq–Love equation:

(140) (𝜆−Δ)𝑢𝑡𝑡(𝑡, 𝑥)−𝛼(Δ−𝜆′)𝑢𝑡(𝑡, 𝑥) = 𝛽(Δ−𝜆′′)𝑢(𝑡, 𝑥)+𝑓(𝑡, 𝑥), 𝑡 ∈ R, 𝑥 ∈ Ω,

(141) 𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑢𝑡(0, 𝑥) = 𝑢1(𝑥), (𝑡, 𝑥) ∈ R×Ω; 𝑢(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ R×𝜕Ω,

where 𝜆, 𝜆′, 𝜆′′ ∈ R, 𝛼, 𝛽 ∈ R and 𝛽 ̸= 0 (in [515], the standing hypothesis was that
𝛼 ̸= 0; as explained later in [556], the case 𝛼 = 0 is meaningful and has a certain
physical meaning). By {𝜆𝑘} [= 𝜎(Δ)] we denote the eigenvalues of the Dirichlet
Laplacian Δ in 𝐿2(Ω) (recall that 0 < −𝜆1 6 −𝜆2 . . . 6 −𝜆𝑘 6 · · · → +∞ as
𝑘 → ∞; cf. [521, Section 5.6], [27, Section 6] and [509, Section 1.3] for more details)
numbered in nonascending order with regard to multiplicities. By {𝜑𝑘} ⊆ 𝐶∞(Ω)
we denote the corresponding set of mutually orthogonal [in the sense of 𝐿2(Ω)]
eigenfunctions. In [515], G. A. Sviridyuk and A. A. Zamyshlyaeva have considered
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the well-posedness of problem (140)–(141) in the Sobolev space 𝑊 𝑝,𝑙(Ω), where
1 < 𝑝 <∞ and 𝑙 ∈ N0, and the Hölder space 𝐶𝑙+𝛾(Ω), where 0 < 𝛾 < 1 and 𝑙 ∈ N0.
In order to apply [515, Theorem 4.1], the authors imposed the following condition:

(i) 𝜆 ∈ 𝜌(Δ), or
(iii) 𝜆 ∈ 𝜎(Δ) ∧ 𝜆 = 𝜆′ ∧ 𝜆 ̸= 𝜆′′.

Although our results on the well-posedness of problem (140)–(141) in cases (i) or
(iii) give some new information about qualitative properties of strong solutions of
(140)–(141), in the remainder of this example we will completely focus our attention
on the following case:

(ii) 𝜆 ∈ 𝜎(Δ) ∧ 𝜆 ̸= 𝜆′ ∧ (𝛼 = 0 ⇒ 𝜆 ̸= 𝜆′′).
If (ii) holds with 𝛼 ̸= 0, then we cannot apply [515, Theorem 4.1] (despite of the
validity of requirement stated in the formulation of [515, Lemma 5.1]) because
of the violation of condition [515, (A), p. 271]. Here it is also worth noting
that the existence and uniqueness of two times continuously differentiable solutions
of problem (140)–(141) on the non-negative real axis (understood in a broader
sense of [509, Definition 5.6.2]) have been studied in [509, Example 5.7.1, Lemma
5.7.1(ii), Theorem 5.7.3] provided that 𝑌 = 𝐻2(Ω) ∩ 𝐻1

0 (Ω), 𝑋 = 𝐿2(Ω), as well
as that (ii) holds and that, additionally, 𝜆′′ ̸= 0; even in this case, we obtain
from Theorem 2.3.46 and a simple analysis, with 𝑋 = 𝑌 = 𝐿2(Ω) and 𝐶1 being the
identity operator on𝑋, that a strong solution 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 of this problem has the
property that the mapping 𝑡 ↦→ Δ𝑢(𝑡), 𝑡 > 0 belongs to the space 𝐶2([0,∞) : 𝐿2(Ω))
provided that 𝑓 ∈ 𝐶1([0,∞) : 𝐿2(Ω)) needless to say that we obtain the existence
and uniqueness of entire solutions of problem (140)–141 provided that the function
𝑓(·) can be extended analytically to the whole complex plane.

With a little abuse of notation, we have that 𝑛 = 2, 𝐵 = 𝜆 − Δ, 𝐴1 =
−𝛼(Δ− 𝜆′), 𝐴 = 𝛽(Δ− 𝜆′′), 𝛼2 = 2, 𝛼1 = 1 and 𝛼 = 0 (the use of symbols 𝛼 and
𝛽 will be clear from the context). Hence,

P𝑧 = 𝑧−2[(𝑧2𝜆+ 𝛼𝑧𝜆′ + 𝛽𝜆′′) + (−𝑧2 − 𝛼𝑧 − 𝛽)Δ], 𝑧 ∈ Cr {0}.

It is clear that (ii) implies that

𝜆 ̸= 𝑧2𝜆+ 𝛼𝑧𝜆′ + 𝛽𝜆′′

𝑧2 + 𝛼𝑧 + 𝛽
→ 𝜆 as |𝑧| → ∞.

We assume that 𝑋 = 𝑌 = 𝐿𝑝(Ω) for some 𝑝 ∈ (1,∞), 𝐶1 is the identity operator on
𝑋, Δ is the Dirichlet Laplacian on 𝐿𝑝(Ω) acting with domain 𝐷(Δ) :=𝑊 𝑝,2(Ω) ∩
𝑊 𝑝,1

0 (Ω), as well as that the following condition holds:
HP. There exist a sufficiently large real number 𝑅 > 0 and a positive real

number number 𝑙 < 4, resp., 𝑙 < 2, provided that (ii) holds with 𝛼 ̸= 0,
resp., 𝛼 = 0, such that

(142) ‖𝑅(𝑧 : Δ)‖ = 𝑂(|𝜆− 𝑧|−𝑙) as 𝑧 → 𝜆.

Before proceeding further, it should be observed that the condition HP. holds in
the case that 𝑝 = 2, with 𝑙 = 1: Suppose that 𝜆 = 𝜆𝑘0

for some 𝑘0 ∈ N. Then
𝑔 = 𝑅(𝑧 : Δ)𝑓 =

∑︀∞
𝑘=1

⟨𝜑𝑘,𝑓⟩
𝑧−𝜆𝑘

𝜑𝑘 as 𝑧 → 𝜆𝑘0 , so that Parseval’s equality implies
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|𝑧−𝜆𝑘0
|2‖𝑔‖2 =

∑︀∞
𝑘=1

|𝑧−𝜆𝑘0
|2|⟨𝜑𝑘,𝑓⟩|2

|𝑧−𝜆𝑘|2 6 Const.
∑︀∞

𝑘=1 |⟨𝜑𝑘, 𝑓⟩|2 = ‖𝑓‖2 as 𝑧 → 𝜆𝑘0

(let us recall that 𝜆𝑘 → −∞ as 𝑘 → ∞). Using now the condition HP., the
expression

P−1
𝑧 = 𝑧−2(𝑧2 + 𝛼𝑧 + 𝛽)−1

[︁𝑧2𝜆+ 𝛼𝑧𝜆′ + 𝛽𝜆′′

𝑧2 + 𝛼𝑧 + 𝛽
−Δ

]︁−1

, |𝑧| > 𝑅,

and the resolvent equation, it readily follows that there exists a positive real number
𝜁 > 0 such that the operator families {(1 + |𝑧|)𝜁P−1

𝑧 : |𝑧| > 𝑅} ⊆ 𝐿(𝑋) and
{(1 + |𝑧|)𝜁𝑧𝛼𝑗−𝛼𝑛𝐴𝑗P

−1
𝑧 : |𝑧| > 𝑅, 𝑗 ∈ N0

2} ⊆ 𝐿(𝑋) are equicontinuous, as well as
that lim𝑧→∞ P−1

𝑧 𝑥 = 0 and lim𝑧→∞ 𝑧𝛼𝑗−𝛼𝑛𝐴𝑗P
−1
𝑧 𝑥 = 0 for any 𝑥 ∈ 𝑋, 𝑗 ∈ N0

𝑛.
The strong analyticity of mappings 𝑧 ↦→ P−1

𝑧 , |𝑧| > 𝑅 and 𝑧 ↦→ 𝑧𝛼𝑗−𝛼𝑛𝐴𝑗P
−1
𝑧 , |𝑧| >

𝑅 follows from Remark 2.3.47(i), while the existence of an exponentially bounded 𝐼-
uniqueness family for the corresponding problem (112) simply follows from Theorem
2.3.33(ii) and the above argumentation; here 𝐼 stands for the identity operator on
𝑋. Hence, there exists a unique entire solution 𝑧 ↦→ 𝑢(𝑧), 𝑧 ∈ C of problem (140)–
(141), provided that 𝑢0(𝑥) ∈ 𝑊 𝑝,2(Ω) ∩ 𝑊 𝑝,1

0 (Ω), 𝑢1(𝑥) ∈ 𝑊 𝑝,2(Ω) ∩ 𝑊 𝑝,1
0 (Ω)

and the function 𝑓(·) can be analytically extended to the whole complex plane;
moreover, we have the existence of a positive real number 𝜔′ > 0 such that the set
{𝑒−𝜔′𝑧𝑔(𝑧) : 𝑧 ∈ C} is bounded in 𝐿𝑝(Ω). Since 𝐶1 is the identity operator on 𝑋,
this is an optimal result as long as the condition HP. holds (cf. Remark 2.3.47(iii)).

We continue our analysis by enquiring into the existence and uniqueness of
entire solutions to the abstract Barenblatt–Zheltov–Kochina equation in finite do-
mains. We use the argumentation contained in the proof of Theorem 2.3.46 and
the approach of N. H. Abdelaziz, F. Neubrander (cf. [6] and Subsection 2.3.3); for
the sake of simplicity, we will deal only with the homogenous case.

Example 2.3.49. Let ∅ ≠ Ω ⊆ R𝑛, {𝜆𝑘}, {𝜑𝑘} and Δ possess the same mean-
ings as in the previous example, let 𝑋 = 𝑌 = 𝐿2(Ω), and let 𝐶1 be the identity
operator on 𝑋. As mentioned above, we analyze entire solutions of the Barenblatt–
Zheltov–Kochina equation

(𝜆−Δ)𝑢𝑡(𝑡, 𝑥) = 𝜁Δ𝑢(𝑡, 𝑥), 𝑡 ∈ R, 𝑥 ∈ Ω;(143)
𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ Ω, 𝑢(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ R× 𝜕Ω,(144)

where 𝜁 ∈ R r {0} and 𝜆 = 𝜆𝑘0 ∈ 𝜎(Δ) (cf. the equation (112) with 𝑛 = 2,
𝐵 = 𝜆 − Δ, 𝐴1 = 0, 𝐴 = 𝜁Δ, 𝛼2 = 1 and 𝛼1 = 𝛼 = 0; then we have P𝑧 =
𝜆− (1+ 𝜁𝑧−1)Δ). Using Parseval’s equality, it can be easily seen that the operator
𝐷 : 𝑓 ↦→ (−1)(𝜁𝜆)−1

∑︀
𝜆=𝜆𝑘

⟨𝜑𝑘, 𝑓⟩𝜑𝑘 (𝑓 ∈ 𝐿2(Ω)) belongs to the space 𝐿(𝐿2(Ω)).
Let 𝛽 ∈ (−𝜋, 𝜋]. Then the equation (142) holds with 𝑙 = 1, which enables us to
verify that, for every 𝜃 ∈ (0, 𝜋/2), there exists a sufficiently large number 𝜔𝛽,𝜃 > 0

satisfying that the function 𝑞𝛽,𝜃(𝑧) := 𝑧−2P−1
𝑧𝑒−𝑖𝛽 ∈ 𝐿(𝑋), 𝑧 ∈ 𝜔𝛽,𝜃 + Σ𝜃+(𝜋/2) is

well-defined, strongly analytic and that for each 𝜃′ ∈ (0, 𝜃) the operator family
{𝑧−2(𝑧 − 𝜔𝛽,𝜃)P

−1
𝑧𝑒−𝑖𝛽 : 𝑧 ∈ 𝜔𝛽,𝜃 + Σ𝜃′+(𝜋/2)} ⊆ 𝐿(𝑋) is equicontinuous. As in the

proof of Theorem 2.3.46, we obtain that for each 𝑓 ∈ 𝑋 there exists an 𝑋-valued
analytic mapping 𝑧 ↦→𝑊 1

𝛽,𝑓 (𝑧), 𝑧 ∈ Σ𝜋/2 satisfying that, for every 𝜃 ∈ (0, 𝜋/2), one
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has
∫︀∞
0
𝑒−𝑧𝑡𝑊 1

𝛽,𝑓 (𝑡)𝑑𝑡 = 𝑧−2P−1
𝑧𝑒−𝑖𝛽𝑓 , Re 𝑧 > 𝜔𝛽,𝜃 and the set {𝑒−𝜔𝛽,𝜃𝑧𝑊 1

𝛽,𝑓 (𝑧) :

𝑧 ∈ Σ𝜃′} is bounded in 𝑋 (𝑓 ∈ 𝑋, 𝜃′ ∈ (0, 𝜃)). Define 𝑊 1
𝛽 (𝑧)𝑓 := 𝑊 1

𝛽,𝑓 (𝑧),
𝑧 ∈ Σ𝜋/2, 𝑓 ∈ 𝑋. Then, for every 𝜃 ∈ (0, 𝜋/2), {𝑒−𝜔𝛽,𝜃𝑧𝑊 1

𝛽 (𝑧) : 𝑧 ∈ Σ𝜃} ⊆ 𝐿(𝑋) is
an equicontinuous operator family. On the other hand, there exist finite constants
𝑅 > 0 and 𝑐 > 0 such that the set {|𝑧|−1|(𝜆− 𝜆𝑘)𝑧 − 𝜁𝜆𝑘| : |𝑧| > 𝑅, 𝑘 ∈ Nr {𝑘0}}
is bounded from below by 𝑐, so that we can apply Parseval’s equality once more in
order to see that:

𝑧−1P−1
𝑧 𝑓 =

1

𝜁 + 𝑧

[︁ 𝜆𝑧

𝜁 + 𝑧
−Δ

]︁−1

𝑓 =

∞∑︁
𝑘=1,𝑘 ̸=𝑘0

⟨𝜑𝑘, 𝑓⟩
(𝜆− 𝜆𝑘)𝑧 − 𝜁𝜆𝑘

𝜑𝑘 +𝐷𝑓 → 𝐷𝑓,

as |𝑧| → ∞ (𝑓 ∈ 𝑋); similarly, we have that the operator family {𝑧−2𝐵P−1
𝑧𝑒−𝑖𝛽 :

|𝑧| > 𝑅} ∈ 𝐿(𝑋) is equicontinuous and 𝑧−1𝐵P−1
𝑧 𝑓 → 0, |𝑧| → ∞ (𝑓 ∈ 𝑋), so that

we can define a strongly analytic operator family (𝑊 1
𝛽,𝐵(𝑧))𝑧∈Σ𝜋/2

⊆ 𝐿(𝑋) satisfy-
ing that, for every 𝜃 ∈ (0, 𝜋/2), the operator family {𝑒−𝜔′

𝛽,𝜃𝑧𝑊 1
𝛽,𝐵(𝑧) : 𝑧 ∈ Σ𝜃} ⊆

𝐿(𝑋) is equicontinuous for some number 𝜔′
𝛽,𝜃 > 0. Since lim|𝑧|→∞ 𝑧−1P−1

𝑧 𝑓 = 𝐷𝑓

(𝑓 ∈ 𝑋), an application of Theorem 1.4.10(ii)/(iii) yields that, for every 𝑓 ∈ 𝑋 and
𝜃 ∈ (0, 𝜋/2), we have lim𝑧→0,𝑧∈Σ𝜃

𝑊 1
𝛽 (𝑧)𝑓 = 𝐷𝑓 . Define

𝑊 1(𝑧) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑊 1
0 (𝑧), 𝑧 ∈ Σ𝜋/2,

𝑒𝑖𝜋/2𝑊 1
𝜋/2(𝑧𝑒

−𝑖𝜋/2), if 𝑧 ∈ 𝑒𝑖𝜋/2Σ𝜋/2,

𝑒−𝑖𝜋/2𝑊 1
−𝜋/2(𝑧𝑒

𝑖𝜋/2), if 𝑧 ∈ 𝑒−𝑖𝜋/2Σ𝜋/2,

𝑒𝑖𝜋𝑊 1
𝜋 (𝑧𝑒

−𝑖𝜋), if 𝑧 ∈ 𝑒𝑖𝜋Σ𝜋/2,

𝐷, if 𝑧 = 0,

and 𝑊 1
𝐵(𝑧) by replacing the operators 𝑊 1

0 (𝑧), 𝑊 1
𝜋/2(𝑧𝑒

−𝑖𝜋/2), 𝑊 1
−𝜋/2(𝑧𝑒

𝑖𝜋/2),
𝑊 1

𝜋 (𝑧𝑒
−𝑖𝜋) and𝐷 in the above definition by the operators𝑊 1

0,𝐵(𝑧),𝑊
1
𝜋/2,𝐵(𝑧𝑒

−𝑖𝜋/2),
𝑊 1

−𝜋/2,𝐵(𝑧𝑒
𝑖𝜋/2), 𝑊 1

𝜋,𝐵(𝑧𝑒
−𝑖𝜋) and 0, respectively (𝑧 ∈ C). Then there exists a fi-

nite constant 𝜔 > 0 such that the operator families {𝑒−𝜔𝑧𝑊 (𝑧) : 𝑧 ∈ C} ⊆ 𝐿(𝑋)
and {𝑒−𝜔𝑧𝐵𝑊 (𝑧) : 𝑧 ∈ C} ⊆ 𝐿(𝑋) are equicontinuous as well as that, for every
𝑓 ∈ 𝑋, the mappings 𝑧 ↦→ 𝑊 (𝑧)𝑓 , 𝑧 ∈ C and 𝑧 ↦→ 𝐵𝑊 (𝑧)𝑓 , 𝑧 ∈ C are entire; cf.
also [291, Proposition 2.4.2, Corollary 2.4.3]. Furthermore, it is not difficult to see
that (𝑊 1(𝑡))𝑡>0 ⊆ 𝐿(𝑋, [𝐷(𝐵)]) is a once integrated evolution family generated by
𝐴, 𝐵 in the sense of considerations from [6, Section 2]. By [6, Theorem 2.3] and an
elementary analysis, we may conclude that for each function 𝑢0 ∈ 𝐻2(Ω)∩𝐻1

0 (Ω),
orthogonal to the eigenfunction(s) 𝜑𝑘 for 𝑘 = 𝑘0, there exists a unique strong so-
lution 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 of problem (143)–(144) satisfying that there exists a finite
constant 𝜔′ > 0 such that the mappings 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 and 𝑡 ↦→ 𝐵𝑢(𝑡), 𝑡 > 0
can be analytically extended to the whole complex plane, as well as that the sets
{𝑒−𝜔′𝑧𝑢(𝑧) : 𝑧 ∈ C} and {𝑒−𝜔′𝑧𝐵𝑢(𝑧) : 𝑧 ∈ C} are bounded. This result slightly
improves the assertion of [509, Theorem 5.1.3(ii)] in 𝐿2 spaces.

Now we will investigate the existence and uniqueness of analytical solutions
of abstract degenerate Cauchy problem (112), provided that there exists an index
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𝑖 ∈ N0
𝑛 such that 𝛼𝑖 /∈ N0; for the sake of brevity, we will consider only homogeneous

equations.

Definition 2.3.50. A function 𝑢 ∈ 𝐶([0,∞) : 𝑋) is said to be an analytical
solution of problem (112) on the region C r (−∞, 0] iff 𝑢(·) is a strong solution
of (112) and it can be extended to the whole complex plane, analytically on the
region C r (−∞, 0] and continuously on the region C r (−∞, 0), as well as any of
the terms 𝐴𝑖D

𝛼𝑖
𝑡 𝑢(𝑡) (0 6 𝑖 6 𝑛, 𝑡 > 0) is well defined and can be extended to the

whole complex plane, analytically on the region C r (−∞, 0] and continuously on
the region Cr (−∞, 0).

Set, for every 𝛾 ∈ (−𝜋, 𝜋] and 𝑧 ∈ Cr {0},

P𝑧,𝛾 := 𝐵 +

𝑛−1∑︁
𝑗=1

𝑧𝛼𝑗−𝛼𝑛𝑒𝑖𝛾(𝛼𝑛−𝛼𝑗)𝐴𝑗 − 𝑧𝛼−𝛼𝑛𝑒𝑖𝛾(𝛼𝑛−𝛼)𝐴.

Before stating the following theorem, it should be observed that P𝑧,𝛾 need not be
equal to P𝑧𝑒−𝑖𝛾 for some particular values of 𝛾 and 𝑧.

Theorem 2.3.51. Suppose 𝑘(𝑡) satisfies (P1), 𝐶1 ∈ 𝐿(𝑌,𝑋), 𝐶2 ∈ 𝐿(𝑋) is in-
jective, and there exists a locally equicontinuous 𝑘-regularized 𝐶2-uniqueness family
for problem (112), with 𝑓(𝑡) ≡ 0. Let the following hold:

∙ Suppose that for each number 𝛾 ∈ (−𝜋, 𝜋] there exists a sufficiently large
number 𝑅 > 0 such that the operator P𝑧,𝛾 is injective for |𝑧| > 𝑅, as well
as that the operator families {P−1

𝑧,𝛾𝐶1 : |𝑧| > 𝑅, 𝑧 /∈ (−∞, 0]} ⊆ 𝐿(𝑌,𝑋)

and {𝑧𝛼𝑗−𝛼𝑛𝐴𝑗P
−1
𝑧,𝛾𝐶1 : |𝑧| > 𝑅, 𝑗 ∈ N0

𝑛, 𝑧 /∈ (−∞, 0]} ⊆ 𝐿(𝑌,𝑋) are
equicontinuous.

∙ Let the mappings 𝑧 ↦→ P−1
𝑧,𝛾𝐶1𝑦 ∈ 𝑋, |𝑧| > 𝑅, 𝑧 /∈ (−∞, 0] and 𝑧 ↦→

𝑧𝛼𝑗−𝛼𝑛𝐴𝑗P
−1
𝑧,𝛾𝐶1𝑦 ∈ 𝑋, |𝑧| > 𝑅, 𝑧 /∈ (−∞, 0] be analytic for any 𝑦 ∈ 𝑌 ,

𝑗 ∈ N0
𝑛, 𝛾 ∈ (−𝜋, 𝜋].

∙ Let there exist operators 𝐷,𝐷0, 𝐷1, . . . , 𝐷𝑛 ∈ 𝐿(𝑌,𝑋) such that
lim𝑧→+∞ P−1

𝑧,𝛾𝐶1𝑦 = 𝐷𝑦 and lim𝑧→+∞ 𝑧𝛼𝑗−𝛼𝑛𝑒𝑖𝛾(𝛼𝑛−𝛼𝑗)𝐴𝑗P
−1
𝑧,𝛾𝐶1𝑦 =

𝐷𝑗𝑦 for any 𝑦 ∈ 𝑌 , 𝑗 ∈ N0
𝑛, 𝛾 ∈ (−𝜋, 𝜋].

∙ Suppose that 𝑢𝑖 ∈ D𝑖 for 0 6 𝑖 6 𝑚𝑛 − 1.
Then there exists a unique analytical solution of problem (112) on the region C r
(−∞, 0], with 𝑓(𝑡) ≡ 0. Denote by 𝐴𝑖D

𝛼𝑖
𝑧 𝑢(𝑧) the analytical extensions of terms

𝐴𝑖D
𝛼𝑖
𝑡 𝑢(𝑡) (0 6 𝑖 6 𝑛, 𝑡 > 0) on region Cr (−∞, 0]. Then, for every 𝜁 ∈ (0, 𝜋), we

have the existence of a positive real number 𝜔′ > 0 such that the sets {𝑒−𝜔′𝑧𝑢(𝑧) :

𝑧 ∈ Σ𝜁} and {𝑒−𝜔′𝑧𝐴𝑖D
𝛼𝑖
𝑧 𝑢(𝑧) : 𝑧 ∈ Σ𝜁} (0 6 𝑖 6 𝑛) are bounded in 𝑋.

Proof. The proof of theorem is very similar to that of Theorem 2.3.46 and,
because of that, we will only outline the most relevant details. Fix numbers 𝛾 ∈
(−𝜋, 𝜋] and 𝜁 ∈ (0, 𝜋). Then, for every 𝜃 ∈ (0, 𝜋/2), there exists a sufficiently large
number 𝜔𝛾,𝜃 > 0 satisfying that the function 𝑟𝛾,𝜃(𝑧) := 𝑧−1P−1

𝑧,𝛾𝐶1 ∈ 𝐿(𝑌,𝑋),
𝑧 ∈ 𝜔𝛾,𝜃 + Σ𝜃+(𝜋/2) is well-defined, strongly analytic and that for each 𝜃′ ∈ (0, 𝜃)

the operator family {𝑧−1(𝑧 − 𝜔𝛾,𝜃)P
−1
𝑧,𝛾𝐶1 : 𝑧 ∈ 𝜔𝛾,𝜃 + Σ𝜃′+(𝜋/2)} ⊆ 𝐿(𝑌,𝑋) is

equicontinuous. Arguing as in the proof of Theorem 2.3.46, we obtain the existence
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of a strongly analytic operator family (𝑊𝛾(𝑧))𝑧∈Σ𝜋/2
⊆ 𝐿(𝑌,𝑋) satisfying that

lim𝑧→0,𝑧∈Σ𝜃
𝑊𝛾(𝑧)𝑦 = 𝐷𝑦 (𝜃 ∈ (0, 𝜋/2), 𝑦 ∈ 𝑌 ),

∫︀∞
0
𝑒−𝑧𝑡𝑊𝛾(𝑡)𝑦 𝑑𝑡 = 𝑧−1P−1

𝑧,𝛾𝐶1𝑦,
Re 𝑧 > 𝜔𝛾,𝜃, 𝑦 ∈ 𝑌 and that, for every 𝜃 ∈ (0, 𝜋/2), {𝑒−𝜔𝛾,𝜃𝑧𝑊𝛾(𝑧) : 𝑧 ∈ Σ𝜃′} ⊆
𝐿(𝑌,𝑋) is an equicontinuous operator family (𝜃′ ∈ (0, 𝜃)). Define

𝑊 (𝑧) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑊0(𝑧), 𝑧 ∈ Σ𝜋/2,

𝑊𝜋/2(𝑧𝑒
−𝑖𝜋/2), if 𝑧 ∈ 𝑒𝑖𝜋/2Σ𝜋/2,

𝑊−𝜋/2(𝑧𝑒
𝑖𝜋/2), if 𝑧 ∈ 𝑒−𝑖𝜋/2Σ𝜋/2,

0, if 𝑧 < 0,

𝐷, if 𝑧 = 0.

Then it can be simply verified that 𝑊 (·) is well-defined and there exists 𝜔 > 0
such that the operator family {𝑒−𝜔𝑧𝑊 (𝑧) : 𝑧 ∈ Σ𝜁} ⊆ 𝐿(𝑌,𝑋) is equicontinuous
as well as that, for every 𝑦 ∈ 𝑌 , the mapping 𝑧 ↦→ 𝑊 (𝑧)𝑦, 𝑧 ∈ C r (−∞, 0] is
analytic. Replacing the function 𝑧 ↦→ 𝑞𝛾,𝜃(𝑧), 𝑧 ∈ 𝜔𝛾,𝜃 +Σ𝜃+(𝜋/2) with the function
𝑧 ↦→ 𝑞𝛾,𝜃,𝑗(𝑧) := 𝑧−1𝑧𝛼𝑗−𝛼𝑛𝑒𝑖𝛾(𝛼𝑛−𝛼𝑗)𝐴𝑗P

−1
𝑧,𝛾𝐶1 ∈ 𝐿(𝑌,𝑋), 𝑧 ∈ 𝜔𝛾,𝜃 + Σ𝜃+(𝜋/2) in

the first part of proof (𝜃 ∈ (0, 𝜋/2), 𝑗 ∈ N0
𝑛), we can define a strongly analytic

operator family (𝑊𝛾,𝑗(𝑧))𝑧∈Σ𝜋/2
⊆ 𝐿(𝑌,𝑋) satisfying that, for every 𝜃 ∈ (0, 𝜋/2)

and 𝑦 ∈ 𝑌 , we have that
∫︀∞
0
𝑒−𝑧𝑡𝑊𝛾,𝑗(𝑡)𝑦 𝑑𝑡 = 𝑧−1𝑧𝛼𝑗−𝛼𝑛𝑒𝑖𝛾(𝛼𝑛−𝛼𝑗)𝐴𝑗P

−1
𝑧,𝛾𝐶1𝑦,

Re 𝑧 > 𝜔𝛽,𝜃 and the operator family {𝑒−𝜔𝛽,𝜃𝑧𝑊𝛾,𝑗(𝑧) : 𝑧 ∈ Σ𝜃′} ⊆ 𝐿(𝑌,𝑋) is
equicontinuous (𝜃′ ∈ (0, 𝜃), 𝑗 ∈ N0

𝑛). Define now 𝑊 𝑗(·) by replacing 𝑊0(·), 𝑊𝜋/2(·),
𝑊−𝜋/2(·) and 𝐷 in the definition of 𝑊 (·) with 𝑊0,𝑗(·), 𝑊𝜋/2,𝑗(·), 𝑊−𝜋/2,𝑗(·) and
𝐷𝑗 , respectively (𝑗 ∈ N0

𝑛). Then there exists 𝜔𝑗 > 0 such that the operator family
{𝑒−𝜔𝑗𝑧𝑊 𝑗(𝑧) : 𝑧 ∈ Σ𝜁} ⊆ 𝐿(𝑌,𝑋) is equicontinuous as well as that, for every
𝑦 ∈ 𝑌 , the mapping 𝑧 ↦→ 𝑊 𝑗(𝑧)𝑦, 𝑧 ∈ C r (−∞, 0] is analytic and the mapping
𝑧 ↦→𝑊 𝑗(𝑧)𝑦, 𝑧 ∈ Cr(−∞, 0) is continuous (𝑗 ∈ N0

𝑛). By Theorem 2.3.33(i)/(b), we
get that there exists an exponentially equicontinuous 𝐶1-existence family for (112),
denoted by (𝐸(𝑡))𝑡>0. Furthermore, for every 𝑦 ∈ 𝑌 , the mapping 𝑡 ↦→ 𝐸(𝑡)𝑦, 𝑡 > 0
can be analytically extended to the region 𝑧 ∈ C r (−∞, 0] so that the mapping
𝑧 ↦→ 𝐸(𝑧)𝑦, 𝑧 ∈ C r (−∞, 0) is continuous as well as that 𝐸(𝑚𝑛−1)(𝑧)𝑦 = 𝑊 (𝑧)𝑦,
𝑧 ∈ Cr (−∞, 0], 𝑦 ∈ 𝑌 and 𝐴𝑗(𝑔𝛼𝑛−𝛼𝑗 *𝐸(𝑚𝑛−1))(𝑧)𝑦 =𝑊 𝑗(𝑧)𝑦, 𝑧 ∈ Cr (−∞, 0],
𝑦 ∈ 𝑌 , 𝑗 ∈ N0

𝑛 (this equality can be proved by using the closedness of operators
𝐴𝑗 for 𝑗 ∈ N0

𝑛, Proposition 1.4.7 and the arguments already used in the proofs
of Kato’s analyticity criteria from [291, Section 2.4]). By Theorem 2.3.34 and
Theorem 2.3.33(ii), we get that the function 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0, given by (121), with
𝑔(𝑡) = 𝐺(𝑡) = 0, 𝑡 > 0, is a unique strong solution of problem (112). The rest of
the proof can be obtained by using a slight modification of the corresponding parts
of the proof of Theorem 2.3.46. �

Remark 2.3.52. Suppose that 𝑌 = 𝑋, 𝐶1 ∈ 𝐿(𝑋) is injective, 𝐶1𝐴𝑗 ⊆ 𝐴𝑗𝐶1,
𝑗 ∈ N0

𝑛, as well as that the operator families {P−1
𝑧,𝛾𝐶1 : |𝑧| > 𝑅, 𝑧 /∈ (−∞, 0]} ⊆

𝐿(𝑋) and {𝑧𝛼𝑗−𝛼𝑛𝐴𝑗P
−1
𝑧,𝛾𝐶1 : |𝑧| > 𝑅, 𝑧 /∈ (−∞, 0], 𝑗 ∈ N0

𝑛} ⊆ 𝐿(𝑋) are
equicontinuous and strongly continuous for any 𝛾 ∈ (−𝜋, 𝜋]. Then the mappings
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𝑧 ↦→ P−1
𝑧,𝛾𝐶1𝑥 ∈ 𝑋, |𝑧| > 𝑅, 𝑧 /∈ (−∞, 0] and 𝑧 ↦→ 𝑧𝛼𝑗−𝛼𝑛𝐴𝑗P

−1
𝑧,𝛾𝐶1𝑥 ∈ 𝑋, |𝑧| > 𝑅,

𝑧 /∈ (−∞, 0] are analytic for any 𝑥 ∈ 𝑋, 𝑗 ∈ N0
𝑛, 𝛾 ∈ (−𝜋, 𝜋].

Now we will continue our analysis of abstract Boussinesq–Love equation and
abstract Barenblatt–Zheltov–Kochina equation in finite domains (fractional-order
case).

Example 2.3.53. (i) Suppose, as in Exampe 2.3.48, that ∅ ≠ Ω ⊆ R𝑛 is
a bounded domain with smooth boundary 𝜕Ω. Let 0 < 𝛼1 < 𝛼2 6 2. We
analyze the following fractional degenerate Cauchy-Dirichlet problem:

(𝜆−Δ)D𝛼2
𝑡 (𝑡, 𝑥)− 𝛼(Δ− 𝜆′)D𝛼1

𝑡 (𝑡, 𝑥) = 𝛽(Δ− 𝜆′′)𝑢(𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ Ω,(145)
𝑢(0, 𝑥) = 𝑢0(𝑥); 𝑢𝑡(0, 𝑥) = 𝑢1(𝑥), (𝑡, 𝑥) ∈ [0,∞)× Ω, if 𝛼2 > 1;(146)

𝑢(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ [0,∞)× 𝜕Ω,(147)

where Δ denotes the Dirichlet Laplacian on 𝐿2(Ω), 𝜆, 𝜆′, 𝜆′′ ∈ R, 𝛼, 𝛽 ∈ R
and 𝛽 ̸= 0. Assume that the following condition holds (cf. Example
2.3.48(ii)):

𝜆 ∈ 𝜎(Δ) ∧ 𝜆 ̸= 𝜆′ ∧ (𝛼 = 0 ⇒ 𝜆 ̸= 𝜆′′).
Arguing similarly as in the afore-mentioned example, we can prove that
the requirements of Theorem 2.3.51 holds with 𝐷 = 𝐷0 = 𝐷1 = 𝐷2 = 0,
so that the abstract Cauchy problem (145)–(147) has a unique analytical
solution on the region C r (−∞, 0] for any 𝑢0(𝑥) ∈ 𝐻2(Ω) ∩𝐻1

0 (Ω), and
𝑢1(𝑥) ∈ 𝐻2(Ω) ∩𝐻1

0 (Ω), if 𝛼2 > 1.
(ii) Let ∅ ≠ Ω ⊆ R𝑛 be a bounded domain with smooth boundary 𝜕Ω, let

𝛼 ∈ (0, 2) r {1}, and let 𝑋 = 𝑌 = 𝐿2(Ω). Suppose that Δ denotes the
Dirichlet Laplacian on 𝑋 and the operator 𝐷 has the same meaning as in
Example 2.3.49 (we will use the same notation henceforth). Consider the
following fractional Barenblatt–Zheltov–Kochina equation:

(𝜆−Δ)D𝛼
𝑡 𝑢(𝑡, 𝑥) = 𝜁Δ𝑢(𝑡, 𝑥), 𝑡 ∈ R, 𝑥 ∈ Ω;(148)

𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ Ω; 𝑢𝑡(0, 𝑥) = 𝑢1(𝑥), (𝑡, 𝑥) ∈ [0,∞)× Ω, if 𝛼 > 1;(149)
𝑢(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ R× 𝜕Ω,(150)

where 𝜁 ∈ R r {0} and 𝜆 = 𝜆𝑘0
∈ 𝜎(Δ) (let us recall that the problem

(148)–(150) is a special case of problem (112) with 𝑛 = 2, 𝐵 = 𝜆 − Δ,
𝐴1 = 0, 𝐴 = 𝜁Δ, 𝛼2 = 𝛼 and 𝛼1 = 𝛼 = 0; now we have P𝑧 = 𝜆 −
(1 + 𝜁𝑧−𝛼)Δ). Let 𝛾 ∈ (−𝜋, 𝜋]. Then it is not difficult to verify that,
for every 𝜃 ∈ (0, 𝜋/2), there exists a sufficiently large number 𝜔𝛾,𝜃 > 0
satisfying that the function 𝑞𝛾,𝜃(𝑧) := 𝑧−𝛼−1P−1

𝑧,𝛾 ∈ 𝐿(𝑋), 𝑧 ∈ 𝜔𝛾,𝜃 +
Σ𝜃+(𝜋/2) is well-defined, strongly analytic and that for each 𝜃′ ∈ (0, 𝜃)

the operator family {𝑧−𝛼−1(𝑧 − 𝜔𝛾,𝜃)P
−1
𝑧,𝛾 : 𝑧 ∈ 𝜔𝛾,𝜃 +Σ𝜃′+(𝜋/2)} ⊆ 𝐿(𝑋)

is equicontinuous. Furthermore, for every 𝑓 ∈ 𝑋, there exists an 𝑋-
valued analytic mapping 𝑧 ↦→𝑊𝛼

𝛾,𝑓 (𝑧), 𝑧 ∈ Σ𝜋/2 satisfying that, for every
𝜃 ∈ (0, 𝜋/2), one has

∫︀∞
0
𝑒−𝑧𝑡𝑊𝛼

𝛾,𝑓 (𝑡)𝑑𝑡 = 𝑧−𝛼−1P−1
𝑧,𝛾𝑓 , Re 𝑧 > 𝜔𝛾,𝜃 and

the set {𝑒−𝜔𝛾,𝜃𝑧𝑊𝛼
𝛾,𝑓 (𝑧) : 𝑧 ∈ Σ𝜃′} is bounded in 𝑋 (𝑓 ∈ 𝑋, 𝜃′ ∈ (0, 𝜃)).

Define 𝑊𝛼
𝛾 (𝑧)𝑓 := 𝑊𝛼

𝛾,𝑓 (𝑧), 𝑧 ∈ Σ𝜋/2, 𝑓 ∈ 𝑋. Then, for every 𝜃 ∈
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(0, 𝜋/2), {𝑒−𝜔𝛾,𝜃𝑧𝑊𝛼
𝛾 (𝑧) : 𝑧 ∈ Σ𝜃} ⊆ 𝐿(𝑋) is an equicontinuous operator

family. By the foregoing, we have 𝑧−𝛼P−1
𝑧 𝑓 → 𝐷𝑓 , as |𝑧| → ∞, 𝑧 /∈

(−∞, 0] (𝑓 ∈ 𝑋); similarly, the operator family {𝑧−𝛼−1𝐵P−1
𝑧,𝛾 : |𝑧| >

𝑅, 𝑧 /∈ (−∞, 0]} ∈ 𝐿(𝑋) is equicontinuous and 𝑧−𝛼𝐵P−1
𝑧 𝑓 → 0, |𝑧| → ∞,

𝑧 /∈ (−∞, 0] (𝑓 ∈ 𝑋), so that we can define a strongly analytic operator
family (𝑊𝛼

𝛾,𝐵(𝑧))𝑧∈Σ𝜋/2
⊆ 𝐿(𝑋) satisfying that, for every 𝜃 ∈ (0, 𝜋/2), the

operator family {𝑒−𝜔′
𝛾,𝜃𝑧𝑊𝛼

𝛽,𝐵(𝑧) : 𝑧 ∈ Σ𝜃} ⊆ 𝐿(𝑋) is equicontinuous for
some number 𝜔′

𝛾,𝜃 > 0. We have that, for every 𝑓 ∈ 𝑋 and 𝜃 ∈ (0, 𝜋/2),
lim𝑧→0,𝑧∈Σ𝜃

𝑊𝛼
𝛾 (𝑧)𝑓 = 𝐷𝑓 . Define

𝑊𝛼(𝑧) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑊𝛼
0 (𝑧), 𝑧 ∈ Σ𝜋/2,

𝑒𝑖𝛼𝜋/2𝑊𝛼
𝜋/2(𝑧𝑒

−𝑖𝜋/2), if 𝑧 ∈ 𝑒𝑖𝜋/2Σ𝜋/2,

𝑒−𝑖𝛼𝜋/2𝑊𝛼
−𝜋/2(𝑧𝑒

𝑖𝜋/2), if 𝑧 ∈ 𝑒−𝑖𝜋/2Σ𝜋/2,

0, if 𝑧 < 0,

𝐷, if 𝑧 = 0,

and 𝑊𝛼
𝐵(𝑧) by replacing the operators 𝑊𝛼

0 (𝑧), 𝑊𝛼
𝜋/2(𝑧𝑒

−𝑖𝜋/2),
𝑊𝛼

−𝜋/2(𝑧𝑒
𝑖𝜋/2) and 𝐷 in the above definition by the operators 𝑊𝛼

0,𝐵(𝑧),
𝑊𝛼

𝜋/2,𝐵(𝑧𝑒
−𝑖𝜋/2), 𝑊𝛼

−𝜋/2,𝐵(𝑧𝑒
𝑖𝜋/2) and 0, respectively (𝑧 ∈ C). Then, for

every 𝜈 ∈ (0, 𝜋), there exists a finite constant 𝜔𝜈 > 0 such that the opera-
tor families {𝑒−𝜔𝜈𝑧𝑊𝛼(𝑧) :𝑧 ∈ Σ𝜈} ⊆ 𝐿(𝑋) and {𝑒−𝜔𝜈𝑧𝐵𝑊𝛼(𝑧) :𝑧 ∈ Σ𝜈}
= {𝑒−𝜔𝜈𝑧𝑊𝛼,𝐵(𝑧) : 𝑧 ∈ Σ𝜈} ⊆ 𝐿(𝑋) are equicontinuous as well as
that, for every 𝑓 ∈ 𝑋, the mappings 𝑧 ↦→ 𝑊𝛼(𝑧)𝑓 and 𝑧 ↦→ 𝐵𝑊𝛼(𝑧)𝑓
are analytical on C r (−∞, 0] and continuous on C r (−∞, 0). Now
it can be easily seen that (𝑊𝛼(𝑡))𝑡>0 ⊆ 𝐿(𝑋, [𝐷(𝐵)]) is an exponen-
tially bounded (𝑔𝛼, 𝑔𝛼+1)-regularized resolvent family generated by 𝐴, 𝐵.
Furthermore, there exists a sufficiently large number 𝑅′ > 0 such that
(𝑧𝐵 − 𝐴)−1 ∈ 𝐿(𝑋) for all 𝑧 ∈ 𝑆𝑅′ := {𝑧 ∈ C r (−∞, 0] : |𝑧| = 𝑅′}.
Denote, for every 𝑓 ∈ 𝐻2(Ω) ∩𝐻1

0 (Ω) and 𝑧 ∈ 𝑆𝑅′ ,

𝑢(𝑡; 𝑓, 𝑧) :=−𝑊𝛼(𝑡)𝐵𝑓 −
∫︁ 𝑡

0

(𝑡− 𝑠)𝛼−1𝐸𝛼,𝛼((𝑡− 𝑠)𝛼−1𝑧)𝑊𝛼(𝑠)𝑥 𝑑𝑠

+ 𝐸𝛼(𝑡
𝛼𝑧)(𝑧𝐵 −𝐴)−1𝐵𝑓, 𝑡 > 0.

Fix a number 𝑧0 ∈ 𝑆𝑅′ such that 𝑧0𝑒±𝑖𝛼/2 ∈ 𝑆𝑅′ . Using Theorem 2.3.18,
it readily follows that the function 𝑡 ↦→ 𝑢(𝑡;𝑢0, 𝑧0) +

∫︀ 𝑡

0
𝑢(𝑠;𝑢1, 𝑧0)𝑑𝑠,

𝑡 > 0 is a unique solution of problem (148)–(150) with the initial values
𝑢0 and 𝑢1 replaced by (𝑧0𝐵−𝐴)−1𝐵𝑢0 and (𝑧0𝐵−𝐴)−1𝐵𝑢1, respectively.
On the other hand, using analytical properties of vector-valued Laplace
transform we can prove that the function 𝑡 ↦→

∫︀ 𝑡

0
(𝑡 − 𝑠)𝛼−1𝐸𝛼,𝛼((𝑡 −

𝑠)𝛼−1𝑧)𝑊𝛼(𝑠)𝑥 𝑑𝑠, 𝑡 > 0 can be continuously extended on the region
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Cr (−∞, 0), analytically on the region Cr (−∞, 0], by the formula⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ℒ−1

(︀
1

𝑧𝛼−𝑧0
1

𝑧𝛼+1P
−1
𝑧

)︀
, if 𝑧 ∈ Σ𝜋/2,

ℒ−1
(︀

1
𝑧𝛼−𝑒𝑖𝜋𝛼/2𝑧0

1
𝑧𝛼+1P

−1
𝑧,𝜋/2

)︀
, if 𝑧 ∈ 𝑒𝑖𝜋/2Σ𝜋/2,

ℒ−1
(︀

1
𝑧𝛼−𝑒−𝑖𝜋𝛼/2𝑧0

1
𝑧𝛼+1P

−1
𝑧,−𝜋/2

)︀
, if 𝑧 ∈ 𝑒−𝑖𝜋/2Σ𝜋/2,

0, if 𝑧 6 0.

This simply implies that, for any two functions 𝑢0,1 ∈ 𝐻2(Ω) ∩ 𝐻1
0 (Ω),

orthogonal to the eigenfunction(s) 𝜑𝑘 for 𝑘 = 𝑘0, there exists a unique
analytical solution 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 of problem (148)–(150) on the region
C r (−∞, 0] with the property that for each 𝜈 ∈ (0, 𝜋) there exists a
finite constant 𝜔𝜈 > 0 such that the sets {𝑒−𝜔𝜈𝑧𝑢(𝑧) : 𝑧 ∈ Σ𝜈} and
{𝑒−𝜔𝜈𝑧𝐵𝑢(𝑧) : 𝑧 ∈ Σ𝜈} are bounded.

2.4. Abstract degenerate multi-term fractional differential equations
with Riemann–Liouville derivatives

Let 𝑛 ∈ N r {1}, let 𝐴, 𝐵 and 𝐴1, . . . , 𝐴𝑛−1 be closed linear operators on a
complex Banach space 𝐸. Further on, assume that 0 6 𝛼1 < · · · < 𝛼𝑛, 0 6 𝛼 < 𝛼𝑛,
0 < 𝜏 6 ∞, 𝑓(𝑡) is an 𝐸-valued function, and 𝐷𝛼

𝑡 denotes the Riemann–Liouville
fractional derivative of order 𝛼. In this section, we investigate the abstract multi-
term fractional differential equation

(151) 𝐵𝐷𝛼𝑛
𝑡 𝑢(𝑡) +

𝑛−1∑︁
𝑗=1

𝐴𝑗𝐷
𝛼𝑗

𝑡 𝑢(𝑡) = 𝐴𝐷𝛼
𝑡 𝑢(𝑡) + 𝑓(𝑡), 𝑡 ∈ (0, 𝜏).

We introduce and systematically analyze some new types of degenerate 𝑘-regular-
ized (𝐶1, 𝐶2)-existence and uniqueness (propagation) families for (151). Recall that
𝛼0 = 𝛼, 𝑚 = ⌈𝛼⌉, 𝐴0 = 𝐴, 𝐴𝑛 = 𝐵 and 𝑚𝑖 = ⌈𝛼𝑖⌉ for 1 6 𝑖 6 𝑛. The following
vector-valued modification of the condition (P1) will be used henceforth:

(P1)’: ℎ(𝑡) : [0,∞) → 𝐸 is Laplace transformable, i.e., ℎ ∈ 𝐿1
𝑙𝑜𝑐([0,∞) : 𝐸) and

there exists 𝛽 ∈ R such that ℎ̃(𝜆) := ℒ(ℎ)(𝜆) := lim𝑏→∞
∫︀ 𝑏

0
𝑒−𝜆𝑡ℎ(𝑡)𝑑𝑡 :=∫︀∞

0
𝑒−𝜆𝑡ℎ(𝑡)𝑑𝑡 exists for all 𝜆 ∈ C with Re𝜆 > 𝛽. Put abs(ℎ) := inf{Re𝜆 :

ℎ̃(𝜆) exists}.
The inclusion 𝐻(𝜆) ∈ 𝐿𝑇𝐸 means that there exist a function ℎ(𝑡) : [0,∞) → 𝐸

satisfying (P1) and a number 𝑎 > abs(ℎ) so that ℎ̃(𝜆) = 𝐻(𝜆), 𝜆 > 𝑎.

Definition 2.4.1. Suppose 0 < 𝜏 6 ∞ and 𝑓 ∈ 𝐿1((0, 𝜏) : 𝐸). By a strong
solution of (151) we mean any function 𝑢 ∈ 𝐿1((0, 𝜏) : 𝐸) for which 𝑔𝑚𝑗−𝛼𝑗 * 𝑢 ∈
𝑊𝑚𝑗 ,1((0, 𝜏) : 𝐸) (0 6 𝑗 6 𝑛), 𝐴𝑗𝐷

𝛼𝑗

𝑡 𝑢(𝑡) ∈ 𝐿1((0, 𝜏) : 𝐸) (0 6 𝑗 6 𝑛), and (151)
holds for a.e. 𝑡 ∈ (0, 𝜏).

Now we would like to introduce the concept mild solution of (151), and to endow
the equation (151) with corresponding inital conditions. In order to do that, let us
assume that 𝑢(𝑡) is a strong solution of (151). Then we can integrate the equation
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(151) 𝛼𝑛-times by using the formula (37) and the closedness of the operators 𝐴𝑗

for 𝑗 ∈ N0
𝑛−1. In such a way, we get

(152) 𝐵

[︂
𝑢(𝑡)−

𝑚𝑛−1∑︁
𝑖=0

(𝑔𝑚𝑛−𝛼𝑛 * 𝑢)(𝑖)(0)𝑔𝛼𝑛+𝑖+1−𝑚𝑛(𝑡)

]︂

+

𝑛−1∑︁
𝑗=1

𝑔𝛼𝑛−𝛼𝑗 *𝐴𝑗

[︂
𝑢(𝑡)−

𝑚𝑗−1∑︁
𝑖=0

(𝑔𝑚𝑗−𝛼𝑗 * 𝑢)(𝑖)(0)𝑔𝛼𝑗+𝑖+1−𝑚𝑗 (𝑡)

]︂

= 𝑔𝛼𝑛−𝛼 *𝐴
[︂
𝑢(𝑡)−

𝑚−1∑︁
𝑖=0

(𝑔𝑚−𝛼 * 𝑢)(𝑖)(0)𝑔𝛼+𝑖+1−𝑚(𝑡)

]︂
+ (𝑔𝛼𝑛

* 𝑓)(𝑡),

for all 𝑡 ∈ [0, 𝜏). This immediately implies that any strong solution of (151) satisfies

(153) 𝐵

[︂
𝑢(𝑡)−

𝑚𝑛−1∑︁
𝑖=0

(𝑔𝑚𝑛−𝛼𝑛
* 𝑢)(𝑖)(0)𝑔𝛼𝑛+𝑖+1−𝑚𝑛

(𝑡)

]︂
∈ 𝐶([0, 𝜏) : 𝐸),

whence we may conclude that 𝑢 ∈ 𝐶([0, 𝜏) : 𝐸) provided that 𝐵−1 ∈ 𝐿(𝐸).

Definition 2.4.2. Suppose 0 < 𝜏 6 ∞ and 𝑓 ∈ 𝐿1((0, 𝜏) :). By a mild
solution of (151) we mean any function 𝑢 ∈ 𝐿1((0, 𝜏) : 𝐸) for which 𝑔𝑚𝑗−𝛼𝑗 * 𝑢 ∈
𝑊𝑚𝑗 ,1((0, 𝜏) : 𝐸) (0 6 𝑗 6 𝑛), 𝐴𝑗(𝑔𝛼𝑛

*𝐷𝛼𝑗

𝑡 𝑢(·))(·) ∈ 𝐶([0, 𝜏) : 𝐸) (0 6 𝑗 6 𝑛− 1),
(153) holds, and

(154) 𝐵

[︂
𝑢(𝑡)−

𝑚𝑛−1∑︁
𝑖=0

(𝑔𝑚𝑛−𝛼𝑛 * 𝑢)(𝑖)(0)𝑔𝛼𝑛+𝑖+1−𝑚𝑛(𝑡)

]︂
+

𝑛−1∑︁
𝑗=1

𝐴𝑗(𝑔𝛼𝑛 *𝐷𝛼𝑗
𝑡 𝑢(·))(𝑡)

= 𝐴(𝑔𝛼𝑛 *𝐷𝛼
𝑡 𝑢(·))(𝑡) + (𝑔𝛼𝑛 * 𝑓)(𝑡), 𝑡 ∈ [0, 𝜏).

By the foregoing, any strong solution of (151) is also a mild solution of the
same problem; the converse statement is not true, in general. Observe that the
equation (154) can be written in the following way:

(155) 𝐵

[︂
𝑢(𝑡)−

𝑚𝑛−1∑︁
𝑖=0

(𝑔𝑚𝑛−𝛼𝑛 * 𝑢)(𝑖)(0)𝑔𝛼𝑛+𝑖+1−𝑚𝑛(𝑡)

]︂

+

𝑛−1∑︁
𝑗=1

𝐴𝑗

(︂
𝑔𝛼𝑛−𝛼𝑗 *

[︂
𝑢(·)−

𝑚𝑗−1∑︁
𝑖=0

(𝑔𝑚𝑗−𝛼𝑗 * 𝑢)(𝑖)(0)𝑔𝛼𝑗+𝑖+1−𝑚𝑗 (·)
]︂)︂

(𝑡)

= 𝐴

(︂
𝑔𝛼𝑛−𝛼 *

[︂
𝑢(·)−

𝑚−1∑︁
𝑖=0

(𝑔𝑚−𝛼 * 𝑢)(𝑖)(0)𝑔𝛼+𝑖+1−𝑚(·)
]︂)︂

(𝑡) + (𝑔𝛼𝑛
* 𝑓)(𝑡),

for all 𝑡 ∈ [0, 𝜏). Put

𝒯(151) :=

{︃
1, if there exists 𝑗 ∈ N0

𝑛 such that 𝛼𝑗 ∈ N,
0, otherwise,

and 𝑆 := {𝑗 ∈ N0
𝑛 : 𝛼𝑗 ∈ N}. For the sequel, it will be of crucial importance to

recognise the following three subcases of (151):
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(SC1) 𝛼𝑛 > 1: Then for each number 𝑖 ∈ N𝑚𝑛−1 we define the set 𝒟𝑖 by
𝒟𝑖 := {𝑗 ∈ N0

𝑛 : 𝑚𝑗 − 1 > 𝑖}. Observe that 𝑛 ∈ 𝒟𝑖 (𝑖 ∈ N𝑚𝑛−1) and
𝒟𝑚𝑛−1 ⊆ · · · ⊆ 𝒟1. Set 𝑆𝑖 := {𝑚𝑗 − 𝛼𝑗 : 𝑗 ∈ 𝒟𝑖} and, after that,
𝑠𝑖 := card(𝑆𝑖). Then 𝑆𝑖 ⊆ [0, 1) and 𝑆𝑖 can be written in the following
way

𝑆𝑖 = {𝑎𝑖,1, . . . , 𝑎𝑖,𝑠𝑖},
where 0 6 𝑎𝑖,1 < · · · < 𝑎𝑖,𝑠𝑖 6 1 (𝑖 ∈ N𝑚𝑛−1). Define 𝒟𝑙

𝑖 := {𝑗 ∈ 𝒟𝑖 :
𝑚𝑗−𝛼𝑗 = 𝑎𝑖,𝑙} (𝑖 ∈ N𝑚𝑛−1, 1 6 𝑙 6 𝑠𝑖). Then for each number 𝑖 ∈ N𝑚𝑛−1

we introduce 𝑠𝑖 initial values 𝑥𝑖,1, . . . , 𝑥𝑖,𝑠𝑖 for terms (𝑔𝑚𝑗−𝛼𝑗
* 𝑢)(𝑖)(0),

where 𝑗 ∈ 𝒟𝑖. In addition, if there exists 𝑗 ∈ N0
𝑛 such that 𝛼𝑗 ∈ N,

i.e., if 𝑆 ̸= ∅, then one has to introduce a new initial value 𝑥0 for term
(𝑔0 * 𝑢)(0) ≡ 𝑢(0).

(SC2) 𝛼𝑛 = 1: Then we introduce only one initial value for term (𝑔0 * 𝑢)(0) ≡
𝑢(0).

(SC3) 𝛼𝑛 < 1: Then we consider the equation (151) without initial conditions.
Define

ℬ(151) :=

⎧⎪⎨⎪⎩
𝑠1 + · · ·+ 𝑠𝑚𝑛−1 + 𝒯(151), if 𝛼𝑛 > 1,

1, if 𝛼𝑛 = 1,

0, if 𝛼𝑛 < 1.

Summa summarum, there will be exactly ℬ(151) initial conditions for (151).
The subcase (SC3) is very specific and therefore, not discussed henceforth.

Consider now, for the sake of illustration and better understanding, the subcase
(SC1). Plugging 𝑥𝑖,𝑙 = (𝑔𝑚𝑗−𝛼𝑗 * 𝑢)(𝑖)(0) in (152), where 𝑗 ∈ 𝒟𝑙

𝑖, and choosing
other initial values to be zeroes, we obtain

(156) 𝐵[𝑢(𝑡)− 𝜒𝒟𝑙
𝑖
(𝑛)𝑔𝛼𝑛+𝑖+1−𝑚𝑛(𝑡)𝑥𝑖,𝑙]

+

𝑛−1∑︁
𝑗=1

𝑔𝛼𝑛−𝛼𝑗
*𝐴𝑗 [𝑢(𝑡)− 𝜒𝒟𝑙

𝑖
(𝑗)𝑔𝛼𝑗+𝑖+1−𝑚𝑗

(𝑡)𝑥𝑖,𝑙]

= 𝑔𝛼𝑛−𝛼 *𝐴[𝑢(𝑡)− 𝜒𝒟𝑙
𝑖
(0)𝑔𝛼+𝑖+1−𝑚(𝑡)𝑥𝑖,𝑙] for all 𝑡 ∈ [0, 𝜏).

If 𝑆 ̸= ∅, then inserting the initial value 𝑥0 for 𝑢(0) in (152), and choosing 𝑥𝑖,𝑙 to
be zero for 𝑖 ∈ N𝑚𝑛−1 and 1 6 𝑙 6 𝑠𝑖, we obtain similarly that

(157) 𝐵[𝑢(𝑡)− 𝜒𝑆(𝑛)𝑥0] +

𝑛−1∑︁
𝑗=1

𝑔𝛼𝑛−𝛼𝑗 *𝐴𝑗 [𝑢(𝑡)− 𝜒𝑆(𝑗)𝑥0]

= 𝑔𝛼𝑛−𝛼 *𝐴[𝑢(𝑡)− 𝜒𝑆(0)𝑥0] for all 𝑡 ∈ [0, 𝜏).

Suppose now, only for the purpose of further analysis, that 0 < 𝜏 6 ∞, 𝐾(𝑡) ̸= 0

in 𝐿1
𝑙𝑜𝑐([0, 𝜏)) and 𝑘(𝑡) =

∫︀ 𝑡

0
𝐾(𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝜏). Convoluting the above equations

with 𝐾(𝑡) and using the procedure similar to that already employed for abstract
multi-term problems with Caputo fractional derivatives, we come to the following
definition.
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Definition 2.4.3. Let 0 < 𝜏 6∞, 𝑘 ∈ 𝐶([0, 𝜏)), 𝐶,𝐶1, 𝐶2 ∈ 𝐿(𝐸), and let 𝐶
and 𝐶2 be injective.

(i) (SC1) Suppose that, for every 𝑖 ∈ N𝑚𝑛−1 and 𝑙 ∈ N𝑠𝑖 , (𝑅𝑖,𝑙(𝑡))𝑡∈[0,𝜏) ⊆
𝐿(𝐸, [𝐷(𝐵)]) is strongly continuous, as well as that, for every 𝑡 ∈ [0, 𝜏),
𝑥 ∈ 𝐸, 𝑖 ∈ N𝑚𝑛−1 and 𝑙 ∈ N𝑠𝑖 , the following functional equation

𝐵[𝑅𝑖,𝑙(𝑡)𝑥− 𝜒𝒟𝑙
𝑖
(𝑛)(𝑘 * 𝑔𝛼𝑛+𝑖−𝑚𝑛)(𝑡)𝐶1𝑥]

+

𝑛−1∑︁
𝑗=1

𝐴𝑗 [𝑔𝛼𝑛−𝛼𝑗
* (𝑅𝑖,𝑙(·)𝑥− 𝜒𝒟𝑙

𝑖
(𝑗)(𝑘 * 𝑔𝛼𝑗+𝑖−𝑚𝑗

)(·)𝐶1𝑥)](𝑡)

= 𝐴[𝑔𝛼𝑛−𝛼 * (𝑅𝑖,𝑙(·)𝑥− 𝜒𝒟𝑙
𝑖
(0)(𝑘 * 𝑔𝛼+𝑖−𝑚)(·)𝐶1𝑥)](𝑡)

holds. If 𝑆 ̸= ∅, then we also introduce a strongly continuous family
(𝑅0,1(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝐸, [𝐷(𝐵)]) satisfying that, for every 𝑡 ∈ [0, 𝜏) and
𝑥 ∈ 𝐸,

𝐵[𝑅0,1(𝑡)𝑥− 𝜒𝑆(𝑛)𝑘(𝑡)𝐶1𝑥] +

𝑛−1∑︁
𝑗=1

𝐴𝑗 [𝑔𝛼𝑛−𝛼𝑗
* (𝑅0,1(·)𝑥− 𝜒𝑆(𝑗)𝑘(·)𝐶1𝑥)](𝑡)

= 𝐴[𝑔𝛼𝑛−𝛼 * (𝑅0,1(·)𝑥− 𝜒𝑆(0)𝑘(·)𝐶1𝑥)](𝑡).

Then the sequence ((𝑅𝑖,𝑙(𝑡))𝑡∈[0,𝜏))16𝑖6𝑚𝑛−1,16𝑙6𝑠𝑖 if 𝑆 = ∅, resp.,
((𝑅𝑖,𝑙(𝑡))𝑡∈[0,𝜏), (𝑅0,1(𝑡))𝑡∈[0,𝜏))16𝑖6𝑚𝑛−1,16𝑙6𝑠𝑖 if 𝑆 ̸= ∅, is said to be a
(local, if 𝜏 <∞) 𝑘-regularized 𝐶1-existence propagation family for (151).
(SC2) A strongly continuous family (𝑅(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝐸, [𝐷(𝐵)]) satisfy-
ing that, for every 𝑡 ∈ [0, 𝜏) and 𝑥 ∈ 𝐸,

𝐵[𝑅(𝑡)𝑥− 𝑘(𝑡)𝐶1𝑥] +

𝑛−1∑︁
𝑗=1

𝐴𝑗(𝑔𝛼𝑛−𝛼𝑗
*𝑅(·)𝑥)(𝑡) = 𝐴(𝑔𝛼𝑛−𝛼 *𝑅(·)𝑥)(𝑡),

is said to be a (local, if 𝜏 < ∞) 𝑘-regularized 𝐶1-existence propagation
family for (151).

(ii) (SC1) Suppose that, for every 𝑖 ∈ N𝑚𝑛−1 and 𝑙 ∈ N𝑠𝑖 , (𝑊𝑖,𝑙(𝑡))𝑡∈[0,𝜏) ⊆
𝐿(𝐸) is strongly continuous, as well as

[𝑊𝑖,𝑙(𝑡)𝐵𝑥− 𝜒𝒟𝑙
𝑖
(𝑛)(𝑘 * 𝑔𝛼𝑛+𝑖−𝑚𝑛

)(𝑡)𝐶2𝐵𝑥]

+

𝑛−1∑︁
𝑗=1

𝑔𝛼𝑛−𝛼𝑗 * [𝑊𝑖,𝑙(·)𝐴𝑗𝑥− 𝜒𝒟𝑙
𝑖
(𝑗)(𝑘 * 𝑔𝛼𝑗+𝑖−𝑚𝑗 )(·)𝐶2𝐴𝑗𝑥]

= 𝑔𝛼𝑛−𝛼 * [𝑊𝑖,𝑙(·)𝐴𝑥− 𝜒𝒟𝑙
𝑖
(0)(𝑘 * 𝑔𝛼+𝑖−𝑚)(·)𝐶2𝐴𝑥],

for every 𝑖 ∈ N𝑚𝑛−1, 𝑙 ∈ N𝑠𝑖 , 𝑡 ∈ [0, 𝜏) and 𝑥 ∈
⋂︀

06𝑗6𝑛𝐷(𝐴𝑗). If 𝑆 ̸= ∅,
then we also introduce a strongly continuous family (𝑊0,1(𝑡))𝑡∈[0,𝜏) ⊆
𝐿(𝐸) satisfying that, for every 𝑥 ∈

⋂︀
06𝑗6𝑛𝐷(𝐴𝑗),

[𝑊0,1(·)𝐵𝑥− 𝜒𝑆(𝑛)𝑘(·)𝐶2𝐵𝑥]
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+

𝑛−1∑︁
𝑗=1

𝑔𝛼𝑛−𝛼𝑗
* [𝑊0,1(·)𝐴𝑗𝑥− 𝜒𝑆(𝑗)𝑘(·)𝐶2𝐴𝑗𝑥]

= 𝑔𝛼𝑛−𝛼 * [𝑊0,1(·)𝐴𝑥− 𝜒𝑆(0)𝑘(·)𝐶2𝐴𝑥].

Then the sequence ((𝑊𝑖,𝑙(𝑡))𝑡∈[0,𝜏))16𝑖6𝑚𝑛−1,16𝑙6𝑠𝑖 if 𝑆 = ∅, resp.,
((𝑊𝑖,𝑙(𝑡))𝑡∈[0,𝜏), (𝑊0,1(𝑡))𝑡∈[0,𝜏))16𝑖6𝑚𝑛−1,16𝑙6𝑠𝑖 if 𝑆 ̸= ∅, is said to be a
(local, if 𝜏 <∞) 𝑘-regularized 𝐶2-uniqueness propagation family for (151).
(SC2) A strongly continuous family (𝑊 (𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝐸) satisfying that,
for every 𝑥 ∈

⋂︀
06𝑗6𝑛𝐷(𝐴𝑗) and 𝑡 ∈ [0, 𝜏),

[𝑊 (𝑡)𝐵𝑥− 𝑘(𝑡)𝐶2𝐵𝑥] +

𝑛−1∑︁
𝑗=1

(𝑔𝛼𝑛−𝛼𝑗 *𝑊 (·)𝐶2𝐴𝑗𝑥)(𝑡) = (𝑔𝛼𝑛−𝛼 *𝑊 (·)𝐶2𝐴𝑥)(𝑡),

is said to be a (local, if 𝜏 < ∞) 𝑘-regularized 𝐶2-uniqueness propagation
family for (151).

If 𝑘(𝑡) = 𝑔𝜁+1(𝑡), where 𝜁 > 0, then a 𝑘-regularized 𝐶1-existence propagation
family for (151) is also said to be 𝜁-times integrated 𝐶1-existence propagation family
for (151); 0-times integrated 𝐶1-existence propagation family for (151) is simply
called 𝐶1-existence propagation family for (151); similar noions will be used for the
classes of 𝐶2-uniqueness propagation families for (151) and 𝐶-resolvent propagation
families for (151).

A 𝑘-regularized 𝐶1-existence propagation family for (151) is said to be locally
equicontinuous (exponentially equicontinuous) iff each single operator family of
it, considered as an element of the space 𝐿(𝐸, [𝐷(𝐵)]), is locally equicontinuous
(exponentially equicontinuous). The notion of an exponential equicontinuity of a
𝑘-regularized 𝐶1-existence propagation family for (151), of angle 𝛼 ∈ (0, 𝜋/2], will
be understood in the sense of Definition 2.3.24.

We define the notion of a mild (strong) solution of problem (156), resp. (157),
as before: Let 𝜏 ∈ (0,∞]. By a mild solution of problem (156) on [0, 𝜏) we mean
any continuous function 𝑡 ↦→ 𝑢(𝑡), 𝑡 ∈ [0, 𝜏) satisfying that

𝐵[𝑢(𝑡)− 𝜒𝒟𝑙
𝑖
(𝑛)𝑔𝛼𝑛+𝑖+1−𝑚𝑛

(𝑡)𝑥𝑖,𝑙]

+

𝑛−1∑︁
𝑗=1

𝐴𝑗(𝑔𝛼𝑛−𝛼𝑗 * [𝑢(·)− 𝜒𝒟𝑙
𝑖
(𝑗)𝑔𝛼𝑗+𝑖+1−𝑚𝑗 (·)𝑥𝑖,𝑙])(𝑡)

= 𝐴(𝑔𝛼𝑛−𝛼 * [𝑢(·)− 𝜒𝒟𝑙
𝑖
(0)𝑔𝛼+𝑖+1−𝑚(·)𝑥𝑖,𝑙])(𝑡), 𝑡 ∈ [0, 𝜏).

By a strong solution of problem (156) on [0, 𝜏) we mean any continuous function
𝑡 ↦→ 𝑢(𝑡), 𝑡 ∈ [0, 𝜏) satisfying that 𝑡 ↦→ 𝐴𝑗 [𝑢(𝑡)−𝜒𝒟𝑙

𝑖
(𝑗)𝑔𝛼𝑗+𝑖+1−𝑚𝑗

(𝑡)𝑥𝑖,𝑙], 𝑡 ∈ [0, 𝜏)

is continuous, as well as

𝐵[𝑢(𝑡)− 𝜒𝒟𝑙
𝑖
(𝑛)𝑔𝛼𝑛+𝑖+1−𝑚𝑛

(𝑡)𝑥𝑖,𝑙]

+

𝑛−1∑︁
𝑗=1

(𝑔𝛼𝑛−𝛼𝑗 *𝐴𝑗 [𝑢(·)− 𝜒𝒟𝑙
𝑖
(𝑗)𝑔𝛼𝑗+𝑖+1−𝑚𝑗 (·)𝑥𝑖,𝑙])(𝑡)
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= (𝑔𝛼𝑛−𝛼 *𝐴[𝑢(·)− 𝜒𝒟𝑙
𝑖
(0)𝑔𝛼+𝑖+1−𝑚(·)𝑥𝑖,𝑙])(𝑡), 𝑡 ∈ [0, 𝜏).

The notion of a mild (strong) solution of problem (157) on [0, 𝜏) is defined similarly.
Then the following holds (for the sake of brevity, we shall consider only the

subcase (SC1)):

(A) If 𝑆 = ∅ and ((𝑅𝑖,𝑙(𝑡))𝑡∈[0,𝜏))16𝑖6𝑚𝑛−1,16𝑙6𝑠𝑖 is a 𝐶1-existence propaga-
tion family for (151), then the function 𝑢𝑖,𝑙(𝑡) := 𝑅𝑖,𝑙(𝑡)𝐶1𝑥, 𝑡 ∈ [0, 𝜏)
is a mild solution of (156) with 𝑥𝑖,𝑙 = 𝐶1𝑥 for 1 6 𝑖 6 𝑚𝑛 − 1, 1 6
𝑙 6 𝑠𝑖. If 𝑆 ̸= ∅ and ((𝑅𝑖,𝑙(𝑡))𝑡∈[0,𝜏), (𝑅0,1(𝑡))𝑡∈[0,𝜏))16𝑖6𝑚𝑛−1,16𝑙6𝑠𝑖 is
a 𝐶1-existence propagation family for (151), then the function 𝑢0,1(𝑡) :=
𝑅0,1(𝑡)𝐶1𝑥, 𝑡 ∈ [0, 𝜏) is a mild solution of (157) with 𝑥0 = 𝐶1𝑥.

(B) If 𝑆 = ∅ and ((𝑊𝑖,𝑙(𝑡))𝑡∈[0,𝜏))16𝑖6𝑚𝑛−1,16𝑙6𝑠𝑖 is a 𝐶2-uniqueness propa-
gation family for (151), as well as 𝐴𝑗𝑊𝑖,𝑙(𝑡)𝑥 =𝑊𝑖,𝑙(𝑡)𝐴𝑗𝑥, 𝑡 ∈ [0, 𝜏), 𝑥 ∈⋂︀

06𝑗6𝑛𝐷(𝐴𝑗) and 𝐶2𝐴𝑗 ⊆ 𝐴𝑗𝐶2, 𝑗 ∈ N0
𝑛, then the function

𝑢𝑖,𝑙(𝑡) := 𝑊𝑖,𝑙(𝑡)𝐶
−1
2 𝑥𝑖,𝑙, 𝑡 ∈ [0, 𝜏) is a strong solution of (156) for 1 6

𝑖 6 𝑚𝑛 − 1, 1 6 𝑙 6 𝑠𝑖 and 𝑥𝑖,𝑙 ∈ 𝐶2(
⋂︀

06𝑗6𝑛𝐷(𝐴𝑗)). If 𝑆 ̸= ∅ and
((𝑊𝑖,𝑙(𝑡))𝑡∈[0,𝜏), (𝑊0,1(𝑡))𝑡∈[0,𝜏))16𝑖6𝑚𝑛−1,16𝑙6𝑠𝑖 is a 𝐶2-uniqueness prop-
agation family for (151), as well as (in addition to the assumptions em-
ployed in the case that 𝑆 = ∅) 𝐴𝑗𝑊0,1(𝑡)𝑥 = 𝑊0,1(𝑡)𝐴𝑗𝑥, 𝑡 ∈ [0, 𝜏),
𝑥 ∈

⋂︀
06𝑗6𝑛𝐷(𝐴𝑗), then the function 𝑢0(𝑡) := 𝑊0,1(𝑡)𝐶

−1
2 𝑥0, 𝑡 ∈ [0, 𝜏)

is a strong solution of (156) for 1 6 𝑖 6 𝑚𝑛 − 1, 1 6 𝑙 6 𝑠𝑖 and
𝑥0 ∈ 𝐶2(

⋂︀
06𝑗6𝑛𝐷(𝐴𝑗)).

The assertions of [346, Proposition 2.3, Proposition 2.5, Proposition 2.6] admit
reformulations in our new framework (cf. also Theorem 2.3.26). This is also the
case with [346, Theorem 2.8], as the following theorem shows:

Theorem 2.4.4. (SC1) Suppose that 𝑆 = ∅, 𝐶2 ∈ 𝐿(𝐸) is injective, 𝑓 ∈
𝐶([0, 𝜏) : 𝐸), and ((𝑊𝑖,𝑙(𝑡))𝑡∈[0,𝜏))16𝑖6𝑚𝑛−1,16𝑙6𝑠𝑖 is a 𝑘-regularized 𝐶2-
uniqueness propagation family for (151). If a function 𝑢(𝑡) is a strong
solution of problem (114), then

[𝑊𝑖,𝑙(·)− 𝜒𝒟𝑙
𝑖
(𝑛)(𝑘 * 𝑔𝛼𝑛+𝑖−𝑚𝑛

)(·)𝐶2] * 𝑓

=

𝑛−1∑︁
𝑗=1

[𝜒𝒟𝑙
𝑖
(𝑗)(𝑔𝛼𝑛+𝑖−𝑚𝑗

* 𝑘𝐶2 *𝐴𝑗𝑢)(·)− 𝜒𝒟𝑙
𝑖
(𝑛)(𝑔2𝛼𝑛−𝛼𝑗+𝑖−𝑚𝑛

* 𝑘𝐶2 *𝐴𝑗𝑢)(·)]

− [𝜒𝒟𝑙
𝑖
(0)(𝑔𝛼𝑛+𝑖−𝑚 * 𝑘𝐶2 *𝐴𝑢)(·)− 𝜒𝒟𝑙

𝑖
(𝑛)(𝑔2𝛼𝑛−𝛼+𝑖−𝑚𝑛

* 𝑘𝐶2 *𝐴𝑢)(·)].

If 𝑆 ̸= ∅ and ((𝑊𝑖,𝑙(𝑡))𝑡∈[0,𝜏), (𝑊0,1(𝑡))𝑡∈[0,𝜏))16𝑖6𝑚𝑛−1,16𝑙6𝑠𝑖 is a
𝑘-regularized 𝐶2-uniqueness propagation family for (151), then we also
have the following equality on [0, 𝜏):

[𝑊0,1(·)𝑥− 𝜒𝑆(𝑛)𝑘(·)𝐶2] * 𝑓 =

𝑛−1∑︁
𝑗=1

(𝜒𝑆(𝑗)− 𝜒𝑆(𝑛))(𝑔𝛼𝑛−𝛼𝑗
* 𝑘𝐶2 *𝐴𝑗𝑢)(·)

− (𝜒𝑆(0)− 𝜒𝑆(𝑛))(𝑔𝛼𝑛−𝛼 * 𝑘𝐶2 *𝐴𝑢)(·).
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(SC2) Suppose that 𝐶2 ∈ 𝐿(𝐸) is injective, (𝑊 (𝑡))𝑡∈[0,𝜏) is a 𝑘-regularized 𝐶2-
uniqueness propagation family for (151), and 𝑓 ∈ 𝐶([0, 𝜏) : 𝐸). If a
function 𝑢(𝑡) is a strong solution of problem (114), then the following
equality holds on [0, 𝜏):

[𝑊 (·)𝑥− 𝑘(·)𝐶2] * 𝑓 = (𝑔𝛼𝑛−𝛼 * 𝑘𝐶2 *𝐴𝑢)(·)−
𝑛−1∑︁
𝑗=1

(𝑔𝛼𝑛−𝛼𝑗
* 𝑘𝐶2 *𝐴𝑗𝑢)(·).

As explained before for the equations with Caputo fractional derivatives, the
notion of a 𝑘-regularized 𝐶1-existence propagation family is probably the best
theoretical concept for the investigation of existence of integral solutions of non-
degenerate abstract time-fractional equation (151) with 𝐴𝑗 ∈ 𝐿(𝐸), 1 6 𝑗 6 𝑛− 1;
the Laplace transform cannot be so simply applied in the case that there is an
index 𝑗 ∈ N𝑛−1 such that 𝐴𝑗 /∈ 𝐿(𝐸). In contrast to the above, it is very simple
to reword the assertions of [346, Theorem 2.9(ii)] and [314, Theorem 2.4], con-
cerning the Laplace transform of 𝑘-regularized 𝐶2-uniqueness propagation families,
to degenerate differential equations with Riemann–Liouville fractional derivatives.
The assertions of [346, Theorem 2.10-Theorem 2.12] can be rephrased for abstract
degenerate multi-term problems with Riemann–Liouville fractional derivatives, as
well. Having these done, it is not difficult to reconsider [346, Example 5.1(i)] in our
new setting. Furthermore, it is not so difficult to construct some examples of local
𝑘-regularized 𝐼-resolvent propagation families for (151); see e.g. Example 2.3.28.

Before proceeding further, we would like to present three interesting examples
of non-degenerate fractional differential equations that can be analyzed with the
help of 𝑘-regularized 𝐶-resolvent propagation families:

Example 2.4.5. [345]

(i) Based on the so-called CTRW method, T. A. M. Langlands, B. I. Henry
and S. L. Wearne have suggested in [372] using Riemann–Liouville frac-
tional derivatives for the approximation of passive electrotonic properties
of spiny dendrites. In the abstract form (see e.g. [372, (1.18)]), the equa-
tion suggested by them takes the following form

(158) 𝐷1
𝑡 𝑢(𝑡, 𝑥) + 𝜇2𝐷1−𝜅

𝑡 𝑢(𝑡, 𝑥) = 𝐷1−𝛾
𝑡 Δ𝑢(𝑡, 𝑥),

where 0 < 𝛾 < 𝜅 < 1 and 𝜇 ∈ R r {0}. The equation (158) is of type
(SC2) and repeating verbatim the corresponding parts the analysis of
equation [346, (5.4)] we can simply prove that there exists an exponen-
tially equicontinuous, analytic resolvent propagation family for (158), of
angle 𝜃 = 𝜋/2 (recall that it is not clear whether the angle of analyticity
can be improved by allowing that 𝜃 takes the value min(𝜋, 𝜋/𝛾 − 𝜋/2)),
on a large class of Banach function spaces (consisted of functions acting
on finite or infinite domain).

(ii) [63] The fractional order differential equation

𝑢′(𝑡) = 𝐴𝑢(𝑡) + 𝛾𝐷𝛼
𝑡 𝐴𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0; 𝑢(0) = 𝑥0 ∈ 𝐸
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has recently been studied in [63], provided that the operator 𝐴 generates
a strongly continuous semigroup on 𝐸, 𝛾 > 0, 𝛼 ∈ (0, 1) and 𝑓(𝑡) is
an 𝐸-valued function. Equations of this type appear in the modelling
of unidirectional viscoelastic flows; in particular, they can be of some
importance in the analysis of the Rayleigh–Stokes problem for generalized
second-grade fluids.

(iii) Suppose that 𝑛 ∈ N r {1}, 𝑐1, . . . , 𝑐𝑛−1 ∈ C, 0 6 𝛼1 < · · · < 𝛼𝑛 6 2, 0 <
𝛽 < 1, 1 < 𝛾 6 2, 𝑘𝛽 , 𝑘𝛾 > 0 and 𝐿 > 0. The following scalar multi-term
time-space Caputo–Riesz fractional advection diffusion equation, (MT-
TSCR-FADE) for short,

(159)

D𝛼𝑛
𝑡 𝑢(𝑡, 𝑥) + 𝑐𝑛−1D

𝛼𝑛−1

𝑡 𝑢(𝑡, 𝑥)

+ · · ·+ 𝑐1D
𝛼1
𝑡 𝑢(𝑡, 𝑥) = 𝑘𝛽

𝜕𝛽𝑢(𝑡, 𝑥)

𝜕|𝑥|𝛽
+ 𝑘𝛾

𝜕𝛾𝑢(𝑡, 𝑥)

𝜕|𝑥|𝛾(︁ 𝜕𝑘
𝜕𝑡𝑘

𝑢(𝑡, 𝑥)
)︁
𝑡=0

= 𝑢𝑘(𝑥), 𝑘 = 0, . . . , ⌈𝛼𝑛⌉ − 1, 0 6 𝑥 6 𝐿,

where 𝜕𝛽𝑢(𝑡,𝑥)
𝜕|𝑥|𝛽 denotes the Riesz fractional operator of order 𝛽, has re-

cently been analyzed by H. Jiang, F. Liu, I. Turner and K. Burrage
in [260]. In [292, Example 2.9.53], we have considered two different evo-
lution modelings of problem (159). In the first of these modelings, the
equation (159) has been rewritten in the form of the following multi-term
fractional differential equation:

(160)
D𝛼𝑛

𝑡 𝑢(𝑡) + 𝑐𝑛−1D
𝛼𝑛−1

𝑡 𝑢(𝑡) + · · ·+ 𝑐1D
𝛼1
𝑡 𝑢(𝑡) = −𝑘𝛽𝐴𝛽/2 − 𝑘𝛾𝐴𝛾/2

𝑢(𝑘)(0) = 𝑢𝑘, 𝑘 = 0, . . . , ⌈𝛼𝑛⌉ − 1,

where the operator 𝐴 belongs to the class ℳ𝐶,𝑚 for some 𝑚 ∈ R, and
acts on an appropriately chosen space of functions defined on [0, 𝐿] (cf.
Section 1.1 and [292, Section 2.9] for more details about almost 𝐶-sectorial
operators). As announced in [292], the analysis of equation (160) is quite
complicated in the case that 𝐶 ̸= 𝐼 or 𝑚 ̸= −1; suppose, because of
that and for the sake of simplicity, that 𝐴 is a sectorial operator of angle
𝜔 ∈ [0, 𝜋), with 𝐷(𝐴) and 𝑅(𝐴) being dense in 𝐸. Let the so-called
parabolicity condition 2𝜋 > (𝛽+𝛾)𝜔 hold, let 𝛼−1

𝑛 (𝜋−(𝛾𝜔/2))−(𝜋/2) > 0,
and let 1 < 𝛼𝑛 < 2. Then we can prove with the help of Da Prato–
Grisvard theorem (see e.g. [245, Theorem 9.3.1, Corollary 9.3.2]) that
the operator 𝑘𝛽𝐴𝛽/2 + 𝑘𝛾𝐴𝛾/2 is sectorial of angle 𝛾𝜔/2. Using this fact,
it can be easily verified that for each 𝑥1,1 ∈ 𝐸 there exists a unique
mild solution 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 of the corresponding integral equation
(156) and that this solution can be analytically extended to the sector
Σ𝛿, with 𝛿 = min(𝜋/2, 𝛼−1

𝑛 (𝜋− (𝛾𝜔/2))− (𝜋/2)). In the second modeling,
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we have analyzed the 𝐶-wellposedness of the backwards equation (MT-
TSCR-FADE):

(161)
D𝛼𝑛

𝑡 𝑢(𝑡) + 𝑐𝑛−1D
𝛼𝑛−1

𝑡 𝑢(𝑡) + · · ·+ 𝑐1D
𝛼1
𝑡 𝑢(𝑡) = −𝑘𝛽𝐴𝛽 − 𝑘𝛾𝐴𝛾

𝑢(0) = 𝑢0,

where 0 < 𝛽 < 1, 1 < 𝛾 < 2, 𝑘𝛽 , 𝑘𝛾 > 0, 0 6 𝛼1 < · · · < 𝛼𝑛 < 1,
𝛼−1
𝑛 (𝜋 − (𝛾𝜋/2)) > 𝜋/2, 𝐸 := {𝑓 ∈ 𝐶∞[0, 1] ; ‖𝑓‖ := sup𝑝∈N0

‖𝑓(𝑝)‖∞
𝑝!𝜁

<

∞} (𝜁 > 1) and 𝐴 := −𝑑/𝑑𝑠 with 𝐷(𝐴) := {𝑓 ∈ 𝐸 : 𝑓 ′ ∈ 𝐸, 𝑓(0) =
0}. Regrettably, in this approach, (161) is a modified abstract time-
relaxation equation and almost nothing interesting can be said about the
corresponding equation with Riemann–Liouville fractional derivatives (the
subcase (SC3)).

Now we would like to state the following result on the existence of strong so-
lutions of equation (151) (cf. [347, Theorem 3.1] and [314, Theorem 3.13] for the
corresponding statement in the case of equations with Caputo fractional deriva-
tives).

Theorem 2.4.6. Suppose 𝐴,𝐵,𝐴1, . . . , 𝐴𝑛−1 are closed linear operators on 𝐸,
𝜔 > 0, 0 < 𝜏 <∞, 𝐶 ∈ 𝐿(𝐸) is injective, 𝑓(𝑡) ≡ 0, the operator 𝑃𝜆 is injective for
𝜆 > 𝜔 and 𝐷(𝑃−1

𝜆 𝐶) = 𝐸, 𝜆 > 𝜔.
(SC1) Suppose 1 6 𝑖 6 𝑚𝑛 − 1, 1 6 𝑙 6 𝑠𝑖, 𝑛 ∈ 𝒟𝑙

𝑖, 𝐶𝑥𝑖,𝑙 ∈ 𝐷(𝑃−1
𝜆 𝐴𝑗),

provided 𝜆 > 𝜔 and 𝑗 ∈ N0
𝑛∩𝒟𝑙

𝑖, as well as 𝛼𝑗 −𝛼𝑛+𝑚𝑛−1− 𝑖 < 0,
provided 𝑗 ∈ N0

𝑛−1 r𝒟𝑙
𝑖, and the following holds:

(162) 𝜆𝛼𝑛𝑃−1
𝜆

[︂
𝜆𝑚𝑛−𝑖−1−𝛼𝐵𝐶𝑥𝑖,𝑙 +

𝑛−1∑︁
𝑗=1

𝐴𝑗(𝜒𝒟𝑙
𝑖
(𝑗)𝜆𝑚𝑗−𝑖−1−𝛼𝐶𝑥𝑖,𝑙)

−𝐴(𝜒𝒟𝑙
𝑖
(0)𝜆𝑚−𝑖−1−𝛼𝐶𝑥𝑖,𝑙)

]︂
− 𝜆𝑚𝑛−1−𝑖𝐶𝑥𝑖,𝑙 ∈ 𝐿𝑇𝐸

and

(163) 𝐴𝑗

{︂
𝜆𝛼𝑗𝑃−1

𝜆

[︂
𝜆𝑚𝑛−𝑖−1−𝛼𝐵𝐶𝑥𝑖,𝑙 +

𝑛−1∑︁
𝑗=1

𝐴𝑗(𝜒𝒟𝑙
𝑖
(𝑗)𝜆𝑚𝑗−𝑖−1−𝛼𝐶𝑥𝑖,𝑙)

−𝐴(𝜒𝒟𝑙
𝑖
(0)𝜆𝑚−𝑖−1−𝛼𝐶𝑥𝑖,𝑙)

]︂
− 𝜒𝒟𝑙

𝑖
(𝑗)𝜆𝑚𝑗−𝑖−1𝐶𝑥𝑖,𝑙

}︂
∈ 𝐿𝑇𝐸 .

Then there exists a strong solution of (151) on (0, 𝜏), with initial
value 𝑥𝑖,𝑙 replaced by 𝐶𝑥𝑖,𝑙 and other initial values chosen to be ze-
roes. If 𝑆 ̸= ∅ and the above conditions hold for the initial value
𝑥0,1 = 𝑢(0) with set 𝒟𝑙

𝑖 replaced by 𝑆 (𝑖 = 0, 𝑙 = 1), then there exists
a strong solution of (151) on (0, 𝜏), with initial value 𝑥0,1 replaced
by 𝐶𝑥0,1 and other initial values chosen to be zeroes.

(SC2) Suppose 𝐶𝑥0,1 ∈ 𝐷(𝐵), 𝜆1−𝛼𝑃−1
𝜆 𝐵𝐶𝑥0,1 − 𝐶𝑥0,1 ∈ 𝐿𝑇𝐸 and

𝜆𝛼𝑗−𝛼𝐴𝑗𝑃
−1
𝜆 𝐵𝐶𝑥0,1 ∈ 𝐿𝑇𝐸.
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Then there exists a strong solution of (151) on (0, 𝜏), with initial value 𝑥0,1 replaced
by 𝐶𝑥0,1 and other initial values chosen to be zeroes.

Proof. We will prove the assertion of theorem only in the case (SC1) with
1 6 𝑖 6 𝑚𝑛 − 1 and 1 6 𝑙 6 𝑠𝑖. Let 𝑢𝑖,𝑙 ∈ 𝐿1

𝑙𝑜𝑐([0,∞) : 𝐸) and 𝐹𝑖,𝑙,𝑛 ∈ 𝐿1
𝑙𝑜𝑐([0,∞) :

𝐸) satisfy:∫︁ ∞

0

𝑒−𝜆𝑡𝑢𝑖,𝑙(𝑡)𝑑𝑡 = 𝑃−1
𝜆

[︂
𝜆𝑚𝑛−𝑖−1−𝛼𝐵𝐶𝑥𝑖,𝑙

+

𝑛−1∑︁
𝑗=1

𝐴𝑗(𝜒𝒟𝑙
𝑖
(𝑗)𝜆𝑚𝑗−𝑖−1−𝛼𝐶𝑥𝑖,𝑙)−𝐴(𝜒𝒟𝑙

𝑖
(0)𝜆𝑚−𝑖−1−𝛼𝐶𝑥𝑖,𝑙)

]︂
and∫︁ ∞

0

𝑒−𝜆𝑡𝐹𝑖,𝑙,𝑛(𝑡)𝑑𝑡 = 𝜆𝛼𝑛𝑃−1
𝜆

[︂
𝜆𝑚𝑛−𝑖−1−𝛼𝐵𝐶𝑥𝑖,𝑙 −𝐴(𝜒𝒟𝑙

𝑖
(0)𝜆𝑚−𝑖−1−𝛼𝐶𝑥𝑖,𝑙)

+

𝑛−1∑︁
𝑗=1

𝐴𝑗(𝜒𝒟𝑙
𝑖
(𝑗)𝜆𝑚𝑗−𝑖−1−𝛼𝐶𝑥𝑖,𝑙)

]︂
− 𝜆𝑚𝑛−1−𝑖𝐶𝑥𝑖,𝑙,

for 𝜆 > 𝜔 suff. large; cf. (162). By performing the Laplace transform, it can be
easily checked that:

(𝑔𝑚𝑛 * 𝐹𝑖,𝑙,𝑛)(𝑡) = (𝑔𝑚𝑛−𝛼𝑛 * 𝑢𝑖,𝑙)(𝑡)− 𝑔𝑖+1(𝑡)𝐶𝑢𝑖,𝑙, 𝑡 > 0.

This implies that 𝐷𝛼𝑛
𝑡 𝑢𝑖,𝑙(𝑡) is well defined for 𝑡 > 0 (more precisely, on any finite

subinterval of (0,∞)) and 𝐹𝑖,𝑙,𝑛(𝑡) = 𝐷𝛼𝑛
𝑡 𝑢𝑖,𝑙(𝑡), 𝑡 > 0. Keeping in mind that

𝑛 ∈ 𝒟𝑙
𝑖 and 𝛼𝑗 − 𝛼𝑛 +𝑚𝑛 − 1 − 𝑖 < 0 for 𝑗 ∈ N0

𝑛−1 r 𝒟𝑙
𝑖, we can conclude from

(162) that 𝜆𝛼𝑗 ̃︁𝑢𝑖,𝑙(𝜆)−𝜒𝒟𝑙
𝑖
(𝑗)𝜆𝑚𝑗−𝑖−1𝐶𝑥𝑖,𝑙 ∈ 𝐿𝑇𝐸 for all 𝑗 ∈ N0

𝑛−1, as well as that
𝐷

𝛼𝑗

𝑡 𝑢𝑖,𝑙(𝑡) is well defined for 𝑡 > 0, with∫︁ ∞

0

𝑒−𝜆𝑡𝐷
𝛼𝑗

𝑡 𝑢𝑖,𝑙(𝑡)𝑑𝑡 = 𝜆𝛼𝑗 ̃︁𝑢𝑖,𝑙(𝜆)− 𝜒𝒟𝑙
𝑖
(𝑗)𝜆𝑚𝑗−𝑖−1𝐶𝑥𝑖,𝑙 ∈ 𝐿𝑇𝐸 ,

for all 𝑗 ∈ N0
𝑛−1. Using (163) and [27, Proposition 1.7.6], it readily follows that

𝐴𝑗𝐷
𝛼𝑗

𝑡 𝑢𝑖,𝑙(𝑡) is well defined for 𝑡 > 0, and∫︁ ∞

0

𝑒−𝜆𝑡𝐴𝑗𝐷
𝛼𝑗

𝑡 𝑢𝑖,𝑙(𝑡)𝑑𝑡 = 𝐴𝑗 [𝜆
𝛼𝑗 ̃︁𝑢𝑖,𝑙(𝜆)− 𝜒𝒟𝑙

𝑖
(𝑗)𝜆𝑚𝑗−𝑖−1𝐶𝑥𝑖,𝑙] ∈ 𝐿𝑇𝐸 ,

for all 𝑗 ∈ N0
𝑛−1. Finally, a simple calculation yields that:∫︁ ∞

0

𝑒−𝜆𝑡[𝐵𝐷𝛼𝑛
𝑡 𝑢𝑖,𝑙(𝑡)+𝐴𝑛−1𝐷

𝛼𝑛−1

𝑡 𝑢𝑖,𝑙(𝑡)+ · · ·+𝐴1𝐷
𝛼1
𝑡 𝑢𝑖,𝑙(𝑡)−𝐴𝐷𝛼

𝑡 𝑢𝑖,𝑙(𝑡)]𝑑𝑡 = 0,

which implies by the uniqueness theorem for the Laplace tranform that 𝑢𝑖,𝑙(·) is a
strong solution of the problem (151) with initial value 𝑥𝑖,𝑙 replaced by 𝐶𝑥𝑖,𝑙 and
other initial values chosen to be zeroes. �

Remark 2.4.7. Consider the subcase (SC1) and suppose first that 1 6 𝑖 6
𝑚𝑛 − 1, 1 6 𝑙 6 𝑠𝑖, 𝑛 ∈ 𝒟𝑙

𝑖, as well as 𝛼𝑗 − 𝛼𝑛 + 𝑚𝑛 − 1 − 𝑖 < 0, provided
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𝑗 ∈ N0
𝑛−1 r 𝒟𝑙

𝑖. Then a straightforward calculation shows that the assertion of
Theorem 2.4.6 continues to hold if we replace the term

𝑃−1
𝜆

[︂
𝜆𝑚𝑛−𝑖−1−𝛼𝐵𝐶𝑥𝑖,𝑙 +

𝑛−1∑︁
𝑗=1

𝐴𝑗(𝜒𝒟𝑙
𝑖
(𝑗)𝜆𝑚𝑗−𝑖−1−𝛼𝐶𝑥𝑖,𝑙)

−𝐴(𝜒𝒟𝑙
𝑖
(0)𝜆𝑚−𝑖−1−𝛼𝐶𝑥𝑖,𝑙)

]︂
,

i.e., the Laplace transform of solution 𝑡 ↦→ 𝑢𝑖,𝑙(𝑡), 𝑡 > 0 with the term

𝜆𝑚𝑛−𝑖−1−𝛼𝑛𝐶𝑥𝑖,𝑙 − 𝑃−1
𝜆

[︂ ∑︁
𝑗∈N𝑛−1r𝒟𝑙

𝑖

𝐴𝑗(𝜆
𝑚𝑛−𝑖−1−𝛼𝑛+𝛼𝑗−𝛼𝐶𝑥𝑖,𝑙)

+𝐴(𝜒N𝑛−1r𝒟𝑙
𝑖
(0)𝜆𝑚𝑛−𝑖−1−𝛼𝑛𝐶𝑥𝑖,𝑙)

]︂
,

and suppose that 𝐶𝑥𝑖,𝑙 ∈ 𝐷(𝑃−1
𝜆 𝐴𝑗) for 𝜆 > 𝜔 and 𝑗 ∈ N0

𝑛−1 r 𝒟𝑙
𝑖, instead of

𝐶𝑥𝑖,𝑙 ∈ 𝐷(𝑃−1
𝜆 𝐴𝑗) for 𝜆 > 𝜔 and 𝑗 ∈ N0

𝑛−1 ∩ 𝒟𝑙
𝑖. If 𝑆 ̸= ∅, 𝑖 = 0 and 𝑙 = 1, then

one has to replace the set 𝒟𝑙
𝑖 with 𝑆. The corresponding analysis of the subcase

(SC2) is left to the interested reader.

Before proceeding further, we would like to present an illustrative example in
which the existence of strong solutions of problem (151) can be proved trivially and
which also shows that there exists a large class of (degenerate) multi-term problems
which do have strong solutions that are completely independent of the choice of
operators 𝐴𝑗 .

Example 2.4.8. Consider the subcase (SC1) with 1 6 𝑖 6 𝑚𝑛 − 1, 𝑙 = 1,
𝑚𝑗 > 𝑖+1, 𝑗 ∈ N0 and 𝑚𝑗 −𝛼𝑗 = 𝑎𝑖,1, 𝑗 ∈ N0. Let 0 < 𝜏 <∞ and 𝑓(𝑡) ≡ 0. Then
𝐷

𝛼𝑗

𝑡 𝑔𝑖+1−𝑎𝑖,1
(𝑡) = 0, 𝑗 ∈ N0 so that the function 𝑢(𝑡) = 𝑔𝑖+1−𝑎𝑖,1

(𝑡)𝑥𝑖,1, 𝑡 ∈ [0, 𝜏) is
a strong solution of problem (151) with 𝐵 = 𝐼, 𝑥𝑖,1 = (𝑔𝑚𝑗−𝛼𝑗

* 𝑢)(𝑖)(0) ∈ 𝑋 and
other initial values chosen to be zeroes.

In the remainder of this section, we assume that 𝑋 (the state space) and 𝑌 are
complex Banach spaces; the norm of an element 𝑦 ∈ 𝑌 will be denoted by ‖𝑦‖𝑌 .
Now the closed linear operators 𝐴, 𝐵, 𝐴1, . . . , 𝐴𝑛−1 are acting on 𝑋. By a (local)
𝐶1-existence family, resp. 𝑘-regularized 𝐶2-uniqueness family, we mean (local) 𝐶1-
existence family for (112), resp. 𝑘-regularized 𝐶2-uniqueness family for (112).

The first part of subsequent theorem can be proved following the analysis car-
ried out in [345, Section 3]; the second part of this theorem can be proved by
using Theorem 2.3.32(ii) and the fact that 𝐷𝜁

𝑡 𝑢(𝑡) = D𝜁
𝑡𝑢(𝑡), 𝑡 > 0, provided that

𝜁 > 0, D𝜁
𝑡𝑢(𝑡) is defined and 𝑢(𝑖)(0) = 0 for all 𝑖 ∈ N0

⌈𝜁⌉−1. Observe also that we
can reformulate the final conclusions from Theorem 2.3.6 for degenerate multi-term
problems with Riemann–Liouville fractional derivatives and that it is very difficult
to state, in contrast to the equations with Caputo fractional derivatives, some sat-
isfactory results on the existence of strong solutions of (151), provided that there
exists a (local) 𝐶1-existence family.
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Theorem 2.4.9. Let 0 < 𝜏 6 ∞, let 𝐶1 ∈ 𝐿(𝑌,𝑋), and let 𝐶2 ∈ 𝐿(𝑋) be
injective.

(i) Suppose that (𝐸(𝑡))𝑡∈[0,𝜏) is a (local) 𝐶1-existence family, 1 6 𝑖 6 𝑚𝑛 − 1

and 1 6 𝑙 6 𝑠𝑖. Assume further that, for every 𝑗 ∈ N0
𝑛−1 ∩ 𝒟𝑙

𝑖, there
exists an element 𝑦𝑖,𝑙,𝑗 ∈ 𝑌 such that 𝐴𝑗𝑥𝑖,𝑙 = 𝐶1𝑦𝑖,𝑙,𝑗, as well as that the
condition 𝑛 ∈ 𝒟𝑙

𝑖 implies the existence of an element 𝑦𝑖,𝑙 ∈ 𝑌 such that
𝐵𝑥𝑖,𝑙 = 𝐶1𝑦𝑖,𝑙. Define

𝑢(𝑡) :=

∫︁ 𝑡

0

𝐸(𝑚𝑛−1)(𝑡− 𝑠)

[︂
𝜒𝒟𝑙

𝑖
(𝑛)𝑔𝛼𝑛+𝑖−𝑚𝑛

(𝑠)𝑦𝑖,𝑙

+
∑︁

𝑗∈N𝑛−1∩𝒟𝑙
𝑖

𝑔𝛼𝑛+𝑖−𝑚𝑗 (𝑠)𝑦𝑖,𝑙,𝑗 − 𝜒𝒟𝑙
𝑖
(0)𝑔𝛼𝑛+𝑖−𝑚(𝑠)𝑦𝑖,𝑙,0

]︂
𝑑𝑠, 𝑡 ∈ [0, 𝜏).

Then the function 𝑡 ↦→ 𝑢(𝑡), 𝑡 ∈ [0, 𝜏) is a mild solution of the problem
(156). If 𝑆 ̸= ∅, 𝑖 = 0 and 𝑙 = 1, then the above holds with the set 𝒟𝑙

𝑖

replaced by 𝑆.
(ii) Suppose that (𝑈(𝑡))𝑡∈[0,𝜏) is a 𝑘-regularized 𝐶2-uniqueness family and 𝑘(𝑡)

is a kernel on [0, 𝜏). Then every two strong (mild) solutions of the equation
(151) possessing the same initial conditions (cf. (152) and (155)) are
identically equal on [0, 𝜏).

In Theorem 2.3.34, we have analyzed inhomogeneous multi-term problems with
Caputo fractional derivatives. Similarly we can analyze the inhomogeneous multi-
term problems with Riemann–Liouville fractional derivatives.

2.5. The existence and uniqueness of solutions of abstract degenerate
fractional differential equations: ultradistribution theory

Our first task in this section will be to extend the assertions of [303, Theo-
rem 2.1, Corollary 2.1] to abstract degenerate fractional differential equations (the
Gevrey case). In order to do that, fix the numbers 𝜁 ∈ (0, 1], 𝛼 > 0, 𝛽 > 0, 𝑙 > 1,
𝜉 > 0, 𝑏 ∈ (0, 1), and denote by 𝑀𝑣(·) the associated function of the sequence (𝑝

𝑝
𝑣 )

(𝑣 ∈ (0, 1)). Then we know that 𝑀𝑣(𝑡) ∼ (𝑣𝑒)−1𝑡𝑣 as 𝑡 → +∞. If (𝑁𝑝) and (𝑅𝑝)
are two sequences of positive real numbers, then we write 𝑁𝑝 ≺ 𝑅𝑝 iff for each
number 𝜎 > 0 we have

sup
𝑝∈N0

𝑁𝑝𝜎
𝑝

𝑅𝑝
<∞.

Henceforth we shall always assume that (𝑀𝑝) is a sequence of positive real numbers
such that 𝑀0 = 1 and the condition (𝑀.1) holds. Suppose that

(164) 𝑝
𝑝
𝑏 ≺𝑀𝑝.

Then, for every 𝜇 > 0, there exist positive real constants 𝑐𝜇 > 0 and 𝐶𝜇 > 0 such
that lim𝜇→0 𝑐𝜇 = 0 and

(165) 𝑀(𝑙𝜆) 6𝑀𝑏(𝜇𝑙𝜆) + 𝐶𝜇 6 𝑐𝜇|𝜆|𝑏 + 𝐶𝜇, 𝜆 > 0.
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As mentioned earlier, the (𝑀𝑝)-ultralogarithmic region of type 𝑙

Λ𝛼,𝛽,𝑙 := {𝜆 ∈ C : Re𝜆 > 𝛼𝑀(𝑙| Im𝜆|) + 𝛽},
where 𝛼 > 0, 𝛽 ∈ R and 𝑙 > 1, was defined for the first time by J. Chazarain in
1971 [99]. We assume that the boundary of the ultra-logarithmic region Λ𝛼,𝛽,𝑙,
denoted by Γ𝑙, is upwards oriented. Set

Λ𝜁
𝛼,𝛽,𝑙 := {𝜆𝜁 : 𝜆 ∈ Λ𝛼,𝛽,𝑙} and Ω := Cr Λ𝜁

𝛼,𝛽,𝑙.

By 𝒜 we denote the class consisting of all continuous functions 𝑓 : Ω̄ → C that are
analytic in Ω and satisfy that there exist constants 𝑎1 > 0 and 𝑎2 > 𝜉 such that:

(166) |𝑓(𝜆)| 6 𝑎1𝑒−𝑎2|𝜆|𝑏/𝜁 , 𝜆 ∈ Ω̄.

Suppose that 𝑓 ∈ 𝒜, 𝑓 ̸= 0. Then we define 𝐹 (·) by

𝐹 (𝜆) := 𝑓(−𝜆
𝜋−(𝜁𝜋/2)

𝜋/2 ), 𝜆 ∈ Σ𝜋/2.

The function 𝐹 (·) can be analytically extended to an open neighborhood of the
region Σ𝜋/2 and satisfies that:

|𝐹 (𝜆)| 6 𝑎1𝑒−𝑎2|𝜆|
𝜋−(𝜁𝜋/2)

𝜋/2
𝑏
𝜁

, 𝜆 ∈ Σ𝜋/2.

Now we can apply the Phragmén-Lindelöf type theorems (see e.g. [376, p. 40]) in
order to see that the inequality 𝜋−(𝜁𝜋/2)

𝜋/2
𝑏
𝜁 > 1 implies 𝑓 = 0 identically. Hence,

one has to assume that 𝜋−(𝜁𝜋/2)
𝜋/2

𝑏
𝜁 < 1, i.e., that

(167)
1

2− 𝜁
>
𝑏

𝜁

in order to ensure the non-triviality of class 𝒜 (observe that 1/(2 − 𝜁) ∈ (1/2, 1]
for 𝜁 ∈ (0, 1], so that (167) automatically implies 𝑏 < 𝜁). Suppose now that (167)
holds. Then the class 𝒜 is non-trivial, indeed, and we can simply prove this fact
as follows. Put 𝜃 := arctan(cos( 𝑏𝜁 (𝜋 − 𝜋𝜁

2 ))). Then the function

𝑓(𝜆) = 𝑓𝑡(𝜆) := 𝑒−𝑡(−𝜆+𝜔)𝑏/𝜁 , 𝜆 ∈ Ω̄

belongs to 𝒜 provided 𝑡 = 𝑡1 + 𝑖𝑡2 ∈ Σ𝜃, 𝜔 > 𝛽𝜁 and 𝑡1 tan 𝜃 − |𝑡2| > 𝜉, because
arg(−𝜆𝜁 + 𝜔) → 𝜋 − 𝜋

2 𝜁 as |𝜆| → ∞, 𝜆 ∈ Γ𝑙 and there exists 𝑅 > 0 such that, for
every 𝑡 = 𝑡1 + 𝑖𝑡2 ∈ Σ𝜃,

|𝑒−𝑡(−𝜆+𝜔)𝑏/𝜁 | = 𝑒−𝑡1|−𝜆+𝜔|𝑏/𝜁 cos( 𝑏
𝜁 arg(−𝜆+𝜔))+𝑡2|−𝜆+𝜔|𝑏/𝜁 sin( 𝑏

𝜁 arg(−𝜆+𝜔))

6 𝑒−(𝑡1 cos( 𝑏
𝜁 arg(−𝜆+𝜔))−|𝑡2|)|−𝜆+𝜔|𝑏/𝜁 6 𝑒−(𝑡1 tan 𝜃−|𝑡2|)|−𝜆+𝜔|𝑏/𝜁 , 𝜆 ∈ Ω̄, |𝜆| > 𝑅.

It is clear that 𝑓 · 𝑔, 𝑓 + 𝑔, 𝑧𝑓 ∈ 𝒜, provided 𝑓, 𝑔 ∈ 𝒜 and 𝑧 ∈ C. In order to
stay consistent with the notation used in our joint paper with V. Fedorov [213],
the time-variable in this section will be denoted by 𝑠. Further on, let 𝑛 ∈ N, let
𝑝0, 𝑝1, . . . , 𝑝𝑛 and 𝑞0, 𝑞1, . . . , 𝑞𝑛 be given non-negative integers satisfying 𝑝0 = 𝑞0 = 0
and 0 < 𝑝1 + 𝑞1 6 𝑝2 + 𝑞2 6 . . . 6 𝑝𝑛 + 𝑞𝑛. Let 𝐴0 = 𝐴,𝐴1, . . . , 𝐴𝑛−1, 𝐴𝑛 = 𝐵
be closed linear operators acting on an SCLCS 𝐸. Set, with a little abuse of
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notation, 𝑇𝑖𝑢(𝑠) := (D𝜁
𝑠)

𝑝𝑖𝐴𝑖(D
𝜁
𝑠)

𝑞𝑖𝑢(𝑠), 𝑠 > 0, 𝑖 ∈ N0
𝑛, 𝑆𝑙 := {𝑖 ∈ N𝑛 : 𝑞𝑖 > 1},

𝑆𝑟 := {𝑖 ∈ N𝑛 : 𝑝𝑖 > 1},

𝑃𝜆 := 𝜆(𝑝𝑛+𝑞𝑛)𝜁𝐵 +

𝑛−1∑︁
𝑖=0

𝜆(𝑝𝑖+𝑞𝑖)𝜁𝐴𝑖, 𝜆 ∈ Cr {0},

and conventionally, max(∅) := ∅, N0
∅ := ∅. We analyze the abstract degenerate

Cauchy problem [(168)–(169)], where

(168)
𝑛∑︁

𝑖=0

𝑇𝑖𝑢(𝑠) = 0, 𝑠 > 0,

and

(169)
((D𝜁

𝑠)
𝑗𝑢(𝑠))𝑠=0 = 𝑢𝑗 , 𝑗 ∈ N0

max{𝑞𝑖−1:𝑖∈𝑆𝑙}, and

((D𝜁
𝑠)

𝑗𝐴𝑖(D
𝜁
𝑠)

𝑞𝑖𝑢(𝑠))𝑠=0 = 𝑢𝑖,𝑗 (𝑖 ∈ 𝑆𝑟, 𝑗 ∈ N0
𝑝𝑖−1).

Denote by (DFP)′𝑅 ((DFP)′𝐿) the homogeneous abstract fractional Cauchy prob-
lem obtained by replacing the number 𝛼 and the operator 𝐴 in problem (DFP)𝑅
((DFP)𝐿) with the number 𝜁 ∈ (0, 1] and the operator −𝐴, respectively:

(DFP)
′
𝑅 :

{︃
D𝜁

𝑠𝐵𝑢(𝑠) +𝐴𝑢(𝑠) = 0, 𝑠 > 0,

𝐵𝑢(0) = 𝐵𝑥,

(DFP)
′
𝐿 :

{︃
𝐵D𝜁

𝑠𝑢(𝑠) +𝐴𝑢(𝑠) = 0, 𝑠 > 0,

𝑢(0) = 𝑥.

The problems (DFP)′𝑅 and (DFP)′𝐿 are special cases of the problem [(168)–(169)],
with 𝑛 = 1, 𝑞1 = 0, 𝑝1 = 1 and 𝑢1,0 = 𝐵𝑥, in the case of problem (DFP)′𝑅,
and 𝑛 = 1, 𝑞1 = 1, 𝑝1 = 0, 𝑢1 = 𝑥, in the case of problem (DFP)′𝐿. A function
𝑢 ∈ 𝐶([0,∞) : 𝐸) is said to be a strong solution of problem [(168)–(169)] iff the
term 𝑇𝑖𝑢(𝑠) is well defined and continuous for any 𝑠 > 0, 𝑖 ∈ N0

𝑛, and [(168)–(169)]
holds identically on [0,∞). If the function 𝑢 ∈ 𝐶([0,∞) : 𝐸) is a strong solution
of problem [(168)-(169)] with all initial values chosen to be zeroes, then we can
integrate the equation (168) ((𝑝𝑛 + 𝑞𝑛)𝜁)-times; taking into account the equality
(38) and our choice of initial values in (169), we get that

(170) 𝐵𝑢(𝑠) +

𝑛−1∑︁
𝑖=0

𝐴𝑖(𝑔((𝑝𝑛+𝑞𝑛)−(𝑝𝑖+𝑞𝑖))𝜁 * 𝑢)(𝑠) = 0, 𝑠 > 0.

Now we are ready to formulate the following extension of [303, Theorem 2.1]:

Theorem 2.5.1. Suppose that (𝑀𝑝) satisfies (𝑀.1), 𝑏 ∈ (0, 1), 𝜁 ∈ (0, 1] and
(164) holds. Let 𝜈 > −1, 𝜉 > 0, 𝛼 > 0, 𝛽 > 0, 𝑙 > 1, and let (167) hold.
Suppose, further, that the operator 𝑃𝜆 is injective for all 𝜆 ∈ Λ𝛼,𝛽,𝑙, as well as that
𝑃−1
𝜆 𝐶 ∈ 𝐿(𝐸), 𝜆 ∈ Λ𝛼,𝛽,𝑙, the mapping 𝜆 ↦→ 𝑃−1

𝜆 𝐶𝑥, 𝜆 ∈ Λ𝛼,𝛽,𝑙 is continuous for
every fixed element 𝑥 ∈ 𝐸, and the operator family

{(1 + |𝜆|)−𝜈𝑒−𝜉|𝜆|𝑏𝑃−1
𝜆 𝐶 : 𝜆 ∈ Λ𝛼,𝛽,𝑙} ⊆ 𝐿(𝐸)
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is equicontinuous. Set, for every function 𝑓 ∈ 𝒜,

(171) 𝑆𝑓 (𝑠)𝑥 :=
𝜁

2𝜋𝑖

∫︁
Γ𝑙

𝑓(𝜆𝜁)𝜆𝜁−1𝐸𝜁(𝑠
𝜁𝜆𝜁)𝑃−1

𝜆 𝐶𝑥𝑑𝜆, 𝑠 > 0, 𝑥 ∈ 𝐸.

Then (𝑆𝑓 (𝑠))𝑠>0 ⊆ 𝐿(𝐸) is strongly continuous, the mapping 𝑠 ↦→ 𝑆𝑓 (𝑠) ∈ 𝐿(𝐸),
𝑠 > 0 (𝑠 ↦→ 𝑆𝑓 (𝑠) ∈ 𝐿(𝐸), 𝑠 > 0) is infinitely differentiable provided 𝜁 = 1,
𝑓 ∈ 𝒜 (𝜁 ∈ (0, 1), 𝑓 ∈ 𝒜) and, for every 𝑝 ∈ N0 and 𝑓 ∈ 𝒜, the mapping
𝑠 ↦→ (D𝜁

𝑠)
𝑝𝑆𝑓 (𝑠) ∈ 𝐿(𝐸), 𝑠 > 0 is well-defined, with

(172) (D𝜁
𝑠)

𝑝𝑆𝑓 (𝑠)𝑥 :=
𝜁

2𝜋𝑖

∫︁
Γ𝑙

𝑓(𝜆𝜁)𝜆𝜁−1𝜆𝑝𝜁𝐸𝜁(𝑠
𝜁𝜆𝜁)𝑃−1

𝜆 𝐶𝑥𝑑𝜆, 𝑠 > 0, 𝑥 ∈ 𝐸.

Furthermore, the following holds:
(i) Suppose that there exists 𝑖 ∈ N0

𝑛 such that the mappings 𝜆 ↦→ 𝐴𝑗𝑃
−1
𝜆 𝐶𝑥,

𝜆 ∈ Λ𝛼,𝛽,𝑙 are continuous for some 𝑥 ∈ 𝐸 (𝑗 ∈ N0
𝑛 r {𝑖}) and for each

seminorm p ∈ ~ the set

{(1 + |𝜆|)−𝜈𝑒−𝜉|𝜆|𝑏p(𝐴𝑗𝑃
−1
𝜆 𝐶𝑥) : 𝜆 ∈ Λ𝛼,𝛽,𝑙, 𝑗 ∈ N0

𝑛 r {𝑖}}
is bounded. Then we have

(173) (D𝜁
𝑠)

𝑝𝐴𝑖(D
𝜁
𝑠)

𝑞𝑆𝑓 (𝑠)𝑥 =
𝜁

2𝜋𝑖

∫︁
Γ𝑙

𝑓(𝜆𝜁)𝜆𝜁−1𝜆(𝑝+𝑞)𝜁𝐸𝜁(𝑠
𝜁𝜆𝜁)𝐴𝑖𝑃

−1
𝜆 𝐶𝑥𝑑𝜆,

for any 𝑥 ∈ 𝐸, 𝑠 > 0, 𝑖 ∈ N0
𝑛 and 𝑝, 𝑞 ∈ N0. Moreover, the mapping

𝑠 ↦→ 𝑢(𝑠) := 𝑆𝑓 (𝑠)𝑥, 𝑠 > 0 is a strong solution of the problem [(168)–
(169)], with the initial value 𝑢𝑗 obtained by plugging 𝑝 = 𝑗 and 𝑠 = 0 into
the right-hand side of (172), for 𝑗 ∈ N0

max{𝑞𝑖−1:𝑖∈𝑆𝑙}, and the initial value
𝑢𝑖,𝑗 obtained by plugging 𝑝 = 𝑗, 𝑞 = 𝑞𝑖 and 𝑠 = 0 into the right-hand side
of (173), for 𝑖 ∈ 𝑆𝑟 and 𝑗 ∈ N0

𝑝𝑖−1 (𝑓 ∈ 𝒜). If 𝐶𝐴𝑖 ⊆ 𝐴𝑖𝐶 for all 𝑖 ∈ N0
𝑛,

then there exists at most one strong solution of problem [(168)–(169)].
(ii) Suppose that 𝑓 ∈ 𝒜, 𝑞 ∈ ~, B is a bounded subset of 𝐸 and 𝐾 is a compact

subset of [0,∞). Then there exists ℎ0 > 0 such that

(174) sup
𝑝∈N0,𝑠∈𝐾,𝑥∈B

(ℎ0)
𝑝𝑞((D𝜁

𝑠)
𝑝𝑆𝑓 (𝑠)𝑥)

𝑝𝑝𝜁/𝑏
<∞.

Proof. We will basically follow the proof of [303, Theorem 2.1]. Let 𝑓 ∈ 𝒜 be
such that (166) holds with some numbers 𝑎1 > 0 and 𝑎2 > 𝜉. In order to prove that
𝑆𝑓 (𝑠) ∈ 𝐿(𝐸) for all 𝑠 > 0, observe that Theorem 1.5.1 in combination with (165)
and the equicontinuity of operator family {(1 + |𝜆|)−𝜈𝑒−𝜉|𝜆|𝑏𝑃−1

𝜆 𝐶 : 𝜆 ∈ Λ𝛼,𝛽,𝑙}
implies that for each p ∈ ~ there exist 𝑐p > 0 and q ∈ ~ such that, for any
sufficiently small number 𝜇 > 0, the following holds with an appropriate constant
𝑀𝜇 > 0:

|𝑓(𝜆𝜁)𝜆𝜁−1𝐸𝜁(𝑠
𝜁𝜆𝜁)p(𝑃−1

𝜆 𝐶𝑥)|(175)

6 𝑎1𝑀𝜇𝑐p𝑒
−(𝑎2−𝜉)|𝜆|𝑏𝑒𝑠(𝛽+𝑐𝜇|𝜆|𝑏)(1 + |𝜆|)𝜈+𝜁q(𝑥), 𝜆 ∈ Γ𝑙, |𝜆| > 𝑅, 𝑥 ∈ 𝐸.

Keeping in mind that lim𝜇→0 𝑐𝜇 = 0, we obtain from (175) that 𝑆𝑓 (𝑠) ∈ 𝐿(𝐸) for all
𝑠 > 0, and that the operator family (𝑆𝑓 (𝑠))𝑠>0 ⊆ 𝐿(𝐸) is strongly continuous. The
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infinite differentiability of mapping 𝑠 ↦→ 𝑆𝑓 (𝑠) ∈ 𝐿(𝐸), 𝑠 > 0 for 𝜁 = 1 and 𝑓 ∈ 𝒜
can be simply proved. In order to prove that the mapping 𝑠 ↦→ 𝑆𝑓 (𝑠) ∈ 𝐿(𝐸), 𝑠 > 0
is infinitely differentiable for 𝜁 < 1 and 𝑓 ∈ 𝒜, we need to recall the well known
fact that, for every 𝑙 ∈ N, there exist real numbers (𝑐𝑗,𝜁)16𝑗6𝑙 and (𝑐𝑗,𝑙,𝜁)16𝑗6𝑙 such
that

𝑑𝑙

𝑑𝑠𝑙
𝐸𝜁(𝑧𝑠

𝜁) =

𝑙∑︁
𝑗=1

𝑐𝑗,𝜁𝑠
𝑗𝜁−𝑙𝐸

(𝑗)
𝜁 (𝑧𝑠𝜁), 𝑠 > 0, 𝑧 ∈ C

and
𝑑𝑙

𝑑𝑧𝑙
𝐸𝜁(𝑧) =

𝑙∑︁
𝑗=1

𝑐𝑗,𝑙,𝜁𝐸𝜁,𝜁𝑙−(𝑙−𝑗)(𝑧), 𝑧 ∈ C

(cf. Section 1.2 and [292, Section 1.3]). This implies that, for every 𝑙 ∈ N, and for
every ℎ > 0 suff. small, we have:

(176)
𝐸

(𝑙)
𝜁 ((𝑠+ ℎ)𝜁𝜆𝜁)− 𝐸

(𝑙)
𝜁 (𝑠𝜁𝜆𝜁)

ℎ
− 𝑑𝑙+1

𝑑𝑠𝑙+1
𝐸𝜁(𝑠

𝜁𝜆𝜁)

=
1

ℎ

𝑙+2∑︁
𝑗=1

𝑗∑︁
𝑖=1

∫︁ 𝑠+ℎ

𝑠

∫︁ 𝑟

𝑠

𝑐𝑗,𝜁𝑐𝑖,𝑗,𝜁𝜏
𝑗𝜁−(𝑙+2)𝐸𝜁,𝜁𝑗−(𝑖−𝑗)(𝜏

𝜁𝜆𝜁)𝑑𝜏 𝑑𝑟, 𝑠 > 0, 𝜆 ∈ Γ𝑙.

An application of Theorem 1.5.1 yields that, for every 𝑙 ∈ N, there exists a constant
𝛿 > 0 satisfying that, for every 𝑗 ∈ N with 𝑗 6 𝑙+2, and for every 𝑖 ∈ N with 𝑖 6 𝑗,
we have

|𝐸𝜁,𝜁𝑗−(𝑖−𝑗)(𝜏
𝜁𝜆𝜁)| 6 𝛿[1 + (𝜏𝜆)(1+(𝑖−𝑗)−𝜁𝑗)/𝜁𝑒𝜏 Re𝜆], 𝜏 > 0, 𝜆 ∈ Γ𝑙.

Combining this estimate with (176), it readily follows that the mapping 𝑠 ↦→ 𝑆𝑓 (𝑠) ∈
𝐿(𝐸), 𝑠 > 0 is 𝑙-times continuously differentiable, with

(177)
𝑑𝑙

𝑑𝑠𝑙
𝑆𝑓 (𝑠)𝑥 =

𝜁

2𝜋𝑖

∫︁
Γ𝑙

𝑓(𝜆𝜁)𝜆𝜁−1 𝑑
𝑙

𝑑𝑠𝑙
[𝐸𝜁(𝑠

𝜁𝜆𝜁)]𝑃−1
𝜆 𝐶𝑥𝑑𝜆, 𝑠 > 0, 𝑥 ∈ 𝐸.

Using the identity 𝜆𝜁(𝑔⌈𝜁⌉ *𝐸𝜁(·𝜁𝜆𝜁))(𝑠) = (𝑔⌈𝜁⌉−𝜁 * [𝐸𝜁(·𝜁𝜆𝜁)−1])(𝑠), 𝑠 > 0, 𝜆 ∈ Γ𝑙

(see e.g. [61, (1.25)] and the proof of [292, Lemma 3.3.1]) and a straightforward
integral computation, it is checked at once that for each 𝑥 ∈ 𝐸 and 𝑠 > 0 we have:

[𝑔⌈𝜁⌉−𝜁 *(𝑆𝑓 (·)𝑥−𝑆𝑓 (0)𝑥)](𝑠) =

[︂
𝑔⌈𝜁⌉*

𝜁

2𝜋𝑖

∫︁
Γ𝑙

𝑓(𝜆𝜁)𝜆𝜁−1𝜆𝜁𝐸𝜁(·𝜁𝜆𝜁)𝑃−1
𝜆 𝐶𝑥𝑑𝜆

]︂
(𝑠).

This implies the validity of (172) with 𝑝 = 1. Inductively, we obtain that (172)
holds for any integer 𝑝 ∈ N by repeating verbatim the above arguments.

Suppose now that the requirements of (i) hold for some element 𝑥 ∈ 𝐸. Using
the resolvent equation, we obtain that the mappings 𝜆 ↦→ 𝐴𝑖𝑃

−1
𝜆 𝐶𝑥, 𝜆 ∈ Λ𝛼,𝛽,𝑙

are continuous for all 𝑖 ∈ N0
𝑛 and there exists a number 𝜈′ > 0 such that for each

seminorm p ∈ ~ the set {(1 + |𝜆|)−𝜈′
𝑒−𝜉|𝜆|𝑏p(𝐴𝑖𝑃

−1
𝜆 𝐶𝑥) : 𝜆 ∈ Λ𝛼,𝛽,𝑙, 𝑖 ∈ N0

𝑛}
is bounded, which clearly implies that the mapping 𝑠 ↦→ 𝐴𝑖𝑆𝑓 (𝑠)𝑥, 𝑠 > 0 is well
defined for any 𝑥 ∈ 𝐸 and 𝑖 ∈ N0

𝑛. By the foregoing, we have that (173) holds for
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any 𝑥 ∈ 𝐸, 𝑠 > 0, 𝑖 ∈ N0
𝑛 and 𝑝, 𝑞 ∈ N0. Using the substitution 𝑧 = 𝜆𝜁 , Theorem

1.5.1 and the Cauchy formula, we get that

(178)
∫︁
Γ𝑙

𝑓(𝜆𝜁)𝜆𝜁−1𝐸𝜁(𝑠
𝜁𝜆𝜁)𝑑𝜆 = 0, 𝑠 > 0.

By (173)–(178), it readily follows that the mapping 𝑠 ↦→ 𝑢(𝑠) = 𝑆𝑓 (𝑠)𝑥, 𝑠 > 0
is a strong solution of the problem [(168)–(169)] with the prescribed set of initial
values. If 𝐶𝐴𝑖 ⊆ 𝐴𝑖𝐶 for all 𝑖 ∈ N0

𝑛, then the uniqueness of strong solutions of
associated integral equation (170) is an immediate consequence of [307, Theorem
2.2], finishing in a routine manner the proof of (i). The existence of number ℎ0 > 0
in (ii) and the proof of inequality (174) follows from (165), (172) and a simple
calculus. �

For the sequel, we need some preliminaries concerning abstract Beurling spaces.
We define the abstract Beurling space of (𝑀𝑝) class associated to 𝐴, 𝐸(𝑀𝑝)(𝐴) for
short, as in the Banach space case (cf. [109,291] for more details): Put 𝐷∞(𝐴) =:⋂︀

𝑛∈N𝐷(𝐴𝑛),
𝐸(𝑀𝑝)(𝐴) := projlimℎ→+∞𝐸

(𝑀𝑝)
ℎ (𝐴),

where for each ℎ > 0,

𝐸
(𝑀𝑝)
ℎ (𝐴) :=

{︁
𝑥 ∈ 𝐷∞(𝐴) : ‖𝑥‖(𝑀𝑝)

ℎ,𝑞 = sup
𝑝∈N0

ℎ𝑝𝑞(𝐴𝑝𝑥)

𝑀𝑝
<∞ for all 𝑞 ∈ ~

}︁
.

In this place, it is worth noting that for each ℎ > 0 the calibration (‖ · ‖(𝑀𝑝)
ℎ,𝑞 )𝑞∈~

induces a Hausdorff locally convex space topology on 𝐸
(𝑀𝑝)
ℎ (𝐴), as well as that

𝐸
(𝑀𝑝)
ℎ′ (𝐴) ⊆ 𝐸

(𝑀𝑝)
ℎ (𝐴) provided 0 < ℎ < ℎ′ < ∞, and that the spaces 𝐸(𝑀𝑝)

ℎ (𝐴)

and 𝐸(𝑀𝑝)(𝐴) are continuously embedded in 𝐸; cf. [291]. Following the ideas of R.
Beals [65], we define the space 𝐸⟨𝑀𝑝⟩(𝐴) as the inductive limit of spaces 𝐸(𝑀𝑝)

ℎ (𝐴)
as ℎ→ 0+; that is

𝐸⟨𝑀𝑝⟩(𝐴) := indlimℎ→0+𝐸
(𝑀𝑝)
ℎ (𝐴).

In the following rather long remark, we will collect a great number of various
thoughts and insights about Theorem 2.5.1.

Remark 2.5.2. (i) In the case that 𝜁 < 1, Theorem 2.5.1 seems to be
new and not considered elsewhere (even supposing that 𝐵 = 𝐼). If 𝜁 = 1,
then there exist two possibilities: 𝑛 = 1 and 𝑛 > 1. If 𝑛 = 1 and 𝜁 = 1,
then the assertion of Theorem 2.5.1 seems to be new in the case that 𝐸 is
not a Banach space and 𝐵 ̸= 𝐼, or that 𝐵 ̸= 𝐼 and 𝐶 ̸= 𝐼 (cf. [296, The-
orem 3.16, Example 4.5] for some results in locally convex spaces, with
𝐵 = 𝐼). If 𝑛 = 1, 𝜁 = 1 and 𝐸 is a Banach space, then it is worth noting
that A. Favini [185] was the first who considered R. Beals’s type regular-
ization process [64,65] for seeking of solutions of degenerate equations of
first order, provided in addition that 𝐶 = 𝐼 (cf. also [199, Section 5.4] for
the case 𝐵 ̸= 𝐼, as well as [132,243,244, Section XXIII], [291, Section
1.4], [292,303,364,502, Section 2.9] and [541, Section 4.4] for more de-
tails concerning the case 𝐵 = 𝐼). If 𝑛 > 1 and 𝜁 = 1, then the assertion
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of Theorem 2.5.1 seems to be considered only in the case that 𝐶 = 𝐼,
𝜉 = 0, 𝑝𝑖 = 0 for all 𝑖 ∈ N0

𝑛, and 𝐸 is a Banach space (cf. [185, Applica-
tion 2, Assumption H.10] and compare with our assumptions made in (i)
of Theorem 2.5.1). There is no need to say that the usual converting of
higher-order (degenerate) differential equations into first order matrix (de-
generate) differential equations, used in numerous papers on higher-order
abstract differential equations and, in particular, in the above-mentioned
Application 2 of [185], cannot offer significant help in the analysis of
problem [(168)–(169)], in general.

(ii) Let 𝑣 ∈ Z, let 𝑓 ∈ 𝒜, and let an element 𝑥 ∈ 𝐸 satisfy the requirements
of (i). Define

𝑆𝑓,𝑣(𝑠)𝑥 :=
𝜁

2𝜋𝑖

∫︁
Γ𝑙

𝑓(𝜆𝜁)𝜆𝜁−1𝜆𝑣𝜁𝐸𝜁(𝑠
𝜁𝜆𝜁)𝑃−1

𝜆 𝐶𝑥𝑑𝜆, 𝑠 > 0, 𝑥 ∈ 𝐸.

Then the mapping 𝑠 ↦→ 𝑆𝑓,𝑣(𝑠)𝑥, 𝑠 > 0 is likewise a strong solution of
problem (168), with the initial values (169) endowed similarly as in the
formulation of (i).

(iii) In the formulation of [303, Theorem 2.1], it has been additionally as-
sumed that the sequence (𝑀𝑝) satisfies the condition (𝑀.2). The proof of
Theorem 2.5.1 shows that we can completely neglect this condition from
our analysis.

(iv) (cf. also Remark 2.10.25(iii)) The worth noticing is that the term
D𝜈1+𝜈2

𝑠 𝑢(𝑠) need not be defined for some functions 𝑠 ↦→ 𝑢(𝑠), 𝑠 > 0
for which the term D𝜈1

𝑠 D𝜈2
𝑠 𝑢(𝑠) is defined. Consider, by way of illustra-

tion, the case 𝜈1 = 𝜈2 = 1/2, 𝜆 > 0 and 𝑢(𝑠) = 𝐸1/2(𝜆
1/2𝑠1/2), 𝑠 > 0;

then [61, (1.25)] implies that D𝜈1
𝑠 D𝜈2

𝑠 𝑢(𝑠) = 𝜆𝐸1/2(𝜆
1/2𝑠1/2), 𝑠 > 0. On

the other hand, D1
𝑠𝑢(𝑠) is not defined for 𝑠 > 0 because the function

𝑠 ↦→ 𝑢(𝑠), 𝑠 > 0 is not continuously differentiable for 𝑠 > 0; even if we ac-
cept a slightly weaker definition of Caputo fractional derivatives from [61],
when D1

𝑠𝐸1/2(𝜆
1/2𝑠1/2) exists and equals to

∑︀∞
𝑘=1

𝜆𝑘/2𝑠(𝑘/2)−1

Γ(𝑘/2) for 𝑠 > 0,
the equality

D1/2
𝑠 D1/2

𝑠 𝐸1/2(𝜆
1/2𝑠1/2) = D1

𝑠𝐸1/2(𝜆
1/2𝑠1/2), 𝑠 > 0

does not hold for any 𝜆 > 0 because 𝜆𝐸1/2(𝜆
1/2𝑠1/2) ∼ 𝜆 as 𝑠→ 0+ while∑︀∞

𝑘=1
𝜆𝑘/2𝑠(𝑘/2)−1

Γ(𝑘/2) ∼ ( 𝜆
𝜋𝑠 )

1/2 as 𝑠→ 0+ (cf. [302], Remark 2.10.25(iv) and
the equation (241) below). Hence, we will have to make a strict distinction
between the operator (D𝜁

𝑠)
𝑝 and the operator D𝜁𝑝

𝑠 . As explained in Re-
mark 2.10.25(iii), the method proposed in Theorem 2.5.1 cannot be used
for proving the existence of strong solutions of (non-degenerate) problem

𝐵D𝛼𝑛
𝑠 𝑢(𝑠) +

𝑛−1∑︁
𝑖=0

𝐴𝑖D
𝛼𝑖
𝑠 𝑢(𝑠) = 0, 𝑠 > 0,
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provided that 𝑛 > 1 and there exists an index 𝑖 ∈ N0
𝑛 such that the order

𝛼𝑖 of the Caputo fractional derivative D𝛼𝑖
𝑠 𝑢(𝑠) does not belong to N0.

Here, 0 = 𝛼0 < 𝛼1 < · · · < 𝛼𝑛.
(v) It can be simply verified that

∫︀ 𝑠

0
𝑔𝜁(𝑠 − 𝑟)(−𝐴)𝑆𝑓 (𝑟)𝑥 𝑑𝑟 = 𝐵𝑆𝑓 (𝑠)𝑥 −

𝐵𝑆𝑓 (0)𝑥, provided that 𝑛 = 1, 𝑠 > 0, 𝑓 ∈ 𝒜 and 𝑥 ∈ 𝐸 satisfies the
requirements of Theorem 2.5.1(i).

(vi) It is well known that the notion of an abstract Beurling space plays an
important role in the theory of ultradistribution semigroups in Banach
spaces (cf. Theorem 2.5.1(i) with 𝑛 = 1 and 𝐵 = 𝐼). Unfortunately, it is
very problematic to introduce a similar concept for degenerate differential
equations of first order, especially in the case that the operator 𝐵 is not
injective. For the purpose of illustration of Theorem 2.5.1(i), we will
present two examples in which we use the abstract Beurling spaces:

(vi.1) Suppose that 𝑛 = 1, 𝑥 ∈ 𝐷∞(𝐵), the element 𝐵𝑝𝑥 satisfies
the requirements of Theorem 2.5.1(i) for all 𝑝 ∈ N0, and
𝐵(𝑧𝐵+𝐴)−1𝐶𝐵𝑝𝑥 = (𝑧𝐵+𝐴)−1𝐶𝐵𝑝+1𝑥, 𝑝 ∈ N0, 𝑧 ∈ Λ𝜁

𝛼,𝛽,𝑙. Then
𝐴𝑝𝑆𝑓 (𝑠)𝑥 = (−1)𝑝𝜁

2𝜋𝑖

∫︀
Γ𝑙
𝑓(𝜆𝜁)𝜆𝜁−1𝜆𝑝𝜁𝐸𝜁(𝑠

𝜁𝜆𝜁)𝑃−1
𝜆 𝐶𝐵𝑝𝑥 𝑑𝜆, 𝑠 > 0,

𝑝 ∈ N, 𝑓 ∈𝒜. This, in turn, implies
⋃︀

𝑠>0,𝑓∈𝒜{𝑆𝑓 (𝑠)𝑥} ⊆ 𝐸⟨𝑝𝑝𝜁/𝑏⟩(𝐴),
provided that the orbit {𝐵𝑝𝑥 : 𝑝 ∈ N0} is bounded, and⋃︀

𝑠>0,𝑓∈𝒜{𝑆𝑓 (𝑠)𝑥} ⊆ 𝐸⟨𝑝2𝑝𝜁/𝑏⟩(𝐴), provided that 𝐵𝑥 ∈ 𝐸⟨𝑝𝑝𝜁/𝑏⟩(𝐴).
(vi.2) (cf. also Remark 2.5.5) Suppose that 𝑛 = 1, 𝐵 is injective and an

element 𝑥 ∈ 𝐸 satisfies the requirements of Theorem 2.5.1(i). Then
𝐵−1 is closed and we can inductively prove that (𝐵−1𝐴)𝑝𝑆𝑓 (𝑠)𝑥 =
(−1)𝑝(D𝜁

𝑠)
𝑝𝑆𝑓 (𝑠)𝑥, 𝑠 > 0, 𝑝 ∈ N, 𝑓 ∈ 𝒜. Taking into account (174),

the above implies
⋃︀

𝑠>0,𝑓∈𝒜{𝑆𝑓 (𝑠)𝑥} ⊆ 𝐸⟨𝑝𝑝𝜁/𝑏⟩(𝐵−1𝐴).
(vii) Let 𝑓 ∈ 𝒜, let 𝜀 > 0, and let 𝑔 : C r Λ𝜁

𝛼,𝛽,𝑙+𝜀 → C be continuous in 𝐷(𝑔)

and analytic in int(𝐷(𝑔)). Suppose, further, that there exist constants
𝑎′1 > 0 and 𝑎′2 > 𝜉 such that (166) holds with 𝑓 = 𝑔, 𝑎1 = 𝑎′1, 𝑎2 = 𝑎′2,
𝜆 ∈ 𝐷(𝑔), as well as that 𝑛 = 1 and the family {(1+|𝜆|)−𝜈𝑒−𝜉|𝜆|𝑏𝐵𝑃−1

𝜆 𝐶 :
𝜆 ∈ Λ𝛼,𝛽,𝑙} ⊆ 𝐿(𝐸) is both equicontinuous and strongly continuous. Let

(179) 𝐶𝐵(𝑧𝐵 +𝐴)−1𝐶 = 𝐵(𝑧𝐵 +𝐴)−1𝐶2, 𝑧 ∈ Λ𝜁
𝛼,𝛽,𝑙,

and let Γ𝜁
𝑙 (Γ

𝜁
𝑙,𝜀) denote the upwards oriented boundary of Λ𝜁

𝛼,𝛽,𝑙 (Λ
𝜁
𝛼,𝛽,𝑙+𝜀).

Then, for every 𝑧, 𝑧′ ∈ Λ𝜁
𝛼,𝛽,𝑙 and 𝑥 ∈ 𝐸, the resolvent equation

(𝑧𝐵 +𝐴)−1𝐶2𝑥− (𝑧′𝐵 +𝐴)−1𝐶2𝑥 = (𝑧′ − 𝑧)(𝑧𝐵 +𝐴)−1𝐶𝐵(𝑧′𝐵 +𝐴)−1𝐶𝑥,

holds, which clearly implies that the mapping 𝑧 ↦→ 𝐵(𝑧𝐵 + 𝐴)−1𝐶2𝑥,
𝑧 ∈int(Λ𝜁

𝛼,𝛽,𝑙) is analytic (𝑥 ∈ 𝐸). Using (179) and the consideration
from [138, Remark 2.7], the above implies that the mapping 𝑧 ↦→ 𝐵(𝑧𝐵+

𝐴)−1𝐶𝑥, 𝑧 ∈int(Λ𝜁
𝛼,𝛽,𝑙) is analytic, as well (𝑥 ∈ 𝐸). Applying the sub-

stitution 𝑧 = 𝜆𝜁 and the Cauchy formula, we then get that 𝐵𝑆𝑔(0)𝑥 =
(2𝜋𝑖)−1

∫︀
Γ𝜁
𝑙,𝜀
𝑔(𝑧)𝐵(𝑧𝐵 + 𝐴)−1𝐶𝑥𝑑𝑧, 𝑥 ∈ 𝐸. Proceeding as in the proof
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of [65, Lemma 4.2], it readily follows that

𝑆𝑓 (0)𝐵𝑆𝑔(0)𝑥 = 𝑆𝑓𝑔(0)𝐶𝑥, 𝑥 ∈ 𝐸.

If 𝜉 = 0, 𝑓(𝜆) = 𝑓𝑡(𝜆) and 𝑔(𝜆) = 𝑓𝑠(𝜆), with 𝑡, 𝑠 ∈ Σ𝜃, the above means
that 𝑇 (𝑡)𝐵𝑇 (𝑠) = 𝑇 (𝑡+ 𝑠)𝐶. In the notion of Section 2.7 (cf. Definition
2.7.1), we have that (𝑇 (𝑡))𝑡∈Σ𝜃

is an analytic (𝐵,𝐶)-regularized semigroup
of growth order (𝜈 + 1)𝜁/𝑏.

(viii) If 𝐵 = 𝐼, 𝑛 = 1, 𝑃−1
𝜆 𝐶 exists and is polynomially bounded on the region

Λ𝛼,𝛽,𝑙 (with the meaning clear), then it might be surprising that we must
impose the condition (167) in order to ensure the existence of strong
solutions of problem (DFP)′𝑅 with the initial value 𝑥 ̸= 0. If we replace the
condition (167) with the condition that 1

2−𝜁 6
𝑏
𝜁 (which clearly implies 𝜁 <

1 and the triviality of class 𝒜), and accept all the remaining assumptions
from the formulation of this theorem, with 𝐵 = 𝐼, 𝑛 = 1 and 𝜉 = 0, then it
is not clear whether there exist a Hilbert space (Banach space, sequentially
complete locally convex space) 𝐸 and a closed linear operator 𝐴 acting
on 𝐸 such that the problem (DFP)′𝑅 has no local strong solutions unless
𝑥 = 0 (cf. [64, Theorem 2, Theorem 2’] for more details concerning the
case 𝜁 = 1). This is an open problem we would like to address to our
readers.

(ix) If the assumptions of Theorem 2.5.1 hold with the region Λ𝛼,𝛽,𝑙 replaced
by the right half-plane 𝑅𝐻𝑃�̄� ≡ {𝑧 ∈ C : Re 𝑧 > �̄�} (and with the
set Ω replaced by C r (𝑅𝐻𝑃�̄�)

𝜁), then for each 𝑝 ∈ N0 and 𝑓 ∈ 𝒜 the
operator family {𝑒−�̄�𝑠(D𝜁

𝑠)
𝑝𝑆𝑓 (𝑠) : 𝑠 > 0} is equicontinuous (�̄� > 0);

cf. [29] for some interesting examples given in the case that 𝜁 = 1, 𝜉 = 0
and 𝐶 = 𝐼. It is also worth noting that we can consider, instead of
the region Λ𝛼,𝛽,𝑙 considered above, a region of the form Ω(𝜔) = {𝜆 ∈
C : Re𝜆 > max(𝑥0, 𝜔(| Im𝜆|))}, where 𝑥0 > 0, 𝜔 : [0,∞) → [0,∞) is
a continuous, concave, increasing function satisfying lim𝑡→∞ 𝜔(𝑡) = ∞,
lim𝑡→∞(𝜔(𝑡)/𝑡) = 0 and

∫︀∞
1

(𝜔(𝑡)/𝑡2)𝑑𝑡 < ∞ (cf. [64,65,111,291,303]
and [296, Example 4.5]), or the exponential region 𝐸(𝑎, 𝑏) = {𝜆 ∈ C :
Re𝜆 > 𝑏, | Im𝜆| 6 𝑒𝑎Re𝜆} (𝑎, 𝑏 > 0), introduced for the first time by W.
Arendt, O. El-Mennaoui and V. Keyantuo in [28] (cf. also C. Foiaş [220]
for a very similar notion of the logarithmic region Λ(𝛼, 𝛽, 𝜔) which can
also be used here). We will not go into further details concerning these
questions.

(x) Suppose 𝑥 ∈
⋂︀𝑛

𝑣=0𝐷(𝐴𝑣), 𝑖 ∈ N0
𝑛, 𝑗 ∈ N0, (𝑓𝜀(𝜆))𝜀>0 is a net of functions

from 𝒜 and 𝐶𝐴𝑣 ⊆ 𝐴𝑣𝐶, 𝑣 ∈ N0
𝑛. Denote 𝑢𝑗𝑖,𝜀 := ((D𝜁

𝑠)
𝑗𝑆𝑓𝜀(𝑠)𝐴𝑖𝑥)𝑠=0

(𝜀 > 0). Then the following equality holds: 𝑃−1
𝜆 𝐶𝐴𝑖𝑥 = 𝜆−(𝑝𝑖+𝑞𝑖)𝜁 [𝐶𝑥−∑︀

𝑣∈N0
𝑛r{𝑖} 𝜆

(𝑝𝑣+𝑞𝑣)𝜁𝑃−1
𝜆 𝐶𝐴𝑣𝑥], 𝜆 ∈ Λ𝛼,𝛽,𝑙, which implies that

𝑢𝑗𝑖,𝜀 =
1

2𝜋𝑖

∫︁
Γ𝜁
𝑙

𝑓𝜀(𝜆)𝜆
𝑗−(𝑝𝑖+𝑞𝑖)

[︂
𝐶𝑥−

∑︁
𝑣∈N0

𝑛r{𝑖}

𝜆(𝑝𝑣+𝑞𝑣)𝑃−1
𝜆1/𝜁𝐶𝐴𝑣𝑥

]︂
𝑑𝜆.
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If we impose some additional conditions on the net (𝑓𝜀(𝜆))𝜀>0 (for exam-
ple, the condition that 𝑓𝜀(0) ̸= 0, 𝜀 > 0, as well as 𝑓 (𝑝𝑖+𝑞𝑖−𝑗−1)

𝜀 (0) → 𝑧𝑖,𝑗0

as 𝜀 → 0, provided 𝑝𝑖 + 𝑞𝑖 − 𝑗 − 1 > 0, and the limit equality 𝑓𝜀(𝜆) → 1

as 𝜀→ 0 (𝜆 ∈ Γ𝜁
𝑙 ), uniformly on compacts of Γ𝜁

𝑙 , at least) and if suppose
that the operator family {(1 + |𝜆|)−𝜈′

𝑃−1
𝜆 𝐶 : 𝜆 ∈ Λ𝛼,𝛽,𝑙} ⊆ 𝐿(𝐸) is both

equicontinuous and strongly continuous for a sufficiently large negative
number 𝜈′ < 0 (cf. also [541, Theorem 4.2, p. 168]), then we may apply
the dominated convergence theorem and the residue theorem in order to
see that lim𝜀→0 𝑢

𝑗
𝑖,𝜀 equals0, if 𝑗 > 𝑝𝑖+ 𝑞𝑖, and [(𝑝𝑖+ 𝑞𝑖− 𝑗−1)!]−1𝑧𝑖,𝑗0 𝐶𝑥,

otherwise. If we use the net of functions of form 𝑓𝜀(𝜆) = 𝑒−𝜀(−𝜆+𝜔)𝑏/𝜁

(𝜀 > 0), then we have that 𝑧𝑖,𝑗0 = 1 if 𝑝𝑖 + 𝑞𝑖 − 𝑗 − 1 = 0, and 𝑧𝑖,𝑗0 = 0 if
𝑝𝑖 + 𝑞𝑖 − 𝑗 − 1 > 0 [502,541]. Using this idea, we can prove the following
(cf. also Theorem 2.6.2 below): Suppose that 𝑥𝑣 ∈

⋂︀𝑛
𝑝=0𝐷(𝐴𝑝) for all

𝑣 ∈ N0
𝑞𝑛−1. Set 𝑆𝑣 := {𝑗 ∈ N0

𝑛 : 𝑞𝑗 − 1 > 𝑣}, 𝑣 ∈ N0
𝑞𝑛−1; then 𝑛 ∈ 𝑆𝑣 for

all 𝑣 ∈ N0
𝑞𝑛−1. Suppose that

(180) −∞ < 𝜈′ < min
𝑣∈N0

𝑞𝑛−1

[−(𝑞𝑛 − 1− 𝑣 +max{𝑞𝑗 : 𝑗 ∈ N0
𝑛 r 𝑆𝑣})]

and the operator family {(1 + |𝜆|)−𝜈′
𝑃−1
𝜆 𝐶 : 𝜆 ∈ Λ𝛼,𝛽,𝑙} ⊆ 𝐿(𝐸) is

both equicontinuous and strongly continuous. Assume, further, that for
each 𝑥 ∈ 𝐸 and 𝑖 ∈ N0

𝑛−1 the mapping 𝜆 ↦→ 𝐴𝑖𝑃
−1
𝜆1/𝜁𝐶𝑥, 𝜆 ∈ Λ𝜁

𝛼,𝛽,𝑙

is continuous and there exists 𝑣𝑖 ∈ N such that the operator family
{(1 + |𝜆|)−𝑣𝑖𝐴𝑖𝑃

−1
𝜆1/𝜁𝐶 : 𝜆 ∈ Λ𝜁

𝛼,𝛽,𝑙} ⊆ 𝐿(𝐸) is equicontinuous. Let the
function 𝑓𝜀(𝜆) be chosen as above, and let 𝑝𝑣 = 0, 𝑣 ∈ N0

𝑛 (with the
exception of problem (DFP)𝑅, the analysis becomes very difficult in the
case that there exists 𝑣0 ∈ N0

𝑛 such that 𝑝𝑣0 > 0). Then the function

𝑠 ↦→ 𝑢𝜀(𝑠) :=

𝑞𝑛−1∑︁
𝑣=0

∑︁
𝑗∈𝑆𝑣

1

2𝜋𝑖

∫︁
Γ𝜁
𝑙

𝑒−𝜀(−𝜆+𝜔)𝑏/𝜁

× 𝐸𝜁(𝑠
𝜁𝜆)𝜆𝑞𝑗−1−𝑣𝑃−1

𝜆1/𝜁𝐶𝐴𝑗𝑥𝑣 𝑑𝜆, 𝑠 > 0

is a strong solution of problem (168) with the initial values (𝑢𝜀0, . . . , 𝑢𝜀𝑞𝑛−1),
converging to (𝐶𝑥0, . . . , 𝐶𝑥𝑞𝑛−1) as 𝜀→ 0+. Hence, the set W consisting
of all initial values (𝑦0, . . . , 𝑦𝑞𝑛−1) ∈ 𝐸𝑞𝑛 subjected to some strong solution
𝑠 ↦→ 𝑢(𝑠), 𝑠 > 0 of problem (168) is dense in (𝐶(

⋂︀𝑛
𝑣=0𝐷(𝐴𝑣)))

𝑞𝑛 (cf.
Example 2.5.8 below for an interesting application of this result, with
𝐶 not being the identity operator). Generally, it is very difficult to say
anything else about the set W in the case that 𝑛 > 1.

(xi) Following the method employed in the proof of Theorem 2.5.1, one can
extend the assertions of [298, Theorem 2.1, Theorem 2.2] to abstract de-
generate (multi-term) fractional differential equations, thus proving some
results on the 𝐶-wellposedness of problem [(168)–(169)] in the case that
𝜁 > 2 [298, Theorem 2.1] and 2 > 𝜁 > 1 [298, Theorem 2.2]. Con-
sider, for example, the case 2 > 𝜁 > 1. Let 𝜗 ∈ (𝜋(2 − 𝜁)/2, 𝜋/2), let
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𝑏 ∈ (1/𝜁, 𝜋/(2(𝜋−𝜗))) and let 𝑧 ∈ Σ𝜗′ , where 𝜗′ := arctan(cos(𝑏(𝜋−𝜗))).
If there exist 𝑑 ∈ (0, 1] and 𝜈 > −1 such that the operator family
{(1 + |𝜆|)−𝜈𝑃−1

𝜆 𝐶 : 𝜆 ∈ Σ𝜗/𝜁 ∪ 𝐵𝑑} ⊆ 𝐿(𝐸) is both equicontinuous and
strongly continuous (for the sake of simplicity, we shall only deal with
the case in which 𝜉 = 0), then for each number 𝑠 > 0 we can define the
bounded linear operator 𝑆(𝑠) by

𝑆(𝑠)𝑥 :=
1

2𝜋𝑖

∫︁
Γ𝜁,𝑑

𝑒−𝑧(−𝜆)𝑏𝐸𝜁(𝑠
𝜁𝜆)𝑃−1

𝜆1/𝜁𝐶𝑥𝑑𝜆, 𝑥 ∈ 𝐸, 𝑠 > 0,

where 𝑐 ∈ (0, 𝜗) is chosen so that 𝑏 ∈ (1/𝜁, 𝜋/(2(𝜋 − 𝑐))) and
𝜗 < arctan(cos(𝑏(𝜋 − 𝑐))) (cf. (171) and apply the substitution 𝜆 ↦→ 𝜆𝜁).
Suppose, further, that there exists 𝑖 ∈ N0

𝑛 such that the mappings 𝜆 ↦→
𝐴𝑗𝑃

−1
𝜆 𝐶𝑥, 𝜆 ∈ Σ𝜗/𝜁 ∪ 𝐵𝑑 are continuous for some 𝑥 ∈ 𝐸 (𝑗 ∈ N0

𝑛 r {𝑖})
and for each seminorm 𝑝 ∈ ~ the set {(1 + |𝜆|)−𝜈𝑝(𝐴𝑗𝑃

−1
𝜆 𝐶𝑥) : 𝜆 ∈

Σ𝜗/𝜁 ∪𝐵𝑑, 𝑗 ∈ N0
𝑛r{𝑖}} is bounded. Then the final conclusions stated in

Theorem 2.5.1 continue to hold after some obvious modifications. In the
situation of [298, Theorem 2.1] (the case 𝜁 > 2), which is very specific, we
can assume that the operators 𝑃−1

𝜆 𝐶 exist on a certain region of the com-
plex plane which does not contain any acute angle. The interested reader
should carry out details concerning the transmitting our previous results
and comments from the items (i)–(x) of this remark to the case in which
𝜁 > 1. The method proposed in [298,541, Section 4.4, pp. 167–175] as
well as in parts (x)–(xi) of this remark can serve one to prove some results
on the existence of entire and analytical solutions of degenerate (multi-
term) fractional differential equations and their systems. The reader may
consult [205,311], Theorem 2.3.20 and Theorem 2.6.2 below for similar
results in this direction.

The proof of following extension of [303, Corollary 2.1] is omitted.

Theorem 2.5.3. Suppose that 0 < 𝑐 < 𝑏 < 𝜁 6 1, 𝜎 > 0, 𝜈 > −1, 𝜉 > 0, 𝜍 > 0
and (167) holds. Denote

Π𝑐,𝜎,𝜍 := {𝜆 ∈ C : Re𝜆 > 𝜎| Im𝜆|𝑐 + 𝜍},

Π𝜁
𝑐,𝜎,𝜍 := {𝜆𝜁 : 𝜆 ∈ Π𝑐,𝜎,𝜍} and Ω′ := CrΠ𝜁

𝑐,𝜎,𝜍 .

Let 𝑓 : Ω′ → C be a continuous function that is analytic in Ω′ and satisfies that
there exist constants 𝑎1 > 0 and 𝑎2 > 𝜉 such that |𝑓(𝜆)| 6 𝑎1𝑒

−𝑎2|𝜆|𝑏/𝜁 , 𝜆 ∈ Ω′.
Suppose, further, that the operator 𝑃𝜆 is injective for all 𝜆 ∈ Π𝑐,𝜎,𝜍 , as well as that
𝑃−1
𝜆 𝐶 ∈ 𝐿(𝐸), 𝜆 ∈ Π𝑐,𝜎,𝜍 , the mapping 𝜆 ↦→ 𝑃−1

𝜆 𝐶𝑥, 𝜆 ∈ Π𝑐,𝜎,𝜍 is continuous for
every fixed element 𝑥 ∈ 𝐸, and the operator family

{(1 + |𝜆|)−𝜈𝑒−𝜉|𝜆|𝑏𝑃−1
𝜆 𝐶 : 𝜆 ∈ Π𝑐,𝜎,𝜍} ⊆ 𝐿(𝐸)

is equicontinuous. Set

𝑇𝑓 (𝑠)𝑥 :=
𝜁

2𝜋𝑖

∫︁
Γ𝑐

𝑓(𝜆𝜁)𝜆𝜁−1𝐸𝜁(𝑠
𝜁𝜆𝜁)𝑃−1

𝜆 𝐶𝑥𝑑𝜆, 𝑠 > 0, 𝑥 ∈ 𝐸,
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where Γ𝑐 denotes the upwards oriented boundary of Π𝑐,𝜎,𝜍 . Then (𝑇𝑓 (𝑠))𝑠>0 ⊆ 𝐿(𝐸)
is strongly continuous, the mapping 𝑠 ↦→ 𝑇𝑓 (𝑠) ∈ 𝐿(𝐸), 𝑠 > 0 (𝑠 ↦→ 𝑇𝑓 (𝑠) ∈ 𝐿(𝐸),
𝑠 > 0) is infinitely differentiable provided 𝜁 = 1 (𝜁 ∈ (0, 1)) and, for every 𝑝 ∈ N0,
the mapping 𝑠 ↦→ (D𝜁

𝑠)
𝑝𝑇𝑓 (𝑠) ∈ 𝐿(𝐸), 𝑠 > 0 is well-defined. Furthermore, (172)

holds with (𝑆𝑓 (𝑠))𝑠>0 and Γ𝑙 replaced respectively by (𝑇𝑓 (𝑠))𝑠>0 and Γ𝑐, and we
have the following:

(i) Suppose that there exists 𝑖 ∈ N0
𝑛 such that the mappings 𝜆 ↦→ 𝐴𝑗𝑃

−1
𝜆 𝐶𝑥,

𝜆 ∈ Π𝑐,𝜎,𝜍 are continuous for some 𝑥 ∈ 𝐸 (𝑗 ∈ N0
𝑛 r {𝑖}) and for each

seminorm p ∈ ~ the set {(1+ |𝜆|)−𝜈𝑒−𝜉|𝜆|𝑏p(𝐴𝑗𝑃
−1
𝜆 𝐶𝑥) : 𝜆 ∈ Π𝑐,𝜎,𝜍 , 𝑗 ∈

N0
𝑛 r {𝑖}} is bounded. Then (173) holds with (𝑆𝑓 (𝑠))𝑠>0 and Γ𝑙 replaced

respectively by (𝑇𝑓 (𝑠))𝑠>0 and Γ𝑐, the mapping 𝑠 ↦→ 𝑢(𝑠) := 𝑇𝑓 (𝑠)𝑥, 𝑠 > 0
is a strong solution of the problem [(168)–169], with the initial value 𝑢𝑗
obtained by plugging 𝑝 = 𝑗 and 𝑠 = 0 into the right-hand side of (172),
for 𝑗 ∈ N0

max{𝑞𝑖−1:𝑖∈𝑆𝑙}, and the initial value 𝑢𝑖,𝑗 obtained by plugging
𝑝 = 𝑗, 𝑞 = 𝑞𝑖 and 𝑠 = 0 into the right-hand side of (173), for 𝑖 ∈ 𝑆𝑟 and
𝑗 ∈ N0

𝑝𝑖−1 (with the obvious replacements described above). If 𝐶𝐴𝑖 ⊆ 𝐴𝑖𝐶

for all 𝑖 ∈ N0
𝑛, then there exists at most one strong solution of problem

[(168)–(169)].
(ii) Suppose that 𝑞 ∈ ~, B is a bounded subset of 𝐸 and 𝐾 is a compact subset

of [0,∞). Then there exists ℎ0 > 0 such that (174) holds.

Assume now that 𝛼 > 0, 𝛽 > 0, 𝑙 > 1, 0 < 𝜁 6 1 and, as before, that
(𝑀𝑝) is a sequence of positive real numbers such that 𝑀0 = 1 and the condition
(𝑀.1) is fulfilled for (𝑀𝑝). Recall that Ω = C r Λ𝜁

𝛼,𝛽,𝑙. If 𝑔 : [0,∞) → [0,∞) is a
monotonically increasing, continuous function satisfying

(181) lim
𝑡→+∞

(1 + 𝑡)𝑣𝑒𝜎𝑀(𝑠𝑡)−𝑔(𝑡) = 0, 𝑣 ∈ N, 𝑠 > 0, 𝜎 > 0,

then we denote by 𝒜𝑔 the class consisting of all continuous functions 𝑓 : Ω̄ → C
that are analytic in Ω and satisfy that |𝑓(𝑧)| 6 Const ·𝑒−𝑔(|𝑧|1/𝜁), 𝑧 ∈ Ω̄. The main
purpose of following theorem is to consider a non-Gevrey analogue of Theorem 2.5.1
and Theorem 2.5.3 (the proof is very similar to that of Theorem 2.5.1 and we shall
skip details for the sake of brevity):

Theorem 2.5.4. Suppose that (𝑀𝑝) satisfies (𝑀.1), as well as that there exists
a monotonically increasing, continuous function 𝑔 : [0,∞) → [0,∞) satisfying that
(181) holds and the class 𝒜𝑔 is non-trivial. Let 0 < 𝜁 6 1, 𝜈 > −1, 𝜉 > 0,
𝛼 > 0, 𝛽 > 0 and 𝑙 > 1. Suppose, further, that the operator 𝑃𝜆 is injective for all
𝜆 ∈ Λ𝛼,𝛽,𝑙, as well as that 𝑃−1

𝜆 𝐶 ∈ 𝐿(𝐸), 𝜆 ∈ Λ𝛼,𝛽,𝑙, the mapping 𝜆 ↦→ 𝑃−1
𝜆 𝐶𝑥,

𝜆 ∈ Λ𝛼,𝛽,𝑙 is continuous for every fixed element 𝑥 ∈ 𝐸, and the operator family

{(1 + |𝜆|)−𝜈𝑒−𝑀(𝜉𝜆)𝑃−1
𝜆 𝐶 : 𝜆 ∈ Λ𝛼,𝛽,𝑙} ⊆ 𝐿(𝐸)

is equicontinuous. Set, for every function 𝑓 ∈ 𝒜𝑔, the bounded linear operator
𝑆𝑓 (𝑠) (𝑠 > 0) through (171). Then (𝑆𝑓 (𝑠))𝑠>0 ⊆ 𝐿(𝐸) is strongly continuous,
the mapping 𝑠 ↦→ 𝑆𝑓 (𝑠) ∈ 𝐿(𝐸), 𝑠 > 0 (𝑠 ↦→ 𝑆𝑓 (𝑠) ∈ 𝐿(𝐸), 𝑠 > 0) is infinitely
differentiable provided 𝜁 = 1, 𝑓 ∈ 𝒜𝑔 (𝜁 ∈ (0, 1), 𝑓 ∈ 𝒜𝑔) and, for every 𝑝 ∈ N0 and
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𝑓 ∈ 𝒜𝑔, the mapping 𝑠 ↦→ (D𝜁
𝑠)

𝑝𝑆𝑓 (𝑠) ∈ 𝐿(𝐸), 𝑠 > 0 is well-defined. Furthermore,
(172) and (i)–(ii) hold, where:

(i) Suppose that there exists 𝑖 ∈ N0
𝑛 such that the mappings 𝜆 ↦→ 𝐴𝑗𝑃

−1
𝜆 𝐶𝑥,

𝜆 ∈ Λ𝛼,𝛽,𝑙 are continuous for some 𝑥 ∈ 𝐸 (𝑗 ∈ N0
𝑛 r {𝑖}) and for each

seminorm p ∈ ~ the set {(1+|𝜆|)−𝜈𝑒−𝑀(𝜉𝜆)p(𝐴𝑗𝑃
−1
𝜆 𝐶𝑥) : 𝜆 ∈ Λ𝛼,𝛽,𝑙, 𝑗 ∈

N0
𝑛 r {𝑖}} is bounded. Then (173) holds for any 𝑥 ∈ 𝐸, 𝑠 > 0, 𝑖 ∈ N0

𝑛

and 𝑝, 𝑞 ∈ N0. Moreover, the mapping 𝑠 ↦→ 𝑢(𝑠) := 𝑆𝑓 (𝑠)𝑥, 𝑠 > 0 is
a strong solution of the problem [(168)–(169)], with the initial value 𝑢𝑗
obtained by plugging 𝑝 = 𝑗 and 𝑠 = 0 into the right-hand side of (172),
for 𝑗 ∈ N0

max{𝑞𝑖−1:𝑖∈𝑆𝑙}, and the initial value 𝑢𝑖,𝑗 obtained by plugging
𝑝 = 𝑗, 𝑞 = 𝑞𝑖 and 𝑠 = 0 into the right-hand side of (173), for 𝑖 ∈ 𝑆𝑟 and
𝑗 ∈ N0

𝑝𝑖−1 (𝑓 ∈ 𝒜). If 𝐶𝐴𝑖 ⊆ 𝐴𝑖𝐶 for all 𝑖 ∈ N0
𝑛, then there exists at

most one strong solution of problem [(168)–(169)].
(ii) Let (𝑁𝑝)𝑝∈N0 be a sequence of positive real numbers satisfying 𝑁0 = 1,

(𝑀.1) and the property that for each 𝑣 ∈ N, 𝑠 > 0 and 𝜎 > 0 there exists
ℎ > 0 such that lim𝑡→+∞(1 + 𝑡)𝑣𝑒𝜎𝑀(𝑠𝑡)+𝑁(ℎ𝑡𝜁)−𝑔(𝑡) = 0. Suppose that
𝑓 ∈ 𝒜, 𝑞 ∈ ~, B is a bounded subset of 𝐸 and 𝐾 is a compact subset of
[0,∞). Then there exists ℎ0 > 0 such that (174) holds with the sequence
(𝑝𝑝𝜁/𝑏) replaced by (𝑁𝑝) therein.

It is worth noting that we have analyzed a slightly different growth rate of
𝑃−1
𝜆 𝐶 in Theorem 2.5.1 (Theorem 2.5.3), and that one has to assume that for

each 𝑣 ∈ N, 𝑠 > 0 and 𝜎 > 0 there exists ℎ > 0 such that lim𝑡→+∞(1 +

𝑡)𝑣𝑒𝜎𝑀(𝑠𝑡)+𝜉|𝜆|𝑏+𝑁(ℎ𝑡𝜁)−𝑔(𝑡) = 0 (lim𝑡→+∞(1 + 𝑡)𝑣𝑒𝑠𝑡
𝑐+𝜉|𝜆|𝑏+𝑁(ℎ𝑡𝜁)−𝑔(𝑡) = 0) in or-

der to deduce Theorem 2.5.1 (Theorem 2.5.3) from Theorem 2.5.4. Also, it is worth
noting that Theorem 2.5.4 is closely linked with the assertions of [303, Theorem
3.3] and [354, Theorem 7.6], where we have studied the regularization of ultradistri-
bution semigroups in Banach spaces (𝐵 = 𝐼, 𝑛 = 1, 𝜁 = 1, 𝜉 > 0, −𝐴 generates an
ultradistribution semigroup of (𝑀𝑝)-class; cf. [291] and [354] for the notion, as well
as [109,111,289,291,330,349,355,363] and [424] for more details concerning ul-
tradistribution semigroups). If the corresponding sequence (𝑀𝑝) satisfies the condi-
tions (𝑀.1), (𝑀.2) and (𝑀.3), then we have proved in the afore-mentioned theorems
that there exist two functions, 𝑔(·) and 𝑓 ∈ 𝒜𝑔, such that the operator −𝐴 generates
a global locally equicontinuous 𝐶-regularized semigroup (𝑆𝑓 (𝑠))𝑠>0, with 𝐶 = 𝑆𝑓 (0)
being injective, satisfying additionally that the mapping 𝑠 ↦→ 𝑆𝑓 (𝑠) ∈ 𝐿(𝐸),
𝑠 > 0 is infinitely differentiable and 𝐸(𝑀𝑝)(𝐴) ⊆ 𝐶(𝐷∞(𝐴)). The proof of this
fact is based upon the existence of a sequence (𝑁𝑝) of positive real numbers
satisfying 𝑁0 = 1, (𝑀.1), (𝑀.2), (𝑀.3) and 𝑁𝑝 ≺ 𝑀𝑝 (cf. [303, Lemma 3.2]),
and by putting 𝑓(·) = 1/𝜔𝑙′,(𝑁𝑝)(−·) (𝑙′ ∈ N sufficiently large) after that, where
𝜔𝑙′,(𝑁𝑝)(𝜆) :=

∏︀∞
𝑝=1(1 +

𝑙′𝜆𝑁𝑝−1

𝑁𝑝
), 𝜆 ∈ C (𝑙′ > 0).

Remark 2.5.5. The comments from Remark 2.5.2 can be reformulated in the
case that the assumptions of Theorem 2.5.3 or Theorem 2.5.4 below hold. Here we
would like to point out some facts closely linked with Remark 2.5.2[(ii),(vi.1)] and
[65, Lemma 1, Lemma 4]. Consider the situation of Theorem 2.5.3 with 𝜉 = 0 and
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𝑛 = 1 (the final conclusions continue to hold in the case of examination of Theorem
2.5.1; after the replacement of region Π𝜁

𝑐,𝜎,𝜍 with Λ𝜁
𝛼,𝛽,𝑙, one just has to make

some obvious terminological changes). Suppose, additionally, that 𝑏/𝜁 < 1/(2− 𝜁),
𝜔 > 𝜍𝜁 , 𝐶𝐴 ⊆ 𝐴𝐶, 𝐶𝐵 ⊆ 𝐵𝐶, 𝐵 is injective,

(182) 𝐵−1𝐴(𝑧𝐵+𝐴)−1𝐶𝑥 = (𝑧𝐵+𝐴)−1𝐶𝐵−1𝐴𝑥, 𝑥 ∈ 𝐷∞(𝐵−1𝐴), 𝑧 ∈ Π𝜁
𝑐,𝜎,𝜍 ,

the family {(1 + |𝑧|)−𝜈𝐵(𝑧𝐵 +𝐴)−1𝐶 : 𝑧 ∈ Π𝜁
𝑐,𝜎,𝜍} ⊆ 𝐿(𝐸) is both equicontinuous

and strongly continuous, 𝑦 ∈ 𝐷(𝐵) satisfies that 𝐶𝑦 ∈ 𝐷(𝐴), 𝐵𝐴𝐶𝑦 = 𝐴𝐶𝐵𝑦 and
there exists ℎ0 > 0 such that the set {ℎ𝑝0𝑝(−𝑝𝜁)/𝑏(𝐵−1𝐴)𝑝𝐵𝑦 : 𝑝 ∈ N0} is bounded.
Then it is readily seen that 𝐶(𝑧𝐵 + 𝐴)−1𝐶 = (𝑧𝐵 + 𝐴)−1𝐶2, 𝑧 ∈ Π𝜁

𝑐,𝜎,𝜍 and the
mapping 𝑧 ↦→ (𝑧𝐵 + 𝐴)−1𝐶𝑥, 𝑧 ∈ int(Π𝜁

𝑐,𝜎,𝜍) is analytic (𝑥 ∈ 𝐸); cf. Remark
2.5.2(vii). Using the Cauchy formula and the foregoing arguments, we have that
𝑆𝑓𝑡(0)𝑥 = (2𝜋𝑖)−1

∫︀
Γ𝜁
𝑐−𝜔

𝑒−𝑡(−𝜆)𝑏/𝜁 ((𝜆+𝜔)𝐵+𝐴)−1𝐶𝑥𝑑𝜆 (𝑥 ∈ 𝐸, 𝑡 > 0), where Γ𝜁
𝑐

denotes the upwards oriented boundary of Π𝜁
𝑐,𝜎,𝜍 . Let the curve Γ′ be sufficiently

close to Γ𝜁
𝑐 , on the right of Γ𝜁

𝑐 , and let the curve Γ′
𝜔 := Γ′ −𝜔 be upwards oriented.

Modifying slightly the second part of proof of [65, Lemma 4] (the proof of this
lemma contains some typographical mistakes but the essence and final conclusions
are true; we can apply Stirling’s formula), and keeping in mind the boundedness of
set {ℎ𝑝0𝑝(−𝑝𝜁)/𝑏(𝐵−1𝐴)𝑝𝐵𝑦 : 𝑝 ∈ N0}, we get that there exists a number 𝛿 > 0 such
that for each integer 𝑝 ∈ N there exists an integer 𝑛(𝑝) ∈ N∩ ( 𝑏𝑝𝜁 +𝜈+2, 𝑏𝑝𝜁 +𝜈+3]

such that the series
∑︀∞

𝑝=0 𝑥𝑝 and
∑︀∞

𝑝=0𝐵𝑥𝑝 are convergent, where

𝑥𝑝 :=
𝛿𝑝

2𝜋𝑖𝑝!

∫︁
Γ′
𝜔

(−𝜆)𝑏𝑝/𝜁(𝜆+ 𝜔)−𝑛(𝑝)((𝜆+ 𝜔)𝐵 +𝐴)−1𝐶(𝐵−1𝐴)𝑛(𝑝)𝐵𝑦 𝑑𝜆.

Let 𝑥 =
∑︀∞

𝑝=0 𝑥𝑝 and 𝐵𝑥 =
∑︀∞

𝑝=0𝐵𝑥𝑝; arguing as in Remark 2.5.2(vii), we obtain
with the help of equation (182), the Cauchy formula and the resolvent equation
that

(183) 𝑆𝑓𝑡(0)𝐵𝑥 =
1

2𝜋𝑖

∫︁
Γ′
𝜔

𝑒−(𝑡−𝛿)(−𝜆)𝑏/𝜁 ((𝜆+ 𝜔)𝐵 +𝐴)−1𝐶2𝐵𝑦 𝑑𝜆, 𝑡 > 𝛿.

Let 𝜆0 ∈ C be on the right of Γ𝜁
𝑐 , and simultaneously, on the left of Γ′. Making use

of the identity [296, (3.16)], with the operator 𝐴 replaced by −𝐵−1𝐴 therein (we
only need the linearity of operator 𝐵−1𝐴, not its closedness), we get that

𝐶𝐵𝑦 =

⌈𝜈⌉+2∑︁
𝑗=0

(−1)𝑗

((𝜆+ 𝜔)− 𝜆0)𝑗+1
((𝜆+ 𝜔) +𝐵−1𝐴)𝐶𝐵𝑦(184)

+ (−1)⌈𝜈⌉+1𝐶(𝜆0𝐼 +𝐵−1𝐴)⌈𝜈⌉+3𝐵𝑦

((𝜆+ 𝜔)− 𝜆0)⌈𝜈⌉+3
, 𝜆 ∈ Γ′

𝜔.

Since 𝐶𝑦 ∈ 𝐷(𝐴), 𝐵𝐴𝐶𝑦 = 𝐴𝐶𝐵𝑦 and 𝐶𝐵 ⊆ 𝐵𝐶, we have that ((𝜆 + 𝜔) +
𝐵−1𝐴)𝐶𝐵𝑦 = ((𝜆+𝜔)𝐵+𝐴)𝐶𝑦, 𝜆 ∈ Γ′

𝜔. Applying the operator ((𝜆+𝜔)𝐵+𝐴)−1𝐶
on the both sides of (184), the above implies
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((𝜆+ 𝜔)𝐵 +𝐴)−1𝐶2𝐵𝑦 =

⌈𝜈⌉+2∑︁
𝑗=0

(−1)𝑗

((𝜆+ 𝜔)− 𝜆0)𝑗+1
𝐶2𝑦

+ (−1)⌈𝜈⌉+1 ((𝜆+ 𝜔)𝐵 +𝐴)−1𝐶

((𝜆+ 𝜔)− 𝜆0)⌈𝜈⌉+3
(𝜆0𝐼 +𝐵−1𝐴)⌈𝜈⌉+3𝐶𝐵𝑦, 𝜆 ∈ Γ′

𝜔.

Inserting this expression in (183), and using after that the limit equality [502,
Lemma 2.7; p. 543, l. -7], as well as the residue theorem and the dominated con-
vergence theorem, we obtain that 𝑆𝑓𝛿(0)𝐵𝑥 = lim𝑡→𝛿+ 𝑆𝑓𝑡(0)𝐵𝑥 = 𝐶2𝑦. Keeping
in mind Remark 2.5.2(vi.2), the above implies

(185) 𝐶2(𝐸(𝐴;𝐵)) ⊆
⋃︁
𝑡>0

𝑅(𝑆𝑓𝑡(0)𝐵) ⊆
⋃︁
𝑡>0

𝑅(𝑆𝑓𝑡(0)) ⊆ 𝐸⟨𝑝𝑝𝜁/𝑏⟩(𝐵−1𝐴),

where

𝐸(𝐴;𝐵) := {𝑦 ∈ 𝐵−1(𝐸⟨𝑝𝑝𝜁/𝑏⟩(𝐵−1𝐴)) : 𝐶𝑦 ∈ 𝐷(𝐴), 𝐵𝐴𝐶𝑦 = 𝐴𝐶𝐵𝑦}.

In the present situation, we do not know whether the equation (185) continues to
hold if we replace the term 𝐶2(𝐸(𝐴;𝐵)) with 𝐶(𝐸(𝐴;𝐵)).

Remark 2.5.6. Consider the case 𝐵 = 𝐼, 𝑛 = 1 and 𝜁 ∈ (0, 1) (cf. [354] for the
case 𝜁 = 1). As before, we assume that (𝑀𝑝) is a sequence of positive real numbers
satisfying 𝑀0 = 1 and (𝑀.1), as well as that there exist constants 𝑙 > 1, 𝛼 > 0,
𝛽 > 0, 𝜈 > −1 and 𝜉 > 0 such that Λ𝜁

𝛼,𝛽,𝑙 ⊆ 𝜌𝐶(−𝐴). Suppose that the operator
family {(1 + |𝜆|)−𝜈𝑒−𝑀(𝜉|𝜆|)(𝜆𝜁 + 𝐴)−1𝐶 : 𝜆 ∈ Λ𝜁

𝛼,𝛽,𝑙} is both equicontinuous and
strongly continuous. Then we have found that the problem

(PR) In which cases does there exist an injective operator 𝐶 ′ ∈ 𝐿(𝐸) such
that the operator −𝐴 generates a global locally equicontinuous (𝑔𝜁 , 𝐶

′)-
regularized resolvent family (𝑆(𝑡))𝑡>0 on 𝐸?

is very difficult to answer in general. Here we will prove that the problem (PR)
can be answered in the affirmative provided that (164) holds with some 𝑏 ∈ (0, 1),
as well as that 𝜉 = 0 and 1/(2 − 𝜁) > 𝑏/𝜁 (cf. Theorem 2.5.1, Theorem 2.5.3
and Remark 2.5.2(v)). Then (𝑆𝑓𝑡(0))𝑡∈Σ𝜃

is an analytic 𝐶-regularized semigroup
of growth order (𝜈 + 1)𝜁/𝑏, consisting of injective operators, with the closed linear
operator −(−𝐴 − 𝜔)𝑏/𝜁 being its integral generator (𝜔 > 0 is a sufficiently large
real number; cf. [103, Theorem 3.5, Theorem 3.7]), and the following holds:

(a) (𝑆𝑓𝑡(𝑠))𝑠>0 is a locally equicontinuous (𝑔𝜁 , 𝑆𝑓𝑡(0))-regularized resolvent
family generated by −𝐴 (𝑡 ∈ Σ𝜃). If 𝑞 ∈ ~, B is a bounded subset of 𝐸
and 𝐾 is a compact subset of [0,∞), then there exists ℎ0 > 0 such that
(174) holds with 𝑓 = 𝑓𝑡 (𝑡 ∈ Σ𝜃).

(b) Suppose that 0 < 𝑐 < 𝑏, 𝜎 > 0, 𝜈 > −1, 𝜍 > 0, Π𝜁
𝑐,𝜎,𝜍 ⊆ 𝜌𝐶(−𝐴), and

the operator family {(1+ |𝜆|)−𝜈(𝜆𝜁 +𝐴)−1𝐶 : 𝜆 ∈ Π𝑐,𝜎,𝜍} ⊆ 𝐿(𝐸) is both
equicontinuous and strongly continuous. Then the conclusions stated in
(a) continue to hold.
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Therefore, a great number of multiplication and (pseudo-)differential opera-
tors in 𝐿𝑝-spaces can serve as examples of the integral generators of fractional 𝐶-
regularized resolvent families. Although the applications of theoretical results from
statements (a)–(b) and Remark 2.5.5 can be also made to (pseudo-)differential op-
erators with empty resolvent set, and to the operators considered in certain classes
of Fréchet function spaces (cf. also Example 2.7.6 below), we shall present only
one illustrative example of application of the results from (b) and Remark 2.5.5 to
abstract non-degenerate fractional differential equations. Assume 0 < 𝑐 < 𝑏 < 1,
1/(2− 𝜁) > 𝑏/𝜁, 𝜎 > 0, 𝜍 > 0, 𝑝 ∈ [1,∞), 𝑚 > 0, 𝜌 ∈ [0, 1], 𝑟 > 0, 𝑎 ∈ 𝑆𝑚

𝜌,0 satisfies
(𝐻𝑟), the inequality

(186) 𝑛
⃒⃒⃒1
2
− 1

𝑝

⃒⃒⃒(︁𝑚− 𝑟 − 𝜌+ 1

𝑟

)︁
< 1

holds, 𝐸 = 𝐿𝑝(R𝑛) or 𝐸 = 𝐶0(R𝑛) (in the last case, we assume that (186) holds with
𝑝 = ∞), and 𝐴 := −Op𝐸(𝑎) (cf. [27, Chapter 8] for the notion and terminology). If
dist(𝑎(R𝑛),Π𝜁

𝑐,𝜎,𝜍) > 0, then there exists a number 𝜈 > −1 such that the operator
family {(1 + |𝜆|)−𝜈(𝜆𝜁 + 𝐴)−1 : 𝜆 ∈ Π𝑐,𝜎,𝜍} ⊆ 𝐿(𝐸) is both equicontinuous and
strongly continuous (𝐶 = 𝐼), so that (𝑆𝑓𝑡(𝑠))𝑠>0 is a global (𝑔𝜁 , 𝑆𝑓𝑡(0))-regularized
resolvent family generated by −𝐴 (𝑡 ∈ Σ𝜃); furthermore, if 𝐾 is a compact subset
of [0,∞) and 𝑡 ∈ Σ𝜃, then there exists ℎ0 > 0 such that

sup
𝑝∈N0,𝑠∈𝐾

(ℎ0)
𝑝‖(D𝜁

𝑠)
𝑝𝑆𝑓𝑡(𝑠)‖

𝑝𝑝𝜁/𝑏
<∞.

The proof of (185) implies that
⋃︀

𝑡>0 𝑆𝑓𝑡(0)(𝐷(𝐴)) = 𝐸⟨𝑝𝑝𝜁/𝑏⟩(𝐴), so that the
problem (DFP)′𝑅, with 𝐵 = 𝐼, has a unique strong solution for all 𝑥 ∈ 𝐸⟨𝑝𝑝𝜁/𝑏⟩(𝐴),
given by 𝑢(𝑠) := 𝑆𝑓𝑡(𝑠)𝑆𝑓𝑡(0)

−1𝑥, 𝑠 > 0, where 𝑡 > 0 satisfies 𝑥 ∈ 𝑆𝑓𝑡(0)(𝐷(𝐴)). A
concrete example can be simply constructed.

Example 2.5.7. Suppose that 𝜁 = 1 − 𝑐 > 𝑐(1 + 𝑐). This, in turn, im-
plies 1/(2 − 𝜁) > 𝑏/𝜁 > 𝑐/𝜁 as 1 > 𝑏 → 𝑐+. Since (𝑥 + 𝑖𝑥1/𝑐)𝜁 = (𝑥2 +
𝑥2/𝑐)𝜁/2[cos(𝜁 arctan𝑥(1/𝑐)−1) + 𝑖 sin(𝜁 arctan𝑥(1/𝑐)−1)], 𝑥 > 0, an elementary cal-
culus shows that

Re((𝑥+ 𝑖𝑥1/𝑐)𝜁)/ Im((𝑥+ 𝑖𝑥1/𝑐)𝜁) ∼ 1/ tan(𝜁𝜋/2) as 𝑥→ +∞,

and

Re((𝑥+ 𝑖𝑥1/𝑐)𝜁)− (tan(𝜁𝜋/2))−1 Im((𝑥+ 𝑖𝑥1/𝑐)𝜁)

∼ 𝜁(sin(𝜁𝜋/2))−1𝑥((𝜁−1)/𝑐)+1 = 𝜁(sin(𝜁𝜋/2))−1 as 𝑥→ +∞

(similar formulae hold if we look into the term (𝑥 − 𝑖𝑥1/𝑐)𝜁 in place of (𝑥 +
𝑖𝑥1/𝑐)𝜁). Using these asymptotic expansions, it readily follows that for each num-
ber 𝑑 ∈ (0, 𝜁/ sin(𝜁𝜋/2)) there exists a sufficiently large number 𝑟𝑑 > 0 such that
dist(𝑎(R𝑛),Π𝜁

𝑐,𝜎𝑑,𝜍𝑑
) > 0 for suitable chosen numbers 𝜎𝑑 > 0 and 𝜍𝑑 > 0, provided

that 𝑎(𝑥) = 𝑑+(𝑟𝑑+𝑃 (𝑥))𝑒
±𝑖𝜋𝜁/2, where 𝑃 (𝑥) is a positive real elliptic polynomial

in 𝑛 variables, of order 𝑚 (then (186) holds with 𝑚 = 𝑟 and 𝜌 = 1).
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The polynomials of the operator 𝐴 := −𝑑/𝑑𝑠, 𝐷(𝐴) := {𝑓 ∈ 𝐸 ; 𝑓 ′ ∈
𝐸, 𝑓(0) = 0}, acting on the Banach space

𝐸 :=
{︁
𝑓 ∈ 𝐶∞[0, 1] ; ‖𝑓‖ := sup

𝑝>0

‖𝑓 (𝑝)‖∞
𝑝!𝑠

<∞
}︁

(𝑠 > 1),

have been considered multiple times by now. The interested reader may throws
oneself into the problem of proving some upper bounds on the growth rate of the
term ⃦⃦⃦⃦(︂

𝜆(𝑝𝑛+𝑞𝑛)𝜁𝑃𝑛(𝐴) +

𝑛−1∑︁
𝑖=0

𝜆(𝑝𝑖+𝑞𝑖)𝜁𝑃𝑖(𝐴)

)︂−1 ⃦⃦⃦⃦
,

where 𝑃𝑖(𝑧) is a complex non-zero polynomial (1 6 𝑖 6 𝑛), thus providing certain
applications of Theorem 2.5.1 and Theorem 2.5.3.

Example 2.5.8. Suppose that 𝐸 is a general SCLCS, 𝑏 ∈ (0, 1), (𝑀𝑝) satisfies
(𝑀.1) and (164), 𝜁 = 1, 𝑝𝑖 = 0 for all 𝑖 ∈ N0

𝑛, 𝑞𝑛 > 𝑞𝑛−1, 𝛼 > 0, 𝛽 > 0, 𝑙 > 1,
∅ ≠ Ω′ ⊆ C, 𝑁 ∈ N, 𝐴 is a densely defined closed linear operator in 𝐸 satisfying
that Ω′ ⊆ 𝜌(𝐴) and the operator family {(1 + |𝜆|)−𝑁 (𝜆 − 𝐴)−1 : 𝜆 ∈ Ω′} ⊆ 𝐿(𝐸)
is equicontinuous. Suppose, further, that 𝑃𝑖(𝑧) is a complex polynomial (𝑖 ∈ N0

𝑛),
𝑃𝑛(𝑧) ̸≡ 0, 𝜆0 ∈ 𝜌(𝐴) r {𝑧 ∈ C : 𝑃𝑛(𝑧) = 0}, dist(𝜆0,Ω′) > 0, as well as that for
each 𝜆 ∈ Λ𝛼,𝛽,𝑙 all roots of the polynomial

𝑧 ↦→ 𝜆𝑞𝑛𝑃𝑛(𝑧) +

𝑛−1∑︁
𝑖=0

𝜆𝑞𝑖𝑃𝑖(𝑧), 𝑧 ∈ C

belong to Ω′. Set 𝐵 := 𝑃𝑛(𝐴) and 𝐴𝑖 := 𝑃𝑖(𝐴) (𝑖 ∈ N0
𝑛−1). Then there ex-

ist 𝑀 ∈ N, 𝜆-polynomials 𝐹0(𝜆), . . . , 𝐹𝑀 (𝜆) and not necessarily distinct numbers
𝑓1(𝜆) ∈ Ω′, . . . , 𝑓𝑀 (𝜆) ∈ Ω′, continuously depending on 𝜆, such that 𝜆𝑞𝑛𝑃𝑛(𝑧) +∑︀𝑛−1

𝑖=0 𝜆
𝑞𝑖𝑃𝑖(𝑧) = 𝐹𝑀 (𝜆)𝑧𝑀 + · · ·+ 𝐹1(𝜆)𝑧 + 𝐹0(𝜆) = (−1)𝑀𝐹𝑀 (𝜆)(𝑓𝑀 (𝜆)− 𝑧) . . .

(𝑓1(𝜆) − 𝑧) for all 𝜆 ∈ Λ𝛼,𝛽,𝑙 r 𝒫 and 𝑧 ∈ C, where 𝒫 ≡ {𝜆 ∈ C : 𝐹𝑀 (𝜆) = 0};
furthermore, for each 𝜆 ∈ Λ𝛼,𝛽,𝑙 r 𝒫 the following holds:(︂
𝜆𝑞𝑛𝑃𝑛(𝐴)+

𝑛−1∑︁
𝑖=0

𝜆𝑞𝑖𝑃𝑖(𝐴)

)︂−1

= (−1)𝑀 (𝐹𝑀 (𝜆))−1(𝑓𝑀 (𝜆)−𝐴)−1 . . . (𝑓1(𝜆)−𝐴)−1.

Using the generalized resolvent equation, it readily follows that for any integer
𝑄 > 𝑁 + 2 the operator family {(𝑓𝑖(𝜆) − 𝜆0)(𝑓𝑖(𝜆) − 𝐴)−1(𝜆0 − 𝐴)−𝑄 : 𝜆 ∈
Λ𝛼,𝛽,𝑙 r 𝒫} ⊆ 𝐿(𝐸) is equicontinuous (1 6 𝑖 6 𝑀). This implies that there exists
a sufficiently large integer 𝑄′ > 𝑁 + 2 such that for each seminorm 𝑝 ∈ ~ there
exist 𝑐𝑝 > 0 and 𝑞 ∈ ~ such that, for every 𝑗 ∈ N0

𝑛−1, 𝜆 ∈ Λ𝛼,𝛽,𝑙 r 𝒫 and 𝑥 ∈ 𝐸,

𝑝

(︂(︂
𝜆𝑞𝑛𝑃𝑛(𝐴) +

𝑛−1∑︁
𝑖=0

𝜆𝑞𝑖𝑃𝑖(𝐴)

)︂−1

(𝜆0 −𝐴)−𝑄′
𝑥

)︂

+ 𝑝

(︂
𝑃𝑗(𝐴)

(︂
𝜆𝑞𝑛𝑃𝑛(𝐴) +

𝑛−1∑︁
𝑖=0

𝜆𝑞𝑖𝑃𝑖(𝐴)

)︂−1

(𝜆0 −𝐴)−𝑄′
𝑥

)︂
= 𝑝
(︀
(𝐹𝑀 (𝜆))−1(𝑓𝑀 (𝜆)−𝐴)−1 . . . (𝑓1(𝜆)−𝐴)−1(𝜆0 −𝐴)−𝑄′

𝑥
)︀
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+ 𝑝
(︀
𝑃𝑗(𝐴)(𝐹𝑀 (𝜆))−1(𝑓𝑀 (𝜆)−𝐴)−1 . . . (𝑓1(𝜆)−𝐴)−1(𝜆0 −𝐴)−𝑄′

𝑥
)︀

6 𝑐𝑝|𝐹𝑀 (𝜆)|−1|(𝑓𝑀 (𝜆)− 𝜆0) . . . (𝑓1(𝜆)− 𝜆0)|−1𝑞(𝑥)

= 𝑐𝑝|𝐹𝑀 (𝜆)|−1|𝐹𝑀 (𝜆)||𝐹𝑀 (𝜆)𝜆𝑚0 + · · ·+ 𝐹1(𝜆)𝜆0 + 𝐹0(𝜆)|−1𝑞(𝑥)

= 𝑐𝑝

⃒⃒⃒⃒
𝜆𝑞𝑛𝑃𝑛(𝜆0) +

𝑛−1∑︁
𝑖=0

𝜆𝑞𝑖𝑃𝑖(𝜆0)

⃒⃒⃒⃒−1

𝑞(𝑥) ∼ 𝑐𝑝|𝑃𝑛(𝜆0)|−1|𝜆|−𝑞𝑛𝑞(𝑥) as |𝜆| → ∞.

Therefore, there exists a sufficiently large number 𝛽′ > 𝛽 such that the operator
families {(1 + |𝜆|)𝑞𝑛(𝜆𝑞𝑛𝑃𝑛(𝐴) +

∑︀𝑛−1
𝑖=0 𝜆

𝑞𝑖𝑃𝑖(𝐴))
−1(𝜆0 − 𝐴)−𝑄′

: 𝜆 ∈ Λ𝛼,𝛽′,𝑙} ⊆
𝐿(𝐸) and {(1 + |𝜆|)𝑞𝑛𝑃𝑗(𝐴)(𝜆

𝑞𝑛𝑃𝑛(𝐴) +
∑︀𝑛−1

𝑖=0 𝜆
𝑞𝑖𝑃𝑖(𝐴))

−1(𝜆0 − 𝐴)−𝑄′
: 𝜆 ∈

Λ𝛼,𝛽′,𝑙} ⊆ 𝐿(𝐸) are equicontinuous (𝑗 ∈ N0
𝑛−1). Since 𝑞𝑛 > 𝑞𝑛−1 and 𝑃 (𝐴) is dense

in 𝐸 for any complex polynomial 𝑃 (𝑧) ∈ C[𝑧], the analysis contained in Remark
2.5.2(x), with 𝐶 ≡ (𝜆0 − 𝐴)−𝑄′

, shows that for each (𝑥0, . . . , 𝑥𝑞𝑛−1) ∈ 𝐸𝑞𝑛 there
exists a net (𝑢𝜀(𝑡))𝜀>0 of strong solutions of problem (168) with the subjected initial
values (𝑢𝜀0, . . . , 𝑢

𝜀
𝑞𝑛−1), converging to (𝑥0, . . . , 𝑥𝑞𝑛−1) as 𝜀 → 0+ (for the topology

of 𝐸𝑞𝑛). This example can be also used to provide the possible applications of
Theorem 2.6.2 below, with 𝐶 not being the identity operator on 𝐸.

2.6. Entire and analytical solutions of abstract degenerate Cauchy
problem (PN)

Before starting our work in this section, we need to repeat some notations
and preliminaries from the previous one; cf. also Introduction. We assume that
𝑛 ∈ N, 0 < 𝜁 6 2, 𝑞0, 𝑞1, . . . , 𝑞𝑛 are given non-negative integers satisfying 𝑞0 =
0 and 0 < 𝑞1 6 𝑞2 6 . . . 6 𝑞𝑛, as well as that 𝑝𝑖 = 0 for all 𝑖 ∈ N0

𝑛, and
𝐴0, 𝐴1, . . . , 𝐴𝑛−1, 𝐴𝑛 are closed linear operators acting on 𝐸; we also write 𝐵 for
𝐴𝑛. Hence, 𝑇𝑖𝑢(𝑠) = 𝐴𝑖(D

𝜁
𝑠)

𝑞𝑖𝑢(𝑠), 𝑠 > 0, 𝑖 ∈ N0
𝑛 and 𝑃𝜆 = 𝜆𝑞𝑛𝜁𝐵 +

∑︀𝑛−1
𝑖=0 𝜆

𝑞𝑖𝜁𝐴𝑖,
𝜆 ∈ C r {0}. Set 𝑆𝜔 := {𝑗 ∈ N0

𝑛 : 𝑞𝑗 − 1 > 𝜔}, 𝜔 ∈ N0
𝑞𝑛−1; then 𝑛 ∈ 𝑆𝜔 for all

𝜔 ∈ N0
𝑞𝑛−1. Suppose that the equation (180) holds with the number 𝑣 replaced

with 𝜔 therein.
In this section, we will take up the study of entire and analytical solutions of

the abstract Cauchy problem (168) subjected with the initial conditions of the form

((D𝜁
𝑠)

𝑗𝑢(𝑠))𝑠=0 = 𝑢𝑗 , 𝑗 ∈ N0
𝑞𝑛−1, if 𝜁 ∈ (0, 1], resp.,

((D𝜁
𝑠)

𝑗𝑢(𝑠))𝑠=0 = 𝑢𝑗 , 𝑗 ∈ N0
𝑞𝑛−1;(187) (︁ 𝑑

𝑑𝑠
(D𝜁

𝑠)
𝑗𝑢(𝑠)

)︁
𝑠=0

= 𝑣𝑗 , 𝑗 ∈ N0
𝑞𝑛−1, if 𝜁 ∈ (1, 2].

To simplify the notation, this initial value problem will be also called (PN) problem.

Definition 2.6.1. (ii) A function 𝑢 ∈ 𝐶([0,∞) : 𝐸) is said to be an
entire solution of problem (PN) iff 𝑢(·) is a strong solution of (PN) and it
can be analytically extended to the whole complex plane, as well as any
of the terms 𝐴𝑖𝑢

(𝑝)(·) (0 6 𝑖 6 𝑛, 𝑝 ∈ N0) can be analytically extended
to the whole complex plane.
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(iii) A function 𝑢 ∈ 𝐶([0,∞) : 𝐸) is said to be an analytical solution of problem
(PN) on the region C r (−∞, 0] iff 𝑢(·) is a strong solution of (PN) and
it can be extended to the whole complex plane, analytically on the region
C r (−∞, 0] and continuously on the region C r (−∞, 0), as well as any
of the terms 𝐴𝑖(D

𝜁
𝑠)

𝑝𝑢(𝑠) (0 6 𝑖 6 𝑛, 𝑝 ∈ N0, 𝑠 > 0) is well defined and
can be extended to the whole complex plane, analytically on the region
Cr (−∞, 0] and continuously on the region Cr (−∞, 0).

Now we are ready to formulate the following theorem.

Theorem 2.6.2. Suppose that the operator 𝐶 ∈ 𝐿(𝐸) is injective, 𝐶𝐴𝑖 ⊆ 𝐴𝑖𝐶,
𝑖 ∈ N0

𝑛, 0 < 𝜁 6 2, 𝜑 ∈ (−𝜋, 𝜋], 𝜃 ∈ (𝜋− 𝜋𝜁, 𝜋− (𝜋𝜁)/2), 𝑎 > 𝑟 > 0 and 𝜈′ satisfies
(180). Assume, further, that the following holds:

(i) The operator family {(1 + |𝜆|)−𝜈′
𝑃−1
𝜆1/𝜁𝐶 : 𝜆 ∈ 𝑒𝑖𝜑Σ(𝜁𝜋/2)+𝜃, |𝜆| > 𝑟} ⊆

𝐿(𝐸) is both strongly continuous and equicontinuous.
(ii) For every 𝑥 ∈ 𝐸 and 𝑖 ∈ N0

𝑛−1, the mapping 𝜆 ↦→ 𝐴𝑖𝑃
−1
𝜆1/𝜁𝐶𝑥, 𝜆 ∈

𝑒𝑖𝜑Σ(𝜁𝜋/2)+𝜃, |𝜆| > 𝑟 is continuous and there exists 𝑣𝑖 ∈ N such that the
operator family {(1+|𝜆|)−𝑣𝑖𝐴𝑖𝑃

−1
𝜆1/𝜁𝐶 : 𝜆 ∈ 𝑒𝑖𝜑Σ(𝜁𝜋/2)+𝜃, |𝜆| > 𝑟} ⊆ 𝐿(𝐸)

is equicontinuous.
Denote by W (W𝑒) the subspace of 𝐸𝑞𝑛 , resp. 𝐸2𝑞𝑛 , consisting of all initial val-
ues (𝑢0, . . . , 𝑢𝑞𝑛−1) ∈ 𝐸𝑞𝑛 , resp. (𝑢0, . . . , 𝑢𝑞𝑛−1; 𝑣0, . . . , 𝑣𝑞𝑛−1) ∈ 𝐸2𝑞𝑛 , subjected to
some analytical solution 𝑢(·) of problem (168) on the region Cr (−∞, 0] (entire so-
lution 𝑢(·) of problem (168)). Then W is dense in (𝐶(

⋂︀𝑛
𝑗=0𝐷(𝐴𝑗)))

𝑞𝑛 for the topol-
ogy of 𝐸𝑞𝑛 , provided that 0 < 𝜁 < 1, resp. (𝐶(

⋂︀𝑛
𝑗=0𝐷(𝐴𝑗)))

2𝑞𝑛 for the topology of
𝐸2𝑞𝑛 , provided that 1 < 𝜁 < 2. Furthermore, if 𝜁 = 1, resp. 𝜁 = 2, then the set W𝑒

is dense in (𝐶(
⋂︀𝑛

𝑗=0𝐷(𝐴𝑗)))
𝑞𝑛 for the topology of 𝐸𝑞𝑛 , resp. (𝐶(

⋂︀𝑛
𝑗=0𝐷(𝐴𝑗)))

2𝑞𝑛

for the topology of 𝐸2𝑞𝑛 .

To prove Theorem 2.6.2, we need the following lemma (cf. also [515, Lemma
1.1, Theorem 1.1]).

Lemma 2.6.3. Let 𝑥 ∈ 𝐸. Then the mapping

𝜆 ↦→ 𝑃−1
(𝜆𝑒𝑖𝜑)1/𝜁

𝐶𝑥, 𝜆 ∈ Σ(𝜁𝜋/2)+𝜃, |𝜆| > 𝑟

is analytic.

Proof. Without loss of generality, we may assume that 𝑞𝑖 = 𝑖 (𝑖 ∈ N0
𝑛), 𝜁 = 1

and 𝜑 = 0. Clearly, (ii) holds for every 𝑥 ∈ 𝐸 and 𝑖 ∈ N0
𝑛. Furthermore, the

following analogue of the Hilbert resolvent equation holds:

𝑃−1
𝜆 𝐶2𝑥− 𝑃−1

𝑧 𝐶2𝑥 = (𝑧 − 𝜆)𝑃−1
𝜆 𝐶

×
[︂ 𝑛−1∑︁

𝑘=1

(︂
𝑛

𝑘

)︂
(𝑧 − 𝜆)𝑘−1𝜆𝑛−𝑘𝐵 +

𝑛−2∑︁
𝑘=1

(︂
𝑛− 1

𝑘

)︂
(𝑧 − 𝜆)𝑘−1𝜆𝑛−1−𝑘𝐴𝑛−1 + · · ·+𝐴1

]︂
× 𝑃−1

𝑧 𝐶𝑥, provided 𝜆, 𝑧 ∈ Σ(𝜁𝜋/2)+𝜃 and |𝜆|, |𝑧| > 𝑟.



2.6. ENTIRE AND ANALYTICAL SOLUTIONS OF... 191

This implies that the mapping 𝜆 ↦→ 𝑃−1
𝜆 𝐶2𝑥, 𝜆 ∈ Σ(𝜁𝜋/2)+𝜃, |𝜆| > 𝑟 is weakly

analytic and therefore analytic, as well as that
𝑑

𝑑𝜆
⟨𝑥*, 𝑃−1

𝜆 𝐶2𝑥⟩ = −⟨𝑥*, 𝑃−1
𝜆 [𝑛𝜆𝑛−1𝐵 + (𝑛− 1)𝜆𝑛−2𝐴𝑛−1 + · · ·+𝐴1]𝑃

−1
𝜆 𝐶𝑥⟩,

provided 𝑥* ∈ 𝐸*, 𝜆 ∈ Σ(𝜁𝜋/2)+𝜃 and |𝜆| > 𝑟. Using the Morera theorem and
the observation from [138, Remark 2.7], the above implies that the mapping 𝜆 ↦→
𝑃−1
𝜆 𝐶𝑥, 𝜆 ∈ Σ(𝜁𝜋/2)+𝜃, |𝜆| > 𝑟 is analytic, as claimed. �

Now we can proceed to the proof of Theorem 2.6.2.

Proof. Clearly, (𝜁𝜋/2) + 𝜃 < 𝜋, 𝜋𝜁/2 > 𝜋 − (𝜁𝜋/2) − 𝜃 and we can find a
number 𝑏 ∈ R satisfying

1 < 𝑏 <
𝜋𝜁/2

𝜋 − (𝜁𝜋/2)− 𝜃
.

Denote by Γ the upwards oriented boundary of the region {𝜆 ∈ Σ(𝜁𝜋/2)+𝜃 : |𝜆| > 𝑟}.
Let Ω′ be the open region on the left of Γ. Then there exists a sufficiently large
number 𝑅 > 0 such that 𝑎− 𝜆 ∈ Σ𝜋−(𝜁𝜋/2)−𝜃 for all 𝜆 ∈ Ω′ ∪ Γ with |𝜆| > 𝑅. This
implies |𝑒−𝜀(𝑎−𝜆)𝑏/𝜁 | = 𝑒−𝜀Re((𝑎−𝜆)𝑏/𝜁) 6 𝑒−𝜀|𝑎−𝜆|𝑏/𝜁 cos(𝑏𝜁−1(𝜋−(𝜋𝜁/2)−𝜃)), provided
𝜀 > 0, 𝜆 ∈ Ω′ ∪ Γ and |𝜆| > 𝑅. Keeping in mind Theorem 1.5.1, we obtain the
existence of a constant 𝑐′𝜁 > 0 such that |𝐸𝜁(𝑧

𝜁𝜆𝑒𝑖𝜑)| 6 𝐸𝜁(|𝑧|𝜁 |𝜆|) 6 𝑐′𝜁𝑒|𝑧||𝜆|
1/𝜁

for
all 𝑧 ∈ C and 𝜆 ∈ C. Hence, there exists a constant 𝑐𝜁 > 0 such that

(188) |𝑒−𝜀(𝑎−𝜆)𝑏/𝜁𝐸𝜁(𝑧
𝜁𝜆𝑒𝑖𝜑)| 6 𝑐𝜁𝑒−𝜀|𝑎−𝜆|𝑏/𝜁 cos(𝑏𝜁−1(𝜋−(𝜋𝜁/2)−𝜃))+|𝑧||𝜆|1/𝜁 ,

for any 𝑧 ∈ C, 𝜀 > 0 and 𝜆 ∈ Ω′ ∪ Γ. Suppose now that 𝑥𝑤 ∈
⋂︀𝑛

𝑗=0𝐷(𝐴𝑗) for
all 𝑤 ∈ N0

𝑞𝑛−1. Then (i) and the estimate (188) enable us to define the function
𝑧 ↦→ 𝑢𝜀(𝑧), 𝑧 ∈ C, for any 𝜀 > 0, by

𝑢𝜀(𝑧) :=

𝑞𝑛−1∑︁
𝑤=0

∑︁
𝑗∈𝑆𝜔

1

2𝜋𝑖

∫︁
Γ

𝑒−𝜀(𝑎−𝜆)𝑏/𝜁𝐸𝜁(𝑧
𝜁𝜆𝑒𝑖𝜑)(𝜆𝑒𝑖𝜑)𝑞𝑗−1−𝑤𝑃−1

(𝜆𝑒𝑖𝜑)1/𝜁
𝐶𝐴𝑗𝑥𝑤𝑑𝜆.

It can be simply verified that the mapping 𝑧 ↦→ 𝑢𝜀(𝑧), 𝑧 ∈ Cr(−∞, 0) is continuous
(𝜀 > 0). Using Theorem 1.5.1 and the proof of Theorem 2.5.1, it readily follows
that the mapping 𝑧 ↦→ 𝑢𝜀(𝑧), 𝑧 ∈ Cr (−∞, 0] is analytic (𝜀 > 0), with

(189) 𝑢′
𝜀(𝑧) =

𝑞𝑛−1∑︁
𝑤=0

∑︁
𝑗∈𝑆𝜔

1

2𝜋𝑖

∫︁
Γ

𝑒−𝜀(𝑎−𝜆)𝑏/𝜁𝑧𝜁−1𝐸𝜁,𝜁(𝑧
𝜁𝜆𝑒𝑖𝜑)(𝜆𝑒𝑖𝜑)𝑞𝑗−𝑤𝑃−1

(𝜆𝑒𝑖𝜑)1/𝜁
𝐶𝐴𝑗𝑥𝑤𝑑𝜆,

for any 𝜀 > 0 and 𝑧 ∈ C r (−∞, 0]; furthermore, the mapping 𝑧 ↦→ 𝑢𝜀(𝑧), 𝑧 ∈ C
is entire provided 𝜀 > 0, 𝜁 = 1 and, in this case, (189) holds for any 𝜀 > 0 and
𝑧 ∈ C. The proof of Theorem 2.5.1 also shows that the term (D𝜁

𝑠)
𝑝𝑢𝜀(𝑠), 𝑠 > 0 is

well defined for any 𝑝 ∈ N0 and 𝜀 > 0, with

(190) (D𝜁
𝑠)

𝑝𝑢𝜀(𝑠)

=

𝑞𝑛−1∑︁
𝑤=0

∑︁
𝑗∈𝑆𝜔

1

2𝜋𝑖

∫︁
Γ

𝑒−𝜀(𝑎−𝜆)𝑏/𝜁𝐸𝜁(𝑠
𝜁𝜆𝑒𝑖𝜑)(𝜆𝑒𝑖𝜑)𝑝+𝑞𝑗−1−𝑤𝑃−1

(𝜆𝑒𝑖𝜑)1/𝜁
𝐶𝐴𝑗𝑥𝑤𝑑𝜆;
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cf. also the formula [61, (1.25)]. Combined with the Cauchy theorem, (ii) and
Theorem 1.5.1, the above implies that the term 𝐴𝑖(D

𝜁
𝑠)

𝑝𝑢𝜀(𝑠) is well defined for
𝑠 > 0, 𝑖 ∈ N0

𝑛, 𝑝 ∈ N0 and 𝜀 > 0, with

𝐴𝑖(D
𝜁
𝑠)

𝑝𝑢𝜀(𝑠)

=

𝑞𝑛−1∑︁
𝑤=0

∑︁
𝑗∈𝑆𝜔

1

2𝜋𝑖

∫︁
Γ

𝑒−𝜀(𝑎−𝜆)𝑏/𝜁𝐸𝜁(𝑠
𝜁𝜆𝑒𝑖𝜑)(𝜆𝑒𝑖𝜑)𝑝+𝑞𝑗−1−𝑤𝐴𝑖𝑃

−1
(𝜆𝑒𝑖𝜑)1/𝜁

𝐶𝐴𝑗𝑥𝑤𝑑𝜆.

This implies that, for every 𝜀 > 0, any of the terms 𝐴𝑖(D
𝜁
𝑠)

𝑝𝑢𝜀(·) (0 6 𝑖 6 𝑛,
𝑝 ∈ N0) can be extended to the whole complex plane, analytically on the region
C r (−∞, 0] and continuously on the region C r (−∞, 0); we only need to replace
the variable 𝑠 > 0, appearing in the above formula, with the variable 𝑧 ∈ C.
Furthermore,

𝑛∑︁
𝑖=0

𝐴𝑖(D
𝜁
𝑠)

𝑞𝑖𝑢𝜀(𝑠)

=

𝑞𝑛−1∑︁
𝑤=0

∑︁
𝑗∈𝑆𝜔

𝑛∑︁
𝑖=0

1

2𝜋𝑖

∫︁
Γ

𝑒−𝜀(𝑎−𝜆)𝑏/𝜁𝐸𝜁(𝑠
𝜁𝜆𝑒𝑖𝜑)(𝜆𝑒𝑖𝜑)𝑞𝑖+𝑞𝑗−1−𝑤𝐴𝑖𝑃

−1

(𝜆𝑒𝑖𝜑)1/𝜁
𝐶𝐴𝑗𝑥𝑤𝑑𝜆

=

𝑞𝑛−1∑︁
𝑤=0

∑︁
𝑗∈𝑆𝜔

1

2𝜋𝑖

∫︁
Γ

𝑒−𝜀(𝑎−𝜆)𝑏/𝜁𝐸𝜁(𝑠
𝜁𝜆𝑒𝑖𝜑)(𝜆𝑒𝑖𝜑)𝑞𝑗−1−𝑤𝐶𝐴𝑗𝑥𝜔𝑑𝜆 = 0, 𝑠 > 0, 𝜀 > 0,

so that for each 𝜀 > 0 the mapping 𝑠 ↦→ 𝑢𝜀(𝑠), 𝑠 > 0 is an analytical so-
lution of problem (168) on the region C r (−∞, 0] (entire solution of problem
(168), provided that 𝜁 = 1), with the initial values (𝑢𝜀0, . . . , 𝑢

𝜀
𝑞𝑛−1) subjected. Let

𝑢𝜀𝑙 = ((D𝜁
𝑠)

𝑙𝑢𝜀(𝑠))𝑠=0, 𝑙 ∈ N0
𝑞𝑛−1 (𝜀 > 0). Now we will prove that (𝑢𝜀0, . . . , 𝑢

𝜀
𝑞𝑛−1)

converges to 𝑒−𝑖𝜑(𝐶𝑥0, . . . , 𝐶𝑥𝑞𝑛−1) as 𝜀 → 0+, for the topology of 𝐸𝑞𝑛 . Let
𝜔 ∈ N0

𝑞𝑛−1 and 𝑙 ∈ N0
𝑞𝑛−1 be fixed. Keeping in mind (190), it suffices to prove that

the following holds:

lim
𝜀→0+

∑︁
𝑗∈𝑆𝜔

1

2𝜋𝑖

∫︁
Γ

𝑒−𝜀(𝑎−𝜆)𝑏/𝜁 (𝜆𝑒𝑖𝜑)𝑙+𝑞𝑗−1−𝑤𝑃−1
(𝜆𝑒𝑖𝜑)1/𝜁

𝐶𝐴𝑗𝑥𝑤𝑑𝜆 = 𝑒−𝑖𝜑𝛿𝜔,𝑙𝐶𝑥𝜔,

i.e., that

(191) lim
𝜀→0+

1

2𝜋𝑖

∫︁
Γ

𝑒−𝜀(𝑎−𝜆)𝑏/𝜁 (𝜆𝑒𝑖𝜑)𝑙−1−𝑤

×
[︂
𝐶𝑥𝜔 −

∑︁
𝑗∈N0

𝑛r𝑆𝜔

(𝜆𝑒𝑖𝜑)𝑞𝑗𝑃−1
(𝜆𝑒𝑖𝜑)1/𝜁

𝐶𝐴𝑗𝑥𝑤

]︂
𝑑𝜆 = 𝑒−𝑖𝜑𝛿𝜔,𝑙𝐶𝑥𝜔,

where 𝛿𝜔,𝑙 denotes the Kronecker delta. Since |𝑒−𝜀(𝑎−𝜆)𝑏/𝜁 | 6 1, 𝜆 ∈ Γ, 𝜀 > 0, (180)
and (i) holds, we have that there exists 𝜎 > 0 such that

|𝑒−𝜀(𝑎−𝜆)𝑏/𝜁 (𝜆𝑒𝑖𝜑)𝑙−1−𝑤(𝜆𝑒𝑖𝜑)𝑞𝑗𝑃−1
(𝜆𝑒𝑖𝜑)1/𝜁

𝐶𝐴𝑗𝑥𝑤| 6 Const. |𝜆|−1−𝜎,

for any 𝜆 ∈ Γ, 𝜀 > 0 and 𝑗 ∈ N0
𝑛 r 𝑆𝜔. Applying the dominated convergence

theorem, Lemma 2.6.3 and the Cauchy theorem, we get that
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lim
𝜀→0+

1

2𝜋𝑖

∫︁
Γ

𝑒−𝜀(𝑎−𝜆)𝑏/𝜁 (𝜆𝑒𝑖𝜑)𝑙−1−𝑤
∑︁

𝑗∈N0
𝑛r𝑆𝜔

(𝜆𝑒𝑖𝜑)𝑞𝑗𝑃−1
(𝜆𝑒𝑖𝜑)1/𝜁

𝐶𝐴𝑗𝑥𝑤𝑑𝜆

=
1

2𝜋𝑖

∫︁
Γ

(𝜆𝑒𝑖𝜑)𝑙−1−𝑤
∑︁

𝑗∈N0
𝑛r𝑆𝜔

(𝜆𝑒𝑖𝜑)𝑞𝑗𝑃−1
(𝜆𝑒𝑖𝜑)1/𝜁

𝐶𝐴𝑗𝑥𝑤𝑑𝜆 = 0.

Taking into account the last formula on p. 170 of [541], it readily follows that (191)
golds good. The proof of theorem is thereby complete in the case that 0 < 𝜁 6 1.
Suppose now 1 < 𝜁 6 2. Then it is not difficult to show that there exists a finite
constant 𝑑𝜁 > 0 such that the function 𝐹𝜆(𝑧) := 𝑧𝐸𝜁,2(𝑧

𝜁𝜆𝑒𝑖𝜑), 𝑧 ∈ C (𝜆 ∈ C)
satisfies 𝐹 ′

𝜆(𝑧) = 𝐸𝜁(𝑧
𝜁𝜆𝑒𝑖𝜑), 𝑧 ∈ C r (−∞, 0] and |𝐹𝜆(𝑧)| 6 𝑑𝜁(1 + |𝑧|)𝑒|𝑧||𝜆|1/𝜁 ,

𝑧 ∈ C (𝜆 ∈ C). Since for any function 𝑢 ∈ 𝐶1([0,∞) : 𝑋) with 𝑢′(0) = 0 we have
D𝜁

𝑠(𝑔1 * 𝑢)(𝑠) = (𝑔1 * D𝜁
· 𝑢)(𝑠), 𝑠 > 0, provided in addition that the term D𝜁

𝑠𝑢(𝑠)
is defined for 𝑠 > 0, it readily follows that D𝜁

𝑠𝐹𝜆(𝑠) = (𝑔1 * D𝜁
𝑠𝐸𝜁(·𝜁𝜆𝑒𝑖𝜑))(𝑠) =

𝜆𝑒𝑖𝜑(𝑔1 * 𝐸𝜁(·𝜁𝜆𝑒𝑖𝜑))(𝑠) = 𝜆𝑒𝑖𝜑𝐹𝜆(𝑠), 𝑠 > 0 (𝜆 ∈ C). Let 𝑥𝑤, 𝑦𝑤 ∈
⋂︀𝑛

𝑗=0𝐷(𝐴𝑗) for
all 𝑤 ∈ N0

𝑞𝑛−1. Define now the solution 𝑢𝜀(·) by

𝑢𝜀(𝑧) :=

𝑞𝑛−1∑︁
𝑤=0

∑︁
𝑗∈𝑆𝜔

1

2𝜋𝑖

∫︁
Γ

𝑒−𝜀(𝑎−𝜆)𝑏/𝜁𝐸𝜁(𝑧
𝜁𝜆𝑒𝑖𝜑)(𝜆𝑒𝑖𝜑)𝑞𝑗−1−𝑤𝑃−1

(𝜆𝑒𝑖𝜑)1/𝜁
𝐶𝐴𝑗𝑥𝑤𝑑𝜆

+

𝑞𝑛−1∑︁
𝑤=0

∑︁
𝑗∈𝑆𝜔

1

2𝜋𝑖

∫︁
Γ

𝑒−𝜀(𝑎−𝜆)𝑏/𝜁𝐹𝜆(𝑧)(𝜆𝑒
𝑖𝜑)𝑞𝑗−1−𝑤𝑃−1

(𝜆𝑒𝑖𝜑)1/𝜁
𝐶𝐴𝑗𝑦𝑤𝑑𝜆,

for any 𝑧 ∈ C and 𝜀 > 0. It is not difficult to prove that, for every 𝑝 ∈ N0, 𝑠 > 0
and 𝜀 > 0, the following holds:

(D𝜁
𝑠)

𝑝𝑢𝜀(𝑠)

=

𝑞𝑛−1∑︁
𝑤=0

∑︁
𝑗∈𝑆𝜔

1

2𝜋𝑖

∫︁
Γ

𝑒−𝜀(𝑎−𝜆)𝑏/𝜁𝐸𝜁(𝑠
𝜁𝜆𝑒𝑖𝜑)(𝜆𝑒𝑖𝜑)𝑝+𝑞𝑗−1−𝑤𝑃−1

(𝜆𝑒𝑖𝜑)1/𝜁
𝐶𝐴𝑗𝑥𝑤𝑑𝜆

+

𝑞𝑛−1∑︁
𝑤=0

∑︁
𝑗∈𝑆𝜔

1

2𝜋𝑖

∫︁
Γ

𝑒−𝜀(𝑎−𝜆)𝑏/𝜁𝐹𝜆(𝑠)(𝜆𝑒
𝑖𝜑)𝑝+𝑞𝑗−1−𝑤𝑃−1

(𝜆𝑒𝑖𝜑)1/𝜁
𝐶𝐴𝑗𝑦𝑤𝑑𝜆

and
𝑑

𝑑𝑠
(D𝜁

𝑠)
𝑝𝑢𝜀(𝑠)

=

𝑞𝑛−1∑︁
𝑤=0

1

2𝜋𝑖

∫︁
Γ

𝑒−𝜀(𝑎−𝜆)𝑏/𝜁𝑠𝜁−1𝐸𝜁,𝜁(𝑠
𝜁𝜆𝑒𝑖𝜑)(𝜆𝑒𝑖𝜑)𝑝+𝑞𝑗−𝑤𝑃−1

(𝜆𝑒𝑖𝜑)1/𝜁
𝐶𝐴𝑗𝑥𝑤𝑑𝜆

+

𝑞𝑛−1∑︁
𝑤=0

1

2𝜋𝑖

∫︁
Γ

𝑒−𝜀(𝑎−𝜆)𝑏/𝜁𝐸𝜁(𝑠
𝜁𝜆𝑒𝑖𝜑)(𝜆𝑒𝑖𝜑)𝑝+𝑞𝑗−𝑤−1𝑃−1

(𝜆𝑒𝑖𝜑)1/𝜁
𝐶𝐴𝑗𝑦𝑤𝑑𝜆.

The remainder of the proof can be deduced by repeating almost verbatim the
corresponding parts of the first part of proof (the case 0 < 𝜁 6 1). �
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Remark 2.6.4. (i) Observe that Theorem 2.6.2 seems to be new and not
considered elsewhere provided that 𝐵 ̸= 𝐼 or 𝜁 ̸= 1. It is also worth noting
that the assertion of Theorem 2.6.2 can be reformulated in the case that
𝜁 > 2 (cf. also [298, Theorem 2.1, Theorem 2.2]) and the condition (180)
holds provided that −∞ < 𝜈′ < 1− 𝑞𝑛. We can prove a similar result on
the existence and uniqueness of entire and analytical solutions of problem
(DFP)𝑅; we leave the reader to make this precise.

(ii) The notion of an entire solution of the abstract Cauchy problem (𝐴𝐶𝑃𝑛),
introduced in [544, Definition 1.1], is slightly different from the corre-
sponding notion introduced in Definition 2.6.1(ii). Strictly speaking, if
𝑢(·) is an entire solution of the abstract Cauchy problem (𝐴𝐶𝑃𝑛) in the
sense of Definition 2.6.1(ii), then 𝑢(·) is an entire solution of problem
(𝐴𝐶𝑃𝑛) in the sense of [544, Definition 1.1]. The converse statement
holds provided that for each index 𝑖 ∈ N𝑛−1 the initial values 𝑢0, . . . , 𝑢𝑖−1

belong to 𝐷(𝐴𝑖).
(ii) The uniqueness of analytical solutions of problem (PN) on the region

Cr (−∞, 0] can be proved as follows. Let 𝑢(·) be an analytical solution of
problem (PN) on the region Cr (−∞, 0], with the initial values 𝑢𝑗 , resp.
𝑢𝑗 , 𝑣𝑗 , being zeroes (0 6 𝑗 6 𝑞𝑛 − 1). Then the choice of initial values in
(187) enables us to integrate the equation (168) (𝑞𝑛𝜁)-times by using the
formula (38). Keeping in mind the analyticity of 𝑢(·), we easily infer that
for each 𝑖 ∈ N0

𝑛−1 the mappings 𝑧 ↦→ 𝐵𝑢(𝑧), 𝑧 ∈ Cr(−∞, 0) (𝑧 ↦→ 𝐵𝑢(𝑧),
𝑧 ∈ C r (−∞, 0]) and 𝑧 ↦→ (𝑔(𝑞𝑛−𝑞𝑖)𝜁 * 𝐴𝑖𝑢)(𝑧), 𝑧 ∈ C r (−∞, 0) (𝑧 ↦→
(𝑔(𝑞𝑛−𝑞𝑖)𝜁 * 𝐴𝑖𝑢)(𝑧), 𝑧 ∈ C r (−∞, 0]) are well defined and continuous
(analytical), as well as that

𝐵𝑢(𝑠𝑒𝑖𝛾) +

𝑛−1∑︁
𝑖=0

∫︁ 𝑠𝑒𝑖𝛾

0

𝑔(𝑞𝑛−𝑞𝑖)𝜁(𝑣)𝐴𝑖𝑢(𝑠𝑒
𝑖𝛾 − 𝑣)𝑑𝑣 = 0, 𝑠 > 0, 𝛾 ∈ (−𝜋, 𝜋),

i.e., that

𝐵𝑢(𝑠𝑒𝑖𝛾)+

𝑛−1∑︁
𝑖=0

(𝑒𝑖𝛾)(𝑞𝑛−𝑞𝑖)𝜁

∫︁ 𝑠

0

𝑔(𝑞𝑛−𝑞𝑖)𝜁(𝑠−𝑣)𝐴𝑖𝑢(𝑣𝑒
𝑖𝛾)𝑑𝑣 = 0, 𝑡 > 0, 𝛾 ∈ (−𝜋, 𝜋).

It is clear that there exists 𝛾 ∈ (−𝜋, 𝜋) such that 2𝑟𝑒−𝑖𝛾𝜁 ∈ {𝜆 ∈
𝑒𝑖𝜑Σ(𝜁𝜋/2)+𝜃 : |𝜆| > 𝑟}. Setting 𝜑′ := 𝛾𝜁, 𝑢𝛾(𝑠) := 𝑢(𝑠𝑒𝑖𝛾), 𝑠 > 0, we
obtain that 𝑢𝛾 ∈ 𝐶([0,∞) : 𝐸) and

𝑒−𝑖𝑞𝑛𝜑
′
𝐵𝑢𝛾(𝑠) +

𝑛−1∑︁
𝑖=0

𝑒−𝑖𝑞𝑖𝜑
′
𝐴𝑖(𝑔(𝑞𝑛−𝑞𝑖)𝜁 * 𝑢𝛾)(𝑠) = 0, 𝑠 > 0.

On the other hand,

𝑃(𝜆𝑒−𝑖𝜑′ )1/𝜁 = 𝜆𝑞𝑛𝑒−𝑖𝑞𝑛𝜑
′
𝐵 +

𝑛−1∑︁
𝑖=0

𝜆𝑞𝑖𝑒−𝑖𝑞𝑖𝜑
′
𝐴𝑖, 𝜆 ∈ Cr {0}.

Using the previous two equalities and Theorem 2.3.6 (applied to the oper-
ators 𝑒−𝑖𝑞𝑖𝜑

′
𝐴𝑖 in place of the operators 𝐴𝑖 appearing in the formulation
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of this theorem), we get that 𝑢𝛾(𝑠) = 0, 𝑠 > 0, which clearly implies that
𝑢(𝑧) = 0, 𝑧 ∈ Cr (−∞, 0).

It is also worth noting that Theorem 2.6.2 is an extension of [544, Theorem 2.1]
(cf. also [541, Theorem 4.2, p. 168]), where it has been assumed that 𝐵 = 𝐶 = 𝐼,
𝜁 = 1, 𝐸 is a Banach space and

⋂︀𝑛
𝑗=0𝐷(𝐴𝑗) is dense in 𝐸 (in our opinion, the strong

continuity in (ii) is very important for the validity of Theorem 2.6.2 and cannot
be so simply neglected here (cf. [541, (4.8), p. 169]); also, it ought to be observed
that Lemma 2.6.3 is very important for filling some absences in the proof of [541,
Theorem 4.2], appearing on the lines 1–6, p. 171 in [541], where the Cauchy formula
has been used by assuming the analyticity of mapping 𝜆 ↦→ 𝑅𝑒𝑖𝜑𝜆, 𝜆 ∈ Σ(𝜋/2)+𝜃,
|𝜆| > 𝑟 a priori); observe also that, in the concrete situation of abstract Cauchy
problem (𝐴𝐶𝑃𝑛), our estimate on the growth rate of 𝑃−1

𝑒𝑖𝜑· (cf. the equation (180)
with 𝜈′ < −(𝑛− 1)) is slightly better than the corresponding estimate [541, (4.2)],
where it has been required that 𝜈′ 6 −𝑛. If 𝐵 = 𝐶 = 𝐼 and 𝜁 = 2, then Theorem
2.6.2 strengthens [544, Theorem 2.1] in a drastic manner. In actual fact, our basic
requirement in (i) is that the operator 𝑃−1

𝜆 = (𝜆2𝑛 + 𝜆2𝑛−2𝐴𝑛−1 + · · · + 𝐴0)
−1

exists on the region {𝜆1/2 : 𝜆 ∈ 𝑒𝑖𝜑Σ(𝜁𝜋/2)+𝜃 : |𝜆| > 𝑟}, which can be contained
in an arbitrary acute angle at vertex (0, 0); on the other hand, in the formulation
of [544, Theorem 2.1], T.-J. Xiao and J. Liang require the existence of operator
𝑃−1
𝜆 for any complex number 𝜆 having the modulus greater than or equal to 𝑟 and

belonging to the obtuse angle 𝑒𝑖𝜑Σ(𝜋/2)+𝜃.
Before proceeding further, we would like to note that an illustrative example of

application of Theorem 2.5.3 and the conclusions from Remark 2.5.5 to (multi-term)
degenerate Cauchy problems will be presented within Example 2.7.6.

2.7. Abstract incomplete degenerate differential equations

Let 𝐸 be an SCLCS. We start this section by introducing the following defini-
tion.

Definition 2.7.1. Suppose that 𝐵 is a closed linear operator on 𝐸 and 𝐶 ∈
𝐿(𝐸) is an injective operator.

(i) An operator family (𝑇 (𝑡))𝑡>0 ⊆ 𝐿(𝐸) is said to be a pre-(𝐵,𝐶)-regularized
semigroup of growth order 𝑟 > 0 iff 𝑅(𝑇 (𝑡)) ⊆ 𝐷(𝐵), 𝑡 > 0 and the
following holds:
(a) 𝑇 (𝑡+ 𝑠)𝐶 = 𝑇 (𝑡)𝐵𝑇 (𝑠) for all 𝑡, 𝑠 > 0,
(b) for every 𝑥 ∈ 𝐸, the mapping 𝑡 ↦→ 𝑇 (𝑡)𝑥, 𝑡 > 0 is continuous, and
(c) the family {𝑡𝑟𝑇 (𝑡) : 𝑡 ∈ (0, 1]} ⊆ 𝐿(𝐸) is equicontinuous.
(𝑇 (𝑡))𝑡>0 ⊆ 𝐿(𝐸) is said to be a (𝐵,𝐶)-regularized semigroup of growth
order 𝑟 > 0 iff, in addition to (a)–(c), we have that:
(d) for every 𝑥 ∈ 𝐸, the mapping 𝑡 ↦→ 𝐵𝑇 (𝑡)𝑥, 𝑡 > 0 is continuous, and
(e) the family {𝑡𝑟𝐵𝑇 (𝑡) : 𝑡 ∈ (0, 1]} ⊆ 𝐿(𝐸) is equicontinuous.

(ii) Suppose 0 < 𝛾 6 𝜋/2, (𝑇 (𝑡))𝑡>0 is a pre-(𝐵,𝐶)-regularized semigroup of
growth order 𝑟 > 0, and the mapping 𝑡 ↦→ 𝑇 (𝑡)𝑥, 𝑡 > 0 has an analytic
extension to the sector Σ𝛾 , denoted by the same symbol (𝑥 ∈ 𝐸). If
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there exists 𝜔 ∈ R (𝜔 = 0) such that, for every 𝛿 ∈ (0, 𝛾), the family
{|𝑧|𝑟𝑒−𝜔Re 𝑧𝑇 (𝑧) : 𝑧 ∈ Σ𝛿} ⊆ 𝐿(𝐸) is equicontinuous, then (𝑇 (𝑧))𝑧∈Σ𝛾

⊆
𝐿(𝐸) is said to be an (equicontinuous) analytic pre-(𝐵,𝐶)-regularized
semigroup of growth order 𝑟.

(iii) If (𝑇 (𝑡))𝑡>0 is a (𝐵,𝐶)-regularized semigroup of growth order 𝑟 > 0, the
mappings 𝑡 ↦→ 𝑇 (𝑡)𝑥, 𝑡 > 0 and 𝑡 ↦→ 𝐵𝑇 (𝑡)𝑥, 𝑡 > 0 admit analytic ex-
tensions to the sector Σ𝛾 , denoted by the same symbols (𝑥 ∈ 𝐸), and
if there exists 𝜔 ∈ R (𝜔 = 0) such that, for every 𝛿 ∈ (0, 𝛾), the fam-
ilies {|𝑧|𝑟𝑒−𝜔Re 𝑧𝑇 (𝑧) : 𝑧 ∈ Σ𝛿} ⊆ 𝐿(𝐸) and {|𝑧|𝑟𝑒−𝜔Re 𝑧𝐵𝑇 (𝑧) : 𝑧 ∈
Σ𝛿} ⊆ 𝐿(𝐸) are equicontinuous, then (𝑇 (𝑧))𝑧∈Σ𝛾 ⊆ 𝐿(𝐸) is said to be an
(equicontinuous) analytic (𝐵,𝐶)-regularized semigroup of growth order 𝑟.

Remark 2.7.2. (i) Our assumption 𝑅(𝑇 (𝑡)) ⊆ 𝐷(𝐵), 𝑡 > 0 immediately
implies that 𝐵𝑇 (𝑡) is a closed linear operator for all 𝑡 > 0. In the case that
𝐸 is a webbed bornological space, then the above implies by the closed
graph theorem that 𝐵𝑇 (𝑡) ∈ 𝐿(𝐸) for all 𝑡 > 0.

(ii) If (𝑇 (𝑡))𝑡>0 is a (𝐵,𝐶)-regularized semigroup of growth order 𝑟 > 0 sat-
isfying additionally that the preassumption 𝐵𝑇 (𝑡)𝑥 = 0, 𝑡 > 0 implies
𝑥 = 0, then (𝐵𝑇 (𝑡))𝑡>0 ⊆ 𝐿(𝐸) is a 𝐶-regularized semigroup of growth
order 𝑟 > 0 (in the sense of [103, Definition 3.4]). A similar statement
can be formulated for the class of analytic (𝐵,𝐶)-regularized semigroups.

If (𝑇 (𝑡))𝑡>0 ⊆ 𝐿(𝐸) is a pre-(𝐵,𝐶)-regularized semigroup of growth order
𝑟 > 0, then we define the integral generator of (𝑇 (𝑡))𝑡>0 by

𝒜𝐵 :=

{︂
(𝑥, 𝑦) ∈ 𝐸 × 𝐸 : 𝐵𝑇 (𝑡)𝑥−𝐵𝑇 (𝑠)𝑥

= 𝐵

∫︁ 𝑡

𝑠

𝑇 (𝑟)𝑦 𝑑𝑟 for all 𝑡, 𝑠 > 0 with 𝑡 > 𝑠
}︂
.

Then it is clear that 𝒜𝐵 is a multivalued linear operator in 𝐸 and that the local
equicontinuity of operator family (𝑇 (𝑡))𝑡>0 combined with the assumption 𝐵 ∈
𝐿(𝐸) implies that 𝒜𝐵 is closed; in the case that there exists a linear manifold 𝑌
of 𝐸 such that 𝐸 = 𝒜𝐵0 ⊕ 𝑌 (cf. [424, Proposition 1.6.4]), we can single out a
single-valued branch of 𝒜𝐵 . It is very difficult to say what will be the complete
infinitesimal generator of (𝑇 (𝑡))𝑡>0 (cf. [103] for the case 𝐵 = 𝐼) in the degenerate
case.

The reader may consult [291, Section 1.2] for further information about non-
degenerate semigroups of growth order 𝑟 > 0, i.e., (𝐼, 𝐼)-regularized semigroups
of growth order 𝑟 > 0. It is an open problem to find a necessary and sufficient
condition for generation of degenerate semigroups of growth order 𝑟 > 0 in terms
of spectral properties of their integral generators.

In the sequel of this section, we shall always assume that 𝐴 and 𝐵 are two
closed linear operators acting on 𝐸, as well as that 𝐶𝐴 ⊆ 𝐴𝐶 and 𝐶𝐵 ⊆ 𝐵𝐶.
Sometimes we use the following condition.
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(H): 𝐴 and 𝐵 are closed linear operators on 𝐸, 𝐶 ∈ 𝐿(𝐸) is injective, 0 6 𝜔 <
𝜋, 𝑞 ∈ R, Cr Σ𝜔 ⊆ 𝜌𝐶(𝐵,𝐴), the families

{(|𝜆|−1 + |𝜆|𝑞)−1(𝜆𝐵 −𝐴)−1𝐶 : 𝜆 /∈ Σ𝜔′ ∪ {0}} ⊆ 𝐿(𝐸) and

{(|𝜆|−1 + |𝜆|𝑞)−1𝐵(𝜆𝐵 −𝐴)−1𝐶 : 𝜆 /∈ Σ𝜔′ ∪ {0}} ⊆ 𝐿(𝐸)

are equicontinuous for every 𝜔 < 𝜔′ < 𝜋, as well as the mappings 𝜆 ↦→
(𝜆𝐵 − 𝐴)−1𝐶𝑥, 𝜆 ∈ C r Σ𝜔 and 𝜆 ↦→ 𝐵(𝜆𝐵 − 𝐴)−1𝐶𝑥, 𝜆 ∈ C r Σ𝜔 are
continuous for every fixed element 𝑥 ∈ 𝐸.

Since we have assumed that 𝐶𝐴 ⊆ 𝐴𝐶 and 𝐶𝐵 ⊆ 𝐵𝐶, the analysis contained in
Remark 2.5.2(vii) shows that the validity of condition (H) implies that the mappings
𝜆 ↦→ (𝜆𝐵 − 𝐴)−1𝐶𝑥, 𝜆 ∈ C r Σ𝜔 and 𝜆 ↦→ 𝐵(𝜆𝐵 − 𝐴)−1𝐶𝑥, 𝜆 ∈ C r Σ𝜔 are
analytic, indeed, for every fixed element 𝑥 ∈ 𝐸. By ℳ𝐵,𝐶,𝑞 we denote the class
consisting of all closed linear operators 𝐴′ on 𝐸, satisfying that the families {(|𝜆|−1+
|𝜆|𝑞)−1(𝜆𝐵−𝐴′)−1𝐶 : 𝜆 ∈ (−∞, 0)} ⊆ 𝐿(𝐸) and {(|𝜆|−1+ |𝜆|𝑞)−1𝐵(𝜆𝐵−𝐴′)−1𝐶 :
𝜆 ∈ (−∞, 0)} ⊆ 𝐿(𝐸) are equicontinuous, as well as that the mappings 𝜆 ↦→
(𝜆𝐵−𝐴′)−1𝐶𝑥, 𝜆 ∈ (−∞, 0) and 𝜆 ↦→ 𝐵(𝜆𝐵−𝐴′)−1𝐶𝑥, 𝜆 ∈ (−∞, 0) are continuous
for every fixed element 𝑥 ∈ 𝐸. Following A. V. Balakrishnan [44], we introduce
the function 𝑓𝑡,𝛾(𝜆) by

𝑓𝑡,𝛾(𝜆) :=
1

𝜋
𝑒−𝑡𝜆𝛾 cos𝜋𝛾 sin(𝑡𝜆𝛾 sin𝜋𝛾)

=
1

2𝜋𝑖
(𝑒−𝑡𝜆𝛾𝑒−𝑖𝜋𝛾

− 𝑒−𝑡𝜆𝛾𝑒𝑖𝜋𝛾

), 𝜆 > 0 (𝑡 > 0, 𝛾 ∈ (0, 1/2)).

This function enjoys the following properties [413]:
1. |𝑓𝑡,𝛾(𝜆)| 6 𝜋−1𝑒−𝜆𝛾𝜀𝑡,𝛾 , 𝜆 > 0, where 𝜀𝑡,𝛾 := 𝑡 cos𝜋𝛾 > 0.
2. |𝑓𝑡,𝛾(𝜆)| 6 𝛾𝑡𝜆𝛾𝑒−𝑡𝜆𝛾 sin 𝜀𝑡,𝛾 , 𝜆 > 0.
3.
∫︀∞
0
𝜆𝑛𝑓𝑡,𝛾(𝜆)𝑑𝜆 = 0, 𝑛 ∈ N0.

Set
𝐻𝑛(𝜔, 𝑧) :=

𝑑𝑛

𝑑𝑧𝑛
exp(−𝜔𝑧𝛾), 𝜔 ∈ C, 𝑧 ∈ Cr (−∞, 0],

and, if that makes any sense,

𝑊𝛾(𝑡)𝑥 :=

∫︁ ∞

0

𝑓𝑡,𝛾(𝜆)(𝜆𝐵 +𝐴)−1𝐶𝑥𝑑𝜆, 𝑡 > 0, 𝑥 ∈ 𝐸 (𝛾 ∈ (0, 1/2)).

Then the function 𝐻𝑛(𝜔, 𝑧) is analytic in Cr(−∞, 0] for every fixed number 𝜔, and
entire in C for every fixed number 𝑧 (cf. also the proof of [413, Proposition 3.5]).

The main purpose of following theorem is to transmit the assertion of [292, The-
orem 2.9.48] to abstract degenerate differential equations (some parts of this the-
orem cannot be so simply formulated for degenerate differential equations because
we do not know what would be the fractional power 𝐴𝑧 (𝑧 ∈ C+) in the newly
arisen situation; cf. also [181]).

Theorem 2.7.3. Let 0 < 𝛾 < 1/2, and let 𝐴 ∈ ℳ𝐵,𝐶,𝑞 where 𝑞+𝛾 > −1. Sup-
pose that 𝐶𝐴 ⊆ 𝐴𝐶 and 𝐶𝐵 ⊆ 𝐵𝐶. Then the families {(1 + 𝑡−(𝑞+1)/𝛾)−1𝑊𝛾(𝑡) :

𝑡 > 0} ⊆ 𝐿(𝐸) and {(1 + 𝑡−(𝑞+1)/𝛾)−1𝐵𝑊𝛾(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝐸) are equicon-
tinuous, and there exists an operator family (W𝛾(𝑧))𝑧∈Σ(𝜋/2)−𝛾𝜋

⊆ 𝐿(𝐸), resp.,
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(W𝛾,𝐵(𝑧))𝑧∈Σ(𝜋/2)−𝛾𝜋
⊆ 𝐿(𝐸), such that, for every 𝑥 ∈ 𝐸, the mapping 𝑧 ↦→

W𝛾(𝑧)𝑥, 𝑧 ∈ Σ(𝜋/2)−𝛾𝜋, resp., 𝑧 ↦→ W𝛾,𝐵(𝑧)𝑥, 𝑧 ∈ Σ(𝜋/2)−𝛾𝜋, is analytic as
well as that W𝛾(𝑡) =𝑊𝛾(𝑡), 𝑡 > 0, resp., W𝛾,𝐵(𝑡) = 𝐵𝑊𝛾(𝑡), 𝑡 > 0 (in the sequel,
we will not make any difference between W𝛾(·) and 𝑊𝛾(·), W𝛾,𝐵(·) and 𝑊𝛾,𝐵(·)).
Furthermore, the following holds:

(i) 𝑊𝛾(𝑧1)𝐵𝑊𝛾(𝑧2) =𝑊𝛾(𝑧1 + 𝑧2)𝐶 for all 𝑧1, 𝑧2 ∈ Σ(𝜋/2)−𝛾𝜋.
(ii) Let −1− 𝛾 < 𝑞 6 −1. If (𝜆𝐵−𝐴)−1𝐶𝐴 ⊆ 𝐴(𝜆𝐵−𝐴)−1𝐶, 𝜆 ∈ 𝜌𝐶(𝐴,𝐵)

and 𝑥 ∈ 𝐷(𝐴), then

(192) lim
𝑧→0,𝑧∈Σ(𝜋/2)−𝛾𝜋−𝜀

𝐵𝑊𝛾(𝑧)𝑥 = 𝐶𝑥, 𝜀 ∈ (0, (𝜋/2)− 𝛾𝜋);

if, in addition to this, the condition (H) holds, then we can extend the
operator family 𝑊𝛾(·) to the sector Σ𝜋

2 −𝜔𝛾 and the limit equality (192)
remains true for each 𝑥 ∈ 𝐷(𝐴), with the number (𝜋/2)− 𝛾𝜋 replaced by
(𝜋/2)− 𝜔𝛾.

(iii) Let 𝑞 > −1. Then (𝑊𝛾(𝑧))𝑧∈Σ(𝜋/2)−𝛾𝜋
is an equicontinuous analytic (𝐵,𝐶)-

regularized semigroup of growth order (𝑞+1)/𝛾. If, additionally, the con-
dition (H) holds, then (𝑊𝛾(𝑡))𝑡>0 can be extended to an equicontinuous
analytic (𝐵,𝐶)-regularized semigroup (W𝛾(𝑧))𝑧∈Σ(𝜋/2)−𝛾𝜔

of growth order
(𝑞+1)/𝛾. Suppose that the operator 𝐵 is injective, 𝑥 ∈ 𝐷((𝐵−1𝐴)⌊𝑞+2⌋)∩
𝐷(𝐵) and (𝜆𝐵 − 𝐴)−1𝐶𝐵 ⊆ 𝐵(𝜆𝐵 − 𝐴)−1𝐶 (𝜆 ∈ 𝜌𝐶(𝐴,𝐵)). Then
lim𝑧→0,𝑧∈Σ(𝜋/2)−𝛾𝜋−𝜀

𝐵𝑊𝛾(𝑧)𝑥 = 𝐶𝑥, 𝜀 ∈ (0, (𝜋/2) − 𝛾𝜋); if, in addition
to this, the condition (H) holds, then the above limit equality remains true
with the number (𝜋/2)− 𝛾𝜋 replaced by (𝜋/2)− 𝜔𝛾.

(iv) Suppose that 𝑞 < 0 and 𝑥 ∈ 𝐷(𝐴) ∩𝐷(𝐵). Then
lim𝑧→0,𝑧∈Σ(𝜋/2)−𝛾𝜋−𝜀

𝑊𝛾(𝑧)𝐵𝑥 = 𝐶𝑥, 𝜀 ∈ (0, (𝜋/2) − 𝛾𝜋); if, in addition
to this, the condition (H) holds, then the above limit equality remains true
with the number (𝜋/2)− 𝛾𝜋 replaced by (𝜋/2)− 𝜔𝛾.

(v)(v.1) Let 𝑞 + 𝛾 > 0, 𝑧0 ∈ C+, let 𝐵 be injective, 𝑥 ∈ 𝐷((𝐵−1𝐴)⌊𝑞+𝛾⌋+2) ∩
𝐷(𝐵), and let (𝜆𝐵 − 𝐴)−1𝐶𝐵 ⊆ 𝐵(𝜆𝐵 − 𝐴)−1𝐶 (𝜆 ∈ 𝜌𝐶(𝐴,𝐵)).
Then

(193) lim
𝑧→0,𝑧∈Σ(𝜋/2)−𝛾𝜋−𝜀

𝐵𝑊𝛾(𝑧)𝑥− 𝐶𝑥

𝑧

= −𝑧𝛾0𝐶𝑥+

⌊𝑞+𝛾⌋+2∑︁
𝑘=2

(−1)𝑘−1

(𝑘 − 1)!
𝐻𝑘−1(0, 𝑧0)(𝑧0 −𝐵−1𝐴)𝑘−1𝐶𝑥

− sin(𝜋𝛾)

∫︁ ∞

0

𝜆𝛾
𝐵(𝜆+𝐴)−1𝐶(𝑧0 −𝐵−1𝐴)⌊𝑞+𝛾⌋+2𝑥

(𝜆+ 𝑧0)⌊𝑞+𝛾⌋+2
𝑑𝜆, 𝜀 ∈ (0, (𝜋/2)− 𝛾𝜋);

if the condition (H) holds, then the formula (193) remains true with
the number (𝜋/2)− 𝛾𝜋 replaced by (𝜋/2)− 𝜔𝛾.

(v.2) Let 𝑞 + 𝛾 < 0, 𝑧0 ∈ C+ and 𝑥 ∈ 𝐷(𝐴) ∩𝐷(𝐵). Then

(194) lim
𝑧→0,𝑧∈Σ(𝜋/2)−𝛾𝜋−𝜀

𝑊𝛾(𝑧)𝐵𝑥− 𝐶𝑥

𝑧
= −𝑧𝛾0𝐶𝑥
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− sin(𝜋𝛾)

∫︁ ∞

0

𝜆𝛾
(𝜆+𝐴)−1𝐶(𝑧0𝐵 −𝐴)𝑥

(𝜆+ 𝑧0)
𝑑𝜆, 𝜀 ∈ (0, (𝜋/2)− 𝛾𝜋);

if the condition (H) holds, then the formula (194) remains true with
the number (𝜋/2)− 𝛾𝜋 replaced by (𝜋/2)− 𝜔𝛾.

Proof. The existence of operator families (W𝛾(𝑧))𝑧∈Σ(𝜋/2)−𝛾𝜋
and

(W𝛾,𝐵(𝑧))𝑧∈Σ(𝜋/2)−𝛾𝜋
, satisfying the properties stated in the first part of formula-

tion of theorem, before the assertion (i), follows similarly as in the case that 𝐵 = 𝐼.
Suppose 𝛿 ∈ (0, (𝜋/2)− 𝜋𝛾) and 𝑟 ∈ ~. Arguing as in the proof of [292, Theorem
2.9.48], we obtain that there exist 𝑟′ ∈ ~, 𝑚 > 0 and 𝑐 > 0 such that, for every
𝑥 ∈ 𝐸 and 𝑧 ∈ Σ𝛿, we have

(195) 𝑟(𝑊𝛾(𝑧)𝑥) 6
(︁
1 + |𝑧|−

𝑞+1
𝛾

)︁
𝑟′(𝑥) and 𝑟(𝐵𝑊𝛾(𝑧)𝑥) 6

(︁
1 + |𝑧|−

𝑞+1
𝛾

)︁
𝑟′(𝑥).

The semigroup property stated in (i) can be proved by means of the resolvent equa-
tion from Remark 2.5.2(vii) and direct computations, similar to those appearing in
[44, Section 3]. Therefore, (𝑊𝛾(𝑧))𝑧∈Σ(𝜋/2)−𝛾𝜋

is an equicontinuous analytic (𝐵,𝐶)-
regularized semigroup of growth order (𝑞 + 1)/𝛾, provided that 𝑞 > −1. Suppose
temporarily that the operator 𝐵 is injective and 𝐵(𝜆𝐵−𝐴)−1𝐶 ⊆ (𝜆𝐵−𝐴)−1𝐶𝐵
(𝜆 ∈ 𝜌𝐶(𝐴,𝐵)). Then the following equality holds

(196) (𝜆+𝐵−1𝐴)−1𝐶𝑥 = 𝐵(𝜆𝐵 +𝐴)−1𝐶𝑥, 𝜆 > 0, 𝑥 ∈ 𝐷(𝐵).

Combined with the identity [413, p. 212, l. 8], (196) implies that, for every 𝜆 > 0
and 𝑧0 ∈ C+, we have

𝐵(𝜆𝐵 +𝐴)−1𝐶𝑥 =

⌊𝑞+2⌋∑︁
𝑗=1

(𝑧0 −𝐵−1𝐴)𝑗−1𝐶𝑥

(𝜆+ 𝑧0)𝑗

+
𝐵(𝜆𝐵 +𝐴)−1𝐶(𝑧0 −𝐵−1𝐴)⌊𝑞+2⌋𝐶𝑥

(𝜆+ 𝑧0)⌊𝑞+2⌋ ,

so that the proof of limit equality in (iii), on proper subsectors of Σ(𝜋/2)−𝛾𝜋, follows
in almost the same way as in the proof of [413, Proposition 3.5]. Using the proof
of [292, Theorem 2.9.48(v)], we obtain similarly that the limit equality in (v.1)
holds on proper subsectors of Σ(𝜋/2)−𝛾𝜋. We continue the proof of (iii). Suppose
that 𝜀 > 0 is sufficiently small. Let 𝑞 > −1, and let the condition (H) hold. Then
one can take numbers 𝜃1 ∈ (0, 𝜋 − 𝜔) and 𝜃2 ∈ (𝜔 − 𝜋, 0) such that (𝜋/2) − 𝛾𝜔 >
(𝜋/2)−𝛾𝜋+𝛾𝜃1 > (𝜋/2)−𝛾𝜔−𝜀 and 𝜔𝛾−(𝜋/2)+𝜀 > 𝛾𝜋−(𝜋/2)+𝛾𝜃2 > 𝜔𝛾−(𝜋/2).
Set, for every 𝜃 ∈ (𝜔 − 𝜋, 𝜋 − 𝜔),

𝑊𝜃,𝛾(𝑧)𝑥 :=

∫︁ ∞

0

𝑓𝑧,𝛾(𝜆)(𝜆𝐵 + 𝑒𝑖𝜃𝐴)−1𝐶𝑥𝑑𝜆, 𝑥 ∈ 𝐸, 𝑧 ∈ Σ(𝜋/2)−𝛾𝜋.

Then it can be simply verified that (𝑊𝜃,𝛾(𝑧))𝑧∈Σ(𝜋/2)−𝛾𝜋
is an equicontinuous an-

alytic (𝐵,𝐶)-regularized semigroup of growth order (𝑞 + 1)/𝛾. Define, for every
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𝑥 ∈ 𝐸,

𝑊𝛾(𝑧)𝑥 :=

⎧⎪⎨⎪⎩
𝑊𝛾(𝑧)𝑥, if 𝑧 ∈ Σ(𝜋/2)−𝛾𝜋,

𝑊𝜃1,𝛾(𝑧𝑒
−𝑖𝜃1𝛾)𝑥, if 𝑧 ∈ 𝑒𝑖𝜃1𝛾Σ(𝜋/2)−𝛾𝜋,

𝑊𝜃2,𝛾(𝑧𝑒
−𝑖𝜃2𝛾)𝑥, if 𝑧 ∈ 𝑒𝑖𝜃2𝛾Σ(𝜋/2)−𝛾𝜋.

By Cauchy formula, we have that 𝑊𝛾(𝑧)𝑥 = 𝑊𝜃1,𝛾(𝑧𝑒
−𝑖𝜃1𝛾), if 𝑧 ∈ Σ(𝜋/2)−𝛾𝜋 ∩

𝑒𝑖𝜃1𝛾Σ(𝜋/2)−𝛾𝜋, and 𝑊𝛾(𝑧)𝑥 = 𝑊𝜃2,𝛾(𝑧𝑒
−𝑖𝜃2𝛾), if 𝑧 ∈ Σ(𝜋/2)−𝛾𝜋 ∩ 𝑒𝑖𝜃2𝛾Σ(𝜋/2)−𝛾𝜋,

whence we may conclude that the operator family (𝑊𝛾(𝑧))𝑧∈Σ𝜋
2

−𝜔𝛾
⊆ 𝐿(𝐸) is

well defined. We define the operator family (𝐵𝑊𝛾(𝑧))𝑧∈Σ𝜋
2

−𝜔𝛾
⊆ 𝐿(𝐸) similarly.

Then it is checked at once that (𝑊𝛾(𝑧))𝑧∈Σ𝜋
2

−𝜔𝛾
is an equicontinuous analytic

(𝐵,𝐶)-regularized semigroup of growth order (𝑞 + 1)/𝛾. The way of construction
of (𝑊𝛾(𝑧))𝑧∈Σ𝜋

2
−𝜔𝛾

⊆ 𝐿(𝐸) shows that the limit equality stated in (iii) continues
to hold for each 𝑥 ∈ 𝐷((𝐵−1𝐴)⌊𝑞+2⌋) ∩ 𝐷(𝐵), with the number (𝜋/2) − 𝛾𝜋 re-
placed by (𝜋/2) − 𝛾𝜔 (if 𝑞 6 −1, then we define (𝑊𝛾(𝑧))𝑧∈Σ𝜋

2
−𝜔𝛾

⊆ 𝐿(𝐸) and
(𝐵𝑊𝛾(𝑧))𝑧∈Σ𝜋

2
−𝜔𝛾

⊆ 𝐿(𝐸) in the same way as above, showing also that any con-
sidered limit equality from (ii)–(v) continues to hold with the number (𝜋/2) − 𝛾𝜋
replaced by (𝜋/2) − 𝛾𝜔). The proof of (iii) is therefore completed. Suppose now
that −1−𝛾 < 𝑞 6 −1. Then an insignificant modification of the proof of [410, The-
orem 5.5.1(iv)] shows that lim𝑡→0+𝐵𝑊𝛾(𝑡)𝑥 = 𝐶𝑥, provided that 𝑥 ∈ 𝐸 satisfies
lim𝜆→+∞ 𝜆𝐵(𝜆𝐵 +𝐴)−1𝐶𝑥 = 𝐶𝑥. Since we have assumed that 𝐴 commutes with
(𝜆𝐵+𝐴)−1𝐶 (𝜆 ∈ 𝜌𝐶(𝐴,𝐵)), and that 𝜆𝐵(𝜆𝐵+𝐴)−1𝐶𝑥−𝐶𝑥 = 𝐴(𝜆𝐵+𝐴)−1𝐶𝑥 =
(𝜆𝐵 + 𝐴)−1𝐶𝐴𝑥, 𝑥 ∈ 𝐷(𝐴), 𝜆 > 0, one has lim𝑡→0+𝐵𝑊𝛾(𝑡)𝑥 = 𝐶𝑥, 𝑥 ∈ 𝐷(𝐴).
Using (195), it readily follows that lim𝑡→0+𝐵𝑊𝛾(𝑡)𝑥 = 𝐶𝑥, 𝑥 ∈ 𝐷(𝐴), so that
the limit equality (192) follows from an application of [296, Theorem 3.4(ii)]. The
limit equalities stated in (iv) and (v.2), on proper subsectors of Σ(𝜋/2)−𝛾𝜋, can be
proved by using the equality

(𝜆𝐵 +𝐴)−1𝐶𝐵𝑥 =
𝐶𝑥

𝜆+ 𝑧0
+

(𝜆𝐵 +𝐴)−1𝐶

𝜆+ 𝑧0
(𝑧0𝐵𝑥−𝐴𝑥),

which holds for 𝑧0 ∈ C+, 𝜆 > 0, 𝑥 ∈ 𝐷(𝐴) ∩𝐷(𝐵), and a slight modification of the
proofs of [413, Lemma 3.4, Proposition 3.5]. The proof of the theorem is thereby
complete. �

In Theorem 2.7.4, we use the same terminology as in the formulation and proof
of Theorem 2.7.3. We continue our previous analysis by investigating the existence
of solutions of abstract incomplete degenerate Cauchy problems

(𝐹𝑃𝛼1,𝛽1,𝜃) :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢 ∈ 𝐶∞((0,∞) : 𝐸),

𝐷𝛼1
− 𝐵𝐷𝛽1

− 𝑢(𝑠) = 𝑒𝑖𝜃/𝛾𝐴𝑢(𝑠), 𝑠 > 0,

lim𝑠→0+𝐵𝑢(𝑠) = 𝐶𝑥,

the set {𝐵𝑢(𝑠) : 𝑠 > 0} is bounded in 𝐸,



2.7. ABSTRACT INCOMPLETE DEGENERATE DIFFERENTIAL EQUATIONS 201

and

(𝐹𝑃𝛼1,𝛽1,𝜃)
′ :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑢 ∈ 𝐶∞((0,∞) : 𝐸),

𝐷𝛼1
− 𝐵𝐷𝛽1

− 𝑢(𝑠) = 𝑒𝑖𝜃/𝛾𝐴𝑢(𝑠), 𝑠 > 0,

lim𝑠→0+𝐵𝑢(𝑠) = 𝐶𝑥,

the sets {(1 + 𝑠−(𝑞+1)/𝛾)−1𝑢(𝑠) : 𝑠 > 0}
and {(1 + 𝑠−(𝑞+1)/𝛾)−1𝐵𝑢(𝑠) : 𝑠 > 0} are bounded in 𝐸.

Theorem 2.7.4. Let 0 < 𝛾 < 1/2, and let 𝐴 ∈ ℳ𝐵,𝐶,𝑞 where 𝑞 + 𝛾 > −1.
Suppose that 𝐶𝐴 ⊆ 𝐴𝐶, 𝐶𝐵 ⊆ 𝐵𝐶, 𝛼1 > 0, 𝛽1 > 0, 𝛼1 + 𝛽1 = 1/𝛾 and 𝜃 ∈
(𝛾𝜋 − (𝜋/2), (𝜋/2)− 𝛾𝜋). Then the following holds:

(i) Let 𝑞 > −1. Denote by Ω𝜃,𝛾 , resp. Ψ𝛾 , the set consisting of those ele-
ments 𝑥 ∈ 𝐸 for which lim𝑠→0+𝐵𝑊𝛾(𝑠𝑒

𝑖𝜃)𝑥 = 𝐶𝑥, resp.,
lim𝑧→0,𝑧∈Σ(𝜋/2)−𝛾𝜋−𝜀

𝐵𝑊𝛾(𝑧)𝑥 = 𝐶𝑥 for all 𝜀 ∈ (0, (𝜋/2) − 𝛾𝜋). Then,
for every 𝑥 ∈ Ω𝜃,𝛾 , the incomplete abstract degenerate Cauchy problem
(𝐹𝑃𝛼1,𝛽1,𝜃) has a solution 𝑢(𝑠) = 𝑊𝛾(𝑠𝑒

𝑖𝜃)𝑥, 𝑠 > 0, which can be ana-
lytically extended to the sector Σ(𝜋/2)−𝛾𝜋−|𝜃|. If, additionally, 𝑥 ∈ Ψ𝛾 ,
then for every 𝛿 ∈ (0, (𝜋/2) − 𝛾𝜋 − |𝜃|) and 𝑗 ∈ N0, we have that the set
{𝑧𝑗𝐵𝑢(𝑗)(𝑧) : 𝑧 ∈ Σ𝛿} is bounded in 𝐸. Assume that the condition (H)
holds. Then the solution 𝑠 ↦→ 𝑢(𝑠), 𝑠 > 0 can be analytically continued to
the sector Σ(𝜋/2)−𝛾𝜔; if, in addition to this,

lim
𝑧→0,𝑧∈Σ(𝜋/2)−𝛾𝜔−𝜀

𝐵𝑊𝛾(𝑧)𝑥 = 𝐶𝑥 for all 𝜀 ∈ (0, (𝜋/2)− 𝛾𝜔),

then for every 𝛿 ∈ (0, (𝜋/2) − 𝛾𝜔 − |𝜃|) and 𝑗 ∈ N0, we have that the set
{𝑧𝑗𝐵𝑢(𝑗)(𝑧) : 𝑧 ∈ Σ𝛿} is bounded in 𝐸.

(ii) Let −1 − 𝛾 < 𝑞 6 −1, (𝜆𝐵 − 𝐴)−1𝐶𝐴 ⊆ 𝐴(𝜆𝐵 − 𝐴)−1𝐶, 𝜆 ∈ 𝜌𝐶(𝐴,𝐵),
and let 𝑥 ∈ 𝐷(𝐴). Then the incomplete abstract degenerate Cauchy prob-
lem (𝐹𝑃𝛼1,𝛽1,𝜃)

′ has a solution 𝑢(𝑠) = 𝑊𝛾(𝑠𝑒
𝑖𝜃)𝑥, 𝑠 > 0, which can

be analytically extended to the sector Σ(𝜋/2)−𝛾𝜋−|𝜃|. Moreover, for every
𝛿 ∈ (0, (𝜋/2)−𝛾𝜋−|𝜃|) and 𝑗 ∈ N0, the sets {|𝑧|𝑗(1+|𝑧|−(𝑞+1)/𝛾)−1𝑢(𝑗)(𝑧) :
𝑧 ∈ Σ𝛿} and {|𝑧|𝑗(1 + |𝑧|−(𝑞+1)/𝛾)−1𝐵𝑢(𝑗)(𝑧) : 𝑧 ∈ Σ𝛿} are bounded in
𝐸. If, additionally, the condition (H) holds, then the above statements
remain true with the number (𝜋/2)− 𝛾𝜋 replaced by (𝜋/2)− 𝜔𝛾.

Proof. The proof of theorem almost completely follows from the arguments
used in those of [292, Theorem 2.9.48] and [103, Theorem 3.5(i)/b’], and the only
non-trivial thing that should be explained here is the way how we can prove that,
for every 𝛿 ∈ (0, (𝜋/2) − 𝛾𝜋 − |𝜃|) and 𝑗 ∈ N0, the solution 𝑠 ↦→ 𝑢(𝑠), 𝑠 > 0 has
the property that the sets {|𝑧|𝑗(1 + |𝑧|−(𝑞+1)/𝛾)−1𝑢(𝑗)(𝑧) : 𝑧 ∈ Σ𝛿} and {|𝑧|𝑗(1 +
|𝑧|−(𝑞+1)/𝛾)−1𝐵𝑢(𝑗)(𝑧) : 𝑧 ∈ Σ𝛿} are bounded in 𝐸 (cf. (ii)). In order to show this,
observe first that for each 𝑥 ∈ 𝐸, 𝑧 ∈ Σ𝜋

2 −𝛾𝜋 and 𝑗 ∈ N we have

(197)
𝑑𝑗

𝑑𝑧𝑗
𝑊𝛾(𝑧)𝑥 =

1

2𝜋𝑖

∫︁ ∞

0

(−𝜆𝛾𝑒−𝑖𝜋𝛾)𝑗𝑒−𝑧𝜆𝛾𝑒−𝑖𝜋𝛾

(𝜆𝐵 +𝐴)−1𝐶𝑥𝑑𝜆
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− 1

2𝜋𝑖

∫︁ ∞

0

(−𝜆𝛾𝑒𝑖𝜋𝛾)𝑗𝑒−𝑧𝜆𝛾𝑒𝑖𝜋𝛾

(𝜆𝐵 +𝐴)−1𝐶𝑥𝑑𝜆.

Hence, 𝐵 𝑑𝑗

𝑑𝑧𝑗𝑊𝛾(𝑧)𝑥 = 𝑑𝑗

𝑑𝑧𝑗𝐵𝑊𝛾(𝑧)𝑥 (𝑥 ∈ 𝐸, 𝑧 ∈ Σ𝜋
2 −𝛾𝜋, 𝑗 ∈ N), whence it easily

follows that 𝐵𝑢(𝑗)(𝑧) = (𝐵𝑢)(𝑗)(𝑧) (𝑧 ∈ Σ𝜋
2 −𝛾𝜋, 𝑗 ∈ N). Having in mind this

equality, the boundedness of sets {|𝑧|𝑗(1 + |𝑧|−(𝑞+1)/𝛾)−1𝑢(𝑗)(𝑧) : 𝑧 ∈ Σ𝛿} and
{|𝑧|𝑗(1 + |𝑧|−(𝑞+1)/𝛾)−1𝐵𝑢(𝑗)(𝑧) : 𝑧 ∈ Σ𝛿} can be proved by using (197) and a
direct computation involving the estimates used in the proof of [291, Theorem
1.4.15]. �

In this monograph, we will not consider again the assertions of [292, Theorem
2.9.39, Theorem 2.9.40, Theorem 2.9.58, Theorem 2.9.60] for degenerate differential
equations. In the following theorem, we will focus entirely on the assertion of [292,
Theorem 2.9.51(iii)].

Theorem 2.7.5. (cf. [292, Theorem 2.9.51(iii)] for non-degenerate case) Sup-
pose that the condition (H) holds, as well as that 𝐶𝐴 ⊆ 𝐴𝐶 and 𝐶𝐵 ⊆ 𝐵𝐶.

(i) Let −1 < 𝑞 < (−1)/2, and let (𝜆𝐵 − 𝐴)−1𝐶𝐴 ⊆ 𝐴(𝜆𝐵 − 𝐴)−1𝐶 (𝜆 ∈
𝜌𝐶(𝐴,𝐵)). Then, for every 𝑥 ∈ 𝐷(𝐴), the incomplete abstract degenerate
Cauchy problem

(𝑃2,𝑞,𝐵) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢 ∈ 𝒜(Σ(𝜋/2)−(𝜔/2) : 𝐸), 𝐵𝑢 ∈ 𝒜(Σ(𝜋/2)−(𝜔/2) : 𝐸),

𝐵𝑢′′(𝑧) = 𝑑2

𝑑𝑧2𝐵𝑢(𝑧) = 𝐴𝑢(𝑧), 𝑧 ∈ Σ(𝜋/2)−(𝜔/2),

lim𝑧→0,𝑧∈Σ𝛿
𝐵𝑢(𝑧) = 𝐶𝑥, for every 𝛿 ∈ (0, (𝜋/2)− (𝜔/2)),

the sets {(1 + |𝑧|−(2𝑞+2))−1𝑢(𝑧) : 𝑧 ∈ Σ𝛿} and
{(1 + |𝑧|−(2𝑞+2))−1𝐵𝑢(𝑧) : 𝑧 ∈ Σ𝛿} are bounded in 𝐸

for every 𝛿 ∈ (0, (𝜋/2)− (𝜔/2)),

has a solution 𝑢(𝑧) (𝑧 ∈ Σ(𝜋/2)−(𝜔/2)). Moreover, for every 𝛿 ∈ (0, (𝜋/2)−
(𝜔/2)) and 𝑗 ∈ N0, we have that the sets {|𝑧|𝑗(1 + |𝑧|−(2𝑞+2))−1𝑢(𝑗)(𝑧) :
𝑧 ∈ Σ𝛿} and {|𝑧|𝑗(1+ |𝑧|−(2𝑞+2))−1(𝐵𝑢)(𝑗)(𝑧) : 𝑧 ∈ Σ𝛿} are bounded in 𝐸.

(ii) Let −1 > 𝑞 > (−3)/2, and let (𝜆𝐵 − 𝐴)−1𝐶𝐴 ⊆ 𝐴(𝜆𝐵 − 𝐴)−1𝐶 (𝜆 ∈
𝜌𝐶(𝐴,𝐵)). Then, for every 𝑥 ∈ 𝐷(𝐴), the problem (𝑃2,𝑞,𝐵) has a solution
𝑢(𝑧) (𝑧 ∈ Σ(𝜋/2)−(𝜔/2)). Moreover, for every 𝛿 ∈ (0, (𝜋/2) − (𝜔/2)) and
𝑗 ∈ N0, we have that the sets {|𝑧|𝑗(1 + |𝑧|−(2𝑞+2))−1𝑢(𝑗)(𝑧) : 𝑧 ∈ Σ𝛿} and
{|𝑧|𝑗(1 + |𝑧|−(2𝑞+2))−1(𝐵𝑢)(𝑗)(𝑧) : 𝑧 ∈ Σ𝛿} are bounded in 𝐸.

Proof. Suppose first that 𝑞 = −1 and (𝜆𝐵 − 𝐴)−1𝐶𝐴 ⊆ 𝐴(𝜆𝐵 − 𝐴)−1𝐶
(𝜆 ∈ 𝜌𝐶(𝐴,𝐵)); cf. (ii). Let 0 < 𝛿′ < 𝛿 < (𝜋 − 𝜔)/2, 1/2 > 𝛾0 > 𝛿/(𝜋 − 𝜔) and
𝜃 ∈ (𝜔 − 𝜋, (−𝛿)/𝛾0). Then, for every 𝛾 ∈ (𝛾0, 1/2), we have 𝜃 ∈ (𝜔 − 𝜋, (−𝛿)/𝛾)
and 𝛾 > 𝛿/(𝜋−𝜔). Suppose that 𝜀 ∈ (0, 𝜔/2) is sufficiently small. Define, for every
𝛾 ∈ (𝛾0, 1/2) and 𝑥 ∈ 𝐸,

(198) 𝐹𝛾(𝜆)𝑥 :=

⎧⎨⎩
∫︀∞
0

𝑒𝑖𝜃𝛾 sin(𝛾𝜋)𝑣𝛾(𝑣𝐵+𝑒𝑖𝜃𝐴)−1𝐶𝑥𝑑𝑣

𝜋(𝜆𝑒𝑖𝜃𝛾+𝑣𝛾 cos𝜋𝛾)2+𝑣2𝛾 sin2 𝛾𝜋
, if arg(𝜆) ∈ (−𝜀, (𝜋/2) + 𝛿),∫︀∞

0

𝑒−𝑖𝜃𝛾 sin(𝛾𝜋)𝑣𝛾(𝑣𝐵+𝑒−𝑖𝜃𝐴)−1𝐶𝑥𝑑𝑣

𝜋(𝜆𝑒−𝑖𝜃𝛾+𝑣𝛾 cos𝜋𝛾)2+𝑣2𝛾 sin2 𝛾𝜋
, if arg(𝜆) ∈ (−(𝜋/2)− 𝛿, 𝜀).
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If 𝑥 ∈ 𝐸 and arg(𝜆) ∈ (−𝜀, (𝜋/2) + 𝛿), resp., arg(𝜆) ∈ (−(𝜋/2) − 𝛿, 𝜀), then it is
very simple to prove that∫︁ ∞

0

𝑒−𝜆𝑒𝑖𝜃𝛾𝑡𝑊𝜃,𝛾(𝑡)𝑥 𝑑𝑡 =
sin 𝛾𝜋

𝜋

∫︁ ∞

0

𝑣𝛾(𝑣𝐵 + 𝑒𝑖𝜃𝐴)−1𝐶𝑥

(𝜆𝑒𝑖𝜃𝛾 + 𝑣𝛾 cos𝜋𝛾)2 + 𝑣2𝛾 sin2 𝛾𝜋
𝑑𝑣,

resp.,∫︁ ∞

0

𝑒−𝜆𝑒−𝑖𝜃𝛾𝑡𝑊−𝜃,𝛾(𝑡)𝑥 𝑑𝑡 =
sin 𝛾𝜋

𝜋

∫︁ ∞

0

𝑣𝛾(𝑣𝐵 + 𝑒−𝑖𝜃𝐴)−1𝐶𝑥

(𝜆𝑒−𝑖𝜃𝛾 + 𝑣𝛾 cos𝜋𝛾)2 + 𝑣2𝛾 sin2 𝛾𝜋
𝑑𝑣,

where we use the notation from the proof of Theorem 2.7.3. Denote, with a little
abuse of notation, Γ𝜗 := {𝑡𝑒𝑖𝜗 : 𝑡 > 0} (𝜗 ∈ (−𝜋, 𝜋]). Since, for every 𝑥 ∈ 𝐸,

𝑒𝑖𝜃𝛾
∫︁ ∞

0

𝑒−𝜆𝑒𝑖𝜃𝛾𝑡𝑊𝜃,𝛾(𝑡)𝑥 𝑑𝑡 =

∫︁
Γ𝜃𝛾

𝑒−𝜆𝑣𝑊𝜃,𝛾(𝑣𝑒
−𝑖𝜃𝛾)𝑥 𝑑𝑣 =

∫︁
Γ𝜃𝛾

𝑒−𝜆𝑣𝑊𝛾(𝑣)𝑥 𝑑𝑣

and

𝑒−𝑖𝜃𝛾

∫︁ ∞

0

𝑒−𝜆𝑒−𝑖𝜃𝛾𝑡𝑊−𝜃,𝛾(𝑡)𝑥 𝑑𝑡 =

∫︁
Γ−𝜃𝛾

𝑒−𝜆𝑣𝑊−𝜃,𝛾(𝑣𝑒
𝑖𝜃𝛾)𝑥 𝑑𝑣

=

∫︁
Γ−𝜃𝛾

𝑒−𝜆𝑣𝑊𝛾(𝑣)𝑥 𝑑𝑣

(cf. the construction of (𝑊𝛾(𝑧))𝑧∈Σ(𝜋/2)−𝜔𝛾
, and observe that |𝜃𝛾| ∈ (𝛿, 𝛾(𝜋 − 𝜔))),

the Cauchy formula yields that

(199) 𝑒𝑖𝜃𝛾
∫︁ ∞

0

𝑒−𝜆𝑒𝑖𝜃𝛾𝑡𝑊𝜃,𝛾(𝑡)𝑥 𝑑𝑡 = 𝑒−𝑖𝜃𝛾

∫︁ ∞

0

𝑒−𝜆𝑒−𝑖𝜃𝛾𝑡𝑊−𝜃,𝛾(𝑡)𝑥 𝑑𝑡, 𝜆 ∈ Σ𝜀.

This, in turn, implies that the function 𝜆 ↦→ 𝐹𝛾(𝜆)𝑥, 𝜆 ∈ Σ(𝜋/2)+𝛿 is well defined,
analytic and bounded by Const𝛿′ |𝜆|−1 on Σ(𝜋/2)+𝛿′ (𝑥 ∈ 𝐸). Further on, with the
help of [296, Theorem 3.4] (cf. also [27, Theorem 2.6.1] for the Banach space case)
and the uniqueness theorem for the Laplace transform we can prove that

𝑊𝛾(𝑧)𝑥 =
1

2𝜋𝑖

∫︁
Γ𝛿′,𝑧

𝑒𝜆𝑧𝐹𝛾(𝜆)𝑥 𝑑𝜆, 𝑥 ∈ 𝐸, 𝑧 ∈ Σ𝛿′ , 𝛾 ∈ (𝛾0, 1/2),

where Γ𝛿′,𝑧 := Γ𝛿′,𝑧,1 ∪ Γ𝛿′,𝑧,2, Γ𝛿′,𝑧,1 := {𝑟𝑒𝑖((𝜋/2)+𝛿′) : 𝑟 > |𝑧|−1} ∪ {|𝑧|−1𝑒𝑖𝜗 : 𝜗 ∈
[0, (𝜋/2)+𝛿′]} and Γ𝛿′,𝑧,2 := {𝑟𝑒−𝑖((𝜋/2)+𝛿′) : 𝑟 > |𝑧|−1}∪{|𝑧|−1𝑒𝑖𝜗 : 𝜗 ∈ [−(𝜋/2)−
𝛿′, 0]} are oriented counterclockwise. Applying the dominated convergence theorem,
we get that

lim
𝛾→ 1

2−
𝑊𝛾(𝑧)𝑥 =

𝑒𝑖𝜃/2

2𝜋2𝑖

∫︁
Γ𝛿′,𝑧,1

𝑒𝜆𝑧
∫︁ ∞

0

𝑣1/2(𝑣𝐵 + 𝑒𝑖𝜃𝐴)−1𝐶𝑥

𝜆2𝑒𝑖𝜃 + 𝑣
𝑑𝑣 𝑑𝜆(200)

+
𝑒−𝑖𝜃/2

2𝜋2𝑖

∫︁
Γ𝛿′,𝑧,2

𝑒𝜆𝑧
∫︁ ∞

0

𝑣1/2(𝑣𝐵 + 𝑒−𝑖𝜃𝐴)−1𝐶𝑥

𝜆2𝑒−𝑖𝜃 + 𝑣
𝑑𝑣 𝑑𝜆

:=𝑊1/2(𝑧)𝑥, 𝑥 ∈ 𝐸, 𝑧 ∈ Σ𝛿′ .

Define 𝐹1/2(𝜆) by replacing the number 𝛾 with the number 1/2 in definition of
𝑊𝛾(𝜆). Then, for every 𝑥 ∈ 𝐸, the function 𝜆 ↦→ 𝐹1/2(𝜆)𝑥, 𝜆 ∈ Σ(𝜋/2)+𝛿 is well de-
fined and analytic on Σ(𝜋/2)+𝛿 because 𝐹1/2(𝜆)𝑥 = lim𝛾→1/2− 𝐹𝛾(𝜆)𝑥, 𝜆 ∈ Σ(𝜋/2)+𝛿
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and the convergence is uniform on compacts of Σ(𝜋/2)+𝛿 (cf. [296, Lemma 3.3]).
Furthermore, we can argue as in the proof of estimate [292, (334)] so as to conclude
that for each 𝑞 ∈ ~ there exists 𝑟𝑞 ∈ ~ such that 𝑞(𝐹1/2(𝜆)𝑥) 6 𝑟𝑞(𝑥) Const𝛿′ |𝜆|−1,
𝜆 ∈ Σ(𝜋/2)+𝛿′ , 𝑥 ∈ 𝐸. Now it becomes apparent that we can define the operator
family (𝑊1/2(𝑧))𝑧∈Σ(𝜋−𝜔)/2

⊆ 𝐿(𝐸), equicontinuous on any proper subsector of
Σ(𝜋−𝜔)/2, satisfying additionally that lim𝛾→ 1

2−
𝑊𝛾(𝑧)𝑥 = 𝑊1/2(𝑧)𝑥, 𝑧 ∈ Σ(𝜋−𝜔)/2,

𝑥 ∈ 𝐸, and that the mapping 𝑧 ↦→𝑊1/2(𝑧)𝑥, 𝑧 ∈ Σ(𝜋−𝜔)/2 is analytic for all 𝑥 ∈ 𝐸.
Let us prove that for each 𝑥 ∈ 𝐷(𝐴) the function 𝑢(𝑧) :=𝑊1/2(𝑧)𝑥, 𝑧 ∈ Σ(𝜋−𝜔)/2 is
a solution of problem (𝑃2,𝑞,𝐵) with 𝑞 = −1. Suppose first that 𝑥 ∈ 𝐷(𝐴). Then the
condition (𝜆𝐵 − 𝐴)−1𝐶𝐴 ⊆ 𝐴(𝜆𝐵 − 𝐴)−1𝐶 (𝜆 ∈ 𝜌𝐶(𝐴,𝐵)) in combination with
the closedness of 𝐴 shows that 𝑊1/2(𝑧)𝐴𝑥 = 𝐴𝑊1/2(𝑧)𝑥, 𝑧 ∈ Σ(𝜋−𝜔)/2. By the
foregoing, we also have that the operator family (𝐵𝑊1/2(𝑧))𝑧∈Σ(𝜋−𝜔)/2

⊆ 𝐿(𝐸) is
equicontinuous and the mapping 𝑧 ↦→ 𝐵𝑊1/2(𝑧)𝑥, 𝑧 ∈ Σ(𝜋−𝜔)/2 is analytic (𝑥 ∈ 𝐸),
as well as that (𝑑2/𝑑𝑧2)𝐵𝑊1/2(𝑧)𝑥 = 𝐵(𝑑2/𝑑𝑧2)𝑊1/2(𝑧)𝑥, 𝑧 ∈ Σ(𝜋−𝜔)/2, 𝑥 ∈ 𝐸

and 𝐵𝑊1/2(𝑧) ∈ 𝐿(𝐸), (𝑑2/𝑑𝑧2)𝐵𝑊1/2(𝑧) ∈ 𝐿(𝐸), 𝐵(𝑑2/𝑑𝑧2)𝑊1/2(𝑧) ∈ 𝐿(𝐸) for
𝑧 ∈ Σ(𝜋−𝜔)/2. Furthermore, the dominated convergence theorem yields that

lim
𝛾→1/2−

𝐵𝑊 (𝑛)
𝛾 (𝑧) = 𝐵𝑊

(𝑛)
1/2(𝑧)𝑥, 𝑧 ∈ Σ(𝜋−𝜔)/2, 𝑥 ∈ 𝐸, 𝑛 ∈ N0.

By Theorem 2.7.3(vi.2) and definition of modified Liouville right-sided fractional
derivatives, we get that

(201)
𝑑2

𝑑𝑠2

∫︁ ∞

0

𝑔3− 1
𝛾
(𝑡)𝐵𝑊 ′

𝛾(𝑡+ 𝑠)𝑥 𝑑𝑡 = −𝑊𝛾(𝑠)𝐴𝑥, 𝑠 > 0, 𝛾 ∈ (𝛾0, 1/2),

i.e., ∫︁ ∞

0

𝑔3− 1
𝛾
(𝑡)𝐵𝑊 ′′′

𝛾 (𝑡+ 𝑠)𝑥 𝑑𝑡 = −𝑊𝛾(𝑠)𝐴𝑥, 𝑠 > 0, 𝛾 ∈ (𝛾0, 1/2).

The integration by parts leads us to the following

−
∫︁ ∞

0

𝑔4− 1
𝛾
(𝑡)𝐵𝑊 (𝑖𝑣)

𝛾 (𝑡+ 𝑠)𝑥 𝑑𝑡 = −𝑊𝛾(𝑠)𝐴𝑥, 𝑠 > 0, 𝛾 ∈ (𝛾0, 1/2).

Using again the dominated convergence theorem, we obtain by letting 𝛾 → 1/2−
that ∫︁ ∞

0

𝑡𝐵𝑊
(𝑖𝑣)
1/2 (𝑡+ 𝑠)𝑥 𝑑𝑠 =𝑊1/2(𝑠)𝐴𝑥, 𝑠 > 0,

which clearly implies after an application of the partial integration that 𝐵𝑊 ′′
1/2(𝑠) =

𝐴𝑊1/2(𝑠)𝑥, 𝑠 > 0. By the uniqueness theorem for analytic functions, this equality
continues to hold for all 𝑧 ∈ Σ(𝜋−𝜔)/2. Further on, we can compute 𝐹𝛾(𝜆)𝑥 for
𝜆 > 0 (𝛾 ∈ (𝛾0, 1/2)) by plugging 𝜃 = 0 in either of two terms appearing in
(198). Taking the limit as 𝛾 → 1/2−, we get that 𝐹1/2(𝜆)𝑥 = 𝜋−1

∫︀∞
0
𝑣1/2(𝜆2 +

𝜈)−1(𝑣𝐵 + 𝐴)−1𝐶𝑥𝑑𝑣, 𝜆 > 0. Now we will prove that 𝐵𝑊1/2(𝑧)𝑥 − 𝐶𝑥 → 0
as 𝑧 → 0, 𝑧 ∈ Σ(𝜋/2)+𝛿′ . Due to Theorem 1.4.10(iii), it suffices to show that
lim𝜆→+∞ 𝜆𝐵𝐹1/2(𝜆)𝑥 = 𝐶𝑥. This follows by applying the dominated convergence
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theorem on the integral appearing on the right-hand side of the equality

𝜆𝐵𝐹1/2(𝜆)𝑥− 𝐶𝑥 =
1

𝜋

∫︁ ∞

0

𝑣1/2𝜆

𝜆2 + 𝑣

[︁
𝐵(𝑣𝐵 +𝐴)−1𝐶𝑥− 𝐶𝑥

𝑣

]︁
𝑑𝑣,

and by observing that

(202) 𝑞
(︁
𝐵(𝑣𝐵+𝐴)−1𝐶𝑥−𝐶𝑥

𝑣

)︁
=

1

𝑣
𝑞((𝑣𝐵+𝐴)−1𝐶𝐴𝑥) = 𝑂(𝑣−2), 𝑞 ∈ ~, 𝑣 > 1

and

(203) 𝑞
(︁
𝐵(𝑣𝐵 +𝐴)−1𝐶𝑥− 𝐶𝑥

𝑣

)︁
= 𝑂(𝑣−1), 𝑞 ∈ ~, 𝑣 ∈ (0, 1).

Keeping in mind the Cauchy integral formula, the proof of (ii) follows immediately
in the case that 𝑞 = −1 and 𝑥 ∈ 𝐷(𝐴). The proof of (ii) in the case that 𝑞 = −1

and 𝑥 ∈ 𝐷(𝐴) follows from the standard limit procedure. If (−3)/2 < 𝑞 < −1, then
for each 𝜀 > 0 the condition (H), with the operators 𝐴 and 𝐵 replaced respectively
by 𝐴+ 𝜀𝐵 and 𝐵, holds with 𝑞 = −1 and the same spectral angle 𝜔; in this case,
the proof of (ii) can be deduced by slightly modifying the corresponding part of the
proof of [292, Theorem 2.9.51(iii.2)]. The proof of (i) is very similar to that of (ii);
for the sake of completeness, we will include almost all relevant details. As in the
proof of (ii), it will be assumed that 0 < 𝛿′ < 𝛿 < (𝜋−𝜔)/2, 1/2 > 𝛾0 > 𝛿/(𝜋−𝜔),
𝜃 ∈ (𝜔 − 𝜋, (−𝛿)/𝛾0) and that 𝜀 ∈ (0, 𝜔/2) is sufficiently small. Due to the proof
of [292, Theorem 2.9.48] (cf. also the estimate (195)), we have that, for every
𝜃′ ∈ (𝜔 − 𝜋, 𝜋 − 𝜔) and 𝛾 ∈ (𝑞 + 1, 1/2), the mapping 𝑡 ↦→𝑊𝜃′,𝛾(𝑡)𝑥, 𝑡 > 0 (𝑥 ∈ 𝐸)
satisfies the condition (P1), as well as that

ℒ(𝑊𝜃′,𝛾(𝑡)𝑥)(𝜇) =
sin 𝛾𝜋

𝜋

∫︁ ∞

0

𝑣𝛾(𝑣𝐵 + 𝑒𝑖𝜃
′
𝐴)−1𝐶𝑥

(𝜇+ 𝑣𝛾 cos𝜋𝛾)2 + 𝑣2𝛾 sin2 𝛾𝜋
𝑑𝑣, 𝜇 ∈ C+, 𝑥 ∈ 𝐸,

and that for each 𝑞 ∈ ~ there exists 𝑟𝑞 ∈ ~ such that

𝑞(ℒ(𝑊𝜃′,𝛾(𝑡)𝑥)(𝜇)) = 𝑟𝑞(𝑥)𝑂
(︀
|𝜇|−1 + |𝜇|

𝑞+1
𝛾 −1

)︀
, 𝜇 ∈ Σ𝜋

2 −𝜀, 𝑥 ∈ 𝐸 (𝜀 ∈ (0, 𝜋/2)).

This implies that, for every 𝛾 ∈ (max(𝛾0, 𝑞 + 1), 1/2) and 𝑥 ∈ 𝐸, we can define
𝐹𝛾(𝜆)𝑥 through (198). If 𝑥 ∈ 𝐸 and arg(𝜆) ∈ (−𝜀, (𝜋/2) + 𝛿), resp., arg(𝜆) ∈
(−(𝜋/2) − 𝛿, 𝜀), then the equality (410), resp., (411), continues to hold for those
values of parameter 𝛾. Furthermore, (199) holds for any 𝜆 ∈ Σ𝜀; hence, the function
𝜆 ↦→ 𝐹𝛾(𝜆)𝑥, 𝜆 ∈ Σ(𝜋/2)+𝛿 is well defined, analytic and bounded by Const𝛿′(|𝜆|−1+

|𝜆|((𝑞+1)/𝛾)−1) on Σ(𝜋/2)+𝛿′ (𝑥 ∈ 𝐸, 𝛾 ∈ (max(𝛾0, 𝑞 + 1), 1/2)). If 𝑥 ∈ 𝐸, 𝑧 ∈ Σ𝛿′ ,
𝛾 ∈ (max(𝛾0, 𝑞 + 1), 1/2) and 𝜁 > 0, then we define

𝑊 (−𝜁)
𝛾 (𝑧)𝑥 :=

1

2𝜋𝑖

∫︁
Γ𝜔′
𝛿′,𝑧

𝑒𝜆𝑧𝜆−𝜁𝐹𝛾(𝜆)𝑥 𝑑𝜆,

where 𝜔′>0 is taken arbitrarily, Γ𝜔′

𝛿′,𝑧 := Γ𝜔′

𝛿′,𝑧,1∪Γ𝜔′

𝛿′,𝑧,2, Γ
𝜔′

𝛿′,𝑧,1 := {𝜔′+𝑟𝑒𝑖((𝜋/2)+𝛿′) :

𝑟 > |𝑧|−1}∪{𝜔′+|𝑧|−1𝑒𝑖𝜗 : 𝜗 ∈ [0, (𝜋/2)+𝛿′]} and Γ𝜔′

𝛿′,𝑧,2 := {𝜔′+𝑟𝑒−𝑖((𝜋/2)+𝛿′) : 𝑟 >
|𝑧|−1}∪{𝜔′+|𝑧|−1𝑒𝑖𝜗 : 𝜗 ∈ [−(𝜋/2)−𝛿′, 0]} are oriented counterclockwise. By The-
orem 1.4.10, we get that ℒ(𝑊 (−1)

𝛾 (𝑡)𝑥)(𝜆) = 𝜆−1𝐹𝛾(𝜆)𝑥, 𝜆 > 0, 𝑥 ∈ 𝐸; using this
fact, as well as the equality ℒ(𝑊𝛾(𝑡)𝑥)(𝜆) = 𝐹𝛾(𝜆)𝑥, 𝜆 > 0, 𝑥 ∈ 𝐸, the uniqueness
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theorem for Laplace transform and the uniqueness theorem for analytic functions,
we obtain that (𝑑/𝑑𝑧)𝑊

(−1)
𝛾 (𝑧)𝑥 = 𝑊𝛾(𝑧)𝑥, 𝑥 ∈ 𝐸, 𝑧 ∈ Σ𝛿′ (𝛾 ∈ (max(𝛾0, 𝑞 +

1), 1/2)). On the other hand, the dominated convergence theorem yields that
(𝑑/𝑑𝑧)𝑊

(−1)
𝛾 (𝑧)𝑥 = 𝑊

(0)
𝛾 (𝑧)𝑥, so that 𝑊 (0)

𝛾 (𝑧)𝑥 = 𝑊𝛾(𝑧)𝑥, 𝑥 ∈ 𝐸, 𝑧 ∈ Σ𝛿′ (𝛾 ∈
(max(𝛾0, 𝑞+1), 1/2)). Define 𝐹1/2(𝜆) (𝜆 ∈ Σ(𝜋/2)+𝛿) and (𝑊1/2(𝑧))𝑧∈Σ𝛿′ ⊆ 𝐿(𝐸) in
exactly the same vein as in the proof of (ii). As before, we have that, for every 𝑥 ∈ 𝐸,
the function 𝜆 ↦→ 𝐹1/2(𝜆)𝑥, 𝜆 ∈ Σ(𝜋/2)+𝛿 is well defined and analytic on Σ(𝜋/2)+𝛿 be-
cause 𝐹1/2(𝜆)𝑥 = lim𝛾→1/2− 𝐹𝛾(𝜆)𝑥, 𝜆 ∈ Σ(𝜋/2)+𝛿 and the convergence is uniform
on compacts of Σ(𝜋/2)+𝛿; furthermore, for each 𝑞 ∈ ~ there exists 𝑟𝑞 ∈ ~ such that
𝑞(𝐹1/2(𝜆)𝑥) 6 𝑟𝑞(𝑥) Const𝛿′(|𝜆|−1 + |𝜆|2𝑞+1), 𝜆 ∈ Σ(𝜋/2)+𝛿′ , 𝑥 ∈ 𝐸. Then the limit
equality (200) continues to hold (with the replacements of contours Γ𝛿′,𝑧,1, Γ𝛿′,𝑧,2

with Γ𝜔′

𝛿′,𝑧,1, Γ
𝜔′

𝛿′,𝑧,2, respectively), the operator families (𝑊1/2(𝑧))𝑧∈Σ(𝜋−𝜔)/2
⊆ 𝐿(𝐸)

and (𝐵𝑊1/2(𝑧))𝑧∈Σ(𝜋−𝜔)/2
⊆ 𝐿(𝐸) can be defined in the very obvious way, and we

have that lim𝛾→1/2−𝐵𝑊
(𝑛)
𝛾 (𝑧)𝑥 = 𝐵𝑊

(𝑛)
1/2(𝑧)𝑥 for all 𝑥 ∈ 𝐸, 𝑧 ∈ Σ(𝜋−𝜔)/2 and

𝑛 ∈ N0. Arguing as in the proof of [292, Theorem 2.9.51(iii.1)], we can show that,
for every 𝑗 ∈ N0, the families {|𝑧|𝑗(1 + |𝑧|−(2𝑞+2))−1𝑊

(𝑗)
1/2(𝑧) : 𝑧 ∈ Σ𝛿′} ⊆ 𝐿(𝐸)

and {|𝑧|𝑗(1 + |𝑧|−(2𝑞+2))−1(𝐵𝑊1/2)
(𝑗)(𝑧) : 𝑧 ∈ Σ𝛿′} ⊆ 𝐿(𝐸) are equicontinuous.

Suppose now that 𝑥 ∈ 𝐷(𝐴). Then 𝐴𝑊1/2(𝑧)𝑥 =𝑊1/2(𝑧)𝐴𝑥, 𝑧 ∈ Σ(𝜋−𝜔)/2 and for
each 𝑞 ∈ ~ there exist 𝑐𝑞,𝛿′ > 0 and 𝑟𝑞 ∈ ~ such that (cf. (202)–(203) with 𝜃 = 0):

(204) 𝑞

(︂
𝑒𝑖𝜃/2

𝜋

∫︁ ∞

0

𝑣1/2𝐵(𝑣𝐵 + 𝑒𝑖𝜃𝐴)−1𝐶𝑥

𝜆2𝑒𝑖𝜃 + 𝑣
𝑑𝑣 − 𝐶𝑥

𝜆

)︂
6 𝑐𝑞,𝛿′ [𝑟𝑞(𝑥) + 𝑟𝑞(𝐴𝑥)]

[︂ ∫︁ 1

0

𝑣1/2

|𝜆|2 + 𝑣

(︁1
𝑣
+ 𝑣𝑞

)︁
𝑑𝑣 +

∫︁ ∞

1

𝑣1/2

|𝜆|2 + 𝑣

1

𝑣

(︁1
𝑣
+ 𝑣𝑞

)︁
𝑑𝑣

]︂
6 𝑐𝑞,𝛿′ [𝑟𝑞(𝑥) + 𝑟𝑞(𝐴𝑥)]|𝜆|−1, arg(𝜆) ∈ (−𝜀, (𝜋/2) + 𝛿′).

If arg(𝜆) ∈ (−((𝜋/2) + 𝛿′),−𝜀), then we can estimate the term

𝑞

(︂
𝑒−𝑖𝜃/2

𝜋

∫︁ ∞

0

𝑣1/2𝐵(𝑣𝐵 + 𝑒−𝑖𝜃𝐴)−1𝐶𝑥

𝜆2𝑒−𝑖𝜃 + 𝑣
𝑑𝑣 − 𝐶𝑥

𝜆

)︂
in the same way as above, from which we may conclude that 𝑞(𝐵𝐹1/2(𝜆)𝐴𝑥) =

(𝑟𝑞(𝑥) + 𝑟𝑞(𝐴𝑥))𝑂(|𝜆|−1), 𝜆 ∈ Σ(𝜋/2)+𝛿′ . A similar line of reasoning as performed
in the case that 𝑞 = −1 and 𝑥 ∈ 𝐷(𝐴) enables us to deduce that

(205) 𝜆

[︂
𝑒𝑖𝜃/2

𝜋

∫︁ ∞

0

𝑣1/2𝐵(𝑣𝐵 + 𝑒𝑖𝜃𝐴)−1𝐶𝑥

𝜆2𝑒𝑖𝜃 + 𝑣
𝑑𝑣 − 𝐶𝑥

𝜆

]︂
→ 0, 𝜆→ +∞.

Applying [296, Theorem 3.4] and (205), we get that ℒ(𝐵𝑊1/2(𝑡)𝑥)(𝜆) = 𝐵𝐹1/2(𝜆)𝑥,
𝜆 > 0 and lim𝑧→0,𝑧∈Σ𝛿′ 𝐵𝑊1/2(𝑧)𝑥 = 𝐶𝑥. In the final part of proof of Theorem
2.7.3, we have proved that 𝐵 𝑑𝑗

𝑑𝑧𝑗𝑊𝛾(𝑧)𝑥 = 𝑑𝑗

𝑑𝑧𝑗𝐵𝑊𝛾(𝑧)𝑥 (𝑧 ∈ Σ𝜋
2 −𝛾𝜋, 𝑗 ∈ N).

As a consequence of this equality and the Cauchy integral formula, we have that
𝑞(𝐵 𝑑𝑗

𝑑𝑡𝑗𝑊𝛾(𝑡)𝑥) = 𝑂(𝑡−𝑗), 𝑡 > 0. On the other hand, the proof of [292, Theo-
rem 2.9.48] shows that the equation (201) continues to hold, which simply implies



2.7. ABSTRACT INCOMPLETE DEGENERATE DIFFERENTIAL EQUATIONS 207

that 𝐵𝑊 ′′
1/2(𝑧)𝑥 = 𝐴𝑊1/2(𝑧)𝑥, 𝑧 ∈ Σ(𝜋−𝜔)/2. The proof of theorem is thereby

completed. �

The main problem in application of Theorem 2.7.3–Theorem 2.7.5 to incomplete
abstract degenerate differential equations lies in the fact that, in many concrete
situations, any of conditions (𝜆𝐵−𝐴)−1𝐶𝐴 ⊆ 𝐴(𝜆𝐵−𝐴)−1𝐶 (𝜆 ∈ 𝜌𝐶(𝐴,𝐵)) and
(𝜆𝐵 − 𝐴)−1𝐶𝐵 ⊆ 𝐵(𝜆𝐵 − 𝐴)−1𝐶 (𝜆 ∈ 𝜌𝐶(𝐴,𝐵)) is not satisfied. Suppose, for
example, that ∅ ≠ Ω ⊆ R𝑛 is an open bounded set with 𝐶∞-boundary, 𝐸 := 𝐿2(Ω),
𝐴 := Δ with the Dirichlet boundary conditions, 𝑎(𝑥) ∈ 𝐿∞(Ω), 𝑎(𝑥) 6 0 on Ω̄,
𝑎(𝑥) < 0 almost everywhere in Ω, and 𝐵𝑓(𝑥) := 𝑎(𝑥)−1𝑓(𝑥) with maximal domain
(cf. [199, Example 3.8, pp. 81-83]). Then 𝐵−1 ∈ 𝐿(𝐸) and the operator 𝐴𝐵−1 is
closed. Suppose, in addition, that 𝑎−1 ∈ 𝐿𝑟(Ω) for some 𝑟 > 2 (resp., 𝑟 > 2, 𝑟 > 𝑛),
if 𝑛 = 1 (resp., 𝑛 = 2, 𝑛 > 3). Then it has been proved in the above-mentioned
example that the condition [292, (HQ), p. 207] holds with the number 𝜔 = 0,
𝐶 = 𝐼, 𝑚 = −1+(𝑛/2𝑟) ∈ (−1, (−1/2)), and with the operator 𝐴 replaced by 𝐴𝐵−1

therein. This implies by [292, Theorem 2.9.51(i.3)] that the operator −(𝐴𝐵−1)1/2 is
the integral generator of an exponentially bounded, analytic (𝑛/𝑟)-times integrated
semigroup of angle 𝜋/2 on 𝐸, and that the abstract incomplete Cauchy problem
[292, (𝑃2,𝑚)], which corresponds to the equation 𝑢𝑡𝑡(𝑡, 𝑥) = Δ{𝑎(𝑥)𝑢(𝑡, 𝑥)}, 𝑡 > 0,
has a unique solution that is analytically extensible to the right half plane. It is
clear that Theorem 2.7.5 cannot be applied here directly, by regarding the problem
𝑢𝑡𝑡(𝑡, 𝑥) = Δ{𝑎(𝑥)𝑢(𝑡, 𝑥)}, 𝑡 > 0 as a problem of the form (𝑃2,𝑞,𝐵) dealt with above.

Example 2.7.6. Assume that 𝑛 ∈ N and 𝑖𝐴𝑗 , 1 6 𝑗 6 𝑛 are commuting
generators of bounded 𝐶0-groups on a Banach space 𝐸; set A := (𝐴1, . . . , 𝐴𝑛). As-
sume, further, that 0 < 𝛿 < 2, 𝑃1(𝑥) and 𝑃2(𝑥) are non-zero complex polynomials,
𝑁1 = 𝑑𝑔(𝑃1(𝑥)), 𝑁2 = 𝑑𝑔(𝑃2(𝑥)), 𝛽 > 𝑛

2
(𝑁1+𝑁2)
min(1,𝛿) (resp. 𝛽 > 𝑛| 1𝑝 − 1

2 |
(𝑁1+𝑁2)
min(1,𝛿) , if

𝐸 = 𝐿𝑝(R𝑛) for some 1 < 𝑝 <∞), 𝑃2(𝑥) ̸= 0, 𝑥 ∈ R𝑛 and

(206) sup
𝑥∈R𝑛

Re
(︁(︁𝑃1(𝑥)

𝑃2(𝑥)

)︁1/𝛿)︁
6 0.

Define

𝑅𝛿(𝑡) :=
(︁
𝐸𝛿

(︁
𝑡𝛿
𝑃1(𝑥)

𝑃2(𝑥)

)︁
(1 + |𝑥|2)−𝛽/2

)︁
(A), 𝑡 > 0, 𝐺𝛿(𝑡) := 𝑃2(A)

−1
𝑅𝛿(𝑡), 𝑡 > 0,

𝐴′ := 𝑃1(A), 𝐵′ := 𝑃2(A) and 𝐶 := 𝑅𝛿(0). Then we know that (𝐺𝛿(𝑡))𝑡>0 is
an exponentially equicontinuous (𝑔𝛿, 𝐶)-regularized resolvent family generated by
𝐴′, 𝐵′, as well as that ‖𝑅𝛿(𝑡)‖ + ‖𝐺𝛿(𝑡)‖ = 𝑂(1 + 𝑡max(1,𝛿)𝑛/2), 𝑡 > 0 (‖𝑅𝛿(𝑡)‖ +
‖𝐺𝛿(𝑡)‖ = 𝑂(1 + 𝑡max(1,𝛿)𝑛| 1𝑝−

1
2 |), 𝑡 > 0, if 𝐸 = 𝐿𝑝(R𝑛) for some 1 < 𝑝 <∞),

𝜆𝛿−1(𝜆𝛿𝐵′ −𝐴′)−1𝐶𝑥 =

∫︁ ∞

0

𝑒−𝜆𝑡𝐺𝛿(𝑡)𝑥 𝑑𝑡, Re𝜆 > 0, 𝑥 ∈ 𝐸,

and

𝜆𝛿−1𝐵′(𝜆𝛿𝐵′−𝐴′)−1𝐶𝑥 =

∫︁ ∞

0

𝑒−𝜆𝑡𝐵′𝐺𝛿(𝑡)𝑥 𝑑𝑡 =

∫︁ ∞

0

𝑒−𝜆𝑡𝑅𝛿(𝑡)𝑥 𝑑𝑡, Re𝜆 > 0, 𝑥 ∈ 𝐸.
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This implies

‖(𝜆𝐵′ −𝐴′)−1𝐶‖+ ‖𝐵′(𝜆𝐵′ −𝐴′)−1𝐶‖ = 𝑂
(︀
|𝜆|−1 + |𝜆|−1−max(1,𝛿)𝑛

2𝛿

)︀
, 𝜆 ∈ Σ𝛿𝜋/2,

in the case of a general space 𝐸, and

‖(𝜆𝐵′−𝐴′)−1𝐶‖+‖𝐵′(𝜆𝐵′−𝐴′)−1𝐶‖ = 𝑂
(︀
|𝜆|−1+|𝜆|−1−

max(1,𝛿)𝑛| 1
𝑝
− 1

2
|

𝛿

)︀
, 𝜆 ∈ Σ𝛿𝜋/2,

in the case that 𝐸 = 𝐿𝑝(R𝑛) for some 1 < 𝑝 < ∞. Setting 𝐴 := −𝐴′ and
𝐵 := 𝐵′, we have that the condition (H) holds wih 𝜔 = 𝜋 − (𝛿𝜋/2) as well as that
𝐶−1𝐴𝐶 = 𝐴, 𝐶−1𝐵𝐶 = 𝐵, (𝜆𝐵−𝐴)−1𝐶𝐴 ⊆ 𝐴(𝜆𝐵−𝐴)−1𝐶 and (𝜆𝐵−𝐴)−1𝐶𝐵 ⊆
𝐵(𝜆𝐵 − 𝐴)−1𝐶 (𝜆 ∈ 𝜌𝐶(𝐴,𝐵)), which implies that Theorem 2.7.3(vi.2), resp.,
Theorem 2.5.4(ii) is susceptible to applications in the case that 𝐸 = 𝐿𝑝(R𝑛) for
some 1 < 𝑝 <∞ satisfying

max(1, 𝛿)𝑛
⃒⃒
1
𝑝 − 1

2

⃒⃒
𝛿

< 𝛾 < 1/2, resp.,
max(1, 𝛿)𝑛

⃒⃒
1
𝑝 − 1

2

⃒⃒
𝛿

< 1/2.

Before proceeding further, we would like to mention in passing that the operator 𝐵
is injective and that the operator 𝐵−1𝐴 is closable because 𝜌𝐶′(𝐵−1𝐴) ̸= ∅ (𝐶 ′ :=
𝐶(𝐵 + 𝐴)−1𝐶), which follows from the equality (𝜆 + 𝐵−1𝐴)−1𝐶(𝐵 + 𝐴)−1𝐶𝑥 =
𝐵(𝜆𝐵+𝐴)−1𝐶(𝐵+𝐴)−1𝐶𝑥, 𝜆 > 0, 𝑥 ∈ 𝐸 (cf. (196)). It is also worth noting that
the operator 𝐴𝐵−1 is closable because 𝜌𝐶(𝐴𝐵−1) ̸= ∅; this is a consequence of the
equality (𝜆 + 𝐴𝐵−1)−1𝐶𝑥 = 𝐵(𝜆𝐵 + 𝐴)−1𝐶𝑥, 𝜆 > 0, 𝑥 ∈ 𝐸. Now we will prove
the uniqueness of solution of problem (𝑃2,𝑞,𝐵) in our particular case; recall that

𝐸 = 𝐿𝑝(R𝑛) for some 1 < 𝑝 < ∞ satisfying 𝜁 :=
max(1,𝛿)𝑛| 1𝑝−

1
2 |

𝛿 < 1/2. Denote by
ℳ𝐶,𝑞,𝜔 the class which consists of all closed linear operators 𝐷 acting on 𝐸 such
that Cr Σ𝜔 ⊆ 𝜌𝐶(𝐷), 𝐷𝐶 ⊆ 𝐶𝐷 and the family{︀

(|𝜆|−1 + |𝜆|𝑞)−1(𝜆−𝐷)−1𝐶 : 𝜆 /∈ Σ𝜔′
}︀

is equicontinuous for every 𝜔 < 𝜔′ < 𝜋; here 𝑞 ∈ R and 𝜔 ∈ [0, 𝜋). Then we have
𝜁 ∈ [0, 1/2) and our previous examinations show that 𝐴𝐵−1 ∈ ℳ𝐶,−1−𝜁,𝜋−(𝛿𝜋/2).
If 𝑧 ↦→ 𝑢(𝑧), 𝑧 ∈ Σ(𝜋−𝜔)/2 is a solution of problem (𝑃2,𝑞,𝐵) with 𝑥 = 0, then
𝑣(𝑧) := 𝐵𝑢(𝑧), 𝑧 ∈ Σ(𝜋−𝜔)/2 is a solution of problem

(𝑃2,𝑞) :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑣 ∈ 𝒜(Σ(𝜋/2)−(𝜔/2) : 𝐸),
𝑑2

𝑑𝑧2 𝑣(𝑧) = 𝐴𝐵−1𝑣(𝑧), 𝑧 ∈ Σ(𝜋/2)−(𝜔/2),

lim𝑧→0,𝑧∈Σ𝛿
𝑣(𝑧) = 0, for every 𝛿 ∈ (0, (𝜋/2)− (𝜔/2)),

the set {(1 + |𝑧|−(2𝑞+2))−1𝑣(𝑧) : 𝑧 ∈ Σ𝛿} is bounded in 𝐸
for every 𝛿 ∈ (0, (𝜋/2)− (𝜔/2)).

An application of [292, Theorem 2.9.51(iii.2)] yields 𝑣(𝑧) = 0, 𝑧 ∈ Σ(𝜋−𝜔)/2, so
that 𝑢(𝑧) = 0, 𝑧 ∈ Σ(𝜋−𝜔)/2 by the injectiveness of 𝐵. In the remainder of this
example, we will provide certain applications of Theorem 2.5.3. It will be assumed
that 0 < 𝑐 < 𝑏 < 1, 0 < 𝜁 6 1, 1/(2 − 𝜁) > 𝑐/𝜁, 𝜎 > 0 and 𝜍 > 0; we define the
operators 𝐴 and 𝐵 in the same way as above but, instead of estimate (206), we
assume that

(207) dist
(︀
{−𝑃1(𝑥)𝑃2(𝑥)

−1 : 𝑥 ∈ R𝑛},Π𝜁
𝑐,𝜎,𝜍

)︀
> 0.
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Then there exist sufficiently large numbers 𝛽′ > 0 and 𝜈 > 0 (the proofs of [292,
Theorem 2.5.2] and Theorem 2.2.20 can give more detailed and accurate information
about 𝛽′ and 𝜈; we leave the reader to make this precise) such that(︁ 1

𝜆𝜁𝑃2(𝑥) + 𝑃1(𝑥)
(1 + |𝑥|2)−𝛽′/2

)︁
(A) = (𝜆𝜁𝐵 +𝐴)−1𝐶, 𝜆 ∈ Π𝑐,𝜎,𝜍 ,(︁ 𝑃2(𝑥)

𝜆𝜁𝑃2(𝑥) + 𝑃1(𝑥)
(1 + |𝑥|2)−𝛽′/2

)︁
(A) = 𝐵(𝜆𝜁𝐵 +𝐴)−1𝐶, 𝜆 ∈ Π𝑐,𝜎,𝜍 ,

and the operator families {(1+ |𝜆|)−𝜈(𝜆𝜁𝐵+𝐴)−1𝐶 : 𝜆 ∈ Π𝑐,𝜎,𝜍} ⊆ 𝐿(𝐸) and {(1+
|𝜆|)−𝜈𝐵(𝜆𝜁𝐵 + 𝐴)−1𝐶 : 𝜆 ∈ Π𝑐,𝜎,𝜍} ⊆ 𝐿(𝐸) are both equicontinuous and strongly
continuous (𝐶 := ((1 + |𝑥|2)−𝛽′/2)(A)), so that Theorem 2.5.3 can be applied.
Although the equation (185) of Remark 2.5.5 holds in our concrete situation, it is
our duty to say that Theorem 2.5.3–Remark 2.5.5 certainly have some disadvantages
in the degenerate case because it is very difficult to say whether an element 𝑥 ∈
𝐸 belongs to the space 𝐸⟨𝑝𝑝𝜁/𝑏⟩(𝐵−1𝐴) or not, with the exception of some very
special cases. Suppose now that the operators 𝐴𝑘 and 𝐵𝑘 are defined by 𝐴𝑘 :=
−𝑃1,𝑘(A), 𝐵𝑘 := 𝑃2,𝑘(A), and that the estimate (207) holds with the polynomials
𝑃1(𝑥) and 𝑃2(𝑥) replaced respectively with the polynomials 𝑃1,𝑘(𝑥) and 𝑃2,𝑘(𝑥).
Then Theorem 2.5.3 can be applied to a large class of multi-term (non-)degenerate
differential equations of the form (168), whose 𝑃𝜆 looks like

𝑃𝜆 = (𝜆𝜁𝐵1 +𝐴1)(𝜆
𝜁𝐵2 +𝐴2) . . . (𝜆

𝜁𝐵𝑘 +𝐴𝑘).

The choice of regularizing operator 𝐶 is essentially the same as above but we must
eventually increase the value of 𝛽′.

The analysis contained in Example 2.7.6 shows that there exists at most one
solution of problem (𝑃2,𝑞,𝐵) stated in Theorem 2.5.4(i), resp., Theorem 2.5.4(ii),
provided that the operator 𝐵 is injective, the operator 𝐴𝐵−1 is closable and
𝐴𝐵−1 ∈ ℳ𝐶,𝑞,𝜔 for some 𝑞 ∈ (−1, (−1)/2), resp., 𝑞 ∈ ((−3/2),−1], and 𝜔 ∈ [0, 𝜋).
It is not clear, however, in which other cases the uniqueness of solutions of problem
(𝑃2,𝑞,𝐵) can be proved (𝐵 ̸= 𝐼).

2.8. Abstract degenerate fractional differential equations in locally
convex spaces with a 𝜎-regular pair of operators

The results presented in this section are obtained jointly with V. E. Fedorov
[214]. Suppose that 𝑋 is an SCLCS and 𝐴 is a closed linear operator acting on
𝑋. Let us recall that the regular resolvent set of 𝐴, 𝜌𝑟(𝐴) shortly, is defined as
the union of those complex numbers 𝜆 ∈ 𝜌(𝐴) for which (𝜆−𝐴)−1 ∈ 𝑅(𝑋), where
𝑅(𝑋) denotes the set of all regular bounded linear operators 𝐷 ∈ 𝐿(𝑋).

If 𝐷 ∈ 𝑅(𝑋), 𝛼 > 0, 𝑚 = ⌈𝛼⌉, 𝑓 ∈ 𝐶𝑚([0, 𝜏) : 𝑋) and 𝑥𝑘 ∈ 𝑋 (0 6 𝑘 6 𝑚−1),
then we have proved in [214, Theorem 1] that the unique solution of the non-
degenerate differential equation

D𝛼
𝑡 𝑢(𝑡) = 𝐷𝑢(𝑡) + 𝑓(𝑡), 𝑡 ∈ [0, 𝜏); 𝑢(𝑘)(0) = 𝑥𝑘 (0 6 𝑘 6 𝑚− 1)
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is given by

(208) 𝑢(𝑡) =
𝑚−1∑︁
𝑘=0

𝑡𝑘𝐸𝛼,𝑘+1(𝑡
𝛼𝐷)𝑥𝑘 +

∫︁ 𝑡

0

(𝑡− 𝑠)𝛼−1𝐸𝛼,𝛼(𝐷(𝑡− 𝑠)𝛼)𝑓(𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝜏),

where the operator 𝐸𝛼,𝜈(𝑡
𝛼𝐷) is defined in the very obvious way (0 < 𝜏 6 ∞,

𝜈 ∈ R).
In the remainder of this section, we assume that 𝑌 is an SCLCS as well as that

𝐴 and 𝐵 are two closed linear operators acting between the spaces 𝑋 and 𝑌 . Set,
as before, 𝑅𝐵

𝜆 (𝐴) := (𝜆𝐵 −𝐴)−1𝐵 and 𝐿𝐵
𝜆 (𝐴) := 𝐵(𝜆𝐵 −𝐴)−1. Then the regular

𝐵-resolvent set of the operator 𝐴, 𝜌𝐵𝑟 (𝐴) for short, is defined to be

𝜌𝐵𝑟 (𝐴) :=
{︀
𝜆 ∈ C : (𝜆𝐵 −𝐴)−1 ∈ 𝐿(𝑌,𝑋), 𝑅𝐵

𝜆 (𝐴) ∈ 𝐿(𝑋), 𝐿𝐵
𝜆 (𝐴) ∈ 𝐿(𝑌 )

}︀
.

The following proposition holds true:

Proposition 2.8.1. Suppose that 𝐷(𝐴) ∩ 𝐷(𝐵) is sequentially dense in 𝑋.
Then we have:

(i) 𝜌𝐵𝑟 (𝐴) is an open subset of C.
(ii) If 𝜌𝐵𝑟 (𝐴) ̸= ∅, then the mappings 𝜆 ↦→ (𝜆𝐵 − 𝐴)−1, 𝜆 ∈ 𝜌𝐵𝑟 (𝐴), 𝜆 ↦→

𝐿𝐵
𝜆 (𝐴), 𝜆 ∈ 𝜌𝐵𝑟 (𝐴) and 𝜆 ↦→ 𝐿𝐵

𝜆 (𝐴), 𝜆 ∈ 𝜌𝐵𝑟 (𝐴) are strongly analytic.
(iii) If 𝜌𝐵𝑟 (𝐴) ̸= ∅, then the constants of regularity of operators 𝐿𝐵

𝜆 (𝐴) and
𝑅𝐵

𝜆 (𝐴) are continuously dependent of parameter 𝜆 ∈ 𝜌𝐵𝑟 (𝐴).

It is said that the operator 𝐴 is (𝐵, 𝜎)-regular iff there exists a finite number
𝑎 > 0 such that, for every 𝜆 ∈ C with |𝜆| > 𝑎, we have 𝜆 ∈ 𝜌𝐵𝑟 (𝐴). If so, then we
also say that a pair of operators (𝐴,𝐵) is 𝜎-regular.

Suppose that the pair of operators (𝐴,𝐵) is 𝜎-regular and 𝑅 > 𝑎. Denote by
𝛾 the positively oriented contour 𝛾 = {𝜆 ∈ C : |𝜆| = 𝑅}. Set

𝑃𝑥 :=
1

2𝜋𝑖

∫︁
𝛾

𝑅𝐵
𝜆 (𝐴)𝑥 𝑑𝜆 and 𝑄𝑦 :=

1

2𝜋𝑖

∫︁
𝛾

𝐿𝐵
𝜆 (𝐴)𝑦 𝑑𝜆 (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ).

Then it is very simple to prove that 𝑃 ∈ 𝐿(𝑋) and𝑄 ∈ 𝐿(𝑌 ) are projections. Define
𝑋0 := 𝑁(𝑃 ), 𝑌0 := 𝑁(𝑄), 𝑋1 := 𝑅(𝑃 ) and 𝑌1 := 𝑅(𝑄). Clearly, 𝑋 = 𝑋0⊕𝑋1 and
𝑌 = 𝑌0 ⊕ 𝑌1. By 𝐴𝑘 (𝐵𝑘) we denote the restriction of operator 𝐴 (𝐵) to the space
𝑋𝑘, 𝑘 = 0, 1. By 𝜌𝐵𝑟,𝑘(𝐴) we denote the regular 𝐵𝑘-resolvent set of the operator
𝐴𝑘, 𝑘 = 0, 1.

We have the following:

Proposition 2.8.2. [214] Suppose that the pair of operators (𝐴,𝐵) is 𝜎-
regular. Then the following holds:

(i) For every 𝑥 ∈ 𝑋, we have 𝑃𝑥 ∈ 𝐷(𝐴).
(ii) 𝐵𝑘 ∈ 𝐿(𝑋𝑘, 𝑌𝑘), 𝑘 = 0, 1.
(iii) 𝐴0 is a closed linear operator acting between the spaces 𝑋0 and 𝑌0; 𝐴1 ∈

𝐿(𝑋1, 𝑌1).
(iv) There exists operator 𝐵−1

1 ∈ 𝐿(𝑌1, 𝑋1).
(v) 𝜌𝐵𝑟,0(𝐴) = C and, in particular, there exists operator 𝐴−1

0 ∈ 𝐿(𝑌0, 𝑋0).
(vi) The operators 𝑆1 := 𝐵−1

1 𝐴1 and 𝑇1 := 𝐴1𝐵
−1
1 are regular.
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Set 𝐻 := 𝐴−1
0 𝐵0. If there exists 𝑝 ∈ N0 such that 𝐻𝑝 ̸= O and 𝐻𝑝+1 = O,

then we say that the operator 𝐴 is (𝐵, 𝑝)-regular or, equivalently, that the pair of
operators (𝐴,𝐵) is 𝑝-regular (the symbol O denotes the null operator in 𝑋0). It
is well known (see e.g. [509, p. 92]) that the existence or non-existence of number
𝑝 ∈ N0 with the above property characterizes the behaviour of relative resolvent
(𝜆𝐵−𝐴)−1 at the point ∞. Assume that 𝐵𝑥0 = 0 for some 𝑥0 ∈ 𝑋r{0} (then we
simply say that 𝑥 is an eigenvector of 𝐵). An ordered set of vectors {𝑥0, 𝑥1, . . . } is
called a chain of 𝐴-adjoint vectors of 𝑥0 iff 𝑥𝑘 /∈ 𝑁(𝐵) for 𝑘 ∈ N, and

𝐵𝑥𝑘+1 = 𝐴𝑥𝑘, 𝑘 = 0, 1, . . . .

Call the index of a vector in the chain (starting from 0) its height, and the eigen-
vectors the 𝐴-adjoint vectors of height 0. It is well known that a vector 𝑥 ̸= 0
is an 𝐴-adjoint vector of height at most 𝑙 of 𝐵 iff (𝑅𝐵

𝜆 (𝐴))
𝑙+1𝑥 = 0 for some

(all) 𝜆 ∈ 𝜌𝐵𝑟 (𝐴). Furthermore, the operator 𝐴 is (𝐵, 0)-regular iff 𝑁(𝐵) = 𝑋0; if
this is the case, then 𝑅(𝐵) = 𝑌1 and, for every 𝑥0 ∈ 𝑁(𝐵) r {0}, we have that
𝑥0 /∈ 𝐷(𝐴) or 𝐴𝑥0 /∈ 𝑅(𝐵). The (𝐵, 𝑝)-regularity of operator 𝐴 has been profiled
in [214, Theorem 3(i)].

Suppose that the pair of operators (𝐴,𝐵) is 𝜎-regular, 𝛼 > 0 and 𝛽 > 0. Set

𝑈𝛼,𝛽(𝑡)𝑥 :=
1

2𝜋𝑖

∫︁
𝛾

𝐸𝛼,𝛽(𝜆𝑡
𝛼)𝑅𝐵

𝜆 (𝐴)𝑥 𝑑𝜆, 𝑥 ∈ 𝑋,

and
𝑉𝛼,𝛽(𝑡)𝑦 :=

1

2𝜋𝑖

∫︁
𝛾

𝐸𝛼,𝛽(𝜆𝑡
𝛼)𝑅𝐵

𝜆 (𝐴)𝑦 𝑑𝜆, 𝑦 ∈ 𝑌.

Then the following theorem holds:

Theorem 2.8.3. (i) (𝑈𝛼,𝛽(𝑡))𝑡>0 ⊆ 𝐿(𝑋) and (𝑉𝛼,𝛽(𝑡))𝑡>0 ⊆ 𝐿(𝑌 ) are
strongly continuous.

(ii) 𝑈𝛼,𝛽(𝑡)𝑃 = 𝑃𝑈𝛼,𝛽(𝑡) = 𝑈𝛼,𝛽(𝑡) and 𝑉𝛼,𝛽(𝑡)𝑄 = 𝑄𝑉𝛼,𝛽(𝑡) = 𝑉𝛼,𝛽(𝑡) for
all 𝑡 > 0.

(iii) 𝑋0 ⊆ 𝑁(𝑈𝛼,𝛽(𝑡)), 𝑅(𝑈𝛼,𝛽(𝑡)) ⊆ 𝑋1, 𝑌0 ⊆ 𝑁(𝑉𝛼,𝛽(𝑡)) and 𝑅(𝑉𝛼,𝛽(𝑡)) ⊆
𝑌1 for all 𝑡 > 0.

(iv) 𝑈𝛼,𝛽(𝑡) = 𝐸𝛼,𝛽(𝐵
−1
1 𝐴1𝑡

𝛼) and 𝑉𝛼,𝛽(𝑡) = 𝐸𝛼,𝛽(𝐴1𝐵
−1
1 𝑡𝛼) for all 𝑡 > 0.

Proof. The proof of (i) is trivial and therefore omitted. Let 𝑡 > 0 and 𝑥 ∈ 𝑋.
By the Fubini theorem, we have that 𝑈𝛼,𝛽(𝑡)𝑃𝑥 = 𝑃𝑈𝛼,𝛽(𝑡)𝑥. In order to see that
𝑃𝑈𝛼,𝛽(𝑡)𝑥 = 𝑈𝛼,𝛽(𝑡)𝑥, let 𝛾1 = {𝑧 ∈ C : |𝑧| = 𝑅+ 1} be positively oriented, where
𝑅 > 𝑎. Then the residue theorem and the resolvent equation together imply

𝑃𝑈𝛼,𝛽(𝑡)𝑥 =
1

(2𝜋𝑖)2

∫︁
𝛾

∫︁
𝛾1

𝑅𝐵
𝜆 (𝐴)𝑅

𝐵
𝜇 (𝐴)𝐸𝛼,𝛽(𝑡

𝛼𝜇)𝑥 𝑑𝜇 𝑑𝜆

=
1

(2𝜋𝑖)2

∫︁
𝛾

𝑅𝐵
𝜇 (𝐴)𝐸𝛼,𝛽(𝑡

𝛼𝜇)

[︂ ∫︁
𝛾1

𝑥 𝑑𝜆

𝜆− 𝜇

]︂
𝑑𝜇

− 1

(2𝜋𝑖)2

∫︁
𝛾1

𝑅𝐵
𝜆 (𝐴)

[︂ ∫︁
𝛾

𝐸𝛼,𝛽(𝑡
𝛼𝜇)𝑥

𝜆− 𝜇
𝑑𝜇

]︂
𝑑𝜆

= 𝑈𝛼,𝛽(𝑡)𝑥− 0 = 𝑈𝛼,𝛽(𝑡)𝑥.
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The proof of second equality in (ii) can be deduced analogically; (iii) is an immediate
consequence of (ii). The proof of (iv) essentially follows from the following calculus
(𝑆 ≡ 𝐴−1

1 𝐵1):

𝑈𝛼,𝛽(𝑡)𝑥 = 𝑃𝑈𝛼,𝛽(𝑡)𝑥

=
1

2𝜋𝑖

∫︁
𝛾

𝑅𝐵1
𝜇 (𝐴1)𝑃𝐸𝛼,𝛽(𝑡

𝛼𝜇)𝑥 𝑑𝜇

=
1

2𝜋𝑖

∫︁
𝛾

(𝜇𝐼 − 𝑆)−1𝑃𝐸𝛼,𝛽(𝑡
𝛼𝜇)𝑥 𝑑𝜇

=
1

2𝜋𝑖

∫︁
𝛾

∞∑︁
𝑘=0

𝜇−𝑘−1𝑆𝑘𝑃

∞∑︁
𝑛=0

𝑡𝛼𝑛𝜇𝑛

Γ(𝛼𝑛+ 𝛽)
𝑥 𝑑𝜇

=

∞∑︁
𝑘=0

𝑡𝛼𝑘𝑆𝑘

Γ(𝛼𝑘 + 𝛽)
𝑃𝑥 = 𝐸𝛼,𝛽(𝑡

𝛼𝑆)𝑃𝑥. �

Along with the problem

(DF) :

{︃
D𝛼

𝑡 𝐵𝑢(𝑡) = 𝐴𝑢(𝑡), 𝑡 > 0,

𝑢(0) = 𝑥0, 𝑢
(𝑘)(0) = 0, 1 6 𝑘 6 𝑚− 1,

we examine the following one:

(DF)1 :

{︃
D𝛼

𝑡 𝐿
𝐵
𝑟 (𝐴)𝑣(𝑡) = 𝐿𝐵

𝑟 (𝐴)𝑣(𝑡), 𝑡 > 0,

𝑣(0) = (𝜁𝐵 −𝐴)−1𝑥0, 𝑣
(𝑘)(0) = 0, 0 6 𝑘 6 𝑚− 1,

where 𝜁 ∈ 𝜌𝐵𝑟 (𝐴). The solution 𝑢(𝑡) of (DF) and solution 𝑣(𝑡) of (DF)1 are linked
by the relation 𝑢(𝑡) = (𝜁𝐵 −𝐴)−1𝑣(𝑡), 𝑡 > 0. Suppose that 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 . Set
𝑢(𝑡) := 𝑈𝛼,1(𝑡)𝑥, 𝑡 > 0 and 𝑣(𝑡) := 𝑉𝛼,1(𝑡)𝑦, 𝑡 > 0. Then it can be easily seen that

𝐵𝑢(𝑡) =
1

2𝜋𝑖

∫︁
𝛾

𝜇𝐴𝑅𝐵
𝜇 (𝐴)𝐸𝛼(𝑡

𝛼𝜇)𝑥 𝑑𝜇,

which is a continuous function for 𝑡 > 0. Evidently, the function 𝑡 ↦→ 𝐴𝑢(𝑡), 𝑡 > 0
is (𝑚 − 1)-times continuously differentiable for 𝑡 > 0. Making use of the Cauchy
theorem and the closedness of operator 𝐵, we have (𝑚 = ⌈𝛼⌉):

D𝛼
𝑡 𝐴𝑢(𝑡) =

1

2𝜋𝑖

∫︁
𝛾

𝐴𝑅𝐵
𝜇 (𝐴)𝐽

𝑚−𝛼
𝑡

∞∑︁
𝑛=1

𝜇𝑛𝛼𝛼𝑛−𝑚

Γ(𝛼𝑛−𝑚+ 1)
𝑥 𝑑𝜇

=
1

2𝜋𝑖

∫︁
𝛾

𝐴𝑅𝐵
𝜇 (𝐴)

∞∑︁
𝑛=1

𝜇𝑛𝛼𝛼(𝑛−1)

Γ(𝛼(𝑛− 1) + 1)
𝑥 𝑑𝜇

= 𝐵𝑢(𝑡), 𝑡 > 0.

This shows that the mapping 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 is a solution of problem (DF) consid-
ered without initial conditions; we can similarly prove that the mapping 𝑡 ↦→ 𝑣(𝑡),
𝑡 > 0, is a solution of problem (DF)1 considered without initial conditions; cf. [214,
Lemma 4]. Since no confusion seems likely, the above problems will be denoted by
the same symbols (DF) and (DF)1.
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Definition 2.8.4. A set 𝒫 ⊆ 𝑋 is said to be the phase space of problem (DF)
iff the following holds:

(i) for any strong solution 𝑢(𝑡) of (DF), we have that 𝑢(𝑡) ∈ 𝒫 for all 𝑡 > 0,
(ii) for any 𝑥0 ∈ 𝒫, there exists a unique strong solution of (DF).

In order to profile the phase space of problem (DF), we need the following
technical result.

Lemma 2.8.5. Suppose that the operator 𝐺 is nilpotent of order 𝑝 ∈ N0. Let the
function 𝑡 ↦→ 𝑔(𝑡), 𝑡 > 0 satisfy that (D𝛼

𝑡 𝐺)
𝑘𝑔 ∈ 𝐶([0,∞) : 𝑋) for all 𝑘 ∈ N0

𝑝. Then
there exists a unique solution of the following time-fractional initial value problem

(209) D𝛼
𝑡 𝐺𝑧(𝑡) = 𝑧(𝑡) + 𝑔(𝑡), 𝑡 > 0,

and the solution 𝑧(𝑡) is given by the formula

(210) 𝑧(𝑡) = −
𝑝∑︁

𝑘=0

(D𝛼
𝑡 𝐺)

𝑘𝑔(𝑡), 𝑡 > 0.

Proof. Suppose that 𝑧(𝑡) is a solution of (209). Applying the operator 𝐺 on
the both sides of this equation, we get that 𝐺D𝛼

𝑡 𝐺𝑧(𝑡) = 𝐺𝑧(𝑡)+𝐺𝑔(𝑡), 𝑡 > 0. Since
the Caputo fractional derivative of the right hand side of the last equality exists, it is
clear that the same holds for the left hand side. Performing now the operator D𝛼

𝑡 , we
obtain (D𝛼

𝑡 𝐺)
2𝑧(𝑡) = D𝛼

𝑡 𝐺𝑧(𝑡)+D𝛼
𝑡 𝐺𝑔(𝑡) = 𝑧(𝑡)+𝑔(𝑡)+D𝛼

𝑡 𝐺𝑔(𝑡), 𝑡 > 0. Repeating
this procedure, it readily follows that (D𝛼

𝑡 𝐺)
𝑝+1𝑧(𝑡) = 𝑧(𝑡) +

∑︀𝑝
𝑘=0(D

𝛼
𝑡 𝐺)

𝑘𝑔(𝑡),
𝑡 > 0. Taking into account the nilpotency of the operator 𝐺, it is checked at once
that (D𝛼

𝑡 𝐺)
𝑝+1𝑧(𝑡) = (D𝛼

𝑡 )
𝑝+1𝐺𝑝+1𝑧(𝑡) = 0, 𝑡 > 0. This implies that any solution

of (209) has the form (210). Direct computation shows that the function 𝑧(𝑡), given
by (210), is a solution of (209), finishing the proof of lemma. �

In [214, Theorem 5], we have proved that the 𝜎-regularity of pair (𝐴,𝐵) for
some non-negative integer 𝑝 implies that the phase space of problem (DF), resp.,
(DF)1, coincides with 𝑋1 (𝑌1). We will include all relevant details of proof for
problem (DF): Suppose that 𝑢(𝑡) is a solution of (DF). Set 𝑢0(𝑡) := (𝐼 − 𝑃 )𝑢(𝑡),
𝑡 > 0 and 𝑢1(𝑡) := 𝑃𝑢(𝑡), 𝑡 > 0. Then

D𝛼
𝑡 𝐻𝑢0(𝑡) = 𝑢0(𝑡), 𝑡 > 0 ; 𝐻0 ≡ 𝐵−1

0 𝐴0,

D𝛼
𝑡 𝑢1(𝑡) = 𝑆𝑢1(𝑡), 𝑡 > 0 ; 𝑆 ≡ 𝐵−1

1 𝐴1.

By Lemma 2.8.5, we get that 𝑢0(𝑡) = 0, 𝑡 > 0 and 𝑢1(𝑡) ∈ 𝑋1 for all 𝑡 > 0. Since the
operator 𝑆 is regular in 𝑋1, by the foregoing we have that for each 𝑃𝑢0 = 𝑢10 ∈ 𝑋1 a
unique solution of Cauchy problem (DF) is given by 𝑢(𝑡) = 𝐸𝛼(𝑡

𝛼𝑆)𝑢10 = 𝑈𝛼,1(𝑡)𝑢0,
𝑡 > 0. The main results of [214] are given in the following theorem:

Theorem 2.8.6. (i) Suppose that the pair (𝐴,𝐵) is 𝑝-regular, 0 < 𝜏 6
∞, 𝑄𝑓 ∈ 𝐶𝑚([0, 𝜏) : 𝑌 ), there exist fractional operators (D𝛼

𝑡 𝐻)𝑛𝐴−1
0 (𝐼−

𝑄)𝑓 ∈ 𝐶([0, 𝜏) : 𝑋) for 0 6 𝑛 6 𝑝, 𝑥𝑘 ∈ 𝑋 for 0 6 𝑘 6 𝑚 − 1, and the
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compatibility condition

−D𝑘
𝑡

𝑝∑︁
𝑛=0

(D𝛼
𝑡 𝐻)𝑛𝐴−1

0 (𝐼 −𝑄)𝑓(𝑡)|𝑡=0 = (𝐼 − 𝑃 )𝑥𝑘, 0 6 𝑘 6 𝑚− 1

holds. Then there exists a unique strong solution 𝑢(𝑡) of problem

(DF)𝑓 :

{︃
D𝛼

𝑡 𝐵𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0,

𝑢(𝑘)(0) = 𝑥𝑘, 0 6 𝑘 6 𝑚− 1.

Furthermore, 𝑢(𝑡) is given by the following formula:

𝑢(𝑡) =

𝑚−1∑︁
𝑘=0

𝑡𝑘𝑈𝛼,𝑘+1(𝑡)𝑥𝑘 +

∫︁ 𝑡

0

(𝑡− 𝑠)𝛼−1𝑈𝛼,𝛼(𝑡− 𝑠)𝐵−1
1 𝑄𝑓(𝑠)𝑑𝑠

−
𝑝∑︁

𝑛=0

(D𝛼
𝑡 𝐻)𝑛𝐴−1

0 (𝐼 −𝑄)𝑓(𝑡), 𝑡 ∈ [0, 𝜏).

(ii) Suppose that the pair (𝐴,𝐵) is 𝑝-regular, 0 < 𝜏 6 ∞, 𝑄𝑓 ∈ 𝐶𝑚([0, 𝜏) :
𝑌 ), there exist fractional operators (D𝛼

𝑡 𝐻)𝑛𝐴−1
0 (𝐼 −𝑄)𝑓 ∈ 𝐶([0, 𝜏) : 𝑋)

for 0 6 𝑛 6 𝑝, and 𝑥𝑘 ∈ 𝑋 for 0 6 𝑘 6 𝑚− 1. Then there exists a unique
strong solution of problem

(DF)𝑓,𝑃 :

{︃
D𝛼

𝑡 𝐵𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0,

(𝑃𝑢)(𝑘)(0) = 𝑥𝑘, 0 6 𝑘 6 𝑚− 1.

Furthermore, the form of solution 𝑢(𝑡) is the same as in (i).

Proof. We will prove only (i). It is not difficult to show that

D𝛼
𝑡 𝐻𝑢0(𝑡) = 𝑢0(𝑡) +𝐵−1

0 (𝐼 −𝑄)𝑓(𝑡), 𝑡 > 0,(211)

D𝛼
𝑡 𝑢1(𝑡) = 𝑆𝑢1(𝑡) + ℎ(𝑡), 𝑡 > 0 ; ℎ(𝑡) ≡ 𝐴−1

1 𝑄𝑓(𝑡).(212)

In view of Lemma 2.8.5, the unique solution of problem (211) is given by 𝑢0(𝑡) =
−
∑︀𝑝

𝑛=0(D
𝛼
𝑡 𝐻)𝑛𝐵−1

0 (𝐼 −𝑄)𝑓(𝑡), 𝑡 > 0. Since the operator 𝑆 is regular in 𝑋1, the
result now simply follows from the equality (208), which gives the form of solution
of equation (212). �

Now we would like to illustrate Theorem 2.8.6 with the following example.

Example 2.8.7. Let (𝐸, ‖·‖) be a complex Banach space, and let 𝐴 be a closed
linear operator acting on 𝐸. For any 𝜏 > 0, we put

𝐷∞,𝜏,0(𝐴) :=
{︁
𝑥 ∈ 𝐷∞(𝐴) : lim sup

𝑘→∞
‖𝐴𝑘𝑥‖1/𝑘 6 𝜏

}︁
.

Let 𝐷∞,𝜏 (𝐴) be the biggest closed subspace of 𝐷∞,𝜏,0(𝐴) with respect to the topol-
ogy inherited from 𝐷∞(𝐴). Then it is well known that 𝐷∞,𝜏 (𝐴) is a Fréchet space
and that 𝐴|𝐷∞,𝜏 (𝐴) is a regular operator on 𝐷∞,𝜏 (𝐴). Set D∞(𝐴) be the induc-
tive limit of spaces 𝐷∞,𝑛(𝐴) as 𝑛 → ∞. Then, for every two entire functions
𝐺(𝑧) and 𝐽1(𝑧), we have that 𝐺(𝐴) and 𝐽1(𝐴) are continuous linear operators on
D∞(𝐴), which is known to be a separable and sequentially complete locally convex
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space [226]. In [214, Theorem 8], we have proved that the assumptions 𝐸 is a
Hilbert space and 𝐴 is a self-adjoint operator on 𝐸 imply that the operator 𝐽1(𝐴)
is (𝐺(𝐴), 0)-radial, provided in addition to the above that the functions 𝐺(𝑧) and
𝐽1(𝑧) do not have common roots on 𝜎(𝐴) as well as that there exists a finite constant
𝑎 > 0 such that |𝐽1(𝜆)/𝐺(𝜆)| 6 𝑎 for all 𝜆 ∈ 𝜎(𝐴) with 𝐺(𝜆) ̸= 0. The main feature
of [214, Theorem 9] is to analyze the following special case: 𝐸 =: 𝐿2[0, 1] and

𝐴 := 𝑖𝑑/𝑑𝑥, 𝐷(𝐴) := {𝑢 ∈ 𝐿2[0, 1] : 𝑢′ ∈ 𝐿2[0, 1], 𝑢(0) = 𝑢(1)}.
Applying [214, Theorem 8], we have proved that the following initial boundary
value problem

D𝛼
𝑡 𝐺(𝐴)𝑢(𝑥, 𝑡) = 𝐽1(𝐴)𝑢(𝑥+ ℎ, 𝑡) + 𝑓(𝑥, 𝑡), 𝑥 ∈ R, 𝑡 > 0,

𝑢(𝑥, 𝑡) = 𝑢(𝑥+ 1, 𝑡), 𝑥 ∈ R, 𝑡 > 0,

𝜕𝑛𝑢

𝜕𝑥𝑛
𝑢(𝑥, 0) = 𝑢𝑛(𝑥), 𝑛 = 0, 1, . . . ,𝑚− 1, 𝑥 ∈ [0, 1]

has a unique solution provided that |𝐺(2𝜋𝑘)| + |𝐽1(2𝜋𝑘)| ̸= 0, 𝑘 ∈ Z, the set
{|𝐽1(2𝜋𝑘)|/|𝐺(2𝜋𝑘)| : 𝑘 ∈ Z, 𝐺(2𝜋𝑘) ̸= 0} is bounded, 𝑓(𝑥, 𝑡) = 𝑓(𝑥+ 1, 𝑡), 𝑥 ∈ R,
𝑡 > 0, 𝑓 ∈ 𝐶𝑚([0,∞) : D∞(𝐴)), 𝑢𝑛 ∈ D∞(𝐴) (𝑛 = 0, 1, . . . ,𝑚− 1), and∫︁

𝐺0

𝑑ℰ𝜆
(︁
𝐽1(𝜆)𝑒

−𝑖ℎ𝜆𝑢𝑛 + 𝑓 (𝑛)(·, 0)
)︁
= 0, 𝑛 = 0, 1, . . . ,𝑚− 1,

where ℰ𝜆 (𝜆 ∈ R) is the resolution of the identity for 𝐴 and 𝐺0 := {𝜆 ∈ R : 𝐺(𝜆) ̸=
0}. Furthermore, the solution 𝑢(·, 𝑡) is given by the following formula:

𝑢(·, 𝑡) =
𝑚−1∑︁
𝑛=0

𝑡𝑛
∫︁
𝜎(𝐴)r𝐺0

𝐸𝛼,𝑛+1

(︁
𝑡𝛼
𝐽1(𝜆)𝑒

−𝑖ℎ𝜆

𝐺(𝜆)

)︁
𝑑ℰ𝜆𝑢𝑛

+

∫︁ 𝑡

0

(𝑡− 𝑠)𝛼−1

∫︁
𝜎(𝐴)r𝐺0

𝐸𝛼,𝛼

(︁
𝑡𝛼
𝐽1(𝜆)𝑒

−𝑖ℎ𝜆

𝐺(𝜆)

)︁𝑑ℰ𝜆 𝑓(·, 𝑠)
𝐺(𝜆)

𝑑𝑠

−
∫︁
𝐺0

𝑒𝑖ℎ𝜆𝑑ℰ𝜆𝑓(·, 𝑡)
𝐽1(𝜆)

, 𝑡 > 0.

The solution of this equation is analytic with repect to the variable 𝑡, in Cr(−∞, 0],
if 𝑓(·, ·) has some expected properties, as well.

We end this section with the observation that Fedorov and Gordievskikh [211]
have analyzed the following abstract degenerate fractional Cauchy problem:

D𝛼
𝑡 𝑃𝑛(Δ) = 𝑄𝑟(Δ)𝑢(𝑥, 𝑡), (𝑥, 𝑡) ∈ Ω× [0,∞),

(1− 𝜃)Δ𝑘 + 𝜃
𝜕Δ𝑘𝑢

𝜕𝑛
𝑢(𝑥, 𝑡) = 0, 𝑘 = 0, 1, . . . , 𝑛− 1, (𝑥, 𝑡) ∈ 𝜕Ω× [0,∞),

𝜕𝑘𝑢

𝜕𝑡𝑘
(𝑥, 0) = 0, 𝑘 = 0, 1, . . . ,𝑚− 1;

here, Ω is a smooth domain in R𝑛, 𝛼 > 0, 𝜃 ∈ R, Δ is the Dirichlet Laplacian
in 𝐿2(Ω) and 𝑃𝑛, 𝑄𝑟 are non-zero complex polynomials of degrees 𝑛, 𝑟. In [211,
Theorem 8] and [211, Theorem 9], the authors explore separately the cases 𝑟 6 𝑛
and 𝑟 > 𝑛, respectively.
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2.9. Abstract degenerate non-scalar Volterra equations

In this section, we delve into the details regarding abstract degenerate Volterra
equations of non-scalar type. Let𝑋 and 𝑌 be two complex Banach spaces satisfying
that 𝑌 is continuously embedded in 𝑋, let the operator 𝐶 ∈ 𝐿(𝑋) be injective,
and let 𝜏 ∈ (0,∞]. The norm in 𝑋, resp. 𝑌 , will be denoted by ‖ · ‖𝑋 , resp.
‖ · ‖𝑌 ; as before, [𝑅(𝐶)] denotes the Banach space 𝑅(𝐶) equipped with the norm
‖𝑥‖𝑅(𝐶) = ‖𝐶−1𝑥‖𝑋 , 𝑥 ∈ 𝑅(𝐶). By 𝐵 we denote a closed linear operator with
domain and range contained in 𝑋. If 𝑍 is a general topological space and 𝑍0 ⊆ 𝑍,
then by 𝑍0

𝑍
we denote the adherence of 𝑍0 in 𝑍 (we will use the abbreviation 𝑍0,

if there is no risk for confusion).
Let 𝐴(𝑡) be a locally integrable function from [0, 𝜏) into 𝐿(𝑌,𝑋). Unless stated

otherwise, we assume that 𝐴(𝑡) is not of scalar type, i.e., that there does not exist
𝑎 ∈ 𝐿1

𝑙𝑜𝑐([0, 𝜏)), 𝑎 ̸= 0, and a closed linear operator 𝐴 in 𝑋 such that 𝑌 = [𝐷(𝐴)]
and 𝐴(𝑡) = 𝑎(𝑡)𝐴 for a.e. 𝑡 ∈ [0, 𝜏). In the sequel, we will basically follow the
notation employed in the monograph of J. Prüss [459] and our previous paper [299]
on abstract non-degenerate equations of non-scalar type (cf. also [262] and [269]
for some other references in this direction); the meaning of symbol 𝐴 will be clear
from the context.

Definition 2.9.1. Let 𝑘 ∈ 𝐶([0, 𝜏)) and 𝑘 ̸= 0, let 𝜏 ∈ (0,∞], 𝑓 ∈ 𝐶([0, 𝜏) :
𝑋), and let 𝐴 ∈ 𝐿1

𝑙𝑜𝑐([0, 𝜏) : 𝐿(𝑌,𝑋)). Consider the linear degenerate Volterra
equation

(213) 𝐵𝑢(𝑡) = 𝑓(𝑡) +

∫︁ 𝑡

0

𝐴(𝑡− 𝑠)𝑢(𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝜏).

Then a function 𝑢 ∈ 𝐶([0, 𝜏) : [𝐷(𝐵)]) is said to be:
(i) a strong solution of (213) iff 𝑢 ∈ 𝐿∞

𝑙𝑜𝑐([0, 𝜏) : 𝑌 ) and (213) holds on [0, 𝜏),
(ii) a mild solution of (213) iff there exist a sequence (𝑓𝑛) in 𝐶([0, 𝜏) : 𝑋) and

a sequence (𝑢𝑛) in 𝐶([0, 𝜏) : [𝐷(𝐵)]) such that 𝑢𝑛(𝑡) is a strong solution
of (213) with 𝑓(𝑡) replaced by 𝑓𝑛(𝑡) and that lim𝑛→∞ 𝑓𝑛(𝑡) = 𝑓(𝑡) as well
as lim𝑛→∞ 𝑢𝑛(𝑡) = 𝑢(𝑡), uniformly on compact subsets of [0, 𝜏).

The abstract Cauchy problem (213) is said to be (𝑘𝐶)-well posed (𝐶-well posed, if
𝑘(𝑡) ≡ 1) iff for every 𝑦 ∈ 𝑌 , there exists a unique strong solution of

(214) 𝐵𝑢(𝑡; 𝑦) = 𝑘(𝑡)𝐶𝑦 +

∫︁ 𝑡

0

𝐴(𝑡− 𝑠)𝑢(𝑠; 𝑦)𝑑𝑠, 𝑡 ∈ [0, 𝜏)

and if 𝑢(𝑡; 𝑦𝑛) → 0 in [𝐷(𝐵)], uniformly on compact subsets of [0, 𝜏), whenever (𝑦𝑛)
is a zero sequence in 𝑌 ; (213) is said to be 𝑎-regularly (𝑘𝐶)-well posed (𝑎-regularly
𝐶-well posed, if 𝑘(𝑡) ≡ 1), where 𝑎 ∈ 𝐿1

𝑙𝑜𝑐([0, 𝜏)), iff (213) is (𝑘𝐶)-well posed and
if the equation

𝐵𝑢(𝑡) = (𝑎 * 𝑘)(𝑡)𝐶𝑥+

∫︁ 𝑡

0

𝐴(𝑡− 𝑠)𝑢(𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝜏)

admits a unique strong solution for every 𝑥 ∈ 𝑋.
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We would like to point out that every strong solution of (213) is also a mild
solution of (213) as well as that the notion introduced in Definition 2.9.1 generalizes
the corresponding one from [299, Definition 1], given in the case that 𝐵 = 𝐼. It is
also clear that the concept of a strong (mild) solution of (213) and the concept of
a (𝑘𝐶)-well posedness of (213) can be defined in some other ways; we will skip all
related details.

The following definition will be crucial for our further work.

Definition 2.9.2. Let 𝜏 ∈ (0,∞], 𝑘 ∈ 𝐶([0, 𝜏)), 𝑘 ̸= 0 and 𝐴 ∈ 𝐿1
𝑙𝑜𝑐([0, 𝜏) :

𝐿(𝑌,𝑋)). A family (𝑆(𝑡))𝑡∈[0,𝜏) in 𝐿(𝑋, [𝐷(𝐵)]) is called an (𝐴, 𝑘,𝐵)-regularized
𝐶-pseudoresolvent family iff the following holds:

(S1) The mappings 𝑡 ↦→ 𝑆(𝑡)𝑥, 𝑡 ∈ [0, 𝜏) and 𝑡 ↦→ 𝐵𝑆(𝑡)𝑥, 𝑡 ∈ [0, 𝜏) are
continuous in 𝑋 for every fixed 𝑥 ∈ 𝑋, 𝐵𝑆(0) = 𝑘(0)𝐶 and 𝑆(𝑡)𝐶 =
𝐶𝑆(𝑡), 𝑡 ∈ [0, 𝜏).

(S2) Put 𝑈(𝑡)𝑥 :=
∫︀ 𝑡

0
𝑆(𝑠)𝑥 𝑑𝑠, 𝑥 ∈ 𝑋, 𝑡 ∈ [0, 𝜏). Then (S2) means 𝑈(𝑡)𝑌 ⊆ 𝑌 ,

𝑈(𝑡)|𝑌 ∈ 𝐿(𝑌 ), 𝑡 ∈ [0, 𝜏) and (𝑈(𝑡)|𝑌 )𝑡∈[0,𝜏) is locally Lipschitz continuous
in 𝐿(𝑌 ).

(S3) The resolvent equations

(215) 𝐵𝑆(𝑡)𝑦 = 𝑘(𝑡)𝐶𝑦 +

∫︁ 𝑡

0

𝐴(𝑡− 𝑠)𝑑𝑈(𝑠)𝑦, 𝑡 ∈ [0, 𝜏), 𝑦 ∈ 𝑌,

(216) 𝐵𝑆(𝑡)𝑦 = 𝑘(𝑡)𝐶𝑦 +

∫︁ 𝑡

0

𝑆(𝑡− 𝑠)𝐴(𝑠)𝑦 𝑑𝑠, 𝑡 ∈ [0, 𝜏), 𝑦 ∈ 𝑌,

hold; (215), resp. (216), is called the first resolvent equation, resp. the
second resolvent equation.

An (𝐴, 𝑘,𝐵)-regularized 𝐶-pseudoresolvent family (𝑆(𝑡))𝑡∈[0,𝜏) is said to be an
(𝐴, 𝑘,𝐵)-regularized 𝐶-resolvent family if additionally:

(S4) For every 𝑦 ∈ 𝑌 , 𝑆(·)𝑦 ∈ 𝐿∞
𝑙𝑜𝑐([0, 𝜏) : 𝑌 ).

An operator family (𝑆(𝑡))𝑡∈[0,𝜏) in 𝐿(𝑋, [𝐷(𝐵)]) is called a weak (𝐴, 𝑘,𝐵)-reg-
ularized 𝐶-pseudoresolvent family iff (S1) and (216) hold. Finally, a weak (𝐴, 𝑘,𝐵)-
regularized 𝐶-pseudoresolvent family (𝑆(𝑡))𝑡∈[0,𝜏) is said to be 𝑎-regular
(𝑎 ∈ 𝐿1

𝑙𝑜𝑐([0, 𝜏))) iff 𝑎 * 𝑆(·)𝑥 ∈ 𝐶([0, 𝜏) : 𝑌 ), 𝑥 ∈ 𝑌 𝑋 .

Let us agree on the following: A (weak) (𝐴, 𝑘,𝐵)-regularized 𝐶-(pseudo)resol-
vent family with 𝑘(𝑡) ≡ 𝑔𝛼+1(𝑡), where 𝛼 > 0, is also called a (weak) 𝛼-times
integrated (𝐴,𝐵)-regularized 𝐶-(pseudo)resolvent family, whereas a (weak) 0-times
integrated (𝐴,𝐵)-regularized 𝐶-(pseudo)resolvent family is also said to be a (weak)
(𝐴,𝐵)-regularized 𝐶-(pseudo)resolvent family. A (weak) (𝐴, 𝑘,𝐵)-regularized 𝐶-
(pseudo)resolvent family is also called a (weak) (𝐴, 𝑘,𝐵)-regularized (pseudo)resol-
vent family ((weak) (𝐴,𝐵)-regularized (pseudo)resolvent family) if 𝐶 = 𝐼 (if 𝐶 = 𝐼
and 𝑘(𝑡) ≡ 1).

As in non-degenerate case, the integral appearing in the first resolvent equation
(215) is understood in the sense of discussion following [459, Definition 6.2, p. 153].
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Observe also that the condition (S3) can be rewritten in the following equivalent
form:

(S3)’ 𝐵𝑈(𝑡)𝑦 = Θ(𝑡)𝐶𝑦 +

∫︁ 𝑡

0

𝐴(𝑡− 𝑠)𝑈(𝑠)𝑦 𝑑𝑠, 𝑡 ∈ [0, 𝜏), 𝑦 ∈ 𝑌,

𝐵𝑈(𝑡)𝑦 = Θ(𝑡)𝐶𝑦 +

∫︁ 𝑡

0

𝑈(𝑡− 𝑠)𝐴(𝑠)𝑦 𝑑𝑠, 𝑡 ∈ [0, 𝜏), 𝑦 ∈ 𝑌.

By the norm continuity we mean the continuity in 𝐿(𝑋) and, in many places,
we do not distinguish 𝑆(·) (𝑈(·)) and its restriction to 𝑌 .

The notion of an (𝐴, 𝑘,𝐵)-regularized 𝐶-uniqueness family plays a crucial role
in proving the uniqueness of solutions of abstract degenerate Cauchy problem (213).

Definition 2.9.3. Let 𝜏 ∈ (0,∞], 𝑘 ∈ 𝐶([0, 𝜏)), 𝑘 ̸= 0 and 𝐴 ∈ 𝐿1
𝑙𝑜𝑐([0, 𝜏) :

𝐿(𝑌,𝑋)). A strongly continuous operator family (𝑉 (𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑋) is said to be
an (𝐴, 𝑘,𝐵)-regularized 𝐶-uniqueness family iff

𝑉 (𝑡)𝐵𝑦 = 𝑘(𝑡)𝐶𝑦 +

∫︁ 𝑡

0

𝑉 (𝑡− 𝑠)𝐴(𝑠)𝑦 𝑑𝑠, 𝑡 ∈ [0, 𝜏), 𝑦 ∈ 𝑌 ∩𝐷(𝐵).

Before stating the following propositions, whose proofs can be deduced as in
non-degenerate case (cf. [459] and [299]), we want to observe that the notion
of an (𝐴, 𝑘, 𝐼)-regularized 𝐶-uniqueness family is a special case of the notion of
a weak (𝐴, 𝑘, 𝐼)-regularized 𝐶-pseudoresolvent family and the assertion of [299,
Proposition 2(i)] holds even if the condition 𝑆(𝑡)𝐶 = 𝐶𝑆(𝑡), 𝑡 ∈ [0, 𝜏) is disregarded
(cf. also Proposition 2.9.5(i) below).

Proposition 2.9.4. (i) Suppose that (𝑆1(𝑡))𝑡∈[0,𝜏) is an (𝐴, 𝑘1, 𝐵)-regu-
larized 𝐶1-pseudoresolvent family and (𝑆2(𝑡))𝑡∈[0,𝜏) is an (𝐴, 𝑘2, 𝐵)-regu-
larized 𝐶2-uniqueness family. Then 𝐶2(𝑘2 * 𝑆1)(𝑡)𝑥 = (𝑘1 * 𝑆2)(𝑡)𝐶1𝑥,
𝑡 ∈ [0, 𝜏), 𝑥 ∈ 𝑌 𝑋 .

(ii) Let (𝑆(𝑡))𝑡∈[0,𝜏) be an (𝐴, 𝑘,𝐵)-regularized 𝐶-pseudoresolvent family. As-
sume that 𝑌 has the Radon-Nikodym property. Then (𝑆(𝑡))𝑡∈[0,𝜏) is an
(𝐴, 𝑘,𝐵)-regularized 𝐶-resolvent family. Furthermore, if 𝑌 is reflexive,
then 𝑆(𝑡)(𝑌 ) ⊆ 𝑌 , 𝑡 ∈ [0, 𝜏) and the mapping 𝑡 ↦→ 𝑆(𝑡)𝑦, 𝑡 ∈ [0, 𝜏) is
weakly continuous in 𝑌 for all 𝑦 ∈ 𝑌 .

Proposition 2.9.5. (i) Assume that (𝑉 (𝑡))𝑡∈[0,𝜏) is an (𝐴, 𝑘,𝐵)-regular-
ized 𝐶-uniqueness family, 𝑓 ∈ 𝐶([0, 𝜏) : 𝑋) and 𝑢(𝑡) is a mild solution
of (213). Then (𝑘𝐶 * 𝑢)(𝑡) = (𝑉 * 𝑓)(𝑡), 𝑡 ∈ [0, 𝜏) and mild solutions of
(213) are unique provided in addition that 𝑘(𝑡) is a kernel on [0, 𝜏).

(ii) Assume 𝑛 ∈ N, (𝑆(𝑡))𝑡∈[0,𝜏) is an (𝑛− 1)-times integrated (𝐴,𝐵)-regular-
ized 𝐶-pseudoresolvent family, 𝐶−1𝑓 ∈ 𝐶𝑛−1([0, 𝜏) : 𝑋) and 𝑓 (𝑖)(0) = 0,
0 6 𝑖 6 𝑛− 1. Then the following assertions hold:
(a) Let (𝐶−1𝑓)(𝑛−1) ∈ 𝐴𝐶𝑙𝑜𝑐([0, 𝜏) : 𝑌 ) and (𝐶−1𝑓)(𝑛) ∈ 𝐿1

𝑙𝑜𝑐([0, 𝜏) : 𝑌 ).
Then the function 𝑡 ↦→ 𝑢(𝑡), 𝑡 ∈ [0, 𝜏) given by

𝑢(𝑡) =

∫︁ 𝑡

0

𝑆(𝑡− 𝑠)(𝐶−1𝑓)(𝑛)(𝑠)𝑑𝑠 =

∫︁ 𝑡

0

𝑑𝑈(𝑠)(𝐶−1𝑓)(𝑛)(𝑡− 𝑠)
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is a strong solution of (213). Moreover, 𝑢 ∈ 𝐶([0, 𝜏) : 𝑌 ).
(b) Let (𝐶−1𝑓)(𝑛) ∈ 𝐿1

𝑙𝑜𝑐([0, 𝜏) : 𝑋) and 𝑌 𝑋 = 𝑋. Then the function
𝑢(𝑡) =

∫︀ 𝑡

0
𝑆(𝑡 − 𝑠)(𝐶−1𝑓)(𝑛)(𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝜏) is a mild solution of

(213).
(c) Let 𝐶−1𝑔 ∈ 𝑊𝑛,1

𝑙𝑜𝑐 ([0, 𝜏) : 𝑌 𝑋), 𝑎 ∈ 𝐿1
𝑙𝑜𝑐([0, 𝜏)), 𝑓(𝑡) = (𝑔𝑛 * 𝑎 *

𝑔(𝑛))(𝑡), 𝑡 ∈ [0, 𝜏) and let (𝑆(𝑡))𝑡∈[0,𝜏) be 𝑎-regular. Then the function
𝑢(𝑡) =

∫︀ 𝑡

0
𝑆(𝑡− 𝑠)(𝑎 * (𝐶−1𝑔)(𝑛))(𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝜏) is a strong solution

of (213).
The uniqueness of solutions in (a), (b) or (c) holds provided that for each
𝑦 ∈ 𝑌 ∩𝐷(𝐵) we have 𝑆(𝑡)𝐵𝑦 = 𝐵𝑆(𝑡)𝑦, 𝑡 ∈ [0, 𝜏).

(iii) Let (𝑆(𝑡))𝑡∈[0,𝜏) be an (𝐴, 𝑘,𝐵)-regularized 𝐶-resolvent family. Put
𝑢(𝑡; 𝑦) := 𝑆(𝑡)𝑦, 𝑡 ∈ [0, 𝜏), 𝑦 ∈ 𝑌 . Then 𝑢(𝑡; 𝑦) is a strong solution
of (214), and (214) is (𝑘𝐶)-well posed if 𝑘(𝑡) is a kernel on [0, 𝜏) and
𝑆(𝑡)𝐵𝑦 = 𝐵𝑆(𝑡)𝑦, 𝑡 ∈ [0, 𝜏), 𝑦 ∈ 𝑌 ∩𝐷(𝐵).

Before we clarify a Hille–Yosida type theorem for (𝐴, 𝑘,𝐵)-regularized 𝐶-pseu-
doresolvent families, it should be observed that there exists a great number of
statements from [299] which can be reconsidered in the degenerate case; without
going into details, we only want to capture our readers’ attention to the assertions
of [299, Proposition 1(iii)(b)/(c), Proposition 3(ii)–(iii), Proposition 4, Remark
1, Theorem 2, Remark 2, Proposition 5]. It is also worth noting that the class of
(𝐴, 𝑘,𝐵)-regularized 𝐶-uniqueness families can be characterized through the vector-
valued Laplace transform and we need the condition 𝑆(𝑡)𝐵𝑦 = 𝐵𝑆(𝑡)𝑦, 𝑡 > 0, 𝑦 ∈
𝑌 ∩𝐷(𝐵) (see the formulation of Theorem 2.9.6) in order to show the injectiveness
of operator 𝐵 − 𝐴(𝜆) for Re𝜆 > 𝜔0, 𝑘(𝜆) ̸= 0 (in Theorem 2.9.10 below, this
condition will not be used).

Theorem 2.9.6. Assume 𝐴 ∈ 𝐿1
𝑙𝑜𝑐([0, 𝜏) : 𝐿(𝑌,𝑋)), 𝑎 ∈ 𝐿1

𝑙𝑜𝑐([0, 𝜏)), 𝑎 ̸= 0,
|𝑎|(𝑡) and 𝑘(𝑡) satisfy (P1), 𝜀0 > 0 and

(217)
∫︁ ∞

0

𝑒−𝜀𝑡‖𝐴(𝑡)‖𝐿(𝑌,𝑋)𝑑𝑡 <∞, 𝜀 > 𝜀0.

(i) Let (𝑆(𝑡))𝑡>0 be an (𝐴, 𝑘,𝐵)-regularized 𝐶-pseudoresolvent family such
that 𝑆(𝑡)𝐵𝑦 = 𝐵𝑆(𝑡)𝑦, 𝑡 > 0, 𝑦 ∈ 𝑌 ∩𝐷(𝐵) and there exists 𝜔 > 0 with

(218) sup
𝑡>0

𝑒−𝜔𝑡
(︁
‖𝑆(𝑡)‖𝐿(𝑋) + ‖𝐵𝑆(𝑡)‖𝐿(𝑋)

+ sup
0<𝑠<𝑡

(𝑡− 𝑠)−1‖𝑈(𝑡)− 𝑈(𝑠)‖𝐿(𝑌 )

)︁
<∞.

Put 𝜔0 := max(𝜔, abs(𝑘), 𝜀0) and 𝐻(𝜆)𝑥 :=
∫︀∞
0
𝑒−𝜆𝑡𝑆(𝑡)𝑥 𝑑𝑡, 𝑥 ∈ 𝑋,

Re𝜆 > 𝜔0. Then the following holds:
(N1) (𝐴(𝜆))Re𝜆>𝜀0 is analytic in 𝐿(𝑌,𝑋), 𝑅(𝐶|𝑌 ) ⊆ 𝑅(𝐵−𝐴(𝜆)), Re𝜆 >

𝜔0, 𝑘(𝜆) ̸= 0, and 𝐵 −𝐴(𝜆) is injective, Re𝜆 > 𝜔0, 𝑘(𝜆) ̸= 0.
(N2) 𝐻(𝜆)𝑦 = 𝜆�̃�(𝜆)𝑦, 𝑦 ∈ 𝑌 , Re𝜆 > 𝜔0, (𝐵 − 𝐴(𝜆))−1𝐶|𝑌 ∈ 𝐿(𝑌 ),

Re𝜆 > 𝜔0, 𝑘(𝜆) ̸= 0, (𝐻(𝜆))Re𝜆>𝜔0
is analytic in both spaces, 𝐿(𝑋)
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and 𝐿(𝑌 ), 𝐻(𝜆)𝐶 = 𝐶𝐻(𝜆), Re𝜆 > 𝜔0, 𝐻(𝜆)𝐵𝑦 = 𝐵𝐻(𝜆)𝑦, Re𝜆 >
𝜔0, 𝑦 ∈ 𝑌 ∩𝐷(𝐵), and for every 𝜆 ∈ C with Re𝜆 > 𝜔0 and 𝑘(𝜆) ̸= 0,
the following holds:

(𝐵−𝐴(𝜆))𝐻(𝜆)𝑦 = 𝑘(𝜆)𝐶𝑦, 𝑦 ∈ 𝑌 and 𝐻(𝜆)(𝐵−𝐴(𝜆))𝑦 = 𝑘(𝜆)𝐶𝑦, 𝑦 ∈ 𝑌 ∩𝐷(𝐵).

(N3) sup
𝑛∈N0

sup
𝜆>𝜔0,�̃�(𝜆)̸=0

(𝜆− 𝜔)𝑛+1

𝑛!

(︁⃦⃦⃦ 𝑑𝑛
𝑑𝜆𝑛

𝐻(𝜆)
⃦⃦⃦
𝐿(𝑋)

+
⃦⃦⃦ 𝑑𝑛
𝑑𝜆𝑛

𝐵𝐻(𝜆)
⃦⃦⃦
𝐿(𝑋)

+
⃦⃦⃦ 𝑑𝑛
𝑑𝜆𝑛

𝐻(𝜆)
⃦⃦⃦
𝐿(𝑌 )

)︁
<∞.

(ii) Assume that (N1)–(N3) hold. Then there exists an exponentially bounded
(𝐴,Θ, 𝐵)-regularized 𝐶-resolvent family (𝑆1(𝑡))𝑡>0 satisfying 𝑆1(𝑡)𝐵𝑦 =
𝐵𝑆1(𝑡)𝑦, 𝑡 > 0, 𝑦 ∈ 𝑌 ∩𝐷(𝐵).

(iii) Assume that (N1)–(N3) hold, 𝐵−1 ∈ 𝐿(𝑋) and 𝑌 𝑋 = 𝑋. Then there
exists an exponentially bounded (𝐴, 𝑘,𝐵)-regularized 𝐶-pseudoresolvent
family (𝑆(𝑡))𝑡>0 such that (218) holds and 𝑆(𝑡)𝐵𝑦 = 𝐵𝑆(𝑡)𝑦, 𝑡 > 0,
𝑦 ∈ 𝑌 ∩𝐷(𝐵).

(iv) Assume (𝑆(𝑡))𝑡>0 is an (𝐴, 𝑘,𝐵)-regularized 𝐶-pseudoresolvent family sat-
isfying (218) with some 𝜔 > 0. Let 𝜔′ > max(𝜔, abs(|𝑎|), abs(𝑘), 𝜀0).
Then (𝑆(𝑡))𝑡>0 is 𝑎-regular and sup𝑡>0 𝑒

−𝜔′𝑡||𝑎 * 𝑆(𝑡)||𝐿(𝑌 𝑋 ,𝑌 ) < ∞ iff
there exists a number 𝜔1 > 𝜔′ such that

sup
𝑛∈N0

sup
𝜆>𝜔1,�̃�(𝜆)̸=0

(𝜆− 𝜔′)𝑛+1

𝑛!

⃦⃦⃦ 𝑑𝑛
𝑑𝜆𝑛

(�̃�(𝜆)𝐻(𝜆))
⃦⃦⃦
𝐿(𝑌 𝑋 ,𝑌 )

<∞.

The hyperbolic perturbation results for non-scalar Volterra equations have been
studied in [459, Theorem 6.1, p. 159] and [299, Theorem 3]. It is worth noting that
the above-mentioned results can be generalized to degenerate non-scalar Volterra
equations. More precisely, the following theorem holds true (the proof can be
deduced by slightly modifying the corresponding proof of [459, Theorem 6.1], with
𝐾0 = 𝑆 * 𝐶−1𝐵𝐷0 and 𝐾1 = 𝑆 * 𝐶−1𝐵𝐷1):

Theorem 2.9.7. Assume 𝐿1
𝑙𝑜𝑐([0, 𝜏)) ∋ 𝑎 is a kernel on [0, 𝜏), 𝐶(𝑌 ) ⊆ 𝑌 ,

𝑌 𝑋 = 𝑋, 𝐶𝐵 ⊆ 𝐵𝐶,

𝐷(𝑡)𝑦 = 𝐷0(𝑡)𝑦 + (𝑎 *𝐷1)(𝑡)𝑦, 𝑡 ∈ [0, 𝜏), 𝑦 ∈ 𝑌,

where (𝐷0(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑌 ), (𝐵𝐷0(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑋, [𝑅(𝐶)]), (𝐵𝐷1(𝑡))𝑡∈[0,𝜏) ⊆
𝐿(𝑌, [𝑅(𝐶)]),

(i) 𝐶−1𝐵𝐷0(·)𝑦∈𝐵𝑉𝑙𝑜𝑐([0, 𝜏) : 𝑌 ) for all 𝑦∈𝑌 , 𝐶−1𝐵𝐷0(·)𝑥∈𝐵𝑉𝑙𝑜𝑐([0, 𝜏) :
𝑋) for all 𝑥 ∈ 𝑋,

(ii) 𝐶−1𝐵𝐷1(·)𝑦 ∈ 𝐵𝑉𝑙𝑜𝑐([0, 𝜏) : 𝑋) for all 𝑦 ∈ 𝑌 , and
(iii) 𝐶𝐵𝐷(𝑡)𝑦 = 𝐵𝐷(𝑡)𝐶𝑦, 𝑦 ∈ 𝑌 , 𝑡 ∈ [0, 𝜏).

Then the existence of an 𝑎-regular (𝐴,𝐵)-regularized 𝐶-(pseudo)resolvent family
(𝑆(𝑡))𝑡∈[0,𝜏) is equivalent with the existence of an 𝑎-regular (𝐴+𝐵𝐷,𝐵)-regularized
𝐶-(pseudo)resolvent family (𝑅(𝑡))𝑡∈[0,𝜏).
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Theorem 2.9.7 can be applied to abstract degenerate non-scalar Volterra equa-
tions involving abstract differential operators. For example, let 1 < 𝑝 < ∞,
let 𝑋 := 𝐿𝑝(R𝑛), and let 0 < 𝛼 < 2. Then it is clear that the operators
𝜕/𝜕𝑥𝑗 , acting with their maximal distributional domains, are commuting gener-
ators of bounded 𝐶0-groups on 𝑋; set 𝐴 := (−𝑖𝜕/𝜕𝑥1, . . . ,−𝑖𝜕/𝜕𝑥𝑛). Suppose
that 𝑃1(𝑥) and 𝑃2(𝑥) are non-zero complex polynomials satisfying 𝑃2(𝑥) ̸= 0,
𝑥 ∈ R𝑛 and the estimate (70). Define the strongly continuous operator family
(𝐺𝛼(𝑡))𝑡>0 ⊆ 𝐿(𝑋) in the same way as it has been done in Remark 2.3.16(ii), and
the operators 𝑃𝑖(𝐴), 𝑖 = 1, 2 in the usual way. Set 𝑌 := 𝐷(𝑃1(𝐴)) ∩ 𝐷(𝑃2(𝐴)),
‖𝑓‖ := ‖𝑓‖𝑋 + ‖𝑃1(𝐴)𝑓‖𝑋 + ‖𝑃2(𝐴)𝑓‖𝑋 (𝑓 ∈ 𝑌 ), 𝐴(𝑡) := 𝑔𝛼(𝑡)𝑃1(𝐴)|𝑌 (𝑡 > 0)

and 𝐶 := 𝑃2(𝐴)𝐺𝛼(0). Then (𝑌, ‖ · ‖𝑌 ) is a Banach space continuously embedded
in 𝑋, 𝑌 𝑋 = 𝑋, 𝐶𝑃2(𝐴) ⊆ 𝑃2(𝐴)𝐶, 𝐶(𝑌 ) ⊆ 𝑌 , and a simple analysis shows that
(𝐺𝛼(𝑡))𝑡>0 is an (𝐴,𝑃2(𝐴))-resolvent 𝐶-regularized resolvent family obeying the
property that for each 𝑓 ∈ 𝑌 the mapping 𝑡 ↦→

∫︀ 𝑡

0
𝐺𝛼(𝑠)𝑓 𝑑𝑠, 𝑡 > 0 is continuously

differentiable in 𝑌 . Therefore, Theorem 2.9.7 can be applied with the regularizing
operator 𝐶 being in general the non-identity operator on 𝑋. We continue by intro-
ducing the following definition (cf. [299, Definition 3(i)] for non-degenerate case).

Definition 2.9.8. Let 𝑘 ∈ 𝐶([0,∞)), 𝑘 ̸= 0, 𝐴 ∈ 𝐿1
𝑙𝑜𝑐([0,∞) : 𝐿(𝑌,𝑋)),

𝛼 ∈ (0, 𝜋], and let (𝑆(𝑡))𝑡>0 ⊆ 𝐿(𝑋, [𝐷(𝐵)]) be a (weak) (𝐴, 𝑘,𝐵)-regularized
𝐶-(pseudo)resolvent family. Then it is said that (𝑆(𝑡))𝑡>0 is an analytic (weak)
(𝐴, 𝑘,𝐵)-regularized 𝐶-(pseudo)resolvent family of angle 𝛼, if there exists an
analytic function S : Σ𝛼 → 𝐿(𝑋, [𝐷(𝐵)]) satisfying S(𝑡) = 𝑆(𝑡), 𝑡 > 0,
lim𝑧→0,𝑧∈Σ𝛾

S(𝑧)𝑥 = 𝑆(0)𝑥 and lim𝑧→0,𝑧∈Σ𝛾
𝐵S(𝑧)𝑥 = 𝐵𝑆(0)𝑥 for all 𝛾 ∈ (0, 𝛼)

and 𝑥 ∈ 𝑋. We say that (𝑆(𝑡))𝑡>0 is an exponentially bounded, analytic (weak)
(𝐴, 𝑘,𝐵)-regularized 𝐶-(pseudo)resolvent family, resp. bounded analytic (weak)
(𝐴, 𝑘,𝐵)-regularized 𝐶-(pseudo)resolvent family, of angle 𝛼, if (𝑆(𝑡))𝑡>0 is an ana-
lytic (weak) (𝐴, 𝑘,𝐵)-regularized 𝐶-(pseudo)resolvent family of angle 𝛼 and for
each 𝛾 ∈ (0, 𝛼) there exist 𝑀𝛾 > 0 and 𝜔𝛾 > 0, resp. 𝜔𝛾 = 0, such that
||S(𝑧)||𝐿(𝑋) + ||𝐵S(𝑧)||𝐿(𝑋) 6 𝑀𝛾𝑒

𝜔𝛾 |𝑧|, 𝑧 ∈ Σ𝛾 . Since no confusion seems likely,
we shall identify 𝑆(·) and S(·) in the sequel.

The most important properties of exponentially bounded, analytic (weak)
(𝐴, 𝑘,𝐵)-regularized 𝐶-(pseudo)resolvent families are collected in the subsequent
theorems.

Theorem 2.9.9. (i) Assume 𝜀0 > 0, 𝑘(𝑡) satisfies (P1),
𝜔 > max(abs(𝑘), 𝜀0), (217) holds, (𝑆(𝑡))𝑡>0 is a weak analytic (𝐴, 𝑘,𝐵)-
regularized 𝐶-pseudoresolvent family of angle 𝛼 ∈ (0, 𝜋/2] and

(219) sup
𝑧∈Σ𝛾

[︀
‖𝑒−𝜔𝑧𝑆(𝑧)‖𝐿(𝑋) + ‖𝑒−𝜔𝑧𝐵𝑆(𝑧)‖𝐿(𝑋)

]︀
<∞ for all 𝛾 ∈ (0, 𝛼).

Then there exists an analytic mapping 𝐻 : 𝜔 + Σ𝜋
2 +𝛼 → 𝐿(𝑋, [𝐷(𝐵)])

such that:
(a) 𝐵𝐻(𝜆)𝑦 − 𝐻(𝜆)𝐴(𝜆)𝑦 = 𝑘(𝜆)𝐶𝑦, 𝑦 ∈ 𝑌 , Re𝜆 > 𝜔, 𝑘(𝜆) ̸= 0;

𝐻(𝜆)𝐶 = 𝐶𝐻(𝜆), Re𝜆 > 𝜔,
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(b) sup𝜆∈𝜔+Σ𝜋
2

+𝛾

[︀
‖(𝜆− 𝜔)𝐻(𝜆)‖𝐿(𝑋) + ‖(𝜆− 𝜔)𝐵𝐻(𝜆)‖𝐿(𝑋)

]︀
<∞ for

all 𝛾 ∈ (0, 𝛼),
(c) there exists an operator 𝐹 ∈ 𝐿(𝑋, [𝐷(𝐵)]) such that 𝐵𝐹𝑥 = 𝑘(0)𝐶𝑥,

𝑥 ∈ 𝑋 and lim𝜆→+∞,�̃�(𝜆)̸=0 𝜆𝐻(𝜆)𝑥 = 𝐹𝑥, 𝑥 ∈ 𝑋, and
(d) lim𝜆→+∞,�̃�(𝜆) ̸=0 𝜆𝐵𝐻(𝜆)𝑥 = 𝑘(0)𝐶𝑥, 𝑥 ∈ 𝑋.

(ii) Assume 𝜀0 > 0, 𝑘(𝑡) satisfies (P1), (217) holds, 𝜔 > max(abs(𝑘), 𝜀0), 𝛼 ∈
(0, 𝜋/2], there exists an analytic mapping 𝐻 : 𝜔 +Σ𝜋

2 +𝛼 → 𝐿(𝑋, [𝐷(𝐵)])

such that (a), (b) and (c) of the item (i) hold and that, in the case 𝑌 𝑋 ̸=
𝑋, (d) also holds. Then there exists a weak analytic (𝐴, 𝑘,𝐵)-regularized
𝐶-pseudoresolvent family (𝑆(𝑡))𝑡>0 of angle 𝛼 such that (219) holds.

Theorem 2.9.10. (i) Assume 𝜀0 > 0, 𝑘(𝑡) satisfies (P1),
𝜔0 > max(abs(𝑘), 𝜀0), (217) holds, 𝛼 ∈ (0, 𝜋/2], (𝑆(𝑡))𝑡>0 is an an-
alytic (𝐴, 𝑘,𝐵)-regularized 𝐶-resolvent family of angle 𝛼, the mapping
𝑡 ↦→ 𝑈(𝑡) ∈ 𝐿(𝑌 ), 𝑡 > 0 can be analytically extended to the sector Σ𝛼

(we shall denote the analytical extensions of 𝑈(·) and 𝑆(·) in the space
𝐿(𝑌 ) by the same symbols), and for each 𝛾 ∈ (0, 𝛼) one has:

(220) sup
𝑧∈Σ𝛾

[︁
‖𝑒−𝜔0𝑧𝑆(𝑧)‖𝐿(𝑋)+‖𝑒−𝜔0𝑧𝐵𝑆(𝑧)‖𝐿(𝑋)+ sup

𝑧∈Σ𝛾

‖𝑒−𝜔0𝑧𝑆(𝑧)‖𝐿(𝑌 )

]︁
<∞.

Denote 𝐻(𝜆)𝑥 =
∫︀∞
0
𝑒−𝜆𝑡𝑆(𝑡)𝑥 𝑑𝑡, 𝑥 ∈ 𝑋, Re𝜆 > 𝜔0. Then 𝐻 : 𝜔 +

Σ𝜋
2 +𝛼 → 𝐿(𝑋, [𝐷(𝐵)]) is an analytic mapping, 𝐻|𝑌 : 𝜔 + Σ𝜋

2 +𝛼 → 𝐿(𝑌 )
is likewise an analytic mapping, and the following holds:
(a) sup𝜆∈𝜔0+Σ𝜋

2
+𝛾

[︀
‖(𝜆−𝜔0)𝐻(𝜆)‖𝐿(𝑋)+ ‖(𝜆−𝜔0)𝐵𝐻(𝜆)‖𝐿(𝑋)+ ‖(𝜆−

𝜔0)𝐻(𝜆)‖𝐿(𝑌 )

]︀
<∞ for all 𝛾 ∈ (0, 𝛼),

(b) 𝐵𝐻(𝜆)𝑦 − 𝐻(𝜆)𝐴(𝜆)𝑦 = 𝑘(𝜆)𝐶𝑦, 𝑦 ∈ 𝑌 , Re𝜆 > 𝜔, 𝑘(𝜆) ̸= 0;
𝐵𝐻(𝜆)𝑦 − 𝐴(𝜆)𝐻(𝜆)𝑦 = 𝑘(𝜆)𝐶𝑦, 𝑦 ∈ 𝑌 , Re𝜆 > 𝜔, 𝑘(𝜆) ̸= 0;
𝐻(𝜆)𝐶 = 𝐶𝐻(𝜆), Re𝜆 > 𝜔0,

(c) there exists an operator 𝐹 ∈ 𝐿(𝑋, [𝐷(𝐵)]) such that 𝐵𝐹𝑥 = 𝑘(0)𝐶𝑥,
𝑥 ∈ 𝑋, lim𝜆→+∞,�̃�(𝜆)̸=0 𝜆𝐻(𝜆)𝑥 = 𝐹𝑥, 𝑥 ∈ 𝑋, and

(d) lim𝜆→+∞,�̃�(𝜆)̸=0 𝜆𝐵𝐻(𝜆)𝑥 = 𝑘(0)𝐶𝑥, 𝑥 ∈ 𝑋.
(ii) Assume 𝛼 ∈ (0, 𝜋/2], 𝜀0 > 0, 𝑘(𝑡) satisfies (P1) and (217) holds. Let

𝜔0 > max(abs(𝑘), 𝜀0), and let there exist an analytic mapping 𝐻 : 𝜔 +
Σ𝜋

2 +𝛼 → 𝐿(𝑋, [𝐷(𝐵)]) such that 𝐻|𝑌 : 𝜔 + Σ𝜋
2 +𝛼 → 𝐿(𝑌 ) is an analytic

mapping, as well as that (a)–(c) of the item (i) of this theorem hold and, in
the case 𝑌 𝑋 ̸= 𝑋, (d) also holds. Then there exists an analytic (𝐴, 𝑘,𝐵)-
regularized 𝐶-resolvent family (𝑆(𝑡))𝑡>0 of angle 𝛼 such that (220) holds
and the mapping 𝑡 ↦→ 𝑈(𝑡) ∈ 𝐿(𝑌 ), 𝑡 > 0 can be analytically extended to
the sector Σ𝛼.

Remark 2.9.11. If 𝐵−1 ∈ 𝐿(𝑋), then the condition (i)/(c) in Theorem 2.9.9,
i.e., the condition (i)/(c) in Theorem 2.9.10, automatically holds. Therefore, Theo-
rem 2.9.9 and Theorem 2.9.10 taken together provide extensions of [299, Theorem
4-Theorem 5].
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Based on the evidence contained in the proofs of [299, Theorem 6-Theorem 7],
we can simply clarify the basic results about differentiability of (𝐴, 𝑘,𝐵)-regularized
𝐶-pseudoresolvent families in Banach spaces. Although interesting, this theme will
not be considered here; let us only mention that the considerations from [299, Ex-
ample 3] and [314, Example 2.5] enable one to construct some important examples
of (local) (𝐴, 𝑘,𝐵)-regularized resolvent families with a certain hypoanalytic be-
haviour.

2.10. Hypercyclic and topologically mixing properties of abstract
degenerate fractional differential equations

In this section, which is broken down into four subsections, we analyze hyper-
cyclic and topologically mixing properties of various classes of abstract (multi-term)
degenerate fractional differential equations with Caputo derivatives. In Subsection
2.10.1–Subsection 2.10.3, by (𝐸, ‖ · ‖) we denote a non-trivial separable Banach
space over the field C (some of our results presented in these subsections continue
to hold in the setting of separable, infinite-dimensional, Hausdorff, sequentially
complete locally convex spaces over the field K ∈ {R, C}; cf. [112,292, Section
3.1] and [309] for more details).

2.10.1. Hypercyclic and topologically mixing properties of solutions
of the equations D𝛼

𝑡 𝐵𝑢(𝑡) = 𝐴𝑢(𝑡) and 𝐵D𝛼
𝑡 𝑢(𝑡) = 𝐴𝑢(𝑡) (𝛼 > 0). Let 𝐴 and 𝐵

be closed linear operators acting on 𝐸, and let 𝐶 ∈ 𝐿(𝐸) be an injective operator.
If ∅ ≠ Ω ⊆ C r (−∞, 0] and 𝛼 > 0, set Ω𝛼 := {𝜆𝛼 : 𝜆 ∈ Ω}. By 𝒟 we denote
the set which consists of all infinitely differentiable, compactly supported functions
from R into C; if ∅ ̸= 𝐾 ⊆ R, then we define 𝒟𝐾 := {𝜙 ∈ 𝒟 : supp(𝜙) ⊆ 𝐾}.
We enquire into the hypercyclic and topologically mixing solutions of homogeneous
counterparts of fractional Sobolev equations

(DFP)𝑅 :

{︃
D𝛼

𝑡 𝐵𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0,

𝐵𝑢(0) = 𝐵𝑥; (𝐵𝑢)(𝑗)(0) = 0, 1 6 𝑗 6 ⌈𝛼⌉ − 1

and

(DFP)𝐿 :

{︃
𝐵D𝛼

𝑡 𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0,

𝑢(0) = 𝑥; 𝑢(𝑗)(0) = 0, 1 6 𝑗 6 ⌈𝛼⌉ − 1.

Throughout the whole section, we will use the same symbols to denote such prob-
lems; this little abuse of notation will not create any confusion henceforward. Sup-
pose that the function 𝑢(𝑡) is a strong solution of problem (DFP)𝑅 ((DFP)𝐿);
cf. Definition 2.3.1 (in the existing literature on non-degenerate first order equa-
tions, this is equivalent to say that 𝑢(𝑡) is a classical solution of problem (DFP)𝑅;
cf. [445]). Convoluting both sides of (DFP)𝑅 ((DFP)𝐿) with 𝑔𝛼(𝑡), and using the
equality (38), it readily follows that every solution of (DFP)𝑅 ((DFP)𝐿) satisfies
the equality

𝐵𝑢(𝑡)−𝐵𝑥 = (𝑔𝛼 *𝐴𝑢(·))(𝑡), 𝑡 > 0 (𝐵(𝑢(𝑡)− 𝑥) = (𝑔𝛼 *𝐴𝑢(·))(𝑡), 𝑡 > 0).
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If a continuous function 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 satisfies the first of these equations with
𝐴𝑢,𝐵𝑢 ∈ 𝐶([0,∞) : 𝐸), then it can be easily checked that 𝑢(𝑡) is a strong so-
lution of problem (DFP)𝑅; observe, however, that we cannot prove the corre-
sponding statement for the problem (DFP)𝐿. Let us recall that a mild solution
of the problem (DFP)𝑅 is any continuous function 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 such that
the mapping 𝑡 ↦→ 𝐵𝑢(𝑡), 𝑡 > 0 is continuous and 𝐴(𝑔𝛼 * 𝑢)(𝑡) = 𝐵𝑢(𝑡) − 𝐵𝑥,
𝑡 > 0. Denote by 𝑍𝛼,𝑅(𝐴,𝐵) (𝑍𝛼,𝐿(𝐴,𝐵)) the set which consists of those ele-
ments 𝑥 ∈ 𝐷(𝐵) (𝑥 ∈ 𝐷(𝐴)) for which there exists a strong solution of (DFP)𝑅
((DFP)𝐿). By 𝑍𝑢𝑛𝑖𝑞

𝛼,𝑅 (𝐴,𝐵) (𝑍𝑢𝑛𝑖𝑞
𝛼,𝐿 (𝐴,𝐵)) we denote the set which consists of those

elements 𝑥 ∈ 𝐷(𝐵) (𝑥 ∈ 𝐷(𝐴)) for which there exists a unique strong solution
of (DFP)𝑅 ((DFP)𝐿). Then 𝑍𝛼,𝑅(𝐴,𝐵) (𝑍𝛼,𝐿(𝐴,𝐵)) is a linear subspace of 𝐸,
and 𝑍𝑢𝑛𝑖𝑞

𝛼,𝑅 (𝐴,𝐵) (𝑍𝑢𝑛𝑖𝑞
𝛼,𝐿 (𝐴,𝐵)) is a linear subspace of 𝐸 provided that the zero

function is a unique strong solution of the problem (DFP)𝑅 ((DFP)𝐿) with 𝑥 = 0.
In this case, we define for each 𝑡 > 0 the linear operator 𝑇𝑅(𝑡; ·) : 𝑍𝑢𝑛𝑖𝑞

𝛼,𝑅 (𝐴,𝐵) →
𝐸 (𝑇𝐿(𝑡; ·) : 𝑍𝑢𝑛𝑖𝑞

𝛼,𝐿 (𝐴,𝐵) → 𝐸) by 𝑇𝑅(𝑡;𝑥) := 𝑢(𝑡;𝑥), 𝑥 ∈ 𝑍𝑢𝑛𝑖𝑞
𝛼,𝑅 (𝐴,𝐵) (𝑥 ∈

𝑍𝑢𝑛𝑖𝑞
𝛼,𝐿 (𝐴,𝐵)), where 𝑢(·;𝑥) denotes the strong solution of (DFP)𝑅 ((DFP)𝐿).

In this subsection, we will restrict ourselves to the analysis of (subspace) hy-
percyclicity, topological transitivity and topological mixing property of problem
(DFP)𝑅 ((DFP)𝐿); in Subsection 2.10.3, we will also look into the (subspace)
chaoticity and weakly mixing property of first and second order degenerate equa-
tions (cf. [292, Chapter 3] and references cited there, as well as Subsection 2.10.4,
for some other dynamical properties of abstract degenerate differential equations
that are not considered in Subsection 2.10.1–Subsection 2.10.3).

Definition 2.10.1. Let 𝛼 > 0, and let �̃� be a closed linear subspace of 𝐸.
Then it is said that:

(i) an element 𝑥 ∈ 𝑍𝛼,𝑅(𝐴,𝐵) ∩ �̃� (𝑥 ∈ 𝑍𝛼,𝐿(𝐴,𝐵) ∩ �̃�) is a �̃�-hypercyclic
vector for (DFP)𝑅 ((DFP)𝐿) iff there exists a strong solution 𝑡 ↦→ 𝑢(𝑡;𝑥),
𝑡 > 0 of problem (DFP)𝑅 ((DFP)𝐿) with the property that the set
{𝑢(𝑡;𝑥) : 𝑡 > 0} is a dense subset of �̃�.

Furthermore, we say that the abstract Cauchy problem (DFP)𝑅 ((DFP)𝐿) is:

(ii) �̃�-topologically transitive iff for every 𝑦, 𝑧 ∈ �̃� and for every 𝜀 > 0,
there exist 𝑥 ∈ 𝑍𝛼,𝑅(𝐴,𝐵) ∩ �̃� (𝑥 ∈ 𝑍𝛼,𝐿(𝐴,𝐵) ∩ �̃�), a strong solution
𝑡 ↦→ 𝑢(𝑡;𝑥), 𝑡 > 0 of problem (DFP)𝑅 ((DFP)𝐿) and 𝑡 > 0 such that
‖𝑦 − 𝑥‖ < 𝜀 and ‖𝑧 − 𝑢(𝑡;𝑥)‖ < 𝜀;

(iii) �̃�-topologically mixing iff for every 𝑦, 𝑧 ∈ �̃� and for every 𝜀 > 0, there
exists 𝑡0 > 0 such that, for every 𝑡 > 𝑡0, there exist 𝑥𝑡 ∈ 𝑍𝛼,𝑅(𝐴,𝐵) ∩ �̃�
(𝑥𝑡 ∈ 𝑍𝛼,𝐿(𝐴,𝐵)∩ �̃�) and a strong solution 𝑡 ↦→ 𝑢(𝑡;𝑥𝑡), 𝑡 > 0 of problem
(DFP)𝑅 ((DFP)𝐿) such that ‖𝑦 − 𝑥𝑡‖ < 𝜀 and ‖𝑧 − 𝑢(𝑡;𝑥𝑡)‖ < 𝜀.

In the case �̃� = 𝐸, it is also said that a �̃�-hypercyclic vector for (DFP)𝑅 ((DFP)𝐿)
is a hypercyclic vector for (DFP)𝑅 ((DFP)𝐿), and that (DFP)𝑅 ((DFP)𝐿) is topo-
logically transitive, resp. topologically mixing.
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Before proceeding further, it should be noted that the study we have taken up
shows that there is no substantial difference in the analysis of hypercyclic prop-
erties of problems (DFP)𝑅 and (DFP)𝐿, and there is no ideal option that would
provide us a general method for studying hypercyclic properties of abstract degen-
erate equations. In Definition 2.10.1, which is, in our opinion, the best theorethical
concept for the analysis of hypercyclicity of abstract degenerate equations, we work
only with strong solutions. This is primarily caused by the fact that it is very diffi-
cult to define the notion of a mild solution of the problem (DFP)𝐿 in a satisfactory
way, as well as that the solutions appearing in Theorem 2.10.3 below, which is the
main result of this subsection, are strong in fact (in the case of problem (DFP)𝑅,
the notions from Definition 2.10.1 can be introduced with mild solutions instead of
strong ones, in the very obvious way; this has been the usual way for introducing
�̃�-hypercyclic vectors, �̃�-topological transitivity and �̃�-topologically mixing prop-
erty of non-degenerate equations so far). As a large class of important examples
shows (see e.g. Example 2.10.5–Example 2.10.6 below), it is much better to intro-
duce the notions from Definition 2.10.1 with the set 𝑍𝛼,𝑅(𝐴,𝐵) (𝑍𝛼,𝐿(𝐴,𝐵)) than
with 𝑍𝑢𝑛𝑖𝑞

𝛼,𝑅 (𝐴,𝐵) (𝑍𝑢𝑛𝑖𝑞
𝛼,𝐿 (𝐴,𝐵)); cf. [6,95,424] and [210] for some results ensuring

the uniqueness of solutions of problem 𝑍𝛼,𝑅(𝐴,𝐵) (𝑍𝛼,𝐿(𝐴,𝐵)). Having things
set up in such a way, we will face some very strange pecularities of hypercyclic
degenerate equations later (cf. Example 2.10.15). Even in the case that 𝐵 = 𝐼,
we do not assume in Definition 2.10.1 the existence of a global (𝑔𝛼, 𝑔𝛽)-regularized
𝐶-resolvent family for (DFP)𝑅 ((DFP)𝐿), which has been the general framework
for the analysis of hypercyclic abstract PDEs so far (𝛽 > 1, 𝐶 ∈ 𝐿(𝐸) injective).

We continue by observing that, for any arbitrarily large number 𝛼 > 0, we can
simply construct a Banach space 𝐸 and closed linear operators 𝐴 and 𝐵 on 𝐸 such
that the problems (DFP)𝑅 and (DFP)𝐿 are both topologically mixing. For example,
let 𝐸 be the weighted 𝑙1-space 𝑙1𝑟 := {(𝑥𝑘)𝑘∈N : 𝑥𝑘 ∈ C,

∑︀∞
𝑘=1 𝑟𝑘|𝑥𝑘| <∞}, normed

by ‖(𝑥𝑘)𝑘∈N‖ :=
∑︀∞

𝑘=1 𝑟𝑘|𝑥𝑘|, (𝑥𝑘)𝑘∈N ∈ 𝑙1𝑟 ; here (𝑟𝑘)𝑘∈N denotes any sequence of
positive real numbers satisfying that there exists 𝑀 > 0 such that 𝑟𝑘𝑟−1

𝑘+1 6𝑀 for
all 𝑘 ∈ N. Take any 𝐵 ∈ 𝐿(𝐸) and define after that 𝐴 ∈ 𝐿(𝐸) by 𝐴(𝑥𝑘)𝑘∈N :=
(𝐵𝑥𝑘+1)𝑘∈N, (𝑥𝑘)𝑘∈N ∈ 𝑙1𝑟 ; then, by [301, Theorem 2.3], the problems (DFP)𝑅 and
(DFP)𝐿 are both topologically mixing. We leave to the interested reader details
about construction of hypercyclic and topologically mixing degenerate (multi-term)
fractional differential equations on weighted 𝑙1-spaces, involving operators that are
certain functions of unilateral backward shift operators (cf. [143,470, Section 5]
and [301] for further information).

Let �̃� = 𝐸, let 𝐻𝐶𝑅 (𝐻𝐶𝐿) designate the set of all hypercyclic vectors for
(DFP)𝑅 ((DFP)𝐿), and let 𝒪 = (𝑂𝑛)𝑛∈N be an open base of the topology of
𝐸 (𝑂𝑛 ̸= ∅, 𝑛 ∈ N). Assuming that the strong solutions of problems (DFP)𝑅
and (DFP)𝐿 are unique, it can be simply proved that the equality 𝐻𝐶𝑅,𝐿 =⋂︀

𝑛∈N
⋃︀

𝑡>0 𝑇𝑅,𝐿(𝑡)
−1(𝑂𝑛) holds and

⋃︀
𝑡>0 𝑇𝑅,𝐿(𝑡)

−1(𝑂𝑛) is a dense subset of 𝐸
for all 𝑛 ∈ N. Regrettably, we cannot conclude from the above that the topological
transitivity of (DFP)𝑅 ((DFP)𝐿) implies the existence of hypercyclic vectors for
(DFP)𝑅 ((DFP)𝐿).
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We need the following extension of [300, Lemma 2.1].

Lemma 2.10.2. Suppose 𝛼 > 0, 𝜆 ∈ Cr{0}, 𝑥 ∈ 𝐷(𝐴)∩𝐷(𝐵) and 𝐴𝑥 = 𝜆𝐵𝑥.
Then the function 𝑢(𝑡;𝑥) := 𝐸𝛼(𝜆𝑡

𝛼)𝑥, 𝑡 > 0 satisfies 𝑢,𝐴𝑢,𝐵𝑢 ∈ 𝐶([0,∞) : 𝐸),
as well as the equalities

(𝑔𝛼 *𝐴𝑢(·;𝑥))(𝑡) = 𝐵(𝑢(𝑡;𝑥)− 𝑥) = 𝐵𝑢(𝑡;𝑥)−𝐵𝑥, 𝑡 > 0.

Furthermore, the function 𝑢(·;𝑥) is a strong solution of problem (DFP)𝑅 ( (DFP)𝐿).

Proof. The proof is very similar to that of [300, Lemma 2.1]; it is only worth
noticing here that a direct computation combined with the equality D𝛼

𝑡 𝐸𝛼(𝜆𝑡
𝛼) =

𝜆𝐸𝛼(𝜆𝑡
𝛼), 𝑡 > 0 (see e.g. [61, (1.25)]) implies that the function 𝑡 ↦→ 𝑢(𝑡;𝑥), 𝑡 > 0

is a strong solution of problem (DFP)𝐿. �

In the following theorem, we rethink the Desch–Schappacher–Webb and Banasi-
ak–Moszyński criteria for chaos of strongly continuous semigroups.

Theorem 2.10.3. Suppose that 𝛼 ∈ (0, 2) and Ω is an open connected subset
of C which satisfies Ω ∩ (−∞, 0] = ∅ and Ω ∩ 𝑖R ̸= ∅. Let 𝑓 : Ω𝛼 → 𝐸 be an
analytic mapping such that 𝑓(𝜆𝛼) ∈ Kern(𝐴 − 𝜆𝛼𝐵) r {0}, 𝜆 ∈ Ω, and let �̃� :=

𝑠𝑝𝑎𝑛{𝑓(𝜆𝛼) : 𝜆 ∈ Ω}. Then the problems (DFP)𝑅 and (DFP)𝐿 are �̃�-topologically
mixing; furthermore, if 𝐴𝑓(𝜆𝛼) ∈ �̃� for all 𝜆 ∈ Ω, then the problems (DFP)�̃�𝑅 and
(DFP)�̃�𝐿 , obtained by replacing the operators 𝐴 and 𝐵 in (DFP)𝑅 and (DFP)𝐿
with the operators 𝐴|�̃� and 𝐵|�̃�, respectively, are topologically mixing in the Banach
space �̃�.

Proof. Without loss of generality, we may assume that Ω ∩ 𝑖(0,∞) ̸= ∅.
Observe the following: If Ω0 is an arbitrary non-empty subset of Ω which admits
a cluster point in Ω, then the (weak) analyticity of mapping 𝜆 ↦→ 𝑓(𝜆𝛼) ∈ �̃�,
𝜆 ∈ Ω implies that Ψ(Ω0) := 𝑠𝑝𝑎𝑛{𝑓(𝜆𝛼) : 𝜆 ∈ Ω0} is dense in the Banach space
�̃�. Further on, it is clear that there exist numbers 𝜆0 ∈ Ω ∩ 𝑖(0,∞) and 𝛿 > 0
such that any of the sets Ω0,+ := {𝜆 ∈ Ω : |𝜆 − 𝜆0| < 𝛿, arg(𝜆) ∈ (𝜋2 − 𝛿, 𝜋2 )} and
Ω0,− := {𝜆 ∈ Ω : |𝜆− 𝜆0| < 𝛿, arg(𝜆) ∈ (𝜋2 ,

𝜋
2 + 𝛿)} admits a cluster point in Ω as

well as that arg(𝜆𝛼𝑡𝛼) < 𝛼𝜋/2, 𝜆 ∈ Ω0,+ and arg(−𝜆𝛼𝑡𝛼) ∈ 𝜋 − 𝛼𝜋/2, 𝜆 ∈ Ω0,−.
Due to Theorem 1.5.1 (cf. also (40)–42), we have:

(221) 𝐸𝛼(𝜆
𝛼𝑡𝛼) → ∞, 𝑡→ ∞, 𝜆 ∈ Ω0,+ and 𝐸𝛼(𝜆

𝛼𝑡𝛼) → 0, 𝑡→ ∞, 𝜆 ∈ Ω0,−.

Suppose that 𝑦 ∈ Ψ(Ω0,−), 𝑧 ∈ Ψ(Ω0,+), 𝜀 > 0, 𝑦 =
∑︀𝑛

𝑖=1 𝛽𝑖𝑓(𝜆
𝛼
𝑖 ),

𝑧 =
∑︀𝑚

𝑗=1 𝛾𝑗𝑓(𝜆𝑗
𝛼
), 𝛼𝑖, 𝛽𝑗 ∈ C, 𝜆𝑖 ∈ Ω0,− and 𝜆𝑗 ∈ Ω0,+ for 1 6 𝑖 6 𝑛 and

1 6 𝑗 6 𝑚. Using (221), we get that there exists a number 𝑡0(𝑧) > 0 such that
𝐸𝛼(𝜆𝑗

𝛼
𝑡𝛼) ̸= 0, 𝑡 > 𝑡0(𝑧). Put 𝑧𝑡 :=

∑︀𝑚
𝑗=1

𝛾𝑗

𝐸𝛼(𝜆𝑗
𝛼
𝑡𝛼)
𝑓(𝜆𝑗

𝛼
) and 𝑥𝑡 := 𝑦 + 𝑧𝑡,

𝑡 > 𝑡0(𝑧). Owing to Lemma 2.10.2, we have {𝑥𝑡, 𝑦, 𝑧𝑡} ⊆ 𝑍𝛼(𝐴,𝐵)∩ �̃�, 𝑡 > 𝑡0(𝑧);
denote by 𝑢(·;𝑥𝑡), 𝑢(·; 𝑦) and 𝑢(·; 𝑧𝑡) the corresponding strong solutions (𝑡 > 𝑡0(𝑧)).
Keeping in mind (221) and Lemma 2.10.2, we obtain that there exists a number
𝑡(𝑦, 𝑧, 𝜀) > 𝑡0(𝑧) such that: ‖𝑢(𝑡; 𝑦)‖ < 𝜀, 𝑢(𝑡; 𝑧𝑡) = 𝑧 and ‖𝑧𝑡‖ < 𝜀, 𝑡 > 𝑡(𝑦, 𝑧, 𝜀).
Hence, ‖𝑥𝑡− 𝑦‖ = ‖𝑧𝑡‖ < 𝜀 and ‖𝑢(𝑡;𝑥𝑡)− 𝑧‖ = ‖𝑢(𝑡; 𝑦)‖ < 𝜀, 𝑡 > 𝑡(𝑦, 𝑧, 𝜀), whence
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it easily follows without any substantial difficulties that the problems (DFP)𝑅 and
(DFP)𝐿 are �̃�-topologically mixing. The rest of the proof is simple and therefore
omitted. �

Remark 2.10.4. It is worth noting that Theorem 2.10.3 does not continue to
hold in the case that 𝛼 = 2. Then we can pass to the theory of degenerate equa-
tions of first order on product spaces and derive, in such a way, some conclusions
on the subspace topologically mixing (chaotic) properties of problems (DFP)𝑅 and
(DFP)𝐿. In order to better explain these facts, suppose that ∅ ≠ Ω is an open
connected subset of C which intersects the imaginary axis, and that 𝑓 : Ω2 → 𝐸
is an analytic mapping satisfying 𝐴𝑓(𝜆2) = 𝜆2𝐵𝑓(𝜆2), 𝜆 ∈ Ω. Define the op-
erators 𝒜, 𝒜′, ℬ and ℬ′ on 𝐸 × 𝐸 by 𝒜(𝑥, 𝑦) := (𝑦,𝐴𝑥), (𝑥, 𝑦) ∈ 𝐸 × 𝐷(𝐴),
𝒜′(𝑥, 𝑦) := (𝐵𝑦,𝐴𝑥), (𝑥, 𝑦) ∈ 𝐷(𝐴)×𝐷(𝐵), ℬ(𝑥, 𝑦) := (𝑥,𝐵𝑦), (𝑥, 𝑦) ∈ 𝐸 ×𝐷(𝐵)
and ℬ′(𝑥, 𝑦) := (𝐵𝑥,𝐵𝑦), (𝑥, 𝑦) ∈ 𝐷(𝐵) × 𝐷(𝐵). Then 𝒜(𝑓(𝜆2), 𝜆𝑓(𝜆2)) =
𝜆ℬ(𝑓(𝜆2), 𝜆𝑓(𝜆2)), 𝜆 ∈ Ω and 𝒜′(𝑓(𝜆2), 𝜆𝑓(𝜆2)) = 𝜆ℬ′(𝑓(𝜆2), 𝜆𝑓(𝜆2)), 𝜆 ∈ Ω.
Making use of Theorem 2.10.3 with 𝛼 = 1, and the first of these equalities (resp.,
the second one), we can prove the validity of some results about (subspace) topolog-
ically mixing (chaotic) properties of the problem (DFP)𝐿, with the initial condition
𝑢′(0) = 0 replaced by 𝑢′(0) = 𝑦 (resp., the problem (DFP)𝑅, with the initial condi-
tion (𝐵𝑢)′(0) = 0 replaced by (𝐵𝑢)′(0) = 𝐵𝑦); for more details, see [292, Lemma
3.2.33, Theorem 3.2.34, Remark 3.2.35].

Observe that the conclusions stated in [300, Remark 1(i),(iii)] can be refor-
mulated for degenerate fractional differential equations. Now we want to illustrate
Theorem 2.10.3 with some examples.

Example 2.10.5. Suppose that 0 < 𝛼 < 2, 𝑛 ∈ N r {1} and 𝐸 := 𝐿𝑝([0,∞))
(1 6 𝑝 < ∞). Let 𝑃 (𝑧) =

∑︀𝑛
𝑗=0 𝑎𝑗𝑧

𝑗 , 𝑧 ∈ C be a complex polynomial of degree
𝑛 (𝑎𝑗 ∈ C, 0 6 𝑗 6 𝑛), and let 𝑄(𝑧) =

∑︀𝑚
𝑗=0 𝑏𝑗𝑧

𝑗 , 𝑧 ∈ C be a non-zero complex
polynomial of degree 𝑚 6 𝑛− 1 (𝑏𝑗 ∈ C, 0 6 𝑗 6 𝑚). Suppose, further, that there
exists 𝑧0 ∈ C− ≡ {𝑧 ∈ C : Re 𝑧 < 0} such that 𝑃 (𝑧0) = 0 and 𝑃 ′(𝑧0)𝑄(𝑧0) ̸= 0. Set
𝐴𝑓 :=

∑︀𝑛
𝑗=0 𝑎𝑗𝑓

(𝑗) and 𝐵𝑓 :=
∑︀𝑚

𝑗=0 𝑏𝑗𝑓
(𝑗) with maximal distributional domain;

then 𝐴 and 𝐵 are closed linear operators on 𝐸. The mapping 𝑧 ↦→ (𝑃/𝑄)(𝑧)
is analytic in a neighborhood of point 𝑧0 so that there exists an open connected
subset 𝑈 of C containing zero, satisfying additionally that the inverse mapping
(𝑃/𝑄)−1 : 𝑈 → (𝑃/𝑄)−1(𝑈) is well defined, analytic and that (𝑃/𝑄)−1(𝑈) ⊆ C−.
Let Ω be any open connected subset of C r (−∞, 0] such that Ω𝛼 ⊆ 𝑈 . Set �̃� :=

𝑠𝑝𝑎𝑛{exp(·(𝑃/𝑄)−1(𝜆𝛼)) : 𝜆 ∈ Ω}. Then it readily follows from Theorem 2.10.3
that the corresponding problems (DFP)𝑅 and (DFP)𝐿, with 𝐴 and 𝐵 replaced
respectively by 𝐴|�̃� and 𝐵|�̃� , are topologically mixing in the Banach space �̃�.

Example 2.10.6. A great number of differential operators generating strongly
continuous semigroups whose (subspace) chaoticity has been proved by applying
the Desch–Schappacher–Webb or Banasiak–Moszyński criterion (cf. [238], [292,
Chapter 3] and references cited there for corresponding examples) can be used for
construction of degenerate topologically mixing fractional PDEs, in many different
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ways. Generally speaking, let 𝒜 be a closed linear operator on 𝐸 satisfying that
there exist an open connected subset ∅ ≠ Λ of C and an analytic mapping 𝑔 : Λ →
𝐸r{0} such that 𝒜𝑔(𝜈) = 𝜈𝑔(𝜈), 𝜈 ∈ Λ. Suppose that 𝑃 (𝑧) and 𝑄(𝑧) are non-zero
complex polynomials, and 0 < 𝛼 < 2. Define 𝑆 := {𝑧 ∈ C : 𝑃 (𝑧) = 0}, Λ′ := Λr𝑆,
𝐴 := 𝑄(𝒜), 𝐵 := 𝑃 (𝒜) (with the exception of Example 2.10.15 below, this will be
a kind of prototype for construction of topologically mixing degenerate fractional
differential equations in the sequel of this section) and suppose that

(222)
𝑄

𝑃
(Λ′) ∩ {𝑡𝑒±𝑖𝛼𝜋/2 : 𝑡 > 0} ≠ ∅.

Then Theorem 2.10.3 implies that the problems (DFP)𝑅 and (DFP)𝐿 are both �̃�-
topologically mixing, with �̃� := 𝑠𝑝𝑎𝑛{𝑔(𝜈) : 𝜈 ∈ Λ}. Now we shall briefly describe
how one can employ this result in the study of topologically mixing properties of
the linearized Benney–Luke equation

(223) (𝑧0 −Δ)D𝛼
𝑡 𝑢 = 𝛼0Δ𝑢− 𝛽0Δ

2𝑢 (0 < 𝛼 < 2, 𝛼0 > 0, 𝛽0 > 0, 𝑧0 ∈ C),
on symmetric spaces of non-compact type, Damek–Ricci, Riemannian symmetric or
Heckman–Opdam root spaces (cf. [35,259,457,474] and Example 2.10.11 below).
In the integer case 𝛼 = 1, the equation (223) is also chaotic (cf. Subsection 2.3)
and, as already mentioned, this equation is important in evolution modelling of
some problems appearing in the theory of liquid filtration [199,485, p. 6]. Here
𝒜 = Δ, 𝑃 (𝑧) = 𝑧0− 𝑧 and 𝑄(𝑧) = 𝛼0𝑧−𝛽0𝑧2 (𝑧 ∈ C). Observing that the equality
𝐴𝑔(𝜈) = 𝑒𝑖𝛼𝜋/2𝑡𝐵𝑔(𝜈) holds provided that 𝑡 ∈ R and Λ ∋ 𝜈 = (2𝛽0)

−1(𝛼0 +

𝑒𝑖𝛼𝜋/2𝑡−
√︀
(𝛼0 + 𝑒𝑖𝛼𝜋/2𝑡)2 − 4𝛽0𝑒𝑖𝛼𝜋/2𝑡𝑧0), as well as that

lim
𝑡→+∞

(2𝛽0)
−1
(︁
𝛼0 + 𝑒𝑖𝛼𝜋/2𝑡−

√︁
(𝛼0 + 𝑒𝑖𝛼𝜋/2𝑡)2 − 4𝛽0𝑒𝑖𝛼𝜋/2𝑡𝑧0

)︁
= 𝑧0,

it readily follows that the condition (222) holds provided that 𝑧0 ∈ Λ. Notice that,
in this case, 𝑧0 ∈ 𝜎𝑝(𝒜) so that the operator 𝐵 is not injective.

We close this subsection by stating the following extension of [143, Theorem
2.3] and [85, Theorem 1.2].

Theorem 2.10.7. Suppose that 𝐹 ∈ {𝑅,𝐿}, 𝛼 > 0 and (𝑡𝑛)𝑛∈N is a sequence
of positive reals tending to +∞. If the set 𝐸0,𝐹 , which consists of those elements
𝑦 ∈ 𝑍𝐹 (𝐴,𝐵) ∩ �̃� for which there exists a strong solution 𝑡 ↦→ 𝑢(𝑡; 𝑦), 𝑡 > 0 of
problem (DFP)𝐹 such that lim𝑛→∞ 𝑢(𝑡𝑛; 𝑦) = 0, is dense in �̃�, and if the set
𝐸∞,𝐹 , which consists of those elements 𝑧 ∈ 𝑍𝐹 (𝐴,𝐵) ∩ �̃� for which there exist
a null sequence (𝜔𝑛)𝑛∈N ∈ 𝑍𝐹 (𝐴,𝐵) ∩ �̃� and a sequence (𝑢𝑛(·;𝜔𝑛))𝑛∈N of strong
solutions of problem (DFP)𝐹 such that lim𝑛→∞ 𝑢(𝑡𝑛;𝜔𝑛) = 𝑧, is also dense in �̃�,
then the problem (DFP)𝐹 is �̃�-topologically transitive.

Proof. The proof of theorem is quite similar to the proofs of above-mentioned
theorems. Let 𝑦, 𝑧 ∈ �̃� and 𝜀 > 0 be given in advance. Since 𝐸0,𝐹 and 𝐸∞,𝐹

are both dense in �̃�, there exist 𝑦0 ∈ 𝐸0,𝐹 ∩ �̃� and 𝑧0 ∈ 𝐸∞,𝐹 ∩ �̃� such that
‖𝑦 − 𝑦0‖ < 𝜀/2 and ‖𝑧 − 𝑧0‖ < 𝜀/3. By definition of sets 𝐸0,𝐹 and 𝐸∞,𝐹 , we
have that there exists a strong solution 𝑢(·; 𝑦0) of problem (DFP)𝐹 such that
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lim𝑛→+∞ 𝑢(𝑡𝑛; 𝑦0) = 0 and there exist a null sequence (𝜔𝑛)𝑛∈N ∈ 𝑍𝐹 (𝐴,𝐵) ∩ �̃�
and a sequence (𝑢𝑛(·;𝜔𝑛))𝑛∈N of strong solutions of problem (DFP)𝐹 such that
lim𝑛→∞ 𝑢(𝑡𝑛;𝜔𝑛) = 𝑧0. Let 𝑛0 ∈ N satisfy that ‖𝜔𝑛0‖ < 𝜀/2, ‖𝑧0 − 𝑢(𝑡𝑛0 ;𝜔𝑛0)‖ <
𝜀/3 and ‖𝑢(𝑡𝑛0 ; 𝑦0)‖ < 𝜀/3. Put 𝑥 := 𝑦0 + 𝜔𝑛0 and 𝑡 := 𝑡𝑛0 . Then

‖𝑦 − 𝑥‖ 6 ‖𝑦 − 𝑦0‖+ ‖𝜔𝑛0
‖ 6 𝜀

2
+ ‖𝜔𝑛0

‖ < 𝜀,

and

‖𝑧 − 𝑢(𝑡;𝑥)‖ = ‖𝑧 − 𝑢(𝑡; 𝑦0)− 𝑢(𝑡;𝜔𝑛0
)‖

6 ‖𝑧 − 𝑧0‖+ ‖𝑧0 − 𝑢(𝑡;𝜔𝑛0
)‖+ ‖𝑢(𝑡; 𝑦0)‖ < 3

𝜀

3
= 𝜀.

This completes the proof. �

2.10.2. Hypercyclic and topologically mixing properties of certain
classes of degenerate abstract multi-term fractional differential equa-
tions. In this subsection, we shall assume that 𝑛 ∈ N r {1}, 𝐴0 = 𝐴,𝐴1, . . . ,
𝐴𝑛−1, 𝐴𝑛 = 𝐵 are closed linear operators on 𝐸, 0 6 𝛼1 < · · · < 𝛼𝑛−1 < 𝛼𝑛 and
0 6 𝛼 < 𝛼𝑛. Fix a number 𝑖 ∈ N0

𝑚𝑛−1. Let us remind ourselves that 𝛼0 = 𝛼,
𝑚𝑗 = ⌈𝛼𝑗⌉ (𝑗 ∈ N𝑛

0 ), 𝐷𝑖 = {𝑗 ∈ N𝑛−1 : 𝑚𝑗 − 1 > 𝑖} and 𝒟𝑖 = {𝑗 ∈ N0
𝑛−1 :

𝑚𝑗 − 1 > 𝑖}. Recall that 𝑇𝑗,𝐿𝑢(𝑡) = 𝐴𝑗D
𝛼𝑗

𝑡 𝑢(𝑡), 𝑇𝑗,𝑅𝑢(𝑡) = D
𝛼𝑗

𝑡 𝐴𝑗𝑢(𝑡) and 𝑇𝑗𝑢(𝑡)
denotes exactly one of terms 𝑇𝑗,𝐿𝑢(𝑡) or 𝑇𝑗,𝑅𝑢(𝑡) (𝑡 > 0, 𝑗 ∈ N0

𝑛−1). In order to
avoid the confusion with the existence of solutions of problem [(90)-(91)], already
described in Section 2.2, we shall consider henceforth (the only exception is Re-
mark 2.10.10(i) below) the hypercyclic and topologically mixing properties of the
following degenerate abstract multi-term fractional problem:

(224)
𝐵D𝛼𝑛

𝑡 𝑢(𝑡) +

𝑛−1∑︁
𝑗=1

𝑇𝑗𝑢(𝑡) = 𝑇0𝑢(𝑡), 𝑡 > 0;

𝑢(𝑖)(0) = 𝑥, 𝑢(𝑘)(0) = 0, 𝑘 ∈ N0
𝑚𝑛−1 r {𝑖}.

This is, clearly, a problem of kind [(90)-(91)] because we can always get the term
𝑇0𝑢(𝑡) on the left hand side of (224).

Definition 2.10.8. Let �̃� be a closed linear subspace of 𝐸. Then it is said
that the equation (224) is:

(i) �̃�-hypercyclic iff there exist an element 𝑥 ∈ �̃� and a strong solution
𝑡 ↦→ 𝑢𝑖(𝑡;𝑥), 𝑡 > 0 of (224) such that {𝑢𝑖(𝑡;𝑥) : 𝑡 > 0} is a dense subset
of �̃�; such an element is called a �̃�-hypercyclic vector of (224);

(ii) �̃�-topologically transitive iff for every 𝑦, 𝑧 ∈ �̃� and for every 𝜀 > 0, there
exist an element 𝑥 ∈ �̃�, a strong solution 𝑡 ↦→ 𝑢𝑖(𝑡;𝑥), 𝑡 > 0 of (224) and
a number 𝑡 > 0 such that ‖𝑦 − 𝑥‖ < 𝜀 and ‖𝑧 − 𝑢𝑖(𝑡;𝑥)‖ < 𝜀;

(iii) �̃�-topologically mixing iff for every 𝑦, 𝑧 ∈ �̃� and for every 𝜀 > 0, there
exists 𝑡0 > 0 such that, for every 𝑡 > 𝑡0, there exist an element 𝑥𝑡 ∈ �̃�
and a strong solution 𝑡 ↦→ 𝑢𝑖(𝑡;𝑥𝑡), 𝑡 > 0 of (224), with 𝑥 replaced by 𝑥𝑡,
such that ‖𝑦 − 𝑥𝑡‖ < 𝜀 and ‖𝑧 − 𝑢𝑖(𝑡;𝑥𝑡)‖ < 𝜀.
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In the case �̃� = 𝐸, it is also said that a �̃�-hypercyclic vector of (224) is a hypercyclic
vector of (224) and(eq224 is topologically transitive, resp. topologically mixing.

The following extension of [302, Theorem 2.3] is crucially important in the
analysis of topologically mixing degenerate multi-term fractional problems.

Theorem 2.10.9. Suppose that ∅ ≠ Ω is an open connected subset of Cr {0},
𝑓 : Ω → 𝐸 r {0} is an analytic function, and 𝑓𝑗 : Ω → C r {0} is a scalar-valued
function (1 6 𝑗 6 𝑛) so that

(225) 𝐴𝑓(𝜆) = 𝑓𝑛(𝜆)𝐵𝑓(𝜆) = 𝑓𝑗(𝜆)𝐴𝑗𝑓(𝜆), 𝜆 ∈ Ω, 1 6 𝑗 6 𝑛.

Suppose, further, that Ω+ and Ω− are two non-empty subsets of Ω, and each of
them admits a cluster point in Ω. Define �̃� := 𝑠𝑝𝑎𝑛{𝑓(𝜆) : 𝜆 ∈ Ω},

(226) 𝐻𝑖(𝜆, 𝑡) := ℒ−1

(︂𝑧𝛼𝑛−𝑖−1+
∑︀

𝑗∈𝐷𝑖

𝑓𝑛(𝜆)
𝑓𝑗(𝜆)

𝑧𝛼𝑗−𝑖−1−𝜒𝒟𝑖(0)𝑓𝑛(𝜆)𝑧
𝛼−𝑖−1

𝑧𝛼𝑛 +
∑︀𝑛−1

𝑗=1
𝑓𝑛(𝜆)
𝑓𝑗(𝜆)

𝑧𝛼𝑗 − 𝑓𝑛(𝜆)𝑧𝛼

)︂
(𝑡),

and
𝐹𝑖(𝜆, 𝑡) := 𝐻𝑖(𝜆, 𝑡)𝑓(𝜆),

for any 𝑡 > 0 and 𝜆 ∈ Ω. If

(227) lim
𝑡→+∞

|𝐻𝑖(𝜆, 𝑡)| = +∞, 𝜆 ∈ Ω+ and lim
𝑡→+∞

𝐻𝑖(𝜆, 𝑡) = 0, 𝜆 ∈ Ω−,

then (224) is �̃�-topologically mixing; furthermore, if 𝐴𝑓(𝜆), 𝐵𝑓(𝜆) and 𝐴𝑗𝑓(𝜆)

belongs to �̃� for all 𝜆 ∈ Ω, then (224) is �̃�-topologically mixing with the operators
𝐴1, . . . , 𝐴𝑛−1, 𝐴 and 𝐵 replaced respectively by 𝐴1|�̃� , . . . , 𝐴𝑛−1|�̃�, 𝐴|�̃� and 𝐵|�̃�.

Proof. First of all, let us observe that the (weak) analyticity of mapping
𝜆 ↦→ 𝑓(𝜆) ∈ �̃�, 𝜆 ∈ Ω implies that the linear span of set {𝑓(𝜆) : 𝜆 ∈ Ω′} is dense
in �̃� for each non-empty subset Ω′ of Ω which admits a cluster point in Ω. Using
the analytical properties of Laplace transform stated in Theorem 1.4.10, it can be
easily proved that for each 𝜆 ∈ Ω and for each real number 𝜈 6 𝛼𝑛−1, the function

𝑡 ↦→ ℒ−1

(︂
𝑧𝜈

𝑧𝛼𝑛 +
∑︀𝑛−1

𝑗=1
𝑓𝑛(𝜆)
𝑓𝑗(𝜆)

𝑧𝛼𝑗 − 𝑓𝑛(𝜆)𝑧𝛼

)︂
(𝑡), 𝑡 > 0,

is well defined, continuous for 𝑡 > 0 and exponentially bounded (furthermore, this
function can be analytically extended to the sector Σ𝜋/2). Hence, the function 𝑡 ↦→
𝐻𝑖(𝜆, 𝑡), 𝑡 > 0 has the above-mentioned properties (𝜆 ∈ Ω). Keeping in mind the
proof of [300, Theorem 2.3] and (225)–(227), the only non-trivial thing that should
be explained is the fact that the function 𝑢𝑖(𝑡; 𝑓(𝜆)) := 𝐹𝑖(𝜆, 𝑡), 𝑡 > 0 is a strong
solution of (224) with 𝑥 = 𝑓(𝜆) (𝜆 ∈ Ω). By performing the Laplace transform,
it can be simply verified with the help of formula (39) that the above holds if we
prove that the Caputo fractional derivative D𝜁

𝑡𝐹𝑖(𝜆, 𝑡) is well defined for any 𝑡 > 0,
𝜆 ∈ Ω and 𝜁 ∈ [0, 𝛼𝑛]. For this, observe first that there exists a sufficiently large
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number 𝜔 > 0 such that the function 𝑧 ↦→ 𝑧𝜁𝐹𝑖(𝜆; 𝑡)(𝑧)− 𝜒[𝑖+1,∞)(⌈𝜁⌉)𝑧𝜁−𝑖−1𝑓(𝜆)
is identically equal to

𝑧𝛼𝑛+𝜁−𝑖−1 +
∑︀

𝑗∈𝐷𝑖

𝑓𝑛(𝜆)
𝑓𝑗(𝜆)

𝑧𝛼𝑗+𝜁−𝑖−1 − 𝜒𝒟𝑖
(0)𝑓𝑛(𝜆)𝑧

𝛼+𝜁−𝑖−1

𝑧𝛼𝑛 +
∑︀𝑛−1

𝑗=1
𝑓𝑛(𝜆)
𝑓𝑗(𝜆)

𝑧𝛼𝑗 − 𝑓𝑛(𝜆)𝑧𝛼
𝑓(𝜆),

for Re 𝑧 > 𝜔, ⌈𝜁⌉ < 𝑖− 1, 𝜆 ∈ Ω, and

−
∑︀

𝑗∈N𝑛−1r𝐷𝑖

𝑓𝑛(𝜆)
𝑓𝑗(𝜆)

𝑧𝛼𝑗+𝜁−𝑖−1 − 𝑓𝑛(𝜆)𝑧
𝛼+𝜁−𝑖−1(𝜒𝒟𝑖

(0)− 1)

𝑧𝛼𝑛 +
∑︀𝑛−1

𝑗=1
𝑓𝑛(𝜆)
𝑓𝑗(𝜆)

𝑧𝛼𝑗 − 𝑓𝑛(𝜆)𝑧𝛼
𝑓(𝜆),

for Re 𝑧 > 𝜔, ⌈𝜁⌉ > 𝑖 − 1 and 𝜆 ∈ Ω. By the foregoing, for every 𝜆 ∈ Ω and
𝜁 ∈ [0, 𝛼𝑛], there exists a continuous exponentially bounded 𝐸-valued mapping
𝑡 ↦→ 𝐺𝑖(𝜆; 𝑡; 𝜁), 𝑡 > 0 such that

˜𝐺𝑖(𝜆; 𝑡; 𝜁)(𝑧) = 𝑧𝜁𝐹𝑖(𝜆; 𝑡)(𝑧)− 𝜒[𝑖+1,∞)(⌈𝜁⌉)𝑧𝜁−𝑖−1𝑓(𝜆), Re 𝑧 > 𝜔.

Applying the Laplace transform, it can be easily checked that, for every 𝜆 ∈ Ω and
𝜁 ∈ [0, 𝛼𝑛], one has:

(228) (𝑔𝑚𝑛 *𝐺𝑖(𝜆; ·, 𝛼𝑛))(𝑡) = (𝑔𝑚𝑛−𝛼𝑛 * [𝐹𝑖(𝜆, ·)− 𝑔𝑖+1(·)𝑓(𝜆)])(𝑡), 𝑡 > 0,

(229) 𝐺𝑖(𝜆; 𝑡; 𝜁) = (𝑔𝛼𝑛−𝜁 *𝐺𝑖(𝜆; ·;𝛼𝑛))(𝑡), 𝑡 > 0, if ⌈𝜁⌉ > 𝑖− 1,

and

(230) (𝑔𝛼𝑛−𝜁*𝐺𝑖(𝜆; ·;𝛼𝑛))(𝑡)+𝑔𝑖+1−⌈𝜁⌉(𝑡)𝑓(𝜆) = 𝐺𝑖(𝜆; 𝑡; 𝜁), 𝑡 > 0, if ⌈𝜁⌉ < 𝑖−1.

Making use of (228), we get that 𝐹𝑖(𝜆, ·) ∈ 𝐶𝑚𝑛−1([0,∞) : 𝐸) for all 𝜆 ∈ Ω.
Consider first the case ⌈𝜁⌉ < 𝑖 − 1. Convoluting (228) with 𝑔1+⌈𝜁⌉−𝜁+𝛼𝑛−𝑚𝑛

(𝑡),
and using after that the definition of Caputo fractional derivatives and (230), we
get that D𝜁

𝑡𝐹𝑖(𝜆, 𝑡) = 𝐺𝑖(𝜆; 𝑡; 𝜁), 𝑡 > 0, 𝜆 ∈ Ω. Suppose finally that ⌈𝜁⌉ > 𝑖 − 1.
Then the previous equality continues to hold, which can be seen by using the same
arguments, with the equation (230) replaced by (229). �

Remark 2.10.10. (i) Consider the equation (224) with term 𝐵D𝛼𝑛
𝑡 𝑢(𝑡)

replaced by D𝛼𝑛
𝑡 𝐵𝑢(𝑡), and endowed with the same initial conditions

(therefore, the choice of initial conditions is not the same as in Section
2.2). Denote by (224)’ the above described Cauchy problem. A function
𝑢 ∈ 𝐶𝑚𝑛−1([0,∞) : 𝐸) is said to be a strong solution of problem (224)’
iff 𝑢(𝑖)(0) = 𝑥, 𝑢(𝑘)(0) = 0, 𝑘 ∈ N0

𝑚𝑛−1 r {𝑖}, the terms D𝛼𝑛
𝑡 𝐵𝑢(𝑡) and

𝑇𝑗𝑢(𝑡) are well defined and continuous for any 𝑡 > 0, 𝑗 ∈ N0
𝑛−1, and

D𝛼𝑛
𝑡 𝐵𝑢(𝑡) +

∑︀𝑛−1
𝑗=1 𝑇𝑗𝑢(𝑡) = 𝑇0𝑢(𝑡), 𝑡 > 0. As in Definition 2.10.8, it

will be said that the problem (224)’ is �̃�-topologically mixing iff for every
𝑦, 𝑧 ∈ �̃� and for every 𝜀 > 0, there exists 𝑡0 > 0 such that, for every
𝑡 > 𝑡0, there exist an element 𝑥𝑡 ∈ �̃� and a strong solution 𝑡 ↦→ 𝑢𝑖(𝑡;𝑥𝑡),
𝑡 > 0 of (224)’, with 𝑥 replaced by 𝑥𝑡, such that ||𝑦 − 𝑥𝑡|| < 𝜀 and
||𝑧 − 𝑢𝑖(𝑡;𝑥𝑡)|| < 𝜀. Then the assertion of Theorem 2.10.9 continues to
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hold for problem (224)’ because 𝐵D𝛼𝑛
𝑡 𝐹𝑖(𝜆; 𝑡) = D𝛼𝑛

𝑡 𝐵𝐹𝑖(𝜆; 𝑡), 𝑡 > 0,
𝜆 ∈ Ω.

(ii) In the present state of our knowledge, we do not know how the equalities
appearing in (227) can be proved without a direct calculation of function
𝐻𝑖(𝜆, 𝑡).

Although formulated for degenerate equations, it should be noted that Theo-
rem 2.10.9 can be also used for construction of new important examples of non-
degenerate multi-term fractional differential equations:

Example 2.10.11. Let 0 < 𝛾 6 1, 𝑎 > 0, 𝑝 > 2, and let 𝑋 be a symmetric
space of non-compact type and rank one. Our intention is to prove some results
on topologically mixing properties of the following fractional analog of strongly
damped Klein–Gordon equation (see e.g. [433, p. 276])

(231) D2𝛾
𝑡 𝑢(𝑡) + 2𝑎Δ♮

𝑋,𝑝D
𝛾
𝑡 𝑢(𝑡) + (Δ♮

𝑋,𝑝 − 𝑏)𝑢(𝑡) = 0, 𝑡 > 0.

Let 𝑃𝑝 be the parabolic domain defined in [259]; then we know that 𝑖𝑛𝑡(𝑃𝑝) ⊆
𝜎𝑝(Δ

♮
𝑋,𝑝). Consider first the equation (231) with 1/2 < 𝛾 6 1 and 𝑖 = 1. Let 𝑏 be

any positive real number such that 𝑏− 𝑃𝑝 intersects the imaginary axis. Then we
have 𝐵 = 𝐼, 𝑓2(𝜆) = 𝜆, 𝑓1(𝜆) = 𝜆/(2𝑎(𝑏− 𝜆)), 𝜆 ∈ Ω := 𝑏− 𝑖𝑛𝑡(𝑃𝑝) and

𝐻1(𝜆, 𝑡)(𝑧) =
𝑧2𝛾−2 − 2𝑎(𝑏− 𝜆)𝑧𝛾−2

𝑧2𝛾 − 2𝑎(𝑏− 𝜆)𝑧𝛾 − 𝜆
, 𝜆 ∈ Ω, 𝑡 > 0.

Observing that 𝑧2𝛾 − 2𝑎(𝑏 − 𝜆)𝑧𝛾 − 𝜆 = (𝑧𝛾 − 𝑟1(𝜆))(𝑧
𝛾 − 𝑟2(𝜆)), 𝑧 ∈ C, 𝜆 ∈ Ω,

where
𝑟1,2(𝜆) = 𝑎(𝜆− 𝑏)±

√︀
𝑎2(𝜆− 𝑏)2 + 𝜆, 𝜆 ∈ Ω,

it can be simply verified with the help of formula (43) that, for every 𝑡 > 0 and for
every 𝜆 ∈ Ω such that 𝑎2(𝜆− 𝑏)2 + 𝜆 ̸= 0,

𝐻1(𝜆, 𝑡) =
𝑡1−𝛾

2
√︀
𝑎2(𝜆− 𝑏)2 + 𝜆

[︀
𝐸𝛾,2−𝛾(𝑟1(𝜆)𝑡

𝛾)− 𝐸𝛾,2−𝛾(𝑟2(𝜆)𝑡
𝛾)
]︀

− 𝑡𝑎(𝜆− 𝑏)√︀
𝑎2(𝜆− 𝑏)2 + 𝜆

[︀
𝐸𝛾,2(𝑟1(𝜆)𝑡

𝛾)− 𝐸𝛾,2(𝑟2(𝜆)𝑡
𝛾)
]︀
.

This implies by Theorem 1.5.1 that there exist sufficiently small numbers 𝜀 > 0,
𝑥+ > 0 and a sufficiently large negative number 𝑥− < 0 such that (227) holds
with Ω+ := {𝜆 ∈ Ω : |𝜆 − 𝑥+| < 𝜀} and Ω− := {𝜆 ∈ Ω : |𝜆 − 𝑥−| < 𝜀}. By
Theorem 2.10.9, it readily follows that the equation (231) admits a topologically
mixing solution; using the consideration given in the next example, one can simply
prove that the same holds if 0 < 𝛾 6 1 and 𝑖 = 0. Observe, finally, that for
certain values of complex parameters 𝑏, 𝑑 ∈ C, the method described above proves
the existence of topologically mixing solutions of the following fractional analog of
vibrating beam type equation

D2𝛾
𝑡 𝑢(𝑡) + 2(𝑎𝐷 + 𝑏𝐼)D𝛾

𝑡 𝑢(𝑡) + (𝐷 + 𝑑𝐼)𝑢(𝑡) = 0, 𝑡 > 0,

where 𝐷 denotes the square of operator Δ♮
𝑋,𝑝.
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At the end of this subsection, we shall present an application of Theorem 2.10.9
in the study of hypercyclic and topologically mixing properties of degenerate multi-
term fractional problems involving the bounded perturbations of one-dimensional
Ornstein–Uhlenbeck operators [115,427]. Observe that we can similarly construct
corresponding examples of degenerate equations with multi-dimensional Ornstein–
Uhlenbeck operators or with 𝑛 = 3 (cf. [302, Example 1, 3.-4.]).

Example 2.10.12. Suppose 𝛼 ∈ (0, 1], 𝐸 := 𝐿2(R), 𝑐1 > 𝑐 > 𝑏
2 > 0, 𝑃 (𝑧) is

a non-zero complex polynomial, 𝑆 is the set which consists of all roots of 𝑃 (𝑧),
Ω := {𝜆 ∈ C : 𝜆 /∈ 𝑆, 𝜆 ̸= 𝑐 − 𝑐1, Re𝜆 < 𝑐 − 𝑏

2} and 𝒜𝑐𝑢 := 𝑢′′ + 𝑏𝑥𝑢′ + 𝑐𝑢 is the
bounded perturbation of the one-dimensional Ornstein–Uhlenbeck operator acting
with domain 𝐷(𝒜𝑐) := {𝑢 ∈ 𝐿2(R) ∩𝑊 2,2

𝑙𝑜𝑐 (R) : 𝒜𝑐𝑢 ∈ 𝐿2(R)}. Define 𝑔1 : Ω → 𝐸
and 𝑔2 : Ω → 𝐸 by

𝑔1(𝜆) := ℱ−1
(︀
𝑒−

𝜉2

2𝑏 𝜉|𝜉|−(2+𝜆−𝑐
𝑏 )
)︀
(·), 𝜆 ∈ Ω

and
𝑔2(𝜆) := ℱ−1

(︀
𝑒−

𝜉2

2𝑏 |𝜉|−(1+𝜆−𝑐
𝑏 )
)︀
(·), 𝜆 ∈ Ω.

Then the mapping 𝑔𝑖 : Ω → 𝐸 is analytic for 𝑖 = 1, 2, and for every open connected
subset Ω′ of Ω which admits a cluster point in Ω, one has
𝐸 = 𝑠𝑝𝑎𝑛{𝑔𝑖(𝜆) : 𝜆 ∈ Ω′, 𝑖 = 1, 2}; cf. [300, Example 2.5(iii)]. We analyze the
topologically mixing properties of the equation

(232)
(︁ 𝜕2
𝜕𝑥2

+ 𝑏𝑥
𝜕

𝜕𝑥
+ 𝑐1

)︁
D2𝛼

𝑡 𝑢(𝑡, 𝑥) + 𝑃
(︁ 𝜕2
𝜕𝑥2

+ 𝑏𝑥
𝜕

𝜕𝑥

)︁
D𝛼

𝑡 𝑢(𝑡, 𝑥) = (𝑐− 𝑐1)𝑢(𝑡),

endowed with the initial conditions described in (224); here 𝑛 = 2, 𝛼𝑗 = 𝑗𝛼 (𝑗 =
0, 1, 2), 𝐴 = (𝑐 − 𝑐1)𝐼, 𝐵 = 𝒜𝑐 + 𝐴, 𝐴1 = 𝑃 (𝒜𝑐 − 𝑐𝐼), 𝑓1(𝜆) = (𝑐 − 𝑐1)/𝑃 (𝜆 − 𝑐)
and 𝑓2(𝜆) = (𝑐− 𝑐1)/(𝜆− (𝑐− 𝑐1)) (𝜆 ∈ Ω). Put

𝑟1,2(𝜆) :=
1

2

[︂
− 𝑃 (𝜆− 𝑐)

𝜆− (𝑐− 𝑐1)
±

√︃(︁ 𝑃 (𝜆− 𝑐)

𝜆− (𝑐− 𝑐1)

)︁2
+ 4

𝑐− 𝑐1
𝜆− (𝑐− 𝑐1)

]︂
, 𝜆 ∈ Ω,

and denote by 𝑆′ the set which consists of all roots of polynomial 𝑧 ↦→ (𝑃 (𝑧−𝑐))2+
4(𝑐− 𝑐1)(𝑧 − (𝑐− 𝑐1)), 𝑧 ∈ C. Then

𝐻0(𝜆, 𝑡)(𝑧) =
𝑧2𝛼−1 + 𝑃 (𝜆−𝑐)

𝜆−(𝑐−𝑐1)
𝑧𝛼−1

𝑧2𝛼 + 𝑃 (𝜆−𝑐)
𝜆−(𝑐−𝑐1)

𝑧𝛼 − 𝑐−𝑐1
𝜆−(𝑐−𝑐1)

, 𝜆 ∈ Ω, 𝑡 > 0,

and, in the case that 1/2 < 𝛼 6 1,

𝐻1(𝜆, 𝑡)(𝑧) =
𝑧2𝛼−2

𝑧2𝛼 + 𝑃 (𝜆−𝑐)
𝜆−(𝑐−𝑐1)

𝑧𝛼 − 𝑐−𝑐1
𝜆−(𝑐−𝑐1)

, 𝜆 ∈ Ω, 𝑡 > 0,

which simply implies by the formula (43) that, for every 𝜆 ∈ Ωr 𝑆′ and 𝑡 > 0,

𝐻0(𝜆, 𝑡) =

(︀
𝑟1(𝜆) +

𝑃 (𝜆−𝑐)
𝜆−(𝑐−𝑐1)

)︀
𝑒𝑟1(𝜆)𝑡√︁(︀ 𝑃 (𝜆−𝑐)

𝜆−(𝑐−𝑐1)

)︀2
+ 4 𝑐−𝑐1

𝜆−(𝑐−𝑐1)

−

(︀
𝑟2(𝜆) +

𝑃 (𝜆−𝑐)
𝜆−(𝑐−𝑐1)

)︀
𝑒𝑟2(𝜆)𝑡√︁(︀ 𝑃 (𝜆−𝑐)

𝜆−(𝑐−𝑐1)

)︀2
+ 4 𝑐−𝑐1

𝜆−(𝑐−𝑐1)

,
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if 𝛼 = 1,

𝐻0(𝜆, 𝑡) =
𝑡−𝛼√︁(︀ 𝑃 (𝜆−𝑐)

𝜆−(𝑐−𝑐1)

)︀2
+ 4 𝑐−𝑐1

𝜆−(𝑐−𝑐1)

[︀
𝐸𝛼,1−𝛼(𝑟1(𝜆)𝑡

𝛼)− 𝐸𝛼,1−𝛼(𝑟2(𝜆)𝑡
𝛼)
]︀

+
𝑃 (𝜆− 𝑐)

𝜆− (𝑐− 𝑐1)

[︀
𝐸𝛼(𝑟1(𝜆)𝑡

𝛼)− 𝐸𝛼(𝑟2(𝜆)𝑡
𝛼)
]︀
,

if 0 < 𝛼 < 1, and

𝐻1(𝜆, 𝑡) =
𝑡1−𝛼√︁(︀ 𝑃 (𝜆−𝑐)

𝜆−(𝑐−𝑐1)

)︀2
+ 4 𝑐−𝑐1

𝜆−(𝑐−𝑐1)

[︀
𝐸𝛼,2−𝛼(𝑟1(𝜆)𝑡

𝛼)− 𝐸𝛼,2−𝛼(𝑟2(𝜆)𝑡
𝛼)
]︀
,

if 1/2 < 𝛼 6 1. Consider now the case in which 𝑃 (𝑥) ∈ R[𝑥] and 𝑃 (𝜉) > 0 for
some 𝜉 ∈ (−𝑐1, (−𝑏)/2); albeit the last condition might seem strange, it is worth
noting here that the second eqaulity in (227) does not hold provided that 𝛼 = 1
and 𝑃 (𝑥) = −𝑥 − 𝑐1, 𝑥 ∈ R. Then there exist a sufficiently small number 𝜀 > 0
and a sufficiently large negative number 𝑥+ < 0 such that, for every 𝜆′ ∈ Ω+ ≡
{𝜆 ∈ Ω : |𝜆 − 𝑥+| < 𝜀}, we have 𝑟1(𝜆′) > 0 and 𝑟2(𝜆

′) < 0. On the other hand,
it can be simply verified that there exists 𝑥− ∈ (𝑐 − 𝑐1, 𝑐 − (𝑏/2)) such that, for
every 𝜆′ ∈ Ω− ≡ {𝜆 ∈ Ω : |𝜆 − 𝑥−| < 𝜀}, we have 𝑟1(𝜆′) < 0 and 𝑟2(𝜆

′) < 0.
Keeping in mind Theorem 1.5.1, Theorem 2.10.9 and the fact that the conclusions
stated in [302, Remark 1;3.] can be extended to degenerate (multi-term) fractional
differential equations, we have that (227) holds with sets Ω+ and Ω−. An endevour
should be made for finding some other classes of complex polynomials 𝑃 (𝑧) for
which the problem (232) admits a topologically mixing solution.

2.10.3. Hypercyclic and topologically mixing properties of abstract
degenerate first and second order equations. The main purpose of this sub-
section is to provide the basic information about hypercyclic and topologically mix-
ing properties of abstract degenerate first and second order equations. We start
by stating the following proposition, the proof is a consequence of a straightfor-
ward computation and therefore omitted (cf. [292, Proposition 3.2.19] for the case
𝛼 = 2).

Proposition 2.10.13. (i) Suppose that 𝛼 = 1, 𝑥 ∈ 𝑍1,𝑅(𝐴,𝐵) (𝑥 ∈
𝑍1,𝐿(𝐴,𝐵)) and the function 𝑡 ↦→ 𝑢(𝑡;𝑥), 𝑡 > 0 is a strong solution
of (DFP)𝑅 ( (DFP)𝐿). Then, for every 𝑠 > 0, 𝑢(𝑠;𝑥) ∈ 𝑍1,𝑅(𝐴,𝐵)
(𝑢(𝑠;𝑥) ∈ 𝑍1,𝐿(𝐴,𝐵)) and a strong solution of (DFP)𝑅 ( (DFP)𝐿), with
initial condition 𝑥 replaced by 𝑢(𝑠;𝑥), is given by 𝑢(𝑡;𝑢(𝑠;𝑥)) := 𝑢(𝑡+𝑠;𝑥),
𝑡 > 0.

(ii) Suppose that 𝛼 = 2, 𝑥 ∈ 𝑍2,𝑅(𝐴,𝐵) (𝑥 ∈ 𝑍2,𝐿(𝐴,𝐵)) and the function
𝑡 ↦→ 𝑢(𝑡;𝑥), 𝑡 > 0 is a strong solution of (DFP)𝑅 ( (DFP)𝐿). Then,
for every 𝑠 > 0, 𝑢(𝑠;𝑥) ∈ 𝑍2,𝑅(𝐴,𝐵) (𝑢(𝑠;𝑥) ∈ 𝑍2,𝐿(𝐴,𝐵)) and a strong
solution of (DFP)𝑅 ( (DFP)𝐿), with initial condition 𝑥 replaced by 𝑢(𝑠;𝑥),
is given by 𝑢(𝑡;𝑢(𝑠;𝑥)) := 1

2 [𝑢(𝑡+ 𝑠;𝑥) + 𝑢(|𝑡− 𝑠|;𝑥)], 𝑡 > 0.

If 𝛼 ∈ {1, 2}, 𝐹 ∈ {𝑅,𝐿}, 𝑥 ∈ 𝑍𝛼,𝐹 (𝐴,𝐵), the strong solutions of (DFP)𝐹 are
unique, 𝑡 > 0 and 𝑢(𝑡;𝑥) = 𝑥, then Proposition 2.10.13 implies that 𝑢(𝑛𝑡;𝑥) = 𝑥,
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𝑛 ∈ N, so that the notion of a periodic point of problem (DFP)𝐹 is meaningful for
such class of degenerate first and second order equations. In contrast to this, if the
strong solutions of problem (DFP)𝐹 are not unique, the supposition 𝑢(𝑡;𝑥) = 𝑥
for some 𝑡 > 0 does not imply the validity of equality 𝑢(𝑛𝑡;𝑥) = 𝑥, 𝑛 ∈ N, in
general (cf. the final part of Example 2.10.15), so that Definition 2.10.14(i) below
can be viewed only as an attempt to define satisfactorily the notion of (subspace)
chaoticity of problem (DFP)𝐹 . Compared with the classical Devaney definition of
chaos, we assume here the (subspace) topological transitivity of problem (DFP)𝐹
in place of its hypercyclicity.

Recall that the symbol 𝐸⊕𝐸 (�̃�⊕ �̃�) denotes the direct sum of Banach spaces
𝐸 and 𝐸 (�̃� and �̃�). Define 𝐷(𝐴⊕𝐴) := 𝐷(𝐴)×𝐷(𝐴) (𝐷(𝐵⊕𝐵) := 𝐷(𝐵)×𝐷(𝐵))
and 𝐴⊕𝐴(𝑥, 𝑦) := (𝐴𝑥,𝐴𝑦), 𝑥, 𝑦 ∈ 𝐷(𝐴) (𝐵 ⊕𝐵(𝑥, 𝑦) := (𝐵𝑥,𝐵𝑦), 𝑥, 𝑦 ∈ 𝐷(𝐵)).
Then 𝐴⊕𝐴 and 𝐵 ⊕𝐵 are closed linear operators on 𝐸 ⊕ 𝐸.

Definition 2.10.14. Let 𝛼 ∈ {1, 2}, and let �̃� be a closed linear subspace of
𝐸. Then it is said that the problem (DFP)𝑅 ((DFP)𝐿) is:

(i) �̃�-chaotic, if (DFP)𝑅 ((DFP)𝐿) is �̃�-topologically transitive and the set
of �̃�-periodic points of (DFP)𝑅 ((DFP)𝐿), i.e., the set of those elements
𝑥 ∈ 𝑍𝛼,𝑅(𝐴,𝐵) ∩ �̃� (𝑥 ∈ 𝑍𝛼,𝐿(𝐴,𝐵) ∩ �̃�) for which there exist a strong
solution 𝑡 ↦→ 𝑢(𝑡;𝑥), 𝑡 > 0 of problem (DFP)𝑅 ((DFP)𝐿), and a positive
real number 𝑡 > 0 such that 𝑢(𝑡;𝑥) = 𝑥, is dense in �̃�,

(ii) �̃�-weakly mixing, if the problem (DFP)⊕𝑅 ((DFP)⊕𝐿 ), obtained by replacing
the operators 𝐴 and 𝐵 in problem (DFP)𝑅 ((DFP)𝐿) with the operators
𝐴⊕𝐴 and 𝐵 ⊕𝐵, respectively, is (�̃� ⊕ �̃�)-hypercyclic in 𝐸 ⊕ 𝐸.

Recall that we have already introduced the notions of (subspace) hypercyclic-
ity, topological transitivity and topological mixing property for problem (DFP)𝑅
((DFP)𝐿) in Definition 2.10.8. If 𝛼 = 1 and the assumptions of Theorem 2.10.3
hold, then it can be easily seen (see e.g. the proof of [143, Theorem 3.1]) that the
set of those elements 𝑥 ∈ 𝑍𝛼,𝑅(𝐴,𝐵)∩�̃� (𝑥 ∈ 𝑍𝛼,𝐿(𝐴,𝐵)∩�̃�) for which there exist
a strong solution 𝑡 ↦→ 𝑢(𝑡;𝑥), 𝑡 > 0 of problem (DFP)𝑅 ((DFP)𝐿), and a positive
real number 𝑡 > 0 such that 𝑢(𝑛𝑡;𝑥) = 𝑥 for all 𝑛 ∈ N, is dense in �̃� (no matter
whether the strong solutions of problem (DFP)𝑅 ((DFP)𝐿) are unique or not); in
particular, the set of �̃�-periodic points of problem (DFP)𝑅 ((DFP)𝐿) is dense in
�̃�, and (DFP)𝑅 ((DFP)𝐿) is �̃�-chaotic.

In the following illustrative example, we shall present some new principal fea-
tures of hypercyclic degenerate equations in comparision with non-degenerate ones
(cf. also the paragraph directly after Definition 2.10.1).

Example 2.10.15. Let 𝐼 := [0,∞), 1 6 𝑝 < ∞, let 𝜌 : 𝐼 → (0,∞) be an
admissible weight function on 𝐼, and let 𝐸 := 𝐿𝑝

𝜌(𝐼,C) (cf. [143, Definition 4.1,
Definition 4.3]). Then the set 𝒟(0,∞) is dense in 𝐸. Consider the problems (DFP)𝑅
and (DFP)𝐿 with 𝛼 = 1 and the closed linear operators 𝐵𝑢(𝑥) := 𝑢′(𝑥) + 𝑢(𝑥),
𝑥 > 0 and 𝐴𝑢(𝑥) := 𝑢′′(𝑥)− 𝑢(𝑥), 𝑥 > 0, acting with their maximal distributional
domains. We will prove that the problems (DFP)𝑅 and (DFP)𝐿 are topologically
mixing, independently of the choice of 𝜌(·). In order to do that, suppose that
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𝑦, 𝑧 ∈ 𝒟(0,∞) and 𝜀 > 0 are given in advance; let 𝑦, 𝑧 ∈ 𝒟(0,𝑙) for some 𝑙 > 0. Then
there exists a 𝐶∞ strictly decaying function 𝐻 : (−∞, 𝑙] → (0,∞) such that

(233) 𝐻(𝑙 − 𝑥) > 𝜌(𝑥+ 𝑙), 𝑥 > 0.

Let 𝐺 : R → (0,∞) by any 𝐶∞-function such that

(234) 𝐺(𝑥) 6 1, 𝑥 > 𝑙 + 1 and 𝐺(𝑥) = 𝑒−2𝑥(1 +𝐻(𝑥))1/𝑝, 𝑥 6 0.

Then a simple computation shows that, for every 𝜙 ∈ 𝒟(0,∞), the function

(235) 𝑢(𝑡;𝐺(𝑥)𝜙(𝑥)) := 𝑒−𝑡𝐺(𝑥− 𝑡)𝜙(𝑥+ 𝑡), 𝑥 > 0, 𝑡 > 0,

is a strong solution of problems (DFP)𝑅 and (DFP)𝐿, with 𝑢(0)(𝑥) = 𝐺(𝑥)𝜙(𝑥),
𝑥 > 0. Define, for every 𝑡 > 0, the function 𝑧𝑡 : 𝐼 → C by

𝑧𝑡(𝑥) := 0 for 𝑥 < 𝑡 and 𝑧𝑡(𝑥) := 𝑒𝑡
𝑢(𝑥− 𝑡)

𝐺(𝑥− 2𝑡)
for 𝑥 > 𝑡.

Then 𝑧𝑡 ∈ 𝒟(0,∞) and 𝑢(𝑡;𝐺(𝑥)𝑧𝑡(𝑥)) = 𝑧(𝑥), 𝑥 > 0 (𝑡 > 0). The existence
of positive real number 𝑡0 > 𝑙 + 1 such that the requirements of part (iii) of
Definition 2.10.1 hold simply follows if we prove that lim𝑡→+∞𝐺(𝑥)𝑧𝑡(𝑥) = 0
in 𝐸 (then, for every 𝑡 > 𝑡0, we can put 𝑥𝑡(·) := 𝑦(·) + 𝐺(·)𝑧𝑡(·), observe only
that 𝑢(𝑡;𝐺(𝑥)(𝑦(𝑥)/𝐺(𝑥))) = 0 for 𝑡 > 𝑙). This can be proved by using (233)–
(234), [143, Lemma 4.2] and the following calculus (with a suitable constant𝑀1 > 0
depending only on 𝑙 and 𝜌(·)):

‖𝐺(𝑥)𝑧𝑡(𝑥)‖𝑝 = 𝑒𝑡𝑝
∫︁ 𝑡+𝑙

𝑡

⃒⃒⃒𝑧(𝑥− 𝑡)𝐺(𝑥)

𝐺(𝑥− 2𝑡)

⃒⃒⃒𝑝
𝜌(𝑥)𝑑𝑥

6𝑀1𝑒
𝑡𝑝𝜌(𝑡+ 𝑙)

∫︁ 𝑙

0

⃒⃒⃒𝑧(𝑥)𝐺(𝑥+ 𝑡)

𝐺(𝑥− 𝑡)

⃒⃒⃒𝑝
𝑑𝑥

6𝑀1𝑒
−𝑡𝑝𝜌(𝑡+ 𝑙)

∫︁ 𝑙

0

|𝑧(𝑥)|𝑝𝑒2𝑥𝑝

1 +𝐻(𝑥− 𝑡)
𝑑𝑥

6𝑀1𝑒
−𝑡𝑝

∫︁ 𝑙

0

|𝑧(𝑥)|𝑝𝑒2𝑥𝑝𝑑𝑥, 𝑡 > 𝑙 + 1.

The above conclusions continue to hold, with almost the same proof, if 𝐼 = R,
𝜌 : 𝐼 → (0,∞) is an admissible weight function on 𝐼, and 𝐸 := 𝐿𝑝

𝜌(𝐼,C). Strictly
speaking, for any 𝜀 > 0 and 𝑦, 𝑧 ∈ 𝒟(−𝑙,𝑙) given in advance, we can simply construct
a 𝐶∞ function 𝐺 : R → (0,∞) such that 𝐺(𝑥) ∼ 𝑒𝑎𝑥, 𝑥 → −∞ for some 𝑎 >
max(0, (𝜔 − 𝑝)/2𝑝), and

𝐺(𝑥+ 𝑡) 6 𝐺(𝑡− 𝑙) 6 𝜌(𝑡+ 𝑙)(−1)/𝑝𝑒−𝑎𝑡−𝑡2 , 𝑥 > −𝑙, 𝑡 > 0;

here we assume that 𝜔 > 0 and there exists 𝑀 > 1 such that 𝜌(𝑥) 6𝑀𝑒𝜔𝑡𝜌(𝑥+ 𝑡),
𝑥, 𝑡 ∈ R. Arguing as in the case 𝐼 = [0,∞), it can be easily seen that there exists
a finite constant 𝑀2 > 1 such that∫︁ ∞

−∞

⃒⃒⃒
𝑒−𝑡𝐺(𝑥− 𝑡)

𝑦

𝐺
(𝑥+ 𝑡)

⃒⃒⃒𝑝
𝜌(𝑥)𝑑𝑥
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6𝑀𝑒(𝜔−𝑝)𝑡
⃦⃦⃦ 𝑦
𝐺
(𝑥)
⃦⃦⃦𝑝

sup
𝑥∈[−𝑙−2𝑡,𝑙−2𝑡]

𝐺(𝑥)𝑝 → 0 as 𝑡→ +∞,

and ⃦⃦⃦
𝐺(𝑥)𝑒𝑡

𝑢(𝑥− 𝑡)

𝐺(𝑥− 2𝑡)

⃦⃦⃦𝑝
=

∫︁ 𝑡+𝑙

𝑡−𝑙

⃒⃒⃒
𝐺(𝑥)𝑒𝑡

𝑢(𝑥− 𝑡)

𝐺(𝑥− 2𝑡)

⃒⃒⃒𝑝
𝜌(𝑥)𝑑𝑥

6𝑀2𝑒
𝑡𝑝𝜌(𝑡+ 𝑙)

∫︁ 𝑙

−𝑙

|𝑢(𝑥)|𝑝
⃒⃒⃒𝐺(𝑥+ 𝑡)

𝐺(𝑥− 𝑡)

⃒⃒⃒𝑝
𝑑𝑥

6𝑀2𝑒
𝑡𝑝−𝑡2

∫︁ 𝑙

−𝑙

|𝑢(𝑥)|𝑝𝑒−𝑎𝑥𝑑𝑥→ 0 as 𝑡→ +∞.

Then we can prove in a routine manner that the corresponding problems (DFP)𝑅
and (DFP)𝐿 are topologically mixing. It is also worth noting that the problems
(DFP)𝑅 and (DFP)𝐿 are chaotic in the sense of Definition 2.10.14(i), we shall only
outline the main details needed for the proof of this fact in the case that 𝐼 = R.
Clearly, it suffices to show that, for every 𝑙 > 0, 𝜀 > 0, 𝜙 ∈ 𝒟(−𝑙,𝑙) and 𝑃 > 2𝑙
given in advance, we can find a function 𝑣𝑃 ∈ 𝐸 such that ‖𝑣𝑃 − 𝜙‖ < 𝜀 and
𝑢(𝑃 ; 𝑣𝑃 (𝑥)) = 𝑣𝑃 (𝑥), 𝑥 ∈ R; cf. (235). Let 𝐺 : R → (0,∞) be any 𝐶∞ function
such that 𝐺(𝑥) = 1, 𝑥 ∈ [−𝑙 − 𝑃, 𝑙]. Using the calculation similar to that already
employed in the proof of [416, Theorem 2], we have that there exists a finite
constant 𝑀3 > 1 such that the function

𝑣𝑃,𝐺(𝑥) := 𝜙(𝑥) +
∑︁

𝑛∈Zr{0}

𝑒𝑛𝑃
𝐺(𝑥)𝐺(𝑥− 𝑃 )

𝐺(𝑥− 𝑛𝑃 )𝐺(𝑥− (𝑛+ 1)𝑃 )
𝜙(𝑥− 𝑛𝑃 ), 𝑥 > 0,

satisfies 𝑢(𝑃 ; 𝑣𝑃,𝐺(𝑥)) = 𝑣𝑃,𝐺(𝑥), 𝑥 ∈ R and

‖𝑣𝑃,𝐺 − 𝜙‖𝑝 6𝑀3

∑︁
𝑛∈Zr{0}

𝜌(𝑛𝑃 + 𝑙)𝑒𝑛𝑃
∫︁ 𝑙

−𝑙

|𝐺(𝑥+ 𝑛𝑃 )𝐺(𝑥+ (𝑛− 1)𝑃 )|𝑝𝜙(𝑥)𝑑𝑥.

The term appearing on the right hand side of the above inequality will not exceed
𝜀 if we choose 𝐺(·) sufficiently small on intervals [−𝑙 + 𝑛𝑃, 𝑙 + 𝑛𝑃 ] (𝑛 ∈ N) and
[−𝑙−𝑛𝑃, 𝑙−𝑛𝑃 ] (𝑛 ∈ Nr{1}). The problems (DFP)𝑅 and (DFP)𝐿 are also weakly
mixing; we leave the proof to the reader.

The assertion of [163, Theorem 2.1] in which S. El Mourchid has investigated
the connection between the imaginary point spectrum and hypercyclicity of strongly
continuous semigroups cannot be reformulated for degenerate fractional equations.
The following theorem shows that the above-mentioned result can be extended to
linear Sobolev equations of first order:

Theorem 2.10.16. Assume that 𝛼 = 1, 𝜔1, 𝜔2 ∈ R∪{−∞,∞}, 𝜔1 < 𝜔2, 𝑡0 > 0
and 𝑘 ∈ N. Let 𝑓𝑗 : (𝜔1, 𝜔2) → 𝐸 be a Bochner integrable function with the property
that, for every 𝑗 = 1, . . . , 𝑘, we have 𝐴𝑓𝑗(𝑠) = 𝑖𝑠𝐵𝑓𝑗(𝑠) for a.e. 𝑠 ∈ (𝜔1, 𝜔2). Put
𝜓𝑟,𝑗 :=

∫︀ 𝜔2

𝜔1
𝑒𝑖𝑟𝑠𝑓𝑗(𝑠)𝑑𝑠, 𝑟 ∈ R, 1 6 𝑗 6 𝑘.

(i) Assume that 𝑠𝑝𝑎𝑛{𝑓𝑗(𝑠) : 𝑠 ∈ (𝜔1, 𝜔2)r Ω, 1 6 𝑗 6 𝑘} is dense in 𝐸 for
every subset Ω of (𝜔1, 𝜔2) with zero measure. Let the following condition
hold
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(PS): The functions 𝑠 ↦→ 𝐵𝑓𝑗(𝑠), 𝑠 ∈ (𝜔1, 𝜔2) and 𝑠 ↦→ 𝑠𝐵𝑓𝑗(𝑠), 𝑠 ∈
(𝜔1, 𝜔2) (𝑠 ↦→ 𝑠𝑓𝑗(𝑠), 𝑠 ∈ (𝜔1, 𝜔2) and 𝑠 ↦→ 𝑠𝐵𝑓𝑗(𝑠), 𝑠 ∈ (𝜔1, 𝜔2))
are Bochner integrable for 1 6 𝑗 6 𝑘.

Then the problem (DFP)𝑅 ( (DFP)𝐿) is topologically mixing.
(ii) Put �̃� := 𝑠𝑝𝑎𝑛{𝜓𝑟,𝑗 : 𝑟 ∈ R, 1 6 𝑗 6 𝑘}. If (PS) holds, then the problem

(DFP)𝑅 ( (DFP)𝐿) is �̃�-topologically mixing.

Sketch of proof. The proof of theorem is quite similar to those of [163,
Theorem 2.1] and [291, Theorem 3.1.42(i)], and we shall only outline here that the
validity of condition (PS) implies by direct calculations that 𝑠𝑝𝑎𝑛{𝜓𝑟,𝑗 : 𝑟 ∈ R, 1 6
𝑗 6 𝑘} is contained in 𝑍1,𝑅(𝐴,𝐵) (𝑍1,𝐿(𝐴,𝐵)), as well as that 𝑢(𝑡;𝜓𝑟,𝑗) = 𝜓𝑟+𝑡,𝑗 ,
𝑡 > 0 provided 𝑟 ∈ R and 1 6 𝑗 6 𝑘.

For more details about Theorem 2.10.16, we refer the reader to [163, Remark
2.2–Remark 2.4] and [291, Remark 3.1.43]; observe only that the uniqueness of
strong solutions of (DFP)𝑅 ((DFP)𝐿) implies that the operator 𝑇𝑅(𝑡0; ·) (𝑇𝐿(𝑡0; ·))
is topologically mixing, provided that (i) holds, and that the part of operator
𝑇𝑅(𝑡0; ·) (𝑇𝐿(𝑡0; ·)) in �̃� is topologically mixing in the Banach space �̃�, provided
that (ii) holds. We shall illustrate Theorem 2.10.16 with the following simple mod-
ification of Example 2.10.5.

Example 2.10.17. Let 𝐸 := 𝐵𝑈𝐶(R) or 𝐸 := 𝐶𝑏(R), and let 𝛼 = 1, 𝜔1, 𝜔2 ∈
R ∪ {−∞,∞}, 𝜔1 < 𝜔2. Suppose that 𝑃 (𝑧) and 𝑄(𝑧) are non-zero complex poly-
nomials such that, for every 𝑠 ∈ (𝜔1, 𝜔2), all zeroes of polynomial 𝑧 ↦→ 𝑅𝑠(𝑧) ≡
𝑃 (𝑧) − 𝑖𝑠𝑄(𝑧), 𝑧 ∈ C lie on the imaginary axis. Denote by 𝑖𝑔1(𝑠), . . . , 𝑖𝑔𝑘(𝑠) the
zeroes of 𝑅𝑠(𝑧). Then there exists a positive function 𝑠 ↦→ ℎ(𝑠), 𝑠 ∈ R such that
the condition (PS) stated in the formulation of Theorem 2.10.16 holds with the
operators 𝐴 := 𝑃 (𝑑/𝑑𝑥) and 𝐵 := 𝑄(𝑑/𝑑𝑥), acting with maximal distributional
domains, and with functions 𝑓𝑗(𝑠)𝑥 = ℎ(𝑠)−1𝑒𝑖𝑔𝑗(𝑠)𝑥 (𝑠 ∈ (𝜔1, 𝜔2), 1 6 𝑗 6 𝑘,
𝑥 ∈ R). Define �̃� as in the formulation of part (ii) of Theorem 2.10.16. Then the
corresponding problems (DFP)𝑅 and (DFP)𝐿 are both �̃�-topologically mixing (it
should be observed that the uniqueness of strong solutions of problems (DFP)𝑅
and (DFP)𝐿 holds in a great number of particular choices of polynomials 𝑃 (𝑧)
and 𝑄(𝑧) satisfying the above requirements, see e.g. [6] and [306, Theorem 4.2,
Remark 4.4]).

In order to formulate The Hypercyclicity Criterion for degenerate abstract dif-
ferential equations of first order, we need to introduce some additional notions. If
𝑥 ∈ 𝑍1,𝑅(𝐴,𝐵) (𝑥 ∈ 𝑍1,𝐿(𝐴,𝐵)), then we denote by 𝑆𝑅,𝑥 (𝑆𝐿,𝑥) the set which con-
sists of all strong solutions of problem (DFP)𝑅 ((DFP)𝐿). Then a linear mapping
𝒯𝑅 : 𝑍1,𝑅(𝐴,𝐵) → 𝐶([0,∞) : 𝐸) (𝒯𝐿 : 𝑍1,𝑅(𝐴,𝐵) → 𝐶([0,∞) : 𝐸)) is said to be
regular if 𝒯𝑅(𝑥) ∈ 𝑆𝑅,𝑥, 𝑥 ∈ 𝑍1,𝑅(𝐴,𝐵) (𝒯𝐿(𝑥) ∈ 𝑆𝐿,𝑥, 𝑥 ∈ 𝑍1,𝐿(𝐴,𝐵)) and (cf.
Proposition 2.10.13(i))

𝒯𝐹 (𝒯𝐹 (𝑥)(𝑡))(𝑠) = 𝒯𝐹 (𝑥)(𝑡+ 𝑠), 𝑥 ∈ 𝑍1,𝐹 (𝐴,𝐵), 𝑡, 𝑠 > 0, 𝐹 ∈ {𝑅,𝐿}.
If 𝒯𝑅 : 𝑍1,𝑅(𝐴,𝐵) → 𝐶([0,∞) : 𝐸) (𝒯𝐿 : 𝑍1,𝑅(𝐴,𝐵) → 𝐶([0,∞) : 𝐸)) is a regular
mapping and 𝑡 > 0, then we define the linear mapping 𝑇𝑅,𝑡,𝒯 : 𝑍1,𝑅(𝐴,𝐵) →
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𝑍1,𝑅(𝐴,𝐵) (𝑇𝐿,𝑡,𝒯 : 𝑍1,𝐿(𝐴,𝐵) → 𝑍1,𝐿(𝐴,𝐵)) by 𝑇𝑅,𝑡,𝒯 (𝑥) := (𝒯𝑅(𝑥))(𝑡), 𝑥 ∈
𝑍1,𝑅(𝐴,𝐵) (𝑇𝐿,𝑡,𝒯 (𝑥) := (𝒯𝐿(𝑥))(𝑡), 𝑥 ∈ 𝑍1,𝐿(𝐴,𝐵)); notice that in the case of
uniqueness of strong solutions of (DFP)𝑅 ((DFP)𝐿), one has 𝑇𝐹,𝑡,𝒯 (𝑥) = 𝑇𝐹 (𝑡;𝑥),
𝑡 > 0, 𝑥 ∈ 𝑍1,𝐹 (𝐴,𝐵), 𝐹 ∈ {𝑅,𝐿}. A closed linear subspace �̃� of 𝐸 is said to be
𝒯𝑅-admissible (𝒯𝐿-admissible) if

𝑇𝐹,𝑡,𝒯 (𝑍1,𝐹 (𝐴,𝐵) ∩ �̃�) ⊆ 𝑍1,𝐹 (𝐴,𝐵) ∩ �̃� for 𝐹 = 𝑅 (𝐹 = 𝐿).

Observing that for any regular mapping 𝒯𝐹 (·) we have

𝑇𝐹,𝑡,𝒯𝐹
(𝑇𝐹,𝑠,𝒯𝐹

(𝑥)) = 𝑇𝐹,𝑡+𝑠,𝒯𝐹
(𝑥), 𝑥 ∈ 𝑍1,𝐹 (𝐴,𝐵), 𝑡, 𝑠 > 0, 𝐹 ∈ {𝑅,𝐿},

one can repeat verbatim the proof of [291, Theorem 3.1.34] so as to verify that the
following theorem holds true.

Theorem 2.10.18 (The Hypercyclicity Criterion for Degenerate First Order
Equations). Let 𝐹 ∈ {𝑅,𝐿}, let 𝒯𝐹 : 𝑍1,𝐹 (𝐴,𝐵) → 𝐶([0,∞) : 𝐸) be regular, and
let �̃� be a 𝒯𝐹 -admissible closed linear subspace of 𝐸. Assume that there exist subsets
𝑌1, 𝑌2 ⊆ 𝑍1,𝐹 (𝐴,𝐵) ∩ �̃�, both dense in �̃�, a mapping 𝑆 : 𝑌1 → 𝑌1 and a bounded
linear operator 𝐷 in �̃� such that:

(i) 𝑇𝐹,𝑠,𝒯𝐹
(𝑆𝑦) = 𝑦, 𝑦 ∈ 𝑌1,

(ii) lim𝑛→∞ 𝑆𝑛𝑦 = 0, 𝑦 ∈ 𝑌1,
(iii) lim𝑛→∞ 𝑇𝐹,𝑛,𝒯𝐹

(𝜔) = 0, 𝜔 ∈ 𝑌2,
(iv) 𝑅(𝐷) is dense in �̃�,
(v) 𝑅(𝐷) ⊆ 𝑍1,𝐹 (𝐴,𝐵) ∩ �̃�, 𝑇𝐹,𝑛,𝒯𝐹

𝐷 ∈ 𝐿(�̃�), 𝑛 ∈ N and
(vi) 𝐷𝑇𝐹,1,𝒯𝐹

(𝑥) = 𝑇𝐹,1,𝒯𝐹
(𝐷𝑥), 𝑥 ∈ 𝑍1,𝐹 (𝐴,𝐵) ∩ �̃�.

Then the abstract Cauchy problem (DFP)𝐹 is both (�̃�⊕�̃�)-hypercyclic and (�̃�⊕�̃�)-
topologically transitive; in particular, (DFP)𝐹 is �̃�-weakly mixing.

Before proceeding further, it should be noticed that Theorem 2.10.18 clarifies
only sufficient conditions for the (�̃� ⊕ �̃�)-hypercyclicity and (�̃� ⊕ �̃�)-topological
transitivity of the abstract Cauchy problem (DFP)𝐹 ; because of that, we can hardly
name this theorem as criterion. Observe, however, that there exist much more im-
portant results named as criteria, like the Desch–Schappacher–Webb or Banasiak–
Moszyński criterion, which clarify only sufficient conditions, here concretly, for the
(subspace) chaoticity of strongly continuous semigroups.

In some concrete situations, the assumptions of Theorem 2.10.18 can be re-
laxed; for example, if 𝐵 = 𝐼, �̃� = 𝐸 and if 𝐴 generates a global 𝐶-regularized
semigroup, with 𝑅(𝐶) being dense in 𝐸, then the conditions (iv)–(vi) automati-
cally hold (cf. [291, Subsection 3.1.4] and [137, Theorem 3.4]). Our impossibility to
define a mild solution of problem (DFP)𝐿 in a proper way, or to conclude that there
exists a mild solution of problem (DFP)𝑅 for any 𝑥 ∈ 𝐸, has a series of obvious un-
pleasant consequences concerning extending [292, Theorems 3.1.13-3.1.14, 3.1.16;
Proposition 3.1.17] to weakly mixing degenerate Cauchy problems of first order. In
contrast to the above, [85, Corollary 1.3, Theorem 1.4] (cf. also [292, Theorem
3.2.26(ii)–(iii)]) can be rephrased for degenerate second order problems:
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Theorem 2.10.19. Let �̃� be a closed linear subspace of 𝐸, let 𝛼 = 2, and let
𝐹 ∈ {𝑅,𝐿}.

(i) Suppose that (𝑡𝑛)𝑛∈N is a sequence of positive reals tending to +∞. Denote
by 𝑋1,�̃� the set which consists of those elements 𝑥 ∈ 𝑍𝐹 (𝐴,𝐵) ∩ �̃� for
which there exists a strong solution 𝑡 ↦→ 𝑢(𝑡;𝑥), 𝑡 > 0 of problem (DFP)𝐹
such that 𝑢(0;𝑥) = 𝑥 and lim𝑛→∞ 𝑢(𝑡𝑛;𝑥) = lim𝑛→∞ 𝑢(2𝑡𝑛;𝑥) = 0. If
𝑋1,�̃� is dense in �̃�, then the problem (DFP)𝐹 is �̃�-topologically transitive.

(ii) Denote by 𝑋 ′
1,�̃�

the set which consists of those elements 𝑥 ∈ 𝑍𝐹 (𝐴,𝐵)∩�̃�
for which there exists a strong solution 𝑡 ↦→ 𝑢(𝑡;𝑥), 𝑡 > 0 of problem
(DFP)𝐹 such that 𝑢(0;𝑥) = 𝑥 and lim𝑡→+∞ 𝑢(𝑡;𝑥) = 0. If 𝑋 ′

1,�̃�
is dense

in �̃�, then the problem (DFP)𝐹 is �̃�-topologically mixing.

Proof. Denote by 𝐸0,𝐹 the set which consists of those elements 𝑦 ∈ 𝑍𝐹 (𝐴,𝐵)∩
�̃� for which there exists a strong solution 𝑡 ↦→ 𝑢(𝑡; 𝑦), 𝑡 > 0 of problem (DFP)𝐹 such
that lim𝑛→∞ 𝑢(𝑡𝑛; 𝑦) = 0, and by 𝐸∞,𝐹 the set which consists of those elements
𝑧 ∈ 𝑍𝐹 (𝐴,𝐵) ∩ �̃� for which there exist a null sequence (𝜔𝑛)𝑛∈N ∈ 𝑍𝐹 (𝐴,𝐵) ∩ �̃�
and a sequence (𝑢𝑛(·;𝜔𝑛))𝑛∈N of strong solutions of problem (DFP)𝐹 such that
lim𝑛→∞ 𝑢(𝑡𝑛;𝜔𝑛) = 𝑧. Then we have the obvious inclusion 𝑋1,�̃� ⊆ 𝐸0,𝐹 , so that
𝐸0,𝐹 is dense in �̃�. Now we will prove that 𝑋1,�̃� ⊆ 𝐸∞,𝐹 . In order to do that,
suppose 𝑧 ∈ 𝑋1,�̃� . Set 𝜔𝑛 := 2𝑢(𝑡𝑛; 𝑧), 𝑛 ∈ N. Then lim𝑛→+∞ 𝜔𝑛 = 0, and
Proposition 2.10.13(ii) implies that 𝜔𝑛 ∈ 𝑍𝐹 (𝐴,𝐵), 𝑛 ∈ N; the corresponding
strong solution is given by 𝑢𝑛(𝑠;𝜔𝑛) := 𝑢(𝑠 + 𝑡𝑛; 𝑧) + 𝑢(|𝑡𝑛 − 𝑠|; 𝑧), 𝑠 > 0, 𝑛 ∈ N.
The prescribed assumptions imply that 𝑢𝑛(𝑡𝑛;𝜔𝑛) = 𝑢(2𝑡𝑛; 𝑧) + 𝑧, 𝑛 ∈ N, so that
lim𝑛→+∞ 𝑢(𝑡𝑛 : 𝜔𝑛) = 𝑧. Therefore, 𝐸∞,𝐹 is also dense in �̃� and the proof of (i)
follows from an application of Theorem 2.10.7. The proof of (ii) is quite similar
and therefore omitted. �

In order to illustrate Theorem 2.10.19(ii), suppose that 𝐼 := R, 𝜌 : 𝐼 → (0,∞)
is an admissible weight function on 𝐼, and 𝐸 := 𝐿𝑝

𝜌(𝐼,C). Let the operators
(𝐵𝑢)(𝑥) := 𝑢′′(𝑥) + 2𝑢′(𝑥) + 𝑢(𝑥), 𝑥 > 0 and (𝐴𝑢)(𝑥) := 𝑢(𝑖𝑣)(𝑥)− 2𝑢′′(𝑥) + 𝑢(𝑥),
𝑥 > 0 act with their maximal distributional domains. Then, for every 𝐶∞ function
𝐺 : R → (0,∞) and for every 𝜙 ∈ 𝒟, the function

𝑢(𝑡;𝐺(𝑥)𝜙(𝑥)) := 1
2 [𝑒

−𝑡𝐺(𝑥− 𝑡)𝜙(𝑥+ 𝑡) + 𝑒𝑡𝐺(𝑥+ 𝑡)𝜙(𝑥− 𝑡)], 𝑥 ∈ R, 𝑡 > 0,

is a strong solution of problem (DFP)𝑅 ((DFP)𝐿) with 𝛼 = 2, and 𝑢(0;𝐺(𝑥)𝜙(𝑥)) =
𝐺(𝑥)𝜙(𝑥), 𝑥 > 0. Arguing as in Example 2.10.15 we can prove that 𝒟 ⊆ 𝑋 ′

1,�̃�
.

Hence, the problem (DFP)𝑅 ((DFP)𝐿) is topologically mixing by Theorem
2.10.19(ii).

For further information on hypercyclicity and topologically mixing property of
non-degenerate differential equations of first and second order, we refer the reader
to the work of T. Kalmes [264,266]. Li–Yorke chaotic properties of abstract non-
degenerate differential equations of first order has recently been analyzed in [328].
As pointed out there, we are not in a position to apply the method from our previous
research of distributionally chaotic properties of linear operators [112] (cf. also
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Section 2.11 and [68]) in the analysis of Li–Yorke chaotic properties of abstract non-
degenerate fractional differential equations. For more more details about Li–Yorke
chaotic and distributionally chaotic properties of abstract degenerate differential
equations, we refer the reader to [294].

2.10.4. 𝒟-Hypercyclic and 𝒟-topologically mixing properties of de-
generate fractional differential equations. In this subsection, we shall work
in the setting of separable infinite-dimensional Fréchet spaces over the field C. Let
𝐸 be such a space; the use of symbol 𝒟 is clear from the context.

In [237], K.-G. Grosse-Erdmann and S. G. Kim have proposed the way of com-
puting the orbit of a pair (𝑥, 𝑦) under the action of a bilinear mapping 𝐵 : 𝐸×𝐸 →
𝐸, with 𝐸 being a separable Banach space. After that, the notion of bihyper-
cyclicity of mapping 𝐵 has been introduced. Several interesting examples of bihy-
percyclic bilinear mappings have been presented in [237], showing also that every
separable Banach space supports a bihypercyclic bilinear mapping as well as that
every separable Banach space 𝐸 supports a bihypercyclic symmetric bilinear map-
ping whenever 𝐸 supports a non-injective hypercyclic operator. In the setting of
infinite-dimensional separable Fréchet spaces, a slightly different way of computing
the orbit of a pair (𝑥, 𝑦) under the action of bilinear mapping 𝐵 has been proposed
by J. Bès and J. A. Conejero in [70, Definition 1]. The notion of orbit of a tuple
(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝐸𝑁 under the action of an 𝑁 -linear operator 𝑀 : 𝐸𝑛 → 𝐸 and
the notion of supercyclicity of the operator 𝑀 have been introduced in the same
definition, while the notion of 𝑁 -linear Devaney chaos of 𝑀 has been introduced
in [70, Definition 18] (𝑁 > 2). In [70, Theorem 5, Theorem 8], it has been proved
that every separable infinite-dimensional Fréchet space 𝐸 supports, for any integer
𝑁 > 2, an 𝑁 -linear operator having a residual set of supercyclic vectors as well as
that, for any integer 𝑁 > 2, there exists an 𝑁 -linear operator on the space 𝜔 = KN

(endowed with the product topology) that supports a dense 𝑁 -linear orbit. The
existence of hypercyclic 𝑁 -linear operators on the Fréchet space H(C) has been
investigated in [70, Section 4].

Following the approaches used in [237] and [70], we define the orbits
Orb(𝑆; (𝐵𝑖)16𝑖6𝑙) and Orb(𝑆; (𝑀𝑖)16𝑖6𝑙) for any non-empty subset 𝑆 of 𝐸𝑁 and
any mappings 𝐵𝑖 : (𝐸

𝑁 )𝑏𝑖 → 𝐸𝑁 , 𝑀𝑖 : 𝐸
𝑁 → 𝐸 (1 6 𝑖 6 𝑙); before going any fur-

ther, it would be worthwhile to note that, in our analysis, these mappings need not
be (separately) linear or continuous. Having this done, we have an open door (after
a necessary patching up with some technicalities concerning the well-posedness of
problem [(236)–(237)] below) to introduce the notions of D-hypercyclicity and D-
topologically mixing property of degenerate abstract multi-term fractional problems
(for more details, cf. Definition 2.10.20). In Theorem 2.10.22 and Theorem 2.10.23,
we reformulate [237, Theorem 2] in our context, and prove the conjugacy lemma
for abstract degenerate multi-term fractional differential equations. The main ob-
jective in Theorem 2.10.24 is to clarify the kind of Desch–Schappacher–Webb and
Banasiak–Moszyński criteria ( [48,122,143]) for D-topologically mixing of certain
classes of abstract degenerate higher-order differential equations with integer order
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derivatives. As explained in Remark 2.10.25(iii), Theorem 2.10.24 cannot be so eas-
ily transmitted to abstract degenerate differential equations with Caputo fractional
derivatives.

Let 𝑛 ∈ N r {1}, 0 = 𝛼0 < 𝛼1 < · · · < 𝛼𝑛, 𝑓 ∈ 𝐶([0,∞) : 𝐸), and let
𝐴0, 𝐴1, . . . , 𝐴𝑛−1, 𝐵 be closed linear operators on 𝐸. Denote 𝑚𝑖 = ⌈𝛼𝑖⌉, 𝑖 ∈ N0

𝑛,
𝐴0 = 𝐴, 𝐴𝑛 = 𝐵, 𝑇𝑖,𝐿𝑢(𝑡) = 𝐴𝑖D

𝛼𝑖
𝑡 𝑢(𝑡), if 𝑡 > 0, 𝑖 ∈ N0

𝑛 and 𝛼𝑖 > 0, 𝑇𝑖,𝑅𝑢(𝑡) =
D𝛼𝑖

𝑡 𝐴𝑖𝑢(𝑡), if 𝑡 > 0 and 𝑖 ∈ N0
𝑛. Henceforth we shall always assume that, for every

𝑡 > 0 and 𝑖 ∈ N0
𝑛, 𝑇𝑖𝑢(𝑡) denotes either 𝑇𝑖,𝐿𝑢(𝑡) or 𝑇𝑖,𝑅𝑢(𝑡). Denote, with a little

abuse of notation,

𝑃𝜆 = 𝜆𝛼𝑛𝐵 +

𝑛−1∑︁
𝑖=0

𝜆𝛼𝑖𝐴𝑖, 𝜆 ∈ Cr {0},

ℐ = {𝑖 ∈ N0
𝑛 : 𝛼𝑖 > 0 and 𝑇𝑖,𝐿𝑢(𝑡) appears on the left hand side of (236)}, 𝑄 =

max ℐ, if ℐ ≠ ∅ and 𝑄 = 𝑚𝑄 = 0, if ℐ = ∅. In this subsection, we introduce
and further analyze the notions of 𝒟-hypercyclicity and 𝒟-topologically mixing
property of the following homogeneous degenerate abstract multi-term problem:

(236)
𝑛∑︁

𝑖=0

𝑇𝑖𝑢(𝑡) = 0, 𝑡 > 0,

equipped with the following initial conditions (cf. also Section 2.2; the problem is
the same but the summation of 𝑇𝑖𝑢(𝑡) is taken over all 𝑖 going from 1 to 𝑛− 1):

(237) 𝑢(𝑗)(0) = 𝑢𝑗 , 0 6 𝑗 6 𝑚𝑄 − 1 and (𝐴𝑖𝑢)
(𝑗)(0) = 𝑢𝑖,𝑗 if 𝑚𝑖 − 1 > 𝑗 > 𝑚𝑄.

If 𝑇𝑛𝑢(𝑡) = 𝑇𝑛,𝐿𝑢(𝑡), then (237) reads as follows:

𝑢(𝑗)(0) = 𝑢𝑗 , 0 6 𝑗 6 𝑚𝑛 − 1.

Although the introduced notions seem to be new even for non-degenerate abstract
differential equations of first order [445], we shall focus our attention almost com-
pletely on degenerate multi-term problems.

In Subsection 2.10.1, we have investigated the hypercyclicity and topologically
mixing property of the equations (DFP)𝑅 and (DFP)𝐿 with 𝑥0 = 𝑥 and 𝑥1 = · · · =
𝑥𝑚−1 = 0, as well as the problem

(238) 𝐵D𝛼𝑛
𝑡 𝑢(𝑡) +

𝑛−1∑︁
𝑖=0

𝑇𝑖𝑢(𝑡) = 0, 𝑡 > 0; 𝑢(𝑗)(0) = 𝑢𝑗 , 𝑗 = 0, . . . ,𝑚𝑛 − 1,

provided that there exists an index 𝑖 ∈ N0
𝑚𝑛−1 such that 𝑢𝑗 = 0, 𝑗 ∈ N0

𝑚𝑛−1 r {𝑖}.
Here we continue the study of hypercyclicity and topologically mixing property
of problems (238) and (DFP)𝑅 by allowing that there exist two or more non-
zero components of the tuple (𝑢0, . . . , 𝑢𝑚𝑛−1) (i.e., the tuple (𝐵𝑢0, . . . , 𝐵𝑢𝑚−1) in
the case of consideration of problem (DFP)𝑅). The analysis of 𝒟-hypercyclicity
and 𝒟-topologically mixing property of problem [(236)–(237)] is very intricate in
general case and, with the exception of some minor facts and results concerning the
existence and uniqueness of solutions, the most general abstract form of problem
[(236)–(237)] will not be considered in this subsection any longer (cf. Subsection
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2.11.2 for some results on distributionally chaotic properties of this problem). The
notion of a strong solution of problem [(236)–(237)] will be understood in the sense
of Definition 2.3.1.

For any 𝑝 ∈ N and 𝑟 ∈ N𝑝, we define Proj𝑟,𝑝 : 𝐸𝑝 → 𝐸 by Proj𝑟,𝑝(𝑥1, . . . , 𝑥𝑝) :=
𝑥𝑟, �⃗� = (𝑥1, . . . , 𝑥𝑝) ∈ 𝐸𝑝. Denote by T the exact number of initial values subjected
to the equation [(236)–(237)]; in other words, T is the sum of number 𝑚𝑄 and the
cardinality of set consisting of those pairs (𝑖, 𝑗) ∈ N𝑛 × N0

𝑚𝑛−1 for which 𝑚𝑖 − 1 >
𝑗 > 𝑚𝑄. To make this thing more precise, suppose that {𝑖1, . . . , 𝑖𝑠} = {𝑖 ∈ N𝑛 :
𝑚𝑖 − 1 > 𝑚𝑄} and 𝑖1 < · · · < 𝑖𝑠. Then the set of all initial values appearing in
(237) is given by {𝑢0, . . . , 𝑢𝑚𝑄−1;𝑢𝑖1,𝑚𝑄

, . . . , 𝑢𝑖1,𝑚𝑖1−1; . . . ;𝑢𝑖𝑠,𝑚𝑄
, . . . , 𝑢𝑖𝑠,𝑚𝑖𝑠−1}

= {(𝑢𝑗)06𝑗6𝑚𝑄−1; (𝑢𝑖𝑠′ ,𝑗)16𝑠′6𝑠,𝑚𝑄6𝑗6𝑚𝑖
𝑠′

−1} so that T = 𝑚𝑖1 + · · ·+𝑚𝑖𝑠 + (1−
𝑠)𝑚𝑄. Denote by Z (Z𝑢𝑛𝑖𝑞) the set of all tuples of initial values �⃗� = ((𝑢𝑗)06𝑗6𝑚𝑄−1;

(𝑢𝑖𝑠′ ,𝑗)16𝑠′6𝑠,𝑚𝑄6𝑗6𝑚𝑖
𝑠′

−1) ∈ 𝐸T for which there exists a (unique) strong solution
of problem [(236)–(237)]. Then Z is a linear subspace of 𝐸T and Z𝑢𝑛𝑖𝑞 ⊆ Z. The
equality Z = Z𝑢𝑛𝑖𝑞 holds iff the zero function is a unique strong solution of the
problem [(236)–(237)] with the initial value �⃗� = 0⃗. For any �⃗� ∈ Z, we denote by
S(�⃗�) the set consisting of all strong solutions of problem [(236)–(237)] with the
initial value �⃗�. In the remainder of this section, we shall only explore the problems
(238) and (DFP)𝑅; observe that the problem (DFP)𝐿 is a very special case of
problem (238) and that T = 𝑚𝑛 for problem (238), and T = 𝑚 for problem (DFP)𝑅.
By (PQ) we denote either (238) or (DFP)𝑅. We shall always assume henceforth
that ∅ ≠𝑊 ⊆ NT, 𝐸𝑖 is a linear subspace of 𝐸 (𝑖 ∈𝑊 ), �̃�, �̌� are linear subspaces
of 𝐸T, as well as that 𝛽 := (𝛽0, 𝛽1, . . . , 𝛽T−1) ∈ [0, 𝛼𝑛]

T, 𝑙 ∈ N, ∅ ≠ 𝑆 ⊆ 𝐸T,
𝐵𝑖 : (𝐸

T)𝑏𝑖 → 𝐸T and 𝑀𝑖 : 𝐸
T → 𝐸 are given mappings (𝑏𝑖 ∈ N for 1 6 𝑖 6 𝑙).

Set B := (�̃�, �̌�, 𝑆, (𝐵𝑖)16𝑖6𝑙, {𝐸𝑖 : 𝑖 ∈ 𝑊}, 𝛽) and M := (�̃�, �̌�, 𝑆, (𝑀𝑖)16𝑖6𝑙, {𝐸𝑖 :

𝑖 ∈ 𝑊}, 𝛽). Let P : Z → 𝑃 (∪�⃗�∈ZS(�⃗�)) be a fixed mapping satisfying ∅ ̸= P(�⃗�) ⊆
S(�⃗�), �⃗� ∈ Z. Following K.-G. Grosse-Erdmann-S. G. Kim [237, pp. 701-702], we
introduce the set U𝑝(𝑆) (𝑝 ∈ N0) recursively by U0(𝑆) := 𝑆, U𝑝+1(𝑆) := U𝑝(𝑆) ∪
{𝐵𝑖(𝑥1, . . . , 𝑥𝑏𝑖) : 1 6 𝑖 6 𝑙, 𝑥1, . . . , 𝑥𝑏𝑖 ∈ U𝑝(𝑆)}. If T > 2, then we introduce the
set U𝑝(𝑆) (𝑝 ∈ N0) following the approach of J. Bès-J. A. Conejero [70, pp. 2-3]:
U0(𝑆) =: 𝑆, U𝑝+1(𝑆) := U𝑝(𝑆) ∪ {(𝑥2, 𝑥3, . . . , 𝑥T,𝑀𝑖(𝑥1, 𝑥2, . . . , 𝑥T)) : 1 6 𝑖 6
𝑙, (𝑥1, 𝑥2, . . . , 𝑥T) ∈ U𝑝(𝑆)}; if T = 1, then U𝑝(𝑆) := 𝑆, 𝑝 ∈ N0. Define

Orb(𝑆; (𝐵𝑖)16𝑖6𝑙) :=
⋃︁

𝑝∈N0

U𝑝(𝑆), Orb(𝑆; (𝑀𝑖)16𝑖6𝑙) :=
⋃︁

𝑝∈N0

U𝑝(𝑆),

and denote by ℳB (ℳM) the set consisting of those tuples �⃗� ∈ Orb(𝑆; (𝐵𝑖)16𝑖6𝑙)∩
Z (�⃗� ∈ Orb(𝑆; (𝑀𝑖)16𝑖6𝑙) ∩ Z) for which Proj𝑖,T(�⃗�) ∈ 𝐸𝑖, 𝑖 ∈𝑊 . In the sequel, we
shall denote by𝐷𝑖 (D) either 𝐵𝑖 or𝑀𝑖 (B or M) and, in the case that 𝑙 = 1, we shall
also write Orb(𝑆;𝐵1), Orb(𝑆;𝑀1) and Orb(𝑆;𝐷1) in place of Orb(𝑆; (𝐵𝑖)16𝑖6𝑙),
Orb(𝑆; (𝑀𝑖)16𝑖6𝑙) and Orb(𝑆; (𝐷𝑖)16𝑖6𝑙), respectively. A similar terminological
agreement will be used in the case that the set 𝑊 is a singleton.

Motivated by some results from the theory of abstract higher-order differential
equations with integer order derivatives, obtained by the usual converting of higher-
order equations into first order matrix differential equations by introducing the
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derivative, the second derivative, ... , the (𝑛 − 1)th derivative of the unknown 𝐸-
valued function as a part of a new enlarged unknown 𝐸𝑛-valued function (cf. [541,
pp. 79-83], [199, Section 5.7], [210, Theorem 5.6.3] and Theorem 2.10.24 below for
further information), we would like to propose the following definition (concerning
the abstract multi-term differential equations with Caputo fractional derivatives,
we do not yet recognize the ideal option for work).

Definition 2.10.20. The abstract Cauchy problem (238) is said to be:
(i) (D,P)-hypercyclic iff there exist a tuple �⃗� ∈ ℳD ∩ �̃� and a function

𝑢(·; �⃗�) ∈ P(�⃗�) such that {((D𝛽0
𝑠 𝑢(𝑠; �⃗�))𝑠=𝑡, (D

𝛽1
𝑠 𝑢(𝑠; �⃗�))𝑠=𝑡, . . . ,

(D
𝛽T−1
𝑠 𝑢(𝑠; �⃗�))𝑠=𝑡) : 𝑡 > 0} is a dense subset of �̌�; such a vector is called

a (D,P)-hypercyclic vector of problem (238).
(ii) D-hypercyclic iff it is (D,S)-hypercyclic; any (D,S)-hypercyclic vector of

problem (238) will be also called a D-hypercyclic vector of problem (238).
(iii) DP-topologically transitive iff for every open non-empty subsets 𝑈 and 𝑉

of 𝐸T satisfying that 𝑈∩�̃� ̸= ∅ and 𝑉 ∩�̌� ̸= ∅, there exist a tuple �⃗� ∈ ℳD,
a function 𝑢(·; �⃗�) ∈ P(�⃗�) and a number 𝑡 > 0 such that �⃗� ∈ 𝑈 ∩ �̃� and
((D𝛽0

𝑠 𝑢(𝑠; �⃗�))𝑠=𝑡, (D
𝛽1
𝑠 𝑢(𝑠; �⃗�))𝑠=𝑡, . . . , (D

𝛽T−1
𝑠 𝑢(𝑠; �⃗�))𝑠=𝑡) ∈ 𝑉 ∩ �̌�.

(iv) D-topologically transitive iff it is DS-topologically transitive.
(v) DP-topologically mixing iff for every open non-empty subsets 𝑈 and 𝑉

of 𝐸T satisfying that 𝑈 ∩ �̃� ̸= ∅ and 𝑉 ∩ �̌� ̸= ∅, there exists a num-
ber 𝑡0 > 0 such that, for every number 𝑡 > 𝑡0, there exist a tuple
𝑥𝑡 ∈ ℳD and a function 𝑢(·;𝑥𝑡) ∈ P(𝑥𝑡) such that 𝑥𝑡 ∈ 𝑈 ∩ �̃� and
((D𝛽0

𝑠 𝑢(𝑠; �⃗�𝑡))𝑠=𝑡, (D
𝛽1
𝑠 𝑢(𝑠;𝑥𝑡))𝑠=𝑡, . . . , (D

𝛽T−1
𝑠 𝑢(𝑠;𝑥𝑡))𝑠=𝑡) ∈ 𝑉 ∩ �̌�.

(vi) D-topologically mixing iff it is DS-topologically mixing.

If Q(�⃗�) is any non-empty subset consisting of solutions of problem (DFP)𝑅
with the initial value �⃗�, then we denote by Q𝑠(�⃗�) the set Q(�⃗�) ∩ 𝐶𝑚−1([0,∞) :
𝐸) (�⃗� ∈ Z). We introduce the notions of (D,P𝑠)-hypercyclicity, DP𝑠-topological
transitivity and DP𝑠 -topologically mixing property of problem (DFP)𝑅 in the same
way as in Definition 2.10.20, with the sets P(�⃗�) and P(𝑥𝑡) replaced respectively
by P𝑠(�⃗�) and P𝑠(𝑥𝑡). Finally, we say that the problem (DFP)𝑅 is D-hypercyclic
(D-topologically transitive, D-topologically mixing) iff it is DS𝑠

-hypercyclic (DS𝑠
-

topologically transitive, DS𝑠
-topologically mixing).

Remark 2.10.21. (i) We have presented only one way for computing the
orbit Orb(𝑆;(𝐷𝑖)16𝑖6𝑙). In the case that T>2, the orbit Orb(𝑆;(𝐷𝑖)16𝑖6𝑙)
can have a very unpleasant form and it is very difficult to say, in general,
whether there exists an element of Orb(𝑆; (𝐷𝑖)16𝑖6𝑙) that is a (D,P)-
hypercyclic vector of problem (238). On the other hand, in the defi-
nition of ℳD we can take any non-empty subset 𝑆′ of 𝐸T instead of
Orb(𝑆; (𝐷𝑖)16𝑖6𝑙); but, this is only a very special case of our definition
with D = B, 𝑙 = 1, 𝑏1 = 1 and 𝐵1 : 𝐸T → 𝐸T being the identity
mapping. It is also worth noting that the continuous version of Herrero-
Bourdon theorem [238, Theorem 7.17, pp. 190-191] suggests us to define
the set ℳD as the union of those vectors �⃗� ∈ 𝑠𝑝𝑎𝑛{Orb(𝑆; (𝐷𝑖)16𝑖6𝑙)}∩Z
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for which Proj𝑖,T(�⃗�) ∈ 𝐸𝑖, 𝑖 ∈ 𝑊 . If we define ℳD in such a way, then
the assertion of Theorem 2.10.23 below continues to hold, the assertion
of Theorem 2.10.22 continues to hold with the mapping P′(·) = 𝑐P(·/𝑐)
replaced by P(·), while the assertion of Theorem 2.10.24 continues to
hold if we assume that {𝑥𝜆 : 𝜆 ∈ Ω} ⊆ Orb(𝑆; (𝐷𝑖)16𝑖6𝑙). Observe also
that the various notions of hypercyclicity and topologically mixing of ab-
stract degenerate equations introduced in Definition 2.10.1 and Definition
2.10.8 are special cases of the notion introduced in Definition 2.10.20, and
that [301, Theorem 2.4] can be restated in our context.

(ii) Let 0 6 𝛽 6 𝛼 < 2, and let the requirements of Theorem 2.10.3 hold
(in (iii) and in the sequel of (ii) of this remark, we will use the almost
same terminology as in Subsection 2.10.1; the only exception will be the
notation used to denote the space �̃�). Applying Theorem 1.5.1, we get
that

lim
𝑡→+∞

𝑡𝛼−𝛽𝐸𝛼,𝛼−𝛽+1(𝜆
𝛼𝑡𝛼)

𝐸𝛼(𝜆𝛼𝑡𝛼)
= 𝜆𝛽−𝛼, 𝜆 ∈ C+

and
lim

𝑡→+∞
𝑡𝛼−𝛽𝐸𝛼,𝛼−𝛽+1(𝜆

𝛼𝑡𝛼) = 0, 𝜆 ∈ Ω0,−.

Using the identity

D𝛽
𝑡 𝐸𝛼(𝜆

𝛼𝑡𝛼) = 𝜆𝛼𝑡𝛼−𝛽𝐸𝛼,𝛼−𝛽+1(𝜆
𝛼𝑡𝛼), 𝑡 > 0, 𝜆 ∈ Cr (−∞, 0],

which can be shown directly, we may conclude by a careful inspection of
the proof of Theorem 2.10.3 that the problem (DFP)𝐿 is DP-topologically
mixing, provided that 𝛽 = (𝛽, 𝛽), 𝑊 = {1}, �̂�1 = 𝑠𝑝𝑎𝑛{𝑓(𝜆𝛼) : 𝜆 ∈ Ω},
�̃� = �̂�1 × {0}, �̌� = {(𝑧, 𝑧) : 𝑧 ∈ �̂�1}, �̂�1 × {0} ⊆ Orb(𝑆; (𝐷𝑖)16𝑖6𝑙)
and P((

∑︀𝑚
𝑖=1 𝛼𝑖𝑓(𝜆

𝛼
𝑖 ), 0)) = {

∑︀𝑚
𝑖=1 𝛼𝑖𝐸𝛼(·𝛼𝜆𝛼𝑖 )𝑓(𝜆𝛼𝑖 )} (𝑚 ∈ N, 𝛼𝑖 ∈ C,

𝜆𝑖 ∈ Ω for 1 6 𝑖 6 𝑚); this, in turn, implies that the problem (DFP)𝑅
is DP𝑠

-topologicially mixing (the only thing worth noticing here is that,
given 𝑦 and 𝑧 as in the proof of Theorem 2.10.3, the vector 𝑥𝑡 can be
chosen to be (𝑦 +

∑︀𝑚
𝑗=1

𝛾𝑗

𝜆𝑗
𝛽
𝐸𝛼(𝜆𝑗

𝛼
𝑡𝛼)
𝑓(𝜆𝑗

𝛼
), 0), 𝑡 > 0 sufficiently large).

The above is a slight improvement of above-mentioned result, which can be
applied in the analysis of fractional analogues of the linearized Boussinesq
equation (𝜎2Δ − 1)𝑢𝑡𝑡 + 𝛾2Δ𝑢 = 0 on symmetric spaces of non-compact
type, as well. Observe, finally, that Definition 2.10.20, Definition 2.10.1
and Definition 2.10.8 have some advantages over [300, Definition 2.2] and
[302, Definition 2.2]. For example, an application of Theorem 2.10.3 shows
that the abstract Cauchy problems (DFP)𝑅 and (DFP)𝐿, with 1 < 𝛼 < 2,
𝐸 = 𝐿2(R), 𝐵 = 𝐼 and 𝐴 = 𝒜𝑐 being the bounded perturbation of
the one-dimensional Ornstein–Uhlenbeck operator from [300, Example
2.5(iii)], are both topologically mixing in the sense of Definition 2.10.1;
the topologically mixing property of corresponding problems in the sense
of [300, Definition 2.2] can be proved only in the case that 0 < 𝛼 6 1,
cf. [115] and [300].
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(iii) Consider the situation of Theorem 2.10.9 with the second equality in (227)
replaced by

lim
𝑡→+∞

D
𝛽𝑗

𝑡 𝐻𝑖(𝜆, 𝑡) = 0, 𝜆 ∈ Ω−, 0 6 𝑗 6 T− 1,

and with the first equality in (227) replaced by

lim
𝑡→+∞

|𝐹 (𝜆, 𝑡)| = +∞, 𝜆 ∈ Ω+, 0 6 𝑗 6 T− 1,

where 𝑎 > 0 and 𝐹 : Ω+ × (𝑎,+∞) → C is a certain function. Set
𝐸0 := 𝑠𝑝𝑎𝑛{𝑓(𝜆) : 𝜆 ∈ Ω}. If we suppose additionally that there exist
complex numbers 𝐺𝛽0 , . . . , 𝐺𝛽T−1

such that

lim
𝑡→+∞

D
𝛽𝑗

𝑡 𝐻𝑖(𝜆, 𝑡)

𝐹 (𝜆, 𝑡)
= 𝐺𝛽𝑗

, 𝜆 ∈ Ω+, 0 6 𝑗 6 T− 1,

then the proof of Theorem 2.10.9 shows that the abstract Cauchy prob-
lem (238) is DP-topologically mixing, provided that 𝑊 = {𝑖}, 𝐸𝑖 = 𝐸0,
�̃� = {�⃗� ∈ 𝐸T : Proj𝑖,T(�⃗�) ∈ 𝐸0 and Proj𝑗,T(�⃗�) = 0 for 𝑗 ∈ NT r
{𝑖}}, �̌� = {(𝐺𝛽0

𝑧, . . . , 𝐺𝛽T−1
𝑧) : 𝑧 ∈ �̂�1}, �̃� ⊆ Orb(𝑆; (𝐷𝑗)16𝑗6𝑙) and

P((
∑︀𝑚

𝑗=1 𝛼𝑗𝑓(0, . . . , 𝜆𝑗 , . . . , 0)) = {
∑︀𝑚

𝑗=1 𝛼𝑗𝐻𝑖(𝜆𝑗 , ·)𝑓(𝜆𝑗)} (𝑚 ∈ N, 𝛼𝑗 ∈
C, 𝜆𝑗 ∈ Ω for 1 6 𝑗 6 𝑚), where 𝜆𝑗 appears on 𝑖-th place starting from
zero (there exists a great number of concrete examples in which the above
conditions hold with �⃗� being the constant multiple of (1, 1, . . . , 1), see
e.g. our analysis of topologically mixing properties of strongly damped
Klein–Gordon equation in Example 2.10.11; we refer the reader to The-
orem 2.10.24 and Example 2.10.26 for the case in which 𝛽 is not of the
form described above). Also, it should be noticed that the comments
from (ii) and (iii) can be formulated in the light of [300, Remark 1(iii)]
and [302, Remark 1;3.], as well as that the proof of Theorem 2.10.9 implies
that the term D𝛽𝑙

𝑡 𝐻𝑖(𝜆, 𝑡) is equal to

ℒ−1

(︃
𝑧𝛼𝑛+𝛽𝑙−𝑖−1 +

∑︀
𝑗∈𝐷𝑖

𝑓𝑛(𝜆)
𝑓𝑗(𝜆)

𝑧𝛼𝑗+𝛽𝑙−𝑖−1 − 𝜒𝒟𝑖
(0)𝑓𝑛(𝜆)𝑧

𝛼+𝛽𝑙−𝑖−1

𝑧𝛼𝑛 +
∑︀𝑛−1

𝑗=1
𝑓𝑛(𝜆)
𝑓𝑗(𝜆)

𝑧𝛼𝑗 − 𝑓𝑛(𝜆)𝑧𝛼

)︃
(𝑡),

for 𝑡 > 0, 𝜆 ∈ Ω, 𝑙 ∈ N0
T−1, ⌈𝛽𝑙⌉ < 𝑖− 1, and

ℒ−1

(︃
−
∑︀

𝑗∈N𝑛−1r𝐷𝑖

𝑓𝑛(𝜆)
𝑓𝑗(𝜆)

𝑧𝛼𝑗+𝛽𝑙−𝑖−1 − 𝑓𝑛(𝜆)𝑧
𝛼+𝛽𝑙−𝑖−1(𝜒𝒟𝑖

(0)− 1)

𝑧𝛼𝑛 +
∑︀𝑛−1

𝑗=1
𝑓𝑛(𝜆)
𝑓𝑗(𝜆)

𝑧𝛼𝑗 − 𝑓𝑛(𝜆)𝑧𝛼

)︃
,

for 𝑡 > 0, 𝜆 ∈ Ω, 𝑙 ∈ N0
T−1, ⌈𝛽𝑙⌉ > 𝑖− 1.

(iv) As indicated in Subsection 2.10.1, it is much better to introduce the no-
tions of D-hypercyclicity, D-topological transitivity and D-topologically
mixing property of problem (PQ) with the set Z than with Z𝑢𝑛𝑖𝑞 (the
choice of strong solutions in Definition 2.10.20 is almost inevitable). Con-
sider now, for the sake of brevity, the abstract Cauchy problem (238). If
Z = Z𝑢𝑛𝑖𝑞, then we define the operator 𝑇 (𝑡) : ℳD → 𝐸T by 𝑇 (𝑡)�⃗� :=
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((D𝛽0
𝑠 𝑢(𝑠; �⃗�))𝑠=𝑡, (D

𝛽1
𝑠 𝑢(𝑠; �⃗�))𝑠=𝑡, . . . , (D

𝛽T−1
𝑠 𝑢(𝑠; �⃗�))𝑠=𝑡) (𝑡 > 0), where

𝑢(·; �⃗�) denotes the unique strong solution of problem (238) with the ini-
tial value �⃗�. Let (𝑂𝑛)𝑛∈N be an open base of the topology of 𝐸T (𝑂𝑛 ̸= ∅,
𝑛 ∈ N). If �̃� = �̌� = 𝐸T and if we denote by 𝐻𝐶D the set which
consists of all D-hypercyclic vectors of problem (238), then we have the
obvious equality 𝐻𝐶D =

⋂︀
𝑛∈N

⋃︀
𝑡>0 𝑇 (𝑡)

−1(𝑂𝑛); cf. also [237, Theorem
1], [70, Proposition 4] and Subsection 2.10.1. Unfortunately, we cannot
conclude from the above that D-topological transitivity of problem (238)
implies its D-hypercyclicity (in this place, it is worth noting that there
exists a continuous linear operator on the space 𝜙 =

⨁︀
𝑛∈N K that is

topologically transitive but not hypercyclic [84, Theorem 2.2], so that the
connections between D-hypercyclicity and D-topological transitivity seem
to be more intricate in non-metrizable locally convex spaces).

It is worth noticing that the assertion of [237, Theorem 2] admits an ade-
quate reformulation in our context. Before we state the corresponding theorem, it
would be very helpful to introduce the sets [(𝐵𝑖)16𝑖6𝑙]𝑝(𝑆) and [(𝑀𝑖)16𝑖6𝑙]𝑝(𝑆) (𝑝 ∈
N0) recursively by [(𝐵𝑖)16𝑖6𝑙]0(𝑆) := [(𝑀𝑖)16𝑖6𝑙]0(𝑆) := 𝑆, [(𝐵𝑖)16𝑖6𝑙]𝑝+1(𝑆) :=
{𝐵𝑖(𝑥1, . . . , 𝑥𝑏𝑖) : 1 6 𝑖 6 𝑙, 𝑥1 ∈ [(𝐵𝑖)16𝑖6𝑙]𝑗1(𝑆), . . . , 𝑥𝑏𝑖 ∈ [(𝐵𝑖)16𝑖6𝑙]𝑗𝑏𝑖 (𝑆) for
some numbers 𝑗1, . . . , 𝑗𝑏𝑖 ∈ N𝑝 with 𝑗1 + · · · + 𝑗𝑏𝑖 = 𝑝}, [(𝑀𝑖)16𝑖6𝑙]𝑝+1(𝑆) :=
U𝑝+1(𝑆) r U𝑝(𝑆), 𝑝 ∈ N0. Then the set [(𝐵𝑖)16𝑖6𝑙]𝑝(𝑆) ([(𝑀𝑖)16𝑖6𝑙]𝑝(𝑆)) con-
tains all the elements from Orb(𝑆; (𝐵𝑖)16𝑖6𝑙) (Orb(𝑆; (𝑀𝑖)16𝑖6𝑙)) obtained by 𝑛
applications of operators 𝐵1, . . . , 𝐵𝑙 (𝑀1, . . . ,𝑀𝑙), totally counted, and the follow-
ing holds:

Orb(𝑆; (𝐵𝑖)16𝑖6𝑙) =
⋃︁

𝑝∈N0

[(𝐵𝑖)16𝑖6𝑙]𝑝(𝑆),

(239) Orb(𝑆; (𝑀𝑖)16𝑖6𝑙) =
⋃︁

𝑝∈N0

[(𝑀𝑖)16𝑖6𝑙]𝑝(𝑆).

Suppose now that 𝑐 ∈ K r {0} as well as 𝐵′
𝑖 : (𝐸T)𝑏𝑖 → 𝐸T and 𝑀 ′

𝑖 : 𝐸T → 𝐸
satisfy

𝐵′
𝑖(𝑐𝑥1, . . . , 𝑐𝑥𝑏𝑖) = 𝑐𝐵𝑖(𝑥1, . . . , 𝑥𝑏𝑖),

provided 𝑥1, . . . , 𝑥𝑏𝑖 ∈ 𝐸T, 1 6 𝑖 6 𝑙, and

(𝑐𝑥2, . . . , 𝑐𝑥T,𝑀
′
𝑖(𝑐𝑥1, 𝑐𝑥2, . . . , 𝑐𝑥T)) = 𝑐(𝑥2, . . . , 𝑥T,𝑀𝑖(𝑥1, 𝑥2, . . . , 𝑥T)),

provided that (𝑥1, 𝑥2, . . . , 𝑥T) ∈ 𝐸T, 1 6 𝑖 6 𝑙. Define 𝑆𝑐 := {𝑐�⃗� : �⃗� ∈ 𝑆}. Then
we can inductively prove that [(𝐵′

𝑖)16𝑖6𝑙]𝑝(𝑆𝑐) = {𝑐�⃗� : �⃗� ∈ [(𝐵𝑖)16𝑖6𝑙]𝑝(𝑆)} and
[(𝑀 ′

𝑖)16𝑖6𝑙]𝑝(𝑆𝑐) = {𝑐�⃗� : �⃗� ∈ [(𝑀𝑖)16𝑖6𝑙]𝑝(𝑆)} for all 𝑝 ∈ N0, so that (239) implies

{𝑐�⃗� : �⃗� ∈ Orb(𝑆; (𝐵𝑖)16𝑖6𝑙)} = Orb(𝑆𝑐; (𝐵
′
𝑖)16𝑖6𝑙)

and
{𝑐�⃗� : �⃗� ∈ Orb(𝑆; (𝑀𝑖)16𝑖6𝑙)} = Orb(𝑆𝑐; (𝑀

′
𝑖)16𝑖6𝑙).

Now it is very simple to prove the following
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Theorem 2.10.22. Set D′ := (�̃�, �̌�, 𝑆𝑐, (𝐷
′
𝑖)16𝑖6𝑙, {𝐸𝑖 : 𝑖 ∈ 𝑊}, 𝛽) and P′ :

Z → 𝑃 (∪�⃗�∈ZS(�⃗�)), by P′(�⃗�) := 𝑐P(�⃗�/𝑐), �⃗� ∈ Z. Then the abstract Cauchy problem
(238), resp. (DFP)𝑅, is D-hypercyclic ((D,P)-hypercyclic, DP-topologically transi-
tive, resp. DP𝑠-topologically transitive, D-topologically transitive, DP-topologically
mixing, resp. DP𝑠

-topologically mixing, D-topologically mixing) iff the abstract
Cauchy problem (238), resp. (DFP)𝑅, is D′-hypercyclic ((D′,P′)-hypercyclic, D′

P′-
topologically transitive, resp. DP′

𝑠
-topologically transitive, D′-topologically tran-

sitive, D′
P′-topologically mixing, resp. D′

P′
𝑠
-topologically mixing, D′-topologically

mixing).

Suppose now that 𝑋 is another Fréchet space over the field of C and 𝜑 : 𝑋 → 𝐸
is a linear topological homeomorphism. Then the mapping 𝜑T : 𝑋T → 𝐸T, defined
in the very obvious way, is a linear topological homeomorphism between the spaces
𝑋T and 𝐸T. Define 𝑆𝜑 := (𝜑T)−1(𝑆) and the closed linear operators 𝐴𝑋

𝑖 on 𝑋
by 𝐷(𝐴𝑋

𝑖 ) := 𝜑−1(𝐷(𝐴𝑖)) and 𝐴𝑋
𝑖 𝑥 = 𝑦 iff 𝐴𝑖(𝜑𝑥) = 𝜑𝑦 (0 6 𝑖 6 𝑛). For any

𝐸-valued function 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 we define the 𝑋-valued function 𝑡 ↦→ 𝑢𝜑(𝑡),
𝑡 > 0 by 𝑢𝜑(𝑡) := 𝜑−1(𝑢(𝑡)), 𝑡 > 0. Then it is readily seen that the Caputo
fractional derivative D𝛼

𝑡 𝑢(𝑡) is defined for 𝑡 > 0 iff the Caputo fractional derivative
D𝛼

𝑡 𝑢𝜑(𝑡) is defined for 𝑡 > 0; if this is the case, we have D𝛼
𝑡 𝑢𝜑(𝑡) = 𝜑−1(D𝛼

𝑡 𝑢(𝑡)),
𝑡 > 0. Using this fact, we can simply prove that the function 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 is
a strong solution of problem (PQ) with the initial value �⃗� = (𝑥1, . . . , 𝑥T) ∈ 𝐸T iff
the function 𝑡 ↦→ 𝑢𝜑(𝑡), 𝑡 > 0 is a strong solution of problem (PQ)𝜑 with the initial
value �⃗�𝜑 := (𝜑−1(𝑥1), . . . , 𝜑

−1(𝑥T)) ∈ 𝑋T, where the abstract Cauchy problem
(PQ)𝜑 is defined by replacing all the operators 𝐴𝑖 in the problem (PQ) with the
operators 𝐴𝑋

𝑖 (0 6 𝑖 6 𝑛). If we denote by Z𝜑 (Z𝜑
𝑢𝑛𝑖𝑞) the set consisting of those

tuples �⃗�𝜑 ∈ 𝑋T for which there exists a (unique) strong solution of the problem
(PQ)𝜑, then the above implies Z𝜑 = (𝜑T)−1Z (Z𝜑

𝑢𝑛𝑖𝑞 = (𝜑T)−1Z𝑢𝑛𝑖𝑞).
Define the mappings 𝐵𝑖,𝜑 : (𝑋T)𝑏𝑖 → 𝑋T and 𝑀𝑖,𝜑 : 𝑋T → 𝑋 by

𝐵𝑖,𝜑(𝑥1, . . . , 𝑥𝑏𝑖) := (𝜑T)−1(𝐵𝑖(𝜑
T𝑥1, . . . , 𝜑

T𝑥𝑏𝑖)) and 𝑀𝑖,𝜑(�⃗�) := 𝜑−1(𝑀𝑖(𝜑
T�⃗�)),

for any 𝑥1, . . . , 𝑥𝑏𝑖 , �⃗� ∈ 𝑋T, 1 6 𝑖 6 𝑙, as well as the mappings P𝜑 : Z𝜑 →
𝑃 ({S(�⃗�𝜑) : �⃗�𝜑 ∈ Z𝜑}) and (P𝜑)𝑠 : Z

𝜑 → 𝑃 ({S(�⃗�𝜑) : �⃗�𝜑 ∈ Z𝜑}) by P𝜑((𝜑
T)−1�⃗�) :=

{𝑢𝜑(·) : 𝑢(·) ∈ P(�⃗�)} and (P𝜑)𝑠((𝜑
T)−1�⃗�) := {𝑢𝜑(·) : 𝑢(·) ∈ P𝑠(�⃗�)} (�⃗� ∈ Z),

respectively. Set

D𝜑 := ((𝜑T)−1(�̃�), (𝜑T)−1(�̌�), 𝑆𝜑, (𝐷𝑖,𝜑)16𝑖6𝑙, {𝜑−1(𝐸𝑖) : 𝑖 ∈𝑊}, 𝛽).
Having in mind the proof of [237, Theorem 3], we can show that

𝜑T(Orb(𝑆𝜑; (𝐷𝑖,𝜑)16𝑖6𝑙)) = Orb(𝑆; (𝐷𝑖)16𝑖6𝑙).

Now it is quite simple to prove the following conjugacy lemma for abstract de-
generate multi-term fractional differential equations (cf. [263, Lemma 1.4] for a
pioneering result in this direction):

Theorem 2.10.23. The abstract Cauchy problem (238), resp. (DFP)𝑅, is D-
hypercyclic ((D,P)-hypercyclic, DP-topologically transitive, resp. DP𝑠-topologically
transitive, D-topologically transitive, DP-topologically mixing, resp. DP𝑠-topologi-
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mathcally mixing, D-topologically mixing) iff the abstract Cauchy problem (238)𝜑,
resp. (DFP)𝑅,𝜑, is D𝜑-hypercyclic ((D𝜑,P𝜑)-hypercyclic, D𝜑P𝜑

-topologically tran-
sitive, resp. D𝜑(P𝜑)𝑠

-topologically transitive, D𝜑-topologically transitive, D𝜑P𝜑
-

topologically mixing, resp. D𝜑(P𝜑)𝑠
-topologically mixing, D𝜑-topologically mixing).

We continue by stating the following theorem.

Theorem 2.10.24. Let 𝛼𝑖 = 𝑖 for all 𝑖 ∈ N𝑛, let Ω be an open non-empty
subset of C intersecting the imaginary axis, and let 𝑓 : Ω → 𝐸 be an analytic
mapping satisfying that

(240) 𝑃𝜆𝑓(𝜆) =

(︂
𝜆𝛼𝑛𝐵 +

𝑛−1∑︁
𝑖=0

𝜆𝛼𝑖𝐴𝑖

)︂
𝑓(𝜆) = 0, 𝜆 ∈ Ω.

Set 𝑥𝜆 := [𝑓(𝜆) 𝜆𝑓(𝜆) . . . 𝜆𝑛−1𝑓(𝜆)]𝑇 (𝜆 ∈ Ω), 𝐸0 := 𝑠𝑝𝑎𝑛{𝑥𝜆 : 𝜆 ∈ Ω}, �̃� :=

�̌� := 𝐸0, 𝛽 := (0, 1, . . . , 𝑛 − 1), 𝑊 := N𝑛 and 𝐸𝑖 := 𝑠𝑝𝑎𝑛{𝑓(𝜆) : 𝜆 ∈ Ω}, 𝑖 ∈ 𝑊 .
Let ∅ ≠ 𝑆 ⊆ 𝐸𝑛 be such that 𝐸0 ⊆ Orb(𝑆; (𝐷𝑖)16𝑖6𝑙). Then 𝑥𝜆 ∈ MD, 𝜆 ∈ Ω
and the abstract Cauchy problem (238) is DP-topologically mixing provided that∑︀𝑞

𝑗=1 𝑒
𝜆𝑗 ·𝑓(𝜆𝑗) ∈ P(

∑︀𝑞
𝑗=1 𝑥𝜆𝑗 ) for any

∑︀𝑞
𝑗=1 𝑥𝜆𝑗 ∈ 𝐸0 (𝑞 ∈ N; 𝜆𝑗 ∈ Ω, 1 6 𝑗 6 𝑞).

Proof. We shall content ourselves with sketching it. Consider the operator
matrices

𝒜 :=

⎡⎢⎢⎢⎢⎣
0 𝐼 0 . . . 0
0 0 𝐼 . . . 0
· · · . . . ·
0 0 0 . . . 𝐼

−𝐴0 −𝐴1 −𝐴2 . . . −𝐴𝑛−1

⎤⎥⎥⎥⎥⎦
and

ℬ :=

⎡⎢⎢⎢⎢⎣
𝐼 0 0 . . . 0
0 𝐼 0 . . . 0
· · · . . . ·
0 0 0 · · 𝐼 0
0 0 0 . . . 𝐵

⎤⎥⎥⎥⎥⎦ ,
acting on 𝐸𝑛 with their maximal domains. Then the operator matrix 𝒜 is closable,
the operator matrix ℬ is closed and, due to (240), 𝒜𝑥𝜆 = 𝜆ℬ𝑥𝜆, 𝜆 ∈ Ω. Fur-
thermore, if we suppose that Ω0 is an arbitrary open connected subset of Ω which
admits a cluster point in Ω, then the linear span of the set {𝑥𝜆 : 𝜆 ∈ Ω0} is dense
in �̃�. Now the statement follows similarly as in the proof of Theorem 2.10.1. �

Remark 2.10.25. (i) The assertions of Theorem 2.10.1 and Theorem
2.10.9 continue to hold, with appropriate modifications, in the setting
of separable sequentially complete locally convex spaces. The conclusion
stated in Theorem 2.10.24 remains true if we consider the equation (238)
with the same initial conditions and with the term 𝐵 𝑑𝑛

𝑑𝑡𝑛𝑢(𝑡) replaced by
𝑑𝑛

𝑑𝑡𝑛𝐵𝑢(𝑡) (cf. [308, Remark 12(i)]).
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(ii) Suppose 𝛼1 ∈ (0, 1) and 𝛼𝑖 = 𝑖𝛼1, 𝑖 ∈ N𝑛. Keeping in mind the proofs
of Theorem 2.10.24 and [308, Theorem 5], we can deduce some results
about D-topologically mixing properties of the problem

(241)
𝐵(D𝛼1

𝑡 )𝑛𝑢(𝑡) +

𝑛−1∑︁
𝑖=0

𝐴𝑖(D
𝛼1
𝑡 )𝑖𝑢(𝑡) = 0, 𝑡 > 0,

((D𝛼1
𝑡 )𝑗𝑢(𝑡))𝑡=0 = 𝑢𝑗 , 𝑗 = 0, . . . , 𝑛− 1,

and its analogues obtained by replacing, optionally, some of the terms
𝐵(D𝛼1

𝑡 )𝑛𝑢(𝑡) and 𝐴𝑖(D
𝛼1
𝑡 )𝑖𝑢(𝑡) by (D𝛼1

𝑡 )𝑛𝐵𝑢(𝑡) and (D𝛼1
𝑡 )𝑖𝐴𝑖𝑢(𝑡), re-

spectively (0 6 𝑖 6 𝑛 − 1). The case 𝛼1 ∈ (1, 2) can be considered quite
similarly.

(iii) It should be emphasized that Theorem 2.10.24 cannot be so simply refor-
mulated in the case that there exists an index 𝑖 ∈ N𝑛 such that 𝛼𝑖 /∈ N.
In actual fact, probably the only way to exploit (240) is to find analytic
functions 𝐹𝑖 : Ω → C (0 6 𝑖 6 𝑚𝑛 − 1) such that the equation (238),
equipped with the initial conditions 𝑢(𝑖)(0) = 𝐹𝑖(𝜆)𝑓(𝜆), 0 6 𝑖 6 𝑚𝑛 − 1,
has a strong solution of the form 𝑢(𝑡;𝜆) = 𝐺(𝜆, 𝑡)𝑓(𝜆), 𝑡 > 0 (𝜆 ∈ Ω),
where

(242) 𝜆−𝛼𝑛D𝛼𝑛
𝑡 𝐺(𝜆, 𝑡) = · · · = 𝜆−𝛼1D𝛼1

𝑡 𝐺(𝜆, 𝑡) = 𝐺(𝜆, 𝑡), 𝑡 > 0 (𝜆 ∈ Ω).

By [153, Theorem 7.2], the validity of (242) would imply that for each
𝑡 > 0, 𝜆 ∈ Ω and 𝑖 ∈ N𝑛, we have:

𝐺(𝜆, 𝑡) = 𝐹0(𝜆)𝐸𝛼𝑖(𝜆
𝛼𝑖𝑡𝛼𝑖) +

𝑚𝑖−1∑︁
𝑘=1

𝐹𝑘(𝜆)

∫︁ 𝑡

0

(𝑡− 𝑠)𝑘−1

(𝑘 − 1)!
𝐸𝛼𝑖(𝜆

𝛼𝑖𝑠𝛼𝑖)𝑑𝑠,

i.e., that for each 𝑡 > 0, 𝜆 ∈ Ω and 𝑖 ∈ N𝑛, we have:

𝐺(𝜆, 𝑡) =

∞∑︁
𝑙=0

𝑚𝑖−1∑︁
𝑘=0

𝜆𝛼𝑖𝑙𝐹𝑘(𝜆)
𝑡𝛼𝑖𝑙+𝑘

Γ(𝛼𝑖𝑙 + 𝑘 + 1)
.

The function 𝑡 ↦→ 𝐺(𝜆, 𝑡) − 𝐹0(𝜆), 𝑡 > 0 behaves asymptotically like
𝜆𝛼1𝐹0(𝜆)𝑔𝛼1+1(𝑡) as 𝑡→ 0+, so that the number 𝛼1 cannot be an element
of the interval (0, 1) (to see this, consider the asymptotic behaviour of
function 𝑡 ↦→ 𝐺(𝜆, 𝑡) − 𝐹0(𝜆), 𝑡 > 0 as 𝑡 → 0+, with the number 𝛼1

replaced by 𝛼2). Considering the asymptotic behaviour of function 𝑡 ↦→
𝐺(𝜆, 𝑡)−𝐹0(𝜆)−𝑡𝐹1(𝜆), 𝑡 > 0 (𝑡 ↦→ 𝐺(𝜆, 𝑡)−𝐹0(𝜆)−𝑡𝐹1(𝜆)−(𝑡2/2)𝐹2(𝜆),
𝑡 > 0; . . . ) as 𝑡 → 0+, we obtain similarly that 𝛼1 cannot be an element
of the interval (1, 2) ((2, 3); . . . ); consequently, 𝛼1 ∈ N. Ignoring the first
order 𝛼1, and repeating the same procedure with the order 𝛼2, we get
that 𝛼2 ∈ N. A similar line of reasoning shows that 𝛼3, . . . , 𝛼𝑛 ∈ N.

(iv) Hypercyclic and topologically mixing properties of higher-order non-de-
generate differential equations with integer order derivatives have been
studied in a series of recent papers by using the usual reduction into first
order matrix differential equations (cf. [114,118], [292, Section 3.2] and
the references cited there). It should be observed that we can prove a
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slight extension of this theorem by using the analyses from [300, Remark
1(iii)] and [302, Remark 1;3.] (cf. also Remark 2.10.21(iii) and Example
2.10.26(i) below).

(v) In Theorem 2.10.16, we have reconsidered the well known assertion of
S. El Mourchid [163, Theorem 2.1] concerning the connection between
the imaginary point spectrum and hypercyclicity of strongly continuous
semigroups. On the basis of this result, we can state some new facts
about 𝒟-topologically mixing properties of problem (238) considered in
Theorem 2.10.24, provided that the equation (240) holds for all values of
complex parameter 𝜆 belonging to some subinterval of imaginary axis.

We close this section by providing some illustrative examples.

Example 2.10.26. (i) Consider the equation (238) with 𝛼𝑖 = 𝑖, 𝑖 ∈ N𝑛

and with the operator 𝐴0 = 𝐴 replaced by −𝐴. Although it may seem con-
trary, Theorem 2.10.24 is not so easily comparable to Theorem 2.10.9 in
this case. For example, in the situation of Example 2.10.12 with 𝑃 (𝑧) =
−𝑧 and 𝛼 = 1, the assumptions of Theorem 2.10.9 are satisfied with 𝐸 :=
𝐿2(R), 𝑐1 > 𝑐 > 𝑏

2 > 0, 𝐴 := (𝑐−𝑐1)𝐼, 𝐵 := 𝒜𝑐−𝐴, 𝐴1 := −𝒜𝑐+𝑐𝐼, where
the operator 𝒜𝑐 is defined by 𝐷(𝒜𝑐) := {𝑢 ∈ 𝐿2(R) ∩𝑊 2,2

𝑙𝑜𝑐 (R) : 𝒜𝑐𝑢 ∈
𝐿2(R)} and 𝒜𝑐𝑢 := 𝑢′′ + 𝑏𝑥𝑢′ + 𝑐𝑢, 𝑢 ∈ 𝐷(𝒜𝑐), Ω := {𝜆 ∈ C : 𝜆 ̸= 0, 𝜆 ̸=
𝑐−𝑐1, Re𝜆 < 𝑐− 𝑏

2}, 𝑓(𝜆) := 𝑔1(𝜆) := ℱ−1(𝑒−
𝜉2

2𝑏 𝜉|𝜉|−(2+𝜆−𝑐
𝑏 ))(·), 𝜆 ∈ Ω or

𝑓(𝜆) := 𝑔2(𝜆) := ℱ−1(𝑒−
𝜉2

2𝑏 |𝜉|−(1+𝜆−𝑐
𝑏 ))(·), 𝜆 ∈ Ω, 𝑓1(𝜆) := (𝑐−𝑐1)/(𝑐−𝜆)

and 𝑓2(𝜆) := (𝑐 − 𝑐1)/(𝜆 − (𝑐 − 𝑐1)) (𝜆 ∈ Ω). In particular, there is no
open connected subset Ω′ of Ω satisfying Ω′ ∩ 𝑖R ̸= ∅ and (𝜆2/(𝑓2(𝜆)) +
𝜆/(𝑓1(𝜆)) − 1)𝐴𝑓(𝜆) = 0, 𝜆 ∈ Ω′, i.e., the equation (240) does not hold
with this choice of 𝑓(𝜆). This is quite predictable because the equation
(240), with the set Ω and the function 𝑓(·) replaced respectively by ′Ω and
′𝑓(·) therein (and in our further analysis, for the sake of consistency of
notation), is equivalent to say that (𝜆2−𝜆)𝒜𝑐

′𝑓(𝜆) = (𝜆2(𝑐−𝑐1)−𝜆𝑐+(𝑐−
𝑐1))

′𝑓(𝜆), 𝜆 ∈ ′Ω. Denote by Λ the set of all complex numbers 𝑧 ∈ 𝑖Rr{0}
for which there exists 𝛿(𝑧) > 0 such that {0, 1} ∩ 𝐿(𝑧, 𝛿(𝑧)) = ∅, as well
as that for each 𝜆 ∈ 𝐿(𝑧, 𝛿(𝑧)) we have Re(𝑐− 𝑐1 − 𝑐1

𝜆−1 + 𝑐−𝑐1
𝜆2−𝜆 ) < 𝑐− 𝑏

2 .
Recalling that {𝑧 ∈ C : Re 𝑧 < 𝑐 − 𝑏

2} ⊆ 𝜎𝑝(𝒜𝑐), it readily follows that
Theorem 2.10.24 can be also applied here with ′Ω :=

⋃︀
𝑧∈Λ 𝐿(𝑧, 𝛿(𝑧)) and

′𝑓𝑖(𝜆) := 𝑔𝑖(𝑐 − 𝑐1 − 𝑐1
𝜆−1 + 𝑐−𝑐1

𝜆2−𝜆 ), 𝜆 ∈ ′Ω (𝑖 = 1, 2), producing slightly
different results from those obtained by applying Theorem 2.10.9 (with
�̂� = �̌� = 𝑠𝑝𝑎𝑛{[′𝑓𝑖(𝜆) 𝜆 ′𝑓𝑖(𝜆)]𝑇 : 𝜆 ∈ ′Ω, 𝑖 = 1, 2}, the subspace of 𝐸2

whose first and second projection equals to 𝐸; cf. [115] and [300]). On the
other hand, there exists a great number of very simple (non-)degenerate
equations where we can apply Theorem 2.10.24 but not Theorem 2.10.9.
Consider, for example, the equation 𝑢′′′(𝑡) + (𝑐2 −𝒜𝑐)𝑢

′(𝑡) + 𝑐1𝑢(𝑡) = 0,
𝑡 > 0, where 𝑐1 ∈ C r {0} and 𝑐2 ∈ C. The analysis taken up in [302,
Remark 1(vi)] (cf. also [292, Theorem 3.3.9, Remark 3.3.10(v)]), with
𝑐3 = 0, shows that there do not exist an open connected subset Ω− of C
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and an index 𝑖 ∈ {0, 1, 2} such that the second equality in (227) holds.
Contrary to this, there exist 𝑡 > 0 and 𝜀 > 0 such that the equation (240)
holds with Ω = 𝐿(𝑖𝑡, 𝜀).

(ii) Suppose Ω is an open non-empty subset of C intersecting the imaginary
axis, 𝑓 : Ω → 𝐸 is an analytic mapping, 𝑔 : Ω → Cr{0} is a scalar-valued
mapping and 𝐴𝑓(𝜆) = 𝑔(𝜆)𝑓(𝜆), 𝜆 ∈ Ω. Let 𝑃𝑗(𝑧) be non-zero complex
polynomials (𝑗 ∈ N0

𝑛), and let

𝜆𝑛𝑃𝑛(𝑔(𝜆)) +

𝑛−1∑︁
𝑗=0

𝜆𝑗𝑃𝑗(𝑔(𝜆)) = 0, 𝜆 ∈ Ω.

Then the equation (240) holds with 𝐵 := 𝑃𝑛(𝐴) and 𝐴𝑗 := 𝑃𝑗(𝐴), 𝑗 ∈
N0

𝑛−1. If, additionally, the preassumption
∑︀𝑛−1

𝑗=0 ⟨𝑥*𝑗 , 𝜆𝑗𝑓(𝜆)⟩ = 0, 𝜆 ∈ Ω

for some continuous linear functionals 𝑥*𝑗 ∈ 𝐸* given in advance (𝑗 ∈
N0

𝑛−1) implies 𝑥*𝑗 = 0 for all 𝑗 ∈ N0
𝑛−1, then the space 𝐸0 from the

formulation of Theorem 2.10.24 equals to 𝐸𝑛 (cf. [114, Theorem 3.1]
for a concrete example of this type with 𝑛 = 3). Some applications of
Theorem 2.10.24 in Fréchet function spaces can be given following the
analysis from [292, Example 3.1.29].

2.11. The existence of distributional chaos in abstract degenerate
fractional differential equations

The main aim of this section is to investigate a class of distributionally chaotic
abstract degenerate (multi-term) fractional differential equations. We assume that
𝑋 is an infinite-dimensional Fréchet space over the field C and the topology of 𝑋 is
induced by the fundamental system (𝑝𝑛)𝑛∈N of increasing seminorms. Let us recall
that the translation invariant metric 𝑑 : 𝑋 ×𝑋 → [0,∞), defined by

(243) 𝑑(𝑥, 𝑦) :=

∞∑︁
𝑛=1

1

2𝑛
𝑝𝑛(𝑥− 𝑦)

1 + 𝑝𝑛(𝑥− 𝑦)
, 𝑥, 𝑦 ∈ 𝑋,

satisfies the following properties:

𝑑(𝑥+ 𝑢, 𝑦 + 𝑣) 6 𝑑(𝑥, 𝑦) + 𝑑(𝑢, 𝑣), 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋,

(244) 𝑑(𝑐𝑥, 𝑐𝑦) 6 (|𝑐|+ 1)𝑑(𝑥, 𝑦), 𝑐 ∈ C, 𝑥, 𝑦 ∈ 𝑋,

and

(245) 𝑑(𝛼𝑥, 𝛽𝑥) >
|𝛼− 𝛽|

1 + |𝛼− 𝛽|
𝑑(0, 𝑥), 𝑥 ∈ 𝑋, 𝛼, 𝛽 ∈ C.

Given 𝜀 > 0 in advance, set 𝐿(0, 𝜀) := {𝑥 ∈ 𝑋 : 𝑑(𝑥, 0) < 𝜀}. By 𝑌 we denote
another Fréchet space over the field C; we assume that the topology of 𝑌 is induced
by the fundamental system (𝑝𝑌𝑛 )𝑛∈N of increasing seminorms. We define the trans-
lation invariant metric 𝑑𝑌 : 𝑌 × 𝑌 → [0,∞) by replacing 𝑝𝑛(·) with 𝑝𝑌𝑛 (·) in (243).
In the case that (𝑋, ‖ · ‖) or (𝑌, ‖ · ‖𝑌 ) is a Banach space, then it will be assumed
that the distance of two elements 𝑥, 𝑦 ∈ 𝑋 (𝑥, 𝑦 ∈ 𝑌 ) is given by 𝑑(𝑥, 𝑦) := ‖𝑥− 𝑦‖
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(𝑑𝑌 (𝑥, 𝑦) := ‖𝑥 − 𝑦‖𝑌 ). With this terminological change, our structural results
clarified in this section continue to hold in the case that 𝑋 or 𝑌 is a Banach space.

We will split our exposition into two parts. In Subsection 2.11.1, we consider
distributionally chaotic properties of linear (not necessarily continuous) operators
and their sequences. Subsection 2.11.2 is devoted to te study of distributionally
chaotic properties of abstract degenerate (multi-term) fractional differential equa-
tions.

2.11.1. Distributional chaos for single operators. The main purpose of
this section is to investigate the basic distributionally chaotic properties of a se-
quence (𝑇𝑘)𝑘∈N of linear mappings between the spaces 𝑋 and 𝑌 . We start with the
following definition.

Definition 2.11.1. Suppose that, for every 𝑘 ∈ N, 𝑇𝑘 : 𝐷(𝑇𝑘) → 𝑌 is a linear
(not necessarily continuous) operator and �̃� is a closed linear subspace of 𝑋. Then
we say that the sequence (𝑇𝑘)𝑘∈N is �̃�-distributionally chaotic iff there exist an
uncountable set 𝑆 ⊆

⋂︀∞
𝑘=1𝐷(𝑇𝑘) ∩ �̃� and 𝜎 > 0 such that for each 𝜀 > 0 and for

each pair 𝑥, 𝑦 ∈ 𝑆 of distinct points we have that

𝑑𝑒𝑛𝑠({𝑘 ∈ N : 𝑑𝑌 (𝑇𝑘𝑥, 𝑇𝑘𝑦) > 𝜎}) = 1 and

𝑑𝑒𝑛𝑠({𝑘 ∈ N : 𝑑𝑌 (𝑇𝑘𝑥, 𝑇𝑘𝑦) < 𝜀}) = 1.

The sequence (𝑇𝑘)𝑘∈N is said to be densely �̃�-distributionally chaotic iff 𝑆 can be
chosen to be dense in �̃�. A linear operator 𝑇 : 𝐷(𝑇 ) → 𝑌 is said to be (densely)
�̃�-distributionally chaotic iff the sequence (𝑇𝑘 ≡ 𝑇 𝑘)𝑘∈N is. The set 𝑆 is said to
be 𝜎�̃� -scrambled set (𝜎-scrambled set in the case that �̃� = 𝑋) of the sequence
(𝑇𝑘)𝑘∈N (the operator 𝑇 ).

The above notions are clearly equivalent in the case that �̃� = 𝑋 and then
we also say that the sequence (𝑇𝑘)𝑘∈N (the operator 𝑇 ) is distributionally chaotic.
Of course, it is of interest to know the minimal linear subspace �̃� for which the
sequence (𝑇𝑘)𝑘∈N is �̃�-distributionally chaotic because it is then �̂�-distributionally
chaotic for any other linear subspace �̂� of 𝑋 such that �̃� ⊆ �̂�. Observe that there
exist some important cases in which the sequence of linear mappings (𝑇𝑘|�̃�), acting
between the spaces �̃� and 𝑌 = �̃�, is distributionally chaotic; see e.g. the proof of
implication (i) ⇒ (ii) of [68, Theorem 12]. On the other hand, we are always trying
to find the maximal possible subspace �̃� of 𝑋 for which the sequence (𝑇𝑘)𝑘∈N (the
operator 𝑇 ) is densely �̃�-distributionally chaotic.

Definition 2.11.2. Suppose that, for every 𝑘 ∈ N, 𝑇𝑘 : 𝐷(𝑇𝑘) → 𝑌 is a linear
(not necessarily continuous) operator, �̃� is a closed linear subspace of 𝑋, 𝑥 ∈⋂︀∞

𝑘=1𝐷(𝑇𝑘) and 𝑚 ∈ N. Then we say that:
(i) the orbit of 𝑥 under (𝑇𝑘)𝑘∈N, i.e. the set {𝑇𝑘𝑥 : 𝑘 ∈ N}, is distribu-

tionally near to 0 iff there exists 𝐴 ⊆ N such that 𝑑𝑒𝑛𝑠(𝐴) = 1 and
lim𝑘∈𝐴,𝑘→∞ 𝑇𝑘𝑥 = 0,
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(ii) the orbit of 𝑥 under (𝑇𝑘)𝑘∈N is distributionally 𝑚-unbounded iff there
exists 𝐵 ⊆ N such that 𝑑𝑒𝑛𝑠(𝐵) = 1 and lim𝑘∈𝐵,𝑘→∞ 𝑝𝑌𝑚(𝑇𝑘𝑥) = ∞; the
orbit of 𝑥 under (𝑇𝑘)𝑘∈N is said to be distributionally unbounded iff there
exists 𝑞 ∈ N such that this orbit is distributionally 𝑞-unbounded (if 𝑌 is
a Banach space, this simply means that lim𝑘∈𝐵,𝑘→∞ ‖𝑇𝑘𝑥‖𝑌 = ∞),

(iii) 𝑥 is a �̃�-distributionally irregular vector for the sequence (𝑇𝑘)𝑘∈N (dis-
tributionally irregular vector for the sequence (𝑇𝑘)𝑘∈N, in the case that
�̃� = 𝑋) iff 𝑥 ∈

⋂︀∞
𝑘=1𝐷(𝑇𝑘)∩ �̃� and the orbit of 𝑥 under (𝑇𝑘)𝑘∈N is both

distributionally near to 0 and distributionally unbounded.

If 𝑇 : 𝐷(𝑇 ) → 𝑌 is a linear operator and 𝑥 ∈ 𝐷∞(𝑇 ), then we say that the orbit
{𝑇 𝑘𝑥 : 𝑘 ∈ N} is distributionally near to 0 (distributionally unbounded) iff the
sequence (𝑇𝑘 ≡ 𝑇 𝑘)𝑘∈N is distributionally near to 0 (distributionally unbounded);
𝑥 is said to be a �̃�-distributionally irregular vector for 𝑇 (distributionally irregular
vector for 𝑇 , in the case that �̃� = 𝑋) iff 𝑥 is �̃�-distributionally irregular vector
for the sequence (𝑇𝑘 ≡ 𝑇 𝑘)𝑘∈N (distributionally irregular vector for the sequence
(𝑇𝑘 ≡ 𝑇 𝑘)𝑘∈N, in the case that �̃� = 𝑋).

Suppose that 𝑋 ′ ⊆ �̃� is a linear manifold. Then we say that 𝑋 ′ is �̃�-
distributionally irregular manifold for the sequence (𝑇𝑘)𝑘∈N (distributionally irreg-
ular manifold in the case that �̃� = 𝑋) iff any element 𝑥 ∈ (𝑋 ′∩

⋂︀∞
𝑘=1𝐷(𝑇𝑘))r{0}

is a �̃�-distributionally irregular vector for the sequence (𝑇𝑘)𝑘∈N; the notion of a
(�̃�-)distributionally irregular manifold for a linear operator 𝑇 : 𝐷(𝑇 ) → 𝑌 is de-
fined similarly. Following [68, Definition 14], it will be said that 𝑋 ′ is a uniformly
�̃�-distributionally irregular manifold for the sequence (𝑇𝑘)𝑘∈N (uniformly distribu-
tionally irregular manifold in the case that �̃� = 𝑋) iff there exists 𝑚 ∈ N such
that the orbit of each vector 𝑥 ∈ (𝑋 ′ ∩

⋂︀∞
𝑘=1𝐷(𝑇𝑘)) r {0} under (𝑇𝑘)𝑘∈N is both

distributionally 𝑚-unbounded and distributionally near to 0. If so, then (243)–245
implies that 𝑋 ′ is 2−𝑚-scrambled set for the sequence (𝑇𝑘)𝑘∈N. It can be simply
verified that the following holds: If 𝑥 ∈ �̃� ∩

⋂︀∞
𝑘=1𝐷(𝑇𝑘) is a �̃�-distributionally

irregular vector for the sequence (𝑇𝑘)𝑘∈N, then 𝑋 ′ ≡ 𝑠𝑝𝑎𝑛{𝑥} is a uniformly �̃�-
distributionally irregular manifold for the sequence (𝑇𝑘)𝑘∈N. If 𝑋 ′ is dense in �̃�,
then we deal with the notions of dense (�̃�-)distributionally irregular manifolds,
dense uniformly (�̃�-)distributionally irregular manifolds, etc.

If (𝑇𝑘)𝑘∈N and �̃� are given in advance, then we define the linear mappings
𝒯𝑘 : 𝐷(𝒯𝑘) → 𝑌 by 𝐷(𝒯𝑘) := 𝐷(𝑇𝑘) ∩ �̃� and 𝒯𝑘𝑥 := 𝑇𝑘𝑥, 𝑥 ∈ 𝐷(𝒯𝑘) (𝑘 ∈ N).
Then (𝒯𝑘)𝑘∈N is a sequence of linear mappings between the Fréchet spaces �̃� and
𝑌 . In some way, the next proposition enables us to reduce our further research in
this subsection to the case in which �̃� = 𝑋. An uncomplicated proof is left to the
reader.

Proposition 2.11.3. (i) The sequence (𝑇𝑘)𝑘∈N is �̃�-distributionally
chaotic iff the sequence (𝒯𝑘)𝑘∈N is distributionally chaotic.

(ii) A vector 𝑥 is a �̃�-distributionally irregular vector for the sequence (𝑇𝑘)𝑘∈N
iff 𝑥 is a distributionally irregular vector for the sequence (𝒯𝑘)𝑘∈N.
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(iii) A linear manifold 𝑋 ′ is a (uniformly) �̃�-distributionally irregular man-
ifold for the sequence (𝑇𝑘)𝑘∈N iff 𝑋 ′ is a (uniformly) distributionally ir-
regular manifold for the sequence (𝒯𝑘)𝑘∈N.

We continue by stating the following theorem.

Theorem 2.11.4. (i) Suppose that (𝑇𝑘)𝑘∈N is a sequence in 𝐿(𝑋,𝑌 ) and
𝑋0 is a dense linear subspace of 𝑋, satisfying that for each 𝑥 ∈ 𝑋0 there
exists a set 𝐴𝑥 ⊆ N such that 𝑑𝑒𝑛𝑠(𝐴𝑥) = 1 and lim𝑘∈𝐴𝑥 𝑇𝑘𝑥 = 0. If there
exist a zero sequence (𝑦𝑘) in 𝑋, a number 𝜀 > 0 and a strictly increasing
sequence (𝑁𝑘) in N such that, for every 𝑘 ∈ N and some 𝑚 ∈ N,

card({1 6 𝑗 6 𝑁𝑘 : 𝑝𝑚(𝑇𝑗𝑦𝑘) > 𝜀}) > 𝑁𝑘(1− 𝑘−1),

(for every 𝑘 ∈ N, card({1 6 𝑗 6 𝑁𝑘 : ‖𝑇𝑗𝑦𝑘‖𝑌 > 𝜀}) > 𝑁𝑘(1 − 𝑘−1),
in the case that 𝑌 is a Banach space), then there exists a distribution-
ally irregular vector for the sequence (𝑇𝑘)𝑘∈N, and particularly, (𝑇𝑘)𝑘∈N
is distributionally chaotic.

(ii) Suppose that 𝑋 is separable, (𝑇𝑘)𝑘∈N is a sequence in 𝐿(𝑋,𝑌 ), 𝑋0 is a
dense linear subspace of 𝑋, as well as:
(a) lim𝑘→∞ 𝑇𝑘𝑥 = 0, 𝑥 ∈ 𝑋0, and
(b) there exists 𝑥 ∈ 𝑋 such that its orbit under (𝑇𝑘)𝑘∈N is distributionally

unbounded.
Then there exists a dense uniformly distributionally irregular manifold for
(𝑇𝑘)𝑘∈N, and particularly, (𝑇𝑘)𝑘∈N is densely distributionally chaotic.

Proof. We will only outline the most relevant details of the proof. In the case
that 𝑌 is a Fréchet space, the assertion (i) can be simply proved by replacing the
operator 𝑇 𝑗 with the operator 𝑇𝑗 (𝑗 ∈ N) throughout the proofs of [68, Propositions
7 and 9]. Assuming that 𝑌 is a Banach space, the required assertion follows from the
above by endowing 𝑌 with the following increasing family of seminorms 𝑝𝑌𝑛 (𝑦) :=
𝑛‖𝑦‖𝑌 (𝑛 ∈ N, 𝑦 ∈ 𝑌 ), which turns the space 𝑌 into a linearly and topologically
homeomorphic Fréchet space. A careful inspection of the proof of [68, Theorem 15]
shows that the assertion (ii) holds provided that 𝑋 and 𝑌 are Fréchet spaces, and
𝑝𝑌𝑚(𝑇𝑖𝑥) 6 𝑝𝑖+𝑚(𝑥), 𝑥 ∈ 𝑋, 𝑖,𝑚 ∈ N; the only thing we need to do is replace any
operator 𝑇 𝑖 appearing in the proof of afore-mentioned theorem with the operator
𝑇𝑖 (𝑖 ∈ N). Observe further that we can always construct a fundamental system
(𝑝′𝑛(·))𝑛∈N of increasing seminorms on the space 𝑋, inducing the same topology, so
that 𝑝𝑌𝑚(𝑇𝑖𝑥) 6 𝑝′𝑖+𝑚(𝑥), 𝑥 ∈ 𝑋, 𝑖,𝑚 ∈ N. In such a way, we may conclude that
the assertion [68, Theorem 15] holds provided that 𝑋 and 𝑌 are Fréchet spaces.
In the case that 𝑋 or 𝑌 is a Banach space, then we can ‘renorm’ it, as described
above, and use after that the obtained result for Fréchet spaces. �

Suppose now that 𝑇 : 𝐷(𝑇 ) ⊆ 𝑋 → 𝑋 is a linear mapping, 𝐶 ∈ 𝐿(𝑋) is an
injective mapping, as well as

(246) 𝑅(𝐶) ⊆ 𝐷∞(𝑇 ) and 𝑇𝑛𝐶 ∈ 𝐿(𝑋) for all 𝑛 ∈ N.
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Then (246) implies that, for every 𝑛 ∈ N, the mapping 𝑇𝑛 : 𝑅(𝐶) → 𝑋 defined by
𝑇𝑛(𝐶𝑥) := 𝑇𝑛𝐶𝑥, 𝑥 ∈ 𝑋, 𝑛 ∈ N is an element of the space 𝐿([𝑅(𝐶)], 𝑋). The next
theorem follows almost immediately from Theorem 2.11.4.

Theorem 2.11.5. Let the above conditions hold.
(i) Suppose that 𝑋0 is a dense linear subspace of 𝑋, satisfying that for each

𝑥 ∈ 𝑋0 there exists a set 𝐴𝑥 ⊆ N such that 𝑑𝑒𝑛𝑠(𝐴𝑥) = 1 and
lim𝑘∈𝐴𝑥,𝑘→∞ 𝑇 𝑘𝐶𝑥 = 0. If there exist a zero sequence (𝑧𝑘) in 𝑋, a num-
ber 𝜀 > 0 and a strictly increasing sequence (𝑁𝑘) in N such that, for every
𝑘 ∈ N and some 𝑚 ∈ N,

card({1 6 𝑗 6 𝑁𝑘 : 𝑝𝑚(𝑇 𝑗𝐶𝑧𝑘) > 𝜀}) > 𝑁𝑘(1− 𝑘−1),

(for every 𝑘 ∈ N, card({1 6 𝑗 6 𝑁𝑘 : ‖𝑇 𝑗𝐶𝑧𝑘‖𝑌 > 𝜀}) > 𝑁𝑘(1 − 𝑘−1),
in the case that 𝑌 is a Banach space), then there exists a distributionally
vector 𝑥 ∈ 𝑅(𝐶) for the operator 𝑇 . In particular, 𝑇 is distributionally
chaotic and 𝜎-scrambled set 𝑆 of 𝑇 can be chosen to be a linear subman-
ifold of 𝑅(𝐶).

(ii) Suppose that 𝑋 is separable, 𝑋0 is a dense linear subspace of 𝑋, as well
as:
(a) lim𝑘→∞ 𝑇 𝑘𝐶𝑥 = 0, 𝑥 ∈ 𝑋0, and
(b) there exist 𝑥 ∈ 𝑋, 𝑚 ∈ N and a set 𝐵 ⊆ N such that 𝑑𝑒𝑛𝑠(𝐵) = 1,

and lim𝑘→∞,𝑘∈𝐵 𝑝𝑚(𝑇 𝑘𝐶𝑥) = ∞, resp. lim𝑘→∞,𝑘∈𝐵 ‖𝑇 𝑘𝐶𝑥‖ = ∞
if 𝑋 is a Banach space.

Then there exists a uniformly distributionally irregular manifold 𝑊 for the
operator 𝑇 , and particularly, 𝑇 is distributionally chaotic. Furthermore,
if 𝑅(𝐶) is dense in 𝑋, then 𝑊 can be chosen to be dense in 𝑋 and 𝑇 is
densely distributionally chaotic.

Example 2.11.6. Suppose that 𝑋 is separable, 𝐷(𝐴) and 𝑅(𝐶) are dense in
𝑋, 𝐶𝐴 ⊆ 𝐴𝐶, 𝑧0 ∈ C r {0}, 𝛽 > −1, 𝑑 ∈ (0, 1], 𝑚 ∈ (0, 1), 𝜀 ∈ (0, 1], 𝛾 > −1 and
the following conditions hold:

(S) 𝑃𝑧0,𝛽,𝜀,𝑚 := 𝑒𝑖 arg(𝑧0)(|𝑧0|+(𝑃𝛽,𝜀,𝑚∪𝐵𝑑)) ⊆ 𝜌𝐶(𝐴), (𝜀,𝑚(1+𝜀)−𝛽) ∈ 𝜕𝐵𝑑,
(SS) the family {(1 + |𝜆|)−𝛾(𝜆−𝐴)−1𝐶 : 𝜆 ∈ 𝑃𝑧0,𝛽,𝜀,𝑚} ⊆ 𝐿(𝑋) is equicontin-

uous, and
(SSS) the mapping 𝜆 ↦→ (𝜆−𝐴)−1𝐶𝑥, 𝜆 ∈ 𝑃𝑧0,𝛽,𝜀,𝑚 is continuous for every fixed

element 𝑥 ∈ 𝐸.
Let Γ1(𝑧0, 𝛽, 𝜀,𝑚) = {𝑒𝑖 arg(𝑧0)(|𝑧0|+ 𝜉 + 𝑖𝜂) : 𝜉 > 𝜀, 𝜂 = −𝑚(1 + 𝜉)−𝛽},
Γ2(𝑧0, 𝛽, 𝜀,𝑚) = {𝑒𝑖 arg(𝑧0)(|𝑧0|+ 𝜉+ 𝑖𝜂) : 𝜉2+𝜂2 = 𝑑2, 𝜉 6 𝜀} and Γ3(𝑧0, 𝛽, 𝜀,𝑚) =
{𝑒𝑖 arg(𝑧0)(|𝑧0| + 𝜉 + 𝑖𝜂) : 𝜉 > 𝜀, 𝜂 = 𝑚(1 + 𝜉)−𝛽}. We assume that the curve
Γ(𝑧0, 𝛽, 𝜀,𝑚) =

⋃︀3
𝑖=1(𝑒

−𝑖 arg(𝑧0)Γ𝑖(𝑧0, 𝛽, 𝜀,𝑚) − |𝑧0|) is oriented so that Im𝜆 de-
creases along (𝑒−𝑖 arg(𝑧0)Γ1(𝑧0, 𝛽, 𝜀,𝑚) − |𝑧0|); since there is no risk for confusion,
we also write Γ for Γ(𝑧0, 𝛽, 𝜀,𝑚). Let 𝑏 ∈ (0, 1/2) be fixed, set 𝛿𝑏 := arctan(cos𝜋𝑏)
and 𝐴0 := 𝑒−𝑖 arg(𝑧0)𝐴− |𝑧0|. Define, for every 𝑧 ∈ Σ𝛿𝑏 ,

𝑇𝑏(𝑧)𝑥 :=
1

2𝜋𝑖

∫︁
Γ

𝑒−𝑧(−𝜆)𝑏(𝜆−𝐴0)
−1𝐶𝑥𝑑𝜆, 𝑥 ∈ 𝑋.
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Then 𝑇𝑏(𝑧) ∈ 𝐿(𝑋) is injective and has dense range in 𝑋 for any 𝑧 ∈ Σ𝛿𝑏 (see e.g.
the proofs of [296, Theorem 3.15-Theorem 3.16]). Furthermore, 𝑇𝑏(𝑧)𝐴 ⊆ 𝐴𝑇𝑏(𝑧),
𝑧 ∈ Σ𝛿𝑏 and the condition (246) holds with 𝑇 and 𝐶 replaced respectively by 𝐴
and 𝑇𝑏(𝑧) (𝑧 ∈ Σ𝛿𝑏). If there exist a dense subset 𝑋0 of 𝑋 and a number 𝜆 ∈ 𝜎𝑝(𝐴)
such that lim𝑘→∞𝐴𝑘𝑥 = 0, 𝑥 ∈ 𝑋0 and |𝜆| > 1, then Theorem 2.11.5(ii) implies
that the operator 𝑧𝐴𝑛 is densely distributionally chaotic for any 𝑛 ∈ N and 𝑧 ∈ C
with |𝑧| = 1. Now we will illustrate this result by some examples.

(i) [143] Let 𝑎, 𝑏, 𝑐 > 0, 𝑐 < 𝑏2

2𝑎 < 1, 𝑋 := 𝐿2([0,∞)) and

Λ :=
{︁
𝜆 ∈ C :

⃒⃒⃒
𝜆−

(︁
𝑐− 𝑏2

4𝑎

)︁⃒⃒⃒
6
𝑏2

4𝑎
, Im𝜆 ̸= 0 if Re𝜆 6 𝑐− 𝑏2

4𝑎

}︁
.

Consider the operator −𝐴 defined by 𝐷(−𝐴) := {𝑓 ∈ 𝑊 2,2([0,∞)) :
𝑓(0) = 0} and −𝐴𝑢 := 𝑎𝑢𝑥𝑥+𝑏𝑢𝑥+𝑐𝑢, 𝑢 ∈ 𝐷(𝐴). Let 𝑃 (𝑧) =

∑︀𝑛
𝑗=0 𝑎𝑗𝑧

𝑗

be a non-constant complex polynomial such that 𝑎𝑛 > 0 and

𝑃 (−Λ) ∩ {𝑧 ∈ C : |𝑧| = 1} ≠ ∅.

Then −𝑃 (𝐴) generates an analytic 𝐶0-semigroup of angle 𝜋/2, 𝑃 (−Λ) ⊆
𝜎𝑝(𝑃 (𝐴)) and it is not difficult to prove that the operator 𝑃 (𝐴) is densely
distributionally chaotic.

(ii) [115,292,427] This example has already appeared in our previous ex-
aminations from Section 2.10. Suppose 𝑋 := 𝐿2(R), 𝑐 > 𝑏/2 > 0,
Ω := {𝜆 ∈ C : Re𝜆 < 𝑐− 𝑏/2} and 𝒜𝑐𝑢 := 𝑢′′+2𝑏𝑥𝑢′+ 𝑐𝑢 is the bounded
perturbation of the one-dimensional Ornstein–Uhlenbeck operator acting
with domain 𝐷(𝒜𝑐) := {𝑢 ∈ 𝐿2(R) ∩ 𝑊 2,2

𝑙𝑜𝑐 (R) : 𝒜𝑐𝑢 ∈ 𝐿2(R)}. Then
𝒜𝑐 generates a strongly continuous semigroup, Ω ⊆ 𝜎𝑝(𝒜𝑐), and for any
open connected subset Ω′ of Ω which admits a cluster point in Ω, we have
𝐸 = 𝑠𝑝𝑎𝑛{𝑔𝑖(𝜆) : 𝜆 ∈ Ω′, 𝑖 = 1, 2}, where 𝑔1(𝜆) and 𝑔2(𝜆) are defined as
before. This simply implies that the operator 𝒜𝑐 is densely distribution-
ally chaotic, this is also the property which holds for the multi-dimensional
Ornstein–Uhlenbeck operators from [115, Section 4].

(iii) [168] Suppose 𝑟 > 0, 𝜎 > 0, 𝜈 = 𝜎/
√
2, 𝛾 = 𝑟/𝜇− 𝜇, 𝑠 > 1, 𝑠𝜈 > 1 and

𝜏 > 0. Set

𝑌 𝑠,𝜏 :=
{︁
𝑢 ∈ 𝐶((0,∞)) : lim

𝑥→0

𝑢(𝑥)

1 + 𝑥−𝜏
= lim

𝑥→∞

𝑢(𝑥)

1 + 𝑥𝑠
= 0
}︁
.

Then 𝑌 𝑠,𝜏 , equipped with the norm

‖𝑢‖𝑠,𝜏 := sup
𝑥>0

⃒⃒⃒ 𝑢(𝑥)

(1 + 𝑥−𝜏 )(1 + 𝑥𝑠)

⃒⃒⃒
, 𝑢 ∈ 𝑌 𝑠,𝜏 ,

becomes a separable Banach space. Let 𝐷𝜇 := 𝜈𝑥𝑑/𝑑𝑥, with maximal
domain in 𝑌 𝑠,𝜏 , and let the Black–Scholes operator ℬ be defined by
ℬ := 𝐷2

𝜈 + 𝛾𝐷𝜇 − 𝑟. H. Emamirad, G. R. Goldstein and J. A. Goldstein
have proved in [168] that the operator ℬ generates a chaotic strongly con-
tinuous semigroup (it can be easily seen that the Black–Scholes semigroup
is densely distributionally chaotic, as well; see the next subsection for the
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notion). By [168, Lemma 3.3], the proof of [168, Lemma 3.5] (cf. espe-
cially the Figure 1 in the abovementioned paper, in the 𝑂𝑥′𝑦′ coordinate
system, with 𝑥′ = 𝑥/𝜈 and 𝑦′ = 𝑦/𝜈) and the previous examination, it
readily follows that the operator ℬ is densely distributionally chaotic.

(iv) [137] Assume that 𝜔1, 𝜔2, 𝑉𝜔2,𝜔1
, 𝑄(𝑧), 𝑄(𝐵), 𝑁 and 𝑋 possess the

same meaning as in [137, Section 5], and

𝑄(int(𝑉𝜔2,𝜔1)) ∩ {𝑧 ∈ C : |𝑧| = 1} ≠ ∅.
Then it can be proved with the help of Theorem 2.11.5(ii) that the un-
bounded operator 𝑄(𝐵) is densely distributionally chaotic; the Devaney
chaoticity of 𝑄(𝐵) can be proved in a similar fashion.

(v) Making use of Theorem 2.11.5(ii), we can also prove that certain poly-
nomials of the Laplace–Beltrami operator Δ♮

𝑋,𝑝, acting on the symmet-
ric spaces of non-compact type, Damek–Ricci or Heckman–Opdam root
spaces ( [35,259,474]), are densely distributionally chaotic.

It is not difficult to see that the operators considered in the previous example
are also chaotic (in the sense of [137, Definition 2.1]). Here we would like to mention
in passing that Q. Menet [425] has recently solved [68, Problem 37] by constructing
a linear continuous operator 𝑇 acting on a classical Banach function space that is
both chaotic and not distributionally chaotic. Motivated by the research of J. Bes,
C. K. Chan and S. M. Seubert [69], where the chaotic behaviour of the abstract
Laplace operator Δ has been analyzed, we would like to propose the following
problem:

Problem DC. Suppose 1 6 𝑝 < ∞, ∅ ≠ Ω ⊆ R𝑛 is an open (possibly un-
bounded) set, and the operator Δ acts on 𝐿𝑝(Ω) with maximal distributional do-
main and without any boundary conditions. Is it true that Δ is densely distribu-
tionally chaotic?

The proof of following slight extension of [430, Theorem 3] relies on use of K.
Ball’s planck theorems [430, Theorems 1 and 2] (cf. also [419, Proposition 9.1(a)]):

Proposition 2.11.7. Suppose that 𝑋 and 𝑌 are Banach spaces, and 𝑇𝑘 ∈
𝐿(𝑋,𝑌 ) for each 𝑘 ∈ N. If either

(i)
∑︀∞

𝑘=1
1

‖𝑇𝑘‖ <∞
or

(ii) 𝑋 is a complex Hilbert space and
∑︀∞

𝑘=1
1

‖𝑇𝑘‖2 <∞,

then there exists 𝑥 ∈ 𝑋 such that lim𝑘→∞ ‖𝑇𝑘𝑥‖𝑌 = ∞.

Taking into account the assertion of Proposition 2.11.7 and the fact that [𝑅(𝐶)]
is a Banach (complex Hilbert space) provided that 𝑋 is, we may conclude that the
following holds (cf. [68, Theorem 16] and [66, Corollary 30]): If 𝐵 ⊆ N, 𝑑𝑒𝑛𝑠(𝐵) =
1, the assumptions of Theorem 2.11.5(i) and (ii)(a) are valid, and exactly one of
the following two conditions holds:

(i) 𝑋 is a Banach space and
∑︀

𝑘∈𝐵
1

‖𝑇𝑘𝐶‖ <∞,
or
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(ii) 𝑋 is a complex Hilbert space and
∑︀

𝑘∈𝐵
1

‖𝑇𝑘𝐶‖2 <∞,

then there exists 𝑥 ∈ 𝑋 such that lim𝑘→∞,𝑘∈𝐵 ‖𝑇 𝑘𝐶𝑥‖ = ∞, i.e., the condition
stated in Theorem 2.11.5(ii)(b) automatically holds.

Before we move ourselves to the next subsection, we want to mention distribu-
tionally chaotic properties of multivalued linear operators as an interesting theme
for our researchers.

2.11.2. Distributionally chaotic properties of abstract degenerate
fractional differential equations. The following continuous version of Theorem
2.11.5(ii) will be essentially utilized in this subsection.

Theorem 2.11.8. Suppose that 𝑋 is separable, 𝑋0 is a dense linear subspace
of 𝑋, (𝑇 (𝑡))𝑡>0 ⊆ 𝐿(𝑋,𝑌 ) is a strongly continuous operator family, as well as:

(a) lim𝑡→∞ 𝑇 (𝑡)𝑥 = 0, 𝑥 ∈ 𝑋0,
(b) there exist 𝑥 ∈ 𝑋, 𝑚 ∈ N and a set 𝐵 ⊆ [0,∞) such that 𝐷𝑒𝑛𝑠(𝐵) = 1,

and lim𝑡→∞,𝑡∈𝐵 𝑝𝑚(𝑇 (𝑡)𝑥) = ∞, resp. lim𝑡→∞,𝑡∈𝐵 ‖𝑇 (𝑡)𝑥‖ = ∞ if 𝑋 is
a Banach space.

Then there exist a dense linear subspace 𝑆 of 𝑋 and a number 𝜎 > 0 such that for
each 𝜀 > 0 and for each pair 𝑥, 𝑦 ∈ 𝑆 of distinct points we have

𝐷𝑒𝑛𝑠({𝑡 > 0 : 𝑑𝑌 (𝑇 (𝑡)𝑥, 𝑇 (𝑡)𝑦) > 𝜎}) = 1

and
𝐷𝑒𝑛𝑠({𝑡 > 0 : 𝑑𝑌 (𝑇 (𝑡)𝑥, 𝑇 (𝑡)𝑦) < 𝜀}) = 1.

Proof. The proof is very similar to those of [68, Theorem 15] and Theorem
2.11.5(ii). Consider first the case in which 𝑋 and 𝑌 are Frechét spaces. If so,
the family (𝑇 (𝑡))𝑡>0 ⊆ 𝐿(𝑋,𝑌 ) is locally equicontinuous because it is strongly
continuous and 𝑋 is barreled ( [296]). Hence, for every 𝑙, 𝑛 ∈ N, there exist 𝑐𝑙,𝑛 > 0
and 𝑎𝑙,𝑛 ∈ N such that 𝑝𝑌𝑙 (𝑇 (𝑡)𝑥) 6 𝑐𝑙,𝑛𝑝𝑎𝑙,𝑛

(𝑥), 𝑥 ∈ 𝑋, 𝑡 ∈ [0, 𝑛]. Suppose, for the
time being, that:

(247) 𝑝𝑌𝑘 (𝑇 (𝑡)𝑥) 6 𝑝𝑘+⌈𝑡⌉(𝑥), 𝑥 ∈ 𝑋, 𝑡 > 0, 𝑘 ∈ N.

Without loss of generality, we may assume that 𝑚 = 1. Then one can find a
sequence (𝑥𝑘)𝑘∈N in 𝑋0 such that 𝑝𝑘(𝑥𝑘) 6 1, 𝑘 ∈ N and a strictly increasing
sequence of positive real numbers (𝑡𝑘)𝑘∈N tending to infinity such that:

𝐷𝑒𝑛𝑠({1 6 𝑡 6 𝑡𝑘 : 𝑝1(𝑇 (𝑡)𝑥𝑘) > 𝑘2𝑘}) > 𝑡𝑘(1− 𝑘−2)

and

𝐷𝑒𝑛𝑠({1 6 𝑡 6 𝑡𝑘 : 𝑝𝑘(𝑇 (𝑡)𝑥𝑙) < 𝑘−1}) > 𝑡𝑘(1− 𝑘−2), 𝑙 = 1, . . . , 𝑘 − 1.

Let (𝑟𝑘)𝑘∈N be a strictly increasing sequence in N so that:

𝑟𝑗+1 > 1 + 𝑟𝑗 + ⌈𝑡𝑟𝑗+1⌉, 𝑗 ∈ N.

Due to the proof of [68, Theorem 15], we obtain the existence of a dense linear sub-
space 𝑆 of 𝑋 such that, for every 𝑥 ∈ 𝑆, there exist two sets 𝐴𝑥, 𝐵𝑥 ⊆ [0,∞) such
that 𝐷𝑒𝑛𝑠(𝐴) = 𝐷𝑒𝑛𝑠(𝐵) = 1, lim𝑡→∞,𝑡∈𝐴𝑥

𝑇 (𝑡)𝑥 = 0 and lim𝑡→∞,𝑡∈𝐵𝑥
𝑝1(𝑇 (𝑡)𝑥)
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= ∞. Now the final conlusion of theorem follows as in the discrete case. Intro-
ducing recursively the following fundamental system of increasing seminorms 𝑝′𝑛(·)
(𝑛 ∈ N) on 𝑋:

𝑝′1(𝑥) ≡ 𝑝1(𝑥), 𝑥 ∈ 𝑋,

𝑝′2(𝑥) ≡ 𝑝′1(𝑥) + 𝑐1,1𝑝𝑎1,1
(𝑥) + 𝑝2(𝑥), 𝑥 ∈ 𝑋,

. . .

𝑝′𝑛+1(𝑥) ≡ 𝑝′𝑛(𝑥) + 𝑐1,𝑛𝑝𝑎1,𝑛
(𝑥) + · · ·+ 𝑐𝑛,1𝑝𝑎𝑛,1

(𝑥) + 𝑝𝑛+1(𝑥), 𝑥 ∈ 𝑋,

. . . ,

we may assume without loss of generality that (247) holds, hence the assertion is
proved in the case that 𝑋 and 𝑌 are Frechét spaces. If 𝑋 or 𝑌 is a Banach space,
then we can ‘renorm’ it, as it has been explained in the proof of Theorem 2.11.5(i),
and use after that the above result to finish the proof of theorem. �

Suppose that 𝑛 ∈ N r {1}, 𝐴1, . . . , 𝐴𝑛−1, 𝐴𝑛 = 𝐵 are closed linear operators
on 𝑋 and 0 6 𝛼1 < · · · < 𝛼𝑛. In this section, we scrutinize distributionally chaotic
properties of abstract degenerate fractional Cauchy problem [(90)-(91)], which will
be simply denoted by (ACP) here. We focus special attention on distributionally
chaotic solutions of the fractional Sobolev equations (DFP)𝑅 and (DFP)𝐿, as well.
Along with the problems (DFP)𝑅 and (DFP)𝐿, we consider the associated abstract
integral equation (this is, clearly, a special case of problem (52) with 𝑎(𝑡) = 𝑔𝛼(𝑡)):

(248) 𝐵𝑢(𝑡) = 𝑓(𝑡) +

∫︁ 𝑡

0

𝑔𝛼(𝑡− 𝑠)𝐴𝑢(𝑠)𝑑𝑠, 𝑡 > 0,

where 𝑓 ∈ 𝐶([0,∞) : 𝑋). Henceforth (DFP) denotes either (DFP)𝑅 or (DFP)𝐿.
By a mild solution of the problem (DFP)𝑅 we mean any continuous function
𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 such that the mapping 𝑡 ↦→ 𝐵𝑢(𝑡), 𝑡 > 0 is continuous and
𝐴(𝑔𝛼 * 𝑢)(𝑡) = 𝐵𝑢(𝑡) −

∑︀⌈𝛼⌉−1
𝑘=0 𝑔𝑘+1(𝑡)𝐵𝑥𝑘, 𝑡 > 0. The set of all vectors �⃗� =

(𝐵𝑥0, 𝐵𝑥1, . . . , 𝐵𝑥⌈𝛼⌉−1) for which there exists a mild solution of problem (DFP)𝑅
will be denoted by 𝑍𝑚𝑖𝑙𝑑

𝛼,𝑅 (𝐴,𝐵). Denote by T the exact number of initial val-
ues subjected to the problem (ACP); that is, T is the sum of number 𝑚𝑄 and
the cardinality of set consisting of those pairs (𝑖, 𝑗) ∈ N𝑛 × N0

𝑚𝑛−1 for which
𝑚𝑖 − 1 > 𝑗 > 𝑚𝑄. By Z (Z𝑢𝑛𝑖𝑞) we denote the set of all tuples of initial val-
ues �⃗� = ((𝑢𝑗)06𝑗6𝑚𝑄−1; (𝑢𝑖𝑠′ ,𝑗)16𝑠′6𝑠,𝑚𝑄6𝑗6𝑚𝑖

𝑠′
−1) ∈ 𝑋T for which there exists a

(unique) strong solution of problem (ACP).
The notion of (subspace) distributional chaoticity of problem (ACP) is intro-

duced in the following definition.

Definition 2.11.9. Let �̃� be a closed linear subspace of 𝑋T. Then it is said
that the abstract Cauchy problem (ACP) is �̃�-distributionally chaotic iff there are
an uncountable set 𝑆 ⊆ �̃� ∩Z and 𝜎 > 0 such that for each 𝜀 > 0 and for each pair
�⃗�, �⃗� ∈ 𝑆 of distinct tuples we have that there exist strong solutions 𝑡 ↦→ 𝑢(𝑡; �⃗�),
𝑡 > 0 and 𝑡 ↦→ 𝑢(𝑡; �⃗�), 𝑡 > 0 of problem (ACP) with the property that

𝐷𝑒𝑛𝑠({𝑡 > 0 : 𝑑(𝑢(𝑡; �⃗�), 𝑢(𝑡; �⃗�)) > 𝜎}) = 1 and
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𝐷𝑒𝑛𝑠({𝑡 > 0 : 𝑑(𝑢(𝑡; �⃗�), 𝑢(𝑡; �⃗�)) < 𝜀}) = 1.

If we can choose 𝑆 to be dense in �̃�, then we also say that the problem (ACP)
is densely �̃�-distributionally chaotic (𝑆 is called a 𝜎�̃� -scrambled set). In the case
that �̃� = 𝑋, it is also said that the problem (ACP) is (densely) distributionally
chaotic; 𝑆 is then called a 𝜎-scrambled set.

The notion introduced in Definition 2.11.9 can be slightly modified for the
problem (DFP)𝑅 by requiring that, for every two distinct tuples vectors of 𝜎�̃� -
scrambled set 𝑆 ⊆ �̃� ∩ 𝑍𝑚𝑖𝑙𝑑

𝛼,𝑅 (𝐴,𝐵), there exist mild solutions 𝑡 ↦→ 𝑢(𝑡; �⃗�), 𝑡 > 0

and 𝑡 ↦→ 𝑢(𝑡; �⃗�), 𝑡 > 0 of problem (DFP)𝑅 obeying the properties prescribed. We
will not follow this approach henceforth.

Definition 2.11.10. Let 𝑛 ∈ N, let �̃� be a closed linear subspace of 𝑋T, and
let �⃗� ∈ �̃� ∩ Z. Then it is said that the vector �⃗� is:

(i) �̃�-(ACP)-distributionally near to 0 iff there exist a set 𝑍 ⊆ [0,∞) and a
strong solution 𝑡 ↦→ 𝑢(𝑡; �⃗�), 𝑡 > 0 of problem (ACP) such that

𝐷𝑒𝑛𝑠(𝑍) = 1 and lim
𝑡∈𝑍,𝑡→+∞

𝑢(𝑡; �⃗�) = 0;

(ii) �̃�-(ACP)-distributionally 𝑛-unbounded iff there exist a set 𝑍 ⊆ [0,∞)
and a strong solution 𝑡 ↦→ 𝑢(𝑡; �⃗�), 𝑡 > 0 of problem (ACP) such that

𝐷𝑒𝑛𝑠(𝑍) = 1 and lim
𝑡∈𝑍,𝑡→+∞

𝑝𝑛(𝑢(𝑡; �⃗�)) = +∞;

�⃗� is said to be �̃�-(ACP)-distributionally unbounded iff there exists 𝑞 ∈ N
such that �⃗� is �̃�-(ACP)-distributionally 𝑞-unbounded (if (𝑋, ‖ · ‖) is a
Banach space, this simply means that there exist a set 𝑍 ⊆ [0,∞) and a
strong solution 𝑡 ↦→ 𝑢(𝑡; �⃗�), 𝑡 > 0 of problem (ACP) such that 𝐷𝑒𝑛𝑠(𝑍) =
1 and lim𝑡∈𝑍,𝑡→+∞ ‖𝑢(𝑡; �⃗�)‖ = +∞);

(iii) a �̃�-(ACP)-distributionally irregular vector iff there exist an integer 𝑞 ∈
N, two subsets 𝐵0, 𝐵∞ of [0,∞) with 𝐷𝑒𝑛𝑠(𝐵0) = 𝐷𝑒𝑛𝑠(𝐵∞) = 1 and a
strong solution 𝑡 ↦→ 𝑢(𝑡; �⃗�), 𝑡 > 0 of problem (ACP) such that

(249) lim
𝑡∈𝐵0,𝑡→+∞

𝑢(𝑡; �⃗�) = 0 and lim
𝑡∈𝐵∞,𝑡→+∞

𝑝𝑞(𝑢(𝑡; �⃗�)) = +∞.

In the case that �̃� = 𝑋T, then we also say that �⃗� is (ACP)-distributionally near to
0, resp., (ACP)-distributionally 𝑛-unbounded, (ACP)-distributionally unbounded;
a �̃�-distributionally irregular vector for (ACP) is then called a distributionally
irregular vector for (ACP).

Suppose that 𝑋 ′ ⊆ �̃� ∩ Z is a linear manifold. Then we say that 𝑋 ′ is a
�̃�-distributionally irregular manifold for (ACP) (distributionally irregular mani-
fold for (ACP), in the case that �̃� = 𝑋T) iff any element 𝑥 ∈ 𝑋 ′ r {0} is �̃�-
distributionally irregular vector for (ACP). Further on, we say that 𝑋 ′ is a uni-
formly �̃�-distributionally irregular manifold for (ACP) (uniformly distributionally
irregular manifold for (ACP), in the case that �̃� = 𝑋T) iff there exists 𝑞 ∈ N
such that, for every �⃗� ∈ 𝑋 ′ r {0}, there exist two subsets 𝐵0, 𝐵∞ of [0,∞) with
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𝐷𝑒𝑛𝑠(𝐵0) = 𝐷𝑒𝑛𝑠(𝐵∞) = 1 and a strong solution 𝑡 ↦→ 𝑢(𝑡; �⃗�), 𝑡 > 0 of problem
(ACP) such that (249) holds. It can be simply verified with the help of trans-
lation invariance of metric 𝑑(·, ·) and inequalities (244)–(245) that the following
holds: If 0 ̸= �⃗� ∈ �̃� ∩ Z is a �̃�-distributionally irregular vector for (ACP), then
𝑋 ′ ≡ 𝑠𝑝𝑎𝑛{�⃗�} is a uniformly �̃�-distributionally irregular manifold for (ACP).

Remark 2.11.11. (i) If �⃗� is a �̃�-distributionally irregular vector for
(ACP), then �⃗� is both �̃�-(ACP)-distributionally near to 0 and �̃�-(ACP)-
distributionally unbounded. The converse statement holds provided that
strong solutions of problem (ACP) are unique. If this is not the case
and �⃗� ̸= 0 is both �̃�-(ACP)-distributionally near to 0 and �̃�-(ACP)-
distributionally unbounded, then we can prove the following (cf.Definition
2.11.9): There are an uncountable set 𝑆 ⊆ �̃� ∩ Z (𝑆 is, in fact, equal to
𝑠𝑝𝑎𝑛{�⃗�}) and 𝜎 > 0 such that for each 𝜀 > 0 and for each pair �⃗�, �⃗� ∈ 𝑆
of distinct vectors we have that there exist strong solutions 𝑡 ↦→ 𝑢𝑖(𝑡; �⃗�),
𝑡 > 0 and 𝑡 ↦→ 𝑢𝑖(𝑡; �⃗�), 𝑡 > 0 (𝑖 = 1, 2) of problem (ACP) with the property
that

𝐷𝑒𝑛𝑠({𝑡 > 0 : 𝑑(𝑢1(𝑡; �⃗�), 𝑢1(𝑡; �⃗�)) > 𝜎}) = 1 and

𝐷𝑒𝑛𝑠({𝑡 > 0 : 𝑑(𝑢2(𝑡; �⃗�), 𝑢2(𝑡; �⃗�)) < 𝜀}) = 1.

If this is the case, we say that the problem (ACP) is quasi �̃�-distributio-
nally chaotic (quasi distributionally chaotic, provided that �̃� = 𝑋T). The
set 𝑆 is called quasi 𝜎�̃� -scrambled set (quasi 𝜎-scrambled set, provided
that �̃� = 𝑋T).

(ii) Suppose that (ACP) is �̃�-distributionally chaotic and 𝑆 is the correspond-
ing 𝜎�̃� -scrambled set. Then, for every two distinct vectors �⃗�, �⃗� ∈ 𝑆, �⃗�− �⃗�
is a �̃�-distributionally vector for (ACP).

(iii) Suppose that (ACP) is quasi �̃�-distributionally chaotic and 𝑆 is the cor-
responding quasi 𝜎�̃� -scrambled set. Then, for every two distinct vectors
�⃗�, �⃗� ∈ 𝑆, �⃗�− �⃗� is a quasi �̃�-distributionally vector for (ACP), i.e., �⃗�− �⃗�

is both �̃�-(ACP)-distributionally near to 0 and �̃�-(ACP)-distributionally
unbounded.

It is worth noting that the non-triviality of subspace
⋂︀𝑛

𝑖=1𝑁(𝐴𝑖) in 𝑋 imme-
diately implies that the problem (ACP) is distributionally chaotic:

Example 2.11.12. Suppose that 0 ̸= 𝑥 ∈
⋂︀𝑛

𝑖=1𝑁(𝐴𝑖). We can always find a
sequence (𝑎𝑛)𝑛∈N0

of non-negative real numbers and a scalar-valued function 𝑓 ∈
𝐶∞([0,∞)) such that 𝑎0 = 0, 𝑎𝑛 > 𝑎𝑛−1+2, 𝑛 ∈ N, lim𝑛→+∞(𝑎𝑛−1−1)(𝑎𝑛−1)−1 =
0, 𝑓(𝑡) = 0 for 𝑡 ∈

⋃︀
𝑛∈N[𝑎2𝑛−1, 𝑎2𝑛] and 𝑓(𝑡) = 2𝑛 for 𝑡 ∈

⋃︀
𝑛∈N0

[𝑎2𝑛 + 1, 𝑎2𝑛+1 −
1]. Since the sets 𝐵0 :=

⋃︀
𝑛∈N[𝑎2𝑛−1, 𝑎2𝑛] and 𝐵∞ :=

⋃︀
𝑛∈N0

[𝑎2𝑛 + 1, 𝑎2𝑛+1 − 1]
have the upper densities equal to 1, it is very simple to verify that the function
𝑢(𝑡; �⃗�) := 𝑓(𝑡)𝑥, 𝑡 > 0 is a strong solution of problem (ACP) with the initial value
�⃗� = ((𝑢𝑗 ≡ 𝑓 (𝑗)(0)𝑥)06𝑗6𝑚𝑄−1; (𝑢𝑖𝑠′ ,𝑗 ≡ 0)16𝑠′6𝑠,𝑚𝑄6𝑗6𝑚𝑖

𝑠′
−1) ∈ 𝑋T, as well as
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that �⃗� is a distributionally irregular vector for (ACP). In particular, �⃗� = 0⃗ can be
a distributionally irregular vector for (ACP).

It is not clear whether there exists a quasi distributionally chaotic problem
(ACP) that is not distributionally chaotic. In the sequel, we will consider only the
classical notion of (subspace) distributional chaoticity of problem (ACP).

The notions of exponentially equicontinuous (𝑔𝛼, 𝐶)-regularized resolvent fam-
ily for (248) and exponentially equicontinuous (𝑔𝛼, 𝐶)-regularized resolvent family
generated by 𝐴, 𝐵 will be crucially important in our work. We know the following
facts about exponentially equicontinuous (𝑔𝛼, 𝐶)-regularized resolvent families (cf.
Section 2.1–Section 2.2 for more details).

Lemma 2.11.13. (i) Let (𝑅(𝑡))𝑡>0 be an exponentially equicontinuous
(𝑔𝛼, 𝐶)-regularized resolvent family for (248). Suppose that the follow-
ing condition holds:
(P)” There exists a number 𝜔1 > 𝜔 such that, for every 𝑥 ∈ 𝑋, there exists

a function ℎ(𝜆;𝑥) ∈ 𝐿𝑇−𝑋 such that ℎ(𝜆;𝑥) = 𝜆𝛼−1(𝜆𝛼𝐵−𝐴)−1𝐶𝑥,
provided Re𝜆 > 𝜔1.

Let 𝑥0, . . . , 𝑥⌈𝛼⌉−1 ∈ 𝐷(𝐴) ∩ 𝐷(𝐵). Then the function 𝑢(𝑡; (𝐵𝐶𝑥0, . . . ,
𝐵𝐶𝑥⌈𝛼⌉−1)) :=

∑︀⌈𝛼⌉−1
𝑗=0

∫︀ 𝑡

0
𝑔𝑗(𝑡 − 𝑠)𝑅(𝑠)𝑥𝑗 𝑑𝑠, 𝑡 > 0 is a unique strong

solution of (DFP)𝑅, with the initial values 𝐵𝑥𝑗 replaced by 𝐵𝐶𝑥𝑗 (0 6
𝑗 6 ⌈𝛼⌉ − 1).

(ii) Let (𝑅(𝑡))𝑡>0 be an exponentially equicontinuous (𝑔𝛼, 𝐶)-regularized resol-
vent family generated by 𝐴, 𝐵. Then for each 𝑥0, . . . , 𝑥⌈𝛼⌉−1 ∈ 𝐷(𝐴) ∩
𝐷(𝐵) the function 𝑢(𝑡; (𝐶𝑥0, . . . , 𝐶𝑥⌈𝛼⌉−1)) :=

∑︀⌈𝛼⌉−1
𝑗=0

∫︀ 𝑡

0
𝑔𝑗(𝑡 − 𝑠)𝑅(𝑠)

𝐵𝑥𝑗 𝑑𝑠, 𝑡 > 0 is a unique strong solution of problem (DFP)𝐿, with the
initial values 𝑥𝑗 replaced by 𝐶𝑥𝑗 (0 6 𝑗 6 ⌈𝛼⌉ − 1).

In the following theorem, we will consider the subspace distributionally chaotic
properties of problem (DFP)𝑅.

Theorem 2.11.14. Suppose that 𝛼 > 0, 𝐶 ∈ 𝐿(𝑋) is injective, 𝐶𝐴 ⊆ 𝐴𝐶,
𝐶𝐵 ⊆ 𝐵𝐶, (𝑅(𝑡))𝑡>0 is an exponentially equicontinuous (𝑔𝛼, 𝐶)-regularized resol-
vent family for (248), (P)” holds and ∅ ̸= 𝒱 ⊆ N0

⌈𝛼⌉−1. Suppose, further, that the
following conditions hold:

∙ Let 𝐹𝑖 be a separable complex Fréchet space, let 𝐹𝑖 ⊆ 𝐷(𝐴) ∩𝐷(𝐵), and
let 𝐹𝑖 be continuously embedded in 𝑋 (𝑖 ∈ 𝒱).

∙ Suppose that for each 𝑛 ∈ N and 𝑖 ∈ 𝒱 there exist a number 𝑐𝑛,𝑖 > 0
and a continuous seminorm 𝑞𝑛,𝑖(·) on 𝐹𝑖 so that 𝑝𝑛(𝐶𝐵𝑓𝑖) 6 𝑐𝑛,𝑖𝑞𝑛,𝑖(𝑓𝑖),
𝑓𝑖 ∈ 𝐹𝑖. Set 𝐺𝑖 := 𝐹𝑖, if 𝑖 ∈ 𝒱, 𝐺𝑖 := {0}, if 𝑖 ∈ N0

⌈𝛼⌉−1 r 𝒱, and

𝐹 :=
∏︀⌈𝛼⌉−1

𝑖=0 𝐺𝑖.
∙ For each 𝑖 ∈ 𝒱 there exists a dense subset 𝐹 0

𝑖 of 𝐹𝑖 satisfying that
lim𝑡→+∞(𝑔𝑖 *𝑅(·)𝑓𝑖)(𝑡) = 0, 𝑓𝑖 ∈ 𝐹 0

𝑖 .
∙ Let there exist 𝑓∞ = (𝑓0,∞, . . . , 𝑓⌈𝛼⌉−1,∞) ∈ 𝐹 , 𝑚 ∈ N and a set 𝐷 ⊆
[0,∞) such that 𝐷𝑒𝑛𝑠(𝐷) = 1, and
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lim𝑡→+∞,𝑡∈𝐷 𝑝𝑚(
∑︀

𝑖∈𝒱(𝑔𝑖 * 𝑅(·)𝑓𝑖,∞)(𝑡)) = +∞, resp. lim𝑡→+∞,𝑡∈𝐷

‖
∑︀

𝑖∈𝒱(𝑔𝑖 *𝑅(·)𝑓𝑖,∞)(𝑡)‖ = +∞ if (𝑋, ‖ · ‖) is a Banach space.
Then we have that the problem (DFP)𝑅 is densely

{(𝐶𝐵𝑓0, . . . , 𝐶𝐵𝑓⌈𝛼⌉−1) : 𝑓 = (𝑓0, . . . , 𝑓⌈𝛼⌉−1) ∈ 𝐹}
𝑋⌈𝛼⌉

-distributionally chaotic.

Proof. It is clear that 𝐹 is an infinite-dimensional separable complex Fréchet
space. Define 𝑉 (𝑡)𝑓 :=

∑︀⌈𝛼⌉−1
𝑖=0 (𝑔𝑖 * 𝑅(·)𝑓𝑖)(𝑡), 𝑡 > 0 (𝑓 = (𝑓0, . . . , 𝑓⌈𝛼⌉−1) ∈ 𝐹 )

and 𝐹0 :=
∏︀⌈𝛼⌉−1

𝑖=0 𝐺0
𝑖 , where 𝐺0

𝑖 := 𝐹 0
𝑖 , if 𝑖 ∈ 𝒱, and 𝐺0

𝑖 := {0}, if 𝑖 ∈ N0
⌈𝛼⌉−1 r 𝒱.

Then 𝐹0 is dense in 𝐹 and (𝑉 (𝑡))𝑡>0 ⊆ 𝐿(𝐹,𝑋) is a strongly continuous operator
family. An application of Theorem 2.11.8 yields that there exist a dense linear
subspace 𝑆 of 𝐹 and a number 𝜎 > 0 such that for each 𝜀 > 0 and for each pair
𝑓 ′, 𝑓 ′′ ∈ 𝑆 of distinct vectors we have

𝐷𝑒𝑛𝑠({𝑡 > 0 : 𝑑(𝑉 (𝑡)𝑓 ′, 𝑉 (𝑡)𝑓 ′′) > 𝜎}) = 1 and

𝐷𝑒𝑛𝑠({𝑡 > 0 : 𝑑(𝑉 (𝑡)𝑓 ′, 𝑉 (𝑡)𝑓 ′′) < 𝜀}) = 1.

Suppose that 𝐶𝐵𝑓𝑖 = 0 for all 𝑖 ∈ 𝒱 and 𝑓𝑖 ∈ 𝐹𝑖. Then (54) and the uniqueness
theorem for the Laplace transform together imply that 𝑅(𝑡)𝑓𝑖 = 0 for all 𝑖 ∈ 𝒱 and
𝑓𝑖 ∈ 𝐹𝑖, which contradicts the existence of 𝑚-distributionally unbounded vector
𝑓∞ from 𝐹 . Hence, there exist 𝑖 ∈ 𝒱 and 𝑓𝑖 ∈ 𝐹𝑖 such that 𝐶𝐵𝑓𝑖 ̸= 0. Using this
fact and the continuity of mapping 𝐶𝐵 : 𝐹𝑖 → 𝑋 for each 𝑖 ∈ 𝒱, we can simply
verify that {(𝐶𝐵𝑓0, . . . , 𝐶𝐵𝑓⌈𝛼⌉−1) : 𝑓 = (𝑓0, . . . , 𝑓⌈𝛼⌉−1) ∈ 𝑆} is a non-trivial
subspace of 𝑋⌈𝛼⌉. Now the final conclusion simply follows by using the continuity
of mappings 𝐶𝐵 : 𝐹𝑖 → 𝑋 (𝑖 ∈ 𝒱) once more, and Lemma 2.11.13(i). �

Similarly, by using Theorem 2.11.8 and Lemma 2.11.13(ii), we can prove the
following theorem on subspace distributional chaoticity of problem (DFP)𝐿.

Theorem 2.11.15. Suppose that 𝛼 > 0, 𝐶 ∈ 𝐿(𝑋) is injective, 𝐶𝐴 ⊆ 𝐴𝐶,
𝐶𝐵 ⊆ 𝐵𝐶, (𝑅(𝑡))𝑡>0 is an exponentially equicontinuous (𝑔𝛼, 𝐶)-regularized resol-
vent family generated by 𝐴, 𝐵, and ∅ ≠ 𝒱 ⊆ N0

⌈𝛼⌉−1. Suppose, further, that the
following conditions hold:

∙ Let 𝐹𝑖 be a separable complex Fréchet space, and let 𝐹𝑖 ⊆ 𝐷(𝐴) ∩ 𝐷(𝐵)
(𝑖 ∈ 𝒱).

∙ Suppose that for each 𝑛 ∈ N and 𝑖 ∈ 𝒱 there exist a number 𝑐𝑛,𝑖 > 0
and a continuous seminorm 𝑞𝑛,𝑖(·) on 𝐹𝑖 so that 𝑝𝑛(𝐵𝑓𝑖) + 𝑝𝑛(𝐶𝑓𝑖) 6
𝑐𝑛,𝑖𝑞𝑛,𝑖(𝑓𝑖), 𝑓𝑖 ∈ 𝐹𝑖. Set 𝐺𝑖 := 𝐹𝑖, if 𝑖 ∈ 𝒱, 𝐺𝑖 := {0}, if 𝑖 ∈ N0

⌈𝛼⌉−1 r 𝒱,

and 𝐹 :=
∏︀⌈𝛼⌉−1

𝑖=0 𝐺𝑖.
∙ Suppose, further, that for each 𝑖 ∈ 𝒱 there exists a dense subset 𝐹 0

𝑖 of 𝐹𝑖

satisfying that lim𝑡→+∞(𝑔𝑖 *𝑅(·)𝐵𝑓𝑖)(𝑡) = 0, 𝑓𝑖 ∈ 𝐹 0
𝑖 .

∙ Let there exist 𝑓 = (𝑓0, . . . , 𝑓⌈𝛼⌉−1) ∈ 𝐹 , 𝑚 ∈ N and a set 𝐷 ⊆ [0,∞) such
that 𝐷𝑒𝑛𝑠(𝐷) = 1, and lim𝑡→+∞,𝑡∈𝐷 𝑝𝑚(

∑︀
𝑖∈𝒱(𝑔𝑖 * 𝑅(·)𝐵𝑓𝑖)(𝑡)) = +∞,

resp. lim𝑡→+∞,𝑡∈𝐷 ‖
∑︀

𝑖∈𝒱(𝑔𝑖*𝑅(·)𝐵𝑓𝑖)(𝑡)‖ = +∞ if (𝑋, ‖·‖) is a Banach
space.
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Then we have that the problem (DFP)𝐿 is densely

{(𝐶𝑓0, . . . , 𝐶𝑓⌈𝛼⌉−1) : 𝑓 = (𝑓0, . . . , 𝑓⌈𝛼⌉−1) ∈ 𝐹}
𝑋⌈𝛼⌉

-distributionally chaotic.

Remark 2.11.16. (i) Suppose that 𝑙 ∈ N0. Then the increasing family
of seminorms 𝑝𝐴,𝐵,𝐶

𝑛,𝑙 (·) := 𝑝𝑛(𝐶
−𝑙·) + 𝑝𝑛(𝐶

−𝑙𝐴·) + 𝑝𝑛(𝐶
−𝑙𝐵·) (𝑛 ∈ N)

turns 𝐶𝑙(𝐷(𝐴) ∩ 𝐷(𝐵)) into a Fréchet space, which will be denoted by
[𝐷(𝐴) ∩ 𝐷(𝐵)]𝑙𝐶 in the sequel. In the concrete situation of Theorem
2.11.14 or Theorem 2.11.15, 𝐹𝑖 can be chosen to be some of closed linear
subspaces of [𝐷(𝐴) ∩𝐷(𝐵)]𝑙𝐶 that is separable for the topology induced
from [𝐷(𝐴)∩𝐷(𝐵)]𝑙𝐶 . If 𝑋 is separable and 𝐶 = 𝐼, then for each number
𝜆 > 𝜔 the mapping (𝜆𝛼𝐵−𝐴)−1 : 𝑋 → [𝐷(𝐴)∩𝐷(𝐵)] (≡ [𝐷(𝐴)∩𝐷(𝐵)]0𝐼)
is a linear topological isomorphism and, in this case, [𝐷(𝐴) ∩𝐷(𝐵)] and
𝐹𝑖 will be separable (𝑖 ∈ 𝒱).

(ii) If we suppose additionally that𝑅(𝑡)𝐵 ⊆ 𝐵𝑅(𝑡), 𝑡 > 0 in the formulation of
Theorem 2.11.15, then we do not need to assume that for each 𝑛 ∈ N and
𝑖 ∈ 𝒱 there exist a number 𝑐𝑛,𝑖 > 0 and a continuous seminorm 𝑞𝑛,𝑖(·) on
𝐹𝑖 so that 𝑝𝑛(𝐵𝑓𝑖) 6 𝑐𝑞𝑛,𝑖(𝑓𝑖), 𝑓𝑖 ∈ 𝐹𝑖 (because, in this case, the operator
𝑉𝐿(𝑡)⃗· =

∑︀⌈𝛼⌉−1
𝑖=0 (𝑔𝑖 * 𝑅(·)𝐵·𝑖)(𝑡), 𝑡 > 0 (⃗· = (·0, . . . , ·⌈𝛼⌉−1) ∈ 𝐹 ) belongs

to the space 𝐿(𝐹,𝑋) and (𝑉𝐿(𝑡))𝑡>0 is a strongly continuous operator
family in 𝐿(𝐹,𝑋)).

Keeping in mind Theorem 2.10.3, it is very natural to raise the following issue:
Problem 1. Suppose that 𝛼 ∈ (0, 2) and Ω is an open connected subset of C which
satisfies Ω ∩ (−∞, 0] = ∅ and Ω ∩ 𝑖R ̸= ∅. Let 𝑓 : Ω𝛼 → 𝑋 be an analytic mapping
such that 𝑓(𝜆𝛼) ∈ 𝑁(𝐴 − 𝜆𝛼𝐵) r {0}, 𝜆 ∈ Ω. Does there exist a closed linear
subspace 𝑋 ′ of 𝑋⌈𝛼⌉ such that the problems (DFP)𝑅 and (DFP)𝐿 are (densely)
𝑋 ′-distributionally chaotic?

The method proposed in the proofs of [112, Theorem 4.1] and its discrete pre-
cursor [68, Theorem 15] cannot be applied here and, because of that, one has to
follow new paths capable of moving us towards a solution of this problem. Unfortu-
nately, we will present only some partial answers to Problem 1 by assuming that the
strong solutions of problem (DFP) are governed by an exponentially equicontinuous
(𝑔𝛼, 𝐶)-regularized resolvent family for (248) (in the case of problem (DFP)𝑅) or
an exponentially equicontinuous (𝑔𝛼, 𝐶)-regularized resolvent family generated by
𝐴, 𝐵 (in the case of problem (DFP)𝐿).

We start by stating the following result.

Theorem 2.11.17. (i) Suppose that 0 < 𝛼 < 2, 𝐶 ∈ 𝐿(𝑋) is injec-
tive, 𝐶𝐴 ⊆ 𝐴𝐶, 𝐶𝐵 ⊆ 𝐵𝐶, (𝑅(𝑡))𝑡>0 is an exponentially equicontinuous
(𝑔𝛼, 𝐶)-regularized resolvent family for (248), (P)” holds and ∅ ≠ 𝒱 ⊆
N0

⌈𝛼⌉−1. Suppose, further, that the following conditions hold:
– Let 𝐹𝑖 be a separable complex Fréchet space, let 𝐹𝑖 ⊆ 𝐷(𝐴) ∩𝐷(𝐵),

and let 𝐹𝑖 be continuously embedded in 𝑋 (𝑖 ∈ 𝒱).
– Suppose that for each 𝑛 ∈ N and 𝑖 ∈ 𝒱 there exist a number 𝑐𝑛,𝑖 >

0 and a continuous seminorm 𝑞𝑛,𝑖(·) on 𝐹𝑖 so that 𝑝𝑛(𝐶𝐵𝑓𝑖) 6
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𝑐𝑛,𝑖𝑞𝑛,𝑖(𝑓𝑖), 𝑓𝑖 ∈ 𝐹𝑖. Set 𝐺𝑖 := 𝐹𝑖, if 𝑖 ∈ 𝒱, 𝐺𝑖 := {0}, if 𝑖 ∈
N0

⌈𝛼⌉−1 r 𝒱, and 𝐹 :=
∏︀⌈𝛼⌉−1

𝑖=0 𝐺𝑖.
– Let 𝐻𝑖 : Ω

𝛼 → 𝐹𝑖 be an analytic mapping such that 𝐻𝑖(𝜆
𝛼) ∈ 𝑁(𝐴−

𝜆𝛼𝐵)r {0}, 𝜆 ∈ Ω (𝑖 ∈ 𝒱).
Set 𝐹 ′

𝑖 := 𝑠𝑝𝑎𝑛{𝐻𝑖(𝜆𝛼) : 𝜆 ∈ Ω}
𝐹𝑖

(𝑖 ∈ 𝒱), 𝐹 ′
𝑖 := {0} (𝑖 ∈ N0

⌈𝛼⌉−1 r 𝒱)
and 𝐹 ′ :=

∏︀⌈𝛼⌉−1
𝑖=0 𝐹 ′

𝑖 . Then the problem (DFP)𝑅 is densely

{(𝐶𝐵𝑓 ′0, . . . , 𝐶𝐵𝑓 ′⌈𝛼⌉−1) : 𝑓
′ = (𝑓 ′0, . . . , 𝑓

′
⌈𝛼⌉−1) ∈ 𝐹 ′}

𝑋⌈𝛼⌉

-distributionally
chaotic.

(ii) Suppose that 0 < 𝛼 < 2, 𝐶 ∈ 𝐿(𝑋) is injective, 𝐶𝐴 ⊆ 𝐴𝐶, 𝐶𝐵 ⊆ 𝐵𝐶,
(𝑅(𝑡))𝑡>0 is an exponentially equicontinuous (𝑔𝛼, 𝐶)-regularized resolvent
family generated by 𝐴, 𝐵, and ∅ ̸= 𝒱 ⊆ N0

⌈𝛼⌉−1. Suppose, further, that
the following conditions hold:

– Let 𝐹𝑖 be a separable complex Fréchet space, and let 𝐹𝑖 ⊆ 𝐷(𝐴)∩𝐷(𝐵)
(𝑖 ∈ 𝒱).

– Suppose that for each 𝑛 ∈ N and 𝑖 ∈ 𝒱 there exist a number 𝑐𝑛,𝑖 > 0
and a continuous seminorm 𝑞𝑛,𝑖(·) on 𝐹𝑖 so that 𝑝𝑛(𝐵𝑓𝑖)+𝑝𝑛(𝐶𝑓𝑖) 6
𝑐𝑛,𝑖𝑞𝑛,𝑖(𝑓𝑖), 𝑓𝑖 ∈ 𝐹𝑖. Set 𝐺𝑖 := 𝐹𝑖, if 𝑖 ∈ 𝒱, 𝐺𝑖 := {0}, if 𝑖 ∈
N0

⌈𝛼⌉−1 r 𝒱, and 𝐹 :=
∏︀⌈𝛼⌉−1

𝑖=0 𝐺𝑖.
– Let 𝐻𝑖 : Ω

𝛼 → 𝐹𝑖 be an analytic mapping such that 𝐻𝑖(𝜆
𝛼) ∈ 𝑁(𝐴−

𝜆𝛼𝐵)r {0}, 𝜆 ∈ Ω (𝑖 ∈ 𝒱).
Set 𝐹 ′

𝑖 := 𝑠𝑝𝑎𝑛{𝐻𝑖(𝜆𝛼) : 𝜆 ∈ Ω}
𝐹𝑖

(𝑖 ∈ 𝒱), 𝐹 ′
𝑖 := {0} (𝑖 ∈ N0

⌈𝛼⌉−1 r 𝒱)
and 𝐹 ′ :=

∏︀⌈𝛼⌉−1
𝑖=0 𝐹 ′

𝑖 . Then the problem (DFP)𝐿 is densely

{(𝐶𝑓 ′0, . . . , 𝐶𝑓 ′⌈𝛼⌉−1) : 𝑓
′ = (𝑓 ′0, . . . , 𝑓

′
⌈𝛼⌉−1) ∈ 𝐹 ′}

𝑋⌈𝛼⌉

-distributionally
chaotic.

Proof. Suppose that Ω0 is an arbitrary open connected subset of Ω which
admits a cluster point in Ω. Then the (weak) analyticity of mapping 𝜆 ↦→ 𝐻𝑖(𝜆

𝛼) ∈
𝐹𝑖, 𝜆 ∈ Ω implies that Ψ(Ω0, 𝑖) := span{𝐻𝑖(𝜆

𝛼) : 𝜆 ∈ Ω0} is dense in the Fréchet
space 𝐹 ′

𝑖 ; in particular, (𝐹 ′
𝑖 )0 := Ψ(Ω ∩ C−, 𝑖) is dense in 𝐹 ′

𝑖 (𝑖 ∈ 𝒱). The rest
of proof is almost the same in cases (i) and (ii), so that we will consider only
(i). Since 𝐻𝑖(𝜆

𝛼) ∈ 𝑁(𝐴 − 𝜆𝛼𝐵) r {0}, 𝜆 ∈ Ω, we can apply the uniqueness
theorem for Laplace transform, (43) and (54) in order to see that 𝑅(𝑡)𝐻𝑖(𝜆

𝛼) =
𝐸𝛼(𝑡

𝛼𝜆𝛼)𝐶𝐻𝑖(𝜆
𝛼), 𝑡 > 0, 𝜆 ∈ Ω and that (𝑔𝑖 * 𝐸𝛼(·𝛼𝜆𝛼))(𝑡) = 𝑡𝑖𝐸𝛼,𝑖+1(𝑡

𝛼𝜆𝛼),
𝑡 > 0, 𝑖 ∈ N0 (𝑖 ∈ 𝒱). Now the claimed assertion follows from an application of
Theorem 2.11.14 and the asymptotic expansion formulae (40)–(42). �

Remark 2.11.18. Suppose that the requirements of Problem 1 hold, 𝐶 ∈ 𝐿(𝑋)
is injective, 𝐶𝐴 ⊆ 𝐴𝐶, 𝐶𝐵 ⊆ 𝐵𝐶, 𝑋 is separable, 𝑙 ∈ N0 and ∅ ≠ 𝒱 ⊆ N0

⌈𝛼⌉−1.

(i) Let (𝑅(𝑡))𝑡>0 be an exponentially equicontinuous (𝑔𝛼, 𝐶)-regularized re-
solvent family for (248), and let (P)” hold. Then the closed graph theo-
rem implies that (𝜆𝛼𝐵 − 𝐴)−1𝐶 ∈ 𝐿(𝑋) for all 𝜆 ∈ C with Re𝜆 > 𝜔1.
Suppose that Re𝜆0 > 𝜔1, (𝜆𝛼𝐵 − 𝐴)−1𝐶𝐴 ⊆ 𝐴(𝜆𝛼𝐵 − 𝐴)−1𝐶 and
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(𝜆𝛼𝐵 − 𝐴)−1𝐶𝐵 ⊆ 𝐵(𝜆𝛼𝐵 − 𝐴)−1𝐶 for all 𝜆 ∈ C with Re𝜆 > 𝜔1.
Set

𝑋𝑙 := 𝑠𝑝𝑎𝑛{𝐶𝑙(𝜆𝛼0𝐵 −𝐴)−1𝐶𝑓(𝜆𝛼) : 𝜆 ∈ Ω}
[𝐷(𝐴)∩𝐷(𝐵)]𝑙𝐶

.

Then the mapping 𝐺 : 𝑋 → [𝐷(𝐴)∩𝐷(𝐵)]𝑙𝐶 , given by 𝐺(𝑥) := 𝐶𝑙(𝜆𝛼0𝐵−

𝐴)−1𝐶𝑥, 𝑥 ∈ 𝑋, is continuous and the space 𝐺(𝑋)
[𝐷(𝐴)∩𝐷(𝐵)]𝑙𝐶 is separa-

ble. Set 𝐹𝑖 := [𝐷(𝐴) ∩𝐷(𝐵)]𝑙𝐶 (𝑖 ∈ 𝒱). Define 𝐺𝑖 and the space 𝐹 as in
the formulation of Theorem 2.11.17(i). Then, for every 𝑖 ∈ 𝒱, the map-
ping 𝐻𝑖 : Ω

𝛼 → 𝐹𝑖, given by 𝐻𝑖(𝜆
𝛼) := 𝐶𝑙(𝜆𝛼0𝐵 −𝐴)−1𝐶𝑓(𝜆𝛼), 𝜆 ∈ Ω, is

analytic (𝑖 ∈ 𝒱). Define now 𝐹 ′
𝑖 and 𝐹 ′ as in the formulation of Theorem

2.11.17(i). Applying Theorem 2.11.17(i), we get that (DFP)𝑅 is densely

{(𝐶𝐵𝑓 ′0, . . . , 𝐶𝐵𝑓 ′⌈𝛼⌉−1) : 𝑓
′ = (𝑓 ′0, . . . , 𝑓

′
⌈𝛼⌉−1) ∈ 𝐹 ′}

𝑋⌈𝛼⌉

-distributionally
chaotic (observe that 𝐶𝑙(𝑋𝑚) = 𝑋𝑚+𝑙 and 𝐶(𝑋𝑙) ⊆ 𝑋𝑙 for all 𝑙, 𝑚 ∈ N0,
as well as that 𝑋0 ⊇ 𝑋1 ⊇ · · · ⊇ 𝑋𝑙 ⊇ . . . and {(𝐶𝐵𝑓 ′0, . . . , 𝐶𝐵𝑓 ′⌈𝛼⌉−1) :

𝑓 ′ = (𝑓 ′0, . . . , 𝑓
′
⌈𝛼⌉−1) ∈ 𝐹 ′} = {(𝑥0, . . . , 𝑥⌈𝛼⌉−1) ∈ 𝑋⌈𝛼⌉ : 𝑥𝑖 = 0 for 𝑖 ∈

N0
⌈𝛼⌉−1 r 𝒱, and 𝑥𝑖 ∈ 𝐵(𝑋𝑙+1) for 𝑖 ∈ 𝒱}; in the sequel, we will use the

abbreviation 𝑋⌈𝛼⌉
𝐵,𝑙,𝒱 to denote the above set).

(ii) Let (𝑅(𝑡))𝑡>0 be an exponentially equicontinuous (𝑔𝛼, 𝐶)-regularized re-
solvent family generated by 𝐴, 𝐵, obeying additionally that (𝜆𝛼𝐵−𝐴)−1𝐶
commutes with 𝐴 and 𝐵 for all 𝜆 ∈ C with Re𝜆 > 𝜔. Then Theorem
2.11.17(ii) and the above consideration imply that the problem (DFP)𝐿
is densely

{(𝑥0, . . . , 𝑥⌈𝛼⌉−1)∈𝑋⌈𝛼⌉ : 𝑥𝑖 = 0, 𝑖 ∈ N0
⌈𝛼⌉−1 r 𝒱; 𝑥𝑖 ∈ 𝑋𝑙+1, 𝑖 ∈ 𝒱}

𝑋⌈𝛼⌉

-distributionally chaotic. We will denote the above set simply by 𝑋⌈𝛼⌉
𝑙,𝒱 .

Now we will present an illustrative example of application of obtained results.

Example 2.11.19. Suppose that 0 < 𝛼 < 2, cos(𝜋/𝛼) 6 0, 𝑙 ∈ N0, ∅ ̸= 𝒱 ⊆
N0

⌈𝛼⌉−1, 1 6 𝑝 < ∞, 𝜔 > 0, 𝑃1(𝑧) and 𝑃2(𝑧) are non-zero complex polynomials,

𝑁1 = 𝑑𝑔(𝑃1(𝑧)), 𝑁2 = 𝑑𝑔(𝑃2(𝑧)), 𝑃2(𝑥) ̸= 0 for all 𝑥 ∈ R, 𝛽 > 1
2
(𝑁1+𝑁2)
min(1,𝛼) and (70)

holds. Then there exist numbers 𝑧0 ∈ C and 𝑟 > 0 such that:

𝑃1(−𝑖𝑧0) = 𝑟𝑒±𝑖𝛼𝜋/2𝑃2(−𝑖𝑧0), 𝑃2(𝑧0) ̸= 0

and
𝑃1(−𝑖·)′(𝑧0)𝑃2(−𝑖𝑧0)− 𝑃1(𝑧0)𝑃2(−𝑖·)′(𝑧0) ̸= 0.

Let 𝑎 > 0 be such that |Re(𝑧0)| < 𝑎/𝑝. Set 𝜌(𝑥) := 𝑒−𝑎|𝑥|, 𝑥 ∈ R,

𝐿𝑝
𝜌(R) :=

{︂
𝑓 : R → C | 𝑓(·) is measurable,

∫︁
R
|𝑓(𝑥)|𝑝𝜌(𝑥)𝑑𝑥 <∞

}︂
and ‖𝑓‖ := (

∫︀
R |𝑓(𝑥)|𝑝𝜌(𝑥)𝑑𝑥)1/𝑝; equipped with this norm, 𝑋 := 𝐿𝑝

𝜌(R) becomes
an infinite-dimensional separable complex Banach space. It is well known that the
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operator −𝑖𝐴0, defined by

𝐷(−𝑖𝐴0) := {𝑓 ∈ 𝑋 | 𝑓(·) is loc. abs. continuous, 𝑓 ′ ∈ 𝑋}, (−𝑖𝐴0)𝑓 := 𝑓 ′,

is the generator of a 𝐶0-group on 𝑋 (cf. [143, Theorem 4.9]). Therefore, we can
define the closed linear operators 𝐴 := 𝑃1(𝐴0) and 𝐵 := 𝑃2(𝐴0) on 𝑋 by using the
functional calculus for bounded commuting 𝐶0-groups; recall that these operators
are densely defined, and𝐵 is injective. Arguing as in Example 2.10.5, we obtain that
there exist an open connected subset Ω of C r (−∞, 0] intersecting the imaginary
axis and an open connected neighborhood 𝑊 of point 𝑧0, contained in the vertical
strip {𝑧 ∈ C : |Re(𝑧)| < 𝑎/𝑝}, such that the mapping (𝑃1(−𝑖·)/𝑃2(−𝑖·))−1 : Ω𝛼 →
𝑊 is well defined, analytic and bijective. Set

𝑓(𝜆𝛼) := 𝑒(𝑃1(−𝑖·)/𝑃2(−𝑖·))−1(𝜆𝛼)·, 𝜆 ∈ Ω

and, for every 𝑡 > 0,

𝑅𝛼(𝑡) :=
(︁
𝐸𝛼

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁
(1 + |𝑥|2)−𝛽/2

)︁
(𝐴0), 𝐺𝛼(𝑡) := 𝑃2(𝐴0)

−1
𝑅𝛼(𝑡).

Then (𝑅𝛼(𝑡))𝑡>0 ⊆ 𝐿(𝑋) is a global exponentially bounded (𝑔𝛼, 𝑅𝛼(0))-regularized
resolvent family for (248), (P)” holds, (𝐺𝛼(𝑡))𝑡>0 ⊆ 𝐿(𝑋, [𝐷(𝐵)]) is a global ex-
ponentially bounded (𝑔𝛼, 𝑅𝛼(0))-regularized resolvent family generated by 𝐴, 𝐵,
the mapping 𝑓 : Ω𝛼 → 𝑋 is analytic and 𝐴𝑓(𝜆𝛼) = 𝜆𝛼𝐵𝑓(𝜆𝛼), 𝜆 ∈ Ω. Fur-
thermore, there exists 𝜔1 > 𝜔 such that (𝜆𝛼𝐵 − 𝐴)−1𝐶 commutes with 𝐴 and
𝐵 for all 𝜆 ∈ C with Re𝜆 > 𝜔1; here 𝐶 = 𝑅𝛼(0). Now it readily follows that
the problem (DFP)𝑅 ((DFP)𝐿) is densely 𝑋

⌈𝛼⌉
𝐵,𝑙,𝒱 -distributionally chaotic(densely

𝑋
⌈𝛼⌉
𝑙,𝒱 -distributionally chaotic); unfortunately, in the present situation, we do not

know to say anything about the optimality of this result. Before passing on to some
concrete examples where the established conclusions can be applied, it should be
noticed that we can prove a similar result provided that the state space is chosen
to be the Banach space 𝐶0,𝜌(R) (cf. [143, Definition 4.3]) or the Fréchet space
𝑋 ′ := {𝑓 ∈ 𝐶∞(R) : 𝑓 (𝑛) ∈ 𝐿𝑝

𝜌(R) for all 𝑛 ∈ N0}, equipped with the following
family of seminorms 𝑝𝑛(𝑓) :=

∑︀𝑛
𝑗=0 ‖𝑓 (𝑗)‖𝐿𝑝

𝜌(R), 𝑛 ∈ N0; in this case, the opera-
tors 𝐴|𝑋′ and 𝐵|𝑋′ are linear and continuous on 𝑋 ′, (𝐶|𝑋′)−1 ∈ 𝐿(𝑋 ′), as well as
((𝐶|𝑋′)−1𝑅𝛼(𝑡)|𝑋′)𝑡>0 ⊆ 𝐿(𝑋 ′) is a global exponentially equicontinuous (𝑔𝛼, 𝐼𝑋′)-
regularized resolvent family for (248), (P)” holds in our concrete situation, and
((𝐶|𝑋′)−1𝐺𝛼(𝑡)|𝑋′)𝑡>0 ⊆ 𝐿(𝑋 ′, [𝐷(𝐵|𝑋′)]) is a global exponentially equicontinuous
(𝑔𝛼, 𝐼𝑋′)-regularized resolvent family generated by 𝐴|𝑋′ , 𝐵|𝑋′):

(i) Assuming that 𝑃1(𝑧) = −𝛼0𝑧
2 − 𝛽0𝑧

4 and 𝑃2(𝑧) = 𝛾0 + 𝑧2, where 𝛼0, 𝛽0,
𝛾0 are positive real numbers, we are in a position to clarify some results on
subspace distributionally chaoticity of fractional linearized Benney–Luke
equation

(𝛾0 −Δ)D𝛼
𝑡 𝑢 = 𝛼0Δ𝑢− 𝛽0Δ

2𝑢.

(ii) Assuming that 𝑃1(𝑧) = 𝑧2 and 𝑃2(𝑧) = −𝜂𝑧2 − 1, where 𝜂 > 0, we are in
a position to clarify some results on subspace distributionally chaoticity
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of the fractional Barenblatt–Zheltov–Kochina equation

(𝜂Δ− 1)D𝛼
𝑡 𝑢(𝑡) + Δ𝑢 = 0 (𝜂 > 0).

In the remainder of subsection, we will always assume that

𝑇𝑛𝑢(𝑡) = 𝐵D𝛼𝑛
𝑡 𝑢(𝑡) = 𝑇𝑛,𝐿𝑢(𝑡).

Then it is evident that the abstract degenerate Cauchy problem

(250) 𝐵D𝛼𝑛
𝑡 𝑢(𝑡) +

𝑛−1∑︁
𝑖=1

𝑇𝑖𝑢(𝑡) = 0; 𝑢(𝑘)(0) = 𝑢𝑘, 0 6 𝑘 6 𝑚𝑛 − 1

is a special subcase of problem (ACP). The Caputo fractional derivative D𝛼𝑛
𝑡 𝑢(𝑡)

is defined for any strong solution 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 of problem (250) and this, in
turn, implies that we can define the Caputo fractional derivative D𝜁

𝑡𝑢(𝑡) for any
number 𝜁 ∈ [0, 𝛼𝑛]. Motivated by our results from Subsection 2.10.4, we introduce
the following notion:

Definition 2.11.20. Let �̃� be a closed linear subspace of 𝑋𝑚𝑛 , let 𝑘 ∈ N, and
let �⃗� = (𝛽1, 𝛽2, . . . , 𝛽𝑘) ∈ [0, 𝛼𝑛]

𝑘. Then it is said that the abstract Cauchy problem
(250) is (�̃�, 𝛽)-distributionally chaotic iff there are an uncountable set 𝑆 ⊆ �̃� ∩ Z
and 𝜎 > 0 such that for each 𝜀 > 0 and for each pair �⃗�, �⃗� ∈ 𝑆 of distinct tuples we
have that there exist strong solutions 𝑡 ↦→ 𝑢(𝑡; �⃗�), 𝑡 > 0 and 𝑡 ↦→ 𝑢(𝑡; �⃗�), 𝑡 > 0 of
problem (250) with the property that

𝐷𝑒𝑛𝑠

(︂{︂
𝑡 > 0 :

𝑘∑︁
𝑖=1

𝑑(D𝛽𝑖

𝑡 𝑢(𝑡; �⃗�),D
𝛽𝑖

𝑡 𝑢(𝑡; �⃗�)) > 𝜎

}︂)︂
= 1 and

𝐷𝑒𝑛𝑠

(︂{︂
𝑡 > 0 :

𝑘∑︁
𝑖=1

𝑑(D𝛽𝑖

𝑡 𝑢(𝑡; �⃗�),D
𝛽𝑖

𝑡 𝑢(𝑡; �⃗�)) < 𝜀

}︂)︂
= 1.

As before, if we can choose 𝑆 to be dense in �̃�, then we say that the problem (250) is
densely (�̃�, �⃗�)-distributionally chaotic (𝑆 is called a (𝜎�̃� , 𝛽)-scrambled set). In the
case �̃� = 𝑋𝑚𝑛 , it is also said that the problem (250) is (densely) 𝛽-distributionally
chaotic; 𝑆 is then called a (𝜎, 𝛽)-scrambled set.

The classical definitions of �̃�-distributional chaos of problem 250 can be ob-
tained by plugging 𝛽 = (0, 0, . . . , 0) ∈ [0, 𝛼𝑛]

𝑘 in Definition 2.11.20; we can also
define some other notions of �̃�-distributional chaos of problem 250 by replac-
ing, optionally, some of terms D𝛽𝑖

𝑡 𝑢(𝑡; �⃗�) and D𝛽𝑖

𝑡 𝑢(𝑡; �⃗�) in Definition 2.11.20 with
D𝛽𝑖

𝑡 𝐴
′
𝑖𝑢(𝑡; �⃗�) or𝐴′′

𝑖 D
𝛽𝑖

𝑡 𝑢(𝑡; �⃗�), and D𝛽𝑖

𝑡 𝐵
′
𝑖𝑢(𝑡; �⃗�) or𝐵′′

𝑖 D
𝛽𝑖

𝑡 𝑢(𝑡; �⃗�), respectively, where
𝐴′

𝑖, 𝐴′′
𝑖 , 𝐵′

𝑖, 𝐵′′
𝑖 are closed linear operators on 𝑋 (1 6 𝑖 6 𝑘).

Now we would like to present an illustrative example from [113].

Example 2.11.21. The study of various hypercyclic, chaotic and topologically
mixing properties of the viscous van Wijngaarden–Eringen equation:

(251) (1− 𝑎20𝑢𝑥𝑥)𝑢𝑡𝑡 = (Re𝑏)
−1𝑢𝑥𝑥𝑡 + 𝑢𝑥𝑥,
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which corresponds to the linearized version of the equation that models the acous-
tic planar propagation in bubbly liquids, has recently been carried out by J. A.
Conejero, C. Lizama and M. Murillo-Arcila in [113]; here, 𝑎0 > 0 denotes the di-
mensionless bubble radius and Re𝑏 > 0 is a Reynolds number. The state space in
their analysis is 𝑋𝜌, which consists of real analytic functions of Herzog type

𝑋𝜌 :=

{︂
𝑓 : R → C ; 𝑓(𝑥) =

∞∑︁
𝑛=0

𝑎𝑛𝜌
𝑛

𝑛!
𝑥𝑛, 𝑥 ∈ R for some (𝑎𝑛)𝑛>0 ∈ 𝑐0(N0)

}︂
,

which is an isomorphic copy of the sequence space 𝑐0(N0). More precisely, it has
been proved that the bounded matricial operator

𝐴 :=

[︂
𝑂 𝐼

−(1− 𝑎20𝑢𝑥𝑥)
−1𝑢𝑥𝑥 (Re𝑏)

−1(1− 𝑎20𝑢𝑥𝑥)
−1𝑢𝑥𝑥

]︂
generates a strongly continuous semigroup on 𝑋2

𝜌 satisfying the assumptions of
Desch–Schappacher–Webb criterion, provided 𝑎0 < 1,

√
5/6 < 𝑎0Re𝑏 < 1/2 and

𝜌 > 𝑟0𝑎
−1
0 /(2−1𝑎−2

0 (Re𝑏)
−1 − 3𝑟0) (𝑟0 := 4−1𝑎−2

0 (Re𝑏)
−1(1 − 4𝑎20Re

2
𝑏)

1/2). This
immediately implies that the abstract degenerate second order Cauchy problem
(251) is densely (0, 1)-distributionally chaotic (cf. Definition 2.11.20 and Theorem
2.10.24).

The following problem is in a close connection with the last mentioned theorem:
Problem 2. Let 𝛼𝑖 = 𝑖 for all 𝑖 ∈ N𝑛, let Ω be an open non-empty subset of C

intersecting the imaginary axis, and let 𝑓 : Ω → 𝐸 be an analytic mapping satisfying
(240). Does there exist a tuple 𝛽 ∈ [0, 𝛼𝑛]

𝑘 and a closed linear subspace 𝑋 ′ of 𝑋𝑛

such that the problem (ACP)𝐵,𝑛 is (densely) (𝑋 ′, �⃗�)-distributionally chaotic?
Now we are going to enquire into the basic distributionally chaotic properties

of the following special subcase of problem (250):

(252) 𝐵D𝛼𝑛
𝑡 𝑢(𝑡) +

𝑛−1∑︁
𝑖=1

𝐴𝑖D
𝛼𝑖
𝑡 𝑢(𝑡) = 0; 𝑢(𝑘)(0) = 𝑢𝑘, 0 6 𝑘 6 𝑚𝑛 − 1.

In our analysis, we are primarily concerned with exploiting Theorem 2.11.8 and,
because of that, we need to assume that strong solutions of (252) are governed
by some known degenerate resolvent families for (252); besides of that, it is very
important to know whether strong solutions of (252) are unique or not. Here we
will focus our attention on the use of (𝐶1, 𝐶2)-existence and uniqueness families
for (252), with both operators 𝐶1 ∈ 𝐿(𝑋) and 𝐶2 ∈ 𝐿(𝑋) being injective. Let us
recall that for 0 6 𝑖 6 𝑚𝑛 − 1 we define the sets 𝐷𝑖 := {𝑗 ∈ N𝑛−1 : 𝑚𝑗 − 1 > 𝑖},
𝐷′

𝑖 := N𝑛−1 r𝐷𝑖 and

D𝑖 :=

{︂
𝑢𝑖 ∈

⋂︁
𝑗∈𝐷′

𝑖

𝐷(𝐴𝑗) : 𝐴𝑗𝑢𝑖 ∈ 𝑅(𝐶1), 𝑗 ∈ 𝐷′
𝑖

}︂
.

The existence of a 𝐶2-uniqueness family for (252) implies the uniqueness of strong
solutions of this problem, while the existence of a 𝐶1-existence family for (252)
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implies the following assertion, already known from our previous examinations (cf.
Subsection 2.3.5 for more details):

Lemma 2.11.22. Suppose that (𝐸(𝑡))𝑡>0 is a 𝐶1-existence family for (252), and
𝑢𝑖 ∈ D𝑖 for 0 6 𝑖 6 𝑚𝑛 − 1. Define, for every 𝑡 > 0,

𝑢(𝑡) :=

𝑚𝑛−1∑︁
𝑖=0

𝑢𝑖𝑔𝑖+1(𝑡)−
𝑚𝑛−1∑︁
𝑖=0

∑︁
𝑗∈N𝑛−1r𝐷𝑖

(𝑔𝛼𝑛−𝛼𝑗
* 𝐸(𝑚𝑛−1−𝑖))(𝑡)𝐶−1

1 𝐴𝑗𝑢𝑖.(253)

Then the function 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 is a strong solution of (252).

The following theorem can be proved by using Theorem 2.11.8 and Lemma
2.11.22.

Theorem 2.11.23. Suppose that 𝐶1 ∈ 𝐿(𝑋) is injective and (𝐸(𝑡))𝑡>0 is a
𝐶1-existence family for (252). Let 𝐹 be a separable complex Fréchet space, let
𝐹 ⊆ D0 × D1 × · · · × D𝑚𝑛−1, and let 𝐹 be continuously embedded in 𝑋𝑚𝑛 . De-
fine 𝑉 (𝑡) : 𝐹 → 𝑋 by 𝑉 (𝑡)�⃗� :=

∑︀𝑚𝑛−1
𝑖=0 𝑢𝑖𝑔𝑖+1(𝑡) −

∑︀𝑚𝑛−1
𝑖=0

∑︀
𝑗∈N𝑛−1r𝐷𝑖

(𝑔𝛼𝑛−𝛼𝑗 *
𝐸(𝑚𝑛−1−𝑖))(𝑡)𝐶−1

1 𝐴𝑗𝑢𝑖 (𝑡 > 0, �⃗� = (𝑢0, 𝑢1, . . . , 𝑢𝑚𝑛−1) ∈ 𝐹 ; cf. (253)). Suppose
that 𝑉 (𝑡) ∈ 𝐿(𝐹,𝑋) for all 𝑡 > 0, as well as that 𝐹0 is a dense subset of 𝐹 sat-
isfying that lim𝑡→+∞ 𝑉 (𝑡)�⃗� = 0, �⃗� ∈ 𝐹0. Let there exist �⃗� ∈ 𝐹 , 𝑚 ∈ N and a
set 𝐵 ⊆ [0,∞) such that 𝐷𝑒𝑛𝑠(𝐵) = 1, and lim𝑡→+∞,𝑡∈𝐵 𝑝𝑚(𝑉 (𝑡)�⃗�) = +∞, resp.
lim𝑡→+∞,𝑡∈𝐵 ‖𝑉 (𝑡)�⃗�‖𝑋 = +∞ if (𝑋, ‖ · ‖𝑋) is a Banach space. Then the problem
(252) is densely 𝐹𝑋𝑚𝑛 -distributionally chaotic.

Now we will apply Theorem 2.11.23 in the study of distributionally chaotic
properties of fractional analogues of the viscous van Wijngaarden-Eringen equation.

Example 2.11.24. Suppose 1/2 < 𝛼 6 1 and 𝑝 > 2. Consider the following
fractional degenerate multi-term problem:

(1 + 𝑎20Δ
♮
𝑋,𝑝)D

2𝛼
𝑡 𝑢(𝑡, 𝑥) + (Re𝑏)

−1Δ♮
𝑋,𝑝D

𝛼
𝑡 𝑢(𝑡, 𝑥) + Δ♮

𝑋,𝑝𝑢(𝑡, 𝑥) = 0, 𝑡 > 0;(254)

𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑢𝑡(0, 𝑥) = 𝑢1(𝑥),

on a symmetric space 𝑋 of non-compact type and rank one. Let 𝑃𝑝 be the parabolic
domain defined in [259]; then we know that 𝑖𝑛𝑡(𝑃𝑝) ⊆ 𝜎𝑝(Δ

♮
𝑋,𝑝). In our concrete

situation, we have that 𝑛 = 3, 𝛼3 = 2𝛼, 𝛼2 = 𝛼, 𝛼1 = 0, 𝐵 = (1 + 𝑎20Δ
♮
𝑋,𝑝),

𝐴2 = (Re𝑏)
−1Δ♮

𝑋,𝑝, 𝐴1 = Δ♮
𝑋,𝑝 and P𝜆 = 1+ (𝑎20 +𝜆−𝛼 +𝜆−2𝛼)Δ♮

𝑋,𝑝 for Re𝜆 > 0.
Then it is clear that 𝑧(𝜆) := (𝑎20 + 𝜆−𝛼 + 𝜆−2𝛼)−1 → 𝑎−2

0 for |𝜆| → ∞, as well as
that

𝜆−1P−1
𝜆 = 𝜆−1𝑧(𝜆)(𝑧(𝜆) + Δ♮

𝑋,𝑝)
−1, Re𝜆 > 0 suff. large.

Taking into account Theorem 1.4.10 and the fact that the operator −Δ♮
𝑋,𝑝 generates

an analytic strongly continuous semigroup on 𝑋, we may conclude from the above
that 𝜆−1P−1

𝜆 ∈ 𝐿𝑇−𝐿(𝑋). Since 𝜆−1𝑧(𝜆)𝐼 ∈ 𝐿𝑇−𝐿(𝑋) (cf. the proof of Theorem
2.10.9), we can apply the resolvent equation and Theorem 1.4.10 in order to see that

𝜆−2𝛼−1Δ♮
𝑋,𝑝𝑧(𝜆)(𝑧(𝜆) + Δ♮

𝑋,𝑝)
−1 ∈ 𝐿𝑇 − 𝐿(𝑋),
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𝜆−𝛼−1(Re𝑏)
−1Δ♮

𝑋,𝑝𝑧(𝜆)(𝑧(𝜆) + Δ♮
𝑋,𝑝)

−1 ∈ 𝐿𝑇 − 𝐿(𝑋)

and
𝜆−1(1 + 𝑎20Δ

♮
𝑋,𝑝)𝑧(𝜆)(𝑧(𝜆) + Δ♮

𝑋,𝑝)
−1 ∈ 𝐿𝑇 − 𝐿(𝑋).

By Theorem 2.3.33(i)/(b), we have that there exists an exponentially bounded
𝐼-existence family (𝐸(𝑡))𝑡>0 for (254). It is not difficult to see with the help of
Theorem 2.3.33(ii) that (𝐸(𝑡))𝑡>0 is likewise an exponentially bounded 𝐼-uniqueness
family for (254), so that the strong solutions of (254) are unique. Furthermore,
we have that D𝑖 = 𝐷(Δ♮

𝑋,𝑝) for 𝑖 = 0, 1. Let 𝑓 : 𝑖𝑛𝑡(𝑃𝑝) → 𝑋 r {0} be an
analytic mapping satisfying that Δ♮

𝑋,𝑝𝑓(𝜆) = 𝜆𝑓(𝜆), 𝜆 ∈ 𝑖𝑛𝑡(𝑃𝑝). Using the proof
of Theorem 2.10.9, we get that the function 𝑡 ↦→ 𝑢(𝑡; (𝑓(𝜆), 𝑓(𝜆′))), 𝑡 > 0, given by

𝑢(𝑡; (𝑓(𝜆), 𝑓(𝜆′))) := 𝐻0(𝜆, 𝑡)𝑓(𝜆) +𝐻1(𝜆
′, 𝑡)𝑓(𝜆′), 𝑡 > 0 (𝜆, 𝜆′ ∈ 𝑖𝑛𝑡(𝑃𝑝)),

where

𝐻0(𝜆, 𝑡) := ℒ−1
(︁ 𝑧2𝛼−1 − (Re𝑏)

−1(𝜆− 𝑎20)
−1𝑧𝛼−1

𝑧2𝛼 − (Re𝑏)−1(𝜆− 𝑎20)
−1𝑧𝛼 − (𝜆− 𝑎20)

−1

)︁
(𝑡), 𝑡 > 0,

and

𝐻1(𝜆
′, 𝑡) := ℒ−1

(︁ 𝑧2𝛼−1

𝑧2𝛼 − (Re𝑏)−1(𝜆′ − 𝑎20)
−1𝑧𝛼 − (𝜆′ − 𝑎20)

−1

)︁
(𝑡), 𝑡 > 0,

is a unique strong solution of (254) with 𝑢(0, ·) = 𝑓(𝜆) and 𝑢𝑡(0, ·) = 𝑓(𝜆′). Direct
computations show that

𝐻0(𝜆, 𝑡) =
𝑟1(𝜆)− (Re𝑏)

−1(𝜆− 𝑎20)
−1

√
𝐷𝜆

𝑒𝑟1(𝜆)𝑡 − 𝑟2(𝜆)− (Re𝑏)
−1(𝜆− 𝑎20)

−1

√
𝐷𝜆

𝑒𝑟2(𝜆)𝑡

if 𝛼 = 1,

𝐻0(𝜆, 𝑡) =
𝑡−𝛼

√
𝐷𝜆

[𝐸𝛼,1−𝛼(𝑟1(𝜆)𝑡
𝛼)− 𝐸𝛼,1−𝛼(𝑟2(𝜆)𝑡

𝛼)]

− (Re𝑏)
−1(𝜆− 𝑎20)

−1

√
𝐷𝜆

[𝐸𝛼(𝑟1(𝜆)𝑡
𝛼)− 𝐸𝛼(𝑟2(𝜆)𝑡

𝛼)], 𝑡 > 0,

if 0 < 𝛼 < 1, and

𝐻1(𝜆
′, 𝑡) =

𝑡1−𝛼

√
𝐷𝜆

[𝐸𝛼,2−𝛼(𝑟1(𝜆
′)𝑡𝛼)− 𝐸𝛼,2−𝛼(𝑟2(𝜆

′)𝑡𝛼)], 𝑡 > 0,

where

𝑟1,2(𝜆) :=
(Re𝑏)

−1(𝜆− 𝑎20)
−1 ±

√︀
(Re𝑏)−2(𝜆− 𝑎20)

−2 + 4(𝜆− 𝑎20)
−1

2
and

𝐷𝜆 := (Re𝑏)
−2(𝜆− 𝑎20)

−2 + 4(𝜆− 𝑎20)
−1.

Set 𝐹 := [𝐷(Δ♮
𝑋,𝑝)]× [𝐷(Δ♮

𝑋,𝑝)]. Then 𝐹 is a separable infinite-dimensional com-
plex Banach space. Define 𝑉 (𝑡) as in the formulation of Theorem 2.11.23, with 𝐶1 =
𝐼; then it is clear that 𝑉 (𝑡) ∈ 𝐿(𝐹,𝑋) for all 𝑡 > 0. From the uniqueness of strong
solutions of (254), it readily follows that 𝑉 (𝑡)(𝑓(𝜆), 𝑓(𝜆′)) = 𝑢(𝑡; (𝑓(𝜆), 𝑓(𝜆′))),
𝑡 > 0 (𝜆, 𝜆′ ∈ 𝑖𝑛𝑡(𝑃𝑝)). Using the asymptotic expansion formulae (40)–(42) and a
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simple analysis, we obtain that there exist a sufficiently small number 𝜀 > 0 and
two sufficiently large negative numbers 𝑥− < 0 and 𝑥′− < 0 such that the first
requirement in Theorem 2.11.23 holds with 𝐹0 = 𝑠𝑝𝑎𝑛{(1 + Δ♮

𝑋,𝑝)
−1𝑓(𝜆) : 𝜆 ∈

𝐿(𝑥−, 𝜀)} × 𝑠𝑝𝑎𝑛{(1 + Δ♮
𝑋,𝑝)

−1𝑓(𝜆′) : 𝜆′ ∈ 𝐿(𝑥′−, 𝜀)}.
It is clear that there exists a great number of concrete situations (consider,

for example, the case in which 𝑎0 → 0+ and Re𝑏 → +∞) in which there exists a
number 𝜆0 ∈ 𝑖𝑛𝑡(𝑃𝑝) such that

𝑟1(𝜆0) ∈ Σ𝛾𝜋/2.

If this is the case, the vector (𝑓(𝜆0), 0) is distributionally unbounded and the prob-
lem (254) is densely distributionally chaotic; observe also that the problem (254) is
densely (𝑋×{0})-distributionally chaotic and ({0}×𝑋)-distributionally chaotic by
Theorem 2.11.23. The same holds for the problem (254)’ obtained by interchanging
the terms (Re𝑏)

−1Δ♮
𝑋,𝑝D

𝛼
𝑡 𝑢(𝑡, 𝑥) and (Re𝑏)

−1D𝛼
𝑡 Δ

♮
𝑋,𝑝𝑢(𝑡, 𝑥) in (254); this follows

directly from Definition 2.11.9 and the fact that the mapping 𝑡 ↦→ 𝑢(𝑡; (𝑓(𝜆), 𝑓(𝜆′))),
𝑡 > 0, defined above, is still a strong solution of (254)’ for 𝜆, 𝜆′ ∈ 𝑖𝑛𝑡(𝑃𝑝). Observe,
finally, that all established conclusions for the problems (254) and (254)’ continue
to hold if we replace the operator Δ♮

𝑋,𝑝 and the state space 𝑋 in our analysis with
the operator (Δ♮

𝑋,𝑝)∞ and the Fréchet space [𝐷∞(Δ♮
𝑋,𝑝)], respectively.

In the previous example, we have employed some ideas contained in the proof
of Theorem 2.10.9. Assuming that the requirements of this theorem hold, we can
pose the problem of existence of a closed linear subspace 𝑋 ′ of 𝑋𝑚𝑛 , an integer
𝑘 ∈ N and a tuple 𝛽 ∈ [0, 𝛼𝑛]

𝑘 such that the problem (224) is (densely) (𝑋 ′, �⃗�)-
distributionally chaotic; a similar question can be posed for the problem (250).
We close this section with the observation that, in the present situation, we can
give only some partial answers to the problems addressed above by using Theorem
2.11.8 as an essential tool in the consideration. For more details about various
generalizations of distributional chaos and applications to the abstract PDEs, the
reader may consult [294].

2.12. Appendix and notes

In his fundamental paper [507] (1994), G. A. Sviridyuk succeeded in developing
the phase space method for the Sobolev equations of first order and some classes of
incomplete higher-order Sobolev equations. The notions of a relatively 𝜎-bounded
operator, a relatively 𝑝-sectorial operator, a chain of associated vectors and a group
of solution operators have been introduced in the Banach space setting. Concerning
applications, mention should be made of the author’s analysis of abstract linearized
Oskolkov system [442,443], which models the dynamics of an incompressible vis-
coelastic fluid of Kelvin-Voigt type. We refer the reader to the monograph [509]
for a comprehensive survey of results of G. A. Sviridyuk and his students obtained
in the period 1994–2003. Here, we will only insribe the most important results
established in the papers [515] by G. A. Sviridyuk–A. A. Zamyshlyaeva and [204]



2.12. APPENDIX AND NOTES 274

by V. E. Fedorov, and say a few words about optimal control problems of abstract
degenerate differential equations.

In [515], the authors have investigated the phase space of homogeneous linear
higher-order equation

(255) 𝐴𝑢(𝑛)(𝑡) = 𝐵𝑛−1𝑢
(𝑛−1)(𝑡) + · · ·+𝐵0𝑢(𝑡), 𝑡 ∈ R,

where 𝑛 ∈ Nr {1}, 𝐴 and 𝐵𝑛−1, . . . , 𝐵0 are closed linear operators acting between
the Banach spaces 𝑋 and 𝑌 . Let us recall that a set 𝒫 ⊆ 𝑋 is said to be the phase
space of equation (255) iff the following two conditions are satisfied:

(i) If 𝑢(𝑡) is a strong solution of (255), then 𝑢(𝑡) ∈ 𝒫 for all 𝑡 > 0;
(ii) For any 𝑥𝑘 ∈ 𝒫 (0 6 𝑘 6 𝑛− 1), there exists a unique strong solution of

equation (255) with the initial conditions 𝑢(𝑘)(0) = 𝑥𝑘 (0 6 𝑘 6 𝑛− 1).

Set �⃗� := (𝐵𝑛−1, . . . , 𝐵0). Then we say that the operator pencil �⃗� is polynomi-
ally 𝐴-bounded iff there exists a finite number 𝑎 > 0 such that (𝜆𝑛𝐴−𝜆𝑛−1𝐵𝑛−1−
· · · − 𝐵0)

−1 ∈ 𝐿(𝑌,𝑋) for all 𝜆 ∈ C with |𝜆| > 𝑎 (cf. [161, 225, 248, 408, 426]
and [463] for further information concerning operator pencils). If the condition
[515, (A), p. 271] holds and the operator pencil �⃗� is polynomially 𝐴-bounded, then
the point ∞ can be a removable singular point of the 𝐴-resolvent of the pencil �⃗�,
a pole of order 𝑝 ∈ N of the 𝐴-resolvent of the pencil �⃗� and, finally, an essentially
singular point of the 𝐴-resolvent of the pencil �⃗�. In the first two cases, the phase
space of equation (255) coincides with the range of projection

𝑃 :=
1

2𝜋𝑖

∫︁
𝛾

𝜆𝑛−1(𝜆𝑛𝐴− 𝜆𝑛−1𝐵𝑛−1 − · · · −𝐵0)
−1𝐴𝑑𝜆,

where 𝛾 = {𝜆 ∈ C : |𝜆| = 𝑅 > 𝑎}; cf. [515, Definition 3.2, Theorem 3.1]. If the point
∞ is an essentially singular point of the 𝐴-resolvent of the pencil �⃗�, then the strong
solutions of equation (255) need not be unique and the phase space 𝒫 of equation
(255) is very difficult to be profiled. The main result of paper is [515, Theorem
4.1], in which the authors proved the existence and uniqueness of strong solutions
of equation (255) provided that the point ∞ is not an essentially singular point
of the 𝐴-resolvent of the pencil �⃗�, and the above-mentioned condition (A) holds.
Applications have been made to the abstract Boussinesq-Love equation in finite
domains, which has been already considered in Example 2.3.48 and Example 2.3.53
in the case that the condition (A) is violated.

In [204], the problem of existence of an exponentially bounded solution semi-
group strongly holomorphic in a sector is studied for a Sobolev-type linear equation
𝐿𝑢′(𝑡) = 𝑀𝑢(𝑡), where 𝐿 ∈ 𝐿(𝑋,𝑌 ) is non-injective operator and 𝑀 is a closed
densely defined operator acting between the sequentially complete locally convex
spaces 𝑋 and 𝑌 . The author has introduced the notion of a (𝐿, 𝑝)-sectoriality of
the operator 𝑀 as follows: The operator 𝑀 is said to be (𝐿, 𝑝)-sectorial iff the
following holds:

(i) there exist 𝜔 ∈ R and 𝜃 ∈ (0, 𝜋) such that 𝜔 +Σ𝜃 ⊆ 𝜌𝐿(𝑀);
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(ii) the operator families{︂
𝑅𝐿

(𝜆,𝑝)(𝑀)

𝑝∏︁
𝑘=0

(𝜆𝑘 − 𝑎) : 𝜆 = (𝜆0, . . . , 𝜆𝑝) ∈ (𝜔 +Σ𝜃)
𝑝+1

}︂
⊆ 𝐿(𝑋)

and{︂
𝐿𝐿
(𝜆,𝑝)(𝑀)

𝑝∏︁
𝑘=0

(𝜆𝑘 − 𝑎) : 𝜆 = (𝜆0, . . . , 𝜆𝑝) ∈ (𝜔 +Σ𝜃)
𝑝+1

}︂
⊆ 𝐿(𝑌 )

are equicontinuous.
Here, for any 𝑝 ∈ N0 and 𝜆 = (𝜆0, . . . , 𝜆𝑝) ∈ (𝜌𝐿(𝑀))𝑝+1,

𝑅𝐿
(𝜆,𝑝)(𝑀) =

𝑝∏︁
𝑘=0

𝑅𝐿
𝜆 (𝑀) and 𝐿𝐿

(𝜆,𝑝)(𝑀) =

𝑝∏︁
𝑘=0

𝐿𝐿
𝜆 (𝑀).

After that, the author introduces the notion of a strong (𝐿, 𝑝)-sectoriality of the
operator 𝑀 from the right (left) and proves the existence of limit lim𝑡→0+ 𝑈(𝑡)
(lim𝑡→0+ 𝑉 (𝑡)) in 𝐿(𝑋) (𝐿(𝑌 )) for a strongly holomorphic solution semigroup
(𝑈(𝑡))𝑡>0 ⊆ 𝐿(𝑋) ((𝑉 (𝑡))𝑡>0 ⊆ 𝐿(𝑌 )) in this case; cf. [204, Theorem 2.1]. Un-
der the general assumption on (𝐿, 𝑝)-sectoriality of operator 𝑀 , semireflexivity of
spaces 𝑋 and 𝑌 plays an important role since it allows one to decompose the spaces
𝑋 and 𝑌 in a certain way; observe, however, that we do not need this assumption
in the case that the operator 𝑀 is a strongly (𝐿, 𝑝)-sectorial from the right (left);
cf. [204, Theorem 5.1, Proposition 5.1] for more details. An interesting application
has been obtained in the analysis of periodic solutions of certain degenerate Cauchy
problems of first order [204, Theorem 9.2].

Concerning control of abstract degenerate differential equations with integer
order derivatives, the reader may consult the recent monograph [451] by M. V.
Plekhanova and V. E. Fedorov. Applications have been given in the analysis of
optimal control of Benny–Luke equation, equation of transition processes in semi-
conductors

(𝜆−Δ)𝜔𝑡(𝑥, 𝑡) = 𝛼𝜔(𝑥, 𝑡) + 𝑦(𝑥, 𝑡), (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ),

𝜔(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕Ω× (0, 𝑇 ),

𝜔(𝑥, 0) = 𝑢(𝑥), 𝑥 ∈ Ω,

the systems of linearized quasi-stationary phase-field equations

𝑧(𝑥, 0) = 𝑧0(𝑥), 𝑥 ∈ Ω,

𝜈
𝜕

𝜕𝑛
𝑧(𝑥, 𝑡) + (1− 𝜈)𝑧(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕Ω× (0, 𝑇 ),

𝜈
𝜕

𝜕𝑛
Θ(𝑥, 𝑡) + (1− 𝜈)Θ(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕Ω× (0, 𝑇 ),

𝜕

𝜕𝑡
𝑧(𝑥, 𝑡) = Δ𝑧(𝑥, 𝑡)−ΔΘ(𝑥, 𝑡) + 𝑓(𝑥, 𝑡), (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ),

ΔΘ(𝑥, 𝑡)− 𝛽Θ(𝑥, 𝑡) + 𝑧(𝑥, 𝑡) + 𝑔(𝑥, 𝑡), (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ),
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the systems of linearized systems of Boussinesq equations

𝑧(𝑠, 0) = 𝑧0(𝑠), 𝑟(𝑠, 0) = 𝑟0(𝑠), Θ(𝑠, 0) = Θ0(𝑠), 𝑠 ∈ Ω,

𝑧(𝑠, 𝑡) = 0, Θ(𝑠, 𝑡) = 0, (𝑠, 𝑡) ∈ 𝜕Ω× (0, 𝑇 ),

𝜕𝑧(𝑠, 𝑡)

𝜕𝑡
= 𝜈Δ𝑧(𝑠, 𝑡)− 𝑟(𝑠, 𝑡)− 𝛼Θ(𝑠, 𝑡)𝑒3 + 𝑢(𝑠, 𝑡), (𝑠, 𝑡) ∈ Ω× (0, 𝑇 ),

∇ · 𝑧 = 0, (𝑠, 𝑡) ∈ Ω× (0, 𝑇 ),

𝜕Θ(𝑠, 𝑡)

𝜕𝑡
= 𝛽ΔΘ(𝑠, 𝑡) + 𝑧3(𝑠, 𝑡) + 𝜔(𝑠, 𝑡), (𝑠, 𝑡) ∈ Ω× (0, 𝑇 ),

as well as the systems of linearized Oskolkov and Sobolev equations. Concerning
control of abstract fractional degenerate equations, we have been able to locate
only one research paper [450], written by M. V. Plekhanova.

Now we would like to introduce the notion of an (𝑎, 𝑘)-regularized 𝐶-resolvent
family of solving operators and the phase space of certain classes of abstract de-
generate Volterra integral equations (cf. also Section 2.8). We assume that the
closed graph theorem holds for mappings from 𝑌 into 𝑌 , and for mappings from 𝑌
into 𝑋.

Consider the following abstract degenerate Cauchy problem (cf. (52)):

(256) 𝐿𝑢(𝑡) = 𝑓(𝑡) +

∫︁ 𝑡

0

𝑎(𝑡− 𝑠)𝑀𝑢(𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝜏),

where 𝑡 ↦→ 𝑓(𝑡) ∈ 𝑌 , 𝑡 ∈ [0, 𝜏) is a continuous mapping and 𝑎 ∈ 𝐿1
𝑙𝑜𝑐([0, 𝜏)), 𝑎 ̸= 0.

Let 𝜆 ∈ 𝜌𝐿(𝑀). Then, along with the equation (256), we consider the equation

(𝜆𝐿−𝑀)−1𝐿𝑢(𝑡) = (𝜆𝐿−𝑀)−1𝑓(𝑡)(257)

+

∫︁ 𝑡

0

𝑎(𝑡− 𝑠)(𝜆𝐿−𝑀)−1𝑀𝑢(𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝜏),

and, after the substitution 𝑣(𝑡) = (𝜆𝐿−𝑀)𝑢(𝑡), 𝑡 ∈ [0, 𝜏), the equation

(258) 𝐿(𝜆𝐿−𝑀)−1𝑣(𝑡) = 𝑓(𝑡) +

∫︁ 𝑡

0

𝑎(𝑡− 𝑠)𝑀(𝜆𝐿−𝑀)−1𝑣(𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝜏).

Both of these equations can be rewritten in the form of abstract degenerate Cauchy
problem (52):

(257): Take 𝐴 = (𝜆𝐿−𝑀)−1𝑀 , 𝐵 = (𝜆𝐿−𝑀)−1𝐿 and 𝑔(𝑡) = (𝜆𝐿−𝑀)−1𝑓(𝑡).
Then 𝐵 ∈ 𝐿(𝑋), 𝐴 is a linear operator acting on 𝑋 but 𝐴 is not closed,
in general. This obviously hinders the analysis of problem (257).

(258): Take 𝐴 = 𝑀(𝜆𝐿−𝑀)−1, 𝐵 = 𝐿(𝜆𝐿−𝑀)−1 and 𝑔(𝑡) = 𝑓(𝑡). Then the
situation is much simpler because 𝐴 ∈ 𝐿(𝑌 ) and 𝐵 ∈ 𝐿(𝑌 ).

For ease the presentation, we need to introduce the following technical defi-
nition: Let 𝑋 and 𝑌 be SCLCSs, let 0 < 𝜏 6 ∞, and let 𝐴 : 𝐷(𝐴) ⊆ 𝑋 → 𝑌
and 𝐵 : 𝐷(𝐵) ⊆ 𝑋 → 𝑌 be linear (not necessarily closed) operators. Con-
sider the following abstract degenerate Cauchy problem (52). Then a function
𝑢 ∈ 𝐶([0, 𝜏) : 𝑋) is said to be a (mild) solution of (52) iff (𝑎 * 𝑢)(𝑡) ∈ 𝐷(𝐴),
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𝑡 ∈ [0, 𝜏), 𝐴(𝑎 * 𝑢)(𝑡) = 𝐵𝑢(𝑡) − 𝑓(𝑡), 𝑡 ∈ [0, 𝜏) and the mapping 𝑡 ↦→ 𝐵𝑢(𝑡),
𝑡 ∈ [0, 𝜏) is continuous.

Put 𝑍 := 𝑋, in the case of examination of problem (257), and 𝑍 := 𝑌 , in
the case of examination of problem (258). In order to explain our next steps,
suppose that any of these two problems is reduced to the problem (52), and that
the single-valued operator 𝐵−1𝐴 generates a (local) (𝑎, 𝑘)-regularized 𝐶-resolvent
family (𝑅(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑍), obeying the property [292, (22)] with 𝐴 and 𝑥 replaced
therein with 𝐵−1𝐴 and 𝑢, respectively. Then we have

𝑅(𝑡)𝑢 = 𝑘(𝑡)𝐶𝑢+𝐵−1𝐴

∫︁ 𝑡

0

𝑎(𝑡− 𝑠)𝑅(𝑠)𝑢 𝑑𝑠, 𝑡 ∈ [0, 𝜏), 𝑢 ∈ 𝑍, i.e.,

𝐵𝑅(𝑡)𝑢 = 𝑘(𝑡)𝐵𝐶𝑢+𝐴

∫︁ 𝑡

0

𝑎(𝑡− 𝑠)𝑅(𝑠)𝑢 𝑑𝑠, 𝑡 ∈ [0, 𝜏), 𝑢 ∈ 𝑍,

so that for each 𝑢 ∈ 𝑍 the function 𝑡 ↦→ 𝑅(𝑡)𝑢, 𝑡 ∈ [0, 𝜏) is a mild solution
of (52) with 𝑓(𝑡) = 𝑘(𝑡)𝐵𝐶𝑢, 𝑡 ∈ [0, 𝜏). For the sake of simplicity and better
understanding, in the remainder of this analysis we will consider only the global case
𝜏 = ∞. Our results from [292, Section 2.8] motivate us to introduce the following
definition (cf. [509, Definitions 2.3.1, 2.8.2, 3.2.1 and 4.4.1] for the semigroup case
(𝑎(𝑡) ≡ 1)):

Definition 2.12.1. Let 𝑍 be an SCLCS, let 𝐵 ∈ 𝐿(𝑍), and let 𝐴 : 𝐷(𝐴) ⊆
𝑍 → 𝑍 be a linear operator acting on 𝑍. Suppose that 𝐶 ∈ 𝐿(𝑍) is injective,
𝑎 ∈ 𝐿1

𝑙𝑜𝑐([0,∞)), 𝑎 ̸= 0 and 𝑘 ∈ 𝐶([0,∞)). Set 𝒢 := {𝑓 ∈ 𝐶([0,∞) : 𝑍) : (∃𝑤 ∈
𝑍)𝑓(𝑡) = 𝑘(𝑡)𝐵𝑤 for all 𝑡 > 0}.

(i) By a (global) (𝑎, 𝑘)-regularized 𝐶-resolvent family of solving operators for
the problem (52), with 𝑓 ∈ 𝒢, we mean any strongly continuous operator
family (𝑅(𝑡))𝑡>0 ⊆ 𝐿(𝑍) satisfying the following two conditions:
(a) 𝑅(𝑠)(𝑎*𝑅)(𝑡)𝑢−(𝑎*𝑅)(𝑠)𝑅(𝑡)𝑢 = 𝑘(𝑠)(𝑎*𝑅)(𝑡)𝐶𝑢−𝑘(𝑡)(𝑎*𝑅)(𝑠)𝐶𝑢,

𝑡, 𝑠 > 0, 𝑢 ∈ 𝑍.
(b) For each 𝑢 ∈ 𝑍 the function 𝑡 ↦→ 𝑅(𝑡)𝑢, 𝑡 > 0 is a mild solution of

problem (52) with 𝑓(𝑡) = 𝑘(𝑡)𝐵𝐶𝑢, 𝑡 > 0.
We say that (𝑅(𝑡))𝑡>0 is exponentially equicontinuous (locally equicon-
tinuous) iff there exists 𝜔 > 0 such that the operator family {𝑒−𝜔𝑡𝑅(𝑡) :
𝑡 > 0} ⊆ 𝐿(𝑍) is equicontinuous (iff for each 𝑇 > 0 the operator family
{𝑅(𝑡) : 𝑡 ∈ [0, 𝑇 ]} ⊆ 𝐿(𝑍) is equicontinuous).

(ii) It is said that a global (𝑎, 𝑘)-regularized 𝐶-resolvent family (𝑅(𝑡))𝑡>0 of
solving operators for the problem (52), with 𝑓 ∈ 𝒢, is analytic of angle
𝜃 ∈ (0, 𝜋], iff there exists a function R : Σ𝜃 → 𝐿(𝑍) which satisfies that,
for every 𝑢 ∈ 𝑍, the mapping 𝑧 ↦→ R(𝑧)𝑢, 𝑧 ∈ Σ𝜃 is analytic as well as that
R(𝑡) = 𝑅(𝑡), 𝑡 > 0. It is said that (𝑅(𝑡))𝑡>0 is an exponentially equicon-
tinuous, analytic (𝑎, 𝑘)-regularized 𝐶-resolvent family of solving operators
for the problem (52), with 𝑓 ∈ 𝒢, of angle 𝜃, resp. equicontinuous analytic
(𝑎, 𝑘)-regularized 𝐶-resolvent family of solving operators for the problem
(52), with 𝑓 ∈ 𝒢, of angle 𝜃, iff for every 𝛾 ∈ (0, 𝜃), there exists 𝜔𝛾 > 0,
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resp. 𝜔𝛾 = 0, such that the set {𝑒−𝜔𝛾 Re 𝑧R(𝑧) : 𝑧 ∈ Σ𝛾} ⊆ 𝐿(𝑍) is
equicontinuous.

(iii) It is said that a global (𝑎, 𝑘)-regularized 𝐶-resolvent family (𝑅(𝑡))𝑡>0 of
solving operators for the problem (52), with 𝑓 ∈ 𝒢, is entire iff there
exists a function R : C → 𝐿(𝑍) which satisfies that, for every 𝑢 ∈ 𝑍, the
mapping 𝑧 ↦→ R(𝑧)𝑢, 𝑧 ∈ C is entire (since there is no risk for confusion,
we will identify 𝑅(·) and R(·) in the sequel).

Observe that the notion of an analytic (𝑎, 𝑘)-regularized 𝐶-resolvent family of
solving operators for the problem (52), with 𝑓 ∈ 𝒢, is introduced in [204, Definition
2.1] in a slightly different manner, provided that 𝑎(𝑡) ≡ 1, 𝑘(𝑡) ≡ 1 and 𝐶 =
𝐼. It is also worth noting that we do not require the validity of limit equality
lim𝑧→0,𝑧∈Σ𝛾

R(𝑧)𝑢 = 𝑅(0)𝑢 (𝛾 ∈ (0, 𝜃), 𝑢 ∈ 𝑍) in (b).
The notion of phase space of problem (52) is introduced in the following defi-

nition.

Definition 2.12.2. Let 𝐵 ∈ 𝐿(𝑍), let 𝐴 be a linear operator on 𝑍, and let
𝜏 = ∞. Then a set 𝒫 ⊆ 𝑍 is called the phase space of equation (52), with 𝑓 ∈ 𝒢,
iff the following holds:

(i) any mild solution 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 of (52), with 𝑓(𝑡) = 𝑘(𝑡)𝐵𝑤 (𝑡 > 0)
belongs to 𝒫, that is, 𝑢(𝑡) ∈ 𝒫, 𝑡 > 0;

(ii) for any 𝑤 ∈ 𝒫 there exists a unique mild solution 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 of (52),
with 𝑓(𝑡) = 𝑘(𝑡)𝐵𝑤, 𝑡 > 0.

It is very interesting and unpleasant question to profile the phase space of Eq.
(52). In connection with this problem, we would like to mention that the method
proposed in [515] does not work for abstract degenerate multi-term fractional prob-
lems with Caputo derivatives. We have found the problem of characterizing the
phase space of such equations (defined similarly as for higher-order Cauchy prob-
lems with integer order derivatives) very serious and difficult to be answered, as
well.

We continue by stating the following generalization of [204, Theorem 2.1].

Theorem 2.12.3. Suppose that the operator 𝑀 is (𝐿, 𝑝)-sectorial and 0 < 𝛼 <
2𝜃𝜋−1. Let the space 𝑍 and the operators 𝐴, 𝐵 be defined as in (257), resp. (258),
and let the class 𝒢 be defined as in Definition 2.12.1, with 𝑘(𝑡) ≡ 1. Then there
exists an exponentially equicontinuous, analytic (𝑔𝛼, 𝐼)-regularized resolvent family
(𝑅(𝑡))𝑡>0 for (52), with 𝑎(𝑡) = 𝑔𝛼(𝑡) and 𝑓 ∈ 𝒢, of angle min(𝜃𝛼−1 − 𝜋2−1, 𝜋2−1).

Proof. Without loss of generality, we may assume that the operator 𝑀 is
(𝐿, 𝑝)-sectorial with the constant 𝜔 > 0. Let 0 < 𝜀 < 𝛾′ < 𝛾 and 𝛿 > 0. Then
there exists a sufficiently large number 𝜔′ > 𝜔 such that the operator families
{(𝜆 − 𝜔′)𝜆𝛼−1𝑅𝐿

𝜆𝛼(𝑀) : 𝜆 ∈ 𝜔′ + Σ𝜋
2 +𝛾′} ⊆ 𝐿(𝑍) and {(𝜆 − 𝜔′)𝜆𝛼−1𝐿𝐿

𝜆𝛼(𝑀) :
𝜆 ∈ 𝜔′ + Σ𝜋

2 +𝛾′} ⊆ 𝐿(𝑍) are equicontinuous. Let the oriented contour Γ be as
in the second part of proof of [27, Theorem 2.6.1], with the numbers 𝜔 and 𝛾
replaced therein with the numbers 𝜔′ and 𝛾′, respectively. Denote by Ω the open
region on the right of Γ. Then the mappings 𝜆 ↦→ 𝜆𝛼−1𝑅𝐿

𝜆𝛼(𝑀), 𝜆 ∈ Ω and
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𝜆 ↦→ 𝜆𝛼−1𝐿𝐿
𝜆𝛼(𝑀), 𝜆 ∈ Ω are strongly analytic (and strongly continuous on Ω̄).

Define, for every 𝑢 ∈ 𝑍 and 𝑧 ∈ Σ𝛾′−𝜀,

𝑅(𝑧)𝑢 :=
1

2𝜋𝑖

∫︁
Γ

𝑒𝜆𝑧𝜆𝛼−1𝑅𝐿
𝜆𝛼(𝑀)𝑢 𝑑𝜆,

in the case of consideration of problem (257), and

𝑅(𝑧)𝑢 :=
1

2𝜋𝑖

∫︁
Γ

𝑒𝜆𝑧𝜆𝛼−1𝐿𝐿
𝜆𝛼(𝑀)𝑢 𝑑𝜆,

in the case of consideration of problem (258). Then the proof of [27, Theorem 2.6.1]
shows that for each 𝑝 ∈ ~𝑍 there exist 𝑞 ∈ ~𝑍 and 𝑐 > 0 such that 𝑝(𝑅(𝑧)𝑢) 6
𝑐𝑞(𝑢), 𝑢 ∈ 𝑍, 𝑧 ∈ Σ𝛾′−𝜀, as well as that ℒ(𝑅(𝑡)𝑢)(𝜆) = 𝜆𝛼−1𝑅𝐿

𝜆𝛼(𝑀)𝑢, 𝑢 ∈ 𝑍, in the
case of consideration of problem (257), and ℒ(𝑅(𝑡)𝑥)(𝜆) = 𝜆𝛼−1𝐿𝐿

𝜆𝛼(𝑀)𝑢, 𝑢 ∈ 𝑍,
in the case of consideration of problem (258). The proof of (b) follows similarly as in
the proof of [204, Theorem 2.1], while the equality (a) from Definition 2.12.1 follows
by taking the Laplace transform twice, with respect to variables 𝑡 and 𝑠 separately,
and using the resolvent equations. This completes the proof of theorem. �

If the conclusions of Theorem 2.12.3 hold, then for each 𝜀 ∈ (0, 𝛾) there exists
𝜔𝜀 > 𝜔 such that the set {𝑧𝑘𝑒−𝜔𝑧𝑅(𝑘)(𝑧) : 𝑧 ∈ Σ𝛾−𝜀, 𝑘∈N0

} is bounded; cf. [27, p.
86] and [296, Theorem 3.4(i)]. Unfortunately, Theorem 2.12.3 is only a partial
result and it is an open problem to reconsider the remaining results from [204] in
fractional case.

Stochastic degenerate Cauchy problems. In this monograph, we analyze
only degenerate deterministic Volterra integro-differential equations. Stochastic
Cauchy problems and stochastic differential equations occupy a great deal of math-
ematical territory nowdays; for further information concerning degenerate case, we
recommend for the reader [98,194,511,552] and [554].

Semilinear degenerate Cauchy problems. In Subsection 2.2.5, we have
considered semilinear degenerate fractional Cauchy problems with abstract differ-
ential operators. For more details about abstract semilinear degenerate Cauchy
problems with integer order derivatives, we refer the reader to [59,83,89,94,192,
208,209,267,268,319,468,469,505] and [508]. Semilinear degenerate Cauchy
inclusions will be investigated in Subsection 3.5.1-Subsection 3.5.2.

Nonlinear degenerate Cauchy problems. In this monograph, we are fo-
cused entirely on the linear theory of abstract degenerate Volterra integro-differen-
tial equations. Concerning quasilinear and purely nonlinear degenerate equations
of Sobolev type, mention should be made of monographs A. Favini, G. Marinoschi
[190,491]by R. Showalter, [503] by A. G. Sveshnikov, A. B. Al’shin, M. O. Ko-
rpusov, Yu. D. Pletner, [19] by A. B. Al’shin, M. O. Korpusov, A. G. Svesh-
nikov, [216] by V. E. Fedorov, A. V. Nagumanova, as well as the papers [88,193,
201, 368, 369, 400, 443, 486, 492, 493] and [525]. Nonlinear Sobolev equations
arise naturally in many problems in various fields of mathematical physics (cf. [19]
for further information); here are some examples:
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(a) The Camassa–Holm equation (1993)

𝑢𝑡 − 𝑢𝑥𝑥𝑡 + 3𝑢𝑢𝑥 = 2𝑢𝑥𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥

is important in modeling of undirectional propagation of shalow-water
waves over a flat bottom.

(b) The Benjamin–Bona–Mahony equation (or BBM equation)

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑢𝑥 − 𝑢𝑥𝑥𝑡 = 0.

is also known as the regularized long-wave equation (RLWE). This equa-
tion was investigated by T. B. Benjamin, J. L. Bona and J. J. Mahony
(1972) as an improvement of the Korteweg–de Vries equation (KdV equa-
tion) for modeling long surface gravity waves of small amplitude. Strictly
speaking, BBM equation was introduced by D. H. Peregrine, in 1966, for
the purpose of study of undular bores.

(c) The Rosenau–Burgers equation

𝑢𝑡 + 𝑢𝑥𝑥𝑥𝑥𝑡 − 𝛼𝑢𝑥𝑥 + (𝑢𝑝+1/𝑝+ 1)𝑥 = 0 (𝑝 > 0)

is important in modeling of bore propagation. In the case that 𝛼 = 0, the
equation was introduced by P. Rosenau (1988) for treating the dynamics
of dense discrete systems in order to overcome the shortenings by the KdV
equation.

(d) The semiconductor equation (2005)
𝜕

𝜕𝑡
(Δ𝑢− 𝑢) + Δ𝑢+ 𝛼𝑢3 = 0, 𝛼 ∈ R

models nonstationary processes in crystalline semiconductors.
(e) The Lonngern wave equation (1975)

𝜕2

𝜕𝑡2
(𝑢𝑥𝑥 − 𝛼𝑢+ 𝛽𝑢2) + 𝑢𝑥𝑥 = 0 (𝛼 > 0, 𝛽 > 0)

describes electric signals in telegraph lines.
We also want to outline that the pioneering works of L. A. Lyusternik, S. G.
Krein, N. A. Sidorov and B. V. Loginov (cf. [496, 497] for further information),
in which the authors had analyzed bifurcating solutions of nonlinear parameter-
dependent singular and degenerate differential equations, influenced many authors
to investigate mathematical modelings based on the Showalter-Sidorov problem
(cf. [206,214,272,511,514,551] and references cited therein for further informa-
tion).

Abstract degenerate integro-differential equations with delay. The
analysis of abstract degenerate integro-differential equations with delay has received
much attention recently. For the basic references in this direction, we refer the
reader to L. V. Borel, V. E. Fedorov [86], C. Bu [91], A. Favini, L. Vlasenko [198],
V. E. Fedorov, E. A. Omel’chenko [217, 218], C. Lizama, R. Ponce [397], and
to the doctoral dissertation of R. A. A. Cuello [123]. Concerning non-degenerate
case, the monographs by S. Abbas, M. Benchohra [4], whose twelfth chapter also
contains some information on functional evolution inclusions, N. V. Azbelev, V. P.
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Maksimov, L. F. Rakhmatullina [39], J. K. Hale, S. M. Verduyn Lunel [246], Y.
Kuang [362] and J. Wu [540] are of crucial importance.

In his doctoral dissertation [123], R. A. A. Cuello has investigated the ab-
stract, degenerate, functional second order differential equations in the vector-
valued Lebesgue, Besov and Triebel–Lizorkin function spaces. Special focus is
placed on following degenerate functional differential equations

(𝑀𝑢′)′(𝑡)− Λ𝑢′(𝑡)− 𝑑

𝑑𝑡

∫︁ 𝑡

−∞
𝑐(𝑡− 𝑠)𝑢(𝑠)𝑑𝑠

= 𝛾∞𝑢(𝑡) +𝐴𝑢(𝑡) +
𝑑

𝑑𝑡

∫︁ 𝑡

−∞
𝑎(𝑡− 𝑠)𝐴𝑢(𝑠)𝑑𝑠

+ 𝑏∞𝐵𝑢(𝑡) +

∫︁ 𝑡

−∞
𝑏(𝑡− 𝑠)𝐵𝑢(𝑠)𝑑𝑠+ 𝑓(𝑡), 𝑡 ∈ [0, 2𝜋],

equipped with periodic boundary conditions 𝑢(0) = 𝑢(2𝜋), (𝑀𝑢′)(0) = (𝑀𝑢′)(2𝜋),
and

(𝑀𝑢)′′(𝑡)− Λ𝑢′(𝑡)− 𝑑

𝑑𝑡

∫︁ 𝑡

−∞
𝑐(𝑡− 𝑠)𝑢(𝑠)𝑑𝑠

= 𝛾∞𝑢(𝑡) +𝐴𝑢(𝑡) +
𝑑

𝑑𝑡

∫︁ 𝑡

−∞
𝑎(𝑡− 𝑠)𝐴𝑢(𝑠)𝑑𝑠

+ 𝑏∞𝐵𝑢(𝑡) +

∫︁ 𝑡

−∞
𝑏(𝑡− 𝑠)𝐵𝑢(𝑠)𝑑𝑠+ 𝑓(𝑡), 𝑡 ∈ [0, 2𝜋],

equipped with periodic boundary conditions Λ𝑢(0) = Λ𝑢(2𝜋), (𝑀𝑢)(0) = (𝑀𝑢)(2𝜋)
and (𝑀𝑢′)(0) = (𝑀𝑢′)(2𝜋). Here, 𝐴, 𝐵, Λ and 𝑀 are closed linear operators
on a complex Banach space 𝐸, satisfying that 𝐷(𝐴) ∩ 𝐷(𝐵) ⊆ 𝐷(Λ) ∩ 𝐷(𝑀),
𝑎, 𝑏, 𝑐 ∈ 𝐿1([0,∞)), 𝑓(·) is an 𝐸-valued function defined on [0, 2𝜋], and 𝛾∞, 𝑏∞ are
certain complex constants. The author has applied abstract results in the analysis
of the following abstract degenerate functional Cauchy problem

𝜕

𝜕𝑡
(𝑚(𝑥)𝑢𝑡(𝑥, 𝑡))−Δ𝑢𝑡(𝑡, 𝑥)

= Δ𝑢(𝑡, 𝑥) +

∫︁ 𝑡

−∞
𝑎(𝑡− 𝑠)Δ𝑢(𝑠, 𝑥)𝑑𝑠+ 𝑓(𝑡, 𝑥), (𝑡, 𝑥) ∈ [0, 2𝜋]× Ω,

𝑢(𝑡, 𝑥) =
(︁ 𝜕
𝜕𝑡
𝑢(𝑡, 𝑥)

)︁
𝑡=0

= 0, (𝑡, 𝑥) ∈ [0, 2𝜋]× 𝜕Ω,

𝑢(0, 𝑥) = 𝑢(2𝜋, 𝑥), 𝑚(𝑥)
(︁ 𝜕
𝜕𝑡
𝑢(𝑡, 𝑥)

)︁
𝑡=0

= 𝑚(𝑥)
(︁ 𝜕
𝜕𝑡
𝑢(𝑡, 𝑥)

)︁
𝑡=2𝜋

, 𝑥 ∈ Ω, 𝑡 ∈ [0, 2𝜋],

where Ω is an open domain in R𝑛 and Δ is the Dirichlet Laplacian (see also the
paper [24] by R. A. A. Cuello and V. Keyantuo). The fractional analogues of above
equations have not been analyzed by now.
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Abstract degenerate Cauchy problems of first order: semigroup the-
ory approach. In [517], B. Thaller and S. Thaller have continued the investiga-
tions of R. Showalter [494,495] concerning the well-posedness of abstract degen-
erate Cauchy problems (DFP)𝑅 and (DFP)𝐿 of first order. The results of [517],
formulated in the setting of Hilbert spaces, have been reconsidered and substan-
tially improved by the authors in the paper [518], whose main ideas are described
as follows.

Suppose that 𝐴 and 𝐵 are two linear operators acting between the Banach
spaces 𝑋 and 𝑌 . In [518, Section 2], the authors have assumed that there is a linear
subspace 𝐷𝑋 ⊆ 𝐷(𝐴)∩𝐷(𝐵) such that for all 𝜆 > 𝜔, where 𝜔 ∈ R, the restriction
of operator 𝐴−𝜆𝐵 to 𝐷𝑋 is invertible and with values in 𝑅(𝐵). Assuming certain
Hille–Yosida type conditions on the operators (𝜆𝐵−𝐴)−1𝐵 and 𝐵(𝜆𝐵−𝐴)−1 (𝜆 >
𝜔), the authors have applied the results from the theory of non-degenerate strongly
continuous semigroups for proving the existence and uniqueness of strict solutions
of problems (DFP)𝑅 and (DFP)𝐿 (cf. [518, Definition 1.1, Theorem 3.1–Theorem
3.2]). Using the notion of joint closedness of operators 𝐴 and 𝐵 [475], the authors
have considered the so-called invariant subspaces for the time evolution in Section
4. In Section 5, it has been assumed that the operator 𝐵 is closed. Then 𝑁(𝐵)
is a closed subspace in 𝑋 and the authors have enquired into the possibility to
consider the inital degenerate Cauchy problem by passing to the corresponding
non-degenerate Cauchy problem in the Banach space 𝑋/𝑁(𝐵). Section 6 considers
the case in which 𝑋 and 𝑌 are Hilbert spaces.

Singular abstract Cauchy problems. In their fundamental monograph
[95], R. Caroll and R. Showalter have primarily dealt with singular or degener-
ate equations of the following two forms:

(259) 𝐴(𝑡)𝑢𝑡𝑡 +𝐵(𝑡)𝑢𝑡 + 𝐶(𝑡)𝑢 = 𝑔, 𝑡 > 0

and

(260) (𝐴(·)𝑢)𝑡𝑡 + (𝐵(·)𝑢)𝑡 + 𝐶(·)𝑢 = 𝑔, 𝑡 > 0,

where 𝐴(𝑡), 𝐵(𝑡) and 𝐶(𝑡) are three families of possibly nonlinear differential op-
erators acting on an SCLCS 𝐸. According to R. Caroll and R. Showalter, the
equation (259) is called singular if at least one of the operator coefficients tends
to infinity as 𝑡 → 0+, while the equation (259) is called degenerate if some of the
operator coefficients tends to zero as 𝑡 → 0+; the same notions are accepted for
the equation (260))=. Roughly speaking, if these equations can be solved with
respect to the highest order derivative, then we call them of parabolic or hyper-
bolic type; if this is not the case, then they are of Sobolev type (as the reader
can easily observe, in this monograph we do not distinguish, in some heuristical
manner, Sobolev and degenerate type equations). There is an enormous literature
on singular abstract Cauchy problems with integer order derivatives, especially on
the famous Euler–Poisson–Darboux equation. Concerning purely fractional case,
there exists only a few research papers containing very limited material about this
important class of equations (cf.B. Baeumer, M. M. Meerschaert, E. Nane [41], V.
Keyantuo, C. Lizama [275], M. M. Meerschaert, E. Nane, P. Vellaisamy [418] and



2.12. APPENDIX AND NOTES 283

E. Nane [432]; even for the above-mentioned Euler–Poisson–Darboux equation,
there is no significant reference covering the fractional evolution case).

Abstract degenerate differential equations and empathy theory. In
[476], N. Sauer has investigated the abstract Cauchy problem

𝑑

𝑑𝑡
(𝐵𝑢(𝑡)) = 𝐴𝑢(𝑡), 𝑡 > 0; lim

𝑡→0+
𝐵𝑢(𝑡) = 𝑦 ∈ 𝑌,

where 𝐴 : 𝐷 → 𝑌 and 𝐵 : 𝐷 → 𝑌 are two linear operators defined on a common
domain D contained in a Banach space 𝑋 and 𝑌 is another Banach space. For this
purpose, he defines the notion of an empathy, that is any double family of evolution
operators ⟨(𝑆(𝑡))𝑡>0, (𝐸(𝑡))𝑡>0⟩ satisfying the following properties:

(i) 𝐸(𝑡) ∈ 𝐿(𝑌 ) and 𝑆(𝑡) ∈ 𝐿(𝑌,𝑋) for all 𝑡 > 0;
(ii) 𝑆(𝑡+ 𝑠) = 𝑆(𝑡)𝐸(𝑠) for arbitrary 𝑡, 𝑠 > 0 (the empathy relation);
(iii) There exists 𝜉 > 0 such that 𝑃 (𝜉) is invertible;
(iv) For every 𝑦 ∈ 𝑌 and 𝜆 > 0, we have 𝑒−𝜆·𝐸(·)𝑦 ∈ 𝐿1((0,∞) : 𝑌 ) and

𝑒−𝜆·𝑆(·)𝑦 ∈ 𝐿1((0,∞) : 𝑋).
It is well known that, for any empathy ⟨(𝑆(𝑡))𝑡>0, (𝐸(𝑡))𝑡>0⟩, the following holds:

(a) (𝐸(𝑡))𝑡>0 is a semigroup;
(b) (𝑆(𝑡))𝑡>0 and (𝐸(𝑡))𝑡>0 are strongly continuous and the norms ‖𝑆(𝑡)‖,

‖𝐸(𝑡)‖ are locally uniformly bounded on (0,∞).
(c) For any number 𝜁 > 0, the operator 𝑃 (𝜁) is invertible.

Define 𝑅(𝜆)𝑦 :=
∫︀∞
0
𝑒−𝜆𝑡𝐸(𝑡)𝑦 𝑑𝑡 and 𝑃 (𝜆)𝑦 :=

∫︀∞
0
𝑒−𝜆𝑡𝐸(𝑡)𝑦 𝑑𝑡 (𝜆 > 0, 𝑦 ∈ 𝑌 ).

Then we have:
(d) 𝑅(𝜆)−𝑅(𝜇) = (𝜇− 𝜆)𝑅(𝜆)𝑅(𝜇) = (𝜇− 𝜆)𝑅(𝜇)𝑅(𝜆) and 𝑃 (𝜆)− 𝑃 (𝜇) =

(𝜇− 𝜆)𝑃 (𝜆)𝑅(𝜇) = (𝜇− 𝜆)𝑃 (𝜇)𝑅(𝜆) for 𝜆, 𝜇 > 0.
(e) 𝑁(𝑅(𝜆)) = 𝑁(𝑅(𝜇)) := 𝑁𝐸 , 𝑅(𝑅(𝜆)) = 𝑅(𝑅(𝜇)) := D𝐸 ⊆ 𝑌 and

𝑅(𝑃 (𝜆)) = 𝑅(𝑃 (𝜇)) := D ⊆ 𝑌 for any 𝜆, 𝜇 > 0;
(f) 𝑆(𝑡)[D𝐸 ] ⊆ D and 𝐸(𝑡)[D𝐸 ] ⊆ D for 𝑡 > 0;
(g) For any 𝑦 ∈ D𝐸 , we have lim𝑡→0𝐸(𝑡)𝑦 = 𝑦;
(h) There exists a linear operator 𝐶0 : D𝐸 → D such that lim𝑡→0 𝑆(𝑡)𝑦 = 𝐶0𝑦

for any 𝑦 ∈ D𝐸 ;
(i) For any 𝜆, 𝜇 > 0, we have that 𝐴𝜆 = 𝐴𝜇 and 𝐵𝜆 = 𝐵𝜇, where 𝐴𝜆 :=

[𝜆𝑅(𝜆)− 𝐼]𝑃−1(𝜆) : D → 𝑌 and 𝐵𝜆 := 𝑅(𝜆)𝑃−1(𝜆) : D → D𝐸 .
Set 𝐴 := 𝐴1 and 𝐵 := 𝐵1. Then the pair ⟨𝐴,𝐵⟩ is said to be the generator of the
empathy ⟨(𝑆(𝑡))𝑡>0, (𝐸(𝑡))𝑡>0⟩.

It is clear that applications of empathy theory to abstract degenerate Volterra
integro-differential equations are very limited. Mention should be made of an in-
triguing application of [476, Theorem 8.2] to the following system of PDEs of first
order

𝜌(𝑥)𝑣𝑡(𝑥, 𝑡) = 𝑓𝑥(𝑥, 𝑡), 𝜎𝑓𝑡(𝑥, 𝑡) = 𝑣𝑥(𝑥, 𝑡),(261)

for which it is well-known that plays an important role in modeling of logitudinal
vibrations in an elastic bar of length 𝑙 and linear density 𝜌 = 𝜌(𝑥), 0 6 𝑥 6 𝑙.
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In (261), 𝑣 denotes the velocity, 𝑓 the internal force and 𝜎 > 0 the reciprocal of
Hooke’s constant.

For further information on empathy theory and its applications to abstract
differential equations, we refer the reader to the recent doctoral dissertation of W.-
S. Lee [374]. Up to now, we do not have any reference dealing with some fractional
analogues of empathy. Before we move ourselves to the next chapter, we want also
to recommend the monograph [473] by A. M. Samoilenko, M. I. Shkil’ and V. P.
Yakovets’ for the basic results on linear degenerate systems of ordinary differential
equations.



CHAPTER 3

MULTIVALUED LINEAR OPERATORS
APPROACH

The main purpose of this chapter is to study various classes of abstract degener-
ate Volterra integro-differential equations by using the multivalued linear operators
approach. Applying suitable substitutions, we put these equations into the form of
abstract degenerate Volterra integro-differential inclusions with multivalued linear
operators and examine after that the possibility of getting well-posedness results
by making use of some known results and methods from the corresponding theory
of non-degenerate equations (observe, however, that this approach has some draw-
backs because we inevitably lose some valuable information on the well-posedness of
initial problems). Despite of this, abstract degenerate Volterra integro-differential
inclusions with multivalued linear operators deserve special attention and analysis.

We use the standard terminology throughout this chapter. By 𝐸,𝑋, 𝑌, . . .
we denote Hausdorff sequentially complete locally convex spaces over the field of
complex numbers. By ~𝑋 (~, if there is no risk for confusion), we denote the
fundamental system of seminorms which defines the topology of 𝑋. Any place
where we need the pivot space to be a Banach (Fréchet) space will be especially
emphasized.

3.1. Abstract degenerate Volterra integro-differential inclusions

Let 0 < 𝜏 6 ∞, 𝛼 > 0, 𝑎 ∈ 𝐿1
𝑙𝑜𝑐([0, 𝜏)), 𝑎 ̸= 0, ℱ : [0, 𝜏) → 𝑃 (𝑌 ), and

let 𝒜 : 𝑋 → 𝑃 (𝑌 ), ℬ : 𝑋 → 𝑃 (𝑌 ) be two given mappings (possibly non-linear).
Suppose that 𝐵 is a single-valued linear operator. As mentioned in the introductory
part, the main aim of this section is to analyze the following abstract degenerate
Volterra inclusion:

(262) ℬ𝑢(𝑡) ⊆ 𝒜
∫︁ 𝑡

0

𝑎(𝑡− 𝑠)𝑢(𝑠)𝑑𝑠+ ℱ(𝑡), 𝑡 ∈ [0, 𝜏),

as well as the following fractional Sobolev inclusions:

(DFP)R :

⎧⎨⎩D𝛼
𝑡 𝐵𝑢(𝑡) ∈ 𝒜𝑢(𝑡) + ℱ(𝑡), 𝑡 > 0,

(𝐵𝑢)(𝑗)(0) = 𝐵𝑥𝑗 , 0 6 𝑗 6 ⌈𝛼⌉ − 1,

and

(DFP)L :

{︃
ℬD𝛼

𝑡 𝑢(𝑡) ⊆ 𝒜𝑢(𝑡) + ℱ(𝑡), 𝑡 > 0,

𝑢(𝑗)(0) = 𝑥𝑗 , 0 6 𝑗 6 ⌈𝛼⌉ − 1.

285
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In the following general definition, we introduce various types of solutions to
the abstract degenerate inclusions (262), (DFP)R and (DFP)L.

Definition 3.1.1. (i) A function 𝑢 ∈ 𝐶([0, 𝜏) : 𝑋) is said to be a pre-
solution of (262) iff (𝑎*𝑢)(𝑡) ∈ 𝐷(𝒜) and 𝑢(𝑡) ∈ 𝐷(ℬ) for 𝑡 ∈ [0, 𝜏), as well
as (262) holds. By a solution of (262), we mean any pre-solution 𝑢(·) of
(262) satisfying additionally that there exist functions 𝑢ℬ ∈ 𝐶([0, 𝜏) : 𝑌 )

and 𝑢𝑎,𝒜 ∈ 𝐶([0, 𝜏) : 𝑌 ) such that 𝑢ℬ(𝑡) ∈ ℬ𝑢(𝑡) and 𝑢𝑎,𝒜(𝑡) ∈ 𝒜
∫︀ 𝑡

0
𝑎(𝑡−

𝑠)𝑢(𝑠)𝑑𝑠 for 𝑡 ∈ [0, 𝜏), as well as

𝑢ℬ(𝑡) ∈ 𝑢𝑎,𝒜(𝑡) + ℱ(𝑡), 𝑡 ∈ [0, 𝜏).

Strong solution of (262) is any function 𝑢 ∈ 𝐶([0, 𝜏) : 𝑋) satisfying that
there exist two continuous functions 𝑢ℬ ∈ 𝐶([0, 𝜏) : 𝑌 ) and 𝑢𝒜 ∈ 𝐶([0, 𝜏) :
𝑌 ) such that 𝑢ℬ(𝑡) ∈ ℬ𝑢(𝑡), 𝑢𝒜(𝑡) ∈ 𝒜𝑢(𝑡) for all 𝑡 ∈ [0, 𝜏), and

𝑢ℬ(𝑡) ∈ (𝑎 * 𝑢𝒜)(𝑡) + ℱ(𝑡), 𝑡 ∈ [0, 𝜏).

(ii) Let 𝐵 = ℬ be single-valued. By a 𝑝-solution of (DFP)R, we mean any 𝑋-
valued function 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 such that the term 𝑡 ↦→ D𝛼

𝑡 𝐵𝑢(𝑡), 𝑡 > 0 is
well-defined, 𝑢(𝑡) ∈ 𝐷(𝒜) for 𝑡 > 0, and the requirements of (DFP)R hold;
a pre-solution of (DFP)R is any 𝑝-solution of (DFP)𝑅 that is continuous
for 𝑡 > 0. Finally, a solution of (DFP)R is any pre-solution 𝑢(·) of (DFP)R
satisfying additionally that there exists a function 𝑢𝒜 ∈ 𝐶([0,∞) : 𝑌 )
such that 𝑢𝒜(𝑡) ∈ 𝒜𝑢(𝑡) for 𝑡 > 0, and D𝛼

𝑡 𝐵𝑢(𝑡) ∈ 𝑢𝒜(𝑡) + ℱ(𝑡), 𝑡 > 0.
(iii) By a pre-solution of (DFP)L, we mean any continuous 𝑋-valued function

𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 such that the term 𝑡 ↦→ D𝛼
𝑡 𝑢(𝑡), 𝑡 > 0 is well defined and

continuous, as well as that D𝛼
𝑡 𝑢(𝑡) ∈ 𝐷(ℬ) and 𝑢(𝑡) ∈ 𝐷(𝒜) for 𝑡 > 0, and

that the requirements of (DFP)L hold; a solution of (DFP)L is any pre-
solution 𝑢(·) of (DFP)L satisfying additionally that there exist functions
𝑢𝛼,ℬ ∈ 𝐶([0,∞) : 𝑌 ) and 𝑢𝒜 ∈ 𝐶([0,∞) : 𝑌 ) such that 𝑢𝛼,ℬ(𝑡) ∈ ℬD𝛼

𝑡 𝑢(𝑡)
and 𝑢𝒜(𝑡) ∈ 𝒜𝑢(𝑡) for 𝑡 > 0, as well as that 𝑢𝛼,ℬ(𝑡) ∈ 𝑢𝒜(𝑡)+ℱ(𝑡), 𝑡 > 0.

Before proceeding further, we want to observe that the existence of solutions
to (262), (DFP)R or (DFP)L immediately implies that sec𝑐(ℱ) ̸= ∅, as well as
that any strong solution of (262) is already a solution of (262), provided that 𝒜
and ℬ are MLOs with 𝒜 being closed; this can be simply verified with the help of
Theorem 1.2.3. The notion of a (pre-)solution of problems (DFP)R and (DFP)L
can be similarly defined on any finite interval [0, 𝜏) or [0, 𝜏 ], where 0 < 𝜏 < ∞,
and extends so the notion of a strict solution of problem (E) given on pp. 33–34
of [199] (ℬ = 𝐼, 𝛼 = 1, ℱ(𝑡) = 𝑓(𝑡) is continuous single-valued). We refer the
reader to [211] and [306] for some results about the wellposedness of some special
cases of problem (DFP)R. In our further work, it will be assumed that 𝒜 and ℬ
are multivalued linear operators. Observe that we cannot consider the qualitative
properties of solutions of problems (262), (DFP)R or (DFP)L in full generality by
a simple passing to the multivalued linear operators ℬ−1𝒜 or 𝒜ℬ−1 (see e.g. the
definition of a solution of (262)). Concerning this question, we have the following
remark.
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Remark 3.1.2. (cf. also Section 2.1) Suppose that 0 < 𝜏 6∞, 𝛼 > 0, as well
as that 𝐴 : 𝐷(𝐴) ⊆ 𝑋 → 𝑌 and 𝐵 : 𝐷(𝐵) ⊆ 𝑋 → 𝑌 are two single-valued linear
operators. Then 𝐵−1𝐴 is an MLO in 𝑋, and 𝐴𝐵−1 is an MLO in 𝑌 .

(i) Suppose that 𝑢(·) is a pre-solution (or, equivalently, solution) of problem
(262) with ℬ = 𝐼𝑋 , 𝒜 = 𝐵−1𝐴 and ℱ = 𝑓 : [0, 𝜏) → 𝐷(𝐵) being
single-valued. Then 𝑢 ∈ 𝐶([0, 𝜏) : 𝑋) and 𝐵𝑢(𝑡) = 𝐴(𝑎 * 𝑢)(𝑡) + 𝐵𝑓(𝑡),
𝑡 ∈ [0, 𝜏). If, in addition to this, 𝐵 ∈ 𝐿(𝑋,𝑌 ) and 𝑢(·) is a strong solution
of problem (262) with the above requirements being satisfied, then the
mappings 𝑡 ↦→ 𝐴𝑢(𝑡), 𝑡 ∈ [0, 𝜏) and 𝑡 ↦→ 𝐵𝑢(𝑡), 𝑡 ∈ [0, 𝜏) are continuous,
and (𝑎 *𝐴𝑢)(𝑡) = 𝐵𝑢(𝑡)−𝐵𝑓(𝑡), 𝑡 ∈ [0, 𝜏).

(ii) Suppose that 𝑣(·) is a pre-solution (solution) of problem (DFP)R with
ℬ = 𝐼𝑌 , 𝒜 = 𝐴𝐵−1, ℱ = 𝑓 : [0, 𝜏) → 𝑌 being single-valued, and 𝑣𝑗 = 𝐵𝑥𝑗
(0 6 𝑗 6 ⌈𝛼⌉ − 1). Let 𝐵−1 ∈ 𝐿(𝑌,𝑋). Then the function 𝑢(𝑡) :=
𝐵−1𝑣(𝑡), 𝑡 > 0 is a pre-solution (solution) of problem (DFP)R with ℬ = 𝐵
and 𝒜 = 𝐴.

(iii) Suppose that ℱ = 𝑓 : [0, 𝜏) → 𝐷(𝐵) is single-valued and 𝑢(·) is a pre-
solution of problem (DFP)L with ℬ = 𝐼𝑋 and 𝒜 = 𝐵−1𝐴. Then 𝑢(·) is a
pre-solution of problem (DFP)L with ℬ = 𝐵, 𝒜 = 𝐴 and ℱ(𝑡) = 𝐵𝑓(𝑡),
𝑡 ∈ [0, 𝜏). If, in addition to this, 𝐵 ∈ 𝐿(𝑋,𝑌 ) and 𝑢(·) is a solution of
problem (DFP)L with the above requirements being satisfied, then 𝑢(·)
is a solution of problem (DFP)L with ℬ = 𝐵, 𝒜 = 𝐴 and ℱ(𝑡) = 𝐵𝑓(𝑡),
𝑡 ∈ [0, 𝜏).

(iv) Suppose that 𝑢 : [0,∞) → 𝐷(𝐴) ∩ 𝐷(𝐵). Then 𝑢(·) is a 𝑝-solution of
problem (DFP)R with ℬ = 𝐵 and 𝒜 = 𝐴 iff 𝑣 = 𝐵𝑢(·) is a pre-solution
of problem {︃

D𝛼
𝑡 𝑣(𝑡) ∈ 𝐴𝐵−1𝑣(𝑡) + ℱ(𝑡), 𝑡 > 0,

𝑣(𝑗)(0) = 𝐵𝑥𝑗 , 0 6 𝑗 6 ⌈𝛼⌉ − 1.

(v) Suppose that 𝐶𝑌 ∈ 𝐿(𝑌 ) is injective and the closed graph theorem holds
for the mappings from 𝑌 into 𝑌 . Then we define the set 𝜌𝐵𝐶𝑌

(𝐴) := {𝜆 ∈
C : 𝜆𝐵 − 𝐴 is injective and (𝜆𝐵 − 𝐴)−1𝐶𝑌 ∈ 𝐿(𝑌 )}. It can be simply
checked that 𝜌𝐵𝐶𝑌

(𝐴) ⊆ 𝜌𝐶𝑌
(𝐴𝐵−1), as well as that

(263) (𝜆−𝐴𝐵−1)−1𝐶𝑌 = 𝐵(𝜆𝐵 −𝐴)−1𝐶𝑌 , 𝜆 ∈ 𝜌𝐵𝐶𝑌
(𝐴).

This is an extension of [199, Theorem 1.14] and holds even in the case
that the operator 𝐶𝑌 does not commute with 𝐴𝐵−1, when we define the
𝐶𝑌 -resolvent set of the operator 𝜆 − 𝐴𝐵−1 in the same way as before.
Observe also that the assumption 𝐷(𝐴) ⊆ 𝐷(𝐵), which has been used
in [199, Section 1.6], is not necessary for the validity of (263).

(vi) Suppose that 𝑋 = 𝑌 , 𝐶 ∈ 𝐿(𝑋) is injective, 𝐵 ∈ 𝐿(𝑋), 𝐶𝐴 ⊆ 𝐴𝐶
and 𝐶𝐵 ⊆ 𝐵𝐶. Define the set 𝜌𝐵𝐶(𝐴) as above. Then we have 𝜌𝐵𝐶(𝐴) ⊆
𝜌𝐶(𝐵

−1𝐴) and

(𝜆−𝐵−1𝐴)−1𝐶𝑥 = (𝜆𝐵 −𝐴)−1𝐶𝐵𝑥, 𝑥 ∈ 𝑋.
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Furthermore, if 𝐶 = 𝐼, 𝑋 ̸= 𝑌 and 𝐵 ∈ 𝐿(𝑋,𝑌 ), then 𝜌𝐵(𝐴) ⊆ 𝜌(𝐵−1𝐴)
and the previous equality holds.

Consider now the case in which the operator 𝒜 is closed, the operator ℬ = 𝐵
is single-valued and the function ℱ(𝑡) = 𝑓(𝑡) is 𝑌 -continuous at each point 𝑡 > 0.
Then any pre-solution 𝑢(·) of problem (DFP)R is already a solution of this problem,
and Theorem 1.2.3 in combination with the identity (38) implies that

𝐵𝑢(𝑡)−
⌈𝛼⌉−1∑︁
𝑘=0

𝑔𝑘+1(𝑡)𝐵𝑥𝑘 − (𝑔𝛼 * 𝑓)(𝑡) ∈ 𝒜(𝑔𝛼 * 𝑢)(𝑡), 𝑡 > 0.

Suppose, conversely, that there exists a function 𝑢𝒜 ∈ 𝐶([0,∞) : 𝑌 ) such that
𝑢𝒜(𝑡) ∈ 𝒜𝑢(𝑡), 𝑡 > 0 and

𝐵𝑢(𝑡)−
⌈𝛼⌉−1∑︁
𝑘=0

𝑔𝑘+1(𝑡)𝐵𝑥𝑘 − (𝑔𝛼 * 𝑓)(𝑡) = (𝑔𝛼 * 𝑢𝒜)(𝑡), 𝑡 > 0.

Then it can be simply verified that 𝑢(·) is a solution of problem (DFP)R; it is note-
worthy that we do not need the assumption on closedness of 𝒜 in this direction.
Even in the case that 𝒜 = 𝐴 is a closed single-valued linear operator, a corre-
sponding statement for the problem (DFP)L cannot be proved. Suppose, finally,
that the operators 𝒜 and ℬ are closed, 𝑢(·) is a solution of problem (DFP)R, the
function ℱ(𝑡) = 𝑓(𝑡) is 𝑌 -continuous at each point 𝑡 > 0, as well as the functions
𝑢𝛼,ℬ ∈ 𝐶([0,∞) : 𝑌 ) and 𝑢𝒜 ∈ 𝐶([0,∞) : 𝑌 ) satisfy the requirements stated in
Definition 3.1.1(iii). Using again Theorem 1.2.3 and the identity (38), it readily
follows that

ℬ
[︂
𝑢(𝑡)−

⌈𝛼⌉−1∑︁
𝑘=0

𝑔𝑘+1(𝑡)𝑥𝑘

]︂
∋ (𝑔𝛼 * 𝑢𝛼,ℬ)(𝑡)

= (𝑔𝛼 * 𝑢𝒜)(𝑡) + (𝑔𝛼 * 𝑓)(𝑡) ∈ 𝒜(𝑔𝛼 * 𝑢)(𝑡) + (𝑔𝛼 * 𝑓)(𝑡), 𝑡 > 0.

The proof of following important theorem can be deduced by using Theorem
1.2.3, Theorem 1.4.2[(iv),(vi)], Theorem 1.4.4 and the argumentation already seen
in the proof of [280, Theorem 3.1] (cf. also [285, Fundamental Lemma 3.1]); observe
that we do not use the assumption on the exponential boundedness of function 𝑢(𝑡)
here. After formulation, we will only include the most relevant details needed for
the proof of implication (iii) ⇒ (iv).

Theorem 3.1.3. Suppose that 𝒜 : 𝑋 → 𝑃 (𝑌 ) and ℬ : 𝑋 → 𝑃 (𝑌 ) are MLOs,
as well as that 𝒜 is 𝑋𝒜×𝑌𝒜-closed. Assume, further, that 𝑎 ∈ 𝐿1

𝑙𝑜𝑐([0,∞)), 𝑎 ̸= 0,
abs(|𝑎|) < ∞, 𝑢 ∈ 𝐶([0,∞) : 𝑋), 𝑢 ∈ (P1) − 𝑋, as well as that 𝑢(𝑡) ∈ 𝐷(ℬ),
𝑡 > 0, 𝑎 *𝑢 ∈ 𝐶([0,∞) : 𝑋𝒜), 𝑎 *𝑢 ∈ (P1)−𝑋𝒜, abs𝑌𝒜(ℬ𝑢) <∞, abs𝑌𝒜(ℱ) <∞,
and 𝜔 > max(0, 𝜔𝑋(𝑢), abs𝑌𝒜(ℬ𝑢), abs𝑌𝒜(ℱ), abs𝑋𝒜(𝑎*𝑢)). Consider the following
assertions:

(i) 𝑢(·) is a solution of (262) with 𝜏 = ∞.
(ii) 𝑢(·) is a pre-solution of (262) with 𝜏 = ∞.
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(iii) For any section 𝑢ℬ ∈ sec(ℬ𝑢) there is a section 𝑓 ∈ sec(ℱ) such that

̃︁𝑢ℬ(𝜆)− 𝑓(𝜆) ∈ �̃�(𝜆)𝒜�̃�(𝜆), Re𝜆 > 𝜔, �̃�(𝜆) ̸= 0.

(iv) For any section 𝑢ℬ ∈ sec(ℬ𝑢) there is a section 𝑓 ∈ sec(ℱ) such that

(264) ̃︁𝑢ℬ(𝜆)− 𝑓(𝜆) ∈ �̃�(𝜆)𝒜�̃�(𝜆), 𝜆 ∈ N, 𝜆 > 𝜔, �̃�(𝜆) ̸= 0.

(v) For any section 𝑢ℬ ∈ sec(ℬ𝑢) there is a section 𝑓 ∈ sec(ℱ) such that

(265) (1 * 𝑢ℬ)(𝑡)− (1 * 𝑓)(𝑡) ∈ 𝒜(1 * 𝑎 * 𝑢)(𝑡), 𝑡 > 0.

Then we have (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v). Furthermore, if ℬ = 𝐵 is single-
valued, 𝐵𝑢 ∈ 𝐶([0,∞) : 𝑌𝒜) and ℱ = 𝑓 ∈ 𝐶([0,∞) : 𝑌𝒜) is single-valued, then the
above is equivalent.

Sketch of proof for (iv)⇒ (v). Suppose that for any section 𝑢ℬ ∈ sec(ℬ𝑢)
there is a section 𝑓 ∈ sec(ℱ) such that (264) holds. Let a number 𝜆 ∈ N with 𝜆 > 𝜔
and �̃�(𝜆) = 0 be temporarily fixed. Then there exists a sequence (𝜆𝑛)𝑛∈N in (𝜆,∞)

such that �̃�(𝜆𝑛) ̸= 0 and lim𝑛→+∞ 𝜆𝑛 = 𝜆. Since (�̃�(𝜆𝑛)�̃�(𝜆𝑛),̃︁𝑢ℬ(𝜆𝑛)−𝑓(𝜆𝑛)) ∈ 𝒜,
𝑛 ∈ N, i.e., (𝑎 * 𝑢(𝜆𝑛),̃︁𝑢ℬ(𝜆𝑛) − 𝑓(𝜆𝑛)) ∈ 𝒜, 𝑛 ∈ N, and 𝒜 is 𝑋𝒜 × 𝑌𝒜-closed, it
readily folows that (𝑎 * 𝑢(𝜆),̃︁𝑢ℬ(𝜆)−𝑓(𝜆)) ∈ 𝒜; in other words, (0,̃︁𝑢ℬ(𝜆)−𝑓(𝜆)) ∈
𝒜. By the foregoing, we have that (𝑎 * 𝑢(𝜆),̃︁𝑢ℬ(𝜆)− 𝑓(𝜆)) ∈ 𝒜 for all 𝜆 ∈ N with
𝜆 > 𝜔. Using Theorem 1.2.3, we get that

∫︀∞
0
𝑒−𝜆𝑡(𝑢ℬ − 𝑓)[2](𝑡)𝑑𝑡 ∈ 𝒜

∫︀∞
0
𝑒−𝜆𝑡(𝑎 *

𝑢)[2](𝑡)𝑑𝑡 (𝜆 ∈ N, 𝜆 > 𝜔) and now we can apply Theorem 1.4.4, along with the
𝑋𝒜×𝑌𝒜-closedness of 𝒜, in order to see that 𝑢[2]ℬ (𝑡)−𝑓 [2](𝑡) ∈ 𝒜(𝑎*𝑢)[2](𝑡), 𝑡 > 0.
This simply implies (265). �

Remark 3.1.4. Observe that we do not require any type of closedness of the
operator ℬ in the formulation of Theorem 3.1.3. Even in the case that 𝑋 = 𝑌 and
ℬ = 𝐵 = 𝐼, we cannot differentiate the equation (265) once more without making
an additional assumption that ℱ = 𝑓 ∈ 𝐶([0,∞) : 𝑌𝒜) is single-valued (cf. [280, l.
-1, p. 173; l. 1–03, p. 174], where the author has made a small mistake in the
consideration; in actual fact, the equation [280, (3.1)] has to be valid for some
𝑓 ∈ sec𝑐(ℱ) in order for the proof of implication (iii) ⇒ (i) of [280, Theorem 3.1]
to work).

If Ω is a non-empty open subset of C and 𝐺 : Ω → 𝑋 is an analytic mapping
that it is not identically equal to the zero function, then we can simply prove that
for each zero 𝜆0 of 𝐺(·) there exists a uniquely determined natural number 𝑛 ∈ N
such that 𝐺(𝑗)(𝜆0) = 0 for 0 6 𝑗 6 𝑛 − 1 and 𝐺(𝑛)(𝜆0) ̸= 0. Owing to this fact,
we can repeat almost verbatim the arguments given in the proof of [280, Theorem
3.2] to verify the validity of the following Ljubich uniqueness type theorem:

Theorem 3.1.5. Suppose 𝒜 : 𝑋 → 𝑃 (𝑌 ) is an MLO, ℬ = 𝐵 : 𝐷(𝐵) ⊆ 𝑋 → 𝑌
is a single-valued linear operator, 𝒜 is 𝑋𝒜 × 𝑌𝒜-closed and 𝐵 is 𝑋𝐵 × 𝑌𝐵-closed,
where 𝑌𝒜 →˓ 𝑌𝐵. Assume, further, that 𝑎 ∈ 𝐿1

𝑙𝑜𝑐([0,∞)), 𝑎 ̸= 0, abs(|𝑎|) < ∞,
ℱ = 𝑓 ∈ 𝐶([0,∞) : 𝑌𝒜) is single-valued, abs𝑌𝒜(𝑓) <∞, and there exist a sequence
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(𝜆𝑘)𝑘∈N of complex numbers and a number 𝜔 > abs(|𝑎|) such that lim𝑘→∞ Re𝜆𝑘 =
+∞, �̃�(𝜆𝑘) ̸= 0, 𝑘 ∈ N, and

1

�̃�(𝜆𝑘)
𝐵𝑥 /∈ 𝒜𝑥, 𝑘 ∈ N, 0 ̸= 𝑥 ∈ 𝐷(𝒜) ∩𝐷(𝐵).

Then there exists a unique pre-solution of (262), with 𝜏 = ∞, satisfying that 𝑢 ∈
(P1) − 𝑋𝐵, 𝑢(𝑡) ∈ 𝐷(𝐵), 𝑡 > 0, 𝐵𝑢 ∈ 𝐶([0,∞) : 𝑌𝒜), 𝑎 * 𝑢 ∈ 𝐶([0,∞) : 𝑋𝒜),
𝑎 * 𝑢 ∈ (P1) −𝑋𝒜 and abs𝑌𝒜(𝐵𝑢) <∞.

In the following extension of [292, Theorem 2.1.34], we will prove one more Lju-
bich’s uniqueness criterium for abstract Cauchy problems with multivalued linear
operators (cf. also [285, Theorem 3.5] and [292, Theorem 2.10.44]).

Theorem 3.1.6. Suppose 𝛼 > 0, 𝜆 > 0, 𝒜 is an MLO in 𝑋, {(𝑛𝜆)𝛼 : 𝑛 ∈
N} ⊆ 𝜌𝐶(𝒜) and, for every 𝜎 > 0 and 𝑥 ∈ 𝑋, we have

lim
𝑛→∞

((𝑛𝜆)𝛼 −𝒜)−1𝐶𝑥

𝑒𝑛𝜆𝜎
= 0.

Then, for every 𝑥0, . . . , 𝑥⌈𝛼⌉−1 ∈ 𝑋, there exists at most one pre-solution of the
initial value problem (DFP)R with ℬ = 𝐼.

Proof. It suffices to show that the zero function is the only pre-solution of
the problem (DFP)R with ℬ = 𝐼 and the initial values 𝑥0, . . . , 𝑥⌈𝛼⌉−1 chosen to
be zeroes. Let 𝑢(·) be a pre-solution of such a problem. Set 𝑧𝑛(𝑡) := ((𝑛𝜆)𝛼 −
𝒜)−1𝐶𝑢(𝑡), 𝑡 > 0, 𝑛 ∈ N. Then it can be easily checked with the help of Theorem
1.2.4(i) that 𝑧𝑛(·) is a solution of the initial value problem:⎧⎪⎨⎪⎩

𝑧𝑛 ∈ 𝐶⌈𝛼⌉((0,∞) : 𝑋) ∩ 𝐶⌈𝛼⌉−1([0,∞) : 𝑋),

D𝛼
𝑡 𝑧𝑛(𝑡) = (𝑛𝜆)𝛼𝑧𝑛(𝑡)− 𝐶𝑢(𝑡), 𝑡 > 0,

𝑧
(𝑗)
𝑛 (0) = 0, 0 6 𝑗 6 ⌈𝛼⌉ − 1.

This implies 𝑧𝑛(𝑡) = −(𝑢 * ·𝛼−1𝐸𝛼,𝛼((𝑛𝜆)
𝛼·𝛼−1))(𝑡), 𝑡 > 0, 𝑛 ∈ N and

lim
𝑛→∞

𝑒−𝑛𝜆𝜎

∫︁ 𝑡

0

𝑠𝛼−1𝐸𝛼,𝛼((𝑛𝜆)
𝛼𝑠𝛼)𝐶𝑢(𝑡− 𝑠)𝑑𝑠 = 0 (𝑡 > 0, 𝜎 > 0).

Now we can argue as in the second part of proof of [292, Theorem 2.1.34] so as to
conclude that 𝑢(𝑡) = 0, 𝑡 > 0 (in the case that 𝛼 ∈ N, the assertion can be proved by
passing to the theory of abstract Cauchy problems of first order since [292, Lemma
2.1.33(i)] admits an extension to multivalued linear operators). �

Remark 3.1.7. Observe that, in the formulation of Theorem 3.1.6, we do not
require any type of closedness of the operator 𝒜.

The following theorem is very similar to [61, Theorem 3.1, Theorem 3.3] and
[292, Theorem 2.4.2]. Because of its importance, we will include the most relevant
details of proof.

Theorem 3.1.8 (Subordination principle for abstract time-fractional inclu-
sions). Suppose that 0 < 𝛼 < 𝛽, 𝛾 = 𝛼/𝛽, 𝒜 : 𝑋 → 𝑃 (𝑌 ) is an MLO, ℬ =
𝐵 : 𝐷(𝐵) ⊆ 𝑋 → 𝑌 is a single-valued linear operator, 𝒜 is 𝑋𝒜 × 𝑌𝒜-closed and
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𝐵 is 𝑋𝐵 × 𝑌𝐵-closed, where 𝑋𝒜 →˓ 𝑋𝐵 and 𝑌𝒜 →˓ 𝑌𝐵. Assume, further, that
𝑓𝛽 ∈ 𝐿𝑇𝑜𝑟 − 𝑌𝒜 is single-valued and there exists a pre-solution (or, equivalently,
solution) 𝑢(𝑡) := 𝑢𝛽(𝑡) of (262), with 𝜏 = ∞, 𝑎(𝑡) = 𝑔𝛽(𝑡) and ℱ = 𝑓𝛽, satisfy-
ing that 𝑢𝛽 ∈ 𝐿𝑇𝑜𝑟 − 𝑋𝐵, 𝐵𝑢𝛽 ∈ 𝐿𝑇𝑜𝑟 − 𝑌𝒜, 𝑔𝛽 * 𝑢𝛽 ∈ 𝐿𝑇𝑜𝑟 − 𝑋𝒜 and that for
each seminorm 𝑝 ∈ ~𝑋𝐵

there exists 𝜔𝑝 > 0 such that 𝑝(𝑢𝛽(𝑡)) = 𝑂(𝑒𝜔𝑝𝑡), 𝑡 > 0,
𝑝 ∈ ~𝑋𝐵

. Define

𝑢𝛼(𝑡) :=

∫︁ ∞

0

𝑡−𝛾Φ𝛾(𝑠𝑡
−𝛾)𝑢𝛽(𝑠)𝑑𝑠, 𝑡 > 0 and 𝑢𝛼(0) := 𝑢𝛽(0)

and

𝑓𝛼(𝑡)𝑥 :=

∫︁ ∞

0

𝑡−𝛾Φ𝛾(𝑠𝑡
−𝛾)𝑓𝛽(𝑠)𝑑𝑠, 𝑡 > 0 and 𝑓𝛼(0) := 𝑓𝛽(0).

Then 𝑢𝛼(𝑡) is a solution of (262), with 𝜏 = ∞, 𝑎(𝑡) = 𝑔𝛼(𝑡) and ℱ(𝑡) = 𝑓𝛼(𝑡) ∈
𝐿𝑇𝑜𝑟−𝑌𝒜, satisfying additionally that 𝑢𝛼 ∈ 𝐿𝑇𝑜𝑟−𝑋𝐵, 𝐵𝑢𝛼 ∈ 𝐿𝑇𝑜𝑟−𝑌𝒜, 𝑔𝛼*𝑢𝛼 ∈
𝐿𝑇𝑜𝑟 −𝑋𝒜 and

(266) 𝑝(𝑢𝛼(𝑡)) = 𝑂(exp(𝜔1/𝛾
𝑝 𝑡)), 𝑝 ∈ ~𝑋𝐵

, 𝑡 > 0.

Let 𝑝 ∈ ~𝑋𝐵
be fixed. Then the condition

(267) 𝑝(𝑢𝛽(𝑡)) = 𝑂((1 + 𝑡𝜉𝑝)𝑒𝜔𝑝𝑡) for some 𝜉𝑝 > 0,

resp.,

(268) 𝑝(𝑢𝛽(𝑡)) = 𝑂(𝑡𝜉𝑝𝑒𝜔𝑝𝑡), 𝑡 > 0

implies that

(269) 𝑝(𝑢𝛼(𝑡)) = 𝑂((1 + 𝑡𝜉𝑝𝛾)(1 + 𝜔𝑝𝑡
𝜉𝑝(1−𝛾)) exp(𝜔1/𝛾

𝑝 𝑡)), 𝑡 > 0,

resp.,

(270) 𝑝(𝑢𝛼(𝑡)) = 𝑂(𝑡𝜉𝑝𝛾(1 + 𝜔𝑝𝑡
𝜉𝑝(1−𝛾)) exp(𝜔1/𝛾

𝑝 𝑡)), 𝑡 > 0.

Furthermore, the following holds:
(i) The mapping 𝑡 ↦→ 𝑢𝛼(𝑡), 𝑡 > 0 admits an extension to Σmin(( 1

𝛾 −1)𝜋
2 ,𝜋) and

the mapping 𝑧 ↦→ 𝑢𝛼(𝑧), 𝑧 ∈ Σmin(( 1
𝛾 −1)𝜋

2 ,𝜋) is analytic.
(ii) Let 𝜀 ∈ (0,min(( 1𝛾 −1)𝜋2 , 𝜋)). If, for every 𝑝 ∈ ~, one has 𝜔𝑝 = 0, then for

each 𝜃 ∈ (0,min(( 1𝛾 − 1)𝜋2 , 𝜋)) the following holds: lim𝑧→0,𝑧∈Σ𝜃
𝑢𝛼(𝑧) =

𝑢𝛼(0).
(iii) If 𝜔𝑝 > 0 for some 𝑝 ∈ ~, then for each 𝜃 ∈ (0,min(( 1𝛾 − 1)𝜋2 ,

𝜋
2 )) the

following holds: lim𝑧→0,𝑧∈Σ𝜃
𝑢𝛼(𝑧) = 𝑢𝛼(0).

Proof. The proofs of (i)–(iii) follows similarly as in that of [61, Theorem
3.3], while the proof that the condition (267), resp. (268), implies (269), resp.
(270), follows similarly as in that of [292, Theorem 2.4.2]. Furthermore, it can
be easily seen that the estimate (266) holds for solution 𝑢𝛼(·). By Theorem 3.1.3,
we should only show that 𝑢𝛼 ∈ 𝐿𝑇𝑜𝑟 − 𝑋𝐵 , 𝐵𝑢𝛼 ∈ 𝐿𝑇𝑜𝑟 − 𝑌𝒜, 𝑓𝛼 ∈ 𝐿𝑇𝑜𝑟 − 𝑌𝒜,
𝑔𝛼 * 𝑢𝛼 ∈ 𝐿𝑇𝑜𝑟 −𝑋𝒜 and

(271) ̃︂𝐵𝑢𝛼(𝜆)−̃︁𝑓𝛼(𝜆) ∈ 𝜆−𝛼𝒜̃︁𝑢𝛼(𝜆), 𝜆 > 𝜔 suff. large.
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Since 𝑢𝛽 ∈ 𝐿𝑇𝑜𝑟 − 𝑋𝐵 , the proof of [61, Theorem 3.1] immediately implies that
𝑢𝛼 ∈ 𝐿𝑇𝑜𝑟 −𝑋𝐵 , as well as that ̃︁𝑢𝛼(𝜆) = 𝜆𝛾−1̃︁𝑢𝛽(𝜆𝛽), 𝜆 > 𝜔 suff. large. Similarly,
we have that 𝑓𝛼 ∈ 𝐿𝑇𝑜𝑟 − 𝑌𝒜 and 𝑓𝛼(𝜆) = 𝜆𝛾−1𝑓𝛽(𝜆

𝛽), 𝜆 > 𝜔 suff. large. Keeping
in mind that 𝑋𝒜 →˓ 𝑋𝐵 and 𝑔𝛽 *𝑢𝛽 ∈ 𝐿𝑇𝑜𝑟−𝑋𝒜, we can prove that (𝑔𝛼 *𝑢𝛼)(𝑡) =∫︀∞
0
𝑡−𝛾Φ𝛾(𝑠𝑡

−𝛾)(𝑔𝛽 * 𝑢𝛽)(𝑠)𝑑𝑠, 𝑡 > 0 by performing the Laplace transform (the
convergence of last integral is taken for the topology of 𝑋𝒜). This simply implies
that 𝑔𝛼 * 𝑢𝛼 ∈ 𝐿𝑇𝑜𝑟 − 𝑋𝒜 and (ℒ(𝑔𝛼 * 𝑢𝛼))(𝜆) = 𝜆𝛾−1(ℒ(𝑔𝛽 * 𝑢𝛽))(𝜆𝛾), 𝜆 > 𝜔
suff. large. Since 𝑌𝒜 →˓ 𝑌𝐵 , a similar line of reasoning shows that 𝐵𝑢𝛼(𝑡) =∫︀∞
0
𝑡−𝛾Φ𝛾(𝑠𝑡

−𝛾)(𝐵𝑢𝛽)(𝑠)𝑑𝑠, 𝑡 > 0 (the convergence of this integral is taken for the
topology of 𝑌𝒜) and ̃︂𝐵𝑢𝛼(𝜆) = 𝐵̃︁𝑢𝛼(𝜆), 𝜆 > 𝜔 suff. large. The proof of (271) now
follows from a simple computation. �

We can similarly prove the following subordination principles for abstract de-
generate Volterra inclusions in locally convex spaces (cf. [459, Section 4] and [292,
Theorem 2.1.8, Theorem 2.8.7] for more details concerning non-degenerate case
and, especially, the case in which 𝑏(𝑡) = 𝑔1(𝑡) or 𝑏(𝑡) = 𝑔2(𝑡)).

Theorem 3.1.9. Let 𝑏(𝑡) and 𝑐(𝑡) satisfy (P1), let
∫︀∞
0
𝑒−𝛽𝑡|𝑏(𝑡)|𝑑𝑡 < ∞ for

some 𝛽 > 0, and let

𝛼 = 𝑐−1
(︁ 1
𝛽

)︁
if
∫︁ ∞

0

𝑐(𝑡)𝑑𝑡 >
1

𝛽
, 𝛼 = 0 otherwise.

Suppose that abs(|𝑎|) < ∞, �̃�(𝜆) = �̃�( 1
𝑐(𝜆) ), 𝜆 > 𝛼, 𝒜 : 𝑋 → 𝑃 (𝑌 ) is an MLO,

ℬ = 𝐵 : 𝐷(𝐵) ⊆ 𝑋 → 𝑌 is a single-valued linear operator, 𝒜 is 𝑋𝒜 × 𝑌𝒜-closed
and 𝐵 is 𝑋𝐵 × 𝑌𝐵-closed, where 𝑋𝒜 →˓ 𝑋𝐵 and 𝑌𝒜 →˓ 𝑌𝐵. Assume, further, that
𝑓𝛽 ∈ 𝐿𝑇𝑜𝑟 − 𝑌𝒜 is single-valued and there exists a pre-solution (or, equivalently,
solution) 𝑢(𝑡) := 𝑢𝑏(𝑡) of (262), with 𝜏 = ∞, 𝑎(𝑡) replaced with 𝑏(𝑡) therein, and
ℱ = 𝑓𝑏, satisfying that 𝑢𝑏 ∈ 𝐿𝑇𝑜𝑟 −𝑋𝐵, 𝐵𝑢𝑏 ∈ 𝐿𝑇𝑜𝑟 −𝑌𝒜, 𝑏 *𝑢𝑏 ∈ 𝐿𝑇𝑜𝑟 −𝑋𝒜 and
the family {𝑒−𝜔𝑏𝑡𝑢𝑏(𝑡) : 𝑡 > 0} is bounded in 𝑋𝐵 (𝜔𝑏 > 0). Assume, further, that
𝑐(𝑡) is completely positive and there exists a function 𝑓𝑎 ∈ 𝐿𝑇𝑜𝑟 − 𝑌𝒜 satisfying̃︀𝑓𝑎(𝜆) = 1

𝜆𝑐(𝜆)
̃︀𝑓𝑏(︁ 1

𝑐(𝜆)

)︁
, 𝜆 > 𝜔0, ̃︀𝑓𝑏(︁ 1

𝑐(𝜆)

)︁
̸= 0, for some 𝜔0 > 0.

Let
𝜔𝑎 = 𝑐−1

(︁ 1

𝜔𝑏

)︁
if
∫︁ ∞

0

𝑐(𝑡)𝑑𝑡 >
1

𝜔𝑏
, 𝜔𝑎 = 0 otherwise.

Then, for every 𝑟 ∈ (0, 1], there exists a solution 𝑢(𝑡) := 𝑢𝑎,𝑟(𝑡) of (262), with 𝜏 =
∞, 𝑎(𝑡) and ℱ = 𝑓𝑟 := 𝑔𝑟*𝑓𝑎, satisfying that 𝑢𝑎,𝑟 ∈ 𝐿𝑇𝑜𝑟−𝑋𝐵, 𝐵𝑢𝑎,𝑟 ∈ 𝐿𝑇𝑜𝑟−𝑌𝒜,
𝑎 *𝑢𝑎,𝑟 ∈ 𝐿𝑇𝑜𝑟 −𝑋𝒜 and the set {𝑒−𝜔𝑎𝑡𝑢𝑎,𝑟(𝑡) : 𝑡 > 0} is bounded in 𝑋𝐵, if 𝜔𝑏 = 0
or 𝜔𝑏𝑐(0) ̸= 1, resp., the set {𝑒−𝜀𝑡𝑢𝑎,𝑟(𝑡) : 𝑡 > 0} is bounded in 𝑋𝐵 for any 𝜀 > 0,
if 𝜔𝑏 > 0 and 𝜔𝑏𝑐(0) = 1. Furthermore, the function 𝑡 ↦→ 𝑢𝑎,𝑟(𝑡) ∈ 𝑋𝐵, 𝑡 > 0 is
locally Hölder continuous with the exponent 𝑟 ∈ (0, 1].

Remark 3.1.10. (i) In Theorem 3.1.8 and Theorem 3.1.9, we have only
proved the existence of a solution of the subordinated inclusion. The
uniqueness of solutions can be proved, for example, by using Theorem
3.1.5, Theorem 3.1.6 or Theorem 2.3.6.
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(ii) In Theorem 3.1.9, we have faced ourselves with a loss of regularity for
solutions of the subordinated problem. Even in the case that 𝑋 = 𝑌 and
𝐵 = 𝐼, it is not so simple to prove the existence of a solution of problem
(262), with 𝜏 = ∞, 𝑎(𝑡) and ℱ = 𝑓𝑎, without imposing some additional
unfavorable conditions. In the next section, we will introduce various
types of solution operator families for the abstract Volterra inclusion (262)
and there we will reconsider the problem of loss of regularity for solutions
of subordinated problem once more (cf. Theorem 3.2.7).

3.2. Multivalued linear operators as subgenerators of various types of
(𝑎, 𝑘)-regularized 𝐶-resolvent operator families

In [292, Section 2.8], the class of (𝑎, 𝑘)-regularized (𝐶1, 𝐶2)-existence and
uniqueness families has been introduced and analyzed within the theory of abstract
non-degenerate Volterra equations. The main aim of this section is to consider
multivalued linear operators in locally convex spaces as subgenerators of (𝑎, 𝑘)-
regularized (𝐶1, 𝐶2)-existence and uniqueness families, as well as to consider in
more detail the class of (𝑎, 𝑘)-regularized 𝐶-resolvent families. Unless specified
otherwise, we assume that 0 < 𝜏 6∞, 𝑘 ∈ 𝐶([0, 𝜏)), 𝑘 ̸= 0, 𝑎 ∈ 𝐿1

𝑙𝑜𝑐([0, 𝜏)), 𝑎 ̸= 0,
𝒜 : 𝑋 → 𝑃 (𝑋) is an MLO, 𝐶1 ∈ 𝐿(𝑌,𝑋), 𝐶2 ∈ 𝐿(𝑋) is injective, 𝐶 ∈ 𝐿(𝑋) is
injective and 𝐶𝒜 ⊆ 𝒜𝐶. The following definition is an extension of [292, Definition
2.8.2] (𝑋 = 𝑌 , 𝐴 is a closed single-valued linear operator on𝑋) and [482, Definition
3.5] (𝑋 = 𝑌 , 𝐶 = 𝐶1, 𝑎(𝑡) = 𝑘(𝑡) = 1).

Definition 3.2.1. Suppose 0 < 𝜏 6 ∞, 𝑘 ∈ 𝐶([0, 𝜏)), 𝑘 ̸= 0, 𝑎 ∈ 𝐿1
𝑙𝑜𝑐([0, 𝜏)),

𝑎 ̸= 0, 𝒜 : 𝑋 → 𝑃 (𝑋) is an MLO, 𝐶1 ∈ 𝐿(𝑌,𝑋), and 𝐶2 ∈ 𝐿(𝑋) is injective.
(i) Then it is said that 𝒜 is a subgenerator of a (local, if 𝜏 <∞) mild (𝑎, 𝑘)-

regularized (𝐶1, 𝐶2)-existence and uniqueness family (𝑅1(𝑡), 𝑅2(𝑡))𝑡∈[0,𝜏)

⊆ 𝐿(𝑌,𝑋) × 𝐿(𝑋) iff the mappings 𝑡 ↦→ 𝑅1(𝑡)𝑦, 𝑡 > 0 and 𝑡 ↦→ 𝑅2(𝑡)𝑥,
𝑡 ∈ [0, 𝜏) are continuous for every fixed 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , as well as the
following conditions hold:

(272)
(︂∫︁ 𝑡

0

𝑎(𝑡− 𝑠)𝑅1(𝑠)𝑦 𝑑𝑠,𝑅1(𝑡)𝑦 − 𝑘(𝑡)𝐶1𝑦

)︂
∈ 𝒜, 𝑡 ∈ [0, 𝜏), 𝑦 ∈ 𝑌 and

(273)
∫︁ 𝑡

0

𝑎(𝑡−𝑠)𝑅2(𝑠)𝑦 𝑑𝑠 = 𝑅2(𝑡)𝑥−𝑘(𝑡)𝐶2𝑥, whenever 𝑡 ∈ [0, 𝜏) and (𝑥, 𝑦) ∈ 𝒜.

(ii) Let (𝑅1(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑌,𝑋) be strongly continuous. Then it is said that 𝒜
is a subgenerator of a (local, if 𝜏 <∞) mild (𝑎, 𝑘)-regularized 𝐶1-existence
family (𝑅1(𝑡))𝑡∈[0,𝜏) iff (272) holds.

(iii) Let (𝑅2(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑋) be strongly continuous. Then it is said that 𝒜 is
a subgenerator of a (local, if 𝜏 <∞) mild (𝑎, 𝑘)-regularized 𝐶2-uniqueness
family (𝑅2(𝑡))𝑡∈[0,𝜏) iff (273) holds.

As an immediate consequence of definition, we have that 𝑅(𝑅1(0)− 𝑘(0)𝐶1) ⊆
𝒜0. Furthermore, if 𝑎(𝑡) is a kernel on [0, 𝜏), then 𝑅2(𝑡)𝒜 is single-valued for any
𝑡 ∈ [0, 𝜏) and 𝑅2(𝑡)𝑦 = 0 for any 𝑦 ∈ 𝒜0 and 𝑡 ∈ [0, 𝜏). Now we will extend
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the definition of an (𝑎, 𝑘)-regularized 𝐶-resolvent family subgenerated by a single-
valued linear operator (cf. [292, Definition 2.1.1]).

Definition 3.2.2. Suppose that 0 < 𝜏 6 ∞, 𝑘 ∈ 𝐶([0, 𝜏)), 𝑘 ̸= 0, 𝑎 ∈
𝐿1
𝑙𝑜𝑐([0, 𝜏)), 𝑎 ̸= 0, 𝒜 : 𝑋 → 𝑃 (𝑋) is an MLO, 𝐶 ∈ 𝐿(𝑋) is injective and 𝐶𝒜 ⊆ 𝒜𝐶.

Then it is said that a strongly continuous operator family (𝑅(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑋) is an
(𝑎, 𝑘)-regularized 𝐶-resolvent family with a subgenerator 𝒜 iff (𝑅(𝑡))𝑡∈[0,𝜏) is a mild
(𝑎, 𝑘)-regularized 𝐶-uniqueness family having 𝒜 as subgenerator, 𝑅(𝑡)𝐶 = 𝐶𝑅(𝑡)
and 𝑅(𝑡)𝒜 ⊆ 𝒜𝑅(𝑡) (𝑡 ∈ [0, 𝜏)).

An (𝑎, 𝑘)-regularized 𝐶-resolvent family (𝑅(𝑡))𝑡∈[0,𝜏) is said to be locally
equicontinuous iff, for every 𝑡 ∈ (0, 𝜏), the family {𝑅(𝑠) : 𝑠 ∈ [0, 𝑡]} is equicon-
tinuous. In the case 𝜏 = ∞, (𝑅(𝑡))𝑡>0 is said to be exponentially equicontinuous
(equicontinuous) if there exists 𝜔 ∈ R (𝜔 = 0) such that the family {𝑒−𝜔𝑡𝑅(𝑡) :
𝑡 > 0} is equicontinuous; the infimum of such numbers is said to be the expo-
nential type of (𝑅(𝑡))𝑡>0. The above notion can be simply understood for the
classes of mild (𝑎, 𝑘)-regularized 𝐶1-existence families and mild (𝑎, 𝑘)-regularized
𝐶2-uniqueness families; a mild (𝑎, 𝑘)-regularized (𝐶1, 𝐶2)-existence and uniqueness
family (𝑅1(𝑡), 𝑅2(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑌,𝑋) × 𝐿(𝑋) is said to be locally equicontinuous
(exponentially equicontinuous, provided that 𝜏 = ∞) iff both operator families
(𝑅1(𝑡))𝑡>0 and (𝑅2(𝑡))𝑡>0 are. It would take too long to consider the notion of
𝑞-exponential equicontinuity for the classes of mild (𝑎, 𝑘)-regularized 𝐶1-existence
families and mild (𝑎, 𝑘)-regularized 𝐶2-uniqueness families (cf. [292, Section 2.4] for
more details about non-degenerate case). If 𝑘(𝑡) = 𝑔𝛼+1(𝑡), where 𝛼 > 0, then it is
also said that (𝑅(𝑡))𝑡∈[0,𝜏) is an 𝛼-times integrated (𝑎,𝐶)-resolvent family; 0-times
integrated (𝑎,𝐶)-resolvent family is further abbreviated to (𝑎,𝐶)-resolvent family.
We will accept a similar terminology for the classes of mild (𝑎, 𝑘)-regularized 𝐶1-
existence families and mild (𝑎, 𝑘)-regularized 𝐶2-uniqueness families; in the case
of consideration of convoluted 𝐶-semigroups, it will be always assumed that the
condition (272) holds with 𝑎(𝑡) = 1 and the operator 𝐶1 replaced by 𝐶. Let us
mention in passing that the operator semigroups generated by multivalued linear
operators have been analyzed by A. G. Baskakov in [57].

The following proposition can be simply proved with the help of Theorem 1.2.3
and Theorem 1.1.4(ii).

Proposition 3.2.3. Suppose that (𝑅1(𝑡), 𝑅2(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑌,𝑋) × 𝐿(𝑋) is a
mild (𝑎, 𝑘)-regularized (𝐶1, 𝐶2)-existence and uniqueness family with a subgenera-
tor 𝒜 and (𝑅(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑋) is an (𝑎, 𝑘)-regularized 𝐶-resolvent family with a
subgenerator 𝒜. Let 𝑏 ∈ 𝐿1

𝑙𝑜𝑐([0, 𝜏)) be such that 𝑎* 𝑏 ̸= 0 in 𝐿1([0, 𝜏)) and 𝑘 * 𝑏 ̸= 0
in 𝐶([0, 𝜏)). Then ((𝑏 * 𝑅2)(𝑡))𝑡>0 is a mild (𝑎, 𝑘 * 𝑏)-regularized 𝐶2-uniqueness
family with a subgenerator 𝒜. Furthermore, the following holds:

(i) Let 𝒜 be 𝑋1
𝒜 × 𝑋2

𝒜-closed. Suppose that, for every 𝑦 ∈ 𝑌 , the mapping
𝑡 ↦→ (𝑎 * 𝑅1)(𝑡)𝑦, 𝑡 ∈ [0, 𝜏) is continuous in 𝑋1

𝒜 and the mapping 𝑡 ↦→
𝑅1(𝑡)𝑦, 𝑡 ∈ [0, 𝜏) is continuous in 𝑋2

𝒜. Then ((𝑏 * 𝑅1)(𝑡))𝑡>0 is a mild
(𝑎, 𝑘 * 𝑏)-regularized 𝐶1-existence family with a subgenerator 𝒜.
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(ii) Let 𝒜 be 𝑋1
𝒜 × 𝑋2

𝒜-closed. Suppose that, for every 𝑥 ∈ 𝐷(𝒜) and 𝑦 ∈
𝑅(𝒜), the mapping 𝑡 ↦→ 𝑅(𝑡)𝑥, 𝑡 ∈ [0, 𝜏) is continuous in 𝑋1

𝒜 and the
mapping 𝑡 ↦→ 𝑅(𝑡)𝑦, 𝑡 ∈ [0, 𝜏) is continuous in 𝑋2

𝒜. Then ((𝑏 * 𝑅)(𝑡))𝑡>0

is an (𝑎, 𝑘 * 𝑏)-regularized 𝐶-regularized family with a subgenerator 𝒜.

Although the parts (i) and (ii) of the above proposition have been stated for
𝑋1

𝒜 ×𝑋2
𝒜-closed subgenerators, the most important case in our further study will

be that in which 𝑋1
𝒜 = 𝑋2

𝒜 = 𝑋. This is primarily caused by the following fact:
Let 𝒜 be a subgenerator of a mild (𝑎, 𝑘)-regularized 𝐶1-existence family (mild
(𝑎, 𝑘)-regularized 𝐶2-uniqueness family; mild (𝑎, 𝑘)-regularized 𝐶-resolvent family)
(𝑅1(𝑡))𝑡∈[0,𝜏) ((𝑅2(𝑡))𝑡∈[0,𝜏); (𝑅(𝑡))𝑡∈[0,𝜏)). Then 𝒜 is likewise a subgenerator of
(𝑅1(𝑡))𝑡∈[0,𝜏) ((𝑅2(𝑡))𝑡∈[0,𝜏); (𝑅(𝑡))𝑡∈[0,𝜏), provided in addition that (𝑅2(𝑡))𝑡∈[0,𝜏);
(𝑅(𝑡))𝑡∈[0,𝜏) is locally equicontinuous).

Suppose that (𝑅1(𝑡), 𝑅2(𝑡))𝑡∈[0,𝜏) is a mild (𝑎, 𝑘)-regularized (𝐶1, 𝐶2)-existence
and uniqueness family with a subgenerator 𝒜. Arguing as in non-degenerate case
(cf. the paragraph directly preceding [292, Definition 2.8.3]), we may conclude that

(274) (𝑎 *𝑅2)(𝑠)𝑅1(𝑡)𝑦 −𝑅2(𝑠)(𝑎 *𝑅1)(𝑡)𝑦

= 𝑘(𝑡)(𝑎 *𝑅2)(𝑠)𝐶1𝑦 − 𝑘(𝑠)𝐶2(𝑎 *𝑅1)(𝑡)𝑦, 𝑡 ∈ [0, 𝜏), 𝑦 ∈ 𝑌.

The integral generator of a mild (𝑎, 𝑘)-regularized 𝐶2-uniqueness family
(𝑅2(𝑡))𝑡∈[0,𝜏) (mild (𝑎, 𝑘)-regularized (𝐶1, 𝐶2)-existence and uniqueness family
(𝑅1(𝑡), 𝑅2(𝑡))𝑡∈[0,𝜏)) is defined by

𝒜𝑖𝑛𝑡 :=

{︂
(𝑥, 𝑦) ∈ 𝑋 ×𝑋 : 𝑅2(𝑡)𝑥− 𝑘(𝑡)𝐶2𝑥 =

∫︁ 𝑡

0

𝑎(𝑡− 𝑠)𝑅2(𝑠)𝑦 𝑑𝑠, 𝑡 ∈ [0, 𝜏)

}︂
;

we define the integral generator of an (𝑎, 𝑘)-regularized 𝐶-regularized family
(𝑅(𝑡))𝑡∈[0,𝜏) in the same way as above. The integral generator 𝒜𝑖𝑛𝑡 is an MLO
in 𝑋 which is, in fact, the maximal subgenerator of (𝑅2(𝑡))𝑡∈[0,𝜏) ((𝑅(𝑡))𝑡∈[0,𝜏))
with respect to the set inclusion; furthermore, the assumption 𝑅2(𝑡)𝐶2 = 𝐶2𝑅2(𝑡),
𝑡 ∈ [0, 𝜏) implies that 𝐶−1

2 𝒜𝑖𝑛𝑡𝐶2 = 𝒜𝑖𝑛𝑡 so that 𝐶−1𝒜𝑖𝑛𝑡𝐶 = 𝒜𝑖𝑛𝑡 for resolvent
families. The local equicontinuity of (𝑅2(𝑡))𝑡∈[0,𝜏) ((𝑅(𝑡))𝑡∈[0,𝜏)) immediately im-
plies that 𝒜𝑖𝑛𝑡 is closed. Observe that, in the above definition of integral generator,
we do not require that the function 𝑎(𝑡) is a kernel on [0, 𝜏), as in non-degenerate
case. In the case of resolvent families, the following holds:

(i) Suppose that (𝑅(𝑡))𝑡∈[0,𝜏) is locally equicontinuous and 𝒜 is a closed sub-
generator of (𝑅(𝑡))𝑡∈[0,𝜏). Then

(275)
(︂∫︁ 𝑡

0

𝑎(𝑡− 𝑠)𝑅(𝑠)𝑥 𝑑𝑠,𝑅(𝑡)𝑥− 𝑘(𝑡)𝐶𝑥

)︂
∈ 𝒜, 𝑡 ∈ [0, 𝜏), 𝑥 ∈ 𝐷(𝒜).

(ii) If 𝒜 is a subgenerator of (𝑅(𝑡))𝑡∈[0,𝜏), then 𝐶−1𝒜𝐶 is a subgenerator of
(𝑅(𝑡))𝑡∈[0,𝜏), too.

(iii) Suppose that 𝑎(𝑡) is a kernel on [0, 𝜏), 𝒜 and ℬ are two subgenerators of
(𝑅(𝑡))𝑡∈[0,𝜏), and 𝑥 ∈ 𝐷(𝒜) ∩𝐷(ℬ). Then 𝑅(𝑡)(𝑦 − 𝑧) = 0, 𝑡 ∈ [0, 𝜏) for
each 𝑦 ∈ 𝒜𝑥 and 𝑧 ∈ ℬ𝑥.
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(iv) Let 𝒜 be a subgenerator of (𝑅(𝑡))𝑡∈[0,𝜏), and let 𝜆 ∈ 𝜌𝐶(𝒜) (𝜆 ∈ 𝜌(𝒜)).
Suppose that 𝑥 ∈ 𝑋, 𝑦 = (𝜆−𝒜)−1𝐶𝑥 (𝑦 = (𝜆−𝒜)−1𝑥) and 𝑧 ∈ 𝒜𝑦. Then
Theorem 1.2.4(i) implies that 𝜆(𝜆−𝒜)−1𝐶𝑥−𝐶𝑥 ∈ 𝒜(𝜆−𝒜)−1𝐶𝑥 = 𝒜𝑦
(𝜆(𝜆 − 𝒜)−1𝑥 − 𝑥 ∈ 𝒜(𝜆 − 𝒜)−1𝑥 = 𝒜𝑦), so that 𝑅(𝑡)𝑦 − 𝑘(𝑡)𝐶𝑦 ∈
𝒜
∫︀ 𝑡

0
𝑎(𝑡 − 𝑠)𝑅(𝑠)[𝜆(𝜆 − 𝒜)−1𝐶𝑥 − 𝐶𝑥]𝑑𝑠 = 𝒜{𝜆(𝜆 − 𝒜)−1𝐶

∫︀ 𝑡

0
𝑎(𝑡 −

𝑠)𝑅(𝑠)𝑥 𝑑𝑠−
∫︀ 𝑡

0
𝑎(𝑡− 𝑠)𝑅(𝑠)𝐶𝑥𝑑𝑠}, 𝑡 ∈ [0, 𝜏) and

∫︀ 𝑡

0
𝑎(𝑡− 𝑠)𝑅(𝑠)𝐶𝑥𝑑𝑠 ∈

𝐷(𝒜), 𝑡 ∈ [0, 𝜏); from this, we may conclude that 𝑅(𝑡)𝐶𝑥 − 𝑘(𝑡)𝐶2𝑥 ∈
(𝜆 − 𝒜)𝒜(𝜆 − 𝒜)−1𝐶

∫︀ 𝑡

0
𝑎(𝑡 − 𝑠)𝑅(𝑠)𝑥 𝑑𝑠, 𝑡 ∈ [0, 𝜏); similarly, we have

that
∫︀ 𝑡

0
𝑎(𝑡 − 𝑠)𝑅(𝑠)𝑥 𝑑𝑠 ∈ 𝐷(𝒜) and 𝑅(𝑡)𝑥 − 𝑘(𝑡)𝐶𝑥 ∈ (𝜆 − 𝒜)𝒜(𝜆 −

𝒜)−1
∫︀ 𝑡

0
𝑎(𝑡− 𝑠)𝑅(𝑠)𝑥 𝑑𝑠, 𝑡 ∈ [0, 𝜏), provided that 𝜆 ∈ 𝜌(𝒜).

The following extensions of [292, Theorem 2.8.5, Theorem 2.1.5] are stated
without proofs.

Theorem 3.2.4. Suppose 𝒜 is a closed MLO in 𝑋, 𝐶1 ∈ 𝐿(𝑌,𝑋), 𝐶2 ∈ 𝐿(𝑋),
𝐶2 is injective, 𝜔0 > 0 and 𝜔 > max(𝜔0, abs(|𝑎|), abs(𝑘)).

(i) Let (𝑅1(𝑡), 𝑅2(𝑡))𝑡>0 ⊆ 𝐿(𝑌,𝑋) × 𝐿(𝑋) be strongly continuous, and let
the family {𝑒−𝜔𝑡𝑅𝑖(𝑡) : 𝑡 > 0} be equicontinuous for 𝑖 = 1, 2.
(a) Suppose (𝑅1(𝑡), 𝑅2(𝑡))𝑡>0 is a mild (𝑎, 𝑘)-regularized (𝐶1, 𝐶2)-exis-

tence and uniqueness family with a subgenerator 𝒜. Then, for every
𝜆 ∈ C with Re𝜆 > 𝜔 and �̃�(𝜆)𝑘(𝜆) ̸= 0, the operator 𝐼 − �̃�(𝜆)𝒜 is
injective, 𝑅(𝐶1) ⊆ R(𝐼 − �̃�(𝜆)𝒜),

(276) 𝑘(𝜆)(𝐼 − �̃�(𝜆)𝒜)−1𝐶1𝑦 =

∫︁ ∞

0

𝑒−𝜆𝑡𝑅1(𝑡)𝑦 𝑑𝑡, 𝑦 ∈ 𝑌,

(277)
{︁ 1

�̃�(𝑧)
: Re 𝑧 > 𝜔, 𝑘(𝑧)�̃�(𝑧) ̸= 0

}︁
⊆ 𝜌𝐶1

(𝒜)

and

(278) 𝑘(𝜆)𝐶2𝑥 =

∫︁ ∞

0

𝑒−𝜆𝑡[𝑅2(𝑡)𝑥− (𝑎 *𝑅2)(𝑡)𝑦]𝑑𝑡, whenever (𝑥, 𝑦) ∈ 𝒜.

Here, 𝜌𝐶1(𝒜) is defined in the obvious way.
(b) Let (277) hold, and let (276) and (278) hold for any 𝜆 ∈ C with

Re𝜆 > 𝜔 and �̃�(𝜆)𝑘(𝜆) ̸= 0. Then (𝑅1(𝑡), 𝑅2(𝑡))𝑡>0 is a mild (𝑎, 𝑘)-
regularized (𝐶1, 𝐶2)-existence and uniqueness family with a subgen-
erator 𝒜.

(ii) Let (𝑅1(𝑡))𝑡>0 be strongly continuous, and let the family {𝑒−𝜔𝑡𝑅1(𝑡) : 𝑡 >
0} be equicontinuous. Then (𝑅1(𝑡))𝑡>0 is a mild (𝑎, 𝑘)-regularized 𝐶1-
existence family with a subgenerator 𝒜 iff for every 𝜆 ∈ C with Re𝜆 > 𝜔
and �̃�(𝜆)𝑘(𝜆) ̸= 0, one has 𝑅(𝐶1) ⊆ 𝑅(𝐼 − �̃�(𝜆)𝒜) and

𝑘(𝜆)𝐶1𝑦 ∈ (𝐼 − �̃�(𝜆)𝒜)

∫︁ ∞

0

𝑒−𝜆𝑡𝑅1(𝑡)𝑦 𝑑𝑡, 𝑦 ∈ 𝑌.
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(iii) Let (𝑅2(𝑡))𝑡>0 be strongly continuous, and let the family {𝑒−𝜔𝑡𝑅2(𝑡) :
𝑡 > 0} be equicontinuous. Then (𝑅2(𝑡))𝑡>0 is a mild (𝑎, 𝑘)-regularized 𝐶2-
uniqueness family with a subgenerator 𝒜 iff for every 𝜆 ∈ C with Re𝜆 > 𝜔
and �̃�(𝜆)𝑘(𝜆) ̸= 0, the operator 𝐼 − �̃�(𝜆)𝒜 is injective and (278) holds.

Theorem 3.2.5. Let (𝑅(𝑡))𝑡>0 ⊆ 𝐿(𝑋) be a strongly continuous operator fam-
ily such that there exists 𝜔 > 0 satisfying that the family {𝑒−𝜔𝑡𝑅(𝑡) : 𝑡 > 0} is
equicontinuous, and let 𝜔0 > max(𝜔, abs(|𝑎|), abs(𝑘)). Suppose that 𝒜 is a closed
MLO in 𝑋 and 𝐶𝒜 ⊆ 𝒜𝐶.

(i) Assume that 𝒜 is a subgenerator of the global (𝑎, 𝑘)-regularized 𝐶-resolvent
family (𝑅(𝑡))𝑡>0 satisfying (272) for all 𝑥 = 𝑦 ∈ 𝑋. Then, for every 𝜆 ∈ C
with Re𝜆 > 𝜔0 and �̃�(𝜆)𝑘(𝜆) ̸= 0, the operator 𝐼 − �̃�(𝜆)𝒜 is injective,
R(𝐶) ⊆ R(𝐼 − �̃�(𝜆)𝒜), as well as

(279) 𝑘(𝜆)(𝐼−�̃�(𝜆)𝒜)−1𝐶𝑥 =

∫︁ ∞

0

𝑒−𝜆𝑡𝑅(𝑡)𝑥 𝑑𝑡, 𝑥 ∈ 𝑋, Re𝜆 > 𝜔0, �̃�(𝜆)𝑘(𝜆) ̸= 0,

(280)
{︁ 1

�̃�(𝜆)
: Re𝜆 > 𝜔0, 𝑘(𝜆)�̃�(𝜆) ̸= 0

}︁
⊆ 𝜌𝐶(𝒜)

and 𝑅(𝑠)𝑅(𝑡) = 𝑅(𝑡)𝑅(𝑠), 𝑡, 𝑠 > 0.
(ii) Assume (279)–(280). Then 𝒜 is a subgenerator of the global (𝑎, 𝑘)-regular-

ized 𝐶-resolvent family (𝑅(𝑡))𝑡>0 satisfying (272) for all 𝑥 = 𝑦 ∈ 𝑋 and
𝑅(𝑠)𝑅(𝑡) = 𝑅(𝑡)𝑅(𝑠), 𝑡, 𝑠 > 0.

Before proceeding further, we would like to observe that the proof of [27, Propo-
sition 4.1.3] implies that, for every strongly continuous, exponentially equicontinu-
ous operator family (𝑆(𝑡))𝑡>0 ⊆ 𝐿(𝐸), the following Abel ergodicity property

lim
𝜆→+∞

𝜆

∫︁ ∞

0

𝑒−𝜆𝑡𝑆(𝑡)𝑥 𝑑𝑡 = 𝑆(0)𝑥, 𝑥 ∈ 𝐸

holds true.

Remark 3.2.6. (i) Suppose that (𝑅(𝑡))𝑡>0 is a degenerate exponentially
equicontinuous (𝑎, 𝑘)-regularized 𝐶-resolvent family in the sense of [306,
Definition 2.2], and 𝐵 ∈ 𝐿(𝑋). Using Remark 1.2.1(iv)/(a), Remark
3.1.2(iv) and Theorem 3.2.5(ii), it can be easily seen that (𝑅(𝑡))𝑡>0 is an
exponentially equicontinuous (𝑎, 𝑘)-regularized 𝐶-resolvent family with a
closed subgenerator 𝐵−1𝐴.

(ii) Suppose that 𝑛 ∈ N, 𝑋 and 𝑌 are Banach spaces, 𝐴 : 𝐷(𝐴) ⊆ 𝑋 → 𝑌 is
closed, 𝐵 ∈ 𝐿(𝑋,𝑌 ) and (𝑉 (𝑡))𝑡>0 ⊆ 𝐿(𝑋) is a degenerate exponentially
bounded 𝑛-times integrated semigroup generated by linear operators 𝐴,
𝐵, in the sense of [424, Definition 1.5.3]. Then the arguments mentioned
above show that (𝑉 (𝑡))𝑡>0 is an exponentially bounded 𝑛-times integrated
(𝑔1, 𝐼)-regularized family (semigroup) with a closed subgenerator 𝐵−1𝐴.
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(iii) Let 𝑛 ∈ N0. Due to Theorem 3.2.5(ii), the notion of an exponentially
bounded (𝑎, 𝑘)-regularized 𝐶-resolvent family extends the notion of a de-
generate exponentially bounded 𝑛-times integrated semigroup generated
by an MLO, introduced in [424, Definition 1.6.6, Definition 1.6.8].

(iv) Suppose that (𝑅(𝑡))𝑡>0 ⊆ 𝐿(𝑋, [𝐷(𝐵)]) is an exponentially equicontinu-
ous (𝑎, 𝑘)-regularized 𝐶-resolvent family generated by 𝐴, 𝐵, in the sense
of [307, Definition 2.5]. Then [307, Theorem 2.3(i)] in combination with
Remark 3.1.2(v) and Theorem 3.2.5(ii) implies that (𝐵𝑅(𝑡))𝑡>0 is an ex-
ponentially equicontinuous (𝑎, 𝑘)-regularized 𝐶-resolvent family generated
by 𝐵−1𝐴 (recall that 𝐵−1𝐴 is closed provided that 𝐶 = 𝐼).

The proof of following extension of [292, Theorem 2.1.8(i), Theorem 2.8.7(i)]
is standard and therefore omitted; we can similarly reformulate Theorem 3.1.8 and
[292, Proposition 2.1.16] for the class of mild (𝑎, 𝑘)-regularized (𝐶1, 𝐶2)-existence
and uniqueness families ((𝑎, 𝑘)-regularized 𝐶-resolvent families). Here it is only
worth noting that the existence of a mild (𝑎, 𝑘1)-regularized 𝐶1-existence family
(𝑅0,1(𝑡))𝑡>0 in the second part of theorem is not automatically guaranteed by the
denseness of 𝒜 (even in the case that the operator 𝒜 = 𝐴 is single-valued, it seems
that the condition 𝐶1𝐴 ⊆ 𝐴𝐶1 is indispensable for such a mild existence family to
exist).

Theorem 3.2.7. Suppose 𝐶1 ∈ 𝐿(𝑌,𝑋), 𝐶2 ∈ 𝐿(𝑋) is injective, 𝒜 is a closed
MLO in 𝑋, 𝐶 ∈ 𝐿(𝑋) is injective and 𝐶𝒜 ⊆ 𝒜𝐶. Let 𝑏(𝑡) and 𝑐(𝑡) satisfy (P1),
let
∫︀∞
0
𝑒−𝛽𝑡|𝑏(𝑡)|𝑑𝑡 <∞ for some 𝛽 > 0, and let

𝛼 = 𝑐−1
(︁ 1
𝛽

)︁
if
∫︁ ∞

0

𝑐(𝑡)𝑑𝑡 >
1

𝛽
, 𝛼 = 0 otherwise.

Suppose that abs(|𝑎|) < ∞ and �̃�(𝜆) = �̃�( 1
𝑐(𝜆) ), 𝜆 > 𝛼. Let 𝒜 be a subgenerator of

a (𝑏, 𝑘)-regularized 𝐶1-existence family (𝑅1(𝑡))𝑡>0 ((𝑏, 𝑘)-regularized 𝐶2-uniqueness
family (𝑅2(𝑡))𝑡>0; (𝑏, 𝑘)-regularized 𝐶-resolvent family (𝑅0(𝑡))𝑡>0 with the property
that (272) holds for 𝑅1(·) replaced with 𝑅0(·) and each 𝑥 = 𝑦 ∈ 𝑋) satisfying that
the family {𝑒−𝜔𝑏𝑡𝑅1(𝑡) : 𝑡 > 0} ({𝑒−𝜔𝑏𝑡𝑅2(𝑡) : 𝑡 > 0}; {𝑒−𝜔𝑏𝑡𝑅(𝑡) : 𝑡 > 0}) is
equicontinuous for some 𝜔𝑏 > 0. Assume, further, that 𝑐(𝑡) is completely positive
and there exists a scalar-valued continuous kernel 𝑘1(𝑡) satisfying (P1) and

̃︀𝑘1(𝜆) = 1

𝜆𝑐(𝜆)
𝑘
(︁ 1

𝑐(𝜆)

)︁
, 𝜆 > 𝜔0, 𝑘

(︁ 1

𝑐(𝜆)

)︁
̸= 0, for some 𝜔0 > 0.

Let

𝜔𝑎 = 𝑐−1
(︁ 1

𝜔𝑏

)︁
if
∫︁ ∞

0

𝑐(𝑡)𝑑𝑡 >
1

𝜔𝑏
, 𝜔𝑎 = 0 otherwise.

Then, for every 𝑟 ∈ (0, 1], 𝒜 is a subgenerator of a global (𝑎, 𝑘1 *𝑔𝑟)-regularized 𝐶1-
existence family (𝑅𝑟,1(𝑡))𝑡>0 ((𝑎, 𝑘1 * 𝑔𝑟)-regularized 𝐶2-uniqueness family
(𝑅𝑟,2(𝑡))𝑡>0; (𝑎, 𝑘1 * 𝑔𝑟)-regularized 𝐶-resolvent family (𝑅𝑟,0(𝑡))𝑡>0 with the prop-
erty that (272) holds for 𝑅1(·) replaced with 𝑅𝑟,0(·) and each 𝑥 = 𝑦 ∈ 𝑋) such
that the family {𝑒−𝜔𝑎𝑡𝑅𝑟,𝑖(𝑡) : 𝑡 > 0} is equicontinuous and that the mapping
𝑡 ↦→ 𝑅𝑟,𝑖(𝑡), 𝑡 > 0 is locally Hölder continuous with exponent 𝑟, if 𝜔𝑏 = 0 or
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𝜔𝑏𝑐(0) ̸= 1 (𝑖 = 0, 1, 2), resp., for every 𝜀 > 0, there exists 𝑀𝜀 > 1 such that the
family {𝑒−𝜀𝑡𝑅𝑟,𝑖(𝑡) : 𝑡 > 0} is equicontinuous and that the mapping 𝑡 ↦→ 𝑅𝑟,𝑖(𝑡),
𝑡 > 0 is locally Hölder continuous with exponent 𝑟, if 𝜔𝑏 > 0 and 𝜔𝑏𝑐(0) = 1
(𝑖 = 0, 1, 2). Furthermore, if 𝒜 is densely defined, then 𝒜 is a subgenerator of a
global (𝑎, 𝑘1)-regularized 𝐶2-uniqueness family (𝑅0,2(𝑡))𝑡>0 ((𝑎, 𝑘1)-regularized 𝐶-
resolvent family (𝑅0,0(𝑡))𝑡>0 with the property that (272) holds for 𝑅1(·) replaced
with 𝑅0,0(·) and each 𝑥 = 𝑦 ∈ 𝑋) such that the family {𝑒−𝜔𝑎𝑡𝑅𝑖(𝑡) : 𝑡 > 0} is
equicontinuous, resp., for every 𝜀 > 0, the family {𝑒−𝜀𝑡𝑅𝑖(𝑡) : 𝑡 > 0} is equicontin-
uous (𝑖 = 1, 2).

Let (𝑅1(𝑡), 𝑅2(𝑡))𝑡∈[0,𝜏) be a mild (𝑎, 𝑘)-regularized (𝐶1, 𝐶2)-existence and
uniqueness family with a subgenerator 𝒜. Then it is not complicated to see that the
function 𝑡 ↦→ 𝑅1(𝑡)𝑦, 𝑡 ∈ [0, 𝜏) (𝑦 ∈ 𝑌 ), resp. 𝑡 ↦→ 𝑅2(𝑡)𝑥, 𝑡 ∈ [0, 𝜏) (𝑥 ∈ 𝐷(𝒜)), is a
solution of problem (262) with ℬ = 𝐼 and 𝑓(𝑡) = 𝑘(𝑡)𝐶1𝑦, 𝑡 ∈ [0, 𝜏), resp. a strong
solution of (262) with ℬ = 𝐼 and 𝑓(𝑡) = 𝑘(𝑡)𝐶2𝑥, 𝑡 ∈ [0, 𝜏), provided additionally
in the last case that 𝑅2(𝑡)𝑥 ∈ 𝐷(𝒜), 𝑡 ∈ [0, 𝜏) and 𝑅2(𝑡)𝒜𝑥 ⊆ 𝒜𝑅2(𝑡)𝑥, 𝑡 ∈ [0, 𝜏).
Furthermore, it is very simple to transmit the assertions of [292, Proposition 2.8.8,
Proposition 2.8.9] to mild (𝑎, 𝑘)-regularized (𝐶1, 𝐶2)-existence and uniqueness fam-
ilies subgenerated by multivalued linear operators:

Proposition 3.2.8. (i) Suppose that (𝑅1(𝑡), 𝑅2(𝑡))𝑡∈[0,𝜏) is a mild (𝑎, 𝑘)-
regularized (𝐶1, 𝐶2)-existence and uniqueness family with a subgenerator
𝒜, as well as that (𝑅2(𝑡))𝑡∈[0,𝜏) is locally equicontinuous and the functions
𝑎(𝑡) and 𝑘(𝑡) are kernels on [0, 𝜏). Then 𝐶2𝑅1(𝑡) = 𝑅2(𝑡)𝐶1, 𝑡 ∈ [0, 𝜏).

(ii) Suppose that (𝑅2(𝑡))𝑡∈[0,𝜏) is a locally equicontinuous mild (𝑎, 𝑘)-regular-
ized 𝐶2-uniqueness family with a subgenerator 𝒜. Then every strong so-
lution 𝑢(𝑡) of (262) with ℬ = 𝐼 and ℱ = 𝑓 ∈ 𝐶([0, 𝜏) : 𝑋) satisfies

(281) (𝑅2 * 𝑓)(𝑡) = (𝑘𝐶2 * 𝑢)(𝑡), 0 6 𝑡 < 𝜏.

Furthermore, the problem (262) has at most one pre-solution provided,
in addition, that the functions 𝑎(𝑡) and 𝑘(𝑡) are kernels on [0, 𝜏) and the
function ℱ(𝑡) is single-valued.

The first part of following theorem is an extension of [292, Theorem 2.1.28(ii)]
and its validity can be verified with the help of proof of [395, Theorem 2.7], Lemma
1.2.2 and Theorem 1.2.3; the second part of theorem is an extension of [292, Propo-
sition 2.1.31] and can be shown by the arguments contained in the proof of [438,
Theorem 2.5], along with Lemma 1.2.2.

Theorem 3.2.9. (i) Suppose that (𝑅(𝑡))𝑡∈[0,𝜏) is a locally equicontinuous
(𝑎, 𝑘)-regularized 𝐶-resolvent family generated by 𝒜, the equation (272)
holds for each 𝑦 = 𝑥 ∈ 𝑋, with 𝑅1(·) and 𝐶1 replaced therein with 𝑅(·) and
𝐶, respectively, 𝑘(𝑡) is a kernel on [0, 𝜏), 𝑢, 𝑓 ∈ 𝐶([0, 𝜏) : 𝑋), and (281)
holds with 𝑅2(·) and 𝐶2 replaced therein with 𝑅(·) and 𝐶, respectively.
Then 𝑢(𝑡) is a solution of the abstract Volterra inclusion (262) with ℬ = 𝐼
and ℱ = 𝑓 .

(ii) Suppose that the functions 𝑎(𝑡) and 𝑘(𝑡) are kernels on [0, 𝜏), and 𝒜 is a
closed MLO in 𝑋. Consider the following assertions:
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(a) 𝒜 is a subgenerator of a locally equicontinuous (𝑎, 𝑘)-regularized 𝐶-
resolvent family (𝑅(𝑡))𝑡∈[0,𝜏) satisfying the equation (272) for each
𝑦 = 𝑥 ∈ 𝑋, with 𝑅1(·) and 𝐶1 replaced therein by 𝑅(·) and 𝐶,
respectively.

(b) For every 𝑥 ∈ 𝑋, there exists a unique solution of (262) with ℬ = 𝐼
and ℱ(𝑡) = 𝑓(𝑡) = 𝑘(𝑡)𝐶𝑥, 𝑡 ∈ [0, 𝜏).

Then (a) ⇒ (b). If, in addition, 𝑋 is a Fréchet space, then the above are
equivalent.

It is noteworthy that some additional conditions ensure the validity of implica-
tion (b) ⇒ (a) in complete locally convex spaces. We will explain this fact for the
problem (DFP)L, where after integration we have 𝑎(𝑡) = 𝑔𝛼(𝑡). Assume that there
exists a unique solution of problem (DFP)L with ℬ = 𝐼, ℱ(𝑡) ≡ 0, 𝑥0 ∈ 𝐶(𝐷(𝒜))
and 𝑥𝑗 = 0, 1 6 𝑗 6 ⌈𝛼⌉ − 1. If, in addition to this, 𝑋 is complete, 𝒜 is closed,
𝐶𝒜 ⊆ 𝒜𝐶 and for each seminorm 𝑝 ∈ ~ and 𝑇 > 0 there exist 𝑞 ∈ ~ and 𝑐 > 0
such that 𝑝(𝑢(𝑡;𝐶𝑥)) 6 𝑐𝑞(𝑥), 𝑥 ∈ 𝐷(𝒜), 𝑡 ∈ [0, 𝑇 ], then the arguments used
in non-degenerate case show that 𝒜 is a subgenerator of a locally equicontinuous
(𝑔𝛼, 𝐶)-resolvent family (𝑅𝛼(𝑡))𝑡>0. The proof of following complex characteriza-
tion theorem for (𝑎, 𝑘)-regularized 𝐶-resolvent families is left to the reader as an
easy exercise.

Theorem 3.2.10. Let 𝜔0 > max(0, abs(|𝑎|), abs(𝑘)), and let 𝒜 be a closed
MLO in 𝑋. Assume that, for every 𝜆 ∈ C with Re𝜆 > 𝜔0 and �̃�(𝜆)𝑘(𝜆) ̸= 0, the
operator 𝐼− �̃�(𝜆)𝒜 is injective and R(𝐶) ⊆ R(𝐼− �̃�(𝜆)𝒜). If there exists a function
ϒ: {𝜆 ∈ C : Re𝜆 > 𝜔0} → 𝐿(𝑋) which satisfies:

(i) ϒ(𝜆) = 𝑘(𝜆)(𝐼 − �̃�(𝜆)𝒜)−1𝐶, Re𝜆 > 𝜔0, �̃�(𝜆)𝑘(𝜆) ̸= 0,
(ii) the mapping 𝜆 ↦→ ϒ(𝜆)𝑥, Re𝜆 > 𝜔0 is analytic for every fixed 𝑥 ∈ 𝑋,
(iii) there exists 𝑟 > −1 such that the family {𝜆−𝑟ϒ(𝜆) : Re𝜆 > 𝜔0} ⊆ 𝐿(𝑋)

is equicontinuous,
then, for every 𝛼 > 1, 𝒜 is a subgenerator of a global (𝑎, 𝑘 * 𝑔𝛼+𝑟)-regularized 𝐶-
resolvent family (𝑅𝛼(𝑡))𝑡>0 which satisfies that the family {𝑒−𝜔0𝑡𝑅𝛼(𝑡) : 𝑡 > 0} ⊆
𝐿(𝑋) is equicontinuous. Furthermore, (𝑅𝛼(𝑡))𝑡>0 is a mild (𝑎, 𝑘 *𝑔𝛼+𝑟)-regularized
𝐶-existence family having 𝒜 as subgenerator.

In the first part of following example, we will briefly explain how one can use
multiplication operators for construction of local integrated semigroups generated
by multivalued operators; in the second part of example, we will apply the complex
characterization theorem for proving the existence of a very specific exponentially
equicontinuous, convoluted fractional resolvent family.

Example 3.2.11. (i) (cf. also [28, Example 4.4(c)]) Suppose that 1 6
𝑝 6 ∞, 𝑋 := 𝐿𝑝(1,∞), 1 < 𝑎 < 𝑏 < ∞, 𝐽 := [𝑎, 𝑏], 𝑚𝑏(𝑥) := 𝜒𝐽(𝑥)
and 𝑚𝑎(𝑥) := 𝑥 + 𝑖𝑒𝑥 (𝑥 > 1). Consider the multiplication operators
𝐴 : 𝐷(𝐴) → 𝑋 and 𝐵 ∈ 𝐿(𝑋), where𝐷(𝐴) := {𝑓(𝑥) ∈ 𝑋 : (𝑥+𝑖𝑒𝑥)𝑓(𝑥) ∈
𝑋}, 𝐴𝑓(𝑥) := (𝑥 + 𝑖𝑒𝑥)𝑓(𝑥) and 𝐵𝑓(𝑥) := 𝑚𝑏(𝑥)𝑓(𝑥) (𝑥 > 1, 𝑓 ∈ 𝑋).
Then it is very simple to prove that, for every 𝛼 ∈ (0, 1), the resolvent set
of the multivalued linear operator 𝒜 := 𝐵−1𝐴 contains the exponential
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region 𝐸(𝛼, 1) := {𝑥 + 𝑖𝑦 : 𝑥 > 1, |𝑦| 6 𝑒𝛼𝑥}, as well as that (𝜆 −
𝒜)−1𝑓(𝑥) = (𝜆𝐵 − 𝐴)−1𝐵𝑓(𝑥) = 𝑚𝑏(𝑥)𝑓(𝑥)/𝜆𝑚𝑏(𝑥) −𝑚𝑎(𝑥) for 𝑥 > 1,
𝑓 ∈ 𝑋. Furthermore, the operator 𝒜 generates a local once integrated
semigroup (𝑆1(𝑡))𝑡∈[0,1], given by

(𝑆1(𝑡)𝑓)(𝑥) =

{︃
(𝑥+ 𝑖𝑒𝑥)−1[𝑒𝑡(𝑥+𝑖𝑒𝑥) − 1]𝑓(𝑥), 𝑡 ∈ [0, 1], 𝑥 /∈ 𝐽, 𝑓 ∈ 𝑋,

0, 𝑡 ∈ [0, 1], 𝑥 ∈ 𝐽, 𝑓 ∈ 𝑋.

(ii) Put 𝑋 := {𝑓 ∈ 𝐶∞([0,∞)) : lim𝑥→+∞ 𝑓 (𝑘)(𝑥) = 0 for all 𝑘 ∈ N0} and
||𝑓 ||𝑘 :=

∑︀𝑘
𝑗=0 sup𝑥>0 |𝑓 (𝑗)(𝑥)|, 𝑓 ∈ 𝑋, 𝑘 ∈ N0. Then the topology

induced by these norms turns 𝑋 into a Fréchet space (cf. also [292,
Example 2.4.6(ii)]). Let 𝛼 ∈ (0, 1) and 𝐽 = [𝑎, 𝑏] ⊆ [0,∞) be such
that Σ𝛼𝜋/2 ∩ {𝑥 + 𝑖𝑒𝑥 : 𝑥 ∈ 𝐽} = ∅, and let 𝑚𝑏 ∈ 𝐶∞([0,∞)) satisfy
0 6 𝑚𝑏(𝑥) 6 1, 𝑥 > 0, 𝑚𝑏(𝑥) = 1, 𝑥 /∈ 𝐽 and 𝑚𝑏(𝑥) = 0, 𝑥 ∈ [𝑎+ 𝜀, 𝑏− 𝜀]
for some 𝜀 > 0. As in the first part of this example, we use the multipli-
cation operators 𝐴 : 𝐷(𝐴) → 𝑋 and 𝐵 ∈ 𝐿(𝑋), where 𝐷(𝐴) = {𝑓(𝑥) ∈
𝐸 : (𝑥+ 𝑖𝑒𝑥)𝑓(𝑥) ∈ 𝑋}, 𝐴𝑓(𝑥) := (𝑥+ 𝑖𝑒𝑥)𝑓(𝑥) and 𝐵𝑓(𝑥) := 𝑚𝑏(𝑥)𝑓(𝑥)
(𝑥 > 0, 𝑓 ∈ 𝑋). In a recent research study with S. Pilipović and D.
Velinov [354], we have shown that 𝐴 cannot be the generator of any local
integrated semigroup in 𝑋, as well as that 𝐴 generates an ultradistribu-
tion semigroup of Beurling class. Set 𝒜 := 𝐵−1𝐴. We will prove that
there exists a sufficiently large number 𝜔 > 0 such that for each 𝑠 > 1 and
𝑑 > 0 the operator family {𝑒−𝑑|𝜆|1/𝑠(𝜆−𝒜)−1 : Re𝜆 > 𝜔, 𝜆 ∈ Σ𝛼𝜋/2} ⊆
𝐿(𝑋) is equicontinuous, which immediately implies by Theorem 3.2.10
that 𝒜 generates an exponentially equicontinuous (𝑔𝛼,ℒ−1(𝑒−𝑑|𝜆|𝛼/𝑠

))-
regularized resolvent family. It is clear that the resolvent of 𝒜 will be
given by (𝜆−𝒜)−1𝑓(𝑥) = (𝜆𝐵−𝐴)−1𝐵𝑓(𝑥) = 𝑚𝑏(𝑥)𝑓(𝑥)/𝜆𝑚𝑏(𝑥)−𝑚𝑎(𝑥)
for 𝑥 > 0, 𝑓 ∈ 𝑋. Since 𝑚𝑏(𝑥)𝑓(𝑥)/𝜆𝑚𝑏(𝑥) −𝑚𝑎(𝑥) = 1/𝜆 − (𝑥 + 𝑖𝑒𝑥)
for 𝑥 /∈ 𝐽 , our first task will be to estimate the derivatives of function
1/𝜆 − (· + 𝑖𝑒·) outside the interval 𝐽 . In order to do that, observe first
that any complex number 𝜆 ∈ C r 𝑆, where 𝑆 := {𝑥 + 𝑖𝑒𝑥 : 𝑥 > 0},
belongs to the resolvent set of 𝐴 and

(𝜆−𝐴)−1𝑓(𝑥) =
𝑓(𝑥)

𝜆− (𝑥+ 𝑖𝑒𝑥)
, 𝜆 ∈ Cr 𝑆, 𝑥 > 0.

Fix, after that, numbers 𝑠 > 1, 𝑑 > 0, 𝑎 > 0, 𝑏 > 1 satisfying that
𝑥−ln(((𝑥−𝑏)/𝑎)𝑠+1) > 1, 𝑥 > 𝑏. Set Ω := {𝜆 ∈ C : Re𝜆 > 𝑎| Im𝜆|1/𝑠+𝑏}
and denote by Γ the upwards oriented boundary of the region Ω. Induc-
tively, we can prove that for each number 𝑛 ∈ N there exist complex
polynomials 𝑃𝑗(𝑧) =

∑︀𝑗
𝑙=0 𝑎𝑗,𝑙𝑧

𝑙 (1 6 𝑗 6 𝑛) such that dg(𝑃𝑗) = 𝑗,
|𝑎𝑗,𝑙| 6 (𝑛+ 1)! (1 6 𝑗 6 𝑛, 0 6 𝑙 6 𝑗) and

(282)
𝑑𝑛

𝑑𝑥𝑛
(𝜆− (𝑥+ 𝑖𝑒𝑥))−1 =

𝑛∑︁
𝑗=1

(𝜆− (𝑥+ 𝑖𝑒𝑥))−𝑗−1𝑃𝑗(𝑒
𝑥), 𝑥 > 0, 𝜆 ∈ Cr 𝑆.
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Suppose 𝜆 ∈ Ω and 𝑥 > 0. If | Im𝜆− 𝑒𝑥| > 1, then we have the following
estimate

𝑒2𝑗𝑥

(Re𝜆− 𝑥)2𝑘 + (Im𝜆− 𝑒𝑥)2𝑘
6

𝑒2𝑗𝑥

(Im𝜆− 𝑒𝑥)2𝑘
(283)

6 22𝑗(1 + | Im𝜆|)2𝑗 , 𝑘 ∈ N0, 0 6 𝑗 < 𝑘.

If | Im𝜆− 𝑒𝑥| < 1, then Im𝜆 > 0, 0 6 𝑥 < ln(Im𝜆+ 1), and

(284)
𝑒2𝑗𝑥

(Re𝜆− 𝑥)2𝑘 + (Im𝜆− 𝑒𝑥)2𝑘
6

𝑒2𝑗𝑥

(Re𝜆− 𝑥)2𝑘

6
(Im𝜆+ 1)2𝑗

Re𝜆− ln(((Re𝜆− 𝑏)/𝑎)𝑠 + 1)
6 (Im𝜆+ 1)2𝑗 , 𝑘 ∈ N0, 0 6 𝑗 < 𝑘.

Let 𝜔′ > 0 be such that {𝜆 ∈ Σ𝛼𝜋/2 : Re𝜆 > 𝜔′} ⊆ Ω. Combining (282)–
(284), it can be simply proved that for each number 𝑛 ∈ N there exists a
finite constant 𝑐𝑛 > 0 such that

(285)
𝑛∑︁

𝑘=0

sup
𝑥>0,𝑥/∈𝐽

⃒⃒⃒ 𝑑𝑛
𝑑𝑥𝑛

(𝜆− (𝑥+ 𝑖𝑒𝑥))−1
⃒⃒⃒
6 𝑐𝑛𝑒

𝑑|𝜆|1/𝑠 , 𝜆 ∈ Σ𝛼𝜋/2, Re𝜆 > 𝜔′.

We can similarly prove an estimate of type (285) for the derivatives of
function (𝜆𝑚𝑏(𝑥) − (𝑥 + 𝑖𝑒𝑥))−1 on the interval 𝐽 , which is well-defined
for 𝜆 ∈ Σ𝛼𝜋/2 due to our assumption 0 6 𝑚𝑏(𝑥) 6 1, 𝑥 > 0 and the
condition Σ𝛼𝜋/2 ∩ {𝑥 + 𝑖𝑒𝑥 : 𝑥 ∈ 𝐽} = ∅. In actual fact, induction
shows that for each number 𝑛 ∈ N there exist numbers 𝑎𝑗,𝑙1,...,𝑙𝑠 such that
|𝑎𝑗,𝑙1,...,𝑙𝑠 | 6 (𝑛+ 1)! (1 6 𝑗 6 𝑛, 0 6 𝑙 6 𝑗) and

(286)
𝑑𝑛

𝑑𝑥𝑛
(𝜆𝑚𝑏(𝑥)− (𝑥+ 𝑖𝑒𝑥))−1 =

𝑛∑︁
𝑗=1

(𝜆𝑚𝑏(𝑥)− (𝑥+ 𝑖𝑒𝑥))−𝑗−1

×
𝑗∑︁

𝑙=0

𝑎𝑗,𝑙1,...,𝑙𝑠
∏︁

𝑙1𝑚1+···+𝑙𝑠𝑚𝑠=𝑛

(𝜆𝑚
(𝑙𝑗)
𝑏 (𝑥)−𝑚(𝑙𝑗)

𝑎 (𝑥))𝑚𝑗 , 𝑥 ∈ 𝐽, 𝜆 ∈ Σ𝛼𝜋/2.

Since 𝑑 :=dist(Σ𝛼𝜋/2, {𝑥 + 𝑖𝑒𝑥 : 𝑥 ∈ 𝐽}) is a positive real number and
|(𝜆𝑚(𝑙𝑗)

𝑏 (𝑥) −𝑚
(𝑙𝑗)
𝑎 (𝑥))𝑚𝑗 | 6 𝑐𝑚𝑗 |𝜆|𝑚𝑗 for all 𝜆 ∈ Σ𝛼𝜋/2 with Re𝜆 > 𝜔,

where the number 𝜔 > 𝜔′ is sufficiently large, (286) shows that for each
number 𝑛 ∈ N there exists a finite number 𝑐′𝑛 > 0 such that

(287)
𝑛∑︁

𝑘=0

sup
𝑥>0,𝑥∈𝐽

⃒⃒⃒ 𝑑𝑛
𝑑𝑥𝑛

(𝜆𝑚𝑏(𝑥)−(𝑥+𝑖𝑒𝑥))−1
⃒⃒⃒
6 𝑐′𝑛𝑒

𝑑|𝜆|1/𝑠 , 𝜆 ∈ Σ𝛼𝜋/2, Re𝜆 > 𝜔.

By (285) and (287), we have that the operator family {𝑒−𝑑|𝜆|1/𝑠(𝜆−𝒜)−1 :
𝜆 ∈ Σ𝛼𝜋/2, Re𝜆 > 𝜔} ⊆ 𝐿(𝑋) is equicontinuous, as claimed.

Now we would like to tell something more about the importance of condition
𝑘(0) ̸= 0 in part (ii) of subsequent theorem. If all the necessary requirements hold,
the arguments contained in the proof of [285, Theorem 3.6] imply the existence
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of a global (𝑎, 𝑘 * 𝑔1)-regularized 𝐶-resolvent family (𝑅1(𝑡))𝑡>0 subgenerated by
𝒜, which additionally satisfies that for each 𝑡 > 0 the operator 𝑅1(𝑡)𝒜 is single-
valued on 𝐷(𝒜). Then it is necessary to differentiate the equality 𝑅1(𝑡)𝑥 − (𝑘 *
𝑔1)(𝑡)𝐶𝑥 =

∫︀ 𝑡

0
𝑎(𝑡 − 𝑠)𝑅1(𝑠)𝒜𝑥 𝑑𝑠, 𝑡 > 0, 𝑥 ∈ 𝐷(𝒜) and employ the fact that

( 𝑑
𝑑𝑡𝑅1(𝑡)𝑥)𝑡=0 = 𝑘(0)𝐶𝑥 (𝑥 ∈ 𝐷(𝒜)) (cf. the proof of [285, Theorem 3.6], as well

as the proofs of [199, Proposition 2.1] and [292, Proposition 2.1.7]) in order to
see that the function 𝑅 : 𝐷(𝑅) ≡ {�̃�(𝜆)−1 : 𝜆 > 𝑏, �̃�(𝜆)𝑘(𝜆) ̸= 0} → 𝐿(𝐷(𝒜)),
given by 𝑅(�̃�(𝜆)−1) := (�̃�(𝜆)−1 − 𝒜)−1𝐶, 𝜆 ∈ 𝐷(𝑅), is a 𝐶-pseudoresolvent in
the sense of [384, Definition 3.1], satisfying additionally that 𝑁(𝑅(𝜆)) = {0},
𝜆 ∈ 𝐷(𝑅). Only after that, we can use [384, Theorem 3.4] with a view to prove the
existence of a single-valued linear operator 𝐴, with domain and range contained in
𝐷(𝒜), which satisfies the properties required in (ii): this examination shows the
full importance of concepts introduced in Definition 3.2.1 and Definition 3.2.2 in
integrated and convoluted case 𝑘(0) = 0. Keeping in mind Theorem 1.2.4(i) as well
as the proofs of [285, Theorem 3.6] and [292, Theorem 1.2.6], the remaining parts
of following theorem can be deduced, more or less, as in non-degenerate case.

Theorem 3.2.12. Suppose 𝜔 ∈ R, abs(𝑘) < ∞, abs(|𝑎|) < ∞, 𝒜 is a closed
MLO in 𝑋, 𝜆0 ∈ 𝜌𝐶(𝒜), 𝑏 > max(0, 𝜔, abs(|𝑎|), abs(𝑘)),{︁ 1

�̃�(𝜆)
: 𝜆 > 𝑏, 𝑘(𝜆)�̃�(𝜆) ̸= 0

}︁
⊆ 𝜌𝐶(𝒜),

the function 𝐻 : 𝐷(𝐻) ≡ {𝜆 > 𝑏 : �̃�(𝜆)𝑘(𝜆) ̸= 0} → 𝐿(𝑋), given by 𝐻(𝜆)𝑥 =

𝑘(𝜆)(𝐼 − �̃�(𝜆)𝒜)−1𝐶𝑥, 𝑥 ∈ 𝑋, 𝜆 ∈ 𝐷(𝐻), satisfies that the mapping 𝜆 ↦→ 𝐻(𝜆)𝑥,
𝜆 ∈ 𝐷(𝐻) is infinitely differentiable for every fixed 𝑥 ∈ 𝑋 and, for every 𝑝 ∈ ~,
there exist 𝑐𝑝 > 0 and 𝑟𝑝 ∈ ~ such that:

(288) 𝑝
(︁
𝑙!−1(𝜆− 𝜔)𝑙+1 𝑑

𝑙

𝑑𝜆𝑙
𝐻(𝜆)𝑥

)︁
6 𝑐𝑝𝑟𝑝(𝑥), 𝑥 ∈ 𝑋, 𝜆 ∈ 𝐷(𝐻), 𝑙 ∈ N0.

Then, for every 𝑟 ∈ (0, 1], the operator 𝒜 is a subgenerator of a global (𝑎, 𝑘 * 𝑔𝑟)-
regularized 𝐶-resolvent family (𝑅𝑟(𝑡))𝑡>0 satisfying that, for every 𝑝 ∈ ~,

𝑝(𝑅𝑟(𝑡+ ℎ)𝑥−𝑅𝑟(𝑡)𝑥) 6
2𝑐𝑝𝑟𝑝(𝑥)

𝑟Γ(𝑟)
max(𝑒𝜔(𝑡+ℎ), 1)ℎ𝑟, 𝑡 > 0, ℎ > 0, 𝑥 ∈ 𝑋,

and that, for every 𝑝 ∈ ~ and 𝐵 ∈ ℬ, the mapping 𝑡 ↦→ 𝑝𝐵(𝑅𝑟(𝑡)), 𝑡 > 0 is locally
Hölder continuous with exponent 𝑟; furthermore, (𝑅𝑟(𝑡))𝑡>0 is a mild (𝑎, 𝑘 * 𝑔𝑟)-
regularized 𝐶-existence family having 𝒜 as subgenerator, and the following holds:

(i) Suppose that 𝒜 is densely defined. Then 𝒜 is a subgenerator of a global
(𝑎, 𝑘)-regularized 𝐶-resolvent family (𝑅(𝑡))𝑡>0 ⊆ 𝐿(𝑋) satisfying that the
family {𝑒−𝜔𝑡𝑅(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑋) is equicontinuous. Furthermore,
(𝑅(𝑡))𝑡>0 is a mild (𝑎, 𝑘)-regularized 𝐶-existence family having 𝒜 as sub-
generator.

(ii) Suppose that 𝑘(0) ̸= 0. Then the operator 𝐶 ′ := 𝐶|𝐷(𝒜)
∈ 𝐿(𝐷(𝒜)) is

injective, 𝒜0 is a closed subspace of 𝑋, 𝐷(𝒜) ∩ 𝒜0 = {0}, and we have
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the following: Define the operator 𝐴 : 𝐷(𝐴) ⊆ 𝐷(𝒜) → 𝐷(𝒜) by

𝐷(𝐴) := {𝑥 ∈ 𝐷(𝒜) : 𝐶𝑥 = (𝜆0 −𝒜)−1𝐶𝑦 for some 𝑦 ∈ 𝐷(𝒜)}
and

𝐴𝑥 := 𝐶−1𝒜𝐶𝑥, 𝑥 ∈ 𝐷(𝐴).

Then 𝐴 is a well-defined single-valued closed linear operator in 𝐷(𝒜),
and moreover, 𝐴 is the integral generator of a global (𝑎, 𝑘)-regularized 𝐶 ′-
resolvent family (𝑆(𝑡))𝑡>0 ⊆ 𝐿(𝐷(𝒜)) satisfying that the family {𝑒−𝜔𝑡𝑆(𝑡) :

𝑡 > 0} ⊆ 𝐿(𝐷(𝒜)) is equicontinuous, 𝐴
∫︀ 𝑡

0
𝑎(𝑡 − 𝑠)𝑆(𝑠)𝑥 𝑑𝑠 = 𝑆(𝑡)𝑥 −

𝑘(𝑡)𝐶𝑥, 𝑡 ∈ [0, 𝜏), 𝑥 ∈ 𝐷(𝒜) and 𝑅1(𝑡)𝑥 =
∫︀ 𝑡

0
𝑆(𝑠)𝑥 𝑑𝑠, 𝑡 > 0, 𝑥 ∈ 𝐷(𝒜).

In the following extension of [395, Proposition 2.5] and [292, Proposition
2.1.4(ii)], we will revisit the condition 𝑘(0) ̸= 0 from Theorem 3.2.12 once more. A
straightforward proof is omitted.

Proposition 3.2.13. Let 𝒜 be a closed subgenerator of a mild (𝑎, 𝑘)-regularized
𝐶1-resolvent family (𝑅1(𝑡))𝑡∈[0,𝜏) (mild (𝑎, 𝑘)-regularized 𝐶2-uniqueness family
(𝑅2(𝑡))𝑡∈[0,𝜏); (𝑎, 𝑘)-regularized 𝐶-resolvent family (𝑅(𝑡))𝑡∈[0,𝜏)). If 𝑘(𝑡) is abso-
lutely continuous and 𝑘(0) ̸= 0, then 𝒜 is a subgenerator of a mild (𝑎, 𝑔1)-reg-
ularized 𝐶1-resolvent family (𝑅1(𝑡))𝑡∈[0,𝜏) (mild (𝑎, 𝑔1)-regularized 𝐶2-uniqueness
family (𝑅2(𝑡))𝑡∈[0,𝜏); (𝑎, 𝑔1)-regularized 𝐶-resolvent family (𝑅(𝑡))𝑡∈[0,𝜏)).

Now we would like to present some illustrative applications of results obtained
so far.

Example 3.2.14. Let 𝛼 ∈ (0, 1).
(i) [199] Consider the following time-fractional analogue of homogeneous

counterpart of problem [199, Example 2.1, (2.18)]:

(𝑃 )𝑚,𝛼 :

{︃
D𝛼

𝑡 [𝑚(𝑥)𝑣𝛼(𝑡, 𝑥)] = − 𝜕
𝜕𝑥𝑣𝛼(𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ R;

𝑚(𝑥)𝑣𝛼(0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ R.

Let 𝑋 = 𝑌 := 𝐿2(R), and let the operator 𝐴 := −𝑑/𝑑𝑥 act on 𝑋 with its
maximal distributional domain 𝐻1(R).
(a) Suppose first that (𝐵𝑓)(𝑥) := 𝜒(−∞,𝑎)∩(𝑏,∞)(𝑥)𝑓(𝑥), 𝑥 ∈ R (𝑓 ∈ 𝑋),

where −∞ < 𝑎 < 𝑏 < ∞. Then 𝐵 ∈ 𝐿(𝑋), 𝐵 = 𝐵*, 𝐵2 = 𝐵 and
(𝑃 )𝑚,𝛼 is formulated in 𝑋 in the following abstract form

(𝑃 )′𝑚,𝛼 :

{︃
𝐵*D𝛼

𝑡 𝐵𝑣𝛼(𝑡) = D𝛼
𝑡 𝐵𝑣𝛼(𝑡) = 𝐴𝑣𝛼(𝑡), 𝑡 > 0;

𝐵𝑣𝛼(0) = 𝑢0.

Further on, the multivalued linear operator 𝒜 := (𝐵*)−1𝐴𝐵−1 is
maximal dissipative in the sense of [199, Definition, p. 35] and ‖(𝜆−
𝒜)−1‖ 6 𝜆−1, 𝜆 > 0. By the foregoing, we know that the opera-
tor 𝒜 is single-valued on 𝐷(𝒜); with a little abuse of notation, we
will denote by 𝑇 ⊆ 𝒜 the single-valued linear operator which gener-
ates a bounded strongly continuous semigroup (𝑇 (𝑡))𝑡>0 on𝐷(𝒜) (cf.
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Theorem 3.2.12(ii), where we have denoted this operator by 𝐴). Us-
ing [285, Theorem 3.6(a)] and the consideration from the paragraph
directly preceding the formulation of [199, Theorem 2.8], it readily
follows that 𝐷(𝑇 ) = 𝐷(𝒜). Suppose now that 𝑢0 = 𝐵𝑣0, where
𝑣0 ∈ 𝐷(𝐴) and 𝐴𝑣0 ∈ 𝑅(𝐵*), i.e., that 𝑢0 ∈ 𝐷(𝒜) = 𝐷(𝑇 ) (cf. the
proof of [199, Theorem 2.10]). Due to [199, Theorem 2.8, Theorem
2.10], the problem (𝑃 )′𝑚,1, with 𝛼 = 1, has a unique solution 𝑣1(𝑡)
satisfying 𝐵𝑣1(𝑡) = 𝑇 (𝑡)𝑢0; moreover,

(𝑑/𝑑𝑡)𝐵𝑣1(𝑡) = 𝐵*(𝑑/𝑑𝑡)𝐵𝑣1(𝑡)(289)
= 𝐴𝑣1(𝑡) = (𝑑/𝑑𝑡)𝑇 (𝑡)𝑢0 = 𝑇 (𝑡)𝑇𝑢0, 𝑡 > 0.

Since the condition [199, (2.14)] holds, we get that there exists 𝜆0 > 0
such that (𝜆0𝐵 − 𝐴)−1 ∈ 𝐿(𝑋); hence, 𝑣1(·) = (𝜆0𝐵 − 𝐴)−1(𝜆0𝐵 −
𝐴)𝑣1(·) ∈ 𝐶([0,∞) : 𝑋) is bounded, as well as (𝑑/𝑑𝑡)𝐵𝑣1(𝑡), 𝐵𝑣1(𝑡)
and 𝐴𝑣1(𝑡) are continuous and bounded for 𝑡 > 0. Define 𝑣𝛼(𝑡) :=∫︀∞
0
𝑡−𝛼Φ𝛼(𝑠𝑡

−𝛼)𝑣1(𝑠)𝑑𝑠, 𝑡 > 0 and 𝑣𝛼(0) := 𝑣1(0). Using Theorem
3.1.8 and the arguments contained in its proof, it readily follows that
the function 𝑣𝛼(·) is a bounded solution of problem (𝑃 )′𝑚,𝛼, satisfying
in addition that the functions 𝑡 ↦→ 𝑣𝛼(·), 𝑡 > 0 and 𝑡 ↦→ 𝐴𝑣𝛼(·),
𝑡 > 0 can be analytically extended to the sector Σmin(( 1

𝛼−1)𝜋
2 ,𝜋). The

uniqueness of solutions of problem (𝑃 )′𝑚,𝛼 can be proved with the
help of Theorem 3.1.6.

(b) Suppose now that (𝐵𝑓)(𝑥) := 𝜒(𝑎,∞)(𝑥)𝑓(𝑥), 𝑥 ∈ R (𝑓 ∈ 𝑋), where
−∞ < 𝑎 < ∞. Then 𝐵 ∈ 𝐿(𝑋), 𝐵 = 𝐵*, 𝐵2 = 𝐵 and the con-
clusions established in part (a) of this example, ending with the
equation (289), continue to hold. In our concrete situation, we have
the validity of condition [199, (2.11)] but not the condition [199,
(2.14)], in general. Define 𝑓𝛼(𝑡) :=

∫︀∞
0
𝑡−𝛼Φ𝛼(𝑠𝑡

−𝛼)𝐵𝑣1(𝑠)𝑑𝑠, 𝑡 > 0,
𝑓𝛼(0) := 𝐵𝑣1(0) = 𝑢0, ℎ𝛼(𝑡) :=

∫︀∞
0
𝑡−𝛼Φ𝛼(𝑠𝑡

−𝛼)𝐴𝑣1(𝑠)𝑑𝑠, 𝑡 > 0 and
ℎ𝛼(0) := 𝐴𝑣1(0). By the foregoing, we have that 𝑓𝛼, ℎ𝛼 ∈ 𝐶([0,∞) :
𝑋) are bounded and D𝛼

𝑡 𝑓𝛼(𝑡) = ℎ𝛼(𝑡), 𝑡 > 0, which simply implies
𝐵ℎ𝛼(𝑡) = ℎ𝛼(𝑡), 𝑡 > 0. By (289), we have that 𝐴𝑣1(𝑡) = 𝑇 (𝑡)𝑇𝑢0 ∈
𝐵−1[𝐴𝑣1(𝑡)] and 𝐵𝐴𝑣1(𝑡) = 𝐴𝑣1(𝑡) (𝑡 > 0), whence we may conclude
that 𝐴𝑣1(𝑡) ∈ 𝒜[𝐵𝑣1(𝑡)] (𝑡 > 0). Since 𝒜 is closed, an application of
Theorem 1.2.3 yields that ℎ𝛼(𝑡) = 𝐵ℎ𝛼(𝑡) ∈ 𝐴𝐵−1𝑓𝛼(𝑡) (𝑡 > 0); con-
sequently, the function 𝑡 ↦→ 𝑓𝛼(𝑡), 𝑡 > 0 is a pre-solution of problem
(DFP)𝑅 with 𝐵 ≡ 𝐼, ℱ(𝑡) ≡ 0 and, by Remark 3.1.2(iv), the prob-
lem (𝑃 )′𝑚,𝛼 has a bounded 𝑝-solution 𝑣𝛼(·) satisfying, in addition,
that the functions 𝑡 ↦→ 𝐵𝑣𝛼(·), 𝑡 > 0 and 𝑡 ↦→ 𝐴𝑣𝛼(·), 𝑡 > 0 can be
analytically extended to the sector Σmin(( 1

𝛼−1)𝜋
2 ,𝜋). The uniqueness

follows again from an essential application of Theorem 3.1.6.
(ii) [280,285] Here we would like to observe, without going into full details,

that we can similarly prove some results on the existence and uniqueness
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of analytical solutions of the abstract Volterra equation

𝜕

𝜕𝑟
𝑣𝛼(𝑡, 𝑟) = 𝑎(𝑟)

∫︁ 𝑡

0

𝑔𝛼(𝑡− 𝑠)𝑣𝛼(𝑠, 𝑟)𝑑𝑠+ 𝑓(𝑡, 𝑟), 𝑡 > 0, 𝑟 ∈ [0, 1],

on the sector Σmin(( 1
𝛼−1)𝜋

2 ,𝜋), where 𝑎 ∈ 𝐶1[0, 1] and the mapping 𝑡 ↦→
𝑓(𝑡, ·), 𝑡 > 0 is continuous and exponentially bounded with the values
in the Banach space 𝐶[0, 1] (cf. [280, Example 1] and Theorem 3.1.8);
using Theorem 3.1.9 instead of Theorem 3.1.8, we can consider the well-
posedness in 𝐶[0, 1] for the equation

𝜕

𝜕𝑟
𝑣𝑐(𝑡, 𝑟) = 𝑎(𝑟)

∫︁ 𝑡

0

𝑐(𝑡− 𝑠)𝑣𝑐(𝑠, 𝑟)𝑑𝑠+ 𝑓(𝑡, 𝑟), 𝑡 > 0, 𝑟 ∈ [0, 1],

where 𝑐(·) is a completely positive function.
(iii) Fractional Maxwell’s equations have gained much attention in recent years

(see e.g. [128, 253, 404, 516, 562] and references cited therein for more
details on the subject). Here we want to briefly explain how we can use
the analysis of A. Favini and A. Yagi [199, Example 2.2] for proving the
existence and uniqueness of analytical solutions of certain classes of inho-
mogeneous abstract time-fractional Maxwell’s equations in R3; the time-
fractional analogues of Poisson-wave equations (see e.g. [199, Example
2.3, Example 6.23]) will be considered somewhere else.

Consider the following abstract time-fractional Maxwell’s equations:

(290) rot𝐸 = −D𝛼
𝑡 𝐵, rot𝐻 = D𝛼

𝑡 𝐷 + 𝐽

in R3, where 𝐸 (resp. 𝐻) denotes the electric (resp. magnetic) field
intensity, 𝐵 (resp. 𝐷) denotes the electric (resp. magnetic) flux density,
and where 𝐽 is the current density. It is assumed that the medium which
fills the space R3 is linear but possibly anisotropic and nonhomogeneous,
which means that 𝐷 = 𝜀𝐸, 𝐵 = 𝜇𝐻 and 𝐽 = 𝜎𝐸+𝐽 ′ with some 3×3 real
matrices 𝜀(𝑥), 𝜇(𝑥), 𝜎(𝑥) (𝑥 ∈ R3) and 𝐽 ′ being a given forced current
density. Let any component of 𝜀(𝑥), 𝜇(𝑥), 𝜎(𝑥) be a bounded, measurable
function in R3, let the conditions [199, (2.23)–(2.25)] hold, and let 𝑓(𝑡) =
−(𝐽 ′(·, 𝑡) 0)𝑇 . Then we can formulate the problem (290) in the following
abstract form

(𝑃 )1 :

{︃
𝐵*D𝛼

𝑡 𝐵𝑣1(𝑡) = 𝐴𝑣1(𝑡) + 𝑓(𝑡), 𝑡 > 0;

𝐵𝑣1(0) = 𝑢0,

in the space 𝑋 := {𝐿2(R3)}6, using the bounded self-adjoint operator
𝐵 of multiplication by

√︀
𝑐(𝑥) acting in 𝑋, and 𝐴 being the closed lin-

ear operator in 𝑋 given by [199, (2.27)]. In our concrete situation,
the conditions [199, (2.10) and (2.14)] hold, so that the assumptions
𝑓 ∈ 𝐶2([0,∞) : 𝑋) and 𝑢0 = 𝐵𝑣0 for some 𝑣0 ∈ 𝐷(𝐴) satisfying
𝐴𝑣0+𝑓(0) ∈ 𝑅(𝐵*) ensure by [199, Corollary 2.11] that the problem (𝑃 )1
has a unique strict solution 𝑣1(·) in the sense of equation [199, (2.13)].
Suppose, additionally, that the function 𝑓 ′′(𝑡) is exponentially bounded.
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Then we can use [199, Theorem 2.5], the proof of [199, Corollary 2.11]
and the arguments from part (i)/(a) of this example in order to see that
the solution 𝑣1 ∈ 𝐶([0,∞) : 𝑋) is exponentially bounded, as well as that
𝐻(𝑡) := (𝑑/𝑑𝑡)𝐵𝑣1(𝑡), 𝐵𝑣1(𝑡) and 𝐴𝑣1(𝑡) are continuous and exponen-
tially bounded for 𝑡 > 0. Define 𝑣𝛼(𝑡) and 𝑓𝛼(𝑡) as before, 𝐻𝛼(𝑡) :=∫︀∞
0
𝑡−𝛼Φ𝛼(𝑠𝑡

−𝛼)𝐻(𝑠)𝑑𝑠, 𝑡 > 0 and 𝐻𝛼(0) := 𝐻(0). Performing the
Laplace transform, it can be simply verifed that (𝑔1−𝛼 * (𝐵𝑣𝛼 − 𝑢0))(𝑡) =∫︀ 𝑡

0
𝐻𝛼(𝑠)𝑑𝑠, 𝑡 > 0, so that D𝛼

𝑡 𝐵𝑣𝛼(𝑡) exists and equals to 𝐻𝛼(𝑡). On the
other hand, we have 𝐵*𝐵𝑣1(𝑡) = 𝐴(𝑔1 * 𝑣1)(𝑡) +𝐵*𝑢0 +

∫︀ 𝑡

0
𝑓(𝑠)𝑑𝑠, 𝑡 > 0,

so that 𝐵*𝐵𝑣𝛼(𝑡) = 𝐴(𝑔𝛼 * 𝑣𝛼)(𝑡)+𝐵*𝑢0 +
∫︀ 𝑡

0
𝑓𝛼(𝑠)𝑑𝑠, 𝑡 > 0 by Theorem

3.1.8. This implies D𝛼
𝑡 𝐵

*𝐵𝑣𝛼(𝑡) = 𝐴𝑣𝛼(𝑡) + 𝑓𝛼(𝑡) and, since D𝛼
𝑡 𝐵𝑣𝛼(𝑡)

exists, 𝐵*D𝛼
𝑡 𝐵𝑣𝛼(𝑡) = 𝐴𝑣𝛼(𝑡) + 𝑓𝛼(𝑡), 𝑡 > 0. Clearly, 𝐵𝑣𝛼(0) = 𝑢0 so

that 𝑣𝛼 ∈ 𝐶([0,∞) : 𝑋) is an exponentially bounded solution of problem

(𝑃 )𝛼 :

{︃
𝐵*D𝛼

𝑡 𝐵𝑣𝛼(𝑡) = 𝐴𝑣𝛼(𝑡) + 𝑓𝛼(𝑡), 𝑡 > 0;

𝐵𝑣𝛼(0) = 𝑢0,

that is analytically extensible on the sector Σmin(( 1
𝛼−1)𝜋

2 ,𝜋) and satisfies, in
addition, that the mapping 𝐴𝑣𝛼 ∈ 𝐶([0,∞) : 𝑋) is exponentially bounded
and analytically extensible on the same sector, as well. The uniqueness
of solutions of problem (𝑃𝛼) follows from Theorem 3.1.6.

We end this example with the observation that Theorem 3.1.8 and
Theorem 3.1.9 can be successfully applied in the analysis of a large class
of abstract degenerate Volterra integro-differential equations that are sub-
ordinated, in a certain sense, to degenerate differential equations of first
and second order for which we know that are well posed ( [199,205,210,
475,509,517,518]).

Concerning the adjoint type theorems, it should be noticed that the asser-
tions of [292, Theorem 2.1.12(i)/(ii); Theorem 2.1.13] continue to hold for (𝑎, 𝑘)-
regularized 𝐶-resolvent families subgenerated by closed multivalued linear opera-
tors. Furthermore, it is not necessary to assume that the operator 𝒜 is densely
defined if analyzing [292, Theorem 2.1.12(i)].

Suppose now that 𝒜 is a subgenerator of an (𝑎, 𝑘)-regularized 𝐶-resolvent fam-
ily (𝑅(𝑡))𝑡∈[0,𝜏), 𝑛 ∈ N and 𝑥𝑗 ∈ 𝒜𝑥𝑗−1 for 1 6 𝑗 6 𝑛. Then we can prove
inductively that, for every 𝑡 ∈ [0, 𝜏),

(291) 𝑅(𝑡)𝑥 = 𝑘(𝑡)𝐶𝑥0 +

𝑛−1∑︁
𝑗=1

(𝑎*,𝑗 * 𝑘)(𝑡)𝐶𝑥𝑗 + (𝑎*,𝑛 *𝑅(·)𝑥𝑛)(𝑡).

Keeping in mind the identity (291), Theorem 1.2.3 and Proposition 3.2.8(ii),
it is almost straightforward to transfer the assertion of [292, Proposition 2.1.32] to
degenerate case:

Proposition 3.2.15. (i) Suppose 𝛼 ∈ (0,∞) r N, 𝑥 ∈ 𝐷(𝒜) as well as
𝐶−1𝑓 , 𝑓𝒜 ∈ 𝐶([0, 𝜏) : 𝑋), 𝑓𝒜(𝑡) ∈ 𝒜𝐶−1𝑓(𝑡), 𝑡 ∈ [0, 𝜏) and 𝒜 is a closed
subgenerator of a (𝑔𝛼, 𝐶)-regularized resolvent family (𝑅(𝑡))𝑡∈[0,𝜏). Set
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𝑣(𝑡) := (𝑔⌈𝛼⌉−𝛼*𝑓)(𝑡), 𝑡 ∈ [0, 𝜏). If 𝑣 ∈ 𝐶⌈𝛼⌉−1([0, 𝜏) : 𝑋) and 𝑣(𝑘)(0) = 0

for 1 6 𝑘 6 ⌈𝛼⌉ − 2, then the function 𝑢(𝑡) := 𝑅(𝑡)𝑥 + (𝑅 * 𝐶−1𝑓)(𝑡),
𝑡 ∈ [0, 𝜏) is a unique solution of the following abstract time-fractional
inclusion:⎧⎪⎨⎪⎩

𝑢 ∈ 𝐶⌈𝛼⌉((0, 𝜏) : 𝑋) ∩ 𝐶⌈𝛼⌉−1([0, 𝜏) : 𝑋),

D𝛼
𝑡 𝑢(𝑡) ∈ 𝒜𝑢(𝑡) + 𝑑⌈𝛼⌉−1

𝑑𝑡⌈𝛼⌉−1 (𝑔⌈𝛼⌉−𝛼 * 𝑓)(𝑡), 𝑡 ∈ [0, 𝜏),

𝑢(0) = 𝐶𝑥, 𝑢(𝑘)(0) = 0, 1 6 𝑘 6 ⌈𝛼⌉ − 1.

(ii) Suppose 𝑟 > 0, 𝑛 ∈ N r {1}, 𝑥0 = 𝑥, 𝑓0(·) = 𝑓(·), 𝑥𝑗 ∈ 𝒜𝑥𝑗−1 for
1 6 𝑗 6 𝑛, 𝑓𝑗(𝑡) ∈ 𝒜𝑓𝑗−1(𝑡) for 𝑡 ∈ [0, 𝜏) and 1 6 𝑗 6 𝑛, 𝑓𝑗 ∈ 𝐶([0, 𝜏) :
𝑋) for 0 6 𝑗 6 𝑛, and 𝒜 is a closed subgenerator of a (𝑔1/𝑛, 𝑔𝑟+1)-
regularized 𝐶-resolvent family (𝑅(𝑡))𝑡∈[0,𝜏). Then the function 𝑣(𝑡) :=

𝑅(𝑡)𝑥 + (𝑅 * 𝐶−1𝑓)(𝑡)𝑥, 𝑡 ∈ [0, 𝜏) is a unique solution of the following
abstract time-fractional inclusion:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑣 ∈ 𝐶1((0, 𝜏) : 𝑋) ∩ 𝐶([0, 𝜏) : 𝑋),

𝑣′(𝑡) ∈ 𝒜𝑣(𝑡) +
𝑛−1∑︁
𝑗=1

𝑔(𝑗/𝑛)+𝑟(𝑡)𝐶𝑥𝑗 +

𝑛−1∑︁
𝑗=0

(𝑔(𝑗/𝑛)+𝑟 * 𝑓𝑗)(𝑡)

+
𝑑

𝑑𝑡
𝑔𝑟+1(𝑡)𝐶𝑥, 𝑡 ∈ (0, 𝜏),

𝑣(0) = 𝑔𝑟+1(0)𝐶𝑥.

Furthermore, 𝑣 ∈ 𝐶1([0, 𝜏) : 𝑋) provided that 𝑟 > 1 or 𝑥 = 0 and 𝑟 > 0.

3.2.1. Differential and analytical properties of (𝑎, 𝑘)-regularized 𝐶-
resolvent families. The main structural characterizations of differential and an-
alytical (𝑎, 𝑘)-regularized 𝐶-resolvent families generated by single-valued linear op-
erators continue to hold in our framework (cf. [75,76,199, Chapter III] and [182]
for some references on infinitely differentiable semigroups generated by MLOs).

The notions of various types of analyticity of degenerate (𝑎, 𝑘)-regularized 𝐶-
resolvent families are introduced in the following definition.

Definition 3.2.16. (cf. [292, Definition 2.2.1] for non-degenerate case)
(i) Suppose that 𝒜 is an MLO in 𝑋. Let 𝛼 ∈ (0, 𝜋], and let (𝑅(𝑡))𝑡>0 be an

(𝑎, 𝑘)-regularized 𝐶-resolvent family which do have 𝒜 as a subgenerator.
Then it is said that (𝑅(𝑡))𝑡>0 is an analytic (𝑎, 𝑘)-regularized 𝐶-resolvent
family of angle 𝛼, if there exists a function R : Σ𝛼 → 𝐿(𝑋) which satisfies
that, for every 𝑥 ∈ 𝑋, the mapping 𝑧 ↦→ R(𝑧)𝑥, 𝑧 ∈ Σ𝛼 is analytic as well
as that:
(a) R(𝑡) = 𝑅(𝑡), 𝑡 > 0 and
(b) lim𝑧→0,𝑧∈Σ𝛾

R(𝑧)𝑥 = 𝑅(0)𝑥 for all 𝛾 ∈ (0, 𝛼) and 𝑥 ∈ 𝑋.
(ii) Let (𝑅(𝑡))𝑡>0 be an analytic (𝑎, 𝑘)-regularized 𝐶-resolvent family of angle

𝛼 ∈ (0, 𝜋]. Then it is said that (𝑅(𝑡))𝑡>0 is an exponentially equicon-
tinuous, analytic (𝑎, 𝑘)-regularized 𝐶-resolvent family of angle 𝛼, resp.
equicontinuous analytic (𝑎, 𝑘)-regularized 𝐶-resolvent family of angle 𝛼,
if for every 𝛾 ∈ (0, 𝛼), there exists 𝜔𝛾 > 0, resp. 𝜔𝛾 = 0, such that the
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family {𝑒−𝜔𝛾 Re 𝑧R(𝑧) : 𝑧 ∈ Σ𝛾} ⊆ 𝐿(𝑋) is equicontinuous. Since there is
no risk for confusion, we will identify in the sequel 𝑅(·) and R(·).

In the following example, we will treat a time-fractional analogue of the lin-
earized fractional Benney–Luke equation in 𝐿2-spaces and there we will meet some
interesting examples of exponentially bounded, analytic fractional resolvent families
of bounded operators whose angle of analyticity can be strictly greater than 𝜋/2;
in our approach, we do not use neither multivalued linear operators nor relatively
𝑝-radial operators [199,509]. The method employed by G. A. Sviridyuk and V. E.
Fedorov [509] for the usually considered Benney–Luke equation of first order can
be very hepful for achieving the final conclusions stated in (i)–(ii), as well as for the
concrete choice of the state space 𝑋0 below (cf. also Example 2.3.49 and Example
2.3.53).

Example 3.2.17. Suppose that ∅ ≠ Ω ⊆ R𝑛 is a bounded domain with smooth
boundary, and Δ is the Dirichlet Laplacian in 𝑋 := 𝐿2(Ω), acting with domain
𝐻2(Ω) ∩ 𝐻1

0 (Ω). By {𝜆𝑘} [= 𝜎(Δ)] we denote the eigenvalues of Δ in 𝐿2(Ω)
(recall that 0 < −𝜆1 6 −𝜆2 . . . 6 −𝜆𝑘 6 · · · → +∞ as 𝑘 → ∞) numbered in
nonascending order with regard to multiplicities. By {𝜑𝑘} ⊆ 𝐶∞(Ω) we denote the
corresponding set of mutually orthogonal eigenfunctions. Then, for every 𝜁 > 0,
we define the spectral fractional power 𝐶𝜁 ∈ 𝐿(𝑋) of −Δ by 𝐶𝜁 · := (−Δ)−(𝜁)/2· :=∑︀

𝑘>1⟨·, 𝜑𝑘⟩(−𝜆𝑘)−(𝜁/2)𝜑𝑘 (cf. [484] for more details). Then 𝐶𝜁 is injective and
𝑅(𝐶𝜁) =: 𝐷((−Δ)𝜁/2) = {𝑓 ∈ 𝐿2(Ω) :

∑︀
𝑘>1 |⟨𝑓, 𝜑𝑘⟩|2(−𝜆𝑘)𝜁 <∞}. Let 𝜆 ∈ 𝜎(Δ),

let 0 < 𝜂 6 2, and let 𝛼, 𝛽 > 0. Consider the following time-fractional analogue of
the linearized Benney–Luke equation:

(𝑃 )𝜂,𝑓 :

⎧⎪⎪⎨⎪⎪⎩
(𝜆−Δ)D𝜂

𝑡 𝑢(𝑡, 𝑥) = (𝛼Δ− 𝛽Δ2)𝑢(𝑡, 𝑥) + 𝑓(𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ Ω,(︁
𝜕𝑘

𝜕𝑡𝑘
𝑢(𝑡, 𝑥)

)︁
𝑡=0

= 𝑢𝑘(𝑥), 𝑥 ∈ Ω, 0 6 𝑘 6 ⌈𝜂⌉ − 1,

𝑢(𝑡, 𝑥) = Δ𝑢(𝑡, 𝑥) = 0, 𝑡 > 0, 𝑥 ∈ 𝜕Ω.

Denote by 𝑋0 the vector space of those functions from 𝑋 that are orthogonal to the
eigenfunctions 𝜑𝑘(·) for 𝜆𝑘 = 𝜆. Then 𝑋0 is a closed subspace of 𝑋, and therefore,
becomes the Banach space equipped with the topology inherited by the 𝑋-norm
(cf. [509, Example 5.3.1, Theorem 5.3.2] for the case 𝜂 = 1). On the other hand,
the operators 𝐴 := 𝛼Δ − 𝛽Δ2 and 𝐵 := 𝜆 − Δ, acting with maximal domains,
are closed in 𝐿2(Ω). Set 𝜃 := min((𝜋/𝜂) − (𝜋/2), 𝜋). Using the Parseval equality
and the asymptotic expansion formulae for Mittag–Leffler functions, we can simply
prove that the operator family (𝑇𝜂(𝑧))𝑧∈Σ𝜃∪{0} ⊆ 𝐿(𝑋0), given by

𝑡 ↦→ 𝑇𝜂(𝑧)· :=
∑︁

𝑘|𝜆𝑘 ̸=𝜆

𝐸𝜂

(︁𝛼𝜆𝑘 − 𝛽𝜆2𝑘
𝜆− 𝜆𝑘

𝑧𝜂
)︁
⟨·, 𝜑𝑘⟩𝜑𝑘, 𝑧 ∈ Σ𝜃 ∪ {0},

is well-defined, provided 𝜂 ∈ (0, 2). If 𝜂 = 2, then we define (𝑇2(𝑡))𝑡>0 ⊆ 𝐿(𝑋0) in
the same way as above; since 𝐸2(𝑧

2) = cosh(𝑧), we have that, for every 𝑡 > 0,

𝑇2(𝑡)· =
1

2

∑︁
𝑘|𝜆𝑘 ̸=𝜆

[𝑒𝑖𝑡((𝛽𝜆
2−𝛼𝜆𝑘)/(𝜆−𝜆𝑘))

1/2

+ 𝑒−𝑖𝑡((𝛽𝜆2−𝛼𝜆𝑘)/(𝜆−𝜆𝑘))
1/2

]⟨·, 𝜑𝑘⟩𝜑𝑘



3.2. MULTIVALUED LINEAR OPERATORS AS SUBGENERATORS... 310

and that (𝑇2(𝑡))𝑡>0 is bounded in the uniform operator norm. Differentiating 𝑇2(𝑡)
term by term, it can be easily seen that the mapping 𝑡 ↦→ 𝑇2(𝑡)𝑓 , 𝑡 > 0 is continu-
ously differentiable for any 𝑓 ∈ 𝐷((−Δ)1/2)∩𝑋0, and therefore, continuous. Since
𝐷((−Δ)1/2)∩𝑋0 is dense in 𝑋0 and (𝑇2(𝑡))𝑡>0 is bounded, we have that (𝑇2(𝑡))𝑡>0

is strongly continuous. Now we can proceed as in the proof of Theorem 3.1.8 in
order to see that, for every 𝜂 ∈ (0, 2), (𝑇𝜂(𝑡))𝑡>0 is an exponentially bounded, ana-
lytic (𝑔𝜂, 𝐼)-regularized resolvent family of angle 𝜃. A straightforward computation
shows that, for every 𝜂 ∈ (0, 2], the integral generator 𝒜 of (𝑇𝜂(𝑡))𝑡>0 is a closed
single-valued operator in 𝑋0, given by 𝒜 = {(𝑓, 𝑔) ∈ 𝑋0 ×𝑋0 : (𝜆 − 𝜆𝑘)⟨𝑔, 𝜑𝑘⟩ =
(𝛼𝜆𝑘 − 𝛽𝜆2𝑘)⟨𝑓, 𝜑𝑘⟩ for all 𝑘 ∈ N with 𝜆𝑘 ̸= 𝜆}; in particular, 𝒜 is an extension of
the operator 𝐵−1𝐴|𝑋0

. It is also clear that (𝑇𝜂(𝑡))𝑡>0 is a mild (𝑔𝜂, 𝐼)-existence fam-
ily generated by 𝒜. Keeping in mind the identity [61, (1.25)], we can directly com-
pute that the homogeneous counterpart of problem (𝑃 )𝜂,𝑓 ≡ (𝑃 )𝜂,0, with 𝑥𝑗 = 0
for 1 6 𝑗 6 ⌈𝜁⌉ − 1, has an exponentially bounded pre-solution 𝑢ℎ,0(𝑡) = 𝑇𝜂(𝑡)𝑥0,
𝑡 > 0 for any 𝑥𝑘 ∈ 𝐷(𝐴)∩𝑋0 (0 6 𝑘 6 ⌈𝜂⌉−1), which seems to be an optimal result
in the case that 𝜂 6 1. Concerning the homogeneous counterpart of problem (𝑃 )𝜂,0
with 𝑥0 = 0, its solution 𝑢ℎ,1(𝑡) has to be found in the form 𝑢ℎ,1(𝑡) =

∫︀ 𝑡

0
𝑇𝜂(𝑠)𝑥1 𝑑𝑠,

𝑡 > 0. Consider first the case 𝜂 ∈ (1, 2). Then for each 𝑘 ∈ N with 𝜆𝑘 ̸= 𝜆, we have

𝑑2

𝑑𝑡2

[︁
𝑔2−𝜂 *

(︁
𝐸𝜂

(︃
𝛼𝜆𝑘 − 𝛽𝜆2𝑘
𝜆− 𝜆𝑘

·𝜂
)︁
− 1
)︁]︁

(𝑡)

= D𝜂
𝑡𝐸𝜂

(︁𝛼𝜆𝑘 − 𝛽𝜆2𝑘
𝜆− 𝜆𝑘

𝑡𝜂
)︁
=
𝛼𝜆𝑘 − 𝛽𝜆2𝑘
𝜆− 𝜆𝑘

𝐸𝜂

(︁𝛼𝜆𝑘 − 𝛽𝜆2𝑘
𝜆− 𝜆𝑘

𝑡𝜂
)︁
, 𝑡 > 0.

On the other hand, expanding the function 𝐸𝜂(
𝛼𝜆𝑘−𝛽𝜆2

𝑘

𝜆−𝜆𝑘
·𝜂)− 1 in a power series we

get that

𝑑

𝑑𝑡

[︁
𝑔2−𝜂 *

(︁
𝐸𝜂

(︁𝛼𝜆𝑘 − 𝛽𝜆2𝑘
𝜆− 𝜆𝑘

·𝜂
)︁
− 1
)︁]︁

(𝑡) = 𝑡

∞∑︁
𝑛=0

(
𝛼𝜆𝑘−𝛽𝜆2

𝑘

𝜆−𝜆𝑘
𝑡𝜂)𝑛+1𝑡𝑛𝜂

Γ(𝑛𝜂 + 2)
, 𝑡 > 0.

The previous two equalities together imply that 𝑑
𝑑𝑡 [𝑔2−𝜂 *(𝐸𝜂(

𝛼𝜆𝑘−𝛽𝜆2
𝑘

𝜆−𝜆𝑘
·𝜂)−1)](𝑡) =

𝛼𝜆𝑘−𝛽𝜆2
𝑘

𝜆−𝜆𝑘

∫︀ 𝑡

0
𝐸𝜂(

𝛼𝜆𝑘−𝛽𝜆2
𝑘

𝜆−𝜆𝑘
𝑠𝜂)𝑑𝑠, 𝑡 > 0 and

D𝜂
𝑡 [𝑔1 * 𝑇𝜂(·)𝑥1](𝑡) =

∑︁
𝑘|𝜆𝑘 ̸=𝜆

𝛼𝜆𝑘 − 𝛽𝜆2𝑘
𝜆− 𝜆𝑘

∫︁ 𝑡

0

𝐸𝜂

(︁𝛼𝜆𝑘 − 𝛽𝜆2𝑘
𝜆− 𝜆𝑘

𝑠𝜂
)︁
𝑑𝑠⟨𝑥1, 𝜑𝑘⟩𝜑𝑘

=
∑︁

𝑘|𝜆𝑘 ̸=𝜆

𝛼𝜆𝑘 − 𝛽𝜆2𝑘
𝜆− 𝜆𝑘

𝑡𝐸𝜂,2

(︁𝛼𝜆𝑘 − 𝛽𝜆2𝑘
𝜆− 𝜆𝑘

𝑡𝜂
)︁
⟨𝑥1, 𝜑𝑘⟩𝜑𝑘, 𝑡 > 0.

Using again the asymptotic expansion formulae for Mittag-Leffler functions, we
obtain that the above series converges for any 𝑥1 ∈ 𝑋0 and belongs to 𝐷(𝐵)
provided, in addition, that 𝑥1 ∈ 𝐷(𝐵)∩𝑋0. In this case, the equality 𝐵D𝜂

𝑡 𝑢ℎ,1(𝑡) =
𝐴𝑢ℎ,1(𝑡), 𝑡 > 0 readily follows, so that the function 𝑢ℎ(𝑡) := 𝑢ℎ,0(𝑡) + 𝑢ℎ,1(𝑡),
𝑡 > 0 is a pre-solution of problem (DFP)𝐿 provided that 𝑥0 ∈ 𝐷(𝐴) ∩ 𝑋0 and
𝑥1 ∈ 𝐷(𝐵) ∩ 𝑋0 (with 𝑋 = 𝑌 = 𝐿2(Ω) in Definition 3.1.1(iii)); furthermore, the
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mappings 𝑡 ↦→ 𝑢ℎ(𝑡) ∈ 𝐿2(Ω), 𝑡 > 0 and 𝑡 ↦→ 𝐵𝑢ℎ(𝑡) ∈ 𝐿2(Ω), 𝑡 > 0 can be
analytically extended to the sector Σ𝜃. The situation is slightly different in the
case that 𝜂 = 2; then a simple calculus shows that, formally,

𝐵𝑢′′ℎ,1(𝑡) = 𝐴𝑢ℎ,1(𝑡) =
1

2

∑︁
𝑘|𝜆𝑘 ̸=𝜆

[𝑖((𝛽𝜆2 − 𝛼𝜆𝑘)/(𝜆− 𝜆𝑘))
1/2𝑒𝑖𝑡((𝛽𝜆

2−𝛼𝜆𝑘)/(𝜆−𝜆𝑘))
1/2

− 𝑖((𝛽𝜆2 − 𝛼𝜆𝑘)/(𝜆− 𝜆𝑘))
1/2𝑒−𝑖𝑡((𝛽𝜆2−𝛼𝜆𝑘)/(𝜆−𝜆𝑘))

1/2

]⟨𝑥1, 𝜑𝑘⟩𝜑𝑘, 𝑡 > 0.

Hence, the function 𝑢ℎ(𝑡) := 𝑢ℎ,0(𝑡) + 𝑢ℎ,1(𝑡), 𝑡 > 0 is a pre-solution of problem
(DFP)𝐿 with 𝑥0 ∈ 𝐷(𝐴) ∩ 𝑋0 and 𝑥1 ∈ 𝐷((−Δ)3/2) ∩ 𝑋0. The range of any
pre-solution of problem (𝑃 )𝜂,0 must be contained in 𝑋0, so that the uniqueness of
solutions of problem (𝑃 )𝜂,𝑓 follows from its linearity and Proposition 3.2.8(ii).

Before dealing with the inhomogeneous problem (𝑃 )𝜂,𝑓 , we would like to ob-
serve that the assumptions (𝑥, 𝑦) ∈ 𝒜 and 𝑥 ∈ 𝐷(𝐴) imply (𝑥, 𝑦) ∈ 𝐵−1𝐴|𝑋0

.
Keeping in mind this remark, Theorem 1.2.3, as well as the fact that the asser-
tion of [459, Proposition 2.1(iii)] admits a reformulation in our framework, we can
simply prove that for any function ℎ ∈𝑊 1,1

𝑙𝑜𝑐 ([0,∞) : 𝑋0) satisfying that

(292) 𝑡 ↦→
∑︁

𝑘|𝜆𝑘 ̸=𝜆

(𝛼𝜆𝑘 − 𝛽𝜆2𝑘)
⟨ 𝑑
𝑑𝑡

(𝑔𝜂 * ℎ)(𝑡), 𝜑𝑘
⟩
𝜑𝑘 ∈ 𝐿1

𝑙𝑜𝑐([0,∞) : 𝑋0),

the function 𝑢𝐵ℎ(𝑡) :=
∫︀ 𝑡

0
𝑇𝜂(𝑡 − 𝑠) 𝑑

𝑑𝑠 (𝑔𝜂 * ℎ)𝑑𝑠, 𝑡 > 0 is a solution of prob-
lem (𝑃 )𝜂,𝐵ℎ. On the other hand, the operator 𝐵 annihilates any function from
𝑠𝑝𝑎𝑛{𝜑𝑘 : 𝑘|𝜆 = 𝜆𝑘} so that the function 𝑡 ↦→

∑︀
𝑘|𝜆𝑘=𝜆

⟨𝑓(𝑡),𝜑𝑘⟩
𝛽𝜆2

𝑘−𝛼𝜆𝑘
𝜑𝑘, 𝑡 > 0 is a pre-

solution of problem (𝑃 )𝜂,
∑︀

𝑘|𝜆𝑘=𝜆⟨𝑓(·),𝜑𝑘⟩𝜑𝑘
, provided that the following condition

holds:
(Q) : D𝜂

𝑡 ⟨𝑓(𝑡), 𝜑𝑘⟩ exists in 𝐿2(Ω) for 𝑘|𝜆 = 𝜆𝑘, ⟨𝑥0, 𝜑𝑘⟩ = 0 for 𝑘|𝜆 ̸= 𝜆𝑘,
⟨𝑥1, 𝜑𝑘⟩ = 0 for 𝑘|𝜆 ̸= 𝜆𝑘, 1 < 𝜂 6 2, ⟨𝑥0, 𝜑𝑘⟩ = ⟨𝑓(0),𝜑𝑘⟩

𝛽𝜆2
𝑘−𝛼𝜆𝑘

for 𝑘|𝜆 = 𝜆𝑘,

and ⟨𝑥1, 𝜑𝑘⟩ = ⟨𝑓 ′(0),𝜑𝑘⟩
𝛽𝜆2

𝑘−𝛼𝜆𝑘
for 𝑘|𝜆 = 𝜆𝑘, 1 < 𝜂 6 2.

Summa summarum, we have the following:
(i) 0 < 𝜂 < 2: Suppose that 𝑥0 ∈ 𝐷(𝐴) ∩ 𝑋0, 𝑥1 ∈ 𝐷(𝐵) ∩ 𝑋0, if 𝜂 >

1,
∑︀

𝑘|𝜆𝑘 ̸=𝜆
⟨𝑓(·),𝜑𝑘⟩
𝜆−𝜆𝑘

𝜑𝑘 = ℎ ∈ 𝑊 1,1
𝑙𝑜𝑐 ([0,∞) : 𝑋0) satisfies (292), and the

condition (Q) holds. Then there exists a unique pre-solution of problem
(𝑃 )𝜂,𝑓 .

(ii) 𝜂 = 2: Suppose 𝑥1 ∈ 𝐷((−Δ)3/2) ∩ 𝑋0 and the remaining assumptions
from (i) hold. Then there exists a unique pre-solution of problem (𝑃 )𝜂,𝑓 .

Observe also that our results on the well-posedness of fractional analogue of the
Benney–Luke equation, based on a very simple approach, are completely new pro-
vided that 𝜂 > 1, as well as that we have obtained some new results on the well-
posedness of the inhomogeneous Cauchy problem 𝑃𝜂,𝑓 in the case that 𝜂 < 1
(cf. [210, Theorem 4.2] for the first result in this direction).

The following theorem can be deduced by making use of the argumentation
contained in the proof of [295, Theorem 2.16]. Here we would like to observe that
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the equality 𝑅𝜆,𝜇 = 0, stated on [295, p. 12, l. 4], can be proved by taking the
Laplace transform of term appearing on [295, p. 12, l. 1-2] in variable 𝜇, and
by using the strong analyticity of mapping 𝜆 ↦→ 𝐹 (𝜆) ∈ 𝐿(𝑋), 𝜆 ∈ 𝑁 , along
with the equality 𝑅𝜆,𝜇 = 0 for Re𝜆 > 𝜔, �̃�(𝜆)𝑘(𝜆) ̸= 0 (the repeated use of
identity [295, (2.30)] on [295, p. 12, l. 4] is wrong and makes a circulus vitiosus):

Theorem 3.2.18 (cf. [292, Theorem 2.2.4] for non-degenerate case). Suppose
that 𝛼 ∈ (0, 𝜋/2], abs(𝑘) <∞, abs(|𝑎|) <∞, and 𝑘(𝜆) can be analytically continued
to a function 𝑔 : 𝜔 + Σ𝜋

2 +𝛼 → C, where 𝜔 > max(0, abs(𝑘), abs(|𝑎|)). Suppose,
further, that 𝒜 is a closed subgenerator of an analytic (𝑎, 𝑘)-regularized 𝐶-resolvent
family (𝑅(𝑡))𝑡>0 of angle 𝛼 satisfying that the family {𝑒−𝜔𝑧𝑅(𝑧) : 𝑧 ∈ Σ𝛾} ⊆ 𝐿(𝑋)
is equicontinuous for all angles 𝛾 ∈ (0, 𝛼), as well as that the equation (272) holds
for each 𝑦 = 𝑥 ∈ 𝑋, with 𝑅1(·) and 𝐶1 replaced therein by 𝑅(·) and 𝐶, respectively.
Set

𝑁 := {𝜆 ∈ 𝜔 +Σ𝜋
2 +𝛼 : 𝑔(𝜆) ̸= 0}.

Then 𝑁 is an open connected subset of C. Assume that there exists an analytic
function �̂� : 𝑁 → C such that �̂�(𝜆) = �̃�(𝜆), Re𝜆 > 𝜔. Then the operator 𝐼 − �̂�(𝜆)𝒜
is injective for every 𝜆 ∈ 𝑁 , 𝑅(𝐶) ⊆ 𝑅(𝐼 − �̂�(𝜆)𝐶−1𝒜𝐶) for every 𝜆 ∈ 𝑁1 :=
{𝜆 ∈ 𝑁 : �̂�(𝜆) ̸= 0}, the operator (𝐼 − �̂�(𝜆)𝐶−1𝒜𝐶)−1𝐶 ∈ 𝐿(𝑋) is single-valued
(𝜆 ∈ 𝑁1), the family

{(𝜆− 𝜔)𝑔(𝜆)(𝐼 − �̂�(𝜆)𝐶−1𝒜𝐶)−1𝐶 : 𝜆 ∈ 𝑁1 ∩ (𝜔 +Σ𝜋
2 +𝛾1

)} ⊆ 𝐿(𝑋)

is equicontinuous for every angle 𝛾1 ∈ (0, 𝛼), the mapping

𝜆 ↦→ (𝐼 − �̂�(𝜆)𝐶−1𝒜𝐶)−1𝐶𝑥, 𝜆 ∈ 𝑁1 is analytic for every 𝑥 ∈ 𝑋,

and
lim

𝜆→+∞,�̃�(𝜆)�̃�(𝜆) ̸=0
𝜆𝑘(𝜆)(𝐼 − �̃�(𝜆)𝒜)−1𝐶𝑥 = 𝑅(0)𝑥, 𝑥 ∈ 𝑋.

Keeping in mind Lemma 1.2.2, Theorem 1.2.3 and Theorem 3.2.5, we can repeat
almost verbatim the proof of [292, Theorem 2.2.5] in order to see that the following
result holds.

Theorem 3.2.19. Assume that 𝒜 is a closed MLO in 𝑋, 𝐶𝒜 ⊆ 𝒜𝐶, 𝛼 ∈
(0, 𝜋/2], abs(𝑘) < ∞, abs(|𝑎|) < ∞ and 𝜔 > max(0, abs(𝑘), abs(|𝑎|)). Assume,
further, that for every 𝜆 ∈ C with Re𝜆 > 𝜔 and 𝑘(𝜆) ̸= 0, the operator 𝐼− �̃�(𝜆)𝒜 is
injective with 𝑅(𝐶) ⊆ 𝑅(𝐼− �̃�(𝜆)𝒜). If there exist a function 𝑞 : 𝜔+Σ𝜋

2 +𝛼 → 𝐿(𝑋)
and an operator 𝐷 ∈ 𝐿(𝑋) such that, for every 𝑥 ∈ 𝑋, the mapping 𝜆 ↦→ 𝑞(𝜆)𝑥,
𝜆 ∈ 𝜔 +Σ𝜋

2 +𝛼 is analytic as well as that:

𝑞(𝜆)𝑥 = 𝑘(𝜆)(𝐼 − �̃�(𝜆)𝒜)−1𝐶𝑥, Re𝜆 > 𝜔, 𝑘(𝜆) ̸= 0, 𝑥 ∈ 𝑋,

the family {(𝜆− 𝜔)𝑞(𝜆) : 𝜆 ∈ 𝜔 + Σ𝜋
2 +𝛾} ⊆ 𝐿(𝑋) is equicontinuous for 𝛾 ∈ (0, 𝛼),

and
lim

𝜆→+∞
𝜆𝑞(𝜆)𝑥 = 𝐷𝑥, 𝑥 ∈ 𝑋, if 𝐷(𝒜) ̸= 𝑋,

then 𝒜 is a subgenerator of an exponentially equicontinuous, analytic (𝑎, 𝑘)-regular-
ized 𝐶-resolvent family (𝑅(𝑡))𝑡>0 of angle 𝛼 satisfying that 𝑅(𝑧)𝒜 ⊆ 𝒜𝑅(𝑧), 𝑧 ∈
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Σ𝛼, the family {𝑒−𝜔𝑧𝑅(𝑧) : 𝑧 ∈ Σ𝛾} ⊆ 𝐿(𝑋) is equicontinuous for all angles
𝛾 ∈ (0, 𝛼), as well as that the equation (272) holds for each 𝑦 = 𝑥 ∈ 𝑋, with 𝑅1(·)
and 𝐶1 replaced therein by 𝑅(·) and 𝐶, respectively.

The classes of exponentially equicontinuous, analytic (𝑎, 𝑘)-regularized 𝐶1-
existence families and (𝑎, 𝑘)-regularized 𝐶2-uniqueness families can be introduced
and analyzed, as well. For the sequel, we need the following notion.

Definition 3.2.20. Let 𝑋 = 𝑌 , and let 𝒜 be a subgenerator of a 𝐶1-existence
family (𝑅1(𝑡))𝑡>0 (cf. Definition 3.2.1(i) with 𝑎(𝑡) ≡ 1 and 𝑘(𝑡) ≡ 1). Then
(𝑅1(𝑡))𝑡>0 is said to be entire iff, for every 𝑥 ∈ 𝑋, the mapping 𝑡 ↦→ 𝑅1(𝑡)𝑥, 𝑡 > 0
can be analytically extended to the whole complex plane.

Using the arguments contained in the proof of [296, Theorem 3.15], we can
deduce the following result.

Theorem 3.2.21. Suppose 𝑟 > 0, 𝜃 ∈ (0, 𝜋/2), 𝒜 is a closed MLO and −𝒜
is a subgenerator of an exponentially equicontinuous, analytic 𝑟-times integrated
𝐶-semigroup (𝑆𝑟(𝑡))𝑡>0 of angle 𝜃. Then there exists an operator 𝐶1 ∈ 𝐿(𝑋) such
that 𝒜 is a subgenerator of an entire 𝐶1-existence family in 𝑋.

Remark 3.2.22. (i) It should be observed that we do not require the
injectivity of operator 𝐶1 here. The operators 𝑇𝛼(𝑧) and 𝑆𝛼,𝑧0(𝑧), ap-
pearing in the proof of [296, Theorem 3.15], annulates on the subspace
𝒜0.

(ii) Theorem 3.2.21 is closely linked with the assertions of [298, Theorem
2.1, Theorem 2.2]. These results can be extended to abstract degenerate
fractional differential inclusions, as well.

Example 3.2.23. In a great number of research papers, many authors have
investigated infinitely differentiable semigroups generated by multivalued linear op-
erators of form 𝐴𝐵−1 or 𝐵−1𝐴, where the operators 𝐴 and 𝐵 satisfy the condition
[199, (3.14)], or its slight modification, with certain real constants 0 < 𝛽 6 𝛼 6 1,
𝛾 ∈ R and 𝑐, 𝐶 > 0 (in our notation, we have 𝐴 = 𝐿 and 𝐵 =𝑀). The validity of
this condition with 𝛼 = 1 (see e.g. [199, Example 3.3, 3.6]) immediately implies by
Theorem 3.2.19 and Remark 3.1.2(v) that the operator 𝐴𝐵−1 generates an expo-
nentially bounded, analytic 𝜎-times integrated semigroup of angle Σarcctan(1/𝑐), pro-
vided that 𝜎 > 1−𝛽; in the concrete situation of [199, Example 3.4, 3.5], the above
holds with the operator 𝐴𝐵−1 replaced by 𝐵−1𝐴. Unfortunately, this fact is not
sufficiently enough for taking up a fairly complete study of the abstract degenerate
Cauchy problems that are subordinated to those appearing in the above-mentioned
examples; later on, we will construct the corresponding subordination fractional
operator families with removable singularities at zero and analyze their basic struc-
tural properties (cf. the proof of [61, Theorem 3.1]). On the other hand, from the
point of view of possible applications of Theorem 3.2.21, it is very important to
know that the operators 𝐴𝐵−1 or 𝐵−1𝐴 generate exponentially bounded, analytic
integrated semigroups. This enables us to consider the abstract degenerate Cauchy
problems that are backward to those appearing in [199, Example 3.3-Example 3.6].



3.2. MULTIVALUED LINEAR OPERATORS AS SUBGENERATORS... 314

For example, we can treat the following modification of the backward Poisson heat
equation in the space 𝐿𝑝(Ω):

(𝑃 )𝑏 :

⎧⎪⎨⎪⎩
𝜕
𝜕𝑡 [𝑚(𝑥)𝑣(𝑡, 𝑥)] = −Δ𝑣 + 𝑏𝑣, 𝑡 > 0, 𝑥 ∈ Ω;

𝑣(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ [0,∞)× 𝜕Ω,

𝑚(𝑥)𝑣(0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ Ω,

where Ω is a bounded domain in R𝑛, 𝑏 > 0, 𝑚(𝑥) > 0 a.e. 𝑥 ∈ Ω, 𝑚 ∈ 𝐿∞(Ω) and
1 < 𝑝 <∞. Let 𝐵 be the multiplication in 𝐿𝑝(Ω) with 𝑚(𝑥), and let 𝐴 = Δ− 𝑏 act
with the Dirichlet boundary conditions. Then Theorem 3.2.21 implies that there
exists an operator 𝐶1 ∈ 𝐿(𝐿𝑝(Ω)) such that 𝒜 = −𝐴𝐵−1 is a subgenerator of
an entire 𝐶1-existence family; hence, for every 𝑢0 ∈ 𝑅(𝐶1), the problem (𝑃 ) has
a unique solution 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 which can be extended entirely to the whole
complex plane. Furthermore, the set of all initial values 𝑢0 for which there exists
a solution of problem (𝑃 )𝑏 is dense in 𝐿𝑝(Ω) provided that there exists a constant
𝑑 > 0 such that |𝑚(𝑥)| > 𝑑 a.e. 𝑥 ∈ Ω.

Example 3.2.24. It is clear that the examples presented in [199, Chapter III]
can serve one for examination of a wide class of abstract degenerate relaxation
equations which are not subordinated to the problems of first order (cf. Subsection
3.5.2 for the continuation): Suppose that the condition [199, (3.1)] holds with
certain real constants 0 < 𝛽 6 𝛼 6 1, 𝑐,𝑀 > 0, as well as that 𝜃 ∈ (𝜋/2, 0),
𝜁 ∈ (0, 1) and 𝜋

2 > 𝜋 − arctan 1
𝑐 + 𝜃 > 1

2𝜋𝜁. Then Σ𝜋−arctan 1
𝑐+𝜃 ⊆ 𝜌(𝑒𝑖𝜃𝒜) and, in

general, 𝜌(𝑒𝑖𝜃𝒜) does not contain any right half plane. An application of Theorem
3.2.19 shows that the operator 𝑒𝑖𝜃𝒜 generates an exponentially bounded, analytic
(𝑔𝜁 , 𝑔𝑟+1)-regularized resolvent family of angle 𝜃′ := min((𝜋 − arctan(1/𝑐) + 𝜃 −
(𝜋𝜁/2))/𝜁, 𝜋/2), where 𝑟 > 𝜁(1− 𝛽), if 𝒜 is not densely defined, and 𝑟 = 𝜁(1− 𝛽),
otherwise.

Suppose now that 𝑥 ∈ 𝐸, 1 − 𝜁 > 𝜂 > 1 − 𝜁𝛽, 𝛿 > 0, 0 < 𝛾 < 𝜃′, 𝑡 > 0 is
fixed temporarily, Γ1 := {𝑟𝑒𝑖((𝜋/2)+𝛾) : 𝑟 > 𝑡−1} ∪ {𝑡−1𝑒𝑖𝜃 : 𝜃 ∈ [0, (𝜋/2) + 𝛾]},
Γ2 := {𝑟𝑒−𝑖((𝜋/2)+𝛾) : 𝑟 > 𝑡−1} ∪ {𝑡−1𝑒𝑖𝜃 : 𝜃 ∈ [−(𝜋/2)− 𝛾, 0]} and Γ := Γ1 ∪ Γ2 is
oriented counterclockwise. Define 𝑢(0) := 0 and

𝑢(𝑡) :=
1

2𝜋𝑖

∫︁
Γ

𝑒𝜆𝑡𝜆−𝜂(𝜆𝜁 − 𝑒𝑖𝜃𝒜)−1𝑥 𝑑𝜆.

Arguing as in [27, Theorem 2.6.1, Theorem 2.6.4], it readily follows that 𝑢 ∈
𝐶([0,∞) : 𝐸), ‖𝑢(𝑡)‖ = 𝑂(𝑡𝜂+𝜁𝛽−1), 𝑡 > 0 and the mapping 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 can
be analytically extended to the sector Σ𝜃′ . Keeping in mind Theorem 1.2.3 and
Theorem 1.2.4(i), we obtain that there exists a continuous section 𝑡 ↦→ 𝑢𝒜,𝜃,𝜁(𝑡),
𝑡 > 0 of the multivalued mapping 𝑡 ↦→ 𝑒𝑖𝜃𝒜(𝑔𝜁 * 𝑢)(𝑡), 𝑡 > 0, with the meaning
clear, such that

𝑢(𝑡) = 𝑢𝒜,𝜃,𝜁(𝑡) + 𝑔𝜂+𝜁(𝑡)𝑥, 𝑡 > 0.

Observe, finally, that the Riemann–Liouville fractional derivative 𝐷𝜁
𝑡 𝑢(𝑡) need not

be defined here.
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Let us recall that for any sequence (𝑀𝑛)𝑛∈N0
of positive real numbers satisfying

𝑀0 = 1, (𝑀.1), (𝑀.2) and (𝑀.3)′, we define the function

𝜔𝐿(𝑡) :=

∞∑︁
𝑛=0

𝑡𝑛

𝑀𝑛
, 𝑡 > 0.

The most important results concerning differential properties of non-degenerate
(𝑎, 𝑘)-regularized 𝐶-resolvent families remain true, with almost minimal reformu-
lations, in our new setting. The proofs of following extensions of [292, Theorem
2.2.15, Theorem 2.2.17] are omitted.

Theorem 3.2.25. Suppose that 𝒜 is a closed MLO in 𝑋, abs(𝑘)<∞, abs(|𝑎|)<
∞, 𝑟 > −1 and there exists 𝜔 > max(0, abs(𝑘), abs(|𝑎|)) such that, for every 𝑧 ∈
{𝜆 ∈ C : Re𝜆 > 𝜔, �̃�(𝜆)𝑘(𝜆) ̸= 0}, we have that the operator 𝐼 − �̃�(𝑧)𝒜 is injective
and 𝑅(𝐶) ⊆ 𝑅(𝐼 − �̃�(𝑧)𝒜). If, additionally, for every 𝜎 > 0, there exist 𝐶𝜎 > 0
and an open neighborhood Ω𝜎,𝜔 of the region

Λ𝜎,𝜔 := {𝜆 ∈ C : Re𝜆 6 𝜔, Re𝜆 > −𝜎 ln | Im𝜆|+ 𝐶𝜎} ∪ {𝜆 ∈ C : Re𝜆 > 𝜔},

and a function ℎ𝜎 : Ω𝜎,𝜔 → 𝐿(𝑋) such that, for every 𝑥 ∈ 𝑋, the mapping 𝜆 ↦→
ℎ𝜎(𝜆)𝑥, 𝜆 ∈ Ω𝜎,𝜔 is analytic as well as that ℎ𝜎(𝜆) = 𝑘(𝜆)(𝐼 − �̃�(𝜆)𝒜)−1𝐶, Re𝜆 >

𝜔, �̃�(𝜆)𝑘(𝜆) ̸= 0, and the family {|𝜆|−𝑟ℎ𝜎(𝜆) : 𝜆 ∈ Λ𝜎,𝜔} is equicontinuous, then,
for every 𝜁 > 1, 𝒜 is a subgenerator of an exponentially equicontinuous (𝑎, 𝑘*𝑔𝜁+𝑟)-
regularized 𝐶-resolvent family (𝑅𝜁(𝑡))𝑡>0 satisfying that the mapping 𝑡 ↦→ 𝑅𝜁(𝑡),
𝑡 > 0 is infinitely differentiable in 𝐿(𝑋).

Theorem 3.2.26. Let (𝑀𝑛)𝑛∈N0 satisfy (M.1), (M.2) and (M.3)’.

(i) Suppose that abs(𝑘) < ∞, abs(|𝑎|) < ∞, 𝒜 is a closed subgenerator of a
(local) (𝑎, 𝑘)-regularized 𝐶-resolvent family (𝑅(𝑡))𝑡∈[0,𝜏),𝜔>max(0,abs(𝑘),
abs(|𝑎|)) and 𝑚 ∈ N. Denote, for every 𝜀 ∈ (0, 1) and a corresponding
𝐾𝜀 > 0,

𝐹𝜀,𝜔 := {𝜆 ∈ C : Re𝜆 > − ln𝜔𝐿(𝐾𝜀| Im𝜆|) + 𝜔}.

Assume that, for every 𝜀 ∈ (0, 1), there exist 𝐾𝜀 > 0, an open neighbor-
hood 𝑂𝜀,𝜔 of the region 𝐺𝜀,𝜔 := {𝜆 ∈ C : Re𝜆 > 𝜔, �̃�(𝜆)𝑘(𝜆) ̸= 0} ∪ {𝜆 ∈
𝐹𝜀,𝜔 : Re𝜆 6 𝜔}, a mapping ℎ𝜀 : 𝑂𝜀,𝜔 → 𝐿(𝐸) and analytic mappings
𝑓𝜀 : 𝑂𝜀,𝜔 → C, 𝑔𝜀 : 𝑂𝜀,𝜔 → C such that:
(a) 𝑓𝜀(𝜆) = 𝑘(𝜆), Re𝜆 > 𝜔; 𝑔𝜀(𝜆) = �̃�(𝜆), Re𝜆 > 𝜔,
(b) for every 𝜆 ∈ 𝐹𝜀,𝜔, the operator 𝐼 − 𝑔𝜀(𝜆)𝒜 is injective and 𝑅(𝐶) ⊆

𝑅(𝐼 − 𝑔𝜀(𝜆)𝒜),
(c) for every 𝑥 ∈ 𝑋, the mapping 𝜆 ↦→ ℎ𝜀(𝜆)𝑥, 𝜆 ∈ 𝐺𝜀,𝜔 is analytic,

ℎ𝜀(𝜆) = 𝑓𝜀(𝜆)(𝐼 − 𝑔𝜀(𝜆)𝒜)−1𝐶, 𝜆 ∈ 𝐺𝜀,𝜔,
(d) the family {(1 + |𝜆|)−𝑚𝑒−𝜀|Re𝜆|ℎ𝜀(𝜆) : 𝜆 ∈ 𝐹𝜀,𝜔, Re𝜆 6 𝜔} ⊆ 𝐿(𝑋)

is equicontinuous and the family {(1 + |𝜆|)−𝑚ℎ𝜀(𝜆) : 𝜆 ∈ C, Re𝜆 >
𝜔} ⊆ 𝐿(𝑋) is equicontinuous.



3.2. MULTIVALUED LINEAR OPERATORS AS SUBGENERATORS... 316

Then the mapping 𝑡 ↦→ 𝑅(𝑡), 𝑡 ∈ (0, 𝜏) is infinitely differentiable in 𝐿(𝑋)
and, for every compact set 𝐾 ⊆ (0, 𝜏), there exists ℎ𝐾 > 0 such that the

set {ℎ𝑛
𝐾

𝑑𝑛

𝑑𝑡𝑛 𝑅(𝑡)

𝑀𝑛
: 𝑡 ∈ 𝐾, 𝑛 ∈ N0} is equicontinuous.

(ii) Suppose that abs(𝑘) < ∞, abs(|𝑎|) < ∞, 𝒜 is a closed subgenerator of a
(local) (𝑎,𝑘)-regularized 𝐶-resolvent family (𝑅(𝑡))𝑡∈[0,𝜏), 𝜔>max(0,abs(𝑘),
abs(|𝑎|)) and 𝑚 ∈ N. Denote, for every 𝜀 ∈ (0, 1), 𝜌 ∈ [1,∞) and a
corresponding 𝐾𝜀 > 0,

𝐹𝜀,𝜔,𝜌 := {𝜆 ∈ C : Re𝜆 > −𝐾𝜀| Im𝜆|1/𝜌 + 𝜔}.

Assume that, for every 𝜀 ∈ (0, 1), there exist 𝐾𝜀 > 0, an open neighbor-
hood 𝑂𝜀,𝜔 of the region 𝐺𝜀,𝜔,𝜌 := {𝜆 ∈ C : Re𝜆 > 𝜔, �̃�(𝜆)𝑘(𝜆) ̸= 0}∪{𝜆 ∈
𝐹𝜀,𝜔,𝜌 : Re𝜆 6 𝜔}, a mapping ℎ𝜀 : 𝑂𝜀,𝜔 → 𝐿(𝑋) and analytic mappings
𝑓𝜀 : 𝑂𝜀,𝜔 → C and 𝑔𝜀 : 𝑂𝜀,𝜔 → C such that the conditions (i)(a)–(d) of
this theorem hold with 𝐹𝜀,𝜔, resp. 𝐺𝜀,𝜔, replaced by 𝐹𝜀,𝜔,𝜌, resp. 𝐺𝜀,𝜔,𝜌.
Then the mapping 𝑡 ↦→ 𝑅(𝑡), 𝑡 ∈ (0, 𝜏) is infinitely differentiable in 𝐿(𝑋)
and, for every compact set 𝐾 ⊆ (0, 𝜏), there exists ℎ𝐾 > 0 such that the

set {ℎ𝑛
𝐾

𝑑𝑛

𝑑𝑡𝑛 𝑅(𝑡)

𝑛!𝜌 : 𝑡 ∈ 𝐾, 𝑛 ∈ N0} is equicontinuous.

Let us recall that the case 𝜌 = 1 in Theorem 3.2.26 is very important because
it gives a sufficient condition for an (𝑎, 𝑘)-regularized 𝐶-resolvent family to be real
analytic.

Following J. Prüss [459, Definition 3.1, p. 68] and the author [292, Definition
2.1.23], it will be said that the abstract Volterra inclusion (262) with ℬ = 𝐼 (denoted
henceforth by (VI)) is (𝑘𝐶)-parabolic iff the following holds:

(i) |𝑎|(𝑡) and 𝑘(𝑡) satisfy (P1) and there exist meromorphic extensions of the
functions �̃�(𝜆) and 𝑘(𝜆) on C+, denoted by �̂�(𝜆) and 𝑘(𝜆). Let 𝑁 be the
subset of C+ which consists of all zeroes and possible poles of �̂�(𝜆) and
𝑘(𝜆).

(ii) There exists 𝑀 > 1 such that, for every 𝜆 ∈ C+ r 𝑁 , 1/�̂�(𝜆) ∈ 𝜌𝐶(𝒜)

and ||𝑘(𝜆)(𝐼 − �̂�(𝜆)𝒜)−1𝐶|| 6𝑀/|𝜆|.
If 𝑘(𝑡) ≡ 1, resp. 𝐶 = 𝐼, then it is also said that (VI) is 𝐶-parabolic, resp. 𝑘-
parabolic.

For the sequel, we need to repeat the following well-known notion. Suppose
that 𝑛 ∈ N, |𝑎|(𝑡) satisfies (P1) and abs(𝑎) = 0. Following [459, Definition 3.3,
p. 69], we say that 𝑎(𝑡) is 𝑛-regular iff there exists 𝑐 > 0 such that

|𝜆𝑚�̂�(𝑚)(𝜆)| 6 𝑐|�̂�(𝜆)|, 𝜆 ∈ C+, 1 6 𝑚 6 𝑛.

Set 𝑎(−1)(𝑡) :=
∫︀ 𝑡

0
𝑎(𝑠)𝑑𝑠, 𝑡 > 0 and suppose that 𝑎(𝑡) and 𝑏(𝑡) are 𝑛-regular for some

𝑛 ∈ N. Then we know that �̂�(𝜆) ̸= 0, 𝜆 ∈ C+, as well as that (𝑎 * 𝑏)(𝑡) and 𝑎(−1)(𝑡)
are 𝑛-regular, and 𝑎′(𝑡) is 𝑛-regular provided that abs(𝑎′) = 0. Furthermore, the
𝑛-regularity of 𝑎(𝑡) is equivalent to say that there exists 𝑐′ > 0 such that

|(𝜆𝑚�̂�(𝜆))(𝑚)| 6 𝑐′|�̂�(𝜆)|, 𝜆 ∈ C+, 1 6 𝑚 6 𝑛.
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In the case that arg(�̂�(𝜆)) ̸= 𝜋, 𝜆 ∈ C+, the 𝑛-regularity of 𝑎(𝑡) is also equivalent
with the existence of a constant 𝑐′′ > 0 such that

|𝜆𝑚(ln �̂�(𝜆))(𝑚)| 6 𝑐′′, 𝜆 ∈ C+, 1 6 𝑚 6 𝑛.

The assertion of [292, Theorem 2.1.24] continues to hold in the degenerate case:

Theorem 3.2.27. Assume 𝑛 ∈ N, 𝑎(𝑡) is 𝑛-regular, (𝐸, ‖·‖) is a Banach space,
𝒜 is a closed MLO in 𝐸, (VI) is 𝐶-parabolic, and the mapping 𝜆 ↦→ (𝐼−�̃�(𝜆)𝒜)−1𝐶,
𝜆 ∈ C+ is continuous. Denote by 𝐷𝜁

𝑡 the Riemann–Liouville fractional derivative
of order 𝜁 > 0. Then, for every 𝛼 ∈ (0, 1], 𝒜 is a subgenerator of an (𝑎, 𝑔𝛼+1)-
regularized 𝐶2-resolvent family (𝑆𝛼(𝑡))𝑡>0 which satisfies supℎ>0,𝑡>0 ℎ

−𝛼||𝑆𝛼(𝑡 +

ℎ)− 𝑆𝛼(𝑡)|| <∞, 𝐷𝛼
𝑡 𝑆𝛼(𝑡)𝐶

𝑘−1 ∈ 𝐶𝑘−1((0,∞) : 𝐿(𝐸)), 1 6 𝑘 6 𝑛 as well as:

(293) ‖𝑡𝑗𝐷𝑗
𝑡𝐷

𝛼
𝑡 𝑆𝛼(𝑡)𝐶

𝑘−1‖ 6𝑀, 𝑡 > 0, 1 6 𝑘 6 𝑛, 0 6 𝑗 6 𝑘 − 1,

(294) ‖𝑡𝑘𝐷𝑘−1
𝑡 𝐷𝛼

𝑡 𝑆𝛼(𝑡)𝐶
𝑘−1 − 𝑠𝑘𝐷𝑘−1

𝑠 𝐷𝛼
𝑠 𝑆𝛼(𝑠)𝐶

𝑘−1‖

6𝑀 |𝑡− 𝑠|
(︁
1 + ln

𝑡

𝑡− 𝑠

)︁
, 0 6 𝑠 < 𝑡 <∞, 1 6 𝑘 6 𝑛,

and, for every 𝑇 > 0, 𝜀 > 0 and 𝑘 ∈ N𝑛, there exists 𝑀𝜀
𝑇,𝑘 > 0 such that

(295) ‖𝑡𝑘𝐷𝑘−1
𝑡 𝐷𝛼

𝑡 𝑆𝛼(𝑡)𝐶
𝑘−1 − 𝑠𝑘𝐷𝑘−1

𝑠 𝐷𝛼
𝑠 𝑆𝛼(𝑠)𝐶

𝑘−1‖
6𝑀𝜀

𝑇,𝑘(𝑡− 𝑠)1−𝜀, 0 6 𝑠 < 𝑡 6 𝑇, 1 6 𝑘 6 𝑛.

Furthermore, if 𝒜 is densely defined, then 𝒜 is a subgenerator of a bounded (𝑎,𝐶2)-
regularized resolvent family (𝑆(𝑡))𝑡>0 which satisfies 𝑆(𝑡)𝐶𝑘−1 ∈ 𝐶𝑘−1((0,∞) :
𝐿(𝐸)), 1 6 𝑘 6 𝑛 and (293)–(295) with 𝐷𝛼

𝑡 𝑆𝛼(𝑡)𝐶
𝑘−1 replaced by 𝑆(𝑡)𝐶𝑘−1 (1 6

𝑘 6 𝑛) therein.

The representation formula [459, (3.41), p. 81] and the assertions of [459,
Corollary 3.2-Corollary 3.3, pp. 74–75] can be extended to exponentially bounded
(𝑎,𝐶)-regularized resolvent families subgenerated by multivalued linear operators,
as well. For more details about parabolicity of problem (VI) in non-degenerate
case, we refer the reader to [459, Chapter I, Section 3].

In the remainder of this section, we consider the abstract degenerate Volterra
inclusion

(296) 0 ∈ ℬ𝑢(𝑡) +
𝑛−1∑︁
𝑗=0

𝒜𝑗(𝑎𝑗 * 𝑢)(𝑡) + ℱ(𝑡), 𝑡 ∈ [0, 𝜏).

Here, 𝑛 ∈ N, 0 < 𝜏 6 ∞, ℱ : [0, 𝜏) → 𝑃 (𝑌 ), 𝑎0, . . . , 𝑎𝑛−1 ∈ 𝐿1
𝑙𝑜𝑐([0, 𝜏)), and

𝒜 ≡ 𝒜0, . . . ,𝒜𝑛−1,ℬ ≡ 𝒜𝑛 are multivalued linear operators acting between the
sequentially complete locally convex spaces 𝑋 and 𝑌 . Set 𝑎𝑛(𝑡) := 𝛿-distribution
and 𝛿 := 1. In the following definition, we introduce the notion of a 𝒱-(pre)-solution
of inclusion (296); see Introduction.

Definition 3.2.28. Suppose 𝒱 ⊆ N0
𝑛.
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(i) A function 𝑢 ∈ 𝐶([0, 𝜏) : 𝑋) is said to be a 𝒱-pre-solution of problem
(296) iff there exist functions 𝑢𝑗 ∈ 𝐶([0, 𝜏) : 𝑌 ) (𝑗 ∈ N0

𝑛 r 𝒱) such that
𝑢𝑗(𝑡) ∈ 𝒜𝑗𝑢(𝑡), 𝑡 ∈ [0, 𝜏), 𝑗 ∈ N0

𝑛r𝒱, (𝑎𝑗 *𝑢)(𝑡) ∈ 𝐷(𝒜𝑗), 𝑡 ∈ [0, 𝜏), 𝑗 ∈ 𝒱
and

0 ∈
∑︁

𝑗∈N0
𝑛r𝒱

(𝑎𝑗 * 𝑢𝑗)(𝑡) +
∑︁
𝑗∈𝒱

𝒜𝑗(𝑎𝑗 * 𝑢)(𝑡) + ℱ(𝑡), 𝑡 ∈ [0, 𝜏).

(ii) A function 𝑢 ∈ 𝐶([0, 𝜏) : 𝑋) is said to be a 𝒱-solution of problem (296)
iff there exist functions 𝑢𝑗 ∈ 𝐶([0, 𝜏) : 𝑌 ) (𝑗 ∈ N0

𝑛 r 𝒱) and 𝑢𝑗,𝒜𝑗 ∈
𝐶([0, 𝜏) : 𝑌 ) (𝑗 ∈ 𝒱) such that 𝑢𝑗(𝑡) ∈ 𝒜𝑗𝑢(𝑡), 𝑡 ∈ [0, 𝜏), 𝑗 ∈ N0

𝑛 r 𝒱,
𝑢𝑗,𝒜𝑗

(𝑡) ∈ 𝒜𝑗(𝑎𝑗 * 𝑢)(𝑡), 𝑡 ∈ [0, 𝜏), 𝑗 ∈ 𝒱 and

(297) 0 ∈
∑︁

𝑗∈N0
𝑛r𝒱

(𝑎𝑗 * 𝑢𝑗)(𝑡) +
∑︁
𝑗∈𝒱

𝑢𝑗,𝒜𝑗
(𝑡) + ℱ(𝑡), 𝑡 ∈ [0, 𝜏).

Suppose that 𝒱 ⊆ N0
𝑛 and 𝑢(𝑡) is a 𝒱-solution of problem (296). Then it is

clear that sec𝑐(ℱ) ̸= ∅. Furthermore, if 𝒱1 ⊆ 𝒱2 ⊆ N0
𝑛, then we can simply prove

with the help of Theorem 1.2.3 that any 𝒱1-(pre)-solution of problem (296) is a 𝒱2-
(pre)-solution of (296), provided that the operators 𝒜𝑗 are closed for 𝑗 ∈ 𝒱2 r 𝒱1.
If 𝒱 = ∅, then the notion of a pre-solution of (296) coincides with that of solution
of (296); if this is the case, then any solution of (296) is also said to be a strong
solution of (296). Here it is worth noting that the assumption 𝑢 ∈ 𝐶([0, 𝜏) : 𝑋)
in Definition 3.2.28(i) is slightly redundant in the case that 𝒱 = ∅ because then
we do not have a problem with defining the convolutions (𝑎𝑗 * 𝑢)(𝑡) for 𝑗 ∈ 𝒱.
Assuming 𝒱 = ∅ and all the remaining assumptions from Definition 3.2.28(i) hold,
𝑢(𝑡) will be called a 𝑝-strong solution of problem (296). In the case that 𝑛 = 1, the
most important examples of 𝑝-strong solutions of problem (296) with 𝑎0(𝑡) = 𝑔𝛼(𝑡),
where 𝛼 > 0, are obtained by integrating 𝛼-times 𝑝-solutions of abstract degenerate
fractional problem (DFP)𝑅.

Remark 3.2.29. Suppose that 𝐴0, . . . , 𝐴𝑛−1, 𝐵 are single-valued linear opera-
tors between the spaces 𝑋 and 𝑌 , and the mapping 𝑓 : [0, 𝜏) → 𝐷(𝐵) is given in
advance. Consider the following degenerate Volterra integral equation:

(298) 0 = 𝐵𝑢(𝑡) +

𝑛−1∑︁
𝑗=0

𝐴𝑗(𝑎𝑗 * 𝑢)(𝑡) +𝐵𝑓(𝑡), 𝑡 ∈ [0, 𝜏),

which is, unquestionably, the most important subcase of (296). Along with this
equation, we examine the accompanied problem of type (296):

(299) 0 ∈ 𝑢(𝑡) +

𝑛−1∑︁
𝑗=0

𝐵−1𝐴𝑗(𝑎𝑗 * 𝑢)(𝑡) + 𝑓(𝑡), 𝑡 ∈ [0, 𝜏),

with the multivalued linear operators 𝒜0 := 𝐵−1𝐴0, . . . ,𝒜𝑛−1 := 𝐵−1𝐴𝑛−1,ℬ := 𝐼
in 𝑋. Let 𝒱 ⊆ N0

𝑛. Then the following holds:
(i) If 𝒱 = N0

𝑛, then any 𝒱-pre-solution of problem (299) is a 𝒱-pre-solution
of problem (298).
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(ii) If 𝐵 ∈ 𝐿(𝑋,𝑌 ), then any 𝒱-(pre)-solution of problem (299) is a 𝒱-(pre)-
solution of problem (298).

Remark 3.2.30. Suppose that 𝜏 = ∞, |𝑎𝑗 |(𝑡) (0 6 𝑗 6 𝑛−1) satisfy (P1), and
the MLOs 𝒜𝑗 are closed for 0 6 𝑗 6 𝑛. Let 𝑢 ∈ 𝐶([0, 𝜏) : 𝑋), 𝑢𝑗 ∈ 𝐶([0, 𝜏) : 𝑌 )
(𝑗 ∈ N0

𝑛r𝒱), and 𝑢𝑗,𝒜𝑗
∈ 𝐶([0, 𝜏) : 𝑌 ) (𝑗 ∈ 𝒱) be Laplace transformable functions.

Suppose that there exists a real number 𝜔 > max(0, abs(|𝑎𝑗 |)) (0 6 𝑗 6 𝑛−1) such
that ̃︀𝑢𝑗(𝜆) ∈ 𝒜𝑗 �̃�(𝜆), 𝜆 > 𝜔, 𝑗 ∈ N0

𝑛 r 𝒱 and 𝑢𝑗,𝒜𝑗
(𝜆) ∈ 𝒜𝑗( ̃︀𝑎𝑗(𝜆)�̃�(𝜆)), 𝜆 > 𝜔,

𝑗 ∈ 𝒱. Then an application of Proposition 1.4.7 yields that 𝑢𝑗(𝑡) ∈ 𝒜𝑗𝑢(𝑡), 𝑡 > 0,
𝑗 ∈ N0

𝑛 r 𝒱 and 𝑢𝑗,𝒜𝑗
(𝑡) ∈ 𝒜𝑗(𝑎𝑗 * 𝑢)(𝑡), 𝑡 > 0, 𝑗 ∈ 𝒱. If, in addition to this,

there exists a continuous section 𝑓 ∈ sec𝑐(ℱ) that is Laplace transformable (not
necessarily exponentially bounded) and∑︁

𝑗∈N0
𝑛r𝒱

̃︀𝑎𝑗(𝜆) ̃︀𝑢𝑗(𝜆) +∑︁
𝑗∈𝒱

𝑢𝑗,𝒜𝑗
(𝜆) + 𝑓(𝜆) = 0, 𝜆 > 𝜔,

then the uniqueness theorem for Laplace transform implies that 𝑢(𝑡) is a 𝒱-solution
of problem (296).

The proofs of following subordination principles for 𝒱-solutions of problem
(296) are standard and therefore omitted; it is worth noting that we can formu-
late similar results provided that the multivalued linear operators employed in our
analysis are relatively closed.

Theorem 3.2.31. Suppose that 𝜏 = ∞, 𝛾 ∈ (0, 1), 𝜔 > 0, |𝑎𝑗 |(𝑡) and |𝑏𝑗 |(𝑡)
(0 6 𝑗 6 𝑛− 1) satisfy (P1), 𝑏𝑛(𝑡) := 𝛿-distribution and

̃︀𝑎𝑗(𝜆𝛾) := ̃︀𝑏𝑗(𝜆), 𝜆 > 𝜔.

Suppose that the MLOs 𝒜𝑗 are closed for 0 6 𝑗 6 𝑛. Let 𝑢 ∈ 𝐿𝑇𝑜𝑟 − 𝑋 be a
𝒱-solution of problem (296), with ℱ = 𝑓 ∈ 𝐿𝑇𝑜𝑟 − 𝑌 being single-valued, and the
functions 𝑢𝑗 ∈ 𝐶([0, 𝜏) : 𝑌 ) (𝑗 ∈ N0

𝑛 r 𝒱), 𝑢𝑗,𝒜𝑗
∈ 𝐶([0, 𝜏) : 𝑌 ) (𝑗 ∈ 𝒱), appearing

in (297), being Laplace transformable and exponentially bounded. Define

𝑢𝛾(𝑡) : =

∫︁ ∞

0

𝑡−𝛾Φ𝛾(𝑠𝑡
−𝛾)𝑢(𝑠)𝑑𝑠, 𝑡 > 0, 𝑢𝛾(0) := 𝑢(0),

𝑢𝑗,𝛾(𝑡) : =

∫︁ ∞

0

𝑡−𝛾Φ𝛾(𝑠𝑡
−𝛾)𝑢𝑗(𝑠)𝑑𝑠, 𝑡 > 0, 𝑢𝑗,𝛾(0) := 𝑢𝑗(0), 𝑗 ∈ N0

𝑛 r 𝒱,

𝑢𝑗,𝒜𝑗 ,𝛾(𝑡) : =

∫︁ ∞

0

𝑡−𝛾Φ𝛾(𝑠𝑡
−𝛾)𝑢𝑗,𝒜𝑗 (𝑠)𝑑𝑠, 𝑡 > 0, 𝑢𝑗,𝒜𝑗 ,𝛾(0) := 𝑢𝑗,𝒜𝑗 (0), 𝑗 ∈ 𝒱,

𝑓𝛾(𝑡) : =

∫︁ ∞

0

𝑡−𝛾Φ𝛾(𝑠𝑡
−𝛾)𝑓(𝑠)𝑑𝑠, 𝑡 > 0, 𝑓𝛾(0) := 𝑓(0).

Then the function 𝑢𝛾(𝑡) is an exponentially bounded 𝒱-solution of problem (296),
with the functions 𝑎𝑗(𝑡) replaced by 𝑏𝑗(𝑡) (0 6 𝑗 6 𝑛−1) and the inhomogeneity ℱ(𝑡)
replaced by 𝑓𝛾(𝑡). Furthermore, the functions 𝑢𝑗,𝛾 ∈ 𝐶([0, 𝜏) : 𝑌 ) (𝑗 ∈ N0

𝑛r𝒱) and
𝑢𝑗,𝒜𝑗 ,𝛾 ∈ 𝐶([0, 𝜏) : 𝑌 ) (𝑗 ∈ 𝒱) satisfy the requirements from Definition 3.2.28(ii).
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Theorem 3.2.32. Let |𝑎𝑗 |(𝑡), |𝑏𝑗 |(𝑡) and 𝑐(𝑡) satisfy (P1), let 𝛽 > 0 be such
that

∫︀∞
0
𝑒−𝛽𝑡|𝑏𝑗(𝑡)|𝑑𝑡 <∞, 𝑗 ∈ N0

𝑛−1, and let 𝒜𝑗 be closed for 0 6 𝑗 6 𝑛; 𝑏𝑛(𝑡) := 𝛿-
distribution. Set

𝛼 := 𝑐−1
(︁ 1
𝛽

)︁
if
∫︁ ∞

0

𝑐(𝑡)𝑑𝑡 >
1

𝛽
, 𝛼 := 0 otherwise.

Let 𝑢𝑏 ∈ 𝐿𝑇𝑜𝑟 −𝑋 be a 𝒱-solution of problem (296), with the function ℱ = 𝑓 𝑏 ∈
𝐿𝑇𝑜𝑟 − 𝑌 being single-valued, and let the set {𝑒−𝜔𝑏𝑡𝑢𝑏(𝑡) : 𝑡 > 0} be bounded in 𝑋
(𝜔𝑏 > 0). Let 𝑢𝑏𝑗 ∈ 𝐿𝑇𝑜𝑟 − 𝑌 (𝑗 ∈ N0

𝑛 r 𝒱) and 𝑢𝑏𝑗,𝒜𝑗
∈ 𝐿𝑇𝑜𝑟 − 𝑌 (𝑗 ∈ 𝒱) be the

functions fulfilling the requirements from Definition 3.2.28(ii). Suppose that 𝑐(𝑡) is
completely positive and

(300) ̃︀𝑏𝑗(1/𝑐(𝜆)) = ̃︀𝑎𝑗(𝜆), 𝑗 ∈ N0
𝑛−1, 𝜆 > 𝛼.

Let

𝜔𝑎 = 𝑐−1
(︁ 1

𝜔𝑏

)︁
if
∫︁ ∞

0

𝑐(𝑡)𝑑𝑡 >
1

𝜔𝑏
, 𝜔𝑎 = 0 otherwise.

Then, for every 𝑟 ∈ (0, 1], there exist locally Hölder continuous (with the exponent
𝑟 ∈ (0, 1]) functions 𝑢𝑎,𝑟 ∈ 𝐿𝑇𝑜𝑟−𝑋, 𝑢𝑎,𝑟𝑗 ∈ 𝐿𝑇𝑜𝑟−𝑌 (𝑗 ∈ N0

𝑛r𝒱), 𝑢𝑎,𝑟𝑗,𝒜𝑗
∈ 𝐿𝑇𝑜𝑟−𝑌

(𝑗 ∈ 𝒱) and 𝑓𝑎 ∈ 𝐿𝑇𝑜𝑟 − 𝑌 such that

̃︂𝑢𝑎,𝑟(𝜆) = 1

𝜆1+𝑟𝑐(𝜆)
̃︀𝑢𝑏(1/𝑐(𝜆)), 𝜆 > 𝛼,

̃︂𝑢𝑎,𝑟𝑗 (𝜆) =
1

𝜆1+𝑟𝑐(𝜆)
̃︀𝑢𝑏𝑗(1/𝑐(𝜆)), 𝑗 ∈ N0

𝑛 r 𝒱, 𝜆 > 𝛼,

𝑢𝑎,𝑟𝑗,𝒜𝑗
(𝜆) =

1

𝜆1+𝑟𝑐(𝜆)
𝑢𝑏𝑗,𝒜𝑗

(1/𝑐(𝜆)), 𝑗 ∈ N0
𝑛 r 𝒱, 𝜆 > 𝛼

and ̃︂𝑓𝑎,𝑟(𝜆) = 1

𝜆1+𝑟𝑐(𝜆)
̃︀𝑓 𝑏(1/𝑐(𝜆)) for 𝜆 > 𝛼.

Furthermore, for every 𝑟 ∈ (0, 1], 𝑢𝑎,𝑟(𝑡) is a 𝒱-solution of problem (296), with the
function ℱ = 𝑓𝑎,𝑟, as well as the functions 𝑢𝑎,𝑟𝑗 (𝑡) (𝑗 ∈ N0

𝑛r𝒱) and 𝑢𝑎,𝑟𝑗,𝒜𝑗
(𝑡) (𝑗 ∈ 𝒱)

satisfy the requirements from Definition 3.2.28(ii), and the set {𝑒−𝜔𝑎𝑡𝑢𝑎,𝑟(𝑡) : 𝑡 > 0}
is bounded in 𝑋, if 𝜔𝑏 = 0 or 𝜔𝑏𝑐(0) ̸= 1, resp., the set {𝑒−𝜀𝑡𝑢𝑎,𝑟(𝑡) : 𝑡 > 0} is
bounded in 𝑋 for any 𝜀 > 0, if 𝜔𝑏 > 0 and 𝜔𝑏𝑐(0) = 1.

It is worth noting that the mapping 𝑡 ↦→ 𝑢𝛾(𝑡), 𝑡 > 0 (cf. Theorem 3.2.31) ad-
mits an extension to Σmin(( 1

𝛾 −1)𝜋
2 ,𝜋) and the mapping 𝑧 ↦→ 𝑢𝛾(𝑧), 𝑧 ∈ Σmin(( 1

𝛾 −1)𝜋
2 ,𝜋)

is analytic. Furthermore, the solution 𝑢𝛾(𝑡) possesses some extra properties clarified
so many times before.

Assume that 𝑍 is a sequentially complete locally convex space. We would like
to propose the following general definition.

Definition 3.2.33. Suppose that 𝑘∈𝐶([0, 𝜏)), 𝐶1∈𝐿(𝑍, 𝑌 ) and (𝐸(𝑡))𝑡∈[0,𝜏) ⊆
𝐿(𝑍,𝑋) is a strongly continuous operator family.
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(i) It is said that (𝐸(𝑡))𝑡∈[0,𝜏) is a pre-(𝑘,𝐶1,𝒱)-existence family for (296)
iff for each 𝑧 ∈ 𝑍 there exist continuous sections 𝑢𝑗,𝑧 ∈sec𝑐(𝒜𝑗𝐸(·)𝑧)
(𝑗 ∈ N0

𝑛r𝒱) such that (𝑎𝑗*𝐸(·)𝑧)(𝑡) ∈ 𝐷(𝒜𝑗), 𝑡 ∈ [0, 𝜏), 𝑗 ∈ 𝒱, 𝑧 ∈ 𝑍 and

0 ∈
∑︁

𝑗∈N0
𝑛r𝒱

(𝑎𝑗 * 𝑢𝑗,𝑧)(𝑡) +
∑︁
𝑗∈𝒱

𝒜𝑗(𝑎𝑗 * 𝐸(·)𝑧)(𝑡) + 𝑘(𝑡)𝐶1𝑧, 𝑡 ∈ [0, 𝜏), 𝑧 ∈ 𝑍.

(ii) It is said that (𝐸(𝑡))𝑡∈[0,𝜏) is a (𝑘,𝐶1,𝒱)-existence family for (296) iff
for each 𝑧 ∈ 𝑍 there exist continuous sections 𝑢𝑗,𝑧 ∈sec𝑐(𝒜𝑗𝐸(·)𝑧) (𝑗 ∈
N0

𝑛 r 𝒱) and 𝑢𝑗,𝒜𝑗 ,𝑧 ∈sec𝑐(𝒜𝑗(𝑎𝑗 * 𝐸(·)𝑧)) such that

(301)
∑︁

𝑗∈N0
𝑛r𝒱

(𝑎𝑗 * 𝑢𝑗,𝑧)(𝑡) +
∑︁
𝑗∈𝒱

𝑢𝑗,𝒜𝑗 ,𝑧(𝑡) + 𝑘(𝑡)𝐶1𝑧 = 0, 𝑡 ∈ [0, 𝜏), 𝑧 ∈ 𝑍.

If card(𝒱) 6 1, then any pre-(𝑘,𝐶1,𝒱)-existence family for (296) is automat-
ically a (𝑘,𝐶1,𝒱)-existence family for (296). Moreover, if (𝐸(𝑡))𝑡∈[0,𝜏) is a (pre-)
(𝑘,𝐶1,𝒱)-existence family for (296), then it is clear that, for every 𝑧 ∈ 𝑍, the
mapping 𝑢𝑧(𝑡) := 𝐸(𝑡)𝑧, 𝑡 ∈ [0, 𝜏) is a 𝒱(-pre)-solution of problem (296) with
ℱ(𝑡) := 𝑘(𝑡)𝐶1𝑧, 𝑡 ∈ [0, 𝜏). In our analyses of uniqueness of solutions of problem
(296), it will be crucial for us to assume that 𝑋 = 𝑌 . We will use the following
definition.

Definition 3.2.34. Suppose that 𝑘 ∈ 𝐶([0, 𝜏)), 𝐶2 ∈ 𝐿(𝑋) is injective,
(𝑈(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑋) is strongly continuous and 𝑋 = 𝑌 . Then we say that
(𝑈(𝑡))𝑡∈[0,𝜏) is a 𝑘-regularized 𝐶2-uniqueness family for (296) iff

𝑈(𝑡)𝑥𝑛 +

𝑛−1∑︁
𝑗=0

(𝑎𝑗 * 𝑈(·)𝑥𝑗) + 𝑘(𝑡)𝐶2𝑥 = 0, 𝑡 ∈ [0, 𝜏),

whenever 𝑥 ∈
⋂︀𝑛

𝑗=0𝐷(𝒜𝑗) and 𝑥𝑗 ∈ 𝒜𝑗𝑥 (0 6 𝑗 6 𝑛).

The validity of following proposition can be simply verified.

Proposition 3.2.35. Suppose that 𝑘 ∈ 𝐶([0, 𝜏)), 𝑘(𝑡) is a kernel on [0, 𝜏),
𝐶2 ∈ 𝐿(𝑋) is injective, (𝑈(𝑡))𝑡∈[0,𝜏) is a locally equicontinuous 𝑘-regularized 𝐶2-
uniqueness family for (296), 𝑋 = 𝑌 and the function ℱ = 𝑓 : [0, 𝜏) → 𝑌 is single-
valued. Then the problem (296) has at most one strong solution.

Observe that, in the formulation of Proposition 3.2.35, we do not require
the closedness of multivalued linear operators 𝒜0, . . . ,𝒜𝑛−1,ℬ. Using Proposi-
tion 3.2.35, we can simply prove that there exists a unique 𝒱-solution of problem
(296), provided the closedness of all operators 𝒜0, . . . ,𝒜𝑛−1,ℬ and the validity of
conditions from Proposition 3.2.35.

The class of exponentially equicontinuous 𝑘-regularized 𝐶2-uniqueness families
for (123) can be simply characterized by using the vector-valued Laplace transform:

Theorem 3.2.36. Let 𝑘(𝑡) and |𝑎𝑗 |(𝑡) (0 6 𝑗 6 𝑛−1) satisfy (P1). Suppose that
𝜏 = ∞, 𝑘 ∈ 𝐶([0,∞)), 𝐶2 ∈ 𝐿(𝑋) is injective, (𝑈(𝑡))𝑡>0 is strongly continuous
and the operator family {𝑒−𝜔𝑡𝑈(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑋) is equicontinuous for some
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real number 𝜔 > max(0, abs(𝑘), abs(|𝑎𝑗 |)) (0 6 𝑗 6 𝑛 − 1). Then (𝑈(𝑡))𝑡>0 is a
𝑘-regularized 𝐶2-uniqueness family for (296) iff the following holds:∫︁ ∞

0

𝑒−𝜆𝑡𝑈(𝑡)

[︂
𝑥𝑛 +

𝑛−1∑︁
𝑗=0

̃︀𝑎𝑗(𝜆)𝑥𝑗]︂𝑑𝑡 = −𝑘(𝜆)𝐶2𝑥, Re𝜆 > 𝜔,

whenever 𝑥 ∈
⋂︀𝑛

𝑗=0𝐷(𝒜𝑗) and 𝑥𝑗 ∈ 𝒜𝑗𝑥 (0 6 𝑗 6 𝑛).

The proof of following subordination principle for 𝑘-regularized 𝐶2-uniqueness
families is omitted.

Theorem 3.2.37. Suppose that 𝜏 = ∞, 𝑘, 𝑘1 ∈ 𝐶([0,∞)), 𝐶2 ∈ 𝐿(𝑋) is injec-
tive, 𝑐(𝑡) is completely positive, 𝑐(𝑡), 𝑘(𝑡), 𝑘1(𝑡), |𝑎0|(𝑡), . . . , |𝑎𝑛−1|(𝑡), |𝑏0|(𝑡), . . . ,
|𝑏𝑛−1|(𝑡) satisfy (P1), and (𝑈(𝑡))𝑡>0 is an exponentially equicontinuous 𝑘-regular-
ized 𝐶2-uniqueness family for problem (296), with the functions 𝑎𝑗(𝑡) replaced by
functions 𝑏𝑗(𝑡) therein (0 6 𝑗 6 𝑛). Let 𝜔0 > 0 be such that, for every 𝜆 > 𝜔0

with 𝑐(𝜆) ̸= 0 and 𝑘(1/𝑐(𝜆)) ̸= 0, (300) holds. Then for each 𝑟 ∈ (0, 1] there
exists a locally Hölder continuous (with exponent 𝑟), exponentially equicontinuous
(𝑘1 * 𝑔𝑟)-regularized 𝐶2-uniqueness family for (296).

On the other hand, the class of exponentially equicontinuous pre-(𝑘,𝐶1,𝒱)-ex-
istence families for (296) cannot be so simply characterized with the help of vector-
valued Laplace transform. As the next theorem shows, this is not the case with the
class of exponentially equicontinuous (𝑘,𝐶1,𝒱)-existence families for (296):

Theorem 3.2.38. Suppose that 𝜏 = ∞, 𝑘 ∈ 𝐶([0,∞)), 𝑘(𝑡) and |𝑎𝑗 |(𝑡) (0 6
𝑗 6 𝑛 − 1) satisfy (P1) and (𝐸(𝑡))𝑡>0 is a (𝑘,𝐶1,𝒱)-existence family for (296).
Let 𝒜𝑗 be closed for 0 6 𝑗 6 𝑛. Suppose that there exists a real number 𝜔 >
max(0, abs(𝑘), abs(|𝑎𝑗 |)) (0 6 𝑗 6 𝑛− 1) such that the operator family {𝑒−𝜔𝑡𝐸(𝑡) :
𝑡 > 0} ⊆ 𝐿(𝑍,𝑋) is equicontinuous, as well as that the continuous sections 𝑢𝑗,𝑧 ∈
sec𝑐(𝒜𝑗𝐸(·)𝑧) (𝑗 ∈ N0

𝑛 r𝒱) and 𝑢𝑗,𝒜𝑗 ,𝑧 ∈ sec𝑐(𝒜𝑗(𝑎𝑗 *𝐸(·)𝑧)), appearing in (301),
are exponentially bounded with the exponential growth bound less than or equal to
𝜔 (and the meaning clear). Set

𝒫𝜆 :=

𝑛∑︁
𝑗=0

̃︀𝑎𝑗(𝜆)𝒜𝑗 , Re𝜆 > 𝜔.

Then, for every 𝜆 ∈ C with Re𝜆 > 𝜔 and ̃︀𝑎𝑗(𝜆) ̸= 0 (𝑗 ∈ 𝒱), we have

𝑘(𝜆)𝐶1𝑧 ∈ 𝒫𝜆
̃︀𝐸(𝜆)𝑧, 𝑧 ∈ 𝑍.

Proof. Performing the Laplace transform, we get:

(302)
∑︁

𝑗∈N0
𝑛r𝒱

̃︀𝑎𝑗(𝜆)̃︂𝑢𝑗,𝑧(𝜆) +∑︁
𝑗∈𝒱

𝑢𝑗,𝒜𝑗 ,𝑧(𝜆) + 𝑘(𝜆)𝐶1𝑧 = 0, Re𝜆 > 𝜔, 𝑧 ∈ 𝑍.

Since the operators 𝒜𝑗 are closed for 0 6 𝑗 6 𝑛, we can apply Theorem 1.2.3 in
order to see that ̃︂𝑢𝑗,𝑧(𝜆) ∈ 𝒜𝑗

̃︀𝐸(𝜆)𝑧 (𝑗 ∈ N0
𝑛 r 𝒱, Re𝜆 > 𝜔)
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and

𝑢𝑗,𝒜𝑗 ,𝑧(𝜆) ∈ 𝒜𝑗
˜(𝑎𝑗 * 𝐸(·)𝑧)(𝜆) = 𝒜𝑗 [ ̃︀𝑎𝑗(𝜆) ̃︀𝐸(𝜆)𝑧] (𝑗 ∈ 𝒱, Re𝜆 > 𝜔).

Substituting this in (302) and using the fact that 𝒜𝑗 [ ̃︀𝑎𝑗(𝜆) ̃︀𝐸(𝜆)𝑧] = ̃︀𝑎𝑗(𝜆)𝒜𝑗
̃︀𝐸(𝜆)𝑧

(𝑗 ∈ 𝒱, Re𝜆 > 𝜔, ̃︀𝑎𝑗(𝜆) ̸= 0), the result immediately follows. �

The assertion of Theorem 2.3.33(i)/(b) can be extended to multivalued linear
operators by assuming some very restrictive additional conditions. Contrary to
this, the assertion of Theorem 2.3.32(i) admits a very simple reformulation in our
context:

Theorem 3.2.39. Suppose that 0 6 𝛼0 < · · · < 𝛼𝑛 and 𝒱 = N0
𝑛. Let

(𝐸(𝑡))𝑡∈[0,𝜏) be a (𝑔1, 𝐶1,𝒱)-existence family for (296), with 𝑎𝑗(𝑡) := 𝑔𝛼𝑛−𝛼𝑗 (𝑡)
(0 6 𝑗 6 𝑛 − 1), and let 0 < 𝑇 < 𝜏 . Suppose, further, that 𝒜𝑗 is closed for
0 6 𝑗 6 𝑛. Set 𝑚𝑖 := ⌈𝛼𝑖⌉, 𝑖 ∈ N0

𝑛 and, for every 𝑖 ∈ N0
𝑚𝑛−1, 𝐷𝑖 := {𝑗 ∈ N𝑛−1 :

𝑚𝑗 − 1 > 𝑖}, 𝐷′
𝑖 := {𝑗 ∈ N0

𝑛−1 : 𝑚𝑗 − 1 > 𝑖}, 𝐷′′
𝑖 := N0

𝑛−1 r𝐷′
𝑖 and

D𝑖 :=

{︂
𝑢𝑖 ∈

⋂︁
𝑗∈𝐷′′

𝑖

𝐷(𝒜𝑗) : 𝒜𝑗𝑢𝑖 ∩𝑅(𝐶1) ̸= ∅, 𝑗 ∈ 𝐷′′
𝑖

}︂
.

If 𝑢𝑖 ∈ D𝑖 for 0 6 𝑖 6 𝑚𝑛−1, then we define 𝑢(𝑡) by (119) with the term 𝐸(𝑚𝑛1−𝑖)(·)
replaced by 𝐸(·) therein, and with elements 𝑣𝑖,𝑗 ∈ 𝑍 satisfying 𝒜𝑗𝑢𝑖 ∩ 𝐶1𝑣𝑖,𝑗 ̸= ∅
for 0 6 𝑗 6 𝑛− 1. Then the Caputo fractional derivative D𝜁

𝑡𝑢(𝑡) is defined for any
number 𝜁 ∈ [0, 𝛼𝑛] and, for every 𝑗 ∈ N0

𝑛, there exists a continuous section 𝑢𝑗,𝛼𝑗
(𝑡)

of 𝒜𝑗D
𝛼𝑗

𝑡 (𝑡) such that
𝑛∑︁

𝑗=0

𝑢𝑗,𝛼𝑗
(𝑡) = 0, 0 6 𝑡 6 𝑇.

Before we briefly describe how we can provide some illustrative examples of
results obtained so far, it is worth noting that the assertion of Theorem 2.3.34,
concerning the inhomogeneous problem (296) with single-valued linear operators
𝒜𝑗 = 𝐴𝑗 (0 6 𝑗 6 𝑛), cannot be extended to the multivalued linear operators
case. Possible applications of Theorem 3.2.39 to matrix differential equations with
Caputo fractional derivatives will be analyzed somewhere else.

1. In [199, Example 6.1], the authors have considered a damped Poisson-
wave equation in the space 𝑋 := 𝐿2(Ω), where Ω ⊆ R𝑛 is a bounded open
domain with smooth boundary. Let 𝑚(𝑥) ∈ 𝐿∞(Ω), 𝑚(𝑥) > 0 a.e. 𝑥 ∈ Ω,
let Δ be the Dirichlet–Laplacian in 𝐿2(Ω), acting with domain 𝐻1

0 (Ω) ∩
𝐻2(Ω), and let 𝐴(𝑥;𝐷) be a second order linear differential operator on
Ω with coefficients continuous on Ω̄. Using the analysis from the above-
mentioned example (cf. also the proof of [199, Theorem 6.1]), it readily
follows from Theorem 3.2.36 that there exists 𝜁 > 0 such that there exists
an exponentially bounded 𝑔𝜁-regularized Δ(1−Δ)−1-uniqueness family for
problem (296), with 𝑛 = 2, ℬ = 𝐵 ∈ 𝐿(𝑋) being the scalar multiplication
with 𝑚(𝑥), 𝒜0 := −Δ, 𝒜1 := 𝐴(𝑥;𝐷) := 𝐴, 𝑎0(𝑡) := 𝑔1(𝑡) and 𝑎1(𝑡) :=
𝑔2(𝑡). Applying Theorem 3.2.32 and Theorem 3.2.37, we obtain that for a
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large class of inhomogeneities 𝑓(𝑡, 𝑥) there exists a unique solution of the
abstract degenerate Volterra integral equation:

𝑚(𝑥)𝑢(𝑡, 𝑥)−
∫︁ 𝑡

0

𝑐(𝑡− 𝑠)Δ𝑢(𝑠, 𝑥)𝑑𝑠

+𝐴

∫︁ 𝑡

0

(𝑐 * 𝑐)(𝑡− 𝑠)𝑢(𝑠, 𝑥)𝑑𝑠 = 𝑓(𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ Ω,

where 𝑐(𝑡) is a completely positive function. Observe, finally, that the
subordination principles clarified in Theorem 3.2.31-Theorem 3.2.32 and
Theorem 3.2.37 can be applied to many other problems from [199, Chap-
ter VI].

2. Suppose that 𝒜 is a closed subgenerator of an exponentially equicontinu-
ous (𝑔𝛿, 𝑔𝜎)-regularized 𝐶-resolvent family (𝑅𝛿(𝑡))𝑡>0 (0 < 𝛿 6 2, 𝜎 > 1).
Then the analyses contained in [292, Example 2.10.30(i)] and Remark
3.2.29, along with Theorem 3.2.36, can be used for proving some results
on the existence and uniqueness of solutions of the abstract degenerate
Volterra inclusion:

0 ∈ 𝑢(𝑡) +

𝑛−1∑︁
𝑗=1

𝑐𝑗(𝑔𝛼𝑛−𝛼𝑗
* 𝑢)(𝑡)−𝒜(𝑔𝛼𝑛

* 𝑢)(𝑡) + 𝑓(𝑡), 𝑡 > 0,

where 0 6 𝛼1 < 𝛼2 < · · · < 𝛼𝑛 < 𝛿 and 𝑐𝑗 ∈ C (1 6 𝑗 6 𝑛− 1).

3.2.2. Non-injectivity of regularizing operators 𝐶2 and 𝐶. In this sub-
section, we consider multivalued linear operators as subgenerators of mild (𝑎, 𝑘)-
regularized (𝐶1, 𝐶2)-resolvent operator families and (𝑎, 𝑘)-regularized 𝐶-resolvent
operator families. We use the same notion and notation as before but now we allow
that the operators 𝐶2 and 𝐶 are possibly non-injective (see Definition 3.2.1–Defini-
tion 3.2.2 and Definition 3.2.34). Without any doubt, this choice has some obvi-
ous displeasing consequences on the uniqueness of corresponding abstract Volterra
integro-differential inclusions (see e.g. Proposition 3.2.8(ii), Theorem 3.2.9(ii) and
Proposition 3.2.35).

We assume that 𝑋 and 𝑌 are two SCLCSs, 0 < 𝜏 6 ∞, 𝑘 ∈ 𝐶([0, 𝜏)),
𝑘 ̸= 0, 𝑎 ∈ 𝐿1

𝑙𝑜𝑐([0, 𝜏)), 𝑎 ̸= 0, 𝒜 : 𝑋 → 𝑃 (𝑋) is an MLO, 𝐶1 ∈ 𝐿(𝑌,𝑋),
𝐶, 𝐶2 ∈ 𝐿(𝑋) and 𝐶𝒜 ⊆ 𝒜𝐶. We define the integral generator 𝒜𝑖𝑛𝑡 of a
mild (𝑎, 𝑘)-regularized 𝐶2-uniqueness family (𝑅2(𝑡))𝑡∈[0,𝜏) (mild (𝑎, 𝑘)-regularized
(𝐶1, 𝐶2)-existence and uniqueness family (𝑅1(𝑡), 𝑅2(𝑡))𝑡∈[0,𝜏); (𝑎, 𝑘)-regularized 𝐶-
regularized family (𝑅(𝑡))𝑡∈[0,𝜏)) in the same way as before. Then we have that
𝒜𝑖𝑛𝑡 ⊆ 𝐶−1

2 𝒜𝑖𝑛𝑡𝐶2 (𝒜𝑖𝑛𝑡 ⊆ 𝐶−1𝒜𝑖𝑛𝑡𝐶) is still the maximal subgenerator of
(𝑅2(𝑡))𝑡∈[0,𝜏) ((𝑅(𝑡))𝑡∈[0,𝜏)) with respect to the set inclusion and the local equicon-
tinuity of (𝑅2(𝑡))𝑡∈[0,𝜏) ((𝑅(𝑡))𝑡∈[0,𝜏)) implies that 𝒜𝑖𝑛𝑡 is closed; as the next il-
lustrative example shows, 𝐶−1𝒜𝑖𝑛𝑡𝐶 need not be a subgenerator of (𝑅(𝑡))𝑡∈[0,𝜏)

and the inclusion 𝐶−1𝒜𝑖𝑛𝑡𝐶 ⊆ 𝒜𝑖𝑛𝑡 is not true for resolvent operator families, in
general:



3.2. MULTIVALUED LINEAR OPERATORS AS SUBGENERATORS... 325

Example 3.2.40. Let 𝑇 (𝑡) := 𝐶 ∈ 𝐿(𝑋) for all 𝑡 > 0. Then (𝑇 (𝑡))𝑡>0 is
a global 𝐶-regularized semigroup (𝑎(𝑡) = 𝑘(𝑡) = 1) with the integral generator
𝒜𝑖𝑛𝑡 = 𝑋 ×𝑁(𝐶) and any MLO 𝒜 satisfying 𝑅(𝐶)× {0} ⊆ 𝒜 and 𝑅(𝒜) ⊆ 𝑁(𝐶)
is a subgenerator of (𝑇 (𝑡))𝑡>0. In particular, 𝒜 = 𝑅(𝐶)×𝑁(𝐶) is a subgenerator
of (𝑇 (𝑡))𝑡>0, 𝐶−1𝒜𝐶 = 𝐶−1𝒜𝑖𝑛𝑡𝐶 = 𝑋 × 𝑁(𝐶2) which is, in general, a proper
extension of 𝒜𝑖𝑛𝑡, and not a subgenerator of (𝑇 (𝑡))𝑡>0 provided that there exists
an element 𝑥 ∈ 𝑋 such that 𝐶2𝑥 = 0 and 𝐶𝑥 ̸= 0. Observe, finally, that (𝑇 (𝑡))𝑡>0

is exponentially equicontinuous and 𝑁(𝐶) ⊆ (𝜆−𝒜𝑖𝑛𝑡)
−1𝐶0 for all 𝜆 > 0, so that

the operator (𝜆 − 𝒜𝑖𝑛𝑡)
−1𝐶 need not be single-valued in the case that 𝐶 is not

injective.

Suppose that 𝑎(𝑡) is a kernel on [0, 𝜏), 𝒜 and ℬ are two subgenerators of an
(𝑎, 𝑘)-regularized 𝐶-resolvent family (𝑅(𝑡))𝑡∈[0,𝜏), and 𝑥 ∈ 𝐷(𝒜) ∩ 𝐷(ℬ). Then
𝑅(𝑡)(𝑦 − 𝑧) = 0, 𝑡 ∈ [0, 𝜏) for each 𝑦 ∈ 𝒜𝑥 and 𝑧 ∈ ℬ𝑥. Furthermore, the local
equicontinuity of (𝑅(𝑡))𝑡∈[0,𝜏) and the closedness of 𝒜 imply that the inclusion (275)
continues to hold without injectivity of 𝐶 being assumed.

In the following definition, we introduce the notion of an (𝑎, 𝑘, 𝐶)-subgenerator
of any strongly continuous operator family (𝑍(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑋). This definition
extends the corresponding ones introduced by C.-C. Kuo [366,367, Definition 2.4]
in the setting of Banach spaces, where it has also been assumed that the operator
𝒜 = 𝐴 is linear and single-valued.

Definition 3.2.41. Let 0 < 𝜏 6 ∞, 𝐶 ∈ 𝐿(𝑋), 𝑎 ∈ 𝐿1
𝑙𝑜𝑐([0, 𝜏)), 𝑎 ̸= 0,

𝑘 ∈ 𝐶([0, 𝜏)) and 𝑘 ̸= 0. Suppose that (𝑍(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑋) is a strongly continuous
operator family. By an (𝑎, 𝑘, 𝐶)-subgenerator of (𝑍(𝑡))𝑡∈[0,𝜏) we mean any MLO 𝒜
in 𝑋 satisfying the following two conditions:

(i) 𝑍(𝑡)𝑥− 𝑘(𝑡)𝐶𝑥 =
∫︀ 𝑡

0
𝑎(𝑡− 𝑠)𝑍(𝑠)𝑦 𝑑𝑠, whenever 𝑡 ∈ [0, 𝜏) and 𝑦 ∈ 𝒜𝑥.

(ii) For all 𝑥 ∈ 𝑋 and 𝑡 ∈ [0, 𝜏), we have
∫︀ 𝑡

0
𝑎(𝑡 − 𝑠)𝑍(𝑠)𝑥 𝑑𝑠 ∈ 𝐷(𝒜) and

𝑍(𝑡)𝑥− 𝑘(𝑡)𝐶𝑥 ∈ 𝒜
∫︀ 𝑡

0
𝑎(𝑡− 𝑠)𝑍(𝑠)𝑥 𝑑𝑠.

The (𝑎, 𝑘, 𝐶)-integral generator 𝒜𝑖𝑛𝑡 of (𝑍(𝑡))𝑡∈[0,𝜏) (integral generator, if there is
no risk for confusion) is defined by

𝒜𝑖𝑛𝑡 :=

{︂
(𝑥, 𝑦) ∈ 𝑋 ×𝑋 : 𝑍(𝑡)𝑥−𝑘(𝑡)𝐶𝑥 =

∫︁ 𝑡

0

𝑎(𝑡− 𝑠)𝑍(𝑠)𝑦 𝑑𝑠 for all 𝑡 ∈ [0, 𝜏)

}︂
.

If 𝒜 is a subgenerator of (𝑍(𝑡))𝑡∈[0,𝜏), then it is clear that (𝑍(𝑡))𝑡∈[0,𝜏) is a
mild (𝑎, 𝑘)-regularized (𝐶,𝐶)-existence and uniqueness family which do have 𝒜 as
subgenerator. Since we have not assumed that 𝒜 commutes with 𝐶 or (𝑍(𝑡))𝑡∈[0,𝜏),
it does not follow automatically from Definition 3.2.41 that (𝑍(𝑡))𝑡∈[0,𝜏) is an (𝑎, 𝑘)-
regularized 𝐶-resolvent family with subgenerator 𝒜. By 𝜒(𝑍) we denote the set con-
sisting of all subgenerators of (𝑍(𝑡))𝑡∈[0,𝜏). The local equicontinuity of (𝑍(𝑡))𝑡∈[0,𝜏)

yields that for each subgenerator 𝒜 ∈ 𝜒(𝑍) we have 𝒜 ∈ 𝜒(𝑍). The set 𝜒(𝑍) can
have infinitely many elements; if 𝒜 ∈ 𝜒(𝑍), then 𝒜 ⊆ 𝒜𝑖𝑛𝑡 (cf. [386, Example
4.10, 4.11]; in these examples, the partially ordered set (𝜒𝑠𝑣(𝑍),⊆), where 𝜒𝑠𝑣(𝑍)
denotes the set consisting of all single-valued linear subgenerators of (𝑍(𝑡))𝑡∈[0,𝜏),
does not have the greatest element) and, if 𝜒(𝑍) is finite, then it need not be a
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singleton [291]. In general, the set 𝜒(𝑍) can be empty and the integral generator
of (𝑍(𝑡))𝑡∈[0,𝜏) need not be a subgenerator of (𝑍(𝑡))𝑡∈[0,𝜏) in the case that 𝜏 <∞:

Example 3.2.42. [385] Let 0 < 𝜏 < ∞ and let 𝑈 : [𝜏/2, 𝜏) → 𝐿(𝑋) be a
strongly continuous function such that 𝑈(𝜏/2) = 0 and 𝑈(𝑡) is injective for all
𝑡 ∈ (𝜏/2, 𝜏). Define 𝑇 : [0, 𝜏) → 𝐿(𝑋 ×𝑋)by 𝑇 (𝑡)(𝑥 𝑦)𝑇 := (0 𝑦)𝑇 for 𝑡 ∈ [0, 𝜏/2),
𝑥, 𝑦 ∈ 𝑋 and 𝑇 (𝑡)(𝑥 𝑦)𝑇 := (𝑈(𝑡)𝑥 𝑦)𝑇 for 𝑡 ∈ [𝜏/2, 𝜏), 𝑥, 𝑦 ∈ 𝑋. Set 𝐶 := 𝑇 (0).
Then 𝐶 is not injective, (𝑇 (𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝑋 × 𝑋) is a non-degenerate local 𝐶-
regularized semigroup (cf. the next subsection for the notion) and it can be easily
seen that the violation of condition

𝑈(𝑡)

∫︁ 𝑠

𝜏/2

𝑈(𝑟)𝑥 𝑑𝑟 =

∫︁ 𝑡

𝜏/2

𝑈(𝑟)𝑈(𝑠)𝑥 𝑑𝑟, 𝑥 ∈ 𝐸, 𝑡, 𝑠 ∈ [𝜏/2, 𝜏)

implies that the set 𝜒(𝑇 ) is empty (in the MLO sense) as well as that the integral
generator 𝒜𝑖𝑛𝑡 of (𝑇 (𝑡))𝑡∈[0,𝜏) is not a subgenerator of (𝑇 (𝑡))𝑡∈[0,𝜏). We can simi-
larly construct an example of a non-degenerate local 𝐶-regularized cosine function
(𝐶(𝑡))𝑡∈[0,𝜏), with 𝐶 being not injective, so that (𝐶(𝑡))𝑡∈[0,𝜏) does not have any
subgenerator in the MLO sense [487]. Observe, finally, that the notion introduced
in [386, Definition 4.3], [531, Definition 2.1] and [291, Remark 2.1.8(i)] cannot be
used for proving the nonemptiness of set 𝜒(𝑍) in the degenerate case.

If 𝒜 and ℬ are subgenerators of (𝑍(𝑡))𝑡∈[0,𝜏), then for any complex numbers 𝛼, 𝛽
such that 𝛼+𝛽 = 1 we have that 𝛼𝒜+𝛽ℬ is a subgenerator of (𝑍(𝑡))𝑡∈[0,𝜏). Set 𝒜∧
𝐵 := (1/2)𝒜+(1/2)ℬ. We define the operator 𝒜∨0ℬ by 𝐷(𝒜∨0ℬ) :=span[𝐷(𝒜)∪
𝐷(ℬ)] and

𝒜 ∨0 ℬ(𝑎𝑥+ 𝑏𝑦) := 𝑎𝐴𝑥+ 𝑏𝐵𝑦, 𝑥 ∈ 𝐷(𝒜), 𝑦 ∈ 𝐷(ℬ), 𝑎, 𝑏 ∈ C;

𝒜 ∨ ℬ := 𝒜 ∨0 ℬ. Then 𝒜 ∨0 ℬ is a subgenerator of (𝑍(𝑡))𝑡∈[0,𝜏), and 𝒜 ∨ ℬ is a
subgenerator of (𝑍(𝑡))𝑡∈[0,𝜏), provided that (𝑍(𝑡))𝑡∈[0,𝜏) is locally equicontinuous.
In the case of non-degenerate 𝐾-convoluted 𝐶-semigroups, 𝐶 injective, it is well
known that the set 𝜒(𝑍), equipped with the operations ∧ and ∨, forms a com-
plete Boolean lattice [531], [291, Remark 2.1.8(ii)-(iii)]. We will not discuss the
properties of (𝜒(𝑍),∧,∨) in general case.

If 𝒜 is a closed, 𝒜 ∈ 𝜒(𝑍), 0 ∈ supp(𝑎) and 𝑦 ∈ 𝒜𝑥, then we have (
∫︀ 𝑡

0
𝑎(𝑡 −

𝑠)𝑍(𝑠)𝑥 𝑑𝑠, 𝑍(𝑡)𝑥− 𝑘(𝑡)𝐶𝑥) ∈ 𝒜, 𝑡 ∈ [0, 𝜏), i.e.,

(303)
(︂∫︁ 𝑡

0

𝑎(𝑡− 𝑠)𝑍(𝑠)𝑥 𝑑𝑠,

∫︁ 𝑡

0

𝑎(𝑡− 𝑠)𝑍(𝑠)𝑦 𝑑𝑠

)︂
∈ 𝒜, 𝑡 ∈ [0, 𝜏).

Suppose now that 𝜏0 ∈ (0, 𝜏). By [291, Theorem 3.4.40], there exists a sequence
(𝑓𝑛)𝑛∈N in 𝐿1[0, 𝜏0] such that (𝑎 * 𝑓𝑛)(𝑡) → 𝑔1(𝑡) in 𝐿1[0, 𝜏0]. Then the closedness
of 𝒜 along with (303) shows that (

∫︀ 𝑡

0
𝑔1(𝑡 − 𝑠)𝑍(𝑠)𝑥 𝑑𝑠,

∫︀ 𝑡

0
𝑔1(𝑡 − 𝑠)𝑍(𝑠)𝑦 𝑑𝑠) ∈ 𝒜,

𝑡 ∈ [0, 𝜏0]. After differentiation, we get that (𝑍(𝑡)𝑥, 𝑍(𝑡)𝑦) ∈ 𝒜, 𝑡 ∈ [0, 𝜏0] and
since 𝜏0 was arbitrary, we have that 𝑍(𝑡)𝒜 ⊆ 𝒜𝑍(𝑡), 𝑡 ∈ [0, 𝜏) for any closed sub-
generator 𝒜 of (𝑍(𝑡))𝑡∈[0,𝜏). If this is the case and 𝑍(𝑡)𝐶 = 𝐶𝑍(𝑡), 𝑡 ∈ [0, 𝜏),
then 𝐶−1𝒜𝐶 also commutes with 𝑍(𝑡): Suppose that (𝑥, 𝑦) ∈ 𝐶−1𝒜𝐶. Then
𝐶𝑦 ∈ 𝒜𝐶𝑥, 𝐶𝑍(𝑡)𝑥 = 𝑍(𝑡)𝐶𝑥 ∈ 𝐷(𝒜), 𝑡 ∈ [0, 𝜏) and 𝐶𝑍(𝑡)𝑦 = 𝑍(𝑡)𝐶𝑦 ∈
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𝑍(𝑡)𝒜𝐶𝑥 ⊆ 𝒜𝐶𝑍(𝑡)𝑥 = 𝒜𝑍(𝑡)𝐶𝑥, 𝑡 ∈ [0, 𝜏) so that 𝑍(𝑡)𝑦 ∈ 𝐶−1𝒜𝐶𝑍(𝑡)𝑥,
𝑡 ∈ [0, 𝜏) and 𝑍(𝑡)[𝐶−1𝒜𝐶] ⊆ [𝐶−1𝒜𝐶]𝑍(𝑡), 𝑡 ∈ [0, 𝜏). Suppose again that
𝒜 is a closed subgenerator of (𝑍(𝑡))𝑡∈[0,𝜏), 0 ∈ supp(𝑎) and 𝑦 ∈ 𝒜𝑥. Then
(
∫︀ 𝑡

0
𝑎(𝑡 − 𝑠)𝑍(𝑠)𝑦 𝑑𝑠, 𝑍(𝑡)𝑦 − 𝑘(𝑡)𝐶𝑦) = (𝑍(𝑡)𝑥 − 𝑘(𝑡)𝐶𝑥,𝑍(𝑡)𝑦 − 𝑘(𝑡)𝐶𝑦) ∈ 𝒜,

𝑡 ∈ [0, 𝜏). Since (𝑍(𝑡)𝑥, 𝑍(𝑡)𝑦) ∈ 𝒜, 𝑡 ∈ [0, 𝜏), the above easily implies that
(𝐶𝑥,𝐶𝑦) ∈ 𝒜 so that 𝐶𝒜 ⊆ 𝒜𝐶, i.e., 𝒜 ⊆ 𝐶−1𝒜𝐶. Now we proceed by repeating
some parts of the proof of [291, Proposition 2.1.6(i)]. Let (𝑥, 𝑦) ∈ 𝒜𝑖𝑛𝑡. As above,
we have (

∫︀ 𝑡

0
𝑎(𝑡−𝑠)𝑍(𝑠)𝑥 𝑑𝑠,

∫︀ 𝑡

0
𝑎(𝑡−𝑠)𝑍(𝑠)𝑦 𝑑𝑠) ∈ 𝒜, 𝑡 ∈ [0, 𝜏) and (𝑍(𝑡)𝑥, 𝑍(𝑡)𝑦) ∈

𝒜 = 𝒜, 𝑡 ∈ [0, 𝜏). This implies 𝑍(𝑡)𝑦 ∈ 𝒜𝑍(𝑡)𝑥 = 𝒜[Θ(𝑡)𝐶𝑥+
∫︀ 𝑡

0
𝑎(𝑡− 𝑠)𝑍(𝑠)𝑦 𝑑𝑠],

𝑡 ∈ [0, 𝜏) and, since
∫︀ 𝑡

0
𝑎(𝑡 − 𝑠)𝑍(𝑠)𝑦 𝑑𝑠 ∈ 𝐷(𝒜) for 𝑡 ∈ [0, 𝜏), 𝐶𝑥 ∈ 𝐷(𝒜) as well

as 0 ∈ 𝒜[Θ(𝑡)𝐶𝑥 +
∫︀ 𝑡

0
𝑎(𝑡 − 𝑠)𝑍(𝑠)𝑦 𝑑𝑠 −

∫︀ 𝑡

0
𝑎(𝑡 − 𝑠)𝑍(𝑠)𝑦 𝑑𝑠] − Θ(𝑡)𝐶𝑦, 𝑡 ∈ [0, 𝜏).

Hence, 𝐶𝑦 ∈ 𝒜𝐶𝑥 and 𝒜𝑖𝑛𝑡 ⊆ 𝐶−1𝒜𝐶. If, additionally, the operator 𝐶 is injective
and 𝑍(𝑡)𝐶 = 𝐶𝑍(𝑡), 𝑡 ∈ [0, 𝜏), then we can simply verify that 𝐶−1𝒜𝐶 is likewise a
closed subgenerator of (𝑊 (𝑡))𝑡∈[0,𝜏), so that 𝒜𝑖𝑛𝑡 = 𝐶−1𝒜𝐶 by previously proved
inclusion 𝒜 ⊆ 𝐶−1𝒜𝐶 and the fact that 𝒜𝑖𝑛𝑡 extends any subgenerator from 𝜒(𝑊 ).
Let 𝒜 and ℬ be two subgenerators of (𝑍(𝑡))𝑡∈[0,𝜏), let ℬ be closed, and let 𝑎(𝑡) ker-
nel on [0, 𝜏). Suppose that 𝑦 ∈ 𝒜𝑥. Then (

∫︀ 𝑡

0
𝑎(𝑡 − 𝑠)𝑍(𝑠)𝑦 𝑑𝑠, 𝑍(𝑡)𝑦 − 𝑘(𝑡)𝐶𝑦) =

(𝑍(𝑡)𝑥 − 𝑘(𝑡)𝐶𝑥,𝑍(𝑡)𝑦 − 𝑘(𝑡)𝐶𝑦) ∈ ℬ, 𝑡 ∈ [0, 𝜏), which implies by Theorem 1.2.3
that ((𝑎 * 𝑍)(𝑡)𝑥 − (𝑎 * 𝑘)(𝑡)𝐶𝑥, (𝑎 * 𝑍)(𝑡)𝑦 − (𝑎 * 𝑘)(𝑡)𝐶𝑦) ∈ ℬ, 𝑡 ∈ [0, 𝜏). Since
(𝑎 * 𝑍)(𝑡)𝑥 ∈ 𝐷(ℬ), 𝑡 ∈ [0, 𝜏), the above implies that 𝐶𝑥 ∈ 𝐷(ℬ). Hence,
𝐶(𝐷(𝒜)) ⊆ 𝐷(ℬ). We continue by observing that Proposition 3.2.3, Proposi-
tion 3.2.8, Proposition 3.2.13, the equation (274) and assertions clarified in the
paragraph directly after Theorem 3.2.7 continue to hold without any termino-
logical changes. If (𝑅1(𝑡), 𝑅2(𝑡))𝑡∈[0,𝜏) is strongly continuous and (274) holds,
then it can be easily seen that the integral generator 𝒜𝑖𝑛𝑡 of (𝑅2(𝑡))𝑡∈[0,𝜏) is a
subgenerator of a mild (𝑎, 𝑘)-regularized (𝐶1, 𝐶2)-existence and uniqueness family
(𝑅1(𝑡), 𝑅2(𝑡))𝑡∈[0,𝜏). As Example 3.2.42 shows, this is no longer true if (274) holds
only for 0 6 𝑡, 𝑠, 𝑡+ 𝑠 < 𝜏 . Now we will state the following proposition.

Proposition 3.2.43. Suppose that 𝒜 is a closed MLO, 0 < 𝜏 6 ∞, 𝑎 ∈
𝐿1
𝑙𝑜𝑐([0, 𝜏)), 𝑎 * 𝑎 ̸= 0 in 𝐿1

𝑙𝑜𝑐([0, 𝜏)), 𝑘 ∈ 𝐶([0, 𝜏)) and 𝑘 ̸= 0. If ±𝒜 are subgener-
ators of mild (𝑎, 𝑘)-regularized 𝐶1-existence families (𝑅1,±(𝑡))𝑡∈[0,𝜏) (mild (𝑎, 𝑘)-
regularized 𝐶2-uniqueness families (𝑅2,±(𝑡))𝑡∈[0,𝜏); (𝑎, 𝑘)-regularized 𝐶-resolvent
families (𝑅±(𝑡))𝑡∈[0,𝜏)), then 𝒜2 is a subgenerator of a mild (𝑎 * 𝑎, 𝑘)-regularized
𝐶1-existence family (𝑅1(𝑡) ≡ (1/2)𝑅1(𝑡) + (1/2)𝑅1,−(𝑡))𝑡∈[0,𝜏) (mild (𝑎 * 𝑎, 𝑘)-
regularized 𝐶2-uniqueness family (𝑅2(𝑡) ≡ (1/2)𝑅2(𝑡) + (1/2)𝑅2,−(𝑡))𝑡∈[0,𝜏); mild
(𝑎 * 𝑎, 𝑘)-regularized 𝐶-resolvent family (𝑅(𝑡) ≡ (1/2)𝑅+(𝑡) + (1/2)𝑅−(𝑡))𝑡∈[0,𝜏)).

Proof. We will prove the proposition only for mild (𝑎, 𝑘)-regularized 𝐶1-
existence families. Let 𝑥 ∈ 𝐸 and 𝑡 ∈ [0, 𝜏) be fixed. Then 1

2 [𝑅1,+(𝑡)𝑥−𝑅1,−(𝑡)𝑥] =
1
2 [𝑅1,+(𝑡)𝑥 − 𝑘(𝑡)𝐶1𝑥] − [𝑅1,−(𝑡)𝑥 − 𝑘(𝑡)𝐶1𝑥] ∈ 1

2𝒜(𝑎 * 𝑅1,+(·)𝑥)(𝑡) + 1
2𝒜(𝑎 *

𝑅1,−(·)𝑥)(𝑡) = 𝒜(𝑎 * 𝑅1(·)𝑥)(𝑡). Applying Theorem 1.2.3, we get that 1
2 (𝑎 *

[𝑅1,+(·)𝑥−𝑅1,−(·)𝑥])(𝑡) ∈ 𝒜(𝑎*𝑎*𝑅1(·)𝑥)(𝑡). Since ±𝒜 are subgenerators of mild
(𝑎, 𝑘)-regularized 𝐶1-existence families (𝑅1,±(𝑡))𝑡∈[0,𝜏), the above inclusion implies
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(𝑎 * 𝑎 * 𝑅1(·)𝑥)(𝑡) ∈ 𝐷(𝒜2) and 1
2 ([𝑅1,+(𝑡)𝑥− 𝑘(𝑡)𝐶1𝑥] + [𝑅1,−(𝑡)𝑥− 𝑘(𝑡)𝐶1𝑥]) =

𝑅1(𝑡)𝑥− 𝑘(𝑡)𝐶1𝑥 ∈ 𝒜2(𝑎 * 𝑎 *𝑅1(·)𝑥)(𝑡), as required. �

The following analogues of Theorem 3.2.4[(i),(iii)] and Theorem 3.2.5 hold true.

Theorem 3.2.44. Suppose that 𝒜 is a closed MLO in 𝑋, 𝐶1 ∈ 𝐿(𝑌,𝑋), 𝐶2 ∈
𝐿(𝑋), |𝑎(𝑡)| and 𝑘(𝑡) satisfy (P1), as well as that (𝑅1(𝑡), 𝑅2(𝑡))𝑡>0 ⊆ 𝐿(𝑌,𝑋) ×
𝐿(𝑋) is strongly continuous. Let 𝜔 > max(0, abs(|𝑎|), abs(𝑘)) be such that the
operator family {𝑒−𝜔𝑡𝑅𝑖(𝑡) : 𝑡 > 0} is equicontinuous for 𝑖 = 1, 2. Then the
following holds:

(i) (𝑅1(𝑡), 𝑅2(𝑡))𝑡>0 is a mild (𝑎, 𝑘)-regularized (𝐶1,𝐶2)-existence and unique-
ness family with a subgenerator 𝒜 iff for every 𝜆 ∈ C with Re𝜆 > 𝜔 and
�̃�(𝜆)𝑘(𝜆) ̸= 0, we have 𝑅(𝐶1) ⊆ R(𝐼 − �̃�(𝜆)𝒜),

(304)
∫︁ ∞

0

𝑒−𝜆𝑡𝑅1(𝑡)𝑦 𝑑𝑡 ∈ 𝑘(𝜆)(𝐼 − �̃�(𝜆)𝒜)−1𝐶1𝑦, 𝑦 ∈ 𝑌,

and

(305) 𝑘(𝜆)𝐶2𝑥 =

∫︁ ∞

0

𝑒−𝜆𝑡[𝑅2(𝑡)𝑥− (𝑎 *𝑅2)(𝑡)𝑦]𝑑𝑡, whenever (𝑥, 𝑦) ∈ 𝒜.

(ii) (𝑅2(𝑡))𝑡>0 is a mild (𝑎, 𝑘)-regularized 𝐶2-uniqueness family with a sub-
generator 𝒜 iff (305) holds for Re𝜆 > 𝜔.

Theorem 3.2.45. Suppose that 𝒜 is a closed MLO in 𝑋, 𝐶 ∈ 𝐿(𝑋), 𝐶𝒜 ⊆
𝒜𝐶, |𝑎(𝑡)| and 𝑘(𝑡) satisfy (P1), as well as that (𝑅(𝑡))𝑡>0 ⊆ 𝐿(𝑋) is strongly
continuous and commutes with 𝐶 on 𝑋. Let 𝜔 > max(0, abs(|𝑎|), abs(𝑘)) be such
that the operator family {𝑒−𝜔𝑡𝑅(𝑡) : 𝑡 > 0} is equicontinuous. Then (𝑅(𝑡))𝑡>0 is
an (𝑎, 𝑘)-regularized 𝐶-resolvent family with a subgenerator 𝒜 iff for every 𝜆 ∈ C
with Re𝜆 > 𝜔 and �̃�(𝜆)𝑘(𝜆) ̸= 0, we have 𝑅(𝐶) ⊆ R(𝐼 − �̃�(𝜆)𝒜), (304) holds with
𝑅1(·), 𝐶1 and 𝑌 , 𝑦 replaced with 𝑅(·), 𝐶 and 𝑋, 𝑥 therein, as well as (305) holds
with 𝑅2(·) and 𝐶2 replaced with 𝑅(·) and 𝐶 therein.

Keeping in mind Theorem 3.2.45 and [292, Theorem 1.2.2], it is very simple to
prove the following complex characterization theorem (cf. Theorem 3.2.10):

Theorem 3.2.46. Suppose that 𝒜 is a closed MLO in 𝑋, 𝐶 ∈ 𝐿(𝑋), 𝐶𝒜 ⊆
𝒜𝐶, |𝑎(𝑡)| and 𝑘(𝑡) satisfiy (P1), 𝜔0 > max(0, abs(|𝑎|), abs(𝑘)) and, for every 𝜆 ∈ C
with Re𝜆 > 𝜔0 and �̃�(𝜆)𝑘(𝜆) ̸= 0, we have 𝑅(𝐶) ⊆ 𝑅(𝐼 − �̃�(𝜆)𝒜). If there exists a
function ϒ: {𝜆 ∈ C : Re𝜆 > 𝜔0} → 𝐿(𝑋) which satisfies:

(a) ϒ(𝜆)𝑥 ∈ 𝑘(𝜆)(𝐼 − �̃�(𝜆)𝒜)−1𝐶𝑥 for Re𝜆 > 𝜔0, �̃�(𝜆)𝑘(𝜆) ̸= 0, 𝑥 ∈ 𝑋,
(b) the mapping 𝜆 ↦→ ϒ(𝜆)𝑥, Re𝜆 > 𝜔0 is analytic for every fixed 𝑥 ∈ 𝑋,
(c) there exists 𝑟 > −1 such that the family {𝜆−𝑟ϒ(𝜆) : Re𝜆 > 𝜔0} ⊆ 𝐿(𝑋)

is equicontinuous,
(d) ϒ(𝜆)𝑥− �̃�(𝜆)ϒ(𝜆)𝑦 = 𝑘(𝜆)𝐶𝑥 for Re𝜆 > 𝜔0, (𝑥, 𝑦) ∈ 𝒜, and
(e) ϒ(𝜆)𝐶𝑥 = 𝐶ϒ(𝜆)𝑥 for Re𝜆 > 𝜔0, 𝑥 ∈ 𝑋,

then, for every 𝛼 > 1, 𝒜 is a subgenerator of a global (𝑎, 𝑘 * 𝑔𝛼+𝑟)-regularized 𝐶-
resolvent family (𝑅𝛼(𝑡))𝑡>0 which satisfies that the family {𝑒−𝜔0𝑡𝑅𝛼(𝑡) : 𝑡 > 0} ⊆
𝐿(𝑋) is equicontinuous.
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The real representation theorem for generation of degenerate (𝑎, 𝑘)-regularized
𝐶-resolvent families can be also formulated but the assertion of Theorem 3.2.12(ii)
is not attainable in the case that the operator 𝐶 is not injective. The assertions
of Theorem 3.2.7, Proposition 3.2.36 and Proposition 3.2.37 continue to hold with
minimal terminological changes. Since the identity (291) holds for degenerate (𝑎, 𝑘)-
regularized 𝐶-resolvent families, with 𝐶 being not injective, Proposition 3.2.15 can
be reformulated without substantial difficulties, as well, but we cannot prove the
uniqueness of solutions of corresponding abstract time-fractional inclusions.

As already mentioned, the adjoint type theorems [292, Theorem 2.1.12(i)/(ii);
Theorem 2.1.13] continue to hold for (𝑎, 𝑘)-regularized 𝐶-regularized families sub-
generated by closed multivalued linear operators and it is not necessary to assume
that the operator 𝒜 is densely defined in the case of consideration of [292, Theorem
2.1.12(i)]. All this remains true if the operator 𝐶 is not injective, when we also do
not need to assume that 𝑅(𝐶) is dense in 𝑋.

If 𝐶 is not injective, then we introduce the notion of (exponential equicontin-
uous) analyticity of degenerate (𝑎, 𝑘)-regularized 𝐶-resolvent families in the same
way as in Definition 3.2.16. Then Theorem 3.2.18 does not admit a satisfactory re-
formulation in our new frame. On the other hand, the assertion of Theorem 3.2.19
can be rephrased by taking into consideration the conditions (d)–(e) from Theorem
3.2.46. Differential properties of degenerate (𝑎, 𝑘)-regularized 𝐶-resolvent families
clarified in Theorem 3.2.25–Theorem 3.2.26 continue to hold after a reformulation
of the same type.

3.2.3. Degenerate 𝐾-convoluted 𝐶-semigroups and degenerate 𝐾-convoluted
𝐶-cosine functions in locally convex spaces. It is well known that the no-
tions of a degenerate (local) 𝐾-convoluted 𝐶-semigroup and a degenerate (local)
𝐾-convoluted 𝐶-cosine function in locally convex space can be introduced in a
slightly different manner, by using the convoluted versions of semigroup prop-
erty and d’Alambert functional equation. The main aim of this subsection is to
consider the classes of degenerate 𝐾-convoluted 𝐶-semigroups and degenerate 𝐾-
convoluted 𝐶-cosine functions in locally convex spaces by following this approach
(cf. also [291,296,366,367,386] for similar concepts).

The underlying sequentially complete locally convex space will be denoted by
𝐸. In this subsection, we will not require the injectiveness of regularized operator
𝐶 ∈ 𝐿(𝐸). If 0 < 𝜏 6∞ and (𝑊 (𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝐸) is strongly continuous, then we
denote, as before, 𝑊 [𝑛](𝑡)𝑥 =

∫︀ 𝑡

0
𝑔𝑛(𝑡− 𝑠)𝑊 (𝑠)𝑥 𝑑𝑠, 𝑥 ∈ 𝐸, 𝑡, 𝑠 ∈ [0, 𝜏), 𝑛 ∈ N.

Definition 3.2.47. Let 0 ̸= 𝐾 ∈ 𝐿1
𝑙𝑜𝑐([0, 𝜏)). A strongly continuous operator

family (𝑆𝐾(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝐸) is called a (local, if 𝜏 <∞)𝐾-convoluted 𝐶-semigroup
iff the following holds:

(i) 𝑆𝐾(𝑡)𝐶 = 𝐶𝑆𝐾(𝑡), 𝑡 ∈ [0, 𝜏), and
(ii) For all 𝑥 ∈ 𝐸 and 𝑡, 𝑠 ∈ [0, 𝜏) with 𝑡+ 𝑠 ∈ [0, 𝜏), we have

𝑆𝐾(𝑡)𝑆𝐾(𝑠)𝑥 =

[︂ ∫︁ 𝑡+𝑠

0

−
∫︁ 𝑡

0

−
∫︁ 𝑠

0

]︂
𝐾(𝑡+ 𝑠− 𝑟)𝑆𝐾(𝑟)𝐶𝑥𝑑𝑟.
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Definition 3.2.48. Let 0 ̸= 𝐾 ∈ 𝐿1
𝑙𝑜𝑐([0, 𝜏)). A strongly continuous operator

family (𝐶𝐾(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝐸) is called a (local, if 𝜏 < ∞) 𝐾-convoluted 𝐶-cosine
function iff the following holds:

(i) 𝐶𝐾(𝑡)𝐶 = 𝐶𝐶𝐾(𝑡), 𝑡 ∈ [0, 𝜏), and
(ii) For all 𝑥 ∈ 𝐸 and 𝑡, 𝑠 ∈ [0, 𝜏) with 𝑡+ 𝑠 ∈ [0, 𝜏), we have

2𝐶𝐾(𝑡)𝐶𝐾(𝑠)𝑥 =

(︂∫︁ 𝑡+𝑠

𝑡

−
∫︁ 𝑠

0

)︂
𝐾(𝑡+ 𝑠− 𝑟)𝐶𝐾(𝑟)𝐶𝑥𝑑𝑟

+

∫︁ 𝑡

𝑡−𝑠

𝐾(𝑟 − 𝑡+ 𝑠)𝐶𝐾(𝑟)𝐶𝑥𝑑𝑟 +

∫︁ 𝑠

0

𝐾(𝑟 + 𝑡− 𝑠)𝐶𝐾(𝑟)𝐶𝑥𝑑𝑟, 𝑡 > 𝑠;

2𝐶𝐾(𝑡)𝐶𝐾(𝑠)𝑥 =

(︂∫︁ 𝑡+𝑠

𝑠

−
∫︁ 𝑡

0

)︃
𝐾(𝑡+ 𝑠− 𝑟)𝐶𝐾(𝑟)𝐶𝑥𝑑𝑟

+

∫︁ 𝑠

𝑠−𝑡

𝐾(𝑟 + 𝑡− 𝑠)𝐶𝐾(𝑟)𝐶𝑥𝑑𝑟 +

∫︁ 𝑡

0

𝐾(𝑟 − 𝑡+ 𝑠)𝐶𝐾(𝑟)𝐶𝑥𝑑𝑟, 𝑡 < 𝑠.

By a (local) 𝐶-regularized semigroup, resp., (local) 𝐶-regularized cosine func-
tion, we mean any strongly continuous operator family (𝑆(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝐸), resp.,
(𝐶(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝐸), satisfying that 𝑆(𝑡)𝐶 = 𝐶𝑆(𝑡), 𝑡 ∈ [0, 𝜏) and 𝑆(𝑡 + 𝑠)𝐶 =
𝑆(𝑡)𝑆(𝑠) for all 𝑡, 𝑠 ∈ [0, 𝜏) with 𝑡+ 𝑠 ∈ [0, 𝜏), resp., 𝐶(𝑡)𝐶 = 𝐶𝐶(𝑡), 𝑡 ∈ [0, 𝜏) and
2𝐶(𝑡)𝐶(𝑠) = 𝐶(𝑡+ 𝑠)𝐶 + 𝐶(|𝑡− 𝑠|)𝐶 for all 𝑡, 𝑠 ∈ [0, 𝜏) with 𝑡+ 𝑠 ∈ [0, 𝜏).

The notions of local equicontinuity and exponential equicontinuity will be taken
in the usual way. If 𝑘(𝑡) = 𝑔𝛼+1(𝑡), where 𝛼 > 0, then it is also said that
(𝑆𝐾(𝑡))𝑡∈[0,𝜏) is an 𝛼-times integrated 𝐶-semigroup; 0-times integrated semigroup
is nothing else but 𝐶-regularized semigroup. The above notions can be simply
understood for the class of 𝐾-convoluted 𝐶-cosine functions.

Set Θ(𝑡) :=
∫︀ 𝑡

0
𝐾(𝑠)𝑑𝑠, 𝑡∈ [0, 𝜏). For a𝐾-convoluted 𝐶-semigroup (𝑆𝐾(𝑡))𝑡∈[0,𝜏),

resp., 𝐾-convoluted 𝐶-cosine function (𝐶𝐾(𝑡))𝑡∈[0,𝜏), we define its (integral) gen-
erator 𝒜 by graph

𝒜 :=

{︂
(𝑥, 𝑦) ∈ 𝐸 × 𝐸 : 𝑆𝐾(𝑡)𝑥−Θ(𝑡)𝐶𝑥 =

∫︁ 𝑡

0

𝑆𝐾(𝑠)𝑦 𝑑𝑠, 𝑡 ∈ [0, 𝜏)

}︂
, resp.,

𝒜 :=

{︂
(𝑥, 𝑦) ∈ 𝐸 × 𝐸 : 𝐶𝐾(𝑡)𝑥−Θ(𝑡)𝐶𝑥 =

∫︁ 𝑡

0

(𝑡− 𝑠)𝐶𝐾(𝑠)𝑦 𝑑𝑠, 𝑡 ∈ [0, 𝜏)

}︂
;

with Θ(𝑡) ≡ 1, we obtain the definition of integral generator of a 𝐶-semigroup
(𝐶-cosine function).

Denote by (𝑊 (𝑡))𝑡∈[0,𝜏) any of the above considered operator families, and
𝑎(𝑡) ≡ 1 (𝑎(𝑡) ≡ 𝑡) in the case of consideration semigroups (cosine functions). In
what follows, we will refer to (𝑊 (𝑡))𝑡∈[0,𝜏) as a (local) (𝑎,Θ)-regularized 𝐶-resolvent
family. It is worth noting that the functional equality of (𝑊 (𝑡))𝑡∈[0,𝜏) and its
strong continuity together imply that 𝑊 (𝑡)𝑊 (𝑠) = 𝑊 (𝑠)𝑊 (𝑡) for all 𝑡, 𝑠 ∈ [0, 𝜏)
with 𝑡 + 𝑠 ∈ [0, 𝜏 ]; in general case, it is not true that 𝑊 (𝑡)𝑊 (𝑠) = 𝑊 (𝑠)𝑊 (𝑡) for
𝜏 < 𝑡+ 𝑠 < 2𝜏 (cf. [385] and Example 3.2.42). We will accept the following notion
of non-degeneracy: (𝑊 (𝑡))𝑡∈[0,𝜏) is said to be non-degenerate iff the assumption
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𝑊 (𝑡)𝑥 = 0 for all 𝑡 ∈ [0, 𝜏) implies 𝑥 = 0 (cf. [386, p. 2] for more details on the
subject).

It is clear that the integral generator 𝒜 of (𝑊 (𝑡))𝑡∈[0,𝜏) is an MLO in 𝐸 and
that the local equicontinuity of (𝑊 (𝑡))𝑡∈[0,𝜏) implies that 𝒜 is closed. Furthermore,
we have that 𝒜 ⊆ 𝐶−1𝒜𝐶 in the MLO sense, and that 𝒜 = 𝐶−1𝒜𝐶 provided
additionally that the operator 𝐶 is injective. A subgenerator of (𝑊 (𝑡))𝑡∈[0,𝜏) is
nothing else but an (𝑎,Θ, 𝐶)-subgenerator of (𝑊 (𝑡))𝑡∈[0,𝜏) (see Definition 3.2.41).

In [386, Example 4.10], for each 𝛼 > 0 it has been constructed an example
of a global degenerate 𝛼-times integrated 𝐶-semigroup with infinitely many single-
valued bounded subgenerators. This example shows that the equivalence relation
𝐴 ⊆ 𝐵 ⇔ 𝐷(𝐴) ⊆ 𝐷(𝐵), as well as any of the equalities 𝐴𝑥 = 𝐵𝑥, 𝑥 ∈ 𝐷(𝐴)∩𝐷(𝐵)

and 𝜌(𝐴) = ∅, 𝐴 ̸= 𝒜 does not hold for subgenerators in the degenerate case
(cf. [291, Proposition 2.1.6(ii)–(iii),(viii)], and [291, Proposition 2.1.16] for cosine
operator functions case). Furthermore, the subgenerators from this example do not
have the same eigenvalues, in general, so that the assertion of [291, Proposition
2.1.6(v)] does not hold in the degenerate case, as well; the same example shows that
the equality 𝐶−1𝒜𝐶 = 𝐶−1ℬ𝐶 (in the MLO sense) is not generally true for sub-
generators of degenerate integrated 𝐶-semigroups (cf. [291, Proposition 2.1.6(ii)]).

For the sequel, we need the following useful extension of [366,367, Lemma 2.1]:

Lemma 3.2.49. Let 0 < 𝜏 6 ∞, and let (𝑊 (𝑡))𝑡∈[0,𝜏) be a strongly continuous
operator family which commutes with 𝐶. Then the following is equivalent:

(i) (𝑊 (𝑡))𝑡∈[0,𝜏) is an (𝑎,Θ)-regularized 𝐶-resolvent family.
(ii) For any complex non-zero polynomial 𝑃 (𝑧) and for any 𝑎0∈C, (𝑊𝑃,𝑎0(𝑡)≡

(𝑃 *𝑊 )(𝑡)+ 𝑎0𝑊 (𝑡))𝑡∈[0,𝜏) is an (𝑎, 𝑃 *Θ+ 𝑎0Θ)-regularized 𝐶-resolvent
family.

(iii) There exist a complex non-zero polynomial 𝑃 (𝑧) and a number 𝑎0 ∈ C
such that (𝑊𝑃,𝑎0(𝑡))𝑡∈[0,𝜏) is an (𝑎, 𝑃 *Θ+ 𝑎0Θ)-regularized 𝐶-resolvent
family.

Proof. We will prove the lemma in the case that (𝑊 (𝑡))𝑡∈[0,𝜏) = (𝑆𝐾(𝑡))𝑡∈[0,𝜏)

or (𝑊 (𝑡))𝑡∈[0,𝜏) = (𝐶𝐾(𝑡))𝑡∈[0,𝜏) for some 𝐾 ∈ 𝐿1
𝑙𝑜𝑐([0, 𝜏)), 𝐾 ̸= 0. We will

prove the implication (i) ⇒ (ii) by induction on degree of 𝑃 (𝑧). Consider first
the semigroup case. If dg(𝑃 ) = 0, then there exists a number 𝑎1 ∈ C such that
𝑃 (𝑧) ≡ 𝑎1 and, since (𝑆Θ(𝑡) ≡ 𝑆

[1]
𝐾 (𝑡))𝑡∈[0,𝜏) is a Θ-convoluted 𝐶-semigroup by the

proof of [366, Lemma 2.1], it suffices to show that, for every 𝑥 ∈ 𝐸 and for every
𝑡, 𝑠 ∈ [0, 𝜏) with 𝑡+ 𝑠 ∈ [0, 𝜏), we have:

𝑆Θ(𝑡)𝑆𝐾(𝑠) + 𝑆𝐾(𝑡)𝑆Θ(𝑠)

=

[︂ ∫︁ 𝑡+𝑠

0

−
∫︁ 𝑡

0

−
∫︁ 𝑠

0

]︂
{Θ(𝑡+ 𝑠− 𝑟)𝑆𝐾(𝑟)𝐶𝑥+𝐾(𝑡+ 𝑠− 𝑟)𝑆Θ(𝑟)𝐶𝑥}𝑑𝑟.

Let such 𝑥, 𝑡, 𝑠 be fixed. Since 𝑆𝐾(𝑠)𝑆Θ(𝑡)𝑥 = 𝑆𝐾(𝑡)𝑆Θ(𝑠)𝑥, the identities [366,
(2.2) and (2.4)] yield
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(306)
[︂ ∫︁ 𝑡+𝑠

0

−
∫︁ 𝑡

0

−
∫︁ 𝑠

0

]︂
𝐾(𝑡+ 𝑠− 𝑟)𝑆Θ(𝑟)𝐶𝑥𝑑𝑟

= 𝑆𝐾(𝑡)𝑆Θ(𝑠)𝑥+Θ(𝑠)𝑆Θ(𝑡)𝐶𝑥 = 𝑆𝐾(𝑠)𝑆Θ(𝑡)𝑥+Θ(𝑡)𝑆Θ(𝑠)𝐶𝑥

and

(307)
[︂ ∫︁ 𝑡+𝑠

0

−
∫︁ 𝑡

0

−
∫︁ 𝑠

0

]︂
Θ(𝑡+ 𝑠− 𝑟)𝑆𝐾(𝑟)𝐶𝑥𝑑𝑟

=

[︂ ∫︁ 𝑡+𝑠

0

−
∫︁ 𝑡

0

−
∫︁ 𝑠

0

]︂
𝐾(𝑡+ 𝑠− 𝑟)𝑆Θ(𝑟)𝐶𝑥𝑑𝑟 −Θ(𝑠)𝑆Θ(𝑡)𝐶𝑥−Θ(𝑡)𝑆Θ(𝑠)𝐶𝑥

= 𝑆𝐾(𝑠)𝑆Θ(𝑡)𝑥+Θ(𝑡)𝑆Θ(𝑠)𝐶𝑥−Θ(𝑠)𝑆Θ(𝑡)𝐶𝑥−Θ(𝑡)𝑆Θ(𝑠)𝐶𝑥

= 𝑆𝐾(𝑠)𝑆Θ(𝑡)𝑥−Θ(𝑠)𝑆Θ(𝑡)𝐶𝑥.

The claimed assertion follows by adding (306) and (307). Suppose now that (ii)
holds for any complex non-zero polynomial 𝑃 (𝑧) of degree strictly less than 𝑛 ∈ N,
any number 𝑎0 ∈ C and any𝐾-convoluted 𝐶-semigroup (𝑆𝐾(𝑡))𝑡∈[0,𝜏). Let us prove
that (ii) holds for arbitrary complex non-zero polynomial 𝑃 (𝑧) = 𝑎𝑛+1𝑔𝑛+1(𝑧) +
𝑎𝑛𝑔𝑛(𝑧) + · · · + 𝑎1𝑔1(𝑧) and arbitrary number 𝑎0 ∈ C. Then we can always find
complex numbers 𝐴0, 𝐴1, 𝐵1, . . . , 𝐵𝑛 such that: 𝑎𝑛+1 = 𝐴1𝐵𝑛, 𝑎𝑗 = 𝐴1𝐵𝑗−1 +

𝐴0𝐵𝑗 for 1 6 𝑗 6 𝑛 and 𝑎0 = 𝐴0𝐵0, so that 𝑊𝑃,𝑎0(·) = 𝑆𝑃,𝑎0

𝐾 (·) = 𝐴1(𝑔1 *
𝑆𝐾1

)(·) +𝐴0𝑆𝐾1
(·) = 𝑆𝐴1,𝐴0

𝐾1
(·), where 𝑆𝐾1

(·) = 𝑆𝑃1,𝐵0

𝐾 (·) with 𝑃1(𝑧) = 𝐵𝑛𝑔𝑛(𝑧) +
𝐵𝑛−1𝑔𝑛−1(𝑧) + · · · + 𝐵1𝑔1(𝑧). Hence, (ii) follows from its validity for constant
polynomials and induction hypothesis. The implication (ii) ⇒ (iii) is trivial and
the implication (ii) ⇒ (iii) holds on account of the proof of [366, Lemma 2.1], with
𝑃 (𝑧) = 1 and 𝑎0 = 0. The proof for 𝐾-convoluted 𝐶-cosine functions is almost the
same and here it is only worth pointing out how one can prove that part (ii) holds
for constant complex polynomials. Let (𝐶𝐾(𝑡))𝑡∈[0,𝜏) be a 𝐾-convoluted 𝐶-cosine
function, let 𝑃 (𝑧) ≡ 𝑎1 ∈ C, and let 𝑎0 ∈ C. It is very simple to prove that (ii)
holds provided 𝑎0 = 0, so that (𝐶Θ(𝑡) = 𝐶

[1]
𝐾 (𝑡))𝑡∈[0,𝜏) is a Θ-convoluted 𝐶-cosine

function. In the remnant of proof, we assume that 𝑡, 𝑠 ∈ [0, 𝜏), 𝑡+ 𝑠 < 𝜏 and 𝑡 > 𝑠
(the case 𝑡 < 𝑠 is analogous). It suffices to show that

(308) 2[𝐶Θ(𝑡)𝐶𝐾(𝑠)𝑥+ 𝐶𝐾(𝑡)𝐶Θ(𝑠)𝑥]

=

(︂∫︁ 𝑡+𝑠

𝑡

−
∫︁ 𝑠

0

)︂
{Θ(𝑡+ 𝑠− 𝑟)𝐶𝐾(𝑟)𝐶𝑥+𝐾(𝑡+ 𝑠− 𝑟)𝐶Θ(𝑟)𝐶𝑥}𝑑𝑟

+

∫︁ 𝑡

𝑡−𝑠

{Θ(𝑟 − 𝑡+ 𝑠)𝐶𝐾(𝑟)𝐶𝑥+𝐾(𝑟 − 𝑡+ 𝑠)𝐶Θ(𝑟)𝐶𝑥}𝑑𝑟

+

∫︁ 𝑠

0

{Θ(𝑟 + 𝑡− 𝑠)𝐶𝐾(𝑟)𝐶𝑥+𝐾(𝑟 + 𝑡− 𝑠)𝐶Θ(𝑟)𝐶𝑥}𝑑𝑟.

Since (𝐶Θ(𝑡))𝑡∈[0,𝜏) is a Θ-convoluted 𝐶-cosine function, the final part of proof
of [291, Theorem 2.1.13] shows that (see e.g. the equations [291, (36)–(41)])

(309) 2𝐶𝐾(𝑡)𝐶Θ(𝑠)𝑥 = 2Θ(𝑡)𝐶Θ(𝑠)𝐶𝑥
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+

(︂∫︁ 𝑡+𝑠

𝑡

−
∫︁ 𝑠

0

)︂
Θ(𝑡+ 𝑠− 𝑟)𝐶𝐾(𝑟)𝐶𝑥𝑑𝑟

+

∫︁ 𝑡

𝑡−𝑠

Θ(𝑟 − 𝑡+ 𝑠)𝐶𝐾(𝑟)𝐶𝑥𝑑𝑟 −
∫︁ 𝑠

0

Θ(𝑟 + 𝑡− 𝑠)𝐶𝐾(𝑟)𝐶𝑥𝑑𝑟.

Using the equality 2𝐶Θ(𝑡)𝐶𝐾(𝑠)𝑥 = 2(𝑑/𝑑𝑠)𝐶Θ(𝑡)𝐶𝜃(𝑠)𝑥 and the composition prop-
erty for (𝐶Θ(𝑡))𝑡∈[0,𝜏), a straightforward computation shows that the value of term
2𝐶Θ(𝑡)𝐶𝐾(𝑠)𝑥, appearing on the left hand side of (308), is equal to 𝑅1 −𝑅, where
𝑅1, resp., 𝑅, is the term on the right hand side of (308), resp., (309). The proof of
the lemma is thereby complete. �

Inspecting the proofs of [366,367, Theorem 2.2] yields the following:

Theorem 3.2.50. Let 0 < 𝜏 6∞, and let (𝑊 (𝑡))𝑡∈[0,𝜏) be a strongly continuous
operator family which commutes with 𝐶.

(i) If (𝑊 (𝑡))𝑡∈[0,𝜏) is an (𝑎,Θ)-regularized 𝐶-resolvent family, then

(310) (𝑎*𝑊 )(𝑡)[𝑊 (𝑠)−Θ(𝑠)𝐶] = [𝑊 (𝑡)−Θ(𝑡)𝐶](𝑎*𝑊 )(𝑠) for 0 6 𝑡, 𝑠, 𝑡+𝑠 < 𝜏.

(ii) Suppose that (𝑊 (𝑡))𝑡∈[0,𝜏) is locally equicontinuous and (310) holds. Then
(𝑊 (𝑡))𝑡∈[0,𝜏) is an (𝑎,Θ)-regularized 𝐶-resolvent family.

By Theorem 3.2.50(i), we have that the integral generator 𝒜 of a global (𝑎,Θ)-
regularized 𝐶-resolvent family (𝑊 (𝑡))𝑡>0 is always its subgenerator (as already
seen, this statement is not true in local case).

The following theorem is a slight extension of [366,367, Theorem 2.5].

Theorem 3.2.51. Let 0 < 𝜏 6 ∞ and 𝐶 ∈ 𝐿(𝐸). Suppose that 𝑎(𝑡) ≡ 1 or
𝑎(𝑡) ≡ 𝑡, 𝒜 is an MLO and (𝑍(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝐸) is a strongly continuous operator
family which commutes with 𝐶. Let (𝑍(𝑡))𝑡∈[0,𝜏) be locally equicontinuous. Then
the following holds:

(i) If 𝒜 is a subgenerator of (𝑍(𝑡))𝑡∈[0,𝜏), then (𝑍(𝑡))𝑡∈[0,𝜏) is an (𝑎,Θ)-
regularized 𝐶-resolvent family.

(ii) Suppose that (i) holds with 𝒜 = 𝐴 being single-valued and linear, as well
as that 𝐶 is injective. Then (𝑍(𝑡))𝑡∈[0,𝜏) is non-degenerate.

Proof. Let 𝑥 ∈ 𝐸 be fixed. Then (ii) of Definition 3.2.41 yields that
∫︀ 𝑠

0
𝑎(𝑠−

𝑟)𝑍(𝑟)𝑥 𝑑𝑟 ∈ 𝐷(𝒜) and 𝑍(𝑠)𝑥−Θ(𝑠)𝐶𝑥 ∈ 𝒜
∫︀ 𝑠

0
𝑎(𝑠− 𝑟)𝑍(𝑟)𝑥 𝑑𝑟. By (i) of Defini-

tion 3.2.41, we have

[𝑍(𝑡)−Θ(𝑡)𝐶]

∫︁ 𝑠

0

𝑎(𝑠− 𝑟)𝑍(𝑟)𝑥 𝑑𝑟 =

∫︁ 𝑡

0

𝑎(𝑡− 𝑟)𝑍(𝑟)[𝑍(𝑠)𝑥−Θ(𝑠)𝐶𝑥]𝑑𝑟

= (𝑎 * 𝑍)(𝑡)[𝑍(𝑠)𝑥−Θ(𝑠)𝐶𝑥],

for 0 6 𝑡, 𝑠 < 𝜏 . Now we can apply Theorem 3.2.50(ii) in order to see that (i) holds
true. The proof of (ii) is simple and therefore omitted. �

Now it is quite simple to construct an example of a global degenerate strongly
continuous semigroup (i.e., 𝐼-regularized semigroup) which do not have any linear
subgenerator:
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Example 3.2.52. [199] Suppose that 𝒜 is a non single-valued MLO which
satisfies the Hille–Yosida condition [199, (H-Y), p. 28] on a Banach space 𝐸.
By [199, Theorem 2.4], 𝒜 is the integral generator (a subgenerator) of a global
strongly continuous semigroup (𝑇 (𝑡))𝑡>0 which vanishes on the closed subspace 𝒜0
of 𝐸. An application of Theorem 3.2.51(ii) shows that (𝑇 (𝑡))𝑡>0 has no linear,
single-valued subgenerator.

It should also be observed that a global degenerate strongly continuous semi-
group can have infinitely many subgenerators: Let 𝑃 ∈ 𝐿(𝐸), 𝑃 2 = 𝑃 and
𝑇 (𝑡) := 𝑃 , 𝑡 > 0. Then it can be simply verified that, for every linear subspace 𝑉
of 𝑁(𝑃 ), 𝒜 = 𝑁(𝐼 − 𝑃 ) × 𝑉 is a subgenerator of (𝑇 (𝑡))𝑡>0. The arguments used
in the proofs of [366, Lemma 2.8] and [367, Lemma 2.9] enable one to deduce the
following lemma:

Lemma 3.2.53. Let 0 < 𝜏 6 ∞, 𝑥 ∈ 𝐸, 0 ∈ supp(Θ) and (𝑊 (𝑡))𝑡∈[0,𝜏) be an
(𝑎,Θ)-regularized 𝐶-resolvent family. Then the existence of a number 𝜏0 ∈ (0, 𝜏)
such that 𝑊 (𝑡)𝑥 = 0, 𝑡 ∈ [0, 𝜏0) implies 𝐶𝑊 (𝑡)𝑥 = 0, 𝑡 ∈ [0, 𝜏).

Keeping in mind Lemma 3.2.53, it is quite simple to prove the following exten-
sion of [366, Theorem 2.9] and [367, Theorem 2.10]:

Theorem 3.2.54. Suppose that 0 < 𝜏 6∞, 𝐶 ∈ 𝐿(𝐸) is injective, 0 ∈supp(Θ)
and (𝑊 (𝑡))𝑡∈[0,𝜏) is an (𝑎,Θ)-regularized 𝐶-resolvent family. Then (𝑊 (𝑡))𝑡∈[0,𝜏) is
non-degenerate iff the integral generator 𝒜 of (𝑊 (𝑡))𝑡∈[0,𝜏) is its subgenerator.

Before proceeding further, we would like to mention that the examination from
Example 3.2.52 shows that the existence of a subgenerator of a (local) 𝐶-regularized
semigroup in the MLO sense does not imply its non-degeneracy, even supposing
that 𝐶 = 𝐼. The reader with a little experience will succeed in transferring [366,
Theorem 2.13] and [367, Theorem 2.14] to locally equicontinuous 𝐾-convoluted
𝐶-semigroups and 𝐾-convoluted 𝐶-cosine functions in locally convex spaces.

The following proposition extends the assertions of [291, Proposition 2.1.3]
and [366,367, Proposition 2.3] (for locally equicontinuous operator families, this
proposition follows almost immediately from Theorem 3.2.49).

Proposition 3.2.55. Let 0 < 𝜏 6 ∞, and let (𝑊 (𝑡))𝑡∈[0,𝜏) be an (𝑎,Θ)-
regularized 𝐶-resolvent family. Suppose that 𝐻 ∈ 𝐿1

𝑙𝑜𝑐([0, 𝜏)) and 𝐻 *0 𝐾 ̸= 0

in 𝐿1
𝑙𝑜𝑐([0, 𝜏)). Set 𝑊𝐻(𝑡)𝑥 :=

∫︀ 𝑡

0
𝐻(𝑡 − 𝑠)𝑊 (𝑠)𝑥 𝑑𝑠, 𝑥 ∈ 𝐸, 𝑡 ∈ [0, 𝜏). Then

(𝑊𝐻(𝑡))𝑡∈[0,𝜏) is an (𝑎,𝐻 *0 Θ)-regularized 𝐶-resolvent family.

Proof. We will include all details of proof for semigroups, in purely convoluted
case; the proof in all other cases can be given by applying the same trick. It is clear
that (𝑊𝐻(𝑡) = 𝑆𝐾,𝐻(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝐸) is a strongly continuous operator family
which commutes with 𝐶. Therefore, it suffices to show that, for every 𝑥 ∈ 𝐸 and
𝑡, 𝑠 ∈ [0, 𝜏) with 𝑡+ 𝑠 ∈ [0, 𝜏), the following holds:

𝑆𝐻,𝐾(𝑡)𝑆𝐻,𝐾(𝑠)𝑥 =

[︂ ∫︁ 𝑡+𝑠

0

−
∫︁ 𝑡

0

−
∫︁ 𝑠

0

]︂
(𝐻 *𝐾)(𝑡+ 𝑠− 𝑟)𝑆𝐻,𝐾(𝑟)𝐶𝑥𝑑𝑟,
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i.e., that for each functional 𝑥* ∈ 𝐸* we have:

(311)
∫︁ 𝑡

0

∫︁ 𝑠

0

𝐻(𝑡−𝑟)𝐻(𝑠−𝜎)
[︂ ∫︁ 𝑟+𝜎

0

−
∫︁ 𝑟

0

−
∫︁ 𝜎

0

]︂
𝐾(𝑟+𝜎 −𝑣)⟨𝑥*, 𝑆𝐾(𝑣)𝐶𝑥⟩ 𝑑𝑣 𝑑𝜎 𝑑𝑟

=

[︂ ∫︁ 𝑡+𝑠

0

−
∫︁ 𝑡

0

−
∫︁ 𝑠

0

]︂ ∫︁ 𝑟

0

∫︁ 𝑡+𝑠−𝑟

0

𝐾(𝑡+ 𝑠− 𝑟 − 𝑣)

×𝐻(𝑣)𝐻(𝑟 − 𝜎)⟨𝑥*, 𝑆𝐾(𝜎)𝐶𝑥⟩ 𝑑𝑣 𝑑𝜎 𝑑𝑟.

By Lemma 3.2.49, the above equality holds for all non-zero complex polynomials
𝐻(·) so that the final conclusion follows by applying Stone–Weierstrass theorem
and the dominated convergence theorem in (311). �

Remark 3.2.56. (i) Suppose that 𝒜 is a closed subgenerator of
(𝑊 (𝑡))𝑡∈[0,𝜏). Then we can simply prove with the help of Theorem 1.2.3
that 𝒜 is a subgenerator of (𝑊𝐻(𝑡))𝑡∈[0,𝜏).

(ii) Suppose that 𝒜 (𝒜𝐻) is a closed subgenerator of (𝑊 (𝑡))𝑡∈[0,𝜏)

((𝑊𝐻(𝑡))𝑡∈[0,𝜏)). Then 𝒜 ⊆ 𝒜𝐻 , with the equality if 𝐻(𝑡) is a kernel
on [0, 𝜏).

Now we will extend the assertion of [291, Theorem 2.1.11] to degenerate oper-
ator families.

Theorem 3.2.57. Suppose that 𝒜 is a closed MLO in 𝐸, 0 < 𝜏 6 ∞, 𝐾 ∈
𝐿1
𝑙𝑜𝑐([0, 𝜏)), 𝐾 ̸= 0 and (𝐶𝐾(𝑡))𝑡∈[0,𝜏) is a strongly continuous operator family which

commutes with 𝐶. Set

𝑆Θ(𝑡) :=

(︃ ∫︀ 𝑡

0
𝐶𝐾(𝑠)𝑑𝑠

∫︀ 𝑡

0
(𝑡− 𝑠)𝐶𝐾(𝑠)𝑑𝑠

𝐶𝐾(𝑡)−Θ(𝑡)𝐶
∫︀ 𝑡

0
𝐶𝐾(𝑠)𝑑𝑠

)︃
, 0 6 𝑡 < 𝜏

and 𝒞(𝑥 𝑦)𝑇 := (𝐶𝑥 𝐶𝑦)𝑇 (𝑥, 𝑦 ∈ 𝐸). Then we have:
(i) The following assertions are equivalent:

(a) (𝐶𝐾(𝑡))𝑡∈[0,𝜏) is a 𝐾-convoluted 𝐶-cosine function on 𝐸.
(b) (𝑆Θ(𝑡))𝑡∈[0,𝜏) is a Θ-convoluted 𝒞-semigroup (𝑆Θ(𝑡))𝑡∈[0,𝜏) on 𝐸×𝐸.

Suppose that the equivalence relation (a) ⇔ (b) in (i) holds. Then we have:
(ii) 𝒜 is a subgenerator of (𝐶𝐾(𝑡))𝑡∈[0,𝜏) iff ℬ := ( 0 𝐼

𝒜 0 ) is a subgenerator of
(𝑆Θ(𝑡))𝑡∈[0,𝜏).

(iii) Let 𝒜 and ℬ̂ be the integral generators of (𝐶𝐾(𝑡))𝑡∈[0,𝜏) and (𝑆Θ(𝑡))𝑡∈[0,𝜏),
respectively. Then the inclusion ( 0 𝐼

𝒜 0
) ⊆ ℬ̂ holds true. Furthermore, if

(𝐶𝐾(𝑡))𝑡∈[0,𝜏) is non-degenerate, then ( 0 𝐼
𝒜 0

) = ℬ̂.

Proof. Suppose that (a) holds. Then it is clear that (𝑆Θ(𝑡))𝑡∈[0,𝜏) is a strongly
continuous operator family in 𝐿(𝐸 × 𝐸) which commutes with 𝒞. Therefore, it
suffices to show that the semigroup property holds for (𝑆Θ(𝑡))𝑡∈[0,𝜏), i.e., that the
following holds for 0 6 𝑡, 𝑠, 𝑡+ 𝑠 < 𝜏 and 𝑥 ∈ 𝐸:

(312) 𝐶Θ(𝑡)𝐶Θ(𝑠)𝑥+ 𝐶
[1]
Θ (𝑡)[𝐶𝐾(𝑠)−Θ(𝑠)𝐶]𝑥
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=

[︂ ∫︁ 𝑡+𝑠

0

−
∫︁ 𝑡

0

−
∫︁ 𝑠

0

]︂
Θ(𝑡+ 𝑠− 𝜎)𝐶Θ(𝜎)𝐶𝑥𝑑𝜎,

(313) 𝐶Θ(𝑡)𝐶
[1]
Θ (𝑠)𝑥+ 𝐶

[1]
Θ (𝑡)𝐶Θ(𝑠)𝑥

=

[︂ ∫︁ 𝑡+𝑠

0

−
∫︁ 𝑡

0

−
∫︁ 𝑠

0

]︂
Θ(𝑡+ 𝑠− 𝜎)𝐶

[1]
Θ (𝜎)𝐶𝑥𝑑𝜎,

(314) [𝐶𝐾(𝑡)−Θ(𝑡)𝐶]𝐶Θ(𝑠)𝑥+ 𝐶Θ(𝑡)[𝐶𝐾(𝑠)−Θ(𝑠)𝐶]𝑥

=

[︂ ∫︁ 𝑡+𝑠

0

−
∫︁ 𝑡

0

−
∫︁ 𝑠

0

]︂
Θ(𝑡+ 𝑠− 𝜎){𝐶𝐾(𝜎)𝐶𝑥−Θ(𝑠)𝐶2𝑥} 𝑑𝜎

and

(315) [𝐶𝐾(𝑡)−Θ(𝑡)𝐶]𝐶
[1]
Θ (𝑠)𝑥+ 𝐶Θ(𝑡)𝐶Θ(𝑠)𝑥

=

[︂ ∫︁ 𝑡+𝑠

0

−
∫︁ 𝑡

0

−
∫︁ 𝑠

0

]︂
Θ(𝑡+ 𝑠− 𝜎)𝐶Θ(𝜎)𝐶𝑥𝑑𝜎.

The proofs of equations (312)–(315) and implication (b) ⇒ (a) below will be given
only in the case that 𝑠 6 𝑡; the case 𝑠 > 𝑡 can be considered similarly. First of all,
we will prove (314). By [291, Lemma 2.1.12], we have that[︂ ∫︁ 𝑡+𝑠

0

−
∫︁ 𝑡

0

−
∫︁ 𝑠

0

]︂
Θ(𝑡+ 𝑠− 𝜎)Θ(𝑠) 𝑑𝜎 = 0.

Therefore, we need to prove that

(316) [𝐶𝐾(𝑡)−Θ(𝑡)𝐶]𝐶Θ(𝑠)𝑥+ 𝐶Θ(𝑡)[𝐶𝐾(𝑠)−Θ(𝑠)𝐶]𝑥

=

[︂ ∫︁ 𝑡+𝑠

0

−
∫︁ 𝑡

0

−
∫︁ 𝑠

0

]︂
Θ(𝑡+ 𝑠− 𝜎)𝐶𝐾(𝜎)𝐶𝑥𝑑𝜎.

In order to do that, observe that the partial integration and Newton-Leibniz formula
imply:

(317)
[︂ ∫︁ 𝑡+𝑠

0

−
∫︁ 𝑡

0

−
∫︁ 𝑠

0

]︂
𝐾(𝑡+ 𝑠− 𝜎)𝐶Θ(𝜎)𝐶𝑥𝑑𝜎

= Θ(𝑠)𝐶Θ(𝑡)𝐶𝑥+Θ(𝑡)𝐶Θ(𝑠)𝐶𝑥

+

[︂ ∫︁ 𝑡+𝑠

0

−
∫︁ 𝑡

0

−
∫︁ 𝑠

0

]︂
Θ(𝑡+ 𝑠− 𝜎)𝐶Θ(𝜎)𝐶𝑥𝑑𝜎,

(318)
∫︁ 𝑡

𝑡−𝑠

{Θ(𝑟 − 𝑡+ 𝑠)𝐶𝐾(𝑟)𝐶𝑥+𝐾(𝑟 − 𝑡+ 𝑠)𝐶Θ(𝑟)𝐶𝑥}𝑑𝑟 = Θ(𝑠)𝐶Θ(𝑡)𝐶𝑥

and

(319)
∫︁ 𝑠

0

{Θ(𝑟 + 𝑡− 𝑠)𝐶𝐾(𝑟)𝐶𝑥+𝐾(𝑟 + 𝑡− 𝑠)𝐶Θ(𝑟)𝐶𝑥}𝑑𝑟 = Θ(𝑡)𝐶Θ(𝑠)𝐶𝑥.

Inserting (317)–(319) in (308) and dividing after that both sides of obtained equa-
tion with two, we immediately get (316). Consider now the equation (312). The
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both sides equal zero for 𝑡 = 0 and it suffices therefore to show that their derivatives
in variable 𝑡 are equal, i.e., that:

𝐶𝐾(𝑡)𝐶Θ(𝑠)𝑥+ 𝐶Θ(𝑡)[𝐶𝐾(𝑠)−Θ(𝑠)𝐶]𝑥

=
𝑑

𝑑𝑡

[︂ ∫︁ 𝑡+𝑠

0

−
∫︁ 𝑡

0

−
∫︁ 𝑠

0

]︂
Θ(𝑡+ 𝑠− 𝜎)𝐶Θ(𝜎)𝐶𝑥𝑑𝜎.

This follows from (314) and the usual limit procedure. The equation (315) is a
consequence of (312) and Theorem 3.2.50(i), so that it remains to be proved (312).
Here we can clearly deal with the function Θ(𝑡) replaced in all places with the
function 𝐾(𝑡): then (312) follows immediately from (314) by applying the partial
intgration. Hence, (b) holds. The implication (b) ⇒ (a) can be proved as follows.
By Lemma 3.2.49, we may assume without loss of generality that 𝐾(𝑡) is locally
absolutely continuous on [0, 𝜏). Since (314) holds, [291, Lemma 2.1.12] implies
that the equation [291, (26)] holds true. Due to the proof of [291, Theorem 2.1.13]
(cf. [291, (27)-(35)]) shows that the composition property holds for (𝐶𝐾(𝑡))𝑡∈[0,𝜏).
This completes the proof of (i). The proofs of (ii) and (iii) follow from simple
calculations and therefore omitted. �

Remark 3.2.58. (i) Let 𝒜 be an MLO in 𝐸, and let ℬ be defined as in
(i). Then 𝒜 is closed iff ℬ is closed. Furthermore, ( 0 𝐼

𝐶−1𝒜𝐶 0
) ⊆ 𝒞−1ℬ𝒞,

with the equality in the case that the operator 𝐶 is injective.
(ii) Theorem 3.2.57 can be simply reformulated for 𝐶-regularized cosine func-

tions on 𝐸 and induced once integrated 𝒞-semigroups on the product
space 𝐸 × 𝐸. In non-degenerate case, a similar assertion is also known
for (𝑎 * 𝑎, 𝑘)-regularized 𝐶-resolvent families on 𝐸 and induced (𝑎, 𝑎 * 𝑘)-
regularized 𝒞-resolvent families on the product space 𝐸 × 𝐸 (cf. [291,
Theorem 2.1.27(xiv)]). We leave to the interested reader as an interesting
problem to find an appropriate analogue of the last mentioned result for
degenerate regularized resolvent families.

The extension type theorems for non-degenerate integrated semigroups has
been considered for the first time by W. Arendt, O. El-Mennaoui and V. Keyan-
tuo [28], who have proved that a closed linear operator 𝐴 generates a local (2𝑛)-
times integrated semigroup on the interval [0, 2𝜏), provided that 𝐴 generates a local
𝑛-times integrated semigroup on the interval [0, 𝜏) (𝑛 ∈ N, 0 < 𝜏 < ∞). Immedi-
ately after that, I. Ciorănescu and G. Lumer [110] have extended their result to
the class of local 𝐾-convoluted 𝐶-semigroups (see e.g. [291, Theorem 2.1.9] for a
precise formulation). On the other hand, S. W. Wang and M. C. Gao [532] have in-
vestigated automatic extensions of non-degenerate local 𝐶-regularized semigroups
and non-degenerate local 𝐶-regularized cosine functions. By all means, the method
established in [532] cannot be used for proving extension type theorems for de-
generate 𝐶-regularized semigroups and degenerate 𝐶-regularized cosine functions
which do not have subgenerators. The situation is much more simpler if degenerate
operator families under our consideration have subgenerators. Keeping in mind
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Theorem 1.2.3 and elementary properties of multivalued linear operators, the fol-
lowing two theorems can be proved in almost the same way as in the single-valued
linear case (cf. V. Keyantuo, P. J. Miana, L. Sánchez-Lajusticia [278, Theorem
4.4], P. J. Miana, V. Poblete [429, Theorem 3.3], and [291, Theorem 2.1.9, Corol-
lary 2.1.10, Theorem 2.1.14, Corollary 2.1.15] for some special cases of two last
mentioned results):

Theorem 3.2.59. Suppose that 𝒜 is a closed MLO. Let 𝑛 ∈ N, 0 < 𝜏 < ∞,
0 < 𝜏0 < 𝜏 , 𝐾 ∈ 𝐿1

𝑙𝑜𝑐([0, (𝑛+1)𝜏)), 𝐾 ̸= 0, and let (𝑆𝐾(𝑡))𝑡∈[0,𝜏) be a local 𝐾|[0,𝜏)-
convoluted 𝐶-semigroup with a subgenerator 𝒜. Define recursively the family of
operators (𝑆𝐾,𝑛+1(𝑡))𝑡∈[0,(𝑛+1)𝜏0] by 𝑆𝐾,𝑛+1(𝑡)𝑥 :=

∫︀ 𝑡

0
𝐾(𝑡−𝑠)𝑆𝐾,𝑛(𝑠)𝐶𝑥𝑑𝑠, 𝑥 ∈ 𝐸,

for 𝑡 ∈ [0, 𝑛𝜏0] and

𝑆𝐾,𝑛+1(𝑡)𝑥 := 𝑆𝐾,𝑛(𝑛𝜏0)𝑆𝐾(𝑡− 𝑛𝜏0)𝑥

+

∫︁ 𝑛𝜏0

0

𝐾(𝑡− 𝑠)𝑆𝐾,𝑛(𝑠)𝐶𝑥𝑑𝑠+

∫︁ 𝑡−𝑛𝜏0

0

𝐾*,𝑛(𝑡− 𝑠)𝑆𝐾(𝑠)𝐶𝑥𝑑𝑠

for 𝑥 ∈ 𝐸 and 𝑡 ∈ (𝑛𝜏0, (𝑛 + 1)𝜏0]. Then (𝑆𝐾,𝑛+1(𝑡))𝑡∈[0,(𝑛+1)𝜏0) is a local
(𝐾*,𝑛+1)|[0,(𝑛+1)𝜏0)-convoluted 𝐶𝑛+1-semigroup with a subgenerator 𝒜.

Theorem 3.2.60. Suppose that 𝒜 is a closed MLO. Let 𝑛 ∈ N, 0 < 𝜏 < ∞,
0 < 𝜏0 < 𝜏 , 𝐾 ∈ 𝐿1

𝑙𝑜𝑐([0, (𝑛+1)𝜏)), 𝐾 ̸= 0, and let (𝐶𝐾(𝑡))𝑡∈[0,𝜏) be a local 𝐾|[0,𝜏)-
convoluted 𝐶-cosine function with a subgenerator 𝒜. Define recursively the family
of operators (𝐶𝐾,𝑛+1(𝑡))𝑡∈[0,(𝑛+1)𝜏0] by 𝐶𝐾,𝑛+1(𝑡)𝑥 :=

∫︀ 𝑡

0
𝐾(𝑡 − 𝑠)𝐶𝐾,𝑛(𝑠)𝐶𝑥𝑑𝑠,

𝑥 ∈ 𝐸, for 𝑡 ∈ [0, 𝑛𝜏0] and

𝐶𝐾,𝑛+1(𝑡)𝑥 := 2𝐶𝐾,𝑛(𝑛𝜏0)𝐶𝐾(𝑡− 𝑛𝜏0)𝑥+

∫︁ 𝑛𝜏0

0

𝐾(𝑡− 𝑠)𝐶𝐾,𝑛(𝑠)𝐶𝑥𝑑𝑠

+

∫︁ 𝑡−𝑛𝜏0

0

𝐾*,𝑛(𝑡− 𝑠)𝐶𝐾(𝑠)𝐶𝑥𝑑𝑠−
∫︁ 𝑛𝜏0

2𝑛𝜏0−𝑡

𝐾(𝑡+ 𝑠− 2𝑛𝜏0)𝐶𝐾,𝑛(𝑠)𝐶𝑥𝑑𝑠

−
∫︁ 𝑡−𝑛𝜏0

0

𝐾(𝑠− 𝑡+ 2𝑛𝜏0)𝐶𝐾(𝑠)𝑥 𝑑𝑠

for 𝑥 ∈ 𝐸 and 𝑡 ∈ (𝑛𝜏0, (𝑛 + 1)𝜏0]. Then (𝐶𝐾,𝑛+1(𝑡))𝑡∈[0,(𝑛+1)𝜏0) is a local
(𝐾*,𝑛+1)|[0,(𝑛+1)𝜏0)-convoluted 𝐶𝑛+1-cosine function with a subgenerator 𝒜.

Remark 3.2.61. Consider the situation of Theorem 3.2.59 (Theorem 3.2.60).
Let 𝒜 be the integral generator of (𝑆𝐾(𝑡))𝑡∈[0,𝜏) ((𝐶𝐾(𝑡))𝑡∈[0,𝜏)). Then it is
a very undesirable question to precisely profile the integral generator 𝒜𝑛+1 of
(𝑆𝐾,𝑛+1(𝑡))𝑡∈[0,(𝑛+1)𝜏0) ((𝐶𝐾,𝑛+1(𝑡))𝑡∈[0,(𝑛+1)𝜏0)) in general case. We will prove
that the integral generator of (𝑆𝐾,𝑛+1(𝑡))𝑡∈[0,(𝑛+1)𝜏0) ((𝐶𝐾,𝑛+1(𝑡))𝑡∈[0,(𝑛+1)𝜏0)) is
𝒜, provided that the operator 𝐶 is injective (observe that we do not require the
condition 0 ∈supp(𝐾) here). The analysis is quite similar in both cases and
we will consider only 𝐾-convoluted 𝐶-semigroups. Since 𝒜 is a subgenerator of
(𝑆𝐾,𝑛+1(𝑡))𝑡∈[0,(𝑛+1)𝜏0), and 𝒜 is the integral generator of (𝑆𝐾(𝑡))𝑡∈[0,𝜏), the fore-
going arguments yield that 𝒜𝑛+1 = 𝐶−(𝑛+1)𝒜𝐶𝑛+1 and 𝒜 = 𝐶−1𝒜𝐶 = 𝐶−1𝒜𝐶.
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Inductively, 𝐶−𝑙𝒜𝐶𝑙 = 𝒜, 𝑙 ∈ N so that

𝒜𝑛+1 = 𝐶−(𝑛+1)𝒜𝐶𝑛+1 = 𝐶−𝑛[𝐶−1𝒜𝐶]𝐶𝑛 = 𝐶−𝑛𝒜𝐶𝑛 = 𝒜.

The statements clarifed in Theorem 3.2.59–Theorem 3.2.60 and Remark 3.2.61
can be simply reformulated for the classes of local 𝐶-regularized semigroups and
local 𝐶-regularized cosine functions. It is also worth noting that the assertions
of [291, Proposition 2.3.3, Proposition 2.3.4] [291, Proposition 2.3.8(i)–(ii)] can be
reword for abstract degenerate inclusions of first order (second order) by replacing
the sequence 𝑥0 = 𝑥, 𝐴𝑥 = 𝑥1, . . . , 𝐴

𝑘𝑥 = 𝑥𝑘 in their formulations with an arbitrary
sequence (𝑥𝑗)06𝑗6𝑘 satisfying 𝑥𝑗 ∈ 𝒜𝑥𝑗−1 (1 6 𝑗 6 𝑘). Involving into consideration
the conditions (d)–(e) from Theorem 3.2.46, one can simply prove the analogues
of [291, Proposition 2.4.2. Corollary 2.4.3, Theorem 2.4.5, Theorem 2.4.8, Corollary
2.4.9] for degenerate analytic 𝐾-convoluted 𝐶-semigroups in locally convex spaces.

We close this subsection by rethinking our structural results from [291, Section
2.7] for degenerate 𝐾-convoluted 𝐶-semigroups subgenerated by multivalued linear
operators. The subsequent theorem is very similar to [291, Theorem 2.7.1].

Theorem 3.2.62. (i) Suppose that 𝐸 is Banach space, 𝑀 > 0, 𝛽 > 0,
|𝐾(𝑡)| 6 𝑀𝑒𝛽𝑡, 𝑡 > 0, (𝑆𝐾(𝑡))𝑡∈[0,𝜏) is a (local) 𝐾-convoluted semigroup
with a closed subgenerator 𝒜 and, for every 𝜀 > 0, there exist 𝜀0 ∈ (0, 𝜏𝜀)

and 𝑇𝜀 > 0 such that 1/|�̃�(𝜆)| 6 𝑇𝜀𝑒𝜀0|𝜆|, Re𝜆 > 𝛽, �̃�(𝜆) ̸= 0. Then, for
every 𝜀 > 0, there exist 𝐶𝜀 > 0 and �̄�𝜀 > 0 such that, for every 𝜆 which
belongs to the following set

Ω1
𝜀 := {𝜆 ∈ C : �̃�(𝜆) ̸= 0, Re𝜆 > 𝛽, Re𝜆 > 𝜀|𝜆|+ 𝐶𝜀},

there exists an operator 𝐹 (𝜆) ∈ 𝐿(𝐸) so that 𝐹 (𝜆)𝒜 ⊆ 𝒜𝐹 (𝜆), 𝜆 ∈ Ω1
𝜀,

𝐹 (𝜆)𝑥 ∈ (𝜆 − 𝒜)−1𝑥, 𝜆 ∈ Ω1
𝜀, 𝑥 ∈ 𝐸, 𝐹 (𝜆)𝑥 − 𝑥 = 𝐹 (𝜆)𝑦, whenever

𝜆 ∈ Ω1
𝜀 and (𝑥, 𝑦) ∈ 𝒜,

‖𝐹 (𝜆)‖ 6 �̄�𝜀𝑒
𝜀0|𝜆|, 𝜆 ∈ Ω1

𝜀, �̃�(𝜆) ̸= 0,

and that the mapping 𝜆 ↦→ 𝐹 (𝜆) ∈ 𝐿(𝐸), 𝜆 ∈ Ω1
𝜀 is analytic.

(ii) Suppose that 𝐸 is Banach space, 𝛼 > 0, 𝑀 > 0, 𝛽 > 0, Φ: C → [0,∞),
|𝐾(𝑡)| 6 𝑀𝑒𝛽𝑡, 𝑡 > 0, (𝑆𝐾(𝑡))𝑡∈[0,𝜏) is a local 𝐾-convoluted semigroup
with a closed subgenerator 𝒜 and 1/|�̃�(𝜆)| 6 𝑒Φ(𝛼𝜆), Re𝜆 > 𝛽, �̃�(𝜆) ̸= 0.
Then, for every 𝑡 ∈ (0, 𝜏), there exist 𝛽(𝑡) > 0 and 𝑀(𝑡) > 0 such that,
for every 𝜆 which belongs to the following set

Λ𝑡,𝛼,𝛽(𝑡) :=
{︁
𝜆 ∈ C : �̃�(𝜆) ̸= 0, Re𝜆 >

Φ(𝛼𝜆)

𝑡
+ 𝛽(𝑡)

}︁
,

there exists an operator 𝐹 (𝜆) ∈ 𝐿(𝐸) so that 𝐹 (𝜆)𝒜 ⊆ 𝒜𝐹 (𝜆), 𝜆 ∈
Λ𝑡,𝛼,𝛽(𝑡), 𝐹 (𝜆)𝑥 ∈ (𝜆−𝒜)−1𝑥, 𝜆 ∈ Λ𝑡,𝛼,𝛽(𝑡), 𝑥 ∈ 𝐸, 𝐹 (𝜆)𝑥− 𝑥 = 𝐹 (𝜆)𝑦,
whenever 𝜆 ∈ Λ𝑡,𝛼,𝛽(𝑡) and (𝑥, 𝑦) ∈ 𝒜,

‖𝐹 (𝜆)‖ 6𝑀(𝑡)𝑒Φ(𝛼𝜆), 𝜆 ∈ Λ𝑡,𝛼,𝛽(𝑡), �̃�(𝜆) ̸= 0

and that the mapping 𝜆 ↦→ 𝐹 (𝜆) ∈ 𝐿(𝐸), 𝜆 ∈ Λ𝑡,𝛼,𝛽(𝑡) is analytic. Fur-
thermore, the existence of a sequence (𝑡𝑛) in [0, 𝜏) satisfying lim𝑛→∞ 𝑡𝑛 =
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𝜏 and sup𝑛∈N ln ‖𝑆𝐾(𝑡𝑛)‖ <∞ implies that there exist 𝛽′ > 0 and 𝑀 ′ > 0
such that the above holds with the region Λ𝑡,𝛼,𝛽(𝑡) replaced by Λ𝜏,𝛼,𝛽′ and
the number 𝑀(𝑡) replaced by 𝑀 ′.

Theorem 3.2.63. Suppose that 𝐾(𝑡) satisfies (P1), 𝒜 is a closed MLO, 𝑟0 >
max(0, abs(𝐾)), Φ: [𝑟0,∞) → [0,∞) is a continuously differentiable, strictly in-
creasing mapping, lim𝑡→∞ Φ(𝑡) = +∞, Φ′(·) is bounded on [𝑟0,∞) and there exist
𝛼 > 0, 𝛾 > 0 and 𝛽 > 𝑟0 such that, for every 𝜆 which belongs to the following set

Ψ𝛼,𝛽,𝛾 :=
{︁
𝜆 ∈ C : Re𝜆 >

Φ(𝛼| Im𝜆|)
𝛾

+ 𝛽
}︁

there exists an operator 𝐹 (𝜆) ∈ 𝐿(𝐸) so that 𝐹 (𝜆)𝒜 ⊆ 𝒜𝐹 (𝜆), 𝜆 ∈ Ψ𝛼,𝛽,𝛾 , 𝐹 (𝜆)𝑥 ∈
(𝜆 − 𝒜)−1𝐶𝑥, 𝜆 ∈ Ψ𝛼,𝛽,𝛾 , 𝑥 ∈ 𝐸, 𝐹 (𝜆)𝐶 = 𝐶𝐹 (𝜆), 𝜆 ∈ Ψ𝛼,𝛽,𝛾 , 𝐹 (𝜆)𝑥 − 𝐶𝑥 =
𝐹 (𝜆)𝑦, whenever 𝜆 ∈ Ψ𝛼,𝛽,𝛾 and (𝑥, 𝑦) ∈ 𝒜, and that the mapping 𝜆 ↦→ 𝐹 (𝜆)𝑥
is analytic on Ω𝛼,𝛽,𝛾 and continuous on Γ𝛼,𝛽,𝛾 , where Γ𝛼,𝛽,𝛾 denotes the upwards
oriented boundary of Ψ𝛼,𝛽,𝛾 and Ω𝛼,𝛽,𝛾 the open region which lies to the right of
Γ𝛼,𝛽,𝛾 . Let the following conditions hold.

(i) There exists 𝜎 > 0 such that the operator family {𝑒Φ(𝜎|𝜆|)𝐹 (𝜆) : 𝜆 ∈
Ω𝛼,𝛽,𝛾} ⊆ 𝐿(𝐸) is equicontinuous.

(ii) There exists a function 𝑚 : [0,∞) → (0,∞) such that 𝑚(𝑠) = 1, 𝑠 ∈ [0, 1]

and that, for every 𝑠 > 1, there exists an 𝑟𝑠 > 𝑟0 so that Φ(𝑡)
Φ(𝑠𝑡) > 𝑚(𝑠),

𝑡 > 𝑟𝑠.
(iii) lim𝑡→∞ 𝑡𝑒−Φ(𝜎𝑡) = 0.
(iv) (∃𝑎 > 0)(∃𝑟′𝑎 > 𝑟0)(∀𝑡 > 𝑟′𝑎)

ln 𝑡
Φ(𝑡) > 𝑎.

Then 𝒜 is a subgenerator of a local 𝐾-convoluted 𝐶-semigroup on [0, 𝑎+𝑚( 𝛼
𝜎𝛾 )).

We can similarly formulate analogues of [291, Theorem 2.7.2(iii)–(iv)] for local
integrated (𝐶-)semigroups and [291, Theorem 2.7.3] for local 𝐾-convoluted 𝐶-
cosine functions.

The proof of [296, Theorem 3.15] (cf. also Theorem 3.2.21 and Example 3.2.23,
where we have studied the entire solutions of backward heat Poisson equation) es-
sentially shows that the existence of numbers 𝑟 > 0 and 𝜃 ∈ (0, 𝜋/2) and an
injective operator 𝐶 ∈ 𝐿(𝐸) such that −𝒜 is a closed subgenerator of an exponen-
tially equicontinuous, analytic 𝑟-times integrated 𝐶-semigroup (𝑆𝑟(𝑡))𝑡>0 of angle
𝜃 implies that there exists an operator 𝐶1 ∈ 𝐿(𝐸) such that 𝒜 is a subgenerator
of an entire 𝐶1-regularized semigroup in 𝐸. Using the usual matrix reduction, we
can apply this result in the analysis of problem

𝑑

𝑑𝑡
(𝐶𝑢′)−𝐵𝑢′ +𝐴𝑢(𝑡) = 𝐹 (𝑡), 0 < 𝑡 6 𝑇,

𝑢(0) = 𝑢0, 𝐶𝑢′(0) = 𝐶𝑢1,

provided that the conditions from [199, Section 6.1] hold. Multivalued matricial
operators on product spaces can also serve one for construction of exponentially
bounded degenerate integrated semigroups; see e.g. [292, Example 3.2.24].

Now we will provide two more illustrative examples of application of our ab-
stract results.
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Example 3.2.64. Let 𝐸 := 𝑙2(C) be the Hilbert space consisted of all square-
summable complex sequences equipped with the norm ‖𝑥‖ := ‖⟨𝑥1, 𝑥2, . . . , 𝑥𝑛, . . . ⟩‖
:= (

∑︀∞
𝑛=1 |𝑥𝑛|2)1/2, 𝑥 ∈ 𝐸. Let (𝑏𝑛)𝑛∈N be any real sequence with the property

that 0 6 𝑏𝑛 6 1, 𝑛 ∈ N and let 𝑎𝑛 = 𝑛 + (𝑛−2𝑒−2𝑛 − 𝑛2)1/2, 𝑛 ∈ N. Define, for
every ⟨𝑥1, 𝑥2, . . . , 𝑥𝑛, . . . ⟩ ∈ 𝐸 and 𝑡 ∈ [0, 1),

𝑇 (𝑡)⟨𝑥1, 𝑥2, . . . , 𝑥𝑛, . . . ⟩ := ⟨𝑏1𝑒𝑡𝑎1𝑥1, 𝑏2𝑒
𝑡𝑎2𝑥2, . . . , 𝑏𝑛𝑒

𝑡𝑎𝑛𝑥𝑛, . . . ⟩,

as well as 𝐶 := 𝑇 (0), 𝐼 := {𝑗 ∈ N : 𝑏𝑗 ̸= 0} and 𝐷 ∈ 𝐿(𝐸) by 𝐷⟨𝑥1, 𝑥2, . . . , 𝑥𝑛, . . . ⟩
:= ⟨𝑦1, 𝑦2, . . . , 𝑦𝑛, . . . ⟩, where 𝑦𝑗 = 𝑎𝑗𝑥𝑗 for 𝑗 ∈ 𝐼 and 𝑦𝑗 = 0 for 𝑗 /∈ 𝐼. Then
(𝑇 (𝑡))𝑡∈[0,1) is a local 𝐶-regularized semigroup with the integral generator

𝒜 := {(⟨𝑥1, 𝑥2, . . . , 𝑥𝑛, . . . ⟩, ⟨𝑦1, 𝑦2, . . . , 𝑦𝑛, . . . ⟩) : 𝑦𝑗 = 𝑎𝑗𝑥𝑗 for all 𝑗 ∈ 𝐼}

and any linear subspace 𝒜 of 𝐸×𝐸 satisfying 𝐸×𝑅(𝐷) ⊆ 𝒜 ⊆ 𝒜 is a subgenerator
of (𝑇 (𝑡))𝑡∈[0,1).

Example 3.2.65. Put 𝐸 := {𝑓 ∈ 𝐶∞([0,∞)) : lim𝑥→+∞ 𝑓 (𝑘)(𝑥) = 0 for all 𝑘 ∈
N0} and ||𝑓 ||𝑘 :=

∑︀𝑘
𝑗=0 sup𝑥>0 |𝑓 (𝑗)(𝑥)|, 𝑓 ∈ 𝑋, 𝑘 ∈ N0. This calibration induces

a Fréchet topology on 𝐸. Let 𝐽 = [𝑎, 𝑏] ⊆ (0,∞), and let 𝑚𝑏 ∈ 𝐶∞([0,∞)) satisfy
0 6 𝑚𝑏(𝑥) 6 1, 𝑥 > 0, 𝑚𝑏(𝑥) = 1, 𝑥 /∈ 𝐽 and 𝑚𝑏(𝑥) = 0, 𝑥 ∈ [𝑎 + 𝜀, 𝑏 − 𝜀] for
some 𝜀 > 0. Consider the multiplication operators 𝐴 : 𝐷(𝐴) → 𝐸 and 𝐵 ∈ 𝐿(𝐸),
where 𝐷(𝐴) = {𝑓(𝑥) ∈ 𝐸 : (−1− 𝑥+ 𝑖𝑒𝑥)𝑓(𝑥) ∈ 𝐸}, 𝐴𝑓(𝑥) := (−1− 𝑥+ 𝑖𝑒𝑥)𝑓(𝑥)
and 𝐵𝑓(𝑥) := 𝑚𝑏(𝑥)𝑓(𝑥) (𝑥 > 0, 𝑓 ∈ 𝐸). Set 𝒜 := 𝐵−1𝐴. A similar line of
reasoning as in Example 3.2.11(ii) shows that, for every 𝑠 > 1, 𝑑 > 0 and 𝜔 > 0,
the operator family {𝑒−𝑑|𝜆|1/𝑠(𝜆 − 𝒜)−1 : Re𝜆 > 𝜔} ⊆ 𝐿(𝐸) is equicontinuous.
Now we can apply Theorem 3.2.46 in order to see that 𝒜 is the integral generator
of an exponentially equicontinuous ℒ−1(𝑒−𝑑|𝜆|1/𝑠)-convoluted semigroup on 𝐸. On
the other hand, there do not exist numbers 𝑛 ∈ N and 𝜏 > 0 such that 𝒜 is the
integral generator of a local 𝑛-times integrated semigroup (𝑆𝑛(𝑡))𝑡∈[0,𝜏) on 𝐸. In
actual fact, (𝑆𝑛(𝑡))𝑡∈[0,𝜏) must be given by the following formula

(𝑆𝑛(𝑡)𝑓)(𝑥) :=
[︁ 𝑒𝑡(−1−𝑥+𝑖𝑒𝑥)

(−1− 𝑥+ 𝑖𝑒𝑥)𝑛
− 𝑡𝑛−1

(𝑛− 1)!

1

−1− 𝑥+ 𝑖𝑒𝑥
− . . .

− 𝑡

(−1− 𝑥+ 𝑖𝑒𝑥)𝑛−1
− 1

(−1− 𝑥+ 𝑖𝑒𝑥)𝑛

]︁
𝑓(𝑥),

for any 𝑓 ∈ 𝐸, 𝑥 > 0 and 𝑡 ∈ [0, 𝜏). This immediately implies that for each 𝑡 ∈ (0, 1)
there exists 𝑓𝑡 ∈ 𝐸 such that ‖𝑆𝑛(𝑡)𝑓𝑡‖𝑛+1 = +∞, which is a contradiction.

We close this subsection by enquiring into the basic properties of stationary
dense multivalued linear operators, subgenerators of integrated semigroups and
subgenerators of integrated cosine functions. The following definition has been
introduced by P. C. Kunstmann [363] in single-valued case.

Definition 3.2.66. A multivalued linear operator 𝒜 is said to be stationary
dense iff

𝑛(𝒜) := inf{𝑘 ∈ N0 : 𝐷(𝒜𝑚) ⊆ 𝐷(𝒜𝑚+1) for all 𝑚 > 𝑘} <∞.
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The number 𝑛(𝒜) is called the stationarity of 𝒜.

Remark 3.2.67. (i) Since the translations of a multivalued linear oper-
ator 𝒜 have the same domains of non-negative integer powers as 𝒜 as,
we have that for each complex number 𝜆 the stationarity of 𝜆−𝒜 is the
same as that of 𝒜.

(ii) Let us recall that a densely defined single-valued linear operator 𝐴 need
not be stationary dense (see e.g. [363, Example 1.3]) and that the va-
lidity of additional condition 𝜌(𝐴) ̸= ∅ implies that 𝐴 must be station-
ary dense with 𝑛(𝐴) = 0. Let us prove that the last statement con-
tinues to hold in multivalued linear setting. More precisely, let 𝒜 be a
densely defined MLO and 𝜌(𝒜) ̸= ∅. Then 𝒜 is stationary dense and
𝑛(𝒜) = 0. In order to see this, it suffices to assume that 0 ∈ 𝜌(𝒜); cf.
(i). Observe that, for every 𝑥 ∈ 𝐸, there exists a sequence (𝑥𝑘)𝑘∈N in
𝐷(𝒜) such that lim𝑘→+∞ 𝑥𝑘 = 𝑥. This implies that lim𝑘→+∞ 𝒜−𝑛𝑥𝑘 =
lim𝑘→+∞(𝒜−1)𝑛𝑥𝑘 = (𝒜−1)𝑛𝑥 = 𝒜−𝑛𝑥 in 𝐸, so that 𝐷(𝒜𝑛+1) is dense
in 𝑅(𝒜−𝑛) = 𝐷(𝒜𝑛) for all 𝑛 ∈ N0.

(iii) Let 𝒜 be an MLO with 𝜌(𝒜) ̸= ∅. Then part (i) and an elementary
argumentation show that 𝑛(𝒜) = inf{𝑘 ∈ N0 : 𝐷(𝒜𝑘) ⊆ 𝐷(𝒜𝑘+1)}.

Suppose that 0 < 𝜏 6 ∞, 𝑛 ∈ N0 and 𝒜 is a closed MLO satisfying that the
abstract Cauchy inclusion

(ACI)1 :

{︃
𝑢′(𝑡) ∈ 𝒜𝑢(𝑡), 𝑡 ∈ [0, 𝜏),

𝑢(0) = 𝑥

has a mild solution (that is any continuous function 𝑢(·;𝑥) ∈ 𝐶([0, 𝜏) : 𝐸) such
that 𝑢(0;𝑥) = 𝑥 and 𝑢(𝑡;𝑥) − 𝑥 ∈ 𝒜

∫︀ 𝑡

0
𝑢(𝑠;𝑥)𝑑𝑠, 𝑡 ∈ [0, 𝜏)) for all initial values

𝑥 ∈ 𝐷(𝒜𝑛). Let an element 𝑥 ∈ 𝐷(𝒜𝑛) be fixed, and let 𝑢(·;𝑥) be a mild solution
of (ACI)1 (observe that we do not require the uniqueness of mild solutions here).
Using Theorem 1.2.3 and partial integration, we can inductively prove that

(−1)𝑘
∫︁ 𝜏

0

𝜙(𝑘)(𝑡)𝑢(𝑡;𝑥)𝑑𝑡 ∈ 𝒜𝑘

∫︁ 𝜏

0

𝜙(𝑡)𝑢(𝑡;𝑥)𝑑𝑡, 𝜙 ∈ 𝒟[0,𝜏), 𝑘 ∈ N.

This, in particular, implies 𝑢(𝑡;𝑥) ∈ 𝐷∞(𝒜), 𝑡 ∈ [0, 𝜏), so that 𝐷(𝒜𝑛) ⊆ 𝐷∞(𝒜)
and 𝑛(𝒜) 6 𝑛. This is an extension of [363, Lemma 1.7] to multivalued linear case.

The following proposition is well-known in non-degenerate case [291,363].

Proposition 3.2.68. Let 𝑛 ∈ N0 and 0 < 𝜏 6∞.
(i) Suppose that 𝒜 is a closed subgenerator of a (local) 𝑛-times integrated

existence family (𝑆𝑛(𝑡))𝑡∈[0,𝜏). Then 𝑛(𝒜) 6 𝑛 + 1, and the validity of
condition 𝑆𝑛(0) = 𝛿0,𝑛𝐼 implies 𝑛(𝒜) 6 𝑛.

(ii) Suppose that 𝒜 is a closed subgenerator of a (local) 𝑛-times integrated co-
sine existence family (𝐶𝑛(𝑡))𝑡∈[0,𝜏). Then 𝑛(𝒜) 6 ⌊𝑛+2

2 ⌋, and the validity
of condition 𝐶𝑛(0) = 𝛿0,𝑛𝐼 implies 𝑛(𝒜) 6 ⌊𝑛+1

2 ⌋.

Proof. (i): Suppose first that 𝑆𝑛(0) = 𝛿0,𝑛𝐼. Then it suffices to show that
the abstract Cauchy inclusion (ACI)1 has a unique mild solution for all initial
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values 𝑥 ∈ 𝐷(𝒜𝑛). This follows from a simple computation showing that, for every
𝑥 ∈ 𝐷(𝒜𝑛), the function

𝑢(𝑡;𝑥) = 𝑆𝑛(𝑡)𝑦𝑛 +
𝑡𝑛−1

(𝑛− 1)!
𝑦𝑛−1 + · · ·+ 𝑡𝑦1 + 𝑥, 𝑡 ∈ [0, 𝜏)

is a mild solution of (ACI)1, where the sequence (𝑦𝑗)16𝑗6𝑛 is chosen so that (𝑥, 𝑦1) ∈
𝒜, (𝑦1, 𝑦2) ∈ 𝒜, . . . , (𝑦𝑛−1, 𝑦𝑛) ∈ 𝒜. The rest of (i) is a consequence of the fact
that (𝑆[1]

𝑛 (𝑡))𝑡∈[0,𝜏) is an (𝑛+1)-times integrated semigroup with a subgenerator 𝒜
and 𝑆[1]

𝑛 (0) = 0. (ii): The proof of (ii) can be given by using the fact that

𝑆𝑛+1(𝑡) ≡

(︃ ∫︀ 𝑡

0
𝐶𝑛(𝑠)𝑑𝑠

∫︀ 𝑡

0
(𝑡− 𝑠)𝐶𝑛(𝑠)𝑑𝑠

𝐶𝑛(𝑡)− 𝑔𝑛+1(𝑡)
∫︀ 𝑡

0
𝐶𝑛(𝑠)𝑑𝑠

)︃
, 0 6 𝑡 < 𝜏

is an (𝑛+1)-times integrated cosine existence family with a subgenerator ℬ = ( 0 𝐼
𝒜 0 )

(cf. Theorem 3.2.57 and the proof of [291, Theorem 2.1.11(i)]) and the fact that

𝑛(𝒜) = 2𝑛(ℬ),

which can be verified by reasoning similarly as in the proof of [291, Lemma
2.1.22]. �

Remark 3.2.69. The estimates 𝑛(𝒜) 6 𝑛 + 1 and 𝑛(𝒜) 6 ⌊𝑛+2
2 ⌋ obtained

above cannot be refined in the degenerate case. We will explain this in the case
that 𝑛 = 0. Suppose 𝑃 ∈ 𝐿(𝐸) and 𝑃 2 = 𝑃 . Then (𝑇 (𝑡) ≡ 𝑃 )𝑡>0 ((𝐶(𝑡) ≡ 𝑃 )𝑡>0)
is a strongly continuous semigroup (strongly continuous cosine operator function)
with a closed subgenerator 𝒜 = 𝑁(𝐼 −𝑃 )×{0}, which satisfies 𝑛(𝒜) = 1 provided
that 𝑁(𝐼 − 𝑃 ) is not densely defined in 𝐸 (consider, for example, the matricial
operator ( 0 1

0 1 )).

It is also worth noting that the following extension of [363, Lemma 1.5] holds
in our framework.

Proposition 3.2.70. Suppose that 𝒜 is a closed MLO, 𝛼 > −1 and (𝜆𝑛)𝑛∈N is
a sequence of complex numbers satisfying that lim𝑛→+∞ |𝜆𝑛| = +∞ and the family
{(1 + |𝜆𝑛|)−𝛼𝑅(𝜆𝑛 : 𝒜) ; 𝑛 ∈ N} ⊆ 𝐿(𝐸) is equicontinuous. Then 𝒜 is stationary
dense and 𝑛(𝒜) 6 ⌊𝛼⌋+ 2.

Proof. Without loss of generality, we may assume that |𝜆𝑛| > 1, 𝑛 ∈ N
and (|𝜆𝑛|)𝑛∈N is strictly increasing. Let 𝑘 > ⌊𝛼⌋ + 2. We will have to prove that
𝐷(𝒜𝑘) ⊆ 𝐷(𝒜𝑘+1). So, let 𝑥 ∈ 𝐷(𝒜𝑘). Then there exists a sequence (𝑦𝑗)16𝑗6𝑘 such
that (𝑥, 𝑦1) ∈ 𝒜, (𝑦1, 𝑦2) ∈ 𝒜, . . . , (𝑦𝑘−1, 𝑦𝑘) ∈ 𝒜. Then 𝜆𝑛𝑅(𝜆𝑛 : 𝒜)𝑥 ∈ 𝐷(𝒜𝑘+1),
𝑛 ∈ N and it can be easily seen with the help of Theorem 1.2.4(i) and Theorem
1.2.8(ii) that, for every 𝑛 ∈ N, we have

𝜆𝑛𝑅(𝜆𝑛 : 𝒜)𝑥− 𝑥 = 𝑅(𝜆𝑛 : 𝒜)𝑦1 → 0, 𝑛→ +∞.

Hence, 𝐷(𝒜𝑘) ⊆ 𝐷(𝒜𝑘+1) as claimed. �
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3.3. Degenerate 𝐶-distribution semigroups and degenerate
𝐶-ultradistribution semigroups in locally convex spaces

In our recent joint research study with S. Pilipović and D. Velinov [354], we
have introduced and systematically analyzed the classes of 𝐶-distribution semi-
groups and 𝐶-ultradistribution semigroups in locally convex spaces (cf. [65,99,109,
177,282,289,291,351,364,365,391,424,488,530] and references cited therein
for the current state of theory). The main aim of this section is to present the
most important things about the classes of degenerate 𝐶-distribution semigroups
and degenerate 𝐶-ultradistribution semigroups in barreled sequentially complete
locally convex spaces. We consider multivalued linear operators as infinitesimal
generators of such semigroups and allow the regularizing operator 𝐶 to be non-
injective (cf. [58,282,406] and [423,424] for the primary source of information on
degenerate distribution semigroups in Banach spaces). In contrast to the analyses
from [424, Section 2.2] and [58, Section 3], we do not use any decomposition of the
state space 𝐸. Throughout this section, we assume that 𝐶 ∈ 𝐿(𝐸) is not necessarily
injective operator as well as that (𝑀𝑝)𝑝∈N0

is a sequence of positive real numbers
satisfying (𝑀.1), (𝑀.2) and (𝑀.3)′. Any employment of the condition (𝑀.3) will
be explicitely emphasized. Since 𝐸 is barreled, the uniform boundedness princi-
ple [419, p. 273] implies that each 𝒢 ∈ 𝒟′(𝐿(𝐸)) (𝒢 ∈ 𝒟′*(𝐿(𝐸))) is boundedly
equicontinuous, i.e., that for every 𝑝 ∈ ~ and for every bounded subset 𝐵 of 𝒟
(𝒟*), there exist 𝑐 > 0 and 𝑞 ∈ ~ such that 𝑝(𝒢(𝜙)𝑥) 6 𝑐𝑞(𝑥), 𝜙 ∈ 𝐵, 𝑥 ∈ 𝐸.

Definition 3.3.1. Let 𝒢 ∈ 𝒟′
0(𝐿(𝐸)) (𝒢 ∈ 𝒟′*

0 (𝐿(𝐸))) satisfy 𝐶𝒢 = 𝒢𝐶. Then
it is said that 𝒢 is a pre-(C-DS) (pre-(C-UDS) of *-class) iff the following holds:

(C.S.1) 𝒢(𝜙 *0 𝜓)𝐶 = 𝒢(𝜙)𝒢(𝜓), 𝜙, 𝜓 ∈ 𝒟 (𝜙, 𝜓 ∈ 𝒟*).

If, additionally,

(C.S.2) 𝒩 (𝒢) :=
⋂︁

𝜙∈𝒟0

𝑁(𝒢(𝜙)) = {0}
(︂
𝒩 (𝒢) :=

⋂︁
𝜙∈𝒟*

0

𝑁(𝒢(𝜙)) = {0}
)︂
,

then 𝒢 is called a 𝐶-distribution semigroup (𝐶-ultradistribution semigroup of *-
class), (C-DS) ((C-UDS) of *-class) in short. A pre-(C-DS) 𝒢 is called dense iff

(C.S.3) ℛ(𝒢) :=
⋃︁

𝜙∈𝒟0

𝑅(𝒢(𝜙)) is dense in 𝐸
(︂
ℛ(𝒢) :=

⋃︁
𝜙∈𝒟*

0

𝑅(𝒢(𝜙)) is dense in 𝐸
)︂
.

The notion of a dense pre-(C-UDS) 𝒢 of *-class (and the set ℛ(𝒢)) is defined
similarly.

If 𝐶 = 𝐼, then we also write pre-(DS), pre-(UDS), (DS), (UDS), respectively,
instead of pre-(C-DS), pre-(C-UDS), (C-DS), (C-UDS).

Suppose that 𝒢 is a pre-(C-DS) (pre-(C-UDS) of *-class). Then 𝒢(𝜙)𝒢(𝜓) =
𝒢(𝜓)𝒢(𝜙) for all 𝜙, 𝜓 ∈ 𝒟 (𝜙,𝜓 ∈ 𝒟*), and 𝒩 (𝒢) is a closed subspace of 𝐸.

The structural characterization of a pre-(C-DS) 𝒢 (pre-(C-UDS) 𝒢 of *-class)
on its kernel space 𝒩 (𝒢) is described in the following theorem (cf. [291, Proposition
3.1.1] and the proofs of [364, Lemma 2.2], [291, Proposition 3.5.4]).
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Theorem 3.3.2. (i) Let 𝒢 be a pre-(C-DS), and let the space 𝐿(𝒩 (𝒢))
be admissible. Then, with 𝑁 = 𝒩 (𝒢) and 𝐺1 being the restriction of 𝒢
to 𝑁 (𝐺1 = 𝒢|𝑁 ), we have: There exists an integer 𝑚 ∈ N for which
there exist unique operators 𝑇0, 𝑇1, . . . , 𝑇𝑚 ∈ 𝐿(𝒩 (𝒢)) commuting with
𝐶 so that 𝐺1 =

∑︀𝑚
𝑗=0 𝛿

(𝑗) ⊗ 𝑇𝑗, 𝑇𝑖𝐶𝑖 = (−1)𝑖𝑇 𝑖+1
0 , 0 6 𝑖 6 𝑚 − 1 and

𝑇0𝑇𝑚 = 𝑇𝑚+2
0 = 0.

(ii) Let (𝑀𝑝) satisfy (M.3), let 𝒢 be a pre-(C-UDS) of *-class, and let the space
𝒩 (𝒢) be barreled. Then, with 𝑁 = 𝒩 (𝒢) and 𝐺1 being the restriction of
𝒢 to 𝑁 (𝐺1 = 𝒢|𝑁 ), we have: There exists a unique set of operators
(𝑇𝑗)𝑗∈N0

in 𝐿(𝒩 (𝒢)) commuting with 𝐶 so that 𝐺1 =
∑︀∞

𝑗=0 𝛿
(𝑗) ⊗ 𝑇𝑗,

𝑇𝑗𝐶
𝑗 = (−1)𝑗𝑇 𝑗+1

0 , 𝑗 ∈ N and the set {𝑀𝑗𝑇𝑗𝐿
𝑗 : 𝑗 ∈ N0} is bounded in

𝐿(𝒩 (𝒢)), for some 𝐿 > 0 in the Beurling case, resp. for every 𝐿 > 0 in
the Roumieu case.

Let 𝒢 ∈ 𝒟′
0(𝐿(𝐸)) (𝒢 ∈ 𝒟′*

0 (𝐿(𝐸))), and let 𝑇 ∈ ℰ ′
0 (𝑇 ∈ ℰ ′*

0 ), i.e., 𝑇 is a scalar-
valued distribution (ultradistribution of *-class) with compact support contained
in [0,∞). Define

𝐺(𝑇 ) := {(𝑥, 𝑦) ∈ 𝐸 × 𝐸 : 𝒢(𝑇 * 𝜙)𝑥 = 𝒢(𝜙)𝑦 for all 𝜙 ∈ 𝒟0 (𝜙 ∈ 𝒟*
0)}.

Then it can be easily seen that 𝐺(𝑇 ) is a closed MLO; furthermore, if 𝒢 ∈ 𝒟′
0(𝐿(𝐸))

(𝒢 ∈ 𝒟′*
0 (𝐿(𝐸))) satisfy (C.S.2), then 𝐺(𝑇 ) is a closed linear operator. Assuming

that the regularizing operator 𝐶 is injective, definition of 𝐺(𝑇 ) can be equivalently
introduced by replacing the set 𝒟0 (𝒟*

0) with the set 𝒟[0,𝜀) (𝒟*
[0,𝜀)) for any 𝜀 >

0. In general case, for every 𝜓 ∈ 𝒟 (𝜓 ∈ 𝒟*), we have 𝜓+ := 𝜓1[0,∞) ∈ ℰ ′
0

(ℰ ′*
0 ), where 1[0,∞) stands for the characteristic function of [0,∞), so that the

definition of 𝐺(𝜓+) is clear. We define the (infinitesimal) generator of a pre-(C-
DS) 𝒢 by 𝒜 := 𝐺(−𝛿′) (cf. [354] for more details about non-degenerate case,
and [58, Definition 3.4] and [282] for some other approaches used in the degenerate
case). Then 𝒩 (𝒢) × 𝒩 (𝒢) ⊆ 𝒜 and 𝒩 (𝒢) = 𝒜0, which simply implies that 𝒜 is
single-valued iff (C.S.2) holds. If this is the case, then we also have that the operator
𝐶 must be injective: Suppose that 𝐶𝑥 = 0 for some 𝑥 ∈ 𝐸. By (C.S.1), we get
that 𝒢(𝜙)𝒢(𝜓)𝑥 = 0, 𝜙, 𝜓 ∈ 𝒟. In particular, 𝒢(𝜓)𝑥 ∈ 𝒩 (𝒢) = {0} so that
𝒢(𝜓)𝑥 = 0, 𝜓 ∈ 𝒟. Hence, 𝑥 ∈ 𝒩 (𝒢) = {0} and therefore 𝑥 = 0. Further on, if 𝒢 is
a pre-(C-DS) (pre-(C-UDS) of *-class), 𝑇 ∈ ℰ ′

0 (𝑇 ∈ ℰ ′*
0 ) and 𝜙 ∈ 𝒟 (𝜙 ∈ 𝒟*), then

𝒢(𝜙)𝐺(𝑇 ) ⊆ 𝐺(𝑇 )𝒢(𝜙), 𝐶𝐺(𝑇 ) ⊆ 𝐺(𝑇 )𝐶 and ℛ(𝒢) ⊆ 𝐷(𝐺(𝑇 )). If 𝒢 is a pre-
(C-DS) (pre-(C-UDS) of *-class) and 𝜙, 𝜓 ∈ 𝒟 (𝜙, 𝜓 ∈ 𝒟*), then the assumption
𝜙(𝑡) = 𝜓(𝑡), 𝑡 > 0, implies 𝒢(𝜙) = 𝒢(𝜓). As in the Banach space case, we can
prove the following (cf. [291, Proposition 3.1.3, Lemma 3.1.6]): Suppose that 𝒢 is
a pre-(C-DS) (pre-(C-UDS) of *-class). Then (𝐶𝑥,𝒢(𝜓)𝑥) ∈ 𝐺(𝜓+), 𝜓 ∈ 𝒟, 𝑥 ∈ 𝐸
(𝜓 ∈ 𝒟*, 𝑥 ∈ 𝐸) and 𝒜 ⊆ 𝐶−1𝒜𝐶, while 𝐶−1𝒜𝐶 = 𝒜 provided that 𝐶 is injective.
Furthermore, the following holds:

Proposition 3.3.3. Let 𝒢 be a pre-(C-DS) (pre-(C-UDS) of *-class), 𝑆, 𝑇 ∈ ℰ ′
0

(𝑆, 𝑇 ∈ ℰ ′*
0 ), 𝜙 ∈ 𝒟0 (𝜙 ∈ 𝒟*

0), 𝜓 ∈ 𝒟 (𝜓 ∈ 𝒟*) and 𝑥 ∈ 𝐸. Then we have:
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(i) (𝒢(𝜙)𝑥, 𝒢(
𝑚⏞  ⏟  

𝑇 * · · · * 𝑇 *𝜙)𝑥) ∈ 𝐺(𝑇 )𝑚, 𝑚 ∈ N.
(ii) 𝐺(𝑆)𝐺(𝑇 ) ⊆ 𝐺(𝑆 *𝑇 ) with 𝐷(𝐺(𝑆)𝐺(𝑇 )) = 𝐷(𝐺(𝑆 *𝑇 ))∩𝐷(𝐺(𝑇 )), and

𝐺(𝑆) +𝐺(𝑇 ) ⊆ 𝐺(𝑆 + 𝑇 ).
(iii) (𝒢(𝜓)𝑥, 𝒢(−𝜓′)𝑥− 𝜓(0)𝐶𝑥) ∈ 𝐺(−𝛿′).
(iv) If 𝒢 is dense, then its generator is densely defined.

The assertions (ii)-(vi) of [291, Proposition 3.1.2] can be reformulated for pre-
(C-DS)’s (pre-(C-UDS)’s of *-class) in locally convex spaces; here it is only worth
noting that the reflexivity of state space 𝐸 implies that the spaces 𝐸* and 𝐸** = 𝐸
are both barreled and sequentially complete:

Proposition 3.3.4. Let 𝒢 be a pre-(C-DS) (pre-(C-UDS) of *-class).
Then the following holds:

(i) 𝐶(⟨ℛ(𝒢)⟩) ⊆ ℛ(𝒢), where ⟨ℛ(𝒢)⟩ denotes the linear span of ℛ(𝒢).
(ii) Assume 𝒢 is not dense and 𝐶ℛ(𝒢) = ℛ(𝒢). Put 𝑅 := ℛ(𝒢) and 𝐻 :=

𝒢|𝑅. Then 𝐻 is a dense pre-(𝐶1-DS) (pre-(𝐶1-UDS) of *-class) on 𝑅 with
𝐶1 = 𝐶|𝑅.

(iii) The dual 𝒢(·)* is a pre-(𝐶*-DS) (pre-(𝐶*-UDS) of *-class) on 𝐸* and
𝒩 (𝒢*) = ℛ(𝒢)

∘
.

(iv) If 𝐸 is reflexive, then 𝒩 (𝒢) = ℛ(𝒢*)
∘
.

(v) The 𝒢* is a (𝐶*-DS) ( (𝐶*-UDS) of *-class) in 𝐸* iff 𝒢 is a dense pre-
(C-DS) (pre-(C-UDS) of *-class). If 𝐸 is reflexive, then 𝒢* is a dense
pre-(𝐶*-DS) (pre-(𝐶*-UDS) of *-class) in 𝐸* iff 𝒢 is a (C-DS) ( (C-UDS)
of *-class).

The following proposition has been considered for the first time by J. Kisyński
in [282, Proposition 2] (𝐸 Banach space, 𝐶 = 𝐼).

Proposition 3.3.5. Suppose that 𝒢∈𝒟′
0(𝐿(𝐸)) (𝒢∈𝒟′*

0 (𝐿(𝐸))) and 𝒢(𝜙)𝐶 =
𝐶𝒢(𝜙), 𝜙 ∈ 𝒟 (𝜙 ∈ 𝒟*). Then 𝒢 is a pre-(C-DS) (pre-(C-UDS) of *-class) iff

(320) 𝒢(𝜙′)𝒢(𝜓)−𝒢(𝜙)𝒢(𝜓′) = 𝜓(0)𝒢(𝜙)𝐶−𝜙(0)𝒢(𝜓)𝐶, 𝜙, 𝜓 ∈ 𝒟 (𝜙,𝜓 ∈ 𝒟*).

Proof. If 𝒢 satisfies (C.S.1), then (320) follows immediately from (C.S.1) and
the equality 𝜙′ *0 𝜓−𝜙*0 𝜓′ = 𝜓(0)𝜙−𝜙(0)𝜓, 𝜙,𝜓 ∈ 𝒟 (𝜙,𝜓 ∈ 𝒟*). Suppose now
that (320) holds, 𝜙,𝜓 ∈ 𝒟 (𝜙,𝜓 ∈ 𝒟*), 𝑎 > 0 and supp(𝜓) ⊆ (−∞, 𝑎]. Since 𝒢 ∈
𝒟′

0(𝐿(𝐸)) (𝒢 ∈ 𝒟′*
0 (𝐿(𝐸))), and the function 𝑡 ↦→

∫︀ 𝑎

0
[𝜙(𝑡−𝑠)𝜓(𝑠)−𝜙(−𝑠)𝜓(𝑡+𝑠)]𝑑𝑠,

𝑡 ∈ R belongs to 𝒟 (𝒟*) with (𝜙 *0 𝜓)(𝑡) =
∫︀ 𝑎

0
[𝜙(𝑡 − 𝑠)𝜓(𝑠) − 𝜙(−𝑠)𝜓(𝑡 + 𝑠)]𝑑𝑠,

𝑡 > 0, we have

𝒢(𝜙 *0 𝜓)𝐶𝑥 = 𝒢
∫︁ 𝑎

0

[𝜙(· − 𝑠)𝜓(𝑠)− 𝜙(−𝑠)𝜓(·+ 𝑠)]𝐶𝑥𝑑𝑠

=

∫︁ 𝑎

0

[𝜓(𝑠)𝒢(𝜙(· − 𝑠))𝐶𝑥− 𝜙(−𝑠)𝒢(𝜓(·+ 𝑠))𝐶𝑥]𝑑𝑠

=

∫︁ 𝑎

0

[𝒢(𝜙′(· − 𝑠))𝒢(𝜓(·+ 𝑠))𝑥− 𝒢(𝜙(· − 𝑠))𝒢(𝜓′(·+ 𝑠))𝑥]𝑑𝑠(321)
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= −
∫︁ 𝑎

0

𝑑

𝑑𝑠
[𝒢(𝜙(· − 𝑠))𝒢(𝜓(·+ 𝑠))𝑥]𝑑𝑠(322)

= 𝒢(𝜙)𝒢(𝜓)𝑥− 𝒢(𝜙(· − 𝑎))𝒢(𝜓(·+ 𝑎))𝑥

= 𝒢(𝜙)𝒢(𝜓)𝑥− 𝒢(𝜙(· − 𝑎))0𝑥 = 𝒢(𝜙)𝒢(𝜓)𝑥,
for any 𝑥 ∈ 𝐸 and 𝜙,𝜓 ∈ 𝒟 (𝜙,𝜓 ∈ 𝒟*), where (321) follows from an application of
(320), and (322) from an elementary argumentation involving the continuity of 𝒢 as
well as the facts that for each function 𝜁 ∈ 𝒟 (𝜁 ∈ 𝒟*) we have that limℎ→0(𝜏ℎ𝜁) = 𝜁
in 𝒟 (𝒟*), limℎ→0

1
ℎ (𝜏ℎ𝜁− 𝜁) = 𝜁 ′ in 𝒟 (𝒟*) and the set {𝜏ℎ𝜁 : |ℎ| 6 1} is bounded

in 𝒟 (𝒟*). The proof of proposition is complete. �

In [351], we have recently proved that every (C-DS) ((C-UDS) of *-class) in
locally convex space is uniquely determined by its generator. Contrary to the
single-valued case, different pre-(C-DS)’s (pre-(C-UDS)’s of *-class) can have the
same generator. To see this, we can employ [364, Example 2.3]: Let 𝐶 = 𝐼, 𝐸
is a Banach space and 𝑇 ∈ 𝐿(𝐸) is nilpotent of order 𝑛 > 2. Then the pre-(C-
DS)’s 𝒢1(·) ≡

∑︀𝑛−2
𝑖=0 ·(𝑖)(0)𝑇 𝑖+1 and 𝒢2(·) ≡ 0 have the same generator 𝒜 ≡ 𝐸×𝐸.

In Theorem 3.3.6 and Theorem 3.3.8, we clarify connections between degenerate
𝐶-distribution semigroups and degenerate local integrated 𝐶-semigroups. For the
proof of first theorem, we need some preliminaries from our previous research study
of distribution cosine functions (see e.g. [291, Section 3.4]): Let 𝜂 ∈ 𝒟[−2,−1] be
a fixed test function satisfying

∫︀∞
−∞ 𝜂(𝑡)𝑑𝑡 = 1. Then, for every fixed 𝜙 ∈ 𝒟, we

define 𝐼(𝜙) as follows

(323) 𝐼(𝜙)(𝑥) :=

∫︁ 𝑥

−∞

[︂
𝜙(𝑡)− 𝜂(𝑡)

∫︁ ∞

−∞
𝜙(𝑢)𝑑𝑢

]︂
𝑑𝑡, 𝑥 ∈ R.

It can be simply verified that, for every 𝜙 ∈ 𝒟 and 𝑛 ∈ N, we have 𝐼(𝜙) ∈ 𝒟,
𝐼𝑛(𝜙(𝑛)) = 𝜙, 𝑑

𝑑𝑥𝐼(𝜙)(𝑥) = 𝜙(𝑥)−𝜂(𝑥)
∫︀∞
−∞ 𝜙(𝑢)𝑑𝑢, 𝑥 ∈ R as well as that, for every

𝜙 ∈ 𝒟[𝑎,𝑏] (−∞ < 𝑎 < 𝑏 < ∞), we have: supp(𝐼(𝜙)) ⊆ [min(−2, 𝑎),max(−1, 𝑏)].
This simply implies that, for every 𝜏 > 2, −1 < 𝑏 < 𝜏 and for every 𝑚, 𝑛 ∈ N with
𝑚 6 𝑛, we have:

(324) 𝐼𝑛(𝒟(−𝜏,𝑏]) ⊆ 𝒟(−𝜏,𝑏] and
𝑑𝑚

𝑑𝑥𝑚
𝐼𝑛(𝜙)(𝑥) = 𝐼𝑚−𝑛𝜙(𝑥), 𝜙 ∈ 𝒟, 𝑥 > 0,

where 𝐼0𝜙 := 𝜙, 𝜙 ∈ 𝒟. Now we are ready to show the following extension
of [364, Proposition 4.3 a)], given here with a different proof.

Theorem 3.3.6. Let 𝒢 be a pre-(C-DS) generated by 𝒜, and let 𝒢 be of finite
order. Then, for every 𝜏 > 0, there exist a number 𝑛𝜏 ∈ N and a local 𝑛𝜏 -times
integrated 𝐶-semigroup (𝑆𝑛𝜏 (𝑡))𝑡∈[0,𝜏) such that

(325) 𝒢(𝜙)𝑥 = (−1)𝑛𝜏

∫︁ ∞

0

𝜙(𝑛𝜏 )(𝑠)𝑆𝑛𝜏
(𝑠)𝑥 𝑑𝑠, 𝜙 ∈ 𝒟(−𝜏,𝜏), 𝑥 ∈ 𝐸.

Furthermore, (𝑆𝑛𝜏
(𝑡))𝑡∈[0,𝜏) is an 𝑛𝜏 -times integrated 𝐶-existence family with a

subgenerator 𝒜, and the admissibility of space 𝐿(𝒩 (𝒢)) implies that 𝑆𝑛𝜏
(𝑡)𝑥 = 0,

𝑡 ∈ [0, 𝜏) for some 𝑥 ∈ 𝒩 (𝒢) iff 𝑇𝑖𝑥 = 0 for 0 6 𝑖 6 𝑛𝜏 − 1; see Theorem 3.3.2(i)
with 𝑚 > 𝑛𝜏 − 1.
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Proof. Let 𝜏 > 2 and 𝜌 ∈ 𝒟[0,1] with
∫︀
𝜌 𝑑𝑚 = 1 be fixed. Set 𝜌𝑛(·) := 𝑛𝜌(𝑛·),

𝑛 ∈ N. Then, for every 𝑡 ∈ [0, 𝜏), the sequence 𝜌𝑡𝑛(·) := 𝜌𝑛(· − 𝑡) converges to 𝛿𝑡
as 𝑛→ +∞ (in the space of scalar-valued distributions). Since 𝒢 is of finite order,
we know that there exist a number 𝑛𝜏 ∈ N and a strongly continuous operator
family (𝑆𝑛𝜏

(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝐸) such that (325) holds good. We will first prove that
(𝑆𝑛𝜏 (𝑡))𝑡∈[0,𝜏) is a local 𝑛𝜏 -times integrated 𝐶-existence family which commutes
with 𝐶 and do have 𝒜 as a subgenerator. In order to do that, observe that the
commutation of 𝒢(·) and 𝐶 yields∫︁ ∞

0

𝜙(𝑛𝜏 )(𝑠)𝐶𝑆𝑛𝜏 (𝑠)𝑥 𝑑𝑠 =

∫︁ ∞

0

𝜙(𝑛𝜏 )(𝑠)𝑆𝑛𝜏 (𝑠)𝐶𝑥𝑑𝑠, 𝜙 ∈ 𝒟(−𝜏,𝜏), 𝑥 ∈ 𝐸.

Plugging 𝜙 = 𝐼𝑛𝜏 (𝜌𝑡𝑛) in this expression (cf. also (324)), we get that∫︁ ∞

0

𝜌𝑡𝑛(𝑠)𝐶𝑆𝑛𝜏 (𝑠)𝑥 𝑑𝑠 =

∫︁ ∞

0

𝜌𝑡𝑛(𝑠)𝑆𝑛𝜏 (𝑠)𝐶𝑥𝑑𝑠, 𝜙 ∈ 𝒟(−𝜏,𝜏), 𝑥 ∈ 𝐸, 𝑡 ∈ [0, 𝜏).

Letting 𝑛 → +∞ we obtain 𝐶𝑆𝑛𝜏 (𝑡)𝑥 = 𝑆𝑛𝜏 (𝑡)𝐶𝑥, 𝑥 ∈ 𝐸, 𝑡 ∈ [0, 𝜏). Now we will
prove that the condition (B) holds with the number 𝛼 replaced with the number 𝑛𝜏
therein. By Proposition 3.3.3(iii), we have (𝒢(𝜙)𝑥,𝒢(−𝜙′)𝑥−𝜙(0)𝐶𝑥) ∈ 𝒜, 𝜙 ∈ 𝒟,
𝑥 ∈ 𝐸. Applying integration by parts and multiplying with (−1)𝑛𝜏+1 after that,
the above implies(︂∫︁ ∞

0

𝜙(𝑛𝜏+1)(𝑠)

∫︁ 𝑠

0

𝑆𝑛𝜏
(𝑟)𝑥 𝑑𝑟 𝑑𝑠,

∫︁ ∞

0

𝜙(𝑛𝜏+1)(𝑠)𝑆𝑛𝜏
(𝑠)𝑥 𝑑𝑠+(−1)𝑛𝜏𝜙(0)𝐶𝑥

)︂
∈ 𝒜,

for any 𝜙 ∈ 𝒟(−𝜏,𝜏) and 𝑥 ∈ 𝐸. Plugging 𝜙 = 𝐼𝑛𝜏+1(𝜌𝑡𝑛) in this expression, we get
that

(326)
(︂∫︁ ∞

0

𝜌𝑡𝑛(𝑠)

∫︁ 𝑠

0

𝑆𝑛𝜏 (𝑟)𝑥 𝑑𝑟 𝑑𝑠,

∫︁ ∞

0

𝜌𝑡𝑛(𝑠)𝑆𝑛𝜏 (𝑠)𝑥 𝑑𝑠+ (−1)𝑛𝜏 𝐼𝑛𝜏+1(𝜌𝑡𝑛)(0)𝐶𝑥

)︂
∈ 𝒜,

for any 𝑡 ∈ [0, 𝜏) and 𝑥 ∈ 𝐸. Let us prove that

(327) lim
𝑛→+∞

𝐼𝑛𝜏+1(𝜌𝑡𝑛)(𝑥) = (−1)𝑛𝜏+1𝑔𝑛𝜏+1(𝑡− 𝑥), 𝑡 ∈ [0, 𝜏), 0 6 𝑥 6 𝑡.

Let 𝑡 ∈ [0, 𝜏) and 𝑥 ∈ [0, 𝑡] be fixed. Then a straightforward integral calculation
shows that

𝐼𝑛𝜏+1(𝜙)(𝑥) = (−1)𝑛𝜏+1

∫︁ ∞

𝑥

∫︁ ∞

𝑥𝑛𝜏

∫︁ ∞

𝑥𝑛𝜏−1

· · ·
∫︁ ∞

𝑥2

𝜙(𝑥1)𝑑𝑥1𝑑𝑥2 . . . 𝑑𝑥𝑛𝜏+1

for any 𝜙 ∈ 𝒟. For 𝜙 = 𝐼𝑛𝜏+1(𝜌𝑡𝑛), we have

𝐼𝑛𝜏+1(𝜌𝑡𝑛)(0) = (−1)𝑛𝜏+1

∫︁ 𝑡+(1/𝑛)

𝑥

∫︁ 𝑡+(1/𝑛)

𝑥𝑛𝜏

∫︁ 𝑡+(1/𝑛)

𝑥𝑛𝜏−1

· · ·
∫︁ 𝑡+(1/𝑛)

𝑥2

× 𝜌𝑡𝑛(𝑥1)𝑑𝑥1𝑑𝑥2 . . . 𝑑𝑥𝑛𝜏+1

= (−1)𝑛𝜏+1

∫︁ 𝑡+(1/𝑛)

𝑥

∫︁ 𝑡+(1/𝑛)

𝑥𝑛𝜏

∫︁ 𝑡+(1/𝑛)

𝑥𝑛𝜏−1

· · ·
∫︁ 𝑡+(1/𝑛)

𝑥3

×
[︂
1−

∫︁ 𝑛𝑥2−𝑛𝑡

0

𝜌(𝑥1)𝑑𝑥1

]︂
𝑑𝑥2 . . . 𝑑𝑥𝑛𝜏+1
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= (−1)𝑛𝜏+1

∫︁ 𝑡+(1/𝑛)

𝑥

∫︁ 𝑡+(1/𝑛)

𝑥𝑛𝜏

∫︁ 𝑡+(1/𝑛)

𝑥𝑛𝜏−1

· · ·
∫︁ 𝑡+(1/𝑛)

𝑥3

× 𝑑𝑥2 . . . 𝑑𝑥𝑛𝜏+1

− (−1)𝑛𝜏+1

∫︁ 𝑡+(1/𝑛)

𝑥

∫︁ 𝑡+(1/𝑛)

𝑥𝑛𝜏

∫︁ 𝑡+(1/𝑛)

𝑥𝑛𝜏−1

· · ·
∫︁ 𝑡+(1/𝑛)

𝑡

×
∫︁ 𝑛𝑥2−𝑛𝑡

0

𝜌(𝑥1)𝑑𝑥1𝑑𝑥2 . . . 𝑑𝑥𝑛𝜏+1

: = (−1)𝑛𝜏+1[𝐼1(𝑡, 𝑥, 𝑛)− 𝐼2(𝑡, 𝑥, 𝑛)], 𝑡 ∈ [0, 𝜏).

Since ∫︁ 𝑡+(1/𝑛)

𝑡

∫︁ 𝑛𝑥2−𝑛𝑡

0

𝜌(𝑥1)𝑑𝑥1𝑑𝑥2 6 1/𝑛, 𝑡 ∈ [0, 𝜏), 𝑛 ∈ N,

we have that lim𝑛→+∞ 𝐼2(𝑡, 𝑥, 𝑛) = 0, 𝑡 ∈ [0, 𝜏). Clearly,

lim
𝑛→+∞

𝐼1(𝑡, 𝑥, 𝑛) =

∫︁ 𝑡

𝑥

∫︁ 𝑡

𝑥𝑛𝜏

∫︁ 𝑡

𝑥𝑛𝜏−1

· · ·
∫︁ 𝑡

𝑥3

𝑑𝑥2 . . . 𝑑𝑥𝑛𝜏+1 = 𝑔𝑛𝜏+1(𝑡− 𝑥).

This gives (327). Keeping in mind this equality and letting 𝑛 → +∞ in (326),
we obtain (B). It remains to be proved the semigroup property of (𝑆𝑛𝜏

(𝑡))𝑡∈[0,𝜏).
Toward this end, let us recall that

(328) (𝜙*0𝜓)
(𝑛𝜏 )

(𝑢) = (𝜙(𝑛𝜏 )*0𝜓)(𝑢)+
𝑛𝜏−1∑︁
𝑗=0

𝜙(𝑗)(0)𝜓(𝑛𝜏−1−𝑗)(𝑢), 𝜙, 𝜓 ∈ 𝒟, 𝑢 ∈ R.

Fix 𝑥 ∈ 𝐸 and 𝑡, 𝑠 ∈ [0, 𝜏) with 𝑡 + 𝑠 ∈ [0, 𝜏). Using (328), (C.S.1) and the
foregoing arguments, we get that, for every 𝑚,𝑛 ∈ N sufficiently large:∫︁ 𝑡

0

∫︁ 𝑠

0

𝜌𝑡𝑛(𝑢)𝜌
𝑠
𝑚(𝑣)𝑆𝑛𝜏 (𝑢)𝑆𝑛𝜏 (𝑣)𝑥 𝑑𝑢 𝑑𝑣

= (−1)𝑛𝜏

∫︁ 𝑡+𝑠

0

[︂
(𝜌𝑡𝑛 *0 𝐼𝑛𝜏 (𝜌𝑠𝑚))(𝑢) +

𝑛𝜏−1∑︁
𝑗=0

𝐼𝑛𝜏−𝑗(𝜌𝑡𝑛)(0)𝐼
𝑗+1(𝜌𝑠𝑚)(𝑢)

]︂
𝑆𝑛𝜏 (𝑢)𝐶𝑥𝑑𝑢.

Letting 𝑛→ +∞, we obtain with the help of (327) that∫︁ 𝑠

0

𝜌𝑠𝑚(𝑣)𝑆𝑛𝜏
(𝑡)𝑆𝑛𝜏

(𝑣)𝑥 𝑑𝑣

= (−1)𝑛𝜏 lim
𝑛→+∞

∫︁ 𝑡+𝑠

0

[︃(︁
𝜌𝑡𝑛 *0 𝐼𝑛𝜏 (𝜌𝑠𝑚)

)︁
(𝑢)

+

𝑛𝜏−1∑︁
𝑗=0

𝐼𝑛𝜏−𝑗(𝜌𝑡𝑛)(0)𝐼
𝑗+1(𝜌𝑠𝑚)(𝑢)

]︃
𝑆𝑛𝜏

(𝑢)𝐶𝑥𝑑𝑢

= (−1)𝑛𝜏

∫︁ 𝑡

0

[︃
𝑛𝜏−1∑︁
𝑗=0

(−1)𝑛𝜏−𝑗𝑔𝑛𝜏−𝑗(𝑡)𝐼
𝑗+1(𝜌𝑠𝑚)(𝑢)

]︃
𝑆𝑛𝜏 (𝑢)𝐶𝑥𝑑𝑢
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+ (−1)𝑛𝜏

∫︁ 𝑡+𝑠

𝑡

[︃
𝐼𝑛𝜏 (𝜌𝑠𝑚)(𝑢− 𝑡)

+

𝑛𝜏−1∑︁
𝑗=0

(−1)𝑛𝜏−𝑗𝑔𝑛𝜏−𝑗(𝑡)𝐼
𝑗+1(𝜌𝑠𝑚)(𝑢)

]︃
𝑆𝑛𝜏 (𝑢)𝐶𝑥𝑑𝑢

=

𝑛𝜏−1∑︁
𝑗=0

(−1)𝑗𝑔𝑛𝜏−𝑗(𝑡)

∫︁ 𝑠

0

𝐼𝑗+1(𝜌𝑠𝑚)(𝑢)𝑆𝑛𝜏 (𝑢)𝐶𝑥𝑑𝑢

+ (−1)𝑛𝜏

∫︁ 𝑡+𝑠

𝑡

𝐼𝑛𝜏 (𝜌𝑠𝑚)(𝑢− 𝑡)𝑆𝑛𝜏
(𝑢)𝐶𝑥𝑑𝑢.

The semigroup property now easily follows by letting 𝑚 → +∞ in the above ex-
pression, with the help of (327) and the identity

𝑛𝜏−1∑︁
𝑗=0

𝑔𝑛𝜏−𝑗(𝑡)𝑔𝑗+1(𝑠− 𝑢) = 𝑔𝑛𝜏
(𝑡+ 𝑠− 𝑢), 𝑢 > 0.

The rest essentially follows as in the proof of [364, Proposition 4.3 a)]. �

Remark 3.3.7. (i) We have already seen that 𝒢(·) ≡ 0 is a degenerate
pre-distribution semigroup with the generator 𝒜 ≡ 𝐸 × 𝐸. Then, for
every 𝜏 > 0 and for every number 𝑛𝜏 ∈ N, there exists only one local
𝑛𝜏 -times integrated semigroup (𝑆𝑛𝜏

(𝑡) ≡ 0)𝑡∈[0,𝜏) so that (325) holds.
It is clear that the condition (B) holds and that condition (A) does not
hold here. Denote by 𝒜𝜏 the integral generator of (𝑆𝑛𝜏

(𝑡) ≡ 0)𝑡∈[0,𝜏).
Then 𝒜𝜏 = {0} × 𝐸 is strictly contained in the integral generator 𝒜 of
𝒢. Furthermore, if 𝐶 ̸= 0, then there do not exist 𝜏 > 0 and 𝑛𝜏 ∈ N
such that 𝒜 is the integral generator (subgenerator) of a local 𝑛𝜏 -times
integrated 𝐶-semigroup.

(ii) A similar line of reasoning as in the final part of the proof of [291, Theorem
3.1.9] shows that for each (𝑥, 𝑦) ∈ 𝒜 there exist elements 𝑥0, 𝑥1, . . . , 𝑥𝑛𝜏

in 𝐸 such that

𝑆𝑛𝜏
(𝑡)𝑥− 𝑔𝑛𝜏+1(𝑡)𝐶𝑥−

∫︁ 𝑡

0

𝑆𝑛𝜏
(𝑠)𝑦 𝑑𝑠 =

𝑛𝜏∑︁
𝑗=0

𝑔𝑗+1(𝑡)𝑥𝑗 , 𝑡 ∈ [0, 𝜏)

and 𝑥𝑗 ∈ 𝒜𝑥𝑗−1 for 1 6 𝑗 6 𝑛𝜏 . In purely mutivalued case, it is not
clear how we can prove that 𝑥𝑗 = 0 for 0 6 𝑗 6 𝑛𝜏 without imposing
some additional displeasing conditions; if 𝒜 is single-valued, then it can
be easily seen that 𝑥𝑗 = 0 for 0 6 𝑗 6 𝑛𝜏 so that (𝑆𝑛𝜏

(𝑡))𝑡∈[0,𝜏) is an
𝑛𝜏 -times integrated 𝐶-semigroup with a subgenerator 𝒜.

(iii) Using dualization, we can simply reformulate the second equality appear-
ing on the second line after the equation [364, (11)] in our context.

The proof of subsequent theorem is very similar to that of [291, Theorem 3.1.8].

Theorem 3.3.8. Suppose that there exists a sequence ((𝑝𝑘, 𝜏𝑘))𝑘∈N0
in N0 ×

(0,∞) such that lim𝑘→∞ 𝜏𝑘 = ∞, (𝑝𝑘)𝑘∈N0 and (𝜏𝑘)𝑘∈N0 are strictly increasing, as
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well as that for each 𝑘 ∈ N0 there exists a local 𝑝𝑘-times integrated 𝐶-semigroup
(𝑆𝑝𝑘

(𝑡))𝑡∈[0,𝜏𝑘) on 𝐸 so that

(329) 𝑆𝑝𝑚
(𝑡)𝑥 = (𝑔𝑝𝑚−𝑝𝑘

*0 𝑆𝑝𝑘
(·)𝑥)(𝑡), 𝑥 ∈ 𝐸, 𝑡 ∈ [0, 𝜏𝑘),

provided 𝑘 < 𝑚. Define

𝒢(𝜙)𝑥 := (−1)𝑝𝑘

∫︁ ∞

0

𝜙(𝑝𝑘)(𝑡)𝑆𝑝𝑘
(𝑡)𝑥 𝑑𝑡, 𝜙 ∈ 𝒟(−∞,𝜏𝑘), 𝑥 ∈ 𝐸, 𝑘 ∈ N0.

Then 𝒢 is well-defined and 𝒢 is a pre-(C-DS).

Remark 3.3.9. (i) Denote by 𝒜𝑘 the integral generator of (𝑆𝑝𝑘
(𝑡))𝑡∈[0,𝜏𝑘)

(𝑘 ∈ N0). Then 𝒜𝑘 ⊆ 𝒜𝑚 for 𝑘 > 𝑚 and
⋂︀

𝑘∈N0
𝒜𝑘 ⊆ 𝒜, where 𝒜 is the

integral generator of 𝒢. Even in the case that 𝐶 = 𝐼,
⋃︀

𝑘∈N0
𝒜𝑘 can be a

proper subset of 𝒜.
(ii) Suppose that 𝒜 is a subgenerator of (𝑆𝑝𝑘

(𝑡))𝑡∈[0,𝜏𝑘) for all 𝑘 ∈ N0. Then
(329) automatically holds.

(iii) In the case that 𝐶 = 𝐼, then it suffices to suppose that there exists an MLO
𝒜 such that 𝒜 is a subgenerator of a local 𝑝-times integrated semigroup
(𝑆𝑝(𝑡))𝑡∈[0,𝜏) for some 𝑝 ∈ N and 𝜏 > 0 [329].

Suppose that 𝛼 ∈ (0,∞) r N and 𝑓 ∈ 𝐶([0,∞) : 𝐸). Set 𝑓𝑛−𝛼(𝑡) := (𝑔𝑛−𝛼 *
𝑓)(𝑡), 𝑡 > 0. Making use of the dominated convergence theorem, and the change of
variables 𝑠 ↦→ 𝑠− 𝑡, we get that

1

Γ(𝑛− 𝛼)

𝑑𝑛

𝑑𝑡𝑛

∫︁ ∞

𝑡

(𝑠− 𝑡)𝑛−𝛼−1𝜙(𝑠)𝑑𝑠 =

∫︁ ∞

0

𝑔𝑛−𝛼(𝑠)𝜙
(𝑛)(𝑡+ 𝑠)𝑑𝑠, 𝑡 > 0, 𝜙 ∈ 𝒟.

Hence, ∫︁ ∞

0

𝑊𝛼
+𝜙(𝑡)𝑓(𝑡)𝑑𝑡 = (−1)𝑛

∫︁ ∞

0

𝑔𝑛−𝛼(𝑠)𝜙
(𝑛)(𝑡+ 𝑠)𝑓(𝑡)𝑑𝑠 𝑑𝑡

= (−1)𝑛
∫︁ ∞

0

∫︁ 𝑡

0

𝜙(𝑛)(𝑡)𝑔𝑛−𝛼(𝑠)𝑓(𝑡− 𝑠)𝑑𝑠 𝑑𝑡

= (−1)𝑛
∫︁ ∞

0

𝜙(𝑛)(𝑡)𝑓𝑛−𝛼(𝑡)𝑑𝑡, 𝜙 ∈ 𝒟,

where 𝑊𝛼
+ denotes the Weyl fractional derivative. Therefore, if 𝒜 is the integral

generator of a global 𝛼-times integrated 𝐶-semigroup (𝑆𝛼(𝑡))𝑡>0 on 𝐸, then we
have that:∫︁ ∞

0

𝑊𝛼
+𝜙(𝑡)𝑆𝛼(𝑡)𝑥 𝑑𝑡 = (−1)𝑛

∫︁ ∞

0

𝜙(𝑛)(𝑡)𝑆𝑛(𝑡)𝑥 𝑑𝑡, 𝑥 ∈ 𝐸, 𝜙 ∈ 𝒟,

with (𝑆𝑛(𝑡))𝑡>0 being the global 𝑛-times integrated 𝐶-semigroup generated by 𝒜.
Keeping in mind this equality and the proof of [291, Theorem 3.1.8], we can deduce
the following:

Theorem 3.3.10. Assume that 𝛼 > 0 and 𝒜 is the integral generator of a global
𝛼-times integrated 𝐶-semigroup (𝑆𝛼(𝑡))𝑡>0 on 𝐸. Set

𝒢𝛼(𝜙)𝑥 :=

∫︁ ∞

0

𝑊𝛼
+𝜙(𝑡)𝑆𝛼(𝑡)𝑥 𝑑𝑡, 𝑥 ∈ 𝐸, 𝜙 ∈ 𝒟.
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Then 𝒢 is a pre-(C-DS) whose integral generator contains 𝒜.

We will accept the following definition of an exponential pre-(C-DS) (pre-(C-
UDS) of *-class).

Definition 3.3.11. Let 𝒢 be a pre-(C-DS) (pre-(C-UDS) of *-class). Then 𝒢
is said to be an exponential pre-(C-DS) (pre-(C-UDS) of *-class) iff there exists
𝜔 ∈ R such that 𝑒−𝜔𝑡𝒢 ∈ 𝒮 ′(𝐿(𝐸)) (𝑒−𝜔𝑡𝒢 ∈ 𝒮 ′*(𝐿(𝐸))). We use the shorthand
pre-(C-EDS) (pre-(C-EUDS) of *-class) to denote an exponential pre-(C-DS) (pre-
(C-UDS) of *-class).

We have the following fundamental result:

Theorem 3.3.12. Assume that 𝛼> 0 and 𝒜 generates an exponentially equicon-
tinuous 𝛼-times integrated 𝐶-semigroup (𝑆𝛼(𝑡))𝑡>0. Define 𝒢 through 𝒢𝛼(𝜙)𝑥 :=∫︀∞
0
𝑊𝛼

+𝜙(𝑡)𝑆𝛼(𝑡)𝑥 𝑑𝑡, 𝑥 ∈ 𝐸, 𝜙 ∈ 𝒟. Then 𝒢 is a pre-(C-EDS) whose integral
generator contains 𝒜.

Remark 3.3.13. (i) Suppose that 𝒢 is a pre-(C-EDS) generated by 𝒜,
𝜔 ∈ R and 𝑒−𝜔𝑡𝒢 ∈ 𝒮 ′(𝐿(𝐸)). Suppose, further, that there exist a non-
negative integer 𝑛 and a continuous function 𝑉 : R → 𝐿(𝐸) satisfying
that

⟨𝑒−𝜔𝑡𝒢, 𝜙⟩ = (−1)𝑛
∫︁ ∞

−∞
𝜙(𝑛)(𝑡)𝑉 (𝑡)𝑑𝑡, 𝜙 ∈ 𝒟,

and that there exists a number 𝑟 > 0 such that the operator family {(1+
𝑡𝑟)−1𝑉 (𝑡) : 𝑡 > 0} ⊆ 𝐿(𝐸) is equicontinuous. Since 𝑒−𝜔·𝒢 is a pre-(C-
EDS) generated by 𝒜−𝜔, the proof of Theorem 3.3.6 shows that (𝑉 (𝑡))𝑡>0

is an exponentially equicontinuous 𝑛-times integrated 𝐶-semigroup; by
Theorem 3.3.12, the integral generator 𝒜𝜔 of (𝑉 (𝑡))𝑡>0 is contained in
𝒜− 𝜔. Define

𝑆𝑛(𝑡)𝑥 := 𝑒𝜔𝑡𝑉 (𝑡)𝑥+

∫︁ 𝑡

0

∞∑︁
𝑘=1

(︂
𝑛

𝑘

)︂
(−1)𝑘𝜔𝑘(𝑡− 𝑠)𝑘−1

(𝑘 − 1)!
𝑒𝜔𝑠𝑉 (𝑠)𝑥 𝑑𝑠.

Arguing as in the proof of [291, Theorem 2.5.1, Theorem 2.5.3], we can
prove that the MLO 𝒜𝜔 + 𝜔 (⊆ 𝒜) is the integral generator of an expo-
nentially equicontinuous 𝑛-times integrated 𝐶-semigroup (𝑆𝑛(𝑡))𝑡>0.

(ii) The conclusions from Theorem 3.3.12 and the first part of this remark
can be reword for the classes of 𝑞-exponentially equicontinuous integrated
𝐶-semigroups and 𝑞-exponentially equicontinuous pre-(C-DS)’s; cf. [354]
for the notion.

Remark 3.3.14. Suppose that 𝒢 ∈ 𝒟′
0(𝐿(𝐸)) (𝒢 ∈ 𝒟′*

0 (𝐿(𝐸))), 𝒢(𝜙)𝐶 =
𝐶𝒢(𝜙), 𝜙 ∈ 𝒟 (𝜙 ∈ 𝒟*) and 𝒜 is a closed MLO on 𝐸 satisfying that 𝒢(𝜙)𝒜 ⊆
𝒜𝒢(𝜙), 𝜙 ∈ 𝒟 (𝜙 ∈ 𝒟*) and

(330) 𝒢(−𝜙′)𝑥− 𝜙(0)𝐶𝑥 ∈ 𝒜𝒢(𝜙)𝑥, 𝑥 ∈ 𝐸, 𝜙 ∈ 𝒟 (𝜙 ∈ 𝒟*).

In [354], we have proved the following:
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(i) If 𝒜 = 𝐴 is single-valued, then 𝒢 satisfies (C.S.1).
(ii) If 𝒢 satisfies (C.S.2) holds, 𝐶 is injective and 𝒜 = 𝐴 is single-valued, then

𝒢 is a (C-DS) ((C-UDS) of *-class) generated by 𝐶−1𝐴𝐶.
(iii) Consider the distribution case. If 𝐸 is admissible and 𝒜 = 𝐴 is single-

valued, then the condition (C.S.2) automatically holds for 𝒢.

As we have already seen, the conclusion from (ii) immediately implies that 𝒜 = 𝐴
must be single-valued and that the operator 𝐶 must be injective.

Concerning the assertion (i), its validity is not true in multivalued case: Let
𝐶 = 𝐼, let 𝒜 ≡ 𝐸 × 𝐸, and let 𝒢 ∈ 𝒟′

0(𝐿(𝐸)) (𝒢 ∈ 𝒟′*
0 (𝐿(𝐸))) be arbitrarily

chosen. Then 𝒢 commutes with 𝒜 and (330) holds but 𝒢 need not satisfy (C.S.1).
Concerning the assertion (iii) in multivalued case, we can prove that the admis-

sibility of state space 𝐸 implies that for each 𝑥 ∈ 𝒩 (𝒢) there exist an integer 𝑘 ∈ N
and a finite sequence (𝑦𝑖)06𝑖6𝑘−1 in 𝐷(𝒜) such that 𝑦𝑖 ∈ 𝒜𝑦𝑖+1 (0 6 𝑖 6 𝑘 − 1)
and 𝐶𝑥 ∈ 𝒜𝑦0 ⊆ 𝒜𝑘+20.

Now we will revisit some conditions introduced by J. L. Lions [391] in our new
framework. Suppose that 𝒢 ∈ 𝒟′

0(𝐿(𝐸)) (𝒢 ∈ 𝒟′*
0 (𝐿(𝐸))) and 𝒢 commutes with

𝐶. We analyze the following conditions for 𝒢:

(𝑑1) 𝒢(𝜙 * 𝜓)𝐶 = 𝒢(𝜙)𝒢(𝜓), 𝜙, 𝜓 ∈ 𝒟0 (𝜙, 𝜓 ∈ 𝒟*
0),

(𝑑3) ℛ(𝒢) is dense in 𝐸,
(𝑑4) for every 𝑥 ∈ ℛ(𝒢), there exists a function 𝑢𝑥 ∈ 𝐶([0,∞) : 𝐸) so that

𝑢𝑥(0) = 𝐶𝑥 and 𝒢(𝜙)𝑥 =
∫︀∞
0
𝜙(𝑡)𝑢𝑥(𝑡)𝑑𝑡, 𝜙 ∈ 𝒟 (𝜙 ∈ 𝒟*),

(𝑑5) (𝐶𝑥,𝒢(𝜓)𝑥) ∈ 𝐺(𝜓+), 𝜓 ∈ 𝒟, 𝑥 ∈ 𝐸 (𝜓 ∈ 𝒟*, 𝑥 ∈ 𝐸).

Suppose that 𝒢 ∈ 𝒟′
0(𝐿(𝐸)) (𝒢 ∈ 𝒟′*

0 (𝐿(𝐸))) is a pre-(C-DS) (pre-(C-UDS) of
*-class). Then it is clear that 𝒢 satisfies (𝑑1), our previous examinations shows
that 𝒢 satisfies (𝑑5); by the proof of [291, Proposition 3.1.24], we have that 𝒢
also satisfies (𝑑4). On the other hand, it is well known that (𝑑1), (𝑑4) and (C.S.2)
taken together do not imply (C.S.1), even if 𝐶 = 𝐼; see e.g. [291, Remark 3.1.20].
Furthermore, let (𝑑1), (𝑑3) and (𝑑4) hold. Then (𝑑5) holds, as well. In order to see
this, fix 𝑥 ∈ ℛ(𝒢) and 𝜙 ∈ 𝒟; then it suffices to show that (𝐶𝑥,𝒢(𝜙)𝑥) ∈ 𝐺(𝜙+).
Suppose that (𝜌𝑛) is a regularizing sequence and 𝑢𝑥(𝑡) is a function appearing in
the formulation of the property (𝑑4). Due to the proof of [291, Proposition 3.1.19],
we have that, for every 𝜂 ∈ 𝒟0,

𝒢(𝜌𝑛)𝒢(𝜙+ * 𝜂)𝑥 = 𝒢((𝜙+ * 𝜌𝑛) * 𝜂)𝐶𝑥 = 𝒢(𝜂)𝒢(𝜙+ * 𝜌𝑛)𝑥

= 𝒢(𝜂)
∫︁ ∞

0

(𝜙+ * 𝜌𝑛)(𝑡)𝑢𝑥(𝑡)𝑑𝑡

→ 𝒢(𝜂)
∫︁ ∞

0

𝜙(𝑡)𝑢𝑥(𝑡)𝑑𝑡 = 𝒢(𝜂)𝒢(𝜙)𝑥, 𝑛→ ∞;

𝒢(𝜌𝑛)𝒢(𝜙+ * 𝜂)𝑥 = 𝒢(𝜙+ * 𝜂 * 𝜌𝑛)𝐶𝑥→ 𝒢(𝜙+ * 𝜂)𝐶𝑥, 𝑛→ ∞.

Hence, 𝒢(𝜙+ * 𝜂)𝐶𝑥 = 𝒢(𝜂)𝒢(𝜙)𝑥 and (𝑑5) holds, as claimed. On the other hand,
(𝑑1) is a very simple consequence of (𝑑5); to verify this, observe that for each 𝜙 ∈ 𝒟0

and 𝜓 ∈ 𝒟 we have 𝜓+ *𝜙 = 𝜓 *0 𝜙 = 𝜙 *0 𝜓, so that (𝑑5) is equivalent to say that
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𝒢(𝜙 *0 𝜓)𝐶 = 𝒢(𝜙)𝒢(𝜓) (𝜙 ∈ 𝒟0, 𝜓 ∈ 𝒟). In particular,

(331) 𝒢(𝜙)𝒢(𝜓) = 𝒢(𝜓)𝒢(𝜙), 𝜙 ∈ 𝒟0, 𝜓 ∈ 𝒟.

Suppose now that (𝑑5) holds. Let 𝜙 ∈ 𝒟0 and 𝜓, 𝜂 ∈ 𝒟. Observing that 𝜓+*𝜂+*𝜙 =
(𝜓 *0 𝜂)+ * 𝜙, we have (cf. also [364, Remark 3.13]):

𝒢(𝜙)𝒢(𝜂)𝒢(𝜓) = 𝐶𝒢(𝜂+ * 𝜙)𝒢(𝜓)(332)
= 𝐶𝒢(𝜓+ * 𝜂+ * 𝜙) = 𝐶𝒢((𝜓 *0 𝜂)+ * 𝜙)𝐶
= 𝐶𝒢(𝜙)𝒢(𝜓 *0 𝜂) = 𝒢(𝜙)𝒢(𝜓 *0 𝜂)𝐶.

By (331)–(332), we get

(333) 𝒢(𝜂)𝒢(𝜓)𝒢(𝜙) = 𝒢(𝜓 *0 𝜂)𝐶𝒢(𝜙).

Due to (331)–(333), we have the following:
(i) (𝑑5) and (𝑑3) together imply (C.S.1); in particular, (𝑑1), (𝑑3) and (𝑑4)

together imply (C.S.1). This is an extension of [291, Proposition 3.1.19].
(ii) (𝑑5) and (𝑑2) together imply that 𝒢 is a (C-DS) ((C-UDS) of *-class); in

particular, 𝒜 = 𝐴 must be single-valued and 𝐶 must be injective.
On the other hand, (𝑑5) does not imply (C.S.1) even supposing that 𝐶 = 𝐼. A
simple counterexample is 𝒢 ∈ 𝒟′

0(𝐿(𝐸)) (𝒢 ∈ 𝒟′*
0 (𝐿(𝐸))) given by 𝒢(𝜙)𝑥 := 𝜙(0)𝑥,

𝑥 ∈ 𝐸, 𝜙 ∈ 𝒟 (𝜙 ∈ 𝒟*).
We have already mentioned that the exponential region 𝐸(𝑎, 𝑏) has been defined

for the first time by W. Arendt, O. El-Mennaoui and V. Keyantuo in [28]:

𝐸(𝑎, 𝑏) := {𝜆 ∈ C : Re𝜆 > 𝑏, | Im𝜆| 6 𝑒𝑎Re𝜆} (𝑎, 𝑏 > 0).

Set

𝜙(𝜆) :=
1

2𝜋

∫︁ ∞

−∞
𝑒𝜆𝑡𝜙(𝑡)𝑑𝑡, 𝜆 ∈ C, 𝜙 ∈ 𝒟 (𝜙 ∈ 𝒟*).

Now we are able to state the following theorem:

Theorem 3.3.15. Let 𝑎 > 0, 𝑏 > 0 and 𝛼 > 0. Suppose that 𝒜 is a closed
MLO and, for every 𝜆 which belongs to the set 𝐸(𝑎, 𝑏), there exists an operator
𝐹 (𝜆) ∈ 𝐿(𝐸) so that 𝐹 (𝜆)𝒜 ⊆ 𝒜𝐹 (𝜆), 𝜆 ∈ 𝐸(𝑎, 𝑏), 𝐹 (𝜆)𝑥 ∈ (𝜆 − 𝒜)−1𝐶𝑥,
𝜆 ∈ 𝐸(𝑎, 𝑏), 𝑥 ∈ 𝐸, 𝐹 (𝜆)𝐶 = 𝐶𝐹 (𝜆), 𝜆 ∈ 𝐸(𝑎, 𝑏), 𝐹 (𝜆)𝑥− 𝐶𝑥 = 𝐹 (𝜆)𝑦, whenever
𝜆 ∈ 𝐸(𝑎, 𝑏) and (𝑥, 𝑦) ∈ 𝒜, and that the mapping 𝜆 ↦→ 𝐹 (𝜆)𝑥 is analytic on Ω𝑎,𝑏 and
continuous on Γ𝑎,𝑏, where Γ𝑎,𝑏 denotes the upwards oriented boundary of 𝐸(𝑎, 𝑏)
and Ω𝑎,𝑏 the open region which lies to the right of Γ𝑎,𝑏. Let the operator family
{(1 + |𝜆|)−𝛼𝐹 (𝜆) : 𝜆 ∈ 𝐸(𝑎, 𝑏)} ⊆ 𝐿(𝐸) be equicontinuous. Define

𝒢(𝜙)𝑥 := (−𝑖)
∫︁
Γ𝑎,𝑏

𝜙(𝜆)𝐹 (𝜆)𝑥 𝑑𝜆, 𝑥 ∈ 𝐸, 𝜙 ∈ 𝒟.

Then 𝒢 is a pre-(C-DS) generated by an extension of 𝒜.

Proof. Arguing as in non-degenerate case [354], we can prove that 𝒢 ∈
𝒟′

0(𝐿(𝐸)), as well as that 𝒢 commutes with 𝐶 and 𝒜. The prescribed assump-
tions imply by [329, Theorem 3.23] (cf. also [291, Theorem 2.7.2(iv)]) that for
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each 𝑛 ∈ N with 𝑛 > 𝛼 + 1 the MLO 𝒜 subgenerates a local 𝑛-times integrated
𝐶-semigroup (𝑆𝑛(𝑡))𝑡∈[0,𝑎(𝑛−𝛼−1)). It is straightforward to prove [354] that

𝒢(𝜙)𝑥 = (−1)𝑛
∫︁ 𝜏

−∞
𝜙(𝑛)(𝑡)𝑆𝑛(𝑡)𝑥 𝑑𝑡, 𝑥 ∈ 𝐸, 𝜙 ∈ 𝒟(−∞,𝑎(𝑛−𝛼−1)).

Now the conclusion directly follows from Theorem 3.3.8 and Remark 3.3.9
(i)–(ii). �

Remark 3.3.16. (i) If 𝐶 is injective, 𝒜 = 𝐴 is single-valued, 𝜌𝐶(𝐴) ⊆
𝐸(𝑎, 𝑏) and 𝐹 (𝜆) = (𝜆−𝒜)−1𝐶, 𝜆 ∈ 𝐸(𝑎, 𝑏), then 𝒢 is a (C-DS) generated
by 𝐶−1𝐴𝐶 [354]. Even in the case that 𝐶 = 𝐼, the integral generator 𝒜 of
𝒢, in multivalued case, can strictly contain 𝐶−1𝒜𝐶; see Remark 3.3.7(i).

(ii) Let us briefly consider the ultradistribution case. Suppose that there exist
𝑙 > 0, 𝛽 > 0 and 𝑘 > 0, in the Beurling case, resp., for every 𝑙 > 0 there
exists 𝛽𝑙 > 0, in the Roumieu case, such that the assumptions of Theorem
3.3.8 hold with the exponential region 𝐸(𝑎, 𝑏) replaced with the region
Ω

(𝑀𝑝)
𝑙,𝛽 := {𝜆 ∈ C : Re𝜆 > 𝑀(𝑙|𝜆|) + 𝛽}, resp. Ω

{𝑀𝑝}
𝑙,𝛽𝑙

:= {𝜆 ∈ C : Re𝜆 >
𝑀(𝑙|𝜆|) + 𝛽𝑙}. Define 𝒢 similarly as above. Then 𝒢 ∈ 𝒟′*

0 (𝐿(𝐸)), 𝒢
commutes with 𝐶 and 𝒜, and (330) holds. But, in the present situation,
we do not know whether 𝒢 has to satisfy (C.S.1) in the degenerate case.
This is a new open problem we would like to address to our readers.

Concerning smoothing properties of 𝐶-(ultra)distribution semigroups in locally
convex spaces, we will only present, in Theorem 3.3.18, how one can solve the second
part of the fourth question raised at the end of paper [330] in the affirmative. For
this purpose, we need the following definition (𝐶 will be injective and 𝒜 = 𝐴 will
be single-valued).

Definition 3.3.17 (cf. [330, Definition 2.3] for the Banach space case). Sup-
pose that 𝒢 is a 𝐶-distribution semigroup (𝐶-ultradistribution semigroup of *-
class), 𝑗 ∈ N and 𝛼 ∈ (0, 𝜋2 ]. Then it is said that 𝒢 is an (infinitely, 𝑗-times)
differentiable 𝐶-distribution semigroup (𝐶-ultradistribution semigroup of *-class),
resp. an analytic 𝐶-distribution semigroup of angle 𝛼 (analytic 𝐶-ultradistribution
semigroup of *-class and angle 𝛼), iff 𝐺(𝛿𝑡)𝐶 ∈ 𝐿(𝐸), 𝑡 > 0 and the map-
ping 𝑡 ↦→ 𝐺(𝛿𝑡)𝐶 ∈ 𝐿(𝐸), 𝑡 > 0 is (infinitely, 𝑗-times) differentiable, resp. iff
𝐺(𝛿𝑡)𝐶 ∈ 𝐿(𝐸), 𝑡 > 0 and the mapping 𝑡 ↦→ 𝐺(𝛿𝑡)𝐶 ∈ 𝐿(𝐸), 𝑡 > 0 can be analyt-
ically extended to the sector Σ𝛼 (since no confusion seems likely, we shall denote
the extension to the sector Σ𝛼 by the same symbol); 𝒢 is called real analytic iff
𝐺(𝛿𝑡)𝐶 ∈ 𝐿(𝐸), 𝑡 > 0 and if for every 𝑡 > 0 there exist a number 𝑐𝑡 > 0 and
an analytic function 𝑓 : {𝑧 ∈ C : |𝑧 − 𝑡| < 𝑐𝑡} → 𝐿(𝐸) such that 𝑓(𝑠) = 𝐺(𝛿𝑠)𝐶,
𝑠 ∈ (𝑡− 𝑐𝑡, 𝑡+ 𝑐𝑡).

Suppose that 𝒢 is a differentiable (C-DS) ((C-UDS) of *-class) generated by 𝐴.
Let 𝑥 ∈ 𝐸 and 𝜙 ∈ 𝒟(0,∞) (𝜙 ∈ 𝒟*

(0,∞)) be fixed. Then

(334) 𝒢(𝜓)𝐺(𝛿𝑡)𝐶𝑥 = 𝐺(𝛿𝑡)𝒢(𝜓)𝐶𝑥 = 𝒢(𝜏𝑡𝜓)𝐶𝑥, 𝑡 > 0, 𝜓 ∈ 𝒟0 (𝜓 ∈ 𝒟*
0).
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By the proof of [291, Proposition 3.1.24], we have

(335) 𝒢(𝜙)𝒢(𝜓)𝑥 =

∫︁ ∞

0

𝜙(𝑡)𝒢(𝜏𝑡𝜓)𝐶𝑥𝑑𝑡, 𝜓 ∈ 𝒟0 (𝜓 ∈ 𝒟*
0).

Owing to (334)–(335), we get that 𝒢(𝜓)𝒢(𝜙)𝑥 = 𝒢(𝜓)
∫︀∞
0
𝜙(𝑡)𝐺(𝛿𝑡)𝐶𝑥𝑑𝑡. Due to

(C.S.2), it follows that

(336) 𝒢(𝜙)𝑥 =

∫︁ ∞

0

𝜙(𝑡)𝐺(𝛿𝑡)𝐶𝑥𝑑𝑡, 𝑥 ∈ 𝐸, 𝜙 ∈ 𝒟(0,∞) (𝜙 ∈ 𝒟*
(0,∞)).

Since 𝐴𝒢(𝜙)𝑥 = 𝒢(−𝜙′)𝑥, 𝑥 ∈ 𝐸, 𝜙 ∈ 𝒟(0,∞) (𝜙 ∈ 𝒟*
(0,∞)), we obtain from (336)

that

𝐴

∫︁ ∞

0

𝜙(𝑡)𝐺(𝛿𝑡)𝐶𝑥𝑑𝑡 =

∫︁ ∞

0

𝜙(𝑡)
𝑑

𝑑𝑡
𝐺(𝛿𝑡)𝐶𝑥𝑑𝑡, 𝑥 ∈ 𝐸, 𝜙 ∈ 𝒟(0,∞) (𝜙 ∈ 𝒟*

(0,∞)).

Choosing a sequence (𝜙𝑛)𝑛∈N in 𝒟(0,∞) (𝒟*
(0,∞)) converging to 𝛿𝑡0 in the sense of

(ultra-)distributions, and using the closedness of 𝐴, we obtain from the previous
equality that

(337) 𝐴𝐺(𝛿𝑡0)𝐶𝑥 =
(︁ 𝑑
𝑑𝑡
𝐺(𝛿𝑡)𝐶𝑥

)︁
𝑡=𝑡0

, 𝑥 ∈ 𝐸, 𝑡0 > 0.

Now we are able to formulate the following theorem.

Theorem 3.3.18. Suppose that 𝒢 is a differentiable distribution semigroup
(ultradistribution semigroup of *-class) generated by 𝐴. Then 𝒢 is infinitely dif-
ferentiable.

Proof. Put 𝑇 (𝑡) := 𝐺(𝛿𝑡), 𝑡 > 0. Combining Proposition 3.3.3(ii) and the
equality 𝛿𝑡+𝑠 = 𝛿𝑡 * 𝛿𝑠 (𝑡, 𝑠 > 0), it readily follows that (𝑇 (𝑡))𝑡>0 ⊆ 𝐿(𝐸) is a
semigroup, i.e., that 𝑇 (𝑡 + 𝑠) = 𝑇 (𝑡)𝑇 (𝑠), 𝑡, 𝑠 > 0. It suffices to show that, for
every 𝑛 ∈ N, the following holds:

(a) The mapping 𝑡 ↦→ 𝑇 (𝑡) ∈ 𝐿(𝐸), 𝑡 > 0 is 𝑛-times differentiable and
𝑇 (𝑛)(𝑡) = 𝐴𝑛𝑇 (𝑡) ∈ 𝐿(𝐸), 𝑡 > 0.

We will prove the validity of assertion (a) by induction on 𝑛 (cf. also [445, Lemma
4.2, p. 52]). Clearly, the differentiability of 𝒢 taken together with (337) implies
that (a) holds for 𝑛 = 1. Suppose now that (a) holds for some 𝑛 ∈ N; let us prove
that (a) holds with the number 𝑛 replaced by 𝑛+1. Let the number 𝑡 > 0 be fixed,
and let 0 < 𝑠 < 𝑡. Then the induction hypothesis implies

𝑇 (𝑛)(𝑡′) = 𝐴𝑛𝑇 (𝑡′) = 𝐴𝑛𝑇 (𝑡′ − 𝑠)𝑇 (𝑠) = 𝑇 (𝑡′ − 𝑠)𝐴𝑛𝑇 (𝑠) ∈ 𝐿(𝐸), 𝑡′ > 𝑠.

Hence,

𝑇 (𝑛+1)(𝑡) = lim
ℎ→0

𝑇 (𝑛)(𝑡+ ℎ)− 𝑇 (𝑛)(𝑡)

ℎ

= lim
ℎ→0

𝑇 (𝑡+ ℎ− 𝑠)− 𝑇 (𝑡− 𝑠)

ℎ
𝐴𝑛𝑇 (𝑠) = 𝑇 ′(𝑡− 𝑠)𝐴𝑛𝑇 (𝑠) ∈ 𝐿(𝐸).

This shows that the mapping 𝑡 ↦→ 𝑇 (𝑡) ∈ 𝐿(𝐸), 𝑡 > 0 is (𝑛 + 1)-times differen-
tiable and 𝑇 (𝑛+1)(𝑡) = 𝑇 ′(𝑡 − 𝑠)𝐴𝑛𝑇 (𝑠) ∈ 𝐿(𝐸). It remains to be proved that
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𝑇 (𝑛+1)(𝑡) = 𝐴𝑛+1𝑇 (𝑡). But, this simply follows from the following equalities in-
volving (337): 𝑇 ′(𝑡 − 𝑠)𝐴𝑛𝑇 (𝑠) = [𝐴𝑇 (𝑡 − 𝑠)]𝐴𝑛𝑇 (𝑠) = 𝐴[𝑇 (𝑡 − 𝑠)𝐴𝑛𝑇 (𝑠)] =
𝐴[𝐴𝑛𝑇 (𝑡)] = 𝐴𝑛+1𝑇 (𝑡). �

In [330], we have essentially used some results from the theory of distribution
semigroups for the purpose of characterizing differentiability of non-degenerate inte-
grated semigroups. Unfortunately, these methods are inapplicable in the degenerate
case.

3.4. Degenerate 𝐶-distribution cosine functions and degenerate
𝐶-ultradistribution cosine functions in locally convex spaces

In this section, we assume that (𝑀𝑝) is a sequence of positive real numbers sat-
isfying 𝑀0 = 1, (𝑀.1), (𝑀.2) and (𝑀.3)′. We need some preliminaries concerning
the first antiderivative of a vector-valued (ultra)distribution; cf. also the previous
section for distributional case. Let 𝜂 ∈ 𝒟[−2,−1] (𝜂 ∈ 𝒟*

[−2,−1]) be a fixed test func-
tion satisfying

∫︀∞
−∞ 𝜂(𝑡)𝑑𝑡 = 1. Then, for every fixed 𝜙 ∈ 𝒟 (𝜙 ∈ 𝒟*), we define

𝐼(𝜙) by (323). It can be simply verified that, for every 𝜙 ∈ 𝒟 (𝜙 ∈ 𝒟*) and 𝑛 ∈ N,
we have 𝐼(𝜙) ∈ 𝒟 (𝐼(𝜙) ∈ 𝒟*), 𝐼𝑛(𝜙(𝑛)) = 𝜙, 𝑑

𝑑𝑥𝐼(𝜙)(𝑥) = 𝜙(𝑥)−𝜂(𝑥)
∫︀∞
−∞ 𝜙(𝑢)𝑑𝑢,

𝑥 ∈ R as well as that, for every 𝜙 ∈ 𝒟[𝑎,𝑏] (𝜙 ∈ 𝒟*
[𝑎,𝑏]), where −∞ < 𝑎 < 𝑏 <∞, we

have: supp(𝐼(𝜙)) ⊆ [min(−2, 𝑎),max(−1, 𝑏)]. This simply implies that, for every
𝜏 > 2, −1 < 𝑏 < 𝜏 and for every 𝑚,𝑛 ∈ N with 𝑚 6 𝑛, (324) holds in both cases,
distributional and ultradistributional. Define now 𝐺−1 by 𝐺−1(𝜙) := −𝐺(𝐼(𝜙)),
𝜙 ∈ 𝒟 (𝜙 ∈ 𝒟*). In distributional case, it is well known that 𝐺−1 ∈ 𝒟′(𝐿(𝐸)) and
(𝐺−1)′ = 𝐺; more precisely, −𝐺−1(𝜙′) = 𝐺(𝐼(𝜙′)) = 𝐺(𝜙), 𝜙 ∈ 𝒟. Since, for every
ℎ > 0 and for every non-empty compact subset 𝐾 of R, we have that the conver-
gence 𝜙𝑛 → 𝜙, 𝑛→ ∞ in 𝒟𝑀𝑝,ℎ

𝐾 implies the convergence 𝐼(𝜙𝑛) → 𝐼(𝜙), 𝑛→ ∞ in
𝒟𝑀𝑝,ℎ

𝐾′ , where 𝐾 ′ = [min(−2, inf(𝐾)),max(−1, sup(𝐾))], the same holds in ultra-
distributional case. It is not problematic to verify that, in both cases, distributional
and ultradistributional, the implication supp(𝐺) ⊆ [0,∞) ⇒ supp(𝐺−1) ⊆ [0,∞)
holds true.

Throughout this section, we assume that 𝐸 is a barreled SCLCS and 𝐶 ∈ 𝐿(𝐸)
is not necessarily injective operator. We introduce the notions of pre-(C-DCF) and
(C-DCF) (pre-(C-UDCF) of *-class and (C-UDCF) of *-class) as follows:

Definition 3.4.1. An element G ∈ 𝒟′
0(𝐿(𝐸)) (G ∈ 𝒟′*

0 (𝐿(𝐸))) is called a
pre-(C-DCF) (pre-(C-UDCF) of *-class) iff G(𝜙)𝐶 = 𝐶G(𝜙), 𝜙 ∈ 𝒟 (𝜙 ∈ 𝒟*) and

(𝐶𝐶𝐹1) : G−1(𝜙*0𝜓)𝐶 = G−1(𝜙)G(𝜓)+G(𝜙)G−1(𝜓), 𝜙, 𝜓 ∈ 𝒟 (𝜙,𝜓 ∈ 𝒟*);

if, additionally,

(𝐶𝐶𝐹2) : 𝑥 = 𝑦 = 0 iff G(𝜙)𝑥+G−1(𝜙)𝑦 = 0, 𝜙 ∈ 𝒟0 (𝜙 ∈ 𝒟*
0),

then G is called a 𝐶-distribution cosine function (𝐶-ultradistribution cosine func-
tion of *-class), inshort (C-DCF) ((C-UDCF) of *-class). A pre-(C-DCF) (pre-
(C-UDCF) of *-class) G is called dense iff the set ℛ(G) :=

⋃︀
𝜙∈𝒟0

𝑅(G(𝜙))

(ℛ(G) :=
⋃︀

𝜙∈𝒟*
0
𝑅(G(𝜙))) is dense in 𝐸.
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It is clear that (𝐶𝐶𝐹2) implies 𝒩 (G) :=
⋂︀

𝜙∈𝒟0
𝑁(G(𝜙)) = {0} and⋂︀

𝜙∈𝒟0
𝑁(G−1(𝜙)) = {0}, and that the assumption G ∈ 𝒟′

0(𝐿(𝐸)) implies G(𝜙) =

0, 𝜙 ∈ 𝒟(−∞,0]. For 𝜓 ∈ 𝒟, we set 𝜓+(𝑡) := 𝜓(𝑡)𝐻(𝑡), 𝑡 ∈ R, where 𝐻(𝑡) denotes
the Heaviside function. Then 𝜓+ ∈ ℰ ′

0, 𝜓 ∈ 𝒟 and 𝜙 * 𝜓+ ∈ 𝒟0 for any 𝜙 ∈ 𝒟0.
The above holds in ultradistributional case, as well.

The following proposition is essential and can be deduced by making use of the
arguments given in the proof of [291, Proposition 3.4.3].

Proposition 3.4.2. Let G ∈ 𝒟′
0(𝐿(𝐸)) (G ∈ 𝒟′*

0 (𝐿(𝐸))) and G(·)𝐶 = 𝐶G(·).
Then G is a pre-(C-DCF) in 𝐸 (pre-(C-UDCF) of *-class in 𝐸) iff

𝒢 ≡
(︂

G G−1

G′ − 𝛿 ⊗ 𝐶 G

)︂
is a pre-(𝒞-DS) in 𝐸 ⊕ 𝐸 (pre-(𝒞-UDS) of *-class in 𝐸 ⊕ 𝐸), where

𝒞 ≡
(︂
𝐶 0
0 𝐶

)︂
.

Moreover, 𝒢 is a (𝒞-DS) ((𝒞-UDS) of *-class) iff G is a pre-(C-DCF) (pre-(C-
UDCF) of *-class) which satisfies (𝐶𝐶𝐹2).

Using Proposition 3.4.2, the proof of [291, Proposition 3.4.4], as well as the
fact that any pre-(C-DS) (pre-(C-UDS) of *-class) satisfies (𝑑5), and the fact that,
for every G ∈ 𝒟′

0(𝐿(𝐸)) (G ∈ 𝒟′*
0 (𝐿(𝐸))) commuting with 𝐶, the validity of

conditions (𝑑5) and (C.S.2) implies that G is a (C-DS) ((C-UDS) of *-class), we
can prove the following generalization of [292, Proposition 3.2.4(ii)].

Proposition 3.4.3. Let G ∈ 𝒟′
0(𝐿(𝐸)) (G ∈ 𝒟′*

0 (𝐿(𝐸))) and G(·)𝐶 = 𝐶G(·).
Then the following holds:

(i) If G is a pre-(C-DCF) (pre-(C-UDCF) of *-class), then

(338) G−1(𝜙 * 𝜓+)𝐶 = G−1(𝜙)G(𝜓) +G(𝜙)G−1(𝜓), 𝜙 ∈ 𝒟0, 𝜓 ∈ 𝒟.
(ii) If (𝐶𝐶𝐹2) and (338) hold, then G is a (C-DCF) ((C-UDCF) of *-class).

If G is a pre-(C-DCF) (pre-(C-UDCF) of *-class), then we can almost directly
prove that the dual G(·)* is a pre-(𝐶*-DCF) (pre-(𝐶*-UDCF) of *-class) on 𝐸*

satisfying 𝒩 (G*) = ℛ(G)
∘
, and that the reflexivity of 𝐸 additionally implies that

𝒩 (G) = ℛ(G*)
∘
.

Making use of Proposition 3.4.2 and Proposition 3.3.5, we can achieve the
following proposition.

Proposition 3.4.4. Suppose that G∈𝒟′
0(𝐿(𝐸)) (G∈𝒟′*

0 (𝐿(𝐸))) and G(·)𝐶 =
𝐶G(·). Then G is a pre-(C-DCF) (pre-(C-UDCF) of *-class) iff for every 𝜙,𝜓 ∈ 𝒟
(𝜙,𝜓 ∈ 𝒟*), we have:

G−1(𝜙)G′(𝜓)−G′(𝜙)G−1(𝜓) = 𝜓(0)G−1(𝜙)𝐶 − 𝜙(0)G−1(𝜓)𝐶.

Assume G is a pre-(C-DCF) (pre-(C-UDCF) of *-class). Then we define the
(integral) generator A of G by

A := {(𝑥, 𝑦) ∈ 𝐸 ⊕ 𝐸 : G−1(𝜙′′)𝑥 = G−1(𝜙)𝑦 for all 𝜙 ∈ 𝒟0}.
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Then A is a closed MLO and it can be easily seen that A ⊆ 𝐶−1A𝐶, with the
equality in the case that the operator 𝐶 is injective. If (𝐶𝐶𝐹2) holds, then it is
clear that A = 𝐴 is a closed single-valued linear operator.

We can almost straightforwardly extend the assertion of [291, Lemma 3.4.7]:

Lemma 3.4.5. Let A be the generator of a pre-(C-DCF) (pre-(C-UDCF) of *-
class) G. Then 𝒜 ⊆ ℬ, where 𝒜 ≡

(︀
0 𝐼
A 0

)︀
and ℬ is the generator of 𝒢. Furthermore,

(𝑥, 𝑦) ∈ A ⇔
(︀(︀

𝑥
0

)︀
,
(︀
0
𝑦

)︀)︀
∈ ℬ and ℬ is single-valued iff G is a (C-DCF) ((C-UDCF)

of *-class).

It is worth observing that

(339)
(︂(︂

0

𝑥

)︂
,

(︂
𝑥

0

)︂)︂
∈ ℬ, 𝑥 ∈ 𝐸.

Suppose now that G is a (C-DCF) ((C-UDCF) of *-class) generated by A.
Then Proposition 3.4.2 yields that 𝒢 is a (C-DS) ((C-UDS) of *-class). This implies
that the integral generator ℬ of 𝒢 is single-valued and the operator 𝒞 is injective.
Therefore, the integral generator A of G is single-valued and the operator 𝐶 is
injective.

It is not clear whether the assumption that the integral generator A of a pre-
(C-DCF) (pre-(C-UDCF) of *-class) G is single-valued implies (𝐶𝐶𝐹2) for G.
Let G be a pre-(C-DCF) (pre-(C-UDCF) of *-class) generated by A. Due to the
proofs of [291, Proposition 3.4.8] and [291, Proposition 3.4.30], we obtain that the
following holds:

(a) Let 𝜓 ∈ 𝒟 (𝜓 ∈ 𝒟*) and 𝑥, 𝑦 ∈ 𝐸. Then (G(𝜓)𝑥, 𝑦) ∈ A iff

G(𝜓′′)𝑥+ 𝜓′(0)𝐶𝑥− 𝑦 ∈
⋂︁

𝜙∈𝒟0

𝑁(G−1(𝜙))

(︂
∈
⋂︁

𝜙∈𝒟*
0

𝑁(G−1(𝜙))

)︂
.

(b) (G(𝜓)𝑥, G(𝜓′′)𝑥+ 𝜓′(0)𝐶𝑥) ∈ A, 𝜓 ∈ 𝒟 (𝜓 ∈ 𝒟*), 𝑥 ∈ 𝐸.
(c) (G−1(𝜓)𝑥,−G(𝜓′)𝑥− 𝜓(0)𝐶𝑥) ∈ A, 𝜓 ∈ 𝒟 (𝜓 ∈ 𝒟*), 𝑥 ∈ 𝐸.
(d) G(𝜙 *0 𝜓)𝐶𝑥−G(𝜙)G(𝜓)𝑥 ∈ AG−1(𝜙)G−1(𝜓)𝑥, 𝜙,𝜓 ∈ 𝒟 (𝜙,𝜓 ∈ 𝒟*),

𝑥 ∈ 𝐸.
If G is a (C-DCF) ((C-UDCF) of *-class) generated by A, then the operators

ℬ and A are single-valued; then a similar line of reasoning as in the proof of
[291, Proposition 3.4.8(iii)-(iv)] shows that, for every 𝜓 ∈ 𝒟 (𝜓 ∈ 𝒟*), we have
G(𝜓)A ⊆ AG(𝜓) and G−1(𝜓)A ⊆ AG−1(𝜓). It is not clear whether the above
inclusions hold for pre-(C-DCF)’s (pre-(C-UDCF)’s of *-class) in general case.

Theorem 3.4.6. Suppose that G ∈ 𝒟′
0(𝐿(𝐸)) (G ∈ 𝒟′*

0 (𝐿(𝐸))), G(·)𝐶 =
𝐶G(·), and A is a closed MLO on 𝐸 satisfying that G(·)A ⊆ AG(·) and

(340) G(𝜙′′)𝑥+ 𝜙′(0)𝐶𝑥 ∈ AG(𝜙)𝑥, 𝑥 ∈ 𝐸, 𝜙 ∈ 𝒟 (𝜙 ∈ 𝒟*).

Then the following holds:
(i) If A = 𝐴 is single-valued, then G is a pre-(C-DCF) (pre-(C-UDCF) of

*-class).
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(ii) If G satisfies (𝐶𝐶𝐹2), 𝐶 is injective and A = 𝐴 is single-valued, then G
is a (C-DCF) ((C-UDCF) of *-class) generated by 𝐶−1𝐴𝐶.

(iii) Consider the distribution case. If 𝐸 is admissible, then the condition
(𝐶𝐶𝐹2) automatically holds for G.

Proof. We will only outline the most important details of proof. It can be
simply proved that 𝒢 ∈ 𝒟′

0(𝐿(𝐸 ⊕ 𝐸)) (𝒢 ∈ 𝒟′*
0 (𝐿(𝐸 ⊕ 𝐸))), 𝒢(·)𝒞 = 𝒞𝒢(·), and

that 𝒜 is a closed MLO in 𝐸 ⊕ 𝐸. Furthermore, 𝒢(·)𝒜 ⊆ 𝒜𝒢(·) and

𝒢(−𝜙′)(𝑥 𝑦)𝑇 − 𝜙(0)𝒞(𝑥 𝑦)𝑇 ∈ 𝒜𝒢(𝜙)(𝑥 𝑦)𝑇 , 𝑥, 𝑦 ∈ 𝐸, 𝜙 ∈ 𝒟 (𝜙 ∈ 𝒟*).

By Remark 3.3.14, it readily follows that 𝒢 is a pre-(𝒞-DS) in 𝐸 ⊕ 𝐸 so that (i)
follows immediately from Proposition 3.4.2. In order to prove (ii), notice that 𝒢
satisfies (C.S.2) and that the analysis from Remark 3.3.14 implies that 𝒢 is a pre-(𝒞-
DS) in 𝐸 ⊕𝐸 generated by 𝒞−1𝒜𝒞 =

(︀
0 𝐼

𝐶−1𝐴𝐶 0

)︀
. Now the part (ii) simply follows

from Proposition 3.4.2 and Lemma 3.4.5. Observing that the admissibility of 𝐸
implies the admissibility of 𝐸 ⊕ 𝐸, the proof of (iii) can be deduced similarly. �

Remark 3.4.7. Concerning the assertion (i), its validity is not true in multi-
valued case: Let 𝐶 = 𝐼, let A ≡ 𝐸 × 𝐸, and let G ∈ 𝒟′

0(𝐿(𝐸)) (𝒢 ∈ 𝒟′*
0 (𝐿(𝐸)))

be arbitrarily chosen. Then G commutes with A and (340) holds but G need not
satisfy (𝐶𝐶𝐹1).

Remark 3.4.8. Let G ∈ 𝒟′
0(𝐿(𝐸)) (G ∈ 𝒟′*

0 (𝐿(𝐸))) and G(·)𝐶 = 𝐶G(·).
Suppose that 𝒜 = 𝐴 is single-valued and 𝐶 is injective. If G is a (C-DCF) in
𝐸 ((C-UDCF) of *-class in 𝐸), then ℬ is single-valued and we can proceed as in
the proof of [291, Proposition 3.4.8(iii)] so as to conclude that G(·)A ⊆ AG(·).
Combining this fact with Proposition 3.4.2, the consideration from Remark 3.3.14
and with the proof of Theorem 3.4.6, we get that G is a (C-DCF) in 𝐸 ((C-UDCF)
of *-class in 𝐸) generated by A iff 𝒢 is a (𝒞-DS) in 𝐸 ⊕ 𝐸 ((𝒞-UDS) of *-class
in 𝐸 ⊕ 𝐸) generated by 𝒜. This is an extension of [291, Theorem 3.2.8(ii)]. In
the degenerate case, the integral generator of 𝒢 can strictly contain 𝒜. In order
to verify this, let 𝐸 be an arbitrary Banach space, let 𝑃 ∈ 𝐿(𝐸), and let 𝑃 2 = 𝑃 .
Define G𝑃 (𝜙)𝑥 :=

∫︀∞
0
𝜙(𝑡)𝑑𝑡 𝑃𝑥, 𝑥 ∈ 𝐸, 𝜙 ∈ 𝒟. Then G−1

𝑃 (𝜙)𝑥 =
∫︀∞
0
𝑡𝜙(𝑡)𝑑𝑡 𝑃𝑥,

𝑥 ∈ 𝐸, 𝜙 ∈ 𝒟, G𝑃 is a pre-(DCF) in 𝐸, and

{𝑥, 𝑦} ⊆ 𝑁(𝑃 ) ⇔ G𝑃 (𝜙)𝑥+G−1
𝑃 (𝜙)𝑦 = 0 for all 𝜙 ∈ 𝒟0;

see [291, Example 3.4.46]. A simple computation shows that the integral generator
of G𝑃 is the MLO A = 𝐸 ×𝑁(𝑃 ). Furthermore, ([𝑥 𝑦]𝑇 , [𝑧 𝑢]𝑇 ) ∈ 𝒜 iff 𝑦 = 𝑧 and
𝑢 ∈ 𝑁(𝑃 ), while ([𝑥 𝑦]𝑇 , [𝑧 𝑢]𝑇 ) ∈ ℬ iff 𝑦 − 𝑧 ∈ 𝑁(𝑃 ) and 𝑢 ∈ 𝑁(𝑃 ). Hence, ℬ
strictly contains 𝒜.

Remark 3.4.9. Suppose that 𝒜 = 𝐴 is single-valued and 𝐶 is injective. Since
any (𝒞-DS) in 𝐸 ⊕ 𝐸 ((𝒞-UDS) of *-class in 𝐸 ⊕ 𝐸) is uniquely determined by its
generator, the conclusion established in Remark 3.4.8 shows that there exists at
most one (C-DCF) in 𝐸 ((C-UDCF) of *-class in 𝐸) generated by 𝐴. Even in the
case that 𝐸 is a Banach space and 𝐶 = 𝐼, this is no longer true in the degenerate
case. To see this, let 𝐸 be an arbitrary Banach space, let 𝑃1 ∈ 𝐿(𝐸), 𝑃 2

1 = 𝑃1,
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𝑃2 ∈ 𝐿(𝐸), 𝑃 2
2 = 𝑃2, 𝑁(𝑃1) = 𝑁(𝑃2) and 𝑃1 ̸= 𝑃2; cf. the previous remark. Then

pre-(DCF)’s G𝑃1
and G𝑃2

are different but have the same integral generator. We
can choose, for example, the matricial operators

𝑃1 =

[︂
0 0
0 1

]︂
and 𝑃2 =

[︂
0 1
0 1

]︂
.

We continue by stating the following theorem.

Theorem 3.4.10. Let 𝑎 > 0, 𝑏 > 0 and 𝛼 > 0. Suppose that A is a closed
MLO and, for every 𝜆 which belongs to the set 𝐸(𝑎, 𝑏), there exists an operator
𝐻(𝜆) ∈ 𝐿(𝐸) so that 𝐻(𝜆)A ⊆ A𝐻(𝜆), 𝜆 ∈ 𝐸(𝑎, 𝑏), 𝜆𝐻(𝜆)𝑥−𝐶𝑥 ∈ A[𝐻(𝜆)𝑥/𝜆],
𝜆 ∈ 𝐸(𝑎, 𝑏), 𝑥 ∈ 𝐸, 𝐻(𝜆)𝐶 = 𝐶𝐻(𝜆), 𝜆 ∈ 𝐸(𝑎, 𝑏), 𝜆𝐻(𝜆)𝑥 − 𝐶𝑥 = 𝐻(𝜆)𝑦/𝜆,
whenever 𝜆 ∈ 𝐸(𝑎, 𝑏) and (𝑥, 𝑦) ∈ A, and that the mapping 𝜆 ↦→ 𝐻(𝜆) is strongly
analytic on Ω𝑎,𝑏 and strongly continuous on Γ𝑎,𝑏, where Γ𝑎,𝑏 denotes the upwards
oriented boundary of 𝐸(𝑎, 𝑏) and Ω𝑎,𝑏 the open region which lies to the right of Γ𝑎,𝑏.
Let the operator family {(1 + |𝜆|)−𝛼𝐻(𝜆) : 𝜆 ∈ 𝐸(𝑎, 𝑏)} ⊆ 𝐿(𝐸) be equicontinuous.
Set

G(𝜙)𝑥 := (−𝑖)
∫︁
Γ𝑎,𝑏

𝜙(𝜆)𝐻(𝜆)𝑥 𝑑𝜆, 𝑥 ∈ 𝐸, 𝜙 ∈ 𝒟.

Then G is a pre-(C-DCF) generated by an extension of A.

Proof. Set

𝐹 (𝜆) :=

[︂
𝐻(𝜆) 𝐻(𝜆)/𝜆

𝜆𝐻(𝜆)− 𝐶 𝐻(𝜆)

]︂
, 𝜆 ∈ 𝐸(𝑎, 𝑏)

and

𝒢(𝜙)(𝑥 𝑦)𝑇 := (−𝑖)
∫︁
Γ𝑎,𝑏

𝜙(𝜆)𝐹 (𝜆)(𝑥 𝑦)𝑇 𝑑𝜆, 𝑥, 𝑦 ∈ 𝐸, 𝜙 ∈ 𝒟.

The prescribed assumptions imply that the function 𝐹 (·) has the properties neces-
sary for applying Theorem 3.3.15. Furthermore, supp(G) ⊆ [0,∞), G commutes
with 𝐶 and, by the proof of [292, Theorem 3.2.6], we have that

𝒢 =

[︂
G G−1

G′ − 𝛿 ⊗ 𝐶 G

]︂
.

By Theorem 3.3.15, we get that 𝒢 is a pre-(𝒞-DS) generated by an extension of 𝒜.
Due to Proposition 3.4.2 and Lemma 3.4.5, we obtain that G is a pre-(C-DCF)
generated by an extension of A, as claimed. �

Remark 3.4.11. (i) Suppose that 𝐶 is injective, A = 𝐴 is single-valued,
𝜌𝐶(𝐴) ⊆ 𝐸2(𝑎, 𝑏) ≡ {𝜆2 : 𝜆 ∈ 𝐸(𝑎, 𝑏)} and 𝐻(𝜆) = 𝜆(𝜆2 − 𝒜)−1𝐶,
𝜆 ∈ 𝐸2(𝑎, 𝑏). Then 𝒢 is a (C-DCF) generated by 𝐶−1𝐴𝐶. Even in the
case that 𝐶 = 𝐼, the integral generator A of G, in multivalued case, can
strictly contain 𝐶−1A𝐶.

(ii) Let A be a closed MLO, let 𝐶 be injective and commute with A, and let
𝜌𝐶(A) ⊆ 𝐸2(𝑎, 𝑏). Then the choice 𝐻(𝜆) = 𝜆(𝜆2 −A)−1𝐶, 𝜆 ∈ 𝐸(𝑎, 𝑏) is
always possible.
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(iii) In ultradistributional case, it is necessary to replace the exponential re-
gion 𝐸(𝑎, 𝑏) from the formulation of Theorem 3.4.10 with a corresponding
ultra-logarithmic region. Define the operator G(𝜙) similarly as above. In
non-degenerate case (A = 𝐴 single-valued, 𝐶 injective), it can be proved
that G(𝜙) is a pre-(C-UDCF) generated by an extension of A; unfortu-
nately, we do not know then whether G has to satisfy (𝐶𝐶𝐹1) in the
degenerate case.

Since any pre-(C-DS) (pre-(C-UDS) of *-class) satisfies the condition (𝑑3), we
want to observe that the assertion of [292, Theorem 3.2.11(i)] can be formulated
in our context. In non-degenerate case (A = 𝐴 single-valued, 𝐶 injective), the
assertion of [292, Theorem 3.2.11(ii)] can be simply reformulated for (C-DCF)’s
of finite order, when we can also prove the equivalence of the statements (a)–(f)
clarified on p. 380 of [292].

The analysis of degenerate almost 𝐶-(ultra)distribution cosine functions is
without the scope of this book. For more details, see [428] and [291, Subsection
3.4.5] and [292, pp. 380–384].

In the remainder of this section, we investigate relations between degenerate
𝐶-distribution cosine functions and degenerate integrated 𝐶-cosine functions. We
start by stating the following result.

Theorem 3.4.12. Let G be a pre-(C-DCF) generated by A, and let G be of
finite order. Then, for every 𝜏 > 0, there exist a number 𝑛𝜏 ∈ N and a local
𝑛𝜏 -times integrated 𝐶-cosine function (𝐶𝑛𝜏

(𝑡))𝑡∈[0,𝜏) such that

(341) 𝒢(𝜙) = (−1)𝑛𝜏

∫︁ ∞

0

𝜙(𝑛𝜏 )(𝑡)𝐶𝑛𝜏
(𝑡)𝑑𝑡, 𝜙 ∈ 𝒟(−𝜏,𝜏).

Furthermore, (𝐶𝑛𝜏
(𝑡))𝑡∈[0,𝜏) is an 𝑛𝜏 -times integrated 𝐶-cosine existence family

with a subgenerator A.

Proof. Let 𝒢 and 𝒞 be as in the formulation of Proposition 3.4.2, and let 𝒜 be
the MLO defined in Lemma 3.4.5. Then 𝒢 is a pre-(𝒞-DS) in 𝐸⊕𝐸 generated by a
closed MLO ℬ which contains 𝒜. Since G is of finite order, we know that, for every
𝜏 > 0, there exist a number 𝑛𝜏 ∈ N and a continuous mapping 𝐶𝑛𝜏

: [0, 𝜏) → 𝐿(𝐸)
such that (341) holds true. Define

𝑆𝑛𝜏+1(𝑡) :=

(︃ ∫︀ 𝑡

0
𝐶𝑛𝜏 (𝑠)𝑑𝑠

∫︀ 𝑡

0
(𝑡− 𝑠)𝐶𝑛𝜏 (𝑠)𝑑𝑠

𝐶𝑛𝜏
(𝑡)− 𝑔𝑛𝜏+1(𝑡)𝐶

∫︀ 𝑡

0
𝐶𝑛𝜏

(𝑠)𝑑𝑠

)︃
, 0 6 𝑡 < 𝜏.

Then 𝑆𝑛𝜏+1 : [0, 𝜏) → 𝐿(𝐸 ⊕ 𝐸) is continuous and

𝒢(𝜙) = (−1)𝑛𝜏+1

∫︁ ∞

0

𝜙(𝑛𝜏+1)(𝑡)𝑆𝑛𝜏+1(𝑡)𝑑𝑡, 𝜙 ∈ 𝒟(−𝜏,𝜏).

This immediately implies that (𝑆𝑛𝜏+1(𝑡))𝑡∈[0,𝜏) is an (𝑛𝜏 + 1)-times integrated 𝒞-
integrated semigroup with a subgenerator ℬ. Due to Theorem 3.2.57, we have
that (𝐶𝑛𝜏

(𝑡))𝑡∈[0,𝜏) is an 𝑛𝜏 -times integrated 𝒞-times integrated cosine function so
that it remains to be proved that (𝐶𝑛𝜏 (𝑡))𝑡∈[0,𝜏) is an 𝑛𝜏 -times integrated 𝒞-cosine
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existence family with subgenerator A, i.e., that (
∫︀ 𝑡

0
(𝑡 − 𝑠)𝐶𝑛𝜏

(𝑠)𝑥 𝑑𝑠,𝐶𝑛𝜏
(𝑡)𝑥 −

𝑔𝑛𝜏+1(𝑡)𝐶𝑥) ∈ A for all 𝑡 ∈ [0, 𝜏) and 𝑥 ∈ 𝐸. This is equivalent to say that(︂(︂∫︀ 𝑡

0
(𝑡− 𝑠)𝐶𝑛𝜏

(𝑠)𝑥 𝑑𝑠

0

)︂
,

(︂
0∫︀ 𝑡

0
(𝑡− 𝑠)𝐶𝑛𝜏 (𝑠)𝑥 𝑑𝑠

)︂)︂
∈ ℬ, 𝑥 ∈ 𝐸, 𝑡 ∈ [0, 𝜏),

which simply follows from the inclusion (339) and the fact that (𝑆𝑛𝜏+1(𝑡))𝑡∈[0,𝜏) is
an (𝑛𝜏 + 1)-times integrated 𝒞-integrated existence family with a subgenerator ℬ.
The proof of the theorem is thereby complete. �

Remark 3.4.13. (i) It is not clear how we can reconsider Theorem 3.3.6
and Theorem 3.4.12 in ultradistributional case.

(ii) If A = 𝐴 is single-valued, then 𝒜 is single-valued, as well. If so, then
(𝑆𝑛𝜏+1(𝑡))𝑡∈[0,𝜏) is an (𝑛𝜏 + 1)-times integrated 𝒞-integrated semigroup
with a subgenerator 𝒜, which implies by Theorem 3.2.57(ii) that
(𝐶𝑛𝜏 (𝑡))𝑡∈[0,𝜏) is an 𝑛𝜏 -times integrated 𝐶-cosine function with a sub-
generator 𝐴.

(iii) If the assumptions of Theorem 3.4.12 hold, then G(𝜙)G(𝜓) = G(𝜓)G(𝜙),
𝜙,𝜓 ∈ 𝒟 (in the Banach space setting, this gives the affirmative answer
to the question raised on p. 769 of [331]). As a simple consequence, we
have that, for every 𝜓 ∈ 𝒟, we have G(𝜓)A ⊆ AG(𝜓) and G−1(𝜓)A ⊆
AG−1(𝜓).

(iv) Suppose that 𝐶 = 𝐼 and 𝒜 (A) is the integral generator of a pre-(DS)
𝒢 (pre-(DCF) G) of finite order. Then Proposition 3.2.68 combined with
Theorem 3.3.6 and Theorem 3.4.12 shows that 𝒜 (A) is stationary dense.
Unfortunately, we have already seen in some examples that the resolvent
set of 𝒜 (A) can be empty (compare to [363, Theorem 3.5] in semigroup
case).

Making use of Theorem 3.2.57 and Proposition 3.4.2, we can simply prove the
following analogue of Theorem 3.3.8 for degenerate differential equations of second
order. This is an extension of [291, Theorem 3.2.5(iii)].

Theorem 3.4.14. Assume that there exists a sequence ((𝑝𝑘, 𝜏𝑘))𝑘∈N0
in N0 ×

(0,∞) such that lim𝑘→∞ 𝜏𝑘 = ∞, (𝑝𝑘)𝑘∈N0 and (𝜏𝑘)𝑘∈N0 are strictly increasing, as
well as for each 𝑘 ∈ N0 there exists a local 𝑝𝑘-times integrated 𝐶-cosine function
(𝐶𝑝𝑘

(𝑡))𝑡∈[0,𝜏𝑘) on 𝐸 satisfying that

(342) 𝐶𝑝𝑚(𝑡)𝑥 = (𝑔𝑝𝑚−𝑝𝑘
* 𝐶𝑝𝑘

(·)𝑥)(𝑡), 𝑥 ∈ 𝐸, 𝑡 ∈ [0, 𝜏𝑘),

provided 𝑘 < 𝑚. Define

G(𝜙)𝑥 := (−1)𝑝𝑘

∫︁ ∞

0

𝜙(𝑝𝑘)(𝑡)𝐶𝑝𝑘
(𝑡)𝑥 𝑑𝑡, 𝜙 ∈ 𝒟(−∞,𝜏𝑘), 𝑥 ∈ 𝐸, 𝑘 ∈ N0.

Then G is well-defined and G is a pre-(C-DCF).

As in the case of degenerate 𝐶-distribution semigroups, we have the following
remarks and comments on Theorem 3.4.14.
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Remark 3.4.15. (i) Let A𝑘 be the integral generator of (𝐶𝑝𝑘
(𝑡))𝑡∈[0,𝜏𝑘)

(𝑘 ∈ N0). Then A𝑘 ⊆ A𝑚 for 𝑘 > 𝑚 and
⋂︀

𝑘∈N0
A𝑘 ⊆ A, where A is the

integral generator of G. Even in the case that 𝐶 = 𝐼,
⋃︀

𝑘∈N0
A𝑘 can be a

proper subset of A.
(ii) Suppose that A is a subgenerator of (𝐶𝑝𝑘

(𝑡))𝑡∈[0,𝜏𝑘) for all 𝑘 ∈ N0. Then
(342) automatically holds.

(iii) If 𝐶 = 𝐼, then it suffices to suppose that there exists an MLO A subgen-
erating a local 𝑝-times integrated cosine function (𝐶𝑝(𝑡))𝑡∈[0,𝜏) for some
𝑝 ∈ N and 𝜏 > 0 [329].

Proposition 3.4.2 enables us to simply introduce the notion of an exponential
pre-(C-DCF) in 𝐸 (exponential pre-(C-UDCF) of *-class in 𝐸):

Definition 3.4.16. Let G be a pre-(C-DCF) (pre-(C-UDCF) of *-class). Then
G is said to be an exponential pre-(C-DCF) (pre-(C-UDCF) of *-class) iff there
exists 𝜔 ∈ R such that 𝑒−𝜔𝑡𝒢 ∈ 𝒮 ′(𝐿(𝐸 ⊕ 𝐸)) (𝑒−𝜔𝑡𝒢 ∈ 𝒮 ′*(𝐿(𝐸 ⊕ 𝐸))). We use
the shorthand pre-(C-EDCF) (pre-(C-EUDCF) of *-class) to denote an exponential
pre-(C-DCF) (pre-(C-UDCF) of *-class).

It can be simply verified that a pre-(C-DCF) (pre-(C-UDCF) of *-class) G is
exponential iff there exists 𝜔 ∈ R such that 𝑒−𝜔𝑡G−1 ∈ 𝒮 ′(𝐿(𝐸)) (𝑒−𝜔𝑡G−1 ∈
𝒮 ′*(𝐿(𝐸))); see e.g. [292, Theorem 3.2.10(i)] and the proof of [291, Proposition
3.4.21].

By the foregoing, we have the following result.

Theorem 3.4.17. Assume that 𝛼 > 0 and A is the integral generator of a
global 𝛼-times integrated 𝐶-cosine function (𝐶𝛼(𝑡))𝑡>0 on 𝐸. Set

G𝛼(𝜙)𝑥 :=

∫︁ ∞

0

𝑊𝛼
+𝜙(𝑡)𝐶𝛼(𝑡)𝑥 𝑑𝑡, 𝑥 ∈ 𝐸, 𝜙 ∈ 𝒟.

Then G is a pre-(C-DCF) whose integral generator contains A. Furthermore, if
(𝐶𝛼(𝑡))𝑡>0 is exponentially equicontinuous, then G is exponential.

Remark 3.4.18. It is clear that G(·) ≡ 0 is a degenerate pre-distribution
cosine function with the generator 𝒜 ≡ 𝐸 × 𝐸, as well as that, for every 𝜏 >
0 and for every integer 𝑛𝜏 ∈ N, there exists only one local 𝑛𝜏 -times integrated
cosine function (𝐶𝑛𝜏

(𝑡) ≡ 0)𝑡∈[0,𝜏) satisfying (341). Then condition (B)’ holds
and condition (A)’ does not hold here. Designate by A𝜏 the integral generator
of (𝐶𝑛𝜏

(𝑡) ≡ 0)𝑡∈[0,𝜏). Then A𝜏 = {0} × 𝐸 is strictly contained in the integral
generator A of G. Furthermore, if 𝐶 ̸= 0, then there do not exist numbers 𝜏 > 0
and 𝑛𝜏 ∈ N such that A generates (subgenerates) a local 𝑛𝜏 -times integrated 𝐶-
cosine function.

The notion of a 𝑞-exponential pre-(C-DCF) (pre-(C-UDCF) of *-class) can
be also introduced and further analyzed. For the sake of brevity, we shall skip
all related details concerning this topic here. It is also worth noting that the
assertions of [291, Theorem 3.6.13, Theorem 3.6.14] can be simply reformulated for
non-degenerate ultradistribution sines in locally convex spaces. For more details
concerning the semigroup case, the reader may consult [355].
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We would like to round off this section by drawing the readers’ attention on
some instructive examples of (pre-)ultradistribution sines in Fréchet and Banach
function spaces.

Example 3.4.19. (i) Several times before, we have dealt with the Fréchet
space 𝐸 = {𝑓 ∈ 𝐶∞([0,∞)) : lim𝑥→+∞ 𝑓 (𝑘)(𝑥) = 0 for all 𝑘 ∈ N0},
equipped with the family of norms ‖𝑓‖𝑘 :=

∑︀𝑘
𝑗=0 sup𝑥>0 |𝑓 (𝑗)(𝑥)|, 𝑓 ∈ 𝐸

(𝑘 ∈ N0). Suppose 𝑐0 > 0, 𝛽 > 0, 𝑠 > 1, �̄� > 0 and 𝑀𝑝 := 𝑝!𝑠. Define
the operator 𝐴 by 𝐷(𝐴) := {𝑢 ∈ 𝐸 : 𝑐0𝑢

′(0) = 𝛽𝑢(0)} and 𝐴𝑢 := 𝑐0𝑢
′′.

Then, for every two sufficiently small number 𝜀 > 0, 𝜀′ > 0 and for every
integer 𝑘 ∈ N0, there exist constants 𝑐(𝜀, 𝜀′) > 0 and 𝑐(𝑘, 𝜀, 𝜀′) > 0 such
that

(343) ‖(𝜆−𝐴)−1𝑓‖𝑘 6 𝑐(𝑘, 𝜀, 𝜀′)𝑒𝑐(𝜀,𝜀
′)|𝜆|𝜀

′

‖𝑓‖𝑘, 𝑓 ∈ 𝐸, 𝜆 ∈ Σ𝜋−𝜀.

Suppose now that 𝑃 (𝑧) is a non-constant complex polynomial of degree
𝑘 ∈ N satisfying that there exists a positive real number 𝑎 > 0 such that,
for every 𝜆 ∈ C with Re𝜆 > 𝑎, all zeroes of polynomial 𝑧 ↦→ 𝑃 (𝑧) − 𝜆,
𝑧 ∈ C belong to C r (−∞, 0]. Let �̄� > 𝑎. Then it can be easily seen
with the help of (343) that, for every two sufficiently small number 𝜀 > 0,
𝜀′ > 0 and for every integer 𝑘 ∈ N0, there exist constants 𝑐(𝜀, 𝜀′) > 0 and
𝑐(𝑘, 𝜀, 𝜀′) > 0 such that

‖(𝜆− 𝑃 (𝐴))−1𝑓‖𝑘 6 𝑐(𝑘, 𝜀, 𝜀′)𝑒𝑐(𝜀,𝜀
′)|𝜆|𝜀

′

‖𝑓‖𝑘, 𝑓 ∈ 𝐸, Re𝜆 > �̄�.

Set

G𝑃 (𝜙)𝑓 := (−𝑖)
∫︁ �̄�+𝑖∞

�̄�−𝑖∞
𝜆𝜙(𝜆)(𝜆2 − 𝑃 (𝐴))−1𝑓 𝑑𝜆, 𝑓 ∈ 𝐸, 𝜙 ∈ 𝒟(𝑀𝑝).

Then G𝑃 is an exponential pre-(EUDCF) of (𝑀𝑝)-class generated by
𝑃 (𝐴), and it is very difficult to answer whether the condition (𝐶𝐶𝐹2)
holds for G𝑃 , in general.

(ii) In this part, we use the notation from [27, Chapter 8]. Let 𝑝 ∈ [1,∞),
𝑚 > 0, 𝜌 ∈ [0, 1], 𝑟 > 0, and let 𝑎 ∈ 𝑆𝑚

𝜌,0 satisfies (𝐻𝑟). Suppose that 𝐸 =
𝐿𝑝(R𝑛) or 𝐸 = 𝐶0(R𝑛) (in the last case, we assume 𝑝 = ∞), 0 6 𝑙 6 𝑛,
𝐴 := Op𝐸(𝑎) and the following inequality

(344) 𝑛
⃒⃒⃒1
2
− 1

𝑝

⃒⃒⃒(︁𝑚− 𝑟 − 𝜌+ 1

𝑟

)︁
< 1

holds. Let us recall that if 𝑎(·) is an elliptic polynomial of order 𝑚, then
(344) holds with 𝑚 = 𝑟 and 𝜌 = 1. Suppose that there exists a sequence
(𝑀𝑝) satisfying (𝑀.1), (𝑀.2) and (𝑀.3)′, as well as that 𝑎(R𝑛)∩Λ2

𝑙,𝜁,𝜂 = ∅
for some constants 𝑙 > 1, 𝜁 > 0 and 𝜂 ∈ R. Here,

Λ𝑙,𝜁,𝜂 = {𝜆 ∈ C : Re𝜆 > 𝜁𝑀(𝑙| Im𝜆|) + 𝜂} and Λ2
𝑙,𝜁,𝜂 = {𝜆2 : 𝜆 ∈ Λ𝑙,𝜁,𝜂}.

Put N𝑙
0 := {𝜂 ∈ N𝑛

0 : 𝜂𝑙+1 = · · · = 𝜂𝑛 = 0} and 𝐸𝑙 := {𝑓 ∈ 𝐸 : 𝑓 (𝜂) ∈
𝐸 for all 𝜂 ∈ N𝑙

0}. Then the calibration (𝑞𝜂(𝑓) := ‖𝑓 (𝜂)‖𝐸 , 𝑓 ∈ 𝐸𝑙; 𝜂 ∈
N𝑙

0) induces a Fréchet topology on 𝐸𝑙 [541]. Define the operator 𝐴𝑙 on 𝐸𝑙
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by 𝐷(𝐴𝑙) := {𝑓 ∈ 𝐸𝑙 : Op𝐸(𝑎)𝑓 ∈ 𝐸𝑙} and 𝐴𝑙𝑓 := Op𝐸(𝑎)𝑓 (𝑓 ∈ 𝐷(𝐴𝑙)).
Then we know that there exist numbers 𝜂′ > 𝜂, 𝑁 ∈ N and 𝑀 > 1 such
that Λ2

𝑙,𝜁,𝜂′ ⊆ 𝜌(𝐴𝑙) and for each 𝜂 ∈ N𝑙
0 we have

𝑞𝜂(𝑅(𝜆 : 𝐴𝑙)𝑓) 6𝑀(1 + |𝜆|)𝑁𝑞𝜂(𝑓), 𝜆 ∈ Λ2
𝑙,𝜁,𝜂′ , 𝑓 ∈ 𝐸𝑙.

Keeping in mind Theorem 3.4.10 and Remark 3.4.11, we get that 𝐴𝑙 gener-
ates an ultradistribution cosine function of (𝑀𝑝)-class in 𝐸𝑙. This implies
(see e.g. [291, Theorem 3.6.14] for the Banach space case) that the ab-
stract Cauchy problem

(𝐴𝐶𝑃2) :

⎧⎪⎨⎪⎩
𝑢 ∈ 𝐶∞([0,∞) : 𝐸𝑙) ∩ 𝐶([0,∞) : [𝐷(𝐴𝑙)]),

𝑢𝑡𝑡(𝑡, 𝑥) = 𝐴𝑙𝑢(𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ R𝑛,

𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑢𝑡(0, 𝑥) = 𝑢1(𝑥), 𝑥 ∈ R𝑛

has a unique solution for any 𝑢0, 𝑢1 ∈ 𝐸(𝑀𝑝)(𝐴𝑙), where 𝐸(𝑀𝑝)(𝐴𝑙) is the
abstract Beurling space of operator 𝐴𝑙; furthermore, for every compact
set 𝐾 ⊆ [0,∞) and for every 𝑛 ∈ N and ℎ > 0, the solution 𝑢 of (𝐴𝐶𝑃2)
satisfies

sup
𝑡∈𝐾, 𝑝∈N0

ℎ𝑝

𝑀𝑝

(︁⃦⃦⃦ 𝑑𝑝
𝑑𝑡𝑝

𝑢(𝑡)
⃦⃦⃦
𝑛
+
⃦⃦⃦ 𝑑𝑝+1

𝑑𝑡𝑝+1
𝑢(𝑡)

⃦⃦⃦
𝑛

)︁
<∞.

Multiplication operators in 𝐿𝑝-spaces generating degenerate locally integrated
cosine functions can be simply constructed following the method proposed in Ex-
ample 3.2.11 and [291, Example 3.4.44]. These examples can serve as examples
of non-exponential pre-(DCF)’s in Banach spaces. If the condition (PW) clarified
below holds, then it can be simply proved that there exists a continuous linear op-
erator 𝐶 such that 𝒜 generates a global once integrated 𝐶-cosine function that is
not exponentially bounded, in general. This example can be used for construction
of non-exponential pre-(C-DCF)’s in Banach spaces.

3.5. Subordinated fractional resolvent families with removable
singularities at zero

In this section, we assume that (𝐸, ‖ · ‖) is a complex Banach space and the
following condition holds (cf. also [199, (P), p. 47] with 𝛼 = 1):

(PW) There exist finite constants 𝑐,𝑀 > 0 and 𝛽 ∈ (0, 1] such that

Ψ := Ψ𝑐 := {𝜆 ∈ C : Re𝜆 > −𝑐(| Im𝜆|+ 1)} ⊆ 𝜌(𝒜)

and
‖𝑅(𝜆 : 𝒜)‖ 6𝑀(1 + |𝜆|)−𝛽 , 𝜆 ∈ Ψ.

Our intention is to analyze the fractional resolvent families with removable sin-
gularities at zero, which are subordinated to infinitely differentiable semigroups
generated by the multivalued linear operators satisfying the condition (PW). We
will prove proper extensions of [529, Theorem 3.3(ii), Theorem 3.4(iii), Theorem
4.1], given in single-valued case.
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Define the Yosida approximation 𝐴𝑛 ∈ 𝐿(𝐸) of the operator 𝒜 by 𝐴𝑛 :=
𝑛[𝑛𝑅(𝑛 : 𝒜)− 𝐼] (𝑛 ∈ N). Then there exist numbers 𝑐′ ∈ (0, 𝑐), 𝑀 ′ > 0 and 𝑛0 ∈ N
such that Ψ𝑐′ ⊆ 𝜌(𝐴𝑛) for 𝑛 > 𝑛0, as well as

‖𝑅(𝜆 : 𝐴𝑛)‖ 6𝑀 ′(1 + |𝜆|)−𝛽 , 𝜆 ∈ Ψ𝑐′ , 𝑛 > 𝑛0.

Unfortunately, this fact cannot be essentially employed in the analysis of abstract
degenerate fractional differential equations involving the multivalued linear opera-
tors satisfying the condition (PW) or condition (QP), and a great number of results
presented in [199, Section 3.2-Section 3.5] is not attainable in our framework.

Before proceeding any further, we need to slightly modify the definition of
Caputo fractional derivatives of order 𝛾 ∈ (0, 1). In this section, we will use the
following notion: Let 0 < 𝑇 < ∞. The Caputo fractional derivative D𝛾

𝑡 𝑢(𝑡) (we
will not change the terminology we have used so far) is defined for those functions
𝑢 : [0, 𝑇 ] → 𝐸 for which 𝑢|(0,𝑇 ](·) ∈ 𝐶((0, 𝑇 ] : 𝐸), 𝑢(·) − 𝑢(0) ∈ 𝐿1((0, 𝑇 ) : 𝐸) and
𝑔1−𝛾 * (𝑢(·)− 𝑢(0)) ∈𝑊 1,1((0, 𝑇 ) : 𝐸), by

D𝛾
𝑡 𝑢(𝑡) =

𝑑

𝑑𝑡
[𝑔1−𝛾 * (𝑢(·)− 𝑢(0))](𝑡), 𝑡 ∈ (0, 𝑇 ].

Let the contour Γ := {𝜆 = −𝑐(|𝜂| + 1) + 𝑖𝜂 : 𝜂 ∈ R} be oriented so that Im𝜆
increases along Γ. Set 𝑇 (0) := 𝐼 and

𝑇 (𝑡)𝑥 :=
1

2𝜋𝑖

∫︁
Γ

𝑒𝑡𝜆(𝜆−𝒜)−1𝑥 𝑑𝜆, 𝑡 > 0, 𝑥 ∈ 𝐸.

Then (𝑇 (𝑡))𝑡>0 ⊆ 𝐿(𝐸) is a semigroup on 𝐸, and we have the following estimate

(345) ‖𝑇 (𝑡)‖ = 𝑂(𝑡𝛽−1), 𝑡 > 0;

furthermore, for every 𝜃 ∈ (0, 1),

(346) ‖𝑇 (𝑡)‖𝐿(𝐸,𝐸𝜃
𝒜) = 𝑂(𝑡𝛽−𝜃−1), 𝑡 > 0.

Concerning the strong continuity of (𝑇 (𝑡))𝑡>0 at zero, it is necessary to remind
ourselves of the fact that [199]:

(CW) 𝑇 (𝑡)𝑥→ 𝑥, 𝑡→ 0+ for any 𝑥 ∈ 𝐸 belonging to the space 𝐷((−𝒜)𝜃) with
𝜃 > 1− 𝛽 (𝑥 ∈ 𝐸𝜃

𝒜 with 1 > 𝜃 > 1− 𝛽).
It is very simple to prove that

(347) 𝑅(𝜆 : 𝒜)𝑥 =

∫︁ ∞

0

𝑒−𝜆𝑡𝑇 (𝑡)𝑥 𝑑𝑡, Re𝜆 > 0, 𝑥 ∈ 𝐸.

From now on, we assume that 0 < 𝛾 < 1. Set, for every 𝜈 ∈ (−𝛽,∞),

(348) 𝑇𝛾,𝜈(𝑡)𝑥 := 𝑡−𝛾

∫︁ ∞

0

𝑠𝜈Φ𝛾(𝑠𝑡
−𝛾)𝑇 (𝑠)𝑥 𝑑𝑠, 𝑡 > 0, 𝑥 ∈ 𝐸 and 𝑇𝛾,0(0) := 𝐼.

Since

(349) 𝑇𝛾,𝜈(𝑡)𝑥 = 𝑡𝛾𝜈
∫︁ ∞

0

𝑠𝜈Φ𝛾(𝑠)𝑇 (𝑠𝑡
𝛾)𝑥 𝑑𝑠, 𝑡 > 0, 𝑥 ∈ 𝐸,
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the estimates (345)–(346) combined with (a3) imply that the integral which defines
the operator 𝑇𝛾,𝜈(𝑡) is absolutely convergent as well as

‖𝑇𝛾,𝜈(𝑡)‖ = 𝑂(𝑡𝛾(𝜈+𝛽−1)), 𝑡 > 0.

Moreover, for every 𝜃 ∈ (0, 1) and 𝜈 > 𝜃 − 𝛽,

‖𝑇𝛾,𝜈(𝑡)‖𝐿(𝐸,𝐸𝜃
𝒜) = 𝑂(𝑡𝛾(𝜈+𝛽−𝜃−1)), 𝑡 > 0.

Further on, (349) taken together with (a3) implies that, for every 𝜈 > −𝛽,

(350)
𝑇𝛾,𝜈(𝑡)

𝑡𝛾𝜈
𝑥− Γ(1 + 𝜈)

Γ(1 + 𝛾𝜈)
𝑥 =

∫︁ ∞

0

𝑠𝜈Φ𝛾(𝑠)[𝑇 (𝑠𝑡
𝛾)𝑥− 𝑥]𝑑𝑠, 𝑡 > 0, 𝑥 ∈ 𝐸.

Using the dominated convergence theorem, (a3), (345), (350) and (CW), we
can deduce the following:

(b1) 𝑇𝛾,𝜈(𝑡)
𝑡𝛾𝜈 𝑥→ Γ(1+𝜈)

Γ(1+𝛾𝜈)𝑥, 𝑡→ 0+ provided that 𝜃 > 1− 𝛽 and 𝑥 ∈ 𝐷((−𝒜)𝜃),
or that 1 > 𝜃 > 1− 𝛽 and 𝑥 ∈ 𝐸𝜃

𝒜 (𝜈 > −𝛽).
Taking into account the proof of [61, Theorem 3.1] and (347), we get

(b2)
∫︀∞
0
𝑒−𝜆𝑡𝑇𝛾,0(𝑡)𝑥 𝑑𝑡 = 𝜆𝛾−1

∫︀∞
0
𝑒−𝜆𝛾𝑡𝑇 (𝑡)𝑥 𝑑𝑡 = 𝜆𝛾−1(𝜆𝛾 −𝒜)−1𝑥, Re𝜆 >

0, 𝑥 ∈ 𝐸.
Owing to [199, Theorem 3.5], (a3) and (350), we have

(b3) ‖𝑇𝛾,𝜈(𝑡)
𝑡𝛾𝜈 𝑥 − Γ(1+𝜈)

Γ(1+𝛾𝜈)𝑥‖ = 𝑂(𝑡𝛾(𝛽+𝜃−1)‖𝑥‖[𝐷((−𝒜)𝜃)]), 𝑡 > 0, provided 1 >

𝜃 > 1−𝛽, 𝑥 ∈ 𝐷((−𝒜)𝜃) and ‖𝑇𝛾,𝜈(𝑡)
𝑡𝛾𝜈 𝑥− Γ(1+𝜈)

Γ(1+𝛾𝜈)𝑥‖ = 𝑂(𝑡𝛾(𝛽+𝜃−1)‖𝑥‖𝐸𝜃
𝒜
),

𝑡 > 0, provided 1 > 𝜃 > 1− 𝛽, 𝑥 ∈ 𝐸𝜃
𝒜 (𝜈 > −𝛽).

Set 𝜉 := min((1/𝛾 − 1)𝜋/2, 𝜋). It is worth noting that the proof of [61, Theorem
3.3(i)–(ii)] implies that, for every 𝜈 > −𝛽, the mapping 𝑡 ↦→ 𝑇𝛾,𝜈(𝑡)𝑥, 𝑡 > 0 can be
analytically extended to the sector Σ𝜉 (we will denote this extension by the same
symbol) and that, for every 𝜃 ∈ (0, 1), 𝜀 ∈ (0, 𝜉) and 𝜈 > −𝛽,

(b4) ‖𝑇𝛾,𝜈(𝑧)‖ = 𝑂(|𝑧|𝛾(𝜈+𝛽−1)), 𝑧 ∈ Σ𝜉−𝜀.
Moreover, for every 𝜃 ∈ (0, 1), 𝜀 ∈ (0, 𝜉) and 𝜈 > 𝜃 − 𝛽,

(b5) ‖𝑇𝛾,𝜈(𝑧)‖𝐿(𝐸,𝐸𝜃
𝒜) = 𝑂(|𝑧|𝛾(𝜈+𝛽−1−𝜃)), 𝑧 ∈ Σ𝜉−𝜀.

Keeping in mind (b4)–(b5) and the Cauchy integral formula, we can prove that,
for every 𝜃 ∈ (0, 1), 𝜀 ∈ (0, 𝜉), 𝜈 > −𝛽 and 𝑛 ∈ N,

(b4)’ ‖(𝑑𝑛/𝑑𝑧𝑛)𝑇𝛾,𝜈(𝑧)‖ = 𝑂(|𝑧|𝛾(𝜈+𝛽−1)−𝑛), 𝑧 ∈ Σ𝜉−𝜀,
as well as that, for every 𝜃 ∈ (0, 1), 𝜀 ∈ (0, 𝜉), 𝜈 > 𝜃 − 𝛽 and 𝑛 ∈ N,

(b5)’ ‖(𝑑𝑛/𝑑𝑧𝑛)𝑇𝛾,𝜈(𝑧)‖𝐿(𝐸,𝐸𝜃
𝒜) = 𝑂(|𝑧|𝛾(𝜈+𝛽−1−𝜃)−𝑛), 𝑧 ∈ Σ𝜉−𝜀.

In the case that 𝜀 ∈ (0, 𝜉) and 𝑧 ∈ Σ𝜉−𝜀, then the uniqueness theorem for ana-
lytic functions, (a3) and the asymptotic expansion formula for the Wright func-
tions (cf. also the first part of proof of [61, Theorem 3.3]) together imply that∫︀∞
0
𝑧−𝛾(1+𝜈)𝑠𝜈Φ𝛾(𝑠𝑧

−𝛾)𝑑𝑠 = Γ(1+𝑟)
Γ(1+𝛾𝑟) , 𝑟 > −1; hence,

𝑇𝛾,𝜈(𝑧)

𝑧𝛾𝜈
𝑥− Γ(1 + 𝜈)

Γ(1 + 𝛾𝜈)
𝑥 =

∫︁ ∞

0

𝑠𝜈Φ𝛾(𝑠𝑒
𝑖𝜙)[𝑇 (𝑠|𝑧|𝛾)𝑥− 𝑥]𝑑𝑠,
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where 𝜙 = −𝛾 arg(𝑧). Keeping in mind this identity, (C), [199, Theorem 3.5] and
the proof of [61, Theorem 3.3], we can deduce the following extension of [529,
Theorem 3.4(i)] and the properties (b1), (b3):

(b1)’ Suppose that 𝜀 ∈ (0, 𝜉) and 𝛿 = 𝜉 − 𝜀. Then lim𝑧→0,𝑧∈Σ𝛿

𝑇𝛾,𝜈(𝑧)
𝑧𝛾𝜈 𝑥 =

Γ(1+𝜈)
Γ(1+𝛾𝜈)𝑥, provided that 𝜃 > 1−𝛽 and 𝑥 ∈ 𝐷((−𝒜)𝜃), or that 1 > 𝜃 > 1−𝛽
and 𝑥 ∈ 𝐸𝜃

𝒜 (𝜈 > −𝛽).
(b3)’ Suppose that 𝜀 ∈ (0, 𝜉) and 𝛿 = 𝜉 − 𝜀. Then ‖𝑇𝛾,𝜈(𝑧)

𝑧𝛾𝜈 𝑥 − Γ(1+𝜈)
Γ(1+𝛾𝜈)𝑥‖ =

𝑂(|𝑧|𝛾(𝛽+𝜃−1)‖𝑥‖[𝐷((−𝒜)𝜃)]), 𝑧 ∈ Σ𝛿, provided 1 > 𝜃 > 1 − 𝛽, 𝑥 ∈
𝐷((−𝒜)𝜃), and ‖𝑇𝛾,𝜈(𝑧)

𝑧𝛾𝜈 𝑥 − Γ(1+𝜈)
Γ(1+𝛾𝜈)𝑥‖ = 𝑂(|𝑧|𝛾(𝛽+𝜃−1)‖𝑥‖𝐸𝜃

𝒜
), 𝑧 ∈ Σ𝛿,

provided 1 > 𝜃 > 1− 𝛽, 𝑥 ∈ 𝐷((−𝒜)𝜃).

Remark 3.5.1. As already observed, the angle of analyticity of considered
operator families can be increased depending on the concrete value of constant
𝑐 > 0 from the condition (PW). Here we will not discuss this question in more
detail.

Following E. Bazhlekova [61] and R.-N. Wang, D.-H. Chen, T.-J. Xiao [529],
we define

𝑆𝛾(𝑧) := 𝑇𝛾,0(𝑧) and 𝑃𝛾(𝑧) := 𝛾𝑇𝛾,1(𝑧)/𝑧
𝛾 , 𝑧 ∈ Σ𝜉;

cf. the proof of [529, Theorem 3.1], where the corresponding operators have been
denoted by 𝒮𝛾(𝑧) and 𝒫𝛾(𝑧). The analysis contained in the proof of property (b4)
enables one to see that the estimate [529, (3.1)] holds on closed subsectors of Σ𝜋/2−𝜔

(cf. the formulation of [529, Theorem 3.1]). It is clear that the first statement of
[529, Theorem 3.2] holds since the operators 𝒮𝛾(𝑧) and 𝒫𝛾(𝑧) depend analytically,
in the uniform operator topology, on the complex parameter 𝑧 belonging to an
appropriate sector containing (0,∞). Furthermore, due to (b4)’-(b5)’, we have
that for each 𝜀 ∈ (0, 𝜉) the following holds: ‖(𝑑/𝑑𝑧)𝑇𝛾,𝜈(𝑧)‖ = 𝑂(|𝑧|𝛾(𝜈+𝛽−1)−1),
𝑧 ∈ Σ𝜉−𝜀 and ‖(𝑑/𝑑𝑧)𝑃𝛾(𝑧)‖ = 𝑂(|𝑧|𝛾(𝜈+𝛽−1)−1), 𝑧 ∈ Σ𝜉−𝜀. By the Darboux
inequality, it readily follows that, for every 𝑅 > 0, the mappings 𝑧 ↦→ 𝑆𝛾(𝑧) ∈ 𝐿(𝐸),
𝑧 ∈ Σ𝜉−𝜀 r 𝐵𝑅 and 𝑧 ↦→ 𝑃𝛾(𝑧) ∈ 𝐿(𝐸), 𝑧 ∈ Σ𝜉−𝜀 r 𝐵𝑅 are uniformly continuous.
Arguing in such a way, we have proved an extension of the second statement in [529,
Theorem 3.2] for degenerate fractional differential equations.

It is clear that 𝑇𝛾,𝜈(𝑧)𝑥 = 𝑧−𝛾
∫︀∞
0
𝑠𝜈Φ𝛾(𝑠𝑧

−𝛾)𝑇 (𝑠)𝑥 𝑑𝑠, 𝑧 ∈ Σ𝜉, 𝑥 ∈ 𝐸 and
𝑠 ↦→ 1

2𝜋𝑖

∫︀
Γ
(−𝜆)𝜃𝑒𝑠𝜆(𝜆 − 𝒜)−1 · 𝑑𝜆 is a bounded linear section of the operator

(−𝒜)𝜃𝑇 (𝑠) for 𝜃 > 1 − 𝛽 and 𝑠 > 0 (cf. [199, Proposition 3.2, pp. 48–49]). Along
with Theorem 1.2.3, the above implies

(351) 𝑃𝛾,𝜃(𝑧)𝑥 :=
𝛾𝑧−2𝛾

2𝜋𝑖

∫︁ ∞

0

𝑠Φ𝛾(𝑠𝑧
−𝛾)

[︂ ∫︁
Γ

(−𝜆)𝜃𝑒𝑠𝜆(𝜆−𝒜)−1𝑥 𝑑𝜆

]︂
𝑑𝑠 ∈ (−𝒜)𝜃𝑃𝛾(𝑧)𝑥

for all 𝑧 ∈ Σ𝜉 and 𝑥 ∈ 𝐸, as well as that (𝑃𝛾,𝜃(𝑧))𝑧∈Σ𝜉
⊆ 𝐿(𝐸) for 𝜃 > 1 − 𝛽. By

the foregoing, we have

(352) ‖𝑃𝛾,𝜃(𝑧)‖ = 𝑂(|𝑧|𝛾(𝛽−𝜃−1)), 𝑧 ∈ Σ𝜉−𝜀 (𝜀 ∈ (0, 𝜉)).
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Differentiating (349), it is not difficult to prove that

(353)
𝑑

𝑑𝑧
𝑆𝛾(𝑧)𝑥 =

𝛾𝑧−𝛾−1

2𝜋𝑖

∫︁ ∞

0

𝑠Φ𝛾(𝑠𝑧
−𝛾)𝑇 ′(𝑠)𝑥 𝑑𝑠 = −𝑧𝛾−1𝑃𝛾,1(𝑧)𝑥, 𝑧 ∈ Σ𝜉, 𝑥 ∈ 𝐸.

Applying (351) with 𝜃 = 1, and (353), we get that:

(354)
𝑑

𝑑𝑧
𝑆𝛾(𝑧)𝑥 = −𝑧𝛾−1𝑃𝛾,1(𝑧)𝑥 ∈ 𝑧𝛾−1𝒜𝑃𝛾(𝑧)𝑥, 𝑧 ∈ Σ𝜉, 𝑥 ∈ 𝐸.

Further on, Theorem 1.2.3 and Theorem 1.2.4(i) can serve one to prove that the
assumption (𝑥, 𝑦) ∈ 𝒜 implies 𝑆𝛾(𝑧)𝑦 ∈ 𝒜𝑆𝛾(𝑧)𝑥 and 𝑃𝛾(𝑧)𝑦 ∈ 𝒜𝑃𝛾(𝑧)𝑥 (𝑧 ∈ Σ𝜉),
so that the mapping 𝑡 ↦→ 𝑑

𝑑𝑡𝑆𝛾(𝑡)𝑥, 𝑡 > 0 is locally integrable for any 𝑥 ∈ 𝐷(𝒜) by
(354). Keeping in mind (b4), we have proved a proper extension of [529, Theorem
3.3] to degenerate fractional differential equations. Before proceeding further, we
would like to point out that, for every 𝑥 ∈ 𝐷((−𝒜)𝜃) ∩ 𝐸𝜃

𝒜, the mapping 𝑧 ↦→
𝑑
𝑑𝑧𝑆𝛾(𝑧)𝑥 = 𝑑

𝑑𝑧 [𝑆𝛾(𝑧)𝑥 − 𝑥] is bounded by |𝑧|𝛾(𝛽+𝜃−1)−1 on subsectors of Σ𝜉 (1 >
𝜃 > 1 − 𝛽); this follows from the Cauchy integral formula and the property (b3)’
with 𝜈 = 0. In particular, the mapping 𝑡 ↦→ 𝑑

𝑑𝑡𝑆𝛾(𝑡)𝑥, 𝑡 > 0 is locally integrable
for any 𝑥 ∈ 𝐷((−𝒜)𝜃) ∩ 𝐸𝜃

𝒜, where 1 > 𝜃 > 1− 𝛽. Suppose that (𝑥, 𝑦) ∈ 𝒜. Then
an elementary application of Cauchy formula, combined with Theorem 1.2.4(i) and
definition of 𝑇 (·), implies that 𝑇 (𝑠)𝑦 = 𝑇 ′(𝑠)𝑥, 𝑠 > 0. Having in mind (348) with
𝜈 = 1, and definition of 𝑃𝛾(·), it readily follows that 𝑃𝛾(𝑧)𝑦 = −𝑃𝛾,1(𝑧)𝑥, 𝑧 ∈ Σ𝜉;
therefore, 𝑑

𝑑𝑧𝑆𝛾(𝑧)𝑥 = 𝑧𝛾−1𝑃𝛾(𝑧)𝑦, provided 𝑧 ∈ Σ𝜉 and (𝑥, 𝑦) ∈ 𝒜. Under such
a circumstance, we obtain after integration that 𝑆𝛾(𝑧)𝑥 − 𝑥 =

∫︀ 𝑧

0
𝜆𝛾−1𝑃𝛾(𝜆)𝑦 𝑑𝜆.

This extends the assertion of [529, Theorem 3.4(ii)].
Suppose again that (𝑥, 𝑦) ∈ 𝒜. Performing the Laplace transform, we ob-

tain with the help of (b2) and Theorem 1.2.4(i) that (𝑔1−𝛾 * [𝑆𝛾(·)𝑥 − 𝑥])(𝑡) =∫︀ 𝑡

0
𝑆𝛾(𝑠)𝑦 𝑑𝑠, 𝑡 > 0. This immediately implies that D𝛾

𝑡 𝑆𝛾(𝑡)𝑥 = 𝑆𝛾(𝑡)𝑦 ∈ 𝒜𝑆𝛾(𝑡)𝑥,
𝑡 > 0, which extends the assertion of [529, Theorem 3.4(iii)]. The original proof of
this result, much more complicated than ours, is based on the use of functional cal-
culus for almost sectorial operators established by F. Periago and B. Straub in [447]
(as announced earlier, it is very difficult to develop a similar calculus for almost
sectorial multivalued linear operators). Furthermore, we want to observe that this
result is not optimal. In actual fact, let 1 > 𝜃 > 1− 𝛽 and let 𝑥 ∈ 𝐷((−𝒜)𝜃) ∩𝐸𝜃

𝒜
be fixed. Then the mapping 𝑡 ↦→ 𝐹 (𝑡) := (𝑔1−𝛾 * [𝑆𝛾(·)𝑥−𝑥])(𝑡), 𝑡 > 0 is continuous
and its restriction on (0,∞) can be analytically extended to the sector Σ𝜉, with the
estimate ‖𝐹 (𝑧)‖ = 𝑂(|𝑧|𝛾(𝛽+𝜃−2)+1) on any proper subsector of Σ𝜉 (cf. (b3)’). By
the Cauchy integral formula, we obtain that ‖𝐹 ′(𝑧)‖ = 𝑂(|𝑧|𝛾(𝛽+𝜃−2)) on proper
subsectors of Σ𝜉. In particular, the Caputo fractional derivative D𝛾

𝑡 𝑆𝛾(𝑡)𝑥 is de-
fined. On the other hand, Theorem 1.2.3 in combination with [199, Proposition
3.2, 3.4] implies that

𝑡 ↦→ 𝐹𝛾(𝑡)𝑥 :=
1

2𝜋𝑖

∫︁ ∞

0

𝑡−𝛾Φ𝛾(𝑠𝑡
−𝛾)

[︂ ∫︁
Γ

𝜆𝑒𝜆𝑠𝑅(𝜆 : 𝒜)𝑥 𝑑𝜆

]︂
𝑑𝑠, 𝑡 > 0

is a continuous section of the multivalued mapping 𝒜𝑆𝛾(𝑡)𝑥, 𝑡 > 0, with the mean-
ing clear. Then 𝑇 (𝑡)𝑥 − 𝑥 =

∫︀ 𝑡

0
𝑇 ′(𝑠)𝑥 𝑑𝑠, 𝑡 > 0 and 𝑇 ′(𝑡)𝑥 = 1

2𝜋𝑖

∫︀
Γ
𝜆𝑒𝜆𝑡𝑅(𝜆 :
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𝒜)𝑥 𝑑𝜆, 𝑡 > 0, which simply implies by (347) that∫︁ ∞

0

𝑒−𝑧𝑡𝑇 ′(𝑡)𝑥 𝑑𝑡 = 𝑧𝑅(𝑧 : 𝒜)𝑥− 𝑥(355)

=

∫︁ ∞

0

𝑒−𝑧𝑡

[︂
1

2𝜋𝑖

∫︁
Γ

𝜆𝑒𝜆𝑡𝑅(𝜆 : 𝒜)𝑥 𝑑𝜆

]︂
𝑑𝑧, 𝑧 > 0.

Using Fubini theorem, definition of 𝐹𝛾(·) and the identity [61, (3.10)], we get that∫︁ ∞

0

𝑒−𝑧𝑡𝐹𝛾(𝑡)𝑥 𝑑𝑧 = 𝑧𝛾−1

∫︁ ∞

0

𝑒−𝑧𝛾𝑡

[︂
1

2𝜋𝑖

∫︁
Γ

𝜆𝑒𝜆𝑡𝑅(𝜆 : 𝒜)𝑥 𝑑𝜆

]︂
𝑑𝑧, 𝑧 > 0,

which clearly implies with the help of (355) that:∫︁ ∞

0

𝑒−𝑧𝑡

∫︁ 𝑡

0

𝐹𝛾(𝑠)𝑥 𝑑𝑠 𝑑𝑧 = 𝑧𝛾−2

∫︁ ∞

0

𝑒−𝑧𝛾𝑡

[︂
1

2𝜋𝑖

∫︁
Γ

𝜆𝑒𝜆𝑡𝑅(𝜆 : 𝒜)𝑥 𝑑𝜆

]︂
𝑑𝑧

= 𝑧𝛾−2[𝑧𝛾𝑅(𝑧𝛾 : 𝒜)𝑥− 𝑥], 𝑧 > 0.

Using this equation, (b2) and the uniqueness theorem for Laplace transform, it
readily follows that

(𝑔1−𝛾 * [𝑆𝛾(·)𝑥− 𝑥])(𝑡) =

∫︁ 𝑡

0

𝐹𝛾(𝑠)𝑥 𝑑𝑠, 𝑡 > 0.

Now it becomes clear that:

(356) D𝛾
𝑡 𝑆𝛾(𝑡)𝑥 = 𝐹𝛾(𝑡)𝑥 ∈ 𝒜𝑆𝛾(𝑡)𝑥, 𝑡 > 0, 𝑥 ∈ 𝐷((−𝒜)𝜃)∩𝐸𝜃

𝒜 (1 > 𝜃 > 1−𝛽).
The identity [61, (3.10)] almost immediately implies that∫︁ ∞

0

𝑒−𝜆𝑡𝑡−𝛾−1Φ𝛾(𝑠𝑡
−𝛾)𝑑𝑡 =

1

𝛾𝑠
𝑒−𝜆𝛾𝑠, 𝑠 > 0, 𝜆 > 0.

Keeping in mind this equality and (347), we get that∫︁ ∞

0

∫︁ ∞

0

𝛾𝑠𝑇 (𝑠)[𝑒−𝜆𝑡𝑡−𝛾−1Φ𝛾(𝑠𝑡
−𝛾)𝑑𝑡]𝑥 𝑑𝑠 = (𝜆𝛾 −𝒜)−1𝑥, 𝜆 > 0, 𝑥 ∈ 𝐸.

Using Fubini theorem and definition of 𝑇𝛾,1(·), the above yields∫︁ ∞

0

𝑒−𝜆𝑡𝑡𝛾−1𝑃𝛾(𝑡)𝑥 𝑑𝑡 = (𝜆𝛾 −𝒜)−1𝑥, 𝜆 > 0, 𝑥 ∈ 𝐸.

By (b2) and the uniqueness theorem for Laplace transform, we obtain finally the
following generalization of [529, Theorem 3.4(iv)]:

(357) 𝑆𝛾(𝑡)𝑥 = (𝑔1−𝛾 * [·𝛾−1𝑃𝛾(·)𝑥])(𝑡), 𝑡 > 0, 𝑥 ∈ 𝐸.

This identity continues to hold on sector Σ𝜉. Arguing as in non-degenerate case
(cf. [529, Lemma 3.1, Theorem 3.5]), we can prove that the compactness of 𝑅(𝜆 : 𝒜)
for some 𝜆 ∈ 𝜌(𝒜) implies the compactness of operators 𝑆𝛾(𝑡) and 𝑃𝛾(𝑡) for all 𝑡 > 0.

The consideration from [529, Lemma 4.1] is completely meaningful for abstract
degenerate fractional differential equations and gives rise us to introduce the fol-
lowing definition (cf. [529, Definition 4.1, Definition 4.2] and compare to [199, Def-
inition, p. 53]):
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Definition 3.5.2. Let 𝑇 ∈ (0,∞) and 𝑓 ∈ 𝐿1((0, 𝑇 ) : 𝐸). Consider the
following abstract degenerate fractional inclusion:

(DFP)𝑓 :

{︃
D𝛾

𝑡 𝑢(𝑡) ∈ 𝒜𝑢(𝑡) + 𝑓(𝑡), 𝑡 ∈ (0, 𝑇 ],

𝑢(0) = 𝑢0.

(i) By a mild solution of (DFP)𝑓 , we mean a function

𝑢(𝑡) = 𝑆𝛾(𝑡)𝑢0 +

∫︁ 𝑡

0

(𝑡− 𝑠)𝛾−1𝑃𝛾(𝑡− 𝑠)𝑓(𝑠)𝑑𝑠, 𝑡 ∈ (0, 𝑇 ].

(ii) By a classical solution of (DFP)𝑓 , we mean any function 𝑢 ∈ 𝐶([0, 𝑇 ] : 𝐸)
satisfying that the function D𝛾

𝑡 𝑢(𝑡) is well-defined and belongs to the space
𝐶((0, 𝑇 ] : 𝐸), as well as that 𝑢(0) = 𝑢0 and D𝛾

𝑡 𝑢(𝑡) − 𝑓(𝑡) ∈ 𝒜𝑢(𝑡) for
𝑡 ∈ (0, 𝑇 ].

A mild solution 𝑢(𝑡) of problem (DFP)𝑓 is automatically continuous on (0, 𝑇 ].
If 𝑥 ∈ 𝐷((−𝒜)𝜃) ∩ 𝐸𝜃

𝒜, where 1 > 𝜃 > 1− 𝛽, then (356) implies that the mapping
𝑢(𝑡) = 𝑆𝛾(𝑡)𝑥 is a classical solution of (DFP)𝑓 , with 𝑓 ≡ 0. The following theorem
is an important extension of [529, Theorem 4.1], even for non-degenerate fractional
differential equations with almost sectorial operators.

Theorem 3.5.3. Suppose that 𝑇 ∈ (0,∞), 1 > 𝜃 > 1 − 𝛽 and 𝑥 ∈ 𝐷((−𝒜)𝜃),
resp. 1 > 𝜃 > 1− 𝛽 and 𝑥 ∈ 𝐸𝜃

𝒜, as well as that there exist constants 𝜎 > 𝛾(1− 𝛽)
and 𝑀 > 1 such that

(358) ‖𝑓(𝑡)− 𝑓(𝑠)‖ 6𝑀 |𝑡− 𝑠|𝜎, 0 < 𝑡, 𝑠 6 𝑇.

Let 1 > 𝜃 > 1− 𝛽, resp. 1 > 𝜃 > 1− 𝛽, and let

𝑓 ∈ 𝐿∞((0, 𝑇 ) : [𝐷((−𝒜)𝜃)]), resp. 𝑓 ∈ 𝐿∞((0, 𝑇 ) : 𝐸𝜃
𝒜).

Then there exists a unique classical solution of problem (DFP)𝑓 .

Proof. We will prove the theorem only in the case that 1 > 𝜃 > 1 − 𝛽
and 𝑥 ∈ 𝐷((−𝒜)𝜃) (cf. also Theorem 3.5.12 below). The uniqueness of classical
solutions of problem (DFP)𝑓 is an immediate consequence of Theorem 3.1.6. By
the foregoing arguments, it suffices to show that the function

𝜔(𝑡) :=

∫︁ 𝑡

0

(𝑡− 𝑠)𝛾−1𝑃𝛾(𝑡− 𝑠)𝑓(𝑠)𝑑𝑠, 0 6 𝑡 6 𝑇,

enjoys the following properties:
(i) 𝜔(𝑡) is continuous at the point 𝑡 = 0;
(ii) D𝛾

𝑡 𝜔(𝑡) = 𝜔1(𝑡) :=
∫︀ 𝑡

0
𝑆′
𝛾(𝑡 − 𝑠)𝑓(𝑠)𝑑𝑠 + 𝑓(𝑡), 0 < 𝑡 6 𝑇 and 𝜔1(𝑡) is

continuous on (0, 𝑇 ];
(iii) 𝜔2(𝑡) := 𝜔1(𝑡)− 𝑓(𝑡) =

∫︀ 𝑡

0
𝑆′
𝛾(𝑡− 𝑠)𝑓(𝑠)𝑑𝑠 ∈ 𝒜𝜔(𝑡), 0 < 𝑡 6 𝑇 .

The statement (i) follows from the Hölder continuity of 𝑓(·) (cf. (358)) and a
simple computation involving the estimate ‖𝑃𝛾(𝑡)‖ = 𝑂(𝑡𝛾(𝛽−1)), 𝑡 > 0. For the
proof of (ii), observe that (353) in combination with contour representation of 𝑇 ′(·)
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and [199, Proposition 3.2, Proposition 3.4] implies that there exist constants 𝐶𝜃 > 0
and 𝐶 ′

𝜃 > 0 such that, for every 0 < 𝑠 6 𝑇 and 0 < 𝜔 6 𝑇 ,

‖𝑆′
𝛾(𝜔)𝑓(𝑠)‖ =

⃦⃦⃦⃦
𝛾

2𝜋𝑖

∫︁ ∞

0

𝑣𝜔𝛾−1Φ𝛾(𝑣)𝑇
′(𝑣𝜔𝛾)𝑓(𝑠)𝑑𝑣

⃦⃦⃦⃦
(359)

6 𝐶𝜃
𝛾

2𝜋
‖𝑓(𝑠)‖[𝐷((−𝒜)𝜃)]

∫︁ ∞

0

𝑣𝜔𝛾−1Φ𝛾(𝑣)(𝑣𝜔
𝛾)𝛽+𝜃−2𝑑𝑣

= 𝐶𝜃
𝛾

2𝜋
‖𝑓(𝑠)‖[𝐷((−𝒜)𝜃)]𝜔

𝛾(𝛽+𝜃−1)−1

∫︁ ∞

0

𝑣𝛽+𝜃−1Φ𝛾(𝑣)𝑑𝑣

= 𝐶 ′
𝜃‖𝑓(𝑠)‖[𝐷((−𝒜)𝜃)]𝜔

𝛾(𝛽+𝜃−1)−1.

Using this estimate with 𝜔 = 𝑡 − 𝑠, where 0 < 𝑠 < 𝑡 6 𝑇 , and integrating the
obtained estimate along the interval [0, 𝑇 ] in variable 𝑠, we get that there exists a
constant 𝐶 ′′

𝜃 > 0 such that, for every 0 < 𝑡 6 𝑇 ,⃦⃦⃦⃦ ∫︁ 𝑡

0

𝑆′
𝛾(𝑡− 𝑠)𝑓(𝑠)𝑑𝑠

⃦⃦⃦⃦
6 𝐶 ′′

𝜃

∫︁ 𝑡

0

(𝑡− 𝑠)𝛾(𝛽+𝜃−1)−1‖𝑓(𝑠)‖[𝐷((−𝒜)𝜃)]𝑑𝑠(360)

6
𝐶 ′′

𝜃

𝛾(𝛽 + 𝜃 − 1)
𝑡𝛾(𝛽+𝜃−1)‖𝑓(·)‖𝐿∞((0,𝑇 ):[𝐷((−𝒜)𝜃)]).

Let ℎ > 0 and let ℎ 6 𝑇 − 𝑡 for some fixed time 𝑡 ∈ (0, 𝑇 ). Making use of (359)
and dominated convergence theorem, we obtain that

(361) lim
ℎ→0+

∫︁ 𝑡

0

𝑆𝛾(𝑡+ ℎ− 𝑠)− 𝑆𝛾(𝑡− 𝑠)

ℎ
𝑓(𝑠)𝑑𝑠 =

∫︁ 𝑡

0

𝑆′
𝛾(𝑡− 𝑠)𝑓(𝑠)𝑑𝑠;

here it is only worth noting that (359) and the mean value theorem together imply
that, for every 𝑠 ∈ (0, 𝑡),⃦⃦⃦𝑆𝛾(𝑡+ℎ−𝑠)−𝑆𝛾(𝑡−𝑠)

ℎ
𝑓(𝑠)

⃦⃦⃦
6

1

ℎ

∫︁ 𝑡+ℎ−𝑠

𝑡−𝑠

‖𝑆′
𝛾(𝑟)𝑓(𝑠)‖𝑑𝑟

6
‖𝑓(·)‖𝐿∞((0,𝑇 ):[𝐷((−𝒜)𝜃)])

ℎ

∫︁ 𝑡+ℎ−𝑠

𝑡−𝑠

𝑟𝛾(𝛽+𝜃−1)−1𝑑𝑟

6 Const.
[︀
(𝑡−𝑠)𝛾(𝛽+𝜃−1)−1+(𝑡+ 1− 𝑠)𝛾(𝛽+𝜃−1)−1

]︀
.

Having in mind the estimate ‖𝑆𝛾(𝑡)‖ = 𝑂(𝑡𝛾(𝛽−1)), 𝑡 > 0, the strong continuity
of operator family 𝑆𝛾(·) on 𝐷((−𝒜)𝜃) and the Hölder continuity of 𝑓(·), we can
repeat almost verbatim the arguments from the corresponding part of proof of [529,
Theorem 4.1] in order to see that

(362) lim
ℎ→0+

1

ℎ

∫︁ 𝑡+ℎ

𝑡

𝑆𝛾(𝑡+ ℎ− 𝑠)𝑓(𝑠)𝑑𝑠 = 𝑓(𝑡).

Due to (361)–(362), we have that the mapping 𝑡 ↦→
∫︀ 𝑡

0
𝑆𝛾(𝑡 − 𝑠)𝑓(𝑠)𝑑𝑠, 0 < 𝑡 < 𝑇

is differentiable from the right; we can similarly prove the differentiability of this
mapping from the left, for 0 < 𝑡 6 𝑇 , so that

𝑑

𝑑𝑡

∫︁ 𝑡

0

𝑆𝛾(𝑡− 𝑠)𝑓(𝑠)𝑑𝑠 =

∫︁ 𝑡

0

𝑆′
𝛾(𝑡− 𝑠)𝑓(𝑠)𝑑𝑠+ 𝑓(𝑡), 0 < 𝑡 6 𝑇.
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Now it is not difficult to prove with the help of (357) and (360) that D𝛾
𝑡 𝜔(𝑡)

exists and equals to 𝜔1(𝑡), as claimed. Now we will prove that the mapping 𝑡 ↦→∫︀ 𝑡

0
𝑆′
𝛾(𝑡 − 𝑠)𝑓(𝑠)𝑑𝑠, 0 < 𝑡 6 𝑇 is continuous (observe here that this mapping is

continuous for 𝑡 = 0; cf. (360)). As in the proof of [529, Theorem 4.1], we have∫︀ 𝑡

0
𝑆′
𝛾(𝑡 − 𝑠)𝑓(𝑠)𝑑𝑠 = 𝐼1(𝑡) + 𝐼2(𝑡), where 𝐼1(𝑡) :=

∫︀ 𝑡

0
𝑆′
𝛾(𝑡 − 𝑠)[𝑓(𝑠) − 𝑓(𝑡)]𝑑𝑠 and

𝐼2(𝑡) :=
∫︀ 𝑡

0
𝑆′
𝛾(𝑡− 𝑠)𝑓(𝑡)𝑑𝑠. By (b3), we have that 𝐼2(𝑡+ ℎ) → 𝐼2(𝑡) as ℎ → 0, for

0 < 𝑡 6 𝑇 and the meaning clear. To complete the whole proof, it suffices to show
that the mapping 𝐼1(𝑡) :=

∫︀ 𝑡

0
𝑆′
𝛾(𝑡− 𝑠)[𝑓(𝑠)− 𝑓(𝑡)]𝑑𝑠, 0 < 𝑡 6 𝑇 is continuous. For

the sake of brevity, we will only prove that the above mapping is continuous from
the right, for 0 < 𝑡 < 𝑇 . Suppose, as above, ℎ > 0 and ℎ 6 𝑇 − 𝑡. Then

𝐼1(𝑡+ ℎ)− 𝐼1(𝑡) = ℎ1(𝑡) + ℎ2(𝑡) + ℎ3(𝑡),

where

ℎ1(𝑡) :=

∫︁ 𝑡

0

(𝑆′
𝛾(𝑡+ ℎ− 𝑠)− 𝑆′

𝛾(𝑡− 𝑠))[𝑓(𝑠)− 𝑓(𝑡)]𝑑𝑠,

ℎ2(𝑡) :=

∫︁ 𝑡

0

𝑆′
𝛾(𝑡+ ℎ− 𝑠)[𝑓(𝑡)− 𝑓(𝑡+ ℎ)]𝑑𝑠

and

ℎ3(𝑡) :=

∫︁ 𝑡+ℎ

𝑡

𝑆′
𝛾(𝑡+ ℎ− 𝑠)[𝑓(𝑠)− 𝑓(𝑡+ ℎ)]𝑑𝑠.

We can prove that ℎ1(𝑡) → 0 as ℎ → 0+ by means of the dominated convergence
theorem and the following estimates (cf. (359)–(360)):⃦⃦⃦⃦ ∫︁ 𝑡

0

𝑆′
𝛾(𝑡+ℎ−𝑠)[𝑓(𝑠)−𝑓(𝑡)]𝑑𝑠

⃦⃦⃦⃦
6Const. (𝑡+ℎ−𝑠)𝛾(𝛽+𝜃−1)−1‖𝑓(𝑠)−𝑓(𝑡)‖

[𝐷((−𝒜)𝜃)]

6 Const. ‖𝑓(·)‖𝐿∞((0,𝑇 ):[𝐷((−𝒜)𝜃)])[(𝑡− 𝑠)𝛾(𝛽+𝜃−1)−1 + (𝑡+ 1− 𝑠)𝛾(𝛽+𝜃−1)−1]

and⃦⃦⃦⃦ ∫︁ 𝑡

0

𝑆′
𝛾(𝑡− 𝑠)[𝑓(𝑠)− 𝑓(𝑡)]𝑑𝑠

⃦⃦⃦⃦
6

2𝐶 ′′
𝜃

𝛾(𝛽 + 𝜃 − 1)
𝑡𝛾(𝛽+𝜃−1)‖𝑓(·)‖𝐿∞((0,𝑇 ):[𝐷((−𝒜)𝜃)]).

On the other hand, we may conclude that ℎ2(𝑡) → 0 as ℎ → 0+ by using the
estimate ‖𝑆′

𝛾(𝑡)‖ = 𝑂(𝑡𝛾(𝛽−1)−1), 𝑡 > 0, the Hölder continuity of 𝑓(·) and our
standing assumption 𝜎 > 𝛾(1− 𝛽):

‖ℎ2(𝑡)‖ 6 Const.
∫︁ 𝑡

0

(𝑡+ ℎ− 𝑠)𝛾(𝛽−1)−1ℎ𝜎𝑑𝑠

6 Const. ℎ𝜎[(𝑡+ ℎ)𝛾(𝛽−1) − ℎ𝛾(𝛽−1)] → 0 as ℎ→ 0 + .

Finally, an application of (359) yields:

‖ℎ3(𝑡)‖ 6 Const.
∫︁ 𝑡+ℎ

𝑡

(𝑡+ ℎ− 𝑠)𝛾(𝛽+𝜃−1)−1‖𝑓(𝑠)− 𝑓(𝑡+ ℎ)‖
[𝐷((−𝒜)𝜃)]

𝑑𝑠

6 Const. ‖𝑓(·)‖𝐿∞((0,𝑇 ):[𝐷((−𝒜)𝜃)])ℎ
𝛾(𝛽+𝜃−1) → 0 as ℎ→ 0 + .

This proves (ii). The proof of (iii) follows by applying (354), (360) and Theorem
1.2.3. �



3.5. SUBORDINATED FRACTIONAL RESOLVENT FAMILIES... 375

Remark 3.5.4. It is clear that the validity of condition (358) implies that
the sequence (𝑓𝑛(𝑡))𝑛∈N ⊆ 𝐶([0, 𝑇 ] : 𝐸), where 𝑓𝑛(𝑡) := 𝑓(𝑡) for 𝑡 ∈ [1/𝑛, 𝑇 ] and
𝑓𝑛(𝑡) := 𝑓(1/𝑛) for 𝑡 ∈ [0, 1/𝑛], is a Cauchy sequence in 𝐶([0, 𝑇 ] : 𝐸) and therefore
convergent. Hence, there exists lim𝑡→0+ 𝑓(𝑡) in 𝐸 and 𝑓(𝑡) can be extended to a
Hölder continuous function from the space 𝐶𝜎([0, 𝑇 ] : 𝐸). This implies that the
Caputo fractional derivative D𝛾

𝑡 𝜔(𝑡) (cf. (ii)) is defined in the strong sense and
that (ii) holds, in fact, for 0 6 𝑡 6 𝑇 .

It is clear that Theorem 3.5.3 can be applied in the analysis of a large class
of relaxation degenerate differential equations that are subordinated to degenerate
differential equations of first order considered in [199, Section 3.7]. For example,
we can prove some new results on the following inhomogeneous fractional Poisson
heat equation in the space 𝐿𝑝(Ω):

(𝑃 )𝛾 :

⎧⎪⎨⎪⎩
D𝛾

𝑡 [𝑚(𝑥)𝑣(𝑡, 𝑥)] = Δ𝑣 − 𝑏𝑣 + 𝑓(𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ Ω;

𝑣(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ [0,∞)× 𝜕Ω,

𝑚(𝑥)𝑣(0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ Ω,

where Ω is a bounded domain in R𝑛, 𝑏 > 0, 𝑚(𝑥) > 0 a.e. 𝑥 ∈ Ω, 𝑚 ∈ 𝐿∞(Ω),
1 < 𝑝 <∞ and 0 < 𝛾 < 1; cf. also Example 3.5.13(ii) below.

3.5.1. Semilinear degenerate Cauchy inclusions. Assume that the con-
dition (PW) holds. In this section, we treat the following semilinear degenerate
fractional Cauchy inclusion:

(DFP)𝑓,𝑠,𝛾 :

{︃
D𝛾

𝑡 𝑢(𝑡) ∈ 𝒜𝑢(𝑡) + 𝑓(𝑡, 𝑢(𝑡)), 𝑡 ∈ (0, 𝑇 ],

𝑢(0) = 𝑢0,

where 𝑇 ∈ (0,∞) and 0 < 𝛾 6 1. Suppose first that 0 < 𝛾 < 1. By a mild solution
𝑢(𝑡) of problem (DFP)𝑓,𝑠,𝛾 , we mean any function 𝑢 ∈ 𝐶((0, 𝑇 ] : 𝐸) such that

𝑢(𝑡) = 𝑆𝛾(𝑡)𝑢0 +

∫︁ 𝑡

0

(𝑡− 𝑠)𝛾−1𝑃𝛾(𝑡− 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠, 𝑡 ∈ (0, 𝑇 ].

As in linear case, a classical solution of (DFP)𝑓 is any function 𝑢 ∈ 𝐶([0, 𝑇 ] :
𝐸) satisfying that the function D𝛾

𝑡 𝑢(𝑡) is well-defined and belongs to the space
𝐶((0, 𝑇 ] : 𝐸), as well as that 𝑢(0) = 𝑢0 and D𝛾

𝑡 𝑢(𝑡) − 𝑓(𝑡, 𝑢(𝑡)) ∈ 𝒜𝑢(𝑡) for 𝑡 ∈
(0, 𝑇 ]. In [529, Theorem 5.1, Theorem 5.3, Corollary 5.1], the authors have applied
various types of fixed point theorems in the study of existence and uniqueness
of mild solutions of problem (DFP)𝑓,𝑠,𝛾 , provided that the operator 𝒜 is single-
valued, linear and almost sectorial. In contrast to the assertions of [529, Theorem
5.2, Theorem 5.4], the above-mentioned results can be immediately extended to
semilinear degenerate fractional Cauchy inclusion (DFP)𝑓,𝑠,𝛾 . This is also the case
with the assertion of [310, Theorem 2.1].

In [378, Theorem 3.1], F. Li has proved the existence of mild solutions for
a class of delay semilinear fractional differential equations. The extension of this
result to degenerate equations is immediate, as well.
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Following T. Dlotko [156], we can similarly define the notions of mild and
classical solutions of semilinear degenerate Cauchy inclusion (DFP)𝑓,𝑠,1 of first order
(𝛾 = 1): any function 𝑢 ∈ 𝐶((0, 𝑇 ] : 𝐸) such that

𝑢(𝑡) = 𝑇 (𝑡)𝑢0 +

∫︁ 𝑡

0

𝑇 (𝑡− 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠, 𝑡 ∈ (0, 𝑇 ]

is said to be a mild solution of problem (DFP)𝑓,𝑠,1. By a classical solution, we
mean any function 𝑢 ∈ 𝐶([0, 𝑇 ] : 𝐸) ∩ 𝐶1((0, 𝑇 ] : 𝐸) such that 𝑢(𝑡) ∈ 𝐷(𝒜),
𝑡 ∈ (0, 𝑇 ], 𝑢(0) = 𝑢0 and 𝑢′(𝑡) ∈ 𝒜𝑢(𝑡) + 𝑓(𝑡, 𝑢(𝑡)), 𝑡 ∈ (0, 𝑇 ]. The extensions
of [156, Theorem 1, Proposition 2] for semilinear degenerate Cauchy inclusions of
first order can be simply proved.

In the remainder of this section, we will reconsider the assertions of [446,
Theorem 3.1, Theorem 3.2] for semilinear degenerate Cauchy inclusions; cf. [445,
Theorem 1.4, p. 185] for probably the first result in this direction.

As the next two theorems show, Theorem 3.1 and Theorem 3.2 of [446] can be
fully generalized to semilinear degenerate Cauchy inclusions of first order.

Theorem 3.5.5. Let 𝑇 > 0, and let 𝛾 = 1. Suppose that the mapping 𝑓 : [0, 𝑇 ]×
𝐸 → 𝐸 is continuous in 𝑡 on [0, 𝑇 ] and for each 𝑡0 > 0 and 𝐾 > 0 there exists
a constant 𝐿(𝑡0,𝐾) > 0 such that ‖𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)‖ 6 𝐿(𝑡0,𝐾)‖𝑥 − 𝑦‖, provided
0 < 𝑡 < 𝑡0, 𝑥, 𝑦 ∈ 𝐸 and ‖𝑥‖, ‖𝑦‖ 6 𝐾. Denote by Ω the domain of continuity of
semigroup (𝑇 (𝑡))𝑡>0; that is, Ω = {𝑥 ∈ 𝐸 : lim𝑡→0+ 𝑇 (𝑡)𝑥 = 𝑥}. Then, for every
𝑢0 ∈ Ω, there exist a number 𝜏max = 𝜏max(𝑢0) > 0 and a unique mild solution
𝑢 ∈ 𝐶([0, 𝜏max) : 𝐸) of problem (DFP)𝑓,𝑠,1. If

(i) 𝑓(𝑡, 𝑥) ∈ 𝐷(𝒜) for all 𝑡 > 0 and 𝑥 ∈ Ω;
(ii) for each 𝑡0 > 0 and 𝐾 > 0 there exists a constant 𝐶 = 𝐶(𝑡0,𝐾) > 0 such

that

(363) ‖𝑓(𝑡, 𝑥)‖[𝐷(𝒜)] 6 𝐶 for all 𝑥 ∈ Ω with ‖𝑥‖ 6 𝐶 and 0 < 𝑡 < 𝑡0;

(iii) there exists a function 𝑔 ∈ 𝐿∞
𝑙𝑜𝑐((0,∞) : R) such that

‖𝑓(𝑡, 𝑥)‖ 6 𝑔(𝑡)‖𝑥‖ a.e. 𝑡 > 0 and 𝑥 ∈ Ω,

then 𝜏max = ∞.

Proof. The proof is almost the same as that of [446, Theorem 3.1]; here we
only want to observe that the term∫︁ 𝑡

0

‖[𝑇 (𝜏max − 𝑠)− 𝑇 (𝜏max − 𝑠)]𝑓(𝑠, 𝑢(𝑠))‖𝑑𝑠,

appearing on [446, p. 418, l. 11], can be estimated with the help of mean value
theorem, (363) and [199, Proposition 3.2, 3.4], as follows:∫︁ 𝑡

0

‖[𝑇 (𝜏max − 𝑠)− 𝑇 (𝜏max − 𝑠)]𝑓(𝑠, 𝑢(𝑠))‖𝑑𝑠 6 (𝜏max − 𝑡)𝐶1𝐶𝑡
𝛽/𝛽,

where 𝐶 is the constant from (363) and 𝐶1 is the constant from the formulation
of [199, Proposition 3.4]. �
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For the sequel, we need the following equality (see e.g. [181, (3.3)]):

(364) 𝒜−𝜃𝑥 =
sin(𝜃𝜋)

𝜋

∫︁ ∞

0

𝑠−𝜃(𝑠+𝒜)−1𝑥 𝑑𝑠, 1 > 𝜃 > 1− 𝛽, 𝑥 ∈ 𝐸.

Suppose that 𝑦 ∈ (−𝒜)𝜃𝑥, where 1 > 𝜃 > 1 − 𝛽. Then (364) and the obvious
equality (𝑠−𝒜)−1𝑇 (𝑡)𝑦 = 𝑇 (𝑡)(𝑠−𝒜)−1𝑦, 𝑡, 𝑠 > 0 together imply

(−𝒜)−𝜃𝑇 (𝑡)𝑦 =
sin(𝜃𝜋)

𝜋

∫︁ ∞

0

𝑠−𝜃(𝑠−𝒜)−1𝑇 (𝑡)𝑦 𝑑𝑠

= 𝑇 (𝑡)
sin(𝜃𝜋)

𝜋

∫︁ ∞

0

𝑠−𝜃(𝑠−𝒜)−1𝑦 𝑑𝑠

= 𝑇 (𝑡)(−𝒜)−𝜃𝑦 = 𝑇 (𝑡)𝑥, 𝑡 > 0.

Hence,

(365) 𝑇 (𝑡)(−𝒜)𝜃 ⊆ (−𝒜)𝜃𝑇 (𝑡), 𝑡 > 0, 1 > 𝜃 > 1− 𝛽.

Owing to (365), we can estimate the term ‖𝑢(𝑡;𝑢0) − 𝑢(𝑡;𝑢1)‖[𝐷((−𝒜)𝜃)] (cf.
line 11 of Step 2, p. 420, the proof of [446, Theorem 3.2]) as in non-degenerate
case; furthermore, on the same page of proof, we can use [199, Theorem 3.5] (
[199, Proposition 3.2]) in place of [447, Theorem 3.9(vii)] [447, Theorem 3.9(iii)].
Keeping in mind these observations, we can formulate the following extension of
[446, Theorem 3.2] for abstract degenerate Cauchy inclusions of first order.

Theorem 3.5.6. Let 𝑇 > 0, let 𝛾 = 1, and let condition (H) hold. Suppose
that 𝛽 > 𝜃 > 1− 𝛽 and 0 < 𝑡 < 𝜏max(𝑢0). Then there exist 𝑟 > 0 and 𝐾 > 0 such
that the assumption 𝑢1 ∈ 𝐵𝜃,𝑟(𝑢0) := {𝑢 ∈ 𝐷((−𝒜)𝜃) : ‖𝑢 − 𝑢0‖[𝐷((−𝒜)𝜃)] 6 𝑟}
implies that there exists a unique mild solution 𝑢(𝑡;𝑢1) ∈ 𝐶([0, 𝜏max(𝑢1)) : 𝐸) of
problem (DFP)𝑓,𝑠,1 with 𝜏max(𝑢1) > 𝜏 . Moreover,

‖𝑢(𝑡;𝑢0)− 𝑢(𝑡;𝑢1)‖ 6 𝐾‖𝑢0 − 𝑢1‖[𝐷((−𝒜)𝜃)], 0 6 𝑡 6 𝜏

and, for every 𝜀 ∈ (0, 𝜏), there exists a constant 𝐶𝜀 > 0 such that

‖𝑢(𝑡;𝑢0)− 𝑢(𝑡;𝑢1)‖[𝐷((−𝒜)𝜃)] 6 𝐶𝜀‖𝑢0 − 𝑢1‖[𝐷((−𝒜)𝜃)], 𝜀 6 𝑡 6 𝜏.

The situation is much more complicated if we consider abstract degenerate
fractional Cauchy inclusion (DFP)𝑓,𝑠,𝛾 of order 𝛾 ∈ (0, 1). Concerning [446, The-
orem 3.1], we would like to point out that we cannot use, in fractional case, the
well-known procedure for construction of a mild solution of problem (DFP)𝑓,𝑠,𝛾 de-
fined in a maximal time interval (see e.g. the integral equation [447, (8), p. 417]).
The best we can do is prove the local existence and uniqueness of mild solutions of
problem (DFP)𝑓,𝑠,𝛾 , as it has been explained in [529, Remark 4.1].

Concerning [446, Theorem 3.2], we can prove the following:

Theorem 3.5.7. Let 𝛾 ∈ (0, 1), and let condition (H) hold. Suppose that
𝛽 > 𝜃 > 1 − 𝛽. Then there exist 𝑟 > 0, 𝜏 > 0 and 𝐾 > 0 such that, for every
𝑢1 ∈ 𝐵𝜃,𝑟(𝑢0), there exists a unique mild solution 𝑢(𝑡;𝑢1) ∈ 𝐶([0, 𝜏 ] : 𝐸) of problem
(DFP)𝑓,𝑠,𝛾 . Moreover,

‖𝑢(𝑡;𝑢0)− 𝑢(𝑡;𝑢1)‖ 6 𝐾‖𝑢0 − 𝑢1‖[𝐷((−𝒜)𝜃)], 0 6 𝑡 6 𝜏
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and there exists a constant 𝐶 > 0 such that, for every 𝜀 ∈ (0, 𝜏), we have

‖𝑢(𝑡;𝑢0)− 𝑢(𝑡;𝑢1)‖[𝐷((−𝒜)𝜃)] 6 𝐶𝜀
𝛾(𝛽−1)‖𝑢0 − 𝑢1‖[𝐷((−𝒜)𝜃)], 𝜀 6 𝑡 6 𝜏.

Proof. We will only outline the most relevant details of proof in the degen-
erate case.

1. Line 6 of Step 1, p. 419, the proof of [446, Theorem 3.2]: Due to (359),
we have that

‖𝑆𝛾(𝑡)𝑥− 𝑥‖ =

⃦⃦⃦⃦ ∫︁ 𝑡

0

𝑆′
𝛾(𝑠)𝑥 𝑑𝑠

⃦⃦⃦⃦
6 𝐶 ′

𝜃𝑡
𝛾(𝛽+𝜃−1)‖𝑥‖[𝐷((−𝒜)𝜃)], 𝑡 > 0;

therefore, lim𝑡→0+ ‖𝑆𝛾(𝑡)𝑢1 − 𝑢1‖ = 0, uniformly on the ball 𝐵𝜃,𝑟(𝑢0).
2. Line 1, [446, p. 420]: Here we may apply (b3) in order to get the existence

of a constant 𝑐𝜃 > 0 such that

‖𝑆𝛾(𝑡)(𝑢1 − 𝑢0)‖ 6 𝑐𝜃𝑡𝛾(𝛽+𝜃−1)‖𝑢1 − 𝑢0‖[𝐷((−𝒜)𝜃)], 𝑡 > 0.

3. By (365), Theorem 1.2.3 and definition of 𝑆𝛾(·), we have that

𝑆𝛾(𝑡)(−𝒜)𝜃 ⊆ (−𝒜)𝜃𝑆𝛾(𝑡), 𝑡 > 0, 1 > 𝜃 > 1− 𝛽.

From this, we may conclude that

(366) ‖𝑆𝛾(𝑡)𝑥‖[𝐷((−𝒜)𝜃)]6‖𝑆𝛾(𝑡)‖‖𝑥‖[𝐷((−𝒜)𝜃)]=𝑂(𝑡𝛾(𝛽−1)‖𝑥‖[𝐷((−𝒜)𝜃)]), 𝑡 > 0.

On the other hand, Theorem 1.2.3 and (351) together imply that

(367)
𝛾

2𝜋𝑖

∫︁ 𝑡

0

(𝑡− 𝑠)−𝛾−1

×
∫︁ ∞

0

𝑟Φ𝛾(𝑟(𝑡− 𝑠)−𝛾)

[︂ ∫︁
Γ

(−𝜆)𝜃𝑒𝑟𝜆(𝜆−𝒜)−1𝑓(𝑠, 𝑢(𝑠;𝑢1))𝑑𝜆

]︂
𝑑𝑟 𝑑𝑠

∈ (−𝒜)𝜃
∫︁ 𝑡

0

(𝑡− 𝑠)𝛾−1𝑃𝛾(𝑡− 𝑠)𝑓(𝑠, 𝑢(𝑠;𝑢1))𝑑𝑠, 𝑡 > 0, 0 < 𝑠 6 𝜏,

since 𝛽 > 𝜃 and the norm of integrand in the first line does not exceed (𝑡 −
𝑠)𝛾(𝛽−𝜃−1)‖𝑓(𝑠, 𝑢(𝑠;𝑢1))‖ by (352). Hence, 𝑢(𝑡;𝑢1) ∈ 𝐷((−𝒜)𝜃) for all 𝑡 ∈ [0, 𝜏 ]
and 𝑢1 ∈ 𝐵𝜃,𝑟(𝑢0). For a fixed element 𝑢1 ∈ 𝐵𝜃,𝑟(𝑢0), the continuity of mapping
𝑡 ↦→ 𝑢(𝑡;𝑢1) ∈ [𝐷((−𝒜)𝜃)], 𝑡 ∈ (0, 𝜏 ] follows from (366), the analyticity of 𝑆𝛾(·),
the expression (367) and the dominated convergence theorem. To finish the proof,
we can repeat verbatim the corresponding part of proof of [446, Theorem 3.2]. �

Observe, finally, that Theorem 3.5.6 and Theorem 3.5.7 continue to hold if we
consider the space 𝐸𝜃

𝒜 in place of [𝐷((−𝒜)𝜃)]. These theorems, as well some other
theorems previously considered in this section, require the condition 𝛽 > 1/2, which
seems to be restrictive in the degenerate case (in numerous examples from [199,
Chapter III], the condition (PW) holds with 𝛽 = 1/2). For example, in the case of
consideration of semilinear analogues of problem (𝑃 )𝛾 , Theorem 3.5.6 and Theorem
3.5.7 can be applied provided the additional condition [199, (3.42)] on the function
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𝑚(𝑥), which ensures us to get the better exponent 𝛽 = 1/(2 − 𝜌) in (PW), with
0 < 𝜌 6 1.

3.5.2. Purely fractional case. In this subsection, we will briefly explain
how we can extend a great part of our results established in the previous part of
this section by investigating the abstract degenerate fractional Cauchy inclusions
involving the multivalued linear operators satisfying the following condition (cf.
[325] for more details):

(QP): There exist finite numbers 0 < 𝛽 6 1, 0 < 𝑑 6 1, 𝑀 > 0 and 0 < 𝜂′ <
𝜂′′ < 1 such that

Ψ := {𝜆 ∈ C : |𝜆| 6 𝑑 or 𝜆 ∈ Σ𝜋𝜂′′/2} ⊆ 𝜌(𝒜)

and
‖𝑅(𝜆 : 𝒜)‖ 6𝑀(1 + |𝜆|)−𝛽 , 𝜆 ∈ Ψ.

Set 𝛿 := min(𝜋/2(𝜂′′ − 𝜂′)/𝜂′, 𝜋/2). Let 𝛿′ ∈ (0, 𝛿), let 0 < 𝜀 < 𝛿′ be arbitrarily
chosen, and let

𝑇𝜂′,𝑟(𝑧)𝑥 :=
1

2𝜋𝑖

∫︁
Γ𝜔

𝑒𝜆𝑧𝜆𝑟(𝜆𝜂
′
−𝒜)−1𝑥 𝑑𝜆, 𝑥 ∈ 𝐸, 𝑟 ∈ R, 𝑧 ∈ Σ𝛿′−𝜀,

where Γ𝜔 is oriented counterclockwise and consists of Γ± := {𝑡𝑒𝑖((𝜋/2)+𝛿′) : 𝑡 > 𝜔}
and Γ0 := {𝜔𝑒𝑖𝜁 : |𝜁| 6 (𝜋/2) + 𝛿′}. Observe that the Cauchy formula implies
that the definition of 𝑇𝜂′,𝑟(𝑧) is independent of 𝜔 > 0. Arguing as in the proof
of [27, Theorem 2.6.1], with 𝜔 = 1/|𝑧|, we get that for each 𝜃′ ∈ (0, 𝜃) and 𝑟 ∈ R,
the following holds:

‖𝑇𝜂′,𝑟(𝑧)‖ = 𝑂(|𝑧|𝜂
′𝛽−𝑟−1), 𝑧 ∈ Σ𝜃′

and

(368)
∫︁ ∞

0

𝑒−𝜆𝑡𝑇𝜂′,𝑟(𝑡)𝑥 𝑑𝑡 = 𝜆𝑟(𝜆𝜂
′
−𝒜)−1𝑥, 𝑥 ∈ 𝐸, 𝜆 > 0, provided 𝜂′𝛽 > 𝑟;

(𝑇𝜂′,𝜂′−1(𝑡))𝑡>0 and (𝑇𝜂′,0(𝑡))𝑡>0 will be the most important operator families.
First of all, we need to reconsider the assertions from [199, Section 3.1] in the

fractional case. In the following proposition, we will prove a fractional analogue of
the second inequality from [199, Proposition 3.2].

Proposition 3.5.8. Suppose that 0 < 𝜃 < 1 and 𝜃 6 𝛽. Then we have
𝑅(𝑇𝜂′,𝜂′−1(𝑡)) ⊆ 𝐸𝜃

𝒜, 𝑡 > 0. Furthermore, for every 𝜃 ∈ (0, 1), there exists a
constant 𝐶𝜃 > 0 such that

sup
𝑠>0

𝑠𝜃‖𝑠𝑅(𝑠 : 𝒜)𝑇𝜂′,𝜂′−1(𝑡)𝑥− 𝑇𝜂′,𝜂′−1(𝑡)𝑥‖ 6 𝐶𝜃𝑡
𝜂′(𝛽−𝜃−1)‖𝑥‖, 𝑡 > 0, 𝑥 ∈ 𝐸.

Proof. Let 𝑡 > 0 and 𝑠 > 0 be fixed, and let 𝜔 > 0 be such that 𝜔𝜂 < 𝑠. By
Lemma 1.2.4(ii) and a simple computation, we have that, for every 𝑥 ∈ 𝐸,

(369) 𝑠𝑅(𝑠 : 𝒜)𝑇𝜂′,𝜂′−1(𝑡)𝑥− 𝑇𝜂′,𝜂′−1(𝑡)𝑥

=
1

2𝜋𝑖

∫︁
Γ𝜔

𝑒𝜆𝑡
𝜆𝜂

′
𝑠

𝜆𝜂′ − 𝑠
𝑅(𝑠 : 𝒜)𝑥 𝑑𝜆− 1

2𝜋𝑖

∫︁
Γ𝜔

𝑒𝜆𝑡
𝜆2𝜂

′−1

𝜆𝜂′ − 𝑠
𝑅(𝜆𝜂

′
: 𝒜)𝑥 𝑑𝜆.
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The Cauchy theorem yields

1

2𝜋𝑖

∫︁
Γ𝜔

𝑒𝜆𝑡
𝜆𝜂

′
𝑠

𝜆𝜂′ − 𝑠
𝑅(𝑠 : 𝒜)𝑥 𝑑𝜆

=

∫︁ ∞

0

𝑒−𝑣𝑡𝑣𝜂
′−1
[︁ 𝑒−𝑖𝜋(𝜂′−1)

𝑒−𝑖𝜋𝜂′𝑣𝜂′ − 𝑠
− 𝑒𝑖𝜋(𝜂

′−1)

𝑒𝑖𝜋𝜂′𝑣𝜂′ − 𝑠

]︁
𝑠𝑅(𝑠 : 𝒜)𝑥 𝑑𝑣, 𝑥 ∈ 𝐸.

It is clear that there exists a constant 𝑎 > 0 such that |𝑒±𝑖𝜋𝜂′
𝑣𝜂

′ − 𝑠| > 𝑎(𝑣𝜂′
+ 𝑠),

𝑣 > 0. Using this fact and the inequality

(370) 𝜃𝑡+ (1− 𝜃)𝑠 > 𝑡𝜃𝑠1−𝜃, 𝑡, 𝑠 > 0, 𝜃 ∈ (0, 1),

we get that there exists a constant 𝐶𝜃,1 > 0, independent of 𝑠 > 0, such that:⃦⃦⃦⃦
𝑠𝜃
∫︁ ∞

0

𝑒−𝑣𝑡𝑣𝜂
′−1
[︁ 𝑒−𝑖𝜋(𝜂′−1)

𝑒−𝑖𝜋𝜂′𝑣𝜂′ − 𝑠
− 𝑒𝑖𝜋(𝜂

′−1)

𝑒𝑖𝜋𝜂′𝑣𝜂′ − 𝑠

]︁
𝑠𝑅(𝑠 : 𝒜)𝑥 𝑑𝑣

⃦⃦⃦⃦
6 2𝑀𝑎−1‖𝑥‖

∫︁ ∞

0

𝑒−𝑣𝑡𝑣𝜂
′−1 𝑠

1−𝛽+𝜃

𝑣𝜂′ + 𝑠
𝑑𝑣

6 𝐶𝜃,1‖𝑥‖
∫︁ ∞

0

𝑒−𝑣𝑡𝑣𝜂
′−1 𝑠1−𝛽+𝜃

𝑣𝜂′(𝛽−𝜃)𝑠1−𝛽+𝜃
𝑑𝑣

= 𝐶𝜃,1‖𝑥‖Γ(𝜂′(1− 𝛽 − 𝜃))𝑡𝜂
′(𝛽−𝜃−1), 𝑡 > 0.

Now we will estimate the second term in (369) multiplied with 𝑠𝜃. It suffices to
consider the following two cases: 𝑠 > 𝑡−𝜂′

and 𝑠 < 𝑡−𝜂′
. Suppose first that 𝑠 > 𝑡−𝜂′

.
Then there exists a constant 𝑏 > 0 such that |𝜆𝜂′ −𝑠| > 𝑏(|𝜆|𝜂′

+𝑠), 𝜆 ∈ Γ1/𝑡. Using
Cauchy theorem and (370), we get that there exist two constants 𝐶𝜃,2, 𝐶𝜃,3 > 0,
independent of 𝑠 > 0, such that:⃦⃦⃦⃦

1

2𝜋𝑖

∫︁
Γ𝜔

𝑒𝜆𝑡
𝜆2𝜂

′−1𝑠𝜃

𝜆𝜂′ − 𝑠
𝑅(𝜆𝜂

′
: 𝒜)𝑥 𝑑𝜆

⃦⃦⃦⃦
=

⃦⃦⃦⃦
1

2𝜋𝑖

∫︁
Γ1/𝑡

𝑒𝜆𝑡
𝜆2𝜂

′−1𝑠𝜃

𝜆𝜂′ − 𝑠
𝑅(𝜆𝜂

′
: 𝒜)𝑥 𝑑𝜆

⃦⃦⃦⃦
6

1

2𝜋𝑏

∫︁
Γ1/𝑡

𝑒Re𝜆𝑡 |𝜆|2𝜂
′−1−𝜂′𝛽𝑠𝜃

|𝜆|𝜂′ + 𝑠
|𝑑𝜆|

6 𝐶𝜃,2

∫︁
Γ1/𝑡

𝑒Re𝜆𝑡 |𝜆|2𝜂
′−1−𝜂′𝛽𝑠𝜃

|𝜆|𝜂′(1−𝜃)𝑠𝜃
|𝑑𝜆|

= 𝐶𝜃,2

∫︁
Γ1/𝑡

𝑒Re𝜆𝑡|𝜆|𝜂
′(1+𝜃−𝛽)−1|𝑑𝜆|

6 𝐶𝜃,3𝑡
𝜂′(𝛽−𝜃−1), 𝑡 > 0,

where the last estimate follows from the calculation contained in the proof of [27,
Theorem 2.6.1]. If 𝑠 < 𝑡−𝜂′

, then the equation (369) continues to hold with the
number 𝜔 replaced with 1/𝑡 therein. In the newly arisen situation, the residue
theorem shows that

(371)
𝑠𝜃

2𝜋𝑖

∫︁
Γ𝜔

𝑒𝜆𝑡
𝜆𝜂

′
𝑠

𝜆𝜂′ − 𝑠
𝑅(𝑠 : 𝒜)𝑥 𝑑𝜆
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=

∫︁ ∞

0

𝑒−𝑣𝑡𝑠𝜃𝑣𝜂
′−1
[︁ 𝑒−𝑖𝜋(𝜂′−1)

𝑒−𝑖𝜋𝜂′𝑣𝜂′ − 𝑠
− 𝑒𝑖𝜋(𝜂

′−1)

𝑒𝑖𝜋𝜂′𝑣𝜂′ − 𝑠

]︁
𝑠𝑅(𝑠 : 𝒜)𝑥 𝑑𝑣

+ 2𝜋𝑖𝑠𝜃Res𝜆=𝑠1/𝜂′

[︁𝑒𝜆𝑡𝜆𝜂′−1

𝜆𝜂′ − 𝑠
𝑠𝑅(𝑠 : 𝒜)𝑥

]︁
=

∫︁ ∞

0

𝑒−𝑣𝑡𝑠𝜃𝑣𝜂
′−1
[︁ 𝑒−𝑖𝜋(𝜂′−1)

𝑒−𝑖𝜋𝜂′𝑣𝜂′ − 𝑠
− 𝑒𝑖𝜋(𝜂

′−1)

𝑒𝑖𝜋𝜂′𝑣𝜂′ − 𝑠

]︁
𝑠𝑅(𝑠 : 𝒜)𝑥 𝑑𝑣

+
𝑠𝜃

𝜂′
𝑒𝑡𝑠

1/𝜂′

𝑠𝑅(𝑠 : 𝒜)𝑥, 𝑥 ∈ 𝐸.

We can estimate the first summand in (371) and the term⃦⃦⃦⃦
1

2𝜋𝑖

∫︁
Γ𝜔

𝑒𝜆𝑡
𝜆2𝜂

′−1𝑠𝜃

𝜆𝜂′ − 𝑠
𝑅(𝜆𝜂

′
: 𝒜)𝑥 𝑑𝜆

⃦⃦⃦⃦
=

⃦⃦⃦⃦
1

2𝜋𝑖

∫︁
Γ1/𝑡

𝑒𝜆𝑡
𝜆2𝜂

′−1𝑠𝜃

𝜆𝜂′ − 𝑠
𝑅(𝜆𝜂

′
: 𝒜)𝑥 𝑑𝜆

⃦⃦⃦⃦
as in the case that 𝑠 > 𝑡−𝜂′

, with the same final estimate. For the second summand
in (371), we have the following estimates:

‖𝑠𝜃𝑒𝑡𝑠
1/𝜂′

𝑠𝑅(𝑠 : 𝒜)𝑥/𝜂′‖ 6𝑀‖𝑥‖𝑠1+𝜃−𝛽𝑒1/𝜂′ 6𝑀‖𝑥‖𝑡−𝜂′(1+𝜃−𝛽)𝑒/𝜂′, 𝑡 > 0.

The proof of the theorem is thereby complete. �

Let Γ′ be the integral contour used in the definition of fractional power (−𝒜)𝜃,
𝜃 > 1− 𝛽 (cf. Subsection 1.2.1 for more details and the notation used). Denote by
Φ the open region on the right of Γ′.

We need the following useful lemma.

Lemma 3.5.9. (i) Suppose that 1 − 𝛽 < 𝜃 6 1. Then there exists a
constant 𝐶𝜃 > 0 such that

(372) ‖𝜆𝑅(𝜆 :𝒜)𝑥−𝑥‖ 6 𝐶𝜃|𝜆|(1−𝛽−𝜃)‖𝑥‖[𝐷((−𝒜)𝜃)], 𝜆 ∈ Σ𝜂′′𝜋/2, 𝑥 ∈ 𝐷((−𝒜)𝜃).

(ii) Suppose that 1 − 𝛽 < 𝜃 < 1. Then there exists a constant 𝐶𝜃 > 0 such
that

(373) ‖𝜆𝑅(𝜆 : 𝒜)𝑥− 𝑥‖ 6 𝐶𝜃|𝜆|(1−𝛽−𝜃)‖𝑥‖𝐸𝜃
𝒜
, 𝜆 ∈ Σ𝜂′′𝜋/2, 𝑥 ∈ 𝐸𝜃

𝒜.

Proof. Suppose first that 𝜃 = 1. Then Lemma 1.2.4(i) implies that for any
(𝑥, 𝑦) ∈ 𝒜 one has

‖𝜆𝑅(𝜆 : 𝒜)𝑥− 𝑥‖ = ‖𝑅(𝜆 : 𝒜)𝑦‖ 6𝑀(1 + |𝜆|)−𝛽 , 𝜆 ∈ Σ𝜂′′𝜋/2.

Taking the infimum, we immediately obtain (372). Let 1 − 𝛽 < 𝜃 < 1. Then the
function

𝜆 ↦→ 𝐻(𝜆) := 𝜆(𝛽+𝜃−1)[𝜆𝑅(𝜆 : 𝒜)𝑥− 𝑥], 𝜆 ∈ Σ𝜂′′𝜋/2

is continuous on Σ𝜂′′𝜋/2, holomorphic on Σ𝜂′′𝜋/2 and

‖𝐻(𝜆)‖ 6𝑀 |𝜆|(𝛽+𝜃−1)[𝑀 |𝜆|1−𝛽 + 1]‖𝑥‖, 𝜆 ∈ Σ𝜂′′𝜋/2, 𝑥 ∈ 𝐸.

Let 𝑅1 > 0 be sufficiently large, obeying the properties that |𝑧 + 𝜆| > 1 for 𝑧 ∈ Γ′,
𝜆 = 𝑅𝑒±𝑖𝜋𝜂′′/2 and −𝜆 = −𝑅𝑒±𝑖𝜋𝜂′′/2 ∈ Φ (𝑅 > 𝑅1). Put Γ𝑅,± := {𝑅𝑒±𝑖𝜋𝜂′′/2 :
𝑅 > 𝑅1}. Then it is clear that there exists a constant 𝑎 > 0 such that 𝑎−1(|𝑧| +
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|𝜆|) > |𝑧 + 𝜆|, 𝑧 ∈ Γ′, 𝜆 ∈ Γ𝑅,±. By the Phragmén–Lindelöf type theorem [27,
Theorem 3.9.8, p. 179], it suffices to show that the estimates (372) and (373)
hold for 𝜆 ∈ Γ𝑅,±, with an appropriately chosen constant 𝐶𝜃 > 0 independent of
𝜆 ∈ Σ𝜂′′𝜋/2 and 𝑥 ∈ 𝐷((−𝒜)𝜃)) (𝑥 ∈ 𝐸𝜃

𝒜). Suppose first that 𝑥 ∈ 𝐷((−𝒜)𝜃) and
𝑦 ∈ (−𝒜)𝜃𝑥 is arbitrarily chosen. Then 𝑥 = (−𝒜)−𝜃𝑦 = 1

2𝜋𝑖

∫︀
Γ′ 𝑧

−𝜃𝑅(𝑧 : −𝒜)𝑦 𝑑𝑧
and it is not difficult to prove with the help of Lemma 1.2.4(ii) and the residue
theorem that

(374) 𝜆𝜂
′
𝑅(𝜆𝜂

′
: 𝒜)𝑥−𝑥 =

(−1)

2𝜋𝑖

∫︁
Γ′

𝑧1−𝜃

𝑧 + 𝜆
𝑅(𝑧 : −𝒜)𝑦 𝑑𝑧+(−𝜆)−𝜃𝑦, 𝜆 ∈ Γ𝑅,±.

Keeping in mind the parametrization of Γ′, (374) and the arbitrariness of 𝑦, we get
that for each 𝜆 ∈ Γ𝑅,± the following holds:

‖𝜆𝑅(𝜆 : 𝒜)𝑥− 𝑥‖ − |𝜆|−𝜃‖𝑥‖[𝐷((−𝒜)𝜃)]

6 𝑎‖𝑥‖[𝐷((−𝒜)𝜃)]

∫︁ 𝑐

−∞

|𝑣|1−𝜃−𝛽

|𝑣|+ |𝜆|
(1 + 𝛽2(4𝑀2)−1(𝑐− 𝑣)2𝛽−2)1/2𝑑𝑣.

For the estimation of this integral, we divide the path of integration into three
segments: (−∞, 0], [0, 𝑐/2] and [𝑐/2, 𝑐]. We have(︂∫︁ 0

−∞
+

∫︁ 𝑐/2

0

)︂
|𝑣|1−𝜃−𝛽

|𝑣|+ |𝜆|
(1 + 𝛽2(4𝑀2)−1(𝑐− 𝑣)2𝛽−2)1/2𝑑𝑣

6 2(1 + 𝛽2(4𝑀2)−1(𝑐/2)2𝛽−2)1/2
∫︁ ∞

0

𝑣1−𝜃−𝛽

𝑣 + |𝜆|
𝑑𝑣

= 2(1 + 𝛽2(4𝑀2)−1(𝑐/2)2𝛽−2)1/2|𝜆|1−𝜃−𝛽

∫︁ ∞

0

𝑣1−𝜃−𝛽

𝑣 + 1
𝑑𝑣

= 2(1 + 𝛽2(4𝑀2)−1(𝑐/2)2𝛽−2)1/2|𝜆|1−𝜃−𝛽 (−𝜋)
sin𝜋(𝜃 + 𝛽)

, 𝜆 ∈ Γ𝑅,±.

The integral over segment [𝑐/2, 𝑐] can be majorized by using the inequality

|𝑣|1−𝜃−𝛽

|𝑣|+ |𝜆|
6

|𝑣|1−𝜃−𝛽

|𝑣|2−𝜃−𝛽 |𝜆|𝜃+𝛽−1
, 𝜆 ∈ Γ𝑅,±, 𝑣 ∈ [𝑐/2, 𝑐],

giving the same final estimate. This completes the proof of (i). In order to prove
(ii), fix an element 𝑥 ∈ 𝐸𝜃

𝒜. Let us observe that there exists a finite constant 𝑐𝜃 > 0,
independent of 𝑥 ∈ 𝐸𝜃

𝒜, such that, for every 𝜆 ∈ Γ𝑅,±,

𝑐𝜃|𝜆|1−𝛽−𝜃‖𝑥‖𝐸𝜃
𝒜
>
⃦⃦
(|𝜆| − 𝜆)(𝜆−𝒜)−1[(|𝜆| − 𝒜)−1𝑥− 𝑥]

⃦⃦
=
⃦⃦⃦(︁

1− |𝜆|
𝜆

)︁
[(|𝜆| − 𝒜)−1𝑥− 𝑥] + (𝜆−𝒜)−1𝑥

+
[︁(︁

1− |𝜆|
𝜆

)︁
𝑥− (|𝜆| − 𝒜)−1𝑥

]︁⃦⃦⃦
,

where the equality follows from Lemma 1.2.4(ii) and a simple computation. This
implies that, for every 𝜆 ∈ Γ𝑅,±,⃒⃒⃒

1− |𝜆|
𝜆

⃒⃒⃒
‖(|𝜆| − 𝒜)−1𝑥− 𝑥‖
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6 𝑐𝜃|𝜆|1−𝛽−𝜃‖𝑥‖𝐸𝜃
𝒜
+ ‖(𝜆−𝒜)−1𝑥‖+

⃦⃦⃦[︁(︁
1− |𝜆|

𝜆

)︁
𝑥− (|𝜆| − 𝒜)−1𝑥

]︁⃦⃦⃦
6 𝑐𝜃|𝜆|(1−𝛽−𝜃)‖𝑥‖𝐸𝜃

𝒜
+𝑀 |𝜆|−𝛽‖𝑥‖

+
⃦⃦⃦(︁

1− |𝜆|
𝜆

)︁
𝑥− (|𝜆| − 𝒜)−1

(︁
1− |𝜆|

𝜆

)︁
𝑥
⃦⃦⃦
+ ‖(|𝜆| − 𝒜)−1𝑥‖

6 𝑐𝜃|𝜆|1−𝛽−𝜃‖𝑥‖𝐸𝜃
𝒜
+𝑀 |𝜆|−𝛽‖𝑥‖+ 2|𝜆|−𝜃‖𝑥‖𝐸𝜃

𝒜
+𝑀 |𝜆|−𝛽‖𝑥‖.

Taking into account this estimate, the proof of (ii) is completed through a routine
argument. �

Remark 3.5.10 ( [181]). (i) The operator (−𝒜)𝑛, defined as fractional
power, coincides with the usual power (−𝒜)𝑛 (𝑛 ∈ N).

(ii) The space [𝐷(𝒜)] is continuously embedded in [𝐷((−𝒜)𝜃)] provided that
𝛽 > 1/2 and 1− 𝛽 < 𝜃 < 𝛽.

Now we are ready to prove the following generalization of [199, Theorem 3.5]
for degenerate fractional differential equations.

Theorem 3.5.11. Let 𝛿′ ∈ (0, 𝛿).
(i) Suppose that 1 − 𝛽 < 𝜃 6 1. Then there exists a constant 𝐶𝜃,𝛿′ > 0 such

that

(375) ‖𝑇𝜂′,𝜂′−1(𝑧)𝑥−𝑥‖6𝐶𝜃,𝛿′ |𝑧|𝜂
′(𝛽+𝜃−1)‖𝑥‖[𝐷((−𝒜)𝜃)], 𝑧 ∈ Σ𝛿′ , 𝑥 ∈ 𝐷((−𝒜)𝜃).

(ii) Suppose that 1 − 𝛽 < 𝜃 < 1. Then there exists a constant 𝐶𝜃,𝛿′ > 0 such
that

‖𝑇𝜂′,𝜂′−1(𝑧)𝑥− 𝑥‖ 6 𝐶𝜃,𝛿′ |𝑧|𝜂
′(𝛽+𝜃−1)‖𝑥‖𝐸𝜃

𝒜
, 𝑧 ∈ Σ𝛿′ , 𝑥 ∈ 𝐸𝜃

𝒜.

Proof. Let 𝛿′′ ∈ (𝛿′, 𝛿), and let 0 < 𝜀 < 𝛿 − 𝛿′′ be arbitrarily chosen. Then it
is clear that

𝑇𝜂′,𝜂′−1(𝑧)𝑥− 𝑥 =
1

2𝜋𝑖

∫︁
Γ1/|𝑧|

𝑒𝜆𝑧

𝜆
[𝜆𝜂

′
𝑅(𝜆𝜂

′
: 𝒜)𝑥− 𝑥]𝑑𝜆, 𝑧 > 0, 𝑥 ∈ 𝐸.

Now the result follows from Lemma 3.5.9 and the calculus contained in the proof
of [27, Theorem 2.6.1]. �

Suppose now that 𝜃 > 1 − 𝛽. It is clear that there exists a sufficiently small
number 𝑡0 > 0 such that, for every 𝑡 ∈ (0, 𝑡0] and 𝜆 ∈ Γ1/𝑡, we have 𝜆𝜂

′ ∈ Φ. Then
Lemma 1.2.4(ii) and Fubini theorem together imply that, for every 𝑡 ∈ (0, 𝑡0],

(−𝒜)−𝜃𝑇𝜂′,𝜂′−1(𝑡)𝑥 =
(−1)

(2𝜋𝑖)2

∫︁
Γ1/𝑡

𝑒𝜆𝑡𝜆𝜂
′−1(𝜆𝜂

′
−𝒜)−1

[︂ ∫︁
Γ′

𝑑𝑧

𝑧𝜃(𝜆𝜂′ − 𝑧)

]︂
𝑑𝜆

+
1

(2𝜋𝑖)2

∫︁
Γ1/𝑡

𝑒𝜆𝑡𝜆𝜂
′−1(𝜆𝜂

′
−𝒜)−1

[︂ ∫︁
Γ′

(𝑧 −𝒜)−1𝑥

𝑧𝜃(𝜆𝜂′ − 𝑧)
𝑑𝑧

]︂
𝑑𝜆.

Applying the residue theorem on the first integral and Fubini theorem on the second
one, we get from the above and definition of (−𝒜)−𝜃 that, for every 𝑡 ∈ (0, 𝑡0],

(−𝒜)−𝜃𝑇𝜂′,𝜂′−1(𝑡)𝑥 =
1

2𝜋𝑖

∫︁
Γ1/𝑡

𝑒𝜆𝑡𝜆𝜂
′−1−𝜂′𝜃(𝜆𝜂

′
−𝒜)−1𝑥 𝑑𝜆+ (−𝒜)−𝜃𝑥
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+
1

2𝜋𝑖

∫︁
Γ′
𝑧1−𝜃(𝑧 −𝒜)−1

[︂ ∫︁
Γ1/𝑡

𝑒𝜆𝑡

𝜆(𝜆𝜂′ − 𝑧)
𝑑𝜆

]︂
𝑑𝑧

:= 𝐼1(𝑡) + (−𝒜)−𝜃𝑥+ 𝐼3(𝑡).

Making use of dominated convergence theorem, we immediately obtain that 𝐼1(𝑡) →
0 as 𝑡→ 0+. Let 1 > 𝜁 > 2− 𝜃 − 𝛽. Then (370) implies

(376)
∫︁
Γ1/𝑡

|𝑑𝜆|
|𝜆||𝜆𝜂′ − 𝑧|

6 𝑎
∫︁
Γ1/𝑡

|𝑑𝜆|
|𝜆|(|𝜆|𝜂′ + |𝑧|)

6 𝑎
∫︁
Γ1/𝑡

|𝑑𝜆|
|𝜆||𝜆|𝜂′(1−𝜁)|𝑧|𝜁

,

where 𝑎 > 0 is a constant independent of 𝑡 ∈ (0, 𝑡0], 𝜆 ∈ Γ1/𝑡 and 𝑧 ∈ Γ′. With
(376) in view, we may apply the dominated convergence theorem in order to see that
𝐼3(𝑡) → 0 as 𝑡 → 0+. Keeping in mind Theorem 3.5.11(ii) and the commutation
of operators (−𝒜)−𝜃 and 𝑇𝜂′,𝜂′−1(𝑡), we obtain from the above that the following
holds:

(CS) 𝑇𝜂′,𝜂′−1(𝑡)𝑥→ 𝑥, 𝑡→ 0+ for any 𝑥 ∈ 𝐸 belonging to the space 𝐷((−𝒜)𝜃)
with 𝜃 > 1− 𝛽 (𝑥 ∈ 𝐸𝜃

𝒜 with 1 > 𝜃 > 1− 𝛽).
In the remainder of this subsection, we assume that 0 < 𝛾 < 1. For the

simplicity of notation, set 𝒯𝜂′(𝑡) := 𝑇𝜂′,𝜂′−1(𝑡), 𝑡 > 0. Define 𝜂 := 𝛾𝜂′ and, for
every 𝜈 > −1− 𝜂′(𝛽 − 1),

𝒯 𝜈
𝜂′,𝛾(𝑡)𝑥 := 𝑡−𝛾

∫︁ ∞

0

𝑠𝜈Φ𝛾(𝑠𝑡
−𝛾)𝒯𝜂′(𝑠)𝑥 𝑑𝑠, 𝑡 > 0, 𝑥 ∈ 𝐸 and 𝒯 0

𝜂′,𝛾(0) := 𝐼.

Then it is clear that:

𝒯 𝜈
𝜂′,𝛾(𝑡)𝑥 = 𝑡𝛾𝜈

∫︁ ∞

0

𝑠𝜈Φ𝛾(𝑠)𝒯𝜂′(𝑠𝑡𝛾)𝑥 𝑑𝑠, 𝑡 > 0, 𝑥 ∈ 𝐸.

Keeping in mind the results proved in this subsection, it is quite simple to
deduce the following:

(B0) The operator 𝒯 𝜈
𝜂′,𝛾(𝑡) is absolutely convergent and

‖𝒯 𝜈
𝜂′,𝛾(𝑡)‖ = 𝑂(𝑡𝛾(𝜈+𝜂′(𝛽−1))), 𝑡 > 0.

For every 𝜈 > −1− 𝜂′(𝛽 − 1), we have

𝒯 𝜈
𝜂′,𝛾(𝑡)

𝑡𝛾𝜈
𝑥− Γ(1 + 𝜈)

Γ(1 + 𝛾𝜈)
𝑥 =

∫︁ ∞

0

𝑠𝜈Φ𝛾(𝑠)[𝒯𝜂′(𝑠𝑡𝛾)𝑥− 𝑥]𝑑𝑠, 𝑡 > 0, 𝑥 ∈ 𝐸.

(B1)
𝒯 𝜈
𝜂′,𝛾(𝑡)

𝑡𝛾𝜈 𝑥→ Γ(1+𝜈)
Γ(1+𝛾𝜈)𝑥, 𝑡→ 0+ provided that 𝜃 > 1−𝛽 and 𝑥 ∈ 𝐷((−𝒜)𝜃),

or that 1 > 𝜃 > 1− 𝛽 and 𝑥 ∈ 𝐸𝜃
𝒜 (𝜈 > −1− 𝜂′(𝛽 − 1)).

(B1)’ Suppose that 𝜀 ∈ (0, 𝜉) and 𝛿 = 𝜉 − 𝜀. Then lim𝑧→0,𝑧∈Σ𝛿

𝒯 𝜈
𝜂′,𝛾(𝑧)

𝑧𝛾𝜈 𝑥 =
Γ(1+𝜈)
Γ(1+𝛾𝜈)𝑥, provided that 𝜃 > 1−𝛽 and 𝑥 ∈ 𝐷((−𝒜)𝜃), or that 1 > 𝜃 > 1−𝛽
and 𝑥 ∈ 𝐸𝜃

𝒜 (𝜈 > −𝛽).
(B2)

∫︀∞
0
𝑒−𝜆𝑡𝒯 0

𝜂′,𝛾(𝑡)𝑥 𝑑𝑡 = 𝜆𝛾−1
∫︀∞
0
𝑒−𝜆𝛾𝑡𝒯𝜂′(𝑡)𝑥 𝑑𝑡 = 𝜆𝜂−1(𝜆𝜂−𝒜)−1𝑥, Re𝜆 >

0, 𝑥 ∈ 𝐸.



3.5. SUBORDINATED FRACTIONAL RESOLVENT FAMILIES... 385

(B3) ‖𝒯 𝜈
𝜂′,𝛾(𝑡)

𝑡𝛾𝜈 𝑥 − Γ(1+𝜈)
Γ(1+𝛾𝜈)𝑥‖ = 𝑂(𝑡𝜂(𝛽+𝜃−1)‖𝑥‖[𝐷((−𝒜)𝜃)]), 𝑡 > 0, provided 1 >

𝜃 > 1− 𝛽, 𝑥 ∈ 𝐷((−𝒜)𝜃) and ‖𝒯 𝜈
𝜂′,𝛾
𝑡𝛾𝜈 𝑥− Γ(1+𝜈)

Γ(1+𝛾𝜈)𝑥‖ = 𝑂(𝑡𝜂(𝛽+𝜃−1)‖𝑥‖𝐸𝜃
𝒜
),

𝑡 > 0, provided 1 > 𝜃 > 1− 𝛽, 𝑥 ∈ 𝐸𝜃
𝒜 (𝜈 > −1− 𝜂′(𝛽 − 1)).

(B3)’ Suppose that 𝜀 ∈ (0, 𝜉), 𝛿 = 𝜉−𝜀 and 𝜈 > −1−𝜂′(𝛽−1). Then ‖𝒯 𝜈
𝜂′,𝛾(𝑧)

𝑧𝛾𝜈 𝑥−
Γ(1+𝜈)
Γ(1+𝛾𝜈)𝑥‖ = 𝑂(|𝑧|𝜂(𝛽+𝜃−1)‖𝑥‖[𝐷((−𝒜)𝜃)]), 𝑧 ∈ Σ𝛿, provided 1 > 𝜃 > 1−𝛽,

𝑥 ∈ 𝐷((−𝒜)𝜃), and ‖𝒯 𝜈
𝜂′,𝛾(𝑧)

𝑧𝛾𝜈 𝑥 − Γ(1+𝜈)
Γ(1+𝛾𝜈)𝑥‖ = 𝑂(|𝑧|𝜂(𝛽+𝜃−1)‖𝑥‖𝐸𝜃

𝒜
), 𝑧 ∈

Σ𝛿, provided 1 > 𝜃 > 1− 𝛽, 𝑥 ∈ 𝐸𝜃
𝒜.

(B4) For every 𝜈 > −1 − 𝜂′(𝛽 − 1), the mapping 𝑡 ↦→ 𝒯 𝜈
𝜂′,𝛾(𝑡)𝑥, 𝑡 > 0 can be

analytically extended to the sector Σ𝜉 (we will denote this extension by the
same symbol) and, for every 𝜃 ∈ (0, 1), 𝜀 ∈ (0, 𝜉) and 𝜈 > −1− 𝜂′(𝛽 − 1),
‖𝒯 𝜈

𝜂′,𝛾(𝑧)‖ = 𝑂(|𝑧|𝛾(𝜈+𝜂′(𝛽−1))), 𝑧 ∈ Σ𝜉−𝜀.
(B4)’ For every 𝜃 ∈ (0, 1), 𝜀 ∈ (0, 𝜉), 𝜈 > −1− 𝜂′(𝛽 − 1) and 𝑛 ∈ N,

‖(𝑑𝑛/𝑑𝑧𝑛)𝒯 𝜈
𝜂′,𝛾(𝑧)‖ = 𝑂(|𝑧|𝛾(𝜈+𝜂′(𝛽−1))−𝑛), 𝑧 ∈ Σ𝜉−𝜀.

(B5) For every 𝜃 ∈ (0, 1), 𝜀 ∈ (0, 𝜉) and 𝜈 > −1− 𝜂′(𝛽 − 𝜃 − 1),

sup
𝑠>0

𝑠𝜃
⃦⃦⃦
𝑠𝑅(𝑠 : 𝒜)𝒯 𝜈

𝜂′,𝛾(𝑧)𝑥− 𝒯 𝜈
𝜂′,𝛾(𝑧)𝑥

⃦⃦⃦
= 𝑂(|𝑧|𝛾(𝜈+𝜂′(𝛽−𝜃−1))), 𝑧 ∈ Σ𝜉−𝜀.

(B5)’ For every 𝜃 ∈ (0, 1), 𝜀 ∈ (0, 𝜉), 𝜈 > −1− 𝜂′(𝛽 − 𝜃 − 1) and 𝑛 ∈ N,

sup
𝑠>0

𝑠𝜃‖𝑠𝑅(𝑠 : 𝒜)(𝑑𝑛/𝑑𝑧𝑛)𝒯 𝜈
𝜂′,𝛾(𝑧)𝑥− (𝑑𝑛/𝑑𝑧𝑛)𝒯 𝜈

𝜂′,𝛾(𝑧)𝑥‖ = 𝑂(|𝑧|𝛾(𝜈+𝜂′(𝛽−𝜃−1))−𝑛),

for 𝑧 ∈ Σ𝜉−𝜀. The angle of analyticity 𝜉 of operator family (𝒯 𝜈
𝜂′,𝛾(𝑡))𝑡>0 is

not optimal and can be improved by using the examinations from the proof
of [296, Theorem 3.10]. We will not go into further details concerning this
question here.

(B6) We have

𝒯 𝜈
𝜂′,𝛾(𝑧)

𝑧𝛾𝜈
𝑥− Γ(1 + 𝜈)

Γ(1 + 𝛾𝜈)
𝑥 =

∫︁ ∞

0

𝑠𝜈Φ𝛾(𝑠𝑒
𝑖𝜙)[𝒯𝜂′(𝑠|𝑧|𝛾)𝑥− 𝑥]𝑑𝑠, 𝑥 ∈ 𝐸,

where 𝜙 = −𝛾 arg(𝑧).
Now it is time to distinguish the following operator families:

𝒮𝜂(𝑧) := 𝒯 0
𝜂′,𝛾(𝑧) and 𝒫𝜂(𝑧) := 𝑧1−𝜂 𝑑

𝑑𝑧

∫︁ 𝑧

0

𝑔𝜂(𝑧 − 𝑠)𝒮𝜂(𝑠)𝑑𝑠 (𝑧 ∈ Σ𝜉).

Clearly, 𝒮𝜂(𝑧) and 𝒫𝜂(𝑧) depend analytically on parameter 𝑧 in the uniform oper-
ator topology. It is not difficult to prove that, for every 𝜀 ∈ (0, 𝜉), we have

‖𝒮𝜂(𝑧)‖+ ‖𝒫𝜂(𝑧)‖ = 𝑂(|𝑧|𝜂(𝛽−1)), 𝑧 ∈ Σ𝜉−𝜀,

as well as that ‖(𝑑/𝑑𝑧)𝒫𝜂(𝑧)‖ = 𝑂(|𝑧|𝜂(𝛽−1)−1), 𝑧 ∈ Σ𝜉−𝜀. Furthermore, we have
the following:

(B7) For every 𝑅 > 0, the mappings 𝑧 ↦→ 𝒮𝜂(𝑧) ∈ 𝐿(𝐸), 𝑧 ∈ Σ𝜉−𝜀 r 𝐵𝑅 and
𝑧 ↦→ 𝒫𝜂(𝑧) ∈ 𝐿(𝐸), 𝑧 ∈ Σ𝜉−𝜀 r𝐵𝑅 are uniformly continuous.
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(B8) We have

𝒮𝜂(𝑧)𝑥 =
(︁
𝑔1−𝜂 * [·𝜂−1𝒫𝛾(·)𝑥]

)︁
(𝑧), 𝑧 ∈ Σ𝜉, 𝑥 ∈ 𝐸,∫︁ ∞

0

𝑒−𝜆𝑡𝑡𝜂−1𝑃𝜂(𝑡)𝑥 𝑑𝑡 = (𝜆𝜂 −𝒜)−1𝑥, 𝜆 > 0, 𝑥 ∈ 𝐸

and

𝒫𝛾(𝑡)𝑥 = 𝑡−𝜂

∫︁ ∞

0

𝛾𝑠Φ𝛾(𝑠𝑡
−𝛾)𝑇𝜂′,0(𝑠)𝑥 𝑑𝑠, 𝑡 > 0, 𝑥 ∈ 𝐸.

The last equality continues to hold on subsectors of Σ𝜉.
(B9) We have

𝑑

𝑑𝑧
𝒮𝜂(𝑧)𝑥 ∈ 𝑧𝜂−1𝒜𝒫𝜂(𝑧)𝑥, 𝑧 ∈ Σ𝜉, 𝑥 ∈ 𝐸.

(B10) Suppose now that (𝑥, 𝑦) ∈ 𝒜. Then 𝒮𝜂(𝑧)𝑥 − 𝑥 =
∫︀ 𝑧

0
𝜆𝜂−1𝒫𝜂(𝜆)𝑦 𝑑𝜆,

𝑧 ∈ Σ𝜉 and

𝑑

𝑑𝑧
𝒮𝜂(𝑧)𝑥 = 𝑧𝜂−1𝒫𝜂(𝑧)𝑦, 𝑧 ∈ Σ𝜉;

the mapping 𝑡 ↦→ 𝑑
𝑑𝑡𝒮𝜂(𝑡)𝑥, 𝑡 > 0 is locally integrable.

(B11) Let 1 > 𝜃 > 1 − 𝛽, and let 𝑥 ∈ 𝐷((−𝒜)𝜃) ∩ 𝐸𝜃
𝒜. Then the mapping

𝑡 ↦→ 𝐹 (𝑡) := (𝑔1−𝜂 * [𝒮𝜂(·)𝑥 − 𝑥])(𝑡) is continuous for 𝑡 > 0 and can be
analytically extended from the positive real axis to the sector Σ𝜉, as well
as that D𝜂

𝑡 𝒮𝜂(𝑡)𝑥 = 𝐹 ′(𝑡) ∈ 𝒜𝒮𝜂(𝑡)𝑥, 𝑡 > 0.
(B12) The mapping 𝑡 ↦→ 𝑑

𝑑𝑡𝒮𝜂(𝑡)𝑥, 𝑡 > 0 is locally integrable for any 𝑥 ∈
𝐷((−𝒜)𝜃) ∩ 𝐸𝜃

𝒜.
The following extension of Theorem 3.5.3 holds true:

Theorem 3.5.12. Suppose that 𝑇 ∈ (0,∞), 1 > 𝜃 > 1− 𝛽 and 𝑥 ∈ 𝐷((−𝒜)𝜃),
resp. 1 > 𝜃 > 1− 𝛽 and 𝑥 ∈ 𝐸𝜃

𝒜, as well as that there exist constants 𝜎 > 𝜂(1− 𝛽)
and 𝑀 > 1 such that (358) holds. Let 1 > 𝜃 > 1− 𝛽, resp. 1 > 𝜃 > 1− 𝛽, and let

𝑓 ∈ 𝐿∞((0, 𝑇 ) : [𝐷((−𝒜)𝜃)]), resp. 𝑓 ∈ 𝐿∞((0, 𝑇 ) : 𝐸𝜃
𝒜).

Then there exists a unique classical solution of problem (DFP)𝑓 .

Proof. We will only provide the most relevant points of proof provided that
1 > 𝜃 > 1 − 𝛽 and 𝑥 ∈ 𝐷((−𝒜)𝜃). Let 𝛿′ ∈ (0, 𝛿) be fixed. Then (375) and the
Cauchy integral formula together imply:

‖(𝑑/𝑑𝑧)𝒯𝜂′(𝑧)𝑥‖ = ‖(𝑑/𝑑𝑧)[𝒯𝜂′(𝑧)𝑥− 𝑥]‖

6 𝐶𝜃,𝛿′ |𝑧|𝜂
′(𝛽+𝜃−1)−1‖𝑥‖[𝐷((−𝒜)𝜃)], 𝑧 ∈ Σ𝛿′ , 𝑥 ∈ 𝐷((−𝒜)𝜃).

Using this estimate, we can prove that there exists a constant 𝐶𝜃 > 0 such that,
for every 0 < 𝑠 6 𝑇 and 0 < 𝜔 6 𝑇 ,

‖𝑆′
𝛾(𝜔)𝑓(𝑠)‖ 6 𝐶𝜃‖𝑓(𝑠)‖[𝐷((−𝒜)𝜃)]𝜔

𝜂(𝛽+𝜃−1)−1.

The rest of proof is almost the same as that of Theorem 3.5.3. �
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Therefore, it makes sense to consider the mild solutions of following semilinear
degenerate fractional Cauchy inclusion:

(DFP)𝑓,𝑠,𝜂 :

{︃
D𝜂

𝑡 𝑢(𝑡) ∈ 𝒜𝑢(𝑡) + 𝑓(𝑡, 𝑢(𝑡)), 𝑡 ∈ (0, 𝑇 ],

𝑢(0) = 𝑢0,

where 𝑇 ∈ (0,∞). As before, a mild solution 𝑢(𝑡) := 𝑢(𝑡;𝑢0) of problem (DFP)𝑓,𝑠,𝜂
is any function 𝑢 ∈ 𝐶((0, 𝑇 ] : 𝐸) such that

𝑢(𝑡) = 𝒮𝜂(𝑡)𝑢0 +

∫︁ 𝑡

0

(𝑡− 𝑠)𝜂−1𝒫𝜂(𝑡− 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠, 𝑡 ∈ (0, 𝑇 ].

Here we would like to observe that it is not clear how we can prove an extension of
Theorem 3.5.7 in the case that the operator family (𝒮𝜂(𝑡))𝑡>0 is not subordinated
to a degenerate semigroup. With the exception of this result, all other results from
Subsection 3.5.1 continue to hold in our new setting and we will only say a few words
about the assertion of [529, Theorem 5.3], where the authors have investigated the
existence of mild solutions of semilinear degenerate fractional Cauchy inclusion
(DFP)𝑓,𝑠,𝜂, provided that the resolvent of 𝒜 is compact. The operator family
(𝒮𝜂(𝑡))𝑡>0 is then subordinated to a semigroup (𝑇 (𝑡))𝑡>0 which do have a removable
singularity at zero, and the compactness of operators 𝒮𝜂(𝑡) and 𝒫𝜂(𝑡) for 𝑡 > 0 (cf.
[529, Lemma 3.1, Theorem 3.5]) has been proved by following a method based on
the use of semigroup property of (𝑇 (𝑡))𝑡>0. In purely fractional case, we can argue
as follows. Recall that the set consisting of all compact operators on 𝐸 is a closed
linear subspace of 𝐿(𝐸) forming a two-sided ideal in 𝐿(𝐸). Since (368) and (B2)
hold in the uniform operator topology, we can apply Lemma 1.2.4(iii), the Post–
Widder inversion formula [27, Theorem 1.7.7] and the formulae [61, (2.16)–(2.17)]
in order to see that the operator 𝑇𝜂′,𝑟(𝑡) is compact for 𝜂′𝛽 > 𝑟, 𝑡 > 0 and the
operator 𝒮𝜂(𝑡) is compact for 𝑡 > 0. Keeping in mind the third equality in (B8),
we obtain that the operator 𝒫𝜂(𝑡) is compact for 𝑡 > 0, as well. Now we can
reformulate [529, Theorem 5.3] by means of the following approximation in Step 3
of its proof:

Γ𝜂
𝜀,𝛿(𝑡) := 𝒮𝜂(𝑡) +

∫︁ 𝑡−𝜀

0

(𝑡− 𝑠)2𝛾−1

∫︁ ∞

𝛿

𝛾𝜏Φ𝛾(𝜏)𝑇𝜂′,0(𝜏(𝑡− 𝑠)𝛾)𝑑𝜏 𝑑𝑠,

for 𝑡 ∈ (0, 𝑇 ], 𝛿 > 0, 0 < 𝜀 < 𝑡 and 𝑢 ∈ Ω𝑟; cf. [529] for the notion. Assuming the
condition of type [529, (H2)], we can prove the estimate⃦⃦⃦⃦

𝒮𝜂(𝑡)𝑢0 +

∫︁ 𝑡

0

(𝑡− 𝑠)𝜂−1𝒫𝜂(𝑡− 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠− Γ𝜂
𝜀,𝛿(𝑡)

⃦⃦⃦⃦
6 Const.

(︂∫︁ 𝑡−𝜀

0

(𝑡− 𝑠)𝑞[𝛽𝜂+𝛾−1]𝑑𝑠

)︂1/𝑞

‖𝑚𝑟‖𝐿𝑝(0,𝑇 )

∫︁ ∞

0

𝜏𝜂
′𝛽Φ𝛾(𝜏)𝑑𝜏

+ Const.
(︂∫︁ 𝑡

𝑡−𝜀

(𝑡− 𝑠)𝑞[𝛽𝜂+𝛾−1]𝑑𝑠

)︂1/𝑞

‖𝑚𝑟‖𝐿𝑝(0,𝑇 )

∫︁ ∞

0

𝜏𝜂
′𝛽Φ𝛾(𝜏)𝑑𝜏

for 𝑝 > 1 and 𝑞 = 𝑝/𝑝 − 1. Now it is quite simple to reformulate [529, Theorem
5.3] in our context.
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Example 3.5.13. (i) [527] Suppose that 𝛼 ∈ (0, 1), 𝑚 ∈ N, Ω is a
bounded domain in R𝑛 with boundary of class 𝐶4𝑚 and 𝐸 := 𝐶𝛼(Ω̄). Let
us consider the operator 𝐴 : 𝐷(𝐴) ⊆ 𝐶𝛼(Ω̄) → 𝐶𝛼(Ω̄) given by

𝐴𝑢(𝑥) :=
∑︁

|𝛽|62𝑚

𝑎𝛽(𝑥)𝐷
𝛽𝑢(𝑥) for all 𝑥 ∈ Ω̄

with domain 𝐷(𝐴) := {𝑢 ∈ 𝐶2𝑚+𝛼(Ω̄) : 𝐷𝛽𝑢|𝜕Ω = 0 for all |𝛽| 6 𝑚− 1}.
Here, 𝛽 ∈ N𝑛

0 , |𝛽| =
∑︀𝑛

𝑖=1 𝛽𝑗 , 𝐷
𝛽 =

∏︀𝑛
𝑖=1(

1
𝑖

𝜕
𝜕𝑥𝑖

)𝛽𝑖 , and we assume that
𝑎𝛽 : Ω̄ → C satisfy the following:
(i) 𝑎𝛽(𝑥) ∈ R for all 𝑥 ∈ Ω̄ and |𝛽| = 2𝑚.
(ii) 𝑎𝛽 ∈ 𝐶𝛼(Ω̄) for all |𝛽| 6 2𝑚, and
(iii) there is a constant 𝑀 > 0 such that

𝑀−1|𝜉|2𝑚 6
∑︁

|𝛽|=2𝑚

𝑎𝛽(𝑥)𝜉
𝛽 6𝑀 |𝜉|2𝑚 for all 𝜉 ∈ R𝑛 and 𝑥 ∈ Ω̄.

Then it is well known that there exists a sufficiently large number 𝜎 > 0
such that the operator −𝐴𝜎 ≡ −(𝐴+𝜎) satisfies Σ𝜔∪{0} ⊆ 𝜌(−𝐴𝜎) with
some 𝜔 ∈ (𝜋2 , 𝜋) and

(377) ‖𝑅(𝜆 : −𝐴𝜎)‖ = 𝑂(|𝜆| 𝛼
2𝑚−1), 𝜆 ∈ Σ𝜔.

Let us recall that 𝐴 is not densely defined and the exponent 𝛼
2𝑚 − 1 in

(377) is sharp. Define 𝐴𝜎,𝛿 := 𝑒𝑖(𝜋/2±𝛿)𝐴𝜎. Suppose that 𝜔− (𝜋/2) < 𝛿 <
𝜔 − 𝜂(𝜋/2), 1 > 𝜃 > 𝛼/2𝑚, 𝑢0 ∈ 𝐷((−𝐴𝜎,𝛿)

𝜃), 𝜎 > 𝜂𝛼/2𝑚, (358) holds
and 𝑓 ∈ 𝐿∞((0, 𝑇 ) : [𝐷((−𝒜)𝜃)]). Then the condition (QP) holds for each
number 𝜂′′ ∈ (𝜂, 1) such that 𝜔 − (𝜋/2) < 𝛿 < 𝜔 − 𝜂′′(𝜋/2). Applying
Theorem 3.5.12, we obtain that the abstract fractional Cauchy problem{︃

D𝜂
𝑡 𝑢(𝑡, 𝑥) = 𝐴𝜎,𝛿𝑢(𝑡, 𝑥) + 𝑓(𝑡, 𝑥), 𝑡 ∈ (0, 𝑇 ],

𝑢(0) = 𝑢0,

has a unique classical solution, which is analytically extendable to the
sector Σ𝜗 provided that 𝑓(𝑡, 𝑥) ≡ 0 (𝜗 ≡ min(( (2/𝜋)(𝜔−𝛿)

𝜂 − 1)𝜋/2, 𝜋)).
(ii) [199] Consider now the following modification of inhomogeneous frac-

tional Poisson heat equation in the space 𝐿𝑝(Ω):

(𝑃 )𝛿𝜂 :

⎧⎪⎨⎪⎩
D𝜂

𝑡 [𝑚(𝑥)𝑣(𝑡, 𝑥)] = 𝑒±𝑖𝛿(Δ− 𝑏)𝑣(𝑡, 𝑥) + 𝑓(𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ Ω;

𝑣(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ [0,∞)× 𝜕Ω,

𝑚(𝑥)𝑣(0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ Ω,

where Ω is a bounded domain in R𝑛, 𝑏 > 0, 𝑚(𝑥) > 0 a.e. 𝑥 ∈ Ω,
𝑚 ∈ 𝐿∞(Ω), 1 < 𝑝 < ∞ and 0 < 𝜂 < 1. Let the operator 𝐴 := Δ −
𝑏 act on 𝐸 with the Dirichlet boundary conditions, and let 𝐵 be the
multiplication operator by the function 𝑚(𝑥). As it has been proved
in [199, Example 3.6], there exist an appropriate angle 𝜔 ∈ (𝜋2 , 𝜋) and
a number 𝑑 > 0 such that the multivalued linear operator 𝒜 := 𝐴𝐵−1

satisfies Ψ𝑑,𝜔 = {𝜆 ∈ C : |𝜆| 6 𝑑 or 𝜆 ∈ Σ𝜔} ⊆ 𝜌(𝒜) and ‖𝑅(𝜆 : 𝒜)‖ 6
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𝑀(1 + |𝜆|)−1/𝑝, 𝜆 ∈ Ψ𝑑,𝜔; here it is worth noting that the validity of
additional condition [199, (3.42)] on the function 𝑚(𝑥) enables us to get
the better exponent 𝛽 in (QP), provided that 𝑝 > 2. Henceforth we
consider the general case. Suppose, as in part (i), that 𝜔 − (𝜋/2) < 𝛿 <
𝜔 − 𝜂(𝜋/2), 1 > 𝜃 > 1 − 1/𝑝, 𝑢0 ∈ 𝐷((−𝑒±𝑖𝛿𝒜)𝜃), 𝜎 > 𝜂(1 − 1/𝑝), (358)
holds and 𝑓 ∈ 𝐿∞((0, 𝑇 ) : [𝐷((−𝑒±𝑖𝛿𝒜)𝜃)]). Then Theorem 3.5.12 implies
that the abstract Cauchy problem (𝑃 )𝛿𝜂 has a unique solution 𝑡 ↦→ 𝑣(𝑡, ·),
𝑡 ∈ (0, 𝑇 ], i.e., any function 𝑣(𝑡, ·) satisfying that 𝐵𝑣(𝑡, ·) ∈ 𝐶([0, 𝑇 ] : 𝐸),
the Caputo fractional derivative D𝜂

𝑡𝐵𝑣(𝑡, ·) is well-defined and belongs to
the space 𝐶((0, 𝑇 ] : 𝐸), 𝐵𝑣(𝑡, ·) ∈ 𝐶((0, 𝑇 ] : 𝐸), 𝑚(𝑥)𝑣(0, 𝑥) = 𝑢0(𝑥),
𝑥 ∈ Ω and (𝑃 )𝛿𝜂 holds identically.

Observe that the trick used in previous example can be also applied in the anal-
ysis of limit problems of fractional diffusion equations in complex systems on the
so-called dumbbell domains ( [32,529]), as well as in the analysis of a large class
of abstract degenerate fractional differential inclusions involving the rotations of
multivalued linear operators considered in [199, Section 3.7]. By [447, Proposition
3.6] ( [411, Corollary 5.6]), fractional powers of almost sectorial operators (sectorial
multivalued linear operators) satisfy, under some assumptions, the condition (QP)
and can therefore be used for providing certain applications of our abstract results.
Suitable translations of generators of fractionally integrated semigroups with cor-
responding growth order satisfy the condition (QP) with 𝜂′′ = 1 and 0 < 𝛽 < 1, as
well (cf. [446, Example 3.3]).

3.6. Hypercyclic and topologically mixing properties of abstract
degenerate (multi-term) time-fractional inclusions

The main aim of this section, which is divided into four subsections, is to
provide the basic information on hypercyclic and topologically mixing properties
of abstract degenerate (multi-term) time-fractional inclusions.

By 𝐸 we denote a separable infinite-dimensional Fréchet space over the field of
complex numbers. We assume that the topology of 𝐸 is induced by the fundamental
system (𝑝𝑛)𝑛∈N of increasing seminorms. Let us recall that the translation invariant
metric 𝑑 : 𝐸 × 𝐸 → [0,∞) is defined by

𝑑(𝑥, 𝑦) :=

∞∑︁
𝑛=1

1

2𝑛
𝑝𝑛(𝑥− 𝑦)

1 + 𝑝𝑛(𝑥− 𝑦)
, 𝑥, 𝑦 ∈ 𝐸.

By 𝒜 and 𝜎𝑝(𝒜) we denote a multivalued linear operator in 𝐸 and its point spec-
trum, respectively.

3.6.1. Hypercyclic and topologically mixing properties of problem
(𝐷𝐹𝑃 )𝛼,𝒜. In this subsection, we will consider hypercyclic and topologically mix-
ing properties of the following abstract degenerate time-fractional inclusion:

(DFP)𝛼,𝒜 :

{︃
D𝛼

𝑡 𝑢(𝑡) ∈ 𝒜𝑢(𝑡), 𝑡 > 0,

𝑢(0) = 𝑥; 𝑢(𝑗)(0) = 0, 0 6 𝑗 6 ⌈𝛼⌉ − 1.
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Let us recall that by a (strong) solution of (DFP)𝛼,𝒜 we mean any continuous 𝐸-
valued function 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 such that the term 𝑡 ↦→ D𝛼

𝑡 𝑢(𝑡), 𝑡 > 0 is well defined
and continuous, as well as that (DFP)𝛼,𝒜 holds. It is worth noting here that we do
not require a priori the closedness of the operator 𝒜 henceforth. Denote by 𝑍𝛼(𝒜)
the set which consists of those vectors 𝑥 ∈ 𝐸 for which there exists a solution of
problem (DFP)𝛼,𝒜. Then 𝑍𝛼(𝒜) is a linear subspace of 𝐸. The following is an
extension of [300, Lemma 2.1] to multivalued linear operator case. The proof is
almost straightforward after pointing out that D𝛼

𝑡 𝐸𝛼(𝜆𝑡
𝛼) = 𝜆𝐸𝛼(𝜆𝑡

𝛼), 𝑡 > 0,
𝜆 ∈ C, 𝛼 > 0.

Lemma 3.6.1. Suppose 𝛼 > 0, 𝜆 ∈ C, 𝑥 ∈ 𝐸 and 𝜆𝑥 ∈ 𝒜𝑥. Then 𝑥 ∈ 𝑍𝛼(𝒜)
and one solution of (DFP)𝛼,𝒜 is given by 𝑢(𝑡) ≡ 𝑢(𝑡;𝑥) = 𝐸𝛼(𝜆𝑡

𝛼)𝑥, 𝑡 > 0.

The notion of a (subspace-)hypercyclicity, (subspace-)topological transitivity
and (subspace-)topologically mixing property of problem (DFP)𝛼,𝒜 are introduced
in the following definition.

Definition 3.6.2. Let 𝛼 > 0, and let �̃� be a closed linear subspace of 𝐸. Then
it is said that:

(i) an element 𝑥 ∈ 𝑍𝛼(𝒜)∩�̃� is a �̃�-hypercyclic vector for (DFP)𝛼,𝒜 iff there
exists a strong solution 𝑡 ↦→ 𝑢(𝑡;𝑥), 𝑡 > 0 of problem (DFP)𝛼,𝒜 with the
property that the set {𝑢(𝑡;𝑥) : 𝑡 > 0} is a dense subset of �̃�.

Furthermore, we say that the abstract Cauchy problem (DFP)𝛼,𝒜 is:

(ii) �̃�-topologically transitive iff for every 𝑦, 𝑧 ∈ �̃� and for every 𝜀 > 0, there
exist 𝑥 ∈ 𝑍𝛼(𝒜) ∩ �̃�, a strong solution 𝑡 ↦→ 𝑢(𝑡;𝑥), 𝑡 > 0 of problem
(DFP)𝛼,𝒜 and 𝑡 > 0 such that 𝑑(𝑥, 𝑦) < 𝜀 and 𝑑(𝑢(𝑡;𝑥), 𝑧) < 𝜀;

(iii) �̃�-topologically mixing iff for every 𝑦, 𝑧 ∈ �̃� and for every 𝜀 > 0, there
exists 𝑡0 > 0 such that, for every 𝑡 > 𝑡0, there exist 𝑥𝑡 ∈ 𝑍𝛼(𝒜) ∩ �̃�
and a strong solution 𝑡 ↦→ 𝑢(𝑡;𝑥𝑡), 𝑡 > 0 of problem (DFP)𝛼,𝒜 such that
𝑑(𝑥𝑡, 𝑦) < 𝜀 and 𝑑(𝑢(𝑡;𝑥𝑡), 𝑧) < 𝜀.

In the case �̃� = 𝐸, it is also said that a �̃�-hypercyclic vector for (DFP)𝛼,𝒜 is
a hypercyclic vector for (DFP)𝛼,𝒜, and that (DFP)𝛼,𝒜 is topologically transitive,
resp. topologically mixing.

In the following theorem, we will reformulate the Desch–Schappacher–Webb and
Banasiak–Moszyński criteria for the abstract time-fractional inclusion (DFP)𝛼,𝒜
(cf. [300, Theorem 2.3] and its proof):

Theorem 3.6.3. Assume 𝛼 ∈ (0, 2) and there exists an open connected subset Ω
of C which satisfies Ω∩ (−∞, 0] = ∅, Ω𝛼 := {𝜆𝛼 : 𝜆 ∈ Ω} ⊆ 𝜎𝑝(𝒜) and Ω∩ 𝑖R ̸= ∅.
Let 𝑓 : Ω𝛼 → 𝐸 be an analytic mapping such that 𝑓(𝜆𝛼) ∈ 𝑁(𝒜 − 𝜆𝛼) r {0},
𝜆 ∈ Ω and let �̃� := 𝑠𝑝𝑎𝑛{𝑓(𝜆𝛼) : 𝜆 ∈ Ω}. Then the abstract degenerate inclusion
(DFP)𝛼,𝒜 is �̃�-topologically mixing.

The assertion of Theorem 2.10.7 can be restated for multivalued linear opera-
tors, as well:
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Theorem 3.6.4. Suppose that 𝛼 > 0 and (𝑡𝑛)𝑛∈N is a sequence of positive reals
tending to +∞. If the set 𝐸0,𝛼, which consists of those elements 𝑦 ∈ 𝑍𝛼(𝒜) ∩ �̃�
for which there exists a strong solution 𝑡 ↦→ 𝑢(𝑡; 𝑦), 𝑡 > 0 of problem (DFP)𝛼,𝒜
such that lim𝑛→∞ 𝑢(𝑡𝑛; 𝑦) = 0, is dense in �̃�, and if the set 𝐸∞,𝛼, which consists
of those elements 𝑧 ∈ 𝑍𝛼(𝒜) ∩ �̃� for which there exist a null sequence (𝜔𝑛)𝑛∈N ∈
𝑍𝛼(𝒜)∩ �̃� and a sequence (𝑢𝑛(·;𝜔𝑛))𝑛∈N of strong solutions of problem (DFP)𝛼,𝒜
such that lim𝑛→∞ 𝑢(𝑡𝑛;𝜔𝑛) = 𝑧, is also dense in �̃�, then the problem (DFP)𝛼,𝒜 is
�̃�-topologically transitive.

3.6.2. Hypercyclic and topologically mixing properties of abstract
degenerate Cauchy problems of first and second order. Concerning linear
dynamical properties, we have already seen that the abstract degenerate Cauchy
problems of first and second order have numerous peculiarities compared with the
abstract degenerate fractional Cauchy problems. The main aim of this subsection
is to investigate some of these peculiarities for abstract degenerate inclusions of
first and second order.

We start by stating the following simple proposition, which has been already
considered in a slightly different context.

Proposition 3.6.5. (i) Suppose that 𝛼 = 1, 𝑥 ∈ 𝑍1(𝒜) and the function
𝑡 ↦→ 𝑢(𝑡;𝑥), 𝑡 > 0 is a solution of problem (DFP)1,𝒜. Then, for every
𝑠 > 0, 𝑢(𝑠;𝑥) ∈ 𝑍1(𝒜) and a solution of (DFP)1,𝒜, with initial condition
𝑥 replaced by 𝑢(𝑠;𝑥), is given by 𝑢(𝑡;𝑢(𝑠;𝑥)) := 𝑢(𝑡+ 𝑠;𝑥), 𝑡 > 0.

(ii) Suppose that 𝛼 = 2, 𝑥 ∈ 𝑍2(𝒜) and the function 𝑡 ↦→ 𝑢(𝑡;𝑥), 𝑡 > 0 is
a solution of (DFP)2,𝒜. Then, for every 𝑠 > 0, 𝑢(𝑠;𝑥) ∈ 𝑍2(𝒜) and a
solution of (DFP)2,𝒜, with initial condition 𝑥 replaced by 𝑢(𝑠;𝑥), is given
by 𝑢(𝑡;𝑢(𝑠;𝑥)) := 1

2 [𝑢(𝑡+ 𝑠;𝑥) + 𝑢(|𝑡− 𝑠|;𝑥)], 𝑡 > 0.

Now we would like to state a result similar to that of S. El Mourchid [163,
Theorem 2.1]:

Theorem 3.6.6. Assume that 𝛼 = 1, 𝜔1, 𝜔2 ∈ R ∪ {−∞,∞}, 𝜔1 < 𝜔2, 𝑡0 > 0
and 𝑘 ∈ N. Let 𝑓𝑗 : (𝜔1, 𝜔2) → 𝐸 be integrable, and let for each 𝑗 = 1, . . . , 𝑘 we
have 𝑓𝑗(𝑠) ∈ 𝑖𝑠𝒜𝑓𝑗(𝑠) for a.e. 𝑠 ∈ (𝜔1, 𝜔2). Put 𝜓𝑟,𝑗 :=

∫︀ 𝜔2

𝜔1
𝑒𝑖𝑟𝑠𝑓𝑗(𝑠)𝑑𝑠, 𝑟 ∈ R,

1 6 𝑗 6 𝑘. Put �̃� := 𝑠𝑝𝑎𝑛{𝜓𝑟,𝑗 : 𝑟 ∈ R, 1 6 𝑗 6 𝑘}. If the operator 𝒜 is closed,
then the problem (DFP)1,𝒜 is �̃�-topologically mixing.

The assertion of Theorem 2.10.19 can be formulated for multivalued linear
operators, as well:

Theorem 3.6.7. Let �̃� be a closed linear subspace of 𝐸, and let 𝛼 = 2.
(i) Suppose that (𝑡𝑛)𝑛∈N is a sequence of positive reals tending to +∞. Denote

by 𝑋1,�̃� the set which consists of those elements 𝑥 ∈ 𝑍2(𝒜)∩ �̃� for which
there exists a solution 𝑡 ↦→ 𝑢(𝑡;𝑥), 𝑡 > 0 of problem (DFP)2,𝒜 such that
𝑢(0;𝑥) = 𝑥 and lim𝑛→∞ 𝑢(𝑡𝑛;𝑥) = lim𝑛→∞ 𝑢(2𝑡𝑛;𝑥) = 0. If 𝑋1,�̃� is
dense in �̃�, then the problem (DFP)2,𝒜 is �̃�-topologically transitive.
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(ii) Denote by 𝑋 ′
1,�̃�

the set which consists of those elements 𝑥 ∈ 𝑍2(𝒜)∩�̃� for
which there exists a strong solution 𝑡 ↦→ 𝑢(𝑡;𝑥), 𝑡 > 0 of problem (DFP)2,𝒜
such that 𝑢(0;𝑥) = 𝑥 and lim𝑡→+∞ 𝑢(𝑡;𝑥) = 0. If 𝑋 ′

1,�̃�
is dense in �̃�,

then the problem (DFP)2,𝒜 is �̃�-topologically mixing.

As commented before, Theorem 3.6.3 is no longer true in the case that 𝛼 =
2. If so, then we can pass to the equation of first order with the multivalued
linear operator

[︀
0 𝐼
𝒜 0

]︀
and the vector (𝑓(𝜆2)𝜆𝑓(𝜆2))𝑇 , for 𝜆 belonging to an open

connected subset Ω of C intersecting the imaginary axis, and apply Theorem 3.6.3,
with 𝛼 = 1, after that (cf. Theorem 3.6.12 below for more details).

The interested reader is encouraged to formulate a version of The Hypercyclicity
Criterion for degenerate first order inclusions (cf. Theorem 2.10.18).

3.6.3. Hypercyclic and topologically mixing properties of certain
classes of abstract degenerate multi-term fractional differential inclu-
sions. In this subsection, we assume that 𝑛 ∈ Nr {1}, 𝒜1, . . . ,𝒜𝑛−1, 𝒜 and ℬ are
multivalued linear operators on 𝐸 (not necessarily closed), 0 6 𝛼1 < · · · < 𝛼𝑛−1 <
𝛼𝑛 and 0 6 𝛼 < 𝛼𝑛. Fix a number 𝑖 ∈ N0

𝑚𝑛−1. Denote 𝒜0 = 𝒜, 𝛼0 = 𝛼, 𝑚𝑗 = ⌈𝛼𝑗⌉
(𝑗 ∈ N𝑛

0 ), 𝐷𝑖 = {𝑗 ∈ N𝑛−1 : 𝑚𝑗 −1 > 𝑖} and 𝒟𝑖 = {𝑗 ∈ N0
𝑛−1 : 𝑚𝑗 −1 > 𝑖}. In Sub-

section 3.6.3 and Subsection 3.6.4, we will inquire into the hypercyclic and topolog-
ically mixing properties of the following abstract degenerate multi-term fractional
inclusion:

(378)
0 ∈ ℬD𝛼𝑛

𝑡 𝑢(𝑡) +

𝑛−1∑︁
𝑗=1

𝒜𝑗D
𝛼𝑗

𝑡 𝑢(𝑡)−𝒜D𝛼
𝑡 𝑢(𝑡), 𝑡 > 0;

𝑢(𝑘)(0) = 𝑥𝑘, 𝑘 ∈ N0
𝑚𝑛−1.

In this subsection, we will consider the case in which:

(379) 𝑢(𝑖)(0) = 𝑥𝑖 = 𝑥 and 𝑢(𝑘)(0) = 𝑥𝑘 = 0, 𝑘 ∈ N0
𝑚𝑛−1 r {𝑖}.

Because no confusion seems likely, we will denote such a degenerate inclusion by
the same symbol (378). Recall, a (strong) solution of (378) is any continuous 𝐸-
valued function 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 such that the Caputo fractional derivative D𝛼𝑛

𝑡 𝑢(𝑡)
is well-defined, as well as that the initial conditions in (378) hold and there exist
continuous sections 𝑎𝑗(𝑡) ∈ sec𝑐(𝒜𝑗D

𝛼𝑗

𝑡 𝑢(𝑡)) (0 6 𝑗 6 𝑛, 𝑡 > 0) such that

0 =

𝑛∑︁
𝑗=1

𝑎𝑗(𝑡)− 𝑎0(𝑡), 𝑡 > 0.

If (379) holds, then 𝑢(𝑡) will be also denoted by 𝑢𝑖(𝑡) ≡ 𝑢𝑖(𝑡;𝑥). We will use the
following definition.

Definition 3.6.8. Let �̃� be a closed linear subspace of 𝐸. Then it is said that
the equation (378) is:

(i) �̃�-hypercyclic iff there exist an element 𝑥 ∈ �̃� and a strong solution
𝑡 ↦→ 𝑢𝑖(𝑡;𝑥), 𝑡 > 0 of (378) such that {𝑢𝑖(𝑡;𝑥) : 𝑡 > 0} is a dense subset
of �̃�; such an element is called a �̃�-hypercyclic vector of (378);



3.6. HYPERCYCLIC AND TOPOLOGICALLY MIXING PROPERTIES... 393

(ii) �̃�-topologically transitive iff for every 𝑦, 𝑧 ∈ �̃� and for every 𝜀 > 0, there
exist an element 𝑥 ∈ �̃�, a strong solution 𝑡 ↦→ 𝑢𝑖(𝑡;𝑥), 𝑡 > 0 of (378) and
a number 𝑡 > 0 such that 𝑑(𝑥, 𝑦) < 𝜀 and 𝑑(𝑢𝑖(𝑡;𝑥), 𝑧) < 𝜀;

(iii) �̃�-topologically mixing iff for every 𝑦, 𝑧 ∈ �̃� and for every 𝜀 > 0, there
exists 𝑡0 > 0 such that, for every 𝑡 > 𝑡0, there exist an element 𝑥𝑡 ∈ �̃�
and a strong solution 𝑡 ↦→ 𝑢𝑖(𝑡;𝑥𝑡), 𝑡 > 0 of (378), with 𝑥 replaced by 𝑥𝑡,
such that 𝑑(𝑥𝑡, 𝑦) < 𝜀 and 𝑑(𝑢𝑖(𝑡;𝑥𝑡), 𝑧) < 𝜀.

In the case �̃� = 𝐸, it is also said that a �̃�-hypercyclic vector of (378) is a hypercyclic
vector of (378) and that (378) is topologically transitive, resp. topologically mixing.

The assertion of Theorem 2.10.9 can be extended to multivalued linear opera-
tors as follows:

Theorem 3.6.9. Suppose that ∅ ̸= Ω is an open connected subset of C r {0},
𝑓 : Ω → 𝐸r{0} is an analytic function, 𝑓𝑗 : Ω → Cr{0} is a scalar-valued function
(1 6 𝑗 6 𝑛), 𝑔 : Ω → 𝐸 satisfies 𝑔(𝜆) ∈ 𝒜𝑓(𝜆), 𝜆 ∈ Ω and

𝑔(𝜆) ∈ 𝑓𝑛(𝜆)ℬ𝑓(𝜆); 𝑔(𝜆) ∈ 𝑓𝑗(𝜆)𝒜𝑗𝑓(𝜆), 𝜆 ∈ Ω, 1 6 𝑗 6 𝑛− 1.

Suppose, further, that Ω+ and Ω− are two non-empty subsets of Ω, and each of
them admits a cluster point in Ω. Define �̃� := 𝑠𝑝𝑎𝑛{𝑓(𝜆) : 𝜆 ∈ Ω}, 𝐻𝑖(𝜆, 𝑡) by
(226), and 𝐹𝑖(𝜆, 𝑡) := 𝐻𝑖(𝜆, 𝑡)𝑓(𝜆), for any 𝑡 > 0 and 𝜆 ∈ Ω. If

lim
𝑡→+∞

|𝐻𝑖(𝜆, 𝑡)| = +∞, 𝜆 ∈ Ω+ and lim
𝑡→+∞

𝐻𝑖(𝜆, 𝑡) = 0, 𝜆 ∈ Ω−,

then (378) is �̃�-topologically mixing. Furthermore, there exist continuous sections
𝑎𝑗,𝑖(𝜆, 𝑡) ∈ sec𝑐(𝒜𝑗𝐹𝑖(𝜆, 𝑡)) such that the terms D

𝛼𝑗

𝑡 𝑎𝑗,𝑖(𝜆, 𝑡) are well-defined (0 6
𝑗 6 𝑛, 𝑡 > 0, 𝜆 ∈ Ω) and

0 =

𝑛∑︁
𝑗=1

D
𝛼𝑗

𝑡 𝑎𝑗,𝑖(𝜆, 𝑡)−D𝛼
𝑡 𝑎0,𝑖(𝜆, 𝑡), 𝑡 > 0, 𝜆 ∈ Ω.

3.6.4. 𝒟-Hypercyclic and 𝒟-topologically mixing properties of ab-
stract degenerate multi-term fractional differential inclusions. Now we
will briefly explain how we can, following the method proposed in Subsection 2.10.4,
slightly generalize the notion introduced in the previous three subsections. For the
sake of simplicity, we will not consider here the orbits of multilinear mappings.

Denote by Z (Z𝑢𝑛𝑖𝑞) the set of all tuples of initial values �⃗� = (𝑥0, 𝑥1, . . . , 𝑥𝑚𝑛−1)
∈ 𝐸𝑚𝑛 for which there exists a (unique) strong solution of problem (378). Then Z is
a linear subspace of 𝐸𝑚𝑛 and Z𝑢𝑛𝑖𝑞 ⊆ Z. For any �⃗� ∈ Z, we denote by S(�⃗�) the set
consisting of all strong solutions of problem (378) with the initial value �⃗�. Assume
that P : Z → 𝑃 (∪�⃗�∈ZS(�⃗�)) is a fixed mapping satisfying ∅ ̸= P(�⃗�) ⊆ S(�⃗�), �⃗� ∈ Z.
Let ∅ ≠𝑊 ⊆ N𝑚𝑛

, let 𝐸𝑖 be a linear subspace of 𝐸 (𝑖 ∈𝑊 ), and let �̃�, �̌� be linear
subspaces of 𝐸𝑚𝑛 . Suppose that the tuple 𝛽 = (𝛽0, 𝛽1, . . . , 𝛽𝑚𝑛−1) ∈ [0, 𝛼𝑛]

𝑚𝑛 is
fixed. Set, with a little abuse of notation in comparision with Subsection 2.10.4,

D := (�̃�, �̌�, {𝐸𝑖 : 𝑖 ∈𝑊}, 𝛽).
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Denote by ℳD the set consisting of those tuples �⃗� ∈ Z for which Proj𝑖,𝑚𝑛
(�⃗�) ∈ 𝐸𝑖,

𝑖 ∈𝑊 .

Definition 3.6.10. (cf. also Definition 2.10.20) The abstract Cauchy problem
(378) is said to be:

(i) (D,P)-hypercyclic iff there exist a tuple �⃗� ∈ ℳD ∩ �̃� and a function
𝑢(·; �⃗�) ∈ P(�⃗�) such that

G :=
{︀(︀

(D𝛽0
𝑠 𝑢(𝑠; �⃗�))𝑠=𝑡, (D

𝛽1
𝑠 𝑢(𝑠; �⃗�))𝑠=𝑡, . . . , (D

𝛽𝑚𝑛−1
𝑠 𝑢(𝑠; �⃗�))𝑠=𝑡

)︀
: 𝑡 > 0

}︀
is a dense subset of �̌�; such a vector is called a (D,P)-hypercyclic vector
of problem (378).

(ii) D-hypercyclic iff it is (D,S)-hypercyclic; any (D,S)-hypercyclic vector of
problem (378) will be also called a D-hypercyclic vector of problem (378).

(iii) DP-topologically transitive iff for every pair of open non-empty subsets
𝑈 and 𝑉 of 𝐸𝑚𝑛 satisfying 𝑈 ∩ �̃� ̸= ∅ and 𝑉 ∩ �̌� ̸= ∅, there exist a
tuple �⃗� ∈ ℳD, a function 𝑢(·; �⃗�) ∈ P(�⃗�) and a number 𝑡 > 0 such that
�⃗� ∈ 𝑈 ∩ �̃� and

(380)
(︀
(D𝛽0

𝑠 𝑢(𝑠; �⃗�))𝑠=𝑡, (D
𝛽1
𝑠 𝑢(𝑠; �⃗�))𝑠=𝑡, . . . , (D

𝛽𝑚𝑛−1
𝑠 𝑢(𝑠; �⃗�))𝑠=𝑡

)︀
∈ 𝑉 ∩ �̌�.

(iv) D-topologically transitive iff it is DS-topologically transitive.
(v) DP-topologically mixing iff for every pair of open non-empty subsets 𝑈

and 𝑉 of 𝐸𝑚𝑛 satisfying 𝑈 ∩ �̃� ̸= ∅ and 𝑉 ∩ �̌� ̸= ∅, there exists a number
𝑡0 > 0 such that, for every number 𝑡 > 𝑡0, there exist a tuple 𝑥𝑡 ∈ ℳD

and a function 𝑢(·;𝑥𝑡) ∈ P(𝑥𝑡) such that 𝑥𝑡 ∈ 𝑈 ∩ �̃� and (380) holds with
vector �⃗� replaced by 𝑥𝑡 therein.

(vi) D-topologically mixing iff it is DS-topologically mixing.

Remark 3.6.11. Let 0 6 𝛽 6 𝛼 < 2, and let the requirements of Theorem 3.6.3
hold (here the notation used to denote the space �̃� is slightly different from that
used in the formulation of above-mentioned theorem). Then the consideration from
Remark 2.10.21(ii) shows that the problem (DFP)𝛼 is DP-topologically mixing,
provided that 𝛽 = (𝛽, 𝛽), 𝑊 = {1}, �̂�1 = 𝑠𝑝𝑎𝑛{𝑓(𝜆𝛼) : 𝜆 ∈ Ω}, �̃� = �̂�1 × {0},
�̌� = {(𝑧, 𝑧) : 𝑧 ∈ �̂�1} and P((

∑︀𝑚
𝑖=1 𝛼𝑖𝑓(𝜆

𝛼
𝑖 ), 0)) = {

∑︀𝑚
𝑖=1 𝛼𝑖𝐸𝛼(·𝛼𝜆𝛼𝑖 )𝑓(𝜆𝛼𝑖 )} (𝑚 ∈

N, 𝛼𝑖 ∈ C, 𝜆𝑖 ∈ Ω for 1 6 𝑖 6 𝑚). By assuming some extra conditions, a similar
assertion can be proved for a general problem (378) (cf. Remark 2.10.21(iii)).

The conjugacy lemma stated in Theorem 2.10.23 admits a very simple refor-
mulation in our context. Using the proof of Theorem 2.10.24 and the usual matrix
conversion of abstract higher-order differential equations with integer order deriva-
tives into the first order matrix differential equation, we can simply verify the
validity of following analogue of Theorem 2.10.24.

Theorem 3.6.12. Let 𝛼𝑖 = 𝑖 for all 𝑖 ∈ N𝑛, let Ω be an open non-empty subset
of C intersecting the imaginary axis, and let 𝑓 : Ω → 𝐸 be an analytic mapping
satisfying

0 ∈
(︂
𝜆𝛼𝑛ℬ +

𝑛−1∑︁
𝑖=1

𝜆𝛼𝑖𝒜𝑖 −𝒜
)︂
𝑓(𝜆), 𝜆 ∈ Ω.
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Set 𝑥𝜆 := [𝑓(𝜆) 𝜆𝑓(𝜆) . . . 𝜆𝑛−1𝑓(𝜆)]𝑇 (𝜆 ∈ Ω), 𝐸0 := 𝑠𝑝𝑎𝑛{𝑥𝜆 : 𝜆 ∈ Ω}, �̃� :=

�̌� := 𝐸0, 𝛽 := (0, 1, . . . , 𝑛 − 1), 𝑊 := N𝑛 and 𝐸𝑖 := 𝑠𝑝𝑎𝑛{𝑓(𝜆) : 𝜆 ∈ Ω}, 𝑖 ∈ 𝑊 .
Then 𝑥𝜆 ∈ MD, 𝜆 ∈ Ω and the abstract Cauchy problem (378) is DP-topologically
mixing provided that

∑︀𝑞
𝑗=1 𝑒

𝜆𝑗 ·𝑓(𝜆𝑗) ∈ P(
∑︀𝑞

𝑗=1 𝑥𝜆𝑗 ) for any
∑︀𝑞

𝑗=1 𝑥𝜆𝑗 ∈ 𝐸0 (𝑞 ∈
N; 𝜆𝑗 ∈ Ω, 1 6 𝑗 6 𝑞).

As observed in Remark 2.10.25(iii), Theorem 3.6.12 cannot be so simply refor-
mulated for the abstract degenerate multi-term inclusion (378), provided that there
exists an index 𝑖 ∈ N𝑛 such that 𝛼𝑖 /∈ N. Examples already given in [292, Chapter
3] and Section 2.10 can serve for illustration of our theoretical results. Now we
would like to present some new elaborate examples in support of Theorem 3.6.3,
Theorem 3.6.9 and Theorem 3.6.12.

Example 3.6.13. (i) Suppose that 𝐸 := 𝐶2(R) is equipped with the
usual Fréchet topology, 0 < 𝛼 < 2, 𝑚 ∈ 𝐶(R) and 𝑚(𝑥) > 0, 𝑥 ∈ R. For
any 𝜆 ∈ C, we denote by {𝑓1𝜆(𝑥), 𝑓2𝜆(𝑥)} the fundamental set of solutions of
ordinary differential equation 𝑦′′ = 𝜆𝑚(𝑥)𝑦. Using the elementary theory
of linear ordinary differential equations, and direct computation of matrix
exponential

𝑒
𝑥
[︀

0 1
−𝜆𝑚(𝑥) 0

]︀
, 𝑥 ∈ R, 𝜆 ∈ Cr (−∞, 0],

we can simply prove that for any arbitrarily chosen open connected subset
Ω of C r (−∞, 0] satisfying that Ω ∩ {𝑒±𝑖𝑡𝛼/2 : 𝑡 > 0} ≠ ∅, the mappings
𝜆 ↦→ 𝑓1𝜆(𝑥) ∈ 𝐸 and 𝜆 ↦→ 𝑓2𝜆(𝑥) ∈ 𝐸 are analytic. Let Ω be such a
set. Denote �̃� := 𝑠𝑝𝑎𝑛{𝑓 𝑖𝜆(𝑥) : 𝜆 ∈ Ω, 𝑖 = 1, 2}. Then we can apply The-
orem 3.6.3 in order to see that the abstract time-fractional Poisson heat
equation:

D𝛼
𝑡 [𝑚(𝑥)𝑢(𝑡, 𝑥)] = Δ𝑢(𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ R;

𝑚(𝑥)𝑢(0, 𝑥) = 𝜑(𝑥);
(︁ 𝜕
𝜕𝑡

[𝑚(𝑥)𝑢(𝑡, 𝑥)]
)︁
𝑡=0

= 0, if 𝛼 > 1,

is �̃�-topologically mixing, with the meaning clear.
(ii) Suppose that 𝑛 = 3, 1

3 < 𝑎 < 1
2 , 𝛼3 = 3𝑎, 𝛼2 = 2𝑎, 𝛼1 = 0, 𝛼 = 𝑎, 𝑐1 < 0,

𝑐2 > 0 and 𝑖 = 1. Then the analysis given in [292, Example 3.3.12(iii)],
in combination with Theorem 3.6.9, enables one to deduce some results
on topologically mixing properties of the following abstract degenerate
multi-term inclusion:

0 ∈ D3𝑎
𝑡 𝑢(𝑡) + 𝑐2D

2𝑎
𝑡 𝑢(𝑡) + 𝑐1D

𝑎
𝑡 𝑢(𝑡)−𝒜𝑢(𝑡), 𝑡 > 0,

𝑢(0) = 0, 𝑢′(0) = 𝑥, 𝑢′′(0) = 0,

where 𝒜 is an MLO and satisfies certain conditions.
(iii) Suppose that A is an MLO, Ω is an open non-empty subset of C intersect-

ing the imaginary axis, 𝑓 : Ω → 𝐸 is an analytic mapping, 𝜆𝑓(𝜆) ∈ A𝑓(𝜆),
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𝜆 ∈ Ω, 𝑃𝑖(𝑧) is a non-zero complex polynomial (0 6 𝑖 6 𝑛) and

(381) 𝑧𝑛𝑃𝑛(𝑧) +

𝑛−1∑︁
𝑖=1

𝑧𝑖𝑃𝑖(𝑧)− 𝑃0(𝑧) ≡ 0.

Set 𝒜𝑖 := 𝑃𝑖(A), 𝑖 ∈ N0
𝑛. Then for any non-zero complex polynomial

𝑃 (𝑧) we have 𝑃 (𝜆)𝑓(𝜆) ∈ 𝑃 (A)𝑓(𝜆), 𝜆 ∈ Ω so that (381) implies

0 ∈
(︂
𝜆𝑛ℬ +

𝑛−1∑︁
𝑖=1

𝜆𝑖𝒜𝑖 −𝒜
)︂
𝑓(𝜆), 𝜆 ∈ Ω.

Hence, Theorem 3.6.12 is susceptible to applications.

3.7. Perturbation results for abstract degenerate Volterra
integro-differential equations

We start this section by observing that the following simple lemma holds for
multivalued linear operators in locally convex spaces.

Lemma 3.7.1. Let 𝒜 be an MLO in 𝐸, and let 𝐵 ∈ 𝐿(𝐸). If 𝜆 ∈ 𝜌(𝒜) and
1 ∈ 𝜌(𝐵(𝜆−𝒜)−1), then 𝜆 ∈ 𝜌(𝒜+𝐵) and

(𝜆− (𝒜+𝐵))−1 = (𝜆−𝒜)−1(1−𝐵(𝜆−𝒜)−1)−1.

Proof. Clearly,

(𝜆−𝒜)−1(1−𝐵(𝜆−𝒜)−1)−1 = ((1−𝐵(𝜆−𝒜)−1)(𝜆−𝒜))−1

= (𝜆−𝒜−𝐵(𝜆−𝒜)−1(𝜆−𝒜))−1

⊇ (𝜆−𝒜−𝐵)−1.

Therefore, it suffices to show that

𝑥 ∈ (𝜆−𝒜−𝐵)(𝜆−𝒜)−1(1−𝐵(𝜆−𝒜)−1)−1𝑥, 𝑥 ∈ 𝐸.

But, this is an immediate consequence of the fact that 𝑥 = (1−𝐵(𝜆−𝒜)−1)−1𝑥−
𝐵(𝜆−𝒜)−1(1−𝐵(𝜆−𝒜)−1)−1𝑥, 𝑥 ∈ 𝐸. �

Keeping in mind Lemma 3.7.1, the identity [199, (1.2)] and the argumenta-
tion already given in non-degenerate case, the assertions of [292, Theorem 2.6.18-
Theorem 2.6.19] can be reformulated for (𝑎, 𝑘)-regularized resolvent families in Ba-
nach spaces, more or less, without substantial difficulties. The situation is simpler
with the assertions of [349, Theorem 4.1, Corollary 4.5], which can be almost
straightforwardly reformulated for certain classes of 𝐾-convoluted semigroups gen-
erated by mutivalued linear operators.

The main problem in transferring [292, Theorem 2.6.3] to (𝑎, 𝑘)-regularized
resolvent families subgenerated by mutivalued linear operators lies in the fact that
it is not clear how one can prove that the operator 𝐼 − (𝒜 + 𝐵)/𝜆𝛼, appearing
in the final part of the proof of this theorem, is injective for Re𝜆 > 0 suff. large
and 𝑘(𝜆)�̃�(𝜆) ̸= 0 (cf. also [292, Theorem 2.6.5, Corollary 2.6.6-Corollary 2.6.9]
for further information on this type of bounded commuting perturbations). Nev-
ertheless, the following illustrative example shows that there exist some situations
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when we can directly apply [292, Theorem 2.6.3] (here, concretely, one of its most
important consequences, [292, Corollary 2.6.6]) in the study of perturbation prop-
erties of some well-known degenerate equations of mathematical physics and their
fractional analogues:

Example 3.7.2. Assume that 𝑛 ∈ N and 𝑖𝐴𝑗 , 1 6 𝑗 6 𝑛 are commuting gener-
ators of bounded 𝐶0-groups on 𝐸 = 𝐿𝑝(R𝑛), for some 1 6 𝑝 <∞ (possible applica-
tions can be given in 𝐿𝑝(R𝑛)𝑙-type spaces, as well; cf. [541]). Set A := (𝐴1, . . . , 𝐴𝑛).
Suppose now that 𝑃1(𝑥) and 𝑃2(𝑥) are two non-zero complex polynomials in 𝑛
variables and 1 6 𝛼 < 2; put 𝑁1 := 𝑑𝑔(𝑃1(𝑥)) and 𝑁2 := 𝑑𝑔(𝑃2(𝑥)). Let 𝜔 > 0,
𝑁 ∈ N, 𝑟 ∈ (0, 𝑁 ], let 𝑄(𝑥) be an 𝑟-coercive complex polynomial of degree 𝑁 ,
𝑎 ∈ C r 𝑄(R𝑛) and 𝛾 = 𝑛

𝑟

⃒⃒
1
𝑝 − 1

2

⃒⃒
max

(︀
𝑁, 𝑁1+𝑁2

min(1,𝛼)

)︀
. Suppose that 𝑃2(𝑥) ̸= 0,

𝑥 ∈ R𝑛, 𝑃2(𝑥) is an elliptic polynomial, and (70) holds. Then [27, Corollary 8.3.4]
yields that 𝑃2(A)

−1
∈ 𝐿(𝐸) (the violation of this condition has some obvious un-

pleasant consequences on the existence and uniqueness of solutions of perturbed
problems); hence, 𝑃1(A) 𝑃2(A)

−1
is a closed linear operator in 𝐸. Set

𝑅𝛼(𝑡) :=
(︁
𝐸𝛼

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁
(𝑎−𝑄(𝑥))−𝛾

)︁
(A), 𝑡 > 0.

By the foregoing, we have that (𝑅𝛼(𝑡))𝑡>0 ⊆ 𝐿(𝐸) is a global exponentially bounded
(𝑔𝛼, 𝑅𝛼(0))-regularized resolvent family generated by 𝑃1(A) 𝑃2(A)

−1
. Set𝐷𝑓(𝑥) :=∫︀∞

−∞ 𝜓(𝑥 − 𝑦)𝑓(𝑦)𝑑𝑦, 𝑓 ∈ 𝐸, where 𝜓 ∈ 𝐿1(R𝑛). Then 𝐷 ∈ 𝐿(𝐸) and commutes

with 𝑃1(A) 𝑃2(A)
−1

. Applying [292, Corollary 2.6.6], we get that the operator
𝑃1(A) 𝑃2(A)

−1
+ 𝐷 generates an exponentially bounded (𝑔𝛼, 𝑅𝛼(0))-regularized

resolvent family, which can be applied in the study of the following perturbation of
the abstract fractional Barenblatt–Zheltov–Kochina equation

(𝜂Δ− 1)D𝛼
𝑡 𝑢(𝑡) + Δ𝑢 =

∫︁ ∞

−∞
𝜓(𝑥− 𝑦)(𝜂Δ− 1)𝑢(𝑡, 𝑦)𝑑𝑦 (𝜂 > 0),

equipped with the usual initial conditions. We can similarly treat the following
perturbation of abstract Boussinesq equation of second order

(𝜎2Δ− 1)𝑢𝑡𝑡 + 𝛾2Δ𝑢 =

∫︁ ∞

−∞
𝜓(𝑥− 𝑦)(𝜎2Δ− 1)𝑢(𝑡, 𝑦)𝑑𝑦 (𝜎 > 0, 𝛾 > 0).

We shall present one more example in support of use of perturbation theory
for abstract non-degenerate differential equations (a similar approach works in the
analysis of analytical solutions of perturbed abstract fractional Barenblatt–Zheltov–
Kochina equations in finite domains):

Example 3.7.3. In Example 3.2.17, we have already considered the following
fractional analogue of Benney–Luke equation:

(𝑃 )𝜂,𝑓 :

⎧⎪⎨⎪⎩
(𝜆−Δ)D𝜂

𝑡 𝑢(𝑡, 𝑥) = (𝛼Δ− 𝛽Δ2)𝑢(𝑡, 𝑥) + 𝑓(𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ Ω,(︀
𝜕𝑘

𝜕𝑡𝑘
𝑢(𝑡, 𝑥)

)︀
𝑡=0

= 𝑢𝑘(𝑥), 𝑥 ∈ Ω, 0 6 𝑘 6 ⌈𝜂⌉ − 1,

𝑢(𝑡, 𝑥) = Δ𝑢(𝑡, 𝑥) = 0, 𝑡 > 0, 𝑥 ∈ 𝜕Ω,
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where ∅ ≠ Ω ⊆ R𝑛 is a bounded domain with smooth boundary, Δ is the Dirichlet
Laplacian in 𝐸 = 𝐿2(Ω), acting with domain 𝐻2(Ω)∩𝐻1

0 (Ω), 𝜆 ∈ 𝜎(Δ), 0 < 𝜂 < 2
and 𝛼, 𝛽 > 0. Denote by {𝜆𝑘} [= 𝜎(Δ)] the eigenvalues of Δ in 𝐿2(Ω) (recall that
0 < −𝜆1 6 −𝜆2 . . . 6 −𝜆𝑘 6 · · · → +∞ as 𝑘 → ∞) numbered in nonascending
order with regard to multiplicities; by {𝜑𝑘} ⊆ 𝐶∞(Ω) we denote the correspond-
ing set of mutually orthogonal eigenfunctions. Let 𝐸0 be the closed subspace of
𝐸 consisting of those functions from 𝐸 that are orthogonal to the eigenfunctions
𝜑𝑘(·) for 𝜆𝑘 = 𝜆. Define the closed single-valued linear operator A in 𝐸0 by its
graph: A = {(𝑓, 𝑔) ∈ 𝐸0 × 𝐸0 : (𝜆 − 𝜆𝑘)⟨𝑔, 𝜑𝑘⟩ = (𝛼𝜆𝑘 − 𝛽𝜆2𝑘)⟨𝑓, 𝜑𝑘⟩ for all 𝑘 ∈
N with 𝜆𝑘 ̸= 𝜆}. Then the operator A generates an exponentially bounded, an-
alytic (𝑔𝜂, 𝐼)-regularized resolvent family of angle 𝜃 ≡ min((𝜋/𝜂) − (𝜋/2), 𝜋/2).
Suppose that 𝐵 is a closed linear operator in 𝐸 satisfying that there exists a num-
ber 𝑎 > 0 such that for all sufficiently small numbers 𝑏 > 0 we have 𝐷(A) ⊆ 𝐷(𝐵)
and ‖𝐵𝑓‖ 6 𝑎‖𝑓‖ + 𝑏‖A𝑓‖, 𝑓 ∈ 𝐷(A). Applying [61, Theorem 2.25] and our
previous analyses, we get that the problem (𝑃 )𝜂,𝐵,𝑓 , obtained by replacing the
term 𝑓(𝑡, 𝑥) on the right-hand side of the first equation of problem (𝑃 )𝜂,𝑓 by
(𝜆 − Δ)𝐵𝑢(𝑡, 𝑥) + 𝑓(𝑡, 𝑥), has a unique solution provided that 𝑥0 ∈ 𝐷(Δ2) ∩ 𝐸0,
𝑥1 ∈ 𝐷(Δ) ∩ 𝐸0, if 𝜂 > 1,

∑︀
𝑘|𝜆𝑘 ̸=𝜆

⟨𝑓(·),𝜑𝑘⟩
𝜆−𝜆𝑘

𝜑𝑘 = ℎ ∈𝑊 1,1
𝑙𝑜𝑐 ([0,∞) : 𝐸0) satisfies

𝑡 ↦→
∑︁

𝑘|𝜆𝑘 ̸=𝜆

(𝛼𝜆𝑘 − 𝛽𝜆2𝑘)
⟨ 𝑑
𝑑𝑡

(𝑔𝜂 * ℎ)(𝑡), 𝜑𝑘
⟩
𝜑𝑘 ∈ 𝐿1

𝑙𝑜𝑐([0,∞) : 𝐸0),

𝐵𝜑𝑘 = 0 for 𝜆 = 𝜆𝑘, and the condition (Q) holds. Finally, we would like to
observe that V. E. Fedorov and O. A. Ruzakova have analyzed in [219, Section
5], by using a completely different method, perturbations of degenerate differential
equations of first order involving polynomials of elliptic selfadjoint operators, as
well as that V. E. Fedorov and L. V. Borel have analyzed in [207] a class of loaded
degenerate integro-differential equations proving particularly some results on the
modifed Benney–Luke equation of the form

(𝜆−Δ)𝑢𝑡(𝑡, 𝑥) = (𝛼Δ−𝛽Δ2)𝑢(𝑡, 𝑥)+

∫︁ 𝑇

0

∫︁
Ω

𝑘(𝑥, 𝑦, 𝑡, 𝑠)𝑢(𝑦, 𝑠)𝑑𝑦 𝑑𝜇(𝑠), 𝑡 ∈ [0, 𝑇 ],

where 𝜇 : [0, 𝑇 ] → R is a function of bounded variation. Observe that the analysis
contained in Example 3.2.17 together with [291, Theorem A.12] enables one to look
into the well-posedness of the following integral equation

(𝜆−Δ)𝑢𝑡(𝑡, 𝑥) = (𝛼Δ− 𝛽Δ2)(𝑔𝜂 * 𝑢)(𝑡, 𝑥) + (𝜆−Δ)

∫︁ 𝑡

0

𝐵(𝑡− 𝑠)𝑢(𝑠)𝑑𝑠, 𝑡 > 0,

where 𝐵(·) satisfies certain properties.

The assertion of [292, Theorem 2.6.11] admits an extension in our context. We
will give some details of the proof immediately after considering Theorem 3.7.5.

Theorem 3.7.4. Suppose 𝑀 > 0, 𝜔 > 0, the functions |𝑎|(𝑡) and 𝑘(𝑡) satisfy
(P1), as well as 𝒜 is a densely defined, closed subgenerator of an (𝑎, 𝑘)-regularized
𝐶-resolvent family (𝑅(𝑡))𝑡>0 which satisfies that, for every seminorm 𝑝 ∈ ~, we
have 𝑝(𝑅(𝑡)𝑥) 6 𝑀𝑒𝜔𝑡𝑝(𝑥), 𝑥 ∈ 𝐸, 𝑡 > 0. Suppose, further, 𝐶−1𝐵 ∈ 𝐿(𝐸),
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𝐵𝐶𝑥 = 𝐶𝐵𝑥, 𝑥 ∈ 𝐷(𝒜), there exist a locally integrable function 𝑏(𝑡) and a number
𝜔0 > 𝜔 such that |𝑏|(𝑡) satisfies (P1) and �̃�(𝜆) = �̃�(𝜆)

�̃�(𝜆)
, 𝜆 > 𝜔0, 𝑘(𝜆) ̸= 0. Let

𝜇 > 𝜔0 and 𝛾 ∈ [0, 1) be such that

(382)
∫︁ ∞

0

𝑒−𝜇𝑡𝑝

(︂
𝐶−1𝐵

∫︁ 𝑡

0

𝑏(𝑡− 𝑠)𝑅(𝑠)𝑥 𝑑𝑠

)︂
𝑑𝑡 6 𝛾𝑝(𝑥), 𝑥 ∈ 𝐷(𝒜), 𝑝 ∈ ~.

Then the operator 𝒜+𝐵 is a closed subgenerator of an (𝑎, 𝑘)-regularized 𝐶-resolvent
family (𝑅𝐵(𝑡))𝑡>0 which satisfies 𝑝(𝑅𝐵(𝑡)𝑥) 6 𝑀

1−𝛾 𝑒
𝜇𝑡𝑝(𝑥), 𝑥 ∈ 𝐸, 𝑡 > 0, 𝑝 ∈ ~

and

𝑅𝐵(𝑡)𝑥 = 𝑅(𝑡)𝑥+

∫︁ 𝑡

0

𝑅𝐵(𝑡− 𝑟)𝐶−1𝐵

∫︁ 𝑟

0

𝑏(𝑟 − 𝑠)𝑅(𝑠)𝑥 𝑑𝑠 𝑑𝑟, 𝑡 > 0, 𝑥 ∈ 𝐷(𝒜).

Furthermore, the equation (272) holds with 𝑅(𝑡) replaced by 𝑅𝐵(𝑡) therein.

As observed in [292, Theorem 2.6.12], in many cases we do not have the exis-
tence of a function 𝑏(𝑡) and a complex number 𝑧 such that �̃�(𝜆)/𝑘(𝜆) = �̃�(𝜆) + 𝑧,
Re𝜆 > 𝜔1, 𝑘(𝜆) ̸= 0 (in this case, Theorem 3.7.4 continues to hold with some
natural adaptations). The above-mentioned theorem admits an extension in our
context, as well. Before we formulate this extension, let us only outline a few rel-
evant details needed for its proof. First of all, suppose that 𝒜 is a subgenerator
of an (𝑎, 𝑘)-regularized 𝐶-resolvent family (𝑅(𝑡))𝑡∈[0,𝜏), 𝑙 ∈ N and 𝑥𝑗 ∈ 𝒜𝑥𝑗−1 for
1 6 𝑗 6 𝑙. Then we have already seen that, for every 𝑡 ∈ [0, 𝜏),

𝑅(𝑡)𝑥0 = 𝑘(𝑡)𝐶𝑥0 +

𝑙−1∑︁
𝑗=1

(𝑎*,𝑗 * 𝑘)(𝑡)𝐶𝑥𝑗 + (𝑎*,𝑙 *𝑅(·)𝑥𝑙)(𝑡).

In the case that 𝜏 = ∞ and the Laplace transform can be applied, the above
equation implies that, for certain values of complex parameter 𝜆, we have:

𝑘(𝜆)(𝐼 − �̃�(𝜆)𝒜)−1𝑥0 = 𝑘(𝜆)𝐶𝑥0 +

𝑙−1∑︁
𝑗=1

�̃�(𝜆)𝑗𝑘(𝜆)𝐶𝑥𝑗 + �̃�(𝜆)𝑙𝑘(𝜆)(𝐼 − �̃�(𝜆)𝒜)−1𝑥𝑙.

If we define the operator family (𝑆(𝑡))𝑡>0 as explained below, then the previous
equation implies that the identity [292, (180)] continues to hold with the single-
valued operator 𝐴 replaced by the MLO 𝒜, provided in addition that the number
𝜆 in this equation satisfies �̃�(𝜆) ̸= 0. Furthermore, the identities [292, (181), (183)]
also hold, and the assumption 𝑦 ∈ (𝐼− �̃�(𝜆)(𝒜+𝐵))𝑥 implies on account of Lemma
1.2.4 and the validity of identity [292, (180)] that ̃︂𝑅𝐵(𝜆)𝑦 = (𝐼 −𝑆(𝜆))−1𝑘(𝜆)(𝐼 −
�̃�(𝜆)𝒜)−1𝐶𝑦 = 𝑘(𝜆)𝐶𝑥 for Re𝜆 > 0 suff. large and �̃�(𝜆)𝑘(𝜆) ̸= 0. Owing to
the condition (i) in Theorem 3.7.5, we have that the operator 𝒜+𝐵 is closed and
commutes with 𝐶. The representation (𝐼−𝑆(𝜆))−1 =

∑︀∞
𝑛=0[(

1
�̃�(𝜆)−𝒜)−1𝐶𝐶−1𝐵]𝑛

implies along with the closedness of 𝒜 that

𝑘(𝜆)𝐶𝑥 ∈
(︁ 1

�̃�(𝜆)
− (𝒜+𝐵)

)︁
(𝐼 − 𝑆(𝜆))−1𝑘(𝜆)

(︁ 1

�̃�(𝜆)
−𝒜

)︁−1

𝐶𝑥, 𝑥 ∈ 𝐸,

and 𝑅(𝐶) ⊆ 𝑅(𝐼 − �̃�(𝜆)(𝒜 + 𝐵)) for Re𝜆 > 0 suff. large and �̃�(𝜆)𝑘(𝜆) ̸= 0. Now
it is clear that the Laplace transform identity [292, (182)] holds with the operator



3.7. PERTURBATION RESULTS FOR ABSTRACT DEGENERATE VOLTERRA... 400

𝐴+𝐵 replaced by 𝒜+𝐵, provided in addition that the number 𝜆 in this equation
satisfies �̃�(𝜆) ̸= 0. After that, we can apply Laplace transform. The following
holds:

Theorem 3.7.5. Suppose 𝑀, 𝑀1 > 0, 𝜔 > 0, 𝑙 ∈ N and 𝒜 is a closed subgen-
erator of an (𝑎, 𝑘)-regularized 𝐶-resolvent family (𝑅(𝑡))𝑡>0 such that 𝑝(𝑅(𝑡)𝑥) 6
𝑀𝑒𝜔𝑡𝑝(𝑥), 𝑥 ∈ 𝐸, 𝑡 > 0, 𝑝 ∈ ~ and (272) holds. Let |𝑎|(𝑡) and 𝑘(𝑡) satisfy (P1),
and let the following conditions hold:

(i) 𝐵𝐶𝑥 = 𝐶𝐵𝑥, 𝑥 ∈ 𝐷(𝒜); if 𝑥 = 𝑥0 ∈ 𝐷(𝒜), then 𝐶−1𝐵𝑥 ∈ 𝐷(𝒜𝑙) and
there exists a sequence (𝑥𝑗)16𝑗6𝑙 such that 𝑥𝑗 ∈ 𝒜𝑥𝑗−1 for 1 6 𝑗 6 𝑙, as
well as that:

𝑝(𝐶𝑥𝑗) 6𝑀1𝑝(𝑥), 𝑥 ∈ 𝐷(𝒜), 𝑝 ∈ ~, 0 6 𝑗 6 𝑙 − 1, and

𝑝(𝑥𝑙) 6𝑀1𝑝(𝑥), 𝑥 ∈ 𝐷(𝒜), 𝑝 ∈ ~.

(ii) There exist a locally integrable function 𝑏(𝑡) and a complex number 𝑧 such
that |𝑏|(𝑡) satisfies (P1) and

�̃�(𝜆)𝑙+1
⧸︀
𝑘(𝜆) = �̃�(𝜆) + 𝑧, Re𝜆 > max(𝜔, abs(|𝑎|), abs(𝑘)), 𝑘(𝜆) ̸= 0.

(iii) lim𝜆→+∞
∫︀∞
0
𝑒−𝜆𝑡|𝑎(𝑡)|𝑑𝑡 = 0 and lim𝜆→+∞

∫︀∞
0
𝑒−𝜆𝑡|𝑏(𝑡)|𝑑𝑡 = 0.

Define, for every 𝑥 = 𝑥0 ∈ 𝐷(𝒜) and 𝑡 > 0,

𝑆(𝑡)𝑥 :=

𝑙−1∑︁
𝑗=0

𝑎*,𝑗+1(𝑡)𝐶𝑥𝑗 +

∫︁ 𝑡

0

𝑏(𝑡− 𝑠)𝑅(𝑠)𝑥𝑙𝑑𝑠+ 𝑧𝑅(𝑡)𝑥𝑙,

where (𝑥𝑗)16𝑗6𝑙 is an arbitrary sequence satisfying the assumptions prescribed in
(i). Then, for every 𝑥 ∈ 𝐸, there exists a unique solution of the integral equation

(383) 𝑅𝐵(𝑡)𝑥 = 𝑅(𝑡)𝑥+ (𝑆 *𝑅𝐵)(𝑡)𝑥, 𝑡 > 0;

furthermore, (𝑅𝐵(𝑡))𝑡>0 is an (𝑎, 𝑘)-regularized 𝐶-resolvent family with a closed
subgenerator 𝒜 + 𝐵, there exist 𝜇 > max(𝜔, abs(|𝑎|), abs(𝑘)) and 𝛾 ∈ [0, 1) such
that 𝑝(𝑅𝐵(𝑡)𝑥) 6 𝑀

1−𝛾 𝑒
𝜇𝑡𝑝(𝑥), 𝑥 ∈ 𝐸, 𝑡 > 0, 𝑝 ∈ ~ and (272) holds with 𝑅(𝑡)

replaced by 𝑅𝐵(𝑡) therein.

Remark 3.7.6. It is worth noting that Theorem 3.7.4 continues to hold, with
appropriate changes, in the case that 𝐵 is not necessarily bounded operator from
𝐷(𝒜) into 𝐸. More precisely, suppose that 𝐸 is complete, 𝐵 is a closed linear
operator in 𝐸, and the requirements of Theorem 3.7.4 hold with the condition
𝐶−1𝐵 ∈ 𝐿(𝐸) replaced by that 𝐷(𝒜) ⊆ 𝐷(𝐶−1𝐵) and the mapping 𝑡 ↦→ 𝐶−1𝐵(𝑏 *
𝑅)(𝑡)𝑥, 𝑡 > 0 is well-defined, continuous and Laplace transformable for all 𝑥 ∈
𝐷(𝒜). Then the final conclusions established in Theorem 3.7.4 remain valid; here,
it is only worth noting that the closedness of the operator 𝒜 + 𝐵 can be proved
(cf. [292, Remark 2.6.13] for more details, especially, the condition (♮) therein) by
using the inclusion (𝐼 − 𝑆(𝜆))−1(𝐼 − �̃�(𝜆)(𝒜+𝐵))−1𝑥 ⊆ (𝐼 − �̃�(𝜆)𝒜)𝑥, 𝑥 ∈ 𝐷(𝒜).
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Remark 3.7.7. The method proposed in the proofs of [459, Theorem 1.2,
Theorem 2.3] and [292, Theorem 2.6.13] enables one to deduce some results on the
well-posedness of perturbed abstract Volterra inclusion:

(384) 𝑢(𝑡) ∈ 𝑓(𝑡) + (𝑎+ 𝑎 * 𝑘)(𝑡) * 𝒜𝑢(𝑡) + (𝑏 * 𝑢)(𝑡), 𝑡 ∈ [0, 𝜏),

provided that 𝒜 is a closed subgenerator of an exponentially equicontinuous (𝑎, 𝑘)-
regularized 𝐶-resolvent family (𝑅(𝑡))𝑡>0, 𝑏, 𝑘 ∈ 𝐿1

𝑙𝑜𝑐([0,∞)) and 𝑓 ∈ 𝐶([0,∞)).
The starting point is the observation that the regularized resolvent families for
(384) satisfy the integral equations like [459, (1.28)] or (383).

Now it is quite easy to formulate the following extension of [292, Corollary
2.6.15].

Corollary 3.7.8. Suppose 𝑀,𝑀1 > 0, 𝜔 > 0, 𝛼 > 0, 𝛽 > 0, 𝒜 is a closed
subgenerator of a (𝑔𝛼, 𝑔𝛼𝛽+1)-regularized 𝐶-resolvent family (𝑅(𝑡))𝑡>0 satisfying
𝑝(𝑅(𝑡)𝑥) 6 𝑀𝑒𝜔𝑡𝑝(𝑥), 𝑥 ∈ 𝐸, 𝑡 > 0, 𝑝 ∈ ~ and (272) holds with 𝑎(𝑡) = 𝑔𝛼(𝑡)
and 𝑘(𝑡) = 𝑔𝛼𝛽+1(𝑡). Assume exactly one of the following conditions:

(i) 𝛼− 1− 𝛼𝛽 > 0, 𝐵𝐶𝑥 = 𝐶𝐵𝑥, 𝑥 ∈ 𝐷(𝒜), and (a) ∨ (b), where:
(a) 𝑝(𝐶−1𝐵𝑥) 6𝑀1𝑝(𝑥), 𝑥 ∈ 𝐷(𝒜), 𝑝 ∈ ~.
(b) 𝐸 is complete, (382) holds, 𝐷(𝒜) ⊆ 𝐷(𝐶−1𝐵), as well as the map-

ping 𝑡 ↦→ 𝐶−1𝐵(𝑏 * 𝑅)(𝑡)𝑥, 𝑡 > 0 is well-defined, continuous and
Laplace transformable for all 𝑥 ∈ 𝐷(𝒜).

(ii) 𝛼 − 1 − 𝛼𝛽 < 0, 𝐵𝐶𝑥 = 𝐶𝐵𝑥, 𝑥 ∈ 𝐷(𝒜), 𝑙 = ⌈𝛼𝛽+1−𝛼
𝛼 ⌉ and (i) of

Theorem 3.7.5 holds.
Then there exist 𝜇 > 𝜔 and 𝛾 ∈ [0, 1) such that 𝒜 + 𝐵 is a closed subgenerator
of a (𝑔𝛼, 𝑔𝛼𝛽+1)-regularized 𝐶-resolvent family (𝑅𝐵(𝑡))𝑡>0 satisfying 𝑝(𝑅𝐵(𝑡)𝑥) 6
𝑀
1−𝛾 𝑒

𝜇𝑡𝑝(𝑥), 𝑥 ∈ 𝐸, 𝑡 > 0, 𝑝 ∈ ~, and (272) holds with 𝑅(𝑡) replaced by 𝑅𝐵(𝑡)

therein, with 𝑎(𝑡) = 𝑔𝛼(𝑡) and 𝑘(𝑡) = 𝑔𝛼𝛽+1(𝑡).

Observe that the local Hölder continuity is an example of the property that is
stable under perturbations described in the previous three assertions (cf. [292, Re-
mark 2.6.14] for more details, and [292, Remark 2.6.16] for inheritance of analytical
properties under perturbations described in Corollary 3.7.8).

Now we would like to provide an illustrative application of non-degenerate
version of Theorem 3.7.4 (possibilities for work exist even in the case that 𝐶 ̸= 𝐼
and 𝐸 is not a Banach space).

Example 3.7.9. In a great number of research papers, C. Lizama and his co-
authors have analyzed possibilities to apply Theorem 1.4.12(i) in the qualitative
analysis of abstract non-degenerate Volterra integro-differential equations. The
main goal of this example is to show how the above-mentioned result, combined with
Theorem 3.7.4, can be used for proving some sufficient conditions for generation of
specific classes of (𝑎, 𝑘)-regularized resolvent families. We continue the analysis of
R. Ponce and M. Warma [456] here.

Suppose that (𝐸, ‖ · ‖) is a Banach space, 𝛼 ∈ R, 𝛼 ̸= 0, 𝛽 > 0, 0 < 𝜁 6 1 and
𝜔 ∈ R. Let any of the following two conditions hold:
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(i) 𝛼 > 0, 𝒜 is an MLO satisfying

𝜔 +Σ𝜁𝜋/2 ⊆ 𝜌(𝒜) and ‖𝑅(𝜆 : 𝒜)‖ = 𝑂(|𝜆− 𝜔|−1), 𝜆 ∈ 𝜔 +Σ𝜁𝜋/2.(385)

(ii) 𝛼 < 0, 𝛼+ 𝛽𝜁 > |𝛼| and 𝒜 is an MLO satisfying (385).
Then it is well-known that the operator 𝒜|𝐷(𝒜)

is single-valued, linear and densely

defined in the Banach space 𝐷(𝒜), as well as that (385) holds with the operator
𝒜 replaced with the operator 𝒜|𝐷(𝒜)

; see e.g. [444, Lemma 4.1]. Set 𝑎(𝑡) :=

1+ (1 * 𝑘)(𝑡), where 𝑘(𝑡) := 𝛼𝑒−𝛽𝑡𝑔𝜁(𝑡). Owing to the proof of [456, Theorem 2.1],
we get that 𝒜|𝐷(𝒜)

generates an exponentially bounded (𝑎, 1)-regularized resolvent

family (𝑆𝜔(𝑡))𝑡>0 in𝐷(𝒜), provided that 𝜔 = 0. In the general case 𝜔 ̸= 0, Theorem
3.7.4 and decomposition 𝒜|𝐷(𝒜)

= (𝒜|𝐷(𝒜)
− 𝜔𝐼|𝐷(𝒜)

) + 𝜔𝐼|𝐷(𝒜)
show that 𝒜|𝐷(𝒜)

generates an exponentially bounded (𝑎, 1)-regularized resolvent family (𝑆(𝑡))𝑡>0 in
𝐷(𝒜), as well. This extends the assertion of [456, Corollary 2.2], and can be applied
in the analysis of Poisson heat equation with memory, in the space 𝐻−1(Ω); see
e.g. [199, Example 3.3]. The proof of [456, Theorem 2.3] works in degenerate case
and we may conclude the following: Let 𝛼 ̸= 0, 𝛽 > 0, 0 < 𝜁 < 𝜁 6 1, 𝜔 < 0 and
𝛽+𝜔 6 0. If (i) holds with the number 𝜁 replaced with the number 𝜁 therein, then
‖𝑆(𝑡)‖ = 𝑂(𝑒−𝛽𝑡), 𝑡 > 0; if (ii) holds with the number 𝜁 replaced with the number
𝜁 therein, then ‖𝑆(𝑡)‖ = 𝑂((1 + 𝛼𝜔𝑡𝜁+1)𝑒−(𝛽−(𝛼𝜔)1/(𝜁+1))𝑡), 𝑡 > 0.

The proof of following result is very similar to that of [292, Theorem 2.6.22]
and, because of that, we will skip it.

Theorem 3.7.10. Let 𝑘(𝑡) and |𝑎|(𝑡) satisfy (P1). Suppose 𝛿 ∈ (0, 𝜋/2], 𝜔 >
max(0, abs(|𝑎|), abs(𝑘)), there exist analytic functions 𝑘 : 𝜔+Σ𝜋

2 +𝛿 → C and �̂� : 𝜔+
Σ𝜋

2 +𝛿 → C such that 𝑘(𝜆) = 𝑘(𝜆), Re𝜆 > 𝜔, �̂�(𝜆) = �̃�(𝜆), Re𝜆 > 𝜔 and 𝑘(𝜆)�̂�(𝜆) ̸=
0, 𝜆 ∈ 𝜔 + Σ𝜋

2 +𝛿. Let 𝒜 be a closed subgenerator of an analytic (𝑎, 𝑘)-regularized
𝐶-resolvent family (𝑅(𝑡))𝑡>0 of angle 𝛿, and let (272) hold. Suppose that, for every
𝜂 ∈ (0, 𝛿), there exists 𝑐𝜂 > 0 such that

𝑝(𝑒−𝜔Re 𝑧𝑅(𝑧)𝑥) 6 𝑐𝜂𝑝(𝑥), 𝑥 ∈ 𝐸, 𝑝 ∈ ~, 𝑧 ∈ Σ𝜂,

as well as 𝑏, 𝑐 > 0, 𝐵 is a linear operator satisfying 𝐷(𝐶−1𝒜𝐶) ⊆ 𝐷(𝐵), 𝐵𝐶𝑥 =
𝐶𝐵𝑥, 𝑥 ∈ 𝐷(𝐶−1𝒜𝐶) and

𝑝(𝐶−1𝐵𝑥) 6 𝑏𝑝(𝑦) + 𝑐𝑝(𝑥), whenever (𝑥, 𝑦) ∈ 𝐶−1𝒜𝐶, 𝑝 ∈ ~.
Assume that at least one of the following conditions holds:

(i) 𝒜 is densely defined, the numbers 𝑏 and 𝑐 are sufficiently small, there
exists |𝐶|~ > 0 such that 𝑝(𝐶𝑥) 6 |𝐶|~𝑝(𝑥), 𝑥 ∈ 𝐸, 𝑝 ∈ ~ and, for every
𝜂 ∈ (0, 𝛿), there exists 𝜔𝜂 > 𝜔 such that |𝑘(𝜆)−1| = 𝑂(|𝜆|), 𝜆 ∈ 𝜔𝜂+Σ𝜋

2 +𝜂

and |�̂�(𝜆)/𝑘(𝜆)| = 𝑂(|𝜆|), 𝜆 ∈ 𝜔𝜂 +Σ𝜋
2 +𝜂.

(ii) 𝒜 is densely defined, the number 𝑏 is sufficiently small, there exists |𝐶|~ >
0 such that 𝑝(𝐶𝑥) 6 |𝐶|~𝑝(𝑥), 𝑥 ∈ 𝐸, 𝑝 ∈ ~ and, for every 𝜂 ∈ (0, 𝛿),
there exists 𝜔𝜂 > 𝜔 such that |𝑘(𝜆)−1| = 𝑂(|𝜆|), 𝜆 ∈ 𝜔𝜂 + Σ𝜋

2 +𝜂 and
�̂�(𝜆)/(𝜆𝑘(𝜆)) → 0, |𝜆| → ∞, 𝜆 ∈ 𝜔𝜂 +Σ𝜋

2 +𝜂.
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(iii) 𝒜 is densely defined, the number 𝑐 is sufficiently small, 𝑏 = 0 and, for
every 𝜂 ∈ (0, 𝛿), there exists 𝜔𝜂 > 𝜔 such that |�̂�(𝜆)/𝑘(𝜆)| = 𝑂(|𝜆|),
𝜆 ∈ 𝜔𝜂 +Σ𝜋

2 +𝜂.
(iv) 𝑏 = 0 and, for every 𝜂 ∈ (0, 𝛿), there exists 𝜔𝜂 > 𝜔 such that

�̂�(𝜆)/(𝜆𝑘(𝜆)) → 0, |𝜆| → ∞, 𝜆 ∈ 𝜔𝜂 +Σ𝜋
2 +𝜂.

Then 𝐶−1(𝐶−1𝒜𝐶 + 𝐵)𝐶 is the integral generator of an exponentially equicon-
tinuous, analytic (𝑎, 𝑘)-regularized 𝐶-resolvent family (𝑅𝐵(𝑡))𝑡>0 of angle 𝛿, which
satisfies 𝑅𝐵(𝑧)[𝐶

−1(𝐶−1𝒜𝐶 + 𝐵)𝐶] ⊆ [𝐶−1(𝐶−1𝒜𝐶 + 𝐵)𝐶]𝑅𝐵(𝑧), 𝑧 ∈ Σ𝛿 and
the following condition:

∀𝜂 ∈ (0, 𝛿) ∃𝜔′
𝜂 > 0 ∃𝑀𝜂 > 0 ∀𝑝 ∈ ~ :

𝑝(𝑅𝐵(𝑧)𝑥) 6𝑀𝜂𝑒
𝜔′

𝜂 Re 𝑧𝑝(𝑥), 𝑥 ∈ 𝐸, 𝑧 ∈ Σ𝜂.

Furthermore, in cases (iii) and (iv), the above remains true with the operator
𝐶−1(𝐶−1𝒜𝐶 +𝐵)𝐶 replaced by 𝐶−1𝒜𝐶 +𝐵.

In this book, we will not discuss possibilities to generalize results on rank
1-perturbations [26] and time-dependent perturbations [547] to (𝑎, 𝑘)-regularized
𝐶-resolvent families subgenerated by mutivalued linear operators; for more details
about non-degenerate case, we refer the reader to [292, Lemma 2.6.26–Theorem
2.6.33] and [292,Theorem 2.6.34, Corollary 2.6.35–Corollary 2.6.38, Theorem 2.6.40,
Corollary 2.6.42–Corollary 2.6.45]. In the following theorem, we will extend the
assertions of time-dependent perturbations [61, Theorem 2.26] and [292, Theorem
2.6.46(i)] to multivalued linear operators. The proof is very similar to that of
Theorem 3.7.13 below and, because of that, we will skip it.

Theorem 3.7.11. Suppose 𝛼 > 1, 𝑀 > 1, 𝜔 > 0 and 𝒜 is a closed subgenerator
of a (local) (𝑔𝛼, 𝐶)-regularized resolvent family (𝑆𝛼(𝑡))𝑡∈[0,𝜏) satisfying 𝑝(𝑆𝛼(𝑡)𝑥) 6
𝑀𝑒𝜔𝑡𝑝(𝑥), 𝑡 ∈ [0, 𝜏), 𝑥 ∈ 𝐸, 𝑝 ∈ ~ and (272) with 𝑅(𝑡) and 𝑎(𝑡) replaced by 𝑆𝛼(𝑡)
and 𝑔𝛼(𝑡), respectively. Let (𝐵(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝐸), R(𝐵(𝑡)) ⊆ R(𝐶), 𝑡 ∈ [0, 𝜏) and
𝐶−1𝐵(·) ∈ 𝐶([0, 𝜏) : 𝐿(𝐸)). Assume that 𝑡 ↦→ 𝐶−1𝑓(𝑡), 𝑡 ∈ [0, 𝜏) is a locally
integrable 𝐸-valued mapping such that the mapping 𝑡 ↦→ (𝑑/𝑑𝑡)𝐶−1𝑓(𝑡) is defined
for a.e. 𝑡 ∈ [0, 𝜏) and locally integrable on [0, 𝜏) (in the sense of [410, Definition
4.4.3]). Then there exists a unique solution of the integral Volterra inclusion:

(386) 𝑢(𝑡, 𝑓) ∈ 𝑓(𝑡)+𝒜
∫︁ 𝑡

0

𝑔𝛼(𝑡−𝑠)𝑢(𝑠, 𝑓)𝑑𝑠+
∫︁ 𝑡

0

𝑔𝛼(𝑡−𝑠)𝐵(𝑠)𝑢(𝑠, 𝑓)𝑑𝑠, 𝑡 ∈ [0, 𝜏);

here, by a solution of (386) we mean any continuous function 𝑢 ∈ 𝐶([0, 𝜏) : 𝐸) such
that there exists a continuous section 𝑢𝒜,𝛼,𝑓 (𝑡) ∈ sec𝑐(𝒜

∫︀ 𝑡

0
𝑔𝛼(𝑡 − 𝑠)𝑢(𝑠, 𝑓)𝑑𝑠) for

𝑡 ∈ [0, 𝜏), with the property that 𝑢(𝑡, 𝑓) = 𝑓(𝑡)+𝑢𝒜,𝛼,𝑓 (𝑡)+
∫︀ 𝑡

0
𝑔𝛼(𝑡−𝑠)𝐵(𝑠)𝑢(𝑠, 𝑓)𝑑𝑠,

𝑡 ∈ [0, 𝜏). The solution 𝑢(𝑡, 𝑓) is given by 𝑢(𝑡, 𝑓) :=
∑︀∞

𝑛=0 𝑆𝛼,𝑛(𝑡), 𝑡 ∈ [0, 𝜏), where
we define 𝑆𝛼,𝑛(𝑡) recursively by

(387) 𝑆𝛼,0(𝑡) := 𝑆𝛼(𝑡)𝐶
−1𝑓(0) +

∫︁ 𝑡

0

𝑆𝛼(𝑡− 𝑠)(𝐶−1𝑓)′(𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝜏)
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and

(388) 𝑆𝛼,𝑛(𝑡) :=

∫︁ 𝑡

0

∫︁ 𝑡−𝜎

0

𝑔𝛼−1(𝑡−𝜎−𝑠)𝑆𝛼(𝑠)𝐶
−1𝐵(𝜎)𝑆𝛼,𝑛−1(𝜎)𝑑𝑠 𝑑𝜎, 𝑡 ∈ [0, 𝜏).

Denote, for every 𝑇 ∈ (0, 𝜏) and 𝑝 ∈ ~, 𝐾𝑇,𝑝 := max𝑡∈[0,𝑇 ] 𝑝(𝐶
−1𝐵(𝑡)) and 𝐹𝑇,𝑝 :=

𝑝(𝐶−1𝑓(0)) +
∫︀ 𝑇

0
𝑒−𝜔𝑠𝑝((𝐶−1𝑓)′(𝑠))𝑑𝑠. Then, for every 𝑝 ∈ ~, we have:

𝑝(𝑢(𝑡, 𝑓)) 6𝑀𝑒𝜔𝑡𝐸𝛼(𝑀𝐾𝑇,𝑝𝑡
𝛼)𝐹𝑇,𝑝, 𝑡 ∈ [0, 𝑇 ]

and
𝑝(𝑢(𝑡, 𝑓)− 𝑆𝛼,0(𝑡)) 6𝑀𝑒𝜔𝑡(𝐸𝛼(𝑀𝐾𝑇,𝑝𝑡

𝛼)− 1)𝐹𝑇,𝑝, 𝑡 ∈ [0, 𝑇 ].

Motivated by the research of A. Favini and A. Yagi [199, Chapter III], we
introduce the following definition (for the sake of convenience, we shall work only
in Banach spaces).

Definition 3.7.12. Suppose that (𝐸, ‖·‖) is a Banach space, 𝛼 > 0, 𝜁 ∈ (0, 1),
0 < 𝜏 6 ∞, 𝒜 is an MLO in 𝐸, 𝐶 ∈ 𝐿(𝐸) is injective and 𝐶𝒜 ⊆ 𝒜𝐶. Then
it is said that a strongly continuous operator family (𝑅(𝑡))𝑡∈(0,𝜏) ⊆ 𝐿(𝐸) is a
(𝑔𝛼, 𝐶)-regularized resolvent family of growth order 𝜁, with a subgenerator 𝒜, iff
the family {𝑡𝜁𝑅(𝑡) : 𝑡 ∈ (0, 𝜏)} ⊆ 𝐿(𝐸) is bounded, as well as that 𝑅(𝑡)𝐶 = 𝐶𝑅(𝑡),
𝑅(𝑡)𝒜 ⊆ 𝒜𝑅(𝑡) (𝑡 ∈ (0, 𝜏)) and∫︁ 𝑡

0

𝑔𝛼(𝑡− 𝑠)𝑅(𝑠)𝑦 𝑑𝑠 = 𝑅(𝑡)𝑥− 𝐶𝑥, whenever 𝑡 ∈ (0, 𝜏) and (𝑥, 𝑦) ∈ 𝒜.

It directly follows from definition that, for every 𝜈 > 𝜁, the operator family
((𝑔𝜈 *𝑅)(𝑡))𝑡∈[0,𝜏) is a 𝑔𝜈-times integrated (𝑔𝛼, 𝐶)-regularized resolvent family with
a subgenerator 𝒜. Consider now the abstract integral Volterra inclusion (386)
in which we are finding solutions defined on the finite time interval (0, 𝜏), with
𝐵(·) ∈ 𝐶([0, 𝜏) : 𝐿(𝐸)) and 𝑓 ∈ 𝐶((0, 𝜏) : 𝐸). By a solution of (386) on (0, 𝜏) we
mean any continuous function 𝑢 ∈ 𝐶((0, 𝜏) : 𝐸) such that the mapping 𝑡 ↦→ 𝑢(𝑡, 𝑓),
𝑡 ∈ (0, 𝜏) is locally integrable at the point 𝑡 = 0 and there exists a continuous
section 𝑢𝒜,𝛼,𝑓 (𝑡) ∈ sec𝑐(𝒜

∫︀ 𝑡

0
𝑔𝛼(𝑡 − 𝑠)𝑢(𝑠, 𝑓)𝑑𝑠) for 𝑡 ∈ (0, 𝜏), with the property

that 𝑢(𝑡, 𝑓) = 𝑓(𝑡)+𝑢𝒜,𝛼,𝑓 (𝑡)+
∫︀ 𝑡

0
𝑔𝛼(𝑡−𝑠)𝐵(𝑠)𝑢(𝑠, 𝑓)𝑑𝑠, 𝑡 ∈ (0, 𝜏). The subsequent

theorem is very similar to [61, Theorem 2.26] and [292, Theorem 2.6.46(i)]. For
the sake of clarity, we will include the proof.

Theorem 3.7.13. Suppose 𝛼 > 1, 𝑀 > 1, 𝜔 > 0 and 𝒜 is a closed subgener-
ator of a (local) (𝑔𝛼, 𝐶)-regularized resolvent family (𝑆𝛼(𝑡))𝑡∈(0,𝜏) of growth order
𝜁 ∈ (0, 1), satisfying that ‖𝑔𝜁+1(𝑡)𝑆𝛼(𝑡)‖ 6 𝑀𝑒𝜔𝑡, 𝑡 ∈ (0, 𝜏) and that (272) holds
for 𝑡 ∈ (0, 𝜏) with 𝑅(𝑡) and 𝑎(𝑡) replaced by 𝑆𝛼(𝑡) and 𝑔𝛼(𝑡), respectively. Let
(𝐵(𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(𝐸), R(𝐵(𝑡)) ⊆ R(𝐶), 𝑡 ∈ [0, 𝜏) and 𝐶−1𝐵(·) ∈ 𝐶([0, 𝜏) : 𝐿(𝐸)).
Assume that 𝑡 ↦→ 𝐶−1𝑓(𝑡), 𝑡 ∈ [0, 𝜏) is a continuous 𝐸-valued mapping such that
the mapping 𝑡 ↦→ 𝑆𝛼,0(𝑡), defined by (387), is a solution of problem

𝑣(𝑡, 𝑓) ∈ 𝑓(𝑡) +𝒜
∫︁ 𝑡

0

𝑔𝛼(𝑡− 𝑠)𝑣(𝑠, 𝑓)𝑑𝑠, 𝑡 ∈ (0, 𝜏)
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and satisfies ‖𝑔𝜁+1(𝑡)𝑆𝛼,0(𝑡)‖ 6 𝑀𝑒𝜔𝑡, 𝑡 ∈ (0, 𝜏) (cf. [199, Theorem 3.7-Theorem
3.13] for more details). Then there exists a unique solution 𝑢(𝑡, 𝑓) of the abstract in-
tegral Volterra inclusion (386) on the interval (0, 𝜏). Moreover, the solution 𝑢(𝑡, 𝑓)
is given by 𝑢(𝑡, 𝑓) :=

∑︀∞
𝑛=0 𝑆𝛼,𝑛(𝑡), 𝑡 ∈ (0, 𝜏), where we define 𝑆𝛼,𝑛(𝑡) for 𝑡 ∈ (0, 𝜏)

recursively by (388). Denote, for every 𝑇 ∈ (0, 𝜏), 𝐾𝑇 := max𝑡∈[0,𝑇 ] ‖𝐶−1𝐵(𝑡)‖.
Then there exists a constant 𝑐𝛼,𝛾 > 0 such that:

(389) ‖𝑢(𝑡, 𝑓)‖ 6 𝑐𝛼,𝛾𝑒𝜔𝑡𝑡−𝜂𝐸𝛼−𝜁,1−𝜁(𝑀𝐾𝑇 𝑡
𝛼−𝜁), 𝑡 ∈ (0, 𝑇 ]

and

(390) ‖𝑢(𝑡, 𝑓)− 𝑆𝛼,0(𝑡)‖ 6 𝑐𝛼,𝛾𝑒𝜔𝑡𝑡−𝜂(𝐸𝛼−𝜁,1−𝜁(𝑀𝐾𝑇 𝑡
𝛼−𝜁)− 1), 𝑡 ∈ (0, 𝑇 ].

Proof. It is very simple to prove that there exists a constant 𝑐𝛼,𝛾 > 0 such
that:

‖𝑆𝛼,𝑛(𝑡)‖ 6𝑀𝑛+1𝐾𝑛
𝑇 𝑒

𝜔𝑡(𝑔𝜂+1(𝑡))
−1 𝑡(𝛼−𝜂)𝑛

Γ((𝛼− 𝜂)𝑛+ 1− 𝜂)
, 𝑡 ∈ (0, 𝑇 ], 𝑛 ∈ N0,

which implies that the series
∑︀∞

𝑛=0 𝑆𝛼,𝑛(𝑡) converges uniformly on compact subsets
of [𝜀, 𝑇 ] and (389)–(390) hold (0 < 𝜀 < 𝑇 ). Clearly, 𝑢(𝑡, 𝑓) = 𝑆𝛼,0(𝑡) +

∫︀ 𝑡

0
(𝑔𝛼−1 *

𝑆𝛼)(𝑡−𝑠)𝐶−1𝐵(𝑠)𝑢(𝑠, 𝑓)𝑑𝑠, 𝑡 ∈ [0, 𝑇 ]. With the help of Theorem 1.2.3, this implies

𝑢(𝑡, 𝑓) ∈ 𝑓(𝑡) +𝒜
∫︁ 𝑡

0

𝑔𝛼(𝑡− 𝑠)𝑣(𝑠, 𝑓)𝑑𝑠+ [𝑔𝛼−1 * 𝑆𝛼 * 𝐶−1𝐵(·)𝑢(·, 𝑓)](𝑡)

∈ 𝑓(𝑡) +𝒜
∫︁ 𝑡

0

𝑔𝛼(𝑡− 𝑠)𝑣(𝑠, 𝑓)𝑑𝑠+𝒜
∫︁ 𝑡

0

𝑔𝛼(𝑡− 𝑠)(𝑔𝛼−1 *𝑆𝛼 *𝐶−1𝐵(·)𝑢(·, 𝑓))(𝑠)𝑑𝑠

+ [𝑔𝛼−1 * 𝐶 * 𝐶−1𝐵(·)𝑢(·, 𝑓)](𝑡)

= 𝑓(𝑡) +𝒜
∫︁ 𝑡

0

𝑔𝛼(𝑡− 𝑠)𝑢(𝑠, 𝑓)𝑑𝑠+

∫︁ 𝑡

0

𝑔𝛼(𝑡− 𝑠)𝐵(𝑠)𝑢(𝑠, 𝑓)𝑑𝑠, 𝑡 ∈ (0, 𝜏).

Therefore, 𝑢(𝑡, 𝑥) is a solution of (386). Since the variation of parameters formula
holds in our framework, the uniqueness of solutions follows similarly as in the proof
of [61, Theorem 2.26]. �

Now we will present an illustrative example of application of the above result.

Example 3.7.14. (i) It is clear that Theorem 3.7.13 can be applied in the
analysis of a great number of the abstract degenerate Cauchy problems
of first order appearing in [199, Chapter III] (applications can be also
made to some time-oscillation degenerate equations for which the range
of possible values of corresponding Caputo fractional derivative depends
directly on the value of constant 𝑐 > 0 in condition [199, (P), p. 47],
provided that 𝛼 = 1 in (P)). For example, we can consider the following
time-dependent perturbation of the Poisson heat equation in the space
𝐸 = 𝐿𝑝(Ω):

(𝑃 )𝑡−𝑑 :

⎧⎪⎨⎪⎩
𝜕
𝜕𝑡
[𝑚(𝑥)𝑣(𝑡, 𝑥)] = Δ𝑣(𝑡, 𝑥) + 𝑏𝑣(𝑡, 𝑥) +𝑚(𝑥)𝐵(𝑡)𝑣(𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ Ω;

𝑣(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ [0,∞)× 𝜕Ω,

𝑚(𝑥)𝑣(0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ Ω,
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where Ω is a bounded domain in R𝑛 with smooth boundary, 𝑏 > 0, 𝑚(𝑥) >
0 a.e. 𝑥 ∈ Ω, 𝑚 ∈ 𝐿∞(Ω), 1 < 𝑝 <∞ and 𝐵 ∈ 𝐶([0,∞) : 𝐿(𝐸)).

(ii) Suppose that 𝐴, 𝐵 and 𝐶 are three closed linear operators in 𝐸, 𝐷(𝐵) ⊆
𝐷(𝐴)∩𝐷(𝐶), 𝐵−1 ∈ 𝐿(𝐸) and the conditions [199, (6.4)–(6.5)] hold with
certain numbers 𝑐 > 0 and 0 < 𝛽 6 𝛼 6 1. In [199, Chapter VI], the
second order differential equation

𝑑

𝑑𝑡
(𝐶𝑢′(𝑡)) +𝐵𝑢′(𝑡) +𝐴𝑢(𝑡) = 𝑓(𝑡), 𝑡 > 0,

has been considered by the usual converting into the first order matricial
system

𝑑

𝑑𝑡
𝑀𝑧(𝑡) = 𝐿𝑧(𝑡) + 𝐹 (𝑡), 𝑡 > 0,

where

𝑀 =

[︂
𝐼 𝑂
𝑂 𝐶

]︂
, 𝐿 =

[︂
𝑂 𝐼

−𝐴 −𝐵

]︂
and 𝐹 (𝑡) =

[︂
0
𝑓(𝑡)

]︂
(𝑡 > 0).

Owing to the proof of [199, Theorem 6.1], we get that the multivalued
linear operator 𝐿[𝐷(𝐵)]×𝐸(𝑀[𝐷(𝐵)]×𝐸)

−1 generates a (𝑔1, 𝐼)-regularized
resolvent family (𝑆1(𝑡))𝑡>0 of growth order 𝜁 = ((1 − 𝛽)/𝛼) in the pivot
space [𝐷(𝐵)] × 𝐸, satisfying additionally that there exists 𝜔 > 0 with
the property that ‖𝑔𝜁+1(𝑡)𝑆1(𝑡)‖ 6 𝑀𝑒𝜔𝑡, 𝑡 > 0. Assuming that the
mappings 𝑡 ↦→ 𝐵1,3(𝑡) ∈ 𝐿([𝐷(𝐵)]), 𝑡 > 0 and 𝑡 ↦→ 𝐵2,4(𝑡) ∈ 𝐿(𝐸), 𝑡 > 0
are continuous, Theorem 3.7.13 is susceptible to applications so that we
are in a position to consider the-wellposedness of the following system of
equations:

𝑢′1(𝑡) = 𝑢2(𝑡) +𝐵1(𝑡)𝑢1(𝑡) +𝐵2(𝑡)𝑢2(𝑡) + 𝑓1(𝑡), 𝑡 > 0;

𝑑

𝑑𝑡
(𝐶𝑢2(𝑡)) = −𝐴𝑢1(𝑡)−𝐵𝑢2(𝑡) +𝐵3(𝑡)𝑢1(𝑡) +𝐵4(𝑡)𝑢2(𝑡) + 𝑓2(𝑡), 𝑡 > 0.

Many concrete examples of applications can be found in [199, Section
6.2].

Evidently, Theorem 3.7.13 can be applied only in the case that 𝛼 > 1. As
already seen, the case 0 < 𝛼 < 1 is much more sofisticated from the theoretical and
practical point of view. We close this section with the observation that H. K. Avad
and A. V. Glushak [38] have analyzed the perturbed time-fractional problem

𝐷𝛼
𝑡 𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝐹 (𝑡, 𝐵(𝑡)𝑢(𝑡)), 𝑡 > 0,

lim
𝑡→0+

(𝑔1−𝛼 * 𝑢)(𝑡) = 𝑢0,

where 𝐴 is a closed linear operator acting on a Banach space 𝐸, 𝐹 (·, ·) and 𝐵(·)
possess certain properties, and 0 < 𝛼 < 1. Some of their results, for example [38,
Theorem 3.1], can be simply reword for abstract time-relaxation inclusions.

Finally, we would like to note that perturbation results for multivalued linear
operators have been also examined by R. Cross, A. Favini and Y. Yakubov in [121].
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3.8. Approximation and convergence of degenerate (𝑎, 𝑘)-regularized
𝐶-resolvent families

The state space in this section will be denoted by 𝐸. If (𝐴𝑙)𝑙∈N0 (((𝑅𝑙(𝑡))𝑡>0)𝑙∈N0)

is a sequence of closed linear operators on 𝐸 (strongly continuous operator families
in 𝐿(𝐸)), then we also write 𝐴 ((𝑅(𝑡))𝑡>0) in place of 𝐴0 ((𝑅0(𝑡))𝑡>0).

Making use of Theorem 1.4.11 and Theorem 3.2.5, we can simply prove an
extension of [326, Theorem 2.3] for (𝑎, 𝑘)-regularized 𝐶-resolvent families subgen-
erated by multivalued linear operators:

Theorem 3.8.1. Assume that, for every 𝑛 ∈ N0, |𝑎𝑛|(𝑡) and 𝑘𝑛(𝑡) satisfy
(P1) and 𝒜𝑛 is a closed subgenerator of an (𝑎𝑛, 𝑘𝑛)-regularized 𝐶𝑛-resolvent family
(𝑅𝑛(𝑡))𝑡>0 which satisfies (272) with 𝑎(𝑡), 𝑅(𝑡) and 𝑘(𝑡) replaced respectively by
𝑎𝑛(𝑡), 𝑅𝑛(𝑡) and 𝑘𝑛(𝑡) (𝑛 ∈ N0). Assume further that there exists a real number
𝜔 > sup𝑛∈N0

max(0, abs(|𝑎𝑛|), abs(𝑘𝑛)) such that, for every 𝑝 ∈ ~, there exist 𝑐𝑝 >
0 and 𝑟𝑝 ∈ ~ with

(391) 𝑝(𝑒−𝜔𝑡𝑅𝑛(𝑡)𝑥) 6 𝑐𝑝𝑟𝑝(𝑥), 𝑡 > 0, 𝑥 ∈ 𝐸, 𝑛 ∈ N0.

Let 𝜆0 > 𝜔. Put T := {𝜆 > 𝜆0 : ̃︁𝑎𝑛(𝜆)̃︁𝑘𝑛(𝜆) ̸= 0 for all 𝑛 ∈ N0}. Then the
following assertions are equivalent.

(i) lim𝑛→∞̃︁𝑘𝑛(𝜆)(𝐼−̃︁𝑎𝑛(𝜆)𝒜𝑛)
−1𝐶𝑛𝑥 = 𝑘(𝜆)(𝐼−�̃�(𝜆)𝒜)−1𝐶𝑥, 𝜆 ∈ T, 𝑥 ∈ 𝐸

and the sequence (𝑅𝑛(𝑡)𝑥)𝑛 is equicontinuous at each point 𝑡 > 0 (𝑥 ∈ 𝐸).
(ii) lim𝑛→∞𝑅𝑛(𝑡)𝑥 = 𝑅(𝑡)𝑥, 𝑡 > 0, 𝑥 ∈ 𝐸, uniformly on compacts of [0,∞).

Keeping in mind Lemma 1.2.4(i) and Theorem 3.2.5, it is almost straight-
forward to formulate an extension of [326, Theorem 2.4] for (𝑎, 𝑘)-regularized
𝐶-resolvent families subgenerated by multivalued linear operators, as well; the
only thing worth noting is that, in the proof of last mentioned theorem, we can
replace the sequence (𝐴𝑛𝐻𝑛(𝜆

′)𝑥)𝑛∈N with (̃︁𝑘𝑛(𝜆′)̃︁𝑎𝑛(𝜆′)−1[̃︁𝑎𝑛(𝜆′)−1(̃︁𝑎𝑛(𝜆′)−1 −
𝒜𝑛)

−1𝐶𝑛𝑥− 𝐶𝑛𝑥])𝑛∈N:

Theorem 3.8.2. Assume that, for every 𝑛 ∈ N0, |𝑎𝑛|(𝑡) and 𝑘𝑛(𝑡) satisfy
(P1) and 𝒜𝑛 is a closed subgenerator of an (𝑎𝑛, 𝑘𝑛)-regularized 𝐶𝑛-resolvent family
(𝑅𝑛(𝑡))𝑡>0 which satisfies (272) with 𝑎(𝑡), 𝑅(𝑡) and 𝑘(𝑡) replaced respectively by
𝑎𝑛(𝑡), 𝑅𝑛(𝑡) and 𝑘𝑛(𝑡) (𝑛 ∈ N0). Assume further that there exists a real number
𝜔 > sup𝑛∈N0

max(0, abs(|𝑎𝑛|), abs(𝑘𝑛)) such that, for every seminorm 𝑝 ∈ ~, there
exist a number 𝑐𝑝 > 0 and a seminorm 𝑟𝑝 ∈ ~ such that (391) holds. Let 𝜆0 > 𝜔,
and let T be defined as above. Assume that the following conditions hold:

(i) The sequence (𝑘𝑛(𝑡))𝑛 is equicontinuous at each point 𝑡 > 0.
(ii) For every bounded sequence (𝑥𝑛)𝑛∈N in 𝐸, one has sup𝑛∈N 𝑝(𝐶𝑛𝑥𝑛) <∞.
(iii) There exists 𝜆′ ∈ T such that R(( 1

�̃�(𝜆′) −𝒜)−1𝐶) is dense in 𝐸 as well as

that the sequences (̃︁𝑘𝑛(𝜆′)̃︁𝑎𝑛(𝜆′)−1)𝑛∈N and (̃︁𝑎𝑛(𝜆′)−1)𝑛∈N are bounded.
(iv) For every 𝜀 > 0 and 𝑡 > 0, there exist 𝛿 ∈ (0, 1) and 𝑛0 ∈ N such that∫︁ min(𝑡,𝑠)

0

|𝑎𝑛(max(𝑡, 𝑠)−𝑟)−𝑎𝑛(min(𝑡, 𝑠)−𝑟)|𝑑𝑟+
∫︁ max(𝑡,𝑠)

min(𝑡,𝑠)

|𝑎𝑛(max(𝑡, 𝑠)−𝑟)|𝑑𝑟 < 𝜀,
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provided |𝑡− 𝑠| < 𝛿, 𝑠 > 0 and 𝑛 > 𝑛0.
Then

lim
𝑛→∞

̃︁𝑘𝑛(𝜆)(𝐼 −̃︁𝑎𝑛(𝜆)𝒜𝑛)
−1𝐶𝑛𝑥 = 𝑘(𝜆)(𝐼 − �̃�(𝜆)𝒜)−1𝐶𝑥, 𝜆 ∈ T0, 𝑥 ∈ 𝐸

is equivalent to say that lim𝑛→∞𝑅𝑛(𝑡)𝑥 = 𝑅(𝑡)𝑥, 𝑡 > 0, 𝑥 ∈ 𝐸, uniformly on
compacts of [0,∞).

The conclusions from [326, Remark 2.5(ii)] can be formulated in our context;
the same holds for the parts (i) and (iii) of this remark. Since subordination
principles established in [61] and [459] hold in our framework, Theorem 3.8.2 can
be used for proving the following extension of [326, Theorem 2.6]:

Theorem 3.8.3. Suppose 𝛼 > 0, 𝛽 > 1, 𝒜 is a closed subgenerator of an expo-
nentially equicontinuous (𝑔𝛼, 𝑔𝛽)-regularized 𝐶-resolvent family (𝑅(𝑡))𝑡>0 satisfying
(272) with 𝑎(𝑡) = 𝑔𝛼(𝑡) and 𝑘(𝑡) = 𝑔𝛽(𝑡), and 𝑅(𝐶) as well as 𝐷(𝒜) are dense in 𝐸.
Let (𝛼𝑛)𝑛∈N be an increasing sequence of positive real numbers with lim𝑛→∞ 𝛼𝑛 = 𝛼,
and let 𝛾𝑛 = 𝛼𝑛/𝛼 (𝑛 ∈ N). Then, for every 𝑛 ∈ N, the operator 𝒜 is a subgen-
erator of an exponentially equicontinuous (𝑔𝛼𝑛

, 𝑔1+𝛾𝑛(𝛽−1))-regularized 𝐶-resolvent
family (𝑅𝑛(𝑡))𝑡>0 satisfying (272) with 𝑎(𝑡) = 𝑔𝛼𝑛(𝑡), 𝑘(𝑡) = 𝑔1+𝛾𝑛(𝛽−1)(𝑡) and
(𝑅(𝑡))𝑡>0 replaced by (𝑅𝑛(𝑡))𝑡>0. Furthermore, lim𝑛→∞𝑅𝑛(𝑡)𝑥 = 𝑅(𝑡)𝑥, 𝑡 > 0,
𝑥 ∈ 𝐸, uniformly on compacts of [0,∞).

It is very technical to extend the assertion of [326, Theorem 2.7] to (𝑎, 𝑘)-
regularized 𝐶-resolvent families subgenerated by multivalued linear operators.

Theorem 3.8.4. Assume that, for every 𝑛 ∈ N0, |𝑎𝑛|(𝑡) and 𝑘𝑛(𝑡) satisfy
(P1) and 𝒜 is a closed subgenerator of an (𝑎𝑛, 𝑘𝑛)-regularized 𝐶𝑛-resolvent family
(𝑅𝑛(𝑡))𝑡>0 which satisfies (272) with 𝑎(𝑡), 𝑅(𝑡) and 𝑘(𝑡) replaced respectively by
𝑎𝑛(𝑡), 𝑅𝑛(𝑡) and 𝑘𝑛(𝑡) (𝑛 ∈ N0). Denote by 𝑎𝑛,𝑘(𝑡) the 𝑘-th convolution power
of the function 𝑎𝑛(𝑡) (𝑘 ∈ N). Assume further that there exists a real number
𝜔 > sup𝑛∈N0

max(0, abs(|𝑎𝑛|), abs(𝑘𝑛)) such that, for every seminorm 𝑝 ∈ ~, there
exist a number 𝑐𝑝 > 0 and a seminorm 𝑟𝑝 ∈ ~ such that (391) holds. Let 𝜆0 > 𝜔.
Suppose that 𝑙 ∈ N and the following holds:

(i) lim𝑛→∞̃︁𝑘𝑛(𝜆)(𝐼 − ̃︁𝑎𝑛(𝜆)𝒜)−1𝐶𝑛𝑥 = 𝑘(𝜆)(𝐼 − �̃�(𝜆)𝒜)−1𝐶𝑥, 𝜆 ∈ T, 𝑥 ∈
𝐷(𝐴𝑙).

(ii) The sequences (𝑘𝑛(𝑡))𝑛, ((𝑎𝑛 * 𝑘𝑛)(𝑡))𝑛, . . . , and ((𝑎𝑛,𝑙−1 * 𝑘𝑛)(𝑡))𝑛 are
equicontinuous at each point 𝑡 > 0.

(iii) The sequence (𝐶𝑛𝑥)𝑛 is bounded for any 𝑥 ∈ 𝐷(𝒜𝑙).
(iv) The condition (iv) of Theorem 3.8.2 holds with the function 𝑎𝑛(𝑡) replaced

by 𝑎𝑛,𝑙(𝑡).

Then, for every 𝑥 ∈ 𝐷(𝒜𝑙), one has lim𝑛→∞𝑅𝑛(𝑡)𝑥 = 𝑅(𝑡)𝑥, 𝑡 > 0, uniformly on
compacts of [0,∞).

Using the Hille–Yosida theorem for degenerate (𝑎, 𝑘)-regularized 𝐶-resolvent
families and arguing as in the proof of [326, Theorem 2.8], we can prove the fol-
lowing:
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Theorem 3.8.5. Assume that, for every 𝑛 ∈ N0, |𝑎𝑛|(𝑡) and 𝑘𝑛(𝑡) satisfy (P1),
𝒜𝑛 is a closed MLO, and 𝜆0 > 𝜔 > sup𝑛∈N0

max(0, abs(|𝑎𝑛|), abs(𝑘𝑛)). Assume
that lim𝑛→∞̃︁𝑎𝑛(𝜆) = �̃�(𝜆), 𝜆 ∈ T and lim𝑛→∞̃︁𝑘𝑛(𝜆) = 𝑘(𝜆), 𝜆 ∈ T. Suppose that
𝐿(𝐸) ∋ 𝑘(𝜆)(𝐼 − �̃�(𝜆)𝒜)−1𝐶, 𝜆 ∈ T, and for every 𝑛 ∈ N, 𝒜𝑛 is a subgenerator
of an (𝑎𝑛, 𝑘𝑛)-regularized 𝐶𝑛-resolvent family (𝑅𝑛(𝑡))𝑡>0 which satisfies (272) with
𝑎(𝑡), 𝑅(𝑡) and 𝑘(𝑡) replaced respectively by 𝑎𝑛(𝑡), 𝑅𝑛(𝑡) and 𝑘𝑛(𝑡). Let (391) hold
for 𝑡 > 0, 𝑥 ∈ 𝐸 and 𝑛 ∈ N, and let

lim
𝑛→∞

̃︁𝑘𝑛(𝜆)(𝐼 −̃︁𝑎𝑛(𝜆)𝒜𝑛)
−1𝐶𝑛𝑥 = 𝑘(𝜆)(𝐼 − �̃�(𝜆)𝒜)−1𝐶𝑥, 𝑥 ∈ 𝐸, 𝜆 ∈ T.

Suppose, further, that for each 𝜆 ∈ T there exists an open ball Ω𝜆 ⊆ {𝑧 ∈ C : Re 𝑧 >

𝜆0}, with center at point 𝜆 and radius 2𝜀𝜆 > 0, so that ̃︁𝑎𝑛(𝑧)̃︁𝑘𝑛(𝑧) ̸= 0, 𝑧 ∈ Ω𝜆,
𝑛 ∈ N0. Then the following holds:

(i) For each 𝑟 ∈ (0, 1], 𝒜 is a subgenerator of a global (𝑎, 𝑘 * 𝑔𝑟)-regularized
𝐶-resolvent family (𝑅𝑟(𝑡))𝑡>0 satisfying (272) as well as that, for every
seminorm 𝑝 ∈ ~,

𝑝(𝑅𝑟(𝑡+ ℎ)𝑥−𝑅𝑟(𝑡)𝑥) 6
2𝑐𝑝𝑟𝑝(𝑥)

𝑟Γ(𝑟)
max(𝑒𝜔(𝑡+ℎ), 1)ℎ𝑟, 𝑡 > 0, ℎ > 0, 𝑥 ∈ 𝐸,

and that, for every seminorm 𝑝 and for every bounded set 𝐵 ∈ ℬ, the map-
ping 𝑡 ↦→ 𝑝𝐵(𝑅𝑟(𝑡)), 𝑡 > 0 is locally Hölder continuous with exponent 𝑟.

(ii) If 𝒜 is densely defined, then 𝒜 is a subgenerator of a global (𝑎, 𝑘)-regular-
ized 𝐶-resolvent family (𝑅(𝑡))𝑡>0 satisfying (272) and that the family
{𝑒−𝜔𝑡𝑅(𝑡) : 𝑡 > 0} is equicontinuous.

Suppose that 𝒜 is an MLO, 𝐶𝒜 ⊆ 𝒜𝐶 and 𝜌𝐶(𝒜) ̸= ∅. Then, for every
𝜆 ∈ 𝜌𝐶(𝒜), we have 𝒜0 = 𝑁((𝜆𝐼 − 𝒜)−1𝐶), which implies that the operator
(𝜆𝐼 − 𝒜)−1𝐶 is injective iff 𝒜 is single-valued. Although the resolvent equation
holds in our framework, the non-injectivity of operator (𝜆𝐼−𝒜)−1𝐶 in multivalued
case does not permit us to state a satisfactory extension of [326, Corollary 2.10]
for degenerate resolvent families. The assertion of [326, Proposition 2.11(i)] can
be formulated in our context (cf. Lemma 1.2.4), which is not the case with the
assertions of [326, Proposition 2.11(ii)] and [326, Proposition 2.12].

The interested reader will want to prove some results on approximation and con-
vergence of degenerate (𝐴, 𝑘)-regularized 𝐶-(pseudo)resolvent families introduced
in Section 2.9 (cf. [326, Theorem 2.16, Theorem 2.17] for non-degenerate case),
as well as degenerate (𝑎, 𝑘)-regularized 𝐶-resolvent families introduced in Sections
2.2–2.3.

Now we would like to mention that the assertions of [61, Theorem 2.21, The-
orem 2.23] continue to hold in the degenerate case (if 𝐶 ̸= 𝐼 or 𝐸 is not a Banach
space, then the consideration is left to the interested reader):

Remark 3.8.6. Let 𝛼 > 0, (𝐸, ‖ · ‖) be a Banach space, let the numbers
𝑏𝛼𝑘,𝑛 be defined by (393), and let 𝒜 be a closed subgenerator of an exponen-
tially bounded (𝑔𝛼, 𝐼)-regularized resolvent family (𝑆𝛼(𝑡))𝑡>0 satisfying 𝑆𝛼(𝑡)𝑥 −
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𝑔𝛼+1(𝑡)𝑥 ∈ 𝒜
∫︀ 𝑡

0
𝑆𝛼(𝑠)𝑥 𝑑𝑠, 𝑡 > 0, 𝑥 ∈ 𝐸. Then

𝑆𝛼(𝑡)𝑥 = lim
𝑛→∞

1

(𝑛−𝑚)!

𝑛−𝑚+1∑︁
𝑘=1

𝑏𝛼𝑘,𝑛−𝑚+1(𝐼 − (𝑡/𝑛)𝛼𝒜)−𝑘𝑥, 𝑥 ∈ 𝐸, 𝑡 > 0,

and the convergence is uniform on compacts of [0,∞). The only non-trivial thing
worth explaining here is that the formula [61, (2.43)] holds in multivalued linear
case, with the equality replaced with the inclusion ∋; this can be proved by induc-
tion, Theorem 1.2.4(i) and elementary properties of multivalued linear operators
(although the resolvent (𝜁𝛼 −𝒜)−1 is not necessarily injective for 𝜁 > 0 suff. large,
we can apply it on both sides of the equality [61, (2.43)], i.e, the inductive hy-
pothesis, and employ after that the equality (𝜁𝛼 − 𝒜)(𝜁𝛼 − 𝒜)−1𝒜𝐹 (𝑗+1)(𝜆)𝑥 =
𝒜𝐹 (𝑗+1)(𝜆)𝑥, 𝑥 ∈ 𝐸 in order to see that [61, (2.43)] holds with 𝑗 replaced by
𝑗 + 1 therein). This is an extension of [61, Theorem 2.21]. Concerning [61, The-
orem 2.23], it is only worth pointing out that the equality 𝑆𝛼(𝑡)𝑥 − 𝑆𝛼(𝑠)𝑥 =∫︀ 𝑡

0
𝑃𝛼(𝜏)𝑦 𝑑𝜏 −

∫︀ 𝑠

0
𝑃𝛼(𝜏)𝑦 𝑑𝜏 , where (𝑥, 𝑦) ∈ 𝒜 and 𝑃𝛼(𝑡)𝑦 := (𝑔𝛼−1 * 𝑆𝛼(·)𝑦)(𝑡),

𝑡 > 0 can be proved by taking the Laplace transform in both variables, 𝑡 and 𝑠, and
applying after that Theorem 1.2.4(i): Let 𝛼 > 1, let 𝑥 ∈ 𝐷(𝒜), and let (𝑥, 𝑦) ∈ 𝒜.
Then⃦⃦⃦⃦

𝑆𝛼(𝑡)𝑥− lim
𝑛→∞

1

(𝑛−𝑚)!

𝑛−𝑚+1∑︁
𝑘=1

𝑏𝛼𝑘,𝑛−𝑚+1

× (𝐼 − (𝑡/𝑛)𝛼𝒜)−𝑘𝑥

⃦⃦⃦⃦
= 𝑂(𝑛(−1)/2), 𝑛→ +∞.

Furthermore, if (𝑆𝛼(𝑡))𝑡>0 is bounded, then there exists a constant 𝑀𝛼 > 0 such
that⃦⃦⃦⃦

𝑆𝛼(𝑡)𝑥− lim
𝑛→∞

1

(𝑛−𝑚)!

𝑛−𝑚+1∑︁
𝑘=1

𝑏𝛼𝑘,𝑛−𝑚+1

× (𝐼 − (𝑡/𝑛)𝛼𝒜)−𝑘𝑥

⃦⃦⃦⃦
6𝑀𝛼𝑛

(−1)/2𝑡𝛼‖𝑦‖, 𝑛 ∈ N.

3.8.1. Laguerre expansions of degenerate (𝑎, 𝑘)-regularized 𝐶-resol-
vent families. In this subsection, we shall present the basic results about Laguerre
expansions of degenerate (𝑎, 𝑘)-regularized 𝐶-resolvent families in locally convex
spaces (cf. the recent paper by L. Abadias and P. J. Miana [2] for 𝐶0-semigroup
case).

We start by recalling that Rodrigues’ formula gives the following representation
of generalized Laguerre polynomials

𝐿𝛼
𝑛(𝑡) ≡ 𝑒𝑡

𝑡−𝛼

𝑛!

𝑑𝑛

𝑑𝑡𝑛
(𝑒−𝑡𝑡𝑛+𝛼), 𝑡 ∈ R (𝑛 ∈ N0, 𝛼 > −1).

If 𝛼 /∈ −N and 𝑛 ∈ N0, then we define

𝑙𝛼𝑛(𝑡) ≡
1

Γ(𝑛+ 𝛼+ 1)

𝑑𝑛

𝑑𝑡𝑛
(𝑒−𝑡𝑡𝑛+𝛼), 𝑡 > 0.
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The reader may consult [2, Proposition 2.6] for the most important properties of
functions 𝑙𝛼𝑛(𝑡) (𝛼 /∈ −N, 𝑛 ∈ N0). For example, it is well known that

𝑙𝛼𝑛(𝑡) ∼ 𝑔𝛼+1(𝑡), 𝑡→ 0+; 𝑙𝛼𝑛(𝑡) ∼ (−1)𝑛𝑒−𝑡𝑔𝑛+𝛼+1(𝑡), 𝑡→ +∞,

and
𝑑𝑘

𝑑𝑡𝑘
𝑙𝛼𝑛(𝑡) = 𝑙𝛼−𝑘

𝑛+𝑘 (𝑡), 𝑡 > 0, 𝑘 ∈ N0.

The following theorem can be deduced by using the argumentation contained in the
proof of [2, Theorem 3.3], stated in the Banach space case (cf. also [373, Theorem
3, Section 4.23]).

Theorem 3.8.7. Suppose that 𝑓 : (0,∞) → 𝐸 is a differentiable mapping, 𝛼 >
−1 and for each seminorm 𝑝 ∈ ~ we have

∫︀∞
0
𝑒−𝑡𝑡𝛼𝑝(𝑓(𝑡))2𝑑𝑡 <∞. Then

𝑓(𝑡) =

∞∑︁
𝑛=0

𝑛!𝐿𝛼
𝑛(𝑡)

Γ(𝑛+ 𝛼+ 1)

∫︁ ∞

0

𝑒−𝑠𝑠𝛼𝐿𝛼
𝑛(𝑠)𝑓(𝑠)𝑑𝑠, 𝑡 > 0.

Since∫︁ ∞

0

𝑒−𝑠𝑠𝛼𝐿𝛼
𝑛(𝑠)𝑓(𝑠)𝑑𝑠 =

∫︁ ∞

0

𝑑𝑛

𝑑𝑠𝑛
(𝑒−𝑠𝑠𝑛+𝛼)

𝑓(𝑠)

𝑛!
𝑑𝑠

=

𝑛∑︁
𝑘=0

(−1)𝑛−𝑘

(︂
𝑛

𝑘

)︂
(𝑛+ 𝛼) . . . (𝑛+ 𝛼− (𝑘 − 1))

∫︁ ∞

0

𝑒−𝑠𝑠𝑛+𝛼−𝑘 𝑓(𝑠)

𝑛!
𝑑𝑠

and
(𝑛+ 𝛼) . . . (𝑛+ 𝛼− (𝑘 − 1))

Γ(𝑛+ 𝛼+ 1)
=

1

Γ(𝑛+ 𝛼+ 1− 𝑘)
,

for any 𝑛, 𝑘 ∈ N0 with 𝑘 6 𝑛 and 𝛼 > −1, we immediately obtain the following
corollary of Theorem 3.8.7.

Corollary 3.8.8. Suppose that 𝑓 : (0,∞) → 𝐸 is a differentiable mapping,
𝛼 > −1 and for each seminorm 𝑝 ∈ ~ we have

∫︀∞
0
𝑒−𝑠𝑠𝛼𝑝(𝑓(𝑠))2𝑑𝑠 < ∞. Then,

for every 𝑡 > 0, the following equality holds:

(392) 𝑓(𝑡) =

∞∑︁
𝑛=0

𝑛∑︁
𝑘=0

𝐿𝛼
𝑛(𝑡)(−1)𝑛−𝑘

(︀
𝑛
𝑘

)︀
Γ(𝑛+ 𝛼+ 1− 𝑘)

∫︁ ∞

0

𝑒−𝑠𝑠𝑛+𝛼−𝑘𝑓(𝑠)𝑑𝑠.

Before proceeding further, let us observe that the last formula can be rewritten
in the following equivalent way:

𝑓(𝑡) =

∞∑︁
𝑛=0

𝐿𝛼
𝑛(𝑡)

∫︁ ∞

0

𝑙𝛼𝑛(𝑠)𝑓(𝑠)𝑑𝑠.

Suppose now that (𝑅(𝑡))𝑡>0 is an exponentially equicontinuous (𝑎, 𝑘)-regularized
𝐶-resolvent family with a closed subgenerator −𝒜, the functions 𝑘(𝑡) and |𝑎|(𝑡)
satisfy (P1), the family {𝑒−𝜔𝑡𝑅(𝑡) : 𝑡 > 0} is equicontinuous for some 𝜔 > 0,
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𝜔0 ≡ max(𝜔, abs(|𝑎|), abs(𝑘)) < 1/2 and 𝛼 > −1. If, in addition, 𝑘(1)�̃�(1) ̸= 0,
then Theorem 3.2.5 implies that, for every 𝛼 ∈ N0 and 𝑥 ∈ 𝐸,∫︁ ∞

0

𝑒−𝑠𝑠𝑛+𝛼−𝑘𝑅(𝑠)𝑥 𝑑𝑠 = (−1)𝑛+𝛼−𝑘
(︁ 𝑑𝑛+𝛼−𝑘

𝑑𝜆𝑛+𝛼−𝑘
(ℒ𝑅(·)𝑥)(𝜆)

)︁
𝜆=1

= (−1)𝑛+𝛼−𝑘
(︁ 𝑑𝑛+𝛼−𝑘

𝑑𝜆𝑛+𝛼−𝑘

[︁𝑘(𝜆)
�̃�(𝜆)

(︁ 1

�̃�(𝜆)
+𝒜

)︁−1

𝐶𝑥
]︁)︁

𝜆=1
;

then one can use the product rule, the identity (𝑑𝑛/𝑑𝜆𝑛)(𝜆+𝒜)−1𝐶𝑥 = (−1)𝑛𝑛!(𝜆+
𝒜)−𝑛−1𝐶𝑥, 𝑛 ∈ N0, 𝑥 ∈ 𝐸, as well as the well known Faà di Bruno’s formula

𝑑𝑛

𝑑𝑥𝑛
𝑓(𝑔(𝑥)) =

∑︁ 𝑛!

𝑚1!𝑚2! . . .𝑚𝑛!
𝑓 (𝑚1+𝑚2+···+𝑚𝑛)(𝑔(𝑥))

𝑛∏︁
𝑗=1

(︁𝑔(𝑗)(𝑥)
𝑗!

)︁𝑚𝑗

,

where the summation is taken over those multi-indices (𝑚1,𝑚2, . . . ,𝑚𝑛) ∈ N𝑛
0 for

which 𝑚1 +2𝑚2 + · · ·+ 𝑛𝑚𝑛 = 𝑛, in order to express the right hand side of (392),
with 𝑓(𝑡) = 𝑅(𝑡)𝑥, 𝑡 > 0 in terms of subgenerator −𝒜 (notice, however, that it
is very difficult to express the value of

∫︀∞
0
𝑒−𝑠𝑠𝑛+𝛼−𝑘𝑅(𝑠)𝑥 𝑑𝑠 in terms of −𝒜, if

𝛼 /∈ N0 and 𝑛 ∈ N0). At any rate, the obtained representation formula is very
complicated, practically almost irrelevant, but can be simplified in some cases; for
example, if 𝑘(𝑡) = 1 and 𝑎(𝑡) = 𝑔𝜗(𝑡) for some 𝜗 > 0, then we have

𝑑𝑛

𝑑𝜆𝑛

[︁𝑘(𝜆)
�̃�(𝜆)

(︁ 1

�̃�(𝜆)
+𝒜

)︁−1

𝐶𝑥
]︁
=

𝑑𝑛

𝑑𝜆𝑛
[𝜆𝜗−1(𝜆𝜗 +𝒜)−1𝐶𝑥]

= (−1)𝑛𝜆−(𝑛+1)
𝑛+1∑︁
𝑘=1

𝑏𝜗𝑘,𝑛+1𝜆
𝜗𝑘(𝜆𝜗 +𝒜)−𝑘𝐶𝑥, 𝑛 ∈ N0, 𝑥 ∈ 𝐸, Re𝜆 > 𝜔0,

where the numbers 𝑏𝜗𝑘,𝑛+1 are given by the following recurrence relations:

(393)

𝑏𝜗1,1 = 1,

𝑏𝜗𝑘,𝑛 = (𝑛− 1− 𝑘𝜗)𝑏𝜗𝑘,𝑛−1 + 𝜗𝑏𝜗𝑘−1,𝑛−1, 1 6 𝑘 6 𝑛, 𝑛 = 2, 3, . . . ,

𝑏𝜗𝑘,𝑛 = 0, 𝑘 > 𝑛, 𝑛 = 1, 2, . . . ,

cf. the formulae [61, (2.16)–(2.17)].

3.8.2. Laguerre expansions of solutions to abstract non-degenerate
differential equations of first order. The main aim of this subsection, which
can be viewed of some independent interest, is to show how Laguerre expansions can
be elegantly used for proving some representation formulae for solutions of abstract
non-degenerate differential equations of first order whose solutions are governed by
fractionally integrated semigroups and exponential ultradistribution semigroups of
Beurling class. All operators considered in this subsection will be single-valued,
and all subgenerators of (fractionally integrated) 𝐶-semigroups under examination
will be closed.

Suppose first that the operator −𝐴 subgenerates the global 𝐶-regularized semi-
group (𝑇 (𝑡))𝑡>0 satisfying that there exists 𝜔 > 0 such that the family {𝑒−𝜔𝑡𝑇 (𝑡) :
𝑡 > 0} is equicontinuous. Let 𝜔′ > 𝜔 − (1/2). Then, for every 𝑧 ∈ C, the operator
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−𝐴+𝑧 is a subgenerator of the global 𝐶-regularized semigroup (𝑒𝑧𝑡𝑇 (𝑡))𝑡>0 and we
can construct the complex powers of the operator 𝐴+ 𝜔′ +1 following the method
proposed in Section 1.1. Any of these powers is closed and injective.

Let 𝜃 ∈ (𝜋/2, 𝜋), and let 𝑑′ ∈ (0, 1) be sufficiently small. Then, for every
𝛽 ∈ C+, we have defined the operator (𝐴+ 𝜔′ + 1)−𝛽

𝐶 by

(𝐴+ 𝜔′ + 1)−𝛽
𝐶 𝑥 :=

1

2𝜋𝑖

∫︁
Γ𝜃,𝑑′

𝑧−𝛽(𝑧 − (𝐴+ 𝜔′ + 1))−1𝐶𝑥𝑑𝑧, 𝑥 ∈ 𝐸,

where Γ𝜃,𝑑′ = 𝜕(Σ𝜔′ r𝐵𝑑′) denotes the boundary of Σ𝜔′ r𝐵𝑑′ , oriented in such a
way that Im 𝑧 increases along Γ𝜔′,𝑑′ . If Re𝛽 > 1, then it can be easily seen with
the help of resolvent equation and Cauchy formula that, for every 𝑥 ∈ 𝐸,

(𝐴+ 𝜔′ + 1)(𝐴+ 𝜔′ + 1)−𝛽
𝐶 𝑥 =

1

2𝜋𝑖

∫︁
Γ𝜃,𝑑′

𝑧−𝛽(𝐴+ 𝜔′ + 1)(𝑧 − (𝐴+ 𝜔′ + 1))−1𝐶𝑥𝑑𝑧

=
1

2𝜋𝑖

∫︁
Γ𝜃,𝑑′

𝑧−𝛽
[︁
−𝐶𝑥+ 𝑧(𝑧 − (𝐴+ 𝜔′ + 1))−1𝐶𝑥

]︁
𝑑𝑧

=
1

2𝜋𝑖

∫︁
Γ𝜃,𝑑′

𝑧−𝛽+1(𝑧 − (𝐴+ 𝜔′ + 1))−1𝐶𝑥𝑑𝑧

= (𝐴+ 𝜔′ + 1)
−(𝛽−1)
𝐶 𝑥.

Inductively, we obtain that

(𝐴+𝜔′ +1)𝑛(𝐴+𝜔′ +1)−𝛽
𝐶 𝑥 = (𝐴+𝜔′ +1)

−(𝛽−𝑛)
𝐶 𝑥, Re𝛽 > 𝑛, 𝑥 ∈ 𝐸 (𝑛 ∈ N0),

i.e., by definition of powers (𝐴+ 𝜔′ + 1)−𝛽 and (𝐴+ 𝜔′ + 1)−(𝛽−𝑛),

(394) (𝐴+𝜔′+1)𝑛(𝐴+𝜔′+1)−𝛽𝐶𝑥 = (𝐴+𝜔′+1)−(𝛽−𝑛)𝐶𝑥, Re𝛽 > 𝑛, 𝑥 ∈ 𝐸 (𝑛 ∈ N0).

By [292, Lemma 2.9.73(iii)], we have

(395) (𝐴+ 𝜔′ + 1)−𝛽𝐶𝑥 =

∫︁ ∞

0

𝑠𝛽−1

Γ(𝛽)
𝑒−(𝜔′+1)𝑠𝑇 (𝑠)𝑥 𝑑𝑠, 𝑥 ∈ 𝐸, 𝛽 > 0.

Furthermore, by (394), we have that for each 𝑛 ∈ N0 and 𝛼 > −1, (𝐴 + 𝜔′ +
1)−(𝑛+𝛼+1)𝐶𝑥 ∈ 𝐷((𝐴 + 𝜔′ + 1)𝑛) = 𝐷(𝐴𝑛) (𝑥 ∈ 𝐸). Applying the binomial
formula and (394), we get

(396) (𝐴+ 𝜔′)𝑛(𝐴+ 𝜔′ + 1)−(𝑛+𝛼+1)𝐶𝑥

= ((𝐴+ 𝜔′ + 1)− 1)𝑛(𝐴+ 𝜔′ + 1)−(𝑛+𝛼+1)𝐶𝑥

=

𝑛∑︁
𝑘=0

(−1)𝑛−𝑘

(︂
𝑛

𝑘

)︂
(𝐴+ 𝜔′ + 1)−(𝑛+𝛼−𝑘+1)𝐶𝑥, 𝑥 ∈ 𝐸.

Observing finally that for each 𝑥 ∈ 𝐷(𝐴) the mapping 𝑡 ↦→ 𝑇 (𝑡)𝑥, 𝑡 > 0 is contin-
uously differentiable with (𝑑/𝑑𝑡)𝑇 (𝑡)𝑥 = 𝑇 (𝑡)𝐴𝑥, 𝑡 > 0, Corollary 3.8.8 combined
with the equations (395)–(396) immediately implies the following:

Theorem 3.8.9. Suppose that the operator −𝐴 is a subgenerator of the global
𝐶-regularized semigroup (𝑇 (𝑡))𝑡>0 satisfying that there exists 𝜔 > 0 such that the
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family {𝑒−𝜔𝑡𝑇 (𝑡) : 𝑡 > 0} is equicontinuous. Let 𝜔′ > 𝜔 − (1/2). Then, for every
𝑥 ∈ 𝐷(𝐴) and 𝛼 > −1, we have that

𝑇 (𝑡)𝑥 = 𝑒𝜔
′𝑡

∞∑︁
𝑛=0

𝐿𝛼
𝑛(𝑡)(𝐴+ 𝜔′)𝑛(𝐴+ 𝜔′ + 1)−𝑛−𝛼−1𝐶𝑥, 𝑡 > 0.

It is worth noting that Theorem 3.8.9 enables one to consider Laguerre expan-
sions of certain classes of semigroups that are strongly continuous for 𝑡 > 0, like
semigroups of class (𝐶(𝑘)) and semigroups of growth order 𝑟 > 0 (cf. [291, Theorems
1.2.15, 1.2.17 and 1.2.19]), which as a further consequence has that we can approx-
imate by Laguerre polynomials solutions of incomplete abstract Cauchy problems,
in general with modified Liouville right-sided time-fractional derivatives (cf. [292,
Theorems 2.9.58, 2.9.60]). For the sake of brevity, we will present only two appli-
cations of Theorem 3.8.9. The first one is connected with Laguerre expansions of
solutions of first order abstract Cauchy problems associated with generators of frac-
tionally integrated semigroups in locally convex spaces (cf. [291, Subsection 2.9.7]
for more details). The second one is connected with Laguerre expansions of solu-
tions of first order abstract Cauchy problems whose solutions are governed by ex-
ponential ultradistribution semigroups of Beurling class (cf. [291, Theorem 3.6.9]):

(i) Assume that 𝜁 ∈ (0,∞) r N, 𝜔 > 0, 1 > 𝜎′ > 𝜎 > 0, as well as that −𝐴
is the integral generator of an 𝜁-times integrated semigroup (𝑆𝜁(𝑡))𝑡>0

satisfying that the family {𝑒−𝜔𝑡𝑆𝜁(𝑡) : 𝑡 > 0} is equicontinuous. Suppose
𝜀 > 0, ⌊𝜁⌋ = ⌊𝜁 + 𝜀⌋ and 𝛼 > −1. If 𝛼 /∈ N0, then the right hand side of
(392), with 𝑓(𝑡) replaced by 𝑒−𝜔𝑡𝑆𝜁(𝑡)𝑥, cannot be so simply evaluate in
terms of 𝐴. Nevertheless, for every 𝛾 ∈ (0, 𝜋/2), there exists 𝑑 ∈ (0, 1] such
that Σ(𝛾, 𝑑) ⊆ 𝜌(−𝐴−𝜔−𝜎) and the family {(1+|𝜆|)1−𝜁(𝜆+𝐴+𝜔+𝜎)−1 :
𝜆 ∈ Σ(𝛾, 𝑑)} is equicontinuous. Set 𝐶𝜁 := (𝐴+𝜔+𝜎)−1−⌊𝜁⌋. Then it is not
difficult to prove that the operator 𝐴+ 𝜔+ 𝜎 is 𝐶𝜁-sectorial of angle 𝜋/2
and that the condition [103, (H)] holds with 𝑑 = 𝜎/2. Therefore, for every
𝑧 ∈ C, we can construct the power (𝐴 + 𝜔 + 𝜎)𝑧 following the method
proposed in [103], with the operator 𝐶 replaced by 𝐶𝜁 . This power is
injective, and belongs to 𝐿(𝐸) provided that Re 𝑧 < −𝜁. Furthermore,
we know that −𝐴 is the integral generator of a global (𝐴+ 𝜔+ 𝜎)−(𝜁+𝜀)-
regularized semigroup (𝑇 (𝑡))𝑡>0 and the family {𝑒−(𝜔+𝜎′)𝑡𝑇 (𝑡) : 𝑡 > 0} is
equicontinuous (see e.g. [291, Theorem 2.3.26]). Applying Theorem 3.8.9,
we get that for each 𝑡 > 0 and 𝑥 ∈ 𝐷(𝐴),

(397) 𝑒−(𝜔+𝜎)𝑡𝑇 (𝑡)𝑥

=

∞∑︁
𝑛=0

𝐿𝛼
𝑛(𝑡)(𝐴+ 𝜔 + 𝜎)𝑛(𝐴+ 𝜔 + 𝜎 + 1)−𝑛−𝛼−1(𝐴+ 𝜔 + 𝜎)−(𝜁+𝜀)𝑥;

here we define the power (𝐴 + 𝜔 + 𝜎 + 1)−𝑛−𝛼−1 (𝑛 ∈ N0) by using the
construction from [103]; note that the operator 𝐴+𝜔+𝜎+1 is 𝐶-sectorial
of angle 𝜋/2 with 𝐶 ≡ (𝐴 + 𝜔 + 𝜎)−(𝜁+𝜀). Perhaps the most important
consequence of (397) is given as follows. Let 𝑥 ∈ 𝐷((𝐴 + 𝜔 + 𝜎)1+𝜁+𝜀).
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Then 𝑥 ∈ 𝐷((𝐴+𝜔+ 𝜎)𝜁+𝜀), 𝑥0 := (𝐴+𝜔+ 𝜎)𝜁+𝜀𝑥 ∈ 𝐷(𝐴+𝜔+ 𝜎) and
𝑥 = (𝐴 + 𝜔 + 𝜎)−(𝜁+𝜀)𝑥0. Furthermore, the function 𝑡 ↦→ 𝑢(𝑡) ≡ 𝑇 (𝑡)𝑥0,
𝑡 > 0 is the classical solution of the abstract Cauchy problem

(𝐴𝐶𝑃1) : 𝑢
′(𝑡) = 𝐴𝑢(𝑡), 𝑡 > 0, 𝑢(0) = 𝑥.

By (397), it readily follows that, for every 𝑡 > 0,

𝑢(𝑡) = 𝑒(𝜔+𝜎)𝑡
∞∑︁

𝑛=0

𝐿𝛼
𝑛(𝑡)(𝐴+ 𝜔 + 𝜎)𝑛(𝐴+ 𝜔 + 𝜎 + 1)−𝑛−𝛼−1𝑥.

(ii) Suppose that the sequence (𝑀𝑝)𝑝∈N0
of positive real numbers satisfies the

conditions (𝑀.1), (𝑀.2) and (𝑀.3), 𝑀0 = 1, (𝐸, ‖ · ‖) is a Banach space
and −𝐴 generates an exponential ultradistribution semigroup of (𝑀𝑝)-
class. Then the abstract Cauchy problem

𝑢 ∈ 𝐶∞([0,∞) : 𝐸) ∩ 𝐶([0,∞) : [𝐷(𝐴)]); 𝑢′(𝑡) +𝐴𝑢(𝑡) = 0, 𝑡 > 0, 𝑢(0) = 𝑥,

has a unique solution for all 𝑥 ∈ 𝐸(𝑀𝑝)(𝐴), there exist an injective oper-
ator 𝐶 ∈ 𝐿(𝐸) and a number 𝜔 ∈ R such that 𝐸(𝑀𝑝)(𝐴) ⊆ 𝐶(𝐷∞(𝐴))
and that −𝐴 generates an exponentially bounded 𝐶-regularized semigroup
(𝑇 (𝑡))𝑡>0 with ‖𝑇 (𝑡)‖ = 𝑂(𝑒𝜔𝑡), 𝑡 > 0 (cf. [291, Theorems 3.6.8, 3.6.9;
Lemma 3.6.5]). If 𝑥 ∈ 𝐸(𝑀𝑝)(𝐴) and 𝜔′ > 𝜔 − (1/2), then it is clear that
𝑢(𝑡) = 𝑇 (𝑡)𝐶−1𝑥, 𝑡 > 0 and

𝑢(𝑡) = 𝑒𝜔
′𝑡

∞∑︁
𝑛=0

𝐿𝛼
𝑛(𝑡)(𝐴+ 𝜔′)𝑛(𝐴+ 𝜔′ + 1)−𝑛−𝛼−1𝑥, 𝑡 > 0.

In [3], L. Abadias and P. J. Miana have recently analyzed the Hermite expan-
sions of non-degenerate 𝐶0-groups and cosine operator functions in Banach spaces.
The interested reader may try to reconsider the results from [3] for some other
classes of (non-)degenerate resolvent operator families.

For futher information on approximation and convergence of degenerate differ-
ential equations, we refer the reader to [50,199,370] and references cited in the
introductory part.

3.9. The existence and uniqueness of solutions of abstract incomplete
differential inclusions

The state space in this section will be denoted by 𝑋. Let 𝐶 ∈ 𝐿(𝑋) be not
necessarily injective, and let 𝒜 be a multivalued linear operator commuting with
𝐶. Then the 𝐶-resolvent set of 𝒜, 𝜌𝐶(𝒜) for short, is defined as in the case that
the operator 𝐶 is injective; 𝜌𝐶(𝒜) is the union of those complex numbers 𝜆 ∈ C for
which𝑅(𝐶) ⊆ 𝑅(𝜆−𝒜) and (𝜆−𝒜)−1𝐶 is a single-valued linear continuous operator
on 𝑋. The operator 𝜆 ↦→ (𝜆 −𝒜)−1𝐶 is called the 𝐶-resolvent of 𝒜 (𝜆 ∈ 𝜌𝐶(𝒜)).
In our previous work, we have faced ourselves with some situations in which it is
indispensable to assume that the operator (𝜆 − 𝒜)−1𝐶 is not single-valued. This
will not be the case in this section.

It is incredibly important to observe the following:



3.9. THE EXISTENCE AND UNIQUENESS OF SOLUTIONS... 416

Remark 3.9.1. Theorem 1.2.4, Proposition 1.2.6(i) and Theorem 1.2.8 con-
tinue to hold even if the injectivity of 𝐶 is disregarded.

Concerning the analytical properties of 𝐶-resolvents, we have the following:

Proposition 3.9.2. Let ∅ ≠ Ω ⊆ 𝜌𝐶(𝒜) be open, and let 𝑥 ∈ 𝑋.
(i) Suppose that 𝑅(𝐶) is dense in 𝑋. Then the local boundedness of the

mapping 𝜆 ↦→ (𝜆−𝒜)−1𝐶𝑥, 𝜆 ∈ Ω implies its analyticity. Furthermore, if
𝑋 is barreled, then the local boundedness of the mapping 𝜆 ↦→ (𝜆−𝒜)−1𝐶,
𝜆 ∈ Ω implies its analyticity.

(ii) Suppose that 𝑅(𝐶) is dense in 𝑋 and 𝒜 is closed. Then we have 𝑅(𝐶) ⊆
R((𝜆−𝒜)𝑛), 𝑛 ∈ N and

(398)
𝑑𝑛−1

𝑑𝜆𝑛−1
(𝜆−𝒜)−1𝐶𝑥 = (−1)𝑛−1(𝑛− 1)!(𝜆−𝒜)−𝑛𝐶𝑥, 𝑛 ∈ N.

Furthermore, if 𝑋 is barreled, then 𝑅(𝐶) ⊆ 𝑅((𝜆−𝒜)𝑛), 𝑛 ∈ N and

(399)
𝑑𝑛−1

𝑑𝜆𝑛−1
(𝜆−𝒜)−1𝐶 = (−1)𝑛−1(𝑛− 1)!(𝜆−𝒜)−𝑛𝐶 ∈ 𝐿(𝑋), 𝑛 ∈ N.

Remark 3.9.3. Let ∅ ≠ Ω ⊆ 𝜌𝐶(𝒜) be open, and let 𝑥 ∈ 𝑋. Suppose that 𝒜
is closed. Then card((𝜆 − 𝒜)−𝑛𝐶𝑥) 6 1, 𝜆 ∈ 𝜌𝐶(𝒜), 𝑛 ∈ N, 𝑥 ∈ 𝑋. This can be
proved by induction, observing that (𝜆−𝒜)−10 is a singleton (𝜆 ∈ 𝜌𝐶(𝒜)) as well
as that for each 𝑦 ∈ (𝜆−𝒜)−(𝑛+1)𝐶𝑥 (𝜆 ∈ 𝜌𝐶(𝒜), 𝑛 ∈ N, 𝑥 ∈ 𝑋) we have

(𝜆−𝒜)−(𝑛+1)𝐶𝑥 = 𝑦 + (𝜆−𝒜)−(𝑛+1)𝐶0

= 𝑦 + (𝜆−𝒜)−1(𝜆−𝒜)−𝑛𝐶0 = 𝑦 + (𝜆−𝒜)−10 = {𝑦}.

Taking into account the proof of [138, Corollary 2.8], this is a crucial thing in
showing that (398) holds, and that (399) holds, provided in addition that 𝑋 is
barreled.

3.9.1. Complex powers of multivalued linear operators with poly-
nomially bounded 𝐶-resolvent. In this subsection, we deal with the following
conditions:

(H)0 : Let 𝐶 ∈ 𝐿(𝑋) be not necessarily injective, let 𝒜 be closed, and let 𝐶𝒜 ⊆
𝒜𝐶. There exist real numbers 𝑑 ∈ (0, 1], 𝑐 ∈ (0, 1), 𝜀 ∈ (0, 1] and 𝛼 > −1
such that 𝑃𝛼,𝜀,𝑐 ∪ 𝐵𝑑 ⊆ 𝜌𝐶(𝒜), the operator family {(1 + |𝜆|)−𝛼(𝜆 −
𝒜)−1𝐶 : 𝜆 ∈ 𝑃𝛼,𝜀,𝑐 ∪ 𝐵𝑑} ⊆ 𝐿(𝑋) is equicontinuous, the mapping 𝜆 ↦→
(𝜆−𝒜)−1𝐶 is strongly analytic on int(𝑃𝛼,𝜀,𝑐∪𝐵𝑑) and strongly continuous
on 𝜕(𝑃𝛼,𝜀,𝑐 ∪𝐵𝑑)

and
(HS)0 : Let 𝐶 ∈ 𝐿(𝑋) be not necessarily injective, let 𝒜 be closed, and let 𝐶𝒜 ⊆

𝒜𝐶. There exist real numbers 𝑑 ∈ (0, 1], 𝜗 ∈ (0, 𝜋/2) and 𝛼 > −1 such
that Σ𝜗 ∪𝐵𝑑 ⊆ 𝜌𝐶(𝒜), the operator family {(1+ |𝜆|)−𝛼(𝜆−𝒜)−1𝐶 : 𝜆 ∈
Σ𝜗 ∪ 𝐵𝑑} ⊆ 𝐿(𝑋) is equicontinuous, the mapping 𝜆 ↦→ (𝜆 − 𝒜)−1𝐶 is
strongly analytic on int(Σ𝜗 ∪𝐵𝑑) and strongly continuous on 𝜕(Σ𝜗 ∪𝐵𝑑).
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Here, 𝐵𝑑 = {𝑧 ∈ C : |𝑧| 6 𝑑} and 𝑃𝛼,𝜀,𝑐 = {𝜉+𝑖𝜂 : 𝜉 > 𝜀, 𝜂 ∈ R, |𝜂| 6 𝑐(1+𝜉)−𝛼}.
Assume that the condition (H)0, resp. (HS)0, holds. Without loss of generality,
we may assume that there exists a number 𝜆0 ∈ int(𝜌𝐶(𝒜))r (𝑃𝛼,𝜀,𝑐 ∪ 𝐵𝑑), resp.,
𝜆0 ∈ int(𝜌𝐶(𝒜)) r (Σ𝜗 ∪ 𝐵𝑑). Then we can prove inductively (cf. also Theorem
1.2.8(i)) that, for every 𝑧 ∈ 𝜌𝐶(𝒜)r {𝜆0}:

(400) (𝑧−𝒜)−1𝐶(𝜆0−𝒜)−𝑘𝐶𝑥 =
(−1)𝑘

(𝑧 − 𝜆0)𝑘
(𝑧−𝒜)−1𝐶2𝑥+

𝑘∑︁
𝑖=1

(−1)𝑘−𝑖(𝜆0 −𝒜)−𝑖𝐶2𝑥

(𝑧 − 𝜆0)𝑘+1−𝑖
.

Strictly speaking, for 𝑘 = 1 this is the usual resolvent equation. Suppose that (400)
holds for all natural numbers 6 𝑘. Then (398) shows that

(𝑧 −𝒜)−1𝐶(𝜆0 −𝒜)−(𝑘+1)𝐶𝑥 = (𝑧 −𝒜)−1𝐶
(−1)𝑘

𝑘!

(︁ 𝑑𝑘
𝑑𝜆𝑘

(𝜆−𝒜)−1𝐶𝑥
)︁
𝜆=𝜆0

= (𝑧 −𝒜)−1𝐶
(−1)𝑘

𝑘!

(︁ 𝑑
𝑑𝜆

[︁
(−1)𝑘−1(𝑘 − 1)!(𝜆−𝒜)−𝑘𝐶𝑥

]︁)︁
𝜆=𝜆0

=
(−1)

𝑘

(︁ 𝑑
𝑑𝜆

[︁
(𝑧 −𝒜)−1𝐶(𝜆−𝒜)−𝑘𝐶𝑥

]︁)︁
𝜆=𝜆0

and we can employ the inductive hypothesis and a simple computation in order to
see that (400) holds with 𝑘 replaced with 𝑘 + 1 therein. Set

(401) 𝐶1 := 𝐶(𝜆0 −𝒜)−⌊𝛼+2⌋𝐶, if 𝛼 > −1, and 𝐶1 := 𝐶, if 𝛼 = −1.

Then Theorem 1.2.4(i) implies by iteration that 𝐶1 commutes with 𝒜. Furthermore,
the validity of (H)0, resp. (HS)0, implies by Theorem 1.2.8(i) that the following
holds:

(H): There exist real numbers 𝑑 ∈ (0, 1], 𝑐 ∈ (0, 1) and 𝜀 ∈ (0, 1] such that
𝑃𝛼,𝜀,𝑐 ∪𝐵𝑑 ⊆ 𝜌𝐶1

(𝒜), the operator family {(1 + |𝜆|)−1(𝜆−𝒜)−1𝐶1 : 𝜆 ∈
𝑃𝛼,𝜀,𝑐 ∪𝐵𝑑} ⊆ 𝐿(𝑋) is equicontinuous, the mapping 𝜆 ↦→ (𝜆−𝒜)−1𝐶1 is
strongly analytic on int(𝑃𝛼,𝜀,𝑐∪𝐵𝑑) and strongly continuous on 𝜕(𝑃𝛼,𝜀,𝑐∪
𝐵𝑑),

resp.,
(HS): There exist real numbers 𝑑 ∈ (0, 1] and 𝜗 ∈ (0, 𝜋/2) such that Σ𝜗 ∪𝐵𝑑 ⊆

𝜌𝐶1
(𝒜), the operator family {(1 + |𝜆|)−1(𝜆 − 𝒜)−1𝐶1 : 𝜆 ∈ Σ𝜗 ∪ 𝐵𝑑} ⊆

𝐿(𝑋) is equicontinuous, the mapping 𝜆 ↦→ (𝜆−𝒜)−1𝐶1 is strongly analytic
on int(Σ𝜗 ∪𝐵𝑑) and strongly continuous on 𝜕(Σ𝜗 ∪𝐵𝑑).

So, the condition (H), resp. (HS), holds and 𝐶1𝒜 ⊆ 𝒜𝐶1; in particular, −𝒜
is 𝐶1-positive, resp. −𝒜, is 𝐶1-sectorial of angle 𝜋 − 𝜗 and 𝐵𝑑 ⊆ 𝜌𝐶1

(−𝒜). Once
this is done, the further analyses may begin. Put Γ1(𝛼, 𝜀, 𝑐, 𝑑) := {𝜉 + 𝑖𝜂 : 𝜉 6
−𝜀, 𝜂 = −𝑐(1 + |𝜉|)−𝛼}, Γ2(𝛼, 𝜀, 𝑐, 𝑑) := {𝜉 + 𝑖𝜂 : 𝜉2 + 𝜂2 = 𝑑2, 𝜉 > −𝜀} and
Γ3(𝛼, 𝜀, 𝑐, 𝑑) := {𝜉 + 𝑖𝜂 : 𝜉 6 −𝜀, 𝜂 = 𝑐(1 + |𝜉|)−𝛼}. The curve Γ(𝛼, 𝜀, 𝑐, 𝑑) :=
Γ1(𝛼, 𝜀, 𝑐, 𝑑) ∪ Γ2(𝛼, 𝜀, 𝑐, 𝑑) ∪ Γ3(𝛼, 𝜀, 𝑐, 𝑑) is oriented so that Im(𝜆) increases along
Γ2(𝛼, 𝜀, 𝑐, 𝑑) and that Im(𝜆) decreases along Γ1(𝛼, 𝜀, 𝑐, 𝑑) and Γ3(𝛼, 𝜀, 𝑐, 𝑑). Since
there is no risk for confusion, we also write Γ for Γ(𝛼, 𝜀, 𝑐, 𝑑). We similarly define the
curves Γ1,𝑆(𝜗, 𝑑), Γ2,𝑆(𝜗, 𝑑), Γ3,𝑆(𝜗, 𝑑) and Γ𝑆(𝜗, 𝑑) for 𝜗 ∈ (0, 𝜋/2) and 𝑑 ∈ (0, 1].
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Define
𝑓𝐶1(𝒜)𝑥 :=

1

2𝜋𝑖

∫︁
Γ

𝑓(𝑧)(𝑧 +𝒜)−1𝐶1𝑥 𝑑𝑧, 𝑥 ∈ 𝑋,

where 𝑓(𝑧) is a holomorphic function on an open neighborhood Ω𝛼,𝜀,𝑐,𝑑 of −(𝑃𝛼,𝜀,𝑐∪
𝐵𝑑)r (−∞, 0] and the estimate

|𝑓(𝑧)| 6𝑀 |𝑧|−𝑠, 𝑧 ∈ Ω𝛼,𝜀,𝑐,𝑑

holds for some positive number 𝑠 > 0. Denote by ℋ the class consisting of such
functions. Then an application of Cauchy’s theorem shows that the definition
of 𝑓𝐶1

(𝒜) does not depend on a particular choice of curveΓ(𝛼, 𝜀, 𝑐, 𝑑) (with the
meaning clear). Furthermore, a standard calculus involving the Cauchy theorem,
the Fubini theorem and Theorem 1.2.4(ii) shows that

(402) 𝑓𝐶1(𝒜)𝑔𝐶1(𝒜) = (𝑓𝑔)𝐶1(𝒜)𝐶1, 𝑓, 𝑔, 𝑓𝑔 ∈ ℋ.

Given 𝑏 ∈ C with Re 𝑏 > 0, set (−𝒜)−𝑏
𝐶1

:= (𝑧−𝑏)𝐶1
(𝒜) and (−𝒜)−0

𝐶1
:= 𝐶1. By

Remark 3.9.3(ii) and the residue theorem, we get (−𝒜)−𝑛
𝐶1

= (−𝒜)−𝑛𝐶1 (𝑛 ∈ N);
moreover, (−𝒜)−𝑏

𝐶1
𝐶1 = 𝐶1(−𝒜)−𝑏

𝐶1
(Re 𝑏 > 0), the mapping 𝑏 ↦→ (−𝒜)−𝑏

𝐶1
𝑥, Re 𝑏 > 0

is analytic for every fixed 𝑥 ∈ 𝑋, and the following holds:
𝑑

𝑑𝑏
(−𝒜)−𝑏

𝐶1
𝑥 =

(−1)

2𝜋𝑖

∫︁
Γ

(ln 𝑧)𝑧−𝑏(𝑧 +𝒜)−1𝐶1𝑥 𝑑𝑧, 𝑥 ∈ 𝑋, Re 𝑏 > 0.

Applying the equality (402) once more, we get that

(−𝒜)−𝑏1
𝐶1

(−𝒜)−𝑏2
𝐶1

= (−𝒜)
−(𝑏1+𝑏2)
𝐶1

𝐶1, Re 𝑏1,Re 𝑏2 > 0.

It is very simple to prove that

(−𝒜)−𝑏
𝐶1
𝑥 = − sin𝜋𝑏

𝜋

∫︁ ∞

0

𝜆−𝑏(𝜆−𝒜)−1𝐶1𝑥 𝑑𝜆, 0 < Re 𝑏 < 1, 𝑥 ∈ 𝑋,

so that the family {(−𝒜)−𝑏
𝐶1

: 0 < 𝑏 < 1} is equicontinuous. Define now the powers
with negative imaginary part of exponent by

(−𝒜)−𝑏 := 𝐶−1
1 (−𝒜)−𝑏

𝐶1
, Re 𝑏 > 0.

Then (−𝒜)−𝑏 is a closed MLO and (−𝒜)−𝑛 = 𝐶−1
1 (−𝒜)−𝑛𝐶1 (𝑛 ∈ N). We define

the powers with positive imaginary part of exponent by

(−𝒜)𝑏 := ((−𝒜)−𝑏)
−1 = ((−𝒜)−𝑏

𝐶1
)−1𝐶1, Re 𝑏 > 0.

Clearly, (−𝒜)𝑛 = 𝐶−1
1 (−𝒜)𝑛𝐶1 for every 𝑛 ∈ N, and (−𝒜)𝑏 is a closed MLO due to

the fact that (−𝒜)−𝑏 is a closed MLO (𝑏 ∈ C+). Following [410, Definition 7.1.2]
and our previous analyses of non-degenerate case [103], we introduce the purely
imaginary powers of −𝒜 as follows: Let 𝜏 ∈ R r {0}. Then the power (−𝒜)𝑖𝜏 is
defined by

(−𝒜)𝑖𝜏 := 𝐶−2
1 (1−𝒜)2(−𝒜)−1(−𝒜)1+𝑖𝜏 (1−𝒜)−2𝐶

2
1 ,

where (1−𝒜)2 = 𝐶−1
1 (1−𝒜)2𝐶1 and (1−𝒜)−2 = 𝐶−1

1 (1−𝒜)−2𝐶1. We will later
see (cf. (S.4)) that 𝐶1(𝐷(𝒜2)) ⊆ 𝐷((−𝒜)1+𝑖𝜏 ), so that the closedness of (−𝒜)𝑖𝜏
follows from a simple calculation involving the closedness of (−𝒜)1+𝑖𝜏 . Further
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on, the Cauchy integral formula and (398) together imply that the operator family
{𝜆𝑘(𝜆 − 𝒜)−𝑘𝐶1 : 𝜆 > 0} ⊆ 𝐿(𝑋) is equicontinuous for all 𝑘 ∈ N. If 𝑦 ∈ 𝒜𝑘𝑥 for
some 𝑘 ∈ N and 𝑥 ∈ 𝐷(𝒜𝑘), then there exists a sequence (𝑦𝑗)16𝑗6𝑘 in 𝑋 such that
𝑦𝑘 = 𝑦 and (𝑥, 𝑦1) ∈ 𝒜, (𝑦1, 𝑦2) ∈ 𝒜, . . . , (𝑦𝑘−1, 𝑦𝑘) ∈ 𝒜. Then we can inductively
prove with the help of Theorem 1.2.4(i) that

𝜆𝑘(𝜆−𝒜)−𝑘𝐶1𝑥 = 𝐶1𝑥+

𝑘∑︁
𝑗=1

(︂
𝑘

𝑗

)︂
(𝜆−𝒜)−𝑗𝐶1𝑦𝑗 , 𝜆 > 0,

which implies that lim𝜆→+∞ 𝜆𝑘(𝜆−𝒜)−𝑘𝐶1𝑥 = 𝐶1𝑥, 𝑘 ∈ N, 𝑥 ∈ 𝐷(𝒜𝑘); cf. [103,
Lemma 2.7]. The assertion of [103, Lemma 2.5] also holds in our framework.

Now we will revisit multivalued analogues of some statements established in
[103, Theorem 2.8, Theorem 2.10, Lemma 2.14].

(S.1) Suppose Re 𝑏 ̸= 0. Then it is checked at once that (−𝒜)𝑏 ⊆ 𝐶−1
1 (−𝒜)𝑏𝐶1,

with the equality in the case that the operator 𝐶1 is injective.
(S.2) Suppose Re 𝑏1 < 0 and Re 𝑏2 < 0. Then 𝑅(𝐶1) ⊆ 𝐷((−𝒜)𝑧), Re 𝑧 < 0,

(−𝒜)𝑏1+𝑏2
𝐶1

𝑥 ∈ 𝐶−1
1 (−𝒜)𝑏1+𝑏2

𝐶1
𝐶1𝑥 = 𝐶−1

1 (−𝒜)𝑏1𝐶1
(−𝒜)𝑏2𝐶1

𝑥

⊆ 𝐶−1
1 (−𝒜)𝑏1𝐶1

𝐶−1
1 (−𝒜)𝑏2𝐶1

𝐶1𝑥 = (−𝒜)𝑏1(−𝒜)𝑏2𝐶1𝑥, 𝑥 ∈ 𝑋.

This, in turn, implies (−𝒜)𝑏1+𝑏2
𝐶1

⊆ (−𝒜)𝑏1(−𝒜)𝑏2𝐶1, 𝐶−1
1 (−𝒜)𝑏1+𝑏2

𝐶1
⊆

𝐶−1
1 (−𝒜)𝑏1(−𝒜)𝑏2𝐶1 and

(403) (−𝒜)𝑏1+𝑏2 ⊆ 𝐶−1
1 (−𝒜)𝑏1(−𝒜)𝑏2𝐶1.

Let 𝑦 ∈ (−𝒜)𝑏1(−𝒜)𝑏2𝑥. Thus, 𝐶1𝑦 ∈ (−𝒜)𝑏1𝐶1
𝐶−1

1 (−𝒜)𝑏2𝐶1
𝑥. This yields

the existence of an element 𝑢 ∈ 𝐶−1
1 (−𝒜)𝑏2𝐶1

𝑥 such that 𝐶1𝑧 = (−𝒜)𝑏2𝐶1
𝑥

and 𝐶1𝑦 = (−𝒜)𝑏1𝐶1
𝑢. So, 𝐶2

1𝑦 = (−𝒜)𝑏1𝐶1
𝐶1𝑢 = (−𝒜)𝑏1𝐶1

(−𝒜)𝑏2𝐶1
𝐶1𝑥,

𝐶1𝑦 ∈ 𝐶−1
1 (−𝒜)𝑏1+𝑏2

𝐶1
𝐶1𝑥 = (−𝒜)𝑏1+𝑏2𝐶1𝑥 and 𝑦 ∈ 𝐶−1

1 (−𝒜)𝑏1+𝑏2𝐶1𝑥.
Hence,

(404) (−𝒜)𝑏1(−𝒜)𝑏2 ⊆ 𝐶−1
1 (−𝒜)𝑏1+𝑏2𝐶1.

(S.3) Suppose now that Re 𝑏1 > 0 and Re 𝑏2 > 0. Using the equations (403)–
(404) with 𝑏1 and 𝑏2 replaced respectively by −𝑏1 and −𝑏2 therein, and
taking the inverses after that, it readily follows from (S.2) that (403)–(404)
holds in this case.

(S.4) Repeating almost verbatim the corresponding parts of the proof of [103,
Theorem 2.8(ii.2)], we can deduce the following: Suppose that Re 𝑏 > 0
and 𝑘 = ⌈Re 𝑏⌉, resp. 𝑘 = ⌈Re 𝑏⌉ + 1, provided that Re 𝑏 /∈ N, resp.
Re 𝑏 ∈ N. Let 𝑥 = 𝐶1𝑦 for some 𝑦 ∈ 𝐷(𝒜𝑘). Then there exists a sequence
(𝑦𝑗)16𝑗6𝑘 in 𝑋 such that (𝑦, 𝑦1) ∈ 𝒜, (𝑦1, 𝑦2) ∈ 𝒜, . . . , (𝑦𝑘−1, 𝑦𝑘) ∈ 𝒜.
Furthermore, 𝐶1(𝐷(𝒜𝑘)) ⊆ 𝐷((−𝒜)𝑏) and, for every such a sequence,
we have

1

2𝜋𝑖

∫︁
Γ

𝑧𝑏−⌊Re 𝑏⌋−1(𝑧 +𝒜)−1𝐶1𝑦𝑘 𝑑𝑧 ∈ (−𝒜)𝑏𝑥.
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(S.5) The assertion of [103, Theorem 2.8(iii)] is not really interested in multi-
valued case because (−𝒜)𝑏𝑥 is not singleton, in general.

(S.6) Let 𝜏 ∈ R. Then a straightforward calculation involving (S.1) shows that
(−𝒜)𝑖𝜏 ⊆ 𝐶−1

1 (−𝒜)𝑖𝜏𝐶1. The equality (−𝒜)𝑖𝜏 = 𝐶−1
1 (−𝒜)𝑖𝜏𝐶1 can be

also trivially verified provided that the operator 𝐶1 is injective.
(S.7) Let 𝑥 = 𝐶1𝑦 for some 𝑦 ∈ 𝐷(𝒜), and let 𝜏 ∈ R. Keeping in mind (400),

(402), (S.4), the residue theorem and Theorem 1.2.3, we can prove as in
the single-valued linear case that:

1

2𝜋𝑖

∫︁
Γ

𝑧−1+𝑖𝜏 𝑧

𝑧 + 1
(𝑧 +𝒜)−1𝐶2

1𝑥 𝑑𝑧 ∈ (1−𝒜)(−𝒜)−1(−𝒜)1+𝑖𝜏 (1−𝒜)−2𝐶
2
1𝑥.

Let 𝑢 ∈ (1−𝒜)𝑦. Using Theorem 1.2.3 and Theorem 1.2.4(i), we get from
the above that

𝐶−3
1 (1−𝒜)𝐶1

[︂
1

2𝜋𝑖

∫︁
Γ

𝑧−1+𝑖𝜏 𝑧

𝑧 + 1
(𝑧 +𝒜)−1𝐶2

1𝑥 𝑑𝑧

]︂
=

1

2𝜋𝑖

∫︁
Γ

𝑧−1+𝑖𝜏 𝑧

𝑧 + 1
(𝑧 +𝒜)−1𝐶1𝑢 𝑑𝑧 ∈ (−𝒜)𝑖𝜏𝑥,

so that 𝐶1(𝐷(𝒜)) ⊆ 𝐷((−𝒜)𝑖𝜏 ). Unfortunately, a great number of impor-
tant properties of purely imaginary powers established in [103, Theorem
2.10] does not continue to hold in multivalued linear case.

(S.8) Let 𝑛 ∈ N0, let 𝑏 ∈ C and let Re 𝑏 ∈ (0, 𝑛 + 1) r N. Set (1 − 𝑏)(2 −
𝑏) . . . (𝑛− 𝑏) := 1 for 𝑛 = 0. Then, for every 𝑥 ∈ 𝑋, we have

𝐶𝑛
1 (−𝒜)−𝑏

𝐶1
𝑥 =

(−1)𝑛𝑛!

(1− 𝑏)(2− 𝑏) . . . (𝑛− 𝑏)

sin𝜋(𝑛− 𝑏)

𝜋

∫︁ ∞

0

𝑡𝑛−𝑏(𝑡−𝒜)−(𝑛+1)𝐶𝑛+1
1 𝑥 𝑑𝑡.

This can be shown following the lines of the proof of [171, Theorem 5.27,
p. 138].

3.9.2. Abstract incomplete differential inclusions. Throughout this sub-
section, we assume that the condition (HS)0 holds. Define 𝐶1 through (401). Then
(HS) holds and we can define the fractional powers of −𝒜 as it has been done
above.

In our previous work, we have used the function

𝑓𝑡(𝜆) =
1

𝜋
𝑒−𝑡𝜆𝛾 cos𝜋𝛾 sin(𝑡𝜆𝛾 sin𝜋𝛾)

=
1

2𝜋𝑖
(𝑒−𝑡𝜆𝛾𝑒−𝑖𝜋𝛾

− 𝑒−𝑡𝜆𝛾𝑒𝑖𝜋𝛾

), 𝑡 > 0, 𝜆 > 0,

exploited by A. V. Balakrishnan in [44]. As already seen, this function enjoys the
following properties:

Q2.
∫︀∞
0
𝜆𝑛𝑓𝑡(𝜆)𝑑𝜆 = 0, 𝑛 ∈ N0, 𝑡 > 0.

Q3. Let 𝑚 > −1. Then the improper integral
∫︀∞
0
𝜆𝑛𝑓𝑡(𝜆)(𝜆−𝒜)−1𝐶1 · 𝑑𝜆 is

absolutely convergent and defines a bounded linear operator on 𝑋 (𝑛 ∈
N0).
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Put now, for 0 < 𝛾 < 1/2,

𝑆𝛾(𝑡)𝑥 :=

∫︁ ∞

0

𝑓𝑡(𝜆)(𝜆−𝒜)−1𝐶1𝑥 𝑑𝜆, 𝑡 > 0, 𝑥 ∈ 𝑋.

Then 𝑆𝛾(𝑡) ∈ 𝐿(𝑋), 𝑡 > 0 and the following holds:

Lemma 3.9.4. We have

(405) 𝑆𝛾(𝑡) = (𝑒−𝑡𝑧𝛾

)𝐶1
(𝒜), 𝑡 > 0, 0 < 𝛾 < 1/2.

Furthermore, 𝑆𝛾(𝑡) can be defined by (405) for all 𝑡 ∈ Σ(𝜋/2)−𝛾𝜋, and the mapping
𝑡 ↦→ 𝑆𝛾(𝑡), 𝑡 ∈ Σ(𝜋/2)−𝛾𝜋 is strongly analytic (0 < 𝛾 < 1/2).

Proof. Observe that, for every 𝑡 = 𝑡1 + 𝑖𝑡2 ∈ Σ(𝜋/2)−𝛾𝜋 and 𝑧 ∈ C r {0}, we
have

|𝑒−𝑡𝑧𝛾

| 6 𝑒−|𝑧|𝛾𝑡1 cos(𝛾 arg(𝑧))[1−| tan(arg(𝑡))| tan(𝛾 arg(𝑧))].

Keeping this estimate in mind, it is very simple to deform the path of integration
Γ𝑆(𝜗, 𝑑) into the negative real axis, showing that for each 𝑡 ∈ Σ(𝜋/2)−𝛾𝜋 and 𝑥 ∈ 𝑋
we have:

1

2𝜋𝑖

∫︁
Γ𝑆(𝜗,𝑑)

𝑒−𝑡𝜆𝛾

(𝜆+𝒜)−1𝐶1𝑥 𝑑𝜆

=
1

2𝜋𝑖

∫︁ ∞

0

(𝑒−𝑡𝜆𝛾𝑒−𝑖𝜋𝛾

− 𝑒−𝑡𝜆𝛾𝑒𝑖𝜋𝛾

)(𝜆−𝒜)−1𝐶1𝑥 𝑑𝜆.

The rest of proof is left to the interested reader. �

Set
𝜙𝛾 := (𝜋/2)− 𝛾(𝜋 − 𝜗), for 0 < 𝛾 6 1/2.

Theorem 3.9.5. Put 𝑆𝛾(0) := 𝐶1, 𝑆𝛾,𝜁(𝑡)𝑥 :=
∫︀ 𝑡

0
𝑔𝜁(𝑡 − 𝑠)𝑆𝛾(𝑠)𝑥 𝑑𝑠, 𝑥 ∈ 𝑋,

𝑡 ∈ Σ(𝜋/2)−𝛾𝜋 (𝜁 > 0), and 𝑆𝛾,0(𝑡) := 𝑆𝛾(𝑡), 𝑡 ∈ Σ(𝜋/2)−𝛾𝜋. Then the family
{𝑆𝛾(𝑡) : 𝑡 > 0} is equicontinuous, and there exist strongly analytic operator families
(S𝛾(𝑡))𝑡∈Σ𝜙𝛾

and (S𝛾,𝜁(𝑡))𝑡∈Σ𝜙𝛾
such that S𝛾(𝑡) = 𝑆𝛾(𝑡), 𝑡 > 0 and S𝛾,𝜁(𝑡) =

𝑆𝛾,𝜁(𝑡), 𝑡 > 0. Furthermore, the following holds:
(i) S𝛾(𝑡1)S𝛾(𝑡2) = S𝛾(𝑡1 + 𝑡2)𝐶1 for all 𝑡1, 𝑡2 ∈ Σ𝜙𝛾

.
(ii) We have lim𝑡→0,𝑡∈Σ𝜙𝛾−𝜀

S𝛾(𝑡)𝑥 = 𝐶1𝑥, 𝑥 ∈ 𝐷(𝒜), 𝜀 ∈ (0, 𝜙𝛾).
(iii) S𝛾(𝑧)(−𝒜)𝜈 ⊆ (−𝒜)𝜈S𝛾(𝑧), 𝑧 ∈ Σ𝜙𝛾

, 𝜈 ∈ C+.
(iv) If 𝐷(𝒜) is dense in 𝑋, then (𝑆𝛾(𝑡))𝑡>0 is an equicontinuous analytic

𝐶1-regularized semigroup of angle 𝜙𝛾 . Moreover, (𝑆𝛾(𝑡))𝑡>0 is a 𝐶1-
regularized existence family with a subgenerator −(−𝒜)𝛾 and the supposi-
tion (𝑥, 𝑦) ∈ −(−𝒜)𝛾 implies (𝐶1𝑥,𝐶1𝑦) ∈ 𝒜𝛾 , where 𝒜𝛾 is the integral
generator of (𝑆𝛾(𝑡))𝑡>0; otherwise, for every 𝜁 > 0, (𝑆𝛾,𝜁(𝑡))𝑡>0 is an
exponentially equicontinuous, analytic 𝜁-times integrated 𝐶1-regularized
semigroup, (𝑆𝛾,𝜁(𝑡))𝑡>0 is a 𝜁-times integrated 𝐶1-existence family with
a subgenerator −(−𝒜)𝛾 and the supposition (𝑥, 𝑦) ∈ −(−𝒜)𝛾 implies
(𝐶1𝑥,𝐶1𝑦) ∈ 𝒜𝛾 .
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(v) For every 𝑥 ∈ 𝑋, 𝑡 ∈ Σ(𝜋/2)−𝛾𝜋 and 𝑛 ∈ N, we have

(406)
(︂
𝑆𝛾(𝑡)𝑥,−

∫︁ ∞

0

𝜆𝑛𝑓𝑡(𝜆)(𝜆−𝒜)−1𝐶1𝑥 𝑑𝜆

)︂
∈ 𝒜𝑛.

(vi) Suppose 𝛽>0. Denote by Ω𝜃,𝛾 , resp. Ψ𝛾 , the continuity set of (𝑆𝛾(𝑡𝑒
𝑖𝜃))𝑡>0,

resp. (𝑆𝛾(𝑡))𝑡∈Σ𝜙𝛾
. Then, for every 𝑥 ∈ Ω𝜃,𝛾 , the incomplete abstract

Cauchy inclusion

(𝐹𝑃𝛽) :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢 ∈ 𝐶∞((0,∞) : 𝑋),

𝐷𝛽
−𝑢(𝑡) ∈ 𝑒𝑖𝜃𝛽(−𝒜)𝛾𝛽𝑢(𝑡), 𝑡 > 0,

lim𝑡→0+ 𝑢(𝑡) = 𝐶1𝑥,

the set {𝑢(𝑡) : 𝑡 > 0} is bounded in 𝑋,

has a solution 𝑢(𝑡) = 𝑆𝛾(𝑡𝑒
𝑖𝜃)𝑥, 𝑡 > 0, which can be analytically extended

to the sector Σ𝜙𝛾−|𝜃|. If, additionally, 𝑥 ∈ Ψ𝛾 , then for every 𝛿 ∈ (0, 𝜙𝛾)

and 𝑗 ∈ N0, we have that the set {𝑧𝑗𝑢(𝑗)(𝑧) : 𝑧 ∈ Σ𝛿} is bounded in 𝑋.

Proof. The proof of (i) for real parameters 𝑡1, 𝑡2 > 0 follows almost directly
from definition of 𝑆𝛾(·), by applying (402); (v) is an easy consequence of Theorem
1.2.3, Theorem 1.2.4(i) and the property Q2. A very simple proof of (iii) is omitted.
Set, for |𝜃| < 𝜗 and 0 < 𝛾 < 1/2,

𝑆𝜃,𝛾(𝑡)𝑥 :=

∫︁ ∞

0

𝑓𝑡,𝛾(𝜆)(𝜆− 𝑒𝑖𝜃𝒜)−1𝐶1𝑥 𝑑𝜆, 𝑥 ∈ 𝑋, 𝑡 ∈ Σ(𝜋/2)−𝛾𝜋.

Let 𝜃1 ∈ (0, 𝜗) and 𝜃2 ∈ (−𝜗, 0). Define

S𝛾(𝑡)𝑥 :=

⎧⎪⎨⎪⎩
𝑆𝛾(𝑡)𝑥, 𝑡 ∈ Σ(𝜋/2)−𝛾𝜋,

𝑆𝜃1,𝛾(𝑡𝑒
−𝑖𝛾𝜃1), if 𝑡 ∈ 𝑒𝑖𝛾𝜃1Σ(𝜋/2)−𝛾𝜋,

𝑆𝜃2,𝛾(𝑡𝑒
−𝑖𝛾𝜃2), if 𝑡 ∈ 𝑒𝑖𝛾𝜃2Σ(𝜋/2)−𝛾𝜋.

Then an elementary application of Cauchy formula shows that the operator family
(S𝛾(𝑡))𝑡∈Σ𝜙𝛾

is well defined; furthermore, (S𝛾(𝑡))𝑡∈Σ𝜙𝛾
is strongly analytic and

equicontinuous on any proper subsector of Σ𝜙𝛾
(cf. also the proof of [291, Theorem

2.9.48]). Using Theorem 1.2.4(i), we get that lim𝜆→+∞[𝜆(𝜆 − 𝒜)−1𝐶1𝑥 − 𝜆(𝜆 +
1)−1𝐶1𝑥] = 0 as 𝜆 → +∞ (𝑥 ∈ 𝐷(𝒜)). Taking into account this equality and
the proof of [410, Theorem 5.5.1(iv), p. 130], we get that lim𝑡→0+ 𝑆𝛾(𝑡)𝑥 = 𝐶1𝑥,
𝑥 ∈ 𝐷(𝒜). Now the proofs of (i)-(iii) can be straightforwardly completed.

We will prove (iv) provided that𝐷(𝒜) is dense in 𝐸. It is clear that (𝑆𝛾(𝑡))𝑡>0 is
an equicontinuous analytic 𝐶1-regularized semigroup (𝑆𝛾(𝑡))𝑡>0 of angle 𝜙𝛾 . Since,
for every 𝑡 > 0 and 𝑥 ∈ 𝑋,

𝐶1(−𝑧−𝛾𝑒−𝑡𝑧𝛾

+ 𝑧−𝛾)𝐶1(𝒜)𝑥 = −(𝑧−𝛾)𝐶1(𝒜)[(𝑒−𝑡𝑧𝛾

)𝐶1(𝒜)𝑥− 𝐶1𝑥],

we have
𝐶1𝑆𝛾,1(𝑡)𝑥 = −(−𝒜)−𝛾

𝐶1
[𝑆𝛾(𝑡)𝑥− 𝐶1𝑥], 𝑡 > 0, 𝑥 ∈ 𝑋.

This clearly implies that (𝑆𝛾,1(𝑡)𝑥, 𝑆𝛾,1(𝑡)𝑥 − 𝐶1𝑥) ∈ −(−𝒜)𝛾 , 𝑡 > 0, 𝑥 ∈ 𝑋, so
that (𝑆𝛾,𝜁(𝑡))𝑡>0 is a 𝜁-times integrated 𝐶1-existence family with a subgenerator
−(−𝒜)𝛾 . The supposition (𝑥, 𝑦) ∈ −(−𝒜)𝛾 implies 𝐶1𝑥 = −(−𝒜)−𝛾

𝐶1
𝑦 and we can
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similarly prove that (𝐶1𝑥,𝐶1𝑦) ∈ 𝒜𝛾 . Arguing as in the proof of [103, Theorem
3.5(i)/(b)’], we get that, for every 𝑥 ∈ 𝑋 and 𝑡 > 0, the following equality holds,
with 𝑧 = 𝑡𝑒𝑖𝜃 ∈ Σ(𝜋/2)−𝛾𝜋,

(407) 𝐷𝛽
−𝑆𝛾(𝑡𝑒

𝑖𝜃)𝑥 =
𝑒𝑖𝜃𝛽

2𝜋𝑖

∫︁ ∞

0

𝜆𝛾𝛽 [𝑒−𝑖𝛾𝛽𝜋𝑒−𝑧𝜆𝛾𝑒−𝑖𝜋𝛾

−𝑒𝑖𝛾𝛽𝜋𝑒−𝑧𝜆𝛾𝑒𝑖𝜋𝛾

](𝜆−𝒜)−1𝐶1𝑥 𝑑𝜆.

Deforming the path of integration Γ𝑆(𝜗, 𝑑) into the negative real axis, as it has
been done in the proof of Lemma 3.9.4, we get

(408) (·𝛾𝛽𝑒−𝑧·𝛾 )𝐶1
(𝒜)

=
1

2𝜋𝑖

∫︁ ∞

0

𝜆𝛾𝛽 [𝑒−𝑖𝛾𝛽𝜋𝑒−𝑧𝜆𝛾𝑒−𝑖𝜋𝛾

− 𝑒𝑖𝛾𝛽𝜋𝑒−𝑧𝜆𝛾𝑒𝑖𝜋𝛾

](𝜆−𝒜)−1𝐶1𝑥 𝑑𝜆.

Since
𝐶1(𝑒

−𝑧·𝛾 )𝐶1
(𝒜) = (·−𝛾𝛽)𝐶1

(𝒜)(·−𝛾𝛽𝑒−𝑧·𝛾 )𝐶1
(𝒜),

(407)–(408) immediately implies that

(𝑒−𝑖𝜃𝛽𝐷𝛽
−𝑆𝛾(𝑡𝑒

𝑖𝜃)𝑥, 𝑆𝛾(𝑡𝑒
𝑖𝜃)𝑥) ∈ 𝐶−1

1 (−𝒜)𝛾𝛽𝐶1
, 𝑡 > 0, 𝑥 ∈ 𝑋,

i.e.,
(𝑆𝛾(𝑡𝑒

𝑖𝜃)𝑥, 𝑒−𝑖𝜃𝛽𝐷𝛽
−𝑆𝛾(𝑡𝑒

𝑖𝜃)𝑥) ∈ (−𝒜)𝛾𝛽 , 𝑡 > 0, 𝑥 ∈ 𝑋.

The proof of (vi) now can be completed routinely. �

Remark 3.9.6. (i) If 𝑙 = 𝛽𝛾 ∈ N, then the operator (−𝒜)𝛾𝛽 in the
formulation of problem (FP)𝛽 can be replaced with the operator (−𝒜)𝑙

therein; cf. (406).
(ii) Suppose that the operator 𝐶1 is injective. Then we can simply prove

that (𝑆𝛾,𝜁(𝑡))𝑡>0 is a 𝜁-times integrated 𝐶1-semigroup with a subgenera-
tor −(−𝒜)𝛾 , which implies that the integral generator of (𝑆𝛾,𝜁(𝑡))𝑡>0 is
−𝐶−1

1 (−𝒜)𝛾𝐶1 = −(−𝒜)𝛾 . A similar statement holds in the case that
𝛾 = 1/2, which is further discussed in the following theorem.

Theorem 3.9.7. The limit contained in the expression

(409) 𝑆1/2(𝑡)𝑥 :=
1

𝜋
lim

𝑁→∞

∫︁ 𝑁

0

sin(𝑡
√
𝜆)(𝜆−𝒜)−1𝐶1𝑥 𝑑𝜆, 𝑡 > 0,

exists in 𝐿(𝑋) for every 𝑥 ∈ 𝑋. Put 𝑆1/2(0) := 𝐶1. Then the family {𝑆1/2(𝑡) : 𝑡 >
0} is equicontinuous, there exists a strongly analytic operator family (S1/2(𝑡))𝑡∈Σ𝜙1/2

such that S1/2(𝑡) = 𝑆1/2(𝑡), 𝑡 > 0 and the following holds:
(i) S1/2(𝑡)S1/2(𝑠) = S1/2(𝑡+ 𝑠)𝐶1 for all 𝑡, 𝑠 ∈ Σ𝜙1/2

.
(ii) lim𝑡→0,𝑡∈Σ𝜙1/2−𝜀

S1/2(𝑡)𝑥 = 𝐶1𝑥, 𝑥 ∈ 𝐷(𝒜), 𝜀 ∈ (0, 𝜙1/2).
(iii) S1/2(𝑡)(−𝒜)𝜈 ⊆ (−𝒜)𝜈S1/2(𝑡), 𝑡 ∈ Σ𝜙1/2

, 𝜈 ∈ C+.
(iv) If 𝐷(𝒜) is dense in 𝑋, then (𝑆1/2(𝑡))𝑡>0 is an equicontinuous analytic

𝐶1-regularized semigroup of angle 𝜙𝛾 . Furthermore, (𝑆1/2(𝑡))𝑡>0 is a
𝐶1-regularized existence family with a subgenerator −(−𝒜)1/2 and the
supposition (𝑥, 𝑦) ∈ −(−𝒜)1/2 implies (𝐶1𝑥,𝐶1𝑦) ∈ 𝒜1/2, where 𝒜1/2

is the integral generator of (𝑆1/2(𝑡))𝑡>0; otherwise, for every 𝜁 > 0,
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(𝑆1/2,𝜁(𝑡))𝑡>0 is an exponentially equicontinuous, analytic 𝜁-times inte-
grated 𝐶1-regularized semigroup, (𝑆1/2,𝜁(𝑡))𝑡>0 is a 𝜁-times integrated 𝐶1-
existence family with a subgenerator −(−𝒜)1/2 and the supposition (𝑥, 𝑦)∈
−(−𝒜)1/2 implies (𝐶1𝑥,𝐶1𝑦) ∈ 𝒜1/2.

(v) Then 𝑅(𝑆1/2(𝑡)) ⊆ 𝐷∞(𝒜), 𝑡 > 0 and, for every 𝑥 ∈ 𝐷(𝒜), the incomplete
abstract Cauchy problem

(𝑃2) :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢 ∈ 𝐶∞((0,∞) : 𝑋),

𝑢′′(𝑡) ∈ −𝒜𝑢(𝑡), 𝑡 > 0,

lim𝑡→0+ 𝑢(𝑡) = 𝐶1𝑥,

the set {𝑢(𝑡) : 𝑡 > 0} is bounded in 𝑋,

has a solution 𝑢(𝑡) = 𝑆1/2(𝑡)𝑥, 𝑡 > 0. Moreover, the mapping 𝑡 ↦→ 𝑢(𝑡),
𝑡 > 0 can be analytically extended to the sector Σ𝜙1/2

and, for every
𝛿 ∈ (0, 𝜙1/2) and 𝑗 ∈ N0, we have that the set {𝑧𝑗𝑢(𝑗)(𝑧) : 𝑧 ∈ Σ𝛿} is
bounded in 𝑋.

Proof. First of all, observe that 𝜙1/2 = 𝜗/2. Applying the partial integration,
(398) and the equicontinuity of family {𝜆2(𝜆 − 𝒜)−2𝐶1 : 𝜆 > 0}, we obtain that
the limit contained in (409) exists and equals

𝑆1/2(𝑡)𝑥 =

∫︁ ∞

0

𝑓(𝜆, 𝑡)(𝜆−𝒜)−2𝐶1𝑥 𝑑𝜆, 𝑡 > 0, 𝑥 ∈ 𝑋,

where 𝑓(𝜆, 𝑡) = 2𝜋−1𝑡−2[sin(𝑡
√
𝜆) − 𝑡

√
𝜆 cos(𝑡

√
𝜆)] for 𝜆 > 0 and 𝑡 > 0. As in the

single-valued case, the change of variables 𝑥 = 𝑡
√
𝜆 shows that the operator family

{𝑆1/2(𝑡) : 𝑡 > 0} is both equicontinuous and strongly continuous. Let (𝑥, 𝑦) ∈ 𝒜.
Then Theorem 1.2.4(i) shows that

𝑆1/2(𝑡)𝑥− 𝐶1𝑥 =
1

𝜋
lim

𝑁→∞

∫︁ 𝑁

0

sin(𝑡
√
𝜆)((𝜆+𝐴)−1𝐶1𝑥− 𝜆−1𝐶1𝑥)𝑑𝜆

=
1

𝜋
lim

𝑁→∞

∫︁ 𝑁

0

sin(𝑡
√
𝜆)

𝜆
(𝜆−𝒜)−1𝐶1𝑦 𝑑𝜆.

Keeping in mind the last equality and the equicontinuity of family {𝑆1/2(𝑡) : 𝑡 > 0},
we get that lim𝑡→0 𝑆1/2(𝑡)𝑥 = 𝐶1𝑥 for all 𝑥 ∈ 𝐷(𝒜). Now we proceed as in the proof
of Theorem 2.7.5. Let 0 < 𝛿′ < 𝛿 < 𝜗/2, 1/2 > 𝛾0 > 𝛿/𝜗 and 𝜃 ∈ (−𝜗, (−𝛿)/𝛾0).
Then, for every 𝛾 ∈ (𝛾0, 1/2), we have 𝜃 ∈ (−𝜗, (−𝛿)/𝛾) and 𝛾 > 𝛿/𝜗. Let 𝜀 ∈
(0, (𝜋 − 𝜗)/2) be sufficiently small. Define, for every 𝛾 ∈ (𝛾0, 1/2) and 𝑥 ∈ 𝑋,

𝐹𝛾(𝜆)𝑥 :=

⎧⎨⎩
𝑒𝑖𝜃𝛾 sin 𝛾𝜋

𝜋

∫︀∞
0

𝑣𝛾(𝑣−𝑒𝑖𝜃𝒜)−1𝐶1𝑥 𝑑𝑣

(𝜆𝑒𝑖𝜃𝛾+𝑣𝛾 cos𝜋𝛾)2+𝑣2𝛾 sin2 𝛾𝜋
, if arg(𝜆) ∈ (−𝜀, (𝜋/2) + 𝛿),

𝑒−𝑖𝜃𝛾 sin 𝛾𝜋
𝜋

∫︀∞
0

𝑣𝛾(𝑣−𝑒−𝑖𝜃𝒜)−1𝐶1𝑥 𝑑𝑣

(𝜆𝑒−𝑖𝜃𝛾+𝑣𝛾 cos𝜋𝛾)2+𝑣2𝛾 sin2 𝛾𝜋
, if arg(𝜆) ∈ (−(𝜋/2)− 𝛿, 𝜀).

If 𝑥 ∈ 𝑋 and arg(𝜆) ∈ (−𝜀, (𝜋/2) + 𝛿), resp., arg(𝜆) ∈ (−(𝜋/2)− 𝛿, 𝜀), then

(410)
∫︁ ∞

0

𝑒−𝜆𝑒𝑖𝜃𝛾𝑡𝑆𝜃,𝛾(𝑡)𝑥 𝑑𝑡 =
sin 𝛾𝜋

𝜋

∫︁ ∞

0

𝑣𝛾(𝑣 − 𝑒𝑖𝜃𝒜)−1𝐶1𝑥

(𝜆𝑒𝑖𝜃𝛾 + 𝑣𝛾 cos𝜋𝛾)2 + 𝑣2𝛾 sin2 𝛾𝜋
𝑑𝑣,
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resp.,

(411)
∫︁ ∞

0

𝑒−𝜆𝑒−𝑖𝜃𝛾𝑡𝑆−𝜃,𝛾(𝑡)𝑥 𝑑𝑡 =
sin 𝛾𝜋

𝜋

∫︁ ∞

0

𝑣𝛾(𝑣 + 𝑒−𝑖𝜃𝒜)−1𝐶1𝑥

(𝜆𝑒−𝑖𝜃𝛾 + 𝑣𝛾 cos𝜋𝛾)2 + 𝑣2𝛾 sin2 𝛾𝜋
𝑑𝑣.

Furthermore,

(412) 𝑒𝑖𝜃𝛾
∫︁ ∞

0

𝑒−𝜆𝑒𝑖𝜃𝛾𝑡𝑆𝜃,𝛾(𝑡)𝑥 𝑑𝑡 = 𝑒−𝑖𝜃𝛾

∫︁ ∞

0

𝑒−𝜆𝑒−𝑖𝜃𝛾𝑡𝑆−𝜃,𝛾(𝑡)𝑥 𝑑𝑡, 𝜆 ∈ Σ𝜀.

By (410)–(412), we deduce that the function 𝜆 ↦→ 𝐹𝛾(𝜆)𝑥, 𝜆 ∈ Σ(𝜋/2)+𝛿 is well
defined, analytic and bounded by Const𝛿′ |𝜆|−1 on sector Σ(𝜋/2)+𝛿′ (𝑥 ∈ 𝑋), as well
as

(413) 𝑆𝛾(𝑧)𝑥 =
1

2𝜋𝑖

∫︁
Γ𝛿′,𝑧

𝑒𝜆𝑧𝐹𝛾(𝜆)𝑥 𝑑𝜆, 𝑥 ∈ 𝑋, 𝑧 ∈ Σ𝛿′ , 𝛾 ∈ (𝛾0, 1/2),

where Γ𝛿′,𝑧 := Γ𝛿′,𝑧,1 ∪ Γ𝛿′,𝑧,2, Γ𝛿′,𝑧,1 := {𝑟𝑒𝑖((𝜋/2)+𝛿′) : 𝑟 > |𝑧|−1} ∪ {|𝑧|−1𝑒𝑖𝜗 : 𝜗 ∈
[0, (𝜋/2)+𝛿′]} and Γ𝛿′,𝑧,2 := {𝑟𝑒−𝑖((𝜋/2)+𝛿′) : 𝑟 > |𝑧|−1}∪{|𝑧|−1𝑒𝑖𝜗 : 𝜗 ∈ [−(𝜋/2)−
𝛿′, 0]} are oriented counterclockwise. The dominated convergence theorem shows
that, for every 𝑥 ∈ 𝑋 and 𝑧 ∈ Σ𝛿′ ,

lim
𝛾→ 1

2−
𝑆𝛾(𝑧)𝑥 =

𝑒𝑖𝜃/2

2𝜋2𝑖

∫︁
Γ𝛿′,𝑧,1

𝑒𝜆𝑧
∫︁ ∞

0

𝑣1/2(𝑣 − 𝑒𝑖𝜃𝒜)−1𝐶1𝑥

𝜆2𝑒𝑖𝜃 + 𝑣
𝑑𝑣 𝑑𝜆

+
𝑒−𝑖𝜃/2

2𝜋2𝑖

∫︁
Γ𝛿′,𝑧,2

𝑒𝜆𝑧
∫︁ ∞

0

𝑣1/2(𝑣 − 𝑒−𝑖𝜃𝒜)−1𝐶1𝑥

𝜆2𝑒−𝑖𝜃 + 𝑣
𝑑𝑣 𝑑𝜆

:= S1/2(𝑧)𝑥.

Define 𝐹1/2(𝜆) by replacing the number 𝛾 with the number 1/2 in definition of
𝐹𝛾(𝜆). Then, for every 𝑥 ∈ 𝑋, the function 𝜆 ↦→ 𝐹1/2(𝜆)𝑥, 𝜆 ∈ Σ(𝜋/2)+𝛿 is well
defined and analytic on Σ(𝜋/2)+𝛿; furthermore, for each 𝑞 ∈ ~ there exists 𝑟𝑞 ∈ ~
such that 𝑞(𝐹1/2(𝜆)𝑥) 6 𝑟𝑞(𝑥) Const𝛿′ |𝜆|−1, 𝜆 ∈ Σ(𝜋/2)+𝛿′ , 𝑥 ∈ 𝑋 [317]. Define
(S1/2(𝑧))𝑧∈Σ𝜗/2

⊆ 𝐿(𝑋) by S1/2(𝑧)𝑥 := lim𝛾→ 1
2−

𝑆𝛾(𝑧)𝑥, 𝑧 ∈ Σ𝜗/2, 𝑥 ∈ 𝑋; this
operator family is equicontinuous on any proper subsector of Σ𝜗/2 and satisfies
additionally that the mapping 𝑧 ↦→ S1/2(𝑧)𝑥, 𝑧 ∈ Σ𝜗/2 is analytic for all 𝑥 ∈ 𝑋.
Letting 𝛾 → 1

2− in (413), it is not difficult to prove that

S 1
2
(𝑧)𝑥 =

1

2𝜋𝑖

∫︁
Γ𝛿′,𝑧

𝑒𝜆𝑧𝐹 1
2
(𝜆)𝑥 𝑑𝜆, 𝑥 ∈ 𝑋, 𝑧 ∈ Σ𝛿′ ,

so that the proof of [27, Theorem 2.6.1] implies

(414)
∫︁ ∞

0

𝑒−𝜆𝑡S 1
2
(𝑡)𝑥 𝑑𝑡 = 𝐹 1

2
(𝜆)𝑥, 𝑥 ∈ 𝑋, 𝜆 > 0.

On the other hand, by the proof of [410, Theorem 5.5.2, p. 133] we have

(415)
∫︁ ∞

0

𝑒−𝜆𝑡𝑆 1
2
(𝑡)𝑥 𝑑𝑡 =

1

𝜋

∫︁ ∞

0

√
𝜈

𝜆2 + 𝜈
(𝜈 −𝒜)−1𝐶1𝑥 𝑑𝜈 = 𝐹 1

2
(𝜆)𝑥, 𝑥 ∈ 𝑋, 𝜆 > 0.

Using the uniqueness theorem for the Laplace transform, we obtain from (414)–(415)
that S1/2(𝑡) = 𝑆1/2(𝑡), 𝑡 > 0. Now the proofs of (i)–(iii) become standard and
therefore omitted.
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For simplicity, we assume that 𝒜 is densely defined in (iv). Then the only
non-trivial thing that should be proved is that the supposition (𝑥, 𝑦) ∈ −(−𝒜)1/2

implies (𝐶1𝑥,𝐶1𝑦) ∈ 𝒜1/2. So, let (𝑥, 𝑦) ∈ −(−𝒜)1/2, i.e., 𝐶1𝑥 = −(−𝒜)
−1/2
𝐶1

𝑦. A
similar line of reasoning as in the proof of identity [103, (51), p. 489] shows that

𝐶1

∫︁ ∞

0

𝑒−𝜆𝑡𝑆𝛾(𝑡)𝑦 𝑑𝑡 = 𝐶1(−𝒜)−𝛾
𝐶1
𝑦 − 𝜆

∫︁ ∞

0

𝑒−𝜆𝑡𝑆𝛾(𝑡)𝑦 𝑑𝑡, 𝜆 > 0, 𝛾 ∈ (0, 1/2).

Taking the limits of both sides of previous equality when 𝛾 → 1/2−, we get that

𝐶1

∫︁ ∞

0

𝑒−𝜆𝑡𝑆1/2(𝑡)𝑦 𝑑𝑡 = 𝐶1(−𝒜)
−1/2
𝐶1

𝑦 − 𝜆

∫︁ ∞

0

𝑒−𝜆𝑡𝑆1/2(𝑡)𝑦 𝑑𝑡, 𝜆 > 0.

Then the uniqueness theorem for Laplace transform simply implies that

𝑆1/2(𝑡)𝐶1𝑥− 𝐶2
1𝑥 =

∫︁ 𝑡

0

𝑆1/2(𝑠)𝐶1𝑦 𝑑𝑠, 𝑡 > 0,

as claimed.
Now we will prove (v) by slightly modifying the corresponding part of proof of

Theorem 2.7.5(i). In order to do that, we will first show that for each 𝑥 ∈ 𝑋 we
have 𝑆′′

1/2(𝑡)𝑥 ∈ −𝒜𝑆1/2(𝑡)𝑥, 𝑡 > 0. Fix temporarily an element 𝑥 ∈ 𝑋. Owing to
Theorem 3.9.5(v) and (407), cf. also Remark 3.9.6(i), we have that

𝐷
1
𝛾

−𝑆
′
𝛾(𝑡)𝑥 ∈ −𝒜𝑆𝛾(𝑡)𝑥, 𝑡 > 0,

i.e.,
𝑑2

𝑑𝑡2

∫︁ ∞

0

𝑔3− 1
𝛾
(𝑠)𝑆′

𝛾(𝑡+ 𝑠)𝑥 𝑑𝑠 ∈ 𝒜𝑆𝛾(𝑡)𝑥, 𝑡 > 0, 𝛾 ∈ (𝛾0, 1/2).

Therefore, ∫︁ ∞

0

𝑔3− 1
𝛾
(𝑠)𝑆′′′

𝛾 (𝑡+ 𝑠)𝑥 𝑑𝑠 ∈ 𝒜𝑆𝛾(𝑡)𝑥, 𝑡 > 0, 𝛾 ∈ (𝛾0, 1/2).

Applying the partial integration, we get∫︁ ∞

0

𝑔4− 1
𝛾
(𝑠)𝑆(𝑖𝑣)

𝛾 (𝑡+ 𝑠)𝑥 𝑑𝑠 ∈ −𝒜𝑆𝛾(𝑡)𝑥, 𝑡 > 0, 𝛾 ∈ (𝛾0, 1/2).

The dominated convergence theorem yields by letting 𝛾 → 1/2− that∫︁ ∞

0

𝑠𝑆
(𝑖𝑣)
1/2 (𝑡+ 𝑠)𝑥 𝑑𝑠 ∈ −𝒜𝑆1/2(𝑡)𝑥, 𝑡 > 0,

which clearly implies after an application of integration by parts that 𝑆′′
1/2(𝑡)𝑥 ∈

−𝒜𝑆1/2(𝑡)𝑥, 𝑡 > 0, as claimed. By (ii), the function 𝑢(𝑡) = 𝑆1/2(𝑡)𝑥, 𝑡 > 0 is a
solution of problem (𝑃2) for 𝑥 ∈ 𝐷(𝒜). Furthermore, we obtain by induction that
𝑆
(2𝑛)
1/2 (𝑡)𝑥 ∈ (−1)𝑛𝒜𝑛𝑆1/2(𝑡)𝑥, 𝑡 > 0, 𝑛 ∈ N, 𝑥 ∈ 𝑋, so that 𝑅(𝑆1/2(𝑡)) ⊆ 𝐷∞(𝒜),
𝑡 > 0. The proof of the theorem is thereby complete. �
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Examples of exponentially bounded integrated semigroups generated by mul-
tivalued linear operators can be found in [199, Section 5.3, Section 5.8] (cf. also
Example 3.2.11(i)). These example can serve one to provide possible applications
of Theorem 3.9.5 and Theorem 3.9.7.

Example 3.9.8. Assume that 𝑀𝑝 = 𝑝!𝑠 for some 𝑠 > 1. Set 𝜔(𝑧) :=
∏︀∞

𝑖=1(1 +
𝑖𝑧
𝑝𝑠 ), 𝑧 ∈ C. Suppose that there exist constants 𝑙 > 0 and 𝜔 > 0 satisfying that
𝑅𝐻𝑃𝜔 ≡ {𝜆 ∈ C : Re𝜆 > 𝜔} ⊆ 𝜌(𝒜) and the operator family {𝑒−𝑀(𝑙|𝜆|)𝑅(𝜆 :
𝒜) |𝜆 ∈ 𝑅𝐻𝑃𝜔} ⊆ 𝐿(𝑋) is equicontinuous (cf. [291, 292] for a great number of
such examples with 𝒜 being single-valued, and Example 3.2.65 for purely multival-
ued linear case, with 𝑋 being a Fréchet space); here, 𝑀(·) denotes the associated
function of sequence (𝑀𝑝). Let �̄� > 𝜔. Then there exists a sufficiently large number
𝑛 ∈ N such that the expression

𝑆(𝑡) :=
1

2𝜋𝑖

∫︁ �̄�+𝑖∞

�̄�−𝑖∞
𝑒𝜆𝑡

𝑅(𝜆 :𝒜)

𝜔𝑛(𝑖𝜆)
𝑑𝜆, 𝑡 > 0

defines an exponentially equicontinuous 𝐶 ≡ 𝑆(0)-regularized semigroup (𝑆(𝑡))𝑡>0

with a subgenerator 𝒜 (cf. Theorem 1.2.3, Theorem 1.2.4(i) and the proof of [291,
Theorem 3.6.4]). It is not difficult to see that (𝜆 − 𝒜)−1𝐶𝑓 =

∫︀∞
0
𝑒−𝜆𝑡𝑆(𝑡)𝑓 𝑑𝑡,

Re𝜆 > �̄�, 𝑓 ∈ 𝑋, so that Theorem 3.9.5 and Theorem 3.9.7 can be applied with the
operator 𝒜 replaced with the operator 𝒜− �̄� therein. Observe that, even in single-
valued linear case, the operator 𝐶 need not be injective because our assumptions do
not imply that 𝒜 = 𝐴 generates an ultradistribution semigroup of Beurling class.

In this book, we will not discuss the generation of degenerate fractional reg-
ularized resolvent families by the negatives of constructed fractional powers. For
more details, cf. [103, Section 3] and [291, Remark 2.9.49].

At the end, we would like to observe that the assertions of Theorem 2.7.3–The-
orem 2.7.5 can be formulated in the multivalued linear operators setting. For
applications, the most important is the following case: 𝑋 is a Banach space, Σ𝜗 ∪
𝐵𝑑 ⊆ 𝜌(𝒜), there exist finite numbers 𝑀1 > 1 and 𝜈 ∈ (0, 1] such that (13) holds
with the operator 𝒜 and number 𝛽 replaced with −𝒜 and 𝜈 therein; see [199,
Chapter III, Chapter VI] for a great number of concrete examples. Define the
operators 𝑆𝛾(·) as before. Then we may conclude the following:

(i) Suppose that 𝛽𝛾 > 1 − 𝜈. Then (𝑆𝛾(𝑡))𝑡∈Σ𝜙𝛾
is an analytic semigroup

of growth order 1−𝜈
𝛾 . Denote by Ω𝜃,𝛾 , resp. Ψ𝛾 , the continuity set of

(𝑆𝛾(𝑡𝑒
𝑖𝜃))𝑡>0, resp. (𝑆𝛾(𝑡))𝑡∈Σ𝜙𝛾

. Then 𝐷(𝒜) ⊆ Ψ𝛾 and, for every 𝑥 ∈
Ω𝜃,𝛾 , the incomplete abstract Cauchy inclusion (𝐹𝑃𝛽), with 𝐶1 = 𝐼, has
a solution 𝑢(𝑡) = 𝑆𝛾(𝑡𝑒

𝑖𝜃)𝑥, 𝑡 > 0, which can be analytically extended to
the sector Σ𝜙𝛾−|𝜃|. If, additionally, 𝑥 ∈ Ψ𝛾 , then for every 𝛿 ∈ (0, 𝜙𝛾) and
𝑗 ∈ N0, we have that the set {𝑧𝑗𝑢(𝑗)(𝑧) : 𝑧 ∈ Σ𝛿} is bounded in 𝑋.

(ii) Suppose that 1/2 < 𝜈 < 1. Then the incomplete abstract Cauchy problem
(𝑃2), with 𝐶1 = 𝐼, has a solution 𝑢(𝑡), 𝑡 > 0 for all 𝑥 ∈ 𝐷(𝒜). Moreover,
the mapping 𝑡 ↦→ 𝑢(𝑡), 𝑡 > 0 can be analytically extended to the sector
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Σ𝜙1/2
and, for every 𝛿 ∈ (0, 𝜙1/2) and 𝑗 ∈ N0, we have that the set

{𝑧𝑗(1 + |𝑧|2𝜈−2)−1𝑢(𝑗)(𝑧) : 𝑧 ∈ Σ𝛿} is bounded in 𝑋.

As announced before, it is very non-trivial to find some necessary and sufficient
conditions ensuring the uniqueness of solutions of problems (𝐹𝑃𝛽) and (𝑃2).

3.10. Inverse generator problem

The main purpose of this section is to analyze the inverse generator prob-
lem for abstract degenerate Volterra integro-differential equations in sequentially
complete locally convex spaces. More specifically, we consider the problem of gen-
eration of mild (𝑎, 𝑘)-regularized (𝐶1, 𝐶2)-existence and uniqueness families and
(𝑎, 𝑘)-regularized 𝐶-resolvent families by the inverses of closed multivalued linear
operators. As before, by 𝑋 and 𝑌 we denote two Hausdorff sequentially com-
plete locally convex spaces over the field of complex numbers. The injectiveness of
operators 𝐶, 𝐶1, 𝐶2, if needed, will be explicitly emphasized.

We start by stating the following useful result:

Proposition 3.10.1. Suppose that 𝐶 ∈ 𝐿(𝑋), 𝜆 ∈ Cr {0}, 𝒜 is an MLO and
𝜆−1 ∈ 𝜌𝐶(𝒜). Then we have 𝜆 ∈ 𝜌𝐶(𝒜−1) and

(𝜆−𝒜−1)−1𝐶 = 𝜆−1[𝐶 − 𝜆−1(𝜆−1 −𝒜)−1𝐶].

Proof. Suppose 𝑥 ∈ 𝑋. Then a simple computation involving the definition
of inverse of an MLO shows that

(𝐶𝑥, 𝜆−1[𝐶𝑥− 𝜆−1(𝜆−1 −𝒜)−1𝐶𝑥]) ∈ (𝜆−𝒜−1)−1

iff
−𝐶𝑥+ 𝜆−1(𝜆−1 −𝒜)−1𝐶𝑥 ∈ 𝒜(𝜆−1 −𝒜)−1𝐶𝑥,

which is true due to Theorem 1.2.4(i). It suffices to prove that the operator (𝜆 −
𝒜−1)−1𝐶 is single-valued. If we suppose that {𝑦, 𝑧} ⊆ (𝜆−𝒜−1)−1𝐶𝑥, then we have
𝜆𝑦−𝐶𝑥 ∈ 𝒜−1𝑦 and 𝜆𝑧−𝐶𝑥 ∈ 𝒜−1𝑧. Hence, 𝑦 ∈ 𝒜[𝜆𝑦−𝐶𝑥] and 𝑧 ∈ 𝒜[𝜆𝑧−𝐶𝑥].
This simply implies 𝐶𝑥 ∈ (𝜆−1−𝒜)−1𝐶[𝜆𝐶𝑥−𝜆𝑦] and 𝐶𝑥 ∈ (𝜆−1−𝒜)−1𝐶[𝜆𝐶𝑥−
𝜆𝑧]. Since the operator (𝜆−1 − 𝒜)−1𝐶 is single-valued, we simply get from the
above that 𝑦 = 𝑧 = 𝜆−1[𝐶𝑥− 𝜆−1(𝜆−1 −𝒜)−1𝐶𝑥]. �

Now we will state a general result which gives the necessary and sufficient con-
ditions for a multivalued linear operator 𝒜−1 to be a subgenerator of an exponen-
tially equicontinuous mild (𝑎, 𝑘)-regularized 𝐶1-existence family or an exponentially
equicontinuous mild (𝑎, 𝑘)-regularized 𝐶2-uniqueness family.

Proposition 3.10.2. Suppose that 𝒜 is a closed MLO in 𝑋, 𝐶1 ∈ 𝐿(𝑌,𝑋),
𝐶2∈𝐿(𝑋), |𝑎(𝑡)| and 𝑘(𝑡) satisfy (P1), as well as that (𝑅1(𝑡), 𝑅2(𝑡))𝑡>0⊆ 𝐿(𝑌,𝑋)×
𝐿(𝑋) is strongly continuous. Let 𝜔 > max(0, abs(|𝑎|), abs(𝑘)) be such that the
operator family {𝑒−𝜔𝑡𝑅𝑖(𝑡) : 𝑡 > 0} is equicontinuous for 𝑖 = 1, 2. Then the
following holds:
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(i) (𝑅1(𝑡),𝑅2(𝑡))𝑡>0 is a mild (𝑎, 𝑘)-regularized (𝐶1, 𝐶2)-existence and unique-
ness family with a subgenerator 𝒜−1 iff for every 𝜆 ∈ C with Re𝜆 > 𝜔
and �̃�(𝜆)𝑘(𝜆) ̸= 0, we have 𝑅(𝐶1) ⊆ R(�̃�(𝜆)−𝒜),

(416) �̃�(𝜆)𝑘(𝜆)𝐶1𝑦 ∈ (�̃�(𝜆)−𝒜)

∫︁ ∞

0

𝑒−𝜆𝑡[𝑘(𝑡)𝐶1𝑦 −𝑅1(𝑡)𝑦]𝑑𝑡, 𝑦 ∈ 𝑌

and

(417) 𝑘(𝜆)𝐶2𝑥 =

∫︁ ∞

0

𝑒−𝜆𝑡[𝑅2(𝑡)𝑥− (𝑎 *𝑅2)(𝑡)𝑦]𝑑𝑡, whenever (𝑦, 𝑥) ∈ 𝒜.

(ii) (𝑅1(𝑡))𝑡>0 is a mild (𝑎, 𝑘)-regularized 𝐶1-existence family with a subgen-
erator 𝒜−1 iff for every 𝜆 ∈ C with Re𝜆 > 𝜔 and �̃�(𝜆)𝑘(𝜆) ̸= 0, we have
𝑅(𝐶1) ⊆ 𝑅(�̃�(𝜆)−𝒜) and (416).

(iii) (𝑅2(𝑡))𝑡>0 is a mild (𝑎, 𝑘)-regularized 𝐶2-uniqueness family with a sub-
generator 𝒜−1 iff (417) holds for Re𝜆 > 𝜔.

Proof. It is clear that 𝒜−1 is a closed MLO. The part (iii) follows immediately
from Lemma 3.2.44 and definition of 𝒜−1. For the rest, it suffices to prove (ii).
Suppose first that, for every 𝜆 ∈ C with Re𝜆 > 𝜔 and �̃�(𝜆)𝑘(𝜆) ̸= 0, we have
𝑅(𝐶1) ⊆ 𝑅(�̃�(𝜆) − 𝒜) and (416). Then a simple computation gives that for such
values of parameter 𝜆 we have

−
∫︁ ∞

0

𝑒−𝜆𝑡(𝑎 *𝑅1)(𝑡)𝑦 𝑑𝑡 ∈ 𝒜
∫︁ ∞

0

𝑒−𝜆𝑡[𝑘(𝑡)𝐶1𝑦 −𝑅1(𝑡)𝑦]𝑑𝑡, 𝑦 ∈ 𝑌,

𝑅(𝐶1) ⊆ 𝑅(𝐼 − �̃�(𝜆)𝒜−1) and

𝑘(𝜆)𝐶1𝑦 ∈ (𝐼 − �̃�(𝜆)𝒜−1)

∫︁ ∞

0

𝑒−𝜆𝑡𝑅1(𝑡)𝑦 𝑑𝑡, 𝑦 ∈ 𝑌.(418)

By Lemma 3.2.44(ii), we get that (𝑅1(𝑡))𝑡>0 is a mild (𝑎, 𝑘)-regularized 𝐶1-existence
family with a subgenerator 𝒜−1. For the converse, we can apply Lemma 3.2.44(ii)
again so as to conclude that, for every 𝑦 ∈ 𝑌 and for every 𝜆 ∈ C with Re𝜆 > 𝜔
and �̃�(𝜆)𝑘(𝜆) ̸= 0, we have 𝑅(𝐶1) ⊆ 𝑅(𝐼 − �̃�(𝜆)𝒜−1) and (418). As above, this
simply implies 𝑅(𝐶1) ⊆ 𝑅(�̃�(𝜆)−𝒜) and (416). �

Using Lemma 3.2.45 and a similar argumentation, we can prove the following:

Proposition 3.10.3. Suppose that 𝒜 is a closed MLO in 𝑋, 𝐶 ∈ 𝐿(𝑋),
𝐶𝒜 ⊆ 𝒜𝐶, |𝑎(𝑡)| and 𝑘(𝑡) satisfy (P1), as well as that (𝑅(𝑡))𝑡>0 ⊆ 𝐿(𝑋) is strongly
continuous and commutes with 𝐶 on 𝑋. Let 𝜔 > max(0, abs(|𝑎|), abs(𝑘)) be such
that the operator family {𝑒−𝜔𝑡𝑅(𝑡) : 𝑡 > 0} is equicontinuous. Then (𝑅(𝑡))𝑡>0 is an
(𝑎, 𝑘)-regularized 𝐶-resolvent family with a subgenerator 𝒜−1 iff for every 𝜆 ∈ C
with Re𝜆 > 𝜔 and �̃�(𝜆)𝑘(𝜆) ̸= 0, we have 𝑅(𝐶) ⊆ R(�̃�(𝜆) − 𝒜), (416) holds with
𝑅1(·), 𝐶1 and 𝑌 , 𝑦 replaced with 𝑅(·), 𝐶 and 𝑋, 𝑥 therein, as well as (417) holds
with 𝑅2(·) and 𝐶2 replaced with 𝑅(·) and 𝐶 therein.

The complex characterization theorem ensuring the existence of an exponen-
tially equicontinuous degenerate (𝑎, 𝑘)-regularized 𝐶-resolvent families, in combi-
nation with Proposition 3.10.3, enables one to formulate the subsequent result,
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which provides sufficient conditions for the operator 𝒜−1 to be a subgenerator of
an exponentially equicontinuous, analytic (𝑎, 𝑘)-regularized 𝐶-resolvent family:

Proposition 3.10.4. Assume that 𝒜 is a closed MLO in 𝑋, 𝐶𝒜 ⊆ 𝒜𝐶,
𝛼 ∈ (0, 𝜋/2], abs(𝑘) <∞, abs(|𝑎|) <∞ and 𝜔 > max(0, abs(𝑘), abs(|𝑎|)). Assume,
further, that for every 𝜆 ∈ C with Re𝜆 > 𝜔 and �̃�(𝜆) ̸= 0, we have 𝑅(𝐶) ⊆
𝑅(�̃�(𝜆) − 𝒜) as well as that there exist a function ϒ: 𝜔 + Σ𝜋

2 +𝛼 → 𝐿(𝑋) and
an operator 𝐷′ ∈ 𝐿(𝑋) such that, for every 𝑥 ∈ 𝑋, the mapping 𝜆 ↦→ ϒ(𝜆)𝑥,
𝜆 ∈ 𝜔 +Σ𝜋

2 +𝛼 is analytic as well as that:
(i) There exists a function k : Σ𝛼 ∪ {0} → C which is analytic on Σ𝛼, con-

tinuous on any closed subsector Σ𝛾 (0 < 𝛾 < 𝛼) and which additionally
satisfies that sup𝑧∈Σ𝛾

|𝑒−𝜔𝑧k(𝑧)| <∞ (0 < 𝛾 < 𝛼) and k(𝑡) = 𝑘(𝑡) for all
𝑡 > 0;

(ii) ϒ(𝜆)𝑥 ∈ �̃�(𝜆)(�̃�(𝜆)− 𝐴)−1𝐶𝑥 for every 𝑥 ∈ 𝑋 and 𝜆 ∈ C with Re𝜆 > 𝜔,
�̃�(𝜆) ̸= 0;

(iii) ϒ(𝜆)𝐶𝑥 = 𝐶ϒ(𝜆)𝑥 for Re𝜆 > 𝜔, 𝑥 ∈ 𝑋;
(iv) �̃�(𝜆)ϒ(𝜆)𝑥−ϒ(𝜆)𝑦 = �̃�(𝜆)𝐶𝑥, provided Re𝜆 > 𝜔 and (𝑥, 𝑦) ∈ 𝒜;
(v) lim𝜆→+∞ ϒ(𝜆)𝑥 = 𝐷′𝑥, 𝑥 ∈ 𝑋, if 𝑅(𝒜) ̸= 𝑋.

Then the function 𝜆 ↦→ 𝑘(𝜆), Re𝜆 > 𝜔 has an analytic extension 𝜆 ↦→ 𝑘(𝜆),
𝜆 ∈ 𝜔 + Σ(𝜋/2)+𝛼 satisfying that sup𝜔+Σ(𝜋/2)+𝛾

|(𝜆 − 𝜔)𝑘(𝜆)| < ∞ for 0 < 𝛾 < 𝛼

and lim𝜆→+∞ 𝜆𝑘(𝜆) = 𝑘(0). If, additionally,

(vi) the family {(𝜆 − 𝜔)𝑘(𝜆)ϒ(𝜆) : 𝜆 ∈ 𝜔 + Σ𝜋
2 +𝛾} ⊆ 𝐿(𝑋) is equicontinuous

for all 𝛾 ∈ (0, 𝛼),
then 𝒜−1 is a subgenerator of an exponentially equicontinuous, analytic (𝑎, 𝑘)-regu-
larized 𝐶-resolvent family (𝑅(𝑡))𝑡>0 of angle 𝛼 satisfying that 𝑅(𝑧)𝒜−1 ⊆ 𝒜−1𝑅(𝑧),
𝑧 ∈ Σ𝛼, the family {𝑒−𝜔𝑧𝑅(𝑧) : 𝑧 ∈ Σ𝛾} ⊆ 𝐿(𝑋) is equicontinuous for all angles
𝛾 ∈ (0, 𝛼), as well as that the equation (272) holds for each 𝑦 = 𝑥 ∈ 𝑋, with 𝒜,
𝑅1(·) and 𝐶1 replaced therein by 𝒜−1, 𝑅(·) and 𝐶, respectively.

Proof. It is clear that 𝒜−1 is a closed MLO in 𝑋 and 𝐶𝒜−1 ⊆ 𝒜−1𝐶. As
already seen multiple times before, condition (i) yields that the function 𝜆 ↦→ 𝑘(𝜆),
Re𝜆 > 𝜔 has an analytic extension 𝜆 ↦→ 𝑘(𝜆), 𝜆 ∈ 𝜔 + Σ(𝜋/2)+𝛼 satisfying that
sup𝜔+Σ(𝜋/2)+𝛾

|(𝜆− 𝜔)𝑘(𝜆)| <∞ for 0 < 𝛾 < 𝛼 and lim𝜆→+∞ 𝜆𝑘(𝜆) = 𝑘(0). Define
𝑞(𝜆) := 𝑘(𝜆)𝐶 − 𝑘(𝜆)ϒ(𝜆), 𝜆 ∈ 𝜔 + Σ(𝜋/2)+𝛼 and 𝐷 := 𝑘(0)𝐶 − 𝑘(0)𝐷′. Then
𝑞(·) is analytic and a simple computation involving condition (ii) shows that for
every 𝜆 ∈ C with Re𝜆 > 𝜔 and �̃�(𝜆) ̸= 0, we have 𝑅(𝐶) ⊆ 𝑅(𝐼 − �̃�(𝜆)𝒜−1) with
𝐶𝑥 ∈ (𝐼 − �̃�(𝜆)𝒜−1)[𝐶𝑥−ϒ(𝜆)𝑥], 𝑥 ∈ 𝑋. The remainder of proof follows from an
elementary argumentation and corresponding statement for the operator 𝒜. �

The most intriguing case in which the assumptions of Proposition 3.10.4 hold is:
𝜔 = 0, 𝑎(𝑡) = 𝑔𝛼(𝑡) for some number 𝛼 ∈ (0, 2), 𝑘(𝑡) = 1, 𝐶 ∈ 𝐿(𝑋) is injective and
satisfies that 𝐶−1𝒜𝐶 = 𝒜 is the integral generator of an equicontinuous analytic
(𝑔𝛼, 𝑔1)-regularized 𝐶-resolvent family (𝑆(𝑡))𝑡>0 of angle 𝛾 ∈ (0,min(𝜋/2, (𝜋/𝛼)−
(𝜋/2))]. Then we can make a choice in which ϒ(𝜆) = 𝜆𝛼(𝜆𝛼−𝒜)−1𝐶 and𝐷′ = 𝑆(0),
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providing thus a proper extension of [383, Theorem 4.1(i)] and [135, Proposition 1].
Since subordination principles can be formulated for (𝑎, 𝑘)-regularized 𝐶-resolvent
families subgenerated by MLOs (𝐶 need not be injective, in general), we can simply
prove an extension of [383, Theorem 4.1(ii)] for (𝑔𝛼, 𝑔𝛽)-regularized 𝐶-resolvent
families.

In connection with Proposition 3.10.4 and [383, Theorem 4.1], we would like
to propose the following:

Proposition 3.10.5. Suppose that 𝒜 is a closed MLO, 𝐶 ∈ 𝐿(𝑋), 𝐶𝒜 ⊆ 𝒜𝐶,
𝛽 > 0, 𝛼 ∈ (0, 2), 𝑎(𝑡) = 𝑔𝛼(𝑡), 𝑘(𝑡) = 𝑔𝛽+1(𝑡) and 𝛾 ∈ (0,min(𝜋/2, (𝜋/𝛼)−(𝜋/2))].
Suppose, further, that Σ((𝜋/2)+𝛾)𝛼 ⊆ 𝜌𝐶(𝒜), the mapping 𝜆 ↦→ (𝜆 − 𝒜)−1𝐶𝑥, 𝜆 ∈
Σ((𝜋/2)+𝛾)𝛼 is analytic (𝑥 ∈ 𝑋) and the following two conditions are satisfied:

(i) For every 𝛾′ ∈ (0, 𝛾), there exists a finite constant 𝑀𝛾′ > 0 such that the
operator family {𝜆𝛼+𝛽(𝜆𝛼 − 𝒜)−1𝐶 : 𝜆 ∈ Σ(𝜋/2)+𝛾′ , |𝜆| 6 1} ⊆ 𝐿(𝑋) is
equicontinuous.

(ii) If 𝑅(𝒜) ̸= 𝑋, then there exists 𝐷′ ∈ 𝐿(𝑋) such that lim𝜆→0+ 𝜆(𝜆 −
𝒜)−1𝐶𝑥 = 𝐷′𝑥, 𝑥 ∈ 𝑋.

Then the operator 𝒜−1 is a subgenerator of an exponentially equicontinuous, ana-
lytic (𝑎, 𝑘)-regularized 𝐶-resolvent family (𝑅(𝑡))𝑡>0 of angle 𝛾 satisfying that
𝑅(𝑧)𝒜−1 ⊆ 𝒜−1𝑅(𝑧), 𝑧 ∈ Σ𝛾 and the family {𝑒−𝜔𝑧𝑅(𝑧) : 𝑧 ∈ Σ𝛾} ⊆ 𝐿(𝑋) is
equicontinuous for every real numbers 𝜔 > 0 and 𝛾 ∈ (0, 𝛾′). Moreover, the equa-
tion (272) holds for each 𝑦 = 𝑥 ∈ 𝑋, with 𝒜, 𝑅1(·) and 𝐶1 replaced therein by
𝒜−1, 𝑅(·) and 𝐶, respectively.

Proof. As above, we have that 𝒜−1 is a closed MLO in𝑋 and 𝐶𝒜−1 ⊆ 𝒜−1𝐶.
It is clear that the function 𝑘(𝑡) satisfies condition (i) from Proposition 3.10.4. If
𝜔 > 0, then we can apply Proposition 3.10.4 with the function ϒ: 𝜔+Σ𝜋

2 +𝛾 → 𝐿(𝑋)

defined by ϒ(𝜆) := 𝜆−𝛼(𝜆−𝛼 − 𝒜)−1𝐶, 𝜆 ∈ 𝜔 + Σ𝜋
2 +𝛾 . In actual fact, conditions

(ii)-(iv) of Proposition 3.10.4 clearly hold; condition (v) of Proposition 3.10.4 holds
because of assumption (ii) of this proposition, while condition (vi) of Proposition
3.10.4 follows from condition (i) of this proposition and a simple computation with
a new variable 𝑧 = 1/𝜆. �

Remark 3.10.6. It is worth noting that the behaviour of function 𝜆 ↦→ (𝜆 −
𝒜)−1𝐶, 𝜆 ∈ Σ((𝜋/2)+𝛾)𝛼 at the point 𝜆 = ∞ does not play any role for applying
Proposition 3.10.5.

It seems that Proposition 3.10.5 is not considered elsewhere, even for the ab-
stract non-degenerate differential equations of first order. We will only present an
illustrative application of Proposition 3.10.5 to the abstract degenerate differential
equations of fractional order:

Example 3.10.7. Let us recall that, for every two linear single-valued operators
𝐴 and 𝐵, we have (𝐴𝐵−1)−1 = 𝐵𝐴−1 and (𝐵−1𝐴)−1 = 𝐴−1𝐵 in the MLO sense.
Consider now, for the sake of illustration, the fractional Poisson heat equation (𝑃 )𝑏
in the space 𝐿𝑝(Ω), where Ω is a bounded domain in R𝑛, 1 < 𝑝 < ∞, 𝑏 > 0,
𝑚(𝑥) > 0 a.e. 𝑥 ∈ Ω, 𝑚 ∈ 𝐿∞(Ω) and 1 < 𝑝 < ∞; then 𝐵 is the multiplication
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in 𝐿𝑝(Ω) with 𝑚(𝑥), and 𝐴 = Δ − 𝑏 acts with the Dirichlet boundary conditions
(see also [199, Example 3.6]). Let 𝒜 := 𝐴𝐵−1; then for a suitable chosen number
𝑏 > 0, we have the existence of an angle 𝜃 ∈ (𝜋/2, 𝜋) and a finite number 𝑀 > 0
such that

(419) ‖(𝜆−𝒜)−1‖ 6𝑀 |𝜆|(−1)/𝑝, 𝜆 ∈ Σ𝜃.

Let 𝛼 ∈ [1, 2𝜃/𝜋). By Proposition 3.10.5, with 𝐷′ = 0 and 𝛽 = 0, we get that
𝒜−1 generates an analytic (𝑔𝛼, 𝑔1)-regularized resolvent family (𝑅(𝑡))𝑡>0 of angle
𝛾 ∈ (0,min((𝜃/𝛼) − (𝜋/2), 𝜋/2)], satisfying that the operator family {𝑒−𝜔𝑧𝑅(𝑧) :
𝑧 ∈ Σ𝛾′} ⊆ 𝐿(𝑋) is bounded for every 𝜔 > 0 and 𝛾′ ∈ (0, 𝛾). Moreover, let
0 < 𝜀 < 𝛾′ < 𝛾. Then we have the following integral representation

𝑅(𝑧)𝑥 = 𝑥− 1

2𝜋𝑖

∫︁
Γ𝜔

𝑒𝜆𝑧
(𝜆−𝛼 −𝒜)−1𝑥

𝜆𝛼+1
𝑑𝜆, 𝑥 ∈ 𝑋, 𝑧 ∈ Σ𝛾′−𝜀,

where the contour Γ is defined in the proof of [27, Theorem 2.6.1] (we only need
to replace the number 𝛾 with the number 𝛾′ therein). Using the estimate (419)
and the integral computation contained in the proof of afore-mentioned theorem,
after letting 𝜔 → 0+ we get that (𝑅(𝑡))𝑡>0 is an equicontinuous analytic (𝑔𝛼, 𝑔1)-
regularized resolvent family of angle 𝛾. Hence, we can analyze the well-posedness
of the reversed fractional Poisson heat equation in the space 𝐿𝑝(Ω):

(𝑃 )𝑏;𝑟 :

⎧⎪⎨⎪⎩
D𝛼

𝑡 [(Δ− 𝑏)𝑣(𝑡, 𝑥)] = 𝑚(𝑥)𝑣(𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ Ω;

𝑣(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ [0,∞)× 𝜕Ω,

(Δ− 𝑏)𝑣(0, 𝑥) = 𝑣0(𝑥),
(︀

𝑑
𝑑𝑡 [(Δ− 𝑏)𝑣(𝑡, 𝑥)]

)︀
𝑡=0

= 𝑣1(𝑥), 𝑥 ∈ Ω.

For possible applications to abstract degenerate second-order differential equations,
we refer the reader to [199, Example 6.1] and [293, Example 3.10.10].

It is worth noticing that the existence and behaviour of 𝐶-resolvent of a multi-
valued linear operator 𝒜 around zero is most important for the generation of certain
classes of (𝑎, 𝑘)-regularized 𝐶-resolvent families, 𝐶-(ultra)distribution semigroups
and 𝐶-(ultra)distribution cosine functions by the inverse operator 𝒜−1. More to the
point, the existence of 𝐶-resolvent of 𝒜 at the point 𝜆 = +∞ does not play any role
for the generation of 𝐶-(ultra)distribution semigroups and 𝐶-(ultra)distribution
cosine functions by the inverse operator 𝒜−1; in the following example, we will
explain this fact only for 𝐶-distribution semigroups (a similar statement holds for
the generation of locally defined fractional 𝐶-resolvent families):

Example 3.10.8. Suppose that 𝑎 > 0, 𝑏 > 0 and recall that 𝐸(𝑎, 𝑏) := {𝜆 ∈
C | Re𝜆 > 𝑏, | Im𝜆| 6 𝑒𝑎Re𝜆}. It can be easily seen that the set 1/𝐸(𝑎, 𝑏) :=
{1/𝜆 : 𝜆 ∈ 𝐸(𝑎, 𝑏)} is a relatively compact subset of C, as well as that 1/𝐸(𝑎, 𝑏)
is contained in the strip {𝜆 ∈ C : 0 < Re𝜆 < 1/𝑏}. Let 𝒜 be a closed MLO
commuting with the operator 𝐶 ∈ 𝐿(𝑋), and let there exist 𝑛 ∈ N such that
the operator family {𝜆𝑛(𝜆 − 𝒜)−1𝐶 : 𝜆 ∈ 1/𝐸(𝑎, 𝑏)} ⊆ 𝐿(𝑋) is equicontinuous.
If we suppose additionally that the mapping 𝜆 ↦→ (𝜆 − 𝒜)−1𝐶𝑥 is analytic on
1/Ω𝑎,𝑏 and continuous on 1/Γ𝑎,𝑏, with the meaning clear, where Γ𝑎,𝑏 denotes the
upwards oriented boundary of 𝐸(𝑎, 𝑏) and Ω𝑎,𝑏 the open region which lies to the
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right of Γ𝑎,𝑏, then an extension of the operator 𝒜−1 generates a 𝐶-distribution
semigroup 𝒢. Moreover, if 𝐶 is injective and 𝒜−1 is single valued, then the operator
𝐶−1𝒜−1𝐶 is the integral generator of 𝒢. On the other hand, for the generation
of exponential 𝐶-distribution semigroups by an extension of the operator 𝒜−1 one
has to assume that the operator family {𝜆𝑛(𝜆−𝒜)−1𝐶 : 0 < Re𝜆 < 𝑐} ⊆ 𝐿(𝑋) is
equicontinuous for some real number 𝑐 > 0 and integer 𝑛 ∈ N. Finally, let 𝛼 ∈ (0, 2)
and 𝜔 > 0. Denote by Ω the unbounded region lying between the boundary of
sector Σ𝛼𝜋/2 and the curve {𝜆−𝛼 : Re𝜆 = 𝜔}. If Ω ⊆ 𝜌𝐶(𝒜) and the family
{𝜆𝑛(𝜆 − 𝒜)−1𝐶 : 𝜆 ∈ Ω} ⊆ 𝐿(𝑋) is equicontinuous for some integer 𝑛 ∈ N, then
there exists a positive real number 𝛽 > 0 such that the operator 𝒜 is a subgenerator
of a global (𝑔𝛼, 𝑔𝛽+1)-regularized 𝐶-resolvent operator family (𝑅(𝑡))𝑡>0 satisfying
that the operator family {𝑒−𝜔𝑡𝑅(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑋) is equicontinuous.

In the following theorem, we reconsider the statement of [383, Theorem 4.1(i)]
for subgenerators of degenerate (𝑔𝛼, 𝑔𝛽+1)-regularized 𝐶-resolvent families, where
𝛼 ∈ (0, 2], 𝛽 > 0 and the operator 𝐶 ∈ 𝐿(𝑋) is possibly non-injective. More to
the point, here the subgenerator 𝒜 is not necessarily injective or single-valued (the
interested reader may try to extend the statements of [383, Theorem 4.1(ii), Corol-
lary 4.1, Corollary 4.2, Corollary 4.3], as well), which will be crucial for applications
carried out in Example 3.10.19 below:

Theorem 3.10.9. Suppose that 𝛼 ∈ (0, 2], 𝛽 > 0 and a closed MLO 𝒜 is a
subgenerator of an exponentially equicontinuous (𝑔𝛼, 𝑔𝛽+1)-regularized 𝐶-resolvent
family (𝑆(𝑡))𝑡>0 such that the operator family {𝑡−𝛽𝑆(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑋) is equicon-
tinuous. Then, for every number 𝛾 > 𝛽+(1/2), the operator 𝒜−1 is a subgenerator
of an (𝑔𝛼, 𝑔𝛾+1)-regularized 𝐶-resolvent family (𝑅(𝑡))𝑡>0 satisfying that the operator
family {𝑡−𝛾𝑅(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑋) is equicontinuous.

Proof. Define

𝑅(𝑡)𝑥 := 𝑔𝛾+1(𝑡)𝐶𝑥− 𝑡1+𝛽+𝛾

∫︁ ∞

0

𝐽1+𝛽+𝛾(2
√
𝑠𝑡)𝑠−

1+𝛽+𝛾
2 𝑆(𝑠)𝑥 𝑑𝑠, 𝑡 > 0, 𝑥 ∈ 𝑋.

Arguing as in the proof of [383, Theorem 4.1(i)], we get that (𝑅(𝑡))𝑡>0 ⊆ 𝐿(𝑋) is
strongly continuous as well as that the operator family {𝑡−𝛾𝑅(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑋)
is equicontinuous and

(420)
∫︁ ∞

0

𝑒−𝜆𝑡𝑅(𝑡)𝑥 𝑑𝑡 = 𝜆−(1+𝛾)𝐶𝑥− 𝜆−(2+𝛽+𝛾)

∫︁ ∞

0

𝑒−𝑠/𝜆𝑆(𝑠)𝑥 𝑑𝑠, Re𝜆 > 0, 𝑥 ∈ 𝑋.

Further on, 𝒜−1 is a closed MLO and, by Lemma 3.2.45, we have

(421)
𝐶𝑥

𝜆𝛽+1
∈
(︁
𝐼 − 𝒜

𝜆𝛼

)︁∫︁ ∞

0

𝑒−𝜆𝑡𝑆(𝑡)𝑥 𝑑𝑡, Re𝜆 > 0, 𝑥 ∈ 𝑋

and

(422)
𝐶𝑦

𝜆𝛽+1
=

∫︁ ∞

0

𝑒−𝜆𝑡𝑆(𝑡)𝑦 𝑑𝑡− 1

𝜆𝛼

∫︁ ∞

0

𝑒−𝜆𝑡𝑆(𝑡)𝑥 𝑑𝑡,

provided Re𝜆 > 0 and (𝑥, 𝑦) ∈ 𝑋. Having in mind Lemma 3.2.45 and (420), it
suffices to show that
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(423)
𝐶𝑥

𝜆1+𝛾
∈ 𝜆−(1+𝛾)𝐶𝑥− 𝜆−(2+𝛽+𝛾)

∫︁ ∞

0

𝑒−𝑠/𝜆𝑆(𝑠)𝑥 𝑑𝑠

− 𝜆−𝛼𝒜−1

[︂
𝜆−(1+𝛾)𝐶𝑥− 𝜆−(2+𝛽+𝛾)

∫︁ ∞

0

𝑒−𝑠/𝜆𝑆(𝑠)𝑥 𝑑𝑠

]︂
, Re𝜆 > 0, 𝑥 ∈ 𝑋

and
𝐶𝑥

𝜆1+𝛾
= 𝜆−(1+𝛾)𝐶𝑥− 𝜆−(2+𝛽+𝛾)

∫︁ ∞

0

𝑒−𝑠/𝜆𝑆(𝑠)𝑥 𝑑𝑠(424)

− 𝜆−𝛼

[︂
𝜆−(1+𝛾)𝐶𝑥− 𝜆−(2+𝛽+𝛾)

∫︁ ∞

0

𝑒−𝑠/𝜆𝑆(𝑠)𝑦 𝑑𝑠

]︂
,

provided Re𝜆 > 0 and (𝑦, 𝑥) ∈ 𝒜. Keeping in mind the definition of operator 𝒜−1,
the equation (423) follows almost immediately from (421), while the equation (424)
follows almost immediately from (422), with the number 𝜆 replaced therein with
the number 1/𝜆. �

Remark 3.10.10. (i) Keeping in mind the proof of [383, Theorem 4.1(i)],
Theorem 3.10.9 and Lemma 3.2.44(ii), the above result can be simply re-
formulated for the classes of exponentially equicontinuous mild (𝑔𝛼, 𝑔𝛽+1)-
regularized 𝐶1-existence families and exponentially equicontinuous mild
(𝑔𝛼, 𝑔𝛽+1)-regularized 𝐶2-uniqueness families. It is also worth noticing
that the representation formula obtained in [383] with the help of (47)
is motivated by earlier results of R. deLaubenfels established in [134]. In
all these results, the Laplace transform identities for various Bessel type
functions play a crucial role.

(ii) For applications, it will be crucial to reconsider and extend the conclusions
obtained in [383, Remark 4.2] for abstract degenerate fractional differen-
tial equations. Suppose that the operator family {(1+𝑡𝛿)−1𝑆(𝑡) : 𝑡 > 0} ⊆
𝐿(𝑋) is equicontinuous for some number 𝛿 > 0 and all remaining assump-
tions in Theorem 3.10.9 hold. Then, for every non-negative real number
𝛾 > 2𝛿 + (1/2)− 𝛽, the operator 𝒜−1 is a subgenerator of an (𝑔𝛼, 𝑔𝛾+1)-
regularized 𝐶-resolvent family (𝑅(𝑡))𝑡>0. Moreover, a simple calculation
shows that the operator family {𝑡−𝛾(1+ 𝑡𝛽−𝛿+ 𝑡𝛽)−1𝑅(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑋)
is equicontinuous.

It is crucial to formulate the following proper generalization of Theorem 3.10.9
(where 𝜔′

0 = 0, 𝑓(𝜆) = 1/𝜆, 𝑎(𝑡) = 𝑏(𝑡) = 𝑔𝛼(𝑡), 𝑘(𝑡) = 𝑔𝛽+1(𝑡), 𝑘1(𝑡) = 𝑔𝛾+1(𝑡),
𝑔(𝑡) = 𝑔𝛾−𝛽(𝑡) and 𝑆0(𝑡) = 𝑡1+𝛽+𝛾

∫︀∞
0
𝐽1+𝛽+𝛾(2

√
𝑠𝑡)𝑠−

1+𝛽+𝛾
2 𝑆(𝑠)𝑥 𝑑𝑠, 𝑡 > 0, 𝑥 ∈

𝑋; see also Remark 3.10.10) for various classes of (𝑎, 𝑘)-regularized 𝐶-resolvent
families:

Theorem 3.10.11. Suppose that 𝒜 is a closed MLO in 𝑋, 𝐶,𝐶2 ∈ 𝐿(𝑋),
𝐶1 ∈ 𝐿(𝑌,𝑋), 𝐶𝒜 ⊆ 𝒜𝐶, 𝜔′

0 > max(abs(|𝑎|), abs(𝑘), 0), the functions 𝑏(𝑡) and
𝑘1(𝑡) satisfy (P1) with 𝜔0 > max(0, abs(|𝑏|)), the function 𝑘1(𝑡) is continuous for
𝑡 > 0 and |𝑘1(𝑡)| = 𝑂(𝑒𝜔0𝑡𝑃 (𝑡)) for 𝑡 > 0, where 𝑃 (𝑡) =

∑︀𝑙
𝑗=0 𝑎𝑗𝑡

𝜁𝑗 , 𝑡 > 0 (𝑙 ∈ N,
𝑎𝑗 > 0 and 𝜁𝑗 > 0 for 1 6 𝑗 6 𝑙). Let 𝑓 : {𝜆 ∈ C : Re𝜆 > 𝜔0} → {𝜆 ∈ C : Re𝜆 >
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𝜔′
0} and 𝐺 : {𝜆 ∈ C : Re𝜆 > 𝜔0} → C be two given functions, let �̃�(𝜆) ̸= 0 for

Re𝜆 > 𝜔′
0, and let

(425) �̃�(𝜆) =
1

�̃�(𝑓(𝜆))
and ̃︀𝑘1(𝜆) = 𝐺(𝜆)𝑘(𝑓(𝜆)), Re𝜆 > 𝜔0.

(i) Suppose, further, 𝒜 is a subgenerator of a global mild (𝑎, 𝑘)-regularized
𝐶1-existence family (𝑅1(𝑡))𝑡>0 ⊆ 𝐿(𝑌,𝑋) such that the operator fam-
ily {𝑒−𝜔𝑡𝑅1(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑌,𝑋) is equicontinuous for each number
𝜔 > 𝜔′

0, as well as there exists a strongly continuous operator family
(𝑆0(𝑡))𝑡>0 ⊆ 𝐿(𝑌,𝑋) such that the family {𝑒−𝜔0𝑡𝑆0(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑌,𝑋)
is equicontinuous and

(426)
∫︁ ∞

0

𝑒−𝜆𝑡𝑆0(𝑡)𝑦 𝑑𝑡 = 𝐺(𝜆)

∫︁ ∞

0

𝑒−𝑠𝑓(𝜆)𝑅1(𝑠)𝑦 𝑑𝑠, 𝑦 ∈ 𝑌, Re𝜆 > 𝜔0.

Then the operator 𝒜−1 is a subgenerator of a global mild (𝑏, 𝑘1)-regularized
𝐶1-existence family (𝑆1(𝑡) ≡ 𝑘1(𝑡)𝐶1 −𝑆0(𝑡))𝑡>0 ⊆ 𝐿(𝑌,𝑋) and the oper-
ator family {𝑒−𝜔0𝑡(𝑃 (𝑡))−1𝑆1(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑌,𝑋) is equicontinuous.

(ii) Suppose, further, 𝒜 is a subgenerator of a global mild (𝑎, 𝑘)-regularized
𝐶2-uniqueness family (𝑅2(𝑡))𝑡>0 ⊆ 𝐿(𝑋) such that the operator family
{𝑒−𝜔𝑡𝑅2(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑋) is equicontinuous for each number 𝜔 > 𝜔′

0,
as well as there exists a strongly continuous operator family (𝑆0(𝑡))𝑡>0 ⊆
𝐿(𝑋) such that the family {𝑒−𝜔0𝑡𝑆0(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑋) is equicontinuous
and (426) holds with 𝑦 = 𝑥 ∈ 𝑋 and 𝑅1(·) replaced by 𝑅2(·) therein. Then
the operator 𝒜−1 is a subgenerator of a global mild (𝑏, 𝑘1)-regularized 𝐶2-
uniqueness family (𝑆2(𝑡) ≡ 𝑘1(𝑡)𝐶2 − 𝑆0(𝑡))𝑡>0 ⊆ 𝐿(𝑋) and the operator
family {𝑒−𝜔0𝑡(𝑃 (𝑡))−1𝑆2(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑋) is equicontinuous.

(iii) Suppose, further, 𝒜 is a subgenerator of a global (𝑎, 𝑘)-regularized 𝐶-
resolvent family (𝑅(𝑡))𝑡>0⊆𝐿(𝑋) such that the operator family {𝑒−𝜔𝑡𝑅(𝑡) :
𝑡 > 0} ⊆ 𝐿(𝑋) is equicontinuous for each number 𝜔 > 𝜔′

0,as well as there
exists a strongly continuous operator family (𝑆0(𝑡))𝑡>0 ⊆ 𝐿(𝑋) such that
the family {𝑒−𝜔0𝑡𝑆0(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑋) is equicontinuous and (426)
holds with 𝑦 = 𝑥 ∈ 𝑋 and 𝑅1(·) replaced by 𝑅(·) therein. Then the
operator 𝒜−1 is a subgenerator of a global mild (𝑏, 𝑘1)-regularized 𝐶-
resolvent family (𝑆(𝑡) ≡ 𝑘1(𝑡)𝐶 − 𝑆0(𝑡))𝑡>0 ⊆ 𝐿(𝑋) and the operator
family {𝑒−𝜔0𝑡(𝑃 (𝑡))−1𝑆(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑋) is equicontinuous.

Proof. We will prove only (i). Let 𝜆 ∈ C with Re𝜆 > 𝜔0 and �̃�(𝜆) ̃︀𝑘1(𝜆) ̸= 0 be
given. Due to Proposition 3.10.2(ii), it suffices to show that 𝑅(𝐶1) ⊆ 𝑅(�̃�(𝜆)−𝒜)
and

(427) �̃�(𝜆) ̃︀𝑘1(𝜆)𝐶1𝑦 ∈ (�̃�(𝜆)−𝒜)

∫︁ ∞

0

𝑒−𝜆𝑡[𝑘1(𝑡)𝐶1𝑦 − 𝑆1(𝑡)𝑦]𝑑𝑡, 𝑦 ∈ 𝑌.

But, our assumption (425) implies �̃�(𝑓(𝜆))𝑘(𝑓(𝜆)) ̸= 0. Since Re(𝑓(𝜆)) > 𝜔′
0,

Lemma 3.2.44(ii) yields that 𝑅(𝐶1) ⊆ 𝑅([�̃�(𝑓(𝜆))]−1 −𝒜) and

̃︁𝑅1(𝑓(𝜆))𝑦 ∈ 𝑘(𝑓(𝜆))

�̃�(𝑓(𝜆))
([�̃�(𝑓(𝜆))]−1 −𝒜)−1𝐶1𝑦, 𝑦 ∈ 𝑌.
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This simply gives (427) after a simple calculation involving the equations (425)
and (426). �

Remark 3.10.12. In the existing literature concerning the inverse generator
problem, the authors have investigated only the following special case: 𝜔′

0 = 0,
𝑓(𝜆) = 1/𝜆 and 𝑎(𝑡) = 𝑏(𝑡) = 𝑔𝛼(𝑡), for some number 𝛼 ∈ (0, 2). Even if 𝑓(𝜆) =
1/𝜆, the equality 𝑎(𝑡) = 𝑏(𝑡) = 𝑔𝛼(𝑡), where 𝛼 ∈ (0, 2), is not necessary for applying
Theorem 3.10.11. For example, suppose that 𝑃 (𝜆) =

∑︀𝑛
𝑗=0 𝑎𝑗𝜆

𝜁𝑗 and 𝑄(𝜆) =∑︀𝑚
𝑗=0 𝑏𝑗𝜆

𝜂𝑗 for some non-negative real numbers 𝜁𝑗 (0 = 𝜁0 6 𝜁1 6 . . . 6 𝜁𝑛), 𝜂𝑗
(0 = 𝜂0 6 𝜂1 6 . . . 6 𝜂𝑚) and complex numbers 𝑎𝑗 (0 6 𝑗 6 𝑛), 𝑏𝑗 (0 6 𝑗 6 𝑚) such
that 𝑏0 = 0, 𝑎0𝑎𝑛𝑏𝑚 ̸= 0, 𝜂𝑚 > 𝜁𝑛 and 𝑃 (𝜆)𝑄(𝜆) ̸= 0 for Re𝜆 > 0 [we can take, for
example, 𝑃 (𝜆) = 𝜆+2 and𝑄(𝜆) = 𝜆3]. If 𝑎(𝑡) = ℒ−1(𝑃 (𝜆)/𝑄(𝜆))(𝑡), 𝑡 > 0, then we
can prove that abs(|𝑎|) = 0. Furthermore, we can prove that there exists a function
𝑏(𝑡) satisfying abs(|𝑏|) = 0 and �̃�(𝜆) = 1/�̃�(1/𝜆) = 𝑄(1/𝜆)/𝑃 (1/𝜆), Re𝜆 > 0.
So, if the second equality in (425) holds with the functions 𝑘(𝑡) and 𝑘1(𝑡) being
continuous for 𝑡 > 0, then the most simplest case in which Theorem 3.10.11(iii) is
applicable is that case in which 𝑋 := C, 𝐶 := 𝐼, 𝒜 := 0 and 𝑅(𝑡) := 𝑘(𝑡)𝐼, 𝑡 > 0,
when 𝑆0(𝑡) = 𝑘1(𝑡)𝐼, 𝑡 > 0.

Remark 3.10.13. In a great deal of concrete situations, it is almost impossible
to represent 𝑆0(·) in terms of 𝑅1(·) directly, so that the use of complex characteri-
zation theorem for the Laplace transform is sometimes unavoidable.

We continue by stating the following corollary of Theorem 3.10.11 (the case in
which 𝜎 = −1 and 𝑎 = 𝑏 = 𝛽 > 0 has been already considered in Theorem 3.10.9
and remarks following it):

Theorem 3.10.14. Suppose that 𝛼 ∈ (0, 2), 𝜎 ∈ (−1, 0), 𝛽 > 0, 𝒜 is a closed
MLO in 𝑋, 𝐶 ∈ 𝐿(𝑋), 𝐶𝒜 ⊆ 𝒜𝐶, 𝒜 is a subgenerator of an exponentially equicon-
tinuous (𝑔𝛼, 𝑔𝛽+1)-regularized 𝐶1-resolvent family (𝑅(𝑡))𝑡>0 such that the operator
family {(𝑡𝑎 + 𝑡𝑏)−1𝑅(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑋) is equicontinuous for two real numbers
𝑎, 𝑏 such that −1 < 𝑎 6 𝑏. Let 𝜂 > 1 + 𝑏 and 𝜂 > 1 + 𝛽. Define

𝐹 (𝑡) := 𝑡|𝜎|(𝜂−𝛽−1) + (𝑡|𝜎|(𝜂−𝑏−1)𝜒(0,1](𝑡) + 𝑡|𝜎|(𝜂−𝑎−1)𝜒[1,∞)(𝑡)), 𝑡 > 0.

Then the operator 𝒜−1 is a subgenerator of a global (𝑔𝛼|𝜎|, 𝑔1+|𝜎|(𝜂−𝛽−1))-regularized
𝐶-resolvent family (𝑆(𝑡))𝑡>0 ⊆ 𝐿(𝑋) and the operator family {[𝐹 (𝑡)]−1𝑆(𝑡) : 𝑡 >
0} ⊆ 𝐿(𝑋) is equicontinuous.

Proof. We will apply Theorem 3.10.11(iii) with 𝜔0 = 𝜔′
0 = 0, 𝑓(𝜆) = 𝜆𝜎,

𝑎(𝑡) = 𝑔𝛼(𝑡), 𝑏(𝑡) = 𝑔|𝜎|𝛼(𝑡), 𝑘(𝑡) = 𝑔𝛽+1(𝑡), 𝑘1(𝑡) = 𝑔|𝜎|(𝜂−𝛽−1)𝛽+1(𝑡) and 𝐺(𝜆) =

𝜆−1+𝜎𝜂. Set

𝑆0(𝑡)𝑥 :=

∫︁ ∞

0

𝑡−𝜎𝜂𝜑(−𝜎, 1− 𝜎𝜂;−𝑠𝑡−𝜎)𝑅(𝑠)𝑥 𝑑𝑠, 𝑡 > 0, 𝑥 ∈ 𝑋.

Using (46), the assumption −1 < 𝜎 < 0 and the dominated convergence theorem,
it readily follows that the mapping 𝑡 ↦→ 𝑆0(𝑡)𝑥, 𝑡 > 0 is continuous for every fixed
element 𝑥 ∈ 𝑋. Since 𝑆0(0) = 0 and [𝐹 (·)− ·|𝜎|(𝜂−𝛽−1)](0) = 0, it suffices to show
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that the operator family {[𝐹 (𝑡)]−1𝑆(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑋) is equicontinuous as well
as that

(428)
∫︁ ∞

0

𝑒−𝜆𝑡𝑆0(𝑡)𝑥 𝑑𝑡 = 𝜆−1+𝜎𝜂

∫︁ ∞

0

𝑒−𝑠𝑓(𝜆)𝑅(𝑠)𝑥 𝑑𝑠, 𝑥 ∈ 𝑋, Re𝜆 > 0.

The asymptotic formula (46) and the fact that the operator family {(𝑡𝑎+𝑡𝑏)−1𝑅(𝑡) :
𝑡 > 0} ⊆ 𝐿(𝑋) is equicontinuous together imply that for each seminorm 𝑝 ∈ ~ there
exist a finite real constant 𝑚 > 0 and a seminorm 𝑞 ∈ ~ such that

𝑝(𝑆0(𝑡)𝑥) 6 𝑚𝑞(𝑥)𝑡
−𝜎𝜂

∫︁ ∞

0

exp(−𝑚(𝑠𝑡−𝜎)1/(1+𝜎))(𝑠𝑎 + 𝑠𝑏)𝑑𝑠

= 𝑚𝑞(𝑥)𝑡𝜎(1−𝜂)

∫︁ ∞

0

exp(−𝑚𝑟1/(1+𝜎))(𝑡𝜎𝑎𝑟𝑎 + 𝑡𝜎𝑏𝑟𝑏)𝑑𝑟.

Observe that the above integral converges due to our assumption −1 < 𝑎 6 𝑏, which
also implies 𝜎𝑎 > 𝜎𝑏 and the equicontinuity of operator family {[𝐹 (𝑡)]−1𝑆(𝑡) : 𝑡 >
0}. Moreover, by the equation (45) and the Fubini theorem, we have∫︁ ∞

0

𝑒−𝜆𝑡𝑆0(𝑡)𝑥 𝑑𝑡 =

∫︁ ∞

0

𝑅(𝑠)𝑥 ·
∫︁ ∞

0

𝑒−𝜆𝑡𝑡−𝜎𝜂𝜑(−𝜎, 1− 𝜎𝜂;−𝑠𝑡−𝜎)𝑑𝑡 𝑑𝑠

= 𝜆−1+𝜎𝜂

∫︁ ∞

0

𝑒−𝑠𝑓(𝜆)𝑅(𝑠)𝑥 𝑑𝑠, 𝑥 ∈ 𝑋, Re𝜆 > 0.

This implies (428) and completes the proof of theorem. �

As in Remark 3.10.10, it is worth noting that we can formulate the above
result for the classes of exponentially equicontinuous mild (𝑔𝛼, 𝑔𝛽+1)-regularized
𝐶1-existence families and exponentially equicontinuous mild (𝑔𝛼, 𝑔𝛽+1)-regularized
𝐶2-uniqueness families (concerning the inverse generator problem, it is our duty to
say that we have not been able to find certain applications with these classes of
solution operator families). It is also worth noting the following:

Remark 3.10.15. Let the requirements of Theorem 3.10.14 hold with 𝑎 =
0. Then the subordination principle for degenerate (𝑎, 𝑘)-regularized 𝐶-resolvent
families shows that the operator 𝒜 is a subgenerator of a global (𝑔𝛼|𝜎|, 𝑔1+|𝜎|𝛽)-
regularized 𝐶-resolvent family (𝑊 (𝑡))𝑡>0 satisfying that the operator family {(1 +
𝑡𝑏|𝜎|)−1𝑊 (𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑋) is equicontinuous. Arguing as in [383, Remark 4.2],
with the function 𝑓(𝜆) = 1/𝜆, we get that the operator 𝒜−1 is a subgenerator of
a global (𝑔𝛼|𝜎|, 𝑔1+𝛾)-regularized 𝐶-resolvent family (𝑊 (𝑡))𝑡>0 provided 𝛾 > 0 and
𝛾 > 2𝑏|𝜎| + (1/2) − 𝛽|𝜎|. The integration rate obtained here with the function
𝑓(𝜆) = 𝜆𝜎 is better provided that |𝜎|(𝜂 − 2𝑏− 1) < 1/2.

Before we move ourselves to Subsection 3.10.1, we will analyze the Poisson
wave type equation in the space 𝐿2(Ω), where ∅ ̸= Ω ⊆ R𝑛 is an open bounded
domain with smooth boundary (see [199, Example 2.3]):

Example 3.10.16. Let 𝑋 := 𝐻1
0 (Ω) × 𝐿2(Ω) and 𝑚 ∈ 𝐿∞(Ω). Consider the

bounded linear operator

𝑀 :=

(︂
1 0
0 𝑚(𝑥)

)︂
,
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in 𝑋, and an unbounded linear operator

𝐿 :=

(︂
0 1
Δ 0

)︂
,

in 𝑋, with domain 𝐷(𝐿) := [𝐻2(Ω) ∩ 𝐻1
0 (Ω)] × 𝐻1

0 (Ω). Then we know that the
MLO 𝒜 := 𝑀−1𝐿𝑀−1 − 𝐼 satisfies (0,∞) ⊆ 𝜌(𝒜) and ‖𝑅(𝜆 : 𝒜)‖ 6 1/𝜆, 𝜆 > 0.
An application of Theorem 3.2.12 gives that for each number 𝑟 > 0 the MLO 𝒜− 𝐼
generates a global (𝑔1, 𝑔1+𝑟)-resolvent family (𝑆𝑟(𝑡))𝑡>0 such that ‖𝑆𝑟(𝑡)‖ = 𝑂(𝑡𝑟),
𝑡 > 0. Suppose 𝜎 ∈ (−1, 0), 𝑟 > 0 and 𝜂 > 1 + 𝑟. Then, due to Theorem
3.10.14, the operator (𝒜− 𝐼)−1 is the integral generator of an (𝑔|𝜎|, 𝑔1+|𝜎|(𝜂−𝑟−1))-
resolvent family (𝑅𝑟(𝑡))𝑡>0 such that ‖𝑅𝑟(𝑡)‖ = 𝑂(𝑡|𝜎|(𝜂−𝑟−1)), 𝑡 > 0. Suppose
that (𝑢0 𝑣0)

𝑇 ∈ 𝑋, (𝑢1 𝑣1)𝑇 ∈ 𝑅(𝒜− 𝐼), (𝑓1(·) 𝑓2(·))𝑇 ∈ 𝐶([0,∞) : 𝑋),

(𝑔|𝜎| * 𝑓1)(𝑡) + 𝑢0 = 𝑔1+|𝜎|(𝜂−𝑟−1)(𝑡)𝑢1 and(429)
(𝑔|𝜎| * 𝑓2)(𝑡) + 𝑣0 = 𝑔1+|𝜎|(𝜂−𝑟−1)(𝑡)𝑣1,

for any 𝑡 > 0. Since 𝐷|𝜎|
𝑡 (𝑢(𝑡) 𝑣(𝑡))𝑇 ∈ (𝒜− 𝐼)−1(𝑢(𝑡) 𝑣(𝑡))𝑇 + (𝑓1(𝑡) 𝑓2(𝑡))

𝑇 , 𝑡 > 0

is equivalent with (𝑢(𝑡) 𝑣(𝑡))𝑇 ∈ (𝒜 − 𝐼)[𝐷
|𝜎|
𝑡 (𝑢(𝑡) 𝑣(𝑡))𝑇 − (𝑓1(𝑡) 𝑓2(𝑡))

𝑇 ], 𝑡 > 0,
after a simple computation involving the condition (429), we get that the function
𝑡 ↦→ (𝑢(𝑡) 𝑣(𝑡))𝑇 ≡ 𝑅𝑟(𝑡)(𝑢1 𝑣1)

𝑇 , 𝑡 > 0 is a unique strong solution of the following
system:

𝑚(𝑥)[𝑢(𝑡, 𝑥) +𝐷
|𝜎|
𝑡 𝑢(𝑡, 𝑥)− 𝑓1(𝑡, 𝑥)] = 𝐷

|𝜎|
𝑡 𝑣(𝑡, 𝑥)− 𝑓2(𝑡, 𝑥),

𝑚(𝑥)[𝑣(𝑡, 𝑥) +𝐷
|𝜎|
𝑡 𝑣(𝑡, 𝑥)− 𝑓2(𝑡, 𝑥)] = Δ[𝐷

|𝜎|
𝑡 𝑢(𝑡, 𝑥)− 𝑓1(𝑡, 𝑥)];

𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑣(0, 𝑥) = 𝑣0(𝑥), 𝑥 ∈ Ω.

3.10.1. Applications to degenerate time-fractional equations with ab-
stract differential operators. Assume that 𝑛 ∈ N and 𝑖𝐴𝑗 , 1 6 𝑗 6 𝑛 are
commuting generators of bounded 𝐶0-groups on a Banach space 𝑋. Assume, fur-
ther, that 𝑃1(𝑥) and 𝑃2(𝑥) are non-zero complex polynomials in 𝑛 variables, and
0 < 𝛼 < 2; set 𝑁1 := 𝑑𝑔(𝑃1(𝑥)), 𝑁2 := 𝑑𝑔(𝑃2(𝑥)) and 𝑚 := ⌈𝛼⌉. In Section 2.2.3,
we have analyzed the generation of some specific classes of (𝑔𝛼, 𝐶)-regularized re-
solvent families associated with the following fractional degenerate abstract Cauchy
problem

(DFP) :

{︃
D𝛼

𝑡 𝑃2(𝐴)𝑢(𝑡) = 𝑃1(𝐴)𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0,

𝑢(0) = 𝐶𝑥; 𝑢(𝑗)(0) = 0, 1 6 𝑗 6 ⌈𝛼⌉ − 1,

provided that 𝑃2(𝑥) ̸= 0, 𝑥 ∈ R𝑛 and there exists a non-negative real number 𝜔 > 0
such that (70) holds, where 01/𝛼 := 0. Let us recall that our assumptions imply
that the operator 𝑃2(𝐴) is injective; here we want to note that the operator 𝑃2(𝐴)
need not be invertible, in general (see e.g. [27, Remark 8.3.5]).

In the remainder of this subsection, we will focus our attention on the case
𝜔 = 0. If 0 /∈ 𝑃1(R𝑛) and 𝜔 = 0, then we have sup𝑥∈R𝑛 Re((𝑃2(𝑥)/𝑃1(𝑥))

1/𝛼) 6 0,
so that the well-posedness of the reverse fractional degenerate abstract Cauchy
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problem

(DFP)𝑟 :

{︃
D𝛼

𝑡 𝑃1(𝐴)𝑢(𝑡) = 𝑃2(𝐴)𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0,

𝑢(0) = 𝐶𝑥; 𝑢(𝑗)(0) = 0, 1 6 𝑗 6 ⌈𝛼⌉ − 1

can be analyzed as in Section 2.2.3 [306]. But, the real problems occur if 0 ∈
𝑃1(R𝑛), when the methods established in [306] are inapplicable. Our main result
concerning the well-posedness of problem (DFP)𝑟 is stated as follows:

Theorem 3.10.17. Suppose 0 < 𝛼 < 2, 𝜎 ∈ (−1, 0), 𝑃1(𝑥) and 𝑃2(𝑥) are
non-zero complex polynomials, 𝑁1 = 𝑑𝑔(𝑃1(𝑥)), 𝑁2 = 𝑑𝑔(𝑃2(𝑥)), 𝑁 ∈ N and 𝑟 ∈
(0, 𝑁 ]. Let 𝑄(𝑥) be an 𝑟-coercive complex polynomial of degree 𝑁 , 𝑎 ∈ Cr𝑄(R𝑛),

𝛾 >
𝑛max(𝑁,

𝑁1+𝑁2
min(1,𝛼)

)

2𝑟 (resp. 𝛾 = 𝑛
𝑟 |

1
𝑝 −

1
2 |max(𝑁, 𝑁1+𝑁2

min(1,𝛼) ), if 𝐸 = 𝐿𝑝(R𝑛) for some
1 < 𝑝 <∞), 𝑃2(𝑥) ̸= 0, 𝑥 ∈ R𝑛 and (70) holds with 𝜔 = 0. Set

ℬ ≡ 𝑃2(𝐴) · 𝑃1(𝐴)
−1
,

𝐶 := ((𝑎 − 𝑄(𝑥))−𝛾)(𝐴), 𝛿 := max(1, 𝛼)𝑛/2, if 𝐸 ̸= 𝐿𝑝(R𝑛) for all 𝑝 ∈ (1,∞),
and 𝛿 := max(1, 𝛼)𝑛|(1/𝑝) − (1/2)|, if 𝐸 = 𝐿𝑝(R𝑛) for some 𝑝 ∈ (1,∞). Then
𝐶 ∈ 𝐿(𝑋) is injective and the following holds:

(i) For each positive real number 𝛾 > 2𝛿 + (1/2) the multivalued linear op-
erator ℬ is a subgenerator of a global exponentially bounded (𝑔𝛼, 𝑔𝛾+1)-
regularized 𝐶-resolvent family (𝑅𝛼(𝑡))𝑡>0 satisfying that the operator fam-
ily {[𝑡𝛾(1 + 𝑡𝛽−𝛿 + 𝑡𝛽)]−1𝑅𝛼(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑋) is equicontinuous.

(ii) For each positive real number 𝜂 > 1 + 𝛿, the multivalued linear opera-
tor ℬ is a subgenerator of a global exponentially bounded (𝑔𝛼|𝜎|, 𝑔|𝜎|(𝜂−1))-
regularized 𝐶-resolvent family (𝑅𝛼(𝑡))𝑡>0 satisfying that the operator fam-
ily {[𝐹 (𝑡)]−1𝑅𝛼(𝑡) : 𝑡 > 0} ⊆ 𝐿(𝑋) is equicontinuous, where

𝐹 (𝑡) = 𝑡|𝜎|(𝜂−1) + (𝑡|𝜎|(𝜂−𝛿−1)𝜒(0,1](𝑡) + 𝑡|𝜎|(𝜂−1)𝜒[1,∞)(𝑡)), 𝑡 > 0.

Proof. We will prove only (i). Set

𝑆𝛼(𝑡) :=
(︁
𝐸𝛼

(︁
𝑡𝛼
𝑃1(𝑥)

𝑃2(𝑥)

)︁
(𝑎−𝑄(𝑥))−𝛾

)︁
(𝐴), 𝑡 > 0.

Then we have that the operator 𝐶 ∈ 𝐿(𝑋) is injective as well as

𝜆𝛼−1(𝜆𝛼 − 𝑃1(𝐴) · 𝑃2(𝐴)
−1

)−1𝐶𝑥 =

∫︁ ∞

0

𝑒−𝜆𝑡𝑆𝛼(𝑡)𝑥 𝑑𝑡, Re𝜆 > 0, 𝑥 ∈ 𝑋.

On the other hand, for any two closed linear operators 𝐴 and 𝐵 in 𝑋 the following
holds:

(430) 𝐴𝐵−1
−1

= 𝐵𝐴−1.

Using (430) and Theorem 1.2.4(i), the above implies that, for every 𝜆 ∈ C with
Re𝜆 > 0, we have 𝑅(𝐶) ⊆ 𝑅(𝐼 −𝜆−𝛼ℬ−1), (304) holds with 𝑅1(·), 𝐶1, 𝒜 and 𝑌 , 𝑦
replaced with 𝑅(·), 𝐶, ℬ−1 and 𝑋, 𝑥 therein, as well as (305) holds with 𝑅2(·), 𝒜
and 𝐶2 replaced with 𝑆𝛼(·), ℬ−1 and 𝐶 therein. Due to Lemma 3.2.45, we get that
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(𝑆𝛼(𝑡))𝑡>0 ⊆ 𝐿(𝑋) is a global exponentially bounded (𝑔𝛼, 𝐶)-regularized resolvent
family with a subgenerator ℬ−1. Moreover, we have

‖𝑆𝛼(𝑡)‖ 6𝑀(1 + 𝑡max(1,𝛼)𝑛/2), 𝑡 > 0, resp.,

‖𝑆𝛼(𝑡)‖ 6𝑀(1 + 𝑡max(1,𝛼)𝑛| 1𝑝−
1
2 |), 𝑡 > 0.(431)

Using (431), Theorem 3.10.9 and Remark 3.10.10(iii), the required assertion easily
follows. �

Remark 3.10.18. (i) As before, we can choose the regularizing operator
𝐶 in a slightly different manner and refine the obtained conclusions by
imposing some additional conditions on behaviour of the rational function
𝑃1(𝑥)/𝑃2(𝑥).

(ii) The operator 𝑃2(𝐴) · 𝑃1(𝐴)
−1

is closed provided that at least one of the
operators 𝑃1(𝐴) or 𝑃2(𝐴) is invertible, when we have ℬ = 𝑃2(𝐴)·𝑃1(𝐴)

−1
.

(iii) Consider the statement (i). The foregoing arguments also imply

𝜆𝛼−𝛾−1𝑃1(𝐴)
(︀
𝜆𝛼𝑃1(𝐴)− 𝑃2(𝐴)

)︀−1
𝐶𝑥 =

∫︁ ∞

0

𝑒−𝜆𝑡𝑅𝛼(𝑡)𝑥 𝑑𝑡, Re𝜆 > 0, 𝑥 ∈ 𝑋,

so that for each positive real number 𝛾 > 2𝛿 + (1/2) we have that
(𝑅𝛼(𝑡))𝑡>0 is an exponentially bounded (𝑔𝛼, 𝑔𝛾+1)-regularized 𝐶-resolvent
family for the abstract degenerate Cauchy problem

𝑃1(𝐴)𝑢(𝑡) = 𝑓(𝑡) +

∫︁ 𝑡

0

𝑎(𝑡− 𝑠)𝑃2(𝐴)𝑢(𝑠)𝑑𝑠, 𝑡 > 0.

Due to Theorem 2.2.8, we have that for each 𝑥 ∈ 𝐷(𝑃1(𝐴)) ∩𝐷(𝑃2(𝐴))
the function 𝑢(𝑡) = 𝑅𝛼(𝑡)𝑥, 𝑡 > 0 is a unique strong solution of (52) with
𝑓(𝑡) = 𝑔1+𝛾(𝑡)𝐶𝑃1(𝐴)𝑥, 𝑡>0. Moreover, we know that (𝑃2(𝐴)

−1
𝑆𝛼(𝑡))𝑡>0

is an exponentially equicontinuous (𝑔𝛼, 𝐶)-regularized resolvent family
generated by 𝑃2(𝐴), 𝑃1(𝐴). Unfortunately, the operator 𝑃1(𝐴) need not
be injective and the above fact cannot be used for the construction of
(𝑔𝛼, 𝑔1+𝛾)-regularized 𝐶-resolvent family generated by 𝑃1(𝐴), 𝑃2(𝐴) so
that it is not clear how we can consider the well-posedness of problem

(DFP)𝐿,𝑟 :

{︃
𝑃1(𝐴)D

𝛼
𝑡 𝑢(𝑡) = 𝑃2(𝐴)𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0,

𝑢(0) = 𝐶𝑥; 𝑢(𝑗)(0) = 0, 1 6 𝑗 6 ⌈𝛼⌉ − 1,

in general. Similar conclusions can be formulated for the statement (ii).

It is worth noting that Theorem 3.10.17 can be simply reformulated in 𝐸𝑙-type
spaces. In the following application of Theorem 3.10.17, we consider the case in
which 𝑃2(𝑥) ≡ 1:

Example 3.10.19. (i) Suppose 0 < 𝛼 < 2. Let 𝐸 be one of the spaces
𝐿𝑝(R𝑛) (1 6 𝑝 6 ∞), 𝐶0(R𝑛), 𝐶𝑏(R𝑛), 𝐵𝑈𝐶(R𝑛) and let 0 6 𝑙 6 𝑛.
Let the operator Tl⟨·⟩, the Fréchet space 𝑋 := 𝐸𝑙, the set N𝑙

0 and the
seminorms 𝑞𝜂(·) (N𝑙

0) possess the same meaning as before, let 𝑎𝜂 ∈ C, 0 6
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|𝜂| 6 𝑁 and let 𝑃 (𝐷)𝑓 :=
∑︀

|𝜂|6𝑁 𝑎𝜂𝐷
𝜂𝑓, with its maximal distributional

domain. Suppose that

sup
𝑥∈R𝑛

Re(𝑃 (𝑥)1/𝛼) 6 0.

Define 𝑆𝛼(𝑡) =: Tl⟨𝐸𝛼(𝑡
𝛼𝑃 (𝑥))(𝑎− 𝑃 (𝑥))−𝛾⟩, 𝑡 > 0. Then 𝐶 := 𝑆𝛼(0) ∈

𝐿(𝑋) is injective, (𝑆𝛼(𝑡))𝑡>0 is an exponentially equicontinuous (𝑔𝛼, 𝐶)-
regularized resolvent family with the integral generator 𝑃 (𝐷), and

𝑞𝜂(𝑆𝛼(𝑡)𝑓) 6𝑀(1 + 𝑡max(1,𝛼)𝑛/2)𝑞𝜂(𝑓), 𝑡 > 0, 𝑓 ∈ 𝐸𝑙, 𝜂 ∈ N𝑙
0, resp.,

𝑞𝜂(𝑆𝛼(𝑡)𝑓) 6𝑀(1 + 𝑡max(1,𝛼)𝑛| 1𝑝−
1
2 |)𝑞𝜂(𝑓), 𝑡 > 0, 𝑓 ∈ 𝐸𝑙, 𝜂 ∈ N𝑙

0,(432)

with 𝑀 being independent of 𝑓 ∈ 𝑋 and 𝜂 ∈ N𝑙
0; see also [292, Remark

2.5.5]. Set 𝛿 := max(1, 𝛼)𝑛/2, if 𝐸 ̸= 𝐿𝑝(R𝑛) for all 𝑝 ∈ (1,∞), and
𝛿 := max(1, 𝛼)𝑛|(1/𝑝) − (1/2)|, if 𝐸 = 𝐿𝑝(R𝑛) for some 𝑝 ∈ (1,∞). By
Theorem 3.10.9 and Remark 3.10.10(ii), we have that for each positive
real number 𝛾 > 2𝛿 + (1/2), the multivalued linear operator 𝑃 (𝐷)−1 is a
subgenerator of an exponentially equicontinuous (𝑔𝛼, 𝑔𝛾+1)-regularized 𝐶-
resolvent family (𝑅𝛼(𝑡))𝑡>0; moreover, since 𝐶−1𝑃 (𝐷)𝐶 = 𝑃 (𝐷), we have
𝐶−1𝑃 (𝐷)−1𝐶 = 𝑃 (𝐷)−1 and 𝑃 (𝐷)−1 is therefore the integral generator
of (𝑅𝛼(𝑡))𝑡>0. In our concrete situation, we can employ (432) in order to
see that

𝑞𝜂(𝑅𝛼(𝑡)𝑓) 6 𝑡
𝛾(1 + 𝑡𝛽−𝛿 + 𝑡𝛽)𝑞𝜂(𝑓), 𝑡 > 0, 𝑓 ∈ 𝐸𝑙, 𝜂 ∈ N𝑙

0.

The established conclusions can be applied in many different directions
and here we will present only an application of Proposition 3.2.15(ii):
Suppose 𝑚 ∈ Nr{1}, 𝑥0 = 𝑥, 𝑓0(·) = 𝑓(·), 𝑃 (𝐷)𝑥𝑗 = 𝑥𝑗−1 for 1 6 𝑗 6 𝑚,
𝑃 (𝐷)𝑓𝑗(𝑡) = 𝑓𝑗−1(𝑡) for 𝑡 > 0 and 1 6 𝑗 6 𝑚, 𝑓𝑗 ∈ 𝐶([0,∞) : 𝑋) for
0 6 𝑗 6 𝑚, and 𝛼 = 1/𝑚. Then the function 𝑣(𝑡) := 𝑅𝛼(𝑡)𝑥 + (𝑅𝛼 *
𝐶−1𝑓)(𝑡)𝑥, 𝑡 > 0 is a unique solution of the following abstract time-
fractional equation:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑣 ∈ 𝐶1((0,∞) : 𝑋) ∩ 𝐶([0,∞) : 𝑋),

𝑣(𝑡) = 𝑃 (𝐷)
[︁
𝑣𝑡(𝑡, 𝑥)−

∑︀𝑚−1
𝑗=1 𝑔(𝑗/𝑚)+𝑟(𝑡)𝐶𝑥𝑗

−
∑︀𝑚−1

𝑗=0 (𝑔(𝑗/𝑚)+𝛾 * 𝑓𝑗)(𝑡)− 𝑔𝛾(𝑡)𝐶𝑥
]︁
, 𝑡 > 0,

𝑣(0) = 0.

Furthermore, 𝑣 ∈ 𝐶1([0,∞) : 𝑋) provided that 𝛾 > 1 or 𝑥 = 0.
(ii) It is worth noting that the operator 𝑃 (𝐷) need not be injective. For ex-

ample, if 𝑙 = 0, 𝑛 = 1 and 𝑃 (𝑥) = −𝑥2 + 𝑖𝑥, 𝑥 ∈ R, then the state space
is 𝑋 = 𝐵𝑈𝐶(R) but the operator 𝑃 (𝐷)· = ·′′ + ·′ is not injective since
𝑃 (𝐷)𝑓 = 0 for all constant functions 𝑓(·); in particular, the operator
𝑃 (𝐷)−1 is not single-valued and 𝑃 (𝐷)−1 /∈ 𝐿(𝑋). On the other hand,
the injectiveness of operator 𝑃 (𝐷) holds in many concrete situations; for
example, we have already shown that the Laplacian Δ in 𝐿𝑝(R𝑛) is injec-
tive as well as that the assumption 0 /∈ 𝑃 (R𝑛) implies that the operator
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𝑃 (𝐷) is injective. The Korteweg–De Vries operator 𝑃 (𝐷)· = ·′′′ + ·′ in
𝐿𝑝(R) is injective (1 6 𝑝 <∞), as well.

We close the section with the following example:

Example 3.10.20. Suppose that 𝑃1(𝑥) = −|𝑥|2 and 𝑃2(𝑥) =
∑︀

|𝜂|6𝑄 𝑎𝜂𝑥
𝜂

(𝑥 ∈ R𝑛), 0 /∈ 𝑃2(R𝑛) and (70) holds with 𝜔 = 0. By Theorem 3.10.17, there
exist a non-negative real number 𝛾 > 0 and an injective operator 𝐶 ∈ 𝐿(𝑋) such
that the operator ℬ is a subgenerator of a global polynomially bounded (𝑔𝛼, 𝑔1+𝛾)-
regularized 𝐶-resolvent family (𝑅𝛼(𝑡))𝑡>0 (cf. also the conclusions from Remark
3.10.18(ii)–(iii)), so that we can analyze the existence and uniqueness of strong
(mild) solutions of the following fractional degenerate Cauchy problem of order
𝛼 ∈ (0, 2):

(𝑃𝑅)𝛼 :

{︃
D𝛼

𝑡 𝑢𝑥𝑥(𝑡, 𝑥) =
∑︀

|𝜂|6𝑄 𝑎𝜂𝐷
𝜂𝑢(𝑡, 𝑥) + 𝑓(𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ R𝑛,

𝑢(0, 𝑥) = 𝐶𝜑(𝑥); 𝑢𝑡(0, 𝑥) = 𝐶𝜓(𝑥) if 𝛼 > 1.

Without going into full details, we will only note that in the case 𝛼 ∈ (1, 2), the
validity of certain conditions on the initial values 𝜑(𝑥), 𝜓(𝑥) and the inhomogenity
𝑓(𝑡, 𝑥) yield that the unique strong solution of (𝑃𝑅)𝛼 is given by

𝑢(𝑡, 𝑥) := D1+𝛾
𝑡

[︂
𝑅𝛼(𝑡)𝜑(𝑥)+

∫︁ 𝑡

0

𝑅𝛼(𝑠)𝜓(𝑥)𝑑𝑠+(𝑔𝛼−1*𝑅𝛼*𝑓)(𝑡, 𝑥)
]︂
, 𝑡 > 0, 𝑥 ∈ R𝑛.

For more details, see [387, Theorem 13] and [388, Lemma 4.1].

3.11. Quasi-asymptotically almost periodic functions and applications

Throughout this section, we assume that (𝑋, ‖ · ‖) and (𝑌, ‖ · ‖𝑌 ) are two
complex Banach spaces. By ‖𝑇‖𝐿(𝑋,𝑌 ) we denote the norm of a continuous linear
mapping 𝑇 ∈ 𝐿(𝑋,𝑌 ). As explained in [336], the notion of quasi-asymptotical
almost periodicity is very important in the study of qualitative properties of the
infinite convolution product

F(𝑡) :=

∫︁ 𝑡

−∞
𝑅(𝑡− 𝑠)𝑓(𝑠)𝑑𝑠, 𝑡 ∈ R,(433)

where 𝑓 : R → 𝑋 is a Weyl-𝑝-almost periodic function satisfying certain extra
conditions and (𝑅(𝑡))𝑡>0 ⊆ 𝐿(𝑋,𝑌 ) is a strongly continuous operator family having
a certain growth order at zero and infinity.

The class of q-aap. functions is maybe unique in the existing literature with
regards to its invariance under the action of infinite convolution product (433), for
the functions defined on R, and its invariance under the action of finite convolution
product

(434) 𝐹 (𝑡) :=

∫︁ 𝑡

0

𝑅(𝑡− 𝑠)𝑓(𝑠)𝑑𝑠, 𝑡 > 0,

for the functions defined on [0,∞); all that we need is the uniform integrability
of solution operator family (𝑅(𝑡))𝑡>0, i.e., the condition

∫︀∞
0

‖𝑅(𝑠)‖𝐿(𝑋,𝑌 )𝑑𝑠 < ∞
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(Proposition 3.11.33, Proposition 3.11.34). Similar statements hold for Stepanov
classes of q-aap. functions, where we use a slightly stronger condition

∞∑︁
𝑘=0

‖𝑅(·)‖𝐿𝑞 [𝑘,𝑘+1] <∞

(1/𝑝+1/𝑞 = 1; see Proposition 3.11.35 and Proposition 3.11.36). It is clear that the
results of this section are susceptible to applications to a wide class of inhomogenous
abstract Volterra integro-differential equations and inclusions; basically, application
is possible at any place where the variation of parameters formula or some of its
generalizations plays a role.

Let 𝐼 = R or 𝐼 = [0,∞) in the sequel. By 𝐶𝑏(𝐼 : 𝑋), 𝐶0(𝐼 : 𝑋) and 𝐵𝑈𝐶(𝐼 : 𝑋)
we denote the vector spaces consisting of all bounded continuous functions 𝑓 : 𝐼 →
𝑋, all bounded continuous functions 𝑓 : 𝐼 → 𝑋 such that lim|𝑡|→+∞ ‖𝑓(𝑡)‖ = 0 and
all bounded uniformly continuous functions 𝑓 : 𝐼 → 𝑋, respectively.

3.11.1. Asymptotically almost periodic type functions, asymptoti-
cally almost automorphic type functions and their generalizations. Let
𝑓 : 𝐼 → 𝑋 be continuous. Given 𝜀 > 0, we call 𝜏 > 0 an 𝜀-period for 𝑓(·) iff
‖𝑓(𝑡+ 𝜏)− 𝑓(𝑡)‖ 6 𝜀, 𝑡 ∈ 𝐼. By 𝜗(𝑓, 𝜀) we denote the set consisted of all 𝜀-periods
for 𝑓(·). It is said that 𝑓(·) is almost periodic (ap.) iff for each 𝜀 > 0 the set
𝜗(𝑓, 𝜀) is relatively dense in 𝐼, which means that there exists 𝑙 > 0 such that any
subinterval of 𝐼 of length 𝑙 meets 𝜗(𝑓, 𝜀). The space consisted of all almost periodic
functions from the interval 𝐼 into 𝑋 will be denoted by 𝐴𝑃 (𝐼 : 𝑋).

The class of asymptotically almost periodic functions was introduced by M.
Fréchet in 1941, for the case that 𝐼 = [0,∞) (more details about aap. functions
with values in Banach spaces can be found in [100,144,240] and references cited
therein). If 𝐼 = R, there are several non-equivalent notions of an aap. function.
Here we follow the approach of C. Zhang [557]:

A function 𝑓 ∈ 𝐶𝑏(𝐼 : 𝑋) is said to be asymptotically almost periodic iff for
every 𝜀 > 0 we can find numbers 𝑙 > 0 and 𝑀 > 0 such that every subinterval
of 𝐼 of length 𝑙 contains, at least, one number 𝜏 such that ‖𝑓(𝑡 + 𝜏) − 𝑓(𝑡)‖ 6 𝜀
provided |𝑡|, |𝑡+ 𝜏 | >𝑀 . The space consisting of all aap. functions from 𝐼 into 𝑋
is denoted by 𝐴𝐴𝑃 (𝐼 : 𝑋). For a function 𝑓 ∈ 𝐶𝑏(𝐼 : 𝑋), the following statements
are equivalent (see [465] for the case that 𝐼 = [0,∞) and [557, Theorem 2.6] for
the case that 𝐼 = R):

(i) 𝑓 ∈ 𝐴𝐴𝑃 (𝐼 : 𝑋).
(ii) There exist uniquely determined functions 𝑔 ∈ 𝐴𝑃 (𝐼 : 𝑋) and 𝜑 ∈ 𝐶0(𝐼 :

𝑋) such that 𝑓 = 𝑔 + 𝜑.

Unless stated otherwise, in the sequel we will always assume that 1 6 𝑝 < ∞.
Let 𝑙 > 0, and let 𝑓, 𝑔 ∈ 𝐿𝑝

𝑙𝑜𝑐(𝐼 : 𝑋). We define the Stepanov ‘metric’ by

𝐷𝑝
𝑆𝑙
[𝑓(·), 𝑔(·)] := sup

𝑥∈𝐼

[︂
1

𝑙

∫︁ 𝑥+𝑙

𝑥

‖𝑓(𝑡)− 𝑔(𝑡)‖𝑝𝑑𝑡
]︂1/𝑝

.
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The Stepanov ‘norm’ of 𝑓(·) is defined by ‖𝑓‖𝑆𝑝
𝑙
:= 𝐷𝑝

𝑆𝑙
[𝑓(·), 0]. It is said that a

function 𝑓 ∈ 𝐿𝑝
𝑙𝑜𝑐(𝐼 : 𝑋) is Stepanov 𝑝-bounded, 𝑆𝑝-bounded shortly, iff ‖𝑓‖𝑆𝑝 :=

sup𝑡∈𝐼(
∫︀ 𝑡+1

𝑡
‖𝑓(𝑠)‖𝑝 𝑑𝑠)1/𝑝 <∞. The space 𝐿𝑝

𝑆(𝐼 : 𝑋) consisted of all 𝑆𝑝-bounded
functions becomes a Banach space equipped with the above norm. We say that
a function 𝑓 ∈ 𝐿𝑝

𝑆(𝐼 : 𝑋) is Stepanov 𝑝-almost periodic, 𝑆𝑝-ap. shortly, iff the
function 𝑓 : 𝐼 → 𝐿𝑝([0, 1] : 𝑋), defined by 𝑓(𝑡)(𝑠) := 𝑓(𝑡+ 𝑠), 𝑡 ∈ 𝐼, 𝑠 ∈ [0, 1] is ap..
It is said that 𝑓 ∈ 𝐿𝑝

𝑆(𝐼 : 𝑋) is asymptotically Stepanov 𝑝-almost periodic, 𝑆𝑝-aap.
shortly, iff 𝑓 : 𝐼 → 𝐿𝑝([0, 1] : 𝑋) is aap.. By 𝐴𝑃𝑆𝑝(𝐼 : 𝑋) and 𝐴𝐴𝑃𝑆𝑝(𝐼 : 𝑋) we
denote the spaces consisted of all 𝑆𝑝-ap. functions 𝐼 ↦→ 𝑋 and 𝑆𝑝-aap. functions
𝐼 ↦→ 𝑋, respectively.

Let 1 6 𝑝 < ∞, 𝑙 > 0, and 𝑓, 𝑔 ∈ 𝐿𝑝
𝑙𝑜𝑐(𝐼 : 𝑋), where 𝐼 = R or 𝐼 = [0,∞).

Recall that, for every two numbers 𝑙1, 𝑙2 > 0, there exist two positive real constants
𝑘1, 𝑘2 > 0 independent of 𝑓 , 𝑔, such that

𝑘1𝐷
𝑝
𝑆𝑙1

[𝑓(·), 𝑔(·)] 6 𝐷𝑝
𝑆𝑙2

[𝑓(·), 𝑔(·)] 6 𝑘2𝐷𝑝
𝑆𝑙1

[𝑓(·), 𝑔(·)].

The symbol 𝑆𝑝
0 ([0,∞) : 𝑋) stands for the vector space consisting of all functions

𝑞 ∈ 𝐿𝑝
𝑙𝑜𝑐([0,∞) : 𝑋) such that 𝑞 ∈ 𝐶0([0,∞) : 𝐿𝑝([0, 1] : 𝑋)). If 1 6 𝑝 < 𝑞 <∞ and

𝑓(·) is (asymptotically) Stepanov 𝑞-almost periodic, then 𝑓(·) is (asymptotically)
Stepanov 𝑝-almost periodic. Therefore, the (asymptotic) Stepanov 𝑝-almost peri-
odicity of 𝑓(·) for some 𝑝 ∈ [1,∞) implies the (asymptotical) Stepanov 𝑝-almost
periodicity of 𝑓(·). It is a well-known fact that if 𝑓(·) is an almost periodic (respec-
tively, asymptotically almost periodic) function then 𝑓(·) is also 𝑆𝑝-almost periodic
(respectively, asymptotically 𝑆𝑝-almost periodic) for 1 6 𝑝 < ∞. And in general,
the converse statement is false.

The notion of an (equi-)Weyl almost periodic function is given as follows (see
[22,293] and references cited therein for more details on the subject):

Definition 3.11.1. Let 1 6 𝑝 <∞ and 𝑓 ∈ 𝐿𝑝
𝑙𝑜𝑐(𝐼 : 𝑋).

(i) We say that the function 𝑓(·) is equi-Weyl-𝑝-almost periodic, 𝑓 ∈ 𝑒 −
𝑊 𝑝

𝑎𝑝(𝐼 : 𝑋) for short, iff for each 𝜀 > 0 we can find two real numbers
𝑙 > 0 and 𝐿 > 0 such that any interval 𝐼 ′ ⊆ 𝐼 of length 𝐿 contains a point
𝜏 ∈ 𝐼 ′ such that

sup
𝑥∈𝐼

[︂
1

𝑙

∫︁ 𝑥+𝑙

𝑥

‖𝑓(𝑡+ 𝜏)− 𝑓(𝑡)‖𝑝𝑑𝑡
]︂1/𝑝

6 𝜀, i.e., 𝐷𝑝
𝑆𝑙
[𝑓(·+ 𝜏), 𝑓(·)] 6 𝜀.

(ii) We say that the function 𝑓(·) is Weyl-𝑝-almost periodic, 𝑓 ∈ 𝑊 𝑝
𝑎𝑝(𝐼 : 𝑋)

for short, iff for each 𝜀 > 0 we can find a real number 𝐿 > 0 such that
any interval 𝐼 ′ ⊆ 𝐼 of length 𝐿 contains a point 𝜏 ∈ 𝐼 ′ such that

lim
𝑙→∞

sup
𝑥∈𝐼

[︂
1

𝑙

∫︁ 𝑥+𝑙

𝑥

‖𝑓(𝑡+ 𝜏)− 𝑓(𝑡)‖𝑝 𝑑𝑡
]︂1/𝑝

6 𝜀, i.e., lim
𝑙→∞

𝐷𝑝
𝑆𝑙
[𝑓(·+ 𝜏), 𝑓(·)] 6 𝜀.

We also need the definition of an asymptotically almost automorphic function
defined on the interval 𝐼. For beginning, let us recall that a continuous function
𝑓 : R → 𝑋 is said to be almost automorphic (aa., for short) iff for every real
sequence (𝑏𝑛) there exist a subsequence (𝑎𝑛) of (𝑏𝑛) and a map 𝑔 : R → 𝑋 such
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that lim𝑛→∞ 𝑓(𝑡 + 𝑎𝑛) = 𝑔(𝑡) and lim𝑛→∞ 𝑔(𝑡 − 𝑎𝑛) = 𝑓(𝑡), pointwise for 𝑡 ∈ R.
Any aa. function 𝑓(·) needs to be bounded and the following supremum formula
holds (see e.g. [293, Lemma 3.9.9]):

‖𝑓‖∞ := sup
𝑥∈R

‖𝑓(𝑥)‖ = sup
𝑥>𝑎

‖𝑓(𝑥)‖ for any number 𝑎 ∈ R.

We will use the following notion (see also [155, Definition 2.3]):

Definition 3.11.2. (i) A bounded continuous function 𝑓 : R → 𝑋 is
said to be asymptotically almost automorphic iff there exist two functions
ℎ ∈ 𝐴𝐴(R : 𝑋) and 𝑞 ∈ 𝐶0(R : 𝑋) such that 𝑓 = ℎ+ 𝑞 on R.

(ii) A bounded continuous function 𝑓 : [0,∞) → 𝑋 is said to be asymptotically
almost automorphic iff there exist two functions ℎ ∈ 𝐴𝐴(R : 𝑋) and
𝑞 ∈ 𝐶0([0,∞) : 𝑋) such that 𝑓 = ℎ+ 𝑞 on [0,∞).

It is well known that any (asymptotically) almost periodic function defined on
the interval 𝐼 is (asymptotically) almost automorphic as well as that the converse
statement does not hold in general. Following G. M. N’Guérékata and A. Pankov
[242], a function 𝑓 ∈ 𝐿𝑝

𝑙𝑜𝑐(R : 𝑋) is called Stepanov 𝑝-almost automorphic, 𝑆𝑝-aa.
for short, iff for asymptotically every real sequence (𝑎𝑛), there exist a subsequence
(𝑎𝑛𝑘

) and a function 𝑔 ∈ 𝐿𝑝
𝑙𝑜𝑐(R : 𝑋) such that

lim
𝑘→∞

∫︁ 𝑡+1

𝑡

‖𝑓(𝑎𝑛𝑘
+ 𝑠)− 𝑔(𝑠)‖𝑝𝑑𝑠 = 0 and lim

𝑘→∞

∫︁ 𝑡+1

𝑡

‖𝑔(𝑠− 𝑎𝑛𝑘
)− 𝑓(𝑠)‖𝑝𝑑𝑠 = 0

for each 𝑡 ∈ R. By 𝐴𝐴𝑆𝑝(R : 𝑋) we denote the vector space consisting of all 𝑆𝑝-aa.
functions from R to 𝑋.

The following definition seems to be new in case 𝐼 = R :

Definition 3.11.3. (i) An 𝑆𝑝-bounded function 𝑓 : R → 𝑋 is said to
be asymptotically Stepanov 𝑝-almost automorphic, 𝑆𝑝-aaa. for short, iff
there exist two functions ℎ ∈ 𝐴𝐴𝑆𝑝(R : 𝑋) and an 𝑆𝑝-bounded function
𝑞 : R → 𝑋 such that 𝑞 ∈ 𝐶0(R : 𝐿𝑝([0, 1] : 𝑋)) and 𝑓 = ℎ+ 𝑞 a.e. on R.

(ii) An 𝑆𝑝-bounded function 𝑓 : [0,∞) → 𝑋 is said to be asymptotically
Stepanov 𝑝-almost automorphic iff there exist two functions ℎ ∈ 𝐴𝐴𝑆𝑝(R :
𝑋) and an 𝑆𝑝-bounded function 𝑞 : [0,∞) → 𝑋 such that 𝑞 ∈ 𝐶0([0,∞) :
𝐿𝑝([0, 1] : 𝑋)) and 𝑓 = ℎ+ 𝑞 a.e. on [0,∞).

By 𝐴𝐴𝐴𝑆𝑝(𝐼 : 𝑋) we denote the vector space consisting of all asymptotically
𝑆𝑝-almost automorphic functions 𝐼 → 𝑋.

It can be easily verified that the (asymptotical) 𝑆𝑝-almost automorphy of 𝑓(·)
implies the (asymptotical) almost automorphy of the mapping 𝑓 : 𝐼 → 𝐿𝑝([0, 1] : 𝑋)
defined above. Any (asymptotically) 𝑆𝑝-almost periodic function 𝑓 : 𝐼 ↦→ 𝑋 has to
be (asymptotically) 𝑆𝑝-almost automorphic, while the converse statement does not
hold in general.

Denote by 𝐶𝜔(𝐼 : 𝑋) the space consisting of all continuous 𝜔-periodic functions
𝑔 : 𝐼 → 𝑋. The following two definitions as well Definition 3.11.6 seem to be new
in case 𝐼 = R, likewise (see H. R. Henríquez et al. [251], H. R. Henríquez [250],
W. Dimbour, S. M. Manou-Abi [154] for case 𝐼 = [0,∞)):
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Definition 3.11.4. Let 𝜔 ∈ 𝐼. Then we say that a bounded continuous func-
tion 𝑓 : 𝐼 → 𝑋 is S-asymptotically 𝜔-periodic iff lim|𝑡|→∞ ‖𝑓(𝑡 + 𝜔) − 𝑓(𝑡)‖ = 0.
Denote by 𝑆𝐴𝑃𝜔(𝐼 : 𝑋) the space consisting of all such functions.

Definition 3.11.5. Let 𝜔 ∈ 𝐼. A bounded continuous function 𝑓 : 𝐼 → 𝑋 is
said to be asymptotically 𝜔-almost periodic iff there exist a function 𝑔 ∈ 𝐶𝜔(𝐼 : 𝑋)
and a function 𝑞 ∈ 𝐶0(𝐼 : 𝑋) such that 𝑓(𝑡) = 𝑔(𝑡) + 𝑞(𝑡) for all 𝑡 ∈ 𝐼. Denote by
𝐴𝑃𝜔(𝐼 : 𝑋) the vector space consisting of all such functions.

It is straightforward to see that 𝐴𝑃𝜔(𝐼 : 𝑋) ⊆ 𝑆𝐴𝑃𝜔(𝐼 : 𝑋) and the inclusion
is strict. We will also work with the class of Stepanov 𝑆𝑝-asymptotically 𝜔-periodic
functions.

Definition 3.11.6. Let 𝜔 ∈ 𝐼. A Stepanov 𝑝-bounded function 𝑓(·) is said to
be Stepanov 𝑝-asymptotically 𝜔-periodic iff

lim
|𝑡|→∞

∫︁ 𝑡+1

𝑡

‖𝑓(𝑠+ 𝜔)− 𝑓(𝑠)‖𝑝𝑑𝑠 = 0.

Denote by 𝑆𝑝𝑆𝐴𝑃𝜔(𝐼 : 𝑋) the space consisting of all such functions.

We have that 𝑆𝐴𝑃𝜔(𝐼 : 𝑋) ⊆ 𝑆𝑝𝑆𝐴𝑃𝜔(𝐼 : 𝑋) and the inclusion is strict.

3.11.2. Evolution systems and Green’s functions. The following defini-
tion is well known in the existing literature:

Definition 3.11.7. A family {𝑈(𝑡, 𝑠) : 𝑡 > 𝑠, 𝑡, 𝑠 ∈ R} ⊆ 𝐿(𝑋) is said to be
an evolution system iff the following statements hold:

(a) 𝑈(𝑠, 𝑠) = 𝐼, 𝑈(𝑡, 𝑠) = 𝑈(𝑡, 𝑟)𝑈(𝑟, 𝑠) for 𝑡 > 𝑟 > 𝑠 and 𝑡, 𝑟, 𝑠 ∈ R,
(b) {(𝜏, 𝑠) ∈ R2 : 𝜏 > 𝑠} ∋ (𝑡, 𝑠) ↦→ 𝑈(𝑡, 𝑠)𝑥 is continuous for any fixed

element 𝑥 ∈ 𝑋.

In the sequel, it will be always assumed that the family 𝐴(·) satisfies the fol-
lowing condition introduced by P. Acquistapace and B. Terreni in [5] (with 𝜔 = 0):

(H1): There is a number 𝜔 > 0 such that the family of closed linear operators
𝐴(𝑡), 𝑡 ∈ R on 𝑋 satisfies Σ𝜑 ⊆ 𝜌(𝐴(𝑡)− 𝜔),

‖𝑅(𝜆 : 𝐴(𝑡)− 𝜔)‖ = 𝑂((1 + |𝜆|)−1), 𝑡 ∈ R, 𝜆 ∈ Σ𝜑, and

‖(𝐴(𝑡)− 𝜔)𝑅(𝜆 : 𝐴(𝑡)− 𝜔)[𝑅(𝜔 : 𝐴(𝑡))−𝑅(𝜔 : 𝐴(𝑠))]‖ = 𝑂(|𝑡− 𝑠|𝜇|𝜆|−𝜈),

for any 𝑡, 𝑠 ∈ R, 𝜆 ∈ Σ𝜑, where 𝜑 ∈ (𝜋/2, 𝜋), 0 < 𝜇, 𝜈 6 1 and 𝜇+ 𝜈 > 1.
Then we know that there exists an evolution system 𝑈(·, ·) generated by 𝐴(·),

satisfying that ‖𝑈(𝑡, 𝑠)‖ = 𝑂(1) for 𝑡 > 𝑠, as well as a great deal of other conditions
[5]. Besides (H1), we will also assume that the following condition holds:

(H2): The evolution system 𝑈(·, ·) generated by 𝐴(·) is hyperbolic (or, equiva-
lently, has exponential dichotomy), i.e., there exist a family of projections
(𝑃 (𝑡))𝑡∈R ⊆ 𝐿(𝑋), being uniformly bounded and strongly continuous in
𝑡, and constants 𝑀 ′, 𝜔 > 0 such that (a)-(c) holds with 𝑄 := 𝐼 − 𝑃 and
𝑄(·) := 𝐼 − 𝑃 (·), where 𝐼 stands for the identity operator on 𝑋 and:
(a) 𝑈(𝑡, 𝑠)𝑃 (𝑠) = 𝑃 (𝑡)𝑈(𝑡, 𝑠) for all 𝑡 > 𝑠,
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(b) the restriction 𝑈𝑄(𝑡, 𝑠) : 𝑄(𝑠)𝑋 → 𝑄(𝑡)𝑋 is invertible for all 𝑡 > 𝑠
(here we define 𝑈𝑄(𝑠, 𝑡) = 𝑈𝑄(𝑡, 𝑠)

−1),
(c) ‖𝑈(𝑡, 𝑠)𝑃 (𝑠)‖ 6𝑀 ′𝑒−𝜔(𝑡−𝑠) and ‖𝑈𝑄(𝑠, 𝑡)𝑄(𝑡)‖ 6𝑀 ′𝑒−𝜔(𝑡−𝑠) for all

𝑡 > 𝑠.
It is said that 𝑈(·, ·) is exponentially stable iff the choice 𝑃 (𝑡) = 𝐼 for all 𝑡 ∈ R

can be made; 𝑈(·, ·) is said to be (bounded) exponentially bounded iff there exist
two finite real constants 𝑀 > 0 and (𝜔 = 0) 𝜔 ∈ R such that ‖𝑈(𝑡, 𝑠)𝑃 (𝑠)‖ 6
𝑀𝑒−𝜔(𝑡−𝑠) for all 𝑡 > 𝑠. The associated Green’s function Γ(·, ·) is defined through

Γ(𝑡, 𝑠) :=

{︃
𝑈(𝑡, 𝑠)𝑃 (𝑠), 𝑡 > 𝑠, 𝑡, 𝑠 ∈ R,
−𝑈𝑄(𝑡, 𝑠)𝑄(𝑠), 𝑡 < 𝑠, 𝑡, 𝑠 ∈ R.

Let 𝑀 ′ be the constant appearing in (H2). Then

(435) ‖Γ(𝑡, 𝑠)‖ 6𝑀 ′𝑒−𝜔|𝑡−𝑠|, 𝑡, 𝑠 ∈ R

and the function

(436) 𝑢(𝑡) :=

∫︁ +∞

−∞
Γ(𝑡, 𝑠)𝑓(𝑠)𝑑𝑠, 𝑡 ∈ R

is a unique bounded continuous function on R satisfying

𝑢(𝑡) = 𝑈(𝑡, 𝑠)𝑢(𝑠) +

∫︁ 𝑡

𝑠

𝑈(𝑡, 𝜏)𝑓(𝜏)𝑑𝜏, 𝑡 > 𝑠;

cf. [407]. In the sequel, it will be said that 𝑢(·) is a mild solution of the abstract
Cauchy problem (449).

Let 𝑓 : [0,∞) → 𝑋 be continuous. By a mild solution of the abstract Cauchy
problem (450) we mean the function

(437) 𝑢(𝑡) := 𝑈(𝑡, 0)𝑥+

∫︁ 𝑡

0

𝑈(𝑡, 𝑠)𝑓(𝑠)𝑑𝑠, 𝑡 > 0.

For more details on the subject, we refer the reader to [407, Section 5].
We will also consider the following semilinear Cauchy problems:

(438) 𝑢′(𝑡) = 𝐴(𝑡)𝑢(𝑡) + 𝐹 (𝑡, 𝑢(𝑡)), 𝑡 ∈ R

and

(439) 𝑢′(𝑡) = 𝐴(𝑡)𝑢(𝑡) + 𝐹 (𝑡, 𝑢(𝑡)), 𝑡 > 0; 𝑢(0) = 𝑥.

Definition 3.11.8. (i) A function 𝑢 ∈ 𝐶𝑏(R : 𝑋) is said to be a mild
solution of (438) iff

𝑢(𝑡) =

∫︁ +∞

−∞
Γ(𝑡, 𝑠)𝐹 (𝑠, 𝑢(𝑠))𝑑𝑠, 𝑡 ∈ R.

(ii) A function 𝑢 ∈ 𝐶𝑏([0,∞) : 𝑋) is said to be a mild solution of (439) iff

𝑢(𝑡) = 𝑈(𝑡, 0)𝑥+

∫︁ 𝑡

0

𝑈(𝑡, 𝑠)𝐹 (𝑠, 𝑢(𝑠))𝑑𝑠, 𝑡 > 0.
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3.11.3. Quasi-asymptotically almost periodic functions and their gen-
eralizations. We start by recalling the following definition [336]:

Definition 3.11.9. Suppose that 𝐼 = [0,∞) or 𝐼 = R. Then we say that a
bounded continuous function 𝑓 : 𝐼 → 𝑋 is quasi-asymptotically almost periodic iff
for each 𝜀 > 0 there exists a finite number 𝐿(𝜀) > 0 such that any interval 𝐼 ′ ⊆ 𝐼 of
length 𝐿(𝜀) contains at least one number 𝜏 ∈ 𝐼 ′ satisfying that there exists a finite
number 𝑀(𝜀, 𝜏) > 0 such that

(440) ‖𝑓(𝑡+ 𝜏)− 𝑓(𝑡)‖ 6 𝜀, provided 𝑡 ∈ 𝐼 and |𝑡| >𝑀(𝜀, 𝜏).

Denote by 𝑄 − 𝐴𝐴𝑃 (𝐼 : 𝑋) the set consisting of all quasi-asymptotically almost
periodic functions from 𝐼 into 𝑋.

In order to avoid unnecessary repeating, we will use the shorthand
(S): “there exists a finite number 𝐿(𝜀) > 0 such that any interval 𝐼 ′ ⊆ 𝐼 of

length 𝐿(𝜀) contains at least one number 𝜏 ∈ 𝐼 ′ satisfying that there exists
a finite number”.

Remark 3.11.10. It is not relevant whether we will write (440) or

‖𝑓(𝑡+ 𝜏)− 𝑓(𝑡)‖ 6 𝜀, provided 𝑡 ∈ 𝐼, |𝑡| >𝑀(𝜀, 𝜏) and |𝑡+ 𝜏 | >𝑀(𝜀, 𝜏).

Using this observation, it can be easily seen that the class of aap. functions is
contained in the class of q-aap. functions (the number 𝑀 depends only on 𝜀 and
not on 𝜏 for aap. functions). The converse statement is not true, however: Let
𝐼 = R and let 𝑓(·) be any bounded scalar-valued continuous function such that
𝑓(𝑡) = 1 for all 𝑡 > 0 and 𝑓(𝑡) = 0 for all 𝑡 6 −1. Then 𝑓(·) is q-aap., not aap.
and not equi-Weyl-𝑝-ap. for any 𝑝 ∈ [1,∞) [22,336]. Applying Theorem 3.11.13(i)
below we can see that 𝑓(·) is not aaa., as well.

We continue by providing an illustrative example and one more remark.

Example 3.11.11. Suppose that 𝑓 ∈ 𝐶1(𝐼 : 𝑋)∩𝐶𝑏(𝐼 : 𝑋) and 𝑓 ′ ∈ 𝐶0(𝐼 : 𝑋).
Then 𝑓 ∈ 𝑄 − 𝐴𝐴𝑃 (𝐼 : 𝑋). In order to see this, it suffices to apply the Lagrange
mean value theorem as well as to choose, in Definition 3.11.9, 𝐿(𝜀) > 0 arbitrarily
and any 𝜏 ̸= 0 from an arbitrary interval 𝐼 ′ of length 𝐿(𝜀). Then, for this 𝜀 > 0
and 𝜏 ∈ 𝐼 ′, there exists a sufficiently large 𝑀(𝜀, 𝜏) > 0 such that [𝑡, 𝑡 + 𝜏 ] ⊆ {𝑠 ∈
𝐼 : |𝑠| > 𝑀0(𝜀, 𝜏)} for |𝑡| > 𝑀(𝜀, 𝜏), where 𝑀0(𝜀, 𝜏) is already chosen so that
‖𝑓 ′(𝜉)‖ 6 𝜀/|𝜏 | for |𝜉| >𝑀0(𝜀, 𝜏); then we have

‖𝑓(𝑡+ 𝜏)− 𝑓(𝑡)‖ 6 |𝜏 | sup
𝜉∈[𝑡,𝑡+𝜏 ]

‖𝑓 ′(𝜉)‖ 6 𝜀, |𝑡| >𝑀(𝜀, 𝜏).

It is worth noticing that there exists a function 𝑓(·) that is not aap. and satisfies
the above properties; a typical example is given by 𝑓(𝑡) := sin(ln(1+ 𝑡)), 𝑡 > 0 (see
also [466, Example 4.1, Theorem 4.2]).

Remark 3.11.12. In our joint research paper [341] with D. Velinov, we have
recently introduced and analyzed the class of (asymptotically) almost anti-periodic
functions. The notion of quasi-asymptotically almost anti-periodicity (q-aanp., for
short) can be introduced in the following way: A bounded continuous 𝑓 : 𝐼 → 𝑋 is



3.11. QUASI-ASYMPTOTICALLY ALMOST PERIODIC FUNCTIONS AND APPL... 449

called quasi-asymptotically almost anti-periodic iff for each 𝜀 > 0 (S) holds with a
number 𝑀(𝜀, 𝜏) > 0 such that

(441) ‖𝑓(𝑡+ 𝜏) + 𝑓(𝑡)‖ 6 𝜀, provided 𝑡 ∈ 𝐼 and |𝑡| >𝑀(𝜀, 𝜏).

Suppose that 𝑡, 𝑡+ 𝜏 ∈ 𝐼 as well as that |𝑡| >𝑀(𝜀, 𝜏) + |𝜏 |. Then |𝑡+ 𝜏 | >𝑀(𝜀, 𝜏)
and applying (441) twice, we get that

‖𝑓(𝑡+ 2𝜏)− 𝑓(𝑡)‖ = ‖[𝑓(𝑡+ 2𝜏) + 𝑓(𝑡+ 𝜏)]− [𝑓(𝑡+ 𝜏) + 𝑓(𝑡)]‖
6 ‖𝑓(𝑡+ 2𝜏) + 𝑓(𝑡+ 𝜏)‖+ ‖𝑓(𝑡+ 𝜏) + 𝑓(𝑡)‖ 6 2𝜀.

Hence, any q-aanp. function is automatically q-aap.. Further analysis of q-aanp.
functions and their Stepanov generalizations are without scope of this book.

The space 𝐶𝑏(𝐼 : 𝑋) r 𝑄 − 𝐴𝐴𝑃 (𝐼 : 𝑋) is sufficiently large; it is clearly non-
empty because it is very plainly to construct an example of an infinite-differentiable
bounded function 𝑓 : 𝐼 → C such that for each number 𝜏 ∈ 𝐼 there exists a sequence
(𝑡𝑛)𝑛∈N in 𝐼 with the properties that lim𝑛→∞ |𝑡𝑛| = ∞ and |𝑓(𝑡𝑛 + 𝜏)− 𝑓(𝑡𝑛)| > 1
for all 𝑛 ∈ N. Furthermore, we have the following:

Theorem 3.11.13. (i) 𝐴𝐴𝐴(𝐼 : 𝑋) ∩ 𝑄 − 𝐴𝐴𝑃 (𝐼 : 𝑋) = 𝐴𝐴𝑃 (𝐼 : 𝑋)
and [𝐴𝐴𝐴(𝐼 : 𝑋)r𝐴𝐴𝑃 (𝐼 : 𝑋)] ∩𝑄−𝐴𝐴𝑃 (𝐼 : 𝑋) = ∅.

(ii) 𝐴𝐴(R : 𝑋) ∩𝑄−𝐴𝐴𝑃 (R : 𝑋) = 𝐴𝑃 (R : 𝑋).

Proof. For the sake of brevity, we will consider only the case that 𝐼 = R. It is
clear that 𝐴𝐴𝑃 (R : 𝑋) ⊆ 𝐴𝐴𝐴(R : 𝑋) ∩𝑄− 𝐴𝐴𝑃 (R : 𝑋). To prove the converse
inclusion, suppose that 𝑓 ∈ 𝐴𝐴𝐴(R : 𝑋)∩𝑄−𝐴𝐴𝑃 (R : 𝑋). Then there exist two
functions ℎ ∈ 𝐴𝐴(R : 𝑋) and 𝑞 ∈ 𝐶0(R : 𝑋) such that 𝑓 = ℎ+ 𝑞 on R and for each
𝜀 > 0 (S) holds with a number 𝑀(𝜀, 𝜏) > 0 such that

(442) ‖[ℎ(𝑡+ 𝜏)− ℎ(𝑡)] + [𝑞(𝑡+ 𝜏)− 𝑞(𝑡)]‖ 6 𝜀, provided 𝑡 ∈ R and |𝑡| >𝑀(𝜀, 𝜏).

Fix a number 𝜀 > 0 and suppose that the real number 𝜏 satisfies (442) for |𝑡| >
𝑀(𝜀, 𝜏). Since 𝑞 ∈ 𝐶0(R : 𝑋), we have that there exists a finite number 𝑀1(𝜀, 𝜏) >
𝑀(𝜀, 𝜏) such that

(443) ‖ℎ(𝑡+ 𝜏)− ℎ(𝑡)‖ 6 2𝜀, provided 𝑡 ∈ R and |𝑡| >𝑀1(𝜀, 𝜏).

Define the function 𝐻 : R → 𝑋 by 𝐻(𝑡) := ℎ(𝑡+ 𝜏)− ℎ(𝑡), 𝑡 ∈ R. Since the space
𝐴𝐴(R : 𝑋) is translation invariant, we have 𝐻 ∈ 𝐴𝐴(R : 𝑋). Applying supremum
formula and (443), we get

sup
𝑡∈R

‖𝐻(𝑡)‖ = sup
𝑡>𝑀1(𝜀,𝜏)

‖𝐻(𝑡)‖ = sup
𝑡>𝑀1(𝜀,𝜏)

‖ℎ(𝑡+ 𝜏)− ℎ(𝑡)‖ 6 2𝜀.

Hence, ‖ℎ(𝑡 + 𝜏) − ℎ(𝑡)‖ 6 2𝜀 for all 𝑡 ∈ R and ℎ(·) is ap. by definition. Hence,
𝐴𝐴𝑃 (R : 𝑋) = 𝐴𝐴𝐴(R : 𝑋) ∩ 𝑄 − 𝐴𝐴𝑃 (R : 𝑋), which immediately implies
the second equality in (i). The proof of (ii) follows from the above arguments,
as well. �

It is expected that the range of a function 𝑓 ∈ 𝑄−𝐴𝐴𝐴(𝐼 : 𝑋)∩𝐵𝑈𝐶(𝐼 : 𝑋)
need not be relatively compact, as in the case of aap. functions. In the following
example, we will explain this fact in case 𝐼 = [0,∞):
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Example 3.11.14. Let 𝑋 := 𝑐0(C). Although the final conclusions presented
here holds for the function 𝑓(·) considered in [251, Example 3.1], we will prove that
the range of function

𝑓(𝑡) :=
(︁ 4𝑛2𝑡2

(𝑡2 + 𝑛2)2

)︁
𝑛∈N

, 𝑡 > 0

is not relatively compact in 𝑋. Using a similar analysis as in the afore-mentioned
example, we get that the function 𝑓(·) is bounded and uniformly continuous with
the estimate ‖𝑓(𝑡+𝑠)−𝑓(𝑡)‖ 6 8𝑠, 𝑡, 𝑠 > 0 holding true. Further on, for each 𝑡 > 0
and 𝜏 > 0, we have:

‖𝑓(𝑡+ 𝜏)− 𝑓(𝑡)‖ 6 sup
𝑛∈N

4𝑛2[(𝑡+ 𝜏)2 + 𝜏2]

(𝑡2 + 𝑛2)2((𝑡+ 𝜏)2 + 𝑛2)2
6 𝑡−4 + 4

𝜏2

𝑡2
, 𝑡 > 0, 𝜏 > 0.

By [251, Remark 3.1, Proposition 3.3], it readily follows that the range of 𝑓(·) is
not relatively compact as well as that there is no number 𝜏 > 0 such that 𝑓(·) is
𝜏 -normal on compact subsets; see [251, Definition 3.2] for the notion.

Now we will prove that the existence of a number 𝜔 ∈ 𝐼 such that 𝑓 : 𝐼 → 𝑋
is S-asymptotically 𝜔-periodic implies that 𝑓(·) is qaap.:

Proposition 3.11.15. We have 𝑆𝐴𝑃𝜔(𝐼 : 𝑋) ⊆ 𝑄−𝐴𝐴𝑃 (𝐼 : 𝑋).

Proof. For 𝜀 > 0 given in advance, we can take 𝐿(𝜀) = 2𝜔. Then any interval
𝐼 ′ ⊆ 𝐼 of length 𝐿(𝜀) contains a number 𝜏 = 𝑛𝜔 for some 𝑛 ∈ N. For this 𝑛 and
𝜀, there exists a finite number 𝑀(𝜀, 𝑛) > 0 such that ‖𝑓(𝑡+ 𝜔)− 𝑓(𝑡)‖ 6 𝜀/𝑛𝜔 for
|𝑡| >𝑀(𝜀, 𝑛). Then the final conclusion follows from the estimates

‖𝑓(𝑡+ 𝑛𝜔)− 𝑓(𝑡)‖ 6
𝑛−1∑︁
𝑘=0

‖𝑓(𝑡+ (𝑘 + 1)𝜔)− 𝑓(𝑡+ 𝑘𝜔)‖ 6
𝑛−1∑︁
𝑘=0

𝜀

𝑛𝜔
= 𝜀/𝜔,

provided |𝑡| >𝑀(𝜀, 𝑛) + 𝑛𝜔. �

In [548, Example 17], R. Xie and C. Zhang have constructed an example of
a function 𝑓 ∈ 𝑆𝐴𝑃2([0,∞) : 𝑋) that is not uniformly continuous. By the above
proposition, the function 𝑓(·) is q-aap. and not uniformly continuous.

The following simple proposition, already known in the case that 𝐼 = [0,∞),
can be deduced by using the arguments contained in the proof of [78, Proposition
3.6]. An alternative proof can be given by using Theorem 3.11.13, Proposition
3.11.15 and an easy reformulation of [251, Lemma 3.1] in case 𝐼 = R:

Proposition 3.11.16. Let 𝜔 ∈ 𝐼.
(i) Suppose that 𝑓 ∈ 𝑆𝐴𝑃𝜔(𝐼 : 𝑋) ∩𝐴𝐴𝐴(𝐼 : 𝑋). Then 𝑓 ∈ 𝐴𝑃𝜔(𝐼 : 𝑋).
(ii) Suppose that 𝑓 ∈ 𝑆𝐴𝑃𝜔(𝐼 : 𝑋) ∩𝐴𝐴(𝐼 : 𝑋). Then 𝑓 ∈ 𝐶𝜔(𝐼 : 𝑋).

Now we will introduce the Stepanov generalization of q-aap. functions:

Definition 3.11.17. Let 𝑓 ∈ 𝐿𝑝
𝑆(𝐼 : 𝑋). Then it is said 𝑓(·) is Stepanov

𝑝-quasi-asymptotically almost periodic (𝑆𝑝-qaap., for short) iff for each 𝜀 > 0 (S)
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holds with a number 𝑀(𝜀, 𝜏) > 0 such that

(444)
∫︁ 𝑡+1

𝑡

‖𝑓(𝑠+ 𝜏)− 𝑓(𝑠)‖𝑝𝑑𝑠 6 𝜀𝑝, provided 𝑡 ∈ 𝐼 and |𝑡| >𝑀(𝜀, 𝜏).

Denote by 𝑆𝑝𝑄−𝐴𝐴𝑃 (𝐼 : 𝑋) the set consisting of all Stepanov 𝑝-quasi-asymptot-
ically almost periodic functions from 𝐼 into 𝑋.

Using only definition, it readily follows that 𝑄−𝐴𝐴𝑃 (𝐼 : 𝑋) ⊆ 𝑆𝑝𝑄−𝐴𝐴𝑃 (𝐼 :
𝑋); it is clear that this inclusion can be strict since the function 𝑓(𝑡) := 𝜒[−1,∞)(𝑡),
𝑡 ∈ R is in class 𝑆𝑝𝑄 − 𝐴𝐴𝑃 (R : 𝑋) but not in class 𝑄 − 𝐴𝐴𝑃 (R : 𝑋) because
𝑓(·) is not continuous. Furthermore, it follows immediately from definition that
any 𝑆𝑝-aap. function is 𝑆𝑝-qaap. so that 𝐴𝐴𝑃𝑆𝑝(𝐼 : 𝑋) ⊆ 𝑆𝑝𝑄 − 𝐴𝐴𝑃 (𝐼 : 𝑋);
this inclusion can be also strict since the continuous function 𝑓(·) from Remark
3.11.10 is not 𝑆𝑝-aap.. Furthermore, if 1 6 𝑝 < 𝑝′ < ∞, then 𝑆𝑝′

𝑄 − 𝐴𝐴𝑃 (𝐼 :
𝑋) ⊆ 𝑆𝑝𝑄 − 𝐴𝐴𝑃 (𝐼 : 𝑋) and for any function 𝑓 ∈ 𝐿𝑝

𝑆(𝐼 : 𝑋), we have that 𝑓(·)
is 𝑆𝑝q-aap. iff the function 𝑓 : 𝐼 → 𝐿𝑝([0, 1] : 𝑋) is q-aap.. Using this fact and
Theorem 3.11.13, we can simply verify the validity of following result:

Theorem 3.11.18. (i) 𝑆𝑝𝐴𝐴𝐴(𝐼 : 𝑋)∩𝑆𝑝𝑄−𝐴𝐴𝑃 (𝐼 : 𝑋) = 𝑆𝑝𝐴𝐴𝑃 (𝐼 :
𝑋) and [𝑆𝑝𝐴𝐴𝐴(𝐼 : 𝑋)r 𝑆𝑝𝐴𝐴𝑃 (𝐼 : 𝑋)] ∩ 𝑆𝑝𝑄−𝐴𝐴𝑃 (𝐼 : 𝑋) = ∅.

(ii) 𝑆𝑝𝐴𝐴(R : 𝑋) ∩ 𝑆𝑝𝑄−𝐴𝐴𝑃 (R : 𝑋) = 𝑆𝑝𝐴𝑃 (R : 𝑋).

The proof of following result is very similar to that of Proposition 3.11.15;
therefore, it is omitted:

Proposition 3.11.19. We have 𝑆𝑝𝑆𝐴𝑃𝜔(𝐼 : 𝑋) ⊆ 𝑆𝑝𝑄−𝐴𝐴𝑃 (𝐼 : 𝑋).

After introduction of Definition 3.11.17, it seems reasonable to ask whether we
can analyze Weyl and Besicovitch generalizations of q-aap. functions. The following
result says that the space 𝑆𝑝𝑄−𝐴𝐴𝑃 (𝐼 : 𝑋) is contained in 𝑊 𝑝

𝑎𝑝(𝐼 : 𝑋) and that
the above question is uninteresting (we have already seen that 𝑆𝑝𝑄 − 𝐴𝐴𝑃 (𝐼 :
𝑋) * 𝑒−𝑊 𝑝

𝑎𝑝(𝐼 : 𝑋)):

Proposition 3.11.20. We have 𝑆𝑝𝑄−𝐴𝐴𝑃 (𝐼 : 𝑋) ⊆𝑊 𝑝
𝑎𝑝(𝐼 : 𝑋).

Proof. Let 𝜀 > 0 be given. Then (S) holds with a number 𝑀(𝜀, 𝜏) > 0 such
that (444) is satisfied. We need to estimate the term

(445) sup
𝑥∈𝐼

[︂
1

𝑙

∫︁ 𝑥+𝑙

𝑥

‖𝑓(𝑡+ 𝜏)− 𝑓(𝑡)‖𝑝𝑑𝑡
]︂1/𝑝

as 𝑙 → +∞. There exist four possibilities:
1. |𝑥| >𝑀(𝜀, 𝜏) and |𝑥+ 𝑙| >𝑀(𝜀, 𝜏).
2. |𝑥| >𝑀(𝜀, 𝜏) and |𝑥+ 𝑙| 6𝑀(𝜀, 𝜏).
3. |𝑥| 6𝑀(𝜀, 𝜏) and |𝑥+ 𝑙| >𝑀(𝜀, 𝜏).
4. |𝑥| 6𝑀(𝜀, 𝜏) and |𝑥+ 𝑙| 6𝑀(𝜀, 𝜏).

Let us consider the first case. For 𝑥 > 0, we have

1

𝑙

∫︁ 𝑥+𝑙

𝑥

‖𝑓(𝑡+ 𝜏)− 𝑓(𝑡)‖𝑝𝑑𝑡
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6
1

𝑙

(︂∫︁ 𝑥+1

𝑥

‖𝑓(𝑡+ 𝜏)− 𝑓(𝑡)‖𝑝𝑑𝑡+ · · ·+
∫︁ 𝑥+𝑙

𝑥+⌊𝑙⌋
‖𝑓(𝑡+ 𝜏)− 𝑓(𝑡)‖𝑝𝑑𝑡

)︂
6

1

𝑙
𝑙𝜀𝑝.

If 𝐼 = R and 𝑥 6 0, then 𝑥 6 −𝑀(𝜀, 𝜏), 𝑥+ 𝑙 > 𝑀(𝜀, 𝜏) and arguing as above we
get

1

𝑙

∫︁ 𝑥+𝑙

𝑥

‖𝑓(𝑡+ 𝜏)− 𝑓(𝑡)‖𝑝𝑑𝑡

6
1

𝑙

∫︁ −𝑀(𝜀,𝜏)

𝑥

‖𝑓(𝑡+ 𝜏)− 𝑓(𝑡)‖𝑝𝑑𝑡

+
1

𝑙

∫︁ 𝑀(𝜀,𝜏)

−𝑀(𝜀,𝜏)

‖𝑓(𝑡+ 𝜏)− 𝑓(𝑡)‖𝑝𝑑𝑡+ 1

𝑙

∫︁ 𝑥+𝑙

𝑀(𝜀,𝜏)

‖𝑓(𝑡+ 𝜏)− 𝑓(𝑡)‖𝑝𝑑𝑡

6
1

𝑙

∫︁ −𝑀(𝜀,𝜏)

𝑥

‖𝑓(𝑡+ 𝜏)− 𝑓(𝑡)‖𝑝𝑑𝑡

+
2𝑝−1(𝑀(𝜀, 𝜏) + 2)

𝑙
‖𝑓‖𝑝𝑆𝑝 +

1

𝑙

∫︁ 𝑙−𝑀(𝜀,𝜏)

𝑀(𝜀,𝜏)

‖𝑓(𝑡+ 𝜏)− 𝑓(𝑡)‖𝑝𝑑𝑡

6
𝜀𝑝

𝑙
(−𝑀(𝜀, 𝜏)− 𝑥) +

2𝑝−1(𝑀(𝜀, 𝜏) + 2)

𝑙
‖𝑓‖𝑝𝑆𝑝 +

𝜀𝑝

𝑙
(𝑙 − 2𝑀(𝜀, 𝜏))

6 2𝜀𝑝 +
2𝑝−1(𝑀(𝜀, 𝜏) + 2)

𝑙
‖𝑓‖𝑝𝑆𝑝 .

This implies the existence of a sufficiently large number 𝑙(𝜀, 𝜏) > 0 such that the
term in (445) is not greater than 𝜀 for any 𝑙 > 𝑙(𝜀, 𝜏). The analysis of cases 2.–4.
is analogous and therefore omitted. �

Proposition 3.11.20 is motivated by the old results of A. S. Kovanko [357,
Théorème I, Théorème II], where the notion of asymptotical almost periodicity has
been taken in a slightly different manner. It is also worth noting that the inclusion
𝑆𝑝𝑄 − 𝐴𝐴𝑃 (𝐼 : 𝑋) ⊆ 𝑊 𝑝

𝑎𝑝(𝐼 : 𝑋) is strict because the space 𝑊 𝑝
𝑎𝑝(𝐼 : 𝑋) contains

certain Stepanov unbounded functions (see e.g. [22, Example 4.28] with 𝐼 = R and
𝑝 = 1).

Further on, arguing as in the proofs of structural results of [74, pp. 3–4], we
may deduce the following:

Theorem 3.11.21. Let 𝑓 : 𝐼 → 𝑋 be q-aap. (𝑆𝑝-qaap.). Then we have:
(i) 𝑐𝑓(·) is q-aap. (𝑆𝑝-qaap.) for any 𝑐 ∈ C.
(ii) If 𝑋 = C and inf𝑥∈𝐼 |𝑓(𝑥)| = 𝑚 > 0, then 1/𝑓(·) is q-aap. (𝑆𝑝-qaap.).
(iii) If (𝑔𝑛 : 𝐼 → 𝑋)𝑛∈N is a sequence of q-aap. functions and (𝑔𝑛)𝑛∈N con-

verges uniformly to a function 𝑔 : 𝐼 → 𝑋, then 𝑔(·) is q-aap..
(iv) If (𝑔𝑛 : 𝐼 → 𝑋)𝑛∈N is a sequence of 𝑆𝑝-qaap. functions and (𝑔𝑛)𝑛∈N

converges to a function 𝑔 : 𝐼 → 𝑋 in the space 𝐿𝑝
𝑆(𝐼 : 𝑋), then 𝑔(·) is

𝑆𝑝-qaap..
(v) The functions 𝑓(· + 𝑎) and 𝑓(𝑏 ·) are likewise q-aap. (𝑆𝑝-qaap.), where

𝑎 ∈ 𝐼 and 𝑏 ∈ 𝐼 r {0}.
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Concerning the pointwise products of (Stepanov) scalar-valued q-aap. func-
tions and (Stepanov) vector-valued q-aap. functions, the following classes play an
important role:

Definition 3.11.22. By 𝑄ℎ − 𝐴𝐴𝑃 (𝐼 : 𝑋) (𝑆𝑝𝑄ℎ − 𝐴𝐴𝑃 (𝐼 : 𝑋)) we denote
the class consisting of all q-aaa. (𝑆𝑝-qaap.) 𝑓 : 𝐼 → 𝑋 satisfying that for each
𝜀 > 0 and 𝜏 ∈ 𝐼 there exists a finite number 𝑀(𝜀, 𝜏) > 0 such that (440) ((444))
holds true.

The functions from Example 3.11.11 belong to the class 𝑄ℎ − 𝐴𝐴𝑃 (𝐼 : 𝑋). It
is also worth noting that the class 𝑆𝑝𝑄ℎ −𝐴𝐴𝑃 (𝐼 : 𝑋) contains all functions that
are S-asymptotically 𝜔-periodic in the Stepanov sense for any number 𝜔 > 0. Let
𝑓 : 𝐼 → 𝑋 and 𝑔 : 𝐼 → C be given. Using the elementary definitions and inequality

‖𝑓𝑔(𝑡+ 𝜏)− 𝑓𝑔(𝑡)‖ 6 |𝑔(𝑡+ 𝜏)|‖𝑓(𝑡+ 𝜏)− 𝑓(𝑡)‖+ ‖𝑓(𝑡)‖|𝑔(𝑡+ 𝜏)− 𝑔(𝑡)|, 𝑡, 𝜏 ∈ 𝐼,

it readily follows the validity of following proposition:

Proposition 3.11.23. Let the functions 𝑓 : 𝐼 → 𝑋 and 𝑔 : 𝐼 → C be bounded.
If 𝑓 ∈ 𝑄ℎ − 𝐴𝐴𝑃 (𝐼 : 𝑋) and 𝑔 ∈ 𝑄 − 𝐴𝐴𝑃 (𝐼 : C) (𝑓 ∈ 𝑆𝑝𝑄ℎ − 𝐴𝐴𝑃 (𝐼 : 𝑋)
and 𝑔 ∈ 𝑆𝑝𝑄 − 𝐴𝐴𝑃 (𝐼 : C)) or 𝑓 ∈ 𝑄 − 𝐴𝐴𝑃 (𝐼 : 𝑋) and 𝑔 ∈ 𝑄ℎ − 𝐴𝐴𝑃 (𝐼 : C)
(𝑓 ∈ 𝑆𝑝𝑄 − 𝐴𝐴𝑃 (𝐼 : 𝑋) and 𝑔 ∈ 𝑆𝑝𝑄ℎ − 𝐴𝐴𝑃 (𝐼 : C)), then we have 𝑓𝑔 ∈
𝑄−𝐴𝐴𝑃 (𝐼 : 𝑋) (𝑓𝑔 ∈ 𝑆𝑝𝑄−𝐴𝐴𝑃 (𝐼 : 𝑋)).

The conclusion established in the above proposition cannot be deduced if the
functions 𝑓(·) and 𝑔(·) belong to the classes of qaap. functions or Stepanov qaap.
functions, as the next instructive examples show:

Example 3.11.24. We have that 𝐴𝑃 (R : C) · 𝑆𝐴𝑃2(R : C) is not a subset of
𝑄 − 𝐴𝐴𝑃 (R : C) and, in particular, 𝑄 − 𝐴𝐴𝑃 (R : C) · 𝑄 − 𝐴𝐴𝑃 (R : C) is not a
subset of 𝑄 − 𝐴𝐴𝑃 (R : C). A typical example of function belonging to the space
[𝐴𝑃 (R : C) ·𝑆𝐴𝑃2(R : C)]∩𝑆𝑝𝐴𝐴𝑃 (R : C) but not to the space 𝑄−𝐴𝐴𝑃 (R : C) is
the function cos(

√
2𝜋·)𝑓(·), which can be verified as for the function 𝑓𝑔(·) considered

below, but much simpler.
Assume that 𝛼, 𝛽 ∈ R and 𝛼𝛽−1 is a well-defined irrational number. Then the

functions
𝑔0(𝑡) = sin

(︁ 1

2 + cos𝛼𝑡+ cos𝛽𝑡

)︁
, 𝑡 ∈ R

and
𝑔(𝑡) = cos

(︁ 1

2 + cos𝛼𝑡+ cos𝛽𝑡

)︁
, 𝑡 ∈ R

are Stepanov 𝑝-ap. but not ap.. These functions are bounded continuous, not
uniformly continuous and cannot be q-aap. because they are also aa. (see Theorem
3.11.13 and [293] for more details). Consider now the case that 𝛼 = 𝜋 and 𝛽 =√
2𝜋 for function 𝑔(·). Let the function 𝑓(·) be defined on the real line by zero

outside the non-negative real axis and by 𝑓(𝑡) := 𝑓{1/𝑛+1}(𝑡), 𝑡 > 0, where the
function 𝑓{1/𝑛+1}(·) has the same meaning in [548, Example 17]. That is, we define
𝑓{1/𝑛+1}(·) by 𝑓{1/𝑛+1}(𝑡) := 0 for 𝑡 ∈ {0, 2, 2𝑛 + 1 − 1

𝑛+1 , 2𝑛 + 1 + 1
𝑛+1 : 𝑛 ∈ N},
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𝑓{1/𝑛+1}(𝑡) := 1 for 𝑡 ∈ 2N + 1 and linearly outside. Assume that for each 𝜀 > 0

(S) holds with 𝐼 = [0,∞) and a number 𝑀(𝜀, 𝜏) > 0 satisfying (440). If 𝜏 /∈ 2N,
then there exist two integers 𝑘 ∈ N0, 𝑛0 ∈ N and a real number 𝑑 ∈ (0, 2) such that
𝜏 = 2𝑘+𝑑 and 𝑑 > 2/1+𝑛 for all 𝑛 > 𝑛0. Take now any number 𝑠 = 2𝑛+1, where
𝑛 ∈ N is chosen so that 2𝑛+ 1 >𝑀(𝜀, 𝜏) and

(446)
⃒⃒⃒
cos
(︁ 1

1 + cos
√
2(2𝑛+ 1)𝜋

)︁⃒⃒⃒
>

4𝜀

3
.

The existence of such a number can be easily shown. Then 𝑓(2𝑛 + 1) > 3/4 and
2𝑛 + 1 + 𝜏 ∈ [2(𝑛 + 𝑘) + 1

𝑛+𝑘+1 , 2(𝑛 + 𝑘 + 1) + 1 − 1
𝑛+𝑘+1 ] due to the inequality

𝑑 > 2/1 + 𝑛. In combination with (446), the above yields 𝑓𝑔(2𝑛+ 1 + 𝜏) = 0 and
|𝑓𝑔(2𝑛 + 1)| > 𝜀, which is a contradiction since (440) holds with 𝑡 = 2𝑛 + 1. If
𝜏 = 2𝑘 for some 𝑘 ∈ N, then there exists a sufficiently large 𝑠0(𝜀) > 0 such that

|𝑓𝑔(𝑠+ 2𝑘)− 𝑓𝑔(𝑠)| > |𝑓(𝑠+ 2𝑘)||𝑔(𝑠+ 2𝑘)− 𝑔(𝑠)| − |𝑓(𝑠+ 2𝑘)− 𝑓(𝑠)|

> |𝑓(𝑠+ 2𝑘)||𝑔(𝑠+ 2𝑘)− 𝑔(𝑠)| − 𝜀

2
, 𝑠 > 𝑠0(𝜀).

If 𝑛 ∈ N is arbitrary and 𝑠 = 2𝑛+ 1 > 𝑠0(𝜀), the above estimate yields

(447) |𝑓𝑔(2𝑛+ 1 + 2𝑘)− 𝑓𝑔(2𝑛+ 1)| > 3

4
|𝑔(2𝑛+ 1 + 2𝑘)− 𝑔(2𝑛+ 1)| − 𝜀

2
.

Further on, it is very elementary to prove that there exists a strictly increasing
sequence (2𝑎𝑙,𝑘 + 1)𝑙∈N of odd integers such that the inequality⃒⃒⃒

cos
(︁ 1

1 + cos
√
2(2𝑎𝑙,𝑘 + 1 + 2𝑘)𝜋

)︁
− cos

(︁ 1

1 + cos
√
2(2𝑎𝑙,𝑘 + 1)𝜋

)︁⃒⃒⃒
>

8𝜀

3

holds provided 𝑙 ∈ N.
In combination with (447), we get that (440) does not hold with 𝑠 = 2𝑛 + 1.

Hence, 𝑓𝑔 /∈ 𝑄−𝐴𝐴𝑃 (R : C) while in the meantime 𝑔 ∈ 𝑆𝑝𝑄−𝐴𝐴𝑃 (R : C)r𝑄−
𝐴𝐴𝑃 (R : C) and 𝑓 ∈ 𝑆𝐴𝑃2(R : C). Since the function 𝑓(·) is Stepanov 𝑝-vanishing,
i.e, lim𝑡→+∞

∫︀ 𝑡+1

𝑡
|𝑓(𝑠)|𝑝𝑑𝑠 = 0, it can be easily seen that 𝑓𝑔 ∈ 𝑆𝑝𝐴𝐴𝑃 ([0,∞) : 𝑋),

as well.

Example 3.11.25. It is very simple to illustrate that the pointwise product
of two essentially bounded functions from 𝑆𝑝𝑄 − 𝐴𝐴𝑃 (𝐼 : C) need not belong to
the same class. We will show this only in the case that 𝐼 = [0,∞) by giving an
example of a Stepanov 𝑝-ap. function 𝑔(·) and a function 𝑓 ∈ 𝑆𝐴𝑃4([0,∞) : C)
such that 𝑓𝑔 /∈ 𝑆𝑝𝑄 − 𝐴𝐴𝑃 ([0,∞) : C). To see this, put 𝑔(𝑡) := sign(sin 𝑡),
𝑡 > 0, where sign(0) := 0. Then it is well known that 𝑔(·) is Stepanov 𝑝-ap.
function; see e.g. [293]. We construct 𝑓(·) in the following way: Define 𝑓(𝑡) := 0
for 𝑡 ∈ {0, 43/10, 46/10, 4𝑛 + 1

2 − 1
4𝑛+1 , 4𝑛 + 3

2 + 1
4𝑛+1 : 𝑛 ∈ N}, 𝑓(𝑡) := 1 for

𝑡 ∈ ∪𝑛∈N[4𝑛+ 1/2, 4𝑛+ 3/2] and linearly outside. Then it can be easily seen that
𝑓 ∈ 𝑆𝐴𝑃4([0,∞) : C). Furthermore, the function 𝑓𝑔(·) does not belong to the class
𝑆𝑝𝑄 − 𝐴𝐴𝑃 ([0,∞) : C) because if we suppose the contrary, then we can always
take the segment [4𝑛 + 1/2, 4𝑛 + 3/2] ⊆ [𝑀(𝜀, 𝜏),∞) sufficiently large, with the
meaning clear, and the condition (444) will be always violated with 𝑡 = 4𝑛 + 1/2.
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This can be seen by considering separately two possible cases: 𝜏 ∈ 4N and 𝜏 /∈ 4N.
In the first case, we have the existence of a number 𝑘 ∈ N such that 𝜏 = 4𝑘. Then∫︁ 4𝑛+ 3

2

4𝑛+ 1
2

| sign(sin(𝑠+ 𝜏))𝑓(𝑠+ 𝜏)− sign(sin 𝑠)𝑓(𝑠)|𝑝𝑑𝑠

=

∫︁ 4𝑛+ 3
2

4𝑛+ 1
2

| sign(sin(𝑠+ 𝜏))− sign(sin 𝑠)|𝑝𝑑𝑠

for all 𝑛 ∈ N. Further on, observe that

sin(𝑠+ 𝜏)− sin 𝑠 = 2 sin 2𝑘 cos(𝑠+ 2𝑘), 𝑠 ∈ R.

If sin 2𝑘 > 0, the terms sin(𝑠 + 𝜏) and sin 𝑠 will have different signs for all 𝑠 ∈
[4𝑛+ 1/2, 4𝑛+ 3/2] provided that there exists a natural number 𝑚 ∈ N such that
4𝑛 + 2𝑘 + 1/2 and 4𝑛 + 2𝑘 + 3/2 belong to the set (𝜋/2 + 2𝑚𝜋, 3𝜋/2 + 2𝑚𝜋).
This could happen for arbitrarily large values of 𝑛 ∈ N, so that (444) does not
hold. The examination is similar provided that sin 2𝑘 < 0. In the second case,
let 𝜏 = 4𝑚 + 𝜏0 for some 𝑚 ∈ N0 and 𝜏0 ∈ (0, 4). Since the integer multiples
of 𝜋 get arbitrarily close to the integers, there is a strictly increasing sequence of
natural numbers (𝑛𝑘)𝑘∈N such that [4𝑛𝑘 + 1/2, 4𝑛𝑘 + 3/2] ⊆ ∪𝑙∈N(2𝑙𝜋, (2𝑙 + 1)𝜋).
For 𝑛 = 𝑛𝑘 >𝑀(𝜀, 𝜏), we have sign(sin 𝑠) = 1 for all 𝑠 ∈ [4𝑛𝑘+1/2, 4𝑛𝑘+3/2] and
we can use the estimate∫︁ 4𝑛𝑘+

3
2

4𝑛𝑘+
1
2

| sign(sin(𝑠+ 𝜏))𝑓(𝑠+ 𝜏)− sign(sin 𝑠)|𝑝𝑑𝑠

> 2𝑝−1

∫︁ 4𝑛𝑘+
3
2

4𝑛𝑘+
1
2

[1− |𝑓(𝑠+ 𝜏)|𝑝]𝑑𝑠

= 2𝑝−1

[︂
1−

∫︁ 4𝑛𝑘+𝜏+ 3
2

4𝑛𝑘+𝜏+ 1
2

|𝑓(𝑠)|𝑝𝑑𝑠
]︂
.

to conclude that there exist a zero sequence (𝑎𝑘)𝑘∈N and a positive constant 𝑐(𝜏0) ∈
(0, 1) such that ∫︁ 4(𝑛𝑘+𝑚)+𝜏0+3/2

4(𝑛𝑘+𝑚)+𝜏0+1/2

|𝑓(𝑠)|𝑝𝑑𝑠 > 𝑐(𝜏0) + 𝑎𝑘

for all 𝑘 ∈ N such that 𝑛𝑘 >𝑀(𝜀, 𝜏), the violation of (444) becomes apparent.

It is clear that the sets 𝑄ℎ − 𝐴𝐴𝑃 (𝐼 : 𝑋) and 𝑆𝑝𝑄ℎ − 𝐴𝐴𝑃 (𝐼 : 𝑋) equipped
with the usual operations of pointwise sums and products with scalars form vector
spaces. This is no longer true for the spaces𝑄−𝐴𝐴𝑃 (𝐼 : 𝑋) and 𝑆𝑝𝑄−𝐴𝐴𝑃 (𝐼 : 𝑋),
as the following example shows:

Example 3.11.26. For the sake of simplicity, we will consider only the case
that 𝐼 = [0,∞). Let 𝑓(·) and 𝑔(·) be as in the former example. Repeating the same
argumentation (in the case that 𝜏 /∈ 4N, then we can use the estimate | sign(sin(𝑠+
𝜏))+𝑓(𝑠+ 𝜏)− sign(sin 𝑠)−𝑓(𝑠)| = | sign(sin(𝑠+ 𝜏))+𝑓(𝑠+ 𝜏)−2| > 1−|𝑓(𝑠+ 𝜏)|
for all 𝑠 ∈ [4𝑛𝑘 + 1/2, 4𝑛𝑘 + 3/2] ⊆ ∪𝑙∈N(2𝑙𝜋, (2𝑙 + 1)𝜋)), we get that 𝑓 + 𝑔 /∈
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𝑆𝑝𝑄−𝐴𝐴𝑃 ([0,∞) : C), so that 𝑆𝑝𝑄−𝐴𝐴𝑃 ([0,∞) : C) +𝑆𝑝𝑄−𝐴𝐴𝑃 ([0,∞) : C)
is not contained in 𝑆𝑝𝑄−𝐴𝐴𝑃 ([0,∞) : C). Now we will prove by a simple indirect
proof that 𝐴𝑃 ([0,∞) : C) + 𝑆𝐴𝑃4([0,∞) : C) does not make a subclass of the
class 𝑆𝑝𝑄 − 𝐴𝐴𝑃 ([0,∞) : C) so that 𝑄 − 𝐴𝐴𝑃 ([0,∞) : 𝑋) cannot be a vector
space, as announced above. There exists a sequence (𝑔𝑛)𝑛∈N converging to 𝑔(·) in
𝐿𝑝
𝑆([0,∞) : C). This implies that 𝑔𝑛 + 𝑓 converges to 𝑔 + 𝑓 in 𝐿𝑝

𝑆([0,∞) : C) as
𝑛→ ∞. Due to Theorem 3.11.21(iv), there exists a number 𝑛0 ∈ N such that 𝑔𝑛0

+𝑓
does not belong to the class 𝑆𝑝𝑄−𝐴𝐴𝑃 ([0,∞) : C); it is almost trivial to construct
a sequence (𝑔𝑛)𝑛∈N in 𝐶2𝜋([0,∞) : C) converging to 𝑔(·) in 𝐿𝑝

𝑆([0,∞) : C), so that
a function from 𝐶2𝜋([0,∞) : C) + 𝑆𝐴𝑃4([0,∞) : C) need not belong to the class
𝑆𝑝𝑄 − 𝐴𝐴𝑃 ([0,∞) : C), as well. The interested reader may try to provide some
concrete examples here.

The compactness in the spaces of (equi-)Weyl-𝑝-almost periodic functions has
been analyzed in [358,359] with the help of Lusternik type theorems. It is without
scope this book to analyze similar problems for the space of q-aap. functions and
its Stepanov generalizations.

3.11.4. Quasi-asymptotically almost periodic functions depending on
two parameters and composition principles. The main aim of this subsection
is to investigate q-aap. functions depending on two parameters and compositions
of q-aap. functions. We start with the folowing definition:

Definition 3.11.27. Suppose that 𝐹 : 𝐼 × 𝑋 → 𝑌 is a continuous func-
tion. Then we say that 𝐹 (·, ·) is quasi-asymptotically almost periodic, uniformly
on bounded subsets of 𝑋, iff for each 𝜀 > 0 (S) holds with a number 𝑀(𝜀, 𝜏) > 0
such that for each bounded subset 𝐵 of 𝑋 we have:

‖𝐹 (𝑡+ 𝜏, 𝑥)− 𝐹 (𝑡, 𝑥)‖𝑌 6 𝜀, provided 𝑡 ∈ 𝐼, 𝑥 ∈ 𝐵 and |𝑡| >𝑀(𝜀, 𝜏).

Denote by 𝑄−𝐴𝐴𝑃 (𝐼×𝑋 : 𝑌 ) the set consisting of all quasi-asymptotically almost
periodic functions from 𝐼 ×𝑋 into 𝑌 .

Arguing as in the proofs of [144, Theorem 3.30, Theorem 3.31], we may deduce
the following results about compositions of q-aap. functions:

Theorem 3.11.28. Suppose that 𝐹 ∈ 𝑄−𝐴𝐴𝑃 (𝐼×𝑋 : 𝑌 ) and 𝑓 ∈ 𝑄−𝐴𝐴𝑃 (𝐼 :
𝑋). If there exists a finite number 𝐿 > 0 such that

(448) ‖𝐹 (𝑡, 𝑥)− 𝐹 (𝑡, 𝑦)‖𝑌 6 𝐿‖𝑥− 𝑦‖, 𝑥, 𝑦 ∈ 𝑋, 𝑡 ∈ 𝐼,

then the function 𝑡 ↦→ 𝐹 (𝑡, 𝑓(𝑡)), 𝑡 ∈ 𝐼 belongs to the class 𝑄−𝐴𝐴𝑃 (𝐼 : 𝑌 ).

Theorem 3.11.29. Suppose that 𝐹 ∈ 𝑄−𝐴𝐴𝑃 (𝐼×𝑋 : 𝑌 ) and 𝑓 ∈ 𝑄−𝐴𝐴𝑃 (𝐼 :
𝑋). If the function 𝑥 ↦→ 𝐹 (𝑡, 𝑥), 𝑡 ∈ 𝐼 is uniformly continuous on every bounded
subset 𝐵 ⊆ 𝑋 uniformly for 𝑡 ∈ 𝐼, then the function 𝑡 ↦→ 𝐹 (𝑡, 𝑓(𝑡)), 𝑡 ∈ 𝐼 belongs
to the class 𝑄−𝐴𝐴𝑃 (𝐼 : 𝑌 ).

The class of 𝑆𝑝-qaap. functions depending on two parameters is introduced in
the following definition:



3.11. QUASI-ASYMPTOTICALLY ALMOST PERIODIC FUNCTIONS AND APPL... 457

Definition 3.11.30. Suppose that a function 𝐹 : 𝐼 × 𝑋 → 𝑌 satisfies that
for each 𝑥 ∈ 𝑋 the function 𝑡 ↦→ 𝐹 (𝑡, 𝑥), 𝑡 ∈ 𝐼 is Stepanov 𝑝-bounded. Then we
say that 𝐹 (·, ·) is Stepanov 𝑝-quasi-asymptotically almost periodic, uniformly on
bounded subsets of 𝑋, iff for each 𝜀 > 0 (S) holds with a number 𝑀(𝜀, 𝜏) > 0 such
that for each bounded subset 𝐵 of 𝑋 we have:∫︁ 𝑡+1

𝑡

‖𝐹 (𝑠+ 𝜏, 𝑥)− 𝐹 (𝑠, 𝑥)‖𝑝 𝑑𝑠 6 𝜀𝑝, provided 𝑡 ∈ 𝐼, 𝑥 ∈ 𝐵 and |𝑡| >𝑀(𝜀, 𝜏).

Denote by 𝑆𝑝𝑄 − 𝐴𝐴𝑃 (𝐼 × 𝑋 : 𝑌 ) the set consisting of all Stepanov 𝑝-quasi-
asymptotically almost periodic functions from 𝐼 ×𝑋 into 𝑌 .

In [335, Definition 3.1], we have recently introduced the class 𝑒 −𝑊𝑎𝑝,𝐾(𝐼 ×
𝑋,𝑋) consisting of equi-Weyl-𝑝-ap. functions, uniformly with respect to compact
subsets of 𝑋. The class 𝑒 −𝑊𝑎𝑝,𝐾(𝐼 × 𝑋,𝑌 ) with two different pivot spaces 𝑋
and 𝑌 as well as the class (𝑒−)𝑊𝑎𝑝,𝐵(𝐼 ×𝑋,𝑌 ) consisting of all (equi-)Weyl-𝑝-ap.
functions, uniformly with respect to bounded subsets of 𝑋, can be introduced in
a similar way. Following the method proposed in the proof of Proposition 3.11.20,
we can show then 𝑆𝑝𝑄 − 𝐴𝐴𝑃 (𝐼 × 𝑋 : 𝑌 ) ⊆ 𝑊𝑎𝑝,𝐵(𝐼 × 𝑋,𝑌 ). The following
composition principles can be deduced in exactly the same way as it has been done
in the proofs of [399, Lemma 2.1, Theorem 2.2]:

Theorem 3.11.31. Suppose that the following conditions hold:
(i) 𝐹 ∈ 𝑆𝑝𝑄 − 𝐴𝐴𝑃 (𝐼 × 𝑋 : 𝑌 ) with 𝑝 > 1, and there exist a number

𝑟 > max(𝑝, 𝑝/𝑝− 1) and a function 𝐿𝐹 ∈ 𝐿𝑟
𝑆(𝐼) such that:

‖𝐹 (𝑡, 𝑥)− 𝐹 (𝑡, 𝑦)‖ 6 𝐿𝐹 (𝑡)‖𝑥− 𝑦‖𝑌 , 𝑡 ∈ 𝐼, 𝑥, 𝑦 ∈ 𝑌 ;

(ii) 𝑥 ∈ 𝑆𝑝𝑄−𝐴𝐴𝑃 (𝐼 : 𝑋), and there exists a set E ⊆ 𝐼 with 𝑚(E) = 0 such
that 𝐾 := {𝑥(𝑡) : 𝑡 ∈ 𝐼rE} is relatively compact in 𝑋; here, 𝑚(·) denotes
the Lebesgue measure.

Then 𝑞 := 𝑝𝑟/𝑝+ 𝑟 ∈ [1, 𝑝) and 𝐹 (·, 𝑥(·)) ∈ 𝑆𝑞𝑄−𝐴𝐴𝑃 (𝐼 : 𝑌 ).

Theorem 3.11.32. Suppose that the following conditions hold:
(i) 𝐹 ∈ 𝑆𝑝𝑄−𝐴𝐴𝑃 (𝐼 ×𝑋 : 𝑌 ) with 𝑝 > 1, 𝐿 > 0 and

‖𝐹 (𝑡, 𝑥)− 𝐹 (𝑡, 𝑦)‖ 6 𝐿‖𝑥− 𝑦‖, 𝑡 ∈ 𝐼, 𝑥, 𝑦 ∈ 𝑋.

(ii) 𝑥 ∈ 𝑆𝑝𝑄−𝐴𝐴𝑃 (𝐼 : 𝑋), and there exists a set E ⊆ 𝐼 with 𝑚(E) = 0 such
that 𝐾 = {𝑥(𝑡) : 𝑡 ∈ 𝐼 r E} is relatively compact in 𝑌 .

Then 𝐹 (·, 𝑥(·)) ∈ 𝑆𝑞𝑄−𝐴𝐴𝑃 (𝐼 : 𝑌 ).

3.11.5. Invariance of quasi-asymptotical almost periodicity under the
action of convolution products. Concerning the invariance of quasi-asymptot-
ical almost periodicity under the action of finite convolution product, we have the
following result:

Proposition 3.11.33. Suppose that (𝑅(𝑡))𝑡>0 ⊆ 𝐿(𝑋,𝑌 ) is a strongly contin-
uous operator family and

∫︀∞
0

‖𝑅(𝑠)‖𝑑𝑠 < ∞. If 𝑓 ∈ 𝑄 − 𝐴𝐴𝑃 ([0,∞) : 𝑋), then
the function 𝐹 (·), defined through (434), belongs to the class 𝑄−𝐴𝐴𝑃 ([0,∞) : 𝑌 ).
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Proof. Without loss of generality, we may assume that 𝑋 = 𝑌 . It is clear
that ‖𝐹 (𝑡)‖ = ‖

∫︀ 𝑡

0
𝑅(𝑠)𝑓(𝑡 − 𝑠)𝑑𝑠‖ 6 ‖𝑓‖∞

∫︀∞
0

‖𝑅(𝑠)‖𝑑𝑠, 𝑡 > 0 so that 𝐹 (·) is
bounded. Since

‖𝐹 (𝑡)− 𝐹 (𝑡′)‖ 6
∫︁ ∞

0

‖𝑅(𝑠)‖‖𝑓(𝑡− 𝑠)− 𝑓(𝑡′ − 𝑠)‖𝑑𝑠

for any 𝑡, 𝑡′ > 0, the continuity of 𝐹 (𝑡) for 𝑡 > 0 follows from the boundedness
of 𝑓(·) and the dominated convergence theorem. Let 𝜀 > 0 be given. Then (S)
holds with a number 𝑀(𝜀, 𝜏) > 0 such that (440) holds. On the other hand,
the condition

∫︀∞
0

‖𝑅(𝑠)‖𝑑𝑠 < ∞ implies lim𝑡→+∞
∫︀∞
𝑡

‖𝑅(𝑠)‖𝑑𝑠 = 0 so that there
exists a finite number 𝑀0(𝜀) > 0 such that

∫︀∞
𝑡

‖𝑅(𝑠)‖𝑑𝑠 < 𝜀 for any 𝑡 > 𝑀0(𝜀).
Let 𝑡 >𝑀(𝜀, 𝜏) +𝑀0(𝜀). Then we have

‖𝐹 (𝑡+ 𝜏)− 𝐹 (𝑡)‖

=

⃦⃦⃦⃦ ∫︁ 𝑡

0

𝑅(𝑠)[𝑓(𝑡+ 𝜏 − 𝑠)− 𝑓(𝑡− 𝑠)]𝑑𝑠+

∫︁ 𝑡+𝜏

𝑡

𝑅(𝑠)𝑓(𝑡+ 𝜏 − 𝑠)𝑑𝑠

⃦⃦⃦⃦
6
∫︁ 𝑡

0

‖𝑅(𝑠)‖‖𝑓(𝑡+ 𝜏 − 𝑠)− 𝑓(𝑡− 𝑠)‖𝑑𝑠+ ‖𝑓‖∞
∫︁ 𝑡+𝜏

𝑡

‖𝑅(𝑠)‖𝑑𝑠

6
∫︁ 𝑡−𝑀(𝜀,𝜏)

0

‖𝑅(𝑠)‖‖𝑓(𝑡+ 𝜏 − 𝑠)− 𝑓(𝑡− 𝑠)‖𝑑𝑠

+

∫︁ 𝑡

𝑡−𝑀(𝜀,𝜏)

‖𝑅(𝑠)‖‖𝑓(𝑡+ 𝜏 − 𝑠)− 𝑓(𝑡− 𝑠)‖𝑑𝑠+ 𝜀‖𝑓‖∞

6 𝜀
∫︁ ∞

0

‖𝑅(𝑠)‖𝑑𝑠+ 2‖𝑓‖∞𝜀+ 𝜀‖𝑓‖∞,

which completes the proof in a routine manner. �

The situation is quite similar for the infinite convolution product:

Proposition 3.11.34. Suppose that (𝑅(𝑡))𝑡>0 ⊆ 𝐿(𝑋,𝑌 ) is a strongly contin-
uous operator family and

∫︀∞
0

‖𝑅(𝑠)‖𝑑𝑠 < ∞. If 𝑓 ∈ 𝑄 − 𝐴𝐴𝑃 (R : 𝑋), then the
function F(𝑡), defined through (433), belongs to the class 𝑄−𝐴𝐴𝑃 (R : 𝑌 ).

Proof. Without loss of generality, we may assume that 𝑋 = 𝑌 . The bound-
edness and continuity of F(·) can be proved as in the former proposition. To prove
that F(·) satisfies the remaining requirement from definition of quasi-asymptotical
almost periodicity, fix a number 𝜀 > 0. By definition, (S) holds with a number
𝑀(𝜀, 𝜏) > 0 satisfying (440). On the other hand, the condition

∫︀∞
0

‖𝑅(𝑠)‖𝑑𝑠 <∞
implies lim𝑡→+∞

∫︀∞
𝑡

‖𝑅(𝑠)‖𝑑𝑠 = 0 so that there exists a finite number 𝑀0(𝜀) > 0

such that
∫︀∞
𝑡

‖𝑅(𝑠)‖𝑑𝑠 < 𝜀 for any 𝑡 > 𝑀0(𝜀). Let |𝑡| > 𝑀(𝜀, 𝜏) + 𝑀0(𝜀). If
𝑡 6 −𝑀(𝜀, 𝜏)−𝑀0(𝜀), then 𝑡 6 −𝑀(𝜀, 𝜏), |𝑡− 𝑠| >𝑀(𝜀, 𝜏) for all 𝑠 > 0, and

‖F(𝑡+ 𝜏)− F(𝑡)‖ 6
∫︁ ∞

0

‖𝑅(𝑠)‖‖𝑓(𝑡+ 𝜏 − 𝑠)− 𝑓(𝑡− 𝑠)‖𝑑𝑠 6 𝜀
∫︁ ∞

0

‖𝑅(𝑠)‖𝑑𝑠.
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If 𝑡 > 𝑀(𝜀, 𝜏) +𝑀0(𝜀), then 𝑡 −𝑀(𝜀, 𝜏) > 𝑀0(𝜀) so that
∫︀∞
𝑡−𝑀(𝜀,𝜏)

‖𝑅(𝑠)‖𝑑𝑠 < 𝜀;
furthermore, in this case we have:

‖F(𝑡+ 𝜏)− F(𝑡)‖ 6
∫︁ ∞

0

‖𝑅(𝑠)‖‖𝑓(𝑡+ 𝜏 − 𝑠)− 𝑓(𝑡− 𝑠)‖𝑑𝑠

6 𝜀

(︂∫︁ 𝑡−𝑀(𝜀,𝜏)

0

+

∫︁ ∞

𝑡+𝑀(𝜀,𝜏)

)︂
‖𝑅(𝑠)‖𝑑𝑠+ 2‖𝑓‖∞

∫︁ 𝑡+𝑀(𝜀,𝜏)

𝑡−𝑀(𝜀,𝜏)

‖𝑅(𝑠)‖𝑑𝑠

6 2𝜀

∫︁ ∞

0

‖𝑅(𝑠)‖𝑑𝑠+ 2‖𝑓‖∞
∫︁ ∞

𝑡−𝑀(𝜀,𝜏)

‖𝑅(𝑠)‖𝑑𝑠

6 2𝜀

∫︁ ∞

0

‖𝑅(𝑠)‖𝑑𝑠+ 2‖𝑓‖∞𝜀,

which completes the proof of proposition. �

Suppose that 1/𝑝 + 1/𝑞 = 1 and
∑︀∞

𝑘=0 ‖𝑅(·)‖𝐿𝑞 [𝑘,𝑘+1] < ∞. This condition
implies

∫︀∞
0

‖𝑅(𝑠)‖𝑑𝑠 <∞ and can be used for the examination of q-aap. properties
of convolution products with Stepanov 𝑆𝑝-qaap. inhomogenities 𝑓(·). Keeping in
mind the proofs of Proposition 3.11.33 and Proposition 3.11.34, as well as the proofs
of Proposition 2.6.11 and Proposition 3.5.3 in [293], the following results can be
deduced:

Proposition 3.11.35. Suppose that 1/𝑝 + 1/𝑞 = 1, (𝑅(𝑡))𝑡>0 ⊆ 𝐿(𝑋,𝑌 ) is a
strongly continuous operator family and

∑︀∞
𝑘=0 ‖𝑅(·)‖𝐿𝑞 [𝑘,𝑘+1] < ∞. If 𝑓 ∈ 𝑆𝑝𝑄−

𝐴𝐴𝑃 ([0,∞) : 𝑋), then the function 𝐹 (·), defined by (434), belongs to the class
𝑄−𝐴𝐴𝑃 ([0,∞) : 𝑌 ).

Proposition 3.11.36. Suppose that 1/𝑝 + 1/𝑞 = 1, (𝑅(𝑡))𝑡>0 ⊆ 𝐿(𝑋,𝑌 ) is a
strongly continuous operator family and

∑︀∞
𝑘=0 ‖𝑅(·)‖𝐿𝑞 [𝑘,𝑘+1] < ∞. If 𝑓 ∈ 𝑆𝑝𝑄−

𝐴𝐴𝑃 (R : 𝑋), then the function F(·), defined by (433), belongs to the class 𝑄 −
𝐴𝐴𝑃 (R : 𝑌 ).

For the sake of completeness, we will include the proofs (the preassumption
𝑋 = 𝑌 can be made):

Proof of Proposition 3.11.35. It is easy to see that

‖𝐹 (𝑡)‖ 6
∞∑︁
𝑘=0

‖𝑅(·)‖𝐿𝑞 [𝑘,𝑘+1]‖𝑓‖𝑆𝑝 , 𝑡 > 0.

The continuity of 𝐹 (𝑡) for 𝑡 > 0 can be proved as follows. Let 𝑡, 𝑡′ > 0 and
|𝑡− 𝑡′| 6 1. Then we have

‖𝐹 (𝑡)− 𝐹 (𝑡′)‖ 6
∫︁ 𝑡

0

‖𝑅(𝑠)‖‖𝑓(𝑡− 𝑠)− 𝑓(𝑡′ − 𝑠)‖𝑑𝑠+
∫︁ 𝑡′

𝑡

‖𝑅(𝑠)‖‖𝑓(𝑡′ − 𝑠)‖𝑑𝑠

6
⌊𝑡⌋∑︁
𝑘=0

‖𝑅(·)‖𝐿𝑞 [𝑘,𝑘+1]‖𝑓(𝑡−·)−𝑓(𝑡′−·)‖𝐿𝑝[𝑘,𝑘+1]+‖𝑓‖𝑆𝑝‖𝑅(·)‖𝐿𝑞 [min(𝑡,𝑡′),max(𝑡,𝑡′)].
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Since 𝑓 ∈ 𝐿𝑝
𝑙𝑜𝑐([0,∞) : 𝑋), we have lim𝑡′→𝑡 ‖𝑓(𝑡 − ·) − 𝑓(𝑡′ − ·)‖𝐿𝑝[𝑘,𝑘+1] = 0 for

𝑘 = 0, . . . , ⌊𝑡⌋. Clearly, lim𝑡′→𝑡 ‖𝑅(·)‖𝐿𝑞 [min(𝑡,𝑡′),max(𝑡,𝑡′)] = 0 so that the function
𝐹 (·) is continuous at point 𝑡. Let 𝜀 > 0 be given. Then (S) holds with a num-
ber 𝑀(𝜀, 𝜏) > 0 satisfying (444). Furthermore, there exists 𝑘0(𝜀) ∈ N such that∑︀∞

𝑘=𝑘0(𝜀)
‖𝑅(·)‖𝐿𝑞 [𝑘,𝑘+1] < 𝜀. For any 𝑡 >𝑀(𝜀, 𝜏) + 𝑘0(𝜀) + 1, we have

‖𝐹 (𝑡+ 𝜏)− 𝐹 (𝑡)‖ 6
⌊𝑡⌋∑︁
𝑘=0

‖𝑅(·)‖𝐿𝑞 [𝑘,𝑘+1]‖𝑓(𝑡+ 𝜏 − ·)− 𝑓(𝑡− ·)‖𝐿𝑝[𝑘,𝑘+1]

6 𝜀
𝑘0(𝜀)∑︁
𝑘=0

‖𝑅(·)‖𝐿𝑞 [𝑘,𝑘+1] + 2𝑝−1‖𝑓‖𝑆𝑝

∞∑︁
𝑘=𝑘0(𝜀)

‖𝑅(·)‖𝐿𝑞 [𝑘,𝑘+1]

6 𝜀
∞∑︁
𝑘=0

‖𝑅(·)‖𝐿𝑞 [𝑘,𝑘+1] + 2‖𝑓‖𝑆𝑝𝜀,

finishing the proof. �

Proof of Proposition 3.11.36. The boundedness and continuity of func-
tion F(·) can be shown as in the proof of [293, Proposition 3.5.3]. Let 𝜀 > 0 be
given. Then (S) holds with a number 𝑀(𝜀, 𝜏) > 0 satisfying (444). As above, there
exists 𝑘0(𝜀) ∈ N such that

∑︀∞
𝑘=𝑘0(𝜀)

‖𝑅(·)‖𝐿𝑞 [𝑘,𝑘+1] < 𝜀. Let 𝑡 ∈ R be such that
|𝑡| >𝑀(𝜀, 𝜏) + 𝑘0(𝜀) + 1. Then we have

‖𝐹 (𝑡+ 𝜏)− 𝐹 (𝑡)‖ 6
∞∑︁
𝑘=0

‖𝑅(·)‖𝐿𝑞 [𝑘,𝑘+1]‖𝑓(·+ 𝜏)− 𝑓(·)‖𝐿𝑝[𝑡−(𝑘+1),𝑡−𝑘].

If 𝑡 6 −𝑀(𝜀, 𝜏), then [𝑡− (𝑘 + 1), 𝑡− 𝑘] ⊆ (−∞,−𝑀(𝜀, 𝜏)] for any 𝑘 ∈ N0 and the
above estimate immediately implies ‖𝐹 (𝑡+ 𝜏)−𝐹 (𝑡)‖ 6 𝜀

∑︀∞
𝑘=0 ‖𝑅(·)‖𝐿𝑞 [𝑘,𝑘+1]. If

𝑡 >𝑀(𝜀, 𝜏) + 𝑘0(𝜀) + 1, then ⌊𝑡−𝑀(𝜀, 𝜏)⌋ > 𝑘0(𝜀) so that

‖𝐹 (𝑡+ 𝜏)− 𝐹 (𝑡)‖ 6
⌊𝑡−𝑀(𝜀,𝜏)⌋∑︁

𝑘=0

‖𝑅(·)‖𝐿𝑞 [𝑘,𝑘+1]‖𝑓(·+ 𝜏)− 𝑓(·)‖𝐿𝑝[𝑡−(𝑘+1),𝑡−𝑘]

+

⌈𝑡+𝑀(𝜀,𝜏)⌉∑︁
𝑘=⌊𝑡−𝑀(𝜀,𝜏)⌋

‖𝑅(·)‖𝐿𝑞 [𝑘,𝑘+1]‖𝑓(·+ 𝜏)− 𝑓(·)‖𝐿𝑝[𝑡−(𝑘+1),𝑡−𝑘]

+

∞∑︁
𝑘=⌈𝑡+𝑀(𝜀,𝜏)⌉

‖𝑅(·)‖𝐿𝑞 [𝑘,𝑘+1]‖𝑓(·+ 𝜏)− 𝑓(·)‖𝐿𝑝[𝑡−(𝑘+1),𝑡−𝑘]

6 𝜀

(︃ ⌊𝑡−𝑀(𝜀,𝜏)⌋∑︁
𝑘=0

+

∞∑︁
𝑘=⌈𝑡+𝑀(𝜀,𝜏)⌉

)︃
‖𝑅(·)‖𝐿𝑞 [𝑘,𝑘+1] + 2‖𝑓‖𝑆𝑝𝜀

6 2𝜀

∞∑︁
𝑘=0

‖𝑅(·)‖𝐿𝑞 [𝑘,𝑘+1] + 2‖𝑓‖𝑆𝑝𝜀,

finishing the proof. �
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3.11.6. Applications to abstract nonautonomous differential equa-
tions of first order. Throughout this subsection, it will be always assumed that
the operator family 𝐴(·) satisfies the condition (H1) and the evolution system 𝑈(·, ·)
generated by 𝐴(·) is hyperbolic, i.e., the condition (H2) holds true.

We analyze here the following abstract quasi-linear differential equations of first
order:

(449) 𝑢′(𝑡) = 𝐴(𝑡)𝑢(𝑡) + 𝑓(𝑡), 𝑡 ∈ R,

(450) 𝑢′(𝑡) = 𝐴(𝑡)𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0; 𝑢(0) = 𝑥

and their semilinear analogues. In our recent research studies [338,339], the au-
thor has considered the existence and uniqueness of generalized almost periodic
properties of mild solutions of (449)–(450) and their semilinear analogues. In the
formulations and proofs of all structural results from [338, Section 2] and [339, Sec-
tion 3], the essential boundedness of forcing term 𝑓(·) has been required as well as
certain additional conditions on the generalized almost periodicity of 𝑓(·). In con-
trast to this, in the formulation of the following result, we require the Stepanov
𝑝-boundedness of function 𝑓(·) for some exponent 𝑝 ∈ [1,∞); by ℱ we denote a
general function space consisted of continuous functions from [0,∞) into 𝑋.

Theorem 3.11.37. Let 𝐼 = [0,∞), 1/𝑝+1/𝑞 = 1 and 𝑓 ∈ 𝑆𝑝𝑄−𝐴𝐴𝑃 (R : 𝑋).
If 𝑥 ∈ 𝑃 (0)𝑋 ∩ 𝐷(𝐴(0)), the function 𝑡 ↦→

∫︀ 𝑡

0
𝑈(𝑡, 𝑠)𝑄(𝑠)𝑓(𝑠)𝑑𝑠, 𝑡 > 0 belongs to

the class ℱ and for each 𝜀 > 0 (S) holds with a number 𝑀(𝜀, 𝜏) > 0 such that

(451)
∞∑︁
𝑘=0

‖Γ(𝑡+ 𝜏, 𝑡+ 𝜏 − ·)− Γ(𝑡, 𝑡− ·)‖𝐿𝑞 [𝑘,𝑘+1] 6 𝜀, provided 𝑡 >𝑀(𝜀, 𝜏),

then there exists a unique mild solution 𝑢(·) of (450) and this solution belongs to
the class 𝑄−𝐴𝐴𝑃 ([0,∞) : 𝑋) + ℱ .

Proof. Since 𝑥 ∈ 𝑃 (0)𝑋 ∩ 𝐷(𝐴(0)), the mapping 𝑡 ↦→ 𝑈(𝑡, 0)𝑥, 𝑡 > 0 is
continuous, exponentially decaying and satisfies lim𝑡→0+ 𝑈(𝑡, 0)𝑥 = 𝑥 [407]. The
continuity of function 𝑢(𝑡) = 𝑈(𝑡, 0)𝑥+

∫︀ 𝑡

0
𝑈(𝑡, 𝑠)𝑓(𝑠)𝑑𝑠, 𝑡 > 0, given by (437), can

be deduced as in the proof of [338, Theorem 2.1], since any of the considered terms
in the corresponding part of proof of above-mentioned result can be majorized
in a similar way, by using the 𝑆𝑝-boundedness of function 𝑓(·) and the Hölder
inequality. Clearly, 𝑢(𝑡) =

∫︀ 𝑡

0
Γ(𝑡, 𝑠)𝑓(𝑠)𝑑𝑠 +

∫︀ 𝑡

0
𝑈(𝑡, 𝑠)𝑄(𝑠)𝑓(𝑠)𝑑𝑠, 𝑡 > 0 and, by

our preassumption made, it suffices to show that the function 𝑡 ↦→
∫︀ 𝑡

0
Γ(𝑡, 𝑠)𝑓(𝑠)𝑑𝑠,

𝑡 > 0 belongs to the class 𝑄 − 𝐴𝐴𝑃 ([0,∞) : 𝑋). Applying the Hölder inequality,
the estimate (435) and the 𝑆𝑝-boundedness of function 𝑓(·), we get that there exists
a finite positive constant 𝑀 ′′ > 0 such that

‖𝑢(𝑡)‖ 6𝑀 ′‖𝑓‖𝑆𝑝

∞∑︁
𝑘=0

‖𝑒−𝜔|·|‖𝐿𝑞 [𝑡−(𝑘+1),𝑡−𝑘]

6𝑀 ′‖𝑓‖𝑆𝑝

∞∑︁
𝑘=0

‖𝑒−𝜔|·|‖𝐿∞[𝑡−(𝑘+1),𝑡−𝑘]
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6𝑀 ′‖𝑓‖𝑆𝑝

∞∑︁
𝑘=0

[𝑒−𝜔|𝑡−𝑘| + 𝑒−𝜔|𝑡−𝑘−1|]

6𝑀 ′‖𝑓‖𝑆𝑝𝑒𝜔𝑡
∞∑︁
𝑘=0

[𝑒−𝜔𝑘 + 𝑒−𝜔(𝑘+1)] 6𝑀 ′′𝑒𝜔|𝑡|,

for any 𝑡 > 0. Fix a number 𝜀 > 0. By definition, (S) holds with a number𝑀(𝜀, 𝜏) >
0 satisfying (444). Keeping in mind the estimate (451), the final conclusion follows
from the computation

‖𝑢(𝑡+ 𝜏)− 𝑢(𝑡)‖ 6
∫︁ 𝑡

0

‖Γ(𝑡+ 𝜏, 𝑡+ 𝜏 − 𝑠)− Γ(𝑡, 𝑡− 𝑠)‖‖𝑓(𝑡− 𝑠)‖𝑑𝑠

+

∫︁ 𝑡+𝜏

𝑡

‖Γ(𝑡+ 𝜏, 𝑡+ 𝜏 − 𝑠)‖‖𝑓(𝑡+ 𝜏 − 𝑠)− 𝑓(𝑡− 𝑠)‖𝑑𝑠

6 ‖𝑓‖𝑆𝑝

⌊𝑡⌋∑︁
𝑘=0

‖Γ(𝑡+ 𝜏, 𝑡+ 𝜏 −·)−Γ(𝑡, 𝑡−·)‖𝐿𝑞 [𝑘,𝑘+1]+2‖𝑓‖𝑆𝑝

⌈𝑡+𝜏⌉∑︁
𝑘=⌊𝑡⌋

‖𝑒−𝜔|·|‖𝐿𝑞 [𝑘,𝑘+1]

6 ‖𝑓‖𝑆𝑝

∞∑︁
𝑘=0

‖Γ(𝑡+𝜏, 𝑡+𝜏−·)−Γ(𝑡, 𝑡−·)‖𝐿𝑞 [𝑘,𝑘+1]+2‖𝑓‖𝑆𝑝

∞∑︁
𝑘=⌊𝑡⌋

‖𝑒−𝜔|·|‖𝐿𝑞 [𝑘,𝑘+1]

and the obvious equality lim𝑡→∞
∑︀∞

𝑘=⌊𝑡⌋ ‖𝑒−𝜔|·|‖𝐿𝑞 [𝑘,𝑘+1] = 0. �

Remark 3.11.38. It can be simply shown that (451) implies

(452)
∫︁ +∞

0

‖Γ(𝑡+ 𝜏, 𝑡+ 𝜏 − 𝑠)− Γ(𝑡, 𝑡− 𝑠)‖𝑑𝑠 6 𝜀, 𝑡 >𝑀(𝜀, 𝜏).

If we assume that 𝑓 ∈ 𝐿∞([0,∞) : 𝑋) in place of 𝑓 ∈ 𝐿𝑝
𝑆([0,∞) : 𝑋), then the

validity of (452) in place of (451) implies that 𝑢(·) is q-aap..

Concerning the abstract Cauchy problem (449), we have the following result:

Theorem 3.11.39. Let 𝐼 = R, 1/𝑝+ 1/𝑞 = 1 and 𝑓 ∈ 𝑆𝑝𝑄− 𝐴𝐴𝑃 (R : 𝑋). If
for each 𝜀 > 0 (S) holds with a number 𝑀(𝜀, 𝜏) > 0 such that

(453)
∑︁
𝑘∈Z

‖Γ(𝑡+ 𝜏, 𝑡+ 𝜏 − ·)−Γ(𝑡, 𝑡− ·)‖𝐿𝑞 [𝑘,𝑘+1] 6 𝜀, provided 𝑡 ∈ R and |𝑡| >𝑀(𝜀, 𝜏),

then there exists a unique mild solution 𝑢(·) of (449) and this solution is q-aap..

Proof. As in the proof of Theorem 3.11.37, we can deduce that the function
𝑢(𝑡) =

∫︀ +∞
−∞ Γ(𝑡, 𝑠)𝑓(𝑠)𝑑𝑠, 𝑡 ∈ R, defined by (436), is bounded. The continuity of

𝑢(·) can be shown following the lines of proof of [338, Theorem 2.1]. Assume now
that 𝜀 > 0 is a given number. Then (S) holds with a number 𝑀(𝜀, 𝜏) > 0 satisfying
(444). It is clear that, for every 𝑡 ∈ R, we have:

‖𝑢(𝑡+ 𝜏)− 𝑢(𝑡)‖ 6
∫︁ 𝑡

−∞
𝑒−𝜔|𝑠|‖𝑓(𝑡+ 𝜏 − 𝑠)− 𝑓(𝑡− 𝑠)‖𝑑𝑠

+

∫︁ ∞

𝑡

𝑒−𝜔|𝑠|‖𝑓(𝑡+ 𝜏 − 𝑠)− 𝑓(𝑡− 𝑠)‖𝑑𝑠
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+

∫︁ ∞

−∞
‖Γ(𝑡+ 𝜏, 𝑡+ 𝜏 − 𝑠)− Γ(𝑡, 𝑡− 𝑠)‖‖𝑓(𝑡− 𝑠)‖𝑑𝑠

6
∫︁ 𝑡

−∞
𝑒−𝜔|𝑠|‖𝑓(𝑡+ 𝜏 − 𝑠)− 𝑓(𝑡− 𝑠)‖𝑑𝑠

+

∫︁ ∞

𝑡

𝑒−𝜔|𝑠|‖𝑓(𝑡+ 𝜏 − 𝑠)− 𝑓(𝑡− 𝑠)‖𝑑𝑠

+ ‖𝑓‖𝑆𝑝

∑︁
𝑘∈Z

‖Γ(𝑡+ 𝜏, 𝑡+ 𝜏 − ·)− Γ(𝑡, 𝑡− ·)‖𝐿𝑞 [𝑘,𝑘+1].

Keeping in mind (453), we get that:

‖𝑢(𝑡+ 𝜏)− 𝑢(𝑡)‖ 6
∫︁ 𝑡

−∞
𝑒−𝜔|𝑠|‖𝑓(𝑡+ 𝜏 − 𝑠)− 𝑓(𝑡− 𝑠)‖𝑑𝑠

+

∫︁ ∞

𝑡

𝑒−𝜔|𝑠|‖𝑓(𝑡+ 𝜏 − 𝑠)− 𝑓(𝑡− 𝑠)‖𝑑𝑠+ ‖𝑓‖𝑆𝑝𝜀,

provided |𝑡| >𝑀(𝜀, 𝜏). By the proof of Proposition 3.11.36, it follows the existence
of a finite real number 𝑀1(𝜀, 𝜏) > 0 such that∫︁ 𝑡

−∞
𝑒−𝜔|𝑠|‖𝑓(𝑡+ 𝜏 − 𝑠)− 𝑓(𝑡− 𝑠)‖𝑑𝑠 < 𝜀, provided |𝑡| >𝑀1(𝜀, 𝜏).

On the other hand, there exists an integer 𝑘0(𝜀) ∈ N such that 𝑒−𝜔𝑘 6 𝜀 for all
𝑘 > 𝑘0(𝜀). Let |𝑡| > 2𝑀(𝜀, 𝜏) + 1 + 𝑘0(𝜀). For the second addend, we can use
the following calculus involving the Hölder inequality, after dividing the interval of
integration (−∞, 0] into two subintervals (−∞,−𝑀(𝜀, 𝜏)] and [−𝑀(𝜀, 𝜏), 0]:∫︁ ∞

𝑡

𝑒−𝜔|𝑠|‖𝑓(𝑡+ 𝜏 − 𝑠)− 𝑓(𝑡− 𝑠)‖𝑑𝑠

6 𝜀
∞∑︁
𝑘=0

‖𝑒−𝜔|·|‖𝐿𝑞 [𝑡+𝑀(𝜀,𝜏)+𝑘,𝑡+𝑀(𝜀,𝜏)+𝑘+1]

6 +

∫︁ 0

−𝑀(𝜀,𝜏)

𝑒−𝜔|𝑠|‖𝑓(𝑡+ 𝜏 − 𝑠)− 𝑓(𝑡− 𝑠)‖𝑑𝑠

6 𝜀𝑒−𝜔|𝑡+𝑀(𝜀,𝜏)|
∞∑︁
𝑘=0

[𝑒−𝜔𝑘 + 𝑒−𝜔(𝑘+1)] + 2‖𝑓‖𝑆𝑝

⌊𝑀(𝜀,𝜏)⌋∑︁
𝑘=0

⃦⃦⃦
𝑒−𝜔|·|

⃦⃦⃦
𝐿𝑞 [𝑡+𝑘,𝑡+𝑘+1]

6 𝜀𝑒−𝜔𝑘0(𝜀)
∞∑︁
𝑘=0

[𝑒−𝜔𝑘 + 𝑒−𝜔(𝑘+1)] + 2‖𝑓‖𝑆𝑝

⌊𝑀(𝜀,𝜏)⌋∑︁
𝑘=0

[𝑒−𝜔|𝑡−(𝑘+1)| + 𝑒−𝜔|𝑡−𝑘|]

6 𝜀𝑒−𝜔𝑘0(𝜀)
∞∑︁
𝑘=0

[𝑒−𝜔𝑘 + 𝑒−𝜔(𝑘+1)] + 2‖𝑓‖𝑆𝑝(1 +𝑀(𝜀, 𝜏))𝑒−𝜔(𝑀(𝜀,𝜏)+𝑘0(𝜀))

6 𝜀𝑒−𝜔𝑘0(𝜀)
∞∑︁
𝑘=0

[𝑒−𝜔𝑘 + 𝑒−𝜔(𝑘+1)] + 2‖𝑓‖𝑆𝑝(1 + 𝜔)𝑒−𝜔𝑘0(𝜀),

which completes the proof. �
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Remark 3.11.40. The condition (453) implies

(454)
∫︁ +∞

−∞
‖Γ(𝑡+ 𝜏, 𝑡+ 𝜏 − 𝑠)− Γ(𝑡, 𝑡− 𝑠)‖𝑑𝑠 6 𝜀, provided 𝑡 ∈ R and |𝑡| >𝑀(𝜀, 𝜏).

If we assume that 𝑓 ∈ 𝐿∞(R : 𝑋) in place of 𝑓 ∈ 𝐿𝑝
𝑆(R : 𝑋), then the validity of

(454) in place of (453) implies that 𝑢(·) is q-aap..

Remark 3.11.41. It is worth noting that Theorem 3.11.37 and Remark 3.11.38,
as well as Theorem 3.11.39 and Remark 3.11.40, continue to hold in the case that
the operator family (𝐴(𝑡))𝑡∈R generates an exponentially stable evolution family
(𝑈(𝑡, 𝑠))𝑡>𝑠 in the sense of [145, Definition 3.1]; in this case, the condition (H1)
need not be satisfied and the condition (H2) holds with 𝑃 (𝑡) = 𝐼 and 𝑄(𝑡) = 0,
𝑡 ∈ R; Γ(𝑡, 𝑠) ≡ 𝑈(𝑡, 𝑠).

3.11.7. Semilinear Cauchy problems. In this subsection, we consider the
existence and uniqueness of q-aap. solutions of the abstract Cauchy problems (438)
and (439). We first state the following result about the abstract Cauchy problem
(439):

Theorem 3.11.42. Let 𝐼 = [0,∞), the evolution system 𝑈(·, ·) be exponentially
stable, let 𝑥 ∈ 𝑃 (0)𝑋 ∩𝐷(𝐴(0)) and let 𝐹 ∈ 𝑄 − 𝐴𝐴𝑃 ([0,∞) ×𝑋 : 𝑋). Suppose
that for each 𝜀 > 0 (S) holds with a number 𝑀(𝜀, 𝜏) > 0 satisfying (452). If there
exists a finite number 𝐿 ∈ (0, 𝜔/𝑀 ′) such that (448) holds, then there exists a
unique mild solution 𝑢(·) of (439) belonging to the class 𝑄−𝐴𝐴𝑃 ([0,∞) : 𝑋).

Proof. As before, the mapping 𝑡 ↦→ 𝑈(𝑡, 0)𝑥, 𝑡 > 0 is continuous, exponen-
tially decaying and satisfies lim𝑡→0+ 𝑈(𝑡, 0)𝑥 = 𝑥. Let 𝒫 : 𝑄−𝐴𝐴𝑃 ([0,∞) : 𝑋) →
𝑄−𝐴𝐴𝑃 ([0,∞) : 𝑋) be defined through

𝒫𝑓(𝑡) := 𝑈(𝑡, 0)𝑥+

∫︁ 𝑡

0

𝑈(𝑡, 𝑠)𝐹 (𝑠, 𝑓(𝑠))𝑑𝑠, 𝑡 > 0.

We will first show that the mapping 𝒫 is well defined. Since 𝐶0([0,∞) : 𝑋) +
𝑄 − 𝐴𝐴𝑃 ([0,∞) : 𝑋) = 𝑄 − 𝐴𝐴𝑃 ([0,∞) : 𝑋) and 𝑄 − 𝐴𝐴𝑃 ([0,∞) : 𝑋) is a
complete metric space by Theorem 3.11.21(iii), it suffices to show that the mapping
𝑡 ↦→

∫︀ 𝑡

0
𝑈(𝑡, 𝑠)𝐹 (𝑠, 𝑓(𝑠))𝑑𝑠, 𝑡 > 0 belongs to the class 𝑄 − 𝐴𝐴𝑃 ([0,∞) : 𝑋). Due

to Theorem 3.11.28, the function 𝐹 (·, 𝑓(·)) is in class 𝑄 − 𝐴𝐴𝑃 ([0,∞) : 𝑋); since
𝑄(𝑡) = 0 for all 𝑡 ∈ R, the prescribed assumption on the condition (452) yields
that Theorem 3.11.37 (see also Remark 3.11.38) can be applied, showing that the
mapping 𝑡 ↦→

∫︀ 𝑡

0
𝑈(𝑡, 𝑠)𝐹 (𝑠, 𝑓(𝑠))𝑑𝑠, 𝑡 > 0 belongs to the class 𝑄 − 𝐴𝐴𝑃 ([0,∞) :

𝑋). Furthermore, the condition 𝐿 ∈ (0, 𝜔/𝑀 ′) implies after a simple calculation
involving (435) and (448) that 𝒫(·) is a contraction, so that the final conclusion
simply follows by applying the Banach contraction principle. �

We can similarly prove the following result on the abstract Cauchy prob-
lem (438):

Theorem 3.11.43. Let 𝐼 = R, the evolution system 𝑈(·, ·) be exponentially
stable and 𝐹 ∈ 𝑄 − 𝐴𝐴𝑃 (R × 𝑋 : 𝑋). Suppose that for each 𝜀 > 0 (S) holds
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with a number 𝑀(𝜀, 𝜏) > 0 satisfying (454). If there exists a finite number 𝐿 ∈
(0, 𝜔/2𝑀 ′) such that (448) holds, then there exists a unique mild solution 𝑢(·) of
(438) belonging to the class 𝑄−𝐴𝐴𝑃 (R : 𝑋).

As mentioned before, the semilinear Cauchy problems with 𝑆𝑝-qaap. forcing
term 𝐹 (·, ·) cannot be so easily considered because the range of function 𝑥(·), ap-
pearing in the formulations of Theorem 3.11.31 and Theorem 3.11.32, need not be
relatively compact.

We close the section by providing an illustrative example.

Example 3.11.44. Let 𝑋 := 𝐿2[0, 𝜋] and Δ denote the Dirichlet Laplacian in
𝑋, acting with the domain 𝐻2[0, 𝜋] ∩ 𝐻1

0 [0, 𝜋]; then we know that Δ generates a
strongly continuous semigroup (𝑇 (𝑡))𝑡>0 on 𝑋, satisfying the estimate ‖𝑇 (𝑡)‖ 6
𝑒−𝑡, 𝑡 > 0. Of concern is the following problem

𝑢𝑡(𝑡, 𝑥) = 𝑢𝑥𝑥(𝑡, 𝑥) + 𝑞(𝑡, 𝑥)𝑢(𝑡, 𝑥) + 𝑓(𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ [0, 𝜋];(455)
𝑢(0) = 𝑢(𝜋) = 0, 𝑢(0, 𝑥) = 𝑢0(𝑥) ∈ 𝑋,(456)

where 𝑞 : R×[0, 𝜋] → R is a jointly continuous function satisfying that 𝑞(𝑡, 𝑥) 6 −𝛾0,
(𝑡, 𝑥) ∈ R× [0, 𝜋], for some number 𝛾0 > 0. Define

𝐴(𝑡)𝜙 := Δ𝜙+ 𝑞(𝑡, ·)𝜙, 𝜙 ∈ 𝐷(𝐴(𝑡)) := 𝐷(Δ) = 𝐻2[0, 𝜋] ∩𝐻1
0 [0, 𝜋], 𝑡 ∈ R.

Then (𝐴(𝑡))𝑡∈R generates an exponentially stable evolution family (𝑈(𝑡, 𝑠))𝑡>𝑠 in
the sense of [145, Definition 3.1], which is given by

𝑈(𝑡, 𝑠)𝜙 := 𝑇 (𝑡− 𝑠)𝑒
∫︀ 𝑡
𝑠
𝑞(𝑟,·)𝑑𝑟𝜙, 𝑡 > 𝑠.

It is clear that we can rewrite the initial value problem (455)–(456) in the following
form:

𝑢′(𝑡) = 𝐴(𝑡)𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0; 𝑢(0) = 𝑢0.

Hence, Theorem 3.11.37, resp. Theorem 3.11.39 (Theorem 3.11.42, resp. Theorem
3.11.43), can be applied provided that for each 𝜀 > 0 (S) holds with a number
𝑀(𝜀, 𝜏) > 0 such that the following condition holds:

(457)
∞∑︁
𝑘=0

⃦⃦⃦
𝑒−|·| sup

𝑥∈[0,𝜋]

⃒⃒
𝑒
∫︀ 𝑡+𝜏
𝑡+𝜏−· 𝑞(𝑟,𝑥)𝑑𝑟 − 𝑒

∫︀ 𝑡
𝑡−· 𝑞(𝑟,𝑥)𝑑𝑟

⃒⃒⃦⃦⃦
𝐿𝑞 [𝑘,𝑘+1]

< 𝜀, 𝑡 >𝑀(𝜀, 𝜏),

resp.

(458)
∑︁
𝑘∈Z

⃦⃦⃦
𝑒−|·| sup

𝑥∈[0,𝜋]

⃒⃒
𝑒
∫︀ 𝑡+𝜏
𝑡+𝜏−· 𝑞(𝑟,𝑥)𝑑𝑟−𝑒

∫︀ 𝑡
𝑡−· 𝑞(𝑟,𝑥)𝑑𝑟

⃒⃒⃦⃦⃦
𝐿𝑞 [𝑘,𝑘+1]

< 𝜀, |𝑡| >𝑀(𝜀, 𝜏).

The conditions (457) and (458) hold for a wide class of functions 𝑞(·, ·) and we
will prove here that this condition particularly holds for the function 𝑞(𝑡, 𝑥) :=
−𝛾0 − 3𝑡2 − 𝑓(𝑥), 𝑡 > 0, 𝑥 ∈ [0, 𝜋], where 𝑓 : [0,∞) → [0,∞) is a continuous
function (see also [338, Example 3.1], where we have analyzed the same choice).
In our concrete situation, we have

sup
𝑥∈[0,𝜋]

⃒⃒
𝑒
∫︀ 𝑡+𝜏
𝑡+𝜏−𝑠

𝑞(𝑟,𝑥)𝑑𝑟−𝑒
∫︀ 𝑡
𝑡−𝑠

𝑞(𝑟,𝑥)𝑑𝑟
⃒⃒

6 Const. · 𝑒−𝑠3 |𝑒3𝑠(𝑡+𝜏)(𝑠−𝑡−𝜏) − 𝑒3𝑠𝑡(𝑠−𝑡)|, 𝑡, 𝑠, 𝜏 > 0.
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Using this estimate and the Lagrange mean value theorem, it readily follows that:⃦⃦⃦
𝑒−|·| sup

𝑥∈[0,𝜋]

⃒⃒
𝑒
∫︀ 𝑡+𝜏
𝑡+𝜏−· 𝑞(𝑟,𝑥)𝑑𝑟 − 𝑒

∫︀ 𝑡
𝑡−· 𝑞(𝑟,𝑥)𝑑𝑟

⃒⃒⃦⃦⃦
𝐿∞[𝑘,𝑘+1]

6Const. · |𝜏 | sup
𝑠∈[𝑘,𝑘+1]

[𝑒3𝑠𝑡(𝑠−𝑡) + 𝑒3𝑠(𝑡+𝜏)(𝑠−𝑡−𝜏)] · [3(𝑘 + 1)2 + 6(𝑘 + 1)(𝑡+ 𝜏)]

6Const. · |𝜏 |[𝑒3𝑘𝑡(𝑘−𝑡) + 𝑒3(𝑘+1)𝑡(𝑘+1−𝑡) + 𝑒3𝑘(𝑡+𝜏)(𝑘−𝑡−𝜏) + 𝑒3(𝑘+1)(𝑡+𝜏)(𝑘+1−𝑡−𝜏)]

· [3(𝑘 + 1)2 + 6(𝑘 + 1)(𝑡+ 𝜏)], 𝑡, 𝜏 > 0, 𝑘 ∈ N0.

Let 3/4 < 𝑐 < 1. Then 3𝑡𝑠(𝑠 − 𝑐𝑡) 6 3𝑠3/4𝑐 for all 𝑡, 𝑠 > 0 and therefore we can
continue the calculation as follows:

6Const. · |𝜏 |[𝑒3𝑘𝑡(𝑘−𝑐𝑡)𝑒−3𝑐𝑡2 + 𝑒3(𝑘+1)𝑡(𝑘+1−𝑐𝑡)𝑒−3𝑐𝑡2

+𝑒3𝑘(𝑡+𝜏)(𝑘−𝑐(𝑡+𝜏))𝑒−3𝑐(𝑡+𝜏)2 + 𝑒3(𝑘+1)(𝑡+𝜏)(𝑘+1−𝑐(𝑡+𝜏))𝑒−3𝑐(𝑡+𝜏)2 ]

·[3(𝑘 + 1)2 + 6(𝑘 + 1)(𝑡+ 𝜏)]

6Const. · |𝜏 |[𝑒3𝑘
3/4𝑐𝑒−3𝑐𝑡2 + 𝑒3(𝑘+1)3/4𝑐𝑒−3𝑐𝑡2

+𝑒3𝑘
3/4𝑐𝑒−3𝑐(𝑡+𝜏)2 + 𝑒3(𝑘+1)3/4𝑐𝑒−3𝑐(𝑡+𝜏)2 ]

·[3(𝑘 + 1)2 + 6(𝑘 + 1)(𝑡+ 𝜏)]

6Const. · |𝜏 |𝑒3(𝑘+1)3/4𝑐𝑒−3𝑐𝑡2 [3(𝑘 + 1)2 + 6(𝑘 + 1)(𝑡+ 𝜏)], 𝑡, 𝜏 > 0.

Since 3/4𝑐 < 1, the series in (457) is convergent with 𝑞 = ∞ and has a sum which
does not exceed Const. · |𝜏 |𝑒−3𝑐𝑡2(1 + 𝑡 + 𝜏), 𝑡, 𝜏 > 0. At the end, it suffices to
observe that for each 𝜀 > 0 and 𝜏 > 0 there exists a finite number 𝑀(𝜀, 𝜏) > 0 such
that |𝜏 |𝑒−3𝑐𝑡2(1+ 𝑡+ 𝜏) < 𝜀 for any 𝑡 >𝑀(𝜀, 𝜏). This shows that Theorem 3.11.37
can be applied with any exponent 𝑝 ∈ [1,∞).

3.12. Almost periodic and asymptotically almost periodic type
solutions with variable exponents 𝐿𝑝(𝑥)

As in the previous one, in this section we will assume that (𝑋, ‖·‖) and (𝑌, ‖·‖𝑌 )
are two non-trivial complex Banach spaces.

We will use the following notion of Caputo fractional derivatives of order 𝛾 ∈
(0, 1). If 𝑢 : [0,∞) → 𝑋 satisfies, for every 𝑇 > 0, 𝑢 ∈ 𝐶((0, 𝑇 ] : 𝑋), 𝑢(·)− 𝑢(0) ∈
𝐿1((0, 𝑇 ) : 𝑋) and 𝑔1−𝛾 *(𝑢(·)−𝑢(0)) ∈𝑊 1,1((0, 𝑇 ) : 𝑋), then we define its Caputo
fractional derivative by,

D𝛾
𝑡 𝑢(𝑡) =

𝑑

𝑑𝑡
[𝑔1−𝛾 * (𝑢(·)− 𝑢(0))](𝑡), 𝑡 ∈ (0, 𝑇 ].

The Weyl fractional derivative 𝑊𝛼
+ of order 𝛼 > 0 is sometimes also called

the Weyl-Liouville fractional derivative of order 𝛼. This fractional derivative can
be applied to a wide class of functions containing the class of rapidly decreasing
functions. In this section, we will use the following definition of the Weyl–Liouville
fractional derivative 𝐷𝛾

𝑡,+𝑢(𝑡) of order 𝛾 ∈ (0, 1): The Weyl–Liouville fractional
derivative 𝐷𝛾

𝑡,+𝑢(𝑡) of order 𝛾 is defined for those continuous functions 𝑢 : R →
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𝑋 such that 𝑡 ↦→
∫︀ 𝑡

−∞ 𝑔1−𝛾(𝑡 − 𝑠)𝑢(𝑠)𝑑𝑠, 𝑡 ∈ R is a well-defined continuously
differentiable mapping, by

𝐷𝛾
𝑡,+𝑢(𝑡) :=

𝑑

𝑑𝑡

∫︁ 𝑡

−∞
𝑔1−𝛾(𝑡− 𝑠)𝑢(𝑠)𝑑𝑠, 𝑡 ∈ R.

Set D1
𝑡𝑢(𝑡) := (𝑑/𝑑𝑡)𝑢(𝑡) and 𝐷1

𝑡,+𝑢(𝑡) := −(𝑑/𝑑𝑡)𝑢(𝑡).

3.12.1. Lebesgue spaces with variable exponents 𝐿𝑝(𝑥). Let ∅ ≠ Ω ⊆ R
be a nonempty subset and let𝑀(Ω : 𝑋) stand for we the collection of all measurable
functions 𝑓 : Ω → 𝑋; 𝑀(Ω) := 𝑀(Ω : R). Furthermore, 𝒫(Ω) denotes the vector
space of all Lebesgue measurable functions 𝑝 : Ω → [1,∞]. For any 𝑝 ∈ 𝒫(Ω) and
𝑓 ∈𝑀(Ω : 𝑋), set

𝜙𝑝(𝑥)(𝑡) :=

⎧⎪⎨⎪⎩
𝑡𝑝(𝑥), 𝑡 > 0, 1 6 𝑝(𝑥) <∞,

0, 0 6 𝑡 6 1, 𝑝(𝑥) = ∞,

∞, 𝑡 > 1, 𝑝(𝑥) = ∞
and

𝜌(𝑓) :=

∫︁
Ω

𝜙𝑝(𝑥)(‖𝑓(𝑥)‖)𝑑𝑥.

We define the Lebesgue space 𝐿𝑝(𝑥)(Ω : 𝑋) with variable exponent as follows,

𝐿𝑝(𝑥)(Ω : 𝑋) :=
{︁
𝑓 ∈𝑀(Ω : 𝑋) : lim

𝜆→0+
𝜌(𝜆𝑓) = 0

}︁
equivalently

𝐿𝑝(𝑥)(Ω : 𝑋) = {𝑓 ∈𝑀(Ω : 𝑋) : there exists 𝜆 > 0 such that 𝜌(𝜆𝑓) <∞};
see, e.g., [152, p. 73].

For every 𝑢 ∈ 𝐿𝑝(𝑥)(Ω : 𝑋), we introduce the Luxemburg norm of 𝑢(·) in the
following manner:

‖𝑢‖𝑝(𝑥) := ‖𝑢‖𝐿𝑝(𝑥)(Ω:𝑋) := inf{𝜆 > 0 : 𝜌(𝑓/𝜆) 6 1}.

Equipped with the above norm, the space 𝐿𝑝(𝑥)(Ω : 𝑋) becomes a Banach space
(see e.g. [152, Theorem 3.2.7] for scalar-valued case), coinciding with the usual
Lebesgue space 𝐿𝑝(Ω : 𝑋) in the case that 𝑝(𝑥) = 𝑝 > 1 is a constant function. For
any 𝑝 ∈𝑀(Ω), we set

𝑝− := essinf𝑥∈Ω 𝑝(𝑥) and 𝑝+ := esssup𝑥∈Ω 𝑝(𝑥).

Define

𝐶+(Ω) := {𝑝 ∈𝑀(Ω) : 1 < 𝑝− 6 𝑝(𝑥) 6 𝑝+ <∞ for a.e. 𝑥 ∈ Ω}
and

𝐷+(Ω) := {𝑝 ∈𝑀(Ω) : 1 6 𝑝− 6 𝑝(𝑥) 6 𝑝+ <∞ for a.e. 𝑥 ∈ Ω}.
For 𝑝 ∈ 𝐷+([0, 1]), the space 𝐿𝑝(𝑥)(Ω : 𝑋) behaves nicely, with almost all funda-
mental properties of the Lesbesgue space with constant exponent 𝐿𝑝(Ω : 𝑋) being
retained; in this case, we know that

𝐿𝑝(𝑥)(Ω : 𝑋) = {𝑓 ∈𝑀(Ω : 𝑋) : for all 𝜆 > 0 we have 𝜌(𝜆𝑓) <∞}.



3.12. ALMOST PERIODIC AND ASYMPTOTICALLY ALMOST PERIODIC TYPE... 468

Furthermore, if 𝑝 ∈ 𝐶+(Ω), then 𝐿𝑝(𝑥)(Ω : 𝑋) is uniformly convex and thus reflex-
ive [176].

We will use the following lemma (see, e.g., [152, Lemma 3.2.20, (3.2.22); Corol-
lary 3.3.4; p. 77] for scalar-valued case):

Lemma 3.12.1. (i) Let 𝑝, 𝑞, 𝑟 ∈ 𝒫(Ω) such that
1

𝑞(𝑥)
=

1

𝑝(𝑥)
+

1

𝑟(𝑥)
, 𝑥 ∈ Ω.

Then, for every 𝑢 ∈ 𝐿𝑝(𝑥)(Ω : 𝑋) and 𝑣 ∈ 𝐿𝑟(𝑥)(Ω), we have 𝑢𝑣 ∈
𝐿𝑞(𝑥)(Ω : 𝑋) and

‖𝑢𝑣‖𝑞(𝑥) 6 2‖𝑢‖𝑝(𝑥)‖𝑣‖𝑟(𝑥).

(ii) Let Ω be of a finite Lebesgue’s measure and let 𝑝, 𝑞 ∈ 𝒫(Ω) such 𝑞 6 𝑝
a.e. on Ω. Then 𝐿𝑝(𝑥)(Ω : 𝑋) is continuously embedded in 𝐿𝑞(𝑥)(Ω : 𝑋).

(iii) Let 𝑓 ∈ 𝐿𝑝(𝑥)(Ω : 𝑋), 𝑔 ∈𝑀(Ω : 𝑋) and 0 6 ‖𝑔‖ 6 ‖𝑓‖ a.e. on Ω. Then
𝑔 ∈ 𝐿𝑝(𝑥)(Ω : 𝑋) and ‖𝑔‖𝑝(𝑥) 6 ‖𝑓‖𝑝(𝑥).

For additional details upon Lebesgue spaces with variable exponents 𝐿𝑝(𝑥), we
refer the reader to the following sources: [150,152,176] and [436].

3.12.2. Generalized almost periodic and generalized asymptotically
almost periodic functions in Lebesgue spaces with variable exponents
𝐿𝑝(𝑥). The following notion of Stepanov 𝑝(𝑥)-boundedness differs from the one in-
troduced by T. Diagana and M. Zitane in [150, Definition 3.10] and [151, Definition
4.5], where the authors have used the condition 𝑝 ∈ 𝐶+(R):

Definition 3.12.2. Let 𝑝 ∈ 𝒫([0, 1]) and let 𝐼 = R or 𝐼 = [0,∞). A function
𝑓 ∈𝑀(𝐼 : 𝑋) is said to be Stepanov 𝑝(𝑥)-bounded (or 𝑆𝑝(𝑥)-bounded), if 𝑓(·+ 𝑡) ∈
𝐿𝑝(𝑥)([0, 1] : 𝑋) for all 𝑡 ∈ 𝐼, and sup𝑡∈𝐼 ‖𝑓(·+ 𝑡)‖𝑝(𝑥) <∞, that is,

‖𝑓‖𝑆𝑝(𝑥) := sup
𝑡∈𝐼

inf

{︂
𝜆 > 0 :

∫︁ 1

0

𝜙𝑝(𝑥)

(︁‖𝑓(𝑥+ 𝑡)‖
𝜆

)︁
𝑑𝑥 6 1

}︂
<∞.

The collection of such functions will be denoted by 𝐿𝑝(𝑥)
𝑆 (𝐼 : 𝑋).

From Definition 3.12.2 it follows that the space 𝐿
𝑝(𝑥)
𝑆 (𝐼 : 𝑋) is translation

invariant in the sense that, for every 𝑓 ∈ 𝐿
𝑝(𝑥)
𝑆 (𝐼 : 𝑋) and 𝜏 ∈ 𝐼, we have 𝑓(·+𝜏) ∈

𝐿
𝑝(𝑥)
𝑆 (𝐼 : 𝑋). This is not the case with the notion introduced by T. Diagana and M.

Zitane [150,151], since there the space 𝐿𝑝(𝑥)
𝑆 (𝐼 : 𝑋) may or may not be translation

invariant depending on 𝑝(𝑥). Furthermore, let us note that the notion introduced
in these papers is meaningful even in the case that 𝑝 ∈ 𝒫(R). We introduce the
concept of (asymptotic) 𝑆𝑝(𝑥)-almost periodicity as follows:

Definition 3.12.3. (i) Let 𝑝 ∈ 𝒫([0, 1]) and let 𝐼 = R or 𝐼 = [0,∞).
A function 𝑓 ∈ 𝐿

𝑝(𝑥)
𝑆 (𝐼 : 𝑋) is said to be Stepanov 𝑝(𝑥)-almost periodic

(or Stepanov 𝑝(𝑥)-a.p.), if the function 𝑓 : 𝐼 → 𝐿𝑝(𝑥)([0, 1] : 𝑋) is almost
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periodic. The collection of such functions will be denoted by 𝐴𝑃𝑆𝑝(𝑥)(𝐼 :
𝑋).

(ii) Let 𝑝 ∈ 𝒫([0, 1]) and let 𝐼 = [0,∞). A function 𝑓 ∈ 𝐿
𝑝(𝑥)
𝑆 (𝐼 : 𝑋) is said

to be asymptotically Stepanov 𝑝(𝑥)-almost periodic (or asymptotically
Stepanov 𝑝(𝑥)-a.p.), if the function 𝑓 : 𝐼 → 𝐿𝑝(𝑥)([0, 1] : 𝑋) is asymp-
totically almost periodic. The collection of such functions will be de-
noted by 𝐴𝐴𝑃𝑆𝑝(𝑥)(𝐼 : 𝑋). The abbreviation 𝑆

𝑝(𝑥)
0 ([0,∞) : 𝑋) will be

used to denote the set of all functions 𝑞 ∈ 𝐿
𝑝(𝑥)
𝑆 ([0,∞) : 𝑋) such that

𝑞 ∈ 𝐶0([0,∞) : 𝐿𝑝(𝑥)([0, 1] : 𝑋)).

As in the case of Stepanov 𝑝(𝑥)-boundedness, the space 𝐴𝑃𝑆𝑝(𝑥)(𝐼 : 𝑋) is
translation invariant in the sense that, for every 𝑓 ∈ 𝐴𝑃𝑆𝑝(𝑥)(𝐼 : 𝑋) and 𝜏 ∈ 𝐼,
we have 𝑓(· + 𝜏) ∈ 𝐴𝑃𝑆𝑝(𝑥)(𝐼 : 𝑋). A similar statement holds for the space
𝐴𝐴𝑃𝑆𝑝(𝑥)([0,∞) : 𝑋). It is clear that the notions of (asymptotic) Stepanov
𝑝(𝑥)-boundedness and (asymptotic) Stepanov 𝑝(𝑥)-almost periodicity are equiv-
alent with those introduced in the previous section, provided that 𝑝(𝑥) ≡ 𝑝 > 1 is
a constant function.

Equipped with the norm ‖ · ‖𝑆𝑝(𝑥) , the space 𝐿𝑝(𝑥)
𝑆 (𝐼 : 𝑋) consisting of all 𝑆𝑝-

bounded functions is a Banach space, which is continuously embedded in 𝐿1
𝑆(𝐼 : 𝑋),

for any 𝑝 ∈ 𝒫([0, 1]). Furthermore, it can be easily shown that 𝐴𝑃𝑆𝑝(𝑥)(𝐼 : 𝑋)

(𝐴𝐴𝑃𝑆𝑝(𝑥)(𝐼 : 𝑋) with 𝐼 = [0,∞)) is a closed subspace of 𝐿𝑝(𝑥)
𝑆 (𝐼 : 𝑋) and

therefore is Banach space itself, for any 𝑝 ∈ 𝒫([0, 1]).
If 𝑝 ∈ 𝒫([0, 1]), then Lemma 3.12.1(ii) yields 𝐿𝑝(𝑥)([0, 1] : 𝑋) →˓ 𝐿1([0, 1] : 𝑋),

where the symbol →˓ stands for a “continuous embedding", so that 𝐿𝑝(𝑥)
𝑆 (𝐼 : 𝑋) →˓

𝐿1
𝑆(𝐼 : 𝑋), as well.

We have

Proposition 3.12.4. Suppose 𝑝 ∈ 𝒫([0, 1]). Then the following continuous
embedding hold,

(i) 𝐿𝑝(𝑥)
𝑆 (𝐼 : 𝑋) →˓ 𝐿1

𝑆(𝐼 : 𝑋); and
(ii) 𝐴𝑃𝑆𝑝(𝑥)(𝐼 : 𝑋) →˓ 𝐴𝑃𝑆1(𝐼 : 𝑋) and

𝐴𝐴𝑃𝑆𝑝(𝑥)([0,∞) : 𝑋) →˓ 𝐴𝐴𝑃𝑆1([0,∞) : 𝑋).

Similarly,

Proposition 3.12.5. Suppose 𝑝 ∈ 𝐷+([0, 1]) and 1 6 𝑝− 6 𝑝(𝑥) 6 𝑝+ < ∞
for a.e. 𝑥 ∈ [0, 1]. Then the following continuous embedding hold,

(i) 𝐿𝑝+

𝑆 (𝐼 : 𝑋) →˓ 𝐿
𝑝(𝑥)
𝑆 (𝐼 : 𝑋) →˓ 𝐿𝑝−

𝑆 (𝐼 : 𝑋); and
(ii) 𝐴𝑃𝑆𝑝+

(𝐼 : 𝑋) →˓ 𝐴𝑃𝑆𝑝(𝑥)(𝐼 :𝑋) →˓ 𝐴𝑃𝑆𝑝−
(𝐼 : 𝑋) and 𝐴𝐴𝑃𝑆𝑝+

([0,∞) :

𝑋) →˓ 𝐴𝐴𝑃𝑆𝑝(𝑥)([0,∞) : 𝑋) →˓ 𝐴𝐴𝑃𝑆𝑝−
([0,∞) : 𝑋).

Now we will prove that any almost periodic function is 𝑆𝑝(𝑥)-almost periodic,
for any 𝑝 ∈ 𝒫([0, 1]).

Proposition 3.12.6. Let 𝑝 ∈ 𝒫([0, 1]), and let 𝑓 : 𝐼 → 𝑋 be almost periodic.
Then 𝑓(·) is 𝑆𝑝(𝑥)-almost periodic.
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Proof. To prove that 𝑓(·) is 𝑆𝑝(𝑥)-bounded and ‖𝑓‖
𝐿

𝑝(𝑥)
𝑆

6 ‖𝑓‖∞, it suffices
to show that, for every 𝑡 ∈ R, we have:

(459) [‖𝑓‖∞,∞) ⊆
{︂
𝜆 > 0 :

∫︁ 1

0

𝜙𝑝(𝑥)

(︁‖𝑓(𝑥+ 𝑡)‖
𝜆

)︁
𝑑𝑥 6 1

}︂
.

For 𝜆 > ‖𝑓‖∞, we have ‖𝑓(𝑥 + 𝑡)‖/𝜆 6 1, 𝑡 ∈ 𝐼. It can be simply perceived that,
in this case,

𝜙𝑝(𝑥)

(︁‖𝑓(𝑥+ 𝑡)‖
𝜆

)︁
6 1, 𝑡 ∈ 𝐼,

so that the integrand does not exceed 1; as a matter of fact, by definition of
𝜙𝑝(𝑥)(·), we only need to observe that, for every 𝑥 ∈ [0, 1] with 𝑝(𝑥) < ∞, we
have (‖𝑓(𝑡 + 𝑥)‖/𝜆)𝑝(𝑥) 6 1𝑝(𝑥) = 1, 𝑡 ∈ 𝐼. Hence, (459) holds. Using the uni-
form continuity of 𝑓(·) and a similar argumentation, we can show that the func-
tion 𝑓 : 𝐼 → 𝐿𝑝(𝑥)([0, 1] : 𝑋) is uniform continuous. For direct proof of almost
periodicity of function 𝑓 : 𝐼 → 𝐿𝑝(𝑥)([0, 1] : 𝑋), we can argue as follows. For
𝜀 > 0 given as above, there is a finite number 𝑙 > 0 such that any subinterval
𝐼 ′ of 𝐼 of length 𝑙 contains a number 𝜏 ∈ 𝐼 ′ such that ‖𝑓(𝑡 + 𝜏) − 𝑓(𝑡)‖ 6 𝜀,
𝑡 ∈ 𝐼. It suffices to observe that, for this 𝜀 > 0, we can choose the same length
𝑙 > 0 and the same 𝜀-almost period 𝜏 from 𝐼 ′ ensuring the validity of inequality
‖𝑓(𝑡+𝜏+ ·)−𝑓(𝑡+ ·)‖𝐿𝑝(𝑥)([0,1]:𝑋) 6 𝜀, 𝑡 ∈ 𝐼: in order to see that the last inequality
holds true, we only need to prove that, for every 𝑡 ∈ 𝐼, we have

[𝜀,∞) ⊆
{︂
𝜆 > 0 :

∫︁ 1

0

𝜙𝑝(𝑥)

(︁‖𝑓(𝑡+ 𝜏 + 𝑥)− 𝑓(𝑡+ 𝑥)‖
𝜆

)︁
𝑑𝑥 6 1

}︂
.

Indeed, if 𝜆 > 𝜀, then ‖𝑓(𝑡+𝜏+𝑥)−𝑓(𝑡+𝑥)‖/𝜆 6 1, 𝑡 ∈ 𝐼 and the integrand cannot
exceed 1: this simply follows from definition of 𝜙𝑝(𝑥)(·) and observation that, for
every 𝑥 ∈ [0, 1] with 𝑝(𝑥) <∞, we have (‖𝑓(𝑡+𝜏+𝑥)−𝑓(𝑡+𝑥)‖/𝜆)𝑝(𝑥) 6 1𝑝(𝑥) = 1,
𝑡 ∈ 𝐼. The proof of the proposition is thereby complete. �

We can similarly prove the following proposition:

Proposition 3.12.7. Let 𝑝 ∈ 𝒫([0, 1]), and let 𝑓 : [0,∞) → 𝑋 be asymptoti-
cally almost periodic. Then 𝑓(·) is asymptotically 𝑆𝑝(𝑥)-almost periodic.

Taking into account Proposition 3.12.4(ii) and the method employed in the
proof of Proposition 3.12.6, we can state the following:

Proposition 3.12.8. Assume that 𝑝 ∈ 𝒫([0, 1]) and 𝑓 ∈ 𝐿
𝑝(𝑥)
𝑆 (𝐼 : 𝑋). Then

the following holds:

(i) 𝐿∞(𝐼 : 𝑋) →˓ 𝐿
𝑝(𝑥)
𝑆 (𝐼 : 𝑋) →˓ 𝐿1

𝑆(𝐼 : 𝑋).
(ii) 𝐴𝑃 (𝐼 : 𝑋) →˓ 𝐴𝑃𝑆𝑝(𝑥)(𝐼 : 𝑋) →˓ 𝐴𝑃𝑆1(𝐼 : 𝑋) and 𝐴𝐴𝑃 ([0,∞) : 𝑋) →˓

𝐴𝐴𝑃𝑆𝑝(𝑥)([0,∞) : 𝑋) →˓ 𝐴𝐴𝑃𝑆1([0,∞) : 𝑋).
(iii) The continuity (uniform continuity) of 𝑓(·) implies continuity (uniform

continuity) of 𝑓(·).

In general case, we have the following:
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Proposition 3.12.9. Assume that 𝑝, 𝑞 ∈ 𝒫([0, 1]) and 𝑝 6 𝑞 a.e. on [0, 1].
Then we have:

(i) 𝐿𝑞(𝑥)
𝑆 (𝐼 : 𝑋) →˓ 𝐿

𝑝(𝑥)
𝑆 (𝐼 : 𝑋).

(ii) 𝐴𝑃𝑆𝑞(𝑥)(𝐼 : 𝑋) →˓ 𝐴𝑃𝑆𝑝(𝑥)(𝐼 : 𝑋) and 𝐴𝐴𝑃𝑆𝑞(𝑥)([0,∞) : 𝑋) →˓
𝐴𝐴𝑃𝑆𝑝(𝑥)([0,∞) : 𝑋).

(iii) If 𝑝 ∈ 𝐷+([0, 1]), then

𝐿∞(𝐼 : 𝑋) ∩𝐴𝑃𝑆𝑝(𝑥)(𝐼 : 𝑋) = 𝐿∞(𝐼 : 𝑋) ∩𝐴𝑃𝑆1(𝐼 : 𝑋)

and

𝐿∞([0,∞) : 𝑋) ∩𝐴𝐴𝑃𝑆𝑝(𝑥)([0,∞) : 𝑋) = 𝐿∞([0,∞) : 𝑋) ∩𝐴𝐴𝑃𝑆1([0,∞) : 𝑋).

Proof. We will prove only (iii) for almost periodicity. Keeping in mind
Proposition 3.12.5(ii), it suffices to assume that 𝑝(𝑥) ≡ 𝑝 > 1. Then, clearly,
𝐿∞(𝐼 : 𝑋)∩𝐴𝑃𝑆𝑝(𝐼 : 𝑋) ⊆ 𝐿∞(𝐼 : 𝑋)∩𝐴𝑃𝑆1(𝐼 : 𝑋) and it remains to be proved
the opposite inclusion. So, let 𝑓 ∈ 𝐿∞(𝐼 : 𝑋) ∩ 𝐴𝑃𝑆1(𝐼 : 𝑋). The required con-
clusion is a consequence of elementary definitions and following simple calculation,
which is valid for any 𝑡, 𝜏 ∈ R:[︂ ∫︁ 𝑡+1

𝑡

‖𝑓(𝜏 + 𝑠)− 𝑓(𝑠)‖𝑝𝑑𝑠
]︂1/𝑝

6

[︂ ∫︁ 𝑡+1

𝑡

(2‖𝑓‖∞)𝑝−1‖𝑓(𝜏 + 𝑠)− 𝑓(𝑠)‖𝑑𝑠
]︂1/𝑝

= (2‖𝑓‖∞)(𝑝−1)/𝑝

[︂ ∫︁ 𝑡+1

𝑡

‖𝑓(𝜏 + 𝑠)− 𝑓(𝑠)‖𝑑𝑠
]︂1/𝑝

. �

Remark 3.12.10. It is well known that 𝐴𝑃𝑆𝑝(𝑥)(𝐼 : 𝑋) can be strictly con-
tained in 𝐴𝑃𝑆1(𝐼 : 𝑋), even in the case that 𝑝(𝑥) ≡ 𝑝 > 1 is a constant function.
For example, H. Bohr and E. Følner have proved that, for any given number 𝑝 > 1,
we can construct a Stepanov almost periodic function defined on the whole real axis
that is not Stepanov 𝑝-almost periodic (see [81, Example, p. 70]). The same exam-
ple shows that 𝐴𝐴𝑃𝑆𝑝([0,∞) : 𝑋) can be strictly contained in 𝐴𝐴𝑃𝑆1([0,∞) : 𝑋)
for 𝑝 > 1 (see e.g. [249, Lemma 1]).

Remark 3.12.11. Proposition 3.12.6 and Proposition 3.12.7 can be simply
deduced by using Proposition 3.12.9(ii) and the equalities 𝐴𝑃 (𝐼 : 𝑋) = 𝐴𝑃𝑆∞(𝐼 :
𝑋) ∩ 𝐶(𝐼 : 𝑋), 𝐴𝐴𝑃 ([0,∞) : 𝑋) = 𝐴𝐴𝑃𝑆∞([0,∞) : 𝑋) ∩ 𝐶([0,∞) : 𝑋), which
can be proved almost trivially.

Now we would like to present the following illustrative example:

Example 3.12.12. Define sign(0) := 0. Then, for every almost periodic func-
tion 𝑓 : R → R, we have that the function 𝐹 (·) :=sign(𝑓(·)) is Stepanov 1-almost
periodic [377]. Since 𝐹 ∈ 𝐿∞(R), Proposition 3.12.9(iii) yields that the function
𝐹 (·) is Stepanov 𝑝-almost periodic for any 𝑝 > 1, while Proposition 3.12.8(i) yields
that the function 𝐹 (·) is Stepanov 𝑝(𝑥)-bounded for any 𝑝 ∈ 𝒫([0, 1]). Due to
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Proposition 3.12.5(ii), we have 𝐹 ∈ 𝐴𝑃𝑆𝑝(𝑥)(R : C) for any 𝑝 ∈ 𝐷+([0, 1]). Con-
sider now the case that 𝑓(𝑥) := sin𝑥+sin

√
2𝑥, 𝑥 ∈ R and 𝑝(𝑥) := 1−ln𝑥, 𝑥 ∈ [0, 1].

We will prove that 𝐹 /∈ 𝐴𝑃𝑆𝑝(𝑥)(R : C). Speaking-matter-of-factly, it is sufficient
to show that, for every 𝜆 ∈ (0, 2/𝑒) and for every 𝑙 > 0, we can find an interval
𝐼 ⊆ R of length 𝑙 > 0 such that, for every 𝜏 ∈ 𝐼, there exists 𝑡 ∈ R such that∫︁ 1

0

(︁ 1
𝜆

)︁1−ln 𝑥 ⃒⃒
sign[sin(𝑥+ 𝑡+ 𝜏) + sin

√
2(𝑥+ 𝑡+ 𝜏)]

− sign[sin(𝑥+ 𝑡) + sin
√
2(𝑥+ 𝑡)]

⃒⃒1−ln 𝑥
𝑑𝑥 = ∞.

Let 𝜆 ∈ (0, 2/𝑒) and 𝑙 > 0 be given. Take arbitrarily any interval 𝐼 ⊆ R r {0} of
length 𝑙 and after that take arbitrarily any number 𝜏 ∈ 𝐼. Since (1/𝜆)1−ln 𝑥 > 1/𝑥,
𝑥 ∈ [0, 1] and 1− ln𝑥 > 1, 𝑥 ∈ [0, 1], a continuity argument shows that it is enough
to prove the existence of a number 𝑡 ∈ R such that

[sin(𝑡+ 𝜏) + sin
√
2(𝑡+ 𝜏)] · [sin 𝑡+ sin

√
2𝑡] < 0.(460)

If sin 𝜏 + sin
√
2𝜏 > 0 (sin 𝜏 + sin

√
2𝜏 < 0), then we can take 𝑡 ∼ 0− (𝑡 ∼ 0+).

Hence, we assume henceforward sin 𝜏 + sin
√
2𝜏 = 0 and 𝜏 ̸= 0. There exist two

possibilities:

𝜏 ∈ 2Z𝜋
1 +

√
2
r {0} or 𝜏 ∈ (2Z+ 1)𝜋√

2− 1
.

In the first case, take 𝑡0 = 𝜋√
2−1

. Then an elementary argumentation shows that

𝜏 + 𝑡0 /∈ 2Z𝜋
1+

√
2
∪ (2Z+1)𝜋√

2−1
so that sin(𝑡0 + 𝜏) + sin

√
2(𝑡0 + 𝜏) ̸= 0. If sin(𝑡0 + 𝜏) +

sin
√
2(𝑡0 + 𝜏) > 0 (sin(𝑡0 + 𝜏) + sin

√
2(𝑡0 + 𝜏) < 0), then for 𝑡 satisfying (460) we

can take any number belonging to a small left/right interval around 𝑡0 for which
sin 𝑡+ sin

√
2𝑡 < 0 (sin 𝑡+ sin

√
2𝑡 > 0). In the second case, there exists an integer

𝑚 ∈ Z such that 𝜏 = (2𝑚+1)𝜋√
2−1

and we can take 𝑡0 = (−2𝑚+1)𝜋√
2−1

. Then 𝜏 + 𝑡0 = 2𝜋√
2−1

and sin(𝑡0 + 𝜏) + sin
√
2(𝑡0 + 𝜏) ̸= 0, so that we can use a trick similar to that used

in the first case. Let us only mention in passing that, with the notion introduced
in [149], the function 𝐹 (·) cannot be 𝑆𝑝(𝑥)-almost automorphic, as well.

The situation is quite different if we consider the case that 𝑓(𝑥) := sin𝑥, 𝑥 ∈ R.
Then 𝐹 (·) is Stepanov 𝑝(𝑥)-almost periodic for any 𝑝 ∈ 𝒫([0, 1]). Speaking-matter-
of-factly, it can be easily shown that the mapping 𝐹 : R → 𝐿𝑝(𝑥)[0, 1] is continuous
and ‖𝐹 (𝑡+ 𝜏 + ·)− 𝐹 (𝑡+ ·)‖𝐿𝑝(𝑥)[0,1] = 0 for all 𝑡 ∈ R and 𝜏 ∈ 2𝜋Z. This, in turn,
implies the claimed statement.

Keeping in mind the proofs of Proposition 3.12.6, [149, Proposition 3.5] and
[249, Lemma 1], we can clarify the following result:

Proposition 3.12.13. Suppose that 𝑝 ∈ 𝒫([0, 1]) and 𝑓 : [0,∞) → 𝑋 is an
asymptotically 𝑆𝑝(𝑥)-almost periodic function. Then there are uniquely determined
𝑆𝑝(𝑥)-bounded functions 𝑔 : R → 𝑋 and 𝑞 : [0,∞) → 𝑋 satisfying the following
conditions:

(i) 𝑔 is 𝑆𝑝(𝑥)-almost periodic,
(ii) 𝑞 belongs to the class 𝐶0([0,∞) : 𝐿𝑝(𝑥)([0, 1] : 𝑋)),
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(iii) 𝑓(𝑡) = 𝑔(𝑡) + 𝑞(𝑡) for all 𝑡 > 0.
Moreover, there exists an increasing sequence (𝑡𝑛)𝑛∈N of positive reals such that
lim𝑛→∞ 𝑡𝑛 = ∞ and 𝑔(𝑡) = lim𝑛→∞ 𝑓(𝑡+ 𝑡𝑛) a.e. 𝑡 > 0.

Remark 3.12.14. The definition of an (equi-)Weyl 𝑝(𝑥)-almost periodic func-
tion (see e.g. [293] for the case that 𝑝(𝑥) ≡ 𝑝 ∈ [1,∞)) can be introduced as follows:
Suppose 𝐼 = R or 𝐼 = [0,∞). Let 𝑝 ∈ 𝒫(𝐼) and 𝑓(· + 𝜏) ∈ 𝐿𝑝(𝑥)(𝐾 : 𝑋) for any
𝜏 ∈ 𝐼 and any compact subset 𝐾 of 𝐼.

(i) It is said that the function 𝑓(·) is equi-Weyl-𝑝(𝑥)-almost periodic, 𝑓 ∈
𝑒−𝑊 𝑝(𝑥)

𝑎𝑝 (𝐼 : 𝑋) for short, iff for each 𝜀 > 0 we can find two real numbers
𝑙 > 0 and 𝐿 > 0 such that any interval 𝐼 ′ ⊆ 𝐼 of length 𝐿 contains a point
𝜏 ∈ 𝐼 ′ such that

sup
𝑡∈𝐼

[𝑙(−1)/𝑝(𝑡)‖𝑓(·+ 𝜏)− 𝑓(·)‖𝐿𝑝(𝑥)[𝑡,𝑡+𝑙]] 6 𝜀.

(ii) It is said that the function 𝑓(·) is Weyl-𝑝(𝑥)-almost periodic, 𝑓 ∈𝑊
𝑝(𝑥)
𝑎𝑝 (𝐼 :

𝑋) for short, iff for each 𝜀 > 0 we can find a real number 𝐿 > 0 such that
any interval 𝐼 ′ ⊆ 𝐼 of length 𝐿 contains a point 𝜏 ∈ 𝐼 ′ such that

lim
𝑙→∞

sup
𝑡∈𝐼

[𝑙(−1)/𝑝(𝑡)‖𝑓(·+ 𝜏)− 𝑓(·)‖𝐿𝑝(𝑥)[𝑡,𝑡+𝑙]] 6 𝜀.

The notion of (equi-)Weyl 𝑝(𝑥)-almost periodicity as well as the corresponding no-
tion for Besicovitch classes of almost periodic functions will not attract our attention
here. We will also skip all details concerning asymptotical 𝑝(𝑥)-almost periodicity
for Weyl and Besicovitch classes.

3.12.3. Generalized two-parameter almost periodic type functions
and composition principles. Assume that (𝑌, ‖·‖𝑌 ) is a complex Banach space,
as well as that 𝐼 = R or 𝐼 = [0,∞). By 𝐶0([0,∞) × 𝑌 : 𝑋) we denote the space
consisting of all continuous functions ℎ : [0,∞)×𝑌 → 𝑋 such that lim𝑡→∞ ℎ(𝑡, 𝑦) =
0 uniformly for 𝑦 in any compact subset of 𝑌 . A continuous function 𝑓 : 𝐼×𝑌 → 𝑋
is said to be uniformly continuous on bounded sets, uniformly for 𝑡 ∈ 𝐼 iff for every
𝜀 > 0 and every bounded subset 𝐾 of 𝑌 there exists a number 𝛿𝜀,𝐾 > 0 such that
‖𝑓(𝑡, 𝑥)− 𝑓(𝑡, 𝑦)‖ 6 𝜀 for all 𝑡 ∈ 𝐼 and all 𝑥, 𝑦 ∈ 𝐾 satisfying that ‖𝑥− 𝑦‖ 6 𝛿𝜀,𝐾 .
If 𝑓 : 𝐼 × 𝑌 → 𝑋, set 𝑓(𝑡, 𝑦) := 𝑓(𝑡 + ·, 𝑦), 𝑡 > 0, 𝑦 ∈ 𝑌 . We need to recall the
following well-known definition (see e.g. [293] for more details):

Definition 3.12.15. Let 1 6 𝑝 <∞.
(i) A function 𝑓 : 𝐼×𝑌 → 𝑋 is said to be almost periodic iff 𝑓(·, ·) is bounded,

continuous as well as for every 𝜀 > 0 and every compact 𝐾 ⊆ 𝑌 there
exists 𝑙(𝜀,𝐾) > 0 such that every subinterval 𝐽 ⊆ 𝐼 of length 𝑙(𝜀,𝐾)
contains a number 𝜏 with the property that ‖𝑓(𝑡 + 𝜏, 𝑦) − 𝑓(𝑡, 𝑦)‖ 6 𝜀
for all 𝑡 ∈ 𝐼, 𝑦 ∈ 𝐾. The collection of such functions will be denoted by
𝐴𝑃 (𝐼 × 𝑌 : 𝑋).

(ii) A function 𝑓 : [0,∞) × 𝑌 → 𝑋 is said to be asymptotically almost peri-
odic iff it is bounded continuous and admits a decomposition 𝑓 = 𝑔 + 𝑞,
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where 𝑔 ∈ 𝐴𝑃 ([0,∞) × 𝑌 : 𝑋) and 𝑞 ∈ 𝐶0([0,∞) × 𝑌 : 𝑋). Denote by
𝐴𝐴𝑃 ([0,∞)× 𝑌 : 𝑋) the vector space consisting of all such functions.

The notion of (asymptotical) Stepanov 𝑝(𝑥)-almost periodicity for the functions
depending on two parameters is introduced as follows:

Definition 3.12.16. Let 𝑝 ∈ 𝒫([0, 1]).

(i) A function 𝑓 : 𝐼 × 𝑌 → 𝑋 is called Stepanov 𝑝(𝑥)-almost periodic, 𝑆𝑝(𝑥)-
almost periodic for short, iff 𝑓 : 𝐼 × 𝑌 → 𝐿𝑝(𝑥)([0, 1] : 𝑋) is almost
periodic. The vector space consisting of all such functions will be denoted
by 𝐴𝑃𝑆𝑝(𝑥)(𝐼 × 𝑌 : 𝑋).

(ii) A function 𝑓 : [0,∞) × 𝑌 → 𝑋 is said to be asymptotically 𝑆𝑝(𝑥)-almost
periodic iff 𝑓 : [0,∞) × 𝑌 → 𝐿𝑝(𝑥)([0, 1] : 𝑋) is asymptotically almost
periodic. The vector space consisting of all such functions will be denoted
by 𝐴𝐴𝑃𝑆𝑝(𝑥)([0,∞)× 𝑌 : 𝑋).

The proof of following proposition is very similar to the proof of [293, Lemma
2.2.6] and therefore omitted.

Proposition 3.12.17. Let 𝑝 ∈ 𝒫([0, 1]). Suppose that 𝑓 : [0,∞) × 𝑌 → 𝑋
is an asymptotically 𝑆𝑝(𝑥)-almost periodic function. Then there are two functions
𝑔 : R× 𝑌 → 𝑋 and 𝑞 : [0,∞)× 𝑌 → 𝑋 satisfying that for each 𝑦 ∈ 𝑌 the functions
𝑔(·, 𝑦) and 𝑞(·, 𝑦) are Stepanov 𝑝(𝑥)-bounded, as well as that the following holds:

(i) 𝑔 : R× 𝑌 → 𝐿𝑝(𝑥)([0, 1] : 𝑋) is almost periodic,
(ii) 𝑞 ∈ 𝐶0([0,∞)× 𝑌 : 𝐿𝑝(𝑥)([0, 1] : 𝑋)),
(iii) 𝑓(𝑡, 𝑦) = 𝑔(𝑡, 𝑦) + 𝑞(𝑡, 𝑦) for all 𝑡 > 0 and 𝑦 ∈ 𝑌 .

Moreover, for every compact set 𝐾 ⊆ 𝑌 , there exists an increasing sequence (𝑡𝑛)𝑛∈N
of positive reals such that lim𝑛→∞ 𝑡𝑛 = ∞ and 𝑔(𝑡, 𝑦) = lim𝑛→∞ 𝑓(𝑡+ 𝑡𝑛, 𝑦) for all
𝑦 ∈ 𝑌 and a.e. 𝑡 > 0.

In [293, Theorem 2.7.1, Theorem 2.7.2], we have slightly improved the im-
portant composition principle atributed to W. Long, S.-H. Ding [399, Theorem
2.2]. Further refinements for 𝑆𝑝(𝑥)-almost periodicity can be deduced similarly,
with appealing to Lemma 3.12.1(i)–(iii) and the arguments employed in the proof
of [399, Theorem 2.2]:

Theorem 3.12.18. Let 𝐼 = R or 𝐼 = [0,∞), and let 𝑝 ∈ 𝒫([0, 1]). Suppose
that the following conditions hold:

(i) 𝑓 ∈ 𝐴𝑃𝑆𝑝(𝑥)(𝐼 × 𝑌 : 𝑋) and there exist a function 𝑟 ∈ 𝒫([0, 1]) such that
𝑟(·) > max(𝑝(·), 𝑝(·)/𝑝(·)− 1) and a function 𝐿𝑓 ∈ 𝐿

𝑟(𝑥)
𝑆 (𝐼) such that:

(461) ‖𝑓(𝑡, 𝑥)− 𝑓(𝑡, 𝑦)‖ 6 𝐿𝑓 (𝑡)‖𝑥− 𝑦‖𝑌 , 𝑡 ∈ 𝐼, 𝑥, 𝑦 ∈ 𝑌 ;

(ii) 𝑢 ∈ 𝐴𝑃𝑆𝑝(𝑥)(𝐼 : 𝑌 ), and there exists a set E ⊆ 𝐼 with 𝑚(E) = 0 such that
𝐾 := {𝑢(𝑡) : 𝑡 ∈ 𝐼 r E} is relatively compact in 𝑌 ; here, 𝑚(·) denotes the
Lebesgue measure.
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Define 𝑞 ∈ 𝒫([0, 1]) by 𝑞(𝑥) := 𝑝(𝑥)𝑟(𝑥)/𝑝(𝑥) + 𝑟(𝑥), if 𝑥 ∈ [0, 1] and 𝑟(𝑥) < ∞,
𝑞(𝑥) := 𝑝(𝑥), if 𝑥 ∈ [0, 1] and 𝑟(𝑥) = ∞. Then 𝑞(𝑥) ∈ [1, 𝑝(𝑥)) for 𝑥 ∈ [0, 1],
𝑟(𝑥) <∞ and 𝑓(·, 𝑢(·)) ∈ 𝐴𝑃𝑆𝑞(𝑥)(𝐼 : 𝑋).

Concerning asymptotical two-parameter Stepanov 𝑝(𝑥)-almost periodicity, we
can deduce the following composition principles with 𝑋 = 𝑌 ; the proof is very
similar to those of [293, Proposition 2.7.3, Proposition 2.7.4] established in the
case of constant functions 𝑝, 𝑞, 𝑟:

Proposition 3.12.19. Let 𝐼 = [0,∞), and let 𝑝 ∈ 𝒫([0, 1]). Suppose that the
following conditions hold:

(i) 𝑔 ∈ 𝐴𝑃𝑆𝑝(𝑥)(𝐼 × 𝑋 : 𝑋), there exist a function 𝑟 ∈ 𝒫([0, 1]) such that
𝑟(·) > max(𝑝(·), 𝑝(·)/𝑝(·) − 1) and a function 𝐿𝑔 ∈ 𝐿

𝑟(𝑥)
𝑆 (𝐼) such that

(461) holds with the function 𝑓(·, ·)replaced by the function 𝑔(·, ·) therein.
(ii) 𝑣 ∈ 𝐴𝑃𝑆𝑝(𝑥)(𝐼 : 𝑋), and there exists a set E ⊆ 𝐼 with 𝑚(E) = 0 such

that 𝐾 = {𝑣(𝑡) : 𝑡 ∈ 𝐼 r E} is relatively compact in X.
(iii) 𝑓(𝑡, 𝑥) = 𝑔(𝑡, 𝑥)+𝑞(𝑡, 𝑥) for all 𝑡 > 0 and 𝑥 ∈ 𝑋, where 𝑞 ∈ 𝐶0([0,∞)×𝑋 :

𝐿𝑞(𝑥)([0, 1] : 𝑋)) with 𝑞(·) defined as above;
(iv) 𝑢(𝑡) = 𝑣(𝑡) + 𝜔(𝑡) for all 𝑡 > 0, where �̂� ∈ 𝐶0([0,∞) : 𝐿𝑝(𝑥)([0, 1] : 𝑋)).
(v) There exists a set 𝐸′ ⊆ 𝐼 with 𝑚(𝐸′) = 0 such that 𝐾 ′ = {𝑢(𝑡) : 𝑡 ∈ 𝐼r𝐸′}

is relatively compact in 𝑋.
Then 𝑓(·, 𝑢(·)) ∈ 𝐴𝐴𝑃𝑆𝑞(𝑥)(𝐼 : 𝑋).

3.12.4. Generalized (asymptotical) almost periodicity in Lebesgue
spaces with variable exponents 𝐿𝑝(𝑥): action of convolution products.
Throughout this section, we assume that 𝑝 ∈ 𝒫([0, 1]) and a multivalued linear
operator 𝒜 fulfills the condition (P). We will first investigate infinite convolution
products. The results obtained can be simply incorporated in the study of exis-
tence and uniqueness of almost periodic solutions of the following abstract Cauchy
differential inclusion of first order

𝑢′(𝑡) ∈ 𝒜𝑢(𝑡) + 𝑔(𝑡), 𝑡 ∈ R

and the following abstract Cauchy relaxation differential inclusion

(462) 𝐷𝛾
𝑡,+𝑢(𝑡) ∈ −𝒜𝑢(𝑡) + 𝑔(𝑡), 𝑡 ∈ R,

where 𝐷𝛾
𝑡,+ denotes the Weyl–Liouville fractional derivative of order 𝛾 ∈ (0, 1) and

𝑔 : R × 𝑋 → 𝑋 satisfies certain assumptions; see [293] for further information in
this direction. Keeping in mind composition principles clarified in the previous
section, it is almost straightforward to reformulate some known results concerning
semilinear analogues of the above inclusions (see e.g. [293, Theorem 2.7.6–Theorem
2.7.9; Theorem 2.9.10–Theorem 2.9.11; Theorem 2.9.17–Theorem 2.9.18]); because
of that, this question will not be examined here for the sake of brevity.

We start by stating the following generalization of [337, Proposition 2.11]
(the reflexion at zero keeps the spaces of Stepanov 𝑝-almost periodic functions
unchanged, which may or may not be the case with the spaces of Stepanov 𝑝(𝑥)-
almost periodic functions):
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Proposition 3.12.20. Suppose that 𝑞 ∈ 𝒫([0, 1]), 1/𝑝(𝑥) + 1/𝑞(𝑥) = 1 and
(𝑅(𝑡))𝑡>0 ⊆ 𝐿(𝑋,𝑌 ) is a strongly continuous operator family satisfying that 𝑀 :=∑︀∞

𝑘=0 ‖𝑅(· + 𝑘)‖𝐿𝑞(𝑥)[0,1] < ∞. If 𝑔 : R → 𝑋 is 𝑆𝑝(𝑥)-almost periodic, then the
function 𝐺 : R → 𝑌 , given by (433) with the function 𝑓(·) replaced by the function
𝑔(·) therein, is well-defined and almost periodic.

Proof. Without loss of generality, we may assume that 𝑋 = 𝑌 . It is clear
that, for every 𝑡 ∈ R, we have that 𝐺(𝑡) =

∫︀∞
0
𝑅(𝑠)𝑔(𝑡 − 𝑠)𝑑𝑠 and that the last

integral is absolutely convergent due to Lemma 3.12.1(i) and 𝑆𝑝(𝑥)-boundedness of
function 𝑔(·):∫︁ ∞

0

‖𝑅(𝑠)‖‖𝑔(𝑡− 𝑠)‖𝑑𝑠 =
∞∑︁
𝑘=0

∫︁ 𝑘+1

𝑘

‖𝑅(𝑠)‖‖𝑔(𝑡− 𝑠)‖𝑑𝑠

=

∞∑︁
𝑘=0

∫︁ 1

0

‖𝑅(𝑠+ 𝑘)‖‖𝑔(𝑡− 𝑠− 𝑘)‖𝑑𝑠

6 2

∞∑︁
𝑘=0

‖𝑅(·+ 𝑘)‖𝐿𝑞(𝑥)([0,1]:𝑋)‖𝑔(𝑡− 𝑘 − ·)‖𝐿𝑝(𝑥)([0,1]:𝑋)

6 2𝑀 sup
𝑡∈R

‖𝑔(· − 𝑡)‖𝐿𝑝(𝑥)([0,1]:𝑋),

for any 𝑡 ∈ R. Let a number 𝜀 > 0 be fixed. Then there is a finite number 𝑙 > 0
such that any subinterval 𝐼 of R of length 𝑙 contains a number 𝜏 ∈ 𝐼 such that
‖𝑔(𝑡− 𝜏 + ·)− 𝑔(𝑡+ ·)‖𝐿𝑝(𝑥)([0,1]:𝑋) 6 𝜀, 𝑡 ∈ R. Invoking Lemma 3.12.1(i) and this
fact, we get

‖𝐺(𝑡+ 𝜏)−𝐺(𝑡)‖ 6
∫︁ ∞

0

‖𝑅(𝑟)‖ · ‖𝑔(𝑡+ 𝜏 − 𝑟)− 𝑔(𝑡− 𝑟)‖𝑑𝑟

=

∞∑︁
𝑘=0

∫︁ 𝑘+1

𝑘

‖𝑅(𝑟)‖ · ‖𝑔(𝑡+ 𝜏 − 𝑟)− 𝑔(𝑡− 𝑟)‖𝑑𝑟

=

∞∑︁
𝑘=0

∫︁ 1

0

‖𝑅(𝑟 + 𝑘)‖ · ‖𝑔(𝑡+ 𝜏 − 𝑟 − 𝑘)− 𝑔(𝑡− 𝑟 − 𝑘)‖𝑑𝑟

6 2

∞∑︁
𝑘=0

‖𝑅(·+ 𝑘)‖𝐿𝑞(𝑥)[0,1]‖𝑔(𝑡+ 𝜏 − · − 𝑘)− 𝑔(𝑡− · − 𝑘)‖𝐿𝑝(𝑥)[0,1]

= 2

∞∑︁
𝑘=0

‖𝑅(·+ 𝑘)‖𝐿𝑞(𝑥)[0,1]‖𝑔(· − 𝑡− 𝜏 + 𝑘)− 𝑔(· − 𝑡+ 𝑘)‖𝐿𝑝(𝑥)[0,1]

6 2𝜀

∞∑︁
𝑘=0

‖𝑅(·+ 𝑘)‖𝐿𝑞(𝑥)[0,1] = 2𝑀𝜀, 𝑡 ∈ R,

which clearly implies that the set of all 𝜀-periods of 𝐺(·) is relatively dense in R.
It remains to be proved the uniform continuity of 𝐺(·). Since ^̌𝑔(·) is uniformly
continuous, we have the existence of a number 𝛿 ∈ (0, 1) such that

(463) ‖𝑔(· − 𝑡′)− 𝑔(· − 𝑡)‖𝐿𝑝(𝑥)[0,1] < 𝜀, provided 𝑡, 𝑡′ ∈ R and |𝑡− 𝑡′| < 𝛿.
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For any 𝛿′ ∈ (0, 𝛿), the above computation with 𝜏 = 𝛿′ = 𝑡′ − 𝑡 and (463) together
imply that, for every 𝑡 ∈ R,

‖𝐺(𝑡+ 𝛿′)−𝐺(𝑡)‖ 6 2

∞∑︁
𝑘=0

‖𝑅(·+ 𝑘)‖𝐿𝑞(𝑥)[0,1]‖𝑔(· − 𝑡′ + 𝑘)− 𝑔(· − 𝑡+ 𝑘)‖𝐿𝑝(𝑥)[0,1]

6 2𝜀

∞∑︁
𝑘=0

‖𝑅(·+ 𝑘)‖𝐿𝑞(𝑥)[0,1] = 2𝑀𝜀.

This completes the proof of proposition. �

Example 3.12.21. (i) Suppose that 𝛽 ∈ (0, 1) and (𝑅(𝑡))𝑡>0 = (𝑇 (𝑡))𝑡>0

is a degenerate semigroup generated by 𝒜. Let us recall that there exists a
finite constant 𝑀 > 0 such that ‖𝑇 (𝑡)‖ 6𝑀𝑡𝛽−1, 𝑡 ∈ (0, 1] and ‖𝑇 (𝑡)‖ 6
𝑀𝑒−𝑐𝑡, 𝑡 > 1. Let 𝑝0 > 1 be such that

𝑝0
𝑝0 − 1

(𝛽 − 1) 6 −1,

let 𝑝 ∈ 𝒫([0, 1]), and let ‖𝑇 (·)‖𝐿𝑞(𝑥)[0,1] < ∞. Assume that we have
constructed a function 𝑔 ∈ 𝐴𝑃𝑆𝑝(𝑥)(R : 𝑋) such that 𝑔 /∈ 𝐴𝑃𝑆𝑝(R : 𝑋)
for all 𝑝 > 𝑝0 (Question: Could we manipulate here somehow with the
construction established in [81, Example, p. 70]?). Then, in our concrete
situation, [337, Proposition 2.11] cannot be applied since

𝑝

𝑝− 1
(𝛽 − 1) 6 −1, 𝑝 ∈ [1, 𝑝0).

Now we will briefly explain that
∑︀∞

𝑘=0 ‖𝑅(· + 𝑘)‖𝐿𝑞(𝑥)[0,1] < ∞, show-
ing that Proposition 3.12.20 is applicable. Strictly speaking, for 𝑘 = 0,
‖𝑇 (·)‖𝐿𝑞(𝑥)[0,1] <∞ by our assumption, while, for 𝑘 > 1, it can be simply
shown that ‖𝑅(·+𝑘)‖𝐿𝑞(𝑥)[0,1] 6𝑀𝑒−𝑐𝑘 so that

∑︀∞
𝑘=0 ‖𝑅(·+𝑘)‖𝐿𝑞(𝑥)[0,1] <

∞, as claimed.
(ii) By a mild solution of (462), we mean the function 𝑡 ↦→

∫︀ 𝑡

−∞𝑅𝛾(𝑡 −
𝑠)𝑔(𝑠)𝑑𝑠, 𝑡 ∈ R. Let 𝑝 ∈ 𝒫([0, 1]), and let ‖𝑅𝛾(·)‖𝐿𝑞(𝑥)[0,1] < ∞. Then,
for 𝑘 > 1, we have ‖𝑅𝛾(·+𝑘)‖𝐿𝑞(𝑥)[0,1] 6𝑀2𝑘

−1−𝛾 . Hence,
∑︀∞

𝑘=0 ‖𝑅𝛾(·+
𝑘)‖𝐿𝑞(𝑥)[0,1] <∞ and we can apply Proposition 3.12.20.

In the following proposition, whose proof is very similar to that of [149, Propo-
sition 3.12], we state some invariance properties of generalized asymptotical almost
periodicity in Lebesgue spaces with variable exponents 𝐿𝑝(𝑥) under the action of
finite convolution products (see also [293, Proposition 2.7.5, Lemma 2.9.3] for sim-
ilar results). This proposition generalizes [337, Proposition 2.13] provided that
𝑝 > 1 in its formulation.

Proposition 3.12.22. Suppose that 𝑝 ∈ 𝒫([0, 1]), 𝑞 ∈ 𝐷+([0, 1]), 1/𝑝(𝑥) +
1/𝑞(𝑥) = 1 and (𝑅(𝑡))𝑡>0 ⊆ 𝐿(𝑋) is a strongly continuous operator family satisfying
that, for every 𝑡 > 0, we have that 𝑚𝑡 :=

∑︀∞
𝑘=0 ‖𝑅(· + 𝑡 + 𝑘)‖𝐿𝑞(𝑥)[0,1] < ∞.

Suppose, further, that 𝑔 : R → 𝑋 is 𝑆𝑝(𝑥)-almost periodic, 𝑞 ∈ 𝐿
𝑝(𝑥)
𝑆 ([0,∞) : 𝑋)

and 𝑓(𝑡) = 𝑔(𝑡) + 𝑞(𝑡), 𝑡 > 0. Let 𝑟1, 𝑟2 ∈ 𝒫([0, 1]) and the following holds:
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(i) For every 𝑡 > 0, the mapping 𝑥 ↦→
∫︀ 𝑡+𝑥

0
𝑅(𝑡 + 𝑥 − 𝑠)𝑞(𝑠)𝑑𝑠, 𝑥 ∈ [0, 1]

belongs to the space 𝐿𝑟1(𝑥)([0, 1] : 𝑋) and we have

lim
𝑡→+∞

⃦⃦⃦⃦ ∫︁ 𝑡+𝑥

0

𝑅(𝑡+ 𝑥− 𝑠)𝑞(𝑠)𝑑𝑠

⃦⃦⃦⃦
𝐿𝑟1(𝑥)[0,1]

= 0.

(ii) For every 𝑡 > 0, the mapping 𝑥 ↦→ 𝑚𝑡+𝑥, 𝑥 ∈ [0, 1] belongs to the space
𝐿𝑟2(𝑥)[0, 1] and we have

lim
𝑡→+∞

‖𝑚𝑡+𝑥‖𝐿𝑟2(𝑥)[0,1] = 0.

Then the function 𝐻(·), given by

𝐻(𝑡) :=

∫︁ 𝑡

0

𝑅(𝑡− 𝑠)𝑓(𝑠)𝑑𝑠, 𝑡 > 0,

is well defined, bounded and belongs to the class 𝐴𝑃𝑆𝑝(𝑥)(R : 𝑋) + 𝑆
𝑟1(𝑥)
0 ([0,∞) :

𝑋) + 𝑆
𝑟2(𝑥)
0 ([0,∞) : 𝑋), with the meaning clear.

Remark 3.12.23. In [337, Remark 2.14], we have examined the conditions
under which the function 𝐻(·) defined above is asymptotically almost periodic,
provided that the function 𝑔(·) is 𝑆𝑝-almost periodic for some 𝑝 ∈ [1,∞). The
interested reader may try to analyze similar problems with function 𝑔(·) being
𝑆𝑝(𝑥)-almost periodic for some 𝑝 ∈ 𝒫([0, 1]).

3.12.5. Some applications. Let Ω ⊆ R𝑛 be an open bounded subset with
smooth boundary 𝜕Ω and let 1 < 𝑝 < ∞. Among other things, one can make use
of Proposition 3.12.22 to establish the existence and uniqueness of asymptotically
𝑆𝑝(𝑥)-almost automorphic solutions to the damped Poisson-wave type equation, in
the spaces 𝑋 := 𝐻−1(Ω) or 𝑋 := 𝐿𝑝(Ω), given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕

𝜕𝑡

(︁
𝑚(𝑥)

𝜕𝑢

𝜕𝑡

)︁
+ (2𝜔𝑚(𝑥)−Δ)

𝜕𝑢

𝜕𝑡
+ (𝐴(𝑥;𝐷)− 𝜔Δ

+ 𝜔2𝑚(𝑥))𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), 𝑡 > 0, 𝑥 ∈ Ω;

𝑢 =
𝜕𝑢

𝜕𝑡
= 0, (𝑥, 𝑡) ∈ 𝜕Ω× [0,∞),

𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑚(𝑥)
[︁(︁𝜕𝑢
𝜕𝑡

)︁
(𝑥, 0) + 𝜔𝑢0

]︁
= 𝑚(𝑥)𝑢1(𝑥), 𝑥 ∈ Ω,

where 𝑚(𝑥) ∈ 𝐿∞(Ω), 𝑚(𝑥) > 0 a.e. 𝑥 ∈ Ω, Δ is the Dirichlet Laplacian in 𝐿2(Ω),
acting on its maximal domain, 𝐻1

0 (Ω)∩𝐻2(Ω), and 𝐴(𝑥;𝐷) is a second-order linear
differential operator on Ω with continuous coefficients on Ω̄, see, e.g., [199, Example
6.1] and [293] for further details.

Notice that we can also consider the existence and uniqueness of asymptotically
𝑆𝑝(𝑥)-almost periodic solutions to the following fractional damped Poisson-wave
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type equation, in the spaces 𝑋 := 𝐻−1(Ω) or 𝑋 := 𝐿𝑝(Ω), given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
D𝛾

𝑡 (𝑚(𝑥)D𝛾
𝑡 𝑢) + (2𝜔𝑚(𝑥)−Δ)D𝛾

𝑡 𝑢+ (𝐴(𝑥;𝐷)

− 𝜔Δ+ 𝜔2𝑚(𝑥))𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), 𝑡 > 0, 𝑥 ∈ Ω;
𝑢 = D𝛾

𝑡 𝑢 = 0, (𝑥, 𝑡) ∈ 𝜕Ω× [0,∞),

𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑚(𝑥)[D𝛾
𝑡 𝑢(𝑥, 0) + 𝜔𝑢0] = 𝑚(𝑥)𝑢1(𝑥), 𝑥 ∈ Ω.

Additionally, it is also clear that Proposition 3.12.20 can be used to study
the existence and uniqueness of almost periodic solutions of the following abstract
integral inclusion

𝑢(𝑡) ∈ 𝒜
∫︁ 𝑡

−∞
𝑎(𝑡− 𝑠)𝑢(𝑠)𝑑𝑠+ 𝑔(𝑡), 𝑡 ∈ R

where 𝑎 ∈ 𝐿1
𝑙𝑜𝑐([0,∞)), 𝑎 ̸= 0, 𝑔 : R → 𝑋 is 𝑆𝑝(𝑥)-almost periodic and 𝒜 is a closed

multivalued linear operator on 𝑋, see, e.g., [293].

3.13. Appendix and notes

Without any doubt, the most important monograph which obeys the multival-
ued linear operators approach to abstract degenerate differential equations is [199],
written by A. Favini and A. Yagi. The fundamental part of this monograph is Chap-
ter III, where the authors have considered the generation of infinitely differentiable
semigroups by multivalued linear operators, provided that there exist finite con-
stants 𝑐, 𝑀 > 0 and 𝛽 ∈ (0, 1] such that the condition (PW) holds (cf. Section 3.5
for more details). As already mentioned, a great part of results from [199, Section
3.2-Section 3.5] is not attainable in fractional case.

We start by sketching briefly the most relevant details about fractional powers
and interpolation theory for multivalued linear operators satisfying the condition
(PW); cf. [181]. Let 𝒜 be such an MLO, and let (𝑇 (𝑡))𝑡>0 be a semigroup generated
by 𝒜 (the pivot space is one of Banach’s and will be denoted by 𝐸). Then the
fractional power (−𝒜)𝜃 is defined for |𝜃| > 1−𝛽 and it is very difficult to tell what
would be the fractional power (−𝒜)𝜃 in the case that |𝜃| 6 1−𝛽 (we can provide a
substantially larger information base about fractional powers in the classical case
𝛽 = 1), without using some regularizing techniques established in the previous
section. The spaces (𝐸;𝐷(𝒜))𝛾,𝑝 and 𝐸𝛾,𝑝

𝒜 are defined as follows. If 𝑋 is a Banach
space, 𝑔 : (0,∞) → 𝑋 is an 𝑋-valued strongly measurable function and 𝑞 ∈ [1,∞),
set ‖𝑔‖𝐿*

𝑞(𝑋) := (
∫︀∞
0

‖𝑔(𝑡)‖𝑞𝑋
𝑑𝑡
𝑡 )

1/𝑞 and ‖𝑔‖𝐿*
∞(𝑋) := ess sup𝑡>0 ‖𝑔(𝑡)‖𝑋 . Suppose

that either 𝑝0, 𝑝1 ∈ [1,∞) or 𝑝0 = 𝑝1 = ∞; then for any 𝛾 ∈ (0, 1), we set
𝑝 = ((1− 𝛾)𝑝−1

0 + 𝛾𝑝−1
1 )−1 if 𝑝0, 𝑝1 ∈ [1,∞), and 𝑝 = ∞ if 𝑝0 = 𝑝1 = ∞. The real

interpolation space (𝐸;𝐷(𝒜))𝛾,𝑝 between 𝐸 and 𝐷(𝒜) is defined by

(𝐸;𝐷(𝒜))𝛾,𝑝 :=
{︀
𝑥 ∈ 𝐸 : 𝑥 = 𝑣0(𝑡) + 𝑣1(𝑡) for some 𝑡 > 0, where

𝑣0 ∈ 𝐶((0,∞) : 𝐸), 𝑣1 ∈ 𝐶((0,∞) : [𝐷(𝒜)]),

‖ ·𝛾 𝑣0(·)‖𝐿*
𝑝0

(𝐸) + ‖ ·𝛾−1 𝑣1(·)‖𝐿*
𝑝1

([𝐷(𝒜)]) <∞
}︀
.



3.13. APPENDIX AND NOTES 480

Equipped with the norm

‖𝑥‖(𝐸;𝐷(𝒜))𝛾,𝑝
:= inf

𝑣0,𝑣1

[︀
‖ ·𝛾 𝑣0(·)‖𝐿*

𝑝0
(𝐸) + ‖ ·𝛾−1 𝑣1(·)‖𝐿*

𝑝1
([𝐷(𝒜)])

]︀
,

where the infimum is taken over all possible representations of 𝑥 having the above
form, (𝐸;𝐷(𝒜))𝛾,𝑝 becomes a Banach space. It is well known that there exists
a constant 𝑐1(𝛾, 𝑝) > 0 such that the interpolation inequality ‖𝑥‖(𝐸;𝐷(𝒜))𝛾,𝑝

6
𝑐1(𝛾, 𝑝)‖𝑥‖1−𝛾‖𝑥‖𝛾[𝐷(𝒜)], 𝑥 ∈ 𝐷(𝒜) holds, as well as that [𝐷(𝒜)] →˓ (𝐸;𝐷(𝒜))𝛾,𝑝 →˓
𝐸. The Banach space 𝐸𝛾,𝑝

𝒜 (𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞]) is defined as follows:

𝐸𝛾,𝑝
𝒜 :=

{︀
𝑥 ∈ 𝐸 ; [𝑥]𝐸𝛾,𝑝

𝒜
:= ‖𝑡𝛾 [𝑡(𝑡−𝐴)−1𝑥− 𝑥]‖𝐿*

𝑝(𝐸) <∞,

‖𝑥‖𝐸𝛾,𝑝
𝒜

:= ‖𝑥‖+ [𝑥]𝐸𝛾,𝑝
𝒜

}︀
.

Observe that we have already used the space 𝐸𝛾
𝒜 = 𝐸𝛾,∞

𝒜 in our previous work.
The following holds:
(a) [𝐷((−𝒜)𝜃1)] →˓ [𝐷((−𝒜)𝜃2)] for 1− 𝛽 < 𝜃2 < 𝜃1 + 𝛽 − 1;
(b) If 𝛾 ∈ (0, 1) and 1 6 𝑝1 6 𝑝 6 𝑝2 6∞, then

[𝐷(𝒜)] →˓ (𝐸;𝐷(𝒜))𝛾,𝑝1
→˓ (𝐸;𝐷(𝒜))𝛾,𝑝 →˓ (𝐸;𝐷(𝒜))𝛾,𝑝2

→˓ 𝐸;

furthermore, if 0 < 𝛾2 < 𝛾1 < 1, then

(𝐸;𝐷(𝒜))𝛾1,∞ →˓ (𝐸;𝐷(𝒜))𝛾2,1;

(c) 𝐸𝛾,𝑝
𝒜 ∩ 𝒜0 = {0} for 𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞];

(d) 𝐸𝛾,𝑝
𝒜 →˓ (𝐸;𝐷(𝒜))𝛾,𝑝 for 𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞];

(e) (𝐸;𝐷(𝒜))𝛾,𝑝 →˓ 𝐸𝛾+𝛽−1,𝑝
𝒜 for 𝛾 ∈ (1 − 𝛽, 1), 𝑝 ∈ [1,∞] and 𝐸𝛾,1

𝒜 →˓
[𝐷((−𝒜)𝜃)] for 𝛾 ∈ (1− 𝛽, 1);

(f) (𝑇 (𝑡))𝑡>0 is strongly continuous on (𝐸;𝐷(𝒜))𝛾,𝑝 and 𝐸𝛾,𝑝
𝒜 for 𝛾 ∈ (1 −

𝛽, 1), 𝑝 ∈ [1,∞];
(g) Define 𝑇 (0) := 𝐼 and let 𝑋 ∈ {𝐸𝛾,𝑝

𝒜 , (𝐸;𝐷(𝒜))𝛾,𝑝} (𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞]).
Then for each 𝛾 ∈ (2− 𝛼− 𝛽, 1) there exists a constant 𝑐 > 0 such that

‖𝑇 (𝑡)− 𝑇 (𝑠)‖𝐿(𝑋,𝐸) 6 𝑐(𝑡− 𝑠)(𝛼+𝛽+𝛾−2)/𝛼 for 𝑡 > 𝑠 > 0.

For further information about fractional powers and interpolation spaces of multi-
valued linear operators, as well as their applications in the qualitative analysis of
abstract degenerate differential equations of first order, we refer the reader to the
paper [180] by A. Favaron.

Concerning the monograph [199], we only want to say a few new words about
the most important results from [199, Chapter VI], which cannot be so simply
reconsidered in fractional case, as well. The first section of this chapter is devoted
to the study of following initial value problem of parabolic type:

(464)
𝑑

𝑑𝑡
(𝐶𝑢′) +𝐵𝑢′ +𝐴𝑢 = 𝑓(𝑡), 𝑡 ∈ (0, 𝑇 ]; 𝑢(0) = 𝑢0, 𝐶𝑢

′(0) = 𝐶𝑢1,

where 𝐴, 𝐵, 𝐶 are three closed linear operators acting on 𝐸, 𝐷(𝐵) ⊆ 𝐷(𝐴) and 𝐵
has a bounded inverse. By a solution of (464) we mean any function 𝑢 ∈ 𝐶1((0, 𝑇 ] :
𝐸) such that 𝑢(𝑡) ∈ 𝐷(𝐴), 𝑡 ∈ (0, 𝑇 ], 𝑢′(𝑡) ∈ 𝐷(𝐵) ∩ 𝐷(𝐶), 𝑡 ∈ (0, 𝑇 ], 𝐶𝑢′ ∈
𝐶1((0, 𝑇 ] : 𝐸), 𝐵𝑢′ ∈ 𝐶((0, 𝑇 ] : 𝐸), (464) holds on (0, 𝑇 ] and lim𝑡→0+ 𝑢(𝑡) = 𝑢0,
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lim𝑡→0+ 𝐶𝑢
′(𝑡) = 𝐶𝑢1. As already mentioned in Example 3.7.14(ii), the problem

(464) can be rewritten in the following matricial form
𝑑

𝑑𝑡
𝑀𝑧(𝑡) = 𝐿𝑧(𝑡) + 𝐹 (𝑡), 𝑡 ∈ (0, 𝑇 ],

where

𝑀 =

[︂
𝐼 𝑂
𝑂 𝐶

]︂
, 𝐿 =

[︂
𝑂 𝐼
−𝐴 −𝐵

]︂
and 𝐹 (𝑡) =

[︂
0
𝑓(𝑡)

]︂
(𝑡 ∈ (0, 𝑇 ]).

The underlying Banach space is chosen to be [𝐷(𝐵)] × 𝐸. Using this approach,
the authors have proved that there exists a unique solution of (464) provided the
validity of following conditions (cf. [199, Theorem 6.1]):

(i) There exist constants 𝑐 > 0, 𝛼 ∈ (0, 1] and 𝛽 ∈ (0, 𝛼] such that

Θ𝛼,𝑐 := {𝜆 ∈ C : Re𝜆 6 𝑐(1 + | Im𝜆|)𝛼} ⊆ 𝜌𝐶(𝐵)

and

‖𝐶(𝜆𝐶 +𝐵)−1‖ = 𝑂((1 + |𝜆|)−𝛽), 𝜆 ∈ −Θ𝛼,𝑐;

(ii) 𝑢0, 𝑢1 ∈ 𝐷(𝐵), 2𝛼+ 𝛽 > 2, (2− 𝛼− 𝛽)/𝛼 < 𝜎 6 1, and
(iii) 𝑓 ∈ 𝐶𝜎([0, 𝑇 ] : 𝐸).

Under some additional conditions, in [199, Theorem 6.2] it has been shown the
Hölder continuity of functions 𝐵𝑢′ and (𝐶𝑢′)′, where 𝑢 is a solution of (464).

Set 𝑈 := 𝐴𝐵−1 and 𝒜 := 𝐵𝐶−1. The conditions
(a) ‖𝐵(𝜆𝐵 +𝐴)−1‖ = 𝑂((1 + |𝜆|)−𝛾), 𝜆 ∈ −Θ𝛼,𝑐,

where 0 < 𝛾 6 1, and
(b) ‖𝑈(𝜆+𝒜)−1‖ = 𝑂((1 + |𝜆|)−𝛿), 𝜆 ∈ −Θ𝛼,𝑐, |𝜆| suff. large,

where 𝛿 > 0,
play a crucial role in [199, Theorem 6.3–Theorem 6.4]. The leading feature of [199,
Theorem 6.7] is to extend these assertions to the following higher-order initial value
problem: ⎧⎪⎨⎪⎩

𝑑
𝑑𝑡 (𝐴𝑛𝑢

(𝑛−1)) +
∑︀𝑛−1

𝑗=0 𝐴𝑗𝑢
(𝑗) = 𝑓(𝑡), 𝑡 ∈ (0, 𝑇 ],

𝑢(𝑗)(0) = 𝑢𝑗 , 0 6 𝑗 6 ⌈𝛼⌉ − 2,

𝐴𝑛𝑢
(𝑛−1)(0) = 𝐴𝑛𝑢𝑛−1,

by using an idea of M. K. Balaev [43]. In [199, Section 6.2], the authors have
presented a great number of concrete applications of results from Section 6.1, while
in [199, Section 6.3], the complete second order degenerate Cauchy problem{︃

𝐶𝑢′′(𝑡) +𝐵𝑢′(𝑡) +𝐴𝑢(𝑡) = 𝑓(𝑡), 𝑡 ∈ (0, 𝑇 ],

𝑢(0) = 𝑢0, 𝑢
′(0) = 𝑢1,

has been considered in a Hilbert space 𝐻. The abstract results have been applied
in the analysis of Poisson wave equation⎧⎪⎨⎪⎩

𝑚1(𝑥)
𝜕2𝑢
𝜕𝑡2 (𝑥, 𝑡) +𝑚2(𝑥)

𝜕𝑢
𝜕𝑡 (𝑥, 𝑡)−Δ𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄,

𝑢(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ Σ,

𝑢(𝑥, 0) = 𝑢0(𝑥),
𝜕𝑢
𝜕𝑡 𝑢(𝑥, 0) = 𝑢1(𝑥), 𝑥 ∈ Ω,
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in 𝐿2(Ω), where Ω is an open bounded domain in R𝑛 with a smooth boundary
Γ, 𝑄 = Ω × (0, 𝑇 ), Σ = Γ × (0, 𝑇 ) and 𝑚1(𝑥), 𝑚2(𝑥) are two given nonnegative
continuous functions on Ω̄. We would like to address the problem of qualitative
analysis of some fractional analogues of Poisson wave equation to our readers.

Section 6.5 is devoted to the study of initial value problem{︃
− 𝑑2

𝑑𝑡2 (𝐵𝑢) +𝐴𝑢 = 𝑓(𝑡), 0 6 𝑡 6 1,

𝐵𝑢(0) = 𝐵𝑢(1) = 0,

provided that there exist constants 𝑐 > 0, 𝛼 ∈ (0, 1] and 𝛽 ∈ (0, 𝛼] such that
Θ𝛼,𝑐 ⊆ 𝜌(𝐴𝐵−1) and ‖𝐵(𝜆𝐵 − 𝐴)−1‖ = 𝑂((1 + |𝜆|)−𝛽), 𝜆 ∈ Θ𝛼,𝑐. Finally, the
abstract Cauchy problem {︃

𝑢′′(𝑡) = 𝑡𝑚𝐵𝑢(𝑡), 𝑡 > 0,

𝑢(0) = 𝑢0,
𝑑𝑢
𝑑𝑡 (0) = 𝑢1,

where 𝑚 > 0 and 𝐵 is a closed densely defined operator in a Banach space 𝐸
satisfying that there exists a finite constant 𝑀 > 0 such that ‖(𝜆+𝐵)−1‖ 6𝑀𝜆−1,
𝜆 > 0 has been investigated in Section 6.6.

Semilinear degenerate Cauchy inclusions. Concerning semilinear degen-
erate differential inclusions of first order, we can warmly recommend the reading of
monograph [268] by M. Kamenskii, V. Obukhovskii and P. Zecca. In what follows,
we shall briefly describe the most important results from the paper [437].

Suppose that 𝐸 is a real reflexive Banach space, 𝐹 : [0, 𝑇 ] × 𝐸 → 𝑃 (𝐸) is a
given multimap, as well as that 𝐴 and 𝐵 are two single-valued linear operators on
𝐸 satisfying that 𝐷(𝐴) ⊆ 𝐷(𝐵) and 𝐵(𝐷(𝐴)) ⊆ 𝑅(𝐴). In [437], V. Obukhovskii
and P. Zecca have analyzed the semilinear differential equation

(465)
𝑑

𝑑𝑡
[𝐵𝑢(𝑡)] = 𝐴𝑢(𝑡) + 𝐹 (𝑡, 𝐵𝑢(𝑡)), 𝑡 ∈ [0, 𝑇 ] ; 𝐵𝑢(0) = 𝑦0 ∈ 𝐵(𝐷(𝐴))

by using the change of variables 𝑣(𝑡) = 𝐵𝑢(𝑡) and passing after that to the cor-
responding abstract degenerate semilinear Cauchy inclusion with the multivalued
linear operator 𝒜 = 𝐴𝐵−1. They have assumed that the operator 𝒜 satisfies
the Hille–Yosida condition, so that 𝒜 generates a strongly continuous semigroup
(𝑈(𝑡))𝑡>0 on 𝐸. A function 𝑢(𝑡) is said to be a mild solution of (465) iff there exists
a measurable section 𝑓(𝑡) of the multivalued mapping 𝑡 ↦→ 𝐹 (𝑡, 𝐵𝑢(𝑡)), 𝑡 ∈ [0, 𝑇 ]
such that:

𝐵𝑢(𝑡) = 𝑈(𝑡)𝐵𝑢(0) +

∫︁ 𝑡

0

𝑈(𝑡− 𝑠)𝑓(𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝑇 ].

Denote 𝑃0(𝐸) := {𝑆 ⊆ 𝐸 : 𝑆 ̸= ∅}, 𝐾(𝐸) := {𝑆 ∈ 𝑃0(𝐸) : 𝑆 is compact} and
𝐾𝑣(𝐸) := {𝑆 ∈ 𝐾(𝐸) : 𝑆 is convex}. Following [437, Definition 2.12], we say that
a multimap F : 𝑋 → 𝑃0(𝑌 ), where 𝑋 and 𝑌 are real Banach spaces, is:

(i) upper semicontinuous (u.s.c.) iff F−1(𝑉 ) = {𝑥 ∈ 𝑋 : F(𝑥) ⊆ 𝑉 } is an
open subset of 𝑋 for every open set 𝑉 ⊆ 𝑌 ;

(ii) lower semicontinuous (l.s.c.) iff F−1(𝑊 ) is a closed subset of 𝑋 for every
closed set 𝑊 ⊆ 𝑌 .



3.13. APPENDIX AND NOTES 483

Recall that the Hausdorff measure of noncompactness of a non-empty subset Ω of
𝐸 is defined by

𝜒(Ω) = inf{𝜀 > 0 : Ω has a finite 𝜀-net}.

In [437, Theorem 3.1], the authors have proved that the set Σ consisting of
all mild solutions of problem (465) is nonempty as well as that the set 𝐵Σ = {𝑣 ∈
𝐶([0, 𝑇 ] : 𝐸) | 𝑣(𝑡) = 𝐵𝑢(𝑡), 𝑢 ∈ Σ} is compact in 𝐶([0, 𝑇 ] : 𝐸), provided the
following conditions:

(T1) 𝐹 (·, ·) has nonempty, compact, and convex values;
(T2) For every 𝑥 ∈ 𝐸, the multimapping 𝐹 (·, 𝑥) : [0, 𝑇 ] → 𝐾𝑣(𝐸) has a strongly

measurable selection;
(T3) The multimapping 𝐹 (𝑡, ·) : 𝐸 → 𝐾𝑣(𝐸) is u.s.c. for a.e. 𝑡 ∈ [0, 𝑇 ];
(T4) There exists a function 𝛼 ∈ 𝐿1([0, 𝑇 ]) such that 𝛼(𝑡) > 0 for a.e. 𝑡 ∈ [0, 𝑇 ],

and

‖𝐹 (𝑡, 𝑥)‖ := sup{‖𝑧‖ : 𝑧 ∈ 𝐹 (𝑡, 𝑥)} 6 𝛼(𝑡)(1 + ‖𝑥‖) for a.e. 𝑡 ∈ [0, 𝑇 ];

(T5) There exists a function 𝑘 ∈ 𝐿1([0, 𝑇 ]) such that 𝑘(𝑡) > 0 for a.e. 𝑡 ∈ [0, 𝑇 ],
and

𝜒(𝐹 (𝑡,𝐷)) 6 𝑘(𝑡)𝜒(𝐷) for a.e. 𝑡 ∈ [0, 𝑇 ] and every bounded set 𝐷 ⊆ 𝐸.

The conditions (T2) and (T3) are so-called the upper Carathéodory conditions.
In [437, Theorem 3.2], the condition (T1) has been replaced by the following one:

(T6) There exists a sequence of disjoint compact sets {𝐼𝑛}, 𝐼𝑛 ⊆ [0, 𝑇 ], such
that 𝑚([0, 𝑇 ]r 𝐼) = 0, where 𝐼 =

⋃︀
𝑛 𝐼𝑛, and the restriction of 𝐹 (·, ·) on

each set 𝐼𝑛 × 𝐸 is l.s.c.

If we assume the separability of space 𝐸 and (T4)-(T6), then there exists at least
one mild solution of problem (465). Boundary value problems have been analyzed
in [437, Subsection 3.2].

Now we will present the most important results established in the research
study [221] by M. Fuhrman.

Sums of generators of analytic semigroups: multivalued linear op-
erators approach. Approximation and interpolation results for multivalued lin-
ear operators have been essentially utilized by M. Fuhrman in proving a few re-
markable perturbation results for generators of analytic semigroups [221]. Let
us recall that the generator of an analytic semigroup is any closed (not necessarily
densely defined) single-valued operator 𝐴 satisfying that there exist numbers 𝜔 ∈ R,
𝛼 ∈ (0, 𝜋/2) and 𝑀 > 0 such that 𝜔 +Σ𝜋−𝛼 ⊆ 𝜌(𝐴) and ‖𝑅(𝜆 : 𝐴)‖ 6𝑀/|𝜆− 𝜔|,
𝜆 ∈ 𝜔+Σ𝜋−𝛼. Let 𝐵 be another linear operator with domain and range contained
in 𝐸. Looking for conditions under the operator 𝐴 + 𝐵 is again a generator of
an analytic semigroup is a famous problem in the perturbation theory of linear
operators.

The author employs the following two conditions:
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(H1.S) 𝐴 and 𝐵 are linear operators in 𝐸 and there exist numbers 𝑐 > 0 and
𝜃 ∈ (0, 𝜋/2) such that

‖(𝑧 −𝐴)−1‖+ ‖(𝑧 −𝐵)−1‖ 6 𝑐/|𝑧|, 𝑧 ∈ Σ𝜋−𝜃.

(H2.DPG.S) For every 𝑣 ∈ Σ𝜋−𝜃, we have (𝐴 − 𝑣)−1(𝐷(𝐵)) ⊆ 𝐷(𝐵) and there exist
numbers 𝑐 > 0, 𝛼, 𝛽 such that −1 6 𝛼 < 𝛽 6 1 and

‖[𝐵; (𝐴− 𝑣)−1](𝐵 − 𝑧)−1‖ 6 𝑐|𝑣|𝛼−1|𝑧|−𝛽 , 𝑣, 𝑧 ∈ Σ𝜋−𝜃

(here, by [𝑃 ;𝑄] we denote the commutator 𝑃𝑄−𝑄𝑃 of two linear oper-
ators in 𝐸).

The condition (H2.DPG.S) has its origins in the pioneering paper by G. da Prato,
P. Grisvard [127].

If the conditions (H1.S) and (H2.DPG.S) are satisfied with 𝐷(𝐴) and 𝐷(𝐵)
being dense in 𝐸, then the operator 𝐴+𝐵 is closable and its closure 𝐴+𝐵 generates
a strongly continuous analytic semigroup. On the other hand, the operator 𝐴+𝐵
need not be closable if some of domains 𝐷(𝐴) or 𝐷(𝐵) is not dense in 𝐸. Since any
multivalued linear operator is closable, in this case we can consider the operator
𝐴+𝐵 in the MLO sense. This is the starting point of analysis conducted in [221].

Using the Yosida approximations of operators 𝐴 and 𝐵, M. Fuhrman has proved
the following results:

(i) Assume that (H1.S) and (H2.DPG.S) hold, as well as that 𝐷(𝐵) is dense
in 𝐸. Then 𝐴+𝐵 generates an analytic semigroup in the MLO sense.

(ii) Assume that (H1.S) and (H2.DPG.S) hold. Then there exists a linear
relation 𝒜 which extends the operator 𝐴 + 𝐵 and generates an analytic
semigroup in the MLO sense. Furthermore, we have

𝐷(𝐴) ∩𝐷(𝐵) ⊆ 𝐷(𝒜) ⊆ (𝐸, [𝐷(𝐴)])𝜈,𝑝 ∩ (𝐸, [𝐷(𝐵)])𝜈,𝑝 (𝜈 ∈ (0, 1), 𝑝 ∈ [1,∞]).

If we assume some additional conditions, then there exists 𝜈0 ∈ (0, 1) such
that for each 𝜈 ∈ (0, 𝜈0) we have the equality

(𝐸, [𝐷(𝒜)])𝜈,𝑝 = (𝐸, [𝐷(𝐴)])𝜈,𝑝 ∩ (𝐸, [𝐷(𝐵)])𝜈,𝑝 (𝑝 ∈ [1,∞]).

Maximal time regularity for abstract degenerate Volterra integro-
differential equations. The study of maximal time and space regularity for ab-
stract (degenerate) differential equations is still an active field of research. Here we
will present the main results of research study [183] by A. Favaron and A. Favini
(cf. also [182]) regarding the question of maximal time regularity for the following
abstract degenerate Volterra integro-differential equation

𝑑

𝑑𝑡
(𝑀𝑣(𝑡)) = [𝜆0𝑀 + 𝐿]𝑣(𝑡) +

∫︁ 𝑡

0

𝑘(𝑡− 𝑠)𝐿1𝑣(𝑠)𝑑𝑠(466)

+ ℎ(𝑡)𝑦 + 𝑓(𝑡), 𝑡 ∈ [0, 𝑇 ]; 𝑀𝑣(0) =𝑀𝑣0,

where 𝐿, 𝑀 , 𝐿1 are three closed linear operators with domains and ranges contained
in a complex Banach space 𝑋, 𝜆0 ∈ C, 𝐷(𝐿) ⊆ 𝐷(𝑀)∩𝐷(𝐿1), 𝑣0 ∈ 𝐷(𝑀), 𝑦 ∈ 𝑋,
𝑓 : [0, 𝑇 ] → 𝑋 and ℎ, 𝑘 : [0, 𝑇 ] → C. The authors have shown that the Hölder
continuity of mappings ℎ, 𝑘, 𝑓 in time, combined with some extra assumptions on
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the operator (𝜆0𝑀 + 𝐿) and values of 𝑓(0), 𝑦, implies that there exists a unique
global strict solutions of (466) and that the derivative (𝑀𝑣)′ has the same Hölder
exponent as the mappings ℎ and 𝑘 as. The obtained result is in full accordance
with that already established in the monograph [199] in the case that (𝜆0, ℎ, 𝑘) =
(0, 0, 0), which provides a certain loss of regularity of derivative (𝑀𝑣)′ with respect
to 𝑓 . The authors obey the multivalued linear operators approach to (466), pointing
out that the substitution 𝑣1 = 𝑀𝑣(𝑡) cannot be directly applied. An application
of abstract results to a concrete degenerate integro-differential equation, arising in
modeling direct and inverse problems of heat conduction for materials with memory,
has been provided. The time-relaxation analogue of (466), obtained by replacing
the term 𝑑

𝑑𝑡 (𝑀𝑣(𝑡)) with D𝛼
𝑡 (𝑀𝑣(𝑡)) (0 < 𝛼 < 1) is much more complicated for

the analysis and we would like to propose the question of time regularity for such
an abstract degenerate integro-differential equation.

Abstract fractional differential inclusions with Riemann–Liouville
derivatives. The study of abstract fractional inclusions with Riemann–Liouville
derivatives has not been received much attention in this chapter. We have already
explored, in the second chapter, the abstract multi-term fractional differential equa-
tions of type (SC1), (SC2) or (SC3), pointing out that the case (SC3) is very sofisti-
cated. Here it is worth noting that A. V. Glushak has investigated, in a series of
his research papers [227, 230], the abstract fractional differential equations with
Riemann–Liouville derivatives of orders 𝛼, 𝛽 ∈ (0, 1), accompanied with the initial
conditions that is not of type (SC3). For example, the abstract fractional Cauchy
problems like

𝐷𝛼
𝑡 (𝑡

𝑘𝐷𝛽
𝑡 𝑢(𝑡)) = 𝑡𝛾𝐴𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0;

lim
𝑡→0+

𝐽1−𝛽
𝑡 𝑢(𝑡) = 𝑢0, lim

𝑡→0+
𝐽1−𝛼
𝑡 (𝑡𝑘𝐷𝛽

𝑡 𝑢(𝑡)) = 0,

𝐷𝛼
𝑡 𝐷

𝛽
𝑡 𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0; lim

𝑡→0+
𝐽1−𝛽
𝑡 𝑢(𝑡) = 𝑢0, lim

𝑡→0+
𝐽1−𝛼
𝑡 𝐷𝛽

𝑡 𝑢(𝑡) = 0,

and
𝐷𝛼

𝑡 𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0; lim
𝑡→0+

𝐽1−𝛼
𝑡 𝑢(𝑡) = 𝑢0

have been investigated. The structural results obtained by A. V. Glushak hold,
with insignificant modifications, in the multivalued linear operators framework.

And, at the very end of monograph, we shall say a few words about a singular
perturbation problem for abstract Volterra integro-differential inclusions.

Singular perturbation theory for abstract Volterra integro-differen-
tial inclusions. When talking about abstract Volterra integro-differential inclu-
sions, it is almost inevitable to say some basic things about singular perturbation
theory. As already marked in [292], singular perturbations of various kinds of
abstract non-degenerate Volterra integro-differential equations have been investi-
gated, among many other research papers, in [80, 130, 141, 142, 170, 178, 179,
223,235,273,283,389,392,393,398] and [500]. Due primarily to the time lim-
its, we have not been able to edit the fundamental info about this intriguing topic
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here. We only want to say that it is very simply and straightforwardly, after cre-
ating a stable theory of degenerate resolvent operator families in this chapter, to
clarify some results about the singular perturbation problem for abstract Volterra
integro-differential inclusions. For example, C. Lizama and H. Prado [398] have
investigated the singular differential problem

𝜀2𝑢′′𝜀 (𝑡) + 𝑢′𝜀(𝑡) = 𝐴𝑢𝜀(𝑡) + (𝐾 * 𝑢𝜀)(𝑡) + 𝑓𝜀(𝑡), 𝑡 > 0, 𝜀 > 0

for the abstract integro-differential equation

𝜔′(𝑡) = 𝐴𝜔(𝑡) + (𝐾 * 𝜔)(𝑡) + 𝑓(𝑡), 𝑡 > 0,

when 𝜀 → 0+. The main results of this research study, [398, Theorem 3.6, The-
orem 3.8], admit very simple reformulations for corresponding abstract integro-
differential inclusions obtained by replacing the closed single-valued linear operator
𝐴 in the above equations with a closed multivalued linear operator 𝒜. Details can
be left to the interested readers.



Index

(𝐴,𝐵)-regularized 𝐶-(pseudo)resolvent
family, 217

weak, 217
(𝐴,𝐵)-regularized (pseudo)resolvent family,

217
weak, 217

(𝐴, 𝑘,𝐵)-regularized 𝐶-(pseudo)resolvent
family, 217

analytic, 221
exponentially bounded analytic, 221
weak, 217

𝑎-regular, 217
(𝐴, 𝑘,𝐵)-regularized 𝐶-resolvent family,

217
(𝐴, 𝑘,𝐵)-regularized (pseudo)resolvent

family, 217
weak, 217

(𝐶,𝐵)-resolvent, 69
(𝛼, 𝛼, 𝑃1(𝐴), 𝑃2(𝐴), 𝐶)-resolvent family,

100
(𝜎, 𝛽)-scrambled set, 269
(�̃�, 𝛽)-distributionally chaoticity, 269
(𝑎,𝐶)-resolvent family, 294, 307
(𝑎, 𝑘)-regularized (𝐶1, 𝐶2)-existence and

uniqueness family, 293, 294
(𝑎, 𝑘)-regularized 𝐶-resolvent family, 294

analytic, 308, 312, 430, 431
approximation, 407
convergence, 407
entire, 313
equicontinuous, 294
equicontinuous, analytic, 308
exponentially equicontinuous, 294
exponentially equicontinuous, analytic,

308
hypoanalytic, 316
infinitely differentiable, 315
of solving operators, 277
real analytic, 316

(𝑎, 𝑘)-regularized 𝐶1-existence family, 293
(𝑎, 𝑘)-regularized 𝐶2-uniqueness family, 293
(𝑎, 𝑘, 𝐶)-subgenerator, 325
(𝑔𝛼, 𝐶)-regularized resolvent family of

growth order 𝜁 > 0, 404
(𝑘,𝐶1,𝒱)-existence family, 321
(𝑘,𝐶2)-uniqueness family, 143
(𝑘𝐶)-parabolicity, 316
(𝑘𝐶)-well posedness, 216
(D,P)-hypercyclicity, 244, 394
(D,P𝑠)-hypercyclicity, 244
𝐶-distribution cosine function, 357

dense, 357
𝐶-distribution semigroup, 344
𝐶-pseudoresolvent, 71, 303
𝐶-resolvent propagation family, 132

�̃�-hypercyclic, 229, 392
�̃�-topologically mixing, 229, 392
�̃�-topologically transitive, 229, 392

𝐶-resolvent set, 4, 29
𝐶-ultradistribution cosine function, 357

dense, 357
𝐶-ultradistribution semigroup of *-class,

344
𝐶1-existence propagation family, 165
𝐸𝑙-type spaces, 96, 118, 128
𝐾-convoluted 𝐶-cosine functions, 330
𝑁 -linear Devaney chaos, 241
𝛼-times integrated (𝐴,𝐵)-regularized

𝐶-(pseudo)resolvent family, 217
weak, 217

𝛼-times integrated (𝑎,𝐶)-resolvent family,
294

𝒱-pre-solution, 318
𝜎-scrambled set, 253
𝜎�̃� -scrambled set

quasi, 262
�̃�-distributional chaoticity

quasi, 262

487



INDEX 488

�̃�-distributionally chaotic operator, 253
�̃�-distributionally chaotic sequence of

operators, 253
densely, 253

�̃�-distributionally irregular manifold, 254
uniformly, 254

�̃�-distributionally irregular vector, 254
�̃�-hypercyclic vector, 224, 230, 390
�̃�-hypercyclicity, 229
�̃�-topological transitivity, 224
�̃�-topologically mixing property, 224, 229,

390
�̃�-topologically transitivity, 229, 390
�̃�-weakly mixing property, 235
𝜁-times integrated 𝐶-resolvent propagation

family, 131
𝜁-times integrated 𝐶1-existence family, 136
𝜁-times integrated 𝐶1-resolvent

propagation family, 165
𝑘-regularized (𝐶1, 𝐶2)-existence and

uniqueness family, 135
𝑘-regularized 𝐶-resolvent family, 136
𝑘-regularized 𝐶-resolvent propagation

family, 131
𝑘-regularized 𝐶1-existence family, 135, 141
𝑘-regularized 𝐶1-existence propagation

family, 131, 133, 164–167
𝑘-regularized 𝐶2-uniqueness family, 135,

141, 321
𝑘-regularized 𝐶2-uniqueness propagation

family, 131
𝑛-regular kernel, 316
𝑝-solution, 286
𝑞-exponential equicontinuity, 294
𝒯𝐿-admissibility, 239
𝒯𝑅-admissibility, 239
D-hypercyclicity, 241, 244, 394
D-topological transitivity, 244, 394
D-topologically mixing property, 241, 244,

394
DP𝑠 -topological transitivity, 244
DP𝑠 -topologically mixing property, 244
DP-topological transitivity, 244, 394
DP-topologically mixing property, 244, 394
(C-DCF), 357
(C-UDCF) of *-class, 357

(𝐴, 𝑘,𝐵)-regularized 𝐶-uniqueness family,
218

𝜎�̃� -scrambled set, 253
�̃�-chaoticity, 235
bilinear mapping, 241
Hooke’s constant, 284
integral generator, 295

longitudinal waves, 10
Post–Widder inversion formula, 60
Stirling’s formula, 185
translation invariant metric, 252

abstract Beurling spaces, 179, 187
abstract Cauchy problem, 6

degenerate, 7
degenerate semilinear, 103
first and second order, 15, 97, 227, 234,

237, 239, 391
fractional degenerate, 91, 438, 439
incomplete degenerate, 200
inhomogeneous, 96, 130, 140, 172

abstract degenerate fractional inclusion, 17
multi-term, 392

abstract degenerate multi-term fractional
differential equations, 8

abstract degenerate non-scalar Volterra
equations, 13, 216

abstract degenerate Volterra equation, 141
abstract degenerate Volterra inclusion, 17,

285, 404
multi-term, 18, 324

abstract differential operators, 90, 100, 121,
128, 207, 221, 397, 438

abstract incomplete differential inclusions,
420

abstract nonautonomous differential
equations of first order, 461

abstract Weierstrass formula, 87
acoustic planar propagation in bubbly

liquids, 270
almost 𝐶-nonnegative, 36
analyticity

weak, 36
angular velocity, 129
approximation of Laplace transform, 63
Arendt-Widder theorem, 62
associated functions, 134, 172
asymptotic expansions, 66, 67

backward shift operators, 225
Baire Category, 14
Banach space, 28
barreled space, 28
bidual, 28
bihypercyclicity, 241
binary relations, 46
Borel measurable set, 32
bounded equicontinuity, 344
bounded subset, 28

Cauchy formula, 179, 185, 195, 200
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chain of adjoint vectors, 211
class

𝐿𝑇 −𝑋, 58
𝐿𝑇 −𝑜𝑟 𝑋, 58
𝒜, 173
𝒜𝑔 , 183
ℳ𝐶,𝑚, 36, 168
ℳ𝐵,𝐶,𝑞 , 197
ℳ𝐶,𝑞,𝜔 , 208
(P1)-𝑋, 57

coercivity, 90, 98, 100
comparision principles, 48
complex inversion theorem, 62
condition

(𝐶𝐶𝐹1), 357
(𝐶𝐶𝐹2), 357
(𝑀.1), 30, 184
(𝑀.2), 30, 178, 184
(𝑀.3), 30, 184
(𝑀.3)′, 30
(◇), 132
(◇◇), 132
(C.1)-(C.5), 115
(C1), 108
(C2), 109
(C3), 109
(C4), 109
(C5), 109
(CH), 134
(H), 196, 197
(H1), 446
(H1.S), 483
(H2), 446
(H2.DPG.S), 483
(H3), 22
(P)”, 263
(P1), 56
(P1)’, 161
(P2), 113
(PS), 237
(PW), 366
(Q), 311, 398
(Q1), 60
(QP), 379
(T1), 483
(T2), 483
(T3), 483
(T4), 483
(T5), 483
HP., 154
upper Carathéodory, 483

conjugacy lemma, 241, 248, 394
constant of regularity, 12

continuous linear mapping, 28
convolution products, 29
core, 29
cosine operator function, 149

𝐶-regularized, 330
𝛼-times integrated 𝐶-, 330

criterion
Banasiak–Moszyński, 14, 226, 241, 390
Desch–Schappacher–Webb, 14, 226, 241,

270, 390
cyclicity, 14

degenerate 𝐾-convoluted 𝐶-semigroups, 83
degenerate 𝐾-convoluted semigroups, 396
degenerate fractional equations, 121
degenerate integrated semigroups, 7, 298
delta distribution, 29
Devaney chaos, 16
Dirichlet boundary conditions, 7, 146, 153,

159, 309, 398
discriminant of polynomial, 89
distributional chaos, 15
distributionally irregular manifold, 254

uniformly, 254
distributionally irregular vector, 16, 254
dual space, 28

electric field intensity, 306
electromagnetic waves, 167
elliptic polynomial, 187
elliptic selfadjoint operators, 398
empathy, 283
equation

backward Poisson heat, 314
Barenblatt–Zheltov–Kochina, 10, 97,

150, 155, 159, 269, 397
BBM, 280
Benney–Luke, 89, 268, 309, 397
Boussinesq, 121, 245, 397
Boussinesq-Love, 10, 150, 153, 159
Camassa–Holm, 280
Caputo-Riesz fractional advection

diffusion, 168
damped Klein–Gordon, 246
damped Klein-Gordon, 232
damped Poisson-wave, 323, 478, 479
fractional Maxwell, 306
fractional Poisson heat, 375
fractional Poisson-wave equation, 306
fractional Sobolev, 8
gravity-gyroscopic wave, 128
inhomogeneous Poisson heat, 388
integral, 106, 109, 133, 146, 148, 168, 260
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internal wave equation in the Boussinesq
approximation, 128

Lonngern wave, 280
Poisson heat, 24, 405
reversed fractional Poisson heat, 432
Rosenau–Burgers, 280
Rossby wave, 128
semiconductor, 280
small amplitude oscillations of a rotating

viscous fluid, 129
Sobolev, 128
vibrating beam type equation, 232
viscous van Wijngaarden–Eringen, 269
viscous van Wijngaarden-Eringen, 271

equicontinuous family of operators, 29
evolution system, 446

exponentially stable, 447
Green’s function, 447
hyperbolic, 447

exponential region, 180, 354
exponential type, 294
exponentially equicontinuous (𝜎 − 1)-times

integrated 𝐶-resolvent propagation
families, 116

exponentially equicontinuous
(𝑎,𝐶)-regularized resolvent family
generated by 𝐴, 𝐵, 119

exponentially equicontinuous
(𝑎, 𝑘)-regularized 𝐶-resolvent families
generated by 𝐴, 𝐵, 119

exponentially equicontinuous
(𝑎, 𝑘)-regularized 𝐶-resolvent family

differentiable, 86
exponentially equicontinuous

(𝑘;𝐶)-regularized resolvent
(𝑖, 𝑗)-propagation family, 9, 124

analytic, 124
exponentially equicontinuous 𝐶-regularized

resolvent (𝑖, 𝑗)-propagation family, 108
exponentially equicontinuous 𝑘-regularized

𝐶-resolvent (𝑖, 𝑗)-propagation family,
9, 107

analytic, 114
exponentially equicontinuous 𝑘-regularized

𝐶1-existence propagation family
analytic, 132

exponentially equicontinuous 𝑟-times
integrated (𝑎,𝐶)-regularized resolvent
family generated by 𝐴, 𝐵, 119

exponentially equicontinuous 𝑟-times
integrated 𝐶-regularized resolvent
(𝑖, 𝑗)-propagation family, 108

exponentially equicontinuous
(equicontinuous) (𝑎, 𝑘)-regularized
𝐶-resolvent family

analytic, 84

Faà di Bruno’s formula, 412
fluid filtration, 10
Fourier multiplier, 91
Fourier transform, 90
fractional calculus, 63, 64
fractional derivatives

Caputo, 8, 64, 244, 367
Liouville right-sided, 65, 200, 201, 422
modified Liouville right-sided, 204
Riemann–Liouville, 10, 15, 64, 317
Weyl, 65
Weyl–Liouville, 466

fractional differential equations, 63, 64
fractional powers, 37, 197, 381, 413

purely imaginary, 418
spectral, 309
with negative imaginary part of

exponent, 418
with positive imaginary part of

exponent, 418
fractional Sobolev inclusions, 17, 285
fractional Sobolev space, 99
function

𝜇-integrable, 33, 34
asymptoticallyStepanov almost periodic,

444
absolutely continuous, 32
admissible weight, 240
almost automorphic, 444
almost periodic, 443
associated, 31
asymptotically 𝜔-almost periodic, 446
asymptotically almost automorphic, 444
asymptotically almost periodic, 443
asymptotically Stepanov 𝑝(𝑥)-almost

periodic, 468
Bernstein, 75
Bessel, 68, 433
Bochner integrable, 237
completely monotonic, 67, 75
completely positive, 76, 80, 143, 292,

298, 306, 324
creep, 75
entire of class (𝑀𝑝), 31
equi-Weyl-𝑝-almost periodic, 444
Gamma, 29
Hölder continuous, 31, 64, 143, 292, 299,

322
Laplace transformable, 56
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Lipschitz continuous, 104, 217
measurable by seminorms, 33
Mittag-Leffler, 66
of bounded variation, 32
quasi-asymptotically almost periodic, 448
S-asymptotically 𝜔-periodic, 446
simple, 32, 33
Stepanov 𝑝(𝑥)-almost periodic, 468
Stepanov 𝑝(𝑥)-bounded, 468
Stepanov asymptotically 𝜔-almost

periodic, 446
Stepanov bounded, 444
Stepanov quasi-asymptotically almost

periodic, 450
Stepanov two-parameter

quasi-asymptotically almost periodic,
457

strongly measurable, 33
superharmonic, 7
two-parameter almost periodic, 473
two-parameter asymptotically almost

periodic, 473
two-parameter asymptotically Stepanov

𝑝(𝑥)-almost periodic, 474
two-parameter quasi-asymptotically

almost periodic, 456
two-parameter Stepanov 𝑝(𝑥)-almost

periodic, 474
vector-valued analytic, 35
weakly measurable, 33
Weyl-𝑝-almost periodic, 444
Wright, 66, 67, 437

functional calculus for commuting
generators of bounded 𝐶0-groups, 90,
117, 268

generalized resolvent equation, 188
generator of empathy, 283
Gevrey sequence, 30
graph

Cayley, 47
simple, 46

Gronwall inequality, 104

Hölder inequality, 476
heat conductivity, 10
Hermite expansions, 415
hypercyclic 𝑁 -linear operators, 241
hypercyclic vector, 224, 230, 390
hypercyclicity, 14, 234
Hypercyclicity Criterion, 238, 392
hypoanalytic exponentially equicontinuous

𝑘-regularized 𝐼-resolvent
(𝑛, 𝑗)-propagation family, 118

identity theorem for analytic functions, 36
incomplete abstract Cauchy inclusion, 422,

424
incomplete abstract degenerate Cauchy

problems, 201
integrated 𝐶-cosine functions, 362
integrated solution families, 90, 147, 156,

207, 301, 412
integration in locally convex spaces, 32
internal waves, 121
inverse Laplace transform, 56
inverse problems, 20

joint closedness, 282

Kato’s analyticity criteria, 158
kernel, 76, 105
Kronecker delta, 192

Laplace integral
abscissa of convergence, 57, 161

Laplace transform, 56
Lebesgue point, 60
linear ordinary differential equation

fundamental set of solutions, 395
linear relation, 38
linear topological homeomorphism, 248
liquid filtration, 89, 228
locally convex space

complete, 77, 300, 400
non-metrizable, 247
reflexive, 218

logitudinal vibrations, 283
Lusternik type theorems, 456
Luxemburg norm, 467

magnetic field density, 306
magnetic flux density, 306
measure

Lebesgue, 33
locally finite Borel, 32, 40

meromorphic extension, 316
moisture transfer, 10
multivalued linear operator, 16

𝐶-resolvent, 40
adjoint, 39
chaotic, 44
closed, 39
complex powers, 416
d-hypercyclic vector, 45
disjoint chaotic, 44
disjoint hypercyclic, 44
disjoint topologically mixing, 44
disjoint topologically transitive, 44
fractional powers, 43
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generalized resolvent equations, 42
hypercyclic, 44
hypercyclic vector, 45
integer powers, 38
inverse, 38
kernel, 38
MLO, 37
periodic point, 44
polynomial spectral mapping theorem, 42
product, 38
regular resolvent set, 42
relatively closed, 39, 288–290, 292, 294
resolvent equation, 41
restriction, 38
section, 38
single-valued branch, 196
stationary dense, 341
sum, 38
topologically mixing, 44
topologically transitive, 44

multivalued mappings
Laplace transformable, 61
sections, 61, 288, 319

net, 28
non-negative operators, 129
norm, 28
norm continuity, 97, 101, 218

operator
(𝐵, 𝜎)-regular, 13, 210
(𝐵, 𝑝)-regular, 211
adjoint, 29
almost sectorial, 372
Balakrishnan, 36
Black–Scholes, 257
chaotic, 14
closed, 28
distributionally chaotic, 15
hypercyclic, 14
Laplace–Beltrami, 50, 258
linear, 28
maximal dissipative, 304
multiplication, 7, 300
Ornstein–Uhlenbeck, 233, 245, 257
positively supercyclic, 14
regular, 13, 42, 209
relatively 𝑝-radial, 309
Riesz fractional, 168
sectorial, 168
self-adjoint, 215, 306
supercyclic, 14

orbit, 241, 243, 393
distributionally 𝑚-unbounded, 254

distributionally near to 0, 253
projective, 14

parabolicity condition, 168
Parseval’s equality, 147, 155
part of operator, 29
periodic point, 14, 235
perturbations, 20, 143

rank 1-, 403
hyperbolic, 220
time-dependent, 403, 404

Phragmén–Doetsch inversion formula, 60
point spectrum, 389

imaginary, 237, 251
polynomial matrices, 125
polynomially bounded 𝐶-resolvent, 416
pre-(𝑘,𝐶1,𝒱)-existence family, 321
pre-(C-DCF), 357

exponential, 364
pre-(C-DS), 344

dense, 344
exponential, 352

pre-(C-EDCF), 364
pre-(C-EUDCF) of *-class, 364
pre-(C-UDCF) of *-class, 357

exponential, 364
pre-(C-UDS) of *-class, 344

dense, 344
exponential, 352

pre-solution, 286, 290, 310
problem

(𝑃2,𝑞,𝐵), 202
(𝐷𝐹𝑃 )2, 97
(𝐹𝑃𝛼1,𝛽1,𝜃), 11, 200
(𝐹𝑃𝛼1,𝛽1,𝜃)

′, 12
(𝐹𝑃𝛽), 422
(𝑃 )𝐿, 95
(𝑃 )𝑅, 121
(𝑃 )𝜂,𝑓 , 309
(𝑃 )𝑚,𝛼, 304
(𝑃𝑅)𝛼, 442
(𝑃2), 100
(𝑃2,𝑞,𝐵), 12
(ACP), 260
(DF), 212
(DF)1, 212
(DF)𝑝, 214
(DF)𝑝,𝑃 , 214
(DFP), 91, 438, 439
(DFP)𝐿, 124, 223
(DFP)′𝐿, 174
(DFP)𝑅, 107, 223
(DFP)′𝑅, 174
(DFP)𝛼,𝒜, 389
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(DFP)L, 17, 285
(DFP)R, 17, 285
(DFP)𝑓,𝑠,𝛾 , 375
(DFP)𝑠𝑙, 100
(DFP)’, 125
(P), 99
(PR), 186
(238), 248
1, 265
2, 270
(DFP)𝐹 , 239
(DFP)𝛼,𝒜, 390
DC, 258
inhomogeneous, 308, 311
PN, 189

problem (151)
subcase (SC1), 162
subcase (SC2), 163
subcase (SC3), 163

projection, 210

Radon-Nikodym property, 218
range, 28
Rayleigh–Stokes problem for generalized

second-grade fluids, 168
regular 𝐵-resolvent set, 12, 210
removable singularity at zero, 366
renorming, 255
rescaling, 83, 88
resolution of the identity, 215
resolvent equation, 71
resolvent set, 28
Reynolds number, 270
Riemann–Liouville fractional integral, 64
Rodrigues’ formula, 410

semigroup
(𝐵,𝐶)-regularized of growth order 𝑟 > 0,

195
analytic, 196

𝐶-regularized, 184, 239, 325, 326, 330,
412, 413

𝐾-convoluted 𝐶-, 329
𝛼-times integrated 𝐶-, 330
infinitely differentiable, 308
analytic 𝐶-regularized of growth order

𝑟 > 0, 186
Black–Scholes, 257
chaotic, 14
infinitely differentiable, 313
of class (𝐶(𝑘)), 414
of growth order 𝑟 > 0, 414
pre-(𝐵,𝐶)-regularized of growth order

𝑟 > 0, 195

analytic, 196
strongly continuous, 14, 168, 237, 257,

270, 304
distributionally chaotic, 15

strongly continuous for 𝑡 > 0, 366
semilinear degenerate fractional Cauchy

inclusion, 375, 387
semilinear degenerate relaxation equations,

100
seminorm, 28
sequentially complete locally convex space,

57
Hausdorff, 28

singular perturbation theory, 485
solution, 286

𝒱-, 318
𝒱-mild, 106
𝑝-strong, 318
analytical, 125, 127, 148, 157, 159, 190,

306, 397
classical, 375, 376
entire, 125, 148, 150, 154, 189, 194, 314
local, 134
mild, 76, 80, 130, 161, 165, 216, 375, 376
strong, 76, 81, 105, 130, 145, 165, 169,

174, 216, 226, 231, 286
weak, 76

space
𝐶2(R), 395
𝐷∞(𝐴), 36
𝐿𝑝(𝑥)(Ω : 𝑋), 467
𝒯 , 129
Damek–Ricci, 258
Fréchet, 76, 135
Banach, 33
barreled, 135
Fréchet, 14, 29, 44, 300
Hölder, 154, 388
Hardy, 69
Heckman–Opdam root, 228, 258
Hilbert, 33, 258
locally compact, 32, 40
measure, 33
of real analytic functions of Herzog type,

270
phase, 213, 276
reflexive, 33
Riemannian symmetric, 228
Schwartz, 29, 90
separable metric, 14, 32, 40
symmetric of non-compact type, 228,

232, 245, 258, 271
webbed bornological, 29, 196
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weighted function, 225, 235
space decomposition, 7
spectrum, 28
square-free polynomial, 89
stationarity, 341
Stepanov (asymptotic) almost automorphy,

445
Stepanov metric, 443
Stepanov norm, 444
subgenerator, 77, 293, 294
subordinated fractional resolvent family,

366
subordination principles, 79, 88, 115, 140,

142, 290, 292, 298, 307, 313, 319, 322,
324

symmetric spaces of non-compact type, 50
system of seminorms, 14, 28, 135, 252
systems of abstract degenerate differential

equations, 125, 406

the uniform boundedness principle, 57
theorem

closed graph, 266
Titchmarsh, 76
adjoint, 307, 329
Bolzano–Weierstrass, 82
Cauchy, 192
closed graph, 29, 276, 287
complex characterization, 300
Da Prato–Grisvard, 168
dominated convergence, 34, 181, 186, 192
extension type, 338
fixed point, 103
Fubini–Tonelli, 60
Hahn-Banach, 40
Herrero-Bourdon, 244
Hille–Yosida, 78, 219, 303, 408
K. Ball’s planck, 258
Lagrange mean value, 98
Ljubich uniqueness, 289
Ljubich uniquness, 290
Mackey’s, 57
Morera, 191
Phragmén–Lindelöf, 382
Phragmén-Lindelöf, 173
residue, 181, 186
Riesz–Fischer, 33
Seidenberg–Tarski, 90
Stone–Weierstrass, 335
Titchmarsh–Foiaş, 76
uniqueness for analytic functions, 204
uniqueness for Laplace transform, 61

topological transitivity, 14, 390
topologically mixing property, 13, 234, 390

translation invariant metric, 14
two-sided ideal, 387

ultra-logarithmic region, 134, 173
ultradifferentiable functions, 31
ultradifferential operator of *-class, 31
ultradistribution semigroup of Beurling

class, 301, 412
ultradistributions, 30
unidirectional viscoelastic flows, 168
upper density, 16

Väisälä-Brunt frequency, 121
variation of parameters formula, 96, 133
vector

�̃�-(ACP)-distributionally irregular, 261
�̃�-(ACP)-distributionally near to 0, 261
�̃�-(ACP)-distributionally 𝑛-unbounded,

261
height of adjoint, 211

vector-valued
distributions, 30
Laplace transform, 16, 58, 160, 296, 297
Sobolev space, 32, 64, 161, 311
ultradistributions of *-class, 31

weakly mixing property, 224
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