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PREFACE

The book provides a detailed introduction to the scope of main methods of the
theory of ill-posed abstract Cauchy problems which has been rapidly developing
over the last two decades, starting presumably with [3], [82] and [61]. The main
purpose of the book is to enable the reader to acquire the most important strategies
for dealing with various classes of generalized semigroups and cosine functions in a
Banach space setting.

The material is divided into three individual chapters. The introductive chap-
ter is mainly the review of the basic tools and concepts which will be utilized
in the remaining part of the book. The reader with a little experience should
move through the first chapter fairly quickly. The second is devoted to the ex-
tensive study of (exponentially bounded) convoluted C-(semi)groups and cosine
functions and their relations with abstract Cauchy problems. The justification for
concentrating to this topic is based upon the fact that several structural prop-
erties of various kinds of integrated C-semigroups and cosine functions have not
been fully cleared so far. We discuss composition properties, automatic extension,
analyticity, perturbations and spectral properties of subgenerators of convoluted
C-semigroups and cosine functions. In the third section, we systematically ana-
lyze (ultra-)distribution (semi-)groups, their differential and analytical properties,
distribution cosine functions, [By, ..., Bp, Co,...,Cph_1]-groups and regularization
of ultradistribution semigroups and sines. We recollect the basic properties of
(a, k)-regularized C-resolvent families and ill-posed hyperbolic Volterra equations
of nonscalar type. In addition, a comprehensive survey of the vast literature related
to the subject of the book is given.

In terms of prerequisites, the present book assumes that the reader has a vague
familiarity with the content of functions of one complex variable, the basic Banach
space and Lebesgue integration theory. Most of the subject matter, as regards to
difficulty, is intended to be accessible to a graduate in Mathematics reader.

The author would like to express his sincere gratitude to many people who
strongly encouraged his work over the last ten years.






CHAPTER 1

INTRODUCTION

1.1. Operator-valued functions, Laplace transforms
and closed operators

In what follows, we assume that F is a complex Banach space and that I is a
(bounded or unbounded) segment in R™, where n € {1,2}.

DEFINITION 1.1.1. (i) It is said that a function f : I — E is simple if there
exist k € N, elements z; € E, 1 < ¢ < k and Lebesgue measurable subsets €,
1 < i< kof I, such that m(Q;) < 0o, 1 < ¢ < k and that

k
(1) f(t) = me (), tel.

(ii) Tt is said that a function f : I — E is measurable if there exists a se-
quence (f,,) in ET such that, for every n € N, f, is a simple function and that
lim, 00 fr(t) = f(t) for ace. ¢t € I.

(iii) A function f : I — FE is said to be weakly measurable iff for every z* € E*,
the function ¢ — x*(f(¢)), t € I is measurable.

(iv) Let —co < a < b< oo and a < 7 < oo. A function f : [a,b] — E is said to
be absolutely continuous iff for every € > 0 there exists § > 0 such that for any finite
collection of open subintervals (a;,b;), 1 < @ < k of [a, b] with Zle(bi —a;) <9,
the following holds Zle I (b;) — f(a;)|| < &; a function f : [a,7) — E is said to
be absolutely continuous iff for every 79 € (a,7), the function f, - : [a,70] = E
is absolutely continuous.

If E is a separable Banach space, then a function f(-) is measurable iff f(-) is
weakly measurable. Suppose, further, that f : I — E and that (f,,) is a sequence
of measurable functions satisfying lim,, o frn(t) = f(t) for a.e. t € I. Then f(-) is
also measurable. Next, the Bochner integral of a simple function f: I — E, f(t) =
Zle zixe,(t), t € I, is defined by [; f(t)dt := Zle zim(£;). One can simply
prove that the definition of Bochner integral does not depend on the representation
(1).

A measurable function f : I — F is said to be Bochner integrable if there exists
a sequence of simple functions (f,) in E! such that lim, . f.(t) = f(t) for a.e.

3



4 1. INTRODUCTION

t el and

(2) mn/W& — Ft)] dt = 0;

in this case, the Bochner integral of f(-) is defined by fI t)dt = lim, o0 fl fn(t)

The definition of Bochner integrability of a measurable functlon makes a sense and
is independent of the choice of a sequence of simple functions (f,,) in ET satisfying
lim, oo fru(t) = f(¢) for a.e. t € I and (2). It can be verified that f : I — E is
Bochner integrable iff f(-) is measurable and the function ¢ — || f(¢)||, t € I is inte-
grable as well as that, for every Bochner integrable function f : [0,00) — E, we have
IS f(@) dt =limr o0 [y fij0,7](t) dt. The space of all Bochner integrable functions
from I mto E is denoted by L'(I : E); equipped with the norm || f[|1 := [, [|f(¢)] dt,
LY(I : E) becomes a Banach space. A function f : [0,00) — F is said to be locally
(Bochner) integrable iff f(-)|j,-) is Bochner integrable for every 7 > 0. The space of

all locally integrable functions from [0, 00) into E is denoted by L{ .([0,00) : E ) If
f€LL.([0,00): E) and lim, 4o [y fijo,r](t) dt exists, then we say that [ f(¢) dt
converges as an improper integral and define fo (t)dt :=lim, 40 f fi0,7] )

0

If there is no risk for confusion, we will not distinguish a function and its restriction
to any subinterval of its domain.

The following proposition will be used frequently throughout the book.

PROPOSITION 1.1.2. Let A be a closed linear operator in E (cf. the final part
of this subsection) and let f : I — E be Bochner integmble If f(t) e D(A), tel
and Ao f: I — E is Bochner integrable, then [, f(t)dt € D(A) and A [, f(t)dt =

Jr ACf()) dt.

Now we state the operator valued version of the dominated convergence theo-
rem and the Fubini theorem (cf. also [300, p. 325]).

THEOREM 1.1.3. (i) Suppose that (f,,) is a sequence of Bochner integrable func-
tions from ET and that there exists an integrable function g : I — R such that
Il < g(t) for ae.t €I andn e N. If f: 1 —> E and lim,,_,o0 fn(t) = f(¢)
for a.e. t € I, then f(-) is Bochner integrable, [, f(t)dt = lim, o [; fn(t)dt and
lime [, [ a(8) — £(8)]dt = 0.

(ii) Let I; and I be segments in R and let I = Iy xIs. Suppose that F': I — E is
measurable and that [, ffz ||f (s,t)||dtds < oco. Then f( -) is Bochner integrable,
the repeated integmls f] f[ (s,t)dtds and fI fI (s,t)dsdt ewist and equal to
the integral [, f(s,t)ds dt.

Let 1 < p < oo and let (Q,R,un) be a measure space. Then the space
LP(Q : E) consists of all strongly p-measurable functions f : @ — E such that
[ £llp := (Jo, 1 F(-)|IPdp)*/? is finite. The space L*°(€ : E) consists of all strongly p-
measurable, essentially bounded functions and is equipped with the norm || f|| :=
esssupyeq || f()]l, f € L®°(Q2 : E). Herein we identify functions that are equal p-
almost everywhere on €. By Riesz—Fischer theorem, (LP(Q2: E), || -||,) is a Banach
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space for all p € [1,00], and furthermore, we know that (L*(Q2 : E),| - ||l2) is a
Hilbert space. If lim, o f, = f in LP(Q : E), then there exists a subsequence
(fny) of (fn) such that limyg oo fn, (t) = f(t) p-almost everywhere. If the Banach
space E is reflexive, then LP(Q) : E) is reflexive for all p € (1,00) and its dual is
isometrically isomorphic to L7 ({2 : E). The next proposition clarifies the basic
properties of operator valued absolutely continuous functions.

PROPOSITION 1.1.4. (i) Suppose —00 < a < b < oo, f € L'([a,b] : E) and
= fo s)ds, t € [a,b]. Then F(-) is absolutely continuous, F'(t) = f(t)

for a.e. t € [a,b] and limp,_,o fH_h I7(s) = f(®)|lds = O for a.e. t € [a,b], i.e
almost every point of [a,b] is a Lebesgue pomt of the function f(-). Furthermore,
if f € C([a,b] : E), then the preceding equality holds for all t € [a,b].

(i) Suppose —o0 < a < b < o0, F : [a,b] — E is absolutely continuous
and F’( ) exists for a.e. t € [a,b]. Then F'(-) is Bochner integrable on [a,b] and
F(t) = F(a) + [ F'(s)ds, t € [a,b].

A Banach space F is said to possess the Radon—Nikodym property iff every
absolutely continuous function F : [0,1] — E is differentiable a.e. It is well known
that every reflexive Banach space possesses the Radon—Nikodym property and that
the space L'[0, 1] does not possess the Radon—Nikodym property.

PROPOSITION 1.1.5. Suppose X is a Banach space, f € Li, ([0,00) : E) and
T :[0,00) = L(E, X) is strongly continuous, i.e., the mapping t — T(t)x, t > 0
i continuous for every ﬁxed x € E. Define the mapping Txo f:]0,00) = X by

(T x0 f)(t fo (t—5)f(s)ds, t = 0. Then T ¢ f € C([0,00) : X).

DEFINITION 1.1.6. Let f € Ll ([0,00) : E). Then we say that f(-) is Laplace
transformable iff there exists w € R such that

T o0

L(fE)AN):= fO) = lim [ e f(s)ds := /e_’\sf(s) ds

T—00
0 0

exists for every A € C with ReA > w. The abscissa of the convergence of f(-)
is defined by abs(f) := inf{w € R : f()\) exists for every A € C with Re X > w}.
Given a measurable function f : [0,00) — FE, we define the exponential growth
bound w(f) by setting

w(f) :=inf{w € R : exists M > 0 such that || f(¢)|| < Me*", ¢t > 0}.

Obviously, abs(f) < abs(]|f]|) < w(f), but in general, there exist examples where
one has the strict inequalities. We refer the reader to [14, Appendix A] for the basic
properties of operator valued analytic functions. If f(-) is Laplace transformable,
then f(/\) exists for every A € (C With Re)\ > abs(f) the mapping A — f()\),
A € C, Re\ > abs(f) is analytic, 4= f( e M f(t) dt, n e N, A€ C,
Re A > abs(f) (understood in the sense of improper integral) and f()\) does not
exist if A € C and Re A < abs(f).
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THEOREM 1.1.7. Suppose f € Li _([0,00) : E) is Laplace transformable, z € C
and s > 0.

(i) Put g(t) :== e *'f(t), t > 0. Then g(-) is Laplace transformable, abs(g) =

abs(f) — Rez and g(\) = f/\+z) A€ C, Re) > abs(f) — Rez.

(i) Put fs(t) := f(t+s), > 0. Then fs() is Laplace transformable, abs(fs)
abs(f) and fy(\) = (\) — fO e Mf(t)dt), A € C, Re X > abs(f).
(

(iii) Suppose h € Lloc [0,00)) is Laplace transformable and (h %o f)(t) :

fot h(t — s)f(s)ds, t = 0. Then h o f is Laplace transformable, abs(h xo f) <
max(abs(|h]), abs(f)) and

/ﬁ}?(x) = h(N)F(A), A €C, ReA > max(abs(|h|), abs(f)).

(iv) Let F(t fo t > 0. Then F(-) is Laplace transformable, abs(F') <
max(0, abs(f)) and F()\) = (0,abs(f)).
(v) Suppose, in addition, w(f) < co and put
' - 006782/415 J ik . Oosefs /4t J 0
0= [ s makt) = [ Sz s >0
Then j(-) and k(-) are Laplace tmnsformable,
max(abs(3)abs(h) < (max(e(1), 00, 30 = L2 ana k) = 7/

for all A € C with Re A > (max(w(f),0))?.
(vi) (The uniqueness theorem for the Laplace transform) Suppose Ao > abs(f)
and f(A) =0 for all A € (Ag,00). Then f(t) =0 for a.e. t > 0.
(vii) Let I(-) be Laplace transformable and let w > max(abs(f),abs(l)). For a
closed linear operator A, the following assertions are equivalent:
(vil.1) f(t) € D(A) and Af(t) =1(t) for a.e. t = 0.
(vii.2) f(X) € D(A) and AF(N) = I(\), ) € (w,00).
(viii) Suppose € > 0. Then the following assertions are equivalent:

(viii.1) limsup,_, . 2L <
(viii.2) f(t) =0 for a.e. t € [0,¢].

(ix) (Post—Widder inversion) Suppose t > 0 is a Lebesgue point of f(-). Then

the following holds:
0 A () )

n—oo n!
DEFINITION 1.1.8. A sequence (\,) in C is called a uniqueness sequence if for

every Laplace transformable function f(-) which satisfies that f(\n) is defined for
every n € N and that f(\,) =0, n € N, one has f(¢) =0 for a.e. t > 0.
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THEOREM 1.1.9. Suppose f € Li _([0,00) : E) is Laplace transformable and
a € (max(0,abs(f)),00). If (A,) is a sequence in {\ € C: Re X > abs(f)} without
accumulation points such that [{\, : n € N}| = co and that

= 11— Al
3 1- < 00,
?) (- ) <=

n=1

then (\,) is a uniqueness sequence. Suppose, conversely, that (\,) is a sequence in
{A € C:ReA > 0} and that (N\,) does not possess any accumulation point in the
open right half plane as well as that the sum appearing in (3) is finite. Then there
exists a Laplace transformable function f(-) such that 0 # f € L{ ([0,00) : E) and
that f(An) =0, n € N.

Let a > 0,b> 0,7 € Nand § € R. Then (a + bn?),, resp. (1 +1in’),, is a
uniqueness sequence whenever y € (—oo, 0) U (0,1], resp. 6 € (0, 1].

Denote X, := {re? : 7 >0, 0 € (—a, )}, a € (0,7]. The following important
characterization of analytic properties of operator valued Laplace transform is due
to Sova [391].

THEOREM 1.1.10. Let a € (0,5], w € R and q : (w,00) — E. Then the
following assertions are equivalent:

(i) There exists an analytic function f : £o — E such that sup,cyx, [[e=“% f(2)||

< 0o for all B € (0,a) and g(A) = f(X) for all X € (w,0).
(ii) The function q(-) has an analytic extension G :w + ¥z, — E such that
SWpscurss ., A~ @) < 0 for ally € (0,0).

We need the assertions of [14, Proposition 2.6.3] and [14, Proposition 2.6.4].

THEOREM 1.1.11. (i) Suppose a € (0, 7], f: Xy — E is analytic and
sup.ey, [If(2)|| < oo for all B € (0,a). Let x € E. Then the following holds:

(1) Iflimg o f(t) = z, then lim ex, |2|—oo f(2) = @ for all B € (0, ).
(1.2) If limyyo f(t) = @, then lim.cx,, .0 f(2) = @ for all B € (0, ).

(ii) Let o, w and q(-) have the same meaning as in the formulation of Theo-
rem 1.1.10 and let x € E. Then the following holds:

(ii.1) limgo f(t) = @ ff imay4oo Ag(N) = 2.
(ii.2) Let w=0. Then lim;_,o f(t) = x iff limy 0 Ag(A) = z.

The complex inversion theorem for the operator valued Laplace transform reads
as follows.

THEOREM 1.1.12. Assume a > 0, ¢ : {\ € C: ReX > a} — E is analytic
and there exist M > 0 and v > 1 such that ||jg(\)] < %, A€ C, ReX > a.
Then there exist a continuous function f : [0,00) — E and M' > 0 such that

£ < M't7=1e, t > 0 and that g(\) = f(\) for all X € C with Re X > a.
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Notice that the continuous function f(-) given in the formulation of Theo-
rem 1.1.12 is given by:

a+1io00
1
ft) = 5 / Mg\ dX, t >0,

and that the previous improper integral does not depend on the choice of a number
@ > a. The Arendt—Widder theorem has been reconsidered in a series of papers (see
e.g. [41], [68], [202] and [431]); the following version is sufficient for our purposes.

THEOREM 1.1.13 (Hieber [149], Xiao-Liang [434]). Let a > 0, a € (0,1],
w € (—o0,al, M >0 and let q : (a,00) = E be an infinitely differentiable function.
Then (i) < (i), where:

(i) The following holds ||(X — w)kﬂ%ﬂ <M, A>a, keNg.
(ii) There exists a function F € C([0,00) : E) satisfying F(0) = 0,

() = 2o / e ME()dE, A > a,
0
t

/ (t+h—s) OéF(s)als—/(Ft(_s)_(:F(s)ds
0

I(l—a) 11—«
0

foranyt >0 and h >0, if « € (0,1), and
|F(t+h) — F(t)|| < Mhe®! max(e*", 1), t >0, h>0

< Mhe®t max(e®?, 1),

if « = 1. Moreover, in this case,
2M
ol (@)

A linear operator A : D(A) — E is closed iff the graph of the operator A,
defined by G4 := {(z, Az) : « € D(A)}, is a closed subset of Ex E. A necessary and
sufficient condition for a linear operator A : D(A) — E to be closed is that for every
sequence (z,) in D(A) such that lim, . z, = = and that lim, . Az, =y, the
following holds: = € D(A) and Az = y. For a linear operator A, we introduce the
graph norm on D(4) by |2l pay = |la]|+]| Az = € D(A). Then (D(A), |-l p(ay)
is a Banach space iff A is closed A subspace Y C D(A) is called a core for A iff
Y is dense in D(A) with respect to the graph norm. The closed graph theorem
states that every closed linear operator defined on the whole space F is a bounded,
linear operator; henceforth we denote by L(E) the space of all bounded, linear
operators on E and by Kern(A) and R(A), the kernel and the range of the operator
A, respectively.

Further on, a linear operator A is closable iff there exists a closed linear operator
B such that A C B. It can be simply shown that a linear operator A is closable iff for
every sequence (z,) in D(A) such that lim,,_, x, = 0 and that lim, . Az, =y,
we have y = 0. Suppose that A is a closable linear operator. The closure of A,

|E(t+h) — F(t)|| < A" max (e 1), >0, h>0.
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denoted by A, is defined as the set of all elements (z,y) € E x E such that there
exists a sequence (z,) in D(A) with lim, . 2, =  and lim,,_, o, Az, = y; then
A is a closed linear operator and, for every other closed linear operator B which
contains A, one has A C B. Suppose A : D(A) — E is a linear operator. We define
the powers of A recursively by setting: A° =: I, D(A") := {x € D(A""1): A" 1z €
D(A)} and A"z := A(A""1x), z € D(A"), n € N. Then D(A") = D(A — \)",
n €N, A € C. Put Doo(A) := (1,5, D(A™). The resolvent set of a linear operator
A, denoted by p(A), is the set of all complex numbers A such that the operator
A — A is bijective; we write R(A: A) := (A — A)~!. Recall that the assumption
p(A) # () implies that, for every n € N, we have that the operator A™ is closed;
furthermore, if A is densely defined, i.e., D(A) = E, and p(A) # 0, then D(A™) is
a core for A, n € N. The spectrum of the operator A, denoted by o(A), is defined
to be the set o(A) := C \ p(A). We know that p(A) is an open subset of C and
that, in the case p(A) # ), the mapping A — R(A: A), A € p(A) is an analytic
mapping from p(A) into L(E). Furthermore, the resolvent equation states that
RA:A)—R(E:A)=(—-MNRA:AR(E: A), and as a consequence, one obtains
inductively that S-R(A: A) = (=1)"n!R(A: A)"*1, X € p(A), n € N. A closed,
linear operator A is said to be the Hille-Yosida operator ([82]) if there exist M > 0
and w € R such that (w,00) C p(A) and that ||[R(A: A)"| < (Ain)n, A>w,neN
For a closed linear operator A, we introduce the following subset of E* x E*:

A* = {(z*,y*) € E* x E* : 2*(Az) = y*(z) for all z € D(A)}.

If A is densely defined, then the adjoint operator A* of A is a closed linear operator
in E*. Suppose F is a closed subspace of E. Then the part of A in F, denoted
by Ajp, is a linear operator defined by D(Ajr) := {z € D(A)NF : Az € F}
and Ajpz := Ax, v € D(Ap). Let « € C~ {0} and let A and B be linear
operators. We define a4, A+ B and AB in the following way: D(aA) =: D(A),
D(A+B) = D(A)ND(B) and D(AB) := {z € D(B) : Bx € D(A)}, (0¢A)x := aAx,
xz € D(aA), (A+B)x := Az+ Bz, x € D(A+B) and (AB)x := A(Bz), 2 € D(AB).

PROPOSITION 1.1.14. (i) Suppose A is closed, B € L(E), a € C~ {0} and F
is a closed subspace of E. Then a(A + B), a(AB) and A are also closed.

(i) Let A be densely defined and p(A) # 0. Then Dy (A) is dense in E.

(iii) Suppose A is a closed operator, U C C is open and connected and U N
(0. If there exists an analytic mapping F : U — L(E) such that the set
Np(A) : F(A) = R(A: A)} has a limit point in U, then U C p(A) and
F(A) =R

(iv) Suppose A is a closed, densely defined operator. Then D(A*) is dense in E*
with respect to the weak® topology, and in the case when E is reflexive, we have that

A* is dense in E* with respect to the strong topology. Furthermore, o(A*) = o(A)
and R(\: A*) = R(A: A)*, X € p(4).

(v) If A is closable and densely defined, then A" = A
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It is noteworthy that D(A*) is weak* dense in E* even in the case when A is
not densely defined in E. This follows from [235, Lemma 2.4] and the proof of [14,
Proposition B.10].

ExXAMPLE 1.1.15 (Multiplication Operators). Let (Q, R, i) be a measure space
and let f : Q0 — C be a measurable function. Put

Essranf := {A € C: p({z € Q: |f(z) — A\ <e}) >0 for all ¢ > 0}.

Suppose that Q@ C R™ and that open subsets of {2 are measurable with non-zero
measure; then it can be simply verified that, for every continuous function f : Q —
C, we have Essranf = R(f). Define, for p € [1, 00|, the multiplication operator Ay
in LP($2, ) by setting: D(Ay) =: {g € LP(Q,pn) : fg € LP(Q, )} and Arg := fyg,
g € D(Ay). Then the following holds:

(i) Ay is a closed operator, and Ay € L(LP(Q, p)) iff f € L™(Q, p).

(ii) Suppose f ¢ L>°(Q, ). Then Ay is densely defined iff p < oco.

(ili) o(Ay) = Essranf.

DEFINITION 1.1.16 (Kunstmann [249]). A closed linear operator A is said to
be stationary dense iff

n(A) = inf{k €Np: D(A™) C D(A™+1) for all m > k} < 00.

Generally, a densely defined operator A need not be stationary dense, but in
the case p(A) # (), A must be stationary dense with n(A4) = 0. Furthermore, if A
is not necessarily densely defined and p(A) # 0, then one can simply prove that

n(A) = inf{k € Ny : D(A¥) C D(A*+1)}.
1.2. C-regularized semigroups and cosine functions

Throughout this section we assume that L(E) 5 C is injective. Recall, the
C-resolvent set of a closed linear operator A, denoted by pc(A), is defined as the
set of all complex numbers A such that the operator A\ — A is injective and that
R(C) CR(A - A).

DEFINITION 1.2.1. Let 7 € (0,00]. A strongly continuous family (7'(t))¢cjo,7),
resp. (C(t))ee[o,r), in L(E) is said to be a (local, if 7 < 0o0) C-regularized semigroup,
resp. C-reqularized cosine function, if:

(1.1) T(t+s)C=T(t)T(s), for all ¢, s € [0,7) with t + s < 7,

(i.2) T(0) = C,
resp.,

(ii.1) Ct+s)C+C(|t —s))C =2C(t)C(s), for all t, s € [0,7) with t + s < T,

(ii.2) C(0) =C.

A closed linear operator A which satisfies:
(i.3) T(t)A C AT (¢), t € [0,7),
(i.4) fot T(s)zds € D(A), t € [0,7), z € E and Afot T(s)rds = T(t)x — Cxz,
tel0,7), z€E,
resp.,
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(ii.3) C(H)A C AC(t), t € [0,7),
(iid) [I(t —s)C(s)xds € D(A), t € [0,7), z € E and A [ (t — 5)C(s)x ds =
Ct)x —Czx,t€0,7),x € E,
is called a subgenerator of (T'(t))eo,r), resp. (C(t))tejo,r)- It is said that a global
C-regularized semigroup (7'(t)):>0, resp. a global C-regularized cosine function
(C(t))t>0, is exponentially bounded if there exist M > 0 and w > 0 such that
IT(t)|| < Me*t, resp. ||C(t)]| < Me¥t, t > 0.

The (integral) generator of (T(t))icjo,7), resp. (C(t))tc(o,r), is defined by

A= {(m,y) EEXE:Tt)x—Cz= O/tT(s)yds, te [O,T)}7 resp.

¢
A= {(w,y) €EExXE:Clt)r—Cx= /(t —5)C(s)yds, t € [0,7’)},
0
and it is the maximal subgenerator of (7'(t))¢>0, resp. (C(f))i>0. In both cases,
C~'AC = A. Moreover, the integral generator of (T'(t))tef0,), resp. (C(t))ieo,r)

coincides with the (infinitesimal) generator A of (T'(t))tef0,), resp. (C(t))efo,n),
defined by:

. Tt —Cx

{(xay) EEXE: t1_1>%1+ — 5 = Cy}, resp.
o C(t)r —Cx

{(x,y) cExXE: t1—1>%1+2t72 = Cy}.

In the case C' = I or p(A) # 0, the set of all subgenerators of (T'(t))icjo,7), resp.
(C(t))tefo,7), denoted by ©(T'), resp. p(C), is monomial. In general, the set o(T),
resp. ©(C), need not be finite and, endowed with corresponding algebraic opera-
tions, forms a complete lattice whose partial ordering coincides with the usual set
inclusion. For further information concerning such lattices, we refer the reader to
[422, 451] and Subsection 2.1.1. The well known result of van Casteren [53] says
that, for every local semigroup (7'(t)):eo,r), .., local I-regularized semigroup,
there exists a strongly continuous semigroup (T'(t));>o such that T'(t) = T(t),
t € [0,7). The same assertion holds for local cosine functions, but in general, a
local C-regularized semigroup (C # I), resp. C-regularized cosine function, need
not be extendible to a larger interval. Every strongly continuous semigroup (global
cosine function) must be exponentially bounded and this is no longer true for global
C-regularized semigroups and cosine functions.

The following Hille-Yosida characterization of global exponentially bounded
C-regularized semigroups and cosine functions will be proved in Subsection 2.1.2
in a more general context.

THEOREM 1.2.2 (Hille-Yosida). Let A be densely defined and let CA C AC.

(i) The operator A is a subgenerator of an exponentially bounded C-regularized semi-
group (T(t))i>0 satisfying |T(t)|| < Me“t, t > 0 for appropriate constants M > 0
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and w € R iff (w,00) C pc(A), the mapping A — (A — A)~LC, X > w is infinitely
differentiable and
H ME!
d)\k ()\ _ )k+1 ’
(ii) The operator A is a subgenerator of an exponentially bounded C-regularized co-
sine function (C(t))i>o satisfying ||C(t)|| < Me“t, t > 0 for appropriate constants
M >0 and w > 0 iff (w?,00) C pc(A), the mapping A — A(\2 — A)~1C, A > w is
infinitely differentiable and

10}“ k€ No, A > w.

ME!

m, kENo,A>O).

el
[ -t

The definition of an analytic C-regularized semigroup was introduced indepen-
dently by deLaubenfels [92] and Tanaka [398].

DEFINITION 1.2.3. (i) Let o € (0, 5]. A C-regularized semigroup (7'(t)):>0 is
said to be an analytic C-reqularized semigroup of angle « if there exists a function
T : 3, U{0} = L(E) such that T(¢) =T(t), t > 0 and:

(i.1) the mapping z — T(z), z € X, is analytic,

(i.2) T(»)T(w) =T(z 4+ w)C, 2z, w € 3, and

(i.3) the mapping z — T(z)z, z € X4 is continuous for every fixed z € E and

B € (0,a).

(ii) [89] An entire C-regularized group is an entire family of bounded linear
operators (T'(z)).ec such that T(0) = C and T(z+w)C = T(2)T (w), z, w € C. The
generator of an entire C-regularized group is said to be the generator of (T'(¢))¢>0.

THEOREM 1.2.4. Assume M > 0, w > 0 and A is a subgenerator of an ex-
ponentially bounded C-regularized cosine function (C(t))i>o0. Then A is a subgen-
erator of an exponentially bounded, analytic C-regularized semigroup (T'(t))i>0 of

angle 5, where T(t)x = \/%fooo e~ /U0 (s\eds, t > 0, v € E. Furthermore,
IT@)|| < 2Me*™, t > 0 provided ||C ()| < Me*t, t > 0.

PROPOSITION 1.2.5. Suppose A is a subgenerator of a (local) C-reqularized
semigroup (S(t))tecjo,r), resp. C-reqularized cosine function (C(t))icjo,r). Then
T)T(s) =T(s)T(t), resp. C(t)C(s) = C(s)C(t) for allt, s € [0,7) and R(T'(t)) C
D(A), t€[0,7), resp. R(C(t)) € D(A), t € [0, 7).

PROPOSITION 1.2.6. Suppose (T'(t))icjo,7), resp. (C(t))iepo,r), 15 a strongly con-
tinuous family in L(E) and A is a closed linear operator. If

(/S 5) C D(A) and /S AdsCA/S =S8(t) = C forallt €]0,7),

resp.,
t ¢

R(/(t—s)C(s) ds) C D(A) and O/(t—s)C(s)A ds C Ao/(t—s)C’(s) ds =C(t)-C,

0
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for all t € [0,7), then (T(t))epo,r) is a (local) C-regularized semigroup, resp.
(C(t)teo,r) is a (local) C-regularized cosine function, generated by C~'AC.

The following is an extension type theorem for local C-regularized semigroups
and cosine functions; in Subsection 2.1.1, we will consider automatic extension type
theorems for local convoluted C-semigroups and cosine functions. It seems that the
assertions of Theorem 2.1.9 and Theorem 2.1.14 (proved in the case n = 2) can be
additionally refined following the approach of Wang and Gao [424]:

THEOREM 1.2.7. Suppose that A is a subgenerator (the integral generator) of
a local C-regularized semigroup (T'(t))iejo,r), resp. C-regularized cosine function
(C(t))teo,r)- Then, for everyn € N, A is a subgenerator (the integral generator) of
a local C™-regularized semigroup (T, (t))ico,nr), resp. C™-reqularized cosine func-
tion (Cn(t))te[o,nr)~

The most important additive perturbation results for (local) C-regularized
semigroups and cosine functions have been proved by Shaw and his collaborators:

THEOREM 1.2.8. [381] (i) Assume (T'(t))seqo,r) is a (local, global exponentially
bounded) C-regularized semigroup having A as a subgenerator, resp. the integral
generator, B € L(E), R(B) C R(C) and BCx = CBx, x € D(A). Then A+ B isa
subgenerator, resp. the integral generator, of a (local, global exponentially bounded)
C-regularized semigroup (Tg(t))icjo,r) which satisfies the integral equation:

Tyt = T(t)z + /T(t — $)CBTy(s)uds, te0,7), x € E.
0

(ii) Assume (C(t))ieqo,r) 5 a (local, global exponentially bounded) C-regularized
cosine function having A as a subgenerator, resp. the integral generator, B € L(E),
R(B) C R(C) and BCx = CBx, x € D(A). Then A+ B is a subgenerator, resp.
the integral generator, of a (local, global exponentially bounded) C-reqularized cosine
function (Cp(t))ieo,r) which satisfies the integral equation:

t t—s
Cp(t)r =C(t)x —|—/ C(t—r)C'BCg(s)xdrds, t€[0,7), z € E.
0 0

ExaMpPLE 1.2.9. (i) [89, Example 8.6] Let § # Q C R™ be an open, bounded
set with smooth boundary 0 and let £ := LP(2), 1 < p < co. Put D(A) :=
W2P(Q)NW,yP(Q) and A := A. Then —A generates an entire C-regularized group
for some injective operator C' € L(LP(12)).

(ii) [100, Example 2.11], [422, Example 2.14] Let E := L*°(R) and let G :=
d/dr with maximal domain. Put D(A) := D(G?), Az := Gz, z € D(A) and
(T@t)f)x = (R(1:G)>*f)(z+1t),t >0,z €R, f € E. Then A is closable, (T'()):>0
is a global R(1 : G)2-regularized semigroup generated by G, A € p(T), |p(T)| = oo
and every subgenerator of (T(t))¢>o contains A.

(iii) [89, Example 16.3] Let E := {f : R — C is continuous : lim;| o e f(x)
=0}, ||f]| == super |e“"2f(x)\, feFEand A:= % with maximal domain. Then
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there does not exist an injective operator C' € L(FE) such that A generates a global
C-regularized semigroup.

(iv) [381] Let E := L?([1,00)) and let (C(t)f)(s) := $(e** + e e *f(s),
t €1[0,1), s > 1, f € E. Then (C(t))[p,1) is a local C(0)-regularized cosine
function, 2||C( ) =e"t+e 7t t €[0,1) and (C(t))eo,1) cannot be extended
beyond the interval [0, 1].

(v) [420, Example 3.2] Let E := L'(R) and let A := —% with maximal
domain. Put

oo

Gy(s) = / e”"" cosh(tu) e_“zdu, t>0, s eR,
(C)f)(s) := / Gi(s—u)f(u)du, t>0,seR, feE.

Then (C(t))i>0 is a global not exponentially bounded C(0)-regularized cosine func-
tion and [|C(t)|| = et /4, t >

(vi) [89, 454, 221] The one- dlmensional equation describing sound propagation
in a viscous gas [138] has the form wu; = 2upp, + Uz, and after standard matrix
reduction to a first order system becomes

d_. . R d ~Jo 1
%u(t) = P(D)u(t), t >0, where D = 72% and P(x) = {—xz —21‘2} .

We assume that F is a function space on which translations are uniformly bounded
and strongly continuous; herein it is worth noting that £ can be consisted of func-
tions defined on some bounded domain (cf. [454, p.189] for further information).
Further on, we assume that D, resp. A = —D?, generates a bounded strongly
continuous group, resp. a strongly continuous semigroup in F, and that the op-
erator P(D) is taken with its maximal domain in E x E [89, 454]. Then the
following holds (for the definition of fractional powers and the functional calculus
for commuting generators of bounded Cy-groups, see [89, Section XIIJ):

(vi.l) Let r > 1. Then P(D) generates an exponentially bounded, analytic
(1 — A)~"-regularized semigroup (7’.(t)):>0 of angle 7. Furthermore, the
semigroup (TT(t))tezﬁ can be extended to ¥z and there exists K > 0
such that || T, (t)]] < K(1+ [t])Zeztsn@e®) ¢ ¢ T < {0},

(vi.2) (T-(it))¢er is an exponentially bounded (1 — A)~"-regularized group gen-
erated by iP(D).

(vi.3) The mapping ¢ — T,.(t) (5), t e g is continuous for every fixed pair
(/) e ExE.

(vi.4) The mapping t — T,.(t), t € z is norm continuous provided r > 2.

(vii) [43, 125, 219, 454, 461] The isothermal motion of a one-dimensional
body with small viscosity and capillarity is described, in the simplest situation, by
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the system:

UVt = Uy,

u(0) = ug, v(0) = vo,
where a, b and c are positive constants. The associated polynomial matrix is
P(z) = [~ —2aa”® me““’ |. It is well known [125] that P(D) does not generate a

1T
strongly Contlnuous semigroup in L'(R) x L!(R).

1
5

{ Uy = 20Ugzq + DUz — CULza,

(vii.1) Let a®> —c < 0 and ' > Then P(D) generates an analytic (1-—

A)~"-regularized semigroup (Ty(t))i>0 of angle arctan —— and there
exists a function p : (— arctan Jotoe arctan \/j(ﬂ) — (0,00) such that

o

2

llTT’ (Z)ll < K(l + lzl)%ep(arg ) sin(arg(z))|= l Z € Yarctan
/

(vii.2) Let a2 — ¢ >0 and ' > L. Then P(D) generates an analytic (1 — A)~"'-

1
regularized semigroup (72}/( t))i>o of angle 7 which satisfies ||T;(2)| <
(14 |2y deVbrinGore(le] e 53,

(vii.3) Let a®—c > 0 and 7’ > 1. Then P(D) generates an exponentially bounded
(1 — A)~""-regularized cosine function (Cy(t))¢>o.

It would take too long to go into a further analysis of C—regularized semigroups
and cosine functions. We strongly recommend for the reader [14], [27], [87], [125],
[128], [155], [181], [201], [298], [322], [355] and [390] for the theory of strongly
continuous semigroups and cosine functions as well as [89]-[104], [152], [260]-
[261], [272], [324], [381]-[383], [398], [403]-[404], [421], [424], [431], [434],
[436]-[440], [451]-[454], [460] and [464] for the theory of C-regularized semi-
groups and cosine functions.

In the remaining part of this section, we study regularization of different types
of operator semigroups that are strongly continuous for ¢ > 0. Let us recall that a
one-parameter family (T'(¢)):>o in L(F) is called a semigroup if T(t+s) = T'(t)T(s),
t,s 2 0, T(0) = I and the mapping ¢t — T'(t)x, t > 0 is continuous for every fixed
x € E. The infinitesimal generator Ay of the semigroup (T'(t));>o is defined by

M whenever the above limit exists. If Ag is closable, then

Apx = limy04
the operator Ag is called the complete infinitesimal generator, in short the c.i.g., of
(T'(t))t>0. Following Kunstmann [253], we introduce the generator of (T'(t)):>0 by
A:={(z,y) € ExXE: (T(s)x,T(s)y) € A for every s > 0}. The generator A of
(T'(t))+>0 is a closed, linear operator in E. The set ¥ := {z € E : lim;_,o4 T({)x =2}
is called the continuity set of (T'(t))i>0. Note, if (T'(t));>0 is a semigroup, then
the limit wqy = limy_ 40 WITON exists and wy € [—00, 00); such a number wy is
called the type of (T'(t))i>0. Now we recall the basic facts about semigroups of
growth order r > 0 which were introduced by G. Da Prato [84] in 1966. A fairly
complete information on the general theory of this class of operator semigroups can
be obtained by consulting the papers [324]-[326], [358], [389], [394], [398] and
[449]-[450].
The following notion will be generalized in Section 1.4.
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DEFINITION 1.2.10. [84] An operator family (7'(¢)):>o in L(E) is said to be a
semigroup of growth order r > 0 iff the following holds:
(i) T(t+s)=TH)T(s), t,s >0,
(ii) for every z € E, the mapping t — T'(t)z, t > 0 is continuous,
(iii) ||t"T ()| = O(1), t — 0+,
(iv) T(t)z =0 for all ¢ > 0 implies z = 0, and
(v) Eo:=U;»qT(t)E is dense in E.
The infinitesimal generator Ag of (T'(¢)):>0 always exists and Ay is a closable linear
operator. The closure A := Ay is called the complete infinitesimal generator, in
short, c.i.g., of (T'(t))t>0-

DEFINITION 1.2.11. [398] Let (T'(t))+>0 be a semigroup of growth order r > 0.
If (T'(t))¢>0 has an analytic extension to X, for some v € (0, 5], denoted by the
same symbol, and if additionally there exists w € R such that, for every ¢ € (0,7),
there exists a suitable constant Ms > 0 with [|2"T(2)|| < Mse*Re?, 2 € s, then
the family (7'(t)):ex, is called an analytic semigroup of growth order .

Let t € R. Henceforward [¢] and [t] denote the largest integer < ¢ and the
smallest integer > ¢, respectively, and I'(-) denotes the Gamma function. The

following generation results for (analytic) semigroups of growth order r > 0 were
established by Okazawa [348], Zabreiko—Zafievskii [449] and Tanaka [398].

THEOREM 1.2.12. (i) [348] Let r > 0 and n = |r]|. A closed linear operator A
is the c.i.g. of a semigroup of growth order r > 0 iff the following holds:

(i.1) There exists w € R such that D(A"*!) C R(A — A) and that A\ — A is
injective for all A > w.
(i.2) There exists M > 0 such that, for every x € D(A"1):

M I'(m—r)
(m—-1)1(A—w)mr
(.3) D(A) is dense in E, D(A™2) is a core for A and
(i.4) There exists b € (w,o0) such that (b — A)" T is closable.

i) [449| Let r € (0,1). en A is the c.i.g. of a semigroup of growth order r >
i) [449] L 0,1). Then A is th f f growth ord 0
iff the following holds:
(ii.1) There exists w € R such that (w,00) C p(A).
(ii.2) There exists M > 0 such that, for every A € (w,00) and m € N,
M L(m—r)
(m—-1DIA—w)m-r

(A= A)""2| <

lzll, A>w, m=k(n+1), k€N,

(A=A~ <

and

(ii.3) D(A) is dense in E.
(iii) [398] Letr >0, a € (0,5] andn = [r]. A closed linear operator A is the c.i.g.
of an analytic semigroup (T (t))iex, of growth order r > 0 iff the following holds:

(iii.1) There ezists w € R such that D(A"*!) C R(A — A) and that A\ — A is
injective for all A € w+ Xz 44.
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(iii.2) For everye € (0,«), there exists M. > 0 such that, for every x € D(A™H1!)
and A € w+ Xz c:
M. T(n+1-r)

n+1
[(A—=A)~ ( SUH ol W

//\

and the mapping X — (A — A)‘Dn;,}ll), A Ew+ Xx4q is analytic.

(iii.3) D(A) is dense in E, D(A"2) is a core for A and
(iii.4) There exists b € (w, oo) such that (b — A)" %1 is closable.
(iv) [398] Letr € (0,1) and « € (0, %]. Then A is the c.i.g. of an analytic semigroup

’ 2
(T(t))tex,, of growth order r iff the following holds:

(ii.1) There evists w € R such that w + ¥z o C p(A).
(ii.2) For everye € (0,a), there is M > 0 such that, for every A € w+Xz 14 c:

_ MI(1-r
0= ) < FEE T o

(ii.3) D(A) is dense in E.

Let A be the c.i.g. of an (analytic) semigroup of growth order r > 0. Then
there exists a Banach space that is densely and continuously embedded in E on
which A generates an (analytic) strongly continuous semigroup (of the same angle);
for a proof, see [358].

DEFINITION 1.2.13. ([324], cf. also [326] and [349]) Suppose R(C) is dense in E
and (T'(t)):>0 is an exponentially bounded C-regularized semigroup. The complete
infinitesimal generator, in short c.i.g, of (T'(t))>0 is defined as the closure G of the
operator GG, where

-1
G = {(x,y) €eExE:zeR(C), lim CCTMz-z :y}.
t—0+ t

It is well known that the operator G is closable and that the operator G sat-
isfies G € A and C~'GC = A, where A is the integral generator of (T(t));>o.
Furthermore, it can be easily seen by the use of [324, Lemma 1.2, p. 361] and ele-
mentary operational properties of the Laplace transform that G is a subgenerator
of (T ( ))e>0. In general, it is not known whether the c.i.g. of (T'(¢))¢>0 coincides
with A.

DEFINITION 1.2.14. [343] Let k € Ny. A semigroup (T'(t)):>0 is said to be of
class (C(x)) iff the following conditions hold:
(i) Eo := U;soR(T'(1)) is dense in E,
(i) there exists w € (wp,00) such that for every A € (w,o0) there exists an
injective bounded linear operator Ry so that Ryz = fooo e MT(t)z dt,
x € Ey and
(iii) D(A*) C %, where A is the c.i.g. of (T(t))i>o0-

Notice that the conditions (i)—(ii) imply the existence of the c.i.g. A of (T'(t))>0
and (w,00) C p(A). It is checked at once that every semigroup (7'(¢))¢>o of class
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(Cwy) is also of class (C(,41)) and that the class (C(g)) coincides with the usual
class of strongly continuous semigroups. The generation results for semigroups of
class (C(y)) can be found in [324] and [343].

THEOREM 1.2.15. [324, 398] (i) Suppose that (T'(t))i>0 is a semigroup of class
(Ciy) and that A is the c.i.g. of (T'(t))is0. Put S(t) := R(w+ 1: A)FT(t), t > 0.
Then A is the c.i.g. of the exponentially bounded C-regularized semigroup (S(t))i>o0-

(i) Suppose that (T(t))i>0 is a semigroup of growth order r > 0 and that A is
the c.i.g. of (T'(t))i>0. Put

oo

1
Cx:= ] e~ @WorDY P () dt and S(t) :== CT(t), € E, t >0,
G
where wy is the type of (T'(t))i>0 and n = |r]. Then L(E) > C is injective and A
is the c.i.g. of the exponentially bounded C-reqularized semigroup (S(t))t>o-

(iii) Let o € (0, §]. Suppose that (T'(t))icx, is an analytic semigroup of growth
order r > 0 and that A is the c.i.g. of (T(t))i>0. Define C as above and put
S(t) :=CT(t), t € . Then A is the c.i.g. of the exponentially bounded, analytic
C-regularized semigroup (S(t))tex,, -

The following theorem presents a most valuable result with regard to regular-
ization of semigroups that are strongly continuous in ¢ > 0.

THEOREM 1.2.16. [253] Suppose A is the integral generator of a semigroup
(T'(t))e=0 which satisfies (,5o Kern(T'(t)) = {0}. Then there exists an injective
operator C' € L(E) such that A is the integral generator of a global C-reqularized
semigroup (S(t))i>0-

Let P(z) = [pij(2)lmxm, ¢ € R™ be an m x m polynomial matrix and let
Aj(x), 1 < j < m be the eigenvalues of P(z), x € R™; see [454] for the definition
of the closable operator P(A). Set k := 1+ |5, A(P(7)) := sup; ¢ <, ReA;(z),
x € R, N := max(dg(p;;(xz))) and assume that » € (0, N]. Then it is said
that P(x) is Shilov r-parabolic [138] iff there exist w > 0 and w’ € R such that
A(P(z)) € —wl|z|” +w', € R™; in the case r = N, it is also said that P(x) is
Petrovskii parabolic. In what follows, we discuss the properties of various types of
abstract Shilov parabolic systems. First of all, define

m(r) = 1<j<HriLi,n\z|:r IAj()], 7 >0, ma(r):= 1<j<1?r?}|{x|:r [Aj(z)|, »>0,

S(P) := U N
zeR™, 1<j<m
and notice that a corollary of Seidenberg-Tarski theorem (cf. [142] and [410,
Lemma 10.2]) implies that there exist real numbers a1, a2, @1 and s such that
m1(r) = a1r® (1 + o(1)) as r — oo and ma(r) = agr*?(1 + o(1)) as r — oo. Ob-
viously, r < a; < az < N and, by the proof of [410, Proposition 10.4], Shilov
r-parabolicity of P(z), for some r € (0, N], implies that there exist & > 0 and
8 € R such that {\ € C: ReX > —a|ImA|["/®2 + 8} N S(P) = 0.
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THEOREM 1.2.17. [219] Let P(x) be Shilov r-parabolic for some r € (0,N).

(i) Put k:=L(N —r)(m —1+n/2). Then the operator P(A) is the c.i.g. of a
semigroup (To(t))e>o0 of growth order k which additionally satisfies that the mapping
t— To(t), t > 0 is infinitely differentiable in the uniform operator topology and that
there exists K > 0 such that:

Hdtl o(t H<K5(1+t)m—1+%ewtl!N/’”( FtE), >0,

where w = sup A(P(z)).
rcR”
(ii) Suppose, additionally, that there exist o € (0,%] and w € R such that
o(P(z)) Cw+ (C\ Xy 24a), © € R". Then the operator P(A) is the c.i.g. of an

analytic semigroup (To(t))tes, of growth order k.

REMARK 1.2.18. Set T (t) := ('@ (1+|x[2)~"")(A), t > 0, 7' > 0. Then the
supposition (N —r)(m — 1) + NI — 2r' < —(N — r)k implies

Hdtl H KU1+ t)m1n/2e0t 15,

and the supposition (N—=r)(m—1)+ Nl—2r" € (=(N —r)k,0) implies

H { I(ll!N/rt—%((N—r)(m—1+7L/2)-‘,—Nl—27’/)7 te (0’ 1]7

H dt! KN/ (1 4 tym=t4n/2ewt ¢ > 1.

Now we focus our attention to the numerical range of P(z), defined by
nr(P(x) = {(P(x)y,y) : y €R", |y =1}, = R,

where (-,-) denotes the inner product in C™ and |y| = (y,y)"/2. Set A(P(z)) :=
sup{Rez: z € n.r.(P(z))}, x € R™.

THEOREM 1.2.19. [219] Let r € (0, N), w’ > 0 and w"” > 0.
n(N—r)

(i) Assume A(P(z)) < —w'|z|” + ", € R" and put k., = 5— Then
the operator P(A) is the c.i.g. of a semigroup (To(t))iso0 of growth order k... which
additionally satisfies that the mapping t — To(t), t > 0 is infinitely differentiable

in the uniform operator topology and that there exists K > 0 such that:

Hd Tyt H S KL IN/T (1 4 1)/2(1 4+ 4= F (V-1 BHNDY g s g,
t
where w = sup A(P(z)).
TER™

(ii) Let « € (0, 3], w € R, n.r.(P(x)) Qw—i—(C\Znga), x € R™ and let P(x)
be Shilov r-parabolic. Then the operator P(A) is the c.i.g. of an analytic semigroup
(To(t))tex,, of growth order 7;]7\[

(iii) Let « € (0,3], w € R, n.r(P(z)) € w+ (C\NXzy4), 2 € R” and
A(P(z)) < —w'|z|” + w", = € R*. Then the operator P(A) is the c.i.g. of an
analytic semigroup (To(t))ies, of growth order k...
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REMARK 1.2.20. (i) The decay rate of derivatives of (T} (t))i>0 in a neigh-
borhood of zero (cf. Theorem 1.2.19) improves the corresponding one given in the
formulation of [454, Theorem 3.2] provided 2N > (N — r)n.

(ii) Suppose p € (1,00), E = LP(R™) and set ng :=n|i — %| Then the growth
order of (Tp(t))¢>o in Theorem 1.2.17 and Theorem 1.2.19 can be slightly refined
by interchanging the term § with ng.

(iii) With some obvious modifications, the assertions of Theorem 1.2.17 and
Theorem 1.2.19 remain true in the case E = Cp(R™) or E = L>=(R").

(iv) Suppose that P(x) is Shilov r-parabolic for some r € (0, N), and denote
by X(Tp) the continuity set of the semigroup (To(t))¢>o given in Theorem 1.2.17,
resp. Theorem 1.2.19. Then X(Tj) contains R((1 + |A\2)7”') for all 7/ > 2(N —r)

X (m—1+ %), resp. ' > in(N —r) [454], and the abstract Cauchy problem
@€ C([0,00) : E™)NC>((0,00) : E™),

(ACP): ¢ @ (t) = pij(A)d(t), t >0,
@(0) = 2,
has a unique solution for all & € 3(7}), improving the corresponding result of
Zheng and Li (cf. [454, Lemma 1.2(b)]). In general, R((1 + \A|2)’T/) can be
strictly contained in X(7Tp).
(v) Semigroups of growth order r > 0 can be also applied in the analysis of
time-dependent Shilov parabolic systems ([454], [219]).

Recall that Webb considered in [427] a class of abstract semilinear Volterra
equations appearing in thermodynamics of materials with memory [74, 75]. An
insignificant modification of the proofs of [427, Theorems 2.1-2.2, Corollary 2.1]
implies the following theorem.

THEOREM 1.2.21. (i) Assume A is a subgenerator of a (local) C-regularized
semigroup (T'(t))¢cjo,r) and there exists tg € (0,7) such that:
(i.1) C7tf e CH([0,to] : ),
(i.2) C71g € C([0,t9]x D : E), where D is an open subset of [D(A)], C~1g(t, x)
is continuously differentiable with respect to t, and for each x € D there
is a neighborhood D, about x and continuous functions b : [0, t9] — [0, 00)
and ¢ : [0,tg] — [0,00) such that, for everyt € [0,to] and x1,22 € Dy:

|C~ g(t, 1) — Cg(t, ma) || < b(t)||x1 — z2l[p(ay),

0 ,_ o
|56 ot ) = 50 gl 22) | < e®)ller = @l pay-

Then, for each x € C(D), there exist a number t; € (0,ty) and a unique function
w:[0,t1] = E such that uw € C1([0,t1] : E) N C([0,t1] : [D(A)]),

(4) u'(t) = Au(t) —i—/o g(t — s,u(s))ds + f(t), t € [0,t1] and u(0) = x.

Assume further n € N, x € C(D(A")), 7 = 0o as well as (1.1) and (i.2) hold with
C~'f, C7'g, D = D, (y € D(A)), [0,t0], b : [0,t9] = [0,00) and c : [0,ty] —
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[0,00), replaced by C~"f, C~"g, [D(A)], [0,nto], by : [0,nte] — [0,00) and ¢, :
[0, ntg] — [0, 00), respectively. Then there exists a unique function uy, : [0,nt;] — F
such that u, € C*([0,nt1] : E) N C([0,nt1] : [D(A)]) and that (4) holds with u(t)
and [0, t1] replaced by u,(t) and [0,ntq], respectively.

(ii) Assume z € D, (i.1)-(i.2) hold, M > 1, w € R, | T(t)|| < Me*t, t € [0,7)
and x1, xo € C(D). Denote by uyi(t) and ua(t) the solutions of (4) with initial
values x1 and xo, respectively, and set a(t) = fot e “?(b(s)+c(s)) ds, t € [0,t1] and
B(t) = maxsep,q e “*b(s), t € [0,t1]. Then the assumption {uy(t),uz(t)} € D,
t € [0, t1] implies:

lur () = uz (D] < M(|C™ a1 — C g payeM*OHOFMIOFI 4 € [0, 1],

Furthermore, if D = D, = [D(A)], x € D(A) and Ma(t) + 8(t) + Mb(0) + w < v,
for some v € R and every t € [0,t1], then

||U1(t) — U,Q(t)H § M”O_ll‘l — C_1$2H[D(A)]€’Yt, te [O,tl].

1.3. Function spaces

In this section, we shall analyze various types of generalized function spaces
used throughout the book. We begin with the recollection of the most important
properties of operator valued distribution spaces.

The Schwartz spaces of test functions D = C§°(R) and € = C*(R) [2, 397]
carry the usual inductive limit topologies while the topology of the space of rapidly
decreasing functions S defines the following system of seminorms

DPm.n(P) 1= sup |xmw(”)(x)|, Y eS, m, ne<Ng.
z€R

By Dy we denote the subspace of D which consists of the elements supported by
[0,00). Further on, D'(F) := L(D : E), &'(E) := L(E : E) and S'(F) := L(S :
E) are the spaces of continuous linear functions D — E, £ — E and § — FE,
respectively; D (E), E(E) and S)(FE) are the subspaces of D'(E), £'(F) and §’'(E),
respectively, containing the elements supported by [0, 00). Denote by B the family
of all bounded subsets of D. Put pp(f) := sup,ep || (0|, f € D'(E), B € B. Then
pB, B € Bis a seminorm on D’ (E) and the system (pp) e defines the topology on
D'(E). The topology on &'(E), resp., S'(E), is defined similarly. Notice that the
spaces D(Q: E), E(Q: E), D'(Q: E) and £'(Q : E), where Q is an open non-empty
subset of R™, can be defined along the same lines. Let p € D satisfy ffooo p(t)dt =1
and suppp C [0,1]. By a regularizing sequence in D we mean a sequence (p,) in
Dy obtained by p,(t) := np(nt), t € R. If , ¥ : R — C are measurable functions,
we use the convolutions ¢ * ¢ and @ *q ¢ defined by

px(t) == / ot — s)1(s)ds and ¢ xq P(t) := /go(t —s)Y(s)ds, t € R.
oo 0

Notice that @ * 1) = @ *g 1, @, ¥ € Dy. Given ¢ € D and f € D', or p € £ and
f € &', we define the convolution f * ¢ by (f * ¢)(t) := f(e(t —-)), t € R. For
feD, orfor fe&, define f by f(p) = f(p(—)), ¢ € D (¢ € ). Generally,
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the convolution of two distribution f, g € D', denoted by f * g € D’, is defined by
(f *9)(p) == g(f * ), ¢ € D. Tt is well known that supp(f * g) C supp f + supp g.
We transfer the preceding notion to operator valued distributions by means of [252,
Proposition 1.1].

PROPOSITION 1.3.1. Suppose X, Y and Z are Banach spaces andb : X XY — Z
is bilinear and continuous. Then there is a unique bilinear, separately continuous
mapping *p : DH(X) x DH(Y) — D(Z) such that (S@z)*, (T®y) = SxT@b(x,y),
forall S, T € D} and z € X, y € Y. Moreover, this mapping is continuous.

We need the following structural theorems for the spaces D'(E) and S'(F)
(cf. for instance [307, Theorem 2.1.1, Theorem 2.1.2]):

THEOREM 1.3.2. (i) Let G € D'(E) and let ) # Q C R be open and bounded.
Then there exist a number n € N and a continuous function f: R — E such that

(5) G(g) = (~1)" / o (1) (1) dt,

for all ¢ € D with suppp C Q. Furthermore, if Q@ C (—o0, a) and G = 0 on
(—o0,a), then f(t) =0 fort < a.

(ii) Let G € S'(E). Then there existn € N, r > 0 and a continuous function f :
R — E such that (5) holds for all ¢ € S, and |f(t)| =|tj—oc O(|t|"). Furthermore,
if G=0 on (—o0, a), then f(t) =0 fort < a.

Let £k € N, p € [1,00] and let © be an open non-empty subset of R™. Then
the Sobolev space W*P(Q : E) consists of those operator valued distributions u €
D'(Q2: E) such that, for every i € {0,...,k} and for every multi-index o € Nj} with
|a] < k, one has D%u € LP(Q : E). In this place, the derivative D is taken in the
sense of distributions. Notice that the space W*P((0,7) : E), where 7 € (0, 00),
can be characterized by means of corresponding spaces of absolutely continuous
functions (cf. for example [27, Chapter I, Section 2.2]).

In the sequel, we assume that (M),) is a sequence of positive real numbers such
that My = 1 and that the following condition is fulfilled:

(M.1) M} < Mpi1M,_y, peN.
Every employment of the conditions:
(M.2) M, < AH? sup M;M,_;, p €N, for some A, H > 1,
0<isp
o0
M,_
(M.3) —2l oo,
— M,
p=1

and the condition
0
M,_1M,
q—1Mp+1 <

(M.3) sup 0,
peN T pMyM,

which is slightly stronger than (M.3’), will be explicitly emphasized.
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Let s > 1. The Gevrey sequences (p!®), (pP*) or (I'(1 4 ps)) satisfy the above
conditions. The associated function of (M) is defined by M(p) := sup,cy In ](’TI;,
p > 0; M) := 0. If \ € C, then we define M(X\) := M(|A]); put m, =
T
ing. We know that the function ¢ — M(t), ¢ > 0 is increasing as well as that
limy—, 00 M(A\) = 0o and that the function M (-) vanishes in some open neighbor-
hood of zero. Denote by m(\) the number of m, < A. Since (M,,) satisfies (M.1),
it follows that (cf. [207, p.50]) M(t) = t@d}x, t > 0. This implies that
the mapping ¢t — M(t), t > 0 is absolutely continuous and that the mapping
t— M(t), t € [0,00) \ {my : p € N} is continuously differentiable with M’(t) =
m(t)

==, t €[0,00) ~ {my : p € N}. The following inequalities have been proved by

Petzsche [361] and Komatsu [207]:
(i) If (Mp) satisfies (M.1), then M (a + b) < M (2a) + M (2b), a, b > 0.
(i) If (M,) satisfies (M.1) and (M.2), then there exist K > 0 and B > 0 such
that 2M(a) < M(Ha) +In(AMy), a > 0, M(La) < 3LM(a) + K, a > 0,
L>1and LM(a) < M(BY=la)+ Er,a>0, L > 1 and Ey, is a constant
depending only on L and (M),). Herein A and H denotes the constants
in (M.2).

In the remnant of this section, we assume that (M,) satisfies (M.1), (M.2)
and (M.3') (cf. [47, 64, 207] and [209] for different approaches to the theory of
ultradistributions). Recall that the spaces of Beurling, respectively, Roumieu ultra-
differentiable functions are defined by D(Mr) := DMp)(R) := ind limgecer D%M"),
respectively, DIMr} .= DIMp}(R) := ind limg cer D}M”}, where

D%M”) = proj lim,,_, D%p’h, respectively, DE(MP} := ind limy, ¢ D%p’h,

p € N and notice that, thanks to (M.1), the sequence (m,) is increas-

D;\(/f”’h = {qS € C*([R) :supp ¢ C K, [|9||ns,.n,x < oo} and
{hp|¢>(”)(f)|
M,

:teK,peNO}.
p

1@l a1, 0,5 := sup
Henceforth the asterisk * stands for the Beurling case (M,,) or for the Roumieu case
{M,}. Denote by D"*(E) := L(D*(R) : E) the space consisted of all continuous
linear functions from D*(R) into E; Df denotes the space of elements in D* which
are supported by [0, 00) whereas " denotes the space of ultradistributions whose
supports are compact subsets of [0, 00). Recall [207], an entire function of the form
P\ = Z;O:O ap P, A € C, is of class (M), resp., of class {M,,}, if there exist [ > 0
and C > 0, resp., for every [ > 0 there exists a constant C' > 0, such that |a,| <
ClP /My, p € N. The corresponding ultradifferential operator P(D) = 377 a, D?
is of class (Mp), resp., of class {M,}. We introduce the topology of above spaces
as well as the convolution of scalar valued ultradistributions (ultradifferentiable
functions) in the same way as in the case of corresponding distribution spaces.
It is well known that there exists p € D* satisfying suppp C [0,1], p = 0 and
ffcoo p(t)dt = 1. Put p,(t) := np(nt), t € R; then (p,) is said to be a regularizing
sequence in D*. In the next analogue of Proposition 1.3.1, the convolution of
Banach space valued ultradistributions is taken in the sense of [255, Corollary 3.6].
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PROPOSITION 1.3.3. Suppose X, Y and Z are Banach spaces andb : X XY — Z
is bilinear and continuous. Then there is a unique bilinear, separately continuous
mapping *p : D(X) XD (Y) — D (Z) such that (S@x)+, (T Ry) = SxTRb(x,y),
for all S, T € Dff and x € X, y € Y. Moreover, this mapping is hypo-continuous
with respect to bounded sets.

The following structural theorems for operator valued ultradistributions are
located in [130] and [209].

THEOREM 1.34. (i) Let G € D™*(E). Then, for each relatively compact non-

empty open set Q C R, there exists a sequence of continuous function (f,) in E®
such that

o0
Ga=Y_ D"fa
n=0
and that there exist K > 0 and L > 0 in the Beurling case, resp., for every L > 0
there exists K > 0 in the Roumieu case, such that sup,cgq || fn(t)]| < K%, n € N.
(i) Suppose, additionally, that (M) satisfies (M.3). Then for each relatively
compact non-empty open set  C R there exist an ultradifferential operator of *-
class and a continuous function f : Q — E such that Gio=P(D)f.

The following is a characterization of operator valued (ultra-)distributions sup-
ported by a point.

THEOREM 1.3.5. (i) Suppose G € D'(E) and supp G C {0}. Then there exist
ne€N and x; € E, 0<i < n such that G(p) = 31 6D (p)z;, ¢ € D.

(i) Suppose that (M) additionally satisfies (M.3) as well as that G € D™*(E)
and suppG C {0}. Then there exists a sequence (x,) in E such that G(p) =
S 08 (@), ¢ € D*(E) and that there exist K > 0 and L > 0 in the Beurling
case, resp., for every L > 0 there exists K > 0 in the Roumieu case, such that
lzn || < K]\L/[—Z, n € N.

The spaces of tempered ultradistributions of the Beurling, resp. the Roumieu
type, are defined in [364] as duals of the corresponding test spaces

SMp)(R) := projlim SM»*(R), resp. SMr}(R) := ind lim SM»"(R),
h— o0 h—0

where
SMrM(R) :={¢ € C°(R) : ||p|ln,,n < 00}, h >0,

ha+ﬁ

[0t = su{ 37

We also refer to [50], [69], [143], [168], [L75]-[176] and [244]-[245] for the analysis
of these spaces.
It could be of importance to stress that

DM)(R) s SMr)(R) — S(R) < L2(R) < S'(R) — & M)(R) s D' (M) (R)
and
DIMH(R) 5 SIMHR) 5 S(R) < L2(R) — S'(R) — S M H(R) s DM }(R)

(1422216 1)| : t €R, o, BENO}.
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where < means the continuous and dense embedding. The space 8*(E) consists of
all linear continuous mappings from S* into E and its topology is defined as before.
Arguing as in [364, Theorem 2|, one can prove the following structural theorem for
the space S™(E).

THEOREM 1.3.6. Let G € S*(E) and let (M,,) additionally satisfy (M.3). Then
there exist an ultradifferential operator P(D) of x-class and a continuous function
f: R = E such that supp f C (—00,0], G = P(D)f and || f(t)| < KeM®th,
t € R, for some h > 0 and K > 0 in the Beurling case, resp., for every h > 0 and
a corresponding K > 0 in the Roumieu case.

In the sequel, we employ the Paley-Wiener type theorems for ultradifferentiable
functions and infinitely differentiable functions with compact support. For further
information, we refer the reader to [207, Section 9] and [365, Section 11.6].

1.4. Complex powers of operators

Chronologically, the theory of fractional powers of operators dates from the pa-
pers [154] of Hille, who studied the semigroup formed from the fractional powers
of a bounded linear operator in 1939, and Bochner [42], who constructed the frac-
tional powers of —A in 1949. From then on, many different techniques have been
established in the framework of this theory (see e.g. [20], [24], [98]-][99], [158],
[211], [300]-[302], [335], [358]-[359], [394] and [428]). The monograph [300] is
of fundamental importance and contains the essential part of the theory of frac-
tional powers of non-negative operators including topics related to extensions of
Hirsch functional calculus, fractional powers of operators in locally convex spaces,
interpolation spaces and the famous Dore—Venni theorem.

1.4.1. Complex powers of densely defined operators. In this subsection,
we follow the approach of Straub [394] who defined the complex powers of a closed,
densely defined operator A satisfying

(1.4.1) B(y) :={2€C:2#0, |arg(z)| <7} U{0} C p(A), for some v € (0, F),
(1.4.2) |[ROA:A)| < M1+ |AD)", A€ X(y), for some M > 0 and n € Ny.

For such an operator A, Straub defined in [394] the fractional powers (—A), for
all b € C. If A fulfills (1.4.1) and (1.4.2), then one can employ the construction
given in [98] to obtain the definition of the fractional power of —A, but only for
b > 0. In general, the definitions given in [98] and [394] do not coincide; see [98]
and [358] for further information. The ideas developed in [394] can be applied to
an essentially larger class of closed, densely defined operators.

Throughout this subsection, E denotes a complex Banach space and A denotes
a closed, densely defined operator in E. Let a € (0,1), C € (0,1] and d € (0, 1];
Bi:={z€C:|z|]<d}and P,c:={+in: € (0,00), n € R, |n| < CE&*}. We
assume that A satisfies the following conditions:

(8) Py,cUBg C p(A),
(88) |IRA:A)| < M1+ |AD)% A€ P,c U By, for some M >0 and a > 0.
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Note, if P, c U {0} C p(A) and ||[R(A: A)|]| = O((1 + |A\])*), A € P,c U {0},
then there exist d € (0,1] and M > 0 such that (§) and (§§) are fulfilled. It
is worth noting that if A satisfies the assumptions (1.4.1) and (1.4.2), then for
every a € (0,1), there exist C' € (0,1] and d € (0,1] such that (§) and (§8§) are
valid (with @ = n). It is clear that there exist a great number of multiplication,
differential and pseudo-differential operators acting on LP type spaces which fulfill
(8) and (§§), but not (1.4.1). Suppose, for example, that E := L?(R) and that
A := A? — A — I with maximal distributional domain. Then the spectrum of A is
{+in: € €R, neR, n? = ¢+ 1} and, for every b € C, a slight modification of
the construction given in [394] gives the definition of (I +4A — A2)®. For further
information related to operators which satisfy (1.4.1) and (1.4.2), the reader may
consult [335, p. 158] and Subsection 2.1.1.

In Subsection 1.4.1, resp., Subsection 1.4.2 we assume that the number a > 0,
resp. & > —1, is minimal with respect to the property (§§) and employ the following
notations. Given a € (0,1), C € (0,1] and d € (0,1], put I'y(a,C,d) := {{ +in :
£>0,n€ER, n=—-C& & +n? > d?}. Tt is clear that there exists a unique
number £(a,C,d) € (0,d) such that (e(a,C,d), —Ce(a,C,d)*) € dB;. We define
Ia(a,C,d) = {&+in:€>0, n €R, 2+n* =d?, £ <e(a,C,d)} and I'3(a,C,d) :=
{E+in:€>0, neR, n=CE € +n? > d?}. The upwards oriented curve
I'(a,C,d) is defined by I'(a,C,d) :=T'1(a,C,d) UT3(a,C,d) UT's(a, C, d); put now
H(a,C,d) := {&+in: £ >0, n € R, |n| < CE*}UBy. Givend € (0,d] and a € (0, a],
one can find a suitable constant C' so that T'(a, C,d) C H(a,C,d), where we define
I'(a,C, J) in the same way as I'(a,C,d). In order to construct the complex power
(—A)P, for every b € C, we first define a closable linear operator J®. As in [394],
the construction is based on improper integrals of the form 51 [.(=A)?R(A:A) dA.

PROPOSITION 1.4.1. Let b € C satisfy Reb < —(a+1) and let x € E. Then the
integral I(b)x := 5 fF(a c d)(—)\)bR()\:A)x d\ ezists and defines a bounded linear
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operator 1(b) € L(E). Moreover, if for some a € (0,al, C e (0,C) and d € (0,d]:
I'(a,C,d) C H(a,C,d), then I(b)x = 5= fr(& éd)(—)\)bR()\:A)a: dX.
PROOF. The proof is essentially contained in that of [394, Lemma 1.1]. Note
that the function A = (—\)® (1° = 1) is analytic in C \ [0,00) and that

[(=M)8] < [A[RebemIImbl X e € {0}.

The integral over I's(a,C,d) exists since I's(a, C,d) is a finite path. By (§8§), we
obtain that there exists a constant M (a, C,d,b) > 0 such that

1 N Rebd
o /(—A)bR(A:A)xd/\ SM(a,C,CLb)HxH/ 24 O22a 4 gt
s

Is(a,C,d) e(a,C,d)

Since (t? 4 C2t2e)Reb/2pa  potReb o 1o the integral over T's(a,C,d) exists.
Similarly, the integral over I'y(a,C,d) exists. It remains to be shown that the
integral I(b) is independent of the choice of a curve I'(a, C, d). Let R be sufficiently
large and let the curve I'p = {Re' : t € [arctan(CR*!),arctan(CR*1)]} be
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upwards oriented. Then

< 2mem! b RReb(1 L RYYR — 0, R — +o0.

/(—)\)bR()\:A)x dA\

T'r

The proof completes an elementary application of Cauchy’s theorem. (]

If no confusion seems likely, we shall simply denote I'(a,C,d), H(a,C,d) and
g(a,C,d) by I, H and e, respectively.

Notice, if b € C, then Re(b — |[Reb+ a] —2) € [-(a+ 2),—(a+ 1)). Hence,
the following definition of the operator J” makes a sense.

DEFINITION 1.4.2. Let b € C. The operator J® is defined by
D(Jb) = D(A\_Reb-i-aj-‘rQ)
b I(b)x,(a+2) <Reb< —(a+1),
x =
I(b—|Reb+ a] — 2)(—A)Rebtel+2, otherwise.

REMARK 1.4.3. If a densely defined operator A satisfies (1.4.1) and (1.4.2),
then we have already seen that, for every a € (0, 1), there exist C € (0,1] and
d € (0,1] such that (§) and (§§) are fulfilled. In this case, the definition of J? is
equivalent to the corresponding one given in [394, Definition 1.2].

In what follows, we will use the generalized resolvent equation

(6) (=N)T"TTR(AA) (A = RO Az + ) (-A) T (- A)'a,
i=0

if A€ p(A), A #0, n € Ng, z € D(A"™), and the simple equality [.(—X)’d\ =0,
if Reb < —1.

PROPOSITION 1.4.4. Let x € D(AReb+al+2)  Thep:

. 7= Jo(=A)PR(A:A)zd), Reb <0,
(7) iz = 1 b—|Reb|—1 [Reb|+1
555 (=) R(X:A)(—A) xd\, Reb > 0.

PRrROOF. Suppose Reb < 0. If Reb € [—(a + 2),—(a + 1)), the conclusion
follows directly from the definition of J*. If Reb ¢ [—(a + 2), —(a + 1)), then by
Definition 1.4.2 and (6):

be — be |Reb+a]—2 (—A) |Reb+a] +2I

— % (_)\)bfLRchranQR()\:A)(_A) [Rcb+a]+2x d\
r
1 |[Reb+a]+1 A A
- (A)b<R(A:A)x + z; (A)“(A)Zx> dA.

r
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If Reb < 0and i =0,1,...,|Reb+ «| + 1, then Reb—i — 1 < —1 and the last
term equals 5 [.(=A)’R(A: A)z dX as claimed. Suppose now Reb > 0. Then (6)
implies
|Rebd]
(=A)P[RebI—1 R(x: A)(—A)Rebl+1, — ()\)b<R()\:A)m+ > (/\)il(A)ix>.
i=0
Then one gets
be — Jb— |Re b+aj—2(_A) |Re b+aj+2x

_ ZL (f)\)b*LR‘SbJFaJ*?R()\;A)(fA) |_Reb+a]+2l, d\
™
I

1 |[Reb+a+1]|

_ W\ . T DN Tt et Y z‘x
_mr( \) (R()\.A) + ; (=N H(=A) )d)\,

and since for j = |[Reb+1],...,|Reb+a+ 1], Reb—1i—1 < —1, we obtain

1 |Rebd]

— ()\)b<R()\:A)x+ > (A)il(A)ix> dX
=0

- 211

— % (—)\)b_LRebJ_lR()\ZA)(—A)LReb+1de>\.
e
T

The proof is completed. O

Put C? := (—A)LRebtal+2 jo—[Rebta]=2 Then for every b € C, C? is a closed
linear operator. Arguing similarly as in the proof of [394, Proposition 1.3], one
obtains that, for every b € C with Reb > —(a + 1), J* C C® and, consequently, .J
is a closable operator. Clearly, J* € L(E) for every b € C with Reb < —(a + 1).

LEMMA 1.4.5. Let b € C. Then the following holds:
(i) Jbw = J**Tk(—A)~*x, k € Ng, 2 € D(J?), and
(i) Jbz = J**R(—A)Fz, if —k € N and 2 € D(A™ax(=k[Rebtat2]))

PrROOF. (i) If k = 0, the proof is trivial. Suppose now k& = 1. If —(a +2) <
Reb < —(a+ 1), then Reb+ 1 < 0 and by Proposition 1.4.4, we obtain

JHH—A) e = ﬁ (=N R(A: A)(—A) T dA
T
_ % /(_A)WR(A:A)?_AS_A)_% ) = % (AP R(A: A dA.
T T

If Reb ¢ [—(a + 2), —(a+ 1)), the assertion follows from Definition 1.4.2. Now (i)
follows by induction; the assertion (ii) follows immediately from (i). O
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For b € C, denote (b) := max(0, |[Reb+ «] + 2). Note that (b+ ¢) < (b) + {(c).
The expected semigroup property of the family (J®)yec can be proved similarly as
in [394, Lemma 1.4]. More precisely, we have:

PROPOSITION 1.4.6. Let b, c € C. Then J*J¢x = J**¢x, x € D(A®+{),

If k € Nand x € D(AF), put ||z|| := ||z|| + [|Az|| + - - - + | A*¥z||. Now we will
prove the following lemma which naturally corresponds to [394, Lemma 1.5].

LEMMA 1.4.7. Let b € Z and x € D(APFe+2) Then Jbz = (—A)bx.

PrOOF. By Lemma 1.4.5(ii), it suffices to consider the case b = 1. We have to
prove that
1

2mi
r

(=N TR\ A)(—A) 2z d\ = —Ax.

By the resolvent equation, it follows that = € D(ALl**1) implies that there exists
a suitable constant M > 0 such that

IR A)z|l < MIN*L Y|z gy, A€ HUT, A >

Let R > d. Then there exists a unique number x(R) € (0, R) such that x(R)? +
C?k(R)** = R2. Denote I'r = {Re' : |0] < arctan(Cr(R)*™1)}; we assume that
' is upwards oriented. If z € D(AL**3) then A%z € D(AL®J*1) and the previous
inequality implies

M
27TERQ_I‘QJ_1”Z'”LQ+3J7 R — 0, R— +o0.

/(—A)_lR()\:A)(—A)Qx d\
T'r

The remaining part of proof follows by an application of Cauchy’s formula. O

Proceeding as in [394], one can prove that:
(i) If b € Z, then Jb = (—A)°.
(ii) If Reb > a + 1, then Jb = C°.

Now we are in a position to introduce complex powers.

DEFINITION 1.4.8. Let b € C. Then the complex power (—A)® of the operator
—A is defined by (—A)® := Jb.
The next theorem clarifies the basic structural properties of powers. See [394]
for a proof.
THEOREM 1.4.9. Let b, c € C and k € Nyg. Then we have the following.
(1) D(AReb+al+24k) 45 4 core for (—A)°.
(ii

(111

(&

(—A)re C (AP (=A)e.
A)b+c — (_ ) ( A)c’ 7 ( )b+c — Cbte,
g N(—A)P =1 (-A) (=AY =z, x € D((-A)").

)
) (=

) (=4

) (—A)® is injective.
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The following facts should be stated. If a closed, densely defined operator
A satisfies (§) and (§§) with a € [—1,0) therein, resp. (1.4.1) and (1.4.2) with
a € [—1,0) therein, then one can define the complex powers since, in this case, the
resolvent is bounded on the region P, ¢ U By, resp. X(a) U Bg. Owing to [394,
Lemma 1.8], Proposition 1.4.4 and Theorem 1.4.9(i), it can be easily seen that the
construction given in [335] and [394] (cf. for example [335, pp. 157-158]) coincide
with the construction established in this section. The former conclusion remains
true if (1.4.1) holds for some a > 0; anyway, we have that (—A)® € L(E) for all
b e C with Reb < —(a+1).

1.4.2. Complex powers of non-densely defined operators. Unless stated
otherwise, in this subsection we assume that A is a closed linear operator and that
the following conditions hold:

(8) Pa,cUBg C p(A) and
(88) IR(A:A)|| < M(1+|A)*, X € P,.c U By, for some M >0 and a > —1.

Suppose, for the time being, that a closed, densely defined operator A satisfies
(§) and (§8§) with o € [-1,0), or

(51) B(r) = {z € C: 2 £0, |arg(2)] < 7} U {0} C p(A), for some ~ € (0, 5)
and
(881) [|R(A:A)|| < M(1+ M), X € X(v), for some M >0 and « € [—1,0).

Then there exists d € (0, 1] such that | R(- : A)| is bounded on the region P, ¢UBjy,
resp. X(v)UBy. We define the complex powers of —A as in the preceding paragraph
with o = 0. Then the formula (9) holds for every b € C \ Z and z € D(ALReb1+2)
and it can be easily seen that the construction given on pages 157 and 158 of
[335] coincides with the construction established in the preceding subsection for
real values of exponents. The former conclusion remains true if (§§;) holds for
some o > 0; in any case, (—A)’ is a closed, densely defined linear operator, and
furthermore, (—A)® € L(E) if Reb < —(a + 1). Let Reb € (~1,0) and z €
D(AReb+al+2) " Then there exists y € F such that x = (—A)~LReb+al=2y and
Proposition 1.4.4 implies J’z = 2 [.(-=A)?R(A: A)(—A)~[RebFeal=2y g\ By the
resolvent equation, one easily infers that

[Rebta)+2
R(}\:A)(iA)fLRebJranQy — Z (71)[Reb+o¢J+27j/\jf[RebJranS(iA)ij
j=1
(_1)LReb+aJ+2

(8) + ROA:A)y, A e p(A)~ {0}.

" AlRebtal+2
Combined with the inequality |(—))?| < [A|RebemI ™0l X € €~ {0} and the residue
theorem, (8) indicates that, for all sufficiently small positive real numbers £, one
can deform the path of integration I', appearing in the definition of J®, into the
upwards oriented boundary of the region B, U{A € C:ReA >0, |ImA| < §}. In
such a way, we obtain that J’z = —y fooo t'R(t : A)zdt. Using Lemma 1.4.5,
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one gets that, for every b € C such that Reb ¢ Z and o € D(ALReb+al+2).

(9) (—A)bm _ sin( LRG bJ +1- b)ﬂ' 7tb[RebJ1R(t . A)(—A) LRebJ+1xdt.

™

0
Notice that the equality (9) generalizes the assertion (P2) given on page 158 of
[335]. In the case a < 0, the formula (9) holds for every b € C with Reb ¢ Z and
x € D(ALReI+2) The proof of following extension of [249, Lemma 1.5] is omitted.

LEMMA 1.4.10. Suppose o« = —1 and A is a closed linear operator. If there
exist a constant M > 0 and a sequence (A) in p(A) such that lim, .o |An| = 00
and that ||[R(An @ A)|| < M1+ [Au])*, n € N, then A is stationary dense and
n(A) < |a] + 2.

Suppose now that A is a closed, non-densely defined linear operator such that
(§) and (8§) hold. By Lemma 1.4.10, we have that n(A) < |a] + 2, and thanks
o [249, Remark 1.2(iii)], the equality D(Alel+tm) = D(Alel+7) holds for all m,
n € NN {1}. Put F := D(A™4)). By [249, Proposition 2.1], one gets that
Ajp is densely defined in F' as well as that p(A : E) = p(Ajp : F) and that
RN : Ajp)llr < |R(A:A)| . This implies:

(10) P,cUBy C p(A‘F : F) and ||R(/\ : A\F)HF < M(l + |/\|)a, PNS P,.c U By.

By the foregoing, one can construct the complex powers of the operator (— A4, Pl =

JT@ in the Banach space F'. Following the approach of Martinez and Sanz [301] for
non-negative operators, we introduce the complex powers of the operator —A as
follows.

DEFINITION 1.4.11. Let b € C. The complex power (—A)® is defined by
(=A) = (= A" (= Ap)* (= 4) .

It is straightforwardly checked that, for every A € P, cUB; and b € C, we have
(—A)P = (A=A (A )P (A—A)~ n(4) . The definition of power (—A)? coincides
with the above given definition when A is densely defined, and does not depend
on the choice of a number a > —1 satisfying (§§). Furthermore, by Lemma 1.4.10,
(—Ajp)b C (A C (—A)H+2(— A )P (—A)~1*)=2 and it is not clear whether, in
general, (—A) LO‘J“'2(—A|F)b(—A)_WJ_Q C (—A)".

THEOREM 1.4.12. Suppose b, ¢ € C and n € N. Then the complex powers of
the operator —A satisfy the following properties:
(i) (—=A)" is a closed linear operator.

(ii) (—A)? is injective.

(iii) (—A) € L(E) if Reb < —(a + 1), D(AlReb+al+2) € D((—A)), b € C,
a>0 andD(ALRebJ+2)gD(( A, beC, ae[ 1,0).

(iv) (=A)*(=A)’z =z, z € D((-A)"), (=4)~" = ((-A4)")~" and Iy C
(—A)~(=A)P 1.

(v) (A" = (=1)"A--- A n-times, (—A)™" = R(0: A)" and (—A)° = 1.
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(vi) Let x € D((—A)"*¢). Then there is a sequence (zy) in D((—A)b(—A)°)
such that
lim 2 = (—A) "Wz and Jim (— AP (=A) ez = (—A) "W (—A)Feg,
k—o00 k—o0
vii) (— —A)e C (- Caf (—Ap)°TC = €. In particular, the precedin
(vii) (AP (=A)e C (—A)Fe if (~Ap)*te = Cpe. I lar, th ding
inclusion holds whenever |Re(b+c¢)| > a+1 orb+c € Z.
(viii) Tp € (—A) P~ AP C I.
(ix) Suppose Reb ¢ Z and a > 0, resp. a € [—1,0). Then the equality (9)
holds for every x € D(AReO+al+2) “resp for every x € D(ALReI+2),
(x) Let (—A)=% € L(E). Then

D((—A)") € D((~A)%) and (~A)°z = (~A)* (= A)’z, = € D((~A)").
(xi) Let c € C and x € D(ARectal+2) Then
(11) lim(—A)bz = (—A)°z.

b—c

PrOOF. By Theorem 1.4.9;, we know that the properties (i)-(iv) hold for the
complex powers (—Ajp)? in F as well as that the powers (—Ajp)’, b € Z co-
incide with the usual powers of the operator Ap. Furthermore, (fA|F)bJrc C
(—A|p)?(—A p)°, with the equality if (—A|p)"T¢ = Cifc, and (—Ajp) b (=Ap)’ =
Ijp. The proofs of (i), (ii), (iv), (v) and (vi) follow from the corresponding proper-
ties of powers (—A4, ) and elementary definitions. We will prove the first assertion
in (iii) only in the case a € [—1,0) since the consideration is similar if a > 0.
Suppose x € E and Reb < —(a+ 1). Then n(A) = 1 and one sees directly that
(—A 1)’y = 5= [L(=NPR(\ : Ajp)ydA, y e F. Argumg as in the proof of Propo-
sition 1.4.1, one gets that the integral 5= [.(—\)?R(A:A)z dA converges. Hence,

(—Ap)(—A) 'z = 2%” (=N)PR(A: Ajp)(—A)tzdA
:2%_ (“A\)PR(A: A)(~A) "Lz dA
r
= %(—A)‘l /(—)\)bR()\:A)x d\ € D(A).

r

Hence, z € D((—A)%), (—A)’z = 3 [L(=A)’R(A: A)zd), z € E and the closed
graph theorem implies (—A)® € L(E). We will prove the second assertion in (iii)
in the case o > 0. Notice that the first part of (iii) implies D(AReb+al+2) C
D((—=A)?)ifb e C and |Reb+a]+2 < 0. Suppose |[Reb+a|+2 > 1. Then one ob-
tains inductively D(AFT™(A)) C D(Ak ), k € Ny, and consequently, (—A)""Az €
D(AlRebtatn(A)]y D(AE}EHO‘HQ) = D(J%). Taking into account the proof
of Proposition 1.4.1, the equality R(\ : A|F)(—A)’”(A)m = R(\: A)(—A)Ag,
A € p(A) and Proposition 1.4.4, one yields J%(—A)"" Yz € D(A™AY) and z €
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D((—A)?). Put n :=n(A). Then (vii) follows from the following

(AP (=A) = [(=A)"(=Ap)* (= A) (= A)" (= Ap)(=A) ]

(A (=Ap)(=Ap)e(=A) ™ C (=A)"(—Ap) (= Ajp)e(=A) ™
= (A (—Ap)tre(—A) T = (A (—AR) (= A) T = (A

N

In order to prove (ix), notice that the improper integral appearing in the formulation
of (9) still converges. Without loss of generality, we may assume that a > 0.
Suppose z € D(AReb+el+2)  Owing to the assertion (iii) and its proof, one gets
x € D((—A)®) and

(~A) D (- A)r = (~ ) (~A) "W = Jh(~A) "W
sin(|[Reb] +1 —b)m

tbfLRebjflR(t . AF)(_AIF)LReijrl(_A)fn(A)zdt

™

sin(|Reb] +1—b)m

tb—\_RebJ—l A=A [Reb]+1 —A —n(A) dt.
. Rt : A)(~ ) Reb ()0

0\8 0\8

Due to the closedness of (—A4)™4)]
sin([Reb| +1 —b)w

s

(~A)'w =

% (_A)n(A) /tb—\_RebJ—lR(t . A)(—A) I_Rebj—i-l(_A)—n(A)xdt
0

_ sin(LRebJ +1-— b)ﬂ' /tb_LRebJ_lR(t . A)(_A)LRebJ+1xdt’

s

0

as required. If A is densely defined, then the property (ix) follows directly from
Proposition 1.4.6, Theorem 1.4.9(i) and the boundedness of (—A)°~°. Assume
now z € D((—A)?) and A is not densely defined. Using Theorem 1.4.9(i) and
the equality (12) given below, one can simply prove that (—A)~'(—Ap)°=® C
(—Ap)¢~P(—A)~!. This implies (—A)* ?(=A)™F = (=A)~*F(—A)*"° k € Ny and
(=AM (—A)eby = (—A)0(=A)" Wy, y € D(AMA)). One can simply prove
that (—Ap)°~ € L(F). Hence,

(~Ap)*(=A) "Wz =

(
(

(—A)w = (A" D (=Ap) " (~Ap)" (- A) "W
(=AM (—A) (= Ap)(—A) "W
(=4) AF

b )7
—A c—b(_A)n(A)(_ )b(_A)—n(A)x — (—A)C_b(—A)b:B
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finishing the proof of (x). We will prove (xi) only in the case « > 0. Suppose first
that Rec ¢ Z. It is clear that there exists o > 0 such that |Reb+a] < |[Rec+a] for
any b € C such that [b—c| < o. This implies that (—A)z is given by the formula (12)
(cf. Remark 1.4.13 given below) in a neighborhood of the point ¢. Now the required
continuity property follows from the formula (9) and the dominated convergence
theorem. Assume Rec € Z. In the case a ¢ Ny, (11) can be proved by means of
(13) and the dominated convergence theorem. The case o € Ny can be considered
analogically. As a matter of fact, (13) and the dominated convergence theorem
imply that limy—. Rre p>Rec(—A)’z = (—A)°x. Since

1

(—A)bx — ﬁ (_)\)b—LReb-&-aJ—QR(/\:A)(_A) LRebj+a+2xd)\
0
I
_ % (_/\)b*LRCb+O‘J*2R(/\:A)(_A)*l(_A) LRCCJ+0¢+2$ d\
T
r
:/(_/\)b—[Reb+aj—3R(/\:A)(_A) LRecj+a+2I ﬂ
27
T
_ /(_)\)b—LRec—i-aj _ZR()\:A)(—A) \_Rec]+a+2x di)“’
271
r
Reb € (Rec—1,Rec), it follows that limy_,. Rep<rec(—A)’2 = (—A)°x. The proof
is completed. O

REMARK 1.4.13. (i) It is clear that the inclusion (—A)’*¢ C (—A)b(—A)e,
b, ¢ € C clarified in the previous subsection cannot be expected if the domain of
the operator A is not dense in E. The assertion (vi) quoted in the formulation
of Theorem 1.4.12 presents an interpretation of this property in the case of non-
densely defined operators.

(i) Put (—A)%, = (—A)l+2(— 4 z)(—=A)~l*)=2 b € C. Then the properties
(i)—(xi) of Theorem 1.4.12 still hold with n(A) and (—A)®, replaced by || +2 and
(—A)? | respectively, therein.

(iii) The proof of assertion (iii) of Theorem 1.4.12 implies that, for every b € C
and, 2 € D(ARebTl+2) if o > 0, resp. x € D(ALRePIH2) if o € [~1,0), we have:

S [(=A)PR(A: A)z dA, Reb <0,

27i
Ay — P
(12) (=A)’x ﬁf(—)\)b_LRebJ_lR()\:A)(—A)LRebJ+1xd)\7 Reb >0
1 —|Reb—a]— ebto
(13)  (~A)’z = 5 (=) Reb=al=2p(\: A)(— A4)Rebral+2y gy
T

(iv) Let (—A)~ € L(E) and D((—A)%) C D((—A)¢). Then (—A)*~b € L(E)
[233].

(v) Suppose that a closed linear operator A satisfies (§1) and (§§1). Then —A
falls under the scope of operators considered by Periago and Straub in [359] and
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one can construct the complex powers of —A by the use of an extension of McIntosh
functional calculus given in [359, Section 2]. It can be proved that the complex
powers constructed in this subsection coincide with those of [359].

The following definition of an (analytic) semigroup of growth order r > 0 is an
extension of the previous one given in Section 1.2.

DEFINITION 1.4.14. An operator family (7'(t))i>0 in L(E) is a semigroup of
growth order r > 0 if the following conditions hold:
(i) T(t+s)=TH)T(s), t,s >0,
(ii) the mapping ¢ — T'(t)z, t > 0 is continuous for every fixed x € E,
(iii) F"T@)|| = O(1), t — 0+ and
(iv) T(t)z =0 for all ¢ > 0 implies z = 0.
If a semigroup (7'(t))¢>o of growth order » > 0 has an analytic extension to X,
for some 7 € (0, 7], denoted by the same symbol, and if additionally there exists
w € R such that, for every § € (0,7), there exists a suitable constant My > 0 with
27T (2)]] < MseRe=, z € 5, then the family (T(2))zex, is called an analytic
semigroup of growth order r.

Notice only that we have removed the density of the set Ey := (U, T(t)E
in F from Definition 1.2.10 and Definition 1.2.11. The infinitesimal generator of
(T'(t))e>o0 is defined as before

. . T —x
G:= {(m,y) €EEXE: tlﬁu&f _y}.

By [348, Lemma 3.1], G is a closable linear operator. The closure of G, denoted by
G, is said to be the complete infinitesimal generator, in short, c.i.g., of (T'(t))¢>o-
The continuity set of (T'(t));>o0, resp. (T(2)).ex,, is defined to be the set {z € E :
limy_o4 T(t)z = x}, resp. {z € E : lim,_,0, zes,, Ty(z)x = =z for all 4" € (0,7)}.

Suppose that G is the c.i.g. of a semigroup (T'(t))s>0, resp. an analytic semi-
group (1'(2)).ex,, of growth order r > 0. Repeating literally the arguments given
in [348] and [398] (cf. also [324, Section 5]), one gets that the conditions (I), (II)
and (IV) quoted in the formulation [348, Theorem 1.2], resp. (b2), (b3) and (b4)
quoted in the formulation [398, Theorem 3], remain true if the denseness of Fy in
E is disregarded. It is an open problem whether such conditions are sufficient for
the generation of non-dense (analytic) semigroups of growth order r > 0. Further
on, suppose that (7'(z)).ex, is an analytic semigroup of growth order 7. It is clear
that, for every 0 € (0,7), (T(te?))¢>o is a semigroup of growth order r > 0. With
the help of C-regularized semigroups, one can prove that the integral generator of
(T(te™))¢=0 is always €?@ and that the c.i.g. of (T(te));>¢ is €?’G whenever E
is dense in E or r € (0,1) (cf. also [466, Theorem 1]). Unfortunately, it is quite
questionable whether the last assertion remains true if Ey # E and r > 1.

THEOREM 1.4.15. Let b € (0,3) and let A be a closed linear operator with not
necessarily densely defined domain. Then the operator —(—A‘F)b is the c.i.g. of an

analytic semigroup (Ty(2)) of growth order *f*, where

2€X3arctan(cos wb)
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= omi

(14) Ty(2) : e * N R(A: A) X, 2 € Sarctan(cos nb)-

r

Furthermore, the integral generator of (Ty(2))z€Sucianceos sy 5 Just the operator
—(—A)LO‘J”(—A‘F)Z’(—A)’L“J’Q; in particular, —(—A)® C G and —(—-A)® = G
if D(A) is not dense in E and a € (—1,0).

PROOF. The choice of b implies br < 7. Put vy := arctan(cos7b). Then
v € (0, ) and, for every z = { +in € ¥, we have £ cos(br) —[n| > 0. Furthermore,
le==(=N)"| = ¢€IAI" cos(barg(=A)+nlA|" sin(barg(-A) < = (Ecosbm=DIA"  Without
loss of generality, one can assume that ¢ € (0,1). The convergence of the curve
integral over I'y and I's follows from the computation

1

2mi

/e‘z("\)bR()\:A) A

Iy

< M [ —(cosom)—ln)vEFEE (1+VETE) (14 ar

S oor

£

1
a—1
< % l/ e_(gcos(bw)—lnlﬂb(1+\/§)adt

€

+/e(scos<bw>|n|>t”(1+\/§)atadt]
1

M(1+v2)%(1+as*?)
2m

N

[(1 _ e)e-(€costom)—lne’ 4 /e—(écoswﬂ)—n)tbtadt}
0

a —1

2 1 1 at1
n EP(O‘Z )(gcos(zm) _ |n|)—b}

The convergence of the integral over I's is obvious and one obtains

o | € RO | < e G g g,
s

T

Hence, for every & € (0,7), we have ||z% Tj(2)|| = O(1), z € Ss. By an elementary
application of Cauchy’s formula, it follows that the integral in (14) does not depend
on the choice of a curve I'(a, C, d). Denote by €2;(A), resp. 23(A4), the continuity set
of (Ty(2)):zex, , resp. (Ty(t))¢>0. Fix a number Ao € p(A)~\ H. Here we would like to
point out that p(A) \ H is a nonempty set since p(A) is an open subset of C. Using
the same arguments as in [394, Proposition 2.3, Proposition 2.5, Proposition 2.6,
Proposition 2.7 and Proposition 2.8], one obtains:
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1. Let m € {0,1} and +" € (0,7). Then the improper integral

_(_/\)mbe—z(—)\)b .
/ A ROA) 4

converges uniformly for z € Eipy/
2. The mapping z — Ty(z), z € ¥ is analytic and
d’n
dzm

Ty(z) = (;2 /(-A)nbe*zH)”R(A:A) d\, neN.
T

3. Tb(Zl + Zg) = Tb(Zl)Tb(ZQ), 21,29 € E"/'

4. D(AHel+ly € Oy (A), if [b+af > 0.

5. 1f [b+a) <0, 2 € D(AT+2) = D(J*) and 4’ € (0,7), then

m  @roT 1 /(—A)b_lR(A:A)A:cd)\.
z—0, 2€X z 2w
r

6. For every z € ¥, Ty(2) is an injective operator.

By the foregoing, we obtain that (7(z2)).cx, is an analytic semigroup of growth
order O‘TH Suppose, for the time being, that A is densely defined and denote by
Ay the generator of (Ty(t))¢>0. By 4, we obtain that —J” C A;. Consequently,
—(—=A)" C A,. Since [}, e * (N APdA =0, n € Ny, 2z € 3., one can repeat literally
the arguments given in [394, Lemma 2.10] in order to obtain that, for every = € F
and z € ¥, Ty(2)xr € D(A™) and
(15) ATy (2)x = zim e 2N AP R(A: A)z dA.

r

To prove that A, € —(—A)®, one can argue in the same manner as in [394]. Ac-
tually, it is enough to replace the natural number n in the proofs of [394, Proposi-
tion 2.11 and Proposition 2.12] with [b+ . Suppose now D(A) # E. Denote by G
the infinitesimal generator of (74(2)).ex, and put Sy(2)x := Ty(2)x, z € ¥, x € F.
Since Ty(z)z € Doo(A), 2 € X, € E, we obtain that Sy(z) € L(F), t € X,.
Furthermore, for every A € p(A), we have R(\: A)D(A™)) C D(A*A+1) and
R(A:A)F C F. Hence, R(\:A)x = R\ : Ajp)z, v € F, A€ p(A: E) =p(Ajp: F)
and

1
Sp(2)x = Tp(2)x = 37 e_z(_)‘)bR()\:A)x X
™
r
1
(16) =5 [ VRO Ap)eds, 2 € F 2 €%,
T

r

Since A is densely defined in F' and satisfies (10), one can apply the first part
of the proof in order to see that —(—A‘F)b is the c.i.g. of an analytic semigroup



38 1. INTRODUCTION

(55(2)):zex, of growth order <L in F. If x € D(G), then limy_,o4 Ty(t)z =z € F,
and consequently, Gx € F. With this in view, one immediately gets:

. Syt —x
Gz{(x,y)EFXF:tgrOn_F%:y}.

We will prove that —(—A)" is the integral generator of (T}(2)).ecx, only in the case
of non-densely defined operators. Since, by (ii), U R(Ty(2)) € Doo(A), the
following equivalence relation is obvious:

= QL (=N " IR(X: A)ATy(s)z dX for all s > 0.
i

r

Z2E€3y
(17)  (z,y) € G iff Ty(s)y

Let (z,y) € D((—A)®) and n = |a] +2. Then (—A) "y = (—A4r)*(—4) "z
and this implies the existence of a sequence (z,,,y,) € Jlbm such that lim,, o , =
(—A)"x and lim,, 00 Joz, = (—AfF)(—A)”x‘ Keeping in mind (15), we infer that,
for every s > 0:

1 . bt N
(—A)"Th(s)y = 5 lim [ (=N 2T (5 RO App) () ) P+ 20,00
I
= zim Tim [ (=Nl RO A) (—A) P T (5)d
N

_ 1\ |btal+2
= % lim (=A)P Ll =2 R(X: A)
T n— oo
r

1
X [Qi/es(@bgWJ“R(g s A)Ty(s)2ndE dX|.
T
I

Using the dominated convergence theorem, one can continue the computation as
follows:

1
=5 (=)l =2 RN A) (—A) P+ 2T (5) (—A) T dA
T
1
=5 (=A)™ / (=M =2R(X: A) (= A) T2 Ty )z dN, s > 0.
s

r

The injectiveness of (—A)~" yields (17) and —(—A)® C G. Next, we will show
that D(Al*1+2) C Q,(A). If b+ a > 0, the proof is obvious; suppose b+ a < 0,
~" € (0,v) and Ao € p(A) \ H(a,C,d). Then |[a] +2=1 and

1

Ty(2)(~A) o — (~A)re = e FCN RONA)(—A) Lz dh — (—A) e
e
T
1 b b
— —z(=X) . _ —1 _—z(=X0)"(_ —1
%/e ROVA)(—A) "z dA— e (— )z

r F e (M (—A) e — (—A) ]
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|~

_ L ez(A)l’[R(,\;A)(—A)15”_(;{)/\:5r

}d)\
m

[\

+ [ P () e — (—A) g

(1) [ . ap[RO:A)z  No(—A) 'z
i [P R

+ [e_Z(_)‘O)b(—A)_lx _ (—A)_lx],

for all z € 3, and x € E. The preceding equality combined with the residue the-
orem, the inequality |e_z(_>‘)b| < e~ (Rezcos(bm)—[Im 2N a1d the dominated con-

vergence theorem, indicates that lim, o, .ex Ty(2)(—A)tx = (-A) "'z, v € E
and that D(A) C Q,(A). Then it is checked at once that G is the the integral
generator of an exponentially bounded, analytic (—A)~"-regularized semigroup
(Sb(2) = Tp(2)(=A)™™") 5, - The assumption (z,y) € G implies

Ty(t)(—A) "z — (—A) "z

: _ -n o -n o b
tg%:_ n *( A) Y, ( A) ‘TG( A\F)a

(=Ajp)"(=A) "z = (=A)""y € D(A").

Thereby, 2 € D((—A)?), (—A)’z = y = Gz and the proof is completed. O

THEOREM 1.4.16. Let n € N, n > 3 and let A be a closed operator which
satisfies (§) and (8§). Suppose |0 < arctan(cos T). Then, for every x € Q1 (A),
the abstract Cauchy problem

u € C((0,00) : [D(A)]) N C"((0,00) : E),
(P) : %u(t) = (=1)" e Au(t), t > 0,
limy 04 u(t) =, supsg [Ju(t)]] < oo,

has a solution u(t) = Ta(te)x, t > 0. Furthermore, u(-) can be analytically
extended t0X . ctan(cos =)—|0| and, for every § € (0,arctan(cos ) — |0]) and i € Ny,

) dt
sup Zz-l—noc—i—nii
2€Xs dz

u(z)H < 00.

PrROOF. We will prove the theorem only in the case # = 0. One can use
the assertion 2 used in the proof of preceding theorem and (15) to obtain that
(Z—Zu(t) = (=1)""tAu(t), t > 0. By Theorem 1.4.15, u(-) can be analytically
extended to arctan(cos =)- Due to the proof of Theorem 1.4.15 (see the assertion 3),
we easily infer that lim; o4 u(t) = x. Let us fix a number ¢ € (0,arctan(cos 7))
and a number z € Y. Since
¢ - C

211

/ (=N /e =NV RN A) d),
I

and [|(=\)% R(A: A)z|| < M(1+|A|)** %, it follows (see the proofs of Theorem 1.4.15
and [394, Proposition 2.2]) that
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dt _ati/ntl
Hdzlu(z)‘ = O((fcos(ﬂ/n) —Inl) 7 ), z € Xs.
Hence, sup_ ¢y, ||zi+"a+"%u(z)|| < 00, as required. O

REMARK 1.4.17. (i) [394], [358] Suppose A is a closed operator as well as
(1.4.1) holds and (1.4.2) holds with n replaced by « therein. Let b € (0, ﬁ) (in

particular, this holds good for b € (0, 3]) and let

1
Ty(t) == — / e N RONA) AN, te Sarctan(r(b—a))s

211
r

where T' is upwards oriented boundary of Q,q = {z € C : z # 0, |arg(z)| €
(—a,a)} U Bg. Then, for every t € Yarctan(r(v—a))> L1p(t) is an injective bounded
operator and (7,(%))teS,,ciun(r(s_a) 15 an analytic semigroup of growth order ofl
Using the above conclusions, one can simply reformulate Theorem 1.4.15 in the case
n = 2; in this case, the uniqueness of solutions of the abstract Cauchy problem (P,,)
holds provided n(A) < 1 ([233]).

(ii) Suppose that A is a closed linear operator and that there exist M > 0 and
a € (—1,0) such that [0,00) C p(A) and ||[R(A: A)|| < M(1+|A])%, A = 0. Then the
usual series argument implies the existence of numbers C' > 0, d € (0,1] and M’ > 0
satisfying P_,.c U By C p(A) and ||[R(A: A)|| < M'(1+|\)* X € P_oc U Bq.
By Theorem 1.4.15, one obtains that, for every b € (0, 3), the operator —(Alm)b
generates an analytic semigroup (T5(2))zex,,counceos np) Of growth order 2. Hence,
(Pn) has a solution for every n € N~ {1,2} and = € Q1 4(A).

(iii) In general, D(AL%"’O‘JH) is strictly contained in Q1 4(A) ([358]).
(iv) The c.i.g. of (T3(2)).ex, can be strictly contained in the integral generator
of (Ty(2))zex, for all b € (0, 3). Indeed, suppose that —A is a non-densely defined

positive operator and denote by (—A)? the complex power of —A in the sense
of [300, Section 5]. By [300, Theorem 5.2.1, Corollary 5.1.12(i)], we have that

—

Y b _ . b b
(AP = *A(*A|7D(A)) (7/2_1\ Obviously, (fA‘iD(A)) = (f A\T(A)) , b€
(0,1) and this implies that (—A)> = (—A)®, b € (0,1). On the other hand, it

’ 9 )9
is clear that A satisfies (§;) and (§§;) with some a € (—1,0) and the claimed

assertion follows by making use of [300, Corollary 5.1.12(ii)], which asserts that
b
( - A|D(A)) 7& (_A)ba be (Oa %)
Assume now that a closed, possibly non-densely defined operator A satisfies:
(©) (0,00) S p(A)  and  (00) supyso(1+[A)T*[R(A: A)|| < oo,
for an appropriate constant o > —1. The complex power (—A)?, b € C has been
recently constructed in [233] following the above described method. First of all,

notice that the usual series argument implies that, under the hypotheses (¢) and
(00), there exist d € (0,1], C € (0,1), € € (0,1] and M > 0 such that:

(@) Poz,s,C ) Bd - ,O(A), (57 C(l + 6)7(1) € ade
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(®0) IRA:A)| < M1+ MDY A€ ParecUBq.
Put
[i(a,e,0)={{+in:{>e, n=-C(1+& "},
Ty(a,e,C) = {6 +in: € +n° =d°, £ <e},
[3(a,e,0)={{+im:§2e, n=C(1+& “}.

The curve I'(a, €, C) :=T'1(a, e, C)UT2 (e, e, C)UT'3(av, €, C') is oriented so that Im A
increases along I's(a, €, C') and that Im A decreases along I'y (o, €, C) and I's (v, €, C').
Suppose for a moment that A is densely defined and that o > 0. Using the
arguments given in the proof of Proposition 1.4.1, we have that, for every b € C

with Reb < —(a + 1), the integral 1(b) := 5 Jrtee C)(—/\)bR()\:A) dX exists and

27

defines a bounded linear operator. Let b € C. Then the operator J? is defined as in
Definition 1.4.2. Arguing as in the proof of Proposition 1.4.4, we have that (7) holds
for all x € D<A|_Reb+aj+2) _ D(Jb) Put Cb = (_A)|_Reb+ocj+2beLReb+aj72.
Then, for every b € C, C? is a closed linear operator which contains J” and one can
prove that C® = J, if |Reb| > a+ 1 or b € Z. The complex power (—A4)®, b € C
is defined by (—A)® := Jb and coincides with the usual power of the operator A if
b € Z. 1t is worthwhile to note that the assertions of Lemma 1.4.5, Lemma 1.4.7,
Proposition 1.4.6 and Theorem 1.4.9 as well as the equality (9) still hold in the case
of operators satisfying (¢) and (0¢). Suppose now that a closed, densely defined
operator A satisfies (¢) and (0¢) with @ € [-1,0). Then it is clear that |R(- : A)||
is bounded on the region P, . c U Bg. We define the complex powers of —A by
assuming that a = 0. Then, as before, (—A)” is a closed, densely defined linear
operator and (—A)” € L(E) provided Reb < —(a + 1). Fix a number a > —1
satisfying (00). Then the construction of powers of densely defined operators does
not depend on the choice of numbers d € (0,1], C € (0,1), € € (0,1] and M > 0
satisfying (®) and (©®). Furthermore, supy-o(1 + [A|)"?|R(\: A)|| < oo for all
B € o, 0), and the construction of powers of densely defined operators does not
depend on the choice of such a number 5. If A is not densely defined and satisfies
(0)-(00), then we define the power (—A)® and the operator (—4)% (b € C) as
in Definition 1.4.11 and Remark 1.4.13(ii), respectively. Then the assertions of
Theorems 1.4.12, 1.4.15, 1.4.16 and Remark 1.4.13 continue to hold in the case
of operators satisfying (¢) and (0¢). Finally, suppose that (¢) and (0¢) hold
with a > 0. Set T(t) := (—A)*(—A)~l*J=2 t € R. Then the closed graph theorem
implies T'(t) € L(E), t € R, and by Theorem 1.4.12(xi), we obtain that the mapping
t — T(t)x, t € R is continuous for every fixed x € E. One can simply prove that
(T(t))¢er is a global (—A)~l*=2regularized group. Denote by B the integral
generator of (T'(t))ier. The logarithm of —A, denoted by log(—A), is defined by
log(—A) := —iB. Clearly, the definition of log(—A) is independent of the choice of a
number « > 0 satisfying (¢) and (00), and +ilog(—A) are the integral generators
of local (—A)~l*J=2_regularized semigroups. For further information concerning
operator logarithms, we refer to [46], [73], [89], [113], [146], [264], [341], [350]
and [443].






CHAPTER 2

CONVOLUTED C-SEMIGROUPS
AND COSINE FUNCTIONS

Throughout this chapter, F and L(F) denote a non-trivial complex Banach
space and the Banach algebra of bounded linear operators on E. For a closed
linear operator A acting on E, D(A), Kern(A), R(A) and p(A) denote its domain,
kernel, range and resolvent set, respectively. We assume henceforth C' € L(E) and
C is injective; recall, the C-resolvent set of A, denoted by pc(A), is defined by
pc(A) :={A e C:R(C) CR(A— A) and X — A is injective}. From now on, D(A)

is equipped with the graph norm ||z||;p(ay := ||z[| + [|Az||, z € D(A); 7 € (0, 00],
Kisa complex—valued locally integrable function in [0,7) and K(+) is not identical
to zero. Put O(t fo s)ds and ©~ fo s)ds, t € [0,7); then ©(-) is an
absolutely contmuous functlon in [0,7) and @’( ) K(t ) for a.e. t € [0, 7). Let us

recall that a function K € L] ([0,7)) is called a kernel if, for every ¢ € C([0,7)),
the assumption fot K(t—s)¢p(s)ds=0,t € [0,7), implies ¢ = 0; due to the famous
Titchmarsh’s theorem [14], the condition 0 € supp K implies that K is a kernel.
We use occasionally the following conditions:
(P1) K is Laplace transformable, i.e., K € Lloc([O, o0)) and there exists 8 € R
so that K(\) := L(K(t))(\) := limy_ o0 fo e ME(t)dt = [T e MEK(t) dt
exists for all A € C with Re A > 3.
Put abs(K) :=inf{Re \ : K(\) exists}.
(P2) K satisfies (P1) and K()\) # 0, Re A > 3, where 8 > abs(K).

2.1. Definitions and main structural properties

DEFINITION 2.1.1. [61], [228]-[230] Suppose A is a closed operator, K €
L ([0,7)) and 0 < 7 < co. If there exists a strongly continuous operator family
(S (t))ieo,r) (Sk(t) € L(E), t € [0,7)) such that:
(i) Sk(t)A C ASk(t),t€[0,71),
(i) Sk(t)C = CSk(t), t €0, ’7') and
(iii) for all z € F and t € [0,7) fo Sk (s)xds € D(A) and
t
(18) A/SK(s)x ds = Sk (t)x — O(t)Cx,
0

then it is said that A is a subgenerator of a (local) K -convoluted C-semigroup
(Sk(t))tefo,r)- If T = oo, then it is said that (Sk(t)):>0 is an exponentially bounded,

43
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K -convoluted C-semigroup with a subgenerator A if, in addition, there are constants
M > 0 and w € R such that ||Sk(t)|| < Me*t, t > 0.

DEFINITION 2.1.2. [228]-[230] Suppose A is a closed operator, K € L{. ([0, 7))
and 0 < 7 < oo. If there exists a strongly continuous operator family (Cr (t))¢ejo,7)
such that:

(i) Cx(t)A C ACk(t), t € [0,7),
(ii) Cx(t)C = CCk(t), t € [O 7) and

(iii) for all z € E and t € [0,7) fo (s)zds € D(A) and
t
(19) A/(t Ok (s)z ds = Cre(t)z — O(t)Cr,
0

then it is said that A is a subgenerator of a (local) K -convoluted C-cosine function
(Ck(t))tefo,r)- If T = oo, then it is said that (Ck (t))¢>0 is an ezponentially bounded,
K -convoluted C-cosine function with a subgenerator A if, in addition, there are
constants M > 0 and w € R such that ||Ck(t)]] < Me*t, t > 0.

Plugging K (t) = u( ) in Definition 2.1.1 and Definition 2.1.2, where o > 0, we
obtain the well-known classes of fractionally integrated C-semigroups and cosine
functions; in the case C' = I, we obtain the classes of K-convoluted semigroups and
cosine functions.

The integral generator of (Sk(t))icjo,r)» resp. (Ck(t))tcjo,r), is defined by

{(x,y) €EXE:Sg(t)r—0()Cx = /SK(s)yds7 te [077)}, resp.,
0

¢
{(x,y) €EEXE:Cg(t)r—0()Cx = /(t —5)Ck(s)yds, t € [077')}.
0

The integral generator of (Sk (t))¢cjo,7), resp. (Ck (t))te[o,r), is a closed linear opera-
tor which is an extension of any subgenerator of (S (¢ ))te[QT) resp. (Ck (t))tejo,r)-

In what follows, we designate by ©(Sk), resp. p(Ck), the set which consists of
all subgenerators of (Sk (t))ef0,r), resp. (Ck (t))ieo,r)- It is well known that such
sets can be consisted of infinitely many elements [228 422]; before illustrate these
facts, we clarify the following proposition which can be simply justified with the
help of Proposition 1.1.2 and Proposition 1.1.5.

PROPOSITION 2.1.3. Let A be a subgenerator of a (local) K-convoluted C'-
semigroup (Sk (t))iefo,r), resp. K-convoluted C-cosine function (Ck (t))iejo,r), and
let H € Li ([0,7)) satisfy H xg K # 0 in L. ([0,7)). Then A is a subgenerator of
an (HxoK)-convoluted C-semigroup ((HxoSk)(t)) resp. (HxoK)-convoluted

C-cosine function ((H o C)(t))

tel0,7)’
tel0,7) "

For example, if (S(t)):co0,r), resp. (C(t))iefo,r), is a (local) C-semigroup, resp.
C-cosine function, with a subgenerator A, define Sk (t)z := fot K(t — s)S(s)xzds



2.1. DEFINITIONS AND MAIN STRUCTURAL PROPERTIES 45

and Ck (t)x := fot K(t —s)C(s)rds, x € E,t € [0,7). Then (Sk(t))ic[0,r), resp.
(Ck(t))tefo,r), is a (local) K-convoluted C-semigroup, resp. K-convoluted C-cosine

function with a subgenerator A.
EXAMPLE 2.1.4. (a) [422] Let E:=1?, n € N,

——
Clxy) = (0,...,0,21,72,...) and S(t) := €'C, t > 0, (v}) € E.

Then (S(t))>0 is a global exponentially bounded C-regularized semigroup with the
integral generator I and |p(S)| = 2".

(b) [228] Choose an arbitrary K € Li _([0,00)). Put E := [*°, C{x,) =
(0,21,0,22,0,z3,...) and Ck (t){x,) = O)C{x,), t >0, (x,) € E. I C 2N+1,
define Ey := {(z,) € E : x; =0 for all ¢ € (2N+ 1)\ I}. It is clear that Ey is a
closed subspace of E which contains R(C') and that Er, # Ey,, if I} # I5. Define a
closed linear operator Ay on E by D(Aj) := Er and Aj{x,) :=0, (z,) € D(A4;). It
is straightforward to see that, for every I C 2N+1, A; is a subgenerator of the global
K-convoluted C-cosine function (Ck (t));>0 and that p(Cx) = {A; : I C 2N+ 1}.
This implies that there exist the continuum many subgenerators of (Cx (¢))¢>o0.

Suppose A is a subgenerator of a K-convoluted C-cosine function (Ck ()):e0,7)-
Then CA C AC; in order to verify this, suppose z € D(A), t € [0,7) and O(t) #
0. Combining the closedness of A with the conditions (i) and (iii) quoted in the
formulation of Definition 2.1.2; it follows that

Ck(t)Az — O(t)C Az = A/(t —8) O (s)Axds = A? /(t — 8)Ck(s)xds
0 0
= A(Ck(t)z — O(t)Cx).

Since Ck(t)x € D(A) and ©(t) # 0, we immediately obtain Cxz € D(A) and
CAx = ACx. The same conclusion holds if A is a subgenerator of a K-convoluted
C-semigroup (Sk (t))eo,r); in this chapter we always assume that CA C AC.

The following composition property of local convoluted C-semigroups follows
from the argumentation given in the proof of [275, Proposition 2.4] (cf. also [61]
and [230, Proposition 5.4]); notice only that the equality

@(S)@(tf.s)7/K(t77‘)@(T’)d7‘+/K(t77’)6(T)d7’:O, 0<t<T,0<s<t
t—s 0

implies that the coefficient of C?x appearing in the proof of [275, Proposition 2.4]
equals zero.

PROPOSITION 2.1.5. Assume A is a subgenerator of a (local) K -convoluted C'-
semigroup (Sk(t))iefo,-)- Then the following holds:
t+s t s

(20) Sic(t) Sic(s)a = [ / - / - /

K(t+s—1r)Sk(r)Cxdr,
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for everyx € E and t, s € [0,7) witht+s < 7. Hence, Sk (t)Sk(s) = Sk (s)Sk(t)
forallt, s €[0,7) witht+s < 7.

The following proposition is a generalization of [230, Proposition 5.5(3)—(4)],
[422, Corollary 2.9, Proposition 3.3] and some results given in [228, Section 2].

PROPOSITION 2.1.6. Assume A is the integral generator of a (local) K -convol-
uted C-semigroup (S (t))iecjo,r) and {A, B} C p(Sk). Then:
(i) A=C1AC € p(Sk).
(i) C*AC = C~'BC, C(D(A)) € D(B) and A C B < D(A) C D(B).
(iii) If A # A, then p(A) =0
(iv) For every A € po(A):
(21) A= A)"LCSk(t) = Sk(t)(A— A)~IC, t € [0, 7).

v) A and B have the same eigenvalues.

)
(vi) If A C B, then pC(A) C pc(B).
(vii) |p(Sk)| =1, if C(D(A)) is a core for A.
(viii) Az = Bz, v € D(A) N D(B).
(ix) Define the operators AN B and AV B as follows: ANB = (A + B),
D(A Vo B) :=span[D(A) U D(B)] and
AV B(ax + by) := aAx + bBy, x € D(A), y € D(B), a, beC.

Then A Vg B is closable and {AN B, AV B} C ©(Sk), where AV B :=

AVvo B
PRrROOF. Obviously, CA C AC, A C C~'AC and C'AC is closed. As-
sume (z,y) € A, ie., Sk(t)x — O(t)Cx = fo Sk (s)yds, t € [0,7). Thereby,

Afot Sk(s)xds = fo SK Jyds, t € [0,7), which simply implies Sk (¢t)z € D(A),
ASk(t)r = Sk(t)y and A[O(¢)Cx + fo Sk(s)yds] = Sk(t)y, t € [0,7). Since
fo Sk(s)yds € D(A), t € [0,7) and © # 0 in C([0,7)), one gets Cx € D(A)
and O(t)ACz + Sk (t)y — ©(t)Cy = Sk(t)y, t € [0,7). This implies ACz = Cy,
(z,y) € C"'AC and A C C~'AC. Clearly, f(f Sk(s)rds € D(A) C D(C~1AQ)
and C~1AC fot Sk(s)rds = Afot Sk(s)xds = Sk(t)x —O(t)Cx, t € [0,7), z € E.
Suppose now z € D(C~'AC) and ¢t € [0,7). Since Cz € D(A) and Sk (t)A C
ASK(t), one obtains CSk (t)z = Sk (t)Cx € D(A) and ACSk(t)r = ASk(t)Cx =
Sk(t)ACx = Sk (t)C[C~1AC)x = CSK(t)[C71AC)x € R(C) and [CTTAC]Sk (t)x
= Sk (t)[C7tAC]x. So, Sk (t)[C~LAC] C [C~LAC]SKk(t), C~TAC is a subgenera-
tor of (Sk(t))iefo,r) and C~1AC C A. Therefore, A = C~*AC and the proof of (i)
is completed; (ii) and (iii) follow automatically from (i). To prove (iv), assume A €
pc(A),t€[0,7)and z € E. Then (A\—A)"'Cx € D(A), Sk (t)(A—A)"1Cz € D(A)
and (A—A)Sk(t)(A\—A)"1Cz = Sk (t)(A—A)(A\—A)"1Cz = Sk (t)Cz = CSk(t)z.
This gives (21). To prove (v) and (vi), observe only that Kern(A—A) C Kern(A—A)
and that C~'BC = A implies C’(Kern()\ A)) C Kern(A—B), A € C. Suppose now
A€ p(Sk), z € D(A) and C(D(A)) is a core for A. Let (x,,) be a sequence in D(A)
such that lim,, .o Cz, = z and lim,,_ o, ACz, = Az. Since c(D (A)) C D(A),
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we obtain that limy, s 00 Cx, = x and limy, s 0 ACx,, = Az. The closedness of A
implies « € D(A), D(A) C D(A) and A = A. The proofs of (viii) and (ix) are left
to the reader. [l

REMARK 2.1.7. There exist examples of local C-regularized semigroups and
local C-regularized cosine functions whose integral generators possess the empty
C-resolvent sets [275]. Moreover, |p(Sk)| = 1 provided C' = I [227].

Assume (Sk(t))tejo,r) is a (local) K-convoluted C’—semigroup and K is a ker-
nel. By [230, Proposition 5.5], Sk (t)Sk(s) = Sk(s)Sk(t), 0 < t, s < 7 and
(Sk(t))tefo,r) is uniquely determined by one of its subgenerators.

REMARK 2.1.8. (i) Define the operator A; by

(Al {Z/SK $kd$ zp € F, tkE[O 7') k’=1,...7m}’

k10

< /SK S)xk ds) = zm:(S(tk)xk - @(tk)ka).

k=1Y)

It is straightforward to verify that A; is well-defined and closable. Suppose, addi-
tionally, 7 = oo or K is a kernel. Then Sk (t)Sk(s) = Sk(s)Sk(t), t, s € [0,7)
and this enables one to see that: Sk (t)(D(A1)) € D(A1), Sk(t)A1 C A1Sk(¢),
Sk (t)A; C A1Sk(t), t €[0,7) and A; € p(Sk). Certainly, A; C A, if A € p(Sk).

(ii) It can be proved that (p(Sk),A,V) is a complete lattice whose partial
ordering coincides with the usual set inclusion and that p(Sk) is totally ordered iff
p(Sk)| < 2 [422].

(iii) Suppose |p(Sk)| < oo. Arguing as in [422, Section 2], one can prove
that (p(Sk), A, V) is a Boolean lattice; this implies the existence of a non-negative
integer n satisfying |p(Sk)| = 2™.

The following extension type theorem for local convoluted C-semigroups essen-
tially follows from the analysis obtained by Ciorénescu and Lumer in [61] (cf. also
[5], [216] and [275] for some special cases).

THEOREM 2.1.9. Let A be a subgenerator of a local K -convoluted C-semigroup
(Sk(t))tefo,r), To € (5,7) and let K = Kl‘ o.ry for an appmprz'ate complez-valued
function Ky € Li _([0,27)). (Put O1(t fo Ki(s)ds and ©F fo O1(s
t €10,27); since it makes no mzsunderstcmdmg, we will also wrzte K, © and @ 1
for Ky, ©1 and ©7 L respectively, and denote by K %o K the restriction of this
function to any submtem}al of [0,27').) Then A is a subgenerator of a local (K g

K)-convoluted C?-semigroup (Sk ok (t))ieo,2r), where: Skyox (t)x = ng t
x Sk (s)Cxds, t € [0,79] and

SK*OK(t)I':SK(T())SK(t—To).Z‘—l- (/ +/>K(t—T)SK(T)C.TdT,
0 0
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for any t € (10,2710) and x € E. Furthermore, the condition 0 € supp K implies
that A is a subgenerator of a local (K *q K)-convoluted C?-semigroup on [0, 27).

COROLLARY 2.1.10. Suppose a > 0 and A is a subgenerator of a local a-times
integrated C-semigroup (Sa(t))icjo,r)- Then A is a subgenerator of a local (2a)-
times integrated C*-semigroup (Soq (t ))te(o,2r) -

We need the following useful theorem which enables one to clarify several im-
portant characterizations of (local) convoluted C-cosine functions by a trustworthy
passing to the corresponding theory of convoluted C-semigroups; notice that one
can relate (local) C-regularized cosine functions and (local) once integrated C-
regularized semigroups analogically.

THEOREM 2.1.11. Suppose A is a closed operator, 0 < 7 < oo and K €
Ll ([0,7)). Then the following assertions are equivalent:
(i) A is a subgenerator of a K -convoluted C-cosine function (Ck (t))ie[o,r) in E.
(ii) The operator A := (g 6) is a subgenerator of a ©-convoluted C-semigroup
(Se(t))ieo,r) in E x E, where C:= (§ 2).
In this case:
¢
So(t) = fOCsts f(t—s)CK() Co<t<r
Ck(t) —O@1)C Jo Cr (s

and the integral generators of (Ck(t))icpo,r) and (Se(t))ico,r), denoted respec-
tively by B and B, satisfy B = (% 6) Furthermore, the integral generator of
(CK( ))tE[O,T)7 resp. (S@( ))te [0,7)> is C™ 1AC resp. C~ 1~AC ( 1OAC (I))

PROOF. (i) = (ii) It is checked at once that (Se(t))tc[o,r) is a strongly contin-
uous operator family in F x E satisfying Se(t)A C ASe(t) and Se(t)C = CSe(t),
0 <t < 7. The proof of (ii) follows from the next simple computation:

AO/S@(S < )dsA/ (fo Crlr xdr(+£)x+f0 CO;( );dir) ds

A( =0kl wdsﬁé (55 Clo)yds )
fot CK(S)wds—fO des—i—fo (t — s)Ck(s)yds

_ (fo Ck(s) xds—fo C:vds+fo (t—s) CK( )yds)
(t)r — O(t Cx+f0 Ck(s yds—fo 5)Cyds

t
x Czx
= Sol(t —/@s( )ds,0<t<7',x, e k.
o) (?) fee(c, y

(ii) = (i) Put
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where S§(t) € L(E), i € {1,2,3,4} and 0 < t < 7. A simple consequence of
Sp(t)C = CSe(t), t € [0,7) is S§(t)C = CSL(t), t € [0,7), i € {1,2,3,4}. Since
Se(t)A C ASe(t), t € [0,7), one gets:
S (t)z + 83 (t)y € D(A),

So(t)y + S3(t) Az = S§(t)a + S§(t)y,

S3(t)yy + S&(t)Ax = A(S§(t)x + S5 (t)y), 0<t< T, x€ D(A), y<€E.
Hence, S5 (t)r = S3(t)Az, x € D(A) and Sg(t)y = ASZ(t)y, y € E,0 < t < 1.
This implies that, for every z € D(A), S§ (t)Az = AS3(t)Ax = ASE (t)x, t € [0, 7).

Thereby, Sg(t)A C ASE(t), t € [0,7) and (S(t) + O(t)C)sepo,r) is a strongly
continuous operator family in E. By making use of the following equality

s (Joe=swo ;) - fora (&)

t t t

/Sg(s)x ds + / S&(s)yds = S&(t)x + S3(t)y — /@(S)C’m ds,
0 0

0
A(/Sé(s)xds—i—/Sé(s)yds) =S (t)r + SH(t)y — /@(S)C’yds,

0

one yields

provided 0 < t < 7,2, y € E. Hence,

¢ t t
/S%(s)x ds = S§(t) /@ )Cx ds, A/S1 (s)xds = S (),
0 0

A(jt—s )(S3,(s)x + ©(s)Cz) d ) (/tt—s —5b( ))_Sds>

0 0

¢
= A/Sé(s)x ds = (Sg(t)z +O(t)Cz) —O(t)Cx, 0Kt <71, z€E,
0

and we have proved that A is a subgenerator of the K-convoluted C-cosine function
(58 (t) + ©(t)C)epo,r)- Clearly, S§(t) = S§(t) and SZ(t) fo S&(s)ds, 0<t <.
To prove that B = (%), let us fix elements z,y,z1,y1 € E. Then

() / ( )dS—/S@ (yl)ds for all t € [0,7)

0
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iff Cx(t)x —O()Cx = fot(t — 8)Ck(s)y1ds for all t € [0,7) and y = x1. Namely, if
So(t)(2) — fy ©(s)(E5) ds = [y Se(s) (i) ds for all t € [0,7), then

t t t

(22) /CK(s)xds—i—/(t—s)CK(s)yds—/@(s)Cmds
0 0 0

Lo e
:/(t—s)C’K(s)xlds+/ (¢ 3 ) Ck(s)y1ds,
0 0

(23) Cx(t)r—0(@t)Cx+ | Cr(s)yds — | O(s)Cyds
e |

0

t

= [ Ck(s)x1ds — | O(s)Cxids+ [ (t —s)Ck(s)y1ds, t € [0, 7).
st [omens |

0
Differentiating (22) with respect to ¢, one obtains

t

Ck(t)z + / Ck(s)yds — O(t)Czx = /CK(s)xlds + /(t — 8)Ck(s)y1ds.
0 0

0

The preceding equality and (23) together imply fot O(s)Cyds = fg O(s)Cxds,
t € [0,7) and y = z;. Thanks to (23), one yields Ck(t)z — O(¢)Cz = fot(t -
$)Ck (s)yrds, t € [0,7) and (x,y1) € B. Suppose conversely y = 1 and (x,y1) € B.
Then Ck (t)z—0O(t)Cx = fot(t—s)CK(s)ylds, t € [0,7) and (23) holds. Integrating
(23) with respect to t one obtains (22) and ((Z), (Zi)) € B. Therefore, ((z), (Zi)) €
Biff y = z; and (z, y1) € B. Further on, CA C AC implies CA C AC and
one can employ Proposition 2.1.6(i) in order to see that the integral generator of
(Se(t))ieo,r) is CTTAC. Clearly, CTTAC = (-7, é), which implies that the
integral generator of (Ck (t)):efo,r) is C~1AC. O

By Theorem 2.1.11 and Remark 2.1.7, it follows that |p(Ck)| = 1 provided
C = I. In order to prove the composition property of convoluted C-cosine functions,
we will make use of the following auxiliary lemma whose proof is left to the reader
as an easy exercise.

LEMMA 2.1.12. Let 0 < 7 < 00 and K € C([0,7)). Then:

g

0 0 0

Kit+s—r)K(r)dr=0, 0<t, s t+s<T.

THEOREM 2.1.13. Let A be a subgenerator of a (local) K -convoluted C-cosine
function (Ck(t))ico,r), © € E, t, s € [0,7) and t +s < 7. Then the following



2.1. DEFINITIONS AND MAIN STRUCTURAL PROPERTIES 51

formulae hold:
t+s S

20 (H)Ce(5)z = </ /) (t+ 5 —r)Cr(r)Cadr

/K (r—t+s)Cgk(r )Cmdr—i—/K +t—5)Ck(r)Cxdr, t>

t—
(24) t+s t

20 (H)Ce(5)z = </ /) (t+ 5 —r)Cr(r)Ca dr

t

/K (r4+t—s5)Cgk(r )der—i—/Kr—t—i—s)CK( )Cxdr, t<s.

s—t

PROOF. First of all, we will prove the composition property in case K is an
absolutely continuous function in [0,7). In order to do that, suppose 79 € (0,7),
r € E and put D, := {(t,s) e R?: 0< t, s, t + s < 79, s <t} Define

(25) u(t, s) = /CK(T)(CK(S).'L‘ — O(s)Cx)dr, (t,s) € Dy, and

K(t+s—1r)Ck(r)Czdr —0(s)Ck(t)Cx,

for any (t,s) € D,,. Designate by C'(D,, : E) the vector space which consists of
those functions from D, into E that are continuously differentiable in intD,, and
whose partial derivatives can be extended continuously throughout D.,. Consider
the problem

u(t, s) + us(t, s) = F(t,s), (t,8) € Dy,

u(t,0) = 0.
The uniqueness of solutions of the problem (P) can be proved by means of the
elementary theory of quasi-linear partial differential equations of first order. On
the other hand, an application of Theorem 2.1.11 yields that A is a subgenerator of
the ©-convoluted C-semigroup (Se(t)):eo,r) in £ x E. Thanks to Proposition 2.1.5,
one obtains:

Se(t)Se(s)(0 )"

= (/tC’K(v)/S(s—T)CK(T)xdrdv—i—/(t—v)CK(U)/CK(r)xdrdv
0

0 0 0

ue CYD,, : E),
o]

S

s t s T
Ck(t) /(S—T)CK(r)xdr—G(t) /(S—T)C’K(T)C’mdr—l—/ CK(U)CK(T)xdrdv>
0 0

00
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[/ / / t+s—r) (/(TU)CK(U)deU /TC’K(U)C'acdv>Talr7
0 0

for any (t,s) € D,,. Hence,

t s

A /tCK(v) /S(sT)C’K(r)xdrvar/(tU)CK(U)/CK(r)xdrdv]
0 0 0 0
_ A{

The last equality and Lemma 2.1.12 imply:

t+s t s r

/7/f/ @(t+gfr)/(rv)CK(v)C’:cdvdr}, (t,s) € Ds,.

0

S S

/ Cx (v) (CK(s)x - @(s)Cx) dv + Cre (1) / Cx () dr — (1) / Cx (r)Cx dr

o

0 0 0

O(t+s—r)Ck(r)Cxdr, (t,s) € Dy,.

Fix, for the time being, a number ¢ € [0, 7). The standard arguments gives:

ds[/ / /
o8

0 0 0

(t+s—1)Ck(r)Czxdr

K(t+4+s—1r)Ck(r)Cxdr —0(t)Ck(s)Cx, s€[0,7—1t).

Differentiate (26) with respect to s in order to see that the function u(t, s), given
by (25), is a solution of (P). Further on, put

s s+v v

:é/(/ —/)K(v—i—s—r)C’K(r)C’mdrdv,

va(t, s) ::%// K(r—s+v)Ck(r)Cxdrdv,

0 s—v

v3(t, s) : //K r+s—v)Ck(r)Cxdrdv,

va(t /(/ /) (v+s—71)Ck(r)Czdrdv,



2.1. DEFINITIONS AND MAIN STRUCTURAL PROPERTIES 53

vs(t, s) // K(r—v+ s)Ck(r)Cxdrdv,

t s

ve(t, ) %//K r+v—38)Ck(r)Cxdrdv—0O(s )O/tCK(r)Ca?dr

6
sz (t,s) € D,,.
i=1

To prove that v(t, s) is also a solution of (P), notice that the usual limit procedure
implies:

81}1 </ /) (2s —r)Ck(r der—//K v+ s —1)Ck(r)Cxdrdv

s s+v

+// K/(U+S—T)CK(T)C:EdeU—@(S)CK(S)CZ'+K(O)/CK(S+U)dev,

881;2 /K VCk (7 )der—// K'(r —s+v)Ck(r)Czdrdv
0 s—v
—K(O)/CK(S—U)Cmdv—i—@(s)CK(S)Cx,
6’[}3 /

85 - (ts) :/K(T)CK(T)der—l—/s/vK’(r—i-s—v)CK(r)derdv,

s+v s

0
9 t

/K ) dvCr(s cx_(/ /) %8 — 1)Cxe(r)Card,

2%(@ // K'(r — v+ 8)Cie (r)Ca dr + K(0 )/C’K(U—S)dev

S v—S

- / K(r)Ck(r)Cxdr,
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8’1)6
83 s 0®

= —/t/SK’(r—HJ—s)CK(r)derdv+/K(r)drCK(S)CCU
—/SK(T)CK(T)deT—QK(S)/CK(T)derv

for any (¢,s) € D,,. Adding these six summands, one gets:

(27) 2%@,3) :K(o)<;/s+zs—j+z>cK(r)cxdr

- QK(S)/CK(T)der +L+L+1I3 (ts)€ Dy,
0

where

t

o (// // // //)K/HS_TCK( \Gdrds
o e ()
(]

s—v s 0
An elementary calculus shows that:

) (r+s—v)Ck(r)Cxdrdv,

S v—S

\

)K’ r—s+v)Ck(r)Cxdrdv, (t,s) € Dy,.

//K (r—s+4+v)Ck(r )Cmdvdr—//K (r—s+v)Ck(r)Czdvdr

0 s—r
(31) = 7/(K(7’) fK(O))CK(T)C:L'de/(K(t—err) — K(r))Ck(r)Cz dr.
0 0

Applying the same arguments, one yields:

t t+s

(32) I :K(s)/CK(T)Ca:deK(O) / Ck(r)Cxdr

0
<7€ j) t+s—1)Ck(r)Cxdr
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(33) I, =— / K(r—l—s—t)CK(r)C’xdr—l—K(s)/CK(T)der

t—s

—K(0) / Ck(r)Cxdr, (t,s) € Dy,.
0
Furthermore, v(¢,0) = 0, ¢ € [0, 79],

(34) 27 :(7 /) (t+ s —1)Cr(r)Cadr

/K (r—t+s)Ck(r )der—i—/K (r+t—s)Ck(r)Cxdr —20(s)Ck(t)Cz,

v € CY(D,, : E) and a simple computation involving
function v solves (P). By the uniqueness of solutions of

(27)—(34) implies that the
(P), we obtain:
(35) Cr(t)Ck(s)x = v(t,s) + O(s)Ck (t)Cx, (t,8) € Dyy.

By (35) and arbitrariness of 7y, one yields that the composition property holds
whenever K is an absolutely continuous function in [0,7), z € E, 0 < t, s, t+s < T
and s < t. Put Co(t)z := fo Ck(r)xzdr, t € [0,7), x € E; then (Co(t))eo,r) is
a O-convoluted C-cosine function with a subgenerator A and the first part of the
proof implies that, for every z € E and (¢,s) € [0,7) x [0,7) with ¢t + s < 7 and
s<t:

t+s s

(36) 2Co(t)Ca(s ( /- /) 5 - r)Co(r)Ca dr

+/@(r—t+s)C’@( )C’xdr+/@ r+t—3s)Co(r)Czdr.

Notice also that the partial integration implies that, for every x € E and (¢,s) €
[0,7) x [0,7) witht+ s <7 and s < t:

(37) (73 /S> Ot +s—1)Co(r)Cxdr
0

t t+s

= 01(5)Co()Cx + O~ (1)Co (5)Cx + / O-1(t + 5 — r)Ci (r)Ca dr,

(38) / O(r —t+ s)Co(r)Cxdr

t—s
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=071(s5)Co(t)Cx — / O~ (r —t+s)Ck(r)Cxdr,

S

(39) O(r+t—s)Co(r)Cxdr
/

:@71(15)0@(5)0:57/@71(T+t—s)CK(r)Czdr.
0

Now one can rewrite (36) by means of (37)—(39):

(40) 2Ce(t)Co(s)x =2071(s)Co(t)Cx + 2071 (t)Co(s)Cx

tts s
+ (/ —0/>®1(t+s—r)C’K(r)der

S

f/@71(7’7t+5)CK(T)deT7/@71(T+t—s)CK(r)C’;z:dr,

t—s 0

Taking into account (40), it can be straightforwardly proved that, for every z € E
and (¢,s) € [0,7) x [0,7) with ¢t +s < 7 and s < ¢:

(41) 2Ck(t)Co(s)x = 2%0@(1&)0@(5)@" =20(t)Co(s)Cx

t+s s
s ( /- 0/>@<t+s_r>cK<r>cm

—|—/@(r—t—|—s)C’K(r)C’1:dr—/@(T—i—t—s)CK(r)C’a:dr.

t—s 0

Differentiation of (41) with respect to s immediately implies the validity of compo-
sition property for all z € E and (¢,s) € [0,7) x [0,7) with t+s < 7 and s < t. The
proof of composition property in the case s > t can be obtained along the same
lines. 1

Now we are in a position to prove the following extension type theorem for
local convoluted C-cosine functions.

THEOREM 2.1.14. Let A be a subgenerator of a local K-convoluted C-cosine
function (Ck(t))iepo,r) and let 7o € (§,7). Assume that there exists a complex
valued function Ky € Lj,.([0,27)) such that K = K cf. also the formulation

loc

o (
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of Theorem 2.1.9). Then A is a subgenerator of a local (K %o K )-convoluted C?-
cosine function (Crwok (t))te[0,2r), which is given by:

fo (t —s)Ck(s)Cxds, t € [0,70],

eo ) 20k(r0)Cx(t—mo)u+ (f; "+ (t — 1)Ci (r)Ca dr
Ciceorct) 3 OfTOK K(r0+t(270)C’K(f)C’ldr "

27’0 t
- Ot " K(r+2r —t)Cg(r)Cadr, t € (19,27), « € E.
Furthermore, the condition 0 € supp K implies that A is a subgenerator of a local
(K %0 K)-convoluted C?-cosine function on [0,27).

PrOOF. Notice that K %9 K € L] ([0,27)) and that K * K is not identical
to zero. Clearly, (Crx,x (t))tcjo,27) is @ strongly continuous operator family which
commutes with A and C'. By Proposition 2.1.3, one gets that ((K+oCxC)(t)):e[o,r)
is a local (K xo K )-convoluted C?-cosine function having A as a subgenerator, and
consequently, the condition (iii) quoted in the formulation of Definition 2.1.2 holds
for every ¢ € [0,70] and x € E. It remains to be shown that this condition holds
for every t € (79,279) and x € E; to this end, denote ® = fot(t — 8)Ckuor (8)x ds
and notice that:

(42)
o= [(rp—35) | K(s—r)Ck(r)Cxdrds+ [ (t—1) | K(s—7r)Ck(r)Cxdrds
[o] [
+ 20}((7’0) / (t — T0 — S)CK(S).’EdS + Il + IQ — 13 — .[47
0
where:
(43) I := /(t —5) / K(s —r)Ck(r)Cxdrds,
(44) IL:=[({t-3) | K(s—r)Ck(r)Cxdrds,
Je]

(45) I3 :/(tfs) / K(r+s—21)Ck(r)Czdrds
(46) I, := /(t —3) / K(r+ 219 — s)Ck(r)Cz dr ds.

To 0
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We compute I as follows:

I = /t (t—s) me(s—r)CK(r)derds: tO] j (t = $)K (s — 1) Ce (1) Car ds dr
- 70[—@(70)(15 - /t O(s — r)ds|Cic (r)Ca dr
5 rim
— —6(n) O/ (t— 70— 1)Cx(r)Cadr + 0/ © 1t - 1) — 0L (70)|Ci (r)Cax dr
— _6(n) O/(t—ro—r)CK(r)Ca:dr+ O/ @(t—r)O/CK(v)C’xdvdr
— _6(n) to/m@ = YO (r)Cax dr + O(r) to/m@ 1y — )Ci(r)Cadr

(47) / (t—r /r—v Ck(v devdr—/ (t—r /r—v Ck(v)Cx dvdr.
0 0

Applying the same argumentation, we easily infer that:

70

(48) Ing/(tho)@(Tofr)C’K( )Cx dr + O(t — 79) /7'0—7’ )Ck (r)Cx dr
0

0
70 To

+@71(t—7'0)/C’K(T)C’xerr/[K(th)—K To—T) /7'71) Ck(v)Cx dvdr,
0 0 0

To

(49) I3 = t—To/ 70 — 1)Ck (r Ca:dr+@71(t—70)/C'K(7‘)der
0

0
T

4 / K(r+t—270)/(T—U)C’K(U)devdr

219—t 0

(50) I4:/ r—|—27'0—t/r—v Ck(v)Cx dv dr.
0
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Exploiting (42)—(50) and the following simple equality:

(t—70) | K(s—1r)Ck(r)Cxdrds= [ (t—719)O(790 — r)Cx(r)Cxdr,
Jen] /
one obtains:
(51)
b= [(rp—3) | K(s—7)Ck(r)Cxdrds+ 2Ck(79) (t—710—s)Ck(s)xds
[oo] /
+ Kit—r) [ (r—v)Ck(w)Cxdvdr
[reen]
Jr/[K(t —r)—K(m9 —71)] /(r —v)Ck(v)Cxdvdr
0 0

r

- / K(r+t—27'0)/(r—v)C’K(v)devdr

2719—t 0
t—7o r

- / K(r+2m—1) /(r —v)Cg(v)Cxdvdr
0

+20(t — 1) /To—T'CK )Cx dr.
0

The last equality implies ® € D(A) and

(52) A(®) = Cruyrc (1) = f(£)C?x,
where
fit)y= /K(TO —r)O(r)dr + / K(t—r)O(r)dr
0 0

70

+/[K(t—r)—K(To—r)]@(r) dr — / K(r+1t—27m)0(r)dr

0 210—t
t—70

- / K(r + 270 — )0(r) dr + 20(r)0(t — 70).
0

Notice also that (©(t)I)ic[0,2-) is a local K-convoluted cosine function generated
by 0 and that the following identity follows immediately from an application of
Theorem 2.1.13:



60 2. CONVOLUTED C-SEMIGROUPS AND COSINE FUNCTIONS

(53) 20(70)0(t — 7o) = (/ /> (t = 1)O(r) dr

/Kr—l—t—QTo)@( dr—l—/Kr—!—QTo—t)@()dr.

QToft 0

In view of (52)—(53), it follows that f(t) = (K %o ©)(t) and that A is a subgen-
erator of a local (K #g K)-convoluted C?-cosine function (Ck«,x (t))te[0,2r)- The
preassumption 0 € suppK implies that the function (K o K')|[,) is a kernel for all

"€ (0,27]; in this case, (Cr«yx (t))tec[o,2r) 15 @ unique local (K *o K')-convoluted
C?-cosine function with a subgenerator A [228] and the proof of Theorem 2.1.14
ends a routine argument. O

COROLLARY 2.1.15. Suppose a > 0 and A is a subgenerator of a local a-times
integrated C-cosine function (Cqo(t))iepo,r)- Then A is a subgenerator of a local
(2a)-times integrated C?-cosine function (Caq(t))ic(o,2r)-

Keeping in mind the proofs of Proposition 2.1.6, [218, Corollary 3.3] and The-
orem 2.1.9, one immediately gets the following assertion.

PROPOSITION 2.1.16. Suppose A is the integral generator of a (local) K -convol-
uted C-cosine function (Ck(t))iejo,r) and {A, B} € o(Ck). Then the assertions
(ii), (iii), (v) and (vi), given in the formulation of Proposition 2.1.6 still hold while
the assertions (i), (iv) and (vii) hold with Sk replaced by Ck. Furthermore, if
0 € supp K, then Ck(t)Ck(s) = Cx(s)Ck(t), 0<t, s <T.

QUESTION. Suppose K is not a kernel and A is a subgenerator of a local
K-convoluted C-semigroup (Sk(t)):eo,r), resp. K-convoluted C-cosine function
(Ck(t))tefo,r)- Does the equality Sk (t)Sk(s) = Sk(s)Sk(t), 0 <t, s < T, resp.
Ck(t)Ck(s) = Ck(s)Ck(t), 0 <t, s <, hold?

PROPOSITION 2.1.17. Suppose +A are subgenerators of (local, global exponen-
tially bounded) K -convoluted C-semigroups (Si(t))te[oﬁ) and A? is closed. Then
A? is a subgenerator of a (local, global exponentially bounded) K -convoluted C-
cosine function (Cr (t))ieo,r), which is given by Ck (t)z := (S )z + Sk (t)z),
x€E, te|0,71).

PROOF. It is straightforward to verify that (Cx(t)):c[o,r) is a strongly contin-
uous operator family which commutes with A2 and C as well as that

t

AQ/(t—S)CK( )wds—A2//C’K :L‘dT‘dS—A/ /CK Yz drds

0

fA/ [Si(s)z — O(s)Cx — Sg(s)z + O(s)Cx] ds
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= %[S;g(t)x —-0)Cx+ Sg(t)r — @(t)Cx}
=Ckg(t)r—0()Cz, z€ E, t€[0,7).
This completes the proof. O

Notice only that, under assumptions of Proposition 2.1.17, one can simply prove
that the operator A2 is closed when C' = I; it is not clear whether the operator
A? is closed in the case C' # I and p(A) = (. Next, we point out that there
exists a somewhat different definition of a (local) K-convoluted C-semigroup, resp.
K-convoluted C-cosine function. For the sake of consistency, we will give these
definitions only in global case.

DEFINITION 2.1.18. Let 0 # K € L, ([0,00)). A strongly continuous operator
family (Sk(t))t>0 is called a (global) K-convoluted C-semigroup iff the following
holds:

(i) Sk(0) =
(ii) Sk(t)C CSK( ), t >0 and

(iii) Sk(t)Sk(s)z = | Hs—f — [J]1K(t+s—r)Sk(r)Caxdr, x € E, t, s > 0;
(Sk (t))i>0 is said to be non-degenerate if the assumption Sk (t)z =0 for all ¢ > 0
implies + = 0. For a non-degenerate K-convoluted C-semigroup (Sg(t))i>0 we
define its (integral) generator A by

A= {(x,y) €EEXE:Sk(t)r—0({)Cx = /SK(s)yds, t> O}.
0

A closed linear operator A is said to be a subgenerator of (Sk (t)):>o if the conditions
(i) and (iii) of Definition 2.1.1 hold.

DEFINITION 2.1.19. Let 0 # K € L _([0,00)). A strongly continuous oper-
ator family (Ck(t))i>0 is called a (global) K-convoluted C-cosine function iff the
following holds:

(i) Ck(0) =0,
(ii) Ck(t)C = CCk(t), t > 0 and

(iii) (24) holds for z € E, t > 0 and s > 0;

(Ck(t))e>0 is said to be non-degenerate if the assumption Cg (t)z =0 for all t > 0
implies z = 0. For a non-degenerate K-convoluted C-cosine function (Cxk(t))i>0
we define its (integral) generator A by

t
A {(x,y) € ExE:Cr(t)s —0()Cx = /(t Ok (s)yds, ¢ > o}.
0
A closed linear operator A is said to be a subgenerator of (Ck (t))¢>0 if the condi-
tions (i) and (iii) of Definition 2.1.2 hold.

REMARK 2.1.20. Let 0 # K € L{. ([0,00)) and let (Sk (t))t0, resp. (Ck (t))i=o0,
be a non-degenerate strongly continuous operator family. By the argumentation
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given in the proofs of [227, Proposition 2.2], [258, Proposition 1.5], Proposi-
tion 2.1.5 and Theorem 2.1.13, we have that (Sk(t))i>0, resp. (Ck(t))i>0, is a
global K-convoluted C-semigroup, resp. K-convoluted C-cosine function, having A
as a subgenerator (the integral generator) in the sense of Definition 2.1.1, resp. Defi-
nition 2.1.2 iff (Sk (t))¢>0, resp. (Ck(t))i>0, is a global K-convoluted C-semigroup,
resp. K-convoluted C-cosine function having A as a subgenerator (the integral
generator) in the sense of Definition 2.1.18, resp. Definition 2.1.19.

In Proposition 2.1.21 and Proposition 2.1.23, we give upper bounds for the
stationarity of generators of fractionally integrated semigroups and cosine functions.

PROPOSITION 2.1.21. [249] Suppose o > 0 and A generates a (local) a-times
integrated semigroup. Then A is stationary dense and n(A) < [a].

LEMMA 2.1.22. Let A be a closed operator. Then A is stationary dense iff A
is stationary dense. In this case, n(A) = 2n(A).

PROOF. Assume that A is stationary dense and n(A) = n € Ny. Let us prove
that D(A™) C D(A™+1) for all m € Ny with m > 2n. Let m = 2i for some i > n.
We have to prove that D(A?) x D(A*) C D(A"+1) x D(A?). This is a consequence
of D(AY) C D(A™1). If m = 2i + 1 for some i > n, then D(A™) C D(A™+1)
is equivalent with D(A*!) x D(AY) C D(A**+1) x D(A+1), which holds since i >
n. Thus, A is stationary dense and n(A) < 2n(A). Furthermore, n(A) = 0 if
n(A) = 0. Suppose n(A) < 2n(A). If n(A) = 2i for some ¢ € {0,1,...,n —
1}, then D(A%) x D(AY) C D(A**+1) x D(A?). Hence, D(A?) C D(A*1) and the
contradiction is obvious. Similarly, if n(A) = 2i + 1 for some i € {0,1,...,n — 1},
then D(A'1) x D(AY) C D(Ai*1) x D(A+1). Again, D(A?) C D(A**+1) and this
is in contradiction with n(A) = n. Hence, we have proved that A is stationary
dense and that n(A) = 2n(A). Assume now that A is stationary dense. Similarly
as in the first part of the proof, one obtains that A is stationary dense and that

n(A) = 2n(A). O

PROPOSITION 2.1.23. Let A be the generator of an a-times integrated cosine
function (Co(t))icqo,r) for some 0 <1 < 0o and o > 0. Then n(A) < L%J

PrOOF. By Theorem 2.1.11, the operator A is the generator of an ([a] +
1)-times integrated semigroup (Sta141(t))icjo,r) in £ x E. Now one can apply
Proposition 2.1.21 to see that n(A) < [a] + 1. The claimed assertion follows by
Lemma 2.1.22. ]

COMMENT AND PROBLEM. By [14, Example 3.15.5, p.224], the generator B
of the standard translation group on L!(R) satisfies the following: The operator
A := (B*)? is the non-densely defined generator of a sine function in L°°(R). Then
Proposition 2.1.21 implies n(A) = 1, and, in particular, we have that, in the general
situation of previous proposition, the estimate n(A) < LWJ, where [0,1) 5 8 is
an arbitrary number, cannot be proved since here n(A) = 1 and a = 1. Finally,
the following problem can be proposed: Given a > 0, is it possible to construct
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a Banach space E,, a closed linear operator A, on E, which generates a (local)

a-times integrated cosine function and satisfies n(4,) = {#JF?
We use later on the following generalization of [222, Lemma 1.10].

PROPOSITION 2.1.24. Suppose A is a closed linear operator, CA C AC and
A€ C. Then X € pc(A) & N2 € pc(A). If this is the case, then:

e (AR —A)yle (2l
A=-A)7C= (A(AQ —A)IC A - A)—10> !

I =A< @A+ ADVI+ AR = A) 7
I =A=' < I =A) 7).

REMARK 2.1.25. Let k € C([0,00)) be a scalar kernel and let a satisfy (P1).
Assume that A is a closed linear operator. Following Lizama [286] and Kim [197]-
[198], a strongly continuous operator family (R(t)):>o is called an (a, k)-regularized
resolvent iff the following holds:

(i) R(t)A C AR(t),t >0, R(0) = k(0)I and

(i) R(t)x = k(t)z + [) a(t — s)AR(s)zds, t > 0, x € D(A).
By [286, Lemma 2.2], p(A) # 0 implies that, for every x € E and ¢t > 0, fot a(t —
s)R(s)xds € D(A) and Afot a(t — s)R(s)xds = R(t)x — k(t)z, t > 0, x € E;
in this case, the notion of (a, k)-regularized resolvents unify the notions of global
convoluted semigroups (a(t) = 1) and global convoluted cosine functions (a(t) = t).
It is also worth noticing that the condition £(0) = 0 is not necessary in the analysis
given in [286] (cf. also [330]), and that global convoluted C-semigroups and cosine
functions cannot be linked to (a, k)-regularized resolvents in the case C' # I. In
order to overcome the above described difficulties, the class of (a, k)-regularized C-
resolvent families extending the classes of (a, k)-regularized resolvent families [286],
regularized resolvent families [276] as well as (local) convoluted C-semigroups and
cosine functions has been recently introduced in [235]:

DEFINITION 2.1.26. Let 0 < 7 < oo, k € C([0,7)), &k # 0 and let a €
L} ([0,7)), a # 0. Assume that A is a closed linear operator and that L(E) > C'is
an injective operator. A strongly continuous operator family (R(t))¢cjo,r) is called
a (local, if 7 < 00) (a, k)-regularized C-resolvent family having A as a subgenerator
iff the following holds:
(i) R(t)AC AR(t),t€[0,7), CAC AC and R(0) = k(0)C,
(ii) R(t)C' = CR(t), t €[0,7) and
(ii) R(t)z = k(t)Cx + [y a(t — s)AR(s)zds, t € [0,7), © € D(A).
In the case 7 = 00, (R(t)):>0 is said to be exponentially bounded (a, k)-regularized
C-resolvent family with a subgenerator A if, additionally, there exist M > 0 and
w > 0 such that ||R(t)|| < Me“t, t > 0.

>
>

In the case k(t) = 11(3711),
integrated C-resolvent family; in such a way, we unify the notion of (local) a-times
integrated C-semigroups (a(t) = 1) and cosine functions (a(t) = t); see [286].

a >0, it is also said that (R(t))¢cjo,r) is an a-times
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Furthermore, in case k(t fo s)ds, t € [0,7), where K € L _([0,7)) and
K # 0, we obtain the umﬁcatlon concept for (local) K-convoluted C-semigroups
and cosine functions. In the case k(t) = 1, (R(t)):c[o,r) is said to be a (local)
(a, C)-regularized resolvent family with a subgenerator A. Designate by ©(R) the
set which consists of all subgenerators of (R(t))c[o,r)- Then the following holds:
(i) A € p(R) implies C"'AC € p(R).
(ii) If A € p(R) and A € pc(A), then

R(H)(\— A)"1C = (A — A)"ICR(), t € [0, 7).

(iii) Assume, additionally, a(t) is a kernel. Then one can define the integral
generator A of (R(t))tejo,r) by setting

A= {(x,y) e EXxE:Rt)x—k(t)Cx = /a(t —s)R(s)yds, t € [O,T)}.

0

The integral generator A of (R(t ))te[o ) is a closed linear operator sat-
isfying C~1AC = A. Furthermore, A extends an arbitrary subgenerator
of (R(t))iefo,r), and A itself is a subgenerator if R(t)R(s) = R(s)R(t),
0<t, s<T.
In what follows, we employ the following conditions:
(H1): A is densely defined.
(H2): p(A4) # 0.
(H3): po(A) # 0 and R(C) =
(H4): A is densely defined or pc( ) # 0.
(H5): (H1) v (H2) Vv (H3).
Assume temporarily A € pc(A), z € R(C), t € [0,7) and putz = (a * R)(t)z,
where x denotes the finite convolution product.Following the proof of [286, Lemma
2.2], we have

z=Max* R)t)(A— A) "'z — (a* R)(H)AN— A)~!

=XNaxR) ()N —A) 'z — (RA)N—A) 'z —k(H)C(A— A) ')

=AA=A)'ClaxR)(t)C 'z — (A= A)'R(t)z — k(t)(A — A)~'Cx),
where the last two equalities follow on account of CA C AC, R(s)A C AR(s) and
R(s)(A=A)"'C = (A\—A)"*CR(s), s € [0,7). Hence, (A—A)z = \z2—(R(t)z—Cx),
(54) /a(t —s)R(s)xds € D(A) and A / a(t — s)R(s)xds = R(t)x — k(t)Cz.

0 0

The closedness of A implies that (54) holds for every t € [0,7) and x € R(C).

Let « > 0, 5> 0 and v € (0,1). Denote by D¢ the Caputo fractional derivative

of order o and by Egz(z) the Mittag-Leffler function Eg(z) == Y oo F(ﬂZTn_H),
z € C; then the Wright function ®.(t) is defined by ®.(t) := L7 (E,(=)\))(1),

t > 0 (for further information, see e.g. [36], [141], [393] and references therein). In
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the subsequent theorem, we assume that the scalar-valued kernels k, kq, ko, ... are
continuous on [0,7) and that a # 0 in L] ([0,7)); we use the notion and notation
given in [286].

THEOREM 2.1.27. [235]-[236], [286] (i) Let A be a subgenerator of an (a,k)-
reqularized C-resolvent family (R(t))ico,-) and let (H5) hold. Then (54) holds for
every t € [0,7) and x € E; if pc(A) # 0, then (54) holds for every t € [0,7) and
x € R(C).

(ii) Suppose A is a subgenerator of an (a,k;)-reqularized C-resolvent family
(Ri(t))tcio,ry, @ = 1,2. Then (kz x R1)(t) = (k1 * Ro)(t), t € [0,7), whenever (H4)
holds.

(iii) Let (Ri(t))ico,r) and (Ra(t))iepo,r) be two (a,k)-reqularized C-resolvent
families having A as a subgenerator. Then Ry (t)x = Ry(t)z, t € [0,7), x € D(A),
and Ry (t) = Ra(t), t € [0,7), provided that (H4) holds.

(iv) Suppose A is a subgenerator of an (a,k)-regularized C-resolvent family
(R(t))ecjo,r)- If k(t) is absolutely continuous and k(0) # 0, then A is a subgenerator
of a (local) (a,C)-regularized resolvent family.

(v) Let (R(t)):eo,r) be an (a, k)-reqularized C-resolvent family with a subgener-
ator A and let b € Li ([0, 7)) satisfy that kxb is a kernel. Then A is a subgenerator
of an (a,k x b)-regularized C-resolvent family ((b* R)(t)):ejo,7)-

(vi) Suppose (R(t))iejo,r) 15 an (a, k)-regularized C-resolvent family with a sub-
generator A, (H1) or (H3) holds, and a(t) is a kernel. Then the integral generator
A of (R(t))sepo,r) satisfies A= C~TAC. If (H2) holds, then A= C~1AC = A.

(vii) Let B € p(R) and let (H5) hold for B and C'. Then we have the following:
(vii.1) C™YAC = C~'BC and C(D(A)) C D(B).

(vn 2) A and B have the same eigenvalues.

(vii.3) The assumption A C B implies pc(A) C pc(B).
(vii4)

(vii.5)

vii.4) The set p(R) is monomial if C(D(A)) is a core for A.

AC B <& D(A) C D(B) and Ax = Bz, x € D(A) N D(B); furthermore,

the property (vii.5) holds whenever {A, B} C p(R) and a(t) is a kernel.
(viii) Define the mapping K¢ : C([0,7) : E) — C([0,7) : E) by Kcu := kxCu,

ue C([0,7) : E). Suppose f € C([0,7) : E), A is a subgenerator of a (local) (a,k)-

regularized C-resolvent family (R(t)):co0,r) and (H5) holds. Then the problem

t
(55) —l—/at—s Au(s)ds, t€0,71),

has a unique solution iff R f € R(K¢).

(ix) Assumen € N, f € C([0,7) : E), A is a subgenerator of a (local) n-times
integrated C-resolvent family (R(t))¢cjo,), and (H5) holds. Then (55) has a unique
solution iff O~ (R * f) € O ([0,7) : E).

(x) Let (H5) hold. Assumen € N, A is a subgenerator of an n-times integrated
C-regularized resolvent and a € BVio([0, 7)), resp. A is a subgenerator of an (a,C)-
regularized resolvent family. Assume, further, that C~'f € C™*V([0,7) : E),
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fE=D(0) € DA™ ) and AR =D 0) € R(C), 1 < k < n+ 1, resp.
C'fec(o,7): EynWL([0,7) : E). Then (55) has a unique solution.
(xi) Assume (H5) holds, A is a subgenerator of an (a, k)-reqularized C-resolvent

family, k € AC([0,7)) and k(0) # 0. If C~1f € C*([0,7) : E), then there exists a
unique solution of (55).

(xii) Let k and a satisfy (P1) and let (R(t))t>0 be a strongly continuous operator
family which satisfies |R(t)|]] < Me“*, t > 0, for some M > 0 and w > 0. Put
wo := max(w, abs(a), abs(k)).

(xii.1) Assume A is a subgenerator of the exponentially bounded (a, k)-regularized
C-resolvent family (R(t))i>0 and (H5) holds. Then, for every A € C with
Re > wo and k(\) # 0, the operator I — a(\)A is injective, R(C) C
R(I —a(N)A),

(56) kNI —a(NA) "0z = /e_/\tR(t)x dt, x € E, Re) > wy, k(\) #0.
0

(57) ‘A €T, ReA > wo, k() #0, a(\) # o} C po(A).

{ 1
a(A)
(xii.2) Assume that (56)—(57) hold. Then A is a subgenerator of the exponentially
bounded (a, k)-regularized C-resolvent family (R(t))i>o0-

(xiii) Suppose +A are subgenerators of (local, global exponentially bounded)
(a, k)-regularized C-resolvent families (RE(t))ie(o,) and A? is closed. Then A? is
a subgenerator of a (local, global exponentially bounded) (a * a,k)-regularized C-
resolvent family (R(t))ie(o,r), which is given by R(t)z = L (R (t)z + R~ (t)z),
x€FE, te€l0,71).

(xiv) Assume 7 € (0,00], L ([0,7)) > a1 is a kernel, LL ([0,7)) > k is a
kernel, a(t) = (a1 *ay1)(t), t € [0,7) and k1(t) = (kxa1)(t), t € [0,7). Assume that
(H5) holds. Then A is a subgenerator of an (a,k)-reqularized C-resolvent family
(R(t))tcjo,r) if A is a subgenerator of an (ai,k:)-reqularized C-resolvent family
(S(t))teqo,r)- If this is the case, then we have

(R0 (@R
50=(ats Mot (oarin) O<E<T

and the integral generators of (R(t)):eo,ry and (S(t))tcjo,r), denoted respectively by
B and B, satisfy B = (B 0)
(xv) Assume a(t) and k(t) satisfy (P1), limy_, 5.0 Me(N) = k(0), there

exists w € R such that fooo e “a(t)|dt < oo and A is a subgenerator of an expo-
nentially bounded (a, k)-reqularized C-resolvent family (S(t))i>0. Then

lim A\ — a(\)A) " Cx = k(0)Cz, = € D(A).
A—ro0, k(A)#£0
(xvi) Assume a(t) and k(t) satisfy (P1), M > 1, w >0, (S(t))i>0 s an (a, k)-
reqularized C-resolvent family satisfying ||S(t)|| < Me*t, t > 0 and AC ¢ L(FE).
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Then, for every X € C with Re A > max(w,abs(a),abs(k:)) and l~c()\) £ 0, we have
that a(A) # 0 and that 1/a(\) € pc(A).

(xvii) Assume a € (0,1), A is a subgenerator of a global ( (a),k‘) -reqularized
C-resolvent family (Sa(t))i=0, D(A) # {0}, and limy_, 4 |k(t)| does not exist in
[0,00] or lim;—, o0 |k(t)| # 0. Then there do not exist M > 1 and w > 0 such that
152 (6)] < Me—t, £ > 0.

(xviil) Assume that a € (1,2) and A is a subgenerator of a (%, C)-regular-
ized resolvent family (Sq(t))t>0 which satisfies ||Sa(t)|| < Me*t for appropriate
constants M > 1 and w > 0. Let (B(t))i>0 C L(E), R(B(t)) C R(C), t = 0 and
C7'B(-) € C([0,00) : L(E)). Then, for every x € D(A), there exists a unique
solution u(t) of the problem

Du(t,z) = (A+ B(t))u(t,x), t >0,
{ u(0,2) = Cz, v/ (0,2) = 0.

The solution u(t,z) is given by u(t,z) = > °° ( San(t)z, t = 0, where we define
San(t) (t = 0) recursively by Sq o(t) == Sa(t) and

// oo 250‘(5)0713(0)5(1,11—1(0)dsdg.

a—l

Denote K(T) = maxejo, 7 |C'B(t)||, T > 0. Then
e’ B (M K7t®)||z||, t € [0,T)
e (Eo(MKrt®) — 1)|z|, t € [0,T].

[u(t, )|
[u(t, z) = Sa(t)z]

(xix) Assume kg(t) satisfies (P1), 0 <o < B, v = F and A is a subgenerator

| <M
| <M

NN

of a (r(ﬂ)7k5) -reqularized C-resolvent family (Sg(t))i>0 which satisfies ||Sp(t)| =
O(e*t), t = 0 for some w > max(0,abs(kg)). Assume additionally that (H5)
holds and that there exists a function ko (t) satisfying (P1), ko(0) = kg(0) and
ka(N) = A8 kg(AF) for all sufficiently large positive real numbers \. Then A
is a subgenerator of a (%,ka)—regularized C-resolvent family (Sa(t))t>0 which

satisfies ||Sa ()] = O(e*”"t), t > 0 and
Se(t)r = / 7P, (st77)Ss(s)xds, v € E, t>0.
0

Furthermore:
(xix.1) The mapping t — S, (t), t > 0 has an analytic extension to the sector
Zinin((2-1)F m)-
(xix.2) Ifw =0 and e € (O min((l —1)Z,7)), then there exists M, . > 0 such

that HS ( )” ’YE’ z € 2mln((1 1)%,m)—e"
(xix.3) If w > 0 and € € (O,mln((f )g 7)), then there exist 0. > 0 and
M, . > 0 such that ||Sa(2)| < cedveRez o e Zmin((%_l)%’%)_s,
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(xix.4) Let ¢ > 0. Then the assumption ||Sg(t)|| = O(1 +¢¢), t > 0
1Ss()|| = O(tS), t > 0, implies ||Sa(t)|]| = O(1 + ), t > 0, resp.
1S2(6)] = 0(#€), £ > 0.

(xx) Supposel € (0, 2], E%w € pc(A), supyex ,, |AA = A)~1C|| < oo and, for
2

every x € E, the mapping A — (A — A)"1Cx, X\ € X5 is continuous. Then, for
2

every r € (0,1], A is the integral generator of a global (%, #:_n)—regulam'zed c?-

resolvent family (Sy(t))i>o0 satisfying that the mapping t — S,(t), t = 0 is locally

Hélder continuous with exponent r; if A is densely defined, then A is the integral

generator of a global bounded (%, C?)-resolvent family (S(t))i>o-

Denote by a*" the n-th convolution power of the kernel a(t), n € N, and see
[369] for the definition of completely positive functions and the notion used in the
subsequent theorem. An insignificant modification of the proofs of [286, Theorem
3.7] and [369, Theorems 4.1, 4.3, 4.5] implies the following subordination principles.

THEOREM 2.1.28. [235] (i) Let a(t), b(t) and c(t) satisfy (P1) and let 8 = 0
be such that [ e P![b(t)|dt < oo. Let

Y N o .
a=¢ (ﬂ) Zfo c(t)dt>ﬂ, a =0 otherwise,

and let a(\) = B(T&)), A > a. Let A be a subgenerator of a (b, k)-reqularized
C-resolvent family (Rp(t))i>0 satisfying that |Rp(t)|| = O(e**'), t > 0 for some
wp = 0, and let (H2) or (H3) hold. Assume, further, that c(t) is completely positive
and that there exists a function kq(t) satisfying (P1) and

- 1 -~/ 1 ~r 1
k1(\) = /\6()\)]6(@)’ A > wo, k(m) # 0, for some wy > 0.
Put
11y 1 .
We = ¢ (—) if [ c(t)dt > —, w, := 0 otherwise.
Wy Wy
0

Then, for every r € (0,1], A is a subgenerator of a global (a,ky * %)-regulam’zed

C-resolvent family (R, (t))t>0 such that ||R.(t)]] = O(e“='), t > 0 and that the
mapping t — R,.(t), t = 0 is locally Hélder continuous with exponent r, if wp, = 0 or
wpc(0) # 1, resp., for every e > 0, there exists M. > 1 such that | R.(t)|| = O(e®?),
t > 0 and that the mapping t — R,.(t), t = 0 is locally Hélder continuous with
exponent r, if wy > 0 and wpc(0) = 1. Furthermore, if A is densely defined, then A
is a subgenerator of a global (a, k1)-regqularized C-resolvent family (R(t))i>o0 such
that |R(t)|| = O(e®=t), t > 0, resp., for every € > 0, ||R(t)|| = O(et), t > 0.

(ii) Suppose a = 0, A is a subgenerator of a global exponentially bounded -
times integrated C-semigroup, a(t) is completely positive and satisfies (P1), k(t)
satisfies (P1) and k(\) = a(\)®, X sufficiently large. Then, for every r € (0,1],
A is a subgenerator of a locally Holder continuous (with exponent r), exponentially
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bounded (a, k * %)-r@gularized C-resolvent family ((a,a*™ * tlj(;; )-regularized C-
resolvent family if « = n € N, resp. (a,#_s_l))—regularized C-resolvent family
if « = 0). If, additionally, A is densely defined, then A is a subgenerator of an
exponentially bounded (a, 1xk)-regularized C-resolvent family ((a, 1xa*™)-regqularized

C-resolvent family if « =n € N, resp. (a, C)-regularized resolvent family if o = 0).

(i) Suppose a = 0 and A is a subgenerator of an exponentially bounded -
times integrated C-cosine function. Let Li ([0,00)) 3 ¢ be completely positive and
let a(t) = (cxc)(t), t > 0. (Given L{ ([0,00)) 2 a in advance, such a function c(t)
always exists provided a(t) is completely positive or a(t) # 0 is a creep function and
a1 (t) is log-conver.) Assume k(t) satisfies (P1) and k(X\) = ¢A\)*/\, A sufficiently
large. Then, for every r € (0,1], A is a subgenerator of a locally Hélder continuous

(with exponent r), exponentially bounded (a, k * %)—regulam'zed C-resolvent family
((a,c*™ ?(;;)-regularized C-resolvent family if o« = n € N, resp. (a7r(:7;r))'
reqularized C-resolvent family if « = 0). If, additionally, A is densely defined, then
A is a subgenerator of an exponentially bounded (a,1 * k)-reqularized C-resolvent
family ((a,1 * ¢*™)-regularized C-resolvent family if « = n € N, resp. (a,C)-
regularized resolvent family if « = 0).

Denote by A, the realization of the Laplacian with Dirichlet or Neumann
boundary conditions on LP([0,7]"), 1 < p < oo. By [195, Theorem 4.2], A,
generates an exponentially bounded a-times integrated cosine function for every
a>z(n-1) %—%} . In what follows, we employ the notation given in [369]. Assume
¢ € BVjoc([0,00)) and m(t) is a bounded creep function with mg = m(0+) > 0.
Thanks to [369, Proposition 4.4, p.94], we have that there exists a completely
positive function b(t) such that dm b = 1. After the usual procedure, the problem

[369, (5.34)] describing heat conduction in materials with memory is equivalent to
(58) u(t) = (ax Ap)(t) + f(t), t >0,

where a(t) = (bxdc)(t), t > 0 and f(t) contains r x b as well as the temperature
history. Assume that:
(i) p # 2, (i) Ty =0 or 'y =0, and
(iii) there exists a completely positive function ¢ (t)
such that a(t) = (¢1 *x¢1)(¢), t = 0.

We refer the reader to [369, pp. 140-141] for the analysis of the problem (58) in the
case: p =2 and m, ¢ € BF. Applying Theorem 2.1.28(iii), one gets that A, is the
integral generator of an exponentially bounded (a,1 % £~! (%51(/\)("*1)%*%')(15))—
regularized resolvent family, where £~! denotes the inverse Laplace transform. No-
tice also that [369, Lemma 4.3, p. 105] implies that, for every 3 € [0, 1], the function
A+ ¢1(N\)? /X is the Laplace transform of a Bernstein function, and that the func-
tion k(t) appearing in the formulations of Theorem 2.1.28(ii)—(iii) always exists
(provided o > 0 in (ii)). On the other hand, an application of Proposition 2.3.12
given below (it seems that this result can be slightly improved in the case of frac-
tionally integrated cosine functions) gives that there exists w > 0 such that A, is the
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integral generator of an exponentially bounded (w — Ap)_[%("_1)‘%_%H—regularized
cosine function. Using Theorem 2.1.28(iii) again, we have that A, is the integral
generator of an exponentially bounded (a, (w— A]D)_r%(”_l)‘%_%H )—regularized re-
solvent family, and Theorem 2.1.27(x) can be applied. In both approaches, re-
grettably, we must restrict ourselves to the study of pure Dirichlet or Neumann
problem. It is also worthwhile to note that Theorem 2.1.28(iii) can be applied
in the analysis of the Rayleigh problem of viscoelasticity in L*° type spaces; as a
matter of fact, the operator A defined on [369, p.136] generates an exponentially
bounded a-times integrated cosine function in L*°((0, 00)) for all & > 0. Noticing
that, for every a > 0, the operator Au(x) := v’ (z), x € [0, 1],

u € D(A) :={ue L>®0,1): v, u" € L>®(0,1), u(0) = /(1) = 0},
generates a polynomially bounded a-times integrated cosine function (Cy (¢))i>0
in L*°(0,1), we are in a position to apply Theorem 2.1.28(iii) in the analysis of
motion for the axial extension of a viscoelastic rod [369, (5.49), p.138]. It could
be of interest to know in which classes of non-Hilbert spaces the problem of torsion
of a rod [369, (5.46), p. 137] can be considered.

Let § > 0. Concerning fractional powers of sectorial operators generating
%—resolvent families (i.e. (%,I )-regularized resolvent families), and Landau-
Kolmogorov type inequalities for subgenerators of (a,k)-regularized C-resolvent
families, the reader may consult [280] and [293]. Further on, it is worth noting
that Karczewska and Lizama [180] have recently analyzed the following stochastic
fractional oscillation equation

t
(59) u(t) + /(t — 5)[ADSu(s) + u(s)] ds = W(t), t > 0,
0
where 1 < a < 2, A is the generator of a bounded analytic Cy-semigroup on
a Hilbert space H and W (t) denotes an H-valued Wiener process defined on a
stochastic basis (£, F, P). The theory of (a, k)-regularized C-resolvent families is
essentially applied in the study of deterministic counterpart of the equation (59) in
integrated form
t

u(t)+/<lf(_28_);)aAu(s) d8+/(t—s)u(s) ds:/(t—s)f(s) ds, t > 0,
0 0 0

where f € LL _([0,00) : E).

loc
Using the argumentation given in [288] and [292], one can prove the following.

THEOREM 2.1.29. [235] (i) Suppose that the next conditions hold:
(i.1) The mapping t — |k(t)|, t € [0,T) is nondecreasing.
(i.2) There exist 41 > 0 and tq € [0,7) such that
¢
/a(t —s)k(s)ds

0

t
> e [ lat = s)k(s) ds, ¢ € [0.t0.0)
0
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(i.3) Ais a subgenerator of an (a, k)-regularized C-resolvent family (R(t))e(0,r)

and (H5) holds.

: . R
(i.4) limsup,_,o, H‘k((f))lll < 00.

Then, for every x € D(Ax7

(A))

.. R)x—k(t)Cx
(60) ACr = lim =00

Assume, further, = € D(A) and lim,_ o % exists. Then Cx € D(Axra
and (60) holds.

(ii) Suppose A is a subgenerator of an (a,k)-reqularized C-resolvent family
(R(t))icjo,r) satisfying |[R(t)|| = O(k(t)), t — 04 and min(a(t),k(t)) > 0, t €
(0,7). Then the following holds:

(ii.1) limg o4 (?;i))(tt))x = Cxz, x € D(A).

(ii.2) Suppose (H5). If x € D(A), y € E and lim;_,o4 %};Ez))cx =y, then
Czr e D(A) and y = ACx.
(ii.3) Let E be reflexive, let (H5) hold and let R(s)R(t) = R(t)R(s), 0 < t,

s < 7. Ifz € D(A) and lim,_,o4 ||t)§+§f)cz\\ < 00, then Cz € D(A).

D(A))

(iil) Suppose A is a subgenerator of an (a,k)-reqularized C-resolvent family
(R(t))ielo,r satisfying that |R(t)|| = O(k(t)), t — 04, min(a(t),k(t)) > 0, t €
(0,7) and that (H5) holds. Then, for every x € D(AD(A)) (60) holds. Furthermore,

if v € D(A) and lim,_,o4 W exists, then Czx € D(AD(A)) and (60) holds.

(iv) Suppose a > 0 and A is a subgenerator of an «a-times integrated C'-
semigroup (So(t))tejo,r), Tesp. a-times integrated C-cosine function (Co(t))ielo,r),
such that lim sup,_, w < 00, resp. limsup;_ ”C (

x € D(A) such that Az € D(A):

Il < . Then, for every

B Dla+2)T(a+1)S,(t)z —t*Cx
CAz = tLH& T(a+1) totl » resp.
N(a+3)T(a+1)Cy(t)z —t*Cx
Cdw = tgrél+ Na+1) tot2 '

Assume (M,) satisfies (M.1), (M.2) and (M.3"). Put L, := M;/p and wr,(t) :==

Z;O o Lp, t > 0 (cf. also [28], Section 3.2 and Subsection 3.5.3).

DEFINITION 2.1.30. Let (R(t)):c[o,-) be a (local) (a, k)-regularized C-resolvent
family having A as a subgenerator and let the mapping t — R(t), t € (0,7) be
infinitely differentiable (in the uniform operator topology). Then it is said that
(R(t))te(o,r) is of class C*, resp. of class Cp, iff for every compact set K C (0, 7)
there exists hx > 0, resp. for every compact set K C (0,7) and for every h > 0:

M 4 R(t)
Ly

rd” p
h dtP H
sup

te K, peNg

H < 00, resp. sup
teK, peNg
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(R(t))tecjo,) is said to be p-hypoanalytic, 1 < p < oo, if (R(t))eqo,r) is of class
O with L, = p!?/? (notice only that (M.3') does not hold provided M, = p! and
L, = p!'/?).

By the proof of the scalar-valued version of the Pringsheim theorem (cf. for
example [206, Theorem 2.1, p. 34]), it follows that the mapping ¢t — R(t), t € (0,7)
is real analytic iff (R(t)):cjo,7) is p-hypoanalytic with p = 1.

THEOREM 2.1.31. [28], [235] (i) Suppose A is a closed linear operator, k(t) and
a(t) satisfy (P1), r > —1 and there exists w > max(0,abs(k),abs(a)) such that,
for every z € {A € C: ReX > w, k(\) # 0}, we have that the operator I — a(z)A
is injective and that R(C) C R(I — a(z)A). If, additionally, for every o > 0, there
exist C, > 0, My > 0 and an open neighborhood Q, ., of the region

Aoy = {/\EC:RG)\éw, ReA > —crln|Im)\|—|—C'g}U{AGC:RGA}w},

and an analytic mapping hy : Qo — L(E) such that he(X) = (A (I —a(A\)A)~1C,
ReA > w, k(X) # 0, and that ||he(N)]| < Mo A", A € Ag, then, for every ¢ > 1,

A is a subgenerator of a morm continuous, exponentially bounded (a,k * %)—
regularized C-resolvent family (R(t))i>o0 satisfying that the mapping t — R(t), t > 0
is infinitely differentiable.

(ii) Suppose k(t) and a(t) satisfy (P1), (H5) holds and A is a subgenerator of
an (a, k)-regularized C-resolvent family (R(t));>0 satisfying |R(t)|| < Me*", t >0
for appropriate constants w' > max(O,abs(k:),abs(a)) and M > 0. If there exists
w > w' such that, for every o > 0, there exist Cx > 0 and M, > 0 so that:

(ii.1) there exist an open neighborhood Q. ., of the region Ay, and the analytic
mappings fo : Qow = C, go : Qow = C and hy : Qs — L(E) such that
fo(A\) =k(A), AeC, ReX > w and go(\) = a(\), A € C, Re A > w,
(ii.2) for every A € Ay, with Re A < w, the operator I — a(A\)A is injective and
R(C) S R(I —a(N)A),
(ii.3) ho(N) = fo (M) — g,(N\)A)"IC, A € A, and
(ii.4) [[heW)| € My|ImA|l, A € Asy, Red < w and max(|f5(N)],|9-(AN)]) <
Mo’; AE Aa’,un
then the mapping t — R(t)x, t > 0 is infinitely differentiable for every fized x €
D(A?). Furthermore, if D(A?) is dense in E, then the mapping t — R(t), t > 0 is
infinitely differentiable.
(iil) Suppose k(t) and a(t) satisfy (P1), A is a subgenerator of a (local) (a,k)-
regularized C-resolvent family (R(t))ieqo,r), w = maux(O7 abs(k), abs(a)) and m € N.
Denote, for every e € (0,1) and a corresponding K. > 0,

F.o={A€C:Re) > —Inwr(K|Im)|) +w}.

Assume that, for everye € (0,1), there exist C. > 0, M. > 0, an open neighborhood
O¢.., of the region

Gew ={NeC:ReA>w, k(\) #0}U{N€ F., : Re A < w},
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and analytic mappings fe : Ogw, — C, go : Ocy = C and h, : O., — L(E) such
that:
(iii.1) fo(A) = k(\), ReA > w; g-(\) = a()\), Re X > w,
(iii.2) for every A\ € F.,,, the operator I — g.(A\)A is injective and R(C) C
R(I 9:(N)A),
(iii.3) he(A) = fe(NT = ge(MA)'C, A € Geyw,
(iii.4) he(N)]] € Mo(1 + [A)™eslBeN X € F.,, Red < w and [[he(N\)| <
M1+ A)™, AeC, ReA >
Then (R(t))ie(o,r) is of class CL.
(iv) Suppose k(t) and a(t) satisfy (P1), A is a subgenerator of a (local) (a,k)-
reqularized C-resolvent family (R(t));c(0.+), w = max(0, abs(k), abs(a)) and m € N.
Denote, for every e € (0,1), p € [1,00) and a corresponding K. > 0,

Fe,w,p =: {/\ cC:ReX> —K€|Im)\|1/%’ _|_w}.

Assume that, for every e € (0,1), there exist C; > 0, M. > 0, an open neighborhood
O... of the region Ge oy, = {A € C: ReX >w, k(\) #0}U{N € F.,, : Re A < w},
and analytic mappings fe : Oc = C, ge : Oc v = C and he : O, — L(E) such
that the conditions (iii.1)—(iii.4) of this theorem hold with F ,,, resp. Ge ., replaced
by Few,p, resp. Gewp. Then (R(t))iepo,r) s p-hypoanalytic.

(v) Suppose o > 0, j € N and (R(t))icjo,r) 15 a (local) (a,k)-regularized C-
resolvent family with a subgenerator A. Set R,(t)x := g (t}s(zxa)_lR(s)x ds, t €

[0,7), x € E. Then (Ra(t))te(o,r) 15 an (a, k * %)—r@gularized C-resolvent family

with a subgenerator A. Furthermore, if the mapping t — R(t), t € (0,7) is j-
times differentiable, then the mapping t — R, (t), t € (0,7) is likewise j-times
differentiable. If this is the case, then we have, for everyt € [0,7), b € (0,t) and
zeE:

b .
(t—s)*1-7 £ byati=i
H(a—) (s)zds +27
0/ pale} “Dla+i+1)
. t
= ) (t— )
xkl_IO(OH-z— b)x + ot dsﬂ R(s)x ds,
= b

and:
(v.1) If (R(t))efo,r) 18 of class CE, resp. of class Cp, then (Ra(t))iclo,r) is
likewise of class CF, resp. of class Cp.

(v.2) If (R(t))ic(o,r) is p-hypoanalytic, 1 < p < oo, then (Ra(t))ic(o,r) is likewise
p-hypoanalytic.

THEOREM 2.1.32. [234]-[235] (i) Suppose j € N, 7 > 0, K € L} _([0,7)),
0 € suppK, K € CI((0,7)) (K € C>((0,7))), A is a subgenerator of a local
K -convoluted C-semigroup (Sk(t))icpo,r) satisfying that the mapping t — Sk(t),
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t € (0,7) is j-times (infinitely) differentiable and K = Ky, for an appro-
priate complez-valued function K; € Li _([0,27)) (c¢f. the formulation of Theo-
rem 2.1.9). Then A is a subgenerator of a local (K %o K)-convoluted C?-semigroup
(Skwok (t))tc(o,2r) satisfying that the mapping t — Sk, k (t), t € (0,27) is j-times
(infinitely) differentiable.

(ii) Suppose a > 0, j € N and A is a subgenerator of a local a-times in-
tegrated C-semigroup (Sa(t))icjo,r)- Then A is a subgenerator of a local (2a)-
times integrated C?-semigroup (S2a(t))tef0,27) and the following holds: If the map-
ping t — S, (t), t € (0,7) is j-times (infinitely) differentiable, then the mapping
t— Saa(t), t € (0,27) is j-times (infinitely) differentiable.

(iii) Assume a > 0 and A generates a local a-times integrated semigroup
(Sa(t))tcio,r) satisfying that the mapping t — Su(t), t € (0,7) is ([a] + 1)-times
differentiable. Then A generates a global a-times integrated semigroup (Sa(t))t>0
satisfying that the mapping t — S;(t), t > 0 is infinitely differentiable.

(iv) Suppose A is a subgenerator of a local K-convoluted C-cosine function
(Ck(t)tep,r), 0 € supp K, K € C>((0,7)) (K € C7((0,7)), j € N) resp. K is
of class C* (Cp), and let K = K, ., for an appropriate complez-valued function
K1 € L, _([0,27)). Let the mapping t — Ck(t), t € (0,7) be infinitely differentiable
(j-times differentiable, j € N), resp. let (Ck (t))ie(0,r) be of class CL (C). Then A
is a subgenerator of a local (K * K)-convoluted C*-cosine function (Cr vk (t))iefo,2r)
satisfying that the mapping t — Ck.x(t), t € (0,27) is infinitely differentiable
((j — 1)-times differentiable), resp. (Ckx (t))tcpo,2r) is of class C* (CL). Fur-
thermore, the preassumptions j € N, and K € C7((0,7)) N CI=1([0,7)), imply the
following: If the mapping t — Ck(t), t € (0,7) is j-times differentiable, then the
mapping t — Cr.k (t), t € (0,27) is likewise j-times differentiable.

(v) Suppose a >0, j € N and A is a subgenerator of a local a-times integrated
C-cosine function (Cu(t))iepo,r). Then A is a subgenerator of a local (2a)-times
integrated C*-cosine function (Caa(t))icjo,27) and the following holds:

(v.1) If the mapping t — Cy(t), t € (0,7) is infinitely differentiable (j-times
differentiable, j € N), then the mapping t — Can(t), t € (0,27) is in-
finitely differentiable ((j — 1)-times differentiable; j-times differentiable,
provided « > j).

(v.2) If (Ca(t))icpo,r) is of class C*, resp. Cr, then (Caa(t))icpo,2r) is likewise
of class C, resp. Cr.

(v.3) Assume oo € Ny, j € N and the mapping t — Cy(t), t € (0,7) is infinitely
differentiable (j-times differentiable). Then the mapping t — Cau(t), t €
(0,27) is j-times differentiable.

(vi) Suppose that o = 0 and that A generates a (local) a-times integrated cosine
function (Cya(t))icio,r) satisfying that the mapping t — Co(t), t > 0 is ([a] + 2)-
times differentiable. Then A must be bounded.

Assume that min(a(t), k(¢)) > 0, ¢ € (0,7) and that A is a subgenerator of an
(a, k)-regularized C-resolvent family (R(t));c[o,r). The Favard class Fqy is defined
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by setting
t)x — k(t
Fo = {m € E: sup |17 (t)x (t)C] < oo}.
te(0,7) (ax*k)(t)
Equipped with the norm | - [o 5 == || - [| 4+ supse(o,r) W7 F, r becomes a

Banach space, and in the case when ||R(¢)|| = O(k(t)), t € [0,7), we have D(A) C
F, 1. The proof of [292, Theorem 3.4] immediately implies the following assertion.

THEOREM 2.1.33. Assume min(a(t), k(t)) > 0, t € (0,7), abs(k) = abs(a) =0,
A is a subgenerator of an (a,k)-reqularized C-resolvent family (R(t))i=0 satisfying
IR@®)|| = O(1), t =0 and (H5) holds.
(i) Let x € F, . Then
(61) sup  ||A(J — G(N)A) "' Cal| < .
A>0, E(A)#£0

(ii) Assume, in addition, that the mapping a : (0,00) — (0,00) is surjective

and that sup, 8:2;8 < 00. Then (61) implies Cx € F, .

For further information concerning Volterra integro-differential equations, we
recommend [79], [289], [369], [373] and references cited there.

2.2. Exponentially bounded convoluted C-semigroups
and cosine functions

The most important interplay between exponentially bounded convoluted C-
cosine functions and operator valued Laplace transform is described in the following
theorem (cf. also Theorem 2.1.27(xii)).

THEOREM 2.2.1. Let K satisfy (P1) and let A be a closed linear operator.

(i) Assume A is a subgenerator of an exponentially bounded, K -convoluted C-
cosine function (Ck(t))i=o satisfying |Ck(t)|| < Me“t, t > 0, for appropriate
constants M >0 and w > 0. If w; = max(w,abs(K)), then:

(62) {X*: Re) > wy, K(\) # 0} C pc(A) and
(63) AN —A)"'Cx = f(EA) O/e_/\tC’K(t)m dt, € E, ReX>w;, K(\)#0.

(ii) Assume M >0, w > 0, (Ck(t))i>0 is a strongly continuous operator family
satisfying ||Ck ()| < Me*t, t > 0, wy = max(w,abs(K)) and (62)-(63) hold. Then
(Ck(t)i>0 is an exponentially bounded, K-convoluted C-cosine function with a
subgenerator A.

PROOF. Fix temporarily a complex number \ such that K()\) # 0 and Re A >
w1. Since (19) is assumed and A is closed, one obtains

£(Cr(H)z)(N) = @cx + %AE(CK(t)x)(A), e,

(64) (A2 = A)L(Ck(t)z)(\) = AK(\)Cz, z € E.
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Hence, R(C) C R(A\?2 — A). Assuming (A2 — A)z = 0, one has

t t
CK(t)J:—@(t)Cx:/(t—s)CK YAz ds = A 2/ (t—s)Ck(s)xds, t >0,
0 0

and consequently, £(Ck (t)z)(\) = %Cm + L(Ck(t)z) (), Cz = 0 and = = 0.
This implies the injectiveness of A2 — A; thanks to (64) one gets (w?,00) C pc(A)
and (63), which completes the proof of (i). Now we will prove (ii). Using (63) and
CA C AC, we infer that (A2 — A)71C?%z = C(\? — A)"1Cz, x € E. Hence,

1 oo oo
f/e_)‘tCK(t)det = — e MOCKk () dt, x € E.
KO J

Since K # 0 in L ([0, 00)), it follows that
{z€C:Rez>wi} ={2€C:Rez>w, K(z)#0}

and - -
/e’)‘tCK(t)Cx dt = /e*”OCK(t)x dt, Rel>w, z € E.
0 0

The uniqueness theorem for the Laplace transform implies CCk(t) = Ck(t)C,
t >0, x € E. Then we obtain

~1 /e*’\tCK(t)Amdt, Re\ > wy, K(\) #0, x € D(A)
KO

AN — A)7ICAx =

M - A)Cr = f(i)\) /e‘”CK(t)A:vdt, ReA > wy, K(\) #0, = € D(A).
0

An immediate consequence is Afo e MO (t)xdt = fo e MOk (t) Az dt, Re \ >
wi, K(\) # 0, z € D(A). Using the closedness of A and the above arguments, we
obtain that the last equality holds for every € D(A) and for every A € C with
Re A > w;. Now one can apply Theorem 1.1.7(vii) in order to see that Ck (t)A C
ACKk(t), t = 0. The following equalities hold for every x € E and for every A € C
with Re A > w; and K()\) # 0,

c ( - s)cK<s>xds> () = £ONLCr (B (V)

0
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= L(Ck(t)z —O(t)Cz)(\), Re>wi, K()\)#0.
Using the closedness of A and Theorem 1.1.7(vii), one immediately gets (19). O

The following characterization of exponentially bounded convoluted C-semi-
groups can be proved along the same lines.

THEOREM 2.2.2. Let K satisfy (P1) and let A be a closed linear operator.

(i) Assume M > 0, w > 0, A is a subgenerator of an exponentially bounded,
K -convoluted C-semigroup (Sk (t))i=o0 satisfying ||Sk(t)|] < Me“t, t >0 and wy =
max(w, abs(K)). Then the following holds:

(65) {AeC:ReA > wi, f(()\);éO} C pc(A) and
66) (A— A)"'Cz = K’E)\) O/e‘”SK(t)xdt, 2 € B, Red > wi, K(\) #0.

(il) Assume M >0, w 2 0, (Sk(t))i=0 is a strongly continuous operator fam-
ily, |Sk(t)]] < Me“t, t > 0, wy = max(w,abs(K)) and (65)-(66) hold. Then
(Sk ()10 is an exponentially bounded, K -convoluted C-semigroup with a subgen-
erator A.

REMARK 2.2.3. Assume that (62)—-(63), resp. (65)—(66), hold only for real val-
ues of X's. Then (Ck(t))i>0, resp. (Sk(t))i>o0, is still an exponentially bounded,
K-convoluted C-cosine function, resp. K-convoluted C-semigroup, with a subgen-
erator A.

Using Theorem 2.2.1, Theorem 2.2.2 and Theorem 1.1.12, one can simply prove
the following assertion.

THEOREM 2.2.4. (i) Suppose K satisfies (P1), w > max(0,abs(K)), A is a
closed linear operator with {)\? : Re A > w, K(\) # 0} C pc(A) and the function
A= AK(A)(N2 = A)71C, ReX > w, K(\) # 0, can be extended to an analytic
function Y : {\ € C: ReX > w} — L(E) satisfying [|T(N)]| < Mp|A|", Re A > w,
where v > —1. Then, for every a > 1, there exist a continuous function C :

[0,00) = L(E) with C(0) =0 and My > 0 such that ||C(t)]] < Mye*t, t >0 and
MK\ (A2 = A)~1C = )\o‘”/e’MC’(t) dt, Rel>w, K(\)#0.
0

Furthermore, (C(t))i>0 is a norm continuous, exponentially bounded (K g %)—

convoluted C-cosine function with a subgenerator A.

(i) Suppose K satisfy (P1), w > max(0,abs(K)), A is a closed linear operator
with {\ € C: ReX > w, K(\) # 0} C pc(A) and there exists an analytic function
T:{z€C:Rez>w} — L(E) so that T(\) = K(A\)(A\ — A)~'C, Re) >
w, K(\) #0, and |[Y\)|| < Mo|A|", Re X > w, for some r > —1. Then, for every
a > 1, there exist a continuous function S : [0,00) — L(FE) with S(0) = 0 and



78 2. CONVOLUTED C-SEMIGROUPS AND COSINE FUNCTIONS

M > 0 such that |S(t)|| < Mie“t, t > 0 and
KN\ —-A4)"1Cc = Aa+T/e-Ms dt, Rel>w, K()\) #0.
0

ta+7'71 )

Furthermore, (S(t))i>0 is a norm continuous, exponentially bounded (K *q tar)-

convoluted C-semigroup with a subgenerator A.

THEOREM 2.2.5. Suppose K satisfies (P1) and A is a closed linear operator.
Then the following holds:

(i.1) Let M > 0 and w = 0. Then the operator A is a subgenerator of an expo-
nentially bounded, O-convoluted C-semigroup (Se(t))i>o0 satisfying the condition:

(67) [|Se(t+h) —Se(t)|| < Mhe*M >0, h>0

iff there exists a > max(w, abs(K)) such that:

(63) [h€ (a,00) : KO\ £0} € p(A),

(69) A— IN(()\)()\ —A)7IC, A>a, K()\) # 0 is infinitely differentiable and
- ME! ~

(70) H TFIRMNO - 4) 1C]H < keNo, A>a, K(\)#0.

S\ —w)k

(i.2) Assume M > 0, w > 0 and A is densely defined. Then A is a subgener-
ator of an exponentially bounded, K -convoluted C-semigroup (Sk(t))t=0 satisfying
ISk ()| < Me*t, t > 0 iff there exists a > max(w,abs(K)) such that (68)—(70)
hold.

(ii.1) Let M > 0 and w > 0. Then the operator A is a subgenerator of an
exponentially bounded, O-convoluted C-cosine function (Ce(t))is0 satisfying the
condition:

(71) ICo(t+h) = Colt)| < Mhe?"™™M t>0, h>0
iff there exists a > max(w, abs(K)) such that:
(72) {A?: X € (a,00), K(\) # 0} C po(4),
(73) A= AK(A\) (A% = A)71C, A > a, K(\) # 0 is infinitely differentiable and
ME!
22 —1
(74) Hd)\k —A) C]Hgm, keNg, A>a, K(\)#0.

(ii.2) Assume M > 0, w > 0 and A is densely defined. Then A is a subgenerator
of an exponentially bounded, K -convoluted C-cosine function (Ck (t))i>o satisfying
ICKk(®)|| < Me“t, t = 0 iff there exists a > max(w,abs(K)) such that (72)-(74)
hold.

Proor. (i.1) Let (68)~(70) hold and let a := max(w,abs(K)). Assuming A >
a and K(X) # 0, (70) implies that the power series

5 =1k
Z[K(A)(A 2!) C] (A)(Z_ "

k>0
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converges for every z € C satisfying |z — A] < A\ —w. This, in turn, implies that
there exists a C>°-function Y : (a,00) — L(E) satisfying T(\) = K(A\)(A— A)~1C,

A >a, K(\) # 0 and ||%T || )\Af)k,'Hl, k € Ny, A > a. An application of
Theorem 1.1.13 gives that there ex1sts a functlon So : [0,00) = L(FE) such that
(67) holds and that Y(A\) = A [ e *Se(t)dt, A > a. Then it is straightforward

to see that ©(A\)(\ — A) IC=[Te ”\tSO( )dt, A > a, ©(\) # 0. Now one can
proceed as in the proof of Theorem 2.2.1 in order to see that (Se(t)):>0 is an
exponentially bounded, ©-convoluted C-semigroup with a subgenerator A (cf. also
Remark 2.2.3). Assume conversely that A is a subgenerator of an exponentially
bounded, ©-convoluted C-semigroup (Se(t)):i>o which satisfies (67). Arguing as
before, one obtains (68) and

oo

/e_)‘tS@(t)x dt, z € E, ReX>a, K()\) #0.
0

1

AN— A) 0z = 700

This implies (69). To prove (70), fix x € E, * € E* and put afterwards f(t) :=
z*(Se(t)z), t > 0. Then (67) implies that f(-) is differentiable almost every-
where in [0, 00) with |f'(2)] < C|lz|| [|z*||e** for a.e. t > 0. Moreover, z*(K (A (N —
A)TICx) = [TeMf(t)dt, A > a, K()\) # 0. Therefore, (70) holds. Using the
same arguments as in the proof of [434, Theorem 3.4, p. 14], one obtains (i.2). The
proofs of (ii.1) and (ii.2) are similar to those of (i.1) and (i.2). O

The next profiling of C-pseudoresolvents follows from the proofs of [259, Propo-
sition 2.2] and [384, Theorem 1.3]:

PROPOSITION 2.2.6. Let M > 0, let K satisfy (P1) and let w > max(0, abs(K)).

(i) Suppose (Sk(t))i=o is a strongly continuous operator family and ||Sk ()| <
Me¥t, t > 0. Put Ryz := )\) [ e MSk(t)zdt, z € E, ReX > w, K(\) # 0.
Then (A — p)RyR,x = R,Cx — R\Cx, \, > w, KA\)K(u) # 0, x € E iff (20)
holds forx € E, t >0 and$>0

(ii) Suppose (Ck (t))i>0 is a strongly continuous operator family and [|Ck (t)|| <
Me“t, t > 0. Put Ry2x := )\K(A) IS e MOk (t)x dt, x€~E R~e)\>w K(\) #0.
Then (\> — p®)Ry2R,2x = R,2Cx — Ry2Cx, A\, p > w, K(A\)K(p) #0, x € E iff
(24) holds forx € E, t >0 and s > 0.

The following adjoint type theorem is motivated by [325, Theorem 4.2]; the
proof is only sketched here without giving full details.

THEOREM 2.2.7. (i) Suppose A is a subgenerator of a (local, global expo-
nentially bounded) K-convoluted C-semigroup (Sk(t))icjo,r), Tesp. K-convoluted
C-cosine function (Ck(t))icjo,r), D(A) and R(C) are dense in E and o > 0.

Then A* is a subgenerator of a (local, global exponentially bounded) (K *( f(_;)

convoluted C*-semigroup (Si ,(t))icjo,r), resp. (K *o Fa( )) -convoluted C*-cosine
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function (Cj ,(t))icpo,r) in E*, where

t—g)x1
Sk.a(t)z” = /(F(a))SK(S)*x*ds, ¥ e B, te0,7), resp.

t

_ a—1
Cra(t)z” = /%CK(S)*I*CZS, ¥ e E*, tel0,7).

(ii) Suppose D(A) and R(C) are dense in E, and A is a subgenerator of a
K -convoluted C-semigroup (Sk(t))iefo,r), resp. K-convoluted C-cosine function
(Ck(t))iefo,r)- Then the part of A* in D(A*) is a subgenerator of a K-convoluted

C‘*mT*)-semigmup (S}‘((t)|m)te[o,f), resp. K-convoluted C*-cosine function

(C;}(thm)te[o;)'

(iii) Suppose E is reflexive, D(A) and R(C) are dense in E, and A is a subgen-
erator of a K -convoluted C-semigroup (Sk (t))icjo,r), resp. K-convoluted C-cosine
function (Ck (t))ico,r)- Then A* is a subgenerator of a (local, global exponentially
bounded) K -convoluted C*-semigroup (Si (t))ie(o,r), resp. K-convoluted C*-cosine
function (Cy(t))icjo,r) in E*.

(iv) Suppose A is a subgenerator of a (local, global exponentially bounded) (a, k)-
reqularized C-resolvent family (R(t)):c(0,), D(A) and R(C) are dense in E and o >

0. Then A* is a subgenerator of a (local, global exponentially bounded) (a, k*q %) -

regularized C*-resolvent family (R}, (t))ie[0,r), which is given by

R, (t)z" := / u}‘io)l;kR(s)*x*ds, x* € E*, te[0,7).
0

(v) Suppose D(A) and R(C) are dense in E, and A is a subgenerator of an
(a, k)-regularized C-resolvent family (R(t))icjo,r)- Then the part of A* in D(A*) is
a subgenerator of an (a, k)-regularized C[“D(T*)—Tesolvent family in E*.

(vi) Suppose E is reflexive, D(A) and R(C) are dense in E, and A is a subgen-
erator of a (local, global exponentially bounded) (a, k)-reqularized C-resolvent family

(R(t))tcjo,r)- Then A* is a subgenerator of a (local, global exponentially bounded)
(a, k)-reqularized C*-resolvent family (R*(t))¢cjo,7)-

ProOOF. We will only prove (i)-(iii) provided that A is a subgenerator of a K-
convoluted C-semigroup (S (t)):efo,r). Since R(C) is dense in E, the operator C*
is injective. By the proof of [325, Theorem 4.2], we have that (S% ,(t))tcp0.r) is a
strongly continuous operator family in E* and

¢
a—1
A*/S}k{)a(s)x*ds = Sk.a(t)z” — (@ %0 m)(t)(j*l‘*, z* € E*, t€(0,7).
0
The simple computation shows that Sy ,(t)A* C A*S% () and Sk ,(1)C* =
C*Sk o(t), t € [0,7), which completes the proof of (i). The proof of (ii) follows
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exactly in the same way as in the proof of [325, Theorem 4.2] while the proof of
(iii) follows immediately from (ii) and Proposition 1.1.14(iv). d

It is clear that the notions of K-convoluted C-semigroups and cosine functions,
or more generally (a, k)-regularized C-resolvent families, can be considered if E is
a sequentially complete locally convex space; with minor exceptions, the results
established here continue to hold in this setting ([241]). We continue by observing
that Wu and Zhang [429] have recently introduced a new topological concept for
the purpose of researches of semigroups on L*™-type spaces and the L'-uniqueness
of the Fokker-Planck equation (cf. also [268, Theorem 2.1, Theorem 2.2]). Let us
explain in more detail the importance of such an approach. Let E be a sequentially
complete locally convex space. Then one can define on E* the topology of uniform
convergence on compacts of E, denoted by C(E*, E); more precisely, given a func-
tional =y € E*, the basis of open neighborhoods of zf w.r.t. C(E*, E) is given
by N(z§ : K,¢) := {2* € E* : sup,k [(¢* — x§,x)| < €}, where K runs over all
compacts of E and € > 0. Then (E*,C(E*, E)) is locally convex and complete. On
the other hand, E* can be equipped with the Hausdorff locally convex topology
defined by the system (| - |g)peg of seminorms on E*, where B denotes the family
of all bounded subsets of E and |z*|p := sup,cp |(z*, z)|, * € E*, B € B. In this
case, F* is sequentially complete provided that E is barreled. Furthermore, one can
simply prove that the topology C(E*, E) is finer than the topology induced by the
calibration (|- |g) pes. With the notion explained in [241], we have the following
theorem which is not so easily comparable to Theorem 2.2.7.

THEOREM 2.2.8. Suppose D(A) and R(C) are dense in E, and A is a subgen-
erator of a locally equicontinuous (a, k)-regularized C-resolvent family (R(t)):cjo,7)-
Then A* is a subgenerator of a locally equicontinuous (a, k)-reqularized C*-resolvent
family (R(t)*)iejo,r) in (E*,C(E*, E)). Furthermore, if T = 0o and (R(t))¢>o is ex-
ponentially equicontinuous, then (R(t)*)t>0 is also exponentially equicontinuous.

2.3. Abstract Cauchy problems

We are turning back to our standing hypothesis in which E is a Banach space.
Convoluted C-semigroups and functions are important tools in the study of the
following abstract Cauchy problems:

ue C([0,7): [D(A)])NCL([0,7) : E),
(00) : ¢ U (t) = Au(t) +O(t)Cx, t €[0,7),
u(0) =0,
and
ue C([0,7) : [D(A)]) N C?([0,7) : E),
(ACPy)e : ¢ /() = Au(t) + O(t)Cx + ft O(s)Cyds, t € [0,71),
0

u(0) =0, «/'(0) = 0.
It is said that (©C), resp. (ACPs)e, is well-posed if for every z, resp. z, y € E,
there exists a unique solution of (©C), resp. (ACP,)e. The existence of a unique
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solution of (©C'), resp. (ACP;)e, is closely connected with the existence of a unique
K -convoluted mild solution of the problem (ACP), resp. (ACP,), where

ue C([0,7): [D(A)])nC([0,7) : E),
(ACP)) : < W/ (t) = Au(t), t € [0,7),
u(0) = z,
and
ue C([0,7) : [D(A)]) N C3([0,7) : E),
(ACPy) : ¢ u'(t) = Au(t), t € [0,7),
u(0) =z, v (0) =y.

The notion of mild solutions of (ACP) was introduced by Wang and Huang [420]
incaseT:ooandK(t):%,t>O, n € N.

The subsequent assertions follow from the use of arguments given in the proofs
of [5, Proposition 2.3], [275, Proposition 2.4, Theorem 2.5] and [418, Theorem 2.4]

(cf. also [230, Propositions 5.3, 5.4 and 5.5]).

PROPOSITION 2.3.1. Suppose 0 < 7 < oo and (OC) is well-posed. Then there
exists a unique strongly continuous operator family (Sk(t)):epo,r) such that, for
every x € F, fot S(s)xds € D(A) and Af(;5 S(s)xds = S(t)x — O()Cx, t € [0,7).
Furthermore, Sk (t)Sk(s) = Sk (s)Sk(t), 0<t, s <7, (Sk(t))ielo,r) is a local K-
convoluted C-semigroup with a subgenerator A and the integral generator C~*AC.

PROPOSITION 2.3.2. Suppose 0 < 1 < oo, K is a kernel and A is a subgenerator
of a K-convoluted C-semigroup (Sk (t))iepo,)- Then (©C) is well-posed.

The next proposition can be proved by using the closedness of A and the
functional equality of K-convoluted C-semigroups (cosine functions).

PROPOSITION 2.3.3. Let A be a subgenerator of a (local) K-convoluted C'-
semigroup (Sk (t))iefo,r), resp. K-convoluted C-cosine function (Cr (t))icjo,r)-
(i) Suppose k € N, x € D(A*) and K € C*~1([0,7)). Then

d* & it )
(2) k—1—1
aik SK(t)x = SK(t)A T+ Z__EO K (t)CA z, 1€ [0,7‘).

(i) Suppose k € N, x € D(A*) and K € C*~1([0,7)). Then

2k k—1
%Qk Ck(t)r = CK(t)Ak.’E + Z K(%'H)(t)C’Ak_l_igc7 t€0,7).
i=0

(iii) Suppose k € N, x € D(A*) and K € C**~2([0,7)). Then

d2k—1

¢ k-1
SOt = / Cr(s)Atwds +y KB (H)CA™ 'z, te0,7).
0

=0
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PROPOSITION 2.3.4. Suppose k € N, K € C*([0,7)) and (©C) is well-posed.
Then, for every x € D(A*TY), there exists a unique solution of the problem (©CY}),
where:

ue CH[0,7): E)ynC([0,7) : [D(A)]),
(OCk) : { W/(t) = Au(t) + L K(t)Ca, t € [0,7),
u(0) = K KO (0) AR 10,

PrOOF. The prescribed assumptions imply that A is a subgenerator of a K-
convoluted C-semigroup (Sk (t)):e[o,-)- Now one can simply verify that

¢ k
u(t) := /SK(S)AkHa: ds + Z 0 (AR iCx, te0,7), z € D(AFFY),
A i=0

is a solution of (©C)). The uniqueness of solutions of (OC}) follows from the

well-posedness of the problem (6C) at = = 0. O
Suppose H € L{ ([0,7)), H o K # 0 in L{ ([0,7)) and (©C) is well-posed.

Then it can be simply checked that the problem (H o ©,C) is also well-posed.

PROPOSITION 2.3.5. Suppose k € N, k > 2, K € C*([0,7)), K(0) = 0,
0<i<k—2, A isa closed linear operator, \g € p(A) and the problem (©C}) has
a unique solution for every x € D(A*TY). Then (©C) is well-posed.

PROOF. Let y € D(A¥*!) and 2 = Cy. Define uy(t) := (Mg — A) fot uy(s) ds,
t € [0,7), where u,(-) is a solution of (©C}) with x replaced by y there. Direct
computation shows that w;(-) is a solution of the problem

ue CH[0,7): E)YNnC([0,7) : [D(A)]),
(OCk-1):{ w/(t) = Au(t) + L K (t)a, t € [0,7),
u(0) =0,
where © = (Ao — A)z. Therefore, the problem (OC}_1) has a solution for all
x € (Ao — A)CD(AF*1). Similarly, the problem
ue CH[0,7): E)YnC([0,7) : [D(A)]),
(OCk—2): {3 w/(t) = Au(t) + L5 K (t)a, t € [0,7),
u(0) =0,
has a solution for all € (\g — A)2CD(A**!) and we obtain inductively the exis-
tence of a solution ugy1(-) of the problem
ue CL[0,7): E)nC([0,7) : [D(A)]),
(0C_1): ¢ u(t) = Au(t) +O(t)z, t €[0,7),
u(0) =0,
for all x € (A\g — A)FTLCD(A**Y). Since CA C AC and \g € p(A), we have
R(C) C (Ao — A)FFLCD(A**1) and this implies that (©C) has a solution for all

x € E; the uniqueness of solutions of (©C) follows from the well-posedness of the
problem (©C}) at z = 0. O
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The next statements can be shown following the lines of the proofs of Propo-
sition 2.3.4 and Proposition 2.3.5.

THEOREM 2.3.6. Suppose k € N, K € C*~1([0,7)), A is a closed linear op-
erator, Ao € p(A) and, in the case k > 2, K(0) =0, 0 <i < k—2. Then the
following assertions are equivalent:

(i) (©Q) is well-posed. (ii) (%), R(\g : A)*C) is well-posed.

COROLLARY 2.3.7. Suppose k € N, A is a closed linear operator and Ay € p(A).
Then the following assertions are equivalent:

(i) A is a subgenerator of a local k-times integrated C-semigroup on [0,7).
(ii) A is a subgenerator of a local (R(\g : A)*C)-regularized semigroup on [0,7).

Our objective in the sequel of this subsection is to prove the analogues of
Proposition 2.3.4-Corollary 2.3.7 for K-convoluted C-cosine functions.

PROPOSITION 2.3.8. Suppose (ACPy)g is well-posed and k € N. Then A
(C~YAC) is a subgenerator (the integral generator) of a K -convoluted C-cosine
function (Ck(t))iejo,r) and the following holds:

(i) If z € D(A¥), y € D(A*) and K € C**71([0,7)), then the abstract Cauchy
problem:

ue C*([0,7) : E)ynC([0,7) : [D(A)]),

u'(t) = Au(t) + Lo K (8)Ca + S5 K (4)Cy, t € [0,7),

u(0) = Y2725 KCHD(0)CAR e + 317 KO (0)C ARy,
u/(O) _ Zi:ol K (29) (O)CAk_l_ix + Zi:()? K(Qi""l)(())CAk_?_iy,

has a unique solution given by:

(ACPs)o 251 :

k-2
u(t) = Cx(t)AF 1o + Z K@D o ak—2-ig
=0
t k-2
+ /CK(S)Ak_ly ds + ZK(%) (A 2=1y ¢ e [0,7).
0 i=0

(ii) If v € D(AkTY), y € D(A¥) and K € C?*([0,7)), then the abstract Cauchy

problem:

ue C%3[0,7): E)ynC([0,7) : [D(A)]),

() = Au(t) + Lo K(8)C + S  K(£)Cy, t € [0,7),

u(0) = Zf;ol K@) (0)CAF—1=ig + Zf:_ol K@+ (0)C AR—1-iy,
' (0) = S K@D (0)C AR —ig 4 S @O (0)C AR 1=y,

has a unique solution given by:

(ACPy)e ok

f k-1
u(t) = /CK(S)AkZE ds + Z K(Qi)(t)CAk—l—ix
0

=0
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k—2
+ Cr (A Y+ Y K C ARy, te (o, 7).
i=0
ProOOF. We will only outline the proof of (i). By Proposition 2.1.16 and
Proposition 2.3.15 given below, A (C~1AC) is a subgenerator (the integral gen-

erator) of a K-convoluted C-cosine function (Ck (t))se(o,r)- Clearly, u € C*([0,7) :
EYNC(]0,7) : [D(A)]), and by Proposition 2.3.3, one gets:

k—2

/CK Ak$ ds + K( )CAk 11‘—|— ZK(QH-Q ( )CAk—Q—ix

=0

k—2
+Cxk (t)Akily + Z K (2i+1) (t)CAk72—iy7
1=0
k—1
’ll//(t) = CK(t)Akx + K’(t)CAkill' + Z K(2i+1) (t)cAkiliix

=0

/CK YAy ds + K (t)C Ak~ 1y+ZK(2’+2)( t)CAR=271y

=0
k—1 k—2
// ZK(2z+1) Ak: 1— z ZK 27,+1 Ak 1— ’L
=0 i=0
k—2 ) k—2
+ ZK(21+2)( Ak: 2— zy ZK Ak 1— ’L
=0 =0

= KD () Cx 4+ K@= (1) Cy, t € [0,7).

The uniqueness of solutions of (ACP)g at x = y = 0 completes the proof. O

In the context of integrated C-cosine functions considered in Banach spaces,
the previous proposition extends [434, Theorem 6.10, p. 40].

THEOREM 2.3.9. (i) Suppose k € N, K € C?*71([0,7)), Ao € p(A), the abstract
Cauchy problem (ACPs)o 2k—1 has a unique solution for all x, y € D(AF) and, in
the case k > 2, KW (0) =0, 0 <i <2k —4. Then (ACPy)e is well-posed.

(ii) Suppose k € N, K € CQk([O,T)), Ao € p(A), the abstract Cauchy problem
(ACPy)eo 21 has a unique solution for all x € D(A**Y) and y € D(A¥), and, in the
case k > 2, KW(0) =0, 0 <i <2k —3. Then (ACPy)g is well-posed.

PrOOF. We will only prove (i). Suppose z € D(A*), y € D(A*) and designate
by uz () the unique solution of the problem (ACP,)eg 2x—1. Then the injectiveness
of the operator \g — A and the supposition K (0) =0, 0 < i <2k—4 (provided
that k > 2) easily imply that the function wu;(t) := (Mg — fo 5) Uz y(5)ds,
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t € [0,7) is a solution of the problem

ue C2([0,7): E)nC([0,7) : [D(A)]),
d2k73 d2k74

u"(t) = Au(t) + Za== K (t) (Ao — A)Cx + Fo= K (t)(Xo — A)Cy, t € [0,7),
u(0) = 4/ (0) = 0.
Arguing as in the proof Theorem 2.3.5, we obtain that the problem
u € C?([0,7): E)NnC([0,7) : [D(A)]),
u"(t) = Au(t) + O(t)z + [} O(s)yds, t € [0,7),
u(0) ='(0) =0,

has a unique solution for all z, y € (Ao — A)*CD(A*). Since Ay € p(A) and
CA C AC, we immediately obtain that (ACP,)e is well-posed. O

REMARK 2.3.10. (i) It can be simply justified that in the assertion (i) of The-
orem 2.3.9 one can assume the well-posedness of the problem (ACP;)g 25—1 only
for z € D(AF) and y = 0; analogically, in the assertion (ii) one can only assume
that « = 0. In such a way, we obtain a generalization of [434, Theorem 6.9, p. 40].

(ii) In the formulations of Theorem 2.3.5 and Theorem 2.3.9, we need not to
restrict ourselves to the case p(4) # 0. The following changes must be done to
cover the newly arisen situation:

(ii.1) Theorem 2.3.5: A\g € pc(A4),
R(C) C {(\o — Az 2 € DA} = D((hg — A)~*+D)

and, for every z € (Ao — A)~*+D R(C), the problem (©C}) has a unique
solution.

(ii.2) Theorem 2.3.9(1): Ao € pc(A), R(C) C D((A\g — A)~F) and the problem
(ACPy)e 21 has a unique solution for every z € (A\g — A)"F*R(C) and
y=0.

(ii.3) Theorem 2.3.9(ii): \g € pc(A), R(C) € D((Ao — A)~F) and the problem
(ACP,)e 21 has a unique solution for every y € (Ao — A)"*R(C) and
x = 0. At the end of this remark, let us point out that the closed graph
theorem and an induction argument imply (Ao — A)~*C € L(E).

Taking into account preceding remark and the method described in the proofs
of Theorem 2.3.5, Theorem 2.3.9 and [261, Theorem 2.1] (cf. also Proposition 2.3.12
given below), the next corollary follows instantly.

COROLLARY 2.3.11. (i) Suppose k € N, \g € pc(A), R(C) C D((Ag—A)~*+1)
and the abstract Cauchy problem (ACPy) has a unique solution for every x €
(Ao — A)~F+DR(C). Then A is a subgenerator of a (local) k-times integrated
C-semigroup (Sk(t))ieo,r), and moreover, A is a subgenerator of a (local) (()\0 —
A)ka’) -reqularized semigroup (S(t))icjo,r) which satisfies

t

(75) Sp(t)r = (Ao — A)F / (t(k_j)f)_'lS(s)m ds, x€ E, t€[0,7).
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The formula (75) is also applicable to semigroups appearing in the formulation of
Corollary 2.3.7.

(ii) Suppose k € N, \g € pc(A), R(C) C D((Ag — A)~**V) and the abstract
Cauchy problem (ACPy) has a unique solution for every x € (A\g — A)~*+D R(C)
and y = 0. Then A is a subgenerator of a (local) (2k)-times integrated C-cosine
Junction (Sk(t))iefo0,r)-

(iii) Let k € N, X\g € pc(A), R(C) € D((Ag — A)~*+D) and the abstract
Cauchy problem (ACPy) have a unique solution for everyy € (Ao — A)~*+D R(C)
and x = 0. Then A is a subgenerator of a (local) (2k+ 1)-times integrated C-cosine
function (Cr(t))eeo,r)-

A careful inspection of the proof of [420, Theorem 2.1] implies the following.

PROPOSITION 2.3.12. Suppose A is a closed operator, k € Ng, A2 € pc(A)
and R(C) € D((A3 — A)~**V). Then A is a subgenerator of a (local, global ez-
ponentially bounded) (2k)-times (resp. (2k + 1)-times) integrated C-cosine function
(Cor(t))tefo,r) (resp. (Cory1(t))iepo,r)) iff A is a subgenerator of a (local, global
ezponentially bounded) (A3 —A)~*C)-regularized cosine (resp. (A3 —A)~*+DC)-
reqularized cosine function) (Co(t))icjo,r), and moreover, the following formulae
hold:

b 5)2k—1
Cor(t)x = (A2 — A)* / (t(Qk—)l)!CO(S)x ds, t€l0,7), x € E,
0

Colt)z = {[(_1)k Zk: (’;) (P iy %0 (Piothxg)] o c%}(t)x

i=1
k
+ (1) Cor(B)z + > _(~1 [(Pecihag) %0 (Po—ihi—x,)] (£)(\8 — A)~FCz,
i=1
for any t € [0,7) and x € E, where Py(t) =%, t € [0,7), 0 <i <k and hiy,(t) =

ettt e0,7).

The following proposition is an analogue of Proposition 2.3.12 for integrated
C-semigroups.

PROPOSITION 2.3.13. Suppose k € N, Ao € pc(A) and R(C) C D((Ao—A)7F).
Then A is a subgenerator of a (local, global exponentially bounded) k-times inte-
grated C-semigroup (Sy(t))ic(o,r) iff A is a subgenerator of a (local, global exponen-
tially bounded) ((Ao — A)~*C)-regularized semigroup (So(t))icpo,r). Furthermore,
the following holds:

(76)  So(t)x = (—1 {sk x—i—Z( >)\§]O/ erolt= s>((z_)1)_s,€( )a ds

k—1 Aot pk—1—i

- (i+1)
+Z(kz—1—z) (A—Xo)™ Cz],tE[O,r),zGE
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t

_ k-
Sp(t)r = (Ao — A)F / (t(k_)l)!lSo(s)mds, tel0,7), z€E.
0

PROOF. Suppose that A is a subgenerator of a (local) k-times integrated C-
semigroup (Sk(t))tcjo,r)- Set Ay, := A — AoI. Then a rescaling result for (local)
integrated C—Semlgroups (cf. [5, Lemma 3.2], the proof of [216, Theorem 4.9] and
Subsection 2.1.5) implies that Ay, is a subgenerator of a (local) k-times integrated
C-semigroup (Sk,x,(t))te[o,r), Where, for every ¢t € [0,7) and z € E:

/ ELORY L (- s) !
Sk Ao (t)x = e‘kotSk(t)CC + /e_)\os Z (i>)\6,5k(8)x ds.

) P (t—1)!

Define
(77)
k-1 tk i—1

S0 1= (1) S Y G e, e ven

It can be simply verified that Ay, is a subgenerator of a (local) ((Ag — A)~*C)-
regularized semigroup (So,x, (t))¢e[o,r)- This clearly implies that A is a subgenerator
of a (local) ((Ag — A)~*C)-regularized semigroup (So(t) := e**Sy 5, (t))se0,-) and
that (76) holds. The converse statement follows from the formula (77) and an easy
computation. O

DEFINITION 2.3.14. It is said that a function v € C([0,7) : E) is a K -convoluted

mild solution of (ACPy), resp. (ACPz), at x € E, resp. (z,y) € E x E, if, for every

fo s)ds € D(A), resp. fg(t — s)u(s)ds € D(A), and Afo ds =

v(t) — @(t)x, t € [0,7), resp. Afg(t — s)u(s)ds = v(t) — Ot)x — fo s)yds,
tel0,7).

Let C = I. Then it is clear that u € C'([0,7) : E) n C([0,7) : [D(A)]),
resp. u € C%([0,7) : E) N C([0,7) : [D(A)]), is a (unique) solution of (©C), resp.
(ACPy)e, on [0,7) iff v = v € C([0,7) : E), resp. v = u” € C([0,7) : E), is
a (unique) K-convoluted mild solution of (ACP;), resp. (ACPz) on [0,7). Let A
be a subgenerator of a K-convoluted C-cosine function (Ck (t))ejo,7), 0 < 7 < 00
and z,y € E. Then v(t) = Ck(t)z + fo Ck (s yds t e o, T) is a K-convoluted
mild solution of (ACP,) at (Cx,Cy) and u(t fo (t —s)v(s)ds, t € [0,7) is
a solution of (ACPs)e. If K is a kernel, then the function v() is a unique K-
convoluted mild solution of (ACPs) and u(-) is a unique solution of (ACPy)g; see
[230, Proposition 4.2] and the proof of [420, Theorem 1.5]. Without any substantial
changes, one obtains the corresponding statements for K-convoluted C-semigroups.
Now we state:

PrOPOSITION 2.3.15. Assume that for each x € E there exists a unique K-
convoluted mild solution of (ACP) at (Cz,0), 0 < 7 < co. Then A is a subgener-
ator of a K -convoluted C-cosine function on [0, 7).
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PROOF. Lett € [0,7) and z € E. Define Ck (t)x := v(t), where v(-) is a unique
K-convoluted mild solution of (ACP,) at (Cz,0). The uniqueness of mild solutions
implies that (Ck (t)):efo,r) is a strongly continuous family of linear operators sat-
isfying (iii) of Definition 2.1.2. The proof of (i) and (ii) of Definition 2.1.2 follows
analogously as in the proof of [420, Theorem 1.5]. For the sake of completeness,
we will prove (i). Fix an € D(A) and define

Cr(t)r:= [ (t—s)Ck(s)Axds+O(t)Cx, t € [0, 7).

o

Clearly, the mapping ¢ — Cx (t)z belongs to C([0,7) : E) and, for every t € [0,7),
t t

A[(t—-35)Ck(s)zds=A [ (t—s) [ (s =r)Ck(r)Azdr 4+ O(s)Cx | ds
/ [
= [({t—s)A | (s—r)Ck(r)Azdrds+ [ (t —s)O(s)ACx ds
[t /
= /(t — 9)[Ck(s)Ax — O(s)CAx]ds + /(t —5)09(s)ACzds = Ck(t)z — O(t)C.
0 0

Using again the uniqueness of K-convoluted mild solutions, one yields C (t)r =
Cx(t)z, t €[0,7), ie., [J(t—s)Cx(s)Ards = A [} (t—s)Cx(s)x ds for all t € [0, 7).
Differentiate the last equality twice with respect to ¢ to obtain Ck (t)x € D(A) and
ACk(t)x = Cg(t)Ax, t € [0,7). It remains to be shown that Ck(t) is a bounded
operator for all ¢ € [0,7). To this end, we will slightly modify the proof of [5,
Proposition 2.3]. Consider the mapping ® : E — C([0,7) : [D(A)]) given by
¢
B(z)(t) = /(t Ok (s)uds, t € [0,7), v € E,
0

where C'([0,7) : [D(A)]) is a Fréchet space equipped with the sequence of seminorms
(Pn)n, where

pu(v) == sup |[v(t)|lipcay, v € C([0,7) : [D(A)]), if 7 € (0,00), resp.
te[0,7—1]

pn (V) == S[l(l)p] lo()lipay, v € C([0,7) : [D(A)]), if T = o0.
tel0,n

It can be easily seen that ® is well defined and that ® is linear. Let us show
that ® has a closed graph. Without loss of generality, one can assume that 7 € R.

Suppose x,, = x, and ®(x,) — f, n = oo. Choose an integer k € N with k& > %
Then

t

/(t — 8)Ck(s)xnds — f(t)

0

sup

— 0, n— oo.
tE[O,T—%]

[D(A4)]
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Hence,
t

Af(t) = nlLH;oA (t —8)Ck(s)x,ds = nlggo[OK(t)x" —0(t)Cxy,], te€0,71),
0

and lim,,_ oo Cx (t)z, = Af(t) + ©(t)Cx, t € [0,7). Using the dominated conver-
gence theorem, we have
¢ ¢
f@)= lim [ (t—s)Ck(s)z,ds = /(t —9)[Af(s) +©(s)Cx]ds, t € [0,7).
0 0
Therefore, f(0) = f/(0) =0, f € C*([0,7) : E), Af(t) = f"(t) — ©(t)Cx, t € [0,7)
and Afot(t — s)v(s)ds = v(t) — ©(t)Cx, t € [0,7), where v = f”. Hence, v(t) =
Cr(t)x, t €10,7), f = ®(z) and, for all sufficiently large n € N there exists ¢, > 0
such that
¢
A/(t —5)Ck(s)xds
0
Since Afg(t—s)C’K(s)x ds =Cg(t)x—0O(t)Cz,x € E,t € [0,7), one gets Ck (t) €
L(E), t€[0,7). O

<cnllz|, 2 € E, te[0,7—1/n).

COROLLARY 2.3.16. Suppose K is a kernel and 0 < 7 < oo. Then the following
statements are equivalent.
(i) (ACPy)e is well-posed.
(ii) For every x € E, there exists a unique K-convoluted mild solution of
(ACP) at (Cz,0).
(iii) For every x, y € E, there exists a unique K-convoluted mild solution of
(ACPs) at (Cz,Cy).

(iv) A is a subgenerator of a K -convoluted C-cosine function on [0,7).

COROLLARY 2.3.17. Suppose K is a kernel and 0 < 7 < 0o. Then the following
statements are equivalent.

(i) (©C) is well-posed.
(ii) For every x € E, there exists a unique K-convoluted mild solution of
(ACPy) at Cx.
(iii) A is a subgenerator of a K-convoluted C-semigroup on [0,T).

Suppose 0 < 7 < 00, (OC) is well-posed and define
o
L,(\) = /e_ASS’(s) ds, v €[0,7), A €[0,00),
0

where Sk(+) is given by Proposition 2.3.1. We summarize the basic properties of
the operators L. () in the following proposition whose proof is analogous to that
of [275, Proposition 5.1].
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PROPOSITION 2.3.18. Let x € E and v € [0,7). Then the following holds:

(i) The function A — L~(X)z belongs to C*([0,00) : E) and there exists
M., > 0 such that
A’I’L
(n—l)'d/\" L H v A=0,neN.
(i) Ly(X) commutes with C and A for all A >
(il) (A —A)Ly(Nz=—e"2S(y)z+ [, "\SK( )Cx ds, \>0
(iv) Ly(A)Ly(n) = Ly(n)Ly(X), >\ 0,7 20.

An operator family {L,(X) : v € [0,7), A > 0} is called an asymptotic ©C-
resolvent for A if there exists a strongly continuous operator family (V(t)):cjo,r)
such that the conditions (i), (ii) and (iv) of Proposition 2.3.18 hold and that the
condition (iii) of Proposition 2.3.18 holds with S() replaced by V(). Using The-
orem 1.1.13 and the arguments given in the proofs of [275, Theorem 5.2, Corol-
lary 5.3], one can prove the following assertions.

THEOREM 2.3.19. Let A be a closed operator and let K be a kernel. As-
sume that A has an asymptotic ©C-resolvent {L(\) : v € [0,7), A > 0}. Then

( ot (t}s(z:‘)‘l O(s) ds, C) is well-posed for all a > 0.

THEOREM 2.3.20. Suppose D(A) is dense in E and K is a kernel. Then (©C) is
well-posed for A on [0,7) iff A has an asymptotic ©C-resolvent {L~(X) : v € [0,7),
A >0},

For further information concerning asymptotic C-resolvents, we refer the reader
o [381]-[382], [404] and [421].

DEFINITION 2.3.21. The abstract Cauchy problem (ACP;)g is exponentially
well-posed if for every x, y € E there exists a unique solution u(:) of (ACPs)e
and if, additionally, for every z, y € E, the solution u(-) satisfies the estimate
lu(t)]| < Me**, 0 < t < 7, for appropriate constants M > 0 and w € R. The
exponential well-posedness of the problem (©C) is defined similarly.

We need an auxiliary lemma whose proof follows exactly in the same way as in
the proof of [355, Lemma 4.1, p. 100].

LEMMA 2.3.22. Suppose T > 0, u € C([0,T] : E) and there exist A > 0 and
M > 0 such that ||f0T e"u(s)ds|| < M, n € N. Then u(t) =0, t € [0,T).

The following is a generalization of the Ljubich uniqueness theorem.

THEOREM 2.3.23. Suppose A > 0, {nA:n € N} C pc(A) and, for every o >0

and x € E, lim,,_, w = 0. Then, for every x € E, there exists al most

one solution of the iniatial value problem
ue CH(0,0): EYNC([0,0) : E),
(CP)y: < u/(t) = Au(t), t >0,
u(0) = x.
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PROOF. Put A, := n\, n € N and define, for every n € N, the function z,(-)
by setting z,(t) := (A, — A)~tCu(t), t > 0, where u(t) is a solution of the problem
(CP); at z = 0. Then we have 2, (t) = (A, — A)7ICU/ (t) = (N, — A)"LCAu(t) =
Anzn(t) — Cu(t), t > 0 and 2,(0) = 0. This implies z,(t) = — fg ernt=9)Cy(s) ds,
t > 0. Since lim,_, o ftt_a er(t=o=8)Cuy(s)ds = 0, the prescribed assumptions
imply lim, o0 [;7 (=79 Cu(s) ds = 0 for every t > 0 and o € (0,#]. Hence,
lim,, oo fOT eM(T=9)Cu(s)ds = 0, T > 0 and the proof follows by Lemma 2.3.22.

O

THEOREM 2.3.24. (i) Suppose K satisfies (P1), Ao > max(0,abs(K)) is such
that f((n)\o) # 0, n € N, A is a subgenerator of an exponentially bounded, K-
convoluted C-semigroup (Sk(t))i>o0 and, for every e >0,

1
[K(A)]
Then the abstract Cauchy problem (OC) is exponentially well-posed.

(ii) Suppose (O©C) is exponentially well-posed. Then A is a subgenerator of an
ezponentially bounded ©-convoluted C-semigroup (Se(t))i>o-

(iii) Suppose (ACPy)g is exponentially well-posed. Then A is a subgenerator
of an exponentially bounded ©~1-convoluted C-cosine function (Ceo-1(t))i>o0-

(78) =0(efM), A = 400, K(\) #0.

PRrROOF. It is straightforward to verify that u(t) := fg Sk(s)xds,t >0,z € E
is an exponentially bounded solution of (©C). Then (78) and Theorem 2.2.2 imply
that, for every o > 0,
|- A)tc)

5 0.

lim

A—+o0, K(X)#£0
Now the uniqueness of solutions of (©C) at x = 0 follows by the use of Theo-
rem 2.3.23, finishing the proof of (i). Suppose (OC) is exponentially well-posed
and define So(t)z := u(t,z), t > 0, v € E, where u(-,x) is a unique solution of
(6C). Arguing as before, one yields that (Se(t)):>0 is a global ©-convoluted C-
semigroup with a subgenerator A and that, for every z € F, there exist M, > 0
and w, > 0 such that ||Se(t)z| < M,e*=!, t > 0. Using the uniform exponential
boundedness principle (cf. [5, Proposition 5.4]), it follows that there exist M > 0
and w > 0 such that ||Se(t)|| < Me“*, t > 0, which completes the proof of (ii).
The proof of (iii) is analogous to that of (ii). O

Recall that the function u(-) is a mild solution of the abstract Cauchy problem
(ACPy), resp. (ACP,), iff the mapping t — u(¢), t > 0 is continuous, f(f u(s)ds €
D(A) and Af(;t w(s)ds = u(t) —z, t > 0, resp. fot(t — s)u(s)ds € D(A) and
Afot(t —s)u(s)ds = u(t) — x — ty, t > 0. The following remarkable result can be
attributed to van Neerven and Straub [335].

THEOREM 2.3.25. (i) Let o > 0 and let A be densely defined and the generator
of an a-times integrated semigroup (Sq(t))i>0 satisfying ||Sa(t)|| < Me“*, t > 0,
for appropriate constants M > 1 and w > 0. Then, for every e > 0, 0 > 0 and
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xo € D((w+ o — A)*T9), the abstract Cauchy problem (ACPy) has a unique mild
solution. Moreover, this solution is exponentially bounded and its exponential type
18 at most w.

(ii) Let « > 0 and let A be densely defined and the generator of an a-times
integrated semigroup (Sq(t))i>o0 satisfying ||Sa(t)|| < M(1 +1¢Y), t > 0, for ap-
propriate constants M > 1 and v = 0. Then, for every ¢ > 0, ¢ > 0 and
xo € D((o — A)*T¢), the abstract Cauchy problem (ACPy) has a unique mild solu-
tion. Moreover, this solution is polynomially bounded and its polynomial type is at
most max(aw — 1 +e,74+¢,2y —a+e).

The preceding theorem has been essentially utilized by Li and Zheng in [277]:

THEOREM 2.3.26. (i) Let o > 0 and let A be densely defined and the generator
of an a-times integrated semigroup (Sq(t))i>0 satisfying ||Sa(t)|| < Me“*, t > 0,
for appropriate constants M > 1 and w > 0. Then, for everye >0 and o >0, A
is the integral generator of an exponentially bounded (w + o — A) =+ _regularized
semigroup (T'(t))i>0 which satisfies that, for every o’ > o, there exists M’ > 1 such
that || T(t)|| < M'e@+o)t ¢ > 0.

(ii) Suppose that A is a densely defined closed operator and that there exist
constants M > 1, w >0, 8 > 0 and v € (0,5) such that w + ¥, C p(A) and that
[RO:A)| < M1+ |A\)P7L, N ew+%,. If A generates an exponentially bounded
(w+ o — A)~%-regularized semigroup for some o > 8 and o > 0, then, for every
e >0, A generates an exponentially bounded (« + €)-times integrated semigroup.

It is worth noting that Theorem 2.3.25 and Theorem 2.3.26 still hold in the
case of non-densely defined generators of fractionally integrated semigroups [233],
which can be applied to non-densely defined convolution operators considered by
Hieber in [149, Section 4]. In such a way, one can prove an extension of [277,
Theorem 3.7] for the operators acting in L>(R™) and Cp(R™).

THEOREM 2.3.27. [233] (i) Let o > 0 and let A be the generator of an o-
times integrated cosine function (Cy(t))i>0 satisfying |Co(t)|| < Me“t, t > 0, for
appropriate constants M > 1 and w > 0. Then, for every e > 0, ¢ > 0 and
(0,%0) € D((—Awto)*TeTL), the abstract Cauchy problem (ACPs) has a unique
mald solution, where Ay4o = (A7(3+U) (IJ) Moreover, this solution is exponentially
bounded and its exponential type is at most w. If (xo,y0) € D((—Awio)*TeT2), the
solution is classtical.

(ii) Let o > 0 and let A be the generator of an a-times integrated cosine function
(Ca(®)iz0 satisfying [|Co(t)|| < M(1+1t7), t > 0, for appropriate constants M >
1 and v = 0. Then, for every ¢ > 0, 0 > 0 and (zo,y0) € D((—Ay)*T=TL),
the abstract Cauchy problem (ACPs) has a unique mild solution. Moreover, this
solution is polynomially bounded and its polynomial type is at most

max(a + €, max(a, vy + 2) + €, 2max(a, y + 2) — (@ + 1) +¢).
If (x0,y0) € D((—Ay)*T¢*2), the solution is classical.

The following remark can be reformulated in the case of fractionally integrated
semigroups ([233]).
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REMARK 2.3.28. Let a € (2n,2n + 1) for some n € Ny, resp. a € (2n — 1,2n)
for some n € N. By Proposition 2.3.8, we know that the classical solution of
(ACP,) exists for all (zg,y0) € D(A"T2) x D(A"T) = D(A?"*3), resp. for all
(o,y0) € D(A"Y) x D(A"TY) = D(A?"*2). Tt can be proved that the set
Uee(o,la)+1-a] D((—A,15)%Te+2) strictly contains D(A%?"+3), respectively the set
Ueeo.la) +1-a] P((=Awto)*+=+?) strictly contains D(A*"+?). The same conclu-
sion holds in the case of mild solutions.

For further information concerning inhomogeneous Cauchy problems and gen-
eralized variation of parameters formula, the reader may consult [14], [128], [186],
[241], [259]-[261], [280], [286], [298] and [381].

2.4. Analytical properties

We start by recalling that 3, ={A € C: A #0, arg(\) € (—,7)} (v € (0,7)).

DEFINITION 2.4.1. Let 0 < o < § and let (Sk(t))i>0 be a K-convoluted C-
semigroup. Then we say that (Sk(t))i>0 is an analytic K-convoluted C-semigroup
of angle a, if there exists an analytic function Sk : ¥, — L(F) which satisfies

(i) SK(t) = SK(t), t>0and
(ii) lim. 0, zex, Sx(2)z =0 for all vy € (0,) and = € E.

It is said that (Sk(t))i>0 is an exponentially bounded, analytic K-convoluted C'-
semigroup, resp. bounded analytic K-convoluted C-semigroup, of angle «, if for
every v € (0, ), there exist M., > 0 and w, > 0, resp. w, = 0, such that ||Sk(2)| <
M’Yew,yRez, = E’Y'
Tt
L(r)’
t > 0 in Definition 2.4.1, where r > 0, we obtain the well-known classes of analytic
r-times integrated C-semigroups; an analytic O-times integrated C-semigroup is
defined to be an analytic C-regularized semigroup. The notion of (exponential)
boundedness of an analytic r-times integrated C-semigroup, r > 0, is understood
in the sense of Definition 2.4.1. The author proved in [224] that, in the case
r € N, the definition of an analytic r-times integrated semigroup is equivalent to
the corresponding one given by R. deLaubenfels in [92].

The following assertion is an extension of [92, Proposition 3.7(a)].

Since no confusion seems likely, we also write Sk for Sk. Plugging K (t) =

PROPOSITION 2.4.2. Suppose K satisfies (P1), a € (0,5] and A is a subgen-
erator of an exponentially bounded, analytic K -convoluted C-semigroup (Sk (t))i>o0
of angle . Suppose, further, that the condition (H) holds, where:

(H): There exist functions ¢ : (—a,a) - C~ {0}, wo : (—a,a) — [0,00) and

a family of functions (Kg)pe(—a,qa) satisfying (P1) and abs(Kj) < wo(0), abs(K)

wo(e)’ cosf
(79) @ :={X € (wo(h),00) : K(Xe™ ) = 0} ={X € (wo(h),0) : [A(Tg(/\) =0},
(80) Ko ), X > wo(8), A ¢ @, 0 € (—aa).

)
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Then, for every § € (—a, ), the operator € A is a subgenerator of an exponentially
bounded, analytic Kg-convoluted C-semigroup (c(0)Sk (te?)) of angle oo — |0)].
Furthermore, Sk (te')A C ASk(te??), t > 0 and

tet® t

A / Sk (s)xds = S (te')x — %/K@(s) dsCz, t >0, z € E, § € (—, ).
c
0 0

t>0

PROOF. Let 6 € (—a,a) and let A € R be sufficiently large with IA(;(/\) # 0.
Denote Ty := {te™ : ¢ > 0} and notice that (C(O)SK(teie))DO is a strongly

continuous, exponentially bounded operator family. Clearly, K (Ae™") # 0 and:

(81) Ko(A\)(A—e?A)'Cx = Kg(Ne (N — A)~'Ca

= e_wﬁ/e_)‘e E)tSK(t)acdt:(3_“90(9)/e_)‘tewS’K(te“g):zc dt
K(\e )
0 Lo
= /e_)‘t (C(@)S[{(tew)l') dt, x € E,
0

where the last equality in (81) follows from an elementary application of Cauchy
theorem. Invoking Remark 2.2.3 and Definition 2.4.1, we conclude that e’ A is
a subgenerator of an exponentially bounded, analytic Ky-convoluted C-semigroup
(C(Q)SK(tei‘g))t>O, as required. O

COROLLARY 2.4.3. Suppose r > 0, a € (0,%], 0 € (—a, ) and A is a sub-
generator of an exponentially bounded, analytic r-times integrated C'-semigroup
(S-(t))i=0 of angle a. Then €A is a subgenertor of an exponentially bounded,
analytic r-times integrated C-semigroup (e‘ie"Sr(teia))t>O of angle oo — |0|. Fur-

thermore, S,(2)A C AS.(z), z € Bq and A [ Sp(s)zds = S,(2)x — Cz,
z € Xy, x € E.

_z
T'(r+1)

The subsequent theorems clarify the main structural properties of exponentially
bounded, analytic K-convoluted C-semigroups.

THEOREM 2.4.4. Suppose a € (0, 5], K satisfies (P1) and K(-) can be analyt-
ically continued to a function g :w+ Yz 14 — C, where w € [max(0,abs(K)), o0).
Suppose, further, A is a subgenerator of an analytic K-convoluted C-semigroup
(Sk())i>0 of angle o and

(82) sup |le"**Sk(2)|| < oo for all v € (0, ).
Z2E€Xy

Denote by A the integral generator of (S (t))is0 and put
(83) N:={lew+Tzia:9(N) #0}.
Then:

(84) N C pc(A),
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(85) sup [(A = w)g(N) (X — A)_lCH < oo for all v1 € (0, )
A€ NN (“’+2%+W1)
(86) lim AMEANA—A)"1C2 =0, z € E and
A—r+o0, K(X)#£0
(87) the mapping A — (A — A)~'C, X\ € N is analytic.
Assuming

(Hy): (H) holds with c(-), wo(+), (Kp)oe(—a,a) and abs(Ky) <wcosh, 0 € (—a, ),
one has (84)—(85) and (87) with A replaced by A therein.

PROOF. By the foregoing, {\ € C: Re A > w, K(\) # 0} C pc(A) and
KN\ —A)™Cx = /e—”sK(t)xdt, Rel >w, K(\) #0, z € E.
0
Put q(\) := [;° e Sk (t)dt, ReA > w. An application of Theorem 1.1.10 gives

that the function ¢(-) can be extended to an analytic function ¢ : w+¥z o — L(E)
satisfying supye, s, [I(A —w)@(N)]| < oo for all v € (0, ). Further on, N is an

open subset of C and it can be easily seen that every two point in N can be
connected with a C* curve lying in N; in particular, N is an open connected
subset of C. The function F': N — L(E) given by F()) := %7 A € N is analytic
and

{NeC:ReA>w, K\)#0} C{Ae Nnpc(Ad): F(A\) = (A —A)~'C}h

Denote V. = {\ € NNpc(A) : F(A\) = (A — A)71C} and suppose p € pc(A),
x € D(A) and y € E. Since

(88) FOAN-Az=\N-A)"'CA-Azxr=Cx, NV,
(89) FA\)Cy=CFMNy, A€V and
(90)

FACy=\—A)""C?=(n—A)""C?— A —p)(p—A)'CF(\)y, A€V,

the uniqueness theorem for analytic functions (cf. [14, Proposition A2, Proposi-
tion B.5] and Proposition 1.1.14(iii)) implies that (88)—(90) remain true for all
A € N. Suppose now that (A — A)z = 0 for some A € N and z € D(A). Owing to
(88), one gets Cx = 0, x = 0 and the injectiveness of A — A. By Proposition 2.1.6,
we obtain that the operator A — A is also injective. Furthermore,

A=A CFNy=(\N—-AF\Cy
=A=A)[(p-A)7C? — A= p)(n—A)ICFN\)y]
=C%y+ (A= p[(n—A)71C% — CF\)y — (A = p)(p — A) T CF(\)y],
and thanks to the validity of (90) for all A € N, one obtains that
(A= A)CF(\)y = C?y, A € N.
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The last equality, injectiveness of C' and Proposition 2.1.6(ii) together imply:
AFE(\)y = C Y ACIF(\)y] + Cy = AF(\)y + Cy, A€ N,

ie.,, A—A)F(\)y = Cy, A € N. This implies R(C) C R(A—A), A € N, N C pc(A),
F(A) = (A= A)"1C, A € N, (84) and (87). The estimate (85) is an immediate
consequence of Theorem 1.1.10. Let z € E be fixed. Then z — Sk (z)z, z € ¥,
is an analytic function which satisfies the condition (i) quoted in the formulation
of Theorem 1.1.10. Since lim;o Sk (t)z = 0, an application of Theorem 1.1.11(i)
implies that limy 1 o0 Ag(A) = 0. This gives limy ., R(0)£0 )\f(()\)()\—A)_le =
0, i.e., (86) and the first part of the proof is completed. Suppose now that (H;)
holds. Then abs(Kjp) < wcosf, § € (—a,a) and one easily infers that, for every
0 € (—a,a), {A€C:ReX>wcosl, Kg(A) # 0} C pc(e? A) and that:

(91) I’{Vg()\)e*w()\e*w Yy iCx = /e 0)Sk te’e))xdt
0

for all z € E and A € C with ReA > wcosf and Ky(A) # 0. Fix a number
0 € (—a,) and define Gy : {w+te? : t >0, € (-5 -0, -0} N N —-C

by Gy(N) = Kgg((’\/\e;g), A € D(Gy(+)). Then it is clear that D(Gy(-)) is an open,
connected subset of C and that, by (79)—(80), there exists a > 0 such that @4, :=
{te7"NN :t > a} C D(Gp(-)) and that Go()\) = c(#), X € @y ,. By the uniqueness
theorem for analytic functions, one obtains that Gg(\) = ¢(0), X € D(Gg(")).
Hence, (91) implies {w +te’? :t >0, o € (=3 —60, 2 —60)} N N C pc(A),

0

92 s A)lor =5 /efzeth te')z dt,
(92) (= a0s= 0 K (16)

forall z € {w+te” : ¢t >0, 0 (—(5+6), 5—0)} N Nandz € E, and the
mapping z — (z — A)"'C, z € N, arg(z —w) € (—(5 +6), 5 — 0) is analytic. One
can apply the same argument to e % A in order to see that {z € N : arg(z —w) €
(0—%,2+0)} C pc(A) and that the mapping z — (z—A)~'C, z € N, arg(z—w) €
(0—7%,0+7%) is analytic. Thereby, {z € N : |arg(z —w)| < 0+ 5} C pc(A) and the
mapping z — (z — A)~'C, z € N, |arg(z —w)| < 0+ % is analytic. This completes
the proof of theorem. O

THEOREM 2.4.5. Assume o € (0, 5], K satisfies (P1) and w > max(0, abs(K)).
Suppose A is a closed linear operator with {\ € C: Re X > w, K(\) # 0} C pc(A)
and the function X\ — K(A)(A — A)71C, Re X > w, K(\) # 0, can be analytically
extended to a function §:w + Xz o — L(E) satisfying

sup  ||(A = w)@(N)|| < oo for all y € (0,) and
)\EuJJrZ£+W

(93) lim ANz =0, € E, if D(A) # E.

A——+oo
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Then A is a subgenerator of an exponentially bounded, analytic K -convoluted C'-
semigroup of angle c.

PrOOF. The use of Theorem 1.1.10 implies that there exists an analytic func-

tion Sk : £o — L(F) such that sup ||e”“*Sk(2)| < oo for all v € (0, ) and
ZE€3y

q\) = /e—MSK(t) dt, Re A > w.
0

Let us define Sg(0) := 0. Let x € E and v € (0,«). We will prove that
lim, 0, .ex, Sk(2)z = 0. Note that the mapping f(z) := e”“*Sk(2)z, z € X,
is analytic and that sup.cy_[|f(2)|| < oo for all v € (0,a). By Theorem 1.1.11,
it is enough to show lim; o Sk (t)x = 0. This is a consequence of the assumption
limy_ 400 AG(A)z = 0. It follows that (Sk(t))i>0 is a strongly continuous, expo-
nentially bounded operator family which satisfies, for every A € C with Re A > w
and K(\) # 0, K(\)(A— A)"'Cz = [}~ e Sk (t)z dt. Similarly as in the proof of
Theorem 2.2.1, we have that A is a subgenerator of an exponentially bounded, K-
convoluted C-semigroup (Sk (t)):>0. Since (Sk(t))i>0 verifies the conditions (i) and
(ii), given in Definition 2.4.1, (Sk(t)):>0 is an exponentially bounded, analytic K-
convoluted C-semigroup of angle o having A as a subgenerator. Suppose now that
A is densely defined. We will prove that (93) holds. By Theorem 1.1.11 and the first
part of the proof, it suffices to show that lim; o Sk (¢)z = 0. Suppose, for the time
being, = € D(A). Since G(A\)z = K(A\)(A — A)~'Cxz, A € C, ReA > w, K(\) #0
we get

L (/ Sk (s)Ax ds) N = @Am =qN)z — @Cw

= L(Sk(t)z —O(t)Cx)(N), A€ C, Rel >w, K(\) #£0.

The uniqueness theorem for Laplace transform implies f(f Sk(s)Axds = Sk(t)z
— O()Cz, t > 0. Therefore, ||Sk(t)z|| < |O()|Cz + te*t||Az||, ¢ > 0 and
lim; o Sk (t)x = 0. Combined with the exponential boundedness of Sk(-), this
indicates that lim, o Sk (t)x = 0 for every z € E. O

We need the following useful profiling of C-pseudoresolvents.

PROPOSITION 2.4.6. [98, Proposition 2.6, Remark 2.7, Corollary 2.8] Let Q C
pc(A) be open.

(i) The local boundedness of the mapping A — (A — A)~1C, X\ € Q implies the
analyticity of the mapping X\ — (A — A)~1C3, A € Q.

(ii) Suppose that R(C) is dense in E. Then the local boundedness of the mapping
A= (A= A)7IC, X € Q implies its analyticity as well as R(C) € R((A — A)"),
n € N and

dn—l

(94) W(A_A)—lc: ()" " (n—1IA=A)""C, neN.
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(iii) The continuity of mapping X — (A — A)~1C, X € Q implies its analyticity
as well as R(C) CR((A— A)™), n € N and (94).

It is checked at once that the function K (t) = F(T), t > 0, r > 0 satisfies the
condition (H;) with ¢() = e, wy(0) = 0 and Ky(t) = K(t), 0 € (—a, ), t >
0. Keeping in mind Theorem 2.4.5, Proposition 2.4.6 and the above remark, one
immediately obtains the proof of subsequent theorem; notice only that, in the case
r = 0, the equality (95) follows from Theorem 1.1.11 and elementary definitions.

THEOREM 2.4.7. Supposer > 0 and o € (0, 5]. Then A is a subgenerator of an
exponentially bounded, analytic r-times integrated C-semigroup (Sy(t))i>0 of angle

a iff for every v € (0, ), there exist M, > 0 and wy > 0 such that:
wy +Yz4y € po(4),

1A= AT < My (L+ AN A € wy + Bz,
the mapping A — (A — A)7'C, A € w, + Yz 4, is analytic (continuous) and
— At
(95) lim M:X{O}( )Cx, z € E, if D(A) # E.

A—+oo )\Tfl

THEOREM 2.4.8 (The abstract Weierstrass formula). Assume M > 0, 8 > 0
|K(t)] < MePt, t > 0 and A is a subgenerator of an exponentially bounded, K -
convoluted C-cosine function (Ck (t))i>o0. Then A is a subgenerator of an exponen-
tially bounded, analytic K1-convoluted C-semigroup (S(t))i>0 of angle T, where:

0056—52/415 _52
Kl(t)::/2ﬁt3/2 (s)ds and S(t \/>/ MOk (s)ds, t > 0.
0

ProoF. We follow the proof of the abstract Weierstrass formula (cf. [14
p.220]). Due to Theorem 1.1.7(v), the function K;(-) fulfills (P1), abs(K;) > 32

and I’(\'/l()\) = f((ﬁ), Re) > 2. Let z € F be fixed. Putting r = =, and using

\/{7
the dominated convergence theorem after that, one obtains
3 e~ " 2/4
(96) S(t)w:/ NG Cx(rvt)zdr —0, t—0+.

0

Define S(0) := 0. By (96), (S(¢))i>0 is a strongly continuous, exponentially
bounded operator family. Furthermore, one can employ Theorem 2.2.1 and The-

orem 1.1.7(v) to obtain that, for all A € C with ReA > 8% and E(A) # 0, the
following holds:

/e**tS( )a dt = /*” / SO (s)a ds dt = f/ VA5 Cy(s)a ds
0 0

ZTIR(I)(A A0z = Ki(\)(A — A)"Cx.
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As above, one concludes that (S(t)):>0 is an exponentially bounded K;-convoluted
C-semigroup with a subgenerator A. If Re z > 0, we define S(z) in a natural way:
S(z)z =: \/%fooo e /%20 (s)zds. Then S : {z € C: Rez > 0} — L(E) is
analytic, and using the same arguments as in the proof of the classical Weierstrass
formula, one obtains that, for all 8 € (0, %), there exist Mg > 0 and wg > 0 such
that [|S(2)|| < Mge*##l, 2 € ¥5. Tt remains to be shown that, for every fixed
B€(0,%), lim.es,, -05(2)r = 0. For this, choose an wy > C‘;’fﬂ. Then the func-
tion z — e"“2*S(z)r, z € Xp is analytic and satisfies sup,cy, [[e7“2*S(z)| <

oo. Since lim; oy e7#2tS(t)xr = 0, an employment of Theorem 1.1.11 implies
lim.cyx,, .0 e “?*S(2)x = 0. The proof is now completed. O

tot—l

The assumption of previous theorem is satisfied for the function K (t) = @)
ta/271

where o > 1; then K;(t) = o/ Furthermore, the proof of Theorem 2.4.8 still
work in the singular case « € (0, 1), since in this case, K;(-) again fulfills (P1) as
well as abs(K7) > 0 and K;(\) = IN((\A), Re A > 0. Therefore, as an immediate

consequence of the proof of Theorem 2.4.8, we obtain the following corollary:

COROLLARY 2.4.9. Suppose a > 0 and A is a subgenerator of an exponen-
tially bounded c-times integrated C-cosine function (Cy(t))i>0. Then A is a sub-
generator of an exponentially bounded, analytic (5 )-times integrated C-semigroup

(Sas2(t))ex0 of angle 5, where Sy o(t)x := \/% fooo e‘s2/4tCa(s)x ds,t>0,z€E.
The following is Kato’s analyticity criterion for K-convoluted C-semigroups.

THEOREM 2.4.10. Suppose o € (0, 3], K satisfies (P1), w > max(0, abs(K)),
there exists an analytic function g @ w + Xz4o — C such that g(\) = K(\),
A€ C, Re\ > w and (Hy) holds. Then A is a subgenerator of an analytic K-

convoluted C-semigroup (Sk(t))i>o0 satisfying (82) iff:
(i) For every § € (—a,a), €A is a subgenerator of a Ky-convoluted C-
semigroup (Sp(t))i=o0, and
(i) for every g € (0,a), there exists Mz > 0 such that

g0l <t 130 0

PROOF. Suppose A is a subgenerator of an analytic K-convoluted C-semigroup
(Sk(t))i>0 satisfying (82). By Proposition 2.4.2, we have that (i) and (ii) hold
with Sg(t) = c(0)Sk(te?®), t > 0, § € (—a,a). To prove the converse statement,
notice that the argumentation given in the final part of the proof of Theorem 2.4.5
implies that (w+ ¥z 1) NN C pc(A) and that there exists an analytic mapping
G:w+ Yz = L(E) such that G(A) = g(A) (A= A)7'C, A € (w+ Ez4a) NN,
where N is defined by (83). Furthermore, for every 6 € (—«, a):

oo

(97) G(\) = eiG/e—/\teie (ﬁse(to dt if arg(A\ —w) € (_ g —9, I _ 9)7
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(98) G(\) = e—ie/e—xte*” (ﬁs_g(t)) dt if arg(A —w) € (9 - g,e + g)
0

Keeping in mind (ii) as well as (97)-(98), we have that, for every 8 € (0, ),
SUPrewisny ,, (A = w)G(A)[| < oo. By Theorem 1.1.10, one gets the existence
2

of an analytic mapping Sk : Xo — L(E) such that sup_cy, le™**Sk(2)[| < o0

for all 8 € (0,a) and that G(\) = 5’;(()\) for all A € (w,00). Furthermore, the
uniqueness theorem for Laplace transform implies Sk (z) = mSarg(z)ﬂzD,

z € X, and since ¢(0) = 1 and Ky = K, it is enough to show that, for every
fixed z € E and § € (0,a), lim.ex,, -0 Sk (2)r = 0. To this end, notice that
limy o Sk (t)x = limy o So(t)z = 0 and that Theorem 1.1.11 implies
lim e “?*Sk(z)r= lim Sgk(z)z=0. O
z€Xg, z—0 z€Xg, z—0

In the following corollary, we remove any density assumption from [455, The-
orem]:

COROLLARY 2.4.11. Suppose r > 0, a € (0,%] and w € [0,00) if r > 0,
resp. w € R, if r = 0. Then A is a subgenerator of an analytic r-times integrated
C-semigroup (S;(t))t>0 of angle a satisfying supycy,, [[e7“*S:(2)|| < oo for all
B € (0, ) iff the following conditions hold:

(i) For every 6 € (—a, ), €A is a subgenerator of an r-times integrated
C-semigroup (Sp(t))i>0, and

(ii) for every B € (0,a), there exists Mg > 0 such that ||Se(t)| < Mge=tcos9,
> 07 RS (7575)

The proof of the next generalization of [14, Theorem 3.9.7] and [14, Corol-
lary 3.9.9] follows from Theorem 2.4.5, Theorem 2.4.7 and the proof of [14, Corol-
lary 2.6.1].

THEOREM 2.4.12. Suppose a € (0,5), r =2 0, w > 0 and et A are sub-
generators of exponentially bounded r-times integrated C-regularized semigroups
(SE%(t))i=0. Then, for every ¢ > 0, A is a subgenerator of an exponentially
bounded, analytic (r + ¢)-times integrated C-regularized semigroup (Tri¢(t))i>o0
of angle «; if A is densely defined, then A is a subgenerator of an exponentially
bounded, analytic r-times integrated C-regularized semigroup (T,.(t))i>0 of angle .

The following theorem is an extension of [89, Theorem 8.2] and can be applied
to differential operators considered in [82], [89, Section XXIV], [359, Example 2.3]
and [416].

THEOREM 2.4.13. Suppose r > 0, 6 € (0,5) and —A is a subgenerator of an
ezponentially bounded, analytic r-times integrated C-semigroup (Sy(t))i>0 of angle
0. Then there exists an injective operator Cy € L(E) such that A is a subgenerator
of an entire Ci-regularized group in E. Furthermore, if A is densely defined, then
Cy can be chosen such that R(C1) is dense in E.
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PROOF. Let § > ¢ > 7 —0 and ¢ < ag < 5. Keeping in mind Theorem 2.4.7,
one can assume that there exist a number d € (0, 1] and an open neighborhood € 4
of the region ¥4 U {z € C: |z| < d} such that the set {(1+ [A[)!7™"(A—A)~'C:
A € Qpq} is bounded and that the mapping A — (A — A)"'Cx, X € Qu4 is
analytic for every fixed x € E. Denote by I'y the boundary of ¥, U {z € C:
|z| < d} and assume that I'y is oriented in such a way that Im X decreases along
I'y. Define T, (2)x = 5= ch» e N = A)"Cxd\, x € E, z € Yz g Then the
argumentation given in the proofs of [394, Proposition 2.3-Proposition 2.8] enables
one to see that 7,,(2) is injective for all z € Xz _,4 and that there exists n, o € N

such that lithOer = —% fr¢ ALY\ — A)LCAzd), € D(A™).
Define, for every zp € Xz a4,
1
Sozo ()2 1= 5 — eMe AN (N — A" Cxd\, z € E, z€C.
Ly

Then Sy ., (2) € L(E) (20 € Xz _a¢, 2 € C) and the dominated convergence the-
orem implies that, for every zp € Xz_,¢ and z € FE, Se,zo (21 + 22)Ta(20) =
Sea,z0(21)Sa,2(22), 21, 22 € C and that the mapping z — S, ., (2)z, 2 € C is en-
tire. Now it can be easily seen that, for every z9 € Xz _n4, (Sa,z(2))zec s an
entire T, (2p)-regularized group with a subgenerator A and the integral generator
To(20) 1 AT,(20) (the last operator equals A provided p(A) # (). Assume now
A is densely defined. Let 29 € Xz _n4 be fixed. We will prove that R(Txu(z0)) is
dense in F by using a slight modification of the proof of [89, Lemma 8.8]. Assume
¥ € B, (2", To(20)7) =0, x € E and denote, for every € E and z € Xz _ 4,

]. «@
Fon(C) = <a: %//\Ce*“ (A — A)lcdi>, Re¢ > 0.
I

By the dominated convergence theorem,
lim <a:*, To(z4+h)x — To(2)x
h—0 h

and the convergence is uniform on bounded subsets of E. This implies that the

mapping z — Tu(2)"2", 2 € ¥z _a4 is differentiable and that (LT, (2) 2", 2) =

—Fo.x(a), © € B, 2 € Xz_,. By induction, the mapping z — T,(2)"x*

n Fa,z,m(a)>‘ —0,z€E

z € ¥z o4 is infinitely differentiable and <%Ta(z)*x*,x> = (—1)"Fa 2 a(ka),
r € E, 2 € Xr_a4. Since po(A) # 0, A is densely defined and R(C) is dense in
E, it is obvious that the set (A — A)"1C)¥(D(A")) is dense in E for every k € Ny
and n € N. Denote by B a linear operator {(z,y) € E x E : lim;_,04 M =

y} and notice that, for every k € N, there exists nq,,r € N such that (N —

A)~1C)rerk (D(A")) C D(B*). One obtains inductively (dZ—kkTa(z) ¥ x) =

(x*, To(2)BFx), © € (A — A)~LC)nerk (D(A™e)), z € Yz _a¢, which implies
k

(T (2)*2%) =2, = 0, k € Ny. Choose an arbitrary z** € E** and notice that the

preceding equality and the infinite differentiability of the mapping z — T, (z)*x*,
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z € Xz _q¢ together imply that the mapping z — (2%, T, (2)*2%), 2 € Xz 44 is an-
(iw

. ¢ Kok Kk koK d*
alytic and that (dzk< T (2) %)) 2=z = (2", (Lx Ta(2)*0%)2=2) = 0, k € No.
Therefore, Ty (2)*z* = 0, 2 € Bz _q¢, (%, Ta(2)r) =0, 2 € E, 2 € ¥z _4¢ and

z* = 0. The proof of theorem is completed. O

It is noteworthy that Definition 2.4.1 is a special case of the following definition
which has been recently introduced in [235]:

DEFINITION 2.4.14. Let 0 < a < § and let (R(t)):;>0 be an (a, k)-regularized
C-resolvent family. Then it is said that (R(t)):>0 is an analytic (a, k)-regularized
C-resolvent family of angle «, if there exists an analytic function R : ¥, — L(FE)
which satisfies:

(i) R(t) = R(t), t > 0 and

(ii) lim. 0, zex, R(2)x = k(0)Cxz for all v € (0,) and z € E.
It is said that (R(t))i>0 is an exponentially bounded, analytic (a,k)-regularized
C-resolvent family, resp. bounded analytic (a, k)-regularized C-resolvent family, of
angle a, if for every v € (0, ), there exist M, > 0 and w, > 0, resp. w, = 0, such
that [|R(2)|| < Mye“ Bez 2 e ¥

Since no confusion seems likely, we also write R(-) for R(-). The next theorem
can be proved by means of the arguments given in [276, Section 3] and [369,
Chapter 2].

PROPOSITION 2.4.15. Let k(t) and a(t) satisfy (P1), limy_, o0 Me(A) = E(0) #
0, A is densely bounded, A ¢ L(E) and there exists wy > max(0,abs(k),abs(a))
such that fo e “a(t)|dt < oco. Assume that A is a subgenerator of an expo-
nentially bounded, analytic (a,k)-regularized C-resolvent family (R(t))i>0 of angle
a € (0, 3] and that there exists w > wo such that

(99) sup |le”“*R(2)|| < oo for all v € (0, ).
z€X,

Then the function a(\) can be extended to a meromorphic function defined on the
sector w+ Xz pq.

It is worthwhile to mention that it is not clear, all assumptions of Propo-
sition 2.4.16 being satisfied, whether A must be a subgenerator of an (a,C)-
regularized resolvent family on [0, 7). Further on, let us notice that the assertions (i)
and (ii) of [369, Theorem 2.2, p. 57] still hold in the case of exponentially bounded,
analytic (a, C)-regularized resolvent families.

The subsequent theorem clarifies the basic analytical properties of (a, k)-regul-
arized C-resolvent families. Notice only that the assertion which naturally corre-
sponds to [276, Lemma 3.7] (cf. also [369, Corollary 2.2, p.53]) does not seem
attainable in the case of a general (a, k)-regularized C-resolvent family.

THEOREM 2.4.16. [235] (i) Suppose a € (0,%], k(t) and a(t) satisfy (P1),
(H5) holds and l;:()\) can be analytically continued to a function g: w+¥z 4, — C,
where w > max(0,abs(k),abs(a)). Suppose, further, that A is a subgenerator of
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an analytic (a, k)-regularized C-resolvent family (R(t))i>o0 of angle o and that (99)
holds. Set N := {\ € w+ Yrta 1 g(\) # 0}. Then N is an open connected
subset of C. Assume that there exists an analytic function ¢ : N — C such that
a(\) = a(\), A € C, ReA > w. Then the operator I — a(\)A is injective for every
A€ N, R(C) CR(I —a(N\)CLAC) for every X € Ny :={X € N : a()\) # 0},

sup H(/\ —w)g(N) (I — a(N)CLAC) 1CH < oo, 1 € (0,a),
AENIN(WHEr /24 4,)

the mapping \ — (I —a(A\)C~YAC)~1C, X € Ny is analytic
lim Me(A)(I — a(\)A) "0z = k(0)Cx, z € E.
A—+00, k(X)£0
(i1) Assume k(t) and a(t) satisfy (P1), w > max(0,abs(k),abs(a)) and « €
(0, 5]. Assume, further, that A is a closed linear operator and that, for every A € C

with Re A > w and k(\) # 0, we have that the operator I — a(\)A is injective and
that R(C) C R(I—a(A\)A). If there exists an analytic function q : w+Xx o — L(E)
such that

(100) qA) = k(NI —a(MNA)IC, A€ C, Red > w, k(\) #0,

(101) sup [N = w)g(A)|| < oo for all v € (0, ),
A€W+Er /244

(102) )\BI_I:DQ ANz = k(0)Cz, z € E, if D(A) # E,

then A is a subgenerator of an exponentially bounded, analytic (a,k)-reqularized
C-resolvent family of angle «.

EXAMPLE 2.4.17. Let 8 € (0,2), @ > 0, k(t) = ghqqy and a(t) = w) Let A
be densely defined. Then A is a subgenerator of an exponentially bounded, analytic
(a, k)-regularized C-resolvent family of angle v € (0, 5] iff for every ¢ € (0, ), there
exist My > 0 and ws > 0 such that:

1
(ws +Z545) """ C pe(A),
[(A° = A)7'C| < Ms(1+ [AD*?, A€ (w5 + Ez45)"? and
the mapping \ — (/\B —A)7IC, N e (ws + Yris) /8 is analytic (continuous).

The next theorem is an extension of Theorem 1.2.4 and Theorem 2.4.8:

THEOREM 2.4.18. [235] (i) Assume k(t) and a(t) satisfy (P1), and there exist
M >0 and w > 0 such that |k(t)] < Me*t, t > 0. Assume, further, that there exist
a number w' > w and a function a;(t) satisfying (P1) and di(\) = a(vA), A € C,
ReA > w'. Let A be a subgenerator of an exponentially bounded (a, k)-reqularized
C-resolvent family (C(t))i>o and let (H5) hold. Then A is a subgenerator of an

exponentially bounded, analytic (a1, k1)-regularized C-resolvent family (R(t))i>o0 of
angle 5, where:

(103) Fa (8) ;:/ z;;k(s)ds, £> 0, k1 (0) = k(0),
0
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o 2
e—s /4t

Vit

(ii) Assume k(t) satisfy (P1), B > 0 and there exist M > 0 and w > 0 such
that |k(t)] < Me“t, t > 0. Let A be a subgenerator of an exponentially bounded

(%ﬁ)-r@gularized C-resolvent family (C(t))i>0 and let (H5) hold. Then A

is a subgenerator of an exponentially bounded, analytic (%,kl)-regularized C-

(104) R(t)z ==

C(s)xds, t>0, z € E, R(0):=k(0)C.

resolvent family (R(t))i>o0 of angle 5, where ki(t) and R(t) are defined through
(103)~(104).

Notice that a;(t) = fooo s%a(s) ds, t > 0, whenever the function a(t) is
exponentially bounded. Further on, Kato’s analyticity criterion for exponentially
bounded, analytic (Fa( ),C’)—regularized resolvent families (0 < o < 2) has been
recently proved by Chen and Li in [56]; it seems plausible that the assertion of [56,
Theorem 4.8] (cf. also Theorem 2.4.10, Corollary 2.4.11 and Theorem 2.4.12) can be
reformulated and proved in the case of a general (F(a) , k)-regularized C-resolvent
family. For further information on the interplay between exponentially bounded,
analytic (Fa(;;, ¥ Bj-l)) regularized C-resolvent families (0 < a < 2, 8 > 0) with

corresponding growth order at zero and exponentially bounded, analytic (F(a) ,C)-
regularized resolvent families, we refer the reader to [56, Theorem 4.9] and [224,
Theorem 1.1].

Concerning subordination principle established in Theorem 2.1.27(ixx), we have
the following theorem whose purpose is to improve the angle of analyticity of the
resolvent (Sq (t))¢>0 provided that (S3(t)):>0 is an exponentially bounded, analytic
(tﬁ( NGL kg)-regularized C-resolvent family. We employ the same notation as in the
formulation of Theorem 2.1.27(ixx).

THEOREM 2.4.19. Assume (Sg(t))i>0 is an exponentially bounded, analytic

us

(%, kg)-regularized C-resolvent family of angle § € (0, 5] and there exist functions

c:(=Fa,fa) = C~ {0} and wo : (—F, Ta) = [0,00) such that

(105) @y = {X € (wo(B),0) : kg(Ae /) =0} = { X € (wo(B),00) : kg(A) = 0}
and

(106)  ka(N/ks(Ae™ ) = c(6), A > wo(8), A¢ Do, 0 € (~Fa,5a).

Assume, further, that there exist a number W' > w and an analytic function kAB :
w'+¥z 5 — C such that ks(A) = kg(\), ReA > o', Set v := mln( (5+0)—35,5)
9= min(min((l DI, )+ 2, 7), 95 =0 if (SB( ))iz0 is a bounded analytic

ry?
( (ﬂ) ,kg)-reqularized C-resolvent family and 94 := mm(mln((; -1)3,%)+ %,W),
otherwise. Then the mappingt — S4(t),t > 0 is analytlcally extendible to the sector
Yy and the mapping z — Su(2)x, z € Xy, is continuous for every e € (0,95) and
r el
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PROOF. Designate N := {\ € w’' + Xz 5 : ]55()\) # 0}. Then it is obvious
that there exists an analytic function s : W' + Xz,5; — L(F) satisfying that
Nz = Eﬁ/()\)(l — A BA)"ICx, ReX > W', E;()\) # 0, x € E. By the proof
of [235, Theorem 2.16], the following holds:

(a) The operator I — A=A is injective for all A € N and R(C) C R(I —
ABC-LAC), X € N.

(b) For every 07 € (0,6), the set {(/}—w')QB(A) tA €W + X144} is bounded.

(c) For every 2 € E, qs(\)x = kg(\)(I — A"PC~1AC)"'Cx, A € N and
limy—s 100 Agg(AN)z = kg(0)Cz = ko (0)Cx.

Let ¢ € (0,v). Put now, for every € E and for every A € C such that A7 €
W +¥z45, ga(N)z = X7 gs(A\7)x. Taking into account (a)-(c) and the equality
a(/\) = /\%71%()\%), A > a, we easily infer that there exists a sufficiently large
number w. > 0 such that limy_, 400 Ao (A)z = ko (0)Cx as well as that the set {(A—
wi)ga(N) : A € w+¥x 1, .} is bounded and that g, (A)z = ka(\)(I—A""A)"1Cxz,
Re A > wl, k() # 0, z € E. Using Theorem 2.4.16(ii), we get that (Sa(t))i>0is an
exponentially bounded, analytic (%, kq)-regularized C-resolvent family of angle
v — ¢ having A as a subgenerator. By the arbitrariness of €, A is a subgenerator
ﬁ;;’ kqo)-regularized C-resolvent family
(Sa(t))i>0 of angle v. Suppose, for the time being, § € (—f4, 836) N (—va,va) and
put Ty := {te_i% :t > 0}, ¢ > 0. By (105)-(106) we have that, for every z € E
and A > wg(0) with \ ¢ &y :

of the exponentially bounded, analytic (ta

ks(\)(I = A Pe® )7 Cx = ky(AMe (A ™"5)P — A)~'Ca

— , 1 S e
=kz(M)\e " — — / e PtSa(t)xdt
’ kg(Ae "8 )\Be~i0 Jo ’

o0 —i8 . .
=c(0)/0 e e MSﬁ(t)mdt:c(G)e’%/F eiAzSg(zel%)xdz

6,8

and by Cauchy formula
= / e M (c(@)ei%SB(tei%)x) dt.
0

This implies that ¢’ A is a subgenerator of an exponentially bounded (%, kg)-

regularized C-resolvent family (Sg(t) = c(@)ei%Sg (tei% ))t>0. By making use of
Theorem 2.1.27(ixx), we get that e’ A is a subgenerator of an exponentially bounded
( toc—l

O ko )-regularized C-resolvent family (S, g(t));>0 such that the mapping ¢ —

Sa,0(t), t > 0 can be analytically extended to the sector X1 _1)z ~)- By (105)-
¥ 27

(106), we obtain that E;()\) = C(G)ei%(%_l)%\;()\e’i%) # 0, provided \ > wy(0)'/7
and A7 ¢ ®y. Using this equality and Cauchy formula, we obtain that there exists
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wly > wo(#)'/7 such that, for every x € E and A > wl) with \7 ¢ @y :
0

/ e M (C(H)ei%Sa(tei%)m) dt = c(G)ei%e_iE / e~rwe e Se(2)x dz
0 o o

_ ie o [T i
=c(f)e'Fe " e Sao(t)z dt
0

c(B)e's et %\;()\e*i%))\ae*w()\o‘e*w — A7 Cx
c(9)ei%e_’%0(9)_%\;(A)e*ig(%71))\ae_i9()\ae_i9 —A)'Cx
= k(WA (A — e 4)~1Cx.

This, in combination with the obvious equality

wlo

/ e MGy o)z dt = ka(MAYAY — P A)"'Cx, A > wl, ka(\) #0, 2 € E
0

and the uniqueness theorem for Laplace transform, yields:
(107)  Sap(t)x = c(ﬁ)ei%Sa(tei%)x, t>0, € (-p4080)N(—va,va), z € E.

Set Q == {AY7 1 X € W + Xz4s} and ka(N) = X 7lkg(\?), A € Q. By the
uniqueness theorem for analytic functions we have that, for every 6 € (—/4, 89)
and for every A\ €  with Ae~ia €Q:

o

(108) la(A) = c(0)e'« BV, (Ae™i5).
The next step is to prove that the assumptions 61, 03 € (—f9,50), z € C and

ST, ze T E e imply:
ze , R€ min((%—l)%,%) 1mply:

—i% -1 L " -1 —if2
(109) e "B e(01) Sa, (ze” 0 ) =€""F c(02)” Sae, (e )z, x € E.

By making use of the argument that has been appeared twice in the proof so far,
it follows that there exists w””’ > 0 such that:

oo
0.

(110) /e_MSa,ej (teiarg(zeii?))x dt

0
0

— )\ae—iarg(ze_i%)(1+a)k-;()\e—iarg(ze_i%)) (Aae—iarg(ze_’?j)a _ ei9j A)_le7

—~ ) i~ ) _i 02
provided z € E, A > w"”, ko(Ae7?@8ze "2 N (Ne~tare(ze ")) L and j = 1,2.
By (108), (110) and an elementary computation, we obtain that

9,

e c(0y)! / e M S0 g, (te B D)t
0

— i Fe(By)t [ e NS (e )y g "
= e ' ¢(0y) e " Sa,0,(te Jrdt, A> W,z € E,
0

which implies (109) by the uniqueness theorem for Laplace transform. In the rem-
nant of the proof, we consider three possible cases.
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Case 1. (% — 1)% > m. The assertion of theorem in this case trivially follows
from an application of Theorem 2.1.27(ixx).

Case 2. (; —1)% €[5, 7). In this case, ¥ = min((% -1)3 —|—min(%7 v),n). Let
e’ €(0,9) be sufficiently small and let « € E. Then there exists 6 € (0, 86)N (0, va)

such that £ o>vU— %/ — (% —1)5. Define, for every z € ¥y_.,

Sa (z)x z € E( 1)7r,
So(2)z = 1 ,
P () Sayg(ze &)z, 2 € Ly_o NEays-

By (107), one can simply prove that the mapping z — S, (2)z, z € y_ is an-
alytic, which implies by arbitrariness of ¢’ that the mapping ¢t — S, (t)z, t > 0
can be analytically extended to the sector Xy. If (S3(t))i>0 is a bounded analytic
(%,kﬂ)—regularized C-resolvent family, then (Sgg(t))i>0 is also bounded. By
Theorem 2.1.27(ixx), the mappings z +— Sa0(2)z and z — S, (z)z are contin-
uous on the closure of any proper subsector of E(%_l)%, which implies that the
mapping z — S (2)x, 2z € Xy_o. is continuous. Suppose (Sz(t))i>0 is an exponen-
tially bounded, analytic (tﬁ( 3y , kg)-regularized C-resolvent famlly Then one can

simply prove that there exists 8’ € (0,35) N (0,va) such that 2 E % %, and

Sa(2)x = eii%c(e’)_lsaﬁg/(ze_i%)x, 2 € Ny,—er N\ Xx_ ., which implies by The-
2 2
orem 2.1.27(ixx) the continuity of the mapping z — S, (2)z, 2 € Xy, 2.

Case 3. ( )5 € (0,%). Then ¥ = 9, = min((% -1+ é m). Let
e’ e (0, ( 1)%) be sufficiently small and let « € E. Define, for every ¢ €
(5 -1)3, v - U (=0 "), (5 — 1)5]:

co=t bmin((E—1)F — "+ 2~ [, (215 ~ "0 — <"~ ),
Qe :={2€C:2#0, arg(z) € (( —e¢, ¢ +¢e¢)},

0 = all(] = ((5 — 1tg — ")+,
S(2)x = efi%c(t?c)_ S 94(26_1974).%, z € Q¢ and S5(0)2 := kq(0)Cx.

Notice that, for every ¢ € [(f -5, 9 —=e")u(=(¥—-¢£"), —(% —1)%], the mapping

0
z = SS(2)z, z € Q¢ is analytic as well as Q¢ C Yy_n, zeTiw € Y1 pyz e
z € Q¢ and 6 € (0,86). By Theorem 2.1.27(ixx), the mapping z ~— S5(2),
z € Q¢ U {0} is continuous provided || € [(; —1)%,9 — €"). Furthermore, there
exist k € Nand ¢y, -+, € [(; -1 09— u(—(v—¢€"), f(% — 1) %] such that:

29

(111) 2’!95*28” g 2(%71)%,5// U le U---u ng.

By (109), one has S$ (2)z = S2(z)z for all z € Q¢, N Q, and (1, (o satisfying
the properties stated above. Assume z € Yi_pnz N Q(l_l)g. Using the Laplace
5 2 5 2

1_1NHz
transform, Cauchy formula, (108) and (110), we get that S, (z)z = S(()ﬂ R (2)x.
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Now it is clear that the mapping ¢t — S, (¢)x, t > 0 admits an analytic extension to
the sector ¥y. The continuity of mapping z — S, (z)z, z € Yy, _o.~ follows from
(111) and Theorem 2.1.27(ixx), which completes the proof of theorem. O

2.5. Perturbation theorems

We start this section by stating the following rescaling result for subgenerators
of K-convoluted C-semigroups.

THEOREM 2.5.1. Suppose z € C, K and F satisfy (P1), there exists a > 0 such
that
K\ —K(\+2)

(112) RO+ 2)

= /e"\tF(t) dt, Rel>a, K(A+z2)#0,

and A is a subgenerator, resp. the integral generator, of a (local) K -convoluted C-
semigroup (Sk (t))iejo,r)- Then A—z is a subgenerator, resp. the integral generator,
of a (local) K -convoluted C-semigroup (Sk - (t))tcjo,), where:

t
(113)  Ska(t) = e Sic(t) +/Ft—s ¢S (s)ds, t e [0,7).
0

Furthermore, in the case T = 00, (Sk :(t))i>0 is exponentially bounded provided
that F and (Sk(t))i>0 are exponentially bounded.

PROOF. It is clear that (Sk . (t))icjo,r) is a strongly continuous operator family
which commutes with C' and A — z. Furthermore,

A—2z) /SKZ Jrds = (A—z)/t[e_ZSSK(S)x—l—/SF(s—r)e_”SK(r)xdr] ds

0
t

=(A-z [ _Zt/SK xds—l—z/e_sz/SK(r)xdrds]
0 0

0

A—z)//SF(s—r)e_”SK(r)xdrds
00

t

=e 7 [Sk(t)x — O(t)Cx] — ze_ZtO/ s)xds+ zo/e — O(s)Cx] ds
- zQO/e_SZO/SK(r)xdrds—i— (A— z)O/F(t— s)o/e_"SK(r)xdrds

=e 7 [Sk(t)xr — O(t)Cx] — ze_Zt/SK(s)x ds



110 2. CONVOLUTED C-SEMIGROUPS AND COSINE FUNCTIONS

+2z [ e [Sk(s)z — O(s)Cx] ds — 2* [ e** | Sk(r)zdrds
/ []
+ [ Ft—s)(A—=2) [e‘zs Sk(r)xdr+z [ e [ Sk(v)xdv dr} ds
/ [oomee] ]
= Sk.(t)x — f1(t) — f2(t)Cx,
where:
fi(t) :=ze * [ Sg(s)xds — 2z | e **Sk(s)rds
[
+22 [ e | Sk(r)adrds+z | e F(t—s) | Sk(r)zdrds
[] [ore]
(114) —z [ F(t—s) | e [Sk(r)z — O(r)Cz] drds
[r]

+22/F(t—s)/e_”/SK(v)xdvdrds, tel0,7)
0 0 0
t

fa(t) == O(t)e * + 2/6_289(5) ds
0

—I—/F(t—s)e‘zs@(s) ds—/tF(t—s)/e_”'@(r) drds, te0,7).

0 0

S

Fix a number ¢ € (0,7) and define afterwards a function Sk : [0,00) — L(E) by

setting
S Sk(s), s€0,1],
S =
K (s) {SK(t), s> t.

Clearly, (5 Kk (t))i>0 is a strongly continuous operator family and there exist M > 0
and w € R such that ||Sk (t)|| < Me“*, ¢t > 0. Define f; : [0,00) — L(E) by replac-
ing Sk (-) in (114) with Sk (-). Then fi(-) extends continuously the function fi(-)
to the whole non-negative real axis, and moreover, fl() is Laplace transformable.
Using the elementary operational properties of Laplace transforms, one obtains
L(f1(t))(A) = L(f2(t))(A) = 0 for all sufficiently large real numbers A. An appli-
cation of the uniqueness theorem for the Laplace transform gives that A — z is a
subgenerator of a (local) K-convoluted C-semigroup (Sk,-(t)):e[o,r). Suppose now
that A is the integral generator of (Sk(t)).cjo,)- Then one has C~'AC = A and
this implies that C~'(A — 2)C = A — z is the integral generator of (Sk . (t))e(o,r)-
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Finally, the exponential boundedness of (Sk . (t))i>0 simply follows from (113) and

the exponential boundedness of F' and (Sk (¢))¢>o0- O
Suppose K = E‘l(ﬁl—({/\)‘;), where pi (pn) is a polynomial of degree k (m)

and k > m. Then the condition (112) holds for 3 suitable exponentially bounded
function F. Suppose now a > 0 and K(t) = ( ) t > 0. Then there exists a
sufficiently large positive real number a such that, for every A > a,

(51 ()5 (S ()

n=1
where 1% = 1. Since sup,,cy |($)] =: Lo < 0o, we obtain
& nyn—1
t
S(Y) | < Lolzlell, £ > 0.
n)(n—1)!
n=1

Hence, we have the following.

THEOREM 2.5.2. Suppose z € C, o > 0 and A is a subgenerator, resp. the
integral generator, of a (local, global exponentially bounded) a-times integrated C-
semigroup (Sa(t))icjo,ry)- Then A — z is a subgenerator, resp. the integral gen-
erator, of a (local, global exponentially bounded) a-times integrated C-semigroup
(Sa,z(t))tc(o,r), which is given by:

S () = S, x—i—/Z() S asg (s)eds, te[0.7), x € E.

n—l

THEOREM 2.5.3. Suppose B € L(E), K is a kernel and satisfies (P1), A
is a subgenerator (the integral generator) of a (local) K -convoluted C-semigroup
(Sk(t))tefo,r), BAC AB, BC = CB and there exists a > 0 such that the following
conditwns hold

(i) For every n € N, there is a function K,(-) satisfying (P1) and

Ral)) = R(A)(Kl(.))‘")m A>a, K(\) £0.
Put ©,( fO|K s)|ds, t >0, neN.

(ii) fo:l O, (t) < oo, t > 0.

(iii) The function t — maxsejoq |O(s)|e™* D71 On(t), t = 0 is an element of
the space L*(]0,00) : R).

Then A+ B is a subgenerator (the integral generator) of a (local) K -convoluted
C-semigroup (Sﬁ(t))te[oﬁ), given by

(113) - $E0) = P50+ 303 5107 (1) [ Kt - 95 i ds
0

i=1n=1

Furthermore, the following holds:
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a) |[SE(t)—eBSk ()| < elBlmax,epoq |Sk(s)]| Yoney On ()Pl for every
tel0,7).

(b) Suppose T = 00, (Sk(t))i>0 s exponentially bounded and there exist con-
stants M > 0 and w > 0 such that

(116) Z < Me®t t > 0.

Then (Sg(t))te[o,r) is also exponentially bounded.

PRrOOF. Notice that the commutatlon of B with C and A implies that the
function uq (+), resp. ua(+), given by u (¢ fo Sk (s)Bxds, t € [0,7), resp. us(t) :=
fg BSk(s)xds, t € [0,7), solves the 1n1t1a1 value problem

uwe C([0,7) : [D(A)])nCH([0,7) : E),

u'(t) = Au(t) + ©(t)CBz, t € [0,7),

u(0) = 0.
Since K is a kernel, the preceding problem has at most one solution and one easily
infers that BSk (t)x = Sk (t)Bz, t € [0,7), x € E. Let « € E be fixed. Clearly,

SR — S (0)] < maxe 1S () HZ@ D)L el ( )

1=1 n=1
= max ||Sx(s) HZ@ )Z HB”ltii: H)gn
s€[0,t] p 7! —\n

B ; (t+1)
< max, 1Sk (s HZ@ )Z%t(T)
i=1

— Bl tl| Bl
e SI?[%)i 1Sk ()] Z@n(t)e , t€(0,7),

and this implies (a). The previous computation also shows that (SZ(t)).ej0,r) is
a strongly continuous operator family which commutes with A + B and C. Then
the dominated convergence theorem, the closedness of A and integration by parts,
as well as the argumentation used in the estimation of term || SE(t) — e!BSk(t)|],
t € [0,7), imply:

¢ ¢
(A+ B) / SB(s)rds = (A+ B)/eSBSK(s)m ds

0

+iiljl(—l)"<;) (A—l—B)/t/sKn(s—r)ri_"S’K(r)xdrds
00

i=1 n=1
BlSk(t)z —O1t)Cx| + B / e*BO(s)Crds
0
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S B t s
' n ¢ i—n
* ZZ 1 (n) (A+ B)/Kn(t — ) /r Sk (r)z drds
=1 n= 0 0

=e'P[Sk(t)z — O(t)Cx] + B/eSB@(s)Cx ds

0

+ZZZl ()A+B)

><b/Kn(t—3) [s’_"O/SK(T)xdT—(i—n)O/T 1O/SK xdvdr}

=e'P[Sk(t)x — O(t)Cx] + B/eSB@(s)Cx ds

+ 2; B;H (-1 (:L) O/tKn(t —s)

« lsi_" 0/ Sk (F)xdr — (i —n) / pi=n=1 / SK(v)xdvdr] ds

0 0

* i nzi:l %(_l)n (:L) O/tKn(t —5)s'" "[Sk(s)x — O(s)Cx] ds
! i nzz_:l %i(_l)n (:L) (n = i)o/tK"(t - S)O/STinl[SK(r)a: — O(r)Cx]drds

= SE(t)z — f1(t) — f2(t)Cx, t€0,7),

where:

> 2 (1) [ e

an =332
i=1n=1 ’ 0

X [si_"/SK (r)xdr — (i—n)/ri_"_l/SK(v)xdvdr] ds
0

0 0

_,_2;?:(_ ()n i) /K / 1Sk (radrds, te[0,7)
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fa(t) == e'PO(t) B/ e*Bo(s

By ()/K - e

i=1n=1

e} 7 Bi . )

+ Z > (=" (;) (n — i) / Ko (t — 5)/r’_"_19(r) drds, tel0,7).
i=1n=1 0 0

Then the partial integration implies:

fl(t):ZZBz_+1 ()/K t—s/ /SK ) dr ds

i=1n=1

0
+iiii( (n> n—i /K (t —s) / = ”*1/SK(r)xdrds,te[0,7).
0

i=1n=1 0

The coefficient of B?, i > 2 in the expression of fi(t) equals

f(—l)"("ﬂi<2)+(l_l <1) /K,Lt s / inlsz(r)xdrds:o,
0

n=1

because "_1(1) + %(‘; ) = 0. Thereby, f1(t) = 0, t € [0,7). On the other

il \n i—1)! )
hand, the usual series arguments imply that the coefficient of B* in the expression
of fa(+) equals ©(t), t > 0if i =0, and
t

f2,i(t) = g@(t) - / (iSi_i)!@(S) ds + zz: %(—1)" (;) /Kn(t —5)s""O(s) ds
) —

0

i

t s
1 .
+Zﬁ( ()n—z/Knt—s/1_"_1@(r)drds, t>0,
0

n=1

if i > 1. Proceeding as before, one obtains, as a consequence of the condition (iii),
that the function ¢ — fo,;(t), t > 0 satisfies (P1) and that there exists a” > 0 such
that

£y = 20(E0) o -1 -1 (KDY )

1
3G
Z ( ) (")m%fd’ gLy
1
30
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+K§\A)( ) 1( K/\) KO0\

:l(—l)i<Kf('))(i)()\)_l; ( K() )(Z 1)
)

( )z+1 K(z ( )\) 0

il A ’
for all A > a” with K(\) # 0. This implies fo(t) = O(t), t € [0,7), and conse-
quently, (SE(t))tefo,r) is a (local) K-convoluted C-semigroup with a subgenerator
A+ B. The proof of (b) follows from a simple computation; furthermore, if A is the
integral generator of (Sk (t)):c(o,r), then C"'AC = Aand C~'(A+B)C=A+B
is the integral generator of (S£ (t))tefo,r)- This completes the proof of theorem. [

+

REMARK 2.5. 4 (1 ) The assumption (i) of Theorem 2.5.3 is satisfied for the
function K (- (pk ) where pi(-) is a polynomial of degree £ € N and
a € C~ {0} Then ng = k and K,, =0, n > k+ 1. Furthermore, in this case we
have the existence of positive real numbers M and w such that (116) holds.

(ii) Let n > 1 and let P(-) be an analytic function in the right half plane
{A e C:ReX > A\p} for some \g > 1. Suppose that P(\) # 0, Re A > Ag, and that
there exist C' > 0 and r € (1/2,1] with:

(117) IP(A)] = CIA[", ReA > Ao,
7
(118) ddN.P(A)‘ < CIA"7[P(V)], ReA > Ao, i € N,
P/
(119) = e LT(C),

P

where we denote by LT(C) the set of all Laplace transforms of exponentially
bounded functions. We will prove that the condition (i) of Theorem 2.5.3 holds
for the function K = £71(1/P) as well as that there exist M > 0 and w > 0
such that (116) holds. First, note that the assumption (117) and Theorem 1.1.12
imply that there exists K € C([0,00) : E) such that K(0) = 0, |K(t)| < Meo?,
t > 0, for a suitable M > 0, and L(K(t))(A\) = 1/P(A\), ReX > Xg. Let us
show that PU)/P is an element of LT(C) for all j € N. This is clear for j = 1
since we have assumed (119). Suppose j > 2. Then the assumption (118) implies
|PGD(N)/P(N)| < CIA|77", Re X > Ag. Since r € (1/2,1] and j > 2, one can apply
Theorem 1.1.12 in order to see that PY) /P ¢ LT(C). Put K; = L~*(PY)/P),
7 € N. In case j > 2, the proof of Theorem 1.1.12 implies

K-(t)—i /\7iooeut13(j)(/‘)d t>0
e P(p) 7
/\077;00

where the last integral is independent of A\g > \g. Now it is enough to prove that
there exists C; > 0 such that

(120) |K;(t)] < CreMt, £ >0, j=4,5,....
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Suppose j > 4. Then

o0

1 5 C C 5 1
K;(t)] < —et fdgim/_id v
(K5O < 5 e /()\g+52)y/4 °S 9r© 3 +s2) '

—0o0 — 00

Letting A\g — Ao, we have (120) and the required properties automatically follow.
Notice also that it is possible to assume that r € (0,1]. If this is the case, one has
to replace (119) by P(J) € LT(C), j < 1/r, j € N. Finally, let us recall that, in the
theory of pseudodlfferentlal operators, a smooth symbol P is called hypoelliptic if
the conditions (117), (118) hold as well as |[P(A\)| < C|A|9, A € C, |A] = a, for some
qgeR,C>0anda>0.

(iii) The conditions (ii) and (iii) quoted in the formulation of Theorem 2.5.3
can be replaced with:

(i) 200, [12B)F (1 4+ 6)F3E €2 < o6 for all £ > 0 and

’L'

(iii)" to every i € N, there exists a; > 0 such that the function

z’ .
e 2+ 2)
o g Ol 2 e 12 0

belongs to the space L([0,0) : R).
Then the estimate (a) reduces to

9

820 — 50| < mas ISk Y- 121+ 075 S 040

€[0,t]

and a corresponding analogue of the assertion (b) can be simply stated. Notice
only that one can prove that f; = 0 by direct computation of coefficient of B?,
i € N and that the condition (iii)’ is necessary in our striving to show that, for
every i € N, the function ¢t — fo;(t), t > 0 satisfies (P1); it is also clear that (iii)’
holds provided that © is exponentially bounded and that, for every n € N, ©,
is exponentially bounded, too. Let us prove now that (i)’ and (iii)’ hold for the
function K = £7(e™*"), where o € (0,1). First of all, we know that K is an
exponentially bounded, continuous kernel. Let f(\) = e”, A € C~ (—o00,0]. Then
the mapping A — f(\), A € C \ (—00,0] is analytic, f'(\) = oA’ "1 f(\) and

n—1 n—1 ) .
) =3 ("7 IO0), e e (-0l

‘ i
=0
Using (121), one concludes inductively that, for every n € N, there exist real

numbers p; (o), 1 < i < n such that, for every t > 0 :

tnfia

1,Mm )\ZJ " A d ,M 7.-
Zp , ReA >0 and 6, Z\p T+ 1= o)
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Put po (o) :=0, n € N. By the foregoing,

(6.0) m) A7 me JAio—n

o\ (n+1) \e jass ic—(n+1)
(7)) =€ > (pin(o)io = n) + opi1,a(0))A ,
i=1
for all n € N and A € C with Re A > 0. Hence, p1 ,(0) =0c(c—1)--- (0 —(n—1)),
n € N~ {1}, ppn(o) =0™, n e Nand

(122) Din+1(0) = pin(0)(ic —n) + opi—1n(0), n €N, 2<i < n.

Clearly, L, = sup,,cy, | (?)| < co. Applying (122) we infer that for every n > 2 :
n+1
> illpims(0)]
i=1

n

<lo(o=1)--- (0 —n)| + Z[UZ’HPFL"(J” + n(o+ 1)il|p;n(o)|] + (n+ 1)!

i=2
n—1 n
< Ly(o 4+ n)n!+no Z pin(o)| +n(c+1) Z Npin(o)] + (n+ 1)L
i=1 i=2

The preceding inequality implies that, for every ¢ > 2 4+ 40 + 2L, the following
holds:

(123) Zz'\pl n(0)] < ¢"n! for all n € N.

Denote by ¢, the minimum of all numbers satisfying (123). Then a simple compu-
tation shows that, for every x € E :

i j: @ <:l> /t [ Kn(t—s)s" ™" Sk(s)z| ds

i=1n=1

I8 5 g~
124 < Sk L t>0.
(124) e || Sk HZ z::: TG +2—lo)l!
On the other hand, it is easily verified that:

(2— o)z :
(125) X:UZ: 2+27101'\Z2 i € N.
n 1
Combining (124) and (125), it follows that
[$86) — S0 < HIBIG 27l s [5ic(s)], ¢ € [0.min1,7)

|SE®) = e sic(t)|| < 2UBICG22 7 P17 max Syc(s)], e [L,7), i 7> 1,

s€[0,t]
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proving the condition (ii)’; furthermore, if 7 = oo and (Sk(t))i>0 is exponentially
bounded, then (SE(t));>0 is also exponentially bounded. These conclusions still
hold for the function K = £~ (e=%"), where ¢ € (0,1) and a > 0, which will be
of importance in Section 3.5.

Suppose a > 0, K(t) = %, t >0, Lo := sup,ey |(Z)| and A is a subgen-
erator of a (local, global exponentially bounded) a-times integrated C-semigroup
(Sa(t))iefo.r)- Then Lo < 00, K(t) = 2=t lulbmntlyn=t g (1) = |(%)[t", ¢ > 0,
n € N and this implies that the condition (iii) of Theorem 2.5.3 does not hold if
a ¢ N. Fortunately, the series appearing in (115) still converges and the estimate
[SB(t) — e!BSa(t)|| < Lomaxsepoq || Sa(s)|e2IBl t € [0,7) follows similarly; fur-
thermore, the proof of Theorem 2.5.3 can be repeated verbatim. Having in mind
these observations, we are in a position to clarify the following important general-
ization of [227, Corollary 4.5] and [423, Theorem 2.3]:

THEOREM 2.5.5. Suppose o > 0, A is a subgenerator, resp. the integral gen-
erator, of a (local, global exponentially bounded) a-times integrated C-semigroup
(Sa(t))tcjo,r), B € L(E), BAC AB and BC = CB. Then A+ B is a subgenera-
tor, resp. the integral generator, of a (local, global exponentially bounded) a-times
integrated C-semigroup (SE(t))iecpo,r), which is given by
(126)

SB(t) == etBSa(t)+i Z %(—1)% <;> <Z) /t(t—s)”lsi"Sa(s) ds, t € [0, 7).
0

i=1n=1
Notice that the previous formula can be rewritten in the following form:

t

SB(t) = e BSa(t) + ( ) / (=" msg(s)ds, t € [0,7).

(i —1)!
0

The main objective in the following theorem is to clarify a perturbation result
for subgenerators of exponentially bounded, analytic integrated C-semigroups.

THEOREM 2.5.6. Suppose r >0, a € (0, 5], A is a subgenerator, resp. the inte-
gral generator, of an exponentially bounded, analytic r-times integrated C-semigroup
(Sr(t))t=0 of angle a; B € L(E), BA C AB and BC = CB. Then A+ B is a
subgenerator, resp. the integral generator, of an exponentially bounded, analytic
r-times integrated C-semigroup (SZ(t))i>0 of angle o, where

(127)  SB(z) :=e*BS,.(2 Z( ) /(Z(Z__Si) eBS,.(s)ds, z € L.
0

PROOF. Put Ry := sup,ey|(]))]. Notice that, for every z € X,, the series
appearing in (127) is absolutely convergent and that, for every v € (—a, a) such
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that |y| > arg(z), we have the following:

Rez

1S2(2) — €55, (2 ZROHBW/ 1™ ) IBIIE] 0 1 g e g

=1
< REZM,),ROHBHe@”BHer»Y)Rez.

This implies that (S,.(2)).ex, is a strongly continuous operator family and that the
conditions (i) and (ii) given in the formulation of Definition 2.4.1 hold. It remains
to be shown that the mapping

3 (D) /<(>)<>

is analytic. By standard arguments, the mapping fo(z fo e P58,.(s)ds, z € B,
is analytic and f{(z) = e B*S.(2), 2 € ¥,. This ylelds that, for every ¢ € N,
the mapping f;(t) = [ Zzs)l), ePsS,.(s)ds, z € ¥, is analytic and that f/(z) =
fi—1(2), z € X,. Furthermore, the series in (127) is locally uniformly convergent
since

(e s

0

(I1Bll4+w) sup |z
Msup\z|||Bu( )(<||B||sup\z|> He TR

where K is an arbitrary compact subset of ¥, and + is chosen so that K C ¥,. An
application of the Weierstrass theorem completes the proof of theorem. O

The following theorem extends the assertion of [423, Theorem 2.4, Theo-
rem 2.5, Corollary 2.6] (cf. also [457, Theorem 2.3]). The proof is omitted since it
follows by the use of argumentation given in [423], [381, Section 10] and [457].

THEOREM 2.5.7. Suppose n € N, (S(t))icjo,r) s a (local, global exponentially
bounded) n-times integrated C-semigroup having A as a subgenerator, resp. the
integral generator, B € L(D(A),E), R(B) C C(D(A™)) and BCz = CBz, x €
D(A). Then A+ B is a subgenerator, resp. the integral generator, of a (local,
global exponentially bounded) n-times integrated C-semigroup (Sp(t))icio,r), which
satisfies the integral equation:

t
SB(t .’17+/
0

THEOREM 2.5.8. [263], [242] Suppose a > 0, (C(t))icjo,r) s a (local, global
exponentially bounded) a-times integrated C-cosine function having A as a subgen-
erator, resp. the integral generator, B € L(D(A), E), R(B) C C(D(A[QTAW)) and

S(t—s)C'BSg(s)xds, t €[0,7), x € E.
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BCx = CBx, x € D(A). Then A+ B is a subgenerator, resp. the integral genera-
tor, of a (local, global exponentially bounded) a-times integrated C-cosine function

(CB(t))tejo,r)-

The following theorem mimics an interesting perturbation result of Kaiser and
Weis [171] which can be additionally refined if the Fourier type of the space F
(cf. [14], [171] and [242]) is also taken into consideration.

THEOREM 2.5.9. Assume K satisfies (P1), (P2) and there is § € (abs(K), 00)
such that, for every e > 0, there exists Cc > 0 satisfying:

1
KV

(128) < CefPMl N e, Red > 6.

(i) Assume A generates an exponentially bounded K -convoluted semigroup
(Sk(t))e=0 such that ||Sk(t)]] < Mie*t, t > 0 for some My > 0 and w > 0.
Let B be a linear operator such that D(A) C D(B) and that there exist M € (0,1)
and Ao € (max(8,w),00) satisfying | BR(A:A)|| < M, A € C, Re A = A\g. Then, for
every a > 1, the operator A+ B generates an exponentially bounded, (K *Q %)—
convoluted semigroup.

(ii) Assume A generates an exponentially bounded K-convoluted semigroup
(Sk(t))t=0 such that ||Sk(t)|] < Mie*t, t > 0 for some My > 0 and w > 0.
Let B be a densely defined linear operator such that there exist M € (0,1) and
Ao € (max(B,w),00) satisfying ||R(A : A)Bz|| < M|z||, x € D(B), A € C,
Re )\ = X\g. Then there exists a closed extension D of the operator A+ B such that,
for every a > 1, the operator D generates an exponentially bounded, (K *Q %)-
convoluted semigroup. Furthermore, if A and A* are densely defined, then D is the
part of the operator (A* + B*)* in E.

(iii) Assume A generates an exponentially bounded K-convoluted cosine func-
tion (Ck(t))e=o such that ||Ck(t)|] < Mye*t, t > 0 for some My > 0 and w > 0.
Let B be a linear operator such that D(A) C D(B) and that there exist M > 0 and
Ao € (max(B,w),0) satisfying || BR(A\?: A)| < \TMV A e C, ReX = )\g. Then, for

tufl

every a > 1, the operator A+ B generates an exponentially bounded, (K *Q W)_
convoluted cosine function.

(iv) Assume A generates an exponentially bounded K -convoluted cosine func-
tion (Ck(t))i=0 such that ||Ck(t)|| < Mye®t, t = 0 for some My > 0 and w > 0.
Let B be a densely defined linear operator such that there exist M € (0,1) and
Ao € (max(B,w),00) satisfying ||[R(N\? : A)Bz| < ‘—J\/(Il||x||, x € D(B), A € C,
Re X = Ag. Then there exists a closed extension D of the operator A+ B such that,
for every a > 1, the operator D generates an exponentially bounded, (K *Q %)-

convoluted cosine function. Furthermore, if A and A* are densely defined, then D
is the part of the operator (A* + B*)* in E.

PROOF. We will prove (iii) and (iv). By Theorem 2.2.1(i), {\?> : A € C, Re A >

2. M,y
max(f,w)} C p(A) and ||R(A\*: 4)| < NIDIS L A € C, ReA > max(f,w).
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Suppose z € C and Rez > A\g. Put A = A\g + ¢Im z and notice that
(129) |[BR(2* : A)|| = [|[BR(A*: A)(I + (\* — 2*)R(2* : A))H
< || BROZ:A)||(1+ A — 2| A+ z\ HR(

1)

A)
12K (2) Rez— )

f\/{'(lﬂA—zH/\Jr 2|
_M M 1 Izl My
<P < M(w U 3 ERE)

<M(i+ M M ).
Ao 2K (2)] AolK(2)]

Consider now the function b : {z € C: Rez > 0} — C defined by h(z) :=
2BR((z + X9)? : A), Rez > 0. Then |h(it)| < M, t € R and, by (128)—(129),
we have that, for every ¢ > 0, there exists C. > 0 such that ||h(z2)| < C.e®l?l for
all z € C with Rez > 0. An application of the Phragmén-Lindeldf type theorems
(cf. for instance [14, Theorem 3.9.8, p.179]) gives that ||h(2)| < M for all z € C
with Rez > 0. This, in turn, implies that there exists a > A\ such that || BR(\?:

A)| <1, AeC, Re) > q, so that A* € p(4 + B) and

1
INEeV

The proof of (iii) completes an application of Theorem 2.2.4(i) while the proof of
(iv) follows from [171, Lemma 3.2] and a similar argumentation. g

[AR(N? : A+ B)|| = [[AR(A?: A)(I — BR(\*: A)) 7! < A€C, Re) > a.

The proof of Theorem 2.5.9 immediately implies the following corollary.

COROLLARY 2.5.10. (i) Assume A generates a cosine function (C(t))i>o0 sat-
isfying ||C(t)|| < Me*t, t > 0 for appropriate M > 0 and w > 0. If B is a linear
operator such that D(A) C D(B) and that there exist M' > 0 and Ao € (w,0) sat-
isfying | BR(A?: A)|| < P\I A € C, ReX = )\, then, for every a > 1, the operator
A+ B generates an exponentially bounded, a-times integrated cosine function.

(ii) Assume A generates a cosine function (C(t))i=o satisfying [|C(t)|| < Me*t,
t > 0 for appropriate M > 0 and w > 0. Let B be a densely defined linear operator
such that there exist M' > 0 and \g € (w,0) satisfying ||[R(\?: A)Bz| < %Hx”,
x € D(B), A € C, ReA = \g. Then there exists a closed extension D of the operator
A+ B such that, for every a > 1, the operator D generates an exponentially bounded,
a-times integrated cosine function. Furthermore, if A and A* are densely defined,
then D is the part of the operator (A* + B*)* in E.

In the remnant of this section, we consider (multiplicative) perturbations of
subgenerators of (a, k)-regularized C-resolvent families.

THEOREM 2.5.11. (i) [288], [235] Suppose M > 0, w1 > w > 0, A is a subgener-
ator of an (a, k)-reqularized C-resolvent family (R(t))i>0 satisfying || R(t)|| < Me“*,
t>0and z €C. Let B: D(A) — FE be a linear operator such that BCx = C Bz,
x € D(A) and that ||C~'Bz|| < c||z||, = € D(A) for some ¢ > 0. Let (P1) hold for
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a(t), k(t), b(t) and let a(\)/k(\) = b(\) + 2z, ReX > wi, k(\) # 0. Suppose p > wi,
v €10,1) and:

e} t

D(A)=FE and /e*“t C*IB/b(tfs)R(s)xds
0 0
(130) + zC’lBR(t)det <Allzl], = € D(A)

or

(131) (R(t))i>0 satisfies (54), D(A) # E and (130) holds for any x € E.

Then the operator A+ B is a subgenerator of an (a, k)-reqularized C-resolvent family
(RB(t))i=0 satisfying (54) with A replaced by A + B therein. Furthermore,

(132) |RB(1)] <

t

Rp(t)r = R(t)x + /RB(t —r) (C’*lB/b(r — s)R(s)xds
0 0

(133) + zC’lBR(t)x)dr, £>0, z € D(A),

and (133) holds for any t > 0 and x € E provided (131).

(ii) [289], [235] Assume C([0,00)) > a satisfies (P1), (H5) holds, B € L(E),
R(B) C R(C) and A is a subgenerator of an exponentially bounded (a, a)-reqularized
C-resolvent family (R(t))t>0. Assume, further, that there exists w > 0 such that,
for every h = 0 and for every function f € C([0,00) : E),

(Ma) [ R(h —s)C~'Bf(s)ds € D(A),

(Mb) HA foh R(h—s)C~tBf(s) dsH < e up(R)||fllo.n: t =0, where || flljo,n) ==
supeo,n) 1f ()|, pr(t) 1 [0,00) — [0, 00) is continuous, nondecreasing and
satisfies up(0) =0, and

(Mc) there exists an injective operator Cy € L(E) such that R(C1) C R(C) and
C1A(I + B) C A(I + B)Ch.

Then A(I + B) is a subgenerator of an exponentially bounded (a, a)-regularized C-
resolvent family (S(t))i>0 which satisfies the following integral equation

t
Stz = R(H)C~1Crar + A/R(t — C'BS(s)ads, 130, v € E.
0

(iil) [289], [235] Let A be a subgenerator of an exponentially bounded, once
integrated C-cosine function and let w, B and Cy be as in (ii). Then A(I + B) is
a subgenerator of an exponentially bounded, once integrated C4-cosine function.

(iv) [289], [235] Assume that A is a subgenerator of an exponentially bounded
(@, a)-regularized C-resolvent family (R(t))i>o0 and that a Banach space (Z,|-|z)
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satisfies the conditions (Za), (Zb) and (Zc) given in the formulation of [289, Defi-
nition 4.1]. (In particular, these conditions hold for [D(A)].) Then (Ma) and (Mb)
are fulfilled provided C~'B € L(X, Z).
(v) [374], [441] Let B € L(FE) and BC = CB.
(v.1) Assume BA is a subgenerator of a (local) (a,k)-reqularized C-resolvent
family and (H5) holds for BA and C. Then AB is a subgenerator of an
(a, k)-regularized C-resolvent family.
(v.2) Assume AB is a subgenerator of a (local) (a,k)-reqularized C-resolvent
family and (H5) holds for AB and C. Then BA is a subgenerator of an
(a, k)-regularized C-resolvent family, provided p(BA) # ().

Recall that V. Keyantuo and M. Warma analyzed in [195] the generation of
fractionally integrated cosine functions in LP-spaces by elliptic differential operators
with variable coefficients. Notice that Theorem 2.5.11(v) can be applied to these
operators (cf. [195, Theorem 2.2 and pp. 78-79] and [374, Example 3.1]).

Assume a > 0,1 € Nand f(t) is an E-valued function satisfying (P1). Set

=[5 _Zl/atf (t)dt, z > max(abs(f),0)%. Using induction and elementary
operatlonal properties of vector-valued Laplace transform, one can simply prove
that there exist real numbers (¢, 1.0)1<io<i, independent of E and f(t), such that:

!
z) = Z clo,l*az%o /e_z " “telo f(t)dt, z > max(abs(f),0)".
0

lo=1

Furthermore, ¢, = %)l, 121, cip0= %(é -1 (L -(-1)),1>2and
the following non-linear recursive formula holds:
-1 l
Clo,l+1,0 = chofl,l,a + (*0 - Z)Clo,l,cw lo=2,---,1.
@ @

Then there exists ¢ > 1 such that 250:1 lo!|cty.1.0] < ¢! for all I € N.

Now we are able to state the following perturbation theorem for abstract time-
fractional equations ([242]).

THEOREM 2.5.12. Suppose a > 0, scalar-valued continuous kernels k(t) and
k1(t) satisfy (P1), A is a subgenerator of an exponentially bounded ( o ) , k)-regular-
ized C-resolvent family (R(t))i>0 satisfying

t _ Ja—1

(134) A/ U= piowds = Rtz — k(t)Cx, t 50, 2 € B
0 INGY)

(135) supe”“!||R(t)|| < oo for some w > max(abs(k),0).
>0

Let the following conditions hold:
(i) B€ L(E), BAC AB and BC = CB. There exist M > 1, w' 20, w” >0
and w"' > max(w + W', w + w” abs(ky)) such that

{AeC:ReA>w", ki(\) #£0} C{A € C:ReX>w", k()) #0}

as well as:
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(ii) For everyi, lo, l e Nwith1 <1< i andl <ly <, there exists a function
ki 10.1(t) satisfying (P1) and

_ 1 (i—1) _
E(ki,lo,l(t))()\) = Clo,l’a/\loia(lil)kl(/\)(m)Z:AQ7 Re X > WW7 kl()\) # 0.

(iil) For every i € Ny, there exist a constant ¢; € C and a function ;k(t)
satisfying (P1) such that

~ - 1 (4) ~
i +ik(A) = Ak (V)| ——— , ReA " k(X)) #0.
ci + k(M) 1 )(Zk(zl/o‘))z:/\“ eA>w 1(A) #

(iv) 320 les] 2L 2 LB 11 go(s)]ds < Me't, ¢ >0,

(V) 32 Cit Ctpmr - () Jo (t = )0 kigea(s)lds < Me™, ¢ >0,

(Vi) 252y Yy Zé;ﬂ ”E;uull(i) fg t—s)olk;_100-1(s)|ds < Me®"t, t > 0.
Then the operator A + B is a subgenerator of an exponentially bounded (F(a) ky)-

regularized C-resolvent family (Rp(t))i>0, which is given by the following formula:

Rp(t)r =" (=B [ciR(t)x + (ik * R(-)2) (t)}

7!
ZI: Z()( zlo,z*'l"R(-)x)(t), t>0, z€E.

i=11=1 lp=1
Furthermore,
(t—s) !
(136)  (A+B) TRB(s)gc ds = Rp(t)x — k1 (t)Cx, t >0, x € E,
@
0

sup, 50 e~ )Y Rp(t)]| < oo and
(137) RB(t)RB(S) = RB(S)RB(t), t, S 2 0.

It is noteworthy that (Rp(t)):>0 is a unique (F(a) k1 )-regularized C-resolvent
family with the properties stated in the formulation of Theorem 2.5.12 and that it
is not clear whether there exist functions k(¢) and k() such that Theorem 2.5.12
is applicable in the case a € (0,1); cf. also [36, Example 2.24]. In the following
theorem, we analyze stability of analytical properties under bounded perturbations
described in Theorem 2.5.12 (cf. also Theorem 2.5.3 and Theorem 2.5.6).

THEOREM 2.5.13. [242] Consider the situation of Theorem 2.5.12. Assume ad-

ditionally that (R(t))i>0 is an exponentially bounded, analytic ( (a; , k)-regularized

C-resolvent family of angle 8 € (0,%] and that, for every v € (0,8), the set
{em RezR(2) : 2 € X} is bounded for some w, > 0. Let ¢ > 0 be such that,
for every v € (0, 3), there exist w1 > max(sup{abs(;k) : i > 1},wy) and wy 2 >

max(sup{abs(ki 1) : 1 <1 <4, 1 <lp <1}, wy + ) with the following properties:
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(i) For every i € N, the function A — k(A), A > w1 can be analytically
extended to the sector w1 + Xz 1 and the following holds:

Z ”B”Z sup |z7€()\)| < 0.
i=0

|
1. A€W7,1+Z%+7

(ii) For every i,lp, 1 € N with 1 <1 < i and 1 < lp < I, the function A —
L(ki10,1(t))(A), A > w2 can be analytically extended to the sector w. o +
Y24+ and the following holds:

oo i
|

l i i !
Sy ) o |E(ksana ) ()] < oo

lo
i=1 1=1 lo=1 (£cos ) Acwn pt3igy,

Then (Rp(t))i>o is an exponentially bounded, analytic (E k1)-regularized C-

T(a)’
resolvent family of angle 3.
The assumptions of Theorem 2.5.12 and Theorem 2.5.13 are satisfied provided

a>1and k(t) = ki (t) = ﬁll)’ where r > 0. In this case, (, =1,

l 1/1 1
> bolletgial = — (= +1) - (5 +(1-1)) forall L€,

a \Qx
lo:l
C():].7 ko(t):O, CZ'ZO,’L.Zl,

1 1 taz’—l
ik(t):(r—i_ —1)-~-(7“Jr —i) >0, i>1

« [0}

and, for every i, Iy, l € Nwith 1 <l <iand 1 <[y </,

r+1 r+1 toi—lo—1
Eip (1) = a( —1)-..( —‘—z)_i,wo,
1ot (1) = g, o o (i=1) T(ai — o)

where (ZEL — 1) (ZH — (- ) == 1.

COROLLARY 2.5.14. Suppose a > 1, w > 0, v > 0, A is a subgenerator of an
r-times integrated (%, C)-regularized resolvent family (R(t))i>o0 satisfying (134)-
(135) for some w > 0. Let B € L(E) satisfy the condition (i) quoted in the
formulation of Theorem 2.5.12. Then A + B is a subgenerator of an exponen-
tially bounded r-times integrated (%,C’)—r@gulam’zed resolvent family (Rp(t))i>o0

satisfying (136)-(137) and sup,s (Hl_l)67(‘*’+||B|‘1/a)t||RB(t)H < co. Furthermore,
ta—l

(RB(t))i=0 is an exponentially bounded, analytic r-times integrated (Tay> ©)-rey-

ularized resolvent family of angle 8 € (0, 5| provided that (R(t))¢>o is.

Assume now a > 1, o > 0, 0 € (0,1) and k(t) = ki(t) = L7 (A" 2"") (1),
t > 0. Then, for every I € N, there exist real numbers (P, i a,0,0)1<mss Such that,

for every | € N, Pii,a,0,0 = Qz(g - 1) te (% - (l - 1))7 Pri,a,0,0 = (Q%)l> and that

[e2n N6
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the following holds:

dl 1 dl o/a o/ l ;
- 0027 _ ez } : ng—l7 2> 0
le (Zk( l/a)) le Pm,l,a,0,0
and
g o
(138) pm’l+17a59)0 - Qapmil’l)a’g’g + (ma - l)'pmJ)O‘wQ’U? 2 < m < l

This implies ¢g = 1, ko(t) =0, ¢; =0,7 > 1
t(m mo—1

ik meza,gam

m=1

t>0,1>

taiflofmafl

ki,lo,l(t) = Cly 1, Z pm,i—l,a,g,ama t>0,1<l<1, 1<lg<l

t(xi—lo—l
Kig,.i(t) = Clo,i,am’ t>0, 1<lg<e.

In view of (138), we easily obtain the existence of a constant (, ,» > 1 such that

l
(139) > mlpm il Gy ol! for all 1 € N.
m=1

In what follows, we assume that (o ., > 1 is minimal with respect to (139).

COROLLARY 2.5.15. Let us suppose thata > 1, w >0, 0 >0, 0 € (0,1), k(t) =
E’l()\ e QA”)(t), t >0 and let A be a subgenemtor of an exponentially bounded

(%,k)-regulam’zed C-resolvent family (R(t))i>o satisfying (134)—(135). Let B €
L(E) satisfy the condition (i) quoted in the formulation of Theorem 2.5.12. Then
A+B is a subgenerator of an exponentially bounded (%, k)-regularized C-resolvent

family (Rps(6))iso satisfying (136)-(137) and supsq e~ +1B16e00) ™40 R 1)
< oo for every € > 0. Furthermore, (Rp(t))i>0 is an exponentially bounded,
analytic (%,k)—r@gularized C-resolvent family of angle 3 € (0, 5] provided that
(R(t)) 50 s

One can simply prove that A is the integral generator of an exponential distri-
bution cosine function iff A is the integral generator of an exponentially bounded
a-times integrated cosine function for some a > 0, and that there exists a tempered
ultradistribution fundamental sine solution for a closed linear operator A iff A is the
integral generator of a global exponentially bounded £~* (A‘le_g’\l/s)—convoluted
cosine function for some (for every) o > 0; cf. Section 3.4 and Section 3.5 for more
details. By Corollary 2.5.14-Corollary 2.5.15, we obtain that the classes of expo-
nential distribution cosine functions and tempered ultradistribution fundamental
sine solutions of Beurling (Roumieu) class persist under bounded commuting per-
turbations. Finally, it seems to be really difficult to prove an analogue of Theorem

2.5.12 in the context of local ( T k)-regularized C-resolvent families. By reason

a)’
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of that, it is not clear whether the classes of distribution cosine functions and ul-
tradistribution fundamental sine solutions of Beurling (Roumieu) class retain the
property stated above.

2.6. Convoluted C-groups

We introduce the class of K-convoluted C-groups as follows.

DEFINITION 2.6.1. Let A and B be closed operators. A strongly continuous
operator family (Sk(t))¢e(—r,r) is called a (local, if T < 00) K-convoluted C-group
with a subgenerator A if:

(i) (Sk,+(t) := SK(t))te[o,T)’ resp. (Sk,—(t) := SK(it))te[O,T)’ is a (local)
K-convoluted C-semigroup with a subgenerator A, resp. B, and

(ii) for every t, s € (—7,7) witht <0 < s and = € E:
SK(t)SK(S)Z‘ = SK(S)SK(t)Z‘

s 0
[ K(r—t—s)Sk(r)Cxdr+ [K(t+s—r)Sk(r)Czdr, t+s >0,
— t+s t

- t+s

[ K(t+s—r)Sk(r)Cxdr+ [K(r—t—s)Sk(r)Czdr, t+s<0.
t 0

It is said that (Sk(t))ier is exponentially bounded if there exist M > 0 and w > 0
such that ||Sk(t)|] < Me“!"l, t € R. A closed linear operator A is the integral
generator of (S (t))ie(—r,r) if A is the integral generator of (Sk (t)eefo,r)-

Plugging K(t) = %, t € [0,7) in Definition 2.6.1, where o > 0, we ob-
tain the class of a-times integrated C-groups (cf. also [137, Definition 3.6], [220,
Definition 4.1] and [315, Definition 5]).

Suppose (Sk (t))te(—r,r) is a (local) K-convoluted C-group. As before, o(Sk)
designates the set of all subgenerators of (S (t))ie(—rr), i-€., (Sk) = ©(SK +);
then one can simply construct a global exponentially bounded, K-convoluted C-
group (Sk(t))ter with the continuum many subgenerators.

The proof of the next proposition is omitted.

PROPOSITION 2.6.2. Suppose (Sk (t))e(—r,7) is a (local) K-convoluted C-group
and A € p(Sk). Put Sk(t) := Sk(—t), t € (=7,7). Then (Sk(t))ic(—rr) is a
K -convoluted C-group, B € ©(Sk) and the integral generator of (Sk(t))ie(—r,7)
coincides with that of (Sk,—(t))te[o,r)-

PROPOSITION 2.6.3. Suppose 7 € (0,00], Ky € LIOC([O 7)), A is the integral

generator of a K-convoluted C-group (SK( Nie(—rr), A € p(Sk) and K o Ky #
0 in LL.([0,7)). Put SK*OKl(t = fo Ki(t - S)SK( Jeds, t € [0,7), = €
E and Sk i, (t)x = fo Kqi(—t — S)SK( s)xzds, t € (—7,0), x € E. Then

(Skwory (t))te(—rr) 15 a (K *o Kl)-convoluted C-group, A € 9(Sk«k,) and the
integral generator of (Skwor, (t))te(—r,r) 18 A.
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PROOF. It is clear that
(SK*OKlq“F(t) = SKxoK, (t))tE[O,T) and (SK*Oth(t) = SK*0K1(*t))te[077-)

are (K %o K1)-convoluted C-semigroups whose integral generators are A and B,
respectively. Furthermore, A € p(Sk.ok,,+), B € 9(Sksok,,—) and

SK*OKl(t)SK*OKl(S) = SK*OKl(S)SK*OKl(t), —T<t<0<s<T.

So, it suffices to prove the composition property for Sk i, (t)Skx K, (8), =T <t <
0 < s < 7. This will be done only in the case t + s > 0. Fix an « € F and observe
that:

SK»dq<wSKmK¢@yr=L/fﬂ«—t—w»ch—MSk*Mq<$xdv

—t s

://Kl(—t—v)Kl(s—u)SK(—v)SK(u)xdudv

0 0

= /Kl(ftfv) [/Kl(su)SK(v)SK(u)xdu] dv
0 0

+]tz<1 - VKl su)SK(v)SK(u)xdu] dv
/K1 —t—w) /K1 s —u)

/ K(u—v—r)Sk(r )C’xdr—F/K r—u+v)Sk(r)Czdr

/K1 —t—v) /K1 s—u)

0
L/ K(r—u—i—v)SK(r)Cmdr—i—/K(U—U—T)SK(T)der] du dv

du dv

=51+ 52,

where

u

S ::/Kl(—t—v)/vKl(s—u)/K(r—u—i—v)SK(r)derdudv
0
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+/tK1(tv)/sK1(su) /u K(r—u+v)Sk(r)Cxdrdudv

Sy 1= /Kl(—t—v)/vKl(s—u) 7UK(u—v—r)SK(r)Cmdrdudv

N ]tKl(—t ) / Ki(s— ) / K(u— v —1)Sic(r)Ca dr du dv.
0 v —v

The proof is completed if one shows:

s 13
(110) s [ K)E—t—9) [ Kile - 2)Sw(2)Crdzde,
t+(;9 fg
(141) So= [ (K K1)(t+s—&) | Ki(—§— 2)Sk(—2)CzxdzdE.
/ /

To prove (140), one can use the equality

s £
/(K " m)(&—t—s>/K1<§—z>sK<z>dezde
t+s

E—t—s

4
/[/ Ki(§—t=s—0)K (U)dU]O/Kl(f—Z)SK(Z)dezdf

t+s 0

and the substitution of variables v =s+ 0 — &, u = s+ z — £ and r = z; the proof
of (141) can be obtained along the same lines. O

PROPOSITION 2.6.4. Suppose A is the integral generator of a (local) K-con-
voluted C-group (Sk(t))ie , A€ p(Sk), B € p(Sk,—) and B is the integral
generator of (Sk,—(t ))te[o ) Then

(i) ASk(t)e = Sk(t)Aw, x € D(A), t € (—7,0] and
BSK(S)LL‘ :ASK( s)Bz, x € D(B), s € [0, )
(ii) Sk(t)A C ASk(t), t € (—7,0] and Sk (s)B C BSk(s), s € [0,7).
PROOF. Put O(¢ fo s)ds, t € [0,7), Se, (t)z = fo (s)xds, t €

[0,7), z € E and Se, (t )x =/, ( t—s)Sk(—s)xds, t € (— 7',0)7 T € E. By Propo-
sition 2.6.3, (Se, (t))te(—r,r) is a ©1-convoluted C-group, A € p(Se, ), the integral
generator of (Se, (t))ie(—r,r) is A and the integral generator of (Se.,—(t))iepo,r is
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B. Clearly,

S

So. (1) A / So. (r)z dr = S, (1) (591 (s)z — / 0.(r) drC’x)
0

0

= So,(s)Se, (t)x — /91(7") drCSe, (t)z

S

=A [ Se,(r)Se,(t)xdr+ [ ©1(r)drCSe,(t)x — | O1(r)drCSe, (t)x
i i j

0
s s

= A/S@l(r)Sel(t)xdr = AS@l(t)/Sel(r)xdr, te(—7,0), sel0,7), z € E.
0 0

Suppose now z € D(A). Then we obtain

Sel(t)/Sel(r)Ax dr = AS@l(t)/Sel(r)x dr, te€ (—1,0), s€[0,7).
0 0

The previous equality and closedness of A imply Se, (t)Se, (s)x € D(A),t € (—7,0),
s €10,7) and ASe, (t)Se, (s)x = Se, (t)Se, (s)Az, t € (—7,0), s € [0,7). Suppose,
for a moment, t € (—7,0), s € [0,7) and t + s > 0. The composition property of
Se, (+) allows one to establish the following equality:

S

0
/@1(7"71575)5’@1 CAxerr/@l (t+s—r1)Se, (r)CAxdr
t+s t

:AL/ @1(r—t—s)Sgl(r)der—i—/@l(t—i—s—T)S’gl(r)der .

Since Se, (r)A C ASe,(r), r € [0,7) and CA C AC, one gets
/ O1(r —t —s)Se, (r)Cxdr € D(A)
t+s

A / O1(r —t —s)Se,(r)Caxdr = / O1(r —t — s)Se, (r)C Az dr.
t+s t+s
Hence, ft t+s—r)Se,(r)Cxdr € D(A) and
0

(142) A/@l(t +s—71)Se,(r)Czdr = /@1(75 +s—1)Se, (r)CAzxdr.

t



2.6. CONVOLUTED C-GROUPS 131

Put now Q = {(¢,s) € (—7,0) x (0,7) : t +s > 0} and

0
fy(t,s) = /@1(t +s—r)Se,(r)ydr, (t,s)e, yecE.
t

Then the dominated convergence theorem implies:

0
gtf (t,s) = /@(t + s —1)Se, (r)ydr — 01(s)Se, (t)y,
0
2 = [ Ot —r)S d t,s)eQ, yek
St = [O(t+s—nSe,(ydr. (t5) €0 yeE.
t

By the closedness of A and (142), one gets AL fou(t, s) = 2 foau(t,s), (t,5) € Q.
In other words,

(143) A/@(t +s—r)Se,(r)Czdr = /@(t +s—r)Se,(r)CAzdr, (t,s) € Q.

Analogously, A2 fou(t,s) = 2 foau(t, s), (t,s) € Q, ie., for every (t,5) € €,
0

/@(t+s—r)S@1(r)der— 1(8)Se, (t)Cx
t 0

/@ (t+s—1)Se,(r)CAzdr — ©1(s)Se, (t)CAx dr.

(144) A

[oN

An employment of ( 143) (144) gives ©1(s)Se,(t)Cx € D(A), (t,s) € Q an
A(©1(s)Se, (t)Cx) = O1(s)Se, (t) A , (t,s) € Q. Similarly, A(©1(s)Se,(t)Cz) =
01(s)Se, (t)C Az, if (t,s) € (— O) X (0 7) and t + s < 0. Thus,

T
(145) A(O1(s)Se, (t)Cx) = ©1(s)Se, (t)C Az, t € (-7,0), s € [0,7).

It is evident that there exists s € [O,T) with ©1(s) # 0 and one can apply (145)
in order to conclude that A(Se, (t)Cz) = Se,(t)CAz, t € (—7,0). Differentiate
the last equality twice with respect to ¢ to obtain that Sk (t)Cxz € D(A) and
that ASk(t)Cx = Skg(t)CAx, t € (—7,0). The last equality gives ACSk(t)z =
CSk(t)Ax, Sk (t)r € D(C7TAC) and [C~ 1AC’]SK( Jo = Sk (t)Ax, t € (—7,0]. On
the other hand, Proposition 2.1.6 1mphes A=C"1AC, and consequently7 S K( )z €
D(A), z € D(A), t € (—,0]. Since A € p(Sk) and C~'AC = A, one obtains that
Sk(t)Az = [C7TAC)Sk (t)z = ASk(t)z, t € (=7,0], = € D(A). The remnant of
proof follows by Proposition 2.6.2. O

Assume a > 0, (S4(t))ter is an exponentially bounded, a-times integrated
group generated by A and B is the generator of (So(—t))t>0. Let us recall that
El-Mennaoui proved in [117] that B = — A; this result can be generalized as follows:
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THEOREM 2.6.5. Suppose A is the integral generator of a (local) K -convoluted
C-group (Sk(t))te(—r,r), B is the integral generator of (Sk,—(t))iepo,r), A € p(Sk)
and B € p(Sk,—). Then the following holds:

(i) Sx(t)z € D(B) and BSk(t)r = —Sk(t)Az, = € D(A), t € (—,0];
Sk(s)x € D(A) and ASk(s)x = —Sk(s)Bz, x € D(B), s € [0,7),

(i) B=—A4,

(111) BCx = —CAz, z € D(A ) AC’ac = —CBz, x € D(B) and

(iv) fo k(r)Cadr € D(A), t € (—7,0); [, Sx(r)Czdr € D(B), s € [0,7).
PROOF. Let

t

0;(t) = /(t —5)7tO(s)ds, i=1,2,t€[0,7),
0

Se, (t)x = /(t —5)Sk(s)xds, t€[0,7), x € E,
0

Se, (t)x = /(ft —5)Sk(—s)xds, te€ (—1,0), z € E.
0

Suppose now t <0 < s, t+ s <0 and « € E. Then the preceding proposition and
the composition property of Sg, () imply:

(146)  So, (£) (5@1(5)93— / o1 (r) drCm) — Se. ()4 / S, (1) dr
0 0

— AS0,(1) [ Se (o dr = A [ Sa, ()56, (1 dr
0 0
s Ft+r r
= A/ / O1(t+7—v)Se, (v)Cxdv + / O1(v—t—1r)Se,(v)Cxdv| dr
o Lt 0
t+s s

/@ (t+s—71)Seo,(r)Cxdr+ | ©1(r—t—s)Se, (r C’xdr—/@1 )drSe, (t)Cx.
0

Differentiate (146) with respect to s in order to conclude that:
t+s

(147) /6 (t+s—1)Se,(r )der+/@ (r—t—s)Se,(r)Cxdr

t+s
= / O(t+s—r)Se,(r)Cxdr — /@(r —t—8)Se,(r)Czdr

t
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+ 01 (—t)Se,(s)Cx — ©1(s)Se, (t)Cx.

S ~
Further on, it is clear that [ ©1(r — ¢t — s)Se, (r)Cz dr € D(A) and that
0

T

fl/@l(r—t—s)Sgl(r)der: /@1(r—t—3)A/S@(v)devdr
0 0

0
s

= /@1(r —t—5)(Se(r)Cz — 0 (r)C?z) dr

0
s

= /@1(7" —t—15)Se(r)Cxdr — /@1(7" —t —5)0,(r)C?x dr.

0 0

This equality and (147) imply ftHS O1(t+ s —r)Se, (r)Cx dr € D(A) and:
t+s

(148) A / ©1(t+ s —r)Se, (r)Cxdr

t
t+s S

= /G(t—i—s—r)S@l(T)Cx dr—/@(r—t—s)S@l(T)C:r dT—/@l(T—t—S)S@(T)Cx dr
0 0

t

4+ 01(—t)S6, () — O1(s) S0, () + / OL(r — t — )01 (r) drC2a.
0
The partial integration yields
- / O(r —t—8)Se, (r)Cxdr — /@1(7‘ —t—8)Se(r)Cxdr = —01(-t)Se, (s)Cx
0 0

and, due to (148), one gets:

t+s
(149) A / O1(t+s—r)Se, (r)Cxdr
t

t4s s
= / O(t+s—r)Se, (r)Cxdr+ / O1(r —t —s)01(r) drC?z — ©,(s)Se, (t)Cx.
t 0
Further on,
t+s
B / ©1(t+ s —r)Se, (r)Cxdr
t
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t+s -
:B/@1(t+577’)/S@(7v)Cmdvdr
0

t
t+s

= / O1(t+ 5 —7)[Se(r)Cz — O1(—r)C?z] dr

t
t+s t+s

= / O1(t+s—1)Se(r)Cxdr — / O1(t+ s —1)01(—r)C?z dr

t+s t+s

= 01(s)Se, (t)Cx —/@(t +s—r7r)Se,(r)Czxdr —/61(t +5—1)01(—r)C?%x dr,

where the last equality follows from integration by parts. Hence,
t+s
(150) B / O1(t +s—1)Se, (r)Cxdr

t
t+s S

= 04(s)Se, (t)Cz — / O(t+s—r)Se,(r)Cxdr— /@1(7“ —t—5)0(r)C?%z dr.
t 0

By (149)-(150), we obtain:
t+s t4s

(151) A / O1(t+s—r)Se,(r)Cxdr=—B / O1(t+s—r)Se, (r)Cxdr.

Suppose © € D(A); then Cz € D(A) and, thanks to Proposition 2.6.3 and (151),
we easily infer that:

t4s t+s
(152) / O,(t+s—1)Se, (r)ACz dr = —B / O1(t + 5 —1)Se, (r)Cx dr.
t t

t+s
Differentiate the previous equality with respect to s to conclude that [ ©(t+s—r)

t
x So,(r)Cxzdr € D(B) and that:
t+s t+s

(153) / O(t+s—r)Se, (r)ACxzdr = —B / O(t+ s —r)Se, (r)Cxdr.
t t
On the other hand, differentiation of (152) with respect to ¢ leads us to the following:

[ 0(t + 5 —1)Se, (r)Ca dr + ©1(s)Se, (t)Cx € D(B) and

t+s
(154) / Ot + 5 — 1)Se, (F)ACz dr + ©1(s)Se, (1) ACx
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t+s
/ O(t+ s —r)Se, (r)Czdr+ 01(s)Se, (t)Cx
i
Making use of (153)—(154), it readily follows that ©1(s)Se, (t)Cx € D(B) and
—B(01(s)Se, (t)Cz) = ©1(s)Se, (t)ACz. Using the similar arguments, one obtains
that the last equality remains true if t+s > 0 and & € D(A). So, ©,(s)Se, (t)Cx €
D(B) and
(155)

—B(01(s)Se, (t)Cx) = ©1(s)Se, (t)ACz, t € (—7,0], s € [0,7), z € D(A).
Choose a number s € [0, 7) with ©1(s) # 0 and notice that (155) implies Se, (t)Cx
D(B) and

(156) —B(Se, (t)Cz) = Se, (t)ACz, t € (—7,0], z € D(A).
A consequence of (156) is

=-B

—t

—t
Se, (t)Cx — Og(—t)C?%x = B/Sgl(fv)C’:c dv = 7/5@1(71))140:0 dv
0 0

—t
= fC'/S@l(fv)fla:dv, te (—1,0], z € D(A).
0
Therefore,
(157)  Se,(t)z — Oa(— /sol WAz dv, t € (—,0], = € D(A),
which clearly implies
B/S@1 v)zdv = — /S@1 v)Az dv, t € (—7,0], = € D(A).

The closedness of B enables one to see that Se, (t)x € D(B) and that BSe, (t)x =
—Seo,(t)Az, t € (-7,0], € D(A). Differentiate the last equality twice with
respect to t so as to conclude that Sk (t)z € D(B) and that BSg (t)z = —Sk () Az,
te(-70, z € D(A) This equality and Proposition 2.6.2 imply: Sg(—s)z €
D(A) and ASk(—s)z = —Sk(—s)Bx, s € [0,7), z € D(B), ie., Sk(s)z € D(A)
and ASk(s)x = —Sk(s)Bz, = € D(B)7 € [0,7). The proof of (i) is completed.
Further on, (157) implies —A C B. Now one can apply Proposmon 2.6.2 and the
first part of proof to obtain that -BC A, hence, B = —A and this ends the proof
of (ii). Finally, (iii) and (iv) are simple consequences of the assertion (ii) of this
theorem and Proposition 2.1.6(i)-(ii). O

COROLLARY 2.6.6. Assume K satisfies (P1) and A is the integral generator of
an exponentially bounded, K -convoluted C-group (Sk (t))tcr. If there exist M > 0
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and B> 0 such that |K(t)| < MePt, t >0, then C~YA2C is the integral generator
of an exponentially bounded, analytic K;-convoluted C-semigroup (Sk, (t))i>o0 of

angle 5, where

86_52/4t

0

1
2\t

Sk, (t)z = /6752/41‘/ (Sk(s)z + Sk (—s)z)ds, t>0, z € E.
0

Before proceeding further, let us point out that the previous corollary remains

true in the case K (t) = %, where o € (0,1).

THEOREM 2.6.7. Assume 7 € (0,00] and +A are the integral gemerators of
K -convoluted C-semigroups (Sk +(t))icjo,r). Put Sk(t) := Sk 4(t), t € [0,7) and
Sk(t) == Sk,—(—t), t € (—=71,0). Then (Sk(t))ic(—r,r is a K-convoluted C-group
whose integral generator is A.

PROOF. Assume —7 <t < 0 < s < 7 and t+ s > 0. We will prove the
composition property for Sk (t)Sk(s). Fix an x € E and define

T

f(r) = SK(t+sfr)/SK(a)xda, reft+s,s].
0

Clearly, ASk (o) C SK(O')A, o € (—7,7) and the semigroup property of a K-
convoluted C-semigroup implies:
d A r
d—f(r) =Sk(t+s—r)Sk(r)z — ASk(t+s—r) /S’K(U)xdo
.

0
”

+K(r—s—t)C’/SK(cr)xda:@(T)SK(t—|—3—r)C’a:+K(r—s—t)C’/SK(a)xda,
0 0

for a.e. 7 € (t + s,s). Integrate the last equality with respect to r from ¢ + s to s
to obtain:

T

SK(t)/SSK(a):cda /S@(T)SK(tJrsr)Cmdr+/sK(rst)C/SK(J)xdadr.
0

t+s t+s 0

Since A € p(Sk 1), the last equality yields:

(158) SK(t)SK(S)LC = SK(t)

A | Sg(o)zdo +0O(s)Cx
/
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+0(s)Sk (H)C

AL/@(T)SK(t +s— r)C’a:dr—l—/K(r —s— t)C/S’K(U)xdadr
+s t+s 0

= A / O(r)Sk,—(r—t—s)Cxdr
t+s

n / K(r—s—1) [SK(r)cx - @(r)c%} dr + 0(s)Sk (t)Cx.
t+s

Furthermore,

s —t
(159) A / O(r)Sk,_(r—t—s)Caxdr = A/@(v +t+5)Sk,—(v)Cxdv
t+s 0

=A

—t —t r
@(s)/SK,,(T)C;Edr—/K(t—i—s—i—r)/SK,,(v)C:dedr
0 0 0

— _0(s) [SK(t)cx - @(—t)c%;] + /K(t +s47) [SK(—T)C:C - @(r)o%c] dr.
0

With (158)—(159) in view, one gets:

Sk (t)Sk(s)x

= —0(s) {SK(t)Cx - @(—t)CQm} + /K(t +s+7) [SK(—T)C:L‘ - @(7‘)021} dr
0

+ / K(r—s—1) [SK(T)CQ: - @(r)(ﬂ‘x} dr + O(s) Sk (t)Ca
t+s

s 0
= /K(r—t—s)SK(r)der—i—/K(t—l—s—r)SK(r)der
t+s t

0 s
+0(s)0(—t)C?%x + /K(t +5+7)0(r)C%2z dr — / K(r —s—t)0(r)C%xdr,
—t t+s
and the composition property for Sk (¢)Sk (s) follows from the next computation:

0 s
0(s)0(—t)C?%x + /K(t + 5+ 7)0(r)C%x dr — / K(r—s—t)0(r)C%zdr

—t t+s
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= 0(s)0(—t)C%x — / K(r)O(r —t —s)C%x dr — / K(r—s—t)0(r)C%xdr
t+s t+s

= 0(s)0(~1)C%r — [9(3)@(—1&)0230 - / K(r—s—t)0(r)C?zdr
t+s

—/K(r—s—t)@(r)CQxde().
t+s

The prgof of composition property in the case t +s < 0 can be obtained as follows.
Since A [ Sk (0)zdo = Sk (r)z — ©O(—r)Cx, r € (—7,0], we get

%f(r) =Sk({t+s—r)Sk(r)z
— ASg(t+s—7) | Sk(o)xdo+ K(r—s—1t)C | Sk(o)xdo
/ /

= O(|r|)Sk(t+5—1)Ca+ K(r — s — t)c/sK@)x do,
0

for a.e. r € (t + s,s). Integrate the last equality with respect to r from ¢ + s to s
to obtain

r

s 0 0
S’K(t)O/SK(U)de :tq_/s@(—T)SK(t—i—s—r)der—i;_/sK(T—t—s)O/S’K(U)C:EdUdr

(160) + [ O()Sk(t+s—r)Cxdr+ | K(r—s—t) | Sk(c)Cxzdodr.
/ [roeeo]

Clearly,

A | Sg(o)zdo + @(S)Cx]
/

= ASk(t) / Sic(0)a do + O(s)Sic (H)Cx,
0

and a tedious computation involving (160) leads us to the next equality:
t+s

(161) Sk (t)Sk(s)z = / K(t+s—r)S(r)Cxdr+ /K(’F —t—5)S(r)Cxdr
t 0
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t+s

O(s)0(—-t) — / K({t+s—r)O(—r)dr— /K(r —5—1)0(r)dr|C?%z.
0

Since
t+s s
O(s)0(-t) — / K(t+s—7)0(—r)dr— /K(r —s—1)O(r)dr
0

= @(s)@(—t)—l—/K(r)@(r—t—s) dr—@(—t)@(s)+/@(r—t—s)K(r)dr:O,

(161) implies the composition property for Sk (¢)Sk(s). By the foregoing,
SK(S)SK(t)]) = SK(—S)SK(—t).T

—t 0

[ K(r+t+s)Sk(r)Cxdr+ [ K(—t—s—7r)Sk(r)Czdr, t+s <0,
_ —t—s —s

—t—s

—t
[ K(—t—s—7)Sk(r)Cxdr+ [ K(r+t+s)Sk(r)Cxdr, t+s>0,
—s 0

t+s s
| K(t+s—r)Sk(r)Cxdr+ [K(r—t—s)Sk(r)Czdr, t+s <0,
¢ 0

s 0
[ K(r—t—s)Sk(r)Cxdr+ [K(t+s—r)Sk(r)Czdr, t+s >0,
t+s ¢

for every x € E. The composition property for Sk (t)Sk(s) and previous equality
imply Sk (t)Sk(s) = Sk(s)Sk(t), t <0 < s, which ends the proof of theorem. [

QUESTIONS. (i) Suppose A is the integral generator of a (local) K-convoluted
C-group (S (t))tc(—r,r)» A € p(Sk) and A # A. Is it true that —A € p(Sk _)?
(ii) Suppose A is the integral generator of a (local) K-convoluted (semi-)group

(Sk(t))te(—r,r)- Does there exist an injective operator C' € L(F) such that A
generates a global C-(semi-)group?

COROLLARY 2.6.8. Suppose 7 € (0,00, A is a closed linear operator and
(Sk(t))te(—r,r) is a strongly continuous operator family. Then A is the integral

generator of a K -convoluted C-group (Sk (t))ie(—r,7) iff +A are the integral gener-
ators of K-convoluted C-semigroups (Sk +(t))iejo,r)-

The following theorem is a consequence of Corollary 2.6.8 and the corresponding
assertions for exponentially bounded convoluted C-semigroups.

THEOREM 2.6.9. Let K satisfy (P1) and A be a closed linear operator. Then
the following holds.

(i) Let M > 0 and w > 0. Then A is the integral generator of an exponentially
bounded, O-convoluted C-group (So(t))ter such that

|Se (£t £ h) — Se(£t)|| < Mhe* "™ ¢t >0, h >0
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iff there exists a > max(w,abs(K)) such that:

(162) {N€CT:Re>a, K(\) #0} C po(£A),

(163) A= KW+ A)TIC, X >a, K(N) # 0 is infinitely differentiable,
Mk! .

(164) HW YA+ A)1(] H < k€No, A>a, K(\)#0.

— W)kt

(ii) Suppose M > 0, w > 0 and A is densely defined. Then A is the integral
generator of an exponentially bounded, K -convoluted C-group (Sk (t))ier satisfying
ISk < Me*™, t € R, w > 0 iff there exists a > max(w,abs(K)) such that
(162)—(164) is fulfilled.

(iii) Suppose that A is the integral generator of an exponentially bounded, K-
convoluted C-group (S (t))ier satisfying |Sx(t)|| = O(e*th), t € R, w > 0. Put
a := max(w, abs(K)). Then:

(165) {AN€CT:ReX>a, K(\) #0} C po(£A)
1 _ — At o
(166) (= A)7MCr = o O/ e NS (Tt dt, Re>a, K(A)£0,

(iv) Suppose (Sk(t))ier is a strongly continuous operator family and ||Sk (t)|| =
O(e®!!), t € R, w > 0. Puta := max(w,abs(K)). If (165)~(166) hold, then A is the
integral generator of an exponentially bounded, K -convoluted C-group (Sk (t))ter-

Keeping in mind Corollary 2.6.8, one can simply formulate several other struc-
tural characterizations of convoluted C-groups. The remainder of this section is
devoted to the study of relations between fractionally integrated cosine functions,
analytic semigroups of growth order r > 0, some special subclasses of differentiable
C-regularized groups and (local) convoluted groups whose derivatives possess some
expected properties of operator valued ultradifferentiable functions of the Beurling
type (cf. also the next chapter). We need some auxiliary notations.

1. Let @ > 0 and b > 0. Then the exponential region E(a,b) was primarily
defined by Arendt, El-Mennaoui and Keyantuo in [5]:

E(a,b) :=={A € C:ReA > b, [Im)| < "R},
Put E%(a,b) := {)\?: X\ € E(a,b)}.
2. Suppose s > 1. Following Chazarain [54] (cf. also [210] and [307, Sec-
tion 2.3]), we define the ultra-logarithmic region of type I:

Qapr:={A€C:Rer>aM(|ImA])+ 8}, 1 >0, a>0, BER,

where M (t) := sup,ey, Int?/p!*, t > 0 and M(0) := 0.
3.1f0 € (0,7] and d € (0,1], put By :={A € C: |A < d} and Qg 4 := Xy U By.
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The following family of continuous exponentially bounded kernels (cf. [14,
p. 107]) plays an important role in our analysis:

r4+100
1
Ks(t) := 5 / AMAAN, £ >0, 5€(0,1), 7> 0, where 1° = 1.

Put, for ¢ > 0 and 6 € (0,1), K5.(t) := Ks(ct), t > 0. It is well known that, for
every § € (0,1), ¢ >0 and s = 1/4:

K5V = ’1175 (5) |- Lemover) 2 L o eostaarstepinyer’
C Cc C C

< 167 Cos(7r/25)c_1/s|)\|l/s, Re ) > 0.
c
For the sake of simplicity, in the following theorem, we consider only Gevrey
type sequences p!°, s € (1,2) and the functions Ky, ., ¢ > 0. Actually, the
argumentation given in [225] and [307, Section 1.3] can serve one to prove a more
general result.

THEOREM 2.6.10. [231] Suppose o > 0 and A generates a (local) a-times
integrated cosine function. Then the following holds:

(i) For every b € (3,1) and v € (0,arctan(cos(%))), there exist two analytic
operator families (T1,7_~_(t))teZw C L(E) and (Ty,—(t)) C L(E) which satisfy:

(i.1) For everyt € ¥, Ty 1 (t) and Ty, —(t) are injective operators.

(i.2) [t= T+ (t)] = O(1), t — 0+.

(i.3) Foreveryt; € ¥, andty € ¥, the operator iA is the generator of a global
(T, + (t1)Ty,— (t2)) -reqularized group (Sp, 1,(r))rer-

(i.4) For every x € E, t1 € ¥, and ty € £, the mapping 7 +— Sy, 1, (1),
r € R is infinitely differentiable in (—oo,0) U (0, c0).

(i.5) Suppose K is a compact subset of R and 0 ¢ K. Then, for every h > 0
and s € (3,2):

tes,

dP
——Sbt1.t (r)xH < 0.

1
sup h? o

pENp, reK pIS

(ii) For every s € (1,2) and 7 € (0,00), there exists ¢; > 0 such that iA
generates a local Ky ., -convoluted group (SKl/s,cq- (t))te(_T ) which satisfies:

(ii.1) The mappings t = Sk,,, . (£t), t € [0,7) are infinitely differentiable.
(ii.2) There exists h > 0 such that
1

sup Th”
te(—7,m)~{0}, peNo P*

dr
dtp

Sk, . (t)H < 0.

PROOF. According to Theorem 2.7.3(ii) given below we have the existence of
positive real numbers a and b such that E?(a,b) C p(A) and that ||[R(A\?: A)|| <
M|X%, A € E(a,b). Suppose now s € (%,2). Proceeding as in the proof of [223,
Theorem 4.3], we get the existence of numbers § > 0, ¢ € R and [ > 1 (cf. also
[54]) so that Qs.; C p(£iA) and |[R(\ : £iA)|| < M|A|Z, A € Q5. Further
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on, it is clear that there exist numbers a € (0,%), d € (0,1] and w € R so that:
be (0 ,m), v € (0, arctan(cos(b(m — a)))) and Qad C Dse—wi C p(HiA —w).
Let the curve I', 4 := 04 q be upwards oriented. Define T}, +(t), t € ¥ by:

1
Ty (t)r = o e N RN A — w)zd), 7 € E.
i
Faa
The arguments given in Section 1.1.4 show that (T 4 (t))tex, are analytic operator
families which fulfill the claimed properties (i.1) and (i.2). Assume K is a compact
subset of (0,00), t € ¥, and « € E. Then +iA generate global T}, 4 (t)-semigroups
(Sb,t,+(1))r>0 [225]. Furthermore, the mappings r +— Sp ¢ 4+ (r)z, r > 0 are infinitely
differentiable and, for every h > 0:
167 sup H

( ) peNg, reK p's dr?
Suppose t; € X, t2 € £, and « € E. Evidently, Tp 1 (¢1)(%iA4) C (£1A)Tp 4 (t1),
Tb’,(tz)(:tiA) - (:l:iA)Tb’,(tg) and Tb#(tl)Tb’,(tg) = Tb7,(t2)Tb’+(t1). Then one
obtains

Ty, (t2) (Setr, 4 (1)x — Tp 4 (t1) )

Sbti H<OO

:Tb7,(t2)iA/Sb’tl’+(’U){E dv :’L’ATb’,(fg)/Sb’tlﬁr(v)l'd’l},

iA / (To (£2)Sh 1. (0)) 2 dv = Ty (£2)Sr 1. () — Toy (1) T (t2), 7> 0.

Clearly, we have that [Ty, _(t2)Sp . + ()] To+(t1) = Tp+(t1)[To,—(t2)Spuy,+ ()],
r > 0, and [Ty, — (t2) S, ,+(1)]iA C iA[Th,—(t2)Spt,,+ ()], 7 = 0. The above given
arguments simply imply that (Tb),(tg)Sb’tlﬁ(r))T?O is a global (T} 4 (t1)Th,— (t2))-
regularized semigroup generated by ¢A. Analogously, (Tb7+(t1)Sb7t27_(r))T>0 is
a global (Tb,+(t1)Tb,,(tg))—regularized semigroup generated by —iA. Hence, iA
generates a global (T}, 4 (t1)Tp,—(t2))-regularized group (Sp i, (7))rer given by:
Sb,tl,tg (T) = Tb,—(tQ)Sb,t1,+(T)7 r = 0 and Sb,tth (7’) = Tb7+(t1)5b,t27_(—7‘), r < 0.
This yields (i.3) and (i.4) while the proof of (i.5) follows immediately from (i4)
and (167). To prove (ii), choose arbitrarily numbers 7 € (0,00) and s € (1,2).
Denote by I'; the upwards oriented boundary of Qs . ; and notice that [207] there

exists an appropriate constant d; > 0 such that M(\) < dl)\%, A > 0. Put
Cr = 3 [Cos(ﬂ'/Qs)Tadll /S] )

Sry (1) = 5= *le (AR : +iA)dA, t € [0,7),

I

SK1/S,CT (t) = SK1/5,UT,+(t)7 te [Oa T) and SKl/s,u,— (t) = SKI/S,U,—v_(it)7 te (77—7 O)
Arguing as in the proof of [307, Theorem 1.3.2, p. 58], one obtains that Sk, ,, . ()
€ L(E), t € [0,7) and that 44iA generate local K/, . -convoluted semigroups
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(SKl/s,chi(t))te[o,r)' An employment of Corollary 2.6.8 shows that iA generates
the local K/, ., -convoluted group (SKl/s, .. ()te(=r,r)- The elementary inequality
leM — 1] < h|A|eRe* X\ € C, h > 0 and the dominated convergence theorem imply
that the mappings ¢ — Sk, ,, . (£t), t € [0,7) are infinitely differentiable and that

dr 1 o ,
%SK%YCT (:l:t) = %/APC)\tKéycT ()\)R()\ : :l:ZA) d)\, t e [O,T), p e NO.
r

Due to the choice of ¢, there exists h > 0 such that:

(168)

(169) dih +70dy 15 < cos(%)c;%.
s
Taking into account (168)—(169), one gets
1 d?
sup — WP —S5k,,. . (t)H
te€(—7,7)~{0}, pENg p! dtr [
hIADP —
< Const sup /%emlfum o VIR = £iA)| |dA]
tE(_T7T)\{0}7PENOF b s
l

_1
< Const  sup / M AN I (GM U T A +e) o= cos(F)er NS | 3|

te(f‘r,‘r)\{O}Fl

_1
< Const sup /edlh%w%e‘tlwdllél)“%%)e_ cos(F5)er * IAI® A2 |dA|
te(—r,7)~{0}

I

1 1 R INE
< Const elalT/e(dth"’Tédlls meostzz)er DA N2 [dA| < oo,

Iy
The proof is thereby completed. O

We close this section with the analysis of certain classes of abstract Volterra
equations on the line. Of concern are the following equations:

(170) u(t) = /000 a(s)Au(t — s) ds + [ k(t —s)g'(s) ds,
where g : R — E, a € L ([0,00)), a # 0, k € C([0,0)), k # 0, and
(171) u(t) = f(t) —|—/O a(t — s)Au(s)ds, t € (—7,7),

where 7 € (0,00] and f € C((—7,7) : E). Notice that the equation (170) appears
in the study of the problem of heat flow with memory [342].

PROPOSITION 2.6.11. Assume A is a subgenerator of a global (a, k)-reqularized
C-resolvent family (S(t))i0, g : R — R(C), C~1g(-) is differentiable for a.e. t € R,
C~1g(t) € D(A) for a.e. t € R,

(i) the mapping s — S(t — s)(C~tg)'(s), s € (—o0,t] is an element of the
space L'((—oo,t] : [D(A)]) for a.e. t € R, and
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(ii) the mapping s — k(t — s)g'(s), s € (—o0,t] is an element of the space
L' ((—o0,t] : E) for a.e. t € R.
Put u(t) := ffoo S(t—s)(C~tg)(s)ds, t € R. Then C(R: E) > u satisfies (170).
PRrROOF. The continuity of u(t) can be proved by using the dominated conver-

gence theorem and the strong continuity of (S(t))i>0. The proof of (170) follows
from the following computation:

oo

/a(s)Au(t —s)ds+ /_too k(t—s)g'(s)ds

t

72@p472wsm«:lywyh@+(/k@@y@ym

://as —rAS(r")(C™? )(t—s)dr'ds’+/k(t—s)g’(s)ds
0 0 —o00
:/wwywwmmjmu—@@+/kwﬂm@m
0 —0o0
/k "(t —s')ds' + / k(t —s)g'(s)ds = u(t), t € R. O
0 —00

Denote by AP(E), AA(E), AA.(E) and AAA(E) the spaces which consist
of all almost periodic functions, almost automorphic functions, compact almost
automorphic functions and asymptotically almost automorphic functions defined
on R, respectively, and assume that the function (C~'g)’(t) belongs to one of these
spaces [339]. By [49, Theorem 4.6], the uniform integrability of (S(t))i>0 implies
that the solution u(t) of (170) belongs to the same space as (C~tg)’(t). The above
assertion remains true in nonscalar case (cf. Appendix).

PROPOSITION 2.6.12. (i) Assume a € LL _((—7,7)), k € C((—7,7)), a # 0 and
kE#0. Let ki (t) = k(t), ar.(t) = a(t), t € [0,7), k_(t) = k(—t) and a—_(t) = a(-t),
t € (—7,0]. If £A are subgenerators of (a+,k+)-reqularized C-resolvent families
(St ))te (0,r), then, for every x € D(A), the function u : (—7,7) — E given by

u(t) = Sy(t)z, t € [0,7) and u(t) = S_(—t)x, t € (—7,0] is a solution of (171)
with f(t) = k(t)Cx, t € (—7,7). Furthermore, the solutions of (171) are unique
provided that ki (t) are kernels.

(i) Assume ny € N, f € C((-7,7) : E), a € L} ((-7,7)), a # 0, fi(t) =
f@), ar(t) = a(t), t € [0,7), f—(t) = f(—t), a_(t) = a(—t), t € (—7,0], and £A
are subgenerators of (ny — 1)-times integrated (ax,Cy)-regularized resolvent fami-
lies. Assume, additionally, ax € BVio([0,7)) if ne > 1 (that is: ay € BVioc([0,7))
if ng > 1, and a— € BVioe([0,7)) if ne > 1) as well as:
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(i.1) Cf'fe € CO((0,7) : B), fE7V(0) € D(A™F) and
A=k f=1(0) e R(Cy), 1 <k < na, if ne > 1, resp.
(ii.2) Ci'fe € C([0,7) : EYNWEN0,7): E) if ny =n_ = 1.

loc

Then there exists a unique solution of (171).

EXAMPLE 2.6.13. (cf. also Subsection 2.1.8) (i) Assume —c0 < o < 8 < 00,
1<p<oo,0<7<00,neN E=LPR") or E=CyR"), P(-) is an elliptic
polynomial of degree m € N, @ < Re(P(z)) < 8, x € R® and A = P(D). Then

1

there exists w > 0 such that, for every r > n|; — %|, + A are the integral generators

of exponentially bounded (w F A) "-regularized semigroups in F. Let a € L] (R),
a # 0, be such that the mappings ¢ — a1 (t) = a(t), t > 0 and t — a_(t) = a(—1),
t > 0 are completely positive. By Theorem 2.1.28(ii), £ A are the integral generators
of exponentially bounded (a4, (w F A)~")-regularized resolvent families provided
E = LP(R™) (1 < p < o0), resp. (a,t)-regularized (w F A) "-resolvent families
provided E = L*®(R"™) (Cp(R™)). Let f € C((—7,7) : E) and let fy(t) satisfy the
assumption of Proposition 2.6.12(ii.2), resp. Proposition 2.6.12(ii.1), with ny =1,
resp. n+ = 2. Then there exists a unique solution of (171); it is noteworthy that the
above example can be reformulated in the case when A is the integral generator
of an exponentially bounded integrated group or C-regularized group, and that
obtained conclusions continue to hold in many other function spaces.

(i) Assume E = L2[0,7], A = —A with the Dirichlet or Neumann bound-
ary conditions, 7 = oo, 8 € [%,1)7 a>14+8 at) = %’ t € (—7,7) and
f(t) = L7 (has(N)(Jt]), t € (—7,7), where h, g()) is defined through [235,
(2.64)]. Then Proposition 2.6.12(i) implies that there exists a unique solution u(t)
of (171) and that wg. (o} is analytically extendible to the sector E%(%fl). By
Proposition 2.6.12(i) and [235, Example 2.31(iii)], it follows that, for every n € N,
there exists an exponentially bounded kernel k,,(t) such that (171) has a unique
solution wu,(t) with A replaced by the polyharmonic operator A%" and f(t) re-
placed by ky,(t); moreover, u, g o} is analytically extendible to the sector Yz.
The analysis of preceding example in the case 8 € [1,2) is given in [235].

2.7. Spectral characterizations

We start this subsection with following result which is necessary in our striving
to reveal the satisfactory relationship between local K-convoluted semigroups and
hyperfunction semigroups of Ouchi [353].

THEOREM 2.7.1. Suppose M >0, 8 >0, |K(t)] < M, t >0, (Sk(t))iejo,r)
is a (local) K -convoluted semigroup gepemted by A and, for every >0, there exist
g0 € (0,7¢) and T. > 0 such that 1/|K(\)| < T.e®N, Re X > 8, K(\) # 0. Then,

for every € > 0, there exist C. > 0 and K. > 0 such that
Ql:={AeC:K(\)#0, ReA> B, Rel > ¢\ + C.} C p(A),
IR(A:A)|| < K. Xe QL f(()\) #0.
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PROOF. Let ¢ € (0,1) be fixed. Define

t

R\ 1) = REA) /e_’\SSK(s) ds, Rel>p, K(\)#0, te[0,7),
0

and fix an element « € E. Proceeding as in the proof of [307, Theorem 1.3.1], one
gets that, for every A € C with Re A > 8 and K(\) # 0:

. t ¢
(M — AR\ t)x = <)\ e NSk (s)rds — A | e Sk (s)x ds>
/ /

t
e 20(s)zds — e_’\tA/ Sk (s)x ds)
0

o0

=z — f(l <e)‘tSK(t)x + /e*)‘sK(s)m ds) =2 — By(\)z.

t

Our goal is to find the domain Q! such that, for all A € Q!, we can estimate B;(\)
as follows:

1 - © r —he S
[B:(N)] < o) <e ReAL) G (1) | +M/e(5 Re A) ds)
t

(
1
(KN

) M
< Toec0 M g(B—Re Nt (e Sk @ + M)'

<

Re s e(,BfRe)\)t
<e NSk ()] + M >

Rel—f

Let t = £ € (0,7), [|Sk(t)|| = Co and let B; € (B,00). Assume ReX > fji,
K()\) # 0 and let us find an additional condition such that:

1B < T (eﬂfnsm)n n )efo'“““”

_M
ReA—p

<7T: <6ﬁt00 + 3, —

M B>eso|>\+(ﬁ1Re/\)t <5<l

One can simply verify that, with

. o 0
e — 1-— 3 *1 ’
C max(ﬁ( £),b1+ 5 nTE(e_ﬁtCO—i_BlA{B))
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eo/e
— T
K. = ,
[ Ikl sy
0

and Q! as in the formulation of theorem, ||B;(\)|| < &, A € QL. Since R(\,t) and
By()\) commute with A, one yields Q! C p(A) and

= — -1 1 te*/\s s)ds 1
IR A = [BOL O - B(Y) ||<|m)\0/ Sic(3) ds| =

< Fseaow < Fseml)“, A E Q; O
Assume that, for every € > 0, there exist C. > 0 and M. > 0 satisfying
Q. :={A€C:ReA>elA|+C.} C p(A) and |[R(\:4)|| < M.e*P) X € Q.,
i.e., that there exists a hyperfunction fundamental solution for A (cf. Definition
3.5.32, Theorem 3.5.33, Example 3.5.35 and questions preceding Corollary 2.6.8).
Then it is not clear whether there exist 7 > 0 and K € L ([0,7)), K # 0 such

loc
that A is the integral generator of a K-convoluted semigroup on [0, 7).

THEOREM 2.7.2. (i) Suppose « >0, M >0, >0, ®:C — [0,00), |K(t)| <
MePt t >0, (S (t))tefo,r) s a local K-convoluted semigroup generated by A and
/K| < €@V, ReX > B, K(X\) # 0. Then, for every t € (0,7), there exist
B(t) >0 and M(t) > 0 such that

D(aN)
t

Avorsity = {)\ €C:K(\)#0, ReA > n ,B(t)} C p(A),

[RO:A)| < M(£)e® @M, X e Ay o p0), K(N) #0.

Furthermore, the existence of a sequence (t) in [0,7) satisfying lim, oo t, = T
and sup, ey In || Sk (t,)|| < oo implies that there exist 5/ > 0 and M’ > 0 such that
Arop Cp(A) and |[R(A:A)|| < M'e®@N X e Ao .

(i) Suppose K satisfies (P1), ro > max(0,abs(K)), @ : [rg,00) — [0,00) is a
continuously differentiable, strictly increasing mapping, lim;_,o ®(t) = 400, '(+)
is bounded on [rg,o0) and there exist a > 0, v > 0 and 8 > r¢ such that

wllnd) g ¢ e,

Denote by ' g, the upwards oriented boundary of Vo 5.~ and by 0y g the open
region which lies to the right of I'y g . Let the following conditions hold.

Wy = {)\ €C:Re >

(ii.1) The mapping A — K(A\)(A — A)~'C is analytic on Qu 5.~ and continuous
only g~.
(ii.2) There exist M > 0 and o > 0 such that:

KN —A)'C| < Mem D X e Qq 5.
(ii.3) There exists a function m : [0,00) — (0,00) such that m(s) =1, s € [0,1]

1
and that, for every s > 1, there exists an rs > 19 so that % > m(s),

t>rs.
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(ii.4) limy, oo te=®(0) = 0.

(iL5) (3a = 0)(3r, > r0)(Vt > 10) gy = a.
Then the operator A is a subgenerator of a local K-convoluted C-semigroup on
[0,a+m(5%)).

(iii) [277] Suppose o > 0 and A generates a (local) a-times integrated semigroup
(Sa(t))iefo,r)- Then, for every a € (0, =), there exist b >0 and M > 0 such that:

(172) E(a,b) C p(A) and ||[R(A:A)|| < M1+ |A)Y, X € E(a,b).
(iv) Suppose a >0, a>0,b>0, M > 0,
B(a,b) C pc(A), (A= A)7IC| < ML+ [A)?, X € E(a,b),

and the mapping A — (A — A)~1C, X\ € E(a,b) is continuous. Then, for every
B € (a+ 1,00), A is a subgenerator of a local B-times integrated C-semigroup

(Sp(t))tef0,a(8—a—1))-

PROOF. The proof of (i) follows from the argumentation given in the proofs of
Theorem 2.7.1 and [307, Theorem 1.3.2]. To prove (ii), set
1 -
(173) Sk(t) := 3t / MK\ — A)7IC N, t € [0,a+m(a/oy)).

LIPNVCR

Let us show that the improper integral in (173) converges for all ¢ € [0,a+m(;%)).

Denote by T}, 5 == {N€Tapy:ImA >0} and T7, 5 :={A €Ta 5, : ImA <0}

Taking into account the equality lim;_,o ®(f) = +o00 as well as (ii.3) and (ii.5), we
easily infer that there exist a sufficiently large real number 7’ and a number ¢ > 1
so that t®(2*) — ®(0s) < InM — (lns, s > r’. Hence, there exists M’ > 0 such
that:

(174) tPF)=2(8) < s =C s >,

Then the estimate (174) implies:

‘ / MK (N (X —A)lchH

r N{AEC| Im A>r'}

< / e(—“’<3s>+ﬁ>t€_@<w>(1 n 04(1”(@8)) ds

1
@, B,y

Y
o Ood
D(as) s
< Const eﬁt/et ®(75) 45 < Const eﬁt/T < 00.
s
r! 1

This implies the convergence of the curve integral over 1"37 By

the curve integral over I'2 5., can be proved similarly. This implies Sk (t) € L(E),

g}

Sk(t)A € ASk(t) and Sk (t)C' = CSk(t), t € [0,a+m(;%)). Using Cauchy formula
and the estimates (ii.2) and (ii.4), one can simply prove that [, . KM\ -

the convergence of
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A)~1Cd) = 0. Proceeding as in the final part of the proof of [307, Theorem 1.3.2],
one gets that Afot Sk (s)rds = Sk(t)xr —O(t)Cx, x € E,t € [0,a+m(%!)), which
completes the proof of (ii).

The assertion (iv) is a simple consequence of the assertion (ii). O

THEOREM 2.7.3. (i) Suppose K is a kernel, M >0, >0, a >0, ®:C —
[0,00), [©(t)] < MePt, t >0, (Ck(t))tefo,r) is a local K-convoluted cosine function
generated by A and 1/|0(\)| < e®@V ReX > 8, K(\) # 0. Then, for every

€ (0,7), there exist 5(t) > 0 and M(t) > 0 such that

(175) A2, o = {v €C:K()\)#0, ReA > @ +B(t)} C p(A),
e@(a)\)
Al
Furthermore, the existence of a sequence (t) in [0,7) satisfying lim, oo t, = T
and sup, ey In||Ck (t,)| < oo implies that there exist B > 0 and M’ > 0 such that

ed(ak)
A2, 5 C p(A) and [ROZ:A)| < M/ N € Ar o,

(ii) Suppose o > 0 and A generates a (local) a-times integrated cosine function
(Ca(t))iero,r)- Then, for everya € (0 there exist b > 0 and M > 0 such that:

IR A < M(2) s A€ Napy, K(A) #0.

s ar);
(176) E?(a,b) C p(A) and |[R(N?:A)|| < M(1+|\)%, X € E(a,b).

(iil) Suppose K satisfies (P1), ro > max(0,abs(K)), @ : [rg,00) — [0,00) is a
continuously differentiable, strictly increasing mapping, lim;_,oc ®(t) = 400, '(+)
is bounded on [rg,00) and there exist a > 0, v > 0 and 8 > r¢ such that

O(a|Im A

(177) \I/aﬁ7 {/\2:)\6((:, Re ) > Wﬁ-ﬁ} € pc(A).
Denote by T'y g, the upwards oriented boundary of Uy g (cf. also the formulation
of preceding theorem) and by Q. 3.~ the open region which lies to the right of o g .
Let the following conditions hold.

(iii.1) The mapping A — K(A\)(A\2 — A)~'C is analytic on Qg 5. and continuous

onl'y .
(iii.2) There exist M >0 and o > 0 such that:

K[\ —A) 70+ C/N]|| < Mem®AD N e Qq g
(iii.3) The conditions (ii.3), (ii.4) and (ii.5) given in the formulation of Theo-
rem 2.7.2 hold.
Then A is a subgenerator of a local K-convoluted C-cosine function on [0,a +
m(2)).

(iv) Suppose a >0, a >0, b>0, M >0, E*(a,b) C pc(A), [(A\2—A)~1C| <
M(1 + |A)%, X € E(a,b), and the mapping X — (A2 — A)71C, X\ € E(a,b) is
continuous. Then, for every B € (a+2,00), A is a subgenerator of a local 3-times
integrated C-cosine function (Cp(t))iep0,a(8—a—1))-
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PROOF. Suppose t € (0,7), ¢ € (0,1) and proj; : E x E — E is defined by
projl(‘:) =z, x,y € E. Then it is clear from Theorem 2.1.11 that A generates a
(local) ©-convoluted semigroup (Se(s))seo,r) in E x E and that, thanks to The-
orem 2.7.1, there exist () > 0 and M(t) > 0 such that (175) holds and that, for
every ¢ € F,

R(\*: A)x = proj, [R(A : A)(°)]
1 te,As JoCr()dv  [7(s—v)Ck(v) dv _ _1(0 5
é(A)O/ (0K0<s>—@(s>o " Crelo) o )(I B) ()d]

for all A € Ay o g(t), where

= proj;

B;(\) = = (e"\tS@(t)I—f—/e_’\SG)(s)Ids), |B:(\)]|| < o3

I =B < =50 A€ Ay

Since K is a kernel, we have Ck (t)Ck(s) = Ck(s)Ck(t), 0 < t, s < 7 and the last
equality implies (I — B;()\))"1Se(s) = Se(s)(I — By()\))~! 0 <t, s < 7. Then the
partial integration yields:

R(\2:A)x

)y —— 1(C§§gz<gzgz o) (O
_ oroi; [ U}?ES\ —t (fo ot x;: ds)]

[

0

~
|
oy
—
>

) —Re/\t
IAllO(

fex u) z

e(b(a)\)
A

IR(A?: A)z < (

/t—s Ck(s)xds

0

+ 1 Nl/e—Re/\s<
VY
t
1
<
1—-0 (

/(t —5)Ck(s)xds|| +

0

/C (r)xdr
0

b/CK(s)x ds
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1 e@(ak) p
RIS Y /

0

/SCK(r)mdr + HCK(s)a:H> ds
0

and this, in turn, implies that (i) holds good. The proof of (ii) follows from (i)
and Remark 3.4.14. The proof of (iii) can be obtained by passing to the theory of
semigroups. Indeed, the assumption (177) and Lemma 2.1.24 imply that Q, 5., C
pe(A) and (iii.1) gives that the mapping A — O(A\)(A\ — A)~'C, X € Qa5 is
analytic on €, g, and continuous on I, 5 ,. By the estimate (iii.2), we easily infer
that there exists a number M’ > 0 such that |[©(A\)(A — A)~IC|| < M'e~ @A),
A € Q4 5.4. Since (iii.3) holds, we obtain that the operator A is a subgenerator of a
local ©-convoluted C-cosine function on [0, a+m(;%)). The proof of (iii) completes
an employment of Theorem 2.1.11. Notice only that we have the following structural
equality

274
Fa,ﬁ,w

Cx(t) = = / MAR(N) (A2 — A)1CdN, A € 0,0+ m(a/on).

In order to prove (iv), let us set, for every ¢t € [0,a(8 — a — 1)),

1 (A2 - A)~lC
Cs(t) = — MY\
0= o / PR ’
r
where I is the upwards oriented boundary of E(a,b). Having Lemma 2.1.24 and

Theorem 2.7.2(iv) in mind, the proof of (iv) follows from that of (iii). O

REMARK 2.7.4. (i) Suppose a > 0, 0 < 7 < oo and A generates an a-times
integrated semigroup (S (t))te[o,r), resp. an a-times integrated cosine function
(Ca(t))tefo,r)- If there exists a sequence (t,,) in [0, 7) satisfying lim, o t, = 7 and
sup,, ey In [|So (tn) || < 00, resp. sup,, ey In [|Co(tn)| < 0o, then, for every a € (0, Z],
resp. a € (0, O%H], there exist b > 0 and M > 0 such that (172), resp. (176), holds.

(ii) The assumptions of Theorem 2.7.2 and Theorem 2.7.3 are satisfied for
the function ®(t) = Ats 4+ B, where s > 1, A > 0 and B € R. For example,
the item (ii.3) holds for the function m(s) = ¢/<*, where £ > 0 can be chosen

1
arbitrarily, and the item (ii.5) holds with a = 0. If K(t) = L7 (e™**)(¢), ¢ > 0 and

1 1
[R(A:A)|| = O(elcos(zm)—ea )N =) "\ € Q, 5., then we may apply Theorem 2.7.2 to
deduce that A generates a local K-convoluted semigroup on [0, oty/as). Further
on, the assumption on continuous differentiability of the function ®(-), given in the
formulation of Theorem 2.7.2(ii), can be slightly weakened. In fact, one can assume
that there exists an increasing sequence (n,) in [rg, 00) such that the function ®(-)
is of class C' in [rg,00) \ {n, : p € N}. Suppose now that (M,) satisfies (M.1),
(M.2) and (M.3’) and that there exist numbers o > 0, § € R and I > 1 such that the
(M,)-ultralogarithmic region of type I, Ay, g, 1 = {A € C: Re A > aM(l|Im \|)+ 3},
belongs to p(A) and that |R(A: A)|| = O(eMUM)) X e A, g, Since, for every
L > 1, there exist constants K > 1 and B > 0, and a number E; > 0, such that
M(Lt) < 3LM(t) + K, t > 0 and LM(t) < M(BY7't) + E, (cf. [51, Lemma
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2.1.3] and Section 1.3), it can be proved by means of Theorem 2.7.2(ii) (with a =0
and m(s) = 1/(3s+¢), s > 1, 0 < ¢ given in advance) that, for every ¢ > 0,
A generates a local £~ (1/ Hp 1 (1 + Z-R)’\))—convoluted semigroup on [0, %%)
By Theorem 2.7.3, the previous example can be simply reformulated in the case of
local K-convoluted cosine functions.

2.8. Examples and applications

EXAMPLE 2.8.1. Suppose E := L?[0,7] and A := —A with the Dirichlet or
Neumann boundary conditions (cf. [14, Section 7.2] and [307]) and

Y
AQH” T Red >0, A#£n® neN.

Define h : {\ € C: ReX > 0} — C by setting: h()\) = h()\), ReX > 0, A # n?,
n € N and h(n?) =0, n € N. Then the function h(-) is analytic and there exists an
exponentially bounded, continuous function K such that K(\) = h()\), ReA > 0.
Béumer [33] proved that

Const +|1/)|

IK)R(A:A)]| < RE

,if ReA >0, A #n?, neN,

and that 0 € supp K. Moreover, the function A — K(A\R(M: A), ReX > 0 and
K()\) # 0, can be extended to an analytic function T : {z € C: Rez > 0} — L(FE)
which satisfies || T(A)| < Const +]1/Al 'Re A > 0. Then the use of Theorem 1.1.12

[A]?
implies that there exists a continuous function S K : [0,00) — L(FE) such that, for
every € > 0, [|Sk(t)|| = O(e®!), t > 0 and that T (A fo e Sk (t)dt, Re X > 0.

By the proof of Theorem 1.1.12 (see also [434, Theorem 1.12)), 1t follows that,
for every r > 0, Sk (t) = & [(T°eMYT(N)dA, t > 0. Let t > 0 be fixed. With

271 Jr—ico

= 1/t one easily obtains ||Sk(t)|| = O(t +t?), t > 0. As an outcome, one
gets that (Sk (t))i>0 is a polynomially bounded K-convoluted semigroup generated
by A; let us point out that the dividing of the term [] - 0 n2+>\ by A? has been
done only for the sake of brevity and that, for every [ > 0, —A generates an
exponentially bounded, analytic (K xo K )—convoluted semigroup of angle 7 [234],
where K;(t) = L7 (([T2o(1 + 2)) ") (t), £ > 0,1> 0 and s € (1,2). Assume now

B—1

BE[L 1), a>1+438,a(t) =k, has(V) = 5= [0, 253, Red > 0, A # n?/?
n € N and h, 3(n?#) = 0, n € N. Let k(t) = L7 (hag()))(t), t > 0. Then A
generates an exponentially bounded, analytic (a, k)-regularized resolvent (R(t)):>0
of angle 5(§ — 1), and [|[R(t)[| = O(t*~" +*+0=1), ¢ > 0 [235].

EXAMPLE 2.8.2. Let A := —A, E := L?[0, 7] and K be as in the previous ex-
ample, and suppose that |K (t)| < MeP*, t > 0 for appropriate real numbers M > 0
and 3 > 0. Clearly, |Ki(t)] < Mte®*, t > 0 and A generates an exponentially

bounded Kj-convoluted semigroup (Sk, (t))t>0, where Sk, (t)z = fo Sk (s)x ds,
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x€E,t>0and K(¢ fo s)ds, t = 0. Moreover, — A also generates an expo-
nentially bounded K- convoluted Semlgroup (Vi (t))i>o0 in E since it is the genera-
tor of an analytic Cop-semigroup of angle 7. An employment of Proposition 2.1.11
implies that the biharmonic operator A2, endowed with the corresponding bound-
ary conditions, generates an exponentially bounded K-convoluted cosine function
(Ck(t))t=0, where Ck(t) := 1/2(Sk(t) + Vk(t)), t > 0. This implies that AZ
generates an exponentially bounded K;-cosine function (Ck, (t)):>0, and owing to
Theorem 2.4.8, A? generates an exponentially bounded, analytic Kj-convoluted
semigroup of angle 7, where the function K5(-) is taken in the sense of Theo-
rem 2.4.8. Herein it is worth noting that we have integrated once the function K
so as to prove that the function Ky is exponentially bounded. Actually, one gets
that, for every t > 0:

—s2/4t
K <M r2 ﬁT\f
| Ko /2\[?53/286 *ds = Q\f/ T dr

_ B2t 2 —(g_ﬁ\/i)Qd _ M B2t 8 2 92 1 Qt _Uzd
2\/%e J ree r 72\/%6 : (v + 208Vt + 8 )e v
-8

o0

4M _
< —eﬁQt /v e " dv+26\[/ve_” dv—i—ﬁ2 /e_UZdv <Me(’32+1)t7
Vi
— 00 —00

for an appropriate constant M > 0. Furthermore, K5 is a kernel since

_ In|[Ka(\)| . In|K1 (V)]
limsup ————= =limsuyp ————— =
A—00 A A—0o0 A

On the other side, A? cannot be the generator of a (local) a-times integrated semi-
group, a > 0, since the resolvent set of A? does not contain any ray (w, o). Hence,
in the analysis of A% and —A, we do not need any C, but the use of regularized
operator families enables several advantages which hardly can be considered by the
use of asymptotic Laplace transform techniques. More generally, suppose n € N.
Since A = —A generates a cosine function (cf. for instance [14, Example 7.2.1,
p.418]), one can employ an old result of Goldstein (cf. [89, p.215]), in order to see
that —A2" generates an analytic Cy-semigroup of angle 5. Hence, an application
of [89, Theorem 8.2] shows that there exists an injective operator C,, € L(L?[0,7])
so that A2" generates an entire C,,-regularized group. Further on, one can apply
Proposition 2.1.11 in order to see that the polyharmonic operator A* generates an

exponentially bounded Ks-convoluted cosine function. Put K3(t) := fot Ks(s)ds,
t > 0. Then K3(-) is a kernel and we have |K3(t)| < Mte(®*+Dt > 0. Clearly, A
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generates an exponentially bounded K3-convoluted cosine function. Then Theo-
rem 2.4.8 can be applied again and, as a conclusion, one obtains that A* generates

an exponentially bounded, analytic K3-convoluted semigroup of angle 5, where
o2yt —
Ks(t) == [° %[@(s) ds, t > 0. Arguing as before, we have that Ks(-) is

an exponentially bounded kernel. Continuing this procedure leads us to the fact
that, for every n € N, there exist exponentially bounded kernels K,, and K, 11 such
that A2" generates an exponentially bounded, K,,-convoluted cosine function, and
simultaneously, an exponentially bounded, analytic K, 1-convoluted semigroup of
angle 5. Note that this procedure can be done only with loss of regularity, since
we need to apply Theorem 2.4.8, and that it is not clear whether there exists a
kernel K,, such that A?" generates an exponentially bounded, K,-convoluted co-
sine function. The preceding analysis also enables one to prove that A%" generates
an exponentially bounded K, 1-convoluted group. Observe that the operator —A,
considered in the first part of this example, generates an exponentially bounded
K-convoluted group.

Further on, assume that A is a self-adjoint operator in a Hilbert space H
and that A has a discrete spectrum (\,),en, where we write the eigenvalues in
increasing order and repeat them according to multiplicity. Suppose Re A, > 0,
n = ng and m is a natural number greater than any multiplicity of A,, n > ng. If
> (1 VA — 1\)

-2 ) < oo,
ol VAn+1
then, according to Theorem 1.1.9, there exists an exponentially bounded function K
such that K(\/E) =0, n = ng. This implies that the function A — f(_m()\)R()?:
A) can be analytically extended to a right half plane, where K*™ denotes the mth
convolution power of K. If, additionally,

K (AR A)[| < M™%, ReA > w (= 0), A # V/An, n = ng,

for some M > 0, then A generates an exponentially bounded K*™-convoluted
cosine function. It is evident that this procedure cannot be done if (\/E)n%m
is a uniqueness sequence, see for instance [14] and [32]. Therefore, the theory of
convoluted cosine functions cannot be applied if A, ~ n2°, n — 400, for some
s € (0,1], and this, in turn, implies that the operator —A, considered in the
first part of this example, cannot be the generator of any exponentially bounded,
convoluted cosine function. It is also worth noting that, for every n € N, there exists
an exponentially bounded kernel k,(t) such that the polyharmonic operator A2
generates an exponentially bounded, analytic (a, k,,)-regularized resolvent family
of angle 7 ([235]), where a(-) has the same meaning as in Example 2.8.1. The case

a(t) = %, where 8 € (0,1/2), is more delicate [235].
Before going any further, we would like to note that the method described
in Example 2.8.1 and Example 2.8.2 can be applied with minor modifications

to the Legendre differential operator (Af)(z) := —((1 — 22)f’)’ and to the op-
erator (A, f)(z) == —((1 — 2?)f") + 1T;2 (x), where m € N. Strictly speak-

ing, the operator A with domain D(A) = C°°[—1,1] is essentially self-adjoint in
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L?*((—1,1)) and A has the point spectrum which consists of simple poles

)\n = n(n + 1), with characteristic functions being the Legendre polynomials
Ln(z) = /2t l d‘i:n [(1-— x2)"], n = 0,1,2,.... The operator A,, consid-
ered with domain D(4,,) = {f : f(z) = (1 — 22)™/2P(z), P(z) polynomial} is
essentially self—adpmt in LQ(( 1,1)) and the point spectrum consists of simple
poles A\, =n(n+1),n=m,m+1,..., with L™ = EZI_%: (1— xQ)m/Q%Ln(x)

being the characteristic functions. Concerning time-fractional equations, a pos-
sible application can be made to the Laguerre’s differential operator, (Af)(z) =
—A(xf'(x)) + (z + %)f(x) (a > —1) in L?((0,00)), to the Hermite’s differential
operator (Af)(x) = —f"(x) +2%f(x) in L?(Q), where € is an open subset of R, and
to the harmonic oscillator H considered on [406, p.178]. For further information,
we refer the reader to [409, pp. 283-285] and [406, Sections 8.2,8.3,10.3].

The following example is motivated by [249, Example 1.6].
EXAMPLE 2.8.3. Let (M,) satisfy (M.1), (M.2) and (M.3’). Define

sup 1 [FARES
M,
AMp = —d/dS (AM = {fEE]y[ f EEMP, (O)ZO}.
Arguing as in [249, Example 1.6], one can verify that Ay, is not stationary dense
and that: {A € C: ReX >0} C p(Ang,) and |[R(X : Apg,)|| < CeMTA) ReX >0
for some C' > 0 and 7 > 0. Moreover, A cannot be the generator of a local
integrated semigroup and Theorem 2.2.4 implies that Apz, is the generator of a
global exponentially bounded K-convoluted semigroup, where K is any function
satisfying (P1) and |K(\)| < e ™M) Re X > 0, for some 7 > 7.
1. Let M, = p!?, p € Ng. Then, by the well-known estimates for associated
functions ([207], [210]), we obtain ||R()\ AM ) < < CemMY? Re A > 0, for some

my > 0 and C > 0. Let K(t) = 2\/? G, t > 0, for some a > m1v/2. Then
K \) = e=V> Re\ > 0, where /I = 1, and one can straightforwardly prove that

IKROA: A < < celm—4 2)A2 ReA > 0. Thus, Theorem 2.2.4 implies that
A, generates an exponentially bounded K-convoluted semigroup (Sk(t))t>0. By
the proof of [434, Theorem 1.12], we have

En, = {feCOO[o,u 1fllag, = su <o},

r+i00
1 .
Sk(t) = 5 / ME(NR(A:A)dN, t>0, for any r > 0.

Let t > 0 and k € Ng be fixed. Withr =t~ b= —my —l—a? and a suitable C' > 0,
one easily obtains

“+o0
dz
1Sk (@) <C/ )i

— 00
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+o0 400
Sk(t) dx (2k)!dz
’ c / tkebt*1/2/2€bxl/2/2 <C / tk(bt_1/2/2)2k€bx1/2/2 :
Thus, for every k € Ny, there exists C, > 0 such that
“+oo
Sk (t) H / dx
< .
H i S TV

This implies that, for every k € Ny, ||Sk (t)|| = O(t¥), t > 0. Similarly, if m; = “T‘/i,

then Ajps, generates a polynomially bounded (K *Q %)—convoluted semigroup for
all « > 1. In this example, one can also use the well known complementary error
function.

2. Assume that M, = p!. Then (M.3’) does not hold but we continue to
consider £ = E, and A = Ap. Let C be an injective operator in L(E). Note
that E is a subspace of the space of functions analytic in some neighborhood of
[0,1] and that we do not require that R(C) is dense in E. It is easy to see that
p(A) contains the right half-plane and that ||[R(\: A)|| < Mel* Re A > 0, for some
positive constant M. Arguing as in [227, Example 6.2], we reveal that A cannot
be a subgenerator of any local C-regularized semigroup.

3. Let M, = p!° (s > 1), 8 € (0,1) and let, for every I > 0, ki(t) =

1/ [ 1+ S/ﬂ))( ), t > 0 and a(t) = % Then it is obvious that there

exist ' > 0 and M > 0 such that |[Mey(A\)(I — a(\)Aps) | < M, A € D= z- This
implies that, for every [ > I’, the operator A = A= generates an analytlc (a, ky)-
regularized resolvent of angle 7 (% — 1). In the meantime, A cannot be the generator

of an exponentially bounded (a, F(éiil))—regularized resolvent (« > 0) since A is
not stationary dense. Furthermore, p(A) =C.If f € E = Ep-,t € [0,1] and A € C,

set f(t) f e~ 2t=9) f(s)ds and fi@t) = fg eMt=9) f(s)ds. Then f0), f3() ek
reC and there exist b > 0 and M > 1, independent of f(-), such that
(178) IO < M7, Rex >0, f € E.

t s clear that [|f2()][z=j0.1) < eM|F]], Red > 0 and (|2 £2() ][0,y < (NP +
DIIfIl, Re A = 0. Proceeding by induction, we obtain

(179)
f,\( ) =

dn_l n—1 dn— 1—k
il +Zxkdtn S/ O+ N, =2, € [0,1], ReA >0

k=1
On the other hand, [207, Proposition 4.5] implies that there exists ¢ > 0 such
that Y- % t7/pl° = O(e"’"), t > 0. Combined with (282) and the logarithmic
convexity, the last estimate yields:

1
L RO\, <

L=[0,1]

dt"

ve AP
= 2l

(180) < (14 P e 7] Red 2 0, A #0.
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In view of (180) we get that, for every n > 1, there exists M,, > 1, independent of
(), such that

(181) 1 £2C)|| < Myl flle™), ReX >0, f € E.

Consider now the complex polynomial P(z) = Z?:o ajzl, 2 € C,an #0,n > 2
Set, for every A € C, P\(-) := P(-) — A and consider the operator P(A) defined by

D(P(A)) := D(A") and P(A)f := Y _a;A’f, f € D(P(A)).
§=0

Clearly, P(A) is not stationary dense. Let » > 0 and d > 0 be such that P(z) # 0,
|z| > rand P'(z) #0, |2] > d. Let 21 »,- - -, 2p,» denote the zeros of the polynomial
z+ Py(z), z € C and let 0 < m := min|;|>441 [P'(2)|. Then an old result of J. L.
Walsh [417] says that |zj x| < 7 + |a,| 7Y AY/™, 1 < j < n, A € C. Furthermore,
it is checked at once that there exists a sufficiently large Ao > 0 such that z; » is
a simple zero of Py(z) and that |z; x| > d + 1, provided |A] > A and 1 < j < n.
Therefore, for every A € C with |[A| > Ao and for every i, j € {1,---,n} with i # j,
the following holds:

(182) d+ 1< zia] <74 |an| 7YY NY™ and |P'(2j0)] = m, zix # 2ja

One can simply prove that
(183)
p(p(A)) = C and R(\ : p(A)) = (=1)" M a 'R(z15 : A) - - R(znn : A), A €C.
Assume now |A| > A\g. Then de L’Hospital’s rule implies:
(184) an TT (in = 2) = (1)1 P(51), 1<j <.
1<ign
i#5
Using the resolvent equation, (178), (181)-(182) and (184), one can rewrite and
evaluate the right hand side of equality appearing in (183) as follows:

H(—l)”“a;lR(zl At A) - R(zpnt A) H
Z] A - A)

=||(—1)n ot : H
H( ZH1<1<71 (zz,\—zj )\)
ZiN - A
(185) | T P < 5
By (183) and (185) we finally get that, for every n > 1,
(186)  ||R(x: p(A))|| = O(eblonl™ "IN gnlanl ZTIAIMTY x e

Since the preceding estimate holds for any A € C, it is quite complicated to in-
scribe here all of its consequences; for example, P(A) generates a tempered ultra-
distribution sine of (p!®)-class provided n > 2s, and P(A) generates an exponen-
tially bounded, E*I(e*QAl/n )-convoluted group provided o > |a,|~/™/ cos(m/2n).
In what follows, we will present an illustrative application of Corollary 2.5.15.

Suppose n > o = 1,6 € (0,3], 2(5 +0) < §, 0 = 1/cos(2(5 + 0)) and
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k(t) = Lil()\*o‘efgka/n)(t), t > 0. By (186), P(A) is the integral generator of an ex-
ponentially bounded, analytic (%, k)-regularized resolvent family of angle §. Let
p € FEand Bf(t) := (¢xf)(t),t €[0,1], f € E. Then B € L(E), BP(A) C P(A)B
and, therefore, P(A) + B is the integral generator of an exponentially bounded,
analytic (%, k)-regularized resolvent family of angle 4.

EXAMPLE 2.8.4. Let E = LP(R), 1 < p < co. Consider the next multiplication

operator with maximal domain in E:
Af(x) == (z +i2*)’f(z), = €R, f € E.

It is clear that A is dense and stationary dense if 1 < p < oo and that A cannot
the generator of any (local) integrated cosine function, 1 < p < oo. Moreover,
if p = oo, then A is not stationary dense since, for example, the function x —
IZ%H belongs to D(A™) ~ D(A"*+1), n € N. Further on, one can easily verify
that A generates an ultradistribution sine of *-class, if M, = p!°, s € (1,2). If
M, = p!?, then the analysis given in [223, Example 4.4] shows that A does not
generate an ultradistribution sine of the Roumieu class and that A generates an
ultradistribution sine of the Beurling class. Suppose now M, = p!®, for some
s € (1,2), and put 6 = <. Then A generates a global (not exponentially bounded)
Ks-cosine function since, for every 7 € (0,00), A generates a Kj-cosine function on
[0,7). Indeed, suppose M(\) < C|A[*/*, A € C, 7 € (0,00) and choose an a > 0
with 7 < Cocf(if{? ). Tt is evident that for such an o > 0 there exists a sufficiently
large 8 > 0 such that A2 5 C p(A) and that the resolvent of A is bounded on
A? 51, where A g = {X € C: ReX = aM(I|A]) + 8}. Put T := d(Agp1). We

assume that I' is upwards oriented. Define

cos(07/2) )

At—\®
(Cs() f) (@) = — //\e—2d)\f(x), fEE z€R, te [o, Bl

2mi | A2 — (z+ ix?)
r
Note that the above integral is convergent since |e’>‘5| <e” 005(5“/2”)“5, ReA >0

and
|e>\t7/\5’ < eﬁteM(a)\)tfcos(&r/Q)\M‘s < e,BteCsal/s|)\\5tfcos(5ﬂ'/2)|/\|57 NeT.

It is checked at oncethat (Cs(t))¢cjo,r) is a local Ks-convoluted cosine function
generated by A. At the end of this example, let us point out that there exists
70 € (0,00) such that A generates a local K; /o-convoluted cosine function on [0, 79)
and that the preceding example can be set in the context of (a,k)-regularized
resolvent families ([235]); in such a way, one can simply construct examples of
global not exponentially bounded (a, k)-regularized resolvent families.

ExXAMPLE 2.8.5. (1) ([271]) Let E = Co(R) & Co(R) & Co(R), C(f,g,h) =
(f,9,8in(-)h()), f,g,h € Co(R) and A(f,g,h) := (f' + 9", 9", (X[0,00) = X(~00,0))P),
(fvg7h) € D(A) = {(fvgah) SO f/ € CO(R)v g/ € CO(R)’ h(O) = 0} Arguing
as in [271, Example 8.1, Example 8.2], one gets that A is the integral generator
of an exponentially bounded once integrated C-semigroup and that A is not a
subgenerator of any local C-regularized semigroup. Suppose now m; € C(R),
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i = 1,2, the mappings ¢t — [t|m;(t), t € R and ¢ — [t|m}(t), t € R are bounded
for i = 1,2; C(R) © mg is bounded and satisfies m3(0) = 0. Put, for every f,
9, h e OO(R)a

B(f.g.h) = (m1<-> / F(5) ds, ma) / o(s) ds, sin(-)m3(~>h<->).
0 0

Then B € L(E), R(B) € C(D(A)) and BC(f,g,h) = CB(f,9,h), (f,9,h) € E. By
Theorem 2.5.7, one obtains that A+ B is the integral generator of an exponentially
bounded once integrated C-semigroup.

(i) Let E := L*(R) and let D := d/dx with maximal distributional domain.
Then it is well known (cf. also [171, Corollary 3.4, Example 7.1]) that E has
the Fourier type 1, and in particular, that E is not a B-convex Banach space.
Furthermore, A := D? = d?/dx? generates a bounded cosine function (C(t)):>0
given by

(CWN@) =5 (F+H+f@—1), 120, 2R, [ e IR),
and Sobolev imbedding theorem implies D(A) = WH2(R) C C(R) N L*°(R). Sup-
pose g € LY(R) ~ L>°(R) and define a linear operator B : L!(R) N L (R) — L!(R)
by Bf(x) := f(z)g(x), f € L*(R) N L*®(R). In general, B cannot be extended to
a bounded linear operator from L'(R) into L'(R) and R(B) ¢ D(A). It is clear
that, for every f € L'(R) and A € C with Re A > 0

IBE@AR(:A) f)|| = / 9@)l| [ e (fe+ ) + flo— 1) dt|da

/|g\

< 2||9||||f||~

This implies that the assumptions quoted in the formulation of Corollary 2.5.10(i)
hold with Ay = 1. Hence, A + B generates an exponentially bounded a-times
integrated cosine function for every a > 1; let us also note that it is not clear
whether there exists 5 € [0, 1) such that A+ B generates a (local) S-times integrated
cosine function although one can simply prove that there exist a > 0 and M > 0

such that [AR(A?: A+ B)|| < 4, A€ C,ReA > a.

(iii) Suppose A generates a (local) a-times integrated cosine function for some
a >0, B € L(F) and BA C AB. Then the proof of [223, Theorem 4.3] and
the analysis given in [228, Example 7.3] (cf. also Theorem 2.6.10) imply that, for
every s € (1,2), £iA generate global K /,-convoluted semigroups and that +iA4
generate local K4 /o-semigroups, where K, (t) = L1 (e_)‘o)(t), t>0,0€(0,1). By
Theorem 2.5.3 and Remark 2.5.4(iii), we have that i(A+ B) generate global K /,-
semigroups for every s € (1,2) and that +i(A + B) generate local K /,-convoluted

(|f(+ )|+ |f(z—t)]) dt dz

0\8 0\8
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semigroups. Therefore, a large class of differential operators generating integrated
cosine functions can be used to provide applications of Theorem 2.5.3.

(iv) ([36, Example 2.24]) Let E :={',0 < o < 1 and [ := [1=2]. Define a closed
densely defined linear operator A, on E by D(Ay) := {(z,) € I' : Y07 nlz,| <
oo} and Ay (zy,) == ('“2nx,,), (r,) € D(A,). Then A, is the integral generator of a
bounded (F(a; 1)-regularized resolvent family, A, + I is not the integral generator

of an exponentially bounded (P( ),1)—regularized resolvent family and o(A,)

{e’*2n : n € N}. Suppose

B e L(E) and R(B) C D(A!) = {(scn> clt: inl|xn| < oo}.

n=1

Then A + B generates an exponentially bounded (%, 1)-regularized resolvent
family [242].

(v) [114] Consider the Laplace-Beltrami operator —A7 on the torus T := R?/T’,
where I' := Z(a,0) + Z(0,b) and a, b > 0. Then iAr generates on L”(T) (I<p<
o0) an exponentially bounded n-times integrated group for any n > \f — 1|, and
o(iAr) = o,(iAr) = {(3)?*m? + (35)’n® : m, n € Z}. Let a := aQ/b2 be the
algebraic number of degree d > 2 and let {\, : n € N} be the set of eigenvalues of
tAr on LP(T). Then there exist projectors T), on LP(T) such that
1

ZTkx =z, T € D((—A)”<d_1)+2)7 where n > ‘f — 3]
k=1

(vi) Let us recall that a Banach space E has Fourier type p € [1,2] iff the Fourier
transform extends to a bounded linear operator from LP(R : F) to L(R : E), where
1/p+1/q = 1. Each Banach space E has Fourier type 1, and E* has the same Fourier
type as E. A space of the form L?(Q, 11) has Fourier type mln(p7 P-) and there exist
examples of non-reflexive Banach spaces which do have non- tr1v1al Fourier type. As
mentioned in Section 2.5, the assertions of Theorem 2.5.9 and Corollary 2.5.10 can
be refined if E has non-trivial Fourier type, which will be indicated in the following
fractional analogue of [171, Proposition 8.1]. Let 1 < p < oo, 1/p+ 1/q = 1,
k€ Ny, 0 < p <2and E := LP(R). Define a closed linear operator Agj on
E by D(A,&k) = W4k+2’p(R) and A,&kf = ei(Q_B)%ka_‘_Q), f S D(Aﬁ,k)- Put
Bf(x) := V(z)fW(z), z € R with maximal domain D(B) := {f ¢ E: V- ¢ E};
here V(z) is a potential and [ € Ny. Assume first that

(4k+2)(p—1)
“ﬁ)

Given Re A > 0, denote by p;x (1 < j < 2k+1) (2k + 1) solutions of the equation
e = MeiBE-m) with Re f;x > 0. Then D(A) C D(B),

(187) V € LP(R) and | < %((4]6—!—2)])—

2k+1

(R(N : Agy) f)(2) 4;;2 / Z

e Hi, Alz—s|

—Hjn 4k+1 ( )dS,fEE,xGR, ].%e)\>07
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eiB% 2k+1 e —pjn(x—s)
(BR(AP - Ag ) f)(x) = z_: ( / mf(s)ds

4k—I1+1

T erin(@=s)
—/7f(s)ds , feEE xR, Red >0,
FA

T

(188) HR()\B : Aﬁ,k)H < (|)\|ﬁ(174’vlﬁ)min(Re,uL)\,~'~,Reu2k+1,,\)) , ReA>0,

and
(189)

1 -1
RO ) < IV (147055 min((Re ), (Rt ) 1))

provided Re A > 0. Furthermore, Rep; \ = |/\|4’€% cos(arg(;,2)), ReA > 0,1 <
7 <2k+1and

min(Re gz, - - -, Re pagr1.0) = |)\|%+2 min(cos(arg(/\)fk++(§ﬂ)/(2) (ka__’_lgﬂ)’
_ cos(arg(A)§k++(§W)/(2) + g)) Re\ > 0,

which implies that there exists a constant cgj > 0 such that

(190) |)\|4k+2 cos(arg(A /mln Repi1x, s Re pogy1n) < ¢g i, ReA > 0.

Keeping in mind (187)-(190), we obtain that

(191) RN Ag i) || = O(IA"P(ReA)™"), ReA >0

and

(192)

|BRO : 45,0) | = O(IV[|y(Re X) P35 @5a5)) = O(||V] |, (Re ) —D/7),
provided Re A > 0. Denote by 5 the infimum of all non-negative real numbers r > 0

such that the operator Agj generates an exponentially bounded (Fﬂ( 5;7 F(qurl))

regularized resolvent family. The precise computation of integration rate [y is
non-trivial problem (cf. also the representation formula [36, Example 3.7, (3.15)]).
Clearly, (191) yields the imprecise estimate 5k < 1, and B < |1 1| provided
B € {1,2} ([147], [456]). Set k), := mln(;7 > ). By [242, Theorem 3.2, Ag ), + B
generates an exponentially bounded ( T ﬂ; , %) -regularized resolvent family
for any o k,p > Br+£p. By (191)-(192) and the proof of [171, Proposition 8.1], the
above remains true provided (4k+2)p—1— M‘k“‘# >0,l=0and V € LP(R)+
L>(R); similarly, one can consider the operators Ap; (k € N, 0 < 8 < 2) and
A%, (kE€N,0<B<1)given by A}, f:=e 5 R f € W P(R) := D(A} )
and A%ch = eF15(1=0) fCRR+1) - £ c J2k+1p(R) 1= D(A%,k)-

In the following example, we use the standard multi-index notation.
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EXAMPLE 2.8.6. Let k € N, a,, € C, 0<|a| <k, aq # 0 for some a with |a| = k,
P(z) = X 0<k aei®lz® 2 € R™, P(-) is an elliptic polynomial, i.e., there exist
C > 0 and L > 0 such that |P(z)| > C|z|*, |z| > L, w := sup,cg. Re(P(x)) < oo,
E is one of the spaces LP(R") (1 < p < 00), Co(R™), Cp(R™), BUC(R™),

P(D):= Y aof® and D(P(D)) := {f € E: P(D)f € E distributionally}.

|| <k

Put ng = n|§ — %|, if £ = LP(R") for some p € (1,00) and ng > %, otherwise.
Then the following holds:

(i) [14] The operator P(D) generates an exponentially bounded r-times in-
tegrated semigroup in E for any r > ng.
(ii) [434] The operator P(D) generates an exponentially bounded ng-times
integrated semigroup in LP(R™) provided p € (1, 0).
(iii) [277], [233] For every w' € (w,00) and r > n|3 — %|, the operator P(D)
generates an exponentially bounded (w’ — P(D)) ™ "-regularized semigroup
in F.
It is noteworthy that the theory of C-regularized semigroups can be applied to
non-elliptic differential operators. More precisely, one can prove that, in the case
of a general polynomial P(z) satisfying changebar w := sup,cg» Re(P(2)) < oo,
P(D) is the integral generator of a global exponentially bounded (1 — A)~"ek/2.
regularized semigroup. If w = oo, then the operator P(D) generates an entire
C-regularized group. The above estimates can be slightly improved if P(z) is
r-coercive for some r € (0,k] (that is, |P(x)|™! = O(|z|™") as |z| — o0). For
time-dependent PDE’s, we recommend for the reader [463]. Finally, we would
like to draw attention to the recent paper of Nagaoka [332] for the generation of
fractionally integrated semigroups by superelliptic differential operators.

EXAMPLE 2.8.7. Let p € [1,00] and n € N. Then the following holds:
(1) [156] The Schrodinger operator ¢A,, considered with its maximal distribu-
tional domain, generates a Cy-semigroup (group) in LP(R"™) iff p = 2.

(ii) [147]-[148] Let p > 1. Then the Schrddinger operator ¢{A, generates an
exponentially bounded r-times integrated semigroup in LP(R™) iff » > n| % — % |. The
Schrodinger operator iA,, where p € {1,00}, generates an exponentially bounded
r-times integrated semigroup in LP(R"™) iff r > Z.

(iii) [119] Let 1 < p < oco. Then the Schrodinger operator iA,, considered
with the Dirichlet or Neumann boundary conditions, generates an exponentially
bounded r-times integrated semigroup (group) in L?((—m, )™) for any r > %%—% ,
and moreover, iA, does not generate an exponentially bounded r-times integrated
semigroup (group) in LP((—m,m)") if r < Z|1 — %\; the previous assertion remains

true in the case of Banach space LP(T™), where T™ is the n-dimensional torus.
For further information concerning Schrodinger type evolution equations in L

type spaces, we refer the reader to [14]-[23], [89], [147]-[148], [187]-[189], [257],
335], [355] and [434] [435].
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EXAMPLE 2.8.8. Let p € [1,00) and n € N. Then we have the following:
(1) [294] The Laplacian A, considered with its maximal distributional domain,
generates a cosine function in LP(R") iff p=2 or n = 1.

(ii) [147], [120] The Laplacian A, generates an exponentially bounded r-times

integrated cosine function in LP(R") iff r > (n — 1)|5 — % .
(iii) [460] The Laplacian A, generates a polynomially bounded (1-A,) ™2 3=

regularized cosine function in LP(R™) if p € (1,00), resp. (1 — A,)~ *-regularized
cosine function (s > %) if p = 1.

(iv) [195] The Laplacian A, with the Dirichlet or Neumann boundary con-
ditions generates an exponentially bounded r-times integrated cosine function in
LP((0,m)™) for any r > (n — 1)|3 — %|

Assume further that P(z) is not necessarily elliptic polynomial of order k and
that F is one of the spaces listed in Example 2.8.6. Set hy g(x) := (1 + |=]?) /2

X Z;io tQJ(IQDj()f)J, r€RY, t>0,820 Quw):={\:Rel > w}, if w> 0 and
Qw) := C\ (—o0,w?], if w < 0. Assume r € [0, k] and (H’) holds with some w € R,
where:

(H): P(x) ¢ Qw), x € R™ and, in the case r € (0, k], there exist o > 0 and

o’ > 0 such that Re(P(z)) < —olz|” + ¢, x € R™.

Then the proof of [460, Theorem 2.2] implies that there exists M > 1 such that,
for every 8 > (m — %)%, P(D) generates an exponentially bounded (1 — A)~F-
regularized cosine function (Cs(t))i>o in E which satisfies C3(t)f = F~thy s * f,
t >0, f € Eand ||Cs(t)] < Mg,s(t), t > 0, where the function g, /5(t) is
defined on [460, p. 40] and F~! denotes the inverse Fourier transform. The previous
estimate can be additionally refined in the case that E = LP(R™) (1 < p < 00) by

allowing that 3 takes the value % (m — Z)n|L — 1|,

EXAMPLE 2.8.9. [37], [62], [225] Suppose that w : [0,00) — [0,00) is a con-
tinuous, concave, increasing function satisfying lim;_, o, w(t) = oo, lim;_, @ =0

and floo wt(zt) dt < oo. Given zq € (0,00), define
Q(w) := {X € C: Re > max(zg,w(|ImA|)) },

and assume further that A is a closed, linear operator which satisfies Q(w) C p(A)
and |[R(A: A)|| < M1+ |A)"e@AD X € Q(w), for some M > 0, ¢ > 0 and
n € N. Then there exist 7 > 0 and an exponentially bounded, continuous kernel
K such that A generates a local K|, -)-convoluted semigroup (S ()):e[o,r); in the
case 0 = 0, one can prove that there exists a family of bounded injective operators
(C(k,€))e>0 such that, for every € > 0, A is a subgenerator of a global C(k,¢)-
regularized semigroup that is infinitely differentiable in ¢ > 0.







CHAPTER 3

ABSTRACT CAUCHY PROBLEMS IN THE
SPACES OF OPERATOR VALUED
(ULTRA-)DISTRIBUTIONS AND
HYPERFUNCTIONS

3.1. C-Distribution semigroups

3.1.1. Elementary properties of C-distribution semigroups. Let G €
D{(L(E)) satisty CG = GC. If

(C.D.S.1) Gle*0¥)C =G(p)G(¥), ¢, ¥ €D,

then G is called a pre-(C-DS) and if additionally

(C.D.S.2) N(G):= () Kem(G()) = {0},
€Dy

then G is called a C-distribution semigroup, (C-DS) in short. If, moreover
(C.D.S.3) R(G) == |J R(G()) is dense in E,
»€Do
then G is called a dense (C-DS).
This definition, with C' = I, was introduced in [252], where Kunstmann defined
a distribution semigroup, (DS) in short. It is clear, if G is a pre-(C-DS), then
G(p)G(W) = G()G(p), @, ¥ € D. Also, in this case, N'(G) is a closed subspace of
E.
Recall, the polars of nonempty sets M C F and N C E* are defined as follows:
M°={yeE":|y(z)|<1lforall z € M},
Ne={zeFE: |y(z)|<1lforalye N}
Repeating literally the arguments given in [252], one can prove the following as-
sertion describing the structural properties of a pre-(C-DS) on its kernel space.

PROPOSITION 3.1.1. Let G be a pre-(C-DS). Then, with N = N(G) and G,
being the restriction of G to N, (G1 = G|n) we have: There exists a unique operators
Ty, Ty, -, T € L(E) such that Gy = Y7, 60 @ Tj, T,C" = (=1)"Tg+, i =
0,1,...,m—1 and TyT,, = T;"* = 0.

In the next proposition we present some analogues of results known for distri-
bution semigroups (cf. [252]).

165
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PROPOSITION 3.1.2. Let G be a pre-(C-DS), F := E/N(G) and let q be the
corresponding canonical mapping q : E — F.
(i) Let H € L(D : L(F)) be defined by qG(p) := H(p)q for all ¢ € D and let
C be a linear operator in F defined by Cq := qC. Then C € L(F) and C
is injective. Moreover, H is a (C-DS) in F.
(il) C((R(9))) C R(G), where (R(G)) denotes the linear span of R(G).
(iii) Assume G is not dense and CR(G) = R(G). Put R := R(G) and H :=
Gir- Then H is a dense pre-(C1-DS) on R with Cy = C|g.
(iv) Assume R(C) = E. Then the dual G(-)* is a pre-(C*-DS) on E* and
N(G*) =R(G)".
(v) If E is reflezive and R(C) = E, then N (G) = R(G) .
(vi) Assume R(C) = E. Then G* is a (C*-DS) in E* iff G is a dense pre-(C-
DS). If E is reflexive, then G* is a dense pre-(C*-DS) in E* iff G is a
(C-DS).

PRrROOF. The proof will be given only for (i). First of all; notice that the
definition of C'(q(z)) does not depend on the representative of a class q(z). As a
matter of fact, the assumption ¢(z) = q(y), i.e., G()(x —y) = 0, ¢ € Dy, and
CG = GO, imply G(¢)(Cxz — Cy) = 0, ¢ € Dy, and C(q(x)) = C(q(y)). Now it is
clear that C is a linear operator in F'. To prove that C is continuous, suppose x € E.
Then ||C(q(z))|| = infycnr(gy [Cx + yl|. Let y € N(G) be fixed. Applying again
CG = GC, we have that Cy € N(G). Thus, C(q(z))] < [Cx+Cyll < [|C] [z +yll;
this implies [|C(q(z))| < [|C] lg(x)], €' € L(F) and [|C]| < [|C]|. Let C(g(x)) = 0.
Then Cz € N(G) and CG(p)x = 0, ¢ € Dy. Since C is an injective operator,
one has z € N(G) and q(z) = 0. Therefore, C' € L(F) and C is injective. One
sees directly that H satisfies (C.D.S.1) and CH = HC. Suppose H(¢)q(z) = 0,
¢ € Dy, i.e., G(p)x € N(G), ¢ € Dy. This implies G()G(p)x =0, CG(p*x1p)x =0
and G(p x )z = 0, ¢, » € Dy. Choose a regularizing sequence (p,) to obtain
G(p)x =limy, 00 G(@ * pn)x =0, ¢ € Dy and g(z) = 0. O

Let G be a (C-DS) and let T' € &)(C), i.e., T is a scalar-valued distribution
with compact support in [0,00). Define G(T') on a subset of E by

y=G(T)z it G(T * p)x = G(p)y for all ¢ € Dy.

Denote its domain by D(G(T')). By (C.D.S.2), G(T) is a function. Moreover, G(T)
is a closed linear operator and G(0) = I. The (infinitesimal) generator of a (C-DS)
G is defined by A := G(—=0¢'). Since for ¢ € D, ¥y = Pl o) € &(C), (1j0,00)
stands for the characteristic function of [0,00)) the definition of G(¢4) is clear.
Further on, it is visible that C' does not appear in the definition of G(T'). Someone
may think that the notion of G(T) is misleading without C. This is not the case;
this just simplifies the definition of A. Namely, let us define the operator G¢(T)
(T € &(C)) by Ge(T) = {(2,y) € Ex E: G(T x p)Cx = G(p)y, » € Do}. It can
be easily seen that Go(T') is a closed linear operator as well as that Go () = C
and G(T)C = Go(T), T € &(C). Further on, if G is a (C-DS), T € &/(C) and
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¢ € D, then G(p)G(T) C G(T)G(p), CG(T) C G(T)C and R(G) C D(G(T)). If
f R —=C, put (1:f)(s) := f(s—t), s € R, ¢t € R. Note, if G is a pre-(C-DS) and ¢,
1 € D, then the assumption p(t) = 1(t), t > 0, implies G(¢) = G(¢). Indeed, put
n =@ —1. Then n € D(_, o) and the continuity of G implies limy o G(Tan)2 =
G(n)x =0, z € E. Now we state:

PROPOSITION 3.1.3. If G is a (C-DS), then G(¢4+)C = G(¢), v € D.

PROOF. Let € F and ¢p € D. Then G(v4)Cx = G(¢)x iff G(¢ *x p)Cx =
G(p)G()x for all ¢ € Dy iff G(1h4 * p)Cx = G(p *¢ ¢)Cx for all ¢ € Dy. The last
statement is true since, for every fixed ¢ € Dy, one has ¢ g ¥ = 14 * . (]

Using the same arguments as in [252, Lemma 3.6], one can prove the following.

PROPOSITION 3.1.4. Let S, T € &, ¢ € Dy, v € D and v € E. Then the

following holds:
/—Ln%
(i) (G(p)x, G(T -+ Txp)x) € G(T)™, m € N.
(ii) G(S)G(T) C G(S*T) with D(G(S)G(T)) = D(G(S+T))ND(G(T)), and
G(S)+G(T) CG(S+T).

(iii) (G(¥)z, G(=¢" )z —1(0)Cx) € G(=").
(iv) If G is dense, then its generator is densely defined.

EXAMPLE 3.1.5. (i) Let A be the inﬁnitesimal generator of a C-regularized
semigroup (T'(t))i>0 and G(¢) = [, @(t)T(t) dt, ¢ € D. Then G is a (C-DS) with
the generator A.

Proor. We will only prove that A is the generator of Q. The following is
well known: C~1AC = A, T(t )C CT(t), T(t)A C AT(¢), t = 0. Suppose now

(x,y) € C"*AC = A. Then Afo 5)Cxds =T(t)Cx —C?x and fo s)ACx ds =

T(t)Cx — C?z, t > 0. Hence, fo 5)Cyds = C’T( ) — C?%x and fo s)yds =
T(t)z — Cx, t = 0. We have to prove — [~ ¢’ ()T (t)z dt = [ @(t)T(t)y dt for all
@ € Dy. This follows from

/go(t)T(t)y dt = —/go’(t) /T(s)y dsdt = —/g@'(t)(T(t)x —Cz)dt
0 0 0 0
_ / & (DT () dt.

0

Consequently, (z,y) € B, Where B is the generator of g. Suppose (z,y) € B. Then

— [ OT(t)xdt = [[p(t)T(t)ydt and [ trdt = [ )fot s)y dsdt,
v € Dy. Thus T(t)r — fo yds = Const. and fo s)yds = ( Yo — C’x, t>0.
Hence, Afo s)xds = fo s)yds for all t > 0. Since A is closed, we obtain
T(t)xe D(A) and AT (t)x=T(t)y for all t > 0. Accordingly, (z,y)eC1AC=A. O
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(ii) If G is a (DS) with the generator A and GC' = CG, then GC is a (C-DS)
with the generator A.

(iii) [185] Let P be a bounded projector on E with PC = CP. Define G(p) :=
J" ¢(t)dtPC, ¢ € D. Then § is a pre-(C-DS) and N'(G) = Kern(P).

(iv) [252, Example 2.8] Let m € N and let H™ denote the completion of
C™[0,1] with respect to the norm f — [|fllgm = > ., [[f*[lr2. Then H™ is a
separable Hilbert space and the next expression G(¢)f := (¢ *o f)1jq], @ € D,
f € H™, defines a non-dense (DS) in H™.

3.1.2. Connections with integrated C-semigroups. Exponential C-
distribution semigroups. Let remind us that the abstract Cauchy problem

uwe C([0,7): [D(;‘l)]) ncoi(o,7): E),
(Cry1(1)) : u’(gt)) :64u(t) + 5Cx, t€0,7),

is C-well posed if for any x € E there exists a unique solution of C,41(7). In
this subsection, we investigate relations between C-distribution semigroups and
the corresponding C),1(7) problems with (local) integrated C-semigroups.

LEMMA 3.1.6. Let G be a (C-DS) generated by A. Then C~1AC = A.

PROOF. Let (z,y) € A. Then G(—¢' )z = G(v)y, CG(—¢" )z = CG(p)y and
G(—p")Cx = G(¢)Cy, ¢ € Dy. So, (Cx,Cy) € A and A C CLAC. Assume
(x,y) € C7LAC. Then ACz = Cy and G(—¢')Cx = G(¢)Cy, ¢ € Dy. Since
CG = GC and C is injective, one has G(—¢')z = G(¢)y, ¢ € Do, (z,y) € A and
CrAC = A. O

THEOREM 3.1.7. Let G be a (C-DS) generated by A. Then, for every T > 0,
there exist n. € N and a non-degenerate operator family (W (t))iepo,) such that:

(i) A fy W(s)zds =W(t)x — L5Cx, t €[0,7), w € B,

(i) CAC AC, W(t)AC AW (t), CW(t) =W ()C, t € [0,7) and
(iii) (W (t))tefo,r) is a local n.-times integrated C-semigroup generated by A.

PROOF. It is clear that AG(p)x = —G(¢')x — ¢(0)Cx, ¢ € D, x € E. This
implies that G is a continuous linear mapping from D into L(E,[D(A)]). By Theo-
rem 1.3.2, one obtains that, for every 7 > 0, there exist n, € Nand W € C([—7, 7] :
L(E,[D(A)])) such that G(¢)z = (=1)" [T_om ) ()W (t)xdt, x € E, ¢ € D(_y 7).
Moreover, supp W C [0, 7],

(-1 [ " @AW ()2 dt = AG(p)a = G(~¢')a - p(0)Ca
0 T
= (1 [ W Bt - p(0)C
0
and, for every ¢ € Dy and z € E, [ "1 (2) Uot AW (s)xds — W (t)z]dt = 0.
This implies fot AW (s)xds — W (t)x = 377t/ Bjx, t € [0,7), for some operators
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B; € L(E), j=0,1,...,n,. By the proof of [418, Theorem 3.8|, we get B; = 0 for
i=0,1,....,n — 1 and B,, = —%C, which implies

t
nr

/AW(s)xds =W(t)z — " Cx, te0,7), z€E.
n.!
0

Since CG = GC, CA C AC and G(p)A C AG(p), ¢ € D, the remaining part of
(ii) can be obtained along the same lines. Then the assertion (iii) immediately
follows. O

REMARK 3.1.8. Notice that Theorem 3.1.7 generalizes [216, Theorem 4.2] and
implies that every (C-DS) is uniquely determined by its generator.

THEOREM 3.1.9. Suppose that there exists a sequence {(pr,7r)) (px € No, 7 €
(0,00); k € No) such that limy_yoo 7 = 00 and that Cp,+1(7) is C-well posed for
A. If CAC AC, then C~*AC generates a (C-DS).

PRrROOF. Clearly, we may assume 7, < Tgt1, and pr = 2, k € Ny. Let
(W, (t))tejo,r) be the local pp-times integrated C-regularized semigroup gener-
ated by C~'AC; here W, (-) is given by [275, Theorem 2.5]. Because every
local integrated C-semigroup is uniquely determined by its generator (cf. also
[259, Proposition 1.3]), the following definition is independent of k € Nj. Let
¢ € Di—oory and G(p)z = (—1)Pk [ o) ()W, (H)zdt, = € E. Then G €
Dy(L(E)) and GC = CG. Furthermore, for every 2 € E and ¢, ¢ € D(_y 5,) With
supp ¢ + supp ) C (—00, 71),

G(p)G /@(Pk) /w(pk W, ()W, (s)a ds dt
0
0 t+s s p .
— k—
:/ (m) /¢ Pr) K/ /) (t+s _rl pk(r)cggdrldsdt
0 + 0 Dk
oo [e%s} tts s )p 1
(t+s—r)Pe—
(Pk) Pl — 1)
/@ /w s K/ /> (e — 1)! pk(r)cxdr]d”t
0 0 p
/ (m) /w(pk 1)
t+S s )p X ) 1
(t+s—r)Pr— o
x 0 t+s s s
— k—
/@(pk) /w(pk ( l(/ /) t—i—;k _r2 W, (1) dr | ds dt
0 0
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0)/w(p’°_1)(s)ka(s)des.
0
Applying the same argument sufficiently many times, we obtain:

G(p)G(Y)x = (—1)P* (/ () (¢ /w W, (t + s)Cxdsdt
0

pr—1 o0

JngO /1/ka1j ()C’zds)
Jj=0 0

N ( [0 [ =W, s)cadsar
0 t

pr—1

v 3o o) [t f><s>ka<s>0xds)

0

©0 pr—1
p’“/{ (@) 50 ) (s Z D (0)p P19 (s )} Wy, (s)C ds
0

— (~1p / (%0 9)™ (5) Wi (5)Ca ds = Gl %0 $)C, 7 € E.

So (C.D.S.1) holds. Suppose = € E satisfies G(¢)z = 0, ¢ € Dy ], for some
k € N. Then we obtain W, (t)x = Z?igltjzj, t € [0,7x), for some z; €
E, ;= 0,17 ...,px — 1. Using the closedness of A and the functional equal-
ity Afo s)xds = W, (t)x — tpk =Cx, t € [0,7;), we easily get z; = 0, j =
O,l,...,pk—l Hence, z = 0 and (CDSQ) holds.

Let us prove that C~*AC is the generator of G. Suppose (z,y) € C1AC and
® € Dyg,7,) for some k € N. Then

oo

G(~¢')z = (~1)p+L / PPV ()W, (t) dt

0
o] t

tPE
— (_l)pk+1/gp(pk+1)(t) (ch+/wpk(s)yds> dt
0

0
e’} t

— (ot / ST (1) / W, (s)y ds dt = G(o)y,

0 0

and C~'AC C B, where B is the generator of G. Assume now (z,%) € B. Then
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pk+1/¢(m+1) (D) dt = /¢(pk) (t)y dt
0 0

Pk+1

\8

t
%) p’*H) /ka Jydsdt, ¢ € D r,).
0 0

Thereby,

t
(193) /ka Jyds = Zt Zj, [0, %),
0

for some z; € E, j =0,1,...,pk. We can take t = 0 to obtain zo = 0. Using (193),

we have LW, (t)z — W, (t)y = pul jti71z;, and
tPr—1
AWp, () + ———Cx — A/ka Jyds — —Cy = Z]t] Lzi, t €00, 7).
(pr — 1)! =1
Hence,

Pk ) Pk - 1P Pk
194 AY Pz = it "2, — ————=Cax+ —Cy, t€[0,1).
(194) Z J Z] 77 (pe — D) i Y [0, 7%)

Since A is closed, one can differentiate both sides of (194) sufficiently many times
toget z; =0, =1,2,...,pp — 1 and 2, = % This implies

Pk
W, () — /ka(s)y ds = FCﬁ, te[0,7),
k'

and (z,y) € C~YAC. The proof is completed. O

REMARK 3.1.10. If C = I, then the well-posedness of Cy11(7) for some k € N
and 7 > 0 implies that A generates a (DS) (see [252]). This fact follows di-
rectly from Theorem 3.1.9 and an additional observation that the well-posedness
of Ci41(7) implies the well-posedness of Cap41(27) (cf. [5, Theorem 4.1] and Sub-
section 2.1.1). Due to [275, Theorem 4.1], the C-wellposedness of Cj1(7) implies
the C2-wellposedness of Cay41(27). Finally, combining Theorem 3.1.7 and Theo-
rem 3.1.9, we obtain that a closed linear operator A generates a (C-DS) iff for every
7 > 0 there exists n, € N such that A is the integral generator of a local n,-times
integrated C-semigroup on [0, 7).

The following proposition is a consequence of the above considerations.

PROPOSITION 3.1.11. (i) Let G be a (C-DS) generated by A. Then, for every >
0, there exist n, € N and a local n-times integrated C-semigroup (W, (t))icio,r)
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generated by A such that

oI (OW, (D dt, ¢ € D(—s,r), T € E.

N

s

8

I

0

=
\8

(ii) Let n € Ny and let
erated by A. Put G(p)
a (C-DS) generated by A

W (t))f>0 be an n-times integrated C-semigroup gen-
) S ™ (W (t)zdt, ¢ € D, x € E. Then G is

AAO

LEMMA 3.1.12. Let (S(t)):ejo,r) be an n-times integrated C-semigroup gener-
ated by A, 0 < 7 < oo, n € N. Iface D(A¥) for some k € N with k < n, then
45 (t)a S(t)AkHzf L e CAR T, e [0,7).

dtF

If G € D'(L(E)) and w € R, define e G by e “!G(p) := G(e “¢), p € D.
Clearly, e~“'G € D'(L(E)).

DEFINITION 3.1.13. A (C-DS) G is said to be an exponential C-distribution
semigroup if there exists w € R such that e~ *'G € S'(L(F)).

In the sequel, if G € D'(E) and ¢ € D, then we also write (G, @) for G(¢). Now
we state the following important relationship between exponential C-distribution
semigroups and exponentially bounded integrated C-semigroups.

THEOREM 3.1.14. Let A be a closed linear operator. Then:
(i) A is the generator of an exponential C-distribution semigroup G iff
(ii) there exists n € N such that A is the (integral) generator of an exponen-
tially bounded n-times integrated C-semigroup (W (t))i>o0-

PrROOF. (ii) = (i). Let A be the generator of (W, (t))i>0 and let |[W,(t)|| <
Me®t, t > 0 for some M > 0. Put G(p)x := (=1)" [[% o™ ()W, (t)xdt, ¢ € D,
x € E. By Proposition 3.1.11, G is a (C-DS) generated by A. For any £ > 0 and
@ € D, we have

(g )| <t [ et|(e ) ] ar
0

< M2™ ewt w+€TL—ie—(w+E)t (2) O dt
4

for a suitable constant M; independent of ¢, where pg;(¢)) = sup,cg [ ()],
¥ € S, is a continuous seminorm on S. This implies e~ “+9)G € §'(L(E)) if ¢ > 0.

(i) = (ii). Suppose that G is C-distribution semigroup generated by A and e~**
G € S'(L(E)). Clearly, e~*!G is a (C-DS) generated by A — wl and Lemma 3.1.6
implies C~1(A — wI)C = A — wl. Then, for every ¢ € D, Ale “'G,p)x =
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(e7¥tG, —¢"Vx + wle G, p)x — p(0)Cx, which gives e~“'G € S'(L(E,[D(A)])).
Now we may apply Theorem 1.3.2 to obtain that there exist n € N, r > 0 and a
continuous function V : R — L(E, [D(A)]) supported by [0, c0) such that

< WG p /V t)x dt,
0

for all p € D, z € F, and |V ()] < Mt", t > 0. Since e~ “'G is a C-distribution
semigroup generated by A —wl, arguing as in the proofs of the statements (i) and
(ii) of Theorem 3.1.7, one can conclude that: (4A—wI) fo s)xds =V (t)x— %C.ﬁ,
t>20,z€ E; V(¢ )(A wl) C(A—wl)V(t) and CV(t) = ( )C, t > 0. Therefore,
(V(t))t>0 is an exponentially bounded, n-times mtegrated C-semigroup generated

by C~Y(A —wl)C = A — wl. Define W, (t) := e“tV(t) + fo e p(t — s)V(s)ds,
t > 0, where p,, is the polynomial of degree (n — 1) such that

oo

i(’;) /e t)dt, A > 0.

=1 0

A standard perturbation argument shows that A is the generator of an exponentially
bounded, n-times integrated C-semigroup (W, (¢))i>0- O

REMARK 3.1.15. Recall, if A is the (integral) generator a (local) n-times inte-
grated C-semigroup (715, (t))¢ejo,r), 7 € No, then C~1AC = A. Note also that we

do not require D(A) = E in the previous theorem.

One can simply prove the following proposition.

PROPOSITION 3.1.16. Let A be a subgenerator of an n-times integrated C-cosine
function (Cy,(t))t0, n € No. Then the operator C"1AC generates a C-distribution
semigroup in £ X E.

The verification of the following proposition is left to the reader.

PROPOSITION 3.1.17. Let A be a closed linear operator and let A € p(A). Then
the following assertions are equivalent.

(i) A is the generator of a (DS).
(ii) A is the generator of an R(\:A)™-distribution semigroup for all m € N.

(iii) There existsn € N such that A is the generator of an R(A: A)™-distribution
semigroup.

Finally, we raise the issue:

_ PROBLEM. Does any generator A of a local integrated C-semigroup generate a
(C—DS) for some C which may be different from C?
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3.1.3. Dense C-distribution semigroups. We will consider in this section
some new conditions for G € D{(L(E)):
(dl): g(@ * T/’)C = g(@)g(i/f); ©s 1/) € Do,
(d2): the same as (C.D.S.2),
(ds): R(G) is dense in F,
(dy): for every x € R(G), there exists a function u, € C([0,00) : E) so that
uz(0) = Cz and G(p)z = [, @(t)us(t) dt, ¢ € D,
(ds): if (d2) holds then (ds) means G(yp4)C = G(p), p € D.

PROPOSITION 3.1.18. Suppose G € Dy(L(E)) and GC = CG. Then G is a
(C-DS) iff (d1), (d2) and (ds) hold.

PRrOOF. Keeping in mind Proposition 3.1.3, we only have to prove that the
suppositions (dy), (d2) and (ds) imply (C.D.S.1). In order to do that, let us notice
that (d;) and (dz2) imply that G(T) commutes with G(n) and C for all T € &) and
n € Dy. By (d1) and (dz), we get R(G) C D(G(T)), T € &) and G(S)G(T) C
G(S*T), D(G(S)G(T)) = D(G(S*T))ND(G(T)), T, S € &;. Let ¢, ¢ € D and
x € E be fixed; then the property (C.D.S.1) follows from the next computation
involving (ds):

G(p*0)Cx = G(p)G(Y)x
T
G(p*0)Cr = Gp4)CG(Y4)Cx
)
Vn € Do : G4+ n)CG(Y4)Ca = G(n)G(p *o ) C
T
Vi) € Dy : G4+ * ) CG (¢4 )Ca = G()G (¢ 0 ¥)+)C?
T
VB,n € Do : G((¢ %0 ¥)+ * B)G(n)C?x = G(B)G(p+ ¥ n)CG (1) Car
)
V8,1 € Do : Gt * (B*94))G(n)C%x = G(B)G (o4 x n)CG(¢1)Ca
T
Vp3,1 € Do : G(B x11)Glp1)G()C?x = G(B)G (w4 n)CG(4)C
T
VB, € Dy : G(B)G(¥+)G(p+)G (M) Cx = G(B)G (o4 +1)CG (1) Cx

¥ € Do : G(4)Glp4)G(n)C%x = Gpy xn)CG(Y4)Cu
i
G(p1)CG(¥4)Cr = G(¥4)G(p4+)CPx
(3
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Gp1)G(¥4)C%r = G(y1)G(p4)C%
0
G((p*9)4)C%x = G((¢ * 9)4)C%x. 0

PROPOSITION 3.1.19. Suppose G € D{(L(E)) satisfies (d1), (d2), (ds), (d4)
and GC = CG. Then G is a (C-DS).

PrOOF. Owing to the previous proposition, the proof automatically follows if
one shows that (ds) holds. We will prove that (Cz,G(p)x) € G(py), z € R(G),
¢ € D. Suppose (p,) is a regularizing sequence and u, is a function appearing in
the formulation of the property (d4). Clearly, for every n € D,

G(pn)G (o4 *N)Cx = G((p4 % pn) ¥ N)C?x = G(N)CG (o1 % pp)
= 9C [ (s 5 pu)(Bhus(t) dt > GICG()s. n
0
G(pn)G (o4 *N)Cx = Gy %% pn)C%x = Gy % n)C2x, n — 0.

Hence, G(p+ * n)Cx = G(n)G(v)x, n € Dy, and the closedness of G(p4) gives
(Cz,G(p)x) € G(p4), z € E, ¢ € D. The last equality implies (d5) and completes
the proof. O

REMARK 3.1.20. [252] Suppose G is a (C-DS) generated by A. Following Lions
[282], we introduce the operator Ag as the set of all (z,y) € E x E such that there
exists a regularizing sequence (p,) in Dy such that lim, o G(p,)x = Cz and
lim,, 00 G(—p), )z = Cy. Then it can be easily proved (G(¢)z,G(—¢")x) € Ao,
@ € Dy, x € E and that Ay is a closable linear operator whose closure is contained
in A. Furthermore, the denseness of G implies Ag = A and here it is worth noting
that the last equality does not remain true in the general case of a non-dense (C-
DS). Even in the case C = I, (d1), (d2) and (d4) taken together do not imply
(C.D.S.1); in this case, we also know that Ay coincides with the closure of the
restriction of A to Dy (A).

PROPOSITION 3.1.21. Let G be a (C-DS) generated by A. Then, for every
2 € Doo(A), there exists a unique function u, satisfying:

uy € C([0,00) : E),

Ge)z = [, o(t)us(t) dt, ¢ € Dy,
ug(0) = C.

ProOF. It suffices to show that, for every 7 > 0, there exists a unique function
Ug,r € C([0,7] : E) so that G(p)z = [* @(t)us () dt, ¢ € Djg ) and ug - (0) =
Cz. To this end, assume G(p)z = (=1)"7 [ ") (W, (t)xdt, ¢ € D(_co2r),
x € E, for some n, € N and an n,-times integrated C-semigroup (W, _(t))ic[0,2r)
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generated by A. Define u, . (t) := %Wm (t)z, 0 <t < 7. By Lemma 3.1.12,

ny—1

Ug (t) = Wy, (1) A"z + Z

tn.,—z 1

CA"f*iflx, 0<t<T

—i—1)!

Since x € Dy (A), one obtains u, , € C([0,7] : E). Moreover, u, r(0) = Cz and

the uniqueness of such a function u, , follows from the next simple observation:

let (py,) be a regularization sequence in D. Then u, ,(t) = lim, o0 G(pn (- — )z,
€ (0,7). O

REMARK 3.1.22. Let G and A be as above. Then C(Dy(A)) € R(G). As-
sume now D(A) and R(C) are dense in E. Combining Proposition 2.2.7 and Re-
mark 3.1.10, we have that, for every 7 > 0, there exists n, € N such that the oper-
ator A, resp. (C*)~1A*C*, is the integral generator of a local n,-times integrated
C-semigroup (Sy, (t))¢e[o,), resp. a local (n, + 1)-times integrated C*-semigroup

(fot S"T(S)*ds)te[o . Therefore, (C*)~1A*C* is the generator of a (C*-DS) G* in

PROPOSITION 3.1.23. Let G be a (C-DS) generated by A. Then C(D_(A)) C

R(G). Assume additionally R(C) = E. Then the following statements are equiva-
lent:
(i) G is dense. (ii) A is densely defined. (iii) G* is a (C*-DS) in E*.

PROPOSITION 3.1.24. Let G be a (C-DS). Then G satisfies (dy).

PrOOF. Let z = G(¥)y, ¥ € Dy, y € E. Then the continuity of G on D implies

G(p)r = G(p)G(W)y = G(p*0¥)Cy = (fo et dt)Cy = [7° ()G (mp)Cy dt,
¢ € D. The function u, : t = G(1:¥)Cy, t > 0 has the desired properties. O

In the remainder of this subsection, we also consider non-dense C-distribution
semigroups. First of all, we state the following important characterization of dis-
tribution semigroups.

THEOREM 3.1.25. [252], [418] A closed linear operator A is the generator of
a distribution semigroup iff there exist a > 0, b > 0, M > 0 and n € N such that

E(a,b) € p(A) and [[R(A: A)[| < M1+ |A])"

iff there exist T € (0,00] andn € N such that A generates a (local) n-times integrated
semigroup on [0,7).

Suppose that A is a closed linear operator. Then, for each n € N, the space
D(A™) equipped with the norm ||z, := Y"1, [[A'z|, x € D(A™) is complete and
the projective limit of the Banach spaces (D(A™), || - ||n), i.e., the space Do (A),
equipped with the family of norms (|| ||.), is a Fréchet space. The restriction of the
operator A to Dy, (A) is clearly a continuous linear mapping in Dy, (A). The reader
may consult [18], [58], [107], [212]-[213], [250], [327], [410]-[411] and [434] for
the basic theory of semigroups of operators in locally convex spaces.
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THEOREM 3.1.26. [249] (i) A closed linear operator A is the generator of a
distribution semigroup iff A is stationary dense, p(A) # 0 and the restriction of the
operator A to Dy (A) generates a strongly continuous semigroup in Do (A).

(ii) A closed linear operator A is the generator of an exponential distribution
semigroup iff A is stationary dense, p(A) # 0 and the restriction of the operator A
to Do (A) generates a quasi-equicontinuous semigroup in Doo(A).

THEOREM 3.1.27. [234] Let a> 0, b>0, a >0, M >0, E(a,b) C pc(A), the
mapping A — (A—A)"1C, X\ € E(a,b) is continuous, CA C AC and ||(\-A)~1C| <
M(1+|A\)%, X € E(a,b). Set

P(N) = / e)‘tcp(t) dt, p €D,

1
2me
where T is the upwards oriented boundary of E(a,b). Then G is a (C-DS) generated
by C~LAC.

SN\ — A)"'Czd)\, z € E, p €D,

P

S
8
[

PROOF. By Proposition 2.4.6, we may assume that the mapping A — (A —
A)71C is analytic on some open neighborhood of the region F(a,b). Using the
Paley—Wiener theorem, the Cauchy formula, the inverse Fourier transform as well
as the simple equalities A(A—A)~1Cz = A\(A—A)"1Cz— Cgc )\ € pC(A) x € F and
¢'(N) = —A@(\), A € C, it follows that: suppG C [0, 00), 7= [ @A) dX = ¢(0),
@ €D and

(195) AG(o)x = G(—¢ )z — p(0)Cz, p €D, z € E.

Let ¢ € D and z € E be fixed [252]. Put P:=§ QI -0 A, U :=G(-)G(¢)z,
V := G(- %9 ¥)Cx and consider G as an element of the space D{(L(E,[D(A)]));
clearly, P € D{(L([D(A)], E)), U € D{([D(A)]) and V € ’D(’)([D(A)]). Since
G(p)A C AG(p), ¢ € D and (195) holds, we have G x P = 6 ® Cpay €
Dy(L(ID(A)])), PxG =062 C € DYy(L(E)) and PxU =PV =6 @ G(¢)Cx €
D{(E). The associativity of convolution implies (G * P) «U = (G = P) % V| i.e.,
(6&Cip(ap)+U = (6&Cip(ay)+V € Dh([D(A))) and CG£)F(1)r = CG(p+oth)Cr,
¢ € D. The injectiveness of C' implies (C.D.S.1). The proof of (C.D.S.2) follows
as in [282] and [252]. In fact, the preassumption G(p)x = 0, ¢ € Dy implies that
suppG(-)z C {0} and that there exist £ € N and yo, - ,yx € D(A) such that
G()r =35 0D @y; and that 35 (60D @y; —S% 60 ® Ay; = 6@ Ca. This
implies y,, = -+- = yo = Cz =z = 0 and (C.D.S.2). Hence, G is a (C-DS) whose
generator, denoted by A, satisfies C"'AC C A. By Theorem 3.1.7, there exist
ny € N and 7 € (0,00) such that A is the integral generator of a local n;-times
integrated C-semigroup (Sp, (t))¢cjo,,). Furthermore, Theorem 2.7.2 implies that
there exist ny € N and 75 € (0,00) such that C~1AC is the integral generator of a
local no-times integrated C-semigroup (Sh,(t))ie[0,r,)- Without loss of generality,
we may assume n = ny = ng and 7 = 1 = T2. Set S(t)x = S,(t)r — Sp(t)z,
t € [0,7), z € E. Then Afo s)xds = S(t)xz, t € [0,7), x € E and arguing as
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in the proof of [328, Proposition 2.6], one gets S(t) = 0, ¢t € [0,7). This implies
A = C~1AC and completes the proof of theorem. O

The solution space for a closed, linear operator A, denoted by Z(A), is defined
to be the set of all x € F for which there exists a continuous mapping u(-,x) €

C([0,0) : E) satisfying fot u(s,z)ds € D(A) and Af(;s u(s,z)ds = u(t,z)—x,t > 0.

PROPOSITION 3.1.28. [238] (i) Assume A generates a (C-DS) G. Denote by
D(G) the set of all x € ;5o D(G(0:)) satisfying that the mapping t — G(d;)x,
t > 0 is continuous; here §;(p) = p(t), t € R, ¢ € D. Then Z(A) = D(G). If
x € Z(A), then u(t,x) = G(6:)z, t > 0 and

G()x = /Q/J(t)Cu(t,sc) dt = /zp(t)GC(at)xdt, b € Dy.

(ii) Assume that, for every T > 0, there exists n, € N such that A is a subgen-
erator of a local n.-times integrated C-semigroup (Sn, (t))iepo,r). Then the solution
space Z(A) is the space which consists of all elements x € E such that, for every
7> 0, S, (t)r € R(C) and that the mapping t — C~1S,,_(t)x, t € [0,T) is n,-times
continuously differentiable.

3.1.4. Chaotic C-distribution semigroups. Chronologically, the first ex-
amples of hypercyclic operators were given on the space H(C) of entire functions
equipped with the topology of uniform convergence on compact subsets of C. More
precisely, Birkhoff proved in 1929 that the translation operator f — f(- + a),
f € H(C), a € C~ {0} is hypercyclic in H(C), and MacLane proved in 1952 the
hypercyclicity of the derivative operator f — f’, f € H(C). The first example
of a hypercyclic operator on a Banach space was given by Rolewicz in 1969. The
underlying Banach space in his analysis is chosen to be 1?(N). The first systematic
investigation into the hypercyclicity and chaos of strongly continuous semigroups
was obtained by Desch, Schappacher and Webb [109] in 1997. The basic refer-
ences concerning hypercyclic and chaotic behavior of distribution semigroups and
strongly continuous semigroups are [77], [L06], [109], [173] and [303]-[304]. The
notion of hypercyclicity and chaos of distribution semigroups as well as unbounded
semigroups of linear operators was introduced by deLaubenfels, Emamirad and
Grosse-Erdmann in [106]. The main objective in this subsection is to enquire into
the chaotic and hypercyclic properties of C-distribution semigroups and integrated
C-semigroups.

We assume that F is a separable infinite-dimensional complex Banach space.
Let S be a non-empty closed subset of C satisfying S~ {0} # (. A linear operator
T on F is said to be hypercyclic if there exists an element x € D (T) whose
orbit {T™z : n € Ny} is dense in E; T is said to be topologically transitive, resp.
topologically mixing, if for every pair of open non-empty subsets U, V' of E, there
exist © € Doo(T) and n € N such that T"(U) NV # 0, resp. if for every pair
of open non-empty subsets U, V' of E, there exists ng € N such that, for every
n € N with n > ng, T"(U) NV # 0. A periodic point for T is an element x €
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D (T) satisfying that there exists n € N with 7"z = z. Finally, T is said to be
chaotic if T is hypercyclic and the set of periodic points of T is dense in E. By
Proposition 3.1.4(ii), we have

(196) D(G(05)G (1)) = D(G(05%6:)) N D(G(6:)) = D(G(8145)) N D(G(6)), £, 520

Then (196) implies G(8;)(D(G)) € D(G), t > 0. A closed linear subspace E of
E is said to be G-admissible iff G(6,)(D(G) N E) C D(G)NE, t > 0. Define
G(gp)(?’j) = @E«:;Z) and C( ) = (C“"), z,y € E, p € D. Then G is a (C-DS) in
E® E, and E @ E is G-admissible provided that E is G-admissible.

DEFINITION 3.1.29. Let G be a (C-DS) and let E be G-admissible. Then it is
said that G is:
(i) E-hypercyclic, if there exists © € D(G) N E such that the set {G(6)z : t >
0} is dense in F,
(ii) E-chaotic, if G is E-hypercyclic and the set of E-periodic points of G,
G5 per» defined by {z € D(G) NE : G(,,)x = z for some to > 0}, is dense
in E,
(iii) E-topologically transitive, if for every y, z € E and ¢ > 0, there exist
v e D(G)NE and t > 0 such that ||y — v|| < e and ||z — G(6,)v|| < €,
(iv) E topologzcally mizing, if for every y, z € E and ¢ > 0, there exists
> 0 such that, for every ¢ > tg, there exists v; € D(G) N F such that
Hy — ]| < e and ||z — G(&:)ve]| < &, t > to,
(v) E-weakly mizing, if G is (E @& E)-hypercylic in E & E,
(vi) E-supercyclic, if there exists # € D(G) N E such that its projective orbit
{cG(8;)x : c € C, t >0} is dense in E,
(vii) E-positively supercyclic, if there exists z € D(G)N E such that its positive
projective orbit {cG(d¢)x : ¢ = 0, t > 0} is dense in E,
(viii) Eg-hypercyclic, if there exists z € D(G)NE such that its S-projective orbit
{cG(dt)z 1 c €8, t >0} is dense in E,
(ix) Fg- topologzcally transitive, if for every y, z € E and & > 0, there exist v €
D(G)NE,t > 0and ¢ € Ssuch that ||[y—v|| < e and that ||z—cG(6,)v|| < e,
(x) sub-chaotic, if there exists a G-admissible subset E such that G is E-
chaotic.

Let « € (0,00), « ¢ N, f € S and n = [«]. Recall [315], the Weyl fractional
derivatives W and W of order o (cf. also Subsections 3.2.1 and 3.3.1) are defined
by

WEf(t) = n—l dt"/ — )" f(s)ds, t € R,
t
t
@ . ;ﬁ _ n—a—1
W) = ey g /(t )1 f(s)ds, t € R.

— 00
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If o =n €N, put WP := (-1)"4- and W” := £-. Then wets = wew?,
a, 8 > 0. Assume that A is the integral generator of an a-times integrated C-
semigroup (So(t))i>o for some o > 0. Set Go(p)z == [;° W(t)Sa(t)z dt, z € E,

@ € D. Then G, is a (C-DS) generated by A [315].

DEFINITION 3.1.30. Let E be a closed linear subspace of E. Then it is said
that E is (S, (t))is0-admissible iff E is G,-admissible, and that (Sa(t))is0 is E-
hypercyclic iff G, is; all other dynamical properties of (S (t))t>0 are understood in
the same sense. A point = € E is said to be a E-periodic point of (Su(t))sso iff =
is a E-periodic point of Ga.

It is clear that the notion of Eg-hypercyclicity generalizes the notions of (posi-
tive) E-supercyclicity and E-hypercyclicity. In the case F = E, it is also said that G
((Sa(t))i=0) is hypercyclic, chaotic,..., S-hypercyclic, S-topologically transitive, and

we write Gpe, instead of gim. Let 8 > « and Sg(t)x = J%Sa(s)x ds,

t >0,z € E. Then Go(p)z = [)° Wfap(t)Sg(t)xdt = Galp)z, x € E, ¢ € D,
and this implies that a closed linear subspace E is (S (t));>o-admissible iff E is
(S5(t))io-admissible, and that (S, (t));>0 is E-hypercyclic (E-chaotic,. .., sub-
chaotic) iff (Sg(t))i>0 is; because of this, we assume in the sequel that & = n € Ny.
Assume G is a (C-DS) and FEis G-admissible. If G is E—weakly mixing, then one can
simply prove that G is both E-topologically transitive and E-hypercyclic. Assume
that the semigroup (e'#);> is hypercyclic (chaotic) in the sense of [106, Definition
3.2] and let L(E) > C be an injective operator such that (W(t) := e"4C)>0 is a
C-regularized semigroup generated by A. Put G(y)x = fo e(OW(t)xzdt, x € E,
@ € D. Then it can be simply proved that (W(t))t>0, resp. G, is hypercyclic
(chaotic) in the sense of Definition 3.1.29, resp. Definition 3.1.30. Hence, examples
given in [106, Section 5] can be used for the construction of chaotic C-regularized
semigroups.

EXAMPLE 3.1.31. [106] Let Q be an open bounded subset of R? and let A
act on L2(Q) with the Dirichlet boundary conditions; the complex power (—A)®
(b € C) is understood in the sense of [300]. Then there exists an injective operator
C € L(L*(Q)) such that ((—A)'C)io is a chaotic C-regularized semigroup.

Assume A generates a (C-DS) G and 2z € Z(A). Then C(Z(A)) € R(G) and
Q(i/})x € R(C), ¥ € D. Further on, R(G) C Z(A), G(d:)(Z(A)) € Z(A) € D(A),

> 0 and Eg-hypercyclicity (Es-topological transitivity) of G implies £ N Z(A) =
E‘ nd £ C D(A). Given t > 0 and o > 0, set

D, = {chDozsuppgog (t—o,t+0), 20, /go(s)ds: 1}.

Keeping in mind Proposition 3.1.28 and the proofs of [106, Proposition 3.3,
Theorem 4.6], we have the following theorem.
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THEOREM 3.1.32. (i) Assume n € Ny, A is the integral generator of an n-times

integrated C-semigroup (Sn(t))i0, C(E) = E and E is G,-admissible. Then the
following holds.

(1.1) (S, (t))i=0 is Es-hypercyclic iff there exists © € E such that the mapping
t— Sp(t)z, t = 0 is n-times continuously differentiable and that the set
{C%Sn(t)z cce S, t>0} is dense in E.

(i.2) (Sn(t))eso0 is FEg-topologically transitive iff for everyy, z € E and € > 0,
there exist v € E, tg > 0 and ¢ € S such that the mapping t — Sy (t)v,
t > 0 is n-times continuously differentiable and that ||y — v|| < & as well
as ||z — c(Lx S (£)v) =t || < e

(i.3) (S, (t))is0 is E-chaotic iff (S, (t))i0 is E-hypercyclic and there exists a
dense subset of E consisting of those vectors x € E for which there exists
to > 0 such that the mapping t — S, (t)x, t = 0 is n-times continuously

differentiable and that (%Sn(t):c)t:to =Cz.

(ii) Let A be the generator of a (C-DS) G and let E be G-admissible. Then:
(ii.1) G is ~Es—hypercyclic iff there exists xo € D(G) N E such that, for every
x € E and € > 0, there exist to >0, c € S and o > 0 such that
eCG()z0 — ol < &, € Bu

(ii.2) G is Esg-topologically transitive iff for everyy, z € E and e > 0, there exist
to>0,ceS,o>0andv e D(G)NE such that, for every ¢ € @y, .,

ly —v|| <& and ||z — cC'G(p)v]|| < e.

(ii.3) G s E-chaotic iff G is E-hypercyclic and there exists a dense set in E of
vectors x € D(G) N E for which there exists T > 0 such that, for every
€ > 0, there exists o > 0 satisfying

||Cf_1g(<)0)aj - 3?” <Eg, pE ‘1)7',0-

COROLLARY 3.1.33. Let A be the generator of a (C-DS) G. Assume E is G-
admissible and G is Es-hypercyclic (Es—topologically transitive). Then C(E) C
R(G).

The Hypercyclicity Criterion for C-distribution semigroups reads as follows.

THEOREM 3.1.34. Let A be the generator of a (C-DS) G and let E be G-
admissible. Assume that there exist subsets Y1, Yo C Z(4) N E, both dense in

E, a mapping S : Y] — Y] and a bounded linear operator D in E such that:
(i) G(61)Sy =y, y € Y1,
(i) lim, 00 Sy =0, y € Y7,
iii) lim,, 0o G(6,)w =0, w € Yz,
iv) R(D) is dense in E,
(v) R(D) C Z(A)NE, G(6,)D € L(E), n € N and
) .

(vi D

—~

DG(61)x = G(61)Dx, x € Z(A) N
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Then G is both (E @ E)-hypercyclic and (E ® E)-topologically transitive; in partic-
ular, G is E-weakly mizing.

PROOF. Let T} be the restriction of the operator G(;) to Z(A) N E, Ty =
G(61)|Z(A)QE' Put T :=T @1y, Y =Y 8Y], Ys := YodYs, D := D®D and define
S:Yy — Y by S(x,y) := (Sz,Sy), =, y € Y1. Since G(6,)(Z(A)NE) C Z(A)NE,
Doo(T) = Z(A) N E and G(6,)"x = G(8,)z, x € Z(A) N E, one can apply [106,
Theorem 2.3] in an effort to see that the operator T is hypercyclic in E&@E. Under
the aegis of the proof of [106, Theorem 2.3], it follows that T is also topologically
transitive. The proof of theorem completes a routine argument. O

Let R(C) be dense in E. Assume E = E, A is the integral generator of a
C-regularized semigroup (T'(t))iz0 and G(p)z = [ o(t)T(t)zdt, x € E, ¢ € D.
Then the conditions (iv)—(vi) quoted in the formulation of Theorem 3.1.34 hold with
D = (C and, in this case, Theorem 3.1.34 reduces to the Hypercyclicity Criterion
for C-regularized semigroups (cf. [106, Theorem 3.4]).

EXAMPLE 3.1.35. (i) Let n € N, p(t) := g, t €R, Af := f', D(A) == {f €
Cop(B) : ' € Cop(®)}, By i= (Cop(R)™L, D(A,) i= D(A)™ and A, (fu,
wfa1) = (Afi + Afo, Afe + Afsy o Afa + Afag1, Afnsa)s (fr o faa) €
D(A,,). Then it is well known that +A,, generate global polynomially bounded n-
times integrated semigroups (Sp,+(t)):>0 and that neither A, nor —A,, generates a
local (n — 1)-times integrated semigroup. Denote by G ,, distribution semigroups
generated by +A,,. Then it can be easily proved that for every ¢1,...,¢on41 € D :

T T
G:I:,n((st)(@hnw%@n—&-l) = (¢17-~’7¢n+1) )
" @y G) , o R
where 9;(-) = > Sy (- £1), 1 <i<n+ 1. This immediately implies the
j=0
concrete representation formula for (S, 4 (f))i>0. It can be proved (cf. [239] for
further information) that, for every ¢t > 0, the operators G4 ,,(d;) ® G n(d¢) are
hypercyclic in E,, @ E,,. This implies that (S, +(t)):>0 are weakly mixing. Arguing
in a similar way, one can construct a closed linear operator , A, a Banach space , F
and an injective operator ,C € L(,E) such that ,A is a subgenerator of a global
weakly mixing n-times integrated ,,C-semigroup (,S(t))t>0 on ,E and that ,A is
not a subgenerator of any local (n — 1)-times integrated ,,C-semigroup on , FE.

(ii) Let n € N, Q := (0,00)", a; > 0, 1 < ¢ < nand o := min{e; : 1 <7 < n}.

Set p(z) := e~ (@1 ++2%) and

plt,a) = ((E+ )V () ), 620, 2= (a1,...,2,) €.

Let remind us that the space Cj ,(£2,C) consists of all continuous functions f :
) — C satisfying that, for every ¢ > 0, {z € Q : |f(z)|p(z) > €} is a compact
subset of ; equipped with the norm || f|| := sup,cq | f(x)|p(x), Co ,(2, C) becomes
a Banach space. The space of all continuous functions f : @ — C whose support
is a compact subset of €2, denoted by C.(2,C), is dense in Cy ,(£2,C). Define
(To()f)(@) = fle(t,2)), t 2 0, v € Qand Of(x) := e~ Mt f(a), 2 € Q,
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f € Co,p(R2,C). Then one can simply prove that T, (t) ¢ L(Co,(2,C)), t > 0
and that (7, (t)C)¢>0 is a bounded C-regularized semigroup. Given f € C.(2,C),
define f : [0,00)" — C by f(z) := f(z), z € Q and f(z) := 0, z € [0,00)" ~ €L
Applying [106, Theorem 3.4] with Y1 = Y5 = C.(Q2,C) and

Sf(x1,....an) = f((fﬂ(fl - 1)1/a1X[(af‘1+1)1/a1,(bf‘lﬂ)l/al](xl), R
(z0n — 1)1/%X[(a%nﬂ)l/an7(b31L+1)1/an](xn)),

z€Q, feYy,suppf C [ lai,bi] C Q, we get that (T,,(t)C)i>0 is weakly
mixing. Furthermore, (T, (t)C)s>0 is topologically mixing and, thanks to the proof
of [174, Theorem 5.7], (T,,(t)C)¢>0 is chaotic.

(iii) [106], [239] Assume that wi, wa, Vi, w,, @, Q(B), N, h, and E pos-
sess the same meaning as in [106, Section 5] and that Q(int(V,,,.,)) N iR # 0.
Then +Q(B)h, = +Q(u)hy, e_(_Bz)NhH = e_(_HQ)NhW w € int(Vy, ., ) and
hy € (Kern(Q(B)) {0}) provided Re 1 € (wg,w:). Define E as the closure of the
set span{(hy, Q(u)h,)T : p € int(Vi, w, )} Then Q?(B) is the integral generator of
a global (e~ (=*)")(B)-regularized cosine function ((cosh(tQ(z))e_(_z2)N)(B))@O
(==Y (B) 0 )

0 («@PNm /)
regularized semigroup (So(t));>o satisfying that (So(t))¢o is E-topologically mix-
ing and that the set of all E-periodic points of (Sp(t));>0 is dense in E. Furthermore,
the analysis given in [106, Theorem 5.8] can serve one to construct important ex-
amples of regular ultradistribution semigroups of Beurling class.

and the operator (Qz( B) (I)) generates of an entire (

Let A be the generator of a strongly continuous semigroup (T'(¢));>0. Then
(T'(t))e=0 is S-topologically transitive in the sense of Definition 3.1.30 iff (T'(¢)):>0
is S-topologically transitive in the sense of the definition introduced on pages 50-51
of [237]. It is well known that S-topological transitivity of (T'(¢)):>0 is equivalent
to its S-hypercyclicity and that (T'(¢));>0 is weakly mixing provided that (T'(¢))¢>0
is chaotic [237]; it is not clear whether the above assertions continue to hold in
the case of C-distribution semigroups. In the sequel of this subsection, we will use
the fact that the notions of E- topological transitivity and E- periodic points of a
(C-DS) G (or an n-times integrated C-semigroup (S, (t))i>0) can be understood in
the sense of Definition 3.1.29 even if the set E is not G-admissible.

The next theorem is a strengthening of [109, Theorem 3.1] and [26, Crite-
rion 2.3].

THEOREM 3.1.36. [238]-[239] Let to > 0.

(i) Let A be the generator of a (C-DS) G. Assume that there exists an open
connected subset Q of C, which satisfies 0,(A) D Q and intersects the imaginary
azis, and let f : Q — E be an analytic mapping satisfying f(N\) € Kern(A—\)~ {0},
A € Q. Assume, further, that (z* o f)(A) =0, X\ € Q, for some z* € E*, implies
x* = 0. Then G is topologically mizing, every single operator G(dy,) is topologically
mizing and has a dense set of periodic points in E.
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(ii) Let A be the generator of a (C-DS) G. Assume that there exists an open
connected subset Q of C, which satisfies 0,(A) D Q and intersects the imaginary
azis, and let f : Q — E be an analytic mapping satisfying f(\) € Kern(A—\)~{0},
A€ Q. Put Ey := span{f(\) : A\ € Q} and E := Ey. Then G is E-topologically
mizing, the part of the operator G(8y,) in the Banach space Eis topologzcally mizing
in E and the set of E-periodic points of such an operator is dense in E.

REMARK 3.1.37. (i) It is not clear whether the set E, appearing in the formu-
lation of the assertion (ii) of the previous theorem, is G-admissible.

(ii) Assume A is the integral generator of a C-regularized semigroup (7'(t))¢>0
and R(C) is dense in E. Let £ and f(-) satisfy the assumptions quoted in the
formulation of Theorem 3.1.36(i). Then (T'(t));>0 is chaotic, weakly mixing and,
for every t > 0, the operator C~1T(¢) is chaotic.

THEOREM 3.1.38. Let 0 € (0,%) and let —A generate an analytic strongly
continuous semigroup of angle 8. Assume n € N, a, > 0, a,—; € C, 1 <7 < n,
D(p(A)) = D(A™), p(A) =" qa; A" and n(§ —0) < 5.

(i) Assume that there exists an open connected subset Q2 of C, which satisfies
op(—A) D Q, p(—Q)NiR # 0, and let f : Q — E be an analytic mapping satisfying
F(A) € Kern(—A—X)~{0}, AeQ. Assume, also, that the supposition (z*of)(A\) = 0,
A € Q, for some x* € E*, implies x* = 0. Then, for every a € (1, —5-),
there exists w € R such that p(A) generates an entire e~ A=) _regularized group
(T'(t))tec. Furthermore, (T'(t))i>0 is chaotic, topologically mizing and, for every
t > 0, the operator C~1T(t) is chaotic.

(ii) Assume that there exists an open connected subset Q0 of C, which satisfies
op(—A) D Q, p(=Q)N iR # 0, and let f : Q@ — E be an analytic mapping satisfying
f\) € Kern(—A =\~ {0}, A € Q. Let Ey and E be as in the formulation of The-
orem 3.1.36(ii). Then there exists w € R such that, for every a € (1, —5—5), p(A)

generates an entire e ~(PA)=)" _regularized group (T(t))iec such that (T'(t))eo is

E- topologzcally mixing and that the set of E- periodic points of (T'(t))i>o is dense
in E.

PRrOOF. The proof of (i) can be obtained as follows. By the arguments given

n [89, Section XXIV], we have that the operator —p(A) generates an analytic
strongly continuous semigroup of angle 5 — n(§ —0). Let a € (1, —5—). By
[89, Theorem 8.2], one gets that there exists a convenable chosen number w € R
such that p(A) generates an entire e~ (4~ = C.regularized group (T'(t));ec.
Thanks to the proof of [106, Lemma 5.6, o,(—p(A)) = —p(—0,(—A)) and f(A) €
Kern(—p(A) + p(=X)), A € Q. Without loss of generality, one can assume that
p'(z) # 0, z € —Q; otherwise, one can replace Q by Q ~ {71,...,vn—-1}, where
Y1, --,Yn—1 are not necessarily distinct zeros of the polynomial z — p'(2), z € C.
Hence, the mapping A — p(—\), A € Q and its inverse mapping z — —p~1(2), z €
p(—), are analytic and open. The set —p(—12) is open, connected and intersects the
imaginary axis. Moreover, the mapping z — f(—p~1(—2)), z € —p(—Q) is analytic,
f(=p7"(=2)) € Kemn(—p(A) - 2), z € —p(—Q) and z*(f(-p ' (~2))) = 0, z €
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—p(—), for some x* € E*, implies * = 0. Therefore, it suffices to prove (i) in the
case p(z) = z. In order to do that, notice that —Q C 0,(A4), f(—A) € Doo(A) and
ARF(=X) = XEf(=N), A € —=Q, k € N. Tt can be simply proved that f(—\) € Z(A),
A€ —Q, f(=A) € Kern(A—-N\), A€ —Qand C7IT(t)f(\) = e MF(\), t =0, A € Q.
By Theorem 3.1.36(i), one has that (T'(t)):>0 is topologically mixing and that the
set of periodic points of (T'(t))+>0 is dense in E. Since R(C) is dense in E [89], one
can apply [106, Theorem 3.4] with Y1 = Xo® X, Yo = Xoo @ X and S : Y] — 11,
defined by S(327_, aif (o), Soiy Bif (24)) = (Cin, aue™ f(N), iy Bie™ f(z1)),
k,l1eN a€C, Re\; <0,1 <1<k, B €C,Rez; <0,1< 17 <1, in order
to see that, for every ¢t > 0, the operator C~1T(t) & C~'T'(t) is hypercyclic. This
implies that (T'(t)):>0 is weakly mixing and chaotic. The chaoticity of the operator
C~'T(t) (t > 0) can be shown as in the proof of [173, Theorem 4.9] and this
completes the proof of (i).

The proof of (ii) can be obtained similarly. O

REMARK 3.1.39. (i) Assume that G is a (C-DS) and that the set E is not G-
admissible. Then one can define the notion of E—hypercyclicity (Es—hypercyclicity)
of G in several different ways. In the second part of this remark, it will be said that
G is E-hypercyclic iff there exists z € D(G) N E such that the set {G(5;)z : t > 0}
is a dense subset of E, and that G is E-chaotic iff G is E-hypercyclic and the set
QE’pET is dense in E.

(ii) Under the assumptions of Theorem 3.1.38(ii), (T'(t))¢0 is E-chaotic. We
will prove this statement only in the case p(z) = z. Clearly, for every A € Q,
R(E:A)f(N) = ’;(f’\/z, ¢ € p(A) ~ {\}. By the representation formula [89, p. 70,
1. 2], one can show that there exists a mapping ¢ : @ — C . {0} such that C'f(\) =
g(A\)f(N\), X € Q. This implies that C(Ep) = Fy and that R(C) is dense in E. Let
D(Ty) = {x € Z(A)NE : G(6,)z € Z(A)NE} and Thz = G(1)z, = € D(T}). Using
[106, Theorem 2.3] with T = Ty & T}, Y1 = Xo & Xo, Y2 = Xoc ® Xoo, S(z,y) =
(erx,eMy), =, y € Xo, and C, one yields that the operator T is hypercyclic in E.
As an outcome, we get that (T'(t))yso is E-chaotic.

EXAMPLE 3.1.40. [109, Example 4.12] In what follows, we analyze chaotic
properties of a convection-diffusion type equation of the form

Up = AUyy + bug + cu = —Au,
u(0,t) =0, t >0,
u(z,0) = up(x), z > 0.

It is well known that the operator — A, considered with the domain D(—A) = {f €
W22([0,00)) : f£(0) = 0}, generates an analytic strongly continuous semigroup of

angle % in the space E = L*([0,00)), provided a, b, ¢ > 0 and ¢ < % < 1. The
same conclusion holds if we consider the operator —A with the domain D(—A) =
{f e W21([0,00)) : f(0) =0} in E = L'(]0,00)). Let
b? b? b?
Qz{AG(C:’A—(c——)‘ < TmA#0if Re)\gc——}
4a 4a 4a
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and let p(x) = Y. ja;z" be a nonconstant polynomial such that a, > 0 and
that p(—Q) NiR # (. Notice that the last condition holds provided ag € iR. By
Theorem 3.1.38, one gets that there exists an injective operator C' € L(E) such that
p(A) generates an entire C-regularized group (7'(t)):ec satisfying that (T'(t))¢>0 is
chaotic and topologically mixing. Set E := {(fr(-),p(=\)fx(-))T : X € Q}, where
the function f) is defined in [109, Example 4.12]. Then [239] the operator (pz(()A) é)
is the integral generator of an entire C-regularized semigroup (So(t)):>0 satisfying
that (So(t))i>o0 is E-topologically mixing and that the set of all E-periodic points of

(So(t))s>0 is dense in E. Using the composition property of regularized semigroups,
it simply follows that there exist x, y € E such that the set {C~1S(nt) (Z) :n € No}
is a dense subset of E. Since R(C) is dense in F, one gets that {Sp(nt) (Z) :n € No}
is also a dense subset of . This implies that (So(t))¢o is E-hypercyclic.

Ji and Weber [163] have recently investigated the dynamics of LP heat semi-
groups (p > 2) on symmetric spaces of non-compact type. It is noteworthy that
Theorem 3.1.38 and Remark 3.1.39 can be applied to the operators considered in
[163, Theorem 3.1(a), Theorem 3.2, Corollary 3.3] and that convenable chosen
shifts (polynomials) of the backwards heat operator, acting on such spaces, has a
certain (sub-)chaotical behavior. More precisely, we have the following.

EXAMPLE 3.1.41. Let X be a symmetric space of non-compact type (of rank
one) and p > 2. Then there exist a closed linear subspace X of X (X, if the rank
of X is one), a number ¢, > 0 and an injective operator C' € L(L{ (X)) such that

for any ¢ > ¢, the operator (—A&p + ¢)? generates a global C-regularized cosine

function (C(t))i>o in L} (X). Furthermore, there exists a closed linear subspace X

of X ® X such that the operator ((_ A 0 +o)? é) generates an entire C-regularized
WP

semigroup (So(t))s>0 satisfying that (So(t))s>0 is X-topologically mixing and that
the set of all X-periodic points of (So(t)):>0 is dense in X.

The following theorem is an extension of [329, Theorem 2.1], [76, Proposition
2.1], [78, Theorem 1.1] and Theorem 3.1.36(i).

THEOREM 3.1.42. (i) Assume G is a (C-DS) generated by A, wi,w2 € RU
{—00,00}, w1 < wa and ty > 0. If 0,(A) NiR D (iwy,iwy) N 22k € N and

to
gj: (wl,wQ)ﬁ% — E is a function satisfying that, for every j =1,...,k, Ag;(s) =
isgi(s), s € (w1,wa) N %, then every point in span{g;(s) : s € (w1,w2) N QZ)Q,
1 < j < k} is a periodic point of G(0y,). Assume now that f; : (w1,w2) = E is a
Bochner integrable function such that, for every j =1,...,k, Af;(s) = isf;(s) for

a.e. s € (w1, w2). Put b, = [2efi(s)ds, r € R, 1< j<k.

w1

(i.1) Assume span{f;(s) :s € (wi,w2) \Q, 1 < j < k} is dense in E for every
subset Q0 of (w1,ws) with zero measure. Then G is topologically mizing
and G(0:,) is topologically mizing.
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(i.2) Put E = span{¢,; :r € R, 1 < j < k}. ThenG is E-topologically mizing
and the part of G(6y,) in E is topologically mizing in the Banach space
E.

(ii) Assume G is a (C-DS) generated by A, to > 0, E is a closed linear subspace
of E, Ey := span{z € Z(A) : 3\ € C, Re) < 0, G(dy)x = e Mz, t > 0},
Eo :=span{zr € Z(A) : IA € C, ReX > 0, G(6;)x = eMx, t > 0} and Eper =
span{z € Z(A): IN € Q, G(6;)x = ™z, t > 0}. Then the following holds:
(ii.1) If Eg N E is dense in E and if E is a dense subspace of E, then G is
E- topologically mizing; if G(6;)(Eo N E) C E, t > 0, then the part of
G(d,) in E is topologzcally mizing in the Banach space E.
(ii.2) If Eper N E is dense in E, then the set of E—perzodzc points of G is dense
in E; if, additionally, E per 15 @ dense subspace of E, then the set of all
periodic points of the part of the operator G(dy,) in E is dense in E.

PrROOF. We will prove the assertion (i.1). By Riemann-Lebesgue lemma and
the dominated convergence theorem, we have that lim|,| . ¥r; = 0 and that the
mapping r — v, j, r € R is continuous (1 < j < k). Then G(&) f;(s) = ' f;(s) for
a.e. s € (wi,wa2), G(01)Yrj = Yrqe,j, t 20,7 € R, 1 < j <k andspan{e,; : 7 € R,
1 < j <k} C D(G). Using the proof of [329, Theorem 2.1], it can be easily seen
that span{¢, ; : 7 € R, 1 < j < k} is dense in E. So, it suffices to show that, given
y, z € span{e, j : 7 € R, 1 < j < k} and € > 0 in advance, there exists to > 0 such
that, for every t > tg, there exists x; € Z(A) = D(G) such that:

(197) ly — z¢]l < e and ||z — G1(dp) x| < e.

Let y = Y% cuppy g and z = Y11, Biaby, 5, for some oy, B € C, 1, 7 € R
and 1 < i,4; < k. Then there exists to(¢) > 0 such that || )", By, il < e
and G(6:) 3212y Bitbs, 45, = % t = to(e). Furthermore, there exists t1(¢) > 0
such that [|G(6,)y|l = || >oj; auhr 44, ]] < €, t = ti(e). Then (197) holds with
to = max(to(e), t1(e)) and xy = Y7L Biwys, 5, + Y, t = to. The operator G(dy,) is
obviously topologically mixing, which completes the proof. O

REMARK 3.1.43. (i) Assume the function f; : (w1,ws) — E is weakly continu-

ous for every j =1,...,k, to > 0 and 2 is a subset of (w1,ws) with zero measure.
Then
span{f;(s) : s € (wi,w2) N27Q/ty, 1 < j < k}
=span{f;(s) : s € (w1,w2), 1 k}*spanU {fj 05 € (wy,wa) \ 0.

(ii) Let £ be a subset of (w1, we) with zero measure, let » € Rand let 1 < j < k.
Then ¢, ; = fwg e fi(s)ds € span {f;(s) : s € (w1,wa) \ Q}.

(i) Assume that the mapping r — 1, ;, r € R is an element of the space
LY(R : E) for every j = 1,...,k. Then the inversion theorem for the Fourier
transform implies that there exists a subset 2 of (w1,ws) with zero measure such
that span {f;(s) : s € (w1, w2) N Q, 1 < j <k} =span{¢),; :r € R, 1 <j <k}
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(iv) By multiplying with an appropriate scalar-valued function, we may assume
that, for every j = 1,...,k, the function f;(-) is strongly measurable (cf. also [329,
Remark 2.4]).

The following example illustrates an application of Theorem 3.1.42(i) and can
be formulated in a more general setting.

EXAMPLE 3.1.44. Assume o > 0, 7 € iR \ {0} and E := BUC(R). After
the usual matrix reduction to a first order system, the equation Tusy + uy = Qugy
becomes

d . . d 0 1

%u(t) = P(D)i(t), t > 0, where D = — —x, P(z) = [_ng }
and P(D) acts on E @ E with its maximal distributional domain. The polynomial
matrix P(x) is not Petrovskii correct and [89, Theorem 14.1] implies that there
exists an injective operator C' € L(E @ E) such that P(D) generates an entire
C-regularized group (T(2)).cc, with R(C) dense. Put w; = —oo and wp = 0,

1
g

resp. wi = 0 and wy = +oo, if Im7 > 0, resp. Im7 < 0. Then L“S c

(—00,0), s € (w1,ws). Let hy(s) := cos(-(T=—= _15)1/2) ha(s) = sin(-( TS —is)1/2),
s € (w1,wz) and let f € C*°((0,00)) be such that the mapping s — fj( s) ==
(f(s)h; (s),isf(s)hj(s))T, s > 0 is Bochner integrable and that the mapping

. fi(s), sé€ (wi,w2)
~ {0, s ¢ (w1, ws)

belongs to the space H'(R) for j = 1,2. Put 1, ; = f:’f e fi(s)ds,r €R,j=1,2
and E = span{, ; : 7 € R, j =1,2}. By Bernstein lemma [14, Lemma 8.2.1,
p. 429], Theorem 3.1.42(i.2) and Remark 3.1.43(i)—(iii), one gets that (1'(t))i>o is
E- topologically mixing as well as that for each to > 0 the part of the operator
C~1T(ty) in Eis topologically mixing in E and that the set of E—perlodlc points

of such an operator is dense in E.

The hypercyclic and topologically mixing properties of abstract time-fractional
equations have been recently considered in [243]. The results obtained there can
be applied in the study of time-fractional equations on symmetric spaces of non-
compact type and time-fractional equations involving bounded perturbations of
Ornstein-Uhlenbeck operators ([76]).

2. Various classes of distribution semigroups

In the remaining part of the book, we primarily consider the case C' =
although one can reformulate a great part of our results in the case of general
C. We start with the recollection of fundamental properties of smooth distri-
bution semigroups introduced by Balabane and Emamirad [21]-[23] and further
studied by Arendt and Kellermann [7], El-Mennaoui [117], Hieber [148], Kunst-
mann, Mijatovié and Pilipovié¢ [257] and Miana [311]-[315]. Denote by S, the
space of all infinitely differentiable functions f : [0,00) — C such that g, »(f) :=
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sup, s [t™ f(™ ()] < oo for all m, n € Ny. It is well known that gy, ,(-) is a semi-
norm on Sy for all m, n € Ny and that the system (g, ,) defines the Frechét
topology on S;. The dual space &, is said to be the space of tempered distribu-
tions on [0,00). In what follows, we assume that S’ is equipped with the strong
topology. Further on, let Dy := {f € C*([0,00)) : f is compactly supported}.
Define £ : D — D4 by K(p)(t) :== ¢(t), t =2 0, ¢ € D. We know that D, is an
(LF) space, and due to the theorem of Seeley [380], there exists a linear contin-
uous operator A : Dy — D satisfying KA = Ip,. Let qu(f) := fooo tR| £ F) (2)| dt,
f € Ny, f € S;. Following Miana [311], we denote by AC*)(t*) the comple-
tion of Sy in the norm ¢ (-). It is checked at once that AC®)(t*) — ACW) () if
0 < j < k. Given f € D, the Weyl fractional integral of order o > 0 is defined

by (W=ef)(t) == [ (3;25) "f(s)ds, f € Dy, t > 0. It is well known that, for
every a > 0, the mapping W~ : Dy — D, is bijective. The inverse mapping of
W=<(-), denoted by W<(-), is called the Weyl fractional derivative of order o > 0.
If « € N, then Wof = (=1)*f(™, f € D,. Furthermore, WeW?# = Wt8 for
all o, B € R, where we put W° := I. In Subsection 3.3.1 we will employ a some-
what different notion. By AC(t*) we denote the completion of the normed space

(D+awa)a where Woz(f) = fOOO ta|(Waf)(t)| dt, f € D+-
DEFINITION 3.2.1. A smooth distribution semigroup is a continuous linear map-
ping G : 84 — L(E) which satisfies:
(i) Glpxy) =G(P)G(Y), ¢, ¢ € Sy and
(ii) there exists a dense subset D of E such that for all x € D there exists a
continuous function u, : [0,00) — E such that G(p)z = [~ ¢(t)u,(t) dt,
peSy,zeD.

If G is a smooth distribution semigroup, then for every regularizing sequence
(pn) in Dy, we have lim,, o, G(p,) = I. Put G(¢) := G(K(¢)), ¢ € D. By [311,
Proposition 4.3], it follows that D)(L(E)) > G is a dense distribution semigroup.
The infinitesimal generator of G is said to be the infinitesimal generator of G.

PROPOSITION 3.2.2. [311, Proposition 4.7] Suppose o > 0 and A is the gen-
erator of an a-times integrated semigroup (S (t))i>0 which satisfies || Sq(t)]] <
Mt*(14+t%), t > 0 for some M >0 and 8 > 0. If A is densely defined, then A is
the generator of a smooth distribution semigroup.

Suppose a > 0 and G is a smooth distribution semigroup. If G can be contin-
uously extended to a mapping from AC(®)(t*) into L(F), then we say that G is a
smooth distribution semigroup of order c.

THEOREM 3.2.3. Suppose A is densely defined and o« > 0. Then the following
assertions are equivalent:

(i) A is the generator of an a-times integrated semigroup (Su(t))i=o0 which
satisfies ||Sq(t)|| < Mt*, t > 0 for some M > 0.
(ii) A is the generator of a smooth distribution semigroup of order c.

The class of strong distribution semigroups has been recently introduced and
analyzed in [257].
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Let ¢ € D and ffooo @(t)dt = 1. Put, for every ¢ > 0, ¢.(t) :== Lp(L) and
0-(t) =[S p(s)ds, t € R.

DEFINITION 3.2.4. An element G € D{(L(FE)) is said to be a strong distribution
semigroup if (dy) and (dz) hold with C' = I (cf. Subsection 3.1.3) and
(d2): There exists a dense subset D of E such that, for every z € D and
¢ € D with [*_o(t)dt =1, we have lim. o4 G(pb:)z = G(p)z.

By [257, Theorem 3|, we know that every strong distribution semigroup satis-
fies (d5) with C' = I and, owing to Proposition 3.1.18, G is a distribution semigroup.
It can be simply verified that every generator A of a strong distribution semigroup
is stationary dense with n(A) < 1 as well as that every dense distribution semigroup
is a strong distribution semigroup with D = R(G). Furthermore, the condition (dg)
can be characterized by the value of the operator-valued distribution G~' in the
sense of Lojasiewicz (cf. [257, Corollary 1]).

The following theorem follows from the proof of [257, Corollary 1] and a simple
reasoning.

THEOREM 3.2.5. Supposea >0, g € (0,1), 7 € (0,00), M > 0 and A generates
an a-times integrated semigroup (So(t))icjo,r)- Denote by Ey the set which consists

of all elements x € E such that limy_,o w = 0. If Ey is dense in E, then
A generates a strong distribution semigroup. In particular, this holds provided

[Sa(®)]l < Mto=P, t € [0, F).

It is predictable that there exists a distribution semigroup which does not
satisfy (dg).

ExXAMPLE 3.2.6. Let B be the generator of the standard translation group on
L'(R). We have already seen that the operator A = (B*)? is the non-densely
defined generator of a sine function in L>°(R) and that n(A4) = 1. Taking into
account Theorem 2.1.11 and Lemma 2.1.22, one gets that the operator A generates
a twice integrated semigroup in E' x E. This implies that the operator A generates
a distribution semigroup G in F x E. Since n(A) = 2, G does not satisfy (dZ).

QUESTIONS. (i) Suppose A generates a distribution semigroup G and n(A4) = 1.
Does it imply that G is a strong distribution semigroup?
(ii) Suppose G is a strong distribution semigroup and
(d&°"): For every z € E and p €D with 75 e)dt=1, lim._,0+ G(pb:)z =G (p)x.
Does (d€°") automatically hold?

Now we would like to inscribe the basic structural properties of [r]-semigroups
[217]. Suppose © > 0, k € Ny and set

k k
(@) = D0 1 p.oeyyr 4 (#) = DOIIEE D) D 11 000y © € D
i=0 1=0

It is well known that the inclusion mapping id : (D4, prk) = (D4, i) is a contin-
uous mapping between normed spaces. Denote by Tk, resp. D,k, the completion
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of the space (D4, pri), resp. (D4, qri). Further on, put hy(t) := e MH(t), t € R,
where H(-) denotes the Heaviside function. Then hy(t) € T,xND, for all A€ C with
Re A > r, and moreover, T, and D, are algebras for the convolution product *g.

DEFINITION 3.2.7. Suppose © > 0, k € Ny and G is a distribution semigroup.
Then it is said that G is an [r, k]-semigroup, resp. {r, k}-semigroup, if GA can
be continuously extended to a continuous linear mapping from T;.k, resp. D,, into
L(E). We say that G is an [r]-semigroup, resp. {r}-semigroup, if there exists k € Ny
such that G is an [r, k]-semigroup, resp. {r, k}-semigroup.

It is obvious that every {r, k}-semigroup is also an [r, k|-semigroup, r > 0,
k € Ny and that, for every r > 0, there exists a densely defined operator A such
that A is the generator of an [r, 1]-semigroup and that there is no k € Ny such that
A is the generator of an {r, k}-semigroup. Further on, the class of [r, 0]-semigroups,
{r, 0}-semigroups and (r, 0)-semigroups, introduced by Wang in [418], coincide for
every 7 > 0. Therefore, the necessary and sufficient condition for a closed linear
operator A to be the generator of an [r,0]-semigroup [418] is that there exists
M > 0 such that (r,00) C p(A) and that

ar Mn!
| G
As a consequence, we have that every Hille-Yosida operator is the generator of an
[r, 0]-semigroup for a convenable chosen r > 0.

THEOREM 3.2.8. [91], [217] Suppose r > 0, k € Ny and D(A) is dense in E.
Then the following assertions are equivalent:

R(A;A)Hg A>r, neN.

(i) The operator A is the generator of an {r,k}-semigroup.
(ii) The operator A —r is the generator of an exponentially bounded k-times
integrated semigroup (S(t))i>o0 such that |S(t)|| = O(t¥), t > 0.
(iii) There exists M > 0 such that (r,00) C p(A) and that
&’ [R(A+7: A) (k+ )
Wl ’ s M

(iv) The operator r — A admits a smooth semispectral distribution of degree k.

A>0, 5 €Np.

We summarize the properties of [r]-semigroups in the following theorem.

THEOREM 3.2.9. [217] (i) Suppose A is the generator of an [r, k]-semigroup for
somer =20 and k € N. Then {\ € C:ReX > r} C p(A) and there exists M > 0
such that, for every n € N and A € C with Re A > r, the following holds:

Mn(n+1)-- (n+k—1)|\F
(Re A — r)ntk '

(ii) Suppose A is the generator of an [r,k]-semigroup G for some r > 0. Then
G is a smooth distribution semigroup and n(A) < 1. Furthermore, if E is reflexive,
then A must be densely defined.

(iii) Suppose m, m — k € Ng, r > 0 and A is the generator of a k-times
integrated semigroup (Sk(t))io such that ||Sy(t)|| = O (e (t* +t™)), t > 0. Then
A is the generator of an [r,m]-semigroup.

|ROA:A)™|| <
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(iv) Suppose that A — r is the generator of a k-times integrated semigroup
(Sk(t))i=0 such that ||Sk(t)|| = Otk +t™), t > 0. Then A is the generator of an
[r, m]-semigroup.

(v) Suppose that A is the generator of an [r, k|-semigroup for some r = 0 and
k € Ng. Then the part of A —r in D(A) generates a k-times integrated semigroup
(Sk(t))i=0 in D(A) satisfying ||Sk(t)|| = O(* + %), t > 0.

(vi) Suppose A is a closed linear operator, r > 0 and {A € C: ReX > r} C
p(A). If there exist k € Ng and M > 0 such that

IAF
(Re X — r)k+1’

(198) [RA:A)|| < M Re\ > 7,
then A is the generator of a (k + 2)-times integrated semigroup (Sk(t))i>0 which
satisfies || Sk(t)|| = O(min(e™t*+1, e t*2)), ¢t > 0 and A is the generator of an
[r, k + 2]-semigroup.

(vil) Suppose that A is the generator of an [r,k|-semigroup for some r > 0
and k € No. Then A is the generator of a (k + 2)-times integrated semigroup
(Sk+2(t))ez0 such that ||Spi2(t)|| = O(min(e™t*+1 emtth+2)) ¢ > 0.

(viii) Suppose A is a closed linear operator and r = 0. Then A is the generator
of an [r]-semigroup iff there exist k € N and M > 0 such that {\ € C:Re\ >r} C
p(A) and that (198) holds iff there exists k € N such that A is the generator of a
k-times integrated semigroup (Sk(t))eso such that ||Sk(t)|| = O(e™t*), t > 0.

(ix) Suppose A is a closed linear operator and r > 0. Then A is the generator
of an {r}-semigroup iff there exist k € N and M >0 such that {\€C:ReA >r} C
p(A) and

A=l
(Re A — r)k+1’
iff there exists k € N such that A — r is the generator of a k-times integrated
semigroup (Sk(t))i=0 such that ||Sk(t)|| = O(tF), t > 0.

IR(:A)| < M Rel > r

DEFINITION 3.2.10. [91] Denote by A the space consisted of all Laplace trans-
forms of functions from S, equipped with the following system of seminorms:

gl = 11/ 6™ (B)ll(0.00): 5 b € No, g = L{g) € A

A smooth semispectral distribution for A is a continuous algebraic homomorphism
f: A— L(E) which satisfies:

(i) {A€ C:ReX <0} C p(A) and f(5=) = R(\: A) whenever Re A < 0,
(i) f(g(%))z =z, n— oo for all z € E and g € A such that g(0) = 1.

If —A admits a smooth semispectral distribution, then A must be densely
defined. We refer the interested reader to [104] for the notion of a regularized quasi-
spectral distribution which removes any density assumption from Definition 3.2.10.
Suppose that A is the densely defined generator of a global k-times integrated
semigroup (Sk(t))i>0 which satisfies ||Sk(t)|| = O(*(1 + ")), t > 0 for some n,
k € Ny. Then it is well known that —A admits a smooth semispectral distribution.
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THEOREM 3.2.11. (i) Suppose that A is a closed, densely defined linear operator,
m,k € N and m > k. Then the following assertions are equivalent:

(i.1) A is the generator of a distribution semigroup G and there exists C > 0
such that |G(p)|| < C [7°(tF +t™)[p®)(t)| dt, ¢ € D.

(i.2) A is the generator of a k-times integrated semigroup (Sk(t))i>o0 such that
IS = Ot* + ™), t > 0.

(i.3) —A admits a smooth semispectral distribution f(-) such that, for an ap-
propriate C > 0, || £(p)|| < C|(t* +t™)o®)|1, ¢ € D.

(ii) Suppose A is a closed, densely defined linear operator and r > 0. Then the

following assertions are equivalent:

(ii.1) A is the generator of an [r]-semigroup.

(ii.2) r— A admits a smooth semispectral distribution f(-) such that there exists
an appropriate C > 0 with ||f(@)|| < C [;°(tF + t™)|e®)(t)|dt, € D,
for some k, m € N with m > k.

(ii.3) A is the generator of a k-times integrated semigroup (Sk(t))i>0 such that
|Sk(t)]| = O(e™t (t* +t™)), t = 0 for some k, m € N with m > k.

(ii.4) A —r is the generator of a k-times integrated semigroup (Sk(t))i>o0 such
that | S (t)|| = O(tF +t™), t = 0 for some k, m € N with m > k.

It is also worth noting that, for every generator A of an [r, k]-semigroup, where
r 2 0 and k € N, the operator r — A admits A2, functional calculus for all n € N
with n > k + 1 (cf. [91] for the notion).

EXAMPLE 3.2.12. (i) [8] Let p € (1,0). Denote by J, the Riemann-Liouville
semigroup on LP((0,1)), that is

DN = 115 / @9y () dy, f € L((0,1)), € (0,1), Rez > 0.

Designate by A, the generator of J,. Then the operator ¢4, generates a Cp-group
(Tp(t))t@R on LP((0, 1)) and the following holds ||T;,(2)|| = O((1 + 2)elt1%), t € R.
Set Gp(p) =[5 @ t)dt, ¢ € D. Then G, is a dense [J,2]-semigroup in
Lr((0, 1)) Wlth the generator iA,. Evidently, —iA, is also the generator of a [7,2]-
semigoup in LP((0,1)).

(i) [101] Suppose p € [1,00) and m : R — (0,00) is a measurable function
which satisfies:

m(s—1t)\» &
1 TS ZUNY < M1+ %), t >0,
(199 (o Sy )7 <. 20
for some k € N and M > 0. Let r > 0 be fixed. Put (T,(t)f)(z) := €™ f(z + t),
z eR,t >0, fe LP(R, m(t)dt). Then (T,(t))i>0 is a Co-semigroup in LP(R,
m(t)dt) and

m(s—t)\»

T,(t)| = e ——)° =0(e"(1 + t%)).

IT,(8)] = e (i‘ép o) SOl

Put now Gp(¢) := [~ @(t)Tp(t)dt, ¢ € D. Then G, is a dense [r, k]-semigroup

in LP(R, m( )dt) Notice, 1f m() is a positive polynomial, then (199) holds for
appropriate numbers k£ € N and M > 0.
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(iii) [14] Suppose r > 0,

E = {f € C([0,00)) : zlggo a{f)l 0},
|f( )|

1fIF:= D1  feB, (TOf) (@)= flz+1), feE, t>0, 2>0.

Then (T'(t))+>0 is a Co- semigroup and | T(¢)|| =1 +¢, t > 0. The generator A of
(T(t))i>0 is just the operator - with maximal domain in E. Set

G(yp) = /OOO et)e™ T (t)dt, ¢ € D.

Then G is a dense [r, 1]-semigroup with the generator A 4+ r. Suppose that G is an
{r, k}-semigroup for some k € N. Then A generates a k-times integrated semigroup

(Sk(t))i>0 such that ||Sk(t)] = O(tF), t > 0. Since S(t fo (k 1),1 (s) ds,
t > 0, it follows that

t
1 (t—s)F1
T+ / o1 @t eds

0

< Mtk sup |ff)1|, fer t>0.

x>0 T

Let f(t) = v/t, t > 0. Then one gets

t

(t—s)k
[ G v <
0 0

t

[ v <

This is a contradiction. Furthermore, for every k € Ny, the operator A generates
a k-times integrated semigroup (Sk(t)):>0 such that ||Sk(t)|| = O(tF +t*+1) ¢t >0
and there does not exist a number « € [0,k + 1) such that || Sk (t)| = O(tF +t*+1),
t>0.

(iv) [217] For every r > 0 and k € N there exists a dense [r, k]-semigroup which
is not an [r, k — 1]-semigroup. Indeed, suppose that T' € L(FE) is nilpotent and that

Tk+1 = 0. Define
k} P
Tt
R o
t):=e ; B ,t

Then [|T(t)|| = O(e™ (1 +t¥)), t = 0, (T'())i>0 is a Co-semigroup generated by
T +r and T + r generates a dense [r, k]-semigroup. Put now E := R*+! with the
sup-norm and

T(xl,:zzg,...,:ck+1) = (xg,...,:ck_i_l,O), z,eR 1=1,2,...,k+ 1.

Then TF*! = 0 and T + r generates an [r, k]-semigroup G. Suppose that G is an
[r, k — 1]-semigroup. By Theorem 3.2.9, it follows that the operator T' generates a
(k — 1)-times integrated semigroup (S_1(t))¢>0 such that ||Sx_1(t)| = O#*~! +
t2k=2)_ If k = 1, this means that T generates a bounded Cy-semigroup. Then the
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contradiction is obvious since ||e " T(t)|| = 1 +¢t+ -+ + tk—li, t>0 Ifk>1and
t > 0, then
¢

(t B S)k_2 —rs
Sk—1(t) (1,22, ..., Tpy1) = We T(s)(x1,Z2, ..., Tkt1)ds.
0
On the other hand, direct computation shows that
tk_l tQk—l
Sg_1()|=———+4+———,t=>0.
[Sk—1 ()]l CEE R T

This is in contradiction with ||Sgx_1(t)|| = O(tF~! + 2F=2).

Now we clarify the basic properties of differentable and analytic distribution
semigroups. Recall, a scalar valued distribution ¢ is defined by &,(¢) = ¢(t), ¢ € D
(t eR).

We introduce differentiable and analytic semigroups following the approach of
Barbu [28] (cf. also Da Prato, Mosco [85]—-[86] and Fujiwara [135]).

DEFINITION 3.2.13. Suppose that G is a distribution semigroup and that o €
(0, 3]. Then it is said that G is an (infinitely) differentiable distribution semigroup,
resp. an analytic distribution semigroup of angle «, iff the mapping t — G(d;) €
L(E), t > 0 is (infinitely) differentiable, resp. iff the mapping ¢t — G(&;) € L(FE),
t > 0 can be analytically extended to the sector ¥,, where we assume that L(E)
is equipped with the strong topology.

The next characterization of differentiable distribution semigroups with densely
defined generators was proved by Barbu.

THEOREM 3.2.14. [28] Suppose that A is a closed, densely defined linear oper-
ator. Then A generates a differentiable distribution semigroup iff there exist n € N
and w = 0 such that, for every o > 0, there exist Cy > 0 and M, > 0 such that

(200)
Tow:={A€C:—cln|[ImA|+ Cr <ReA<w}U{A€C:Rel>w} C p(A)
(201) [R(A:A)[| < Mo (14 [A))", A€ Yo

Further on, every dense differentiable (DS) G must be infinitely differentiable
and exponential [28]. Now we state the following important extension of Theo-
rem 3.2.14.

THEOREM 3.2.15. Suppose A is a closed, linear operator. Then the assertions
(1), (ii), (iil), (iv), (v) and (vi) are equivalent, where:
(i) There exists n € N such that A generates an exponentially bounded n-

times integrated semigroup (S, (t))i>0 such that the mapping t — Sy(t),
t > 0 s infinitely differentiable.

(ii) There exists n € N such that A generates an exponentially bounded n-
times integrated semigroup (Sp(t))e=0 such that the mapping t — Sp(t),
t >0 is (n+ 1)-times differentiable.

(iii) A generates a differentiable distribution semigroup.
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(iv) There exist n € N and w > 0 such that, for every o > 0, there exist
Cy > 0 and M, > 0 such that (200)-(201) hold.

(v) There exists n € N such that A generates a global n-times integrated
semigroup (Sp(t))i>0 such that the mapping t — S, (t), t > 0 is infinitely
differentiable.

(vi) There exists n € N such that A generates a global n-times integrated
semigroup (Sp(t))i>o0 such that the mapping t — Sy (t), t > 0 is (n + 1)-
times differentiable.

PrOOF. The implication (i) = (ii) is trivial. Suppose that (ii) holds and put
Glp)z = (-1)" [, ™ (t)S,(t)xdt, x € E, ¢ € D. Then G is an (EDSG) and,
by the closed graph theorem, the differentiability of G follows immediately if one

shows that (‘ft,LS (t) € G(d:), t > 0. Since

G(6:) ={(z,y) € ExX E: G(p(- — t))x = G(p)y for all ¢ € Dy}, t > 0,

we have to prove that:

(202) / @™ (s—1)Sy(s)x ds = / 0™ (5)S,(s)S™ (t)zds, z € E, t > 0, ¢ € D.
0 0

Towards this end, notice that, for every ¢ € Dy, t > 0 and x € F,
o0 o0 d'n,
/ o) ()50 ()™ (£) ds = / P (5) 8. (5)Su (B ds

0

:7 dtnl<t/+s /t> t+;:: 15’ (r)xdr] ds

0 s 0
7 dn 1 et -2 1
(t+s—r)" s"T
(ﬂ 2
/ | l(/ /) =2 Sy (r)x dr = 1)!Sn(t)x1 ds
0 s 0
) t+s t
d” 1 (t+s—r)" -2
(n)
/ dt" 1{(/ /) " =2) Sp(r)xdr| ds.
0
Repeating this procedure sufficiently many times leads us to the following:
/(p(")(s)Sn(s)Sr(L") t)xds = /cp(”)(s)Sn(t +s)rds = /cp(”)(s —t)Sp(s)zds.
0 0 0

Thus, (202) holds and G is differentiable, as claimed. Suppose now that A generates
a differentiable distribution semigroup G and that ¢ > 0. By [249, Theorem 3.5],
the operator A is stationary dense. Put F' := D(A™4)). Then one can simply
verify that G|p is a dense (DS) in the Banach space F' with the generator Ap.
This implies that there exists n € N such that (cf. [216], [252] and [418]), for
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every k € N, A|p generates a local (kn)-times integrated semigroup (S,fn(s))se[o,kt)
in F' which additionally satisfies:

oo

0

Let 2 € Doo(A). We will prove that G(d;)x € F' and that G|p(d;)x = %Sﬂ(?ﬁ)x.
Suppose ¢ € Dy, (xk—1)¢) for some k € N with k > 3. Since

(s (k=2)n—1
Skn(s) /(((k'—)Q)n)SQn( ):L‘d?”, ERS [O,Qt),
0

we have

S,fn(s)(f; SF (1) )T:t — slfn(s)(d ,mS,m( r)z )T:t ((j::nSkn( )an(r)x)rzt

for all s € [0, (k — 1)t). The proof of the implication (ii) = (iii) implies

[e%S) s d
/ Pt (s — 1)S{ (s)2 ds = / o (3) (g Sk (5)SE(r)) _ ds.
0 0

Hence, G(6;)r = G|p(0t)x = dtz; S (t)z, © € Ds(A). On the other hand, ex-
ploitation of [249, Proposition 2.1(iv)] gives that Dy (A) = F, and the continuity
of mapping ¢ — G(d;), t > 0 implies G(d;)z = G|p(d;)x € F. By the foregoing, one
has that G|p is a dense differentiable (DS) in F' generated by A|p. The assertion
(iv) is a consequence of Theorem 3.2.14 and [249, Corollary 2.2]. The implication
(iv) = (i) can be proved by the next insignificant modification of the proof of [355,
Theorem 4.7, p.54]. Suppose wy > w and put

2C,

—e" 7},

I':={AeC:ReA=2C, —oln(—ImM\), —oo<Im/\<
Iyi={A€C:Red=uwp, e o <ImA<e7"}
={AeC:ReA=2C, —cln(Im)), e glmx\<—|—oo},

I=TyUl'y UTsand 'y, := {A € ' : |\| < k}. The curves I" and T'; are oriented so
that Im X increases along I' and T';, i = 1,2, 3. Set, for a sufficiently large kg € N,

1 R(X:A)
ki . Y
ST (t) == o S dr, 120, k> k.
Tk
It is simple to prove that 5= 4Gk (4) = 377 Jp, N TTTPR(A A AN t = 0, Kk > ko,
7 €N. Let kg < k <l and ¢ > 0. Then we obtain
Hf t) - @ H == MM TT2R(A:A) dA
dti dtﬂ 2mi '

Iy N {AeC k<|NKI}
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M, i
< Const = e2Cqt / | Tm A7 (|2C, — In|Tm A| + i Tm A|)’~*|dA|,
T
;N {AEC kN

for all j € No. Since |TmA|=7*(1+ |2C, — In|Tm A| + i Tm A[)’ > ~ [ Tm AJ =27,
|A\| = 00, A € T, one gets that, for every ¢ > max (%, 0) and j € Ny, the sequence
(C‘thg Sk(t)),, is convergent in L(E) and that the convergence is uniform on every
compact subset of [ max (j ,0) +¢,00). Put S;(t) := hmkﬁoo = —Sk(t), j € Ny,
t> J . It is obvious that £.5;(t) = S;j+1(t), j € No, t > L +¢. This 1mphes that the

rnappmg t— So(t), t > j+2 + ¢ is j-times differentiable and that 4= =~ So(t) = S;(1),
t> L 4¢. Set also

1T RO A)
At :
= — > 0.
S(t) = 5 / MDDy, 120
wp—100

Then the proof of [14, Theorem 2.5.1] implies that (S(¢)):>0 is an exponentially
bounded (n+2)-times integrated semigroup, and thanks to the residue theorem, we
have that So(t) = S(¢), t > % Consequently, the mapping t — S(¢), t > %+§ is j-
times differentiable. The arbitrariness of o shows that the mapping ¢ — S(t), t > 0
is infinitely differentiable, as required. Therefore, we have proved (i) < (ii) < (iii)
< (iv). The proof of implication (v) = (vi) is trivial and the proof of implication
(vi) = (iii) can be obtained following the lines of the proof of implication (ii) =
(iii). Certainly, (iii) = (i) = (v) and the proof of theorem is completed. O

Multiplication operators in L°°-type spaces can serve as examples of non-
densely defined generators of differentiable (DS)’s.

REMARK 3.2.16. (i) Suppose that A generates a differentiable (DS) G. Then
the proof of Theorem 3.2.15 yields that the mapping t — G(d;), t > 0 is infin-
itely differentiable and that G(p)z = [;° ¢(t)G(6;)x dt for all z € E and ¢ € D
with supp¢ C (0,00). Furthermore G is an (EDS) G|r is a dense (DS) in the
Banach space F' generated by Ajp and G| is differentiable whenever G is; in
this case, G(6;)r = G|p(dt)x, t > 0, » € F. By Theorem 3.2.15, there exists
n € N such that A generates an exponentially bounded n-times integrated semi-
group (Sp(t))¢>0 such that the mapping t — S, (t), t > 0 is infinitely differentiable.
Hence, G(6; * pr)x = )" Jop (") (s — t)Sp(s)zds = [;° pr(s — t) 4= Sp(s)z ds
and limg_, o G(9; * pk):c = G(ét)az z € E. Furthermore, the Lebesgue dominated
convergence theorem implies

d il s (n+1) x dn+1
GGG o= (1 [ s =08, (s)ads = [ puls = ) g Sals)ads,
0 0
li iG((S * Pk iG((S) = LHS (t) €FE
foo df VOt PRI = SOT = g oD T, S B
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Inductively,
d it [ (D) i !
o —=G(6¢ * pr)w P Pr(s d n+lS (s)x ds,
0 0
dl d dntt

Having in mind [249, Proposition 2.1, Corollary 2.2], we get that the spectral char-
acterizations clarified in [28, Theorem 4, Corollaries p.423 and 427, Theorem 5]
present necessary conditions for the generation of non-dense distribution semigroups
of class CF, A°, o > 1 and A8, 021, v > 0. The sufficiency of such spectral
characterizations follows from (203) and the proofs of cited results. In particular,
[28, Corollary, p.423] completely describes the spectral properties of generators
of non-dense real analytic (DS)’s. Important examples of distribution semigroups
of class C* with L; = j!s/j, s > 1, j € Ny follows from the researches of Belin-
skiy, Lasiecka [39], Chen, Triggiani [57], Favini, Triggiani [131], Markin [299] and
Shubov [386].

(ii) Suppose that A generates a global n-times integrated semigroup (S, (t))i>0
satisfying that the mapping ¢ — S, (t), t > 0 is n-times continuously differentiable.
By [224, Corollary 3.3], we have that (%Sn(t))go is a semigroup [155], and
therefore, there exist M > 0 and w > 0 such that ||%S ()| < Me*t, t > 1. This
implies that (S, (t)):>0 must be exponentially bounded, and the equivalence (ii) <
(vi) of Theorem 3.2.15 is not surprising. If, additionally, the mapping ¢t — S, (¢),
t > 01is (n+ 1)-times differentiable, then the proof of Theorem 3.2.15 implies that
the mapping t — S, (¢), t > 0 is infinitely differentiable.

(iii) Let us note that Renardy [372] proved that there exists a differentiable
Co-semigroup and its bounded perturbation that is not differentiable. Some other
references on differentiability of perturbed semigroups are [29]-[31], [112], [165]
and [234].

PROPOSITION 3.2.17. [234] (cf. also Theorem 2.1.31) Suppose A is a closed
linear operator, K satisfies (P1), r > 1 and there exists w > 0 such that, for every
o > 0, there exists C, > 0 such that the function K can be analytically extended to
an open neighborhood Q. of the region Y. Denote, for every o > 0, by go(+)
the analytic extension of the function K to the region Qo and suppose that, for
every o > 0:

(1) Qow={N€ Yo : go(A) # 0} C pc(A),
(ii) there exists an analytic function he : Qs — L(E) such that he(N) =
GoAN) A= A)7IC, XN € Qpyy and

(ili) there exists My, > 0 such that ||he(X)|| < Mo|A]", A€ Yo
Then, for every ¢ > 1, A is a subgenerator of a norm continuous, erponentially
bounded (K *q %) -convoluted C-semigroup (S(t))i>o satisfying that the mapping
t— S(t), t > 0 is infinitely differentiable.
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THEOREM 3.2.18 (Differentiability of integrated semigroups, [234]). (i) Sup-
posen € N, w' >0, M >0 and A is the densely defined generator of an n-times
integrated semigroup (S, (t));>0 which satisfies ||Sn(t)|| < Me“t, t > 0. Then the
following assertions are equivalent:

(i.1) The mapping t — S, (t), t > 0 is ((n + 1)-times) infinitely differentiable.

(i.2) There exists w > w' such that, for every o > 0, there exists Cx > 0 and

M, >0, such that Y, C p(A) and that

IROGA)| < My A"/ Im A, A € Tow, Red < w.

(ii) Suppose a > 0, W’ > 0, M > 0 and A is the densely defined generator of
an a-times integrated semigroup (Se(t))io0 which satisfies || Sa(t)|| < Me®'t, t > 0.
Then the following assertions are equivalent:
(ii.1) The mappingt — S (t), t > 0 is ((Ja] +1)-times) infinitely differentiable.
(ii.2) There exists w > W' such that, for every o > 0, there exist Cy > 0 and
My >0 such that T4 C p(A) and that

[RO:A)|| < M AN Im A, A € Ty, Red < w.

(iil) Suppose a = 0, w’' = 0, M > 0 and A generates a global a-times integrated
semigroup (Sq(t))i>0. Then the following assertions are equivalent:
(iii.1) The mapping t — S (t), t > 0 is (([a] +1)-times) infinitely differentiable.
(iii.2) There exist m € N and w > 0 such that, for every o > 0, there exist
Cy >0 and M, > 0 satisfying Y5, C p(A) and

IROA:A)|| < My|A™, A€ Tow, Red < w.

The following result is closely related to [28, Theorem 6], [86, Theorem 1.1],
[135, Theorem 4] and clarifies the basic structural properties of non-dense analytic
distribution semigroups.

THEOREM 3.2.19. Let o € (0, 5| and let A be a closed linear operator.

(i) The following assertions are equivalent.
(i.1) A generates an analytic (DS) G of angle «.
(i.2) There exist n € N, M > 0, w > 0 and an analytic function S, : L, —
L(E) so that A generates an n-times integrated semigroup (Sy(t))i>o0
which satisfies Sy (t) = Sp(t), t >0 and ||Sn(t)]] < Me*t, t > 0.
(i.3) There are an n € N and an analytic function S,, : £, — L(E) so that
A generates an n-times integrated semigroup (Sp(t))t>o0 which satisfies
Sn(t) = Sn(t), t > 0.
(ii) A generates an analytic n-times integrated semigroup (Sn(t))i>0 of angle
a for some n € N iff A generates an analytic (DS) of angle a which additionally
satisfies the next condition:

z

) (Z _ S)n—l
> —_— .
(204) 3ngeNVn>=ngVye (0,0) Ve e E3 z%é}rgléilw/ =D G(0s)x ds
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(iii) There is ann € N such that operator A generates an exponentially bounded,
analytic n-times integrated semigroup (Sy(t))i>0 of angle a iff A generates an an-
alytic (DS) of angle o which additionally satisfies (204) and the next condition:

Ing e NVn 2 nqg Vy € (0,0) IMy, wy >0V2z € X,

JEEL e

R
< My Rez,

(n—1)!

(iv) Suppose that, for every v € (0, ), there exist M, >0, wy >0 and n, € N
such that:

(205)  wy + D5y € p(A4) and [RO:A)| < M1+ )™ A€ w, + S5

Then A generates an analytic (DS) of angle a.

(v) Suppose r > 0 and o € (0, 5]. If there exists n € N such that A generates

an analytic n-times integrated semigroup (Sn(t))i>o0 of angle a such that, for every

€ (0,a), there exist M, > 0 and w, > 0 such that ||z"~"S,(2)| < M,e“ Rz,
z € X, then A generates an analytic (DS) G of angle a such that (G(6)).ex,, is
an analytic semigroup of growth order r.

(vi) Suppose r € (0,1) and a € (0, F]. Then A generates an analytic (DS) G of
angle a satisfying that (G(9,)).ex, s an analytic semigroup of growth order r iff A
generates an exponentially bounded, analytic once integrated semigroup (S1(t))i>o0
of angle a satisfying that, for every v € (0, ), there exist M, > 0 and w,, > 0 such
that ||z"~151(2)|| < Mye“vRe= 2 € S iff A generates an exponentially bounded,
analytic r-times integrated semigroup of angle .

PRrROOF. In order to prove (i), notice that the implication (i.2) = (i.3) is triv-
ial and that the proof of implication (ii) = (iii) of Theorem 3.2.15 shows that
the analyticity of G follows automatically from (i.2). It remains to be proved the
implication (i.1) = (i.2). Let A generate an analytic (DS) G of angle a. By
Theorem 3.2.15, we know that there exists n € N such that A generates an ex-
ponentially bounded n-times integrated semigroup (S,(t))¢>0 satisfying that the
mapping t — Sy, (t), t > 0 is infinitely differentiable. One can use again the proof of
implication (ii) = (iii) of Theorem 3.2.15 to deduce that G(d;) = %Sn(t), t > 0.
The analyticity of G shows that the mapping ¢ (;%Sn(t), t > 0 can be ana-
lytically extended to the sector ¥,. Now it is checked at once that the mapping
t — S,(t), t > 0 can be analytically extended to the sector ¥, as required. This
completes the proof of (i). To prove (ii), suppose first that A generates an ana-
lytic no-times integrated semigroup (Sy, (t))i>0 of angle @. Then A generates an
analytic n-times integrated semigroup (S, (¢)):>0 of angle « for all n > ng. By (i),
one immediately obtains that A generates an analytic (DS) G of angle « satisfying
G(6:) = L%Sn(t), t > 0, n > ng. Using integration by parts, we have

t

/(t_s)”_la(gs)x ds = Sn(t)x—i Ui ( i Sn(t)w) » 1> 0, 2 no,

(n—1)! — (n—1d)! \dtn—? t=1
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and the uniqueness theorem for analytic functions implies that, for every z € X,
and n > ng:
z

(z = 5! n (oo 1yt g
/ " G(5,)zds = Su(z)e -3 o (dtnﬂ.Sn(t)x)t:l.

=0

Having in mind the definition of an analytic convoluted semigroup, one directly sees
that (204) holds. The converse statement can be proven similarly. The proof of (iii)
can be deduced along the same lines. As an outcome of the hypothesis in (iv), one
yields that, for every v € (0,a), A generates an exponentially bounded, analytic
(ny + 1)-times integrated semigroup of angle . By (iii), the operator A generates
an analytic (DS) of angle o. In order to prove (v), suppose that A generates
an analytic n-times integrated semigroup (S, (t))i>o of angle a with prescribed
property. By the assertion (i) of this theorem, we have that A generates an analytic
(DS) G of angle « satisfying G(d;) = %Sn(t), t > 0. By [224, Proposition 3.2],
(%Sn(z))zeza is an analytic operator family, T'(z1+22) = T'(21)T(22), 21, 22 € Zq
and T'(t)z = 0 for all ¢ > 0 implies = 0. By the uniqueness theorem for analytic
functions, it follows that, for every z € X, G(6,) = %Sn(z). Let v € (0,) and
let € € (0,0 — ). Then the Cauchy integral formula gives that, for every z € X,
with Im 2z > 0:

» ! Sn(N)
* omi Oyt P

A—2|=|2| sin(y+e—arg(2))

27 .
n! || Sn (2 + | 2] sin(y + & — arg(z))e') ||
<gilal |
2m
0

(206) [|2"G(3.)]| =

|z|sin(y + € — arg(z)) d6

|2[r 1 sin™+ (y + & — arg(2))

|22|n7r

< n!|z|TM,y+ee“’”+E(Rez+|Z|)

In the case r > n, we have that
|z + | 2| sin(y + & — arg(2))e?| < |z| — |2| sin(y + € — arg(z)) < |2|(1 —sing),
and one gets from (206):

s

[z|*"(1 — sine)™™" |
12" G(5,)| < n!|z|’”My+5e“’”+E(Rcz+|zD s = ifn<r.

The preceding estimates also hold for every z € ¥, with Im z < 0 and this completes
the proof of (v).

To prove (vi), let » € (0,1) and let A generate an analytic (DS) G of angle
a satisfying that (G(9,)).ex, is an analytic semigroup of growth order r. Put
S1(t)x = fg G(6)xds, t >0, z € F and assume that A is the integral generator of
(G(8;))1=0. Then it can be simply verified that A C A and that (S (£));>0 is a once
integrated semigroup generated by A. By the foregoing, there exist n € N~ {1} and
an analytic function S,, : ¥, — L(F) so that A generates an n-times integrated
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semigroup (S, (t))i>0 which satisfies S,,(t) =5, (¢), t>0 and ;; S (t)= G(ét) t>0.
Put G(p)z := (—1)" [7° o) (t)S, (H)a dt and H(p)x := — [° ¢/ (t) [5 G(8s)x ds dt,
p€D,ze E. Then G, resp. H, is a (DS) generated by A, resp. A, and the partial
integration implies that G(¢)x = H(p)x = fo o(t G(ét)x dt for all ¢ € Dy )
and z € E. So, G(¢) = H(y), ¢ € Dy and this forces A = A. Since every (local)
n-times integrated semigroup is uniquely determined by its generator, we have that
Sp(t)x = J (tns);), S1(s)xds, t = 0, z € E. Hence, the mapping ¢ +— %Sl(t),
t > 0 can be analytically extended to the sector S, and G(3,) = ££51(z), z € Zq.
Let v € (0,). Then the Lagrange mean value theorem implies that there exists
M > 0 such that

[51(2) = S1(Re 2)|| < |ztan~y|  sup
£€[Re z,2]

jﬁ (f)H < Me™ Rez| 1= 2 € %,
Hence, [|S1(2)|| < [|S1(Rez)|| + MlewrRez|z|1=7 < %e‘*’w Rez|2|1=r, 2 € £, and
consequently, (S1(t))¢>0 is an exponentially bounded, analytic once integrated semi-
group of angle o which clearly fulfills the required property.

The converse statement in (vi) follows from an application of (v). Let A
be the generator of an exponentially bounded, analytic r-times integrated semi-
group (S(t))i>0 of angle a. Then it is clear that A generates an exponentially
bounded, analytic once integrated semigroup (S1(t)):>0 of angle ¢, where Sy (t)x =

g (lf(_lsz;) Sp(s)xds, t 20, x € E. Let v € (—a, ) be fixed. Then Theorem 2.4.10

yields that, for every r’ > r, the operator e’Y A generates an exponentially bounded
r’-times integrated semigroup (S, (t));>0 and that, for every ¢ > 0 and = € E:
t

¢
i , (t—s)™" - /(t
Y Yy — — — Z’YT
e 1S (te)x = Sy 4(t)x /7“1 9 Sr(s)xds =e T e ds.
0 0

Hence,

Sl(z)xzeiarg(z)(l r/ |Z|_3
0

and there exist N, > 0 and «/, > 0 such that [|Si(2)|| < N,|z|'~" e Rez 4 e
¥,, as required. Assume again that A generates an analytic (DS) G of angle «
satisfying that (G(0,)).ex, is an analytic semigroup of growth order r. Put, for

every x € E;t >0and v € (—a,a) : S~ (t)x = fo F(T) e G (0506~ )z ds. The first
part of proof shows that (G(d¢))i>0 is a Semlgroup of growth order r > 0 whose
integral generator is A and this implies that, for every v € (—a, @), (G(dteiv))i>0
is a semigroup of growth order r > 0 whose integral generator is e”A and that
(Sr~(t))¢=0 is an exponentially bounded, r-times integrated semigroup generated

by €7 A. Furthermore, for every v € (—a, a), there exist M, > 0, M/ > 0 and w,, >

0 such that [ Sy, (D]] < Myere [F Ui s™rdr < Mjesnte7, ¢ > 0. By

S, (se’ arg(z))x ds, z€ Xy, x € E,




204 3. ABSTRACT CAUCHY PROBLEMS...

Theorem 2.4.10, it follows that A generates an exponentially bounded, analytic r-
times integrated semigroup (S, (t)):>0 of angle o and the proof of (vi) is completed.
O

REMARK 3.2.20. (i) Suppose that r € (0,1) and that A generates a differen-
tiable (DS) G such that (G(d:))¢>0 is a semigroup of growth order r. Using the
same arguments as in the proof of preceding theorem, one can conclude that A
generates an exponentially bounded r-times integrated semigroup (S, (t)):>0 that
is infinitely differentiable in ¢ > 0. It is not clear whether the converse statement
holds.

(ii) Suppose € is an open bounded subset of R” with smooth boundary and
a € (0,1). A large class of differential operators acting in the space C*(Q) of Holder
continuous functions analyzed by Von Wahl [416] and Periago, Straub [357]-[358]
can be used for the construction of analytic (DS)’s satisfying the property (vi)
stated in the formulation of Theorem 3.2.19. By [357, Example 3.3|, fractional
powers of LP(R)-realization of the Kourteweg-de Vries operator (see [359] for the

notion) A = 83—53 + 6% also generate (DS)’s with above property.

COROLLARY 3.2.21. Suppose that o € (0, 5] and that, for every v € (—a,a),
the operator eV A generates an (EDS). Then A generates an analytic (DS) G of

angle a.

COROLLARY 3.2.22. Suppose that o € (0, 5] and that A generates an analytic

(DS) of angle . Then the abstract Cauchy problem

u€ C®((0,00) : E),
u'(t) = Au(t), t > 0,

has a non-trivial solution u which can be analytically extended to the sector X.

PrOOF. By Theorem 3.2.19, we infer that there exist an n € N and an ana-
lytic function S,, : ¥, — L(E) such that A generates a global n-times integrated
semigroup (S, (t)):>0 which satisfies S,,(t) = Sy,(t), t > 0. Using the functional
relation Afg Sn(8)xds = Sy (t)x — %x, t >0, x € E and the closedness of A, one
can simply verify that, for every x € E, the function u(t) = C%Sn(t)x, t>0,z€ek
is a solution of the above problem. This solution is analytically extendible to the
sector X, and, by [224, Corollary 3.3], non-trivial provided = # 0. O

The next proposition shows that the analyticity of distribution semigroups is
preserved under bounded commuting perturbations.

PROPOSITION 3.2.23. Let o € (0, 5] and let A be the generator of an analytic
(DS) of angle «. If B € L(E), then the operator A+ B generates an analytic (DS)

of the same angle.

PRrOOF. By Theorem 3.2.19, there exist n € N, M > 0, w > 0, an exponentially
bounded n-times integrated semigroup (S, (t)):>0 generated by A and an analytic
function S,, : ¥, — L(E) such that S,(t) = S,(t), ¢ > 0 and that ||S,(¢)| <
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Me“t t > 0. By Theorem 2.5.5, we infer that the operator A + B generates an
exponentially bounded n-times integrated semigroup (SZ(t));>0, which is given by

(i—1)!

It remains to be proven that (SZ(t));>o can be analytically extended to the sector
Y- To this end, define, for every z € ¥, and = € E,

SB(2)x = e* P8, (2)x

Jri;(?)(B)i(O/l(z(i_j);)l ePsS,( mds+/ Z—s) BSSn(s)xds)

1

¢
n )il
SB(t)x := e S, (t)x + E <n> (-B)" / @_78)6355”(5)1‘ ds, z€ ¥,, v €E.
i
i=1 o

It is clear that the mapping z — S5(2), z € X, is analytic and the proof completes
an application of Theorem 3.2.19. O

EXAMPLE 3.2.24. For every n > 1 there exists a closed densely defined op-
erator B acting on a Banach (Hilbert) space such that B generates a global ex-
ponentially bounded n-times integrated semigroup (S, (t));>0 satisfying that the
mapping t — S, (t), t > 0 is infinitely differentiable, and that B does not generate
a local (n — 1)-times semigroup. To this end, suppose that A generates a con-
tractive, immediately differentiable Cy-semigroup (7'(t))¢>0 in a Banach (Hilbert)
space E which additionally satisfies that (T(t));>0 cannot be analytically extended
in a sector around the nonnegative real axis. For concrete examples, we refer to
[125, p.24-33, p.409]. Let E™*! be equipped with the sup-norm and let D(B) :=
D(A)"*and B(xy,...,2041) = (Az1+ Az, Ao+ Axs, ..., Avp+ AT i1, ATpi1),
(x1,...,Znt1) € D(B). Arguing as in [337, Proposition 2.4] (cf. also [14, Theorem
3.2.13, p. 133]), we have that B generates a global exponentially bounded n-times
integrated semigroup (S, (t))i>0 and that B does not generate a local (n — 1)-times
semigroup. It remains to be proved that the mapping ¢ — S, (t), t > 0 is infinitely
differentiable. Let ¢ > 0. Then there exist w > 0, C, > 0 and M, > 0 such that
Ysw € p(A) and ||R(A:A)|| < M,|Im A|. The claimed assertion follows from The-
orem 3.2.18(iii) and the computation given in the proof of [337, Proposition 2.4]:

[1R(A = B ZIIA'“ A A < M, IImMleA’“ (A=A
k=0 k=0

< Mo [Tm A>T AR(A: A) = I|[F < My|Tm A| Y (1 + M, |A| Tm AJ)*
k=0 k=0
< (n+ DM | ITm A|[(1 4+ Mo |A2)™ T < (n+ 1)MLIAP" T2 Tm )|,
A €Yy, for some M) > 0.

For further information related to differential and analytical properties of con-
voluted C-semigroups, C-distribution semigroups and (a, k)-regularized C-resolvent
families, we refer the reader to [234]-[235].
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3.3. Distribution groups

3.3.1. Introduction and basic properties of distribution groups. We
start with the following notion. If ¢ € D and G € D'(L(E)), then we define
¢(-) = (=) and G(-) == G(). Cleartly, p ¢ = ¢ * 1) and ¢ = (=1)"p(",
p, v € D, n € N. We focus our attention to the following system of convolution
type equations:

(207) G (0'@T—-6®A) =0® [ipay and (§' @ T — 5@ A)* G = 0® I,

where A is a closed operator acting on a Banach space E, G € D'(L(E, [D(A4)])),
VY ®I—-0®AcD(L(ID(A)],E)) and I denotes the inclusion D(A) — E. Here
we stress that every operator-valued distribution G satisfying, for every ¢ € D and
re kb,

(208) G € D'(L(E)), G(p)z € D(A), AG(p)z=G(—¢' )z, G(p)AC AG(p),
can be viewed as an element of the space D'(L(E,[D(A)])) which solves (207)
(cf. also [315]). It turns out that the introduced class of [By, ..., By, Co, ..., Cp_1]-

groups presents a natural framework for investigation of equations involving oper-
ators satisfying (208).

DEFINITION 3.3.1. An element G € D'(L(E)) is called a pre-distribution group,
pre-(DG) in short, if the next condition holds:

(DG)1: G(px) = G(p)G(@) for all p, ¢ € D.

If G additionally satisfies:

(DG)s: N(G) = ,ep Kern(G()) = {0},
then it is said that G is a distribution group, (DG) shortly. A pre-(DG) G is called
dense iff

(DG)s : The set R(G) := [\ cp R(G(p)) is dense in E.

Suppose G € D'(L(E)), G satisfies (DG)z and T € £’. We define G(T) by

G(T) :={(z,y) € ExX E: G(T xp)x = G(p)y for all p € D}.

Due to (DG)s, G(T) is a function and it is straightforward to see that G(T)
is a closed linear operator in E. The generator A of a (DG) G is defined by
A := G(—0"). Notice, if G is a (DG) generated by A, then (208) holds.

An element G € D'(L(E)) is called regular (representable) if the following
holds:

(DG)4 : For every z € R(G), there is a function ¢ — u(t; x), t € R satisfying:

u(a) € O(R : E), u(0:2) = z and G(i))z = / Wtk ) dt, ¥ € D.

Let us observe that the function u(;x) is unique. Indeed, let z € R(G) and
t € R be fixed and let (¢,) be a sequence in D satisfying lim, o {, = &, in the
sense of distributions. Then u(t; z) = lim, o0 G((n)x.

EXAMPLE 3.3.2. (i) Let A and —A generate C-distribution semigroups G4 and
G_, respectively. Put G(¢) := G4(¢)+G_(¢), ¢ € D. Then A and G fulfill (208).
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Indeed, G € D'(L(E)), G(p)A C AG(p), ¢ € D, AG1(p)x = G (—¢")x — ¢(0)Cx
and —AG_(p)z = G_(—¢")z — ¢(0)Cz, p € D, x € E. Thereby, AG(p)z =
Gi(=¢)z — (0)Cx + G ( e+ ¢(0)Cr = G (=@ )z + G (—¢)r = G(=¢)z,
x € E, ¢ € D. Furthermore, it can be proved the follovvlng G(cp*w)C G(p)G(Y),
v, ¥ € D [216], [315], ﬂsae% Kern(G(p)) = {0} and (N, cp, Kern(G(¢)) = {0}
(i) Assume G is a (DG), P € L(E), P? = P and GP = PG. Set Gp(p)x :=
G(p)Pz, p € D,z € E. Then Gp is a pre-(DG) and N (Gp) = Kern(P).
(iii) Assume A and G fulfill (208). Define Gr (T € &) by Gr(¢)x := G(Txy)x,
¢ € D, x € E. Then (208) holds for A and Gr.
(iv) [89, Example 16.3] Let E := {f:R—C is continuous: lim,|_« eUf (z) =
o}, IIfIl == SupzeR\e$2f(x)|, f € E and A := L with maximal domain. Put
(S(t)f)(;z:) = e~ f(g41), x E R,t€R, f€ E. Then S(t)f € E, ||S(t)|| < *
fo s)fds € D(A) and Afo s)fds = S(t)f — S(00)f, t € R, f € E. Put
Glo)f == [Z_ot)St)fdt, f € E, p € D. Clearly, G € D'(L(E)) and the partial
integration yields G(¢)f € D(A), AG(¢)f = G(—¢') f and

oo

(G Af — AG(9)f) () = 2 / o(t)(z + e~ @+ f(z 1) dt, z € R, o € D.

— 00

Therefore, A does not commute with G(-) and (208) does not hold. Furthermore,
it can be verified that G fulfills (DG)2 and that G is not regular.
(v) Let F denote the Fourier transform on the real line,

oo

/ e ®tf(t)dt, € €R.

— 00

1

F(1)©) = 5

Suppose that € is a quasi-spectral distribution in the sense of [104, Definition 2.2]
and that £ can be continuously extended to S. Put F(D) := {F(p) : ¢ € D} and
G(p) == E(F 1)), ¢ € S, where F~! denotes the inverse Fourier transform. Then
G € S(L(E)), G(¢* ) = G@)G(W), ¢, 6 € S and ), crp, Kern(G(¢)) = {0},
Suppose, additionally, that for every € F and ¢ € S with ¢(0) =
(209) lim &(¢n)x =z, where ¢, (t) = ¢(t/n), t € R, n € N.

n—oo
Notice that (209) implies that £ is a spectral distribution in the sense of [104, Def-
inition 2.4] (cf. also [25, Definition 1. 1]) We will show that () cp, Kern(G(p)) =
{0}. Indeed, suppose p € D, [* p(t)dt = 1, suppp C [0,1] and G(p)z = 0,
¢ € Do, ie., E(FH(p))z =0, ¢ € Do- Put ¢(t) = F~H(p)(t) = [7 ' p(€) dt,
t € R. Then ¢ € S and ¢(0) = 1. Put p,(t) = np(nt) and ¢, (t) = F1(pn)(t),
t € R, n € N. Clearly, ¢,(t) = ¢(L), t € R, n € N and (209) implies z =
limy, 00 £(Pn)2 = limy 00 E(F~(pn))z = 0. Analogously, ,cp, Kern(G(¢))
{0} and this implies that (DG), holds for G.
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A closed linear operator A satisfying (208) need not be the generator of a (DG)
and this implies that relations between distribution groups and convolution type
equations are, at least, quite unclear.

The proofs of the subsequent assertions are omitted.

LEMMA 3.3.3. Let G be a pre-(DG). Then G is a pre-(DG). If, in addition, G
is a (DG) generated by A, then G is a (DG) generated by —A.

PROPOSITION 3.3.4. Let G be a pre-(DG), F := E/N(G) and q be the corre-
sponding canonical mapping q: E — F.

(i) Let H € L(D : L(F)) be defined by qG(p) := H(p)q for all p € D. Then
H isa (DG) in F.
(il) (R(G)) = R(G), where (R(G)) denotes the linear span of R(G).
(iii) Assume that G is not dense. Put R := R(G) and H := G|r. Then H is
a dense pre-(DG) in R. Moreover, if G is a (DG) generated by A, then
H is a (DG) in R generated by A|g.
(iv) The adjoint G* of G is a pre-(DG) in E* with N(G*) = R(G) .
(v) If E is reflezive, then N(G) = R(G*) .
(vi) G* is a (DG) in E* iff G is a dense pre-(DG). If E is reflexive, then G*
is a dense pre-(DG) in E* iff G is a (DG).
(vil) N(G) N (R(G)) = {0}.
(viii) Suppose © = G(p)y, for some ¢ € D andy € E. Put u(t; x) = G(r)y,
t e R. Thenu(Ox)—x u( )EC"O(R E), Lut;z) = A"u(t; z),
teR, neNy, G m—f_ u(t;x)dt, v € D and G is regular.

PROPOSITION 3.3.5. Let G be a (DG) and let S, T € &', ¢ € D and x € E.
Then: m

——

(i) (G(e)x, G(T *---*xT*p)x) € G(T)™, m € N.

(ii) T) C G(S«T), D(G(S)G(T)) = D(G(S *T)) N D(G(T)) and
G(T)CG(S+T). In general, G(S)G(T) # G(S +T).

(iif) (T) € G(T) G(e).

(iv) If G is dense, its generator is densely defined.

(
G(9)a
G(S) +
G(p) G(T

REMARK 3.3.6. Suppose G € D'(L(F)) and G fulfills (DG)5 — (DG)4. Then
G is a pre-(DG) iff:
(210)
U u(t;x) C R(G) and u(t + s; ) = u(t;u(s; x)), t, s € R, z € R(G).
teR, zeR(G)

The necessity of (210) follows directly from Proposition3.3.4(j). To prove the suf-
ficiency, notice that

G(p* )z // (t—s)y // u(t + s;z) dsdt

—00 —O0 — 00 —O0
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- / (1) / (s)uls; ult; o)) ds dt = / PG (W)ult; ) dt

e / p(tyult; z) dt = G(W)G(p)r,

—o0
for every x € R(G). The denseness of R(G) in E implies (DG);.

THEOREM 3.3.7. (i) Suppose 0 < 7 < oo, a > 0 and £A generate a-times
integrated semigroups (S+(t))tcjo,ry. Then A generates a (DG).

(ii) Suppose £A generate distribution semigroups G+. Put G(p) = G4 (p) +
G_(9), ¢ € D. Then G is a (DG) generated by A.

PROOF. (i) Let us prove that A generates a (DG). Put n := [a]. It is obvious
that, for every k € N, £A generate (kn)-times integrated semigroups (S% (£))¢e(o,5r)-
Let ¢ € D(_ookr) and x € E. Set

Go(pr = (1" [ @St Wit G- (pr = (-1 [ @) (@)
0 0

and G(p) := G4+ (v) + G_(¢). Certainly, G4 and G_ are distribution semigroups
generated by A and — A, respectively. In order to prove that G is a (DG) generated
by A, assume z € N(G). Then, for every ¢ € Dy, G(¢)z = 0, and this implies
Gi(p)x =0, ¢ € Dy. Since G4 is a (DS) generated by A, we get £ = 0 and
(DG)sy holds for G. Further on, A generates a local (kn)-times integrated group
(Shn (t))te(=krkr)- Now one can repeat literally the arguments given in the proof of
[815, Theorem 6] so as to conclude that (DG); holds for all ¢, ¥ € D(_ir/2,kr/2)-
Hence, G fulfills (DG);. It remains to be proved that B = A, where B is the
generator of G. Suppose (z,y) € B. Then G(—¢')x = G(p)y, ¢ € D, ie.,
Gi(—¢ )+ G_(—¢)x = Gy(p)r + G_(@)r, p € D. This, in particular, holds
for every ¢ € Dy and one obtains G4 (—¢’ )z = G4 (¢)x, ¢ € Dy. In other words,
B C A. Assume now (z,y) € A. Then the definition of G and Proposition 3.1.4(iii)
imply:

G(o)y = G(p)Axr = Gy (p)Az+G_(p)Az = G (—¢" )z —p(0)2—G_ (=@ )z +p(0)x

=Gy () +G_(—¢")x = G(—¢)z, p € D.
This gives A C B and ends the proof of (i). To prove (ii), notice that an application
of Corollary 2.1.10 and Theorem 3.1.25 yields that there exist 7 € (0,00) and
n € N so that, for every k € N, A generate (kn)-times integrated semigroups
(SE™(t))tefo,kr)- Assume z € E and ¢ € D(_ jr), for some k € N. Put G1(p)z :=
(=1)Fn [ k) (1) SE () dt and Ga(p)z = (=1)F" [(% @*™) (¢) Sk (t)x dt. Then
[418] G and G5 are distribution semigroups generated by A and — A, respectively.
Hence, G, = G1, G_ = G5, G = G1 + G5 and the remnant of the proof of (i)
follows by the use of arguments already given in the proof of (i). O
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The previous theorem implies that a wide class of multiplication operators
acting on LP(R™)-type spaces can be used for the construction of (exponential)
distribution groups. In particular, several examples presented in [5] offers one to
construct local once integrated groups which can be explicitly calculated.

Let @ € (0,00), @« ¢ Nand f € S. Put n := [a]. Recall [317], the Weyl
fractional derivatives W and W< of order « are defined by:

Wef(t) = FE;U:)L?; /(s — )" f(s)ds, t € R,
WEf(t) = ﬁ% / (t—s)""*"Lf(s)ds, t € R.

— 00

If a =n €N, put W = (—1)”% and W := ;TZ' Then we know [315] that

Wffrﬁ = Wjo:‘Wﬁ, a >0, > 0. The next result can be attributed to Miana [315].

THEOREM 3.3.8. Suppose a > 0 and (S(t))ier is an a-times integrated group
generated by A. Put G(p)z := [ Wp(t)S(t)adt+ [ WEp(t)S(—t)xdt, ¢ € D,
x € E. Then G is a (DG) generated by A.

PRrOOF. In order to prove that (DG); holds for G, one can argue as in the
proof of [315, Theorem 6] (cf. also [137, Lemma 1.6]). Define now G4 (p)x =
IS Wee(t)S(t)xdt, ¢ € D, v € E. Then G4 is a (DSG) generated by A
(cf. [315]-[316] and [252, Theorem 3.10]). The assumption G(p)z = 0, ¢ € D
implies G4 (p)z = 0, ¢ € Dy. Therefore, (DG)2 holds for G and G is a (DG).
Let us prove that A = Ay, where A; is the generator of G (cf. also the proof
of [315, Theorem 7]). Notice that —A is the generator of (S_(¢));>0. Assume
r € D(A;). Then G(—¢' )z = G(p)A1x, ¢ € D, ie., Gy(—¢)r +G_(—¢)r =
Gi(p)Aiz+ G_(p)Aiz, ¢ € D. Especially, G4 (—¢')x = G4 (p)A1x, ¢ € Dy and
G_(—¢)x = —G_(¢)A1z, ¢ € Dy. So, x € D(A) and Az = Ajz. Assume now
x € D(A). Then G(p)Ax = G4 (p)Az + G_(p)Ax, ¢ € D and the use of Propo-
sition 3.1.4(iii) implies: G(p)Az = Gi(—¢' )z — p(0)x — G_(—@ )z + p(0)x =
Gi(—¢)r+G_(—¢)x = G(—¢')x, p € D. Hence, Ajx = Az as claimed. O

REMARK 3.3.9. Due to the definition of W$, we have the following: If « =n €
N, ¢ € D and = € E, then

o0

G(g)z = (~1)" / o™ (D)8 dt + (1) / 5 (1)S () dt,
0

0

) 0
Glo)z = (—1)" / M (#)S(t)x dt + / o™ (£)S(t) dt.

The next theorem clarifies an interesting relation between integrated groups
and global differentiable C-regularized groups.
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THEOREM 3.3.10. Assume a > 0, 7 € (0,00] and A is the generator of an
a-times integrated group (So(t))ie(—r,ry- Then, for every b € (0,1) and v €
(0,arctan(cos(b%))), there exist two analytic operator families (Tp, 1 (t))tex, C
L(E) and (Ty,—(t))tex., € L(E) so that:

(i) For everyt € X, Ty +(t) and Ty, _(t) are injective operators.

(ii) For every t1 € ¥, and ty € ¥, A generates a global (Tp, 4 (t1)Tp —(t2))-

reqularized group (Vi 1,(S))ser-

(ili) For every x € E, t1 € ¥, and ty € X, the mapping s — Vi1, 1,(s),

s € R is infinitely differentiable in (—o0,0) U (0, 00).

PrROOF. The existence of numbers ¢ > 0, d > 0 and M > 0 so that E(c,d) C
p(£A) and that |R(A : £A)|] < MIA|*, A € E(c,d) is obvious. Choose a number
a € (0,%) such that b € (0, ﬁ) and that v € (0, arctan(cos(b(r — a)))). It is
clear that there are numbers d € (0, 1] and w € (d + 1, 00) so that

Qua:={2€C: |z <dJU{re? :7>0, 0 € [~a,a]} C p(A—w)Np(—A —w).
Let the curve I'y ¢ = 0€Q, 4 be upwards oriented. Define Tj, 4 (t), t € 3, by:

1
T+ (t)x := 57 e_t(_k)bR()\ i +A—w)zd)\ x € E.
i
Fa,d

Certainly, (Ty,+(t))¢cx, are analytic operator families and, for every t € X, Tp, 4 (t)
and Ty, _(t) are injective operators. Clearly, Tp, 1 (t1)(—A —w) C (—A — w)Tp 1 (t1)
and Ty, —(t2)(A —w) C (A —w)Ty,—(t2), t1, t2 € X,. It is straightforward to prove
that T, 4+ (t1)Tp,—(t2) = Tp —(t2)Tp,+(t1), t1, t2 € X, and the argumentation given
in Subsection 2.1.6 shows that +A — w are generators of global T}, 4 (t)-regularized
semigroups (Up.¢,+(8))s>0. Suppose t1, to € £, and « € E. Then one obtains

Ty, (t2)(Ub,ty 4 (8)x — Tp 4 (1))
Ty (t2)(A —w) / Upir 1 ()2 dv = (A — )Ty (t2) / Upir s (v) do.
0 0
Hence,

(A-w) /(Tb7—(t2)Ub,t1,+(v))$dv =T, (t2)Ubty .+ (8)x — Ti 4 (t1) T, — (t2)z,
0
for all s > 0. Furthermore,

(To,— (£2)Ub,ty + ()| To 4 (t1) = To 4 (t1) [To,~ (£2)Up,t, 4-(s)], s = 0,

[Ty, (£2)Ub,t, 4 (8)](A = w) € (A= w)[Th,— (t2)Up 1, + ()], s = 0.
This implies that (Tbv_(t2)Ub’t17+(S))320 is a global (T} 4 (t1)Tp,— (t2))-regularized
semigroup generated by (Tp 4 (t1)Tp,—(t2)) (A — w)(Th+ (t1)Th,—(t2)) = A — w.
Therefore, (e**T), - (tz)Ub,t1’+<s>)s>0 is a global (Tp, 4 (t1)Tp,— (t2))-regularized semi-

group generated by A, and, for every t1, to € X, (e‘*’STbHr(tl)Ub,t%_(s))po is a
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global (Tb,Jr(tl)Tb,,(tg))—regularized semigroup generated by —A. Hence, for every
t1 € ¥, and ty € X,, A generates a global (Tb#(tl)Tb,,(tg))—regularized group
(Vb,t1.,45(8))ser which is given by: Vi 1, (8) =: €T _(t2)Upty,+(s), s = 0 and
Votr 12 (8) = €T 4 (t1)Up 1, —(—5), s < 0. The mapping s — Vj4, +,(s)z, s € R
is infinitely differentiable in (—o0,0) U (0,00) since the corresponding mappings
s Ty _(t2)Upty +(s)x and s — Tp 1 (t1)Up.t,,— (s)x are infinitely differentiable in
s> 0 (cf. Subsection 2.1.6). The proof is completed. O

3.3.2. [By,...,B,,Co,...,Cph_1]-groups. We introduce the class of
[Bo,...,Bn,Co,...,Cp_1]-groups as follows.

DEFINITION 3.3.11. Let A be a closed linear operator. Suppose, further, 0 <
7 < oo, n € Nand Bg,...,B,,Co,...,Ch_1 € L(E). A strongly continuous
operator family (S(t))ie(—r,r) is said to be a [By, ..., By, Cy, . .., Cy_1]-group with
a subgenerator A iff:

¢
(i) AOfS(s)x ds = S(t)x + 37_ot/ Bjz, t € (=7,7), x € E and

(i) AS(t)x — S(t)Az = Y1 tICjz, t € (—7,7), = € D(A).

It is said that (S(t))ie(—r,r) is non-degenerate if the assumption S(t)x = 0, for
all t € (—7,7), implies x = 0. The (integral) generator of a non-degenerate
[Bo, ..., Bn,Co,...,Cp_1]-group (S(t))ie(—r,r) is defined by

n n—1 . t

R . i1

A= {(%y) € ExE: S(t)$+j§_0 thjx_jE—O ijfc = /S(S)sta te (-, 7)}-
= = 0

The integral generator Aofa non-degenerate [By, ..., By, Co,...,Cph_1]-group
(S(t))te(—r,r) is a function and it ischecked at once thatA is a closed linear operator
which is an extension of any subgenerator of (S(t));e(—r,r). Further on, the injec-
tiveness of B; for some i € {0,...,n} implies that (S(t)):e(—r,r) is non-degenerate.
In general, a subgenerator A of (S(t)):c(—r,r) does not commute with S(-) and the
set of all subgenerators of (S(t))ic(—r,r) need not be monomial.

EXAMPLE 3.3.12. (i) Let E := R?%. Put A(x1,72) := (1 —22,0), Bo(x1,72) :=
(0, =x2), Bi(z1,22) == (—21— 22, —21), B2(21,22) := (0,0), Co(21,72) = (—22,0),
Ci(x1,29) = (—x1 + 22, —21 + 2) and S(t)(x1,22) = (tx1,tx; + x2), t € R,
(x1,22) € E. Then (S(t))tcr is a [By, B1, Ba, Cp, C1]-group with a subgenerator A
and: S(t)S(s) = S(s)S(t) it t = s, S(t)D # DS(t), t € R, D € {B1,Cy,C4} and
DoDq }é DDy, D; € {BMCZ}7 1=1,2.

(i) Assume C; =0, j =0,...,n — 1 and the bounded linear operators B;, j =
0,...,n fulfill B # >3 (R(B;). Put S(t)x := =37 (t/Bjz, t € (-7,7), 2 € E
and denote by © the family of all closed subspaces of E containing "  R(B;).
If F € D, define a closed linear operator Ap by D(Ap) := F and Apx :=0, z €
D(AF). Then Ar is a subgenerator of a [By, ..., By,0,...,0]-group (S(t))c(—r.r)-

n
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QUESTION. Suppose n € N, 7 € (0,00], Bo,...,Bn,Coy...,Cr1 € L(E)
as well as (S1(t))¢e(—r,r) and (Sao(t))te(—r,r) are [Bo, ..., By, Co, ..., Cy_1]-groups
having A as a subgenerator. Is it true that Sy (t) = Sa(t), t € (—7,7)7

REMARK 3.3.13. (i) Assume n € N, 7 € (0,00] and A generates an n-times
integrated group (S(t))ie(—r,r)- Put S(t) := S(t), t € [0,7) and S(t) := (-1)"S(¢),

t € (—7,0). Then (?(t))te(,ﬁﬂ isal0,...,0, (:LII)LO, ..., 0]-group having A as a

subgenerator. A similar assertion holds for n-times integrated C-groups.
(ii) Let (S(t))te(—r,r) be a [Bo,..., By, Co,...,Cp_1]-group having A as a sub-

generator. Put S(t) := S(—t), t € (—7,7), Bj := (—1)’B; and C; := (—1)7+'C;.

Then (S’(t))te(_rﬁ) is a [By,...,Bn,Co,...,Ch_1]-group with a subgenerator —A.
(i) Let & € N and let Dy,...,Dy € L(E). Giveni € {1,...,k}, put D; :=
[1;—, Dj. Define S;(:), i € {0,..., k} recursively by:

¢
So(t)x :==St)z, ..., Si(t)x := /Si,l(s)Dix ds, x € E, t € (—7,7),
0

and suppose, additionally, that D;A C AD;, ¢ € {1,...,k}. By a simple induction
argument, one can deduce that, for every i € {1,...,k}, (Si(t))ie(—r,r) is a

—— 01ByD;,  n!B,D; —~— 0CoD;  (n—1)Co1D;
Grm)l 0 T T 1)

-group

R
with a subgenerator A.

(iv) Suppose A generates a (local) C-regularized group (7'(t))ie(—r,r). Then
(T'(t))te(=rr) is a [=C,0,0]-group with the integral generator A. Put

t
(t—s)" !
T,(t)x:= | —————T(s)zds, teR, z € E, neN.
(n—1)!

Then (T;,(t))e(—r,r) is a [0,...,0,—-5C,0,...,0]-group with the integral genera-
tor A. M M

n n

Let A be closed and By,...,B, € L(E). Put

ot {recn (3 2) e ).

§=0
The next characterization of exponentially bounded [By,...,B,,Co,...,Cnh_1]-
groups can be simply proved (cf. [227]).
PROPOSITION 3.3.14. (i) Assume A is a subgenerator of a [By ..., B, C,. ..,

Ct  ]-group (S(t))ier satisfying ||S(t)|| < Me“l!l, t € R, for some M > 0 and
w>0. Set By = (=1)/B; and C; = (=1)7*'C}. Then:
(i1) pg+ . p+r(A)N pBg,...,B*(_A) D{AeC:ReA>w},

0y n
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2) [y e MS(Ht)zdt = -(AF A) YT O)\JBix Re\ > w, x € E and
(i. ) £A [ e MS (k) dt— [T e MS(kt) £ Andt = 32 thrCia, Re X >
w, x € D(A).
(ii) Assume A is a closed operator and (S(t))icr is a strongly continuous oper-
ator family satisfying ||S(t)|| < Me“!!l, t € R, for some M >0 and w > 0. If (i.1),
i.2) and (i.3) hold, then (S(t))icr is a [Bg ,...,B*,C*‘,...,C’t -group with a
( n n
subgenerator A.

Let n € N. If A is a closed operator and By,...,B, € L(E), then we define

linear operators Y;, i € {0,...,n} recursively by:
Yy := By, Yi+1 = (7, + 1)'Bl+1 + AY;, i € {0, cea,n = 1}

Note that Y7 is closed and that the assumption 0 € p(A) simply implies the closed-
ness of Y;, i € {0,...,n}.

PROPOSITION 3.3.15. Suppose T € (0,00, n € N\ {1} and A is a subgenerator
of a [Bo,...,Bn,Co,...,Cpn_1]-group (S(t))ic(—r,r). Then:

(i) iBix — Ciyx € D(A), x € D(A), i € {1 .n}, A(iBix — Ci_qz) =
iB;Ax —iCiz, i € {1 ,n—1} and A(nB,x — Cn,lx) =nB, Az, x € D(A).

k

(ii) D(A*) ﬂg OD( i), k€ {0,....,n} and Yz = _(;Tks(t)m)t:o’ T
D(AF), k€ {0,...,n}.

(iii) For every k € {0,...,n—1} and z € D(A’H‘l)'

1

(211) Crx + HAY”“( x) = k'

(iv) If R(By) C D(A), then Y, is closed, D(AF) C mfng(Yj), ke {0,...,
n — 1}, (211) holds for every k € {1,...,n — 1} and x € D(A¥), and there exists
an appropriate constant M > 0 so that |Yiy1z| < M||z|k, £ € {0,...,n — 1},
x € D(AF).

(v) A(=Ypz 4+ Y, 14z) = —n!B,Ax, x € D(A"); if R(By) C D(A), then
AY,xz =Y, Az, x € D(A"™).

PROOF. Suppose © € D(A). Clearly, £S5(t)z = AS(t)z — 3, it" 1Bz,
te (—7,7) and

t

n—1 n
D tiCiw = AS(t)x — S(t)Ax = AS(t)z — | A / S(s)Axds — Y t'B;Ax
=0 0 =0

for every t € (—7, 7). Hence,

n—1 n
d #Cw Y t'BiAv=A
1=0 1=0

t

S(t)m—/S(s)Aacds ,te

0

(=7,7).

Since

d
dt[ /S )Az ds

= AS(t Zztl 'Bjx— S(t Am—Ztlcx Zzt’ 'B;x,
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t € (—7,7), the closedness of A implies

n—1 n t
d tCw =Y it ' Bz = jt[S(t)x - /S(s)Am ds] € D(A), t e (—7,7),
=0 i=1 0

n—1 n
(212) {Zt Cix — th’ IB, x} = ZitiilCm — ZitiilBiAx, te(—r,71).
i=1 i=1

Differentiation both s1des of (212) implies iB;x — Ci—1x € D(A), i € {1,...,n}
and (i). To prove (ii), notice that the closedness of A and the argumentation used
in the proof of (i) enable one to conclude that the mapping ¢ - 4+ S( Yz, t € (—T,7)
is k-times continuously differentiable for every k € {0,...,n} and # € D(A¥). Let
k € {0,...,n} be fixed. Then we obtain:
dl+1 1
(213) WS()—A S xfzg (j— DB, t € (—7,7),
j=l+1

for every [ € {0,...,k — 1}. Since Yy = By, the proof of (ii) follows by induction.
Suppose now = € D(A**1). Then the mapping t— S(t)Azx, t € (—7,7) is k-times
continuously differentiable. Since Cyz = %4 [AS( Jx — S(¢)Ax], t € (—7,7), the
mapping t — AS(t )x t € (—7,7) is k-times continuously differentiable. The closed-
ness of A implies ;ltk AS(t)x = Adtk S(t)x, t € (—7,7) and Crzx = [Agtk S(t)x —
4 S( JAzx], t € (—7, 7). Put t = 0 in the last equality to finish the proof of (iii). To
prove (iv), notice that R(By) € D(A) and that the closed graph theorem implies

= ABy + B; € L(E); the closedness of Y5 simply follows from this fact. Let
o € D(A). Since LS(t)x—S(t)Az = X1 ) t'Cix—Y"1  it" ' By, t € (—7,7), one
obtains %S(t)x —j; :S(t) Az = :k 11 [ngol tiCi =0, itileix], te(—7,7).
This implies —Yyax+Yy_1 Az = (k—1)!Cr—12—k!Brx and, by (i), —Yyx+Ye_1 Az €
D(A) and:

(214)  A[~Yiz + Yy 1 Az] = kK!Crx — k!ByAz, k€ {1,...,n — 1}, x € D(AF).

Because R(By) € D(A), one concludes inductively from (214) that ka € D(4),
x € D(A%), k € {0,...,n— 1}, i.e., D(AF) € ") D(Y;), k € {0, . —1}, and
E\Crz+ AYpx = k!BkA$+AYk_1A(£ = YkAl‘ ke {1 1}, S D(Ak) The
existence of a constant M > 0 satisfying || Yi412| < M||x||k, ke{0,....,n-1},x €
D(AF) essentially follows from an application of (211) and an induction argument.
This completes the proof of (iv). The proof of (v) follows from that of (iv). O

REMARK 3.3.16. (i) Let (S(f))iep0,r) be a [Bo, B1,Col-group having A as a
subgenerator. Arguing as in the proof of previous proposition, one obtains A(Bjx —
Coz) = B1Az, * € D(A) and AYiz = YAz, © € D(A?). Furthermore, AYjz =
Y1 Az, x € D(A) if R(By) C D(A).

(ii) The next question is motivated by the analysis of Arendt, El-Mennaoui
and Keyantuo [5]: Let A be a subgenerator of a [0, ..., L7,Co,...,Cyp_1]-group

7nl
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(S(t))te(—r,r)» m € N, 0 < 7 < o0o. Does the inclusion S(t)A € AS(t) hold for
every t € (—7,7)? The answer is affirmative and we will show this only in the
non-trivial case n > 1. Indeed, S(0) = 0 and this implies Coz = 0, x € D(A). By
Proposition 3.3.15(1), AC;_1z = iCx, i € {1,...,n — 1}, x € D(A). Inductively,
Cix=0,i€{l,....,n—1}, z € D(A) and an immediate consequence is S(t)A C
AS(t), t € (—7,7).

(iii) Suppose A, resp. 121, is a subgenerator, resp. the integral generator, of
a non-degenerate [Boy,...,By,Co,...,Cp_1]-group (S(t))ie(—r,r), » = 2. Then
iBix — C;_1x € D(A), x € D(A>7 1 € {1,...,71}, A(’LBZ.’E — Ci,lx) = ’L'BiAJ} —
iCix, i € {1,...,n — 1} and A(nB,x — Cn 12) = nB, Am x € D(A). To prove
this, suppose (sc y) € A. Clearly, Afo s)xds = fo s)y + D0 OlsJC’ :c) ds,
t € (—7,7). Differentiate this equality to obtaln S(t)z e D(A) and AS(t)x
S(t)yy + Z;:Ol tCjx, t € (—7,7). Hence,

t

n—1 ,,; n n—1
1 _ _
A /S( yd5+z +1Cx—ZtJBjx :S(t)y—thjij,te(—T,T),
0 §=0 §=0

titl

n—1 n
Z] n 1C’ a:thJB x| = thijthijy, te(=77).
=0 =0

Differentiation of the previous equality leads us to the desired assertion. Notice
that we have proved an extension of Proposition 3.3.15(i) and that, in the case
n=1, A(Biz — Cox) = B1 Az, v € D(A).

A

The main objective in the following proposition is to clarify a composition
property of [By, ..., By, Co,...,C,_1]-groups satisfying the condition (215) quoted
below.

ProroOSITION 3.3.17. Suppose 0 < 7 < oo and A is a subgenerator of a
[Bo,...,Bn,Co,...,Ch_1]-group (S(t))ie(—r,r)- If

(215) CJAQACJ7 jZO,,n—l andBjAgABJ, ]:1,,’17,7
then, for every x € E,

S t+s

S(t)S(s)x = Z [/j(t +s—7r) 71 B;S(r)xdr — / j(t+s—r)y"tS(r)Bxdr
J=1 0 t

(216) — Ti (t+s—7)C;S(r)xdr+t'C; | S(r)x dr]
%/ /

n—1 n s

—S(t + s)Box — ZZ/IHLS—T Y ridrC;Biz, t, s € (—7,7), [t+s| < T.

7=0 =0
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PRrROOF. Let y € D(A) and t € (—7,7). Then we obtain fg’ AS(s)yds =
S(ty+>_1_t Bjy, i.e., fot [S(S)Ay—i—zg-:ol s/ Cjylds = S(t)y+)_7_ t Bjy. Hence,

d n—1 ) n .
(217) %S@yzsgmy+§:ﬁ@y—§:ﬁfu%%te@¢ﬁ)
j=0 j=1

Let € E be fixed and let ¢, s € (—7,7) satisfy |t + s| < 7. Define the function
fit+s—Tt+s+7)N(-7,7) = Eby f(r):=S(t+s—r) [, S(s)xds. Then:

d d
*f(’“):%

ar =S{t+s—r)S(r)x

S(t+s —r)/S(v)mdv
0

T

S’(t+s—r)A/S(v)xdv—i—nz_:(t—l—s—r)jCj/S(v)xdv
0 7=0

0

— Zj(tJrs r)lej/S(v)xdv]

Jj=1 0

=Sit+s—r)S(r)jz—Sit+s—r) [S(r)x—i—erBjx}
=0

n—1 A n "
—Z(t—i—s—r)jCj/S(v)mdv—l—Zj(t—I—s—r)j_lBj/S(v)xdv
j=0 0 j=1 0
n—1 A n r
= fZ(tJrsfr)jCj/S(v):z:dv+Zj(tJrs—r)j*lBj/S(v)zdv
J=0 0 Jj=1 0

— erS(t +s—r)Bjz,
7=0

forall r € (t+s—7,t+s+7)N(—7,7). Integrate the last equality with respect
to r from 0 to s to conclude that:

s n_1 s r
(218) S(t)/S(v)xdv =— ZCj /(t—|— s—r) /S(v)xdvdr
0 j=0 9 0

—I—Zij/(t—Fs—r)jfl/S(v)a:dvdr—Z/er(t—Fs—r)Bj:z:dr.
J=1 0 0

7=0 0
This implies

S

A/S(v)xdv - Zsijx
§=0

0

(219) S(t)S(s)z = S(t)
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S

AS(t)/S(v)xdv—StjCj/S(v)xdvl —zn:st(t)Bjx

0

T

gcjj(wrsr)f/s@)xdvdr

0

=A

—|—2ij /(t—i—s—r)j_l/S(v)xdvdr—Z/er(t+s—r)Bjxdr
i=1 0 0 =07

n—1 s n
— Z tC; / S(v)xdv — Z s7S(t)B;x.
=0} =0

Taking into consideration (215), we get:

(220) = — S C; /S(t +s5—r) {S(r)a: + zn: riBix} dr

=0 i=0

+ Zij /(t +s5—7r)~t {S(r)x + ZriBZ—x] dr
j=1 0 =0

n n—1 : n
—AZ/er(t+s—r)Bja:dr—thCj/S(v)xdv—Zst(t)Bja:.
=0y =0

j=0 0

Observe that:

S t+s t+s t
A/S(t—l—s—r)Boxdr:A / S(v)Bordv=A /S(U)Boxdv—/S(v)Boxdv
0 t 0 0

= S(t+s)Box + » _(t+s)'B;Box — S(t)Box — > _'B;Byx,
i=0 =0

s t+s
A [+ s -r)Bgdr=A [ (45 - 07S@)Bwde
0 t
t+s

t v
—Sj/S(O')Bj.’L'dO'+ /j(t—i—s—v)j_l/S(a)Bjxdadv
0 i 0
t+s

= —g {S(t)Bjx—&—ZtiBiBjx} + / jt+s—v)i~t [S(U)Bj:r—l—ZviBiBjx] dv,

i=0 p i=0

=A
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for all j =1,...,n. By (220),

1 n—1 9

S(t)S( /t+sf'rJC’S Yo dr — Z/(t+sfr)j2riCjBi:rdr
0 ]:O 1=0

J

»

I
=)

S

—1—2 /(t—i—s—r)J 'B;S(r xdr—i—Zy/(t—i—s—r)j_lzriBjBixdr
i=1 i=1 3 =0

—S(t + S)B()LC - Z(t + S)iBiB().’t + S(t)B(]ZL' + ZtiBiBo$

=0 =0

n n t+s n
+Y s [S(t)Bj:anZtiBiij} ZJ/ t+s—v)’” 1[S(U)Bjx+zvi3i3ﬂ] dv
j=1 i=0 i=0

n—1 S

(221) - Z t10; / S(v)xdv — i s1S(t)B;x

j=0 0
Clearly, S(t)Box + >_j_, s7S(t)Bjz — >_7_ s S(t) Bjz = 0 and:

n ts n

—ZZ/] t+s—v) " W'dvB;Bjz = — ZZ/t—i—s—r) jr7~Ydr B; Bjx

7110t 71200
n n n

:—ZZtisjBiBjm—Zzn:/zt—I—s— ““YidrB;B;x

j=114=0 Jj=li=1

3

n n n

:—ZZtisjBiBjx—ZZ/]t—i—s )Y~ ridr B; B;x.

j=11i=0 j=11i=1

Therefore,

S
n n

j(t+s—v) " tidvB; Bjx + Z Z s't'B;Bjx

j=11i=0

+ii/yt+s—rﬂ 1 ldrB B;x

j=1 =0

n n

(222) -

j=11i=0

TS~——7

n

=Z/j (t+s—r)"'drB; Box—Z[(t—i—s) — /]B,Byz.
0

Jj=1 j=1

Finally, (216) follows from an application of (221)—(222).
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REMARK 3.3.18. The composition property does not remain true if the con-
dition (215) is neglected. Namely, let A, By, By, B2, Cy, C1 and (S(t))iecr have
the same meaning as in Example 3.3.12(i). Then (S(t))ter is a [Bo, B1, B2, Co, C1]-
group with a subgenerator A and a tedious matrix computation shows that (215)
and (216) do not hold. Moreover, pg, B,.8,(A) 2 {A € C : ReA > 0} and
R(Boy) + R(B1) + R(B2) € R(1 — A) (cf. also Proposition 3.3.14).

3.3.3. Further relations between distribution groups, local integrated
groups and [By,...,B,,Cy,...,C,_1]-groups. In order to establish a satisfac-
tory relationship of distribution groups with local integrated groups, we need the
following definition introduced by Tanaka and Okazawa in [404] (cf. [404, Defini-
tion 4]):

(A) Suppose n € N and 7 € (0,00]. A strongly continuous operator family
(S(t))tefo,r) is called a (local) n-times integrated semigroup if:

(i) for every x € E and (t,s) € [0,7) x [0,7) with t + s < 7:
t+s t s
(t+s—r)nt

=) S(r)xdr,

and S(0) =0,
(if) S(t)x =0 for every t € [0, 7) implies = = 0.
Suppose (S(t)):e[o,r) is an n-times integrated semigroup in the sense of (A).
The infinitesimal generator Ay of (S(t))¢cjo,r) is defined in [404] via: D(Ag) =:

. S (h)z— . . (M) (R)g—
{z € er(o,r] C™(o) : limp, 04 % exists} and Agz := limp, o4 %

x € D(Ap), where
C"(0) :={x € E:S()x:[0,0) = E is n-times continuously differentiable}.

7

The infinitesimal generator Ag of (S(t)):e0,r) is a closable linear operator and the
closure of Ay, Ay, is said to be the complete infinitesimal generator, c.i.g in short,
of (S(t))tefo,r)- Suppose (S(t))ic(o,r) is a (local) n-times integrated semigroup in
the sense of Definition 2.1.1. Then (S(t))¢c[o,r) is an n-times integrated semigroup
in the sense of (A); in general, the converse statement does not hold (cf. [5], [227,
Proposition 2.1], [252] and [404, Proposition 4.5]).

THEOREM 3.3.19. (i) Suppose G € D'(L(FE)) and A is a closed linear oper-
ator so that (208) holds. Then, for every T € (0,00), there exist ng = no(T) €
N and By,...,Bn,,Co,...,Cny—1 € L(E) such that A is a subgenerator of a
[Bo, ..., Bny,Co, . .., Cng—1]-group (S7(t))ie(—r,r) satisfying S-(t)x € D(A) for all
x€E andt e (—1,7).

(ii) Let G and A be as in the formulation of (i) and let A; = Az Sup-
pose, in addition, that G is regular and put S(t) := S;(t), t € (—7,7), where
(S7(t))te(—r,r) 18 the [Bo, ..., Bny, Co, ..., Cny_1]-group constructed in (i). Then:

(ii.1) R(G) SNy D(Yi), Ynox = —z, € R(G), the function t — u(t;x), t €

R is infinitely differentiable, u(t;x) € Do (A) and c}%u(t? x) =u(t; A"x),
teR, x € R(G), neN.
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(ii.2) If ng =1, then £A; generate once integrated semigroups (Sfl‘:(t))te[()ﬂ') -

L(R(G)) given by SL(t)x := S(&t)(£x) £ Box, z € R(G), t € [0,7).
Furthermore, Ay generates a Co-group in R(G).

(ii.3) Let ng = 2 and put S (t)z := S(:I:t)ac + Box +t(£ABy £ By)z, t € [0,7),
z € R(G). Then S3(t) € L(R(G) (fo S3 (s)zds, S%(t )xf%x) € +A4,,
r € R(G), t € [0,7), Si(t )Alx = 4181 )z, t € [0,7), x € R(G),
S3(t)x € D(A), z € R(G), the mapping t — %S (t)z, t € [0,7) is
continuously differentiable for every x € R(G), R(G) C ﬂ?:o D(Y;) and
Yor = —x, xz € m Furthermore, £A;1 are generators of local once
integrated semigroups (%Si (t))eefo,r) -

(ii.4) Assume ng > 3,

’nofl
(223) R@G) C () D))
=2
and there exists M > 0 with
(224) IYiz|| < M||z||, x € R(G), i=2,...,n9 — 1.

The following holds: R(G) C D(Yy,) and Yy, @ = —x, x € R(G). Set

TL()—l i
St (t)x == S(t)x + ; ﬁle
no— 1 no-H %
5™ () = (—1)™0 S (—t)z + Z ~ Yz, 2 e R(G), t€0,7).

Then: S”“(t) R(G)), (fo SO (s)xds, ST (t)x tno,m) € £4;, z €
R(G), t [0,7) t)Alx = A Sz, t € [0,7), z € R(G) and
St (t)x € D(A), z 6 (G). Put

/

1 1
App—1+ = {(w,y) €4 : Ciw+ AYiw = £-Yiy, i =2,... ,ng — 1}.
’ 1! 2!

Then AnO 1,4+ are generators of local (ng — 1)-times integrated semigroups
(452 (t))seio.n)-

(ii.5) Let ng = 3 and p(A) # 0. Then, for every 1o € (0,00), there exists
n(19) € N such that Ay generates a local n(my)-times integrated group on
(—7’0,7’0).

PRrROOF. (i) Let 7 € (0,00) be chosen arbitrarily. Since AG(p)x = G(—¢')z,
¢ € D, x € E we have G € D'(L(E,[D(A)])), and Theorem 1.3.2 implies that
there exist a natural number ng = ng(7) and a continuous function S; : [-7,7] —
L(E,[D(A)]) such that G(p)z = (—=1)" [T @) (1) S, () dt, ¢ € D77,z € E.
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Then we obtain:

AG(p)z = (—1)™ / S0 (1) AS, (t)z dt = (—1)"0+! / S0+ (1) / AS.(s)z ds di
—T —T 0

= G(—(p/).’b = (_1)n0+1 /SO(TLOJFU (t)ST(t)xdt7 pe D(—T,T)a re k.
An immediate consequence is:

T

/¢(no+1)(t)

-T

¢
/AST(s)xds - S’T(t)x] dt =0, p€ D_r ), x€E.
0

The well-known arguments of distribution theory (cf. for instance [128, Lemma
8.1.1]) imply that there exist By,...,Bn, € L(E) which satisfy (i) of Defini-
tion 3.3.11. Similarly, if z € D(A), then G(p)Ax = AG(p)z, ¢ € D and we
get:

/go(”‘))(t) [AS;(t)x — S-(t)Az] dt =0, ¢ € D(_, ), z € E.
So, there exist Cy, ..., Cp,—1 € L(E) satisfying AS,(t)z — S;(t)Azx = Z;:()l tiC;x
for all t € (—7,7) and x € D(A). To prove (ii.1), we need the following notion.
Suppose ¢ € D and ffooo ¢(t)dt = 1. Given ¢ € D, we define I¢(¢) by

K = | [@(U)—C(U) / m)dv] du, t € R.

oo

Then we have: Io(¢) € D, (') = ¢ and £I.(0)(t) = 9(t) — (1) [, p(v) do,
t € R. Suppose z € R(G). Since AG(p)xr = G(—¢')x, ¢ € D one obtains
= [Z P tult;x)dt = A [7_ o(t)u(t;x)dt, ¢ € D. Then the partial integration
yields:

(225) A / gp’(t)/u(s;x) dsdt = /ga’(t)u(t;x) dt, ¢ € D.
—o0 0 —o0

Suppose (py,,) is a regularizing sequence and put ¢, = I-(p,) in (225) in an effort
to see that:

A_é [pnt) — C(1)] / u(s: ) dsdt_é [n(t) — ()] u(t; 2) dt.

The closedness of A and u(0; x) = = imply, for every ¢ € D with ffooo C(t)ydt =1:

(226) A 7 ¢(t) /tu(s; x)dsdt = 7 C(t)u(t;z) dt — .
“so 0 oo
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It is evident that, for every ¢t € R, there exists a sequence ({,) in D such that
f Cu(t)dt = 1, n € N and lim, o ¢, = J¢, in the sense of distributions. Put

(¢n) in (226). As above, the closedness of A implies fo s;x)ds € D(A) and
Afgu (s;x)ds = u(t;x) — x, t € R. Inductively,

¢ ¢
(t—s) (t — s)k—1 tF
(22 A = | —————u(s; R,
7) / ;x) ds / =1 u(s;z)ds — a teR, keN
0 0
Clearly, Az € R(G) and A commutes with G(-). Hence,
(228) A / et)u(t; ) dt = / p(t)u(t; Az)dt, p € D.

An application of (228) gives u(t;z) € (A) Au(t z) = u(t; Az), t € R, which
implies u(t;2) € Doo(A), t € R. Since Afo u(s;z)ds = u(t;z) — x, t € R, one
obtains by induction that the function ¢ — wu(¢; a:) t € R is infinitely differentiable

and that ddtn (t;z) = u(t; A"x), t € R, x € R(G), n € N. Furthermore,
t ) t ( Jro-1
(t—s)mo~ t—s)to
22 A : = [ X2 (s A .
(229) / (o= 1)1 u(s;x) ds / (o= 1)1 u(s; Ax) ds
0 0
Since
Gleo = (-1 [ "S- / plt)uts ) di
oo t
’rLo 1
=(=1)™ /w("‘) / u(s;x)dsdt, ¢ € Dy,
TLO — ].
—00 0

there is a subset {yo(z),...,Yn,—1(z)} of E such that:

t

— g n071 no—l )
(230) S(t)r — / Lu(s;x) ds = — Z t'y;(x), t € (—7,7).
0

—1)!
(no —1)! i=0

Put ¢ = 0 to obtain yo(z) = Boxz. By (230), it follows that

t t _ gm0 n i1
(231) /S(s)xdsf/%u(s;x) ds=— > ;lei(x), te(-771).
0 0 ' =0

By (227), one can apply A on both sides of (231) to deduce that, for every ¢ €

(=7 7):
7o p (t _ S)no—l tno no—1 i+l
[S(t)x + ZtiBi:E] - / ~————u(s;x)ds+ —x=—-A Z —yi(x),
=0 o

—1)! |
(no —1)! ng! —~ i+l
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which implies:

'ng—l ) no . t"“ no—l tz_;’_l
7 7 — . —
(232) - ;:O thyi(z) + ;:Ot Biw+ z=—4 ;:O Y@, te (=),

Since A is closed, one can differentiate (232) sufficiently many times to obtain
that: = € N2y D(Y;), Yoz = —z and y;(z) = Yz, i € {0,...,n9 — 1}. This
completes the proof of (ii.1). To prove (ii.2), fix an # € R(G). Let S1°(t)x =

S(t)r + 100" GYi(x), t € [0,7). By (230), S(t) = [y L Su(s;x)ds, €
[0,7) and (229) 1mplies ASY(t)r = ST°(t)Ax, t € [0,7). Let ng = 1. Then

St(t)x = S(t)x + Boz, t € [0,7), x € R(G). By the proof of (ii.1), Si(t)z =

fu(s;a:) ds, t € [0,7), * € R(G). Accordingly, SL(t)(R(G)) C R(G), t € [0,7).
0
By (227), ([ SL(s)zds,SL(t)x —tz) € Ay, t € [0,7), € R(G) and the closedness
of A implies (fo S1 )zds, SY(t)x — tz) € Ay, t € [0,7), z € R(G). Clearly,
SL(t)A; C A1 SL(¢ ) t € [0,7) and this proves that (S (t)).e[o,r) is a once integrated
semigroup generated by A;. The similar arguments (see also the proof of (ii.3))
work for —A; and (St (t))tefo,r)- To prove that A; generates a Cop-group in R(G),
we argue as follows. Since (fot Si(s)xds,St(t)x —tz) € Ai, t € [0,7), € R(G)
and R(SL(t)) € D(A), t € [0,7) one gets that the mapping t — £5% (t)z, t € [0,7)
is continuously differentiable for every = € R(G) and that 451 (e = AS (t)z+w,
€ [0,7), = € R(G). Moreover, it can be easily checked that, for every fixed
z € R(G), the function u(t) = SL(t)z, t € [0,7) is a unique solution of the
problem:

u e C([0,7): [D(A1)]) N CL([0,7) : R(G)),
Ci(r): 8 W (t) = Au(t) +z, t €[0,7),
u(0) = 0.
An application of [5, Theorem 1.2] gives that A; generates a Cpy-semigroup in
R(G). Similarly, —A; generates a Cy-semigroup in R(G) and this clearly im-
plies that A; generates a Cy-group in W Let us prove (ii.3). The proof

t
of (bl) implies that S%(t)z = [(t — s)u(s;z)ds, t € [0,7), z € R(G). So,

0
S2(t)(R(G)) € R(G), t € [0,7). Note also that S(0) = —By and that the
closed graph theorem gives S3(t) € L(R(G)), t € [0,7). Next, the closedness
of A and (227) imply (fo 5% (s)xds, ST(t) — %x) € Ay, z € R(G), t € [0,7).
Since fo S2(s)zds € D(A), € R(G), t € [0,7) and R(By) C D(A), we imme-

diately obtain ABgz + Bz € D(A), € R(G). Further on, Afot S2(s)zds =
S(t)x + Box + tByx + t?Box + tABox + %A(ABQJ? + Biz) = S3(t)x — %x, x €
R(G), t € [0,7). Therefore, A(AByx + Biz) = —x — 2Byz, € R(G) and
S3(t)x € D(A), AS7(t)x = A(S(t)z 4+ Box) + t(—x — 2Bsz), z € R(G), t € [0,7),
R(G) C ﬂ?:o D(Y;) and Yoz = —x, « € R(G). Suppose z € D(A;). Since
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R(By) € D(A) and AS? (t)x — S3(t) Az = [AS(t)x + ABox + tA(ABy + B1)z] —
t € [0,7), Proposition 3.6.8(iv) immediately implies (S2(t)z,S2(¢)A1z) € Ay,
t €10,7). Thus, (Si(t))te[o’f) is a twice integrated semigroup generated by A;. Be-
cause R(S%(t)) € D(A),t € [0,7), the mapping t — S3 (t)x is continuously differen-
tiable for every fixed z € R(G) and the following holds: 4 S2 (t)z = AS? (t)z+ta =
A(S(t)x + Box) — 2tBoyx, t € [0,7), x € R(G). Then it is straightforward to see
that 252 (t) € L(R(G)), t € [0,7) and that (fj 52 (s)xds, (LS2(t)z) — tz) €
Ay, t € [0,7). Suppose now z € D(A;). Then tSQ( )z = ASE(t)x 4tz =
S2(t)Az + to € D(A) and ALS%(t)x = AS?(t)Azx + tAx = LS52(t)Ax, t €
[0,7), (£52(t)z, &5 (t)A1z) € Ay, t € [0,7), and consequently, (253 ())sep0,m)
is a once integrated semigroup generated by A;. In order to obtain the corre-
sponding statement for the operator —A; and (5% (t))tefo,r), notice the follow-
ing facts: (208) holds for —A and G, G fulfills (DG), with u(*;z), G(p)z =
(=17 [ eI @O(=1)mS(W]zdt, z € E, ¢ € D and ((=1)"S(t))se(-r,r is a
[(=1)™Bq,...,(=1)motno B, (—1)"0 Ty, ..., (=1)"F™C,, _;]-group with a sub-
generator —A. To prove (ii.4), assume = € R(G). Let (x,) be a sequence in R(G)
with lim, o0 , = @. Due to (224) and (ii.1), lim, 0 Yn,—1(2n) = Yp,—12 and
lim,, 00 AY, —1(2y) = —x — no!Bp,z. Hence, Y,,,_1x € D(A), v € D(Y,,) and
Y.,z = —z as claimed. This yields S1°(¢)x € D(A) x € R(G) AS in the proofs of
(ii.1), (ii.2) and (ii.3), one obtains S}°(¢t) € L(R (fo S0 (s)ads, ST (t)x —
f5x) € £4;, © € R(G), t € [0,7) and S% ()Alx = A, S} ():17, t € [0,7),
z € R(G). We will sketch the rest of the proof of (ii.4) only for A and S1°(.).
Suppose t, s € [0,7) and t +s < 7. Since AS}°(-)x = S}°(-)Azx, x € R(G), one can
repeat literally the arguments given in the proof of [275, Propostion 2.4] so as to
conclude that:

t+s t s _1
(233)  ST0(1)S™(s)e = [ / - / - / %sﬁ(ﬂxdr, 2 € R(G).
0 0 0

The standard limit procedure implies that (233) remains true for every = €
R(G) and t, s € [0,7) with t +s < 7. Then it is straightforward to verify that
(S (t))tefo,r) € L(R(G)) is a local ng-times integrated semigroup in the sense of

(7). To prove that A;lo—1, 4 is the generator of a local ng-times integrated semi-
group (S7°(t))sef0,-) in the sense of Definition 2.1.1, we argue as follows. First
of all, let us observe that A;LTL 4 is a closed operator and that the arguments
employed in the proof of Proposition 3.3.15 also show that D(A™) N D(A4;) C
C™ (7). Suppose now z € D(Ap), where Ay is the infinitesimal generator of
(S%°(t))tef0,r)- This implies the existence of a number o € (0,7) so that the map-
ping t — SV (t)z, t € [0,0) is no-times continuously differentiable and that Agz =
limy 04 1 (45 (ST (t)z) — z). On the other hand, the closedness of A implies

k+1 n . . J e —
LS(t)a € D(A) and S-S0 = AdeS(r — S G (G~ KB,

dtk
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for every t € [0,0) and k € {0,...,n9 — 1}. Therefore, z € (2, D(Y;) and
Y,r = —(%S(t)x)tzo, k €{0,...,n0}. Moreover,

dng 1
dt’no 1

d no —
(S (tn) —w = Al S

:A[;Z:O __sm(t)e ] +Ayn0,1x:A[d;°0 5ot - (%S(t)x)tzo]

It is also evident that

dno 1 dno—l dno—l
_ _ - no _
= (dt”o S(t)m)tzo =g (dt”ﬂ*l ¢ (D (dt”ﬂ*l S<t)x>t:o)'

The closedness of A implies # € D(A;), Apx = Az and, because of that, Ay C
A;. Further on, R(G) C D(A™) N D(A;) C C’”U( ) and an application of [404,
Proposition 4.5] gives (f(f Sio(s)zds, SY°(t)xr — 4 £z) € A, z € R(G), t € [0,7)
and ST°(t)Agz = AgS°(t)z, t € [0,7), z € D(AO) Suppose (z,y) € Ap. Then
0= AS}(t)x — S0 (t)y = S+ Y LAY — Y B Yy, t € [0,7),
which implies 4y C Anrl’ +- Further on, fix an x € D(A4], ;) and notice that
ASY(t)r = S (t)Ax, t € [0,7) and

t
An0_17+/3(/Si“(s)xds,Sf_"( )xtox> = </S"° Yz ds Al/S xds)
0
¢
= (/Sﬁ”(s)xds,/Si”(s)Ax ds), te€0,7).

0 0

Sho(t)x } —ng!Bp,x — x

This implies C; fo S10(s)x ds+ % AY; fo St (s)zds = LY; fo St (s)Axds, t € [0,7),
i€{2,...,n0—1} Drfferentlate this equahty to obtaln C; S"O( o+ LAY ST (e =
%YS”O( )Ax te0,7),i€{2,...,ng—1}. Thus, ST°(t)A;, _, , C Ano )

€ [0,7) and An0 1+ is the generator of a local no-times integrated semigroup
(S%°(t))e[0,r) in the sense of Definition 2.1.1. An application of the arguments given
in the proof of [227, Proposition 2.1] gives Ag = A}, _; ,. Since R(S}°(t)) € D(A),
the mapping t — SY°(t)x, t € [0,7) is contlnuously differentiable for every fixed z €
R(G) and £81°(t)a = AST () + g = AS(Ha + Y100 G AY e + e,
t €[0,7), z € R(G). Then it can be easily verified that (S} (¢ ))te[O,‘r) C L(R(@))
is a local (ng — 1)-times integrated semigroup in the sense of (A). The c.i.g of
(L5570t Neelo,r) is Ao = Ano 1+ and an application of [404, Proposition 4.5]

enables one to see that An0—1, 4 is the generator of a local (ng — 1)-times integrated
semigroup (£S7°(t))scp0,-) in the sense of Definition 2.1.1. To prove (ii.5), we
argue as follows. Suppose A € p(A) and set Ay := A — X\, Gy := e G and
ur(;7) == e Mu(2), v € R(G) = R(Gy). Tt is straightforward to check that
Ay and G, fulfill (208) and that G is regular with G (p)x = f e(t)ux(t; z) dt,
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v €D, z € R(G,). Clearly,

Cr(p)z = Gle ™) = (~1)" / ()™ (1) S(t)w dt
= (—1)" 3 (—1)mo=i ("0 ) Amo—ie=My,() (£) S (¢)z dt
[ 3 (e

= (—1)i(Z°>A”o—i / e (t) (e MS(t)x) dt = (—1)"° / ) (1) e MS (1) dt

T t
0 ) ) ) _ no i—1
+§:(—1)Z<n‘0>z\”°‘l(—1)"°‘z/ () ¢ /t k) i e S(ads i
— i J ) (ng —1i

— (1 / ) (1)

—T

— At S no no—1i t B 'S ng 1 7/\5
e S(t)erZ ( ; >)\ / (=i =1 S(s)x ds] dt,

i=1 0

for every ¢ € D(_; ;) and x € E. Put, for every t € (—7,7) and x € E,

t .
—At no—i (t — S)no_l_l —As
Sx(t)x =e S (t +Z A™0 e "*S(s)x ds.
0

(ng —i—1)!

Then the mapping Sy : (—7,7) — L(E,[D(Ax)]) is continuous and Gy(p)x =
(=1)m [T o (o) (1) S\ () dt, ¢ € D7), * € E. The proof of (i) implies that
B, ,Cg,...,Cp _y such that Ay is
a subgenerator of a [By, . . no, Cay... C’nO 1]-group (S,\( ))te(—r,r)- Define Y
recursively by Y3 := B} and YA = (i+1)!BN +A,Y, i € {0,...,ng—1}. Since
0 € p(Ay), we have that Y is closed, i = 1,...,n9. Suppose, for the time being,
z € R(G) and (z,,) is a sequence in R(G) such that lim,,_,~ z, = 2. A consequence
of Y,f;)xn = —x,,n € Nislim,, ., AAY o—1Tn = —x—nOIBT)L‘Ox and the boundedness

there exist bounded linear operators B}, ..

of A;\l implies lim,, o0 er;rlxn =A ( T — nOIBfL‘Om). Continuing this procedure
enables one to establish that, for every i = 1,...,n9 — 1, lim,, o Y;*z,, exists. The
closedness of Y;* yields z € ;% D(Y;}) and Y}z = —x. Put A, := (AN 7@y
and Cz := A;(""_l)x, T € m Because GyA) C A,G,, we have A;kGA =
G AR, k€ N, AJF(R(G)) € R(G), k € N and A *(R(G)) € R(G), k € N.
This implies 0 € p(A; ) and the injectiveness of C' € L(R(G)). Assume now
z € D(ATT). Then Az € R(G), z = A, ™ V(Ar~'2) = C(4y ') €
R(C). and D(A’ff’/\_l) C R(C). Proceeding as in the proof of Proposition 3.3.15,
one obtains that the mapping ¢t — Sx(t)x, t € (—7,7) is no-times continuously
differentiable and that there exists a function M : (—7,7) — (0,00), independent
of @, so that | L2Sy\(t)z|| < M(|t]) 0, |44z, t € (—7,7). Put v*(t;z) =

dt™o
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dt"OS/\( Jr, t € [0,7), z € DAY ™) and T(t)z = v (;Cx), t € [0,7), v €
R(G). Due to Proposition 3.3.15, D(AY ™) C D(Y{) and v*(0;2) = —Yy"u,
x € D(AY ™). Moreover, R(C) C R(G) N D(A}*~") and this implies u*(0; Cz) =
—Y"Cx = Cx. The mapping t — T'(t)x, t € [0,7) is continuous for every fixed
€ R(G) and |[T(t)a] = [[u(t: Ay ™" Va)|| < t) ity HA Hellall, t € [0,7),
x € R(G). The partial integration shows Gi(y f _p(t)ur(t; ) dt, o € Dig oy,
z € D(AY ") and this yields u* (t; 2) € R(G) ) ,T), T € D(A;f0 ). Therefore,
T(t)z € R(G),t €[0,7), z € R(G) and T(t) € ( G)), t € [0,7). As in the proof
of (ii.1), we infer Ay fgu (s;Cx)ds = Ay fo s)zds = ur(t;Cz) — u(0;Cx) =
T(t)x — Cz, t € [0,7), € R(G) and u*(t; Axz) = Ayu(t;x), t € [0,7), © €
D(AY°). By the previous equality, T'(t)A;x € A1 \T(t) and T(t)C = CT(t),
t € [0,7). Now it can be easily seen that the abstract Cauchy problem:

v e O([0,7) : [D(A10)]) N CH([0,7) : R(G)),
V' (t) = A1 v(t) + Cx, t € ]0,7),
v(0) =0,

has a unique solution for every z € R(G), given by v(t fo s)xds, t € [0,7),
xz € R(G). This implies that the abstract Cauchy problem.

fec(o,7): [D(AL)]) NCH[0,7) : R(G)),
(ACP,7): f’((t)) = Ainf(t), t€0,7),
f(0) =z,

has a unique solution for every z € C(D(A;,)) and that A; \ is the integral
generator of a local C-regularized semigroup (T'(t))ic[o,r)- As before, D(AY’) C
C(D(A,)) and this implies that that A; » generates a local (ng—1)-times integrated
semigroup on [0, 7). A rescaling result for local integrated semigroups implies that
A; generates a local (ng — 1)-times integrated semigroup on [0, 7). Similarly, —A;
generates a local (ng — 1)-times integrated semigroup on [0, 7). O

THEOREM 3.3.20. Suppose G is a (DG) generated by A. Then the group
(S(t))te(—r,r), constructed in Theorem (3.3.19)(i), is non-degenerate. If ng = 1,
then A generates a Cy-group. If ng = 2, then:

(a) (SL(t) := £A(S(xt)z + Bozx) — 2tBax)
semigroups in the sense of (A).

(b) The c.i.g of (SL(t))iefo,r) (SE())tep,m) is Amey (—A) iay)-

(¢) Suppose A is densely defined or A — A is surjective for some A € C. Then
+A are generators of local once integrated semigroups (SL(t))ic(o,r)-

tefo,r) @ local once integrated

Furthermore:

(i) For every x € E and ¢, 1 € D(_; ;) with supp ¢ +supptp C (-7, 7):

(331)  Gle)Gw)r =Y (~1)a / ") (t) / G0 (5)S(t + 5) B ds d.
1=0

— 00 — 00
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(i) Yayz = —2, @ € (V% D(Y2).

(iii) Suppose x € D(A™~'). Then {z,Az} C N2y DY), Yoo = —uz,
Y, Az = —Axz and D(A™~1) C R(G).

(iv) A is stationary dense with n(A) < ng — 1.

(v) If p(A) # 0, then for every 1o € (0,00), there is an n(my) € N so that A
generates a local n(ty)-times integrated group on (—To, 7).

(vi) G is dense iff Doo(A) is dense in E. In the case p(A) # 0, G is dense iff
A is densely defined.

(vil) Nyep, Kern(G(p)) = {0} and ,cp, Kern(G(¢)) = {0}.

PROOF. Assume S(t)r =0, t € (—7,7). This implies G(¢))r =0, ¥ € D(_, 1)
and G(Y)z = limy, 00 G(Y * pp)7 = limy, 00 G(¥)G(pn)z = 0, ¥ € D where (p;,)
is a regularizing sequence. Owing to (DG)s, one can deduce that x € N(G) and
that (S(t))¢c(—r,r) is non-degenerate. Put now Si(t)z = S(t)x + Boz, t € (—7,7),
r € . We will prove that (S1(t))c[0,r) is a once integrated semigroup generated by
A. Observe that Sq(t)A C AS1(t), t € (—7,7) and that Sy : (—7,7) — L(E,[D(A)])
is continuous. This clearly implies 4.5 (t)z = ASi(t)z + Bz, t € (—7,7), z € E
where B = —By — ABy € L(E). Further on, fot Si(s)xds € D(A), t € (—7,7),
reF,

A/ xds-A/ s)x + Box)ds = S(t)x + Box + tBix + tABgx
=S1(t)xr —tBzx, te(—71,7), x€FE

and (S1(t))te(—r,r) is a [0, =B, 0]-group with a subgenerator A. We will prove that
B = 1. Suppose (, € D(_;/4,7/4) and (p,,) is a regularizing sequence. We know
that supp I¢(¢) C [min(—7/4, inf(supp ¢)), max(7/4, sup(supp ¢))] and that there
exists k € N such that supp I¢(pn) UsuppI,(pn) C [—7/4,7/4], n > k. Fix an
xr € E. By (DG)y, it follows that, for every o, ¥ € D(_; /4 7/4):

(235) /@ﬁx/W@&w&@nwﬁ:—/@%X/M@&anwﬁ.
Put ¢ = I¢(pn), n = k in (235). Then one obtains, for every ¢, ¥ € D(_; /4 7/4):
/[pn /1/} )S1(t)S1(s)xdsdt = /[pn( /1/) )S1(t+s)x dsdt.

Letting n — oo and applying the partial integration, one gets that, for every
Y € D(_7/a,r/4):

(236) /g /1// )81 ()81 (s)z ds dt
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/1// /51 )z dvds — /C /w / (t +v)z dv ds dt.

Plug ¢ = I,)(pn), n > k into (236). Then we obtain, for every 1 € D(_; 4.+ /4):

7 ¢(t) 7 —n(s)]S1(t)S1(s)z ds dt
- / [pa(s) —1(s)] / o) dvds — / G / )= n(s)] /sSl(tJrv):cdvdtds.
> 0

The standard limit procedure leads us to the following

(237) / / C(t)n(s)S: (1)1 (s)z ds dt

— 00 —0O0

- 7n(s)/851(v)xdvd8+ 7
oo 0 oo —

Let t, s € (—7/4,7/4) be fixed and let ((n)neN and (n,)nen be sequences in
D(_+ /4,7 /a) satisfying ffooo Cu(t)dt =1, f t)ydt =1, n €N, lim, 0 ¢ = &
and lim,,_, o, n, = Js, in the sense of dlstrlbutlons By virtue of (237),

S

/51 (t+v)xdvdtds.

8\8
f\r

t+s t S

(238) (1)1 (s)z = [ / - / - / ] Sy () dr.

0 0 0

Notice that (238) implies Sl(t)(d%Sl(r)x)T:S = S1(t + s)x — S1(s)x and
S1(t)[AS1(s)x + Bz] = S1(t + s)x — S1(s)x. Since S1(t)A C ASi(t), t € (—7,7),

one yields:
/+

Si(t+s)z—(t+s)Bx—Si(t)r+tBx—Si(s )ersBerSl( )Bw = Sl(t+8)1' Si(s)x.

So, S1(v)[Bx —x] =0, v € (—7/4,7/4). Since G(p)z = — [* ()xdv, p €
D(_r/4,r/4), We obtain that (S (t ))te( r/4r/4) 18 @ non-degenerate operator family.
Hence, B = I and (Si(t)):c[0,r) is a once integrated semigroup generated by A.
Analogously, (—S(—t) — BO)tE[O,T) is a once integrated semigroup generated by —A
and one can repeat literally the arguments given in the proof of Theorem 3.3.19(ii.2)
in order to see that A generates a Cy-group. Suppose now ng = 2 and denote

A = Alm' We will only prove that A; is the c.i.g of (Si(t))te[o,r)- Evidently,

ABy+B; € L(E), G((p)x = foo (p”(t)[S(t)I+B0£E+t(ABO+B1)I‘] dt, p e D(_T,T),

— 00

x € E and the mapping t — S(t)z + Box +t(ABy+ Bi1)z, t € [0, 7) is continuously

t s

/ /1 (r)xdr + Si(t)Bx = Si(t + s)x — Si(s)w, ie.,
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differentiable with 4 [S(t)z + Box + t(ABy + Bi)z] = AS(t)x — Biz — 2tBsx +
(ABy + By)z, t € [0,7), x € E. Therefore,

(239) G(p)r = — / ¢'(t)SL(tzdt, p €Dy ), z € E.

Suppose z € E, ¢, 1 € Dy ) and supp ¢+suppt C [0, 7). Since G satisfies (DG)1,
we obtain

7 ¢ (t) /Oow’(S)Si(t)Si(S)x dtds = — 7 ¥ (t) 7w(8)5i(t +s)rdtds.

Arguing as in the case ng = 1, one gets, for every ¢, s € [0,7) with t + s < 7:

SL(H)S4(s x—[7s/t /]S1 ) dr.

Further on, S%(0) = 0 and the mapping ¢ — S (¢)z, t € [0,7) is continuous. It
can be simply verified that (S (¢))¢efo,r) is a non-degenerate operator family, and
consequently, (S} (t))te[o,r) is a local once integrated semigroup in the sense of (A).
Suppose z € D(Ap). Then there exists o € (0, 7] such that the mapping t — S (¢)z,
t € [0,0) is continuously differentiable and that Aoz = lim;—o1 1 (4 (SL(t)z) — ).
The partial integration and (239) yield:

oo

d
(240) Glo)r = / plt) 5 SL (D) dt, o € Dig .

— 00

Owing to (240) and Theorem 3.3.20(ii.3), we get lim, o G(pn)z = x E R(G),
S%(t)x = S(t)x + Box + t(ABo + B1)x € R(G), t € [0,7) and R(G) > £.5% (t)x =
AS(t)x—Biz—2tByx+(ABo+B1)z = Si(t)z, t € [0,7). Consequently, dtsl( )z
R(G), t€[0,0), Aoz = limy_04+ (L (SL(t)z) — z) € R(G) and:

(241) {z, Aoz} C R(G).

Furthermore, 4S(t)z = AS(t)z — Biz — 2tByx, t € [0,7), £SL(t)x + 2Bz =

A[S(t+h)z—S(0)x] - A[S(z—S(0)z] _ hmh_mAS(tJrh)h SWe 4 ¢ 0,0) and

limy, o 7
limy,_0 w = AS(t)x — Byx —2tBsx, t € [0,7). The closedness of A gives
AS(t)z—Biz—2tBox € D(A), t € [0,0) and A[AS(t)z— Byz—2tBsx] = 4 8! (t)z+
2Bsx, t € [0,0). Put t = 0 in the previous equality to obtain A(ABy + Biy)z
= —x — 2Bsx. Notice also that
Aoz — lim 4(Si(t)z) — = _ lim A[AS(t)x — Byx — 2tBox] — 2Box — x
t—0-+ t t—0+ t

A[AS(t)x — Byx — 2tBax] + A(ABy + B1)x
t—0+ t
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~ lim AA[S(t)x —5(0)x] — 2tBQZ.
t—0+

On the other hand,

- - St (t)x — SL(0
i ABOz = 8©O)2] —2Bor 5Bz = 50z (iSl (t):c) =a.
t—0+ t t—0+ t t=0

Therefore, x € D(A), Aoz = Az, Ay C A and (241) enables one to see that
Ay € A and Ay C A;. Furthermore, Theorem 3.3.19(ii.3) shows that A; is
the generator of a once integrated semigroup (%Si(t))te[o » < L(R(@)) in the
sense of Definition 2.1.1. Accordingly, (%Si(t))te[o » C L(R(G)) is a local once
integrated semigroup in the sense of (A) and it can be easily proved that the c.i.g of
(%S?F(t))te[o,r) is A1. But, the c.i.g of (S}(t))sejo,r) is an extension of the c.i.g of
(%Si(t))te[O,T)' Hence, A; C Ag and A} = Ay. Further on, it is straightforward to
see that 451 (t)z = AS(t)Az— By Az —2tBy Az — (2B, —C1)z, t € [0,7), z € D(A).
Due to [404, Lemma 4.3(b)], we obtain that z = (%S}_(t):ﬂ)t:m x € D(A) and an
immediate consequence of this equality and (240) is limnHOO G(pn)xr =,z € D(A).
By Theorem 3.3.19(ii.3), we have D(A) € R(G) C ﬂz o D(Y;) and Yor = —z, x €
D(A). Suppose x € D(A). By Proposition 3.3.15(iv), Az € D(Y7), Ciz + AYla: =
Y1 Az and, because of that, 2Bsx+Y; Ax = Cix+Yox = Crx—x. Now an application
of Proposition 3.3.15(i) shows that Y1 Az = —(2B2x — C12) — x € D(A) and that
AY1Ax = —2ByAx — —Ax. In other words, Az € ﬂ?:o D(Y;) and Y2 Az = — Az
Let us prove (c). First of all, assume A € C, A — A is surjective and z = (A — A)y
for some y € D(A). Then we obtain E = (7_, D(Y;) 3 & and Yaz = Ya(A\y — Ay) =
—Ay + Ay = —x. Proceeding as in the proof of (ii.3) of Theorem 3.3.19, one gets
that Afo 52 Yz ds = S(t)x + Box +tB1z + t* Box + t ABoz + %A(ABOerle) =
S3(t)x — 23: x € E, t € [0,7). This implies fg Si(s)zds € D(A), t € [0,7)
and Afo Si(s)zds = SL(t)x —tw, x € E, t € [0,7). Assume x € D(A). Due to
Prop051t10n 3 3 15(i), we get St (t)z = (S(t) — S(0))Az — t(2Bsz — Chz) € D(A),
t € [0,7) and ASL(t)z = A(S(t) — S(0))Az — 2tByAx = SL(t)Az, t € [0,7).
Suppose now that A is densely defined. Since D(A) C R(G), we obtain that
R(G) = E and that A is the c.i.g of (S%(£))teqo,r)- Due to [404, Proposition 4.5],
(S%(t))tefo,r) is a local once integrated semigroup in the sense of Definition 2.1.1.
To prove (i), suppose = € E, ¢, ¢ € D(_; ;) and supp ¢ + supp®) C (—7,7). Note
that:

G()C()x = / ) (1) / B (5)S(1)S (s) ds dt

/ (mo)( /on) /5 )a dv ds dt.
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Repeating literally the arguments given in the proof of Proposition 3.3.17, one
obtains (218). Then the last equality implies:

00 00 no—1
G(‘P)G(d’)w:—/w(ylo)(t)/w(nwl) [ Z/t—i—s—r /CS Ya dv dr
—o0 —o0 =079
no s ‘ r no ‘
+Zj/(t+8*T)Jfl/BjS(’U)xd’Ud’f’7Z/TJS(t+S*T)Bj$dT' ds dt.
Jj=1 79 0 7=0 0
Noticing that [ ™ (t)t7dt =0, n € N, j € Ng, n > j, we get:
—0o0
o0 no— 1 S
L = /w(nO)(t)/l/)(""H) Z/t—i—s—r /CS Yz dvdrdsdt = 0.
% o J=0 %
Indeed,
I = /@(7lo)(t)/w("0+1)(s)x
no—1 S j' r
: k1 k
X Z / Z mt 12 (—r) 3/C]-S(v):cdvdrdsdt.
J=00 (kika.ks)ENG 0
k1+ko+ks=j

Suppose j € {0,...,n9 — 1}, (k1, ko, k3) € N3 and ki + ko + k3 = j. Then one gets:

oo (oo} S T

1l
/go(”“)(t) / ¢("°+1)(5)/7‘7' tklsh(fr)k:“/CjS(v):cdvdrdsdt
k1lko!ks!
—o00 —o0 0
o0 S ' T
/ (o) (¢)¢kr dt / mo+h)( )/¥sk2(—r)k3/CjS(v)a:dvdrdsdt:O.
k1lkolks!
—o00 0
Hence, I1 = 0. Proceeding in a similar way, we infer that
o0 o0 no S T
/90(”0)(15) / ¢("°+1)(5)Zj/(t+sfr)j’l/BjS(v)xdvdrdsdt:O
oo “oo =179 0
and
Glp)G(y)z = / (M) () / Yot (s) Z/NS (t+s—r)Bjxzdrdsdt
—00 —o00 J=07

oo

o0 no t+s
(242) = /(,0(”0)(75)/1#("0+1 Z/ (t+s—71)7S(r)B;xdrdsdt.
N o §j=0
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Put, for every t € (—7,7) and j € {1,...,n0+ 1}, g;+(s ft—H (t+s—r)—t
S(r)Bjxdr, s € (-t —t,7 —t). It is Stralghtforward to Check that Lg;.(s) =
G-1 t+s(t+s—r)j_25(r)Bj:1c dr,j>1,s€(—7—t,7—t) and that gy ,(s) =
S(t+ s)Biz, s € (—7 —t,7 —t). The partial integration and (242) imply:

) // (0) ()5 n0) (5 Z/ (¢ + 5 — Y1 S(r) B dr ds dt

// (o) (1)2p (") () S(t + 5) By ds dt.

— 00 —O0

Applying again the partial integration, we get

G(y) // (0) (£)2p(0) (5)S(t + 5) Box: ds dt

—00 —O0

// (n0) ()"0 ~1) (5)S (¢ + 5) By dis dt

oo oo t+s
+ / / (o) (t)groh Z] i—1) / (t + 5 — r)"2S(r) Bz dr ds dt.
Continuing this procedure, we finally obtain (234).
To prove (ii), suppose ¢, ¥ € D(_, -y and supp ¢ +suppt) C (=7, 7). Certainly,

o0

(243) Gl )r = (—1)™ / (% )" ())S () dt
_ (—1yno / (™) s ) (1) S(t)a dt = (—1)™ / l / S0 (1 — $)p(s) ds]S(t)xdt

— 00

=(=1)"° / (no) (¢ /w S(t+s)xdsdt, x € E.

Owing to (243),
(244) G(Y)r = lim G(Y * pp)z

n—oo o0

= lim (—1)"° / (no) (¢ /w S(t+ s)xdsdt, x € E.

n—oo

Combining (DG)1, (234) and (244), we obtain:
no

(245) (D)™ G )z = (—1)THilG ") B, x € E.

=0
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Suppose now z € ()12, D(Y;). A consequence of the definition of Y;,, and (208) is
nO!G(z/))Bnoa:—FAG(w) no—12Z = no!G(Y)Bryx— G )Yy, —12 = G() Y,z Ifng >
2, then we obtain no!G(¥)) Bpyx — G(¢') (AYny—22 + (ng — 1)!Bp,—12) = G(¥) Yoot
and no!G(¢)Bp,x — (no — 1)!G(¢Y)Bpy—12 + G )Yy, —22 = G(¢)Y,,z. By the
definition of ¥; and (208), one concludes inductively:

ng
(246) D (=1 TG (0T B = G(4) Y, .

i=0

This equality and (245) imply G(¢)(Y,,z + ) = 0; a simple consequence is

G(n)(Yp,z + ) = 0, n € D and the proof of (ii) follows from an application of
(DG)2. To prove (iii), one can argue as in the proof of (ii.5) of Theorem 3.3.19.
We sketch the proof for the sake of completeness. Fix an z € D(A™~1). Since
S : (—7,7) = L(E,[D(A)]) is continuous, the arguments given in the proof of
Proposition 3.3.15 imply that the mapping ¢t — S(t)z, t € (—7,7) is ng-times
continuously differentiable and that there exists a function M : (—7,7) — (0, 00)

satisfying H;t% t)z|| < M(t)||z[lng—1, t € (—7,7). Furthermore, (213) holds
for every [ € {0,...,n9 — 1} and one obtains inductively Yz = —(C‘lit—iS(t)a:)tzo,
k € {0,...,n}. Denote u(t;x) = 4-S(t)z, t € (—7,7); then the partial integration

shows G(p)z = [0 @(t)u(t;z) dt, ¢ € D(_; ;). The previous equality and (ii) im-
ply limy, o0 G(pn)z = u(0;2) = =Y, = z € R(G). Therefore D(A™~1) C
R(G). Further on, Proposition 3.3.15(iv) implies Cy,—_12 + e 1),AYnO 1x =
Tno—1)1 1)| Yoo—1(Ax), ie., Cpy— lx“"( 1)|[ z—ng!Bp,z| = mynofl(AI') Due to

Proposition 3.3.15(1), Y,,,—1(Az) € D(A) and a simple computation gives Y, , Ax =
— Az, which completes the proof of (iii). Further on, let us observe that (iii) im-
plies D(A™) C D(A™~1) C R(G) C Doo(A) C D(AnH1) for every n € N such that
n > ng — 1. Hence, A is stationary dense and n(A4) < ng — 1. Assuming A € p(A),
we will prove that A generates a local (ng — 1)-times integrated group on (—7, 7).
Repeating literally the arguments given in the proof of Theorem 3.3.19, one gets
Afg u(s;z)ds = u(t;z) —x, t € (—7,7), © € D(A™™1) and Au(t;z) = u(t; Az),
t € (—=7,7), x € D(A™). Set S~ 1(t)x =: u(t; R(\: A)"~1z), t € [0,7), z € E.
Clearly, the mapping ¢t — S™0~1(t)x, t € [0,7) is continuous for every z € E and
an induction argument shows that, for every k € Ny, there exists an appropriate
constant M (k,\) € (0,00) which fulfills ||A¥R(\: A)rz|| < M(k,\)|=z|, = € E.
This implies [|[S™ " (t)z| = |lu(t; R(A: A)™ 1) < M#)|[[RN: A)™ 1 z)|p,—1 <
M(¥) Z;L:"alM(i,)\)HR()\:A)||”0*1*i||x||, r € E and S™L(t) € L(E), t € [0,7).
Let C = R(\: A)™~1. Then Afot Sno-l(s)xds = Afot u(s;Cx)ds = u(t Czx) —
Cx = S~ Y(t)z — Cz, t € [0,7), * € E. Since Au(t;z) = u(t; Ax), t ( T, T),
x € D(A™), one easily obtains S™~1(t)A C AS™~l(t), SR\ : A) =
R(A: A)S™~1(¢) and, by induction, S™~1(t)C = CS™~L(t), t € [0, 7). Now it
is straightforward to prove that the abstract Cauchy problem:

v e C([0,7): [D(A)])NCH0,7) : B),

v'(t) = Av(t) + Cz, t € [0,7),

v(0) =0,
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has a unique solution for every = € E, given by v(t) = fot Smo=Y(s)zds, t € [0,7),
x € E. Consequently, A generates a local (ng — 1)-times integrated semigroup
on [0,7). Since —A generates a (DG) G, we also obtain that —A generates a local
(np—1)-times integrated semigroup on [0, 7). Therefore, A generates a local (ng—1)-
times integrated group on (—7, 7). This completes the proof of (v). To prove (vi),
notice that the assumption R(G) = E and R(G) C Dy (A) imply that Dy, (A) is
dense in E. The converse statement is obvious since Dy, (A) C D(An0—1) C R(G)
(cf. the proofs of (iii) and (iv)). In the case p(A) # 0, the denseness of D (A) in
E is equivalent to the denseness of D(A) in E and the proof of (vi) completes a
routine argument. It remains to be proved (vii). Suppose G(p)z =0, ¢ € Dy. This
implies (—1)" [0 @m0 (t)S(t)zdt = 0, ¢ € D, and the existence of bounded
linear operators Dy, ..., D,,_1 € L(E) satisfying S(t)z = Z;ligl t!Djz, t € [0,7).
Hence,

nol nol

(247) AZ i Dx_ZtJDx+ZtJB:cte [0,7).

Substitute ¢ = 0 in (247) to obtain Dy = —By. Differentiating (247), it is straight-
forward to see that: = € (%, D(Y;), U, "{Diz} € D(A), Dz = %Yﬂ, i =
1,...,n9—1and A(D,,—12) = noBp,x. This implies (1B, + (n%_l)!AYnU_l)x =
0, i.e., z € N(Yy,). Due to (ii), z = 0 and (), p, Kern(G(¢)) = {0}. The second
equality in (vii) follows by passing to —A and G. O

EXAMPLE 3.3.21. Put E := L*°(R) and A := d/dt with maximal domain. Then
Alis not densely defined and generates a once integrated group (S1(t)):cr given by

(51 = fo r+s)dr, s € R, t € R (cf. also [104, Example 4.1]). Put
f—fOSl fdst>0feE52 f—fo S1(—s)fds, t <0, f € E and
o) f = f_ 2(t)fdt, p € D, f € E. Then (S2(t))icr is a twice integrated

group generated by A the mapping Sz : R — L(E,[D(A)]) is continuous and G
is a non-dense (DG) generated by A (cf. Theorem 3.3.20 with ng = 2). We would
like to point out that there exists f € D(A) such that Af ¢ R(G). Suppose to the
contrary that R(A) € R(G). Due to Theorem 3.3.20, D(A) C R(G) and we obtain
(A=A)f e R(G), N € C, f € D(A). Since C\iR C p(A), one yields E = R(G) and
the contradiction is obvious. Hence, Theorem 3.3.20 implies that (S1(t))i>0 is a
once integrated semigroup generated by A in the sense of Definition 2.1.1 and that
the c.i.g of (S1(1))rer is Aggy (# A). Furthermore, R(G) & Ny D(Y;) = E.

PROPOSITION 3.3.22. Suppose Gy and G2 are distribution groups generated by
A and p(A) #0. Then Gy = Gs.

PROOF. Suppose x € E, A € p(A) and ¢ € D, .y for some 7 € (0,00).
We will prove that G1(p)z = Ga(p)x. Clearly, G; € D'(L(E,[D(A)])), i = 1,2
and an application of Theorem 1.3.2 gives that there exist n; € N, no € N and
continuous mappings S; : (—7,7) — L(E,[D(A)]), i = 1,2 so that G;(¢)z =
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1) [ pm)()S;(t)adt, € D(_y .y, @ € E, i = 1,2. The proof of Theo-
rem 3.3.20 shows that there are bounded linear operators By, ..., By, , Bo, - - -, Bn,,
Co,...,Cny-1,C0,...,Cpny—1 such that (S1(f))ie(—r.r), resp., (S2(t))ie(—r,r) is a
[Bo, ..., Bn,,Co,...,Cpn,—1]-group, resp., [Bi(), oy Bny, Coy et an_l]—group with
a subgenerator A. Without loss of generality, we may assume ny = ny. The
proof of Theorem 3.3.20 implies that (4:-S;(t)R(\ : A)"lfl)te[oﬁ), i = 1,2 are

dt™1

local ( (A A)ym— 1)—regu1arlzed semigroups generated by A. Hence, there exist
To, ,Tn,—1 € Esuch that Sy (¢)R(A: A)" " to—So(H) RN A)m e = S0 Vi,
t € [0,7). An immediate consequence is:

R\ A 1G(0)x — RO A)™ LGy (p)x

o ni—1
= Gi(p)R(A: A" a—Ga(p) R(A: A)™ e = (—1 "l/w (¢ Z tha; dt =0,

— 00

which clearly implies G1(p)x = Ga(p)x. O

REMARK 3.3.23. (i) Suppose A generates a (DG) G and p(A4) # 0. Then
there exist ¢ > 0 and b > 0 such that E(a,b) C p(£A) and that the following
representation formula holds for G:

-, Z// RO Az + e RO —A)a| ded), v € B, p €D,
s

where we assume that the curve I' = 0F(a, b) is upwards oriented.
(ii) Suppose G € D'(L(E)) is regular, A is a closed linear operator so that (208)
holds and there are no non-trivial solutions of the abstract Cauchy problem:
ue CR: [DA)NCYHR: E),
(ACPy) : ¢ W/ (t) = Au(t), t € R,

u(0) = z,
when © = 0. Then G(p * )z = G( VG (Y)z, m », ¥ € D. Towards
this end, observe that G( gp e = [ 7 Ju(t + s;x)dsdt and that
G)Glp)x = [T o(t)G(y (t x)dt, x € R( ) ©, w € D. The consideration is
over if we prove that G(¢)u(t;z) = [ (s t+s x) ds YeD,x ER(G) teR.
Set, forﬁxed?/)GDandxeR(G), f() —G = [Z w(s)ult + s;a) ds,
t € R. Then Afo ds = G(w)[ (t;z) f_oo Iﬁlf;—s_g (r;z)drds =
G(z/J)[ - u(t+s;x) — ( ; )] ds = f(t), t € R. So, the function

fo ds teR solves (ACP;) and u(0) = 0. This proves f = 0.

(111) Suppose G € D'(L(FE)) is regular, (208) holds for A and G, 7 € (0, 00) and
p(A) # 0. Set Gy = Gz Then Gy is a dense (DG) in R(G) generated by A;.
To prove this, we employ the same terminology as in the proof of Theorem 3.3.19;
without loss of generality, one can assume 0 € p(A4) so that Ay = A, uy = u and
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G\ = G. Suppose (p,) is a regularizing sequence. Choose an arbitrary 7 € (0, c0)
and notice that

o0

C?G(pxp)r = CG(p*)Cx =C / (@ *Y)(t)u(t; Cx) dt

oo

:C/(cp*d))(t t)e dt = / / Tt 4+ o) dsdt
7 7 G JT(s)z ds dt = G()CG($)Cx = C2G ()G (W),

for every z € R(G) and ¢, 1 € Do,y with supp ¢ +supp? C [0, 7). The injective-
ness of C' combining with the argumentation used in the proof of Theorem 3.3.19
enables one to deduce that G(p* )z = G(p)G(Y)x, ¢, ¥ € D, x € R(G) and that
G1 € D'(L(R(Q))) satisfies (DG);. The assumption G;(¢)z = 0, ¢ € D implies
Gi(p)Cx = [T (t)u(t;Ca)dt = [72_ @t)T(t)xdt = 0, for every ¢ € Dy ;) and
Cr =T(0)z = lim, 00 G1(pn)Cx = 0. Hence, x = 0 and Gy is a (DG) in m
It can be easily seen that G is generated by Aj;.

(iv) Suppose G and A possess the same meaning as in (ii), and A € p(A4).
Then the [By,..., Bp,,Co,...,Cny—1]-group (S(t))ie(—r,r), constructed in Theo-
rem 3.3.19(i), satisfies (223), (224) as well as Y,z = —x, x € R(G). Indeed, due
o (ii), G; = Girigy is a (DG) in R(G) generated by A;. The proof of Theorem
3.3.19 implies that A; generates a local ng-times integrated group (Sp, (t))te(_ﬂT)
in L(R(G)). Tt is not hard to prove that Gy (p)x = (—1)™° fooo ©mo) (1) S, () dt +
IO 0 (S, (t)xdt, 9 € Dy, @ € R(G). Hence, [5°o"0)(1)S,, (t)zdt =
I @) (1) S(t)xdt, ¢ € Dip,ry, * € R(G) and an application of [128, Theorem
8.1.1] gives the existence of operators D; € L(R(G), E), i =0,...,ng— 1 satisfying
S(t)x = Spy () +3700  ti D, t € [0,7), € R(G). Since Afo s)xds = S(t)z+
St Bz, t € [0,7), © € E, one obtains A" t;:ll = S (D +
Biz) + t" B,z + tnT;!x, t € [0,7), z € R(G). This implies R(G) C D(Yn,),
Diz = C1Yix, i=1,...,n9 — 1, (223)-(224) and Y,,,z = —z, = € R(Q).

REMARK 3.3.24. Suppose G is a (DG) and ¢ € D. Then G(¢) = G(p+) +
G(p-) iff {G(p41), G(p-)} C L(E) iff G(p4) € L(F). Namely, the assumption
G(¢) = G(p4) + G(p—) immediately implies D(G(¢4)) = D(G(p—)) = E and, by
the closed graph theorem, G(py) € L(E) and G(p_) € L(E). Clearly, {G(¢+),
G(e-)} C L(F) implies G(¢4) € L(E). Suppose now G(p1) € L(E). We will
prove that G(p_) € L(F) and G(p_) = G(¢) — G(p4+). Fix an € F and notice
that G(pxh)z = G(6)G(p)z, 1 € D implies Glp, «)a4 Glo_ b = G()G(p)z,
¥ € D. Since z € D(G(p4)), we obtain G(p_ * )z = G()[G(p)z — G(py)x],
z € D(G(p-)) and G(p-)z = G(p)z — G(p4)2.
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PROPOSITION 3.3.25. Let G be a (DG) and G(py) € L(E), ¢ € D. Put
Gi(p) == Glpy) and G_(p) := G((@)-), ¢ € D. Then £A are generators of
distribution semigroups G 4.

PROOF. By the previous remark, G4 (p) € L(E), ¢ € D and G(p) = G4 (¢) +
G_(9), ¢ € D. Clearly, supp G+ UsuppG_ C [0,00), G+ € D{(L(E)) and The-
orem 3.3.20(vii) implies (,cp, Kern(G+(p)) = {0}. Since (¢ x0 ¥)+ = o4 * ¢y,
©, ¥ € D, Proposition 3.3.5 yields that G is a pre-(DS). Analogously, G_ is
a pre-(DS) and one obtains that G, resp., G_ is a (DS). Designate by Ay,
resp., A_, the generator of G, resp., G_. Then it is straightforward to ver-
ify that Ay are extensions of +A. We continue by proving that A, = —A_.
Let © € E and ¢, ¢ € D. Then one obtains: G(p4+ * )z = G(Y)G(p4)z,

Gilpr x )+ G_(py x )z = (G4 (¢) + G- (1)) G (p)x and:
(248) Gi(pp *x¥)a+ G (py xv)z = Gi(pxo)r + G- (V)Gy (o).

Notice that (¢ * 1 —@*x1p_ — @ )(t) =0, t > 0, which implies in combination
with (248) that: G4 (Y *x 1)z = GL(p*xY_)x + G (p %0 ¢)z and

(249) Gi(p* (W)-)+ G- (ps x )z = G- ()G (p)z.

Suppose now (z,y) € D(A1), a > 0,v € D, ) and (p,) is a regularizing sequence
satisfying supp p, C [0, 1], n € N. Since Gy (—¢')z = G4 ()y, ¢ € Dy, (249)
implies:

G (pn s () )y + G- (pnx )y =

(
(250) = G (—ply % () -)z + G (~pl, * D).

Clearly, supp(pn * (1) -) Usupp(—p}, * () -) C [0, 1] + (=00, —a) € (—00,0], n > &
and an application of (250) yields:

(251) G (pn*9)y =G ((—pn = (@))") .

Letting n — oo in (251), one concludes that G_(¢)y = —G_((())")" )z = G_ ().
It readily follows that the previous equalities remain true for every ¥ € Dy, so
that (z,—y) € A_ and Ay C —A_; one can similarly prove that Ay D —A_.
Therefore, A = —A_ as claimed. Taking into account Proposition 3.1.4(iii), one
gets: G(p)Arz = Gi(p)Arz+ G_(P)Ara = G (—¢)z — p(0)z — A_G_(p)z =
G =)z — 9(0)z — (G (=@ — $(0)z) = G4 (—¢ ) + G- (—¢)z = G(—¢)a,
¢ € D. Hence, (z,A;x) € A, Ay C Aand Ay = A. A similar argumentation
implies A_ C —A and A_ = — A, finishing the proof. U

REMARK 3.3.26. Suppose G is a (DG) generated by A and p(4) # 0. By
Theorem 3.3.7 and Theorem 3.3.20, we have that A, resp., —A, is the generator of
a (DS) Gy, resp., G3. The proofs of Theorem 3.3.7 and Proposition 3.3.22 imply
G(p) = Gi(p) + G2(p), v € D and Gi(p)G2(¢) = G2(¥)G1(p), p, ¥ € D. Let
xz € E and ¢ € D be fixed. We will prove that G(v * ¢ )x = G(¥)G1(p)z, ¥ € D,
i.e., that:

(252) Gy (qp * cp+)33 + Gy (¢ *v<p+)x = Gl(go)Gg(iﬁ)x + G1(p)G1(¥), ¥ € D.

!
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Notice that the proof of [315, Theorem 6] (see [315, (9), p.61]) enables one to
see that Gy (p - )z + G2 (go_s_v* )z = G1(¢)G2()x, 1 € D. As in the proof of
Proposition 3.3.25, one has (¢ * oy — @ x)_ — pxqp)(t) =0, ¢t > 0,¢ € D, which
gives G1(Y * gy )x = Gi(p xY_)x + Gi(p *o ¥)x = Gi(p * -)z + G1(p)G1(Y),
¢ € D. Hence, G1(¢ x py)z 4+ G2 (VY py)z = Gi(p *x ¥_)z + G1()G1(¢)z +
Ga(Y* i) = Gilp * ¥ )z + G1(9)G1(¥)z + G1(9)Ga(¥)z — Gip * Y- )z =
G1(p)Go()z + G1(p)G1(Y)x, 1 € D and this proves (252). As a consequence,
one obtains that G (p) = G(py) = G1(¢). Accordingly, A is the generator of
G4+ = G7 and Remark 3.3.24 implies that G(¢_) = Ga2(p) € L(E), ¢ € D and that

G((%)-) is a (DS) generated by —A.

THEOREM 3.3.27. Suppose By, ...,B,,Co,...,Cn_1 € L(E) and A is a sub-
generator of a [Bo, ..., Bn,Co,...,Cpn_1]-group (S(t)):er. Put

oo

G(o)x = (-1)" / oM (t)S(t)xdt, ¢ €D, x € E.

Then:

(i) (208) holds and (234) holds for every ¢ € D and ¢ € D.
(ii) M(G) C Kern(Y,) and, in particular, the injectiveness of Y, implies
(DG)q for G.
(i) For every ¢ € D and 3 € D, Kern(Y,,) C Kern(G(p)G(v)); especially, if
G is regular, then Kern(Y,,) = N(G).
(iv) Assume By = --+ = Bo_1 = 0 and B, = —41. Then G is a (DG)
generated by A.

PRrROOF. (i) Clearly, G € D'(L(FE)). Suppose z € E and ¢ € D. To prove
AG(p)x = G(—¢')x, notice that

Gle)r = (1) [ o™ @)St)zdt = (—1)"* [ " D(t) [ S(s)zdsdt € D(A)
] Lol
and that
AG(p)z = (—1)"H / oD (1) {S(t)x + zn:thjz] dt
S j=0
= (7 [ SISOt = G-
Further on,

oo

G(p)Ax = (—1)"H! / @) (¢) / S(s)Ax dsdt
0

— 00
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e} t

= (_1)n+1_4 e (1) O/ {AS(s)x - ; stjx] dsdt
- (_1)n+1_ 4 S+ (1) A O/ S(s)zdsdt = AG(o)z, x € D(A).

Hence, G(¢)A C AG(p) and (208) holds. The assertions of (234) and (ii) follow
from the arguments given in the proof of Theorem 3.3.20. Let ¢ € D, ¥ € D and
z € Kern(Y,,) be fixed. Arguing as in the proof of Theorem 3.3.20, one gets the
validity of (246). Hence,

n

0="> (~1)FG((™ )" B =Y " (=1)"ilG(e™ % ")) Bz
1=0 1=0
= (=1)Fil(=1)" / o™ (t) / Y= (8)S(t + s)Byx ds dt.
=0 —00 —00

Owing to (234), G(¢)G(¢)x = 0 and Kern(Y,,) C Kern(G(¢)G(v)). Let (pi) be a
regularizing sequence and let G be regular. Then G(¢)z = limg_, o0 G(p)G ()2 =
0 and z € N(G). Therefore. Kern(Y;,) C N (G), and due to (i), N(G) C Kern(Y,,).
The proof of (iii) is completed; to prove (iv), notice that the proof of Theorem 3.3.20
implies (243) for G. Since By = --- = B, 1 = 0 and B,, = — LI, we immediately
obtain (DG); from (234). Clearly, Y, = n!B,, = —I and (DG) follows from
an application of (ii). Hence, G is a (DG). Put now S(t) := S(t), t > 0 and
S(t) == (=1)"S(t), t < 0. It is obvious that (S(¢ ))teR is an n- times integrated group

generated by A. Furthermore, it is clear that G(y) fo oM (t)S(t)x dt +
ffoo o™ (t)S(t)x dt, p € D, x € E. Arguing as in the proof of Theorem 3.3.8, one
yields that G is generated by A. O

3.4. Distribution cosine functions

3.4.1. Definition and elementary properties. Throughout this section we
assume that the space E x E is topologized by the norm ||(.T lexe = llz||+ ]y
Let o € Dj_3 1) be a fixed test function satisfying f a(t)dt = 1. Then, with «
chosen in this way, for every fixed ¢ € D, we define I(yp ) as follows

I(p)(x) := / lgo(t) — a(t) / o(u) du] dt, z eR.
It is clear that I(p) € D, I(¢') = ¢ and L1(p)(z) = ¢(z z) [7 p(u)du
x € R. Then, for G € D'(L(F)), we define G Lby G71(e ) = G( (¢), ¢ € D

Then G~! € D'(L(E)) and (G~') = G; more precisely, —G~1(¢') = G(I(¢')) =
G(p), ¢ € D. Let ¢ € D and suppp C (—00,0). The choice of the function
a(-) implies L1(p)(z) = 0, z > a, for a suitable a € (—00,0). Accordingly,
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supp I(¢) € (—o0,0). This implies the following: supp G C [0,00) = supp G~! C
[0,00). Moreover, it can be easily proved that, for every ¢ € D,
supp I () € [min(—2, inf(supp ¢)), max(—1, sup(supp ¢))].
We recall the assertion of Proposition 2.1.24 with C' = 1.

LEMMA 3.4.1. (i) Let A be a closed linear operator and let X € C. Then
A€ p(A) & A2 € p(A). In this case, |R(A : A)|| < (1+|A) /1 + [AR|R(A2: A)||+1,
RO A)| < [R(A = Al and

. T\ R(\2:A)( Mz +y)
B(x:4) (y) - (AR(/\zzA)x + AR(Az;A)y)’ 7y € B A€ plA)

(ii) Let 0 # Q C C. Then Q C p(A) iff Q% C p(A); if this is the case, then
|R(- = A)|| is polynomially bounded on Q* iff |R(- : A)| is polynomially bounded
on Q.

We introduce distribution cosine functions as follows.
DEFINITION 3.4.2. An element G € Dy(L(FE)) is called a pre-(DCF) if it satisfies

(DCF1) G e v) =G (P)GW) + G()GT (), 0, ¥ € D.
A pre-(DCF) G is called a distribution cosine function, in short (DCF), if, addi-
tionally,
(DCF») r=y=0iff G(p)x+ G (p)y=0 forall ¢ € Dy.
A pre-(DCF) G is dense if the set R(G) := U, cp, R(G(p)) is dense in E.
Notice that (DCF3) implies (), Kern(G(¢)) = {0} =, ep, Kern(G~1(p)).

From Definition 3.4.2, it is also clear that G(¢) = 0 provided G is a pre-(DCF)
and ¢ € D(_s ) It is not clear whether the condition ([ Kern(G(y)) 2)
Neep, Kern(G~1(p)) = {0} implies (DCF3).

Someone may think that (DCFj) is a crude assumption. But, this is a right
“non-degenerate” condition as the next proposition shows.

PROPOSITION 3.4.3. Let G € D{(L(FE)). Then G is a pre-(DCF) in E iff
G Gty . . . . .
g= ( a_5 G ) is a pre-(DSG) in E x E. Moreover, G is a (DS) iff G is a
pre-(DCF) which satisfies (DCFy).

p€Do

PROOF. Since o € Dj_5 1, one gets G € Dy(L(E x E)) and the simple cal-
culation shows that G satisfies G(p *0 ¥) = G(v)G(¥), p, ¥ € D iff the following
holds:

(i) G He*o 1) =G HP)GW) + G(p)GH (1),

(ii) G(p 0 ¥) = G(9)G(¥) + G (9)(G" — 8)(¥) and

(iii) G'(p *0 ¥) = (G' = 6)(P)G(Y) + G(p) (G = 6)(¢), ¢, b € D.

We will prove (i) = (ii) = (iii). Suppose (i) holds. Since (p*q9))" = @' *p+¢(0)¢) =
w0 +9(0)p, @, ¥ € D, we infer that

Gloxo ) = -G ((pxo 1)) = =G (px0 ¥ +1(0)p)
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= —(GTHQ)GW) + G(P)GT (W) +6(¥)G ™ (¢))
=G )G (V) + G(p)G() = ()G (), ¢, ¥ €D.
This implies (ii). With assumed (ii), one obtains (iii) from the computation
G'(p o)) = =G((p*0 ¥)) = —G(¢ %0 ¥ + (0)))
= —(G("GW) + GG = 8)(¥) + ()G (¥))
= (G'=0)(P)GW) + G(p) (G = )(¥), ¢, ¥ €D.
)-

It is also clear that G satisfies (da) if G satisfies (DCF3). Suppose that G satisfies
(dz2). Let us prove that G satisfies (DCF3). In order to do that, assume z, y € F
and G(p)r + G 1(p)y = 0, ¢ € Dy. Then one gets

(G" = 0)(p)r + Glp)y = —G(¢")z — p(0)z — G (¢)y =0, ¢ € Dy.
Since G satisfies (dz), it follows that x =y = 0. O

Properties (DCF;) and (DCF3) can be interpreted respectively as sin(a+ ) =
sin acos B + cosasin 3, and the linear independence of cos(:) and sin(-). Next, we
characterize distribution cosine functions as follows.

PROPOSITION 3.4.4. Let G € D{(L(E)). Then G is a (DCF) iff (DCF2) holds

and
(253) G Hexpy) = G Hp)G(Y) + Glp)G(¢), ¢ € Do, ¥ € D.

PROOF. Assume G is a (DCF). Then G is a (DS) in F x E and the use of
Proposition 3.1.18 gives G(¢4) = , ¥ € D. Hence,
G~

)-
G(¥)
< G(p * 1) w*%)
(G"=d8)(exvy)  Glexvy)
_ ( 1(@)) ( G() G‘l(d))) <ﬂf)
(G'—5)(@) Glp) J\(G'=8)) GW) )\y)’
for every ¢ € Dy, ¥ € D and z, y € E. Choose z = 0 to obtain (253). Let
us suppose now that (DCF3) and (253) are fulfilled. Then G satisfies (d2). The
assumption (253) implies G~ (¢ x 1) = G~ H)G(Y) + G(e)G~1(¥), ¢, ¥ € Dy,
and consequently,

Glp 1) = G()G(W) + GTH(@)(G" = 0)(¥),
(G" = 0)(px9) = (G' = 0)()G(Y) + G(p)(G = 8)(¥), @, ¥ € Do.

As an outcome, we get that (di) holds for G. Let ¢ € Dy and ¢ € D. Then we
obtain, for every ¢ € Dy and ¢ € D:

Glp*y) = =G H(pxoy)) = =G~ (@ %0 ¥y + (0)¢hy)
= —(G7HYGW) + GG () = Gp)G () + G ()G (¢).
Since (¢ x0 ¥+)" = (¢ *0 (¥')+) +¥(0)p, ¢ € Do, ¥ € D, we get
Glpxoy) = =G Hpxoy)) = =G e xo (V)4 +9(0)p)
= —(GHP)GW) + Glp)GH (1) =y (0)G™ (p)
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=G(p)GW) + GTH(@)(G" = 0) (),
(G'=0)(p*hy) =G (p*1hy) = —G((%O x0P4)) = —G(¢' %0 ¥y)
= —[G()G(¥) + G ()G = 8)(¥)]
= (G =) ()G ) G()(G" = 0)(¥).
Thus, (ds) holds for G and G is a (DS) in E x E. The remainder of proof follows

by the use of preceding proposition. O
PROPOSITION 3.4.5. Let G € Dy(L(E)). Then G is a pre-(DCF) iff
(254) GHP)(G =) (¥) = (G" =) ()G (¥), v, ¥ €D.

PROOF. We have proved in Proposition 3.4.3 that G is a pre-(DCF) in E iff
G is a pre-(DS) in E x E. Then the use of [199, Proposition 2] gives that any of
these conditions is also equivalent to:
(255) G(¢")G () — G()G(V") = ¥(0)G(p) — 0(0)G(¥), ¢, ¥ € D.
As in the proofs of Proposition 3.4.3 and Proposition 3.4.4, it follows that (255)
holds iff (254) holds. O

The infinitesimal generator of a (DCF) can be defined in several different ways;
here we follow an idea of Shiraishi and Hirata [385] which has been utilized by
Kunstmann in [252].

DEFINITION 3.4.6. The generator A of a (DCF) G is given by

{(z,y) e ExE: G ¢")z =G (p)y for all p € Dy}.

Because of (DCFy), A is a function and it is easy to see that A is a closed linear
operator in E.

LEMMA 3.4.7. Let A be the generator of a (DCF) G. Then A C B, where
A= (91 (I)) and B is the generator of G. Furthermore,

(my) € Ao ((g) (2)) eB.

PROOF. Let ((5), (M) € A. Then = € D(A), y = u and Az = v. We have

to prove that, for every ¢ € Dy, G(—¢’) (‘Z’) = G(¢)(1). Towards this end, fix a
@ € Dy. Then the definition of A implies .

G(—¢")z =G (¢")z =G (p)Az = G~ (o),
G'(—¢)r = -G (¢ = -G (¢) Az = —=G7H(¢')v = G(p)v.
Since ¢(0) = ¢’(0) = 0 and y = u, we obtain
G(=¢)z+ G (=¢" )y = Gle)u+ G (o),
(G =0)(=¢ )z + G(=¢" )y = (G" = §)(p)u+ G(p)o.
This, in turn, implies —G(¢")(Y) = G(¢) (%), ¥ € Dy and ((;), (%)) € B. Assume

y
that (z,y) € A. Then (({), (%)) € A, and consequently, ((¥), (2)) € B. Suppose

Yy
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now ((g), (2)) € B and fix again a ¢ € Dy. Then g(—w')(g) =G(y) (2), and by the
definition of G,

(e S50 a0 = (0% W) C)

Thereby, G(—¢')z = G~ (p)y, i.e., GTH¢")x = G7'(p)y. This implies (z,y) € A
and completes the proof. [l

The following proposition will help to get relations between distribution cosine
functions and local integrated cosine functions; notice that the property (DCF3)
has an important role again.

PROPOSITION 3.4.8. Let G be a (DCF) generated by A. Then the following
holds:

(V)x, Gz +v¢'(0)x) € A,y €D, x € E.
Yp)e, -G )x —(0)z) € A, ¢ € D, x € E.

G(L/))A - AG(l/)), P eD.

G 1(¢Y)A C AG~1(v), ¥ € D.

PROOF. Let z, y € F.
(i) Clearly, (G(¥)z,y) € A iff G'(9)G(¥)r = G~ (p)y, ¥ € Do. If € Dy,
then ¢(0) = 0 and by (iii) in the proof of Proposition 3.4.3, this is equivalent to:
G'(p o)z = G(P)G'(V)z +»(0)G(p)z = G (¢)y, ¢ € Do
=
~G(px0 Y +¥(0)p)z — G(p)G'(¥)z +»(0)G(p)r = G~ )y, v € Do
=
~Glp ¥z — G(p)G' (V) = G @)y, ¢ € Dy.
By (ii) in the proof of Proposition 3.4.3, this is equivalent to
~[G(P)GW)z + GH) (G (W)z = ¢'(0)2)] — G(p)G'(Y)z = G~ (p)y, v € Dy
=

G(p)[-G(W )z = G'(¥)a] + GTH ) [-G'(¥)z + ¢/ (0)z —y] =0, ¢ € Do

<~
y=G@")z + ' (0)x.

(ii) Let us recall that G~ ( ) = —G(I(¥)) and that L1(¢y)(t) = ¥(t) — a(t) x
75 w(u)du, t € R. Hence, 4 SI()(t) = () — o/ (t) 75 (u)du, t € R. Since
a € Di_,_1) and G E Dy(L(E)), we obtain (I())'(0) = 1(0) and G((I(v))") =

(w’—a’f_ Y(u) du) = G(¢'). The use of (i) gives
AGT ()a = —AG(IW))% = —[G(I )"z + I () (0)z] = =G )z — ¥(0)a.
(iii) Let « € D(A). Then ((3), (Xw)) € B, and by Proposition 3.1.4(iii),
g

(1) =0 (5) - v (5).
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which implies G(¢)Az = G(¢")x + ¢’'(0)x. Thus, (iii) is a consequence of (i).
To prove (iv), fix a test function ¢ € D and apply (iii) to see that G=1()A =
—G(I(Y))A C —AG(I(¢)) = AG™(3). This completes the proof. O

3.4.2. Relationship to integrated cosine functions, convolution equa-
tions and local C-regularized cosine functions.

THEOREM 3.4.9. Let A be the generator of a (DCF) G. Then there exist T > 0,
n € N and a local n-times integrated cosine function (Cy(t))icjo,r) generated by A.

PRrROOF. By Proposition 3.4.8(i), we have that, for every ¢ € D and =z € E,
AG(p)r = G(¢")z + ¢'(0)x. This implies that G is a continuous linear mapping
from D into L(E,[D(A)]), and as before, we get that there are 7 > 0, n € N and a
strongly continuous function C, : [—7,7] — L(E,[D(A)]) such that

T

G(g)e = (~1)" / o ()C (1) dt,

-7

for all z € E and ¢ € D(_, ;). Moreover, suppG C [0,00) implies Cy(t) = 0,
t € [-7,0] and

T

(-1)" / o) (D AC, (1) dt = AG(p)x = (") + @' ()
0

= [0+ O
0

for all z € £ and ¢ € D(_ ;). Thus, there exist By, ..., Bn,11 € L(E) such that

t

n+1
/(t —8)AC,(s)xds — Cp(t)x = thBjx, x e E, tel0,r).
0 J=0

Hence,

T n+1
(—1)"*2/90("*2) (t) thBjm dt =¢'(0)z, p€D(_rr), x€E, ie,
0 J=0

n+1
(=12 (=1l (0)Bix = ' (0), p € D(r ), wEE.
7=0

One can choose a sequence (@)ken, in D(—; ) with gp,(cj)(O) = 0k, J, k € No, to
conclude that B; =0, j € {0,1,...,n+ 1} ~{n}, B, = (71)1, and that

n!

n

t
A/(t —5)Cp(s)xds = Cp(t)x — L'x, z€E, tel0,7).

n
0
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Since G(p) commutes with A, ¢ € D, it follows that there exist Fy,...,F,_1 €
L(FE) such that

n—1
AC,(t)x — C,(t) Az = Z t'Fje, x € D(A), t €[0,7).
§=0
Arguing similarly as in the first part of the proof, one has F; = 0, 0 < j <

n—1. Thereby, (Cy(t))se[o,) is a local n-times integrated cosine function generated
by A. O

THEOREM 3.4.10. Let A be the generator of a (local) n-times integrated cosine
function (Cy,(t))icjo,r)- Then A is the generator of a (DCF).

PROOF. It is clear that A is the generator of an (n + 1)-times integrated semi-
group (Sn11(t))eejo,r), where Sy, 11 is given in Theorem 2.1.11. By Corollary 2.1.9
and induction, one can prove that, for every k € N, A is the generator of a (k(n+1))-
times integrated semigroup (Sk(n+1)(t))te[o,kr)- Denote

Sty Sk ()
_ :(n+1) k(n+1) <

The proof of the implication (ii) = (i) of Theorem 2.1.11 yields:

t
Sktni1)(®) = Sinry (), Skgnin)(8) = /Si(nﬂ)(s) ds,
0

3 d 1 tk(n-‘rl)—l
Furthermore, by the proof of Theorem 2.1.11, we have that the operator A is the
generator of a (k(n+ 1) — 1)-times integrated cosine function (C(n41)—1(t))

te(0,kT)
which is given by Cy(p41)-1(t) = Si’(nﬂ)(t) + %I, t € [0, k7). This implies
that St 1 () = J3 Chenay=1(s)ds, t € [0,k7) and that (S},,1)())iep.rr) 15 a
(k(n + 1))-times integrated cosine function generated by A. Given ¢ € D, choose
k € N such that ¢ € D(_ ). Define

X X
G(v) (y) = (1) [ 05,0 <y) dt, @,y € E,
0
G(p)x == (_1)k(n+1)/So(k(n-&-l))(t)s’i(nJrl)(t)xdt7 reE.
0

One can easily prove that these definitions are independent of k£ € N. Moreover,
G is a (DS) in E x E generated by A; see the proof of [418, Theorem 3.8]. Let
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© € D(_oo,kry and ¥ € E. Then we obtain:

o0

G Hp)r=—-G(p))r =~ / (@) EHD () S 1) (D dt
0
= _ /((p(k(n+1)—1)(t) — a(k(n+1)—1)(t) / o(u) du)S,i(nH)(t)x dt
0 —0o0
[ee} ] t
— _/sp(k(n+1)*1)(t)sé(n+l)(t)x dt :/<P(k("+1))(t)/511(n+1)(5)$ ds dt
0 0 0
= [ ) O
0

(G" = 0)(p)z =— / POV (1) S 0y (D dt — @(0)a

0

i i fh(n+1)-1

d
— (k(n+1)) 4y 2 gl _ (k1) gy~
0

0
= /w(k(”"’l))(t)S,i’(nH)(t)xdt.
0

Gly) Gl(sﬂ)) i .

Hence, G(p) = , ¢ € D. From Proposition 3.4.3, it follows
&= (™00 ) P

that G is a (DCF). Suppose that the generator of G is B. Owing to Lemma 3.4.7,

one gets (z,y) € B & ((ﬂé), (2)) € A& (z,y) € A. This completes the proof of

theorem. (]

COROLLARY 3.4.11. Let A be the generator of an n-times integrated cosine
function (Cyn(t))iz0. Put G(p)x = (=1)" [;° oMt Cp(t)xdt, ¢ € D, x € E.
Then G is a (DCF) generated by A.

COROLLARY 3.4.12. Let G be a (DCF) generated by A. Then there exist 7 > 0,
n € N and a local n-times integrated cosine function (Cy(t))icjo,r) generated by A

such that G()x = (=1)" [ @™ (t)Cp(t)x dt, ¢ € D(_oo,ry, © € E.
Given o > 0 and S > 0, define the logarithmic region ]\aﬁ by
Aop={NeC:ReX>a+BIn{l+|A)}
The following theorem is the main result of this subsection.

THEOREM 3.4.13. Let A be a closed operator. Then the following statements
are equivalent:

(i) A is the generator of a (DCF).
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(ii) There exist T > 0 and n € N such that A is the generator of an n-times
integrated cosine function on [0,7).

(iii) For every T > 0 there is an n € N such that A is the generator of an
n-times integrated cosine function on [0, 7).

(iv) The operator A is the generator of a (DS) in E x E.

(v) For every T > 0 there is an n € N such that for all (x,y) € E x E there
exists a unique n-times integrated mild solution of (ACPs).

(vi) There are constants a, 5, M > 0 and n € Ny such that

A2 5={N:xehop} Cp(A) and [RA:A)| < M1+ [A)", A€ A2 4.

PrOOF. The implication (i) = (ii) is Theorem 3.4.9 and the implication (ii) =
(i) is Theorem 3.4.10. Assume that (ii) is true. Then the operator A is the generator
of an (n 4 1)-times integrated semigroup (S 11(t))tejo,r)- By Theorem 3.1.25, the
operator A generates a (DS) in E x E and (iv) holds. If (iv) holds, then for all 7 > 0
there is an n € Ny such that the operator A generates an (n + 1)-times integrated
semigroup (Sn11(t))tefo,r)- Fix a number 7 > 0 and choose a non-negative integer
n such that A generates an (n+ 1)-times integrated semigroup (Sy41(t)):efo,r)- By
Theorem 2.1.11, the operator A must be the generator of a local n-times integrated
cosine function on [0,7) and (iii) is proved. The implication (iii) = (ii) is trivial.
The equivalence of (iii) and (v) has been already proved. Hence, (i) & (ii) <
(iii) & (iv) < (v). The equivalence of (iv) and (vi) is an easy application of
Theorem 3.1.25. O

REMARK 3.4.14. The difference between the logarithmic region A, 5 and the
exponential region E(a, ) is inessential here; more precisely, one may replace (vi)
with:

(vi')

There are constants o > 0, 8 > 0, M > 0 and n € Ny such that

E%(a, 8)  p(A) and [|RO: A)| < M(1+ )", A € B%(a, B).
Namely, let & > 0 and B > 0 be fixed. Arguing as in [5, Lemma 2.6], one can
prove that A, g C E(%,a) and that, for every o/ > «, there exists 5’ > 8 such
that E(a, 8) C /N\B,’ 2. Furthermore, the logarithmic region in the formulation of
Theorem 3.4.13 can be replaced by the region

Aag={Ae€C:ReA>a+SIn(l+[ImA|)}.

This follows from the following estimate (cf. [199, p. 199] for a proof):

AOc,B - Aa,B - A(1+1'](1;0‘)ﬁ)*la,(l%»l"(l;r“)6)*1[3'

PROPOSITION 3.4.15. Let A be a closed operator such that +A generate distri-
bution semigroups Gx. Then A? generates a (DCF) G, which is given by G(p) =
3(Gi(p) +G-(9), ¢ €D.

Next, we would like to point out an interesting interplay between distribution
cosine functions and convolution type equations; as a matter of fact, we use Propo-
sition 3.4.3 to reduce our investigations to the corresponding theory of distribution
semigroups.
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THEOREM 3.4.16. (i) Let A be a closed operator and let G € D{(L(E)). Then
G is a (DCF) generated by A iff G € Dy(L(E,[D(A)])), G* P =0 ® Idpay and
PxG = 0"®Idg, where D(A) is supplied with the graph norm, P := 6" @I —-6® A €
DI(L([D(A)], E)) and I denotes the inclusion D(A) — E.
(ii) Let G € D{(L(E)). Then G is (DCF) in E generated by A iff
G= (7 ngl) is a (DS) in E x E generated by A.

ProoF. (i) Let X = L(E,[D(A)]), Y = L([D(A)], E), Z = L([D(A)]) and let
b: X xY — Z be defined by b(B,C) := BC, B € X, C € Y. The definition
of G x P is given by Proposition 1.3.1; the convolution P % G can be understood
similarly. Let z € D(A), k € Ny and ¢ € D. Then it can be proved that:

(Gx (6P 1)) (p)r = (-1)*G(¢"™)z and (G (6® & A))(p)z = (-1)FG (™) Az.
Analogically,

(( 5(k) @ 1) Q) (p)x 1) G(p™)z,

((6¢ * Q) (o) DFAG(p"Nz, o €D, z € E, k e N.

Suppose that G is a (DCF) generated by A and 2 € E. Then Proposition 3.4.8(i)
implies AG(p)x = G(¢" )z + ¢'(0)z. Therefore, G € D{(L(E, [D(A)])),

(P*G)(p)r=G(¢")x — AG(p)x = —¢'(0)x and P+ G = §' @ Idg.

We obtain G * P = 0’ ® Id|p(ay) in the same manner. Let G € Dy(L(E, [D(A)]))
satisfy G+ P = §' ® Idp(a)y) and P*G = §' ® Idg. Since supp G C [0, 00), it follows
that supp Gt C [0,00) and suppG C [0,00). If & € E, then the assumptions
G* P =0 ®Idpay and P x G = ¢’ ® Idg imply (i) of Proposition 3.4.8 and
G(p)Az = GW")x +¢'(0)z, ¢ € D, x € D(A). By the proof of Proposition 3.4.8,
one obtains

!

AG )z = —G(
G~ Hp) Az = —G(

It follows that G € D{(L(E x E,[D(A)])), where D(A) is endowed with the graph
norm. Let € D(A). Then, for every ¢ € D:

& x
~a)(?) —g«o)A(y) ~ 0 ) w)( )

—G' (¢ +¢'(0)x G( )y G’( )y + w(O)y G( )Azx Y
Similarly, if , y € E, then —G(¢’ )( ) — AG(y )( ) = (0) (y), ¢ € D. This implies
G*x P = 5®Id[D(A)] and Py *x G = 5®IdE><E, where P, . =0 ®Id—0® A €
Dy(L([D(A)], E x E)) and Id denotes the inclusion D(A) — E x E. This fact
combined with the proof of [252, Theorem 3.10] enables one to see that G is a (DS)

in E x FE generated by A. Thus, G is a (DCF) in E. If B is the generator of G,
then (z,y) € B < ((§), (2)) ceAs (z,y) € A

cp)xfcp(())x, QDED, CEGEa
oz —¢(0)x, peD, r€E.
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(ii) Suppose that G is a (DCF) generated by A. Then G is a (DS) in E x E.
Let P be as in (i). Then we obtain G * P = ¢’ ® Id|p(ay and P x G = §' ® Idg.
Then the proof of (i) implies that the generator of G is A. Conversely, if G is a
(DS) generated by A, then G is a (DCF). It can be easily seen that the generator
of G is A. O

Let us recall that G is a (DS) generated by A if and only if G is a distribution
fundamental solution for A (cf. [252, p.844-845]). Since there is at most one
distribution fundamental solution for a closed linear operator A, it follows that
every (DS) is uniquely determined by its generator. Herein it is worthwhile to
notice that Kisynski introduced in [199] the generator of a pre-(DS) G; in his
approach, this is a closed linear operator from E into E/N(G). He proved that
every pre-(DS) is uniquely determined by its generator, see [199, Corollary 2]. Now
we state:

COROLLARY 3.4.17. Every distribution cosine function is uniquely determined
by its generator.

PROOF. Suppose that G; and G are distribution cosine functions generated
by a closed linear operator A. Then
(G Gt _( Gy Gy
1 = (Gg—(s ¢, ) ™ 9={a s
are distribution semigroups generated by A. Thereby, for every x € E and ¢ € D,
G1(¢)(5) = G2(9) (§). This implies G1(¢)z = Ga(p)x and completes the proof. [

Now we clarify the interplay between distribution cosine functions and local
C-regularized cosine functions; we refer to [381] for the introduction to the theory
of local C-regularized cosine functions.

PROPOSITION 3.4.18. Let A be a closed operator. Then the following statements
are equivalent:
(i) A generates a (DCF),
(ii) p(A) # 0 and there existn € N and 7 € (0, 00] such that A is the generator
of an R(\: A)™-reqularized cosine function on [0,7) for all A € p(A),
(ii) p(A) # 0 and there exist A € p(A), n € N and 7 € (0, 00] such that A is
the generator of an R(\: A)"-regularized cosine function on [0, 7).

We close this subsection by stating the following proposition.

PROPOSITION 3.4.19. Let G be a (DCF). Then G(p)G(¢) = G()G(y), ¢,
Y eD.

3.4.3. Exponential distribution cosine functions.

DEFINITION 3.4.20. A distribution cosine function G is said to be an exponen-
tial distribution cosine function, (EDCF) in short, if G = (7 ; G(;l) is an (EDS)
in Fx E.

The following might be surprising:
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PROPOSITION 3.4.21. Let G be a (DCF). Then G is an (EDCF) iff there exists
e € R such that e *'G™! € S{(L(F)).

PROOF. Let remind us that S is topologized by the seminorms

[lla.s = sup 229 ()], a, B €Ny, ¢ €8.
Te

Assume that G is an (EDCF). By Definition 3.4.20, this implies that there exists

w € R such that e=**( & , GC;I) € S'(L(E x E)), i.e., there exist M > 0 and «,

B € Ny such that, for every ¢ € D,

—wt G G !
€ G/ Y G )y P

Therefore, for all ¢ € D and z, y € E, the following holds:

[(e™G o)z + (™G o) |
+ (™G = 0), ) x + {7 G o) yl| < Mlpllas(llll + Ilyl])-

Choose = = 0 to obtain e “*G~! € S{(L(E)). Suppose now e “'G~! € S{(L(E)).
Then there exist M > 0 and «, 8 € Ny so that |G (e “'o)|| < M||¢|la.p, ¢ € D.
Then one gets:

< M||p||a,s-
L(EXE)

) = 6] = [0~ (e~ + =59
< Mwlllella,s + Ml¢'llap < Mlwlllellas + Ml@lla,s+1, ¢ € D.
Hence, e “'G € S{(L(E)); similarly, e~“*(G’' —4) € S{(L(F)) and we finally obtain

_ G G1
wt /
e <G'—6 G ) € S)(L(E x E)). O

THEOREM 3.4.22. Let A be a closed operator. Then the following assertions
are equivalent:

(i) A is the generator of an (EDCF) in E.
(ii) A is the generator of an (EDS) in E x E.
(iii) A is the generator of a global exponentially bounded m-times integrated
cosine function for some n € N.
(iv) There are constants w > 0, M > 0 and k € N such that

2

I, := {n+z‘g i > w? - 4%} C p(A) and ||[RON:A)|| < MA*, X e T0,,.

PRrOOF. The implication (i) = (ii) follows from Theorem 3.4.17(ii). In order
to prove the converse, suppose that G is a (DS) in E x F generated by .A and that
e G € S)(L(Ex E)). Clearly, e"'G is a (DS) in E x E generated by A— (%! 9).
By Proposition 3.1.4(iii), we have that, for every ¢ € D and z, y € E:

w5 () =59 () ot () o)

) Y
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which gives e=“'G € S'(L(E x E,[D(A)])). The use of Theorem 1.3.2(ii) implies
that there exist n € N, r > 0 and a continuous function S,+1 : R — L(EF X
E,[D(A)]) supported by [0,00) such that

(G.6) (7) = (-1 7so<"+”<t>5n+l(t> (5 ar,
0

for all p € D, &, y € E, and |S,+1(t)| < Mt", t > 0. By the proof of [5, Theorem
7.2], one gets that (S, 11(t))i>0 is an (n+ 1)-times integrated semigroup generated
by A — (“61 £I). A standard rescaling argument shows that A is the generator of
a global exponentially bounded (n + 1)-times integrated semigroup (Sy+1(t))¢>o0-
Hence, the operator A generates a global exponentially bounded n-times integrated
cosine function (Cy(t))t>0. We have proved (ii) = (iii). We continue the proof of
(ii) = (i) by applying the argumentation given in the final part of the proof of
Theorem 3.4.10. It is easy to see that G(¢) = (—1)"*! [[¥ "D (4)S, 11 (t)dt, ¢ €
D. Define G by G(p)z := (=1)"+D [ oD (@)S)  (xdt, x € E, p € D, with
the same terminology as in the proof of Theorem 3.4.10. Using the same arguments
as in the proof of cited theorem, one obtains G = ( G,G_ 5 Gél ) Therefore, G is an
(EDCF) generated by A and (i) follows. Suppose that (iii) holds. Then A generates
an exponentially bounded (n + 1)-times integrated semigroup (Sp+1(f))t>0. Set
G(p) = (=)t [F o (4)S, 11 (t) dt, ¢ € D. Then G is an (EDS) in E x E
generated by A, and (ii) follows. If (ii) holds, then there exists w > 0 such that
{A € C: ReX > w} C p(A) and that ||R(- : A)| is polynomially bounded on
{A € C:Re) > w}. Therefore, II, = {\? : A € C, Re A > w} is contained in p(A)
and ||R(- : A)|| is polynomially bounded on II,. So (iv) holds. Assume that (iv) is
true. Then {A € C : Re X > w} C p(A) and ||R(- : A)|| is polynomially bounded
on {\ € C: ReA > w}. This implies that A generates an exponentially bounded
(n 4+ 1)-times integrated semigroup for some n € N. This implies (iii) and ends the
proof. (]

Let A be a densely defined operator and let A be the generator of an expo-
nentially bounded a-times integrated cosine function for some a > 0. By Propo-
sition 2.2.7, the adjoint A* of A is the generator of an exponentially bounded
(o + 1)-times integrated cosine function. Then the previous theorem immediately
implies the following theorem which remains true in the case of a general distribu-
tion cosine function.

PRrROPOSITION 3.4.23. Let A be a densely defined operator. If A is the generator
of an (EDCF) in E, then A* is the generator of an (EDCF) in E*.
The proofs of subsequent assertions are standard and therefore omitted.

PROPOSITION 3.4.24. If A is the generator of an (EDCF), then for every z € C,
the operator A+ z is also the generator of an (EDCF).

PROPOSITION 3.4.25. Suppose that A and —A generate exponential distribution
semigroups. Then A? is the generator of an (EDCF).



254 3. ABSTRACT CAUCHY PROBLEMS...

3.4.4. Dense distribution cosine functions. In this subsection we focus
our attention to dense distribution cosine functions and their generators. First of
all, we will prove the next proposition.

PROPOSITION 3.4.26. Let G be a (DCF). Then for all ( ) € R(G) there exists
a function u € C1([0,00) : E) satisfying u(0) = x, u/(0) =y and

G(p)r + G y—/w t)dt, ¥ €D.
PROOF. It is clear that G is a (DS) in E x E. Since G satisfies (d4) we have
that for all (Z) € R(G) there exist two functions u, v € C([0,00) : E) such that

u(0) = z, v(0) = y and that

Gwn+aﬂww=/¢wwwﬁ
0

(G — 8)()z + G y—/w Bdt, ¥ eD.

With y = 0 and « € E, integration by parts implies
00 t
/d@(m&—/wﬁ%>ﬁ=GW%H%ﬂwx=mweDu
0 0

Then one obtains u(t) = z + [v(s)ds, t > 0, and the function v has the desired

Ot—

properties. O

PROPOSITION 3.4.27. Let G be a (DCF) generated by A. Then for all x,
y € Doo(A) there exists a functionu € C'([0,00) : E) satisfying u(0) = z, v/(0) =y
and

G(p)x + Gt /go t)dt, ¢ € Dy.
0

PRrOOF. Applying [418, Corollary 3.9], we obtain that for all ( ) € Do (A) =
Do (A) x Do (A) there exist two functions u, v € C([0,00) : E) such that u(0) = x,

v(0) = y and that G(¢ ( )= [y et (:83) dt for all ¢ € Dy. This, in turn, implies

Gwn+cﬂww:/¢@ww@

0
oo

(6"~ 8)(pha + Gloly = [ pBu(t)dt, € Do,
0
Now one can repeat verbatim the final part of the proof of previous proposition. [



3.4. DISTRIBUTION COSINE FUNCTIONS 255
THEOREM 3.4.28. Let G be a (DCF) generated by A. Then D(A) = E iff G is
dense.

PrROOF. Assume G is dense. Then Proposition 3.4.8(i) implies D(4) = E.

Conversely, suppose that D(A) = E. Since p(A) # 0, we have Dy (A4) = E and
it suffices to show Do (A) C R(G). Let & € Do (A). By Proposition 3.4.27, we
obtain that there exists a function u € C*([0, 00) : E) satisfying u(0) = z, v/(0) = 0

and

o}

Glp)r = / o(H)u(t) dt, o € Dy,
0

Let (py) be a regularizing sequence. Then z = lim,,_, o G(prn)x € R(G) and this
completes the proof. O

REMARK 3.4.29. Let A be the generator of a (DCF) G. Then it can be also
proved that G is dense iff G is a dense distribution semigroup in F x E.

3.4.5. Almost-distribution cosine functions, cosine convolution prod-
ucts and their relations with distribution cosine functions. Assume that
70 : [0,00) — [0,00) is a measurable function such that inf;>o70(¢) > 0 and that
there exists Cp > 0 satisfying:

To(t + 5) < CoTo(t)To(S), t, s = 0 and To(t — S) < OoTo(t)To(S), 0<s<t.
Then (L'([0,00) : 70),] - ||l=,) denotes the Banach space consisting of those mea-
surable functions f : [0,00) — C for which [|f[lz, := [~ [f(t)|7o(t)dt < co. If
fy g € LY[0,00) : 79), put f o g(t) := j;oo f(s —t)g(s)ds, t > 0. Clearly,
f*0g € LY[0,00) : 70) and fog € L'([0,00) : 79). The cosine convolution
product f % g is defined by f *. g := %(f x0g+ fog+go f); the sine convolution
product by f*sg:= %(f x0g— fog—go f) and the sine-cosine convolution product
by f*scg = %(f*ogff09+gof)- NOtiCQ, f*cga f*sgaf*scg € Ll([0,00) : TO)a
resp. Dy, if f, g € L*([0,00) : 70), resp. f, g € D; see for example [388].

The following proposition can be viewed as an analogue of the well-known
formula cos(t + s) = costcos s — sintsin s for distribution cosine functions.

PROPOSITION 3.4.30. Let G be a (DCF) generated by A.Then G(p *¢ ¥)x =
Glp)G(W)z + AGH )G W)z, p, v €D, z € E.

PRrROOF. Notice, if o, 1 € D, then (p x0 )" (t) = ¢’ x0 V(1) + ©(0)1(¢), t € R.
Since A generates G and G(¢) = —G~1(¢’), ¢ € D, we infer that

Gpxo )z = —p(0)G™ (V)2 = GTH¢ *o ¥)a
= G(p)G(W)z + (—¢(0) = G(¥')G ™ (¥)x
= G(p)G(W)z + AGHp)G ™ (¥)a,
for any =z € E. O

In the next theorem, we characterize pre-distribution cosine functions by con-
volution products.
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THEOREM 3.4.31. Let G € Dy(L(FE)) satisfy G(p)G(W) = G(¥)G(p), ¢, ¥ €
D. Then the following assertions are equivalent:
(i) G is a pre-(DCF) and G~'(A(fog —go f)) = GG (Alg)) —
G (A(f)G(Alg)) for all f, g € Dy
(i) G (A( %4 9)) = G (A(F)G(A(g)) for all £, g € D,
PROOF. (i) = (i), Note, /%0 g(t) = (g se £+ f #5 9)(0), (fog—go F)(t) =
(g *sc f - f *sc g)(t) and A(f *0 g)(t) = A(f) *0 A(g)(t)a for ¢ > 0 and fv g€ D+'
Moreover, G~1(p) =0 if ¢ € D(_0,0) and we obtain
GTHA(g *se £+ [ *sc 9)) = GTHA(N))G(A(g)) + G(A(F)) G (Al9g)),
GTHA(g *se f = [ *sc 9)) = GA(f))GTH(A(g)) — GTHA(S))G(Al9))-
This, in turn, implies G (A(f *s. 9)) = GH(A(f))G(A(g)) for all f, g € D;. (In
this direction, we do not use the assumption G()G(¢) = G(¥)G(p), ga, P € D).
(ii) = (i). Fix ¢, 1) € D. Since G(p)G(¢) = G(¢¥ ) (1), we have G~ (0)G(1) =
G(¥)G~ (). Certainly, K(p) +0 K(¥)(t) = (K(¥) *se K() + K () #5c K()) (t) for
all ¢ > 0 and this enables one to see that:
G o) = GTHAK(p) %0 K(¥ ) GTHAK () *5c K(p) + K () *sc K(1)))
= G (AK(p))G ( ) + GTHAK() G (AK(9))
=G (9)GW) + (%b)G(@) GTHP)G() + G(p)GT (W)
Hence, G is a pre-(DCF). Since G(¢)G(v) = G(¥)G(p), ¢, ¥ € D, the second
equality follows from (ii):

G (A(fog—gof) =G (Ag*se f— f*sc9)

G(A(F)G(A(9)) — GTHA(S))G(A9)),

for all f, g€ Dy. O
DEFINITION 3.4.32. [312] An element G € L(Dy : L(E)) is called an almost-

distribution cosine function if:

(i) G(f *c9) = G())G(9), [, 9 € Dy and

(iD) Nyep, Kern(G(f)) = {0}
The (infinitesimal) generator A of G is defined by

A:={(z,y) e EXE:G(f)y=G(f")z+ f'(0)x forall f e Dy}

It is known that A is a closed linear operator. Further on, G(f)A C AG(f),
G(f)r € D(A) and AG(f)x = G(f")x + f'(0)z, f € Dy. Recall, a global n-
times integrated cosine function (C),(¢));>0 defines an almost-distribution cosine
functions G (cf. [312]) by

/f(”) txdt, x € E, f € Dy.

THEOREM 3.4.33. Let G be a (DCF) generated by A. Then GA is an almost-
distribution cosine function generated by A.
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PRrROOF. Notice that GA € L(Dy : L(E)). Since G is a (DCF) generated by A,
it follows that () cp, Kern(G(¢)) = {0}. Hence, the condition (ii) in the definition

of an almost- dlstrlbutlon cosine function is fulfilled. In order to prove (i), let us fix
f, g e D+ Let

(256)  supp f Usupp g U (supp f + supp g) Usupp(f o g) Usupp(g o f) < [0,a],
for some a € (0,00). This implies supp(f *. g) € [0,a] and supp(A(f . g)) C
(—o00,a]. Due to Theorem 3.4.13, there exists n € N such that A is the gener-
ator of an n-times integrated cosine function (C(t))¢cjo,24)- Then the proofs of
Theorem 3.4.24 and Corollary 3.4.18 imply

o0

G(‘P)x = (_1)n/(p(n) (t) On(t)mdta r €L, S D(foo,Qa).
0

Therefore,
CA(freg)a = (- / D@0 Cathadt = (1) [(Fre)™ (6) Cult)e .
0 0
Clearly, GA(f)x fo Cp(t)z dt. Hence, we have to prove
(257)
/ fe g) ™M (t) Cp(t)xdt = (—1)" /f(") /g(") s)x ds dt.
0 0 0

This can be obtained as in the proof of [312, Theorem 4] with a = n € N. Note
only that (256) implies that Fubini theorem can be applied in the proofs of [311,
Proposition 1.1] and [312, Theorem 4]. Let B be the generator of GA. We will
prove A = B. Suppose (z,y) € A. Then G~1(¢")z = G~1(p)y for all ¢ € Dy. Our
goal is to prove that

(258) GA(f)y = GA(f")z + f'(0)z for all f € Dy,

which implies (z,y) € B and A C B. Fix an f € D;. Taking into account
Proposition 3.4.8, we obtain

GA(f)y = GA(f)Az = AG(A(f))z = G((A(f))")z + (A(f)) (0)z.
Since (A(f))"(t) = A(f")(¢), t = 0, one can continue as follows

=Gz + f(0)z,
and (258) holds. Suppose now (z,y) € B. Then:
(259) GA(f)y = GA(f")z + f'(0)a, | € D

One must prove that G=1(¢")z = G~ 1(¢)y, ¥ € Dy. Let supp ¢ C [0,b], for some
b > 0. Obviously, supp I (¢ ) [—2,b]. Note a I(p)(t) = ' (t)—/(t) [T, p(u) du

I df2

t € R, and consequently, 4> I( )(t) = ¢'(t), t = 0. Then I(p)(t) = AK(I(¢)))(t),
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0(0)=a(0) [ p(u) du = ¢(0) = 0 and A((K(I(¢)))")(t) =

® 0. Now one obtains from (259):

G p)y = -GU( ~G(AK(I(9))))y
(GA( )")a (’C(I(w ) (0)z)

- fGA(</c< (w))) o = ~G(e)z = G~ (¢")e,

which gives (z,y) € A and ends the proof. O

COROLLARY 3.4.34. Let G be a (DCF) generated by A. Then

G(A(f %5 9)) = AGTHA(F)GTH(A(g)), f. g € D4

ProoF. Take f, g € Dy. Since fxgg = f *. g+ f *s g, one can apply
Proposition 3.4.30 and Theorem 3.4.31 to obtain the equality. (]

The use of Theorem 3.4.16 enables one to briefly prove the following funda-
mental relationship between distribution cosine functions and almost-distribution
cosine functions as well as to establish directly some other results (cf. for example
Proposition 3.4.20):

THEOREM 3.4.35. Let G1 be an almost-distribution cosine function generated
by A. Then A is the generator of a (DCF) G given by G(¢) := G1(K(p)), ¢ € D.

PROOF. Note, if suppy C (—00,0), then K(¢) = 0 in D4, which clearly im-
plies supp G C [0,00) and G € D{(L(E)). Recall, G(f)A C AG(f), G(f)x €
D(A) and AG(f)z = G(f")z + f'(0)z, f € Dy; see [312, p.178]. We will prove
that:

AG(p)z = G(¢" )z +¢'(0)z, =€ E, p €D,
(260) G(p)Azx = G(¢"x + ¢'(0)x, x € D(A), p €D.
Let x € F and ¢ € D. Then

AG(p)z = AG1(K(p))z = G1((K(9))")z + ¢ (0)z
=G1(K(¢")z + ¢ (0)z = G(¢")z + ¢/ (0)z.

Since G1A C AG1, the second equality in (260) can be proved similarly. It is
evident that (260) implies G € Dy(L(E, [D(A)])). Moreover, G * P = ¢’ ® Id[p(ay]
and P x G = ¢ ® Idg, where we use the terminology given in the formulation of
Theorem 3.4.16: P = 6" ® 1 -6 ® A € Dy(L([D(A)], E)), Idp(ay denotes the
inclusion D(A) — E and (6(’“) @ Idip(ay) (p)z = (=1)*p*)(0)z, ((5(k) ®1I)(p)z =
(=1)*pR)(0)z, (6@ A)(p)x = p(0)Az, ¢ € D,z € D(A), k € Ny and (§'®1dg)(p)x
= —¢'(0)x, p € D, z € E. By Theorem 3.4.16, one yields that G is a (DCF)
generated by A. O

COROLLARY 3.4.36. FEvery almost-distribution cosine function is uniquely de-
termined by its generator.
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PROOF. Suppose G; and G5 are almost-distribution cosine functions generated
by a closed linear operator A. Put G;(¢) = G;(K(p)), ¢ € D, i = 1,2. By
Theorem 3.4.35, G; and Gy are distribution cosine functions generated by A and
one can use Corollary 3.4.18 to obtain that G; = Gs, i.e., G1(K(p)) = G2(K(p)),
@ € D. Since K : D — D, is a surjective mapping, we have that G; = G5. This
ends the proof. O

THEOREM 3.4.37. Let A be a closed linear operator. Then, the following are
equivalent.
(i) A is the generator of a (DCF).
(ii) A is the generator of an almost-distribution cosine function.

Now we will recollect some results proved by Miana in [312]. We consider
almost-distribution cosine functionsand their relationship with global fractionally
integrated cosine functions with corresponding growth order. Let remind us [312]
that the family of Bochner-Riesz functions (RY), § > —1, t > 0, is defined by
RI(s) = 19(%-)19) X(0,t)- The Weyl functional calculus can be applied to the functions
which do not belong to the space D ; for example, in the case of Bochner—Riesz
functions we have that W RY = R%=® 94+1 > a > 0. Denote by Q, a > 0 the set
of all nondecreasing continuous functions 7, (-) on (0, c0) so that inf;sot~*u(t) > 0
and that there exists a constant C,, > 0 satisfying

/ u* r, (t+ s — u) du < CoTo(t)Tals), 0 <t < s.

[0,t] N [s,s+t]

The typical functions 7, (t) = t%; t?(1+t)Y (3 € [0,q], B+7 = a); tPe™ (B € [0, a],
7 > 0) belong to . Suppose 7, € Q4 and v > «; then the function 7, = ¥~ %7,
t > 0 belongs to €,. Designate by Q7 the subset of Q,, a > 0 which consists of
all functions of the form 7, = t®wy(t), t > 0, where the continuous nondecreasing
function wy : [0,00) — [0, 00) satisfies infs~owp(t) > 0 and wo(t + 8) < wo(t)wo(s),
t, s > 0. Suppose a > 0, 7, € , and define

0 (0) = [ s Wselat, o € s
0

Then ¢, (-) is a norm on Dy and there exists a constant C, > 0 such that ¢._ (¢ *.
¢) < Catr, (0)qr, (@), ¢, ¢ € Dy [312]. Let TG (74, *c) denote the completion of the
normed space (D, ¢, ); then T¢ (7, *.) is invariant under the cosine convolution
cosine product *. and the following holds (cf. [312, Theorem 3]):
(1) TY(Tas*c) <= TL(EY, %c) < L*([0,00),*.), where < denotes the dense
and continuous embedding,
(it) TZ(t7, %0) = TL(Y %), B> a > 0,
(ili) Ry™' € T¢(Ta,*c), v > a, t > 0 and there exists a constant Cy, o > 0
such that ¢, (RY™1) < Cy ot~ “1a(t), t > 0.
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An almost-distribution cosine function G is said to be of order o > 0 and growth
Toa € Q4 if G4 can be extended to a continuous linear mapping from T (74, *.)
into L(E). Now we are in a position to clarify the following important result:

THEOREM 3.4.38. [312] (i) Let A be the generator of an a-times integrated
cosine functzons (Ca(t))i>0 such that ||Cy(t)]] < CTa(t), t > 0. Then the mapping
G+ (Tou c) - L(E , gen by

Gi(f)x:= /Wff(t)Ca(t)xdt, [ €TL(Tas %), € E,
0

is a continuous algebra homomorphism which satisfies:
t

/(t_s)ualc() ds = G4 (R'™Y) > cE
T —a) w(s)xds =G (R )z, v>a, x

7 7 ! — 3 v—a—1
/Wﬁf(t)ca(t)xdt—/mf(t)/(tr(y)_a)ca(s)xdsdt,
0 0 0

for all f € TL(t"" %1, *c), * € E. Furthermore, the restriction of Gy to D
is an almost-distribution cosine function of order o > 0 and growth T, with the
generator A.

(ii) Suppose A is the generator of an almost-distribution cosine function G4 of
order a > 0 and growth 7, € Q. Then, for every v > «, A generates a v-times
integrated cosine function (Cy(t))i>0 such that |C,(t)]| < Cut’ *14(t), t > 0 and
that

_ v—a—1
x-/W_,_f / (t=s) Cu(s)xdsdt, feDy, z € E.

Iy —a)

(ii) Let o« > 0, 74 € QQ and let D(A) be dense in E. Then the following
assertions are equivalent:

(ili.1) A generates an a-times integrated cosine function (Cy(t))i>0 such that
HCa(t)” < CTa(t)7 t>0.

(iii.2) A generates an almost-distribution cosine function G4 of order o > 0 and
growth 7o, such that G4 (D.) is dense in E.

Suppose a > 0, b > 0, « > 0, M > 0, E?(a,b) C p(A) and ||R(A\?: A)|| <
M1+ [A)*, X € E(a,b). Put @A) := [7_eMop(t)dt, o € D and

1
Glp)o:= 5
T

MGAR(N2:A)zd\, x € E, p €D,

where T' is the upwards oriented boundary of E(a,b). Then one can simply prove
that G is a (DCF) generated by A. This assertion can be reformulated, with minor
changes, in the case of ultradistribution sines considered in Subsections 3.5.4 and
3.6.3. Now we pay our attention to the study of mild solutions of second order
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abstract Cauchy problems. A function wu(¢) is said to be a mild solution of the
abstract Cauchy problem

(ACP) : " (t) = Au(t), t > 0, u(0) =z, v'(0) =y,

iff the mapping ¢ — u(t), t > 0 is continuous, fot(t —s)u(s)ds € D(A) and A fot(t —
s)u(s)ds = u(t) — x —ty, t > 0. Recall that there exists at most one mild solution
of (ACP,), provided that there exists « > 0 such that A is a subgenerator of a
local a-times integrated C-cosine function. Denote by Zs(A) the set which consists
of those elements z € F for which there exists a solution of (ACP,) with y = 0.
Assume now that, for every 7 > 0, there exists n, € N such that A is a subgenerator
of a local n,-times integrated C-cosine function (Cy, (t)):e[0,r). Then the solution
space Z(A) consists of those pairs (x,y)T in E x E satisfying that, for every
T >0 Cp (t)x + fo n, (s)yds € R(C), t € [0,7) and that the mapping ¢t —
CHCn, (t a:—l—fo n, (8)yds), t € [0,7)is (nr+1)-times continuously differentiable.
Moreover, the solution space Zs(A) consists exactly of those vectors € E such
that, for every 7 > 0, C,,_(t)z € R(C) and that the mapping t — C~1C,,_(t)r,
t € [0,7) is n,-times continuously differentiable. If x € Z3(A) and t € [0,7),
then the mild solution u(-,x) is given by the formula (-, z) = ;i;: C—1C,, (t)r,
t > 0. If A generates a (DCF) G and = € Z3(A), then we also denote by G(d)
the above solution. Then it is easily seen that: G(d;)(Z2(A4)) C Z2(A), t > 0,
2G(6:)G(0))r = G(S45)x + G(6j—g)z, t, s = 0 and G(p)z = [;° 0(t)G(6,)z dt,
¢ € Dy. Furthermore, R(G) C Z3(A). In order to see that, assume =z € R(G) and
x = G(p)y for some ¢ € Dy and y € E. Put

(261) u(t;x) = %[G(Lp( =)y +G(o(-+1)y+ Gt —))y], t=0.

Using the continuity of G, one gets that u(;x) € C([0,00) : E). Denote f(t) :=
G(ga(« - t))y, g(t) := G(go(- + t))y and h(t) := ( ( ))y, t > 0. Then f,g,h €
C*([0,00) : E), f'(t) = =G (&' (- =)y, ["(t) = G(¢"(-—1))y. g'(t) = G(&'(-+1))y,
g'(t) = G("(- + 1)y, W'(t) = —G(¢'(t — )y and 1"(t) = G(cp”( )y, t = 0.
The above equalities, the partial integration and the representation formula (261)
taken together imply:

A/t(t — s)u(s;z) ds

(t—s) [G(w”(-—8))y+G(s0”(-+8))y+s0’(8)0y+G(<p”(8—-))y—w’(S)Cy} ds

—O/tG(tp yds+0/tG )yds—O/tG(w’(S—-))de] = u(t;z) -z,

> 0, as required.

Il
DN =
o\“

DN =
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Let (Np) and (R,) be sequences of positive numbers which satisfy (M.1). Fol-

lowing Chou (cf. for example [207, Definition 3.9, p.53]), we write N,, < R, iff, for
N, 6"

every § € (0,00), sup,en, - <™

Now we state the following relationship between distribution cosine functions
and ultradistribution semigroups. It is an extension of [189, Theorem 3.1] where
the corresponding result is proved for the class of dense exponential distribution
cosine functions.

THEOREM 3.4.39. Suppose that a closed linear operator A generates a (DCF).If
(M,) additionally satisfies M, < p!®, for some s € (1,2), then £iA generate (M,)-
ultradistribution semigroups of x-class.

Proor. We will prove the assertion only for iA since the same arguments
work for —iA. The existence of numbers «, 8, M > 0 and n € N such that
E?(a, B) C p(A) and that ||[R(A: A)|| < M(1+|\)", X € E?(a, 8) is obvious. Put
IV := 0E*(a, 8) and T := il’. Then it can be easily seen that I" = I'} UT% U T},
where: )

1. T} is a part of the parabola {n +i¢ : n = 5% — f?}; further on, T} is
contained in some compact subset of C, 2. Ty = {t? — e?* + 2te®% : t > 8} and
Iy = {t? — e?** — 2te®'i : t > $}. This implies that, for every c € (3,1),

| Tm AJ¢
11m =
AET, [A|—oo | Re A

(262)

It is clear that the curve I' divides the complex plane into two disjunct open sets.
Denote by € one of such two sets which contains a ray (w, 00), for some w > 0. Let
k > 0 be fixed. Since @ C p(iA) and ||R(- : ¢4)|| is polynomially bounded on 2,
the proof will be completed if one shows that there exists a suitable Cy > 0 with

(263) {AeC:ReX > M(k|A)) +Cr} CQ,

where M(-) denotes the associated function of the sequence (p!®). Note, (262)
implies that, for every ¢ € (%, 1), there exists a sufficiently large K. > 0 satisfying

(264) {AeC:ReX>|ImA]°+ K.} CQ.

Choose an s € (1,2) with M, < p!*. Then an application of [207, Lemma 3.10]
gives that there exists a constant Cy s > 0 with p% < M(kp) + nCys, p = 0.
Moreover, there exists a suitable K1 > 0 such that (264) holds with ¢ = 1. Now

it is straightforward to see that (263) is valid with C}, = InCy s + K1. Indeed, if
A€ Cand ReX > M(k|A) + InCyo + K1, then ReX > || 4+ K1, and due to

(264), A € Q. O

Since
lim & = V/2m,
E—rtoo g8 3¢
Gevrey’s type sequence (M,,) fulfills the assumption of Theorem 3.4.39 iff s € (1,2).
Before going any further, we would like to recommend for the reader [239] for
the basic properties of hypercyclic C-distribution cosine functions. Given a number
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7 > 0 and a function K € L{ ([0, 00)), define the mappings Tk : L*[0, 7] — L[0, 7]
and Ty : L'[0,7] — LY0,7] by Tk f := K %o f and T f := Ko f, f € L0, 7].
The next generalization of Titchmarsh—Foiag theorem has been recently proved in
[196]:

THEOREM 3.4.40. Let 7 > 0 and K € L] ([0,00)). Then the following asser-
tions are equivalent:
(i) 0 e supp K.
(ii) The mapping Tk is injective.
(iii) The mapping Tk has dense range.
(iv) The mapping T} is injective.
(v) The mapping Ty has dense range.

In the remaining part of this subsection, which is of some independent interest,
we will assume that K € L _([0,00)) and that 0 € supp K. Set Dy := Ty (D)
and Wg := (T} )~'. Notice that, in the case K(t) = %, o > 0, we have that
Dk = Dy as well as that the operator T, resp. Wk, is just the Weyl fractional
integral of growth «, resp. the Weyl fractional derivative of growth «. It is known
that the space D is invariant under differentiation and the convolution products
x0, 0 and *,.

THEOREM 3.4.41. [196] (i) Let K € L} _([0,00)), let 0 € supp K and let
(Sk(t)i>0 be a global K -convoluted C-semigroup having A as a subgenerator. De-
fine Gk : Dk — L(E) by Gk(f)z == [,° Wk f(t)Sk(t)zdt, f € Dk, z € E.
Then:

(1) Gr(f*09)C=Gr(f)Gk(9), f, 9 € Dk.

(i.2) Gr(f)A C AGk(f) and AGk(f)xr = Gg(—f")x — f(0)Cz, f € Dk,

rzeFE.

(i.3) Let x € D(A). Then Gg(f")z=— [;° Wk f(t )dtSK( Jedt, f € Dg.

(i4) Let L € L{ ([0,00)), 0 € supp L and Sk.,r(t)x = fo (t — s)Sk(t)x dt,

t>0,x€FE. Then GK*OL(f) GK(f) f € Dkur-

(ii) Let K € L} .([0,00)), 0 € supp K and let (Ck(t))t>0 be a global K -convol-
uted C-cosine function having A as a subgenerator. Define G5, : Dx — L(E) by
G%(f)z = fooo Wk f(t)Ck(t)xdt, f € Dk, v € E. Then:

(ii.1) G (f e 9)C = G (f)G%(9), f, 9 € Dk-

(ii.2) G%(f)A C AG%(f) and AGk(f)x = Gk (f")z + f'(0)Cz, f € Dg,

rze L.

(ii.3) Let L € L ([0,00)), 0 € supp L and C.,r(t)z = fo (t — 8)Ck (t)z dt,

£>0, 0 €. Then G, (f) = G5(f). f € Diceor-

Let 7 : [0,00) — [0,00) be a locally integrable function. Then it is said that
T € Ak iff there exists M > 0 such that
S r+s
/T(U)|K(7‘ +s—u)|du+ / T(W)|K(r+s—u)|du< Cr(s)r(r), 0 < s <y
0 T
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and that 7 € Bi iff Ax > 7 is non-decreasing, continuous and there exist M > 0
such that fOt|K(s)|ds < Mr(t), t > 0. Define ||f|x,r := [y Wik f(t)|7(t)dt,
f € Dg. Then || - ||k~ is a norm on Dg and the completion of Dk in the norm
Il - lx,» is denoted by Tx (7). Recall [196], Tk (7) is densely and continuously
embedded in L'([0,)) if 7 € Bk. The next theorem can be simply reformulated
in the case C # I.

THEOREM 3.4.42. [196] (i) Let K € L] _([0,00)), let 0 € supp K and let
(Sk(t))i>0 be a global K-convoluted semigroup generated by A. Assume T € Ag
and ||Sk(®)|| < M7(t), t = 0, for some M > 0. Define Ui : (Tg(7),*0) — L(E)
by Ui (f)w == [;° Wi f(t)Sk(t)zdt, f € Tk(r), x € E. Then Vg is a bounded
algebra homomorphism.

(i) Let K € L} .([0,00)), 0 € suppK and let (Ck(t))i>0 be a global K-
convoluted cosine function generated by A. Assume T € By and |Ck (t)|| < M7(t),
t > 0, for some M > 0. Define @ : (Tk(7),%.) — L(E) by ®x(f)z =
IS Wi f(t)Ck(t)xdt, f € Ti(r), * € E. Then ®x is a bounded algebra ho-

momorphism.

3.4.6. Examples. Recall, if A generates an (EDCF) then the spectrum o(A)
of A must be contained in the parabolic domain {n + i¢ : n < w? — 45722} for some
w > 0.

EXAMPLE 3.4.43. Let
—{7e ) oo+ 10 =0, 11 = sup sup 190 < o},
ke, kENy t=k
Consider now the operator
Af:=f", DA :={feE:f, f"eF}
and suppose that A generates a (DCF). Then there are constants w > 0, M > 0

and k € N such that {A € R : A > w?} C p(A) and [|[R(A?: A)|| < MNF, X > w.
Choose

2z, 0<a< 3
glo)=§-2w+2, <<l
0, v =1
Then |g||z =1 and
MY > AR(A2: A)g|lm = | sinh(At) %o gl m
, t
> Lap /(e*“—@ —e M) g(s)ds| > sup /(eA(H) e el
o)/ tel0,31]y
> sup ;%JFM >’+M >éilii A
/te[o,%] b\ A2 D) A2 DV A2’

Hence, A does not generate a (DCF). Note that operator —d/dx with maximal
domain in E is the generator of a (DS) in E (cf. [252, Example 3.5]).
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EXAMPLE 3.4.44. Let E := LP((0,00)), 1 < p < o0, m(z) := (z +1ie*)?, z > 0,
(Af)(z) := m(x)f(x), D(A) := {f € E: mf € E}. Clearly, {z +ie* : z > 0}
NA; ;1 = 0. Denote d := dist({£(z+ie®) : x > 0}, dA; ;). Then d > 0, ]\%,1 C p(A)
and |[R(A: A)|| < 45, ) € A%,l. Therefore, A generates a (DCF). Since o(A4) =
{(z +ie*)? : & > 0}, we have o(A) NI, # 0 for all w > 0. Thus, A does not
generate an (EDCF). Moreover, one can easily see that A generates a local once
integrated cosine function (C1(t))e[0,1) on £ which is given by

__ sinh((z +ie”)t) f(x)
(C(0)f)() = T
It is clear that (C'1(t))se[0,1) can be extended on [0, 1] and that sup,¢(o 17 [|C1(£)[| < 1.
However, A does not generate a local sine function on [0, 7) for any 7 > 1.

, 0<t<l,z>0, feFE.

EXAMPLE 3.4.45. Let us consider now Hardy spaces of holomorphic functions
in the upper half-plane. Denote Ri ={z € C:Imz > 0}. Then the Hardy space
HP(R%), 1 < p < o0, is defined as the space of all holomorphic functions defined
on Ri such that

1/p
||F||HP(R1) = <51§8/|F(1‘+1y)|pdaj> < 00,
Y
R

for all F € H”(R2 ) Let B(-) be a holomorphic function on R% with B(R2) C
{n+i¢:n<w?— £ 2} for some w > 0, and

(AF)(z) := B(2)F(2), Imz > 0,D(A) := {F € H?(R}) : AF € H?(R%)}.

One can simply verify that II,11 C p(A) and ||AR(A\?: A)|| < QL’:‘_l, Rel > w+ 1.
The last estimate implies that, for every o > 2, the operator A is the generator of
an exponentially bounded a-times integrated cosine function. Thus, A generates
an (EDCF) in HP(R?). Particularly, one can take
1 -1
B(z) = (—1 z

o z+1
where Inz = In |z| + iarg(z), z € C ~ {0}.
EXAMPLE 3.4.46. Let E be an arbitrary Banach bpace P € L(E) and P2 P.

Define G(¢)z == [~ ¢(t)dt Pz, x € E, € D. Then G~(p)x = [~ te(t) dt Pz,
reFE, peD,and

2
+a> ,Imz>0(aecC), or B(z) = —In*2, Imz > 0,

Ztso(t) dt 071/}(8)5 ds + Zcp(t) dtst(s) ds = 0707 (t+ s)p(t)(s) ds dt
— [ [ustu—oppydvdu= [ u [ ot v)ot)dodu= [ ute o v)(wdu
0 0 0 0 5

for all ¢, ¥ € D. Hence, G is a pre-(DCF) in E, and
{z,y} C Kern(P) & G(p)x + G (p)y = 0 for all ¢ € Dy.
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Note also that G is a pre-(DSG) in E satisfying N'(G) = Kern(P).

The next illustrative example shows that Theorem 3.4.39 does not hold in the
case of a general sequence (Mp,).

2

8

EXAMPLE 3.4.47. Let E := LP(R), 1 < p < oo and m(x) := (1—%-)+ix, x € R.
Define a closed linear operator A on E by Af(z) =: m(x)f(z), x € R, D(A4) =
{f € E:mf € E}. Then it is obvious that A generates a dense exponential (DCF)
and that o(14) = {x + (1 — %2)2 : x € R}. Suppose now M, = p!*>. We will show
that iA generates an ultradistribution semigroup of the Beurling class and that i A
is not the generator of an ultradistribution semigroup of the Roumieu class. First of
all, we know that there exist constants w > 0, a > 0 and b > 0 with ap'/? < M (p),
p > wand M(p) < bp'/?, p > 0. The validity of above statements immediately
follows if we prove that (cf. the next section for further information):

(265) 0N.c Na(iA) = 0, for every k € (4/a?, 00) and a sufficiently large C' > 0,
(266) O0V..c No(iA) # 0, for every k € (0,4/b*) and C > 0.

Let k € (Z5,00). Let C > £. In order to prove that (265) holds, note that: n+i¢ €
Oc =n>C, ky/n2+& > kn > kC > w. Hence, n = M(k\/n2+ &) +C >
avVkY/n? 4+ €2 + C. This estimate ensures that, for a sufficiently large C' > 0, the

curve 0, ¢ lies above the graph of the function f(n) = — ("azkcz)4 — n2; moreover,

&

fn) ~ —%, n — +oo. Therefore, the choice of k implies that there exists a

suitable § > 0 such that the part of the parabola £ = —(:’Tgk, n = B has the
empty intersection with o(iA). This immediately implies (265), while (266) follows
similarly from the fact that, for every k& € (0, g%) and C > 0, the interior of the

parabola n = —% is strictly contained in that of £ = —% and that, for n + i€ €
OQy,.c, we have n = M (k\/n2 + €2 ) + C < bVk/n2 + € + C. At the end of this
analysis, we point out that the implication: G is an ultradistribution fundamental
solution of #-class = ﬂc,aeD;; Kern(G(p)) = {0}, is not true in general (see [59]).
In the case of densely defined operators, the concept of regular ultradistribution
semigroups of Beurling class was introduced by Cioranescu in [59] for this purpose.
An application of [59, Proposition 2.6] gives that the operator i A, considered above,
generates a regular ultradistribution semigroup of (p??)-class G' (cf. [59] and the
next section for the notion). Similarly, if M, = p!®, s > 2, then it can be proved that
1A does not generate an ultradistribution semigroup of Beurling, resp., Roumieu
class. The same assertions hold for —iA.

3.5. Ultradistribution and hyperfunction semigroups

Unless stated otherwise, we assume in this section that (M,,) satisfies (M.1),
(M.2) and (M.3"). The use of condition (M.3) will be explicitly emphasized.

3.5.1. The structural properties of ultradistribution semigroups. We
define L-ultradistribution semigroups following [282] and ultradistribution semi-
groups following [252] and [418].
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DEFINITION 3.5.1. Let G € D§(L(E)). Then it is said that G is an L-ultra-
distribution semigroup of x-class iff:

(U.1) G(ox4) = G(9)G(¥), ¢, ¥ € Dy,

(U.2) N(G) = m¢eDg Kern(G(¢)) = {0},

(U.3) R(G) :=Ugep: R(G(¢)) is dense in E, and

(U.4) For every z € R(G) there exists a function u € C([0,00) : E) satistying
w(0) =z and G(¢)z = [ ¢ t)dt, ¢ € D*.

U.3
U4

The continuity of mapping *q : D* x D* — D* is obvious and the continuity
properties of %o remain similar to those of *. This justifies the next definition of a
(non-dense) ultradistribution semigroup.

DEFINITION 3.5.2. Let G € D (L(E)). If G satisfies

then it is said that G is a pre-(UDS) of *-class. If (U.5) and (U.2) are fulfilled for

G, then G is said to be an ultradistribution semigroup of *-class, in short, (UDS).
We say that a pre-(UDS) is dense if G additionally satisfies (U.3).

If G € DiF(L(E)), then the condition:
(U.2") supp G(-)x € {0} for every x € E \ {0},
is equivalent to (U.2). This follows from the fact that
0#ux0 € ﬂ {r € E: G(¢)x =0} <= suppG(-)zo = {0}.
¢eDY
As in the case of distribution semigroups, if (U.3) holds, then:
[(U.1) A(U.2) A(U4)] < [(U.5) A (U.2)].
It is clear that if G is a pre-(UDS) of x-class, then N'(G) is a closed subspace of E.
The next example is an insignificant modification of [252, Example 2.3].

ExampLE 3.5.3. Let E be a Banach space and let T' be a bounded linear
operator on E such that there exist C > 0 and L > 0, in the Beurling case, resp.,
for every L > 0 there exists C' > 0, in the Roumieu case, with ||TP+!|| < ijTp
p € No. Define G(¢) := Y2 ¢ (0)TP**, ¢ € D*. Then G is a pre-(UDS) of
x-class satisfying N'(G) = E. The verification of this fact is left to the reader. Note
that we do not require that T is a nilpotent operator as in [252, Example 2.3].
The concrete construction in the Beurling case goes as follows. Let E := [, and
T((zp)) = (xpy1/mp), (Tp) € loo. Since (m,) is increasing, it is straightforward to
see that ||[T?|| = 1/M,, p € Ng. Define G as above. Then G is a pre-(UDS) of the
Beurling class and T is not a nilpotent operator. The corresponding example for
the Roumieu case can be constructed similarly.

Borel’s type theorem for ultradifferentiable functions (cf. [360]) implies that,
for every complex sequence (ay) such that a, = 0, n > ng, there exists an f € D*
satisfying f(™) (0) = ayn, n € Ng. This allows us to obtain the structural characteri-
zation of a pre-(UDS) of *-class on its kernel space N'(G).
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PROPOSITION 3.5.4. Assume additionally that (M.3) holds. Let G be a pre-
(UDS) of *-class and G := G(-)|n(g)- Then G is a pre-(UDS) of *-class on N(G)
and there exists an operator T € L(N(G)) such that there exist C > 0 and L > 0
in the Beurling case, resp., for every L > 0 there exists a suitable C > 0, in the
Roumieu case, such that

||TJ+1||<C—_,JeN0 and G = 25@)@ 177+,
=0

PRrOOF. It is clear that (U.5) implies that N'(G) is invariant under G and that
G is a pre-(UDS) of x-class on N (G) with N (G) = N(G). Moreover, supp G C {0}
and an application of Theorem 1.3.5(ii) yields that there exists a sequence (T}) en,
in L(E) such that there exist C > 0 and L > 0 in the Beurling case, resp., for every
L > 0 there exists C' > 0 in the Roumieu case, satisfying

oL
A €N and &= ZW)@T

7=0

Because of (U.5) and (¢ x @) (0) = S7-1 ) (0)pU~1=%)(0), 5 € N, one obtains

oo j—1 oo
Z 1)7¢™ (0)pU 1R (0 Z 1)7T5 60D (0)¢ (k)(O)Tkam,
7j=1k=0 3, k=0

for all z € N(G) and ¢, p € D*. Choose ¢ € D* with $(0) = 1 and () (0) = 0,
7 € N, to obtain

Z(fl)jso Z QO(J TOzj7 T € N(G)» pE D*.

Jj=1 Jj=0

One can choose a sequence (¢r)ken, in D* with QD(j)(O) = 0k, J, k € Ng to conclude
that Tj, = (—1 )ka+1, k € N. This proves the proposition. O

Let G be a (UDS) of #-class and let T' € £[*. Then we define G(T') as in the
case of distribution semigroups:

G(T) = {(z,y) € Ex E: G(T * ¢)x = G(¢)y for all ¢ € D;}.

Clearly, G(6) = I and G(T'), T € &} is a closed linear operator. The generator of
G is defined by A := G(-¢").
Since for ¢ € D, ¢4 1= @ljg.) € &, the definition of G(¢ ) is clear.
Notice, the adjoint of a pre-(UDS) of x-class G, denoted by G*, is also a pre-
(UDS) of #-class.

THEOREM 3.5.5. Let G be a pre-(UDS) of x-class, F:= E/N(G) and q be the
corresponding canonical mapping q: E — F'.
(i) Let H € L(D*, L(F)) be defined by qG(p) := H(p)q for all p € D*. Then
H is a (UDS) of x-class in F.
(ii) (R(G)) = R(G), where (R(G)) denotes the linear span of R(G).
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(iii) Assume that G is not dense. Put R := R(G) and H := G|g. Then H is
a dense pre-(UDS) of x-class in R.

(iv) The adjoint G* of G is a pre-(UDS) of *-class on E* with N(G*) =
R(G)".

(v) If E is reflezive, then N'(G) = R(G*) .

(vi) G* is a (UDS) of x-class on E* iff G is a dense pre-(UDS) of *-class. If
E is reflexive, then G* is a dense pre-(UDS) of x-class on E* iff G is a
(UDS) of x-class.

(vil) G is a (UDS) of x-class iff (U.1), (U.2) and (U.6) hold, where
(U.6)  Glpy) =Glp), p €D

(viii) M(G) N (R(G)) = {0}.
THEOREM 3.5.6. Let G be a (UDS) of *-class and let S, T € &, ¢ € D,
1 € D*, x € E. Then the following holds:

m

——
(i) (G(p)z, G(T*---«Txp)x) € G(I)™, m € N.
(ii) G(S)G(T) C G(S *T) with G(S)G(T) = D(G(S *T)) N D(G(T)), and
GS)+G(T) CGS+T).
(ili) (G(¥)z, G(=¢ )z —(0)z) € G(=d").
(iv) If G is dense, its generator is densely defined.

Before proceeding further, we would like to emphasize that [59, Lemma 2.7]
implies that every (M, )-ultradistribution semigroup G of [54] is also a pre-(UDS)
of the Beurling class. Using Theorem 3.5.5, we are in a position to introduce the
generator of a pre-(UDS) of *-class.

DEFINITION 3.5.7. Let G be a pre-(UDS) of #-class in E. Then A is the
generator of G if A is the generator of a (UDS) H in F' = E/N(G), which is given
in Theorem 3.5.5(1).

The case in which G is a (UDS) of x-class is not excluded: one can simply
identify E with F. The generator of a pre-(UDS) of %-class is a closed linear
operator from F into F. Our definition is slightly different from the definition
of the generator of a pre-(DS) given in [199]. In fact, following Definition 2 and
Corollary 1 of [199], the generator of a pre-(DS) in E is a closed linear operator
from FE into F.

DEFINITION 3.5.8. Let D be another Banach space and let P € D{*(L(D, E)).
Then G € D (L(E, D)) is an ultradistribution fundamental solution for P if
PxG=0xIgand GxP=0Q Ip.
As in the case of distributions, an ultradistribution fundamental solution for

P e DiF(L(D, E)) is uniquely determined. This, combined with the next theorem,
implies that every (UDS) is uniquely determined by its generator.

THEOREM 3.5.9. Let A be a closed operator in E. If A generates a (UDS) G
of %-class, then G is an ultradistribution fundamental solution for

P:=6 @ Ipu — 6 Ae Dy (L(D(A), E)).
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In particular, if T € D (E), then u =G x T is a unique solution of the problem

(267) —Au+ %u =T, uc D ([D(A)]).

Furthermore, suppT C o, 00) implies suppu C [a, 00), where a > 0. Conversely,
if G € Dif(L(E,[D(A)])) is an ultradistribution fundamental solution for P, then G
is a pre-(UDS) of x-class in E and the generator of G is the closure of the operator

A= {(q(=),q()) : (z,y) € A}.

PrOOF. If A generates a (UDS) G of #-class, then Theorem 3.5.6(iii) implies
that G is an ultradistribution fundamental solution for P, and consequently, u = G*
T is a unique solution of (267). Clearly, if suppT C [a, 00), then suppu C [a, 00).
Let G € Dy (L(E,[D(A)])) be an ultradistribution fundamental solution for P.
Using the same arguments as in the proof of [252, Theorem 3.10], we have that G
is a pre-(UDS) of x-class in E. We will only prove that the generator of G is the
closure of A. First of all, let us prove that A is a closable operator. Let (x,) be
a sequence in D(A) such that g(z,) — 0 and A(q(z,)) — q(y), n = oo, for some
y € E. These assumptions imply the existence of a subsequence (z,, )r of (zn)n
such that

zeiJ{lffG) |zn, + 2|l < 1/k and zei/\I}EG) Az, —y+z|| <1/k, keN.

Hence, there exist two sequences (zx) and (z4)x in N (G) satisfying
|, + 2l < 1/k and [|Azn, —y+ 24| < 1/k, k € N.

Let ¢ € D§ be fixed. Since G is an ultradistribution fundamental solution for P,
one has G(¢)Ax,, = —G(¢ ), n € N. Then we obtain:
| =Gyl = |G(@)(Azp, —y + 2;) — G(9)(Azp, + 2;)
<NGON/E+1G(@)Azn, || = IG(O)I/E + |G(=¢') (@n, + 20)]
<NG@N/k+IG()/k, keN.
Letting k — oo, we obtain that g(y) = 0 and that A is a closable linear operator in
F'. Suppose that A; generates G. If (¢(x), ¢(y)) belongs to the closure of A for some
x, y € E, then there exists a sequence ((xn,yn))n in A such that (¢(z,), ¢(yn)) —
(¢(x),q(y)), n — oo, in F x F. Applying the same arguments as above, we get
that there exist a subsequence (z,,, ) of (z,)n and two sequences (zx)x and (21 )
in A/ (G) such that
|Zn, — 2+ 2|| < 1/k and |lyn, —y + 21| < 1/k, k € N.

Let ¢ € D§ be fixed. If ¢ € D, then

|G(p)(G(~ o)) |
= ||G(9)G(¢’ )(lfnk—l“+zk) G(¢) (@, +21) +G(0) (Yn, —y+2) — G (D) (Yn, +21)] |
= |GG (@n, — 2+ 21) + G(D) (Yn,, — vy + 21)]]|

< (16 x0 D)l + 1G9 %0 ¢)II) /. k €N
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Thus, G(~¢)z — G6)y € N(G), ie., H(~¢")a(x) = H(@)a(y), 6 € D, and Ay
contains the closure of A. This implies that D ([D(A)]) is isomorphic to a subspace
of DF([D(A1)]). The first part of the proof gives that H is an ultradistribution
fundamental solution for P := 4§ &I D(A;) — 0 ®Ay. Applying again the arguments
given in the final part of the proof of [252, Theorem 3.10], we obtain D(A;) = D(A).

The proof is completed. O

COROLLARY 3.5.10. Let G € D{(L(E,[D(A)])). Then G is an ultradistribution
fundamental solution for P = §' @ Iip(a)y) —0®@ A € D (L([D(A)], E)) and N(G) =
{0} iff G is an (UDS) of x-class generated by A.

REMARK 3.5.11. In the case of distribution semigroups, if G is a fundamental
solution for P in the sense of [252, Definition 3.9], then G is a (DS), i.e., the follow-
ing also holds: N(G) = {0}. Generally, it is not true in the case of ultradistribution
semigroups. There exist a Banach space E, a closed linear operator A in E and
an ultradistribution fundamental solution G for P such that N (G) # {0}; see, for
example, [64, p.156].

QUESTION. If G is an ultradistribution fundamental solution for P, and simul-
taneously, a (UDS) of *-class, then it can be proved that the operator A defined
above is closed. Is it true if G is just an ultradistribution fundamental solution for
pP?

THEOREM 3.5.12. Assume that (M.3) holds. Let T € D (E) and let A be a
closed, densely defined operator. Assume, further, that the equation
—Au+ %u =T, ue Dy ([D(A)])
has a unique solution depending continuously on T so that if suppT C [, 00), then
suppu C [a, 00). Moreover, assume that for T = § the corresponding ultradistribu-
tion fundamental solution u satisfies suppu(-,z) € {0}, z € E ~ {0} (cf. (U.2)).
Then A is the generator of an L-ultradistribution semigroup of *-class.

OUTLINE OF THE PROOF. The proof is similar to that of [282, Theorem 5.1].
Since the mapping H : u — —Au + %u is an isomorphism of D{*([D(A)]) onto
D{(E) which commutes with translations, one can prove that H is a convolution
operator, i.e., that there exists G € D (L(E,[D(A)])) such that H(T) = G = T.
Using this fact and Theorem 1.3.5(ii), one can repeat literally the proof of Lions
given in [282]. The essential change concerning the proof of [282, Theorem 5.1]
is related to the proof of (U.2) for the solution u of the equation —Au + %u =
d (cf. [282, Part 5, p.152]). Clearly, (U.2) is a consequence of the assumption
suppu(-,z) € {0}, x € E~ {0}. O

3.5.2. Exponential ultradistribution semigroups.

DEFINITION 3.5.13. (i) Let D be a Banach space and let P € D{*(L(D, E)).
Then we say that G € D{*(L(E, D)) is an exponential ultradistribution fundamental
solution for P if G is an ultradistribution fundamental solution for P and if there
exists w > 0 such that e “'G € 8 (L(E)).
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(ii) Suppose G is a (UDS) of #-class. Then it is said that G is an exponential
ultradistribution semigroup of *-class, in short (EUDS), iff there exists w > 0 such
that e “'G € §™*(L(E)).

THEOREM 3.5.14. Suppose A is a closed linear operator. Then there exists an
exponential ultradistribution fundamental solution of x-class for A iff there exist
a>0,k>0and L >0, in the Beurling case, resp., there exists a > 0 such that,
for every k > 0 there exists Ly > 0, in the Roumieu case, such that:

(268) {AeC:ReX>a} Cp(A),
(269) |RO\:A)|| < LeMFRAD X € C, Re > a, resp.,
(270) |R(A:A)|| < LeMEN - for all k> 0 and A € C with Re X > a.

Proor. We will prove the assertion only in the Beurling case since the proof is
quite similar in the Roumieu case. Suppose first that G is an exponential ultradis-
tribution fundamental solution of (M,)-class for A and that e=“!G € S"M»)(L(E))
for some w > 0. Let h € EM)(R), » > 0 and let h(t) = 0, t < —r and
h(t) = 1, t > 0. Then the function t + h(t)e® =Mt t € R belongs to the
space SM») for all A € C with ReXA > w. This implies that the definition of
G(\) == G(h(t)e ) == G(e “t(h(t)e M) is meaningful for all A € C with
Re)X > w. Since e *!G is an ultradistribution fundamental solution for 4 — w,
we get that (A — w)G(e “to)r = G(—e )z — p(0)z, 2 € E, ¢ € DMp), The
continuity of e=“*G on SM») and the denseness of DM») in S(Mp)  imply that
the previous equality holds for all ¢ € S(M»). Then a simple computation with
o(t) = h(t)e =Mt t € R, and the obvious inclusion supp G' C [0, 00), imply:

AGN)z = GNz —z, 2 € E, Re X > w.

Hence, (A — A)G(\)z =z, z € E, Re A > w and, since G(A\)A C AG()\), Re X > w,
G\ — A)z = z, z € D(A), ReA > w. This implies (268) with a = w and
R(\:A)z = G(\Nz, € E, ReX > a. It is obvious that there exists & > 0 such
that |G| = [[(e~“*G) (h(t)e“ M) || < [[h(t)e“ ™M) ar,,n provided Re X > w.
Then the estimate (269) follows easily from the preceding inequality, which ends
the proof of necessity.

To prove sufficiency, suppose 5 > a, I > max(k,1), « > 0 and put ¢(\) :=
[ Me(t)dt, A e C, o € DY) and G(p) i= 55 1, GAR(A: A)dA, o € DI,
where I'; denotes the upwards oriented boundary of the ultra-logarithmic region
Aopi={A€C:ReX > aM(l|ImA|)+ S}. Proceeding as in [59], [210] and [307,
Section 2.3|, one gets that G is an ultradistribution fundamental solution for A.
By the Paley—Wiener type theorem (cf. [59, Theorem 1.1] and [207]) and Cauchy
theorem, we can deform the path of integration I'; to the straight line connecting
a —i00 and a + oo, where a € (a, 3). Hence,

a-+ioo
Gle) = — / GNR(A:A)d), o € DM,

a—1io00
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We will prove that e=“!G € &' M) (L(E)) for all w € (@, o). Suppose @ € DMr),
supp ¢ C [a,b], a < 0 and b > 0. Let ¢ € DM») ((t) =1, t € [~1,1] and ¢(t) =

t > 2 and let a function & € DM») satisfy (1) = 1,1 <t <b+1,£(t) =0, t < —2
and £(t) = C(t —b—1),t = b+ 1. Then p¢ € DMr) (t)E(t) = p(t), t = 0 and
G(p) = G(¢€). The partial integration and the proof of implication (III) = (II) of
[307, Theorem 2.3.1] imply that, for every h > 0, n € Ny, 5 € Ny and A € C with
Rel=a:

b

1 _
< —(w=a)t|(,e)(n)
< o [ RO Ol

b
TR = '( U [0t e i
o

A—w)n
e Homa) _ gmoma 1 0
€ w—a (,0 JWP,h e w—a e w—a ,3
M, M; < g _
|>\ w|n/(1+t2 hn+ﬂ B (w_a)|)\ w|n hn hﬂ H<p§|‘]\/[p7h
—2

Since the preceding equality holds for every n € N and
M,
inf — 7 —M(hA-w])
nelo hA —w|m  © ’

one gets that, for every h > 0, 8 € Ny and A € C with Re A = a, there exists a
constant M, independent of a and b, such that:

— Mg »
(271) [ pe()| < Mo e MR D gy .
By the definition of || - ||az,,n and the logarithmic convexity M, , > M, M, p,q €
Ny, one gets that, for every h > 0:

potB
el = _swp A (L+6)72)(p) @ (0)] }
< o {gm e Wz( el
< S;%GNO{MQ}L?;MB 1+ 2)%/2 ; (?) ol (1)1 (t)l}
S t€R, S;pBeNo ; ( ) 2t (Qh) _7|\§[i o 4“*15*" Illas, an

N

sup Z( )21 = —— llellar, anlléll ar,, 2, 12,643

a€ENg i=0

< Nellagy anlléllng, 2n (-2,6+3)-
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In view of (271)—(272), one yields that there exists M > 0, independent of a and
b, such that, for every 5 € Ny and i > 0:

Mg _ _
55 O gllag, an.

The estimate (273) combined with [51, Lemma 2.1.3] indicates that there exists
h > 0 such that [[e=“*G(y)|| < Const ||¢||ar,,4n, ¢ € DMr). The proof of theorem
is thereby complete. O

(273) e pe| < i

The relations between exponential ultradistribution semigroups of the Beurl-
ing class and exponentially bounded convoluted semigroups have been recently
discussed in [227].Notice that the preceding theorem enables one to transfer the
assertion of [227, Theorem 3.10] to Roumieu case as well as to remove any density
assumption from the formulation of [227, Theorem 3.10(i)].

ExXAMPLE 3.5.15. ([249, Example 1.6], cf. also Example 2.8.3) Define

. o0 . o Pl
By, ={fec 0,17 1, = sup 25 = <o},

and Ay, := —d/ds, D(An,) =:{f € En, : f' € En,, f(0) = 0}. Put now
(G))(e) = [ oo = 05(t)dt, ¢ € DO, £ € Buy,, € [0.1).
0
Clearly, G(p)f € C*[0,1] and

TGN = [P -0 dt{jw 14 (0) /) (),

dx?
0

for every ¢ € DWM») | f Ep,, x €[0,1] and p € Ng. Since My, > M,M,, p, q €

Np, the preceding equahty implies that, for every p € Ng, z € [0,1], ¢ € DMp) and
f € EMp:

1 dr 1=k

©p 0
T (G| < ||<P||Mp,1,[o1Hf||+2’7()‘||fll
P k=0
p—1 1
<lelaion(1+ 3 2 171 < Belgnion (1+ 3 - )1
k=0 Pk

p=0

Hence, ||G(@)|| < [lolla,,1,0, (1 + > o %p) and G € D(')(Mp)(L(E)). The condi-
tions (U.1) and (U.2) can be proved trivially, and consequently, G is an (EUDS) of
(M,)-class whose generator is obviously the operator Ayz,. By Theorem 3.6.4 given
in the next subsection, we have that there exists an injective operator C' € L(Ex,)
such that Ay, generates a differentiable local C-regularized semigroup (S(t)):e[0,2)-
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Put, for every fixed f € En,, € [0,1] and t € [0,1], u(t,z) := (S(t)f)(z). Ac-
cording to the differentiability of (S(t)):e[0,2) and the proof of Theorem 3.6.4, one
immediately obtains that u is a solution of the problem

u € C1([0,1] x [0,1])
(P): {

Up +ur =0
u(0,z) = (Cf)(x), u(t,0) = 0.
Hence, for every (¢,z) € [0,1] x [0,1],

0, 0
[Cﬂ((ﬂ - t)a 1
In particular, S(t) = 0, t € [1,2). Define now S(t), t > 0 by S(t) := S(t), t € [0,1]
and S(t) := 0, t > 1. Then (S(¢)):>0 is a global differentiable C-regularized

semigroup generated by Ajps,. The previous analysis and Theorem 3.6.9 imply that
there exists an injective operator Cy € L(E) such that Ajp;, generates a global

differentiable C;-regularized semigroup (Si(t))¢>o such that S;(t) = 0, t > 1 and
that sup,>¢, pen, AZ—ZH%&@)H < oo for every fixed number h > 0.

(S f)(x) = {

EXAMPLE 3.5.16. [252] Let Ay, Eyy, and G be as in the preceding example.
Choose an element z € E and a functional z* € (D(A))® with (z*,z) = 1. Define
now G := G+ ¢ ® (z*,-)x. Then G satisfies (U.1), (U.2), (U.4), but not (U.5).

Ultradistribution semigroups are important in the analysis of some classes
of pseudo-differential evolution systems with constant coefficients (cf. [123] and
[226]). We also refer to [54], [255] and [344] for examples of differential operators
generating ultradistribution semigroups.

The following result has been recently proved by using the theory of convoluted
semigroups.

THEOREM 3.5.17. [226] Suppose s > 1, M, = pl°, there exists a (tempered)
ultradistribution fundamental solution of x-class for A, B € L(E) and BA C AB.
Then there exists a (tempered) ultradistribution fundamental solution of x-class for
A+ B.

It is quite questionable whether Theorem 3.5.17 holds in the case of a general
sequence (M,,) satisfying (M.1), (M.2) and (M.3’).

PROBLEM. Suppose s > 1, M,, = p!°, A generates a (UDS) of *-class, B € L(E)
and BA C AB. Denote by G the ultradistribution fundamental solution of *-class
for A+ B (cf. Theorem 3.5.17). Is it true that G satisfies (U.2)?

EXAMPLE 3.5.18. [226] (i) Suppose ¢ > 1,0 >0andc € R, M >0, k € N,
0(A) €+, and [|[ROA:A)|| < M1+ [ADF, A ¢ £, ..
Let p(z) := Y1 ja;z’, x € C, wheren € N, a, >0 and a,—; € C, i =1,...,n.

Then the operators +ip(A) generate ultradistribution semigroups of (p!@)—
class. Herein II. , c = {A € C: Re A > o|Im A\|° +}.
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(ii) Let p be as in (i) and let A (or —A) generate an exponentially bounded
integrated cosine function. Then the operators +ip(A) generate:

2n
’ 2n71] )

(ii.2) ultradistribution semigroups of {p!*}-class provided s € (1, 522+ ).

(iii) Let p be as in (i) and let A (or —A) generate a (local) integrated cosine
function. Then the operators +ip(A) generate ultradistribution semigroups of *-

class provided M, = p!® and s € (1, 22’j1).

(iv) Suppose ¢ € (0,1), 0 > 0, s € R, 0(A) C :I:((C {2 e HCJ,g}) and
|R(-: A)|| is polynomially bounded on the complement of {\?: X\ € Il , .}. Let p
be as in (i). Then +ip(A) generate ultradistribution semigroups of *-class provided

2
Mp :p[s and s S (1, WTCL—I)

(ii.1) ultradistribution semigroups of (p!*)-class provided s € (1

The proof of the following structural result follows from the analysis of Ko-
matsu [210], Melnikova, Filinkov [307, Section 2.3] and Melnikova, Anufrieva [309,
Subsection 1.3.4].

THEOREM 3.5.19. There exists an ultradistribution fundamental solution G of
x-class for a closed linear operator A iff there existl > 0 and 8 > 0, in the Beurling
case, resp., for every l > 0 there exists 5; > 0, in the Roumieu case, such that:

iy == {xe C:ReA > MUA) + 8} C p(4), resp.,
M) — {)\ €C:Re) > M(IA) + 51} C p(A)
and
IROCA)| < MO X e @M e
[RO: A < B0, X e i),
() (L))

It is obvious that the polynomial boundedness of [|R(- : A)[| on ;' 15
implies that G is a (UDS) of (M),)-class ({ M, }-class).

3.5.3. Differentiable ultradistribution semigroups.

DEFINITION 3.5.20. Suppose G is a (UDS) of *-class and a € (0,5]. Then
it is said that G is an (infinitely) differentiable ultradistribution semigroup (of *-
class), resp. an analytic ultradistribution semigroup of angle « (and of *-class) iff
the mapping t — G(6;) € L(E), t > 0 is (infinitely) differentiable, resp. iff the
mapping t — G(d;) € L(E), t > 0 can be analytically extended to the sector X,,.

Let G be a (DS), resp., a (UDS) of x-class generated by A and let the mapping

t— G(0;) € L(E), t > 0 be continuous. Then (G(d;))s>0 is a semigroup [252, 226]
and this implies that there exists wy € [—00,00) such that wy = lim;_ %t(ét)”.
The asymptotic behavior of (G(d;))i>0 in a neighborhood of zero is quite com-

plicated. For instance, Da Prato and Mosco [86, p.575] constructed an example
s

of a densely defined operator A generating an analytic (DS) G of angle § which

satisfies 31 < [|G(6,)]] < (2+ 225)Y/2,t > 0. Notice also that A generates an

ezt
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exponentially bounded, analytic once integrated semigroup of angle 7 and that A
cannot be the generator of a Cy-semigroup.

Let G be a dense (DS), resp., a dense (UDS) of #-class in E. Then G* is a
dense (DS), resp., a dense (UDS) of *-class [252, 226] in E* and it can be simply
proved that (infinite) differentiability, resp. analyticity, of G, implies (infinite) dif-
ferentiability, resp. analyticity, of G*. In order to characterize spectral properties of
the infinitesimal generators of differentiable ultradistribution semigroups and their
relationship to differentiable convoluted semigroups, we need the following family
of kernels [63]. Since (M) satisfies (M.1), (M.2) and (M.3’), one can define, for
every | > 0, the next entire function w;(\) := H;ozl(l + %)7 A € C. Then it is
clear that:

IIA IIx
| (A supH‘lnL Huksup(ﬂwb Re\ >

Np 1mp keN P

Hence, |w;(A)| > eM(AD Re X > 0. It is also worth noting that, for every a € (0, %),
pe€Npand A € ¥z ,,, we have |1+ %\ > lliﬂ“;’\‘ > (1“&;:) HAL Hence,

(274) wi(A)] = MUAHan ™IV -y e (0,7/2), 1> 0, A € Sz 4.

Put now K;(t) :== L~ ( )\))( ), t > 0,1>0. Then, for every [ > 0, 0 € supp K]
and K is an infinitely dlfferentlable function in ¢ > 0.

PROPOSITION 3.5.21. Suppose A is a closed linear operator and there exists
an exponential ultradistribution fundamental solution of x-class for A. Then there
exists k > 0 such that, for every compact set K C [0,00) and for every | > k, there
exists hy x > 0, in the Beurling case, resp., for every compact set K C [0,00) and
for everyl > 0, there exists hy x > 0, in the Roumieu case, such that A generates an
exponentially bounded, K;-convoluted semigroup (Sk,(t))t>0 Such that the mapping

t— Sk, (t), t > 0 is infinitely differentiable and that  sup l LS H 475K, ( )H < 00.
teK, peNp

PrOOF. Put, for some a > 0 and [ > 0, in the Beurling case, resp., for every
I > 0, in the Roumieu case:

a+io00

1 .
Sk, (t)x =: 57 / ME (VMR :A)zd\, € FE, t>0
i
and notice that
a-+1ioo
iy (t) = L / MNP (MNR(A:A)dA, t>0, peN
a7 = o : Aan =0 e

The proof immediately follows from the previous equality and a simple computa-
tion. O

THEOREM 3.5.22. Let A be a closed linear operator. Suppose that A generates
a dense differentiable (UDS) G of *-class. Then there exists h > 0 such that, for
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every o > 0, there exist C, > 0 and M, > 0, in the Beurling case, resp. for every
h >0 and o > 0, there exist C, > 0 and M, > 0 in the Roumieu case, such that
(200) holds and that
(275) [ROA:A)|| < MueMBAD X e, resp.,
(276) [R(A:A)| < gheM<h\*l AET,.
Specifically, G is an (EUDS) of x-class.

ProOOF. We will prove the assertion in the Beurling case and remark the minor
changes in the Roumieu case. Suppose € € (0,1), 1p € D) (1) = 1,0 < t < %,

() =0,t>1and (t) =0, t < —1. Set ¥ (t) := (L), t € R. By the proof of
implication (II) = (III) of [307, Theorem 2.3.1], it follows that

(277) (A= A)G(e My (t) =T+ G(e MyL(t), AeC.
Since the set R(G) is dense in E, we have G (e . (t))x = fs/z e MYL(t) G(6;)x dt

for all z € E and A € C (cf. [27, Remarks, p.416] and [226]). Then the partial
integration gives that G(e ™ y.(t))z = ¢ 55/2 e ML (YL(t) G(6y)x) dt for all z € E
and A € C ~\ {0}. This implies

1 —tRe A
€ sup e M,
|| h |)‘| 2 s<t<e -

(278) |G Myl (t

with M. = sup |4 (4.(t)G(6))||. Define &, by

Le<t<e
. :={A€C:A#0, ReA<0, In|A| > —cRe A +In(cM,)}
U{A€C:A%#0, ReA>0, In|A[ > —£ReA+In(eM.)}.
Then ||G(e L(t))|| < 3. A € ., and as in the proof of [27, Theorem 3], one gets
®. C p(A) and
(279) IRO:A)|| < 2|Gle M)l A € Pe.

By the continuity of G, it follows that there exist A’ > 0 and C' > 0, independent
of € > 0, such that:

(280)  [IG(e™pe(t)] < Clle™ We(t)llas, 2n,0,1] = Clle™ e ()l ns, 200 15 -

In the Roumieu case, the previous estimate holds for every A’ > 0 and a corre-
sponding Cj,, > 0. By (279)—(280) and the inequality [307, (2.3.9), Theorem 2.3.1,
p. 170], we reveal that, for every A € ®.:

(281) [[R(A:A)|| < 2C|le My (¢ O, 2n (5.6 < 20”¢E||Mp,h’,[%,5]eM(%)_%sRCA'

With (281) in view, one obtains that there are an A’ > 0 and a constant M. > 0 (in
the Roumieu case, such a constant M/ also depends on ') such that [|[R(A:A)|| <
MéeM(%)(l +[A]), A € ®.. Especially, with € = 1, one yields that {A € C: Re\ >
max(1,4|In(2M;,2)[)} € p(A) and Theorem 3. 5 14 yields that G is an (EUDS).
Put a. := max(1, M) Let N. > e59/2tn(EMo)l and let b > #. Then h

| >
| >
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is independent of £ € (0, 1) and there exists an appropriate constant M/ > 0 such
that the set

A, = {/\ € C:ReX<ajj, Red > f%1n|Im)\|+élnNE}U{)\ €C:ReX> a1/2}

belongs to p(A) and that [|[R(\: A)|| < M/eMBA X € A_. In the case o > 1,
(275) follows with ¢ = %, W= ay, Co = élnNe, M, = M, and the above
chosen h; the case o € (0,1) is completely regardless and this ends the proof of
theorem. O

Let a >0, b € (0,1) and set K, (t) := E‘l(e_“)‘b)(t), t >0, where 1° = 1.

EXAMPLE 3.5.23. (i) Suppose M, = p!°, s € (1,2), E := LP(R), 1 < p < oo,
D(A):={f € E: (z+iz?)f(z) € E} and Af(z) := (z+iz?)f(x), z € R, f € D(A).
Set § := % Then A generates a global K, s-convoluted semigroup since, for every
T > 0, A generates a K; s-convoluted semigroup on [0,7). To see this, suppose

M(X) < CoJAM*, A € C, 7 € (0,00) and a > 0 fulfills 7 < <2072 Tt is checked

at once that there exists § > 0 such that Af, 5, C p(A) and that the resolvent
of A is bounded on Af, 5, where A}, 5, = {\ € C: Re\ > > M(a)) + B}. Put

[':= 0A], 5, and define, for every f € E, r € Rand t € [0, ch(iﬂf)):

eAth‘;
(Ss-0N@) = 5 [ o M @)
T

. 5 s
Since |e’>‘ } < e cos(8m/2)[Al , ReA > 0 and

)¢ oS 5 1/s\\(1/S4_ e 5

|6>\t A |<6’8t61\/[(a/\)t cos(0m/2)|\| ge,@teCsa A7/ St—cos(d7/2)|A]| ,

for all A € T, one can straightforwardly verify that (Ss(t)):cqo,r) is a local K s-
convoluted semigroup generated by A. Notice that the mapping ¢ — S5, (¢), t €

[0, C(g(if//f)) is infinitely differentiable and that

dP

1 APeM—A cos(6m/2)
S5 (OF() = 272_/mdm.), feE telo, 7)

C’Sal/s

This implies that A generates a global non-exponentially bounded K; s-convoluted
semigroup (S5(t))+>0 that is infinitely differentiable in the uniform operator topol-
ogy for t > 0. Furthermore, for every 7 > 0, there exists h, > 0 such that

SUP4e(0,7), peNo M || S )|| < 00. On the other hand, it is obvious that A gener-
ates a (UDS) G of #-class which is given by (G(¢) f)(z) = 5= & % d\f(z),

peD* feE xeR Lett>0, fe Fand g € E. By the Paley-Wiener theorem
and the Cauchy theorem, it follows that (G(p)f)(z) = ¢(z + iz?)f(z), ¢ € D,
feE, xecRand G(&)f = g iff @) f(2) = g(a), z € R. Hence, G(8;) ¢ L(E)
and G is not differentiable.

(ii) Let E and A be as in examples 2.8.3 and 3.5.15. Then {A € C: Re X > 0}
C p(A) and [[R(A:A)|| < CY 2, % < CeMUAD Re X > 0, for some C > 0 and
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[>0. Let (G(p)f)(t) = [5 ¢t —s)f(s)ds, ¢ € DM), f € B, t € [0,1]. Then G is
a non-dense (EUDS) generated by A and G(d;) =0, t > 1. Suppose now t € (0,1).
Then it can be simply verified that, for every s € [0,1] and f € D(G(¢)),

\

0, 0<s
1>s>t

f(S - t>7
In particular, G(¢;) ¢ L(E) and G is not differentiable. Furthermore, for every

h > 0, there exists [ > [ such that A generates a bounded Kj-convoluted semigroup
(Sk,(t))t>0 that is infinitely differentiable in ¢ > 0 and satisfies

hP dp
sup

pENy, teK M

(G(3:)f)(s) = {

t)” < 00

for every compact set K C [0, 00). This implies that relations between differentiable
convoluted semigroups and differentiable (UDS)’s are more complicated than it
looks at first sight. Further on, the previous example also shows that the existence
of a number h > 0 satisfying that, for every o > 0, there exist C, > 0 and M, >0
such that (200) and (276) hold, is not sufficient for the generation of differentiable
(UDS)’s. Indeed, put hy(t) = e~ fot eMf(s)ds, f € E, A € C. Then we know
that R(A: A)f = hy if Re A > 0. Tt is clear that, for every ¢t € [0,1] and n € N with
n > 2:

dn dn dn 1-k
(282)  —oha(t) = o f(0) + Z e w O+ ()"
dt dt
Let ¢ > 0 and let C, > 0 be arbitrarily chosen. Then the supposition Re A >
—oln|Im A + C, implies
t

ha ()] < / A3 ]| Fll o) < € BN oo
0

3fc°|1m)\\a||f\|Loc[0,1], t€[0,1].
By (282), the previous inequality and logarithmic convexity, one gets that

L d—h,\(-)H < | Tm A DB |, neN, n>2.
Le[0,1]

Since Ahx(t) + hA\(t) = f(t), t € [0,1] and hx(0) = 0, one has that ||h)||ge[0,1] <
(1+e %A Im A|?) || f|| Lo [0,1]- Keeping in mind (283), we obtain that there exists
M, > 0 such that, for every A € C with ReA < 0 and ReA > —oln|Im | + Cy,
the following holds: |[R(A : A)|| < M,eM(+DIN) Therefore, (200) and (276)
hold but A does not generate a dlfferentlable (UDS), as claimed. Notice also that,
in this example, we have p(A) = C. Suppose now that E = S»! and define
A as above. Then ||R(-: A)|| can be estimated similarly and there exists { > 0
such that A generates a global bounded K;-convoluted semigroups that is infinitely
differentiable for ¢ > 0.

(283)
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THEOREM 3.5.24. Suppose A generates a dense (UDS) G of x-class. Then the
following assertions hold.

(i) Suppose h > 0, G is infinitely differentiable and the mapping t — G(d;),
t > 0 satisfies that, for every compact set K C (0, 00),

hP || dP
GO atynie = sup  —|5=G(6)|| < o0.
teK, peNg
Then
Jw =030 >0Vo >03C,;, >03M,p >0, inthe Beurling case, resp.,
Jw = 0Vh >0V >03C,; >03M,p >0, in the Roumieu case,

such that

Yon = {)\GC:Re)\gw, ReA}Caﬁ_gM(H!:‘g/h)}

U{AeC:ReX>w} Cp(A)

and

(284)  [|R(A: A)|| < My FITEMGm) |\ e X, . in the Beurling case,
resp.,

(285) [[R(A:A)] < Uhh'e M(EH+3 M(Hrl‘/h) A€ Y, p, in the Roumieu case.

Herein H designates the constant appearing in the formulation of (M.2).

(ii) G is infinitely differentiable and satisfies ||G(0;)|nrs,,nx < 00 for every
compact set K C (0,00) and for every h > 0 iff there exist w > 0, k >0 and b’ > 0
such that, for every o > 0, there exist Cy > 0 and M, > 0, in the Beurling case,
resp., there exist w > 0 and k > 0 such that, for every h' > 0 and o > 0, there exist
Cy >0 and My > 0, in the Roumieu case, such that

Eok ={A€C:ReA<w, ReA>Cr —aM(kA)}U{A€C:ReX 2w} C p(A)
and
[ROA:A)|| < MyeM( WD N e, k, in the Beurling case, resp.,
IROA:A)| < M, h/eM(h AN € E,p, in the Roumieu case.

Proor. We will employ the terminology given in the proof of Theorem 3.5.22.
To prove (i), notice that the partial integration implies that, for every n € Ny,

O | AR
e/2
< |>\1|n/€_Re,\tzn:(?>€il+l|wz+l) (t/e |Hd" - 5t)dtH
i=0

e/2
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1 -
— Re At
< —— sup e~ E P 171 H H M4
|>\|n s<t<e || HMZ,,E, 2 din— 2 L“[%,a] 1+1»

and since (M.2) is assumed

1 " M,_i||G(6:) E
gAHMlH'(/)”M 1 sup eReAtZ(@) ” (tHM h[2’]H’LM.

preil3:1 |)\|n s<t<e — 7 hn—i

By the logarithmic convexity

CRext = (M NGO s, 5 e s
AHM1||1ZJHMP7,7 1]|)\‘n £S<up e~ R MZ<>hn—z[2]H M,

1
1=0
M, (H +1/h)"

(286) < AHM,; G 191z, 1,13 1| G(8e) |1, 1 5 ] Sup e —ReAt,
3RUIRE
The validity of (286) for all n € Ny enables one to conclude that
(287)
— M
|G(e ML (1) < AHMye™ ™ FTH |y 13 G 60)Iag, . 54) Sup e T ReAt,
PRI

Suppose now that ReA < 0 and put M, := AHM1[|[¢]|as, 1 12 G (08) || a1, (5]
Then (287) implies that, for every A € C ~ {0} with ReA < 0 and ReX >

2 In o5 - M(H‘Hl/h), we have [|G(e ™ MyL(t))|| < 1 and A € p(A4). Argu-

ing as in the proof of Theorem 3.5.22, with ¢ = %7 one gets that there exist

w =0, Cyp > 0and M, > 0, in the Beurling case, resp., w > 0, Cy 5, > 0 and
My e > 0, in the Roumieu case, such that Y, C p(A) and that (284), resp.,
(285) holds, finishing the proof of (i).

The necessity in (ii) follows from (i) with h = 1. We will prove sufficiency by
the following modification of the proof of [28, Theorem 3]. Suppose h > 0 and (p,,)
isa regularization sequence in ’D* By the Paley—Wiener theorem, one can simply
prove that G(p)z = 5= fr SNR(N: A)xd\, ¢ € D§, x € E, where T', denotes
the upwards oriented boundary of Zo.k. Define the curves I'L, I'2 and I'? similarly
as in the proof of Theorem 3.2.19. Clearly,

1/n 1/n

— 1

Pn(A) = / eMnp(nt) dt = F / Mk p®) (nt)dt, A e C~ {0}, k € Ny, n e N.
0 0

This implies |p,(N\)| < (P\I) FElpllaz, 0,1, A € C~ {0}, k € No, h >0, neN.
Since this inequality holds for every k € Ny, one yields

—~ i VgaRS
(288) Pn (N < e Ipllag, oy, A€ CN {0}, h>0, neN.
On the other hand,
v 1 [, .
(289) ﬁG(dt * P )T = 57 /e RA:A)NPp,(NzdA, t >0, neN, pe N,

r's
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P
(290) lim d—G(ét * pp)x = G(0)x, t >0, p € Ny, z € R(G),

n—oo dtP

uniformly on every compact of (0,00). Then (288)—(290) and [51, Lemma 2.1.3]
together imply the existence of constants C,, > 0 and ny,h > 0 so that:

hP || dP
| i
[ A MW MO 3| 4], 10,11
riurs
<th<em+ / eatM(zcA|)+3(§;+1)M(k|x)+;(’;;+1)M(k|x|)d>\|)
riurs

SCg,h(e“t+ / e(3+W—at)M(k|>\)|d)\> < o0,

riurs

M,eCe
2

< el 10,1

for every ¢ > %(3 + ?’h;ilfhl) By the preceding estimate, (290), the arbitrariness
of 0 > 0, and the denseness of R(G) in E, we infer that the mapping ¢t — G(d;),
t > 0 is infinitely differentiable and that, for every compact subset K of (0, 00) and
h >0, we have ||G(d¢)||n,.n,x < 00, as required. O

REMARK 3.5.25. Suppose s > 1, M, = p!* and there exist ¢ > 0, £ > 0,
M >0, w > 0 and n € N such that =, C p(A) and that |[R(A: A)|| < M(1+
A", A € Z5 k. Then, by [28, Theorem 5] and Remark 3.2.20(i), A generates a
(DS) of class A'/*. Scalar type operators generating Gevrey ultradifferentiable Co-
semigroups (cf. [299, Theorem 5.1]) as well as generators of Crandall-Pazy class of
Co-semigroups (cf. [165, Definition 5.4, Theorem 5.5] and [117]) and their adjoints
can be used for the construction of (DS)’s of A'/* class.

THEOREM 3.5.26. Let A generate a dense (EUDS) G of x-class and a € (0, 5.

(i) (Real analyticity) Suppose that there exist w > 0 and h > 0, such that for
every € € (0,1), there exist C. > 0 and M. > 0, in the Beurling case, resp., there
exists w > 0 such that, for every h > 0 and e € (0, 1), there exist Ce >0 and M, j, >0,
in the Roumieu case, so that: T. :={\ € C:ReA+ C.|Im\| > w} C p(A) and

[ROA:A)|| < MoeMBAD sl ReAl X e T resp.,
(291) IR(A: A)|| < M, jeMPIAD el ReAl -\ e,
Then G is infinitely differentiable and the mapping t — G(0;), t > 0 is real analytic.

(ii) (Analyticity) Suppose that the following conditions hold.

(ii.1) For every v € (0,c), there exist M, > 0 and wy, > 0 such that w, +
Yzyy C p(A).

(ii.2) For every v € (0,a), there exist hyy > 0 and C, > 0, resp., for every
h > 0, there exists Cy > 0 such that:

RO A)|| < CLeMPAAD - resp. IRV A)|| < Chpe™MPM N ew, + DI SNUNS
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Then G is an analytic (EUDS) of angle arctan(sin o).

ProOOF. We will give the proof of theorem in the Beurling case. The differen-
tiability in (i) has been already proven. Let us prove that the mapping t — G(d;),
t > 0 is real analytic. By the proof of scalar valued version of the Pringsheim
theorem, it is enough to show that for every compact set K C (0,00), there ex-
ists h > 0 such that sup,cx peNy T || e 5t>” < o00. Denote by I'. the upwards
oriented boundary of T.. Thanks to the Paleyf\Niener theorem and the proof of
Theorem 3.5.24(ii), it follows that £2G(; * pp)z = 5= Jr. eMR(N: AN, (N)x dA,
t>0,neN pe Ny z € R(G) and that (290) holds. Given a compact set
K C (0,00), one can find € > 0 and h > 0 such that inf K > 2(e + hHC ).

The next computation involves [51, Lemma 2.1.3], the denseness of R(G) in £
and (288):

< sup—

o) neNo H dtr

t

o el
M: [ (y—Cus)t M(hly—Custis]) jelv—Casl p b
< ||P||Mp,1,[0,1]7r7), e e c e SIhP|ly — Ces + is|Pds

1 .
< ||p||Mp,1,[0,1] ;eﬂf(2h’y)Mse(lnf K+sup K)vy

o0

> /e—CEsinf KeM(Zh(1+CE)s)eecgseh(1+Cs)st

0

1 . .
M (inf K f K+s K
< ||p||Mp’1’[0’1];e (inf K~) Mse(ln +sup K)~

oo
% /efCasianeM(infK(1+Ca)s)e€CEse(i"f2K —e)C,

Sds < 00,

0

for all p € Ny and t € K. The proof of (i) follows easily from the previous inequality.

Let us prove (ii). By Theorem 3.5. 24(ii) we have that G is infinitely dif-
ferentiable and that C‘Iiﬂ,G( ¢) = lim, 00 dth(ét * pp), t > 0, where (p,) is a
regularizing sequence in D™»). Suppose v € (0,a), to > 0 and ¢t € C satisfies
|t —to| < arctan(sin-y). Thanks to the argumentation given in the proof of Theo-
rem 3.5.24(ii), we infer that the Neumann series Y7 (t — to)? (dﬂ, G(or)),_,, i
absolutely convergent. Indeed, let I',, be the boundary of 1 + w,y + Xz 4., oriented
in such a way that Im X\ increases along I',, and let F,ly ={x el :ImA <0}
and T2 := {A € 'y : ImA > 0}. Then I'} = {1 +w, +e G5 : s > 0},
2 ={l1+w, + ¢35 1 s > 0}, and the proof of Theorem 3.5.24(ii) combined
with [51, Lemma 2.1.3] implies that:

Z; it — to|P %(%G((m)ri
P

(GG p)

nGNo r=to
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oo
1
< llellay 101 Y |t—toPFp,/eRe””eM(hWW)|>\|p|d>\|
p=0 :

Iy

1 o
S ;||p||M,,,1,[071]€M(2h“f(1+ ) glt—tol (14w

o0
« /6(w7+5COS(%JF’Y))tOeM(Qh"’S)e‘t_to‘Sds < 0.
0
This completes the proof of theorem. O

The subsequent proposition clarifies some interesting properties of exponen-
tially bounded, analytic K, ;-convoluted semigroups. Of importance is to stress
that (cf. the estimate (274)) the assertion (ii) cannot be reformulated in the case
of exponentially bounded, analytic K;-convoluted semigroups.

PROPOSITION 3.5.27. Suppose a € (0, 5], a > 0 and b > 0.
(i) Then A generates an exponentially bounded, analytic K, p-convoluted semi-

group of angle « iff for every v € (0, ), there exist wy, > 0 and M, > 0 such that
the following conditions are satisfied:

(202) Wy + D54y € plA),

_ —a|A|? cos(barg(N)) .
. X ) 5+
(293) sup  [|(A = wy)e ROA:A)|| < My, AEwy+ Sz,
)\€w7+2%+7

lim e~ R(\:A)z =0, z € E, if D(A) # E.

A——+o0
(ii) If, additionally,
(294) b(m/2+a) >7/2,

then there does not exist a closed linear operator A which generates an exponentially
bounded, analytic K, 1-convoluted semigroup of angle c.

PROOF. The proof of (i) follows immediately from the general characterization
of exponentially bounded, analytic convoluted C-semigroups. To prove (ii), suppose
to the contrary that (294) holds and that a closed, linear operator A generates an
exponentially bounded, analytic K, j-convoluted semigroup of angle o. By (294),
one gets that there exist € € (0,1) and 7 € (0, ) such that b(5 +v —¢) > § +e.
The first part of proposition yields that there exist M, > 0 and w, > 0 such that
(292) and (293) hold. Set A, := A —w,. Thanks to the choice of v and ¢, we have
that there exists a number r > 0 such that, for every A € C satisfying |\| > r and

arg(A) € (5 +7— 5,5 +7)

(295) ||R()\ . A’Y)H < ]|\§'|Yea|/\+“’v|b cos(b(5+v—¢)) < J|\i’|vea|)\+w_,|b sinE.
An application of [249, Lemma 1.5] gives n(A) < 1. Denote by AL’ the part of A,
in the Banach space F' = D(A); then A also satisfies (295). In particular, (295)
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implies that there exists sufficiently large M"/v such that

1

|R(X: e_i(%+7_%)A5) = Hei(%Jr'Y_i)R()\ei(%Jr'y_i) : Af;)HF < N

A € (M!,00). Hence, |R(A: e "D AN |p < 55, A > M/, and the Hille-
Yosida theorem implies that the operator e_i(%'*‘"’_%)Af generates a Cy-semigroup
(TF(t))¢0 in the Banach space F such that |TF(t)||p < €M+, t > 0. By [14,
Proposition 4.1.3, p.248], one gets that limy_o AR(A : e G T D ANz = & for
all z € F. On the other hand, (295) yields that the above limit equals zero for all
x € F and the contradiction is obvious. O

Suppose (M,,) satisfies (M.1), (M.2) and (M.3"). Put L, := M,}/p, p=0. Itis
worth noting that the proof of Theorem 3.5.24 enables one to establish the following
characterization of distribution semigroups of class Cp; herein, a differentiable (DS)
G is said to be of class Cy, iff for every compact set K C (0, 00) and for every h > 0:

SUP¢e K, peNg H%%G(MH R

THEOREM 3.5.28. Let A be a closed linear operator and let L, = M;/p, p € Np.
Then A generates a (DS) of class Cr, iff the following conditions hold:

(296) Jw>03ImeNI, k>0Ve >03C,, My >0
such that

(297) 2. € p(A),

(298) [[R(A:A)]| € My(14 |A])™, ReA > w,

299 RO:A)|| < MyeMW A N e =k Rel < w.
( o,w

PRrROOF. Suppose first that A is densely defined. Let A be the generator of
a (DS) G of class C. Then there exists n € N such that A generates an expo-
nentially bounded n-times integrated semigroup (S, (t))i>0 such that G(p)z =
(=)™ [77 o™ () S, (t)zdt, ¢ € D, x € E and that the mapping ¢ — Sy(%),
t > 0 is infinitely differentiable. Let € > 0, ¢ € Do) 4(t) = 1,0 < t < 1,
V() =0, ¢t =1, ¢() =0, ¢t < —1and ¢.(t) = ¢(L), t € R. Then the proof
of Theorem 3.5.24(i) implies that, for every A € C ~ {0} with ReA < 0 and

ReA > —1lngd— — 1M(5AL), we have [G(e MyL(t)] < § and A € p(A);

analogically, for every A € C with ReA > 0 and Re A > —% In QMIE - — gM(%),

we have ||G(e"*.(t))|| < 3 and A € p(A). The necessity is a consequence of our
previous analyses. To prove the converse, notice that A generates an (EDS) G and

that G(¢)r = 5= wortoo SAR(A:A)xd\, x € E, ¢ € D, where wy > w. Let

27t Jwo—ioco
(pn) be a regularizing sequence in D(()M”) and let ', designate the upwards oriented
frontier of 2 . The Paley—~Wiener theorem for ultradifferentiable functions implies
that G(6; % pn)r = 555 Jr. MPu(MR(A: A)zd), x € E, t > 0. Now one can repeat
verbatim the arguments given in the proof of sufficiency in Theorem 3.5.24(ii) to
end the proof in the case of densely defined operators. Suppose now that A is
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not densely defined. If A generates a (DS) G of class Cf, then Ay generates a

dense (DS) G| of class Cp, in the Banach space F' = A™(A) | The necessity follows
from an application of [249, Proposition 2.1(iii)]. Let (296)—(299) hold. Then A
generates an (EDS) G and, by [249, Proposition 2.1(iii)] and the first part of the
proof, we have that Ajr generates a dense (DS) G|r of class C, in the Banach
space F. In particular, G| is differentiable and this, in turn, implies that G must
be differentiable. The remnant of the proof follows as in the case of densely defined
operators. U

COROLLARY 3.5.29. (i) Let A be a closed linear operator and let L, = p!*/?,
s>1, peNg. Then A generates a (DS) of class Cr, iff there exist w > 0, m € N,
h' >0 and k > 0 such that, for every o > 0, there exist Cy > 0 and M, > 0 such
that:

(300) Ewk € p(A),  where
25wk ={A€C:ReA<w,ReX>C, —gk|A['*} U {A€C:ReX>uw},
(301) [RO:A)|| < My (14 |A)™, ReA > w,
302 RO:A)|| < MMM Ne=s . Red < w.
( o,w,k

(i) Let @« > 0, L, = M;/p, p € Ny and let A be the generator of an a-times
integrated semigroup (Sqo(t))i>0. Then (So(t))e=0 is of class Cr, iff (296)—(299)
hold.

(ii) Let « > 0, s > 1, L, = pl*/P. p € Ny and let A be the generator of an
a-times integrated semigroup (Se(t))i>o0. Then (So(t))i>o0 is of class Cy iff there
exist w = 0, b’ > 0 and k > 0 such that, for every o > 0, there exist C, > 0 and
M, >0 such that (300)—(302) hold.

In the following example, we use the notion and notation given in [14, Chapter
8].

ExAaMPLE 3.5.30. (i) Let s > 1, k > 0, p € [1,00), m > 0, p € [0,1], r > 0,
a € S} satisfies (H,),

1 1 —r— 1
(303) n,_,’(%) <1,

2 p r
and assume that, for every o > 0, there exists C, > 0 such that a(R™) NES ok = 0.
Let N, be the smallest integer

{> nlf - 4j(Eme), p> 1,
> 3 (58), p=1

By [14, Proposition 8.3.1, Theorem 8.3.6] and Corollary 3.5.29, the operator
Op, (a) generates an N,-times integrated semigroup on LP(R") which is of class C',
with L, = p!/P. Herein we would like to note that the class C'¥ is more appropriate
to deal with; for example, consider the elliptic polynomial a(¢) = —|¢|? + i|¢[4,
¢ € R". Then the operator Opp(a) generates an a-times integrated semigroup

(S(t))i=0 on LP(R™) which is of class C* with L, = p!?/?; by Corollary 3.5.29,
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(S(t))t=0 is not of class Cp. It is of concern to accent that: —Op,(a) generates
a dense (UDS) of (p!°)-class iff s € (1,2], —Op,(a) generates a dense (UDS) of
{p!*}-class iff s € (1,2) and —Op,(a) does not generate a (DS). Finally, let us
mention that LP-realizations of some special cases of pseudodifferential operators
associated to the linearized Benjamin—-Ono-Burgers equation [110, 452] likewise
generate p-hypoanalytic integrated (C-)semigroups.

(ii) Let s > 1, k > 0, p € [1,00), m > 0, p € [0,1], r > 0, a € S} satisfies
(H,), (303) holds, E = LP(R") or E = Cu(R™) (in the last case, we assume
p = 00), and A = Opg(a). If a(-) is an elliptic polynomial of order m, then
m = r, p =1 and (303) holds. Assume first that there exist a sequence (M)
satisfying (M.1), (M.2), (M.3’) and appropriate constants [ > 1, { > 0 and n € R
such that a(R™) N Ay ¢, = 0. By [14, Lemma 8.2.1, Proposition 8.2.6, the proof of
Lemma 8.2.8], it follows that there exists ' > n such that || R(- : A)]| is polynomially
bounded on A;¢ .. This implies that A generates an ultradistribution semigroup
of (M,)-class. If a(R™) N (P,,cr U Bq) = 0 for some v € (0,1), C" € (0,1] and
d € (0,1], then Theorem 1.4.15 can be applied with a convenable chosen a > —1;
the typical example is the operator A = €A% —ipA +¢ (£ >0, p € R~ {0}, ¢ <0).

REMARK 3.5.31. (i) The sufficient condition for the generation of dense (C-
DS)’s of class Cp, can be derived similarly [234]. Concerning the proof of The-
orem 3.5.28, we also perceive the following interesting phenomenon. In order to
deform the path of integration from the straight line connecting the points wg —ioco

and wy + 700 into the upwards oriented frontier of the region =Z* . we essentially

o,w?
utilize the regularizing sequence (p,) in the space D((JM” ). Under the assumption

(296)—(299), A generates an exponentially bounded (m + 2)-times integrated semi-
group (Sm+2(t))i>0 given by Spi2(t) = 271” L:o-:z;o e Iif,f‘fz) d\, t > 0. On the

other hand, the proof of Theorem 3.5.24(ii) implies that the improper integral

ﬁfr At };,f‘f;) d\ =: S5, ,,(t) converges for every ¢ > (3 + %) Further-

g

more, for every compact set K C (%(3 + ?’2—},2/),00) and for every h > 0, one
has sup;e k. pen, M H;; SO Lo(t H < oo. Unfortunately, it is not clear whether
89 o(t) = Sma(t) for t > 1 (34 3,

(ii) Let A generate a dense mﬁmtely differentiable (UDS) G and let for every
compact set K C (0,00) there exists hy > 0 such that ||G(6;)||as,,hp,x < 00. By
the proof of Theorem 3.5.24, it follows that there exist w > 0 and A’ > 0 such that,
for every o > 0, there exist C, > 0, M, > 0 and k, > 0 in the Beurling case, resp.,
there exists w > 0 such that, for every A’ > 0 and 0’ > 0, there exist C, > 0, k, >0
and M, ;s > 0, in the Roumieu case, such that Zks C p(A) and:

IROA:A)| < WMk M) X € E,4,, in the Beurling case, resp.,

o)

IR(A:A)] < M, h/eM(%‘HEM(k“')‘D, A € Eok,, in the Roumieu case.

The proof of Theorem 3.5.24(ii) and the additional assumption limsup,_, . ok, =
oo obviously imply that, for every compact set K C (0,00), there exists hx > 0
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such that ||G(6¢)las,,ne,x < 00. It is quite questionable whether this holds in
general.

The previous consideration clearly implies that the problem of finding a satis-
factory Hille-Yosida’s type theorem for differentiable ultradistribution semigroups
is quite non-trivial. An additional difficulty is that the use of structural theorems
for operator-valued ultradistributions does not take any effect.

Differential and analytical properties of hyperfunction fundamental solutions
can be found in the papers of Kochubei [205] and Ouchi [353]. Finally, we would
like to propose the following questions.

QUESTIONS. 1. Suppose a € (0, %], v € (0,a) and A generates an analytic
(DS) of angle a.. Are there M, > 0, w, > 0 and n, € N such that (205) holds?

2. Suppose that G is a non-dense differentiable (UDS) of x-class. Must G be
exponential (infinitely differentiable)?

3. Suppose A generates a dense (EUDS) G of #-class, a € (0, %] and the
assumptions (i) and (ii) quoted in the formulation of Theorem 3.5.26(ii) hold. Does
there exist 8 € (arctan(sin o), ] such that G is an analytic (UDS) of angle 57

3.5.4. Hyperfunction spaces, semigroups and sines. The basic facts
about Sato’s hyperfunctions and Fourier hyperfunctions can be found in the mono-
graph of Kaneko [178] (see also [69]-[72], [157]-[170], [183]-[184], [207], [210]
and [379]). Let Q be an open set in C containing an open set I C R as a closed
subset and let O(2) be the space of E—valued holomorphic functions on § en-
dowed with the topology of uniform convergence on compact subsets of 2. Then
0O(Q) is an (FS) space, and, as a closed subspace of C*°(2), the space O() is
nuclear. The space of EF—valued hyperfunctions on I is defined as B(I, E) :=
OQN1,E)/O(, E). A representative of f = [f(z)] € B(I,E), f € O\ 1, E)
is called a defining function of f. The space of hyperfunctions supported by a
compact set K C I with values in F is denoted by I'x (I, B(E)) =: B(K,E). It
is the space of continuous linear mappings from A(K) into E, where A(K) is
the space of analytic functions in neighborhoods of K endowed with the uniform
convergence on compact neighborhoods of K (see [206, p.107]). Since A(K) is
a (DFS) space, we have that B(K, E) is an (FS) space; let us also mention that
A(K) is an (LF) space. The space of all scalar valued hyperfunctions with the
support in [a,00), where a € R, is defined by B, ) := O(C \ [a,00))/O(C). The
space of all E—valued hyperfunctions with the support contained in [a,c0) is de-
fined similarly. By By(R, E) is denoted the space which consists of all E—valued
hyperfunctions supported by [0,00). Recall, if f € B(R,E) and supp f C {a},
then f = >0 6 (- — a)z,, v, € E, where lim, o (n!||z,[|)/" = 0. For further
information related to hyperfunction spaces, we refer to [178]; the convolution of
operator valued hyperfunctions in the following definition is taken in the sense of
205).

DEFINITION 3.5.32. [353] Suppose A is a closed linear operator. By a hyper-
function fundamental solution for A we mean an element G € By(R, L(E, [D(A)]))
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satisfying G+ P = 6 ® Ijp(ay) and P* G = 6 ® Ip, where P =0 @ A-d0®1 €
Bo(R, L([D(A)], E)).

Notice that there exists at most one hyperfunction fundamental solution for a
closed linear operator A.

THEOREM 3.5.33. [354] Suppose A is a closed linear operator. Then there
exists a hyperfunction fundamental solution for A iff for every ¢ € (0,1), there
exist C. > 0 and M. > 0 so that Q. c. == {A € C: ReX > e[|+ C.} C p(A) and
[ROA:A)|| < MeefM X e Q...

PROPOSITION 3.5.34. Let K € L{ ([0,7)), for some 0 < 7 < 1, and let A
generate a K -convoluted semigroup (Sk (t))tcjo,r)- If K can be extended to a func-
tion K1 in Li ([0,00)) which satisfies (P1) so that its Laplace transform has the
same estimates as in Theorem 2.7.1, then there exists a hyperfunction fundamental
solution for A.

Relations between hyperfunction semigroups and C-regularized semigroups are
complicated. The following instructive example shows that there exists a densely
defined operator A on the Hardy space H?(C ) which has the following properties:

(i) There exists a hyperfunction fundamental solution for A.
(ii) A is not a subgenerator of a local integrated C-semigroup.

This example is essentially due to Beals [37].
EXAMPLE 3.5.35. Let 9(t) = 1n(t+1) t >0, ¥(0) = 1. Then ¢ is nonnegative,
¥()

continuous, concave function on [0,00) with ¥ (t) — oo, == — 0, t — oo and

foc w(t) dt = oco. It is clear that, for every € > 0, there exists C. > 0 such that
et + CE > (t), t 2 0. Let A be a closed, densely defined linear operator acting on
E := H?(Cy) such that:

Q) == {A € C:ReA > o(|ImAD} C p(4),  [R(A:A)] < X e Q).

M
1+ Re)’
and that for all 7 € (0, 00) there does not exist a solution of the following abstract
Cauchy problem

u € C([0,7): [D(A)])NCL(0,7) : E),

u'(t) = Au(t), t € (0,7),

u(0) =z,
unless © = 0. The existence of such an operator is proved in [37, Theorem 2’]. Since
p(A) # 0, one gets that D (A) is dense in E. Suppose that A is a subgenerator

of a local k-times integrated C-semigroup on [0,7), for some injective operator
C e L(E), keNand 7 € (0,00). Then the problem

ue C([0,7): [D(A)])NCL0,7) : E),

u'(t) = Au(t), t € [0,7),

u(0) =z,
has a unique solution for all x € C(D(A**1)). It follows C(D(AF1)) = {0} and
this is a contradiction. On the other hand, it is easy to see that Q. C Q, C p(A4).
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The growth rate of resolvent shows that there exists a hyperfunction fundamental
solution for A. It is clear that there exists an operator A which generates an entire
C-regularized group but not a hyperfunction semigroup.

DEFINITION 3.5.36. It is said that a closed linear operator A admits a hy-
perfunction fundamental sine solution if the operator A admits a hyperfunction
fundamental solution. The ultradistribution fundamental sine solution of x-class is
defined in the same manner; a closed linear operator A generates an ultradistribu-
tion sine of x-class iff the operator A generates a (UDS) of #-class.

Let remind us that Ks(t) = £~} (e’xs)(t), t>0.

THEOREM 3.5.37. [228] (i) Suppose that A admits an ultradistribution funda-

mental sine solution of the Beurling, resp., the Roumieu class. Then A generates

~ ‘ : 11
an exponentially bounded, analytic Ks-semigroup of angle 5, for all § € (53, 3),
resp., for all § € [5=,3).

(ii) Suppose that A admits a hyperfunction fundamental sine solution. Then A
generates an exponentially bounded, analytic K, o-semigroup of angle 7.

(iil) Let A admit an ultradistribution fundamental sine solution of (M,)-class,
resp., {Mp}-class. Then, for every 0 € [0,3), there exists an ultradistribution
fundamental solution of (M?)-class, resp., {M?2}-class for e*"A. Herein (M,)
satisfies (M.1), (M.2) and (M.3').

(iv) Suppose that A admits a hyperfunction fundamental sine solution. Then,
for every 6 € [0, 3), there exists an ultradistribution fundamental solution of {p!?}-

class for e*? A.

Proor. We will only give the proof of (i) in the Roumieu case. Let us fix v €

(0,%) and 6 € [5, 3). It is clear that there exists Cy > 0 with M(|A]) < Cy|A|V/,

A = 0. By the foregoing,
{A2:X€C, Re) = Cy(kA)Y* + Ck} C p(A), ie.,
{r2e2i9 >0, |0] < 7/2, reosh > Cok/*rt/s 4 C} C p(A).
Denote T' = {re'? : rcos@ = C,k'/*r'/* + Cy}. Then lim|\|so0, xer |arg(A)| = 3.

Therefore, there exist an w, > 0 and a suitable C;, > 0 so that w., + Yziy Cp(A)
and that

IR(A: A)|| < CreMEVIAD < G eCak TN\ e 4 IESI

The function g : wy + Xz 4, — C, g(A) := e”\é, A € wy + Xz 1, is analytic, where
19 = 1. Furthermore,

— 1 s s
lgOV)RA: )| < ckme@k” A2
(&

= Crexp (—|A\|° cos(darg(\)) + Csk/*[A[1/2¢)

—  C.EY/s|n[1/25_ SYIAI®
< Cprefsk "I cos(mO)AI" A€ wy + Uz
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The choice of § and arbitrariness of the number k£ > 0 in the Roumieu case, combin-
ing with Theorem 2.4.5, imply that A generates an exponentially bounded, analytic
Ks-semigroup of angle ~. O

For the properties of Laplace and Fourier hyperfunction fundamental solutions,
we recommend for the reader [166]-[167], [205] and [226].

EXAMPLE 3.5.38. Let C; :={2€ C:Imz > 0} and 1 < p < 0co. Suppose that
E := HP(C,). Let us recall that Beals constructed in the proof of [37, Theorem 2’]
an analytic function a; : C; — {z € C : |z| > 1} with the property that for every
€ > 0, there exists a region of the form Q. ¢ satisfying a;(C4) N Q. . = 0. Let
B = al Then B is a holomorphic function on C4 and for all € > 0 there exist C, >
0 and K. > 0so that B(Cy) C (Q2 ). Define (AF)(z) := B(2)F(z), Imz > 0,
D(A):={F € H?(Cy): AF € H?( (C+ }. Let £ € (0,1) be fixed and let &1 € (0,¢)
satisfy B(C,) C (le,csl)c~ Clearly, limy_o0, A€O, ., |arg(\)| = arccose; and
there exists a sufficiently large C. > 0 such that
Q.6 = {AeC:ReA>e[\[+C.} C Q. ., and d:= dist(9, ¢, 00, 5. ) >0.

This implies Q2 — C p(A) and [|[R(X\: A)|| <d7%, e Q% Therefore A admits a

hyperfunction fundamental sine solution and it can be eablly seen that A does not
admit an ultradistribution fundamental sine solution.

EXAMPLE 3.5.39. [226] (i) Suppose ¢ > 1,0 >0,¢c € R, M >0, k € N,
0(A) C 4., and |[RON:A)| < M1+ |AD5 N ¢ +11 ..

Let p be as in the formulation of Example 3.5.18(i). Then the operator (—1)"!p(A)
generates an ultradistribution sine of *-class provided M, = p!® and s € (1, ﬁ)

(ii) Let p be as in (i) and let A generate a (local) integrated cosine function.
Then the operator (—1)"T!p(A) generates an ultradistribution sine of *-class pro-

vided M, = p!® and s € (1, %)

(iii) Suppose ¢ € (0,1), 0 > 0,5 € R, 0(4) € £(C~{A\? : XA € I, ,¢}) and
|R(-: A)|| is polynomially bounded on the complement of {\? : X\ € Il , }. Let p
be as in (i). Then the operator (—1)""1p(A) generates an ultradistribution sine of
*-class provided M, = p!® and s € (1, H%)

3.6. Regularization of ultradistribution semigroups and sines

3.6.1. Regularization of Gevrey type ultradistribution semigroups.
In this subsection, we will always assume that (M,) is a sequence of positive real
numbers such that My = 1 and that (M.1) holds. Every employment of the condi-
tions (M.2), (M.3’) and (M.3) will be explicitly accented; the use of symbols A and
M is clear from the context.

Let remind us of the following notations. Given 6 € (0, 7] and d € (0, 1], denote
Yo = {)\ eC:\ 7é 0, |arg()\)| < 9}, By = {)\ eC: |)\| < d} and Qg,d = YoUDBy. By
I'p.q is denoted the upwards oriented boundary of €y 4. Further, || =sup{n € Z :
n < B}, [8] = inf{n € Z : B < n} and (M,)-ultralogarithmic region of type I,
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Ao g, is defined by Aq g = {A € C: ReX 2 aM(|ImA|) + 8}, a > 0, 8 € R,
I > 1. From now on, we assume that the boundary of the ultra-logarithmic region
Aq 8,1, denoted by I'y, is upwards oriented.

Notice that the class of ultradistribution sines can be introduced following the
approaches of Miana [312] and the author [222] for (almost-)distribution cosine
functions, or by means of convolution type equations as it has been done by Ko-
matsu [210]. The concepts presented in [210, 312] and [222] are not so easily
comparable in ultradistribution case.

The assertions (i), (iv) and (v) of the subsequent theorem can be attributed
to Straub [394]. Here we notice that the denseness of A is not used in the proofs
of Propositions 2.2, 2.5, 2.6 and 2.8 as well as Lemmas 2.7 and 2.10 of [394]
and that the assertion (v) extends [38, Lemma 1] and some estimates used in
the proof of [252, Lemma 5.4] (cf. also [20, Lemma II-1, Theorem II-3]). The
main problem in regularization of ultradistribution semigroups whose generators do
not have polynomially bounded resolvent appears exactly in this place. Actually,
if ||R(- : A)| is not polynomially bounded on an appropriate ultra-logarithmic
region, then it is not clear whether there exists an n € Ny such that for every
x € D(A"2), the operator Ty(t), defined in the formulation of the next theorem,
fulfills lim;_, 04 T3 (¢t)x = 2. Then it is not clear how one can prove that the operator
Ty (t) is injective; see also [38, Lemma 3], [252, Lemma 5.4] and the proof of [394,
Proposition 2.8].

THEOREM 3.6.1. Suppose that there exists a number b € (0,1) such that
(304) pb < M,
and that (M) satisfies (M.2). If A is a closed linear operator such that there exist
a>0,1>0, M >0, 3ecR and n € N satisfying
Aapi € p(A) and [|[R(A:A)| < M1+ |AD™, A€ Aap,
then, for every v € (0,arctan(cos(%))), there are an w € R and an analytic
operator family (Ty(t))iex., of growth order ”'H satisfying:

(i) For everyt € ¥, the operator Tp(t ) is injective.
(ii) For everyt € ¥.,, the operator A generates a global Ty (t)-reqularized semi-
group (Sp +(5))s>0-
(ili) Let K C [0,00) be a compact set, t € ¥, and x € E. Then the mapping
s Sy (s)x is infinitely diﬁerentiable in s >0 and, for every h > 0,

sup H Spt( H < 0.
peNy, sek My tl
(iv) There is an L > 0 with |Ty(t)|| < L(tanyRet — |Imt|)=">, t € .

(v) If = € D(A""2), then there exists lim;_,o4 M and, in particular,
limg 04 Tp(t)x = 2.

Furthermore, (Ty(t))icx, is an analytic semigroup of growth order "+1 whose c.i.g.
. b
18 —((w — A)|7An<A)) .
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PROOF. Let ¢ : R — [0,00) be an inﬁnitely differentiable function satisfying
suppp C [0,1] and [, p(t)dt = 1. Put M (t 7f0 (t —s)p(s)ds, t = 0 and
notice that M; € C*°(R) and that there exist m € (0, oo) and M € (0, oo) such
that M(t) < mMi(t) + M < mM(t) + M, t > 0. Suppose (0,1) > b satisfies
pt < M, and designate by N(-) the associated function of the sequence (p?). Then
N(A) ~ £[A[’, X = oo and an application of [207, Lemma 3.10] gives that, for
every i > 0, there exist positive real constants ¢, and C,, such that lim,_,oc, =0
and

(305) My (IN) < M(IN) < N(ulX) + Cp < e A" + Cpy A= 0

Denote, for ¢ > 0 and ¢ € R, AL ; := {A € C: ReX > oM;(I|Im\|) + ¢} and
I, = {X € C:ReX > o[ImA|” +c}. By the foregoing, we have A}, 5\ ar; C

Aa,g1 C p(A). Choose now a number a € (0,%) such that b € (O,ﬁ) and
that v € (0,arctan(cos(b(m — a)))). Thanks to (305), one obtains the existence
of numbers d € (0,1], o € (0,00) and w € R such that Qaa € AL, s1an—wi S

p(A —w). Let T'y 4 and T’ denote the upwards oriented boundaries of €, 4 and

AL, 5rani—w> Tesbectively. Define Ty(t), t € ¥, by
1 TSNS
Ty(t)x := — RA:A—w)xd\ z € E.
2mi
T'aa

By Theorem 1.4.15, (Ty(t))¢cx, is an analytic semigroup of growth order "+1 whose
cig. is —((w— A)|W)b' Define now, for every t = t; +ita € X, s > 0 and
zeFE,

1
Sp(s)z : = omi e N RN A — w)zd.
r

To prove that Sy ,(s) € L(E), notice that, for every A ¢ Q, 4, we have barg(—\) €
(b(—m +a),b(m —a)), cos(barg(—A)) € (cos(b(m —a)), 1], tany < cos(b(m — a)) and

‘e,t(,)\)b | _ 67t1|)\\b cos(b arg(f/\))thQ\Mb sin(barg(—\))
< e~ (trcos(barg(=2) =t )IN" < o= (t1 cos(b(m—a))=[t2))]AI" < o= (tx tany—[t2])IAI"
This inequality and (305) imply that, for all sufficiently small x> 0:
(306) ‘e’t(’/\)be’\SHR(A A - W)
< Mes(emMlImAD+8+ad—w) o= (ta tany=[2DIAI" (1 1| \] + |w])"
< Mues(ﬂ+aM7w)esamc#|)\|bef(tl tan'yf\t2|)|>\|b(1 + |>\| + |w|)n7 NeT, |/\| >r

The use of (306) with sufficiently small x implies that Sy ,(s) € L(E), as required.
Further on, the Cauchy formula and the previous argumentation enables one to see
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that

(307) /’\S‘t(Ad/\—Os 0,tey,
T

and that T, (t) = S} ,(0), t € ¥,. Tt is also clear that S} ,(s)T(t) = Ty(t)S; ,(s) and
that Sl}t( J(A—w) C(A- w)Sl}t( ), s 20, teX,. Using the Fubini theorem, the
resolvent equation and (307), one obtains

(A—w) /Sbtr:cdr— // ATt /\)bA W)R\: A—w)xd\dr

27”// )\R()\ A —w)x —x)d\dr
L Ar g —t(=A)" 1 re—t(=X)"
— e ARM: A—w)zxdhdr — — xdAdr
~or 2me
0T
Ar —t( A) A—
27”// AR(M: w)x dAdr
1 S
== [/ e)‘reft(fk)b)\R()\ A —w)x dr] A
2ms
r Lo
— b [ etV R A
=5 (e 1e R(A: A—w)xdA
r
YT _L/ (=3
= 271_Z./e e RA:A—w)xdr 5 | € VRN : A —w)xd\
r r

=S (s)x —Tp(t)x, s 20, t€%,, z€E.

This implies that (Sg,t(s))go is a global Ty (¢)-regularized semigroup generated by
A —w. In order to prove differentiability of (S ,(s))s>0, note that the arguments
used in the proof of boundedness of the operator S} ( ) also show that, for every
p € N, the integral 5 [, APerset(= MR A— w) d)\ is convergent. Then the
elementary 1nequahty leM — 1] < h|/\|eRe’\h A€ C, h > 0 and the dominated

convergence theorem yield = Sbt( Jr Aerse = A)bR()\ A—w)dA s > 0.
Inductively,

- 2771

v, 1

(308) —Shals) = /Ap Ase=tN"R(N: A —w)d), p € N, s>

r

27i
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Taking into account (305) and (308), we easily infer that, for every compact set
K C[0,00),t€ X, and > 0:

h? dp
sup

peNy, s€K M

s H < M/ M{(hX) JReAs .~ (t1 cos(b(m—a))—t2])|A|"

s e~ tan =D (1 [\ - [w])"|dN
M
277 b
/ x e~ tan =DM (1 |\ £ [w])"[dA|
Mesup K (B+aM—w)
2

eM(h)\)es[aMl (1] Im )\\)+,8+aM7w]ef(t1 cos(b(m—a))—|t2])|A|®

/ec“’l‘—:|>\\b+C’“eamsupK[cM?—:|)\|b+Cﬂ]

T % efl(tl cos(b(wfa))f|t2|)\/\|b(1+|>\|+|w|)n|d)\|
< %esupK[ﬁJraMquLoszu}JrC“ /BCM%Px\b(l-FSUPK)ef(tl cos(b(m—a))—|t2])| A
S on

r X (1+|)\|+\w\)"|d)\|.
Choosing sufficiently small u, we obtain that sup,en, sex 11 || ) Sbt )H < 00.
Put now S (s) := e*S} ,(s), s > 0, t € £,. Then it is clear that (Spe(s))s>0 is a
global Tj(t)-regularized semigroup generated by A. Since (M),) satisfies (M.1) and

My =1, it can be easily seen that M, , > MM, p, ¢ € Ny (cf. for instance [51,
Lemma 2.1.1]). Hence, for every h; € [h(2 + 2|w|), 00):

hP || dP
su —Sp (s xH
pEND, Is)eK M, 1l dsP be(s)

‘ hor(1 +|w\ -y

< e\w\bupK sup H H
peNo, seK Z dsp=t Sl

M,

I Z]\4

P Chi

M;

Lellsww K gy hp(2+2\w|)pz
pENp, se K i=0

el K sup (A2 + 2wl)/h)”
pENp, se K 1=0
hi — hi (2h1)”
< Ce |w|sup K ' < Ce o] sup K sup
12; Z 2h1) JASA) Mp

< 20wl KMZh) 0 where C' =  su H S} xH
X pENy, EGK M dsp bt( )

This implies (iii) and completes the proof. U

Before we go any further, let us notice that every Gevrey sequence satisfies
(304) with b € (1,1).

COROLLARY 3.6.2. Suppose A is a closed operator and there exist ¢ € (0,1),
>0, M >0,neN and s € R such that

(309) Iy = {)\ € C:ReX 2 o|Im )¢+ g} C p(A) and
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(310) IRA:A| < MOA+|A)", Aell .

Then, for every b € (c,1) and v € (0,arctan(cos(%Z))), there is an analytic operator
family (Ty(t))tes., in L(E) satisfying the properties (ii), (iv) and (v) stated in
the formulation of Theorem 3.6.1. Furthermore, the property (iii) holds for every
compact set K C [0,00) and M, = p¢, and there ezists w € R such that (T}(t))ses,
is an analytic semigroup of growth order "TH whose c.i.g. is —((w - A)‘m)b.
PRrROOF. Clearly, pb < M, and M(|\]) ~ LIX|¢, A = co. This implies that
there exist o > 0, ! > 0 and 8 € R with A, 5; C Il.,.. An application of

Theorem 3.6.1 ends the proof. U

REMARK 3.6.3. Suppose A generates a (DS). Then, for every ¢ > 0, there exist
oc>0, M >0 neNand¢ € R such that (309)-(310) hold. Hence, for every
b € (0,1) and v € (0,arctan(cos(b3))), A generates a global Tj(t)-regularized
semigroup, where we define Tj(¢) as before; let remind us that Kunstmann [252]
proved that this statement holds for every b € (0,1) and v € (0, @) (cf. also
(38, p.302]). Our estimate is better if b € (0, 2]. This follows from the following
simple observation:

0 T 7r .o, T

‘arctan(cos(bQ)) 1 < ‘1 cos(bZ)’ = 2sin (b4> < 3 < b4.
In conclusion, we obtain that there exists w € R such that the solution of the
incomplete Cauchy problem u(® (t) = (=1)*+1(A—w)u(t), t > 0 can be analytically
extended to the larger sector Xy ctan(cos(bz)) (cf. for instance [89, Section XX V] and
[394)).

3.6.2. Regularization of ultradistribution semigroups whose genera-
tors possess ultra-polynomially bounded resolvent. In this subsection, we
assume that (M),) additionally satisfies (M.2) and (M.3). We define the abstract
Beurling space of (M),) class associated to a closed linear operator A as in [59].

Put EM)(A) := projlimy,_, 4 o E,EM”}(A), where

hP|| AP
E;{LMP}(A) = {LU € DOO(A) : Hx”iMp} = sup 7” :L‘” < OO}
pENy P
Then (E}EM”}(A)7 [ - ||£Mp}) is a Banach space, E,EM”}(A) - E}{LM”}(A) ifo<h<
h' < oo and E(Mr)(A) is a dense subspace of E whenever A is the generator of a
regular (M, )-ultradistribution semigroup [59]. In general, we do not know whether
the space E(M»)(A) is non-trivial (cf. [38, p.301] and [59, p. 185]). Further on, we
would like to point out that the equality
WPII(A — 2)P
P4 = 2]
PeNo M,

implies EMr)(A) = EMp)(A — 2), z € C and that, thanks to (M.2), we have that
the part of A in EM»)(A) is a continuous mapping from EM»)(A) into E(M»)(A).
(The previous assertions still hold if (M.3) is replaced by (M.3").) It is noteworthy

< 26M(h(4+4lzmHx||l{z](v2[i}2|z|)’ h>0,z€eC,



298 3. ABSTRACT CAUCHY PROBLEMS...

that the notions of quasi-analytic vectors and abstract Beurling spaces also appear
in the papers of Chernoff [67], Lyubich [296], Spellmann [392] and that [392,
Theorem 2] remains true in the case of non-densely defined Hille-Yosida operators.

The following entire function of exponential type zero [207] plays a crucial role
in our investigation w(z) := [T~ (1 + ;sz), z € C. We know the following (cf. for

instance [59, pp. 169,171,182 and Lemma 3.2, p.179)]):

(P.1) there exist lp > 1 and ¢ > 0 such that [w"(2)] < rAn—LeMUH" 7 z]),
zeC,neN,

(P.2) there exist L > 0 and o € (0,1] such that |w(iz)|] > Liw(|z])|7, z €
(N0,

(P.3) due to [207, Proposition 4.6], the operator w(ID) = [[,Z (14 “D) le
C, is an ultradifferential operator of class (M,). If we write w"(z) =
Z;O:O an p2?, then |ay | < Const w, p € Ng, which implies that,
for every n € N and | € C, the operator w™(ID) is an ultradifferential
operator of class (M,) as long as (M,,) satisfies (M.3),

(P.4) for every & > 1 and z € C: |w(|2])|* > clw(aly 12])|, and

(P.5) DMz < gk MEHHED - .

Suppose that A is the generator of a (UDS) G of (M,,)-class. Then there exist
constants [ > 1, « > 0 and 8 > 0 (cf. [54], [59, Theorem 1.5 and p. 181], [210] and
[307]) which satisfy:

M(HUA))

(311) Ao g1 € p(A) and ||[R(A: A)|| < Const TE A€Ayp, keN.

Let n € N and n > Hlglo~!. Following the proof of [59 Proposition 3.1], w
define a bounded linear operator D,, by setting D, := 2m sz 55?3\) dA. Then
it is obvious that D, = DF k € N. Arguing similarly as in the proofs of
[69, Proposition 3.1] and [59, Theorem 3.8], it follows that R(G) C R(D,) and
EMp)(A) = Mken R(Dnk); since we have assumed that G satisfies (U.2), D,, is in-
jective. Unfortunately, it is not clear whether, for fixed n € N, R(D,,) € E(M»)(A).
Now we clarify the following important interplay between ultradistribution semi-
groups and local C-regularized semigroups.

THEOREM 3.6.4. Suppose that A is the generator of a (UDS) G of (M,)-class.
Then, for every T € (0,00), there exists an injective operator Cr € L(E) such that A
generates a local Cr-reqularized semigroup (S(t))ieo,r) satisfying that (S(t))iecjo,r)
is infinitely differentiable in [0,7) and that there exists h € (0,00), independent of

€ (0,00), such that

PrOOF. The arguments given in the final part of the proof of Theorem 3.6.1
implies that one can translate A by a convenient multiple of the identity. Assume

(312) sup
t€[0,7), peNo M
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that constants I > 1, @ > 0 and § > 0 satisfy (311). Clearly,
(313) lw(s)| = ’1 + —| = sup H — =sup— = MG s>0.

Put ng := |Hlglo™!| + 1, k := max([7a],2) and fix afterwards an element z € F,
an integer n € N with n > H* 4+ 2 and a number ¢ € [0, 7). Then

(314) (n—1)ngo
(315) (n — ngoly*

(n—1)Hllg>n—-1>1,

>
> (H* + 1)Hlglo ol > H"I.

We define the bounded linear operator S(t) (cf. also [59, pp. 188-189]) by

1 R(M\:A)
316 St) = [ eM—""Ld\
( ) () 2’/Ti/e wnno(ZA)
n
In fact, S(0) = Dpn, := C, € L(E) is injective since G satisfies (U.2) (see the
previous discussion). Notice that ngo > 1 and that (313)—(314), (P.2) and (P.4)-
(P.5) together imply that, for every p € Ny:

’ K eMR()\:A) H < Const [A? et(@MUN)+B) oM (HI|A|)
wro (iA) 1l jw(n=Dmo (§A)[lwno (i)]
A[ta]—16M(H“‘ﬂ’ll\A|)€M(Hl|>\|)
< Const |A|P B
oSt A e (i o ()
(317) _ Const |)\|pet,ﬁA[ta]—1 e2M(H’f*11|,\|)

w([A[)]o7 Lrmojw([A])|(=1noe

Const [\|[Pet? L=mm0 Alte] colw(HFIN)|
T w(ADw(ADe T fw((n = Dneoly A

Const [\|[PetP L—mm0 Alte] colw(HFIN])|
w(AD[eM Moo =1D) e ((n — L)ngaly * A])]

1
eM(IA(noo=1)| \ |2’

< Const |A|P

where Const is independent of p € Ny. Then the Fubini theorem implies S(s)C, =
C:5(s), s € [0,7), and furthermore, it is checked at once that S(s)A C AS(s),
s € [0,7). Since p(A) # 0, we have C;'AC, = A. In order to see that (S(t))teo,r)
is a local C; regularized semigroup generated by A (cf. [89] and [275]), it is enough
to prove that Afo s)xds = S(t)x — Crz, t € [0,7). To see this, one has to prove
first the following equahty.

e)\t
1 ———d\=0.
(318) / Sy =0
I
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For a sufficiently large R > 0, put 'r :={z € C: |z| = R, 2 ¢ An,3,}. As above,
(314) and (P.4) imply

1
(319) [w(l=DI™ "7 > = fw((n — Dngolg |2])], = € C.
0
Taking into account (P.2) and (313), we obtain:
|wnng (Z)\)| _ |w(n71)no (Z-)\)”wng (Z)\)| > Lnno|w(n71)noa(R)|€]\/[(R)noa
> Const [w» V™07 (R)|R2, X\ eTx.

An employment of (P.5) yields

oY @MU ImAN+8)  Const 5 etaM(IR)
‘w""o(i/\)’ o] S R2C JwmDneo (R)]
Const tﬁArmW‘leM(H(mFllR)
STRE ST Wi ome(R)|

Owing to (319), one can continue the calculation as follows:

lw(H* =1 R)|

etﬁAfta]fl )
lw((n — V)neoly ' R)|

~

Const
< 5 Co

The last inequality and (315) imply fF md/\ — 0, R = +o00. Then the

Cauchy theorem yields (318). Applying the Fubini theorem, the resolvent equation
and (318), one obtains

t
A/S Jrds = — // ASARAA d\ds
271 "”0
0

0

AR(M: A)x

As

= d)\d
27i // w™no ( M) iy

t
- // ASARAA d\ds —i//@s ”“" d)\ds
2m ”"0 21 ”"0

0
AR\ : A 1 AR(A: A)z
_ As - As
- 27?2// wnno z/\ dAds z [/e wnno ( z)\) ds} dA
0

1 At R(\:A)x
- 2mi (e )w””O(i)\) dX

Iy

1 | 1 |
L[ R A, RN sihe — O

" 2mi wrmo(iN) O 2mi ) wmo(iN)
Iy I
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As before, we have that, for every p € N, the integral Lfr APeAt_B(XA) dA,

w0 (3\)
t €[0,7) is convergent and that £S(t) = 51 Jr, Ae ’\tﬁ%’\él) d\. Inductively,
dp 1 R(M:A)
20 —S(t)=-— [ WeM—"_d\ peNy, t
B0) S0 =5 [ WM T pet te o).

Iy

It remains to be shown (312). Choose arbitrarily an h € (0,n90—1). An application
of (317) and (320) gives:

Bl ol & o b RIS,

sup
te[o,r), peNo M, 2T tejo,r), peNo |wnmo (i0)]
M (h|A])
< Const/ BT IPYE |[d\| < Const/ |>\|2
I
The proof is now completed. O

The proof of following lemma essentially follows from that of [59, Theorem
3.8].

LEMMA 3.6.5. Suppose G is a (UDS) of (Mp)-class generated by A, | >
a>0,8>0n¢€eN,n> Hlplo™" (cf. (P.1)~(P.5)) and (311) holds. Then

EMp)(A) = Nien Pnk(Doo(A)) and
(321)
p|| AP
D, (EQ{;V[HEMN) - {x € Doo(A) : sup A < oo forall s e (O,QZOH”k)}.
pENp MP
PrOOF. Fix an integer k¥ € N and a number ¢ € (0,2loH™). Put h =
2gH™+1, Let y € E,EM”} and w™(iz) = Y27 ay 2", z € C. Due to (P.3), we
(L H"")P
My,

have |a,| < Const
since

, p € N and the series )~ °  ay , APy := x is convergent

hP|| APy|| (loan>p
M, h

Arguing as in the proof of [59, Theorem 3.8, p.187], one gets that y = D2 and

the proof is completed if one shows that z € D (A) and that (321) holds with <.

First of all, let us observe that the series Z;io ag,p APy is also convergent for all
m € N. Indeed, (M.2) yields

llak,p APyl < Const < Const Hy||{M }<

2H>'

o tm || AP my|| o HEN\ P My,
(322) JlaxpA™*Py| < Const ” y”(o ) pt

My h ) M,hm
+m
{M,} ( 1 )p Mp+m {Jpr}( 1 )pAHP M,,
< 1, <C t _—
Const [yl ™" (377 Mo S O Iyl 2H hm

< o (3) ()"
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By (322),

1
2[0H”k

o0
> lanpl A7y < Const lyl[{"7) (5575 ) Mims @ € Doc(4)
p=0

and A™x =377 ay , A" Py. Finally, (322) implies

m Am
sup A" < Const ||y||;{lM”} sup (
meENy Mm m&ENy

< " {Mp}
2loH"k) < Const ||y, 7. O

Now we are in a position to clarify the following analogue of [59, Theorem 4.1,
Corollary 4.2] for non-dense ultradistribution semigroups of (M, )-class.

THEOREM 3.6.6. Suppose that A generates a (UDS) of (Mp)-class. Then the
abstract Cauchy problem
u € C*([0,00) : E) N C([0,00) : [D(A)]),
(ACP) : ¢ u/(t) = Au(t), t 20,
u(0) = x,

WV

has a unique solution for all x € E(MP)(A), Furthermore, for every compact set
K C[0,00) and h > 0, the solution u of (ACP) satisfies

hP || dP
sup  —||——u t)H < 00.

teK, peNg

PRrROOF. We basically follow the terminology given in the proof of Theorem 3.6.4
and Lemma 3.6.5 (cf. also (P.1)—(P.5)). The uniqueness of solutions of (ACP) is a
consequence of the Ljubich uniqueness theorem. To prove the existence of solutions
of (ACP), let us observe that the proof of Theorem 3.6.4 implies that there exist a
number ng € N and a strictly increasing sequence (k;) in N such that ng > Hlglo !
and that, for every [ € N, the operator A is the generator of a differentiable D, -
regularized semigroup (S;(t)):eo,)- This implies that the abstract Cauchy problem

w € CH([0,1) : E)nC([0,1) : [D(A))),
up(t) = Aw(t), t >0,
u(0) = x,

has a unique solution for every x € Dy, (D(A)) given by w(t) = noszl( )z,
€ [0,1). If z € EM»)(A), then Lemma 3.6.5 implies that w(t) = S(t)D, ), «
€ [0,1), and due to Theorem 3.6.4, we get u; € C([0,1) : E). Therefore, we

automatically obtains the existence of a solution of (ACP) for z € E(M»)(A). Let

K C [0,00) be a compact set, K C [0,{) for some ! € N, h > 0,1 € N, I’ > [ and

2lgH™" > h. Then, for every t € K:

Rl ol ol o o

e Jsonozi, o < sp ol 2 oo

nok/ .TH
s€[0,]]

’nokl/
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This in combination with Lemma 3.6.5 completes the proof of theorem. O

The following lemma is closely linked to an old result of Roumieu (see e.g. [207,
Lemma 4.3, p.57]) in which it has been assumed that the corresponding sequences
(M,) and (N,) satisfy (M.1) and (M.3’).

LEMMA 3.6.7. There exists a sequence (Np) satisfying No = 1, (M.1), (M.2),
(M.3) and N, < M,

PROOF. Define a sequence (ry,) of positive real numbers recursively by:

1
ri:=1and rpp1 :=17p Ty —|—min(1—7mp = My )], peN.

Mp+1 Mpy1’ P Mpy1
Then:
r m 1IN m
(323) 1> et 5 M andrpﬂgr,,(uf) P peN.
Tp Mp41 P/ Mpt1
Using (323), one obtains inductively:
my L mP
r, <p— and ||r; <p'=2L, peN.
N E N STRL

Since p! < M, (cf. [207, p.74] and [51, Lemma 2.1.2]), one gets that, for every
>0,
P

(324) sup o? Hri < 0.

pENo 5y
Put now Ny :=1 and N, := M, [[}_, ri, p € N. Keeping in mind (323), one can
simply verify that (N,) satisfies (M.1), (M.2) (with the same constants A and H)
and (M.3). Furthermore, (324) implies that N, < M, O

Now we are able to state the following important result.

THEOREM 3.6.8. Suppose that A generates a (UDS) G of (M,)-class. Then
there exists an injective operator C' such that A generates a global differentiable
C-regularized semigroup (S(t))i>o0. Furthermore, for every compact set K C [0, 00)

hP || 4P
and h > 0, one has sup,c k. pen, EHdWS(t)H < o0.

PrOOF. By Lemma 3.6.7, there exist a sequence (NN,,) of positive real numbers
satisfying No = 1, (M.1), (M.2), (M.3) and N, < M,. As in the proof of The-
orem 3.6.4, we may assume that numbers [ > 1, a > 0 and § > 0 satisfy (311).
Denote by N(-) the associated function of (N,) and notice that the previously given
arguments combined with [207, Lemma 3.10] indicate that there exist a; > 0 and
B1 > 0 such that A} ; ; C Ay ps € p(A). Furthermore, for every p > 0, there
exists C,, > 0 such that M(\) < N(uA) + Cp, A 2 0, and thanks to [361, Lemma
1.7, p. 140] (cf. also [51, Lemma 2.1.3]), we know that, for every L > 1, there exist
B > 0 and Ep > 0 such that

(325) LN(\) < N(BEI\) + Ep, A >0.
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Let I'y and I'; denote the upwards oriented boundaries of A, g; and Ail, 1,00 T€
spectively. Suppose that o € D[(gf]) satisfies p(t) > 0, t € R and [, o(t)dt = 1.
Put 0,(t) := no(nt), t € R, n € N. Then it can be simply verified that, for ev-
ery o € DM o % o € DWNe) € DMp) e N and that lim, o 0n ¥ @ = @
in DM»). Define Gy(p) := G(¢), ¢ € DWN»). Then Gy € D/(N )(L(E)) and
satisfies (U.1). To prove (U.2), suppose G1(¢)x = 0 for all ¢ € D(() ?) Then
G()x = limy 00 G0 * w)m = limy, 00 G1(0n * )z = 0 for all ¥ € D(Mp) So,
x =0, Gy is a (UDS) of (N,)-class and it can be simply checked that the gen-
erator of Gy is A. Denote wy, (2) := [[;2; (1 + ZZ]I\\[[’; L), z € C and notice that
lwn, (s)] = eV, s > 0 and that, owing to (P.2), there exist L; > 0 and oy € (0,1]
such that |wn, (i2)] > Lilwn, (|2])|7, 2 € (AL, 5, ;)¢ Since Gy is a (UDS) gener-
ated by A, we have that there exists a sufﬁc1ently large integer n > |—U—1J so that

the bounded linear operator C := d)\ is injective. An elementary

XA)

27rz fl"g wN (1>\)
f R(XA)
27ri I w% (iX)

application of Cauchy formula implies that C = d)\. Set now

1 At (A

S(t)x == —,/Md/\, t>0, ze€ k.
271 wiy (i)

Iy v

Taking into account the simple equality fFl wf‘iz(?l)\) dX = 0, one can repeat literally
N,

the proof of Theorem 3.6.4 in order to see that (S(t))i>0 is a global differentiable
C regularized semigroup generated by A and that, for every p € Ny, 4 o —S(t (t) =

2m fFl APet R; )E‘j))\) d\, p € Ny, t > 0. Suppose now that K C [0,00) is a compact

set and that h > 0. Then we get with the help of (325) that, for every u > 0,

hP dr M (h|A])+asup KM((UA]) ,M(HLX|)
sup  —— —S(t)” <C0nsteﬁS“pK/e — 26 |[dA]
teK, peNo ! ‘WN,, (EA)[[A
1
M (hA)+asup K M (I[|A\])+M(HIA|)
SConsteﬁsuPK/e |[dA|
IAZLT |wn, (A
I
M (hX)-+asup K M(I|A])+M (HI )
Const/ I\[2eno NOAD [dA]
N (h|A|@)+asup KN (A ) +N(HI|A|w)
(326) M/ ‘)\|26n01N(|)\|) | |

5 x [e N(h|Ap)+N (B KN p)+ Erc o+ N (HIX| 1)
M,y s / )

|)\‘2en01N(\>\|)
I
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3N (Au[h 1B K 1 H1])

< MueEasupK/ |d>\|

ry

g MHGEQ sup K+FE3 /

I

|)\|2en01N(|)\\)

N (B2 A u[h+1B* =P K 4 H1))

‘)\|267101N(|>\|) ‘d)\|

Suppose now that p € (0, Bg(h+lBalsupK+Hl) ). Then we obtain from (326):
laA|

Ey K+E:
SC’He sup 3/ |)\|2
Iy

< 0. O

The proof of previous theorem also implies:

THEOREM 3.6.9. Suppose that A generates an exponential (UDS) G of (M,)-
class. Then there exists an injective operator C' € L(E) such that A generates an
exponentially bounded C-reqularized semigroup (S(t))i>o that is infinitely differen-
tiable in t > 0. Furthermore, for every compact set K C [0,00) and h > 0, one has

P P
SUPte K, peNg AI";Tij?S(t)H < 0.

3.6.3. Higher order time-fractional equations. Regularization of ul-
tradistribution sines. First of all, we recall the assertion of [434, Theorem 6.2,
p.132] witha =N e N:

THEOREM 3.6.10. Suppose n € N, n > 2,0 € (0,5), M >0, 20 € C, 20 #0
and A is a closed linear operator. If

(327) ¢! 830 (|20] + Tg) C p(A),
(328) IR A)[| < M(1+[ADY, A € €280 (|| + 5),
then there exists a family (C:)eso of bounded injective operators on E such that:

(i) For every e > 0, there exists a unique solution u of the abstract Cauchy
problem (ACP,,) with initial data xg,...,x,—1 € R(C:) and

n—1
(329) lu(®)] < M) Y C ], 20,
=0

for some non-negative and locally bounded function M(t), t > 0.
(i) U.soCe(D(ANT2)) is dense in D(ANT2).

Our intention in the first part of this section is to reconsider Theorem 3.6.10
and to prove its generalization in the framework of the theory of abstract time-
fractional equations. Recall that J. Chazarain and H. O. Fattorini (cf. for instance
[434]) proved that the abstract Cauchy problem (ACP,) is not well posed in the
classical sense if A is unbounded and n > 3. Concerning abstract time-fractional
equations, it is worth noting that E. Bazhlekova proved (cf. [36, Theorem 2.6, p.
22]) that every generator of an exponentially bounded (f(—;l, I)- regularized resol-
vent family must be bounded if o > 2. The above statement is no longer true

for the class of exponentially bounded (%7 C)-regularized resolvent families, as a
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class of very simple counterexamples show. We have established in [240] the suffi-
cient conditions for generation of global not necessarily exponentially equicontinu-
ous (%, C)-regularized resolvent families in sequentially complete locally convex
space, SCLCS for short. The results obtained there can be used in the analysis of
the following abstract time-fractional equation with o > 1 :

(330) Du(t) = Au(t), t > 0; u¥(0) =24, k=0,1,---, [a] — 1,

where 2, € C(D(A)), k=0,1,---,[a] —1 and DY denotes the Caputo fractional
derivative of order a.. In what follows, we will try to give the basic information on
the C-wellposedness of (330). Assume that E is a SCLCS and that ® stands for
the fundamental system of seminorms which defines the topology of E. Let o > 0.
A function u € C(a]’l([O oo) : E) is said to be a (strong) solution of (330) if

Aue C([0,0) : E f () F(M] a) [u(s) — ,ono k,x k|ds € C11([0,00) : E) and
(330) holds. The abstract Cauchy problem (330) is said to be C-wellposed if:
(i) Forevery xq, -, xrq1—1 € C(D(A)), there exists a unique solution u(t; zo, --
',xm],l) of (330).

(ii) For every T > 0 and g € ®, there exist ¢ > 0 and r € ® such that, for
every xo,- - -, Ta]—1 € C(D(A)), the following holds:

[a]-1

(331) q(u(t;x07~ . -,m[aw,l)) <ec Z r(C_lx;c), te[0,T].
k=0

In case C = I and F is a Banach space, the definition of C-wellposedness of (330)
coincides with the one introduced on pages 19 & 20 of [36]. Assume that there
exists a unique solution of (330) in case o € C(D(A)) and z; =0,1 < j < [a]—1.
Applying [36, (1.21), p. 12], one gets that u(t;z¢) = u(t; 20,0, - -,0), ¢t > 0 is a
unique function satisfying u(-;zo), Au(-;zo) € C(]0,00) : E) and

¢
_ a—1
(332) u(t; xo) = 20 + / u/lu(s; xo)ds, t > 0.
0

If, additionally, A is densely defined, E is complete and (331) holds provided zy €
C(D(A)) and z; =0, 1 < j < [a] — 1, then one can repeat literally the arguments
given in the proof of [369, Proposition 1.1] in order to see that A is a subgenerator of
a locally equicontinuous (%, C')-regularized resolvent family (Sq(t)):>0. Notice
that we need the completeness of E here since one has to extend the operator
Sa(t)r = u(t;Cx,---,0) (t = 0, z € D(A)) to the whole space E (cf. also [3086,
Lemma 22.19, p. 258]).

Assume now that, for every zg € C(D(A)), there exists a unique function
u(t) = u(t;xo), t > 0 satisfying u, Au € C([0,00) : E) and (332). Then it is
straightforward to see that u(t) is a unique solution of (330) with 2; =0, 1 < j <
[a] — 1. If A is a subgenerator of a global (%, C)-regularized resolvent family
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(Sa(t))i>0, then the unique solution of (330) is given by:

[a] t _ j—1
u(t) = Sa(t)C a0+ ) / (t(j_s)l)!sa(s)c—lxj_lds, t>0;
0

furthermore, the abstract Cauchy problem (330) is C-wellposed if, additionally,
(Sa(t))i>o is locally equicontinuous.

In order to formulate the following theorem, we need to consider separately
two possible cases: a > 2 and « € (1,2].

If @ > 2, then we assume that there exist zo € C \ {0}, 8 > —1, d € (0,1],
m € (0,1), € € (0,1] and v > —1 such that:

(b) on,ﬁ,s,m = eiarg(zo) (|ZO‘+(P,3,E,mUBd)) g pC(A)a (s,m(1+€)75) € aBda

(bb) the family {(1+ |\))""(A— A)"'C : X € P, g.c.m} is equicontinuous, and

(bbb) the mapping A — (A—A)~*Cx, X\ € Py, g .c.m is continuous for every fixed
rze k.

0,

The case « € (1, 2] is more restrictive. We assume that there exist zo € C\ {0},
0c(5(2—a),%), de(0,1] and v > —1 such that:

(1) S(z0,6,d) := ¢4%5C0)(J29] + ((6) U Ba) € pe(A),
(bby) the family {(1 + |A)™Y(A — A)7LC : X € (20,0,d)} is equicontinuous,
and
(bbby) the mapping A\ — (A — A)~1Cz, A\ € ¥(20,0,d) is continuous for every
fixed x € E.

Given b € (0,1/2), set §, := arctan(cos 7b).

THEOREM 3.6.11. Let (M) be a sequence of positive real numbers satisfying
p! < M,.

(i) Let (b)-(bbb) hold. Then, for every b € (L, 1), there exists an operator
family (Tb(z))zeng such that, for every x € E, the mapping z — Tp(2)x, z € Xs,
is analytic and that the following holds:

(i.1) For every z € X5, and p € ®, Ty(z) is injective and there exist ¢ > 0 and
q € ® such that

y+1

p(Ty(2)z) < c(tan(cosmb)Rez — [Im 2[)~ "+ )g(x), z € E.

(i.2) If |[b+7] =0, x € D(ALTYF2) and 6 € (0,6,), then there exists

. Ty (2 x— . .
lim,/ex; 20 W} and particularly, im, cx; 0 Tp(2' )z = z.

(i.3) For every z € Xs,, there exists a unique solution u(-;z) of the abstract
Cauchy problem (330) with initial data xo,--- ,2rq1—1 € R(Tp(2)) and
u(+; z) can be extended to the whole complex plane. Furthermore, the map-
ping w — u(w; z), w € C\ (—00,0] is analytic and the abstract Cauchy
problem (330) is Ty(2)-wellposed (z € Xs,). Let K C C \ (—00,0] be a
compact set, let h > 0 and let z € ¥5,. Then, for every seminorm q € ®,
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there exist a constant cx . z,q > 0 and a seminorm rq € ® such that:

fa]-1 4 [a] -1
hPq (AP u(w; 2))
(333) sup e < CK bz, rq(Th(2) ™ as);
; wEK, peEN M|ap)-1+1 o ; Q( Z)

if « € N\ {1,2}, then the mapping w — u(w; z), w € C is entire (z € X5, )
and (333) holds for any compact set K CC, h >0, z € 35, and q € ®.
(i) Let (b1)-(bbby), b € (5%) and ¥ € (0, arctan(cos(b(m — 0)))). Then
there exists an operator family (Ty(2)).ex, Such that, for every x € E, the mapping
z > Ty(2)x, z € Xy is analytic and that the following holds:

(ii.1) For every z € Xy and p € ®, Ty(2) is injective and there exist ¢ > 0 and
q € ® such that
a+L

p(Ty(2)z) < c((tan(¥) Rez — [Imz|)~ % )g(z), = € E.

(ii.2) If [b+~] =0, 2 € D(APH+2) and § € (0,9), then there exists

: Ty (z)— . .
lim,esy, o0 LT and particularly, im, s, .o Ty(2')a = .

(ii.3) For every z € Xy, there exists a unique solution u(-;z) of the abstract
Cauchy problem (330) with initial data xo,x1 € R(Tp(2)) and u(-;2) can
be extended to the whole complex plane. Furthermore, the mapping w —
u(w; z), w € C~ (—00,0] is analytic and the abstract Cauchy problem
(330) is Tp(z)-wellposed (z € Xy). Let K C C~ (—00,0] be a compact set,
let h > 0 and let z € Xy. Then, for every seminorm q € ®, there exist a
constant cx p ».q > 0 and o seminorm rq € ® such that (333) holds with
[a] = 2; if a = 2, then the mapping w — u(w; z), w € C is entire (z € Xy)
and (333) holds for any compact set K CC, h >0, z € 3y and q € ®.

PROOF. We will only prove the first part of theorem. Put Ay := e~?28(20) 4 —
|z0]- Then Pg . UBy C pc(Ap) and, for every ¢ € @, there exist ¢; > 0 and ry € ®
such that

(334) q((A—Ao)7'0z) < cqrg(x)(1+|A))?, € E, A€ Ps ., UBg.
Without loss of generality, we may assume that there exists an open neighborhood
Qp.c,m.a of the region Ps ., U By such that the mapping A — (A — A4g) " 'Cz, A €
Q8,e,m.4 is continuous for every x € E and that (334) holds. By [241, Proposition
2.16(iii)], the mapping A — (A — Ag)"1Cz, A\ € Qg c.m.q4 is analytic for every fixed
x € E. Then, for every z € ¥5, and A € T,

‘e—z(—)\)b‘ — e Re z|A|® cos(barg(—A))+Im z|A|® sin(b arg(—A))

< ef(Rezcos(barg(f)\))f|Imz|)|)\\b < ef(Rezcos(b(ﬂ'fa))f|Imz\)|)\|b
(335) < ef(Reztan5b7|Imz\)|)\|b.
Define, for every z € X5,
1 b
(336) Ty(2)x := 57 e NN = Ag) " Cxd), z € E.
e

T
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By (334)-(335), Tp(z) € L(E) for all z € X5,. One can simply prove that the
mapping z — Tp(z)x, z € X5, is analytic for every fixed z € E ([241]). The
injectiveness of each single operator T,(z) is a consequence of the proof of [241,
Theorem 3.16]; for the sake of completeness, we will briefly sketch the proof of this
fact. Let Ao € Qg m.a ~ (Ps,e,m U Bq). By induction, one gets that, for every
k € Ny, x € D(A*2) and X € pc(4o) ~ {No} :

(337)

P N ) (—)* 4 b2
(A= Ag)"1Cx = ]Z_:O T Cz + TN (A= Ag)"rC (Ao — Ag)F+2a,

Using (337) and the proof of [394, Lemma 2.7], we obtain that the assumptions
|[b4+v] =0, z € D(AP*Y+2) and 6 € (0,d;) together imply

I —_—
DBl =Cr
2'€¥s,2"—0
C
_ 1~
~(=X0)"C / )\ Ag) C )\_Ao}xd/\
(338) = omi (=N~ 1(/\ Ag)"tCAzd\, x € D(ALTYIH2)
™ Jr

and (i.2). The analyticity of the mapping 2’ — Tp(2')x, 2’ € X5, combined with the
semigroup property Tp(z' + 2”)(0)Cx = Ty,(2")Tp(2" )z, x € E, 2/, 2" € 5, and
the injectiveness of C, implies T}(z" )z = 0, 2’ € Es,. Since R(T3(2")) € Do (Ao)
and Ty(2') (Ao — Ag)~1C)M1+22 = (Ao — Ag)~rC)M 2Ty (2", 2/ € 85, one can
apply (338) in order to see that lim,/ o, Ty(2") (Ao — Ag)~1C)M1H+22 = ((\g —
Ag)~tC)"1+25 = 0. Therefore, z = 0 and Ty(2) is injective; the inequality stated
in (i.1) readily follows. Define now, for every ¢ > 0, z € X5, and = € E,

. b S i arg(zo)taj()\ + |Z()|)j

330) Sap.(t)ri= —— [ eV A= Ao Czdr

(339) bz () 271 ‘ jz_:o (aj+1) ( ! '
J —

Notice that, for every a > 0, there exists ¢, > 0 such that:

o0

et 2r8(20) 199 (X 4 | 20| )
T(aj+1)

‘ = |Ea (eiarg(z")ta(/\ + |zo|))|
j=0

< Ea(}eiarg(zo)ta()\ + |z0|)|) < Caet(lx\|1/a+\zo\1/a), t>0, AeT, z€3,,.

The above implies Sqp..(t) € L(E). Clearly, Sap,.(0) = Tp(2), Sap,:(t)Tp(z) =
Ty(2)Sawp,2(t), Ty(2)A C ATy(2), t > 0 and (Sap,2(t))i>0 is a strongly continuous
operator family which commutes with A (z € ¥5,). Furthermore, for every z € X,
and T > 0, the family {Sa,.(t) : t € [0,T]} is equicontinuous. Using the Cauchy
formula, we infer that, for every z € ¥j, ,

1 b e el arg(zo)taj()\ + |20])?
340 — [ e Crdh=0,t>0 E.
(340) 27Ti/€ 2 T(aj+1) v P2
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By making use of (340), the Fubini theorem, the resolvent equation and the closed-
ness of A, we obtain that, for every z € X5, ,

[ (t— 5)*!
AO/F(OK)SQ’M(S)de

0
L[ e €720 s (A + [z]) .
— A—A Cxd\|d
8 [QM' /e 2 T(aj + 1) (A= Ao)™ Cardh ds
r J=0
t o0
= / (t T S)a_l L / _z >\) Z ’LJ arg(zo (XJ()\ + |ZO|)
INa) 2w INaj +1)
0 r

X

eiarg(zo) [eiarg(zo)()\ + |zo|)(ezarg(zo)()\ + |ZO|) _ A)_lc’x _ C’x] d\ds

t o . .
/ (t—s)*t 1 /672(7)\),, i eili+D) arg(20) ad () 4 | z0])I+1
T(a) 2ni T(aj + 1)
0 T

Jj=0

% eiarg(zo) (6iarg(zo)()\ + |20]) — A)_lcm d\ ds
ittt arg(z0) ga(I+1) () | z4])7H

1 b
_1 Y
omi ) © ;) T(a(i+1)+1)
J -

=Sap(t)r —Tp(z)zx, t 20, v € E.

(A — Ag)"*Cz d\

Therefore, for every z € Xs,, (Sap,2(t))i>0 is a locally equicontinuous (F(a) Ty(2))-
regularized resolvent family having A as a subgenerator, which immediately implies
the Tp(z)-wellposedness of (330). Let z; € R(Tp(2)), ¢ = 0,1,- - -, [a] — 1. Then it
is predictable that the solution of (330) is given by

(341)

u(t; 2) = Sap,.(O)Th(2)~ xo—l—Z/(t;S)i.lSabz( YTy (2) ‘i ds, t > 0.
=10

We will verify this without making no reference to our results stated in the begin-
ning of this subsection. It is clear that the mapping t — u(t;2), t > 0 (z € Xs,)
can be extended to the whole complex plane by

[a]-1 oo

etd ar (20), ,aj+k A
) — =N Terel0)w I (A + |z0])!

F k=0 j=0
(342) x (A — Ao)_lCTb(z)_lxk d\, w e C.
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Put, by common consent, 0 if —s € N. Then the dominated convergence

w®
T(st1)
theorem and an elementary argumentation yield that the mapping w — u(w; z),

w € C\ (—00,0] (2 € Xp,) is analytic with

[a]-1 oo

: / —a(=A) e’ ”g(“)of”*’“ YA+ =)
—u(w; 2z —
dw (w;2) = 2mi J I;) JZO I(aj + k)

(343) x (A= Ag)'CTy(2) tap d), w € C N (—o0,0].

Moreover, for every p € Ng, [ =0, -+, [a] =1, w € C\ (—00,0] and z € 3s,,
l [a]-1 £i(i+p) arg(z0) o +k— l()\ + ‘z |)J+p

d b
AP 2o) = —z(=2)
Tuwiz) = 5 / > Z Tlaj 1k 11 1)

T k=0 j5=0

(344) x (A — Ag) " 'CTy(2) tap d), w € C~ (—o0,0];

if @ € N, then the mapping w — u(w; z), w € C is entire and the formulae (343)-
(344) hold for any w € C. The remaining part of the proof will be given in the case
a ¢ N. Owing to (344), u(-;2z) € C1*171(]0,00) : E) and Au(-;2) € C([0,00) : E).
By the dominated convergence theorem, the definition of Tj(z) as well as (342)
and (344), it follows that u(-;z) — ,La]o ! 'kxk e Cl*1([0,00) : E) and that (330)
holds, as claimed. The uniqueness of SOluthDb of (330) follows from the uniqueness
of solutions of (330) for zx = 0, 0 < k < [a]| — 1 and the fact that (Sap - (¢))i>0
is a locally equicontinuous (%, Ty(z))-regularized resolvent family having A as a
subgenerator. Assume K C C~(—o00,0] is a compact set, h > 0, z € X5,, ¢ € ®, and
|w| < L, for every w € K and an appropriate L > 1. Put N := [y]+2, M;(z,q,b) :=
max{r,(Ty(z)"'z;) : =0, -+, [a] — 1} and n,p := tan(cos wb) Re z — | Im 2|. Since
A+ [20] P9 (1 + A+ [20] )Y < (14 [0 )PHFN (1 + [A)PHHN, 5, p € No, A € C, we
get from (334) and (344) that:
/ —72.6| A

d &
q(AP——u(w; 2)) < ¢gMi(z,q,b Z
r

dw

L()/j-‘rk l

Z Faj k= n) (D Ry

< ch1<z7q, b)(1 + |20 )N P

[a]-1 oo

LOTR=L(1 4 [z])
X Z 2 T(aj+h—1+1) |2

/e 7=/ A" (14 [A)PH+N dr|.

Using the proof of [394, Proposition 2.2] and Cauchy formula, we obtain that, for
every j, p € Ny,

%/e—ﬂz,b\/wb(l + |)\Dp+j+N d\
e
T
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< gpHitN |:e_nzybdb n lr(p+j + N+ l)n_w] L oIt N g pd”

b b
. 1 i+ N +1\ _ptitN+1
< op+j+N [2+ 5F<W)nz,b b ]’ j € No.
Hence,
d' N+1 N
QAP 2)) < M (2,4, D)2 V(L + [0V
[a]-1 oo aj+k—I
‘ D(aj+k—1+ 1)
chl(z,q, b)(2+2\zo|)N+p
+ Niptl
nzb b
§ “§:1 | Leith=l(2 4 2w) T(E(p+j + N + 1))
Tlaj+k—1+1) 7 '
J nz,b
Put B := 12110_1 Z;io % Then there exists v, > 1 such that

aj(aj+1)-- (aj + [a]) < v for all j € N, which implies:

(%1< k-1 ZLaj+kl(2+2|ZO)j>
S = INoj+k—1+1)

[a]-1 oo

6+Z;

=1

-1 o

LoTk=1(2 4+ 2| z|)7 5 Lodtk=L(2 4 2| z|)7
T(oaj+k—1+1) T(aj+k—1+1)

k=0 j=1
< el 4 [a] LIV e el @200 L o ([a] — 1)ekva@F2z0D™*
As an outcome, we get

hP
sup ————— [ch1(z7 g, b)2P TN
peN MLapj —1+41

[a]-1 oo

Laj-i-k 12+2|ZO|)
1 N+p <
X (1 |zol) kz_()]Z(JFOL]+kl+1):| >

Let k > (2 + 2|Z0D77_% and let jo € N satisfy jo > max(%j). We will prove
b
that

[a]-1 oo

Lodth=ly +N+1
K F(p+j+ + )<OO

P
(345) Sj, :=sup H 2

peN M| ap|—141 1;) ];jo Tlaj+k—1+1)
The choice of b implies W > 2 and since I'(+) is increasing in (£, 00), where
£ ~1.4616..., one has F(thNH) < ([pH'ZN""W —1)! provided p € Nand j € No.
Hereafter cqo kv is used as a generic symbol to denote a positive constant whose
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value depends only on «, K, b and N but may be different in different places. We

get that

KP(lap] + |aN])!
Si < Corko.N SUD (LMpJ L[aN])
peEN Lop] —1+1

la]-1 oo )
Ledtk p+j+N+1
X —1)!
,;) jzj: Mlaj+k—1+1 )(Lapj—i—LaNj)!([ b W )
2ler) P (lap| — DI(laN| + 1)!
< Ca,K,b,N SUD (LJ\IZ[J )!(loN] )
peN lap] =1+
la]-1 oo )
Lodtk-l p+j+N+1
—1)!
. Z Zfa]+k—l+ )(LapJ—I—LaNj)!([ b -‘ )

k=0 j=jo

2%k)P —1)!

< Corcnn Sup( k)P (lap| — 1)
peN  Miapj-141

[a]-1 oo

[ tk—=ljoajtaptk—1 p+j+N+l
x Z Z (lag] + |ap] + [aN] + Kk —=1)! ([ b —‘_1)!

k=0 j=jo
4°k)P(lap] — 1)!
< CaN Sup( )P (lep) — 1)
pEN Miapj-141
fa]—1 oo aj+k—l1 j LN+
< 3 Z L (2°K) ({p+j+ + Wfl)!
P (laj] + |ap] + [aN] + &k =1)! b
4%K)P —1)!
ey sup 48 en = 1)

peEN MLapJ—1+l
[a]-1 oo Laj(2ali)j |—l"|!2aj+ap<[w“ B 1)!
(laj) + lap) + [aN] + k=14 [$])!
< coscy sup or)?(ap) = 1!

pEN Miap|-141
[a]l=1 oo

Lo (42 k)7
Y (4°k)

iz =50 (laj] + lap] + [aN| +k—1+[+] - [WW _ 1)

4%K)P — 1!
< Cor K SUP (4*R)P(lap] = 1)
peN  Miap)-141

X

k=0 j=jo

[a]l-1 oo
. Z Z N|—1—-T2]—T1 N7y
i =5 (L] + [ap] + [aN] M (51— 151!
[a]-1 oo .
(4°k)P(lap] — 1)! )i
< Ca,K,b,N SUD
peN  Miapj—141 kzo J% % —1—1)
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[a]-1 oo
(4°K)P([ap] — 1)! L””4a)
< Ca,K,b,N SUp
K NpEN Ml_apj 1+1 Z Z 1—2)

k=0 j=jo
g o (87R)7(lap] — Wzl i L9 (87K
< Ca,K,b,N SUD
“ peN  Miapj—in 5 = 0‘_*3_2)

On the other hand, it can easily be seen that, for every j =0, -+, jo — 1,

[a]—1 itk

KP
sup

peN Miapj—111 = Tlaj+k—1+1

)Hjl_‘(p—kj—;N—kl) < o

This implies (333) and completes the proof. O

REMARK 3.6.12. Let the conditions of Theorem 3.6.11(i) (resp. Theorem
3.6.11(ii)) hold. Then, for every fixed z € X5, (resp. z € Xy), there exists a
function u; € C([0,00) : E) so that the function ¢ — wu(t;2), ¢ > 0 satisfies
u(+52)|(0,00) € CT1((0,00) : E) and ;t(rcjw u(t; z) = %ul( ), t > 0. Using
the same arguments as in the proof of Theorem 3.6.11, it follows that the esti-
mate (333) holds for any compact set K C [0, 00). If, additionally, F is a Banach
space and C = I, then (T)(2))zex,, (vesp. (Ip(2))sex,) is an analytic semigroup

v+l
of growth order 1;=.

There is by now only a few references on (ultra)-distribution semigroups in
SCLCSs (cf. [411]-[412] and [415]). In the sequel, we always assume that E is a
Banach space.

Concerning regularization of ultradistribution sines whose generators possess
ultra-polynomially bounded resolvent, we have the following interesting assertion
which can be reformulated in the case of exponential ultradistribution sines.

THEOREM 3.6.13. Suppose (M) additionally satisfies (M.2) and (M.3). If
A generates an ultradistribution sine of (My)-class, then there exists an injective
operator C' such that A generates a global C-regularized cosine function (C(t))i0.
Furthermore, the mapping t — C(t), t > 0 is infinitely differentiable and, for every
h >0 and for every compact set K C [0,00), the following holds:

hP qrt+1
it (L wre] + | ggeo]) <

PRrROOF. We will use the same terminology as in the preceding subsection. The
operator A generates a (UDS) of (M,)-class and one can argue as in the proof of
Theorem 3.6.4 to deduce that there exist constants [ > 1, & > 0 and 8 > 0 such
that Ay g1 € p(A) and that:

(346) sup
te K, peNp

oM (HUIA])

[ROZ:A)|| < [|R(X: A)|| < Const . A€ Aapi, kEN.
By Lemma 3.6.7, we have the existence of a sequence (IN,) satisfying Ny = 1, (M.1),
(M.2), (M.3) and N, < M,,. Furthermore, there exists a sufficiently large natural
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number n so that the operator D,, € L(E x E), defined by
1 R(A: A)

Dy,
(@ y)" T 2mi Wiy (1N)
I P

(z y)Td)\, r,yEeFE

is injective and that the following expression defines a bounded linear operator for
every t = 0:
1 [ deosh(M)R(A?: A)z
2mi wiy (i)

I v

The standard argumentation implies C'(t)A C AC(t), t > 0. Moreover, (C(¢))t>0
is strongly continuous and

(347) Ot)x =

d\, x € E.

348 L [N 0, pen 0
— = 2 .
(348) 27ri/w}’vp(i)\) » PeSo
l

Let us prove that Af(f(t—s)C(s)a: ds=C(t)x—Cx,x € E, t > 0, where C := C(0).
Fix, for the time being, a number ¢ > 0 and note that, for every A € I';, we have
A3 fot(t — s)cosh(As)ds = Acosh(At) — A. Then the Fubini theorem, the simple
equality AR(A?: A)z = N2R(\2: A)x —x, A € I, x € E and (348) imply:

¢
2p()2. _
A/ (t—s)C a:ds—/(t—s);i/[)\cosh()\s)A R(/\7 A)z xd)\] ds
T
0

Wi (@A)
IV o

zo/t(t—s)%lm./[x” cosh()\s)m dA} ds

Iy

R(\?: A)x
wiy, (@A)
R(A\?: A)x
Wi, (i)

dX

¢
3
- h(
=5 l/\ /t s) cosh(As) ds

T, 0

(Acosh(At) — \) d\=C(t)x — Cx,

~ omi
T
for every x € E. Proceeding as in the proof of Theorem 3.6.4, one can differentiate
(347) under the integral sign and, in such a way, one gets that, for every ¢ € [0, 7)
and z € E:

n 1 n+1 h A
d—C(t)x L [ A eosh(A ROZ: A)x dX, 2In, n € N and
dtn 271 J wiy, (@A)
1
ar 1 A Hlginh( M) R(A2: A)x
4 —C(t — dX, 2ln—1,
(349) dt”c( Jo = 271'2F wNp(i)\) i nel.
1

One can prove that C' is injective as follows. Suppose Cz = 0, for some = € E.
Put C(—t) := C(t), t € (0,7) and notice that the previous argumentation simply



316 3. ABSTRACT CAUCHY PROBLEMS...

implies that, for every y € F and t, s € R:

s t

/(s —r)C(r)(C(t)y — Cy) dr = (C(s) — O) /(t —r)C(r)ydr.

0 0

Now an application of [381, Theorem 1.2] gives

Clt+s)y+C(t—s))y=2CH)C(s)y, ye E, t >0, s > 0.

Thereby, C(t)z =0, t > 0 and the use of (349), with n =1 and ¢ = 0, yields:

1 MR\ :A)x

2mi Wi (@A)
T, P

(350) dX = 0.

Using the equality R\ A)(5) = (AE0240), A € Aapy, (348), (350) and the

resolvent equation, we easily infer that
1 AR(N?: A)x I\ — (—1)/ dX . L/ MR\ :A)x
B wi (iIA)" - 2mi wi (iA)

2mi Wiy (1N) 2mi
V] P I IV}

Therefore, D, (z 0)7 = 0 and x = 0, as required. Hence, (C(t)):>0 is a global

C-regularized cosine function with the integral generator A. The proof of (346)

follows by means of the estimations already given in the proofs of Theorem 3.6.4

and Theorem 3.6.6. This completes the proof of theorem. O

d\ = 0.

Suppose that (M,) additionally satisfies (M.2) and (M.3). Then one can simply
prove that EXMr)(A) = EMe)(A) x E(Me)(A). Keeping in mind Theorem 3.6.6,
the preceding equality immediately implies the following theorem.

THEOREM 3.6.14. Suppose that (M) additionally satisfies (M.2) and (M.3)
and that G is an ultradistribution sine of (M,)-class generated by A. Then, for
every x € EMe)(A) and y € EM»)(A), the abstract Cauchy problem

u € C*([0,00) : E)NC([0,00) : [D(A)]),
(ACP,) : ¢ u'(t) = Au(t), t = 0,
u(0) =z, v (0) =y
has a unique solution. Furthermore, for every compact set K C [0,00) and h > 0,
the solution u of (ACPy) satisfies
dar dr

o 5 ([ 0]| + [ re]) <o
teK, z?ENo M, N\l dtp dtpt1 '
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Abstract Volterra Equations of Nonscalar Type

Henceforth X and Y are Banach spaces, Y is continuously embedded in X,
L(X) > C is injective and 7 € (0,00]. The norm in X, resp. Y, is denoted by
I - Ix, resp. || - |ly; [R(C)] denotes the Banach space R(C') equipped with the
norm |zl|grey = [|C'zl|x, © € R(C) and, for a given closed linear operator
Ain X, [D(A)] denotes the Banach space D(A) equipped with the graph norm
lzllpay = llzllx + [|Az||x, € D(A). Let A(t) be a locally integrable function
from [0,7) into L(Y,X). Unless stated otherwise, we assume that A(t) is not of
scalar type, i.e., that there does not exist a € L, .([0,7)), a # 0, and a closed linear
operator A in X such that Y = [D(A)] and that A(t) = a(t)A for a.e. t € [0,7)
(cf. also the short discussion preceding Proposition A.3 for full details). In what
follows, the symbol * denotes the finite convolution and the meaning of symbol A is
clear from the context. We basically follow the terminology given in the monograph
of Priiss [369].

Our intention is to enquire into the basic structural properties of a fairly general
class of (local) (A4, k)-regularized C-pseudoresolvent families. This class of pseu-
doresolvent families presents the main tool in the analysis of ill-posed hyperbolic
Volterra equations of non-scalar type. It is worthwhile to mention that there are by
now only a few references concerning non-scalar Volterra equations in their most
general abstract form (cf. [164, 179] and [369]). We analyze Hille-Yosida type
theorems, perturbations, regularity properties of solutions of non-scalar operator
equations, and remove density assumptions from the previously known concepts.

DEFINITION A.1. Let k € C([0,7)) and k& # 0. Consider the linear Volterra
equation

t
(351) +/At—s s)ds, t € [0,7),
0

where 7 € (0,00], f € C([0,7) : X) and A € L] ([0,7) : L(Y,X)). A function
u e C([0,7) : X) is said to be:
(i) a strong solution of (351) iff u € L{2.([0,7) : Y') and (351) holds on [0, 7),
(ii) a weak solution of (351) iff there exist a sequence (f,) in C([0,7) : X)
and a sequence (up) in C([0,7) : X) such that u,(t) is a strong solution
of (351) with f(¢) replaced by f,(t) and that lim, o fn(t) = f(t) and
limy, —, 00 un, () = u(t), uniformly on compact subsets of [0, 7).

317
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The abstract Cauchy problem (351) is said to be (kC)-well posed (C-well posed, if
k(t) = 1) iff for every y € Y, there exists a unique strong solution of
t
(352) u(t;y) = k(t)Cy + /A(t —s)u(s;y)ds, t €[0,7)
0
and if u(t;y,) — 0 in X, uniformly on compact subsets of [0, 7), whenever (y,,) is
a zero sequence in Y (351) is said to be a-regularly (kC)-well posed (a-regularly
C-well posed, if k(t) = 1), where a € L _([0,7)), iff (351) is (kC)-well posed and if
the equation
t
u(t) = (a+ B)(#)Cx + / A(t = syu(s) ds, t € [0,7)
0
admits a unique strong solution for every x € X.

It is clear that every strong solution of (351) is also a mild solution of (351).

DEFINITION A.2. Let 7 € (0,00, k € C([0,7)), k # 0 and A € L{ _([0,7) :

L(Y, X)). A family (S(t)):efo,) in L(X) is called an (A, k)-regularized 5(jpseudo-
resolvent family iff the following holds:
(S1) The mapping t — S(t)z, t € [0,7) is continuous in X for every fixed
z € X, S(0)=k(0)C and S(t)C = CS(¢), t € [0, 7).
(S2) Put U(t)z := [y S(s)xds, z € X, t € [0,7). Then (S2) means U(t)Y C Y,
U(t)y € L(Y), t € [0,7) and (U(t)y)
ous in L(Y).
(S3) The resolvent equations

te[0,7) is locally Lipschitz continu-

(353) S(t)y = k(t)Cy + /A(t —8)dU(s)yds, t € [0,7), y €Y,
0

(354) S(t)yy =k(t)Cy+ /S(t —8)A(s)yds, t € 10,7), y €Y,
0

hold; (353), resp. (354), is called the first resolvent equation, resp. the
second resolvent equation.

An (A, k)-regularized C-pseudoresolvent family (S(t))¢c(o,r) is said to be an (4, k)-
reqularized C-resolvent family if additionally:

(S4) For every y € Y, S(-)y € L2 ([0,7) : Y).
A family (S(t)):epo,r) in L(X) is called a weak (A, k)-regularized C-pseudoresolvent
family iff (S1) and (354) hold. A weak (A, k)-regularized C-pseudoresolvent family
(S(t))e>0 is said to be exponentially bounded iff there exist M > 1 and w > 0
such that [|S(t)||L(x) < Me“', t > 0. Finally, a weak (A,Fk)-regularized C-

pseudoresolvent family (S(t))¢cpo,r) is said to be a-regular (a € Li ,([0,7))) iff

axS)zeC(o,r):Y),zeY" .



ABSTRACT VOLTERRA EQUATIONS OF NONSCALAR TYPE 319

In this paragraph, we will ascertain a few lexicographical agreements. A (weak)
(A, k)-regularized C-(pseudo)resolvent family with k() = 1“(;7:1)7 where a > 0,
is also called a (weak) a-times integrated A-regularized C-(pseudo)resolvent fam-
ily; a (weak) O-times integrated A-regularized C-(pseudo)resolvent family is also
said to be a (weak) A-regularized C-(pseudo)resolvent family. A (weak) (A, k)-
regularized C-(pseudo)resolvent family is also said to be a (weak) (A, k)-regularized
(pseudo)resolvent family ((weak) A-regularized (pseudo)resolvent family) if C' = I
(if C=1TIand k(t) =1).

It is worth noting that the integral appearing in the first resolvent equa-
tion (353) is understood in the sense of discussion following [369, Definition 6.2,
p. 152] and that Jung considered in [164] a slightly different notion of A-regularized
(pseudo)resolvent families. Moreover, (S3) can be rewritten in the following equiv-

alent form:
t

(S3) Uty = 0(t)Cy + /A(t S U(s)yds, t € [0,7), y €Y,

(e}

Ut)yy=0(t)Cy + / U(t—s)A(s)yds, t €[0,7), y €Y.
0

By the norm continuity we mean the continuity in L(X) and, in many places,
we do not distinguish S(-) (U(+)) and its restriction to Y. The main reason why we
assume that A(t) is not of scalar type is the following: Let A be a subgenerator of
a (local) (a, k)-regularized C-resolvent family (S(t))¢c[o,r) in the sense of Definition
2.1.26, let Y = [D(A)] and let A(t) = a(t)A for a.e. t € [0,7). Then (S(t))¢efo,7)
is an (A, k)-regularized C-resolvent family in the sense of Definition A.2, S(t) €
L(Y), t € [0,7) and, for every y € Y, S(-)y € C([0,7) : Y) and the mapping
t — U(t)y, t € [0,7) is continuously differentiable in ¥ with LU(t)y = S(t)y,
t € [0,7) (cf. also Remark A.10 as well as the proofs of Theorem A.7, Theorem
A.9 and Theorem A.18). Assume conversely A(t) = a(t)A for a.e. t € [0,7),
Y = [D(A)] and (S(t))tcjo,r) is an (A, k)-regularized C-resolvent family in the
sense of Definition A.2. If CA C AC and a(t) is kernel, then (S(t)):co,r) is an
(a, k)-regularized C-resolvent family in the sense of Definition 2.1.26. In order to
verify this, notice that the second equality in (S3)’ implies after differentiation
S(t)z = k(t)Cx + [3 S(t — s)a(s)Azds = k(t)Cx + [} a(t — 5)S(s)Aads, t € [0,7),
x € D(A), so that it suffices to show that S(t)A C AS(t), t € [0, 7). Combined with
the first equality in (S3)’, we get that, for every ¢t € [0,7) and z € D(A) :

t

% a(t — s)AU(s)xds = S(t)x — k(t)Cx = /a(t —5)S(s)Axds,
0 0

t

/ta(ts)AU(s)xdsj/sa(sr)S(r)Azdrds/a(ts)U(s)A:z:ds.
0 0 0

0
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Hence, Afot S(s)xds = fot S(s)Azds, t € [0,7), z € D(A). Then the closedness
of A gives S(t)A C AS(t), t € [0,7), as required. In the formulations of Propo-
sition A.6, Theorem A.12, Corollary A.13(i) as well as in the analyses given in
Example A.14, Example A.20 and the paragraph preceding it, we also allow that
A(t) ((A+ B)(t)) is of scalar type; if this is the case, the notion of a correspond-
ing (weak) (A, k)-regularized ((A + B, k)-regularized) C-(pseudo)resolvent family
is always understood in the sense of Definition A.2.

The subsequent propositions can be proved by means of the argumentation
given in [369].

PROPOSITION A.3. (i) Let (Si(t))icjo,r) be an (A, k;)-regularized C-pseudo-

resolvent family, i = 1,2. Then (ko * R1)(t)z = (k1 * Ra)(t)z, t € [0,7), x € v~
(ii) Let (Si(t))iepo,r) be an (A, k)-regularized C-pseudoresolvent family, i = 1,2
and let k(t) be a kernel. Then Si(t)x = Sa2(t)z, t € [0,7), x € v,
(iii) Let (S(t))tefo,r) be an (A, k)-regularized C-pseudoresolvent family. Assume
any of the following conditions:
(iii.1) Y has the Radon—Nikodym property.
(iii.2) There exists a dense subset Z of Y such that A(t)z € Y for a.e. t € [0,7),
A()z € LL ([0,7):Y), 2€ Z and C(Y) C Y.
(iii.3) (S(t))tcjo,r) is a-regular, A(t) = (axdB)(t), t € [0,7), where C(Y) C Y,
a€ L ([0,7)) and B € BV ([0,7) : L(Y, X)) is such that B(-)y has a
locally bounded Radon—Nikodym derivative w.r.t. b(t) = VarBl, t € [0,7),
yevY.
Then (S(t))iepo,r) is an (A, k)-reqularized C-resolvent family. Furthermore, if Y
is reflexive, then S(t)(Y) C Y, t € [0,7) and the mapping t — S(t)y, t € [0,7)
is weakly continuous in'Y for every y € Y. In cases (ii) and (iii), the mapping
t— S(t)y, t €[0,7) is even strongly continuous in'Y .

PROPOSITION A.4. (i) Assume (S(t))icjo,r) is a weak (A,k)-reqularized C-
pseudoresolvent family and u(t) is a mild solution of (351). Then

(kC xu)(t) = (S* f)(t), t €0,7).
In particular, mild solutions of (351) are unique provided that k(t) is a kernel.
(i) Assume n € N, (S(t))seo,r) s an (n — 1)-times integrated A-reqularized C-
pseudoresolvent family, C~'f € C*1([0,7) : X) and fPD(0) =0,0<i<n—1.
Then the following assertions hold:
(ii.1) Let (C71f)"=Y € ACc([0,7) : Y) and (C~1f)™ € LL ([0,7) : Y).
Then the function

u(t) = / S(t— $)(C~1 )™ (s) ds = / dU($)(C )M (¢ — 5)ds, t € [0,7)

is a unique strong solution of (351). Moreover, u € C([0,7):Y).
(ii.2) Let (C~1f)™ e LL ([0,7): X) and Y™ = X. Then the function u(t) =

loc

fot S(t—s)(C7Lf)™)(s)ds, t € [0,7) is a unique mild solution of (351).
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.. _ n =X n—1 n
(iL.3) Let C'g € Wi ((0,7) : Y7), a € Lio((0,7)), f(1) = (hegyrraxg™)(t),

te[0,7) and (S(t))icjo,r) is a-reqular. Then the function u(t) :fot S(t—s)
x (ax (C~1g)™)(s)ds, t € [0,7) is a unique strong solution of (351).

PROPOSITION A.5. (i) Assume (S(t))ieo,r) is an (A, k)-reqularized C-resolvent
family. Put u(t;y) := S(t)y, t € [0,7), y €Y. Then u(t;y) is a strong solution of
(352), and (352) is (kC)-well posed if k(t) is a kernel.

(ii) Assume v = X, (352) is (kC)-well posed, all suppositions quoted in the
formulation of Proposition A.3(iii.2) hold and A(t)Cz = CA(t)z for all z € Z and
a.e. t € [0,7). Then (351) admits an (A, k)-reqularized C-resolvent family.

(iil) Assume v = X, LL _([0,7)) 3 a is a kernel and A(t)Cy = CA(t)y for

ally €Y and a.e. t € [0,7). Then (352) is a-regularly (kC)-well posed iff (351)
admits an a-reqular (A, k)-regularized C-resolvent family.

PROPOSITION A.6. Assume A € Li ([0,7) : L([D(A)], X)) is of the form
t
(355) At) = a(t) A + /a(t _ s)dB(s), t € [0,7),
0

where a € L, .([0,7)), B € BVio([0,7) : L([D(A)], X)) is left continuous, B(0) =
B(04) = 0, and A is a closed linear operator with non-empty resolvent set. Let
(S(t))ieo.r) be an (A, k)-regularized C-pseudoresolvent family. Then (S(t))iefo,r)

is a-reqular.

PROOF. Let € p(A) and K(t) :== —B(t)(u— A)~%, t € [0,7). Then it is clear
that K € BVjoe([0,7) : L(X)). We define recursively Ko(t) := K(t), t € [0,7) and
Kpp1(t) == fot dK (1)K, (t —7),t € [0,7), n € N. By the proof of [369, Theorem
0.5, p.13], the series L(t) := Y 02 (—1)"K,(t), t € [0,7) converges absolutely in
the norm of BVY([0,7) : L(X)), L € BV?([0,7) : L(X)) and L = K —dK L =
K — L x dK. Repeating literally the proof of [369, Proposition 6.4, p. 137], we
obtain that for every y € Y :

AlaxS()y) = S()y — k(-)Cy —dL* (S(-)y — k(-)Cy — p(a* S(-))y).

Then the closedness of A immediately implies that, for every = € YX, one has

A(a* S()z € C([0,7) : X) and a * S(-)z € C([0,7) : [D(A)). O

The Hille-Yosida theorem for (A, k)-regularized C-pseudoresolvent families is
given as follows.

THEOREM A.7. Assume A € L}, .([0,7): L(Y, X)), a € L, .([0,7)), a # 0, a(t)
and k(t) satisfy (P1), eg = 0 and

(356) /e‘“’|A(t)HL(Y7X)dt < 00, € > €.
0
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(1) Let (S(t))i=0 be an (A, k)-regularized C-pseudoresolvent family such that
there exists w > 0 with

(357) supe_“t(HS + sup (t—s) 1HU ) < 0.
>0 0<s<t

||L(X) S)HL(Y)

Put wy := max(w,abs(k),c0) and H(A)z = [[" e MS(t)zdt, x € X, ReX > wo.
Then the following holds:

(N1) C(Y) C Y, (AN)Rersw, is analytic in L(Y,X), R(Cly) € R(I — A(N)),

Re\ > wg, k(A) #0, and I — A(N) is injective, Re X > wq, k(\) # 0,

(N2) H\)y = A\U(X )y, y €Y, ReX > wy, (I — AN)7!Cly € L(Y), ReX >
wo, k(A) # 0, (H(A))Rersw, 05 analytic in both spaces, L(X) and L(Y),
H\NC = C’H( ), Re/\ > wp, and for every y € Y and A € C with
Re\ > wy and k(\) #

(358) HMN - A(/\))y = (I = AN)HNy = k(\)Cy.

(HdA"H(A)HL(X) Hd)\"H()\)HL(Y)) < 0o

(ii) Assume that (N1)—(N3) hold. Then there exists an exponentially bounded
(A, ©)-regularized C-resolvent family (S1(t))i>0-

(iii) Assume that (N1)-(N3) hold and Y™ = X. Then there exists an expo-
nentially bounded (A, k)-regqularized C-pseudoresolvent family (S(t))i>o such that
(357) holds.

(iv) Assume (S(t))i>o0 is an (A, k)-regularized C-pseudoresolvent family, there
exists w = 0 such that (357) holds and W' > w. Then (S(t))i>0 is a-reqular and

A n+1
(N3) sup sup %
n€No A>wp, k(X)#£0 n:

SUp;>¢ e 't||a x S(t)||L(?x yy <0 iff there erists w1 > max(w’, abs(a), abs(k), eg)
such that
()\ w n+1
359 sup sup 7“ ANH(A H _ < 00.
R e Fr L]

PROOF. In order to prove (i), notice that U()\) = H(A)/A, Re X > wp. Further-
more, (A(X))Rre x>w, 18 analytic in L(Y, X) and (357) in combination with (S1) yields
that (H(A))Rex>wo € L(X) N L(Y) is analytic in both spaces, L(X) and L(Y"), and
that H(A)C = CH(\), Re A > wy. Fix, for the time being, A € C with Re A > wy
and k() # 0. Using (S3)’, one gets (358), C(Y) C Y, R(Cy) € R(I — A())),

(I- fl()\))*lqy = )‘]g(;))‘) € L(Y) and the injectiveness of the operator I — A()).

Therefore, we have proved (N1)-(N2). The assertion (N3) is an immediate conse-
quence of Theorem 1.1.13, which completes the proof of (i). Assume now (N1)-(N3).
By Theorem 1.1.13, we obtain that there exist M > 1 and continuous functions
S :[0,00) = L(X) and SY : [0,00) — L(Y) such that S;(0) = SY (0) =0,

supe=(sup (1= 5)1(8) — $1(3)
>0 0<s<t
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(360) + sup (t =) 7S (1) = ST (5)loov ) < oc,
0<s<t
(361) H(\)zx = )\/e_)‘tSl (t)xdt, € X, Re X > wy,
0
(362) H(\Ny = )\/e_)‘tS}/(t)y dt, y €Y, Re X > wo.

Using the inverse Laplace transform, (N2) and (361)-(362), we infer that (S1(¢))¢>0
commutes with C' and that Si(t)y = Sy (t)y, t > 0, y € Y. It is evident that
the mapping t — Si1(t)y, t > 0 is continuous in Y for every fixed y 6 Y and
that (U (¢) fo S1(s)ds)>0 is continuously differentiable in L(Y') with £U;(t) =

SY(t), t > 0. The above assures that (S1), (S2) and (S4) hold for (Sl( ))t0-
Combining the inverse Laplace transform and (358) one gets that (S1(¢)):>0 satisfies

(S3)’, which completes the proof of (ii). If v =X , then the proof of [434, Theorem
3.4, p. 14] implies that there exists a strongly continuous operator family (S(t)):>o0
in L(X) such that Si(t)z = fo s)xds, t = 0, z € X. The estimate (357) is a
consequence of (360) and the remaining part of the proof of (iii) essentially follows
from the corresponding part of the proof of [369, Theorem 6.2, p. 164]. Assuming
M' > 1, >0, a-regularity of (S(t));>0 and |ja * S(t)z||y < M'e“t||z|x, t >0,
r € ?X7 the estimate (359) follows from a straightforward computation. The
converse implication in (iv) follows from Theorem 1.1.13, the uniform boundedness
principle and the final part of the proof of [369, Theorem 6.2, p. 165]. U

REMARK A.8. Assume that A(t) is of the form (355) and that a(t) as well
as B(t), in addition to the assumptions prescribed in Proposition A.6, are of ex-
ponential growth. Then the condition (N3) can be replaced by a slightly weaker
condition:

(N3')

Mn! -
H n n € No, A > wo, k(\) % 0.

Hcm o S Do)

Now we state the complex characterization theorem for (A, k)-regularized C-
pseudoresolvent families.

THEOREM A.9. (i) Assume A(t) satisfies (356) with some g = 0, k(t) satisfies
(P1), wi = max(abs(k),e0) and there exists an analytic mapping f : {A € C :
ReA > wy} — L(X) such that f(\)(I—A(N))y = k(N)Cy, ReX > wi, k(A\) #0, y €
Y, fNC =Cf(A),ReX > wy and || f(N)|nx) < MIA", Re X > wy for some M > 1
and r > 1. Then, for every o > 1, there exists a norm continuous, exponentially
bounded weak (A, k * F( e )) -regqularized C-pseudoresolvent family (Sq(t))i>o0-

(ii) Let (Sa(t))t=0 be as in (i) and let a(t) satisfy (P1). Then (Sa(t))i>0 is
a-regqular provided that there exist My > 1, r1 > 1, a set P C C, which has a limit
point in {\ € C : Re\ > max(w,abs(a))}, and an analytic mapping h : {\ € C:
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Re A > max(wy,abs(a))} — LY™,Y) such that

- totr—1
I—A =k* —— Y,
h(A)( M)y * Tatr) (M)Cy, y €Y, Re A > max(w;,abs(a)),
”h()‘)”L(?X,Y) < Mi|A™™, Re A > max(ws,abs(a)),

and that (I — A(X))™* YX LY enists forall X € P.
(iii) Let, in addition to the assumptions given in (i), the mapping A — f(\) €
L(Y), Re A > wy be analytic in L(Y'). Suppose
(363) (I = AN F(\y =Ek(\Cy, ReX > wi, k() £0, y € Y,
(364) IfMlzyy < MIA", ReA > wy for some M > 1 and r > 1.

Then, for every a > 1, (S4(t))i>0 is a norm continuous, exponentially bounded
(A, k * %)—r@gulam‘zed C-resolvent family, and (Uy(t))i>0 is continuously dif-

ferentiable in L(Y).

PRrOOF. To prove (i), fix an o > 1 and notice that /(T(i)l —fl(/\) {fi‘l = f,f;\l Cy,
y €Y, Re\ > wiq, l;(/\) = 0. Hence, there exists an exponentially bounded, con-
tinuous function S, : [0,00) — L(X) such that S,(0) = 0 and that :9;()\) = /\ffi\i,
ReA > wj. Using the inverse Laplace transform, one immediately yields that
(Sa(t))i>0 commutes with C' and that the second resolvent equation holds, which
completes the proof of (i). To prove (ii), notice that there exists an exponen-

tially bounded function S2 : [0,00) — L(?X,Y) such that S2(0) = 0 and that
Sa(X\) = h(A), Re A > wy. Furthermore, it is checked at once that

(365) (S2(A) = a(N)Sa(N)T —A(N)y =0, y €Y, ReX > wy.

Since the mapping (I — A(\))~" : Y™ - Y exists for all \ € P, (365) implies that
(Sa(A\) — a(\)Sa(M)a = 0, z € Y, X € P. Hence, (S2(\) — a(A)Sa(\)z = 0,
x € ?X, Re A > wy and this, in turn, implies S%(t) = (a * S,)(t), t = 0, which
shows that (S, (t))t>0 is a-regular. To prove (iii), it suffices to notice that (364)
implies S, € C([0,00) : L(Y)), &U,(t) = Sa(t), t > 0 in L(Y) and that the first
resolvent equation follows instantly from (363). O

loc

regular) (A, k)-regularized C-(pseudo)resolvent family and Lj,.([0,7)) 2 b satisfies
bxk # 0. Set Sp(t)z := (b*xS)(t)z, t € [0,7), z € X. Then it readily follows that
(Sb(t))teqo,r) is a (weak, weak a-regular) (A, b * k)-regularized C-(pseudo)resolvent
family. Furthermore, (Up(t)|y )ic[o,r) is continuously differentiable in L(Y") (cf. the
proofs of [14, Proposition 1.3.6, Proposition 1.3.7]), provided that (S2) holds for
(S(t))teo,ry, and a* Sp(-)x € AC1,([0,7) : Y), x € YX, provided that (S(t)):eqo,r)
is a-regular.

REMARK A.10. Assume a € L} ([0,7)), (S(t))iepo,r) is a (weak, weak a-

By the proof of [286, Proposition 2.5] and the consideration given in Remark
A.10, we have the following.
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PROPOSITION A.11. Let k € AC1,c([0,7)), k(0) # 0 and let (R(t)):epo,r) be a
(weak, weak a-regular) (A,k)-regularized C-(pseudo)resolvent family. Then there
exists b € Li ([0,7)) such that (R(t) = ﬁR(t)—i— (bxR)(t)) is a (weak, weak
a-regular) A-regularized C-(pseudo)resolvent family.

telo,7)

The next theorem can be shown following the lines of the proof of [369, The-
orem 6.1, p. 159] with Ko = S+« C~ 1By and K; = S+« C~1B;.

=X

THEOREM A.12. Assume LL _([0,7)) 3 a is a kernel, C(Y) C Y, Y = X,

loc
B € Li,.([0,7) : L(Y, [R(C)])) is of the form B(t)y = Bo(t )y+(a*B )(t)y, t €0,
y €Y, where (Bo(t))iepo,r) € L(Y) N L(X, [R(O)]), (Bi(t))tefo,r) S LY, [R(C)])

(i) C7'Bo(")y € BVioc([0,7) : Y) for ally € Y, C~'By(-)x € B

X) forallz e X,

(i) C7'B1(-)y € BVioc([0,7) : X) for ally € Y, and

(i) CB(t)y=B@t)Cy,y €Y, t€[0,7).
Then there is an a-regular A-regularized C-(pseudo)resolvent family (S(t))iefo,) ilf
there is an a-regular (A + B)-regularized C-(pseudo)resolvent family (R(t))eo,r)-

Before going any further, we would like to observe that it is not clear how
one can prove an analogue of Theorem A.12 in the case of a general a-regular
(A, k)-regularized C-(pseudo)resolvent family (S(t))¢c[o,). From a practical point
of view, the following corollary is crucially important; it is only worth noticing that
one can remove density assumptions in any of cases set out below since the mapping
t— (axS)(t)z, t € [0,7) is continuous in Y for every fixed z € X (cf. [369, p. 160,
1-9]):

COROLLARY A.13. (i) Assume L{ ([0,7)) > a is a kernel, A is a subgenerator

of an a-regularized C-resolvent family (S(t))ieo,r), Y = [D(A)] and

A(t) = a(t)A+ (ax B1)(t) + Bo(t), t € [0,7),
where By(-) and By(-) satisfy the assumptions of Theorem A.3. Assume that any
of the following conditions holds:

(i.1) A is densely defined.

(12) p(A) £ 0. .

(i.3) pc(A) #0 and R(C) = X.

Then there exists an a-regular A-regularized C-resolvent family (R(t))¢c(o,r)-

(ii) Assume (S(t))iepo,r) s a (local) C-regularized semigroup having A as a
subgenerator, and By(-) as well as Bi() satisfy the assumptions of Theorem A.3
with Y = [D(A)]. Then, for every x € D(A), there exists a unique solution of the
problem

uwe Cl([0,7) : X) n C([0,7) : [D(A)]),

u'(t) = Au(t) + (dBo * u)(t)z + (B1 * u)(t) + Cz, t € [0,7),

u(0) = 0.
Furthermore, the mapping t — u(t), t € [0,7) is locally Lipschitz continuous in
[D(A)]-
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(iil) Assume A is a subgenerator of a (local) C-regularized cosine function
(C(t))tefo,r), and Bo(-) as well as By(-) satisfy the assumptions of Theorem A.3
with Y = [D(A)]. Then, for every x € D(A), there exists a unique solution of the
problem

uwe C%([0,7): X) N C([0,7) : [D(A))),
u(t) = Au(t) + (dBo * ') (t)x + (B1 xu)(t) + Cx, t € [0,7),
u(0) = «/(0) = 0.

Furthermore, the mapping t — u(t), t € [0,7) is continuously differentiable in
[D(A)] and the mapping t — u/'(t), t € [0,7) is locally Lipschitz continuous in
[D(A)].

It is clear that Corollary A.13 can be applied to a wide class of integro-
differential equations in Banach spaces and that all aspects of application cannot
be easily perceived.

EXAMPLE A.14. Assume 1 < p< o0, 0<7<00,neN, X =LP(R") or X =
Cy(R™), P(-) is an elliptic polynomial of degree m € N, w = sup,cp» Re P(z) < 0o
and A = P(D). (Possible applications can be also made to non-elliptic abstract
differential operators.) Then, for every w’ > w and r > n|§ — %|, A generates an
exponentially bounded (w’ — A)~"-regularized semigroup in X. Let a completely
positive kernel a(t) satisfy (P1) and let By(:) and Bj(-) satisfy the assumptions of
Corollary A.13(i). This implies that A is the integral generator of an exponentially
bounded (a, (W' — A)~")-regularized resolvent family provided X = LP(R") (1 <
p < 00); clearly, the same assertion holds if a(t) = 1 and X = L>®(R"™) (Cp(R™)).
An application of Corollary A.13 gives that, in any of these cases, there exists
an a-regular A-regularized (w’ — A)~"-resolvent family (R(t))c[o,r), where A(t) =
a(t)P(D) + (a* By)(t) + Bo(t), t € [0,7). The preceding example can be set, with
some obvious modifications, in the framework of the theory of C-regularized cosine
functions.

The application of (A, k)-regularized C-pseudoresolvent families to problems in
linear (thermo-)viscoelasticity and electrodynamics with memory (cf. [369, Chapter
9]) is almost completely confined to the case in which the underlying space X
is Hilbert. In this context, we would like to propose the following problem (cf.
also [369, p. 240] for the analysis of viscoelastic Timoshenko beam in case of non-
synchronous materials).

PROBLEM. Suppose g > 0, €9 > 0, ; C R? is an open set with smooth
boundary T', Q5 = R? \ Q; and n(z) denotes the outer normal at = € " of Q. Let
X = LP(Q : R3) x LP(Qy : R3) x LP(Q : R3) x LP(Qy : R3), p € [1, 00] ~ {2}, and
[ (1, w2, ug, ua) || == (po|ua || + eolluzll® + pollus||? + olluall*)'/?, u1, us € LP(Q :
R3), ug, ug € LP(Qs : R?). Define the operator Ay in X by setting

D(Ag) :={u€ X tuy, up € H'P(Q1 : R?), ug, ug € H'P(Qy : R?),
nx (up —ug) =n x (ug —ug) =0},

Agu = (—,uglcurl uQ,ealcurl Uy, —,uo_lcurl U4,551cur1 uQ), u € D(Ay).
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Then one can simply prove that Ay is closable. Does there exist an injective op-
erator C' € L(X) such that Ay generates a (local, global exponentially bounded)
C-regularized semigroup in X7

Assuming the answer to the previous problem is in the affirmative and the
functions €;(+), p:i(+), oi(+), vi(-) and n;(-) satisfy certain conditions (cf. [369, Sub-
section 9.6, p. 251-253] for further information), one can apply Corollary A.1(ii) in
the study of C-wellposedness of transmission problem for media with memory.

Now we shall analyze differential and analytical properties of (A, k)-regularized
C-pseudoresolvent families. Let (L,) be a sequence of positive real numbers such
that Lo = 1 and that L} satisfy (M.1), (M.2) and (M.3’). The associated function

of (Lp) is defined by M(A) := sup,cy, In %, A € C~ {0}, M(0) := 0. Recall, the
mapping t — M(t), t > 0 is increasing, absolutely continuous, lim;_,o, M (t) = +o0
and limy_, o @ = 0. Define wy,(t) := Z;O:O 2—2, t>0, M, :=Lband X, :={\ €
C:AN#0,|arg(N)| < a} (a € (0,7)).

DEFINITION A.15. (i) Assume that (S(t)):>0 be a (weak) (A4, k)-regularized
C-(pseudo)resolvent family. Then it is said that (S(¢));>0 is an analytic (weak)
(A, k)-regularized C-(pseudo)resolvent family of angle «, if there exists an analytic
function S : 3, — L(X) which satisfies S(¢) = S(t), ¢ > 0 and lim_ ¢ .ex., S(2)z =
k(0)Cx for all v € (0,a) and z € X. It is said that (S(¢)):>0 is an exponen-
tially bounded, analytic (weak) (A, k)-regularized C-(pseudo)resolvent family, resp.
bounded analytic (weak) (A, k)-regularized C-(pseudo)resolvent family, of angle a,
if for every v € (0, ), there exist M, > 0 and w, > 0, resp. w, = 0, such that
1S(2)|lL(x)y < Mye Be= 2 € B, (Since no confusion seems likely, we shall also
write S(+) for S(-).)

(ii) Assume (S(t))¢efo,r) is a (weak) (A, k)-regularized C-(pseudo)resolvent fam-
ily and the mapping ¢ — S(t), ¢ € (0,7) is infinitely differentiable (in the strong
topology of L(X)). Then it is said that (S(t)):e[o,r) is of class CT, resp. of class Cy,
iff for every compact set K C (0,7) there exists hx > 0, resp. for every compact
set K C (0,7) and for every h > 0:

hE. dP
23 < 00, resp. sup

hP dP
LE dtp ( )H X
p dt L(X) teK, peNg

22 s H
LE dtp (*) L(X)

sup
teK, peNyp

< 005

(5(t))sepo,r) is said to be p-hypoanalytic, 1 < p < oo, if (S(t))iepo,r) is of class C*
with L, = p!°/?.

The careful inspection of the proofs of structural characterizations of analytic
convoluted C-semigroups implies the following theorems.

THEOREM A.16. (i) Assume a € (0,5], 0 = 0, k(t) satisfies (P1), (356)
holds with some gy > 0, w > max(abs(k), o), (S(£))t>0 is a (weak) analytic (A, k)-
regularized C-(pseudo)resolvent family of angle o and
(366) ZSEuXI:)WHe’“ZS(z)||L(X) < 00 for all v € (0, ).

Then there exists an analytic mapping H : w + Xz 44 — L(X) such that
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(i.1) HAN(I-AN)y =k\N)Cy, y € Y, ReX > w, k(\) # 0, HA)C = CH()),
Re A > w,
(12) supscupss . [~ ©VHO) ) < 20, 7 € (0.0) and
(1.3) limy ,, o royzo M (N2 =k(0)Cz, z € X.
(i) Let a € (0, %], €0 = 0, k(t) satisfy (P1), (356) hold, w > max(abs(k), o),
there exists an analytic mapping H : w + ¥z 1o — L(X) such that (i.1) and (i.2)
of (i) hold and that, in the case 7YX # X, (i.3) also holds. Then there exists a

(weak) analytic (A, k)-regularized C-(pseudo)resolvent family (S(t))i>0 of angle o
such that (366) holds.

THEOREM A.17. (i) Assume a € (0, 5], €0 = 0, k(t) satisfies (P1), (356) holds,
w = max(abs(k),e0), (S(t))i>0 is an analytic (A, k)-reqularized C-resolvent family
of angle «, the mapping t — U(t) € L(Y), t > 0 can be analytically extended to the
sector Xy, (the analytical extensions of U(-) and S(-) will be denoted by the same
symbols), and
(367) sup lle™S(=
z€EX

HL(X + sup ||e”* z)||L(Y) < oo for all v € (0, ).
1S9

Denote H Nz = [ e *S(t)zdt, * € X, ReA > w. Then (N1)~(N2) hold,
(H()\))RC,\>W is analytzc in both spaces, L(X) and L(Y),

(1) swrewrs,, (IA=HN L) + 1A =) HWlLe)) <00, v € (0,0),

H(MNC =CH(MN), Re A > wqg and

(1.2) imy o royzo M (N2 =k(0)Cz =0, z € X.

(ii) Assume o € (0, 3], €0 > 0, k(t) satisfies (P1), (356) and (N1)—~(N2) hold,
w > max(abs(k),eq), (H(/\))Rex>w is analytic in both spaces, L(X) and L(Y'), and
(I — AN)HN)y = HAN(I — A\)y = E(\Cy, y € Y, ReX > w, k(A ) £ 0.
Assume also that (i.1) of (1) of this theorem holds and that, in the case vr # X,
(i.2) also holds. Then there exists an analytic (A, k)-regqularized C-resolvent family
(S(t))e=0 of angle v such that (367) holds and that the mapping t — U(t) € L(Y),
t > 0 can be analytically extended to the sector X .

The main objective in the subsequent theorems is to clarify the basic differential
properties of (A4, k)-regularized C-pseudoresolvent families.

THEOREM A.18. Assume k(t) satisfies (P1), r > —1 and (356) holds with some
eo = 0. Assume that there erists w > max(abs(k),eo) such that, for every o > 0,
there exist Cy > 0, M, > 0 and an open neighborhood €, ., of the region

Ao = {)\ €C:Red<w, ReA > —cln|Im )| +C’g} U {/\ cC:Re) > w},

and an analytic mapping he : Qg — L(X) such that hy(A)C = Che (M), Re A > w,
he(N(I — AN)y = k(A\)Cy, y €Y, ReXA > w, k(X) # 0, and that [|he(N)| Lx) <
MyIA|", A € Ap . Then, for every ¢ > 1, there exists a norm continuous, exponen-
tially bounded weak (A k * I‘(C+r)) -regqularized C-pseudoresolvent family (S¢(t))i>o0

satisfying that the mapping t — S¢(t), t > 0 is infinitely differentiable in L(X). If,
additionally, hy(X) € L(Y) for all o > 0, and if the mapping A — hy(A), A € Qp 0
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is analytic in L(Y') as well as (I — AMN)he(Ny = ENCy, y € Y, ReX > w,
E(X) #0, and ||he(N)||Liy)y < Mo|A", X € Mg, then (S¢(t))i>o is a norm contin-

uous, exponentially bounded (A, k x %)—regularized C-resolvent family and the

mapping t — S¢(t), t > 0 is infinitely differentiable in L(Y).

THEOREM A.19. Suppose k(t) satisfies (P1), (356) holds with some ¢ > 0,
(M.1)~(M.3') hold for (Ly), (S(t))iepo,r) is a (local) weak (A, k)-regularized C-
pseudoresolvent family, w > max(abs(k),e0) and m € N. Denote, for every e €
(0,1) and a corresponding K. > 0, F.,, = {A € C:ReA > —Inw (K |ImA|)+w}.
Assume that, for everye € (0,1), there exist C. > 0, M. > 0, an open neighborhood
Oc . of the region Ge, ={A € C:Re A > w, l%()\) #0} U {X € F., :Rel <w},
and analytic mappings fe : Oz — C, g : Ocy — L(Y, X) and h. : Oc,, — L(X)
such that:

(1) f-(\) = k(N), ReX > w, g:(A) = A(N), ReX > w, he(\)C = Cho()),
Re A > w,
(i) he(N(I = ge(\)y = f(M\)Cy, y €Y, A€ F. o,
(ili) [heN)|lzx) < Me(1+ [A)mefIReA X e F.,, ReA < w
and ||he(N)[|L(x) < Mc(14[A))™, Re X > w.

Then (S(t))ieo,r) is of class C*.  Assume now that (S(t))icpo,r) is an (A, k)-
reqularized C-resolvent family, and that, in addition to the above assumptions,
he(A) € L(Y) for all e € (0,1). Let the mapping A — he(N\), A € O¢,, be ana-
lytic in L(Y) and let:
(i) (I = g:(M)he(Ny = fe(\)Cy, y €Y, A€ Fe,
(iii)" [|he(N) ||y < Me(1+ [A])mesIBeX N e FL,,, Red S w
and [[he(N)|| vy < Mc(1+|A))™, ReX > w for all € € (0,1).

Then the mapping t — S(t), t € (0,7) is of class C* in L(Y).

Note that (M.3’) does not hold if L, = p!'/? and that the preceding theorem
remains true in this case; then, in fact, we obtain the sufficient conditions for the
generation of real analytic C-(pseudo)resolvents. Further on, the set F; ,, appearing
in the formulation of Theorem A.19 can be interchanged by the set F. ,, , = {A € C:
ReA > —K.|Im \|}/P 4w}, provided L, = p!?/P and 1 < p < oo, and [235, Theorem
2.24] can be reformulated in nonscalar case.

By means of Corollary A.13(i) and the next observation, one can simply con-
struct examples of (differentiable, in general, non-analytic) A-regularized C-resolv-
ent families of class C* (Cp). Let (S(t))iejo,r) be an (a,C)-regularized resolvent
family of class CT (Cp) and let the assumptions of Theorem A.12 hold with Y =
[D(A)] and By = 0. Assume, in addition, C~1By € C°°([0,7) : L(X)) is of class
CF (Cr) and (C~'By)™(0) = 0, i € Ny. Denote by L the solution of the equation
L= Ky+dKo*Lin BW,([0,7) : L(X)), where Ko(t) = (S C~1Bg)(t), t € [0, 7).
Let A(t) = a(t)A + Bo(t), t € [0,7) and let (R(t))iefo,r) be an A-regularized C-
resolvent family given by Corollary A.13(i). Then one can straightforwardly check
that L € C°°([0,7) : L(X)) is of class C* (Cr) and that L(®(0) =0, i € Ng. Tak-
ing into account the proof of [369, Theorem 6.1] (cf. [369, (6.20), p. 160] and [369,



330 APPENDIX

Corollary 0.3, p.15]), it follows that R () = S (t) + f LD (1 — 5)S(s) ds,

€ [0,7), n € Ng. This implies that (R(t)):e[0,) is of class C* (CL). Using the
same method, we are in a position to construct examples of analytic A-regularized
C-resolvent families:

ExXAMPLE A.20. The isothermal motion of a one-dimensional body with small
viscosity and capillarity is described, in the simplest situation, by the system:

UVt = Uy,

{ Up = 20Uzq + DUy — CUgxx,
u(0) = ugp, v(0) = vy,

where a,b and ¢ are positive constants. The associated matrix of polynomials is

P(z) = [_izﬁ sz—l(—)zca:?’}, and P(z) is Shilov 2-parabolic. For the sake of
brevity, we assume that X = LP(R) x LP(R) (1 < p < o0) and that X is equipped
with the sup-norm. Then it is well known that the operator P(D), considered with
its maximal distributional domain, is closed and densely defined in X. Let us recall
the following facts:
(i) Leta®?—c < 0and 7’ > % Then P(D) is the integral generator of an expo-
nentially bounded, analytic (1 — A)~" -regularized semigroup (S, (t)):>0
of angle arctan ﬁ
(ii) Let a*> — ¢ = 0 and 7/ > 2. Then P(D) is the integral generator of a
bounded analytic (1 — A)~" -regularized semigroup (S, (t));>0 of angle
(iii) Eet a?—c>0andr’ > 1. Then P(D) is the integral generator of an expo-
nentially bounded, analytic (1 — A)~" -regularized semigroup (S, ()0
of angle 7.
Assume, in any of above cases, 11,19 € S2T(71(R), where the fractional Sobolev
space SQT’J(R) is defined in the sense of [300, Deﬁnition 12.3.1, p.297], By = 0,
Bo(2)(F) = (1) and K (2) (1) = (S (1= A)" Bo)(= )(g) 2 €Y, f, g€ LP(R),
where o = arctan ﬁ, provided that (i) holds, resp. o = 7, provided that (ii) or

(iii) holds. Let K C ¥, be a compact set and let v € (0, «) satisfy K C ¥,. Then
there exist

§€(0,1/((X+supK)L+ (1~ A) Uil + 11— A) ¢allim))),
M,>1,w,>0and wi/ > w, such that

RIOE / Syi(s) ds

This implies || [ SUY S)Sf‘_l)

r!

M |Z|ew,YRcz < 5ew Rcz, = E’}/

L(X)

dsHL(X) < 52\z|e“’ Rez7 z € ¥,. Define

recursively (K, (z)) by Ko(z) = K(2), 2 € Sq and Kp41(2) := [, dK(s)K,(z—s),
z € X4, n € Np. As a matter of fact, K,,(z) = (K’ * *K *K)( ), zeEmnGN.
%,_/
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By Young’s inequality,
’ ’ 2 UJ, 2
[T Ly < 01N = A) nll oy + (1 = A) 2l prm)) e %, 2 € 5,

Inductively,
n n r r’ n+l z
||K£+1(Z)HL(X) <M (11 = A) Yl + (1= A) ol paw) " er Ro?,

for any z € ¥, and n € Ny. Taken together, the preceding estimate and the
Weierstrass theorem imply that the function z — [7>° (K] (z — $)Sy(s)ds,

z € X, is analytic and that there exist M§ > 1 and w;' > wiy such that

I Jo S0 Kz — 8)Sp(s) dsllpx) < Mle® R, 2 € B, Let (R (t))0 be a
(P(D) + Bo( )) regularized C-resolvent family given by Corollary A.13(i). Since
R.(t) = Sp(t) + fo S o KL (t — s)Sw(s)ds, t > 0, we have that (R, (t))i0 is
an exponentlally bounded, analytic 1-regular A-regularized C-resolvent family of
angle a. On the other hand, P(D) does not generate a strongly continuous semi-
group in L'(R) x L'(R) and p(P(D)) # (. Combining this with Theorem A.12 and
Proposition A.6, we get that there does not exist a local (P(D)+ By(t))-regularized
pseudoresolvent family provided p = 1.

ExAMPLE A.21. Let X = LP(R), 1 < p < co. Consider the next multiplication
operators with maximal domain in X:

Af(z) = 22f(x), Bf(z):= (—z* + 2% = 1)f(2), z € R.
Notice that D(B) C D(A). Let Y := [D(B)] and let A € L] ([0,00) : L(Y, X)) be
given by A(t)f := Af +tBf, t >0, f € D(B). Assume, further, s € (1,2), § = %,
L, = p!*/? and Ks(t) = L7} (e”\é)(t), t > 0. Then there exists a global (not
exponentially bounded) (A, Ks)-regularized resolvent family. Towards this end,
it suffices to show that, for every 7 > 0, there exists a local (A, Ks)-regularized
resolvent family on [0, 7). Denote by M (t) the associated function of the sequence

(Lp) and denote, with a little abuse of notation, Ay g, = {A € C:ReA > @ +
B}, a > 0,8 >0,v > 0. It is obvious that there exists Cs > 0 such that
M(X\) < Cs|\|Y5, X € C. Given 7 >0 and d > 0 in advance, one can find a > 0
and 8 > 0 such that 7 < <202 and A2 — 22X+ (2% — 22+ 1)| > d, A € Ag 1,

Csa 1/s
x € R. Denote by I' the upwards oriented frontier of the ultra-logarithmic region
Aq .1, and define, for every f € X, x € Rand ¢ € [ COS(JT//SQ)),
A2eAt—A°
S, = dA .
(S5(t)f 27T2//\2—2x/\+ t— a2+ 1) /(@)

Then one can simply verify that (Ss(t))¢cjo,-) is a local (A, K)-regularized resolvent
family and that the mapping ¢t — Ss(t), t > 0 is infinitely differentiable in the strong
topologies of L(X) and L(Y'). Moreover, in both spaces, L(X) and L(Y),

(4 5500) ) = 5 [ g A f(0)
r

dtp A2 =2z A+ (z* — 22+ 1)
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for any p € Ny, x € R and f € X. This implies that, for every compact set
K C[0,00), there exists hx > 0 such that
‘h’]} dr

dp
s (|75 a0+ Mfm%®kw)<“

teK, peNg

In particular, (Ss(t))i>0 is s-hypoanalytic; arguing in the same manner, we infer
that there exists 79 > 0 such that there exists a local 2-hypoanalytic (A, K;/s)-
regularized resolvent family on [0,79), where K;/5(t) = £_1(e_>‘1/2)(t), t > 0.
Note also that the use of Fourier multipliers enables one to reveal that the preceding

conclusions remain true in the case of corresponding differential operators +A(t),
where A(t)f = —tf"" —tf" —2if' —tf,t>0,1<p<oo, f €Y =8*?(R).

Let us consider the equations

(368) / A(s)u(t — s)ds + /t k(t —s)g'(s) ds,
where g : R — X, A € L] _([0,00) : L(Y, X)), A#0, k € C([0,00)), k # 0, and
(369) /At—s s)ds, t € (—1,7),

where 7 € (0,00, f € C((—7,7): X) and A € L] ((—7,7) : L(Y, X)), A # 0. The
following proposition can be applied to a class of nonbcalar parabolic equations
considered by Friedman and Shinbrot in [133].

PROPOSITION A.22. Assume that there exists an (A, k)-reqularized C-resolvent
family (S(t))i0, g: R — R(C), C~tg(-) is differentiable for a.e. t € R, C71g(t) €
Y for a.e. t € R,

(i) the mapping s — S(t — s)(C~tg)'(s), s € (—o0o,t] is an element of the
space L'((—o0o,t] : Y) for a.e. t € R, and

(ii) the mapping s — k(t — s)g'(s), s € (—oo,t] is an element of the space
L'((—o00,t] : X) for a.e. t € R.

Put u(t) := fioo S(t—s)(C7tg)(s)ds, t € R. Then C(R: X) > u satisfies (368).

A function v € C((—7,7) : X) is said to be:

(i) a strong solution of (369) iff u € LS ((—7,7) : Y) and (369) holds on
(—7,7),

(ii) a mald solution of (369) iff there exist a sequence (f,) in C((—7,7) : X)
and a sequence (up) in C([0,7) : X) such that u,(t) is a strong solution
of (369) with f(¢) replaced by f,(t) and that lim, o fn(t) = f(¢) and
limy, — 00 Uy (t) = u(t), uniformly on compact subsets of (—7, 7).

PROPOSITION A.23. (i) Assume k € C((—7,7)), k 75 O and A € L ((—7,7) :
LO,X)), A £ 0. Let ky(t) = k(t), As(t) = A), £ € [0.7), k(1) = k(1)
and A_(t) = —A(—t), t € (—7,0]. If there exist (Ay,ky)-regqularized C-resolvent
families (S+(t))ieo,r), then for every x € Y the function u: (—7,7) = X given by
u(t) = Sy(t)z, t € [0,7) and u(t) = S_(—t)z, t € (—7,0] is a strong solution of
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(369) with f(t) = k(t)Cx, t € (—7,7). Furthermore, strong solutions of (369) are
unique provided that ki (t) are kernels.

(ii) Assume ny € N, f € C((—7,7): X), A€ L ((—7,7) : L(Y, X)), A # 0,
fe(t) = f(@t), A (t) = A@t), t € [0,7), f-(t) = f(—t), A_(t) = —A(-1), t € (-7,0]
and there exist (ny — 1)-times integrated A -regularized Cy-resolvent families. Let
freC)([0,7): X) and fii)(O) =0, 0< i< ne— 1. Then the following holds:

(ii.1) Assume that (CL'f+)™=1 € AC([0,7) : Y) and (CI'fi)+) €
Li ([0,7) 1 Y). Then there exists a unique strong solution u(t) of (369),
and moreover uw € C((—7,7) : Y).

(ii.2) Let (C'fe)+) € LL ([0,7) : X) and Y™ = X. Then there ezists a
unique mild solution of (369).
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