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Preface

These are the lecture notes on summabilty methods, matrix transformations and
their applications. They are based on courses taught by the authors in the master
and Ph.D. programmes in mathematics at several universities in Germany, Ser-
bia, South Africa, Turkey and the US. The material of the lecture notes could be
covered in one semester in a four-hour per week course. Special emphasis is put
on the application of summability methods and matrix transformations in fixed
point theory.

The presented topics would also serve as a reference for further work, and could
be used as a basis for seminar work, master and Ph.D. theses. The authors took
care for the lecture notes to be self-contained and comprehensive. Only a solid
background in real analysis is needed except at one place were an alternative op-
tional proof is given for the Toeplitz theorem; it uses the uniform boundedness
principle from functional analysis which is included without proof for the reader’s
convenience. Furthermore, some fundamentals of the Riemann-Stieltjes integral
are needed in the proof of the regularity conditions for the Hausdorff summbility
method and the solution of the related moment problem. The necessary results are
included in an appendix.

Summability theory deals with a generalization of the concept of the convergence
of sequences and series of real or complex numbers. One of the original ideas
was to assign, in some way, a limit to divergent sequences or series. Methods of
summability were also introduced for applications to problems in analysis such as
the analytic continuation of power series and improvement, of the rate of convergence
of numerical series and to iteration processes in fixed point theory. These goals were
achieved by considering a transform rather than the original sequence or series.
This can be done in various different ways. Here we confine ourselves mainly to
transformations by infinite matrices, in particular, to the most popular methods
defined by Hausdorff matrices and their special cases, the Cesaro matrices of order
a > —1, the Holder and Euler matrices, and Norlund matrices. We also consider
the Abel and Borel methods which are not given by a matrix. One section each
is dedicated to these methods. We also study inclusion, growth, Mercerian and
Tauberian theorems.

Finally, some results are proved concerning the connectedness of sets of limit
points of matrix transforms of bounded complex sequences. These results are used
in the application of matrix transforms and summability methods in fixed point
theory, in particular, in the Mann iteration.

Acknowledgement: The authors express their sincere gratitude to Professor
Dr Dragan Djordjevi¢ and the Academicians, Professors Dr Gradimir V. Milo-
vanovi¢ and Dr Miodrag Mateljevié, for their encouragement to write this book,
and many valuable suggestions and comments to improve its contents. We are also
very grateful to Academician Professor Dr Vladan Djordjevi¢ for his interest in our
work and his support in the process of its publication.
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1 INTRODUCTION )

1 Introduction

The classical summability theory deals with a generalization of the concept of the
convergence of sequences and series of real or complex numbers. One of the original
ideas was to assign, in some way, a limit to divergent sequences or series. Classi-
cal methods of summability were also introduced for applications to problems in
analysis such as the analytic continuation of power series and improvement of the
rate of convergence of numerical series. These goals were achieved by considering a
transform rather than the original sequence or series. This can be done in various
different ways. Here we confine ourselves mainly to transformations by infinite ma-
trices, in particular, to the most popular methods defined by Hausdorff matrices
and their special cases, the Cesaro matrices of order o« > —1, the Holder and Euler
matrices, and Norlund matrices. We also consider the Abel and Borel methods
which are not given by a matrix. We refer to [13, 21, 50, 61, 99, 112] for further
reading on summability methods.

In the beginning, the idea was conceived that there should be a way to find
sums for divergent series. One popular procedure was to formally put = 1 in the
power series expansion

1
A 1
S == (el<)
n=0
which lead to the satisfying result
1
*) 1—1+1—1j:--~:§.

Another natural approach is to study the arithmetic means of a sequence. If
r = (x)72, is a sequence of real or complex numbers then a new sequence o =
o(x) = (on(2))22, is formed by the arithmetic means of the terms of the sequence
x, namely

n

1
nJrlkZ_Oxk forn=0,1,....

(1.1) on = op(x) =

Example 1.1. Let the sequence x be defined by

() = (-1, () ze= 51+ (-1)F)
© zp=k+1, (@) z,=(—Dk+1).

Each sequence z diverges, but lim,,_,~ 0, = 0 for the sequence in (a), lim,, o 0, =
1/2in (b), 6, = 00 (n — 00) in (c), and lim, o 02, = 1/2 and lim,, 00 02541 =
—1/2 in (d).

Our first result states that the arithmetic means of a convergent sequence con-
verge, and preserve the limit.
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Theorem 1.2 (Cauchy). Iflimg_,o zr = &, thenlim, o 0y, = & for the arithmetic
means (1.1) of the sequence x = (x1)7,-

Proof. (i) First we assume £ = 0. Then given € > 0, there is a non-negative integer
K. such that

(1.2) |zk| < /2 for all k > K.

Furthermore, since 1/(n+1) — 0 as n — oo, we can choose a non-negative integer
N = N(eg, K.) such that

K
1 = €
(1.3) n+1kgzo|xk| <3 for all n > N.

Therefore, if n > N then we obtain from (1.2) and (1.3)

lom| < ! Kfl | + ! En | |<E+71 = Enl—
Inl = 2R T TS 9T L2 -
k=0 k=K. +1 k=0

This completes the proof of Part (i).

(i) Now we assume & # 0. We consider the sequence 2’ defined by zj, =z — ¢
for k=0,1,.... Then it follows by Part (i) that

n
[
g, =

Zx§€—>0 (n — o0),

1
n+1k :
and so

n

onm S w= S @+ = €€ (o). O

n+1 P n+1 P
The following notations will be used throughout. We write e and e(™ (n =
0,1,...) for the sequences with e, = 1 for all k, and eﬁf’) =1 and egcn) = 0 for
k # 0.

Definition 1.3. (a) The set of all sequences x = (x1)72, of complex numbers
is denoted by w; we write

co{xew: lim :ck()},
k—o0
c={x €w:xz—Ee € ¢ for some £ € C},

€o<3:{gc€cg;:sup|:1ck|<oo}7
k

le{wa:Z|xk<oo}

k=0
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for the sets of all null, convergent and bounded sequences, and the set of all absolutely
convergent series, respectively.
(b) We define addition and multiplication of sequences by a scalar by

z 4z = (@ + )52 and Az = (Azy)pe, for all ,2’ € w and all A € C.

Remark 1.4. Obviously the sets w, cg, ¢, £s and ¢ are linear spaces with the sum
and product defined in Definition 1.3, ¢; is a linear subspace of ¢y, ¢¢ is a linear
subspace of ¢, ¢ is a linear subspace of /., and ¢, is a linear subspace of w.

By z,y,z,..., we always denote sequences of complex numbers =y, yi, 2k, - - -
In this section, we also use the traditional notations Yaj for series of complex
numbers ag, and s, = Y ;_,aj for their partial sums. All indices start from 0
unless stated otherwise.

Given an infinite matrix A = (ank)ﬁ"fk:o of complex numbers a,; and a sequence
r = (xR)5ey, we write A, = (ank)72, and AR = (ank)22 for the sequences in
the n'M row and the k" column of the matrix A, respectively A,z = Y ;o ankTy
(n =0,1,...), each of the series being assumed convergent, and Az = (4,2)5%,
for the sequence of the A transforms A,x of the sequence x.

We now turn to the problem how to assign a sum or a limit to a divergent
series or a divergent sequence. Since it is obviously possible to assign a sum, for
instance 0, to any divergent series, we abandon this quest and simply look for some
type of function L : .S — C where S is some set of sequences. The function L will
be required to have certain explicitly stated properties; for example, we usually
require S to be a linear space which includes ¢ and L to be linear and such that
L(x) = limg_ o 2 whenever x € ¢. Then if S contains a divergent sequence x, the
number L(z) will be a limit of a divergent sequence.

Definition 1.5. Given an infinite matrix A, then the method of summability A is
defined by y = Ax. The set

wa ={z € w: Az is defined}
is called the domain of A; for any subset X of w, we write
Xa={rew: Az € X}
for the matriz domain of A in X, and in the special case X = c the set
ca={r€w: Az €c}

is called the convergence domain of A.

If x € cu, then there is n € C such that n = limyx = lim, ,,, A,z, thus
defining a map limy : ¢4 — C. In this case, the sequence z is called summable A to
7; this is denoted by = — n(A). A series Yay is said to be summable A to n if the
sequence of its partial sums is summable A to 7; this is denoted by ¥ay = n(A4).
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Remark 1.6. (a) Note that the same letter is used for a matrix and the method
of summability defined by it.

(b) The notation X 4 is consistent with the definition of wa; Az € X always
implies that Az exists, that is, X4 C wy; A is linear on w4, and wy is a linear
subspace of w.

(c) By historical accident, sequences in ¢4 are called summable A instead of the
more reasonable limitable A.

We shall be particularly interested in methods of summability that transform
all convergent sequences into convergent sequences.

Definition 1.7. A method of summability A is called:

(a) conservative if ¢ C ca, that is, Az € ¢ whenever z € ¢;

(b) multiplicative m if limy x = m - limy_, o z, for all = € ¢;

(c) regular if it is multiplicative 1.

(d) A real method of summability A, that is, a method of summability defined by
a real matrix, is called totally regular if © — & implies Ax — £ for all finite and
infinite &.

Example 1.8. (a) The method I defined by the infinite identity matrix I with the
rows I, = e(™ for all n is totally regular since Iz = z; also w; = w and ¢; = c.

(b) The method of the arithmetic means defined in (1.1) is regular by Theo-
rem 1.2.

(c) Let @ be the matrix given by Qox = z¢ and Qnz = (1/2)(xp-1 + zn)
for n = 1,2,.... Then Q is regular and sums the divergent sequence ((—1)¥);
therefore c is a proper subset of cq.

(¢) For A =0, we have ¢4 = w, while at the opposite extreme one can construct
a matrix A with ¢4 = {0} by taking

Ax = (I‘]_,0,$1,$2,0,x1,$27$3,07 e )

2 The Cesaro method of order 1

The Cesaro method of order 1 is one of the most important methods of summability.

Definition 2.1. The Cesaro method Cy of order 1 is defined by the matrix A =
(ank)?:,)k:O where

1
0<k<
anp, = n+1 ( - _n)

0 (k>mn)

(n=0,1,...).

By 0, = 0,(z), we denote the C1-means of the sequence x = ()52, that is, (1.1)

1 n
2.1 = on(z) = =0,1,...).
2. 7=l = g Y (n )
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Remark 2.2. The equalities in (2.1) transform a sequence z into the sequence o =
(01)52; therefore this is referred to as the sequence-to-sequence-transformation for

the C1 method. If Yay is a series with partial sums s, = Z?:O a; (k=0,1,...),
then (2.1) applied to the sequence (s;)32, yields

T T AT Y T !

=0 k=0 j=0 j=0 k=j
_ Za(n—&-l—j):zn:a» 1- 7
n+1 J — n+1)’
j=0 j=0
that is,
(2.2) Jn:iak<1—k) (n=0,1,...),
P n+1

the series-to-sequence-transformation for the C1 method. In future, we shall always
consider the sequence-to-sequence transformations for methods of summability.

Theorem 2.3. The C; method is totally regular.

The proof is left as an exercise.

Now we prove a converse result which gives a necessary condition in (i) for the
summability C7 of a sequence; this result is analogous to the classical result that if
a series Y ay is convergent then limg_,o ap = 0.

Theorem 2.4. (a) We have

(2.3) x € ¢, implies klim % = 0 which is denoted by xi = o(k).
— 00
(b) Let A = (A)32, be an unbounded real sequence with \i, > 0 for all k. Then
there is a sequence x € cc, such that xy, # o(k/\). Hence the condition xj, = o(k)

in (2.3) of Part (a) is best possible.

Proof. (a) We assume x € c¢,. This implies lim,_,o 0, = 7 for some complex
number 7. By (2.1), we have 2, = (k+ 1)op — kog—1 for k =1,2,.... This implies

1
T (14— 0p —0k—1 —»n—n=0as k— oo.
k k
Thus we have shown Part (a).

(b) Let A = (A\x)72, be a given unbounded real sequence with Ay > 0 for all k.
Then we can choose a sequence of indices k(7) such that k(i + 1) > k(i) + 2 for all
i=0,1,... and Ay o0 (i — o0). Putting

1 .
op = Ak(i) (n = k(@) (i=0,1,...),

0 (n # k(i)
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we conclude lime, # = 0 for the sequence z with z = (k + 1)og — kox—1 (k =
1,2,...), and

Ak(i) 1
0 Ty = Ay [ 1+ o) Tk(i)

:<1+l€(1i))\/m—>ooasi—>oo.

Thus we have shown Part (b). O

Remark 2.5. (a) It is obvious from Theorem 2.4(a) that the sequences in Example
1.1(c) and (d) are not summable C;.

(b) Theorem 2.4(a) shows that any sequence summable C; is of growth o(k).
The converse, however, is not true in general. In fact, we shall later show that,
given any regular method of summability A, there always exists a bounded sequence
which is not summable A.

Remark 2.6. The C; method shows a phenomenon that is common to many
methods of summability; it is the effect the so-called dilution of series may have on
their summability. It is well known that the convergence or divergence of a series
is not affected by adding zero terms; if one of the series

ap+a+axr+... and 04+0+---+ap+0+---4+a; +0+...

is convergent so is the other one, and the limit remains unchanged. In summability,
however, such a change can alter the sum or even destroy the summability of a series
altogether. For instance, the series

1-1+1-14+... and1-14+0+1-140+4...

are summable C; to 1/2 and 1/3, respectively.

3 Hardy’s Big O Tauberian Theorem

In this subsection we prove a Tauberian theorem.

A Tauberian theorem is one in which the convergence of a sequence is deduced
from the convergence of some transform of the sequence together with some side
conditions, so-called Tauberian conditions. The first such theorem was given by
A. Tauber.

Theorem 3.1 (Hardy’s Big O Tauberian Theorem).

T € coy
If and then x € c.
Ty — Tp—1 = O(1/n) (Tauberian condition)
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Proof. Putting

(31) On,k =

I =

n+k—1
doap (k=1,2,...5m=01,...),
j=n

we conclude

n+k)opik_1— Nop_ n
(32) On,k = ( ) n+k L nl <1 + E) On+k—1 — Ean—l-
If we let n and k tend to infinity through bounded values of n/k, then (3.2) defines
a method A with co, C ca. For lim, o 0, = 1 implies that the right-hand side of
(3.2) is n+o(1). Putting ar, =z —2x—1 (k=0,1,...;a_1; = 0), we conclude from
(3.2), using the series-to-sequence transformation given in (2.2),

n

=0 j=nt1
hence 1
n+k—
n+k—j
Ok =n+ D “ﬂ'( k )
j=n+1
Let lim,, o 0, = 7 and a, = O(1/n). Then, for some constant M > 0,
n+k—1 . n+k—1
n+k—j
ons—eal £ D2 gl L < 3 Jayl
j=n+1 j=n+1
n+k—1
1 k—1
<M ) -<M
. J n
j=n+1

Let € > 0 be given. We put k = [en| + 1, where [a] = max{z € Z: z < a} for each

« € R. Then we have
Men

|onke — @n| < = Me.
Since n/k < n/(ne) = 1/¢ is bounded, it follows that o, — 7, hence

lim |z, — n| < Me.

n—oo

Since € > 0 was arbitrary, we conclude lim,_,,, z, = 7. O
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4 The Toeplitz theorem

We already mentioned in Section 1 that conservative methods are of special inter-
est. The question naturally arises as to whether all conservative methods can be
characterized. The affirmative answer was given in the famous Toeplitz theorem
which establishes necessary and sufficient conditions for the entries of a matrix to
define a conservative method of summability.

Definition 4.1. (a) Let X and Y be subsets of w. Then (X,Y’) denotes the class
of all matrices A for which X C Yy, that is, A € (X,Y) if and only if the series
A,x = EZOZO ankxy, converge for all z € X and for all n, and Az € Y for all x € X.

(b) We write

o0
(4.1) |A] = supz |ani| for every matrix A
" k=0

and @ = {A: | 4| < co}.

Example 4.2. (a) We always have A € (wa,w); furthermore A € (¢, ¢) if and only
if A is conservative.

(b) The matrix C; that defines the Cesaro method of order 1 satisfies Cy € (¢, ¢)
(Theorem 1.2), and obviously C; € ®.

(¢) We have e(™ € ¢ for all n and e € ¢\ co.

Now we study the famous Toeplitz theorem that characterizes the class (¢, c).
The difficult part of the proof was to establish the necessity of the row norm con-
dition ||A]] < oo. The original proof used the classical method of the gliding hump.
First we give the classical proof; at the end of this section we will prove the necessity
of the row norm condition by using results from functional analysis.

Theorem 4.3 (Toeplitz, 1911). (|108]) (a) We have A € (c,c) if and only if the
following three conditions hold

(i) Ae®, (ii) ¥ ecy for k=0,1,..., (iii) e € ca.
(b) Let A € (¢,c) and x € c. Then putting
(4.2) o =limg e® fork=0,1,...
(4.3) x = x(4) :limAe—Zak,
k=0
we have
(o)
(4.4) limagz=x- klig)lo Tr + gakxk.

(¢) A matriz A is reqular if and only if the following three conditions hold
(i)YAed, (ii')ap =0 (k=0,1,...), (iii') limge =1.
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Remark 4.4. (a) The difficult part of the proof is the necessity of the condition
in (i). Here we give the classical proof by contradiction that uses the method of the
gliding hump. Assuming A € (¢, ¢) and that the condition in (i) is not satisfied, we
will construct a sequence x € ¢y such that Az & {.

(b) The condition in (i) means that the row norms ||A,| = Y 7 |ank| exist for
all n, and that the sequence (||A,|)5% of the row norms is bounded. Since

A,e®) = Zanjeg-k) = apy, for all n and all k,
=0

the condition in (ii) means that

ap = limae® = lim a,y exists for each k.
n—roo

Hence the sequences A®*) = (a,,,)22, in the columns of the matrix A are convergent.
Finally, since An,e = Yo ank for all n, the condition in (iii) means that all row
sums of the matrix A exist, and the sequence of the row sums converges.

Proof of Theorem 4.2. (a.l1) First we prove the sufficiency of the conditions in (i),
(ii) and (iii). We assume that the conditions in (i), (ii) and (iii) are satisfied. Let
x € c¢. Then x € {5, and so there is a constant M > 0 such that supy, |zx| < M.
We obtain from (i) for all n

o0 (o]
Z |ank||zk] < <Z |ank|> sup [z | < [|A| - M,
k=0 k=0 k

which implies z € w4. Furthermore, the condition in (ii) implies that the complex
numbers oy, defined in (4.2) exist for all k. We have for each fixed integer m,

m m
S Joul = Tim 3 Jani] < [IA]
k=0 k=0

hence
(4.5 S loel < Al that is, ()i € 61,
k=0
(oo}
(4.6) Z |agzy| < oo for all z € c.
k=0

Given z € ¢y and € > 0, we can choose an integer K = K, such that

(4.7) |zk| < for all k > K.,

__°
4||A] + 1
and, by (ii), we can choose an integer N = N, such that

K
9
(4.8) ;0 |ank — a|lzx| < 5 for all n > N.
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Let n > N be given. Then (4.8), (4.7), (i) and (4.5) imply

o0
A,x — E QLT

k=0

(4.9) <

Z|ank — ay[ag] + Z (lank| + [ox])zx| <

k=K+1
g E
4+ - |ank| + lak| | <
4|AH+1<,§ >
£ &
Sk (Al + Al <e
s+ g (140 + 14D <

hence x € c4 by (4.9). This implies ¢ C c4. For x € ¢\ ¢y, we have £ =
limg 00 , # 0 and consider the sequence ' = x — {e. Then 2’ € ¢p, and (4.9)
implies limy 2’ = .2, ax).. We conclude from (iii) and the linearity of A on wa,

[e.e]
(4.10) Apz = Apt’ + EAne — Y oy + limg e
k=0

=&(limae— > ox)+ > opzp  (n— 00).

(Note that >~ ax is convergent by (4.5).) This completes the proof of the suffi-
ciency of the conditions (i), (ii) and (iii).

(a.2) Now we show the necessity of the conditions in (i), (ii) and (iii). We
assume A € (¢, c). It follows from e(*) € ¢ for all k and e € ¢ that the conditions in
(i) and (iii) hold. To prove the necessity of (i), we first show

(4.11) bn:Z\ank|<oofor aln=0,1,....
k=0

Agssuming to the contrary b, = oo for some integer m, we can choose an increasing
sequence (k(7))52, of integers k(i) with £(0) = 0 and

k(i+1)—1

Z |ami| > i+ 1foralli=0,1,....
k=Fk(3)

We define the sequence x by

vy = BOmE) g R4 — 1= 0,1, ),
t+1
where, as usual, sgn(z) is defined by sgn(z) = |z|/z for z € C\ {0} and sgn(0) = 0.
Then we obtain x € ¢y and
0o k(i4+1)—1

Zamkxk —il—l Z |amk|>21:oo
i=0

k=k(3)
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which is a contradiction to the assumption A € (¢, c).

Now we show the necessity of the condition (i). We assume to the contrary that
the condition is not satisfied, that is, ||A|| = oo, and construct a sequence x € ¢
such that Az ¢ (., which contradicts the assumption A € (c,c). First we note,
that since ||A|| = oo, given any real G > 0, we can choose an integer n such that
b, > G. We put

(4.12) b = Y _lank| (m=0,1,...),
k=0
(4.13) B = Z o] (n=0,1,...) where aj = lim @y, by (ii).

It follows from (4.11) that lim,,—, oo by m = by, for every n. Furthermore, by (ii), we
have lim,,_, oo by m = B for every m.
Let m be an arbitrary integer. We recursively define two increasing sequences

(m(i))2; and (n(j))52; of integers. Assuming that m(1), m(2),...,m(r) and

n(1),n(2),...,n(r — 1) have already been determined for some integer > 1, then,
since b, > G for arbitrary G and some n, we can choose an integer n(r) > n(r —1)
such that

(4.14) bp(ry > 27“6,”(,«) + 724242
Since limy, 00 b m(r) = Bm(r), We can assume
(4.15) bn(r)’m(r) < Bm(r) + 1.

Finally lim, 00 bn(r),m = bn(r) implies that we can choose an integer m(r + 1) >
m(r) such that

(416) |bn(r) - bn(r),m(r+1)‘ <L

It follows from (4.14), (4.15) and (4.16) that

m(r+1) 00 m(r) 00

Z |an ),k = Z |an (), Z @),k — Z |an(r) k| =

k=m(r)+1 k=0 k=m(r+1)+1

bn(r) - bn(r),m(r) - (bn(r) - bn(r),m(r+1)) >
2rBin(ry + 12 +2r +2 — (B +1) — 1>
> 1By + 7+ 2r,

that is,

m(r+1)

(4.17) Z \an(r)7k| > T‘ﬁm(r) + r? + 2r.
k=m(r)+1
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We define the sequence x by

N :{0 (0 <k <m(1))
g rlsgn(anpy k) (m(r)+1<k<m(r+1))

Then it follows that || < 1 for all k¥ and limg_, o xx = 0, but on the other hand
we have by (4.17), (4.15) and (4.16),

Zan(r),kxk >
k=0
m(r+1) m(r) 0o
ST tnark| = O lanmallzel = D langkllekl >
k=m(r)+1 k=0 k=m(r+1)+1
1 m(r+1) m(r) o
= > ekl = D lanmal = D0 laneal >
k=m(r)+1 k=0 k=m(r+1)+1

6m(r)+r+2_<6m(r)+1)_1:ra

hence Y7, Qn(r),kZk — 00 (1 — 00). This means that there is x € ¢y with Az & ¢,
which is a contradiction to the assumption A € (¢, ¢).
This completes the proof of the necessity of the conditions in (i), (ii) and (iii).

(b) We assume A € (¢, c¢). Then the conditions (i), (ii) and (iii) hold by Part
(a), and the conclusion follows from (4.10).

(c) This is an immediate consequence of Parts (a) and (b). O

We close this section with a functional analytic proof of the necessity of the row
norm condition for conservative matrices using the uniform boundedness principle
and the Banach—Steinhaus closure theorem, which we will state below without proof
for the reader’s convenience.

It is well known that ¢ and £, are Banach spaces with the supremum norm ||- || oo
defined by ||z|| o = supy, |zx| for all sequences x = (x1)72; also ¢; is a Banach space
with the norm || - |1 defined by ||z[1 = Y e, |zk| for all z = (z4)72, € ¢1.

Theorem 4.5 (Uniform boundedness principle). ([110, Theorem 7.3.1]) Ewvery
pointwise bounded family F of continuous linear functionals on a Banach space
is uniformly bounded, that is, there exists a constant M such that || f|| < M for all
feF.

Theorem 4.6 (Banach-Steinhaus closure theorem). ([110, Theorem 7.6.3] or [61,
Corollary p.115]) The limit function of a sequence of pointwise convergent linear
functions from a Banach space into a normed space is continuous.

Corollary 4.7. If A € (¢c,c) then A € ®.
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Proof. We assume A € (¢, c¢). Then the series A,x converge for all n and all = € ¢
and Az € ¢ C £». We observe that A, € ¢; by (4.11). For each n, we define the
functional f, : ¢ = C by fhoz = Az = > o ankay for all z € X.
(i) First we show that f, is a continuous linear functional on ¢ for each n € Ny.
We fix n € Ng. Let m € Ny be given. We define the functional f,[lm] :c— C by
i (z) = Y jtgankzy for all z € c. Clearly, each functional f,[lm] is linear, and
A, € {1 implies

(4.18) fllm](w)) <D lankae] < <Z Iankl> +sup (2] = [[Anllr - [lzloe < o0,
k=0 k=0

hence each f7[1m] is continuous. Since A,z = lim,, oo f}lm] (z) for all z € ¢, it follows
from the Banach—Steinhaus closure theorem, Theorem 4.6, that f,, is a continuous
linear functional.

This completes the proof of Part (i)

(ii) Now we show A € ®. By Part (i), (£,)5%, is a sequence of continuous linear
functionals on ¢ which is pointwise bounded, since (f,,(2))5%, = (4,2)%2 € loo,
and so sup,, ||fn|| < oo by the uniform boundedness principle, Theorem 4.5. It
follows from (4.18) that

(4.19) 1£nll < | Anlls for all n.

Let m € Ny be given and z = >, ;sgn(a,;)e®). Then we have = € ¢, ||z]| < 1
and

a@) =D lankl < 1 fall - 2lloo < l1fall-
k=0

Since m € Ny was arbitrary, we obtain
(4.20) Ifnll = |An]l1 for all n.

Now (4.19) and (4.20) yield || f.|| = ||Anll1, and so sup,, || fu|| = sup,, [|Anll1 < oo,
that is, A € ®. O

The following results can easily be deduced from Theorem 4.3.

Corollary 4.8. We have
(a) A€ (loo,lo0) if and only if A € ®;
(b) (o, loc) = (¢, loo) = (oo, loc);
(c¢) A€ (co,c) if and only if A € @ and
)

(4.21 lim an,x = oy exists for each k;

n—oo

(d) A € (co,co) if and only if A € ® and (4.21) holds with o, = 0 for each k;
(e) A€ (c,co) if and only if A € @, (4.21) holds with oy, = 0 for each k and

(4.22) nlggo];)a"k =0.
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Proof. The necessity of the conditions in each case follows similarly as in the proof
of Theorem 4.3. In particular, A € ® implies A € (Yoo, loo) C (¢,€o0) C (c0,¥o0)-
Furthermore, we showed in the proof of Theorem 4.3 that if A ¢ ® then there
exists a sequence x € ¢y such that Az & fo,. Thus A € (cp,¢~) implies A € P,
and since (Yoo, lo0) C (¢,450) C (co,400), the condition A € @ is also necessary for
A€ (loo,loo) and A € (¢,€o). The necessity of the additional conditions in the
remaining cases is trivial. O

We apply Theorem 4.3 to obtain Theorem 1.2.
Example 4.9. The Cesaro matrix C; = (cf},g);’skzo is regular, since
L N N
Z|an| —chk = mZI— 1 for all n € Ny,
k=0 k=0 k=1

hence C; € ® and lime, e = 1. We also have

lime, e®) = lim =0 for all k& € Ny.

n—oo N +
Thus the matrix C satisfies the conditions (i), (ii’) and (iii’) in Part (¢) of Theorem
4.3, and thus is regular.

5 Coercive matrices

Now we characterize the classes (¢, ¢o) and ({o, ¢). No functional analytic proof
seems to be known for these two cases. Instead the classical method of the gliding
hump has to be used in the proof of the characterizations. Matrices in (£, ¢) are
called coercive.

We need the following

Lemma 5.1. If Y 77 |ank| < 0o for each n and >y~ o |ank| = 0 (n — o0), then
Y reo lank| is uniformly convergent in n.

Proof. Let € > 0 be given. Since >, |ank| = 0 (n — o00), there is N € Ny
such that >, |ank| < € for all n > N. Since Y ;- |ank| < oo for each n with
0 < n < N, there is an integer m(n) such that Z,;'im(n) lank| < €. We choose
M = maxo<m<n m(n). Then we obtain Y, |ank| < € for all m > M and for all
n, and s0 Yo |ank| is uniformly convergent in n. O

Theorem 5.2 (Schur). We have
(a) A € (U, ) if and only if
(5.1) Z |ank| converges uniformly in n,
k=0
(5.2) ILm ani, = oy, for each k;



5 COERCIVE MATRICES 19

(b) A € (b, co) if and only if condition (5.1) holds and

(5.3) ILm ank = 0 for each k.

Proof. (a.1) First we show the sufficiency of the conditions in (5.1) and (5.2). So
we assume that the conditions in (5.1) and (5.2) are satisfied. We show A € . By
(5.1), there is ko € Ny such that

Z lank] < 1forallm=0,1,...,
k=ko+1

and it follows from (5.2) that (ank)22, € ¢ C £ for every k € Ng. Thus, for every
k, there exists a constant My such that |a,x| < My for all n = 0,1,.... We put

M=1+ Z]ZOZO M}, and obtain

oo ko oo
S Janrl € lankl + 3 lank] < M for all n,
k=0 k=0 k=ko

thatis A € ®. Now A € ® and (5.2) imply o = ()32, € ¢1 by (4.5) in Part (a.1) of
the proof of Theorem 4.3, and so0 >_ -, a,x), converges for all 2 € £. Furthermore,
x € lo and (5.1) together imply that A,z is absolutely and uniformly convergent

in n, since
o0 o0
> lanian] < (Y- el < o

k=0 k=0
Therefore, we have

oo oo
limg oz = lim A,z = E (lim ankack) = E QpTl,
n—oo n—oo k—o

hence Ax € c. This shows the sufficiency of the conditions, and completes the proof
of Part (a.1).

(a.2) Now we show the necessity of the conditions in (5.1) and (5.2). So we
assume A € (foo, ). Tt follows from e®) € £, (k =0,1,...) that, for each k, there
exists a complex number oy such that (5.2) holds. Furthermore ¢ C ¢ implies
(o, ¢) C (¢,c) and so A € ® by Part (a) of Theorem 4.3, and this and (5.2) imply
a = (o), € {1 by (4.5) in Part (a.1) of the proof of Theorem 4.3. We define the
matrix B = (bnk)?f:kzo by bpk = ank —ag (n,k=0,1,...), and obtain B € (¢, ¢).
We will show that this implies

o0
(5.4) im |[Bufl = lim ) |bur| = 0.
k=0

Then it will follow by Lemma 5.1 that >~ |bnk| converges uniformly in n whence
Y oreo lank| = > z—o |buk + ax| converges uniformly in n, which is condition (5.1).
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To show that (5.4) must hold, we assume that it is not satisfied and construct a
sequence x € o, with Bz ¢ ¢ which is a contradiction to B € (oo, ¢). If || Bp]1 4 0
(n — 00), then there is a positive real ¢ such that

limsup || B, |1 = ¢,
n—oo

o0

hence, for some subsequence (n;) 720

tim B, =

We omit the indices j, that is we assume without loss of generality

(5.5) Jim [|By [ = c.

It follows from (5.2) that

(5.6) lim by = 0.
n—oo

By (5.5) and (5.6), there is an integer n(1) such that

c c
|||Bn\|1 — c‘ < 0 and [by,(1),0] < 10

Since || By,(1)||1 < 0o, we may choose an integer k(2) > 0 such that

e C
> el < =
10
k=k(2)+1
and it follows that
k(2) oo 3¢
Z br1),k] — €| < [I1Bnqylly — ¢| + Z bn(1) k| + [br(1),0] < 10"
k=0 k=k(2)+1

Now we choose an integer n(2) > n(1) such that

k@) c ¢
b <X and ||B el < £,
kzzol n2)kl < 75 and [[Baalli —¢| < 35

and an integer k(3) > k(2) such that

> c
Z br(2),k| < 10
k=k(3)+1
Again it follows that
k(3) c
Z |bn(2),k —cl < E

k=k(2)+1
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Continuing in this way, we can determine sequences (n(r))22; and (k(r))$2, of
integers with n(1) <n(2) < ... and 0 = k(1) < k(2) < ... such that

k(r) 00
C C
Z |bn(r),k‘ < Ea Z |bn(r),k| < Ea
k=0 k=k(r+1)+1
(5.7) k(r+1)
3c
Z |bn(r),k| —c| < —.
10
k=k(r)+1

Now we define the sequence = by

o (k =0)
T sgn (b s) R+ 1<E<k@r+1) (r=1,2,...).

Then we obviously have x € £, and supy, |zx| < 1, and we conclude from (5.7)

k:(r) o0
Butry(@) = (=17l > baelleel + Y bagxllzel+
k=0 k=k(r+1)+1
k(r+1)

> buyeak — (—1)7c

k=k(r)+1

_|_

k(’!) o0

<D lbagkl+ D lbag skl
=0

k=k(r+1)+1

k(r+1)
+ ’(—1)7( Z b (ry ] — C)

k=k(r)+1

c c 3¢ ¢
RETURE TSRS
Consequently the sequence (B, (z))22, is not a Cauchy sequence and so not con-
vergent. Thus if (5.4) is false then there is a sequence x € ¢, such that (B, (x))2,
is not convergent, which is a contradiction to B(x) € ¢ for all x € {. Therefore
(5.4) must hold. This completes the proof of the necessity of the conditions, that
is, of Part (a.2).

(b) Part (b) is proved in exactly the same way by putting az = 0. O

Remark 5.3. (a) Condition (5.1) in Theorem 5.2 may be replaced by either one
of the conditions

(5.8) { Ap = (ank)iey € 4 for all n, o= (ag)f2, €l }
' and lim,, o ZZQ:O |ank - ak| =0
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or
o (o)
(5.9) nh_)rlgo Z |ank| = Z ||, the series being convergent.
k=0 k=0
(b) We have A € ({s, o) if and only if
(5.10) nangOZ k] =0

k=0

Proof. We assume that the condition in (5.2) holds. First we show that (5.1)
implies (5.8). Since Y o |ank| converges uniformly in n, each series > po o |@nk|
must converge, that is A, € ¢; for all n. Furthermore, we saw at the beginning
of the proof of Theorem 5.2(a) that the conditions in (5.1) and (5.2) imply o =
(k)72 € 1. Finally, since the series Y~ |ank| is uniformly convergent in n, we

conclude

o0 oo o0

i > lanl =D lim o] =3 Ja].

k=0 k=0 k=0
Now we show that (5.8) implies (5.9). This is an immediate consequence of
o0 o0
D lank =3 lou
k=0 k=0

Finally we show that (5.9) implies (5.1). Let € > 0 be given. It follows from (5.9)
that there are integers n; and j; such that

00 00
> lank =3 lou
k=0 k=0

Furthermore, since lim,, oo anr = oy for every k, there is no € Ny such that

o0
SZ\ank—ak\foralln:O,l,....
k=0

3

o0
<§foralln2n1and Z |ak|<3

k=ji1+1

Jo J1

€
E |ank| — E || <§for all n > na.
k=0 k=0

We put np = max{ni,n2}. Then we have for all j > j; + 1 and for all n > ng

oo oo oo o0 oo
Z|ank| < Z |ank| < Z |ank| — Z |k || + Z ||
k=j k=j1+1 k=j1+1 k=j1+1 k=j1+1
oo 0 J1 J1 c
<Dl = > lowl| + D lanel = D> ol | + 3
k=0 k=0 k=0 k=0

<ELE.¢
3 3 3
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Finally, for each n with 0 < n < ng, we can choose j(n) € Ng such that EZOZ] |@nk
< eforall j > j(n). We put jo = max{j;, max{j(n) : 0 <n < ng}}. Then we have

Z |ank| < e for all j > jo and for all n € Ny,
k=j

that is condition (5.1) is satisfied. O

As an immediate consequence of Theorems 4.3 and 5.2 we obtain the following
famous result due to Steinhaus.

Remark 5.4 (Steinhaus). ([107, 60]) A regular matrix cannot sum all bounded
sequences. For if there were a regular matrix A which sums all bounded sequences,
then

nh_}rgo anr = 0 and nh_}rr;@ Za”k =1
k=0
by Theorem 4.3(c). On the other hand, A € ({,c) implies that > po g, |ank| is
uniformly convergent in n by Theorem 5.2(a), hence

o0
E Gy, converges uniformly in n.
k=0

But then it follows that
oo o0
L=t > ome =D i ane =0,

a contradiction.

An interesting application of Schur’s theorem is to show that weak and strong
convergence coincide in ¢;. We recall that a sequence (x,) in a normed space
(X, |I-1) is said to be weakly convergent to a limit x € X if f(z,,) — f(z) (n — o)
for all f € X*, where X* denotes the space of all continuous linear functionals on
X, and X* has the norm | - ||* defined by || f||* = sup{|f(x)| : ||z| < 1}; it is said
to be strongly convergent to a limit « € X if ||z, — z|| = 0 (n — o0). Since

[f(zn) = f(@)] = [f(zn —2) < FII" - lzn — 2] for all f e X7,

strong convergence implies weak convergence. The converse implication is not true
in general. To see this, we consider the sequence (™) in fy = {z € w :
Sre o lzk]?} with the norm || - |2 given by ||z[2 = (e, [zk|?)Y/? for all z € 45,
Let f € 5 be given, then it is well known that there is a sequence a = (ar)32, € 2
such that f(z) = Yo, axxy for all @ € fy. Tt follows that f(e™) = a, — 0
(n — 00), and so the sequence (e(™)2 is weakly convergent to zero. But on the
other hand, we have [e(™) — e(™|5 = /2 for all m # n, hence (™) is not a
Cauchy sequence, and so not convergent in 5. Therefore the sequence (e(™)2  is
not strongly convergent.

In ¢;, we have, however,
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Theorem 5.5. Strong and weak convergence of sequences coincide in {1.

Proof. We assume that the sequence ((™)2_ is weakly convergent to x in 1, that
is,

f(@™) = f(z) = 0 (n — oo) for each f € £;.

It is well known (for example [110, Example 6.4.2]) that to every f € ¢} there
corresponds a sequence a € £, such that

y) = Zakyk for all y € ¢;.
k=0

We define the matrix B = (bnk)ffk:o by b = a:,(cn) —af (n,k =0,1,...). Then
we have for all a € /,

F@™) = fe) = fa™) —x) = Zak )

oo

Z bnrar — 0 (n — 00),
k=0

that is, B € ({x, o). It follows from Theorem 5.2(b), that >~ |bnk| converges
uniformly in n and lim,_ .. bnx = 0 for each k. Thus we have

|2 —ac||1—Z|x(n)—xk|:Z|bnk|—>0(n—)oo). O
k=0

6 Inclusion and consistency theorems

In this section, we prove some inclusion and consistency theorems. First we need
some results on the associativity of matrix multiplication, which, in general, is not
associative for infinite matrices.

Definition 6.1. Let ¢ denote the set of all finite sequences, that is, of sequences
that terminate in zeros.

(a) A matrix A is said to be row finite it A, = (ank)7>, € ¢ (n =0,1,...); it is
called column finite if A¥ = (a,1)% € ¢ (k=0,1,...).

(b) A matrix A is said to be triangular if ap, = 0 for k >n (n =0,1,...). A
triangular matrix A is called a triangle if a,, # 0 for all n.

Remark 6.2. Expressions such as

o oo oo o0 oo
Z thApz = Z Ztnankxk and Z Z tnOnkTh

n=0 n=0 k=0 k=0n=0
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frequently arise in summability.
Given sequences = = (2,)52 0,y = (Yn )22, € w, We write

0
sey=3 suti
n=0

Let z,t € w and A be an infinite matrix. We define the sequence b by

katOAk:Ztnankforallkrzo,l,....

n=0

We also have

o o0 (o)
te Al‘ = ZtnAnJ? = Z Ztnankxkv
n

n=0 k=0
o0 o0 o0
bex = E by = § E b Uk T,
k=0 k=0n=0

and t e Az and b e x may be different, even if ¢t € £1, A is a regular triangle, = € c4
and both numbers exists.

Example 6.3. We define the sequence ¢ and the matrix A by ¢, = 27" and A,z =
2xp—1 —x, (n=0,1,...). Then we have

b = Z tnlnk = ek + thy1apre = 27 (1) +2- 27D = 0 for all &,
n=0

that is, b = 0. If we choose = = ((—2)*)7°,, then we have Az = 1 and A,z =
—2.2k=1 1 9k = for n > 1, that is, Az =e(®, andsote Ar =1#0=bex.

The next result gives sufficient conditions for the multiplication of infinite ma-
trices to be associative.

Theorem 6.4. Let t,x € w, A be an infinite matriz and b be the sequence with
by =t e A¥ for k=0,1,.... Then we have t o (Ax) =bez if

(1) tegandxz €wy
or
(i) tely, Ac® andx € .

Proof. (i) Part (i) is obvious, involving only the adding of finitely many convergent
series.

(ii) If the conditions in (ii) hold, then we obtain

5= ltanianl < (32 1] ) 141 (s0p ] ) <

n=0 k=0 n=0
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and we may change the order of summation. Therefore it follows that

toA:E—Zt A .T—Zt (Zankxk>
n=0
Z(Ztnank)zkzbkzkb‘x- O
k=0 \n=0 k=0

We obtain as an immediate consequence of Theorem 6.4

Corollary 6.5. The set ® and the set of row finite matrices have associative mul-
tiplication.

Proof. If A € ®, then the rows of A are in ¢; and the columns are in £, and so
Theorem 6.4(ii) applies.
If A is row finite then condition of Theorem 6.4(i) holds for all x. O

Example 6.6. (a) We have Bo A # B - A; indeed B o A may not even be a matrix
map.
Let A,z = 2, — x,—1 for n = 0,1,2... with the convention z_; = 0. Then we
have

eoA:z:*ZA z = lim Z n— Tp—1) = lim z,, =limz for all x € c.
m—r 00

m—r oo

Now let B be the matrix with the rows By = e and B,, = (0,0,...) for n > 1.
Then we have

B(Az) = (limx,0,0,...), in particular, Bo A # 0,

but B-A =0, since

o0
(B-A)pi, = Z brjajk = bk — by k+1 = 0 for all n and k.
=0

To see that Bo A : ¢ — ¢ is not given by a matrix it is sufficient to observe that
it vanishes on ¢; the terms m,; of a matrix M are determined by how it maps ¢,
since mpr = M,e'® for all n and k. More is true: if B o A were a matrix then it
would have to be the matrix B - A, since

A(k) ZA elF) = Zb Zaﬂe = ibnjajk =(B-A)ni
=0

Jj=0

for all n and k, that is Bo A= B - A on ¢.
In cases like Corollary 6.5, in which (BA)xz = B(Ax) for matrices A and B and
sequences x in the space involved, we have B o A = B - A by definition.
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(b) If matrix multiplication is associative, as in Corollary 6.5, a matrix has an
inverse matrix (which is automatically unique) if and only if it has a unique right
(or left) inverse.

A triangle A has a unique right inverse B: it may directly computed by math-
ematical induction, and is unique, since A is one to one. Moreover B is a triangle.
Also BA = I, where I is the identity matrix, since A(I — BA) = 0 by Corollary
6.5; thus B = A~1.

But A may have another left inverse. The inverse matrix B of the matrix A in
Example 6.3 is given by

2 (0<k<n)
bnk—{o (k>n) (N—O,l,)

Let C' be the matrix with the rows C,, = B, +t for n = 0,1,..., where ¢ is the
sequence in Example 6.3. Then we have

(C-A), = (B-A),+b=e"™ for all n,

where b = (br)32, is the sequence from Example 6.3 with b, = 0 for all k. Thus
we have C'- A = I.

Definition 6.7. If cg D c4 then B is said to be stronger than A, and A is said to
be weaker than B; we denote this by A = B. If cg = c4 then A and B are called
equipotent; we denote this by A & B.

Now we establish a test for the comparison of the strength of methods of summa-
bility given by triangles.

Theorem 6.8. Let A and B be triangles. Then B is stronger than A if and only
if BA™! is conservative.

Proof. We note that A~! exists by Example 6.6(b), since A is a triangle. First
we assume that B is stronger than A. Let z € ¢ be given. Then it follows that
y= A1z € cy, since v € c and Ay = A(A~'x) = x by Theorem 6.4(i). So we get
y € ca C cp, hence By € ¢, but By = (BA~!)z. Therefore BA~! is conservative.

Conversely we assume that BA~! is conservative. Let © € c4 be given. Then
we have Az € ¢ and, applying Theorem 6.4(i) again and using the assumption that
BA™! is conservative, we conclude Bx = B(A~'A)x = (BA™!)(Ax) € ¢, hence
T € cp. O

Definition 6.9. Two matrices A and B are called consistent if limy4xz = limpx
whenever x € cyNep. If B is stronger than A and consistent with A, then we write
BDA. If AD B D A then A and B are equivalent, denoted by A = B.

Theorem 6.10. Let A and B be regqular and row finite, and assume AB = BA.
Then A and B are consistent.
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Proof. Let x € cq Ncp be given. Applying Corollary 6.5, we obtain

limp 2z = lim Bz = lim A,(Bz)= lim (AB),z
n— o0 n— o0 n— o0
= lim (BA),z = lim B,(4z) = lim A,z =lim4 . O
n—oo n—oo n— oo

Theorem 6.11. Let A and B be triangles. Then B D A if and only if B - A~' is
regqular.

Proof. First we assume that A and B are triangles and B D A. Let = € ¢ be given.
Applying Corollary 6.5 and Theorem 6.8, we obtain, since B D A,

lim BA 'z = limp A~ 'z = lim4 A" 'z = lim z.

Conversely, we assume that BA~! is regular. Then we have by Theorem 6.8 cg D
ca, hence for all x € cx Necg =ca

limp 2 = limlimp A~ Az = lim(BA™ 1) Az = lim Az = lim4 ,

since BA™! is regular. O

7 The Cesaro methods of order greater than -1

In this section, we study the Cesaro methods C,, of order oo > —1 which are gener-
alizations of the C7 method. We use the traditional notations and write Xay for a
series of complex numbers, and s = (s;)72, for the sequence of its partial sums.

Definition 7.1. Let § € R. Then the numbers

Ai: (n+5> forn=0,1,...

n

are called the n** Cesdaro coefficients of order 5. For o > —1, the Cesaro method
C, of ordera: is defined by the matrix A = (ank)ff,)k:o with

ATy /Ay (0<k<n)
ank = (n=0,1,...).
0 (k>mn)

The n'* C, mean of a sequence s = (s;)%2, is defined by

n
of =

1
o EZA?{:isk forallmn=0,1,...,
n k=0

H [0 Z— [epe —
and we write s = A%oo forn =0,1,....



7 THE CESARO METHODS OF ORDER GREATER THAN -1 29

The Cesaro coefficients have the properties in Lemma 7.2 below of which only
those in (7.10) and (7.11) are not immediate consequences of their definition.

We recall for the result in (7.11) that Euler’s T' function I' is defined by the
improper integral for all x > 0 by

I'(z) = /e_t £ dt.
0

It is also known from elementary analysis that I'(n+ 1) = n! for all n € Ny and the
recursion formula I'(x 4+ 1) = - I'(z) holds for all = > 0.

Lemma 7.2. The Cesaro coefficients have the following properties

(7.1) A% =1 forn=0,1,...;

(7.2) Ag =1 for all a e R;

(7.3) Ay >0 foralla>—1andn=0,1,...;

(7.4) AF =0 forallk € ~Nandn =k, k+1,...;

(7.5) A% has fized sign for all o < =1, n > —a and o ¢ Z;
(7.6) Ay = nZaAﬁ_l forall n € N and a € R;

(7.7) Ao = ”ZO‘AQ L for all n € Ny and a € R\ {0};
(7.8) Ay < AL for n € Ny and o > 0;

(7.9) Ay > A5y for n € Ng and —1 < a <0.

Let o > —1. Then there are constants K1 and Ko depending on o only such that
(7.10) Kin+1)*<AY < Ks(n+1)* forn=0,1,....
The Cesaro coefficients have the following asymptotic behaviour

A2 1
A1 li n__ = —-N
(7.11) Jim CESCRR YY) for all a ¢ —N,

where I' denotes Euler’s gamma function.

Proof. We have by definition:
(7.1) A% = (") =1forn=0,1,... and
(7.2) Ay = (5) =1forall a € R.
(7.3) Since a+1 > 0 for o > —1, we obtain

n+a)n+a—1)---(a+1)
n!

A%:( >0forn=1,2,...

also A5 =1> 0 by (7.2).
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(7.4) Let o = —k, ke Nand n =k, k+1,.... Then we have
<n—k> _(n=k)n—-(k+1))...(=k+1) _0

AY =
" n n!

since one of the factors in the nominator is equal to 0.
(7.5) It follows for —k < o < —k + 1 and n + o > 0 that

nt+a)--(k+a)k—1+a) - (a+1)
n!

g =t

where the factors (n + «),...,(k + «) are positive and the k factors (k — 1 +
a),...,(a+ 1) are negative.

It follows from the definition of the Cesaro coefficients that
_(nta)--(a+l) (n+a) (nt+ta-1)---(a+1)
N n! on (n—1)!

AS_forn=1,2,...;

(7.6) A°

n -+ «

(17) Ae = (n+ta)--(a+l) (nta) (nta—-1)- (a+ o

n! o n!

—— A%t forn=0,1,2,... and a # 0.

n—+ o

(7.8) Since (n+ «)/n > 1 for a > 0, (7.8) follows from (7.6).
(7.9) Since (n+ a)/n <1 for =1 < a < 0, (7.9) follows from (7.6).

(7.10) It is sufficient by (7.7) and (7.1) to consider the case of 0 < o < 1. Since
log (1 +z) <z for all z > 0, we obtain

1ogAf::10g(n+a) (ot 1) znzlog(1+ ) Z":%
k=1

a(log (n+ 1)) ++, where v is Euler’s constant.

This implies

a

|logAf{—ozlog(n+ )‘_ W

log <a-v,

and so
A%
C*Q’Y < —-n <L Ca'Y .

Shrne S
Putting K71 = e™*" and K» = ¢®?, we obtain the inequalities in (7.10).
(7.11 (i)) First we show

(n—1)nt

i
AT oy LW fort>0.

(7.12)
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Since I'(t+n) = (t+n—1)---tI'(¢) for all n € N and ¢ > 0, (7.12) is equivalent to

(7.13) lim Lt +n)

=1.
n—oo nt'(n)

Also since T'(t+1) = tI'(t) and I'(n+1) = nl, it suffices to show (7.13) for 0 < ¢t < 1.
Solet 0 <t < 1. We put

Ii(n) = /e_“ u " du and Io(n) = /e_“ w1 du for n € N,
0 n
so that I'(t +n) = I1(n) + Iz(n). Since u’ < n! and u!~1 > n!~! for 0 < u < n, we
obtain

(7.14) nt~t /e*” udu < I(n) <n' /e*“ u" 1 du;
0 0

similarly we have

(7.15) nt/e_“ u"tdu < I(n) < n'? /e_“ u" du.

Integration by parts in (7.14) yields

n
— — n — —
Tt —e “u"|u_0—|—n/e vyt | =
0
n

=nt /e_“ u"tdu —nttmle™ < I (n) <

Adding this to (7.15), we obtain

ntF(n) — nt+n—1 e "< F(t + n) < nt—lr(n + 1) + nt+n—1 P

— ntl—\(n) + nt+n—1 e—n,

hence . I ) .
n" e t+n n""te ™
1— < <l4+ ——
T = nitm) T
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or equivalently,

L(t+n) ntle™m  pne ™
7.16 _— =
(7.16) ntT'(n) ‘ I'(n) n!
Now we show
(7.17) lim 5 —0.

n—ooo nl

hence

n+1)(n+2)...(n+2)

—=m+1(n— o0).

:1+Z(1+%) +2)--(1+9)

Since m € N was arbitrary, we have established (7.17). Now (7.17) and (7.16) yield
(7.13) which is equivalent to (7.12).
This concludes Part (i) of the proof of (7.11).

(7.11 (ii)) We conclude from Part (7.11 (i)), puttingt = a+1 > 0 for a > —1

Ay _(n+ao)---(a+l) (n+t—-1)---t  n”
(n+1)> nl(n+ 1)  nt(n—1)! (n4+ 1)
11
%ﬁ_if(a—i—l) (n — 00).
Thus we have shown (7.11). O

Remark 7.3. It is easy to see from the relations in Lemma 7.2 that Cy = I, the
identity matrix, that is, the Cp method is the same as ordinary convergence, and,
for a = 1, the C, method is the C; method of Section 2.

Many computations involving Cesaro methods are conveniently handled by the
use of the binomial series which is studied in elementary analysis. We include the
related theorem and its proof for the reader’s convenience

Theorem 7.4. Let a € R. Then we have

(a) 1+x)*= g (:) ™ for |z| < 1;
(b) W = ZAgx" for |z| < 1.

n=0
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Proof. (a) For non-negative integers «, this reduces to the well-known binomial
formula.

Let o € R\ Ny. The function f: (—1,00) — R defined by f(z) = (1 4+ z)® is of
class C*° on (—1,00). We have for v =1,2,...

) @) N
@) = aa—1)-(a—v+ DA+ar, 1O 4 ] (O):( )

0! v! v

The nt" Taylor polynomial is given by

n

To(z,0) =Y (3‘>x” for z € (—1, 00).

v=0
Cauchy’s formula for the remainder term yields

(n+1)
f '(6‘7") (1 _ @)nxn-‘rl
n:

ala=1)--(a—mn)

= - (1+60z)* " 1(1-0)" 2"

=1\ i1 a1 (10"
= 1
a( n )m (1+6z) (1+®x

for some © € (0,1).

R, (x,0) =

Since |1+©z| > 1-0|z] > 1-0 for x € (—1,1) and © € (0, 1), there is a constant
M independent of n such that

-1
|Rn(2,0)] < M (a )’w
n
We put
«
yn:< )x"forx;éo,
n
and obtain
n . a—n
lim Ynt1 _ lim T =—x.

If x € (—1,1), then there exists ¢ such that |z| < ¢ < 1, and so there is an N € N
such that

Ynt1 <gqforalln >N,
Yn
hence for n > N
Y Yn—1 YN+1 - \yN|
Yn—1 Yn—2 YN q

and so lim, o yn, = 0. Finally, this implies lim,, o, R,(2,0) =0 on (—1,1).
Thus we have shown Part (a).
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(b) We conclude by Part (a) and the fact that
<—1>"(_a ] 1) SR sl Gk G el el )

4 V!

_ (V—|—Oé)(a+1) :Aa,

V!

that, for « € R\ (—=N) and |z] < 1,

v=0 v=0
Thus we have established the identity in (b). O
Remark 7.5. (a) Since
tim il
n—oo  |yp|

in the proof of Part (a) of Theorem 7.5, we could have applied the ratio test to
conclude the convergence of the series ZZO:O Y, which implies lim, 00 ¥y = 0. In
fact, the succeeding lines there give a proof of the ratio test.

(b) Using the identity in Part (b) of Theorem 7.5 and the Cauchy product of
two power series, we obtain for sufficiently small ||

1 o0 oo o0
o e = (5 (5o
v=0 v=0

0::0 v 0o
-5 (S ) =S
v=0 \p=0 v=0

The next important result gives a formula of the transformation between Cesaro
means of different order.

Theorem 7.6. Let « > —1 and a+ 5+ 1 > —1. Then we have for arbitrary
sequences s = (Si)7,

1 n
(7.18) on I = 2 N AL ARG} for alln =0,1,....
An k=0
Proof. First we show
(7.19) ASTAHL — Z AﬁikA% foralln=0,1,....
k=0
We obtain by Part (b) in Theorem 7.4 for |z| < 1,

o0

Z AdtBtlgn — 1 = L !
" (1 —x)etb+2 (1 —g)otl (1 — )AL

n=0
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- (TiAix") (gAgxn> _ Z (Z o k) .

n=0

Comparing coefficients, we obtain (7.19).
Now it follows from (7.19) that

n n k
B o _a B a—1
ZAnfkr k0K _ZAnkaAkijJ
k=0 k=0 7=0
n—

_ZSJZA LA 1:2765] AP R ARt
7=0 k=j

7=0 0

<.

b
I

- ZAﬂJra L= AoTBtlgothtl

and (7.18) is an immediate consequence. O
Next we apply Theorem 7.6 to obtain an inverse formula for the C, means.

Example 7.7 (Inverse formula for the C,, means). If we put 8 = —(a+1) in (7.18)
of Theorem 7.6, then we obtain

(7.20) Sm= Y A CMARoR (> -Lin=0,1,...),

which is an inverse formula for the C, means.
The C, methods become stronger with « increasing.
Theorem 7.8. Let —1 < o < 3. Then we have C, C Cg.

Proof. We may assume « < 3. We have by (7.18)
of = gf-a-ltatl — Zankok

where

Ank = ATBL
0 (k>mn)

Since § — a — 1 > —1, it follows that a,x > 0 for all n and k by (7.3) in Lemma
7.2. Therefore we have by (7.19)

Z|ank\:Zankzlforalln:(),l,...,
k=0

k=0
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and conditions (i’) and (iii’) of Part (c¢) in Theorem 4.3 are satisfied.
Now we fix & € Ny. By (7.10) in Lemma 7.2, there are absolute constants K
and K5 such that

(n—k+ 1P 2"k + 1) (n—k+1)P 2"k + 1)
(n+1)8 (n+1)»
for all n > k. Obviously the terms on the left and the right tend to zero as n — oo,

and so condition (ii’) in Part (c) of Theorem 4.3 is also satisfied. Thus A is regular
and the conclusion follows by Theorem 6.8. O

K, <ank < Ko

Applying Theorem 7.8 with & = 0 and 8 = «, we obtain
Corollary 7.9. The C,, methods are reqular for o > 0.

Next we establish a Tauberian theorem by which the C,, summability for —1 <
a < 0 of a series Y ax can be deduced from its convergence together with a condi-
tion on the growth of its terms; this is a result similar to Hardy’s Big O Tauberian
theorem, Theorem 3.1. First we need the following

Lemma 7.10 (Abel’s summation by parts). Let a = (ax)i>, and b = (by)3
be arbitrary sequences, n and m be non-negative integers with m > n and B,
>, be. Then we have

(=)

m m—1
(7.21) Z apb = Z (ak — ak+1)Bk + Ay, B -
k=n k=n

Proof. We have by, = By, — By_1 for n < k < m where B,_1 = 0, hence

Z aiby = Z ap(By — Br—1) = Z ap By — Z arpBr—1
k=n k=n k=n

k=n+1
m m—1 m—1
= Z ay By — Z apy1Br = Z (ax — ap41)Bi + By, O
k=n k=n k=n

Theorem 7.11. Let Y ax = s and ax, = 0(1/k). Then we have
Zak = 5(Cs-1) for 0 < < 1.

Proof. Since the Cesaro methods are linear, we may assume s = 0. Let © € (0,1).
We put N = [nO] = max{m € Ny : m < nO} and write

n N-1 n

6—1_6—1 5—1 6—1 6—1

AT sy :E AY = E A, an_,,—l—g AY an—y.
v=0 v=0 v=N

Then it follows that
N-1 N-1

S1 = Z ASla,_, =0(1/n) + Z oW’ Ho((n—-v)™)

v=0 v=1
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N° o
o(75w) o (%)

uniformly in ©. Therefore, given € > 0, we can choose a real © = O(¢) € (0,1) such
that |S;| < en®~'. Furthermore, we have A5~ 1—A°~1 = ((6—1)/v)A°~L = O(1~2)
for N <v <n. Lemma 7.10 yields

n n—1 v n
Sy = Z Aiilan—u = Z (A(;I - Agzll) Z Op—p + A;S;l Z an—v
v=N v=N n=N v=N
n—1
=o(1) Y 0@’ ?) +0o(1)O(n°™") = o(1)O(n*1).
v=N

Hence we have
op "t =0(n'*)o(1)0(n°~") = o(1),

and consequently Y a; = O(Cs—_1). O

Part (c) of the next theorem extends Part (a) of the growth theorem, Theorem
2.4, for the C; method.

Theorem 7.12. Let Ya, be summable Cy, for o > —1. Then we have

n

(a) Z _pak = o(n®) for f with —1 < f < «;

(b) an = o(n®).
(c) Let Xa,, be summable C, for o > 0. Then the partial sums s, satisfy
S = o(n®).
Proof. (a) From
= Z AT = Y AT Ao,
=0 k=0

we obtain

== ZAB Ol AQGY for n=0,1,....
" k=0

We define the matrix A = (ank);5—o by

A(x

ALl AR JAG (0< k<)
Ank = (n=0,1,...)
0 (k> n)

and show that A € (¢, ¢p), that is, we show that the matrix A satisfies the conditions
in Part (e) of Corollary 4.8.
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(a.i) First we show that A € ®. If o > 0 then A{ is increasing, that is,
A% /AS <1, and so

n

o0 n 1
B—a—1 o
> ankl <14 |§K227(k+1)a+1_5<ff (n=0,1,...)
k=0 k=0 k=0

for some absolute constants Ko and K, since a+1— > 1. If —1 < a < 0, then
AP~ = 1, and we obtain for k > 0

(ktBb-a-1)---(B-at+t1)(f-qa)

B—a—1 _
A B k! ’
where S —a+1>0and 8 — «a <0, hence
n n—1 sB—a—1 4 n B—a—1 41
Anfk Ak Anfk Ak Ag

Z|ank‘:1—ZT:2—ZT:2—I%§2~

k=0 k=0 k=0
Thus A € .

This completes Part (a.i) of the proof.
(a.ii) Next we show that

lim a,; = 0 for each fixed k,
n— oo

that is, the condition in (4.21) holds with oy = 0 forall k. If f—a—1=—-2,-3,...
then Ag:i‘_l = 0 for all sufficiently large n, and otherwise

ank = O ((n _(]:Lill))i_a_l> =0 (n = o0)

since 8 < a and o > —1 and A is constant. Thus lim,_,o anr = 0 for all k. This
concludes Part (a.ii) of the proof.

(a.iii) Finally we show that the matrix A satisfies the condition in (4.22) of
Corollary 4.8. We obtain by (7.19)

_ p-1 _ “n
Zank = Ao Z AV LAY = Ao for all n,
k=0 k=0

and, since o > (3, this implies

lim E np = lim =2 = 0.
n— o0 n—oo A%
k=0 n

So the matrix A satisfies the condition in (4.22) of Corollary 4.8. This concludes
Part (a.iii) of the proof.

Thus we have shown that A € (¢,cg). Therefore 0& — s (n — o0) implies
sB/AY =0 (n — o0).

(b) This is Part (a) with 3 = —1 and s;! = a, for all n.

(c) This is Part (a) with 3 =0 and s = s,, for all n. O
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Remark 7.13. If @ = 0 then Theorem 7.12 yields the well-known fact that the
convergence of ¥a,, implies a,, — 0 as n — co. In the special case o = 1, Part (c)
of Theorem 7.12 reduces to Part (a) of Theorem 2.4.

Now we establish an equivalence result.
Theorem 7.14. We have C, = Cy_1C1 = C1Cq_1 for a > 0.

Proof. (i) First we show

(7.22) CoiC C Co.

Let s = (s5)7%, be given and o' = (0} (s))22,. Then it follows that
(7.23) 5%(8) = (n+a)s® o!) — (= 1)s¥(c*) for n =0,1,.. .,

n

since for a =1

and for o # 1
n n 1 k n n Aafl
— — —k
Sﬁ(UI)ZZAz_iUi:ZAz_imZSJ: 5j kj—l
k=0 k=0 j=0 Jj=0  k=j
n—j —1 n—j
_ Xn:s ATk ns A
= J - = J )
=0 k:ok—'—l—h7 j=0 kon_k+l
hence

and so (7.23) holds.
Now (7.23) implies for a > 0
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hence
(7.24) 0%(s) = ac? o) — (@ — 1)o¥(c*) for n = 0,1,....

Let s, — $(Co-1C1), then we obtain ¢2~1(a!) — s (n — 00). We have from
Theorem 7.8 0%(ct) — s (n — 00), and (7.24) implies 02(s) — as — (o —1)s = s
(n — 00). Thus we have shown C,_1C; C C,. This completes Part (i) of the
proof.

(ii) Next we show Cy C Co—1C). Since s& = S°7_; 52!, we have s27 (o) =
s%(ol) — s%_, (o). Substituting this in (7.23), we obtain

sp(s) = (n+a)(sp(0") = sp_1(01)) = (@ = D)sp(oh)
= (n+1)sp(0!) = (n+a)spy_1(0),

and so, since (n + «)/A% =n/AS_,,

o5(s) = (n+ os(e) = 00, (o)

=(n+1c%') —no,_1(c') forn =0,1,....
This implies
n
Zag‘(s) =(n+1)o%c*) forn=0,1,...,
k=0

and consequently

1 S a a1
(7.25) n+1;0k(s):0n(a)forn:O,l,....

The equations in (7.25) mean
(7.26) C1C, = C,Cy as a matrix product.

Let s, — s(C,) (n — 00). Then we have 0%(c') — s (n — oo) by (7.26) and the
regularity of C;. It follows from (7.24) that ac®~!(a!) = 02(s) + (a — 1)o%(ct) —
s+ (a—1)s = as, that is s, = $(Cq—1C1) (n — 00). This shows C, C C_1C
and completes Part (ii) of the proof. O

Remark 7.15. There is a generalization of Theorem 7.14, namely that
Ca+ﬁ = Can.
The next two results are generalizations of Theorem 7.11.

Theorem 7.16. Let Y a, = s(Cy,) for some o > —1 and a, = O(1/n). Then the
series Y an is convergent and summable Cs_y for all § > 0.
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Theorem 7.17. Let a, € R forn =0,1,..., > a, = s(Cy) for some a > —1
and na, > —M (n =0,1,2,...) for some constant M. Then the series > a, is
convergent.

Remark 7.18. We can simplify the proofs by a few preliminary observations.
First, by Theorem 7.8, we may assume that « is an integer. Next we only need to
prove that the series converges, since if its is convergent and satisfies a,, = O(1/n),
then it is summable Cs_; by Theorem 7.11. Finally, we may assume a,, € R, for
otherwise we may consider real and imaginary parts separately. Thus to establish
Theorems 7.16 and 7.17, it is sufficient to prove Theorem 7.17 for integers o.

For the proof of Theorem 7.17, we need two results which are of some interest in
themselves. We consider the series Y a,, and Y b, and write a = (a,,), b = (nay,),

n n
so(a) = ZA%_UCLV and s5(b) = ZA%_VI)V fora>—-1land n=0,1,....
v=0 v=0

Theorem 7.19. (a) Let > a, be summable Cgy1 for some 8 > —1. Then ) a,
is summable Cg if and only if

sP(b) = o(nPt1).

(b) The series Y ay is summable Cgy1 for some 5 where f+1 > —1 if and
only if the series

=1 s8(b)
2y
18 convergent.
Proof. (i) First we prove
7om sha) st 1 si)
' Ay ARTY AR BT
725 S i@ 1 s
' AP+ ATFL A

We have by (7.6) and (7.7) in Lemma 7.2

sp(a)  sptt(a) 1 (AEH 8
Aﬁ A?ﬁ-l Ag-’_l n

- S
Al

(@ -5

1 n+pB+1 "
= E APa,_, — E APtlq, )
B+1 vUn—v v n—v
A” ( ﬁ+1 v=0 v=0

1 (n+B+1 ADTYN g
_Aﬁ“yz_;( Fr1 ap )
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1 - n v+5+1 3
:Aﬁ+1;(5+1+1_ BT Apan_,

1 K(n-v 1 1
= : n—uAB = - a— Aﬁ v
Ag"rl I;] (ﬁ + 1 a l/) Ag+1 ﬁ + 1 Vgo n_yl/a
1 sB(b)
- Aﬁ"rl ﬂ + 17

that is, (7.27), and

p+1 PR 1 n AB+1 L
- BJF(?) N n_/31+<1) = B+ ZAg“a”—” ~ AT Ay a1y
A” Anfl An v=0 Anfl v=0
1 Y an n+6+1 «—
— B v _ B+1
1 " v+pB+1
= A an—p
ARt (Z_% p+1 Y
n B+1
n -+ ﬂ +1 A 1
£ A/B n—v
o
1 iy+ﬁ+l-A5a B
R
n+B+1le~ v
- A n—v

n

1 1
= T 331 A 1\ AB n—v
AT (Bt 1) 2 v

X (nv+nf+n—nv—LFrv—v)

1 1 "
=— Aﬁa,(ﬁ—i—l)(n—u)
5T > Alany
Attt n(B+1) =
1 ~ 1 i
= AB(n—v)ay_, = ——— AQ,VVGV
HAQHI; (n—v) le; (v)
1 s
,W. ==,

that is, (7.27). This completes Part (i) of the proof.
(a) Part (a) of the theorem is an immediate consequence of (7.27).
(b) Summation of (7.28) yields

N o8 N (B a) ST Ha 2 (a 1
3 20) :Z<V (a) V<>>: V@) e

AB+1 ABHL AP+ AB1

v=1 v v=1
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By definition, sOﬁH(a) = agp, hence we have

ﬂ-‘rl (
Aﬁ+1 =ao+ Z A,(i’-i—l’
and the conclusion is an immediate consequence. O
Now we can prove Theorem 7.17.

Proof of Theorem 7.17. We may assume that « = 8+ 1 is an integer and M = 1.
If 52 # o(nP*1), then there is a positive constant C' such that one or the other of
the inequalities

(7.29) s2(b) > CnPH!
or
(7.30) sP(b) < —CnPTt

hold for infinitely many n. We assume that (7.29) holds for infinitely many values
N of n.
If ( >1and N <n < (N, then we have, since by = 0,

N
(7.31) s2(b) — sN ZA ZA?\_VIJU
v=0
(7.32) - Z (Afi_y - A?V_V) b, + Xn: AP
v=1 v=N+1

Since the coefficients of b, in both sums are positive and b, > —1 for all v by
assumption, we have

N n
S0 ) > -3 (45, 4% ) - S Al
v=1 v=N+1
n N
:_ZAEL_ﬁZA?V, f—ZAn . V+ZAN o
— _Aﬂ"rl _|_Aﬁ+1

Now by (7.10) in Lemma 7.2, there are absolute constants K; and Ky such that
Aﬁﬂ < KinPtt and A]ﬁvtll > Ky NP+ and so, since n < (N,

s2(b) — sh(b) > —Kin 4 Ko NP > — (K (P — K,) NAHE
for ( >1 and N <n <(N.
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Now we choose ¢ > 1 such that

1
s2(b) — sy (b) > -5 CNPH,

and obtain by (7.29)
1
sn(b) = s0(0) = sy () + sx (b) > —5 - ONPH 4 ONPH
1
:§~0Nﬁ+1 for N <n < (N.

Since AP+1 < KnP*! for some absolute constant, putting ¢’ = C/K, we obtain,
since 5+ 2 > 0,

S (N ,
sn(0) 1 s L1 s (C=DN " (-1
T;\’nATﬁL+1>§'CN T;VnBJrlZﬁ'CN C(CN)Bt2 T T2 (B

But if this is true for infinitely many N, then the series

X B
sp(b) . .
is divergent,
; VAE-‘rl

and ) ay, is not summable Cj41 by Part (b) of Theorem 7.19. It follows that (7.29)
cannot be true for infinitely many n.

A similar argument shows that (7.30) cannot be true for infinitely many n.
Here we would use the range nN < n < N, where n < 1. Thus we must have
sB(b) = o(n”*1). Then 3 a, is summable Cz by Part (a) of Theorem 7.19.

Repeating the argument 5+ 1 times, we see that the series Y a,, is convergent.

O

Remark 7.20. If we write s,, for the n'" partial sums of a series > ap, and choose
a =1 in Theorem 7.16, then we obtain that if the sequence (s,,) is summable C4
and s, — sp+1 = O(1/n), then the sequence (s,,) is convergent, that is, Hardy’s Big
O Tauberian theorem, Theorem 3.1, is a special case of Theorem 7.16.

8 The Holder methods for positive integers

In this section, we introduce the Hélder methods of order n = 1,2,.... This defi-
nition will be extended to real numbers a > 0 at a later stage.

Definition 8.1. Let H' = H = C;. Then the Hélder matriz H" of order n for
n=1,2,... is defined as the n'® power of H.

Remark 8.2. Since H"*1(H")~! = H and H = () is conservative, it follows from
Theorem 6.8 that H™ D H" if m > n. The inclusion is strict, since H sums the
divergent sequence ((—1)%)2° by Part (a) of Example 1.1.
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The following Tauberian theorem holds.
Theorem 8.3. All Hélder matrices H" (n=1,2,...) are equivalent on {.

Proof. This means that if = is bounded and summable H™ then it is summable H"
to the same value.

First we assume that x € /., is summable H2. We put y = H(z). Then
it follows that (n + 1)(yn — Yn—1) = T, — Yn—1 for n = 0,1,.... Since = € lo
implies y = Hx € {o, it follows that (n + 1)(yn — Yn—1))52o € loo. This and
Hy = H?z € c imply y € ¢ by Hardy’s Big O Tauberian theorem, Theorem 3.1.
Therefore loo N ez C cy. If © € lo is summable H**! for some k > 1, we put
y = H* 12, Then y is summable H?, hence summable H as just proved and so x
is summable H*. The limits are equal, as just mentioned. O

9 The Euler methods of positive order
In this section, we study the Euler methods E, or order q for positive real numbers q.

Definition 9.1. Let ¢ > 0. The Euler method E, of order q is defined by the
matrix A = (ank)fszo with

1 ny\ ,_
Ak = (Q+1)n(k)q ' (O<ksmn)
0 (k>n)

(n=0,1,...).

The n'* E, mean s& of a sequence s = (s1)5, is defined by

1 " /n
4= —— s forallm=0,1,....
Sn (qul)nkZ:o(k)q Sk tor all n 1y

It turns out that the Euler methods are regular.
Theorem 9.2. The Fuler methods E, are regular for all g > 0.
Proof. Since anr >0 (n,k=0,1,...) for ¢ > 0, it follows that

n—k
Za ZE:a :75 q = ——+= =1for all n,
k:0| nk| i nk (q+1)n e (k‘) (q+1)n

and so conditions (i’) and (iii’) of Part (c) in Theorem 4.3 are satisfied.
Now we fix k. Since 0 < ¢/(¢+1) < 1 there is a real p > 0 such that ¢/(¢+1) =
1/(1 + p), and so

0 < 1 <n) q" 1 <n) 1 < 1 (n) 1
a = — _—_— _— J— -
ST \E) g+ D) T R () T @R\ ()R

Thus condition in (ii’) of Part (c) in Theorem 4.3 is also satisfied and the statement
follows from Theorem 6.8. O
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The next result gives a formula for the product of two Euler matrices.
Theorem 9.3. We have E,E; = E(,11)(q+1)-1 for all positive p and q.

Proof. 1t is easy to see that

(9.1) (Z)(Z:l'j):(Z)(lj)forogugkgn;nzo,L....

Applying (9.1), we obtain

1 n

G ()
- 3T 3 ( e
X () ()

s X ()

()

(02 (P e
)
()

sn((sk)) =

:(p+1)”z

1 n 1 q n-v
_(p+1)"z g+ 1) p+g+1>

1 n »
((p+1)(g+1)" b (V) su(p(g+1) +q)

v=0
1 " /n o
T ((p+ g+ D))" ;0 (V) (p+1D(g+1)—1)""s,
— sglpﬂ)(qﬂ)fl((sk)) for alln=0,1,.... 0

Now we apply Theorem 9.3 to establish an inverse formula for the Euler means
by expressing the sequence s = (s;)72, in terms of (s2).

Theorem 9.4 (Inverse formula for the Euler means). Let ¢ > 0. Then we have

n
Sn:qnz

(Z) (=) *(1+1/q)ks} for alln =0,1,....
k=0
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Proof. Since the computations in the proof of Theorem 9.3 are valid for all p > —1,
we may put p = —¢/(¢ + 1) in Theorem 9.3. Then we have (p+1)(¢+1)—1=

1—1=0and

RO ()

g+1

n k
n n n— 1
=49 kz_0<k>(1) k(1+q) SZfOI‘n:O,l’_,”

The strength of Euler methods increases with q.
Theorem 9.5. Let g > ¢’ > 0. Then we have Ey C E,.

Proof. Let 0 < ¢’ < q. Then there is 6 > 0 such that ¢ =

q + 6. We put

a =09/(¢" +1) > 0. Then it follows that E,Ey = Eqi1)(g+1)-1 = Esiq = Ey
by Theorem 9.3. Since E, is regular by Theorem 9.2, s, — s(Ey) implies s, —

s(EqEy), that is s, — s(Ey).

O

The following result can be used in formal computations involving F,; means.

Remark 9.6. We define .

e
Then the formal identity

qu = (g +1) anx

holds.

Proof. Since z = (14 q)x/(1 + gz), we obtain for sufficiently small |z|

St =Y (g
s " = s q+ n"
n n n+1
n=0 n=0 (1 + qx)
n+1 n n
_ 1 n—v y
Z 1 + qx)nJrl (q + ) ;:0 (V) q 8
n xn—&-l
— 1 v n—v
at )VZZOS RZ:,, ()q (L + o)t

n+1+v

ad > n+vy\ , x
—(q“)ZSvZ( 5 >‘11+qx)n+1+u

V+1
q+1Zsy +qu+1z <1+qx

y
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= vl 1

= (q + 1) Sv v
;0 (1+ qz)v+ (1_ g ) 1

14+qx

0 .’17”+1

= 1 y (1 vl

(¢+ );8 (1+qx)y+1( + q)

o0

:(q+1)Zsyajy+l. O
v=0

Now we show that the Euler and Cesaro methods are incomparable.

Theorem 9.7. (a) Let ¢ > 0 be given. Then we have cg, ¢ cc, for all a > 0.
(b) Let o > 0 be given. Then we have cc, ¢ cg, for all ¢ > 0.

Proof. (a) Let «, ¢ > 0. We have by Theorem 9.4

n k
1
Sn anz (Z) (—1)"_’“ <1+q> st foralln=0,1,...,

k=0
hence
« 1 S a—1
g, = EZAn—ksk
" k=0
1 & Ly 1\"
- Aafl k -1 k—v 1 - q
T2 L () () o
1 = v = k a—1 k—v k—v q
:EZ (@+1)") ) AT (~1)F Vg s
mn y=0 k=v
for n =0,1,.... We define the matrix A = (ank)f;’kzo by
¢+ D" (Y yam ks e
s (D)aicy et oz
nk — n
0 (k>n)
forn=0,1,.... Then we have
- (Q+1)n n a—1_0
kz_o|ank| Z |ann| - T% n AO q
1" 1"
_ g+ 1) 2K<q+ ) — 00 (n— 00),
Ae (n+ 1)

since ¢ > 0. Thus condition (i) in Part (a) of Theorem 4.3 is not satisfied, and
consequently the method A is not conservative by Theorem 6.8. This shows cg, ¢
cc,,, and completes the proof of Part (a).
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(b) Let a,q > 0. Since cc, C cc, for f < a it suffices to show cc, ¢ Cg, for
0 < a < 1. We have by Example 7.7

n
Sp = E A;f,;lAz‘U,‘j forn=0,1,...,
k=0

hence

k
n —k —a—1 ¢
k) qﬂ ZAkfu AgO‘g

v=0

_ 1 S « S N\ n—k g—a—1 el
- (q+ 1)n 4 OAV (Z (k)q Ak—u ) oy

k=v

for all n =0,1,.... We define the matrix A = (ank)ffk,:o by

AR n n n—v A—a—

Anpk = (Q+ 1)n v
0 (k>mn)
forn =10,1,.... Since 0 < a < 1, we have Ag’kl =1land A, <0forv >1,
hence
n—k n n—k n n
n—v—k g—a—1 n—v—k g—a—1 n—k
A =— A 2
;}(y—i—k)q v ;<y+k¢)q v <k>q
for0<k<mnandn=20,1,..., so that
[e's) 1 n n—k n
> lonrl =~y oA Y (oA
k=0 (q+1) k=0  v=0 vtk
2 " n
+ - A%( >q”’C
(q+1)m = " \k
ZE}L—}—Z% forn=0,1,....
We obtain
1 - " /n
Eiz - _ AL ( )qnuA—a—l

1 - <n) n—~k - a p—a—1
= )T A
(¢g+1) v =

v=0
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q+1 i( )( ) Ag:_(qjl)”éC)qn_k

1
z—(qu " =—1lforn=0,1,....

(g+1)"

Furthermore, there is a constant K > 0 depending on « only such that
n
»2 > 0 Z (k+1)” ( )
k=0
= (k+ 1) k+ 1) )g
(qH) 2 e ee ()

k=0

> K(n+1)*"" qj]_1>n i(k +1) (Z)q—k

k=0

for alln=0,1,.... If we put

n

$n(2) Z(kJrl)(Z)zk forzre Cand n=0,1,...

k=0

then it follows that

() = o= (Z (Z)*) = LG+
—1

and so )
S +1 + 1)
R )
0 q q
for all n =0,1,.... Thus we obtain, since ¢ > 0,
n 1) 1n—1
ZizK(n+1)°“1 q ((q+) +n(q+) )
L l+qg+n
=K 1 1+ — =K et 2L
(n+1)*~ ( —|—1Jr ) (n+1) T+ ¢
> i so (o)
n o n ).
“qg+1
Therefore we have -
Z|ank\—>oo(n—>oo),
k=0

that is, the condition (i) in Part (a) of Theorem 4.3 is not satisfied and so A is not
conservative by Theorem 6.8. Thus we have shown cc, ¢ cg,. This completes the
proof of Part (b). O
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We close this subsection with a Tauberian theorem for the F; method.

Theorem 9.8 (Tauberian theorem for E4). If a sequence (s,)52, is summable F4
to s and an, = S, — Spn—1 = 0(1/+/n) then the sequence (s,)22, converges to s.

Proof. First we show

1 n
(9.2) (n>(n—21/)2—nfor alln=0,1,....
v=0

2n v

To prove (9.2), we consider the sums

W@ =3 ()

v=0
s20) =3 (1) 0+ )00+ 2",
v=0

Then we obviously have s£?)(1) = 2" 39)(1) = 2" +n2""! as in the proof of
Theorem 9.7, and

(2) d2 2 " n d2 2
@)= gz | ZOQC = gz (D))
=2(1+2)" +4nz(1+2)" ' +n(n - 12?1 +2)" 2
that is,
s (1) = 2" 2"t fon(n —1)272
We observe that

(n —2v)? =n? — dnv + 4/
=n? —dn(v+1)+4n+4v+1)v+2)—4-3v—4-2
=n®+dn+4—4(n+3)(v+1) +4@w+1)(v +2),

and so

Zn: (n) (n—2v)% = (n® +4n+4)s{9 (1) — 4(n + 3)s V(1) + 452 (1)

14
v=0
= (n?+4n +4)2" —4(n +3)(2" +n2" ) + 42" £ 02" fn(n - 1)2772%)
=n?(2" —2-2" +2") +n(4-2" —4.2" —3.2"H!
+4-2nTh _4.9n72) g0 1220 g ontl — o,
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This shows (9.2).
Next we prove

(9.3) % >

We write

(O-(rher-2 g

_|(n n ~(n\|n—2v—1|
by‘<y) (V+1>’\/1/+1andcu<y)r+1

for v =0,1,...,n. Obviously we have by = ¢y and b, =¢,. If 1 <v <n —1 then
we obtain

Vv +1

n n---(n—vvl
= 1— \/
(1/) v+ 1Dn-- n—u—l—l‘ vl
_ (" 1_n—u _(n 2v4+1—n o
v v+1 v v+1
(n>|n—2y—1|
= 7—011
v) Vr+1
Now we show
(9.4) f: <n> In—2v] _ o(2")
We write
— 2]
M () = Z (n)ln
s'H(n .
-ty VYL

If n > 2 then n —y/n >n/2, and so |n — 2v| < /n implies 2v > n—/n > n/2 and
v+12>(n+1)/4, hence 1/\/v +1 < 2/y/n + 1. Therefore we have

(9.5) sy < Y <Z>¢%g2i(z> =2.9" for n > 2.

In—2v|<Vn v=0

We put

— 2
S n E —————
Vn<|n—2v|<3n v v+l
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Now |n —2v| < 3n/4 implies n —2v < 3n/4, hence v+ 1 > n/8 and so 1/v/v +1 <
V8/+/n. Since |n — 2v| > \/n, we also have |n — 2v|/y/n > 1 and so

- _ _ 9.2
|n — 2v| < V8|n — 2v| < \/g\n 2v| '
Vr+1 ~ Vn - n

Using (9.2), we obtain
(9.6)

<z><><¢éﬁ<lguﬂ<y> . <¢§Z() 2R

We put

- T ()

< n—2v|<n

If v=0then |n—2v|/v/v+1=n=|n—2v*/n. If v > 1 then v+ 1 > 16/9 and
so 1/v/v+1<3/4. Now 3n/4 < |n — 2v| implies

|n721/|<3 2‘<\n721/\2
—n =2 < —F—
Vr+1 4 - n

and so again by (9.2)

on s S (e ey (1)

30 <n—2v|<n v=0

Finally (9.4) follows from (9.5), (9.6) and (9.7).

Now we show that, given & > 0, there is N. € Ny such that Y ;_, |ax| < ey/n
for all n > N.. Let € > 0 be given. Since aj = o(1v/k), there is ky € Ny such that
lak|VE < e for all k > ko. Now we choose N. € Ny so large that 1/\/522":0 lak| < e
for all n > N.. Let n > N.. Then we have

\FZ|ak|< (Zak+ Z |ak|><€+ fi:
c

%\

k=ko+1
< ¢(1+ C) for some absolute constant

Now we show

Vn
In —v|
Let € > 0 be given. Since arVk — 00 (k — 00), there is kg € Ny such that

lak|VE < € for all k > ko. We put ng = 2ky. Then we have for all n > ng and for
allv>n/2ifv<n

50— sl < Y Jal < Y \if< Z % x@e%u)

k=v+1 k=v+1

(9.8) [$r — $u] — 0 (n — 00) uniformly in v.
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and similarly, if v > n
e(v—n)
Vo

|Sn - S,,‘ S

thus

V2e(n —v)
T~ Jn

Now we choose N. € Ny with N. > ng such that Y ;_, |ax| < ey/n for all n > N..
Let n > 2N.. Then we have for all v < n/2

[$r, — sy < for all n > ng and allu>§

s — 5] <) laxl + Y lax] < e(vn+ v/n/2)
k=0 =0

< 257: _ 45(n\/ﬁn/2) < 4671\;%1/'

Thus we have shown, given € > 0, there is N, € Ny such that

In—v|
N

|sn — su| < 4e

for all n > N, and all v,

that is (9.8) holds.

Finally we show s, — s (n — 00). Let € > 0 be given. Since s, — s(F1)
there is ng € Ny such that |09, — s| < € for all n > ny where 09, = s},. By
(9.8), we there is n1 € Ny such that |s, — s,| < e|n — v|/+/n for all n > ny and for
all v. Applying (9.4) with n replaced by 2n, we obtain that there is an absolute
constant C such that 32" (*")|2n — 2v|/v/v + 1 < K - 22" for all n € Ny. We put
N, = max{ng,n1}. Then we have for all n > N,

1 <X (21
[ — 8| < |oan — Sn| + |5 — 02| < 22”,,ZO(V>SV_SH +e€
2n 2n
1 2n € 2n\ |n —v|
§22711j20<y>|3nu 5n|+5<22nyzo<y> \/ﬁ +e
2n\ |2n — 2v|
§22n+lz< )\/71 +e<e(K+1).
Therefore we have proved s, — s (n — 00). O

10 The Hausdorff methods

In this section we deal with the Hausdorff methods. They contain the Cesaro,
Holder and Euler methods as special cases.
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Definition 10.1. Let u = (un)52, be a complex sequence, M = (myk);o,—o be
the diagonal matrix with m,, = g, (n = 0,1,...), and D be the matrix with
dni = (=1)*(}) for all n and k. The matrix H(u) = DMD is called the Hausdorff
matriz associated with the sequence p, and H(u) defines the Hausdorff method
H(p). When the sequence p is the same throughout some discussion, we write H =
H(p), for short.

There is an explicit formula for the entries of Hausdorff matrices H (u) which
are triangles.

Remark 10.2. Since (7)(]) = (2)( ¥ for 0 < j <k <mand (-1)72F = (-1)7,
we have, by definition, fzor 0<k<n

. n |
S E )

( )Z (i) () §<—1>j (" Y

If we put Az = xp — 241 (K = 0,1,...) for every sequence x = (x)3, and
A™gy = A(A™Lxy) for all integers m > 2, then it is easy to see that

A = 3 (-1 ("7):ck+j (k=01 ),
=0 J
and we obtain
0 (k>n)
_ n n—k/  q\j(n—k ]
(10_1) bk = (k) ?g‘:no_(k 1) ( j )Nk+] (0§ k gn)
= (k)A Mk
(n=0,1,...).

It is clear from (10.1) that every Hausdorff matrix H is triangular. Putting £ = n
n (10.1), we see that h,, = u, for all n, hence H is a triangle if and only if p,, # 0
for all n.

Example 10.3. Let g = e. Then it follows that A"y = 0 for all » > 1, hence
hpn =1 and hy, = 0 for k£ # n by (10.1). Therefore we have H(e) = I and

D?=DID=H(e)=1.
There is a simple formula for the product of two Hausdorff matrices.
Theorem 10.4. We have H(p)H (v) = H(uv).

Proof. Since all matrices are row finite, multiplication is associative by Corollary
6.5 and it follows from Example 10.3 that

(DMD)(DND) = DM(DD)(ND) = DMIND = DMND = D(MN)D. O
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We obtain as an immediate consequence of Theorem 10.4.

Corollary 10.5. We have (H(u))” = H(u") for r € N. If u, # 0 for all n then
(H(p)™" = H(1/p) where 1/p = (1/ptn )%y

The next results concerns the consistency of Hausdorff matrices.
Theorem 10.6. All reqular Hausdorff matrices are consistent.

Proof. Any two Hausdorff matrices commute by Theorem 10.4. Since Hausdorff
matrices are row finite by Remark 10.2, the result for regular Hausdorff matrices
follows from Theorem 6.10. O

Example 10.7. We fix t € R and put p, = t" for n = 0,1,.... Then it follows
that Ap, =" — "1 = (1 —)t" for all n, hence Ap = (1 —t)u, and consequently
ATp=(1—1t)"p for all r =1,2,.... Therefore we have

Pt () = hi (1) = (Z)(l )" P (0<k<mn=0,1,...)
by (10.1). If p,, = 1/(n 4 1) for all n then we get p, = fol t" dt, and so

hok(p) = [ hok(t) dt = Z)fl(l — )Rtk gt

o+l
Thus we obtain H(u) = Cy and the Cesaro matrix of order 1 is a Hausdorff matrix.

Example 10.8. The Holder matrices are all Hausdorff matrices; indeed we have
H* = H(p) with p,, = (n+1)7% for n = 0,1,... by Theorem 10.4 and Example
10.7.

There is a simple way to find out if a row finite matrix is a Hausdorff matrix.

Theorem 10.9. Let p be a sequence with (i, # [y for m # n and A be a row
finite matriz. Then A is a Hausdorff matriz if and only if it commutes with H ().

Proof. If A is a Hausdorff matrix then we obtain AH(u) = H(u)A by Theorem
10.4.

If AH(u) = H(p)A then it follows that DAHD = DHAD, where H = H(u).
Substituting H = DM D and using D? = I, we obtain

DAHD =DADMDD =DADM =DHAD
=DDMDAD = MDAD,

that is, DADM = MDAD. Only a diagonal matrix can commute with M, for if
MB = BM for some matrix B then

0 = Z;io Minjbjk — Z;-io bnjmjr = tnbnk — bnrpik
= bk (n — pr) for all n and k,
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and p, # pi for n # k implies b, = 0 for n # k, that is, B is a diagonal matrix.
So DAD is a diagonal matrix, N = DAD say. Then we have

DND = D(DAD)D = D?*AD? = A,
and A is a Hausdorff matrix. O

As an immediate consequence of Theorem 10.9 and Example 10.7, we obtain

Corollary 10.10. A row finite matriz A is a Hausdorff matriz if and only if it
commutes with Cy.

Since C1C, = C,Cy by Theorem 7.14, we obtain from Corollary 10.10
Corollary 10.11. The Cesaro methods Cy, are Hausdorff methods for o > 0.

11 Conservative Hausdorff methods

Now we establish necessary and sufficient conditions for a Hausdorff method to be
conservative. In view of the fact that Hausdorff matrices are given by a fixed matrix
D and a sequence p = (1)72,, it is to be expected that conservative Hausdorff
methods can be characterized by certain properties of the sequences pu.

First we need some important identities for the entries of Hausdorff matrices.

Lemma 11.1. Let H = H(p). Then we have for alln =0,1,...

(11.2) Zhnk = 1o,
(11.3) hno = Zdnwk
m+1
(11.4) Zhnk thnHk T e (m=0,1,...).

Proof. Identity (11.1) was proved in Remark 10.2.
Furthermore (11.2) follows from

> " hnk = Hye for all n,
k=0

He = (DMD)e = DM(De) = DMe® = D(ppe®) = puo(De®) = pge.

Putting £ = 0 in (10.1), we obtain

= (Y E (= B

J=
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that is, (11.3).
It follows from (10.1) that

h
ntlk _ An—H_k,uk - A (An—kuk) — An—k'uk _ An_kﬂkJrl

(")
k
hnk — hnk hn+1 k+1
— ‘nk _ AnJrl (k+1)’uk+1 — 'nk )
n+1
(v) 0 G
This implies
B — (Dhngre | (Dbhnirksn  n—k+1 ikt k1, .
n - n 1 n 1 - n 3 n 5 )
(") (1) n+1 n+1
hence
1
Pk — hnt1k = o ((k+Dhpt1kr1 — k- hougig),
and so
Zh”kiz Pny1 e = n+1 Z((k+1)hn+l,k+1*k'hn—&-l,k) = mhn+1,m+l~ O
k=0 k=0 k=0

It turns out that non-negative real Hausdorff methods are regular.

Theorem 11.2. Every Hausdorff method given by a non-negative real Hausdorff
matriz H is conservative; all of its column limits are equal to zero except possibly
the first.

Proof. Tt follows from (11.2) that the conditions in (i) and (iii) of Part (a) in
Theorem 4.3 hold. Since Ap41,m+1 > 0 by assumption, ZZ;O hnk is a non-negative
decreasing function of n by (11.4). Hence lim, Z?:o hnr exists for each fixed
m. We put y(n,m) = hpy1,m+1 for all n and m. Then we obtain from (11.4)

r y(n’ m) 1 T m 1 m T
= hnk — B, = b — hn,
—~ n+t1 mHZ_:Z( 6= fn) m+1§_: 2ot =t 10)
n=0 n=0 k=0 k=0 \n=0
1 m
=———=> (hok — hry1,k)-
m+1 P

Since the last term in the identity above converges as r — oo, the series
i y(n,m)
n+1
n=0

converges. Furthermore, since lim,,_,o y(n,m) exists, it must be equal to zero.
Consequently the condition in (ii) of Part (a) in Theorem 4.3 is also satisfied.

(We note that lim, o y(n,m) = lim, 0 hnt1,m+1 = 0 for all m > 0 is the second
statement.) O
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Example 11.3. Let g = ¢(®). Then the first column of H(p) is equal to e and all
other columns are zero.

The next notion is substantial for conservative Hausdorff methods.

Definition 11.4. A sequence p is called totally decreasing, if the matrix H(u) is
non-negative.

Remark 11.5. By (10.1), a sequence u is totally decreasing if and only if
A" g > 0 for all n and k.

For n = 0 it says pr > 0 for all k, for n = 1 it says puo > 1 > p2 > ..., and for
n = 2 it says po — 2u1 + p2 > 0, g1 — 2p2 + pg > 0, ... (a convexity condition).
The sequence (3,2,0,0,...) is not totally decreasing, since 3 —2-2+0 < 0. The
sequences in Examples 10.7 and 10.8 are totally decreasing.

It will turn out that a real Hausdorff method H () is conservative if and only
if the sequence p is the difference of two totally decreasing sequences. We need the
following Lemma to be able to prove this result.

Lemma 11.6. Let p = (i), be a real sequence such that H(p) € @, and
D = (dnk);’skzo and A be the matrices with dpx = A"ug and ang = |dnk| for all
n,k=0,1,....

(a) We put

m

f(m,n, k)= Z (T) ntm—jk+j for alln,m, k=0,1,....

Jj=0

Then f(m,n, k) is an increasing bounded function of m for all n and k.
(b) We put g(n, k) = lim,,—00 f(m,n, k) for all n,k = 0,1,... and define the
sequence v = (V)52 by vk = 9(0,k) for k=0,1,.... Then we have

(11.5) g(n, k) = A"y for all n,k =0,1,....
Proof. (a) It follows from
A1 = A" = AN 1) = A" — A" g1 = dge — di iy

that dpr = dpt+1,k + dnk+1- We define the operators L and R for all matrices
B = (bnk)ff,)k:o by (LB)nk = bny1,k and (RB)pk = by x+1 (n,k=0,1,...). Then
we have D = LD + RD = (L 4+ R)D which implies

(11.6) D= (L+R)mD:Z <”7>LijJ'D form =0,1,...,
j=0

since LR = RL. Thus we can write

fm,n, k) =L+ R)™A)p for m,n,k=0,1,....
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It follows that

Qnk = |dnk| = |(LD)nk + (RD)7L/<" < (L|D|)nk + (R|D|)nk
=((L+ R)A), for all n,k =0,1,....

Therefore we obtain

Fm k) = (L + Ry Ayui < (L + R)(L + R)™ A
=(L+R)™ A
= f(m+1,n,k) for all myn,k =0,1,...,

that is, f(m,n, k) is increasing in m for all n and k. Furthermore

n+k
n+k n+k
(L + R)"* A)g0 = Z < i >an+k_j7j > < i )ank > anr = (L"RFA) oo
j=0
implies
f(m,n, k) = ((L+ R)™A)py < (L + R)™L"R*A)oo
< ((L+ R)™(L+ R)"*A)gp = (L + R)™ "+ A)gq
= f(m+n+k,0,0) for all m,n,k=0,1,....

(=S5

( )w” Sl =3 ] < 1] < ov.

7=0

Finally, we obtain for all m

f(m,0,0) =

‘M3 EMS

Il
=)

J

This completes the proof of Part (a).

(b) By Part (a), f(m,n, k) is an increasing bounded function in m for all n and
k, and so g(n, k) = lim,, 00 f(m,n, k) exists for all n and k.
We fix k and prove identity (11.5) by induction with respect to n € Ny.
First let n = 0. Then we have g(0, k) = v, = A% by the definition of the sequence
v. Now we assume that g(n, k) = A"y holds for some n > 0 and each fixed k. We
have

f(m+1an7k) ((L+R)m(L+R)A)nk
=((L+R)"A)nt1k+ (L +R)" A)n ks
= f(m,n+1,k)+ f(m,n, k+1),

hence g(n, k) = g(n+ 1,k) + g(n,k + 1), and consequently by hypothesis

gn+1,k)=g(n, k) —g(n,k+1) = A"vp — A"vpyq = An+1yk~ O
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Theorem 11.7. Equivalent conditions for a real Hausdorff matric H = H(u) are

H is conservative
Hed

H is the difference of two non-negative Hausdorff matrices

—~

= e
=N
~—

—~
—o
=
=ty

~—

u is the difference of two totally decreasing sequences.

—
—_
<

N

R

roof. Trivially, (i) implies (ii), (iii) and (iv) are equivalent by Remark 11.5, and
iii) implies (i) by Theorem 11.2. Therefore it is sufficient to show that (ii) implies
iv)

—~

We assume that (ii) holds, that is, H = H(u) € ®. Now (iv) will follow from
the existence of a sequence v such that A"v > |A"pu|, since with a = 1/2(v 4 p)
and 8 =1/2(v — u), we have p = o — .

Using the notations of Lemma 11.6, we define the sequence v by

v =9g(0,k) for k=0,1,....

Then we have by Lemma 11.6

m m
m m

Z ( )dn+mr,k+r é Z < )|dn+mr,k+r
r r

r=0 r=0

m
(T’ ) Qp4+m—r.k4+r = f(m7 n, k) < g(n7 k)
r=0

A"y for all n, k=0,1,.... O

|A" g = |dnk| =

M-

12 The moment problem

Hausdorff matrices are closely related to the so-called moment problem in analysis
which we are going to solve in this part.

Definition 12.1. A sequence u is called conservative if it is the difference of two
totally decreasing sequences.

Remark 12.2. By Theorem 11.7, a real Hausdorf matrix is conservative if and
only if u is conservative.

Now we turn to the representation of u,, by integrals for conservative Hausdorff
matrices.

Theorem 12.3. A real Hausdorff matriz H(u) is conservative if and only if there
exists a function g € bv|0,1], that is, a function of bounded variation on [0, 1]
(cf. Definition A.1), such that

1
(12.1) fn :/t"dg(t) foralln=0,1,....
0
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The numbers iy, defined by (12.1) are called moment constants, and the sequence
1 is called moment sequence.

Proof. First we show the sufficiency of (12.1). By Theorem A.8, we may assume
that the function g is increasing. Then we obtain as in Example 10.7

(12.2) A"y, = /t””(l —t)"dg(t) > 0.
0

Now we show the necessity of (12.1). The proof consists of four steps. First we
construct a sequence (gm,)5o_, of step functions and functions v(m,t, k) (0 < k < m;
m =0,1,...) on the interval [0, 1] and then we show that u; = fol v(m,t, k) dgm,(t)
for 0 <k <mand m =0,1,.... In the third step we show that, for each fixed k,
the functions v(m, ¢, k) converge uniformly to t* on the interval [0, 1]. In the fourth
step, we apply Helly’s theorems (Theorems A.13 and B.7) to choose a subsequence
(9m(5))320 of the sequence (gm)pr—o Which converges to a function g € bv[0, 1] and

such that uy = [ ¥ dg(t) holds for k =0,1,....

(i) Construction of the functions v(m,t, k) and the sequence (gm)oo—, of step
functions. It follows from (10.1) that

B = Z <T:I) dmfr,kJrr = Z (T) Am_TﬂkJrr

r=0 r=0
m (m

— r —

= E (m+k) Potbo ke for m=0,1,....
r=0 \ k+r

Replacing m by m — k, we have

Sy e
ﬁhm,kﬂ = Z ];? hmj for m > k.

We put

Then we obtain

(m—k)(m—-k—=1)---(m—j+1)j!
G-=—K)mm-1)---(m—j+1)
_ G- G-k —1)) =H i

m(m—1)--(m—(k=1)) 4t m—r’

u(m, j,k) =
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and, since u(m, j, k) = 0 for 0 < j < k, we have

m
=> ulm,jk
7=0

We put for m € Ny

k=1 ¢ —r/m
v(m,t, k) ={ =0 1 —1/m
1

and

0
Im(t) = {Zj<mt hon,j

This completes the proof of (i).
(ii) We show

(12.3) v(im,t, k) dgm(t) (m=0,1,...;
“-]

For each fixed m, the function g,, is constant in each interval [-= a
m — 1) with a jump h,,; at t = % Since the sequence p is totally decreasing, it

follows that h,,; > 0 by (10.1). Thus g,, is increasing and g,, € bv|0, 1] by Example

H'1)(2—0,1,...

)

A.2. Furthermore the total variation \/(1) gm of the function g,, on the interval [0, 1]

(cf. Definition A.1) is given by

m

1
(12.4) \/gm = gm(1) — gm(0) = thj < ||H|| < oo for each m.
0

Jj=0

Since v(m,t, k) is a continuous function on the interval [0, 1] for each m and k, the

integral

i+1
m

1 m—
/v(m t, k) dgm(t Z
0 i=0

i
m

exists. For each ¢ with 0 <i <m — 1, let (P, pl )) be a sequence of partitions

v(m,t, k) dg (t)

141
m

|
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for 0 <1 <n—1. Then we obtain for

of the interval [-£, “£1] and let fl n= sr:l+1

1<i<m-1

n—1 )

0 p (0(m, -, ), g3 €5) = Z m, 20y o B) (G (22 ,) = gm(@(1))
=0

= U(ma ‘rg,)na k)hm,i-l—l

1+1
khmi
= k) hmii

(m,

I
<

and for 7 =0
n—1
0 0
5 (00, k), g €9) = S w(m 2l k) (g (@0h0) — g (2}0)
=0

1 1
=v(m, x(loi, k)hmo + v(m, xg))n, k)hm1 = v(m, —, k)hmo + v(m, —, k)hma
' n m

Letting ||P7(f)|| — 0 (n = 00), we obtain

it1
1+1 .
v(m, t, k) dgm (t) = v(m, JE) g1 for 1 <i<m—1,
m

—s

and by the continuity of the function v(m,t, k)
L
/ m,t, k) dgm (t) = v(m,0,k)hmo + v(m, —, k)hy,y for i =0
m
0

Thus we have

1
/vm t, k) dgm(t) = v(m,0,k)hmo + v(m
0

- J
= —_ khmv
Zv(mamv )hom;

0

1—|—Z

<

and
u(m, j, k) for k>0

and by definition

,0) =1 =wu(m,,0) for k = 0.

J
v(m, —
m
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Therefore it follows that
1

o/

65
v(m,t, k) dgm(t) Zumj,
=0

= ug form=1,2
This proves (12.3) and concludes the proof of (ii)

and k=0,1,...,m

(iii) We show that, for each fixed k, the functions v(m,t, k) converge uniformly

on [0, 1]to t*. We fix k > 1 and put
a(m,r,t) =

m

for0<r<k<mand 0<t<1.
7m
Since r < k and 0 <t < 1, it follows that

t_ T
la(m,r, t) —t| = ‘ m

t’ mt —
=

=|rt —r|

m
(|
_
1 1—t
=r
m—
Let € > 0 be given. We choose

t—r—mt+rt
r

m—-r
m—r

k—1

m—k+1
Then it follows that

k
mo maX{QkJ—Q,(kz—l) (1—|—2€>}
k—1

<1 and 2
mo — k —+ ]. an
Let m > mg and t € [0,1] be given. Then we have

— <
mo—k+1 =€
k—1

(m, t, k)

Ha(m r,t)

(e F-1 Y
= m—k+1
r=0
k 1 jk'
— —J
t+z()(m 1) ¢
k
k-1
th +

k k k k
42 <t
m—k+1j§<j)< e e k1T T

& .
—Z MY (AL ]tk*j>tk76
= J m—k+1

<

and similarly

(m,t,k) > t*
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Therefore we have
(12.5) |v(m, t, k) — t*| < ¢ for all m > mg and for all t € [0,1],

that is, v(m,t, k) — t* (m — oo) uniformly in ¢. This completes the proof of (iii).

(iv) We apply Theorems A.13 and B.7 to prove (12.1). We obtain from (12.5),
(12.3) and (12.4)

1
o —/tk dgm(t)| =
0
1

12.6 < t k) —t* m < e||H|| for all m >
(12.6) tlg[gog]lv(m I\O/g el H|| for all m > my.

/wmmwr%%@m

By Theorem A.13, there is a subsequence (gp,(;)) of the sequence (g,,) with

g= jl;rlgo Im(j) € bv[0,1].

If we let m(j) — oo in (12.6) and apply Theorem B.7 then

1 1
ik —/t’“ dg(t)| = lim | —/t’“ dgm(;) ()| < el Hl.
m(j)—o0
0 0
Since € > 0 was arbitrary, (12.1) must hold. O
Theorem 12.4. Let i be conservative and iy = fol tFdg(t) for k=0,1,.... Then

the first column limit in H(u) is g(0+) — g(0). Therefore H(p) in m-multiplicative
with m = g(1) — g(0) if an only if g is continuous at 0.

Proof. We may assume that ¢ is increasing and that g(0) = 0. It follows from
(12.2) that

g

/ |~ £)mdg(t) /(1 _)mdg(t) > (1 — £)"g(e) = g(04) as & — 0.
0

0

Conversely we have

€ 1

mm:/u—ﬂw¢w+/a—wwﬂﬂgﬂ@+ﬂ—d%ﬂh—ﬂd)
0 5
— g(e) as n — oc.

This yields lim,, o hno < g(€) for all € > 0. The evaluation of m follows from
(11.2) in Lemma 11.1. O
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Remark 12.5. Let g € bv[0,1]. Then Theorem 12.4 suggests the following def-
initions. The sequence p with pu, = fol tFdg(t) (k = 0,1,...) is called moment
sequence with respect to the function g. Without loss of generality, we may assume
g(0) = 0. If g(1) =1 and g(0+) = ¢g(0) = 0 so that g is continuous at 0, then the
sequence i is called a reqular moment sequence.

(a) A real Hausdorff method H (p) is regular if and only if p is a regular moment
sequence.

(b) A real Hausdorff method H(u) is conservative if and only if x is a moment
sequence.

13 The moment sequences for some matrices

Now we show that the Cesaro, Holder and Euler methods are Hausdorff methods
and determine their moment sequences.
We already know the following result (Corollary 10.11).

Theorem 13.1. The C, methods are Hausdorff methods for a. > 0.
Now we determine the moment sequences for the Cesaro matrices.

Theorem 13.2. If a > 0 then the moment sequence u of the C, matriz is given
by

1
(13.1) uk:a/tk(lft)o‘f1 dt fork=0,1,....
0

Proof. We know from Corollary 10.11 that C, is a Hausdorff matrix H(u) with

Although it would be easy to verify (13.1), we apply the constructive method of
the proof of Theorem 12.3 to establish (13.1). Let o > 0. We define the functions
gm :10,1] > Rfor m=0,1,... by

1 - a—1 - a—1
b= 3 b= (Sann- 3 a
j<[mt] m \j=0 j=[mt]+1
My A ) (]
A2 (m — [mt])* A%, m+1 ’
First we observe that by (7.11) in Lemma 7.2
A fmt] - D T(a+1
lim mi -1 (m +1) = (a+):1fora>0.

m—oo (m — [mt])® A% T(a+1)
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Let t € (0,1] be given. Then we have 0 < mt — 1 for all sufficiently large m, and so
0 <mt—1< [mt] < mt, hence

0< ™ (1_t):m—mtim—[mt]
m+1 m+1 m+1
m—(mt—1) mit
- m+1 T om+ 1
that is
i Py

Consequently it follows that
(13.2) g(t) = lim gn(t)=1—(1-t)* (¢t € (0,1]) for a > 0,
m— 00

and ¢,,(0) = 0 for all m implies g(0) = 0. Thus (13.2) holds for all ¢ € [0,1] and
all & > 0, and (13.1) follows from Theorem 12.3. Furthermore we have

Boge = (Z) Ak, = <Z) 0/1 R (1 — )" dg(t)
= (Z)ao/ltk(l — )il g

_(n k!
‘(k>“<a+n—k>~--<a+n>

_ n---(n—k+1)a _ (n—k+a—1)---an
(a4+n)---(a+n—k) -k (a+1)---(n+a)

1
kforOSkﬁnandnzO,l,.... O

a—
— n—
A%
Now we determine the moment sequences for the Hélder matrices.

Theorem 13.3. The Hélder matrices H™ (m = 1,2...) are Hausdorff matrices
H(p) with the moment sequences p given by

1 1 1
e = — = [tk dg(t)
= —— [th(log (1/t))™ " dt for k=0,1,....
Ty )
Proof. We already know from Example 10.8 that the Holder matrices H™ (m =
0,1,...) are Hausdorff matrices H(u) with ux = (k+1)"™ for k = 0,1,.... We
put

1
/tk log (1/t)™ 1) dt form=0,1,...,
0
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and substitute v = log (1/t) to obtain

I 0
dt 1

k1 1 1 = —u(k+1), m—1 )

/t (log (1/t))™~ ( t) I‘(m)/e u du

0
Putting s = u(k + 1), we conclude

1 1 1
I - —s _m—1 d
(m) r(m)/e okt kr1”
0
B 1 L'(m) 1
(k+1)mT(m)  (k+1)m
Remark 13.4. The proof of Theorem 13.3 remains valid for all « = m > 0.

Therefore the definition of the Holder methods H® can be extended to all @ > 0
by (13.3).

Finally we determine the moment sequences for the Euler matrices.

Theorem 13.5. The Euler matrices E, (¢ > 0) are Hausdorff matrices H(p) with
the moment sequences p given by

form=1,2,.... O

1
1
13.4 = = [ tFdg(t) for k=0,1,...
(13.4) M= TR / g(t) for B
0
where
0 (0=t< ?)
(13.5) g(t) = 1
e )
g+1
Proof. The integrals fol t*dg(t) (k = 0,1,...) exist by Theorem B.3. Let ( (n))
be a sequence of partitions P(") = {mgn) =0< :c&”) < e < a?l(gz) < q+1 <
acl(gz)ﬂ <<l = 1} of the interval [0,1] and |[P™| — 0 (n — oo) and let
fl(n) € [z, 141] (0<1<n-—1) with fl( )= % Then we have for fixed k € Ny

k
O'P(w,)(fvg;f(n)) Z(E(n)) ( (xl(j-)l) g(xz(n))) = (fz((nn))) = (q_i_ll)k'
1=0

Similarly we obtain

1
n—~k n—
ARy = /tk(l — )" Fdg(t) = 1 (1 _ > - g,
) (g +1)* q+1 (g+1)n

hence

n qnfk
h%—() 1nfor0§k§nandn:0,l,.... O
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14 Mercerian matrices

So far we were mainly interested in conservative methods. It is often useful to know
when a matrix is equipotent with convergence, in which case the matrix is said to
be Mercerian.

Definition 14.1. A matrix A is said to be Mercerian if c4 = c.
Applying Theorem 6.8 with B = I, we obtain

Theorem 14.2. A conservative triangle A is Mercerian if and only if A™1 is
conservative.

We are going to establish a Mercerian theorem for Hausdorff matrices. Let
a >0 and g(t) =t* for 0 <t < 1. Then we have

1 1
= [ thdg(t) =a [ TVt = -2 for k=0,1,...
1k / g(t) a/ G g or k=01,
0 0
and the Hausdorff method H (u) associated with this moment sequence is regular
by Remark 12.5. If we put
v=_Pe+ (1 —pP)utor §>0,

then the Hausdorff method H(v) is also regular, since

H(v) =Bl + (1 - B)H(n)

by Example 10.3. The sequence v is given by

a Bk +a
= 1-— = k=0,1,....
v =08+ ( B)a—i—k . for all 0,1,
Theorem 14.3. Let b,c > 0 and the sequence u be defined by
bk +1
= = 1 e
B = 1 for all k =0,1,

Then the Hausdorff matriz H(u) is Mercerian.
Proof. We put b= /a and ¢ = 1/a. Then we have

Sk+1  Brk+a
%k—i—l T k+4a

b = forall k=0,1,...,

and H(u) is regular. We put o’ = a/f and 8’ = 1/8 and obtain

k a
1 k =+ 3 /k !
1 _Fktae 57 _Pfkta forall k=0,1,...,
pe  Bkta k+z  ktad

and so H(1/pu) is also regular, but H(1/u) = (H(u))~! by Corollary 10.5. O
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We obtain as an immediate consequence of Theorems 14.3 and 6.8:

Corollary 14.4. Let a > 0 and the sequence j(a) be defined by pp = (ak + 1)1
forallk=0,1,.... Then H(u(a)) and H(u(b)) are equivalent for all a,b > 0.

Proof. We have by Theorem 6.8 that

H(p(a)) > H(p(b)) if and only if H(p(a))H ™" (u(b)) = H(u(a)/u(b))

is regular. Furthermore, since py(a)/pur(b) = (bk+1)/(ak + 1) for all k =0,1,...,
the method H(u(a)/u(b)) is regular by Theorem 14.3. O

We close this part with a result concerning the equivalence of Cesaro and Holder
methods.

Theorem 14.5. The Hdélder methods H™ and the Cesaro methods C,, are equiv-
alent form=1,2,....

Proof. Since H™ = H(u) and C,,, = H(v) with

1
pk =7 and vy = —— for k=0,1,...,
(k+1) A7

by Theorems 13.2 and 13.3, and we have

e (k+m)---(m+1) 1 (m+k)---(k+1)

v El(k+1)™ ~m! (k+1)m
L (m+k)-(k+2) 1 yrk+r
ml (k+1)m1 m L35 for all k=0,1,

Thus it follows that H™C,,! is the product of Hausdorff matrices H(A\(") (r =

2,3,...,m), where the sequences A(") are defined by )\5:) = (k/r+1)/(k+1) and
each matrix H(\)(™ is Mercerian by Theorem 14.3. Thus H™ = C,,. O

Remark 14.6. The result of Theorem 14.5 holds for all real & > 0. A proof can
be found in [50, p. 264].

15 Norlund matrices

In this section, we study Nérlund matrices which are generalizations of Cesaro
matrices. It will turn out that Cesaro matrices are the only matrices that are both
Hausdorff and Norlund matrices.

Definition 15.1. (a) The convolution a x b of the sequences a and b is defined by

(a*b), :Zakbn,k foralln=0,1,....
k=0
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The convolution of sequences obviously is commutative, a x b = b * a.

(b) Let p = (pr)3>, be a complex sequence with py = 1 such that the sequence
P = px e satisfies P, = (pxe), # 0 for all n. Then the Norlund method (N, p) is
defined by the matrix A = (ank);—o With

Pn—k
0<k<n
ank =4 Pn (O<k<n) (n=0,1,...).
0 (k>mn)

Hence we have

(p*x)n

A,x =
(p*e)n

for arbitrary sequences z = (x)72, and

Zank:Anezlforallnzo,l,....
k=0

The n'* Nérlund mean t, of a sequence s = (s5)3%, is defined by

n
p*S 1
tﬁ:( )":P—ann,ksnforn:O,l,....
k=0

Computations with Norlund matrices are conveniently carried out by the use of
formal power series

p(z) = anz" = (1—2)P(z) where P(z) = Z P,z".
n=0 n=0

For obvious reasons (N, p) is called a polynomial matriz if p, = 0 for all sufficiently
large n. Given a function p(z), a Norlund matrix can be defined by the sequence
of coefficients of its formal power series expansion.

Example 15.2. (a) Let p(z) = 1 for all z. Then we have p = ¢(®) and (N,p) = I.
(b) Let a > 0 and

p(z) = (1—2) = i ("*:_ 1);;” for |2] < 1.

Then we have

oo

_ p(z) _ 1 _ a.n
P(z) = el T ZAnz for |z| < 1,

n=0
and (N,p) = C,.

The first result states that the Cesaro matrices are the only ones that are both
Hausdorff and Norlund matrices.
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Theorem 15.3. Let A be a Hausdorff and a Nérlund matriz. Then A = C,, for
some «.

Proof. Let A= (N,p) = H(u). We put o = p;. Then we have by (10.1)

n

n— 1) Ani(nil),un—l = n(p’n—l - ﬂn) for all n,

_ _ P _ _
Qb = QQpp = P Qnpn—1 =
n

that is, g, = n/(n + @)pn—1. It follows by induction from pg = ago = 1 that

_ L _ L
Mn_(n+a)_Ao¢

n n

foralln=0,1,...,

hence A = C, by Theorem 13.2. O
Theorem 15.4. Every polynomial matriz is reqular.

Proof. Let A be a polynomial matrix. Then A consists of finitely many diago-
nals. Each column terminates in zeros; each row adds up to 1, and finally, for all

sufficiently large n,
oo m
D lankl =3
k=0 k=0

Pk

P,

where m is the smallest integer such that pry = 0 for all k& > m. Consequently
we have ||A|| < oco. Therefore the conditions in (i’), (ii’) and (iii’) in Part (c) of
Theorem 4.3 are satisfied and the matrix A is regular. O

Now we give necessary and sufficient conditions for a Norlund method to be
conservative or regular.

Theorem 15.5. A Norlund method (N,p) is conservative if and only if

(1) lim 2% = X exists
n—oo n

(i) there is a constant M such that Z lpe| < M|Py,| for alln=0,1,...;
k=0

it is regular if and only if the conditions in (i) and (ii) hold with A = 0.

Proof. Let A = (ank);’y—o denote the matrix of the Norlund method (N,p). Then
we have

3

Doy P foralln=0,1,....

15.1 o=
(151 TP, P,

1. First we show the necessity of the conditions in (i) and (ii).
If A is conservative, then lim, . a,0 = A exists, and (15.1) implies (i). The
condition in (ii) is ||A|| < co. This completes the proof of Part 1.
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2. Now we show the sufficiency of the conditions in (i) and (ii). It remains to
be shown that the condition in (i) implies the existence of

o = lim a,y for each k.
k— o0
It follows by induction and from (15.1) that

a o Pn—k—-1 _ Pn—k-1 Pnfl
n,k+1 — -
Pn Pn—l Pn

P,_
= an-1kp L ap(1=X)  (n— o) for all k.

n

Therefore the method (N, p) is conservative. We also have a1 = ai(1— M), hence
ar = apg(1=N)* = A(1=\)* for all k by (15.1). Hence the method (N, p) is regular
if and only if A = 0. O

Corollary 15.6. Let p, > 0 for all n. Then (N,p) is conservative if and only if
limy, o0 Prn /Py exists, and regular if and only if lim,,_,~ pn /P, = 0.

Proof. Since p,, > 0 for all n, the condition in (ii) of Theorem 15.5 becomes redun-
dant. O

Corollary 15.7. Each of the following conditions is sufficient for (N,p) to be
reqular

(i) p € by and p, > 0 for all n;
(i) p € ¢y and py, > 0 for all n;
(iii) p € ¥y and an £ 0;

n=0
(iv) pE 9.

Proof. (iv) The condition in (iv) is sufficient by Theorem 15.4.

(iii) Now we assume that the conditions in (iii) are satisfied.
First p € ¢; implies p € ¢y, and | = lim,,_, P, = lim,_ . Zzzopk # 0, so we
obtain

lim %annd Zankzlforallnzo,l,....

n—0o0
n k=0

Since |P,| > 0 for all n and |I| > 0 together imply m = inf, |P,| > 0, we have
M = (3272, |px])/m < oo and

< — < M|P,| for all n.
> bl < 3 Il 0 < MU for all

Thus the matrix (N, p) is regular by Theorem 15.5.



15 NORLUND MATRICES 75

(ii) Now we observe that the condition in (ii) implies the condition in (i). We
assume p € {o, and p, > 0 for all n. Then > ;2 ank| = D pep @nk = 1. 1D 00 o Pk
converges, then (iii) holds. If "2, px does not converge, then P, — co (n — 00),
and so p, /P, = 0 (n = 00), since p € {. O

In the remainder of this subsection, we assume py > 0 and p, > 0 for all n.
First we prove a consistency theorem.

Theorem 15.8. Any two non-negative reqular Norlund methods (N, p) and (N, q)
with Po,qo > 0 are consistent.

Proof. We assume s, — t(N,p) and s, — t'(N,q). Let r, = (p x q)p, for n =
0,1,.... We show (N,q) C (N,r). Writing

1 (7 * 8)n
t;’:i Tn—kSk = forn:0717...7
R, kZ:o (rxe),

we obtain, using the associativity of the convolution x,

(rxe),(r=s),
(rxe),

= (p * (q * S))n = (p * (q * 6)tq)n = an—qutzv
v=0
(ree)n=((p*q)*€)n=(p*(a*e)n=PxQn,

(rxe)nt;, = =(rx*s)p = ((pxq)*s)n

that is,
tfl:i Pr—rv@utd for all n =0,1,....
(p*Q)n ;)
We are going to show that the matrix A with
pn—ka
—_— 0<k<n
ank = (P*Q)n ) (n=0,1,...)
0 (k>n)

is regular. First we observe a,; > 0 for all n and k, and so

oo

P-kQr  (P*Q)n
kZ:O|(lnk| ZP*Q =00, =1lforn=0,1,.

hence conditions in (i’) and (iii’) in Part (c¢) of Theorem 4.3 are satisfied. Since
(N,p) and (N, q) are regular, we conclude from Corollary 15.6

DPr—kQk < Pn— ka
2 =0PiQn—j ~ g0y ps

Ogank:
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_ Pn- k%—>0 (n — o0) for each fixed k.

Pn k 4o

Therefore A is regular, and s,, — t'(N, q) implies s, — t'(N,r).
Similarly, interchanging the roles of the sequences p and ¢, we can show that s, —
t(N,p) implies s, — t(IN,r). Thus we have t = t'. O

The next result establishes a relation between Norlund summable series and
power series.

Theorem 15.9. If (N, p) is a regular Norlund method and the series Xa,, is summ-
able (N, p) to s then the power series Y . a,x™ has positive radius of convergence
and defines an analytic function a(x) which is reqular for 0 < x < 1 and satisfies
lim,_1_ a(z) = s.

Proof. We write

x):ipnx", ZP;L‘ and T'(z ZPt”
n=0

n=0

where

t, = P an kSk and s, = kzoak forn=0,1,....
Since (N, p) is regular, it follows from Corollary 15.6 that p,/P, — 0 (n — 00),

and so
Pnfl o Pn_p

P, P,
Thus the power series expansion of P(x) has radius of convergence 1, and p(z) =
(1 — x2)P(z) for |z| < 1. Furthermore, Ya, = s(N,p) implies (t£)>2, € », and
so the power series expansion of T(x) also has radius of convergence 1. Since
po > 0 and p, > 0 for all n > 1, it follows that p(x) > 0 and P(z) > 0 for
0 < z < 1. Therefore the function w(x) = T(x)/p(z) is regular at the origin and
can be expanded in a power series

51 (n— o00).

o0
= Z wpa"” for |x| small.
n=0

Now T'(z) = w(z)p(x) implies
Pt =(pxw), (n=0,1,...),

but
Pt? =(pxs), (n=0,1,...),

hence w,, = s,, for all n. Therefore ZZOZO spx™ and ZZO:O a,x™ are regular at the

origin,
—ooa:v —xoo 7xﬂ7T(x)
=2 = = (0 = )
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and T'(z) and P(xz) are regular for |x| < 1. Hence a(x) is regular for |z| < 1 except
for possible poles, none of which is in the interval (0,1). Finally we have

T(x) _ Ypep Putha” _

o0
Z cn(z)th, where

P) P &
P,z"
cn(z) = P(i) foralln=0,1,....

We consider an arbitrary sequence (x,)%2, with 0 < z, — 1— as n tends to co.
Then we have

kaﬁ
P(z,)

a(zy,) = Z Cnith where ¢ = forn,k=0,1,....

k=0
We are going to show that the matrix C' = (cnk);—o is regular. First it follows

from pi > 0 for all k£ and x,, > 0 for all n that ¢, > 0 for all n and k, hence

oo

- P(xy,)
Z|an| = chk = Plan) =1lforalln=0,1,....
k=0 k=0

Now we fix k. Then it follows that

Pk Pk
=)< ) 50 (n— o).
p(xn) Po

Thus C is regular, and t2 — s (n — oo) implies a(z,) — s (n — 00). Since the
sequence (x,)52, was arbitrary, it follows that
lim a(z) =s. O
r—1—
Now we study the inclusion and equivalence of Norlund methods. If (N, p) and

(N, q) are regular Norlund methods, then p, /P, — 0, ¢,/Qn — 0 as n — oo, and
the power series

(15.2) (@) = Xy opnt”, Px) =357 Paa®,
q(x) = Zn:O qnx" and QI = Zn:O in.n

are convergent for |z| < 1. Since pg,qo > 0 and p,,q, > 0 for all n, the power
series

~

!
~—

N 9®) Q)
(15.3) k(m)—;kn = @) = P@
1

(15.4) 1) = D bt =
n=0

(z
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are convergent for |z| small, and
(15.5) q=kxp,  Q=kxP,
(15.6) p=1lxq and P=1xQ.
The next result is an inclusion theorem for regular Nérlund methods.

Theorem 15.10. If (N,p) and (N,q) are regular Norlund methods then (N,p) C
(N, q) if and only if there is a constant M independent of n such that

(15.7) (|k| * P)p < M - Qy for alln=0,1,... where |k| = (|kn])2,
. kn
(15.8) Jim 2= 0.

Proof. If s(z) = Y7, s,x" then we have

S Qutde™ = 3 (g # 5)ua” = g(x)s(a),
n=0 n=0

Z P,tPz™ = p(x)s(x) for |x| small.
n=0
It follows from (15.3) that

Y Qutha™ = q(z)s(z) = k(z)p(a)s()
n=0

= (Z k:n:c”> (Z Pntflac"> = Z(k‘ x (PtP)) ™,

n=0

and so -

tl = Zam,t,’j forn=0,1,...

v=0

where e P

n—vi v (O S v S n)

Any = Qn (n:0,1,...).
0 (v>mn)

Now (15.7) is the condition in (i’), in Part (c) of Theorem 4.3. Furthermore, (15.5)
implies

o0

1 Qn
Qpy = —(k*x P :f=1forn:0,1,...,

2 ane = g -kx Plo = 50°
and the condition in (iii’) in Part (c¢) of Theorem 4.3 is also satisfied. Since (XV, q)
is regular, it follows that for each fixed v

Qn—l/ _ Qn - (Qn + -+ Qn—u+1)
Qn Q@n
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:1_<Qn+Qn—1+'.'+Q7L—y+1>_>1 (n—>oo),

@n  Qn Qn
and so
kn—l/ kn—l/ Qn—u
Apy = P, = P, -0 (n— oo) for each fixed v
if and only of (15.8) holds. Therefore the condition in (ii’), in Part (c) of Theorem
4.3 is also satisfied. O

Remark 15.11. If P, — 0o (n — oo) then (15.8) is redundant in Theorem 15.10.

Proof. If P, — o0 (n — 00), then, given N > 0, we can choose r such that P. > N.
It follows from (15.7) that N|k,_,| < M@, and

0< Ii 7<%1' =
_nl_{[;o anr - N"LH;O anr B

)

N

and (15.8) follows from (15.7). O

Theorem 15.12. If (N,q) is a regular Norlund method with g, increasing then
Co C(N,q) for 0 <a<1.

Proof. By Theorem 7.8, it suffices to show C1 C (N, ¢). We have (N, p) = Cy where
p=ecand P, =n+1— 0o (n — o). Thus p(z) = (1 —2)7L, k(x) = (1 — z)q(2),
ko = qo, kn = gn — ¢n—1 for n > 0 and the condition in (15.7) becomes

Yl — quil(n—v+1)+ (n+1)g0 < MQ,..

v=1

Since the sequence (g,)5 is increasing, we have ¢, — ¢,—1 > 0 (v > 0), hence

Z(qy — g ) —v+ 1)+ m+ D+ Y (@ —aq-1) Y 1+ (n+1)gp
v=1 v=1 u=v
(QV - (11»71) + (TL + 1)(]0 = Z(q,u - fJo) + (TL + 1)Q0

I
M=
Mt

\
1S
Il
-
N
Il

3
3

qu+qo=Qyforn=0,1,.... 0

T
Il
-

We close this section with an equivalence theorem for regular Norlund methods.

Theorem 15.13. Let (N,p) and (N, q) be regular Norlund methods. Then (N, p)
and (N, q) are equivalent if and only if k € {1 and | € ¢;.
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Proof. First we assume (N,p) = (N, q). It follows from pg,qo > 0 that kg, Iy > 0,
and (N,p) C (N, q) implies kP, < MQ,, (n=0,1,...) for some absolute constant
M by (15.7). Thus P,/Q, is bounded. Similarly, (N,q) C (N,p) implies that
Qn/ P, is bounded. It follows from (15.7) that
1 M@,
— P, < — .
Pn(|k:\ * P), < P forr <n

We fix r and let n — oo, then

. .7@’",
S k| < M1 ,
|k, | < im P

n— oo
v=0

and so Y. |ky| < co. Similarly it can be shown that Y~ || < oc.
Conversely we assume k € ¢; and [ € ¢1. Since k € {1 implies k € ¢y, we have
kn/Qn — 0 (n — o0) and (15.8) holds. Furthermore

o0

Pn:(Q*l)nanZ‘lﬂ

n=0
implies

n=0 n=0

that is, (15.7) is satisfied. Therefore it follows by Theorem 15.10 that (NV,p) C
(N, q). Similarly it can be shown that (N, q) C (N,p). O

16 The Abel method

Now we study the Abel method. This method is not defined by a matrix.

Definition 16.1. Let (a,)22, be a real sequence, s, be the partial sums of the
sequence (a,)0% and Y .~ a,z™ be convergent for |z| < 1. If

Zanx" =(1-x) anx" =5 (z—1-),
n=0 n=0

then the series Ya, and the sequence (s,,)32 are said to be Abel summable to s.
The corresponding method of summability is called the Abel method.

When no matrix A is involved, we may say summable A instead of Abel summable,
and write Xa,, = s(A) when the series Ya,, is summable 4 to s.

Remark 16.2. It is obvious that if Y ° a,2™ converges for |z| < 1 then we have
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We obtain as an immediate consequence of Abel’s limit theorem
Theorem 16.3. The Abel method is regular.

Example 16.4. We have ¥(—1)" = 1/2(A). This takes us back to the satisfying
result (*) mentioned in Section 1.

We need the following lemma to be able to prove a growth theorem for the Abel
method.

Lemma 16.5. The inequality

- 1/n
(16.1) Tim_ (\an\ ) <1
holds if and only if
(16.2) an, = O0((1+¢)") for arbitrary € > 0.

Proof. (i) First we assume that (16.1) is satisfied. Then given € > 0 there is
N. € Ng such that |a,|"/™ < 1+ ¢ for all n > N.. This implies |a,| < (1 + ¢)" for
all n > N,, and so there is a constant K. such that |a,| < K.(1+¢)" for all n and
(16.2) is satisfied.

(i) Conversely we assume that (16.2) is satisfied. Then we have |a,| < K(1+¢)"
(n=0,1,...) for some constant K, hence

| < K1 +e),
and (16.1) is satisfied. O

Theorem 16.6. If the series Xa, is summable A then the terms of the series
satisfy
an = O(q") for arbitrary q > 1.

Proof. If Ya,, is summable A, then Y-, a,z™ converges for |z| < 1, hence (16.1)
holds by the Cauchy—Hadamard theorem for power series. O

It turns out that the Abel method is stronger than any Cesaro method.
Theorem 16.7. We have C,, C A for all a > 0.

Proof. We assume Xa, = s(C,) and put A(z) = > o7, a,z". By Part (b) of
Theorem 7.12, Xa,, = s(C,,) implies a,, = o(n®) and so the power series expansion
of A(z) has radius of convergence 1. Let (z,,)32, be an arbitrary sequence with
0 <z, <1foral nand z, = 1— (n — 00). Then it follows from

o () (£ (S )

n=0
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=) A%ota"
n=0
that
A(z) = (1 — z)*H! Z s%™ = (1 —z)T! Z ASooa™,
n=0 n=0
Azn) = (1= 2,)* Y ARopal =Y buropy
k=0 k=0

where by = (1 — 2,)** A2k for all n and k. Since 0 <z, <1 (n=0,1,...), we
have b, > 0 or all n and k, and

D bkl =D bk =D (1 —zp) AR
k=0 k=0

k=0
1— n a+1
—Elxia_i_l—lforn—o,l,....
— T

We fix k € Ng. Then b, = (1 — z,,)*T A%k — 0 (n — o0), since x,, — 1 and
a > —1. Therefore the matrix B = (bnk);—, satisfies the conditions of Part (c)
of Theorem 4.3, and thus defines a regular method of summability. O

The following growth theorem is a generalization to Abel summability of the
well-known fact that if a series ¥a,, converges then its terms converge to zero.

Theorem 16.8. If the series Xa, is summable A then a, — 0(A4) as n — oco.
Proof. Let ¥a, = s(A). Then we have

Zanx"—hs (x = 1-) or (1—x)2anx”—>0 (x — 1-),

n=0 n=0
hence a,, = 0(A) by Definition 16.1. O
Finally we prove a Tauberian theorem for the Abel method.

Theorem 16.9. If YXa,, is summable A to s and its terms satisfy a,, = o(1/n) then
the series Xa,, converges to s.

Proof. We put A(z) =" janz™. Let € > 0 be given. Since a,, = o(1/n), the C4
method is regular, and Ya, = s(A), we can choose N. € N such that

(16.3) |nan| < % for all n > N,

1 < €
(16.4) o I;)k|ak| = op((klak])izy) < 3 for all n > N,
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(16.5) A1 —1/n) — | < g for all n > N..

Thus, if n > N, then we have

n o0 n (o)
(16.6) sn—SZZak—s:Zakxk—8+Zak(1—xk)— Z apz®.
k=0 k=0 k=0

k=n-+1

Applying the mean value theorem of differentiation to f(t) = t* on the interval
[x,1], we obtain

(16.7) 1—ab <k(1-u2).

Furthermore we have for k > n

(16.8) |ag| <

Now (16.6), (16.7) and (16.8) imply

n oo
€
— | < |A(z) — 1- = k
|sn — 5| < |A(z) — 5] + ( x)g:olkangnk:Eon

e 1

<|A(@) = s+ (1 —2) > |kax| +
k=0

nl—z

We put © = 1 — 1/n. Then we have by (16.5) and (16.4)

1 & €
— < — — — N
[sn — 8| < |A(1—1/n) —s| + - E |kag| + 3,7
k=0
€ €

<§+§+§=5foralln>N5,

hence lim,,_, o, S, = 8. O

Remark 16.10. It can be shown ([99, Theorem III.21]) that an analogous more
general result of the Tauberian theorem, Theorem 16.9, also holds true when the
Tauberian condition s, = o(1/+/n) is replaced by s, = o(1/y/n). This result is due
to Hardy and Littlewood [?].

17 The Borel method

In this section, we study the Borel method. This method is also not given by a
matrix.
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Definition 17.1. Let (s,)22, be a real sequence and Y~ (z"/n!)s, be conver-
gent for all x € R. If

oo n

o(x) :e*wz %sn —s (x— 00)

n=0

then the sequence (s,,)32, is said to be Borel summable to s; this is denoted by
$n — 8(B) (n — 00). The corresponding method of summability is called the Borel
method.

First we observe that the Borel method is regular.
Theorem 17.2. The Borel method is reqular.

Proof. We assume that s, — s (n — 00). Let (z,,)5L, be an arbitrary positive

sequence with =, — 0o as n — oo. Then we consider the sequence b = ()52,
defined by

b, =e ﬁsk = g cnkSg for alln =0,1,...
k=0 k=0

where the matrix C' = (cuk); = is defined by

2k
Cnk =€ 7" k’; for all n,k=0,1,...
Since x,, > 0 for all n, we have
Z k| = chk, — e In Z k:i'L e Tnen =1foralln=0,1,...,
k=0 k=0 k=0

and for fixed k € Ny

— k
. . e Ty
lim ¢, = lim L =0.
n—00 n—oo k!

Thus the conditions in Part (c) of Theorem 4.3 are satisfied and consequently the
matrix C defines a regular method of summability. This implies b, — s (n — 00).
Since this holds for every positive sequence (x,)5%, with z, — oo as n — oo, the
Borel method is regular. O

It turns out that the Borel method is stronger than any Euler method.
Theorem 17.3. We have E, C B for all ¢ > 0.

Proof. Tt follows from Theorem 9.4 that

= ) = (x k
()

k=0
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n=0
0o n k
_ Y (N q+1
— x al n -1 n—k q
B2 (5o ()2 4
n=0 k=0
[e'S) "
=€ Z nl o
n=0
that is,
0 L o0 k
S 1 (z(¢+1))
e " T sk=e —(at )”’Z o si.
k=0 k=0

As in the proof of Theorem 17.2, let (z,)52, be an arbitrary positive sequence with
Ty, — 00 as n — 0o. We con51der the matrix C' = (an)n,kzo defined by

Cnk = e~ (gt D)z % for all n,k=0,1,....

Then we have ¢, > 0 for all n and k,

o] %) o . .

S feasl = 3 e = et 3 InldE DT
|

k=0 k=0 o k!

= e (@tDEnglat)zn — 1 for alln =0, 1,. ..

and for each fixed k£ € Ny

k 1 k
lim ¢, = lim e—(qH)mM =0.
Thus the conditions in Part (c) of Theorem 4.3 are satisfied and consequently the
matrix C' defines a regular method of summablity. Now the conclusion follows by
the same argument as that applied at the end of the proof of Theorem 17.2. O

Now we prove a Tauberian theorem for the Borel method. The techniques of the
proof are very similar to those applied in the proof of Theorem 9.8, the Tauberian
theorem for the Euler method Ej.

Theorem 17.4. If the sequence ()2 is Borel summable to s and a, = s, —
Sn—1 = o(1/+/n) then the sequence ()22, converges to s.

Proof. Since the techniques applied in the proof are very similar to those in the
proof of Theorem 9.8, we only outline the steps of the proof without going into the
details again.

We observe that

OOZ‘
Lo
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k=0 1 =
7°°x27°° xkioomkﬂ
S3(z) Zﬁ *Z(k,_w*Z k! (k+1),
k=0 k=1 k=0
oo Ik o0 szrl
:$ZE+Z ] = ze” 4 51 (),
k=0 k=1
hence —_—
Y ) (S1(x) — 29(x) + Sy(a)) =z
k=0 "

(i) First we show

2k |k — .
(17.1) Z—. = 0(e").

As in the proof of Theorem 9.8, we have

=2k |k — x| 2 |k — x|
(17.2) = —
Zk!\/k+1 |k_;ﬁk!\/k+1
* |k — x| * 1k —al
+ > = + 0y = :
E'VE+1 E'VE+1
VE<lk—sl< T g *
If £ > 2 then  — \/x > x/2, and so |k — z| < \/z implies k > x — \/x > /2, hence
\/ngf\f nd so

T _ Z k |]€ _ {L‘| Z xk \/E
(17.3) ! |k—z|<vz Ly \/ﬁ |k—=z|<vz pr \/ﬁ

<\[Z\k w\<\fk|~lk+1—f2k Ok'_\/e
Furthermore |k — x| < 3z/4 implies © — k < 3x/4, hence k > x/4, that is, k+ 1 >

5x/4, and so
1 2

< .
VE+1 7~ V5.
Since |k — x| > y/x, we also have |k — z|/\/x > 1, hence

|k — x| 2 |k—z |k — z|?
< — <

2
VE+L Vs VT 5 ox

and so

ok — 2 — k— x|?
(17.4) = 3 2| I|§7zi.@,
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Finally, if k£ = 0 then, since x > 0,
kol |, P
VE+1 x
and if £ > 1 then 16 ) 3
k4+1>—, hence —— < —.
S Y/
Thus, if |k — x| > 32/4, then we obtain
|k —z| 3 3x 1 |k—2z)?
———<-k—z|=—-|k-1]- - < ,
vk+1~ 4 | | 4 | | - T
that is,
B |k—3:| xF |/<J—x|2
a7 > ey
E<|k—x|

Now it follows from (17.2), (17.3), (17.4) and (17.5) that

= gk —:U| B > zk x|k — x|
(17.6) Z WVRTL =T +Tr+T3=0(1) <Z o + i
k=0 k=0 k=0
We also have
N kg 1 i kb=t i (k+1)
Kz (k—1)! k!
k=0 k=1 k=0
d [ k! . "
~ @ (% i ) = (@) = (@ 1)et,
(oo} oo o0
Lokt ok g1
2 =2 =-2 = —2ze”
k! 2. (k—1)! > T e
k=0 k=1 k=0
d

an k2 2kt ok N

DR T T T gy m e D),

k=0 k=1 k=1
that is,

ok 2
< |ZC — k| T T T T T
(17.7) Z i = (x4 1)e” —2ze” + z(e” — 1) =e” — x = O(e").
k=0

Hence it follows from (17.6) and (17.7) that

OO.T
Z;?
k=0

= 0(e").

) |
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Thus we have shown (17.1).
(ii) Now we show that

[n — k|
N

(#4.c) First we show that given € > 0 there exists N, € Ny such that

(17.8) [$r, — sk| = o(1) (n — o0) uniformly in k.

n

(17.9) > lax| < ev/n for all n > N..

k=0
Let € > 0 be given. Since a; = o(1/v/k), there exists ko € Ny such that
(17.10) lax|Vk < € for all k > k.

Now we choose N, € Ny so large that we have
1 &
(17.11) ﬁkz_o‘ak‘ < e for all n > N..

Let n > N, be given. Then it follows from (17.10) and (17.11) that

n ko n n
1 1 € 1
— ag| = — ar| + ag| | <e+—=>» —
ﬁ1§|k| ﬁ(/;)Ik' k;|k|> \/E;\/E
0
< e(1+ C) for some absolute constant C'.

Thus we have shown (17.9).
(7.8) Now we show

Vi
[n — k|

(17.12) [sn — Skl — 0 (n — o0) uniformly in k.

Let € > 0 be given. As above we choose ky € Ny such that (17.10) holds. We put
ng = 2ko. Then we have for all n > ng and for all v > n/2, if v < n, by (17.10)

n n n
5 1 g(n —v)
s — sl <1 D larl < TS Y. <
k=v+1 k=v+1 k=v+1
< V2e(n —v)

and, if v > n,

v v

1 1
‘Sn*5u|§|2‘ak|§52ﬁ§€ %ST

k=n-+1 k=n-+1
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Thus we have

[$n — 81| < for all n > ng and for all v > n/2.

< V2eln — v
Vn

Now we choose N, € Ny with N. > ng such that (17.9) holds for all n > N.. Let
n > 2N.. Then we have for all v < n/2 by (17.9)

su|<Zak|+Zlau|<e<\/ﬁ+\/;) <%
).

ten—4) _de(n—v

=" NG

Thus we have shown that given ¢ > 0, there exists V. € Ny such that

3

5

| |<45|n71/|
Sp — 8 —_
n v \/ﬁ

that is, (17.12) holds. This concludes Part (ii) of the proof.
Finally we have for x = n by (17.12)

for all n > N, and all v,

lo(x) — 55| =

>k
Z?
k=0

k| z*

<o 3 o <ot/ Ve 3 Ty K

Since 2z < k inplies z < k—x§, hence (k—x)/z > 1 and (k—2)?/z > k—z = |z—k,
on(z) — sp, = 0 (n — o0) follows from (17.7)

k >  _k |I*/€|2
—x —k —x i
¢ = [<e k! T

k
k>22 k=0

= 0(1). 0

Remark 17.5. (a) Similarly it can be shown that s, — s(B) and a,, = O(1/y/n)
imply s, = O(1).

(b) Since Ey C B by Theorem 17.3, Theorem 9.8 would follow from Theorem
17.4.

18 Limit points of sequences and their transforms

Here we apply some of the results of our previous sections to study sets of limit
points of sequences and their transforms by methods of summability. Most of the
results of this section can be found in the classical paper by Barone [11]

We denote by L(s) the set of all limit points of a complex sequence s = (s,)52 .
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First, examples are given which show that if no restrictions are placed on the
complex sequence (s,), then the set £(s) need not be connected. Then sufficient
conditions that L£(s) be connected are given, and theorems are proved concerning
transforms of bounded complex sequences and their sets of limit points. Further-
more it is determined whether the sets of limit points of the the Holder, Cesaro, de
la Vallée Poussin and Euler transforms of (s,) are connected.

We recall that since £(s) is a closed set for each sequence (s, ), to say that £(s)
is connected means that £(s) cannot written as the disjoint union of two non-empty
closed sets. To see that L£(s) need not be connected, in general, we consider the
following example.

Example 18.1. Let the sequences (5%1)), (353)) and (SS{”) be defined as follows
(18.1)

1 2m) 1 (n =3m)
n=:saam
) =9, s =4 (n=3m+1) form=0,1,...,
i (n=2m+1)
m+2 (n=3m+2)
and
0, s, 20 iy iy 2 gy L T 2 B
T+ 1+ 2 1+24,82 424,88 12424, 3% 0,
A3, 55 + 30, & + 3,
3y : 89i 88
(18.2) (s$)): v 13014 82 88
T+ B 142 14+40, 38 +44,38 + 44,
o4, 1500 18 g

Then £(sM) = £(s®) = {1,4}, while £(s®) consists of all those points not below
the real axis with real part 0 or 1. These sets are not connected.

The sequence (81(11)) is bounded, while the sequences (822)) and (8513)) are un-

bounded. The sequence (555')) satisfies

(18.3) (sf’)) € (co)a, that is, A(s®)) e ¢,

where A denotes the operator of the (backward) differences defined for every se-
quence (8,)5% by

A(Sp) = Spn — Sn—1 (n=0,1...); where s_; = 0.
But neither (55,1)) nor (5512)) has the property in (18.3).
First we establish sufficient conditions for £(s) to be connected.

Theorem 18.2. If a sequence (s,) € lx satisfies the condition in (18.3), then the
set L(s) is connected.
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Theorem 18.2 is a special case of the following result.

Theorem 18.3. If (s,,) is a compact sequence in a metric space (X, d) such that

(18.4) lim d(sp,sp—1) =0,

n—oo

then the set L(s) is connected.

Proof. We write £ = L(s), for short, and assume that £ is not connected. Then
L(s) can be written as the disjoint union of two sets S; and S such that neither
S1 = 0 nor Sy = (. Since S1 NSy = (), and S; and Sy are closed and compact,
d(S1,52) = p > O. Also there exist a1 € S1 and ay € Ss such that d(ai,as) = p.
Since a1, az € L(s), there exist subsequences (sy,) and (s;,) of (s,) such that

lim s, = a1, lim s, =as and k1 <y <ks <ly---.
j—ooo j—oo 7

Now there exists a positive integer /N such that

(18.5) d(sp,,a1) <2

7 d(sy, ,a2) < Z and d(Sm, Sm+1) < g for all k,,1,,,m > N.

For each k,, > N we consider the group

Sk Skn+1s Skn+2y -+ Sly,

of terms of the sequence (s, ). It follows from (18.5) that
p p P
d(sg,,S1) < T d(s,,S2) < 1 and d(Sm, Sm+1) < 1 for all k,,m > N.
Hence there must be some index p,, such that k, < k,, + p, <, and
(18.6) d(sk,+p,,S1) > Z and d(sk, +p,,S2) > Z for k, > N.

This would mean that, for some elements, d(sk, +p,,, Sk,+p,+1) > p/2, and this is a
contradiction.

We now have a subsequence (s, 45, ) of the sequence (s,) which satisfies (18.6).
Since the sequence (s,) is compact, this subsequence has a limit point, say ¢, such
that

d(c,S1) > g and d(c, S3) > g

Thus we have ¢ € L(s), but ¢ € S; and ¢ € Ss, and consequently L£(s) # S1 U Ss.
This is a contradiction. Therefore £(s) must be connected. O

Remark 18.4. The condition in (18.4) is not necessary for L(s) to be connected.
To see this, we consider the sequence (s,) with s, = e for all n. Then L(s)
is connected by Kronecker’s density theorem [58] or [14] for a simple constructive
proof, but the condition in (18.4) is not satisfied.
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Now we consider theorems concerning matrix transforms and their sets of limit
points. We recall that by the Toeplitz theorem, Part (c) of Theorem 4.3 a matrix
transformation A is regular if and only if

18.7 su Ank| < 00,
(18.7) npkzzol k|

(18.8) lim Y ank = 1,
(18.9) li_>rn ank = 0 for all k.

We will use the following well-known result without explicitly referring to it
each time.

Proposition 18.5. ([21, Remark 22 (a), p. 22| or [111, 1.4.8]) Every triangle T
has a unique inverse S which also is a triangle, and x = T(Sxz) = S(T'z) for all
T Ew.

The following general results are useful.

Lemma 18.6. Let T = (tur);p—g be a triangle, A = (ank); y—o be an arbitrary
infinite matriz, and C = (cpx) =T - A, the product of the matrices T and A, that
18,

n
Cnk = Ztnjajk forn,k =0,1,....

7=0
Then we have A € (X,Yr) if and only if C € (X,Y).

Proof. First we assume A € (X,Yr). Then the series A,z converge for all z € X
and all n, hence z € wy. Since T is a triangle, we have T,, € ¢ for all n, and it
follows from Part (i) in Theorem 6.4

T,.(Az) = Z (Z tnmamk> x = Cpzx for all n and z € X,

k=0 \m=0

that is, T(Az) = Cz for all € X, and Az € Yr implies Cz € (X,Y). Hence we
have C € (X,Y).

Now we assume C € (X,Y). Let S be inverse of T (Proposition 18.5). Then it
follows by what we have just shown with A and T replaced by C and S, respectively,
that

Sp(Cz) = (S C)pz for all n and all z € X,

and clearly S-C=5-(T-A)=(S-T)-A = A. Hence we have T(Az) = (T-C)x =
Cz €Y, that is, Az € Yy for all z € X and so A € (X, Yr). O
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Theorem 18.7. Let A = (anr)01_o be an arbitrary infinite matriz and s = (sp,) €
(o If

oo

(18.10) nh_{r(lo];) |@n ks — Gn_1k

:O7

then the set L(As) is connected.

Proof. Since
(A-A)pr =ank — an—1 for all n and k, where a_q , = 0 for all k,

the condition in (18.10) implies by (5.10) in Part (b) of Remark 5.3 that A - A €
(s, o), hence A € (£, (co)a) by Lemma 18.6, that is, A(As) € ¢ for all sequences
s = (8pn) € oo. Now the conclusion follows by Theorem 18.2. O

From now on, let infinite matrices always be triangles, unless explicitly stated
otherwise.

Theorem 18.8. Let (8,)22 € loo and the matrices A and B satisfy

n

(18.11) lim ;O |ank — buk| = 0.

If L(As) is connected, so is L(Bs).

Proof. We show L(As) = L(Bs) for all sequences s = (s,,) € {wo.

We may assume that at least one of the sets is not empty, £(Bs) # 0, say. If
L(As) =0 and t € L(Bs), then there exists a subsequence (B,,, s) of the sequence
(Bns) such that B, — tas m — oo, hence by (18.11)

[An,,. 8 = t] < [Bn,, s = t|+ |(Bn,, — An,)sl

<|Bp, s—t|+ (Z |bp,, — anm|> IIs|loc — 0 as m — oo,

n=0

and so t € L(As), which is a contradiction. So £L(As) = 0 = L(Bs).
If t € L(As) then t € L£(Bs) by the above argument with A and B interchanged,
and the converse implication follows by the above argument. O

Theorem 18.9. If the matriz A satisfies the condition

n—1
(18.12) there exists P > 0 such that |ann| — Z |ank| > P for all n,
k=0

then the set L(As) of a sequence (s,) € Lo need not be connected.
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Proof. Tt is sufficient to show that a sequence (¢,) that has two limit points is the
transform of a bounded sequence (s;,). This may be done by showing that if (¢,)
is bounded, then the sequence (s,) obtained by the inverse transformation is also
bounded. This, in turn, may be done by showing that if (s,) is unbounded, then
(tn) is unbounded. For a given M > 0 there exists an n such that

|sn| > M/P and |s| < |s,] for all k < n.

Then we have by (18.12)

|tn| = 2 |ann| - [sn| =

n—1
§ Ak Sk
k=0

n
E UnkSk
k=0

n—1

> Jann| 0] = |50l Y lank|

k=0

n—1
> |sn‘ <|ann - Z |ank|> > M. O

k=0
Theorem 18.10. If the matriz A satisfies the conditions
(18.13) there exists a positive constant P such that |ayny,| > P > 0 for all n,

and

|ank|

(18.14) —_—
Zp=k+1 |anpl

— 00 (n— 00) for each 0 <k <n-—1,

then the set L(As) of a sequence (s,) € oo is connected.

Proof. If s,, = 0 for all n, then ¢, = A,,s = 0 for all n.
If s, # 0 for some n, then there exists M such that |s,| < M for all n. Let
k = min{n € N: s, # 0}. Then we have by (18.13) and (18.14)

|tn| = Zanpsp > |ank| - [sk| = M Z |any|

p=k+1

= Z |anp|< (e - [ M) — 00 as m — 0. O

p=k+1 Zp k1 |@np
Theorem 18.11. If the matriz A satisfies the condition

(18.15) g = frn for0<k<nandn=20,1,... and inf f,, =P >0

then the set L(As) of a sequence (s,) € Lo need not be connected.
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Proof. Since ay, = f, for 0 < k <n by (18.15), we have

th, =Ans = fn Z s for all n,

k=0
hence ; ¢
Sp = — — nilfornzL
f n f n—1
hence (sy) is bounded whenever (¢,) is bounded, and the conclusion follows by
Theorem 18.8. O

Theorem 18.12. If the matriz A satisfies the conditions in (18.13),

(18.16)

there exsits r € C such that any, — ran—15 = fr fork <n andn=0,1,...,

and

(18.17)
there exists p € (0,1) such that | fr—1 — an—1,n—1| < planns| for all n,

then the set L(As) of a sequence (s,) € oo need not be connected.

Proof. We assume that the sequence (s,) is not bounded. Let M > 0 be given.
Then there exists an n such that

[sn| > and |sg| < |sp| for all & < n.

_ M
P(1—0p)

Thus we have, writing again ¢,, = A, s for all n,

ltn — (r+ Dt + 1ty o =

Sn—
Ann <5n + (fn—l - an—Ln—l) 1) ‘

nn
|fn71 - anl,n1|)

|@nn|

> |ann| : <|3n - |5n71| :
2 |ann| N (‘Sn| - p|3n|) > M
Therefore (t,) is unbounded whenever (s,) is unbounded. O

Now we apply our results to study the connectedness of the sets of limit points
of the Cesaro, Holder, de la Valleée Poussin, and Euler transforms of bounded
sequences.

As a first application, we study the sets £(Cys) of limit points of the Cesaro
transforms C, of order @ > —1 of bounded sequences. We remark that the more
general case for Cesaro transforms of complex order with positive real part was
considered in [11, Section 6].

First we deal with the case oo > 0.
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Theorem 18.13. The set L(Cys) of each sequence s = (s,) € L is connected
when o > 0.

Proof. We recall that the entries a,x of the triangle of the C,, transform for o > —1
are given by Definition 7.1.

a—1
Anp = Z;k for0<k<mnandn=0,1,....

n

We define the triangle B = (buk)po—o by B = A(ank)i2, that is,

Aafl Aafl
n;k o n;k—l (0 S k S n— 1)
b = i47i An forn=0,1,---

AR

First we observe that for n > 2 and 0 < k <n — 1 by (7.6) in Lemma 7.2

b ATk (A AT\ AL (| (o) —k)
T Qe Ac_y Aot ) Ag nn—Fk+a)
= A ! (n(n—k+a)—(n+a)(n—Fk))
A2 n(n—k+a) “
B AT na—an—k) A%, ak

—k — ok, > 0.
A2 nn—k+a) Ao n(n—k+a)_0

n

Since trivially b,, > 0 for all n, we obtain for n > 2 by (7.19) in the proof of
Theorem 7.6 and (7.2) in Lemma 7.2

n n 1
bkl =Y bpp = —
S bl =S S S A

A k=0 1 k=
Ot A(X
*ZAnk 271:%_1:0
n k=0 n—l An
Now the conclusion follows by Theorem 18.7. O

Theorem 18.14. Let —1 < o« < 0. Then the set L(Cys) of a sequence (s,,) € oo
need not be connected.

Proof. If « =0, then the Cesaro transform is the identity, and the set E((sg))) for
the sequence (sr o )) € U in (18.1) of Example 18.1 is not connected.

Let —1 < o < 0. We define the sequence (0%) by 0 = (—1)" which has {—1,1}
as its set of limit points. We obtain by the inverse formula (7.20) in Example 7.7,
since Ag,A;f,;l >0forall0 <k <nandn=0,1,... and A2 =1 for all n by
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(7.1) and (7.3) in Lemma 7.2, respectively, and applying the formula in (7.19) in
the proof of Theorem 7.6 with 5 =0 and (7.2) in Lemma 7.2

n

—a—1 qa _«a
E :An—k AR oy
k=0

|sn| =

SO JASAR =D A AR = A =1 for all n.
k=0 k=0 o

Now we consider the sets L(H™s) for the Holder transforms of order m € N of
bounded sequences s = (sy,).

Theorem 18.15. The set L(H™s) of each sequence (s,) € {o is connected for
every m € N,

Proof. As we know from Theorem 8.3 that all Holder methods H (™) are equivalent
on {s, we may assume m = 1. But the matrix of the H() transform is equal to
that of the C; transform by definition, hence the conclusion follows by Theorem
18.13. O

The de la Vallée Poussin method is usually defined by its series to sequence
transformation. So it is useful to express the entries of the matrix B in terms of
the matrix of the series to sequence transformation.

Lemma 18.16. Let the series to sequence transformation of a series Y, o uj be
given by

n
tnzz:dnkuk for0<k<nandn=0,1,....
k=0
If A denotes the matriz of the corresponding sequence to sequence transformation
and B = (bnk),‘fk is the matriz with by = bpk, — bu—1% for all n and k, then we
have

(18.18)
dpk —dn g1 —dn—1k +dn—16+1 (0<k<n-—2)
nn—1 = Wnn — Un—-1 n— = — 1
b = dnn-1—d dn—1.n-1 (k=n ) forn=0,1,...;
dnn (k: = n)
0 (k>mn)

(here and elsewhere we use the convention that every term with a negative subscript
is equal to zero).

Proof. Let (s,)52, denote the sequence of the partial sums s, = Y ;_,uy for

n=20,1,.... Then up = s — sx_1 for k=10,1,... and we obtain
n n n n
tn = Zdnkuk = Z dnk (5K — Sp—1) = Zdnksk - Z dnkSk—1
k=0 k=0 k=0 k=1

n—1

n—1 n—1
- Z dnksk + dnnsn - Z dn,kJrlSk = Z(dnk - dn,kJrl)Sk: + dnn for n = 07 1a cee
k=0 k=0 k=0
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Hence the sequence to sequence transformation is given by the matrix A = (ank )7 x—o
with

dpr, — dp 0<k<n-1
(18.19) e " =01,
dnn (k=n)
We obtain
Gnn fOI‘ k=n
bn — Qnpk — An— = n,k — Un—-1k—1 =
k= Onk — Gn—1k Onk — Qp—1,k—1 for 0 <k<mn—1,
dnk - dn,k+1 - dn—l,k + dn—l,k+1
where dy,—1,, =0 for k =n — 1, since D = (dnk)f;fk:o is a triangle. O

Now we consider the de la Vallée Poussin transformation defined by the matrix
D= (dnk)?fk:o with

1)2
dpi = (n)) 'forogkgnandnzo,l,....

(n—&)(n+ k)

for the series to sequence transformation.
First we observe that the de la Vallée Poussin method is regular.

Theorem 18.17. The de la Vallée Poussin method is regular.

Proof. We obtain for the entries of the matrix A = (ank);%,— of the sequence to
sequence transformation of the de la Vallée Poussin method by (18.19)

n!)?
nn — dnn =
a (2nl) >0
and a,; > 0 for 0 < k <n —1, since
dnk+1 (n!)? (n—FKE)!n+k)! n-k <1
doe (n—k—D!(n+k+1)! (n)!2 S n+k+1
Hence a,; > 0 for all £ < n, and so
n n n—1
(1820) Z |ank| = Z ank = Z(dnk - dn,k+1) +dpn =dno = 1,
k=0 k=0 k=0

that is, the conditions in (i’) and (iii’) in Part (c) of Theorem 4.3 are satisfied.
We fix k € Ng. Then we have for all n > k

_ L (n))?
ank = dnk — dn,k-‘rl = (TL — k:)'(n+ k)' - (n _k— 1)!(n+ k+ 1)!
(n))?

B (n—k)!(n+k_|_1)!'((n-i-k—i—l)—(n_k))
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n! n!
= (2k+1)- . =
Ck+ D) Ol kD)
nn—1)---(n—k+1)
=(2k+1
@k +1)- (n+k+1)(n+k)---(n+1)
1 nn—1)--(n—k+1) 2k +1
=(2 1)- <
(2k+1) n+k+1 (n+k)---(n+1) —n+k+1_>oasn_>oo’
that is, the condition in (ii’) in Part (c) of Theorem 4.3 is also satisfied. O

Theorem 18.18. The set of limit points of the de la Vallée Poussin transform of
each bounded sequence is connected.

Proof. (i) First, we show

(18.21)
n—DY?(2k+ (K +k—n
: (2)%WH§+M! ) (0<k<n-1)
bk = ((”2(;3:)_2(;1)'2) (k=n-—1) forn=0,1,....
(n!)? B
(2n)! k=n

We apply (18.18) to the entries d,,; of the de la Vallée Poussin method and obtain
for k=n

fork=n-1

bn;n—l = dn,n—l - dnn - dn—l,n—l

_ @) @) (-1
(2n—1)!  (2n)! (2n —2)!

- ((n(2n§?') (2n -n? —n? —2n(2n — 1))

_ ((n—1)N2n (@n—1)(n—2)) = ((n—1)H2%(2n — 1)2n(n — 2)
(2n)! 2(2n)!

_(n=1)P(n—-2)

- 2@2n—-2) 7

and for k <n —2

bnk = dnk - dn,k+l - dn—l,k + dn—l,k+1 = Cnk — Cn—1,k, where

)2 (nt)?
“B(nt k) (n—k—1l(n+k+1)

Cnk = dnk - dn,k+1 = (n

@y
(n—K)!(n+k+1)!

(n+k+1)—(n—k))
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(n!)?

T n—k)l(n+k+ 1) 2+ 1)
((n— 11>
gy i 1CON 5 K,
and
_ (n)? __ (m=1y?
Wk_gk*”'(@kmn+k+nl Mklﬂn+@J

((Tl — 1)!)2 (n2 _ (n _ k:)(n Ny 1))

= @k+ 1) C e T )

n — 11?2
- (n—(lg)!(ni)'zi+ 1)! - (2k + 1)(K* + k —n).

Thus we have shown (18.21).

(ii) Now we show

(18.22) Tim D [buk| = 0.

It follows from (18.21) that b, <0 for £ < (1/2)(—1+ /1 +4n). We put
1 1
m = [2 (—1—|—\/1—|—4n)] :max{leN:lg 2(—1—|—\/1—|—4n)}.

Then b, < 0 for £ < m and b, > 0 for k£ > m. Since by (18.20)

n n n—1
ank = Zank - Zan—l,k = dn,O - dn—l,O =0 for all n Z 13
k=0 k=0 k=0

we obtain

Z‘bnk| Z Z bk —Z bnk)+zbnk *ank
k=0 k=0

k=0 k=m+1 k=0

= 22(_bnk) =2 Z(anfl,k - ank)
k=0 k=0
= Z(dn—l,k —dp—1,k+1) Z nk — n k1 >

k=0 k=0

= 2(dnfl,O - dnfl,m+1 - dn,O + n,erl) = dn,erl - dnfl,erl

_ (n!) B ((n— 1Y)
_2<(n—m—1)!(n—|—m+1)! (n—m—2)!(n+m)!>
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n71'>>
N(n+m+1)! (n2(nm1)(n+m+1)))

(-
_ (n—l n—m+1)(m+1)2)

(n+m-—1)

2i(1+\/1+4n) — 0 asn— oo. ]

Finally, we consider the Euler transforms E, for ¢ > 0, given by the triangle
A= (ank)gf’nzo with

1 n .
ank(q) = CESI <k)q”k for 0 <k <nandn=0,1,... (Definition 9.1).

We put r = 1/(¢+1) for ¢ > 0, that is, 0 < r < 1, and obtain ¢ = 1/r—1 = (1—r)/r,
¢g+1=1/r and

1 n—k
ank(r) :7‘"<Z> < . T) = <Z)7‘k(1—7‘)”k for0<k<nandn=0,1,....

We write E(") for the transform defined by the matrix A(r). Sine the methods E,
are regular for ¢ > 0 by Theorem 9.2, so are the methods E(") for 0 < r < 1.
In the proof of the next theorem, we need Stirling’s well-known formula

nle”
18.23 lim ———=1.
( ) n—00 nM\/2mn

Theorem 18.19. The set L(E(")s) is connected for each sequence (s,) whenr > 0.

Proof. (i) First we show

—r(1 —p)nt (k=0)

18.24) by, =< (P Nk 1—rn—k—1-k_—m 1<k<n-1) forn=0,1,....
k—1 k
T’ (k=n)

Writing anr, = ani(r), for short, we obtain the entries b, of the matrix B =
A(ank)32, as follows:

bo=1-r)"—1—-r)"t=0-r)"" 1 -r-1)
=—r(1—7)""t<0forall n>2,

n
bnn:ann:T ;

n n—1
bk = Qnk — Q-1 = (1 — )k - Rl — )kt
k k
k n—k—1(n—1
= 1 —
r ( T') (k _ 1>an7
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where (n) (n—l)
Cnk = ﬁ 1—7r)— 51 .
SR o AL )
It follows from
() _n (n—k+1) (k—1) n
(:21) B! (n=1)-(n—k+1) &
("s) _ (=1 (n—k) (k—1) n—k
(i) K (n=1)-(n—k+1) &k’
that )
Cnk = E(n(l—r)—(n—k))—k—nr
and so

1\ k-
bnkrk(lr)”k1(2_1> 'Tmforlgkgnfl.

Thus we have established (18.24).

(ii) Now we show

n

-1

(1825) Sn = Z |bnk|2 *An—1.m = (nm )(1 - T)n—l—m,r,m for n = 07 1,... )
k=0

where m = [rn] = max{j € Ny : j < rn}. It follows from (18.24) that b,; < 0 if
and only if k£ < nr. Since

l l
Z Z() r)' Rt = ((1=r)+r) =1forall [,

we obtain ZZ:O bnr = 0. Therefore, we have

Z|bnk| Z Z bnk = Z bnk)"‘ibnk"_i(_b k)
k=0 k=0

k=0 k=m+1 k=0
m

=2 § Gp—1,k — ank
k=0

It follows from

Gnk () . (1 — )tk
Apn—1,k—1 (Z:}) (1- T)"*lf(kfl)rkfl
_one-(n—k+1) (k—1)!
- K D (n-1-(k-D+ 1)

=r.-—>1fork<rn
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that

m m

Z ‘bnk| =2- Z(an—l,k - ank) S 2- Z(an—l,k, - an,k—l)
k=0 k=0 k

=0

—1
=2-Ap_1,m = <n >(1 — ) immym,
m

Thus we have established (18.25).

(iii) Now we show that there exist constants M and M’ such that

(n _ 1)n71/2 1
Mo — < =
(n - %)n 0<r< 2
(1826) Sn < , (n _ 1)n—1/2 .
M- — < r <1 for sufficiently large n.

1 \" 2
)

First let 0 < r < 1/2. Applying Stirling’s formula (18.23), we obtain that there
exists a constant K such that for all sufficiently large n

<n - 1> B (n—1)!
m ml(n —m —1)!

K. (n—1)""1n—1e (D

T ommyme(n—m—1)"ml/n—m—1e (n-m=1)
(n —1)n=1/2

. mmy/m(n —m—1)"m"/n—m—1

=K

9

and so for all sufficiently large n

(n— %)n (n— %)” (1= p)nlom . pmel

— < . .
(n—1)n-1/2 ~ mmy/m(n—m—1)»"m"1y/n—m—1

(1827) S, =85, -

It follows from nr — 1 < m < nr that

S < K- (n—1)" - (L—p)n=tzm.pmtl
"= (nr — 1)m+1/2. (n(1 —r) — 1)n—m=1/2

nr—1 n—m—1/2 1—p n—1l—-m .
=K | ————— : for all sufficiently large n.
(n(l—7)—1) r

Now r < 1/2 implies (r —1)/r <1, 2nr <n, hence nr <n(l—r)andn—1—m >
n—1l—-nr=(mn-7r)—1>n/2—-12>0for n > 2. Thus there the last term is
bounded, and we have established the first estimate in (18.26).

If1/2 <r < 1,then 0 <7’ =1—17r < 1/2 and the second estimate in (18.26)
follows with r replaced by r’. This we have established (18.26).



104 19 MATRIX TRANSFORMATIONS AND FIXED POINT ITERATIONS

Finally if r < 1/2, then (n—1/r) =n—1—(1—r)/r and we obtain from (18.26)

1 1 !
S” < ’ < 1—r >
n—1 1— (n—1)r

n—1
: 1 1 1—r
lim 1= 1= R =e
e G ~ n=Dr

implies lim,,_, o, S, = 0.
Similarly we obtain lim, o, S, =0 for 1/2 <r < 1.
Now the conclusion follows from Theorem 18.7. O

19 Matrix transformations and
fixed point iterations

Matrix transformations play an important role in fixed point theory. We start with
the definition of the concept of a fixed point.

Definition 19.1. Let X be a non-empty set and f : X — X be a function. Then
xg € X is called a fixed point of f if f(z¢) = 2. The set of all fixed points of f is
denoted by F(f).

Fixed point theory is a major branch of nonlinear functional analysis because
of its wide applicability. Numerous questions in physics, chemistry, biology, and
economics lead to various nonlinear differential and integral equations.

We start our studies with Brouwer’s famous fixed point theorem.

Theorem 19.2 (Brouwer’s fixed point theorem). ([15])
Every continuous map from the closed unit ball of R™ into itself has a fized point.

One cannot expect uniqueness of the fixed point in Brouwer’s theorem, in gen-
eral.

An important generalization of Brouwer’s fixed point theorem was obtained by
Schauder.

Theorem 19.3 (Schauder’s fixed point theorem). ([106])
Every continuous map from a non-empty, compact and convex subset C of a Banach
space X into C' has a fixed point.

Clearly the conditions in the hypothesis are preserved if the norm of X is re-
placed by an equivalent norm. Schauder’s fixed point theorem can be used to
prove Peano’s existence theorem for the solution of systems of first order ordinary
differential equations with initial conditions.

The continuous function f : [0,1] — [0,1] with f(z) = —x for « € [0,1] has a
unique fixed point 0. The Picard iteration sequence with (f™(x¢)) diverges for all
initial values zo # 0.
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The Mann iterations are more general than the Picard iterations, that is, the
Picard iterations are special cases of the Mann iterations which Mann introduced
in his paper [96] in 1953.

Let C be a convex compact subset of a Banach space X, and T : C — C be a
continuous map. By Schauder’s fixed point theorem [106], there exists at least one
fixed point of the function T, that is, there exists p € C such that T'(p) = p.

In 1953, Mann ([96]) studied the problem of constructing a sequence (z,,) in C
which converges to a fixed point of 7. Usually an arbitrary initial value z; € C'is
chosen, and then the sequence of successive iterations (x,) of x; defined by

(19.1) Tpt1 =T (z,) forn=1,2,...

is considered. If this sequences converges, then its limit is a fixed point of the
function T'.

Definition 19.4 (Dotson [46], Hillam [51]).
We assume that the infinite matrix A = (ank);l"szl satisfies the conditions

(Ay) ank > 0 for all k < n and an; =0 for k > n;
(As) > hei ani =1 for each n > 1;
(A3) lim,, o0 anr = 0 for each k > 1.

We define the sequence (z,) by ©,+1 = T'(v,), where

n
Up = E kL.
k=1

The sequence () is called the Mann iterative sequence, or simply, Mann iteration,
and usually denoted by M (x1,A4,T).

The conditions in (A1) and (A2) are necessary for z,, v, € C. The matrix A in
Definition 19.4 is said to be admissible. It is regular by the conditions in (i’), (ii’)
and (iii’) in Part (c) of Theorem 4.3, lower triangular and has the following form

1 0 0 0 0

az az 0 0 O
A= .

Gp1  an2 Ann 0 0

Definition 19.5 (Hillam). ([51]) An infinite matrix A is said to be segmented if
for n =1,2,... the n'" and (n + 1)** rows are related as follows:
(Aq) nt1,k = (1 — angint1)ang for (k=1,2,....m;n=1,2,...).

Definition 19.6 ([46]). The Mann iterative method M (x1, A, T) is referred to as
the normal Mann iterative method if the matrix A = [a,;], besides the conditions
in (A1), (A2), (As) and (A4), also satisfies

(A5) either a,, =1 for all n, or an, < 1 for all n > 1.
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Example 19.7. Let A be the Cesaro matrix of order 1 (Definition 2.1) In this case,
the Mann method M (z1, A, T) is normal, and referred to as the mean value method,
where the initial value is 1 € C' and

1 n
ZTny1 = T(vp) and v, = — E xp foralln=1,2,....
n
k=1

We note

n+1 n
— 1 T(v,) — vy
(19.2) U1 — Uy = ny Tk — (+1)3 0 x _ (vn) — v _
(n+1)n n+1
In many special problems, the iterative method M (z1,A,T) converges even
when the method 7"z, diverges.

Example 19.8. Let C = {z € R? : ||z| < 1}, where || - || is the euclidean norm
on X = R2, Furthermore, let A be the Cesaro matrix of order 1 and the function
T : C — C be the rotation about the centre by the angle 7/4. Then the Picard
iteration 7™ (x1) does not converge for any x; € C \ {0}. Using Mann’s method
M(zq1,A,T), the sequences (z,) and (v,) always converge (on a spiral) to the
centre, independently of the choice of the initial value ;.

In his paper [46], Dotson proved the following theorem (see also Reinermann
[101], Hillam [51] and Berinde[12]).

Theorem 19.9 (Dotson). ([46]) The following statements are true:
(a) The Mann method M(x1,A,T) is normal if and only if the matriz A =
(ank)sx—y satisfies the conditions in (A1), (Az2), (A4), (As) and (A3), where

o0

(A%) Z Qnn 48 a divergent series.

n=1

(b) The matrices A = (ank);x—1 (except for the identity matriz) in all normal
Mann methods M(x1,A,T) are constructed as follows:
Let 0 < ¢, <1 foralln =1,2,... and the series Zzozl cn, be divergent. Then
the matriz A = (ank)f:fk:l is defined by
ajn =1, aip =0 for k> 1;
Optin+1 =Cp forn=1,2,...
nt1,k = Qkk H?:k(l —¢j) fork=1,2,....n
Opt1,k =0 fork>n+1andn=1,2,....

(c) The sequence (vy,) in the normal Mann method M (x1,A,T) satisfies
(19.3) Unt1 = (1 —en)vn + cnT(vy) forn=1,2,...,
where

(19.4) Cn = Gpt1,n+1 for all n.



19 MATRIX TRANSFORMATIONS AND FIXED POINT ITERATIONS 107

Proof. The statement in Part (a) follows from the following well-known result on
infinite products, namely, that if 0 < ¢, < 1 for all n, then lim,, o [T}, (1—cx) =0
if and only if the series Y o, ¢ diverges.

To prove the statement in Part (b), we note that if the matrix A satisfies the
conditions in (A1)—(Ab5), then it satisfies the condition in (b). It can be proved that
if the matrix A satisfies the conditions in (b), where ¢, = an41,n41 for all n € N,
then it satisfies the conditions in (A1)—-(A5).

The proof of Part (c) follows if we use the condition in (A4) and the definitions
of the sequences (vy,) and (z,) in Mann’s method M (x1, A, T). O

Example 19.10. For each A with 0 < A < 1, let the infinite matrix Ay =
(ank)iZy n=1 be defined by

anlz)\n_l
Qnp = A" F(1 = \) for k=2,3,....n, ,
any =0for k>nand n=1,2,3,...,

where, for A = 0, we put a,, = 1 for all n. Hence Ay is the infinite identity matrix.
It can be shown that for each A with 0 < A < 1, M(x1, A, T) is a normal Mann
method with ¢;, = apt1, 041 =1—Aforalln=1,2,3.... Hence the sequence (v,,)
in the normal Mann method M (x1, Ay, T) is defined by

Unt1 = A, + (1 = AT (vy,) for all n.
Let Sy = Al + (1 — A\)T (where I is the identity map). Hence we have
Unt1 = Sa(vy) = S¥(v1) = SY(x1) for all n.

We note that Sy = 7" and, in this case, the sequence (v,,) is obtained by Picard’s
iteration (7™ (21)). The sequence (S74(21)) of Picard’s iterations of the map S /2 =
(1/2)(I +T) was studied by Krasnoselskii [57] and Edelstein [47], and the sequence
(S¥(z1)) of Picard’s iterations of the map Sy for 0 < A < 1 was studied by Schéfer
[105], Browder and Petryshyn [16], and Opial [98].

In the literature, mainly the normal Mann iterative method is studied.
We continue with the next three results by Mann.

Theorem 19.11. (|96]) If one of the sequences (r,,) or (v,) is convergent, then
they both converge. In this case, they converge to the same limit point which is a
fized point of the function T.

Proof. Let lim,, o x,, = p. Since A is a regular matrix, it follows that lim,,_, o, v,, =
p. The continuity of the function T implies lim, o T(v,) = T(p), and from
T(v,) = Tpy1, it follows that T(p) = p. If we assume lim, ., v, = ¢, then
lim,, o Tn+1 = T(q), and the regularity of the matrix A implies lim,, o, v, = T(q).
Hence we have T'(q) = gq. O
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If the sequences (x,) and (vy,) are not convergent, then, since C' is a compact
set, each of the two sequences has at least two distinct limit points. We generalize
the concept the set £(s) of limit points of a complex sequence at the beginning of
Section 18 to sequences in arbitrary metric spaces.

Definition 19.12. Let y = (y,) be a sequence in the metric space (Y, d). Then
L(y) is defined to be the set of all limit points of the sequence y, provided they
exist.

Theorem 19.13. ([96]) If the matriz A satisfies the conditions in (A1), (Az2), (As)
and

n

(19.5) 7}1_{1;0 Z |lant1,k — Ank

k=1

:O7

then L(x) and L(y) are closed and connected sets.

Proof. The set L(v) is closed and compact, and by (19.5), limy, o0 (Vn4+1 — vn) = 0.
Hence the set L(v) is connected by [11, Theorem 4.3] (or Theorem 18.7). Since the
function 7" is continuous and L(z) = T(L(v)), it follows that £(z) is a closed and
connected set. O

Theorem 19.14. ([96]) The set L(v) is a subset of co(L(x)), where co(L(x))
denotes the convex hull of the set L(x).

Proof. By Mazur’s theorem [97], co(L(x)) is a closed set. All but finitely many
terms of the sequence z = (x,,) are elements of each open set that contains the set
co(L(z)). Hence for all sufficiently large n, the terms v,, of the sequence v = (v,)
are arbitrarily close to the the set £(z). Thus, the limit point of each convergent
subsequence of the sequence v is an element of the set co(L(x)). O

Now we consider the case when the Banach space is the real line R, and the
convex compact set C' is a closed interval.

Theorem 19.15 (Mann). (|96]) Let T : [a,b] — [a,b] be a continuous map which
has a unique fized point p € [a,b] and A be the Cesaro matriz of order 1. Then
Mann’s sequence M (x1,A,T) converges to p for each x1 € [a,b).

Proof. Tt follows from (19.2) that v,41 —v, — 0 as n — oo. Since T is a continuous
function and p is the unique fixed point of T, it follows that T'(x) —x > 0 for z < p
and T(xz) — x < 0 for x > p. Hence, for each § > 0, there exists £ > 0 such that
|z — p| > § implies |T'(z) — x| > e. It follows from (19.2) that

i T(’Uk> — Vg
PR - iy
Pt k+1

Now from our previous considerations, we have lim,_, ., v, = p, and by Theorem
19.11, we obtain lim,, . T, = p. O
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In higher dimensional spaces, results simlilar to that of Theorem 19.15 have not
been obtained.

Remark 19.16. In 1971, Franks and Marzec [48] showed that the condition of the
uniqueness of the fixed point p in Theorem 19.15 is not necessary. In 1973, Hillam
[51] extended those results to an arbitrary normal Mann method.

We note that any continuous function f : [0,1] — [0, 1] has at least one fixed
point by Brouwer’s fixed point theorem.

Theorem 19.17 (Hillam). ([51]) Let C =[0,1], f : C — C be a continuous map,
the matriz A be defined by Theorem (19.9), and lim, ¢, = 0. Furthermore, let
the iterative sequences & = (&,,) and x = (z,) be generated as follows:

(19.6) T =21 € [0, ].],

(19.7) Tpi1 = f(Zn) formn=1,2,...
n+1

(19.8) Frp1 =Y Gnyrptr forn=1,2,...,
k=1

Then both sequences T and x converge to the same fixed point of f in the interval

[0, 1].

Proof. Tt follows from (19.7), (19.8) and since A is segmented that
(19.9) i1 = G + G (f(@n) — i) for n =1,2,.. ..
Since I, f(Z,) € [0,1] for all n, we have

(19.10) Tp+1 — Tpn — 0 as n — oo.

It suffices to prove that this sequence is convergent and its limit £ € [0, 1] is a fixed
point of the function f.

1. We prove that the sequence & = (Z,) is convergent. The terms Z, of the
sequence Z are in [0, 1], and so Z has at least one limit point. We assume that the
sequence Z has two distinct limit points & and &> with & < &.

1.a We are going to show that we have, by the assumption above, f(z) =
for all x € (£1,&). Let z* € (&1,&). If f(x*) > x*, then, since f is a continuous
function, there exists § € (0, (x* — &1)/2) such that |z — z*| < § implies f(z) > x.
Hence |Z,, — z*| < ¢ implies f(&,) > &,. Thus we obtain from (19.9) that
(19.11) |Z, — 2*| < & implies Zp41 > Ty
By (19.10), there exists N such that

(19.12) |Zpy1 — Tn| <dforn=N,N+1,....
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Since &5 > z* is a limit point of the sequence 2, we can choose N such that Tn > T*.
It follows from (19.11) and (19.12) that

Tp>a*—0>& forn=N,N+1,....

Thus &; is not a limit point of the sequence x, which contradicts our assumption.
If f(z*) < a*, then, similarly as above, we obtain that &3 is not a limit point of
the sequence & = (Z,,), which again is a contradiction. Hence f(z*) = 2* for each
z* € (£1,&2).

1.b Let us prove that &; and & are not limit points of the sequence & = (&,,).
We note that

(1913) i’n ¢ (51,62) fOI“TL:].,2,....

If f(Z,) = &, then (19.9) implies &,, = &, for all m > n. So neither & nor & can
be a limit point of the sequence (). Furthermore, (19.10) and (19.13) imply that
there exists a natural number M such that Zp; > & for all n > M. Hence £ is not a
limit point of the sequence (Z,). It follows from &), < & that &, < & < & for all
n > M. Hence &5 is not a limit point of the sequence z. Consequently the sequence
Z cannot have two distinct limit points, and so this sequence is convergent. We put
lim, ., = £ € [0, 1].

2. We show f(¢) = & Since &, — £, we obtain by the continuity of f,
Tni1 = f(Zn) = f(€). Since A is regular, the sequence & = Ax converges to f(§)

and so f(§) =¢&. O

We note that if a,, = 1/n, then Theorem 19.15 is a special case of Theorem
19.17 .

In the next example, Hillam showed that the condition lim,, ,o, ¢, = 0 in The-
orem 19.17 is necessary for the sequences & = (Z,) and « = (x,) to converge.

Example 19.18. ([51, Example 1.1]) Let M > 1 be given and A be an infinite
triangular segmented matrix whose diagonal elements satisfy

a1 =1, ap,=2/(M+1)forn=2,3,4,....
We define the function f :[0,1] — [0, 1] by

1 0< <M_1
=TS o
M+1 M—1 M+1
19.14 z) = - M <z<
(19.14) 1(@) 2 Yoo ST Tam
M+1
<
0 STV <x <1

Then f is a continuous function and has a unique fixed point at x = 1/2.
We have by (19.9)
2

(19.15) xn+1=mn+M+1f(xn)—xn forn=1,2,....
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If
. M+1
1 =T oM
then
M-1
(19.16) M BT o
M+1
—ar o Tveven

Thus the sequence Z does not converge.
In [102], Rhoades conjectured the following.

Conjecture. Let f : [a,b] — [a,b] be a continuous function, A be a regular matrix
which satisfies the conditions in (4;), (42) and (19.5). Then the iterative scheme
defined by (19.6)—(19.8) converges to a fixed point of the function f.

In the next example, he showed that the assumption above does not hold if the
condition in (19.5) is removed.

Example 19.19. Let A be be the identity matrix, [a,b] = [0,1], f(z) =1 — z and
T = 0.

Rhoades showed that the statement above is true for the large class of weighted
means matrices.

The weighted means method is a triangular method of the matrix A = (ank)
defined by any = pi/Pn, where pg > 0, p, > 0 for n > 0, P, = >_;'_,ps and
P, — oo as n — oco. Then the matrix A satisfies the condition in (19.15) if and
only if p,,/P, — 0 as n — oo.

Theorem 19.20 (Rhoades). [104] Let A be the matriz of a regular weighted means
method which satisfies the condition in (19.15). Let f : [a,b] — [a, ] be a continuous
map. Then the iterative scheme (19.6)—(19.8) converges to a fized point of the
function f.

Proof. Without loss of generality, we may suppose that [a,b] = [0, 1]. Every regular
weighted means method satisfies the conditions in (A4;) and (Az). By (19.8), we
have interchanging the roles of z,, and z,,

Pn+1
PnJrl

Since Iy, f(Z,) € [0,1], it follows from (19.17) that

(19.17) Fpg1 =

(f(Zn) — &) + &y, for all n.

n+1

Now, by the proof of Theorem 19.17, the sequence Z = (&) is convergent.

We have to show that the sequence Z converges to a fixed point of the function
f. Let z = lim,, o, &,. Then we have lim,_, f(Z,) = f(2). It follows from
ZTpt1 = f(Zy) for each n € N that lim,,—, o x, = f(2). Since A is a regular matrix,
we obtain z = lim,,c0 &y, = limy, 00 Apz = f(2). O
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In relation to Rhoades’s conjecture, Hillam proved the next result.

Theorem 19.21 (Hillam). (|51, Proposition 7|) Let f : [0,1] — [0,1] be a contin-
wous function, and let A denote the infinite reqular lower triangular matriz satis-
fying the conditions (A1), (A2) and (19.5). Also let the sequences & = (Z,,) = and
x = () be generated by the formulae in (19.6)—(19.8). Then we have

(i) L(z) C L(z);
(ii) L(Z) and L(x) are closed and connected;
(iii) L(Z) contains at least one fized point of f.

Proof. First we prove Part (ii). Since the sequence z is bounded, £(Z) is closed
and connected by Barone’s theorem, Theorem 18.7. Also L(x) = f(L(Z)) is closed
and connected by the continuity of f.

Now Part (i) follows from Theorem 19.14.

Now we prove (iii). If £(Z) = {xo}, then x¢ is a fixed point of f by Theorem
19.11. So we now suppose that £(Z) contains more elements than one. Then we
have by Part (ii) £(Z) = [a,b] with a < b. We assume that £(Z) does not contain
a fixed point of f. Without loss of generality let f(x) > x for all « € [a,b]. Hence,
a <z < f(x) which implies that a ¢ £(x), which contradicts Part (i).

The case f(z) < z follows similarly. O

We close with the following remark.

Remark 19.22. In [51, Appendix 1], Hillam showed in a rather long example that
Rhoades’s conjecture is false, and that Part (iii) of Theorem 19.21 is best possible.
Namely, he considered a special continuous function f : [0,1] — [0, 1] with a unique
fixed point = 1/2. Then he showed for Z; = x; = 1 that

E, i] = L((Zn)) C L((zn)) = [0,1].

20 Applications in recent research

The most popular classical methods of summability studied in Sections 7-10 and
15 also play an important role in recent research.

As a first application, we mention the use of summability methods in fixed
point theory beyond the results of Section 19. A summary of this topic can be
found in the survey article [90] which includes results from the research papers
[101, 102, 104, 103, 20].

The most important areas in modern summability, however, are the theories of
matrix transformations, and, more recently of the study of compact bounded linear
operators between BK spaces, which the topics in the previous sections are the
absolutely essential basis for.

The famous theorems by Toeplitz and Schur (Theorems 4.3 and 5.2) that give
necessary and sufficient conditions on the entries of an infinite matrix to map all
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convergent sequences into convergent sequences, and all bounded sequences into
convergent sequences, respectively, give rise to the more general problem to char-
acterize the classes (X,Y") of all infinite matrices that transform all sequences in a
given sequence space X into a given sequence space Y. We presented the purely an-
alytical method of the gliding hump in the proofs of Theorems 4.3 and 5.2. Modern
summability uses functional analytical methods such as the uniform boundedness
principle and the theories of FK, BK and AK spaces, which can successfully be
applied in a great number of cases with the exception of characterizations of classes
similar to that in Schur’s theorem. We outlined the theory of FK, BK and AK
spaces in [88] to the extend that enabled us to obtain the following known charac-
terizations of matrix transformations between the classical sequence spaces ¢, ¢,
¢o and £, (1 < p < 00) of bounded, convergent and null sequences and of absolutely
p-summable series

Theorem 20.1. ([91, Theorem9.7.3]) Let 1 < p,r < 00, ¢ =p/(p—1) and s =
r/(r—1). Then the necessary and sufficient conditions for A € (X,Y) can be read
from the following table

F’;?YX lo o | ¢ | # l,
lso 1. 2. 3. 4. 5.
o 6. (Thm 52 (a)) | 7. | 8 | 9. 10.
c 11. (Thm 5.2 (b)) | 12. | 13. | 14. 15.
2 16. 17. | 18. | 19. 20.
L, 21. 22. | 23. | 24. | unknown

where

oo
1.,2.,3. (1.1) supZ|ank| < 0
" k=0
4. (4.1) sup|ank| < o
k

n?

5 (5.1) supz lank|? < oo
" k=0

6. (6.1) "ILH;OICZ_OMHIC' =0

7. (1.1) and (7.1), where (7.1) ILm ank, = 0 for every k

8. (1.1), (7.1) and (8.1), where (8.1) nh_}rrolc;_oank =0
9. (4.1) and (7.1)

10. (5.1) and (7.1)

11. (11.1) and (11.2), where
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oo

(11.1) Z |ank| converges uniformly in n
k=0

(11.2) lim ank = oy exists for every k
n—oo

12. (1.1) and (11.2)

13. (L.1), (11.2) and (13.1) where, (13.1) lim > an; = o exists
k=0

n— o0
)<oo

14. (4.1) and (11.2)
15. (5.1) and (11.2)

§ Qnk

neN

16.,17.,18. (16.1), where (16.1)  sup (Z

N C Ng —
N finite k=0

19. (19.1) Supz |ank| < oo
k

n=0

0 q
20. (20.1) sup <Z Z Ank > < 00
N i \k=0|neN
fo%e) T
21.,22.,23. (21.1)  sup ST ank| | <00
K e \n=0|keK

o0
24. (24.1) supz |ank|" < oo.
k

n=0

In view of the classical summability methods it is also of interest to character-
ize matrix transformations between the matrix domains in the classical sequence
spaces, and the convergence domains of matrices (Definition 1.5). Since almost all
classical matrix methods of summability are given by triangles T' (Definition 6.1), it
is of great interest to characterize matrix transformations between matrix domains
of triangles in certain sequence spaces. We were able to reduce the characteriza-
tions of the classes (X7, Ys) for arbitrary triangles T and T', and F'K spaces with
AK as follows:

Theorem 20.2. (|62, Theorem 1|) Let X and Y be arbitrary subsets of w and T
be a triangle. Then A € (X,Y;) if and only if C =TA € (X,Y).

Theorem 20.3. ([88, Theorem 3.4]) Let X be an FK space with AK, T be a
triangle, S be its inverse ([111, 1.4.8], [21, Remark 22 (a), p. 22]) and R = S, the
transpose of S. Then A € (Xp,Y) if and only if A € (X,Y) and W™ e (X, o)
for all n, where the matrices A and W™ qgre defined by

o0
Ank = E anjSjk for allm and k,
i=k
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w.

™k 0 (k> m)

Moreover, if A € (Xp,Y), then Az = A(Tx) for all x € Xp.
Similar reductions also hold when X =/, and X = c.

Theorem 20.4. ([88, Remark 3.5])
(a) The statement of Theorem 20.3 also holds for X = lo.
(b) Let Y be a linear subspace of w. Then A € (cr,Y) if and only if

A€ (co,Y), W™ € (c,¢) for alln

and

Ae — (a(”))"o €Y, where o™ = lim Zwﬁgg forn=0,1,....
k=0

n=
0 m—r oo

Moreover, if A € (¢T,Y), then

Ax:A@@—aMMV>ﬁdeganwmmg:ngm.
—00

n=0

For instance, Theorems 20.3 and 20.4 yield as an immediate consequence the
characterizations of the classes (e}, o), (€5, ¢0), (€5, ¢) for 1 < p < oo in [5], where

ez(gr) is the matrix domain of the Euler matrix E(") = (eni)mr=o (0 <7 < 1)in £,
with

_ SRS 01,0,
nk = Y (k > n) (n )

éﬂ_{@x1rwkﬁ (0<k<n)

We note that putting ¢ = 1/r — 1, we obtain the Euler matrix E, of Definition 9.1.
There are a great number of recent research papers by various authors that

characterize classes of matrix transformations on special matrix domains of triangles

in different sequence spaces.

Remark 20.5. We characterized matrix transformations on matrix domains of
special triangles T in BK spaces, for instance, for 7' = ¥, the matrix of the partial
sums, in [65], for T = A, the matrix of the first oder differences in [65, 63], for
A(™) " the matrix of the m*" order differences in [88, Section 3.4] and [82], the
matrix domains of matrices of differences in the F'K spaces

oo
— . Pk — - i Pr —
£(p) {x Ew ];) |xg|Pr < oo} and c(p) {x €w: lim |z 0}

for positive bounded sequences p = (pr)3, in [74, 75, 73], and matrix transforma-
tions on spaces of weighted means [88, Sections 3.5 and 3.6] and [77, 54, 23, 52].



116 20 APPLICATIONS IN RECENT RESEARCH

Some other types of sequence spaces are those of strongly summable and bounded
sequences, A-stongly convergent and bounded sequences, mixed norm and mixed
paranorm spaces spaces. Results on the characterizations of matrix transformations
on these spaces, some Banach algebras and applications to the solvability of infinite
systems of linear equations in those spaces can be found in [88, Sections 3.7 and 3.§]
and [53, 55, 54, 93, 18, 6, 7, 94, 95, 42, 79, 25, 26, 44, 45, 81, 72, 80, 36, 56, 32, 33]
and in the survey paper [71].

There are also results by the authors concerning various related topics in summa-
bility such as statistical convergence in [30, 31], Hardy’s inequality in [29]

Another interesting and more recent topic in modern summability is the char-
acterization of classes of compact bounded linear operators between BK spaces by
the use of the Hausdorff measure of noncompactness. This approach was first devel-
oped and applied on a large scale in 2000 in [85], where the necessary general theory
of measures of noncompactness was outlined in Chapter 2, and the applicability in
the characterization of compact operators between BK spaces was demonstrated
in various cases of interest. Ever since a great number of papers on this subject
have been published by various authors.

The theoretical background on measures of noncompactness can be found, for
instance, in the monographs [1, 10, 109, 49] and text books [100, 85]. It is also
worth mentioning the monograph which contains a comprehensive recent survey
[9] on the use measures of noncompactness in fixed point theory and in the fields
of differential and integral equation, and in particular, on the applications of the
Hausdorff measure of noncompactness in the characterization of compact linear
operators between BK spaces in [89] which is Chapter 3 in [9].

The first measure of noncompactness, denoted by «, was introduced by Kura-
towski [59] in 1930. In 1955, G. Darbo [22] used the function o to prove his famous
fixed point theorem which is a generalization of Schauder’s fixed point theorem to
continuous a-contractive self-mappings between non-empty convex, bounded and
closed subsets of Banach spaces.

The Hausdorff or ball measure of noncompactness, denoted by x, was first
introduced by Goldenstein, Gohberg and Markus [113] in 1957, and later studied
by Goldenstein and Markus [114] in 1965.

We recall that a measure of noncompactness in a set function ¢ on the class M x
of all bounded sets in a complete metric space (X, d) into the set of non-negative
real numbers which is regular, invariant under closure and semi-additive, that is, it
satisfies the following conditions for all sets @, Q1, Q2 € Mx

—~

i) ¢(Q) = 0 if and only if @ is relatively compact,
(i) ¢(Q) = ¢(Q) and (iii) $(Q1 U Q2) = max{¢p(Q1), #(Q2)}-

We mention one of the most important properties measures of noncompactness
¢ have, namely Cantor’s generalized intersection property, which states that the
intersection of a decreasing sequence (@) of non-empty closed bounded subsets of
a complete metric space with lim, o #(@r) = 0 is a non-empty compact set.

In the special case of Banach spaces X, some measures of noncompactness
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have some additional properties related to the linear structure of normed spaces
such as sublinearity, absolute homogeneity, translation invariance and the invari-
ance under the passage to the convex hull, that is, such a measure of noncompact-
ness satisfies the following conditions for all sets @, @1, Q2 € Mx and all scalars A

(iv) $(Q1 + Q2) < P(Q1) +¥(Q2), (v) v(AQ) = [A[Y(Q),
(vi) ¥(z + Q) = ¥(Q) and (vii) ¥(co(Q)) = ¥(Q),

where co(Q) denotes the convex hull of the set Q. We remark that both the Ku-
ratowski and Hausdorff measures satisfy Cantor’s generalized intersection property
and the invariance under passage to the convex hull, which are essential in the
proofs of Darbo’s fixed point theorem and its generalization, the Darbo-Sadovskii
fixed point theorem [115] of 1972.

We also note that the properties (i)—(vii) are included as axioms for measures
of noncompactness in Banach spaces, for instance in [10, 1].

The Hausdorff measure of the closed unit ball in an infinite dimensional Banach
space is well known and equal to 1 (|85, Theorem 2.12]).

The crucial result on the Hausdorff measure of noncompactness for our research
is the following.

Theorem 20.6 (Goldenstein, Gohberg, Markus). ([113] [85, Theorem 2.23]) Let X
be a Banach space with a Schauder basis (b;). Then the function pn: Mx — [0, 00)
defined by

Q) = imsup (sup [, 2

n— o0
with - -
Rn(x) = Z Akbg for all x = Z Az € X
k=n+1 k=0

satisfies the following inequality

1

£ 4Q) =@ < inf (sup [R(0)]) < Q) for all Q € My,

where L =limsup,,_, . |Rx|| is the basis constant.

We also need the concept of the measure of noncompactness of an operator and
some useful results.

Definition 20.7. ([85, Definition 2.24]) Let ¢; and ¢2 be measures of noncom-
pactness on the Banach spaces X and Y, respectively. An operator L : X — Y is
said to be (¢a, ¢2)-bounded, if

L(Q) € My for all Q € Mx
and there exists a real constant C with C' > 0 such that

¢2(L(Q)) < C- ¢51(Q) for all € Mx.
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If an operator L is (¢1, ¢2)-bounded, then the number
ILllgr.r = WHC > 0: 62(L(Q)) < C - 61(Q) for all € Mx}

is called the (¢1, ¢2)-measure of noncompactness of L, or simply measure of non-
compactness of L. If ¢1 = ¢o = ¢, then we write || L||y = || L||¢,¢, for short.

Theorem 20.8. ([85, Theorem 2.25]) Let X and Y be Banach spaces, L be a
bounded linear operator from X into Y. Then

Il = x(L(Sx)) = x(L(Bx)),

where Sx = {z € X : ||z|| = 1} and Bx = {z € X : ||z|| < 1} denote the unit
sphere and open unit ball in X.

Theorem 20.9. ([85, Corollary 2.26]) Let X and Y be Banach spaces and L be a
bounded linear operator from X into Y. Then

|L|lx = 0 if and only if L is a compact operator

and
IL|lx < |||, the usual operator norm of L.

An application of these results yields estimates or identities of the the Hausdorff
measures of noncompactness of the matrix operators between the classical sequence
spaces as in the table of Theorem 20.1 and the characterizations of the subclasses
of compact matrix operators in the theorem with the single exception of the class
of compact matrix operators from ¢; into £.

We also obtained results on the Hausdorff measure and characterizations of
compact matrix operators on the matrix domains of triangles in [85, Chapter 3],
[3], in particular, between the spaces of sequences of m‘" order differences in £,
¢ and ¢ in [84], the spaces of null, convergent and bounded sequences of weighted
means in [87, 78, 34, 44] and between spaces of sequences that are strongly bounded
and convergent with index p > 1 by the Cesaro method of order one, and strongly
w convergent and bounded sequences in [83, 86, 64, 93, 92, 55, 93, 24, 42, 8, 41, 42,
69, 43, 2, 76], in mixed norm spaces [4, 45], in matrix domains of special triangles
[27, 88, 37, 40, 77, 28], in matrix domains of general triangles [88, 44, 38, 35, 39, 68|,
and in mixed norm spaces [53, 45].

We also refer to the survey articles [17, 66, 67, 70, 71, 89] for further results.

Finally, results on the Hausdorff measures of noncompactness of general oper-
ators between certain BK spaces were obtained in [27, 2, 36, 45]. We mention
that the characterization of the class of general compact bounded operators from
the space of all convergent sequences into itself was applied to give a new proof
of the classical result by Cohen and Dunford [19] that a regular matrix cannot be
compact. The characterization of the class of general compact bounded operators
from the space of all sequences, which are strongly C; summable with index p > 1,
into the space of all convergent sequences was obtained in [2]. This characterization
was used to prove a result similar to that of Cohen and Dunford, namely that those
operators that preserve the limits cannot be compact.
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In the proof of Theorem 12.3, we applied two results from the theories of func-
tions of bounded variations and the Riemann—Stieltjes integrals, namely Theorems
A.13 and B.7. We list some of the basic results for functions of bounded variation
and of Riemann—Stieltjes integrals in the first and second parts of the appendix.

A Functions of bounded variation

Throughout let [a,b] be a finite interval. Functions of bounded variation are func-
tions which do not oscillate too much. They play an important role in the existence
of Riemann—Stieltjes integrals.

Definition A.1. Let f : [a,b] — R be a function and
P={zxp=a<z1 < <zp =0}

be a partition of the interval [a,b]. We write

VP ) = S 1 ) — ol
k=0

The function f is said to be of bounded variation on [a,b] if
b
\V = Sl;)p\/(P;f) < 00;

the class of all functions of bounded variation on [a, b] is denoted by bv][a, b]; \/Z f
is called the total variation of f.

Monotone functions are of bounded variation.
Example A.2. If f: [a,b] — R is monotone, then obviously f € bv|a, b].

Another class of functions of bounded variation is the class of functions that
satisfy a Lipschitz condition.

Definition A.3. A function f : [a,b] — R is said to satisfy a Lipschitz condition,
if there exists a constant M such that

[f(x) = f(y)| < K|z =yl for all z,y € [a,b].
We say that f is of class LIP on [a,b] and denote this by f € LIP([a, b]).

Example A.4. (a) If f : [a,b] — R is differentiable on [a, b], and its derivative f’ is
bounded on [a, b], then f € LIP([a,b]).

(b) If f € LIP([a, b)), then f € bv[a, b].



ii A FUNCTIONS OF BOUNDED VARIATION

Proof. (a) Let z,y € [a,b] be given. Since f’ is bounded on [a,b], we can choose a
constant M such that |f'(¢)] < M for all ¢ € [a,b]. The first mean value theorem
of differentiation yield a & € (a,b) such that

[f(@) = fWI =1 O] le =yl < M|z —yl,

whence f € LIP([a,b]).
(b) Let f € LIP([a,b]). Then there exists a constant M such that

|F(@) = ()| < M - |z — y| for all 2,y € LIP([a, b]).

Let P={x9p=a < z1 <--- <z, = b} be a partition of the interval [a,b]. Then
we have

n—1 n—1
S 1 f@rgr) = flan) <MY faggs —ax| = M- (b—a),
k=0 k=0
b
hence \/ f < M - (b— a), that is, f € bv|a, b]. O

The continuity of a function is neither a sufficient nor a necessary condition for
it to be of bounded variation.

Example A.5. (a) Let the function f: R — R be defined by

_ JasinZ (x #0)
f(z)_{o (z=0)."

Then f is continuous, but f ¢ bv[0, 2].
(b) Let the f :[1,1] — R be defined by f(z) =0 for z € [-1,0] and f(z) =1 for
x € (0,1]. Then f is discontinuous at = 0, but f € bv[-1,1].

The next result states some properties of functions of bounded variation.

Theorem A.6. (a) If f € bv[a,b] then f is bounded on [a,b].

(b) Let f,g € bvla,b] then f £ g € bv|a,b] and fg € bv]a,b]. If in addition
g(x) > o >0 on [a,b] for some o then f/g € bv|a,b).

(c) Let f € bv[a,b] and a < ¢ < b. Then we have

b c b
Vi=VreVs
Proof. (a) Let f € bv|a,b] and = € [a,b]. Then we have

b

b
(@) = (@) +[f(0) = f(a)] < \/ [ and |f(a) = f(B)| < \/ f,

a
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hence

b
[f@)] < 5 - (1f@) = fl@)] + 1) = f@)| + |f(a) = f(b) <\ | < o0

N =

for all z € [a,b]

so that f is bounded on [a, b].

(b) Let P={zp < <--- <z, = b} be a partition of the interval [a,b] and
f,g € bv[a,b]. Then it follows that

i
L

(@i f£9) =D I(f £ 9)(@rer) — (f £ g) (@)

k=0
n—1 n—1

<D @ra) = Feol+ D lg(enr) — gl
k=0 k=0

b b
VEesn+\@eg <\ r+Ve

Since the partition P was arbitrary, we obtain

b b b
Virtg <\ r+Ve

a

Since f, g € bvla,b] implies that the functions f and g are bounded by Part (a), we

have, putting
M; = sup |f(z)] and My = sup |g(z)],
z€la,b] z€[a,b]

VP9 = SN 0)(aner) — (F - 9) ()l
k=0

n—1

= > 1f@re)(g(@ran) — gzn) + gler) (f(@r1) = flan)]
k=0

b b
<Mp-\/(Pig)+ My -\[(P; f) < My-\[ g+ M,;-\/ £

Since the partition P was arbitrary, we obtain

b

b b
V(-9 <Mp-\/g+M,-\/f,

a

hence f - g € bvia,b].
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Finally, let g € bv[a,b] and g(x) > o > 0 on [a,b] for some 0. Then we have

\/< > ) Z|gxk+1 ”S%-\/g.

l9(xk)g(z41)]
Since the partition P was arbitrary, we obtain

b 1 1 b
V()= Voo

a

$k+1

hence 1/g € bv|a, b].

If f,g € bv[a,b] and g(z) > o > 0 on [a,b] for some o, then 1/g € bvla, b] by
what we have just shown, and so f/g = f-(1/g) € bv[a,b].

(c) It is obvious that

c b b
\/f+\/f§\/fforanyc€(a,b).
Let € > 0 be given and

P.={xp=a<z1 < <Zpo1 <c<apy <+ <z =0}

be a partition of the interval [a,b] such that

b
Vi<V@if)+e

Then we obtain

m—2

Vf—5<§:ﬁxm4 f@e)l + [f(@m—1) = F() + |F(e) = fam)[+
+ Z |f(@rs1) = f (@)
k=m

c b
<\Vr+Vr

Since € > 0 was arbitrary, we also have

b c b
Vi<VVri+V £ O

C

Remark A.7. (a) It follows from Part (c) of Theorem A.6 that if f € bv[a, ] then
f € bvia,c] and f € bv[e,b] for any ¢ with a < ¢ < b and the converse implication
also holds true.
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(b) If an interval can be split into finitely many subintervals such that f is
monotone in each of these subintervals then f is of bounded variation on the whole
interval.

The next result gives an important characterization of functions of bounded
variation.

Theorem A.8. A function is of bounded variation on an interval if and only if it
is the difference of two increasing functions.

Proof. (i) We assume that f is the difference of two increasing functions. Then it
follows from Example A.2 and Part (b) of Theorem A.6 that f € bv|a,b].

(ii) Let f € bv(a,b] and = € [a,b]. We define the function 7 : [a,b] — R by
0 (r=a)
Vi (zel(ab])

m(z) =

Then 7 is an increasing function by Part (c) of Theorem A.6. We define another
function v : [a,b] — R by

(A.1) v(z) =m(x) — f(x) for all z € [a, b].

Let a <z <y <b. Then it follows from Part (c) of Theorem A.6 that

v(y) = m(y) = fly) = n(2) +\/ f = f(),

v(y) —v@) =\ f = (F) = f@) >\ F=1fy) - f@)] =\ r=\/r=o

Thus v is an increasing function, and we have from (A.1) that f =7 —v. O

Remark A.9. (a) If f € bv[a, b] then the limits

flzo+0) = lim+ f(z) and f(zo —0) = lim f(z)

I*}IO fL")[DO

exist for all zg € (a,b), and the set of points at which f is discontinuous is at most
countable.

(b) If f € bv]a, b] then the derivative f’ of f exists at almost every point of the
interval [a,b] and f’ is Lebesgue integrable on [a, b].

If f € bvla,b] then, by Theorem A.8, there are two increasing functions ¢ and
¥ such that f = ¢ — 1. Let (x)) denote the sequence of points at which one of the
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functions ¢ or 1 is discontinuous (a < xp < b). We define the functions of jumps
s, and sy by

0 (x =a)
pla+0)—(a)
+2 e, <a (@@ +0) — @(zr — 0)) (a <z <),
+p(x) — p(z = 0)

sp(z) =

and sy similarly. Let s(z) = s, () — s¢(2). Then s € bv[a, b], since s, and s, are
monotone functions. The function s is called function of jumps of f. The function
f does not change if we take away from the sequence () all points of continuity
of f. Therefore we may assume that (zx) contains only points of discontinuity of
f. It is obvious that the functions ¢ — s, and ¥ — s, are continuous and increasing.
Therefore g = f—s € bvja,bland g = f—s = p—1) — (5o —8y) = @ — 5, — (Y —5y)
is continuous. Thus the following theorem holds.

Theorem A.10. Every function f € bv[a,b] can be written as the sum of its
function of jumps and a continuous function of bounded variation.

We need two lemmas to be able to prove Theorem A.13.

Lemma A.11. Let F be an infinite family of functions f : [a,b] — R such that
there is a constant C with

(A.2) |f(z)] < C for all f € F and for all x € [a,b].

Then, for any countable subset E of [a,b], there exists a sequence (f,) of functions
fn € F which converges at every point of E.

Proof. Let E = {xx} be a countable subset of [a,b]. We consider the set M; =
{f(x1) : f € F}. The set M; is bounded by (A.2). Hence there exists a convergent
sequence

(A.3) (f(z1)) in My, yr = li_>m M (a1), say

by the Bolzano—Weierstrass theorem. Now we consider the sequence (fr(bl)(l'g)).
This sequence is also bounded by (A.2) and again we can choose a convergent
sequence

(A.4) (f?(22)) with yo = lim f{? (22).
n—oo
Continuing in this way we can choose a countable set of convergent sequences

( 79)(331)) such that y; = lim,, .o fr(Ll)(xl)

(F9(x2))  such that yo = limy_yeo £2)(22)
(A5)
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where each sequence of functions has been chosen from the preceding sequence
without change of the order of terms. Now we consider the sequence on the diagonal
in (A.5). For arbitrary fixed k, the sequence ( fé”)(zk))nzk is a subsequence of the
sequence ( T(Lk)(:ck)), hence convergent to yi. Thus the sequence ( fr(Ln) (z)) converges
at every point x € E. O

Lemma A.12. Let F be an infinite family of increasing functions f : [a,b] — R
satisfying (A.2). Then there is a sequence (f,) of functions f, € F that converges
at every point of the interval [a,b] to an increasing function .

Proof. Let E = [a,b] "QU {a}. By Lemma A.11, there is a sequence Fy = (f(™)
of functions f(™ € F such that lim, .. f(™ (x) exists for all z;, € E. We define
the function ¢ by

Y(xp) = lim fO(x) (a2 € E).

n—roo

Then 1 is defined on E and for zj,2; € E with x, < z;, we have ¥(xy) < (z;).
We define ¢ on [a,b] \ E by

Y(x) = sup{(xg) : xp < z, 1 € E}.

Then v is an increasing function on f; and the set D of points of discontinuity of
1 is at most countable. At every point xg of continuity of 1, we have

(A.6) lim £ (z0) = (o).

n—oo

To prove (A.6), let € > 0 be given. Then there are xy,x; € E such that z < z¢ <
x; and

Plaj) — (ar) <e/2.

We fix z; and x. Then there is an integer ng such that
F (k) = (an)| < e/2 and |f™) (2)) — ;)] < e/2
for all n > ng. Then we have for all n > ng

Plxo) —e < f (o) < F™(x;) < (x0) + ¢,

hence (A.6) holds. Now we apply Lemma A.11 to the set Fy that consists of the
functions of the sequence Fy and to the countable set D to obtain a sequence (f,,)
in Fy which converges on [a,b]. (Note that in points of convergence of the sequence
(f(™) the subsequence (f,) is also convergent). We define the function ¢ by

p(z) = lim f,(z).

n—oo

Then ¢ is an increasing function. O
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Theorem A.13 (Helly). Let F be an infinite family of functions f : [a,b] = R
with the property that there is a constant C such that

b
|f(z)] <C and \/fSCforallfe}".

Then it is possible to choose a sequence (f.) of functions in F that converges to a
function g € bv[a,b] at every point of the interval [a,b].

Proof. For every f € F, we define the functions s and 9y by

=\/ fand ¢5(x) = ¢s(2) — f(z) (« € [a,b]).

Then the functions ¢ and 9y are increasing and
lof(z)| < C and |Yg(x)| < Cfor all f € F on a,bl.

We apply Lemma A.12 to the family {¢} to obtain a convergent sequence (¢y)
with
a(z) = lim pk(z) on [a,b],
k—o0

and then we apply Lemma A.12 to the family {¢x} where ¥y (z) = i (z) — fx(2)
to obtain a convergent subsequence (¢y(;)) such that

B(x) = lim iy (z) on [a,b].

1—00

Then the sequence (fy(;)) of functions in F with fi)(z) = i) (x) — Vi) ()
converges to

g(z) = a(z) — B(z) on [a,b] and ¢ € bv[a, b]. O
B The Riemann—Stieltjes integral
Riemann—Stieltjes integrals are a generalization of the Riemann integrals.
Definition B.1. Let f,g: [a,b] — R be functions,

P={xp=a<ax; <- <z, =0}

be a partition of the interval [a,b] and & € [xg, xgy1] for K =0,1,...,n — 1.
By

p(f,9:€) Zfsk 9(zr1) — g(xr))

we denote the Riemann—Stieltjes sums of f with respect to g.
It op(f,g;€) converges to alimit I € R as ||P|| = max{zy11—zr : 0 < k <n—1}
tends to zero, where the limit [ is independent of the choice of the partitions and
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the points &, then I is called the Riemann-—Stieltjes integral on [a,b] of the function
f with respect to the function g. We write

= /b f(x)dg(x)

First we list a few basic properties of the Riemann—Stieltjes integrals.

Remark B.2. (a) If g(x) = z on [a, b] then the Riemann-Stieltjes integral reduces
to the Riemann integral.

(b) The following rules hold or the Riemann-Stieltjes integral

b b b

(B.1) / (h(e) + @) dg(o) = [ fi@)dg(o) + [ folo) doto)
ab ab

(B.2) / £(2) d(g (@) + gala)) = / £ () dgs () + / F(2) dga ().

We have for o, 8 € R

b

b
(B.3) / of(z) d(Bg(z)) = af / f() dg(z)

a

If the integrals f; f(z)dg(z), [7 f(z)dg(x) and fcb f(z) dg(z) exist then

(B.4) /f ) dg(z /f ) dg(a /f ) dg(z

(c) The existence of the integral f b f dg(z) implies the existence of each of the
integrals [ f(z)dg(z) and f f(z ) for any ¢ with a < ¢ < b. The converse
implication, however is not true in general

(d) Integmtion by parts The existence of either of the integrals [ b f(x)dg(zx) or
f g(x x) implies the existence of the other integral and the followmg identity
holds

b b
(B.5) [ 1@ydgta)+ [ o) dt@) = 1(0190) - Fla)gta).
a a

Proof. (a) Part (a) is obvious from the definition of the Riemann integral and
Definition B.1.



X B THE RIEMANN-STIELTJES INTEGRAL

(b) Let P ={zp =a < x1 < --- < 2, = b} be an arbitrary partition of the
interval [a,b] and & € [vg,zkt1] (K = 0,1,...,n — 1) be arbitrary intermediate
points.

(B.1) Then we obtain

o+ g = 3 (1(€) + F2(6)) (9(xrsn) — g(ax))
k=0
= S A(6) (9(ansn) — glan) +
k=0

n—1

+ Zf2 gk xk+1 (xk))
= O'P(fl;gvg) + Up(f279,5)~

The existence of

b

I = ||1131ﬁ£oap(fj’g;£) = /fj(m) dg(zx) for j =1,2

implies that of

b
I—Hhﬁri op(fi+ f2,9:6) = / z) + fa(x)) dg(z),

and we have I = I1 + Is.
(B.2) We have

op(fig1 +92;¢ i:f (91(2h41) + g2(2rt1) — (91(2k) + g2(21)))
k=0
= 57 (6) (91 (o) — g1 (an) +
k=0

n—1
+ ) (&) (92(@rp) — g2(k))

k=0

= O'P(f, gl,ﬁ) + UP(fa 9235)'

The existence of

I, = lim j=1,2
J I1Pl— 0 (f?gj7€) fOI“] )

implies that of

I= ”E‘m op(f, 91+ 92,¢)
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and we have I = I, + I5.
(B.3) We have

n—1

op(af,Bg;:€) =Y af(&) (Bg(zri1) — Bg(wr))

k=0

—aﬁZfek (9(@rs1) = g(ar)) = aBop(f,g:€).

The existence of

I= op(f,9;6)

HPII

implies that of
I(aa 5) = lim UP(af7 ﬂgv g)v

21—

and we have I(a, §) = afl. O

The next result gives sufficient conditions for the existence of the Riemann—
Stieltjes integrals.

Theorem B.3. If f is a continuous function on the interval [a,b] and g € bv][a, b]
then the integral f: f(z)dg(x) exists.

Proof. We may assume by Theorem A.8 that the function ¢ is increasing. Let
P={zxg=a<z < - <z, =b} be a partition of the interval [a,b]. We put

my, = inf{f(x) : z € [vk, vr41]} and
My, =sup{f(z) : x € [xg,xp41]} for k=0,1,...,n—1,

n—1 n—1

5= Z mi (9(zk+1) — g(xx)) and S = Z My, (9(zk41) — g(2k))
k=0
and obtain
(B.6) s<op(f,9;€) < Sp.

If we add more points, s does not decrease, and S does not increase. Every sum s
is less than or equal to any sum S. For let P, and P> be two different partitions
of [a,b] with sums s; and S7, and s2 and Ss, respectively, then we consider the
partition P3 = P; U P, with sums s; and S3. Now

s1 < 53 < S53 < S5 implies 57 < Ss.
We put I = sup{s}. Then we have for any partition P

s<I<S,
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and it follows from (B.6) that
lo—I1<S—s.

Let € > o be given. Since f is uniformly continuous on the compact interval [a, ],
we can choose § > 0 such that

|[f(2") — f(z")| < e for all 2", 2" € [a,b] with |2 — 2’| <.
Then we have for all partitions P of the interval [a,b] with ||P|| < ¢
My —mp <efork=0,1,...,n—1,
hence
S —s<e(gb) —gla)), that is, |op(f,g;&) — I| < e(g(b) — g(a)). O
The next result is useful for the evaluation of Riemann—Stieltjes integrals.

Theorem B.4. If f is a continuous function on the interval [a,b] and g : [a,b] — R
has a bounded, Riemann integrable derivative ¢’ on [a,b] then

b b
(B.7) /fmwmmzjjumex

Proof. Tt follows from the hypotheses by Parts (a) and (b) of Example A.4 that
g € bv[a, b], and consequently the integral fab f(z) dg(zx) exists by Theorem B.3. On
the other hand, since f - ¢’ is bounded and Riemann integrable by the hypothesis,
the integral on the right hand side in (B.7) exists as well. Let P = {xp =a < z1 <
-+ <z, = b} be a partition of the interval [a,b]. By the mean value theorem of
differentiation, there exists a number Ty € (zg,xp41) for each £ =0,1,...,n —1
such that

9(wri1) — g(zx) = ¢ (Tk) (g1 — xg) for k=0,1,...,n — 1,

and so
n—1 n—1
op(f:9:2) =D F(@) (9(zre1) — g(@x)) = D F(@) - g () (@ri1 — ).
k=0 k=0
Letting ||P|| — 0, we obtain (B.7)). O

Now we give an estimate for the absolute value of a Riemann—Stieltjes integral.

Theorem B.5. Let f be a continuous function on the interval [a,b], g € bv|a, D]
and M = max{|f(z)|;z € [a,b]}. Then we have

b

b
(B.8) [ r@dgta)| <21\ g

a
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Proof. Let P ={x9 = a < 21 < ---x, = b} be any partition of the interval [a, b]

and & € [zk, 2xt1] (kK =0,1,...,n— 1) be arbitrary intermediate points. Then we
have
n—1 n—1 b
lop(f,0:9)] =Y F(&) (9@rir) — g(z)| < MY [g(@rin) — glar)| < M-\/ g.
k=0 k=0 a

By Theorem B.3, the integral f: f(x)dg(zx) exists. Letting ||P|| — oo, we obtain
(B.8). O

The next result gives a sufficient condition for the interchange of the limit and
the integral; it is analogous to the result for Riemann integrals.

Theorem B.6. Let g € bv|a,b] and (f,) be a sequence of functions f, € Cla,b]
that converges uniformly on the interval [a,b] to a function f. Then we have

b

tim [ fule / () dg(
n—oo
Proof. We put M,, = max{|f, — f(z)| : « € [a,b]} for n = 0,1,.... (We observe

that f is continuous on [a,b] being the limit function of a uniformly convergent
sequence of continuous functions.) It follows from (B.8) that

/fn )dg(e /f )dg(e <M\/g ).

The uniform convergence to f on f; of the sequence (f,)5%, implies M,, — 0
(n — o0), and the statement of the theorem is an immediate consequence. O

Theorem B.7 (E. Helly). Let f be a continuous function on the interval [a,b],
(gn) be a sequence of functions g, € bv|a,b] with

g(x) = ILm gn () for all x € [a,b)].

If there is an absolute constant C' such that \/Z gn < C for allm =0,1,..., then
we have

b
(B.9) 11_>m f(z)dgn(x /f )dg(x

a

Proof. First we show g € bv]a,b]. Let P={zp=a <z < -+ < &, = b} be a
partition of the interval [a,b]. Then it follows that

,_.

m—
|gn(@r11) — gn(zk)| < C for all n,
k=0
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and n — oo yields

3
L

lg(xk+1) — g(z)| < C for all n.
0

o~
Il

Since P was an arbitrary partition of the interval [a, b], we conclude

b
(B.10) Vg=<c

Now we show that (B.9) holds.

Since f is continuous on the interval [a,b] and g,g, € bv[a,b] for all n, the
integrals f: f(x)dg(z) and f f(z)dgn(z) exist for all n by Theorem B.3. Since
the function f is umformly continuous on the compact interval [a, b], given € > 0,
we can choose a partition P of the interval [a, b] such that

sup{|f(36/) - f(CU”)| : 37/75(,’” € [ajk’karl] (k =0,1,....,n— 1)} < ﬁ
Then it follows that
b m—1 Tkl
[t@asta) =Y [ f@)dgta)
a k=0 T
m—1 TrFL m—1 Tht1
=3 [ U@ - swndg@ + Y fw) [ de)
k=0 k=0 o
Since
[ 40@) = starsn) st and £@) = F0)| < 757
for © € [xg,xp41] (K=0,1,...,m—1),

it follows from Theorem B.5 that

[ @) - o) < 5 Vo

hence, by Part (c) of Theorem A.6,

x
m— k+1

b
) RUCEERPYEIE s Voss

k=0 e

™
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Therefore there is a number © € [—1,1] such that

,_.

m—

€
/f Ydga) = 3 F)(gleni) - gla)) + O3
k=0
Similarly, to every n = 0,1, ..., there is a number 6,, € [—1, 1] such that
b m—1
€
[ @) dgate) = Y 1@ gn(ores) - galon)) + 005,
p k=0
For sufficiently large n, we have
m—1 c
kZ:O f(@i)(9n(Trt1) — gn(k)) Z f@e)(g(@rs1) — g(zr))| < 3
hence
b b
[ 1@ (@)~ [ f)dgta)| <. =
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This book contains a detailed study of the most popular summability meth-
ods, matrix transformations, measures of noncompactness and their applica-
tions, in particular, in fixed point theory. It is intended as a basis for a one-se-
mester course of four hours per week and as a reference for further work
and research. It can also be used for seminar work, master and Ph.D. theses.
The book is self-contained and comprehensive. For this reason, an appendix
isincluded on the fundamentals of the Riemann—Stieltjes integral which are
needed in the study of the Hausdorff method of summabilty.
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