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PREFACE

The book provides a detailed introduction to the scope of main methods of the
theory of ill-posed abstract Cauchy problems which has been rapidly developing
over the last two decades, starting presumably with [3], [82] and [61]. The main
purpose of the book is to enable the reader to acquire the most important strategies
for dealing with various classes of generalized semigroups and cosine functions in a
Banach space setting.

The material is divided into three individual chapters. The introductive chap-
ter is mainly the review of the basic tools and concepts which will be utilized
in the remaining part of the book. The reader with a little experience should
move through the first chapter fairly quickly. The second is devoted to the ex-
tensive study of (exponentially bounded) convoluted C-(semi)groups and cosine
functions and their relations with abstract Cauchy problems. The justification for
concentrating to this topic is based upon the fact that several structural prop-
erties of various kinds of integrated C-semigroups and cosine functions have not
been fully cleared so far. We discuss composition properties, automatic extension,
analyticity, perturbations and spectral properties of subgenerators of convoluted
C-semigroups and cosine functions. In the third section, we systematically ana-
lyze (ultra-)distribution (semi-)groups, their differential and analytical properties,
distribution cosine functions, [B0, . . . , Bn, C0, . . . , Cn−1]-groups and regularization
of ultradistribution semigroups and sines. We recollect the basic properties of
(a, k)-regularized C-resolvent families and ill-posed hyperbolic Volterra equations
of nonscalar type. In addition, a comprehensive survey of the vast literature related
to the subject of the book is given.

In terms of prerequisites, the present book assumes that the reader has a vague
familiarity with the content of functions of one complex variable, the basic Banach
space and Lebesgue integration theory. Most of the subject matter, as regards to
difficulty, is intended to be accessible to a graduate in Mathematics reader.

The author would like to express his sincere gratitude to many people who
strongly encouraged his work over the last ten years.
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CHAPTER 1

INTRODUCTION

1.1. Operator-valued functions, Laplace transforms
and closed operators

In what follows, we assume that E is a complex Banach space and that I is a
(bounded or unbounded) segment in Rn, where n ∈ {1, 2}.

Definition 1.1.1. (i) It is said that a function f : I → E is simple if there
exist k ∈ N, elements zi ∈ E, 1 6 i 6 k and Lebesgue measurable subsets Ωk,
1 6 i 6 k of I, such that m(Ωi) <∞, 1 6 i 6 k and that

(1) f(t) =

k∑
i=1

ziχΩi
(t), t ∈ I.

(ii) It is said that a function f : I → E is measurable if there exists a se-
quence (fn) in EI such that, for every n ∈ N, fn is a simple function and that
limn→∞ fn(t) = f(t) for a.e. t ∈ I.

(iii) A function f : I → E is said to be weakly measurable iff for every x∗ ∈ E∗,
the function t 7→ x∗(f(t)), t ∈ I is measurable.

(iv) Let −∞ < a < b <∞ and a < τ 6 ∞. A function f : [a, b] → E is said to
be absolutely continuous iff for every ε > 0 there exists δ > 0 such that for any finite

collection of open subintervals (ai, bi), 1 6 i 6 k of [a, b] with
∑k
i=1(bi − ai) < δ,

the following holds
∑k
i=1 ∥f(bi) − f(ai)∥ < ε; a function f : [a, τ) → E is said to

be absolutely continuous iff for every τ0 ∈ (a, τ), the function f|[a,τ0] : [a, τ0] → E
is absolutely continuous.

If E is a separable Banach space, then a function f(·) is measurable iff f(·) is
weakly measurable. Suppose, further, that f : I → E and that (fn) is a sequence
of measurable functions satisfying limn→∞ fn(t) = f(t) for a.e. t ∈ I. Then f(·) is
also measurable. Next, the Bochner integral of a simple function f : I → E, f(t) =∑k
i=1 ziχΩi

(t), t ∈ I, is defined by
∫
I
f(t)dt :=

∑k
i=1 zim(Ωi). One can simply

prove that the definition of Bochner integral does not depend on the representation
(1).

A measurable function f : I → E is said to be Bochner integrable if there exists
a sequence of simple functions (fn) in EI such that limn→∞ fn(t) = f(t) for a.e.

3



4 1. INTRODUCTION

t ∈ I and

(2) lim
n→∞

∫
I

∥fn(t) − f(t)∥ dt = 0;

in this case, the Bochner integral of f(·) is defined by
∫
I
f(t)dt := limn→∞

∫
I
fn(t)dt.

The definition of Bochner integrability of a measurable function makes a sense and
is independent of the choice of a sequence of simple functions (fn) in EI satisfying
limn→∞ fn(t) = f(t) for a.e. t ∈ I and (2). It can be verified that f : I → E is
Bochner integrable iff f(·) is measurable and the function t 7→ ∥f(t)∥, t ∈ I is inte-
grable as well as that, for every Bochner integrable function f : [0,∞) → E, we have∫∞
0
f(t) dt = limτ→+∞

∫ τ
0
f|[0,τ ](t) dt. The space of all Bochner integrable functions

from I into E is denoted by L1(I : E); equipped with the norm ∥f∥1 :=
∫
I
∥f(t)∥ dt,

L1(I : E) becomes a Banach space. A function f : [0,∞) → E is said to be locally
(Bochner) integrable iff f(·)|[0,τ ] is Bochner integrable for every τ > 0. The space of

all locally integrable functions from [0,∞) into E is denoted by L1
loc([0,∞) : E). If

f ∈ L1
loc([0,∞) : E) and limτ→+∞

∫ τ
0
f|[0,τ ](t) dt exists, then we say that

∫∞
0
f(t) dt

converges as an improper integral and define
∫∞
0
f(t) dt := limτ→+∞

τ∫
0

f|[0,τ ](t) dt.

If there is no risk for confusion, we will not distinguish a function and its restriction
to any subinterval of its domain.

The following proposition will be used frequently throughout the book.

Proposition 1.1.2. Let A be a closed linear operator in E (cf. the final part
of this subsection) and let f : I → E be Bochner integrable. If f(t) ∈ D(A), t ∈ I
and A ◦ f : I → E is Bochner integrable, then

∫
I
f(t) dt ∈ D(A) and A

∫
I
f(t) dt =∫

I
A(f(t)) dt.

Now we state the operator valued version of the dominated convergence theo-
rem and the Fubini theorem (cf. also [300, p. 325]).

Theorem 1.1.3. (i) Suppose that (fn) is a sequence of Bochner integrable func-
tions from EI and that there exists an integrable function g : I → R such that
∥fn(t)∥ 6 g(t) for a.e. t ∈ I and n ∈ N. If f : I → E and limn→∞ fn(t) = f(t)
for a.e. t ∈ I, then f(·) is Bochner integrable,

∫
I
f(t) dt = limn→∞

∫
I
fn(t) dt and

limn→∞
∫
I
∥fn(t) − f(t)∥ dt = 0.

(ii) Let I1 and I2 be segments in R and let I = I1×I2. Suppose that F : I → E is
measurable and that

∫
I1

∫
I2
∥f(s, t)∥ dt ds < ∞. Then f(·, ·) is Bochner integrable,

the repeated integrals
∫
I1

∫
I2
f(s, t) dt ds and

∫
I2

∫
I1
f(s, t) ds dt exist and equal to

the integral
∫
I
f(s, t) ds dt.

Let 1 6 p < ∞ and let (Ω,R, µ) be a measure space. Then the space
Lp(Ω : E) consists of all strongly µ-measurable functions f : Ω → E such that
∥f∥p := (

∫
Ω
∥f(·)∥pdµ)1/p is finite. The space L∞(Ω : E) consists of all strongly µ-

measurable, essentially bounded functions and is equipped with the norm ∥f∥∞ :=
ess supt∈Ω ∥f(t)∥, f ∈ L∞(Ω : E). Herein we identify functions that are equal µ-
almost everywhere on Ω. By Riesz–Fischer theorem, (Lp(Ω : E), ∥ · ∥p) is a Banach
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space for all p ∈ [1,∞], and furthermore, we know that (L2(Ω : E), ∥ · ∥2) is a
Hilbert space. If limn→∞ fn = f in Lp(Ω : E), then there exists a subsequence
(fnk

) of (fn) such that limk→∞ fnk
(t) = f(t) µ-almost everywhere. If the Banach

space E is reflexive, then Lp(Ω : E) is reflexive for all p ∈ (1,∞) and its dual is

isometrically isomorphic to L
p

p−1 (Ω : E). The next proposition clarifies the basic
properties of operator valued absolutely continuous functions.

Proposition 1.1.4. (i) Suppose −∞ < a < b < ∞, f ∈ L1([a, b] : E) and

F (t) :=
∫ t
0
f(s) ds, t ∈ [a, b]. Then F (·) is absolutely continuous, F ′(t) = f(t)

for a.e. t ∈ [a, b] and limh→0
1
h

∫ t+h
t

∥f(s) − f(t)∥ ds = 0 for a.e. t ∈ [a, b], i.e.,
almost every point of [a, b] is a Lebesgue point of the function f(·). Furthermore,
if f ∈ C([a, b] : E), then the preceding equality holds for all t ∈ [a, b].

(ii) Suppose −∞ < a < b < ∞, F : [a, b] → E is absolutely continuous
and F ′(t) exists for a.e. t ∈ [a, b]. Then F ′(·) is Bochner integrable on [a, b] and

F (t) = F (a) +
∫ t
a
F ′(s) ds, t ∈ [a, b].

A Banach space E is said to possess the Radon–Nikodym property iff every
absolutely continuous function F : [0, 1] → E is differentiable a.e. It is well known
that every reflexive Banach space possesses the Radon–Nikodym property and that
the space L1[0, 1] does not possess the Radon–Nikodym property.

Proposition 1.1.5. Suppose X is a Banach space, f ∈ L1
loc([0,∞) : E) and

T : [0,∞) → L(E,X) is strongly continuous, i.e., the mapping t 7→ T (t)x, t > 0
is continuous for every fixed x ∈ E. Define the mapping T ∗0 f : [0,∞) → X by

(T ∗0 f)(t) :=
∫ t
0
T (t− s)f(s) ds, t > 0. Then T ∗0 f ∈ C([0,∞) : X).

Definition 1.1.6. Let f ∈ L1
loc([0,∞) : E). Then we say that f(·) is Laplace

transformable iff there exists ω ∈ R such that

L
(
f(t)

)
(λ) := f̃(λ) := lim

τ→∞

τ∫
0

e−λsf(s) ds :=

∞∫
0

e−λsf(s) ds

exists for every λ ∈ C with Reλ > ω. The abscissa of the convergence of f̃(·)
is defined by abs(f) := inf{ω ∈ R : f̃(λ) exists for every λ ∈ C with Reλ > ω}.
Given a measurable function f : [0,∞) → E, we define the exponential growth
bound ω(f) by setting

ω(f) := inf
{
ω ∈ R : exists M > 0 such that ∥f(t)∥ 6Meωt, t > 0

}
.

Obviously, abs(f) 6 abs(∥f∥) 6 ω(f), but in general, there exist examples where
one has the strict inequalities. We refer the reader to [14, Appendix A] for the basic
properties of operator valued analytic functions. If f(·) is Laplace transformable,

then f̃(λ) exists for every λ ∈ C with Reλ > abs(f), the mapping λ 7→ f̃(λ),

λ ∈ C, Reλ > abs(f) is analytic, dn

dλn f̃(λ) = (−1)n
∫∞
0
e−λttnf(t) dt, n ∈ N, λ ∈ C,

Reλ > abs(f) (understood in the sense of improper integral) and f̃(λ) does not
exist if λ ∈ C and Reλ < abs(f).
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Theorem 1.1.7. Suppose f ∈ L1
loc([0,∞) : E) is Laplace transformable, z ∈ C

and s > 0.

(i) Put g(t) := e−ztf(t), t > 0. Then g(·) is Laplace transformable, abs(g) =

abs(f) − Re z and g̃(λ) = f̃(λ+ z), λ ∈ C, Reλ > abs(f) − Re z.

(ii) Put fs(t) := f(t+s), t > 0. Then fs(·) is Laplace transformable, abs(fs) =

abs(f) and f̃s(λ) = eλs(f̃(λ) −
∫ s
0
e−λtf(t) dt), λ ∈ C, Reλ > abs(f).

(iii) Suppose h ∈ L1
loc([0,∞)) is Laplace transformable and (h ∗0 f)(t) :=∫ t

0
h(t − s)f(s) ds, t > 0. Then h ∗0 f is Laplace transformable, abs(h ∗0 f) 6

max(abs(|h|), abs(f)) and

h̃ ∗0 f(λ) = h̃(λ)f̃(λ), λ ∈ C, Reλ > max(abs(|h|), abs(f)).

(iv) Let F (t) :=
∫ t
0
f(s)ds, t > 0. Then F (·) is Laplace transformable, abs(F ) 6

max(0, abs(f)) and F̃ (λ) = f̃(λ)
λ , λ ∈ C, Reλ > max(0, abs(f)).

(v) Suppose, in addition, ω(f) <∞ and put

j(t) :=

∞∫
0

e−s
2/4t

√
πt

f(s) ds and k(t) :=

∞∫
0

se−s
2/4t

2
√
πt

3
2

f(s) ds, t > 0.

Then j(·) and k(·) are Laplace transformable,

max(abs(j), abs(k)) 6 (max(ω(f), 0))2, j̃(λ) =
f̃(
√
λ)√
λ

and k̃(λ) = f̃(
√
λ)

for all λ ∈ C with Reλ > (max(ω(f), 0))2.

(vi) (The uniqueness theorem for the Laplace transform) Suppose λ0 > abs(f)

and f̃(λ) = 0 for all λ ∈ (λ0,∞). Then f(t) = 0 for a.e. t > 0.

(vii) Let l(·) be Laplace transformable and let ω > max(abs(f), abs(l)). For a
closed linear operator A, the following assertions are equivalent:

(vii.1) f(t) ∈ D(A) and Af(t) = l(t) for a.e. t > 0.

(vii.2) f̃(λ) ∈ D(A) and Af̃(λ) = l̃(λ), λ ∈ (ω,∞).

(viii) Suppose ε > 0. Then the following assertions are equivalent:

(viii.1) lim supλ→∞
ln ∥f̃(λ)∥

λ 6 −ε.
(viii.2) f(t) = 0 for a.e. t ∈ [0, ε].

(ix) (Post–Widder inversion) Suppose t > 0 is a Lebesgue point of f(·). Then
the following holds:

f(t) = lim
n→∞

(−1)n
1

n!

(n
t

)n+1

f̃ (n)
(n
t

)
.

Definition 1.1.8. A sequence (λn) in C is called a uniqueness sequence if for

every Laplace transformable function f(·) which satisfies that f̃(λn) is defined for

every n ∈ N and that f̃(λn) = 0, n ∈ N, one has f(t) = 0 for a.e. t > 0.
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Theorem 1.1.9. Suppose f ∈ L1
loc([0,∞) : E) is Laplace transformable and

a ∈ (max(0, abs(f)),∞). If (λn) is a sequence in {λ ∈ C : Reλ > abs(f)} without
accumulation points such that |{λn : n ∈ N}| = ∞ and that

(3)

∞∑
n=1

(
1 − |1 − λn|

|1 + λn|

)
<∞,

then (λn) is a uniqueness sequence. Suppose, conversely, that (λn) is a sequence in
{λ ∈ C : Reλ > 0} and that (λn) does not possess any accumulation point in the
open right half plane as well as that the sum appearing in (3) is finite. Then there
exists a Laplace transformable function f(·) such that 0 ̸= f ∈ L1

loc([0,∞) : E) and

that f̃(λn) = 0, n ∈ N.

Let a > 0, b > 0, γ ∈ N and δ ∈ R. Then (a + bnγ)n, resp. (1 + inδ)n, is a
uniqueness sequence whenever γ ∈ (−∞, 0) ∪ (0, 1], resp. δ ∈ (0, 12 ].

Denote Σα := {reiθ : r > 0, θ ∈ (−α, α)}, α ∈ (0, π]. The following important
characterization of analytic properties of operator valued Laplace transform is due
to Sova [391].

Theorem 1.1.10. Let α ∈ (0, π2 ], ω ∈ R and q : (ω,∞) → E. Then the
following assertions are equivalent:

(i) There exists an analytic function f : Σα → E such that supz∈Σβ
∥e−ωzf(z)∥

<∞ for all β ∈ (0, α) and q(λ) = f̃(λ) for all λ ∈ (ω,∞).
(ii) The function q(·) has an analytic extension q̃ : ω + Σπ

2 +α → E such that
supλ∈ω+Σπ

2
+γ

∥(λ− ω)q̃(λ)∥ <∞ for all γ ∈ (0, α).

We need the assertions of [14, Proposition 2.6.3] and [14, Proposition 2.6.4].

Theorem 1.1.11. (i) Suppose α ∈ (0, π], f : Σα → E is analytic and
supz∈Σβ

∥f(z)∥ <∞ for all β ∈ (0, α). Let x ∈ E. Then the following holds:

(i.1) If limt→∞ f(t) = x, then limz∈Σβ , |z|→∞ f(z) = x for all β ∈ (0, α).
(i.2) If limt↓0 f(t) = x, then limz∈Σβ , z→0 f(z) = x for all β ∈ (0, α).

(ii) Let α, ω and q(·) have the same meaning as in the formulation of Theo-
rem 1.1.10 and let x ∈ E. Then the following holds:

(ii.1) limt↓0 f(t) = x iff limλ→+∞ λq(λ) = x.
(ii.2) Let ω = 0. Then limt→∞ f(t) = x iff limλ↓0 λq(λ) = x.

The complex inversion theorem for the operator valued Laplace transform reads
as follows.

Theorem 1.1.12. Assume a > 0, q : {λ ∈ C : Reλ > a} → E is analytic
and there exist M > 0 and r > 1 such that ∥q(λ)∥ 6 M

|λ|r , λ ∈ C, Reλ > a.

Then there exist a continuous function f : [0,∞) → E and M ′ > 0 such that

∥f(t)∥ 6M ′tr−1eat, t > 0 and that q(λ) = f̃(λ) for all λ ∈ C with Reλ > a.
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Notice that the continuous function f(·) given in the formulation of Theo-
rem 1.1.12 is given by:

f(t) =
1

2πi

a+i∞∫
a−i∞

eλtq(λ) dλ, t > 0,

and that the previous improper integral does not depend on the choice of a number
a > a. The Arendt–Widder theorem has been reconsidered in a series of papers (see
e.g. [41], [68], [202] and [431]); the following version is sufficient for our purposes.

Theorem 1.1.13 (Hieber [149], Xiao-Liang [434]). Let a > 0, α ∈ (0, 1],
ω ∈ (−∞, a], M > 0 and let q : (a,∞) → E be an infinitely differentiable function.
Then (i) ⇔ (ii), where:

(i) The following holds
∥∥(λ− ω)k+1 q

(k)(λ)
k!

∥∥ 6M, λ > a, k ∈ N0.

(ii) There exists a function F ∈ C([0,∞) : E) satisfying F (0) = 0,

q(λ) = λα
∞∫
0

e−λtF (t) dt, λ > a,

∥∥∥∥∥
t+h∫
0

(t+ h− s)−α

Γ(1 − α)
F (s) ds−

t∫
0

(t− s)−α

Γ(1 − α)
F (s) ds

∥∥∥∥∥ 6Mheωt max(eωh, 1),

for any t > 0 and h > 0, if α ∈ (0, 1), and

∥F (t+ h) − F (t)∥ 6Mheωt max(eωh, 1), t > 0, h > 0

if α = 1. Moreover, in this case,

∥F (t+ h) − F (t)∥ 6 2M

αΓ(α)
hr max(eω(t+h), 1), t > 0, h > 0.

A linear operator A : D(A) → E is closed iff the graph of the operator A,
defined by GA := {(x,Ax) : x ∈ D(A)}, is a closed subset of E×E. A necessary and
sufficient condition for a linear operator A : D(A) → E to be closed is that for every
sequence (xn) in D(A) such that limn→∞ xn = x and that limn→∞Axn = y, the
following holds: x ∈ D(A) and Ax = y. For a linear operator A, we introduce the
graph norm onD(A) by ∥x∥[D(A)] := ∥x∥+∥Ax∥, x ∈ D(A). Then (D(A), ∥·∥[D(A)])
is a Banach space iff A is closed. A subspace Y ⊆ D(A) is called a core for A iff
Y is dense in D(A) with respect to the graph norm. The closed graph theorem
states that every closed linear operator defined on the whole space E is a bounded,
linear operator; henceforth we denote by L(E) the space of all bounded, linear
operators on E and by Kern(A) and R(A), the kernel and the range of the operator
A, respectively.

Further on, a linear operator A is closable iff there exists a closed linear operator
B such that A ⊆ B. It can be simply shown that a linear operator A is closable iff for
every sequence (xn) in D(A) such that limn→∞ xn = 0 and that limn→∞Axn = y,
we have y = 0. Suppose that A is a closable linear operator. The closure of A,
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denoted by A, is defined as the set of all elements (x, y) ∈ E × E such that there
exists a sequence (xn) in D(A) with limn→∞ xn = x and limn→∞Axn = y; then
A is a closed linear operator and, for every other closed linear operator B which
contains A, one has A ⊆ B. Suppose A : D(A) → E is a linear operator. We define
the powers of A recursively by setting: A0 =: I, D(An) := {x ∈ D(An−1) : An−1x ∈
D(A)} and Anx := A(An−1x), x ∈ D(An), n ∈ N. Then D(An) = D(A − λ)n,
n ∈ N, λ ∈ C. Put D∞(A) :=

∩
n>1D(An). The resolvent set of a linear operator

A, denoted by ρ(A), is the set of all complex numbers λ such that the operator
λ − A is bijective; we write R(λ : A) := (λ − A)−1. Recall that the assumption
ρ(A) ̸= ∅ implies that, for every n ∈ N, we have that the operator An is closed;

furthermore, if A is densely defined, i.e., D(A) = E, and ρ(A) ≠ ∅, then D(An) is
a core for A, n ∈ N. The spectrum of the operator A, denoted by σ(A), is defined
to be the set σ(A) := C r ρ(A). We know that ρ(A) is an open subset of C and
that, in the case ρ(A) ̸= ∅, the mapping λ → R(λ : A), λ ∈ ρ(A) is an analytic
mapping from ρ(A) into L(E). Furthermore, the resolvent equation states that
R(λ :A) − R(ξ : A) = (ξ − λ)R(λ :A)R(ξ : A), and as a consequence, one obtains

inductively that dn

dλnR(λ :A) = (−1)nn!R(λ :A)n+1, λ ∈ ρ(A), n ∈ N. A closed,
linear operator A is said to be the Hille–Yosida operator ([82]) if there exist M > 0
and ω ∈ R such that (ω,∞) ⊆ ρ(A) and that ∥R(λ :A)n∥ 6 M

(λ−ω)n , λ > ω, n ∈ N.

For a closed linear operator A, we introduce the following subset of E∗ × E∗:

A∗ =:
{

(x∗, y∗) ∈ E∗ × E∗ : x∗(Ax) = y∗(x) for all x ∈ D(A)
}
.

If A is densely defined, then the adjoint operator A∗ of A is a closed linear operator
in E∗. Suppose F is a closed subspace of E. Then the part of A in F , denoted
by A|F , is a linear operator defined by D(A|F ) := {x ∈ D(A) ∩ F : Ax ∈ F}
and A|Fx := Ax, x ∈ D(A|F ). Let α ∈ C r {0} and let A and B be linear
operators. We define αA, A + B and AB in the following way: D(αA) =: D(A),
D(A+B) = D(A)∩D(B) and D(AB) := {x ∈ D(B) : Bx ∈ D(A)}, (αA)x := αAx,
x ∈ D(αA), (A+B)x := Ax+Bx, x ∈ D(A+B) and (AB)x := A(Bx), x ∈ D(AB).

Proposition 1.1.14. (i) Suppose A is closed, B ∈ L(E), α ∈ C r {0} and F
is a closed subspace of E. Then α(A+B), α(AB) and A|F are also closed.

(ii) Let A be densely defined and ρ(A) ̸= ∅. Then D∞(A) is dense in E.

(iii) Suppose A is a closed operator, U ⊆ C is open and connected and U ∩
ρ(A) ̸= ∅. If there exists an analytic mapping F : U → L(E) such that the set
{λ ∈ U ∩ ρ(A) : F (λ) = R(λ : A)} has a limit point in U , then U ⊆ ρ(A) and
F (λ) = R(λ :A), λ ∈ ρ(A).

(iv) Suppose A is a closed, densely defined operator. Then D(A∗) is dense in E∗

with respect to the weak∗ topology, and in the case when E is reflexive, we have that
A∗ is dense in E∗ with respect to the strong topology. Furthermore, σ(A∗) = σ(A)
and R(λ : A∗) = R(λ :A)∗, λ ∈ ρ(A).

(v) If A is closable and densely defined, then A
∗

= A∗.
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It is noteworthy that D(A∗) is weak∗ dense in E∗ even in the case when A is
not densely defined in E. This follows from [235, Lemma 2.4] and the proof of [14,
Proposition B.10].

Example 1.1.15 (Multiplication Operators). Let (Ω,R, µ) be a measure space
and let f : Ω → C be a measurable function. Put

Essranf :=
{
λ ∈ C : µ({x ∈ Ω : |f(x) − λ| < ε}) > 0 for all ε > 0

}
.

Suppose that Ω ⊆ Rn and that open subsets of Ω are measurable with non-zero
measure; then it can be simply verified that, for every continuous function f : Ω →
C, we have Essranf = R(f). Define, for p ∈ [1,∞], the multiplication operator Af
in Lp(Ω, µ) by setting: D(Af ) =: {g ∈ Lp(Ω, µ) : fg ∈ Lp(Ω, µ)} and Afg := fg,
g ∈ D(Af ). Then the following holds:

(i) Af is a closed operator, and Af ∈ L(Lp(Ω, µ)) iff f ∈ L∞(Ω, µ).
(ii) Suppose f /∈ L∞(Ω, µ). Then Af is densely defined iff p <∞.

(iii) σ(Af ) = Essranf .

Definition 1.1.16 (Kunstmann [249]). A closed linear operator A is said to
be stationary dense iff

n(A) := inf
{
k ∈ N0 : D(Am) ⊆ D(Am+1) for all m > k

}
<∞.

Generally, a densely defined operator A need not be stationary dense, but in
the case ρ(A) ̸= ∅, A must be stationary dense with n(A) = 0. Furthermore, if A
is not necessarily densely defined and ρ(A) ̸= ∅, then one can simply prove that

n(A) = inf{k ∈ N0 : D(Ak) ⊆ D(Ak+1)}.

1.2. C-regularized semigroups and cosine functions

Throughout this section we assume that L(E) ∋ C is injective. Recall, the
C-resolvent set of a closed linear operator A, denoted by ρC(A), is defined as the
set of all complex numbers λ such that the operator λ − A is injective and that
R(C) ⊆ R(λ−A).

Definition 1.2.1. Let τ ∈ (0,∞]. A strongly continuous family (T (t))t∈[0,τ),
resp. (C(t))t∈[0,τ), in L(E) is said to be a (local, if τ <∞) C-regularized semigroup,
resp. C-regularized cosine function, if:

(i.1) T (t+ s)C = T (t)T (s), for all t, s ∈ [0, τ) with t+ s < τ ,
(i.2) T (0) = C,

resp.,

(ii.1) C(t+ s)C + C(|t− s|)C = 2C(t)C(s), for all t, s ∈ [0, τ) with t+ s < τ ,
(ii.2) C(0) = C.

A closed linear operator A which satisfies:

(i.3) T (t)A ⊆ AT (t), t ∈ [0, τ),

(i.4)
∫ t
0
T (s)x ds ∈ D(A), t ∈ [0, τ), x ∈ E and A

∫ t
0
T (s)x ds = T (t)x − Cx,

t ∈ [0, τ), x ∈ E,

resp.,
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(ii.3) C(t)A ⊆ AC(t), t ∈ [0, τ),

(ii.4)
∫ t
0
(t − s)C(s)x ds ∈ D(A), t ∈ [0, τ), x ∈ E and A

∫ t
0
(t − s)C(s)x ds =

C(t)x− Cx, t ∈ [0, τ), x ∈ E,

is called a subgenerator of (T (t))t∈[0,τ), resp. (C(t))t∈[0,τ). It is said that a global
C-regularized semigroup (T (t))t>0, resp. a global C-regularized cosine function
(C(t))t>0, is exponentially bounded if there exist M > 0 and ω > 0 such that
∥T (t)∥ 6Meωt, resp. ∥C(t)∥ 6Meωt, t > 0.

The (integral) generator of (T (t))t∈[0,τ), resp. (C(t))t∈[0,τ), is defined by

Â :=

{
(x, y) ∈ E × E : T (t)x− Cx =

t∫
0

T (s)y ds, t ∈ [0, τ)

}
, resp.

Â :=

{
(x, y) ∈ E × E : C(t)x− Cx =

t∫
0

(t− s)C(s)y ds, t ∈ [0, τ)

}
,

and it is the maximal subgenerator of (T (t))t>0, resp. (C(t))t>0. In both cases,

C−1ÂC = Â. Moreover, the integral generator of (T (t))t∈[0,τ), resp. (C(t))t∈[0,τ),

coincides with the (infinitesimal) generator Â of (T (t))t∈[0,τ), resp. (C(t))t∈[0,τ),
defined by: {

(x, y) ∈ E × E : lim
t→0+

T (t)x− Cx

t
= Cy

}
, resp.{

(x, y) ∈ E × E : lim
t→0+

2
C(t)x− Cx

t2
= Cy

}
.

In the case C = I or ρ(Â) ̸= ∅, the set of all subgenerators of (T (t))t∈[0,τ), resp.
(C(t))t∈[0,τ), denoted by ℘(T ), resp. ℘(C), is monomial. In general, the set ℘(T ),
resp. ℘(C), need not be finite and, endowed with corresponding algebraic opera-
tions, forms a complete lattice whose partial ordering coincides with the usual set
inclusion. For further information concerning such lattices, we refer the reader to
[422, 451] and Subsection 2.1.1. The well known result of van Casteren [53] says
that, for every local semigroup (T (t))t∈[0,τ), i.e., local I-regularized semigroup,

there exists a strongly continuous semigroup (T̃ (t))t>0 such that T̃ (t) = T (t),
t ∈ [0, τ). The same assertion holds for local cosine functions, but in general, a
local C-regularized semigroup (C ̸= I), resp. C-regularized cosine function, need
not be extendible to a larger interval. Every strongly continuous semigroup (global
cosine function) must be exponentially bounded and this is no longer true for global
C-regularized semigroups and cosine functions.

The following Hille–Yosida characterization of global exponentially bounded
C-regularized semigroups and cosine functions will be proved in Subsection 2.1.2
in a more general context.

Theorem 1.2.2 (Hille–Yosida). Let A be densely defined and let CA ⊆ AC.

(i) The operator A is a subgenerator of an exponentially bounded C-regularized semi-
group (T (t))t>0 satisfying ∥T (t)∥ 6 Meωt, t > 0 for appropriate constants M > 0
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and ω ∈ R iff (ω,∞) ⊆ ρC(A), the mapping λ 7→ (λ − A)−1C, λ > ω is infinitely
differentiable and∥∥∥ dk

dλk
[(λ−A)−1C]

∥∥∥ 6 Mk!

(λ− ω)k+1
, k ∈ N0, λ > ω.

(ii) The operator A is a subgenerator of an exponentially bounded C-regularized co-
sine function (C(t))t>0 satisfying ∥C(t)∥ 6 Meωt, t > 0 for appropriate constants
M > 0 and ω > 0 iff (ω2,∞) ⊆ ρC(A), the mapping λ 7→ λ(λ2 − A)−1C, λ > ω is
infinitely differentiable and∥∥∥ dk

dλk
[λ(λ2 −A)−1C]

∥∥∥ 6 Mk!

(λ− ω)k+1
, k ∈ N0, λ > ω.

The definition of an analytic C-regularized semigroup was introduced indepen-
dently by deLaubenfels [92] and Tanaka [398].

Definition 1.2.3. (i) Let α ∈ (0, π2 ]. A C-regularized semigroup (T (t))t>0 is
said to be an analytic C-regularized semigroup of angle α if there exists a function
T : Σα ∪ {0} → L(E) such that T(t) = T (t), t > 0 and:

(i.1) the mapping z 7→ T(z), z ∈ Σα is analytic,
(i.2) T(z)T(ω) = T(z + ω)C, z, ω ∈ Σα and
(i.3) the mapping z 7→ T(z)x, z ∈ Σβ is continuous for every fixed x ∈ E and

β ∈ (0, α).

(ii) [89] An entire C-regularized group is an entire family of bounded linear
operators (T (z))z∈C such that T (0) = C and T (z+ω)C = T (z)T (ω), z, ω ∈ C. The
generator of an entire C-regularized group is said to be the generator of (T (t))t>0.

Theorem 1.2.4. Assume M > 0, ω > 0 and A is a subgenerator of an ex-
ponentially bounded C-regularized cosine function (C(t))t>0. Then A is a subgen-
erator of an exponentially bounded, analytic C-regularized semigroup (T (t))t>0 of

angle π
2 , where T (t)x = 1√

πt

∫∞
0
e−s

2/4tC(s)x ds, t > 0, x ∈ E. Furthermore,

∥T (t)∥ 6 2Meω
2t, t > 0 provided ∥C(t)∥ 6Meωt, t > 0.

Proposition 1.2.5. Suppose A is a subgenerator of a (local) C-regularized
semigroup (S(t))t∈[0,τ), resp. C-regularized cosine function (C(t))t∈[0,τ). Then
T (t)T (s) = T (s)T (t), resp. C(t)C(s) = C(s)C(t) for all t, s ∈ [0, τ) and R(T (t)) ⊆
D(A), t ∈ [0, τ), resp. R(C(t)) ⊆ D(A), t ∈ [0, τ).

Proposition 1.2.6. Suppose (T (t))t∈[0,τ), resp. (C(t))t∈[0,τ), is a strongly con-
tinuous family in L(E) and A is a closed linear operator. If

R

( t∫
0

S(s) ds

)
⊆ D(A) and

t∫
0

S(s)Ads ⊆ A

t∫
0

S(s) ds = S(t) − C for all t ∈ [0, τ),

resp.,

R

( t∫
0

(t−s)C(s) ds

)
⊆ D(A) and

t∫
0

(t−s)C(s)Ads ⊆ A

t∫
0

(t−s)C(s) ds = C(t)−C,
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for all t ∈ [0, τ), then (T (t))t∈[0,τ) is a (local) C-regularized semigroup, resp.

(C(t))t∈[0,τ) is a (local) C-regularized cosine function, generated by C−1AC.

The following is an extension type theorem for local C-regularized semigroups
and cosine functions; in Subsection 2.1.1, we will consider automatic extension type
theorems for local convoluted C-semigroups and cosine functions. It seems that the
assertions of Theorem 2.1.9 and Theorem 2.1.14 (proved in the case n = 2) can be
additionally refined following the approach of Wang and Gao [424]:

Theorem 1.2.7. Suppose that A is a subgenerator (the integral generator) of
a local C-regularized semigroup (T (t))t∈[0,τ), resp. C-regularized cosine function
(C(t))t∈[0,τ). Then, for every n ∈ N, A is a subgenerator (the integral generator) of
a local Cn-regularized semigroup (Tn(t))t∈[0,nτ), resp. C

n-regularized cosine func-
tion (Cn(t))t∈[0,nτ).

The most important additive perturbation results for (local) C-regularized
semigroups and cosine functions have been proved by Shaw and his collaborators:

Theorem 1.2.8. [381] (i) Assume (T (t))t∈[0,τ) is a (local, global exponentially
bounded) C-regularized semigroup having A as a subgenerator, resp. the integral
generator, B ∈ L(E), R(B) ⊆ R(C) and BCx = CBx, x ∈ D(A). Then A+B is a
subgenerator, resp. the integral generator, of a (local, global exponentially bounded)
C-regularized semigroup (TB(t))t∈[0,τ) which satisfies the integral equation:

TB(t)x = T (t)x+

t∫
0

T (t− s)C−1BTB(s)x ds, t ∈ [0, τ), x ∈ E.

(ii) Assume (C(t))t∈[0,τ) is a (local, global exponentially bounded) C-regularized
cosine function having A as a subgenerator, resp. the integral generator, B ∈ L(E),
R(B) ⊆ R(C) and BCx = CBx, x ∈ D(A). Then A + B is a subgenerator, resp.
the integral generator, of a (local, global exponentially bounded) C-regularized cosine
function (CB(t))t∈[0,τ) which satisfies the integral equation:

CB(t)x = C(t)x+

t∫
0

t−s∫
0

C(t− r)C−1BCB(s)x dr ds, t ∈ [0, τ), x ∈ E.

Example 1.2.9. (i) [89, Example 8.6] Let ∅ ̸= Ω ⊆ Rn be an open, bounded
set with smooth boundary ∂Ω and let E := Lp(Ω), 1 6 p < ∞. Put D(A) :=

W 2,p(Ω)∩W 1,p
0 (Ω) and A := ∆. Then −A generates an entire C-regularized group

for some injective operator C ∈ L(Lp(Ω)).
(ii) [100, Example 2.11], [422, Example 2.14] Let E := L∞(R) and let G :=

d/dx with maximal domain. Put D(A) := D(G2), Ax := Gx, x ∈ D(A) and
(T (t)f)x := (R(1 : G)2f)(x+ t), t > 0, x ∈ R, f ∈ E. Then A is closable, (T (t))t>0

is a global R(1 : G)2-regularized semigroup generated by G, A ∈ ℘(T ), |℘(T )| = ∞
and every subgenerator of (T (t))t>0 contains A.

(iii) [89, Example 16.3] Let E :=
{
f : R→ C is continuous : lim|x|→∞ ex

2

f(x)

= 0
}

, ∥f∥ := supx∈R |ex2

f(x)|, f ∈ E and A := d
dx with maximal domain. Then
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there does not exist an injective operator C ∈ L(E) such that A generates a global
C-regularized semigroup.

(iv) [381] Let E := L2([1,∞)) and let (C(t)f)(s) := 1
2 (est + e−st)e−sf(s),

t ∈ [0, 1), s > 1, f ∈ E. Then (C(t))t∈[0,1) is a local C(0)-regularized cosine

function, 2∥C(t)∥ = et−1 + e−t−1, t ∈ [0, 1) and (C(t))t∈[0,1) cannot be extended
beyond the interval [0, 1].

(v) [420, Example 3.2] Let E := L1(R) and let A := − d2

ds2 with maximal
domain. Put

Gt(s) :=

∞∫
−∞

e−isu cosh(tu) e−u
2

du, t > 0, s ∈ R,

(C(t)f)(s) :=

∞∫
−∞

Gt(s− u)f(u) du, t > 0, s ∈ R, f ∈ E.

Then (C(t))t>0 is a global not exponentially bounded C(0)-regularized cosine func-

tion and ∥C(t)∥ > √
πet

2/4, t > 0.
(vi) [89, 454, 221] The one-dimensional equation describing sound propagation

in a viscous gas [138] has the form utt = 2utxx + uxx and after standard matrix
reduction to a first order system becomes

d

dt
u⃗(t) = P (D)u⃗(t), t > 0, where D ≡ −i d

dx
and P (x) ≡

[
0 1

−x2 −2x2

]
.

We assume that E is a function space on which translations are uniformly bounded
and strongly continuous; herein it is worth noting that E can be consisted of func-
tions defined on some bounded domain (cf. [454, p. 189] for further information).
Further on, we assume that iD, resp. ∆ ≡ −D2, generates a bounded strongly
continuous group, resp. a strongly continuous semigroup in E, and that the op-
erator P (D) is taken with its maximal domain in E × E [89, 454]. Then the
following holds (for the definition of fractional powers and the functional calculus
for commuting generators of bounded C0-groups, see [89, Section XII]):

(vi.1) Let r > 1
2 . Then P (D) generates an exponentially bounded, analytic

(1 − ∆)−r-regularized semigroup (Tr(t))t>0 of angle π
2 . Furthermore, the

semigroup (Tr(t))t∈Σπ
2

can be extended to Σπ
2

and there exists K > 0

such that ∥Tr(t)∥ 6 K(1 + |t|) 3
2 e

1
2 t sin(arg(t)), t ∈ Σπ

2
r {0}.

(vi.2) (Tr(it))t∈R is an exponentially bounded (1−∆)−r-regularized group gen-

erated by iP (D).

(vi.3) The mapping t 7→ Tr(t)
(
f
g

)
, t ∈ Σπ

2
is continuous for every fixed pair(

f
g

)
∈ E × E.

(vi.4) The mapping t 7→ Tr(t), t ∈ Σπ
2

is norm continuous provided r > 3
4 .

(vii) [43, 125, 219, 454, 461] The isothermal motion of a one-dimensional
body with small viscosity and capillarity is described, in the simplest situation, by



1.2. C-REGULARIZED SEMIGROUPS AND COSINE FUNCTIONS 15

the system: {
ut = 2auxx + bvx − cvxxx,
vt = ux,
u(0) = u0, v(0) = v0,

where a, b and c are positive constants. The associated polynomial matrix is
P (x) ≡

[
−2ax2 ibx+icx3

ix 0

]
. It is well known [125] that P (D) does not generate a

strongly continuous semigroup in L1(R) × L1(R).

(vii.1) Let a2 − c < 0 and r′ > 1
2 . Then P (D) generates an analytic (1 −

∆)−r
′
-regularized semigroup (Tr′(t))t>0 of angle arctan a√

c−a2 and there

exists a function p : (− arctan a√
c−a2 , arctan a√

c−a2 ) → (0,∞) such that

∥Tr′(z)∥ 6 K(1 + |z|) 3
2 ep(arg(z)) sin(arg(z))|z|, z ∈ Σarctan a√

c−a2
.

(vii.2) Let a2 − c > 0 and r′ > 1
2 . Then P (D) generates an analytic (1 − ∆)−r

′
-

regularized semigroup (Tr′(t))t>0 of angle π
2 which satisfies ∥Tr′(z)∥ 6

K(1 + |z|) 3
2 e

√
b sin(arg(z))|z|, z ∈ Σπ

2
.

(vii.3) Let a2−c > 0 and r′ > 1. Then P (D) generates an exponentially bounded

(1 − ∆)−r
′
-regularized cosine function (Cr′(t))t>0.

It would take too long to go into a further analysis of C–regularized semigroups
and cosine functions. We strongly recommend for the reader [14], [27], [87], [125],
[128], [155], [181], [201], [298], [322], [355] and [390] for the theory of strongly
continuous semigroups and cosine functions as well as [89]–[104], [152], [260]–
[261], [272], [324], [381]–[383], [398], [403]–[404], [421], [424], [431], [434],
[436]–[440], [451]–[454], [460] and [464] for the theory of C-regularized semi-
groups and cosine functions.

In the remaining part of this section, we study regularization of different types
of operator semigroups that are strongly continuous for t > 0. Let us recall that a
one-parameter family (T (t))t>0 in L(E) is called a semigroup if T (t+s) = T (t)T (s),
t, s > 0, T (0) = I and the mapping t 7→ T (t)x, t > 0 is continuous for every fixed
x ∈ E. The infinitesimal generator A0 of the semigroup (T (t))t>0 is defined by

A0x := limt→0+
T (t)x−x

t whenever the above limit exists. If A0 is closable, then

the operator A0 is called the complete infinitesimal generator, in short the c.i.g., of
(T (t))t>0. Following Kunstmann [253], we introduce the generator of (T (t))t>0 by
A := {(x, y) ∈ E × E : (T (s)x, T (s)y) ∈ A0 for every s > 0}. The generator A of
(T (t))t>0 is a closed, linear operator in E. The set Σ := {x∈E : limt→0+ T (t)x=x}
is called the continuity set of (T (t))t>0. Note, if (T (t))t>0 is a semigroup, then

the limit ω0 := limt→+∞
ln ∥T (t)∥

t exists and ω0 ∈ [−∞,∞); such a number ω0 is
called the type of (T (t))t>0. Now we recall the basic facts about semigroups of
growth order r > 0 which were introduced by G. Da Prato [84] in 1966. A fairly
complete information on the general theory of this class of operator semigroups can
be obtained by consulting the papers [324]–[326], [358], [389], [394], [398] and
[449]–[450].

The following notion will be generalized in Section 1.4.
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Definition 1.2.10. [84] An operator family (T (t))t>0 in L(E) is said to be a
semigroup of growth order r > 0 iff the following holds:

(i) T (t+ s) = T (t)T (s), t, s > 0,
(ii) for every x ∈ E, the mapping t 7→ T (t)x, t > 0 is continuous,

(iii) ∥trT (t)∥ = O(1), t→ 0+,
(iv) T (t)x = 0 for all t > 0 implies x = 0, and
(v) E0 :=

∪
t>0 T (t)E is dense in E.

The infinitesimal generator A0 of (T (t))t>0 always exists and A0 is a closable linear
operator. The closure A := A0 is called the complete infinitesimal generator, in
short, c.i.g., of (T (t))t>0.

Definition 1.2.11. [398] Let (T (t))t>0 be a semigroup of growth order r > 0.
If (T (t))t>0 has an analytic extension to Σγ , for some γ ∈ (0, π2 ], denoted by the
same symbol, and if additionally there exists ω ∈ R such that, for every δ ∈ (0, γ),
there exists a suitable constant Mδ > 0 with ∥zrT (z)∥ 6 Mδe

ωRe z, z ∈ Σδ, then
the family (T (t))t∈Σγ

is called an analytic semigroup of growth order r.

Let t ∈ R. Henceforward ⌊t⌋ and ⌈t⌉ denote the largest integer 6 t and the
smallest integer > t, respectively, and Γ(·) denotes the Gamma function. The
following generation results for (analytic) semigroups of growth order r > 0 were
established by Okazawa [348], Zabreiko–Zafievskii [449] and Tanaka [398].

Theorem 1.2.12. (i) [348] Let r > 0 and n = ⌊r⌋. A closed linear operator A
is the c.i.g. of a semigroup of growth order r > 0 iff the following holds:

(i.1) There exists ω ∈ R such that D(An+1) ⊆ R(λ − A) and that λ − A is
injective for all λ > ω.

(i.2) There exists M > 0 such that, for every x ∈ D(An+1):

∥(λ−A)−mx∥ 6 M

(m− 1)!

Γ(m− r)

(λ− ω)m−r ∥x∥, λ > ω, m = k(n+ 1), k ∈ N,

(i.3) D(A) is dense in E, D(An+2) is a core for A and
(i.4) There exists b ∈ (ω,∞) such that (b−A)n+1 is closable.

(ii) [449] Let r ∈ (0, 1). Then A is the c.i.g. of a semigroup of growth order r > 0
iff the following holds:

(ii.1) There exists ω ∈ R such that (ω,∞) ⊆ ρ(A).
(ii.2) There exists M > 0 such that, for every λ ∈ (ω,∞) and m ∈ N,

∥(λ−A)−m∥ 6 M

(m− 1)!

Γ(m− r)

(λ− ω)m−r and

(ii.3) D(A) is dense in E.

(iii) [398] Let r > 0, α ∈ (0, π2 ] and n = ⌊r⌋. A closed linear operator A is the c.i.g.
of an analytic semigroup (T (t))t∈Σα

of growth order r > 0 iff the following holds:

(iii.1) There exists ω ∈ R such that D(An+1) ⊆ R(λ − A) and that λ − A is
injective for all λ ∈ ω + Σπ

2 +α.
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(iii.2) For every ε ∈ (0, α), there existsMε > 0 such that, for every x ∈ D(An+1)
and λ ∈ ω + Σπ

2 +α−ε:

∥(λ−A)−(n+1)x∥ 6 Mε

n!

Γ(n+ 1 − r)

|λ− ω|n+1−r ∥x∥

and the mapping λ 7→ (λ−A)
−(n+1)
|D(An+1), λ ∈ ω + Σπ

2 +α is analytic.

(iii.3) D(A) is dense in E, D(An+2) is a core for A and
(iii.4) There exists b ∈ (ω,∞) such that (b−A)n+1 is closable.

(iv) [398] Let r ∈ (0, 1) and α ∈ (0, π2 ]. Then A is the c.i.g. of an analytic semigroup
(T (t))t∈Σα

of growth order r iff the following holds:

(ii.1) There exists ω ∈ R such that ω + Σπ
2 +α ⊆ ρ(A).

(ii.2) For every ε ∈ (0, α), there is Mε > 0 such that, for every λ ∈ ω+Σπ
2 +α−ε:

∥(λ−A)−1∥ 6 MεΓ(1 − r)

|λ− ω|1−r
and

(ii.3) D(A) is dense in E.

Let A be the c.i.g. of an (analytic) semigroup of growth order r > 0. Then
there exists a Banach space that is densely and continuously embedded in E on
which A generates an (analytic) strongly continuous semigroup (of the same angle);
for a proof, see [358].

Definition 1.2.13. ([324], cf. also [326] and [349]) Suppose R(C) is dense in E
and (T (t))t>0 is an exponentially bounded C-regularized semigroup. The complete

infinitesimal generator, in short c.i.g, of (T (t))t>0 is defined as the closure G of the
operator G, where

G =
{

(x, y) ∈ E × E : x ∈ R(C), lim
t→0+

C−1T (t)x− x

t
= y
}
.

It is well known that the operator G is closable and that the operator G sat-
isfies G ⊆ Â and C−1GC = Â, where Â is the integral generator of (T (t))t>0.
Furthermore, it can be easily seen by the use of [324, Lemma 1.2, p. 361] and ele-
mentary operational properties of the Laplace transform that G is a subgenerator
of (T (t))t>0. In general, it is not known whether the c.i.g. of (T (t))t>0 coincides

with Â.

Definition 1.2.14. [343] Let k ∈ N0. A semigroup (T (t))t>0 is said to be of
class (C(k)) iff the following conditions hold:

(i) E0 :=
∪
t>0 R(T (t)) is dense in E,

(ii) there exists ω ∈ (ω0,∞) such that for every λ ∈ (ω,∞) there exists an
injective bounded linear operator Rλ so that Rλx =

∫∞
0
e−λtT (t)x dt,

x ∈ E0 and
(iii) D(Ak) ⊆ Σ, where A is the c.i.g. of (T (t))t>0.

Notice that the conditions (i)–(ii) imply the existence of the c.i.g. A of (T (t))t>0

and (ω,∞) ⊆ ρ(A). It is checked at once that every semigroup (T (t))t>0 of class
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(C(k)) is also of class (C(k+1)) and that the class (C(0)) coincides with the usual
class of strongly continuous semigroups. The generation results for semigroups of
class (C(k)) can be found in [324] and [343].

Theorem 1.2.15. [324, 398] (i) Suppose that (T (t))t>0 is a semigroup of class
(C(k)) and that A is the c.i.g. of (T (t))t>0. Put S(t) := R(ω + 1 : A)kT (t), t > 0.
Then A is the c.i.g. of the exponentially bounded C-regularized semigroup (S(t))t>0.

(ii) Suppose that (T (t))t>0 is a semigroup of growth order r > 0 and that A is
the c.i.g. of (T (t))t>0. Put

Cx :=
1

n!

∞∫
0

e−(ω0+1)ttnT (t)x dt and S(t) := CT (t), x ∈ E, t > 0,

where ω0 is the type of (T (t))t>0 and n = ⌊r⌋. Then L(E) ∋ C is injective and A
is the c.i.g. of the exponentially bounded C-regularized semigroup (S(t))t>0.

(iii) Let α ∈ (0, π2 ]. Suppose that (T (t))t∈Σα
is an analytic semigroup of growth

order r > 0 and that A is the c.i.g. of (T (t))t>0. Define C as above and put
S(t) := CT (t), t ∈ Σα. Then A is the c.i.g. of the exponentially bounded, analytic
C-regularized semigroup (S(t))t∈Σα

.

The following theorem presents a most valuable result with regard to regular-
ization of semigroups that are strongly continuous in t > 0.

Theorem 1.2.16. [253] Suppose A is the integral generator of a semigroup
(T (t))t>0 which satisfies

∩
t>0 Kern(T (t)) = {0}. Then there exists an injective

operator C ∈ L(E) such that A is the integral generator of a global C-regularized
semigroup (S(t))t>0.

Let P (x) = [pij(x)]m×m, x ∈ Rn be an m × m polynomial matrix and let
λj(x), 1 6 j 6 m be the eigenvalues of P (x), x ∈ Rn; see [454] for the definition
of the closable operator P (A). Set k := 1 + ⌊n2 ⌋, Λ(P (x)) := sup16j6m Reλj(x),
x ∈ Rn, N := max(dg(pij(x))) and assume that r ∈ (0, N ]. Then it is said
that P (x) is Shilov r-parabolic [138] iff there exist ω > 0 and ω′ ∈ R such that
Λ(P (x)) 6 −ω|x|r + ω′, x ∈ Rn; in the case r = N , it is also said that P (x) is
Petrovskii parabolic. In what follows, we discuss the properties of various types of
abstract Shilov parabolic systems. First of all, define

π1(r) := min
16j6m, |x|=r

|λj(x)|, r > 0, π2(r) := max
16j6m, |x|=r

|λj(x)|, r > 0,

S(P ) :=
∪

x∈Rn, 16j6m
λj(x)

and notice that a corollary of Seidenberg–Tarski theorem (cf. [142] and [410,
Lemma 10.2]) implies that there exist real numbers a1, a2, α1 and α2 such that
π1(r) = a1r

α1(1 + o(1)) as r → ∞ and π2(r) = a2r
α2(1 + o(1)) as r → ∞. Ob-

viously, r 6 α1 6 α2 6 N and, by the proof of [410, Proposition 10.4], Shilov
r-parabolicity of P (x), for some r ∈ (0, N ], implies that there exist α > 0 and
β ∈ R such that

{
λ ∈ C : Reλ > −α| Imλ|r/α2 + β

}
∩ S(P ) = ∅.
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Theorem 1.2.17. [219] Let P (x) be Shilov r-parabolic for some r ∈ (0, N).

(i) Put κ := 1
r (N − r)(m− 1 + n/2). Then the operator P (A) is the c.i.g. of a

semigroup (T0(t))t>0 of growth order κ which additionally satisfies that the mapping
t 7→ T0(t), t > 0 is infinitely differentiable in the uniform operator topology and that
there exists K > 0 such that:∥∥∥ dl

dtl
T0(t)

∥∥∥ 6 Kl(1 + t)m−1+n
2 eωtl!N/r(1 + t−κ−

Nl
r ), t > 0,

where ω ≡ sup
x∈Rn

Λ(P (x)).

(ii) Suppose, additionally, that there exist α ∈ (0, π2 ] and ω ∈ R such that

σ(P (x)) ⊆ ω + (C r Σπ/2+α), x ∈ Rn. Then the operator P (A) is the c.i.g. of an
analytic semigroup (T0(t))t∈Σα

of growth order κ.

Remark 1.2.18. Set Tr′(t) :=
(
etP (x)(1+ |x|2)−r

′)
(A), t > 0, r′ > 0. Then the

supposition (N − r)(m− 1) +Nl − 2r′ 6 −(N − r)k implies∥∥∥ dl
dtl

Tr′(t)
∥∥∥ 6 Kl(1 + t)m−1+n/2eωt, t > 0,

and the supposition (N − r)(m− 1) +Nl − 2r′ ∈ (−(N − r)k, 0) implies∥∥∥ dl
dtl

Tr′(t)
∥∥∥ 6

{
Kll!N/rt−

1
r ((N−r)(m−1+n/2)+Nl−2r′), t ∈ (0, 1],

Kll!N/r(1 + t)m−1+n/2eωt, t > 1.

Now we focus our attention to the numerical range of P (x), defined by

n.r.(P (x)) := {(P (x)y, y) : y ∈ Rn, ∥y∥ = 1}, x ∈ Rn,

where (·, ·) denotes the inner product in Cn and ∥y∥ ≡ (y, y)1/2. Set Λ̃(P (x)) :=
sup{Re z : z ∈ n.r.(P (x))}, x ∈ Rn.

Theorem 1.2.19. [219] Let r ∈ (0, N), ω′ > 0 and ω′′ > 0.

(i) Assume Λ̃(P (x)) 6 −ω′|x|r + ω′′, x ∈ Rn and put κn.r. := n(N−r)
2r . Then

the operator P (A) is the c.i.g. of a semigroup (T0(t))t>0 of growth order κn.r. which
additionally satisfies that the mapping t 7→ T0(t), t > 0 is infinitely differentiable
in the uniform operator topology and that there exists K > 0 such that:∥∥∥ dl

dtl
T0(t)

∥∥∥ 6 Kleωtl!N/r(1 + t)n/2(1 + t−
1
r ((N−r)n

2 +Nl)), t > 0,

where ω ≡ sup
x∈Rn

Λ̃(P (x)).

(ii) Let α ∈ (0, π2 ], ω ∈ R, n.r.(P (x)) ⊆ ω + (Cr Σπ
2 +α), x ∈ Rn and let P (x)

be Shilov r-parabolic. Then the operator P (A) is the c.i.g. of an analytic semigroup
(T0(t))t∈Σα

of growth order nN
2r .

(iii) Let α ∈ (0, π2 ], ω ∈ R, n.r.(P (x)) ⊆ ω + (C r Σπ
2 +α), x ∈ Rn and

Λ̃(P (x)) 6 −ω′|x|r + ω′′, x ∈ Rn. Then the operator P (A) is the c.i.g. of an
analytic semigroup (T0(t))t∈Σα

of growth order κn.r..



20 1. INTRODUCTION

Remark 1.2.20. (i) The decay rate of derivatives of (Tr′(t))t>0 in a neigh-
borhood of zero (cf. Theorem 1.2.19) improves the corresponding one given in the
formulation of [454, Theorem 3.2] provided 2Nl > (N − r)n.

(ii) Suppose p ∈ (1,∞), E = Lp(Rn) and set nE := n| 12 −
1
p |. Then the growth

order of (T0(t))t>0 in Theorem 1.2.17 and Theorem 1.2.19 can be slightly refined
by interchanging the term n

2 with nE .
(iii) With some obvious modifications, the assertions of Theorem 1.2.17 and

Theorem 1.2.19 remain true in the case E = Cb(Rn) or E = L∞(Rn).
(iv) Suppose that P (x) is Shilov r-parabolic for some r ∈ (0, N), and denote

by Σ(T0) the continuity set of the semigroup (T0(t))t>0 given in Theorem 1.2.17,

resp. Theorem 1.2.19. Then Σ(T0) contains R
(
(1 + |A|2)−r

′)
for all r′ > 1

2 (N − r)

× (m− 1 + n
2 ), resp. r′ > 1

4n(N − r) [454], and the abstract Cauchy problem

(ACP ) :


u⃗ ∈ C([0,∞) : Em) ∩ C∞((0,∞) : Em),

u⃗′(t) = pij(A)u⃗(t), t > 0,

u⃗(0) = x⃗,

has a unique solution for all x⃗ ∈ Σ(T0), improving the corresponding result of

Zheng and Li (cf. [454, Lemma 1.2(b)]). In general, R
(
(1 + |A|2)−r

′)
can be

strictly contained in Σ(T0).
(v) Semigroups of growth order r > 0 can be also applied in the analysis of

time-dependent Shilov parabolic systems ([454], [219]).

Recall that Webb considered in [427] a class of abstract semilinear Volterra
equations appearing in thermodynamics of materials with memory [74, 75]. An
insignificant modification of the proofs of [427, Theorems 2.1–2.2, Corollary 2.1]
implies the following theorem.

Theorem 1.2.21. (i) Assume A is a subgenerator of a (local) C-regularized
semigroup (T (t))t∈[0,τ) and there exists t0 ∈ (0, τ) such that:

(i.1) C−1f ∈ C1([0, t0] : E),
(i.2) C−1g ∈ C([0, t0]×D : E), where D is an open subset of [D(A)], C−1g(t, x)

is continuously differentiable with respect to t, and for each x ∈ D there
is a neighborhood Dx about x and continuous functions b : [0, t0] → [0,∞)
and c : [0, t0] → [0,∞) such that, for every t ∈ [0, t0] and x1, x2 ∈ Dx:

∥C−1g(t, x1) − C−1g(t, x2)∥ 6 b(t)∥x1 − x2∥[D(A)],∥∥∥ ∂
∂t
C−1g(t, x1) − ∂

∂t
C−1g(t, x2)

∥∥∥ 6 c(t)∥x1 − x2∥[D(A)].

Then, for each x ∈ C(D), there exist a number t1 ∈ (0, t0) and a unique function
u : [0, t1] → E such that u ∈ C1([0, t1] : E) ∩ C([0, t1] : [D(A)]),

(4) u′(t) = Au(t) +

∫ t

0

g(t− s, u(s))ds+ f(t), t ∈ [0, t1] and u(0) = x.

Assume further n ∈ N, x ∈ C(D(An)), τ = ∞ as well as (i.1) and (i.2) hold with
C−1f , C−1g, D = Dy (y ∈ D(A)), [0, t0], b : [0, t0] → [0,∞) and c : [0, t0] →
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[0,∞), replaced by C−nf , C−ng, [D(A)], [0, nt0], bn : [0, nt0] → [0,∞) and cn :
[0, nt0] → [0,∞), respectively. Then there exists a unique function un : [0, nt1] → E
such that un ∈ C1([0, nt1] : E) ∩ C([0, nt1] : [D(A)]) and that (4) holds with u(t)
and [0, t1] replaced by un(t) and [0, nt1], respectively.

(ii) Assume x ∈ D, (i.1)–(i.2) hold, M > 1, ω ∈ R, ∥T (t)∥ 6 Meωt, t ∈ [0, τ)
and x1, x2 ∈ C(D). Denote by u1(t) and u2(t) the solutions of (4) with initial

values x1 and x2, respectively, and set α(t) =
∫ t
0
e−ωs(b(s) + c(s)) ds, t ∈ [0, t1] and

β(t) = maxs∈[0,t] e
−ωsb(s), t ∈ [0, t1]. Then the assumption {u1(t), u2(t)} ⊆ Dx,

t ∈ [0, t1] implies:

∥u1(t) − u2(t)∥ 6M∥C−1x1 − C−1x2∥[D(A)]e
(Mα(t)+β(t)+Mb(0)+ω)t, t ∈ [0, t1].

Furthermore, if D = Dx = [D(A)], x ∈ D(A) and Mα(t) + β(t) +Mb(0) + ω 6 γ,
for some γ ∈ R and every t ∈ [0, t1], then

∥u1(t) − u2(t)∥ 6M∥C−1x1 − C−1x2∥[D(A)]e
γt, t ∈ [0, t1].

1.3. Function spaces

In this section, we shall analyze various types of generalized function spaces
used throughout the book. We begin with the recollection of the most important
properties of operator valued distribution spaces.

The Schwartz spaces of test functions D = C∞
0 (R) and E = C∞(R) [2, 397]

carry the usual inductive limit topologies while the topology of the space of rapidly
decreasing functions S defines the following system of seminorms

pm,n(ψ) := sup
x∈R

|xmψ(n)(x)|, ψ ∈ S, m, n ∈ N0.

By D0 we denote the subspace of D which consists of the elements supported by
[0,∞). Further on, D′(E) := L(D : E), E ′(E) := L(E : E) and S ′(E) := L(S :
E) are the spaces of continuous linear functions D → E, E → E and S → E,
respectively; D′

0(E), E ′
0(E) and S ′

0(E) are the subspaces of D′(E), E ′(E) and S ′(E),
respectively, containing the elements supported by [0,∞). Denote by B the family
of all bounded subsets of D. Put pB(f) := supφ∈B ∥f(φ)∥, f ∈ D′(E), B ∈ B. Then
pB , B ∈ B is a seminorm on D′(E) and the system (pB)B∈B defines the topology on
D′(E). The topology on E ′(E), resp., S ′(E), is defined similarly. Notice that the
spaces D(Ω : E), E(Ω : E), D′(Ω : E) and E ′(Ω : E), where Ω is an open non-empty
subset of Rn, can be defined along the same lines. Let ρ ∈ D satisfy

∫∞
−∞ ρ(t) dt = 1

and supp ρ ⊆ [0, 1]. By a regularizing sequence in D we mean a sequence (ρn) in
D0 obtained by ρn(t) := nρ(nt), t ∈ R. If φ, ψ : R→ C are measurable functions,
we use the convolutions φ ∗ ψ and φ ∗0 ψ defined by

φ ∗ ψ(t) :=

∞∫
−∞

φ(t− s)ψ(s) ds and φ ∗0 ψ(t) :=

t∫
0

φ(t− s)ψ(s) ds, t ∈ R.

Notice that φ ∗ ψ = φ ∗0 ψ, φ, ψ ∈ D0. Given φ ∈ D and f ∈ D′, or φ ∈ E and
f ∈ E ′, we define the convolution f ∗ φ by (f ∗ φ)(t) := f(φ(t − ·)), t ∈ R. For
f ∈ D′, or for f ∈ E ′, define f̌ by f̌(φ) := f(φ(−·)), φ ∈ D (φ ∈ E). Generally,
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the convolution of two distribution f , g ∈ D′, denoted by f ∗ g ∈ D′, is defined by
(f ∗ g)(φ) := g(f̌ ∗ φ), φ ∈ D. It is well known that supp(f ∗ g) ⊆ supp f + supp g.
We transfer the preceding notion to operator valued distributions by means of [252,
Proposition 1.1].

Proposition 1.3.1. Suppose X, Y and Z are Banach spaces and b : X×Y → Z
is bilinear and continuous. Then there is a unique bilinear, separately continuous
mapping ∗b : D′

0(X)×D′
0(Y ) → D′

0(Z) such that (S⊗x)∗b (T ⊗y) = S ∗T ⊗b(x, y),
for all S, T ∈ D′

0 and x ∈ X, y ∈ Y . Moreover, this mapping is continuous.

We need the following structural theorems for the spaces D′(E) and S ′(E)
(cf. for instance [307, Theorem 2.1.1, Theorem 2.1.2]):

Theorem 1.3.2. (i) Let G ∈ D′(E) and let ∅ ̸= Ω ⊆ R be open and bounded.
Then there exist a number n ∈ N and a continuous function f : R→ E such that

(5) G(φ) = (−1)n
∫
R
φ(n)(t)f(t) dt,

for all φ ∈ D with suppφ ⊆ Ω. Furthermore, if Ω ⊆ (−∞, a) and G = 0 on
(−∞, a), then f(t) = 0 for t < a.

(ii) Let G ∈ S ′(E). Then there exist n ∈ N, r > 0 and a continuous function f :
R→ E such that (5) holds for all φ ∈ S, and |f(t)| =|t|→∞ O(|t|r). Furthermore,
if G = 0 on (−∞, a), then f(t) = 0 for t < a.

Let k ∈ N, p ∈ [1,∞] and let Ω be an open non-empty subset of Rn. Then
the Sobolev space W k,p(Ω : E) consists of those operator valued distributions u ∈
D′(Ω : E) such that, for every i ∈ {0, . . . , k} and for every multi-index α ∈ Nn0 with
|α| 6 k, one has Dαu ∈ Lp(Ω : E). In this place, the derivative Dα is taken in the
sense of distributions. Notice that the space W k,p((0, τ) : E), where τ ∈ (0,∞),
can be characterized by means of corresponding spaces of absolutely continuous
functions (cf. for example [27, Chapter I, Section 2.2]).

In the sequel, we assume that (Mp) is a sequence of positive real numbers such
that M0 = 1 and that the following condition is fulfilled:

(M.1) M2
p 6Mp+1Mp−1, p ∈ N.

Every employment of the conditions:

Mp 6 AHp sup
06i6p

MiMp−i, p ∈ N, for some A, H > 1,(M.2)

∞∑
p=1

Mp−1

Mp
<∞,(M.3′)

and the condition

(M.3) sup
p∈N

∞∑
q=p+1

Mq−1Mp+1

pMpMq
<∞,

which is slightly stronger than (M.3′), will be explicitly emphasized.
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Let s > 1. The Gevrey sequences (p!s), (pps) or (Γ(1 + ps)) satisfy the above

conditions. The associated function of (Mp) is defined by M(ρ) := supp∈N ln ρp

Mp
,

ρ > 0; M(0) := 0. If λ ∈ C, then we define M(λ) := M(|λ|); put mp :=
Mp

Mp−1
, p ∈ N and notice that, thanks to (M.1), the sequence (mp) is increas-

ing. We know that the function t 7→ M(t), t > 0 is increasing as well as that
limλ→∞M(λ) = ∞ and that the function M(·) vanishes in some open neighbor-
hood of zero. Denote by m(λ) the number of mp 6 λ. Since (Mp) satisfies (M.1),

it follows that (cf. [207, p. 50]) M(t) =
∫ t
0
m(λ)
λ dλ, t > 0. This implies that

the mapping t 7→ M(t), t > 0 is absolutely continuous and that the mapping
t 7→ M(t), t ∈ [0,∞) r {mp : p ∈ N} is continuously differentiable with M ′(t) =
m(t)
t , t ∈ [0,∞) r {mp : p ∈ N}. The following inequalities have been proved by

Petzsche [361] and Komatsu [207]:

(i) If (Mp) satisfies (M.1), then M(a+ b) 6M(2a) +M(2b), a, b > 0.
(ii) If (Mp) satisfies (M.1) and (M.2), then there exist K > 0 and B > 0 such

that 2M(a) 6M(Ha) + ln(AM0), a > 0, M(La) 6 3
2LM(a) +K, a > 0,

L > 1 and LM(a) 6M(BL−1a) +EL, a > 0, L > 1 and EL is a constant
depending only on L and (Mp). Herein A and H denotes the constants
in (M.2).

In the remnant of this section, we assume that (Mp) satisfies (M.1), (M.2)
and (M.3′) (cf. [47, 64, 207] and [209] for different approaches to the theory of
ultradistributions). Recall that the spaces of Beurling, respectively, Roumieu ultra-

differentiable functions are defined by D(Mp) := D(Mp)(R) := ind limKbbR D(Mp)
K ,

respectively, D{Mp} := D{Mp}(R) := ind limKbbR D{Mp}
K , where

D(Mp)
K := proj limh→∞ DMp,h

K , respectively, D{Mp}
K := ind limh→0 D

Mp,h
K ,

DMp,h
K :=

{
ϕ ∈ C∞(R) : suppϕ ⊆ K, ∥ϕ∥Mp,h,K <∞

}
and

∥ϕ∥Mp,h,K := sup
{hp|ϕ(p)(t)|

Mp
: t ∈ K, p ∈ N0

}
.

Henceforth the asterisk ∗ stands for the Beurling case (Mp) or for the Roumieu case
{Mp}. Denote by D′∗(E) := L(D∗(R) : E) the space consisted of all continuous
linear functions from D∗(R) into E; D∗

0 denotes the space of elements in D∗ which
are supported by [0,∞) whereas E ′∗

0 denotes the space of ultradistributions whose
supports are compact subsets of [0,∞). Recall [207], an entire function of the form
P (λ) =

∑∞
p=0 apλ

p, λ ∈ C, is of class (Mp), resp., of class {Mp}, if there exist l > 0

and C > 0, resp., for every l > 0 there exists a constant C > 0, such that |ap| 6
Clp/Mp, p ∈ N. The corresponding ultradifferential operator P (D) =

∑∞
p=0 apD

p

is of class (Mp), resp., of class {Mp}. We introduce the topology of above spaces
as well as the convolution of scalar valued ultradistributions (ultradifferentiable
functions) in the same way as in the case of corresponding distribution spaces.
It is well known that there exists ρ ∈ D∗ satisfying supp ρ ⊆ [0, 1], ρ > 0 and∫∞
−∞ ρ(t) dt = 1. Put ρn(t) := nρ(nt), t ∈ R; then (ρn) is said to be a regularizing

sequence in D∗. In the next analogue of Proposition 1.3.1, the convolution of
Banach space valued ultradistributions is taken in the sense of [255, Corollary 3.6].
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Proposition 1.3.3. Suppose X, Y and Z are Banach spaces and b : X×Y → Z
is bilinear and continuous. Then there is a unique bilinear, separately continuous
mapping ∗b : D′∗

0 (X)×D′∗
0 (Y ) → D′∗

0 (Z) such that (S⊗x)∗b(T⊗y) = S∗T⊗b(x, y),
for all S, T ∈ D′∗

0 and x ∈ X, y ∈ Y . Moreover, this mapping is hypo-continuous
with respect to bounded sets.

The following structural theorems for operator valued ultradistributions are
located in [130] and [209].

Theorem 1.3.4. (i) Let G ∈ D′∗(E). Then, for each relatively compact non-

empty open set Ω ⊆ R, there exists a sequence of continuous function (fn) in EΩ

such that

G|Ω =

∞∑
n=0

Dnfn

and that there exist K > 0 and L > 0 in the Beurling case, resp., for every L > 0
there exists K > 0 in the Roumieu case, such that supt∈Ω ∥fn(t)∥ 6 K Ln

Mn
, n ∈ N.

(ii) Suppose, additionally, that (Mp) satisfies (M.3). Then for each relatively
compact non-empty open set Ω ⊆ R there exist an ultradifferential operator of ∗-
class and a continuous function f : Ω → E such that G|Ω = P (D)f .

The following is a characterization of operator valued (ultra-)distributions sup-
ported by a point.

Theorem 1.3.5. (i) Suppose G ∈ D′(E) and suppG ⊆ {0}. Then there exist
n ∈ N and xi ∈ E, 0 6 i 6 n such that G(φ) =

∑n
i=0 δ

(i)(φ)xi, φ ∈ D.
(ii) Suppose that (Mp) additionally satisfies (M.3) as well as that G ∈ D′∗(E)

and suppG ⊆ {0}. Then there exists a sequence (xn) in E such that G(φ) =∑∞
n=0 δ

(n)(φ)xn, φ ∈ D∗(E) and that there exist K > 0 and L > 0 in the Beurling
case, resp., for every L > 0 there exists K > 0 in the Roumieu case, such that
∥xn∥ 6 K Ln

Mn
, n ∈ N.

The spaces of tempered ultradistributions of the Beurling, resp. the Roumieu
type, are defined in [364] as duals of the corresponding test spaces

S(Mp)(R) := proj lim
h→∞

SMp,h(R), resp. S{Mp}(R) := ind lim
h→0

SMp,h(R),

where

SMp,h(R) :=
{
ϕ ∈ C∞(R) : ∥ϕ∥Mp,h <∞

}
, h > 0,

∥ϕ∥Mp,h := sup
{ hα+β

MαMβ
(1 + t2)β/2|ϕ(α)(t)| : t ∈ R, α, β ∈ N0

}
.

We also refer to [50], [69], [143], [168], [175]–[176] and [244]–[245] for the analysis
of these spaces.

It could be of importance to stress that

D(Mp)(R) ↪→ S(Mp)(R) ↪→ S(R) ↪→ L2(R) ↪→ S ′(R) ↪→ S
′(Mp)(R) ↪→ D

′(Mp)(R)

and

D{Mp}(R) ↪→ S{Mp}(R) ↪→ S(R) ↪→ L2(R) ↪→ S ′(R) ↪→ S
′{Mp}(R) ↪→ D

′{Mp}(R)



1.4. COMPLEX POWERS OF OPERATORS 25

where ↪→ means the continuous and dense embedding. The space S ′∗(E) consists of
all linear continuous mappings from S∗ into E and its topology is defined as before.
Arguing as in [364, Theorem 2], one can prove the following structural theorem for
the space S ′∗(E).

Theorem 1.3.6. Let G ∈ S ′∗
0 (E) and let (Mp) additionally satisfy (M.3). Then

there exist an ultradifferential operator P (D) of ∗-class and a continuous function
f : R → E such that supp f ⊆ (−∞, 0], G = P (D)f and ∥f(t)∥ 6 KeM(h|t|),
t ∈ R, for some h > 0 and K > 0 in the Beurling case, resp., for every h > 0 and
a corresponding K > 0 in the Roumieu case.

In the sequel, we employ the Paley-Wiener type theorems for ultradifferentiable
functions and infinitely differentiable functions with compact support. For further
information, we refer the reader to [207, Section 9] and [365, Section 11.6].

1.4. Complex powers of operators

Chronologically, the theory of fractional powers of operators dates from the pa-
pers [154] of Hille, who studied the semigroup formed from the fractional powers
of a bounded linear operator in 1939, and Bochner [42], who constructed the frac-
tional powers of −∆ in 1949. From then on, many different techniques have been
established in the framework of this theory (see e.g. [20], [24], [98]–[99], [158],
[211], [300]–[302], [335], [358]–[359], [394] and [428]). The monograph [300] is
of fundamental importance and contains the essential part of the theory of frac-
tional powers of non-negative operators including topics related to extensions of
Hirsch functional calculus, fractional powers of operators in locally convex spaces,
interpolation spaces and the famous Dore–Venni theorem.

1.4.1. Complex powers of densely defined operators. In this subsection,
we follow the approach of Straub [394] who defined the complex powers of a closed,
densely defined operator A satisfying

Σ(γ) :=
{
z ∈ C : z ̸= 0, | arg(z)| 6 γ

}
∪ {0} ⊆ ρ(A), for some γ ∈ (0, π2 ),(1.4.1)

∥R(λ :A)∥ 6M(1 + |λ|)n, λ ∈ Σ(γ), for some M > 0 and n ∈ N0.(1.4.2)

For such an operator A, Straub defined in [394] the fractional powers (−A)b, for
all b ∈ C. If A fulfills (1.4.1) and (1.4.2), then one can employ the construction
given in [98] to obtain the definition of the fractional power of −A, but only for
b > 0. In general, the definitions given in [98] and [394] do not coincide; see [98]
and [358] for further information. The ideas developed in [394] can be applied to
an essentially larger class of closed, densely defined operators.

Throughout this subsection, E denotes a complex Banach space and A denotes
a closed, densely defined operator in E. Let a ∈ (0, 1), C ∈ (0, 1] and d ∈ (0, 1];
Bd := {z ∈ C : |z| 6 d} and Pa,C := {ξ + iη : ξ ∈ (0,∞), η ∈ R, |η| 6 Cξa}. We
assume that A satisfies the following conditions:

Pa,C ∪Bd ⊆ ρ(A),(§)
∥R(λ :A)∥ 6M(1 + |λ|)α, λ ∈ Pa,C ∪Bd, for some M > 0 and α > 0.(§§)
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Note, if Pa,C ∪ {0} ⊆ ρ(A) and ∥R(λ : A)∥ = O((1 + |λ|)α), λ ∈ Pa,C ∪ {0},
then there exist d ∈ (0, 1] and M > 0 such that (§) and (§§) are fulfilled. It
is worth noting that if A satisfies the assumptions (1.4.1) and (1.4.2), then for
every a ∈ (0, 1), there exist C ∈ (0, 1] and d ∈ (0, 1] such that (§) and (§§) are
valid (with α = n). It is clear that there exist a great number of multiplication,
differential and pseudo-differential operators acting on Lp type spaces which fulfill
(§) and (§§), but not (1.4.1). Suppose, for example, that E := L2(R) and that
A := ∆2 − i∆− I with maximal distributional domain. Then the spectrum of A is
{ξ + iη : ξ ∈ R, η ∈ R, η2 = ξ + 1} and, for every b ∈ C, a slight modification of
the construction given in [394] gives the definition of (I + i∆ − ∆2)b. For further
information related to operators which satisfy (1.4.1) and (1.4.2), the reader may
consult [335, p. 158] and Subsection 2.1.1.

In Subsection 1.4.1, resp., Subsection 1.4.2 we assume that the number α > 0,
resp. α > −1, is minimal with respect to the property (§§) and employ the following
notations. Given a ∈ (0, 1), C ∈ (0, 1] and d ∈ (0, 1], put Γ1(a,C, d) := {ξ + iη :
ξ > 0, η ∈ R, η = −Cξa, ξ2 + η2 > d2}. It is clear that there exists a unique
number ε(a,C, d) ∈ (0, d) such that (ε(a,C, d),−Cε(a,C, d)a) ∈ ∂Bd. We define
Γ2(a,C, d) := {ξ+iη : ξ > 0, η ∈ R, ξ2+η2 = d2, ξ 6 ε(a,C, d)} and Γ3(a,C, d) :=
{ξ + iη : ξ > 0, η ∈ R, η = Cξa, ξ2 + η2 > d2}. The upwards oriented curve
Γ(a,C, d) is defined by Γ(a,C, d) := Γ1(a,C, d) ∪ Γ2(a,C, d) ∪ Γ3(a,C, d); put now

H(a,C, d) := {ξ+iη : ξ > 0, η ∈ R, |η| 6 Cξa}∪Bd. Given d̃ ∈ (0, d] and ã ∈ (0, a],

one can find a suitable constant C̃ so that Γ(ã, C̃, d̃) ⊆ H(a,C, d), where we define

Γ(ã, C̃, d̃) in the same way as Γ(a,C, d). In order to construct the complex power
(−A)b, for every b ∈ C, we first define a closable linear operator Jb. As in [394],
the construction is based on improper integrals of the form 1

2πi

∫
Γ
(−λ)bR(λ :A) dλ.

Proposition 1.4.1. Let b ∈ C satisfy Re b < −(α+1) and let x ∈ E. Then the
integral I(b)x := 1

2πi

∫
Γ(a,C,d)

(−λ)bR(λ :A)x dλ exists and defines a bounded linear

operator I(b) ∈ L(E). Moreover, if for some ã ∈ (0, a], C̃ ∈ (0, C] and d̃ ∈ (0, d]:

Γ(ã, C̃, d̃) ⊆ H(a,C, d), then I(b)x = 1
2πi

∫
Γ(ã,C̃,d̃)

(−λ)bR(λ :A)x dλ.

Proof. The proof is essentially contained in that of [394, Lemma 1.1]. Note
that the function λ 7→ (−λ)b (1b = 1) is analytic in Cr [0,∞) and that

|(−λ)b| 6 |λ|Re beπ| Im b|, λ ∈ Cr {0}.

The integral over Γ2(a,C, d) exists since Γ2(a,C, d) is a finite path. By (§§), we
obtain that there exists a constant M(a,C, d, b) > 0 such that∥∥∥∥∥ 1

2πi

∫
Γ3(a,C,d)

(−λ)bR(λ :A)x dλ

∥∥∥∥∥ 6M(a,C, d, b)∥x∥
∞∫

ε(a,C,d)

√
t2 + C2t2a

Re b
tα dt.

Since (t2 + C2t2a)Re b/2tα ∼ tα+Reb, t → +∞, the integral over Γ3(a,C, d) exists.
Similarly, the integral over Γ1(a,C, d) exists. It remains to be shown that the
integral I(b) is independent of the choice of a curve Γ(a,C, d). Let R be sufficiently

large and let the curve ΓR = {Reit : t ∈ [arctan(C̃Rã−1), arctan(CRa−1)]} be
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upwards oriented. Then∥∥∥∥∥
∫
ΓR

(−λ)bR(λ :A)x dλ

∥∥∥∥∥ 6 2πeπ| Im b|RRe b(1 +R)αR→ 0, R→ +∞.

The proof completes an elementary application of Cauchy’s theorem. �

If no confusion seems likely, we shall simply denote Γ(a,C, d), H(a,C, d) and
ε(a,C, d) by Γ, H and ε, respectively.

Notice, if b ∈ C, then Re(b − ⌊Re b + α⌋ − 2) ∈ [−(α + 2),−(α + 1)). Hence,
the following definition of the operator Jb makes a sense.

Definition 1.4.2. Let b ∈ C. The operator Jb is defined by

D(Jb) := D(A⌊Re b+α⌋+2)

Jbx :=

{
I(b)x, (α+ 2) 6 Re b < −(α+ 1),

I(b− ⌊Re b+ α⌋ − 2)(−A)⌊Re b+α⌋+2x, otherwise.

Remark 1.4.3. If a densely defined operator A satisfies (1.4.1) and (1.4.2),
then we have already seen that, for every a ∈ (0, 1), there exist C ∈ (0, 1] and
d ∈ (0, 1] such that (§) and (§§) are fulfilled. In this case, the definition of Jb is
equivalent to the corresponding one given in [394, Definition 1.2].

In what follows, we will use the generalized resolvent equation

(6) (−λ)−n−1R(λ :A)(−A)n+1x = R(λ :A)x+

n∑
i=0

(−λ)−i−1(−A)ix,

if λ ∈ ρ(A), λ ̸= 0, n ∈ N0, x ∈ D(An+1), and the simple equality
∫
Γ
(−λ)bdλ = 0,

if Re b < −1.

Proposition 1.4.4. Let x ∈ D(A⌊Re b+α⌋+2). Then:

(7) Jbx =

{
1

2πi

∫
Γ
(−λ)bR(λ :A)x dλ, Re b < 0,

1
2πi

∫
Γ
(−λ)b−⌊Re b⌋−1R(λ :A)(−A)⌊Re b⌋+1x dλ, Re b > 0.

Proof. Suppose Re b < 0. If Re b ∈ [−(α + 2),−(α + 1)), the conclusion
follows directly from the definition of Jb. If Re b /∈ [−(α + 2),−(α + 1)), then by
Definition 1.4.2 and (6):

Jbx = Jb−⌊Re b+α⌋−2(−A)⌊Re b+α⌋+2x

=
1

2πi

∫
Γ

(−λ)b−⌊Re b+α⌋−2R(λ :A)(−A)⌊Re b+α⌋+2x dλ

=
1

2πi

∫
Γ

(−λ)b
(
R(λ :A)x+

⌊Re b+α⌋+1∑
i=0

(−λ)−i−1(−A)ix

)
dλ.



28 1. INTRODUCTION

If Re b < 0 and i = 0, 1, . . . , ⌊Re b + α⌋ + 1, then Re b − i − 1 < −1 and the last
term equals 1

2πi

∫
Γ
(−λ)bR(λ :A)x dλ as claimed. Suppose now Re b > 0. Then (6)

implies

(−λ)b−⌊Re b⌋−1R(λ :A)(−A)⌊Re b⌋+1x = (−λ)b
(
R(λ :A)x+

⌊Re b⌋∑
i=0

(−λ)−i−1(−A)ix

)
.

Then one gets

Jbx = Jb−⌊Re b+α⌋−2(−A)⌊Re b+α⌋+2x

=
1

2πi

∫
Γ

(−λ)b−⌊Re b+α⌋−2R(λ :A)(−A)⌊Re b+α⌋+2x dλ

=
1

2πi

∫
Γ

(−λ)b
(
R(λ :A)x+

⌊Re b+α+1⌋∑
i=0

(−λ)−i−1(−A)ix

)
dλ,

and since for j = ⌊Re b+ 1⌋, . . . , ⌊Re b+ α+ 1⌋, Re b− i− 1 < −1, we obtain

=
1

2πi

∫
Γ

(−λ)b
(
R(λ :A)x+

⌊Re b⌋∑
i=0

(−λ)−i−1(−A)ix

)
dλ

=
1

2πi

∫
Γ

(−λ)b−⌊Re b⌋−1R(λ :A)(−A)⌊Re b+1⌋x dλ.

The proof is completed. �

Put Cb := (−A)⌊Re b+α⌋+2Jb−⌊Re b+α⌋−2. Then, for every b ∈ C, Cb is a closed
linear operator. Arguing similarly as in the proof of [394, Proposition 1.3], one
obtains that, for every b ∈ C with Re b > −(α+ 1), Jb ⊆ Cb and, consequently, Jb

is a closable operator. Clearly, Jb ∈ L(E) for every b ∈ C with Re b < −(α+ 1).

Lemma 1.4.5. Let b ∈ C. Then the following holds:

(i) Jbx = Jb+k(−A)−kx, k ∈ N0, x ∈ D(Jb), and
(ii) Jbx = Jb+k(−A)−kx, if −k ∈ N and x ∈ D(Amax(−k,⌊Re b+α+2⌋)).

Proof. (i) If k = 0, the proof is trivial. Suppose now k = 1. If −(α + 2) 6
Re b < −(α+ 1), then Re b+ 1 < 0 and by Proposition 1.4.4, we obtain

Jb+1(−A)−1x =
1

2πi

∫
Γ

(−λ)b+1R(λ :A)(−A)−1x dλ

=
1

2πi

∫
Γ

(−λ)b+1R(λ :A)x− (−A)−1x

(−λ)
dλ =

1

2πi

∫
Γ

(−λ)bR(λ :A)x dλ.

If Re b /∈ [−(α+ 2),−(α+ 1)), the assertion follows from Definition 1.4.2. Now (i)
follows by induction; the assertion (ii) follows immediately from (i). �
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For b ∈ C, denote ⟨b⟩ := max(0, ⌊Re b+ α⌋ + 2). Note that ⟨b+ c⟩ 6 ⟨b⟩ + ⟨c⟩.
The expected semigroup property of the family (Jb)b∈C can be proved similarly as
in [394, Lemma 1.4]. More precisely, we have:

Proposition 1.4.6. Let b, c ∈ C. Then JbJcx = Jb+cx, x ∈ D(A⟨b⟩+⟨c⟩).

If k ∈ N and x ∈ D(Ak), put ∥x∥k := ∥x∥ + ∥Ax∥ + · · · + ∥Akx∥. Now we will
prove the following lemma which naturally corresponds to [394, Lemma 1.5].

Lemma 1.4.7. Let b ∈ Z and x ∈ D(A⌊b+α⌋+2). Then Jbx = (−A)bx.

Proof. By Lemma 1.4.5(ii), it suffices to consider the case b = 1. We have to
prove that

1

2πi

∫
Γ

(−λ)−1R(λ :A)(−A)2x dλ = −Ax.

By the resolvent equation, it follows that x ∈ D(A⌊α+1⌋) implies that there exists
a suitable constant M > 0 such that

∥R(λ :A)x∥ 6M |λ|α−⌊α⌋−1∥x∥⌊α+1⌋, λ ∈ H ∪ Γ, |λ| > d.

Let R > d. Then there exists a unique number κ(R) ∈ (0, R) such that κ(R)2 +
C2κ(R)2a = R2. Denote ΓR = {Reiθ : |θ| 6 arctan(Cκ(R)a−1)}; we assume that
ΓR is upwards oriented. If x ∈ D(A⌊α⌋+3), then A2x ∈ D(A⌊α⌋+1) and the previous
inequality implies∥∥∥∥∥
∫
ΓR

(−λ)−1R(λ :A)(−A)2x dλ

∥∥∥∥∥ 6 2π
M

R
Rα−⌊α⌋−1∥x∥⌊α+3⌋, R→ 0, R→ +∞.

The remaining part of proof follows by an application of Cauchy’s formula. �

Proceeding as in [394], one can prove that:

(i) If b ∈ Z, then Jb = (−A)b.

(ii) If Re b > α+ 1, then Jb = Cb.

Now we are in a position to introduce complex powers.

Definition 1.4.8. Let b ∈ C. Then the complex power (−A)b of the operator

−A is defined by (−A)b := Jb.

The next theorem clarifies the basic structural properties of powers. See [394]
for a proof.

Theorem 1.4.9. Let b, c ∈ C and k ∈ N0. Then we have the following.

(i) D(A⌊Re b+α⌋+2+k) is a core for (−A)b.

(ii) (−A)b+c ⊆ (−A)b(−A)c.

(iii) (−A)b+c = (−A)b(−A)c, if (−A)b+c = Cb+c.

(iv) (−A)−b(−A)b = I; (−A)−b(−A)bx = x, x ∈ D((−A)b).
(v) (−A)b is injective.
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The following facts should be stated. If a closed, densely defined operator
A satisfies (§) and (§§) with α ∈ [−1, 0) therein, resp. (1.4.1) and (1.4.2) with
α ∈ [−1, 0) therein, then one can define the complex powers since, in this case, the
resolvent is bounded on the region Pa,C ∪ Bd, resp. Σ(a) ∪ Bd. Owing to [394,
Lemma 1.8], Proposition 1.4.4 and Theorem 1.4.9(i), it can be easily seen that the
construction given in [335] and [394] (cf. for example [335, pp. 157–158]) coincide
with the construction established in this section. The former conclusion remains
true if (1.4.1) holds for some α > 0; anyway, we have that (−A)b ∈ L(E) for all
b ∈ C with Re b < −(α+ 1).

1.4.2. Complex powers of non-densely defined operators. Unless stated
otherwise, in this subsection we assume that A is a closed linear operator and that
the following conditions hold:

(§) Pa,C ∪Bd ⊆ ρ(A) and
(§§) ∥R(λ :A)∥ 6M(1 + |λ|)α, λ ∈ Pa,C ∪Bd, for some M > 0 and α > −1.

Suppose, for the time being, that a closed, densely defined operator A satisfies
(§) and (§§) with α ∈ [−1, 0), or

(§1) Σ(γ) := {z ∈ C : z ̸= 0, | arg(z)| 6 γ} ∪ {0} ⊂ ρ(A), for some γ ∈ (0, π2 )
and

(§§1) ∥R(λ :A)∥ 6M(1 + |λ|)α, λ ∈ Σ(γ), for some M > 0 and α ∈ [−1, 0).

Then there exists d ∈ (0, 1] such that ∥R(· : A)∥ is bounded on the region Pa,C∪Bd,
resp. Σ(γ)∪Bd. We define the complex powers of −A as in the preceding paragraph
with α = 0. Then the formula (9) holds for every b ∈ Cr Z and x ∈ D(A⌊Re b⌋+2)
and it can be easily seen that the construction given on pages 157 and 158 of
[335] coincides with the construction established in the preceding subsection for
real values of exponents. The former conclusion remains true if (§§1) holds for
some α > 0; in any case, (−A)b is a closed, densely defined linear operator, and
furthermore, (−A)b ∈ L(E) if Re b < −(α + 1). Let Re b ∈ (−1, 0) and x ∈
D(A⌊Re b+α⌋+2). Then there exists y ∈ E such that x = (−A)−⌊Re b+α⌋−2y and
Proposition 1.4.4 implies Jbx = 1

2πi

∫
Γ
(−λ)bR(λ :A)(−A)−⌊Re b+α⌋−2y dλ. By the

resolvent equation, one easily infers that

R(λ :A)(−A)−⌊Re b+α⌋−2y =

⌊Re b+α⌋+2∑
j=1

(−1)⌊Re b+α⌋+2−jλj−⌊Re b+α⌋−3(−A)−jy

+
(−1)⌊Re b+α⌋+2

λ⌊Re b+α⌋+2
R(λ :A)y, λ ∈ ρ(A)r {0}.(8)

Combined with the inequality |(−λ)b| 6 |λ|Re beπ| Im b|, λ ∈ Cr{0} and the residue
theorem, (8) indicates that, for all sufficiently small positive real numbers ε, one
can deform the path of integration Γ, appearing in the definition of Jb, into the
upwards oriented boundary of the region Bε ∪ {λ ∈ C : Reλ > 0, | Imλ| 6 ε

2}. In

such a way, we obtain that Jbx = − sin bπ
π

∫∞
0
tbR(t : A)x dt. Using Lemma 1.4.5,
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one gets that, for every b ∈ C such that Re b /∈ Z and x ∈ D(A⌊Re b+α⌋+2):

(9) (−A)bx =
sin(⌊Re b⌋ + 1 − b)π

π

∞∫
0

tb−⌊Re b⌋−1R(t : A)(−A)⌊Re b⌋+1x dt.

Notice that the equality (9) generalizes the assertion (P2) given on page 158 of
[335]. In the case α < 0, the formula (9) holds for every b ∈ C with Re b /∈ Z and
x ∈ D(A⌊Re b⌋+2). The proof of following extension of [249, Lemma 1.5] is omitted.

Lemma 1.4.10. Suppose α > −1 and A is a closed linear operator. If there
exist a constant M > 0 and a sequence (λn) in ρ(A) such that limn→∞ |λn| = ∞
and that ∥R(λn : A)∥ 6 M(1 + |λn|)α, n ∈ N, then A is stationary dense and
n(A) 6 ⌊α⌋ + 2.

Suppose now that A is a closed, non-densely defined linear operator such that
(§) and (§§) hold. By Lemma 1.4.10, we have that n(A) 6 ⌊α⌋ + 2, and thanks

to [249, Remark 1.2(iii)], the equality D(A⌊α⌋+m) = D(A⌊α⌋+n) holds for all m,

n ∈ N r {1}. Put F := D(An(A)). By [249, Proposition 2.1], one gets that
A|F is densely defined in F as well as that ρ(A : E) = ρ(A|F : F ) and that
∥R(λ : A|F )∥F 6 ∥R(λ :A)∥E . This implies:

(10) Pa,C ∪Bd ⊆ ρ(A|F : F ) and ∥R(λ : A|F )∥F 6M(1 + |λ|)α, λ ∈ Pa,C ∪Bd.

By the foregoing, one can construct the complex powers of the operator (−A|F )b =

JbF in the Banach space F . Following the approach of Martinez and Sanz [301] for
non-negative operators, we introduce the complex powers of the operator −A as
follows.

Definition 1.4.11. Let b ∈ C. The complex power (−A)b is defined by

(−A)b := (−A)n(A)(−A|F )b(−A)−n(A).

It is straightforwardly checked that, for every λ ∈ Pa,C∪Bd and b ∈ C, we have

(−A)b = (λ−A)n(A)(−A|F )b(λ−A)−n(A). The definition of power (−A)b coincides
with the above given definition when A is densely defined, and does not depend
on the choice of a number α > −1 satisfying (§§). Furthermore, by Lemma 1.4.10,
(−A|F )b ⊆ (−A)b ⊆ (−A)⌊α⌋+2(−A|F )b(−A)−⌊α⌋−2 and it is not clear whether, in

general, (−A)⌊α⌋+2(−A|F )b(−A)−⌊α⌋−2 ⊆ (−A)b.

Theorem 1.4.12. Suppose b, c ∈ C and n ∈ N. Then the complex powers of
the operator −A satisfy the following properties:

(i) (−A)b is a closed linear operator.
(ii) (−A)b is injective.

(iii) (−A)b ∈ L(E) if Re b < −(α + 1), D(A⌊Re b+α⌋+2) ⊆ D((−A)b), b ∈ C,
α > 0 and D(A⌊Re b⌋+2) ⊆ D((−A)b), b ∈ C, α ∈ [−1, 0).

(iv) (−A)−b(−A)bx = x, x ∈ D((−A)b), (−A)−b = ((−A)b)−1 and I|F ⊆
(−A)−b(−A)b ⊆ I.

(v) (−A)n = (−1)nA · · ·A n-times, (−A)−n = R(0 : A)n and (−A)0 = I.
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(vi) Let x ∈ D((−A)b+c). Then there is a sequence (xk) in D((−A)b(−A)c)
such that

lim
k→∞

xk = (−A)−n(A)x and lim
k→∞

(−A)b(−A)cxk = (−A)−n(A)(−A)b+cx.

(vii) (−A)b(−A)c ⊆ (−A)b+c if (−AF )b+c = Cb+cF . In particular, the preceding
inclusion holds whenever |Re(b+ c)| > α+ 1 or b+ c ∈ Z.

(viii) I|F ⊆ (−A)−b(−A)b ⊆ I.
(ix) Suppose Re b /∈ Z and α > 0, resp. α ∈ [−1, 0). Then the equality (9)

holds for every x ∈ D(A⌊Re b+α⌋+2), resp. for every x ∈ D(A⌊Re b⌋+2).
(x) Let (−A)c−b ∈ L(E). Then

D((−A)b) ⊆ D((−A)c) and (−A)cx = (−A)c−b(−A)bx, x ∈ D((−A)b).

(xi) Let c ∈ C and x ∈ D(A⌊Re c+α⌋+2). Then

(11) lim
b→c

(−A)bx = (−A)cx.

Proof. By Theorem 1.4.9, we know that the properties (i)-(iv) hold for the
complex powers (−A|F )b in F as well as that the powers (−A|F )b, b ∈ Z co-

incide with the usual powers of the operator A|F . Furthermore, (−A|F )b+c ⊆
(−A|F )b(−A|F )c, with the equality if (−A|F )b+c = Cb+cF , and (−A|F )−b(−A|F )b =
I|F . The proofs of (i), (ii), (iv), (v) and (vi) follow from the corresponding proper-

ties of powers (−A|F )b and elementary definitions. We will prove the first assertion
in (iii) only in the case α ∈ [−1, 0) since the consideration is similar if α > 0.
Suppose x ∈ E and Re b < −(α + 1). Then n(A) = 1 and one sees directly that
(−A|F )by = 1

2πi

∫
Γ
(−λ)bR(λ : A|F )y dλ, y ∈ F . Arguing as in the proof of Propo-

sition 1.4.1, one gets that the integral 1
2πi

∫
Γ
(−λ)bR(λ :A)x dλ converges. Hence,

(−A|F )b(−A)−1x =
1

2πi

∫
Γ

(−λ)bR(λ : A|F )(−A)−1x dλ

=
1

2πi

∫
Γ

(−λ)bR(λ :A)(−A)−1x dλ

=
1

2πi
(−A)−1

∫
Γ

(−λ)bR(λ :A)x dλ ∈ D(A).

Hence, x ∈ D((−A)b), (−A)bx = 1
2πi

∫
Γ
(−λ)bR(λ :A)x dλ, x ∈ E and the closed

graph theorem implies (−A)b ∈ L(E). We will prove the second assertion in (iii)
in the case α > 0. Notice that the first part of (iii) implies D(A⌊Re b+α⌋+2) ⊆
D((−A)b) if b ∈ C and ⌊Re b+α⌋+2 6 0. Suppose ⌊Re b+α⌋+2 > 1. Then one ob-
tains inductively D(Ak+n(A)) ⊆ D(AkF ), k ∈ N0, and consequently, (−A)−n(A)x ∈
D(A⌊Re b+α+n(A)⌋) ⊆ D(A

⌊Re b+α⌋+2
|F ) = D(JbF ). Taking into account the proof

of Proposition 1.4.1, the equality R(λ : A|F )(−A)−n(A)x = R(λ : A)(−A)−n(A)x,

λ ∈ ρ(A) and Proposition 1.4.4, one yields JbF (−A)−n(A)x ∈ D(An(A)) and x ∈
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D((−A)b). Put n := n(A). Then (vii) follows from the following

(−A)b(−A)c = [(−A)n(−A|F )b(−A)−n][(−A)n(−A|F )c(−A)−n]

⊆ (−A)n(−A|F )b(−A|F )c(−A)−n ⊆ (−A)n(−A|F )b(−A|F )c(−A)−n

= (−A)n(−A|F )b+c(−A)−n = (−A)n(−A|F )b+c(−A)−n = (−A)b+c.

In order to prove (ix), notice that the improper integral appearing in the formulation
of (9) still converges. Without loss of generality, we may assume that α > 0.
Suppose x ∈ D(A⌊Re b+α⌋+2). Owing to the assertion (iii) and its proof, one gets
x ∈ D((−A)b) and

(−A)−n(A)(−A)bx = (−A|F )b(−A)−n(A)x = JbF (−A)−n(A)x

=
sin(⌊Re b⌋ + 1 − b)π

π

∞∫
0

tb−⌊Re b⌋−1R(t : AF )(−A|F )⌊Re b⌋+1(−A)−n(A)x dt

=
sin(⌊Re b⌋ + 1 − b)π

π

∞∫
0

tb−⌊Re b⌋−1R(t : A)(−A)⌊Re b⌋+1(−A)−n(A)x dt.

Due to the closedness of (−A)n(A),

(−A)bx =
sin(⌊Re b⌋ + 1 − b)π

π

× (−A)n(A)

∞∫
0

tb−⌊Re b⌋−1R(t : A)(−A)⌊Re b⌋+1(−A)−n(A)x dt

=
sin(⌊Re b⌋ + 1 − b)π

π

∞∫
0

tb−⌊Re b⌋−1R(t : A)(−A)⌊Re b⌋+1x dt,

as required. If A is densely defined, then the property (ix) follows directly from
Proposition 1.4.6, Theorem 1.4.9(i) and the boundedness of (−A)c−b. Assume
now x ∈ D((−A)b) and A is not densely defined. Using Theorem 1.4.9(i) and
the equality (12) given below, one can simply prove that (−A)−1(−AF )c−b ⊆
(−AF )c−b(−A)−1. This implies (−A)c−b(−A)−k = (−A)−k(−A)c−b, k ∈ N0 and
(−A)n(A)(−A)c−by = (−A)c−b(−A)n(A)y, y ∈ D(An(A)). One can simply prove
that (−AF )c−b ∈ L(F ). Hence,

(−AF )c(−A)−n(A)x = (−AF )c−b(−AF )b(−A)−n(A)x

∈ (−A)c−b(D(An(A))) ⊆ D(An(A)), x ∈ D((−A)c)

(−A)cx = (−A)n(A)(−AF )c−b(−AF )b(−A)−n(A)x

= (−A)n(A)(−A)c−b(−AF )b(−A)−n(A)x

= (−A)c−b(−A)n(A)(−AF )b(−A)−n(A)x = (−A)c−b(−A)bx
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finishing the proof of (x). We will prove (xi) only in the case α > 0. Suppose first
that Re c /∈ Z. It is clear that there exists σ > 0 such that ⌊Re b+α⌋ 6 ⌊Re c+α⌋ for
any b ∈ C such that |b−c| < σ. This implies that (−A)bx is given by the formula (12)
(cf. Remark 1.4.13 given below) in a neighborhood of the point c. Now the required
continuity property follows from the formula (9) and the dominated convergence
theorem. Assume Re c ∈ Z. In the case α /∈ N0, (11) can be proved by means of
(13) and the dominated convergence theorem. The case α ∈ N0 can be considered
analogically. As a matter of fact, (13) and the dominated convergence theorem
imply that limb→c, Re b>Re c(−A)bx = (−A)cx. Since

(−A)bx =
1

2πi

∫
Γ

(−λ)b−⌊Re b+α⌋−2R(λ :A)(−A)⌊Re b⌋+α+2x dλ

=
1

2πi

∫
Γ

(−λ)b−⌊Re b+α⌋−2R(λ :A)(−A)−1(−A)⌊Re c⌋+α+2x dλ

=

∫
Γ

(−λ)b−⌊Re b+α⌋−3R(λ :A)(−A)⌊Re c⌋+α+2x
dλ

2πi

=

∫
Γ

(−λ)b−⌊Re c+α⌋−2R(λ :A)(−A)⌊Re c⌋+α+2x
dλ

2πi
,

Re b ∈ (Re c−1,Re c), it follows that limb→c, Re b<Re c(−A)bx = (−A)cx. The proof
is completed. �

Remark 1.4.13. (i) It is clear that the inclusion (−A)b+c ⊆ (−A)b(−A)c,
b, c ∈ C clarified in the previous subsection cannot be expected if the domain of
the operator A is not dense in E. The assertion (vi) quoted in the formulation
of Theorem 1.4.12 presents an interpretation of this property in the case of non-
densely defined operators.

(ii) Put (−A)bα := (−A)⌊α⌋+2(−A|F )b(−A)−⌊α⌋−2, b ∈ C. Then the properties

(i)–(xi) of Theorem 1.4.12 still hold with n(A) and (−A)b, replaced by ⌊α⌋+ 2 and
(−A)bα, respectively, therein.

(iii) The proof of assertion (iii) of Theorem 1.4.12 implies that, for every b ∈ C
and, x ∈ D(A⌊Re b+α⌋+2) if α > 0, resp. x ∈ D(A⌊Re b⌋+2), if α ∈ [−1, 0), we have:

(−A)bx =


1

2πi

∫
Γ

(−λ)bR(λ :A)x dλ, Re b < 0,

1
2πi

∫
Γ

(−λ)b−⌊Re b⌋−1R(λ :A)(−A)⌊Re b⌋+1x dλ, Re b > 0
(12)

(−A)bx =
1

2πi

∫
Γ

(−λ)b−⌊Re b−α⌋−2R(λ :A)(−A)⌊Re b+α⌋+2x dλ.(13)

(iv) Let (−A)−b ∈ L(E) and D((−A)b) ⊆ D((−A)c). Then (−A)c−b ∈ L(E)
[233].

(v) Suppose that a closed linear operator A satisfies (§1) and (§§1). Then −A
falls under the scope of operators considered by Periago and Straub in [359] and
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one can construct the complex powers of −A by the use of an extension of McIntosh
functional calculus given in [359, Section 2]. It can be proved that the complex
powers constructed in this subsection coincide with those of [359].

The following definition of an (analytic) semigroup of growth order r > 0 is an
extension of the previous one given in Section 1.2.

Definition 1.4.14. An operator family (T (t))t>0 in L(E) is a semigroup of
growth order r > 0 if the following conditions hold:

(i) T (t+ s) = T (t)T (s), t, s > 0,
(ii) the mapping t 7→ T (t)x, t > 0 is continuous for every fixed x ∈ E,

(iii) ∥trT (t)∥ = O(1), t→ 0+ and
(iv) T (t)x = 0 for all t > 0 implies x = 0.

If a semigroup (T (t))t>0 of growth order r > 0 has an analytic extension to Σγ ,
for some γ ∈ (0, π2 ], denoted by the same symbol, and if additionally there exists
ω ∈ R such that, for every δ ∈ (0, γ), there exists a suitable constant Mδ > 0 with
∥zrT (z)∥ 6 Mδe

ωRe z, z ∈ Σδ, then the family (T (z))z∈Σγ is called an analytic
semigroup of growth order r.

Notice only that we have removed the density of the set E0 :=
∪
t>0 T (t)E

in E from Definition 1.2.10 and Definition 1.2.11. The infinitesimal generator of
(T (t))t>0 is defined as before

G :=
{

(x, y) ∈ E × E : lim
t→0+

T (t)x− x

t
= y
}
.

By [348, Lemma 3.1], G is a closable linear operator. The closure of G, denoted by
G, is said to be the complete infinitesimal generator, in short, c.i.g., of (T (t))t>0.
The continuity set of (T (t))t>0, resp. (T (z))z∈Σγ

, is defined to be the set {x ∈ E :
limt→0+ T (t)x = x}, resp. {x ∈ E : limz→0, z∈Σγ′ Tb(z)x = x for all γ′ ∈ (0, γ)}.

Suppose that G is the c.i.g. of a semigroup (T (t))t>0, resp. an analytic semi-
group (T (z))z∈Σγ , of growth order r > 0. Repeating literally the arguments given
in [348] and [398] (cf. also [324, Section 5]), one gets that the conditions (I), (II)
and (IV) quoted in the formulation [348, Theorem 1.2], resp. (b2), (b3) and (b4)
quoted in the formulation [398, Theorem 3], remain true if the denseness of E0 in
E is disregarded. It is an open problem whether such conditions are sufficient for
the generation of non-dense (analytic) semigroups of growth order r > 0. Further
on, suppose that (T (z))z∈Σγ is an analytic semigroup of growth order r. It is clear

that, for every θ ∈ (0, γ), (T (teiθ))t>0 is a semigroup of growth order r > 0. With
the help of C-regularized semigroups, one can prove that the integral generator of
(T (teiθ))t>0 is always eiθĜ and that the c.i.g. of (T (teiθ))t>0 is eiθG whenever E0

is dense in E or r ∈ (0, 1) (cf. also [466, Theorem 1]). Unfortunately, it is quite
questionable whether the last assertion remains true if E0 ̸= E and r > 1.

Theorem 1.4.15. Let b ∈ (0, 12 ) and let A be a closed linear operator with not

necessarily densely defined domain. Then the operator −(−A|F )b is the c.i.g. of an

analytic semigroup (Tb(z))z∈Σarctan(cosπb)
of growth order α+1

b , where
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(14) Tb(z) :=
1

2πi

∫
Γ

e−z(−λ)
b

R(λ :A) dλ, z ∈ Σarctan(cosπb).

Furthermore, the integral generator of (Tb(z))z∈Σarctan(cosπb)
is just the operator

−(−A)⌊α⌋+2(−A|F )b(−A)−⌊α⌋−2; in particular, −(−A)b ⊆ Ĝ and −(−A)b = Ĝ
if D(A) is not dense in E and α ∈ (−1, 0).

Proof. The choice of b implies bπ < π
2 . Put γ := arctan(cosπb). Then

γ ∈ (0, π2 ) and, for every z = ξ+ iη ∈ Σγ , we have ξ cos(bπ)−|η| > 0. Furthermore,

|e−z(−λ)b | = e−ξ|λ|
b cos(b arg(−λ))+η|λ|b sin(b arg(−λ)) 6 e−(ξ cos(bπ)−|η|)|λ|b . Without

loss of generality, one can assume that ε ∈ (0, 1). The convergence of the curve
integral over Γ1 and Γ3 follows from the computation∥∥∥∥∥ 1

2πi

∫
Γ1

e−z(−λ)
b

R(λ :A) dλ

∥∥∥∥∥
6 M

2π

∞∫
ε

e−(ξ cos(bπ)−|η|)
√
t2+t2a

b
(

1 +
√
t2 + t2a

)α
(1 + aεa−1) dt

6 M(1+ aεa−1)

2π

[ 1∫
ε

e−(ξ cos(bπ)−|η|)tb(1+
√

2
)α
dt

+

∞∫
1

e−(ξ cos(bπ)−|η|)tb(1+
√

2
)α
tαdt

]

6
M
(
1 +

√
2
)α

(1 + aεa−1)

2π

[
(1 − ε)e−(ξ cos(bπ)−|η|)εb +

∞∫
0

e−(ξ cos(bπ)−|η|)tbtαdt

]

=
M
(
1 +

√
2
)α

(1 + aεa−1)

2π

[
(1 − ε)e−(ξ cos(bπ)−|η|)εb

+
1

b
Γ
(α+ 1

b

)
(ξ cos(bπ) − |η|)−

α+1
b

]
.

The convergence of the integral over Γ2 is obvious and one obtains∥∥∥∥∥ 1

2πi

∫
Γ2

e−z(−λ)
b

R(λ :A) dλ

∥∥∥∥∥ 6Me−(ξ cos(bπ)−|η|)db(1 + d)α+1.

Hence, for every δ ∈ (0, γ), we have ∥z α+1
b Tb(z)∥ = O(1), z ∈ Σδ. By an elementary

application of Cauchy’s formula, it follows that the integral in (14) does not depend
on the choice of a curve Γ(a,C, d). Denote by Ωb(A), resp. Ωb(A), the continuity set
of (Tb(z))z∈Σγ

, resp. (Tb(t))t>0. Fix a number λ0 ∈ ρ(A)rH. Here we would like to
point out that ρ(A)rH is a nonempty set since ρ(A) is an open subset of C. Using
the same arguments as in [394, Proposition 2.3, Proposition 2.5, Proposition 2.6,
Proposition 2.7 and Proposition 2.8], one obtains:
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1. Let m ∈ {0, 1} and γ′ ∈ (0, γ). Then the improper integral∫
Γ

−(−λ)mbe−z(−λ)
b

(λ− λ0)⌊b+α⌋+2
R(λ :A) dλ

converges uniformly for z ∈ Σγ′ .
2. The mapping z 7→ Tb(z), z ∈ Σγ is analytic and

dn

dzn
Tb(z) =

(−1)n

2πi

∫
Γ

(−λ)nbe−z(−λ)
b

R(λ :A) dλ, n ∈ N.

3. Tb(z1 + z2) = Tb(z1)Tb(z2), z1, z2 ∈ Σγ .

4. D(A⌊b+α⌋+1) ⊆ Ωb(A), if ⌊b+ α⌋ > 0.
5. If ⌊b+ α⌋ 6 0, x ∈ D(A⌊b+α⌋+2) = D(Jb) and γ′ ∈ (0, γ), then

lim
z→0, z∈Σγ′

Tb(z)x− x

z
=

1

2πi

∫
Γ

(−λ)b−1R(λ :A)Axdλ.

6. For every z ∈ Σγ , Tb(z) is an injective operator.
By the foregoing, we obtain that (Tb(z))z∈Σγ

is an analytic semigroup of growth

order α+1
b . Suppose, for the time being, that A is densely defined and denote by

Ab the generator of (Tb(t))t>0. By 4, we obtain that −Jb ⊆ Ab. Consequently,

−(−A)b ⊆ Ab. Since
∫
Γ
e−z(−λ)

b

λndλ = 0, n ∈ N0, z ∈ Σγ , one can repeat literally
the arguments given in [394, Lemma 2.10] in order to obtain that, for every x ∈ E
and z ∈ Σγ , Tb(z)x ∈ D(An) and

(15) AnTb(z)x =
1

2πi

∫
Γ

e−z(−λ)
b

λnR(λ :A)x dλ.

To prove that Ab ⊆ −(−A)b, one can argue in the same manner as in [394]. Ac-
tually, it is enough to replace the natural number n in the proofs of [394, Proposi-

tion 2.11 and Proposition 2.12] with ⌊b+α⌋. Suppose now D(A) ̸= E. Denote by G
the infinitesimal generator of (Tb(z))z∈Σγ

and put Sb(z)x := Tb(z)x, z ∈ Σγ , x ∈ F .
Since Tb(z)x ∈ D∞(A), z ∈ Σγ , x ∈ E, we obtain that Sb(z) ∈ L(F ), t ∈ Σγ .

Furthermore, for every λ ∈ ρ(A), we have R(λ : A)D(An(A)) ⊆ D(An(A)+1) and
R(λ :A)F ⊆ F . Hence, R(λ :A)x = R(λ : A|F )x, x ∈ F , λ ∈ ρ(A : E) = ρ(A|F : F )
and

Sb(z)x = Tb(z)x =
1

2πi

∫
Γ

e−z(−λ)
b

R(λ :A)x dλ

=
1

2πi

∫
Γ

e−z(−λ)
b

R(λ : A|F )x dλ, x ∈ F, z ∈ Σγ .(16)

Since A|F is densely defined in F and satisfies (10), one can apply the first part

of the proof in order to see that −(−A|F )b is the c.i.g. of an analytic semigroup
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(Sb(z))z∈Σγ
of growth order α+1

b in F . If x ∈ D(G), then limt→0+ Tb(t)x = x ∈ F ,
and consequently, Gx ∈ F . With this in view, one immediately gets:

G =
{

(x, y) ∈ F × F : lim
t→0+

Sb(t)x− x

t
= y
}
.

We will prove that −(−A)b is the integral generator of (Tb(z))z∈Σγ
only in the case

of non-densely defined operators. Since, by (ii),
∪
z∈Σγ

R(Tb(z)) ⊆ D∞(A), the

following equivalence relation is obvious:

(17) (x, y) ∈ Ĝ iff Tb(s)y =
1

2πi

∫
Γ

(−λ)b−1R(λ :A)ATb(s)x dλ for all s > 0.

Let (x, y) ∈ D((−A)b) and n = ⌊α⌋ + 2. Then (−A)−ny = (−A|F )b(−A)−nx

and this implies the existence of a sequence (xn, yn) ∈ JbF such that limn→∞ xn =
(−A)nx and limn→∞ JbFxn = (−Ab|F )(−A)nx. Keeping in mind (15), we infer that,

for every s > 0:

(−A)nTb(s)y =
1

2πi
lim
n→∞

∫
Γ

(−λ)b−⌊b+α⌋−2Tb(s)R(λ : A|F )(−A|F )⌊b+α⌋+2xndλ

=
1

2πi
lim
n→∞

∫
Γ

(−λ)b−⌊b+α⌋−2R(λ :A)(−A)⌊b+α⌋+2Tb(s)xndλ

=
(−1)⌊b+α⌋+2

2πi
lim
n→∞

∫
Γ

(−λ)b−⌊b+α⌋−2R(λ :A)

×

[
1

2πi

∫
Γ

e−s(−ξ)
b

ξ⌊b+α⌋+2R(ξ : A)Tb(s)xndξ dλ

]
.

Using the dominated convergence theorem, one can continue the computation as
follows:

=
1

2πi

∫
Γ

(−λ)b−⌊b+α⌋−2R(λ :A)(−A)⌊b+α⌋+2Tb(s)(−A)−nx dλ

=
1

2πi
(−A)−n

∫
Γ

(−λ)b−⌊b+α⌋−2R(λ :A)(−A)⌊b+α⌋+2Tb(s)x dλ, s > 0.

The injectiveness of (−A)−n yields (17) and −(−A)b ⊆ Ĝ. Next, we will show
that D(A⌊α⌋+2) ⊆ Ωb(A). If b + α > 0, the proof is obvious; suppose b + α < 0,
γ′ ∈ (0, γ) and λ0 ∈ ρ(A)rH(a,C, d). Then ⌊α⌋ + 2 = 1 and

Tb(z)(−A)−1x− (−A)−1x =
1

2πi

∫
Γ

e−z(−λ)
b

R(λ :A)(−A)−1x dλ− (−A)−1x

=
1

2πi

∫
Γ

e−z(−λ)
b

R(λ :A)(−A)−1x dλ− e−z(−λ0)
b

(−A)−1x

+ [e−z(−λ0)
b

(−A)−1x− (−A)−1x]
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=
1

2πi

∫
Γ

e−z(−λ)
b

[
R(λ :A)(−A)−1x− (−A)−1x

λ− λ0

]
dλ

+
[
e−z(−λ0)

b

(−A)−1x− (−A)−1x
]

=
(−1)

2πi

∫
Γ

e−z(−λ)
b

[
R(λ :A)x

λ
+
λ0(−A)−1x

λ(λ− λ0)

]
dλ

+
[
e−z(−λ0)

b

(−A)−1x− (−A)−1x
]
,

for all z ∈ Σγ′ and x ∈ E. The preceding equality combined with the residue the-

orem, the inequality |e−z(−λ)b | 6 e−(Re z cos(bπ)−| Im z|)|λ|b and the dominated con-
vergence theorem, indicates that limz→0, z∈Σγ′ Tb(z)(−A)−1x = (−A)−1x, x ∈ E

and that D(A) ⊆ Ωb(A). Then it is checked at once that Ĝ is the the integral
generator of an exponentially bounded, analytic (−A)−n-regularized semigroup(
Sb(z) := Tb(z)(−A)−n

)
z∈Σγ

. The assumption (x, y) ∈ Ĝ implies

lim
t→0+

Tb(t)(−A)−nx− (−A)−nx

t
= (−A)−ny, (−A)−nx ∈ (−A|F )b,

(−A|F )b(−A)−nx = (−A)−ny ∈ D(An).

Thereby, x ∈ D((−A)b), (−A)bx = y = Ĝx and the proof is completed. �

Theorem 1.4.16. Let n ∈ N, n > 3 and let A be a closed operator which
satisfies (§) and (§§). Suppose |θ| < arctan(cos πn ). Then, for every x ∈ Ω 1

n
(A),

the abstract Cauchy problem

(Pn) :


u ∈ C((0,∞) : [D(A)]) ∩ Cn((0,∞) : E),
dn

dtnu(t) = (−1)n+1einθAu(t), t > 0,

limt→0+ u(t) = x, supt>0 ∥u(t)∥ <∞,

has a solution u(t) = T 1
n

(teiθ)x, t > 0. Furthermore, u(·) can be analytically

extended toΣarctan(cos π
n )−|θ| and, for every δ ∈ (0, arctan(cos πn ) − |θ|) and i ∈ N0,

sup
z∈Σδ

∥∥∥zi+nα+n di
dzi

u(z)
∥∥∥ <∞.

Proof. We will prove the theorem only in the case θ = 0. One can use
the assertion 2 used in the proof of preceding theorem and (15) to obtain that
dn

dtnu(t) = (−1)n+1Au(t), t > 0. By Theorem 1.4.15, u(·) can be analytically
extended to Σarctan(cos π

n ). Due to the proof of Theorem 1.4.15 (see the assertion 3),

we easily infer that limt→0+ u(t) = x. Let us fix a number δ ∈ (0, arctan(cos πn ))
and a number z ∈ Σδ. Since

di

dzi
u(z) =

(−1)n

2πi

∫
Γ

(−λ)i/ne−z(−λ)
1/n

R(λ :A) dλ,

and ∥(−λ)
i
nR(λ :A)x∥ 6M(1+|λ|)α+ i

n , it follows (see the proofs of Theorem 1.4.15
and [394, Proposition 2.2]) that
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∥∥∥ di
dzi

u(z)
∥∥∥ = O

((
ξ cos(π/n) − |η|

)−α+i/n+1
i/n

)
, z ∈ Σδ.

Hence, supz∈Σδ
∥zi+nα+n di

dziu(z)∥ <∞, as required. �

Remark 1.4.17. (i) [394], [358] Suppose A is a closed operator as well as
(1.4.1) holds and (1.4.2) holds with n replaced by α therein. Let b ∈

(
0, π

2(b−a)
)

(in

particular, this holds good for b ∈ (0, 12 ]) and let

Tb(t) :=
1

2πi

∫
Γ

e−t(−λ)
b

R(λ :A) dλ, t ∈ Σarctan(π(b−a)),

where Γ is upwards oriented boundary of Ωa,d = {z ∈ C : z ̸= 0, | arg(z)| ∈
(−a, a)} ∪ Bd. Then, for every t ∈ Σarctan(π(b−a)), Tb(t) is an injective bounded

operator and (Tb(t))t∈Σarctan(π(b−a))
is an analytic semigroup of growth order α+1

b .
Using the above conclusions, one can simply reformulate Theorem 1.4.15 in the case
n = 2; in this case, the uniqueness of solutions of the abstract Cauchy problem (Pn)
holds provided n(A) 6 1 ([233]).

(ii) Suppose that A is a closed linear operator and that there exist M > 0 and
α ∈ (−1, 0) such that [0,∞) ⊆ ρ(A) and ∥R(λ :A)∥ 6M(1+ |λ|)α, λ > 0. Then the
usual series argument implies the existence of numbers C > 0, d ∈ (0, 1] and M ′ > 0
satisfying P−α,C ∪ Bd ⊆ ρ(A) and ∥R(λ : A)∥ 6 M ′(1 + |λ|)α, λ ∈ P−α,C ∪ Bd.

By Theorem 1.4.15, one obtains that, for every b ∈ (0, 12 ), the operator −
(
A|D(A)

)b
generates an analytic semigroup (Tb(z))z∈Σarctan(cosπb)

of growth order α+1
b . Hence,

(Pn) has a solution for every n ∈ Nr {1, 2} and x ∈ Ω 1
n ,θ

(A).

(iii) In general, D
(
A⌊ 1

n+α⌋+1
)

is strictly contained in Ω 1
n ,θ

(A) ([358]).

(iv) The c.i.g. of (Tb(z))z∈Σγ
can be strictly contained in the integral generator

of (Tb(z))z∈Σγ
for all b ∈ (0, 12 ). Indeed, suppose that −A is a non-densely defined

positive operator and denote by (̂−A)b the complex power of −A in the sense
of [300, Section 5]. By [300, Theorem 5.2.1, Corollary 5.1.12(i)], we have that

(̂−A)b = −A ̂(
−A|D(A)

)b
(−A)−1. Obviously,

̂(
−A|D(A)

)b
=
(
− A|D(A)

)b
, b ∈

(0, 12 ) and this implies that (̂−A)b = (−A)b, b ∈ (0, 12 ). On the other hand, it
is clear that A satisfies (§1) and (§§1) with some α ∈ (−1, 0) and the claimed
assertion follows by making use of [300, Corollary 5.1.12(ii)], which asserts that(
−A|D(A)

)b ̸= (−A)b, b ∈ (0, 12 ).

Assume now that a closed, possibly non-densely defined operator A satisfies:

(♢) (0,∞) ⊆ ρ(A) and (♢♢) supλ>0(1 + |λ|)−α∥R(λ :A)∥ <∞,

for an appropriate constant α > −1. The complex power (−A)b, b ∈ C has been
recently constructed in [233] following the above described method. First of all,
notice that the usual series argument implies that, under the hypotheses (♢) and
(♢♢), there exist d ∈ (0, 1], C ∈ (0, 1), ε ∈ (0, 1] and M > 0 such that:

Pα,ε,C ∪Bd ⊆ ρ(A), (ε, C(1 + ε)−α) ∈ ∂Bd,(⊙)
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∥R(λ :A)∥ 6M(1 + |λ|)α, λ ∈ Pα,ε,C ∪Bd.(⊙⊙)

Put

Γ1(α, ε, C) := {ξ + iη : ξ > ε, η = −C(1 + ξ)−α},
Γ2(α, ε, C) := {ξ + iη : ξ2 + η2 = d2, ξ 6 ε},
Γ3(α, ε, C) := {ξ + iη : ξ > ε, η = C(1 + ξ)−α}.

The curve Γ(α, ε, C) := Γ1(α, ε, C)∪Γ2(α, ε, C)∪Γ3(α, ε, C) is oriented so that Imλ
increases along Γ2(α, ε, C) and that Imλ decreases along Γ1(α, ε, C) and Γ3(α, ε, C).
Suppose for a moment that A is densely defined and that α > 0. Using the
arguments given in the proof of Proposition 1.4.1, we have that, for every b ∈ C
with Re b < −(α + 1), the integral I(b) := 1

2πi

∫
Γ(α,ε,C)

(−λ)bR(λ :A) dλ exists and

defines a bounded linear operator. Let b ∈ C. Then the operator Jb is defined as in
Definition 1.4.2. Arguing as in the proof of Proposition 1.4.4, we have that (7) holds
for all x ∈ D(A⌊Re b+α⌋+2) = D(Jb). Put Cb := (−A)⌊Re b+α⌋+2Jb−⌊Re b+α⌋−2.
Then, for every b ∈ C, Cb is a closed linear operator which contains Jb and one can
prove that Cb = Jb if |Re b| > α + 1 or b ∈ Z. The complex power (−A)b, b ∈ C
is defined by (−A)b := Jb and coincides with the usual power of the operator A if
b ∈ Z. It is worthwhile to note that the assertions of Lemma 1.4.5, Lemma 1.4.7,
Proposition 1.4.6 and Theorem 1.4.9 as well as the equality (9) still hold in the case
of operators satisfying (♢) and (♢♢). Suppose now that a closed, densely defined
operator A satisfies (♢) and (♢♢) with α ∈ [−1, 0). Then it is clear that ∥R(· : A)∥
is bounded on the region Pα,ε,C ∪ Bd. We define the complex powers of −A by
assuming that α = 0. Then, as before, (−A)b is a closed, densely defined linear
operator and (−A)b ∈ L(E) provided Re b < −(α + 1). Fix a number α > −1
satisfying (♢♢). Then the construction of powers of densely defined operators does
not depend on the choice of numbers d ∈ (0, 1], C ∈ (0, 1), ε ∈ (0, 1] and M > 0
satisfying (⊙) and (⊙⊙). Furthermore, supλ>0(1 + |λ|)−β∥R(λ :A)∥ < ∞ for all
β ∈ [α,∞), and the construction of powers of densely defined operators does not
depend on the choice of such a number β. If A is not densely defined and satisfies
(♢)–(♢♢), then we define the power (−A)b and the operator (−A)bα (b ∈ C) as
in Definition 1.4.11 and Remark 1.4.13(ii), respectively. Then the assertions of
Theorems 1.4.12, 1.4.15, 1.4.16 and Remark 1.4.13 continue to hold in the case
of operators satisfying (♢) and (♢♢). Finally, suppose that (♢) and (♢♢) hold
with α > 0. Set T (t) := (−A)it(−A)−⌊α⌋−2, t ∈ R. Then the closed graph theorem
implies T (t) ∈ L(E), t ∈ R, and by Theorem 1.4.12(xi), we obtain that the mapping
t 7→ T (t)x, t ∈ R is continuous for every fixed x ∈ E. One can simply prove that
(T (t))t∈R is a global (−A)−⌊α⌋−2-regularized group. Denote by B the integral
generator of (T (t))t∈R. The logarithm of −A, denoted by log(−A), is defined by
log(−A) := −iB. Clearly, the definition of log(−A) is independent of the choice of a
number α > 0 satisfying (♢) and (♢♢), and ±i log(−A) are the integral generators
of local (−A)−⌊α⌋−2-regularized semigroups. For further information concerning
operator logarithms, we refer to [46], [73], [89], [113], [146], [264], [341], [350]
and [443].





CHAPTER 2

CONVOLUTED C-SEMIGROUPS
AND COSINE FUNCTIONS

Throughout this chapter, E and L(E) denote a non-trivial complex Banach
space and the Banach algebra of bounded linear operators on E. For a closed
linear operator A acting on E, D(A), Kern(A), R(A) and ρ(A) denote its domain,
kernel, range and resolvent set, respectively. We assume henceforth C ∈ L(E) and
C is injective; recall, the C-resolvent set of A, denoted by ρC(A), is defined by
ρC(A) := {λ ∈ C : R(C) ⊆ R(λ− A) and λ− A is injective}. From now on, D(A)
is equipped with the graph norm ∥x∥[D(A)] := ∥x∥ + ∥Ax∥, x ∈ D(A); τ ∈ (0,∞],
K is a complex-valued locally integrable function in [0, τ) and K(·) is not identical

to zero. Put Θ(t) :=
∫ t
0
K(s)ds and Θ−1(t) :=

∫ t
0

Θ(s) ds, t ∈ [0, τ); then Θ(·) is an
absolutely continuous function in [0, τ) and Θ′(t) = K(t) for a.e. t ∈ [0, τ). Let us
recall that a function K ∈ L1

loc([0, τ)) is called a kernel if, for every ϕ ∈ C([0, τ)),

the assumption
∫ t
0
K(t− s)ϕ(s) ds = 0, t ∈ [0, τ), implies ϕ ≡ 0; due to the famous

Titchmarsh’s theorem [14], the condition 0 ∈ suppK implies that K is a kernel.
We use occasionally the following conditions:

(P1) K is Laplace transformable, i.e., K ∈ L1
loc([0,∞)) and there exists β ∈ R

so that K̃(λ) := L(K(t))(λ) := limb→∞
∫ b
0
e−λtK(t) dt :=

∫∞
0
e−λtK(t) dt

exists for all λ ∈ C with Reλ > β.
Put abs(K) :=inf{Reλ : K̃(λ) exists}.

(P2) K satisfies (P1) and K̃(λ) ̸= 0, Reλ > β, where β > abs(K).

2.1. Definitions and main structural properties

Definition 2.1.1. [61], [228]–[230] Suppose A is a closed operator, K ∈
L1
loc([0, τ)) and 0 < τ 6 ∞. If there exists a strongly continuous operator family

(SK(t))t∈[0,τ) (SK(t) ∈ L(E), t ∈ [0, τ)) such that:

(i) SK(t)A ⊆ ASK(t), t ∈ [0, τ),
(ii) SK(t)C = CSK(t), t ∈ [0, τ) and

(iii) for all x ∈ E and t ∈ [0, τ):
∫ t
0
SK(s)x ds ∈ D(A) and

(18) A

t∫
0

SK(s)x ds = SK(t)x− Θ(t)Cx,

then it is said that A is a subgenerator of a (local) K-convoluted C-semigroup
(SK(t))t∈[0,τ). If τ = ∞, then it is said that (SK(t))t>0 is an exponentially bounded,

43
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K-convoluted C-semigroup with a subgeneratorA if, in addition, there are constants
M > 0 and ω ∈ R such that ∥SK(t)∥ 6Meωt, t > 0.

Definition 2.1.2. [228]–[230] Suppose A is a closed operator, K ∈ L1
loc([0, τ))

and 0 < τ 6 ∞. If there exists a strongly continuous operator family (CK(t))t∈[0,τ)

such that:

(i) CK(t)A ⊆ ACK(t), t ∈ [0, τ),
(ii) CK(t)C = CCK(t), t ∈ [0, τ) and

(iii) for all x ∈ E and t ∈ [0, τ):
∫ t
0
(t− s)CK(s)x ds ∈ D(A) and

(19) A

t∫
0

(t− s)CK(s)x ds = CK(t)x− Θ(t)Cx,

then it is said that A is a subgenerator of a (local) K-convoluted C-cosine function
(CK(t))t∈[0,τ). If τ = ∞, then it is said that (CK(t))t>0 is an exponentially bounded,
K-convoluted C-cosine function with a subgenerator A if, in addition, there are
constants M > 0 and ω ∈ R such that ∥CK(t)∥ 6Meωt, t > 0.

Plugging K(t) = tα−1

Γ(α) in Definition 2.1.1 and Definition 2.1.2, where α > 0, we

obtain the well-known classes of fractionally integrated C-semigroups and cosine
functions; in the case C = I, we obtain the classes of K-convoluted semigroups and
cosine functions.

The integral generator of (SK(t))t∈[0,τ), resp. (CK(t))t∈[0,τ), is defined by{
(x, y) ∈ E × E : SK(t)x− Θ(t)Cx =

t∫
0

SK(s)y ds, t ∈ [0, τ)

}
, resp.,

{
(x, y) ∈ E × E : CK(t)x− Θ(t)Cx =

t∫
0

(t− s)CK(s)y ds, t ∈ [0, τ)

}
.

The integral generator of (SK(t))t∈[0,τ), resp. (CK(t))t∈[0,τ), is a closed linear opera-
tor which is an extension of any subgenerator of (SK(t))t∈[0,τ), resp. (CK(t))t∈[0,τ).
In what follows, we designate by ℘(SK), resp. ℘(CK), the set which consists of
all subgenerators of (SK(t))t∈[0,τ), resp. (CK(t))t∈[0,τ). It is well known that such
sets can be consisted of infinitely many elements [228, 422]; before illustrate these
facts, we clarify the following proposition which can be simply justified with the
help of Proposition 1.1.2 and Proposition 1.1.5.

Proposition 2.1.3. Let A be a subgenerator of a (local) K-convoluted C-
semigroup (SK(t))t∈[0,τ), resp. K-convoluted C-cosine function (CK(t))t∈[0,τ), and

let H ∈ L1
loc([0, τ)) satisfy H ∗0 K ̸= 0 in L1

loc([0, τ)). Then A is a subgenerator of
an (H∗0K)-convoluted C-semigroup

(
(H∗0SK)(t)

)
t∈[0,τ)

, resp. (H∗0K)-convoluted

C-cosine function
(
(H ∗0 CK)(t)

)
t∈[0,τ)

.

For example, if (S(t))t∈[0,τ), resp. (C(t))t∈[0,τ), is a (local) C-semigroup, resp.

C-cosine function, with a subgenerator A, define SK(t)x :=
∫ t
0
K(t − s)S(s)x ds
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and CK(t)x :=
∫ t
0
K(t − s)C(s)x ds, x ∈ E, t ∈ [0, τ). Then (SK(t))t∈[0,τ), resp.

(CK(t))t∈[0,τ), is a (local) K-convoluted C-semigroup, resp. K-convoluted C-cosine
function with a subgenerator A.

Example 2.1.4. (a) [422] Let E := l2, n ∈ N,

C⟨xk⟩ := ⟨
n︷ ︸︸ ︷

0, . . . , 0, x1, x2, . . . ⟩ and S(t) := etC, t > 0, ⟨xk⟩ ∈ E.

Then (S(t))t>0 is a global exponentially bounded C-regularized semigroup with the
integral generator I and |℘(S)| = 2n.

(b) [228] Choose an arbitrary K ∈ L1
loc([0,∞)). Put E := l∞, C⟨xn⟩ :=

⟨0, x1, 0, x2, 0, x3, . . . ⟩ and CK(t)⟨xn⟩ := Θ(t)C⟨xn⟩, t > 0, ⟨xn⟩ ∈ E. If I ⊆ 2N+1,
define EI := {⟨xn⟩ ∈ E : xi = 0 for all i ∈ (2N + 1) r I}. It is clear that EI is a
closed subspace of E which contains R(C) and that EI1 ̸= EI2 , if I1 ̸= I2. Define a
closed linear operator AI on E by D(AI) := EI and AI⟨xn⟩ := 0, ⟨xn⟩ ∈ D(AI). It
is straightforward to see that, for every I ⊆ 2N+1, AI is a subgenerator of the global
K-convoluted C-cosine function (CK(t))t>0 and that ℘(CK) = {AI : I ⊆ 2N+ 1}.
This implies that there exist the continuum many subgenerators of (CK(t))t>0.

Suppose A is a subgenerator of aK-convoluted C-cosine function (CK(t))t∈[0,τ).
Then CA ⊆ AC; in order to verify this, suppose x ∈ D(A), t ∈ [0, τ) and Θ(t) ̸=
0. Combining the closedness of A with the conditions (i) and (iii) quoted in the
formulation of Definition 2.1.2, it follows that

CK(t)Ax− Θ(t)CAx = A

t∫
0

(t− s)CK(s)Axds = A2

t∫
0

(t− s)CK(s)x ds

= A(CK(t)x− Θ(t)Cx).

Since CK(t)x ∈ D(A) and Θ(t) ̸= 0, we immediately obtain Cx ∈ D(A) and
CAx = ACx. The same conclusion holds if A is a subgenerator of a K-convoluted
C-semigroup (SK(t))t∈[0,τ); in this chapter we always assume that CA ⊆ AC.

The following composition property of local convoluted C-semigroups follows
from the argumentation given in the proof of [275, Proposition 2.4] (cf. also [61]
and [230, Proposition 5.4]); notice only that the equality

Θ(s)Θ(t− s) −
t∫

t−s

K(t− r)Θ(r) dr +

s∫
0

K(t− r)Θ(r) dr = 0, 0 6 t < τ, 0 6 s < t

implies that the coefficient of C2x appearing in the proof of [275, Proposition 2.4]
equals zero.

Proposition 2.1.5. Assume A is a subgenerator of a (local) K-convoluted C-
semigroup (SK(t))t∈[0,τ). Then the following holds:

(20) SK(t)SK(s)x =

[ t+s∫
0

−
t∫

0

−
s∫

0

]
K(t+ s− r)SK(r)Cxdr,
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for every x ∈ E and t, s ∈ [0, τ) with t+ s < τ . Hence, SK(t)SK(s) = SK(s)SK(t)
for all t, s ∈ [0, τ) with t+ s 6 τ .

The following proposition is a generalization of [230, Proposition 5.5(3)–(4)],
[422, Corollary 2.9, Proposition 3.3] and some results given in [228, Section 2].

Proposition 2.1.6. Assume Â is the integral generator of a (local) K-convol-
uted C-semigroup (SK(t))t∈[0,τ) and {A,B} ⊆ ℘(SK). Then:

(i) Â = C−1AC ∈ ℘(SK).
(ii) C−1AC = C−1BC, C(D(A)) ⊆ D(B) and A ⊆ B ⇔ D(A) ⊆ D(B).

(iii) If A ̸= Â, then ρ(A) = ∅.
(iv) For every λ ∈ ρC(A):

(21) (λ−A)−1CSK(t) = SK(t)(λ−A)−1C, t ∈ [0, τ).

(v) A and B have the same eigenvalues.
(vi) If A ⊆ B, then ρC(A) ⊆ ρC(B).

(vii) |℘(SK)| = 1, if C(D(Â)) is a core for Â.
(viii) Ax = Bx, x ∈ D(A) ∩D(B).

(ix) Define the operators A ∧ B and A ∨ B as follows: A ∧ B = 1
2 (A + B),

D(A ∨0 B) := span[D(A) ∪D(B)] and

A ∨0 B(ax+ by) := aAx+ bBy, x ∈ D(A), y ∈ D(B), a, b ∈ C.
Then A ∨0 B is closable and {A ∧ B, A ∨ B} ⊆ ℘(SK), where A ∨ B :=
A ∨0 B.

Proof. Obviously, CA ⊆ AC, A ⊆ C−1AC and C−1AC is closed. As-

sume (x, y) ∈ Â, i.e., SK(t)x − Θ(t)Cx =
∫ t
0
SK(s)y ds, t ∈ [0, τ). Thereby,

A
∫ t
0
SK(s)x ds =

∫ t
0
SK(s)y ds, t ∈ [0, τ), which simply implies SK(t)x ∈ D(A),

ASK(t)x = SK(t)y and A[Θ(t)Cx +
∫ t
0
SK(s)y ds] = SK(t)y, t ∈ [0, τ). Since∫ t

0
SK(s)y ds ∈ D(A), t ∈ [0, τ) and Θ ̸= 0 in C([0, τ)), one gets Cx ∈ D(A)

and Θ(t)ACx + SK(t)y − Θ(t)Cy = SK(t)y, t ∈ [0, τ). This implies ACx = Cy,

(x, y) ∈ C−1AC and Â ⊆ C−1AC. Clearly,
∫ t
0
SK(s)x ds ∈ D(A) ⊆ D(C−1AC)

and C−1AC
∫ t
0
SK(s)x ds = A

∫ t
0
SK(s)x ds = SK(t)x − Θ(t)Cx, t ∈ [0, τ), x ∈ E.

Suppose now x ∈ D(C−1AC) and t ∈ [0, τ). Since Cx ∈ D(A) and SK(t)A ⊆
ASK(t), one obtains CSK(t)x = SK(t)Cx ∈ D(A) and ACSK(t)x = ASK(t)Cx =
SK(t)ACx = SK(t)C[C−1AC]x = CSK(t)[C−1AC]x ∈ R(C) and [C−1AC]SK(t)x
= SK(t)[C−1AC]x. So, SK(t)[C−1AC] ⊆ [C−1AC]SK(t), C−1AC is a subgenera-

tor of (SK(t))t∈[0,τ) and C−1AC ⊆ Â. Therefore, Â = C−1AC and the proof of (i)
is completed; (ii) and (iii) follow automatically from (i). To prove (iv), assume λ ∈
ρC(A), t ∈ [0, τ) and x ∈ E. Then (λ−A)−1Cx ∈ D(A), SK(t)(λ−A)−1Cx ∈ D(A)
and (λ−A)SK(t)(λ−A)−1Cx = SK(t)(λ−A)(λ−A)−1Cx = SK(t)Cx = CSK(t)x.

This gives (21). To prove (v) and (vi), observe only that Kern(λ−A) ⊆ Kern(λ−Â)

and that C−1BC = Â implies C
(
Kern(λ−Â)

)
⊆ Kern(λ−B), λ ∈ C. Suppose now

A ∈ ℘(SK), x ∈ D(Â) and C(D(Â)) is a core for Â. Let (xn) be a sequence in D(Â)

such that limn→∞ Cxn = x and limn→∞ ÂCxn = Âx. Since C(D(Â)) ⊆ D(A),
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we obtain that limn→∞ Cxn = x and limn→∞ACxn = Âx. The closedness of A
implies x ∈ D(A), D(Â) ⊆ D(A) and Â = A. The proofs of (viii) and (ix) are left
to the reader. �

Remark 2.1.7. There exist examples of local C-regularized semigroups and
local C-regularized cosine functions whose integral generators possess the empty
C-resolvent sets [275]. Moreover, |℘(SK)| = 1 provided C = I [227].

Assume (SK(t))t∈[0,τ) is a (local) K-convoluted C-semigroup and K is a ker-
nel. By [230, Proposition 5.5], SK(t)SK(s) = SK(s)SK(t), 0 6 t, s < τ and
(SK(t))t∈[0,τ) is uniquely determined by one of its subgenerators.

Remark 2.1.8. (i) Define the operator A1 by

D(A1) :=

{
m∑
k=1

tk∫
0

SK(s)xk ds : xk ∈ E, tk ∈ [0, τ), k = 1, . . . ,m

}
,

A1

(
m∑
k=1

tk∫
0

SK(s)xk ds

)
:=

m∑
k=1

(
S(tk)xk − Θ(tk)Cxk

)
.

It is straightforward to verify that A1 is well-defined and closable. Suppose, addi-
tionally, τ = ∞ or K is a kernel. Then SK(t)SK(s) = SK(s)SK(t), t, s ∈ [0, τ)
and this enables one to see that: SK(t)(D(A1)) ⊆ D(A1), SK(t)A1 ⊆ A1SK(t),
SK(t)A1 ⊆ A1SK(t), t ∈ [0, τ) and A1 ∈ ℘(SK). Certainly, A1 ⊆ A, if A ∈ ℘(SK).

(ii) It can be proved that (℘(SK),∧,∨) is a complete lattice whose partial
ordering coincides with the usual set inclusion and that ℘(SK) is totally ordered iff
|℘(SK)| 6 2 [422].

(iii) Suppose |℘(SK)| < ∞. Arguing as in [422, Section 2], one can prove
that (℘(SK),∧,∨) is a Boolean lattice; this implies the existence of a non-negative
integer n satisfying |℘(SK)| = 2n.

The following extension type theorem for local convoluted C-semigroups essen-
tially follows from the analysis obtained by Ciorănescu and Lumer in [61] (cf. also
[5], [216] and [275] for some special cases).

Theorem 2.1.9. Let A be a subgenerator of a local K-convoluted C-semigroup
(SK(t))t∈[0,τ), τ0 ∈ ( τ2 , τ) and let K = K1|[0,τ)

for an appropriate complex-valued

function K1 ∈ L1
loc([0, 2τ)).

(
Put Θ1(t) =

∫ t
0
K1(s) ds and Θ−1

1 (t) =
∫ t
0

Θ1(s) ds,

t ∈ [0, 2τ); since it makes no misunderstanding, we will also write K, Θ and Θ−1

for K1, Θ1 and Θ−1
1 , respectively, and denote by K ∗0 K the restriction of this

function to any subinterval of [0, 2τ).
)
Then A is a subgenerator of a local (K ∗0

K)-convoluted C2-semigroup (SK∗0K(t))t∈[0,2τ0), where: SK∗0K(t)x =
∫ t
0
K(t − s)

× SK(s)Cxds, t ∈ [0, τ0] and

SK∗0K(t)x = SK(τ0)SK(t− τ0)x+

( t−τ0∫
0

+

τ0∫
0

)
K(t− r)SK(r)Cxdr,
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for any t ∈ (τ0, 2τ0) and x ∈ E. Furthermore, the condition 0 ∈ suppK implies
that A is a subgenerator of a local (K ∗0 K)-convoluted C2-semigroup on [0, 2τ).

Corollary 2.1.10. Suppose α > 0 and A is a subgenerator of a local α-times
integrated C-semigroup (Sα(t))t∈[0,τ). Then A is a subgenerator of a local (2α)-

times integrated C2-semigroup (S2α(t))t∈[0,2τ).

We need the following useful theorem which enables one to clarify several im-
portant characterizations of (local) convoluted C-cosine functions by a trustworthy
passing to the corresponding theory of convoluted C-semigroups; notice that one
can relate (local) C-regularized cosine functions and (local) once integrated C-
regularized semigroups analogically.

Theorem 2.1.11. Suppose A is a closed operator, 0 < τ 6 ∞ and K ∈
L1
loc([0, τ)). Then the following assertions are equivalent:

(i) A is a subgenerator of a K-convoluted C-cosine function (CK(t))t∈[0,τ) in E.

(ii) The operator A :=
(

0 I
A 0

)
is a subgenerator of a Θ-convoluted C-semigroup

(SΘ(t))t∈[0,τ) in E × E, where C :=
(
C 0
0 C

)
.

In this case:

SΘ(t) =

( ∫ t
0
CK(s) ds

∫ t
0
(t− s)CK(s) ds

CK(t) − Θ(t)C
∫ t
0
CK(s) ds

)
, 0 6 t < τ,

and the integral generators of (CK(t))t∈[0,τ) and (SΘ(t))t∈[0,τ), denoted respec-

tively by B and B, satisfy B =
(

0 I
B 0

)
. Furthermore, the integral generator of

(CK(t))t∈[0,τ), resp. (SΘ(t))t∈[0,τ), is C
−1AC, resp. C−1AC ≡

(
0 I

C−1AC 0

)
.

Proof. (i) ⇒ (ii) It is checked at once that (SΘ(t))t∈[0,τ) is a strongly contin-
uous operator family in E × E satisfying SΘ(t)A ⊆ ASΘ(t) and SΘ(t)C = CSΘ(t),
0 6 t < τ . The proof of (ii) follows from the next simple computation:

A
t∫

0

SΘ(s)

(
x

y

)
ds = A

t∫
0

(∫ s
0
CK(r)x dr +

∫ s
0

(s− r)CK(r)y dr

CK(s)x− Θ(s)Cx+
∫ s
0
CK(r)y dr

)
ds

= A
( ∫ t

0
(t− s)CK(s)x ds+

∫ t
0

(t−s)2
2 CK(s)y ds∫ t

0
CK(s)x ds−

∫ t
0

Θ(s)Cxds+
∫ t
0
(t− s)CK(s)y ds

)

=

(∫ t
0
CK(s)x ds−

∫ t
0

Θ(s)Cxds+
∫ t
0
(t− s)CK(s)y ds

CK(t)x− Θ(t)Cx+
∫ t
0
CK(s)y ds−

∫ t
0

Θ(s)Cy ds

)

= SΘ(t)

(
x

y

)
−

t∫
0

Θ(s)

(
Cx

Cy

)
ds, 0 6 t < τ, x, y ∈ E.

(ii) ⇒ (i) Put

SΘ(t) =

(
S1
Θ(t) S2

Θ(t)
S3
Θ(t) S4

Θ(t)

)
t∈[0,τ)

,
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where SiΘ(t) ∈ L(E), i ∈ {1, 2, 3, 4} and 0 6 t < τ . A simple consequence of
Sθ(t)C = CSΘ(t), t ∈ [0, τ) is SiΘ(t)C = CSiΘ(t), t ∈ [0, τ), i ∈ {1, 2, 3, 4}. Since
SΘ(t)A ⊆ ASΘ(t), t ∈ [0, τ), one gets:

S1
Θ(t)x+ S2

Θ(t)y ∈ D(A),

S1
Θ(t)y + S2

Θ(t)Ax = S3
Θ(t)x+ S4

Θ(t)y,

S3
Θ(t)y + S4

Θ(t)Ax = A(S1
Θ(t)x+ S2

Θ(t)y), 0 6 t < τ, x ∈ D(A), y ∈ E.

Hence, S3
Θ(t)x = S2

Θ(t)Ax, x ∈ D(A) and S3
Θ(t)y = AS2

Θ(t)y, y ∈ E, 0 6 t < τ .
This implies that, for every x ∈ D(A), S3

Θ(t)Ax = AS2
Θ(t)Ax = AS3

Θ(t)x, t ∈ [0, τ).
Thereby, S3

Θ(t)A ⊆ AS3
Θ(t), t ∈ [0, τ) and (S3

Θ(t) + Θ(t)C)t∈[0,τ) is a strongly
continuous operator family in E. By making use of the following equality

A
t∫

0

SΘ(s)

(
x

y

)
ds = SΘ(t)

(
x

y

)
−

t∫
0

Θ(s)

(
Cx

Cy

)
ds,

one yields

t∫
0

S3
Θ(s)x ds+

t∫
0

S4
Θ(s)y ds = S1

Θ(t)x+ S2
Θ(t)y −

t∫
0

Θ(s)Cxds,

A

( t∫
0

S1
Θ(s)x ds+

t∫
0

S2
Θ(s)y ds

)
= S3

Θ(t)x+ S4
Θ(t)y −

t∫
0

Θ(s)Cy ds,

provided 0 6 t < τ, x, y ∈ E. Hence,

t∫
0

S3
Θ(s)x ds = S1

Θ(t)x−
t∫

0

Θ(s)Cxds, A

t∫
0

S1
Θ(s)x ds = S3

Θ(t)x,

A

( t∫
0

(t− s)(S3
Θ(s)x+ Θ(s)Cx) ds

)
= A

( t∫
0

(t− s)
( d
dv
S1
Θ(v)x

)
v=s

ds

)

= A

t∫
0

S1
Θ(s)x ds =

(
S3
Θ(t)x+ Θ(t)Cx

)
− Θ(t)Cx, 0 6 t < τ, x ∈ E,

and we have proved that A is a subgenerator of the K-convoluted C-cosine function

(S3
Θ(t) + Θ(t)C)t∈[0,τ). Clearly, S1

Θ(t) = S4
Θ(t) and S2

Θ(t) =
∫ t
0
S1
Θ(s) ds, 0 6 t < τ .

To prove that B =
(

0 I
B 0

)
, let us fix elements x, y, x1, y1 ∈ E. Then

SΘ(t)

(
x

y

)
−

t∫
0

Θ(s)

(
Cx

Cy

)
ds =

t∫
0

SΘ(s)

(
x1
y1

)
ds for all t ∈ [0, τ)
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iff CK(t)x− Θ(t)Cx =
∫ t
0
(t− s)CK(s)y1ds for all t ∈ [0, τ) and y = x1. Namely, if

SΘ(t)
(
x
y

)
−
∫ t
0

Θ(s)
(
Cx
Cy

)
ds =

∫ t
0
SΘ(s)

(
x1

y1

)
ds for all t ∈ [0, τ), then

t∫
0

CK(s)x ds+

t∫
0

(t− s)CK(s)y ds−
t∫

0

Θ(s)Cxds(22)

=

t∫
0

(t− s)CK(s)x1ds+

t∫
0

(t− s)2

2
CK(s)y1ds,

CK(t)x− Θ(t)Cx+

t∫
0

CK(s)y ds−
t∫

0

Θ(s)Cy ds(23)

=

t∫
0

CK(s)x1ds−
t∫

0

Θ(s)Cx1ds+

t∫
0

(t− s)CK(s)y1ds, t ∈ [0, τ).

Differentiating (22) with respect to t, one obtains

CK(t)x+

t∫
0

CK(s)y ds− Θ(t)Cx =

t∫
0

CK(s)x1ds+

t∫
0

(t− s)CK(s)y1ds.

The preceding equality and (23) together imply
∫ t
0

Θ(s)Cy ds =
∫ t
0

Θ(s)Cx1ds,

t ∈ [0, τ) and y = x1. Thanks to (23), one yields CK(t)x − Θ(t)Cx =
∫ t
0
(t −

s)CK(s)y1ds, t ∈ [0, τ) and (x, y1) ∈ B. Suppose conversely y = x1 and (x, y1) ∈ B.

Then CK(t)x−Θ(t)Cx =
∫ t
0
(t−s)CK(s)y1ds, t ∈ [0, τ) and (23) holds. Integrating

(23) with respect to t one obtains (22) and
((
x
y

)
,
(
x1

y1

))
∈ B. Therefore,

((
x
y

)
,
(
x1

y1

))
∈

B iff y = x1 and (x, y1) ∈ B. Further on, CA ⊆ AC implies CA ⊆ AC and
one can employ Proposition 2.1.6(i) in order to see that the integral generator of
(SΘ(t))t∈[0,τ) is C−1AC. Clearly, C−1AC =

(
0 I

C−1AC 0

)
, which implies that the

integral generator of (CK(t))t∈[0,τ) is C−1AC. �

By Theorem 2.1.11 and Remark 2.1.7, it follows that |℘(CK)| = 1 provided
C = I. In order to prove the composition property of convoluted C-cosine functions,
we will make use of the following auxiliary lemma whose proof is left to the reader
as an easy exercise.

Lemma 2.1.12. Let 0 < τ 6 ∞ and K ∈ C([0, τ)). Then:[ t+s∫
0

−
t∫

0

−
s∫

0

]
K(t+ s− r)K(r) dr = 0, 0 6 t, s, t+ s < τ.

Theorem 2.1.13. Let A be a subgenerator of a (local) K-convoluted C-cosine
function (CK(t))t∈[0,τ), x ∈ E, t, s ∈ [0, τ) and t + s < τ . Then the following
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formulae hold:

(24)

2CK(t)CK(s)x =

( t+s∫
t

−
s∫

0

)
K(t+ s− r)CK(r)Cxdr

+

t∫
t−s

K(r − t+ s)CK(r)Cxdr+

s∫
0

K(r + t− s)CK(r)Cxdr, t > s;

2CK(t)CK(s)x =

( t+s∫
s

−
t∫

0

)
K(t+ s− r)CK(r)Cxdr

+

s∫
s−t

K(r + t− s)CK(r)Cxdr+

t∫
0

K(r − t+ s)CK(r)Cxdr, t < s.

Proof. First of all, we will prove the composition property in case K is an
absolutely continuous function in [0, τ). In order to do that, suppose τ0 ∈ (0, τ),
x ∈ E and put Dτ0 := {(t, s) ∈ R2 : 0 6 t, s, t+ s 6 τ0, s 6 t}. Define

u(t, s) :=

t∫
0

CK(r)
(
CK(s)x− Θ(s)Cx

)
dr, (t, s) ∈ Dτ0 and(25)

F (t, s) :=

[ t+s∫
0

−
t∫

0

−
s∫

0

]
K(t+ s− r)CK(r)Cxdr − Θ(s)CK(t)Cx,

for any (t, s) ∈ Dτ0 . Designate by C1(Dτ0 : E) the vector space which consists of
those functions from Dτ0 into E that are continuously differentiable in intDτ0 and
whose partial derivatives can be extended continuously throughout Dτ0 . Consider
the problem

(P ) :

{
u ∈ C1(Dτ0 : E),
ut(t, s) + us(t, s) = F (t, s), (t, s) ∈ Dτ0 ,
u(t, 0) = 0.

The uniqueness of solutions of the problem (P) can be proved by means of the
elementary theory of quasi-linear partial differential equations of first order. On
the other hand, an application of Theorem 2.1.11 yields that A is a subgenerator of
the Θ-convoluted C-semigroup (SΘ(t))t∈[0,τ) in E×E. Thanks to Proposition 2.1.5,
one obtains:

SΘ(t)SΘ(s)(0 x)T

=

( t∫
0

CK(v)

s∫
0

(s− r)CK(r)x dr dv +

t∫
0

(t− v)CK(v)

s∫
0

CK(r)x dr dv

CK(t)

s∫
0

(s−r)CK(r)x dr−Θ(t)

s∫
0

(s−r)CK(r)Cxdr+

t∫
0

s∫
0

CK(v)CK(r)x dr dv

)T
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=

[ t+s∫
0

−
t∫

0

−
s∫

0

]
Θ(t+ s− r)

( r∫
0

(r − v)CK(v)Cxdv

r∫
0

CK(v)Cxdv

)T
dr,

for any (t, s) ∈ Dτ0 . Hence,

A

[ t∫
0

CK(v)

s∫
0

(s− r)CK(r)x dr dv +

t∫
0

(t− v)CK(v)

s∫
0

CK(r)x dr dv

]

= A

{[ t+s∫
0

−
t∫

0

−
s∫

0

]
Θ(t+ s− r)

r∫
0

(r − v)CK(v)Cxdv dr

}
, (t, s) ∈ Dτ0 .

The last equality and Lemma 2.1.12 imply:

t∫
0

CK(v)
(
CK(s)x− Θ(s)Cx

)
dv + CK(t)

s∫
0

CK(r)x dr − Θ(t)

s∫
0

CK(r)Cxdr

=

[ t+s∫
0

−
t∫

0

−
s∫

0

]
Θ(t+ s− r)CK(r)Cxdr, (t, s) ∈ Dτ0 .(26)

Fix, for the time being, a number t ∈ [0, τ). The standard arguments gives:

d

ds

[ t+s∫
0

−
t∫

0

−
s∫

0

]
Θ(t+ s− r)CK(r)Cxdr

=

[ t+s∫
0

−
t∫

0

−
s∫

0

]
K(t+ s− r)CK(r)Cxdr − Θ(t)CK(s)Cx, s ∈ [0, τ − t).

Differentiate (26) with respect to s in order to see that the function u(t, s), given
by (25), is a solution of (P). Further on, put

v1(t, s) :=
1

2

s∫
0

( s+v∫
s

−
v∫

0

)
K(v + s− r)CK(r)Cxdr dv,

v2(t, s) :=
1

2

s∫
0

s∫
s−v

K(r − s+ v)CK(r)Cxdr dv,

v3(t, s) :=
1

2

s∫
0

v∫
0

K(r + s− v)CK(r)Cxdr dv,

v4(t, s) :=
1

2

t∫
s

( s+v∫
v

−
s∫

0

)
K(v + s− r)CK(r)Cxdr dv,
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v5(t, s) :=
1

2

t∫
s

v∫
v−s

K(r − v + s)CK(r)Cxdr dv,

v6(t, s) :=
1

2

t∫
s

s∫
0

K(r + v − s)CK(r)Cxdr dv − Θ(s)

t∫
0

CK(r)Cxdr

v(t, s) :=

6∑
i=1

vi(t, s), (t, s) ∈ Dτ0 .

To prove that v(t, s) is also a solution of (P), notice that the usual limit procedure
implies:

2
∂v1
∂s

(t, s) =

( 2s∫
s

−
s∫

0

)
K(2s− r)CK(r)Cxdr −

s∫
0

v∫
0

K ′(v + s− r)CK(r)Cxdr dv

+

s∫
0

s+v∫
s

K ′(v + s− r)CK(r)Cxdr dv − Θ(s)CK(s)Cx+K(0)

s∫
0

CK(s+ v)Cxdv,

2
∂v2
∂s

(t, s) =

s∫
0

K(r)CK(r)Cxdr −
s∫

0

s∫
s−v

K ′(r − s+ v)CK(r)Cxdr dv

−K(0)

s∫
0

CK(s− v)Cxdv + Θ(s)CK(s)Cx,

2
∂v3
∂s

(t, s) =

s∫
0

K(r)CK(r)Cxdr +

s∫
0

v∫
0

K ′(r + s− v)CK(r)Cxdr dv,

2
∂v4
∂s

(t, s) =

t∫
s

( s+v∫
v

−
s∫

0

)
K ′(v + s− r)CK(r)Cxdr dv +K(0)

t∫
s

CK(s+ v)Cxdv

−
t∫
s

K(v) dvCK(s)Cx−

( 2s∫
s

−
s∫

0

)
K(2s− r)CK(r)Cxdr,

2
∂v5
∂s

(t, s) =

t∫
s

v∫
v−s

K ′(r − v + s)CK(r)Cxdr +K(0)

t∫
s

CK(v − s)Cxdv

−
s∫

0

K(r)CK(r)Cxdr,
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2
∂v6
∂s

(t, s) = −
t∫
s

s∫
0

K ′(r + v − s)CK(r)Cxdr dv +

t∫
s

K(r) drCK(s)Cx

−
s∫

0

K(r)CK(r)Cxdr − 2K(s)

t∫
0

CK(r)Cxdr,

for any (t, s) ∈ Dτ0 . Adding these six summands, one gets:

(27) 2
∂v

∂s
(t, s) = K(0)

( t−s∫
0

+

2s∫
s

−
s∫

0

+

t+s∫
2s

)
CK(r)Cxdr

− 2K(s)

t∫
0

CK(r)Cxdr + I1 + I2 + I3, (t, s) ∈ Dτ0 ,

where

I1 :=

( s∫
0

s+v∫
s

−
s∫

0

v∫
0

+

t∫
s

s+v∫
v

−
t∫
s

s∫
0

)
K ′(v + s− r)CK(r)Cxdr dv,(28)

I2 :=

( s∫
0

v∫
0

+

t∫
s

v∫
v−s

)
K ′(r + s− v)CK(r)Cxdr dv,(29)

I3 :=

(
−

s∫
0

s∫
s−v

−
t∫
s

s∫
0

)
K ′(r − s+ v)CK(r)Cxdr dv, (t, s) ∈ Dτ0 .(30)

An elementary calculus shows that:

I3 = −
s∫

0

s∫
s−r

K ′(r − s+ v)CK(r)Cxdv dr −
s∫

0

t∫
s

K ′(r − s+ v)CK(r)Cxdv dr

= −
s∫

0

(
K(r) −K(0)

)
CK(r)Cxdr −

s∫
0

(
K(t− s+ r) −K(r)

)
CK(r)Cxdr.(31)

Applying the same arguments, one yields:

I1 = K(s)

t∫
0

CK(r)Cxdr −K(0)

t+s∫
s

CK(r)Cxdr(32)

+

( t+s∫
t

−
s∫

0

)
K(t+ s− r)CK(r)Cxdr
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I2 = −
t∫

t−s

K(r + s− t)CK(r)Cxdr +K(s)

t∫
0

CK(r)Cxdr(33)

−K(0)

t−s∫
0

CK(r)Cxdr, (t, s) ∈ Dτ0 .

Furthermore, v(t, 0) = 0, t ∈ [0, τ0],

(34) 2
∂v

∂t
(t, s) =

( t+s∫
t

−
s∫

0

)
K(t+ s− r)CK(r)Cxdr

+

t∫
t−s

K(r − t+ s)CK(r)Cxdr +

s∫
0

K(r + t− s)CK(r)Cxdr − 2Θ(s)CK(t)Cx,

v ∈ C1(Dτ0 : E) and a simple computation involving (27)–(34) implies that the
function v solves (P). By the uniqueness of solutions of (P), we obtain:

(35) CK(t)CK(s)x = vt(t, s) + Θ(s)CK(t)Cx, (t, s) ∈ Dτ0 .

By (35) and arbitrariness of τ0, one yields that the composition property holds
whenever K is an absolutely continuous function in [0, τ), x ∈ E, 0 6 t, s, t+s < τ

and s 6 t. Put CΘ(t)x :=
∫ t
0
CK(r)x dr, t ∈ [0, τ), x ∈ E; then (CΘ(t))t∈[0,τ) is

a Θ-convoluted C-cosine function with a subgenerator A and the first part of the
proof implies that, for every x ∈ E and (t, s) ∈ [0, τ) × [0, τ) with t + s < τ and
s 6 t:

(36) 2CΘ(t)CΘ(s)x =

( t+s∫
t

−
s∫

0

)
Θ(t+ s− r)CΘ(r)Cxdr

+

t∫
t−s

Θ(r − t+ s)CΘ(r)Cxdr +

s∫
0

Θ(r + t− s)CΘ(r)Cxdr.

Notice also that the partial integration implies that, for every x ∈ E and (t, s) ∈
[0, τ) × [0, τ) with t+ s < τ and s 6 t:

(37)

( t+s∫
t

−
s∫

0

)
Θ(t+ s− r)CΘ(r)Cxdr

= Θ−1(s)CΘ(t)Cx+ Θ−1(t)CΘ(s)Cx+

t+s∫
t

Θ−1(t+ s− r)CK(r)Cxdr,

(38)

t∫
t−s

Θ(r − t+ s)CΘ(r)Cxdr
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= Θ−1(s)CΘ(t)Cx−
t∫

t−s

Θ−1(r − t+ s)CK(r)Cxdr,

(39)

s∫
0

Θ(r + t− s)CΘ(r)Cxdr

= Θ−1(t)CΘ(s)Cx−
s∫

0

Θ−1(r + t− s)CK(r)Cxdr.

Now one can rewrite (36) by means of (37)–(39):

(40) 2CΘ(t)CΘ(s)x = 2Θ−1(s)CΘ(t)Cx+ 2Θ−1(t)CΘ(s)Cx

+

( t+s∫
t

−
s∫

0

)
Θ−1(t+ s− r)CK(r)Cxdr

−
t∫

t−s

Θ−1(r − t+ s)CK(r)Cxdr −
s∫

0

Θ−1(r + t− s)CK(r)Cxdr.

Taking into account (40), it can be straightforwardly proved that, for every x ∈ E
and (t, s) ∈ [0, τ) × [0, τ) with t+ s < τ and s 6 t:

(41) 2CK(t)CΘ(s)x = 2
d

dt
CΘ(t)CΘ(s)x = 2Θ(t)CΘ(s)Cx

+

( t+s∫
t

−
s∫

0

)
Θ(t+ s− r)CK(r)Cxdr

+

t∫
t−s

Θ(r − t+ s)CK(r)Cxdr −
s∫

0

Θ(r + t− s)CK(r)Cxdr.

Differentiation of (41) with respect to s immediately implies the validity of compo-
sition property for all x ∈ E and (t, s) ∈ [0, τ)× [0, τ) with t+s < τ and s 6 t. The
proof of composition property in the case s > t can be obtained along the same
lines. �

Now we are in a position to prove the following extension type theorem for
local convoluted C-cosine functions.

Theorem 2.1.14. Let A be a subgenerator of a local K-convoluted C-cosine
function (CK(t))t∈[0,τ) and let τ0 ∈ ( τ2 , τ). Assume that there exists a complex

valued function K1 ∈ L1
loc([0, 2τ)) such that K = K1|[0,τ)

(cf. also the formulation
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of Theorem 2.1.9). Then A is a subgenerator of a local (K ∗0 K)-convoluted C2-
cosine function (CK∗0K(t))t∈[0,2τ0), which is given by:

CK∗0K(t)x =


∫ t
0
K(t− s)CK(s)Cxds, t ∈ [0, τ0],

2CK(τ0)CK(t− τ0)x+
(∫ t−τ0

0
+
∫ τ0
0

)
K(t− r)CK(r)Cxdr

−
∫ τ0
2τ0−tK(r + t− 2τ0)CK(r)Cxdr

−
∫ t−τ0
0

K(r + 2τ0 − t)CK(r)Cxdr, t ∈ (τ0, 2τ0), x ∈ E.

Furthermore, the condition 0 ∈ suppK implies that A is a subgenerator of a local
(K ∗0 K)-convoluted C2-cosine function on [0, 2τ).

Proof. Notice that K ∗0 K ∈ L1
loc([0, 2τ)) and that K ∗0 K is not identical

to zero. Clearly, (CK∗0K(t))t∈[0,2τ0) is a strongly continuous operator family which
commutes with A and C. By Proposition 2.1.3, one gets that ((K∗0CKC)(t))t∈[0,τ)

is a local (K ∗0K)-convoluted C2-cosine function having A as a subgenerator, and
consequently, the condition (iii) quoted in the formulation of Definition 2.1.2 holds
for every t ∈ [0, τ0] and x ∈ E. It remains to be shown that this condition holds

for every t ∈ (τ0, 2τ0) and x ∈ E; to this end, denote Φ =
∫ t
0
(t − s)CK∗0K(s)x ds

and notice that:

(42)

Φ =

τ0∫
0

(τ0 − s)

s∫
0

K(s− r)CK(r)Cxdr ds+

τ0∫
0

(t− τ0)

s∫
0

K(s− r)CK(r)Cxdr ds

+ 2CK(τ0)

t−τ0∫
0

(t− τ0 − s)CK(s)x ds+ I1 + I2 − I3 − I4,

where:

I1 :=

t∫
τ0

(t− s)

s−τ0∫
0

K(s− r)CK(r)Cxdr ds,(43)

I2 :=

t∫
τ0

(t− s)

τ0∫
0

K(s− r)CK(r)Cxdr ds,(44)

I3 :=

t∫
τ0

(t− s)

τ0∫
2τ0−s

K(r + s− 2τ0)CK(r)Cxdr ds(45)

I4 :=

t∫
τ0

(t− s)

s−τ0∫
0

K(r + 2τ0 − s)CK(r)Cxdr ds.(46)
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We compute I1 as follows:

I1 =

t∫
τ0

(t− s)
s−τ0∫
0

K(s− r)CK(r)Cxdr ds =

t−τ0∫
0

t∫
r+τ0

(t− s)K(s− r)CK(r)Cxds dr

=

t−τ0∫
0

[−Θ(τ0)(t− τ0 − r) +

t∫
r+τ0

Θ(s− r)ds]CK(r)Cxdr

= −Θ(τ0)

t−τ0∫
0

(t− τ0 − r)CK(r)Cxdr +

t−τ0∫
0

[Θ−1(t− r) − Θ−1(τ0)]CK(r)Cxdr

= −Θ(τ0)

t−τ0∫
0

(t− τ0 − r)CK(r)Cxdr +

t−τ0∫
0

Θ(t− r)

r∫
0

CK(v)Cxdv dr

= −Θ(τ0)

t−τ0∫
0

(t− τ0 − r)CK(r)Cxdr + Θ(τ0)

t−τ0∫
0

(t− τ0 − r)CK(r)Cxdr

(47) +

t−τ0∫
0

K(t− r)

r∫
0

(r− v)CK(v)Cxdv dr=

t−τ0∫
0

K(t− r)

r∫
0

(r− v)CK(v)Cxdv dr.

Applying the same argumentation, we easily infer that:

(48) I2 = −
τ0∫
0

(t− τ0)Θ(τ0 − r)CK(r)Cxdr + Θ(t− τ0)

τ0∫
0

(τ0 − r)CK(r)Cxdr

+ Θ−1(t− τ0)

τ0∫
0

CK(r)Cxdr+

τ0∫
0

[K(t− r)−K(τ0− r)]
r∫

0

(r− v)CK(v)Cxdv dr,

(49) I3 = −Θ(t− τ0)

τ0∫
0

(τ0 − r)CK(r)Cxdr + Θ−1(t− τ0)

τ0∫
0

CK(r)Cxdr

+

τ0∫
2τ0−t

K(r + t− 2τ0)

r∫
0

(r − v)CK(v)Cxdv dr

(50) I4 =

t−τ0∫
0

K(r + 2τ0 − t)

r∫
0

(r − v)CK(v)Cxdv dr.
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Exploiting (42)–(50) and the following simple equality:

τ0∫
0

(t− τ0)

s∫
0

K(s− r)CK(r)Cxdr ds =

τ0∫
0

(t− τ0)Θ(τ0 − r)CK(r)Cxdr,

one obtains:

Φ =

τ0∫
0

(τ0 − s)

s∫
0

K(s− r)CK(r)Cxdr ds+ 2CK(τ0)

t−τ0∫
0

(t− τ0 − s)CK(s)x ds

(51)

+

t−τ0∫
0

K(t− r)

r∫
0

(r − v)CK(v)Cxdv dr

+

τ0∫
0

[K(t− r) −K(τ0 − r)]

r∫
0

(r − v)CK(v)Cxdv dr

−
τ0∫

2τ0−t

K(r + t− 2τ0)

r∫
0

(r − v)CK(v)Cxdv dr

−
t−τ0∫
0

K(r + 2τ0 − t)

r∫
0

(r − v)CK(v)Cxdv dr

+2Θ(t− τ0)

τ0∫
0

(τ0 − r)CK(r)Cxdr.

The last equality implies Φ ∈ D(A) and

(52) A(Φ) = CK∗0K(t) − f(t)C2x,

where

f(t) =

τ0∫
0

K(τ0 − r)Θ(r) dr +

t−τ0∫
0

K(t− r)Θ(r) dr

+

τ0∫
0

[K(t− r) −K(τ0 − r)]Θ(r) dr −
τ0∫

2τ0−t

K(r + t− 2τ0)Θ(r) dr

−
t−τ0∫
0

K(r + 2τ0 − t)Θ(r) dr + 2Θ(τ0)Θ(t− τ0).

Notice also that (Θ(t)I)t∈[0,2τ) is a local K-convoluted cosine function generated
by 0 and that the following identity follows immediately from an application of
Theorem 2.1.13:
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(53) 2Θ(τ0)Θ(t− τ0) =

( t∫
τ0

−
t−τ0∫
0

)
K(t− r)Θ(r) dr

+

τ0∫
2τ0−t

K(r + t− 2τ0)Θ(r) dr +

t−τ0∫
0

K(r + 2τ0 − t)Θ(r) dr.

In view of (52)–(53), it follows that f(t) = (K ∗0 Θ)(t) and that A is a subgen-
erator of a local (K ∗0 K)-convoluted C2-cosine function (CK∗0K(t))t∈[0,2τ0). The
preassumption 0 ∈ suppK implies that the function (K ∗0K)|[0,τ ′) is a kernel for all
τ ′ ∈ (0, 2τ ]; in this case, (CK∗0K(t))t∈[0,2τ0) is a unique local (K ∗0 K)-convoluted

C2-cosine function with a subgenerator A [228] and the proof of Theorem 2.1.14
ends a routine argument. �

Corollary 2.1.15. Suppose α > 0 and A is a subgenerator of a local α-times
integrated C-cosine function (Cα(t))t∈[0,τ). Then A is a subgenerator of a local

(2α)-times integrated C2-cosine function (C2α(t))t∈[0,2τ).

Keeping in mind the proofs of Proposition 2.1.6, [218, Corollary 3.3] and The-
orem 2.1.9, one immediately gets the following assertion.

Proposition 2.1.16. Suppose Â is the integral generator of a (local) K-convol-
uted C-cosine function (CK(t))t∈[0,τ) and {A,B} ⊆ ℘(CK). Then the assertions
(ii), (iii), (v) and (vi), given in the formulation of Proposition 2.1.6 still hold while
the assertions (i), (iv) and (vii) hold with SK replaced by CK . Furthermore, if
0 ∈ suppK, then CK(t)CK(s) = CK(s)CK(t), 0 6 t, s < τ .

Question. Suppose K is not a kernel and A is a subgenerator of a local
K-convoluted C-semigroup (SK(t))t∈[0,τ), resp. K-convoluted C-cosine function
(CK(t))t∈[0,τ). Does the equality SK(t)SK(s) = SK(s)SK(t), 0 6 t, s < τ , resp.
CK(t)CK(s) = CK(s)CK(t), 0 6 t, s < τ , hold?

Proposition 2.1.17. Suppose ±A are subgenerators of (local, global exponen-
tially bounded) K-convoluted C-semigroups (S±

K(t))t∈[0,τ) and A2 is closed. Then

A2 is a subgenerator of a (local, global exponentially bounded) K-convoluted C-
cosine function (CK(t))t∈[0,τ), which is given by CK(t)x := 1

2

(
S+
K(t)x + S−

K(t)x
)
,

x ∈ E, t ∈ [0, τ).

Proof. It is straightforward to verify that (CK(t))t∈[0,τ) is a strongly contin-

uous operator family which commutes with A2 and C as well as that

A2

t∫
0

(t− s)CK(s)x ds = A2

t∫
0

s∫
0

CK(r)x dr ds = A

t∫
0

A

s∫
0

CK(r)x dr ds

=
1

2
A

t∫
0

[
S+
K(s)x− Θ(s)Cx− S−

K(s)x+ Θ(s)Cx
]
ds
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=
1

2

[
S+
K(t)x− Θ(t)Cx+ S−

K(t)x− Θ(t)Cx
]

= CK(t)x− Θ(t)Cx, x ∈ E, t ∈ [0, τ).

This completes the proof. �

Notice only that, under assumptions of Proposition 2.1.17, one can simply prove
that the operator A2 is closed when C = I; it is not clear whether the operator
A2 is closed in the case C ̸= I and ρ(A) = ∅. Next, we point out that there
exists a somewhat different definition of a (local) K-convoluted C-semigroup, resp.
K-convoluted C-cosine function. For the sake of consistency, we will give these
definitions only in global case.

Definition 2.1.18. Let 0 ̸= K ∈ L1
loc([0,∞)). A strongly continuous operator

family (SK(t))t>0 is called a (global) K-convoluted C-semigroup iff the following
holds:

(i) SK(0) = 0,
(ii) SK(t)C = CSK(t), t > 0 and

(iii) SK(t)SK(s)x =
[∫ t+s

0
−
∫ t
0
−
∫ s
0

]
K(t+ s− r)SK(r)Cxdr, x ∈ E, t, s > 0;

(SK(t))t>0 is said to be non-degenerate if the assumption SK(t)x = 0 for all t > 0
implies x = 0. For a non-degenerate K-convoluted C-semigroup (SK(t))t>0 we
define its (integral) generator A by

A :=

{
(x, y) ∈ E × E : SK(t)x− Θ(t)Cx =

t∫
0

SK(s)y ds, t > 0

}
.

A closed linear operatorA is said to be a subgenerator of (SK(t))t>0 if the conditions
(i) and (iii) of Definition 2.1.1 hold.

Definition 2.1.19. Let 0 ̸= K ∈ L1
loc([0,∞)). A strongly continuous oper-

ator family (CK(t))t>0 is called a (global) K-convoluted C-cosine function iff the
following holds:

(i) CK(0) = 0,
(ii) CK(t)C = CCK(t), t > 0 and

(iii) (24) holds for x ∈ E, t > 0 and s > 0;

(CK(t))t>0 is said to be non-degenerate if the assumption CK(t)x = 0 for all t > 0
implies x = 0. For a non-degenerate K-convoluted C-cosine function (CK(t))t>0

we define its (integral) generator A by

A :=

{
(x, y) ∈ E × E : CK(t)x− Θ(t)Cx =

t∫
0

(t− s)CK(s)y ds, t > 0

}
.

A closed linear operator A is said to be a subgenerator of (CK(t))t>0 if the condi-
tions (i) and (iii) of Definition 2.1.2 hold.

Remark 2.1.20. Let 0 ̸= K ∈ L1
loc([0,∞)) and let (SK(t))t>0, resp. (CK(t))t>0,

be a non-degenerate strongly continuous operator family. By the argumentation
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given in the proofs of [227, Proposition 2.2], [258, Proposition 1.5], Proposi-
tion 2.1.5 and Theorem 2.1.13, we have that (SK(t))t>0, resp. (CK(t))t>0, is a
global K-convoluted C-semigroup, resp. K-convoluted C-cosine function, having A
as a subgenerator (the integral generator) in the sense of Definition 2.1.1, resp. Defi-
nition 2.1.2 iff (SK(t))t>0, resp. (CK(t))t>0, is a global K-convoluted C-semigroup,
resp. K-convoluted C-cosine function having A as a subgenerator (the integral
generator) in the sense of Definition 2.1.18, resp. Definition 2.1.19.

In Proposition 2.1.21 and Proposition 2.1.23, we give upper bounds for the
stationarity of generators of fractionally integrated semigroups and cosine functions.

Proposition 2.1.21. [249] Suppose α > 0 and A generates a (local) α-times
integrated semigroup. Then A is stationary dense and n(A) 6 ⌈α⌉.

Lemma 2.1.22. Let A be a closed operator. Then A is stationary dense iff A
is stationary dense. In this case, n(A) = 2n(A).

Proof. Assume that A is stationary dense and n(A) = n ∈ N0. Let us prove

that D(Am) ⊆ D(Am+1) for all m ∈ N0 with m > 2n. Let m = 2i for some i > n.

We have to prove that D(Ai) ×D(Ai) ⊆ D(Ai+1) ×D(Ai). This is a consequence

of D(Ai) ⊆ D(Ai+1). If m = 2i + 1 for some i > n, then D(Am) ⊆ D(Am+1)

is equivalent with D(Ai+1) ×D(Ai) ⊆ D(Ai+1) ×D(Ai+1), which holds since i >
n. Thus, A is stationary dense and n(A) 6 2n(A). Furthermore, n(A) = 0 if
n(A) = 0. Suppose n(A) < 2n(A). If n(A) = 2i for some i ∈ {0, 1, . . . , n −
1}, then D(Ai) × D(Ai) ⊆ D(Ai+1) ×D(Ai). Hence, D(Ai) ⊆ D(Ai+1) and the
contradiction is obvious. Similarly, if n(A) = 2i+ 1 for some i ∈ {0, 1, . . . , n− 1},

then D(Ai+1) ×D(Ai) ⊆ D(Ai+1) ×D(Ai+1). Again, D(Ai) ⊆ D(Ai+1) and this
is in contradiction with n(A) = n. Hence, we have proved that A is stationary
dense and that n(A) = 2n(A). Assume now that A is stationary dense. Similarly
as in the first part of the proof, one obtains that A is stationary dense and that
n(A) = 2n(A). �

Proposition 2.1.23. Let A be the generator of an α-times integrated cosine

function (Cα(t))t∈[0,τ) for some 0 < τ 6 ∞ and α > 0. Then n(A) 6
⌊ ⌈α⌉+1

2

⌋
.

Proof. By Theorem 2.1.11, the operator A is the generator of an (⌈α⌉ +
1)-times integrated semigroup (S⌈α⌉+1(t))t∈[0,τ) in E × E. Now one can apply
Proposition 2.1.21 to see that n(A) 6 ⌈α⌉ + 1. The claimed assertion follows by
Lemma 2.1.22. �

Comment and Problem. By [14, Example 3.15.5, p. 224], the generator B
of the standard translation group on L1(R) satisfies the following: The operator
A := (B∗)2 is the non-densely defined generator of a sine function in L∞(R). Then
Proposition 2.1.21 implies n(A) = 1, and, in particular, we have that, in the general

situation of previous proposition, the estimate n(A) 6
⌊ ⌈α⌉+β

2

⌋
, where [0, 1) ∋ β is

an arbitrary number, cannot be proved since here n(A) = 1 and α = 1. Finally,
the following problem can be proposed: Given α > 0, is it possible to construct



2.1. DEFINITIONS AND MAIN STRUCTURAL PROPERTIES 63

a Banach space Eα, a closed linear operator Aα on Eα which generates a (local)

α-times integrated cosine function and satisfies n(Aα) =
⌊ ⌈α⌉+1

2

⌋
?

We use later on the following generalization of [222, Lemma 1.10].

Proposition 2.1.24. Suppose A is a closed linear operator, CA ⊆ AC and
λ ∈ C. Then λ ∈ ρC(A) ⇔ λ2 ∈ ρC(A). If this is the case, then:

(λ−A)−1C =

(
λ(λ2 −A)−1C (λ2 −A)−1C
A(λ2 −A)−1C λ(λ2 −A)−1C

)
,

∥(λ−A)−1C∥ 6 (1 + |λ|)
√

1 + |λ|2 ∥(λ2 −A)−1C∥
∥(λ2 −A)−1C∥ 6 ∥(λ−A)−1C∥.

Remark 2.1.25. Let k ∈ C([0,∞)) be a scalar kernel and let a satisfy (P1).
Assume that A is a closed linear operator. Following Lizama [286] and Kim [197]-
[198], a strongly continuous operator family (R(t))t>0 is called an (a, k)-regularized
resolvent iff the following holds:

(i) R(t)A ⊆ AR(t), t > 0, R(0) = k(0)I and

(ii) R(t)x = k(t)x+
∫ t
0
a(t− s)AR(s)x ds, t > 0, x ∈ D(A).

By [286, Lemma 2.2], ρ(A) ̸= ∅ implies that, for every x ∈ E and t > 0,
∫ t
0
a(t −

s)R(s)x ds ∈ D(A) and A
∫ t
0
a(t − s)R(s)x ds = R(t)x − k(t)x, t > 0, x ∈ E;

in this case, the notion of (a, k)-regularized resolvents unify the notions of global
convoluted semigroups (a(t) ≡ 1) and global convoluted cosine functions (a(t) ≡ t).
It is also worth noticing that the condition k(0) = 0 is not necessary in the analysis
given in [286] (cf. also [330]), and that global convoluted C-semigroups and cosine
functions cannot be linked to (a, k)-regularized resolvents in the case C ̸= I. In
order to overcome the above described difficulties, the class of (a, k)-regularized C-
resolvent families extending the classes of (a, k)-regularized resolvent families [286],
regularized resolvent families [276] as well as (local) convoluted C-semigroups and
cosine functions has been recently introduced in [235]:

Definition 2.1.26. Let 0 < τ 6 ∞, k ∈ C([0, τ)), k ̸= 0 and let a ∈
L1
loc([0, τ)), a ̸= 0. Assume that A is a closed linear operator and that L(E) ∋ C is

an injective operator. A strongly continuous operator family (R(t))t∈[0,τ) is called
a (local, if τ <∞) (a, k)-regularized C-resolvent family having A as a subgenerator
iff the following holds:

(i) R(t)A ⊆ AR(t), t ∈ [0, τ), CA ⊆ AC and R(0) = k(0)C,
(ii) R(t)C = CR(t), t ∈ [0, τ) and

(iii) R(t)x = k(t)Cx+
∫ t
0
a(t− s)AR(s)x ds, t ∈ [0, τ), x ∈ D(A).

In the case τ = ∞, (R(t))t>0 is said to be exponentially bounded (a, k)-regularized
C-resolvent family with a subgenerator A if, additionally, there exist M > 0 and
ω > 0 such that ∥R(t)∥ 6Meωt, t > 0.

In the case k(t) = tα

Γ(α+1) , α > 0, it is also said that (R(t))t∈[0,τ) is an α-times

integrated C-resolvent family ; in such a way, we unify the notion of (local) α-times
integrated C-semigroups (a(t) ≡ 1) and cosine functions (a(t) ≡ t); see [286].
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Furthermore, in case k(t) =
∫ t
0
K(s) ds, t ∈ [0, τ), where K ∈ L1

loc([0, τ)) and
K ̸= 0, we obtain the unification concept for (local) K-convoluted C-semigroups
and cosine functions. In the case k(t) ≡ 1, (R(t))t∈[0,τ) is said to be a (local)
(a,C)-regularized resolvent family with a subgenerator A. Designate by ℘(R) the
set which consists of all subgenerators of (R(t))t∈[0,τ). Then the following holds:

(i) A ∈ ℘(R) implies C−1AC ∈ ℘(R).
(ii) If A ∈ ℘(R) and λ ∈ ρC(A), then

R(t)(λ−A)−1C = (λ−A)−1CR(t), t ∈ [0, τ).

(iii) Assume, additionally, a(t) is a kernel. Then one can define the integral

generator Â of (R(t))t∈[0,τ) by setting

Â :=

{
(x, y) ∈ E × E : R(t)x− k(t)Cx =

t∫
0

a(t− s)R(s)y ds, t ∈ [0, τ)

}
.

The integral generator Â of (R(t))t∈[0,τ) is a closed linear operator sat-

isfying C−1ÂC = Â. Furthermore, Â extends an arbitrary subgenerator
of (R(t))t∈[0,τ), and Â itself is a subgenerator if R(t)R(s) = R(s)R(t),
0 6 t, s < τ .

In what follows, we employ the following conditions:

(H1): A is densely defined.
(H2): ρ(A) ̸= ∅.

(H3): ρC(A) ̸= ∅ and R(C) = E.
(H4): A is densely defined or ρC(A) ̸= ∅.
(H5): (H1) ∨ (H2) ∨ (H3).

Assume temporarily λ ∈ ρC(A), x ∈ R(C), t ∈ [0, τ) and putz = (a ∗ R)(t)x,
where ∗ denotes the finite convolution product.Following the proof of [286, Lemma
2.2], we have

z = λ(a ∗R)(t)(λ−A)−1x− (a ∗R)(t)A(λ−A)−1x

= λ(a ∗R)(t)(λ−A)−1x−
(
R(t)(λ−A)−1x− k(t)C(λ−A)−1x

)
= λ(λ−A)−1C(a ∗R)(t)C−1x−

(
(λ−A)−1R(t)x− k(t)(λ−A)−1Cx

)
,

where the last two equalities follow on account of CA ⊆ AC, R(s)A ⊆ AR(s) and
R(s)(λ−A)−1C = (λ−A)−1CR(s), s ∈ [0, τ). Hence, (λ−A)z = λz−(R(t)x−Cx),

(54)

t∫
0

a(t− s)R(s)x ds ∈ D(A) and A

t∫
0

a(t− s)R(s)x ds = R(t)x− k(t)Cx.

The closedness of A implies that (54) holds for every t ∈ [0, τ) and x ∈ R(C).
Let α > 0, β > 0 and γ ∈ (0, 1). Denote by Dα

t the Caputo fractional derivative

of order α and by Eβ(z) the Mittag–Leffler function Eβ(z) :=
∑∞
n=0

zn

Γ(βn+1) ,

z ∈ C; then the Wright function Φγ(t) is defined by Φγ(t) := L−1(Eγ(−λ))(t),
t > 0 (for further information, see e.g. [36], [141], [393] and references therein). In
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the subsequent theorem, we assume that the scalar-valued kernels k, k1, k2, ... are
continuous on [0, τ) and that a ̸= 0 in L1

loc([0, τ)); we use the notion and notation
given in [286].

Theorem 2.1.27. [235]–[236], [286] (i) Let A be a subgenerator of an (a, k)-
regularized C-resolvent family (R(t))t∈[0,τ) and let (H5) hold. Then (54) holds for
every t ∈ [0, τ) and x ∈ E; if ρC(A) ̸= ∅, then (54) holds for every t ∈ [0, τ) and

x ∈ R(C).
(ii) Suppose A is a subgenerator of an (a, ki)-regularized C-resolvent family

(Ri(t))t∈[0,τ), i = 1, 2. Then (k2 ∗ R1)(t) = (k1 ∗ R2)(t), t ∈ [0, τ), whenever (H4)
holds.

(iii) Let (R1(t))t∈[0,τ) and (R2(t))t∈[0,τ) be two (a, k)-regularized C-resolvent

families having A as a subgenerator. Then R1(t)x = R2(t)x, t ∈ [0, τ), x ∈ D(A),
and R1(t) = R2(t), t ∈ [0, τ), provided that (H4) holds.

(iv) Suppose A is a subgenerator of an (a, k)-regularized C-resolvent family
(R(t))t∈[0,τ). If k(t) is absolutely continuous and k(0) ̸= 0, then A is a subgenerator
of a (local) (a,C)-regularized resolvent family.

(v) Let (R(t))t∈[0,τ) be an (a, k)-regularized C-resolvent family with a subgener-

ator A and let b ∈ L1
loc([0, τ)) satisfy that k∗b is a kernel. Then A is a subgenerator

of an (a, k ∗ b)-regularized C-resolvent family ((b ∗R)(t))t∈[0,τ).
(vi) Suppose (R(t))t∈[0,τ) is an (a, k)-regularized C-resolvent family with a sub-

generator A, (H1) or (H3) holds, and a(t) is a kernel. Then the integral generator

Â of (R(t))t∈[0,τ) satisfies Â = C−1AC. If (H2) holds, then Â = C−1AC = A.
(vii) Let B ∈ ℘(R) and let (H5) hold for B and C. Then we have the following:

(vii.1) C−1AC = C−1BC and C(D(A)) ⊆ D(B).
(vii.2) A and B have the same eigenvalues.
(vii.3) The assumption A ⊆ B implies ρC(A) ⊆ ρC(B).

(vii.4) The set ℘(R) is monomial if C(D(Â)) is a core for Â.
(vii.5) A ⊆ B ⇔ D(A) ⊆ D(B) and Ax = Bx, x ∈ D(A) ∩D(B); furthermore,

the property (vii.5) holds whenever {A,B} ⊆ ℘(R) and a(t) is a kernel.

(viii) Define the mapping KC : C([0, τ) : E) → C([0, τ) : E) by KCu := k ∗Cu,
u ∈ C([0, τ) : E). Suppose f ∈ C([0, τ) : E), A is a subgenerator of a (local) (a, k)-
regularized C-resolvent family (R(t))t∈[0,τ) and (H5) holds. Then the problem

(55) u(t) = f(t) +

t∫
0

a(t− s)Au(s) ds, t ∈ [0, τ),

has a unique solution iff R ∗ f ∈ R(KC).
(ix) Assume n ∈ N, f ∈ C([0, τ) : E), A is a subgenerator of a (local) n-times

integrated C-resolvent family (R(t))t∈[0,τ), and (H5) holds. Then (55) has a unique

solution iff C−1(R ∗ f) ∈ Cn+1
0 ([0, τ) : E).

(x) Let (H5) hold. Assume n ∈ N, A is a subgenerator of an n-times integrated
C-regularized resolvent and a ∈ BVloc([0, τ)), resp. A is a subgenerator of an (a,C)-
regularized resolvent family. Assume, further, that C−1f ∈ C(n+1)([0, τ) : E),
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f (k−1)(0) ∈ D(An+1−k) and An+1−kf (k−1)(0) ∈ R(C), 1 6 k 6 n + 1, resp.

C−1f ∈ C([0, τ) : E) ∩W 1,1
loc ([0, τ) : E). Then (55) has a unique solution.

(xi) Assume (H5) holds, A is a subgenerator of an (a, k)-regularized C-resolvent
family, k ∈ AC([0, τ)) and k(0) ̸= 0. If C−1f ∈ C1([0, τ) : E), then there exists a
unique solution of (55).

(xii) Let k and a satisfy (P1) and let (R(t))t>0 be a strongly continuous operator
family which satisfies ∥R(t)∥ 6 Meωt, t > 0, for some M > 0 and ω > 0. Put
ω0 := max

(
ω, abs(a), abs(k)

)
.

(xii.1) Assume A is a subgenerator of the exponentially bounded (a, k)-regularized
C-resolvent family (R(t))t>0 and (H5) holds. Then, for every λ ∈ C with

Reλ > ω0 and k̃(λ) ̸= 0, the operator I − ã(λ)A is injective, R(C) ⊆
R(I − ã(λ)A),

k̃(λ)(I − ã(λ)A)−1Cx =

∞∫
0

e−λtR(t)x dt, x ∈ E, Reλ > ω0, k̃(λ) ̸= 0.(56)

{ 1

ã(λ)
: λ ∈ C, Reλ > ω0, k̃(λ) ̸= 0, ã(λ) ̸= 0

}
⊆ ρC(A).(57)

(xii.2) Assume that (56)–(57) hold. Then A is a subgenerator of the exponentially
bounded (a, k)-regularized C-resolvent family (R(t))t>0.

(xiii) Suppose ±A are subgenerators of (local, global exponentially bounded)
(a, k)-regularized C-resolvent families (R±(t))t∈[0,τ) and A2 is closed. Then A2 is
a subgenerator of a (local, global exponentially bounded) (a ∗ a, k)-regularized C-
resolvent family (R(t))t∈[0,τ), which is given by R(t)x := 1

2

(
R+(t)x + R−(t)x

)
,

x ∈ E, t ∈ [0, τ).
(xiv) Assume τ ∈ (0,∞], L1

loc([0, τ)) ∋ a1 is a kernel, L1
loc([0, τ)) ∋ k is a

kernel, a(t) = (a1 ∗ a1)(t), t ∈ [0, τ) and k1(t) = (k ∗ a1)(t), t ∈ [0, τ). Assume that
(H5) holds. Then A is a subgenerator of an (a, k)-regularized C-resolvent family
(R(t))t∈[0,τ) iff A is a subgenerator of an (a1, k1)-regularized C-resolvent family
(S(t))t∈[0,τ). If this is the case, then we have

S(t) =

(
(a1 ∗R)(t) (a ∗R)(t)
R(t) − k(t)C (a1 ∗R)(t)

)
, 0 6 t < τ,

and the integral generators of (R(t))t∈[0,τ) and (S(t))t∈[0,τ), denoted respectively by

B and B, satisfy B =
(

0 I
B 0

)
.

(xv) Assume a(t) and k(t) satisfy (P1), limλ→∞, k̃(λ)̸=0 λk̃(λ) = k(0), there

exists ω ∈ R such that
∫∞
0
e−ωt|a(t)| dt < ∞ and A is a subgenerator of an expo-

nentially bounded (a, k)-regularized C-resolvent family (S(t))t>0. Then

lim
λ→∞, k̃(λ) ̸=0

λk̃(λ)(I − ã(λ)A)−1Cx = k(0)Cx, x ∈ D(A).

(xvi) Assume a(t) and k(t) satisfy (P1), M > 1, ω > 0, (S(t))t>0 is an (a, k)-
regularized C-resolvent family satisfying ∥S(t)∥ 6 Meωt, t > 0 and AC /∈ L(E).
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Then, for every λ ∈ C with Reλ > max
(
ω, abs(a), abs(k)

)
and k̃(λ) ̸= 0, we have

that ã(λ) ̸= 0 and that 1/ã(λ) ∈ ρC(A).

(xvii) Assume α ∈ (0, 1), A is a subgenerator of a global
(
tα−1

Γ(α) , k
)
-regularized

C-resolvent family (Sα(t))t>0, D(A) ̸= {0}, and limt→+∞ |k(t)| does not exist in
[0,∞] or limt→+∞ |k(t)| ̸= 0. Then there do not exist M > 1 and ω > 0 such that
∥Sα(t)∥ 6Me−ωt, t > 0.

(xviii) Assume that α ∈ (1, 2) and A is a subgenerator of a
(
tα−1

Γ(α) , C
)
-regular-

ized resolvent family (Sα(t))t>0 which satisfies ∥Sα(t)∥ 6 Meωt for appropriate
constants M > 1 and ω > 0. Let (B(t))t>0 ⊆ L(E), R(B(t)) ⊆ R(C), t > 0 and
C−1B(·) ∈ C([0,∞) : L(E)). Then, for every x ∈ D(A), there exists a unique
solution u(t) of the problem{

Dα
t u(t, x) = (A+B(t))u(t, x), t > 0,

u(0, x) = Cx, u′(0, x) = 0.

The solution u(t, x) is given by u(t, x) =
∑∞
n=0 Sα,n(t)x, t > 0, where we define

Sα,n(t) (t > 0) recursively by Sα,0(t) := Sα(t) and

Sα,n(t) :=

t∫
0

t−σ∫
0

(t− σ − s)α−2

Γ(α− 1)
Sα(s)C−1B(σ)Sα,n−1(σ) ds dσ.

Denote K(T ) = maxt∈[0,T ] ∥C−1B(t)∥, T > 0. Then

∥u(t, x)∥ 6MeωtEα(MKT t
α)∥x∥, t ∈ [0, T ]

∥u(t, x) − Sα(t)x∥ 6Meωt
(
Eα(MKT t

α) − 1
)
∥x∥, t ∈ [0, T ].

(xix) Assume kβ(t) satisfies (P1), 0 < α < β, γ = α
β and A is a subgenerator

of a
(
tβ−1

Γ(β) , kβ
)
-regularized C-resolvent family (Sβ(t))t>0 which satisfies ∥Sβ(t)∥ =

O(eωt), t > 0 for some ω > max(0, abs(kβ)). Assume additionally that (H5)
holds and that there exists a function kα(t) satisfying (P1), kα(0) = kβ(0) and

k̃α(λ) = λ
α
β −1k̃β(λ

α
β ) for all sufficiently large positive real numbers λ. Then A

is a subgenerator of a
(
tα−1

Γ(α) , kα
)
-regularized C-resolvent family (Sα(t))t>0 which

satisfies ∥Sα(t)∥ = O(eω
β/αt), t > 0 and

Sα(t)x =

∫ ∞

0

t−γΦγ(st−γ)Sβ(s)x ds, x ∈ E, t > 0.

Furthermore:

(xix.1) The mapping t 7→ Sα(t), t > 0 has an analytic extension to the sector
Σmin(( 1

γ −1)π
2 ,π)

.

(xix.2) If ω = 0 and ε ∈
(
0,min(( 1

γ − 1)π2 , π)
)
, then there exists Mγ,ε > 0 such

that ∥Sα(z)∥ 6Mγ,ε, z ∈ Σmin(( 1
γ −1)π

2 ,π)−ε
.

(xix.3) If ω > 0 and ε ∈
(
0,min(( 1

γ − 1)π2 ,
π
2 )
)
, then there exist δγ,ε > 0 and

Mγ,ε > 0 such that ∥Sα(z)∥ 6Mγ,εe
δγ,ε Re z, z ∈ Σmin(( 1

γ −1)π
2 ,

π
2 )−ε.
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(xix.4) Let ζ > 0. Then the assumption ∥Sβ(t)∥ = O(1 + tζ), t > 0, resp.
∥Sβ(t)∥ = O(tζ), t > 0, implies ∥Sα(t)∥ = O(1 + tγζ), t > 0, resp.
∥Sα(t)∥ = O(tγζ), t > 0.

(xx) Supposeβ ∈ (0, 2], Σ βπ
2

⊆ ρC(A), supλ∈Σ βπ
2

∥λ(λ−A)−1C∥ <∞ and, for

every x ∈ E, the mapping λ 7→ (λ − A)−1Cx, λ ∈ Σ βπ
2

is continuous. Then, for

every r ∈ (0, 1], A is the integral generator of a global ( t
β−1

Γ(β) ,
tr

Γ(r+1) )-regularized C
2-

resolvent family (Sr(t))t>0 satisfying that the mapping t 7→ Sr(t), t > 0 is locally
Hölder continuous with exponent r; if A is densely defined, then A is the integral

generator of a global bounded ( t
β−1

Γ(β) , C
2)-resolvent family (S(t))t>0.

Denote by a∗n the n-th convolution power of the kernel a(t), n ∈ N, and see
[369] for the definition of completely positive functions and the notion used in the
subsequent theorem. An insignificant modification of the proofs of [286, Theorem
3.7] and [369, Theorems 4.1, 4.3, 4.5] implies the following subordination principles.

Theorem 2.1.28. [235] (i) Let a(t), b(t) and c(t) satisfy (P1) and let β > 0
be such that

∫∞
0
e−βt|b(t)|dt <∞. Let

α = c̃−1
( 1

β

)
if

∞∫
0

c(t) dt >
1

β
, α = 0 otherwise,

and let ã(λ) = b̃( 1
c̃(λ) ), λ > α. Let A be a subgenerator of a (b, k)-regularized

C-resolvent family (Rb(t))t>0 satisfying that ∥Rb(t)∥ = O(eωbt), t > 0 for some
ωb > 0, and let (H2) or (H3) hold. Assume, further, that c(t) is completely positive
and that there exists a function k1(t) satisfying (P1) and

k̃1(λ) =
1

λc̃(λ)
k̃
( 1

c̃(λ)

)
, λ > ω0, k̃

( 1

c̃(λ)

)
̸= 0, for some ω0 > 0.

Put

ωa := c̃−1
( 1

ωb

)
if

∞∫
0

c(t)dt >
1

ωb
, ωa := 0 otherwise.

Then, for every r ∈ (0, 1], A is a subgenerator of a global (a, k1 ∗ tr−1

Γ(r) )-regularized

C-resolvent family (Rr(t))t>0 such that ∥Rr(t)∥ = O(eωat), t > 0 and that the
mapping t 7→ Rr(t), t > 0 is locally Hölder continuous with exponent r, if ωb = 0 or
ωbc̃(0) ̸= 1, resp., for every ε > 0, there exists Mε > 1 such that ∥Rr(t)∥ = O(eεt),
t > 0 and that the mapping t 7→ Rr(t), t > 0 is locally Hölder continuous with
exponent r, if ωb > 0 and ωbc̃(0) = 1. Furthermore, if A is densely defined, then A
is a subgenerator of a global (a, k1)-regularized C-resolvent family (R(t))t>0 such
that ∥R(t)∥ = O(eωat), t > 0, resp., for every ε > 0, ∥R(t)∥ = O(eεt), t > 0.

(ii) Suppose α > 0, A is a subgenerator of a global exponentially bounded α-
times integrated C-semigroup, a(t) is completely positive and satisfies (P1), k(t)

satisfies (P1) and k̃(λ) = ã(λ)α, λ sufficiently large. Then, for every r ∈ (0, 1],
A is a subgenerator of a locally Hölder continuous (with exponent r), exponentially
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bounded (a, k ∗ tr−1

Γ(r) )-regularized C-resolvent family ((a, a∗n ∗ tr−1

Γ(r) )-regularized C-

resolvent family if α = n ∈ N, resp. (a, tr

Γ(r+1) )-regularized C-resolvent family

if α = 0). If, additionally, A is densely defined, then A is a subgenerator of an
exponentially bounded (a, 1∗k)-regularized C-resolvent family ((a, 1∗a∗n)-regularized
C-resolvent family if α = n ∈ N, resp. (a,C)-regularized resolvent family if α = 0).

(iii) Suppose α > 0 and A is a subgenerator of an exponentially bounded α-
times integrated C-cosine function. Let L1

loc([0,∞)) ∋ c be completely positive and
let a(t) = (c ∗ c)(t), t > 0. (Given L1

loc([0,∞)) ∋ a in advance, such a function c(t)
always exists provided a(t) is completely positive or a(t) ̸= 0 is a creep function and

a1(t) is log-convex.) Assume k(t) satisfies (P1) and k̃(λ) = c̃(λ)α/λ, λ sufficiently
large. Then, for every r ∈ (0, 1], A is a subgenerator of a locally Hölder continuous

(with exponent r), exponentially bounded (a, k∗ t
r−1

Γ(r) )-regularized C-resolvent family

((a, c∗n ∗ tr−1

Γ(r) )-regularized C-resolvent family if α = n ∈ N, resp. (a, tr

Γ(r+1) )-

regularized C-resolvent family if α = 0). If, additionally, A is densely defined, then
A is a subgenerator of an exponentially bounded (a, 1 ∗ k)-regularized C-resolvent
family ((a, 1 ∗ c∗n)-regularized C-resolvent family if α = n ∈ N, resp. (a,C)-
regularized resolvent family if α = 0).

Denote by Ap the realization of the Laplacian with Dirichlet or Neumann
boundary conditions on Lp([0, π]n), 1 6 p < ∞. By [195, Theorem 4.2], Ap
generates an exponentially bounded α-times integrated cosine function for every
α > (n−1)

∣∣ 1
2 −

1
p

∣∣. In what follows, we employ the notation given in [369]. Assume

c ∈ BVloc([0,∞)) and m(t) is a bounded creep function with m0 = m(0+) > 0.
Thanks to [369, Proposition 4.4, p. 94], we have that there exists a completely
positive function b(t) such that dm ∗ b = 1. After the usual procedure, the problem
[369, (5.34)] describing heat conduction in materials with memory is equivalent to

(58) u(t) = (a ∗Ap)(t) + f(t), t > 0,

where a(t) = (b ∗ dc)(t), t > 0 and f(t) contains r ∗ b as well as the temperature
history. Assume that:

(i) p ̸= 2, (ii) Γb = ∅ or Γf = ∅, and
(iii) there exists a completely positive function c1(t)

such that a(t) = (c1 ∗ c1)(t), t > 0.

We refer the reader to [369, pp. 140–141] for the analysis of the problem (58) in the
case: p = 2 and m, c ∈ BF . Applying Theorem 2.1.28(iii), one gets that Ap is the

integral generator of an exponentially bounded
(
a, 1 ∗ L−1

(
1
λ c̃1(λ)(n−1)| 12−

1
p |
)
(t)
)
-

regularized resolvent family, where L−1 denotes the inverse Laplace transform. No-
tice also that [369, Lemma 4.3, p. 105] implies that, for every β ∈ [0, 1], the function
λ 7→ c̃1(λ)β/λ is the Laplace transform of a Bernstein function, and that the func-
tion k(t) appearing in the formulations of Theorem 2.1.28(ii)–(iii) always exists
(provided α > 0 in (ii)). On the other hand, an application of Proposition 2.3.12
given below (it seems that this result can be slightly improved in the case of frac-
tionally integrated cosine functions) gives that there exists ω > 0 such that Ap is the
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integral generator of an exponentially bounded (ω−Ap)−⌈ 1
2 (n−1)| 12−

1
p |⌉-regularized

cosine function. Using Theorem 2.1.28(iii) again, we have that Ap is the integral

generator of an exponentially bounded
(
a, (ω −Ap)

−⌈ 1
2 (n−1)| 12−

1
p |⌉
)
-regularized re-

solvent family, and Theorem 2.1.27(x) can be applied. In both approaches, re-
grettably, we must restrict ourselves to the study of pure Dirichlet or Neumann
problem. It is also worthwhile to note that Theorem 2.1.28(iii) can be applied
in the analysis of the Rayleigh problem of viscoelasticity in L∞ type spaces; as a
matter of fact, the operator A defined on [369, p. 136] generates an exponentially
bounded α-times integrated cosine function in L∞((0,∞)) for all α > 0. Noticing
that, for every α > 0, the operator Au(x) := u′′(x), x ∈ [0, 1],

u ∈ D(A) := {u ∈ L∞(0, 1) : u′, u′′ ∈ L∞(0, 1), u(0) = u′(1) = 0},
generates a polynomially bounded α-times integrated cosine function (Cα(t))t>0

in L∞(0, 1), we are in a position to apply Theorem 2.1.28(iii) in the analysis of
motion for the axial extension of a viscoelastic rod [369, (5.49), p. 138]. It could
be of interest to know in which classes of non-Hilbert spaces the problem of torsion
of a rod [369, (5.46), p. 137] can be considered.

Let β > 0. Concerning fractional powers of sectorial operators generating
tβ−1

Γ(β) -resolvent families (i.e. ( t
β−1

Γ(β) , I)-regularized resolvent families), and Landau-

Kolmogorov type inequalities for subgenerators of (a, k)-regularized C-resolvent
families, the reader may consult [280] and [293]. Further on, it is worth noting
that Karczewska and Lizama [180] have recently analyzed the following stochastic
fractional oscillation equation

(59) u(t) +

t∫
0

(t− s)
[
ADα

s u(s) + u(s)
]
ds = W (t), t > 0,

where 1 < α < 2, A is the generator of a bounded analytic C0-semigroup on
a Hilbert space H and W (t) denotes an H-valued Wiener process defined on a
stochastic basis (Ω,F , P ). The theory of (a, k)-regularized C-resolvent families is
essentially applied in the study of deterministic counterpart of the equation (59) in
integrated form

u(t) +

t∫
0

(t− s)1−α

Γ(2 − α)
Au(s) ds+

t∫
0

(t− s)u(s) ds =

t∫
0

(t− s)f(s) ds, t > 0,

where f ∈ L1
loc([0,∞) : E).

Using the argumentation given in [288] and [292], one can prove the following.

Theorem 2.1.29. [235] (i) Suppose that the next conditions hold:

(i.1) The mapping t 7→ |k(t)|, t ∈ [0, τ) is nondecreasing.
(i.2) There exist εa,k > 0 and ta,k ∈ [0, τ) such that∣∣∣∣∣

t∫
0

a(t− s)k(s) ds

∣∣∣∣∣ > εa,k

t∫
0

|a(t− s)k(s)| ds, t ∈ [0, ta,k).



2.1. DEFINITIONS AND MAIN STRUCTURAL PROPERTIES 71

(i.3) A is a subgenerator of an (a, k)-regularized C-resolvent family (R(t))t∈[0,τ)

and (H5) holds.

(i.4) lim supt→0+
∥R(t)∥
|k(t)| <∞.

Then, for every x ∈ D(A
D(A)

),

(60) ACx = lim
t→0+

R(t)x− k(t)Cx

(a ∗ k)(t)
.

Assume, further, x ∈ D(A) and limt→0+
R(t)x−k(t)Cx

(a∗k)(t) exists. Then Cx ∈ D(A
D(A)

)

and (60) holds.
(ii) Suppose A is a subgenerator of an (a, k)-regularized C-resolvent family

(R(t))t∈[0,τ) satisfying ∥R(t)∥ = O(k(t)), t → 0+ and min(a(t), k(t)) > 0, t ∈
(0, τ). Then the following holds:

(ii.1) limt→0+
(a∗R)(t)x
(a∗k)(t) = Cx, x ∈ D(A).

(ii.2) Suppose (H5). If x ∈ D(A), y ∈ E and limt→0+
R(t)x−k(t)Cx

(a∗k)(t) = y, then

Cx ∈ D(A) and y = ACx.
(ii.3) Let E be reflexive, let (H5) hold and let R(s)R(t) = R(t)R(s), 0 6 t,

s < τ . If x ∈ D(A) and limt→0+ ∥R(t)x−k(t)Cx
(a∗k)(t) ∥ <∞, then Cx ∈ D(A).

(iii) Suppose A is a subgenerator of an (a, k)-regularized C-resolvent family
(R(t))t∈[0,τ) satisfying that ∥R(t)∥ = O(k(t)), t → 0+, min(a(t), k(t)) > 0, t ∈
(0, τ) and that (H5) holds. Then, for every x ∈ D(A

D(A)
), (60) holds. Furthermore,

if x ∈ D(A) and limt→0+
R(t)x−k(t)Cx

(a∗k)(t) exists, then Cx ∈ D(A
D(A)

) and (60) holds.

(iv) Suppose α > 0 and A is a subgenerator of an α-times integrated C-
semigroup (Sα(t))t∈[0,τ), resp. α-times integrated C-cosine function (Cα(t))t∈[0,τ),

such that lim supt→0+
∥Sα(t)∥
tα <∞, resp. lim supt→0+

∥Cα(t)∥
tα <∞. Then, for every

x ∈ D(A) such that Ax ∈ D(A):

CAx = lim
t→0+

Γ(α+ 2)

Γ(α+ 1)

Γ(α+ 1)Sα(t)x− tαCx

tα+1
, resp.

CAx = lim
t→0+

Γ(α+ 3)

Γ(α+ 1)

Γ(α+ 1)Cα(t)x− tαCx

tα+2
.

Assume (Mp) satisfies (M.1), (M.2) and (M.3′). Put Lp := M
1/p
p and ωL(t) :=∑∞

p=0
tp

Lp
p
, t > 0 (cf. also [28], Section 3.2 and Subsection 3.5.3).

Definition 2.1.30. Let (R(t))t∈[0,τ) be a (local) (a, k)-regularized C-resolvent
family having A as a subgenerator and let the mapping t 7→ R(t), t ∈ (0, τ) be
infinitely differentiable (in the uniform operator topology). Then it is said that
(R(t))t∈(0,τ) is of class CL, resp. of class CL, iff for every compact set K ⊆ (0, τ)
there exists hK > 0, resp. for every compact set K ⊆ (0, τ) and for every h > 0:

sup
t∈K, p∈N0

∥∥∥∥hpK dp

dtpR(t)

Lpp

∥∥∥∥ <∞, resp. sup
t∈K, p∈N0

∥∥∥∥hp dpdtpR(t)

Lpp

∥∥∥∥ <∞;
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(R(t))t∈[0,τ) is said to be ρ-hypoanalytic, 1 6 ρ < ∞, if (R(t))t∈[0,τ) is of class

CL with Lp = p!ρ/p (notice only that (M.3′) does not hold provided Mp = p! and

Lp = p!1/p).

By the proof of the scalar-valued version of the Pringsheim theorem (cf. for
example [206, Theorem 2.1, p. 34]), it follows that the mapping t 7→ R(t), t ∈ (0, τ)
is real analytic iff (R(t))t∈[0,τ) is ρ-hypoanalytic with ρ = 1.

Theorem 2.1.31. [28], [235] (i) Suppose A is a closed linear operator, k(t) and
a(t) satisfy (P1), r > −1 and there exists ω > max

(
0, abs(k), abs(a)

)
such that,

for every z ∈ {λ ∈ C : Reλ > ω, k̃(λ) ̸= 0}, we have that the operator I − ã(z)A
is injective and that R(C) ⊆ R(I − ã(z)A). If, additionally, for every σ > 0, there
exist Cσ > 0, Mσ > 0 and an open neighborhood Ωσ,ω of the region

Λσ,ω :=
{
λ ∈ C : Reλ 6 ω, Reλ > −σ ln | Imλ| + Cσ

}
∪
{
λ ∈ C : Reλ > ω

}
,

and an analytic mapping hσ : Ωσ,ω → L(E) such that hσ(λ) = k̃(λ)(I− ã(λ)A)−1C,

Reλ > ω, k̃(λ) ̸= 0, and that ∥hσ(λ)∥ 6 Mσ|λ|r, λ ∈ Λσ,ω, then, for every ζ > 1,

A is a subgenerator of a norm continuous, exponentially bounded
(
a, k ∗ tζ+r−1

Γ(ζ+r)

)
-

regularized C-resolvent family (R(t))t>0 satisfying that the mapping t 7→ R(t), t > 0
is infinitely differentiable.

(ii) Suppose k(t) and a(t) satisfy (P1), (H5) holds and A is a subgenerator of

an (a, k)-regularized C-resolvent family (R(t))t>0 satisfying ∥R(t)∥ 6Meω
′t, t > 0

for appropriate constants ω′ > max
(
0, abs(k), abs(a)

)
and M > 0. If there exists

ω > ω′ such that, for every σ > 0, there exist Cσ > 0 and Mσ > 0 so that:

(ii.1) there exist an open neighborhood Ωσ,ω of the region Λσ,ω, and the analytic
mappings fσ : Ωσ,ω → C, gσ : Ωσ,ω → C and hσ : Ωσ,ω → L(E) such that

fσ(λ) = k̃(λ), λ ∈ C, Reλ > ω and gσ(λ) = ã(λ), λ ∈ C, Reλ > ω,
(ii.2) for every λ ∈ Λσ,ω with Reλ 6 ω, the operator I − ã(λ)A is injective and

R(C) ⊆ R(I − ã(λ)A),
(ii.3) hσ(λ) = fσ(λ)(I − gσ(λ)A)−1C, λ ∈ Λσ,ω and
(ii.4) ∥hσ(λ)∥ 6 Mσ| Imλ|, λ ∈ Λσ,ω, Reλ 6 ω and max(|fσ(λ)|, |gσ(λ)|) 6

Mσ, λ ∈ Λσ,ω,

then the mapping t 7→ R(t)x, t > 0 is infinitely differentiable for every fixed x ∈
D(A2). Furthermore, if D(A2) is dense in E, then the mapping t 7→ R(t), t > 0 is
infinitely differentiable.

(iii) Suppose k(t) and a(t) satisfy (P1), A is a subgenerator of a (local) (a, k)-
regularized C-resolvent family (R(t))t∈[0,τ), ω > max

(
0, abs(k), abs(a)

)
and m ∈ N.

Denote, for every ε ∈ (0, 1) and a corresponding Kε > 0,

Fε,ω =:
{
λ ∈ C : Reλ > − lnωL(Kε| Imλ|) + ω

}
.

Assume that, for every ε ∈ (0, 1), there exist Cε > 0, Mε > 0, an open neighborhood
Oε,ω of the region

Gε,ω := {λ ∈ C : Reλ > ω, k̃(λ) ̸= 0} ∪ {λ ∈ Fε,ω : Reλ 6 ω},
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and analytic mappings fε : Oε,ω → C, gε : Oε,ω → C and hε : Oε,ω → L(E) such
that:

(iii.1) fε(λ) = k̃(λ), Reλ > ω; gε(λ) = ã(λ), Reλ > ω,
(iii.2) for every λ ∈ Fε,ω, the operator I − gε(λ)A is injective and R(C) ⊆

R(I − gε(λ)A),
(iii.3) hε(λ) = fε(λ)(I − gε(λ)A)−1C, λ ∈ Gε,ω,

(iii.4) ∥hε(λ)∥ 6 Mε(1 + |λ|)meε|Reλ|, λ ∈ Fε,ω, Reλ 6 ω and ∥hε(λ)∥ 6
Mε(1 + |λ|)m, λ ∈ C, Reλ > ω.

Then (R(t))t∈[0,τ) is of class CL.
(iv) Suppose k(t) and a(t) satisfy (P1), A is a subgenerator of a (local) (a, k)-

regularized C-resolvent family (R(t))t∈[0,τ), ω > max
(
0, abs(k), abs(a)

)
and m ∈ N.

Denote, for every ε ∈ (0, 1), ρ ∈ [1,∞) and a corresponding Kε > 0,

Fε,ω,ρ =:
{
λ ∈ C : Reλ > −Kε| Imλ|1/ρ + ω

}
.

Assume that, for every ε ∈ (0, 1), there exist Cε > 0, Mε > 0, an open neighborhood

Oε,ω of the region Gε,ω,ρ := {λ ∈ C : Reλ > ω, k̃(λ) ̸= 0}∪{λ ∈ Fε,ω,ρ : Reλ 6 ω},
and analytic mappings fε : Oε,ω → C, gε : Oε,ω → C and hε : Oε,ω → L(E) such
that the conditions (iii.1)–(iii.4) of this theorem hold with Fε,ω, resp. Gε,ω, replaced
by Fε,ω,ρ, resp. Gε,ω,ρ. Then (R(t))t∈[0,τ) is ρ-hypoanalytic.

(v) Suppose α > 0, j ∈ N and (R(t))t∈[0,τ) is a (local) (a, k)-regularized C-

resolvent family with a subgenerator A. Set Rα(t)x :=
∫ t
0

(t−s)α−1

Γ(α) R(s)x ds, t ∈
[0, τ), x ∈ E. Then (Rα(t))t∈[0,τ) is an

(
a, k ∗ tα−1

Γ(α)

)
-regularized C-resolvent family

with a subgenerator A. Furthermore, if the mapping t 7→ R(t), t ∈ (0, τ) is j-
times differentiable, then the mapping t 7→ Rα(t), t ∈ (0, τ) is likewise j-times
differentiable. If this is the case, then we have, for every t ∈ [0, τ), b ∈ (0, t) and
x ∈ E:

dj

dtj
Rα(t)x =

b∫
0

(t− s)α−1−j

Γ(α)

j∏
i=1

(α− i)R(s)x ds+

j∑
i=0

(t− b)α+i−j

Γ(α+ i+ 1)

×
j−1∏
k=0

(α+ i− k)R(i)(b)x+

t∫
b

(t− s)α

Γ(α+ 1)

dj

dsj
R(s)x ds,

and:

(v.1) If (R(t))t∈[0,τ) is of class CL, resp. of class CL, then (Rα(t))t∈[0,τ) is

likewise of class CL, resp. of class CL.
(v.2) If (R(t))t∈[0,τ) is ρ-hypoanalytic, 1 6 ρ <∞, then (Rα(t))t∈[0,τ) is likewise

ρ-hypoanalytic.

Theorem 2.1.32. [234]–[235] (i) Suppose j ∈ N, τ > 0, K ∈ L1
loc([0, τ)),

0 ∈ suppK, K ∈ Cj((0, τ)) (K ∈ C∞((0, τ))), A is a subgenerator of a local
K-convoluted C-semigroup (SK(t))t∈[0,τ) satisfying that the mapping t 7→ SK(t),
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t ∈ (0, τ) is j-times (infinitely) differentiable and K = K1|[0,τ)
for an appro-

priate complex-valued function K1 ∈ L1
loc([0, 2τ)) (cf. the formulation of Theo-

rem 2.1.9). Then A is a subgenerator of a local (K ∗0K)-convoluted C2-semigroup
(SK∗0K(t))t∈[0,2τ) satisfying that the mapping t 7→ SK∗0K(t), t ∈ (0, 2τ) is j-times
(infinitely) differentiable.

(ii) Suppose α > 0, j ∈ N and A is a subgenerator of a local α-times in-
tegrated C-semigroup (Sα(t))t∈[0,τ). Then A is a subgenerator of a local (2α)-

times integrated C2-semigroup (S2α(t))t∈[0,2τ) and the following holds: If the map-
ping t 7→ Sα(t), t ∈ (0, τ) is j-times (infinitely) differentiable, then the mapping
t 7→ S2α(t), t ∈ (0, 2τ) is j-times (infinitely) differentiable.

(iii) Assume α > 0 and A generates a local α-times integrated semigroup
(Sα(t))t∈[0,τ) satisfying that the mapping t 7→ Sα(t), t ∈ (0, τ) is (⌈α⌉ + 1)-times

differentiable. Then A generates a global α-times integrated semigroup (S̃α(t))t>0

satisfying that the mapping t 7→ S̃α(t), t > 0 is infinitely differentiable.
(iv) Suppose A is a subgenerator of a local K-convoluted C-cosine function

(CK(t))t∈[0,τ), 0 ∈ suppK, K ∈ C∞((0, τ)) (K ∈ Cj((0, τ)), j ∈ N) resp. K is

of class CL (CL), and let K = K1|[0,τ)
for an appropriate complex-valued function

K1 ∈ L1
loc([0, 2τ)). Let the mapping t 7→ CK(t), t ∈ (0, τ) be infinitely differentiable

(j-times differentiable, j ∈ N), resp. let (CK(t))t∈[0,τ) be of class CL (CL). Then A

is a subgenerator of a local (K ∗K)-convoluted C2-cosine function (CK∗K(t))t∈[0,2τ)

satisfying that the mapping t 7→ CK∗K(t), t ∈ (0, 2τ) is infinitely differentiable
((j − 1)-times differentiable), resp. (CK∗K(t))t∈[0,2τ) is of class CL (CL). Fur-

thermore, the preassumptions j ∈ N, and K ∈ Cj((0, τ)) ∩ Cj−1([0, τ)), imply the
following: If the mapping t 7→ CK(t), t ∈ (0, τ) is j-times differentiable, then the
mapping t 7→ CK∗K(t), t ∈ (0, 2τ) is likewise j-times differentiable.

(v) Suppose α > 0, j ∈ N and A is a subgenerator of a local α-times integrated
C-cosine function (Cα(t))t∈[0,τ). Then A is a subgenerator of a local (2α)-times

integrated C2-cosine function (C2α(t))t∈[0,2τ) and the following holds:

(v.1) If the mapping t 7→ Cα(t), t ∈ (0, τ) is infinitely differentiable (j-times
differentiable, j ∈ N), then the mapping t 7→ C2α(t), t ∈ (0, 2τ) is in-
finitely differentiable ((j − 1)-times differentiable; j-times differentiable,
provided α > j).

(v.2) If (Cα(t))t∈[0,τ) is of class CL, resp. CL, then (C2α(t))t∈[0,2τ) is likewise

of class CL, resp. CL.
(v.3) Assume α ∈ N0, j ∈ N and the mapping t 7→ Cα(t), t ∈ (0, τ) is infinitely

differentiable (j-times differentiable). Then the mapping t 7→ C2α(t), t ∈
(0, 2τ) is j-times differentiable.

(vi) Suppose that α > 0 and that A generates a (local) α-times integrated cosine
function (Cα(t))t∈[0,τ) satisfying that the mapping t 7→ Cα(t), t > 0 is (⌈α⌉ + 2)-
times differentiable. Then A must be bounded.

Assume that min(a(t), k(t)) > 0, t ∈ (0, τ) and that A is a subgenerator of an
(a, k)-regularized C-resolvent family (R(t))t∈[0,τ). The Favard class Fa,k is defined
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by setting

Fa,k :=
{
x ∈ E : sup

t∈(0,τ)

∥R(t)x− k(t)Cx∥
(a ∗ k)(t)

<∞
}
.

Equipped with the norm | · |a,k := ∥ · ∥ + supt∈(0,τ)
∥R(t)·−k(t)C·∥

(a∗k)(t) , Fa,k becomes a

Banach space, and in the case when ∥R(t)∥ = O(k(t)), t ∈ [0, τ), we have D(A) ⊆
Fa,k. The proof of [292, Theorem 3.4] immediately implies the following assertion.

Theorem 2.1.33. Assume min(a(t), k(t)) > 0, t ∈ (0, τ), abs(k) = abs(a) = 0,
A is a subgenerator of an (a, k)-regularized C-resolvent family (R(t))t>0 satisfying
∥R(t)∥ = O(1), t > 0 and (H5) holds.

(i) Let x ∈ Fa,k. Then

(61) sup
λ>0, k̃(λ)̸=0

∥∥A(I − ã(λ)A)−1Cx
∥∥ <∞.

(ii) Assume, in addition, that the mapping ã : (0,∞) → (0,∞) is surjective

and that supt>0
(1∗a)(t)
(a∗k)(t) <∞. Then (61) implies Cx ∈ Fa,k.

For further information concerning Volterra integro-differential equations, we
recommend [79], [289], [369], [373] and references cited there.

2.2. Exponentially bounded convoluted C-semigroups
and cosine functions

The most important interplay between exponentially bounded convoluted C-
cosine functions and operator valued Laplace transform is described in the following
theorem (cf. also Theorem 2.1.27(xii)).

Theorem 2.2.1. Let K satisfy (P1) and let A be a closed linear operator.
(i) Assume A is a subgenerator of an exponentially bounded, K-convoluted C-

cosine function (CK(t))t>0 satisfying ∥CK(t)∥ 6 Meωt, t > 0, for appropriate
constants M > 0 and ω > 0. If ω1 = max(ω, abs(K)), then:{

λ2 : Reλ > ω1, K̃(λ) ̸= 0
}
⊆ ρC(A) and(62)

λ(λ2 −A)−1Cx =
1

K̃(λ)

∞∫
0

e−λtCK(t)x dt, x ∈ E, Reλ > ω1, K̃(λ) ̸= 0.(63)

(ii) Assume M > 0, ω > 0, (CK(t))t>0 is a strongly continuous operator family
satisfying ∥CK(t)∥ 6Meωt, t > 0, ω1 = max(ω, abs(K)) and (62)–(63) hold. Then
(CK(t))t>0 is an exponentially bounded, K-convoluted C-cosine function with a
subgenerator A.

Proof. Fix temporarily a complex number λ such that K̃(λ) ̸= 0 and Reλ >
ω1. Since (19) is assumed and A is closed, one obtains

L
(
CK(t)x

)
(λ) =

K̃(λ)

λ
Cx+

1

λ2
AL(CK(t)x)(λ), i.e.,

(λ2 −A)L
(
CK(t)x

)
(λ) = λK̃(λ)Cx, x ∈ E.(64)
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Hence, R(C) ⊆ R(λ2 −A). Assuming (λ2 −A)x = 0, one has

CK(t)x− Θ(t)Cx =

t∫
0

(t− s)CK(s)Axds = λ2
t∫

0

(t− s)CK(s)x ds, t > 0,

and consequently, L
(
CK(t)x

)
(λ) = K̃(λ)

λ Cx + L
(
CK(t)x

)
(λ), Cx = 0 and x = 0.

This implies the injectiveness of λ2 − A; thanks to (64) one gets (w2
1,∞) ⊆ ρC(A)

and (63), which completes the proof of (i). Now we will prove (ii). Using (63) and
CA ⊆ AC, we infer that (λ2 −A)−1C2x = C(λ2 −A)−1Cx, x ∈ E. Hence,

1

K̃(λ)

∞∫
0

e−λtCK(t)Cxdt =
1

K̃(λ)

∞∫
0

e−λtCCK(t)x dt, x ∈ E.

Since K ̸= 0 in L1
loc([0,∞)), it follows that

{z ∈ C : Re z > ω1} = {z ∈ C : Re z > ω1, K̃(z) ̸= 0}
and

∞∫
0

e−λtCK(t)Cxdt =

∞∫
0

e−λtCCK(t)x dt, Reλ > ω1, x ∈ E.

The uniqueness theorem for the Laplace transform implies CCK(t) = CK(t)C,
t > 0, x ∈ E. Then we obtain

λ(λ2 −A)−1CAx =
1

K̃(λ)

∞∫
0

e−λtCK(t)Axdt, Reλ > ω1, K̃(λ) ̸= 0, x ∈ D(A)

λA(λ2 −A)−1Cx =
1

K̃(λ)

∞∫
0

e−λtCK(t)Axdt, Reλ > ω1, K̃(λ) ̸= 0, x ∈ D(A).

An immediate consequence is A
∫∞
0
e−λtCK(t)x dt =

∫∞
0
e−λtCK(t)Axdt, Reλ >

ω1, K̃(λ) ̸= 0, x ∈ D(A). Using the closedness of A and the above arguments, we
obtain that the last equality holds for every x ∈ D(A) and for every λ ∈ C with
Reλ > ω1. Now one can apply Theorem 1.1.7(vii) in order to see that CK(t)A ⊆
ACK(t), t > 0. The following equalities hold for every x ∈ E and for every λ ∈ C
with Reλ > ω1 and K̃(λ) ̸= 0,

L

( t∫
0

(t− s)CK(s)x ds

)
(λ) = L(t)(λ)L(CK(t)x)(λ)

=
1

λ2
K̃(λ)λ(λ2 −A)−1Cx =

K̃(λ)

λ
(λ2 −A)−1Cx

and

A

(
L

( t∫
0

(t− s)CK(s)x ds

)
(λ)

)
= K̃(λ)λ(λ2 −A)−1Cx− K̃(λ)

λ
Cx
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= L
(
CK(t)x− Θ(t)Cx

)
(λ), Reλ > ω1, K̃(λ) ̸= 0.

Using the closedness of A and Theorem 1.1.7(vii), one immediately gets (19). �

The following characterization of exponentially bounded convoluted C-semi-
groups can be proved along the same lines.

Theorem 2.2.2. Let K satisfy (P1) and let A be a closed linear operator.
(i) Assume M > 0, ω > 0, A is a subgenerator of an exponentially bounded,

K-convoluted C-semigroup (SK(t))t>0 satisfying ∥SK(t)∥ 6Meωt, t > 0 and ω1 =
max(ω, abs(K)). Then the following holds:{

λ ∈ C : Reλ > ω1, K̃(λ) ̸= 0
}
⊆ ρC(A) and(65)

(λ−A)−1Cx =
1

K̃(λ)

∞∫
0

e−λtSK(t)x dt, x ∈ E, Reλ > ω1, K̃(λ) ̸= 0.(66)

(ii) Assume M > 0, ω > 0, (SK(t))t>0 is a strongly continuous operator fam-
ily, ∥SK(t)∥ 6 Meωt, t > 0, ω1 = max(ω, abs(K)) and (65)–(66) hold. Then
(SK(t))t>0 is an exponentially bounded, K-convoluted C-semigroup with a subgen-
erator A.

Remark 2.2.3. Assume that (62)–(63), resp. (65)–(66), hold only for real val-
ues of λ′s. Then (CK(t))t>0, resp. (SK(t))t>0, is still an exponentially bounded,
K-convoluted C-cosine function, resp. K-convoluted C-semigroup, with a subgen-
erator A.

Using Theorem 2.2.1, Theorem 2.2.2 and Theorem 1.1.12, one can simply prove
the following assertion.

Theorem 2.2.4. (i) Suppose K satisfies (P1), ω > max(0, abs(K)), A is a

closed linear operator with {λ2 : Reλ > ω, K̃(λ) ̸= 0} ⊆ ρC(A) and the function

λ 7→ λK̃(λ)(λ2 − A)−1C, Reλ > ω, K̃(λ) ̸= 0, can be extended to an analytic
function Υ : {λ ∈ C : Reλ > ω} → L(E) satisfying ∥Υ(λ)∥ 6 M0|λ|r, Reλ > ω,
where r > −1. Then, for every α > 1, there exist a continuous function C :
[0,∞) → L(E) with C(0) = 0 and M1 > 0 such that ∥C(t)∥ 6M1e

ωt, t > 0 and

λK̃(λ)(λ2 −A)−1C = λα+r
∞∫
0

e−λtC(t) dt, Reλ > ω, K̃(λ) ̸= 0.

Furthermore, (C(t))t>0 is a norm continuous, exponentially bounded
(
K∗0 t

α+r−1

Γ(α+r)

)
-

convoluted C-cosine function with a subgenerator A.
(ii) Suppose K satisfy (P1), ω > max(0, abs(K)), A is a closed linear operator

with {λ ∈ C : Reλ > ω, K̃(λ) ̸= 0} ⊆ ρC(A) and there exists an analytic function

Υ : {z ∈ C : Re z > ω} → L(E) so that Υ(λ) = K̃(λ)(λ − A)−1C, Reλ >

ω, K̃(λ) ̸= 0, and ∥Υ(λ)∥ 6 M0|λ|r, Reλ > ω, for some r > −1. Then, for every
α > 1, there exist a continuous function S : [0,∞) → L(E) with S(0) = 0 and
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M1 > 0 such that ∥S(t)∥ 6M1e
ωt, t > 0 and

K̃(λ)(λ−A)−1C = λα+r
∞∫
0

e−λtS(t) dt, Reλ > ω, K̃(λ) ̸= 0.

Furthermore, (S(t))t>0 is a norm continuous, exponentially bounded
(
K ∗0 t

α+r−1

Γ(α+r)

)
-

convoluted C-semigroup with a subgenerator A.

Theorem 2.2.5. Suppose K satisfies (P1) and A is a closed linear operator.
Then the following holds:

(i.1) Let M > 0 and ω > 0. Then the operator A is a subgenerator of an expo-
nentially bounded, Θ-convoluted C-semigroup (SΘ(t))t>0 satisfying the condition:

(67) ∥SΘ(t+ h) − SΘ(t)∥ 6Mheω(t+h), t > 0, h > 0

iff there exists a > max(ω, abs(K)) such that:

{λ ∈ (a,∞) : K̃(λ) ̸= 0} ⊆ ρC(A),(68)

λ 7→ K̃(λ)(λ−A)−1C, λ > a, K̃(λ) ̸= 0 is infinitely differentiable and(69) ∥∥∥ dk
dλk

[K̃(λ)(λ−A)−1C]
∥∥∥ 6 Mk!

(λ− ω)k+1
, k ∈ N0, λ > a, K̃(λ) ̸= 0.(70)

(i.2) Assume M > 0, ω > 0 and A is densely defined. Then A is a subgener-
ator of an exponentially bounded, K-convoluted C-semigroup (SK(t))t>0 satisfying
∥SK(t)∥ 6 Meωt, t > 0 iff there exists a > max(ω, abs(K)) such that (68)–(70)
hold.

(ii.1) Let M > 0 and ω > 0. Then the operator A is a subgenerator of an
exponentially bounded, Θ-convoluted C-cosine function (CΘ(t))t>0 satisfying the
condition:

(71) ∥CΘ(t+ h) − CΘ(t)∥ 6Mheω(t+h), t > 0, h > 0

iff there exists a > max(ω, abs(K)) such that:

{λ2 : λ ∈ (a,∞), K̃(λ) ̸= 0} ⊆ ρC(A),(72)

λ 7→ λK̃(λ)(λ2 −A)−1C, λ > a, K̃(λ) ̸= 0 is infinitely differentiable and(73) ∥∥∥ dk
dλk

[λK̃(λ)(λ2 −A)−1C]
∥∥∥ 6 Mk!

(λ− ω)k+1
, k ∈ N0, λ > a, K̃(λ) ̸= 0.(74)

(ii.2) AssumeM > 0, ω > 0 and A is densely defined. Then A is a subgenerator
of an exponentially bounded, K-convoluted C-cosine function (CK(t))t>0 satisfying
∥CK(t)∥ 6 Meωt, t > 0 iff there exists a > max(ω, abs(K)) such that (72)–(74)
hold.

Proof. (i.1) Let (68)–(70) hold and let a := max(ω, abs(K)). Assuming λ >

a and K̃(λ) ̸= 0, (70) implies that the power series∑
k>0

[K̃(λ)(λ−A)−1C](k)(λ)

k!
(z − λ)k,
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converges for every z ∈ C satisfying |z − λ| < λ − ω. This, in turn, implies that

there exists a C∞-function Υ : (a,∞) → L(E) satisfying Υ(λ) = K̃(λ)(λ−A)−1C,

λ > a, K̃(λ) ̸= 0 and
∥∥ dk

dλk Υ(λ)
∥∥ 6 Mk!

(λ−ω)k+1 , k ∈ N0, λ > a. An application of

Theorem 1.1.13 gives that there exists a function SΘ : [0,∞) → L(E) such that
(67) holds and that Υ(λ) = λ

∫∞
0
e−λtSΘ(t) dt, λ > a. Then it is straightforward

to see that Θ̃(λ)(λ − A)−1C =
∫∞
0
e−λtSΘ(t) dt, λ > a, Θ̃(λ) ̸= 0. Now one can

proceed as in the proof of Theorem 2.2.1 in order to see that (SΘ(t))t>0 is an
exponentially bounded, Θ-convoluted C-semigroup with a subgenerator A (cf. also
Remark 2.2.3). Assume conversely that A is a subgenerator of an exponentially
bounded, Θ-convoluted C-semigroup (SΘ(t))t>0 which satisfies (67). Arguing as
before, one obtains (68) and

λ(λ−A)−1Cx =
1

K̃(λ)

∞∫
0

e−λtSΘ(t)x dt, x ∈ E, Reλ > a, K̃(λ) ̸= 0.

This implies (69). To prove (70), fix x ∈ E, x∗ ∈ E∗ and put afterwards f(t) :=
x∗(SΘ(t)x), t > 0. Then (67) implies that f(·) is differentiable almost every-

where in [0,∞) with |f ′(t)| 6 C∥x∥ ∥x∗∥eωt for a.e. t > 0. Moreover, x∗(K̃(λ)(λ−
A)−1Cx) =

∫∞
0
e−λtf ′(t) dt, λ > a, K̃(λ) ̸= 0. Therefore, (70) holds. Using the

same arguments as in the proof of [434, Theorem 3.4, p. 14], one obtains (i.2). The
proofs of (ii.1) and (ii.2) are similar to those of (i.1) and (i.2). �

The next profiling of C-pseudoresolvents follows from the proofs of [259, Propo-
sition 2.2] and [384, Theorem 1.3]:

Proposition 2.2.6. LetM > 0, let K satisfy (P1) and let ω > max(0, abs(K)).
(i) Suppose (SK(t))t>0 is a strongly continuous operator family and ∥SK(t)∥ 6

Meωt, t > 0. Put Rλx := 1
K̃(λ)

∫∞
0
e−λtSK(t)x dt, x ∈ E, Reλ > ω, K̃(λ) ̸= 0.

Then (λ − µ)RλRµx = RµCx − RλCx, λ, µ > ω, K̃(λ)K̃(µ) ̸= 0, x ∈ E iff (20)
holds for x ∈ E, t > 0 and s > 0.

(ii) Suppose (CK(t))t>0 is a strongly continuous operator family and ∥CK(t)∥ 6
Meωt, t > 0. Put Rλ2x := 1

λK̃(λ)

∫∞
0
e−λtCK(t)x dt, x ∈ E, Reλ > ω, K̃(λ) ̸= 0.

Then (λ2 − µ2)Rλ2Rµ2x = Rµ2Cx − Rλ2Cx, λ, µ > ω, K̃(λ)K̃(µ) ̸= 0, x ∈ E iff
(24) holds for x ∈ E, t > 0 and s > 0.

The following adjoint type theorem is motivated by [325, Theorem 4.2]; the
proof is only sketched here without giving full details.

Theorem 2.2.7. (i) Suppose A is a subgenerator of a (local, global expo-
nentially bounded) K-convoluted C-semigroup (SK(t))t∈[0,τ), resp. K-convoluted
C-cosine function (CK(t))t∈[0,τ), D(A) and R(C) are dense in E and α > 0.

Then A∗ is a subgenerator of a (local, global exponentially bounded)
(
K ∗0 tα−1

Γ(α)

)
-

convoluted C∗-semigroup (S∗
K,α(t))t∈[0,τ), resp.

(
K ∗0 tα−1

Γ(α)

)
-convoluted C∗-cosine
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function (C∗
K,α(t))t∈[0,τ) in E∗, where

SK,α(t)x∗ :=

t∫
0

(t− s)α−1

Γ(α)
SK(s)∗x∗ds, x∗ ∈ E∗, t ∈ [0, τ), resp.

CK,α(t)x∗ :=

t∫
0

(t− s)α−1

Γ(α)
CK(s)∗x∗ds, x∗ ∈ E∗, t ∈ [0, τ).

(ii) Suppose D(A) and R(C) are dense in E, and A is a subgenerator of a
K-convoluted C-semigroup (SK(t))t∈[0,τ), resp. K-convoluted C-cosine function

(CK(t))t∈[0,τ). Then the part of A∗ in D(A∗) is a subgenerator of a K-convoluted

C∗
|D(A∗)

-semigroup
(
S∗
K(t)|D(A∗)

)
t∈[0,τ)

, resp. K-convoluted C∗-cosine function(
C∗
K(t)|D(A∗)

)
t∈[0,τ)

.

(iii) Suppose E is reflexive, D(A) and R(C) are dense in E, and A is a subgen-
erator of a K-convoluted C-semigroup (SK(t))t∈[0,τ), resp. K-convoluted C-cosine
function (CK(t))t∈[0,τ). Then A

∗ is a subgenerator of a (local, global exponentially
bounded) K-convoluted C∗-semigroup (S∗

K(t))t∈[0,τ), resp. K-convoluted C∗-cosine
function (C∗

K(t))t∈[0,τ) in E∗.
(iv) Suppose A is a subgenerator of a (local, global exponentially bounded) (a, k)-

regularized C-resolvent family (R(t))t∈[0,τ), D(A) and R(C) are dense in E and α >

0. Then A∗ is a subgenerator of a (local, global exponentially bounded)
(
a, k∗0 t

α−1

Γ(α)

)
-

regularized C∗-resolvent family (R∗
α(t))t∈[0,τ), which is given by

Rα(t)x∗ :=

t∫
0

(t− s)α−1

Γ(α)
R(s)∗x∗ds, x∗ ∈ E∗, t ∈ [0, τ).

(v) Suppose D(A) and R(C) are dense in E, and A is a subgenerator of an

(a, k)-regularized C-resolvent family (R(t))t∈[0,τ). Then the part of A∗ in D(A∗) is
a subgenerator of an (a, k)-regularized C∗

|D(A∗)
-resolvent family in E∗.

(vi) Suppose E is reflexive, D(A) and R(C) are dense in E, and A is a subgen-
erator of a (local, global exponentially bounded) (a, k)-regularized C-resolvent family
(R(t))t∈[0,τ). Then A∗ is a subgenerator of a (local, global exponentially bounded)
(a, k)-regularized C∗-resolvent family (R∗(t))t∈[0,τ).

Proof. We will only prove (i)-(iii) provided that A is a subgenerator of a K-
convoluted C-semigroup (SK(t))t∈[0,τ). Since R(C) is dense in E, the operator C∗

is injective. By the proof of [325, Theorem 4.2], we have that (S∗
K,α(t))t∈[0,τ) is a

strongly continuous operator family in E∗ and

A∗
t∫

0

S∗
K,α(s)x∗ds = S∗

K,α(t)x∗ −
(

Θ ∗0
·α−1

Γ(α)

)
(t)C∗x∗, x∗ ∈ E∗, t ∈ [0, τ).

The simple computation shows that S∗
K,α(t)A∗ ⊆ A∗S∗

K,α(t) and S∗
K,α(t)C∗ =

C∗S∗
K,α(t), t ∈ [0, τ), which completes the proof of (i). The proof of (ii) follows
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exactly in the same way as in the proof of [325, Theorem 4.2] while the proof of
(iii) follows immediately from (ii) and Proposition 1.1.14(iv). �

It is clear that the notions of K-convoluted C-semigroups and cosine functions,
or more generally (a, k)-regularized C-resolvent families, can be considered if E is
a sequentially complete locally convex space; with minor exceptions, the results
established here continue to hold in this setting ([241]). We continue by observing
that Wu and Zhang [429] have recently introduced a new topological concept for
the purpose of researches of semigroups on L∞-type spaces and the L1-uniqueness
of the Fokker-Planck equation (cf. also [268, Theorem 2.1, Theorem 2.2]). Let us
explain in more detail the importance of such an approach. Let E be a sequentially
complete locally convex space. Then one can define on E∗ the topology of uniform
convergence on compacts of E, denoted by C(E∗, E); more precisely, given a func-
tional x∗0 ∈ E∗, the basis of open neighborhoods of x∗0 w.r.t. C(E∗, E) is given
by N(x∗0 : K, ε) := {x∗ ∈ E∗ : supx∈K |⟨x∗ − x∗0, x⟩| < ε}, where K runs over all
compacts of E and ε > 0. Then (E∗, C(E∗, E)) is locally convex and complete. On
the other hand, E∗ can be equipped with the Hausdorff locally convex topology
defined by the system (| · |B)B∈B of seminorms on E∗, where B denotes the family
of all bounded subsets of E and |x∗|B := supx∈B |⟨x∗, x⟩|, x∗ ∈ E∗, B ∈ B. In this
case, E∗ is sequentially complete provided that E is barreled. Furthermore, one can
simply prove that the topology C(E∗, E) is finer than the topology induced by the
calibration (| · |B)B∈B. With the notion explained in [241], we have the following
theorem which is not so easily comparable to Theorem 2.2.7.

Theorem 2.2.8. Suppose D(A) and R(C) are dense in E, and A is a subgen-
erator of a locally equicontinuous (a, k)-regularized C-resolvent family (R(t))t∈[0,τ).
Then A∗ is a subgenerator of a locally equicontinuous (a, k)-regularized C∗-resolvent
family (R(t)∗)t∈[0,τ) in (E∗, C(E∗, E)). Furthermore, if τ = ∞ and (R(t))t>0 is ex-
ponentially equicontinuous, then (R(t)∗)t>0 is also exponentially equicontinuous.

2.3. Abstract Cauchy problems

We are turning back to our standing hypothesis in which E is a Banach space.
Convoluted C-semigroups and functions are important tools in the study of the

following abstract Cauchy problems:

(ΘC) :


u ∈ C([0, τ) : [D(A)]) ∩ C1([0, τ) : E),

u′(t) = Au(t) + Θ(t)Cx, t ∈ [0, τ),

u(0) = 0,

and

(ACP2)Θ :


u ∈ C([0, τ) : [D(A)]) ∩ C2([0, τ) : E),

u′′(t) = Au(t) + Θ(t)Cx+
t∫
0

Θ(s)Cyds, t ∈ [0, τ),

u(0) = 0, u′(0) = 0.

It is said that (ΘC), resp. (ACP2)Θ, is well-posed if for every x, resp. x, y ∈ E,
there exists a unique solution of (ΘC), resp. (ACP2)Θ. The existence of a unique
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solution of (ΘC), resp. (ACP2)Θ, is closely connected with the existence of a unique
K-convoluted mild solution of the problem (ACP1), resp. (ACP2), where

(ACP1) :


u ∈ C([0, τ) : [D(A)]) ∩ C1([0, τ) : E),

u′(t) = Au(t), t ∈ [0, τ),

u(0) = x,

and

(ACP2) :


u ∈ C([0, τ) : [D(A)]) ∩ C2([0, τ) : E),

u′′(t) = Au(t), t ∈ [0, τ),

u(0) = x, u′(0) = y.

The notion of mild solutions of (ACP2) was introduced by Wang and Huang [420]

in case τ = ∞ and K(t) = tn−1

(n−1)! , t > 0, n ∈ N.

The subsequent assertions follow from the use of arguments given in the proofs
of [5, Proposition 2.3], [275, Proposition 2.4, Theorem 2.5] and [418, Theorem 2.4]
(cf. also [230, Propositions 5.3, 5.4 and 5.5]).

Proposition 2.3.1. Suppose 0 < τ 6 ∞ and (ΘC) is well-posed. Then there
exists a unique strongly continuous operator family (SK(t))t∈[0,τ) such that, for

every x ∈ E,
∫ t
0
S(s)x ds ∈ D(A) and A

∫ t
0
S(s)x ds = S(t)x − Θ(t)Cx, t ∈ [0, τ).

Furthermore, SK(t)SK(s) = SK(s)SK(t), 0 6 t, s < τ , (SK(t))t∈[0,τ) is a local K-

convoluted C-semigroup with a subgenerator A and the integral generator C−1AC.

Proposition 2.3.2. Suppose 0 < τ 6 ∞, K is a kernel and A is a subgenerator
of a K-convoluted C-semigroup (SK(t))t∈[0,τ). Then (ΘC) is well-posed.

The next proposition can be proved by using the closedness of A and the
functional equality of K-convoluted C-semigroups (cosine functions).

Proposition 2.3.3. Let A be a subgenerator of a (local) K-convoluted C-
semigroup (SK(t))t∈[0,τ), resp. K-convoluted C-cosine function (CK(t))t∈[0,τ).

(i) Suppose k ∈ N, x ∈ D(Ak) and K ∈ Ck−1([0, τ)). Then

dk

dtk
SK(t)x = SK(t)Akx+

k−1∑
i=0

K(i)(t)CAk−1−ix, t ∈ [0, τ).

(ii) Suppose k ∈ N, x ∈ D(Ak) and K ∈ C2k−1([0, τ)). Then

d2k

dt2k
CK(t)x = CK(t)Akx+

k−1∑
i=0

K(2i+1)(t)CAk−1−ix, t ∈ [0, τ).

(iii) Suppose k ∈ N, x ∈ D(Ak) and K ∈ C2k−2([0, τ)). Then

d2k−1

dt2k−1
CK(t)x =

t∫
0

CK(s)Akx ds+

k−1∑
i=0

K(2i)(t)CAk−1−ix, t ∈ [0, τ).
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Proposition 2.3.4. Suppose k ∈ N, K ∈ Ck([0, τ)) and (ΘC) is well-posed.
Then, for every x ∈ D(Ak+1), there exists a unique solution of the problem (ΘCk),
where:

(ΘCk) :


u ∈ C1([0, τ) : E) ∩ C([0, τ) : [D(A)]),

u′(t) = Au(t) + dk

dtk
K(t)Cx, t ∈ [0, τ),

u(0) =
∑k−1
i=0 K

(i)(0)Ak−1−iCx.

Proof. The prescribed assumptions imply that A is a subgenerator of a K-
convoluted C-semigroup (SK(t))t∈[0,τ). Now one can simply verify that

u(t) :=

t∫
0

SK(s)Ak+1x ds+

k∑
i=0

Θ(i)(t)Ak−iCx, t ∈ [0, τ), x ∈ D(Ak+1),

is a solution of (ΘCk). The uniqueness of solutions of (ΘCk) follows from the
well-posedness of the problem (ΘC) at x = 0. �

Suppose H ∈ L1
loc([0, τ)), H ∗0 K ̸= 0 in L1

loc([0, τ)) and (ΘC) is well-posed.
Then it can be simply checked that the problem (H ∗0 Θ, C) is also well-posed.

Proposition 2.3.5. Suppose k ∈ N, k > 2, K ∈ Ck([0, τ)), K(i)(0) = 0,
0 6 i 6 k − 2, A is a closed linear operator, λ0 ∈ ρ(A) and the problem (ΘCk) has
a unique solution for every x ∈ D(Ak+1). Then (ΘC) is well-posed.

Proof. Let y ∈ D(Ak+1) and z = Cy. Define u1(t) := (λ0 − A)
∫ t
0
uy(s) ds,

t ∈ [0, τ), where uy(·) is a solution of (ΘCk) with x replaced by y there. Direct
computation shows that u1(·) is a solution of the problem

(ΘCk−1) :


u ∈ C1([0, τ) : E) ∩ C([0, τ) : [D(A)]),

u′(t) = Au(t) + dk−1

dtk−1K(t)x, t ∈ [0, τ),

u(0) = 0,

where x = (λ0 − A)z. Therefore, the problem (ΘCk−1) has a solution for all
x ∈ (λ0 −A)CD(Ak+1). Similarly, the problem

(ΘCk−2) :


u ∈ C1([0, τ) : E) ∩ C([0, τ) : [D(A)]),

u′(t) = Au(t) + dk−2

dtk−2K(t)x, t ∈ [0, τ),

u(0) = 0,

has a solution for all x ∈ (λ0 − A)2CD(Ak+1) and we obtain inductively the exis-
tence of a solution uk+1(·) of the problem

(ΘC−1) :


u ∈ C1([0, τ) : E) ∩ C([0, τ) : [D(A)]),

u′(t) = Au(t) + Θ(t)x, t ∈ [0, τ),

u(0) = 0,

for all x ∈ (λ0 − A)k+1CD(Ak+1). Since CA ⊆ AC and λ0 ∈ ρ(A), we have
R(C) ⊆ (λ0 − A)k+1CD(Ak+1) and this implies that (ΘC) has a solution for all
x ∈ E; the uniqueness of solutions of (ΘC) follows from the well-posedness of the
problem (ΘCk) at x = 0. �
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The next statements can be shown following the lines of the proofs of Propo-
sition 2.3.4 and Proposition 2.3.5.

Theorem 2.3.6. Suppose k ∈ N, K ∈ Ck−1([0, τ)), A is a closed linear op-
erator, λ0 ∈ ρ(A) and, in the case k > 2, K(i)(0) = 0, 0 6 i 6 k − 2. Then the
following assertions are equivalent:

(i) (ΘC) is well-posed. (ii) (Θ(k), R(λ0 : A)kC) is well-posed.

Corollary 2.3.7. Suppose k ∈ N, A is a closed linear operator and λ0 ∈ ρ(A).
Then the following assertions are equivalent:

(i) A is a subgenerator of a local k-times integrated C-semigroup on [0, τ).
(ii) A is a subgenerator of a local (R(λ0 : A)kC)-regularized semigroup on [0, τ).

Our objective in the sequel of this subsection is to prove the analogues of
Proposition 2.3.4-Corollary 2.3.7 for K-convoluted C-cosine functions.

Proposition 2.3.8. Suppose (ACP2)Θ is well-posed and k ∈ N. Then A
(C−1AC) is a subgenerator (the integral generator) of a K-convoluted C-cosine
function (CK(t))t∈[0,τ) and the following holds:

(i) If x ∈ D(Ak), y ∈ D(Ak) and K ∈ C2k−1([0, τ)), then the abstract Cauchy
problem:

(ACP2)Θ,2k−1 :


u ∈ C2([0, τ) : E) ∩ C([0, τ) : [D(A)]),

u′′(t) = Au(t) + d2k−1

dt2k−1K(t)Cx+ d2k−2

dt2k−2K(t)Cy, t ∈ [0, τ),

u(0) =
∑k−2
i=0 K

(2i+1)(0)CAk−2−ix+
∑k−2
i=0 K

(2i)(0)CAk−2−iy,

u′(0) =
∑k−1
i=0 K

(2i)(0)CAk−1−ix+
∑k−2
i=0 K

(2i+1)(0)CAk−2−iy,

has a unique solution given by:

u(t) = CK(t)Ak−1x+

k−2∑
i=0

K(2i+1)(t)CAk−2−ix

+

t∫
0

CK(s)Ak−1y ds+

k−2∑
i=0

K(2i)(t)CAk−2−iy, t ∈ [0, τ).

(ii) If x ∈ D(Ak+1), y ∈ D(Ak) and K ∈ C2k([0, τ)), then the abstract Cauchy
problem:

(ACP2)Θ,2k :


u ∈ C2([0, τ) : E) ∩ C([0, τ) : [D(A)]),

u′′(t) = Au(t) + d2k

dt2k
K(t)Cx+ d2k−1

dt2k−1K(t)Cy, t ∈ [0, τ),

u(0) =
∑k−1
i=0 K

(2i)(0)CAk−1−ix+
∑k−1
i=0 K

(2i+1)(0)CAk−1−iy,

u′(0) =
∑k−1
i=0 K

(2i+1)(0)CAk−1−ix+
∑k−1
i=0 K

(2i)(0)CAk−1−iy,

has a unique solution given by:

u(t) =

t∫
0

CK(s)Akx ds+

k−1∑
i=0

K(2i)(t)CAk−1−ix
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+ CK(t)Ak−1y +

k−2∑
i=0

K(2i+1)(t)CAk−2−iy, t ∈ [0, τ).

Proof. We will only outline the proof of (i). By Proposition 2.1.16 and
Proposition 2.3.15 given below, A (C−1AC) is a subgenerator (the integral gen-
erator) of a K-convoluted C-cosine function (CK(t))t∈[0,τ). Clearly, u ∈ C2([0, τ) :
E) ∩ C([0, τ) : [D(A)]), and by Proposition 2.3.3, one gets:

u′(t) =

t∫
0

CK(s)Akx ds+K(t)CAk−1x+

k−2∑
i=0

K(2i+2)(t)CAk−2−ix

+ CK(t)Ak−1y +

k−2∑
i=0

K(2i+1)(t)CAk−2−iy,

u′′(t) = CK(t)Akx+K ′(t)CAk−1x+

k−1∑
i=0

K(2i+1)(t)CAk−1−ix

+

t∫
0

CK(s)Aky ds+K(t)CAk−1y +

k−2∑
i=0

K(2i+2)(t)CAk−2−iy,

u′′(t) −Au(t) =

k−1∑
i=0

K(2i+1)(t)CAk−1−ix−
k−2∑
i=0

K(2i+1)(t)CAk−1−ix

+

k−2∑
i=0

K(2i+2)(t)CAk−2−iy −
k−2∑
i=0

K(2i)(t)CAk−1−iy

= K(2k+1)(t)Cx+K(2i−2)(t)Cy, t ∈ [0, τ).

The uniqueness of solutions of (ACP2)Θ at x = y = 0 completes the proof. �

In the context of integrated C-cosine functions considered in Banach spaces,
the previous proposition extends [434, Theorem 6.10, p. 40].

Theorem 2.3.9. (i) Suppose k ∈ N, K ∈ C2k−1([0, τ)), λ0 ∈ ρ(A), the abstract
Cauchy problem (ACP2)Θ,2k−1 has a unique solution for all x, y ∈ D(Ak) and, in

the case k > 2, K(i)(0) = 0, 0 6 i 6 2k − 4. Then (ACP2)Θ is well-posed.
(ii) Suppose k ∈ N, K ∈ C2k([0, τ)), λ0 ∈ ρ(A), the abstract Cauchy problem

(ACP2)Θ,2k has a unique solution for all x ∈ D(Ak+1) and y ∈ D(Ak), and, in the

case k > 2, K(i)(0) = 0, 0 6 i 6 2k − 3. Then (ACP2)Θ is well-posed.

Proof. We will only prove (i). Suppose x ∈ D(Ak), y ∈ D(Ak) and designate
by ux,y(·) the unique solution of the problem (ACP2)Θ,2k−1. Then the injectiveness

of the operator λ0 − A and the supposition K(i)(0) = 0, 0 6 i 6 2k − 4 (provided

that k > 2) easily imply that the function u1(t) := (λ0 − A)
∫ t
0
(t − s)ux,y(s)ds,
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t ∈ [0, τ) is a solution of the problem
u ∈ C2([0, τ) : E) ∩ C([0, τ) : [D(A)]),

u′′(t) = Au(t) + d2k−3

dt2k−3K(t)(λ0 −A)Cx+ d2k−4

dt2k−4K(t)(λ0 −A)Cy, t ∈ [0, τ),

u(0) = u′(0) = 0.

Arguing as in the proof Theorem 2.3.5, we obtain that the problem
u ∈ C2([0, τ) : E) ∩ C([0, τ) : [D(A)]),

u′′(t) = Au(t) + Θ(t)x+
∫ t
0

Θ(s)y ds, t ∈ [0, τ),

u(0) = u′(0) = 0,

has a unique solution for all x, y ∈ (λ0 − A)kCD(Ak). Since λ0 ∈ ρ(A) and
CA ⊆ AC, we immediately obtain that (ACP2)Θ is well-posed. �

Remark 2.3.10. (i) It can be simply justified that in the assertion (i) of The-
orem 2.3.9 one can assume the well-posedness of the problem (ACP2)Θ,2k−1 only
for x ∈ D(Ak) and y = 0; analogically, in the assertion (ii) one can only assume
that x = 0. In such a way, we obtain a generalization of [434, Theorem 6.9, p. 40].

(ii) In the formulations of Theorem 2.3.5 and Theorem 2.3.9, we need not to
restrict ourselves to the case ρ(A) ̸= ∅. The following changes must be done to
cover the newly arisen situation:

(ii.1) Theorem 2.3.5: λ0 ∈ ρC(A),

R(C) ⊆
{

(λ0 −A)k+1x : x ∈ D(Ak+1)
}

= D
(
(λ0 −A)−(k+1)

)
and, for every x ∈ (λ0 −A)−(k+1) R(C), the problem (ΘCk) has a unique
solution.

(ii.2) Theorem 2.3.9(i): λ0 ∈ ρC(A), R(C) ⊆ D((λ0 − A)−k) and the problem
(ACP2)Θ,2k−1 has a unique solution for every x ∈ (λ0 − A)−k R(C) and
y = 0.

(ii.3) Theorem 2.3.9(ii): λ0 ∈ ρC(A), R(C) ⊆ D((λ0 − A)−k) and the problem
(ACP2)Θ,2k has a unique solution for every y ∈ (λ0 − A)−k R(C) and
x = 0. At the end of this remark, let us point out that the closed graph
theorem and an induction argument imply (λ0 −A)−kC ∈ L(E).

Taking into account preceding remark and the method described in the proofs
of Theorem 2.3.5, Theorem 2.3.9 and [261, Theorem 2.1] (cf. also Proposition 2.3.12
given below), the next corollary follows instantly.

Corollary 2.3.11. (i) Suppose k ∈ N, λ0 ∈ ρC(A), R(C) ⊆ D((λ0−A)−(k+1))
and the abstract Cauchy problem (ACP1) has a unique solution for every x ∈
(λ0 − A)−(k+1) R(C). Then A is a subgenerator of a (local) k-times integrated
C-semigroup (Sk(t))t∈[0,τ), and moreover, A is a subgenerator of a (local)

(
(λ0 −

A)−kC
)
-regularized semigroup (S(t))t∈[0,τ) which satisfies

(75) Sk(t)x = (λ0 −A)k
t∫

0

(t− s)k−1

(k − 1)!
S(s)x ds, x ∈ E, t ∈ [0, τ).
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The formula (75) is also applicable to semigroups appearing in the formulation of
Corollary 2.3.7.

(ii) Suppose k ∈ N, λ0 ∈ ρC(A), R(C) ⊆ D
(
(λ0 − A)−(k+1)

)
and the abstract

Cauchy problem (ACP2) has a unique solution for every x ∈ (λ0 − A)−(k+1) R(C)
and y = 0. Then A is a subgenerator of a (local) (2k)-times integrated C-cosine
function (Sk(t))t∈[0,τ).

(iii) Let k ∈ N, λ0 ∈ ρC(A), R(C) ⊆ D((λ0 − A)−(k+1)) and the abstract
Cauchy problem (ACP2) have a unique solution for every y ∈ (λ0 −A)−(k+1) R(C)
and x = 0. Then A is a subgenerator of a (local) (2k+1)-times integrated C-cosine
function (Ck(t))t∈[0,τ).

A careful inspection of the proof of [420, Theorem 2.1] implies the following.

Proposition 2.3.12. Suppose A is a closed operator, k ∈ N0, λ
2
0 ∈ ρC(A)

and R(C) ⊆ D
(
(λ20 − A)−(k+1)

)
. Then A is a subgenerator of a (local, global ex-

ponentially bounded) (2k)-times (resp. (2k+ 1)-times) integrated C-cosine function
(C2k(t))t∈[0,τ) (resp. (C2k+1(t))t∈[0,τ)) iff A is a subgenerator of a (local, global

exponentially bounded)
(
(λ20−A)−kC

)
-regularized cosine (resp.

(
(λ20−A)−(k+1)C

)
-

regularized cosine function) (C0(t))t∈[0,τ), and moreover, the following formulae
hold:

C2k(t)x = (λ20 −A)k
t∫

0

(t− s)2k−1

(2k − 1)!
C0(s)x ds, t ∈ [0, τ), x ∈ E,

C0(t)x =

{
[(−1)k

k∑
i=1

(
k

i

)
λ2i0 (Pi−1hλ0

) ∗0 (Pi−1h−λ0
)] ∗0 C2k

}
(t)x

+ (−1)kC2k(t)x+

k∑
i=1

(−1)k−i
d

dt

[
(Pk−ihλ0) ∗0 (Pk−ih−λ0)

]
(t)(λ20 −A)−kCx,

for any t ∈ [0, τ) and x ∈ E, where Pi(t) = ti

i! , t ∈ [0, τ), 0 6 i 6 k and h±λ0
(t) =

e±λ0t, t ∈ [0, τ).

The following proposition is an analogue of Proposition 2.3.12 for integrated
C-semigroups.

Proposition 2.3.13. Suppose k ∈ N, λ0 ∈ ρC(A) and R(C) ⊆ D
(
(λ0−A)−k

)
.

Then A is a subgenerator of a (local, global exponentially bounded) k-times inte-
grated C-semigroup (Sk(t))t∈[0,τ) iff A is a subgenerator of a (local, global exponen-

tially bounded)
(
(λ0 − A)−kC

)
-regularized semigroup (S0(t))t∈[0,τ). Furthermore,

the following holds:

(76) S0(t)x = (−1)k
[
Sk(t)x+

k∑
i=1

(
k

i

)
λi0

t∫
0

eλ0(t−s) (t− s)i−1

(i− 1)!
Sk(s)x ds

+

k−1∑
i=0

eλ0ttk−1−i

(k − 1 − i)!
(A− λ0)−(i+1)Cx

]
, t ∈ [0, τ), x ∈ E
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Sk(t)x = (λ0 −A)k
t∫

0

(t− s)k−1

(k − 1)!
S0(s)x ds, t ∈ [0, τ), x ∈ E.

Proof. Suppose that A is a subgenerator of a (local) k-times integrated C-
semigroup (Sk(t))t∈[0,τ). Set Aλ0

:= A − λ0I. Then a rescaling result for (local)
integrated C-semigroups (cf. [5, Lemma 3.2], the proof of [216, Theorem 4.9] and
Subsection 2.1.5) implies that Aλ0

is a subgenerator of a (local) k-times integrated
C-semigroup (Sk,λ0

(t))t∈[0,τ), where, for every t ∈ [0, τ) and x ∈ E:

Sk,λ0
(t)x = e−λ0tSk(t)x+

t∫
0

e−λ0s
k∑
i=1

(
k

i

)
λi0

(t− s)i−1

(i− 1)!
Sk(s)x ds.

Define
(77)

S0,λ0
(t)x := (−1)k

[
Sk,λ0

(t)x+

k−1∑
i=0

tk−i−1

(k − i− 1)!
A

−(i+1)
λ0

Cx

]
, t ∈ [0, τ), x ∈ E.

It can be simply verified that Aλ0
is a subgenerator of a (local)

(
(λ0 − A)−kC

)
-

regularized semigroup (S0,λ0
(t))t∈[0,τ). This clearly implies that A is a subgenerator

of a (local)
(
(λ0 −A)−kC

)
-regularized semigroup (S0(t) := eλ0tS0,λ0

(t))t∈[0,τ) and
that (76) holds. The converse statement follows from the formula (77) and an easy
computation. �

Definition 2.3.14. It is said that a function v ∈ C([0, τ) : E) is a K-convoluted
mild solution of (ACP1), resp. (ACP2), at x ∈ E, resp. (x, y) ∈ E×E, if, for every

t ∈ [0, τ),
∫ t
0
v(s) ds ∈ D(A), resp.

∫ t
0
(t − s)v(s) ds ∈ D(A), and A

∫ t
0
v(s) ds =

v(t) − Θ(t)x, t ∈ [0, τ), resp. A
∫ t
0
(t − s)v(s) ds = v(t) − Θ(t)x −

∫ t
0

Θ(s)y ds,
t ∈ [0, τ).

Let C = I. Then it is clear that u ∈ C1([0, τ) : E) ∩ C([0, τ) : [D(A)]),
resp. u ∈ C2([0, τ) : E) ∩ C([0, τ) : [D(A)]), is a (unique) solution of (ΘC), resp.
(ACP2)Θ, on [0, τ) iff v = u′ ∈ C([0, τ) : E), resp. v = u′′ ∈ C([0, τ) : E), is
a (unique) K-convoluted mild solution of (ACP1), resp. (ACP2) on [0, τ). Let A
be a subgenerator of a K-convoluted C-cosine function (CK(t))t∈[0,τ), 0 < τ 6 ∞
and x, y ∈ E. Then v(t) = CK(t)x +

∫ t
0
CK(s)y ds, t ∈ [0, τ) is a K-convoluted

mild solution of (ACP2) at (Cx,Cy) and u(t) =
∫ t
0
(t − s)v(s) ds, t ∈ [0, τ) is

a solution of (ACP2)Θ. If K is a kernel, then the function v(·) is a unique K-
convoluted mild solution of (ACP2) and u(·) is a unique solution of (ACP2)Θ; see
[230, Proposition 4.2] and the proof of [420, Theorem 1.5]. Without any substantial
changes, one obtains the corresponding statements for K-convoluted C-semigroups.
Now we state:

Proposition 2.3.15. Assume that for each x ∈ E there exists a unique K-
convoluted mild solution of (ACP2) at (Cx, 0), 0 < τ 6 ∞. Then A is a subgener-
ator of a K-convoluted C-cosine function on [0, τ).
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Proof. Let t ∈ [0, τ) and x ∈ E. Define CK(t)x := v(t), where v(·) is a unique
K-convoluted mild solution of (ACP2) at (Cx, 0). The uniqueness of mild solutions
implies that (CK(t))t∈[0,τ) is a strongly continuous family of linear operators sat-
isfying (iii) of Definition 2.1.2. The proof of (i) and (ii) of Definition 2.1.2 follows
analogously as in the proof of [420, Theorem 1.5]. For the sake of completeness,
we will prove (i). Fix an x ∈ D(A) and define

CK(t)x :=

t∫
0

(t− s)CK(s)Axds+ Θ(t)Cx, t ∈ [0, τ).

Clearly, the mapping t 7→ CK(t)x belongs to C([0, τ) : E) and, for every t ∈ [0, τ),

A

t∫
0

(t− s)CK(s)x ds = A

t∫
0

(t− s)

[ s∫
0

(s− r)CK(r)Axdr + Θ(s)Cx

]
ds

=

t∫
0

(t− s)A

s∫
0

(s− r)CK(r)Axdr ds+

t∫
0

(t− s)Θ(s)ACxds

=

t∫
0

(t− s)[CK(s)Ax− Θ(s)CAx] ds+

t∫
0

(t− s)Θ(s)ACxds = CK(t)x− Θ(t)Cx.

Using again the uniqueness of K-convoluted mild solutions, one yields CK(t)x =

CK(t)x, t ∈ [0, τ), i.e.,
∫ t
0
(t−s)CK(s)Axds = A

∫ t
0
(t−s)CK(s)x ds for all t ∈ [0, τ).

Differentiate the last equality twice with respect to t to obtain CK(t)x ∈ D(A) and
ACK(t)x = CK(t)Ax, t ∈ [0, τ). It remains to be shown that CK(t) is a bounded
operator for all t ∈ [0, τ). To this end, we will slightly modify the proof of [5,
Proposition 2.3]. Consider the mapping Φ : E → C([0, τ) : [D(A)]) given by

Φ(x)(t) :=

t∫
0

(t− s)CK(s)x ds, t ∈ [0, τ), x ∈ E,

where C([0, τ) : [D(A)]) is a Fréchet space equipped with the sequence of seminorms
(pn)n, where

pn(v) := sup
t∈[0,τ− 1

n ]

∥v(t)∥[D(A)], v ∈ C([0, τ) : [D(A)]), if τ ∈ (0,∞), resp.

pn(v) := sup
t∈[0,n]

∥v(t)∥[D(A)], v ∈ C([0, τ) : [D(A)]), if τ = ∞.

It can be easily seen that Φ is well defined and that Φ is linear. Let us show
that Φ has a closed graph. Without loss of generality, one can assume that τ ∈ R.
Suppose xn → x, and Φ(xn) → f , n → ∞. Choose an integer k ∈ N with k > 1

τ .
Then

sup
t∈[0,τ− 1

k ]

∥∥∥∥∥
t∫

0

(t− s)CK(s)xnds− f(t)

∥∥∥∥∥
[D(A)]

→ 0, n→ ∞.
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Hence,

Af(t) = lim
n→∞

A

t∫
0

(t− s)CK(s)xnds = lim
n→∞

[CK(t)xn − Θ(t)Cxn], t ∈ [0, τ),

and limn→∞ CK(t)xn = Af(t) + Θ(t)Cx, t ∈ [0, τ). Using the dominated conver-
gence theorem, we have

f(t) = lim
n→∞

t∫
0

(t− s)CK(s)xnds =

t∫
0

(t− s)[Af(s) + Θ(s)Cx] ds, t ∈ [0, τ).

Therefore, f(0) = f ′(0) = 0, f ∈ C2([0, τ) : E), Af(t) = f ′′(t) − Θ(t)Cx, t ∈ [0, τ)

and A
∫ t
0
(t − s)v(s) ds = v(t) − Θ(t)Cx, t ∈ [0, τ), where v = f ′′. Hence, v(t) =

CK(t)x, t ∈ [0, τ), f = Φ(x) and, for all sufficiently large n ∈ N there exists cn > 0
such that ∥∥∥∥∥A

t∫
0

(t− s)CK(s)x ds

∥∥∥∥∥ 6 cn∥x∥, x ∈ E, t ∈ [0, τ − 1/n).

Since A
∫ t
0
(t− s)CK(s)x ds = CK(t)x−Θ(t)Cx, x ∈ E, t ∈ [0, τ), one gets CK(t) ∈

L(E), t ∈ [0, τ). �

Corollary 2.3.16. Suppose K is a kernel and 0 < τ 6 ∞. Then the following
statements are equivalent.

(i) (ACP2)Θ is well-posed.
(ii) For every x ∈ E, there exists a unique K-convoluted mild solution of

(ACP2) at (Cx, 0).
(iii) For every x, y ∈ E, there exists a unique K-convoluted mild solution of

(ACP2) at (Cx,Cy).
(iv) A is a subgenerator of a K-convoluted C-cosine function on [0, τ).

Corollary 2.3.17. Suppose K is a kernel and 0 < τ 6 ∞. Then the following
statements are equivalent.

(i) (ΘC) is well-posed.
(ii) For every x ∈ E, there exists a unique K-convoluted mild solution of

(ACP1) at Cx.
(iii) A is a subgenerator of a K-convoluted C-semigroup on [0, τ).

Suppose 0 < τ 6 ∞, (ΘC) is well-posed and define

Lγ(λ) :=

γ∫
0

e−λsS(s) ds, γ ∈ [0, τ), λ ∈ [0,∞),

where SK(·) is given by Proposition 2.3.1. We summarize the basic properties of
the operators Lγ(λ) in the following proposition whose proof is analogous to that
of [275, Proposition 5.1].
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Proposition 2.3.18. Let x ∈ E and γ ∈ [0, τ). Then the following holds:

(i) The function λ → Lγ(λ)x belongs to C∞([0,∞) : E) and there exists
Mγ > 0 such that∥∥∥∥ λn

(n− 1)!

dn−1

dλn−1
Lγ(λ)

∥∥∥∥ 6Mγ , λ > 0, n ∈ N.

(ii) Lγ(λ) commutes with C and A for all λ > 0.
(iii) (λ−A)Lγ(λ)x = −e−λγS(γ)x+

∫ γ
0
e−λsK(s)Cxds, λ > 0.

(iv) Lγ(λ)Lγ(η) = Lγ(η)Lγ(λ), λ > 0, η > 0.

An operator family {Lγ(λ) : γ ∈ [0, τ), λ > 0} is called an asymptotic ΘC-
resolvent for A if there exists a strongly continuous operator family (V (t))t∈[0,τ)

such that the conditions (i), (ii) and (iv) of Proposition 2.3.18 hold and that the
condition (iii) of Proposition 2.3.18 holds with S(γ) replaced by V (γ). Using The-
orem 1.1.13 and the arguments given in the proofs of [275, Theorem 5.2, Corol-
lary 5.3], one can prove the following assertions.

Theorem 2.3.19. Let A be a closed operator and let K be a kernel. As-
sume that A has an asymptotic ΘC-resolvent {Lγ(λ) : γ ∈ [0, τ), λ > 0}. Then(∫ t

0
(t−s)α−1

Γ(α) Θ(s) ds, C
)
is well-posed for all α > 0.

Theorem 2.3.20. Suppose D(A) is dense in E and K is a kernel. Then (ΘC) is
well-posed for A on [0, τ) iff A has an asymptotic ΘC-resolvent {Lγ(λ) : γ ∈ [0, τ),
λ > 0}.

For further information concerning asymptotic C-resolvents, we refer the reader
to [381]–[382], [404] and [421].

Definition 2.3.21. The abstract Cauchy problem (ACP2)Θ is exponentially
well-posed if for every x, y ∈ E there exists a unique solution u(·) of (ACP2)Θ
and if, additionally, for every x, y ∈ E, the solution u(·) satisfies the estimate
∥u(t)∥ 6 Meωt, 0 6 t < τ , for appropriate constants M > 0 and ω ∈ R. The
exponential well-posedness of the problem (ΘC) is defined similarly.

We need an auxiliary lemma whose proof follows exactly in the same way as in
the proof of [355, Lemma 4.1, p. 100].

Lemma 2.3.22. Suppose T > 0, u ∈ C([0, T ] : E) and there exist λ > 0 and

M > 0 such that
∥∥∫ T

0
enλsu(s) ds

∥∥ 6M , n ∈ N. Then u(t) = 0, t ∈ [0, T ].

The following is a generalization of the Ljubich uniqueness theorem.

Theorem 2.3.23. Suppose λ > 0, {nλ : n ∈ N} ⊆ ρC(A) and, for every σ > 0

and x ∈ E, limn→∞
∥(nλ−A)−1Cx∥

enλσ = 0. Then, for every x ∈ E, there exists at most
one solution of the initial value problem

(CP )1 :


u ∈ C1((0,∞) : E) ∩ C([0,∞) : E),

u′(t) = Au(t), t > 0,

u(0) = x.
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Proof. Put λn := nλ, n ∈ N and define, for every n ∈ N, the function zn(·)
by setting zn(t) := (λn−A)−1Cu(t), t > 0, where u(t) is a solution of the problem
(CP )1 at x = 0. Then we have z′n(t) = (λn − A)−1Cu′(t) = (λn − A)−1CAu(t) =

λnzn(t) − Cu(t), t > 0 and zn(0) = 0. This implies zn(t) = −
∫ t
0
eλn(t−s)Cu(s) ds,

t > 0. Since limn→∞
∫ t
t−σ e

λn(t−σ−s)Cu(s) ds = 0, the prescribed assumptions

imply limn→∞
∫ t−σ
0

eλn(t−σ−s)Cu(s) ds = 0 for every t > 0 and σ ∈ (0, t]. Hence,

limn→∞
∫ T
0
eλn(T−s)Cu(s) ds = 0, T > 0 and the proof follows by Lemma 2.3.22.

�
Theorem 2.3.24. (i) Suppose K satisfies (P1), λ0 > max(0, abs(K)) is such

that K̃(nλ0) ̸= 0, n ∈ N, A is a subgenerator of an exponentially bounded, K-
convoluted C-semigroup (SK(t))t>0 and, for every ε > 0,

(78)
1

|K̃(λ)|
= O(eε|λ|), λ→ +∞, K̃(λ) ̸= 0.

Then the abstract Cauchy problem (ΘC) is exponentially well-posed.
(ii) Suppose (ΘC) is exponentially well-posed. Then A is a subgenerator of an

exponentially bounded Θ-convoluted C-semigroup (SΘ(t))t>0.
(iii) Suppose (ACP2)Θ is exponentially well-posed. Then A is a subgenerator

of an exponentially bounded Θ−1-convoluted C-cosine function (CΘ−1(t))t>0.

Proof. It is straightforward to verify that u(t) :=
∫ t
0
SK(s)x ds, t > 0, x ∈ E

is an exponentially bounded solution of (ΘC). Then (78) and Theorem 2.2.2 imply
that, for every σ > 0,

lim
λ→+∞, K̃(λ)̸=0

∥(λ−A)−1C∥
eσλ

= 0.

Now the uniqueness of solutions of (ΘC) at x = 0 follows by the use of Theo-
rem 2.3.23, finishing the proof of (i). Suppose (ΘC) is exponentially well-posed
and define SΘ(t)x := u(t, x), t > 0, x ∈ E, where u(·, x) is a unique solution of
(ΘC). Arguing as before, one yields that (SΘ(t))t>0 is a global Θ-convoluted C-
semigroup with a subgenerator A and that, for every x ∈ E, there exist Mx > 0
and ωx > 0 such that ∥SΘ(t)x∥ 6 Mxe

ωxt, t > 0. Using the uniform exponential
boundedness principle (cf. [5, Proposition 5.4]), it follows that there exist M > 0
and ω > 0 such that ∥SΘ(t)∥ 6 Meωt, t > 0, which completes the proof of (ii).
The proof of (iii) is analogous to that of (ii). �

Recall that the function u(·) is a mild solution of the abstract Cauchy problem

(ACP1), resp. (ACP2), iff the mapping t 7→ u(t), t > 0 is continuous,
∫ t
0
u(s) ds ∈

D(A) and A
∫ t
0
u(s) ds = u(t) − x, t > 0, resp.

∫ t
0
(t − s)u(s) ds ∈ D(A) and

A
∫ t
0
(t − s)u(s) ds = u(t) − x − ty, t > 0. The following remarkable result can be

attributed to van Neerven and Straub [335].

Theorem 2.3.25. (i) Let α > 0 and let A be densely defined and the generator
of an α-times integrated semigroup (Sα(t))t>0 satisfying ∥Sα(t)∥ 6 Meωt, t > 0,
for appropriate constants M > 1 and ω > 0. Then, for every ε > 0, σ > 0 and
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x0 ∈ D((ω + σ − A)α+ε), the abstract Cauchy problem (ACP1) has a unique mild
solution. Moreover, this solution is exponentially bounded and its exponential type
is at most ω.

(ii) Let α > 0 and let A be densely defined and the generator of an α-times
integrated semigroup (Sα(t))t>0 satisfying ∥Sα(t)∥ 6 M(1 + tγ), t > 0, for ap-
propriate constants M > 1 and γ > 0. Then, for every ε > 0, σ > 0 and
x0 ∈ D((σ−A)α+ε), the abstract Cauchy problem (ACP1) has a unique mild solu-
tion. Moreover, this solution is polynomially bounded and its polynomial type is at
most max(α− 1 + ε, γ + ε, 2γ − α+ ε).

The preceding theorem has been essentially utilized by Li and Zheng in [277]:

Theorem 2.3.26. (i) Let α > 0 and let A be densely defined and the generator
of an α-times integrated semigroup (Sα(t))t>0 satisfying ∥Sα(t)∥ 6 Meωt, t > 0,
for appropriate constants M > 1 and ω > 0. Then, for every ε > 0 and σ > 0, A
is the integral generator of an exponentially bounded (ω+ σ−A)−(α+ε)-regularized
semigroup (T (t))t>0 which satisfies that, for every σ′ > σ, there exists M ′ > 1 such

that ∥T (t)∥ 6M ′e(ω+σ
′)t, t > 0.

(ii) Suppose that A is a densely defined closed operator and that there exist
constants M > 1, ω > 0, β > 0 and γ ∈ (0, π2 ) such that ω + Σγ ⊆ ρ(A) and that

∥R(λ :A)∥ 6 M(1 + |λ|)β−1, λ ∈ ω + Σγ . If A generates an exponentially bounded
(ω + σ − A)−α-regularized semigroup for some α > β and σ > 0, then, for every
ε > 0, A generates an exponentially bounded (α+ ε)-times integrated semigroup.

It is worth noting that Theorem 2.3.25 and Theorem 2.3.26 still hold in the
case of non-densely defined generators of fractionally integrated semigroups [233],
which can be applied to non-densely defined convolution operators considered by
Hieber in [149, Section 4]. In such a way, one can prove an extension of [277,
Theorem 3.7] for the operators acting in L∞(Rn) and Cb(Rn).

Theorem 2.3.27. [233] (i) Let α > 0 and let A be the generator of an α-
times integrated cosine function (Cα(t))t>0 satisfying ∥Cα(t)∥ 6 Meωt, t > 0, for
appropriate constants M > 1 and ω > 0. Then, for every ε > 0, σ > 0 and
(x0, y0) ∈ D((−Aω+σ)α+ε+1), the abstract Cauchy problem (ACP2) has a unique

mild solution, where Aω+σ ≡
(

0 I
A−(ω+σ) 0

)
. Moreover, this solution is exponentially

bounded and its exponential type is at most ω. If (x0, y0) ∈ D((−Aω+σ)α+ε+2), the
solution is classical.

(ii) Let α > 0 and let A be the generator of an α-times integrated cosine function
(Cα(t))t>0 satisfying ∥Cα(t)∥ 6 M(1 + tγ), t > 0, for appropriate constants M >
1 and γ > 0. Then, for every ε > 0, σ > 0 and (x0, y0) ∈ D((−Aσ)α+ε+1),
the abstract Cauchy problem (ACP2) has a unique mild solution. Moreover, this
solution is polynomially bounded and its polynomial type is at most

max
(
α+ ε,max(α, γ + 2) + ε, 2 max(α, γ + 2) − (α+ 1) + ε

)
.

If (x0, y0) ∈ D((−Aσ)α+ε+2), the solution is classical.

The following remark can be reformulated in the case of fractionally integrated
semigroups ([233]).
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Remark 2.3.28. Let α ∈ (2n, 2n+ 1) for some n ∈ N0, resp. α ∈ (2n− 1, 2n)
for some n ∈ N. By Proposition 2.3.8, we know that the classical solution of
(ACP2) exists for all (x0, y0) ∈ D(An+2) × D(An+1) = D(A2n+3), resp. for all
(x0, y0) ∈ D(An+1) × D(An+1) = D(A2n+2). It can be proved that the set∪
ε∈(0,⌊α⌋+1−α]D((−Aω+σ)α+ε+2) strictly contains D(A2n+3), respectively the set∪
ε∈(0,⌊α⌋+1−α]D((−Aω+σ)α+ε+2) strictly contains D(A2n+2). The same conclu-

sion holds in the case of mild solutions.

For further information concerning inhomogeneous Cauchy problems and gen-
eralized variation of parameters formula, the reader may consult [14], [128], [186],
[241], [259]-[261], [280], [286], [298] and [381].

2.4. Analytical properties

We start by recalling that Σγ = {λ ∈ C : λ ̸= 0, arg(λ) ∈ (−γ, γ)} (γ ∈ (0, π]).

Definition 2.4.1. Let 0 < α 6 π
2 and let (SK(t))t>0 be a K-convoluted C-

semigroup. Then we say that (SK(t))t>0 is an analytic K-convoluted C-semigroup
of angle α, if there exists an analytic function SK : Σα → L(E) which satisfies

(i) SK(t) = SK(t), t > 0 and
(ii) limz→0, z∈Σγ

SK(z)x = 0 for all γ ∈ (0, α) and x ∈ E.

It is said that (SK(t))t>0 is an exponentially bounded, analytic K-convoluted C-
semigroup, resp. bounded analytic K-convoluted C-semigroup, of angle α, if for
every γ ∈ (0, α), there exist Mγ > 0 and ωγ > 0, resp. ωγ = 0, such that ∥SK(z)∥ 6
Mγe

ωγ Re z, z ∈ Σγ .

Since no confusion seems likely, we also write SK for SK . Plugging K(t) = tr−1

Γ(r) ,

t > 0 in Definition 2.4.1, where r > 0, we obtain the well-known classes of analytic
r-times integrated C-semigroups; an analytic 0-times integrated C-semigroup is
defined to be an analytic C-regularized semigroup. The notion of (exponential)
boundedness of an analytic r-times integrated C-semigroup, r > 0, is understood
in the sense of Definition 2.4.1. The author proved in [224] that, in the case
r ∈ N, the definition of an analytic r-times integrated semigroup is equivalent to
the corresponding one given by R. deLaubenfels in [92].

The following assertion is an extension of [92, Proposition 3.7(a)].

Proposition 2.4.2. Suppose K satisfies (P1), α ∈ (0, π2 ] and A is a subgen-
erator of an exponentially bounded, analytic K-convoluted C-semigroup (SK(t))t>0

of angle α. Suppose, further, that the condition (H) holds, where:
(H): There exist functions c : (−α, α) → C r {0}, ω0 : (−α, α) → [0,∞) and

a family of functions (Kθ)θ∈(−α,α) satisfying (P1) and abs(Kθ) 6 ω0(θ), abs(K)
cos θ 6

ω0(θ),

Φθ :=
{
λ ∈ (ω0(θ),∞) : K̃(λe−iθ) = 0

}
=
{
λ ∈ (ω0(θ),∞) : K̃θ(λ) = 0

}
,(79)

K̃θ(λ)

K̃(λe−iθ)
= c(θ), λ > ω0(θ), λ /∈ Φθ, θ ∈ (−α, α).(80)
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Then, for every θ ∈ (−α, α), the operator eiθA is a subgenerator of an exponentially
bounded, analytic Kθ-convoluted C-semigroup

(
c(θ)SK(teiθ)

)
t>0

of angle α − |θ|.
Furthermore, SK(teiθ)A ⊆ ASK(teiθ), t > 0 and

A

teiθ∫
0

SK(s)x ds = SK(teiθ)x− 1

c(θ)

t∫
0

Kθ(s) dsCx, t > 0, x ∈ E, θ ∈ (−α, α).

Proof. Let θ ∈ (−α, α) and let λ ∈ R be sufficiently large with K̃θ(λ) ̸= 0.
Denote Γθ := {te−iθ : t > 0} and notice that

(
c(θ)SK(teiθ)

)
t>0

is a strongly

continuous, exponentially bounded operator family. Clearly, K̃(λe−iθ) ̸= 0 and:

(81) K̃θ(λ)(λ− eiθA)−1Cx = K̃θ(λ)e−iθ(λe−iθ −A)−1Cx

= e−iθ
K̃θ(λ)

K̃(λe−iθ)

∞∫
0

e−λe
−iθtSK(t)x dt = e−iθc(θ)

∫
Γθ

e−λteiθSK(teiθ)x dt

=

∞∫
0

e−λt
(
c(θ)SK(teiθ)x

)
dt, x ∈ E,

where the last equality in (81) follows from an elementary application of Cauchy
theorem. Invoking Remark 2.2.3 and Definition 2.4.1, we conclude that eiθA is
a subgenerator of an exponentially bounded, analytic Kθ-convoluted C-semigroup(
c(θ)SK(teiθ)

)
t>0

, as required. �

Corollary 2.4.3. Suppose r > 0, α ∈ (0, π2 ], θ ∈ (−α, α) and A is a sub-
generator of an exponentially bounded, analytic r-times integrated C-semigroup
(Sr(t))t>0 of angle α. Then eiθA is a subgenertor of an exponentially bounded,
analytic r-times integrated C-semigroup

(
e−iθrSr(te

iθ)
)
t>0

of angle α − |θ|. Fur-

thermore, Sr(z)A ⊆ ASr(z), z ∈ Σα and A
∫ z
0
Sr(s)x ds = Sr(z)x − zr

Γ(r+1)Cx,

z ∈ Σα, x ∈ E.

The subsequent theorems clarify the main structural properties of exponentially
bounded, analytic K-convoluted C-semigroups.

Theorem 2.4.4. Suppose α ∈ (0, π2 ], K satisfies (P1) and K̃(·) can be analyt-
ically continued to a function g : ω + Σπ

2 +α → C, where ω ∈ [max(0, abs(K)),∞).
Suppose, further, A is a subgenerator of an analytic K-convoluted C-semigroup
(SK(t))t>0 of angle α and

(82) sup
z∈Σγ

∥e−ωzSK(z)∥ <∞ for all γ ∈ (0, α).

Denote by Â the integral generator of (SK(t))t>0 and put

(83) N :=
{
λ ∈ ω + Σπ

2 +α : g(λ) ̸= 0
}
.

Then:

N ⊆ ρC(Â),(84)
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sup
λ∈ N∩ (ω+Σπ

2
+γ1

)

∥∥(λ− ω)g(λ)(λ− Â)−1C
∥∥ <∞ for all γ1 ∈ (0, α)(85)

lim
λ→+∞, K̃(λ) ̸=0

λK̃(λ)(λ−A)−1Cx = 0, x ∈ E and(86)

the mapping λ 7→ (λ− Â)−1C, λ ∈ N is analytic.(87)

Assuming
(H1): (H) holds with c(·), ω0(·), (Kθ)θ∈(−α,α) and abs(Kθ) 6 ω cos θ, θ ∈ (−α, α),

one has (84)–(85) and (87) with Â replaced by A therein.

Proof. By the foregoing, {λ ∈ C: Reλ > ω, K̃(λ) ̸= 0} ⊆ ρC(A) and

K̃(λ)(λ−A)−1Cx =

∞∫
0

e−λtSK(t)x dt, Reλ > ω, K̃(λ) ̸= 0, x ∈ E.

Put q(λ) :=
∫∞
0
e−λtSK(t) dt, Reλ > ω. An application of Theorem 1.1.10 gives

that the function q(·) can be extended to an analytic function q̃ : ω+Σπ
2 +α → L(E)

satisfying supλ∈ω+Σπ
2

+γ
∥(λ− ω)q̃(λ)∥ < ∞ for all γ ∈ (0, α). Further on, N is an

open subset of C and it can be easily seen that every two point in N can be
connected with a C∞ curve lying in N ; in particular, N is an open connected

subset of C. The function F : N → L(E) given by F (λ) := q̃(λ)
g(λ) , λ ∈ N is analytic

and {
λ ∈ C : Reλ > ω, K̃(λ) ̸= 0

}
⊆
{
λ ∈ N ∩ ρC(A) : F (λ) = (λ−A)−1C

}
.

Denote V = {λ ∈ N ∩ ρC(A) : F (λ) = (λ − A)−1C} and suppose µ ∈ ρC(A),
x ∈ D(A) and y ∈ E. Since

F (λ)(λ−A)x = (λ−A)−1C(λ−A)x = Cx, λ ∈ V,(88)

F (λ)Cy = CF (λ)y, λ ∈ V and(89)

F (λ)Cy = (λ−A)−1C2y = (µ−A)−1C2y − (λ− µ)(µ−A)−1CF (λ)y, λ ∈ V,

(90)

the uniqueness theorem for analytic functions (cf. [14, Proposition A2, Proposi-
tion B.5] and Proposition 1.1.14(iii)) implies that (88)–(90) remain true for all
λ ∈ N . Suppose now that (λ− A)x = 0 for some λ ∈ N and x ∈ D(A). Owing to
(88), one gets Cx = 0, x = 0 and the injectiveness of λ−A. By Proposition 2.1.6,

we obtain that the operator λ− Â is also injective. Furthermore,

(λ−A)CF (λ)y = (λ−A)F (λ)Cy

= (λ−A)
[
(µ−A)−1C2y − (λ− µ)(µ−A)−1CF (λ)y

]
= C2y + (λ− µ)

[
(µ−A)−1C2y − CF (λ)y − (λ− µ)(µ−A)−1CF (λ)y

]
,

and thanks to the validity of (90) for all λ ∈ N , one obtains that

(λ−A)CF (λ)y = C2y, λ ∈ N.
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The last equality, injectiveness of C and Proposition 2.1.6(ii) together imply:

λF (λ)y = C−1AC[F (λ)y] + Cy = ÂF (λ)y + Cy, λ ∈ N,

i.e., (λ−Â)F (λ)y = Cy, λ ∈ N . This implies R(C) ⊆ R(λ−Â), λ ∈ N , N ⊆ ρC(Â),

F (λ) = (λ − Â)−1C, λ ∈ N , (84) and (87). The estimate (85) is an immediate
consequence of Theorem 1.1.10. Let x ∈ E be fixed. Then z 7→ SK(z)x, z ∈ Σα
is an analytic function which satisfies the condition (i) quoted in the formulation
of Theorem 1.1.10. Since limt↓0 SK(t)x = 0, an application of Theorem 1.1.11(i)

implies that limλ→+∞ λq(λ) = 0. This gives limλ→+∞, K̃(λ) ̸=0 λK̃(λ)(λ−A)−1Cx =

0, i.e., (86) and the first part of the proof is completed. Suppose now that (H1)
holds. Then abs(Kθ) 6 ω cos θ, θ ∈ (−α, α) and one easily infers that, for every

θ ∈ (−α, α), {λ ∈ C : Reλ > ω cos θ, K̃θ(λ) ̸= 0} ⊆ ρC(eiθA) and that:

(91) K̃θ(λ)e−iθ(λe−iθ −A)−1Cx =

∞∫
0

e−λt
(
c(θ)SK(teiθ)

)
x dt,

for all x ∈ E and λ ∈ C with Reλ > ω cos θ and K̃θ(λ) ̸= 0. Fix a number
θ ∈ (−α, α) and define Gθ : {ω + teiφ : t > 0, φ ∈ (−π

2 − θ, π
2 − θ)} ∩ N → C

by Gθ(λ) := K̃θ(λe
iθ)

g(λ) , λ ∈ D(Gθ(·)). Then it is clear that D(Gθ(·)) is an open,

connected subset of C and that, by (79)–(80), there exists a > 0 such that Φθ,a :=
{te−iθ∩N : t > a} ⊆ D(Gθ(·)) and that Gθ(λ) = c(θ), λ ∈ Φθ,a. By the uniqueness
theorem for analytic functions, one obtains that Gθ(λ) = c(θ), λ ∈ D(Gθ(·)).
Hence, (91) implies {ω + teiφ : t > 0, φ ∈ (−π

2 − θ, π
2 − θ)} ∩ N ⊆ ρC(A),

(92) (z −A)−1Cx =
eiθ

g(z)

∞∫
0

e−ze
iθtSK(teiθ)x dt,

for all z ∈ {ω + teiφ : t > 0, φ ∈ (−(π2 + θ), π
2 − θ)} ∩ N and x ∈ E, and the

mapping z 7→ (z −A)−1C, z ∈ N, arg(z − ω) ∈ (−(π2 + θ), π
2 − θ) is analytic. One

can apply the same argument to e−iθA in order to see that {z ∈ N : arg(z − ω) ∈
(θ− π

2 ,
π
2 +θ)} ⊆ ρC(A) and that the mapping z 7→ (z−A)−1C, z ∈ N, arg(z−ω) ∈

(θ− π
2 , θ+ π

2 ) is analytic. Thereby, {z ∈ N : | arg(z−ω)| < θ+ π
2 } ⊆ ρC(A) and the

mapping z 7→ (z−A)−1C, z ∈ N, | arg(z−ω)| < θ+ π
2 is analytic. This completes

the proof of theorem. �

Theorem 2.4.5. Assume α ∈ (0, π2 ], K satisfies (P1) and ω > max(0, abs(K)).

Suppose A is a closed linear operator with {λ ∈ C : Reλ > ω, K̃(λ) ̸= 0} ⊆ ρC(A)

and the function λ 7→ K̃(λ)(λ − A)−1C, Reλ > ω, K̃(λ) ̸= 0, can be analytically
extended to a function q̃ : ω + Σπ

2 +α → L(E) satisfying

sup
λ∈ω+Σπ

2
+γ

∥∥(λ− ω)q̃(λ)
∥∥ <∞ for all γ ∈ (0, α) and

lim
λ→+∞

λq̃(λ)x = 0, x ∈ E, if D(A) ̸= E.(93)
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Then A is a subgenerator of an exponentially bounded, analytic K-convoluted C-
semigroup of angle α.

Proof. The use of Theorem 1.1.10 implies that there exists an analytic func-
tion SK : Σα → L(E) such that sup

z∈Σγ

∥e−ωzSK(z)∥ <∞ for all γ ∈ (0, α) and

q̃(λ) =

∞∫
0

e−λtSK(t) dt, Reλ > ω.

Let us define SK(0) := 0. Let x ∈ E and γ ∈ (0, α). We will prove that
limz→0, z∈Σγ SK(z)x = 0. Note that the mapping f(z) := e−ωzSK(z)x, z ∈ Σα
is analytic and that supz∈Σγ

∥f(z)∥ < ∞ for all γ ∈ (0, α). By Theorem 1.1.11,

it is enough to show limt↓0 SK(t)x = 0. This is a consequence of the assumption
limλ→+∞ λq̃(λ)x = 0. It follows that (SK(t))t>0 is a strongly continuous, expo-
nentially bounded operator family which satisfies, for every λ ∈ C with Reλ > ω
and K̃(λ) ̸= 0, K̃(λ)(λ−A)−1Cx =

∫∞
0
e−λtSK(t)x dt. Similarly as in the proof of

Theorem 2.2.1, we have that A is a subgenerator of an exponentially bounded, K-
convoluted C-semigroup (SK(t))t>0. Since (SK(t))t>0 verifies the conditions (i) and
(ii), given in Definition 2.4.1, (SK(t))t>0 is an exponentially bounded, analytic K-
convoluted C-semigroup of angle α having A as a subgenerator. Suppose now that
A is densely defined. We will prove that (93) holds. By Theorem 1.1.11 and the first
part of the proof, it suffices to show that limt↓0 SK(t)x = 0. Suppose, for the time

being, x ∈ D(A). Since q̃(λ)x = K̃(λ)(λ − A)−1Cx, λ ∈ C, Reλ > ω, K̃(λ) ̸= 0
we get

L

( t∫
0

SK(s)Axds

)
(λ) =

q̃(λ)

λ
Ax = q̃(λ)x− K̃(λ)

λ
Cx

= L
(
SK(t)x− Θ(t)Cx

)
(λ), λ ∈ C, Reλ > ω, K̃(λ) ̸= 0.

The uniqueness theorem for Laplace transform implies
∫ t
0
SK(s)Axds = SK(t)x

− Θ(t)Cx, t > 0. Therefore, ∥SK(t)x∥ 6 |Θ(t)|Cx + teωt∥Ax∥, t > 0 and
limt↓0 SK(t)x = 0. Combined with the exponential boundedness of SK(·), this
indicates that limt↓0 SK(t)x = 0 for every x ∈ E. �

We need the following useful profiling of C-pseudoresolvents.

Proposition 2.4.6. [98, Proposition 2.6, Remark 2.7, Corollary 2.8] Let Ω ⊆
ρC(A) be open.

(i) The local boundedness of the mapping λ 7→ (λ − A)−1C, λ ∈ Ω implies the
analyticity of the mapping λ 7→ (λ−A)−1C3, λ ∈ Ω.

(ii) Suppose that R(C) is dense in E. Then the local boundedness of the mapping
λ 7→ (λ − A)−1C, λ ∈ Ω implies its analyticity as well as R(C) ⊆ R

(
(λ − A)n

)
,

n ∈ N and

(94)
dn−1

dλn−1
(λ−A)−1C = (−1)n−1(n− 1)!(λ−A)−nC, n ∈ N.
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(iii) The continuity of mapping λ 7→ (λ−A)−1C, λ ∈ Ω implies its analyticity
as well as R(C) ⊆ R((λ−A)n), n ∈ N and (94).

It is checked at once that the function K(t) = tr−1

Γ(r) , t > 0, r > 0 satisfies the

condition (H1) with c(θ) = e−irθ, ω0(θ) = 0 and Kθ(t) = K(t), θ ∈ (−α, α), t >
0. Keeping in mind Theorem 2.4.5, Proposition 2.4.6 and the above remark, one
immediately obtains the proof of subsequent theorem; notice only that, in the case
r = 0, the equality (95) follows from Theorem 1.1.11 and elementary definitions.

Theorem 2.4.7. Suppose r > 0 and α ∈ (0, π2 ]. Then A is a subgenerator of an
exponentially bounded, analytic r-times integrated C-semigroup (Sr(t))t>0 of angle
α iff for every γ ∈ (0, α), there exist Mγ > 0 and ωγ > 0 such that:

ωγ + Σπ
2 +γ ⊆ ρC(A),

∥(λ−A)−1C∥ 6Mγ(1 + |λ|)r−1, λ ∈ ωγ + Σπ
2 +γ ,

the mapping λ 7→ (λ−A)−1C, λ ∈ ωγ + Σπ
2 +γ is analytic (continuous) and

lim
λ→+∞

(λ−A)−1Cx

λr−1
= χ{0}(r)Cx, x ∈ E, if D(A) ̸= E.(95)

Theorem 2.4.8 (The abstract Weierstrass formula). Assume M > 0, β > 0,
|K(t)| 6 Meβt, t > 0 and A is a subgenerator of an exponentially bounded, K-
convoluted C-cosine function (CK(t))t>0. Then A is a subgenerator of an exponen-
tially bounded, analytic K1-convoluted C-semigroup (S(t))t>0 of angle π

2 , where:

K1(t) :=

∞∫
0

se−s
2/4t

2
√
πt3/2

K(s) ds and S(t) :=
1√
πt

∞∫
0

e−s
2/4tCK(s) ds, t > 0.

Proof. We follow the proof of the abstract Weierstrass formula (cf. [14,
p. 220]). Due to Theorem 1.1.7(v), the function K1(·) fulfills (P1), abs(K1) > β2

and K̃1(λ) = K̃
(√
λ
)
, Reλ > β2. Let x ∈ E be fixed. Putting r = s√

t
, and using

the dominated convergence theorem after that, one obtains

(96) S(t)x =

∞∫
0

e−r
2/4

√
π

CK
(
r
√
t
)
x dr → 0, t→ 0 + .

Define S(0) := 0. By (96), (S(t))t>0 is a strongly continuous, exponentially
bounded operator family. Furthermore, one can employ Theorem 2.2.1 and The-

orem 1.1.7(v) to obtain that, for all λ ∈ C with Reλ > β2 and K̃1(λ) ̸= 0, the
following holds:

∞∫
0

e−λtS(t)x dt =

∞∫
0

e−λt
1√
πt

∞∫
0

e−s
2/4tCK(s)x ds dt =

1√
λ

∞∫
0

e−
√
λsCK(s)x ds

=
1√
λ

√
λK̃(

√
λ)(λ−A)−1Cx = K̃1(λ)(λ−A)−1Cx.
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As above, one concludes that (S(t))t>0 is an exponentially bounded K1-convoluted
C-semigroup with a subgenerator A. If Re z > 0, we define S(z) in a natural way:

S(z)x =: 1√
πz

∫∞
0
e−s

2/4zCK(s)x ds. Then S : {z ∈ C : Re z > 0} → L(E) is

analytic, and using the same arguments as in the proof of the classical Weierstrass
formula, one obtains that, for all β ∈ (0, π2 ), there exist Mβ > 0 and ωβ > 0 such

that ∥S(z)∥ 6 Mβe
ωβ |z|, z ∈ Σβ . It remains to be shown that, for every fixed

β ∈ (0, π2 ), limz∈Σβ , z→0 S(z)x = 0. For this, choose an ω2 >
ωβ

cos β . Then the func-

tion z 7→ e−ω2zS(z)x, z ∈ Σβ is analytic and satisfies supz∈Σβ
∥e−ω2zS(z)∥ <

∞. Since limt→0+ e
−ω2tS(t)x = 0, an employment of Theorem 1.1.11 implies

limz∈Σβ , z→0 e
−ω2zS(z)x = 0. The proof is now completed. �

The assumption of previous theorem is satisfied for the function K(t) = tα−1

Γ(α) ,

where α > 1; then K1(t) = tα/2−1

Γ(α/2) . Furthermore, the proof of Theorem 2.4.8 still

work in the singular case α ∈ (0, 1), since in this case, K1(·) again fulfills (P1) as

well as abs(K1) > 0 and K̃1(λ) = K̃
(√
λ
)
, Reλ > 0. Therefore, as an immediate

consequence of the proof of Theorem 2.4.8, we obtain the following corollary:

Corollary 2.4.9. Suppose α > 0 and A is a subgenerator of an exponen-
tially bounded α-times integrated C-cosine function (Cα(t))t>0. Then A is a sub-
generator of an exponentially bounded, analytic (α2 )-times integrated C-semigroup

(Sα/2(t))t>0 of angle π
2 , where Sα/2(t)x := 1√

πt

∫∞
0
e−s

2/4tCα(s)x ds, t > 0, x ∈ E.

The following is Kato’s analyticity criterion for K-convoluted C-semigroups.

Theorem 2.4.10. Suppose α ∈ (0, π2 ], K satisfies (P1), ω > max(0, abs(K)),

there exists an analytic function g : ω + Σπ
2 +α → C such that g(λ) = K̃(λ),

λ ∈ C, Reλ > ω and (H1) holds. Then A is a subgenerator of an analytic K-
convoluted C-semigroup (SK(t))t>0 satisfying (82) iff:

(i) For every θ ∈ (−α, α), eiθA is a subgenerator of a Kθ-convoluted C-
semigroup (Sθ(t))t>0, and

(ii) for every β ∈ (0, α), there exists Mβ > 0 such that∥∥∥ 1

c(θ)
Sθ(t)

∥∥∥ 6Mβe
ωt cos θ, t > 0, θ ∈ (−β, β).

Proof. Suppose A is a subgenerator of an analytic K-convoluted C-semigroup
(SK(t))t>0 satisfying (82). By Proposition 2.4.2, we have that (i) and (ii) hold
with Sθ(t) = c(θ)SK(teiθ), t > 0, θ ∈ (−α, α). To prove the converse statement,
notice that the argumentation given in the final part of the proof of Theorem 2.4.5
implies that (ω + Σπ

2 +α) ∩N ⊆ ρC(A) and that there exists an analytic mapping

G : ω + Σπ
2 +α → L(E) such that G(λ) = g(λ)(λ − A)−1C, λ ∈ (ω + Σπ

2 +α) ∩ N ,
where N is defined by (83). Furthermore, for every θ ∈ (−α, α):

G(λ) = eiθ
∞∫
0

e−λte
iθ
( 1

c(θ)
Sθ(t)

)
dt if arg(λ− ω) ∈

(
− π

2
− θ,

π

2
− θ
)
,(97)
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G(λ) = e−iθ
∞∫
0

e−λte
−iθ
( 1

c(−θ)
S−θ(t)

)
dt if arg(λ− ω) ∈

(
θ − π

2
, θ +

π

2

)
.(98)

Keeping in mind (ii) as well as (97)–(98), we have that, for every β ∈ (0, α),
supλ∈ω+Σπ

2
+β

∥(λ − ω)G(λ)∥ < ∞. By Theorem 1.1.10, one gets the existence

of an analytic mapping SK : Σα → L(E) such that supz∈Σβ
∥e−ωzSK(z)∥ < ∞

for all β ∈ (0, α) and that G(λ) = S̃K(λ) for all λ ∈ (ω,∞). Furthermore, the
uniqueness theorem for Laplace transform implies SK(z) = 1

c(arg(z))Sarg(z)(|z|),
z ∈ Σα, and since c(0) = 1 and K0 = K, it is enough to show that, for every
fixed x ∈ E and β ∈ (0, α), limz∈Σβ , z→0 SK(z)x = 0. To this end, notice that
limt↓0 SK(t)x = limt↓0 S0(t)x = 0 and that Theorem 1.1.11 implies

lim
z∈Σβ , z→0

e−ωzSK(z)x = lim
z∈Σβ , z→0

SK(z)x = 0. �

In the following corollary, we remove any density assumption from [455, The-
orem]:

Corollary 2.4.11. Suppose r > 0, α ∈ (0, π2 ] and ω ∈ [0,∞) if r > 0,
resp. ω ∈ R, if r = 0. Then A is a subgenerator of an analytic r-times integrated
C-semigroup (Sr(t))t>0 of angle α satisfying supλ∈Σβ

∥e−ωzSr(z)∥ < ∞ for all

β ∈ (0, α) iff the following conditions hold:

(i) For every θ ∈ (−α, α), eiθA is a subgenerator of an r-times integrated
C-semigroup (Sθ(t))t>0, and

(ii) for every β ∈ (0, α), there exists Mβ > 0 such that ∥Sθ(t)∥ 6Mβe
ωt cos θ,

t > 0, θ ∈ (−β, β).

The proof of the next generalization of [14, Theorem 3.9.7] and [14, Corol-
lary 3.9.9] follows from Theorem 2.4.5, Theorem 2.4.7 and the proof of [14, Corol-
lary 2.6.1].

Theorem 2.4.12. Suppose α ∈ (0, π2 ), r > 0, ω > 0 and e±iαA are sub-
generators of exponentially bounded r-times integrated C-regularized semigroups
(S±α
r (t))t>0. Then, for every ζ > 0, A is a subgenerator of an exponentially

bounded, analytic (r + ζ)-times integrated C-regularized semigroup (Tr+ζ(t))t>0

of angle α; if A is densely defined, then A is a subgenerator of an exponentially
bounded, analytic r-times integrated C-regularized semigroup (Tr(t))t>0 of angle α.

The following theorem is an extension of [89, Theorem 8.2] and can be applied
to differential operators considered in [82], [89, Section XXIV], [359, Example 2.3]
and [416].

Theorem 2.4.13. Suppose r > 0, θ ∈ (0, π2 ) and −A is a subgenerator of an
exponentially bounded, analytic r-times integrated C-semigroup (Sr(t))t>0 of angle
θ. Then there exists an injective operator C1 ∈ L(E) such that A is a subgenerator
of an entire C1-regularized group in E. Furthermore, if A is densely defined, then
C1 can be chosen such that R(C1) is dense in E.



102 2. CONVOLUTED C-SEMIGROUPS AND COSINE FUNCTIONS

Proof. Let π
2 > ϕ > π

2 − θ and ϕ < αϕ < π
2 . Keeping in mind Theorem 2.4.7,

one can assume that there exist a number d ∈ (0, 1] and an open neighborhood Ωϕ,d
of the region Σϕ ∪ {z ∈ C : |z| 6 d} such that the set {(1 + |λ|)1−r(λ − A)−1C :
λ ∈ Ωϕ,d} is bounded and that the mapping λ 7→ (λ − A)−1Cx, λ ∈ Ωϕ,d is
analytic for every fixed x ∈ E. Denote by Γϕ the boundary of Σϕ ∪ {z ∈ C :
|z| 6 d} and assume that Γϕ is oriented in such a way that Imλ decreases along

Γϕ. Define Tα(z)x := 1
2πi

∫
Γϕ
e−zλ

α

(λ − A)−1Cxdλ, x ∈ E, z ∈ Σπ
2 −αϕ. Then the

argumentation given in the proofs of [394, Proposition 2.3-Proposition 2.8] enables
one to see that Tα(z) is injective for all z ∈ Σπ

2 −αϕ and that there exists nr,α ∈ N
such that limt→0+

Tα(t)x−Cx
t = − 1

2πi

∫
Γϕ
λα−1(λ − A)−1CAxdλ, x ∈ D(Anr,α).

Define, for every z0 ∈ Σπ
2 −αϕ,

Sα,z0(z)x :=
1

2πi

∫
Γϕ

eλze−z0λ
α

(λ−A)−1Cxdλ, x ∈ E, z ∈ C.

Then Sα,z0(z) ∈ L(E) (z0 ∈ Σπ
2 −αϕ, z ∈ C) and the dominated convergence the-

orem implies that, for every z0 ∈ Σπ
2 −αϕ and x ∈ E, Sα,z0(z1 + z2)Tα(z0) =

Sα,z0(z1)Sα,z0(z2), z1, z2 ∈ C and that the mapping z 7→ Sα,z0(z)x, z ∈ C is en-
tire. Now it can be easily seen that, for every z0 ∈ Σπ

2 −αϕ, (Sα,z0(z))z∈C is an
entire Tα(z0)-regularized group with a subgenerator A and the integral generator
Tα(z0)−1ATα(z0) (the last operator equals A provided ρ(A) ̸= ∅). Assume now
A is densely defined. Let z0 ∈ Σπ

2 −αϕ be fixed. We will prove that R(Tα(z0)) is
dense in E by using a slight modification of the proof of [89, Lemma 8.8]. Assume
x∗ ∈ E∗, ⟨x∗, Tα(z0)x⟩ = 0, x ∈ E and denote, for every x ∈ E and z ∈ Σπ

2 −αϕ,

Fα,z,x(ζ) =

⟨
x∗,

1

2πi

∫
Γϕ

λζe−zλ
α

(λ−A)−1Cxdλ

⟩
, Re ζ > 0.

By the dominated convergence theorem,

lim
h→0

∣∣∣⟨x∗, Tα(z + h)x− Tα(z)x

h
+ Fα,z,x(α)

⟩∣∣∣ = 0, x ∈ E

and the convergence is uniform on bounded subsets of E. This implies that the
mapping z 7→ Tα(z)∗x∗, z ∈ Σπ

2 −αϕ is differentiable and that ⟨ ddzTα(z)∗x∗, x⟩ =
−Fα,z,x(α), x ∈ E, z ∈ Σπ

2 −αϕ. By induction, the mapping z 7→ Tα(z)∗x∗,

z ∈ Σπ
2 −αϕ is infinitely differentiable and ⟨ d

k

dzk
Tα(z)∗x∗, x⟩ = (−1)kFα,z,x(kα),

x ∈ E, z ∈ Σπ
2 −αϕ. Since ρC(A) ̸= ∅, A is densely defined and R(C) is dense in

E, it is obvious that the set ((λ−A)−1C)k(D(An)) is dense in E for every k ∈ N0

and n ∈ N. Denote by B a linear operator {(x, y) ∈ E × E : limt→0+
Tα(t)x−Cx

t =
y} and notice that, for every k ∈ N, there exists nα,r,k ∈ N such that ((λ −
A)−1C)nα,r,k(D(Anr,α)) ⊆ D(Bk). One obtains inductively ⟨ d

k

dzk
Tα(z)∗x∗, x⟩ =

⟨x∗, Tα(z)Bkx⟩, x ∈ ((λ − A)−1C)nα,r,k(D(Anr,α)), z ∈ Σπ
2 −αϕ, which implies

( d
k

dzk
Tα(z)∗x∗)z=z0 = 0, k ∈ N0. Choose an arbitrary x∗∗ ∈ E∗∗ and notice that the

preceding equality and the infinite differentiability of the mapping z 7→ Tα(z)∗x∗,
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z ∈ Σπ
2 −αϕ together imply that the mapping z 7→ ⟨x∗∗, Tα(z)∗x∗⟩, z ∈ Σπ

2 −αϕ is an-

alytic and that ( d
k

dzk
⟨x∗∗, Tα(z)∗x∗⟩)z=z0 = ⟨x∗∗, ( d

k

dzk
Tα(z)∗x∗)z=z0⟩ = 0, k ∈ N0.

Therefore, Tα(z)∗x∗ = 0, z ∈ Σπ
2 −αϕ, ⟨x∗, Tα(z)x⟩ = 0, x ∈ E, z ∈ Σπ

2 −αϕ and
x∗ = 0. The proof of theorem is completed. �

It is noteworthy that Definition 2.4.1 is a special case of the following definition
which has been recently introduced in [235]:

Definition 2.4.14. Let 0 < α 6 π
2 and let (R(t))t>0 be an (a, k)-regularized

C-resolvent family. Then it is said that (R(t))t>0 is an analytic (a, k)-regularized
C-resolvent family of angle α, if there exists an analytic function R : Σα → L(E)
which satisfies:

(i) R(t) = R(t), t > 0 and
(ii) limz→0, z∈Σγ

R(z)x = k(0)Cx for all γ ∈ (0, α) and x ∈ E.

It is said that (R(t))t>0 is an exponentially bounded, analytic (a, k)-regularized
C-resolvent family, resp. bounded analytic (a, k)-regularized C-resolvent family, of
angle α, if for every γ ∈ (0, α), there exist Mγ > 0 and ωγ > 0, resp. ωγ = 0, such
that ∥R(z)∥ 6Mγe

ωγ Re z, z ∈ Σγ .

Since no confusion seems likely, we also write R(·) for R(·). The next theorem
can be proved by means of the arguments given in [276, Section 3] and [369,
Chapter 2].

Proposition 2.4.15. Let k(t) and a(t) satisfy (P1), limλ→+∞ λk̃(λ) = k(0) ̸=
0, A is densely bounded, A /∈ L(E) and there exists ω0 > max

(
0, abs(k), abs(a)

)
such that

∫∞
0
e−ωt|a(t)| dt < ∞. Assume that A is a subgenerator of an expo-

nentially bounded, analytic (a, k)-regularized C-resolvent family (R(t))t>0 of angle
α ∈ (0, π2 ] and that there exists ω > ω0 such that

(99) sup
z∈Σγ

∥e−ωzR(z)∥ <∞ for all γ ∈ (0, α).

Then the function ã(λ) can be extended to a meromorphic function defined on the
sector ω + Σπ

2 +α.

It is worthwhile to mention that it is not clear, all assumptions of Propo-
sition 2.4.16 being satisfied, whether A must be a subgenerator of an (a,C)-
regularized resolvent family on [0, τ). Further on, let us notice that the assertions (i)
and (ii) of [369, Theorem 2.2, p. 57] still hold in the case of exponentially bounded,
analytic (a,C)-regularized resolvent families.

The subsequent theorem clarifies the basic analytical properties of (a, k)-regul-
arized C-resolvent families. Notice only that the assertion which naturally corre-
sponds to [276, Lemma 3.7] (cf. also [369, Corollary 2.2, p. 53]) does not seem
attainable in the case of a general (a, k)-regularized C-resolvent family.

Theorem 2.4.16. [235] (i) Suppose α ∈ (0, π2 ], k(t) and a(t) satisfy (P1),

(H5) holds and k̃(λ) can be analytically continued to a function g : ω+ Σπ
2 +α → C,

where ω > max
(
0, abs(k), abs(a)

)
. Suppose, further, that A is a subgenerator of
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an analytic (a, k)-regularized C-resolvent family (R(t))t>0 of angle α and that (99)
holds. Set N :=

{
λ ∈ ω + Σπ

2 +α : g(λ) ̸= 0
}
. Then N is an open connected

subset of C. Assume that there exists an analytic function â : N → C such that
â(λ) = ã(λ), λ ∈ C, Reλ > ω. Then the operator I − â(λ)A is injective for every
λ ∈ N , R(C) ⊆ R

(
I − â(λ)C−1AC

)
for every λ ∈ N1 := {λ ∈ N : â(λ) ̸= 0},

sup
λ∈N1∩(ω+Σπ/2+γ1

)

∥∥(λ− ω)g(λ)(I − â(λ)C−1AC)−1C
∥∥ <∞, γ1 ∈ (0, α),

the mapping λ 7→ (I − â(λ)C−1AC)−1C, λ ∈ N1 is analytic

lim
λ→+∞, k̃(λ)̸=0

λk̃(λ)(I − ã(λ)A)−1Cx = k(0)Cx, x ∈ E.

(ii) Assume k(t) and a(t) satisfy (P1), ω > max(0, abs(k), abs(a)) and α ∈
(0, π2 ]. Assume, further, that A is a closed linear operator and that, for every λ ∈ C
with Reλ > ω and k̃(λ) ̸= 0, we have that the operator I − ã(λ)A is injective and
that R(C) ⊆ R(I−ã(λ)A). If there exists an analytic function q : ω+Σπ

2 +α → L(E)
such that

q(λ) = k̃(λ)(I − ã(λ)A)−1C, λ ∈ C, Reλ > ω, k̃(λ) ̸= 0,(100)

sup
λ∈ω+Σπ/2+γ

∥(λ− ω)q(λ)∥ <∞ for all γ ∈ (0, α),(101)

lim
λ→+∞

λq(λ)x = k(0)Cx, x ∈ E, if D(A) ̸= E,(102)

then A is a subgenerator of an exponentially bounded, analytic (a, k)-regularized
C-resolvent family of angle α.

Example 2.4.17. Let β ∈ (0, 2), α > 0, k(t) = tα

Γ(α+1) and a(t) = tβ−1

Γ(β) . Let A

be densely defined. Then A is a subgenerator of an exponentially bounded, analytic
(a, k)-regularized C-resolvent family of angle γ ∈ (0, π2 ] iff for every δ ∈ (0, γ), there
exist Mδ > 0 and ωδ > 0 such that:(

ωδ + Σπ
2 +δ

)1/β ⊆ ρC(A),∥∥(λβ −A)−1C
∥∥ 6Mδ(1 + |λ|)α−β , λ ∈ (ωδ + Σπ

2 +δ)
1/β and

the mapping λ 7→ (λβ −A)−1C, λ ∈ (ωδ + Σπ
2 +δ)

1/β is analytic (continuous).

The next theorem is an extension of Theorem 1.2.4 and Theorem 2.4.8:

Theorem 2.4.18. [235] (i) Assume k(t) and a(t) satisfy (P1), and there exist
M > 0 and ω > 0 such that |k(t)| 6Meωt, t > 0. Assume, further, that there exist

a number ω′ > ω and a function a1(t) satisfying (P1) and ã1(λ) = ã
(√
λ
)
, λ ∈ C,

Reλ > ω′. Let A be a subgenerator of an exponentially bounded (a, k)-regularized
C-resolvent family (C(t))t>0 and let (H5) hold. Then A is a subgenerator of an
exponentially bounded, analytic (a1, k1)-regularized C-resolvent family (R(t))t>0 of
angle π

2 , where:

k1(t) :=

∞∫
0

e−s
2/4t

√
πt

k(s) ds, t > 0, k1(0) := k(0),(103)
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R(t)x :=

∞∫
0

e−s
2/4t

√
πt

C(s)x ds, t > 0, x ∈ E, R(0) := k(0)C.(104)

(ii) Assume k(t) satisfy (P1), β > 0 and there exist M > 0 and ω > 0 such
that |k(t)| 6 Meωt, t > 0. Let A be a subgenerator of an exponentially bounded(
t2β−1

Γ(2β) , k
)
-regularized C-resolvent family (C(t))t>0 and let (H5) hold. Then A

is a subgenerator of an exponentially bounded, analytic
(
tβ−1

Γ(β) , k1
)
-regularized C-

resolvent family (R(t))t>0 of angle π
2 , where k1(t) and R(t) are defined through

(103)–(104).

Notice that a1(t) =
∫∞
0
s e

−s2/4t

2
√
πt3/2

a(s) ds, t > 0, whenever the function a(t) is

exponentially bounded. Further on, Kato’s analyticity criterion for exponentially

bounded, analytic ( t
α−1

Γ(α) , C)-regularized resolvent families (0 < α < 2) has been

recently proved by Chen and Li in [56]; it seems plausible that the assertion of [56,
Theorem 4.8] (cf. also Theorem 2.4.10, Corollary 2.4.11 and Theorem 2.4.12) can be

reformulated and proved in the case of a general ( t
α−1

Γ(α) , k)-regularized C-resolvent

family. For further information on the interplay between exponentially bounded,

analytic ( t
α−1

Γ(α) ,
tβ

Γ(β+1) )-regularized C-resolvent families (0 < α < 2, β > 0) with

corresponding growth order at zero and exponentially bounded, analytic ( t
α−1

Γ(α) , C)-

regularized resolvent families, we refer the reader to [56, Theorem 4.9] and [224,
Theorem 1.1].

Concerning subordination principle established in Theorem 2.1.27(ixx), we have
the following theorem whose purpose is to improve the angle of analyticity of the
resolvent (Sα(t))t>0 provided that (Sβ(t))t>0 is an exponentially bounded, analytic

( t
β−1

Γ(β) , kβ)-regularized C-resolvent family. We employ the same notation as in the

formulation of Theorem 2.1.27(ixx).

Theorem 2.4.19. Assume (Sβ(t))t>0 is an exponentially bounded, analytic

( t
β−1

Γ(β) , kβ)-regularized C-resolvent family of angle δ ∈ (0, π2 ] and there exist functions

c : (−π
2α,

π
2α) → Cr {0} and ω0 : (−π

2α,
π
2α) → [0,∞) such that

(105) Φθ =
{
λ ∈ (ω0(θ),∞) : k̃β(λe−iθ/β) = 0

}
=
{
λ ∈ (ω0(θ),∞) : k̃β(λ) = 0

}
and

(106) k̃β(λ)/k̃β(λe−iθ/β) = c(θ), λ > ω0(θ), λ /∈ Φθ, θ ∈
(
−π

2
α,
π

2
α
)
.

Assume, further, that there exist a number ω′ > ω and an analytic function k̂β :

ω′ +Σπ
2 +δ → C such that k̂β(λ) = k̃β(λ), Reλ > ω′. Set ν := min( 1

γ (π2 +δ)− π
2 ,

π
2 ),

ϑ := min(min(( 1
γ − 1)π2 , π) + δ

γ , π), ϑs := ϑ if (Sβ(t))t>0 is a bounded, analytic

( t
β−1

Γ(β) , kβ)-regularized C-resolvent family and ϑs := min(min(( 1
γ − 1)π2 ,

π
2 ) + δ

γ , π),

otherwise. Then the mapping t 7→ Sα(t), t > 0 is analytically extendible to the sector
Σϑ and the mapping z 7→ Sα(z)x, z ∈ Σϑs−ε is continuous for every ε ∈ (0, ϑs) and
x ∈ E.
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Proof. Designate N := {λ ∈ ω′ + Σπ
2 +δ : k̂β(λ) ̸= 0}. Then it is obvious

that there exists an analytic function qβ : ω′ + Σπ
2 +δ → L(E) satisfying that

qβ(λ)x = k̃β(λ)(I − λ−βA)−1Cx, Reλ > ω′, k̃β(λ) ̸= 0, x ∈ E. By the proof
of [235, Theorem 2.16], the following holds:

(a) The operator I − λ−βA is injective for all λ ∈ N and R(C) ⊆ R(I −
λ−βC−1AC), λ ∈ N.

(b) For every δ1 ∈ (0, δ), the set {(λ−ω′)qβ(λ) : λ ∈ ω′ +Σπ
2 +δ1} is bounded.

(c) For every x ∈ E, qβ(λ)x = k̂β(λ)(I − λ−βC−1AC)−1Cx, λ ∈ N and
limλ→+∞ λqβ(λ)x = kβ(0)Cx = kα(0)Cx.

Let ε ∈ (0, ν). Put now, for every x ∈ E and for every λ ∈ C such that λγ ∈
ω′ + Σπ

2 +δ, qα(λ)x := λγ−1qβ(λγ)x. Taking into account (a)-(c) and the equality

k̃α(λ) = λ
α
β −1k̃β(λ

α
β ), λ > a, we easily infer that there exists a sufficiently large

number ω′
ε > 0 such that limλ→+∞ λqα(λ)x = kα(0)Cx as well as that the set {(λ−

ω′
ε)qα(λ) : λ ∈ ω′

ε+Σπ
2 +ν−ε} is bounded and that qα(λ)x = k̃α(λ)(I−λ−αA)−1Cx,

Reλ > ω′
ε, k̃α(λ) ̸= 0, x ∈ E. Using Theorem 2.4.16(ii), we get that (Sα(t))t>0 is an

exponentially bounded, analytic ( t
α−1

Γ(α) , kα)-regularized C-resolvent family of angle

ν − ε having A as a subgenerator. By the arbitrariness of ε, A is a subgenerator

of the exponentially bounded, analytic ( t
α−1

Γ(α) , kα)-regularized C-resolvent family

(Sα(t))t>0 of angle ν. Suppose, for the time being, θ ∈ (−βδ, βδ) ∩ (−να, να) and

put Γθ,ζ := {te−i
θ
ζ : t > 0}, ζ > 0. By (105)-(106) we have that, for every x ∈ E

and λ > ω0(θ) with λ /∈ Φθ :

k̃β(λ)(I − λ−βeiθA)−1Cx = k̃β(λ)λβe−iθ((λe−i
θ
β )β −A)−1Cx

=k̃β(λ)λβe−iθ
1

k̃β(λe−i
θ
β )λβe−iθ

∫ ∞

0

e−λe
−i θ

β tSβ(t)x dt

=c(θ)

∫ ∞

0

e−λe
−i θ

β tSβ(t)x dt = c(θ)ei
θ
β

∫
Γθ,β

e−λzSβ(zei
θ
β )x dz

and by Cauchy formula

=

∫ ∞

0

e−λt
(
c(θ)ei

θ
β Sβ(tei

θ
β )x
)
dt.

This implies that eiθA is a subgenerator of an exponentially bounded ( t
β−1

Γ(β) , kβ)-

regularized C-resolvent family (Sβ,θ(t) ≡ c(θ)ei
θ
β Sβ(tei

θ
β ))t>0. By making use of

Theorem 2.1.27(ixx), we get that eiθA is a subgenerator of an exponentially bounded

( t
α−1

Γ(α) , kα)-regularized C-resolvent family (Sα,θ(t))t>0 such that the mapping t 7→
Sα,θ(t), t > 0 can be analytically extended to the sector Σmin(( 1

γ −1)π
2 ,π)

. By (105)-

(106), we obtain that k̃α(λ) = c(θ)ei
θ
α (α

β −1)k̃α(λe−i
θ
α ) ̸= 0, provided λ > ω0(θ)1/γ

and λγ /∈ Φθ. Using this equality and Cauchy formula, we obtain that there exists



2.4. ANALYTICAL PROPERTIES 107

ω′′
θ > ω0(θ)1/γ such that, for every x ∈ E and λ > ω′′

θ with λγ /∈ Φθ :∫ ∞

0

e−λt
(
c(θ)ei

θ
β Sα(tei

θ
α )x

)
dt = c(θ)ei

θ
β e−i

θ
α

∫
Γθ,α

e−λze
−i θ

α Sα(z)x dz

= c(θ)ei
θ
β e−i

θ
α

∫ ∞

0

e−λte
−i θ

α Sα(t)x dt

= c(θ)ei
θ
β e−i

θ
α k̃α(λe−i

θ
α )λαe−iθ(λαe−iθ −A)−1Cx

= c(θ)ei
θ
β e−i

θ
α c(θ)−1k̃α(λ)e−i

θ
α (α

β −1)λαe−iθ(λαe−iθ −A)−1Cx

= k̃α(λ)λα(λα − eiθA)−1Cx.

This, in combination with the obvious equality∫ ∞

0

e−λtSα,θ(t)x dt = k̃α(λ)λα(λα − eiθA)−1Cx, λ > ω′′
θ , k̃α(λ) ̸= 0, x ∈ E

and the uniqueness theorem for Laplace transform, yields:

(107) Sα,θ(t)x = c(θ)ei
θ
β Sα(tei

θ
α )x, t > 0, θ ∈ (−βδ, βδ) ∩ (−να, να), x ∈ E.

Set Ω := {λ1/γ : λ ∈ ω′ + Σπ
2 +δ} and k̂α(λ) := λγ−1k̂β(λγ), λ ∈ Ω. By the

uniqueness theorem for analytic functions we have that, for every θ ∈ (−βδ, βδ)
and for every λ ∈ Ω with λe−i

θ
α ∈ Ω :

(108) k̂α(λ) = c(θ)ei
θ
α (α

β −1)k̂α(λe−i
θ
α ).

The next step is to prove that the assumptions θ1, θ2 ∈ (−βδ, βδ), z ∈ C and

ze−i
θ1
α , ze−i

θ2
α ∈ Σmin(( 1

γ −1)π
2 ,

π
2 ) imply:

(109) e−i
θ1
β c(θ1)−1Sα,θ1(ze−i

θ1
α )x = e−i

θ2
β c(θ2)−1Sα,θ2(ze−i

θ2
α )x, x ∈ E.

By making use of the argument that has been appeared twice in the proof so far,
it follows that there exists ω′′′ > 0 such that:

(110)

∞∫
0

e−λtSα,θj
(
tei arg(ze

−i
θj
α )
)
x dt

= λαe−i arg(ze
−i

θj
α )(1+α)k̃α

(
λe−i arg(ze

−i
θj
α )
)(
λαe−i arg(ze

−i
θj
α )α − eiθjA

)−1
Cx,

provided x ∈ E, λ > ω′′′, k̃α(λe−i arg(ze
−i

θ1
α ))k̃α(λe−i arg(ze

−i
θ2
α )) ̸= 0 and j = 1, 2.

By (108), (110) and an elementary computation, we obtain that

e−i
θ1
β c(θ1)−1

∫ ∞

0

e−λtSα,θ1(tei arg(ze
−i

θ1
α ))x dt

= e−i
θ2
β c(θ2)−1

∫
0

e−λtSα,θ2(tei arg(ze
−i

θ2
α ))x dt, λ > ω′′′, x ∈ E,

which implies (109) by the uniqueness theorem for Laplace transform. In the rem-
nant of the proof, we consider three possible cases.
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Case 1. ( 1
γ − 1)π2 > π. The assertion of theorem in this case trivially follows

from an application of Theorem 2.1.27(ixx).

Case 2. ( 1
γ − 1)π2 ∈ [π2 , π). In this case, ϑ = min(( 1

γ − 1)π2 + min( δγ , ν), π). Let

ε′ ∈ (0, ϑ) be sufficiently small and let x ∈ E. Then there exists θ ∈ (0, βδ)∩(0, να)

such that θ
α > ϑ− ε′

2 − ( 1
γ − 1)π2 . Define, for every z ∈ Σϑ−ε′ ,

Sα(z)x :=

{
Sα(z)x, z ∈ Σ( 1

γ −1)π
2
,

e−i
θ
β c(θ)−1Sα,θ

(
ze−i

θ
α

)
x, z ∈ Σϑ−ε′ r Σ( 1

γ −1)π
2
.

By (107), one can simply prove that the mapping z 7→ Sα(z)x, z ∈ Σϑ−ε′ is an-
alytic, which implies by arbitrariness of ε′ that the mapping t 7→ Sα(t)x, t > 0
can be analytically extended to the sector Σϑ. If (Sβ(t))t>0 is a bounded analytic

( t
β−1

Γ(β) , kβ)-regularized C-resolvent family, then (Sβ,θ(t))t>0 is also bounded. By

Theorem 2.1.27(ixx), the mappings z 7→ Sα,θ(z)x and z 7→ Sα(z)x are contin-
uous on the closure of any proper subsector of Σ( 1

γ −1)π
2
, which implies that the

mapping z 7→ Sα(z)x, z ∈ Σϑ−2ε′ is continuous. Suppose (Sβ(t))t>0 is an exponen-

tially bounded, analytic ( t
β−1

Γ(β) , kβ)-regularized C-resolvent family. Then one can

simply prove that there exists θ′ ∈ (0, βδ) ∩ (0, να) such that θ′

α > δ
γ − ε′

2 and

Sα(z)x = e−i
θ′
β c(θ′)−1Sα,θ′(ze

−i θ′α )x, z ∈ Σϑs−ε′ r Σπ
2 − ε′

2
, which implies by The-

orem 2.1.27(ixx) the continuity of the mapping z 7→ Sα(z)x, z ∈ Σϑs−2ε′ .

Case 3. ( 1
γ − 1)π2 ∈ (0, π2 ). Then ϑ = ϑs = min(( 1

γ − 1)π2 + δ
γ , π). Let

ε′′ ∈ (0, ( 1
γ − 1)π2 ) be sufficiently small and let x ∈ E. Define, for every ζ ∈

[( 1
γ − 1)π2 , ϑ− ε′′) ∪ (−(ϑ− ε′′),−( 1

γ − 1)π2 ]:

εζ =: 1
2 min(( 1

γ − 1)π2 − ε′′ + δ
γ − |ζ|, ( 1

γ − 1)π2 − ε′′, ϑ− ε′′ − |ζ|),
Ωζ := {z ∈ C : z ̸= 0, arg(z) ∈ (ζ − εζ , ζ + εζ)},
θζ := α[|ζ| − (( 1

γ − 1)tπ2 − ε′′) + εζ ],

Sζα(z)x := e−i
θζ
β c(θζ)

−1Sα,θζ (ze−i
θζ
α )x, z ∈ Ωζ and Sζα(0)x := kα(0)Cx.

Notice that, for every ζ ∈ [( 1
γ − 1)π2 , ϑ− ε′′)∪ (−(ϑ− ε′′),−( 1

γ − 1)π2 ], the mapping

z 7→ Sζα(z)x, z ∈ Ωζ is analytic as well as Ωζ ⊆ Σϑ−ε′′ , ze
−i

θζ
α ∈ Σ( 1

γ −1)π
2 −ε′′ ,

z ∈ Ωζ and θζ ∈ (0, βδ). By Theorem 2.1.27(ixx), the mapping z 7→ Sζα(z)x,
z ∈ Ωζ ∪ {0} is continuous provided |ζ| ∈ [( 1

γ − 1)π2 , ϑ − ε′′). Furthermore, there

exist k ∈ N and ζ1, · · ·, ζk ∈ [( 1
γ − 1)π2 , ϑ− ε′′) ∪ (−(ϑ− ε′′),−( 1

γ − 1)π2 ] such that:

(111) Σϑs−2ε′′ ⊆ Σ( 1
γ −1)π

2 −ε′′ ∪ Ωζ1 ∪ · · · ∪ Ωζk .

By (109), one has Sζ1α (z)x = Sζ2α (z)x for all z ∈ Ωζ1 ∩ Ωζ2 and ζ1, ζ2 satisfying
the properties stated above. Assume z ∈ Σ( 1

γ −1)π
2
∩ Ω( 1

γ −1)π
2
. Using the Laplace

transform, Cauchy formula, (108) and (110), we get that Sα(z)x = S
( 1
γ −1)π

2
α (z)x.
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Now it is clear that the mapping t 7→ Sα(t)x, t > 0 admits an analytic extension to
the sector Σϑ. The continuity of mapping z 7→ Sα(z)x, z ∈ Σϑs−2ε′′ follows from
(111) and Theorem 2.1.27(ixx), which completes the proof of theorem. �

2.5. Perturbation theorems

We start this section by stating the following rescaling result for subgenerators
of K-convoluted C-semigroups.

Theorem 2.5.1. Suppose z ∈ C, K and F satisfy (P1), there exists a > 0 such
that

(112)
K̃(λ) − K̃(λ+ z)

K̃(λ+ z)
=

∞∫
0

e−λtF (t) dt, Reλ > a, K̃(λ+ z) ̸= 0,

and A is a subgenerator, resp. the integral generator, of a (local) K-convoluted C-
semigroup (SK(t))t∈[0,τ). Then A−z is a subgenerator, resp. the integral generator,
of a (local) K-convoluted C-semigroup (SK,z(t))t∈[0,τ), where:

(113) SK,z(t) := e−tzSK(t) +

t∫
0

F (t− s)e−zsSK(s) ds, t ∈ [0, τ).

Furthermore, in the case τ = ∞, (SK,z(t))t>0 is exponentially bounded provided
that F and (SK(t))t>0 are exponentially bounded.

Proof. It is clear that (SK,z(t))t∈[0,τ) is a strongly continuous operator family
which commutes with C and A− z. Furthermore,

(A− z)

t∫
0

SK,z(s)x ds = (A− z)

t∫
0

[
e−zsSK(s)x+

s∫
0

F (s− r)e−zrSK(r)x dr

]
ds

= (A− z)

[
e−zt

t∫
0

SK(s)x ds+ z

t∫
0

e−sz
s∫

0

SK(r)x dr ds

]

+ (A− z)

t∫
0

s∫
0

F (s− r)e−zrSK(r)x dr ds

= e−zt
[
SK(t)x− Θ(t)Cx

]
− ze−zt

t∫
0

SK(s)x ds+ z

t∫
0

e−sz
[
SK(s)x− Θ(s)Cx

]
ds

− z2
t∫

0

e−sz
s∫

0

SK(r)x dr ds+ (A− z)

t∫
0

F (t− s)

s∫
0

e−zrSK(r)x dr ds

= e−zt
[
SK(t)x− Θ(t)Cx

]
− ze−zt

t∫
0

SK(s)x ds
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+ z

t∫
0

e−sz
[
SK(s)x− Θ(s)Cx

]
ds− z2

t∫
0

e−sz
s∫

0

SK(r)x dr ds

+

t∫
0

F (t− s)(A− z)

[
e−zs

s∫
0

SK(r)x dr + z

s∫
0

e−zr
r∫

0

SK(v)x dv dr

]
ds

= SK,z(t)x− f1(t) − f2(t)Cx,

where:

f1(t) := ze−zt
t∫

0

SK(s)x ds− z

t∫
0

e−szSK(s)x ds

+ z2
t∫

0

e−sz
s∫

0

SK(r)x dr ds+ z

t∫
0

e−zsF (t− s)

s∫
0

SK(r)x dr ds

− z

t∫
0

F (t− s)

s∫
0

e−zr
[
SK(r)x− Θ(r)Cx

]
dr ds(114)

+ z2
t∫

0

F (t− s)

s∫
0

e−zr
r∫

0

SK(v)x dv dr ds, t ∈ [0, τ)

f2(t) := Θ(t)e−zt + z

t∫
0

e−zsΘ(s) ds

+

t∫
0

F (t− s)e−zsΘ(s) ds−
t∫

0

F (t− s)

s∫
0

e−zrΘ(r) dr ds, t ∈ [0, τ).

Fix a number t ∈ (0, τ) and define afterwards a function S̃K : [0,∞) → L(E) by
setting

S̃K(s) :=

{
SK(s), s ∈ [0, t],

SK(t), s > t.

Clearly, (S̃K(t))t>0 is a strongly continuous operator family and there exist M > 0

and ω ∈ R such that ∥S̃K(t)∥ 6Meωt, t > 0. Define f̃1 : [0,∞) → L(E) by replac-

ing SK(·) in (114) with S̃K(·). Then f̃1(·) extends continuously the function f1(·)
to the whole non-negative real axis, and moreover, f̃1(·) is Laplace transformable.
Using the elementary operational properties of Laplace transforms, one obtains
L
(
f1(t)

)
(λ) = L

(
f2(t)

)
(λ) = 0 for all sufficiently large real numbers λ. An appli-

cation of the uniqueness theorem for the Laplace transform gives that A − z is a
subgenerator of a (local) K-convoluted C-semigroup (SK,z(t))t∈[0,τ). Suppose now

that A is the integral generator of (SK(t))t∈[0,τ). Then one has C−1AC = A and

this implies that C−1(A− z)C = A− z is the integral generator of (SK,z(t))t∈[0,τ).
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Finally, the exponential boundedness of (SK,z(t))t>0 simply follows from (113) and
the exponential boundedness of F and (SK(t))t>0. �

Suppose K = L−1
(pm(λ)
pk(λ)

)
, where pk (pm) is a polynomial of degree k (m)

and k > m. Then the condition (112) holds for a suitable exponentially bounded

function F . Suppose now α > 0 and K(t) = tα−1

Γ(α) , t > 0. Then there exists a

sufficiently large positive real number a such that, for every λ > a,

K̃(λ) − K̃(λ+ z)

K̃(λ+ z)
=
(

1 +
z

λ

)α
− 1 =

∞∑
n=1

(
α

n

)
zn

λn
= L

( ∞∑
n=1

(
α

n

)
zntn−1

(n− 1)!

)
(λ),

where 1α = 1. Since supn∈N |
(
α
n

)
| =: L0 <∞, we obtain∣∣∣∣ ∞∑

n=1

(
α

n

)
zntn−1

(n− 1)!

∣∣∣∣ 6 L0|z|e|z|t, t > 0.

Hence, we have the following.

Theorem 2.5.2. Suppose z ∈ C, α > 0 and A is a subgenerator, resp. the
integral generator, of a (local, global exponentially bounded) α-times integrated C-
semigroup (Sα(t))t∈[0,τ). Then A − z is a subgenerator, resp. the integral gen-
erator, of a (local, global exponentially bounded) α-times integrated C-semigroup
(Sα,z(t))t∈[0,τ), which is given by:

Sα,z(t)x = e−ztSα(t)x+

t∫
0

∞∑
n=1

(
α

n

)
zntn−1

(n− 1)!
e−zsSα(s)x ds, t ∈ [0, τ), x ∈ E.

Theorem 2.5.3. Suppose B ∈ L(E), K is a kernel and satisfies (P1), A
is a subgenerator (the integral generator) of a (local) K-convoluted C-semigroup
(SK(t))t∈[0,τ), BA ⊆ AB, BC = CB and there exists a > 0 such that the following
conditions hold:

(i) For every n ∈ N, there is a function Kn(·) satisfying (P1) and

K̃n(λ) = K̃(λ)
( 1

K̃(·)

)(n)
(λ), λ > a, K̃(λ) ̸= 0.

Put Θn(t) :=
∫ t
0
|Kn(s)| ds, t > 0, n ∈ N.

(ii)
∑∞
n=1 Θn(t) <∞, t > 0.

(iii) The function t 7→ maxs∈[0,t] |Θ(s)|e−at
∑∞
n=1 Θn(t), t > 0 is an element of

the space L1([0,∞) : R).
Then A+B is a subgenerator (the integral generator) of a (local) K-convoluted

C-semigroup (SBK(t))t∈[0,τ), given by

(115) SBK(t) := etBSK(t) +

∞∑
i=1

i∑
n=1

Bi

i!
(−1)n

(
i

n

) t∫
0

Kn(t− s)si−nSK(s) ds.

Furthermore, the following holds:
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(a)
∥∥SBK(t)−etBSK(t)

∥∥ 6 e∥B∥ maxs∈[0,t] ∥SK(s)∥
∑∞
n=1 Θn(t)et∥B∥ for every

t ∈ [0, τ).
(b) Suppose τ = ∞, (SK(t))t>0 is exponentially bounded and there exist con-

stants M > 0 and ω > 0 such that

(116)

∞∑
n=1

Θn(t) 6Meωt, t > 0.

Then (SBK(t))t∈[0,τ) is also exponentially bounded.

Proof. Notice that the commutation of B with C and A implies that the

function u1(·), resp. u2(·), given by u1(t) :=
∫ t
0
SK(s)Bxds, t ∈ [0, τ), resp. u2(t) :=∫ t

0
BSK(s)xds, t ∈ [0, τ), solves the initial value problem

u ∈ C([0, τ) : [D(A)]) ∩ C1([0, τ) : E),

u′(t) = Au(t) + Θ(t)CBx, t ∈ [0, τ),

u(0) = 0.

Since K is a kernel, the preceding problem has at most one solution and one easily
infers that BSK(t)x = SK(t)Bx, t ∈ [0, τ), x ∈ E. Let x ∈ E be fixed. Clearly,∥∥SBK(t) − etBSK(t)

∥∥ 6 max
s∈[0,t]

∥SK(s)∥
∞∑
n=1

Θn(t)

∞∑
i=1

i∑
n=1

∥B∥i

i!

(
i

n

)
ti−n

= max
s∈[0,t]

∥SK(s)∥
∞∑
n=1

Θn(t)

∞∑
i=1

∥B∥i

i!
ti

i∑
n=1

(
i

n

)
t−n

6 max
s∈[0,t]

∥SK(s)∥
∞∑
n=1

Θn(t)

∞∑
i=1

∥B∥i

i!
ti

(t+ 1)i

ti

= e∥B∥ max
s∈[0,t]

∥SK(s)∥
∞∑
n=1

Θn(t)et∥B∥, t ∈ (0, τ),

and this implies (a). The previous computation also shows that (SBK(t))t∈[0,τ) is
a strongly continuous operator family which commutes with A + B and C. Then
the dominated convergence theorem, the closedness of A and integration by parts,
as well as the argumentation used in the estimation of term ∥SBK(t) − etBSK(t)∥,
t ∈ [0, τ), imply:

(A+B)

t∫
0

SBK(s)x ds = (A+B)

t∫
0

esBSK(s)x ds

+

∞∑
i=1

i∑
n=1

Bi

i!
(−1)n

(
i

n

)
(A+B)

t∫
0

s∫
0

Kn(s− r)ri−nSK(r)x dr ds

= etB
[
SK(t)x− Θ(t)Cx

]
+B

t∫
0

esBΘ(s)Cxds
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+

∞∑
i=1

i∑
n=1

Bi

i!
(−1)n

(
i

n

)
(A+B)

t∫
0

Kn(t− s)

s∫
0

ri−nSK(r)x dr ds

= etB
[
SK(t)x− Θ(t)Cx

]
+B

t∫
0

esBΘ(s)Cxds

+

∞∑
i=1

i∑
n=1

Bi

i!
(−1)n

(
i

n

)
(A+B)

×
t∫

0

Kn(t− s)

[
si−n

s∫
0

SK(r)xdr − (i− n)

s∫
0

ri−n−1

r∫
0

SK(v)x dv dr

]
ds

= etB
[
SK(t)x− Θ(t)Cx

]
+B

t∫
0

esBΘ(s)Cxds

+
∞∑
i=1

i∑
n=1

Bi+1

i!
(−1)n

(
i

n

) t∫
0

Kn(t− s)

×

[
si−n

s∫
0

SK(r)x dr − (i− n)

s∫
0

ri−n−1

r∫
0

SK(v)x dv dr

]
ds

+

∞∑
i=1

i∑
n=1

Bi

i!
(−1)n

(
i

n

) t∫
0

Kn(t− s)si−n[SK(s)x− Θ(s)Cx] ds

+

∞∑
i=1

i∑
n=1

Bi

i!
(−1)n

(
i

n

)
(n− i)

t∫
0

Kn(t− s)

s∫
0

ri−n−1[SK(r)x− Θ(r)Cx] dr ds

= SBK(t)x− f1(t) − f2(t)Cx, t ∈ [0, τ),

where:

f1(t) :=

∞∑
i=1

i∑
n=1

Bi+1

i!
(−1)n

(
i

n

) t∫
0

Kn(t− s)

×

[
si−n

s∫
0

SK(r)x dr − (i− n)

s∫
0

ri−n−1

r∫
0

SK(v)x dv dr

]
ds

+

∞∑
i=1

i∑
n=1

Bi

i!
(−1)n

(
i

n

)
(n− i)

t∫
0

Kn(t− s)

s∫
0

ri−n−1SK(r)x dr ds, t ∈ [0, τ)
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f2(t) := etBΘ(t) −B

t∫
0

esBΘ(s) ds

+

∞∑
i=1

i∑
n=1

Bi

i!
(−1)n

(
i

n

) t∫
0

Kn(t− s)si−nΘ(s) ds

+

∞∑
i=1

i∑
n=1

Bi

i!
(−1)n

(
i

n

)
(n− i)

t∫
0

Kn(t− s)

s∫
0

ri−n−1Θ(r) dr ds, t ∈ [0, τ).

Then the partial integration implies:

f1(t) =

∞∑
i=1

i∑
n=1

Bi+1

i!
(−1)n

(
i

n

) t∫
0

Kn(t− s)

s∫
0

ri−n
r∫

0

SK(r)x dr ds

+

∞∑
i=1

i∑
n=1

Bi

i!
(−1)n

(
i

n

)
(n− i)

t∫
0

Kn(t− s)

s∫
0

ri−n−1

r∫
0

SK(r)x dr ds, t ∈ [0, τ).

The coefficient of Bi, i > 2 in the expression of f1(t) equals

i−1∑
n=1

(−1)n
(n− i

i!

(
i

n

)
+

1

(i− 1)!

(
i− 1

n

)) t∫
0

Kn(t−s)
s∫

0

ri−n−1

r∫
0

SK(r)x dr ds = 0,

because n−i
i!

(
i
n

)
+ 1

(i−1)!

(
i−1
n

)
= 0. Thereby, f1(t) = 0, t ∈ [0, τ). On the other

hand, the usual series arguments imply that the coefficient of Bi in the expression
of f2(·) equals Θ(t), t > 0 if i = 0, and

f2,i(t) :=
ti

i!
Θ(t) −

t∫
0

si−1

(i− 1)!
Θ(s) ds+

i∑
n=1

1

i!
(−1)n

(
i

n

) t∫
0

Kn(t− s)si−nΘ(s) ds

+

i∑
n=1

1

i!
(−1)n

(
i

n

)
(n− i)

t∫
0

Kn(t− s)

s∫
0

ri−n−1Θ(r) dr ds, t > 0,

if i > 1. Proceeding as before, one obtains, as a consequence of the condition (iii),
that the function t 7→ f2,i(t), t > 0 satisfies (P1) and that there exists a′′ > 0 such
that

L
(
f2,i(t)

)
(λ) =

1

i!
(−1)i

(K̃(·)
·

)(i)
(λ) − 1

λ

1

(i− 1)!
(−1)i−1

(K̃(·)
·

)(i−1)

(λ)

+

i∑
n=1

1

i!
(−1)i

(
i

n

)
K̃(λ)

( 1

K̃(·)

)(n)
(λ)

1

λ
K̃(i−n)(λ)

=
1

i!
(−1)i

(K̃(·)
·

)(i)
(λ) − 1

λ

1

(i− 1)!
(−1)i−1

(K̃(·)
·

)(i−1)

(λ)
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+
K̃(λ)

λ

(−1)i

i!

(
− 1

K̃(λ)

)
K̃(i)(λ)

=
1

i!
(−1)i

(K̃(·)
·

)(i)
(λ) − 1

λ

1

(i− 1)!
(−1)i−1

(K̃(·)
·

)(i−1)

(λ)

+
(−1)i+1

i!

K̃(i)(λ)

λ
= 0,

for all λ > a′′ with K̃(λ) ̸= 0. This implies f2(t) = Θ(t), t ∈ [0, τ), and conse-
quently, (SBK(t))t∈[0,τ) is a (local) K-convoluted C-semigroup with a subgenerator
A+B. The proof of (b) follows from a simple computation; furthermore, if A is the
integral generator of (SK(t))t∈[0,τ), then C−1AC = A and C−1(A+B)C = A+B

is the integral generator of (SBK(t))t∈[0,τ). This completes the proof of theorem. �

Remark 2.5.4. (i) The assumption (i) of Theorem 2.5.3 is satisfied for the
function K(·) = L−1

(
a

pk(λ)

)
, where pk(·) is a polynomial of degree k ∈ N and

a ∈ C r {0}. Then n0 = k and Kn ≡ 0, n > k + 1. Furthermore, in this case we
have the existence of positive real numbers M and ω such that (116) holds.

(ii) Let n > 1 and let P (·) be an analytic function in the right half plane
{λ ∈ C : Reλ > λ0} for some λ0 > 1. Suppose that P (λ) ̸= 0, Reλ > λ0, and that
there exist C > 0 and r ∈ (1/2, 1] with:

|P (λ)| > C|λ|n, Reλ > λ0,(117) ∣∣∣ di
dλi

P (λ)
∣∣∣ 6 C|λ|−ir|P (λ)|, Reλ > λ0, i ∈ N,(118)

P ′

P
∈ LT (C),(119)

where we denote by LT (C) the set of all Laplace transforms of exponentially
bounded functions. We will prove that the condition (i) of Theorem 2.5.3 holds
for the function K = L−1(1/P ) as well as that there exist M > 0 and ω > 0
such that (116) holds. First, note that the assumption (117) and Theorem 1.1.12
imply that there exists K ∈ C([0,∞) : E) such that K(0) = 0, |K(t)| 6 Meλ0t,
t > 0, for a suitable M > 0, and L(K(t))(λ) = 1/P (λ), Reλ > λ0. Let us
show that P (j)/P is an element of LT (C) for all j ∈ N. This is clear for j = 1
since we have assumed (119). Suppose j > 2. Then the assumption (118) implies
|P (j)(λ)/P (λ)| 6 C|λ|−jr, Reλ > λ0. Since r ∈ (1/2, 1] and j > 2, one can apply
Theorem 1.1.12 in order to see that P (j)/P ∈ LT (C). Put Kj = L−1(P (j)/P ),
j ∈ N. In case j > 2, the proof of Theorem 1.1.12 implies

Kj(t) =
1

2πi

λ̄0+i∞∫
λ̄0−i∞

eµt
P (j)(µ)

P (µ)
dµ, t > 0,

where the last integral is independent of λ̄0 > λ0. Now it is enough to prove that
there exists C1 > 0 such that

(120) |Kj(t)| 6 C1e
λ0t, t > 0, j = 4, 5, . . . .
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Suppose j > 4. Then

|Kj(t)| 6
1

2π
eλ̄0t

∞∫
−∞

C

(λ̄20 + s2)j/4
ds 6 C

2π
eλ̄0t

∞∫
−∞

1

(λ̄20 + s2)
ds, t > 0.

Letting λ̄0 → λ0, we have (120) and the required properties automatically follow.
Notice also that it is possible to assume that r ∈ (0, 1]. If this is the case, one has

to replace (119) by P (j)

P ∈ LT (C), j 6 1/r, j ∈ N. Finally, let us recall that, in the
theory of pseudodifferential operators, a smooth symbol P is called hypoelliptic if
the conditions (117), (118) hold as well as |P (λ)| 6 C|λ|q, λ ∈ C, |λ| > a, for some
q ∈ R, C > 0 and a > 0.

(iii) The conditions (ii) and (iii) quoted in the formulation of Theorem 2.5.3
can be replaced with:

(ii)′
∑∞
i=1 ∥2B∥i(1 + t)i

∑i
n=1

Θn(t)
i! <∞ for all t > 0 and

(iii)′ to every i ∈ N, there exists ai > 0 such that the function

t 7→ max
s∈[0,t]

|Θ(s)|e−ait
i∑

n=1

(2t+ 2)i

i!
Θn(t), t > 0

belongs to the space L1([0,∞) : R).

Then the estimate (a) reduces to

∥∥∥SBK(t) − etBSK(t)
∥∥∥ 6 max

s∈[0,t]
∥SK(s)∥

∞∑
i=1

∥2B∥i(1 + t)i
1

i!

i∑
n=1

Θi(t)

and a corresponding analogue of the assertion (b) can be simply stated. Notice
only that one can prove that f1 ≡ 0 by direct computation of coefficient of Bi,
i ∈ N and that the condition (iii)′ is necessary in our striving to show that, for
every i ∈ N, the function t 7→ f2,i(t), t > 0 satisfies (P1); it is also clear that (iii)′

holds provided that Θ is exponentially bounded and that, for every n ∈ N, Θn

is exponentially bounded, too. Let us prove now that (ii)′ and (iii)′ hold for the
function K = L−1(e−λ

σ

), where σ ∈ (0, 1). First of all, we know that K is an
exponentially bounded, continuous kernel. Let f(λ) = eλ

σ

, λ ∈ Cr (−∞, 0]. Then
the mapping λ 7→ f(λ), λ ∈ Cr (−∞, 0] is analytic, f ′(λ) = σλσ−1f(λ) and

(121) f (n)(λ) =

n−1∑
i=0

(
n− 1

i

)
(·σ−1)(n−i−1)(λ)f (i)(λ), λ ∈ Cr (−∞, 0].

Using (121), one concludes inductively that, for every n ∈ N, there exist real
numbers pi,n(σ), 1 6 i 6 n such that, for every t > 0 :

K̃n(λ) =

n∑
i=1

pi,n(σ)λiσ−n, Reλ > 0 and Θn(t) 6
n∑
i=1

|pi,n(σ)| tn−iσ

Γ(n+ 1 − iσ)
.
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Put p0,n(σ) := 0, n ∈ N. By the foregoing,(
e·

σ
)(n)

(λ) = eλ
σ

n∑
i=1

pi,n(σ)λiσ−n

(
e·

σ
)(n+1)

(λ) = eλ
σ
n+1∑
i=1

(
pi,n(σ)(iσ − n) + σpi−1,n(σ)

)
λiσ−(n+1),

for all n ∈ N and λ ∈ C with Reλ > 0. Hence, p1,n(σ) = σ(σ− 1) · · · (σ− (n− 1)),
n ∈ Nr {1}, pn,n(σ) = σn, n ∈ N and

(122) pi,n+1(σ) = pi,n(σ)(iσ − n) + σpi−1,n(σ), n ∈ N, 2 6 i 6 n.

Clearly, Lσ := supn∈N0
|
(
σ
n

)
| <∞. Applying (122) we infer that for every n > 2 :

n+1∑
i=1

i!|pi,n+1(σ)|

6 |σ(σ − 1) · · · (σ − n)| +

n∑
i=2

[
σi!|pi−1,n(σ)| + n(σ + 1)i!|pi,n(σ)|

]
+ (n+ 1)!

6 Lσ(σ + n)n! + nσ

n−1∑
i=1

i!|pi,n(σ)| + n(σ + 1)

n∑
i=2

i!|pi,n(σ)| + (n+ 1)!.

The preceding inequality implies that, for every ζ > 2 + 4σ + 2Lσ, the following
holds:

(123)

n∑
i=1

i!|pi,n(σ)| 6 ζnn! for all n ∈ N.

Denote by ζσ the minimum of all numbers satisfying (123). Then a simple compu-
tation shows that, for every x ∈ E :

∞∑
i=1

i∑
n=1

∥B∥i

i!

(
i

n

) t∫
0

∥Kn(t− s)si−nSK(s)x∥ ds

6 max
s∈[0,t]

∥SK(s)x∥
∞∑
i=1

∥B∥iζiσ
i!

i∑
n=1

n∑
l=1

ti+1−lσi!

Γ(i+ 2 − lσ)l!
, t > 0.(124)

On the other hand, it is easily verified that:

(125)

i∑
n=1

n∑
l=1

i!

Γ(i+ 2 − lσ)l!
6 i2(2−σ)i, i ∈ N.

Combining (124) and (125), it follows that∥∥∥SBK(t) − etBSK(t)
∥∥∥ 6 t∥B∥ζσ22−σe∥B∥ζσ22−σ

max
s∈[0,t]

∥SK(s)∥, t ∈ [0,min(1, τ))∥∥∥SBK(t) − etBSK(t)
∥∥∥ 6 t2∥B∥ζσ22−σe∥B∥ζσ22−σt max

s∈[0,t]
∥SK(s)∥, t ∈ [1, τ), if τ > 1,
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proving the condition (ii)’; furthermore, if τ = ∞ and (SK(t))t>0 is exponentially
bounded, then (SBK(t))t>0 is also exponentially bounded. These conclusions still

hold for the function K = L−1(e−aλ
σ

), where σ ∈ (0, 1) and a > 0, which will be
of importance in Section 3.5.

Suppose α > 0, K(t) = tα−1

Γ(α) , t > 0, L0 := supn∈N |
(
α
n

)
| and A is a subgen-

erator of a (local, global exponentially bounded) α-times integrated C-semigroup

(Sα(t))t∈[0,τ). Then L0 <∞, Kn(t) = α(α−1)···(α−n+1)
(n−1)! tn−1, Θn(t) = |

(
α
n

)
|tn, t > 0,

n ∈ N and this implies that the condition (iii) of Theorem 2.5.3 does not hold if
α /∈ N. Fortunately, the series appearing in (115) still converges and the estimate
∥SBα (t) − etBSα(t)∥ 6 L0 maxs∈[0,t] ∥Sα(s)∥e2t∥B∥, t ∈ [0, τ) follows similarly; fur-
thermore, the proof of Theorem 2.5.3 can be repeated verbatim. Having in mind
these observations, we are in a position to clarify the following important general-
ization of [227, Corollary 4.5] and [423, Theorem 2.3]:

Theorem 2.5.5. Suppose α > 0, A is a subgenerator, resp. the integral gen-
erator, of a (local, global exponentially bounded) α-times integrated C-semigroup
(Sα(t))t∈[0,τ), B ∈ L(E), BA ⊆ AB and BC = CB. Then A + B is a subgenera-
tor, resp. the integral generator, of a (local, global exponentially bounded) α-times
integrated C-semigroup (SBα (t))t∈[0,τ), which is given by
(126)

SBα (t) := etBSα(t)+

∞∑
i=1

i∑
n=1

Bi

i!
(−1)nn

(
i

n

)(
α

n

) t∫
0

(t−s)n−1si−nSα(s) ds, t ∈ [0, τ).

Notice that the previous formula can be rewritten in the following form:

SBα (t) = etBSα(t) +
∑
i>1

(
α

i

)
(−B)i

t∫
0

(t− s)i−1

(i− 1)!
eBsS(s) ds, t ∈ [0, τ).

The main objective in the following theorem is to clarify a perturbation result
for subgenerators of exponentially bounded, analytic integrated C-semigroups.

Theorem 2.5.6. Suppose r > 0, α ∈ (0, π2 ], A is a subgenerator, resp. the inte-
gral generator, of an exponentially bounded, analytic r-times integrated C-semigroup
(Sr(t))t>0 of angle α; B ∈ L(E), BA ⊆ AB and BC = CB. Then A + B is a
subgenerator, resp. the integral generator, of an exponentially bounded, analytic
r-times integrated C-semigroup (SBα (t))t>0 of angle α, where

(127) SBr (z) := ezBSr(z) +

∞∑
i=1

(
α

i

)
(−B)i

z∫
0

(z − s)i−1

(i− 1)!
eBsSr(s) ds, z ∈ Σα.

Proof. Put R0 := supn∈N |
(
r
n

)
|. Notice that, for every z ∈ Σα, the series

appearing in (127) is absolutely convergent and that, for every γ ∈ (−α, α) such
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that |γ| > arg(z), we have the following:

∥∥SBr (z) − ezBSr(z)
∥∥ 6

∑
i>1

R0∥B∥i
Re z∫
0

|z|i−1

(i− 1)!
e∥B∥|z|Mγe

ωγ Re zds

6 Re zMγR0∥B∥e(2∥B∥+ωγ) Re z.

This implies that (Sr(z))z∈Σα is a strongly continuous operator family and that the
conditions (i) and (ii) given in the formulation of Definition 2.4.1 hold. It remains
to be shown that the mapping

z 7→
∞∑
i=1

(
α

i

)
(−B)i

z∫
0

(z − s)i−1

(i− 1)!
eBsSr(s) ds, z ∈ Σα

is analytic. By standard arguments, the mapping f0(z) =
∫ z
0
e−BsSr(s) ds, z ∈ Σα

is analytic and f ′0(z) = e−BzSr(z), z ∈ Σα. This yields that, for every i ∈ N,

the mapping fi(t) =
∫ z
0

(z−s)i−1

(i−1)! e
BsSr(s) ds, z ∈ Σα is analytic and that f ′i(z) =

fi−1(z), z ∈ Σα. Furthermore, the series in (127) is locally uniformly convergent
since∥∥∥∥∥
(
α

i

)
(−B)i

z∫
0

(z − s)i−1

(i− 1)!
eBsSr(s) ds

∥∥∥∥∥
6Mγ sup

z∈K
|z| ∥B∥ 1

(i− 1)!

(
(∥B∥ sup

z∈K
|z|)i−1

)
e
(∥B∥+ω) sup

z∈K
|z|
,

where K is an arbitrary compact subset of Σα and γ is chosen so that K ⊆ Σγ . An
application of the Weierstrass theorem completes the proof of theorem. �

The following theorem extends the assertion of [423, Theorem 2.4, Theo-
rem 2.5, Corollary 2.6] (cf. also [457, Theorem 2.3]). The proof is omitted since it
follows by the use of argumentation given in [423], [381, Section 10] and [457].

Theorem 2.5.7. Suppose n ∈ N, (S(t))t∈[0,τ) is a (local, global exponentially
bounded) n-times integrated C-semigroup having A as a subgenerator, resp. the

integral generator, B ∈ L(D(A), E), R(B) ⊆ C(D(An)) and BCx = CBx, x ∈
D(A). Then A + B is a subgenerator, resp. the integral generator, of a (local,
global exponentially bounded) n-times integrated C-semigroup (SB(t))t∈[0,τ), which
satisfies the integral equation:

SB(t)x = S(t)x+

t∫
0

dn

dtn
S(t− s)C−1BSB(s)x ds, t ∈ [0, τ), x ∈ E.

Theorem 2.5.8. [263], [242] Suppose α > 0, (C(t))t∈[0,τ) is a (local, global
exponentially bounded) α-times integrated C-cosine function having A as a subgen-

erator, resp. the integral generator, B ∈ L(D(A), E), R(B) ⊆ C
(
D(A⌈α−1

2 ⌉)
)
and
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BCx = CBx, x ∈ D(A). Then A+B is a subgenerator, resp. the integral genera-
tor, of a (local, global exponentially bounded) α-times integrated C-cosine function
(CB(t))t∈[0,τ).

The following theorem mimics an interesting perturbation result of Kaiser and
Weis [171] which can be additionally refined if the Fourier type of the space E
(cf. [14], [171] and [242]) is also taken into consideration.

Theorem 2.5.9. Assume K satisfies (P1), (P2) and there is β ∈ (abs(K),∞)
such that, for every ε > 0, there exists Cε > 0 satisfying:

(128)
1

|K̃(λ)|
6 Cεe

ε|λ|, λ ∈ C, Reλ > β.

(i) Assume A generates an exponentially bounded K-convoluted semigroup
(SK(t))t>0 such that ∥SK(t)∥ 6 M1e

ωt, t > 0 for some M1 > 0 and ω > 0.
Let B be a linear operator such that D(A) ⊆ D(B) and that there exist M ∈ (0, 1)
and λ0 ∈ (max(β, ω),∞) satisfying ∥BR(λ :A)∥ 6M , λ ∈ C, Reλ = λ0. Then, for

every α > 1, the operator A+B generates an exponentially bounded,
(
K ∗0 tα−1

Γ(α)

)
-

convoluted semigroup.
(ii) Assume A generates an exponentially bounded K-convoluted semigroup

(SK(t))t>0 such that ∥SK(t)∥ 6 M1e
ωt, t > 0 for some M1 > 0 and ω > 0.

Let B be a densely defined linear operator such that there exist M ∈ (0, 1) and
λ0 ∈ (max(β, ω),∞) satisfying ∥R(λ : A)Bx∥ 6 M∥x∥, x ∈ D(B), λ ∈ C,
Reλ = λ0. Then there exists a closed extension D of the operator A+B such that,

for every α > 1, the operator D generates an exponentially bounded,
(
K ∗0 tα−1

Γ(α)

)
-

convoluted semigroup. Furthermore, if A and A∗ are densely defined, then D is the
part of the operator (A∗ +B∗)∗ in E.

(iii) Assume A generates an exponentially bounded K-convoluted cosine func-
tion (CK(t))t>0 such that ∥CK(t)∥ 6 M1e

ωt, t > 0 for some M1 > 0 and ω > 0.
Let B be a linear operator such that D(A) ⊆ D(B) and that there exist M > 0 and
λ0 ∈ (max(β, ω),∞) satisfying ∥BR(λ2 :A)∥ 6 M

|λ| , λ ∈ C, Reλ = λ0. Then, for

every α > 1, the operator A+B generates an exponentially bounded,
(
K ∗0 tα−1

Γ(α)

)
-

convoluted cosine function.
(iv) Assume A generates an exponentially bounded K-convoluted cosine func-

tion (CK(t))t>0 such that ∥CK(t)∥ 6 M1e
ωt, t > 0 for some M1 > 0 and ω > 0.

Let B be a densely defined linear operator such that there exist M ∈ (0, 1) and
λ0 ∈ (max(β, ω),∞) satisfying ∥R(λ2 : A)Bx∥ 6 M

|λ|∥x∥, x ∈ D(B), λ ∈ C,
Reλ = λ0. Then there exists a closed extension D of the operator A+B such that,

for every α > 1, the operator D generates an exponentially bounded,
(
K ∗0 tα−1

Γ(α)

)
-

convoluted cosine function. Furthermore, if A and A∗ are densely defined, then D
is the part of the operator (A∗ +B∗)∗ in E.

Proof. We will prove (iii) and (iv). By Theorem 2.2.1(i), {λ2 : λ ∈ C, Reλ >
max(β, ω)} ⊆ ρ(A) and ∥R(λ2 :A)∥ 6 M1

|λ∥K̃(λ)|(Reλ−ω) , λ ∈ C, Reλ > max(β, ω).
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Suppose z ∈ C and Re z > λ0. Put λ = λ0 + i Im z and notice that∥∥BR(z2 : A)
∥∥ =

∥∥BR(λ2 :A)(I + (λ2 − z2)R(z2 : A))
∥∥(129)

6
∥∥BR(λ2 :A)

∥∥(1 + |λ− z∥λ+ z| ∥R(z2 : A)∥
)

6 M

|λ|

(
1 + |λ− z∥λ+ z| M1

|z∥K̃(z)|(Re z − ω)

)
6 M

|λ|

(
1 + |λ+ z| M1

|z∥K̃(z)|

)
6M

( 1

|λ|
+ (1 +

|z|
|λ|

)
M1

|z∥K̃(z)|

)
6M

( 1

λ0
+

M1

|z∥K̃(z)|
+

M1

λ0|K̃(z)|

)
.

Consider now the function h : {z ∈ C : Re z > 0} → C defined by h(z) :=
zBR((z + λ0)2 : A), Re z > 0. Then ∥h(it)∥ 6 M , t ∈ R and, by (128)–(129),
we have that, for every ε > 0, there exists Cε > 0 such that ∥h(z)∥ 6 Cεe

ε|z| for
all z ∈ C with Re z > 0. An application of the Phragmén-Lindelöf type theorems
(cf. for instance [14, Theorem 3.9.8, p. 179]) gives that ∥h(z)∥ 6 M for all z ∈ C
with Re z > 0. This, in turn, implies that there exists a > λ0 such that ∥BR(λ2 :
A)∥ < 1

2 , λ ∈ C, Reλ > a, so that λ2 ∈ ρ(A+B) and∥∥λR(λ2 : A+B)
∥∥ =

∥∥λR(λ2 :A)(I −BR(λ2 :A))−1
∥∥ 6 1

|K̃(λ)|
, λ ∈ C, Reλ > a.

The proof of (iii) completes an application of Theorem 2.2.4(i) while the proof of
(iv) follows from [171, Lemma 3.2] and a similar argumentation. �

The proof of Theorem 2.5.9 immediately implies the following corollary.

Corollary 2.5.10. (i) Assume A generates a cosine function (C(t))t>0 sat-
isfying ∥C(t)∥ 6 Meωt, t > 0 for appropriate M > 0 and ω > 0. If B is a linear
operator such that D(A) ⊆ D(B) and that there exist M ′ > 0 and λ0 ∈ (ω,∞) sat-
isfying ∥BR(λ2 :A)∥ 6 M

|λ| , λ ∈ C, Reλ = λ0, then, for every α > 1, the operator

A+B generates an exponentially bounded, α-times integrated cosine function.
(ii) Assume A generates a cosine function (C(t))t>0 satisfying ∥C(t)∥ 6Meωt,

t > 0 for appropriate M > 0 and ω > 0. Let B be a densely defined linear operator
such that there exist M ′ > 0 and λ0 ∈ (ω,∞) satisfying ∥R(λ2 :A)Bx∥ 6 M

|λ|∥x∥,
x ∈ D(B), λ ∈ C, Reλ = λ0. Then there exists a closed extension D of the operator
A+B such that, for every α > 1, the operator D generates an exponentially bounded,
α-times integrated cosine function. Furthermore, if A and A∗ are densely defined,
then D is the part of the operator (A∗ +B∗)∗ in E.

In the remnant of this section, we consider (multiplicative) perturbations of
subgenerators of (a, k)-regularized C-resolvent families.

Theorem 2.5.11. (i) [288], [235] SupposeM > 0, ω1 > ω > 0, A is a subgener-
ator of an (a, k)-regularized C-resolvent family (R(t))t>0 satisfying ||R(t)|| 6Meωt,

t > 0 and z ∈ C. Let B : D(A) → E be a linear operator such that BCx = CBx,

x ∈ D(A) and that ||C−1Bx|| 6 c||x||, x ∈ D(A) for some c > 0. Let (P1) hold for
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a(t), k(t), b(t) and let ã(λ)/k̃(λ) = b̃(λ) + z, Reλ > ω1, k̃(λ) ̸= 0. Suppose µ > ω1,
γ ∈ [0, 1) and:

D(A) = E and

∞∫
0

e−µt
∥∥∥C−1B

t∫
0

b(t− s)R(s)xds

+ zC−1BR(t)x
∥∥∥dt 6 γ||x||, x ∈ D(A)(130)

or

(131) (R(t))t>0 satisfies (54), D(A) ̸= E and (130) holds for any x ∈ E.

Then the operator A+B is a subgenerator of an (a, k)-regularized C-resolvent family
(RB(t))t>0 satisfying (54) with A replaced by A+B therein. Furthermore,

(132)
∥∥RB(t)

∥∥ 6 M

1 − γ
eµt, t > 0,

RB(t)x = R(t)x+

t∫
0

RB(t− r)
(
C−1B

r∫
0

b(r − s)R(s)xds

+ zC−1BR(t)x
)
dr, t > 0, x ∈ D(A),(133)

and (133) holds for any t > 0 and x ∈ E provided (131).
(ii) [289], [235] Assume C([0,∞)) ∋ a satisfies (P1), (H5) holds, B ∈ L(E),

R(B) ⊆ R(C) and A is a subgenerator of an exponentially bounded (a, a)-regularized
C-resolvent family (R(t))t>0. Assume, further, that there exists ω > 0 such that,
for every h > 0 and for every function f ∈ C([0,∞) : E),

(Ma)
∫ h
0
R(h− s)C−1Bf(s) ds ∈ D(A),

(Mb)
∥∥A ∫ h

0
R(h−s)C−1Bf(s) ds

∥∥ 6 eωtµB(h)∥f∥[0,h], t > 0, where ∥f∥[0,h] :=
supt∈[0,h] ∥f(t)∥, µB(t) : [0,∞) → [0,∞) is continuous, nondecreasing and

satisfies µB(0) = 0, and
(Mc) there exists an injective operator C1 ∈ L(E) such that R(C1) ⊆ R(C) and

C1A(I +B) ⊆ A(I +B)C1.

Then A(I +B) is a subgenerator of an exponentially bounded (a, a)-regularized C1-
resolvent family (S(t))t>0 which satisfies the following integral equation

S(t)x = R(t)C−1C1x+A

t∫
0

R(t− s)C−1BS(s)x ds, t > 0, x ∈ E.

(iii) [289], [235] Let A be a subgenerator of an exponentially bounded, once
integrated C-cosine function and let ω, B and C1 be as in (ii). Then A(I + B) is
a subgenerator of an exponentially bounded, once integrated C1-cosine function.

(iv) [289], [235] Assume that A is a subgenerator of an exponentially bounded
(a, a)-regularized C-resolvent family (R(t))t>0 and that a Banach space (Z, | · |Z)
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satisfies the conditions (Za), (Zb) and (Zc) given in the formulation of [289, Defi-
nition 4.1]. (In particular, these conditions hold for [D(A)].) Then (Ma) and (Mb)
are fulfilled provided C−1B ∈ L(X,Z).

(v) [374], [441] Let B ∈ L(E) and BC = CB.

(v.1) Assume BA is a subgenerator of a (local) (a, k)-regularized C-resolvent
family and (H5) holds for BA and C. Then AB is a subgenerator of an
(a, k)-regularized C-resolvent family.

(v.2) Assume AB is a subgenerator of a (local) (a, k)-regularized C-resolvent
family and (H5) holds for AB and C. Then BA is a subgenerator of an
(a, k)-regularized C-resolvent family, provided ρ(BA) ̸= ∅.

Recall that V. Keyantuo and M. Warma analyzed in [195] the generation of
fractionally integrated cosine functions in Lp-spaces by elliptic differential operators
with variable coefficients. Notice that Theorem 2.5.11(v) can be applied to these
operators (cf. [195, Theorem 2.2 and pp. 78-79] and [374, Example 3.1]).

Assume α > 0, l ∈ N and f(t) is an E-valued function satisfying (P1). Set

Fα(z) :=
∫∞
0
e−z

1/αtf(t)dt, z > max(abs(f), 0)α. Using induction and elementary
operational properties of vector-valued Laplace transform, one can simply prove
that there exist real numbers (cl0,l,α)16l06l, independent of E and f(t), such that:

dl

dzl
Fα(z) =

l∑
l0=1

cl0,l,αz
l0
α −l

∞∫
0

e−z
1/αttl0f(t)dt, z > max(abs(f), 0)α.

Furthermore, cl,l,α = (−1)l

αl , l > 1, c1,l,α = (−1)
α ( 1

α − 1) · · · ( 1
α − (l − 1)), l > 2 and

the following non-linear recursive formula holds:

cl0,l+1,α =
(−1)

α
cl0−1,l,α +

( l0
α

− l
)
cl0,l,α, l0 = 2, · · ·, l.

Then there exists ζ > 1 such that
∑l
l0=1 l0!|cl0,l,α| 6 ζll! for all l ∈ N.

Now we are able to state the following perturbation theorem for abstract time-
fractional equations ([242]).

Theorem 2.5.12. Suppose α > 0, scalar-valued continuous kernels k(t) and

k1(t) satisfy (P1), A is a subgenerator of an exponentially bounded ( t
α−1

Γ(α) , k)-regular-

ized C-resolvent family (R(t))t>0 satisfying

A

∫ t

0

(t− s)α−1

Γ(α)
R(s)x ds = R(t)x− k(t)Cx, t > 0, x ∈ E(134)

sup
t>0

e−ωt∥R(t)∥ <∞ for some ω > max(abs(k), 0).(135)

Let the following conditions hold:

(i) B ∈ L(E), BA ⊆ AB and BC = CB. There exist M > 1, ω′ > 0, ω′′ > 0
and ω′′′ > max(ω + ω′, ω + ω′′, abs(k1)) such that{
λ ∈ C : Reλ > ω′′′, k̃1(λ) ̸= 0

}
⊆
{
λ ∈ C : Reλ > ω′′′, k̃(λ) ̸= 0

}
as well as:
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(ii) For every i, l0, l ∈ N with 1 6 l 6 i and 1 6 l0 6 l, there exists a function
ki,l0,l(t) satisfying (P1) and

L
(
ki,l0,l(t)

)
(λ) = cl0,l,αλ

l0−α(l−1)k̃1(λ)
( 1

zk̃(z1/α)

)(i−l)
z=λα

, Reλ > ω′′′, k̃1(λ) ̸= 0.

(iii) For every i ∈ N0, there exist a constant ci ∈ C and a function ik(t)
satisfying (P1) such that

ci + ĩk(λ) = λαk̃1(λ)
( 1

zk̃(z1/α)

)(i)
z=λα

, Reλ > ω′′′, k̃1(λ) ̸= 0.

(iv)
∑∞
i=0 |ci|

∥B∥i

i! <∞ and
∑∞
i=0

∥B∥i

i!

∫ t
0
|ik(s)|ds 6Meω

′t, t > 0,

(v)
∑∞
i=1

∑i
l=1

∑l
l0=1

∥B∥i

i!

(
i
l

) ∫ t
0
(t− s)l0 |ki,l0,l(s)|ds 6Meω

′t, t > 0,

(vi)
∑∞
i=2

∑i
l=2

∑l−1
l0=1

∥B∥i

i! l
(
i
l

) ∫ t
0
(t− s)l0 |ki−1,l0,l−1(s)|ds 6Meω

′′t, t > 0.

Then the operator A+B is a subgenerator of an exponentially bounded ( t
α−1

Γ(α) , k1)-

regularized C-resolvent family (RB(t))t>0, which is given by the following formula:

RB(t)x :=

∞∑
i=0

(−B)i

i!

[
ciR(t)x+

(
ik ∗R(·)x

)
(t)
]

+

∞∑
i=1

i∑
l=1

l∑
l0=1

(−B)i

i!

(
i

l

)(
ki,l0,l ∗ ·l0R(·)x

)
(t), t > 0, x ∈ E.

Furthermore,

(136)
(
A+B

) t∫
0

(t− s)α−1

Γ(α)
RB(s)x ds = RB(t)x− k1(t)Cx, t > 0, x ∈ E,

supt>0 e
−(ω+ω′)t∥RB(t)∥ <∞ and

(137) RB(t)RB(s) = RB(s)RB(t), t, s > 0.

It is noteworthy that (RB(t))t>0 is a unique ( t
α−1

Γ(α) , k1)-regularized C-resolvent

family with the properties stated in the formulation of Theorem 2.5.12 and that it
is not clear whether there exist functions k(t) and k1(t) such that Theorem 2.5.12
is applicable in the case α ∈ (0, 1); cf. also [36, Example 2.24]. In the following
theorem, we analyze stability of analytical properties under bounded perturbations
described in Theorem 2.5.12 (cf. also Theorem 2.5.3 and Theorem 2.5.6).

Theorem 2.5.13. [242] Consider the situation of Theorem 2.5.12. Assume ad-

ditionally that (R(t))t>0 is an exponentially bounded, analytic ( t
α−1

Γ(α) , k)-regularized

C-resolvent family of angle β ∈ (0, π2 ] and that, for every γ ∈ (0, β), the set

{e−ωγ Re zR(z) : z ∈ Σγ} is bounded for some ωγ > 0. Let ε > 0 be such that,
for every γ ∈ (0, β), there exist ωγ,1 > max(sup{abs(ik) : i > 1}, ωγ) and ωγ,2 >
max(sup{abs(ki,l0,l) : 1 6 l 6 i, 1 6 l0 6 l}, ωγ + ε) with the following properties:
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(i) For every i ∈ N0, the function λ 7→ ĩk(λ), λ > ωγ,1 can be analytically
extended to the sector ωγ,1 + Σπ

2 +γ and the following holds:

∞∑
i=0

∥B∥i

i!
sup

λ∈ωγ,1+Σπ
2

+γ

∣∣
ĩk(λ)

∣∣ <∞.

(ii) For every i, l0, l ∈ N with 1 6 l 6 i and 1 6 l0 6 l, the function λ 7→
L(ki,l0,l(t))(λ), λ > ωγ,2 can be analytically extended to the sector ωγ,2 +
Σπ

2 +γ and the following holds:

∞∑
i=1

i∑
l=1

l∑
l0=1

∥B∥i

i!

(
i

l

)
l0!√

2πl0(ε cos γ)l0
sup

λ∈ωγ,2+Σπ
2

+γ

∣∣L(ki,l0,l(t))(λ)
∣∣ <∞.

Then (RB(t))t>0 is an exponentially bounded, analytic ( t
α−1

Γ(α) , k1)-regularized C-

resolvent family of angle β.

The assumptions of Theorem 2.5.12 and Theorem 2.5.13 are satisfied provided
α > 1 and k(t) = k1(t) = tr

Γ(r+1) , where r > 0. In this case, ζα = 1,

l∑
l0=1

l0!|cl0,l,α| =
1

α

( 1

α
+ 1
)
· · ·
( 1

α
+ (l − 1)

)
for all l ∈ N,

c0 = 1, k0(t) = 0, ci = 0, i > 1,

ik(t) =
(r + 1

α
− 1
)
· · ·
(r + 1

α
− i
) tαi−1

Γ(αi)
, t > 0, i > 1

and, for every i, l0, l ∈ N with 1 6 l 6 i and 1 6 l0 6 l,

ki,l0,l(t) = cl0,l,α

(r + 1

α
− 1
)
· · ·
(r + 1

α
− (i− l)

) tαi−l0−1

Γ(αi− l0)
, t > 0,

where ( r+1
α − 1) · · · ( r+1

α − (i− i)) := 1.

Corollary 2.5.14. Suppose α > 1, ω > 0, r > 0, A is a subgenerator of an

r-times integrated ( t
α−1

Γ(α) , C)-regularized resolvent family (R(t))t>0 satisfying (134)-

(135) for some ω > 0. Let B ∈ L(E) satisfy the condition (i) quoted in the
formulation of Theorem 2.5.12. Then A + B is a subgenerator of an exponen-

tially bounded r-times integrated ( t
α−1

Γ(α) , C)-regularized resolvent family (RB(t))t>0

satisfying (136)-(137) and supt>0
1

(t+1)e
−(ω+∥B∥1/α)t∥RB(t)∥ < ∞. Furthermore,

(RB(t))t>0 is an exponentially bounded, analytic r-times integrated ( t
α−1

Γ(α) , C)-reg-

ularized resolvent family of angle β ∈ (0, π2 ] provided that (R(t))t>0 is.

Assume now α > 1, ϱ > 0, σ ∈ (0, 1) and k(t) = k1(t) = L−1
(
λ−αe−ϱλ

σ)
(t),

t > 0. Then, for every l ∈ N, there exist real numbers (pm,l,α,ϱ,σ)16m6l such that,
for every l ∈ N, p1,l,α,ϱ,σ = ϱσα (σα − 1) · · · (σα − (l − 1)), pl,l,α,ϱ,σ = (ϱσα )l, and that
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the following holds:

dl

dzl

( 1

zk̃(z1/α)

)
=

dl

dzl
eϱz

σ/α

= eϱz
σ/α

l∑
m=1

pm,l,α,ϱ,σz
m σ

α−l, z > 0

and

(138) pm,l+1,α,ϱ,σ = ϱ
σ

α
pm−1,l,α,ϱ,σ +

(
m
σ

α
− l
)
pm,l,α,ϱ,σ, 2 6 m 6 l.

This implies c0 = 1, k0(t) = 0, ci = 0, i > 1,

ik(t) =

i∑
m=1

pm,i,α,ϱ,σ
tαi−mσ−1

Γ(αi−mσ)
, t > 0, i > 1,

ki,l0,l(t) = cl0,l,α

i−l∑
m=1

pm,i−l,α,ϱ,σ
tαi−l0−mσ−1

Γ(αi− l0 −mσ)
, t > 0, 1 6 l < i, 1 6 l0 6 l

ki,l0,i(t) = cl0,i,α
tαi−l0−1

Γ(αi− l0)
, t > 0, 1 6 l0 6 i.

In view of (138), we easily obtain the existence of a constant ζα,ϱ,σ > 1 such that

(139)

l∑
m=1

m!|pm,l,α,ϱ,σ| 6 ζlα,ϱ,σl! for all l ∈ N.

In what follows, we assume that ζα,ϱ,σ > 1 is minimal with respect to (139).

Corollary 2.5.15. Let us suppose that α > 1, ω > 0, ϱ > 0, σ ∈ (0, 1), k(t) =
L−1

(
λ−αe−ϱλ

σ)
(t), t > 0 and let A be a subgenerator of an exponentially bounded

( t
α−1

Γ(α) , k)-regularized C-resolvent family (R(t))t>0 satisfying (134)–(135). Let B ∈
L(E) satisfy the condition (i) quoted in the formulation of Theorem 2.5.12. Then

A+B is a subgenerator of an exponentially bounded ( t
α−1

Γ(α) , k)-regularized C-resolvent

family (RB(t))t>0 satisfying (136)-(137) and supt>0 e
−(ω+(∥B∥ζα,ϱ,σ)

1/α+ε)t∥RB(t)∥
< ∞ for every ε > 0. Furthermore, (RB(t))t>0 is an exponentially bounded,

analytic ( t
α−1

Γ(α) , k)-regularized C-resolvent family of angle β ∈ (0, π2 ] provided that

(R(t))t>0 is.

One can simply prove that A is the integral generator of an exponential distri-
bution cosine function iff A is the integral generator of an exponentially bounded
α-times integrated cosine function for some α > 0, and that there exists a tempered
ultradistribution fundamental sine solution for a closed linear operator A iff A is the

integral generator of a global exponentially bounded L−1
(
λ−1e−ϱλ

1/s)
-convoluted

cosine function for some (for every) ϱ > 0; cf. Section 3.4 and Section 3.5 for more
details. By Corollary 2.5.14–Corollary 2.5.15, we obtain that the classes of expo-
nential distribution cosine functions and tempered ultradistribution fundamental
sine solutions of Beurling (Roumieu) class persist under bounded commuting per-
turbations. Finally, it seems to be really difficult to prove an analogue of Theorem

2.5.12 in the context of local ( t
α−1

Γ(α) , k)-regularized C-resolvent families. By reason
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of that, it is not clear whether the classes of distribution cosine functions and ul-
tradistribution fundamental sine solutions of Beurling (Roumieu) class retain the
property stated above.

2.6. Convoluted C-groups

We introduce the class of K-convoluted C-groups as follows.

Definition 2.6.1. Let A and B be closed operators. A strongly continuous
operator family (SK(t))t∈(−τ,τ) is called a (local, if τ < ∞) K-convoluted C-group
with a subgenerator A if:

(i)
(
SK,+(t) := SK(t)

)
t∈[0,τ)

, resp.
(
SK,−(t) := SK(−t)

)
t∈[0,τ)

, is a (local)

K-convoluted C-semigroup with a subgenerator A, resp. B, and
(ii) for every t, s ∈ (−τ, τ) with t < 0 < s and x ∈ E:

SK(t)SK(s)x = SK(s)SK(t)x

=


s∫

t+s

K(r − t− s)SK(r)Cxdr +
0∫
t

K(t+ s− r)SK(r)Cxdr, t+ s > 0,

t+s∫
t

K(t+ s− r)SK(r)Cxdr +
s∫
0

K(r − t− s)SK(r)Cxdr, t+ s < 0.

It is said that (SK(t))t∈R is exponentially bounded if there exist M > 0 and ω > 0

such that ∥SK(t)∥ 6 Meω|t|, t ∈ R. A closed linear operator Â is the integral

generator of (SK(t))t∈(−τ,τ) if Â is the integral generator of (SK(t))t∈[0,τ).

Plugging K(t) = tα−1

Γ(α) , t ∈ [0, τ) in Definition 2.6.1, where α > 0, we ob-

tain the class of α-times integrated C-groups (cf. also [137, Definition 3.6], [220,
Definition 4.1] and [315, Definition 5]).

Suppose (SK(t))t∈(−τ,τ) is a (local) K-convoluted C-group. As before, ℘(SK)
designates the set of all subgenerators of (SK(t))t∈(−τ,τ), i.e., ℘(SK) = ℘(SK,+);
then one can simply construct a global exponentially bounded, K-convoluted C-
group (SK(t))t∈R with the continuum many subgenerators.

The proof of the next proposition is omitted.

Proposition 2.6.2. Suppose (SK(t))t∈(−τ,τ) is a (local) K-convoluted C-group

and A ∈ ℘(SK). Put ŠK(t) := SK(−t), t ∈ (−τ, τ). Then (ŠK(t))t∈(−τ,τ) is a

K-convoluted C-group, B ∈ ℘(ŠK) and the integral generator of (ŠK(t))t∈(−τ,τ)
coincides with that of (SK,−(t))t∈[0,τ).

Proposition 2.6.3. Suppose τ ∈ (0,∞], K1 ∈ L1
loc([0, τ)), Â is the integral

generator of a K-convoluted C-group (SK(t))t∈(−τ,τ), A ∈ ℘(SK) and K ∗0 K1 ̸=
0 in L1

loc([0, τ)). Put SK∗0K1(t)x :=
∫ t
0
K1(t − s)SK(s)x ds, t ∈ [0, τ), x ∈

E and SK∗0K1
(t)x :=

∫ −t
0

K1(−t − s)SK(−s)x ds, t ∈ (−τ, 0), x ∈ E. Then
(SK∗0K1(t))t∈(−τ,τ) is a (K ∗0 K1)-convoluted C-group, A ∈ ℘(SK∗0K1) and the

integral generator of (SK∗0K1
(t))t∈(−τ,τ) is Â.
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Proof. It is clear that(
SK∗0K1,+(t) := SK∗0K1

(t)
)
t∈[0,τ)

and
(
SK∗0K1,−(t) := SK∗0K1

(−t)
)
t∈[0,τ)

are (K ∗0 K1)-convoluted C-semigroups whose integral generators are Â and B̂,
respectively. Furthermore, A ∈ ℘(SK∗0K1,+), B ∈ ℘(SK∗0K1,−) and

SK∗0K1(t)SK∗0K1(s) = SK∗0K1(s)SK∗0K1(t), −τ < t < 0 < s < τ.

So, it suffices to prove the composition property for SK∗0K1
(t)SK∗0K1

(s), −τ < t <
0 < s < τ . This will be done only in the case t+ s > 0. Fix an x ∈ E and observe
that:

SK∗0K1
(t)SK∗0K1

(s)x =

−t∫
0

K1(−t− v)SK(−v)SK∗0K1
(s)x dv

=

−t∫
0

s∫
0

K1(−t− v)K1(s− u)SK(−v)SK(u)x du dv

=

−t∫
0

K1(−t− v)

[ v∫
0

K1(s− u)SK(−v)SK(u)x du

]
dv

+

−t∫
0

K1(−t− v)

[ s∫
v

K1(s− u)SK(−v)SK(u)x du

]
dv

=

−t∫
0

K1(−t− v)

v∫
0

K1(s− u)

[ u−v∫
−v

K(u− v − r)SK(r)Cxdr +

u∫
0

K(r − u+ v)SK(r)Cxdr

]
du dv

+

−t∫
0

K1(−t− v)

s∫
v

K1(s− u)

[ u∫
u−v

K(r − u+ v)SK(r)Cxdr +

0∫
−v

K(u− v − r)SK(r)Cxdr

]
du dv

= S1 + S2,

where

S1 :=

−t∫
0

K1(−t− v)

v∫
0

K1(s− u)

u∫
0

K(r − u+ v)SK(r)Cxdr du dv
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+

−t∫
0

K1(−t− v)

s∫
v

K1(s− u)

u∫
u−v

K(r − u+ v)SK(r)Cxdr du dv

S2 :=

−t∫
0

K1(−t− v)

v∫
0

K1(s− u)

u−v∫
−v

K(u− v − r)SK(r)Cxdr du dv

+

−t∫
0

K1(−t− v)

s∫
v

K1(s− u)

0∫
−v

K(u− v − r)SK(r)Cxdr du dv.

The proof is completed if one shows:

S1 =

s∫
t+s

(K ∗0 K1)(ξ − t− s)

ξ∫
0

K1(ξ − z)SK(z)Cxdz dξ,(140)

S2 =

0∫
t

(K ∗0 K1)(t+ s− ξ)

−ξ∫
0

K1(−ξ − z)SK(−z)Cxdz dξ.(141)

To prove (140), one can use the equality

s∫
t+s

(K ∗0 K1)(ξ − t− s)

ξ∫
0

K1(ξ − z)SK(z)Cxdz dξ

=

s∫
t+s

[ ξ−t−s∫
0

K1(ξ − t− s− σ)K(σ)dσ

] ξ∫
0

K1(ξ − z)SK(z)Cxdz dξ

and the substitution of variables v = s+ σ − ξ, u = s+ z − ξ and r = z; the proof
of (141) can be obtained along the same lines. �

Proposition 2.6.4. Suppose Â is the integral generator of a (local) K-con-

voluted C-group (SK(t))t∈(−τ,τ), A ∈ ℘(SK), B ∈ ℘(SK,−) and B̂ is the integral
generator of (SK,−(t))t∈[0,τ). Then:

(i) ÂSK(t)x = SK(t)Ax, x ∈ D(A), t ∈ (−τ, 0] and

B̂SK(s)x = SK(s)Bx, x ∈ D(B), s ∈ [0, τ).

(ii) SK(t)Â ⊆ ÂSK(t), t ∈ (−τ, 0] and SK(s)B̂ ⊆ B̂SK(s), s ∈ [0, τ).

Proof. Put Θ1(t) =
∫ t
0

Θ(s) ds, t ∈ [0, τ), SΘ1(t)x =
∫ t
0
(t − s)SK(s)x ds, t ∈

[0, τ), x ∈ E and SΘ1
(t)x =

∫ −t
0

(−t−s)SK(−s)x ds, t ∈ (−τ, 0), x ∈ E. By Propo-
sition 2.6.3, (SΘ1(t))t∈(−τ,τ) is a Θ1-convoluted C-group, A ∈ ℘(SΘ1), the integral

generator of (SΘ1
(t))t∈(−τ,τ) is Â and the integral generator of (SΘ1,−(t))t∈[0,τ) is
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B̂. Clearly,

SΘ1
(t)A

s∫
0

SΘ1
(r)x dr = SΘ1

(t)

(
SΘ1

(s)x−
s∫

0

Θ1(r) drCx

)

= SΘ1
(s)SΘ1

(t)x−
s∫

0

Θ1(r) drCSΘ1
(t)x

= A

s∫
0

SΘ1
(r)SΘ1

(t)x dr +

s∫
0

Θ1(r) drCSΘ1
(t)x−

s∫
0

Θ1(r) drCSΘ1
(t)x

= A

s∫
0

SΘ1(r)SΘ1(t)x dr = ASΘ1(t)

s∫
0

SΘ1(r)x dr, t ∈ (−τ, 0), s ∈ [0, τ), x ∈ E.

Suppose now x ∈ D(A). Then we obtain

SΘ1
(t)

s∫
0

SΘ1
(r)Axdr = ASΘ1

(t)

s∫
0

SΘ1
(r)x dr, t ∈ (−τ, 0), s ∈ [0, τ).

The previous equality and closedness ofA imply SΘ1(t)SΘ1(s)x ∈ D(A), t ∈ (−τ, 0),
s ∈ [0, τ) and ASΘ1

(t)SΘ1
(s)x = SΘ1

(t)SΘ1
(s)Ax, t ∈ (−τ, 0), s ∈ [0, τ). Suppose,

for a moment, t ∈ (−τ, 0), s ∈ [0, τ) and t + s > 0. The composition property of
SΘ1

(·) allows one to establish the following equality:

s∫
t+s

Θ1(r − t− s)SΘ1
(r)CAxdr +

0∫
t

Θ1(t+ s− r)SΘ1
(r)CAxdr

= A

[ s∫
t+s

Θ1(r − t− s)SΘ1
(r)Cxdr +

0∫
t

Θ1(t+ s− r)SΘ1
(r)Cxdr

]
.

Since SΘ1(r)A ⊆ ASΘ1(r), r ∈ [0, τ) and CA ⊆ AC, one gets

s∫
t+s

Θ1(r − t− s)SΘ1(r)Cxdr ∈ D(A)

A

s∫
t+s

Θ1(r − t− s)SΘ1(r)Cxdr =

s∫
t+s

Θ1(r − t− s)SΘ1(r)CAxdr.

Hence,
∫ 0

t
Θ1(t+ s− r)SΘ1

(r)Cxdr ∈ D(A) and

(142) A

0∫
t

Θ1(t+ s− r)SΘ1
(r)Cxdr =

0∫
t

Θ1(t+ s− r)SΘ1
(r)CAxdr.
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Put now Ω = {(t, s) ∈ (−τ, 0) × (0, τ) : t+ s > 0} and

fy(t, s) =

0∫
t

Θ1(t+ s− r)SΘ1(r)y dr, (t, s) ∈ Ω, y ∈ E.

Then the dominated convergence theorem implies:

∂

∂t
fy(t, s) =

0∫
t

Θ(t+ s− r)SΘ1
(r)y dr − Θ1(s)SΘ1

(t)y,

∂

∂s
fy(t, s) =

0∫
t

Θ(t+ s− r)SΘ1(r)y dr, (t, s) ∈ Ω, y ∈ E.

By the closedness of A and (142), one gets A ∂
∂sfCx(t, s) = ∂

∂sfCAx(t, s), (t, s) ∈ Ω.
In other words,

(143) A

0∫
t

Θ(t+ s− r)SΘ1
(r)Cxdr =

0∫
t

Θ(t+ s− r)SΘ1
(r)CAxdr, (t, s) ∈ Ω.

Analogously, A ∂
∂tfCx(t, s) = ∂

∂tfCAx(t, s), (t, s) ∈ Ω, i.e., for every (t, s) ∈ Ω,

(144) A

[ 0∫
t

Θ(t+ s− r)SΘ1
(r)Cxdr − Θ1(s)SΘ1

(t)Cx

]

=

0∫
t

Θ(t+ s− r)SΘ1
(r)CAxdr − Θ1(s)SΘ1

(t)CAxdr.

An employment of (143)–(144) gives Θ1(s)SΘ1
(t)Cx ∈ D(A), (t, s) ∈ Ω and

A(Θ1(s)SΘ1
(t)Cx) = Θ1(s)SΘ1

(t)CAx, (t, s) ∈ Ω. Similarly, A(Θ1(s)SΘ1
(t)Cx) =

Θ1(s)SΘ1
(t)CAx, if (t, s) ∈ (−τ, 0) × (0, τ) and t+ s 6 0. Thus,

(145) A
(
Θ1(s)SΘ1

(t)Cx
)

= Θ1(s)SΘ1
(t)CAx, t ∈ (−τ, 0), s ∈ [0, τ).

It is evident that there exists s ∈ [0, τ) with Θ1(s) ̸= 0 and one can apply (145)
in order to conclude that A(SΘ1

(t)Cx) = SΘ1
(t)CAx, t ∈ (−τ, 0). Differentiate

the last equality twice with respect to t to obtain that SK(t)Cx ∈ D(A) and
that ASK(t)Cx = SK(t)CAx, t ∈ (−τ, 0). The last equality gives ACSK(t)x =
CSK(t)Ax, SK(t)x ∈ D(C−1AC) and [C−1AC]SK(t)x = SK(t)Ax, t ∈ (−τ, 0]. On

the other hand, Proposition 2.1.6 implies Â = C−1AC, and consequently, SK(t)x ∈
D(Â), x ∈ D(A), t ∈ (−τ, 0]. Since Â ∈ ℘(SK) and C−1ÂC = Â, one obtains that

SK(t)Âx = [C−1ÂC]SK(t)x = ÂSK(t)x, t ∈ (−τ, 0], x ∈ D(Â). The remnant of
proof follows by Proposition 2.6.2. �

Assume α > 0, (Sα(t))t∈R is an exponentially bounded, α-times integrated
group generated by A and B is the generator of (Sα(−t))t>0. Let us recall that
El-Mennaoui proved in [117] that B = −A; this result can be generalized as follows:
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Theorem 2.6.5. Suppose Â is the integral generator of a (local) K-convoluted

C-group (SK(t))t∈(−τ,τ), B̂ is the integral generator of (SK,−(t))t∈[0,τ), A ∈ ℘(SK)
and B ∈ ℘(SK,−). Then the following holds:

(i) SK(t)x ∈ D(B) and BSK(t)x = −SK(t)Âx, x ∈ D(Â), t ∈ (−τ, 0];

SK(s)x ∈ D(A) and ASK(s)x = −SK(s)B̂x, x ∈ D(B̂), s ∈ [0, τ),

(ii) B̂ = −Â,
(iii) BCx = −CÂx, x ∈ D(Â); ACx = −CB̂x, x ∈ D(B̂) and

(iv)
∫ t
0
SK(r)Cxdr ∈ D(A), t ∈ (−τ, 0];

∫ s
0
SK(r)Cxdr ∈ D(B), s ∈ [0, τ).

Proof. Let

Θi(t) =

t∫
0

(t− s)i−1Θ(s) ds, i = 1, 2, t ∈ [0, τ),

SΘ1
(t)x =

t∫
0

(t− s)SK(s)x ds, t ∈ [0, τ), x ∈ E,

SΘ1(t)x =

−t∫
0

(−t− s)SK(−s)x ds, t ∈ (−τ, 0), x ∈ E.

Suppose now t < 0 < s, t+ s 6 0 and x ∈ E. Then the preceding proposition and
the composition property of SΘ1

(·) imply:

(146) SΘ1
(t)

(
SΘ1

(s)x−
s∫

0

Θ1(r) drCx

)
= SΘ1

(t)Â

s∫
0

SΘ1
(r)x dr

= ÂSΘ1
(t)

s∫
0

SΘ1
(r)x dr = Â

s∫
0

SΘ1
(t)SΘ1

(r)x dr

= Â

s∫
0

[ t+r∫
t

Θ1(t+ r − v)SΘ1(v)Cxdv +

r∫
0

Θ1(v − t− r)SΘ1(v)Cxdv

]
dr

=

t+s∫
t

Θ1(t+s−r)SΘ1
(r)Cxdr+

s∫
0

Θ1(r−t−s)SΘ1
(r)Cxdr−

s∫
0

Θ1(r) drSΘ1
(t)Cx.

Differentiate (146) with respect to s in order to conclude that:

(147) Â

[ t+s∫
t

Θ1(t+ s− r)SΘ1(r)Cxdr +

s∫
0

Θ1(r − t− s)SΘ1(r)Cxdr

]

=

t+s∫
t

Θ(t+ s− r)SΘ1
(r)Cxdr −

s∫
0

Θ(r − t− s)SΘ1
(r)Cxdr
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+ Θ1(−t)SΘ1
(s)Cx− Θ1(s)SΘ1

(t)Cx.

Further on, it is clear that
s∫
0

Θ1(r − t− s)SΘ1
(r)Cxdr ∈ D(Â) and that

Â

s∫
0

Θ1(r − t− s)SΘ1
(r)Cxdr =

s∫
0

Θ1(r − t− s)Â

r∫
0

SΘ(v)Cxdv dr

=

s∫
0

Θ1(r − t− s)(SΘ(r)Cx− Θ1(r)C2x) dr

=

s∫
0

Θ1(r − t− s)SΘ(r)Cxdr −
s∫

0

Θ1(r − t− s)Θ1(r)C2x dr.

This equality and (147) imply
∫ t+s
t

Θ1(t+ s− r)SΘ1
(r)Cxdr ∈ D(Â) and:

(148) Â

t+s∫
t

Θ1(t+ s− r)SΘ1
(r)Cxdr

=

t+s∫
t

Θ(t+s−r)SΘ1
(r)Cxdr−

s∫
0

Θ(r−t−s)SΘ1
(r)Cxdr−

s∫
0

Θ1(r−t−s)SΘ(r)Cxdr

+ Θ1(−t)SΘ1
(s)Cx− Θ1(s)SΘ1

(t)Cx+

s∫
0

Θ1(r − t− s)Θ1(r) drC2x.

The partial integration yields

−
s∫

0

Θ(r − t− s)SΘ1
(r)Cxdr −

s∫
0

Θ1(r − t− s)SΘ(r)Cxdr = −Θ1(−t)SΘ1
(s)Cx

and, due to (148), one gets:

(149) Â

t+s∫
t

Θ1(t+ s− r)SΘ1
(r)Cxdr

=

t+s∫
t

Θ(t+ s− r)SΘ1(r)Cxdr+

s∫
0

Θ1(r− t− s)Θ1(r) drC2x−Θ1(s)SΘ1(t)Cx.

Further on,

B

t+s∫
t

Θ1(t+ s− r)SΘ1
(r)Cxdr
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= B

t+s∫
t

Θ1(t+ s− r)

−r∫
0

SΘ(−v)Cxdv dr

=

t+s∫
t

Θ1(t+ s− r)[SΘ(r)Cx− Θ1(−r)C2x] dr

=

t+s∫
t

Θ1(t+ s− r)SΘ(r)Cxdr −
t+s∫
t

Θ1(t+ s− r)Θ1(−r)C2x dr

= Θ1(s)SΘ1(t)Cx−
t+s∫
t

Θ(t+ s− r)SΘ1(r)Cxdr −
t+s∫
t

Θ1(t+ s− r)Θ1(−r)C2x dr,

where the last equality follows from integration by parts. Hence,

(150) B

t+s∫
t

Θ1(t+ s− r)SΘ1
(r)Cxdr

= Θ1(s)SΘ1
(t)Cx−

t+s∫
t

Θ(t+ s− r)SΘ1
(r)Cxdr−

s∫
0

Θ1(r− t− s)Θ1(r)C2x dr.

By (149)–(150), we obtain:

(151) Â

t+s∫
t

Θ1(t+ s− r)SΘ1
(r)Cxdr = −B

t+s∫
t

Θ1(t+ s− r)SΘ1
(r)Cxdr.

Suppose x ∈ D(Â); then Cx ∈ D(Â) and, thanks to Proposition 2.6.3 and (151),
we easily infer that:

(152)

t+s∫
t

Θ1(t+ s− r)SΘ1
(r)ÂCx dr = −B

t+s∫
t

Θ1(t+ s− r)SΘ1
(r)Cxdr.

Differentiate the previous equality with respect to s to conclude that
t+s∫
t

Θ(t+s−r)

× SΘ1
(r)Cxdr ∈ D(B) and that:

(153)

t+s∫
t

Θ(t+ s− r)SΘ1
(r)ÂCx dr = −B

t+s∫
t

Θ(t+ s− r)SΘ1
(r)Cxdr.

On the other hand, differentiation of (152) with respect to t leads us to the following:∫ t+s
t

Θ(t+ s− r)SΘ1
(r)Cxdr + Θ1(s)SΘ1

(t)Cx ∈ D(B) and

(154)

t+s∫
t

Θ(t+ s− r)SΘ1
(r)ÂCx dr + Θ1(s)SΘ1

(t)ÂCx
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= −B

[ t+s∫
t

Θ(t+ s− r)SΘ1(r)Cxdr + Θ1(s)SΘ1(t)Cx

]
.

Making use of (153)–(154), it readily follows that Θ1(s)SΘ1(t)Cx ∈ D(B) and

−B(Θ1(s)SΘ1(t)Cx) = Θ1(s)SΘ1(t)ÂCx. Using the similar arguments, one obtains

that the last equality remains true if t+s > 0 and x ∈ D(Â). So, Θ1(s)SΘ1
(t)Cx ∈

D(B) and
(155)

−B
(
Θ1(s)SΘ1

(t)Cx
)

= Θ1(s)SΘ1
(t)ÂCx, t ∈ (−τ, 0], s ∈ [0, τ), x ∈ D(Â).

Choose a number s ∈ [0, τ) with Θ1(s) ̸= 0 and notice that (155) implies SΘ1(t)Cx ∈
D(B) and

(156) −B(SΘ1
(t)Cx) = SΘ1

(t)ÂCx, t ∈ (−τ, 0], x ∈ D(Â).

A consequence of (156) is

SΘ1(t)Cx− Θ2(−t)C2x = B

−t∫
0

SΘ1(−v)Cxdv = −
−t∫
0

SΘ1(−v)ÂCx dv

= −C
−t∫
0

SΘ1
(−v)Âx dv, t ∈ (−τ, 0], x ∈ D(Â).

Therefore,

(157) SΘ1(t)x− Θ2(−t)Cx = −
−t∫
0

SΘ1(−v)Âx dv, t ∈ (−τ, 0], x ∈ D(Â),

which clearly implies

B

−t∫
0

SΘ1
(−v)x dv = −

−t∫
0

SΘ1
(−v)Âx dv, t ∈ (−τ, 0], x ∈ D(Â).

The closedness of B enables one to see that SΘ1
(t)x ∈ D(B) and that BSΘ1

(t)x =

−SΘ1
(t)Âx, t ∈ (−τ, 0], x ∈ D(Â). Differentiate the last equality twice with

respect to t so as to conclude that SK(t)x ∈ D(B) and that BSK(t)x = −SK(t)Âx,

t ∈ (−τ, 0], x ∈ D(Â). This equality and Proposition 2.6.2 imply: ŠK(−s)x ∈
D(A) and AŠK(−s)x = −ŠK(−s)B̂x, s ∈ [0, τ), x ∈ D(B̂), i.e., SK(s)x ∈ D(A)

and ASK(s)x = −SK(s)B̂x, x ∈ D(B̂), s ∈ [0, τ). The proof of (i) is completed.

Further on, (157) implies −Â ⊆ B̂. Now one can apply Proposition 2.6.2 and the

first part of proof to obtain that −B̂ ⊆ Â; hence, B̂ = −Â and this ends the proof
of (ii). Finally, (iii) and (iv) are simple consequences of the assertion (ii) of this
theorem and Proposition 2.1.6(i)-(ii). �

Corollary 2.6.6. Assume K satisfies (P1) and Â is the integral generator of
an exponentially bounded, K-convoluted C-group (SK(t))t∈R. If there exist M > 0
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and β > 0 such that |K(t)| 6 Meβt, t > 0, then C−1Â2C is the integral generator
of an exponentially bounded, analytic K1-convoluted C-semigroup (SK1

(t))t>0 of
angle π

2 , where

K1(t) :=

∞∫
0

se−s
2/4t

2
√
πt3/2

K(s) ds, t > 0,

SK1(t)x :=
1

2
√
πt

∞∫
0

e−s
2/4t
(
SK(s)x+ SK(−s)x

)
ds, t > 0, x ∈ E.

Before proceeding further, let us point out that the previous corollary remains

true in the case K(t) = tα−1

Γ(α) , where α ∈ (0, 1).

Theorem 2.6.7. Assume τ ∈ (0,∞] and ±Â are the integral generators of
K-convoluted C-semigroups (SK,±(t))t∈[0,τ). Put SK(t) := SK,+(t), t ∈ [0, τ) and
SK(t) := SK,−(−t), t ∈ (−τ, 0). Then (SK(t))t∈(−τ,τ) is a K-convoluted C-group

whose integral generator is Â.

Proof. Assume −τ < t < 0 < s < τ and t + s > 0. We will prove the
composition property for SK(t)SK(s). Fix an x ∈ E and define

f(r) := SK(t+ s− r)

r∫
0

SK(σ)x dσ, r ∈ [t+ s, s].

Clearly, ÂSK(σ) ⊆ SK(σ)Â, σ ∈ (−τ, τ) and the semigroup property of a K-
convoluted C-semigroup implies:

d

dr
f(r) = SK(t+ s− r)SK(r)x− ÂSK(t+ s− r)

r∫
0

SK(σ)x dσ

+K(r−s−t)C
r∫

0

SK(σ)x dσ = Θ(r)SK(t+s−r)Cx+K(r−s−t)C
r∫

0

SK(σ)x dσ,

for a.e. r ∈ (t + s, s). Integrate the last equality with respect to r from t + s to s
to obtain:

SK(t)

s∫
0

SK(σ)x dσ =

s∫
t+s

Θ(r)SK(t+s−r)Cxdr+
s∫

t+s

K(r−s−t)C
r∫

0

SK(σ)x dσ dr.

Since Â ∈ ℘(SK,+), the last equality yields:

SK(t)SK(s)x = SK(t)

[
Â

s∫
0

SK(σ)x dσ + Θ(s)Cx

]
(158)
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= Â

[ s∫
t+s

Θ(r)SK(t+ s− r)Cxdr+

s∫
t+s

K(r − s− t)C

r∫
0

SK(σ)x dσ dr

]
+ Θ(s)SK(t)Cx

= Â

s∫
t+s

Θ(r)SK,−(r − t− s)Cxdr

+

s∫
t+s

K(r − s− t)
[
SK(r)Cx− Θ(r)C2x

]
dr + Θ(s)SK(t)Cx.

Furthermore,

(159) Â

s∫
t+s

Θ(r)SK,−(r − t− s)Cxdr = Â

−t∫
0

Θ(v + t+ s)SK,−(v)Cxdv

= Â

[
Θ(s)

−t∫
0

SK,−(r)Cxdr −
−t∫
0

K(t+ s+ r)

r∫
0

SK,−(v)Cxdv dr

]

= −Θ(s)
[
SK(t)Cx− Θ(−t)C2x

]
+

−t∫
0

K(t+ s+ r)
[
SK(−r)Cx− Θ(r)C2x

]
dr.

With (158)–(159) in view, one gets:

SK(t)SK(s)x

= −Θ(s)
[
SK(t)Cx− Θ(−t)C2x

]
+

−t∫
0

K(t+ s+ r)
[
SK(−r)Cx− Θ(r)C2x

]
dr

+

s∫
t+s

K(r − s− t)
[
SK(r)Cx− Θ(r)C2x

]
dr + Θ(s)SK(t)Cx

=

s∫
t+s

K(r − t− s)SK(r)Cxdr +

0∫
t

K(t+ s− r)SK(r)Cxdr

+ Θ(s)Θ(−t)C2x+

0∫
−t

K(t+ s+ r)Θ(r)C2x dr −
s∫

t+s

K(r − s− t)Θ(r)C2x dr,

and the composition property for SK(t)SK(s) follows from the next computation:

Θ(s)Θ(−t)C2x+

0∫
−t

K(t+ s+ r)Θ(r)C2x dr −
s∫

t+s

K(r − s− t)Θ(r)C2x dr
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= Θ(s)Θ(−t)C2x−
s∫

t+s

K(r)Θ(r − t− s)C2x dr −
s∫

t+s

K(r − s− t)Θ(r)C2x dr

= Θ(s)Θ(−t)C2x−

[
Θ(s)Θ(−t)C2x−

s∫
t+s

K(r − s− t)Θ(r)C2x dr

]

−
s∫

t+s

K(r − s− t)Θ(r)C2x dr = 0.

The proof of composition property in the case t+ s < 0 can be obtained as follows.
Since Â

∫ r
0
SK(σ)x dσ = SK(r)x− Θ(−r)Cx, r ∈ (−τ, 0], we get

d

dr
f(r) = SK(t+ s− r)SK(r)x

− ÂSK(t+ s− r)

r∫
0

SK(σ)x dσ +K(r − s− t)C

r∫
0

SK(σ)x dσ

= Θ(|r|)SK(t+ s− r)Cx+K(r − s− t)C

r∫
0

SK(σ)x dσ,

for a.e. r ∈ (t + s, s). Integrate the last equality with respect to r from t + s to s
to obtain

SK(t)

s∫
0

SK(σ)x dσ =

0∫
t+s

Θ(−r)SK(t+s−r)Cxdr+

0∫
t+s

K(r−t−s)
r∫

0

SK(σ)Cxdσ dr

(160) +

s∫
0

Θ(r)SK(t+ s− r)Cxdr +

s∫
0

K(r − s− t)

r∫
0

SK(σ)Cxdσ dr.

Clearly,

SK(t)SK(s)x = SK(t)

[
Â

s∫
0

SK(σ)x dσ + Θ(s)Cx

]

= ÂSK(t)

s∫
0

SK(σ)x dσ + Θ(s)SK(t)Cx,

and a tedious computation involving (160) leads us to the next equality:

(161) SK(t)SK(s)x =

t+s∫
t

K(t+ s− r)S(r)Cxdr +

s∫
0

K(r − t− s)S(r)Cxdr
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+

[
Θ(s)Θ(−t) −

t+s∫
t

K(t+ s− r)Θ(−r) dr −
s∫

0

K(r − s− t)Θ(r) dr

]
C2x.

Since

Θ(s)Θ(−t) −
t+s∫
t

K(t+ s− r)Θ(−r) dr −
s∫

0

K(r − s− t)Θ(r) dr

= Θ(s)Θ(−t)+

0∫
s

K(r)Θ(r− t−s) dr−Θ(−t)Θ(s)+

s∫
0

Θ(r− t−s)K(r) dr = 0,

(161) implies the composition property for SK(t)SK(s). By the foregoing,

SK(s)SK(t)x = ŠK(−s)ŠK(−t)x

=


−t∫

−t−s
K(r + t+ s)ŠK(r)Cxdr +

0∫
−s
K(−t− s− r)ŠK(r)Cxdr, t+ s < 0,

−t−s∫
−s

K(−t− s− r)ŠK(r)Cxdr +
−t∫
0

K(r + t+ s)ŠK(r)Cxdr, t+ s > 0,

=


t+s∫
t

K(t+ s− r)SK(r)Cxdr +
s∫
0

K(r − t− s)SK(r)Cxdr, t+ s < 0,

s∫
t+s

K(r − t− s)SK(r)Cxdr +
0∫
t

K(t+ s− r)SK(r)Cxdr, t+ s > 0,

for every x ∈ E. The composition property for SK(t)SK(s) and previous equality
imply SK(t)SK(s) = SK(s)SK(t), t < 0 < s, which ends the proof of theorem. �

Questions. (i) Suppose Â is the integral generator of a (local) K-convoluted

C-group (SK(t))t∈(−τ,τ), A ∈ ℘(SK) and A ̸= Â. Is it true that −A ∈ ℘(SK,−)?

(ii) Suppose A is the integral generator of a (local) K-convoluted (semi-)group
(SK(t))t∈(−τ,τ). Does there exist an injective operator C ∈ L(E) such that A
generates a global C-(semi-)group?

Corollary 2.6.8. Suppose τ ∈ (0,∞], Â is a closed linear operator and

(SK(t))t∈(−τ,τ) is a strongly continuous operator family. Then Â is the integral

generator of a K-convoluted C-group (SK(t))t∈(−τ,τ) iff ±Â are the integral gener-
ators of K-convoluted C-semigroups (SK,±(t))t∈[0,τ).

The following theorem is a consequence of Corollary 2.6.8 and the corresponding
assertions for exponentially bounded convoluted C-semigroups.

Theorem 2.6.9. Let K satisfy (P1) and Â be a closed linear operator. Then
the following holds.

(i) Let M > 0 and ω > 0. Then Â is the integral generator of an exponentially
bounded, Θ-convoluted C-group (SΘ(t))t∈R such that∥∥SΘ(±t± h) − SΘ(±t)

∥∥ 6Mheω(t+h), t > 0, h > 0
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iff there exists a > max(ω, abs(K)) such that:{
λ ∈ C : Reλ > a, K̃(λ) ̸= 0

}
⊆ ρC(±Â),(162)

λ 7→ K̃(λ)(λ± Â)−1C, λ > a, K̃(λ) ̸= 0 is infinitely differentiable,(163) ∥∥∥ dk
dλk

[K̃(λ)(λ± Â)−1C]
∥∥∥ 6 Mk!

(λ− ω)k+1
, k ∈ N0, λ > a, K̃(λ) ̸= 0.(164)

(ii) Suppose M > 0, ω > 0 and Â is densely defined. Then Â is the integral
generator of an exponentially bounded, K-convoluted C-group (SK(t))t∈R satisfying
∥SK(t)∥ 6 Meω|t|, t ∈ R, ω > 0 iff there exists a > max(ω, abs(K)) such that
(162)–(164) is fulfilled.

(iii) Suppose that Â is the integral generator of an exponentially bounded, K-
convoluted C-group (SK(t))t∈R satisfying ∥SK(t)∥ = O(eω|t|), t ∈ R, ω > 0. Put
a := max(ω, abs(K)). Then:{

λ ∈ C : Reλ > a, K̃(λ) ̸= 0
}
⊆ ρC(±Â)(165)

(λ± Â)−1Cx =
1

K̃(λ)

∞∫
0

e−λtSK(∓t) dt, Reλ > a, K̃(λ) ̸= 0.(166)

(iv) Suppose (SK(t))t∈R is a strongly continuous operator family and ∥SK(t)∥ =

O(eω|t|), t ∈ R, ω > 0. Put a := max(ω, abs(K)). If (165)–(166) hold, then Â is the
integral generator of an exponentially bounded, K-convoluted C-group (SK(t))t∈R.

Keeping in mind Corollary 2.6.8, one can simply formulate several other struc-
tural characterizations of convoluted C-groups. The remainder of this section is
devoted to the study of relations between fractionally integrated cosine functions,
analytic semigroups of growth order r > 0, some special subclasses of differentiable
C-regularized groups and (local) convoluted groups whose derivatives possess some
expected properties of operator valued ultradifferentiable functions of the Beurling
type (cf. also the next chapter). We need some auxiliary notations.

1. Let a > 0 and b > 0. Then the exponential region E(a, b) was primarily
defined by Arendt, El–Mennaoui and Keyantuo in [5]:

E(a, b) :=
{
λ ∈ C : Reλ > b, | Imλ| 6 eaReλ

}
.

Put E2(a, b) := {λ2 : λ ∈ E(a, b)}.
2. Suppose s > 1. Following Chazarain [54] (cf. also [210] and [307, Sec-

tion 2.3]), we define the ultra-logarithmic region of type l:

Ωα,β,l :=
{
λ ∈ C : Reλ > αM(l| Imλ|) + β

}
, l > 0, α > 0, β ∈ R,

where M(t) := supp∈N0
ln tp/p!s, t > 0 and M(0) := 0.

3. If θ ∈ (0, π] and d ∈ (0, 1], put Bd := {λ ∈ C : |λ| 6 d} and Ωθ,d := Σθ ∪Bd.
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The following family of continuous exponentially bounded kernels (cf. [14,
p. 107]) plays an important role in our analysis:

Kδ(t) :=
1

2πi

r+i∞∫
r−i∞

eλt−λ
δ

dλ, t > 0, δ ∈ (0, 1), r > 0, where 1δ = 1.

Put, for c > 0 and δ ∈ (0, 1), Kδ,c(t) := Kδ(ct), t > 0. It is well known that, for
every δ ∈ (0, 1), c > 0 and s = 1/δ:∣∣K̃δ,c(λ)

∣∣ =
∣∣∣1
c
K̃δ

(λ
c

)∣∣∣ =
1

c

∣∣e−(λ/c)δ
∣∣ =

1

c
e− cos(δ arg(λ/c))|λ/c|δ

6 1

c
e− cos(π/2s)c−1/s|λ|1/s , Reλ > 0.

For the sake of simplicity, in the following theorem, we consider only Gevrey
type sequences p!s, s ∈ (1, 2) and the functions K1/s, c , c > 0. Actually, the
argumentation given in [225] and [307, Section 1.3] can serve one to prove a more
general result.

Theorem 2.6.10. [231] Suppose α > 0 and A generates a (local) α-times
integrated cosine function. Then the following holds:

(i) For every b ∈ ( 1
2 , 1) and γ ∈

(
0, arctan(cos( bπ2 ))

)
, there exist two analytic

operator families
(
Tb,+(t)

)
t∈Σγ

⊆ L(E) and
(
Tb,−(t)

)
t∈Σγ

⊆ L(E) which satisfy:

(i.1) For every t ∈ Σγ , Tb,+(t) and Tb,−(t) are injective operators.
(i.2) ∥t α

2bTb,±(t)∥ = O(1), t→ 0+.
(i.3) For every t1 ∈ Σγ and t2 ∈ Σγ , the operator iA is the generator of a global(

Tb,+(t1)Tb,−(t2)
)
-regularized group (Sb,t1,t2(r))r∈R.

(i.4) For every x ∈ E, t1 ∈ Σγ and t2 ∈ Σγ , the mapping r 7→ Sb,t1,t2(r)x,
r ∈ R is infinitely differentiable in (−∞, 0) ∪ (0,∞).

(i.5) Suppose K is a compact subset of R and 0 /∈ K. Then, for every h > 0
and s ∈ ( 1

b , 2):

sup
p∈N0, r∈K

1

p!s
hp
∥∥∥ dp
drp

Sb,t1,t2(r)x
∥∥∥ <∞.

(ii) For every s ∈ (1, 2) and τ ∈ (0,∞), there exists cτ > 0 such that iA
generates a local K1/s, cτ -convoluted group

(
SK1/s, cτ

(t)
)
t∈(−τ,τ) which satisfies:

(ii.1) The mappings t 7→ SK1/s,cτ
(±t), t ∈ [0, τ) are infinitely differentiable.

(ii.2) There exists h > 0 such that

sup
t∈(−τ,τ)r{0}, p∈N0

1

p!s
hp
∥∥∥ dp
dtp

SK 1
s
,cτ

(t)
∥∥∥ <∞.

Proof. According to Theorem 2.7.3(ii) given below we have the existence of
positive real numbers a and b such that E2(a, b) ⊆ ρ(A) and that ∥R(λ2 :A)∥ 6
M |λ|α, λ ∈ E(a, b). Suppose now s ∈ ( 1

b , 2). Proceeding as in the proof of [223,
Theorem 4.3], we get the existence of numbers δ > 0, ε ∈ R and l > 1 (cf. also
[54]) so that Ωδ,ε,l ⊆ ρ(±iA) and ∥R(λ : ±iA)∥ 6 M |λ|α2 , λ ∈ Ωδ,ε,l. Further
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on, it is clear that there exist numbers a ∈ (0, π2 ), d ∈ (0, 1] and ω ∈ R so that:

b ∈
(
0, π

2(π−a)
)
, γ ∈

(
0, arctan(cos(b(π − a)))

)
and Ωa,d ⊆ Ωδ,ε−ω,l ⊆ ρ(±iA − ω).

Let the curve Γa,d := ∂Ωa,d be upwards oriented. Define Tb,±(t), t ∈ Σγ by:

Tb,±(t)x :=
1

2πi

∫
Γa,d

e−t(−λ)
b

R(λ : ±iA− ω)x dλ, x ∈ E.

The arguments given in Section 1.1.4 show that (Tb,±(t))t∈Σγ
are analytic operator

families which fulfill the claimed properties (i.1) and (i.2). Assume K is a compact
subset of (0,∞), t ∈ Σγ and x ∈ E. Then ±iA generate global Tb,±(t)-semigroups
(Sb,t,±(r))r>0 [225]. Furthermore, the mappings r 7→ Sb,t,±(r)x, r > 0 are infinitely
differentiable and, for every h > 0:

(167) sup
p∈N0, r∈K

1

p!s
hp
∥∥∥ dp
drp

Sb,t,±(r)x
∥∥∥ <∞.

Suppose t1 ∈ Σγ , t2 ∈ Σγ and x ∈ E. Evidently, Tb,+(t1)(±iA) ⊆ (±iA)Tb,+(t1),
Tb,−(t2)(±iA) ⊆ (±iA)Tb,−(t2) and Tb,+(t1)Tb,−(t2) = Tb,−(t2)Tb,+(t1). Then one
obtains

Tb,−(t2)
(
Sb,t1,+(r)x− Tb,+(t1)x

)
= Tb,−(t2)iA

r∫
0

Sb,t1,+(v)x dv = iATb,−(t2)

r∫
0

Sb,t1,+(v)xdv,

iA

r∫
0

(
Tb,−(t2)Sb,t1,+(v)

)
x dv = Tb,−(t2)Sb,t1,+(r)x− Tb,+(t1)Tb,−(t2)x, r > 0.

Clearly, we have that [Tb,−(t2)Sb,t1,+(r)]Tb,+(t1) = Tb,+(t1)[Tb,−(t2)Sb,t1,+(r)],
r > 0, and [Tb,−(t2)Sb,t1,+(r)]iA ⊆ iA[Tb,−(t2)Sb,t1,+(r)], r > 0. The above given
arguments simply imply that

(
Tb,−(t2)Sb,t1,+(r)

)
r>0

is a global
(
Tb,+(t1)Tb,−(t2)

)
-

regularized semigroup generated by iA. Analogously,
(
Tb,+(t1)Sb,t2,−(r)

)
r>0

is

a global
(
Tb,+(t1)Tb,−(t2)

)
-regularized semigroup generated by −iA. Hence, iA

generates a global (Tb,+(t1)Tb,−(t2))-regularized group (Sb,t1,t2(r))r∈R given by:
Sb,t1,t2(r) = Tb,−(t2)Sb,t1,+(r), r > 0 and Sb,t1,t2(r) = Tb,+(t1)Sb,t2,−(−r), r < 0.
This yields (i.3) and (i.4) while the proof of (i.5) follows immediately from (i4)
and (167). To prove (ii), choose arbitrarily numbers τ ∈ (0,∞) and s ∈ (1, 2).
Denote by Γl the upwards oriented boundary of Ωδ,ε,l and notice that [207] there

exists an appropriate constant d1 > 0 such that M(λ) 6 d1λ
1
s , λ > 0. Put

cτ := 1
2

[
1

cos(π/2s)τδd1l
1/s
]−s

,

SK 1
s
, cτ

,±(t) :=
1

2πi

∫
Γl

eλtK̃ 1
s , cτ

(λ)R(λ : ±iA)dλ, t ∈ [0, τ),

SK1/s, cτ
(t) = SK1/s, cτ ,+

(t), t ∈ [0, τ) and SK1/s, cτ
(t) = SK1/s, cτ ,−(−t), t ∈ (−τ, 0).

Arguing as in the proof of [307, Theorem 1.3.2, p. 58], one obtains that SK1/s, cτ ,±(t)

∈ L(E), t ∈ [0, τ) and that ±iA generate local K1/s, cτ -convoluted semigroups
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SK1/s, cτ ,±(t)

)
t∈[0,τ)

. An employment of Corollary 2.6.8 shows that iA generates

the local K1/s, cτ -convoluted group (SK1/s, cτ
(t))t∈(−τ,τ). The elementary inequality

|eλh− 1| 6 h|λ|eReλh, λ ∈ C, h > 0 and the dominated convergence theorem imply
that the mappings t 7→ SK1/s, cτ

(±t), t ∈ [0, τ) are infinitely differentiable and that

(168)
dp

dtp
SK 1

s
, cτ

(±t) =
1

2πi

∫
Γl

λpeλtK̃ 1
s , cτ

(λ)R(λ : ±iA) dλ, t ∈ [0, τ), p ∈ N0.

Due to the choice of cτ , there exists h > 0 such that:

(169) d1h
1
s + τδd1l

1
s < cos

( π
2s

)
c
− 1

s
τ .

Taking into account (168)–(169), one gets

sup
t∈(−τ,τ)r{0}, p∈N0

1

p!s
hp
∥∥∥ dp
dtp

SK1/s, cτ
(t)
∥∥∥

6 Const sup
t∈(−τ,τ)r{0}, p∈N0

∫
Γl

(h|λ|)p

p!s
eReλ|t||K̃ 1

s , cτ
(λ)|∥R(λ : ±iA)∥ |dλ|

6 Const sup
t∈(−τ,τ)r{0}

∫
Γl

eM(h|λ|)e|t|(δM(l| Imλ|)+ε)e− cos( π
2s )c

− 1
s

τ |λ|
1
s |λ|α2 |dλ|

6 Const sup
t∈(−τ,τ)r{0}

∫
Γl

ed1h
1
s |λ|

1
s e|t|(δd1l

1
s |λ|

1
s +ε)e− cos( π

2s )c
− 1

s
τ |λ|

1
s |λ|α2 |dλ|

6 Const e|ε|τ
∫
Γl

e(d1h
1
s +τδd1l

1
s −cos( π

2s )c
− 1

s
τ )|λ|

1
s |λ|α2 |dλ| <∞.

The proof is thereby completed. �

We close this section with the analysis of certain classes of abstract Volterra
equations on the line. Of concern are the following equations:

(170) u(t) =

∫ ∞

0

a(s)Au(t− s) ds+

∫ t

−∞
k(t− s)g′(s) ds,

where g : R→ E, a ∈ L1
loc([0,∞)), a ̸= 0, k ∈ C([0,∞)), k ̸= 0, and

(171) u(t) = f(t) +

∫ t

0

a(t− s)Au(s) ds, t ∈ (−τ, τ),

where τ ∈ (0,∞] and f ∈ C((−τ, τ) : E). Notice that the equation (170) appears
in the study of the problem of heat flow with memory [342].

Proposition 2.6.11. Assume A is a subgenerator of a global (a, k)-regularized
C-resolvent family (S(t))t>0, g : R→ R(C), C−1g(·) is differentiable for a.e. t ∈ R,
C−1g(t) ∈ D(A) for a.e. t ∈ R,

(i) the mapping s 7→ S(t − s)(C−1g)′(s), s ∈ (−∞, t] is an element of the
space L1((−∞, t] : [D(A)]) for a.e. t ∈ R, and
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(ii) the mapping s 7→ k(t − s)g′(s), s ∈ (−∞, t] is an element of the space
L1((−∞, t] : E) for a.e. t ∈ R.

Put u(t) :=
∫ t
−∞ S(t− s)(C−1g)′(s) ds, t ∈ R. Then C(R : E) ∋ u satisfies (170).

Proof. The continuity of u(t) can be proved by using the dominated conver-
gence theorem and the strong continuity of (S(t))t>0. The proof of (170) follows
from the following computation:

∞∫
0

a(s)Au(t− s) ds+

∫ t

−∞
k(t− s)g′(s) ds

=

∞∫
0

a(s)A

t−s∫
−∞

S(t− s− r)(C−1g)′(r) dr ds+

t∫
−∞

k(t− s)g′(s) ds

=

∞∫
0

s′∫
0

a(s′ − r′)AS(r′)(C−1g)′(t− s′) dr′ ds′ +

t∫
−∞

k(t− s)g′(s) ds

=

∞∫
0

(S(s′) − k(s′)C)(C−1g)′(t− s′) ds+

t∫
−∞

k(t− s)g′(s) ds

= u(t) −
∞∫
0

k(s)g′(t− s′) ds′ +

t∫
−∞

k(t− s)g′(s) ds = u(t), t ∈ R. �

Denote by AP (E), AA(E), AAc(E) and AAA(E) the spaces which consist
of all almost periodic functions, almost automorphic functions, compact almost
automorphic functions and asymptotically almost automorphic functions defined
on R, respectively, and assume that the function (C−1g)′(t) belongs to one of these
spaces [339]. By [49, Theorem 4.6], the uniform integrability of (S(t))t>0 implies
that the solution u(t) of (170) belongs to the same space as (C−1g)′(t). The above
assertion remains true in nonscalar case (cf. Appendix).

Proposition 2.6.12. (i) Assume a ∈ L1
loc((−τ, τ)), k ∈ C((−τ, τ)), a ̸= 0 and

k ̸= 0. Let k+(t) = k(t), a+(t) = a(t), t ∈ [0, τ), k−(t) = k(−t) and a−(t) = a(−t),
t ∈ (−τ, 0]. If ±A are subgenerators of (a±, k±)-regularized C-resolvent families
(S±(t))t∈[0,τ), then, for every x ∈ D(A), the function u : (−τ, τ) → E given by
u(t) = S+(t)x, t ∈ [0, τ) and u(t) = S−(−t)x, t ∈ (−τ, 0] is a solution of (171)
with f(t) = k(t)Cx, t ∈ (−τ, τ). Furthermore, the solutions of (171) are unique
provided that k±(t) are kernels.

(ii) Assume n± ∈ N, f ∈ C((−τ, τ) : E), a ∈ L1
loc((−τ, τ)), a ̸= 0, f+(t) =

f(t), a+(t) = a(t), t ∈ [0, τ), f−(t) = f(−t), a−(t) = a(−t), t ∈ (−τ, 0], and ±A
are subgenerators of (n± − 1)-times integrated (a±, C±)-regularized resolvent fami-
lies. Assume, additionally, a± ∈ BVloc([0, τ)) if n± > 1 (that is: a+ ∈ BVloc([0, τ))
if n+ > 1, and a− ∈ BVloc([0, τ)) if n− > 1) as well as:
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(ii.1) C−1
± f± ∈ C(n±)([0, τ) : E), f

(k−1)
± (0) ∈ D(An±−k) and

An±−kf (k−1)(0) ∈ R(C±), 1 6 k 6 n±, if n± > 1, resp.

(ii.2) C−1
± f± ∈ C([0, τ) : E) ∩W 1,1

loc ([0, τ) : E) if n+ = n− = 1.

Then there exists a unique solution of (171).

Example 2.6.13. (cf. also Subsection 2.1.8) (i) Assume −∞ < α 6 β < ∞,
1 6 p 6 ∞, 0 < τ 6 ∞, n ∈ N, E = Lp(Rn) or E = Cb(Rn), P (·) is an elliptic
polynomial of degree m ∈ N, α 6 Re(P (x)) 6 β, x ∈ Rn and A = P (D). Then
there exists ω > 0 such that, for every r > n| 12 −

1
p |, ±A are the integral generators

of exponentially bounded (ω∓A)−r-regularized semigroups in E. Let a ∈ L1
loc(R),

a ̸= 0, be such that the mappings t 7→ a+(t) = a(t), t > 0 and t 7→ a−(t) = a(−t),
t > 0 are completely positive. By Theorem 2.1.28(ii), ±A are the integral generators
of exponentially bounded (a±, (ω ∓ A)−r)-regularized resolvent families provided
E = Lp(Rn) (1 6 p < ∞), resp. (a±, t)-regularized (ω ∓ A)−r-resolvent families
provided E = L∞(Rn) (Cb(Rn)). Let f ∈ C((−τ, τ) : E) and let f±(t) satisfy the
assumption of Proposition 2.6.12(ii.2), resp. Proposition 2.6.12(ii.1), with n± = 1,
resp. n± = 2. Then there exists a unique solution of (171); it is noteworthy that the
above example can be reformulated in the case when A is the integral generator
of an exponentially bounded integrated group or C-regularized group, and that
obtained conclusions continue to hold in many other function spaces.

(ii) Assume E = L2[0, π], A = −∆ with the Dirichlet or Neumann bound-

ary conditions, τ = ∞, β ∈ [ 12 , 1), α > 1 + β, a(t) = |t|β−1

Γ(β) , t ∈ (−τ, τ) and

f(t) = L−1((hα,β(λ))(|t|), t ∈ (−τ, τ), where hα,β(λ) is defined through [235,
(2.64)]. Then Proposition 2.6.12(i) implies that there exists a unique solution u(t)
of (171) and that u|Rr{0} is analytically extendible to the sector Σπ

2 ( 1
β−1). By

Proposition 2.6.12(i) and [235, Example 2.31(iii)], it follows that, for every n ∈ N,
there exists an exponentially bounded kernel kn(t) such that (171) has a unique
solution un(t) with A replaced by the polyharmonic operator ∆2n and f(t) re-
placed by kn(t); moreover, un|Rr{0} is analytically extendible to the sector Σπ

2
.

The analysis of preceding example in the case β ∈ [1, 2) is given in [235].

2.7. Spectral characterizations

We start this subsection with following result which is necessary in our striving
to reveal the satisfactory relationship between local K-convoluted semigroups and
hyperfunction semigroups of Ōuchi [353].

Theorem 2.7.1. Suppose M > 0, β > 0, |K(t)| 6 Meβt, t > 0, (SK(t))t∈[0,τ)

is a (local) K-convoluted semigroup generated by A and, for every ε > 0, there exist

ε0 ∈ (0, τε) and Tε > 0 such that 1/|K̃(λ)| 6 Tεe
ε0|λ|, Reλ > β, K̃(λ) ̸= 0. Then,

for every ε > 0, there exist Cε > 0 and Kε > 0 such that

Ω1
ε :=

{
λ ∈ C : K̃(λ) ̸= 0, Reλ > β, Reλ > ε|λ| + Cε

}
⊆ ρ(A),

∥R(λ :A)∥ 6 Kεe
ε0|λ|, λ ∈ Ω1

ε, K̃(λ) ̸= 0.
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Proof. Let ε ∈ (0, 1) be fixed. Define

R(λ, t) :=
1

K̃(λ)

t∫
0

e−λsSK(s) ds, Reλ > β, K̃(λ) ̸= 0, t ∈ [0, τ),

and fix an element x ∈ E. Proceeding as in the proof of [307, Theorem 1.3.1], one

gets that, for every λ ∈ C with Reλ > β and K̃(λ) ̸= 0:

(λI −A)R(λ, t)x =
1

K̃(λ)

(
λ

t∫
0

e−λsSK(s)x ds−A

t∫
0

e−λsSK(s)x ds

)

=
1

K̃(λ)

(
λ

t∫
0

e−λsΘ(s)x ds− e−λtA

∫ t

0

SK(s)x ds

)

=
1

K̃(λ)

( t∫
0

e−λsK(s)x ds− e−λtSK(t)x

)

= x− 1

K̃(λ)

(
e−λtSK(t)x+

∞∫
t

e−λsK(s)x ds

)
:= x−Bt(λ)x.

Our goal is to find the domain Ω1
ε such that, for all λ ∈ Ω1

ε, we can estimate Bt(λ)
as follows:

∥Bt(λ)∥ 6 1

|K̃(λ)|

(
e−Reλt∥SK(t)∥ +M

∞∫
t

e(β−Reλ)sds

)

6 1

|K̃(λ)|

(
e−Reλt∥SK(t)∥ +M

e(β−Reλ)t

Reλ− β

)
6 Tεe

ε0|λ|e(β−Reλ)t

(
e−βt∥SK(t)∥ +

M

Reλ− β

)
.

Let t = ε0
ε ∈ (0, τ), ∥SK(t)∥ = C0 and let β1 ∈ (β,∞). Assume Reλ > β1,

K̃(λ) ̸= 0 and let us find an additional condition such that:

∥Bt(λ)∥ 6 Tε

(
e−βt∥SK(t)∥ +

M

Reλ− β

)
eε0|λ|+(β−Reλ)t

6 Tε

(
e−βtC0 +

M

β1 − β

)
eε0|λ|+(β1−Reλ)t 6 δ < 1.

One can simply verify that, with

Cε := max

(
β(1 − ε), β1 +

ε0
ε

ln
δ

Tε(e−βtC0 + M
β1−β )

)
,
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Kε :=

ε0/ε∫
0

∥SK(s)∥ ds Tε
1 − δ

,

and Ω1
ε as in the formulation of theorem, ∥Bt(λ)∥ 6 δ, λ ∈ Ω1

ε. Since R(λ, t) and
Bt(λ) commute with A, one yields Ω1

ε ⊆ ρ(A) and

∥R(λ,A)∥ =
∥∥R(λ, t)(I −Bt(λ))−1

∥∥ 6 1

|K̃(λ)|

∣∣∣ t∫
0

e−λsSK(s) ds
∣∣∣ 1

1 − δ

6 Kεe
ε0|λ| 6 Kεe

ετ |λ|, λ ∈ Ω1
ε. �

Assume that, for every ε > 0, there exist Cε > 0 and Mε > 0 satisfying

Ωε :=
{
λ ∈ C : Reλ > ε|λ| + Cε

}
⊆ ρ(A) and ∥R(λ :A)∥ 6Mεe

ε|λ|, λ ∈ Ωε,

i.e., that there exists a hyperfunction fundamental solution for A (cf. Definition
3.5.32, Theorem 3.5.33, Example 3.5.35 and questions preceding Corollary 2.6.8).
Then it is not clear whether there exist τ > 0 and K ∈ L1

loc([0, τ)), K ̸= 0 such
that A is the integral generator of a K-convoluted semigroup on [0, τ).

Theorem 2.7.2. (i) Suppose α > 0, M > 0, β > 0, Φ : C → [0,∞), |K(t)| 6
Meβt, t > 0, (SK(t))t∈[0,τ) is a local K-convoluted semigroup generated by A and

1/|K̃(λ)| 6 eΦ(αλ), Reλ > β, K̃(λ) ̸= 0. Then, for every t ∈ (0, τ), there exist
β(t) > 0 and M(t) > 0 such that

Λt,α,β(t) :=
{
λ ∈ C : K̃(λ) ̸= 0, Reλ > Φ(αλ)

t
+ β(t)

}
⊆ ρ(A),

∥R(λ :A)∥ 6M(t)eΦ(αλ), λ ∈ Λt,α,β(t), K̃(λ) ̸= 0.

Furthermore, the existence of a sequence (tn) in [0, τ) satisfying limn→∞ tn = τ
and supn∈N ln ∥SK(tn)∥ < ∞ implies that there exist β′ > 0 and M ′ > 0 such that

Λτ,α,β′ ⊆ ρ(A) and ∥R(λ :A)∥ 6M ′eΦ(αλ), λ ∈ Λτ,α,β′ .

(ii) Suppose K satisfies (P1), r0 > max(0, abs(K)), Φ : [r0,∞) → [0,∞) is a
continuously differentiable, strictly increasing mapping, limt→∞ Φ(t) = +∞, Φ′(·)
is bounded on [r0,∞) and there exist α > 0, γ > 0 and β > r0 such that

Ψα,β,γ :=
{
λ ∈ C : Reλ > Φ(α| Imλ|)

γ
+ β

}
⊆ ρC(A).

Denote by Γα,β,γ the upwards oriented boundary of Ψα,β,γ and by Ωα,β,γ the open
region which lies to the right of Γα,β,γ . Let the following conditions hold.

(ii.1) The mapping λ 7→ K̃(λ)(λ−A)−1C is analytic on Ωα,β,γ and continuous
on Γα,β,γ .

(ii.2) There exist M > 0 and σ > 0 such that:

∥K̃(λ)(λ−A)−1C∥ 6Me−Φ(σ|λ|), λ ∈ Ωα,β,γ .

(ii.3) There exists a function m : [0,∞) → (0,∞) such that m(s) = 1, s ∈ [0, 1]

and that, for every s > 1, there exists an rs > r0 so that Φ(t)
Φ(st) > m(s),

t > rs.
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(ii.4) limt→∞ te−Φ(σt) = 0.
(ii.5) (∃a > 0)(∃r′a > r0)(∀t > r′a) ln t

Φ(t) > a.

Then the operator A is a subgenerator of a local K-convoluted C-semigroup on
[0, a+m( ασγ )).

(iii) [277] Suppose α > 0 and A generates a (local) α-times integrated semigroup
(Sα(t))t∈[0,τ). Then, for every a ∈ (0, τα ), there exist b > 0 and M > 0 such that:

(172) E(a, b) ⊆ ρ(A) and ∥R(λ :A)∥ 6M(1 + |λ|)α, λ ∈ E(a, b).

(iv) Suppose α > 0, a > 0, b > 0, M > 0,

E(a, b) ⊆ ρC(A), ∥(λ−A)−1C∥ 6M(1 + |λ|)α, λ ∈ E(a, b),

and the mapping λ 7→ (λ − A)−1C, λ ∈ E(a, b) is continuous. Then, for every
β ∈ (α + 1,∞), A is a subgenerator of a local β-times integrated C-semigroup
(Sβ(t))t∈[0,a(β−α−1)).

Proof. The proof of (i) follows from the argumentation given in the proofs of
Theorem 2.7.1 and [307, Theorem 1.3.2]. To prove (ii), set

(173) SK(t) :=
1

2πi

∫
Γα,β,γ

eλtK̃(λ)(λ−A)−1C dλ, t ∈ [0, a+m(α/σγ)).

Let us show that the improper integral in (173) converges for all t ∈ [0, a+m( ασγ )).

Denote by Γ1
α,β,γ := {λ ∈ Γα,β,γ : Imλ > 0} and Γ2

α,β,γ := {λ ∈ Γα,β,γ : Imλ 6 0}.

Taking into account the equality limt→∞ Φ(t) = +∞ as well as (ii.3) and (ii.5), we
easily infer that there exist a sufficiently large real number r′ and a number ζ > 1
so that tΦ(αsγ ) − Φ(σs) 6 lnM − ζ ln s, s > r′. Hence, there exists M ′ > 0 such

that:

(174) etΦ(αs
γ )−Φ(σs) 6M ′s−ζ , s > r′.

Then the estimate (174) implies:∥∥∥∥ ∫
Γ1
α,β,γ∩{λ∈C | Imλ>r′}

eλtK̃(λ)(λ−A)−1C dλ

∥∥∥∥
6

∞∫
r′

e(
Φ(αs)

γ +β)te−Φ(σs)
(

1 +
αΦ′(αs)

γ

)
ds

6 Const eβt
∞∫
r′

et
Φ(αs)

γ −Φ(σs)ds 6 Const eβt
∞∫
1

ds

sζ
<∞.

This implies the convergence of the curve integral over Γ1
α,β,γ ; the convergence of

the curve integral over Γ2
α,β,γ can be proved similarly. This implies SK(t) ∈ L(E),

SK(t)A ⊆ ASK(t) and SK(t)C = CSK(t), t ∈ [0, a+m( ασγ )). Using Cauchy formula

and the estimates (ii.2) and (ii.4), one can simply prove that
∫
Γα,β,γ

K̃(λ)(λ −
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A)−1Cdλ = 0. Proceeding as in the final part of the proof of [307, Theorem 1.3.2],

one gets that A
∫ t
0
SK(s)x ds = SK(t)x−Θ(t)Cx, x ∈ E, t ∈ [0, a+m(σγα )), which

completes the proof of (ii).
The assertion (iv) is a simple consequence of the assertion (ii). �

Theorem 2.7.3. (i) Suppose K is a kernel, M > 0, β > 0, α > 0, Φ : C →
[0,∞), |Θ(t)| 6Meβt, t > 0, (CK(t))t∈[0,τ) is a local K-convoluted cosine function

generated by A and 1/|Θ̃(λ)| 6 eΦ(αλ), Reλ > β, K̃(λ) ̸= 0. Then, for every
t ∈ (0, τ), there exist β(t) > 0 and M(t) > 0 such that

Λ2
t,α,β(t) :=

{
λ2 ∈ C : K̃(λ) ̸= 0, Reλ > Φ(αλ)

t
+ β(t)

}
⊆ ρ(A),(175)

∥R(λ2 :A)∥ 6M(t)
eΦ(αλ)

|λ|
, λ ∈ Λt,α,β(t), K̃(λ) ̸= 0.

Furthermore, the existence of a sequence (tn) in [0, τ) satisfying limn→∞ tn = τ
and supn∈N ln ∥CK(tn)∥ <∞ implies that there exist β′ > 0 and M ′ > 0 such that

Λ2
τ,α,β′ ⊆ ρ(A) and ∥R(λ2 :A)∥ 6M ′ eΦ(αλ)

|λ| , λ ∈ Λτ,α,β′ .

(ii) Suppose α > 0 and A generates a (local) α-times integrated cosine function
(Cα(t))t∈[0,τ). Then, for every a ∈ (0, τ

α+1 ), there exist b > 0 and M > 0 such that:

(176) E2(a, b) ⊆ ρ(A) and ∥R(λ2 :A)∥ 6M(1 + |λ|)α, λ ∈ E(a, b).

(iii) Suppose K satisfies (P1), r0 > max(0, abs(K)), Φ : [r0,∞) → [0,∞) is a
continuously differentiable, strictly increasing mapping, limt→∞ Φ(t) = +∞, Φ′(·)
is bounded on [r0,∞) and there exist α > 0, γ > 0 and β > r0 such that

(177) Ψ2
α,β,γ :=

{
λ2 : λ ∈ C, Reλ > Φ(α| Imλ|)

γ
+ β

}
⊆ ρC(A).

Denote by Γα,β,γ the upwards oriented boundary of Ψα,β,γ (cf. also the formulation
of preceding theorem) and by Ωα,β,γ the open region which lies to the right of Γα,β,γ .
Let the following conditions hold.

(iii.1) The mapping λ 7→ K̃(λ)(λ2−A)−1C is analytic on Ωα,β,γ and continuous
on Γα,β,γ .

(iii.2) There exist M > 0 and σ > 0 such that:∥∥K̃(λ)[(λ2 −A)−1C + C/λ]
∥∥ 6Me−Φ(σ|λ|), λ ∈ Ωα,β,γ .

(iii.3) The conditions (ii.3), (ii.4) and (ii.5) given in the formulation of Theo-
rem 2.7.2 hold.

Then A is a subgenerator of a local K-convoluted C-cosine function on [0, a +
m( ασγ )).

(iv) Suppose α > 0, a > 0, b > 0, M > 0, E2(a, b) ⊆ ρC(A), ∥(λ2 −A)−1C∥ 6
M(1 + |λ|)α, λ ∈ E(a, b), and the mapping λ 7→ (λ2 − A)−1C, λ ∈ E(a, b) is
continuous. Then, for every β ∈ (α+ 2,∞), A is a subgenerator of a local β-times
integrated C-cosine function (Cβ(t))t∈[0,a(β−α−1)).
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Proof. Suppose t ∈ (0, τ), σ ∈ (0, 1) and proj1 : E × E → E is defined by
proj1

(
x
y

)
:= x, x, y ∈ E. Then it is clear from Theorem 2.1.11 that A generates a

(local) Θ-convoluted semigroup (SΘ(s))s∈[0,τ) in E × E and that, thanks to The-
orem 2.7.1, there exist β(t) > 0 and M(t) > 0 such that (175) holds and that, for
every x ∈ E,

R(λ2 :A)x = proj1[R(λ : A)
(
0
x

)
]

= proj1

[
1

Θ̃(λ)

t∫
0

e−λs
( ∫ s

0
CK(v) dv

∫ s
0

(s−v)CK(v) dv
CK(s)− Θ(s)C

∫ s
0
CK(v) dv

)
(I−Bt(λ))−1

(
0

x

)
ds

]
,

for all λ ∈ Λt,α,β(t), where

Bt(λ) =
1

Θ̃(λ)

(
e−λtSΘ(t)I +

∞∫
t

e−λsΘ(s)I ds

)
, ∥Bt(λ)∥ 6 σ;

∥∥(I −Bt(λ))−1
∥∥ 6 1

1 − σ
, λ ∈ Λt,α,β(t).

Since K is a kernel, we have CK(t)CK(s) = CK(s)CK(t), 0 6 t, s < τ and the last
equality implies (I −Bt(λ))−1SΘ(s) = SΘ(s)(I −Bt(λ))−1, 0 6 t, s < τ . Then the
partial integration yields:

R(λ2 :A)x

= proj1

[
1

Θ̃(λ)

t∫
0

e−λs(I−Bt(λ))−1

( ∫ s
0
CK(v) dv

∫ s
0

(s−v)CK(v) dv
CK(s)−Θ(s)C

∫ s
0
CK(v) dv

)(
0

x

)
ds

]

= proj1

[
− (I −Bt(λ))−1

K̃(λ)
e−λt

(∫ t
0
(t− s)CK(s)x ds∫ t

0
CK(s)x ds

)]

+ proj1

[
(I −Bt(λ))−1

K̃(λ)

t∫
0

e−λs
(∫ s

0
CK(r)xdr

CK(s)x

)
ds

]

and

∥R(λ2 :A)x∥ 6 1

1 − σ

(∥∥∥∥∥
t∫

0

(t− s)CK(s)x ds

∥∥∥∥∥+

∥∥∥∥∥
t∫

0

CK(s)x ds

∥∥∥∥∥
)
e−Reλt

|λ||Θ̃(λ)|

+
1

1 − σ

1

|λ∥Θ̃(λ)|

t∫
0

e−Reλs

(∥∥∥∥∥
s∫

0

CK(r)x dr

∥∥∥∥∥+
∥∥∥CK(s)x

∥∥∥) ds
6 1

1 − σ

(∥∥∥∥∥
t∫

0

(t− s)CK(s)x ds

∥∥∥∥∥+

∥∥∥∥∥
t∫

0

CK(s)x ds

∥∥∥∥∥
)
eΦ(αλ)

|λ|
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+
1

1 − σ

eΦ(αλ)

|λ|

t∫
0

(∥∥∥∥∥
s∫

0

CK(r)x dr

∥∥∥∥∥+
∥∥∥CK(s)x

∥∥∥) ds
and this, in turn, implies that (i) holds good. The proof of (ii) follows from (i)
and Remark 3.4.14. The proof of (iii) can be obtained by passing to the theory of
semigroups. Indeed, the assumption (177) and Lemma 2.1.24 imply that Ωα,β,γ ⊆
ρC(A) and (iii.1) gives that the mapping λ 7→ Θ̃(λ)(λ − A)−1C, λ ∈ Ωα,β,γ is
analytic on Ωα,β,γ and continuous on Γα,β,γ . By the estimate (iii.2), we easily infer

that there exists a number M ′ > 0 such that ∥Θ̃(λ)(λ − A)−1C∥ 6 M ′e−Φ(σ|λ|),
λ ∈ Ωα,β,γ . Since (iii.3) holds, we obtain that the operator A is a subgenerator of a
local Θ-convoluted C-cosine function on [0, a+m( ασγ )). The proof of (iii) completes

an employment of Theorem 2.1.11. Notice only that we have the following structural
equality

CK(t) =
1

2πi

∫
Γα,β,γ

eλtλK̃(λ)(λ2 −A)−1C dλ, λ ∈ [0, a+m(α/σγ)).

In order to prove (iv), let us set, for every t ∈ [0, a(β − α− 1)),

Cβ(t) :=
1

2πi

∫
Γ

eλt
(λ2 −A)−1C

λβ−1
dλ,

where Γ is the upwards oriented boundary of E(a, b). Having Lemma 2.1.24 and
Theorem 2.7.2(iv) in mind, the proof of (iv) follows from that of (iii). �

Remark 2.7.4. (i) Suppose α > 0, 0 < τ < ∞ and A generates an α-times
integrated semigroup (Sα(t))t∈[0,τ), resp. an α-times integrated cosine function
(Cα(t))t∈[0,τ). If there exists a sequence (tn) in [0, τ) satisfying limn→∞ tn = τ and
supn∈N ln ∥Sα(tn)∥ < ∞, resp. supn∈N ln ∥Cα(tn)∥ < ∞, then, for every a ∈ (0, τα ],
resp. a ∈ (0, τ

α+1 ], there exist b > 0 and M > 0 such that (172), resp. (176), holds.

(ii) The assumptions of Theorem 2.7.2 and Theorem 2.7.3 are satisfied for

the function Φ(t) = At
1
s + B, where s > 1, A > 0 and B ∈ R. For example,

the item (ii.3) holds for the function m(ς) = ε/ς
1
s , where ε > 0 can be chosen

arbitrarily, and the item (ii.5) holds with a = 0. If K(t) = L−1
(
e−λ

1
s
)
(t), t > 0 and

∥R(λ :A)∥ = O(e(cos(
π
2s )−cσ

1
s )|λ|

1
s ), λ ∈ Ωα,β,γ , then we may apply Theorem 2.7.2 to

deduce that A generates a local K-convoluted semigroup on [0, σ
1
s γ/α

1
s ). Further

on, the assumption on continuous differentiability of the function Φ(·), given in the
formulation of Theorem 2.7.2(ii), can be slightly weakened. In fact, one can assume
that there exists an increasing sequence (np) in [r0,∞) such that the function Φ(·)
is of class C1 in [r0,∞) r {np : p ∈ N}. Suppose now that (Mp) satisfies (M.1),
(M.2) and (M.3′) and that there exist numbers α > 0, β ∈ R and l > 1 such that the
(Mp)-ultralogarithmic region of type l, Λα, β, l = {λ ∈ C : Reλ > αM(l| Imλ|)+β},

belongs to ρ(A) and that ∥R(λ :A)∥ = O(eM(l|λ|)), λ ∈ Λα, β,l. Since, for every
L > 1, there exist constants K > 1 and B > 0, and a number EL > 0, such that
M(Lt) 6 3

2LM(t) + K, t > 0 and LM(t) 6 M(BL−1t) + EL (cf. [51, Lemma
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2.1.3] and Section 1.3), it can be proved by means of Theorem 2.7.2(ii) (with a = 0
and m(s) = 1/( 3

2s+ ε), s > 1, 0 < ε given in advance) that, for every ς > 0,

A generates a local L−1
(
1/
∏∞
p=1

(
1 + B(l+ς)λ

mp

))
-convoluted semigroup on [0, 23

σ
lα ).

By Theorem 2.7.3, the previous example can be simply reformulated in the case of
local K-convoluted cosine functions.

2.8. Examples and applications

Example 2.8.1. Suppose E := L2[0, π] and A := −∆ with the Dirichlet or
Neumann boundary conditions (cf. [14, Section 7.2] and [307]) and

h(λ) :=
1

λ2

∞∏
n=0

n2 − λ

n2 + λ
, Reλ > 0, λ ̸= n2, n ∈ N.

Define h : {λ ∈ C : Reλ > 0} → C by setting: h(λ) = h(λ), Reλ > 0, λ ̸= n2,
n ∈ N and h(n2) = 0, n ∈ N. Then the function h(·) is analytic and there exists an

exponentially bounded, continuous function K such that K̃(λ) = h(λ), Reλ > 0.
Bäumer [33] proved that

∥K̃(λ)R(λ :A)∥ 6 Const +|1/λ|
|λ|2

, if Reλ > 0, λ ̸= n2, n ∈ N,

and that 0 ∈ suppK. Moreover, the function λ 7→ K̃(λ)R(λ : A), Reλ > 0 and

K̃(λ) ̸= 0, can be extended to an analytic function Υ : {z ∈ C : Re z > 0} → L(E)

which satisfies ∥Υ(λ)∥ 6 Const+|1/λ|
|λ|2 , Reλ > 0. Then the use of Theorem 1.1.12

implies that there exists a continuous function SK : [0,∞) → L(E) such that, for
every ε > 0, ∥SK(t)∥ = O(eεt), t > 0 and that Υ(λ) =

∫∞
0
e−λtSK(t) dt, Reλ > 0.

By the proof of Theorem 1.1.12 (see also [434, Theorem 1.12]), it follows that,

for every r > 0, SK(t) = 1
2πi

∫ r+i∞
r−i∞ eλtΥ(λ) dλ, t > 0. Let t > 0 be fixed. With

r = 1/t one easily obtains ∥SK(t)∥ = O(t + t2), t > 0. As an outcome, one
gets that (SK(t))t>0 is a polynomially bounded K-convoluted semigroup generated

by A; let us point out that the dividing of the term
∏∞
n=0

n2−λ
n2+λ by λ2 has been

done only for the sake of brevity and that, for every l > 0, −∆ generates an
exponentially bounded, analytic (Kl ∗0K)-convoluted semigroup of angle π

2 [234],

where Kl(t) = L−1
(
(
∏∞
i=0(1 + lλ

ps ))−1
)
(t), t > 0, l > 0 and s ∈ (1, 2). Assume now

β ∈ [ 12 , 1), α > 1 + β, a(t) = tβ−1

Γ(β) , hα,β(λ) := 1
λα

∏∞
n=0

n2−λβ

n2+λβ , Reλ > 0, λ ̸= n2/β ,

n ∈ N and hα,β(n2/β) = 0, n ∈ N. Let k(t) = L−1
(
hα,β(λ)

)
(t), t > 0. Then A

generates an exponentially bounded, analytic (a, k)-regularized resolvent (R(t))t>0

of angle π
2 ( 1

β − 1), and ∥R(t)∥ = O(tα−1 + tα+β−1), t > 0 [235].

Example 2.8.2. Let A := −∆, E := L2[0, π] and K be as in the previous ex-
ample, and suppose that |K(t)| 6Meβt, t > 0 for appropriate real numbers M > 0
and β > 0. Clearly, |K1(t)| 6 Mteβt, t > 0 and A generates an exponentially

bounded K1-convoluted semigroup (SK1
(t))t>0, where SK1

(t)x =
∫ t
0
SK(s)x ds,
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x ∈ E, t > 0 and K1(t) =
∫ t
0
K(s) ds, t > 0. Moreover, −A also generates an expo-

nentially bounded K-convoluted semigroup (VK(t))t>0 in E since it is the genera-
tor of an analytic C0-semigroup of angle π

2 . An employment of Proposition 2.1.11

implies that the biharmonic operator ∆2, endowed with the corresponding bound-
ary conditions, generates an exponentially bounded K-convoluted cosine function
(CK(t))t>0, where CK(t) := 1/2(SK(t) + VK(t)), t > 0. This implies that ∆2

generates an exponentially bounded K1-cosine function (CK1(t))t>0, and owing to
Theorem 2.4.8, ∆2 generates an exponentially bounded, analytic K2-convoluted
semigroup of angle π

2 , where the function K2(·) is taken in the sense of Theo-
rem 2.4.8. Herein it is worth noting that we have integrated once the function K
so as to prove that the function K2 is exponentially bounded. Actually, one gets
that, for every t > 0:

|K2(t)| 6M

∞∫
0

se−s
2/4t

2
√
πt3/2

seβsds =
M

2
√
π

∞∫
0

r2eβr
√
t− r2

4 dr

=
M

2
√
π

∞∫
0

r2eβ
2t−
(

r
2−β

√
t
)2
dr

=
M

2
√
π
eβ

2t

∞∫
0

r2e−
(

r
2−β

√
t
)2
dr =

M

2
√
π
eβ

2t

∞∫
−β

√
t

8
(
v2 + 2vβ

√
t+ β2t

)
e−v

2

dv

6 4M√
π
eβ

2t

[ ∞∫
−∞

v2e−v
2

dv + 2β
√
t

∞∫
0

ve−v
2

dv + β2t

∞∫
−∞

e−v
2

dv

]
6Me(β

2+1)t,

for an appropriate constant M > 0. Furthermore, K2 is a kernel since

lim sup
λ→∞

ln |K̃2(λ)|
λ

= lim sup
λ→∞

ln |K̃1

(√
λ
)
|

λ
= 0.

On the other side, ∆2 cannot be the generator of a (local) α-times integrated semi-
group, α > 0, since the resolvent set of ∆2 does not contain any ray (ω,∞). Hence,
in the analysis of ∆2 and −∆, we do not need any C, but the use of regularized
operator families enables several advantages which hardly can be considered by the
use of asymptotic Laplace transform techniques. More generally, suppose n ∈ N.
Since ∆ = −A generates a cosine function (cf. for instance [14, Example 7.2.1,
p. 418]), one can employ an old result of Goldstein (cf. [89, p. 215]), in order to see
that −∆2n generates an analytic C0-semigroup of angle π

2 . Hence, an application

of [89, Theorem 8.2] shows that there exists an injective operator Cn ∈ L(L2[0, π])
so that ∆2n generates an entire Cn-regularized group. Further on, one can apply
Proposition 2.1.11 in order to see that the polyharmonic operator ∆4 generates an

exponentially bounded K2-convoluted cosine function. Put K3(t) :=
∫ t
0
K2(s) ds,

t > 0. Then K3(·) is a kernel and we have |K3(t)| 6Mte(β
2+1)t, t > 0. Clearly, ∆4
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generates an exponentially bounded K3-convoluted cosine function. Then Theo-
rem 2.4.8 can be applied again and, as a conclusion, one obtains that ∆4 generates
an exponentially bounded, analytic K3-convoluted semigroup of angle π

2 , where

K3(t) :=
∫∞
0

se−s2/4t

2
√
πt3/2

K3(s) ds, t > 0. Arguing as before, we have that K3(·) is

an exponentially bounded kernel. Continuing this procedure leads us to the fact
that, for every n ∈ N, there exist exponentially bounded kernels Kn and Kn+1 such
that ∆2n generates an exponentially bounded, Kn-convoluted cosine function, and
simultaneously, an exponentially bounded, analytic Kn+1-convoluted semigroup of
angle π

2 . Note that this procedure can be done only with loss of regularity, since
we need to apply Theorem 2.4.8, and that it is not clear whether there exists a
kernel Kn such that ∆2n generates an exponentially bounded, Kn-convoluted co-
sine function. The preceding analysis also enables one to prove that ∆2n generates
an exponentially bounded Kn+1-convoluted group. Observe that the operator −∆,
considered in the first part of this example, generates an exponentially bounded
K-convoluted group.

Further on, assume that A is a self-adjoint operator in a Hilbert space H
and that A has a discrete spectrum (λn)n∈N, where we write the eigenvalues in
increasing order and repeat them according to multiplicity. Suppose Reλn > 0,
n > n0 and m is a natural number greater than any multiplicity of λn, n > n0. If∑

n>n0

(
1 − |

√
λn − 1|√
λn + 1

)
<∞,

then, according to Theorem 1.1.9, there exists an exponentially bounded function K

such that K̃
(√
λn
)

= 0, n > n0. This implies that the function λ 7→ K̃∗m(λ)R(λ2 :
A) can be analytically extended to a right half plane, where K∗m denotes the mth
convolution power of K. If, additionally,∥∥K̃∗m(λ)R(λ2 :A)

∥∥ 6M |λ|−3, Reλ > ω (> 0), λ ̸=
√
λn, n > n0,

for some M > 0, then A generates an exponentially bounded K∗m-convoluted
cosine function. It is evident that this procedure cannot be done if (

√
λn)n>n0

is a uniqueness sequence, see for instance [14] and [32]. Therefore, the theory of
convoluted cosine functions cannot be applied if λn ∼ n2s, n → +∞, for some
s ∈ (0, 1], and this, in turn, implies that the operator −∆, considered in the
first part of this example, cannot be the generator of any exponentially bounded,
convoluted cosine function. It is also worth noting that, for every n ∈ N,there exists
an exponentially bounded kernel kn(t) such that the polyharmonic operator ∆2n

generates an exponentially bounded, analytic (a, kn)-regularized resolvent family
of angle π

2 ([235]), where a(·) has the same meaning as in Example 2.8.1. The case

a(t) = tβ−1

Γ(β) , where β ∈ (0, 1/2), is more delicate [235].

Before going any further, we would like to note that the method described
in Example 2.8.1 and Example 2.8.2 can be applied with minor modifications
to the Legendre differential operator (Af)(x) := −((1 − x2)f ′)′ and to the op-

erator (Amf)(x) := −((1 − x2)f ′)′ + m2

1−x2 f(x), where m ∈ N. Strictly speak-

ing, the operator A with domain D(A) = C∞[−1, 1] is essentially self-adjoint in
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E = L2((−1, 1)) and A has the point spectrum which consists of simple poles
λn = n(n + 1), with characteristic functions being the Legendre polynomials

Ln(x) =
√

2n+1
2 2−n 1

n!
dn

dxn [(1 − x2)n], n = 0, 1, 2, . . . . The operator Am consid-

ered with domain D(Am) =
{
f : f(x) = (1 − x2)m/2P (x), P (x) polynomial

}
is

essentially self-adjoint in L2((−1, 1)) and the point spectrum consists of simple

poles λn = n(n+ 1), n = m,m+ 1, . . . , with Lmn =
√

(n−m)!
(n+m)! (1 − x2)m/2 dm

dxmLn(x)

being the characteristic functions. Concerning time-fractional equations, a pos-
sible application can be made to the Laguerre’s differential operator, (Af)(x) =

−4(xf ′(x))′ + (x + α2

x )f(x) (α > −1) in L2((0,∞)), to the Hermite’s differential

operator (Af)(x) = −f ′′(x)+x2f(x) in L2(Ω), where Ω is an open subset of R, and
to the harmonic oscillator H considered on [406, p. 178]. For further information,
we refer the reader to [409, pp. 283–285] and [406, Sections 8.2, 8.3, 10.3].

The following example is motivated by [249, Example 1.6].

Example 2.8.3. Let (Mp) satisfy (M.1), (M.2) and (M.3′). Define

EMp
:=
{
f ∈ C∞[0, 1] : ∥f∥Mp

=: sup
p>0

∥f (p)∥∞
Mp

<∞
}
,

AMp
:= −d/ds, D(AMp

) :=
{
f ∈ EMp

: f ′ ∈ EMp
, f(0) = 0

}
.

Arguing as in [249, Example 1.6], one can verify that AMp
is not stationary dense

and that: {λ ∈ C : Reλ > 0} ⊆ ρ(AMp
) and ∥R(λ : AMp

)∥ 6 CeM(r̃|λ|), Reλ > 0,
for some C > 0 and r̃ > 0. Moreover, A cannot be the generator of a local
integrated semigroup and Theorem 2.2.4 implies that AMp is the generator of a
global exponentially bounded K-convoluted semigroup, where K is any function
satisfying (P1) and |K̃(λ)| 6 e−M(r|λ|), Reλ > 0, for some r > r̃.

1. Let Mp = p!2, p ∈ N0. Then, by the well-known estimates for associated

functions ([207], [210]), we obtain ∥R(λ : AMp
)∥ 6 Cem1|λ|1/2 , Reλ > 0, for some

m1 > 0 and C > 0. Let K(t) = 1

2
√
πt3

e−
a2

4t , t > 0, for some a > m1

√
2. Then

K̃(λ) = e−a
√
λ, Reλ > 0, where

√
1 = 1, and one can straightforwardly prove that

∥K̃(λ)R(λ :A)∥ 6 Ce

(
m1−a

√
2

2

)
|λ|1/2 , Reλ > 0. Thus, Theorem 2.2.4 implies that

AMp generates an exponentially bounded K-convoluted semigroup (SK(t))t>0. By
the proof of [434, Theorem 1.12], we have

SK(t) =
1

2πi

r+i∞∫
r−i∞

eλtK̃(λ)R(λ :A) dλ, t > 0, for any r > 0.

Let t > 0 and k ∈ N0 be fixed. With r = t−1, b = −m1 +a
√
2
2 and a suitable C > 0,

one easily obtains

∥SK(t)∥ 6 C

+∞∫
−∞

dx

eb(t−2+x2)1/4
,
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∥∥∥SK(t)

tk

∥∥∥ 6 C

+∞∫
−∞

dx

tkebt−1/2/2ebx1/2/2
6 C

+∞∫
−∞

(2k)!dx

tk(bt−1/2/2)2kebx1/2/2
.

Thus, for every k ∈ N0, there exists Ck > 0 such that∥∥∥SK(t)

tk

∥∥∥ 6 Ck

+∞∫
−∞

dx

e(
a
√

2
4 −m1

2 )
√
x
.

This implies that, for every k ∈ N0, ∥SK(t)∥ = O(tk), t > 0. Similarly, if m1 = a
√
2

2 ,

then AMp generates a polynomially bounded
(
K ∗0 t

α−1

Γ(α)

)
-convoluted semigroup for

all α > 1. In this example, one can also use the well known complementary error
function.

2. Assume that Mp = p!. Then (M.3′) does not hold but we continue to
consider E = Ep! and A = Ap!. Let C be an injective operator in L(E). Note
that E is a subspace of the space of functions analytic in some neighborhood of
[0, 1] and that we do not require that R(C) is dense in E. It is easy to see that
ρ(A) contains the right half-plane and that ∥R(λ :A)∥ 6Me|λ|, Reλ > 0, for some
positive constant M . Arguing as in [227, Example 6.2], we reveal that A cannot
be a subgenerator of any local C-regularized semigroup.

3. Let Mp = p!s (s > 1), β ∈ (0, 1) and let, for every l > 0, kl(t) =

L−1
(
1/
∏∞
p=1

(
1 + lλ

ps/β

))
(t), t > 0 and a(t) = tβ−1

Γ(β) . Then it is obvious that there

exist l′ > 0 and M > 0 such that ∥λk̃l′(λ)(I − ã(λ)Ap!s)−1∥ 6 M , λ ∈ Σ π
2β

. This

implies that, for every l > l′, the operator A ≡ Ap!s generates an analytic (a, kl)-
regularized resolvent of angle π

2

(
1
β−1

)
. In the meantime, A cannot be the generator

of an exponentially bounded
(
a, tα

Γ(α+1)

)
-regularized resolvent (α > 0) since A is

not stationary dense. Furthermore, ρ(A) = C. If f ∈ E ≡ Ep!s , t ∈ [0, 1] and λ ∈ C,
set f1λ(t) :=

∫ t
0
e−λ(t−s)f(s)ds and f2λ(t) :=

∫ t
0
eλ(t−s)f(s)ds. Then f1λ(·), f2λ(·) ∈ E,

λ ∈ C and there exist b > 0 and M > 1, independent of f(·), such that

(178)
∥∥f1λ(·)

∥∥ 6M ||f ||eb|λ|
1/s

, Reλ > 0, f ∈ E.

t is clear that ||f2λ(·)||L∞[0,1] 6 e|λ|||f ||, Reλ > 0 and || ddtf
2
λ(·)||L∞[0,1] 6 (|λ|e|λ| +

1)||f ||, Reλ > 0. Proceeding by induction, we obtain
(179)

dn

dtn
f2λ(t) =

dn−1

dtn−1
f(t) +

n−1∑
k=1

λk
dn−1−k

dtn−1−k f(t) + λnf2λ(t), n > 2, t ∈ [0, 1], Reλ > 0.

On the other hand, [207, Proposition 4.5] implies that there exists c > 0 such

that
∑∞
p=0 t

p/p!s = O(ect
1/s

), t > 0. Combined with (282) and the logarithmic
convexity, the last estimate yields:

1

n!s

∥∥∥ dn
dtn

f2λ(·)
∥∥∥
L∞[0,1]

6 ||f || + ||f ||ec|λ|
1/s

+
|λ|n

n!s
e|λ|||f ||

6
(
1 + ec|λ|

1/s

+ ec|λ|
1/s

e|λ|
)
||f ||, Reλ > 0, λ ̸= 0.(180)
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In view of (180) we get that, for every η > 1, there exists Mη > 1, independent of
f(·), such that

(181)
∥∥f2λ(·)

∥∥ 6Mη||f ||eη|λ|, Reλ > 0, f ∈ E.

Consider now the complex polynomial P (z) =
∑n
j=0 ajz

j , z ∈ C, an ̸= 0, n > 2.

Set, for every λ ∈ C, Pλ(·) := P (·) − λ and consider the operator P (A) defined by

D(P (A)) := D(An) and P (A)f :=

n∑
j=0

ajA
jf, f ∈ D(P (A)).

Clearly, P (A) is not stationary dense. Let r > 0 and d > 0 be such that P (z) ̸= 0,
|z| > r and P ′(z) ̸= 0, |z| > d. Let z1,λ, · · ·, zn,λ denote the zeros of the polynomial
z 7→ Pλ(z), z ∈ C and let 0 < m := min|z|>d+1 |P ′(z)|. Then an old result of J. L.

Walsh [417] says that |zj,λ| 6 r + |an|−1/n|λ|1/n, 1 6 j 6 n, λ ∈ C. Furthermore,
it is checked at once that there exists a sufficiently large λ0 > 0 such that zj,λ is
a simple zero of Pλ(z) and that |zj,λ| > d + 1, provided |λ| > λ0 and 1 6 j 6 n.
Therefore, for every λ ∈ C with |λ| > λ0 and for every i, j ∈ {1, · · ·, n} with i ̸= j,
the following holds:

(182) d+ 1 6 |zj,λ| 6 r + |an|−1/n|λ|1/n and |P ′(zj,λ)| > m, zi,λ ̸= zj,λ.

One can simply prove that
(183)
ρ(p(A)) = C and R(λ : p(A)) = (−1)n+1a−1

n R(z1,λ : A) · · ·R(zn,λ : A), λ ∈ C.
Assume now |λ| > λ0. Then de L’Hospital’s rule implies:

(184) an
∏

16i6n
i̸=j

(zi,λ − zj,λ) = (−1)n+1P ′(zj,λ), 1 6 j 6 n.

Using the resolvent equation, (178), (181)-(182) and (184), one can rewrite and
evaluate the right hand side of equality appearing in (183) as follows:∥∥(−1)n+1a−1

n R(z1,λ : A) · · ·R(zn,λ : A)
∥∥

=
∥∥∥(−1)n+1a−1

n

n∑
j=1

R(zj,λ : A)∏
16i6n

i̸=j
(zi,λ − zj,λ)

∥∥∥
=
∥∥∥ n∑
j=1

R(zj,λ : A)

P ′(zj,λ)

∥∥∥ 6 1

m

n∑
j=1

∥∥R(zj,λ : A)
∥∥.(185)

By (183) and (185) we finally get that, for every η > 1,

(186)
∥∥R(λ : p(A))

∥∥ = O
(
eb|an|

−1/n|λ|1/ns

+ eη|an|
−1/n|λ|1/n), λ ∈ C.

Since the preceding estimate holds for any λ ∈ C, it is quite complicated to in-
scribe here all of its consequences; for example, P (A) generates a tempered ultra-
distribution sine of (p!s)-class provided n > 2s, and P (A) generates an exponen-

tially bounded, L−1(e−ϱλ
1/n

)-convoluted group provided ϱ > |an|−1/n/ cos(π/2n).
In what follows, we will present an illustrative application of Corollary 2.5.15.
Suppose n > α > 1, δ ∈ (0, π2 ], α

n (π2 + δ) < π
2 , ϱ > 1/ cos(αn (π2 + δ)) and
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k(t) = L−1(λ−αe−ϱλ
α/n

)(t), t > 0. By (186), P (A) is the integral generator of an ex-

ponentially bounded, analytic ( t
α−1

Γ(α) , k)-regularized resolvent family of angle δ. Let

φ ∈ E and Bf(t) := (φ ∗ f)(t), t ∈ [0, 1], f ∈ E. Then B ∈ L(E), BP (A) ⊆ P (A)B
and, therefore, P (A) + B is the integral generator of an exponentially bounded,

analytic ( t
α−1

Γ(α) , k)-regularized resolvent family of angle δ.

Example 2.8.4. Let E = Lp(R), 1 6 p 6 ∞. Consider the next multiplication
operator with maximal domain in E:

Af(x) := (x+ ix2)2f(x), x ∈ R, f ∈ E.

It is clear that A is dense and stationary dense if 1 6 p < ∞ and that A cannot
the generator of any (local) integrated cosine function, 1 6 p 6 ∞. Moreover,
if p = ∞, then A is not stationary dense since, for example, the function x 7→

1
x2n+1 belongs to D(An) r D(An+1), n ∈ N. Further on, one can easily verify

that A generates an ultradistribution sine of ∗-class, if Mp = p!s, s ∈ (1, 2). If
Mp = p!2, then the analysis given in [223, Example 4.4] shows that A does not
generate an ultradistribution sine of the Roumieu class and that A generates an
ultradistribution sine of the Beurling class. Suppose now Mp = p!s, for some
s ∈ (1, 2), and put δ = 1

s . Then A generates a global (not exponentially bounded)
Kδ-cosine function since, for every τ ∈ (0,∞), A generates a Kδ-cosine function on
[0, τ). Indeed, suppose M(λ) 6 Cs|λ|1/s, λ ∈ C, τ ∈ (0,∞) and choose an α > 0

with τ 6 cos(δπ/2)
Csα1/s . It is evident that for such an α > 0 there exists a sufficiently

large β > 0 such that Λ2
α,β,1 ⊆ ρ(A) and that the resolvent of A is bounded on

Λ2
α,β,1, where Λα,β,l = {λ ∈ C : Reλ > αM(l|λ|) + β}. Put Γ := ∂(Λα,β,1). We

assume that Γ is upwards oriented. Define

(Cδ(t)f)(x) :=
1

2πi

∫
Γ

λeλt−λ
δ

λ2 − (x+ ix2)2
dλf(x), f ∈ E, x ∈ R, t ∈

[
0,

cos(δπ/2)

Csα1/s

)
.

Note that the above integral is convergent since
∣∣e−λδ ∣∣ 6 e− cos(δπ/2)|λ|δ , Reλ > 0

and ∣∣eλt−λδ ∣∣ 6 eβteM(αλ)t−cos(δπ/2)|λ|δ 6 eβteCsα
1/s|λ|δt−cos(δπ/2)|λ|δ , λ ∈ Γ.

It is checked at oncethat (Cδ(t))t∈[0,τ) is a local Kδ-convoluted cosine function
generated by A. At the end of this example, let us point out that there exists
τ0 ∈ (0,∞) such that A generates a local K1/2-convoluted cosine function on [0, τ0)
and that the preceding example can be set in the context of (a, k)-regularized
resolvent families ([235]); in such a way, one can simply construct examples of
global not exponentially bounded (a, k)-regularized resolvent families.

Example 2.8.5. (i) ([271]) Let E = C0(R) ⊕ C0(R) ⊕ C0(R), C(f, g, h) :=
(f, g, sin(·)h(·)), f, g, h ∈ C0(R) and A(f, g, h) := (f ′ + g′, g′, (χ[0,∞) − χ(−∞,0])h),
(f, g, h) ∈ D(A) := {(f, g, h) ∈ E : f ′ ∈ C0(R), g′ ∈ C0(R), h(0) = 0}. Arguing
as in [271, Example 8.1, Example 8.2], one gets that A is the integral generator
of an exponentially bounded once integrated C-semigroup and that A is not a
subgenerator of any local C-regularized semigroup. Suppose now mi ∈ C1(R),



2.8. EXAMPLES AND APPLICATIONS 159

i = 1, 2, the mappings t 7→ |t|mi(t), t ∈ R and t 7→ |t|m′
i(t), t ∈ R are bounded

for i = 1, 2; C(R) ∋ m3 is bounded and satisfies m3(0) = 0. Put, for every f ,
g, h ∈ C0(R),

B(f, g, h) :=

(
m1(·)

·∫
0

f(s) ds, m2(·)
·∫

0

g(s) ds, sin(·)m3(·)h(·)
)
.

Then B ∈ L(E), R(B) ⊆ C(D(A)) and BC(f, g, h) = CB(f, g, h), (f, g, h) ∈ E. By
Theorem 2.5.7, one obtains that A+B is the integral generator of an exponentially
bounded once integrated C-semigroup.

(ii) Let E := L1(R) and let D := d/dx with maximal distributional domain.
Then it is well known (cf. also [171, Corollary 3.4, Example 7.1]) that E has
the Fourier type 1, and in particular, that E is not a B-convex Banach space.
Furthermore, A := D2 = d2/dx2 generates a bounded cosine function (C(t))t>0

given by

(C(t)f)(x) :=
1

2

(
f(x+ t) + f(x− t)

)
, t > 0, x ∈ R, f ∈ L1(R),

and Sobolev imbedding theorem implies D(A) = W 1,2(R) ⊆ C(R) ∩ L∞(R). Sup-
pose g ∈ L1(R)rL∞(R) and define a linear operator B : L1(R)∩L∞(R) → L1(R)
by Bf(x) := f(x)g(x), f ∈ L1(R) ∩ L∞(R). In general, B cannot be extended to
a bounded linear operator from L1(R) into L1(R) and R(B) * D(A). It is clear
that, for every f ∈ L1(R) and λ ∈ C with Reλ > 0:

∥∥B(2λR(λ2 :A)f)
∥∥ =

∞∫
−∞

|g(x)|

∣∣∣∣∣
∞∫
0

e−λt
(
f(x+ t) + f(x− t)

)
dt

∣∣∣∣∣ dx
6

∞∫
−∞

|g(x)|
∞∫
0

(
|f(x+ t)| + |f(x− t)|

)
dt dx

6 2∥g∥∥f∥.

This implies that the assumptions quoted in the formulation of Corollary 2.5.10(i)
hold with λ0 = 1. Hence, A + B generates an exponentially bounded α-times
integrated cosine function for every α > 1; let us also note that it is not clear
whether there exists β ∈ [0, 1) such that A+B generates a (local) β-times integrated
cosine function although one can simply prove that there exist a > 0 and M > 0
such that ∥λR(λ2 : A+B)∥ 6 M

Reλ , λ ∈ C, Reλ > a.

(iii) Suppose A generates a (local) α-times integrated cosine function for some
α > 0, B ∈ L(E) and BA ⊆ AB. Then the proof of [223, Theorem 4.3] and
the analysis given in [228, Example 7.3] (cf. also Theorem 2.6.10) imply that, for
every s ∈ (1, 2), ±iA generate global K1/s-convoluted semigroups and that ±iA
generate local K1/2-semigroups, where Kσ(t) = L−1

(
e−λ

σ)
(t), t > 0, σ ∈ (0, 1). By

Theorem 2.5.3 and Remark 2.5.4(iii), we have that ±i(A+B) generate global K1/s-
semigroups for every s ∈ (1, 2) and that ±i(A+B) generate local K1/2-convoluted
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semigroups. Therefore, a large class of differential operators generating integrated
cosine functions can be used to provide applications of Theorem 2.5.3.

(iv) ([36, Example 2.24]) Let E := l1, 0 < α < 1 and l := ⌈ 1−α
α ⌉. Define a closed

densely defined linear operator Aα on E by D(Aα) := {⟨xn⟩ ∈ l1 :
∑∞
n=1 n|xn| <

∞} and Aα⟨xn⟩ := ⟨eiαπ
2 nxn⟩, ⟨xn⟩ ∈ D(Aα). Then Aα is the integral generator of a

bounded ( t
α−1

Γ(α) , 1)-regularized resolvent family, Aα + I is not the integral generator

of an exponentially bounded ( t
α−1

Γ(α) , 1)-regularized resolvent family and σ(Aα) =

{eiαπ
2 n : n ∈ N}. Suppose

B ∈ L(E) and R(B) ⊆ D(Al) =

{
⟨xn⟩ ∈ l1 :

∞∑
n=1

nl|xn| <∞
}
.

Then A + B generates an exponentially bounded ( t
α−1

Γ(α) , 1)-regularized resolvent

family [242].

(v) [114] Consider the Laplace-Beltrami operator −∆T on the torus T := R2/Γ,
where Γ := Z(a, 0) + Z(0, b) and a, b > 0. Then i∆T generates on Lp(T ) (1 < p <
∞) an exponentially bounded n-times integrated group for any n > | 1p − 1

2 |, and

σ(i∆T ) = σp(i∆T ) = {( 2π
a )2m2 + ( 2π

b )2n2 : m, n ∈ Z}. Let α := a2/b2 be the
algebraic number of degree d > 2 and let {λn : n ∈ N} be the set of eigenvalues of
i∆T on Lp(T ). Then there exist projectors Tk on Lp(T ) such that

∞∑
k=1

Tkx = x, x ∈ D
(
(−∆)n(d−1)+2

)
, where n >

∣∣∣1
p
− 1

2

∣∣∣.
(vi) Let us recall that a Banach space E has Fourier type p ∈ [1, 2] iff the Fourier

transform extends to a bounded linear operator from Lp(R : E) to Lq(R : E), where
1/p+1/q = 1. Each Banach space E has Fourier type 1, and E∗ has the same Fourier
type as E. A space of the form Lp(Ω, µ) has Fourier type min(p, p

p−1 ) and there exist

examples of non-reflexive Banach spaces which do have non-trivial Fourier type. As
mentioned in Section 2.5, the assertions of Theorem 2.5.9 and Corollary 2.5.10 can
be refined if E has non-trivial Fourier type, which will be indicated in the following
fractional analogue of [171, Proposition 8.1]. Let 1 < p < ∞, 1/p + 1/q = 1,
k ∈ N0, 0 < β 6 2 and E := Lp(R). Define a closed linear operator Aβ,k on

E by D(Aβ,k) := W 4k+2,p(R) and Aβ,kf := ei(2−β)
π
2 f (4k+2), f ∈ D(Aβ,k). Put

Bf(x) := V (x)f (l)(x), x ∈ R with maximal domain D(B) := {f ∈ E : V ·f (l) ∈ E};
here V (x) is a potential and l ∈ N0. Assume first that

(187) V ∈ Lp(R) and l 6 1

p

(
(4k + 2)p− 1 − (4k + 2)(p− 1)

β

)
.

Given Reλ > 0, denote by µj,λ (1 6 j 6 2k + 1) (2k + 1) solutions of the equation

µ4k+2
j,λ = λβei(β

π
2 −π) with Reµj,λ > 0. Then D(A) ⊆ D(B),

(
R
(
λβ : Aβ,k

)
f
)
(x) =

eiβ
π
2

4k + 2

∞∫
−∞

2k+1∑
j=1

e−µj,λ|x−s|

(−µj,λ)4k+1
f(s)ds, f ∈ E, x ∈ R, Reλ > 0,
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(
BR
(
λβ : Aβ,k

)
f
)
(x) =

eiβ
π
2

4k + 2
V (x)

2k+1∑
j=1

( x∫
−∞

e−µj,λ(x−s)

(−µj,λ)4k−l+1
f(s)ds

−
∞∫
x

eµj,λ(x−s)

µ4k−l+1
j,λ

f(s)ds

)
, f ∈ E, x ∈ R, Reλ > 0,

(188)
∥∥R(λβ : Aβ,k

)∥∥ 6
(
|λ|β(1−

1
4k+2 ) min

(
Reµ1,λ, · · ·,Reµ2k+1,λ

))−1

, Reλ > 0,

and
(189)∥∥∥BR(λβ : Aβ,k

)∥∥ 6 ||V ||p
(
|λ|β(1−

l+1
4k+2 ) min

((
Reµ1,λ

)1/q
, · · ·,

(
Reµ2k+1,λ

)1/q))−1

,

provided Reλ > 0. Furthermore, Reµj,λ = |λ|
β

4k+2 cos(arg(µj,λ)), Reλ > 0, 1 6
j 6 2k + 1 and

min(Reµ1,λ, · · ·,Reµ2k+1,λ) = |λ|
β

4k+2 min
(

cos
(arg(λ)β + (βπ)/(2)

4k + 2
+

(2k − 1)π

4k + 2

)
,

− cos
(arg(λ)β + (βπ)/(2)

4k + 2
+
π

2

))
, Reλ > 0,

which implies that there exists a constant cβ,k > 0 such that

(190) |λ|
β

4k+2 cos(arg(λ))
/

min(Reµ1,λ, · · ·,Reµ2k+1,λ) 6 cβ,k, Reλ > 0.

Keeping in mind (187)-(190), we obtain that

(191)
∥∥R(λβ : Aβ,k

)∥∥ = O
(
|λ|1−β(Reλ)−1

)
, Reλ > 0

and

∥∥BR(λβ : Aβ,k
)∥∥ = O

(
||V ||p(Reλ)−β(1−

l+1
4k+2+

1
(4k+2)q

)) = O
(
||V ||p(Reλ)(−1)/q

)
,

(192)

provided Reλ > 0. Denote by βk the infimum of all non-negative real numbers r > 0

such that the operator Aβ,k generates an exponentially bounded ( t
β−1

Γ(β) ,
tr

Γ(r+1) )-

regularized resolvent family. The precise computation of integration rate βk is
non-trivial problem (cf. also the representation formula [36, Example 3.7, (3.15)]).
Clearly, (191) yields the imprecise estimate βk 6 1, and βk 6 | 12 − 1

p | provided

β ∈ {1, 2} ([147], [456]). Set κp := min( 1
p ,

p−1
p ). By [242, Theorem 3.2], Aβ,k +B

generates an exponentially bounded ( t
β−1

Γ(β) ,
tσβ,k,p

Γ(σβ,k,p+1) )-regularized resolvent family

for any σβ,k,p > βk+κp. By (191)-(192) and the proof of [171, Proposition 8.1], the

above remains true provided (4k+2)p−1− (4k+2)(p−1)
β > 0, l = 0 and V ∈ Lp(R)+

L∞(R); similarly, one can consider the operators A1
β,k (k ∈ N, 0 < β 6 2) and

A2
β,k (k ∈ N, 0 < β 6 1) given by A1

β,kf := e−iβ
π
2 f (4k), f ∈ W 4k,p(R) := D(A1

β,k)

and A2
β,kf := e±i

π
2 (1−β)f (2k+1), f ∈W 2k+1,p(R) := D(A2

β,k).

In the following example, we use the standard multi-index notation.



162 2. CONVOLUTED C-SEMIGROUPS AND COSINE FUNCTIONS

Example 2.8.6. Let k ∈ N, aα ∈ C, 06 |α|6k, aα ̸= 0 for some α with |α| = k,
P (x) =

∑
|α|6k aαi

|α|xα, x ∈ Rn, P (·) is an elliptic polynomial, i.e., there exist

C > 0 and L > 0 such that |P (x)| > C|x|k, |x| > L, ω := supx∈Rn Re(P (x)) < ∞,
E is one of the spaces Lp(Rn) (1 6 p 6 ∞), C0(Rn), Cb(Rn), BUC(Rn),

P (D) :=
∑
|α|6k

aαf
(α) and D(P (D)) :=

{
f ∈ E : P (D)f ∈ E distributionally

}
.

Put nE = n| 12 − 1
p |, if E = Lp(Rn) for some p ∈ (1,∞) and nE > n

2 , otherwise.

Then the following holds:

(i) [14] The operator P (D) generates an exponentially bounded r-times in-
tegrated semigroup in E for any r > nE .

(ii) [434] The operator P (D) generates an exponentially bounded nE-times
integrated semigroup in Lp(Rn) provided p ∈ (1,∞).

(iii) [277], [233] For every ω′ ∈ (ω,∞) and r > n| 12 − 1
p |, the operator P (D)

generates an exponentially bounded (ω′−P (D))−r-regularized semigroup
in E.

It is noteworthy that the theory of C-regularized semigroups can be applied to
non-elliptic differential operators. More precisely, one can prove that, in the case
of a general polynomial P (x) satisfying changebar ω := supx∈Rn Re(P (x)) < ∞,

P (D) is the integral generator of a global exponentially bounded (1 − ∆)−nEk/2-
regularized semigroup. If ω = ∞, then the operator P (D) generates an entire
C-regularized group. The above estimates can be slightly improved if P (x) is
r-coercive for some r ∈ (0, k] (that is, |P (x)|−1 = O(|x|−r) as |x| → ∞). For
time-dependent PDE’s, we recommend for the reader [463]. Finally, we would
like to draw attention to the recent paper of Nagaoka [332] for the generation of
fractionally integrated semigroups by superelliptic differential operators.

Example 2.8.7. Let p ∈ [1,∞] and n ∈ N. Then the following holds:
(i) [156] The Schrödinger operator i∆p, considered with its maximal distribu-

tional domain, generates a C0-semigroup (group) in Lp(Rn) iff p = 2.

(ii) [147]–[148] Let p > 1. Then the Schrödinger operator i∆p generates an
exponentially bounded r-times integrated semigroup in Lp(Rn) iff r > n| 12−

1
p |. The

Schrödinger operator i∆p, where p ∈ {1,∞}, generates an exponentially bounded
r-times integrated semigroup in Lp(Rn) iff r > n

2 .

(iii) [119] Let 1 6 p < ∞. Then the Schrödinger operator i∆p, considered
with the Dirichlet or Neumann boundary conditions, generates an exponentially
bounded r-times integrated semigroup (group) in Lp((−π, π)n) for any r > n

2 |
1
2−

1
p |,

and moreover, i∆p does not generate an exponentially bounded r-times integrated
semigroup (group) in Lp((−π, π)n) if r < n

2 |
1
2 − 1

p |; the previous assertion remains

true in the case of Banach space Lp(Tn), where Tn is the n-dimensional torus.

For further information concerning Schrödinger type evolution equations in Lp

type spaces, we refer the reader to [14]–[23], [89], [147]–[148], [187]–[189], [257],
[335], [355] and [434]–[435].
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Example 2.8.8. Let p ∈ [1,∞) and n ∈ N. Then we have the following:
(i) [294] The Laplacian ∆p, considered with its maximal distributional domain,

generates a cosine function in Lp(Rn) iff p = 2 or n = 1.

(ii) [147], [120] The Laplacian ∆p generates an exponentially bounded r-times
integrated cosine function in Lp(Rn) iff r > (n− 1)| 12 − 1

p |.

(iii) [460] The Laplacian ∆p generates a polynomially bounded (1−∆p)
−n

2 | 12−
1
p |-

regularized cosine function in Lp(Rn) if p ∈ (1,∞), resp. (1 − ∆p)
−s-regularized

cosine function (s > n
4 ) if p = 1.

(iv) [195] The Laplacian ∆p with the Dirichlet or Neumann boundary con-
ditions generates an exponentially bounded r-times integrated cosine function in
Lp((0, π)n) for any r > (n− 1)| 12 − 1

p |.
Assume further that P (x) is not necessarily elliptic polynomial of order k and

that E is one of the spaces listed in Example 2.8.6. Set ht,β(x) := (1 + |x|2)−β/2

×
∑∞
j=0

t2jP (x)j

(2j)! , x ∈ Rn, t > 0, β > 0, Ω(ω) := {λ2 : Reλ > ω}, if ω > 0 and

Ω(ω) := Cr (−∞, ω2], if ω 6 0. Assume r ∈ [0, k] and (H’) holds with some ω ∈ R,
where:

(H’): P (x) /∈ Ω(ω), x ∈ Rn and, in the case r ∈ (0, k], there exist σ > 0 and
σ′ > 0 such that Re(P (x)) 6 −σ|x|r + σ′, x ∈ Rn.

Then the proof of [460, Theorem 2.2] implies that there exists M > 1 such that,
for every β > (m − r

2 )n4 , P (D) generates an exponentially bounded (1 − ∆)−β-

regularized cosine function (Cβ(t))t>0 in E which satisfies Cβ(t)f = F−1ht,β ∗ f ,
t > 0, f ∈ E and ∥Cβ(t)∥ 6 Mgn/2(t), t > 0, where the function gn/2(t) is

defined on [460, p. 40] and F−1 denotes the inverse Fourier transform. The previous
estimate can be additionally refined in the case that E = Lp(Rn) (1 < p < ∞) by
allowing that β takes the value 1

2 (m− r
2 )n| 1p −

1
2 |.

Example 2.8.9. [37], [62], [225] Suppose that ω : [0,∞) → [0,∞) is a con-

tinuous, concave, increasing function satisfying limt→∞ ω(t) = ∞, limt→∞
ω(t)
t = 0

and
∫∞
1

ω(t)
t2 dt <∞. Given x0 ∈ (0,∞), define

Ω(ω) :=
{
λ ∈ C : Reλ > max

(
x0, ω(| Imλ|)

)}
,

and assume further that A is a closed, linear operator which satisfies Ω(ω) ⊆ ρ(A)
and ∥R(λ : A)∥ 6 M(1 + |λ|)neω(σ|λ|), λ ∈ Ω(ω), for some M > 0, σ > 0 and
n ∈ N. Then there exist τ > 0 and an exponentially bounded, continuous kernel
K such that A generates a local K|[0,τ)-convoluted semigroup (SK(t))t∈[0,τ); in the
case σ = 0, one can prove that there exists a family of bounded injective operators
(C(k, ε))ε>0 such that, for every ε > 0, A is a subgenerator of a global C(k, ε)-
regularized semigroup that is infinitely differentiable in t > 0.





CHAPTER 3

ABSTRACT CAUCHY PROBLEMS IN THE
SPACES OF OPERATOR VALUED
(ULTRA-)DISTRIBUTIONS AND

HYPERFUNCTIONS

3.1. C-Distribution semigroups

3.1.1. Elementary properties of C-distribution semigroups. Let G ∈
D′

0(L(E)) satisfy CG = GC. If

(C.D.S.1) G(φ ∗0 ψ)C = G(φ)G(ψ), φ, ψ ∈ D,
then G is called a pre-(C-DS) and if additionally

(C.D.S.2) N (G) :=
∩
φ∈D0

Kern(G(φ)) = {0},

then G is called a C-distribution semigroup, (C-DS) in short. If, moreover

(C.D.S.3) R(G) :=
∪
φ∈D0

R(G(φ)) is dense in E,

then G is called a dense (C-DS).
This definition, with C = I, was introduced in [252], where Kunstmann defined

a distribution semigroup, (DS) in short. It is clear, if G is a pre-(C-DS), then
G(φ)G(ψ) = G(ψ)G(φ), φ, ψ ∈ D. Also, in this case, N (G) is a closed subspace of
E.

Recall, the polars of nonempty sets M ⊆ E and N ⊆ E∗ are defined as follows:

M◦ = {y ∈ E∗ : |y(x)| 6 1 for all x ∈M},
N◦ = {x ∈ E : |y(x)| 6 1 for all y ∈ N}.

Repeating literally the arguments given in [252], one can prove the following as-
sertion describing the structural properties of a pre-(C-DS) on its kernel space.

Proposition 3.1.1. Let G be a pre-(C-DS). Then, with N = N (G) and G1

being the restriction of G to N , (G1 = G|N ) we have: There exists a unique operators

T0, T1, . . . , Tm ∈ L(E) such that G1 =
∑m
j=1 δ

(j) ⊗ Tj, TiC
i = (−1)iT i+1

0 , i =

0, 1, . . . ,m− 1 and T0Tm = Tm+2
0 = 0.

In the next proposition we present some analogues of results known for distri-
bution semigroups (cf. [252]).

165
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Proposition 3.1.2. Let G be a pre-(C-DS), F := E/N (G) and let q be the
corresponding canonical mapping q : E → F .

(i) Let H ∈ L(D : L(F )) be defined by qG(φ) := H(φ)q for all φ ∈ D and let

C̃ be a linear operator in F defined by C̃q := qC. Then C̃ ∈ L(F ) and C̃

is injective. Moreover, H is a (C̃-DS) in F .

(ii) C(⟨R(G)⟩) ⊆ R(G), where ⟨R(G)⟩ denotes the linear span of R(G).

(iii) Assume G is not dense and CR(G) = R(G). Put R := R(G) and H :=
G|R. Then H is a dense pre-(C1-DS) on R with C1 = C|R.

(iv) Assume R(C) = E. Then the dual G(·)∗ is a pre-(C∗-DS) on E∗ and

N (G∗) = R(G)
◦
.

(v) If E is reflexive and R(C) = E, then N (G) = R(G∗)
◦
.

(vi) Assume R(C) = E. Then G∗ is a (C∗-DS) in E∗ iff G is a dense pre-(C-
DS). If E is reflexive, then G∗ is a dense pre-(C∗-DS) in E∗ iff G is a
(C-DS).

Proof. The proof will be given only for (i). First of all, notice that the

definition of C̃(q(x)) does not depend on the representative of a class q(x). As a
matter of fact, the assumption q(x) = q(y), i.e., G(φ)(x − y) = 0, φ ∈ D0, and

CG = GC, imply G(φ)(Cx − Cy) = 0, φ ∈ D0, and C̃(q(x)) = C̃(q(y)). Now it is

clear that C̃ is a linear operator in F . To prove that C̃ is continuous, suppose x ∈ E.
Then ∥C̃(q(x))∥ = infy∈N (G) ∥Cx + y∥. Let y ∈ N (G) be fixed. Applying again

CG = GC, we have that Cy ∈ N (G). Thus, ∥C̃(q(x))∥ 6 ∥Cx+Cy∥ 6 ∥C∥ ∥x+y∥;

this implies ∥C̃(q(x))∥ 6 ∥C∥ ∥q(x)∥, C̃ ∈ L(F ) and ∥C̃∥ 6 ∥C∥. Let C̃(q(x)) = 0.
Then Cx ∈ N (G) and CG(φ)x = 0, φ ∈ D0. Since C is an injective operator,

one has x ∈ N (G) and q(x) = 0. Therefore, C̃ ∈ L(F ) and C̃ is injective. One

sees directly that H satisfies (C̃.D.S.1) and C̃H = HC̃. Suppose H(φ)q(x) = 0,
φ ∈ D0, i.e., G(φ)x ∈ N (G), φ ∈ D0. This implies G(ψ)G(φ)x = 0, CG(φ ∗ψ)x = 0
and G(φ ∗ ψ)x = 0, φ, ψ ∈ D0. Choose a regularizing sequence (ρn) to obtain
G(φ)x = limn→∞ G(φ ∗ ρn)x = 0, φ ∈ D0 and q(x) = 0. �

Let G be a (C-DS) and let T ∈ E ′
0(C), i.e., T is a scalar-valued distribution

with compact support in [0,∞). Define G(T ) on a subset of E by

y = G(T )x iff G(T ∗ φ)x = G(φ)y for all φ ∈ D0.

Denote its domain by D(G(T )). By (C.D.S.2), G(T ) is a function. Moreover, G(T )
is a closed linear operator and G(δ) = I. The (infinitesimal) generator of a (C-DS)
G is defined by A := G(−δ′). Since for ψ ∈ D, ψ+ := ψ1[0,∞) ∈ E ′

0(C), (1[0,∞)

stands for the characteristic function of [0,∞)) the definition of G(ψ+) is clear.
Further on, it is visible that C does not appear in the definition of G(T ). Someone
may think that the notion of G(T ) is misleading without C. This is not the case;
this just simplifies the definition of A. Namely, let us define the operator GC(T )
(T ∈ E ′

0(C)) by GC(T ) =
{

(x, y) ∈ E × E : G(T ∗ φ)Cx = G(φ)y, φ ∈ D0

}
. It can

be easily seen that GC(T ) is a closed linear operator as well as that GC(δ) = C
and G(T )C = GC(T ), T ∈ E ′

0(C). Further on, if G is a (C-DS), T ∈ E ′
0(C) and
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φ ∈ D, then G(φ)G(T ) ⊆ G(T )G(φ), CG(T ) ⊆ G(T )C and R(G) ⊆ D(G(T )). If
f : R→ C, put (τtf)(s) := f(s− t), s ∈ R, t ∈ R. Note, if G is a pre-(C-DS) and φ,
ψ ∈ D, then the assumption φ(t) = ψ(t), t > 0, implies G(φ) = G(ψ). Indeed, put
η = φ− ψ. Then η ∈ D(−∞,0] and the continuity of G implies limh→0− G(τhη)x =
G(η)x = 0, x ∈ E. Now we state:

Proposition 3.1.3. If G is a (C-DS), then G(ψ+)C = G(ψ), ψ ∈ D.

Proof. Let x ∈ E and ψ ∈ D. Then G(ψ+)Cx = G(ψ)x iff G(ψ+ ∗ φ)Cx =
G(φ)G(ψ)x for all φ ∈ D0 iff G(ψ+ ∗ φ)Cx = G(φ ∗0 ψ)Cx for all φ ∈ D0. The last
statement is true since, for every fixed φ ∈ D0, one has φ ∗0 ψ = ψ+ ∗ φ. �

Using the same arguments as in [252, Lemma 3.6], one can prove the following.

Proposition 3.1.4. Let S, T ∈ E ′
0, φ ∈ D0, ψ ∈ D and x ∈ E. Then the

following holds:

(i) (G(φ)x, G(

m︷ ︸︸ ︷
T ∗ · · · ∗ T ∗φ)x) ∈ G(T )m, m ∈ N.

(ii) G(S)G(T ) ⊆ G(S ∗T ) with D(G(S)G(T )) = D(G(S ∗T ))∩D(G(T )), and
G(S) +G(T ) ⊆ G(S + T ).

(iii) (G(ψ)x, G(−ψ′)x− ψ(0)Cx) ∈ G(−δ′).
(iv) If G is dense, then its generator is densely defined.

Example 3.1.5. (i) Let A be the infinitesimal generator of a C-regularized
semigroup (T (t))t>0 and G(φ) :=

∫∞
0
φ(t)T (t) dt, φ ∈ D. Then G is a (C-DS) with

the generator A.

Proof. We will only prove that A is the generator of G. The following is
well known: C−1AC = A, T (t)C = CT (t), T (t)A ⊆ AT (t), t > 0. Suppose now

(x, y) ∈ C−1AC = A. Then A
∫ t
0
T (s)Cxds = T (t)Cx−C2x and

∫ t
0
T (s)ACxds =

T (t)Cx − C2x, t > 0. Hence,
∫ t
0
T (s)Cy ds = CT (t)x − C2x and

∫ t
0
T (s)y ds =

T (t)x− Cx, t > 0. We have to prove −
∫∞
0
φ′(t)T (t)x dt =

∫∞
0
φ(t)T (t)y dt for all

φ ∈ D0. This follows from

∞∫
0

φ(t)T (t)y dt = −
∞∫
0

φ′(t)

t∫
0

T (s)y ds dt = −
∞∫
0

φ′(t)(T (t)x− Cx) dt

= −
∞∫
0

φ′(t)T (t)x dt.

Consequently, (x, y) ∈ B, where B is the generator of G. Suppose (x, y) ∈ B. Then

−
∫∞
0
φ′(t)T (t)x dt =

∫∞
0
φ(t)T (t)y dt and

∫∞
0
φ′(t)T (t)x dt =

∫∞
0
φ′(t)

∫ t
0
T (s)y ds dt,

φ ∈ D0. Thus, T (t)x−
∫ t
0
T (s)yds = Const. and

∫ t
0
T (s)y ds = T (t)x− Cx, t > 0.

Hence, A
∫ t
0
T (s)x ds =

∫ t
0
T (s)y ds for all t > 0. Since A is closed, we obtain

T (t)x∈D(A) and AT (t)x=T (t)y for all t>0. Accordingly, (x, y)∈C−1AC=A. �
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(ii) If G is a (DS) with the generator A and GC = CG, then GC is a (C-DS)
with the generator A.

(iii) [185] Let P be a bounded projector on E with PC = CP . Define G(φ) :=∫∞
0
φ(t) dtPC, φ ∈ D. Then G is a pre-(C-DS) and N (G) = Kern(P ).
(iv) [252, Example 2.8] Let m ∈ N and let Hm denote the completion of

Cm[0, 1] with respect to the norm f 7→ ∥f∥Hm :=
∑
α6m ∥fα∥L2 . Then Hm is a

separable Hilbert space and the next expression G(φ)f := (φ ∗0 f)1[0,1], φ ∈ D,
f ∈ Hm, defines a non-dense (DS) in Hm.

3.1.2. Connections with integrated C-semigroups. Exponential C-
distribution semigroups. Let remind us that the abstract Cauchy problem

(Cn+1(τ)) :


u ∈ C([0, τ) : [D(A)]) ∩ C1([0, τ) : E),

u′(t) = Au(t) + tn

n!Cx, t ∈ [0, τ),
u(0) = 0,

is C-well posed if for any x ∈ E there exists a unique solution of Cn+1(τ). In
this subsection, we investigate relations between C-distribution semigroups and
the corresponding Cn+1(τ) problems with (local) integrated C-semigroups.

Lemma 3.1.6. Let G be a (C-DS) generated by A. Then C−1AC = A.

Proof. Let (x, y) ∈ A. Then G(−φ′)x = G(φ)y, CG(−φ′)x = CG(φ)y and
G(−φ′)Cx = G(φ)Cy, φ ∈ D0. So, (Cx,Cy) ∈ A and A ⊆ C−1AC. Assume
(x, y) ∈ C−1AC. Then ACx = Cy and G(−φ′)Cx = G(φ)Cy, φ ∈ D0. Since
CG = GC and C is injective, one has G(−φ′)x = G(φ)y, φ ∈ D0, (x, y) ∈ A and
C−1AC = A. �

Theorem 3.1.7. Let G be a (C-DS) generated by A. Then, for every τ > 0,
there exist nτ ∈ N and a non-degenerate operator family (W (t))t∈[0,τ) such that:

(i) A
∫ t
0
W (s)x ds = W (t)x− tnτ

nτ !
Cx, t ∈ [0, τ), x ∈ E,

(ii) CA ⊆ AC, W (t)A ⊆ AW (t), CW (t) = W (t)C, t ∈ [0, τ) and
(iii) (W (t))t∈[0,τ) is a local nτ -times integrated C-semigroup generated by A.

Proof. It is clear that AG(φ)x = −G(φ′)x − φ(0)Cx, φ ∈ D, x ∈ E. This
implies that G is a continuous linear mapping from D into L(E, [D(A)]). By Theo-
rem 1.3.2, one obtains that, for every τ > 0, there exist nτ ∈ N and W ∈ C([−τ, τ ] :
L(E, [D(A)])) such that G(φ)x = (−1)nτ

∫ τ
−τ φ

(nτ )(t)W (t)x dt, x ∈ E, φ ∈ D(−τ,τ).

Moreover, suppW ⊆ [0, τ ],

(−1)nτ

τ∫
0

φ(nτ )(t)AW (t)x dt = AG(φ)x = G(−φ′)x− φ(0)Cx

= (−1)nτ+1

τ∫
0

φ(nτ+1)(t)W (t)x dt− φ(0)Cx

and, for every φ ∈ D[0,τ) and x ∈ E,
∫ τ
0
φ(nτ+1)(t)

[∫ t
0
AW (s)x ds−W (t)x

]
dt = 0.

This implies
∫ t
0
AW (s)x ds −W (t)x =

∑nτ

j=0 t
jBjx, t ∈ [0, τ), for some operators
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Bj ∈ L(E), j = 0, 1, . . . , nτ . By the proof of [418, Theorem 3.8], we get Bj = 0 for

j = 0, 1, . . . , nτ − 1 and Bnτ = − tnτ

nτ !
C, which implies

t∫
0

AW (s)x ds = W (t)x− tnτ

nτ !
Cx, t ∈ [0, τ), x ∈ E.

Since CG = GC, CA ⊆ AC and G(φ)A ⊆ AG(φ), φ ∈ D, the remaining part of
(ii) can be obtained along the same lines. Then the assertion (iii) immediately
follows. �

Remark 3.1.8. Notice that Theorem 3.1.7 generalizes [216, Theorem 4.2] and
implies that every (C-DS) is uniquely determined by its generator.

Theorem 3.1.9. Suppose that there exists a sequence ⟨(pk, τk)⟩ (pk ∈ N0, τk ∈
(0,∞); k ∈ N0) such that limk→∞ τk = ∞ and that Cpk+1(τk) is C-well posed for
A. If CA ⊆ AC, then C−1AC generates a (C-DS).

Proof. Clearly, we may assume τk < τk+1, and pk > 2, k ∈ N0. Let
(Wpk(t))t∈[0,τk) be the local pk-times integrated C-regularized semigroup gener-

ated by C−1AC; here Wpk(·) is given by [275, Theorem 2.5]. Because every
local integrated C-semigroup is uniquely determined by its generator (cf. also
[259, Proposition 1.3]), the following definition is independent of k ∈ N0. Let
φ ∈ D(−∞,τk) and G(φ)x := (−1)pk

∫∞
0
φ(pk)(t)Wpk(t)x dt, x ∈ E. Then G ∈

D′
0(L(E)) and GC = CG. Furthermore, for every x ∈ E and φ, ψ ∈ D(−∞,τk) with

suppφ+ suppψ ⊆ (−∞, τk),

G(φ)G(ψ)x =

∞∫
0

φ(pk)(t)

∞∫
0

ψ(pk)(s)Wpk(t)Wpk(s)x ds dt

=

∞∫
0

φ(pk)(t)

∞∫
0

ψ(pk)(s)

[( t+s∫
t

−
s∫

0

)
(t+ s− r)pk−1

(pk − 1)!
Wpk(r)Cxdr

]
ds dt

= −
∞∫
0

φ(pk)(t)

∞∫
0

ψ(pk−1)(s)
d

ds

[( t+s∫
t

−
s∫

0

)
(t+ s− r)pk−1

(pk − 1)!
Wpk(r)Cxdr

]
ds dt

= −
∞∫
0

φ(pk)(t)

∞∫
0

ψ(pk−1)(s)

×

[( t+s∫
t

−
s∫

0

)
(t+ s− r)pk−2

(pk − 2)!
Wpk(r)Cxdr − tpk−1

(pk − 1)!
Wpk(s)Cx

]
ds dt

= −
∞∫
0

φ(pk)(t)

∞∫
0

ψ(pk−1)(s)

[( t+s∫
t

−
s∫

0

)
(t+ s− r)pk−2

(pk − 2)!
Wpk(r)Cxdr

]
ds dt
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+ (−1)pkφ(0)

∞∫
0

ψ(pk−1)(s)Wpk(s)Cxds.

Applying the same argument sufficiently many times, we obtain:

G(φ)G(ψ)x = (−1)pk

( ∞∫
0

φ(pk)(t)

∞∫
0

ψ(s)Wpk(t+ s)Cxds dt

+

pk−1∑
j=0

φ(j)(0)

∞∫
0

ψ(pk−1−j)(s)Wpk(s)Cxds

)

= (−1)pk

( ∞∫
0

φ(pk)(t)

∞∫
t

ψ(t− s)Wpk(s)Cxds dt

+

pk−1∑
j=0

φ(j)(0)

∞∫
0

ψ(pk−1−j)(s)Wpk(s)Cxds

)

= (−1)pk

∞∫
0

[
(φ(pk) ∗0 ψ)(s) +

pk−1∑
j=0

φ(j)(0)ψ(pk−1−j)(s)

]
Wpk(s)Cxds

= (−1)pk

∞∫
0

(φ ∗0 ψ)
(pk)

(s)Wpk(s)Cxds = G(φ ∗0 ψ)Cx, x ∈ E.

So (C.D.S.1) holds. Suppose x ∈ E satisfies G(φ)x = 0, φ ∈ D[0,τk], for some

k ∈ N. Then we obtain Wpk(t)x =
∑pk−1
j=0 tjzj , t ∈ [0, τk), for some zj ∈

E, j = 0, 1, . . . , pk − 1. Using the closedness of A and the functional equal-

ity A
∫ t
0
Wpk(s)x ds = Wpk(t)x − tpk

pk!
Cx, t ∈ [0, τk), we easily get zj = 0, j =

0, 1, . . . , pk − 1. Hence, x = 0 and (C.D.S.2) holds.
Let us prove that C−1AC is the generator of G. Suppose (x, y) ∈ C−1AC and

φ ∈ D[0,τk) for some k ∈ N. Then

G(−φ′)x = (−1)pk+1

∞∫
0

φ(pk+1)(t)Wpk(t)x dt

= (−1)pk+1

∞∫
0

φ(pk+1)(t)

(
tpk

pk!
Cx+

t∫
0

Wpk(s)y ds

)
dt

= (−1)pk+1

∞∫
0

φ(pk+1)(t)

t∫
0

Wpk(s)y ds dt = G(φ)y,

and C−1AC ⊆ B, where B is the generator of G. Assume now (x, y) ∈ B. Then
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(−1)pk+1

∞∫
0

φ(pk+1)(t)Wpk(t)x dt = (−1)pk

∞∫
0

φ(pk)(t)Wpk(t)y dt

= (−1)pk+1

∞∫
0

φ(pk+1)(t)

t∫
0

Wpk(s)y ds dt, φ ∈ D[0,τk).

Thereby,

(193) Wpk(t)x−
t∫

0

Wpk(s)y ds =

pk∑
j=0

tjzj , t ∈ [0, τk),

for some zj ∈ E, j = 0, 1, . . . , pk. We can take t = 0 to obtain z0 = 0. Using (193),

we have d
dtWpk(t)x−Wpk(t)y =

∑pk
j=1 jt

j−1zj , and

AWpk(t)x+
tpk−1

(pk − 1)!
Cx−A

t∫
0

Wpk(s)y ds− tpk

pk!
Cy =

pk∑
j=1

jtj−1zj , t ∈ [0, τk).

Hence,

(194) A

pk∑
j=1

tjzj =

pk∑
j=1

jtj−1zj −
tpk−1

(pk − 1)!
Cx+

tpk

pk!
Cy, t ∈ [0, τk).

Since A is closed, one can differentiate both sides of (194) sufficiently many times
to get zj = 0, j = 1, 2, . . . , pk − 1 and zpk = Cx

pk!
. This implies

Wpk(t)x−
t∫

0

Wpk(s)y ds =
tpk

pk!
Cx, t ∈ [0, τk),

and (x, y) ∈ C−1AC. The proof is completed. �

Remark 3.1.10. If C = I, then the well-posedness of Ck+1(τ) for some k ∈ N
and τ > 0 implies that A generates a (DS) (see [252]). This fact follows di-
rectly from Theorem 3.1.9 and an additional observation that the well-posedness
of Ck+1(τ) implies the well-posedness of C2k+1(2τ) (cf. [5, Theorem 4.1] and Sub-
section 2.1.1). Due to [275, Theorem 4.1], the C-wellposedness of Ck+1(τ) implies
the C2-wellposedness of C2k+1(2τ). Finally, combining Theorem 3.1.7 and Theo-
rem 3.1.9, we obtain that a closed linear operator A generates a (C-DS) iff for every
τ > 0 there exists nτ ∈ N such that A is the integral generator of a local nτ -times
integrated C-semigroup on [0, τ).

The following proposition is a consequence of the above considerations.

Proposition 3.1.11. (i) Let G be a (C-DS) generated by A. Then, for every τ >
0, there exist nτ ∈ N and a local nτ -times integrated C-semigroup (Wnτ

(t))t∈[0,τ)
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generated by A such that

G(φ)x = (−1)nτ

∞∫
0

φ(nτ )(t)Wnτ
(t)x dt, φ ∈ D(−∞,τ), x ∈ E.

(ii) Let n ∈ N0 and let (Wn(t))t>0 be an n-times integrated C-semigroup gen-

erated by A. Put G(φ)x := (−1)n
∫∞
0
φ(n)(t)Wn(t)x dt, φ ∈ D, x ∈ E. Then G is

a (C-DS) generated by A.

Lemma 3.1.12. Let (S(t))t∈[0,τ) be an n-times integrated C-semigroup gener-

ated by A, 0 < τ 6 ∞, n ∈ N. If x ∈ D(Ak) for some k ∈ N with k 6 n, then
dk

dtk
S(t)x = S(t)Akx+

∑k−1
i=0

tn−i−1

(n−i−1)!CA
k−i−1x, t ∈ [0, τ).

If G ∈ D′(L(E)) and ω ∈ R, define e−ωtG by e−ωtG(φ) := G(e−ω·φ), φ ∈ D.
Clearly, e−ωtG ∈ D′(L(E)).

Definition 3.1.13. A (C-DS) G is said to be an exponential C-distribution
semigroup if there exists ω ∈ R such that e−ωtG ∈ S ′(L(E)).

In the sequel, if G ∈ D′(E) and φ ∈ D, then we also write ⟨G, φ⟩ for G(φ). Now
we state the following important relationship between exponential C-distribution
semigroups and exponentially bounded integrated C-semigroups.

Theorem 3.1.14. Let A be a closed linear operator. Then:

(i) A is the generator of an exponential C-distribution semigroup G iff
(ii) there exists n ∈ N such that A is the (integral) generator of an exponen-

tially bounded n-times integrated C-semigroup (Wn(t))t>0.

Proof. (ii) ⇒ (i). Let A be the generator of (Wn(t))t>0 and let ∥Wn(t)∥ 6
Meωt, t > 0 for some M > 0. Put G(φ)x := (−1)n

∫∞
0
φ(n)(t)Wn(t)x dt, φ ∈ D,

x ∈ E. By Proposition 3.1.11, G is a (C-DS) generated by A. For any ε > 0 and
φ ∈ D, we have

∥∥⟨e−(ω+ε)tG, φ
⟩∥∥ 6M

∞∫
0

eωt
∣∣(e−(ω+ε)·φ

)(n)
(t)
∣∣ dt

6M2n
∞∫
0

eωt
n∑
i=0

|ω + ε|n−ie−(ω+ε)t|φ(i)(t)| dt

6M1

∞∫
0

e−εt
n∑
i=0

∣∣φ(i)(t)
∣∣ dt 6 M1

ε

n∑
i=0

p0,i(φ),

for a suitable constant M1 independent of φ, where p0,i(ψ) := supx∈R |ψ(i)(x)|,
ψ ∈ S, is a continuous seminorm on S. This implies e−(ω+ε)tG ∈ S ′(L(E)) if ε > 0.

(i) ⇒ (ii). Suppose that G is C-distribution semigroup generated by A and e−ωt

G ∈ S ′(L(E)). Clearly, e−ωtG is a (C-DS) generated by A − ωI and Lemma 3.1.6
implies C−1(A − ωI)C = A − ωI. Then, for every φ ∈ D, A⟨e−ωtG, φ⟩x =
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⟨e−ωtG,−φ′⟩x + ω⟨e−ωtG, φ⟩x − φ(0)Cx, which gives e−ωtG ∈ S ′(L(E, [D(A)])).
Now we may apply Theorem 1.3.2 to obtain that there exist n ∈ N, r > 0 and a
continuous function V : R→ L(E, [D(A)]) supported by [0,∞) such that

⟨
e−ωtG, φ

⟩
x = (−1)n

∞∫
0

V (t)φ(n)(t)x dt,

for all φ ∈ D, x ∈ E, and |V (t)| 6 Mtr, t > 0. Since e−ωtG is a C-distribution
semigroup generated by A− ωI, arguing as in the proofs of the statements (i) and

(ii) of Theorem 3.1.7, one can conclude that: (A−ωI)
∫ t
0
V (s)x ds = V (t)x− tn

n!Cx,
t > 0, x ∈ E; V (t)(A− ωI) ⊆ (A− ωI)V (t) and CV (t) = V (t)C, t > 0. Therefore,
(V (t))t>0 is an exponentially bounded, n-times integrated C-semigroup generated

by C−1(A − ωI)C = A − ωI. Define Wn(t) := eωtV (t) +
∫ t
0
eωspn(t − s)V (s) ds,

t > 0, where pn is the polynomial of degree (n− 1) such that

n∑
i=1

(
n

i

)
(−ω)iλ−i =

∞∫
0

e−λtpn(t) dt, λ > 0.

A standard perturbation argument shows thatA is the generator of an exponentially
bounded, n-times integrated C-semigroup (Wn(t))t>0. �

Remark 3.1.15. Recall, if A is the (integral) generator a (local) n-times inte-
grated C-semigroup (Tn(t))t∈[0,τ), n ∈ N0, then C−1AC = A. Note also that we

do not require D(A) = E in the previous theorem.

One can simply prove the following proposition.

Proposition 3.1.16. Let A be a subgenerator of an n-times integrated C-cosine
function (Cn(t))t>0, n ∈ N0. Then the operator C−1AC generates a C-distribution
semigroup in E × E.

The verification of the following proposition is left to the reader.

Proposition 3.1.17. Let A be a closed linear operator and let λ ∈ ρ(A). Then
the following assertions are equivalent.

(i) A is the generator of a (DS).
(ii) A is the generator of an R(λ :A)n-distribution semigroup for all n ∈ N.

(iii) There exists n ∈ N such that A is the generator of an R(λ :A)n-distribution
semigroup.

Finally, we raise the issue:

Problem. Does any generator A of a local integrated C-semigroup generate a
(C̃−DS) for some C̃ which may be different from C?
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3.1.3. Dense C-distribution semigroups. We will consider in this section
some new conditions for G ∈ D′

0(L(E)):
(d1): G(φ ∗ ψ)C = G(φ)G(ψ), φ, ψ ∈ D0,
(d2): the same as (C.D.S.2),
(d3): R(G) is dense in E,
(d4): for every x ∈ R(G), there exists a function ux ∈ C([0,∞) : E) so that

ux(0) = Cx and G(φ)x =
∫∞
0
φ(t)ux(t) dt, φ ∈ D,

(d5): if (d2) holds then (d5) means G(φ+)C = G(φ), φ ∈ D.

Proposition 3.1.18. Suppose G ∈ D′
0(L(E)) and GC = CG. Then G is a

(C-DS) iff (d1), (d2) and (d5) hold.

Proof. Keeping in mind Proposition 3.1.3, we only have to prove that the
suppositions (d1), (d2) and (d5) imply (C.D.S.1). In order to do that, let us notice
that (d1) and (d2) imply that G(T ) commutes with G(η) and C for all T ∈ E ′

0 and
η ∈ D0. By (d1) and (d2), we get R(G) ⊆ D(G(T )), T ∈ E ′

0 and G(S)G(T ) ⊆
G(S ∗ T ), D(G(S)G(T )) = D(G(S ∗ T )) ∩D(G(T )), T, S ∈ E ′

0. Let φ, ψ ∈ D and
x ∈ E be fixed; then the property (C.D.S.1) follows from the next computation
involving (d5):

G(φ ∗0 ψ)Cx = G(φ)G(ψ)x

⇕
G(φ ∗0 ψ)Cx = G(φ+)CG(ψ+)Cx

⇕
∀η ∈ D0 : G(φ+ ∗ η)CG(ψ+)Cx = G(η)G(φ ∗0 ψ)Cx

⇕
∀η ∈ D0 : G(φ+ ∗ η)CG(ψ+)Cx = G(η)G((φ ∗0 ψ)+)C2x

⇕
∀β, η ∈ D0 : G((φ ∗0 ψ)+ ∗ β)G(η)C2x = G(β)G(φ+ ∗ η)CG(ψ+)Cx

⇕
∀β, η ∈ D0 : G(φ+ ∗ (β ∗ ψ+))G(η)C2x = G(β)G(φ+ ∗ η)CG(ψ+)Cx

⇕
∀β, η ∈ D0 : G(β ∗ ψ+)G(φ+)G(η)C2x = G(β)G(φ+ ∗ η)CG(ψ+)Cx

⇕
∀β, η ∈ D0 : G(β)G(ψ+)G(φ+)G(η)C2x = G(β)G(φ+ ∗ η)CG(ψ+)Cx

⇕
∀η ∈ D0 : G(ψ+)G(φ+)G(η)C2x = G(φ+ ∗ η)CG(ψ+)Cx

⇕
G(φ+)CG(ψ+)Cx = G(ψ+)G(φ+)C2x

⇕
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G(φ+)G(ψ+)C2x = G(ψ+)G(φ+)C2x

⇕
G((φ ∗ ψ)+)C2x = G((ψ ∗ φ)+)C2x. �

Proposition 3.1.19. Suppose G ∈ D′
0(L(E)) satisfies (d1), (d2), (d3), (d4)

and GC = CG. Then G is a (C-DS).

Proof. Owing to the previous proposition, the proof automatically follows if
one shows that (d5) holds. We will prove that (Cx,G(φ)x) ∈ G(φ+), x ∈ R(G),
φ ∈ D. Suppose (ρn) is a regularizing sequence and ux is a function appearing in
the formulation of the property (d4). Clearly, for every η ∈ D,

G(ρn)G(φ+ ∗ η)Cx = G((φ+ ∗ ρn) ∗ η)C2x = G(η)CG(φ+ ∗ ρn)x

= G(η)C

∞∫
0

(φ+ ∗ ρn)(t)ux(t) dt→ G(η)CG(φ)x, n→ ∞,

G(ρn)G(φ+ ∗ η)Cx = G(φ+ ∗ η ∗ ρn)C2x→ G(φ+ ∗ η)C2x, n→ ∞.

Hence, G(φ+ ∗ η)Cx = G(η)G(φ)x, η ∈ D0, and the closedness of G(φ+) gives
(Cx,G(φ)x) ∈ G(φ+), x ∈ E, φ ∈ D. The last equality implies (d5) and completes
the proof. �

Remark 3.1.20. [252] Suppose G is a (C-DS) generated by A. Following Lions
[282], we introduce the operator A0 as the set of all (x, y) ∈ E×E such that there
exists a regularizing sequence (ρn) in D0 such that limn→∞ G(ρn)x = Cx and
limn→∞ G(−ρ′n)x = Cy. Then it can be easily proved (G(φ)x,G(−φ′)x) ∈ A0,
φ ∈ D0, x ∈ E and that A0 is a closable linear operator whose closure is contained
in A. Furthermore, the denseness of G implies A0 = A and here it is worth noting
that the last equality does not remain true in the general case of a non-dense (C-
DS). Even in the case C = I, (d1), (d2) and (d4) taken together do not imply
(C.D.S.1); in this case, we also know that A0 coincides with the closure of the
restriction of A to D∞(A).

Proposition 3.1.21. Let G be a (C-DS) generated by A. Then, for every
x ∈ D∞(A), there exists a unique function ux satisfying:

ux ∈ C∞([0,∞) : E),

G(φ)x =
∫∞
0
φ(t)ux(t) dt, φ ∈ D0,

ux(0) = Cx.

Proof. It suffices to show that, for every τ > 0, there exists a unique function
ux,τ ∈ C∞([0, τ ] : E) so that G(φ)x =

∫∞
0
φ(t)ux,τ (t) dt, φ ∈ D[0,τ) and ux,τ (0) =

Cx. To this end, assume G(φ)x = (−1)nτ
∫∞
0
φ(nτ )(t)Wnτ

(t)x dt, φ ∈ D(−∞,2τ),
x ∈ E, for some nτ ∈ N and an nτ -times integrated C-semigroup (Wnτ

(t))t∈[0,2τ)
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generated by A. Define ux,τ (t) := dnτ

dtnτ Wnτ
(t)x, 0 6 t 6 τ . By Lemma 3.1.12,

ux,τ (t) = Wnτ
(t)Anτx+

nτ−1∑
i=0

tnτ−i−1

(nτ − i− 1)!
CAnτ−i−1x, 0 6 t 6 τ.

Since x ∈ D∞(A), one obtains ux,τ ∈ C∞([0, τ ] : E). Moreover, ux,τ (0) = Cx and
the uniqueness of such a function ux,τ follows from the next simple observation:
let (ρn) be a regularization sequence in D. Then ux,τ (t) = limn→∞ G(ρn(· − t))x,
t ∈ (0, τ). �

Remark 3.1.22. Let G and A be as above. Then C(D∞(A)) ⊆ R(G). As-
sume now D(A) and R(C) are dense in E. Combining Proposition 2.2.7 and Re-
mark 3.1.10, we have that, for every τ > 0, there exists nτ ∈ N such that the oper-
ator A, resp. (C∗)−1A∗C∗, is the integral generator of a local nτ -times integrated
C-semigroup (Snτ (t))t∈[0,τ), resp. a local (nτ + 1)-times integrated C∗-semigroup(∫ t

0
Snτ

(s)∗ds
)
t∈[0,τ)

. Therefore, (C∗)−1A∗C∗ is the generator of a (C∗-DS) G∗ in

E∗.

Proposition 3.1.23. Let G be a (C-DS) generated by A. Then C(D∞(A)) ⊆
R(G). Assume additionally R(C) = E. Then the following statements are equiva-
lent:

(i) G is dense. (ii) A is densely defined. (iii) G∗ is a (C∗-DS) in E∗.

Proposition 3.1.24. Let G be a (C-DS). Then G satisfies (d4).

Proof. Let x = G(ψ)y, ψ ∈ D0, y ∈ E. Then the continuity of G on D implies
G(φ)x = G(φ)G(ψ)y = G(φ∗0 ψ)Cy = G

(∫∞
0
φ(t)τtψ dt

)
Cy =

∫∞
0
φ(t)G(τtψ)Cy dt,

φ ∈ D. The function ux : t→ G(τtψ)Cy, t > 0 has the desired properties. �

In the remainder of this subsection, we also consider non-dense C-distribution
semigroups. First of all, we state the following important characterization of dis-
tribution semigroups.

Theorem 3.1.25. [252], [418] A closed linear operator A is the generator of
a distribution semigroup iff there exist a > 0, b > 0, M > 0 and n ∈ N such that

E(a, b) ⊆ ρ(A) and ∥R(λ :A)∥ 6M(1 + |λ|)n

iff there exist τ ∈ (0,∞] and n ∈ N such that A generates a (local) n-times integrated
semigroup on [0, τ).

Suppose that A is a closed linear operator. Then, for each n ∈ N, the space
D(An) equipped with the norm ∥x∥n :=

∑n
i=0 ∥Aix∥, x ∈ D(An) is complete and

the projective limit of the Banach spaces (D(An), ∥ · ∥n), i.e., the space D∞(A),
equipped with the family of norms (∥·∥n), is a Fréchet space. The restriction of the
operator A to D∞(A) is clearly a continuous linear mapping in D∞(A). The reader
may consult [18], [58], [107], [212]–[213], [250], [327], [410]–[411] and [434] for
the basic theory of semigroups of operators in locally convex spaces.
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Theorem 3.1.26. [249] (i) A closed linear operator A is the generator of a
distribution semigroup iff A is stationary dense, ρ(A) ̸= ∅ and the restriction of the
operator A to D∞(A) generates a strongly continuous semigroup in D∞(A).

(ii) A closed linear operator A is the generator of an exponential distribution
semigroup iff A is stationary dense, ρ(A) ̸= ∅ and the restriction of the operator A
to D∞(A) generates a quasi-equicontinuous semigroup in D∞(A).

Theorem 3.1.27. [234] Let a > 0, b > 0, α > 0, M > 0, E(a, b) ⊆ ρC(A), the
mapping λ 7→ (λ−A)−1C, λ ∈ E(a, b) is continuous, CA ⊆ AC and ∥(λ−A)−1C∥ 6
M(1+|λ|)α, λ ∈ E(a, b). Set

φ̃(λ) :=

∫ ∞

−∞
eλtφ(t) dt, φ ∈ D,

G(φ)x :=
1

2πi

∫
Γ

φ̃(λ)(λ−A)−1Cxdλ, x ∈ E, φ ∈ D,

where Γ is the upwards oriented boundary of E(a, b). Then G is a (C-DS) generated
by C−1AC.

Proof. By Proposition 2.4.6, we may assume that the mapping λ 7→ (λ −
A)−1C is analytic on some open neighborhood of the region E(a, b). Using the
Paley–Wiener theorem, the Cauchy formula, the inverse Fourier transform as well
as the simple equalities A(λ−A)−1Cx = λ(λ−A)−1Cx−Cx, λ ∈ ρC(A), x ∈ E and

φ̃′(λ) = −λφ̃(λ), λ ∈ C, it follows that: suppG ⊆ [0,∞), 1
2πi

∫
Γ
φ̃(λ) dλ = φ(0),

φ ∈ D and

(195) AG(φ)x = G(−φ′)x− φ(0)Cx, φ ∈ D, x ∈ E.

Let ψ ∈ D and x ∈ E be fixed [252]. Put P := δ′ ⊗ I − δ⊗A, U := G(·)G(ψ)x,
V := G(· ∗0 ψ)Cx and consider G as an element of the space D′

0(L(E, [D(A)]));
clearly, P ∈ D′

0(L([D(A)], E)), U ∈ D′
0([D(A)]) and V ∈ D′

0([D(A)]). Since
G(φ)A ⊆ AG(φ), φ ∈ D and (195) holds, we have G ∗ P = δ ⊗ C[D(A)] ∈
D′

0(L([D(A)])), P ∗ G = δ ⊗ C ∈ D′
0(L(E)) and P ∗ U = P ∗ V = δ ⊗ G(ψ)Cx ∈

D′
0(E). The associativity of convolution implies (G ∗ P ) ∗ U = (G ∗ P ) ∗ V , i.e.,

(δ⊗C[D(A)])∗U = (δ⊗C[D(A)])∗V ∈ D′
0([D(A)]) and CG(φ)G(ψ)x = CG(φ∗0ψ)Cx,

φ ∈ D. The injectiveness of C implies (C.D.S.1). The proof of (C.D.S.2) follows
as in [282] and [252]. In fact, the preassumption G(φ)x = 0, φ ∈ D0 implies that
suppG(·)x ⊆ {0} and that there exist k ∈ N and y0, · · · , yk ∈ D(A) such that

G(·)x =
∑k
j=0 δ

(j)⊗yj and that
∑k
j=0 δ

(j+1)⊗yj−
∑k
j=0 δ

(j)⊗Ayj = δ⊗Cx. This

implies yk = · · · = y0 = Cx = x = 0 and (C.D.S.2). Hence, G is a (C-DS) whose

generator, denoted by Ã, satisfies C−1AC ⊆ Ã. By Theorem 3.1.7, there exist
n1 ∈ N and τ1 ∈ (0,∞) such that Ã is the integral generator of a local n1-times
integrated C-semigroup (Sn1

(t))t∈[0,τ1). Furthermore, Theorem 2.7.2 implies that

there exist n2 ∈ N and τ2 ∈ (0,∞) such that C−1AC is the integral generator of a
local n2-times integrated C-semigroup (Sn2

(t))t∈[0,τ2). Without loss of generality,
we may assume n = n1 = n2 and τ = τ1 = τ2. Set S(t)x := Sn(t)x − Sn(t)x,

t ∈ [0, τ), x ∈ E. Then Ã
∫ t
0
S(s)x ds = S(t)x, t ∈ [0, τ), x ∈ E and arguing as
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in the proof of [328, Proposition 2.6], one gets S(t) = 0, t ∈ [0, τ). This implies

Ã = C−1AC and completes the proof of theorem. �

The solution space for a closed, linear operator A, denoted by Z(A), is defined
to be the set of all x ∈ E for which there exists a continuous mapping u(·, x) ∈
C([0,∞) : E) satisfying

∫ t
0
u(s, x) ds ∈ D(A) and A

∫ t
0
u(s, x) ds = u(t, x)−x, t > 0.

Proposition 3.1.28. [238] (i) Assume A generates a (C-DS) G. Denote by
D(G) the set of all x ∈

∩
t>0D(G(δt)) satisfying that the mapping t 7→ G(δt)x,

t > 0 is continuous; here δt(φ) = φ(t), t ∈ R, φ ∈ D. Then Z(A) = D(G). If
x ∈ Z(A), then u(t, x) = G(δt)x, t > 0 and

G(ψ)x =

∞∫
0

ψ(t)Cu(t, x) dt =

∞∫
0

ψ(t)GC(δt)x dt, ψ ∈ D0.

(ii) Assume that, for every τ > 0, there exists nτ ∈ N such that A is a subgen-
erator of a local nτ -times integrated C-semigroup (Snτ

(t))t∈[0,τ). Then the solution
space Z(A) is the space which consists of all elements x ∈ E such that, for every
τ > 0, Snτ (t)x ∈ R(C) and that the mapping t 7→ C−1Snτ (t)x, t ∈ [0, τ) is nτ -times
continuously differentiable.

3.1.4. Chaotic C-distribution semigroups. Chronologically, the first ex-
amples of hypercyclic operators were given on the space H(C) of entire functions
equipped with the topology of uniform convergence on compact subsets of C. More
precisely, Birkhoff proved in 1929 that the translation operator f 7→ f(· + a),
f ∈ H(C), a ∈ C r {0} is hypercyclic in H(C), and MacLane proved in 1952 the
hypercyclicity of the derivative operator f 7→ f ′, f ∈ H(C). The first example
of a hypercyclic operator on a Banach space was given by Rolewicz in 1969. The
underlying Banach space in his analysis is chosen to be l2(N). The first systematic
investigation into the hypercyclicity and chaos of strongly continuous semigroups
was obtained by Desch, Schappacher and Webb [109] in 1997. The basic refer-
ences concerning hypercyclic and chaotic behavior of distribution semigroups and
strongly continuous semigroups are [77], [106], [109], [173] and [303]–[304]. The
notion of hypercyclicity and chaos of distribution semigroups as well as unbounded
semigroups of linear operators was introduced by deLaubenfels, Emamirad and
Grosse-Erdmann in [106]. The main objective in this subsection is to enquire into
the chaotic and hypercyclic properties of C-distribution semigroups and integrated
C-semigroups.

We assume that E is a separable infinite-dimensional complex Banach space.
Let S be a non-empty closed subset of C satisfying Sr{0} ̸= ∅. A linear operator
T on E is said to be hypercyclic if there exists an element x ∈ D∞(T ) whose
orbit {Tnx : n ∈ N0} is dense in E; T is said to be topologically transitive, resp.
topologically mixing, if for every pair of open non-empty subsets U, V of E, there
exist x ∈ D∞(T ) and n ∈ N such that Tn(U) ∩ V ̸= ∅, resp. if for every pair
of open non-empty subsets U, V of E, there exists n0 ∈ N such that, for every
n ∈ N with n > n0, Tn(U) ∩ V ̸= ∅. A periodic point for T is an element x ∈
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D∞(T ) satisfying that there exists n ∈ N with Tnx = x. Finally, T is said to be
chaotic if T is hypercyclic and the set of periodic points of T is dense in E. By
Proposition 3.1.4(ii), we have

(196) D(G(δs)G(δt))=D(G(δs ∗δt))∩D(G(δt))=D(G(δt+s))∩D(G(δt)), t, s>0.

Then (196) implies G(δt)(D(G)) ⊆ D(G), t > 0. A closed linear subspace Ẽ of

E is said to be G-admissible iff G(δt)(D(G) ∩ Ẽ) ⊆ D(G) ∩ Ẽ, t > 0. Define

G(φ)
(
x
y

)
:=
(G(φ)x
G(φ)y

)
and C

(
x
y

)
:=
(
Cx
Cy

)
, x, y ∈ E, φ ∈ D. Then G is a (C-DS) in

E ⊕ E, and Ẽ ⊕ Ẽ is G-admissible provided that Ẽ is G-admissible.

Definition 3.1.29. Let G be a (C-DS) and let Ẽ be G-admissible. Then it is
said that G is:

(i) Ẽ-hypercyclic, if there exists x ∈ D(G)∩ Ẽ such that the set {G(δt)x : t >
0} is dense in Ẽ,

(ii) Ẽ-chaotic, if G is Ẽ-hypercyclic and the set of Ẽ-periodic points of G,

GẼ,per, defined by {x ∈ D(G)∩ Ẽ : G(δt0)x = x for some t0 > 0}, is dense

in Ẽ,
(iii) Ẽ-topologically transitive, if for every y, z ∈ Ẽ and ε > 0, there exist

v ∈ D(G) ∩ Ẽ and t > 0 such that ∥y − v∥ < ε and ∥z −G(δt)v∥ < ε,

(iv) Ẽ-topologically mixing, if for every y, z ∈ Ẽ and ε > 0, there exists

t0 > 0 such that, for every t > t0, there exists vt ∈ D(G) ∩ Ẽ such that
∥y − vt∥ < ε and ∥z −G(δt)vt∥ < ε, t > t0,

(v) Ẽ-weakly mixing, if G is (Ẽ ⊕ Ẽ)-hypercylic in E ⊕ E,

(vi) Ẽ-supercyclic, if there exists x ∈ D(G) ∩ Ẽ such that its projective orbit

{cG(δt)x : c ∈ C, t > 0} is dense in Ẽ,

(vii) Ẽ-positively supercyclic, if there exists x ∈ D(G)∩ Ẽ such that its positive

projective orbit {cG(δt)x : c > 0, t > 0} is dense in Ẽ,

(viii) ẼS-hypercyclic, if there exists x ∈ D(G)∩Ẽ such that its S-projective orbit

{cG(δt)x : c ∈ S, t > 0} is dense in Ẽ,

(ix) ẼS-topologically transitive, if for every y, z ∈ Ẽ and ε > 0, there exist v ∈
D(G)∩Ẽ, t > 0 and c ∈ S such that ∥y−v∥ < ε and that ∥z−cG(δt)v∥ < ε,

(x) sub-chaotic, if there exists a G-admissible subset Ê such that G is Ê-
chaotic.

Let α ∈ (0,∞), α /∈ N, f ∈ S and n = ⌈α⌉. Recall [315], the Weyl fractional
derivatives Wα

+ and Wα
− of order α (cf. also Subsections 3.2.1 and 3.3.1) are defined

by

Wα
+f(t) :=

(−1)n

Γ(n− α)

dn

dtn

∞∫
t

(s− t)n−α−1f(s) ds, t ∈ R,

Wα
−f(t) :=

1

Γ(n− α)

dn

dtn

t∫
−∞

(t− s)n−α−1f(s) ds, t ∈ R.
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If α = n ∈ N, put Wn
+ := (−1)n dn

dtn and Wn
− := dn

dtn . Then Wα+β
± = Wα

±W
β
±,

α, β > 0. Assume that A is the integral generator of an α-times integrated C-
semigroup (Sα(t))t>0 for some α > 0. Set Gα(φ)x :=

∫∞
0
Wα

+φ(t)Sα(t)x dt, x ∈ E,
φ ∈ D. Then Gα is a (C-DS) generated by A [315].

Definition 3.1.30. Let Ẽ be a closed linear subspace of E. Then it is said
that Ẽ is (Sα(t))t>0-admissible iff Ẽ is Gα-admissible, and that (Sα(t))t>0 is Ẽ-
hypercyclic iff Gα is; all other dynamical properties of (Sα(t))t>0 are understood in

the same sense. A point x ∈ Ẽ is said to be a Ẽ-periodic point of (Sα(t))t>0 iff x

is a Ẽ-periodic point of Gα.

It is clear that the notion of ẼS-hypercyclicity generalizes the notions of (posi-

tive) Ẽ-supercyclicity and Ẽ-hypercyclicity. In the case Ẽ = E, it is also said that G
((Sα(t))t>0) is hypercyclic, chaotic,..., S-hypercyclic, S-topologically transitive, and

we write Gper instead of GẼ,per. Let β > α and Sβ(t)x =
∫ t
0

(t−s)β−α−1

Γ(β−α) Sα(s)x ds,

t > 0, x ∈ E. Then Gα(φ)x =
∫∞
0
W β

+φ(t)Sβ(t)x dt = Gβ(φ)x, x ∈ E, φ ∈ D,

and this implies that a closed linear subspace Ẽ is (Sα(t))t>0-admissible iff Ẽ is

(Sβ(t))t>0-admissible, and that (Sα(t))t>0 is Ẽ-hypercyclic (Ẽ-chaotic,. . . , sub-
chaotic) iff (Sβ(t))t>0 is; because of this, we assume in the sequel that α = n ∈ N0.

Assume G is a (C-DS) and Ẽ is G-admissible. If G is Ẽ-weakly mixing, then one can

simply prove that G is both Ẽ-topologically transitive and Ẽ-hypercyclic. Assume
that the semigroup (etA)t>0 is hypercyclic (chaotic) in the sense of [106, Definition
3.2] and let L(E) ∋ C be an injective operator such that (W (t) := etAC)t>0 is a
C-regularized semigroup generated by A. Put G(φ)x =

∫∞
0
φ(t)W (t)x dt, x ∈ E,

φ ∈ D. Then it can be simply proved that (W (t))t>0, resp. G, is hypercyclic
(chaotic) in the sense of Definition 3.1.29, resp. Definition 3.1.30. Hence, examples
given in [106, Section 5] can be used for the construction of chaotic C-regularized
semigroups.

Example 3.1.31. [106] Let Ω be an open bounded subset of R2 and let ∆
act on L2(Ω) with the Dirichlet boundary conditions; the complex power (−∆)b

(b ∈ C) is understood in the sense of [300]. Then there exists an injective operator
C ∈ L(L2(Ω)) such that ((−∆)tC)t>0 is a chaotic C-regularized semigroup.

Assume A generates a (C-DS) G and x ∈ Z(A). Then C(Z(A)) ⊆ R(G) and

G(ψ)x ∈ R(C), ψ ∈ D. Further on, R(G) ⊆ Z(A), G(δt)(Z(A)) ⊆ Z(A) ⊆ D(A),

t > 0 and ẼS-hypercyclicity (ẼS-topological transitivity) of G implies Ẽ ∩ Z(A) =

Ẽ and Ẽ ⊆ D(A). Given t > 0 and σ > 0, set

Φt,σ :=
{
φ ∈ D0 : suppφ ⊆ (t− σ, t+ σ), φ > 0,

∫
φ(s) ds = 1

}
.

Keeping in mind Proposition 3.1.28 and the proofs of [106, Proposition 3.3,
Theorem 4.6], we have the following theorem.
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Theorem 3.1.32. (i) Assume n ∈ N0, A is the integral generator of an n-times

integrated C-semigroup (Sn(t))t>0, C(Ẽ) = Ẽ and Ẽ is Gn-admissible. Then the
following holds.

(i.1) (Sn(t))t>0 is ẼS-hypercyclic iff there exists x ∈ Ẽ such that the mapping
t 7→ Sn(t)x, t > 0 is n-times continuously differentiable and that the set

{c d
n

dtnSn(t)x : c ∈ S, t > 0} is dense in Ẽ.

(i.2) (Sn(t))t>0 is ẼS-topologically transitive iff for every y, z ∈ Ẽ and ε > 0,

there exist v ∈ Ẽ, t0 > 0 and c ∈ S such that the mapping t 7→ Sn(t)v,
t > 0 is n-times continuously differentiable and that ∥y − v∥ < ε as well

as ∥z − c( d
n

dtnSn(t)v)t=t0∥ < ε.

(i.3) (Sn(t))t>0 is Ẽ-chaotic iff (Sn(t))t>0 is Ẽ-hypercyclic and there exists a

dense subset of Ẽ consisting of those vectors x ∈ Ẽ for which there exists
t0 > 0 such that the mapping t 7→ Sn(t)x, t > 0 is n-times continuously

differentiable and that ( d
n

dtnSn(t)x)t=t0 = Cx.

(ii) Let A be the generator of a (C-DS) G and let Ẽ be G-admissible. Then:

(ii.1) G is ẼS-hypercyclic iff there exists x0 ∈ D(G) ∩ Ẽ such that, for every

x ∈ Ẽ and ε > 0, there exist t0 > 0, c ∈ S and σ > 0 such that

∥cC−1G(φ)x0 − x∥ < ε, φ ∈ Φt0,σ.

(ii.2) G is ẼS-topologically transitive iff for every y, z ∈ Ẽ and ε > 0, there exist

t0 > 0, c ∈ S, σ > 0 and v ∈ D(G) ∩ Ẽ such that, for every φ ∈ Φt0,σ,

∥y − v∥ < ε and ∥z − cC−1G(φ)v∥ < ε.

(ii.3) G is Ẽ-chaotic iff G is Ẽ-hypercyclic and there exists a dense set in Ẽ of

vectors x ∈ D(G) ∩ Ẽ for which there exists τ > 0 such that, for every
ε > 0, there exists σ > 0 satisfying

∥C−1G(φ)x− x∥ < ε, φ ∈ Φτ,σ.

Corollary 3.1.33. Let A be the generator of a (C-DS) G. Assume Ẽ is G-
admissible and G is ẼS-hypercyclic (ẼS-topologically transitive). Then C(Ẽ) ⊆
R(G).

The Hypercyclicity Criterion for C-distribution semigroups reads as follows.

Theorem 3.1.34. Let A be the generator of a (C-DS) G and let Ẽ be G-
admissible. Assume that there exist subsets Y1, Y2 ⊆ Z(A) ∩ Ẽ, both dense in

Ẽ, a mapping S : Y1 → Y1 and a bounded linear operator D in Ẽ such that:

(i) G(δ1)Sy = y, y ∈ Y1,

(ii) limn→∞ S
n
y = 0, y ∈ Y1,

(iii) limn→∞G(δn)ω = 0, ω ∈ Y2,

(iv) R(D) is dense in Ẽ,

(v) R(D) ⊆ Z(A) ∩ Ẽ, G(δn)D ∈ L(Ẽ), n ∈ N and

(vi) DG(δ1)x = G(δ1)Dx, x ∈ Z(A) ∩ Ẽ.
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Then G is both (Ẽ⊕ Ẽ)-hypercyclic and (Ẽ⊕ Ẽ)-topologically transitive; in partic-

ular, G is Ẽ-weakly mixing.

Proof. Let T1 be the restriction of the operator G(δ1) to Z(A) ∩ Ẽ, T1 =

G(δ1)|Z(A)∩Ẽ . Put T := T1⊕T1, Y1 := Y1⊕Y1, Y2 := Y2⊕Y2, D̃ := D⊕D and define

S : Y1 → Y1 by S(x, y) := (Sx, Sy), x, y ∈ Y1. Since G(δ1)(Z(A)∩ Ẽ) ⊆ Z(A)∩ Ẽ,

D∞(T ) = Z(A) ∩ Ẽ and G(δ1)nx = G(δn)x, x ∈ Z(A) ∩ Ẽ, one can apply [106,

Theorem 2.3] in an effort to see that the operator T is hypercyclic in Ẽ⊕ Ẽ. Under
the aegis of the proof of [106, Theorem 2.3], it follows that T is also topologically
transitive. The proof of theorem completes a routine argument. �

Let R(C) be dense in E. Assume Ẽ = E, A is the integral generator of a
C-regularized semigroup (T (t))t>0 and G(φ)x =

∫∞
0
φ(t)T (t)x dt, x ∈ E, φ ∈ D.

Then the conditions (iv)–(vi) quoted in the formulation of Theorem 3.1.34 hold with
D = C and, in this case, Theorem 3.1.34 reduces to the Hypercyclicity Criterion
for C-regularized semigroups (cf. [106, Theorem 3.4]).

Example 3.1.35. (i) Let n ∈ N, ρ(t) := 1
t2n+1 , t ∈ R, Af := f ′, D(A) := {f ∈

C0,ρ(R) : f ′ ∈ C0,ρ(R)}, En := (C0,ρ(R))n+1, D(An) := D(A)n+1 and An(f1, · ·
·, fn+1) := (Af1 + Af2, Af2 + Af3, · · ·, Afn + Afn+1, Afn+1), (f1, · · ·, fn+1) ∈
D(An). Then it is well known that ±An generate global polynomially bounded n-
times integrated semigroups (Sn,±(t))t>0 and that neither An nor −An generates a
local (n− 1)-times integrated semigroup. Denote by G±,n distribution semigroups
generated by ±An. Then it can be easily proved that for every φ1, ..., φn+1 ∈ D :

G±,n(δt)
(
φ1, ..., φn+1

)T
=
(
ψ1, ..., ψn+1

)T
,

where ψi(·) =
n+1−i∑
j=0

(±t)j
j! φ

(j)
i+j(· ± t), 1 6 i 6 n + 1. This immediately implies the

concrete representation formula for (Sn,±(t))t>0. It can be proved (cf. [239] for
further information) that, for every t > 0, the operators G±,n(δt) ⊕ G±,n(δt) are
hypercyclic in En⊕En. This implies that (Sn,±(t))t>0 are weakly mixing. Arguing
in a similar way, one can construct a closed linear operator nA, a Banach space nE
and an injective operator nC ∈ L(nE) such that nA is a subgenerator of a global
weakly mixing n-times integrated nC-semigroup (nS(t))t>0 on nE and that nA is
not a subgenerator of any local (n− 1)-times integrated nC-semigroup on nE.

(ii) Let n ∈ N, Ω := (0,∞)n, αi > 0, 1 6 i 6 n and α := min{αi : 1 6 i 6 n}.
Set ρ(x) := e−(xα

1 +···+xα
n) and

φ(t, x) :=
(
(t+ xα1

1 )1/α1 , . . . , (t+ xαn
n )1/αn

)
, t > 0, x = (x1, . . . , xn) ∈ Ω.

Let remind us that the space C0,ρ(Ω,C) consists of all continuous functions f :
Ω → C satisfying that, for every ε > 0, {x ∈ Ω : |f(x)|ρ(x) > ε} is a compact
subset of Ω; equipped with the norm ∥f∥ := supx∈Ω |f(x)|ρ(x), C0,ρ(Ω,C) becomes
a Banach space. The space of all continuous functions f : Ω → C whose support
is a compact subset of Ω, denoted by Cc(Ω,C), is dense in C0,ρ(Ω,C). Define

(Tφ(t)f)(x) := f(φ(t, x)), t > 0, x ∈ Ω and Cf(x) := e−(x1+···+xn)f(x), x ∈ Ω,
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f ∈ C0,ρ(Ω,C). Then one can simply prove that Tφ(t) /∈ L(C0,ρ(Ω,C)), t > 0
and that (Tφ(t)C)t>0 is a bounded C-regularized semigroup. Given f ∈ Cc(Ω,C),

define f̃ : [0,∞)n → C by f̃(x) := f(x), x ∈ Ω and f̃(x) := 0, x ∈ [0,∞)n r Ω.
Applying [106, Theorem 3.4] with Y1 = Y2 = Cc(Ω,C) and

Sf(x1, . . . , xn) = f̃((xα1
1 − 1)1/α1χ[(a

α1
1 +1)1/α1 ,(b

α1
1 +1)1/α1 ](x1), . . . ,

(xαn
n − 1)1/αnχ[(aαn

n +1)1/αn ,(bαn
n +1)1/αn ](xn)),

x ∈ Ω, f ∈ Y1, supp f ⊆
∏n
i=1[ai, bi] ⊆ Ω, we get that (Tφ(t)C)t>0 is weakly

mixing. Furthermore, (Tφ(t)C)t>0 is topologically mixing and, thanks to the proof
of [174, Theorem 5.7], (Tφ(t)C)t>0 is chaotic.

(iii) [106], [239] Assume that ω1, ω2, Vω2,ω1
, Q, Q(B), N, hµ and E pos-

sess the same meaning as in [106, Section 5] and that Q(int(Vω2,ω1
)) ∩ iR ̸= ∅.

Then ±Q(B)hµ = ±Q(µ)hµ, e
−(−B2)Nhµ = e−(−µ2)Nhµ, µ ∈ int(Vω2,ω1) and

hµ ∈ (Kern(Q(B))r {0}), provided Reµ ∈ (ω2, ω1). Define Ê as the closure of the
set span{(hµ, Q(µ)hµ)T : µ ∈ int(Vω2,ω1)}. Then Q2(B) is the integral generator of

a global (e−(−z2)N )(B)-regularized cosine function ((cosh(tQ(z))e−(−z2)N )(B))t>0

and the operator
( 0 I
Q2(B) 0

)
generates of an entire

(
(e−(−z2)N )(B) 0

0 (e−(−z2)N )(B)

)
-

regularized semigroup (S0(t))t>0 satisfying that (S0(t))t>0 is Ê-topologically mix-

ing and that the set of all Ê-periodic points of (S0(t))t>0 is dense in Ê. Furthermore,
the analysis given in [106, Theorem 5.8] can serve one to construct important ex-
amples of regular ultradistribution semigroups of Beurling class.

Let A be the generator of a strongly continuous semigroup (T (t))t>0. Then
(T (t))t>0 is S-topologically transitive in the sense of Definition 3.1.30 iff (T (t))t>0

is S-topologically transitive in the sense of the definition introduced on pages 50–51
of [237]. It is well known that S-topological transitivity of (T (t))t>0 is equivalent
to its S-hypercyclicity and that (T (t))t>0 is weakly mixing provided that (T (t))t>0

is chaotic [237]; it is not clear whether the above assertions continue to hold in
the case of C-distribution semigroups. In the sequel of this subsection, we will use
the fact that the notions of Ẽ-topological transitivity and Ẽ-periodic points of a
(C-DS) G (or an n-times integrated C-semigroup (Sn(t))t>0) can be understood in

the sense of Definition 3.1.29 even if the set Ẽ is not G-admissible.
The next theorem is a strengthening of [109, Theorem 3.1] and [26, Crite-

rion 2.3].

Theorem 3.1.36. [238]-[239] Let t0 > 0.
(i) Let A be the generator of a (C-DS) G. Assume that there exists an open

connected subset Ω of C, which satisfies σp(A) ⊇ Ω and intersects the imaginary
axis, and let f : Ω → E be an analytic mapping satisfying f(λ) ∈ Kern(A−λ)r{0},
λ ∈ Ω. Assume, further, that (x∗ ◦ f)(λ) = 0, λ ∈ Ω, for some x∗ ∈ E∗, implies
x∗ = 0. Then G is topologically mixing, every single operator G(δt0) is topologically
mixing and has a dense set of periodic points in E.
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(ii) Let A be the generator of a (C-DS) G. Assume that there exists an open
connected subset Ω of C, which satisfies σp(A) ⊇ Ω and intersects the imaginary
axis, and let f : Ω → E be an analytic mapping satisfying f(λ) ∈ Kern(A−λ)r{0},
λ ∈ Ω. Put E0 := span{f(λ) : λ ∈ Ω} and Ẽ := E0. Then G is Ẽ-topologically

mixing, the part of the operator G(δt0) in the Banach space Ẽ is topologically mixing

in Ẽ and the set of Ẽ-periodic points of such an operator is dense in Ẽ.

Remark 3.1.37. (i) It is not clear whether the set Ẽ, appearing in the formu-
lation of the assertion (ii) of the previous theorem, is G-admissible.

(ii) Assume A is the integral generator of a C-regularized semigroup (T (t))t>0

and R(C) is dense in E. Let Ω and f(·) satisfy the assumptions quoted in the
formulation of Theorem 3.1.36(i). Then (T (t))t>0 is chaotic, weakly mixing and,
for every t > 0, the operator C−1T (t) is chaotic.

Theorem 3.1.38. Let θ ∈ (0, π2 ) and let −A generate an analytic strongly
continuous semigroup of angle θ. Assume n ∈ N, an > 0, an−i ∈ C, 1 6 i 6 n,
D(p(A)) = D(An), p(A) =

∑n
i=0 aiA

i and n(π2 − θ) < π
2 .

(i) Assume that there exists an open connected subset Ω of C, which satisfies
σp(−A) ⊇ Ω, p(−Ω)∩ iR ̸= ∅, and let f : Ω → E be an analytic mapping satisfying
f(λ) ∈ Kern(−A−λ)r{0}, λ∈Ω. Assume, also, that the supposition (x∗◦f)(λ) = 0,
λ ∈ Ω, for some x∗ ∈ E∗, implies x∗ = 0. Then, for every α ∈ (1, π

nπ−2nθ ),

there exists ω ∈ R such that p(A) generates an entire e−(p(A)−ω)α-regularized group
(T (t))t∈C. Furthermore, (T (t))t>0 is chaotic, topologically mixing and, for every
t > 0, the operator C−1T (t) is chaotic.

(ii) Assume that there exists an open connected subset Ω of C, which satisfies
σp(−A) ⊇ Ω, p(−Ω)∩ iR ̸= ∅, and let f : Ω → E be an analytic mapping satisfying

f(λ) ∈ Kern(−A−λ)r {0}, λ ∈ Ω. Let E0 and Ẽ be as in the formulation of The-
orem 3.1.36(ii). Then there exists ω ∈ R such that, for every α ∈ (1, π

nπ−2nθ ), p(A)

generates an entire e−(p(A)−ω)α-regularized group (T (t))t∈C such that (T (t))t>0 is

Ẽ-topologically mixing and that the set of Ẽ-periodic points of (T (t))t>0 is dense

in Ẽ.

Proof. The proof of (i) can be obtained as follows. By the arguments given
in [89, Section XXIV], we have that the operator −p(A) generates an analytic
strongly continuous semigroup of angle π

2 − n(π2 − θ). Let α ∈ (1, π
nπ−2nθ ). By

[89, Theorem 8.2], one gets that there exists a convenable chosen number ω ∈ R
such that p(A) generates an entire e−(p(A)−ω)α ≡ C-regularized group (T (t))t∈C.
Thanks to the proof of [106, Lemma 5.6], σp(−p(A)) = −p(−σp(−A)) and f(λ) ∈
Kern(−p(A) + p(−λ)), λ ∈ Ω. Without loss of generality, one can assume that
p′(z) ̸= 0, z ∈ −Ω; otherwise, one can replace Ω by Ω r {γ1, . . . , γn−1}, where
γ1, . . . , γn−1 are not necessarily distinct zeros of the polynomial z 7→ p′(z), z ∈ C.
Hence, the mapping λ 7→ p(−λ), λ ∈ Ω and its inverse mapping z 7→ −p−1(z), z ∈
p(−Ω), are analytic and open. The set −p(−Ω) is open, connected and intersects the
imaginary axis. Moreover, the mapping z 7→ f(−p−1(−z)), z ∈ −p(−Ω) is analytic,
f(−p−1(−z)) ∈ Kern(−p(A) − z), z ∈ −p(−Ω) and x∗(f(−p−1(−z))) = 0, z ∈
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−p(−Ω), for some x∗ ∈ E∗, implies x∗ = 0. Therefore, it suffices to prove (i) in the
case p(z) = z. In order to do that, notice that −Ω ⊆ σp(A), f(−λ) ∈ D∞(A) and
Akf(−λ) = λkf(−λ), λ ∈ −Ω, k ∈ N. It can be simply proved that f(−λ) ∈ Z(A),
λ ∈ −Ω, f(−λ) ∈ Kern(A−λ), λ ∈ −Ω and C−1T (t)f(λ) = e−λtf(λ), t > 0, λ ∈ Ω.
By Theorem 3.1.36(i), one has that (T (t))t>0 is topologically mixing and that the
set of periodic points of (T (t))t>0 is dense in E. Since R(C) is dense in E [89], one
can apply [106, Theorem 3.4] with Y1 = X0⊕X0, Y2 = X∞⊕X∞ and S : Y1 → Y1,

defined by S
(∑k

i=1 αif(λi),
∑l
i=1 βif(zi)

)
:=
(∑k

i=1 αie
λif(λi),

∑l
i=1 βie

zif(zi)
)
,

k, l ∈ N, αi ∈ C, Reλi < 0, 1 6 i 6 k, βi ∈ C, Re zi < 0, 1 6 i 6 l, in order
to see that, for every t > 0, the operator C−1T (t) ⊕ C−1T (t) is hypercyclic. This
implies that (T (t))t>0 is weakly mixing and chaotic. The chaoticity of the operator
C−1T (t) (t > 0) can be shown as in the proof of [173, Theorem 4.9] and this
completes the proof of (i).

The proof of (ii) can be obtained similarly. �

Remark 3.1.39. (i) Assume that G is a (C-DS) and that the set Ẽ is not G-

admissible. Then one can define the notion of Ẽ-hypercyclicity (ẼS-hypercyclicity)
of G in several different ways. In the second part of this remark, it will be said that
G is Ẽ-hypercyclic iff there exists x ∈ D(G) ∩ Ẽ such that the set {G(δt)x : t > 0}
is a dense subset of Ẽ, and that G is Ẽ-chaotic iff G is Ẽ-hypercyclic and the set
GẼ,per is dense in Ẽ.

(ii) Under the assumptions of Theorem 3.1.38(ii), (T (t))t>0 is Ẽ-chaotic. We
will prove this statement only in the case p(z) = z. Clearly, for every λ ∈ Ω,

R(ξ : A)f(λ) = f(λ)
ξ−λ , ξ ∈ ρ(A) r {λ}. By the representation formula [89, p. 70,

l. 2], one can show that there exists a mapping g : Ω → Cr {0} such that Cf(λ) =

g(λ)f(λ), λ ∈ Ω. This implies that C(E0) = E0 and that R(CẼ) is dense in Ẽ. Let

D(T1) = {x ∈ Z(A)∩Ẽ : G(δ1)x ∈ Z(A)∩Ẽ} and T1x = G(δ1)x, x ∈ D(T1). Using
[106, Theorem 2.3] with T = T1 ⊕ T1, Y1 = X0 ⊕X0, Y2 = X∞ ⊕X∞, S(x, y) =

(eλx, eλy), x, y ∈ X0, and CẼ , one yields that the operator T is hypercyclic in Ẽ.

As an outcome, we get that (T (t))t>0 is Ẽ-chaotic.

Example 3.1.40. [109, Example 4.12] In what follows, we analyze chaotic
properties of a convection-diffusion type equation of the form

ut = auxx + bux + cu := −Au,
u(0, t) = 0, t > 0,

u(x, 0) = u0(x), x > 0.

It is well known that the operator −A, considered with the domain D(−A) = {f ∈
W 2,2([0,∞)) : f(0) = 0}, generates an analytic strongly continuous semigroup of

angle π
2 in the space E = L2([0,∞)), provided a, b, c > 0 and c < b2

2a < 1. The
same conclusion holds if we consider the operator −A with the domain D(−A) =
{f ∈W 2,1([0,∞)) : f(0) = 0} in E = L1([0,∞)). Let

Ω =
{
λ ∈ C :

∣∣∣λ−
(
c− b2

4a

)∣∣∣ 6 b2

4a
, Imλ ̸= 0 if Reλ 6 c− b2

4a

}
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and let p(x) =
∑n
i=0 aix

i be a nonconstant polynomial such that an > 0 and
that p(−Ω) ∩ iR ̸= ∅. Notice that the last condition holds provided a0 ∈ iR. By
Theorem 3.1.38, one gets that there exists an injective operator C ∈ L(E) such that
p(A) generates an entire C-regularized group (T (t))t∈C satisfying that (T (t))t>0 is

chaotic and topologically mixing. Set Ê := {(fλ(·), p(−λ)fλ(·))T : λ ∈ Ω}, where

the function fλ is defined in [109, Example 4.12]. Then [239] the operator
( 0 I
p2(A) 0

)
is the integral generator of an entire C-regularized semigroup (S0(t))t>0 satisfying

that (S0(t))t>0 is Ê-topologically mixing and that the set of all Ê-periodic points of

(S0(t))t>0 is dense in Ê. Using the composition property of regularized semigroups,

it simply follows that there exist x, y ∈ Ê such that the set {C−1S0(nt)
(
x
y

)
: n ∈ N0}

is a dense subset of Ê. Since R(CÊ) is dense in Ê, one gets that {S0(nt)
(
x
y

)
: n ∈ N0}

is also a dense subset of Ê. This implies that (S0(t))t>0 is Ê-hypercyclic.

Ji and Weber [163] have recently investigated the dynamics of Lp heat semi-
groups (p > 2) on symmetric spaces of non-compact type. It is noteworthy that
Theorem 3.1.38 and Remark 3.1.39 can be applied to the operators considered in
[163, Theorem 3.1(a), Theorem 3.2, Corollary 3.3] and that convenable chosen
shifts (polynomials) of the backwards heat operator, acting on such spaces, has a
certain (sub-)chaotical behavior. More precisely, we have the following.

Example 3.1.41. Let X be a symmetric space of non-compact type (of rank

one) and p > 2. Then there exist a closed linear subspace X̃ of X (X, if the rank
of X is one), a number cp > 0 and an injective operator C ∈ L(Lp♮ (X)) such that

for any c > cp the operator (−∆♮
X,p + c)2 generates a global C-regularized cosine

function (C(t))t>0 in Lp♮ (X). Furthermore, there exists a closed linear subspace X̂

of X ⊕X such that the operator
( 0 I
(−∆♮

X,p+c)
2 0

)
generates an entire C-regularized

semigroup (S0(t))t>0 satisfying that (S0(t))t>0 is X̂-topologically mixing and that

the set of all X̂-periodic points of (S0(t))t>0 is dense in X̂.

The following theorem is an extension of [329, Theorem 2.1], [76, Proposition
2.1], [78, Theorem 1.1] and Theorem 3.1.36(i).

Theorem 3.1.42. (i) Assume G is a (C-DS) generated by A, ω1, ω2 ∈ R ∪
{−∞,∞}, ω1 < ω2 and t0 > 0. If σp(A) ∩ iR ⊇ (iω1, iω2) ∩ 2πiQ

t0
, k ∈ N and

gj : (ω1, ω2)∩ 2πQ
t0

→ E is a function satisfying that, for every j = 1, . . . , k, Agj(s) =

isgj(s), s ∈ (ω1, ω2) ∩ 2πQ
t0

, then every point in span{gj(s) : s ∈ (ω1, ω2) ∩ 2πQ
t0

,

1 6 j 6 k} is a periodic point of G(δt0). Assume now that fj : (ω1, ω2) → E is a
Bochner integrable function such that, for every j = 1, . . . , k, Afj(s) = isfj(s) for
a.e. s ∈ (ω1, ω2). Put ψr,j :=

∫ ω2

ω1
eirsfj(s) ds, r ∈ R, 1 6 j 6 k.

(i.1) Assume span{fj(s) : s ∈ (ω1, ω2)rΩ, 1 6 j 6 k} is dense in E for every
subset Ω of (ω1, ω2) with zero measure. Then G is topologically mixing
and G(δt0) is topologically mixing.
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(i.2) Put Ẽ := span{ψr,j : r ∈ R, 1 6 j 6 k}. Then G is Ẽ-topologically mixing

and the part of G(δt0) in Ẽ is topologically mixing in the Banach space

Ẽ.

(ii) Assume G is a (C-DS) generated by A, t0 > 0, Ẽ is a closed linear subspace
of E, E0 := span{x ∈ Z(A) : ∃λ ∈ C, Reλ < 0, G(δt)x = eλtx, t > 0},
E∞ := span{x ∈ Z(A) : ∃λ ∈ C, Reλ > 0, G(δt)x = eλtx, t > 0} and Eper :=
span{x ∈ Z(A) : ∃λ ∈ Q, G(δt)x = eπλitx, t > 0}. Then the following holds:

(ii.1) If E0 ∩ Ẽ is dense in Ẽ and if E∞ is a dense subspace of Ẽ, then G is

Ẽ-topologically mixing; if G(δt)(E0 ∩ Ẽ) ⊆ Ẽ, t > 0, then the part of

G(δt0) in Ẽ is topologically mixing in the Banach space Ẽ.

(ii.2) If Eper ∩ Ẽ is dense in Ẽ, then the set of Ẽ-periodic points of G is dense

in Ẽ; if, additionally, Eper is a dense subspace of Ẽ, then the set of all

periodic points of the part of the operator G(δt0) in Ẽ is dense in Ẽ.

Proof. We will prove the assertion (i.1). By Riemann–Lebesgue lemma and
the dominated convergence theorem, we have that lim|r|→∞ ψr,j = 0 and that the

mapping r 7→ ψr,j , r ∈ R is continuous (1 6 j 6 k). Then G(δt)fj(s) = eitsfj(s) for
a.e. s ∈ (ω1, ω2), G(δt)ψr,j = ψr+t,j , t > 0, r ∈ R, 1 6 j 6 k and span{ψr,j : r ∈ R,
1 6 j 6 k} ⊆ D(G). Using the proof of [329, Theorem 2.1], it can be easily seen
that span{ψr,j : r ∈ R, 1 6 j 6 k} is dense in E. So, it suffices to show that, given
y, z ∈ span{ψr,j : r ∈ R, 1 6 j 6 k} and ε > 0 in advance, there exists t0 > 0 such
that, for every t > t0, there exists xt ∈ Z(A) = D(G) such that:

(197) ∥y − xt∥ < ε and ∥z −G1(δt)xt∥ < ε.

Let y =
∑m
l=1 αlψrl,il and z =

∑n
l=1 βlψr̃l ,̃il for some αl, βl ∈ C, rl, r̃l ∈ R

and 1 6 il, ĩl 6 k. Then there exists t0(ε) > 0 such that ∥
∑n
l=1 βlψr̃l−t,̃il∥ < ε

and G(δt)
∑n
l=1 βlψr̃l−t,̃il = z, t > t0(ε). Furthermore, there exists t1(ε) > 0

such that ∥G(δt)y∥ = ∥
∑m
l=1 αlψrl+t,il∥ < ε, t > t1(ε). Then (197) holds with

t0 = max(t0(ε), t1(ε)) and xt =
∑n
l=1 βlψr̃l−t,̃il + y, t > t0. The operator G(δt0) is

obviously topologically mixing, which completes the proof. �
Remark 3.1.43. (i) Assume the function fj : (ω1, ω2) → E is weakly continu-

ous for every j = 1, . . . , k, t0 > 0 and Ω is a subset of (ω1, ω2) with zero measure.
Then

span {fj(s) : s ∈ (ω1, ω2) ∩ 2πQ/t0, 1 6 j 6 k}

= span {fj(s) : s ∈ (ω1, ω2), 1 6 j 6 k} = span
∪k

j=1
{fj(s) : s ∈ (ω1, ω2)r Ω}.

(ii) Let Ω be a subset of (ω1, ω2) with zero measure, let r ∈ R and let 1 6 j 6 k.

Then ψr,j =
∫ ω2

ω1
eirsfj(s) ds ∈ span {fj(s) : s ∈ (ω1, ω2)r Ω}.

(iii) Assume that the mapping r 7→ ψr,j , r ∈ R is an element of the space
L1(R : E) for every j = 1, . . . , k. Then the inversion theorem for the Fourier
transform implies that there exists a subset Ω of (ω1, ω2) with zero measure such

that span {fj(s) : s ∈ (ω1, ω2)r Ω, 1 6 j 6 k} = span {ψr,j : r ∈ R, 1 6 j 6 k}.
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(iv) By multiplying with an appropriate scalar-valued function, we may assume
that, for every j = 1, . . . , k, the function fj(·) is strongly measurable (cf. also [329,
Remark 2.4]).

The following example illustrates an application of Theorem 3.1.42(i) and can
be formulated in a more general setting.

Example 3.1.44. Assume α > 0, τ ∈ iR r {0} and E := BUC(R). After
the usual matrix reduction to a first order system, the equation τutt + ut = αuxx
becomes

d

dt
u⃗(t) = P (D)u⃗(t), t > 0, where D ≡ −i d

dx
, P (x) ≡

[
0 1

−α
τ x

2 − 1
τ

]
and P (D) acts on E ⊕E with its maximal distributional domain. The polynomial
matrix P (x) is not Petrovskii correct and [89, Theorem 14.1] implies that there
exists an injective operator C ∈ L(E ⊕ E) such that P (D) generates an entire
C-regularized group (T (z))z∈C, with R(C) dense. Put ω1 = −∞ and ω2 = 0,

resp. ω1 = 0 and ω2 = +∞, if Im τ > 0, resp. Im τ < 0. Then −τs2+is
α ∈

(−∞, 0), s ∈ (ω1, ω2). Let h1(s) := cos
(
·( τs

2−is
α )1/2

)
, h2(s) := sin

(
·( τs

2−is
α )1/2

)
,

s ∈ (ω1, ω2) and let f ∈ C∞((0,∞)) be such that the mapping s 7→ fj(s) :=(
f(s)hj(s), isf(s)hj(s)

)T
, s > 0 is Bochner integrable and that the mapping

s 7→

{
fj(s), s ∈ (ω1, ω2)

0, s /∈ (ω1, ω2)

belongs to the space H1(R) for j = 1, 2. Put ψr,j =
∫ ω2

ω1
eirsfj(s) ds, r ∈ R, j = 1, 2

and Ẽ = span{ψr,j : r ∈ R, j = 1, 2}. By Bernstein lemma [14, Lemma 8.2.1,
p. 429], Theorem 3.1.42(i.2) and Remark 3.1.43(i)–(iii), one gets that (T (t))t>0 is

Ẽ-topologically mixing as well as that for each t0 > 0 the part of the operator
C−1T (t0) in Ẽ is topologically mixing in Ẽ and that the set of Ẽ-periodic points

of such an operator is dense in Ẽ.

The hypercyclic and topologically mixing properties of abstract time-fractional
equations have been recently considered in [243]. The results obtained there can
be applied in the study of time-fractional equations on symmetric spaces of non-
compact type and time-fractional equations involving bounded perturbations of
Ornstein-Uhlenbeck operators ([76]).

3.2. Various classes of distribution semigroups

In the remaining part of the book, we primarily consider the case C = I
although one can reformulate a great part of our results in the case of general
C. We start with the recollection of fundamental properties of smooth distri-
bution semigroups introduced by Balabane and Emamirad [21]–[23] and further
studied by Arendt and Kellermann [7], El–Mennaoui [117], Hieber [148], Kunst-
mann, Mijatović and Pilipović [257] and Miana [311]–[315]. Denote by S+ the
space of all infinitely differentiable functions f : [0,∞) → C such that qm,n(f) :=
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supt>0 |tmf (n)(t)| < ∞ for all m, n ∈ N0. It is well known that qm,n(·) is a semi-
norm on S+ for all m, n ∈ N0 and that the system (qm,n) defines the Frechét
topology on S+. The dual space S ′

+ is said to be the space of tempered distribu-
tions on [0,∞). In what follows, we assume that S ′

+ is equipped with the strong
topology. Further on, let D+ := {f ∈ C∞([0,∞)) : f is compactly supported}.
Define K : D → D+ by K(φ)(t) := φ(t), t > 0, φ ∈ D. We know that D+ is an
(LF) space, and due to the theorem of Seeley [380], there exists a linear contin-
uous operator Λ : D+ → D satisfying KΛ = ID+ . Let qk(f) :=

∫∞
0
tk|f (k)(t)| dt,

f ∈ N0, f ∈ S+. Following Miana [311], we denote by AC(k)(tk) the comple-
tion of S+ in the norm qk(·). It is checked at once that AC(k)(tk) ↪→ AC(j)(tj) if
0 6 j 6 k. Given f ∈ D+, the Weyl fractional integral of order α > 0 is defined

by (W−αf)(t) :=
∫∞
t

(s−t)α−1

Γ(α) f(s) ds, f ∈ D+, t > 0. It is well known that, for

every α > 0, the mapping W−α : D+ → D+ is bijective. The inverse mapping of
W−α(·), denoted by Wα(·), is called the Weyl fractional derivative of order α > 0.
If α ∈ N, then Wαf = (−1)nf (n), f ∈ D+. Furthermore, WαW β = Wα+β for
all α, β ∈ R, where we put W 0 := I. In Subsection 3.3.1 we will employ a some-
what different notion. By ACα(tα) we denote the completion of the normed space
(D+, ωα), where ωα(f) :=

∫∞
0
tα|(Wαf)(t)| dt, f ∈ D+.

Definition 3.2.1. A smooth distribution semigroup is a continuous linear map-
ping G : S+ → L(E) which satisfies:

(i) G(φ ∗ ψ) = G(φ)G(ψ), φ, ψ ∈ S+ and
(ii) there exists a dense subset D of E such that for all x ∈ D there exists a

continuous function ux : [0,∞) → E such that G(φ)x =
∫∞
0
φ(t)ux(t) dt,

φ ∈ S+, x ∈ D.

If G is a smooth distribution semigroup, then for every regularizing sequence
(ρn) in D0, we have limn→∞G(ρn) = I. Put G(φ) := G(K(φ)), φ ∈ D. By [311,
Proposition 4.3], it follows that D′

0(L(E)) ∋ G is a dense distribution semigroup.
The infinitesimal generator of G is said to be the infinitesimal generator of G.

Proposition 3.2.2. [311, Proposition 4.7] Suppose α > 0 and A is the gen-
erator of an α-times integrated semigroup (Sα(t))t>0 which satisfies ∥Sα(t)∥ 6
Mtα(1 + tβ), t > 0 for some M > 0 and β > 0. If A is densely defined, then A is
the generator of a smooth distribution semigroup.

Suppose α > 0 and G is a smooth distribution semigroup. If G can be contin-
uously extended to a mapping from AC(α)(tα) into L(E), then we say that G is a
smooth distribution semigroup of order α.

Theorem 3.2.3. Suppose A is densely defined and α > 0. Then the following
assertions are equivalent:

(i) A is the generator of an α-times integrated semigroup (Sα(t))t>0 which
satisfies ∥Sα(t)∥ 6Mtα, t > 0 for some M > 0.

(ii) A is the generator of a smooth distribution semigroup of order α.

The class of strong distribution semigroups has been recently introduced and
analyzed in [257].
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Let φ ∈ D and
∫∞
−∞ φ(t) dt = 1. Put, for every ε > 0, φε(t) := 1

εφ( tε ) and

θε(t) :=
∫ t/ε
−∞ φ(s) ds, t ∈ R.

Definition 3.2.4. An element G ∈ D′
0(L(E)) is said to be a strong distribution

semigroup if (d1) and (d2) hold with C = I (cf. Subsection 3.1.3) and

(ds5): There exists a dense subset D of E such that, for every x ∈ D and
φ ∈ D with

∫∞
−∞ φ(t) dt = 1, we have limε→0+G(φθε)x = G(φ)x.

By [257, Theorem 3], we know that every strong distribution semigroup satis-
fies (d5) with C = I and, owing to Proposition 3.1.18, G is a distribution semigroup.
It can be simply verified that every generator A of a strong distribution semigroup
is stationary dense with n(A) 6 1 as well as that every dense distribution semigroup
is a strong distribution semigroup with D = R(G). Furthermore, the condition (ds5)
can be characterized by the value of the operator-valued distribution G−1 in the
sense of  Lojasiewicz (cf. [257, Corollary 1]).

The following theorem follows from the proof of [257, Corollary 1] and a simple
reasoning.

Theorem 3.2.5. Suppose α > 0, β ∈ (0, 1), τ ∈ (0,∞),M > 0 and A generates
an α-times integrated semigroup (Sα(t))t∈[0,τ). Denote by E0 the set which consists

of all elements x ∈ E such that limt→0+
∥Sα(t)x∥
tα−1 = 0. If E0 is dense in E, then

A generates a strong distribution semigroup. In particular, this holds provided
∥Sα(t)∥ 6Mtα−β, t ∈ [0, τ2 ).

It is predictable that there exists a distribution semigroup which does not
satisfy (ds5).

Example 3.2.6. Let B be the generator of the standard translation group on
L1(R). We have already seen that the operator A = (B∗)2 is the non-densely
defined generator of a sine function in L∞(R) and that n(A) = 1. Taking into
account Theorem 2.1.11 and Lemma 2.1.22, one gets that the operator A generates
a twice integrated semigroup in E×E. This implies that the operator A generates
a distribution semigroup G in E × E. Since n(A) = 2, G does not satisfy (ds5).

Questions. (i) Suppose A generates a distribution semigroup G and n(A) = 1.
Does it imply that G is a strong distribution semigroup?

(ii) Suppose G is a strong distribution semigroup and

(dglob5 ): For every x∈E and φ∈D with
∫∞
−∞ φ(t)dt=1, limε→0+G(φθε)x=G(φ)x.

Does (dglob5 ) automatically hold?

Now we would like to inscribe the basic structural properties of [r]-semigroups
[217]. Suppose r > 0, k ∈ N0 and set

prk(φ) :=

k∑
i=0

∥∥erttiφ(i)
∥∥
L1([0,∞))

, qrk(φ) :=

k∑
i=0

∥∥ti(ertφ)(i)
∥∥
L1([0,∞))

, φ ∈ D+.

It is well known that the inclusion mapping id : (D+, prk) → (D+, qrk) is a contin-
uous mapping between normed spaces. Denote by Trk, resp. Drk, the completion
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of the space (D+, prk), resp. (D+, qrk). Further on, put hλ(t) := e−λtH(t), t ∈ R,
whereH(·) denotes the Heaviside function. Then hλ(t) ∈ Trk∩Drk for all λ∈C with
Reλ > r, and moreover, Trk and Drk are algebras for the convolution product ∗0.

Definition 3.2.7. Suppose r > 0, k ∈ N0 and G is a distribution semigroup.
Then it is said that G is an [r, k]-semigroup, resp. {r, k}-semigroup, if GΛ can
be continuously extended to a continuous linear mapping from Trk, resp. Drk, into
L(E). We say that G is an [r]-semigroup, resp. {r}-semigroup, if there exists k ∈ N0

such that G is an [r, k]-semigroup, resp. {r, k}-semigroup.

It is obvious that every {r, k}-semigroup is also an [r, k]-semigroup, r > 0,
k ∈ N0 and that, for every r > 0, there exists a densely defined operator A such
that A is the generator of an [r, 1]-semigroup and that there is no k ∈ N0 such that
A is the generator of an {r, k}-semigroup. Further on, the class of [r, 0]-semigroups,
{r, 0}-semigroups and (r, 0)-semigroups, introduced by Wang in [418], coincide for
every r > 0. Therefore, the necessary and sufficient condition for a closed linear
operator A to be the generator of an [r, 0]-semigroup [418] is that there exists
M > 0 such that (r,∞) ⊆ ρ(A) and that∥∥∥ dn

dλn
R(λ :A)

∥∥∥ 6 Mn!

(λ− r)n+1
, λ > r, n ∈ N0.

As a consequence, we have that every Hille–Yosida operator is the generator of an
[r, 0]-semigroup for a convenable chosen r > 0.

Theorem 3.2.8. [91], [217] Suppose r > 0, k ∈ N0 and D(A) is dense in E.
Then the following assertions are equivalent:

(i) The operator A is the generator of an {r, k}-semigroup.
(ii) The operator A − r is the generator of an exponentially bounded k-times

integrated semigroup (S(t))t>0 such that ∥S(t)∥ = O(tk), t > 0.
(iii) There exists M > 0 such that (r,∞) ⊆ ρ(A) and that∥∥∥∥ djdλj [R(λ+ r : A)

λk

]∥∥∥∥ 6M
(k + j)!

λk+j+1
, λ > 0, j ∈ N0.

(iv) The operator r−A admits a smooth semispectral distribution of degree k.

We summarize the properties of [r]-semigroups in the following theorem.

Theorem 3.2.9. [217] (i) Suppose A is the generator of an [r, k]-semigroup for
some r > 0 and k ∈ N. Then {λ ∈ C : Reλ > r} ⊆ ρ(A) and there exists M > 0
such that, for every n ∈ N and λ ∈ C with Reλ > r, the following holds:∥∥R(λ :A)n

∥∥ 6 Mn(n+ 1) · · · (n+ k − 1)|λ|k

(Reλ− r)n+k
.

(ii) Suppose A is the generator of an [r, k]-semigroup G for some r > 0. Then
G is a smooth distribution semigroup and n(A) 6 1. Furthermore, if E is reflexive,
then A must be densely defined.

(iii) Suppose m, m − k ∈ N0, r > 0 and A is the generator of a k-times
integrated semigroup (Sk(t))t>0 such that ∥Sk(t)∥ = O

(
ert(tk + tm)

)
, t > 0. Then

A is the generator of an [r,m]-semigroup.
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(iv) Suppose that A − r is the generator of a k-times integrated semigroup
(Sk(t))t>0 such that ∥Sk(t)∥ = O(tk + tm), t > 0. Then A is the generator of an
[r,m]-semigroup.

(v) Suppose that A is the generator of an [r, k]-semigroup for some r > 0 and

k ∈ N0. Then the part of A− r in D(A) generates a k-times integrated semigroup

(Sk(t))t>0 in D(A) satisfying ∥Sk(t)∥ = O(tk + t2k), t > 0.
(vi) Suppose A is a closed linear operator, r > 0 and {λ ∈ C : Reλ > r} ⊆

ρ(A). If there exist k ∈ N0 and M > 0 such that

(198) ∥R(λ :A)∥ 6M
|λ|k

(Reλ− r)k+1
, Reλ > r,

then A is the generator of a (k + 2)-times integrated semigroup (Sk(t))t>0 which
satisfies ∥Sk(t)∥ = O

(
min(erttk+1, erttk+2)

)
, t > 0 and A is the generator of an

[r, k + 2]-semigroup.
(vii) Suppose that A is the generator of an [r, k]-semigroup for some r > 0

and k ∈ N0. Then A is the generator of a (k + 2)-times integrated semigroup
(Sk+2(t))t>0 such that ∥Sk+2(t)∥ = O

(
min(erttk+1, erttk+2)

)
, t > 0.

(viii) Suppose A is a closed linear operator and r > 0. Then A is the generator
of an [r]-semigroup iff there exist k ∈ N and M > 0 such that {λ ∈ C : Reλ > r} ⊆
ρ(A) and that (198) holds iff there exists k ∈ N such that A is the generator of a
k-times integrated semigroup (Sk(t))t>0 such that ∥Sk(t)∥ = O(erttk), t > 0.

(ix) Suppose A is a closed linear operator and r > 0. Then A is the generator
of an {r}-semigroup iff there exist k ∈ N and M>0 such that {λ∈C : Reλ > r} ⊆
ρ(A) and

∥R(λ :A)∥ 6M
|λ− r|k

(Reλ− r)k+1
, Reλ > r

iff there exists k ∈ N such that A − r is the generator of a k-times integrated
semigroup (Sk(t))t>0 such that ∥Sk(t)∥ = O(tk), t > 0.

Definition 3.2.10. [91] Denote by A the space consisted of all Laplace trans-
forms of functions from S+, equipped with the following system of seminorms:

∥g∥j,k := ∥tjφ(k)(t)∥L1([0,∞)), j, k ∈ N0, g = L(φ) ∈ A.

A smooth semispectral distribution for A is a continuous algebraic homomorphism
f : A → L(E) which satisfies:

(i) {λ ∈ C : Reλ < 0} ⊆ ρ(A) and f
(

1
λ−·
)

= R(λ :A) whenever Reλ < 0,

(ii) f
(
g( ·
n )
)
x→ x, n→ ∞ for all x ∈ E and g ∈ A such that g(0) = 1.

If −A admits a smooth semispectral distribution, then A must be densely
defined. We refer the interested reader to [104] for the notion of a regularized quasi-
spectral distribution which removes any density assumption from Definition 3.2.10.
Suppose that A is the densely defined generator of a global k-times integrated
semigroup (Sk(t))t>0 which satisfies ∥Sk(t)∥ = O(tk(1 + tn)), t > 0 for some n,
k ∈ N0. Then it is well known that −A admits a smooth semispectral distribution.



3.2. VARIOUS CLASSES OF DISTRIBUTION SEMIGROUPS 193

Theorem 3.2.11. (i) Suppose that A is a closed, densely defined linear operator,
m, k ∈ N and m > k. Then the following assertions are equivalent:

(i.1) A is the generator of a distribution semigroup G and there exists C > 0
such that ∥G(φ)∥ 6 C

∫∞
0

(tk + tm)|φ(k)(t)| dt, φ ∈ D.
(i.2) A is the generator of a k-times integrated semigroup (Sk(t))t>0 such that

∥S(t)∥ = O(tk + tm), t > 0.
(i.3) −A admits a smooth semispectral distribution f(·) such that, for an ap-

propriate C > 0, ∥f(φ̂)∥ 6 C∥(tk + tm)φ(k)∥1, φ ∈ D.

(ii) Suppose A is a closed, densely defined linear operator and r > 0. Then the
following assertions are equivalent:

(ii.1) A is the generator of an [r]-semigroup.
(ii.2) r−A admits a smooth semispectral distribution f(·) such that there exists

an appropriate C > 0 with ∥f(φ̂)∥ 6 C
∫∞
0

(tk + tm)|φ(k)(t)| dt, φ ∈ D,
for some k, m ∈ N with m > k.

(ii.3) A is the generator of a k-times integrated semigroup (Sk(t))t>0 such that
∥Sk(t)∥ = O(ert(tk + tm)), t > 0 for some k, m ∈ N with m > k.

(ii.4) A − r is the generator of a k-times integrated semigroup (Sk(t))t>0 such
that ∥Sk(t)∥ = O(tk + tm), t > 0 for some k, m ∈ N with m > k.

It is also worth noting that, for every generator A of an [r, k]-semigroup, where
r > 0 and k ∈ N, the operator r−A admits Ak+2,n functional calculus for all n ∈ N
with n > k + 1 (cf. [91] for the notion).

Example 3.2.12. (i) [8] Let p ∈ (1,∞). Denote by Jp the Riemann–Liouville
semigroup on Lp((0, 1)), that is

(Jp(z)f)(x) :=
1

Γ(z)

∫ x

0

(x− y)z−1f(y) dy, f ∈ Lp((0, 1)), x ∈ (0, 1), Re z > 0.

Designate by Ap the generator of Jp. Then the operator iAp generates a C0-group

(Tp(t))t∈R on Lp((0, 1)) and the following holds ∥Tp(t)∥ = O((1 + t2)e|t|
π
2 ), t ∈ R.

Set Gp(φ) :=
∫∞
0
φ(t)Tp(t) dt, φ ∈ D. Then Gp is a dense [π2 , 2]-semigroup in

Lp((0, 1)) with the generator iAp. Evidently, −iAp is also the generator of a [π2 , 2]-
semigoup in Lp((0, 1)).

(ii) [101] Suppose p ∈ [1,∞) and m : R → (0,∞) is a measurable function
which satisfies:

(199)
(

sup
s∈R

m(s− t)

m(s)

) 1
p 6M(1 + tk), t > 0,

for some k ∈ N and M > 0. Let r > 0 be fixed. Put (Tp(t)f)(x) := ertf(x + t),
x ∈ R, t > 0, f ∈ Lp(R, m(t)dt). Then (Tp(t))t>0 is a C0-semigroup in Lp(R,
m(t)dt) and

∥Tp(t)∥ = ert
(

sup
s∈R

m(s− t)

m(s)

) 1
p

= O
(
ert(1 + tk)

)
.

Put now Gp(φ) :=
∫∞
0
φ(t)Tp(t) dt, φ ∈ D. Then Gp is a dense [r, k]-semigroup

in Lp(R, m(t)dt). Notice, if m(·) is a positive polynomial, then (199) holds for
appropriate numbers k ∈ N and M > 0.
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(iii) [14] Suppose r > 0,

E :=
{
f ∈ C([0,∞)) : lim

x→∞

f(x)

x+ 1
= 0
}
,

∥f∥ := sup
x>0

|f(x)|
x+ 1

, f ∈ E, (T (t)f)(x) := f(x+ t), f ∈ E, t > 0, x > 0.

Then (T (t))t>0 is a C0-semigroup and ∥T (t)∥ = 1 + t, t > 0. The generator A of

(T (t))t>0 is just the operator d
dx with maximal domain in E. Set

G(φ) :=

∫ ∞

0

φ(t)ertT (t) dt, φ ∈ D.

Then G is a dense [r, 1]-semigroup with the generator A+ r. Suppose that G is an
{r, k}-semigroup for some k ∈ N. Then A generates a k-times integrated semigroup

(Sk(t))t>0 such that ∥Sk(t)∥ = O(tk), t > 0. Since Sk(t) =
∫ t
0

(t−s)k−1

(k−1)! T (s) ds,

t > 0, it follows that

sup
x>0

1

x+ 1

∣∣∣∣∣
t∫

0

(t− s)k−1

(k − 1)!
f(x+ s) ds

∣∣∣∣∣ 6Mtk sup
x>0

|f(x)|
x+ 1

, f ∈ E, t > 0.

Let f(t) =
√
t, t > 0. Then one gets

t∫
0

(t− s)k−1

(k − 1)!

√
s ds 6 sup

x>0

1

x+ 1

∣∣∣∣∣
t∫

0

(t− s)k−1

(k − 1)!

√
x+ s ds

∣∣∣∣∣ 6 Mtk

2
, t > 0.

This is a contradiction. Furthermore, for every k ∈ N0, the operator A generates
a k-times integrated semigroup (Sk(t))t>0 such that ∥Sk(t)∥ = O(tk + tk+1), t > 0
and there does not exist a number α ∈ [0, k+1) such that ∥Sk(t)∥ = O(tk+ tα+1),
t > 0.

(iv) [217] For every r > 0 and k ∈ N there exists a dense [r, k]-semigroup which
is not an [r, k− 1]-semigroup. Indeed, suppose that T ∈ L(E) is nilpotent and that
T k+1 = 0. Define

T (t) := ert
k∑
i=0

T iti

i!
, t > 0.

Then ∥T (t)∥ = O
(
ert(1 + tk)

)
, t > 0, (T (t))t>0 is a C0-semigroup generated by

T + r and T + r generates a dense [r, k]-semigroup. Put now E := Rk+1 with the
sup-norm and

T (x1, x2, . . . , xk+1) := (x2, . . . , xk+1, 0), xi ∈ R, i = 1, 2, . . . , k + 1.

Then T k+1 = 0 and T + r generates an [r, k]-semigroup G. Suppose that G is an
[r, k − 1]-semigroup. By Theorem 3.2.9, it follows that the operator T generates a
(k − 1)-times integrated semigroup (Sk−1(t))t>0 such that ∥Sk−1(t)∥ = O(tk−1 +
t2k−2). If k = 1, this means that T generates a bounded C0-semigroup. Then the
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contradiction is obvious since ∥e−rtT (t)∥ = 1 + t + · · · + tk

k! , t > 0. If k > 1 and
t > 0, then

Sk−1(t)(x1, x2, . . . , xk+1) =

t∫
0

(t− s)k−2

(k − 2)!
e−rsT (s)(x1, x2, . . . , xk+1) ds.

On the other hand, direct computation shows that

∥Sk−1(t)∥ =
tk−1

(k − 1)!
+ · · · +

t2k−1

(2k − 1)!
, t > 0.

This is in contradiction with ∥Sk−1(t)∥ = O(tk−1 + t2k−2).

Now we clarify the basic properties of differentable and analytic distribution
semigroups. Recall, a scalar valued distribution δt is defined by δt(φ) = φ(t), φ ∈ D
(t ∈ R).

We introduce differentiable and analytic semigroups following the approach of
Barbu [28] (cf. also Da Prato, Mosco [85]–[86] and Fujiwara [135]).

Definition 3.2.13. Suppose that G is a distribution semigroup and that α ∈
(0, π2 ]. Then it is said that G is an (infinitely) differentiable distribution semigroup,
resp. an analytic distribution semigroup of angle α, iff the mapping t 7→ G(δt) ∈
L(E), t > 0 is (infinitely) differentiable, resp. iff the mapping t 7→ G(δt) ∈ L(E),
t > 0 can be analytically extended to the sector Σα, where we assume that L(E)
is equipped with the strong topology.

The next characterization of differentiable distribution semigroups with densely
defined generators was proved by Barbu.

Theorem 3.2.14. [28] Suppose that A is a closed, densely defined linear oper-
ator. Then A generates a differentiable distribution semigroup iff there exist n ∈ N
and ω > 0 such that, for every σ > 0, there exist Cσ > 0 and Mσ > 0 such that

Υσ,ω :=
{
λ ∈ C : −σ ln | Imλ| + Cσ 6 Reλ 6 ω} ∪ {λ ∈ C : Reλ > ω

}
⊆ ρ(A)

(200)

∥R(λ :A)∥ 6Mσ(1 + |λ|)n, λ ∈ Υσ,ω.(201)

Further on, every dense differentiable (DS) G must be infinitely differentiable
and exponential [28]. Now we state the following important extension of Theo-
rem 3.2.14.

Theorem 3.2.15. Suppose A is a closed, linear operator. Then the assertions
(i), (ii), (iii), (iv), (v) and (vi) are equivalent, where:

(i) There exists n ∈ N such that A generates an exponentially bounded n-
times integrated semigroup (Sn(t))t>0 such that the mapping t 7→ Sn(t),
t > 0 is infinitely differentiable.

(ii) There exists n ∈ N such that A generates an exponentially bounded n-
times integrated semigroup (Sn(t))t>0 such that the mapping t 7→ Sn(t),
t > 0 is (n+ 1)-times differentiable.

(iii) A generates a differentiable distribution semigroup.
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(iv) There exist n ∈ N and ω > 0 such that, for every σ > 0, there exist
Cσ > 0 and Mσ > 0 such that (200)-(201) hold.

(v) There exists n ∈ N such that A generates a global n-times integrated
semigroup (Sn(t))t>0 such that the mapping t 7→ Sn(t), t > 0 is infinitely
differentiable.

(vi) There exists n ∈ N such that A generates a global n-times integrated
semigroup (Sn(t))t>0 such that the mapping t 7→ Sn(t), t > 0 is (n + 1)-
times differentiable.

Proof. The implication (i) ⇒ (ii) is trivial. Suppose that (ii) holds and put
G(φ)x = (−1)n

∫∞
0
φ(n)(t)Sn(t)x dt, x ∈ E, φ ∈ D. Then G is an (EDSG) and,

by the closed graph theorem, the differentiability of G follows immediately if one
shows that dn

dtnSn(t) ⊆ G(δt), t > 0. Since

G(δt) =
{

(x, y) ∈ E × E : G(φ(· − t))x = G(φ)y for all φ ∈ D0

}
, t > 0,

we have to prove that:

(202)

∞∫
0

φ(n)(s−t)Sn(s)x ds =

∞∫
0

φ(n)(s)Sn(s)S(n)
n (t)x ds, x ∈ E, t > 0, φ ∈ D0.

Towards this end, notice that, for every φ ∈ D0, t > 0 and x ∈ E,

∞∫
0

φ(n)(s)Sn(s)S(n)
n (t)x ds =

∞∫
0

φ(n)(s)
dn

dtn
Sn(s)Sn(t)x ds

=

∞∫
0

φ(n)(s)
dn

dtn

[( t+s∫
s

−
t∫

0

)
(t+ s− r)n−1

(n− 1)!
Sn(r)x dr

]
ds

=

∞∫
0

φ(n)(s)
dn−1

dtn−1

[( t+s∫
s

−
t∫

0

)
(t+ s− r)n−2

(n− 2)!
Sn(r)x dr − sn−1

(n− 1)!
Sn(t)x

]
ds

=

∞∫
0

φ(n)(s)
dn−1

dtn−1

[( t+s∫
s

−
t∫

0

)
(t+ s− r)n−2

(n− 2)!
Sn(r)x dr

]
ds.

Repeating this procedure sufficiently many times leads us to the following:

∞∫
0

φ(n)(s)Sn(s)S(n)
n (t)x ds =

∞∫
0

φ(n)(s)Sn(t+ s)x ds =

∞∫
0

φ(n)(s− t)Sn(s)x ds.

Thus, (202) holds and G is differentiable, as claimed. Suppose now that A generates
a differentiable distribution semigroup G and that t > 0. By [249, Theorem 3.5],

the operator A is stationary dense. Put F := D(An(A)). Then one can simply
verify that G|F is a dense (DS) in the Banach space F with the generator A|F .
This implies that there exists n ∈ N such that (cf. [216], [252] and [418]), for
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every k ∈ N, A|F generates a local (kn)-times integrated semigroup (SFkn(s))s∈[0,kt)

in F which additionally satisfies:

G|F (φ)x = (−1)kn
∞∫
0

φ(kn)(s)SFkn(s)x ds, x ∈ F, φ ∈ D(−∞,kt).

Let x ∈ D∞(A). We will prove that G(δt)x ∈ F and that G|F (δt)x = d2n

dt2nS
F
2n(t)x.

Suppose φ ∈ D[0,(k−1)t) for some k ∈ N with k > 3. Since

Skn(s) =

s∫
0

(s− r)(k−2)n−1

((k − 2)n− 1)!
S2n(r)x dr, s ∈ [0, 2t),

we have

SFkn(s)
( d2n
dr2n

SF2n(r)x
)
r=t

= SFkn(s)
( dkn
drkn

SFkn(r)x
)
r=t

=
( dkn
drkn

SFkn(s)SFkn(r)x
)
r=t

for all s ∈ [0, (k − 1)t). The proof of the implication (ii) ⇒ (iii) implies

∞∫
0

φ(kn)(s− t)SFkn(s)x ds =

∞∫
0

φ(kn)(s)
( dkn
drkn

SFkn(s)SFkn(r)x
)
r=t

ds.

Hence, G(δt)x = G|F (δt)x = d2n

dt2nS
F
2n(t)x, x ∈ D∞(A). On the other hand, ex-

ploitation of [249, Proposition 2.1(iv)] gives that D∞(A) = F , and the continuity
of mapping t 7→ G(δt), t > 0 implies G(δt)x = G|F (δt)x ∈ F . By the foregoing, one
has that G|F is a dense differentiable (DS) in F generated by A|F . The assertion
(iv) is a consequence of Theorem 3.2.14 and [249, Corollary 2.2]. The implication
(iv) ⇒ (i) can be proved by the next insignificant modification of the proof of [355,
Theorem 4.7, p. 54]. Suppose ω0 > ω and put

Γ1 := {λ ∈ C : Reλ = 2Cσ − σ ln(− Imλ), −∞ < Imλ 6 −e
2Cσ
σ },

Γ2 := {λ ∈ C : Reλ = ω0, e
2Cσ
σ 6 Imλ 6 e

2Cσ
σ }

Γ3 := {λ ∈ C : Reλ = 2Cσ − σ ln(Imλ), e
2Cσ
σ 6 Imλ < +∞},

Γ := Γ1∪Γ2 ∪ Γ3 and Γk := {λ ∈ Γ : |λ| 6 k}. The curves Γ and Γi are oriented so
that Imλ increases along Γ and Γi, i = 1, 2, 3. Set, for a sufficiently large k0 ∈ N,

Sk(t) :=
1

2πi

∫
Γk

eλt
R(λ :A)

λn+2
dλ, t > 0, k > k0.

It is simple to prove that dj

dtj S
k(t) = 1

2πi

∫
Γk
eλtλj−n−2R(λ :A) dλ, t > 0, k > k0,

j ∈ N. Let k0 < k < l and ς > 0. Then we obtain∥∥∥ dj
dtj

Sk(t) − dj

dtj
Sl(t)

∥∥∥ =
1

2πi

∥∥∥∥∥
∫

Γl ∩{λ∈C k6|λ|6l}

eλtλj−n−2R(λ :A) dλ

∥∥∥∥∥
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6 Const
Mσ

2π
e2Cσt

∫
Γl ∩{λ∈C k6|λ|6l}

| Imλ|−σt
(
|2Cσ − ln | Imλ| + i Imλ|

)j−2|dλ|,

for all j ∈ N0. Since | Imλ|−σt
(
1 + |2Cσ − ln | Imλ| + i Imλ|

)j−2 ∼ | Imλ|j−2−σt,

|λ| → ∞, λ ∈ Γ, one gets that, for every t > max
(
j−1
σ , 0

)
and j ∈ N0, the sequence(

dj

dtj S
k(t)

)
k

is convergent in L(E) and that the convergence is uniform on every

compact subset of
[

max
(
j−1
σ , 0

)
+ ς,∞

)
. Put Sj(t) := limk→∞

dj

dtj S
k(t), j ∈ N0,

t > j
σ . It is obvious that d

dtSj(t) = Sj+1(t), j ∈ N0, t > j
σ +ς. This implies that the

mapping t 7→ S0(t), t > j+2
σ + ς is j-times differentiable and that dj

dtj S0(t) = Sj(t),

t > j
σ + ς. Set also

S(t) :=
1

2πi

ω0+i∞∫
ω0−i∞

eλt
R(λ :A)

λn+2
dλ, t > 0.

Then the proof of [14, Theorem 2.5.1] implies that (S(t))t>0 is an exponentially
bounded (n+2)-times integrated semigroup, and thanks to the residue theorem, we

have that S0(t) = S(t), t > 1
σ . Consequently, the mapping t 7→ S(t), t > j

σ + ς is j-
times differentiable. The arbitrariness of σ shows that the mapping t 7→ S(t), t > 0
is infinitely differentiable, as required. Therefore, we have proved (i) ⇔ (ii) ⇔ (iii)
⇔ (iv). The proof of implication (v) ⇒ (vi) is trivial and the proof of implication
(vi) ⇒ (iii) can be obtained following the lines of the proof of implication (ii) ⇒
(iii). Certainly, (iii) ⇒ (i) ⇒ (v) and the proof of theorem is completed. �

Multiplication operators in L∞-type spaces can serve as examples of non-
densely defined generators of differentiable (DS)’s.

Remark 3.2.16. (i) Suppose that A generates a differentiable (DS) G. Then
the proof of Theorem 3.2.15 yields that the mapping t 7→ G(δt), t > 0 is infin-
itely differentiable and that G(φ)x =

∫∞
0
φ(t)G(δt)x dt for all x ∈ E and φ ∈ D

with suppφ ⊆ (0,∞). Furthermore, G is an (EDS), G|F is a dense (DS) in the
Banach space F generated by A|F and G|F is differentiable whenever G is; in
this case, G(δt)x = G|F (δt)x, t > 0, x ∈ F . By Theorem 3.2.15, there exists
n ∈ N such that A generates an exponentially bounded n-times integrated semi-
group (Sn(t))t>0 such that the mapping t 7→ Sn(t), t > 0 is infinitely differentiable.

Hence, G(δt ∗ ρk)x = (−1)n
∫∞
0
ρ
(n)
k (s − t)Sn(s)x ds =

∫∞
0
ρk(s − t) d

n

dsnSn(s)x ds
and limk→∞G(δt ∗ ρk)x = G(δt)x, x ∈ E. Furthermore, the Lebesgue dominated
convergence theorem implies

d

dt
G(δt ∗ ρk)x = (−1)n+1

∞∫
0

ρ
(n+1)
k (s− t)Sn(s)x ds =

∞∫
0

ρk(s− t)
dn+1

dsn+1
Sn(s)x ds,

lim
k→∞

d

dt
G(δt ∗ ρk)x =

d

dt
G(δt)x =

dn+1

dtn+1
Sn(t)x, x ∈ E.
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Inductively,

dl

dtl
G(δt ∗ ρk)x = (−1)n+l

∞∫
0

ρ
(n+l)
k (s− t)Sn(s)x ds =

∞∫
0

ρk(s− t)
dn+l

dsn+l
Sn(s)x ds,

lim
k→∞

dl

dtl
G(δt ∗ ρk)x =

dl

dtl
G(δt)x =

dn+l

dtn+l
Sn(t)x, l ∈ N0, x ∈ E.(203)

Having in mind [249, Proposition 2.1, Corollary 2.2], we get that the spectral char-
acterizations clarified in [28, Theorem 4, Corollaries p. 423 and 427, Theorem 5]
present necessary conditions for the generation of non-dense distribution semigroups
of class CL, Aϱ, ϱ > 1 and Aϱγ , ϱ > 1, γ > 0. The sufficiency of such spectral
characterizations follows from (203) and the proofs of cited results. In particular,
[28, Corollary, p. 423] completely describes the spectral properties of generators
of non-dense real analytic (DS)’s. Important examples of distribution semigroups
of class CL with Lj = j!s/j , s > 1, j ∈ N0 follows from the researches of Belin-
skiy, Lasiecka [39], Chen, Triggiani [57], Favini, Triggiani [131], Markin [299] and
Shubov [386].

(ii) Suppose that A generates a global n-times integrated semigroup (Sn(t))t>0

satisfying that the mapping t 7→ Sn(t), t > 0 is n-times continuously differentiable.

By [224, Corollary 3.3], we have that ( d
n

dtnSn(t))t>0 is a semigroup [155], and

therefore, there exist M > 0 and ω > 0 such that ∥ d
n

dtnSn(t)∥ 6Meωt, t > 1. This
implies that (Sn(t))t>0 must be exponentially bounded, and the equivalence (ii) ⇔
(vi) of Theorem 3.2.15 is not surprising. If, additionally, the mapping t 7→ Sn(t),
t > 0 is (n+ 1)-times differentiable, then the proof of Theorem 3.2.15 implies that
the mapping t 7→ Sn(t), t > 0 is infinitely differentiable.

(iii) Let us note that Renardy [372] proved that there exists a differentiable
C0-semigroup and its bounded perturbation that is not differentiable. Some other
references on differentiability of perturbed semigroups are [29]–[31], [112], [165]
and [234].

Proposition 3.2.17. [234] (cf. also Theorem 2.1.31) Suppose A is a closed
linear operator, K satisfies (P1), r > 1 and there exists ω > 0 such that, for every

σ > 0, there exists Cσ > 0 such that the function K̃ can be analytically extended to
an open neighborhood Ωσ,ω of the region Υσ,ω. Denote, for every σ > 0, by gσ(·)
the analytic extension of the function K̃ to the region Ωσ,ω and suppose that, for
every σ > 0:

(i) Ωσ,ω =: {λ ∈ Υσ,ω : gσ(λ) ̸= 0} ⊆ ρC(A),
(ii) there exists an analytic function hσ : Ωσ,ω → L(E) such that hσ(λ) =

gσ(λ)(λ−A)−1C, λ ∈ Ωσ,ω and
(iii) there exists Mσ > 0 such that ∥hσ(λ)∥ 6Mσ|λ|r, λ ∈ Υσ,ω.

Then, for every ζ > 1, A is a subgenerator of a norm continuous, exponentially

bounded
(
K∗0 t

ζ+r−1

Γ(ζ+r)

)
-convoluted C-semigroup (S(t))t>0 satisfying that the mapping

t 7→ S(t), t > 0 is infinitely differentiable.
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Theorem 3.2.18 (Differentiability of integrated semigroups, [234]). (i) Sup-
pose n ∈ N, ω′ > 0, M > 0 and A is the densely defined generator of an n-times
integrated semigroup (Sn(t))t>0 which satisfies ∥Sn(t)∥ 6 Meω

′t, t > 0. Then the
following assertions are equivalent:

(i.1) The mapping t 7→ Sn(t), t > 0 is ((n+ 1)-times) infinitely differentiable.
(i.2) There exists ω > ω′ such that, for every σ > 0, there exists Cσ > 0 and

Mσ > 0, such that Υσ,ω ⊆ ρ(A) and that

∥R(λ :A)∥ 6Mσ|λ|n| Imλ|, λ ∈ Υσ,ω, Reλ 6 ω.

(ii) Suppose α > 0, ω′ > 0, M > 0 and A is the densely defined generator of

an α-times integrated semigroup (Sα(t))t>0 which satisfies ∥Sα(t)∥ 6Meω
′t, t > 0.

Then the following assertions are equivalent:

(ii.1) The mapping t 7→ Sα(t), t > 0 is ((⌈α⌉+1)-times) infinitely differentiable.
(ii.2) There exists ω > ω′ such that, for every σ > 0, there exist Cσ > 0 and

Mσ > 0 such that Υσ,ω ⊆ ρ(A) and that

∥R(λ :A)∥ 6Mσ|λ|⌈α⌉+1| Imλ|, λ ∈ Υσ,ω, Reλ 6 ω.

(iii) Suppose α > 0, ω′ > 0, M > 0 and A generates a global α-times integrated
semigroup (Sα(t))t>0. Then the following assertions are equivalent:

(iii.1) The mapping t 7→ Sα(t), t > 0 is ((⌈α⌉+1)-times) infinitely differentiable.
(iii.2) There exist m ∈ N and ω > 0 such that, for every σ > 0, there exist

Cσ > 0 and Mσ > 0 satisfying Υσ,ω ⊆ ρ(A) and

∥R(λ :A)∥ 6Mσ|λ|m, λ ∈ Υσ,ω, Reλ 6 ω.

The following result is closely related to [28, Theorem 6], [86, Theorem 1.1],
[135, Theorem 4] and clarifies the basic structural properties of non-dense analytic
distribution semigroups.

Theorem 3.2.19. Let α ∈ (0, π2 ] and let A be a closed linear operator.
(i) The following assertions are equivalent.

(i.1) A generates an analytic (DS) G of angle α.
(i.2) There exist n ∈ N, M > 0, ω > 0 and an analytic function Sn : Σα →

L(E) so that A generates an n-times integrated semigroup (Sn(t))t>0

which satisfies Sn(t) = Sn(t), t > 0 and ∥Sn(t)∥ 6Meωt, t > 0.
(i.3) There are an n ∈ N and an analytic function Sn : Σα → L(E) so that

A generates an n-times integrated semigroup (Sn(t))t>0 which satisfies
Sn(t) = Sn(t), t > 0.

(ii) A generates an analytic n-times integrated semigroup (Sn(t))t>0 of angle
α for some n ∈ N iff A generates an analytic (DS) of angle α which additionally
satisfies the next condition:

(204) ∃n0 ∈ N ∀n > n0 ∀γ ∈ (0, α) ∀x ∈ E ∃ lim
z→0, z∈Σγ

z∫
1

(z − s)n−1

(n− 1)!
G(δs)x ds.
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(iii) There is an n ∈ N such that operator A generates an exponentially bounded,
analytic n-times integrated semigroup (Sn(t))t>0 of angle α iff A generates an an-
alytic (DS) of angle α which additionally satisfies (204) and the next condition:

∃n1 ∈ N ∀n > n1 ∀γ ∈ (0, α) ∃Mγ , ωγ > 0 ∀z ∈ Σγ :∥∥∥∥∥
z∫

1

(z − s)n−1

(n− 1)!
G(δs) ds

∥∥∥∥∥ 6Mγe
ωγ Re z.

(iv) Suppose that, for every γ ∈ (0, α), there exist Mγ > 0, ωγ > 0 and nγ ∈ N
such that:

(205) ωγ + Σπ
2 +γ ⊆ ρ(A) and ∥R(λ :A)∥ 6Mγ(1 + |λ|)nγ−1, λ ∈ ωγ + Σπ

2 +γ .

Then A generates an analytic (DS) of angle α.
(v) Suppose r > 0 and α ∈ (0, π2 ]. If there exists n ∈ N such that A generates

an analytic n-times integrated semigroup (Sn(t))t>0 of angle α such that, for every
γ ∈ (0, α), there exist Mγ > 0 and ωγ > 0 such that ∥zr−nSn(z)∥ 6 Mγe

ωγ Re z,
z ∈ Σγ , then A generates an analytic (DS) G of angle α such that (G(δz))z∈Σα is
an analytic semigroup of growth order r.

(vi) Suppose r ∈ (0, 1) and α ∈ (0, π2 ]. Then A generates an analytic (DS) G of
angle α satisfying that (G(δz))z∈Σα

is an analytic semigroup of growth order r iff A
generates an exponentially bounded, analytic once integrated semigroup (S1(t))t>0

of angle α satisfying that, for every γ ∈ (0, α), there exist Mγ > 0 and ωγ > 0 such
that ∥zr−1S1(z)∥ 6 Mγe

ωγ Re z, z ∈ Σγ iff A generates an exponentially bounded,
analytic r-times integrated semigroup of angle α.

Proof. In order to prove (i), notice that the implication (i.2) ⇒ (i.3) is triv-
ial and that the proof of implication (ii) ⇒ (iii) of Theorem 3.2.15 shows that
the analyticity of G follows automatically from (i.2). It remains to be proved the
implication (i.1) ⇒ (i.2). Let A generate an analytic (DS) G of angle α. By
Theorem 3.2.15, we know that there exists n ∈ N such that A generates an ex-
ponentially bounded n-times integrated semigroup (Sn(t))t>0 satisfying that the
mapping t 7→ Sn(t), t > 0 is infinitely differentiable. One can use again the proof of

implication (ii) ⇒ (iii) of Theorem 3.2.15 to deduce that G(δt) = dn

dtnSn(t), t > 0.

The analyticity of G shows that the mapping t 7→ dn

dtnSn(t), t > 0 can be ana-
lytically extended to the sector Σα. Now it is checked at once that the mapping
t 7→ Sn(t), t > 0 can be analytically extended to the sector Σα, as required. This
completes the proof of (i). To prove (ii), suppose first that A generates an ana-
lytic n0-times integrated semigroup (Sn0

(t))t>0 of angle α. Then A generates an
analytic n-times integrated semigroup (Sn(t))t>0 of angle α for all n > n0. By (i),
one immediately obtains that A generates an analytic (DS) G of angle α satisfying

G(δt) = dn

dtnSn(t), t > 0, n > n0. Using integration by parts, we have

t∫
1

(t− s)n−1

(n− 1)!
G(δs)x ds = Sn(t)x−

n∑
i=0

(t− 1)n−i

(n− i)!

( dn−i
dtn−i

Sn(t)x
)
t=1

, t > 0, n > n0,
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and the uniqueness theorem for analytic functions implies that, for every z ∈ Σα
and n > n0:

z∫
1

(z − s)n−1

(n− 1)!
G(δs)x ds = Sn(z)x−

n∑
i=0

(z − 1)n−i

(n− i)!

( dn−i
dtn−i

Sn(t)x
)
t=1

.

Having in mind the definition of an analytic convoluted semigroup, one directly sees
that (204) holds. The converse statement can be proven similarly. The proof of (iii)
can be deduced along the same lines. As an outcome of the hypothesis in (iv), one
yields that, for every γ ∈ (0, α), A generates an exponentially bounded, analytic
(nγ + 1)-times integrated semigroup of angle γ. By (iii), the operator A generates
an analytic (DS) of angle α. In order to prove (v), suppose that A generates
an analytic n-times integrated semigroup (Sn(t))t>0 of angle α with prescribed
property. By the assertion (i) of this theorem, we have that A generates an analytic

(DS) G of angle α satisfying G(δt) = dn

dtnSn(t), t > 0. By [224, Proposition 3.2],(
dn

dznSn(z)
)
z∈Σα

is an analytic operator family, T (z1+z2) = T (z1)T (z2), z1, z2 ∈ Σα
and T (t)x = 0 for all t > 0 implies x = 0. By the uniqueness theorem for analytic

functions, it follows that, for every z ∈ Σα, G(δz) = dn

dznSn(z). Let γ ∈ (0, α) and
let ε ∈ (0, α − γ). Then the Cauchy integral formula gives that, for every z ∈ Σγ
with Im z > 0:

(206)
∥∥zrG(δz)

∥∥ =

∥∥∥∥∥zr n!

2πi

∮
|λ−z|=|z| sin(γ+ε−arg(z))

Sn(λ)

(λ− z)n+1
dλ

∥∥∥∥∥
6 n!

2π
|z|r

2π∫
0

∥∥Sn(z + |z| sin(γ + ε− arg(z))eiθ
)∥∥

|z|n+1 sinn+1(γ + ε− arg(z))
|z| sin(γ + ε− arg(z)) dθ

6 n!|z|rMγ+εe
ωγ+ε(Re z+|z|) |2z|n−r

|z|n sinn ε
if n > r.

In the case r > n, we have that

|z + |z| sin(γ + ε− arg(z))eiθ| 6 |z| − |z| sin(γ + ε− arg(z)) 6 |z|(1 − sin ε),

and one gets from (206):

∥zrG(δz)∥ 6 n!|z|rMγ+εe
ωγ+ε(Re z+|z|) |z|n−r(1 − sin ε)n−r

|z|n sinn ε
if n < r.

The preceding estimates also hold for every z ∈ Σγ with Im z 6 0 and this completes
the proof of (v).

To prove (vi), let r ∈ (0, 1) and let A generate an analytic (DS) G of angle
α satisfying that (G(δz))z∈Σα

is an analytic semigroup of growth order r. Put

S1(t)x :=
∫ t
0
G(δs)x ds, t > 0, x ∈ E and assume that Â is the integral generator of

(G(δt))t>0. Then it can be simply verified that A ⊆ Â and that (S1(t))t>0 is a once

integrated semigroup generated by Â. By the foregoing, there exist n ∈ Nr{1} and
an analytic function Sn : Σα → L(E) so that A generates an n-times integrated
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semigroup (Sn(t))t>0 which satisfies Sn(t)=Sn(t), t>0 and dn

dtnSn(t)=G(δt), t>0.

Put G(φ)x := (−1)n
∫∞
0
φ(n)(t)Sn(t)x dt and H(φ)x := −

∫∞
0
φ′(t)

∫ t
0
G(δs)x ds dt,

φ ∈ D, x ∈ E. Then G, resp. H, is a (DS) generated by A, resp. Â, and the partial
integration implies that G(φ)x = H(φ)x =

∫∞
0
φ(t)G(δt)x dt for all φ ∈ D(0,∞)

and x ∈ E. So, G(φ) = H(φ), φ ∈ D0 and this forces Â = A. Since every (local)
n-times integrated semigroup is uniquely determined by its generator, we have that

Sn(t)x =
∫ t
0

(t−s)n−2

(n−2)! S1(s)x ds, t > 0, x ∈ E. Hence, the mapping t 7→ d
dtS1(t),

t > 0 can be analytically extended to the sector Σα and G(δz) = d
dzS1(z), z ∈ Σα.

Let γ ∈ (0, α). Then the Lagrange mean value theorem implies that there exists
M ′
γ > 0 such that

∥S1(z) − S1(Re z)∥ 6 |z tan γ| sup
ξ∈[Re z,z]

∥∥∥ d
dξ
S1(ξ)

∥∥∥ 6M ′
γe
ωγ Re z|z|1−r, z ∈ Σγ .

Hence, ∥S1(z)∥ 6 ∥S1(Re z)∥ + M ′
γe
ωγ Re z|z|1−r 6 2M ′

γ

1−r e
ωγ Re z|z|1−r, z ∈ Σγ , and

consequently, (S1(t))t>0 is an exponentially bounded, analytic once integrated semi-
group of angle α which clearly fulfills the required property.

The converse statement in (vi) follows from an application of (v). Let A
be the generator of an exponentially bounded, analytic r-times integrated semi-
group (Sr(t))t>0 of angle α. Then it is clear that A generates an exponentially
bounded, analytic once integrated semigroup (S1(t))t>0 of angle α, where S1(t)x =∫ t
0

(t−s)−r

Γ(1−r) Sr(s)x ds, t > 0, x ∈ E. Let γ ∈ (−α, α) be fixed. Then Theorem 2.4.10

yields that, for every r′ > r, the operator eiγA generates an exponentially bounded
r′-times integrated semigroup (Sr′,γ(t))t>0 and that, for every t > 0 and x ∈ E:

e−iγS1(teiγ)x = S1,γ(t)x =

t∫
0

(t− s)−r

Γ(1 − r)
Sr,γ(s)x ds = e−iγr

t∫
0

(t− s)−r

Γ(1 − r)
Sr(se

iγ)x ds.

Hence,

S1(z)x = ei arg(z)(1−r)
|z|∫
0

(|z| − s)−r

Γ(1 − r)
Sr(se

i arg(z))x ds, z ∈ Σα, x ∈ E,

and there exist Nγ > 0 and ω′
γ > 0 such that ∥S1(z)∥ 6 Nγ |z|1−reω

′
γ Re z, z ∈

Σγ , as required. Assume again that A generates an analytic (DS) G of angle α
satisfying that (G(δz))z∈Σα is an analytic semigroup of growth order r. Put, for

every x ∈ E, t > 0 and γ ∈ (−α, α) : Sr,γ(t)x =:
∫ t
0

(t−s)r−1

Γ(r) G(δseiγ )x ds. The first

part of proof shows that (G(δt))t>0 is a semigroup of growth order r > 0 whose
integral generator is A and this implies that, for every γ ∈ (−α, α), (G(δteiγ ))t>0

is a semigroup of growth order r > 0 whose integral generator is eiγA and that
(Sr,γ(t))t>0 is an exponentially bounded, r-times integrated semigroup generated
by eiγA. Furthermore, for every γ ∈ (−α, α), there exist Mγ > 0, M ′

γ > 0 and ωγ >
0 such that ∥Sr,γ(t)∥ 6 Mγe

ωγt cos γ
∫ t
0

(t−s)r−1

Γ(r) s−rdr 6 M ′
γe
ωγt cos γ , t > 0. By
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Theorem 2.4.10, it follows that A generates an exponentially bounded, analytic r-
times integrated semigroup (Sr(t))t>0 of angle α and the proof of (vi) is completed.

�

Remark 3.2.20. (i) Suppose that r ∈ (0, 1) and that A generates a differen-
tiable (DS) G such that (G(δt))t>0 is a semigroup of growth order r. Using the
same arguments as in the proof of preceding theorem, one can conclude that A
generates an exponentially bounded r-times integrated semigroup (Sr(t))t>0 that
is infinitely differentiable in t > 0. It is not clear whether the converse statement
holds.

(ii) Suppose Ω is an open bounded subset of Rn with smooth boundary and
α ∈ (0, 1). A large class of differential operators acting in the space Cα(Ω) of Hölder
continuous functions analyzed by Von Wahl [416] and Periago, Straub [357]–[358]
can be used for the construction of analytic (DS)’s satisfying the property (vi)
stated in the formulation of Theorem 3.2.19. By [357, Example 3.3], fractional
powers of Lp(R)-realization of the Kourteweg-de Vries operator (see [359] for the

notion) A = ∂3

∂x3 + ∂
∂x also generate (DS)’s with above property.

Corollary 3.2.21. Suppose that α ∈ (0, π2 ] and that, for every γ ∈ (−α, α),

the operator eiγA generates an (EDS). Then A generates an analytic (DS) G of
angle α.

Corollary 3.2.22. Suppose that α ∈ (0, π2 ] and that A generates an analytic
(DS) of angle α. Then the abstract Cauchy problem{

u ∈ C∞((0,∞) : E),

u′(t) = Au(t), t > 0,

has a non-trivial solution u which can be analytically extended to the sector Σα.

Proof. By Theorem 3.2.19, we infer that there exist an n ∈ N and an ana-
lytic function Sn : Σα → L(E) such that A generates a global n-times integrated
semigroup (Sn(t))t>0 which satisfies Sn(t) = Sn(t), t > 0. Using the functional

relation A
∫ t
0
Sn(s)x ds = Sn(t)x− tn

n!x, t > 0, x ∈ E and the closedness of A, one

can simply verify that, for every x ∈ E, the function u(t) = dn

dtnSn(t)x, t > 0, x ∈ E
is a solution of the above problem. This solution is analytically extendible to the
sector Σα and, by [224, Corollary 3.3], non-trivial provided x ̸= 0. �

The next proposition shows that the analyticity of distribution semigroups is
preserved under bounded commuting perturbations.

Proposition 3.2.23. Let α ∈ (0, π2 ] and let A be the generator of an analytic
(DS) of angle α. If B ∈ L(E), then the operator A+B generates an analytic (DS)
of the same angle.

Proof. By Theorem 3.2.19, there exist n ∈ N, M > 0, ω > 0, an exponentially
bounded n-times integrated semigroup (Sn(t))t>0 generated by A and an analytic
function Sn : Σα → L(E) such that Sn(t) = Sn(t), t > 0 and that ∥Sn(t)∥ 6
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Meωt, t > 0. By Theorem 2.5.5, we infer that the operator A + B generates an
exponentially bounded n-times integrated semigroup (SBn (t))t>0, which is given by

SBn (t)x := etBSn(t)x+

n∑
i=1

(
n

i

)
(−B)i

t∫
0

(t− s)i−1

(i− 1)!
eBsSn(s)x ds, z ∈ Σα, x ∈ E.

It remains to be proven that (SBn (t))t>0 can be analytically extended to the sector
Σα. To this end, define, for every z ∈ Σα and x ∈ E,

SBn (z)x := ezBSn(z)x

+

n∑
i=1

(
n

i

)
(−B)i

( 1∫
0

(z − s)i−1

(i− 1)!
eBsSn(s)x ds+

z∫
1

(z − s)i−1

(i− 1)!
eBsSn(s)x ds

)
.

It is clear that the mapping z 7→ SBn (z), z ∈ Σα is analytic and the proof completes
an application of Theorem 3.2.19. �

Example 3.2.24. For every n > 1 there exists a closed densely defined op-
erator B acting on a Banach (Hilbert) space such that B generates a global ex-
ponentially bounded n-times integrated semigroup (Sn(t))t>0 satisfying that the
mapping t 7→ Sn(t), t > 0 is infinitely differentiable, and that B does not generate
a local (n − 1)-times semigroup. To this end, suppose that A generates a con-
tractive, immediately differentiable C0-semigroup (T (t))t>0 in a Banach (Hilbert)
space E which additionally satisfies that (T (t))t>0 cannot be analytically extended
in a sector around the nonnegative real axis. For concrete examples, we refer to
[125, p. 24–33, p. 409]. Let En+1 be equipped with the sup-norm and let D(B) :=
D(A)n+1 and B(x1, . . . , xn+1) := (Ax1+Ax2, Ax2+Ax3, . . . , Axn+Axn+1, Axn+1),
(x1, . . . , xn+1) ∈ D(B). Arguing as in [337, Proposition 2.4] (cf. also [14, Theorem
3.2.13, p. 133]), we have that B generates a global exponentially bounded n-times
integrated semigroup (Sn(t))t>0 and that B does not generate a local (n−1)-times
semigroup. It remains to be proved that the mapping t 7→ Sn(t), t > 0 is infinitely
differentiable. Let σ > 0. Then there exist ω > 0, Cσ > 0 and Mσ > 0 such that
Υσ,ω ⊆ ρ(A) and ∥R(λ :A)∥ 6Mσ| Imλ|. The claimed assertion follows from The-
orem 3.2.18(iii) and the computation given in the proof of [337, Proposition 2.4]:

∥R(λ : B)∥ 6
n∑
k=0

∥AkR(λ :A)k+1∥ 6Mσ| Imλ|
n∑
k=0

∥AkR(λ :A)k∥

6Mσ| Imλ|
n∑
k=0

∥λR(λ :A) − I∥k 6Mσ| Imλ|
n∑
k=0

(1 +Mσ|λ∥ Imλ|)k

6 (n+ 1)Mσ| Imλ|(1 +Mσ|λ|2)n+1 6 (n+ 1)M ′
σ|λ|2n+2| Imλ|,

λ ∈ Υσ,ω, for some M ′
σ > 0.

For further information related to differential and analytical properties of con-
voluted C-semigroups, C-distribution semigroups and (a, k)-regularized C-resolvent
families, we refer the reader to [234]-[235].
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3.3. Distribution groups

3.3.1. Introduction and basic properties of distribution groups. We
start with the following notion. If φ ∈ D and G ∈ D′(L(E)), then we define

φ̌(·) := φ(−·) and Ǧ(·) := G(̌·). Clearly, ˇφ ∗ ψ = φ̌ ∗ ψ̌ and φ̌(n) = (−1)n ˇφ(n),
φ, ψ ∈ D, n ∈ N. We focus our attention to the following system of convolution
type equations:

(207) G ∗ (δ′ ⊗ I − δ ⊗A) = 0 ⊗ I[D(A)] and (δ′ ⊗ I − δ ⊗A) ∗G = 0 ⊗ IE ,

where A is a closed operator acting on a Banach space E, G ∈ D′(L(E, [D(A)])),
δ′ ⊗ I − δ ⊗ A ∈ D′(L([D(A)], E)) and I denotes the inclusion D(A) → E. Here
we stress that every operator-valued distribution G satisfying, for every φ ∈ D and
x ∈ E,

(208) G ∈ D′(L(E)), G(φ)x ∈ D(A), AG(φ)x = G(−φ′)x, G(φ)A ⊆ AG(φ),

can be viewed as an element of the space D′(L(E, [D(A)])) which solves (207)
(cf. also [315]). It turns out that the introduced class of [B0, . . . , Bn, C0, . . . , Cn−1]-
groups presents a natural framework for investigation of equations involving oper-
ators satisfying (208).

Definition 3.3.1. An element G ∈ D′(L(E)) is called a pre-distribution group,
pre-(DG) in short, if the next condition holds:

(DG)1: G(φ ∗ ψ) = G(φ)G(ψ) for all φ, ψ ∈ D.
If G additionally satisfies:
(DG)2: N (G) =:

∩
φ∈D Kern(G(φ)) = {0},

then it is said that G is a distribution group, (DG) shortly. A pre-(DG) G is called
dense iff

(DG)3 : The set R(G) :=
∩
φ∈D R(G(φ)) is dense in E.

Suppose G ∈ D′(L(E)), G satisfies (DG)2 and T ∈ E ′. We define G(T ) by

G(T ) :=
{

(x, y) ∈ E × E : G(T ∗ φ)x = G(φ)y for all φ ∈ D
}
.

Due to (DG)2, G(T ) is a function and it is straightforward to see that G(T )
is a closed linear operator in E. The generator A of a (DG) G is defined by
A := G(−δ′). Notice, if G is a (DG) generated by A, then (208) holds.

An element G ∈ D′(L(E)) is called regular (representable) if the following
holds:

(DG)4 : For every x ∈ R(G), there is a function t 7→ u(t;x), t ∈ R satisfying:

u(·;x) ∈ C(R : E), u(0;x) = x and G(ψ)x =

∞∫
−∞

ψ(t)u(t;x) dt, ψ ∈ D.

Let us observe that the function u(·;x) is unique. Indeed, let x ∈ R(G) and
t ∈ R be fixed and let (ζn) be a sequence in D satisfying limn→∞ ζn = δt, in the
sense of distributions. Then u(t;x) = limn→∞G(ζn)x.

Example 3.3.2. (i) Let A and −A generate C-distribution semigroups G+ and
G−, respectively. Put G(φ) := G+(φ)+G−(φ̌), φ ∈ D. Then A and G fulfill (208).
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Indeed, G ∈ D′(L(E)), G(φ)A ⊆ AG(φ), φ ∈ D, AG+(φ)x = G+(−φ′)x− φ(0)Cx
and −AG−(φ)x = G−(−φ′)x − φ(0)Cx, φ ∈ D, x ∈ E. Thereby, AG(φ)x =
G+(−φ′)x − φ(0)Cx + G−(φ̌′)x + φ̌(0)Cx = G+(−φ′)x + G−(−φ̌′)x = G(−φ′)x,
x ∈ E, φ ∈ D. Furthermore, it can be proved the following: G(φ∗ψ)C = G(φ)G(ψ),
φ, ψ ∈ D [216], [315],

∩
φ∈D0

Kern(G(φ)) = {0} and
∩
φ∈D0

Kern(G(φ̌)) = {0}.

(ii) Assume G is a (DG), P ∈ L(E), P 2 = P and GP = PG. Set GP (φ)x :=
G(φ)Px, φ ∈ D, x ∈ E. Then GP is a pre-(DG) and N (GP ) = Kern(P ).

(iii) Assume A and G fulfill (208). Define GT (T ∈ E ′) by GT (φ)x := G(T ∗φ)x,
φ ∈ D, x ∈ E. Then (208) holds for A and GT .

(iv) [89, Example 16.3] Let E := {f :R→C is continuous: lim|x|→∞ ex
2

f(x) =

0}, ∥f∥ := supx∈R |ex2

f(x)|, f ∈ E and A := d
dx with maximal domain. Put

(S(t)f)(x) := e−(x+t)2f(x+t), x ∈ R, t ∈ R, f ∈ E. Then S(t)f ∈ E, ∥S(t)∥ 6 e2t
2

,∫ t
0
S(s)f ds ∈ D(A) and A

∫ t
0
S(s)f ds = S(t)f − S(0)f , t ∈ R, f ∈ E. Put

G(φ)f :=
∫∞
−∞ φ(t)S(t)f dt, f ∈ E, φ ∈ D. Clearly, G ∈ D′(L(E)) and the partial

integration yields G(φ)f ∈ D(A), AG(φ)f = G(−φ′)f and

(
G(φ)Af −AG(φ)f

)
(x) = 2

∞∫
−∞

φ(t)(x+ t)e−(x+t)2f(x+ t) dt, x ∈ R, φ ∈ D.

Therefore, A does not commute with G(·) and (208) does not hold. Furthermore,
it can be verified that G fulfills (DG)2 and that G is not regular.

(v) Let F denote the Fourier transform on the real line,

F(f)(ξ) =
1

2π

∞∫
−∞

e−iξtf(t) dt, ξ ∈ R.

Suppose that E is a quasi-spectral distribution in the sense of [104, Definition 2.2]
and that E can be continuously extended to S. Put F(D) := {F(φ) : φ ∈ D} and
G(φ) := E(F−1(φ)), φ ∈ S, where F−1 denotes the inverse Fourier transform. Then
G ∈ S ′(L(E)), G(φ ∗ ψ) = G(φ)G(ψ), φ, ψ ∈ S and

∩
φ∈F(D) Kern(G(φ)) = {0}.

Suppose, additionally, that for every x ∈ E and ϕ ∈ S with ϕ(0) = 1:

(209) lim
n→∞

E(ϕn)x = x, where ϕn(t) = ϕ(t/n), t ∈ R, n ∈ N.

Notice that (209) implies that E is a spectral distribution in the sense of [104, Def-
inition 2.4] (cf. also [25, Definition 1.1]). We will show that

∩
φ∈D0

Kern(G(φ)) =

{0}. Indeed, suppose ρ ∈ D,
∫∞
−∞ ρ(t) dt = 1, supp ρ ⊆ [0, 1] and G(φ)x = 0,

φ ∈ D0, i.e., E(F−1(φ))x = 0, φ ∈ D0. Put ϕ(t) = F−1(ρ)(t) =
∫∞
−∞ eiξtρ(ξ) dξ,

t ∈ R. Then ϕ ∈ S and ϕ(0) = 1. Put ρn(t) = nρ(nt) and ϕn(t) = F−1(ρn)(t),
t ∈ R, n ∈ N. Clearly, ϕn(t) = ϕ( tn ), t ∈ R, n ∈ N and (209) implies x =

limn→∞ E(ϕn)x = limn→∞ E(F−1(ρn))x = 0. Analogously,
∩
φ∈D0

Kern(G(φ̌)) =

{0} and this implies that (DG)2 holds for G.
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A closed linear operator A satisfying (208) need not be the generator of a (DG)
and this implies that relations between distribution groups and convolution type
equations are, at least, quite unclear.

The proofs of the subsequent assertions are omitted.

Lemma 3.3.3. Let G be a pre-(DG). Then Ǧ is a pre-(DG). If, in addition, G
is a (DG) generated by A, then Ǧ is a (DG) generated by −A.

Proposition 3.3.4. Let G be a pre-(DG), F := E/N (G) and q be the corre-
sponding canonical mapping q : E → F .

(i) Let H ∈ L(D : L(F )) be defined by qG(φ) := H(φ)q for all φ ∈ D. Then
H is a (DG) in F .

(ii) ⟨R(G)⟩ = R(G), where ⟨R(G)⟩ denotes the linear span of R(G).

(iii) Assume that G is not dense. Put R := R(G) and H := G|R. Then H is
a dense pre-(DG) in R. Moreover, if G is a (DG) generated by A, then
H is a (DG) in R generated by A|R.

(iv) The adjoint G∗ of G is a pre-(DG) in E∗ with N (G∗) = R(G)
◦
.

(v) If E is reflexive, then N (G) = R(G∗)
◦
.

(vi) G∗ is a (DG) in E∗ iff G is a dense pre-(DG). If E is reflexive, then G∗

is a dense pre-(DG) in E∗ iff G is a (DG).
(vii) N (G) ∩ ⟨R(G)⟩ = {0}.

(viii) Suppose x = G(φ)y, for some φ ∈ D and y ∈ E. Put u(t;x) := G(τtφ)y,

t ∈ R. Then u(0;x) = x, u(·;x) ∈ C∞(R : E), dn

dtnu(t;x) = Anu(t;x),

t ∈ R, n ∈ N0, G(ψ)x =
∫∞
−∞ ψ(t)u(t;x) dt, ψ ∈ D and G is regular.

Proposition 3.3.5. Let G be a (DG) and let S, T ∈ E ′, φ ∈ D and x ∈ E.
Then:

(i) (G(φ)x, G(

m︷ ︸︸ ︷
T ∗ · · · ∗ T ∗φ)x) ∈ G(T )m, m ∈ N.

(ii) G(S)G(T ) ⊆ G(S ∗ T ), D(G(S)G(T )) = D(G(S ∗ T )) ∩ D(G(T )) and
G(S) +G(T ) ⊆ G(S + T ). In general, G(S)G(T ) ̸= G(S ∗ T ).

(iii) G(φ)G(T ) ⊆ G(T )G(φ).
(iv) If G is dense, its generator is densely defined.

Remark 3.3.6. Suppose G ∈ D′(L(E)) and G fulfills (DG)3 − (DG)4. Then
G is a pre-(DG) iff:
(210) ∪

t∈R, x∈R(G)

u(t;x) ⊆ R(G) and u(t+ s;x) = u(t;u(s;x)), t, s ∈ R, x ∈ R(G).

The necessity of (210) follows directly from Proposition3.3.4(j). To prove the suf-
ficiency, notice that

G(φ ∗ ψ)x =

∞∫
−∞

∞∫
−∞

[φ(t− s)ψ(s) ds]u(t;x) dt =

∞∫
−∞

∞∫
−∞

φ(t)ψ(s)u(t+ s;x) ds dt
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=

∞∫
−∞

φ(t)

∞∫
−∞

ψ(s)u(s;u(t;x)) ds dt =

∞∫
−∞

φ(t)G(ψ)u(t;x) dt

= G(ψ)

∞∫
−∞

φ(t)u(t;x) dt = G(ψ)G(φ)x,

for every x ∈ R(G). The denseness of R(G) in E implies (DG)1.

Theorem 3.3.7. (i) Suppose 0 < τ 6 ∞, α > 0 and ±A generate α-times
integrated semigroups (S±(t))t∈[0,τ). Then A generates a (DG).

(ii) Suppose ±A generate distribution semigroups G±. Put G(φ) := G+(φ) +
G−(φ̌), φ ∈ D. Then G is a (DG) generated by A.

Proof. (i) Let us prove that A generates a (DG). Put n := ⌈α⌉. It is obvious
that, for every k ∈ N, ±A generate (kn)-times integrated semigroups (Sk±(t))t∈[0,kτ).
Let φ ∈ D(−∞,kτ) and x ∈ E. Set

G+(φ)x := (−1)kn
∞∫
0

φ(kn)(t)Sk+(t)x dt, G−(φ)x := (−1)kn
∞∫
0

φ(kn)(t)Sk−(t)x dt

and G(φ) := G+(φ) + G−(φ̌). Certainly, G+ and G− are distribution semigroups
generated by A and −A, respectively. In order to prove that G is a (DG) generated
by A, assume x ∈ N (G). Then, for every φ ∈ D0, G(φ)x = 0, and this implies
G+(φ)x = 0, φ ∈ D0. Since G+ is a (DS) generated by A, we get x = 0 and
(DG)2 holds for G. Further on, A generates a local (kn)-times integrated group
(Skn(t))t∈(−kτ,kτ). Now one can repeat literally the arguments given in the proof of
[315, Theorem 6] so as to conclude that (DG)1 holds for all φ, ψ ∈ D(−kτ/2,kτ/2).
Hence, G fulfills (DG)1. It remains to be proved that B = A, where B is the
generator of G. Suppose (x, y) ∈ B. Then G(−φ′)x = G(φ)y, φ ∈ D, i.e.,
G+(−φ′)x + G−(−̌φ′)x = G+(φ)x + G−(φ̌)x, φ ∈ D. This, in particular, holds
for every φ ∈ D0 and one obtains G+(−φ′)x = G+(φ)x, φ ∈ D0. In other words,
B ⊆ A. Assume now (x, y) ∈ A. Then the definition of G and Proposition 3.1.4(iii)
imply:

G(φ)y = G(φ)Ax = G+(φ)Ax+G−(φ̌)Ax = G+(−φ′)x−φ(0)x−G−(−φ̌′)x+φ(0)x

= G+(−φ′)x+G−(−̌φ′)x = G(−φ′)x, φ ∈ D.
This gives A ⊆ B and ends the proof of (i). To prove (ii), notice that an application
of Corollary 2.1.10 and Theorem 3.1.25 yields that there exist τ ∈ (0,∞) and
n ∈ N so that, for every k ∈ N, ±A generate (kn)-times integrated semigroups
(Skn± (t))t∈[0,kτ). Assume x ∈ E and φ ∈ D(−∞,kτ), for some k ∈ N. Put G1(φ)x :=

(−1)kn
∫∞
0
φ(kn)(t)Skn+ (t)x dt and G2(φ)x := (−1)kn

∫∞
0
φ(kn)(t)Skn− (t)x dt. Then

[418] G1 and G2 are distribution semigroups generated by A and −A, respectively.
Hence, G+ = G1, G− = G2, G = G1 + Ǧ2 and the remnant of the proof of (ii)
follows by the use of arguments already given in the proof of (i). �
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The previous theorem implies that a wide class of multiplication operators
acting on Lp(Rn)-type spaces can be used for the construction of (exponential)
distribution groups. In particular, several examples presented in [5] offers one to
construct local once integrated groups which can be explicitly calculated.

Let α ∈ (0,∞), α /∈ N and f ∈ S. Put n := ⌈α⌉. Recall [317], the Weyl
fractional derivatives Wα

+ and Wα
− of order α are defined by:

Wα
+f(t) :=

(−1)n

Γ(n− α)

dn

dtn

∞∫
t

(s− t)n−α−1f(s) ds, t ∈ R,

Wα
−f(t) :=

1

Γ(n− α)

dn

dtn

t∫
−∞

(t− s)n−α−1f(s) ds, t ∈ R.

If α = n ∈ N, put Wn
+ := (−1)n dn

dtn and Wn
− := dn

dtn . Then we know [315] that

Wα+β
± = Wα

±W
β
±, α > 0, β > 0. The next result can be attributed to Miana [315].

Theorem 3.3.8. Suppose α > 0 and (S(t))t∈R is an α-times integrated group
generated by A. Put G(φ)x :=

∫∞
0
Wα

+φ(t)S(t)x dt+
∫∞
0
Wα

+φ̌(t)S(−t)x dt, φ ∈ D,
x ∈ E. Then G is a (DG) generated by A.

Proof. In order to prove that (DG)1 holds for G, one can argue as in the
proof of [315, Theorem 6] (cf. also [137, Lemma 1.6]). Define now G+(φ)x :=∫∞
0
Wα

+φ(t)S+(t)x dt, φ ∈ D, x ∈ E. Then G+ is a (DSG) generated by A
(cf. [315]–[316] and [252, Theorem 3.10]). The assumption G(φ)x = 0, φ ∈ D
implies G+(φ)x = 0, φ ∈ D0. Therefore, (DG)2 holds for G and G is a (DG).
Let us prove that A = A1, where A1 is the generator of G (cf. also the proof
of [315, Theorem 7]). Notice that −A is the generator of (S−(t))t>0. Assume

x ∈ D(A1). Then G(−φ′)x = G(φ)A1x, φ ∈ D, i.e., G+(−φ′)x + G−(−̌φ′)x =
G+(φ)A1x + G−(φ)A1x, φ ∈ D. Especially, G+(−φ′)x = G+(φ)A1x, φ ∈ D0 and
G−(−φ̌′)x = −G−(φ̌)A1x, φ̌ ∈ D0. So, x ∈ D(A) and Ax = A1x. Assume now
x ∈ D(A). Then G(φ)Ax = G+(φ)Ax + G−(φ̌)Ax, φ ∈ D and the use of Propo-
sition 3.1.4(iii) implies: G(φ)Ax = G+(−φ′)x − φ(0)x − G−(−φ̌′)x + φ(0)x =
G+(−φ′)x+G−(−̌φ′)x = G(−φ′)x, φ ∈ D. Hence, A1x = Ax as claimed. �

Remark 3.3.9. Due to the definition of Wα
± , we have the following: If α = n ∈

N, φ ∈ D and x ∈ E, then

G(φ)x = (−1)n
∞∫
0

φ(n)(t)S(t)x dt+ (−1)n
∞∫
0

φ̌(n)(t)S(−t)x dt,

G(φ)x = (−1)n
∞∫
0

φ(n)(t)S(t)x dt+

0∫
−∞

φ(n)(t)S(t)x dt.

The next theorem clarifies an interesting relation between integrated groups
and global differentiable C-regularized groups.
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Theorem 3.3.10. Assume α > 0, τ ∈ (0,∞] and A is the generator of an
α-times integrated group (Sα(t))t∈(−τ,τ). Then, for every b ∈ (0, 1) and γ ∈(
0, arctan(cos(bπ2 ))

)
, there exist two analytic operator families (Tb,+(t))t∈Σγ

⊆
L(E) and (Tb,−(t))t∈Σγ

⊆ L(E) so that:

(i) For every t ∈ Σγ , Tb,+(t) and Tb,−(t) are injective operators.
(ii) For every t1 ∈ Σγ and t2 ∈ Σγ , A generates a global (Tb,+(t1)Tb,−(t2))-

regularized group (Vb,t1,t2(s))s∈R.
(iii) For every x ∈ E, t1 ∈ Σγ and t2 ∈ Σγ , the mapping s 7→ Vb,t1,t2(s)x,

s ∈ R is infinitely differentiable in (−∞, 0) ∪ (0,∞).

Proof. The existence of numbers c > 0, d > 0 and M > 0 so that E(c, d) ⊆
ρ(±A) and that ∥R(λ : ±A)∥ 6 M |λ|α, λ ∈ E(c, d) is obvious. Choose a number
a ∈ (0, π2 ) such that b ∈ (0, π

2(π−a) ) and that γ ∈
(
0, arctan(cos(b(π − a)))

)
. It is

clear that there are numbers d ∈ (0, 1] and ω ∈ (d+ 1,∞) so that

Ωa,d := {z ∈ C : |z| 6 d} ∪ {reiθ : r > 0, θ ∈ [−a, a]} ⊆ ρ(A− ω) ∩ ρ(−A− ω).

Let the curve Γa,d = ∂Ωa,d be upwards oriented. Define Tb,±(t), t ∈ Σγ by:

Tb,±(t)x :=
1

2πi

∫
Γa,d

e−t(−λ)
b

R(λ : ±A− ω)x dλ, x ∈ E.

Certainly, (Tb,±(t))t∈Σγ are analytic operator families and, for every t ∈ Σγ , Tb,+(t)
and Tb,−(t) are injective operators. Clearly, Tb,+(t1)(−A− ω) ⊆ (−A− ω)Tb,+(t1)
and Tb,−(t2)(A− ω) ⊆ (A− ω)Tb,−(t2), t1, t2 ∈ Σγ . It is straightforward to prove
that Tb,+(t1)Tb,−(t2) = Tb,−(t2)Tb,+(t1), t1, t2 ∈ Σγ and the argumentation given
in Subsection 2.1.6 shows that ±A− ω are generators of global Tb,±(t)-regularized
semigroups (Ub,t,±(s))s>0. Suppose t1, t2 ∈ Σγ and x ∈ E. Then one obtains

Tb,−(t2)(Ub,t1,+(s)x− Tb,+(t1)x)

= Tb,−(t2)(A− ω)

s∫
0

Ub,t1,+(v)x dv = (A− ω)Tb,−(t2)

s∫
0

Ub,t1,+(v)x dv.

Hence,

(A− ω)

s∫
0

(
Tb,−(t2)Ub,t1,+(v)

)
x dv = Tb,−(t2)Ub,t1,+(s)x− Tb,+(t1)Tb,−(t2)x,

for all s > 0. Furthermore,

[Tb,−(t2)Ub,t1,+(s)]Tb,+(t1) = Tb,+(t1)[Tb,−(t2)Ub,t1,+(s)], s > 0,

[Tb,−(t2)Ub,t1,+(s)](A− ω) ⊆ (A− ω)[Tb,−(t2)Ub,t1,+(s)], s > 0.

This implies that
(
Tb,−(t2)Ub,t1,+(s)

)
s>0

is a global
(
Tb,+(t1)Tb,−(t2)

)
-regularized

semigroup generated by (Tb,+(t1)Tb,−(t2))−1(A − ω)(Tb,+(t1)Tb,−(t2)) = A − ω.
Therefore,

(
eωsTb,−(t2)Ub,t1,+(s)

)
s>0

is a global (Tb,+(t1)Tb,−(t2))-regularized semi-

group generated by A, and, for every t1, t2 ∈ Σγ ,
(
eωsTb,+(t1)Ub,t2,−(s)

)
s>0

is a
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global
(
Tb,+(t1)Tb,−(t2)

)
-regularized semigroup generated by −A. Hence, for every

t1 ∈ Σγ and t2 ∈ Σγ , A generates a global
(
Tb,+(t1)Tb,−(t2)

)
-regularized group

(Vb,t1,t2(s))s∈R which is given by: Vb,t1,t2(s) =: eωsTb,−(t2)Ub,t1,+(s), s > 0 and
Vb,t1,t2(s) := e−ωsTb,+(t1)Ub,t2,−(−s), s < 0. The mapping s 7→ Vb,t1,t2(s)x, s ∈ R
is infinitely differentiable in (−∞, 0) ∪ (0,∞) since the corresponding mappings
s 7→ Tb,−(t2)Ub,t1,+(s)x and s 7→ Tb,+(t1)Ub,t2,−(s)x are infinitely differentiable in
s > 0 (cf. Subsection 2.1.6). The proof is completed. �

3.3.2. [B0, . . . , Bn, C0, . . . , Cn−1]-groups. We introduce the class of
[B0, . . . , Bn, C0, . . . , Cn−1]-groups as follows.

Definition 3.3.11. Let A be a closed linear operator. Suppose, further, 0 <
τ 6 ∞, n ∈ N and B0, . . . , Bn, C0, . . . , Cn−1 ∈ L(E). A strongly continuous
operator family (S(t))t∈(−τ,τ) is said to be a [B0, . . . , Bn, C0, . . . , Cn−1]-group with
a subgenerator A iff:

(i) A
t∫
0

S(s)x ds = S(t)x+
∑n
j=0 t

jBjx, t ∈ (−τ, τ), x ∈ E and

(ii) AS(t)x− S(t)Ax =
∑n−1
j=0 t

jCjx, t ∈ (−τ, τ), x ∈ D(A).

It is said that (S(t))t∈(−τ,τ) is non-degenerate if the assumption S(t)x = 0, for
all t ∈ (−τ, τ), implies x = 0. The (integral) generator of a non-degenerate
[B0, . . . , Bn, C0, . . . , Cn−1]-group (S(t))t∈(−τ,τ) is defined by

Â =

{
(x, y) ∈ E×E : S(t)x+

n∑
j=0

tjBjx−
n−1∑
j=0

tj+1

j + 1
Cjx =

t∫
0

S(s)y ds, t ∈ (−τ, τ)

}
.

The integral generator Â of a non-degenerate [B0, . . . , Bn, C0, . . . , Cn−1]-group

(S(t))t∈(−τ,τ) is a function and it ischecked at once thatÂ is a closed linear operator
which is an extension of any subgenerator of (S(t))t∈(−τ,τ). Further on, the injec-
tiveness of Bi for some i ∈ {0, . . . , n} implies that (S(t))t∈(−τ,τ) is non-degenerate.
In general, a subgenerator A of (S(t))t∈(−τ,τ) does not commute with S(·) and the
set of all subgenerators of (S(t))t∈(−τ,τ) need not be monomial.

Example 3.3.12. (i) Let E := R2. Put A(x1, x2) := (x1−x2, 0), B0(x1, x2) :=
(0,−x2), B1(x1, x2) := (−x1−x2,−x1), B2(x1, x2) := (0, 0), C0(x1, x2) = (−x2, 0),
C1(x1, x2) := (−x1 + x2,−x1 + x2) and S(t)(x1, x2) := (tx1, tx1 + x2), t ∈ R,
(x1, x2) ∈ E. Then (S(t))t∈R is a [B0, B1, B2, C0, C1]-group with a subgenerator A
and: S(t)S(s) = S(s)S(t) iff t = s, S(t)D ̸= DS(t), t ∈ R, D ∈ {B1, C0, C1} and
D0D1 ̸= D1D0, Di ∈ {Bi, Ci}, i = 1, 2.

(ii) Assume Cj = 0, j = 0, . . . , n− 1 and the bounded linear operators Bj , j =

0, . . . , n fulfill E ̸=
∑n
i=0 R(Bi). Put S(t)x := −

∑n
j=0 t

jBjx, t ∈ (−τ, τ), x ∈ E

and denote by D the family of all closed subspaces of E containing
∑n
i=0 R(Bi).

If F ∈ D, define a closed linear operator AF by D(AF ) := F and AFx := 0, x ∈
D(AF ). Then AF is a subgenerator of a [B0, . . . , Bn, 0, . . . , 0︸ ︷︷ ︸

n

]-group (S(t))t∈(−τ,τ).
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Question. Suppose n ∈ N, τ ∈ (0,∞], B0, . . . , Bn, C0, . . . , Cn−1 ∈ L(E)
as well as (S1(t))t∈(−τ,τ) and (S2(t))t∈(−τ,τ) are [B0, . . . , Bn, C0, . . . , Cn−1]-groups
having A as a subgenerator. Is it true that S1(t) = S2(t), t ∈ (−τ, τ)?

Remark 3.3.13. (i) Assume n ∈ N, τ ∈ (0,∞] and A generates an n-times
integrated group (S(t))t∈(−τ,τ). Put S(t) := S(t), t ∈ [0, τ) and S(t) := (−1)nS(t),

t ∈ (−τ, 0). Then (S(t))t∈(−τ,τ) is a [

n︷ ︸︸ ︷
0, . . . , 0, (−1)

n! I,

n︷ ︸︸ ︷
0, . . . , 0]-group having A as a

subgenerator. A similar assertion holds for n-times integrated C-groups.

(ii) Let (S(t))t∈(−τ,τ) be a [B0, . . . , Bn, C0, . . . , Cn−1]-group having A as a sub-

generator. Put Š(t) := S(−t), t ∈ (−τ, τ), B̌j := (−1)jBj and Čj := (−1)j+1Cj .

Then (Š(t))t∈(−τ,τ) is a [B̌0, . . . , B̌n, Č0, . . . , Čn−1]-group with a subgenerator −A.

(iii) Let k ∈ N and let D1, . . . , Dk ∈ L(E). Given i ∈ {1, . . . , k}, put Di :=∏i
j=1Dj . Define Si(·), i ∈ {0, . . . , k} recursively by:

S0(t)x := S(t)x, . . . , Si(t)x :=

t∫
0

Si−1(s)Dix ds, x ∈ E, t ∈ (−τ, τ),

and suppose, additionally, that DiA ⊆ ADi, i ∈ {1, . . . , k}. By a simple induction
argument, one can deduce that, for every i ∈ {1, . . . , k}, (Si(t))t∈(−τ,τ) is a[ i︷ ︸︸ ︷

0, . . . , 0,
0!B0Di

i!
, . . . ,

n!BnDi

(i+ n)!
,

i︷ ︸︸ ︷
0, . . . , 0,

0!C0Di

i!
, . . . ,

(n− 1)!Cn−1Di

(i+ n− 1)!

]
-group

with a subgenerator A.

(iv) Suppose A generates a (local) C-regularized group (T (t))t∈(−τ,τ). Then
(T (t))t∈(−τ,τ) is a [−C, 0, 0]-group with the integral generator A. Put

Tn(t)x :=

t∫
0

(t− s)n−1

(n− 1)!
T (s)x ds, t ∈ R, x ∈ E, n ∈ N.

Then (Tn(t))t∈(−τ,τ) is a
[

0, . . . , 0︸ ︷︷ ︸
n

,− 1
n!C, 0, . . . , 0︸ ︷︷ ︸

n

]
-group with the integral genera-

tor A.

Let A be closed and B0, . . . , Bn ∈ L(E). Put

ρB0,...,Bn
(A) :=

{
λ ∈ C : R

( n∑
j=0

j!

λj
Bj

)
⊆ R(λ−A)

}
.

The next characterization of exponentially bounded [B0, . . . , Bn, C0, . . . , Cn−1]-
groups can be simply proved (cf. [227]).

Proposition 3.3.14. (i) Assume A is a subgenerator of a [B+
0 , . . . , B

+
n , C

+
0 , . . . ,

C+
n−1]-group (S(t))t∈R satisfying ∥S(t)∥ 6 Meω|t|, t ∈ R, for some M > 0 and

ω > 0. Set B−
j := (−1)jB+

j and C−
j := (−1)j+1C+

j . Then:

(i.1) ρB+
0 ,...,B

+
n

(A) ∩ ρB−
0 ,...,B

−
n

(−A) ⊇ {λ ∈ C : Reλ > ω},
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(i.2)
∫∞
0
e−λtS(±t)x dt = −(λ∓A)−1

∑n
j=0

j!
λjB

±
j x, Reλ > ω, x ∈ E and

(i.3) ±A
∫∞
0
e−λtS(±t)x dt−

∫∞
0
e−λtS(±t)±Axdt =

∑n−1
j=0

j!
λj+1C

±
j x, Reλ >

ω, x ∈ D(A).

(ii) Assume A is a closed operator and (S(t))t∈R is a strongly continuous oper-
ator family satisfying ∥S(t)∥ 6Meω|t|, t ∈ R, for some M > 0 and ω > 0. If (i.1),
(i.2) and (i.3) hold, then (S(t))t∈R is a [B+

0 , . . . , B
+
n , C

+
0 , . . . , C

+
n−1]-group with a

subgenerator A.

Let n ∈ N. If A is a closed operator and B0, . . . , Bn ∈ L(E), then we define
linear operators Yi, i ∈ {0, . . . , n} recursively by:

Y0 := B0, Yi+1 := (i+ 1)!Bi+1 +AYi, i ∈ {0, . . . , n− 1}.
Note that Y1 is closed and that the assumption 0 ∈ ρ(A) simply implies the closed-
ness of Yi, i ∈ {0, . . . , n}.

Proposition 3.3.15. Suppose τ ∈ (0,∞], n ∈ Nr{1} and A is a subgenerator
of a [B0, . . . , Bn, C0, . . . , Cn−1]-group (S(t))t∈(−τ,τ). Then:

(i) iBix − Ci−1x ∈ D(A), x ∈ D(A), i ∈ {1, . . . , n}, A(iBix − Ci−1x) =
iBiAx− iCix, i ∈ {1, . . . , n− 1} and A(nBnx− Cn−1x) = nBnAx, x ∈ D(A).

(ii) D(Ak) ⊆
∩k
j=0D(Yj), k ∈ {0, . . . , n} and Ykx = −

(
dk

dtk
S(t)x

)
t=0

, x ∈
D(Ak), k ∈ {0, . . . , n}.

(iii) For every k ∈ {0, . . . , n− 1} and x ∈ D(Ak+1):

(211) Ckx+
1

k!
AYk(x) =

1

k!
Yk(Ax).

(iv) If R(B0) ⊆ D(A), then Y2 is closed, D(Ak) ⊆
∩k+1
j=0 D(Yj), k ∈ {0, . . . ,

n − 1}, (211) holds for every k ∈ {1, . . . , n − 1} and x ∈ D(Ak), and there exists
an appropriate constant M > 0 so that ∥Yk+1x∥ 6 M∥x∥k, k ∈ {0, . . . , n − 1},
x ∈ D(Ak).

(v) A(−Ynx + Yn−1Ax) = −n!BnAx, x ∈ D(An); if R(B0) ⊆ D(A), then
AYnx = YnAx, x ∈ D(An).

Proof. Suppose x ∈ D(A). Clearly, d
dtS(t)x = AS(t)x −

∑n
i=1 it

i−1Bix,
t ∈ (−τ, τ) and

n−1∑
i=0

tiCix = AS(t)x− S(t)Ax = AS(t)x−

[
A

t∫
0

S(s)Axds−
n∑
i=0

tiBiAx

]
for every t ∈ (−τ, τ). Hence,

n−1∑
i=0

tiCix−
n∑
i=0

tiBiAx = A

[
S(t)x−

t∫
0

S(s)Axds

]
, t ∈ (−τ, τ).

Since

d

dt

[
S(t)x−

t∫
0

S(s)Axds

]
= AS(t)x−

n∑
i=1

iti−1Bix−S(t)Ax =

n−1∑
i=0

tiCix−
n∑
i=1

iti−1Bix,
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t ∈ (−τ, τ), the closedness of A implies

n−1∑
i=0

tiCix−
n∑
i=1

iti−1Bix =
d

dt

[
S(t)x−

t∫
0

S(s)Axds

]
∈ D(A), t ∈ (−τ, τ),

A

[n−1∑
i=0

tiCix−
n∑
i=1

iti−1Bix

]
=

n−1∑
i=1

iti−1Cix−
n∑
i=1

iti−1BiAx, t ∈ (−τ, τ).(212)

Differentiation both sides of (212) implies iBix − Ci−1x ∈ D(A), i ∈ {1, . . . , n}
and (i). To prove (ii), notice that the closedness of A and the argumentation used

in the proof of (i) enable one to conclude that the mapping t 7→ dk

dtk
S(t)x, t ∈ (−τ, τ)

is k-times continuously differentiable for every k ∈ {0, . . . , n} and x ∈ D(Ak). Let
k ∈ {0, . . . , n} be fixed. Then we obtain:

(213)
dl+1

dtl+1
S(t)x = A

dl

dtl
S(t)x−

n∑
j=l+1

j · · · (j − l)tj−l−1Bjx, t ∈ (−τ, τ),

for every l ∈ {0, . . . , k − 1}. Since Y0 = B0, the proof of (ii) follows by induction.
Suppose now x ∈ D(Ak+1). Then the mapping t 7→ S(t)Ax, t ∈ (−τ, τ) is k-times

continuously differentiable. Since Ckx = 1
k!

dk

dtk
[AS(t)x − S(t)Ax], t ∈ (−τ, τ), the

mapping t 7→ AS(t)x, t ∈ (−τ, τ) is k-times continuously differentiable. The closed-

ness of A implies dk

dtk
AS(t)x = A dk

dtk
S(t)x, t ∈ (−τ, τ) and Ckx = 1

k! [A
dk

dtk
S(t)x −

dk

dtk
S(t)Ax], t ∈ (−τ, τ). Put t = 0 in the last equality to finish the proof of (iii). To

prove (iv), notice that R(B0) ⊆ D(A) and that the closed graph theorem implies
Y1 = AB0 + B1 ∈ L(E); the closedness of Y2 simply follows from this fact. Let

x ∈ D(Ak). Since d
dtS(t)x−S(t)Ax =

∑n−1
i=0 t

iCix−
∑n
i=1 it

i−1Bix, t ∈ (−τ, τ), one

obtains dk

dtk
S(t)x− dk−1

dtk−1S(t)Ax = dk−1

dtk−1

[∑n−1
i=0 t

iCix−
∑n
i=1 it

i−1Bix
]
, t ∈ (−τ, τ).

This implies −Ykx+Yk−1Ax = (k−1)!Ck−1x−k!Bkx and, by (i), −Ykx+Yk−1Ax ∈
D(A) and:

(214) A[−Ykx+ Yk−1Ax] = k!Ckx− k!BkAx, k ∈ {1, . . . , n− 1}, x ∈ D(Ak).

Because R(B0) ⊆ D(A), one concludes inductively from (214) that Ykx ∈ D(A),

x ∈ D(Ak), k ∈ {0, . . . , n − 1}, i.e., D(Ak) ⊆
∩k+1
i=0 D(Yi), k ∈ {0, . . . , n − 1}, and

k!Ckx+AYkx = k!BkAx+AYk−1Ax = YkAx, k ∈ {1, . . . , n− 1}, x ∈ D(Ak). The
existence of a constant M > 0 satisfying ∥Yk+1x∥ 6M∥x∥k, k ∈ {0, . . . , n−1}, x ∈
D(Ak) essentially follows from an application of (211) and an induction argument.
This completes the proof of (iv). The proof of (v) follows from that of (iv). �

Remark 3.3.16. (i) Let (S(t))t∈[0,τ) be a [B0, B1, C0]-group having A as a
subgenerator. Arguing as in the proof of previous proposition, one obtains A(B1x−
C0x) = B1Ax, x ∈ D(A) and AY1x = Y1Ax, x ∈ D(A2). Furthermore, AY1x =
Y1Ax, x ∈ D(A) if R(B0) ⊆ D(A).

(ii) The next question is motivated by the analysis of Arendt, El-Mennaoui
and Keyantuo [5]: Let A be a subgenerator of a [0, . . . , 0︸ ︷︷ ︸

n

, −1
n! I, C0, . . . , Cn−1]-group
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(S(t))t∈(−τ,τ), n ∈ N, 0 < τ 6 ∞. Does the inclusion S(t)A ⊆ AS(t) hold for
every t ∈ (−τ, τ)? The answer is affirmative and we will show this only in the
non-trivial case n > 1. Indeed, S(0) = 0 and this implies C0x = 0, x ∈ D(A). By
Proposition 3.3.15(i), ACi−1x = iCix, i ∈ {1, . . . , n − 1}, x ∈ D(A). Inductively,
Cix = 0, i ∈ {1, . . . , n − 1}, x ∈ D(A) and an immediate consequence is S(t)A ⊆
AS(t), t ∈ (−τ, τ).

(iii) Suppose A, resp. Â, is a subgenerator, resp. the integral generator, of
a non-degenerate [B0, . . . , Bn, C0, . . . , Cn−1]-group (S(t))t∈(−τ,τ), n > 2. Then

iBix − Ci−1x ∈ D(A), x ∈ D(Â), i ∈ {1, . . . , n}, A(iBix − Ci−1x) = iBiÂx −
iCix, i ∈ {1, . . . , n − 1} and A(nBnx − Cn−1x) = nBnÂx, x ∈ D(Â). To prove

this, suppose (x, y) ∈ Â. Clearly, A
∫ t
0
S(s)x ds =

∫ t
0
(S(s)y +

∑n−1
j=0 s

jCjx) ds,

t ∈ (−τ, τ). Differentiate this equality to obtain S(t)x ∈ D(A) and AS(t)x =

S(t)y +
∑n−1
j=0 t

jCjx, t ∈ (−τ, τ). Hence,

A

[ t∫
0

S(s)y ds+

n−1∑
j=0

tj+1

j + 1
Cjx−

n∑
j=0

tjBjx

]
= S(t)y +

n−1∑
j=0

tjCjx, t ∈ (−τ, τ),

A

[
n−1∑
j=0

tj+1

j + 1
Cjx−

n∑
j=0

tjBjx

]
=

n−1∑
j=0

tjCjx−
n∑
j=0

tjBjy, t ∈ (−τ, τ).

Differentiation of the previous equality leads us to the desired assertion. Notice
that we have proved an extension of Proposition 3.3.15(i) and that, in the case

n = 1, A(B1x− C0x) = B1Ax, x ∈ D(Â).

The main objective in the following proposition is to clarify a composition
property of [B0, . . . , Bn, C0, . . . , Cn−1]-groups satisfying the condition (215) quoted
below.

Proposition 3.3.17. Suppose 0 < τ 6 ∞ and A is a subgenerator of a
[B0, . . . , Bn, C0, . . . , Cn−1]-group (S(t))t∈(−τ,τ). If

(215) CjA ⊆ ACj , j = 0, . . . , n− 1 and BjA ⊆ ABj , j = 1, . . . , n,

then, for every x ∈ E,

S(t)S(s)x =

n∑
j=1

[ s∫
0

j(t+ s− r)j−1BjS(r)x dr −
t+s∫
t

j(t+ s− r)j−1S(r)Bjx dr

]

−
n−1∑
j=0

[ s∫
0

(t+ s− r)jCjS(r)x dr + tjCj

s∫
0

S(r)x dr

]
(216)

−S(t+ s)B0x−
n−1∑
j=0

n∑
i=0

s∫
0

(t+ s− r)jridrCjBix, t, s ∈ (−τ, τ), |t+ s| < τ.
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Proof. Let y ∈ D(A) and t ∈ (−τ, τ). Then we obtain
∫ t
0
AS(s)y ds =

S(t)y+
∑n
j=0 t

jBjy, i.e.,
∫ t
0
[S(s)Ay+

∑n−1
j=0 s

jCjy] ds = S(t)y+
∑n
j=0 t

jBjy. Hence,

(217)
d

dt
S(t)y = S(t)Ay +

n−1∑
j=0

tjCjy −
n∑
j=1

jtj−1Bjy, t ∈ (−τ, τ).

Let x ∈ E be fixed and let t, s ∈ (−τ, τ) satisfy |t + s| < τ . Define the function
f : (t+ s− τ, t+ s+ τ) ∩ (−τ, τ) → E by f(r) := S(t+ s− r)

∫ r
0
S(s)x ds. Then:

d

dr
f(r) =

d

dr

[
S(t+ s− r)

r∫
0

S(v)x dv

]
= S(t+ s− r)S(r)x

−

[
S(t+ s− r)A

r∫
0

S(v)x dv +

n−1∑
j=0

(t+ s− r)jCj

r∫
0

S(v)x dv

−
n∑
j=1

j(t+ s− r)j−1Bj

r∫
0

S(v)x dv

]

= S(t+ s− r)S(r)x− S(t+ s− r)

[
S(r)x+

n∑
j=0

rjBjx

]

−
n−1∑
j=0

(t+ s− r)jCj

r∫
0

S(v)x dv +

n∑
j=1

j(t+ s− r)j−1Bj

r∫
0

S(v)x dv

= −
n−1∑
j=0

(t+ s− r)jCj

r∫
0

S(v)x dv +

n∑
j=1

j(t+ s− r)j−1Bj

r∫
0

S(v)x dv

−
n∑
j=0

rjS(t+ s− r)Bjx,

for all r ∈ (t + s − τ, t + s + τ) ∩ (−τ, τ). Integrate the last equality with respect
to r from 0 to s to conclude that:

(218) S(t)

s∫
0

S(v)x dv = −
n−1∑
j=0

Cj

s∫
0

(t+ s− r)j
r∫

0

S(v)x dv dr

+

n∑
j=1

jBj

s∫
0

(t+ s− r)j−1

r∫
0

S(v)x dv dr −
n∑
j=0

s∫
0

rjS(t+ s− r)Bjx dr.

This implies

(219) S(t)S(s)x = S(t)

[
A

s∫
0

S(v)x dv −
n∑
j=0

sjBjx

]



218 3. ABSTRACT CAUCHY PROBLEMS...

=

[
AS(t)

s∫
0

S(v)x dv −
n−1∑
j=0

tjCj

s∫
0

S(v)x dv

]
−

n∑
j=0

sjS(t)Bjx

= A

[
−
n−1∑
j=0

Cj

s∫
0

(t+ s− r)j
r∫

0

S(v)x dv dr

+

n∑
j=1

jBj

s∫
0

(t+ s− r)j−1

r∫
0

S(v)x dv dr −
n∑
j=0

s∫
0

rjS(t+ s− r)Bjx dr

]

−
n−1∑
j=0

tjCj

s∫
0

S(v)x dv −
n∑
j=0

sjS(t)Bjx.

Taking into consideration (215), we get:

(220) = −
n−1∑
j=0

Cj

s∫
0

(t+ s− r)j
[
S(r)x+

n∑
i=0

riBix

]
dr

+

n∑
j=1

jBj

s∫
0

(t+ s− r)j−1

[
S(r)x+

n∑
i=0

riBix

]
dr

−A

n∑
j=0

s∫
0

rjS(t+ s− r)Bjx dr −
n−1∑
j=0

tjCj

s∫
0

S(v)x dv −
n∑
j=0

sjS(t)Bjx.

Observe that:

A

s∫
0

S(t+s−r)B0x dr = A

t+s∫
t

S(v)B0x dv = A

[ t+s∫
0

S(v)B0x dv−
t∫

0

S(v)B0x dv

]

= S(t+ s)B0x+

n∑
i=0

(t+ s)iBiB0x− S(t)B0x−
n∑
i=0

tiBiB0x,

A

s∫
0

rjS(t+ s− r)Bjx dr = A

t+s∫
t

(t+ s− v)jS(v)Bjx dv

= A

[
−sj

t∫
0

S(σ)Bjx dσ +

t+s∫
t

j(t+ s− v)j−1

v∫
0

S(σ)Bjx dσ dv

]

= −sj
[
S(t)Bjx+

n∑
i=0

tiBiBjx

]
+

t+s∫
t

j(t+s−v)j−1

[
S(v)Bjx+

n∑
i=0

viBiBjx

]
dv,
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for all j = 1, . . . , n. By (220),

S(t)S(s)x = −
n−1∑
j=0

s∫
0

(t+ s− r)jCjS(r)x dr −
n−1∑
j=0

s∫
0

(t+ s− r)j
n∑
i=0

riCjBix dr

+

n∑
j=1

j

s∫
0

(t+ s− r)j−1BjS(r)x dr +

n∑
j=1

j

s∫
0

(t+ s− r)j−1
n∑
i=0

riBjBix dr

−S(t+ s)B0x−
n∑
i=0

(t+ s)iBiB0x+ S(t)B0x+

n∑
i=0

tiBiB0x

+

n∑
j=1

sj
[
S(t)Bjx+

n∑
i=0

tiBiBjx

]
−

n∑
j=1

j

t+s∫
t

(t+s−v)j−1

[
S(v)Bjx+

n∑
i=0

viBiBjx

]
dv

(221) −
n−1∑
j=0

tjCj

s∫
0

S(v)x dv −
n∑
j=0

sjS(t)Bjx.

Clearly, S(t)B0x+
∑n
j=1 s

jS(t)Bjx−
∑n
j=0 s

jS(t)Bjx = 0 and:

−
n∑
j=1

n∑
i=0

t+s∫
t

j(t+ s− v)j−1vidvBiBjx = −
n∑
j=1

n∑
i=0

s∫
0

(t+ s− r)ijrj−1drBiBjx

= −
n∑
j=1

n∑
i=0

tisjBiBjx−
n∑
j=1

n∑
i=1

s∫
0

i(t+ s− r)i−1rjdrBiBjx

= −
n∑
j=1

n∑
i=0

tisjBiBjx−
n∑
j=1

n∑
i=1

s∫
0

j(t+ s− r)j−1ridrBjBix.

Therefore,

(222) −
n∑
j=1

n∑
i=0

t+s∫
t

j(t+ s− v)j−1vidvBiBjx+

n∑
j=1

n∑
i=0

sjtiBiBjx

+

n∑
j=1

n∑
i=0

s∫
0

j(t+ s− r)j−1ridrBjBix

=

n∑
j=1

s∫
0

j(t+ s− r)j−1drBjB0x =

n∑
j=1

[(t+ s)j − tj ]BjB0x.

Finally, (216) follows from an application of (221)–(222). �
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Remark 3.3.18. The composition property does not remain true if the con-
dition (215) is neglected. Namely, let A, B0, B1, B2, C0, C1 and (S(t))t∈R have
the same meaning as in Example 3.3.12(i). Then (S(t))t∈R is a [B0, B1, B2, C0, C1]-
group with a subgenerator A and a tedious matrix computation shows that (215)
and (216) do not hold. Moreover, ρB0,B1,B2(A) ⊇ {λ ∈ C : Reλ > 0} and
R(B0) + R(B1) + R(B2) * R(1 −A) (cf. also Proposition 3.3.14).

3.3.3. Further relations between distribution groups, local integrated
groups and [B0, . . . , Bn, C0, . . . , Cn−1]-groups. In order to establish a satisfac-
tory relationship of distribution groups with local integrated groups, we need the
following definition introduced by Tanaka and Okazawa in [404] (cf. [404, Defini-
tion 4]):

(△) Suppose n ∈ N and τ ∈ (0,∞]. A strongly continuous operator family
(S(t))t∈[0,τ) is called a (local) n-times integrated semigroup if:

(i) for every x ∈ E and (t, s) ∈ [0, τ) × [0, τ) with t+ s < τ :

S(t)S(s)x =

[ t+s∫
0

−
t∫

0

−
s∫

0

]
(t+ s− r)n−1

(n− 1)!
S(r)x dr,

and S(0) = 0,
(ii) S(t)x = 0 for every t ∈ [0, τ) implies x = 0.

Suppose (S(t))t∈[0,τ) is an n-times integrated semigroup in the sense of (△).
The infinitesimal generator A0 of (S(t))t∈[0,τ) is defined in [404] via: D(A0) =:{
x ∈

∪
σ∈(0,τ ] C

n(σ) : limh→0+
S(n)(h)x−x

h exists
}

and A0x := limh→0+
S(n)(h)x−x

h ,

x ∈ D(A0), where

Cn(σ) :=
{
x ∈ E : S(·)x : [0, σ) → E is n-times continuously differentiable

}
.

The infinitesimal generator A0 of (S(t))t∈[0,τ) is a closable linear operator and the

closure of A0, A0, is said to be the complete infinitesimal generator, c.i.g in short,
of (S(t))t∈[0,τ). Suppose (S(t))t∈[0,τ) is a (local) n-times integrated semigroup in
the sense of Definition 2.1.1. Then (S(t))t∈[0,τ) is an n-times integrated semigroup
in the sense of (△); in general, the converse statement does not hold (cf. [5], [227,
Proposition 2.1], [252] and [404, Proposition 4.5]).

Theorem 3.3.19. (i) Suppose G ∈ D′(L(E)) and A is a closed linear oper-
ator so that (208) holds. Then, for every τ ∈ (0,∞), there exist n0 = n0(τ) ∈
N and B0, . . . , Bn0 , C0, . . . , Cn0−1 ∈ L(E) such that A is a subgenerator of a
[B0, . . . , Bn0

, C0, . . . , Cn0−1]-group (Sτ (t))t∈(−τ,τ) satisfying Sτ (t)x ∈ D(A) for all
x ∈ E and t ∈ (−τ, τ).

(ii) Let G and A be as in the formulation of (i) and let A1 := A|R(G)
. Sup-

pose, in addition, that G is regular and put S(t) := Sτ (t), t ∈ (−τ, τ), where
(Sτ (t))t∈(−τ,τ) is the [B0, . . . , Bn0

, C0, . . . , Cn0−1]-group constructed in (i). Then:

(ii.1) R(G) ⊆
∩n0

i=0D(Yi), Yn0x = −x, x ∈ R(G), the function t 7→ u(t;x), t ∈
R is infinitely differentiable, u(t;x) ∈ D∞(A) and dn

dtnu(t;x) = u(t;Anx),
t ∈ R, x ∈ R(G), n ∈ N.
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(ii.2) If n0 = 1, then ±A1 generate once integrated semigroups (S1
±(t))t∈[0,τ) ⊆

L(R(G)) given by S1
±(t)x := S(±t)(±x) ± B0x, x ∈ R(G), t ∈ [0, τ).

Furthermore, A1 generates a C0-group in R(G).
(ii.3) Let n0 = 2 and put S2

±(t)x := S(±t)x+B0x+ t(±AB0 ±B1)x, t ∈ [0, τ),

x ∈ R(G). Then S2
±(t) ∈ L(R(G)),

(∫ t
0
S2
±(s)xds, S2

±(t)x− t2

2 x
)
∈ ±A1,

x ∈ R(G), t ∈ [0, τ), S2
±(t)A1x = A1S

2
±(t)x, t ∈ [0, τ), x ∈ R(G),

S2
±(t)x ∈ D(A), x ∈ R(G), the mapping t 7→ d

dtS
2
±(t)x, t ∈ [0, τ) is

continuously differentiable for every x ∈ R(G), R(G) ⊆
∩2
i=0D(Yi) and

Y2x = −x, x ∈ R(G). Furthermore, ±A1 are generators of local once
integrated semigroups ( ddtS

2
±(t))t∈[0,τ).

(ii.4) Assume n0 > 3,

(223) R(G) ⊆
n0−1∩
i=2

D(Yi)

and there exists M > 0 with

(224) ∥Yix∥ 6M∥x∥, x ∈ R(G), i = 2, . . . , n0 − 1.

The following holds: R(G) ⊆ D(Yn0
) and Yn0

x = −x, x ∈ R(G). Set

Sn0
+ (t)x := S(t)x+

n0−1∑
i=0

ti

i!
Yix

Sn0
− (t)x := (−1)n0S(−t)x+

n0−1∑
i=0

(−1)n0+iti

i!
Yix, x ∈ R(G), t ∈ [0, τ).

Then: Sn0
± (t) ∈ L(R(G)),

(∫ t
0
Sn0
± (s)x ds, Sn0

± (t)x − tn0

n0!
x
)
∈ ±A1, x ∈

R(G), t ∈ [0, τ), Sn0
± (t)A1x = A1S

n0
± (t)x, t ∈ [0, τ), x ∈ R(G) and

Sn0
± (t)x ∈ D(A), x ∈ R(G). Put

A
′

n0−1,± =
{

(x, y) ∈ ±A1 : Cix+
1

i!
AYix = ± 1

i!
Yiy, i = 2, . . . , n0 − 1

}
.

Then A
′

n0−1,± are generators of local (n0−1)-times integrated semigroups

( ddtS
n0
± (t))t∈[0,τ).

(ii.5) Let n0 > 3 and ρ(A) ̸= ∅. Then, for every τ0 ∈ (0,∞), there exists
n(τ0) ∈ N such that A1 generates a local n(τ0)-times integrated group on
(−τ0, τ0).

Proof. (i) Let τ ∈ (0,∞) be chosen arbitrarily. Since AG(φ)x = G(−φ′)x,
φ ∈ D, x ∈ E we have G ∈ D′(L(E, [D(A)])), and Theorem 1.3.2 implies that
there exist a natural number n0 = n0(τ) and a continuous function Sτ : [−τ, τ ] →
L(E, [D(A)]) such that G(φ)x = (−1)n0

∫ τ
−τ φ

(n0)(t)Sτ (t)x dt, φ ∈ D(−τ,τ), x ∈ E.
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Then we obtain:

AG(φ)x = (−1)n0

τ∫
−τ

φ(n0)(t)ASτ (t)x dt = (−1)n0+1

τ∫
−τ

φ(n0+1)(t)

t∫
0

ASτ (s)x ds dt

= G(−φ′)x = (−1)n0+1

τ∫
−τ

φ(n0+1)(t)Sτ (t)x dt, φ ∈ D(−τ,τ), x ∈ E.

An immediate consequence is:

τ∫
−τ

φ(n0+1)(t)

[ t∫
0

ASτ (s)xds− Sτ (t)x

]
dt = 0, φ ∈ D(−τ,τ), x ∈ E.

The well-known arguments of distribution theory (cf. for instance [128, Lemma
8.1.1]) imply that there exist B0, . . . , Bn0 ∈ L(E) which satisfy (i) of Defini-
tion 3.3.11. Similarly, if x ∈ D(A), then G(φ)Ax = AG(φ)x, φ ∈ D and we
get:

τ∫
−τ

φ(n0)(t)
[
ASτ (t)x− Sτ (t)Ax

]
dt = 0, φ ∈ D(−τ,τ), x ∈ E.

So, there exist C0, . . . , Cn0−1 ∈ L(E) satisfying ASτ (t)x− Sτ (t)Ax =
∑n−1
j=0 t

jCjx

for all t ∈ (−τ, τ) and x ∈ D(A). To prove (ii.1), we need the following notion.
Suppose ζ ∈ D and

∫∞
−∞ ζ(t) dt = 1. Given φ ∈ D, we define Iζ(φ) by

Iζ(φ)(t) :=

t∫
−∞

[
φ(u) − ζ(u)

∞∫
−∞

φ(v) dv

]
du, t ∈ R.

Then we have: Iζ(φ) ∈ D, Iζ(φ
′) = φ and d

dtIζ(φ)(t) = φ(t) − ζ(t)
∫∞
−∞ φ(v) dv,

t ∈ R. Suppose x ∈ R(G). Since AG(φ)x = G(−φ′)x, φ ∈ D one obtains
−
∫∞
−∞ φ′(t)u(t;x)dt = A

∫∞
−∞ φ(t)u(t;x) dt, φ ∈ D. Then the partial integration

yields:

(225) A

∞∫
−∞

φ′(t)

t∫
0

u(s;x) ds dt =

∞∫
−∞

φ′(t)u(t;x) dt, φ ∈ D.

Suppose (ρn) is a regularizing sequence and put φn = Iζ(ρn) in (225) in an effort
to see that:

A

∞∫
−∞

[
ρn(t) − ζ(t)

] t∫
0

u(s;x) ds dt =

∞∫
−∞

[
ρn(t) − ζ(t)

]
u(t;x) dt.

The closedness of A and u(0;x) = x imply, for every ζ ∈ D with
∫∞
−∞ ζ(t) dt = 1:

(226) A

∞∫
−∞

ζ(t)

t∫
0

u(s;x) ds dt =

∞∫
−∞

ζ(t)u(t;x) dt− x.
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It is evident that, for every t ∈ R, there exists a sequence (ζn) in D such that∫∞
−∞ ζn(t) dt = 1, n ∈ N and limn→∞ ζn = δt, in the sense of distributions. Put

(ζn) in (226). As above, the closedness of A implies
∫ t
0
u(s;x) ds ∈ D(A) and

A
∫ t
0
u(s;x) ds = u(t;x) − x, t ∈ R. Inductively,

(227) A

t∫
0

(t− s)k

k!
u(s;x) ds =

t∫
0

(t− s)k−1

(k − 1)!
u(s;x) ds− tk

k!
x, t ∈ R, k ∈ N.

Clearly, Ax ∈ R(G) and A commutes with G(·). Hence,

(228) A

∞∫
−∞

φ(t)u(t;x) dt =

∞∫
−∞

φ(t)u(t;Ax) dt, φ ∈ D.

An application of (228) gives u(t;x) ∈ D(A), Au(t;x) = u(t;Ax), t ∈ R, which

implies u(t;x) ∈ D∞(A), t ∈ R. Since A
∫ t
0
u(s;x) ds = u(t;x) − x, t ∈ R, one

obtains by induction that the function t 7→ u(t;x), t ∈ R is infinitely differentiable

and that dn

dtnu(t;x) = u(t;Anx), t ∈ R, x ∈ R(G), n ∈ N. Furthermore,

(229) A

t∫
0

(t− s)n0−1

(n0 − 1)!
u(s;x) ds =

t∫
0

(t− s)n0−1

(n0 − 1)!
u(s;Ax) ds.

Since

G(φ)x = (−1)n0

∞∫
−∞

φ(n0)(t)S(t)x dt =

∞∫
−∞

φ(t)u(t;x) dt

= (−1)n0

∞∫
−∞

φ(n0)(t)

t∫
0

(t− s)n0−1

(n0 − 1)!
u(s;x) ds dt, φ ∈ D(−τ,τ),

there is a subset {y0(x), . . . , yn0−1(x)} of E such that:

(230) S(t)x−
t∫

0

(t− s)n0−1

(n0 − 1)!
u(s;x) ds = −

n0−1∑
i=0

tiyi(x), t ∈ (−τ, τ).

Put t = 0 to obtain y0(x) = B0x. By (230), it follows that

(231)

t∫
0

S(s)x ds−
t∫

0

(t− s)n0

n0!
u(s;x) ds = −

n0−1∑
i=0

ti+1

i+ 1
yi(x), t ∈ (−τ, τ).

By (227), one can apply A on both sides of (231) to deduce that, for every t ∈
(−τ, τ):[

S(t)x+

n0∑
i=0

tiBix

]
−

t∫
0

(t− s)n0−1

(n0 − 1)!
u(s;x) ds+

tn0

n0!
x = −A

n0−1∑
i=0

ti+1

i+ 1
yi(x),
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which implies:

(232) −
n0−1∑
i=0

tiyi(x) +

n0∑
i=0

tiBix+
tn0

n0!
x = −A

n0−1∑
i=0

ti+1

i+ 1
yi(x), t ∈ (−τ, τ).

Since A is closed, one can differentiate (232) sufficiently many times to obtain
that: x ∈

∩n0

i=0D(Yi), Yn0
x = −x and yi(x) = 1

i!Yix, i ∈ {0, . . . , n0 − 1}. This
completes the proof of (ii.1). To prove (ii.2), fix an x ∈ R(G). Let Sn0

+ (t)x =

S(t)x +
∑n0−1
i=0

ti

i! Yi(x), t ∈ [0, τ). By (230), Sn0
+ (t)x =

∫ t
0

(t−s)n0−1

(n0−1)! u(s;x)ds, t ∈
[0, τ) and (229) implies ASn0

+ (t)x = Sn0
+ (t)Ax, t ∈ [0, τ). Let n0 = 1. Then

S1
+(t)x = S(t)x + B0x, t ∈ [0, τ), x ∈ R(G). By the proof of (ii.1), S1

+(t)x =
t∫
0

u(s;x) ds, t ∈ [0, τ), x ∈ R(G). Accordingly, S1
+(t)(R(G)) ⊆ R(G), t ∈ [0, τ).

By (227),
(∫ t

0
S1
+(s)x ds, S1

+(t)x− tx
)
∈ A1, t ∈ [0, τ), x ∈ R(G) and the closedness

of A implies
(∫ t

0
S1
+(s)xds, S1

+(t)x − tx
)
∈ A1, t ∈ [0, τ), x ∈ R(G). Clearly,

S1
+(t)A1 ⊆ A1S

1
+(t), t ∈ [0, τ) and this proves that (S1

+(t))t∈[0,τ) is a once integrated
semigroup generated by A1. The similar arguments (see also the proof of (ii.3))

work for −A1 and (S1
−(t))t∈[0,τ). To prove that A1 generates a C0-group in R(G),

we argue as follows. Since
(∫ t

0
S1
+(s)x ds, S1

+(t)x − tx
)
∈ A1, t ∈ [0, τ), x ∈ R(G)

and R(S1
+(t)) ⊆ D(A), t ∈ [0, τ) one gets that the mapping t 7→ d

dtS
1
+(t)x, t ∈ [0, τ)

is continuously differentiable for every x ∈ R(G) and that d
dtS

1
+(t)x = AS1(t)x+x,

t ∈ [0, τ), x ∈ R(G). Moreover, it can be easily checked that, for every fixed

x ∈ R(G), the function u(t) = S1
+(t)x, t ∈ [0, τ) is a unique solution of the

problem:

C1(τ) :

 u ∈ C([0, τ) : [D(A1)]) ∩ C1([0, τ) : R(G)),
u′(t) = A1u(t) + x, t ∈ [0, τ),
u(0) = 0.

An application of [5, Theorem 1.2] gives that A1 generates a C0-semigroup in

R(G). Similarly, −A1 generates a C0-semigroup in R(G) and this clearly im-

plies that A1 generates a C0-group in R(G). Let us prove (ii.3). The proof

of (b1) implies that S2
+(t)x =

t∫
0

(t − s)u(s;x) ds, t ∈ [0, τ), x ∈ R(G). So,

S2
+(t)(R(G)) ⊆ R(G), t ∈ [0, τ). Note also that S(0) = −B0 and that the

closed graph theorem gives S2
+(t) ∈ L(R(G)), t ∈ [0, τ). Next, the closedness

of A and (227) imply
(∫ t

0
S2
+(s)xds, S2

+(t) − t2

2 x
)
∈ A1, x ∈ R(G), t ∈ [0, τ).

Since
∫ t
0
S2
+(s)x ds ∈ D(A), x ∈ R(G), t ∈ [0, τ) and R(B0) ⊆ D(A), we imme-

diately obtain AB0x + B1x ∈ D(A), x ∈ R(G). Further on, A
∫ t
0
S2
+(s)x ds =

S(t)x + B0x + tB1x + t2B2x + tAB0x + t2

2 A(AB0x + B1x) = S2
+(t)x − t2

2 x, x ∈
R(G), t ∈ [0, τ). Therefore, A(AB0x + B1x) = −x − 2B2x, x ∈ R(G) and

S2
+(t)x ∈ D(A), AS2

+(t)x = A(S(t)x+B0x) + t(−x− 2B2x), x ∈ R(G), t ∈ [0, τ),

R(G) ⊆
∩2
i=0D(Yi) and Y2x = −x, x ∈ R(G). Suppose x ∈ D(A1). Since
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R(B0) ⊆ D(A) and AS2
+(t)x − S2

+(t)Ax = [AS(t)x + AB0x + tA(AB0 + B1)x] −
[S(t)Ax + B0Ax + t(AB0 + B1)Ax] = tC1x + t[A(AB0 + B1)x − (AB0 + B1)Ax],
t ∈ [0, τ), Proposition 3.6.8(iv) immediately implies

(
S2
+(t)x, S2

+(t)A1x
)

∈ A1,

t ∈ [0, τ). Thus, (S2
+(t))t∈[0,τ) is a twice integrated semigroup generated by A1. Be-

cause R(S2
+(t)) ⊆ D(A), t ∈ [0, τ), the mapping t 7→ S2

+(t)x is continuously differen-

tiable for every fixed x ∈ R(G) and the following holds: d
dtS

2
+(t)x = AS2

+(t)x+tx =

A(S(t)x + B0x) − 2tB2x, t ∈ [0, τ), x ∈ R(G). Then it is straightforward to see

that d
dtS

2
+(t) ∈ L(R(G)), t ∈ [0, τ) and that

(∫ t
0
d
dsS

2
+(s)x ds, ( ddtS

2
+(t)x) − tx

)
∈

A1, t ∈ [0, τ). Suppose now x ∈ D(A1). Then d
dtS

2
+(t)x = AS2

+(t)x + tx =

S2
+(t)Ax + tx ∈ D(A) and A d

dtS
2
+(t)x = AS2

+(t)Ax + tAx = d
dtS

2
+(t)Ax, t ∈

[0, τ),
(
d
dtS

2
+(t)x, ddtS

2
+(t)A1x

)
∈ A1, t ∈ [0, τ), and consequently, ( ddtS

2
+(t))t∈[0,τ)

is a once integrated semigroup generated by A1. In order to obtain the corre-
sponding statement for the operator −A1 and (S2

−(t))t∈[0,τ), notice the follow-

ing facts: (208) holds for −A and Ǧ, Ǧ fulfills (DG)4 with u(̌·;x), Ǧ(φ)x =
(−1)n0

∫∞
−∞ φ(n0)(t)[(−1)n0 Š(t)]x dt, x ∈ E, φ ∈ D and ((−1)n0 Š(t))t∈(−τ,τ) is a

[(−1)n0B0, . . . , (−1)n0+n0Bn0 , (−1)n0+1C0, . . . , (−1)n0+n0Cn0−1]-group with a sub-

generator −A. To prove (ii.4), assume x ∈ R(G). Let (xn) be a sequence in R(G)
with limn→∞ xn = x. Due to (224) and (ii.1), limn→∞ Yn0−1(xn) = Yn0−1x and
limn→∞AYn0−1(xn) = −x − n0!Bn0

x. Hence, Yn0−1x ∈ D(A), x ∈ D(Yn0
) and

Yn0x = −x as claimed. This yields Sn0
± (t)x ∈ D(A), x ∈ R(G). As in the proofs of

(ii.1), (ii.2) and (ii.3), one obtains Sn0
± (t) ∈ L(R(G)),

(∫ t
0
Sn0
± (s)xds, Sn0

± (t)x −
tn0

n0!
x
)

∈ ±A1, x ∈ R(G), t ∈ [0, τ) and Sn0
± (t)A1x = A1S

n0
± (t)x, t ∈ [0, τ),

x ∈ R(G). We will sketch the rest of the proof of (ii.4) only for A and Sn0
+ (·).

Suppose t, s ∈ [0, τ) and t+ s < τ . Since ASn0
+ (·)x = Sn0

+ (·)Ax, x ∈ R(G), one can
repeat literally the arguments given in the proof of [275, Propostion 2.4] so as to
conclude that:

(233) Sn0
+ (t)Sn0

+ (s)x =

[ t+s∫
0

−
t∫

0

−
s∫

0

]
(t+ s− r)n0−1

(n0 − 1)!
S2
+(r)x dr, x ∈ R(G).

The standard limit procedure implies that (233) remains true for every x ∈
R(G) and t, s ∈ [0, τ) with t + s < τ . Then it is straightforward to verify that

(Sn0
+ (t))t∈[0,τ) ⊆ L(R(G)) is a local n0-times integrated semigroup in the sense of

(△). To prove that A
′

n0−1,+ is the generator of a local n0-times integrated semi-
group (Sn0

+ (t))t∈[0,τ) in the sense of Definition 2.1.1, we argue as follows. First

of all, let us observe that A
′

n0−1,+ is a closed operator and that the arguments
employed in the proof of Proposition 3.3.15 also show that D(An0) ∩ D(A1) ⊆
Cn0(τ). Suppose now x ∈ D(A0), where A0 is the infinitesimal generator of
(Sn0

+ (t))t∈[0,τ). This implies the existence of a number σ ∈ (0, τ) so that the map-
ping t 7→ Sn0

+ (t)x, t ∈ [0, σ) is n0-times continuously differentiable and that A0x =

limt→0+
1
t

(
dn0

dtn0
(Sn0

+ (t)x) − x
)
. On the other hand, the closedness of A implies

dk

dtk
S(t)x ∈ D(A) and dk+1

dtk+1S(t)x = A dk

dtk
S(t)x −

∑n
j=k+1 j · · · (j − k)tj−k−1Bjx,
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for every t ∈ [0, σ) and k ∈ {0, . . . , n0 − 1}. Therefore, x ∈
∩n0

i=0D(Yi) and

Ykx = −( d
k

dtk
S(t)x)t=0, k ∈ {0, . . . , n0}. Moreover,

dn0

dtn0
(Sn0

+ (t)x) − x = A
[ dn0−1

dtn0−1
Sn0
+ (t)x

]
− n0!Bn0

x− x

= A
[ dn0−1

dtn0−1
Sn0
+ (t)x

]
+AYn0−1x = A

[ dn0−1

dtn0−1
Sn0
+ (t)x−

( dn0−1

dtn0−1
S(t)x

)
t=0

]
.

It is also evident that

x =
( dn0

dtn0
S(t)x

)
t=0

= lim
t→0+

1

t

( dn0−1

dtn0−1
Sn0
+ (t)x−

( dn0−1

dtn0−1
S(t)x

)
t=0

)
.

The closedness of A implies x ∈ D(A1), A0x = A1x and, because of that, A0 ⊆
A1. Further on, R(G) ⊆ D(An0) ∩ D(A1) ⊆ Cn0(τ) and an application of [404,

Proposition 4.5] gives
(∫ t

0
Sn0
+ (s)x ds, Sn0

+ (t)x − tn0

n0!
x
)
∈ A0, x ∈ R(G), t ∈ [0, τ)

and Sn0
+ (t)A0x = A0S

n0
+ (t)x, t ∈ [0, τ), x ∈ D(A0). Suppose (x, y) ∈ A0. Then

0 = ASn0
+ (t)x− Sn0

+ (t)y =
∑n0−1
i=0 tiCix+

∑n0−1
i=0

ti

i!AYix−
∑n0−1
i=0

ti

i! Yiy, t ∈ [0, τ),

which implies A0 ⊆ A
′

n0−1,+. Further on, fix an x ∈ D(A′
n0−1,+) and notice that

ASn0
+ (t)x = Sn0

+ (t)Ax, t ∈ [0, τ) and

An0−1,+
′∋
( t∫

0

Sn0
+ (s)x ds, Sn0

+ (t)x− t
n0

n0!
x

)
=

( t∫
0

Sn0
+ (s)x ds,A1

t∫
0

Sn0
+ (s)x ds

)

=

( t∫
0

Sn0
+ (s)x ds,

t∫
0

Sn0
+ (s)Axds

)
, t ∈ [0, τ).

This implies Ci
∫ t
0
Sn0
+ (s)x ds+ 1

i!AYi
∫ t
0
Sn0
+ (s)x ds = 1

i!Yi
∫ t
0
Sn0
+ (s)Axds, t ∈ [0, τ),

i ∈ {2, . . . , n0−1}. Differentiate this equality to obtain CiS
n0
+ (t)x+ 1

i!AYiS
n0
+ (t)x =

1
i!YiS

n0
+ (t)Ax, t ∈ [0, τ), i ∈ {2, . . . , n0−1}. Thus, Sn0

+ (t)A′
n0−1,+ ⊆ A

′

n0−1,+S
n0
+ (t),

t ∈ [0, τ) and A
′

n0−1,+ is the generator of a local n0-times integrated semigroup
(Sn0

+ (t))t∈[0,τ) in the sense of Definition 2.1.1. An application of the arguments given

in the proof of [227, Proposition 2.1] gives A0 = A′
n0−1,+. Since R(Sn0

+ (t)) ⊆ D(A),
the mapping t 7→ Sn0

+ (t)x, t ∈ [0, τ) is continuously differentiable for every fixed x ∈
R(G) and d

dtS
n0
+ (t)x = ASn0

+ (t)x+ tn0−1

(n0−1)!x = AS(t)x+
∑n0−1
i=0

ti

i!AYix+ tn0−1

(n0−1)!x,

t ∈ [0, τ), x ∈ R(G). Then it can be easily verified that ( ddtS
n0
+ (t))t∈[0,τ) ⊆ L(R(G))

is a local (n0 − 1)-times integrated semigroup in the sense of (△). The c.i.g of

( ddtS
n0
+ (t))t∈[0,τ) is A0 = A

′

n0−1,+ and an application of [404, Proposition 4.5]

enables one to see that A
′

n0−1,+ is the generator of a local (n0−1)-times integrated

semigroup ( ddtS
n0
+ (t))t∈[0,τ) in the sense of Definition 2.1.1. To prove (ii.5), we

argue as follows. Suppose λ ∈ ρ(A) and set Aλ := A − λ, Gλ := e−λ·G and
uλ(·;x) := e−λ·u(·;x), x ∈ R(G) = R(Gλ). It is straightforward to check that
Aλ and Gλ fulfill (208) and that Gλ is regular with Gλ(φ)x =

∫∞
−∞ φ(t)uλ(t;x) dt,
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φ ∈ D, x ∈ R(Gλ). Clearly,

Gλ(φ)x = G(e−λ·φ)x = (−1)n0

τ∫
−τ

(
e−λ·φ

)(n0)
(t)S(t)x dt

= (−1)n0

τ∫
−τ

n0∑
i=0

(−1)n0−i
(
n0
i

)
λn0−ie−λtφ(i)(t)S(t)x dt

=

n0∑
i=0

(−1)i
(
n0
i

)
λn0−i

τ∫
−τ

φ(i)(t)
(
e−λtS(t)x

)
dt = (−1)n0

τ∫
−τ

φ(n0)(t)e−λtS(t)x dt

+

n0∑
i=1

(−1)i
(
n0
i

)
λn0−i(−1)n0−i

τ∫
−τ

φ(n0)(t)

t∫
0

(t− s)n0−i−1

(n0 − i− 1)!
e−λsS(s)x ds dt

= (−1)n0

τ∫
−τ

φ(n0)(t)

[
e−λtS(t)x+

n0∑
i=1

(
n0
i

)
λn0−i

t∫
0

(t− s)n0−i−1

(n0 − i− 1)!
e−λsS(s)x ds

]
dt,

for every φ ∈ D(−τ,τ) and x ∈ E. Put, for every t ∈ (−τ, τ) and x ∈ E,

Sλ(t)x = e−λtS(t)x+

n0∑
i=1

(
n0
i

)
λn0−i

t∫
0

(t− s)n0−i−1

(n0 − i− 1)!
e−λsS(s)x ds.

Then the mapping Sλ : (−τ, τ) → L(E, [D(Aλ)]) is continuous and Gλ(φ)x =
(−1)n0

∫ τ
−τ φ

(n0)(t)Sλ(t)x dt, φ ∈ D(−τ,τ), x ∈ E. The proof of (i) implies that

there exist bounded linear operators Bλ0 , . . . , B
λ
n0
, Cλ0 , . . . , C

λ
n0−1 such that Aλ is

a subgenerator of a [Bλ0 , . . . , B
λ
n0
, Cλ0 , . . . , C

λ
n0−1]-group (Sλ(t))t∈(−τ,τ). Define Y λi

recursively by Y λ0 := Bλ0 and Y λi+1 := (i+1)!Bλi+1+AλY
λ
i , i ∈ {0, . . . , n0−1}. Since

0 ∈ ρ(Aλ), we have that Y λi is closed, i = 1, . . . , n0. Suppose, for the time being,

x ∈ R(G) and (xn) is a sequence in R(G) such that limn→∞ xn = x. A consequence
of Y λn0

xn = −xn, n ∈ N is limn→∞AλY
λ
n0−1xn = −x−n0!Bλn0

x and the boundedness

of A−1
λ implies limn→∞ Y λn0−1xn = A−1

λ (−x−n0!Bλn0
x). Continuing this procedure

enables one to establish that, for every i = 1, . . . , n0−1, limn→∞ Y λi xn exists. The
closedness of Y λi yields x ∈

∩n0

i=0D(Y λi ) and Y λn0
x = −x. Put A1,λ := (Aλ)R(Gλ)

and Cx := A
−(n0−1)
λ x, x ∈ R(G). Because GλAλ ⊆ AλGλ, we have A−k

λ Gλ =

GλA
−k
λ , k ∈ N, A−k

λ (R(G)) ⊆ R(G), k ∈ N and A−k
λ (R(G)) ⊆ R(G), k ∈ N.

This implies 0 ∈ ρ(A1,λ) and the injectiveness of C ∈ L(R(G)). Assume now

x ∈ D(An0−1
1,λ ). Then An0−1

1,λ x ∈ R(G), x = A
−(n0−1)
λ (An0−1

λ x) = C(An0−1
λ x) ∈

R(C). and D(An0−1
1,λ ) ⊆ R(C). Proceeding as in the proof of Proposition 3.3.15,

one obtains that the mapping t 7→ Sλ(t)x, t ∈ (−τ, τ) is n0-times continuously
differentiable and that there exists a function M : (−τ, τ) → (0,∞), independent

of x, so that ∥ d
n0

dtn0
Sλ(t)x∥ 6 M(|t|)

∑n0

i=0 ∥Aiλx∥, t ∈ (−τ, τ). Put uλ(t;x) =



228 3. ABSTRACT CAUCHY PROBLEMS...

dn0

dtn0
Sλ(t)x, t ∈ [0, τ), x ∈ D(An0−1

λ ) and T (t)x = uλ(t;Cx), t ∈ [0, τ), x ∈
R(G). Due to Proposition 3.3.15, D(An0−1

λ ) ⊆ D(Y n0

λ ) and uλ(0;x) = −Y n0

λ x,

x ∈ D(An0−1
λ ). Moreover, R(C) ⊆ R(G) ∩D(An0−1

λ ) and this implies uλ(0;Cx) =
−Y n0

λ Cx = Cx. The mapping t 7→ T (t)x, t ∈ [0, τ) is continuous for every fixed

x ∈ R(G) and ∥T (t)x∥ = ∥uλ(t;A
−(n0−1)
λ x)∥ 6 M(t)

∑n0−1
i=0 ∥A−1

λ ∥i∥x∥, t ∈ [0, τ),

x ∈ R(G). The partial integration shows Gλ(φ)x =
∫ τ
−τ φ(t)uλ(t;x) dt, φ ∈ D[0,τ),

x ∈ D(An0−1
λ ) and this yields uλ(t;x) ∈ R(G), t ∈ [0, τ), x ∈ D(An0−1

λ ). Therefore,

T (t)x ∈ R(G), t ∈ [0, τ), x ∈ R(G) and T (t) ∈ L(R(G)), t ∈ [0, τ). As in the proof

of (ii.1), we infer Aλ
∫ t
0
uλ(s;Cx) ds = Aλ

∫ t
0
T (s)x ds = uλ(t;Cx) − uλ(0;Cx) =

T (t)x − Cx, t ∈ [0, τ), x ∈ R(G) and uλ(t;Aλx) = Aλu
λ(t;x), t ∈ [0, τ), x ∈

D(An0

λ ). By the previous equality, T (t)A1,λ ⊆ A1,λT (t) and T (t)C = CT (t),
t ∈ [0, τ). Now it can be easily seen that the abstract Cauchy problem: v ∈ C([0, τ) : [D(A1,λ)]) ∩ C1([0, τ) : R(G)),

v′(t) = A1,λv(t) + Cx, t ∈ [0, τ),
v(0) = 0,

has a unique solution for every x ∈ R(G), given by v(t) =
∫ t
0
T (s)xds, t ∈ [0, τ),

x ∈ R(G). This implies that the abstract Cauchy problem:

(ACP, τ) :

 f ∈ C([0, τ) : [D(A1,λ)]) ∩ C1([0, τ) : R(G)),
f ′(t) = A1,λf(t), t ∈ [0, τ),
f(0) = x,

has a unique solution for every x ∈ C(D(A1,λ)) and that A1,λ is the integral
generator of a local C-regularized semigroup (T (t))t∈[0,τ). As before, D(An0

λ ) ⊆
C(D(Aλ)) and this implies that that A1,λ generates a local (n0−1)-times integrated
semigroup on [0, τ). A rescaling result for local integrated semigroups implies that
A1 generates a local (n0 − 1)-times integrated semigroup on [0, τ). Similarly, −A1

generates a local (n0 − 1)-times integrated semigroup on [0, τ). �

Theorem 3.3.20. Suppose G is a (DG) generated by A. Then the group
(S(t))t∈(−τ,τ), constructed in Theorem (3.3.19)(i), is non-degenerate. If n0 = 1,
then A generates a C0-group. If n0 = 2, then:

(a)
(
S1
±(t) := ±A(S(±t)x + B0x) − 2tB2x

)
t∈[0,τ)

are local once integrated

semigroups in the sense of (△).
(b) The c.i.g of (S1

+(t))t∈[0,τ) ((S1
−(t))t∈[0,τ)) is A|R(G)

((−A)|R(G)
).

(c) Suppose A is densely defined or λ−A is surjective for some λ ∈ C. Then
±A are generators of local once integrated semigroups (S1

±(t))t∈[0,τ).

Furthermore:

(i) For every x ∈ E and φ, ψ ∈ D(−τ,τ) with suppφ+ suppψ ⊆ (−τ, τ):

(234) G(φ)G(ψ)x =

n0∑
i=0

(−1)i+1i!

∞∫
−∞

φ(n0)(t)

∞∫
−∞

ψ(n0−i)(s)S(t+ s)Bix ds dt.
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(ii) Yn0
x = −x, x ∈

∩n0

i=0D(Yi).
(iii) Suppose x ∈ D(An0−1). Then {x,Ax} ⊆

∩n0

i=2D(Yi), Yn0x = −x,
Yn0

Ax = −Ax and D(An0−1) ⊆ R(G).
(iv) A is stationary dense with n(A) 6 n0 − 1.
(v) If ρ(A) ̸= ∅, then for every τ0 ∈ (0,∞), there is an n(τ0) ∈ N so that A

generates a local n(τ0)-times integrated group on (−τ0, τ0).
(vi) G is dense iff D∞(A) is dense in E. In the case ρ(A) ̸= ∅, G is dense iff

A is densely defined.
(vii)

∩
φ∈D0

Kern(G(φ)) = {0} and
∩
φ∈D0

Kern(G(φ̌)) = {0}.

Proof. Assume S(t)x = 0, t ∈ (−τ, τ). This implies G(ψ)x = 0, ψ ∈ D(−τ,τ)
and G(ψ)x = limn→∞G(ψ ∗ ρn)x = limn→∞G(ψ)G(ρn)x = 0, ψ ∈ D where (ρn)
is a regularizing sequence. Owing to (DG)2, one can deduce that x ∈ N (G) and
that (S(t))t∈(−τ,τ) is non-degenerate. Put now S1(t)x = S(t)x+ B0x, t ∈ (−τ, τ),
x ∈ E. We will prove that (S1(t))t∈[0,τ) is a once integrated semigroup generated by
A. Observe that S1(t)A ⊆ AS1(t), t ∈ (−τ, τ) and that S1 : (−τ, τ) → L(E, [D(A)])
is continuous. This clearly implies d

dtS1(t)x = AS1(t)x + Bx, t ∈ (−τ, τ), x ∈ E

where B = −B1 − AB0 ∈ L(E). Further on,
∫ t
0
S1(s)x ds ∈ D(A), t ∈ (−τ, τ),

x ∈ E,

A

t∫
0

S1(s)x ds = A

t∫
0

(S(s)x+B0x) ds = S(t)x+B0x+ tB1x+ tAB0x

= S1(t)x− tBx, t ∈ (−τ, τ), x ∈ E

and (S1(t))t∈(−τ,τ) is a [0,−B, 0]-group with a subgenerator A. We will prove that
B = I. Suppose ζ, η ∈ D(−τ/4,τ/4) and (ρn) is a regularizing sequence. We know
that supp Iζ(φ) ⊆ [min(−τ/4, inf(suppφ)),max(τ/4, sup(suppφ))] and that there
exists k ∈ N such that supp Iζ(ρn) ∪ supp Iη(ρn) ⊆ [−τ/4, τ/4], n > k. Fix an
x ∈ E. By (DG)1, it follows that, for every φ, ψ ∈ D(−τ/4,τ/4):

(235)

∞∫
−∞

φ′(t)

∞∫
−∞

ψ′(s)S1(t)S1(s)x ds dt = −
∞∫

−∞

φ′(t)

∞∫
−∞

ψ(s)S1(t+ s)x ds dt.

Put φ = Iζ(ρn), n > k in (235). Then one obtains, for every φ, ψ ∈ D(−τ/4,τ/4):

∞∫
−∞

[
ρn(t)−ζ(t)

] ∞∫
−∞

ψ′(s)S1(t)S1(s)x ds dt = −
∞∫

−∞

[
ρn(t)−ζ(t)

] ∞∫
−∞

ψ(s)S1(t+s)x ds dt.

Letting n → ∞ and applying the partial integration, one gets that, for every
ψ ∈ D(−τ/4,τ/4):

(236) −
∞∫

−∞

ζ(t)

∞∫
−∞

ψ′(s)S1(t)S1(s)x ds dt
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=

∞∫
−∞

ψ′(s)

s∫
0

S1(v)x dv ds−
∞∫

−∞

ζ(t)

∞∫
−∞

ψ′(s)

s∫
0

S1(t+ v)x dv ds dt.

Plug ψ = Iη(ρn), n > k into (236). Then we obtain, for every ψ ∈ D(−τ/4,τ/4):

−
∞∫

−∞

ζ(t)

∞∫
−∞

[
ρn(s) − η(s)

]
S1(t)S1(s)x ds dt

=

∞∫
−∞

[
ρn(s)−η(s)

] s∫
0

S1(v)x dv ds−
∞∫

−∞

ζ(t)

∞∫
−∞

[
ρn(s)−η(s)

] s∫
0

S1(t+v)x dv dt ds.

The standard limit procedure leads us to the following

(237)

∞∫
−∞

∞∫
−∞

ζ(t)η(s)S1(t)S1(s)x ds dt

= −
∞∫

−∞

η(s)

s∫
0

S1(v)x dv ds+

∞∫
−∞

∞∫
−∞

ζ(t)η(s)

s∫
0

S1(t+ v)x dv dt ds.

Let t, s ∈ (−τ/4, τ/4) be fixed and let (ζn)n∈N and (ηn)n∈N be sequences in
D(−τ/4,τ/4) satisfying

∫∞
−∞ ζn(t) dt = 1,

∫∞
−∞ ηn(t) dt = 1, n ∈ N, limn→∞ ζn = δt

and limn→∞ ηn = δs, in the sense of distributions. By virtue of (237),

(238) S1(t)S1(s)x =

[ t+s∫
0

−
t∫

0

−
s∫

0

]
S1(r)x dr.

Notice that (238) implies S1(t)( ddrS1(r)x)
r=s

= S1(t+ s)x− S1(s)x and
S1(t)[AS1(s)x + Bx] = S1(t + s)x − S1(s)x. Since S1(t)A ⊆ AS1(t), t ∈ (−τ, τ),
one yields:

A

[ t+s∫
0

−
t∫

0

−
s∫

0

]
S1(r)x dr + S1(t)Bx = S1(t+ s)x− S1(s)x, i.e.,

S1(t+s)x−(t+s)Bx−S1(t)x+tBx−S1(s)x+sBx+S1(t)Bx = S1(t+s)x−S1(s)x.
So, S1(v)[Bx− x] = 0, v ∈ (−τ/4, τ/4). Since G(φ)x = −

∫∞
−∞ φ′(v)S1(v)x dv, φ ∈

D(−τ/4,τ/4), we obtain that (S1(t))t∈(−τ/4,τ/4) is a non-degenerate operator family.
Hence, B = I and (S1(t))t∈[0,τ) is a once integrated semigroup generated by A.
Analogously, (−S(−t)−B0)t∈[0,τ) is a once integrated semigroup generated by −A
and one can repeat literally the arguments given in the proof of Theorem 3.3.19(ii.2)
in order to see that A generates a C0-group. Suppose now n0 = 2 and denote
A1 = A|R(G)

. We will only prove that A1 is the c.i.g of (S1
+(t))t∈[0,τ). Evidently,

AB0+B1 ∈ L(E), G(φ)x =
∫∞
−∞ φ′′(t)[S(t)x+B0x+t(AB0+B1)x] dt, φ ∈ D(−τ,τ),

x ∈ E and the mapping t 7→ S(t)x+B0x+ t(AB0 +B1)x, t ∈ [0, τ) is continuously
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differentiable with d
dt [S(t)x + B0x + t(AB0 + B1)x] = AS(t)x − B1x − 2tB2x +

(AB0 +B1)x, t ∈ [0, τ), x ∈ E. Therefore,

(239) G(φ)x = −
∞∫

−∞

φ′(t)S1
+(t)x dt, φ ∈ D[0,τ), x ∈ E.

Suppose x ∈ E, φ, ψ ∈ D[0,τ) and suppφ+suppψ ⊆ [0, τ). Since G satisfies (DG)1,
we obtain

∞∫
−∞

φ′(t)

∞∫
−∞

ψ′(s)S1
+(t)S1

+(s)x dt ds = −
∞∫

−∞

φ′(t)

∞∫
−∞

ψ(s)S1
+(t+ s)x dt ds.

Arguing as in the case n0 = 1, one gets, for every t, s ∈ [0, τ) with t+ s < τ :

S1
+(t)S1

+(s)x =

[ t+s∫
0

−
t∫

0

−
s∫

0

]
S1
+(r)x dr.

Further on, S1
+(0) = 0 and the mapping t 7→ S1

+(t)x, t ∈ [0, τ) is continuous. It
can be simply verified that (S1

+(t))t∈[0,τ) is a non-degenerate operator family, and

consequently, (S1
+(t))t∈[0,τ) is a local once integrated semigroup in the sense of (△).

Suppose x ∈ D(A0). Then there exists σ ∈ (0, τ ] such that the mapping t 7→ S1
+(t)x,

t ∈ [0, σ) is continuously differentiable and that A0x = limt→0+
1
t

(
d
dt (S

1
+(t)x)−x

)
.

The partial integration and (239) yield:

(240) G(φ)x =

∞∫
−∞

φ(t)
d

dt
S1
+(t)x dt, φ ∈ D[0,σ).

Owing to (240) and Theorem 3.3.20(ii.3), we get limn→∞G(ρn)x = x ∈ R(G),

S2
+(t)x = S(t)x+B0x+ t(AB0 +B1)x ∈ R(G), t ∈ [0, τ) and R(G) ∋ d

dtS
2
+(t)x =

AS(t)x−B1x−2tB2x+(AB0+B1)x = S1
+(t)x, t ∈ [0, τ). Consequently, d

dtS
1
+(t)x ∈

R(G), t ∈ [0, σ), A0x = limt→0+
1
t

(
d
dt (S

1
+(t)x) − x

)
∈ R(G) and:

(241) {x,A0x} ⊆ R(G).

Furthermore, d
dtS(t)x = AS(t)x − B1x − 2tB2x, t ∈ [0, τ), d

dtS
1
+(t)x + 2B2x =

limh→0
A[S(t+h)x−S(0)x]−A[S(t)x−S(0)x]

h = limh→0A
S(t+h)x−S(t)x

h , t ∈ [0, σ) and

limh→0
S(t+h)x−S(t)x

h = AS(t)x−B1x−2tB2x, t ∈ [0, τ). The closedness of A gives

AS(t)x−B1x−2tB2x ∈ D(A), t ∈ [0, σ) and A[AS(t)x−B1x−2tB2x] = d
dtS

1
+(t)x+

2B2x, t ∈ [0, σ). Put t = 0 in the previous equality to obtain A(AB0 + B1)x
= −x− 2B2x. Notice also that

A0x = lim
t→0+

d
dt (S

1
+(t)x) − x

t
= lim
t→0+

A[AS(t)x−B1x− 2tB2x] − 2B2x− x

t

= lim
t→0+

A[AS(t)x−B1x− 2tB2x] +A(AB0 +B1)x

t
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= lim
t→0+

A
A[S(t)x− S(0)x] − 2tB2x

t
.

On the other hand,

lim
t→0+

A[S(t)x− S(0)x] − 2tB2x

t
= lim
t→0+

S1
+(t)x− S1

+(0)x

t
=
( d
dt
S1
+(t)x

)
t=0

= x.

Therefore, x ∈ D(A), A0x = Ax, A0 ⊆ A and (241) enables one to see that
A0 ⊆ A1 and A0 ⊆ A1. Furthermore, Theorem 3.3.19(ii.3) shows that A1 is

the generator of a once integrated semigroup
(
d
dtS

2
+(t)

)
t∈[0,τ)

⊆ L(R(G)) in the

sense of Definition 2.1.1. Accordingly,
(
d
dtS

2
+(t)

)
t∈[0,τ)

⊆ L(R(G)) is a local once

integrated semigroup in the sense of (△) and it can be easily proved that the c.i.g of(
d
dtS

2
+(t)

)
t∈[0,τ)

is A1. But, the c.i.g of (S1
+(t))t∈[0,τ) is an extension of the c.i.g of(

d
dtS

2
+(t)

)
t∈[0,τ)

. Hence, A1 ⊆ A0 and A1 = A0. Further on, it is straightforward to

see that d
dtS

1
+(t)x = AS(t)Ax−B1Ax−2tB2Ax−(2B2−C1)x, t ∈ [0, τ), x ∈ D(A).

Due to [404, Lemma 4.3(b)], we obtain that x =
(
d
dtS

1
+(t)x

)
t=0

, x ∈ D(A) and an

immediate consequence of this equality and (240) is limn→∞G(ρn)x = x, x ∈ D(A).

By Theorem 3.3.19(ii.3), we have D(A) ⊆ R(G) ⊆
∩2
i=0D(Yi) and Y2x = −x, x ∈

D(A). Suppose x ∈ D(A). By Proposition 3.3.15(iv), Ax ∈ D(Y1), C1x+ AY1x =
Y1Ax and, because of that, 2B2x+Y1Ax = C1x+Y2x = C1x−x. Now an application
of Proposition 3.3.15(i) shows that Y1Ax = −(2B2x − C1x) − x ∈ D(A) and that

AY1Ax = −2B2Ax − −Ax. In other words, Ax ∈
∩2
i=0D(Yi) and Y2Ax = −Ax.

Let us prove (c). First of all, assume λ ∈ C, λ− A is surjective and x = (λ− A)y

for some y ∈ D(A). Then we obtain E =
∩2
i=0D(Yi) ∋ x and Y2x = Y2(λy−Ay) =

−λy + Ay = −x. Proceeding as in the proof of (ii.3) of Theorem 3.3.19, one gets

that A
∫ t
0
S2
+(s)x ds = S(t)x+B0x+ tB1x+ t2B2x+ tAB0x+ t2

2 A(AB0x+B1x) =

S2
+(t)x − t2

2 x, x ∈ E, t ∈ [0, τ). This implies
∫ t
0
S1
+(s)x ds ∈ D(A), t ∈ [0, τ)

and A
∫ t
0
S1
+(s)xds = S1

+(t)x − tx, x ∈ E, t ∈ [0, τ). Assume x ∈ D(A). Due to

Proposition 3.3.15(i), we get S1
+(t)x = (S(t) − S(0))Ax − t(2B2x − C1x) ∈ D(A),

t ∈ [0, τ) and AS1
+(t)x = A(S(t) − S(0))Ax − 2tB2Ax = S1

+(t)Ax, t ∈ [0, τ).

Suppose now that A is densely defined. Since D(A) ⊆ R(G), we obtain that

R(G) = E and that A is the c.i.g of (S1
+(t))t∈[0,τ). Due to [404, Proposition 4.5],

(S1
+(t))t∈[0,τ) is a local once integrated semigroup in the sense of Definition 2.1.1.

To prove (i), suppose x ∈ E, φ, ψ ∈ D(−τ,τ) and suppφ + suppψ ⊆ (−τ, τ). Note
that:

G(φ)G(ψ)x =

∞∫
−∞

φ(n0)(t)

∞∫
−∞

ψ(n0)(s)S(t)S(s)x ds dt

= −
∞∫

−∞

φ(n0)(t)

∞∫
−∞

ψ(n0+1)(s)S(t)

s∫
0

S(v)x dv ds dt.
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Repeating literally the arguments given in the proof of Proposition 3.3.17, one
obtains (218). Then the last equality implies:

G(φ)G(ψ)x = −
∞∫

−∞

φ(n0)(t)

∞∫
−∞

ψ(n0+1)(s)

[
−
n0−1∑
j=0

s∫
0

(t+s−r)j
r∫

0

CjS(v)x dv dr

+

n0∑
j=1

j

s∫
0

(t+ s− r)j−1

r∫
0

BjS(v)x dv dr −
n0∑
j=0

s∫
0

rjS(t+ s− r)Bjx dr

]
ds dt.

Noticing that
∞∫

−∞
φ(n)(t)tjdt = 0, n ∈ N, j ∈ N0, n > j, we get:

I1 :=

∞∫
−∞

φ(n0)(t)

∞∫
−∞

ψ(n0+1)(s)

n0−1∑
j=0

s∫
0

(t+ s− r)j
r∫

0

CjS(v)x dv dr ds dt = 0.

Indeed,

I1 =

∞∫
−∞

φ(n0)(t)

∞∫
−∞

ψ(n0+1)(s)×

×
n0−1∑
j=0

s∫
0

∑
(k1,k2,k3)∈N3

0
k1+k2+k3=j

j!

k1!k2!k3!
tk1sk2(−r)k3

r∫
0

CjS(v)x dv dr ds dt.

Suppose j ∈ {0, . . . , n0 − 1}, (k1, k2, k3) ∈ N3
0 and k1 + k2 + k3 = j. Then one gets:

∞∫
−∞

φ(n0)(t)

∞∫
−∞

ψ(n0+1)(s)

s∫
0

j!

k1!k2!k3!
tk1sk2(−r)k3

r∫
0

CjS(v)x dv dr ds dt

=

∞∫
−∞

φ(n0)(t)tk1dt

∞∫
−∞

ψ(n0+1)(s)

s∫
0

j!

k1!k2!k3!
sk2(−r)k3

r∫
0

CjS(v)x dv dr ds dt = 0.

Hence, I1 = 0. Proceeding in a similar way, we infer that
∞∫

−∞

φ(n0)(t)

∞∫
−∞

ψ(n0+1)(s)

n0∑
j=1

j

s∫
0

(t+ s− r)j−1

r∫
0

BjS(v)x dv dr ds dt = 0

and

G(φ)G(ψ)x =

∞∫
−∞

φ(n0)(t)

∞∫
−∞

ψ(n0+1)(s)

n0∑
j=0

s∫
0

rjS(t+ s− r)Bjx dr ds dt

=

∞∫
−∞

φ(n0)(t)

∞∫
−∞

ψ(n0+1)(s)

n0∑
j=0

t+s∫
t

(t+ s− r)jS(r)Bjx dr ds dt.(242)
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Put, for every t ∈ (−τ, τ) and j ∈ {1, . . . , n0 + 1}, gj,t(s) :=
∫ t+s
t

(t+ s− r)j−1

S(r)Bjx dr, s ∈ (−τ − t, τ − t). It is straightforward to check that d
dsgj,t(s) =

(j− 1)
∫ t+s
t

(t+ s− r)j−2S(r)Bjx dr, j > 1, s ∈ (−τ − t, τ − t) and that d
dsg1,t(s) =

S(t+ s)B1x, s ∈ (−τ − t, τ − t). The partial integration and (242) imply:

G(φ)G(ψ)x = −
∞∫

−∞

∞∫
−∞

φ(n0)(t)ψ(n0)(s)

n0∑
j=1

t+s∫
t

j(t+ s− r)j−1S(r)Bjx dr ds dt

−
∞∫

−∞

∞∫
−∞

φ(n0)(t)ψ(n0)(s)S(t+ s)B0x ds dt.

Applying again the partial integration, we get

G(φ)G(ψ)x = −
∞∫

−∞

∞∫
−∞

φ(n0)(t)ψ(n0)(s)S(t+ s)B0x ds dt

+

∞∫
−∞

∞∫
−∞

φ(n0)(t)ψ(n0−1)(s)S(t+ s)B1x ds dt

+

∞∫
−∞

∞∫
−∞

φ(n0)(t)ψ(n0−1)(s)

n0∑
j=2

j(j − 1)

t+s∫
t

(t+ s− r)j−2S(r)Bjx dr ds dt.

Continuing this procedure, we finally obtain (234).
To prove (ii), suppose φ, ψ ∈ D(−τ,τ) and suppφ+suppψ ⊆ (−τ, τ). Certainly,

(243) G(φ ∗ ψ)x = (−1)n0

∞∫
−∞

(φ ∗ ψ)(n0)(t)S(t)x dt

= (−1)n0

∞∫
−∞

(φ(n0) ∗ ψ)(t)S(t)x dt = (−1)n0

∞∫
−∞

[ ∞∫
−∞

φ(n0)(t− s)ψ(s) ds

]
S(t)x dt

= (−1)n0

∞∫
−∞

φ(n0)(t)

∞∫
−∞

ψ(s)S(t+ s)x ds dt, x ∈ E.

Owing to (243),

(244) G(ψ)x = lim
n→∞

G(ψ ∗ ρn)x

= lim
n→∞

(−1)n0

∞∫
−∞

ρ(n0)
n (t)

∞∫
−∞

ψ(s)S(t+ s)x ds dt, x ∈ E.

Combining (DG)1, (234) and (244), we obtain:

(245) (−1)n0G(ψ)x =

n0∑
i=0

(−1)i+1i!G(ψ(n0−i))Bix, x ∈ E.
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Suppose now x ∈
∩n0

i=0D(Yi). A consequence of the definition of Yn0
and (208) is

n0!G(ψ)Bn0
x+AG(ψ)Yn0−1x = n0!G(ψ)Bn0

x−G(ψ′)Yn0−1x = G(ψ)Yn0
x. If n0 >

2, then we obtain n0!G(ψ)Bn0
x−G(ψ′)(AYn0−2x+ (n0 − 1)!Bn0−1x) = G(ψ)Yn0

x
and n0!G(ψ)Bn0

x − (n0 − 1)!G(ψ′)Bn0−1x + G(ψ′′)Yn0−2x = G(ψ)Yn0
x. By the

definition of Yi and (208), one concludes inductively:

(246)

n0∑
i=0

(−1)n0+ii!G(ψ(n0−i))Bix = G(ψ)Yn0x.

This equality and (245) imply G(ψ)(Yn0x + x) = 0; a simple consequence is
G(η)(Yn0

x + x) = 0, η ∈ D and the proof of (ii) follows from an application of
(DG)2. To prove (iii), one can argue as in the proof of (ii.5) of Theorem 3.3.19.
We sketch the proof for the sake of completeness. Fix an x ∈ D(An0−1). Since
S : (−τ, τ) → L(E, [D(A)]) is continuous, the arguments given in the proof of
Proposition 3.3.15 imply that the mapping t 7→ S(t)x, t ∈ (−τ, τ) is n0-times
continuously differentiable and that there exists a function M : (−τ, τ) → (0,∞)

satisfying
∥∥ dn0

dtn0
S(t)x

∥∥ 6 M(t)∥x∥n0−1, t ∈ (−τ, τ). Furthermore, (213) holds

for every l ∈ {0, . . . , n0 − 1} and one obtains inductively Ykx = −
(
dk

dtk
S(t)x

)
t=0

,

k ∈ {0, . . . , n}. Denote u(t;x) = dn0

dtn0
S(t)x, t ∈ (−τ, τ); then the partial integration

shows G(φ)x =
∫∞
−∞ φ(t)u(t;x) dt, φ ∈ D(−τ,τ). The previous equality and (ii) im-

ply limn→∞G(ρn)x = u(0;x) = −Yn0x = x ∈ R(G). Therefore, D(An0−1) ⊆
R(G). Further on, Proposition 3.3.15(iv) implies Cn0−1x + 1

(n0−1)!AYn0−1x =
1

(n0−1)!Yn0−1(Ax), i.e., Cn0−1x+ 1
(n0−1)! [−x−n0!Bn0

x] = 1
(n0−1)!Yn0−1(Ax). Due to

Proposition 3.3.15(i), Yn0−1(Ax) ∈ D(A) and a simple computation gives Yn0
Ax =

−Ax, which completes the proof of (iii). Further on, let us observe that (iii) im-

plies D(An) ⊆ D(An0−1) ⊆ R(G) ⊆ D∞(A) ⊆ D(An+1) for every n ∈ N such that
n > n0 − 1. Hence, A is stationary dense and n(A) 6 n0 − 1. Assuming λ ∈ ρ(A),
we will prove that A generates a local (n0 − 1)-times integrated group on (−τ, τ).
Repeating literally the arguments given in the proof of Theorem 3.3.19, one gets

A
∫ t
0
u(s;x) ds = u(t;x) − x, t ∈ (−τ, τ), x ∈ D(An0−1) and Au(t;x) = u(t;Ax),

t ∈ (−τ, τ), x ∈ D(An0). Set Sn0−1(t)x =: u(t;R(λ :A)n0−1x), t ∈ [0, τ), x ∈ E.
Clearly, the mapping t 7→ Sn0−1(t)x, t ∈ [0, τ) is continuous for every x ∈ E and
an induction argument shows that, for every k ∈ N0, there exists an appropriate
constant M(k, λ) ∈ (0,∞) which fulfills ∥AkR(λ : A)kx∥ 6 M(k, λ)∥x∥, x ∈ E.
This implies ∥Sn0−1(t)x∥ = ∥u(t;R(λ :A)n0−1x)∥ 6 M(t)∥R(λ :A)n0−1x∥n0−1 6
M(t)

∑n0−1
i=0 M(i, λ)∥R(λ :A)∥n0−1−i∥x∥, x ∈ E and Sn0−1(t) ∈ L(E), t ∈ [0, τ).

Let C = R(λ : A)n0−1. Then A
∫ t
0
Sn0−1(s)x ds = A

∫ t
0
u(s;Cx) ds = u(t;Cx) −

Cx = Sn0−1(t)x − Cx, t ∈ [0, τ), x ∈ E. Since Au(t;x) = u(t;Ax), t ∈ (−τ, τ),
x ∈ D(An0), one easily obtains Sn0−1(t)A ⊆ ASn0−1(t), Sn0−1(t)R(λ : A) =
R(λ : A)Sn0−1(t) and, by induction, Sn0−1(t)C = CSn0−1(t), t ∈ [0, τ). Now it
is straightforward to prove that the abstract Cauchy problem: v ∈ C([0, τ) : [D(A)]) ∩ C1([0, τ) : E),

v′(t) = Av(t) + Cx, t ∈ [0, τ),
v(0) = 0,



236 3. ABSTRACT CAUCHY PROBLEMS...

has a unique solution for every x ∈ E, given by v(t) =
∫ t
0
Sn0−1(s)x ds, t ∈ [0, τ),

x ∈ E. Consequently, A generates a local (n0 − 1)-times integrated semigroup
on [0, τ). Since −A generates a (DG) Ǧ, we also obtain that −A generates a local
(n0−1)-times integrated semigroup on [0, τ). Therefore, A generates a local (n0−1)-
times integrated group on (−τ, τ). This completes the proof of (v). To prove (vi),

notice that the assumption R(G) = E and R(G) ⊆ D∞(A) imply that D∞(A) is

dense in E. The converse statement is obvious since D∞(A) ⊆ D(An0−1) ⊆ R(G)

(cf. the proofs of (iii) and (iv)). In the case ρ(A) ̸= ∅, the denseness of D∞(A) in
E is equivalent to the denseness of D(A) in E and the proof of (vi) completes a
routine argument. It remains to be proved (vii). Suppose G(φ)x = 0, φ ∈ D0. This
implies (−1)n0

∫∞
−∞ φn0(t)S(t)x dt = 0, φ ∈ D[0,τ) and the existence of bounded

linear operators D0, . . . , Dn0−1 ∈ L(E) satisfying S(t)x =
∑n0−1
j=0 tjDjx, t ∈ [0, τ).

Hence,

(247) A

n0−1∑
j=0

tj+1

j + 1
Djx =

n0−1∑
j=0

tjDjx+

n0∑
j=0

tjBjx, t ∈ [0, τ).

Substitute t = 0 in (247) to obtain D0 = −B0. Differentiating (247), it is straight-

forward to see that: x ∈
∩n0

i=0D(Yi),
∪n0−1
i=0 {Dix} ⊆ D(A), Dix = (−1)

i! Yix, i =

1, . . . , n0− 1 and A(Dn0−1x) = n0Bn0x. This implies (n0Bn0 + 1
(n0−1)!AYn0−1)x =

0, i.e., x ∈ N(Yn0
). Due to (ii), x = 0 and

∩
φ∈D0

Kern(G(φ)) = {0}. The second

equality in (vii) follows by passing to −A and Ǧ. �

Example 3.3.21. Put E := L∞(R) and A := d/dt with maximal domain. Then
A is not densely defined and generates a once integrated group (S1(t))t∈R given by

(S1(t)f)(s) :=
∫ t
0
f(r + s) dr, s ∈ R, t ∈ R (cf. also [104, Example 4.1]). Put

S2(t)f :=
∫ t
0
S1(s)f ds, t > 0, f ∈ E, S2(t)f :=

∫ −t
0

S1(−s)f ds, t < 0, f ∈ E and

G(φ)f :=
∫∞
−∞ φ′′(t)S2(t)f dt, φ ∈ D, f ∈ E. Then (S2(t))t∈R is a twice integrated

group generated by A, the mapping S2 : R → L(E, [D(A)]) is continuous and G
is a non-dense (DG) generated by A (cf. Theorem 3.3.20 with n0 = 2). We would

like to point out that there exists f ∈ D(A) such that Af /∈ R(G). Suppose to the

contrary that R(A) ⊆ R(G). Due to Theorem 3.3.20, D(A) ⊆ R(G) and we obtain

(λ−A)f ∈ R(G), λ ∈ C, f ∈ D(A). Since CriR ⊆ ρ(A), one yields E = R(G) and
the contradiction is obvious. Hence, Theorem 3.3.20 implies that (S1(t))t>0 is a
once integrated semigroup generated by A in the sense of Definition 2.1.1 and that
the c.i.g of (S1(t))t∈R is A|R(G)

( ̸= A). Furthermore, R(G)  
∩2
i=0D(Yi) = E.

Proposition 3.3.22. Suppose G1 and G2 are distribution groups generated by
A and ρ(A) ̸= ∅. Then G1 = G2.

Proof. Suppose x ∈ E, λ ∈ ρ(A) and φ ∈ D(−τ,τ) for some τ ∈ (0,∞).
We will prove that G1(φ)x = G2(φ)x. Clearly, Gi ∈ D′(L(E, [D(A)])), i = 1, 2
and an application of Theorem 1.3.2 gives that there exist n1 ∈ N, n2 ∈ N and
continuous mappings Si : (−τ, τ) → L(E, [D(A)]), i = 1, 2 so that Gi(ψ)x =
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(−1)ni
∫∞
−∞ ψ(ni)(t)Si(t)x dt, ψ ∈ D(−τ,τ), x ∈ E, i = 1, 2. The proof of Theo-

rem 3.3.20 shows that there are bounded linear operators B0, . . . , Bn1
, B0, . . . , Bn2

,
C0, . . . , Cn1−1, C0, . . . , Cn2−1 such that (S1(t))t∈(−τ,τ), resp., (S2(t))t∈(−τ,τ) is a

[B0, . . . , Bn1
, C0, . . . , Cn1−1]-group, resp.,

[
B0, . . . , Bn2

, C0, . . . , Cn2−1

]
-group with

a subgenerator A. Without loss of generality, we may assume n1 = n2. The
proof of Theorem 3.3.20 implies that

(
dn1

dtn1
Si(t)R(λ : A)n1−1

)
t∈[0,τ)

, i = 1, 2 are

local
(
R(λ : A)n1−1

)
-regularized semigroups generated by A. Hence, there exist

x0, · · · , xn1−1 ∈ E such that S1(t)R(λ :A)n1−1x−S2(t)R(λ :A)n1−1x =
∑n1−1
i=0 tixi,

t ∈ [0, τ). An immediate consequence is:

R(λ :A)n1−1G1(φ)x−R(λ :A)n1−1G2(φ)x

= G1(φ)R(λ :A)n1−1x−G2(φ)R(λ :A)n1−1x = (−1)n1

∞∫
−∞

φ(n1)(t)

n1−1∑
i=0

tixi dt = 0,

which clearly implies G1(φ)x = G2(φ)x. �

Remark 3.3.23. (i) Suppose A generates a (DG) G and ρ(A) ̸= ∅. Then
there exist a > 0 and b > 0 such that E(a, b) ⊆ ρ(±A) and that the following
representation formula holds for G:

G(φ)x =
1

2πi

∫
Γ

∞∫
−∞

φ(t)
[
eλtR(λ :A)x+ e−λtR(λ : −A)x

]
dt dλ, x ∈ E, φ ∈ D,

where we assume that the curve Γ = ∂E(a, b) is upwards oriented.

(ii) Suppose G ∈ D′(L(E)) is regular, A is a closed linear operator so that (208)
holds and there are no non-trivial solutions of the abstract Cauchy problem:

(ACP1) :

 u ∈ C(R : [D(A)]) ∩ C1(R : E),
u′(t) = Au(t), t ∈ R,
u(0) = x,

when x = 0. Then G(φ ∗ ψ)x = G(φ)G(ψ)x, x ∈ R(G), φ, ψ ∈ D. Towards
this end, observe that G(φ ∗ ψ)x =

∫∞
−∞

∫∞
−∞ φ(t)ψ(s)u(t + s;x) ds dt and that

G(ψ)G(φ)x =
∫∞
−∞ φ(t)G(ψ)u(t;x) dt, x ∈ R(G), φ, ψ ∈ D. The consideration is

over if we prove that G(ψ)u(t;x) =
∫∞
−∞ ψ(s)u(t+s;x) ds, ψ ∈ D, x ∈ R(G), t ∈ R.

Set, for fixed ψ ∈ D and x ∈ R(G), f(t) := G(ψ)u(t;x) −
∫∞
−∞ ψ(s)u(t + s;x) ds,

t ∈ R. Then A
∫ t
0
f(s) ds = G(ψ)[u(t;x) − x] −

∫∞
−∞ ψ(s)A

∫ t+s
s

u(r;x) dr ds =

G(ψ)[u(t;x)−x]−
∫∞
−∞ ψ(s)[u(t+ s;x)−u(s;x)] ds = f(t), t ∈ R. So, the function

u(t) =
∫ t
0
f(s)ds, t ∈ R solves (ACP1) and u(0) = 0. This proves f ≡ 0.

(iii) Suppose G ∈ D′(L(E)) is regular, (208) holds for A and G, τ ∈ (0,∞) and

ρ(A) ̸= ∅. Set G1 := G|R(G)
. Then G1 is a dense (DG) in R(G) generated by A1.

To prove this, we employ the same terminology as in the proof of Theorem 3.3.19;
without loss of generality, one can assume 0 ∈ ρ(A) so that Aλ = A, uλ = u and
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Gλ = G. Suppose (ρn) is a regularizing sequence. Choose an arbitrary τ ∈ (0,∞)
and notice that

C2G(φ ∗ ψ)x = CG(φ ∗ ψ)Cx = C

∞∫
−∞

(φ ∗ ψ)(t)u(t;Cx) dt

= C

∞∫
−∞

(φ ∗ ψ)(t)T (t)x dt = C

∞∫
−∞

∞∫
−∞

φ(t)ψ(s)T (t+ s)x ds dt

=

∞∫
−∞

∞∫
−∞

φ(t)ψ(s)T (t)T (s)x ds dt = G(φ)CG(ψ)Cx = C2G(φ)G(ψ)x,

for every x ∈ R(G) and φ, ψ ∈ D[0,τ) with suppφ+ suppψ ⊆ [0, τ). The injective-
ness of C combining with the argumentation used in the proof of Theorem 3.3.19
enables one to deduce that G(φ ∗ψ)x = G(φ)G(ψ)x, φ, ψ ∈ D, x ∈ R(G) and that

G1 ∈ D′(L(R(G))) satisfies (DG)1. The assumption G1(φ)x = 0, φ ∈ D implies
G1(φ)Cx =

∫∞
−∞ φ(t)u(t;Cx) dt =

∫∞
−∞ φ(t)T (t)x dt = 0, for every φ ∈ D[0,τ) and

Cx = T (0)x = limn→∞G1(ρn)Cx = 0. Hence, x = 0 and G1 is a (DG) in R(G).
It can be easily seen that G1 is generated by A1.

(iv) Suppose G and A possess the same meaning as in (ii), and λ ∈ ρ(A).
Then the [B0, . . . , Bn0

, C0, . . . , Cn0−1]-group (S(t))t∈(−τ,τ), constructed in Theo-

rem 3.3.19(i), satisfies (223), (224) as well as Yn0
x = −x, x ∈ R(G). Indeed, due

to (ii), G1 = G|R(G)
is a (DG) in R(G) generated by A1. The proof of Theorem

3.3.19 implies that A1 generates a local n0-times integrated group (Sn0
(t))t∈(−τ,τ)

in L(R(G)). It is not hard to prove that G1(φ)x = (−1)n0
∫∞
0
φ(n0)(t)Sn0

(t)x dt+∫ 0

−∞ φ(n0)(t)Sn0(t)x dt, φ ∈ D(−τ,τ), x ∈ R(G). Hence,
∫∞
0
φ(n0)(t)Sn0(t)x dt =∫∞

0
φ(n0)(t)S(t)x dt, φ ∈ D[0,τ), x ∈ R(G) and an application of [128, Theorem

8.1.1] gives the existence of operators Di ∈ L(R(G), E), i = 0, . . . , n0−1 satisfying

S(t)x = Sn0
(t)x+

∑n0−1
i=0 tiDix, t ∈ [0, τ), x ∈ R(G). Since A

∫ t
0
S(s)x ds = S(t)x+∑n0

i=0 t
iBix, t ∈ [0, τ), x ∈ E, one obtains A

∑n0−1
i=0

ti+1

i+1Dix =
∑n0−1
i=0 ti(Dix +

Bix) + tn0Bn0
x + tn0

n0!
x, t ∈ [0, τ), x ∈ R(G). This implies R(G) ⊆ D(Yn0

),

Dix = (−1)
i! Yix, i = 1, . . . , n0 − 1, (223)-(224) and Yn0

x = −x, x ∈ R(G).

Remark 3.3.24. Suppose G is a (DG) and φ ∈ D. Then G(φ) = G(φ+) +
G(φ−) iff {G(φ+), G(φ−)} ⊆ L(E) iff G(φ+) ∈ L(E). Namely, the assumption
G(φ) = G(φ+) +G(φ−) immediately implies D(G(φ+)) = D(G(φ−)) = E and, by
the closed graph theorem, G(φ+) ∈ L(E) and G(φ−) ∈ L(E). Clearly, {G(φ+),
G(φ−)} ⊆ L(E) implies G(φ+) ∈ L(E). Suppose now G(φ+) ∈ L(E). We will
prove that G(φ−) ∈ L(E) and G(φ−) = G(φ) − G(φ+). Fix an x ∈ E and notice
thatG(φ∗ψ)x = G(ψ)G(φ)x, ψ ∈ D impliesG(φ+∗ψ)x+G(φ−∗ψ)x = G(ψ)G(φ)x,
ψ ∈ D. Since x ∈ D(G(φ+)), we obtain G(φ− ∗ ψ)x = G(ψ)[G(φ)x − G(φ+)x],
x ∈ D(G(φ−)) and G(φ−)x = G(φ)x−G(φ+)x.
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Proposition 3.3.25. Let G be a (DG) and G(φ+) ∈ L(E), φ ∈ D. Put
G+(φ) := G(φ+) and G−(φ) := G((φ̌)−), φ ∈ D. Then ±A are generators of
distribution semigroups G±.

Proof. By the previous remark, G±(φ) ∈ L(E), φ ∈ D and G(φ) = G+(φ) +
G−(φ̌), φ ∈ D. Clearly, suppG+ ∪ suppG− ⊆ [0,∞), G± ∈ D′

0(L(E)) and The-
orem 3.3.20(vii) implies

∩
φ∈D0

Kern(G±(φ)) = {0}. Since (φ ∗0 ψ)+ = φ+ ∗ ψ+,

φ, ψ ∈ D, Proposition 3.3.5 yields that G+ is a pre-(DS). Analogously, G− is
a pre-(DS) and one obtains that G+, resp., G− is a (DS). Designate by A+,
resp., A−, the generator of G+, resp., G−. Then it is straightforward to ver-
ify that A± are extensions of ±A. We continue by proving that A+ = −A−.
Let x ∈ E and φ, ψ ∈ D. Then one obtains: G(φ+ ∗ ψ)x = G(ψ)G(φ+)x,
G+(φ+ ∗ ψ)x+G−( ˇφ+ ∗ ψ)x = (G+(ψ) +G−(ψ̌))G+(φ)x and:

(248) G+

(
φ+ ∗ ψ

)
x+G−

(
ˇφ+ ∗ ψ

)
x = G+(φ ∗0 ψ)x+G−(ψ̌)G+(φ)x.

Notice that (ψ ∗φ+ −φ ∗ψ− −φ ∗0 ψ)(t) = 0, t > 0, which implies in combination
with (248) that: G+(ψ ∗ φ+)x = G+(φ ∗ ψ−)x+G+(φ ∗0 ψ)x and

(249) G+

(
φ ∗ (ψ̌)−

)
x+G−

( ˇφ+ ∗ ψ̌
)
x = G−(ψ)G+(φ)x.

Suppose now (x, y) ∈ D(A+), a > 0, ψ ∈ D(a,∞) and (ρn) is a regularizing sequence

satisfying supp ρn ⊆ [0, 1
n ], n ∈ N. Since G+(−φ′)x = G+(φ)y, φ ∈ D0, (249)

implies:

G+

(
ρn ∗ (ψ̌)−

)
y +G−

( ˇρn ∗ ψ̌
)
y = G−(ψ)G+(ρn)y = G−(ψ)G+(−ρ′n)x

= G+

(
−ρ′n ∗ (ψ̌)−

)
x+G−

( ˇ−ρ′n ∗ ψ̌
)
x.(250)

Clearly, supp(ρn ∗ (ψ̌)−)∪ supp(−ρ′n ∗ (ψ̌)−) ⊆ [0, 1
n ] + (−∞,−a) ⊆ (−∞, 0], n > 1

a
and an application of (250) yields:

(251) G−
( ˇρn ∗ ψ̌

)
y = G−

(
(−ρn ∗ (ψ̌)

′
)∨
)
x.

Letting n→ ∞ in (251), one concludes that G−(ψ)y = −G−
(
((ψ̌)′)∨

)
x = G−(ψ′)x.

It readily follows that the previous equalities remain true for every ψ ∈ D0, so
that (x,−y) ∈ A− and A+ ⊆ −A−; one can similarly prove that A+ ⊇ −A−.
Therefore, A+ = −A− as claimed. Taking into account Proposition 3.1.4(iii), one
gets: G(φ)A+x = G+(φ)A+x + G−(φ̌)A+x = G+(−φ′)x − φ(0)x − A−G−(φ̌)x =
G+(−φ′)x − φ(0)x −

(
G−(−φ̌′)x − φ̌(0)x

)
= G+(−φ′)x + G−(−̌φ′)x = G(−φ′)x,

φ ∈ D. Hence, (x,A+x) ∈ A, A+ ⊆ A and A+ = A. A similar argumentation
implies A− ⊆ −A and A− = −A, finishing the proof. �

Remark 3.3.26. Suppose G is a (DG) generated by A and ρ(A) ̸= ∅. By
Theorem 3.3.7 and Theorem 3.3.20, we have that A, resp., −A, is the generator of
a (DS) G1, resp., G2. The proofs of Theorem 3.3.7 and Proposition 3.3.22 imply
G(φ) = G1(φ) + G2(φ̌), φ ∈ D and G1(φ)G2(ψ) = G2(ψ)G1(φ), φ, ψ ∈ D. Let
x ∈ E and φ ∈ D be fixed. We will prove that G(ψ ∗ φ+)x = G(ψ)G1(φ)x, ψ ∈ D,
i.e., that:

(252) G1

(
ψ ∗ φ+

)
x+G2

(
ˇψ ∗ φ+

)
x = G1(φ)G2(ψ̌)x+G1(φ)G1(ψ), ψ ∈ D.
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Notice that the proof of [315, Theorem 6] (see [315, (9), p. 61]) enables one to
see that G1

(
φ ∗ ψ−

)
x + G2

(
ˇφ+ ∗ ψ

)
x = G1(φ)G2(ψ̌)x, ψ ∈ D. As in the proof of

Proposition 3.3.25, one has (ψ ∗ φ+ − φ ∗ ψ− − φ ∗0 ψ)(t) = 0, t > 0, ψ ∈ D, which
gives G1(ψ ∗ φ+)x = G1(φ ∗ ψ−)x + G1(φ ∗0 ψ)x = G1(φ ∗ ψ−)x + G1(φ)G1(ψ)x,
ψ ∈ D. Hence, G1(ψ ∗ φ+)x + G2

(
ˇψ ∗ φ+

)
x = G1(φ ∗ ψ−)x + G1(φ)G1(ψ)x +

G2

(
ˇψ ∗ φ+

)
x = G1(φ ∗ ψ−)x + G1(φ)G1(ψ)x + G1(φ)G2(ψ̌)x − G1(φ ∗ ψ−)x =

G1(φ)G2(ψ̌)x + G1(φ)G1(ψ)x, ψ ∈ D and this proves (252). As a consequence,
one obtains that G+(φ) = G(φ+) = G1(φ). Accordingly, A is the generator of
G+ = G1 and Remark 3.3.24 implies that G(φ−) = G2(φ̌) ∈ L(E), φ ∈ D and that
G
(
(̌·)−

)
is a (DS) generated by −A.

Theorem 3.3.27. Suppose B0, . . . , Bn, C0, . . . , Cn−1 ∈ L(E) and A is a sub-
generator of a [B0, . . . , Bn, C0, . . . , Cn−1]-group (S(t))t∈R. Put

G(φ)x := (−1)n
∞∫

−∞

φ(n)(t)S(t)x dt, φ ∈ D, x ∈ E.

Then:

(i) (208) holds and (234) holds for every φ ∈ D and ψ ∈ D.
(ii) N (G) ⊆ Kern(Yn) and, in particular, the injectiveness of Yn implies

(DG)2 for G.
(iii) For every φ ∈ D and ψ ∈ D, Kern(Yn) ⊆ Kern(G(φ)G(ψ)); especially, if

G is regular, then Kern(Yn) = N (G).
(iv) Assume B0 = · · · = Bn−1 = 0 and Bn = − 1

n!I. Then G is a (DG)
generated by A.

Proof. (i) Clearly, G ∈ D′(L(E)). Suppose x ∈ E and φ ∈ D. To prove
AG(φ)x = G(−φ′)x, notice that

G(φ)x = (−1)n
∞∫

−∞

φ(n)(t)S(t)x dt = (−1)n+1

∞∫
−∞

φ(n+1)(t)

t∫
0

S(s)x ds dt ∈ D(A)

and that

AG(φ)x = (−1)n+1

∞∫
−∞

φ(n+1)(t)

[
S(t)x+

n∑
j=0

tjBjx

]
dt

= (−1)n+1

∞∫
−∞

φ(n+1)(t)S(t)x dt = G(−φ′)x.

Further on,

G(φ)Ax = (−1)n+1

∞∫
−∞

φ(n+1)(t)

t∫
0

S(s)Axds dt
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= (−1)n+1

∞∫
−∞

φ(n+1)(t)

t∫
0

[
AS(s)x−

n−1∑
j=0

sjCjx

]
ds dt

= (−1)n+1

∞∫
−∞

φ(n+1)(t)A

t∫
0

S(s)x ds dt = AG(φ)x, x ∈ D(A).

Hence, G(φ)A ⊆ AG(φ) and (208) holds. The assertions of (234) and (ii) follow
from the arguments given in the proof of Theorem 3.3.20. Let φ ∈ D, ψ ∈ D and
x ∈ Kern(Yn) be fixed. Arguing as in the proof of Theorem 3.3.20, one gets the
validity of (246). Hence,

0 =

n∑
i=0

(−1)i+1i!G
(
(φ(n) ∗ ψ)(n−i)

)
Bix =

n∑
i=0

(−1)i+1i!G(φ(n) ∗ ψ(n−i))Bix

=

n∑
i=0

(−1)i+1i!(−1)n
∞∫

−∞

φ(n)(t)

∞∫
−∞

ψ(n−i)(s)S(t+ s)Bix ds dt.

Owing to (234), G(φ)G(ψ)x = 0 and Kern(Yn) ⊆ Kern(G(φ)G(ψ)). Let (ρk) be a
regularizing sequence and let G be regular. Then G(ψ)x = limk→∞G(ρk)G(ψ)x =
0 and x ∈ N (G). Therefore. Kern(Yn) ⊆ N (G), and due to (ii), N (G) ⊆ Kern(Yn).
The proof of (iii) is completed; to prove (iv), notice that the proof of Theorem 3.3.20
implies (243) for G. Since B0 = · · · = Bn−1 = 0 and Bn = − 1

n!I, we immediately
obtain (DG)1 from (234). Clearly, Yn = n!Bn = −I and (DG)2 follows from
an application of (ii). Hence, G is a (DG). Put now S(t) := S(t), t > 0 and
S(t) := (−1)nS(t), t < 0. It is obvious that (S(t))t∈R is an n-times integrated group
generated by A. Furthermore, it is clear that G(φ)x = (−1)n

∫∞
0
φ(n)(t)S(t)x dt+∫ 0

−∞ φ(n)(t)S(t)x dt, φ ∈ D, x ∈ E. Arguing as in the proof of Theorem 3.3.8, one
yields that G is generated by A. �

3.4. Distribution cosine functions

3.4.1. Definition and elementary properties. Throughout this section we
assume that the space E×E is topologized by the norm ∥(x, y)∥E×E := ∥x∥+∥y∥.
Let α ∈ D[−2,−1] be a fixed test function satisfying

∫∞
−∞ α(t) dt = 1. Then, with α

chosen in this way, for every fixed φ ∈ D, we define I(φ) as follows

I(φ)(x) :=

x∫
−∞

[
φ(t) − α(t)

∞∫
−∞

φ(u) du

]
dt, x ∈ R.

It is clear that I(φ) ∈ D, I(φ′) = φ and d
dxI(φ)(x) = φ(x) − α(x)

∫∞
−∞ φ(u) du,

x ∈ R. Then, for G ∈ D′(L(E)), we define G−1 by G−1(φ) := −G(I(φ)), φ ∈ D.
Then G−1 ∈ D′(L(E)) and (G−1)′ = G; more precisely, −G−1(φ′) = G(I(φ′)) =
G(φ), φ ∈ D. Let φ ∈ D and suppφ ⊆ (−∞, 0). The choice of the function
α(·) implies d

dxI(φ)(x) = 0, x > a, for a suitable a ∈ (−∞, 0). Accordingly,
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supp I(φ) ⊆ (−∞, 0). This implies the following: suppG ⊆ [0,∞) ⇒ suppG−1 ⊆
[0,∞). Moreover, it can be easily proved that, for every φ ∈ D,

supp I(φ) ⊆ [min(−2, inf(suppφ)),max(−1, sup(suppφ))].

We recall the assertion of Proposition 2.1.24 with C = I.

Lemma 3.4.1. (i) Let A be a closed linear operator and let λ ∈ C. Then

λ ∈ ρ(A) ⇔ λ2 ∈ ρ(A). In this case, ∥R(λ : A)∥ 6 (1+|λ|)
√

1 + |λ|2∥R(λ2 :A)∥+1,
∥R(λ2 :A)∥ 6 ∥R(λ : A)∥ and

R(λ : A)

(
x

y

)
=

(
R(λ2 :A)(λx+ y)

AR(λ2 :A)x+ λR(λ2 :A)y

)
, x, y ∈ E, λ ∈ ρ(A).

(ii) Let ∅ ̸= Ω ⊆ C. Then Ω ⊆ ρ(A) iff Ω2 ⊆ ρ(A); if this is the case, then
∥R(· : A)∥ is polynomially bounded on Ω2 iff ∥R(· : A)∥ is polynomially bounded
on Ω.

We introduce distribution cosine functions as follows.

Definition 3.4.2. An elementG ∈ D′
0(L(E)) is called a pre-(DCF) if it satisfies

(DCF1) G−1(φ ∗0 ψ) = G−1(φ)G(ψ) +G(φ)G−1(ψ), φ, ψ ∈ D.
A pre-(DCF) G is called a distribution cosine function, in short (DCF), if, addi-
tionally,

(DCF2) x = y = 0 iff G(φ)x+G−1(φ)y = 0 for all φ ∈ D0.

A pre-(DCF) G is dense if the set R(G) :=
∪
φ∈D0

R(G(φ)) is dense in E.

Notice that (DCF2) implies
∩
φ∈D0

Kern(G(φ)) = {0} =
∩
φ∈D0

Kern(G−1(φ)).

From Definition 3.4.2, it is also clear that G(φ) = 0 provided G is a pre-(DCF)
and φ ∈ D(−∞,0]. It is not clear whether the condition

(∩
φ∈D0

Kern(G(φ)) ⊇
)∩

φ∈D0
Kern(G−1(φ)) = {0} implies (DCF2).

Someone may think that (DCF2) is a crude assumption. But, this is a right
“non-degenerate” condition as the next proposition shows.

Proposition 3.4.3. Let G ∈ D′
0(L(E)). Then G is a pre-(DCF) in E iff

G ≡
( G G−1

G′ − δ G

)
is a pre-(DSG) in E ×E. Moreover, G is a (DS) iff G is a

pre-(DCF) which satisfies (DCF2).

Proof. Since α ∈ D[−2,−1], one gets G ∈ D′
0(L(E × E)) and the simple cal-

culation shows that G satisfies G(φ ∗0 ψ) = G(φ)G(ψ), φ, ψ ∈ D iff the following
holds:

(i) G−1(φ ∗0 ψ) = G−1(φ)G(ψ) +G(φ)G−1(ψ),
(ii) G(φ ∗0 ψ) = G(φ)G(ψ) +G−1(φ)(G′ − δ)(ψ) and
(iii) G′(φ ∗0 ψ) = (G′ − δ)(φ)G(ψ) +G(φ)(G′ − δ)(ψ), φ, ψ ∈ D.

We will prove (i) ⇒ (ii) ⇒ (iii). Suppose (i) holds. Since (φ∗0ψ)′ = φ′∗0ψ+φ(0)ψ =
φ ∗0 ψ′ + ψ(0)φ, φ, ψ ∈ D, we infer that

G(φ ∗0 ψ) = −G−1((φ ∗0 ψ)′) = −G−1(φ ∗0 ψ′ + ψ(0)φ)
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= −
(
G−1(φ)G(ψ′) +G(φ)G−1(ψ′) + δ(ψ)G−1(φ)

)
= G−1(φ)G′(ψ) +G(φ)G(ψ) − δ(ψ)G−1(φ), φ, ψ ∈ D.

This implies (ii). With assumed (ii), one obtains (iii) from the computation

G′(φ ∗0 ψ) = −G((φ ∗0 ψ)′) = −G(φ′ ∗0 ψ + φ(0)ψ)

= −
(
G(φ′)G(ψ) +G−1(φ′)(G′ − δ)(ψ) + δ(φ)G(ψ)

)
= (G′ − δ)(φ)G(ψ) +G(φ)(G′ − δ)(ψ), φ, ψ ∈ D.

It is also clear that G satisfies (d2) if G satisfies (DCF2). Suppose that G satisfies
(d2). Let us prove that G satisfies (DCF2). In order to do that, assume x, y ∈ E
and G(φ)x+G−1(φ)y = 0, φ ∈ D0. Then one gets

(G′ − δ)(φ)x+G(φ)y = −G(φ′)x− φ(0)x−G−1(φ′)y = 0, φ ∈ D0.

Since G satisfies (d2), it follows that x = y = 0. �
Properties (DCF1) and (DCF2) can be interpreted respectively as sin(α+β) ≡

sinα cosβ + cosα sinβ, and the linear independence of cos(·) and sin(·). Next, we
characterize distribution cosine functions as follows.

Proposition 3.4.4. Let G ∈ D′
0(L(E)). Then G is a (DCF) iff (DCF2) holds

and

(253) G−1(φ ∗ ψ+) = G−1(φ)G(ψ) +G(φ)G−1(ψ), φ ∈ D0, ψ ∈ D.

Proof. Assume G is a (DCF). Then G is a (DS) in E × E and the use of
Proposition 3.1.18 gives G(ψ+) = G(ψ), ψ ∈ D. Hence,(

G(φ ∗ ψ+) G−1(φ ∗ ψ+)
(G′ − δ)(φ ∗ ψ+) G(φ ∗ ψ+)

)(
x

y

)
=

(
G(φ) G−1(φ)

(G′ − δ)(φ) G(φ)

)(
G(ψ) G−1(ψ)

(G′ − δ)(ψ) G(ψ)

)(
x

y

)
,

for every φ ∈ D0, ψ ∈ D and x, y ∈ E. Choose x = 0 to obtain (253). Let
us suppose now that (DCF2) and (253) are fulfilled. Then G satisfies (d2). The
assumption (253) implies G−1(φ ∗ ψ) = G−1(φ)G(ψ) + G(φ)G−1(ψ), φ, ψ ∈ D0,
and consequently,

G(φ ∗ ψ) = G(φ)G(ψ) +G−1(φ)(G′ − δ)(ψ),

(G′ − δ)(φ ∗ ψ) = (G′ − δ)(φ)G(ψ) +G(φ)(G′ − δ)(ψ), φ, ψ ∈ D0.

As an outcome, we get that (d1) holds for G. Let φ ∈ D0 and ψ ∈ D. Then we
obtain, for every φ ∈ D0 and ψ ∈ D:

G(φ ∗ ψ+) = −G−1((φ ∗0 ψ+)′) = −G−1(φ′ ∗0 ψ+ + φ(0)ψ+)

= −
(
G−1(φ′)G(ψ) +G(φ′)G−1(ψ)

)
= G(φ)G(ψ) +G′(φ)G−1(ψ).

Since (φ ∗0 ψ+)′ = (φ ∗0 (ψ′)+) + ψ(0)φ, φ ∈ D0, ψ ∈ D, we get

G(φ ∗0 ψ+) = −G−1(φ ∗0 ψ+)′) = −G−1(φ ∗0 (ψ′)+ + ψ(0)φ)

= −
(
G−1(φ)G(ψ′) +G(φ)G−1(ψ′)

)
−ψ(0)G−1(φ)
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= G(φ)G(ψ) +G−1(φ)(G′ − δ)(ψ),

(G′ − δ)(φ ∗ ψ+) = G′(φ ∗ ψ+) = −G((φ ∗0 ψ+)′) = −G(φ′ ∗0 ψ+)

= −
[
G(φ′)G(ψ) +G−1(φ′)(G′ − δ)(ψ)

]
= (G′ − δ)(φ)G(ψ) +G(φ)(G′ − δ)(ψ).

Thus, (d5) holds for G and G is a (DS) in E × E. The remainder of proof follows
by the use of preceding proposition. �

Proposition 3.4.5. Let G ∈ D′
0(L(E)). Then G is a pre-(DCF) iff

(254) G−1(φ)(G′ − δ)(ψ) = (G′ − δ)(φ)G−1(ψ), φ, ψ ∈ D.

Proof. We have proved in Proposition 3.4.3 that G is a pre-(DCF) in E iff
G is a pre-(DS) in E × E. Then the use of [199, Proposition 2] gives that any of
these conditions is also equivalent to:

(255) G(φ′)G(ψ) − G(φ)G(ψ′) = ψ(0)G(φ) − φ(0)G(ψ), φ, ψ ∈ D.
As in the proofs of Proposition 3.4.3 and Proposition 3.4.4, it follows that (255)
holds iff (254) holds. �

The infinitesimal generator of a (DCF) can be defined in several different ways;
here we follow an idea of Shiraishi and Hirata [385] which has been utilized by
Kunstmann in [252].

Definition 3.4.6. The generator A of a (DCF) G is given by{
(x, y) ∈ E × E : G−1(φ′′)x = G−1(φ)y for all φ ∈ D0

}
.

Because of (DCF2), A is a function and it is easy to see that A is a closed linear
operator in E.

Lemma 3.4.7. Let A be the generator of a (DCF) G. Then A ⊆ B, where
A ≡

(
0 I
A 0

)
and B is the generator of G. Furthermore,

(x, y) ∈ A⇔
((x

0

)
,

(
0

y

))
∈ B.

Proof. Let
((
x
y

)
,
(
u
v

))
∈ A. Then x ∈ D(A), y = u and Ax = v. We have

to prove that, for every φ ∈ D0, G(−φ′)
(
x
y

)
= G(φ)

(
u
v

)
. Towards this end, fix a

φ ∈ D0. Then the definition of A implies

G(−φ′)x = G−1(φ′′)x = G−1(φ)Ax = G−1(φ)v,

G′(−φ′)x = −G−1(φ′′′)x = −G−1(φ′)Ax = −G−1(φ′)v = G(φ)v.

Since φ(0) = φ′(0) = 0 and y = u, we obtain

G(−φ′)x+G−1(−φ′)y = G(φ)u+G−1(φ)v,

(G′ − δ)(−φ′)x+G(−φ′)y = (G′ − δ)(φ)u+G(φ)v.

This, in turn, implies −G(φ′)
(
x
y

)
= G(φ)

(
u
v

)
, φ ∈ D0 and

((
x
y

)
,
(
u
v

))
∈ B. Assume

that (x, y) ∈ A. Then
((
x
0

)
,
(
0
y

))
∈ A, and consequently,

((
x
0

)
,
(
0
y

))
∈ B. Suppose



3.4. DISTRIBUTION COSINE FUNCTIONS 245

now
((
x
0

)
,
(
0
y

))
∈ B and fix again a φ ∈ D0. Then G(−φ′)

(
x
0

)
= G(φ)

(
0
y

)
, and by the

definition of G,(
G(−φ′) G−1(−φ′)

G′(−φ′) − δ(−φ′) G(−φ′)

)(
x

0

)
=

(
G(φ) G−1(φ)

G′(φ) − δ(φ) G(φ)

)(
0

y

)
.

Thereby, G(−φ′)x = G−1(φ)y, i.e., G−1(φ′′)x = G−1(φ)y. This implies (x, y) ∈ A
and completes the proof. �

The following proposition will help to get relations between distribution cosine
functions and local integrated cosine functions; notice that the property (DCF2)
has an important role again.

Proposition 3.4.8. Let G be a (DCF) generated by A. Then the following
holds:

(i) (G(ψ)x, G(ψ′′)x+ ψ′(0)x) ∈ A, ψ ∈ D, x ∈ E.
(ii) (G−1(ψ)x,−G(ψ′)x− ψ(0)x) ∈ A, ψ ∈ D, x ∈ E.

(iii) G(ψ)A ⊆ AG(ψ), ψ ∈ D.
(iv) G−1(ψ)A ⊆ AG−1(ψ), ψ ∈ D.

Proof. Let x, y ∈ E.
(i) Clearly, (G(ψ)x, y) ∈ A iff G′(φ)G(ψ)x = G−1(φ)y, φ ∈ D0. If φ ∈ D0,

then φ(0) = 0 and by (iii) in the proof of Proposition 3.4.3, this is equivalent to:

G′(φ ∗0 ψ)x−G(φ)G′(ψ)x+ ψ(0)G(φ)x = G−1(φ)y, φ ∈ D0

⇔
−G(φ ∗0 ψ′ + ψ(0)φ)x−G(φ)G′(ψ)x+ ψ(0)G(φ)x = G−1(φ)y, φ ∈ D0

⇔
−G(φ ∗0 ψ′)x−G(φ)G′(ψ)x = G−1(φ)y, φ ∈ D0.

By (ii) in the proof of Proposition 3.4.3, this is equivalent to

−
[
G(φ)G(ψ′)x+G−1(φ)(G′(ψ′)x− ψ′(0)x)

]
−G(φ)G′(ψ)x = G−1(φ)y, φ ∈ D0

⇔
G(φ)

[
−G(ψ′)x−G′(ψ)x

]
+G−1(φ)

[
−G′(ψ′)x+ ψ′(0)x− y

]
= 0, φ ∈ D0

⇔
y = G(ψ′′)x+ ψ′(0)x.

(ii) Let us recall that G−1(ψ) = −G(I(ψ)) and that d
dtI(ψ)(t) = ψ(t) − α(t) ×∫∞

−∞ ψ(u) du, t ∈ R. Hence, d2

dt2 I(ψ)(t) = ψ′(t) − α′(t)
∫∞
−∞ ψ(u) du, t ∈ R. Since

α ∈ D[−2,−1] and G ∈ D′
0(L(E)), we obtain (I(ψ))′(0) = ψ(0) and G

(
(I(ψ))′′

)
=

G
(
ψ′ − α′ ∫∞

−∞ ψ(u) du
)

= G(ψ′). The use of (i) gives

AG−1(ψ)x = −AG(I(ψ))x = −
[
G((I(ψ))′′)x+ (I(ψ))′(0)x

]
= −G(ψ′)x− ψ(0)x.

(iii) Let x ∈ D(A). Then
((
x
0

)
,
(

0
Ax

))
∈ B, and by Proposition 3.1.4(iii),

G(ψ)

(
0

Ax

)
= −G(ψ′)

(
x

0

)
− ψ(0)

(
x

0

)
,
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which implies G(ψ)Ax = G(ψ′′)x + ψ′(0)x. Thus, (iii) is a consequence of (i).
To prove (iv), fix a test function ψ ∈ D and apply (iii) to see that G−1(ψ)A =
−G(I(ψ))A ⊆ −AG(I(ψ)) = AG−1(ψ). This completes the proof. �

3.4.2. Relationship to integrated cosine functions, convolution equa-
tions and local C-regularized cosine functions.

Theorem 3.4.9. Let A be the generator of a (DCF) G. Then there exist τ > 0,
n ∈ N and a local n-times integrated cosine function (Cn(t))t∈[0,τ) generated by A.

Proof. By Proposition 3.4.8(i), we have that, for every φ ∈ D and x ∈ E,
AG(φ)x = G(φ′′)x + φ′(0)x. This implies that G is a continuous linear mapping
from D into L(E, [D(A)]), and as before, we get that there are τ > 0, n ∈ N and a
strongly continuous function Cn : [−τ, τ ] → L(E, [D(A)]) such that

G(φ)x = (−1)n
τ∫

−τ

φ(n)(t)Cn(t)x dt,

for all x ∈ E and φ ∈ D(−τ,τ). Moreover, suppG ⊆ [0,∞) implies Cn(t) = 0,
t ∈ [−τ, 0] and

(−1)n
τ∫

0

φ(n)(t)ACn(t)x dt = AG(φ)x = G(φ′′)x+ φ′(0)x

= (−1)n+2

τ∫
0

φ(n+2)(t)Cn(t)x dt+ φ′(0)x,

for all x ∈ E and φ ∈ D(−τ,τ). Thus, there exist B0, . . . , Bn+1 ∈ L(E) such that

t∫
0

(t− s)ACn(s)x ds− Cn(t)x =

n+1∑
j=0

tjBjx, x ∈ E, t ∈ [0, τ).

Hence,

(−1)n+2

τ∫
0

φ(n+2)(t)

n+1∑
j=0

tjBjx dt = φ′(0)x, φ ∈ D(−τ,τ), x ∈ E, i.e.,

(−1)n+2
n+1∑
j=0

(−1)j+1j!φ(n+1−j)(0)Bjx = φ′(0)x, φ ∈ D(−τ,τ), x ∈ E.

One can choose a sequence (φk)k∈N0
in D(−τ,τ) with φ

(j)
k (0) = δjk, j, k ∈ N0, to

conclude that Bj = 0, j ∈ {0, 1, . . . , n+ 1}r {n}, Bn = (−1)
n! I, and that

A

t∫
0

(t− s)Cn(s)x ds = Cn(t)x− tn

n!
x, x ∈ E, t ∈ [0, τ).
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Since G(φ) commutes with A, φ ∈ D, it follows that there exist F0, . . . , Fn−1 ∈
L(E) such that

ACn(t)x− Cn(t)Ax =

n−1∑
j=0

tjFjx, x ∈ D(A), t ∈ [0, τ).

Arguing similarly as in the first part of the proof, one has Fj = 0, 0 6 j 6
n−1. Thereby, (Cn(t))t∈[0,τ) is a local n-times integrated cosine function generated
by A. �

Theorem 3.4.10. Let A be the generator of a (local) n-times integrated cosine
function (Cn(t))t∈[0,τ). Then A is the generator of a (DCF).

Proof. It is clear that A is the generator of an (n+ 1)-times integrated semi-
group (Sn+1(t))t∈[0,τ), where Sn+1 is given in Theorem 2.1.11. By Corollary 2.1.9
and induction, one can prove that, for every k ∈ N, A is the generator of a (k(n+1))-
times integrated semigroup (Sk(n+1)(t))t∈[0,kτ). Denote

Sk(n+1)(t) =

(
S1
k(n+1)(t) S2

k(n+1)(t)

S3
k(n+1)(t) S4

k(n+1)(t)

)
, 0 6 t < kτ.

The proof of the implication (ii) ⇒ (i) of Theorem 2.1.11 yields:

S1
k(n+1)(t) = S4

k(n+1)(t), S
2
k(n+1)(t) =

t∫
0

S1
k(n+1)(s) ds,

S3
k(n+1)(t) =

d

dt
S1
k(n+1)(t) −

tk(n+1)−1

(k(n+ 1) − 1)!
I, 0 6 t < kτ.

Furthermore, by the proof of Theorem 2.1.11, we have that the operator A is the
generator of a (k(n+ 1)−1)-times integrated cosine function

(
Ck(n+1)−1(t)

)
t∈[0,kτ)

which is given by Ck(n+1)−1(t) = S3
k(n+1)(t)+ tk(n+1)−1

(k(n+1)−1)!I, t ∈ [0, kτ). This implies

that S1
k(n+1)(t) =

∫ t
0
Ck(n+1)−1(s) ds, t ∈ [0, kτ) and that (S1

k(n+1)(t))t∈[0,kτ) is a

(k(n + 1))-times integrated cosine function generated by A. Given φ ∈ D, choose
k ∈ N such that φ ∈ D(−∞,kτ). Define

G(φ)

(
x

y

)
:= (−1)k(n+1)

∞∫
0

φ(k(n+1))(t)Sk(n+1)(t)

(
x

y

)
dt, x, y ∈ E,

G(φ)x := (−1)k(n+1)

∞∫
0

φ(k(n+1))(t)S1
k(n+1)(t)x dt, x ∈ E.

One can easily prove that these definitions are independent of k ∈ N. Moreover,
G is a (DS) in E × E generated by A; see the proof of [418, Theorem 3.8]. Let
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φ ∈ D(−∞,kτ) and x ∈ E. Then we obtain:

G−1(φ)x = −G(I(φ))x = −
∞∫
0

(I(φ))(k(n+1))(t)S1
k(n+1)(t)x dt

= −
∞∫
0

(
φ(k(n+1)−1)(t) − α(k(n+1)−1)(t)

∞∫
−∞

φ(u) du
)
S1
k(n+1)(t)x dt

= −
∞∫
0

φ(k(n+1)−1)(t)S1
k(n+1)(t)x dt =

∞∫
0

φ(k(n+1))(t)

t∫
0

S1
k(n+1)(s)x ds dt

=

∞∫
0

φ(k(n+1))(t)S2
k(n+1)(t)x dt,

(G′ − δ)(φ)x = −
∞∫
0

φ(k(n+1)+1)(t)S1
k(n+1)(t)x dt− φ(0)x

=

∞∫
0

φ(k(n+1))(t)
d

dt
S1
k(n+1)(t)x dt−

∞∫
0

φ(k(n+1))(t)
tk(n+1)−1

(k(n+ 1) − 1)!
x dt

=

∞∫
0

φ(k(n+1))(t)S3
k(n+1)(t)x dt.

Hence, G(φ) =

(
G(φ) G−1(φ)

(G′ − δ)(φ) G(φ)

)
, φ ∈ D. From Proposition 3.4.3, it follows

that G is a (DCF). Suppose that the generator of G is B. Owing to Lemma 3.4.7,
one gets (x, y) ∈ B ⇔

((
x
0

)
,
(
0
y

))
∈ A ⇔ (x, y) ∈ A. This completes the proof of

theorem. �
Corollary 3.4.11. Let A be the generator of an n-times integrated cosine

function (Cn(t))t>0. Put G(φ)x := (−1)n
∫∞
0
φ(n)(t)Cn(t)x dt, φ ∈ D, x ∈ E.

Then G is a (DCF) generated by A.

Corollary 3.4.12. Let G be a (DCF) generated by A. Then there exist τ > 0,
n ∈ N and a local n-times integrated cosine function (Cn(t))t∈[0,τ) generated by A

such that G(φ)x = (−1)n
∫ τ
0
φ(n)(t)Cn(t)x dt, φ ∈ D(−∞,τ), x ∈ E.

Given α > 0 and β > 0, define the logarithmic region Λ̃α,β by

Λ̃α,β :=
{
λ ∈ C : Reλ > α+ β ln(1 + |λ|)

}
.

The following theorem is the main result of this subsection.

Theorem 3.4.13. Let A be a closed operator. Then the following statements
are equivalent:

(i) A is the generator of a (DCF).
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(ii) There exist τ > 0 and n ∈ N such that A is the generator of an n-times
integrated cosine function on [0, τ).

(iii) For every τ > 0 there is an n ∈ N such that A is the generator of an
n-times integrated cosine function on [0, τ).

(iv) The operator A is the generator of a (DS) in E × E.
(v) For every τ > 0 there is an n ∈ N such that for all (x, y) ∈ E × E there

exists a unique n-times integrated mild solution of (ACP2).
(vi) There are constants α, β,M > 0 and n ∈ N0 such that

Λ̃2
α,β :=

{
λ2 : λ ∈ Λ̃α,β

}
⊆ ρ(A) and ∥R(λ :A)∥ 6M(1 + |λ|)n, λ ∈ Λ̃2

α,β .

Proof. The implication (i) ⇒ (ii) is Theorem 3.4.9 and the implication (ii) ⇒
(i) is Theorem 3.4.10. Assume that (ii) is true. Then the operator A is the generator
of an (n+ 1)-times integrated semigroup (Sn+1(t))t∈[0,τ). By Theorem 3.1.25, the
operator A generates a (DS) in E×E and (iv) holds. If (iv) holds, then for all τ > 0
there is an n ∈ N0 such that the operator A generates an (n+ 1)-times integrated
semigroup (Sn+1(t))t∈[0,τ). Fix a number τ > 0 and choose a non-negative integer
n such that A generates an (n+ 1)-times integrated semigroup (Sn+1(t))t∈[0,τ). By
Theorem 2.1.11, the operator A must be the generator of a local n-times integrated
cosine function on [0, τ) and (iii) is proved. The implication (iii) ⇒ (ii) is trivial.
The equivalence of (iii) and (v) has been already proved. Hence, (i) ⇔ (ii) ⇔
(iii) ⇔ (iv) ⇔ (v). The equivalence of (iv) and (vi) is an easy application of
Theorem 3.1.25. �

Remark 3.4.14. The difference between the logarithmic region Λ̃α,β and the
exponential region E(α, β) is inessential here; more precisely, one may replace (vi)
with:

(vi′)
There are constants α > 0, β > 0, M > 0 and n ∈ N0 such that

E2(α, β) ⊆ ρ(A) and ∥R(λ :A)∥ 6M(1 + |λ|)n, λ ∈ E2(α, β).

Namely, let α > 0 and β > 0 be fixed. Arguing as in [5, Lemma 2.6], one can

prove that Λ̃α,β ⊆ E( 1
β , α) and that, for every α′ > α, there exists β′ > β such

that E(α, β) ⊆ Λ̃β′, 1
α′

. Furthermore, the logarithmic region in the formulation of

Theorem 3.4.13 can be replaced by the region

Λα,β :=
{
λ ∈ C : Reλ > α+ β ln(1 + | Imλ|)

}
.

This follows from the following estimate (cf. [199, p. 199] for a proof):

Λ̃α,β ⊆ Λα,β ⊆ Λ̃
(1+

ln(1+α)
α β)−1α,(1+

ln(1+α)
α β)−1β

.

Proposition 3.4.15. Let A be a closed operator such that ±A generate distri-
bution semigroups G±. Then A2 generates a (DCF) G, which is given by G(φ) =
1
2 (G+(φ) +G−(φ)), φ ∈ D.

Next, we would like to point out an interesting interplay between distribution
cosine functions and convolution type equations; as a matter of fact, we use Propo-
sition 3.4.3 to reduce our investigations to the corresponding theory of distribution
semigroups.
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Theorem 3.4.16. (i) Let A be a closed operator and let G ∈ D′
0(L(E)). Then

G is a (DCF) generated by A iff G ∈ D′
0(L(E, [D(A)])), G ∗ P = δ′ ⊗ IdD(A) and

P ∗G = δ′⊗IdE, where D(A) is supplied with the graph norm, P := δ′′⊗I−δ⊗A ∈
D′

0(L([D(A)], E)) and I denotes the inclusion D(A) → E.

(ii) Let G ∈ D′
0(L(E)). Then G is (DCF) in E generated by A iff

G ≡
(

G G−1

G′−δ G

)
is a (DS) in E × E generated by A.

Proof. (i) Let X = L(E, [D(A)]), Y = L([D(A)], E), Z = L([D(A)]) and let
b : X × Y → Z be defined by b(B,C) := BC, B ∈ X, C ∈ Y . The definition
of G ∗ P is given by Proposition 1.3.1; the convolution P ∗ G can be understood
similarly. Let x ∈ D(A), k ∈ N0 and φ ∈ D. Then it can be proved that:(
G∗ (δ(k)⊗ I)

)
(φ)x = (−1)kG(φ(k))x and

(
G∗ (δ(k)⊗A)

)
(φ)x = (−1)kG(φ(k))Ax.

Analogically,(
(δ(k) ⊗ I) ∗G

)
(φ)x = (−1)kG(φ(k))x,(

(δ(k) ⊗A) ∗G
)
(φ)x = (−1)kAG(φ(k))x, φ ∈ D, x ∈ E, k ∈ N0.

Suppose that G is a (DCF) generated by A and x ∈ E. Then Proposition 3.4.8(i)
implies AG(φ)x = G(φ′′)x+ φ′(0)x. Therefore, G ∈ D′

0(L(E, [D(A)])),

(P ∗G)(φ)x = G(φ′′)x−AG(φ)x = −φ′(0)x and P ∗G = δ′ ⊗ IdE .

We obtain G ∗ P = δ′ ⊗ Id[D(A)] in the same manner. Let G ∈ D′
0(L(E, [D(A)]))

satisfy G∗P = δ′⊗Id[D(A)] and P ∗G = δ′⊗IdE . Since suppG ⊆ [0,∞), it follows

that suppG−1 ⊆ [0,∞) and suppG ⊆ [0,∞). If x ∈ E, then the assumptions
G ∗ P = δ′ ⊗ Id[D(A)] and P ∗ G = δ′ ⊗ IdE imply (i) of Proposition 3.4.8 and
G(φ)Ax = G(ψ′′)x+ ψ′(0)x, φ ∈ D, x ∈ D(A). By the proof of Proposition 3.4.8,
one obtains

AG−1(φ)x = −G(φ′)x− φ(0)x, φ ∈ D, x ∈ E,

G−1(φ)Ax = −G(φ′)x− φ(0)x, φ ∈ D, x ∈ E.

It follows that G ∈ D′
0(L(E × E, [D(A)])), where D(A) is endowed with the graph

norm. Let x ∈ D(A). Then, for every φ ∈ D:

− G(φ′)

(
x

y

)
− G(φ)A

(
x

y

)
= −G(φ′)

(
x

y

)
− G(φ)

(
y

Ax

)
=

(
−G(φ′)x−G−1(φ′)y −G(φ)y −G−1(φ)Ax

−G′(φ′)x+ φ′(0)x−G(φ′)y −G′(φ)y + φ(0)y −G(φ)Ax

)
= φ(0)

(
x

y

)
.

Similarly, if x, y ∈ E, then −G(φ′)
(
x
y

)
−AG(φ)

(
x
y

)
= φ(0)

(
x
y

)
, φ ∈ D. This implies

G ∗ P1 = δ ⊗ Id[D(A)] and P1 ∗ G = δ ⊗ IdE×E , where P1 := δ′ ⊗ Id − δ ⊗ A ∈
D′

0(L([D(A)], E × E)) and Id denotes the inclusion D(A) → E × E. This fact
combined with the proof of [252, Theorem 3.10] enables one to see that G is a (DS)
in E × E generated by A. Thus, G is a (DCF) in E. If B is the generator of G,
then (x, y) ∈ B ⇔

((
x
0

)
,
(
0
y

))
∈ A ⇔ (x, y) ∈ A.
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(ii) Suppose that G is a (DCF) generated by A. Then G is a (DS) in E × E.
Let P be as in (i). Then we obtain G ∗ P = δ′ ⊗ Id[D(A)] and P ∗ G = δ′ ⊗ IdE .
Then the proof of (i) implies that the generator of G is A. Conversely, if G is a
(DS) generated by A, then G is a (DCF). It can be easily seen that the generator
of G is A. �

Let us recall that G is a (DS) generated by A if and only if G is a distribution
fundamental solution for A (cf. [252, p. 844–845]). Since there is at most one
distribution fundamental solution for a closed linear operator A, it follows that
every (DS) is uniquely determined by its generator. Herein it is worthwhile to
notice that Kisyński introduced in [199] the generator of a pre-(DS) G; in his
approach, this is a closed linear operator from E into E/N (G). He proved that
every pre-(DS) is uniquely determined by its generator, see [199, Corollary 2]. Now
we state:

Corollary 3.4.17. Every distribution cosine function is uniquely determined
by its generator.

Proof. Suppose that G1 and G2 are distribution cosine functions generated
by a closed linear operator A. Then

G1 ≡
(

G1 G−1
1

G′
1 − δ G1

)
and G2 ≡

(
G2 G−1

2

G′
2 − δ G2

)
are distribution semigroups generated by A. Thereby, for every x ∈ E and φ ∈ D,
G1(φ)

(
x
0

)
= G2(φ)

(
x
0

)
. This implies G1(φ)x = G2(φ)x and completes the proof. �

Now we clarify the interplay between distribution cosine functions and local
C-regularized cosine functions; we refer to [381] for the introduction to the theory
of local C-regularized cosine functions.

Proposition 3.4.18. Let A be a closed operator. Then the following statements
are equivalent:

(i) A generates a (DCF),
(ii) ρ(A) ̸= ∅ and there exist n ∈ N and τ ∈ (0,∞] such that A is the generator

of an R(λ :A)n-regularized cosine function on [0, τ) for all λ ∈ ρ(A),
(iii) ρ(A) ̸= ∅ and there exist λ ∈ ρ(A), n ∈ N and τ ∈ (0,∞] such that A is

the generator of an R(λ :A)n-regularized cosine function on [0, τ).

We close this subsection by stating the following proposition.

Proposition 3.4.19. Let G be a (DCF). Then G(φ)G(ψ) = G(ψ)G(φ), φ,
ψ ∈ D.

3.4.3. Exponential distribution cosine functions.

Definition 3.4.20. A distribution cosine function G is said to be an exponen-

tial distribution cosine function, (EDCF) in short, if G ≡
(

G G−1

G′−δ G

)
is an (EDS)

in E × E.

The following might be surprising:
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Proposition 3.4.21. Let G be a (DCF). Then G is an (EDCF) iff there exists
ε ∈ R such that e−εtG−1 ∈ S ′

0(L(E)).

Proof. Let remind us that S is topologized by the seminorms

∥ψ∥α,β := sup
x∈R

|xαψ(β)(x)|, α, β ∈ N0, ψ ∈ S.

Assume that G is an (EDCF). By Definition 3.4.20, this implies that there exists

ω ∈ R such that e−ωt
(

G G−1

G′−δ G

)
∈ S ′(L(E × E)), i.e., there exist M > 0 and α,

β ∈ N0 such that, for every φ ∈ D,∥∥∥∥⟨e−ωt( G G−1

G′ − δ G

)
, φ

⟩∥∥∥∥
L(E×E)

6M∥φ∥α,β .

Therefore, for all φ ∈ D and x, y ∈ E, the following holds:∥∥⟨e−ωtG,φ⟩x+
⟨
e−ωtG−1, φ

⟩
y
∥∥

+
∥∥⟨e−ωt(G′ − δ), φ

⟩
x+

⟨
e−ωtG,φ

⟩
y
∥∥ 6M∥φ∥α,β(∥x∥ + ∥y∥).

Choose x = 0 to obtain e−ωtG−1 ∈ S ′
0(L(E)). Suppose now e−ωtG−1 ∈ S ′

0(L(E)).
Then there exist M > 0 and α, β ∈ N0 so that ∥G−1(e−ωtφ)∥ 6M∥φ∥α,β , φ ∈ D.
Then one gets:∥∥(e−ωtG)(φ)

∥∥ =
∥∥G(e−ωtφ)

∥∥ =
∥∥G−1(−ωe−ωtφ+ e−ωtφ′)

∥∥
6M |ω|∥φ∥α,β +M∥φ′∥α,β 6M |ω|∥φ∥α,β +M∥φ∥α,β+1, φ ∈ D.

Hence, e−ωtG ∈ S ′
0(L(E)); similarly, e−ωt(G′−δ) ∈ S ′

0(L(E)) and we finally obtain

e−ωt
(

G G−1

G′ − δ G

)
∈ S ′

0(L(E × E)). �

Theorem 3.4.22. Let A be a closed operator. Then the following assertions
are equivalent:

(i) A is the generator of an (EDCF) in E.
(ii) A is the generator of an (EDS) in E × E.

(iii) A is the generator of a global exponentially bounded n-times integrated
cosine function for some n ∈ N.

(iv) There are constants ω > 0, M > 0 and k ∈ N such that

Πω :=
{
η + iξ : η > ω2 − ξ2

4ω2

}
⊆ ρ(A) and ∥R(λ :A)∥ 6M |λ|k, λ ∈ Πω.

Proof. The implication (i) ⇒ (ii) follows from Theorem 3.4.17(ii). In order
to prove the converse, suppose that G is a (DS) in E ×E generated by A and that
e−ωtG ∈ S ′

0(L(E×E)). Clearly, e−ωtG is a (DS) in E×E generated by A−
(
ωI 0
0 ωI

)
.

By Proposition 3.1.4(iii), we have that, for every φ ∈ D and x, y ∈ E:

A
⟨
e−ωtG, φ

⟩(x
y

)
=
⟨
e−ωtG,−φ′⟩(x

y

)
+ ω

⟨
e−ωtG, φ

⟩(x
y

)
− φ(0)

(
x

y

)
,
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which gives e−ωtG ∈ S ′(L(E × E, [D(A)])). The use of Theorem 1.3.2(ii) implies
that there exist n ∈ N, r > 0 and a continuous function S̄n+1 : R → L(E ×
E, [D(A)]) supported by [0,∞) such that

⟨
e−ωtG, φ

⟩(x
y

)
= (−1)n+1

∞∫
0

φ(n+1)(t)S̄n+1(t)

(
x

y

)
dt,

for all φ ∈ D, x, y ∈ E, and |S̄n+1(t)| 6 Mtr, t > 0. By the proof of [5, Theorem
7.2], one gets that (S̄n+1(t))t>0 is an (n+ 1)-times integrated semigroup generated
by A −

(
ωI 0
0 ωI

)
. A standard rescaling argument shows that A is the generator of

a global exponentially bounded (n + 1)-times integrated semigroup (Sn+1(t))t>0.
Hence, the operator A generates a global exponentially bounded n-times integrated
cosine function (Cn(t))t>0. We have proved (ii) ⇒ (iii). We continue the proof of
(ii) ⇒ (i) by applying the argumentation given in the final part of the proof of
Theorem 3.4.10. It is easy to see that G(φ) = (−1)n+1

∫∞
0
φ(n+1)(t)Sn+1(t) dt, φ ∈

D. Define G by G(φ)x := (−1)(n+1)
∫∞
0
φ(n+1)(t)S1

(n+1)(t)x dt, x ∈ E, φ ∈ D, with

the same terminology as in the proof of Theorem 3.4.10. Using the same arguments

as in the proof of cited theorem, one obtains G =
(

G G−1

G′−δ G

)
. Therefore, G is an

(EDCF) generated by A and (i) follows. Suppose that (iii) holds. Then A generates
an exponentially bounded (n + 1)-times integrated semigroup (Sn+1(t))t>0. Set

G(φ) := (−1)n+1
∫∞
0
φ(n+1)(t)Sn+1(t) dt, φ ∈ D. Then G is an (EDS) in E × E

generated by A, and (ii) follows. If (ii) holds, then there exists ω > 0 such that
{λ ∈ C : Reλ > ω} ⊆ ρ(A) and that ∥R(· : A)∥ is polynomially bounded on
{λ ∈ C : Reλ > ω}. Therefore, Πω = {λ2 : λ ∈ C, Reλ > ω} is contained in ρ(A)
and ∥R(· : A)∥ is polynomially bounded on Πω. So (iv) holds. Assume that (iv) is
true. Then {λ ∈ C : Reλ > ω} ⊆ ρ(A) and ∥R(· : A)∥ is polynomially bounded
on {λ ∈ C : Reλ > ω}. This implies that A generates an exponentially bounded
(n+ 1)-times integrated semigroup for some n ∈ N. This implies (iii) and ends the
proof. �

Let A be a densely defined operator and let A be the generator of an expo-
nentially bounded α-times integrated cosine function for some α > 0. By Propo-
sition 2.2.7, the adjoint A∗ of A is the generator of an exponentially bounded
(α + 1)-times integrated cosine function. Then the previous theorem immediately
implies the following theorem which remains true in the case of a general distribu-
tion cosine function.

Proposition 3.4.23. Let A be a densely defined operator. If A is the generator
of an (EDCF) in E, then A∗ is the generator of an (EDCF) in E∗.

The proofs of subsequent assertions are standard and therefore omitted.

Proposition 3.4.24. If A is the generator of an (EDCF), then for every z ∈ C,
the operator A+ z is also the generator of an (EDCF).

Proposition 3.4.25. Suppose that A and −A generate exponential distribution
semigroups. Then A2 is the generator of an (EDCF).
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3.4.4. Dense distribution cosine functions. In this subsection we focus
our attention to dense distribution cosine functions and their generators. First of
all, we will prove the next proposition.

Proposition 3.4.26. Let G be a (DCF). Then for all
(
x
y

)
∈ R(G) there exists

a function u ∈ C1([0,∞) : E) satisfying u(0) = x, u′(0) = y and

G(ψ)x+G−1(ψ)y =

∞∫
0

ψ(t)u(t) dt, ψ ∈ D.

Proof. It is clear that G is a (DS) in E × E. Since G satisfies (d4) we have
that for all

(
x
y

)
∈ R(G) there exist two functions u, v ∈ C([0,∞) : E) such that

u(0) = x, v(0) = y and that

G(ψ)x+G−1(ψ)y =

∞∫
0

ψ(t)u(t) dt,

(G′ − δ)(ψ)x+G(ψ)y =

∞∫
0

ψ(t)v(t) dt, ψ ∈ D.

With y = 0 and x ∈ E, integration by parts implies
∞∫
0

φ′(t)

(
u(t) −

t∫
0

v(s) ds

)
dt = G(φ′)x+G′(φ)x = 0, φ ∈ D0.

Then one obtains u(t) = x +
t∫
0

v(s) ds, t > 0, and the function u has the desired

properties. �
Proposition 3.4.27. Let G be a (DCF) generated by A. Then for all x,

y ∈ D∞(A) there exists a function u ∈ C1([0,∞) : E) satisfying u(0) = x, u′(0) = y
and

G(φ)x+G−1(φ)y =

∞∫
0

φ(t)u(t) dt, φ ∈ D0.

Proof. Applying [418, Corollary 3.9], we obtain that for all
(
x
y

)
∈ D∞(A) =

D∞(A)×D∞(A) there exist two functions u, v ∈ C([0,∞) : E) such that u(0) = x,

v(0) = y and that G(φ)
(
x
y

)
=
∫∞
0
φ(t)

(
u(t)
v(t)

)
dt for all φ ∈ D0. This, in turn, implies

G(φ)x+G−1(φ)y =

∞∫
0

φ(t)u(t) dt,

(G′ − δ)(φ)x+G(φ)y =

∞∫
0

φ(t)v(t) dt, φ ∈ D0.

Now one can repeat verbatim the final part of the proof of previous proposition. �
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Theorem 3.4.28. Let G be a (DCF) generated by A. Then D(A) = E iff G is
dense.

Proof. Assume G is dense. Then Proposition 3.4.8(i) implies D(A) = E.

Conversely, suppose that D(A) = E. Since ρ(A) ̸= ∅, we have D∞(A) = E and

it suffices to show D∞(A) ⊆ R(G). Let x ∈ D∞(A). By Proposition 3.4.27, we
obtain that there exists a function u ∈ C1([0,∞) : E) satisfying u(0) = x, u′(0) = 0
and

G(φ)x =

∞∫
0

φ(t)u(t) dt, φ ∈ D0.

Let (ρn) be a regularizing sequence. Then x = limn→∞G(ρn)x ∈ R(G) and this
completes the proof. �

Remark 3.4.29. Let A be the generator of a (DCF) G. Then it can be also
proved that G is dense iff G is a dense distribution semigroup in E × E.

3.4.5. Almost-distribution cosine functions, cosine convolution prod-
ucts and their relations with distribution cosine functions. Assume that
τ0 : [0,∞) → [0,∞) is a measurable function such that inft>0 τ0(t) > 0 and that
there exists C0 > 0 satisfying:

τ0(t+ s) 6 C0τ0(t)τ0(s), t, s > 0 and τ0(t− s) 6 C0τ0(t)τ0(s), 0 < s < t.

Then (L1([0,∞) : τ0), ∥ · ∥τ0) denotes the Banach space consisting of those mea-
surable functions f : [0,∞) → C for which ∥f∥τ0 :=

∫∞
0

|f(t)|τ0(t) dt < ∞. If

f , g ∈ L1([0,∞) : τ0), put f ◦ g(t) :=
∫∞
t
f(s − t)g(s) ds, t > 0. Clearly,

f ∗0 g ∈ L1([0,∞) : τ0) and f ◦ g ∈ L1([0,∞) : τ0). The cosine convolution
product f ∗c g is defined by f ∗c g := 1

2 (f ∗0 g + f ◦ g + g ◦ f); the sine convolution

product by f ∗s g := 1
2 (f ∗0 g−f ◦g−g ◦f) and the sine-cosine convolution product

by f ∗sc g := 1
2 (f ∗0 g− f ◦ g+ g ◦ f). Notice, f ∗c g, f ∗s g, f ∗sc g ∈ L1([0,∞) : τ0),

resp. D+, if f, g ∈ L1([0,∞) : τ0), resp. f, g ∈ D+; see for example [388].
The following proposition can be viewed as an analogue of the well-known

formula cos(t+ s) = cos t cos s− sin t sin s for distribution cosine functions.

Proposition 3.4.30. Let G be a (DCF) generated by A.Then G(φ ∗0 ψ)x =
G(φ)G(ψ)x+AG−1(φ)G−1(ψ)x, φ, ψ ∈ D, x ∈ E.

Proof. Notice, if φ, ψ ∈ D, then (φ ∗0 ψ)′(t) = φ′ ∗0 ψ(t) + φ(0)ψ(t), t ∈ R.
Since A generates G and G(φ) = −G−1(φ′), φ ∈ D, we infer that

G(φ ∗0 ψ)x = −φ(0)G−1(ψ)x−G−1(φ′ ∗0 ψ)x

= G(φ)G(ψ)x+ (−φ(0) −G(φ′))G−1(ψ)x

= G(φ)G(ψ)x+AG−1(φ)G−1(ψ)x,

for any x ∈ E. �

In the next theorem, we characterize pre-distribution cosine functions by con-
volution products.
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Theorem 3.4.31. Let G ∈ D′
0(L(E)) satisfy G(φ)G(ψ) = G(ψ)G(φ), φ, ψ ∈

D. Then the following assertions are equivalent:

(i) G is a pre-(DCF) and G−1(Λ(f ◦ g − g ◦ f)) = G(Λ(f))G−1(Λ(g)) −
G−1(Λ(f))G(Λ(g)) for all f , g ∈ D+.

(ii) G−1(Λ(f ∗sc g)) = G−1(Λ(f))G(Λ(g)) for all f, g ∈ D+.

Proof. (i) ⇒ (ii). Note, f ∗0 g(t) = (g ∗sc f + f ∗sc g)(t), (f ◦ g − g ◦ f)(t) =
(g ∗sc f − f ∗sc g)(t) and Λ(f ∗0 g)(t) = Λ(f) ∗0 Λ(g)(t), for t > 0 and f , g ∈ D+.
Moreover, G−1(φ) = 0 if φ ∈ D(−∞,0] and we obtain

G−1
(
Λ(g ∗sc f + f ∗sc g)

)
= G−1(Λ(f))G(Λ(g)) +G(Λ(f))G−1(Λ(g)),

G−1
(
Λ(g ∗sc f − f ∗sc g)

)
= G(Λ(f))G−1(Λ(g)) −G−1(Λ(f))G(Λ(g)).

This, in turn, implies G−1(Λ(f ∗sc g)) = G−1(Λ(f))G(Λ(g)) for all f , g ∈ D+. (In
this direction, we do not use the assumption G(φ)G(ψ) = G(ψ)G(φ), φ, ψ ∈ D).

(ii) ⇒ (i). Fix φ, ψ ∈ D. SinceG(φ)G(ψ) = G(ψ)G(φ), we haveG−1(φ)G(ψ) =
G(ψ)G−1(φ). Certainly, K(φ) ∗0 K(ψ)(t) =

(
K(ψ) ∗scK(φ) +K(φ) ∗scK(ψ)

)
(t) for

all t > 0 and this enables one to see that:

G−1(φ ∗0 ψ) = G−1
(
Λ(K(φ) ∗0 K(ψ))

)
= G−1

(
Λ(K(ψ) ∗sc K(φ) + K(φ) ∗sc K(ψ))

)
= G−1

(
ΛK(φ)

)
G
(
ΛK(ψ)

)
+G−1

(
ΛK(ψ)

)
G
(
ΛK(φ)

)
= G−1(φ)G(ψ) +G−1(ψ)G(φ) = G−1(φ)G(ψ) +G(φ)G−1(ψ).

Hence, G is a pre-(DCF). Since G(φ)G(ψ) = G(ψ)G(φ), φ, ψ ∈ D, the second
equality follows from (ii):

G−1
(
Λ(f ◦ g − g ◦ f)

)
= G−1

(
Λ(g ∗sc f − f ∗sc g)

)
= G(Λ(f))G−1(Λ(g)) −G−1(Λ(f))G(Λ(g)),

for all f , g ∈ D+. �
Definition 3.4.32. [312] An element G ∈ L(D+ : L(E)) is called an almost-

distribution cosine function if:

(i) G(f ∗c g) = G(f)G(g), f, g ∈ D+ and
(ii)

∩
f∈D+

Kern(G(f)) = {0}.

The (infinitesimal) generator A of G is defined by

A :=
{

(x, y) ∈ E × E : G(f)y = G(f ′′)x+ f ′(0)x for all f ∈ D+

}
.

It is known that A is a closed linear operator. Further on, G(f)A ⊆ AG(f),
G(f)x ∈ D(A) and AG(f)x = G(f ′′)x + f ′(0)x, f ∈ D+. Recall, a global n-
times integrated cosine function (Cn(t))t≥0 defines an almost-distribution cosine
functions G (cf. [312]) by

G(f)x = (−1)n
∞∫
0

f (n)(t)Cn(t)x dt, x ∈ E, f ∈ D+.

Theorem 3.4.33. Let G be a (DCF) generated by A. Then GΛ is an almost-
distribution cosine function generated by A.
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Proof. Notice that GΛ ∈ L(D+ : L(E)). Since G is a (DCF) generated by A,
it follows that

∩
φ∈D0

Kern(G(φ)) = {0}. Hence, the condition (ii) in the definition

of an almost-distribution cosine function is fulfilled. In order to prove (i), let us fix
f , g ∈ D+. Let

(256) supp f ∪ supp g ∪ (supp f + supp g) ∪ supp(f ◦ g) ∪ supp(g ◦ f) ⊆ [0, a],

for some a ∈ (0,∞). This implies supp(f ∗c g) ⊆ [0, a] and supp
(
Λ(f ∗c g)

)
⊆

(−∞, a]. Due to Theorem 3.4.13, there exists n ∈ N such that A is the gener-
ator of an n-times integrated cosine function (Cn(t))t∈[0,2a). Then the proofs of
Theorem 3.4.24 and Corollary 3.4.18 imply

G(φ)x = (−1)n
∞∫
0

φ(n)(t)Cn(t)x dt, x ∈ E, φ ∈ D(−∞,2a).

Therefore,

GΛ(f ∗cg)x = (−1)n
∞∫
0

(
Λ(f ∗cg)

)(n)
(t)Cn(t)x dt = (−1)n

∞∫
0

(f ∗cg)(n)(t)Cn(t)x dt.

Clearly, GΛ(f)x = (−1)n
∫∞
0
f (n)(t)Cn(t)x dt. Hence, we have to prove

(257)

(−1)n
∞∫
0

(f ∗c g)(n)(t)Cn(t)x dt = (−1)n
∞∫
0

f (n)(t)Cn(t)

∞∫
0

g(n)(s)Cn(s)x ds dt.

This can be obtained as in the proof of [312, Theorem 4] with α = n ∈ N. Note
only that (256) implies that Fubini theorem can be applied in the proofs of [311,
Proposition 1.1] and [312, Theorem 4]. Let B be the generator of GΛ. We will
prove A = B. Suppose (x, y) ∈ A. Then G−1(φ′′)x = G−1(φ)y for all φ ∈ D0. Our
goal is to prove that

(258) GΛ(f)y = GΛ(f ′′)x+ f ′(0)x for all f ∈ D+,

which implies (x, y) ∈ B and A ⊆ B. Fix an f ∈ D+. Taking into account
Proposition 3.4.8, we obtain

GΛ(f)y = GΛ(f)Ax = AG(Λ(f))x = G
(
(Λ(f))′′

)
x+ (Λ(f))′(0)x.

Since (Λ(f))′′(t) = Λ(f ′′)(t), t > 0, one can continue as follows

= G(Λ(f ′′))x+ f ′(0)x,

and (258) holds. Suppose now (x, y) ∈ B. Then:

(259) GΛ(f)y = GΛ(f ′′)x+ f ′(0)x, f ∈ D+.

One must prove that G−1(φ′′)x = G−1(φ)y, φ ∈ D0. Let suppφ ⊆ [0, b], for some

b > 0. Obviously, supp I(φ) ⊆ [−2, b]. Note, d2

dt2 I(φ)(t) = φ′(t)−α′(t)
∫∞
−∞ φ(u) du,

t ∈ R, and consequently, d2

dt2 I(φ)(t) = φ′(t), t > 0. Then I(φ)(t) = Λ
(
K(I(φ))

)
(t),
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t > 0,
(
K(I(φ))

)′
(0) = φ(0)−α(0)

∫∞
−∞ φ(u) du = φ(0) = 0 and Λ

(
(K(I(φ)))′′

)
(t) =

(I(φ))′′(t) = φ′(t), t > 0. Now one obtains from (259):

G−1(φ)y = −G(I(φ))y = −G
(
Λ(K(I(φ)))

)
y

= −
(
GΛ
(
(K(I(φ)))′′

)
x+

(
K(I(φ))

)′
(0)x

)
= −GΛ

(
(K(I(φ)))′′

)
x = −G(φ′)x = G−1(φ′′)x,

which gives (x, y) ∈ A and ends the proof. �

Corollary 3.4.34. Let G be a (DCF) generated by A. Then

G
(
Λ(f ∗s g)

)
= AG−1(Λ(f))G−1(Λ(g)), f, g ∈ D+.

Proof. Take f , g ∈ D+. Since f ∗0 g = f ∗c g + f ∗s g, one can apply
Proposition 3.4.30 and Theorem 3.4.31 to obtain the equality. �

The use of Theorem 3.4.16 enables one to briefly prove the following funda-
mental relationship between distribution cosine functions and almost-distribution
cosine functions as well as to establish directly some other results (cf. for example
Proposition 3.4.20):

Theorem 3.4.35. Let G1 be an almost-distribution cosine function generated
by A. Then A is the generator of a (DCF) G given by G(φ) := G1(K(φ)), φ ∈ D.

Proof. Note, if suppφ ⊆ (−∞, 0), then K(φ) = 0 in D+, which clearly im-
plies suppG ⊆ [0,∞) and G ∈ D′

0(L(E)). Recall, G(f)A ⊆ AG(f), G(f)x ∈
D(A) and AG(f)x = G(f ′′)x + f ′(0)x, f ∈ D+; see [312, p. 178]. We will prove
that:

AG(φ)x = G(φ′′)x+ φ′(0)x, x ∈ E, φ ∈ D,
G(φ)Ax = G(φ′′)x+ φ′(0)x, x ∈ D(A), φ ∈ D.(260)

Let x ∈ E and φ ∈ D. Then

AG(φ)x = AG1(K(φ))x = G1

(
(K(φ))′′

)
x+ φ′(0)x

= G1

(
K(φ′′)

)
x+ φ′(0)x = G(φ′′)x+ φ′(0)x.

Since G1A ⊆ AG1, the second equality in (260) can be proved similarly. It is
evident that (260) implies G ∈ D′

0(L(E, [D(A)])). Moreover, G ∗ P = δ′ ⊗ Id[D(A)]

and P ∗ G = δ′ ⊗ IdE , where we use the terminology given in the formulation of
Theorem 3.4.16: P = δ′′ ⊗ I − δ ⊗ A ∈ D′

0(L([D(A)], E)), Id[D(A)] denotes the

inclusion D(A) → E and
(
δ(k) ⊗ Id[D(A)]

)
(φ)x = (−1)kφ(k)(0)x,

(
δ(k) ⊗ I

)
(φ)x =

(−1)kφ(k)(0)x,
(
δ⊗A

)
(φ)x = φ(0)Ax, φ ∈ D, x ∈ D(A), k ∈ N0 and

(
δ′⊗IdE

)
(φ)x

= −φ′(0)x, φ ∈ D, x ∈ E. By Theorem 3.4.16, one yields that G is a (DCF)
generated by A. �

Corollary 3.4.36. Every almost-distribution cosine function is uniquely de-
termined by its generator.
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Proof. Suppose G1 and G2 are almost-distribution cosine functions generated
by a closed linear operator A. Put Gi(φ) := Gi(K(φ)), φ ∈ D, i = 1, 2. By
Theorem 3.4.35, G1 and G2 are distribution cosine functions generated by A and
one can use Corollary 3.4.18 to obtain that G1 = G2, i.e., G1(K(φ)) = G2(K(φ)),
φ ∈ D. Since K : D → D+ is a surjective mapping, we have that G1 = G2. This
ends the proof. �

Theorem 3.4.37. Let A be a closed linear operator. Then, the following are
equivalent.

(i) A is the generator of a (DCF).
(ii) A is the generator of an almost-distribution cosine function.

Now we will recollect some results proved by Miana in [312]. We consider
almost-distribution cosine functionsand their relationship with global fractionally
integrated cosine functions with corresponding growth order. Let remind us [312]
that the family of Bochner–Riesz functions (Rθt ), θ > −1, t > 0, is defined by

Rθt (s) = (t−s)θ
Γ(θ+1)χ(0,t). The Weyl functional calculus can be applied to the functions

which do not belong to the space D+; for example, in the case of Bochner–Riesz
functions we have that Wα

+R
θ
t = Rθ−αt , θ+1 > α > 0. Denote by Ωα, α > 0 the set

of all nondecreasing continuous functions τα(·) on (0,∞) so that inft>0 t
−αu(t) > 0

and that there exists a constant Cα > 0 satisfying∫
[0,t] ∩ [s,s+t]

uα−1τα(t+ s− u) du 6 Cατα(t)τα(s), 0 < t 6 s.

The typical functions τα(t) = tα; tβ(1+ t)γ (β ∈ [0, α], β+γ > α); tβeτt (β ∈ [0, α],
τ > 0) belong to Ωα. Suppose τα ∈ Ωα and ν > α; then the function τν = tν−ατα,
t > 0 belongs to Ων . Designate by Ωhα the subset of Ωα, α > 0 which consists of
all functions of the form τα = tαω0(t), t > 0, where the continuous nondecreasing
function ω0 : [0,∞) → [0,∞) satisfies inft>0 ω0(t) > 0 and ω0(t+ s) 6 ω0(t)ω0(s),
t, s > 0. Suppose α > 0, τα ∈ Ωα and define

qτα(φ) :=

∞∫
0

τα(t)

Γ(α+ 1)
|Wα

+φ(t)| dt, φ ∈ D+.

Then qτα(·) is a norm on D+ and there exists a constant Cα > 0 such that qτα(φ ∗c
ϕ) 6 Cαqτα(φ)qτα(ϕ), φ, ϕ ∈ D+ [312]. Let Tα+(τα, ∗c) denote the completion of the
normed space (D+, qτα); then Tα+(τα, ∗c) is invariant under the cosine convolution
cosine product ∗c and the following holds (cf. [312, Theorem 3]):

(i) Tα+(τα, ∗c) ↪→ Tα+(tα, ∗c) ↪→ L1([0,∞), ∗c), where ↪→ denotes the dense
and continuous embedding,

(ii) Tβ+(tβ , ∗c) ↪→ Tα+(tα, ∗c), β > α > 0,

(iii) Rν−1
t ∈ Tα+(τα, ∗c), ν > α, t > 0 and there exists a constant Cν,α > 0

such that qτα(Rν−1
t ) 6 Cν,αt

ν−ατα(t), t > 0.
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An almost-distribution cosine function G+ is said to be of order α > 0 and growth
τα ∈ Ωα if G+ can be extended to a continuous linear mapping from Tα+(τα, ∗c)
into L(E). Now we are in a position to clarify the following important result:

Theorem 3.4.38. [312] (i) Let A be the generator of an α-times integrated
cosine functions (Cα(t))t>0 such that ∥Cα(t)∥ 6 Cτα(t), t > 0. Then the mapping
G+ : Tα+(τα, ∗c) → L(E), given by

G+(f)x :=

∞∫
0

Wα
+f(t)Cα(t)x dt, f ∈ Tα+(τα, ∗c), x ∈ E,

is a continuous algebra homomorphism which satisfies:
t∫

0

(t− s)ν−α−1

Γ(ν − α)
Cα(s)x ds = G+(Rν−1

t )x, ν > α, x ∈ E

∞∫
0

Wα
+f(t)Cα(t)x dt =

∞∫
0

W ν
+f(t)

t∫
0

(t− s)ν−α−1

Γ(ν − α)
Cα(s)x ds dt,

for all f ∈ Tν+(tν−ατα, ∗c), x ∈ E. Furthermore, the restriction of G+ to D+

is an almost-distribution cosine function of order α > 0 and growth τα with the
generator A.

(ii) Suppose A is the generator of an almost-distribution cosine function G+ of
order α > 0 and growth τα ∈ Ωα. Then, for every ν > α, A generates a ν-times
integrated cosine function (Cν(t))t>0 such that ∥Cν(t)∥ 6 Cνt

ν−ατα(t), t > 0 and
that

G+(f)x =

∞∫
0

W ν
+f(t)

t∫
0

(t− s)ν−α−1

Γ(ν − α)
Cα(s)x ds dt, f ∈ D+, x ∈ E.

(iii) Let α > 0, τα ∈ Ωhα and let D(A) be dense in E. Then the following
assertions are equivalent:

(iii.1) A generates an α-times integrated cosine function (Cα(t))t>0 such that
∥Cα(t)∥ 6 Cτα(t), t > 0.

(iii.2) A generates an almost-distribution cosine function G+ of order α > 0 and
growth τα such that G+(D+) is dense in E.

Suppose a > 0, b > 0, α > 0, M > 0, E2(a, b) ⊆ ρ(A) and ∥R(λ2 : A)∥ 6
M(1 + |λ|)α, λ ∈ E(a, b). Put φ̃(λ) :=

∫∞
−∞ eλtφ(t) dt, φ ∈ D and

G(φ)x :=
1

2πi

∫
Γ

λφ̃(λ)R(λ2 :A)x dλ, x ∈ E, φ ∈ D,

where Γ is the upwards oriented boundary of E(a, b). Then one can simply prove
that G is a (DCF) generated by A. This assertion can be reformulated, with minor
changes, in the case of ultradistribution sines considered in Subsections 3.5.4 and
3.6.3. Now we pay our attention to the study of mild solutions of second order
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abstract Cauchy problems. A function u(t) is said to be a mild solution of the
abstract Cauchy problem

(ACP2) : u′′(t) = Au(t), t > 0, u(0) = x, u′(0) = y,

iff the mapping t 7→ u(t), t > 0 is continuous,
∫ t
0
(t− s)u(s) ds ∈ D(A) and A

∫ t
0
(t−

s)u(s) ds = u(t) − x− ty, t > 0. Recall that there exists at most one mild solution
of (ACP2), provided that there exists α > 0 such that A is a subgenerator of a
local α-times integrated C-cosine function. Denote by Z2(A) the set which consists
of those elements x ∈ E for which there exists a solution of (ACP2) with y = 0.
Assume now that, for every τ > 0, there exists nτ ∈ N such that A is a subgenerator
of a local nτ -times integrated C-cosine function (Cnτ

(t))t∈[0,τ). Then the solution

space Z(A) consists of those pairs (x , y)T in E × E satisfying that, for every

τ > 0, Cnτ (t)x +
∫ t
0
Cnτ (s)y ds ∈ R(C), t ∈ [0, τ) and that the mapping t 7→

C−1
(
Cnτ

(t)x+
∫ t
0
Cnτ

(s)y ds
)
, t ∈ [0, τ) is (nτ+1)-times continuously differentiable.

Moreover, the solution space Z2(A) consists exactly of those vectors x ∈ E such
that, for every τ > 0, Cnτ (t)x ∈ R(C) and that the mapping t 7→ C−1Cnτ (t)x,
t ∈ [0, τ) is nτ -times continuously differentiable. If x ∈ Z2(A) and t ∈ [0, τ),

then the mild solution u(·, x) is given by the formula u(·, x) = dnτ

dtnτ C
−1Cnτ (t)x,

t > 0. If A generates a (DCF) G and x ∈ Z2(A), then we also denote by G(δt)
the above solution. Then it is easily seen that: G(δt)(Z2(A)) ⊆ Z2(A), t > 0,
2G(δs)G(δt)x = G(δt+s)x + G(δ|t−s|)x, t, s > 0 and G(φ)x =

∫∞
0
φ(t)G(δt)x dt,

φ ∈ D0. Furthermore, R(G) ⊆ Z2(A). In order to see that, assume x ∈ R(G) and
x = G(φ)y for some φ ∈ D0 and y ∈ E. Put

(261) u(t;x) :=
1

2

[
G
(
φ(· − t)

)
y +G

(
φ(· + t)

)
y +G

(
φ(t− ·)

)
y
]
, t > 0.

Using the continuity of G, one gets that u(·;x) ∈ C([0,∞) : E). Denote f(t) :=
G
(
φ(· − t)

)
y, g(t) := G

(
φ(· + t)

)
y and h(t) := G

(
φ(t− ·)

)
y, t > 0. Then f, g, h ∈

C2([0,∞) : E), f ′(t) = −G
(
φ′(·−t)

)
y, f ′′(t) = G

(
φ′′(·−t)

)
y, g′(t) = G

(
φ′(·+t)

)
y,

g′′(t) = G
(
φ′′(· + t)

)
y, h′(t) = −G

(
φ′(t − ·)

)
y and h′′(t) = G

(
φ′′(t − ·)

)
y, t > 0.

The above equalities, the partial integration and the representation formula (261)
taken together imply:

A

t∫
0

(t− s)u(s;x) ds

=
1

2

t∫
0

(t−s)
[
G
(
φ′′(·−s)

)
y+G

(
φ′′(·+s)

)
y+φ′(s)Cy+G

(
φ′′(s−·)

)
y−φ′(s)Cy

]
ds

=
1

2

[
−

t∫
0

G
(
φ′(·−s)

)
y ds+

t∫
0

G
(
φ′(·+s)

)
y ds−

t∫
0

G
(
φ′(s−·)

)
y ds

]
= u(t;x)−x,

t > 0, as required.



262 3. ABSTRACT CAUCHY PROBLEMS...

Let (Np) and (Rp) be sequences of positive numbers which satisfy (M.1). Fol-
lowing Chou (cf. for example [207, Definition 3.9, p. 53]), we write Np ≺ Rp iff, for

every δ ∈ (0,∞), supp∈N0

Npδ
p

Rp
<∞.

Now we state the following relationship between distribution cosine functions
and ultradistribution semigroups. It is an extension of [189, Theorem 3.1] where
the corresponding result is proved for the class of dense exponential distribution
cosine functions.

Theorem 3.4.39. Suppose that a closed linear operator A generates a (DCF).If
(Mp) additionally satisfies Mp ≺ p!s, for some s ∈ (1, 2), then ±iA generate (Mp)-
ultradistribution semigroups of ∗-class.

Proof. We will prove the assertion only for iA since the same arguments
work for −iA. The existence of numbers α, β, M > 0 and n ∈ N such that
E2(α, β) ⊆ ρ(A) and that ∥R(λ :A)∥ 6 M(1 + |λ|)n, λ ∈ E2(α, β) is obvious. Put
Γ′ := ∂E2(α, β) and Γ := iΓ′. Then it can be easily seen that Γ′ = Γ′

1 ∪ Γ′
2 ∪ Γ′

3,
where:

1. Γ′
1 is a part of the parabola {η + iξ : η = β2 − ξ2

4β2 }; further on, Γ′
1 is

contained in some compact subset of C, 2. Γ′
2 = {t2 − e2αt + 2teαti : t > β} and

Γ′
3 = {t2 − e2αt − 2teαti : t > β}. This implies that, for every c ∈ ( 1

2 , 1),

(262) lim
λ∈Γ, |λ|→∞

| Imλ|c

|Reλ|
= ∞.

It is clear that the curve Γ divides the complex plane into two disjunct open sets.
Denote by Ω one of such two sets which contains a ray (ω,∞), for some ω > 0. Let
k > 0 be fixed. Since Ω ⊆ ρ(iA) and ∥R(· : iA)∥ is polynomially bounded on Ω,
the proof will be completed if one shows that there exists a suitable Ck > 0 with

(263)
{
λ ∈ C : Reλ >M(k|λ|) + Ck

}
⊆ Ω,

where M(·) denotes the associated function of the sequence (p!s). Note, (262)
implies that, for every c ∈ ( 1

2 , 1), there exists a sufficiently large Kc > 0 satisfying

(264)
{
λ ∈ C : Reλ > | Imλ|c +Kc

}
⊆ Ω.

Choose an s ∈ (1, 2) with Mp ≺ p!s. Then an application of [207, Lemma 3.10]

gives that there exists a constant Ck,s > 0 with ρ
1
s 6 M(kρ) + lnCk,s, ρ > 0.

Moreover, there exists a suitable K 1
s
> 0 such that (264) holds with c = 1

s . Now

it is straightforward to see that (263) is valid with Ck = lnCk,s + K 1
s
. Indeed, if

λ ∈ C and Reλ > M(k|λ|) + lnCk,s + K 1
s
, then Reλ > |λ| 1s + K 1

s
, and due to

(264), λ ∈ Ω. �

Since

lim
ξ→+∞

Γ(ξ)

ξξ−
1
2 e−ξ

=
√

2π,

Gevrey’s type sequence (Mp) fulfills the assumption of Theorem 3.4.39 iff s ∈ (1, 2).
Before going any further, we would like to recommend for the reader [239] for

the basic properties of hypercyclic C-distribution cosine functions. Given a number
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τ > 0 and a function K ∈ L1
loc([0,∞)), define the mappings TK : L1[0, τ ] → L1[0, τ ]

and T ′
K : L1[0, τ ] → L1[0, τ ] by TKf := K ∗0 f and T ′

Kf := K ◦ f , f ∈ L1[0, τ ].
The next generalization of Titchmarsh–Foiaş theorem has been recently proved in
[196]:

Theorem 3.4.40. Let τ > 0 and K ∈ L1
loc([0,∞)). Then the following asser-

tions are equivalent:

(i) 0 ∈ suppK.
(ii) The mapping TK is injective.

(iii) The mapping TK has dense range.
(iv) The mapping T ′

K is injective.
(v) The mapping T ′

K has dense range.

In the remaining part of this subsection, which is of some independent interest,
we will assume that K ∈ L1

loc([0,∞)) and that 0 ∈ suppK. Set DK := T ′
K(D+)

and WK := (T ′
K)−1. Notice that, in the case K(t) = tα−1

Γ(α) , α > 0, we have that

DK = D+ as well as that the operator T ′
K , resp. WK , is just the Weyl fractional

integral of growth α, resp. the Weyl fractional derivative of growth α. It is known
that the space DK is invariant under differentiation and the convolution products
∗0, ◦ and ∗c.

Theorem 3.4.41. [196] (i) Let K ∈ L1
loc([0,∞)), let 0 ∈ suppK and let

(SK(t))t>0 be a global K-convoluted C-semigroup having A as a subgenerator. De-
fine GK : DK → L(E) by GK(f)x :=

∫∞
0
WKf(t)SK(t)x dt, f ∈ DK , x ∈ E.

Then:

(i.1) GK(f ∗0 g)C = GK(f)GK(g), f, g ∈ DK .
(i.2) GK(f)A ⊆ AGK(f) and AGK(f)x = GK(−f ′)x − f(0)Cx, f ∈ DK ,

x ∈ E.
(i.3) Let x ∈ D(A). Then GK(f ′)x = −

∫∞
0
WKf(t) ddtSK(t)x dt, f ∈ DK .

(i.4) Let L ∈ L1
loc([0,∞)), 0 ∈ suppL and SK∗0L(t)x =

∫ t
0
L(t − s)SK(t)x dt,

t > 0, x ∈ E. Then GK∗0L(f) = GK(f), f ∈ DK∗0L.

(ii) Let K ∈ L1
loc([0,∞)), 0 ∈ suppK and let (CK(t))t>0 be a global K-convol-

uted C-cosine function having A as a subgenerator. Define GcK : DK → L(E) by
GcK(f)x :=

∫∞
0
WKf(t)CK(t)x dt, f ∈ DK , x ∈ E. Then:

(ii.1) GcK(f ∗c g)C = GcK(f)GcK(g), f, g ∈ DK .
(ii.2) GcK(f)A ⊆ AGcK(f) and AGK(f)x = GK(f ′′)x + f ′(0)Cx, f ∈ DK ,

x ∈ E.
(ii.3) Let L ∈ L1

loc([0,∞)), 0 ∈ suppL and CK∗0L(t)x =
∫ t
0
L(t − s)CK(t)x dt,

t > 0, x ∈ E. Then GcK∗0L
(f) = GcK(f), f ∈ DK∗0L.

Let τ : [0,∞) → [0,∞) be a locally integrable function. Then it is said that
τ ∈ AK iff there exists M > 0 such that

s∫
0

τ(u)|K(r + s− u)| du+

r+s∫
r

τ(u)|K(r + s− u)| du 6 Cτ(s)τ(r), 0 6 s 6 r,
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and that τ ∈ BK iff AK ∋ τ is non-decreasing, continuous and there exist M > 0

such that
∫ t
0
|K(s)| ds 6 Mτ(t), t > 0. Define ∥f∥K,τ :=

∫∞
0

|WKf(t)|τ(t) dt,
f ∈ DK . Then ∥ · ∥K,τ is a norm on DK and the completion of DK in the norm
∥ · ∥K,τ is denoted by TK(τ). Recall [196], TK(τ) is densely and continuously
embedded in L1([0,∞)) if τ ∈ BK . The next theorem can be simply reformulated
in the case C ̸= I.

Theorem 3.4.42. [196] (i) Let K ∈ L1
loc([0,∞)), let 0 ∈ suppK and let

(SK(t))t>0 be a global K-convoluted semigroup generated by A. Assume τ ∈ AK
and ∥SK(t)∥ 6 Mτ(t), t > 0, for some M > 0. Define ΨK : (TK(τ), ∗0) → L(E)
by ΨK(f)x :=

∫∞
0
WKf(t)SK(t)x dt, f ∈ TK(τ), x ∈ E. Then ΨK is a bounded

algebra homomorphism.

(ii) Let K ∈ L1
loc([0,∞)), 0 ∈ suppK and let (CK(t))t>0 be a global K-

convoluted cosine function generated by A. Assume τ ∈ BK and ∥CK(t)∥ 6Mτ(t),
t > 0, for some M > 0. Define ΦK : (TK(τ), ∗c) → L(E) by ΦK(f)x :=∫∞
0
WKf(t)CK(t)x dt, f ∈ TK(τ), x ∈ E. Then ΦK is a bounded algebra ho-

momorphism.

3.4.6. Examples. Recall, if A generates an (EDCF) then the spectrum σ(A)

of A must be contained in the parabolic domain {η + iξ : η 6 ω2 − ξ2

4ω2 } for some
ω > 0.

Example 3.4.43. Let

E :=

{
f ∈

∩
k∈N0

Ck([k,∞)) : f(0) = 0, ∥f∥E := sup
k∈N0

sup
t>k

|f (k)(t)| <∞
}
.

Consider now the operator

Af := f ′′, D(A) := {f ∈ E : f ′, f ′′ ∈ E},
and suppose that A generates a (DCF). Then there are constants ω > 0, M > 0
and k ∈ N such that {λ ∈ R : λ > ω2} ⊆ ρ(A) and ∥R(λ2 :A)∥ 6 Mλk, λ > ω.
Choose

g(x) =


2x, 0 6 x 6 1

2

−2x+ 2, 1
2 < x < 1

0, x > 1.

Then ∥g∥E = 1 and

Mλk+1 > ∥λR(λ2 :A)g∥E = ∥ sinh(λt) ∗0 g∥E

> 1

2
sup
t>0

∣∣∣∣∣
t∫

0

(
eλ(t−s) − e−λ(t−s)

)
g(s) ds

∣∣∣∣∣ > sup
t∈[0, 12 ]

∣∣∣∣∣
t∫

0

(
eλ(t−s) − e−λ(t−s)

)
s ds

∣∣∣∣∣
> sup
t∈[0, 12 ]

∣∣∣−2t

λ
+
eλt− e−λt

λ2

∣∣∣ > ∣∣∣−1

λ
+
e

λ
2 − e

−λ
2

λ2

∣∣∣ > e
λ
2

λ2
− 1

λ
− e

−λ
2

λ2
, λ > ω.

Hence, A does not generate a (DCF). Note that operator −d/dx with maximal
domain in E is the generator of a (DS) in E (cf. [252, Example 3.5]).
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Example 3.4.44. Let E := Lp((0,∞)), 1 6 p 6 ∞, m(x) := (x+ iex)2, x > 0,
(Af)(x) := m(x)f(x), D(A) := {f ∈ E : mf ∈ E}. Clearly, {x + iex : x > 0}
∩ Λ̃1,1 = ∅. Denote d := dist({±(x+ iex) : x > 0}, ∂Λ̃1,1). Then d > 0, Λ̃2

1,1 ⊆ ρ(A)

and ∥R(λ : A)∥ 6 1
d2 , λ ∈ Λ̃2

1,1. Therefore, A generates a (DCF). Since σ(A) =

{(x + iex)2 : x > 0}, we have σ(A) ∩ Πω ̸= ∅ for all ω > 0. Thus, A does not
generate an (EDCF). Moreover, one can easily see that A generates a local once
integrated cosine function (C1(t))t∈[0,1) on E which is given by

(C1(t)f)(x) :=
sinh((x+ iex)t)f(x)

x+ iex
, 0 6 t < 1, x > 0, f ∈ E.

It is clear that (C1(t))t∈[0,1) can be extended on [0, 1] and that supt∈[0,1] ∥C1(t)∥ 6 1.

However, A does not generate a local sine function on [0, τ) for any τ > 1.

Example 3.4.45. Let us consider now Hardy spaces of holomorphic functions
in the upper half-plane. Denote R2

+ = {z ∈ C : Im z > 0}. Then the Hardy space
Hp(R2

+), 1 6 p < ∞, is defined as the space of all holomorphic functions defined
on R2

+ such that

∥F∥Hp(R2
+) :=

(
sup
y>0

∫
R

|F (x+ iy)|pdx

)1/p

<∞,

for all F ∈ Hp(R2
+). Let B(·) be a holomorphic function on R2

+ with B(R2
+) ⊆

{η + iξ : η 6 ω2 − ξ2

4ω2 }, for some ω > 0, and

(AF )(z) := B(z)F (z), Im z > 0, D(A) := {F ∈ Hp(R2
+) : AF ∈ Hp(R2

+)}.

One can simply verify that Πω+1 ⊆ ρ(A) and ∥λR(λ2 :A)∥ 6 |λ|
2ω+1 , Reλ > ω + 1.

The last estimate implies that, for every α > 2, the operator A is the generator of
an exponentially bounded α-times integrated cosine function. Thus, A generates
an (EDCF) in Hp(R2

+). Particularly, one can take

B(z) =
( 1

πi
ln
z − 1

z + 1
+ a
)2
, Im z > 0 (a ∈ C), or B(z) = − ln2 z, Im z > 0,

where ln z = ln |z| + i arg(z), z ∈ Cr {0}.

Example 3.4.46. Let E be an arbitrary Banach space, P ∈ L(E) and P 2 = P .
Define G(φ)x :=

∫∞
0
φ(t) dt Px, x ∈ E,φ ∈ D. Then G−1(φ)x =

∫∞
0
tφ(t) dt Px,

x ∈ E, φ ∈ D, and

∞∫
0

tφ(t) dt

∞∫
0

ψ(s)s ds+

∞∫
0

φ(t) dt

∞∫
0

sψ(s) ds =

∞∫
0

∞∫
0

(t+ s)φ(t)ψ(s) ds dt

=

∞∫
0

u∫
0

uφ(u− v)ψ(v) dv du =

∞∫
0

u

u∫
0

φ(u− v)ψ(v) dv du =

∞∫
0

u(φ ∗0 ψ)(u) du,

for all φ, ψ ∈ D. Hence, G is a pre-(DCF) in E, and

{x, y} ⊆ Kern(P ) ⇔ G(φ)x+G−1(φ)y = 0 for all φ ∈ D0.
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Note also that G is a pre-(DSG) in E satisfying N (G) = Kern(P ).

The next illustrative example shows that Theorem 3.4.39 does not hold in the
case of a general sequence (Mp).

Example 3.4.47. Let E := Lp(R), 1 6 p <∞ and m(x) := (1− x2

4 )+ix, x ∈ R.
Define a closed linear operator A on E by Af(x) =: m(x)f(x), x ∈ R, D(A) :=
{f ∈ E : mf ∈ E}. Then it is obvious that A generates a dense exponential (DCF)

and that σ(iA) = {x + (1 − x2

4 )i : x ∈ R}. Suppose now Mp = p!2. We will show
that iA generates an ultradistribution semigroup of the Beurling class and that iA
is not the generator of an ultradistribution semigroup of the Roumieu class. First of
all, we know that there exist constants ω > 0, a > 0 and b > 0 with aρ1/2 6M(ρ),
ρ > ω and M(ρ) 6 bρ1/2, ρ > 0. The validity of above statements immediately
follows if we prove that (cf. the next section for further information):

∂Ωk,C ∩ σ(iA) = ∅, for every k ∈ (4/a2,∞) and a sufficiently large C > 0,(265)

∂Ωk,C ∩ σ(iA) ̸= ∅, for every k ∈ (0, 4/b2) and C > 0.(266)

Let k ∈ ( 4
a2 ,∞). Let C > ω

k . In order to prove that (265) holds, note that: η+ iξ ∈
∂Ωk,C ⇒ η > C, k

√
η2 + ξ2 > kη > kC > ω. Hence, η = M

(
k
√
η2 + ξ2

)
+ C >

a
√
k 4
√
η2 + ξ2 + C. This estimate ensures that, for a sufficiently large C > 0, the

curve ∂Ωk,C lies above the graph of the function f(η) = −
√

(η−C)4

a4k2 − η2; moreover,

f(η) ∼ − η2

a2k , η → +∞. Therefore, the choice of k implies that there exists a

suitable β > 0 such that the part of the parabola ξ = − η2

a2k , η > β has the
empty intersection with σ(iA). This immediately implies (265), while (266) follows
similarly from the fact that, for every k ∈ (0, 4

b2 ) and C > 0, the interior of the

parabola η = − ξ2

b2k is strictly contained in that of ξ = −η2

4 and that, for η + iξ ∈
∂Ωk,C , we have η = M

(
k
√
η2 + ξ2

)
+ C 6 b

√
k 4
√
η2 + ξ2 + C. At the end of this

analysis, we point out that the implication: G is an ultradistribution fundamental
solution of ∗-class ⇒

∩
φ∈D∗

0
Kern(G(φ)) = {0}, is not true in general (see [59]).

In the case of densely defined operators, the concept of regular ultradistribution
semigroups of Beurling class was introduced by Ciorănescu in [59] for this purpose.
An application of [59, Proposition 2.6] gives that the operator iA, considered above,
generates a regular ultradistribution semigroup of (p2p)-class G (cf. [59] and the
next section for the notion). Similarly, if Mp = p!s, s > 2, then it can be proved that
iA does not generate an ultradistribution semigroup of Beurling, resp., Roumieu
class. The same assertions hold for −iA.

3.5. Ultradistribution and hyperfunction semigroups

Unless stated otherwise, we assume in this section that (Mp) satisfies (M.1),
(M.2) and (M.3′). The use of condition (M.3) will be explicitly emphasized.

3.5.1. The structural properties of ultradistribution semigroups. We
define L-ultradistribution semigroups following [282] and ultradistribution semi-
groups following [252] and [418].
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Definition 3.5.1. Let G ∈ D′∗
0 (L(E)). Then it is said that G is an L-ultra-

distribution semigroup of ∗-class iff:

(U.1) G(ϕ ∗ ψ) = G(ϕ)G(ψ), ϕ, ψ ∈ D∗
0 ,

(U.2) N (G) :=
∩
ϕ∈D∗

0
Kern(G(ϕ)) = {0},

(U.3) R(G) :=
∪
ϕ∈D∗

0
R(G(ϕ)) is dense in E, and

(U.4) For every x ∈ R(G) there exists a function u ∈ C([0,∞) : E) satisfying
u(0) = x and G(ϕ)x =

∫∞
0
ϕ(t)u(t) dt, ϕ ∈ D∗.

The continuity of mapping ∗0 : D∗ × D∗ → D∗ is obvious and the continuity
properties of ∗0 remain similar to those of ∗. This justifies the next definition of a
(non-dense) ultradistribution semigroup.

Definition 3.5.2. Let G ∈ D′∗
0 (L(E)). If G satisfies

(U.5) G(ϕ ∗0 ψ) = G(ϕ)G(ψ), ϕ, ψ ∈ D∗,

then it is said that G is a pre-(UDS) of ∗-class. If (U.5) and (U.2) are fulfilled for
G, then G is said to be an ultradistribution semigroup of ∗-class, in short, (UDS).
We say that a pre-(UDS) is dense if G additionally satisfies (U.3).

If G ∈ D′∗
0 (L(E)), then the condition:

(U.2′) suppG(·)x * {0} for every x ∈ E r {0},
is equivalent to (U.2). This follows from the fact that

0 ̸= x0 ∈
∩
ϕ∈D∗

0

{x ∈ E : G(ϕ)x = 0} ⇐⇒ suppG(·)x0 = {0}.

As in the case of distribution semigroups, if (U.3) holds, then:

[(U.1) ∧ (U.2) ∧ (U.4)] ⇐⇒ [(U.5) ∧ (U.2)].

It is clear that if G is a pre-(UDS) of ∗-class, then N (G) is a closed subspace of E.
The next example is an insignificant modification of [252, Example 2.3].

Example 3.5.3. Let E be a Banach space and let T be a bounded linear
operator on E such that there exist C > 0 and L > 0, in the Beurling case, resp.,
for every L > 0 there exists C > 0, in the Roumieu case, with ∥T p+1∥ 6 C Lp

Mp
,

p ∈ N0. Define G(ϕ) :=
∑∞
p=0 ϕ

(p)(0)T p+1, ϕ ∈ D∗. Then G is a pre-(UDS) of

∗-class satisfying N (G) = E. The verification of this fact is left to the reader. Note
that we do not require that T is a nilpotent operator as in [252, Example 2.3].
The concrete construction in the Beurling case goes as follows. Let E := l∞ and
T (⟨xp⟩) := ⟨xp+1/mp⟩, ⟨xp⟩ ∈ l∞. Since (mp) is increasing, it is straightforward to
see that ∥T p∥ = 1/Mp, p ∈ N0. Define G as above. Then G is a pre-(UDS) of the
Beurling class and T is not a nilpotent operator. The corresponding example for
the Roumieu case can be constructed similarly.

Borel’s type theorem for ultradifferentiable functions (cf. [360]) implies that,
for every complex sequence (an) such that an = 0, n > n0, there exists an f ∈ D∗

satisfying f (n)(0) = an, n ∈ N0. This allows us to obtain the structural characteri-
zation of a pre-(UDS) of ∗-class on its kernel space N (G).
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Proposition 3.5.4. Assume additionally that (M.3) holds. Let G be a pre-
(UDS) of ∗-class and G := G(·)|N (G). Then G is a pre-(UDS) of ∗-class on N (G)
and there exists an operator T ∈ L(N (G)) such that there exist C > 0 and L > 0
in the Beurling case, resp., for every L > 0 there exists a suitable C > 0, in the
Roumieu case, such that

∥T j+1∥ 6 C
Lj

Mj
, j ∈ N0 and G =

∞∑
j=0

δ(j) ⊗ (−1)jT j+1.

Proof. It is clear that (U.5) implies that N (G) is invariant under G and that
G is a pre-(UDS) of ∗-class on N (G) with N (G) = N (G). Moreover, suppG ⊆ {0}
and an application of Theorem 1.3.5(ii) yields that there exists a sequence (Tj)j∈N0

in L(E) such that there exist C > 0 and L > 0 in the Beurling case, resp., for every
L > 0 there exists C > 0 in the Roumieu case, satisfying

∥Tj∥ 6 C
Lj

Mj
, j ∈ N0 and G =

∞∑
j=0

δ(j) ⊗ Tj .

Because of (U.5) and (ϕ ∗0 φ)(j)(0) =
∑j−1
k=0 ϕ

(k)(0)φ(j−1−k)(0), j ∈ N, one obtains

∞∑
j=1

j−1∑
k=0

(−1)jϕ(k)(0)φ(j−1−k)(0)Tjx =

∞∑
j, k=0

(−1)j+kϕ(j)(0)φ(k)(0)TjTkx,

for all x ∈ N (G) and ϕ, φ ∈ D∗. Choose ϕ ∈ D∗ with ϕ(0) = 1 and ϕ(j)(0) = 0,
j ∈ N, to obtain

∞∑
j=1

(−1)jφ(j−1)(0)Tjx =

∞∑
j=0

(−1)jφ(j)(0)T0Tjx, x ∈ N (G), φ ∈ D∗.

One can choose a sequence (φk)k∈N0
in D∗ with φ

(j)
k (0) = δjk, j, k ∈ N0 to conclude

that Tk = (−1)kT k+1
0 , k ∈ N. This proves the proposition. �

Let G be a (UDS) of ∗-class and let T ∈ E ′∗
0 . Then we define G(T ) as in the

case of distribution semigroups:

G(T ) =
{

(x, y) ∈ E × E : G(T ∗ ϕ)x = G(ϕ)y for all ϕ ∈ D∗
0

}
.

Clearly, G(δ) = I and G(T ), T ∈ E ′∗
0 is a closed linear operator. The generator of

G is defined by A := G(−δ′).
Since for φ ∈ D∗

0 , φ+ := φ1[0,∞) ∈ E ′∗
0 , the definition of G(φ+) is clear.

Notice, the adjoint of a pre-(UDS) of ∗-class G, denoted by G∗, is also a pre-
(UDS) of ∗-class.

Theorem 3.5.5. Let G be a pre-(UDS) of ∗-class, F := E/N (G) and q be the
corresponding canonical mapping q : E → F .

(i) Let H ∈ L(D∗, L(F )) be defined by qG(φ) := H(φ)q for all φ ∈ D∗. Then
H is a (UDS) of ∗-class in F .

(ii) ⟨R(G)⟩ = R(G), where ⟨R(G)⟩ denotes the linear span of R(G).



3.5. ULTRADISTRIBUTION AND HYPERFUNCTION SEMIGROUPS 269

(iii) Assume that G is not dense. Put R := R(G) and H := G|R. Then H is
a dense pre-(UDS) of ∗-class in R.

(iv) The adjoint G∗ of G is a pre-(UDS) of ∗-class on E∗ with N (G∗) =

R(G)
◦
.

(v) If E is reflexive, then N (G) = R(G∗)
◦
.

(vi) G∗ is a (UDS) of ∗-class on E∗ iff G is a dense pre-(UDS) of ∗-class. If
E is reflexive, then G∗ is a dense pre-(UDS) of ∗-class on E∗ iff G is a
(UDS) of ∗-class.

(vii) G is a (UDS) of ∗-class iff (U.1), (U.2) and (U.6) hold, where
(U.6) G(φ+) = G(φ), φ ∈ D∗.

(viii) N (G) ∩ ⟨R(G)⟩ = {0}.

Theorem 3.5.6. Let G be a (UDS) of ∗-class and let S, T ∈ E ′∗
0 , φ ∈ D∗

0,
ψ ∈ D∗, x ∈ E. Then the following holds:

(i) (G(φ)x, G(

m︷ ︸︸ ︷
T ∗ · · · ∗ T ∗φ)x) ∈ G(T )m, m ∈ N.

(ii) G(S)G(T ) ⊆ G(S ∗ T ) with G(S)G(T ) = D(G(S ∗ T )) ∩ D(G(T )), and
G(S) +G(T ) ⊆ G(S + T ).

(iii) (G(ψ)x,G(−ψ′)x− ψ(0)x) ∈ G(−δ′).
(iv) If G is dense, its generator is densely defined.

Before proceeding further, we would like to emphasize that [59, Lemma 2.7]
implies that every (Mp)-ultradistribution semigroup G of [54] is also a pre-(UDS)
of the Beurling class. Using Theorem 3.5.5, we are in a position to introduce the
generator of a pre-(UDS) of ∗-class.

Definition 3.5.7. Let G be a pre-(UDS) of ∗-class in E. Then A is the
generator of G if A is the generator of a (UDS) H in F = E/N (G), which is given
in Theorem 3.5.5(i).

The case in which G is a (UDS) of ∗-class is not excluded: one can simply
identify E with F . The generator of a pre-(UDS) of ∗-class is a closed linear
operator from F into F . Our definition is slightly different from the definition
of the generator of a pre-(DS) given in [199]. In fact, following Definition 2 and
Corollary 1 of [199], the generator of a pre-(DS) in E is a closed linear operator
from E into F .

Definition 3.5.8. Let D be another Banach space and let P ∈ D′∗
0 (L(D,E)).

Then G ∈ D′∗
0 (L(E,D)) is an ultradistribution fundamental solution for P if

P ∗G = δ ⊗ IE and G ∗ P = δ ⊗ ID.

As in the case of distributions, an ultradistribution fundamental solution for
P ∈ D′∗

0 (L(D,E)) is uniquely determined. This, combined with the next theorem,
implies that every (UDS) is uniquely determined by its generator.

Theorem 3.5.9. Let A be a closed operator in E. If A generates a (UDS) G
of ∗-class, then G is an ultradistribution fundamental solution for

P := δ′ ⊗ ID(A) − δ ⊗A ∈ D′∗
0

(
L([D(A)], E)

)
.
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In particular, if T ∈ D′∗
0 (E), then u = G ∗ T is a unique solution of the problem

(267) −Au+
∂

∂t
u = T, u ∈ D′∗

0 ([D(A)]).

Furthermore, suppT ⊆ [α,∞) implies suppu ⊆ [α,∞), where α > 0. Conversely,
if G ∈ D′∗

0 (L(E, [D(A)])) is an ultradistribution fundamental solution for P , then G
is a pre-(UDS) of ∗-class in E and the generator of G is the closure of the operator
A := {(q(x), q(y)) : (x, y) ∈ A}.

Proof. If A generates a (UDS) G of ∗-class, then Theorem 3.5.6(iii) implies
that G is an ultradistribution fundamental solution for P , and consequently, u = G∗
T is a unique solution of (267). Clearly, if suppT ⊆ [α,∞), then suppu ⊆ [α,∞).
Let G ∈ D′∗

0 (L(E, [D(A)])) be an ultradistribution fundamental solution for P .
Using the same arguments as in the proof of [252, Theorem 3.10], we have that G
is a pre-(UDS) of ∗-class in E. We will only prove that the generator of G is the
closure of A. First of all, let us prove that A is a closable operator. Let (xn) be
a sequence in D(A) such that q(xn) → 0 and A(q(xn)) → q(y), n → ∞, for some
y ∈ E. These assumptions imply the existence of a subsequence (xnk

)k of (xn)n
such that

inf
z∈N (G)

∥xnk
+ z∥ < 1/k and inf

z∈N (G)
∥Axnk

− y + z∥ < 1/k, k ∈ N.

Hence, there exist two sequences (zk)k and (z1k)k in N (G) satisfying

∥xnk
+ zk∥ < 1/k and ∥Axnk

− y + z1k∥ < 1/k, k ∈ N.
Let ϕ ∈ D∗

0 be fixed. Since G is an ultradistribution fundamental solution for P ,

one has G(ϕ)Axn = −G(ϕ
′
)xn, n ∈ N. Then we obtain:

∥ −G(ϕ)y∥ = ∥G(ϕ)(Axnk
− y + z1k) −G(ϕ)(Axnk

+ z1k)∥
6 ∥G(ϕ)∥/k + ∥G(ϕ)Axnk

∥ = ∥G(ϕ)∥/k + ∥G(−ϕ′)(xnk
+ zk)∥

6 ∥G(ϕ)∥/k + ∥G(ϕ′)∥/k, k ∈ N.

Letting k → ∞, we obtain that q(y) = 0 and that A is a closable linear operator in
F . Suppose that A1 generates G. If (q(x), q(y)) belongs to the closure of A for some
x, y ∈ E, then there exists a sequence ((xn, yn))n in A such that (q(xn), q(yn)) →
(q(x), q(y)), n → ∞, in F × F . Applying the same arguments as above, we get
that there exist a subsequence (xnk

)k of (xn)n and two sequences (zk)k and (z1k)k
in N (G) such that

∥xnk
− x+ zk∥ < 1/k and ∥ynk

− y + z1k∥ < 1/k, k ∈ N.
Let ϕ ∈ D∗

0 be fixed. If φ ∈ D∗
0 , then∥∥G(φ)

(
G(−ϕ′)x−G(ϕ)y

)∥∥
=
∥∥G(φ)[G(ϕ′)(xnk

−x+zk)−G(ϕ′)(xnk
+zk)+G(ϕ)(ynk

−y+z1k)−G(ϕ)(ynk
+z1k)]

∥∥
=
∥∥G(φ)[G(ϕ′)(xnk

− x+ zk) +G(ϕ)(ynk
− y + z1k)]

∥∥
6
(
∥G(φ ∗0 ϕ)∥ + ∥G(φ ∗0 ϕ′)∥

)
/k, k ∈ N.
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Thus, G(−ϕ′)x − G(ϕ)y ∈ N (G), i.e., H(−ϕ′)q(x) = H(ϕ)q(y), ϕ ∈ D∗
0 , and A1

contains the closure of A. This implies that D′∗
0 ([D(A)]) is isomorphic to a subspace

of D′∗
0 ([D(A1)]). The first part of the proof gives that H is an ultradistribution

fundamental solution for P := δ
′ ⊗ ID(A1) − δ⊗A1. Applying again the arguments

given in the final part of the proof of [252, Theorem 3.10], we obtainD(A1) = D(A).
The proof is completed. �

Corollary 3.5.10. Let G ∈ D′∗
0 (L(E, [D(A)])). Then G is an ultradistribution

fundamental solution for P = δ′⊗I[D(A)]−δ⊗A ∈ D′∗
0 (L([D(A)], E)) and N (G) =

{0} iff G is an (UDS) of ∗-class generated by A.

Remark 3.5.11. In the case of distribution semigroups, if G is a fundamental
solution for P in the sense of [252, Definition 3.9], then G is a (DS), i.e., the follow-
ing also holds: N (G) = {0}. Generally, it is not true in the case of ultradistribution
semigroups. There exist a Banach space E, a closed linear operator A in E and
an ultradistribution fundamental solution G for P such that N (G) ̸= {0}; see, for
example, [64, p. 156].

Question. If G is an ultradistribution fundamental solution for P , and simul-
taneously, a (UDS) of ∗-class, then it can be proved that the operator A defined
above is closed. Is it true if G is just an ultradistribution fundamental solution for
P?

Theorem 3.5.12. Assume that (M.3) holds. Let T ∈ D′∗
0 (E) and let A be a

closed, densely defined operator. Assume, further, that the equation

−Au+
∂

∂t
u = T, u ∈ D′∗

0 ([D(A)])

has a unique solution depending continuously on T so that if suppT ⊆ [α,∞), then
suppu ⊆ [α,∞). Moreover, assume that for T = δ the corresponding ultradistribu-
tion fundamental solution u satisfies suppu(·, x) * {0}, x ∈ E r {0} (cf. (U.2′)).
Then A is the generator of an L-ultradistribution semigroup of ∗-class.

Outline of the proof. The proof is similar to that of [282, Theorem 5.1].
Since the mapping H : u 7→ −Au + ∂

∂tu is an isomorphism of D′∗
0 ([D(A)]) onto

D′∗
0 (E) which commutes with translations, one can prove that H is a convolution

operator, i.e., that there exists G ∈ D′∗
0 (L(E, [D(A)])) such that H(T ) = G ∗ T .

Using this fact and Theorem 1.3.5(ii), one can repeat literally the proof of Lions
given in [282]. The essential change concerning the proof of [282, Theorem 5.1]
is related to the proof of (U.2) for the solution u of the equation −Au + ∂

∂tu =
δ (cf. [282, Part 5, p. 152]). Clearly, (U.2) is a consequence of the assumption
suppu(·, x) * {0}, x ∈ E r {0}. �

3.5.2. Exponential ultradistribution semigroups.

Definition 3.5.13. (i) Let D be a Banach space and let P ∈ D′∗
0 (L(D,E)).

Then we say that G ∈ D′∗
0 (L(E,D)) is an exponential ultradistribution fundamental

solution for P if G is an ultradistribution fundamental solution for P and if there
exists ω > 0 such that e−ωtG ∈ S ′∗(L(E)).
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(ii) Suppose G is a (UDS) of ∗-class. Then it is said that G is an exponential
ultradistribution semigroup of ∗-class, in short (EUDS), iff there exists ω > 0 such
that e−ωtG ∈ S ′∗(L(E)).

Theorem 3.5.14. Suppose A is a closed linear operator. Then there exists an
exponential ultradistribution fundamental solution of ∗-class for A iff there exist
a > 0, k > 0 and L > 0, in the Beurling case, resp., there exists a > 0 such that,
for every k > 0 there exists Lk > 0, in the Roumieu case, such that:

{λ ∈ C : Reλ > a} ⊆ ρ(A),(268)

∥R(λ :A)∥ 6 LeM(k|λ|), λ ∈ C, Reλ > a, resp.,(269)

∥R(λ :A)∥ 6 Lke
M(k|λ|) for all k > 0 and λ ∈ C with Reλ > a.(270)

Proof. We will prove the assertion only in the Beurling case since the proof is
quite similar in the Roumieu case. Suppose first that G is an exponential ultradis-
tribution fundamental solution of (Mp)-class for A and that e−ωtG ∈ S ′(Mp)(L(E))

for some ω > 0. Let h ∈ E(Mp)(R), r > 0 and let h(t) = 0, t < −r and
h(t) = 1, t > 0. Then the function t 7→ h(t)e(ω−λ)t, t ∈ R belongs to the
space S(Mp) for all λ ∈ C with Reλ > ω. This implies that the definition of
G̃(λ) := G(h(t)e−λt) := G

(
e−ωt(h(t)e(ω−λ)t)

)
is meaningful for all λ ∈ C with

Reλ > ω. Since e−ωtG is an ultradistribution fundamental solution for A − ω,
we get that (A − ω)G(e−ωtφ)x = G(−e−ωtφ′)x − φ(0)x, x ∈ E, φ ∈ D(Mp). The
continuity of e−ωtG on S(Mp), and the denseness of D(Mp) in S(Mp), imply that
the previous equality holds for all φ ∈ S(Mp). Then a simple computation with
φ(t) = h(t)e(ω−λ)t, t ∈ R, and the obvious inclusion suppG ⊆ [0,∞), imply:

AG̃(λ)x = λG̃(λ)x− x, x ∈ E, Reλ > ω.

Hence, (λ−A)G̃(λ)x = x, x ∈ E, Reλ > ω and, since G̃(λ)A ⊆ AG̃(λ), Reλ > ω,

G̃(λ)(λ − A)x = x, x ∈ D(A), Reλ > ω. This implies (268) with a = ω and

R(λ :A)x = G̃(λ)x, x ∈ E, Reλ > a. It is obvious that there exists h > 0 such

that ∥G̃(λ)∥ = ∥(e−ωtG)
(
h(t)e(ω−λ)t

)
∥ 6 ∥h(t)e(ω−λ)t)∥Mp,h provided Reλ > ω.

Then the estimate (269) follows easily from the preceding inequality, which ends
the proof of necessity.

To prove sufficiency, suppose β > a, l > max(k, 1), α > 0 and put φ̃(λ) :=∫∞
−∞ eλtφ(t) dt, λ ∈ C, φ ∈ D(Mp) and G(φ) := 1

2πi

∫
Γl
φ̃(λ)R(λ :A) dλ, φ ∈ D(Mp),

where Γl denotes the upwards oriented boundary of the ultra-logarithmic region
Λα,β,l = {λ ∈ C : Reλ > αM(l| Imλ|) + β}. Proceeding as in [59], [210] and [307,
Section 2.3], one gets that G is an ultradistribution fundamental solution for A.
By the Paley–Wiener type theorem (cf. [59, Theorem 1.1] and [207]) and Cauchy
theorem, we can deform the path of integration Γl to the straight line connecting
ā− i∞ and ā+ i∞, where ā ∈ (a, β). Hence,

G(φ) =
1

2πi

ā+i∞∫
ā−i∞

φ̃(λ)R(λ :A) dλ, φ ∈ D(Mp).
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We will prove that e−ωtG ∈ S ′(Mp)(L(E)) for all ω ∈ (ā,∞). Suppose φ ∈ D(Mp),
suppφ ⊆ [a, b], a < 0 and b > 0. Let ζ ∈ D(Mp), ζ(t) = 1, t ∈ [−1, 1] and ζ(t) = 0,
t > 2 and let a function ξ ∈ D(Mp) satisfy ξ(t) = 1, 1 6 t 6 b+ 1, ξ(t) = 0, t 6 −2
and ξ(t) = ζ(t − b − 1), t > b + 1. Then φξ ∈ D(Mp), φ(t)ξ(t) = φ(t), t > 0 and
G(φ) = G(φξ). The partial integration and the proof of implication (III) ⇒ (II) of
[307, Theorem 2.3.1] imply that, for every h > 0, n ∈ N0, β ∈ N0 and λ ∈ C with
Reλ = ā:

∣∣∣ẽ−ω·φξ(λ)
∣∣∣ =

∣∣∣∣∣ (−1)n

(λ− ω)n

b∫
−2

e(λ−ω)t(φξ)(n)(t)dt

∣∣∣∣∣ 6 1

|λ− ω|n

b∫
−2

e−(ω−ā)t|(φξ)(n)(t)|dt

6 1

|λ− ω|n

b∫
−2

e−(ω−ā)t

(1 + t2)
β
2

dt
∥φξ∥Mp,h

hn+β
MnMβ 6 e2(ω−ā)− e−(ω−ā)b

(ω − ā)|λ− ω|n
Mn

hn
Mβ

hβ
∥φξ∥Mp,h.

Since the preceding equality holds for every n ∈ N and

inf
n∈N0

Mn

hn|λ− ω|n
= e−M(h|λ−ω|),

one gets that, for every h > 0, β ∈ N0 and λ ∈ C with Reλ = ā, there exists a
constant M , independent of a and b, such that:

(271)
∣∣∣ẽ−ω·φξ(λ)

∣∣∣ 6M
Mβ

hβ
e−M(h|λ−ω|)∥φξ∥Mp,h.

By the definition of ∥ · ∥Mp,h and the logarithmic convexity Mp+q >MpMq, p, q ∈
N0, one gets that, for every h > 0:

∥φξ∥Mp,h = sup
t∈R, α, β∈N0

{ hα+β

MαMβ
(1 + t2)β/2|(φξ)(α)(t)|

}
6 sup
t∈R, α, β∈N0

{
hα+β

MαMβ
(1 + t2)β/2

α∑
i=0

(
α

i

)
|φ(α−i)(t)∥ξ(i)(t)|

}

6 sup
t∈R, α, β∈N0

{
hα+β

Mα−iMiMβ
(1 + t2)β/2

α∑
i=0

(
α

i

)
|φ(α−i)(t)∥ξ(i)(t)|

}

6 sup
t∈R, α, β∈N0

{
hα−ihβhi

Mi

α∑
i=0

(
α

i

)
|ξ(i)(t)| 1

(4h)α+β−i

}
∥φ∥Mp,4h(272)

6 sup
t∈R, α, β∈N0

α∑
i=0

(
α

i

)
1

2i
(2h)i|ξ(i)(t)|

Mi

1

4α+β−i
∥φ∥Mp,4h

6 sup
α∈N0

α∑
i=0

(
α

i

)
1

2i
1

4α−i
∥φ∥Mp,4h∥ξ∥Mp,2h,[−2,b+3]

6 ∥φ∥Mp,4h∥ξ∥Mp,2h,[−2,b+3].
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In view of (271)–(272), one yields that there exists M > 0, independent of a and
b, such that, for every β ∈ N0 and h > 0:

(273)
∣∣∣ẽ−ω·φξ(λ)

∣∣∣ 6M
Mβ

hβ
e−M(h|λ−ω|)∥φ∥Mp,4h.

The estimate (273) combined with [51, Lemma 2.1.3] indicates that there exists
h > 0 such that ∥e−ωtG(φ)∥ 6 Const ∥φ∥Mp,4h, φ ∈ D(Mp). The proof of theorem
is thereby complete. �

The relations between exponential ultradistribution semigroups of the Beurl-
ing class and exponentially bounded convoluted semigroups have been recently
discussed in [227].Notice that the preceding theorem enables one to transfer the
assertion of [227, Theorem 3.10] to Roumieu case as well as to remove any density
assumption from the formulation of [227, Theorem 3.10(i)].

Example 3.5.15. ([249, Example 1.6], cf. also Example 2.8.3) Define

EMp
:=
{
f ∈ C∞[0, 1] : ∥f∥Mp

:= sup
p>0

∥f (p)∥∞
Mp

<∞
}
,

and AMp
:= −d/ds, D(AMp

) =: {f ∈ EMp
: f ′ ∈ EMp

, f(0) = 0}. Put now

(G(φ)f)(x) :=

x∫
0

φ(x− t)f(t) dt, φ ∈ D(Mp), f ∈ EMp
, x ∈ [0, 1].

Clearly, G(φ)f ∈ C∞[0, 1] and

dp

dxp
(G(φ)f)(x) =

x∫
0

φ(p)(x− t)f(t) dt+

p−1∑
k=0

φ(p−1−k)(0)f (k)(x),

for every φ ∈ D(Mp), f ∈ EMp
, x ∈ [0, 1] and p ∈ N0. Since Mp+q >MpMq, p, q ∈

N0, the preceding equality implies that, for every p ∈ N0, x ∈ [0, 1], φ ∈ D(Mp) and
f ∈ EMp :

∣∣∣ 1

Mp

dp

dxp
(G(φ)f)x)

∣∣∣ 6 ∥φ∥Mp,1,[0,1]∥f∥ +

p−1∑
k=0

∣∣∣φ(p−1−k)(0)

Mp−k

∣∣∣∥f∥
6 ∥φ∥Mp,1,[0,1]

(
1 +

p−1∑
k=0

1

mp−k

)
∥f∥ 6 ∥φ∥Mp,1,[0,1]

(
1 +

∞∑
p=0

1

mp

)
∥f∥.

Hence, ∥G(φ)∥ 6 ∥φ∥Mp,1,[0,1]

(
1 +

∑∞
p=0

1
mp

)
and G ∈ D′(Mp)

0 (L(E)). The condi-

tions (U.1) and (U.2) can be proved trivially, and consequently, G is an (EUDS) of
(Mp)-class whose generator is obviously the operator AMp . By Theorem 3.6.4 given
in the next subsection, we have that there exists an injective operator C ∈ L(EMp)
such that AMp

generates a differentiable local C-regularized semigroup (S(t))t∈[0,2).
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Put, for every fixed f ∈ EMp
, x ∈ [0, 1] and t ∈ [0, 1], u(t, x) := (S(t)f)(x). Ac-

cording to the differentiability of (S(t))t∈[0,2) and the proof of Theorem 3.6.4, one
immediately obtains that u is a solution of the problem

(P ) :

{ u ∈ C1([0, 1] × [0, 1])
ux + ut = 0
u(0, x) = (Cf)(x), u(t, 0) = 0.

Hence, for every (t, x) ∈ [0, 1] × [0, 1],

(S(t)f)(x) =

{
0, 0 6 x 6 t

[Cf ](x− t), 1 > x > t.

In particular, S(t) = 0, t ∈ [1, 2). Define now S̃(t), t > 0 by S̃(t) := S(t), t ∈ [0, 1]

and S̃(t) := 0, t > 1. Then (S̃(t))t>0 is a global differentiable C-regularized
semigroup generated by AMp

. The previous analysis and Theorem 3.6.9 imply that
there exists an injective operator C1 ∈ L(E) such that AMp

generates a global

differentiable C1-regularized semigroup (S̃1(t))t>0 such that S̃1(t) = 0, t > 1 and

that supt>0, p∈N0

hp

Mp

∥∥ dp
dtp S̃1(t)

∥∥ <∞ for every fixed number h > 0.

Example 3.5.16. [252] Let AMp
, EMp

and G be as in the preceding example.
Choose an element x ∈ E and a functional x∗ ∈ (D(A))◦ with ⟨x∗, x⟩ = 1. Define

now G̃ := G+ δ ⊗ ⟨x∗, ·⟩x. Then G̃ satisfies (U.1), (U.2), (U.4), but not (U.5).

Ultradistribution semigroups are important in the analysis of some classes
of pseudo-differential evolution systems with constant coefficients (cf. [123] and
[226]). We also refer to [54], [255] and [344] for examples of differential operators
generating ultradistribution semigroups.

The following result has been recently proved by using the theory of convoluted
semigroups.

Theorem 3.5.17. [226] Suppose s > 1, Mp = p!s, there exists a (tempered)
ultradistribution fundamental solution of ∗-class for A, B ∈ L(E) and BA ⊆ AB.
Then there exists a (tempered) ultradistribution fundamental solution of ∗-class for
A+B.

It is quite questionable whether Theorem 3.5.17 holds in the case of a general
sequence (Mp) satisfying (M.1), (M.2) and (M.3′).

Problem. Suppose s > 1, Mp = p!s, A generates a (UDS) of ∗-class, B ∈ L(E)
and BA ⊆ AB. Denote by G the ultradistribution fundamental solution of ∗-class
for A+B (cf. Theorem 3.5.17). Is it true that G satisfies (U.2)?

Example 3.5.18. [226] (i) Suppose c > 1, σ > 0 and ς ∈ R, M > 0, k ∈ N,

σ(A) ⊆ ±Πc,σ,ς and ∥R(λ :A)∥ 6M(1 + |λ|)k, λ /∈ ±Πc,σ,ς .

Let p(x) :=
∑n
i=0 aix

i, x ∈ C, where n ∈ N, an > 0 and an−i ∈ C, i = 1, . . . , n.

Then the operators ±ip(A) generate ultradistribution semigroups of
(
p!

n

n−1+ 1
c

)
-

class. Herein Πc,σ,ς = {λ ∈ C : Reλ > σ| Imλ|c + ς}.



276 3. ABSTRACT CAUCHY PROBLEMS...

(ii) Let p be as in (i) and let A (or −A) generate an exponentially bounded
integrated cosine function. Then the operators ±ip(A) generate:

(ii.1) ultradistribution semigroups of (p!s)-class provided s ∈
(
1, 2n

2n−1

]
,

(ii.2) ultradistribution semigroups of {p!s}-class provided s ∈
(
1, 2n

2n−1

)
.

(iii) Let p be as in (i) and let A (or −A) generate a (local) integrated cosine
function. Then the operators ±ip(A) generate ultradistribution semigroups of ∗-
class provided Mp = p!s and s ∈

(
1, 2n

2n−1

)
.

(iv) Suppose c ∈ (0, 1), σ > 0, ς ∈ R, σ(A) ⊆ ±
(
C r {λ2 : λ ∈ Πc,σ,ς}

)
and

∥R(· : A)∥ is polynomially bounded on the complement of {λ2 : λ ∈ Πc,σ,ς}. Let p
be as in (i). Then ±ip(A) generate ultradistribution semigroups of ∗-class provided
Mp = p!s and s ∈

(
1, 2n

2n+c−1

)
.

The proof of the following structural result follows from the analysis of Ko-
matsu [210], Melnikova, Filinkov [307, Section 2.3] and Melnikova, Anufrieva [309,
Subsection 1.3.4].

Theorem 3.5.19. There exists an ultradistribution fundamental solution G of
∗-class for a closed linear operator A iff there exist l > 0 and β > 0, in the Beurling
case, resp., for every l > 0 there exists βl > 0, in the Roumieu case, such that:

Ω
(Mp)
l,β :=

{
λ ∈ C : Reλ >M(l|λ|) + β

}
⊆ ρ(A), resp.,

Ω
{Mp}
l,βl

:=
{
λ ∈ C : Reλ >M(l|λ|) + βl

}
⊆ ρ(A)

and

∥R(λ :A)∥ 6 βeM(l|λ|), λ ∈ Ω
(Mp)
l,β , resp.,

∥R(λ :A)∥ 6 βle
M(l|λ|), λ ∈ Ω

{Mp}
l,βl

.

It is obvious that the polynomial boundedness of ∥R(· : A)∥ on Ω
(Mp)
l,β (Ω

{Mp}
l,βl

)

implies that G is a (UDS) of (Mp)-class ({Mp}-class).

3.5.3. Differentiable ultradistribution semigroups.

Definition 3.5.20. Suppose G is a (UDS) of ∗-class and α ∈ (0, π2 ]. Then
it is said that G is an (infinitely) differentiable ultradistribution semigroup (of ∗-
class), resp. an analytic ultradistribution semigroup of angle α (and of ∗-class) iff
the mapping t 7→ G(δt) ∈ L(E), t > 0 is (infinitely) differentiable, resp. iff the
mapping t 7→ G(δt) ∈ L(E), t > 0 can be analytically extended to the sector Σα.

Let G be a (DS), resp., a (UDS) of ∗-class generated by A and let the mapping
t 7→ G(δt) ∈ L(E), t > 0 be continuous. Then (G(δt))t>0 is a semigroup [252, 226]

and this implies that there exists ω0 ∈ [−∞,∞) such that ω0 = limt→∞
ln ∥G(δt)∥

t .
The asymptotic behavior of (G(δt))t>0 in a neighborhood of zero is quite com-
plicated. For instance, Da Prato and Mosco [86, p. 575] constructed an example
of a densely defined operator A generating an analytic (DS) G of angle π

2 which

satisfies 4
e2

1
t 6 ∥G(δt)∥ 6 (2 + 16

e4
1
t2 )1/2, t > 0. Notice also that A generates an
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exponentially bounded, analytic once integrated semigroup of angle π
2 and that A

cannot be the generator of a C0-semigroup.
Let G be a dense (DS), resp., a dense (UDS) of ∗-class in E. Then G∗ is a

dense (DS), resp., a dense (UDS) of ∗-class [252, 226] in E∗ and it can be simply
proved that (infinite) differentiability, resp. analyticity, of G, implies (infinite) dif-
ferentiability, resp. analyticity, of G∗. In order to characterize spectral properties of
the infinitesimal generators of differentiable ultradistribution semigroups and their
relationship to differentiable convoluted semigroups, we need the following family
of kernels [63]. Since (Mp) satisfies (M.1), (M.2) and (M.3′), one can define, for

every l > 0, the next entire function ωl(λ) :=
∏∞
p=1

(
1 + lλ

mp

)
, λ ∈ C. Then it is

clear that:

|ωl(λ)| > sup
k∈N

k∏
p=1

∣∣∣1 +
lλ

mp

∣∣∣ > sup
k∈N

k∏
p=1

l|λ|
mp

> sup
k∈N

(l|λ|)k

Mp
, Reλ > 0.

Hence, |ωl(λ)| > eM(l|λ|), Reλ > 0. It is also worth noting that, for every α ∈ (0, π2 ),

p ∈ N0 and λ ∈ Σπ
2 +α, we have |1 + lλ

mp
| > l| Imλ|

mp
> l(1+tanα)−1|λ|

mp
. Hence,

(274) |ωl(λ)| > eM(l(1+tanα)−1|λ|), α ∈ (0, π/2), l > 0, λ ∈ Σπ
2 +α.

Put now Kl(t) := L−1
(

1
ωl(λ)

)
(t), t > 0, l > 0. Then, for every l > 0, 0 ∈ suppKl

and Kl is an infinitely differentiable function in t > 0.

Proposition 3.5.21. Suppose A is a closed linear operator and there exists
an exponential ultradistribution fundamental solution of ∗-class for A. Then there
exists k > 0 such that, for every compact set K ⊆ [0,∞) and for every l > k, there
exists hl,K > 0, in the Beurling case, resp., for every compact set K ⊆ [0,∞) and
for every l > 0, there exists hl,K > 0, in the Roumieu case, such that A generates an
exponentially bounded, Kl-convoluted semigroup (SKl

(t))t>0 such that the mapping

t 7→ SKl
(t), t > 0 is infinitely differentiable and that sup

t∈K, p∈N0

hp
l,K

Mp

∥∥ dp
dtpSKl

(t)
∥∥ <∞.

Proof. Put, for some ā > 0 and l > 0, in the Beurling case, resp., for every
l > 0, in the Roumieu case:

SKl
(t)x =:

1

2πi

ā+i∞∫
ā−i∞

eλtK̃l(λ)R(λ :A)x dλ, x ∈ E, t > 0

and notice that

dp

dtp
SKl

(t) =
1

2πi

ā+i∞∫
ā−i∞

eλtλpK̃l(λ)R(λ :A) dλ, t > 0, p ∈ N0.

The proof immediately follows from the previous equality and a simple computa-
tion. �

Theorem 3.5.22. Let A be a closed linear operator. Suppose that A generates
a dense differentiable (UDS) G of ∗-class. Then there exists h > 0 such that, for
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every σ > 0, there exist Cσ > 0 and Mσ > 0, in the Beurling case, resp. for every
h > 0 and σ > 0, there exist Cσ > 0 and Mσ,h > 0 in the Roumieu case, such that
(200) holds and that

∥R(λ :A)∥ 6Mσe
M(h|λ|), λ ∈ Υσ, resp.,(275)

∥R(λ :A)∥ 6Mσ,he
M(h|λ|), λ ∈ Υσ.(276)

Specifically, G is an (EUDS) of ∗-class.

Proof. We will prove the assertion in the Beurling case and remark the minor
changes in the Roumieu case. Suppose ε ∈ (0, 1), ψ ∈ D(Mp), ψ(t) = 1, 0 6 t 6 1

2 ,

ψ(t) = 0, t > 1 and ψ(t) = 0, t 6 −1. Set ψε(t) := ψ( tε ), t ∈ R. By the proof of
implication (II) ⇒ (III) of [307, Theorem 2.3.1], it follows that

(277) (λ−A)G(e−λtψε(t)) = I +G(e−λtψ′
ε(t)), λ ∈ C.

Since the set R(G) is dense in E, we have G(e−λtψ′
ε(t))x =

∫ ε
ε/2

e−λtψ′
ε(t)G(δt)x dt

for all x ∈ E and λ ∈ C (cf. [27, Remarks, p. 416] and [226]). Then the partial
integration gives that G(e−λtψ′

ε(t))x = 1
λ

∫ ε
ε/2

e−λt ddt (ψ
′
ε(t)G(δt)x) dt for all x ∈ E

and λ ∈ Cr {0}. This implies

(278)
∥∥G(e−λtψ′

ε(t))
∥∥ 6 1

|λ|
1

2
ε sup

1
2 ε6t6ε

e−tReλMε,

with Mε = sup
1
2 ε6t6ε

∥ ddt (ψ
′
ε(t)G(δt))∥. Define Φε by

Φε :=
{
λ ∈ C : λ ̸= 0, Reλ 6 0, ln |λ| > −εReλ+ ln(εMε)

}
∪
{
λ ∈ C : λ ̸= 0, Reλ > 0, ln |λ| > − ε

2 Reλ+ ln(εMε)
}
.

Then ∥G(e−λtψ′
ε(t))∥ 6 1

2 , λ ∈ Φε, and as in the proof of [27, Theorem 3], one gets
Φε ⊆ ρ(A) and

(279) ∥R(λ :A)∥ 6 2∥G(e−λtψε(t))∥, λ ∈ Φε.

By the continuity of G, it follows that there exist h′ > 0 and C > 0, independent
of ε > 0, such that:

(280) ∥G(e−λtψε(t))∥ 6 C∥e−λtψε(t)∥Mp,2h′,[0,1] = C∥e−λtψε(t)∥Mp,2h′,[ ε2 ,ε]
.

In the Roumieu case, the previous estimate holds for every h′ > 0 and a corre-
sponding Ch′ > 0. By (279)–(280) and the inequality [307, (2.3.9), Theorem 2.3.1,
p. 170], we reveal that, for every λ ∈ Φε:

(281) ∥R(λ :A)∥ 6 2C∥e−λtψε(t)∥Mp,2h′,[ ε2 ,ε]
6 2C∥ψε∥Mp,h′,[ ε2 ,ε]

eM( λ
h′ )− 1

2 εReλ.

With (281) in view, one obtains that there are an h′ > 0 and a constant M ′
ε > 0 (in

the Roumieu case, such a constant M ′
ε also depends on h′) such that ∥R(λ :A)∥ 6

M ′
εe
M( λ

h′ )(1 + |λ|), λ ∈ Φε. Especially, with ε = 1
2 , one yields that

{
λ ∈ C : Reλ >

max
(
1, 4| ln( 1

2M1/2)|
)}

⊆ ρ(A) and Theorem 3.5.14 yields that G is an (EUDS).

Put aε := max
(
1, 2| ln(εMε)|

ε

)
. Let Nε > e

ε
2a1/2+| ln(εMε)| and let h > 1

h′ . Then h
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is independent of ε ∈ (0, 1) and there exists an appropriate constant M ′′
ε > 0 such

that the set

∆ε :=
{
λ ∈ C : Reλ 6 a1/2, Reλ > − 1

ε ln | Imλ|+ 1
ε lnNε

}
∪
{
λ ∈ C : Reλ > a1/2

}
belongs to ρ(A) and that ∥R(λ :A)∥ 6 M ′′

ε e
M(h|λ|), λ ∈ ∆ε. In the case σ > 1,

(275) follows with ε = 1
σ , ω = a1/2, Cσ = 1

ε lnNε, Mσ = M ′′
ε , and the above

chosen h; the case σ ∈ (0, 1) is completely regardless and this ends the proof of
theorem. �

Let a > 0, b ∈ (0, 1) and set Ka,b(t) := L−1
(
e−aλ

b)
(t), t > 0, where 1b = 1.

Example 3.5.23. (i) Suppose Mp = p!s, s ∈ (1, 2), E := Lp(R), 1 6 p 6 ∞,
D(A) := {f ∈ E : (x+ix2)f(x) ∈ E} and Af(x) := (x+ix2)f(x), x ∈ R, f ∈ D(A).
Set δ := 1

s . Then A generates a global K1,δ-convoluted semigroup since, for every
τ > 0, A generates a K1,δ-convoluted semigroup on [0, τ). To see this, suppose

M(λ) 6 Cs|λ|1/s, λ ∈ C, τ ∈ (0,∞) and α > 0 fulfills τ 6 cos(δπ/2)
Csα1/s . It is checked

at once that there exists β > 0 such that Λ′
α,β,1 ⊆ ρ(A) and that the resolvent

of A is bounded on Λ′
α,β,1, where Λ′

α,β,1 = {λ ∈ C : Reλ > M(αλ) + β}. Put

Γ := ∂Λ′
α,β,1 and define, for every f ∈ E, x ∈ R and t ∈

[
0, cos(δπ/2)

Csα1/s

)
:

(Sδ,τ (t)f)(x) :=
1

2πi

∫
Γ

eλt−λ
δ

λ− (x+ ix2)
dλf(x).

Since
∣∣e−λδ ∣∣ 6 e− cos(δπ/2)|λ|δ , Reλ > 0 and∣∣eλt−λδ ∣∣ 6 eβteM(αλ)t−cos(δπ/2)|λ|δ 6 eβteCsα

1/s|λ|1/st−cos(δπ/2)|λ|δ ,

for all λ ∈ Γ, one can straightforwardly verify that (Sδ,τ (t))t∈[0,τ) is a local K1,δ-
convoluted semigroup generated by A. Notice that the mapping t 7→ Sδ,τ (t), t ∈[
0, cos(δπ/2)

Csα1/s

)
is infinitely differentiable and that

dp

dtp
Sδ,τ (t)f(·) =

1

2πi

∫
Γ

λpeλt−λ
δ

λ− (· + i·2)
dλf(·), f ∈ E, t ∈

[
0,

cos(δπ/2)

Csα1/s

)
.

This implies that A generates a global non-exponentially bounded K1,δ-convoluted
semigroup (Sδ(t))t>0 that is infinitely differentiable in the uniform operator topol-
ogy for t > 0. Furthermore, for every τ > 0, there exists hτ > 0 such that

supt∈[0,τ), p∈N0

hp
τ

Mp

∥∥ dp
dtpSδ(t)

∥∥ <∞. On the other hand, it is obvious that A gener-

ates a (UDS) G of ∗-class which is given by (G(φ)f)(x) = 1
2πi

∫
Γ

φ̃(λ)
λ−(x+ix2) dλf(x),

φ ∈ D∗, f ∈ E, x ∈ R. Let t > 0, f ∈ E and g ∈ E. By the Paley–Wiener theorem
and the Cauchy theorem, it follows that (G(φ)f)(x) = φ̃(x + ix2)f(x), φ ∈ D∗

0 ,

f ∈ E, x ∈ R and G(δt)f = g iff e(x+ix
2)tf(x) = g(x), x ∈ R. Hence, G(δt) /∈ L(E)

and G is not differentiable.

(ii) Let E and A be as in examples 2.8.3 and 3.5.15. Then {λ ∈ C : Reλ > 0}
⊆ ρ(A) and ∥R(λ :A)∥ 6 C

∑∞
p=0

|λ|p
Mp

6 CeM(l̃|λ|), Reλ > 0, for some C > 0 and
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l̃ > 0. Let (G(φ)f)(t) =
∫ t
0
φ(t− s)f(s) ds, φ ∈ D(Mp), f ∈ E, t ∈ [0, 1]. Then G is

a non-dense (EUDS) generated by A and G(δt) = 0, t > 1. Suppose now t ∈ (0, 1).
Then it can be simply verified that, for every s ∈ [0, 1] and f ∈ D(G(δt)),

(G(δt)f)(s) =

{
0, 0 6 s 6 t

f(s− t), 1 > s > t.

In particular, G(δt) /∈ L(E) and G is not differentiable. Furthermore, for every

h > 0, there exists l > l̃ such that A generates a bounded Kl-convoluted semigroup
(SKl

(t))t>0 that is infinitely differentiable in t > 0 and satisfies

sup
p∈N0, t∈K

hp

Mp

∥∥∥ dp
dtp

SKl
(t)
∥∥∥ <∞

for every compact set K ⊆ [0,∞). This implies that relations between differentiable
convoluted semigroups and differentiable (UDS)’s are more complicated than it
looks at first sight. Further on, the previous example also shows that the existence
of a number h > 0 satisfying that, for every σ > 0, there exist Cσ > 0 and Mσ > 0
such that (200) and (276) hold, is not sufficient for the generation of differentiable

(UDS)’s. Indeed, put hλ(t) = e−λt
∫ t
0
eλsf(s) ds, f ∈ E, λ ∈ C. Then we know

that R(λ :A)f = hλ if Reλ > 0. It is clear that, for every t ∈ [0, 1] and n ∈ N with
n > 2:

(282)
dn

dtn
hλ(t) =

dn−1

dtn−1
f(t) +

n−1∑
k=1

(−λ)k
dn−1−k

dtn−1−k f(t) + (−λ)ng(t).

Let σ > 0 and let Cσ > 0 be arbitrarily chosen. Then the supposition Reλ >
−σ ln | Imλ| + Cσ implies

|hλ(t)| 6
t∫

0

eReλ(t−s)ds∥f∥L∞[0,1] 6 e−Reλ∥f∥L∞[0,1]

6 e−Cσ | Imλ|σ∥f∥L∞[0,1], t ∈ [0, 1].

By (282), the previous inequality and logarithmic convexity, one gets that

(283)
1

Mn

∥∥∥ dn
dtn

hλ(·)
∥∥∥
L∞[0,1]

6 C ′
σ| Imλ|σeM((l̃+ 1

2 )|λ|)∥f∥, n ∈ N, n > 2.

Since λhλ(t) + h′λ(t) = f(t), t ∈ [0, 1] and hλ(0) = 0, one has that ∥h′λ∥L∞[0,1] 6
(1 + e−Cσ |λ∥ Imλ|σ)∥f∥L∞[0,1]. Keeping in mind (283), we obtain that there exists
Mσ > 0 such that, for every λ ∈ C with Reλ 6 0 and Reλ > −σ ln | Imλ| + Cσ,

the following holds: ∥R(λ : A)∥ 6 Mσe
M((l̃+1)|λ|). Therefore, (200) and (276)

hold but A does not generate a differentiable (UDS), as claimed. Notice also that,
in this example, we have ρ(A) = C. Suppose now that E = SMp,1 and define
A as above. Then ∥R(· : A)∥ can be estimated similarly and there exists l > 0
such that A generates a global bounded Kl-convoluted semigroups that is infinitely
differentiable for t > 0.
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Theorem 3.5.24. Suppose A generates a dense (UDS) G of ∗-class. Then the
following assertions hold.

(i) Suppose h > 0, G is infinitely differentiable and the mapping t 7→ G(δt),
t > 0 satisfies that, for every compact set K ⊆ (0,∞),

∥G(δt)∥Mp,h,K := sup
t∈K, p∈N0

hp

Mp

∥∥∥ dp
dtp

G(δt)
∥∥∥ <∞.

Then:

∃ω > 0 ∃h′ > 0 ∀σ > 0 ∃Cσ,h > 0 ∃Mσ,h > 0, in the Beurling case, resp.,

∃ω > 0 ∀h′ > 0 ∀σ > 0 ∃Cσ,h > 0 ∃Mσ,h,h′ > 0, in the Roumieu case,

such that

Υσ,h :=
{
λ ∈ C : Reλ 6 ω, Reλ > Cσ,h − σM

( |λ|
H + 1/h

)}
∪ {λ ∈ C : Reλ > ω} ⊆ ρ(A)

and

(284) ∥R(λ :A)∥ 6Mσ,he
M(

|λ|
h′ )+

1
2M(

|λ|
H+1/h

), λ ∈ Υσ,h, in the Beurling case,

resp.,

(285) ∥R(λ :A)∥ 6Mσ,h,h′eM(
|λ|
h′ )+

1
2M(

|λ|
H+1/h

), λ ∈ Υσ,h, in the Roumieu case.

Herein H designates the constant appearing in the formulation of (M.2).

(ii) G is infinitely differentiable and satisfies ∥G(δt)∥Mp,h,K < ∞ for every
compact set K ⊆ (0,∞) and for every h > 0 iff there exist ω > 0, k > 0 and h′ > 0
such that, for every σ > 0, there exist Cσ > 0 and Mσ > 0, in the Beurling case,
resp., there exist ω > 0 and k > 0 such that, for every h′ > 0 and σ > 0, there exist
Cσ > 0 and Mσ,h′ > 0, in the Roumieu case, such that

Ξσ,k :=
{
λ ∈ C : Reλ 6 ω, Reλ > Cσ − σM(k|λ|)

}
∪
{
λ ∈ C : Reλ > ω

}
⊆ ρ(A)

and

∥R(λ :A)∥ 6Mσe
M(h′|λ|), λ ∈ Ξσ,k, in the Beurling case, resp.,

∥R(λ :A)∥ 6Mσ,h′eM(h′|λ|), λ ∈ Ξσ,k, in the Roumieu case.

Proof. We will employ the terminology given in the proof of Theorem 3.5.22.
To prove (i), notice that the partial integration implies that, for every n ∈ N0,

∥∥G(e−λtψ′
ε(t))

∥∥ 6 1

|λ|n

ε∫
ε/2

∥∥∥e−λt dn
dtn
(
ψ′
ε(t)G(δt)

)∥∥∥dt
6 1

|λ|n

ε∫
ε/2

e−Reλt
n∑
i=0

(
n

i

)
1

εi+1

∣∣ψ(i+1)(t/ε)
∣∣∥∥∥ dn−i
dtn−i

G(δt) dt
∥∥∥
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6 1

|λ|n
sup

ε
26t6ε

e−Reλt
n∑
i=0

(
n

i

)
∥ψ∥Mp,

1
ε ,[

1
2 ,1]

∥∥∥ dn−i
dtn−i

G(δt)
∥∥∥
L∞[ ε2 ,ε]

Mi+1,

and since (M.2) is assumed

6 AHM1∥ψ∥Mp,
1
ε ,[

1
2 ,1]

1

|λ|n
sup

ε
26t6ε

e−Reλt
n∑
i=0

(
n

i

)
Mn−i∥G(δt)∥Mp,h,[

ε
2 ,ε]

hn−i
HiMi.

By the logarithmic convexity

6 AHM1∥ψ∥Mp,
1
ε ,[

1
2 ,1]

1

|λ|n
sup

ε
26t6ε

e−Reλt
n∑
i=0

(
n

i

)∥G(δt)∥Mp,h,[
ε
2 ,ε]

hn−i
HiMn

6 AHM1
Mn(H + 1/h)n

|λ|n
∥ψ∥Mp,

1
ε ,[

1
2 ,1]

∥G(δt)∥Mp,h,[
ε
2 ,ε]

sup
ε
26t6ε

e−Reλt.(286)

The validity of (286) for all n ∈ N0 enables one to conclude that
(287)∥∥G(e−λtψ′

ε(t))
∥∥ 6 AHM1e

−M(
|λ|

H+1/h
)∥ψ∥Mp,

1
ε ,[

1
2 ,1]

∥G(δt)∥Mp,h,[
ε
2 ε]

sup
ε
26t6ε

e−Reλt.

Suppose now that Reλ 6 0 and put Mε,h := AHM1∥ψ∥Mp,
1
ε ,[

1
2 ,1]

∥G(δt)∥Mp,h,[
ε
2 ε]

.

Then (287) implies that, for every λ ∈ C r {0} with Reλ 6 0 and Reλ >
− 1
ε ln 1

2Mε,h
− 1

εM
( |λ|
H+1/h

)
, we have ∥G(e−λtψ′

ε(t))∥ 6 1
2 and λ ∈ ρ(A). Argu-

ing as in the proof of Theorem 3.5.22, with σ = 1
ε , one gets that there exist

ω > 0, Cσ,h > 0 and Mσ,h > 0, in the Beurling case, resp., ω > 0, Cσ,h > 0 and
Mσ,h,h′ > 0, in the Roumieu case, such that Υσ,h ⊆ ρ(A) and that (284), resp.,
(285) holds, finishing the proof of (i).

The necessity in (ii) follows from (i) with h = 1. We will prove sufficiency by
the following modification of the proof of [28, Theorem 3]. Suppose h > 0 and (ρn)
is a regularization sequence in D∗. By the Paley–Wiener theorem, one can simply
prove that G(φ)x = 1

2πi

∫
Γσ
φ̃(λ)R(λ :A)x dλ, φ ∈ D∗

0 , x ∈ E, where Γσ denotes

the upwards oriented boundary of Ξσ,k. Define the curves Γ1
σ, Γ2

σ and Γ3
σ similarly

as in the proof of Theorem 3.2.19. Clearly,

ρ̃n(λ) =

1/n∫
0

eλtnρ(nt) dt =
1

λk

1/n∫
0

eλtnk+1ρ(k)(nt) dt, λ ∈ Cr {0}, k ∈ N0, n ∈ N.

This implies |ρ̃n(λ)| 6
(
n
|λ|
)k Mk

hk ∥ρ∥Mp,h,[0,1], λ ∈ C r {0}, k ∈ N0, h > 0, n ∈ N.

Since this inequality holds for every k ∈ N0, one yields

(288) |ρ̃n(λ)| 6 e−M(
h|λ|
n )∥ρ∥Mp,h,[0,1], λ ∈ Cr {0}, h > 0, n ∈ N.

On the other hand,

dp

dtp
G(δt ∗ ρn)x =

1

2πi

∫
Γσ

eλtR(λ :A)λpρ̃n(λ)x dλ, t > 0, n ∈ N, p ∈ N0,(289)
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lim
n→∞

dp

dtp
G(δt ∗ ρn)x = G(δt)x, t > 0, p ∈ N0, x ∈ R(G),(290)

uniformly on every compact of (0,∞). Then (288)–(290) and [51, Lemma 2.1.3]
together imply the existence of constants Cσ,h > 0 and C ′

σ,h > 0 so that:

hp

Mp

∥∥∥ dp
dtp

G(δt ∗ ρn)
∥∥∥

6 ∥ρ∥Mp,1,[0,1]
Mσe

Cσ

2π

∫
Γ1
σ∪Γ3

σ

e−σtM(k|λ|)eM(h′|λ|)eM(h|λ|)|dλ| + eωt∥ρ∥Mp,1,[0,1]C
′
σ,h

6 Cσ,h

(
eωt +

∫
Γ1
σ∪Γ3

σ

e−σtM(k|λ|)+ 3
2 (

h
k+1)M(k|λ|)+ 3

2 (
h′
k +1)M(k|λ|)|dλ|

)

6 Cσ,h

(
eωt +

∫
Γ1
σ∪Γ3

σ

e(3+
3h+3h′

2k −σt)M(k|λ|)|dλ|
)
<∞,

for every t > 1
σ

(
3 + 3h+3h′

2k

)
. By the preceding estimate, (290), the arbitrariness

of σ > 0, and the denseness of R(G) in E, we infer that the mapping t 7→ G(δt),
t > 0 is infinitely differentiable and that, for every compact subset K of (0,∞) and
h > 0, we have ∥G(δt)∥Mp,h,K <∞, as required. �

Remark 3.5.25. Suppose s > 1, Mp = p!s and there exist σ > 0, k > 0,
M > 0, ω > 0 and n ∈ N such that Ξσ,k ⊆ ρ(A) and that ∥R(λ :A)∥ 6 M(1 +
|λ|)n, λ ∈ Ξσ,k. Then, by [28, Theorem 5] and Remark 3.2.20(i), A generates a

(DS) of class A1/s. Scalar type operators generating Gevrey ultradifferentiable C0-
semigroups (cf. [299, Theorem 5.1]) as well as generators of Crandall–Pazy class of
C0-semigroups (cf. [165, Definition 5.4, Theorem 5.5] and [117]) and their adjoints
can be used for the construction of (DS)’s of A1/s class.

Theorem 3.5.26. Let A generate a dense (EUDS) G of ∗-class and α ∈ (0, π2 ].

(i) (Real analyticity) Suppose that there exist ω > 0 and h > 0, such that for
every ε ∈ (0, 1), there exist Cε > 0 and Mε > 0, in the Beurling case, resp., there
exists ω > 0 such that, for every h > 0 and ε∈(0, 1), there exist Cε>0 andMε,h>0,
in the Roumieu case, so that: Tε :=

{
λ ∈ C : Reλ+ Cε| Imλ| > ω

}
⊆ ρ(A) and

∥R(λ :A)∥ 6Mεe
M(h|λ|)eε|Reλ|, λ ∈ Tε, resp.,

∥R(λ :A)∥ 6Mε,he
M(h|λ|)eε|Reλ|, λ ∈ Tε.(291)

Then G is infinitely differentiable and the mapping t 7→ G(δt), t > 0 is real analytic.

(ii) (Analyticity) Suppose that the following conditions hold.

(ii.1) For every γ ∈ (0, α), there exist Mγ > 0 and ωγ > 0 such that ωγ +
Σπ

2 +γ ⊆ ρ(A).
(ii.2) For every γ ∈ (0, α), there exist hγ > 0 and Cγ > 0, resp., for every

h > 0, there exists Ch,γ > 0 such that:

∥R(λ :A)∥ 6 Cγe
M(hγ |λ|), resp., ∥R(λ :A)∥ 6 Ch,γe

M(h|λ|), λ ∈ ωγ + Σπ
2 +γ .
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Then G is an analytic (EUDS) of angle arctan(sinα).

Proof. We will give the proof of theorem in the Beurling case. The differen-
tiability in (i) has been already proven. Let us prove that the mapping t 7→ G(δt),
t > 0 is real analytic. By the proof of scalar valued version of the Pringsheim
theorem, it is enough to show that, for every compact set K ⊆ (0,∞), there ex-

ists h > 0 such that supt∈K, p∈N0

hp

p!

∥∥ dp
dtpG(δt)

∥∥ < ∞. Denote by Γε the upwards

oriented boundary of Tε. Thanks to the Paley–Wiener theorem and the proof of
Theorem 3.5.24(ii), it follows that dp

dtpG(δt ∗ ρn)x = 1
2πi

∫
Γε
eλtR(λ :A)λpρ̃n(λ)x dλ,

t > 0, n ∈ N, p ∈ N0, x ∈ R(G) and that (290) holds. Given a compact set
K ⊆ (0,∞), one can find ε > 0 and h > 0 such that inf K > 2

(
ε+ h 1+Cε

Cε

)
.

The next computation involves [51, Lemma 2.1.3], the denseness of R(G) in E
and (288):

hp

p!

∥∥∥ dp
dtp

G(δt)
∥∥∥ 6 sup

n∈N0

hp

p!

∥∥∥ dp
dtp

G(δt ∗ ρn)
∥∥∥

6 ∥ρ∥Mp,1,[0,1]
Mε

πp!

∞∫
0

e(γ−Cεs)teM(h|γ−Cεs+is|)eε|γ−Cεs|hp|γ − Cεs+ is|pds

6 ∥ρ∥Mp,1,[0,1]
1

π
eM(2hγ)Mεe

(infK+supK)γ

×
∞∫
0

e−Cεs infKeM(2h(1+Cε)s)eεCεseh(1+Cε)sds

6 ∥ρ∥Mp,1,[0,1]
1

π
eM(infKγ)Mεe

(infK+supK)γ

×
∞∫
0

e−Cεs infKeM(infK(1+Cε)s)eεCεse(
inf K

2 −ε)Cεsds <∞,

for all p ∈ N0 and t ∈ K. The proof of (i) follows easily from the previous inequality.
Let us prove (ii). By Theorem 3.5.24(ii), we have that G is infinitely dif-

ferentiable and that dp

dtpG(δt) = limn→∞
dp

dtpG(δt ∗ ρn), t > 0, where (ρn) is a

regularizing sequence in D(Mp). Suppose γ ∈ (0, α), t0 > 0 and t ∈ C satisfies
|t − t0| < arctan(sin γ). Thanks to the argumentation given in the proof of Theo-

rem 3.5.24(ii), we infer that the Neumann series
∑∞
p=0(t− t0)p 1

p!

(
dp

drpG(δt)
)
r=t0

is

absolutely convergent. Indeed, let Γγ be the boundary of 1 + ωγ + Σπ
2 +γ , oriented

in such a way that Imλ increases along Γγ , and let Γ1
γ := {λ ∈ Γγ : Imλ 6 0}

and Γ2
γ := {λ ∈ Γγ : Imλ > 0}. Then Γ1

γ = {1 + ωγ + e−i(
π
2 +γ)s : s > 0},

Γ2
γ = {1 + ωγ + ei(

π
2 +γ)s : s > 0}, and the proof of Theorem 3.5.24(ii) combined

with [51, Lemma 2.1.3] implies that:

∞∑
p=0

|t− t0|p
∥∥∥ 1

p!

( dp
drp

G(δr)
)
r=t0

∥∥∥ 6 sup
n∈N0

∞∑
p=0

|t− t0|p
∥∥∥ 1

p!

( dp
drp

G(δr ∗ ρn)
)
r=t0

∥∥∥
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6 ∥ρ∥Mp,1,[0,1]

∞∑
p=0

|t− t0|p
1

2πp!

∫
Γγ

eReλt0eM(hγ |λ|)|λ|p|dλ|

6 1

π
∥ρ∥Mp,1,[0,1]e

M(2hγ(1+ωγ))e|t−t0|(1+ωγ)

×
∞∫
0

e(ωγ+s cos(
π
2 +γ))t0eM(2hγs)e|t−t0|sds <∞.

This completes the proof of theorem. �

The subsequent proposition clarifies some interesting properties of exponen-
tially bounded, analytic Ka,b-convoluted semigroups. Of importance is to stress
that (cf. the estimate (274)) the assertion (ii) cannot be reformulated in the case
of exponentially bounded, analytic Kl-convoluted semigroups.

Proposition 3.5.27. Suppose α ∈ (0, π2 ], a > 0 and b > 0.

(i) Then A generates an exponentially bounded, analytic Ka,b-convoluted semi-
group of angle α iff for every γ ∈ (0, α), there exist ωγ > 0 and Mγ > 0 such that
the following conditions are satisfied:

ωγ + Σπ
2 +γ ⊆ ρ(A),(292)

sup
λ∈ωγ+Σπ

2
+γ

∥∥(λ− ωγ)e−a|λ|
b cos(b arg(λ))R(λ :A)

∥∥ 6Mγ , λ ∈ ωγ + Σπ
2 +γ ,(293)

lim
λ→+∞

λe−aλ
b

R(λ :A)x = 0, x ∈ E, if D(A) ̸= E.

(ii) If, additionally,

(294) b(π/2 + α) > π/2,

then there does not exist a closed linear operator A which generates an exponentially
bounded, analytic Ka,b-convoluted semigroup of angle α.

Proof. The proof of (i) follows immediately from the general characterization
of exponentially bounded, analytic convoluted C-semigroups. To prove (ii), suppose
to the contrary that (294) holds and that a closed, linear operator A generates an
exponentially bounded, analytic Ka,b-convoluted semigroup of angle α. By (294),
one gets that there exist ε ∈ (0, 1) and γ ∈ (0, α) such that b(π2 + γ − ε) > π

2 + ε.
The first part of proposition yields that there exist Mγ > 0 and ωγ > 0 such that
(292) and (293) hold. Set Aγ := A− ωγ . Thanks to the choice of γ and ε, we have
that there exists a number r > 0 such that, for every λ ∈ C satisfying |λ| > r and
arg(λ) ∈ (π2 + γ − ε

2 ,
π
2 + γ):

(295)
∥∥R(λ : Aγ)

∥∥ 6 Mγ

|λ|
ea|λ+ωγ |b cos(b(π

2 +γ−ε)) 6 Mγ

|λ|
e−a|λ+ωγ |b sin ε.

An application of [249, Lemma 1.5] gives n(A) 6 1. Denote by AFγ the part of Aγ

in the Banach space F = D(A); then AFγ also satisfies (295). In particular, (295)
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implies that there exists sufficiently large M ′
γ such that∥∥R(λ : e−i(

π
2 +γ− ε

4 )AFγ )
∥∥
F

=
∥∥ei(π

2 +γ− ε
4 )R(λei(

π
2 +γ− ε

4 ) : AFγ )
∥∥
F
6 1

λ
,

λ ∈ (M ′
γ ,∞). Hence, ∥R(λ : e−i(

π
2 +γ− ε

4 )AFγ )n∥F 6 1
λn , λ > M ′

γ , and the Hille–

Yosida theorem implies that the operator e−i(
π
2 +γ− ε

4 )AFγ generates a C0-semigroup

(TF (t))t>0 in the Banach space F such that ∥TF (t)∥F 6 eM
′
γt, t > 0. By [14,

Proposition 4.1.3, p. 248], one gets that limλ→∞ λR(λ : e−i(
π
2 +γ− ε

4 )AFγ )x = x for
all x ∈ F . On the other hand, (295) yields that the above limit equals zero for all
x ∈ F and the contradiction is obvious. �

Suppose (Mp) satisfies (M.1), (M.2) and (M.3′). Put Lp := M
1/p
p , p > 0. It is

worth noting that the proof of Theorem 3.5.24 enables one to establish the following
characterization of distribution semigroups of class CL; herein, a differentiable (DS)
G is said to be of class CL iff for every compact set K ⊆ (0,∞) and for every h > 0:

supt∈K, p∈N0

∥∥ hp

Lp
p

dp

dtpG(δt)
∥∥ <∞.

Theorem 3.5.28. Let A be a closed linear operator and let Lp = M
1/p
p , p ∈ N0.

Then A generates a (DS) of class CL iff the following conditions hold:

(296) ∃ω > 0 ∃m ∈ N ∃h′, k > 0 ∀σ > 0 ∃Cσ, Mσ > 0

such that

Ξkσ,ω ⊆ ρ(A),(297)

∥R(λ :A)∥ 6Mσ(1 + |λ|)m, Reλ > ω,(298)

∥R(λ :A)∥ 6Mσe
M(h′|λ|), λ ∈ Ξkσ,ω, Reλ 6 ω.(299)

Proof. Suppose first that A is densely defined. Let A be the generator of
a (DS) G of class CL. Then there exists n ∈ N such that A generates an expo-
nentially bounded n-times integrated semigroup (Sn(t))t>0 such that G(φ)x =

(−1)n
∫∞
0
φ(n)(t)Sn(t)x dt, φ ∈ D, x ∈ E and that the mapping t 7→ Sn(t),

t > 0 is infinitely differentiable. Let ε > 0, ψ ∈ D(Mp), ψ(t) = 1, 0 6 t 6 1
2 ,

ψ(t) = 0, t > 1, ψ(t) = 0, t 6 −1 and ψε(t) = ψ( tε ), t ∈ R. Then the proof
of Theorem 3.5.24(i) implies that, for every λ ∈ C r {0} with Reλ 6 0 and

Reλ > − 1
ε ln 1

2Mε,1
− 1

εM( |λ|
H+1 ), we have ∥G(e−λtψ′

ε(t))∥ 6 1
2 and λ ∈ ρ(A);

analogically, for every λ ∈ C with Reλ > 0 and Reλ > − 2
ε ln 1

2Mε,1
− 2

εM
( |λ|
H+1

)
,

we have ∥G(e−λtψ′
ε(t))∥ 6 1

2 and λ ∈ ρ(A). The necessity is a consequence of our
previous analyses. To prove the converse, notice that A generates an (EDS) G and

that G(φ)x = 1
2πi

∫ ω0+i∞
ω0−i∞ φ̃(λ)R(λ : A)x dλ, x ∈ E, φ ∈ D, where ω0 > ω. Let

(ρn) be a regularizing sequence in D(Mp)
0 and let Γσ designate the upwards oriented

frontier of Ξkσ,ω. The Paley–Wiener theorem for ultradifferentiable functions implies

that G(δt ∗ ρn)x = 1
2πi

∫
Γσ
eλtρ̃n(λ)R(λ :A)x dλ, x ∈ E, t > 0. Now one can repeat

verbatim the arguments given in the proof of sufficiency in Theorem 3.5.24(ii) to
end the proof in the case of densely defined operators. Suppose now that A is
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not densely defined. If A generates a (DS) G of class CL, then A|F generates a

dense (DS) G|F of class CL in the Banach space F = An(A). The necessity follows
from an application of [249, Proposition 2.1(iii)]. Let (296)–(299) hold. Then A
generates an (EDS) G and, by [249, Proposition 2.1(iii)] and the first part of the
proof, we have that A|F generates a dense (DS) G|F of class CL in the Banach
space F . In particular, G|F is differentiable and this, in turn, implies that G must
be differentiable. The remnant of the proof follows as in the case of densely defined
operators. �

Corollary 3.5.29. (i) Let A be a closed linear operator and let Lp = p!s/p,
s > 1, p ∈ N0. Then A generates a (DS) of class CL iff there exist ω > 0, m ∈ N,
h′ > 0 and k > 0 such that, for every σ > 0, there exist Cσ > 0 and Mσ > 0 such
that:

Ξsσ,ω,k ⊆ ρ(A), where(300)

Ξsσ,ω,k :=
{
λ ∈ C : Reλ 6 ω,Reλ > Cσ − σk|λ|1/s} ∪ {λ ∈ C : Reλ > ω

}
,

∥R(λ :A)∥ 6Mσ(1 + |λ|)m, Reλ > ω,(301)

∥R(λ :A)∥ 6Mσe
h′|λ|1/s , λ ∈ Ξsσ,ω,k, Reλ 6 ω.(302)

(ii) Let α > 0, Lp = M
1/p
p , p ∈ N0 and let A be the generator of an α-times

integrated semigroup (Sα(t))t>0. Then (Sα(t))t>0 is of class CL iff (296)–(299)
hold.

(iii) Let α > 0, s > 1, Lp = p!s/p, p ∈ N0 and let A be the generator of an
α-times integrated semigroup (Sα(t))t>0. Then (Sα(t))t>0 is of class CL iff there
exist ω > 0, h′ > 0 and k > 0 such that, for every σ > 0, there exist Cσ > 0 and
Mσ > 0 such that (300)–(302) hold.

In the following example, we use the notion and notation given in [14, Chapter
8].

Example 3.5.30. (i) Let s > 1, k > 0, p ∈ [1,∞), m > 0, ρ ∈ [0, 1], r > 0,
a ∈ Smρ,0 satisfies (Hr),

(303) n
∣∣∣1
2
− 1

p

∣∣∣(m− r − ρ+ 1

r

)
< 1,

and assume that, for every σ > 0, there exists Cσ > 0 such that a(Rn)∩Ξsσ,ω,k = ∅.
Let Np be the smallest integer{

> n| 12 − 1
p |
(
1+m−ρ

r

)
, p > 1,

> n
2

(
1+m−ρ

r

)
, p = 1.

By [14, Proposition 8.3.1, Theorem 8.3.6] and Corollary 3.5.29, the operator
Opp(a) generates an Np-times integrated semigroup on Lp(Rn) which is of class CL
with Lp = p!s/p. Herein we would like to note that the class CL is more appropriate
to deal with; for example, consider the elliptic polynomial a(ξ) = −|ξ|2 + i|ξ|4,
ξ ∈ Rn. Then the operator Opp(a) generates an α-times integrated semigroup

(S(t))t>0 on Lp(Rn) which is of class CL with Lp = p!2/p; by Corollary 3.5.29,
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(S(t))t>0 is not of class CL. It is of concern to accent that: −Opp(a) generates
a dense (UDS) of (p!s)-class iff s ∈ (1, 2], −Opp(a) generates a dense (UDS) of
{p!s}-class iff s ∈ (1, 2) and −Opp(a) does not generate a (DS). Finally, let us
mention that Lp-realizations of some special cases of pseudodifferential operators
associated to the linearized Benjamin–Ono-Burgers equation [110, 452] likewise
generate ρ-hypoanalytic integrated (C-)semigroups.

(ii) Let s > 1, k > 0, p ∈ [1,∞), m > 0, ρ ∈ [0, 1], r > 0, a ∈ Smρ,0 satisfies
(Hr), (303) holds, E = Lp(Rn) or E = C0(Rn) (in the last case, we assume
p = ∞), and A = OpE(a). If a(·) is an elliptic polynomial of order m, then
m = r, ρ = 1 and (303) holds. Assume first that there exist a sequence (Mp)
satisfying (M.1), (M.2), (M.3′) and appropriate constants l > 1, ζ > 0 and η ∈ R
such that a(Rn) ∩ Λl,ζ,η = ∅. By [14, Lemma 8.2.1, Proposition 8.2.6, the proof of
Lemma 8.2.8], it follows that there exists η′ > η such that ∥R(· : A)∥ is polynomially
bounded on Λl,ζ,η′ . This implies that A generates an ultradistribution semigroup
of (Mp)-class. If a(Rn) ∩ (Pν,C′ ∪ Bd) = ∅ for some ν ∈ (0, 1), C ′ ∈ (0, 1] and
d ∈ (0, 1], then Theorem 1.4.15 can be applied with a convenable chosen α > −1;
the typical example is the operator A = ξ∆2 − iϱ∆ + ς (ξ > 0, ϱ ∈ Rr {0}, ς < 0).

Remark 3.5.31. (i) The sufficient condition for the generation of dense (C-
DS)’s of class CL can be derived similarly [234]. Concerning the proof of The-
orem 3.5.28, we also perceive the following interesting phenomenon. In order to
deform the path of integration from the straight line connecting the points ω0− i∞
and ω0 + i∞ into the upwards oriented frontier of the region Ξkσ,ω, we essentially

utilize the regularizing sequence (ρn) in the space D(Mp)
0 . Under the assumption

(296)–(299), A generates an exponentially bounded (m+ 2)-times integrated semi-

group (Sm+2(t))t>0 given by Sm+2(t) = 1
2πi

∫ ω0+i∞
ω0−i∞ eλt R(λ:A)

λm+2 dλ, t > 0. On the

other hand, the proof of Theorem 3.5.24(ii) implies that the improper integral
1

2πi

∫
Γσ
eλt R(λ:A)

λm+2 dλ =: S0
m+2(t) converges for every t > 1

σ

(
3 + 3h′

2k

)
. Further-

more, for every compact set K ⊆
(
1
σ

(
3 + 3h′

2k

)
,∞
)

and for every h > 0, one

has supt∈K, p∈N0

hp

Mp

∥∥ dp
dtpS

0
m+2(t)

∥∥ < ∞. Unfortunately, it is not clear whether

S0
m+2(t) = Sm+2(t) for t > 1

σ

(
3 + 3h′

2k

)
.

(ii) Let A generate a dense infinitely differentiable (UDS) G and let for every
compact set K ⊆ (0,∞) there exists hK > 0 such that ∥G(δt)∥Mp,hK ,K < ∞. By
the proof of Theorem 3.5.24, it follows that there exist ω > 0 and h′ > 0 such that,
for every σ > 0, there exist Cσ > 0, Mσ > 0 and kσ > 0 in the Beurling case, resp.,
there exists ω > 0 such that, for every h′ > 0 and σ > 0, there exist Cσ > 0, kσ > 0
and Mσ,h′ > 0, in the Roumieu case, such that Ξkσσ,ω ⊆ ρ(A) and:

∥R(λ :A)∥ 6Mσe
M(

|λ|
h′ )+

1
2M(kσ|λ|), λ ∈ Ξσ,kσ , in the Beurling case, resp.,

∥R(λ :A)∥ 6Mσ,h′eM(
|λ|
h′ )+

1
2M(kσ|λ|), λ ∈ Ξσ,kσ , in the Roumieu case.

The proof of Theorem 3.5.24(ii) and the additional assumption lim supσ→∞ σkσ =
∞ obviously imply that, for every compact set K ⊆ (0,∞), there exists hK > 0
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such that ∥G(δt)∥Mp,hK ,K < ∞. It is quite questionable whether this holds in
general.

The previous consideration clearly implies that the problem of finding a satis-
factory Hille-Yosida’s type theorem for differentiable ultradistribution semigroups
is quite non-trivial. An additional difficulty is that the use of structural theorems
for operator-valued ultradistributions does not take any effect.

Differential and analytical properties of hyperfunction fundamental solutions
can be found in the papers of Kochubei [205] and Ōuchi [353]. Finally, we would
like to propose the following questions.

Questions. 1. Suppose α ∈ (0, π2 ], γ ∈ (0, α) and A generates an analytic
(DS) of angle α. Are there Mγ > 0, ωγ > 0 and nγ ∈ N such that (205) holds?

2. Suppose that G is a non-dense differentiable (UDS) of ∗-class. Must G be
exponential (infinitely differentiable)?

3. Suppose A generates a dense (EUDS) G of ∗-class, α ∈ (0, π2 ] and the
assumptions (i) and (ii) quoted in the formulation of Theorem 3.5.26(ii) hold. Does
there exist β ∈ (arctan(sinα), α] such that G is an analytic (UDS) of angle β?

3.5.4. Hyperfunction spaces, semigroups and sines. The basic facts
about Sato’s hyperfunctions and Fourier hyperfunctions can be found in the mono-
graph of Kaneko [178] (see also [69]–[72], [157]–[170], [183]–[184], [207], [210]
and [379]). Let Ω be an open set in C containing an open set I ⊆ R as a closed
subset and let O(Ω) be the space of E−valued holomorphic functions on Ω en-
dowed with the topology of uniform convergence on compact subsets of Ω. Then
O(Ω) is an (FS) space, and, as a closed subspace of C∞(Ω), the space O(Ω) is
nuclear. The space of E−valued hyperfunctions on I is defined as B(I, E) :=
O(Ω r I, E)/O(Ω, E). A representative of f = [f(z)] ∈ B(I, E), f ∈ O(Ω r I, E)
is called a defining function of f . The space of hyperfunctions supported by a
compact set K ⊆ I with values in E is denoted by ΓK(I,B(E)) =: B(K,E). It
is the space of continuous linear mappings from A(K) into E, where A(K) is
the space of analytic functions in neighborhoods of K endowed with the uniform
convergence on compact neighborhoods of K (see [206, p. 107]). Since A(K) is
a (DFS) space, we have that B(K,E) is an (FS) space; let us also mention that
A(K) is an (LF) space. The space of all scalar valued hyperfunctions with the
support in [a,∞), where a ∈ R, is defined by B[a,∞) := O(C r [a,∞))/O(C). The
space of all E−valued hyperfunctions with the support contained in [a,∞) is de-
fined similarly. By B0(R, E) is denoted the space which consists of all E−valued
hyperfunctions supported by [0,∞). Recall, if f ∈ B(R, E) and supp f ⊆ {a},
then f =

∑∞
n=0 δ

(n)(· − a)xn, xn ∈ E, where limn→∞(n!∥xn∥)1/n = 0. For further
information related to hyperfunction spaces, we refer to [178]; the convolution of
operator valued hyperfunctions in the following definition is taken in the sense of
[205].

Definition 3.5.32. [353] Suppose A is a closed linear operator. By a hyper-
function fundamental solution for A we mean an element G ∈ B0(R, L(E, [D(A)]))
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satisfying G ∗ P = δ ⊗ I[D(A)] and P ∗ G = δ ⊗ IE , where P = δ′ ⊗ A − δ ⊗ I ∈
B0(R, L([D(A)], E)).

Notice that there exists at most one hyperfunction fundamental solution for a
closed linear operator A.

Theorem 3.5.33. [354] Suppose A is a closed linear operator. Then there
exists a hyperfunction fundamental solution for A iff for every ε ∈ (0, 1), there
exist Cε > 0 and Mε > 0 so that Ωε,Cε :=

{
λ ∈ C : Reλ > ε|λ| + Cε

}
⊆ ρ(A) and

∥R(λ :A)∥ 6Mεe
ε|λ|, λ ∈ Ωε,Cε .

Proposition 3.5.34. Let K ∈ L1
loc([0, τ)), for some 0 < τ 6 1, and let A

generate a K-convoluted semigroup (SK(t))t∈[0,τ). If K can be extended to a func-

tion K1 in L1
loc([0,∞)) which satisfies (P1) so that its Laplace transform has the

same estimates as in Theorem 2.7.1, then there exists a hyperfunction fundamental
solution for A.

Relations between hyperfunction semigroups and C-regularized semigroups are
complicated. The following instructive example shows that there exists a densely
defined operator A on the Hardy space H2(C+) which has the following properties:

(i) There exists a hyperfunction fundamental solution for A.
(ii) A is not a subgenerator of a local integrated C-semigroup.

This example is essentially due to Beals [37].

Example 3.5.35. Let ψ(t) = t
ln(t+1) , t > 0, ψ(0) = 1. Then ψ is nonnegative,

continuous, concave function on [0,∞) with ψ(t) → ∞, ψ(t)
t → 0, t → ∞ and∫∞

1
ψ(t)
t2 dt = ∞. It is clear that, for every ε > 0, there exists Cε > 0 such that

εt+Cε > ψ(t), t > 0. Let A be a closed, densely defined linear operator acting on
E := H2(C+) such that:

Ω(ψ) :=
{
λ ∈ C : Reλ > ψ(| Imλ|)

}
⊆ ρ(A), ∥R(λ :A)∥ 6 M

1 + Reλ
, λ ∈ Ω(ψ),

and that for all τ ∈ (0,∞) there does not exist a solution of the following abstract
Cauchy problem  u ∈ C([0, τ) : [D(A)]) ∩ C1((0, τ) : E),

u′(t) = Au(t), t ∈ (0, τ),
u(0) = x,

unless x = 0. The existence of such an operator is proved in [37, Theorem 2’]. Since
ρ(A) ̸= ∅, one gets that D∞(A) is dense in E. Suppose that A is a subgenerator
of a local k-times integrated C-semigroup on [0, τ), for some injective operator
C ∈ L(E), k ∈ N and τ ∈ (0,∞). Then the problem u ∈ C([0, τ) : [D(A)]) ∩ C1([0, τ) : E),

u′(t) = Au(t), t ∈ [0, τ),
u(0) = x,

has a unique solution for all x ∈ C(D(Ak+1)). It follows C(D(Ak+1)) = {0} and
this is a contradiction. On the other hand, it is easy to see that Ωε ⊆ Ωψ ⊆ ρ(A).
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The growth rate of resolvent shows that there exists a hyperfunction fundamental
solution for A. It is clear that there exists an operator A which generates an entire
C-regularized group but not a hyperfunction semigroup.

Definition 3.5.36. It is said that a closed linear operator A admits a hy-
perfunction fundamental sine solution if the operator A admits a hyperfunction
fundamental solution. The ultradistribution fundamental sine solution of ∗-class is
defined in the same manner; a closed linear operator A generates an ultradistribu-
tion sine of ∗-class iff the operator A generates a (UDS) of ∗-class.

Let remind us that Kδ(t) = L−1
(
e−λ

δ)
(t), t > 0.

Theorem 3.5.37. [228] (i) Suppose that A admits an ultradistribution funda-
mental sine solution of the Beurling, resp., the Roumieu class. Then A generates
an exponentially bounded, analytic Kδ-semigroup of angle π

2 , for all δ ∈ ( 1
2s ,

1
2 ),

resp., for all δ ∈ [ 1
2s ,

1
2 ).

(ii) Suppose that A admits a hyperfunction fundamental sine solution. Then A
generates an exponentially bounded, analytic K1/2-semigroup of angle π

2 .

(iii) Let A admit an ultradistribution fundamental sine solution of (Mp)-class,
resp., {Mp}-class. Then, for every θ ∈ [0, π2 ), there exists an ultradistribution

fundamental solution of (M2
p )-class, resp., {M2

p}-class for e±iθA. Herein (Mp)
satisfies (M.1), (M.2) and (M.3′).

(iv) Suppose that A admits a hyperfunction fundamental sine solution. Then,
for every θ ∈ [0, π2 ), there exists an ultradistribution fundamental solution of {p!2}-
class for e±iθA.

Proof. We will only give the proof of (i) in the Roumieu case. Let us fix γ ∈
(0, π2 ) and δ ∈ [ 1

2s ,
1
2 ). It is clear that there exists Cs > 0 with M(|λ|) 6 Cs|λ|1/s,

λ > 0. By the foregoing,{
λ2 : λ ∈ C, Reλ > Cs(k|λ|)1/s + Ck

}
⊆ ρ(A), i.e.,{

r2e2iθ : r > 0, |θ| < π/2, r cos θ > Csk
1/sr1/s + Ck

}
⊆ ρ(A).

Denote Γ = {reiθ : r cos θ = Csk
1/sr1/s + Ck}. Then lim|λ|→∞, λ∈Γ | arg(λ)| = π

2 .

Therefore, there exist an ωγ > 0 and a suitable Ck > 0 so that ωγ + Σπ
2 +γ ⊆ ρ(A)

and that

∥R(λ :A)∥ 6 Cke
M(k

√
|λ|) 6 Cke

Csk
1/s|λ|1/2s , λ ∈ ωγ + Σπ

2 +γ .

The function g : ωγ + Σπ
2 +γ → C, g(λ) := e−λ

δ

, λ ∈ ωγ + Σπ
2 +γ is analytic, where

1δ = 1. Furthermore,

∥g(λ)R(λ :A)∥ 6 Ck
1

|eλδ |
eCsk

1/s|λ|1/2s

= Ck exp
(
−|λ|δ cos(δ arg(λ)) + Csk

1/s|λ|1/2s
)

6 Cke
Csk

1/s|λ|1/2s−cos(πδ)|λ|δ , λ ∈ ωγ + Σπ
2 +γ .
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The choice of δ and arbitrariness of the number k > 0 in the Roumieu case, combin-
ing with Theorem 2.4.5, imply that A generates an exponentially bounded, analytic
Kδ-semigroup of angle γ. �

For the properties of Laplace and Fourier hyperfunction fundamental solutions,
we recommend for the reader [166]–[167], [205] and [226].

Example 3.5.38. Let C+ := {z ∈ C : Im z > 0} and 1 6 p <∞. Suppose that
E := Hp(C+). Let us recall that Beals constructed in the proof of [37, Theorem 2′]
an analytic function a1 : C+ → {z ∈ C : |z| > 1} with the property that for every
ε > 0, there exists a region of the form Ωε,Cε

satisfying a1(C+) ∩ Ωε,Cε
= ∅. Let

B = a21. Then B is a holomorphic function on C+ and for all ε > 0 there exist Cε >
0 and Kε > 0 so that B(C+) ⊆ (Ω2

ε,Cε
)c. Define (AF )(z) := B(z)F (z), Im z > 0,

D(A) :=
{
F ∈ Hp(C+) : AF ∈ Hp(C+)

}
. Let ε ∈ (0, 1) be fixed and let ε1 ∈ (0, ε)

satisfy B(C+) ⊆ (Ω2
ε1,Cε1

)c. Clearly, limλ→∞, λ∈∂Ωε1,Cε1
| arg(λ)| = arccos ε1 and

there exists a sufficiently large Cε > 0 such that

Ωε,Cε
=
{
λ ∈ C : Reλ > ε|λ|+Cε

}
⊆ Ωε1,Cε1

and d := dist(∂Ωε1,Cε1
, ∂Ωε,Cε

) > 0.

This implies Ω2
ε,Cε

⊆ ρ(A) and ∥R(λ :A)∥ 6 d−2, λ ∈ Ω2
ε,Cε

. Therefore, A admits a

hyperfunction fundamental sine solution and it can be easily seen that A does not
admit an ultradistribution fundamental sine solution.

Example 3.5.39. [226] (i) Suppose c > 1, σ > 0, ς ∈ R, M > 0, k ∈ N,

σ(A) ⊆ ±Πc,σ,ς and ∥R(λ :A)∥ 6M(1 + |λ|)k, λ /∈ ±Πc,σ,ς .

Let p be as in the formulation of Example 3.5.18(i). Then the operator (−1)n+1p(A)
generates an ultradistribution sine of ∗-class provided Mp = p!s and s ∈ (1, n

n−2+ 2
c

).

(ii) Let p be as in (i) and let A generate a (local) integrated cosine function.
Then the operator (−1)n+1p(A) generates an ultradistribution sine of ∗-class pro-
vided Mp = p!s and s ∈

(
1, n

n−1

)
.

(iii) Suppose c ∈ (0, 1), σ > 0, ς ∈ R, σ(A) ⊆ ±
(
C r {λ2 : λ ∈ Πc,σ,ς}

)
and

∥R(· : A)∥ is polynomially bounded on the complement of {λ2 : λ ∈ Πc,σ,ς}. Let p
be as in (i). Then the operator (−1)n+1p(A) generates an ultradistribution sine of
∗-class provided Mp = p!s and s ∈

(
1, n

n+c−1

)
.

3.6. Regularization of ultradistribution semigroups and sines

3.6.1. Regularization of Gevrey type ultradistribution semigroups.
In this subsection, we will always assume that (Mp) is a sequence of positive real
numbers such that M0 = 1 and that (M.1) holds. Every employment of the condi-
tions (M.2), (M.3′) and (M.3) will be explicitly accented; the use of symbols A and
M is clear from the context.

Let remind us of the following notations. Given θ ∈ (0, π] and d ∈ (0, 1], denote
Σθ = {λ ∈ C : λ ̸= 0, | arg(λ)| < θ}, Bd = {λ ∈ C : |λ| 6 d} and Ωθ,d = Σθ∪Bd. By
Γθ,d is denoted the upwards oriented boundary of Ωθ,d. Further, ⌊β⌋ = sup{n ∈ Z :
n 6 β}, ⌈β⌉ = inf{n ∈ Z : β 6 n} and (Mp)-ultralogarithmic region of type l,
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Λα,β,l, is defined by Λα,β,l = {λ ∈ C : Reλ > αM(l| Imλ|) + β}, α > 0, β ∈ R,
l > 1. From now on, we assume that the boundary of the ultra-logarithmic region
Λα,β,l, denoted by Γl, is upwards oriented.

Notice that the class of ultradistribution sines can be introduced following the
approaches of Miana [312] and the author [222] for (almost-)distribution cosine
functions, or by means of convolution type equations as it has been done by Ko-
matsu [210]. The concepts presented in [210, 312] and [222] are not so easily
comparable in ultradistribution case.

The assertions (i), (iv) and (v) of the subsequent theorem can be attributed
to Straub [394]. Here we notice that the denseness of A is not used in the proofs
of Propositions 2.2, 2.5, 2.6 and 2.8 as well as Lemmas 2.7 and 2.10 of [394]
and that the assertion (v) extends [38, Lemma 1] and some estimates used in
the proof of [252, Lemma 5.4] (cf. also [20, Lemma II-1, Theorem II-3]). The
main problem in regularization of ultradistribution semigroups whose generators do
not have polynomially bounded resolvent appears exactly in this place. Actually,
if ∥R(· : A)∥ is not polynomially bounded on an appropriate ultra-logarithmic
region, then it is not clear whether there exists an n ∈ N0 such that for every
x ∈ D(An+2), the operator Tb(t), defined in the formulation of the next theorem,
fulfills limt→0+ Tb(t)x = x. Then it is not clear how one can prove that the operator
Tb(t) is injective; see also [38, Lemma 3], [252, Lemma 5.4] and the proof of [394,
Proposition 2.8].

Theorem 3.6.1. Suppose that there exists a number b ∈ (0, 1) such that

(304) p
p
b ≺Mp

and that (Mp) satisfies (M.2). If A is a closed linear operator such that there exist
α > 0, l > 0, M > 0, β ∈ R and n ∈ N satisfying

Λα,β,l ⊆ ρ(A) and ∥R(λ :A)∥ 6M(1 + |λ|)n, λ ∈ Λα,β,l,

then, for every γ ∈
(
0, arctan(cos( bπ2 ))

)
, there are an ω ∈ R and an analytic

operator family (Tb(t))t∈Σγ
of growth order n+1

b satisfying:

(i) For every t ∈ Σγ , the operator Tb(t) is injective.
(ii) For every t ∈ Σγ , the operator A generates a global Tb(t)-regularized semi-

group (Sb,t(s))s>0.
(iii) Let K ⊆ [0,∞) be a compact set, t ∈ Σγ and x ∈ E. Then the mapping

s 7→ Sb,t(s)x is infinitely differentiable in s > 0 and, for every h > 0,

sup
p∈N0, s∈K

hp

Mp

∥∥∥ dp
dsp

Sb,t(s)x
∥∥∥ <∞.

(iv) There is an L > 0 with ∥Tb(t)∥ 6 L(tan γ Re t− | Im t|)−n+1
b , t ∈ Σγ .

(v) If x ∈ D(An+2), then there exists limt→0+
Tb(t)x−x

t and, in particular,
limt→0+ Tb(t)x = x.

Furthermore, (Tb(t))t∈Σγ is an analytic semigroup of growth order n+1
b whose c.i.g.

is −
(
(ω −A)|An(A)

)b
.
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Proof. Let φ : R → [0,∞) be an infinitely differentiable function satisfying

suppφ ⊆ [0, 1] and
∫
R φ(t) dt = 1. Put M1(t) :=

∫ t
0
M(t − s)φ(s) ds, t > 0 and

notice that M1 ∈ C∞(R) and that there exist m ∈ (0,∞) and M ∈ (0,∞) such
that M(t) 6 mM1(t) + M 6 mM(t) + M , t > 0. Suppose (0, 1) ∋ b satisfies

p
p
b ≺Mp and designate by N(·) the associated function of the sequence (p

p
b ). Then

N(λ) ∼ 1
be |λ|

b, λ → ∞ and an application of [207, Lemma 3.10] gives that, for
every µ > 0, there exist positive real constants cµ and Cµ such that limµ→0 cµ = 0
and

(305) M1(lλ) 6M(lλ) 6 N(µlλ) + Cµ 6 cµ|λ|b + Cµ, λ > 0.

Denote, for σ > 0 and ς ∈ R, Λ1
σ,ς,l := {λ ∈ C : Reλ > σM1(l| Imλ|) + ς} and

Πb,σ,ς = {λ ∈ C : Reλ > σ| Imλ|b + ς}. By the foregoing, we have Λ1
αm,β+αM,l ⊆

Λα,β,l ⊆ ρ(A). Choose now a number a ∈ (0, π2 ) such that b ∈
(
0, π

2(π−a)
)

and

that γ ∈
(
0, arctan(cos(b(π − a)))

)
. Thanks to (305), one obtains the existence

of numbers d ∈ (0, 1], σ ∈ (0,∞) and ω ∈ R such that Ωa,d ⊆ Λ1
αm,β+αM−ω,l ⊆

ρ(A − ω). Let Γa,d and Γ denote the upwards oriented boundaries of Ωa,d and
Λ1
αm,β+αM−ω,l, respectively. Define Tb(t), t ∈ Σγ by

Tb(t)x :=
1

2πi

∫
Γa,d

e−t(−λ)
b

R(λ : A− ω)x dλ, x ∈ E.

By Theorem 1.4.15, (Tb(t))t∈Σγ
is an analytic semigroup of growth order n+1

b whose

c.i.g. is −
(
(ω − A)|An(A)

)b
. Define now, for every t = t1 + it2 ∈ Σγ , s > 0 and

x ∈ E,

S1
b,t(s)x :=

1

2πi

∫
Γ

e−t(−λ)
b

eλsR(λ : A− ω)x dλ.

To prove that S1
b,t(s) ∈ L(E), notice that, for every λ /∈ Ωa,d, we have b arg(−λ) ∈

(b(−π+ a), b(π− a)), cos(b arg(−λ)) ∈ (cos(b(π− a)), 1], tan γ < cos(b(π− a)) and∣∣e−t(−λ)b ∣∣ = e−t1|λ|
b cos(b arg(−λ))+t2|λ|b sin(b arg(−λ))

6 e−(t1 cos(b arg(−λ))−|t2|)|λ|b 6 e−(t1 cos(b(π−a))−|t2|)|λ|b 6 e−(t1 tan γ−|t2|)|λ|b .

This inequality and (305) imply that, for all sufficiently small µ > 0:

(306)
∣∣∣e−t(−λ)beλs∥R(λ : A− ω)∥

∣∣∣
6Mes(αmM1(l| Imλ|)+β+αM−ω)e−(t1 tan γ−|t2|)|λ|b(1 + |λ| + |ω|)n

6Mµe
s(β+αM−ω)esαmcµ|λ|

b

e−(t1 tan γ−|t2|)|λ|b(1 + |λ| + |ω|)n, λ ∈ Γ, |λ| > r.

The use of (306) with sufficiently small µ implies that S1
b,t(s) ∈ L(E), as required.

Further on, the Cauchy formula and the previous argumentation enables one to see
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that

(307)

∫
Γ

eλse−t(−λ)
b

dλ = 0, s > 0, t ∈ Σγ

and that Tb(t) = S1
b,t(0), t ∈ Σγ . It is also clear that S1

b,t(s)Tb(t) = Tb(t)S
1
b,t(s) and

that S1
b,t(s)(A− ω) ⊆ (A− ω)S1

b,t(s), s > 0, t ∈ Σγ . Using the Fubini theorem, the

resolvent equation and (307), one obtains

(A− ω)

s∫
0

Sb,t(r)x dr =
1

2πi

s∫
0

∫
Γ

eλre−t(−λ)
b

(A− ω)R(λ : A− ω)x dλ dr

=
1

2πi

s∫
0

∫
Γ

eλre−t(−λ)
b

(λR(λ : A− ω)x− x) dλ dr

=
1

2πi

s∫
0

∫
Γ

eλre−t(−λ)
b

λR(λ : A− ω)x dλ dr − 1

2πi

s∫
0

∫
Γ

eλre−t(−λ)
b

x dλ dr

=
1

2πi

s∫
0

∫
Γ

eλre−t(−λ)
b

λR(λ : A− ω)x dλ dr

=
1

2πi

∫
Γ

[ s∫
0

eλre−t(−λ)
b

λR(λ : A− ω)x dr

]
dλ

=
1

2πi

∫
Γ

(eλs − 1)e−t(−λ)
b

R(λ : A− ω)x dλ

=
1

2πi

∫
Γ

eλse−t(−λ)
b

R(λ : A− ω)x dλ− 1

2πi

∫
Γ

e−t(−λ)
b

R(λ : A− ω)x dλ

= S1
b,t(s)x− Tb(t)x, s > 0, t ∈ Σγ , x ∈ E.

This implies that (S1
b,t(s))s>0 is a global Tb(t)-regularized semigroup generated by

A − ω. In order to prove differentiability of (S1
b,t(s))s>0, note that the arguments

used in the proof of boundedness of the operator S1
b,t(s) also show that, for every

p ∈ N, the integral 1
2πi

∫
Γ
λpeλse−t(−λ)

b

R(λ : A − ω) dλ is convergent. Then the

elementary inequality |eλh − 1| 6 h|λ|eReλh, λ ∈ C, h > 0 and the dominated

convergence theorem yield d
dsS

1
b,t(s) = 1

2πi

∫
Γ
λeλse−t(−λ)

b

R(λ : A − ω) dλ, s > 0.
Inductively,

(308)
dp

dsp
S1
b,t(s) =

1

2πi

∫
Γ

λpeλse−t(−λ)
b

R(λ : A− ω) dλ, p ∈ N0, s > 0.
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Taking into account (305) and (308), we easily infer that, for every compact set
K ⊆ [0,∞), t ∈ Σγ and µ > 0:

sup
p∈N0, s∈K

hp

Mp

∥∥∥ dp
dsp

S1
b,t(s)

∥∥∥ 6 M

2π

∫
Γ

eM(hλ)eReλse−(t1 cos(b(π−a))−|t2|)|λ|b

× e−(t1 tan γ−|t2|)|λ|b(1+|λ|+|ω|)n|dλ|

6 M

2π

∫
Γ

eM(hλ)es[αM1(l| Imλ|)+β+αM−ω]e−(t1 cos(b(π−a))−|t2|)|λ|b

× e−(t1 tan γ−|t2|)|λ|b(1+|λ|+|ω|)n|dλ|

6 MesupK(β+αM−ω)

2π

∫
Γ

ecµ
hb

lb
|λ|b+Cµeαm supK[cµ

hb

lb
|λ|b+Cµ]

× e−l(t1 cos(b(π−a))−|t2|)|λ|b(1+|λ|+|ω|)n|dλ|

6 M

2π
esupK[β+αM−ω+αmCµ]+Cµ

∫
Γ

ecµ
hb

lb
|λ|b(1+supK)e−(t1 cos(b(π−a))−|t2|)|λ|b

× (1+|λ|+|ω|)n|dλ|.

Choosing sufficiently small µ, we obtain that supp∈N0, s∈K
hp

Mp

∥∥ dp

dspS
1
b,t(s)

∥∥ < ∞.

Put now Sb,t(s) := eωsS1
b,t(s), s > 0, t ∈ Σγ . Then it is clear that (Sb,t(s))s>0 is a

global Tb(t)-regularized semigroup generated by A. Since (Mp) satisfies (M.1) and
M0 = 1, it can be easily seen that Mp+q > MpMq, p, q ∈ N0 (cf. for instance [51,
Lemma 2.1.1]). Hence, for every h1 ∈ [h(2 + 2|ω|),∞):

sup
p∈N0, s∈K

hp

Mp

∥∥∥ dp
dsp

Sb,t(s)x
∥∥∥

6 e|ω| supK sup
p∈N0, s∈K

hp2p(1 + |ω|)p

Mp

p∑
i=0

∥∥∥ dp−i
dsp−i

S1
b,t(s)x

∥∥∥
6 e|ω| supK sup

p∈N0, s∈K
hp(2 + 2|ω|)p

p∑
i=0

CMp−i

hp−i1 Mp

6 e|ω| supK sup
p∈N0, s∈K

(
h(2 + 2|ω|)/h1

)p p∑
i=0

Chi1
Mi

6 Ce|ω| supK
∞∑
i=0

hi1
Mi

6 Ce|ω| supK
∞∑
i=0

hi1
(2h1)i

sup
p∈N0

(2h1)p

Mp

6 2Ce|ω| supKeM(2h1) <∞, where C = sup
p∈N0, s∈K

hp1
Mp

∥∥∥ dp
dsp

S1
b,t(s)x

∥∥∥.
This implies (iii) and completes the proof. �

Before we go any further, let us notice that every Gevrey sequence satisfies
(304) with b ∈ ( 1

s , 1).

Corollary 3.6.2. Suppose A is a closed operator and there exist c ∈ (0, 1),
σ > 0, M > 0, n ∈ N and ς ∈ R such that

Πc,σ,ς =
{
λ ∈ C : Reλ > σ| Imλ|c + ς

}
⊆ ρ(A) and(309)
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∥R(λ :A)∥ 6M(1 + |λ|)n, λ ∈ Πc,σ,ς .(310)

Then, for every b ∈ (c, 1) and γ ∈
(
0, arctan(cos( bπ2 ))

)
, there is an analytic operator

family (Tb(t))t∈Σγ in L(E) satisfying the properties (ii), (iv) and (v) stated in
the formulation of Theorem 3.6.1. Furthermore, the property (iii) holds for every

compact set K ⊆ [0,∞) and Mp = p
p
c , and there exists ω ∈ R such that (Tb(t))t∈Σγ

is an analytic semigroup of growth order n+1
b whose c.i.g. is −

(
(ω −A)|An(A)

)b
.

Proof. Clearly, p
p
b ≺ Mp and M(|λ|) ∼ 1

ce |λ|
c, λ → ∞. This implies that

there exist α > 0, l > 0 and β ∈ R with Λα,β,l ⊆ Πc,σ,ς . An application of
Theorem 3.6.1 ends the proof. �

Remark 3.6.3. Suppose A generates a (DS). Then, for every c > 0, there exist
σ > 0, M > 0, n ∈ N and ς ∈ R such that (309)-(310) hold. Hence, for every
b ∈ (0, 1) and γ ∈

(
0, arctan(cos(bπ2 ))

)
, A generates a global Tb(t)-regularized

semigroup, where we define Tb(t) as before; let remind us that Kunstmann [252]

proved that this statement holds for every b ∈ (0, 1) and γ ∈
(
0, π(1−b)4

)
(cf. also

[38, p. 302]). Our estimate is better if b ∈ (0, 2
π ]. This follows from the following

simple observation:∣∣∣arctan
(

cos
(
b
π

2

))
− π

4

∣∣∣ 6 ∣∣∣1 − cos
(
b
π

2

)∣∣∣ = 2 sin2
(
b
π

4

)
<
b2π2

8
6 b

π

4
.

In conclusion, we obtain that there exists ω ∈ R such that the solution of the
incomplete Cauchy problem u(k)(t) = (−1)k+1(A−ω)u(t), t > 0 can be analytically
extended to the larger sector Σarctan(cos(bπ

2 )) (cf. for instance [89, Section XXV] and

[394]).

3.6.2. Regularization of ultradistribution semigroups whose genera-
tors possess ultra-polynomially bounded resolvent. In this subsection, we
assume that (Mp) additionally satisfies (M.2) and (M.3). We define the abstract
Beurling space of (Mp) class associated to a closed linear operator A as in [59].

Put E(Mp)(A) := proj limh→+∞E
{Mp}
h (A), where

E
{Mp}
h (A) :=

{
x ∈ D∞(A) : ∥x∥{Mp}

h = sup
p∈N0

hp∥Apx∥
Mp

<∞
}
.

Then (E
{Mp}
h (A), ∥ · ∥{Mp}

h ) is a Banach space, E
{Mp}
h′ (A) ⊆ E

{Mp}
h (A) if 0 < h <

h′ < ∞ and E(Mp)(A) is a dense subspace of E whenever A is the generator of a
regular (Mp)-ultradistribution semigroup [59]. In general, we do not know whether

the space E(Mp)(A) is non-trivial (cf. [38, p. 301] and [59, p. 185]). Further on, we
would like to point out that the equality

sup
p∈N0

hp∥(A− z)px∥
Mp

6 2eM(h(4+4|z|))∥x∥{Mp}
h(2+2|z|), h > 0, z ∈ C,

implies E(Mp)(A) = E(Mp)(A− z), z ∈ C and that, thanks to (M.2), we have that
the part of A in E(Mp)(A) is a continuous mapping from E(Mp)(A) into E(Mp)(A).
(The previous assertions still hold if (M.3) is replaced by (M.3′).) It is noteworthy
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that the notions of quasi-analytic vectors and abstract Beurling spaces also appear
in the papers of Chernoff [67], Lyubich [296], Spellmann [392] and that [392,
Theorem 2] remains true in the case of non-densely defined Hille–Yosida operators.

The following entire function of exponential type zero [207] plays a crucial role
in our investigation ω(z) :=

∏∞
i=1

(
1 + iz

mp

)
, z ∈ C. We know the following (cf. for

instance [59, pp. 169, 171, 182 and Lemma 3.2, p. 179]):

(P.1) there exist l0 > 1 and c0 > 0 such that |ωn(z)| 6 cn0A
n−1eM(l0H

n−1|z|),
z ∈ C, n ∈ N,

(P.2) there exist L > 0 and σ ∈ (0, 1] such that |ω(iz)| > L|ω(|z|)|σ, z ∈
(Λα,β,l)c,

(P.3) due to [207, Proposition 4.6], the operator ω(lD) =
∏∞
p=1

(
1 + ilD

mp

)
, l ∈

C, is an ultradifferential operator of class (Mp). If we write ωn(z) =∑∞
p=0 an,pz

p, then |an,p| 6 Const (l0H
n−1)p

Mp
, p ∈ N0, which implies that,

for every n ∈ N and l ∈ C, the operator ωn(lD) is an ultradifferential
operator of class (Mp) as long as (Mp) satisfies (M.3),

(P.4) for every α > 1 and z ∈ C: |ω(|z|)|α > 1
c0
|ω(αl−1

0 |z|)|, and

(P.5) e(k+1)M(|z|) 6 AkeM(Hk|z|), z ∈ C.

Suppose that A is the generator of a (UDS) G of (Mp)-class. Then there exist
constants l > 1, α > 0 and β > 0 (cf. [54], [59, Theorem 1.5 and p. 181], [210] and
[307]) which satisfy:

(311) Λα,β,l ⊆ ρ(A) and ∥R(λ :A)∥ 6 Const
eM(Hl|λ|)

|λ|k
, λ ∈ Λα,β,l, k ∈ N.

Let n ∈ N and n > Hl0lσ
−1. Following the proof of [59, Proposition 3.1], we

define a bounded linear operator Dn by setting Dn := 1
2πi

∫
Γl

R(λ:A)
ωn(iλ) dλ. Then

it is obvious that Dnk = Dk
n, k ∈ N. Arguing similarly as in the proofs of

[59, Proposition 3.1] and [59, Theorem 3.8], it follows that R(G) ⊆ R(Dn) and
E(Mp)(A) =

∩
k∈N R(Dnk); since we have assumed that G satisfies (U.2), Dn is in-

jective. Unfortunately, it is not clear whether, for fixed n ∈ N, R(Dn) ⊆ E(Mp)(A).
Now we clarify the following important interplay between ultradistribution semi-
groups and local C-regularized semigroups.

Theorem 3.6.4. Suppose that A is the generator of a (UDS) G of (Mp)-class.
Then, for every τ ∈ (0,∞), there exists an injective operator Cτ ∈ L(E) such that A
generates a local Cτ -regularized semigroup (S(t))t∈[0,τ) satisfying that (S(t))t∈[0,τ)

is infinitely differentiable in [0, τ) and that there exists h ∈ (0,∞), independent of
τ ∈ (0,∞), such that

(312) sup
t∈[0,τ), p∈N0

hp

Mp

∥∥∥ dp
dtp

S(t)
∥∥∥ <∞.

Proof. The arguments given in the final part of the proof of Theorem 3.6.1
implies that one can translate A by a convenient multiple of the identity. Assume
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that constants l > 1, α > 0 and β > 0 satisfy (311). Clearly,

(313) |ω(s)| =

∞∏
k=1

∣∣∣1 +
is

mk

∣∣∣ > sup
p∈N

p∏
k=1

s

mk
= sup

p∈N

sp

Mp
> eM(s), s > 0.

Put n0 := ⌊Hl0lσ−1⌋ + 1, k := max(⌈τα⌉, 2) and fix afterwards an element x ∈ E,
an integer n ∈ N with n > Hk + 2 and a number t ∈ [0, τ). Then

(n− 1)n0σ > (n− 1)Hll0 > n− 1 > 1,(314)

(n− 1)n0σl
−1
0 > (Hk + 1)Hl0lσ

−1σl−1
0 > Hkl.(315)

We define the bounded linear operator S(t) (cf. also [59, pp. 188–189]) by

(316) S(t) :=
1

2πi

∫
Γl

eλt
R(λ :A)

ωnn0(iλ)
dλ.

In fact, S(0) = Dnn0 := Cτ ∈ L(E) is injective since G satisfies (U.2) (see the
previous discussion). Notice that n0σ > 1 and that (313)–(314), (P.2) and (P.4)–
(P.5) together imply that, for every p ∈ N0:∥∥∥λp eλtR(λ :A)

ωnn0(iλ)

∥∥∥ 6 Const |λ|p e
t(αM(l|λ|)+β)eM(Hl|λ|)

|ω(n−1)n0(iλ)∥ωn0(iλ)|

6 Const |λ|petβA
⌈tα⌉−1eM(H⌈tα⌉−1l|λ|)eM(Hl|λ|)

|ω(n−1)n0(iλ)∥ωn0(iλ)|

6 Const |λ|petβA⌈tα⌉−1

|ω(|λ|)|n0σ

e2M(Hk−1l|λ|)

Lnn0 |ω(|λ|)|(n−1)n0σ
(317)

6 Const |λ|petβL−nn0A⌈tα⌉

|ω(|λ|)∥ω(|λ|)|n0σ−1

c0|ω(Hkl|λ|)|
|ω((n− 1)n0σl

−1
0 |λ|)|

6 Const |λ|petβL−nn0A⌈tα⌉

|ω(|λ|)|eM(|λ|(n0σ−1))

c0|ω(Hkl|λ|)|
|ω((n− 1)n0σl

−1
0 |λ|)|

6 Const |λ|p 1

eM(|λ|(n0σ−1))|λ|2
,

where Const is independent of p ∈ N0. Then the Fubini theorem implies S(s)Cτ =
CτS(s), s ∈ [0, τ), and furthermore, it is checked at once that S(s)A ⊆ AS(s),
s ∈ [0, τ). Since ρ(A) ̸= ∅, we have C−1

τ ACτ = A. In order to see that (S(t))t∈[0,τ)

is a local Cτ -regularized semigroup generated by A (cf. [89] and [275]), it is enough

to prove that A
∫ t
0
S(s)x ds = S(t)x−Cτx, t ∈ [0, τ). To see this, one has to prove

first the following equality:

(318)

∫
Γl

eλt

ωnn0(iλ)
dλ = 0.
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For a sufficiently large R > 0, put ΓR := {z ∈ C : |z| = R, z /∈ Λα,β,l}. As above,
(314) and (P.4) imply

(319) |ω(|z|)|(n−1)n0σ > 1

c0

∣∣ω((n− 1)n0σl
−1
0 |z|)

∣∣, z ∈ C.

Taking into account (P.2) and (313), we obtain:

|ωnn0(iλ)| = |ω(n−1)n0(iλ)∥ωn0(iλ)| > Lnn0 |ω(n−1)n0σ(R)|eM(R)n0σ

> Const |ω(n−1)n0σ(R)|R2, λ ∈ ΓR.

An employment of (P.5) yields∣∣∣ eλt

ωnn0(iλ)

∣∣∣ 6 et(αM(l| Imλ|)+β)

|ωnn0(iλ)|
6 Const

R2
etβ

etαM(lR)

|ω(n−1)n0σ(R)|

6 Const

R2
etβ

A⌈tα⌉−1eM(H⌈tα⌉−1lR)

|ω(n−1)n0σ(R)|
.

Owing to (319), one can continue the calculation as follows:

6 Const

R2
c0e

tβA⌈tα⌉−1 |ω(H⌈tα⌉−1lR)|
|ω((n− 1)n0σl

−1
0 R)|

.

The last inequality and (315) imply
∫
ΓR

eλt

ωnn0 (iλ) dλ → 0, R → +∞. Then the

Cauchy theorem yields (318). Applying the Fubini theorem, the resolvent equation
and (318), one obtains

A

t∫
0

S(s)x ds =
1

2πi

t∫
0

∫
Γl

eλs
AR(λ :A)x

ωnn0(iλ)
dλ ds

=
1

2πi

t∫
0

∫
Γl

eλs
λR(λ :A)x− x

ωnn0(iλ)
dλ ds

=
1

2πi

t∫
0

∫
Γl

eλs
λR(λ :A)x

ωnn0(iλ)
dλ ds− 1

2πi

t∫
0

∫
Γl

eλs
x

ωnn0(iλ)
dλ ds

=
1

2πi

t∫
0

∫
Γl

eλs
λR(λ :A)x

ωnn0(iλ)
dλ ds =

1

2πi

∫
Γl

[ t∫
0

eλs
λR(λ :A)x

ωnn0(iλ)
ds
]
dλ

=
1

2πi

∫
Γl

(eλt − 1)
R(λ :A)x

ωnn0(iλ)
dλ

=
1

2πi

∫
Γl

eλt
R(λ :A)x

ωnn0(iλ)
dλ− 1

2πi

∫
Γl

R(λ :A)x

ωnn0(iλ)
dλ = S(t)x− Cτx.



3.6. REGULARIZATION OF ULTRADISTRIBUTION SEMIGROUPS AND SINES 301

As before, we have that, for every p ∈ N, the integral 1
2πi

∫
Γl
λpeλt R(λ:A)

ωnn0 (iλ) dλ,

t ∈ [0, τ) is convergent and that d
dtS(t) = 1

2πi

∫
Γl
λeλt R(λ:A)

ωnn0 (iλ) dλ. Inductively,

(320)
dp

dtp
S(t) =

1

2πi

∫
Γl

λpeλt
R(λ :A)

ωnn0(iλ)
dλ, p ∈ N0, t ∈ [0, τ).

It remains to be shown (312). Choose arbitrarily an h ∈ (0, n0σ−1). An application
of (317) and (320) gives:

sup
t∈[0,τ), p∈N0

hp

Mp

∥∥∥ dp
dtp

S(t)
∥∥∥ 6 1

2π
sup

t∈[0,τ), p∈N0

hp

Mp

∫
Γl

|λ|p|eλt| ∥R(λ :A)∥
|ωnn0(iλ)|

|dλ|

6 Const

∫
Γl

eM(h|λ|)

eM(|λ|(n0σ−1))|λ|2
|dλ| 6 Const

∫
Γl

|dλ|
|λ|2

<∞.

The proof is now completed. �

The proof of following lemma essentially follows from that of [59, Theorem
3.8].

Lemma 3.6.5. Suppose G is a (UDS) of (Mp)-class generated by A, l > 1,
α > 0, β > 0, n ∈ N, n > Hl0lσ

−1 (cf. (P.1)–(P.5)) and (311) holds. Then
E(Mp)(A) =

∩
k∈NDnk(D∞(A)) and

(321)

D−1
nk (E

{Mp}
2l0Hnk+1) ⊆

{
x ∈ D∞(A) : sup

p∈N0

ςp∥Apx∥
Mp

<∞ for all ς ∈ (0, 2l0H
nk)

}
.

Proof. Fix an integer k ∈ N and a number ς ∈ (0, 2l0H
nk). Put h =

2l0H
nk+1. Let y ∈ E

{Mp}
h and ωnk(iz) =

∑∞
p=0 ak,pz

p, z ∈ C. Due to (P.3), we

have |ak,p| 6 Const (l0H
nk)p

Mk
, p ∈ N and the series

∑∞
p=0 ak,pA

py := x is convergent
since

∥ak,pApy∥ 6 Const
hp∥Apy∥
Mp

( l0Hnk

h

)p
6 Const ∥y∥{Mp}

h

( 1

2H

)p
.

Arguing as in the proof of [59, Theorem 3.8, p. 187], one gets that y = Dnkx and
the proof is completed if one shows that x ∈ D∞(A) and that (321) holds with ς.
First of all, let us observe that the series

∑∞
p=0 ak,pA

m+py is also convergent for all

m ∈ N. Indeed, (M.2) yields

(322) ∥ak,pAm+py∥ 6 Const
hp+m∥Ap+my∥

Mp+m

( l0Hnk

h

)pMp+m

Mphm

6 Const ∥y∥{Mp}
h

( 1

2H

)pMp+m

Mphm
6 Const ∥y∥{Mp}

h

( 1

2H

)pAHp+mMm

hm

6 Const ∥y∥{Mp}
h

(1

2

)p( 1

2l0Hnk

)m
Mm.
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By (322),
∞∑
p=0

|ak,p|Ap+my∥ 6 Const ∥y∥{Mp}
h

( 1

2l0Hnk

)m
Mm, x ∈ D∞(A)

and Amx =
∑∞
p=0 ak,pA

m+py. Finally, (322) implies

sup
m∈N0

ςm∥Amx∥
Mm

6 Const ∥y∥{Mp}
h sup

m∈N0

( ς

2l0Hnk

)m
6 Const ∥y∥{Mp}

h . �

Now we are in a position to clarify the following analogue of [59, Theorem 4.1,
Corollary 4.2] for non-dense ultradistribution semigroups of (Mp)-class.

Theorem 3.6.6. Suppose that A generates a (UDS) of (Mp)-class. Then the
abstract Cauchy problem

(ACP) :


u ∈ C∞([0,∞) : E) ∩ C([0,∞) : [D(A)]),

u′(t) = Au(t), t > 0,

u(0) = x,

has a unique solution for all x ∈ E(Mp)(A). Furthermore, for every compact set
K ⊆ [0,∞) and h > 0, the solution u of (ACP) satisfies

sup
t∈K, p∈N0

hp

Mp

∥∥∥ dp
dtp

u(t)
∥∥∥ <∞.

Proof. We basically follow the terminology given in the proof of Theorem 3.6.4
and Lemma 3.6.5 (cf. also (P.1)–(P.5)). The uniqueness of solutions of (ACP) is a
consequence of the Ljubich uniqueness theorem. To prove the existence of solutions
of (ACP), let us observe that the proof of Theorem 3.6.4 implies that there exist a
number n0 ∈ N and a strictly increasing sequence (kl) in N such that n0 > Hl0lσ

−1

and that, for every l ∈ N, the operator A is the generator of a differentiable Dn0kl -
regularized semigroup (Sl(t))t∈[0,l). This implies that the abstract Cauchy problem

ul ∈ C1([0, l) : E) ∩ C([0, l) : [D(A)]),

u′l(t) = Aul(t), t > 0,

ul(0) = x,

has a unique solution for every x ∈ Dn0kl(D(A)) given by ul(t) = D−1
n0kl

Sl(t)x,

t ∈ [0, l). If x ∈ E(Mp)(A), then Lemma 3.6.5 implies that ul(t) = Sl(t)D
−1
n0kl

x,

t ∈ [0, l), and due to Theorem 3.6.4, we get ul ∈ C∞([0, l) : E). Therefore, we
automatically obtains the existence of a solution of (ACP) for x ∈ E(Mp)(A). Let
K ⊆ [0,∞) be a compact set, K ⊆ [0, l) for some l ∈ N, h > 0, l′ ∈ N, l′ > l and
2l0H

n0kl′ > h. Then, for every t ∈ K:

hp

Mp

∥∥∥ dp
dtp

u(t)
∥∥∥ =

hp

Mp

∥∥∥ dp
dtp

ul′(t)
∥∥∥ =

hp

Mp

∥∥∥Apul′(t)∥∥∥ =
hp

Mp

∥∥∥ApD−1
n0kl′

Sl′(t)x
∥∥∥

=
hp

Mp

∥∥∥Sl′(t)ApD−1
n0kl′

x
∥∥∥ 6 sup

s∈[0,l]

∥∥∥Sl′(s)∥∥∥ hp
Mp

∥∥∥ApD−1
n0kl′

x
∥∥∥.
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This in combination with Lemma 3.6.5 completes the proof of theorem. �

The following lemma is closely linked to an old result of Roumieu (see e.g. [207,
Lemma 4.3, p. 57]) in which it has been assumed that the corresponding sequences
(Mp) and (Np) satisfy (M.1) and (M.3’).

Lemma 3.6.7. There exists a sequence (Np) satisfying N0 = 1, (M.1), (M.2),
(M.3) and Np ≺Mp.

Proof. Define a sequence (rp) of positive real numbers recursively by:

r1 := 1 and rp+1 := rp

[ mp

mp+1
+ min

(
1 − mp

mp+1
,

1

p

mp

mp+1

)]
, p ∈ N.

Then:

(323) 1 > rp+1

rp
> mp

mp+1
and rp+1 6 rp

(
1 +

1

p

) mp

mp+1
, p ∈ N.

Using (323), one obtains inductively:

rp 6 p
m1

mp
and

p∏
i=1

ri 6 p!
mp

1

Mp
, p ∈ N.

Since p! ≺ Mp (cf. [207, p. 74] and [51, Lemma 2.1.2]), one gets that, for every
σ > 0,

(324) sup
p∈N0

σp
p∏
i=1

ri <∞.

Put now N0 := 1 and Np := Mp

∏p
i=1 ri, p ∈ N. Keeping in mind (323), one can

simply verify that (Np) satisfies (M.1), (M.2) (with the same constants A and H)
and (M.3). Furthermore, (324) implies that Np ≺Mp. �

Now we are able to state the following important result.

Theorem 3.6.8. Suppose that A generates a (UDS) G of (Mp)-class. Then
there exists an injective operator C such that A generates a global differentiable
C-regularized semigroup (S(t))t>0. Furthermore, for every compact set K ⊆ [0,∞)

and h > 0, one has supt∈K, p∈N0

hp

Mp

∥∥ dp
dtpS(t)

∥∥ <∞.

Proof. By Lemma 3.6.7, there exist a sequence (Np) of positive real numbers
satisfying N0 = 1, (M.1), (M.2), (M.3) and Np ≺ Mp. As in the proof of The-
orem 3.6.4, we may assume that numbers l > 1, α > 0 and β > 0 satisfy (311).
Denote by N(·) the associated function of (Np) and notice that the previously given
arguments combined with [207, Lemma 3.10] indicate that there exist α1 > 0 and
β1 > 0 such that Λ1

α1,β1,l
⊆ Λα,β,l ⊆ ρ(A). Furthermore, for every µ > 0, there

exists Cµ > 0 such that M(λ) 6 N(µλ) + Cµ, λ > 0, and thanks to [361, Lemma
1.7, p. 140] (cf. also [51, Lemma 2.1.3]), we know that, for every L > 1, there exist
B > 0 and EL > 0 such that

(325) LN(λ) 6 N(BL−1λ) + EL, λ > 0.
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Let Γ1 and Γ2 denote the upwards oriented boundaries of Λα,β,l and Λ1
α1,β1,l

, re-

spectively. Suppose that ϱ ∈ D(Np)

[0,1] satisfies ρ(t) > 0, t ∈ R and
∫
R ϱ(t) dt = 1.

Put ϱn(t) := nϱ(nt), t ∈ R, n ∈ N. Then it can be simply verified that, for ev-
ery φ ∈ D(Mp), ϱn ∗ φ ∈ D(Np) ⊆ D(Mp), n ∈ N and that limn→∞ ϱn ∗ φ = φ

in D(Mp). Define G1(φ) := G(φ), φ ∈ D(Np). Then G1 ∈ D′(Np)
0 (L(E)) and

satisfies (U.1). To prove (U.2), suppose G1(φ)x = 0 for all φ ∈ D(Np)
0 . Then

G(ψ)x = limn→∞G(ϱn ∗ ψ)x = limn→∞G1(ϱn ∗ ψ)x = 0 for all ψ ∈ D(Mp)
0 . So,

x = 0, G1 is a (UDS) of (Np)-class and it can be simply checked that the gen-

erator of G1 is A. Denote ωNp(z) :=
∏∞
i=1

(
1 +

izNp−1

Np

)
, z ∈ C and notice that

|ωNp
(s)| > eN(s), s > 0 and that, owing to (P.2), there exist L1 > 0 and σ1 ∈ (0, 1]

such that |ωNp
(iz)| > L1|ωNp

(|z|)|σ1 , z ∈ (Λ1
α1,β1,l

)c. Since G1 is a (UDS) gener-

ated by A, we have that there exists a sufficiently large integer n > ⌈ 1
σ1
⌉ so that

the bounded linear operator C := 1
2πi

∫
Γ2

R(λ:A)
ωn

Np
(iλ) dλ is injective. An elementary

application of Cauchy formula implies that C = 1
2πi

∫
Γ1

R(λ:A)
ωn

Np
(iλ) dλ. Set now

S(t)x :=
1

2πi

∫
Γ1

eλtR(λ :A)x

ωnNp
(iλ)

dλ, t > 0, x ∈ E.

Taking into account the simple equality
∫
Γ1

λp

ωn
Np

(iλ) dλ = 0, one can repeat literally

the proof of Theorem 3.6.4 in order to see that (S(t))t>0 is a global differentiable

C-regularized semigroup generated by A and that, for every p ∈ N0, dp

dtpS(t) =
1

2πi

∫
Γ1
λpeλt R(λ:A)

ωn
Np

(iλ) dλ, p ∈ N0, t > 0. Suppose now that K ⊆ [0,∞) is a compact

set and that h > 0. Then we get with the help of (325) that, for every µ > 0,

sup
t∈K, p∈N0

hp

Mp

∥∥∥ dp
dtp

S(t)
∥∥∥ 6 Const eβ supK

∫
Γ1

eM(h|λ|)+α supKM(l|λ|)eM(Hl|λ|)

|ωnNp
(iλ)∥λ|2

|dλ|

6 Const eβ supK

∫
Γ1

eM(hλ)+α supKM(l|λ|)+M(Hl|λ|)

|λ|2Ln1 |ωNp
(|λ|)|nσ1

|dλ|

6 Const

∫
Γ1

eM(hλ)+α supKM(l|λ|)+M(Hl|λ|)

|λ|2enσ1N(|λ|) |dλ|

6Mµ

∫
Γ1

eN(h|λ|µ)+α supKN(l|λ|µ)+N(Hl|λ|µ)

|λ|2enσ1N(|λ|) |dλ|(326)

6Mµe
Eα supK

∫
Γ1

eN(h|λ|µ)+N(Bα supK l|λ|µ)+EK,α+N(Hl|λ|µ)

|λ|2enσ1N(|λ|) |dλ|
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6Mµe
Eα supK

∫
Γ1

e3N(|λ|µ[h+lBα supK+Hl])

|λ|2enσ1N(|λ|) |dλ|

6Mµe
Eα supK+E3

∫
Γ1

eN(B2|λ|µ[h+lBα supK+Hl])

|λ|2enσ1N(|λ|) |dλ|.

Suppose now that µ ∈ (0, 1
B2(h+lBα supK+Hl)

). Then we obtain from (326):

6 Cµe
Eα supK+E3

∫
Γ1

|dλ|
|λ|2

<∞. �

The proof of previous theorem also implies:

Theorem 3.6.9. Suppose that A generates an exponential (UDS) G of (Mp)-
class. Then there exists an injective operator C ∈ L(E) such that A generates an
exponentially bounded C-regularized semigroup (S(t))t>0 that is infinitely differen-
tiable in t > 0. Furthermore, for every compact set K ⊆ [0,∞) and h > 0, one has

supt∈K, p∈N0

hp

Mp

∥∥ dp
dtpS(t)

∥∥ <∞.

3.6.3. Higher order time-fractional equations. Regularization of ul-
tradistribution sines. First of all, we recall the assertion of [434, Theorem 6.2,
p. 132] with α = N ∈ N:

Theorem 3.6.10. Suppose n ∈ N, n > 2, θ ∈ (0, π2 ), M > 0, z0 ∈ C, z0 ̸= 0
and A is a closed linear operator. If

ei arg(z0)(|z0| + Σθ) ⊆ ρ(A),(327)

∥R(λ :A)∥ 6M(1 + |λ|)N , λ ∈ ei arg(z0)(|z0| + Σθ),(328)

then there exists a family (Cε)ε>0 of bounded injective operators on E such that:

(i) For every ε > 0, there exists a unique solution u of the abstract Cauchy
problem (ACPn) with initial data x0, . . . , xn−1 ∈ R(Cε) and

(329) ∥u(t)∥ 6M(t)

n−1∑
i=0

∥C−1
ε xi∥, t > 0,

for some non-negative and locally bounded function M(t), t > 0.
(ii)

∪
ε>0 Cε(D(AN+2)) is dense in D(AN+2).

Our intention in the first part of this section is to reconsider Theorem 3.6.10
and to prove its generalization in the framework of the theory of abstract time-
fractional equations. Recall that J. Chazarain and H. O. Fattorini (cf. for instance
[434]) proved that the abstract Cauchy problem (ACPn) is not well posed in the
classical sense if A is unbounded and n > 3. Concerning abstract time-fractional
equations, it is worth noting that E. Bazhlekova proved (cf. [36, Theorem 2.6, p.

22]) that every generator of an exponentially bounded ( t
α−1

Γ(α) , I)- regularized resol-

vent family must be bounded if α > 2. The above statement is no longer true

for the class of exponentially bounded ( t
α−1

Γ(α) , C)-regularized resolvent families, as a
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class of very simple counterexamples show. We have established in [240] the suffi-
cient conditions for generation of global not necessarily exponentially equicontinu-

ous ( t
α−1

Γ(α) , C)-regularized resolvent families in sequentially complete locally convex

space, SCLCS for short. The results obtained there can be used in the analysis of
the following abstract time-fractional equation with α > 1 :

(330) Dα
t u(t) = Au(t), t > 0; u(k)(0) = xk, k = 0, 1, · · ·, ⌈α⌉ − 1,

where xk ∈ C(D(A)), k = 0, 1, · · ·, ⌈α⌉ − 1 and Dα
t denotes the Caputo fractional

derivative of order α. In what follows, we will try to give the basic information on
the C-wellposedness of (330). Assume that E is a SCLCS and that ~ stands for
the fundamental system of seminorms which defines the topology of E. Let α > 0.
A function u ∈ C⌈α⌉−1([0,∞) : E) is said to be a (strong) solution of (330) if

Au ∈ C([0,∞) : E),
·∫
0

(·−s)⌈α⌉−α−1

Γ(⌈α⌉−α)
[
u(s) −

∑⌈α⌉−1
k=0

sk

k! xk
]
ds ∈ C⌈α⌉([0,∞) : E) and

(330) holds. The abstract Cauchy problem (330) is said to be C-wellposed if:

(i) For every x0, ···, x⌈α⌉−1 ∈ C(D(A)), there exists a unique solution u(t;x0, ··
·, x⌈α⌉−1) of (330).

(ii) For every T > 0 and q ∈ ~, there exist c > 0 and r ∈ ~ such that, for
every x0, · · ·, x⌈α⌉−1 ∈ C(D(A)), the following holds:

(331) q
(
u(t;x0, · · ·, x⌈α⌉−1)

)
6 c

⌈α⌉−1∑
k=0

r
(
C−1xk

)
, t ∈ [0, T ].

In case C = I and E is a Banach space, the definition of C-wellposedness of (330)
coincides with the one introduced on pages 19 & 20 of [36]. Assume that there
exists a unique solution of (330) in case x0 ∈ C(D(A)) and xj = 0, 1 6 j 6 ⌈α⌉−1.
Applying [36, (1.21), p. 12], one gets that u(t;x0) ≡ u(t;x0, 0, · · ·, 0), t > 0 is a
unique function satisfying u(·;x0), Au(·;x0) ∈ C([0,∞) : E) and

(332) u(t;x0) = x0 +

t∫
0

(t− s)α−1

Γ(α)
Au(s;x0)ds, t > 0.

If, additionally, A is densely defined, E is complete and (331) holds provided x0 ∈
C(D(A)) and xj = 0, 1 6 j 6 ⌈α⌉ − 1, then one can repeat literally the arguments
given in the proof of [369, Proposition 1.1] in order to see that A is a subgenerator of

a locally equicontinuous ( t
α−1

Γ(α) , C)-regularized resolvent family (Sα(t))t>0. Notice

that we need the completeness of E here since one has to extend the operator
Sα(t)x ≡ u(t;Cx, · · ·, 0) (t > 0, x ∈ D(A)) to the whole space E (cf. also [306,
Lemma 22.19, p. 258]).

Assume now that, for every x0 ∈ C(D(A)), there exists a unique function
u(t) ≡ u(t;x0), t > 0 satisfying u, Au ∈ C([0,∞) : E) and (332). Then it is
straightforward to see that u(t) is a unique solution of (330) with xj = 0, 1 6 j 6
⌈α⌉ − 1. If A is a subgenerator of a global ( t

α−1

Γ(α) , C)-regularized resolvent family
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(Sα(t))t>0, then the unique solution of (330) is given by:

u(t) = Sα(t)C−1x0 +

⌈α⌉∑
j=1

t∫
0

(t− s)j−1

(j − 1)!
Sα(s)C−1xj−1ds, t > 0;

furthermore, the abstract Cauchy problem (330) is C-wellposed if, additionally,
(Sα(t))t>0 is locally equicontinuous.

In order to formulate the following theorem, we need to consider separately
two possible cases: α > 2 and α ∈ (1, 2].

If α > 2, then we assume that there exist z0 ∈ C r {0}, β > −1, d ∈ (0, 1],
m ∈ (0, 1), ε ∈ (0, 1] and γ > −1 such that:

(♭) Pz0,β,ε,m := ei arg(z0)
(
|z0|+(Pβ,ε,m∪Bd)

)
⊆ ρC(A), (ε,m(1+ε)−β) ∈ ∂Bd,

(♭♭) the family {(1 + |λ|)−γ(λ−A)−1C : λ ∈ Pz0,β,ε,m} is equicontinuous, and
(♭♭♭) the mapping λ 7→ (λ−A)−1Cx, λ ∈ Pz0,β,ε,m is continuous for every fixed

x ∈ E.

The case α ∈ (1, 2] is more restrictive. We assume that there exist z0 ∈ Cr{0},
θ ∈ (π2 (2 − α), π2 ), d ∈ (0, 1] and γ > −1 such that:

(♭1) Σ(z0, θ, d) := ei arg(z0)
(
|z0| + (Σ(θ) ∪Bd)

)
⊆ ρC(A),

(♭♭1) the family {(1 + |λ|)−γ(λ − A)−1C : λ ∈ Σ(z0, θ, d)} is equicontinuous,
and

(♭♭♭1) the mapping λ 7→ (λ − A)−1Cx, λ ∈ Σ(z0, θ, d) is continuous for every
fixed x ∈ E.

Given b ∈ (0, 1/2), set δb := arctan(cosπb).

Theorem 3.6.11. Let (Mp) be a sequence of positive real numbers satisfying
p! ≺Mp.

(i) Let (♭)-(♭♭♭) hold. Then, for every b ∈
(
1
α ,

1
2

)
, there exists an operator

family (Tb(z))z∈Σδb
such that, for every x ∈ E, the mapping z 7→ Tb(z)x, z ∈ Σδb

is analytic and that the following holds:

(i.1) For every z ∈ Σδb and p ∈ ~, Tb(z) is injective and there exist c > 0 and
q ∈ ~ such that

p
(
Tb(z)x

)
6 c
(
(tan(cosπb) Re z − | Im z|)−

γ+1
b

)
q(x), x ∈ E.

(i.2) If ⌊b+ γ⌋ > 0, x ∈ D(A⌊b+γ⌋+2) and δ ∈ (0, δb), then there exists

limz′∈Σδ,z′→0
Tb(z

′)x−x
z′ , and particularly, limz′∈Σδ,z′→0 Tb(z

′)x = x.
(i.3) For every z ∈ Σδb , there exists a unique solution u(·; z) of the abstract

Cauchy problem (330) with initial data x0, · · · , x⌈α⌉−1 ∈ R(Tb(z)) and
u(·; z) can be extended to the whole complex plane. Furthermore, the map-
ping ω 7→ u(ω; z), ω ∈ C r (−∞, 0] is analytic and the abstract Cauchy
problem (330) is Tb(z)-wellposed (z ∈ Σδb). Let K ⊆ C r (−∞, 0] be a
compact set, let h > 0 and let z ∈ Σδb . Then, for every seminorm q ∈ ~,
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there exist a constant cK,h,z,q > 0 and a seminorm rq ∈ ~ such that:

(333)

⌈α⌉−1∑
l=0

sup
ω∈K, p∈N

hpq
(
Ap dl

dωlu(ω; z)
)

M⌊αp⌋−1+l
6 cK,h,z,q

⌈α⌉−1∑
i=0

rq
(
Tb(z)−1xi

)
;

if α ∈ Nr{1, 2}, then the mapping ω 7→ u(ω; z), ω ∈ C is entire (z ∈ Σδb)
and (333) holds for any compact set K ⊆ C, h > 0, z ∈ Σδb and q ∈ ~.

(ii) Let (♭1)-(♭♭♭1), b ∈
(
1
α ,

π
2(π−θ)

)
and ϑ ∈ (0, arctan(cos(b(π − θ)))). Then

there exists an operator family (Tb(z))z∈Σϑ
such that, for every x ∈ E, the mapping

z 7→ Tb(z)x, z ∈ Σϑ is analytic and that the following holds:

(ii.1) For every z ∈ Σϑ and p ∈ ~, Tb(z) is injective and there exist c > 0 and
q ∈ ~ such that

p
(
Tb(z)x

)
6 c
(
(tan(ϑ) Re z − | Im z|)−

γ+1
b

)
q(x), x ∈ E.

(ii.2) If ⌊b+ γ⌋ > 0, x ∈ D(A⌊b+γ⌋+2) and δ ∈ (0, ϑ), then there exists

limz′∈Σδ,z′→0
Tb(z

′)x−x
z′ , and particularly, limz′∈Σδ,z′→0 Tb(z

′)x = x.
(ii.3) For every z ∈ Σϑ, there exists a unique solution u(·; z) of the abstract

Cauchy problem (330) with initial data x0, x1 ∈ R(Tb(z)) and u(·; z) can
be extended to the whole complex plane. Furthermore, the mapping ω 7→
u(ω; z), ω ∈ C r (−∞, 0] is analytic and the abstract Cauchy problem
(330) is Tb(z)-wellposed (z ∈ Σϑ). Let K ⊆ Cr (−∞, 0] be a compact set,
let h > 0 and let z ∈ Σϑ. Then, for every seminorm q ∈ ~, there exist a
constant cK,h,z,q > 0 and a seminorm rq ∈ ~ such that (333) holds with
⌈α⌉ = 2; if α = 2, then the mapping ω 7→ u(ω; z), ω ∈ C is entire (z ∈ Σϑ)
and (333) holds for any compact set K ⊆ C, h > 0, z ∈ Σϑ and q ∈ ~.

Proof. We will only prove the first part of theorem. Put A0 := e−i arg(z0)A−
|z0|. Then Pβ,ε,m∪Bd ⊆ ρC(A0) and, for every q ∈ ~, there exist cq > 0 and rq ∈ ~
such that

(334) q
(
(λ−A0)−1Cx

)
6 cqrq(x)(1 + |λ|)γ , x ∈ E, λ ∈ Pβ,ε,m ∪Bd.

Without loss of generality, we may assume that there exists an open neighborhood
Ωβ,ε,m,d of the region Pβ,ε,m ∪Bd such that the mapping λ 7→ (λ− A0)−1Cx, λ ∈
Ωβ,ε,m,d is continuous for every x ∈ E and that (334) holds. By [241, Proposition
2.16(iii)], the mapping λ 7→ (λ− A0)−1Cx, λ ∈ Ωβ,ε,m,d is analytic for every fixed
x ∈ E. Then, for every z ∈ Σδb and λ ∈ Γ,∣∣e−z(−λ)b ∣∣ = e−Re z|λ|b cos(b arg(−λ))+Im z|λ|b sin(b arg(−λ))

6 e−(Re z cos(b arg(−λ))−| Im z|)|λ|b 6 e−(Re z cos(b(π−a))−| Im z|)|λ|b

6 e−(Re z tan δb−| Im z|)|λ|b .(335)

Define, for every z ∈ Σδb ,

(336) Tb(z)x :=
1

2πi

∫
Γ

e−z(−λ)
b

(λ−A0)−1Cxdλ, x ∈ E.
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By (334)-(335), Tb(z) ∈ L(E) for all z ∈ Σδb . One can simply prove that the
mapping z 7→ Tb(z)x, z ∈ Σδb is analytic for every fixed x ∈ E ([241]). The
injectiveness of each single operator Tb(z) is a consequence of the proof of [241,
Theorem 3.16]; for the sake of completeness, we will briefly sketch the proof of this
fact. Let λ0 ∈ Ωβ,ε,m,d r (Pβ,ε,m ∪ Bd). By induction, one gets that, for every
k ∈ N0, x ∈ D(Ak+2) and λ ∈ ρC(A0)r {λ0} :
(337)

(λ−A0)−1Cx =

k+1∑
j=0

(−1)j

(λ− λ0)j+1
Cx+

(−1)k

(λ− λ0)k+2
(λ−A0)−1C(λ0 −A0)k+2x.

Using (337) and the proof of [394, Lemma 2.7], we obtain that the assumptions
⌊b+ γ⌋ > 0, x ∈ D(A⌊b+γ⌋+2) and δ ∈ (0, δb) together imply

lim
z′∈Σδ,z′→0

Tb(z
′)x− Cx

z′

= −(−λ0)bCx− 1

2πi

∫
Γ

(−λ)b
[
(λ−A0)−1C − C

λ− λ0

]
x dλ

=
1

2πi

∫
Γ

(−λ)b−1(λ−A0)−1CAxdλ, x ∈ D(A⌊b+γ⌋+2)(338)

and (i.2). The analyticity of the mapping z′ 7→ Tb(z
′)x, z′ ∈ Σδb combined with the

semigroup property Tb(z
′ + z′′)(0)Cx = Tb(z

′)Tb(z
′′)x, x ∈ E, z′, z′′ ∈ Σδb , and

the injectiveness of C, implies Tb(z
′)x = 0, z′ ∈ Σδb . Since R(Tb(z

′)) ⊆ D∞(A0)
and Tb(z

′)((λ0 − A0)−1C)⌈γ⌉+2x = ((λ0 − A0)−1C)⌈γ⌉+2Tb(z
′)x, z′ ∈ Σδb , one can

apply (338) in order to see that limz′→0+ Tb(z
′)((λ0 − A0)−1C)⌈γ⌉+2x = ((λ0 −

A0)−1C)⌈γ⌉+2x = 0. Therefore, x = 0 and Tb(z) is injective; the inequality stated
in (i.1) readily follows. Define now, for every t > 0, z ∈ Σδb and x ∈ E,

(339) Sα,b,z(t)x :=
1

2πi

∫
Γ

e−z(−λ)
b

∞∑
j=0

eij arg(z0)tαj(λ+ |z0|)j

Γ(αj + 1)
(λ−A0)−1Cxdλ.

Notice that, for every α > 0, there exists cα > 0 such that:∣∣∣∣ ∞∑
j=0

eij arg(z0)tαj(λ+ |z0|)j

Γ(αj + 1)

∣∣∣∣ =
∣∣Eα(ei arg(z0)tα(λ+ |z0|)

)∣∣
6 Eα

(∣∣ei arg(z0)tα(λ+ |z0|)
∣∣) 6 cαe

t(|λ|1/α+|z0|1/α), t > 0, λ ∈ Γ, z ∈ Σδb .

The above implies Sα,b,z(t) ∈ L(E). Clearly, Sα,b,z(0) = Tb(z), Sα,b,z(t)Tb(z) =
Tb(z)Sα,b,z(t), Tb(z)A ⊆ ATb(z), t > 0 and (Sα,b,z(t))t>0 is a strongly continuous
operator family which commutes with A (z ∈ Σδb). Furthermore, for every z ∈ Σδb
and T > 0, the family {Sα,b,z(t) : t ∈ [0, T ]} is equicontinuous. Using the Cauchy
formula, we infer that, for every z ∈ Σδb ,

(340)
1

2πi

∫
Γ

e−z(−λ)
b

∞∑
j=0

eij arg(z0)tαj(λ+ |z0|)j

Γ(αj + 1)
Cxdλ = 0, t > 0, x ∈ E.
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By making use of (340), the Fubini theorem, the resolvent equation and the closed-
ness of A, we obtain that, for every z ∈ Σδb ,

A

t∫
0

(t− s)α−1

Γ(α)
Sα,b,z(s)x ds

= A

t∫
0

(t− s)α−1

Γ(α)

×

[
1

2πi

∫
Γ

e−z(−λ)
b

∞∑
j=0

eij arg(z0)sαj(λ+ |z0|)j

Γ(αj + 1)
(λ−A0)−1Cxdλ

]
ds

=

t∫
0

(t− s)α−1

Γ(α)

1

2πi

∫
Γ

e−z(−λ)
b

∞∑
j=0

eij arg(z0)sαj(λ+ |z0|)j

Γ(αj + 1)

× ei arg(z0)
[
ei arg(z0)(λ+ |z0|)

(
ei arg(z0)(λ+ |z0|) −A

)−1
Cx− Cx

]
dλ ds

=

t∫
0

(t− s)α−1

Γ(α)

1

2πi

∫
Γ

e−z(−λ)
b

∞∑
j=0

ei(j+1) arg(z0)sαj(λ+ |z0|)j+1

Γ(αj + 1)

× ei arg(z0)
(
ei arg(z0)(λ+ |z0|) −A

)−1
Cxdλ ds

=
1

2πi

∫
Γ

e−z(−λ)
b

∞∑
j=0

ei(j+1) arg(z0)sα(j+1)(λ+ |z0|)j+1

Γ(α(j + 1) + 1)
(λ−A0)−1Cxdλ

= Sα,b,z(t)x− Tb(z)x, t > 0, x ∈ E.

Therefore, for every z ∈ Σδb , (Sα,b,z(t))t>0 is a locally equicontinuous ( t
α−1

Γ(α) , Tb(z))-

regularized resolvent family having A as a subgenerator, which immediately implies
the Tb(z)-wellposedness of (330). Let xi ∈ R(Tb(z)), i = 0, 1, · · ·, ⌈α⌉ − 1. Then it
is predictable that the solution of (330) is given by
(341)

u(t; z) := Sα,b,z(t)Tb(z)−1x0 +

⌈α⌉∑
i=1

t∫
0

(t− s)i−1

(i− 1)!
Sα,b,z(s)Tb(z)−1xi−1 ds, t > 0.

We will verify this without making no reference to our results stated in the begin-
ning of this subsection. It is clear that the mapping t 7→ u(t; z), t > 0 (z ∈ Σδb)
can be extended to the whole complex plane by

u(ω; z) =
1

2πi

∫
Γ

e−z(−λ)
b
⌈α⌉−1∑
k=0

∞∑
j=0

eij arg(z0)ωαj+k(λ+ |z0|)j

Γ(αj + k + 1)

× (λ−A0)−1CTb(z)−1xk dλ, ω ∈ C.(342)
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Put, by common consent, ωs

Γ(s+1) := 0 if −s ∈ N. Then the dominated convergence

theorem and an elementary argumentation yield that the mapping ω 7→ u(ω; z),
ω ∈ Cr (−∞, 0] (z ∈ Σδb) is analytic with

d

dω
u(ω; z) =

1

2πi

∫
Γ

e−z(−λ)
b
⌈α⌉−1∑
k=0

∞∑
j=0

eij arg(z0)ωαj+k−1(λ+ |z0|)j

Γ(αj + k)

× (λ−A0)−1CTb(z)−1xk dλ, ω ∈ Cr (−∞, 0].(343)

Moreover, for every p ∈ N0, l = 0, · · ·, ⌈α⌉ − 1, ω ∈ Cr (−∞, 0] and z ∈ Σδb ,

Ap
dl

dωl
u(ω; z) =

1

2πi

∫
Γ

e−z(−λ)
b
⌈α⌉−1∑
k=0

∞∑
j=0

ei(j+p) arg(z0)ωαj+k−l(λ+ |z0|)j+p

Γ(αj + k − l + 1)

× (λ−A0)−1CTb(z)−1xk dλ, ω ∈ Cr (−∞, 0];(344)

if α ∈ N, then the mapping ω 7→ u(ω; z), ω ∈ C is entire and the formulae (343)-
(344) hold for any ω ∈ C. The remaining part of the proof will be given in the case
α /∈ N. Owing to (344), u(·; z) ∈ C⌈α⌉−1([0,∞) : E) and Au(·; z) ∈ C([0,∞) : E).
By the dominated convergence theorem, the definition of Tb(z) as well as (342)

and (344), it follows that u(·; z) −
∑⌈α⌉−1
k=0

·k
k!xk ∈ C⌈α⌉([0,∞) : E) and that (330)

holds, as claimed. The uniqueness of solutions of (330) follows from the uniqueness
of solutions of (330) for xk = 0, 0 6 k 6 ⌈α⌉ − 1 and the fact that (Sα,b,z(t))t>0

is a locally equicontinuous ( t
α−1

Γ(α) , Tb(z))-regularized resolvent family having A as a

subgenerator. Assume K ⊆ Cr(−∞, 0] is a compact set, h > 0, z ∈ Σδb , q ∈ ~, and
|ω| 6 L, for every ω ∈ K and an appropriate L > 1. Put N := ⌈γ⌉+2, M1(z, q, b) :=
max{rq(Tb(z)−1xj) : j = 0, · · ·, ⌈α⌉− 1} and ηz,b := tan(cosπb) Re z− | Im z|. Since
|λ+ |z0||p+j(1 + |λ+ |z0||)N 6 (1 + |z0|)p+j+N (1 + |λ|)p+j+N , j, p ∈ N0, λ ∈ C, we
get from (334) and (344) that:

q
(
Ap

dl

dωl
u(ω; z)

)
6 cqM1(z, q, b)

⌈α⌉−1∑
k=0

1

2π

∣∣∣∣∣
∫
Γ

e−ηz,b|λ|
b

×
∞∑
j=0

Lαj+k−l

Γ(αj + k − l + 1)
(1 + |z0|)p+j+N (1 + |λ|)p+j+N dλ

∣∣∣∣∣
6 cqM1(z, q, b)(1 + |z0|)N+p

×
⌈α⌉−1∑
k=0

∞∑
j=0

Lαj+k−l(1 + |z0|)j

Γ(αj + k − l + 1)

∣∣∣∣∣ 1

2π

∫
Γ

e−ηz,b|λ|
b

(1 + |λ|)p+j+N dλ

∣∣∣∣∣.
Using the proof of [394, Proposition 2.2] and Cauchy formula, we obtain that, for
every j, p ∈ N0,∣∣∣∣∣ 1

2πi

∫
Γ

e−ηz,b|λ|
b

(1 + |λ|)p+j+N dλ

∣∣∣∣∣
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6 2p+j+N
[
e−ηz,bd

b

+
1

b
Γ
(p+ j +N + 1

b

)
η−

p+j+N+1
b

]
+ 2p+j+Ne−ηz,bd

b

6 2p+j+N
[
2 +

1

b
Γ
(p+ j +N + 1

b

)
η
− p+j+N+1

b

z,b

]
, j ∈ N0.

Hence,

q
(
Ap

dl

dωl
u(ω; z)

)
6 cqM1(z, q, b)2p+N+1(1 + |z0|)N+p

×
⌈α⌉−1∑
k=0

∞∑
j=0

Lαj+k−l(2 + 2ω)j

Γ(αj + k − l + 1)

+
cqM1(z, q, b)(2 + 2|z0|)N+p

η
N+p+1

b

z,b b

×
⌈α⌉−1∑
k=0

∞∑
j=0

Lαj+k−l(2 + 2ω)j

Γ(αj + k − l + 1)

Γ( 1
b (p+ j +N + 1))

η
j
b

z,b

.

Put B :=
∑⌈α⌉−1
k=0

∑∞
j=0

Lαj+k−l(2+2|z0|)j
Γ(αj+k−l+1) . Then there exists να > 1 such that

αj(αj + 1) · · · (αj + ⌈α⌉) 6 νjα for all j ∈ N, which implies:

B 6
⌈α⌉−1∑
k=0

(
Lk−l

(k − l)!
+

∞∑
j=1

Lαj+k−l(2 + 2|z0|)j

Γ(αj + k − l + 1)

)

6 eL +

⌈α⌉−1∑
k=l

∞∑
j=1

Lαj+k−l(2 + 2|z0|)j

Γ(αj + k − l + 1)
+

l−1∑
k=0

∞∑
j=1

Lαj+k−l(2 + 2|z0|)j

Γ(αj + k − l + 1)

6 eL + ⌈α⌉L⌈α⌉−1cαe
L(2+2|z0|)1/α + cα(⌈α⌉ − 1)eLνα(2+2|z0|)1/α .

As an outcome, we get

sup
p∈N

hp

M⌊αp⌋−1+l

[
cqM1(z, q, b)2p+N+1

× (1 + |z0|)N+p

⌈α⌉−1∑
k=0

∞∑
j=0

Lαj+k−l(2 + 2|z0|)j

Γ(αj + k − l + 1)

]
<∞.

Let κ > (2 + 2|z0|)η−
1
b and let j0 ∈ N satisfy j0 > max( ⌈α⌉+1

α− 1
b

, 2). We will prove

that

(345) Sj0 := sup
p∈N

κp

M⌊αp⌋−1+l

⌈α⌉−1∑
k=0

∞∑
j=j0

Lαj+k−lκj

Γ(αj + k − l + 1)
Γ
(p+ j +N + 1

b

)
<∞.

The choice of b implies p+j+N+1
b > 2 and since Γ(·) is increasing in (ξ,∞), where

ξ ∼ 1.4616 . . . , one has Γ
(
p+j+N+1

b

)
6
(
⌈p+j+N+1

b ⌉−1
)
! provided p ∈ N and j ∈ N0.

Hereafter cα,K,b,N is used as a generic symbol to denote a positive constant whose
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value depends only on α, K, b and N but may be different in different places. We
get that

Sj0 6 cα,K,b,N sup
p∈N

κp(⌊αp⌋ + ⌊αN⌋)!
M⌊αp⌋−1+l

×
⌊α⌋−1∑
k=0

∞∑
j=j0

Lαj+k−lκj

Γ(αj + k − l + 1)(⌊αp⌋ + ⌊αN⌋)!

(⌈p+ j +N + 1

b

⌉
− 1
)

!

6 cα,K,b,N sup
p∈N

2⌊αp⌋κp(⌊αp⌋ − 1)!(⌊αN⌋ + 1)!

M⌊αp⌋−1+l

×
⌊α⌋−1∑
k=0

∞∑
j=j0

Lαj+k−lκj

Γ(αj + k − l + 1)(⌊αp⌋ + ⌊αN⌋)!

(⌈p+ j +N + 1

b

⌉
− 1
)

!

6 cα,K,b,N sup
p∈N

(2ακ)p(⌊αp⌋ − 1)!

M⌊αp⌋−1+l

×
⌈α⌉−1∑
k=0

∞∑
j=j0

Lαj+k−lκj2αj+αp+k−l

(⌊αj⌋ + ⌊αp⌋ + ⌊αN⌋ + k − l)!

(⌈p+ j +N + 1

b

⌉
− 1
)

!

6 cα,K,b,N sup
p∈N

(4ακ)p(⌊αp⌋ − 1)!

M⌊αp⌋−1+l

×
⌈α⌉−1∑
k=0

∞∑
j=j0

Lαj+k−l(2ακ)j

(⌊αj⌋ + ⌊αp⌋ + ⌊αN⌋ + k − l)!

(⌈p+ j +N + 1

b

⌉
− 1
)

!

6 cα,K,b,N sup
p∈N

(4ακ)p(⌊αp⌋ − 1)!

M⌊αp⌋−1+l

×
⌈α⌉−1∑
k=0

∞∑
j=j0

Lαj(2ακ)j⌈ 1
b ⌉!2

αj+αp
(⌈

p+j+N+1
b

⌉
− 1
)

!

(⌊αj⌋ + ⌊αp⌋ + ⌊αN⌋ + k − l + ⌈ 1
b ⌉)!

6 cα,K,b,N sup
p∈N

(4ακ)p(⌊αp⌋ − 1)!

M⌊αp⌋−1+l

×
⌈α⌉−1∑
k=0

∞∑
j=j0

Lαj(4ακ)j

(⌊αj⌋ + ⌊αp⌋ + ⌊αN⌋ + k − l + ⌈ 1
b ⌉ −

⌈
p+j+N+1

b

⌉
− 1)!

6 cα,K,b,N sup
p∈N

(4ακ)p(⌊αp⌋ − 1)!

M⌊αp⌋−1+l

×
⌈α⌉−1∑
k=0

∞∑
j=j0

Lαj(4ακ)j

(⌊αj⌋ + ⌊αp⌋ + ⌊αN⌋ − l − ⌈pb ⌉ − ⌈ jb⌉ − ⌈Nb ⌉)!

6 cα,K,b,N sup
p∈N

(4ακ)p(⌊αp⌋ − 1)!

M⌊αp⌋−1+l

⌈α⌉−1∑
k=0

∞∑
j=j0

Lαj(4ακ)j

(⌊αj⌋ − ⌈ jb⌉ − l − 1)!
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6 cα,K,b,N sup
p∈N

(4ακ)p(⌊αp⌋ − 1)!

M⌊αp⌋−1+l

⌈α⌉−1∑
k=0

∞∑
j=j0

Lαj(4ακ)j

((α− 1
b )j − l − 2)!

6 cα,K,b,N sup
p∈N

(8ακ)p(⌊αp⌋ − 1)!

M⌊αp⌋−1+l

⌈α⌉−1∑
k=0

∞∑
j=j0

Lαj(8ακ)j

((α− 1
b )j − 2)!

<∞.

On the other hand, it can easily be seen that, for every j = 0, · · ·, j0 − 1,

sup
p∈N

κp

M⌊αp⌋−1+l

⌈α⌉−1∑
k=0

Lαj+k−l

Γ(αj + k − l + 1)
κjΓ

(p+ j +N + 1

b

)
<∞.

This implies (333) and completes the proof. �

Remark 3.6.12. Let the conditions of Theorem 3.6.11(i) (resp. Theorem
3.6.11(ii)) hold. Then, for every fixed z ∈ Σδb (resp. z ∈ Σϑ), there exists a
function u1 ∈ C([0,∞) : E) so that the function t 7→ u(t; z), t > 0 satisfies

u(·; z)|(0,∞) ∈ C⌈α⌉((0,∞) : E) and d⌈α⌉

dt⌈α⌉u(t; z) = tα−⌈α⌉

Γ(α−⌈α⌉+1)u1(t), t > 0. Using

the same arguments as in the proof of Theorem 3.6.11, it follows that the esti-
mate (333) holds for any compact set K ⊆ [0,∞). If, additionally, E is a Banach
space and C = I, then (Tb(z))z∈Σδb

(resp. (Tb(z))z∈Σϑ
) is an analytic semigroup

of growth order γ+1
b .

There is by now only a few references on (ultra)-distribution semigroups in
SCLCSs (cf. [411]-[412] and [415]). In the sequel, we always assume that E is a
Banach space.

Concerning regularization of ultradistribution sines whose generators possess
ultra-polynomially bounded resolvent, we have the following interesting assertion
which can be reformulated in the case of exponential ultradistribution sines.

Theorem 3.6.13. Suppose (Mp) additionally satisfies (M.2) and (M.3). If
A generates an ultradistribution sine of (Mp)-class, then there exists an injective
operator C such that A generates a global C-regularized cosine function (C(t))t>0.
Furthermore, the mapping t 7→ C(t), t > 0 is infinitely differentiable and, for every
h > 0 and for every compact set K ⊆ [0,∞), the following holds:

(346) sup
t∈K, p∈N0

hp

Mp

(∥∥∥ dp+1

dtp+1
C(t)

∥∥∥+
∥∥∥ dp
dtp

C(t)
∥∥∥) <∞.

Proof. We will use the same terminology as in the preceding subsection. The
operator A generates a (UDS) of (Mp)-class and one can argue as in the proof of
Theorem 3.6.4 to deduce that there exist constants l > 1, α > 0 and β > 0 such
that Λα,β,l ⊆ ρ(A) and that:

∥R(λ2 :A)∥ 6 ∥R(λ : A)∥ 6 Const
eM(Hl|λ|)

|λ|k
, λ ∈ Λα,β,l, k ∈ N.

By Lemma 3.6.7, we have the existence of a sequence (Np) satisfying N0 = 1, (M.1),
(M.2), (M.3) and Np ≺ Mp. Furthermore, there exists a sufficiently large natural
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number n so that the operator Dn ∈ L(E × E), defined by

Dn(x y)T :=
1

2πi

∫
Γl

R(λ : A)

ωnNp
(iλ)

(x y)T dλ, x, y ∈ E

is injective and that the following expression defines a bounded linear operator for
every t > 0:

(347) C(t)x :=
1

2πi

∫
Γl

λcosh(λt)R(λ2 :A)x

ωnNp
(iλ)

dλ, x ∈ E.

The standard argumentation implies C(t)A ⊆ AC(t), t > 0. Moreover, (C(t))t>0

is strongly continuous and

(348)
1

2πi

∫
Γl

e±λsλp

ωnNp
(iλ)

dλ = 0, p ∈ N0, s > 0.

Let us prove that A
∫ t
0
(t−s)C(s)x ds = C(t)x−Cx, x ∈ E, t > 0, where C := C(0).

Fix, for the time being, a number t > 0 and note that, for every λ ∈ Γl, we have

λ3
∫ t
0
(t − s) cosh(λs) ds = λ cosh(λt) − λ. Then the Fubini theorem, the simple

equality AR(λ2 :A)x = λ2R(λ2 :A)x− x, λ ∈ Γl, x ∈ E and (348) imply:

A

t∫
0

(t− s)C(s)x ds =

t∫
0

(t− s)
1

2πi

∫
Γl

[
λ cosh(λs)

λ2R(λ2 :A)x− x

ωnNp
(iλ)

dλ

]
ds

=

t∫
0

(t− s)
1

2πi

∫
Γl

[
λ3 cosh(λs)

R(λ2 :A)x

ωnNp
(iλ)

dλ

]
ds

=
1

2πi

∫
Γl

[
λ3

t∫
0

(t− s) cosh(λs) ds

]
R(λ2 :A)x

ωnNp
(iλ)

dλ

=
1

2πi

∫
Γl

(
λ cosh(λt) − λ

)R(λ2 :A)x

ωnNp
(iλ)

dλ = C(t)x− Cx,

for every x ∈ E. Proceeding as in the proof of Theorem 3.6.4, one can differentiate
(347) under the integral sign and, in such a way, one gets that, for every t ∈ [0, τ)
and x ∈ E:

dn

dtn
C(t)x =

1

2πi

∫
Γl

λn+1cosh(λt)R(λ2 :A)x

ωnNp
(iλ)

dλ, 2|n, n ∈ N and

dn

dtn
C(t)x =

1

2πi

∫
Γl

λn+1sinh(λt)R(λ2 :A)x

ωnNp
(iλ)

dλ, 2|n− 1, n ∈ N.(349)

One can prove that C is injective as follows. Suppose Cx = 0, for some x ∈ E.
Put C(−t) := C(t), t ∈ (0, τ) and notice that the previous argumentation simply
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implies that, for every y ∈ E and t, s ∈ R:
s∫

0

(s− r)C(r)
(
C(t)y − Cy

)
dr =

(
C(s) − C

) t∫
0

(t− r)C(r)y dr.

Now an application of [381, Theorem 1.2] gives

C(t+ s)y + C(|t− s|)y = 2C(t)C(s)y, y ∈ E, t > 0, s > 0.

Thereby, C(t)x = 0, t > 0 and the use of (349), with n = 1 and t = 0, yields:

(350)
1

2πi

∫
Γl

λ2R(λ2 :A)x

ωnNp
(iλ)

dλ = 0.

Using the equality R(λ : A)
(
x
0

)
=
(
λR(λ2:A)x
AR(λ2:A)x

)
, λ ∈ Λα,β,l, (348), (350) and the

resolvent equation, we easily infer that

1

2πi

∫
Γl

AR(λ2 :A)x

ωnNp
(iλ)

dλ =
(−1)

2πi

∫
Γl

dλ

ωnNp
(iλ)

x+
1

2πi

∫
Γl

λ2R(λ2 :A)x

ωnNp
(iλ)

dλ = 0.

Therefore, Dn(x 0)T = 0 and x = 0, as required. Hence, (C(t))t>0 is a global
C-regularized cosine function with the integral generator A. The proof of (346)
follows by means of the estimations already given in the proofs of Theorem 3.6.4
and Theorem 3.6.6. This completes the proof of theorem. �

Suppose that (Mp) additionally satisfies (M.2) and (M.3). Then one can simply

prove that E(Mp)(A) = E(Mp)(A) × E(Mp)(A). Keeping in mind Theorem 3.6.6,
the preceding equality immediately implies the following theorem.

Theorem 3.6.14. Suppose that (Mp) additionally satisfies (M.2) and (M.3)
and that G is an ultradistribution sine of (Mp)-class generated by A. Then, for

every x ∈ E(Mp)(A) and y ∈ E(Mp)(A), the abstract Cauchy problem

(ACP2) :


u ∈ C∞([0,∞) : E) ∩ C([0,∞) : [D(A)]),

u′′(t) = Au(t), t > 0,

u(0) = x, u′(0) = y

has a unique solution. Furthermore, for every compact set K ⊆ [0,∞) and h > 0,
the solution u of (ACP2) satisfies

sup
t∈K, p∈N0

hp

Mp

(∥∥∥ dp
dtp

u(t)
∥∥∥+

∥∥∥ dp

dtp+1
u(t)

∥∥∥) <∞.
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Abstract Volterra Equations of Nonscalar Type

Henceforth X and Y are Banach spaces, Y is continuously embedded in X,
L(X) ∋ C is injective and τ ∈ (0,∞]. The norm in X, resp. Y , is denoted by
∥ · ∥X , resp. ∥ · ∥Y ; [R(C)] denotes the Banach space R(C) equipped with the
norm ∥x∥R(C) = ∥C−1x∥X , x ∈ R(C) and, for a given closed linear operator
A in X, [D(A)] denotes the Banach space D(A) equipped with the graph norm
∥x∥D(A) = ∥x∥X + ∥Ax∥X , x ∈ D(A). Let A(t) be a locally integrable function
from [0, τ) into L(Y,X). Unless stated otherwise, we assume that A(t) is not of
scalar type, i.e., that there does not exist a ∈ L1

loc([0, τ)), a ̸= 0, and a closed linear
operator A in X such that Y = [D(A)] and that A(t) = a(t)A for a.e. t ∈ [0, τ)
(cf. also the short discussion preceding Proposition A.3 for full details). In what
follows, the symbol ∗ denotes the finite convolution and the meaning of symbol A is
clear from the context. We basically follow the terminology given in the monograph
of Prüss [369].

Our intention is to enquire into the basic structural properties of a fairly general
class of (local) (A, k)-regularized C-pseudoresolvent families. This class of pseu-
doresolvent families presents the main tool in the analysis of ill-posed hyperbolic
Volterra equations of non-scalar type. It is worthwhile to mention that there are by
now only a few references concerning non-scalar Volterra equations in their most
general abstract form (cf. [164, 179] and [369]). We analyze Hille–Yosida type
theorems, perturbations, regularity properties of solutions of non-scalar operator
equations, and remove density assumptions from the previously known concepts.

Definition A.1. Let k ∈ C([0, τ)) and k ̸= 0. Consider the linear Volterra
equation

(351) u(t) = f(t) +

t∫
0

A(t− s)u(s) ds, t ∈ [0, τ),

where τ ∈ (0,∞], f ∈ C([0, τ) : X) and A ∈ L1
loc([0, τ) : L(Y,X)). A function

u ∈ C([0, τ) : X) is said to be:

(i) a strong solution of (351) iff u ∈ L∞
loc([0, τ) : Y ) and (351) holds on [0, τ),

(ii) a weak solution of (351) iff there exist a sequence (fn) in C([0, τ) : X)
and a sequence (un) in C([0, τ) : X) such that un(t) is a strong solution
of (351) with f(t) replaced by fn(t) and that limn→∞ fn(t) = f(t) and
limn→∞ un(t) = u(t), uniformly on compact subsets of [0, τ).
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The abstract Cauchy problem (351) is said to be (kC)-well posed (C-well posed, if
k(t) ≡ 1) iff for every y ∈ Y , there exists a unique strong solution of

(352) u(t; y) = k(t)Cy +

t∫
0

A(t− s)u(s; y) ds, t ∈ [0, τ)

and if u(t; yn) → 0 in X, uniformly on compact subsets of [0, τ), whenever (yn) is
a zero sequence in Y ; (351) is said to be a-regularly (kC)-well posed (a-regularly
C-well posed, if k(t) ≡ 1), where a ∈ L1

loc([0, τ)), iff (351) is (kC)-well posed and if
the equation

u(t) = (a ∗ k)(t)Cx+

t∫
0

A(t− s)u(s) ds, t ∈ [0, τ)

admits a unique strong solution for every x ∈ X.

It is clear that every strong solution of (351) is also a mild solution of (351).

Definition A.2. Let τ ∈ (0,∞], k ∈ C([0, τ)), k ̸= 0 and A ∈ L1
loc([0, τ) :

L(Y,X)). A family (S(t))t∈[0,τ) in L(X) is called an (A, k)-regularized C-pseudo-
resolvent family iff the following holds:

(S1) The mapping t 7→ S(t)x, t ∈ [0, τ) is continuous in X for every fixed
x ∈ X, S(0) = k(0)C and S(t)C = CS(t), t ∈ [0, τ).

(S2) Put U(t)x :=
∫ t
0
S(s)x ds, x ∈ X, t ∈ [0, τ). Then (S2) means U(t)Y ⊆ Y ,

U(t)|Y ∈ L(Y ), t ∈ [0, τ) and
(
U(t)|Y

)
t∈[0,τ)

is locally Lipschitz continu-

ous in L(Y ).
(S3) The resolvent equations

S(t)y = k(t)Cy +

t∫
0

A(t− s)dU(s)y ds, t ∈ [0, τ), y ∈ Y,(353)

S(t)y = k(t)Cy +

t∫
0

S(t− s)A(s)y ds, t ∈ [0, τ), y ∈ Y,(354)

hold; (353), resp. (354), is called the first resolvent equation, resp. the
second resolvent equation.

An (A, k)-regularized C-pseudoresolvent family (S(t))t∈[0,τ) is said to be an (A, k)-
regularized C-resolvent family if additionally:

(S4) For every y ∈ Y , S(·)y ∈ L∞
loc([0, τ) : Y ).

A family (S(t))t∈[0,τ) in L(X) is called a weak (A, k)-regularized C-pseudoresolvent
family iff (S1) and (354) hold. A weak (A, k)-regularized C-pseudoresolvent family
(S(t))t>0 is said to be exponentially bounded iff there exist M > 1 and ω > 0
such that ∥S(t)∥L(X) 6 Meωt, t > 0. Finally, a weak (A, k)-regularized C-

pseudoresolvent family (S(t))t∈[0,τ) is said to be a-regular (a ∈ L1
loc([0, τ))) iff

a ∗ S(·)x ∈ C([0, τ) : Y ), x ∈ Y
X

.
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In this paragraph, we will ascertain a few lexicographical agreements. A (weak)

(A, k)-regularized C-(pseudo)resolvent family with k(t) ≡ tα

Γ(α+1) , where α > 0,

is also called a (weak) α-times integrated A-regularized C-(pseudo)resolvent fam-
ily; a (weak) 0-times integrated A-regularized C-(pseudo)resolvent family is also
said to be a (weak) A-regularized C-(pseudo)resolvent family. A (weak) (A, k)-
regularized C-(pseudo)resolvent family is also said to be a (weak) (A, k)-regularized
(pseudo)resolvent family ((weak) A-regularized (pseudo)resolvent family) if C = I
(if C = I and k(t) ≡ 1).

It is worth noting that the integral appearing in the first resolvent equa-
tion (353) is understood in the sense of discussion following [369, Definition 6.2,
p. 152] and that Jung considered in [164] a slightly different notion of A-regularized
(pseudo)resolvent families. Moreover, (S3) can be rewritten in the following equiv-
alent form:

(S3′) U(t)y = Θ(t)Cy +

t∫
0

A(t− s)U(s)y ds, t ∈ [0, τ), y ∈ Y,

U(t)y = Θ(t)Cy +

t∫
0

U(t− s)A(s)y ds, t ∈ [0, τ), y ∈ Y.

By the norm continuity we mean the continuity in L(X) and, in many places,
we do not distinguish S(·) (U(·)) and its restriction to Y. The main reason why we
assume that A(t) is not of scalar type is the following: Let A be a subgenerator of
a (local) (a, k)-regularized C-resolvent family (S(t))t∈[0,τ) in the sense of Definition
2.1.26, let Y = [D(A)] and let A(t) = a(t)A for a.e. t ∈ [0, τ). Then (S(t))t∈[0,τ)

is an (A, k)-regularized C-resolvent family in the sense of Definition A.2, S(t) ∈
L(Y ), t ∈ [0, τ) and, for every y ∈ Y, S(·)y ∈ C([0, τ) : Y ) and the mapping
t 7→ U(t)y, t ∈ [0, τ) is continuously differentiable in Y with d

dtU(t)y = S(t)y,
t ∈ [0, τ) (cf. also Remark A.10 as well as the proofs of Theorem A.7, Theorem
A.9 and Theorem A.18). Assume conversely A(t) = a(t)A for a.e. t ∈ [0, τ),
Y = [D(A)] and (S(t))t∈[0,τ) is an (A, k)-regularized C-resolvent family in the
sense of Definition A.2. If CA ⊆ AC and a(t) is kernel, then (S(t))t∈[0,τ) is an
(a, k)-regularized C-resolvent family in the sense of Definition 2.1.26. In order to
verify this, notice that the second equality in (S3)’ implies after differentiation

S(t)x = k(t)Cx+
∫ t
0
S(t− s)a(s)Axds = k(t)Cx+

∫ t
0
a(t− s)S(s)Axds, t ∈ [0, τ),

x ∈ D(A), so that it suffices to show that S(t)A ⊆ AS(t), t ∈ [0, τ). Combined with
the first equality in (S3)’, we get that, for every t ∈ [0, τ) and x ∈ D(A) :

d

dt

t∫
0

a(t− s)AU(s)x ds = S(t)x− k(t)Cx =

t∫
0

a(t− s)S(s)Axds,

t∫
0

a(t− s)AU(s)x ds =

t∫
0

s∫
0

a(s− r)S(r)Axdr ds =

t∫
0

a(t− s)U(s)Axds.
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Hence, A
∫ t
0
S(s)x ds =

∫ t
0
S(s)Axds, t ∈ [0, τ), x ∈ D(A). Then the closedness

of A gives S(t)A ⊆ AS(t), t ∈ [0, τ), as required. In the formulations of Propo-
sition A.6, Theorem A.12, Corollary A.13(i) as well as in the analyses given in
Example A.14, Example A.20 and the paragraph preceding it, we also allow that
A(t) ((A + B)(t)) is of scalar type; if this is the case, the notion of a correspond-
ing (weak) (A, k)-regularized ((A + B, k)-regularized) C-(pseudo)resolvent family
is always understood in the sense of Definition A.2.

The subsequent propositions can be proved by means of the argumentation
given in [369].

Proposition A.3. (i) Let (Si(t))t∈[0,τ) be an (A, ki)-regularized C-pseudo-

resolvent family, i = 1, 2. Then (k2 ∗R1)(t)x = (k1 ∗R2)(t)x, t ∈ [0, τ), x ∈ Y
X
.

(ii) Let (Si(t))t∈[0,τ) be an (A, k)-regularized C-pseudoresolvent family, i = 1, 2

and let k(t) be a kernel. Then S1(t)x = S2(t)x, t ∈ [0, τ), x ∈ Y
X
.

(iii) Let (S(t))t∈[0,τ) be an (A, k)-regularized C-pseudoresolvent family. Assume
any of the following conditions:

(iii.1) Y has the Radon–Nikodym property.
(iii.2) There exists a dense subset Z of Y such that A(t)z ∈ Y for a.e. t ∈ [0, τ),

A(·)z ∈ L1
loc([0, τ) : Y ), z ∈ Z and C(Y ) ⊆ Y .

(iii.3) (S(t))t∈[0,τ) is a-regular, A(t) = (a ∗ dB)(t), t ∈ [0, τ), where C(Y ) ⊆ Y ,

a ∈ L1
loc([0, τ)) and B ∈ BVloc([0, τ) : L(Y,X)) is such that B(·)y has a

locally bounded Radon–Nikodym derivative w.r.t. b(t) = VarB|t0, t ∈ [0, τ),
y ∈ Y .

Then (S(t))t∈[0,τ) is an (A, k)-regularized C-resolvent family. Furthermore, if Y
is reflexive, then S(t)(Y ) ⊆ Y , t ∈ [0, τ) and the mapping t 7→ S(t)y, t ∈ [0, τ)
is weakly continuous in Y for every y ∈ Y . In cases (ii) and (iii), the mapping
t 7→ S(t)y, t ∈ [0, τ) is even strongly continuous in Y .

Proposition A.4. (i) Assume (S(t))t∈[0,τ) is a weak (A, k)-regularized C-
pseudoresolvent family and u(t) is a mild solution of (351). Then

(kC ∗ u)(t) = (S ∗ f)(t), t ∈ [0, τ).

In particular, mild solutions of (351) are unique provided that k(t) is a kernel.
(ii)Assume n ∈ N, (S(t))t∈[0,τ) is an (n− 1)-times integrated A-regularized C-

pseudoresolvent family, C−1f ∈ Cn−1([0, τ) : X) and f (i)(0) = 0, 0 6 i 6 n − 1.
Then the following assertions hold:

(ii.1) Let (C−1f)(n−1) ∈ ACloc([0, τ) : Y ) and (C−1f)(n) ∈ L1
loc([0, τ) : Y ).

Then the function

u(t) =

t∫
0

S(t− s)(C−1f)(n)(s) ds =

t∫
0

dU(s)(C−1f)(n)(t− s) ds, t ∈ [0, τ)

is a unique strong solution of (351). Moreover, u ∈ C([0, τ) : Y ).

(ii.2) Let (C−1f)(n) ∈ L1
loc([0, τ) : X) and Y

X
= X. Then the function u(t) =∫ t

0
S(t− s)(C−1f)(n)(s) ds, t ∈ [0, τ) is a unique mild solution of (351).
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(ii.3) Let C−1g ∈Wn,1
loc ([0, τ) : Y

X
), a ∈ L1

loc([0, τ)), f(t) =
(
tn−1

(n−1)! ∗a∗g
(n)
)
(t),

t∈ [0, τ) and (S(t))t∈[0,τ) is a-regular. Then the function u(t)=
∫ t
0
S(t−s)

× (a ∗ (C−1g)(n))(s) ds, t ∈ [0, τ) is a unique strong solution of (351).

Proposition A.5. (i) Assume (S(t))t∈[0,τ) is an (A, k)-regularized C-resolvent
family. Put u(t; y) := S(t)y, t ∈ [0, τ), y ∈ Y . Then u(t; y) is a strong solution of
(352), and (352) is (kC)-well posed if k(t) is a kernel.

(ii) Assume Y
X

= X, (352) is (kC)-well posed, all suppositions quoted in the
formulation of Proposition A.3(iii.2) hold and A(t)Cz = CA(t)z for all z ∈ Z and
a.e. t ∈ [0, τ). Then (351) admits an (A, k)-regularized C-resolvent family.

(iii) Assume Y
X

= X, L1
loc([0, τ)) ∋ a is a kernel and A(t)Cy = CA(t)y for

all y ∈ Y and a.e. t ∈ [0, τ). Then (352) is a-regularly (kC)-well posed iff (351)
admits an a-regular (A, k)-regularized C-resolvent family.

Proposition A.6. Assume A ∈ L1
loc([0, τ) : L([D(A)], X)) is of the form

(355) A(t) = a(t)A+

t∫
0

a(t− s) dB(s), t ∈ [0, τ),

where a ∈ L1
loc([0, τ)), B ∈ BVloc([0, τ) : L([D(A)], X)) is left continuous, B(0) =

B(0+) = 0, and A is a closed linear operator with non-empty resolvent set. Let
(S(t))t∈[0,τ) be an (A, k)-regularized C-pseudoresolvent family. Then (S(t))t∈[0,τ)

is a-regular.

Proof. Let µ ∈ ρ(A) and K(t) := −B(t)(µ−A)−1, t ∈ [0, τ). Then it is clear
that K ∈ BVloc([0, τ) : L(X)). We define recursively K0(t) := K(t), t ∈ [0, τ) and

Kn+1(t) :=
∫ t
0
dK(τ)Kn(t − τ), t ∈ [0, τ), n ∈ N. By the proof of [369, Theorem

0.5, p. 13], the series L(t) :=
∑∞
n=0(−1)nKn(t), t ∈ [0, τ) converges absolutely in

the norm of BV 0([0, τ) : L(X)), L ∈ BV 0([0, τ) : L(X)) and L = K − dK ∗ L =
K − L ∗ dK. Repeating literally the proof of [369, Proposition 6.4, p. 137], we
obtain that for every y ∈ Y :

A(a ∗ S(·)y) = S(·)y − k(·)Cy − dL ∗ (S(·)y − k(·)Cy − µ(a ∗ S(·))y).

Then the closedness of A immediately implies that, for every x ∈ Y
X
, one has

A(a ∗ S(·))x ∈ C([0, τ) : X) and a ∗ S(·)x ∈ C([0, τ) : [D(A)]). �

The Hille–Yosida theorem for (A, k)-regularized C-pseudoresolvent families is
given as follows.

Theorem A.7. Assume A ∈ L1
loc([0, τ) : L(Y,X)), a ∈ L1

loc([0, τ)), a ̸= 0, a(t)
and k(t) satisfy (P1), ε0 > 0 and

(356)

∞∫
0

e−εt
∥∥A(t)

∥∥
L(Y,X)

dt <∞, ε > ε0.
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(i) Let (S(t))t>0 be an (A, k)-regularized C-pseudoresolvent family such that
there exists ω > 0 with

(357) sup
t>0

e−ωt
(∥∥S(t)

∥∥
L(X)

+ sup
0<s<t

(t− s)−1
∥∥U(t) − U(s)

∥∥
L(Y )

)
<∞.

Put ω0 := max(ω, abs(k), ε0) and H(λ)x :=
∫∞
0
e−λtS(t)x dt, x ∈ X, Reλ > ω0.

Then the following holds:

(N1) C(Y ) ⊆ Y, (Ã(λ))Reλ>ω0 is analytic in L(Y,X), R(C|Y ) ⊆ R(I − Ã(λ)),

Reλ > ω0, k̃(λ) ̸= 0, and I − Ã(λ) is injective, Reλ > ω0, k̃(λ) ̸= 0,

(N2) H(λ)y = λŨ(λ)y, y ∈ Y, Reλ > ω0, (I − Ã(λ))−1C|Y ∈ L(Y ), Reλ >

ω0, k̃(λ) ̸= 0, (H(λ))Reλ>ω0
is analytic in both spaces, L(X) and L(Y ),

H(λ)C = CH(λ), Reλ > ω0, and for every y ∈ Y and λ ∈ C with

Reλ > ω0 and k̃(λ) ̸= 0:

(358) H(λ)(I − Ã(λ))y = (I − Ã(λ))H(λ)y = k̃(λ)Cy.

(N3) sup
n∈N0

sup
λ>ω0, k̃(λ) ̸=0

(λ− ω)n+1

n!

(∥∥∥ dn
dλn

H(λ)
∥∥∥
L(X)

+
∥∥∥ dn
dλn

H(λ)
∥∥∥
L(Y )

)
<∞.

(ii) Assume that (N1)–(N3) hold. Then there exists an exponentially bounded
(A,Θ)-regularized C-resolvent family (S1(t))t>0.

(iii) Assume that (N1)–(N3) hold and Y
X

= X. Then there exists an expo-
nentially bounded (A, k)-regularized C-pseudoresolvent family (S(t))t>0 such that
(357) holds.

(iv) Assume (S(t))t>0 is an (A, k)-regularized C-pseudoresolvent family, there
exists ω > 0 such that (357) holds and ω′ > ω. Then (S(t))t>0 is a-regular and

supt>0 e
−ω′t∥a ∗ S(t)∥

L(Y
X
,Y )

<∞ iff there exists ω1 > max(ω′, abs(a), abs(k), ε0)

such that

(359) sup
n∈N0

sup
λ>ω1, k̃(λ) ̸=0

(λ− ω′)n+1

n!

∥∥∥ dn
dλn

ã(λ)H(λ)
∥∥∥
L(Y

X
,Y )

<∞.

Proof. In order to prove (i), notice that Ũ(λ) = H(λ)/λ, Reλ > ω0. Further-

more, (Ã(λ))Reλ>ω0
is analytic in L(Y,X) and (357) in combination with (S1) yields

that (H(λ))Reλ>ω0
⊆ L(X) ∩ L(Y ) is analytic in both spaces, L(X) and L(Y ), and

that H(λ)C = CH(λ), Reλ > ω0. Fix, for the time being, λ ∈ C with Reλ > ω0

and k̃(λ) ̸= 0. Using (S3)’, one gets (358), C(Y ) ⊆ Y, R(C|Y ) ⊆ R(I − Ã(λ)),

(I − Ã(λ))−1C|Y = λŨ(λ)

k̃(λ)
∈ L(Y ) and the injectiveness of the operator I − Ã(λ).

Therefore, we have proved (N1)-(N2). The assertion (N3) is an immediate conse-
quence of Theorem 1.1.13, which completes the proof of (i). Assume now (N1)-(N3).
By Theorem 1.1.13, we obtain that there exist M > 1 and continuous functions
S1 : [0,∞) → L(X) and SY1 : [0,∞) → L(Y ) such that S1(0) = SY1 (0) = 0,

sup
t>0

e−ωt
(

sup
0<s<t

(t− s)−1∥S1(t) − S1(s)∥L(X)
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+ sup
0<s<t

(t− s)−1∥SY1 (t) − SY1 (s)∥L(Y )

)
<∞,(360)

H(λ)x = λ

∞∫
0

e−λtS1(t)x dt, x ∈ X, Reλ > ω0,(361)

H(λ)y = λ

∞∫
0

e−λtSY1 (t)y dt, y ∈ Y, Reλ > ω0.(362)

Using the inverse Laplace transform, (N2) and (361)-(362), we infer that (S1(t))t>0

commutes with C and that S1(t)y = SY1 (t)y, t > 0, y ∈ Y. It is evident that
the mapping t 7→ S1(t)y, t > 0 is continuous in Y for every fixed y ∈ Y and

that (U1(t) ≡
∫ t
0
S1(s)ds)t>0 is continuously differentiable in L(Y ) with d

dtU1(t) =

SY1 (t), t > 0. The above assures that (S1), (S2) and (S4) hold for (S1(t))t>0.
Combining the inverse Laplace transform and (358) one gets that (S1(t))t>0 satisfies

(S3)’, which completes the proof of (ii). If Y
X

= X, then the proof of [434, Theorem
3.4, p. 14] implies that there exists a strongly continuous operator family (S(t))t>0

in L(X) such that S1(t)x =
∫ t
0
S(s)xds, t > 0, x ∈ X. The estimate (357) is a

consequence of (360) and the remaining part of the proof of (iii) essentially follows
from the corresponding part of the proof of [369, Theorem 6.2, p. 164]. Assuming

M ′ > 1, ω′ > 0, a-regularity of (S(t))t>0 and ∥a ∗ S(t)x∥Y 6 M ′eω
′t∥x∥X , t > 0,

x ∈ Y
X
, the estimate (359) follows from a straightforward computation. The

converse implication in (iv) follows from Theorem 1.1.13, the uniform boundedness
principle and the final part of the proof of [369, Theorem 6.2, p. 165]. �

Remark A.8. Assume that A(t) is of the form (355) and that a(t) as well
as B(t), in addition to the assumptions prescribed in Proposition A.6, are of ex-
ponential growth. Then the condition (N3) can be replaced by a slightly weaker
condition:

(N3′)
∥∥∥ dn
dλn

H(λ)
∥∥∥
L(X)

6 Mn!

(λ− ω)n+1
, n ∈ N0, λ > ω0, k̃(λ) ̸= 0.

Now we state the complex characterization theorem for (A, k)-regularized C-
pseudoresolvent families.

Theorem A.9. (i) Assume A(t) satisfies (356) with some ε0 > 0, k(t) satisfies
(P1), ω1 := max(abs(k), ε0) and there exists an analytic mapping f : {λ ∈ C :

Reλ > ω1} → L(X) such that f(λ)(I−Ã(λ))y = k̃(λ)Cy, Reλ > ω1, k̃(λ) ̸= 0, y ∈
Y, f(λ)C = Cf(λ), Reλ > ω1 and ∥f(λ)∥L(X) 6M |λ|r, Reλ > ω1 for someM > 1
and r > 1. Then, for every α > 1, there exists a norm continuous, exponentially

bounded weak (A, k ∗ tr+α−1

Γ(r+α) )-regularized C-pseudoresolvent family (Sα(t))t>0.

(ii) Let (Sα(t))t>0 be as in (i) and let a(t) satisfy (P1). Then (Sα(t))t>0 is
a-regular provided that there exist M1 > 1, r1 > 1, a set P ⊆ C, which has a limit
point in {λ ∈ C : Reλ > max(ω1, abs(a))}, and an analytic mapping h : {λ ∈ C :
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Reλ > max(ω1, abs(a))} → L(Y
X
, Y ) such that

h(λ)(I − Ã(λ))y =
˜

k ∗ tα+r−1

Γ(α+ r)
(λ)Cy, y ∈ Y, Reλ > max(ω1, abs(a)),

∥h(λ)∥
L(Y

X
,Y )

6M1|λ|−r1 , Reλ > max(ω1, abs(a)),

and that (I − Ã(λ))−1 : Y
X → Y exists for all λ ∈ P .

(iii) Let, in addition to the assumptions given in (i), the mapping λ 7→ f(λ) ∈
L(Y ), Reλ > ω1 be analytic in L(Y ). Suppose

(I − Ã(λ))f(λ)y = k̃(λ)Cy, Reλ > ω1, k̃(λ) ̸= 0, y ∈ Y,(363)

∥f(λ)∥L(Y ) 6M |λ|r, Reλ > ω1 for some M > 1 and r > 1.(364)

Then, for every α > 1, (Sα(t))t>0 is a norm continuous, exponentially bounded(
A, k ∗ tr+α−1

Γ(r+α)

)
-regularized C-resolvent family, and (Uα(t))t>0 is continuously dif-

ferentiable in L(Y ).

Proof. To prove (i), fix an α > 1 and notice that f(λ)
λr+α −Ã(λ) f(λ)λr+α = k̃(λ)

λr+αCy,

y ∈ Y , Reλ > ω1, k̃(λ) ̸= 0. Hence, there exists an exponentially bounded, con-

tinuous function Sα : [0,∞) → L(X) such that Sα(0) = 0 and that S̃α(λ) = f(λ)
λr+α ,

Reλ > ω1. Using the inverse Laplace transform, one immediately yields that
(Sα(t))t>0 commutes with C and that the second resolvent equation holds, which
completes the proof of (i). To prove (ii), notice that there exists an exponen-

tially bounded function Saα : [0,∞) → L(Y
X
, Y ) such that Saα(0) = 0 and that

S̃aα(λ) = h(λ), Reλ > ω1. Furthermore, it is checked at once that

(365)
(
S̃aα(λ) − ã(λ)S̃α(λ)

)
(I − Ã(λ))y = 0, y ∈ Y, Reλ > ω1.

Since the mapping (I − Ã(λ))−1 : Y
X → Y exists for all λ ∈ P , (365) implies that

(S̃aα(λ) − ã(λ)S̃α(λ))x = 0, x ∈ Y
X

, λ ∈ P . Hence, (S̃aα(λ) − ã(λ)S̃α(λ))x = 0,

x ∈ Y
X

, Reλ > ω1 and this, in turn, implies Saα(t) = (a ∗ Sα)(t), t > 0, which
shows that (Sα(t))t>0 is a-regular. To prove (iii), it suffices to notice that (364)

implies Sα ∈ C([0,∞) : L(Y )), d
dtUα(t) = Sα(t), t > 0 in L(Y ) and that the first

resolvent equation follows instantly from (363). �

Remark A.10. Assume a ∈ L1
loc([0, τ)), (S(t))t∈[0,τ) is a (weak, weak a-

regular) (A, k)-regularized C-(pseudo)resolvent family and L1
loc([0, τ)) ∋ b satisfies

b ∗ k ̸= 0. Set Sb(t)x := (b ∗ S)(t)x, t ∈ [0, τ), x ∈ X. Then it readily follows that
(Sb(t))t∈[0,τ) is a (weak, weak a-regular) (A, b ∗ k)-regularized C-(pseudo)resolvent
family. Furthermore, (Ub(t)|Y )t∈[0,τ) is continuously differentiable in L(Y ) (cf. the
proofs of [14, Proposition 1.3.6, Proposition 1.3.7]), provided that (S2) holds for

(S(t))t∈[0,τ), and a ∗ Sb(·)x ∈ ACloc([0, τ) : Y ), x ∈ Y
X
, provided that (S(t))t∈[0,τ)

is a-regular.

By the proof of [286, Proposition 2.5] and the consideration given in Remark
A.10, we have the following.
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Proposition A.11. Let k ∈ ACloc([0, τ)), k(0) ̸= 0 and let (R(t))t∈[0,τ) be a
(weak, weak a-regular) (A, k)-regularized C-(pseudo)resolvent family. Then there
exists b ∈ L1

loc([0, τ)) such that
(
R(t) ≡ 1

k(0)R(t)+(b∗R)(t)
)
t∈[0,τ)

is a (weak, weak

a-regular) A-regularized C-(pseudo)resolvent family.

The next theorem can be shown following the lines of the proof of [369, The-
orem 6.1, p. 159] with K0 = S ∗ C−1B0 and K1 = S ∗ C−1B1.

Theorem A.12. Assume L1
loc([0, τ)) ∋ a is a kernel, C(Y ) ⊆ Y , Y

X
= X,

B ∈ L1
loc([0, τ) : L(Y, [R(C)])) is of the form B(t)y = B0(t)y+(a∗B1)(t)y, t ∈ [0, τ),

y ∈ Y , where (B0(t))t∈[0,τ) ⊆ L(Y ) ∩ L(X, [R(C)]), (B1(t))t∈[0,τ) ⊆ L(Y, [R(C)]),

(i) C−1B0(·)y ∈ BVloc([0, τ) : Y ) for all y ∈ Y , C−1B0(·)x ∈ BVloc([0, τ) :
X) for all x ∈ X,

(ii) C−1B1(·)y ∈ BVloc([0, τ) : X) for all y ∈ Y , and
(iii) CB(t)y = B(t)Cy, y ∈ Y , t ∈ [0, τ).

Then there is an a-regular A-regularized C-(pseudo)resolvent family (S(t))t∈[0,τ) iff
there is an a-regular (A+B)-regularized C-(pseudo)resolvent family (R(t))t∈[0,τ).

Before going any further, we would like to observe that it is not clear how
one can prove an analogue of Theorem A.12 in the case of a general a-regular
(A, k)-regularized C-(pseudo)resolvent family (S(t))t∈[0,τ). From a practical point
of view, the following corollary is crucially important; it is only worth noticing that
one can remove density assumptions in any of cases set out below since the mapping
t 7→ (a ∗S)(t)x, t ∈ [0, τ) is continuous in Y for every fixed x ∈ X (cf. [369, p. 160,
l–9]):

Corollary A.13. (i) Assume L1
loc([0, τ)) ∋ a is a kernel, A is a subgenerator

of an a-regularized C-resolvent family (S(t))t∈[0,τ), Y = [D(A)] and

A(t) = a(t)A+ (a ∗B1)(t) +B0(t), t ∈ [0, τ),

where B0(·) and B1(·) satisfy the assumptions of Theorem A.3. Assume that any
of the following conditions holds:

(i.1) A is densely defined.
(i.2) ρ(A) ̸= ∅.
(i.3) ρC(A) ̸= ∅ and R(C)

X
= X.

Then there exists an a-regular A-regularized C-resolvent family (R(t))t∈[0,τ).
(ii) Assume (S(t))t∈[0,τ) is a (local) C-regularized semigroup having A as a

subgenerator, and B0(·) as well as B1(·) satisfy the assumptions of Theorem A.3
with Y = [D(A)]. Then, for every x ∈ D(A), there exists a unique solution of the
problem 

u ∈ C1([0, τ) : X) ∩ C([0, τ) : [D(A)]),

u′(t) = Au(t) + (dB0 ∗ u)(t)x+ (B1 ∗ u)(t) + Cx, t ∈ [0, τ),

u(0) = 0.

Furthermore, the mapping t 7→ u(t), t ∈ [0, τ) is locally Lipschitz continuous in
[D(A)].
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(iii) Assume A is a subgenerator of a (local) C-regularized cosine function
(C(t))t∈[0,τ), and B0(·) as well as B1(·) satisfy the assumptions of Theorem A.3
with Y = [D(A)]. Then, for every x ∈ D(A), there exists a unique solution of the
problem 

u ∈ C2([0, τ) : X) ∩ C([0, τ) : [D(A)]),

u′′(t) = Au(t) + (dB0 ∗ u′)(t)x+ (B1 ∗ u)(t) + Cx, t ∈ [0, τ),

u(0) = u′(0) = 0.

Furthermore, the mapping t 7→ u(t), t ∈ [0, τ) is continuously differentiable in
[D(A)] and the mapping t 7→ u′(t), t ∈ [0, τ) is locally Lipschitz continuous in
[D(A)].

It is clear that Corollary A.13 can be applied to a wide class of integro-
differential equations in Banach spaces and that all aspects of application cannot
be easily perceived.

Example A.14. Assume 1 6 p 6 ∞, 0 < τ 6 ∞, n ∈ N, X = Lp(Rn) or X =
Cb(Rn), P (·) is an elliptic polynomial of degree m ∈ N, ω = supx∈Rn ReP (x) <∞
and A = P (D). (Possible applications can be also made to non-elliptic abstract
differential operators.) Then, for every ω′ > ω and r > n| 12 − 1

p |, A generates an

exponentially bounded (ω′ − A)−r-regularized semigroup in X. Let a completely
positive kernel a(t) satisfy (P1) and let B0(·) and B1(·) satisfy the assumptions of
Corollary A.13(i). This implies that A is the integral generator of an exponentially
bounded (a, (ω′ − A)−r)-regularized resolvent family provided X = Lp(Rn) (1 6
p < ∞); clearly, the same assertion holds if a(t) ≡ 1 and X = L∞(Rn) (Cb(Rn)).
An application of Corollary A.13 gives that, in any of these cases, there exists
an a-regular A-regularized (ω′ − A)−r-resolvent family (R(t))t∈[0,τ), where A(t) =
a(t)P (D) + (a ∗B1)(t) +B0(t), t ∈ [0, τ). The preceding example can be set, with
some obvious modifications, in the framework of the theory of C-regularized cosine
functions.

The application of (A, k)-regularized C-pseudoresolvent families to problems in
linear (thermo-)viscoelasticity and electrodynamics with memory (cf. [369, Chapter
9]) is almost completely confined to the case in which the underlying space X
is Hilbert. In this context, we would like to propose the following problem (cf.
also [369, p. 240] for the analysis of viscoelastic Timoshenko beam in case of non-
synchronous materials).

Problem. Suppose µ0 > 0, ε0 > 0, Ω1 ⊆ R3 is an open set with smooth
boundary Γ, Ω2 = R3 rΩ1 and n(x) denotes the outer normal at x ∈ Γ of Ω1. Let
X := Lp(Ω1 : R3)×Lp(Ω2 : R3)×Lp(Ω1 : R3)×Lp(Ω2 : R3), p ∈ [1,∞]r {2}, and
∥(u1, u2, u3, u4)∥ := (µ0∥u1∥2 + ε0∥u2∥2 + µ0∥u3∥2 + ε0∥u4∥2)1/2, u1, u3 ∈ Lp(Ω1 :
R3), u2, u4 ∈ Lp(Ω2 : R3). Define the operator A0 in X by setting

D(A0) :=
{
u ∈ X : u1, u2 ∈ H1,p(Ω1 : R3), u3, u4 ∈ H1,p(Ω2 : R3),

n× (u1 − u3) = n× (u2 − u4) = 0
}
,

A0u :=
(
−µ−1

0 curl u2, ε
−1
0 curl u1,−µ−1

0 curl u4, ε
−1
0 curl u2

)
, u ∈ D(A0).
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Then one can simply prove that A0 is closable. Does there exist an injective op-
erator C ∈ L(X) such that A0 generates a (local, global exponentially bounded)
C-regularized semigroup in X?

Assuming the answer to the previous problem is in the affirmative and the
functions εi(·), µi(·), σi(·), νi(·) and ηi(·) satisfy certain conditions (cf. [369, Sub-
section 9.6, p. 251–253] for further information), one can apply Corollary A.1(ii) in
the study of C-wellposedness of transmission problem for media with memory.

Now we shall analyze differential and analytical properties of (A, k)-regularized
C-pseudoresolvent families. Let (Lp) be a sequence of positive real numbers such
that L0 = 1 and that Lpp satisfy (M.1), (M.2) and (M.3’). The associated function

of (Lp) is defined by M(λ) := supp∈N0
ln |λ|p

Lp
p

, λ ∈ C r {0}, M(0) := 0. Recall, the

mapping t 7→M(t), t > 0 is increasing, absolutely continuous, limt→∞M(t) = +∞
and limt→∞

M(t)
t = 0. Define ωL(t) :=

∑∞
p=0

tp

Lp
p
, t > 0, Mp := Lpp and Σα := {λ ∈

C : λ ̸= 0, | arg(λ)| < α} (α ∈ (0, π]).

Definition A.15. (i) Assume that (S(t))t>0 be a (weak) (A, k)-regularized
C-(pseudo)resolvent family. Then it is said that (S(t))t>0 is an analytic (weak)
(A, k)-regularized C-(pseudo)resolvent family of angle α, if there exists an analytic
function S : Σα → L(X) which satisfies S(t) = S(t), t > 0 and limz→0,z∈Σγ

S(z)x =
k(0)Cx for all γ ∈ (0, α) and x ∈ X. It is said that (S(t))t>0 is an exponen-
tially bounded, analytic (weak) (A, k)-regularized C-(pseudo)resolvent family, resp.
bounded analytic (weak) (A, k)-regularized C-(pseudo)resolvent family, of angle α,
if for every γ ∈ (0, α), there exist Mγ > 0 and ωγ > 0, resp. ωγ = 0, such that
∥S(z)∥L(X) 6 Mγe

ωγ Re z, z ∈ Σγ . (Since no confusion seems likely, we shall also
write S(·) for S(·).)

(ii) Assume (S(t))t∈[0,τ) is a (weak) (A, k)-regularized C-(pseudo)resolvent fam-
ily and the mapping t 7→ S(t), t ∈ (0, τ) is infinitely differentiable (in the strong
topology of L(X)). Then it is said that (S(t))t∈[0,τ) is of class CL, resp. of class CL,
iff for every compact set K ⊆ (0, τ) there exists hK > 0, resp. for every compact
set K ⊆ (0, τ) and for every h > 0:

sup
t∈K, p∈N0

∥∥∥hpK
Lpp

dp

dtp
S(t)

∥∥∥
L(X)

<∞, resp. sup
t∈K, p∈N0

∥∥∥hp
Lpp

dp

dtp
S(t)

∥∥∥
L(X)

<∞;

(S(t))t∈[0,τ) is said to be ρ-hypoanalytic, 1 6 ρ < ∞, if (S(t))t∈[0,τ) is of class CL

with Lp = p!ρ/p.

The careful inspection of the proofs of structural characterizations of analytic
convoluted C-semigroups implies the following theorems.

Theorem A.16. (i) Assume α ∈ (0, π2 ], ε0 > 0, k(t) satisfies (P1), (356)
holds with some ε0 > 0, ω > max(abs(k), ε0), (S(t))t>0 is a (weak) analytic (A, k)-
regularized C-(pseudo)resolvent family of angle α and

(366) sup
z∈Σγ

∥∥e−ωzS(z)
∥∥
L(X)

<∞ for all γ ∈ (0, α).

Then there exists an analytic mapping H : ω + Σπ
2 +α → L(X) such that
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(i.1) H(λ)(I−Ã(λ))y = k̃(λ)Cy, y ∈ Y , Reλ > ω, k̃(λ) ̸= 0, H(λ)C = CH(λ),
Reλ > ω,

(i.2) supλ∈ω+Σπ
2

+γ
∥(λ− ω)H(λ)∥L(X) <∞, γ ∈ (0, α) and

(i.3) limλ→+∞, k̃(λ) ̸=0 λH(λ)x = k(0)Cx, x ∈ X.

(ii) Let α ∈ (0, π2 ], ε0 > 0, k(t) satisfy (P1), (356) hold, ω > max(abs(k), ε0),
there exists an analytic mapping H : ω + Σπ

2 +α → L(X) such that (i.1) and (i.2)

of (i) hold and that, in the case Y
X ̸= X, (i.3) also holds. Then there exists a

(weak) analytic (A, k)-regularized C-(pseudo)resolvent family (S(t))t>0 of angle α
such that (366) holds.

Theorem A.17. (i) Assume α ∈ (0, π2 ], ε0 > 0, k(t) satisfies (P1), (356) holds,
ω > max(abs(k), ε0), (S(t))t>0 is an analytic (A, k)-regularized C-resolvent family
of angle α, the mapping t 7→ U(t) ∈ L(Y ), t > 0 can be analytically extended to the
sector Σα (the analytical extensions of U(·) and S(·) will be denoted by the same
symbols), and

(367) sup
z∈Σγ

∥∥e−ωzS(z)
∥∥
L(X)

+ sup
z∈Σγ

∥∥e−ωzS(z)
∥∥
L(Y )

<∞ for all γ ∈ (0, α).

Denote H(λ)x =
∫∞
0
e−λtS(t)xdt, x ∈ X, Reλ > ω. Then (N1)–(N2) hold,

(H(λ))Reλ>ω is analytic in both spaces, L(X) and L(Y ),

(i.1) supλ∈ω+Σπ
2

+γ

(
∥(λ−ω)H(λ)∥L(X) +∥(λ−ω)H(λ)∥L(Y )

)
<∞, γ ∈ (0, α),

H(λ)C = CH(λ), Reλ > ω0 and
(i.2) limλ→+∞, k̃(λ) ̸=0 λH(λ)x = k(0)Cx = 0, x ∈ X.

(ii) Assume α ∈ (0, π2 ], ε0 > 0, k(t) satisfies (P1), (356) and (N1)–(N2) hold,
ω > max(abs(k), ε0), (H(λ))Reλ>ω is analytic in both spaces, L(X) and L(Y ), and

(I − Ã(λ))H(λ)y = H(λ)(I − Ã(λ))y = k̃(λ)Cy, y ∈ Y , Reλ > ω, k̃(λ) ̸= 0.

Assume also that (i.1) of (i) of this theorem holds and that, in the case Y
X ̸= X,

(i.2) also holds. Then there exists an analytic (A, k)-regularized C-resolvent family
(S(t))t>0 of angle α such that (367) holds and that the mapping t 7→ U(t) ∈ L(Y ),
t > 0 can be analytically extended to the sector Σα.

The main objective in the subsequent theorems is to clarify the basic differential
properties of (A, k)-regularized C-pseudoresolvent families.

Theorem A.18. Assume k(t) satisfies (P1), r > −1 and (356) holds with some
ε0 > 0. Assume that there exists ω > max(abs(k), ε0) such that, for every σ > 0,
there exist Cσ > 0, Mσ > 0 and an open neighborhood Ωσ,ω of the region

Λσ,ω =
{
λ ∈ C : Reλ 6 ω, Reλ > −σ ln | Imλ| + Cσ

}
∪
{
λ ∈ C : Reλ > ω

}
,

and an analytic mapping hσ : Ωσ,ω → L(X) such that hσ(λ)C = Chσ(λ), Reλ > ω,

hσ(λ)(I − Ã(λ))y = k̃(λ)Cy, y ∈ Y , Reλ > ω, k̃(λ) ̸= 0, and that ∥hσ(λ)∥L(X) 6
Mσ|λ|r, λ ∈ Λσ,ω. Then, for every ζ > 1, there exists a norm continuous, exponen-

tially bounded weak
(
A, k ∗ tζ+r−1

Γ(ζ+r)

)
-regularized C-pseudoresolvent family (Sζ(t))t>0

satisfying that the mapping t 7→ Sζ(t), t > 0 is infinitely differentiable in L(X). If,
additionally, hσ(λ) ∈ L(Y ) for all σ > 0, and if the mapping λ 7→ hσ(λ), λ ∈ Ωσ,ω



ABSTRACT VOLTERRA EQUATIONS OF NONSCALAR TYPE 329

is analytic in L(Y ) as well as (I − Ã(λ))hσ(λ)y = k̃(λ)Cy, y ∈ Y , Reλ > ω,

k̃(λ) ̸= 0, and ∥hσ(λ)∥L(Y ) 6 Mσ|λ|r, λ ∈ Λσ,ω, then (Sζ(t))t>0 is a norm contin-

uous, exponentially bounded
(
A, k ∗ tζ+r−1

Γ(ζ+r)

)
-regularized C-resolvent family and the

mapping t 7→ Sζ(t), t > 0 is infinitely differentiable in L(Y ).

Theorem A.19. Suppose k(t) satisfies (P1), (356) holds with some ε0 > 0,
(M.1)–(M.3′) hold for (Lp), (S(t))t∈[0,τ) is a (local) weak (A, k)-regularized C-
pseudoresolvent family, ω > max(abs(k), ε0) and m ∈ N. Denote, for every ε ∈
(0, 1) and a corresponding Kε > 0, Fε,ω =

{
λ ∈ C : Reλ > − lnωL(Kε| Imλ|)+ω

}
.

Assume that, for every ε ∈ (0, 1), there exist Cε > 0, Mε > 0, an open neighborhood

Oε,ω of the region Gε,ω = {λ ∈ C : Reλ > ω, k̃(λ) ̸= 0} ∪ {λ ∈ Fε,ω : Reλ 6 ω},
and analytic mappings fε : Oε,ω → C, gε : Oε,ω → L(Y,X) and hε : Oε,ω → L(X)
such that:

(i) fε(λ) = k̃(λ), Reλ > ω, gε(λ) = Ã(λ), Reλ > ω, hε(λ)C = Chε(λ),
Reλ > ω,

(ii) hε(λ)(I − gε(λ))y = fε(λ)Cy, y ∈ Y , λ ∈ Fε,ω,

(iii) ∥hε(λ)∥L(X) 6Mε(1 + |λ|)meε|Reλ|, λ ∈ Fε,ω, Reλ 6 ω
and ∥hε(λ)∥L(X) 6Mε(1 + |λ|)m, Reλ > ω.

Then (S(t))t∈[0,τ) is of class CL. Assume now that (S(t))t∈[0,τ) is an (A, k)-
regularized C-resolvent family, and that, in addition to the above assumptions,
hε(λ) ∈ L(Y ) for all ε ∈ (0, 1). Let the mapping λ 7→ hε(λ), λ ∈ Oε,ω be ana-
lytic in L(Y ) and let:

(ii)′ (I − gε(λ))hε(λ)y = fε(λ)Cy, y ∈ Y , λ ∈ Fε,ω,

(iii)′ ∥hε(λ)∥L(Y ) 6Mε(1 + |λ|)meε|Reλ|, λ ∈ Fε,ω, Reλ 6 ω
and ∥hε(λ)∥L(Y ) 6Mε(1 + |λ|)m, Reλ > ω for all ε ∈ (0, 1).

Then the mapping t 7→ S(t), t ∈ (0, τ) is of class CL in L(Y ).

Note that (M.3′) does not hold if Lp = p!1/p and that the preceding theorem
remains true in this case; then, in fact, we obtain the sufficient conditions for the
generation of real analytic C-(pseudo)resolvents. Further on, the set Fε,ω appearing
in the formulation of Theorem A.19 can be interchanged by the set Fε,ω,ρ = {λ ∈ C :

Reλ > −Kε| Imλ|1/ρ+ω}, provided Lp = p!ρ/p and 1 6 ρ <∞, and [235, Theorem
2.24] can be reformulated in nonscalar case.

By means of Corollary A.13(i) and the next observation, one can simply con-
struct examples of (differentiable, in general, non-analytic) A-regularized C-resolv-
ent families of class CL (CL). Let (S(t))t∈[0,τ) be an (a,C)-regularized resolvent

family of class CL (CL) and let the assumptions of Theorem A.12 hold with Y =
[D(A)] and B1 = 0. Assume, in addition, C−1B0 ∈ C∞([0, τ) : L(X)) is of class
CL (CL) and (C−1B0)(i)(0) = 0, i ∈ N0. Denote by L the solution of the equation
L = K0 +dK0 ∗L in BVloc([0, τ) : L(X)), where K0(t) = (S ∗C−1B0)(t), t ∈ [0, τ).
Let A(t) = a(t)A + B0(t), t ∈ [0, τ) and let (R(t))t∈[0,τ) be an A-regularized C-
resolvent family given by Corollary A.13(i). Then one can straightforwardly check
that L ∈ C∞([0, τ) : L(X)) is of class CL (CL) and that L(i)(0) = 0, i ∈ N0. Tak-
ing into account the proof of [369, Theorem 6.1] (cf. [369, (6.20), p. 160] and [369,
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Corollary 0.3, p. 15]), it follows that R(n)(t) = S(n)(t) +
∫ t
0
L(n+1)(t − s)S(s) ds,

t ∈ [0, τ), n ∈ N0. This implies that (R(t))t∈[0,τ) is of class CL (CL). Using the
same method, we are in a position to construct examples of analytic A-regularized
C-resolvent families:

Example A.20. The isothermal motion of a one-dimensional body with small
viscosity and capillarity is described, in the simplest situation, by the system:{

ut = 2auxx + bvx − cvxxx,
vt = ux,
u(0) = u0, v(0) = v0,

where a, b and c are positive constants. The associated matrix of polynomials is

P (x) ≡
[−2ax2 ibx+ icx3

ix 0

]
, and P (x) is Shilov 2-parabolic. For the sake of

brevity, we assume that X = Lp(R) × Lp(R) (1 6 p <∞) and that X is equipped
with the sup-norm. Then it is well known that the operator P (D), considered with
its maximal distributional domain, is closed and densely defined in X. Let us recall
the following facts:

(i) Let a2−c < 0 and r′ > 1
2 . Then P (D) is the integral generator of an expo-

nentially bounded, analytic (1 − ∆)−r
′
-regularized semigroup (Sr′(t))t>0

of angle arctan a√
c−a2 .

(ii) Let a2 − c = 0 and r′ > 3
4 . Then P (D) is the integral generator of a

bounded analytic (1 − ∆)−r
′
-regularized semigroup (Sr′(t))t>0 of angle

π
2 .

(iii) Let a2−c > 0 and r′ > 1
2 . Then P (D) is the integral generator of an expo-

nentially bounded, analytic (1 − ∆)−r
′
-regularized semigroup (Sr′(t))t>0

of angle π
2 .

Assume, in any of above cases, ψ1, ψ2 ∈ S2r′,1(R), where the fractional Sobolev

space S2r′,1(R) is defined in the sense of [300, Definition 12.3.1, p. 297], B1 = 0,

B0(z)
(
f
g

)
= z
(
ψ1∗f
ψ2∗g

)
and K(z)

(
f
g

)
= (Sr′ ∗(1−∆)r

′
B0)(z)

(
f
g

)
, z ∈ Σα, f , g ∈ Lp(R),

where α = arctan a√
c−a2 , provided that (i) holds, resp. α = π

2 , provided that (ii) or

(iii) holds. Let K ⊆ Σα be a compact set and let γ ∈ (0, α) satisfy K ⊆ Σγ . Then
there exist

δ ∈
(
0, 1/

(
(1 + supK)(1 + ∥(1 − ∆)r

′
ψ1∥L1(R) + ∥(1 − ∆)r

′
ψ2∥L1(R))

))
,

Mγ > 1, ωγ > 0 and ω′
γ > ωγ such that∥∥∥∥∥S(−1)

r′ (z) ≡
z∫

0

Sr′(s) ds

∥∥∥∥∥
L(X)

6Mγ |z|eωγ Re z 6 δeω
′
γ Re z, z ∈ Σγ.

This implies
∥∥ ∫ z

0
S
(−1)
r′ (z − s)S

(−1)
r′ (s) ds

∥∥
L(X)

6 δ2|z|eω
′
γ Re z, z ∈ Σγ . Define

recursively (Kn(z)) by K0(z) := K(z), z ∈ Σα and Kn+1(z) :=
∫ z
0
dK(s)Kn(z−s),

z ∈ Σα, n ∈ N0. As a matter of fact, Kn(z) = (K ′ ∗ · · · ∗K ′︸ ︷︷ ︸
n

∗K)(z), z ∈ Σα, n ∈ N.
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By Young’s inequality,∥∥K ′
1(z)

∥∥
L(X)

6 δ2|z|
(
∥(1 − ∆)r

′
ψ1∥L1(R) + ∥(1 − ∆)r

′
ψ2∥L1(R)

)2
eω

′
γ Re z, z ∈ Σγ .

Inductively,∥∥K ′
n+1(z)

∥∥
L(X)

6 δn+1|z|n
(
∥(1 − ∆)r

′
ψ1∥L1(R) + ∥(1 − ∆)r

′
ψ2∥L1(R)

)n+1
eω

′
γ Re z,

for any z ∈ Σγ and n ∈ N0. Taken together, the preceding estimate and the
Weierstrass theorem imply that the function z 7→

∫ z
0

∑∞
n=0K

′
n(z − s)Sr′(s)ds,

z ∈ Σα is analytic and that there exist M ′
γ > 1 and ω′′

γ > ω′
γ such that

∥
∫ z
0

∑∞
n=0K

′
n(z − s)Sr′(s) ds∥L(X) 6 M ′

γe
ω′′

γ Re z, z ∈ Σγ . Let (Rr′(t))t>0 be a
(P (D) + B0(t))-regularized C-resolvent family given by Corollary A.13(i). Since

Rr′(t) = Sr′(t) +
∫ t
0

∑∞
n=0K

′
n(t − s)Sr′(s) ds, t > 0, we have that (Rr′(t))t>0 is

an exponentially bounded, analytic 1-regular A-regularized C-resolvent family of
angle α. On the other hand, P (D) does not generate a strongly continuous semi-
group in L1(R)×L1(R) and ρ(P (D)) ̸= ∅. Combining this with Theorem A.12 and
Proposition A.6, we get that there does not exist a local (P (D)+B0(t))-regularized
pseudoresolvent family provided p = 1.

Example A.21. Let X = Lp(R), 1 6 p 6 ∞. Consider the next multiplication
operators with maximal domain in X:

Af(x) =: 2xf(x), Bf(x) := (−x4 + x2 − 1)f(x), x ∈ R.

Notice that D(B) ⊆ D(A). Let Y := [D(B)] and let A ∈ L1
loc([0,∞) : L(Y,X)) be

given by A(t)f := Af + tBf , t > 0, f ∈ D(B). Assume, further, s ∈ (1, 2), δ = 1
s ,

Lp = p!s/p and Kδ(t) = L−1
(
e−λ

δ)
(t), t > 0. Then there exists a global (not

exponentially bounded) (A,Kδ)-regularized resolvent family. Towards this end,
it suffices to show that, for every τ > 0, there exists a local (A,Kδ)-regularized
resolvent family on [0, τ). Denote by M(t) the associated function of the sequence

(Lp) and denote, with a little abuse of notation, Λα,β,γ =
{
λ ∈ C : Reλ > M(αλ)

γ +

β
}

, α > 0, β > 0, γ > 0. It is obvious that there exists Cs > 0 such that

M(λ) 6 Cs|λ|1/s, λ ∈ C. Given τ > 0 and d > 0 in advance, one can find α > 0

and β > 0 such that τ 6 cos(δπ/2)
Csα1/s and |λ2 − 2xλ + (x4 − x2 + 1)| > d, λ ∈ Λα,β,1,

x ∈ R. Denote by Γ the upwards oriented frontier of the ultra-logarithmic region

Λα,β,1, and define, for every f ∈ X, x ∈ R and t ∈
[
0, cos(δπ/2)

Csα1/s

)
,

(Sδ(t)f)(x) :=
1

2πi

∫
Γ

λ2eλt−λ
δ

λ2 − 2xλ+ (x4 − x2 + 1)
dλf(x).

Then one can simply verify that (Sδ(t))t∈[0,τ) is a local (A,Kδ)-regularized resolvent
family and that the mapping t 7→ Sδ(t), t > 0 is infinitely differentiable in the strong
topologies of L(X) and L(Y ). Moreover, in both spaces, L(X) and L(Y ),( dp

dtp
Sδ(t)f

)
(x) =

1

2πi

∫
Γ

λp+2eλt−λ
δ

λ2 − 2xλ+ (x4 − x2 + 1)
dλf(x),
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for any p ∈ N0, x ∈ R and f ∈ X. This implies that, for every compact set
K ⊆ [0,∞), there exists hK > 0 such that

sup
t∈K, p∈N0

(∥∥∥hpK
Lpp

dp

dtp
Sδ(t)

∥∥∥
L(X)

+
∥∥∥hpK
Lpp

dp

dtp
Sδ(t)

∥∥∥
L(Y )

)
<∞.

In particular, (Sδ(t))t>0 is s-hypoanalytic; arguing in the same manner, we infer
that there exists τ0 > 0 such that there exists a local 2-hypoanalytic (A,K1/2)-

regularized resolvent family on [0, τ0), where K1/2(t) = L−1
(
e−λ

1/2)
(t), t > 0.

Note also that the use of Fourier multipliers enables one to reveal that the preceding
conclusions remain true in the case of corresponding differential operators ±A(t),
where A(t)f = −tf ′′′′ − tf ′′ − 2if ′ − tf , t > 0, 1 < p <∞, f ∈ Y = S4,p(R).

Let us consider the equations

(368) u(t) =

∫ ∞

0

A(s)u(t− s) ds+

∫ t

−∞
k(t− s)g′(s) ds,

where g : R→ X, A ∈ L1
loc([0,∞) : L(Y,X)), A ̸= 0, k ∈ C([0,∞)), k ̸= 0, and

(369) u(t) = f(t) +

∫ t

0

A(t− s)u(s) ds, t ∈ (−τ, τ),

where τ ∈ (0,∞], f ∈ C((−τ, τ) : X) and A ∈ L1
loc((−τ, τ) : L(Y,X)), A ̸= 0. The

following proposition can be applied to a class of nonscalar parabolic equations
considered by Friedman and Shinbrot in [133].

Proposition A.22. Assume that there exists an (A, k)-regularized C-resolvent
family (S(t))t>0, g : R→ R(C), C−1g(·) is differentiable for a.e. t ∈ R, C−1g(t) ∈
Y for a.e. t ∈ R,

(i) the mapping s 7→ S(t − s)(C−1g)′(s), s ∈ (−∞, t] is an element of the
space L1((−∞, t] : Y ) for a.e. t ∈ R, and

(ii) the mapping s 7→ k(t − s)g′(s), s ∈ (−∞, t] is an element of the space
L1((−∞, t] : X) for a.e. t ∈ R.

Put u(t) :=
∫ t
−∞ S(t− s)(C−1g)′(s) ds, t ∈ R. Then C(R : X) ∋ u satisfies (368).

A function u ∈ C((−τ, τ) : X) is said to be:

(i) a strong solution of (369) iff u ∈ L∞
loc((−τ, τ) : Y ) and (369) holds on

(−τ, τ),
(ii) a mild solution of (369) iff there exist a sequence (fn) in C((−τ, τ) : X)

and a sequence (un) in C([0, τ) : X) such that un(t) is a strong solution
of (369) with f(t) replaced by fn(t) and that limn→∞ fn(t) = f(t) and
limn→∞ un(t) = u(t), uniformly on compact subsets of (−τ, τ).

Proposition A.23. (i) Assume k ∈ C((−τ, τ)), k ̸= 0 and A ∈ L1
loc((−τ, τ) :

L(Y,X)), A ̸= 0. Let k+(t) = k(t), A+(t) = A(t), t ∈ [0, τ), k−(t) = k(−t)
and A−(t) = −A(−t), t ∈ (−τ, 0]. If there exist (A±, k±)-regularized C-resolvent
families (S±(t))t∈[0,τ), then for every x ∈ Y the function u : (−τ, τ) → X given by
u(t) = S+(t)x, t ∈ [0, τ) and u(t) = S−(−t)x, t ∈ (−τ, 0] is a strong solution of
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(369) with f(t) = k(t)Cx, t ∈ (−τ, τ). Furthermore, strong solutions of (369) are
unique provided that k±(t) are kernels.

(ii) Assume n± ∈ N, f ∈ C((−τ, τ) : X), A ∈ L1
loc((−τ, τ) : L(Y,X)), A ̸= 0,

f+(t) = f(t), A+(t) = A(t), t ∈ [0, τ), f−(t) = f(−t), A−(t) = −A(−t), t ∈ (−τ, 0]
and there exist (n±− 1)-times integrated A±-regularized C±-resolvent families. Let

f± ∈ C(n±)([0, τ) : X) and f
(i)
± (0) = 0, 0 6 i 6 n± − 1. Then the following holds:

(ii.1) Assume that (C−1
± f±)(n±−1) ∈ ACloc([0, τ) : Y ) and (C−1

± f±)(n±) ∈
L1
loc([0, τ) : Y ). Then there exists a unique strong solution u(t) of (369),

and moreover u ∈ C((−τ, τ) : Y ).

(ii.2) Let (C−1
± f±)(n±) ∈ L1

loc([0, τ) : X) and Y
X

= X. Then there exists a
unique mild solution of (369).
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158. H.W. Hövel, U. Westphal, Fractional powers of closed operators, Studia Math. 42 (1972),
177–194.

159. Y. Huang, Q. Zheng, Regularization for ill-posed Cauchy problems associated with gener-

ators of analytic semigroups, J. Diff. Equ. 203 (2004), 38–54.
160. R. Huges, Semigroups of unbounded operators in a Banach space, Trans. Am. Math. Soc.

230 (1997), 113–147.

161. M. Janfada, A. Niknam, On the n-parameter abstract Cauchy problem, Bull. Austral. Math.
Soc. 69 (2004), 383–394.

162. M. Janfada, On two-parameter regularized semigroups and the Cauchy problem, Abstr.

Appl. Anal., vol. 2009, Article ID 415847, 15 pages, 2009.
163. L. Ji, A. Weber, Dynamics of the heat semigroup on symmetric spaces, Ergod. Th. Dynam.

Sys. 30 (2010), 457–468.
164. M. Jung, Duality theory for solutions to Volterra integral equations, J. Math. Anal. Appl.

230 (1999), 112–134.

165. P. Iley, Perturbations of differentiable semigroups, J. Evol. Equ. 7 (2007), 765–781.
166. Y. Ito, On the abstract Cauchy problems in the sense of Fourier hyperfunctions, J. Math.

Tokushima Univ. 16 (1982), 25-31.

167. Y. Ito, Fourier hyperfunction semigroups, J. Math. Tokushima Univ. 16 (1982), 33-53.
168. A. J. E.M. Janssen, S. J. L. Eijndhoven, Spaces of type W, growth of Hermite coefficients,

Wigner distribution and Bargmann transform, J. Math. Anal. Appl. 152 (1990), 368–390.

169. K. Junker, Vektorwertige Fourierhyperfunktionen, Diplomarbeit, Dűsseldorf, 1978.
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176. A. Kamiński, D. Perǐsić, S. Pilipović, On various integral transformations of tempered

ultradistributions, Demonstratio Math. 33 (2000), 641–655.
177. A. Kaneko, Representation of hyperfunctions by measures and some of its applications, J.

Fac. Sci. Univ. Tokyo Sect. IA Math. 19 (1972), 321–352.
178. A. Kaneko, Introduction to Hyperfunctions, Kluwer, Dordercht, Boston, London, 1982.

179. A. Karczewska, Stochastic Volterra equations of nonscalar type in Hilbert space, in: Trans-

actions XXV International Seminar on Stability Problems for Stochastic Models, ed. C.
D’Apice et al., University of Salerno (2005) 78-83.

180. A. Karczewska, C. Lizama, Solutions to stochastic fractional oscillation equations, Appl.

Math. Lett. 23 (2010), 1361-1366.
181. T. Kato, Perturbation Theory for Linear Operators, 2nd. ed., Springer–Verlag, Berlin, 1976.



342 BIBLIOGRAPHY

182. T. Kato, Differentiability of nonlinear semigroups, Global Analysis, Proc. Symp. Pure Math.

Am. Math. Soc. (1970).
183. T. Kawai, The theory of Fourier transformations in the theory of hyperfunctions and its

applications, Surikaiseki Kenkyusho Kokyuroku, R. I. M. S., Kyoto Univ. 108 (1969), 84–288

(in Japanese).
184. T. Kawai, On the theory of Fourier hyperfunctions and its applications to partial differential

equations with constant coefficients, J. Fac. Sci. Univ. Tokyo Sec. IA. 17 (1970), 465–517.
185. H. Kellermann, M. Hieber, Integrated semigroups, J. Funct. Anal. 84 (1989), 160-180.
186. L. Kexue, P. Jigen, Fractional abstract Cauchy problems, Integr. Equ. Oper. Theory, in

press.
187. V. Keyantuo, The Laplace transform and the ascent method for abstract wave equations,

J. Diff. Equ. 122 (1995), 27–47.

188. V. Keyantuo, A note on interpolation of semigroups, Proc. Am. Math. Soc. 123 (1995),
2123–2132.

189. V. Keyantuo, Integrated semigroups and related partial differential equations, J. Math.

Anal. Appl. 212 (1997), 135–153.
190. V. Keyantuo, C. Müller, P. Vieten, The Hille–Yosida theorem for local convoluted semi-

groups, Proc. Edin. Math. Soc. 46 (2003), 395–413.

191. V. Keyantuo, C. Müller, P. Vieten, The finite and local Laplace transforms in Banach
spaces, Proc. Edin. Math. Soc. 46 (2003), 357–372.
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199. J. Kisyński, Distribution semigroups and one parameter semigroups, Bull. Polish Acad. Sci.
50 (2002), 189–216.
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228. M. Kostić, S. Pilipović, Convoluted C-cosine functions and semigroups. Relations with
ultradistribution and hyperfunction sines, J. Math. Anal. Appl. 338 (2008), 1224–1242.
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236. M. Kostić, Ill-posed abstract Volterra equations, Publ. Inst. Math., Nouv. Sér., submitted.
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