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PREFACE
The monograph is the result of many years of my University lec

turing as well as participating in discussions at scientific conferences 
on problems of the science about motion of bodies. Moreover, it is 
a reciprocating result since lecturing on analytical mechanics, theory 
of oscillation, theory of motion stability, of tensor calculus and dif
ferential geometry, or even engineering mechanics, has arisen in me 
some justified doubts that impelled me to test the knowledge first ac
quired in my graduate studies and later taught to others and used in 
preparing my scientific papers, namely, the knowledge in accordance 
with the current professional world literature.

I have accepted the fact - and used it as a starting point - that 
analytical mechanics, or, more generally, mechanics, is an exact nat
ural science; it is as exact as mathematics or, even more precisely, it 
is even more exact than it if its assertions claim not only mathemat
ical proofs, but also verification by nature and by human practice, 
as well as proofs of technology. Exact to perfection, mechanics is a 
mathematical theory about harmonious motion of the celestial bodies 
and, at the same time, about often rough human engineering practice. 
Its founders have written that geometry is part of mechanics (Isaac 
Newton) or that mechanics is part of (mathematical) analysis (La
grange). It has been developed and perfected to exactitude. At the 
same time, it almost goes without saying that everything has already 
been solved in this branch of natural science. The assertions (prin
ciples, laws, theorems) of the theory of mechanics are accepted and 
learnt almost as the laws of nature. Mechanics is as old as material 
and written relicts that testify about the history of findings about 
motion and rest of bodies; at the same time, it is as contemporary as 
the novelty itself since everything new that is being created, made or 
unmade cannot be separated from it.



On the basis of the above-mentioned views, several questions log
ically arise: What else can still be added to this science? What is the 
use of additional writings published in hundreds of periodic scientific 
journals? What about contributions to the body motion theory, if this 
theory is logically, perceptively and experimentally harmonious and 
finite to perfection? What makes possible discussions about accor
dance of all the assertions referring to the nature of things? These and 
many other questions, objections, incongruous statements and philo
sophical qualifications and classifications1 that have accompanied the 
development of theoretical mechanics are the ones that this book is 
trying to give answers to. It considerably changes the knowledge 
about mechanics and in mechanics, namely its starting philosophical 
assumption, its mathematical-logical conception and the basic and 
derived concepts that seemed to be clear. Besides, the preprinciples 
are introduced; the laws of dynamics are given different meanings 
and definitions; the principles of mechanics, each in its own turn, are 
shown as sufficient for invariant development of the whole theory of 
mechanics; the concepts of definitions, laws, principles, theorems and 
lemmas in mechanics have been differentiated. As a consequence, the 
axioms or laws of motion of the classical mathematical theory of me
chanics have been omitted. Even the generality of the law about the 
mutual bodies’ attraction has been subdued to questioning. The con
cepts of particular assertions in mechanics, namely those that com
prise the names of their authors, are replaced by new terms associ
ated with the respective meanings or concepts so that they could be 
more easily understood by the reader; the other reason for their re
placement being the fact that the historical evidence relative to the 
development of mechanics gives various data concerning the contri
butions of the distinguished authors of theoretical mechanics. All 
the presented innovations or modifications have not been made for 
their own sake. The level of skill in the history of the development 
of mechanics has depended upon the possession and development of 
the mathematical knowledge as well as operational aspects of vari
ous theories. The factor of the validity estimate has been and still is 
the logical verification of the mental modeling of mechanical objects 
as well as the confirmation of the deduced relations in nature - by

1See, for instance, P.V. Harlamov, [8]



observing and measuring changes of the natural processes. Starting 
from the universally accepted statement that analytical mechanics 
is a harmonious symphony of natural sciences, I kept on noticing, 
year after year, some incongruities in the theory both in its initial 
assertions and in the mathematical analysis of motion. Discussions 
at scientific seminars and conferences have deepened the differences 
in knowledge and understanding of the mathematical assertions of 
mechanics leading to opposite views or complete misunderstanding 
of both the essence of mechanics and of the meaning of the mathe
matical symbolism describing the motion of bodies. Moreover, the 
basic and derived concepts, postulates, axioms, laws, principles, con
straints, transformations ... are by no means singularly present in the 
standard mechanics. In view of all this, a new logical structure of me
chanics is proposed here; it can be briefly presented by the following 
scheme:

P



This structure has attempted to separate the rational core of the 
classical mechanics while, at the same time, eliminating redundant 
conjunctions, mathematical simplifications and, most of all, appar
ent innovations of mass modernization. The preprinciple of existence 
has defined the subject matter in mechanics as well as the dominant 
mathematical dimension directed to it, without any justified doubt 
about the existence of other mental worlds in mechanics. This does 
not imply that the knowledge about the motion of bodies is com
pleted; rather, it is an attempt to grade levels of knowledge from 
intuitive ones to more complex or even the most subtle mathematical 
proofs and conclusions. By stressing the differences with respect to 
the standard professional and scientific literature in the field of me
chanics, no particular book by one or a group of authors was kept 
in mind, unless it is precisely quoted in the very text of this book; 
any possible coincidence or difference left unquoted is unintentional 
or unbiased. Not once was the writing of this book, especially of 
some of its parts, accompanied with doubts about the legitimacy and 
accuracy of the presented assertions, regardless of the deduced and 
repeated proofs or many reviews by prominent experts when some of 
its results had been published in scientific journals before appearing 
now in this monograph. This is something that will be well under
stood by all the eminent authors of original works in the domain of 
natural sciences. What was needed, in addition to ever insufficient 
knowledge, was courage ( “gift for all sorts of mischief’) in order to 
avoid a highly grandiose proposition about inertia coordinate systems 
or to modify the “law” of mechanical energy change, or to stick to the 
assertion that the standard calculus devastates the tensor character 
of the mechanical systems’ differential equations of motion, or to dis
card the principle of solidification (freezing) of variable constraints or 
to change many other things that represent the subject and programs 
of academic studies throughout the world. In view of all this, it is 
rather difficult to exclude any possibility of transgression in this book. 
Each argument proving this, based upon the preprinciples introduced 
here, as well as every omission, pointed out to me, will be regarded 
as an authorized contribution that I will publicly acknowledge with 
gratitude.

The manuscript of this book has been read in whole or partially



by Božidar Vujanović, Corresponding Member of the Serbian Acade
my of Sciences and Arts, Ranislav Bulatović, Corresponding Member 
of the Montenegro Academy of Sciences and Arts, Dr Slaviša Prešić 
and Dr Zoran Marković, Professors of the Mathematical Faculty of 
Belgrade University. I have accepted most of their remarks, help
ful for further improvement of the text of the monograph. I am most 
grateful for their friendly assistance and deeply indebted for their pre
cious time and for their contribution to the publication of the book. 
The manuscript was first partially and then completely arranged and 
aptly prepared by Dragan Urošević to whom I am sincerely grateful 
for assistance and cooperation.

Belgrade, September 26, 1997 Veljko A. Vujičić
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PREFACE TO THE ENGLISH EDITION

Before the monograph was to be published in its Serbian edition 
by the Institute for Textbook Publication, Belgrade, the manuscript 
had been translated into English by Dragana R. Mašović, Associate 
Professor, Faculty of Philosophy, Niš, in july, 1998. Besides, regard
ing the Serbian and the english editions, the author would like to 
stress that he had made only a few changes in the mathematical text, 
namely in some of the denotation for the sake of adapting them to 
the English-speaking public.

The translation was read by Prof. Dr. Vladan Đorđević, Member 
of the Serbian Academy of Sciences, to whom the author and the 
publishers owe a great debt of gratitude. His suggestions, referring 
to the strictly scientific terminology, were almost wholly accepted by 
the author.

The author’s thanks are also due to the technical editor Dr. Dra- 
gan Blagojević, who prepared and completely arranged the text for 
publication.

The author would like to thank the Mathematical Institute of 
Serbian Academy of Sciences and Arts as well as the Institute for 
the Textbook Publication, Belgrade, and the Ministry for Science an 
Technology of the Republic of Serbia for its financial support to the 
publication of monograph in English.

March 29, 1999. Veljko Vujičić

PREFACE TO THE SECOND EDITION

The first edition of the book PREPRINCIPLES OF MECHAN
ICS has been unsuccessfully requested in bookstores and a number



of libraries. Dr Dragomir Zeković, Professor at the Faculty of Me
chanical Engineering in Belgrade proposed that a second edition be 
published, or I should say e-version of the first edition to make the 
book available to all interested readers.

By meticulous and professional reading of the book as well as rare 
giftedness Dr Dragomir Zeković has noticed a multitude of misprints 
and other errors ranging from commas and full stops to very complex 
mathematical relations, and proposed corrections. He has specified 
issues of mathematics and mechanics with precision, completely and 
at a high level, in accordance with authors’ attitudes related to the 
subject matter of the monograph.

The contents and length of the text have remained the same, 
as of the first edition. E-version of the monograph was prepared by 
Dragan Urošević.

This second improved e-edition is officially approved by the pub
lishers of the first edition - Zavod za izdavanje udžbenika i drugih 
izdanja, Belgrade and Mathematical Institute of Serbian Academy of 
Sciences and Arts, without whose assistance this monograph would 
not exist.

Belgrade, 2015. Veljko Vujičić



0. PREPRINCIPLES
The compound phrase preprinciple or foreprinciple is here applied as an ex

plicit statement whose truthfulness is not subject to re-questioning, but which the
oretical mechanics as a natural science (philosophy) about motion of bodies starts 
from.

The preprinciples are the basic starting point in the theory of mechanics which 
is here understood as one of the sciences about nature, instead of an abstract math
ematical theory with no determined interpretation. Before proceeding to discussing 
mechanics, it should be stated that the preprinciples, as defined above, provide for 
its distinction from, for instance, geometry which is today no longer considered as 
a science about real space, but as an abstract formal theory that allows for differ
ent, equally valuable interpretations. The preprinciples express the gnoseological 
assumption that mechanics has its determined interpretation as a science about the 
motion of real bodies.

The requirement for clarity assumes that the preprinciples can be and are 
expressed both orally and in a written form, with no previously introduced concepts 
and definitions; in this way, it is easy and simple to understand the formulated 
determinations, consistent with the empirically acquired knowledge or hints, all of 
which being of interest for the theory of mechanics. While describing the motion 
of bodies the preprinciples represent such assertions that are themselves obvious; 
hence they neither provoke questions nor do they require answers since it is assumed 
that the answer to accept would be the one given to himself or to others by the 
very person who posed the question. Therefore, mechanics starts from the accepted 
assertion which is not called into doubt at any level of knowledge.

Wider implications of the preprinciples can be grasped by studying mechanics 
as a whole. The preprinciples are considered accurate in mechanics until opposed 
either by a new discovery or experimentally or even by a newly-discovered phe
nomenon in nature. If and when the scientific assertion, brought into accord with 
natural phenomena, appears to be contradictory to the preprinciples, it can be 
modified, tog ether with the corresponding assumptions of thus envisioned me
chanics. The preprinciples stressed here are the following: those of existence, of 
casual determinacy and of invariance.

The knowledge about motion of bodies dates from ancient times. It has 
been preserved by genetic inheritance, forms of human practice and a multitude 
of various records ranging from a millennia-old till the present day ones. The



historians of science point to five millennia old records dealing with the motion of 
bodies. The existing referential literature about the motion of bodies is so large 
that it considerably exceeds the limits of one congruous rational theory. Even the 
attempts at formal generalization have reached the sophistication level at which 
it is impossible to see the knowledge that man needs about the motion of bodies. 
Numerous definitions that cannot be refuted from the standpoint of the author’s 
right to define his own concepts have first given rise to disparities among the theories 
of essential concepts which have, in their turn, caused a final split among the 
existing theories.

A rough mathematical description giving intellectually simplified models of 
natural objects is often used for explaining the body’s state of motion in a way 
unfaithful to reality. Besides, hundreds of theorems about the motion of body 
that are annually published in numerous scientific and professional journals contain 
incongruous “truths”. This is sufficiently provoking for a debate concerning the idea 
of “the proved truthfulness”.

What is presented here is an attempt to give a new systematization of the ra
tional core of mechanics, able to eliminate incongruity and vagueness of the existing 
theories. This has required, among other things, that some habitual and accepted 
knowledge about principles, laws, theorems and axioms should be averted, given up 
or at least modified. It seems logical to expect that such an approach should cause 
detachment or aversion, especially among older connoisseurs of mechanics, namely, 
those who have accepted its laws and assertions as indisputable laws of nature. 
In accordance with the preprinciples, as well as for the sake of greater clarity, the 
basic issues of this study are explained by the mathematical apparatus with which 
it is much easier to prove the completion of the preprinciples, especially that of 
invariance [62].

The knowledge about the motion of bodies is expressed by the introduced 
concepts and mathematical relations. The findings are elaborated, meaning that 
the general knowledge is not given once and for all; hence they do not have to be 
the same and equally true. The assertions about the motion of bodies, introduced 
and deduced in this mechanics, considerably differ from many others in numerous 
works of mechanics, especially in the part describing the motion of the body system 
with variable constraints.

Preprinciple of Existence 
(Ontological Assumptions)

On the basis of the inherited, existing and acquired knowledge mechanics 
starts from the fact that there are:

bodies, distance and time.
The existence of a body is manifested in the theoretical mechanics as a body 

mass for which the denotation m  and its dimension M, (diimn = M) are accepted. 
Consequently, every existing body has its mass. This is the property by which 
the body existing in mechanics differs from the geometrical concept of the body



characterized by volume V  (Lat., Volumen). The difference is fundamental since 
the body mass is not even quantitatively identical with its volume whose dimension 
is derived by means of the dimension of length L, dirnE = L3. Every body whose 
motion is studied in mechanics has its mass regardless of how small it is or of the 
size of its volume. The body of no matter how small volume V  has a finite mass 
m. Likewise, each part of the body has its mass. A part of the body of volume AV  
has mass Am. If many bodies or parts of the bodies are dealt with, their masses 
are successively denoted with the indices m„, Am v (v = 1 , 2 , . . . , )  that are to be 
read in the following way: “mass of the i'-th body” or “mass of the i'-th part of the 
body”. No matter what natural numbers are added to the index u, v e N, masses 
mv are always determined with positive real numbers R, concrete by units of mass 
M dimension.

The existence of distance is identified everywhere: among particles, celestial 
bodies or between various points on the pathway that, the body moves along, as 
well as between the place of the body and the place of observation. It is denoted 
by the letter l (Lat. longus)and is measured in units of dimension of length L. 
Though it is directly perceived and observed, inherited, acquired and understood, 
the distance between the body’s place or position cannot be simply determined. In 
order to confirm this assertion it is sufficient to mention the following distances: 
between two airplanes in the air, two ships on the sea, two vehicles on the rough 
terrain or two pedestrians in the city, etc. The distances are also the subject of 
other sciences, especially of metrology (p,eTpu>v - measure, measuring standard, 
\cr/La - Sciences), astrometry (aarpa - star), geometry (777 - Earth) and topology 
(rujTToja - place) since they depend upon the shape of the medium which the body’s 
positions belong to. Any common trait can, therefore, be deduced only for very 
small distances between the adjoining points; even so, only under the conditions 
that the backgrounds against which the distances are being observed are not de
generative. The positions of two bodies, no matter how small particles they can 
happen to be, cannot coincide; instead, their distance must be different from zero 
despite the seemingly obvious fact that there is no distance between two bodies 
touching each other.

Regardless of how small a particle is, it is not a point; the starting point in 
determining the distance should be a singular point of the particle or of the body 
in general, namely, the one that can be adjoined by mass of the particle or of the 
body in general in such a way that the whole body mass is concentrated at this 
point which thus becomes a fictitious mass center. It is for this reason that this 
point is called the mass point or material point. In this way the question of the 
bodies’ distance is reduced to the concept of the distance between points.

The concept of the mass or material point is different from the geometrical 
concept of the point not only by the fact that the mass point is characterized 
by mass; it differs from the particle by the fact that distance between the two 
particles always exist and is not equal to zero, since the particles, in addition to 
their mass centers, also have boundary points of their volume. In this way the mass 
or material point is also represented by the position (m, r). The geometrical points 
can coincide, so that their distance can be equal to zero.



The mass point position with respect to any chosen observation point can be 
described by position vector r . r  G R 3 wffere the symbol R 3 implies a set of real tri
vectors or in numbers r := (r1 ,r2, r 3) G R3 that are connected with three linearly 
independent vectors called the base or coordinate vectors denoted by the letters: 
e := (e i,e2,e 3), a := (0 1 , 8 2 , 33) or g := The notation e will be used
for orthonormal vectors of unit intensity e*, (i = 1,2,3), |e,| = 1, while a, will be 
used for other unit vectors of rectilinear coordinate systems.

Beside the assumption that they are unit and orthogonal, there is another 
assumption that e, change neither direction nor sense; instead, they are assumed 
to be constant:

ei — const. (0 -1)

This assumption concerning the constancy of the base vectors direction has 
no place in the philosophy of the body motion since all the bodies on which the 
vector base is chosen are moving. Hence mechanics introduces this assumption 
conditionally as will be later discussed regarding the introduction of the velocity 
definition and explanation of the inertia force.

Relative to base e, position vector r  G R 3 can be written in its simple form in 
the following way:

r = r1e1 + r2e2 + r3e3 =: r 'e ,, (0.2)

where the iterated indices, both subscript and superscript, denote addition till the 
numbers taken by the indices; (r1, r 2, r 3) G R3 are coordinates of vector r , while 
r le\ = r i , . .  . , r 3e3 =  r 3 are covectors or components of the given vector. Scalar 
multiplication of vector r  by vectors ej (j = 1,2,3), that is, r  ■ ej = = rj,
gives the jth  projections rj of vector r upon the directions of the jth  vectors er  
Only with respect to base e, vector coordinates are identical to its projections 
rj or to coordinates rj of covector rj since it is:

&ij  — O, • G j

1 0 0
0 1 0
0 0 1

(0.3)

Observed from any point O which the position vectors start from, the directed 
distance between any two immediately close points M\ and M2 is determined by 
the difference between vectors r 2 — t*i = Ar, where r 2 = OM2, r\ = OM\ and

A r = A'hlYh = (4  -  rj) e, = Ar ^ .  (0.4)

Quantity |Ar| = As can be called the metric distance or distance (Lat., 
spatium) or space metrics:

dims = L. (0.5)

Time is denoted by the letter t (Lat., tempus), while its dimension T,

dim t = T .



It is continuous and irrevocable. In the mathematical description it can be rep
resented by a numerical straight line or an ordered multitude of concrete numbers, 
while the multitude of their units is represented by real numbers R, t € R.

Once the existence of time is accepted, the existence of motion, change, dura
tion, the past, the present and the future is also accepted.

Preprinciple of Casual Determinacy
Distances, their changes and other factors of the body motion are explicitly 

determined throughout the whole of time, in the future as in the past, and with as 
much accuracy as the determinants of motion are known at any particular moment 
of time.

This preprinciple of mechanics prefigures that mechanics as a theory of the 
body motion is an accurate science in the mathematical sense, while as an applied 
science, it is so accurate as the data which are of importance for motion are accu
rately measured at one particular moment of time. In other words, mechanics is an 
accurately conceived theory, almost to perfection, while in engineering practice it is 
as much applicable as it is known, depending on the needs and technical capabilities 
of those applying it.

The concept of the body motion comprises: walking, driving, sailing, swim
ming, flying, jumping, breaking,... and all other gerunds that refer to displacement 
and changes of distance or changes of the position vector in time.

Preprinciple of Invariance
Neither motion nor properties of the body motion depend upon the form of 

statement: the determined truth about motion, once it is written in some linguistic 
form, is equally contained in the written output of some other form or some other 
alphabet.

The preprinciple of existence states that there are mass, time and distance, 
determined by concrete real numbers m  and t as well as real vector Ar. This 
preprinciple of invariance or independence of formalities allows for mass, as well as 
time, to be denoted by some other letters, let’s say m  and t, which do not change 
the nature of numbers m  and t, and for which there must be m = m  and t = t in 
the whole correspondence. The same stands for distance Ar. No matter where the 
origin of coordinates from which the position vector begins is chosen, let’s say p, 
there is an equality

A r —  A p,
so that distance A r does not depend on the form of writing. This is even more 
expressed in the coordinate form, in which the choice of forms is considerably larger, 
such as

3

Ar = ^  (Arz) e, =  A rlei = Ay'lei = Az*&i = Afdgj = • ■ • .
2=1



As such, all the three realities m  G R, t G R and A r e R 3 are invariants, m 
and t being scalar ones, while Ar  is a vector invariant.

All other factors of the body motion are also invariantly expressed in various 
coordinate systems.



I. BASIC D E F IN IT IO N S

By means of the previously accepted concepts as well as the introduced notations 
it is both possible and necessary to determine (define) some of the essential concepts 
of mechanics.

Definition 1. Velocity. The boundary value of the ratio between distance 
and time interval At. for which the material point moves from one position r(t) to 
another position r(t+  At) immediately close to it, that is, the natural derivative of 
the position vector with respect to time

dr
dt

A  rlim —— =At->0 At limAt^o
r(t + At) 

At
r (*) dg v ( 1.1)

is called the velocity of the point.
Velocity is, therefore, a vector and its nature is invariant. Depending on our 

need for more specific determination, there are other formulations such as: velocity 
vector, momentous velocity of the material point, velocity vector at particular po
sition, or, even more completely, the velocity vector of the material point’s motion 
at one moment or position; nor is the expression the velocity of the material point 
position change considered contradictory, if the position implies the position vector.

Much more important than the formulation itself is the fact that the velocity 
definition establishes a relation between distance and time. The velocity dimension 
is derived from the velocity definition, being

Dimi> = L T -1  (1.2)

The position vector now becomes time-dependent; hence, it follows that:

d.v̂  ■ dci'
r(t) = r\t)g i(t) -» v = — gi + r ' - £ ,  (1.3)

and this relation opens up the problem of accuracy in mechanics as well as of the 
necessity to make relative the body motion theory which has definition 1 .

According to the preprinciple of casual definiteness, relation (1.1) should be 
used for an explicit determination of velocity if the vector of functions r(t) is known,



and vice versa, of the position vector if vector v(t) is known [36]. It follows from 
relation (1 .1) that:

t

r(t) — r(to) = I  v(t)dt (1.4)
Č0 

or t
r\t)g i(t) -  r\to)gi{t0) = J vl{t)gl(t)dt,

to

that is,
t

[r*(t) -  rk(t0)gi(t0,t)] gi(t) = J v(t)dt, (1.5)
to

where glk(t0,t) : g(t0) -► g(t).
Therefore, definition (1.1) can also be written in the following form:

d
dt [r(t) -  c] = v, c = const,

which shows that the velocity of the point’s motion does not depend upon the 
choice of the position vector pole in the same base.

An underlying difficulty in determining the point’s velocity emerges in the 
previous choice of the base vectors system which also implies the pole and direction 
of these vectors. They can be assumed as constant vectors, but, objectively, all the 
bases which are the base for base vector system g , , move; consequently, vectors g, 
change in time. For human existence and for observing the way the bodies move, 
the base is the Earth which, just like the other planets, moves; so, its relative speed 
with respect to the Sun, as well as its angular velocity, are measured or calculated 
till sufficient accuracy is achieved. Regardless of the directions chosen for the base 
vectors’ axes e*, a,, gi, including the directions of the Earth as the “immobile” 
star, they cannot be invariable due to the Earth’s motion. In order to reduce the
relation to a scalar form, vectors ~ ~  should be expressed by means of base vectors
gi{t). Let it be:

9j =
dgj(t)

dt = u)gi{t), (1.6)

where w] are, for the time being, indefinite coefficients of vector gi resolution. On 
the basis of relation (1 .2 ) it follows that the coefficient g, dimension is time to the 
power of minus one, that is,

dim uj) = T ^ 1 (1.7)

Quantities uj of the dimension T 1 are called angular velocities, circular fre
quencies or frequencies.



Substituting relation (1.6) into (1.3) it is obtained:

« = ( ”  + gl =  v''gl , (1.8)

it follows from the above relation that, due to the independence of the vector 
the velocity vector coordinates are:

dv̂= (i,j = 1,2,3). (1.9)

According to the preprinciples, the solutions of this differential equation’s system for 
known velocities vl(t) must be equal to solutions (1.5); the integrating operations 
must be elaborated so that the conditions for casual determince and invariance 
should be satisfied. This is provided for by the covariant or tensor integral, under 
the condition that double-dotted tensor g\{U>, t) and base vectors gi{t) are known.

For the constant base vectors such as g = e relation (1.6) reduces to a system 
of homogeneous equations:

iOj e\ + 2 + tUj — 0 ,

from which it follows that w) = 0, so that the velocity vector coordinates (1.9) are 
in this case:

dr'1
”• -  S -  <110>

This clearly shows that the vector coordinates of the material point’s velocity differ 
with respect to various base vectors. Due to the invariance preprinciple as well as 
definition (1 .1) it can be written:

dr* j • dr1 t—  ei =  v gi, (1.11)

which satisfies the form equality and corresponds to the expression “the natural 
derivative” used in the definition. Regarding the fact that nine above-mentioned 
coefficients w) are unknown, if we start from the general assumption that each base 
moves and that the coefficients cannot be determined -  contrary to the preprinciple 
of casual determinces -  it is natural that the coordinate vectors that can be related 
to some base vectors, not likely to change in time, should be chosen as coordinate 
vectors.

Therefore, in order to determine the material point’s position as well as the 
points’ distance by relations (0.2) and (0.4), in addition to condition (0.3), what 
should be introduced here is the condition that the base vectors do not change with 
time:

f l - o .  (1.12)



The choice of once oriented base constant vectors provides for setting up other 
oriented coordinate systems, including curvilinear ones, that can be brought into 
mutual mapping and in relation to which velocity is invariant.

Coordinate Systems. The concept of coordinate system here implies an 
ordered set of real numbers and a set of mutually independent vectors that are 
called coordinate vectors. The coordinate vectors differ from the base ones only 
in the sense that the base ones are previously determined with respect to objects, 
while the coordinate ones are determined with respect to the base ones. If the 
coordinate ones are original, then they are base coordinate vectors. On the basis 
of the base vectors, originally chosen as in relations (0.2), (0.4) and (1.3), it is 
possible to introduce other coordinate systems x  = (ad, x2, x3), (xl £ M) in which 
the material point’s position is explicitly mapped while the velocity has a general 
invariant form.

Any other rectilinear coordinate system can be chosen as well, let’s say (z, a), 
whose directions change in time with respect to base system (y,e). The two 
systems’ ratio is determined by the relations:

r  = r az'- e-i =
dz°
dyl aQ = 7 f a 0 -dyf3 = 6?.IQ.ll Q

The velocity vector can be represented by the equation:

v  = Jt (V%ei) = V%ei = + 7aža) 7i 90 =

= + 6& a) =  (žP + u 'Jz*) B0 -  v3*0

where
*3  • i — (3= loPii i - P  -7a7i

are anti-symmetrical coefficients and * denotes the empty place of an index, since 
it is

dt i l n f  + 7a7i 5P =  0.

It follows that the velocity vector coordinates with respect to the coordinate 
rotary system (z, a)

VP = Ž0 +  u jfz° (1.13)

By comparison with expression (0.2), it can be seen that r  is a function of 
y* coordinates, and through them, it is also a function of x  coordinates, so that 
r  = r  {y (a;)) = yl (x ) ei. According to definition (1.1), the velocity vector is:

v = ylei = d r  d yl ±k
dyl dxk = x dyi 

dxk B x k 9 k = vkgk. (1.14)



It follows from these invariant relations that coordinate vectors gu for the 
system of x coordinates are derived by base vectors e, by means of the covariant 
relations

dyk dr
a' = a ? et = a ? = g ' {x)-

(1.15)

as well as the metric tensor

dr dr dyk dyl 
9ij 9 i ' 9j ~  dx^ ' dxi ~  kl'dxI dx^' (1.16)

Accordingly, velocity vector v  =  — (rlg,;) can be reduced to the general form:

dr* , d y t dxk f  dr1 ,t dxk
jk dt

gi = V krlx kgi = vlgi

where r*fc(a:) are the coefficients connecting the coordinate vectors gi and their 
partial derivatives with respect to x coordinates, namely:

99j
dxk r jk(x )(M x )- (1.17)

It follows that the velocity vector coordinates in any system of coordinates 
(x, g) can be written in the form:

Dr1
dt

dr1
dt + rj T)kx k, (1.18)

Dr1where ----  denote natural derivatives of the position vector coordinates wdth re-
dt

spect to time, while
dri ■ ■

kj

is a covariant derivative of these vector’s coordinates with respect to the point’s 
position coordinates [36], [49].

The projections of velocity vector yi upon the axes of base vectors ei, as scalar 
products of vector i>i and base vectors , are equal to the velocity vector coordinates 
yl:

iji — yg,

while Vi projections upon the axes of the coordinate vectors gi are linear homoge
neous forms of the velocity vector coordinates:

Vi = gijv3 = gij—Tr = g iji3
Dri
dt

where gij(x) is metric tensor (1.16).



The velocity square, as a scalar invariant, can now be written in the following 
form:

Dr1 Dr3
v2 = Sijy'y3 = glj± lx3 =  — (1.19)

Regarding the fact that element ds of path s(t):

ds2 = gijdxldx3 — gijDrlDr3

it follows that the magnitude of the velocity vector v is simply determined as a 
derivative of the path with respect to time, that is,

v = ds(t)
dt ( 1.20)

Therefore, it can be proved that covariant derivative ViVj of the projections 
rj of the point position vector upon the j  th coordinate direction with respect to x l 
coordinate is equal to the respective coordinates of metric tensor gij. with respect 
to respective indices.

Namely, if r = ykek vector is scalarly multiplied by gj vector, the projection 
of the position vector upon the j-th  coordinate axis r ■ gj = rj = yk (ek ■ gj) is 
obtained or:

k dyl
o - v  a s ? (<*•«> h i y k

dyl 
d x i '

Regarding relation (1.16), it follows:

d r 3
dxi Ski

dyk dyl
dx1 dx3 + Skiy

d2yl
dxl 'dx3 — gij + Skiy dyl

dxm  l3

This also confirms the assertion that it is

Vjr?- = 9f i
dxi -  r,JT ; = gij.

By partial differentiating metric tensor (1.16) with respect to all the coor
dinates and summing up, it is obtained that T ^ ^ ix 1 ,x 2,x 3) are Christopher's 
symbols for the given metrics:

1 f  d9jk dgik _ dgjj \
2 \  dx1 dx3 dxk J

( 1.21)

For the coordinate system z in which co
equal to zero, so that

V.r,- drj_
8 z i O i j ,

const all the symbols T") arej ij

which more clearly points to the relation between the position vector and the metric 
tensor.



The previous relations can be related to the base vectors’ covariant derivatives 
with respect to the coordinates

y k9r =  -  r ) k {x )9 i{x ) =  0 (1.22)

which are very important for describing the base vectors and their changes in 
time. Just as relations (1.15) establish the ratio between base vectors e and the 
subsequently introduced coordinate g, so the covariant derivative Vkgj stands in 
a direct relation with conditions (1.12). The derivatives of relations (1.15) with 
respect to time, due to condition (1.13) are:

dgi _  d2yk ■ 
dt dxJdx'X Bk'

It is always possible to introduce such functions T(:r) so that it is

d2yk f a 9yk
dxi dx1 13 dxx

thus, it is obtained

dgt
dt

, dx3 
9xTji~dt

^ (d"- =  V -Q±3 = 0
dt Vjffl (1.23)

These are the conditions which, just like conditions (1.12), show that coordi
nate vectors gi are covariantly constant:

locZ e-i =
dzc
dy -3a = Ti3  c la 11 51

The velocity vector is

v =  ylei =  (ž0 + uJ*aZa) 3/3 =  v^ap

where a;**3 = = —w*a = —7a"li are anti-symmetrical coefficients. It follows
that the velocity vector coordinates with respect to the coordinate inverse system 
(z, a) are:

vd =  z0 ■ u ^ z a =
Dz0 
dt

This clearly shows that the velocity vector coordinates are varied regarding 
various coordinate vectors. Due to the preprinciple of invariance as well as the 
casual definiteness of the statement about “natural derivative” from the definition 
of velocity, it is natural that the chosen coordinate vectors should be the ones that 
can be related to some base vectors (0 .1), invariable in time.

Once base vectors e* are chosen, other oriented coordinate vectors gi can be 
chosen, including curvilinear ones, for which the natural derivatives (1.23) will be 
valid.



Definition 2. M otion Impulse. The product of mass m of the material 
point and its velocity vector v is called the motion impulse of material point p.

In accordance with the preprinciples, the velocity definition and the above
given definition, the motion impulse can be written in the following way:

• i Dz% ip = mv = my ex — m —-— = mv gl = at
Dr1 dr • •— m ——qi = m ——tX =  m xq,. 
dt y dxl y

(1.24)

Further on, special emphasis will be put on pi projections of this vector upon 
coordinate directions gt:

P i = P 9 i  = mgijXJ = a^x3, (1.25)

where
dr draij =  mgij = m —  ■ —  = ajt (m, x) (1.26)

is inertia tensor.
In the coordinate system (z, a), in accordance with (1.13) it will be:

Vi = (V +aJ*kJzk ĵ =

where =  0 for k = j,  while = ma* ■ 3j. Therefore, in such a system, there is 
the material point’s motion impulse, regardless of the fact that the points do not 
move with respect to this coordinate system:

Pi — Z — .

It should be noted that inertia tensor aij(m ,x) differs from the metric tensor 
gij{x). The basic physical dimensions of the impulse vector are:

dimp = M LT " 1

but its coordinates and projections can also have other dimensions.
If x coordinate is an angle, then it is:

dim Pi = ML2 T _1 .

Inertia tensor sets up a relation between impulse and velocity at any posi
tion. Its essential content is mass which exists for every body or material point as 
well as in all coordinate systems.

Exam ple 1. In an orthogonal rectilinear coordinate system(p, e), the inertia 
tensor coordinates are equal to the point’s mass since it is

aij — mdij —
m i = j

i ±  3-
(1.27)



However, the following relations are valid in other coordinate systems [36]: 
Cylindrical: x 1 = p, x2 = <p, x3 = z\ y 1 = p cos 99, y 2 = p simp, y3 = z,

/ I 0 o '

0 P2 0
\0 0 K
= 6 y1 =

yu — pcos<p

A
0 0 \

aij ~ m 0 p 2 0

\ o
0

2 - 2  /  
p  sin < p  /

Rotatory-ellipsoitic: x1 = H
to

= x3 =  0 ; y1
b ch £ sin y sin 0 ,  y3 =  6  ch £  cos 77,

J(sh2e 0 0

ay =  mb2 0 ch2 £  0

V  0 0 ch2 £  sin2

Rotatory-parabolidic: x1 = = e , =  V-.

O
SII

CO ,2 —

y3 = ^ ( e - v 2).

f z 2 + i f  0 0
at] = m  I 0 £2 + y2 0

\  0 0 £2y2

Bipolar: x 2 = 77, x3 = 9: (0 < £ < ir, — oo < y < oo,0 < 9 < 2n);y1 = 
b i n$cosec,y2 = b s}n^sin0c,y3 = b ■ sh7?ch?7—c o s £ , y  ch77—c o s £ , y  CI177—c o s £ ’

(
a,ij = mb2

(ch 7] —  cos  £)2 

0
(ch 77—cos £)2

V 0 0

0
0

s in 2 £
(ch  77—co s  £)2

Cylindrical-orthogonal: a;1,a;2,a;3 = z; y1 =  f 1 (a;1,a:2), y2 =  / 2 (a:1,x2),
y3 =  x3,

{ { w i y + f o f i x
{ d x 1 ^ V^x1;

A

V
0

dx2J \ dx2J
0 1 /

The inertia tensor forms a positive definite matrix whose determinant is other 
than zero. During the transformation from one coordinate system into other ones.



constraints should be looked for in mapping and degeneration of the figure, instead 
of in the nature of the inertia tensor. Regarding the fact that its determinant is 
different from zero, it is possible, by means of relation (1.25), to determine the 
velocity vector x 1 coordinates as homogeneous linear functions of the impulse

xi = aijPj (1.28)

where alJ(x) are countervariant coordinates of the inertia tensor. Relations (1-28) 
and (1.27) are existing, determinable and invariant with respect to all possible 
mappings from one coordinate system into the other one.

It should also be noted that inertia tensor changes during the motion if 
mass m(t) of the material point changes in time. This relevant fact points to a 
considerable qualitative difference between the inertial and the metric tensor 
gij. If this fact is neglected, general conclusions about the motion of the celestial 
as well as the elementary bodies may be wrong. This will be more clearly seen in 
further presentation of this theory.

Definition 3. Acceleration. The natural derivative of the velocity vector 
with respect to time is called the vector of the point’s acceleration.

This definition is replaced by a shorter written form:

a = f ” , dima = L T “ 2 . (1-29)dt

Acording to the definition and respective relations of the velocity vector (1.1)- 
(1.29), the acceleration vector a  (Lat. acceleratio) can be written in many ways:

and its coordinates:

D v i £ > V  ,

~  ~ d f 9 '1 “  d t 2 9'V e *

/  dv'1 : ,• dXk \
=  [ n

=  a ‘g l

i dv* t d xk D v1
a  — —— 

dt dt

(1.30)

(1.31)

At the same time, it is necessary to know with respect to what coordinate 
vectors gi or metric tensor g^, coefficients V‘jk are calculated. If relations (1.15) 
between base e,; and coordinate vectors gi from previous invariant relations (1.31) 
are taken into consideration, it is easy to notice that the acceleration vector coor
dinates can be mapped from one coordinate system y into the other one x if matrix

determinant ( | is different from zero, since the relations are derived:
V ox )

V -  a dyi
dxk a = y

dx%
dyk (1.32)



Regarding practice, the acceleration analysis with respect to the natural system 
of the coordinate vectors (771. 772, 773), which are unit and orthogonal is of special 
interest. Let the vector

m lim
A s —►

A r
0 As

dr
ds

determine the direction and sense of the tangent on the pathway s at some moment 
of time t and let it coincide with the velocity direction at this moment of time; 
r)2 = n  is directed with respect to the principal normal toward the center of the 
(first) pathway curve, while 773 = b is directed with respect to the (second normal) 
binormal.

Regarding base vectors e,;e, the coordinate vectors can be determined by means 
of linear relations:

Q̂.77i, ^0

where at? are cosines of respective angles formed by vectors 77* and e*,.
The velocity vector with respect to the natural trihedron can be represented 

by the expression:
rlr rl q

(1.33)dr dsv = —— — = V T  ds dt
where v, as can be seen from (1 .2 0 ), is velocity vector magnitude. 

Since r  • r  = 1 ■ t  = 0 , where from it follows that vector —  is ds ds
. . .  . . . _ dr dr dd . ,perpendicular to t , it can be written that —  = —  — = ten, where k  is theds dO ds

curvature of a curve. According to definition (1.29), the acceleration vector can be 
resolved along tangent r  and principal normal n, namely:

dv o dr dv v2a = — t  + v —  = — t  H---- n  = aTr  + ann,
dt ds dt pk

(1.34)

where pk is pathway curve radius, while n  is a unit vector of the principal normal, 
so that

(1.35)

the acceleration vector coordinate directed with respect to the tangent (tangent 
acceleration) and

v2an = — (1.36)
Pk

the acceleration coordinate a is directed with respect to the principal normal 
(normal acceleration). Relation (1.34) clearly shows that only one acceleration 
component, namely, an = an, which belongs to the tangent vector field or oT = vt 
belonging to the osculatory one, perpendicular to the tangent plane does not de
termine the acceleration vector.



Definition 4. Inertia  Force. The product of the material point’s mass m 
and the vector, which is equal but directed opposite to acceleration vector a. is called 
the material point’s inertia force.

If the inertia force is denoted by the letter Ip  or simply I, the definition can 
be written in a shorter form:

T defI f = —ma
dv

i— .dt (1.37)

Hence it follows that
dim /F = M L T “ 2 .

According to relations (1.30) and (1.31), it can be written:

r n * D v 1I f = I  9i = - ma gr = m— gi = -m y  eu

where it can be seen that the vector coordinates of inertia force

' dv1r i  D V 11 =  — m —;— = — m dt
j dxk \  , + T \v 3 ——dt 3 dt J

(1.38)

(1.39)

By scalar multiplication of vector (1.38) and coordinate vector gj the pro
jections of the inertia force vectors upon the j-th  coordinate axes are obtained, 
namely,

Dvi
I j  — I f  g j  — o - i j l  — o-ij  ^  — 

dv1 : , dxk
dr + r;‘”V

(1.40)

where «„t7, as in relation (1.26), is inertia tensor. It is clear from relation (1.40) that 
the inertia force can have many addends; also, Ij projections upon y coordinate 
axes, depending on a^-, can have dimensions different from MLT"  . That is why 
Ij coordinates can be called generalized inertia forces.

Regarding the natural system of coordinates, in view of relations (1.34), it 
follows that:

T TT T71 dv v2Ip  = I t  + I n  = —m — T — m —n.dt pk
It is obvious from this equation that tangent coordinate I T of the inertia force

dv
1 = - ”* * '

while the coordinate on the principal normal of the curve

,,2V-m-
Pk

(1.41)



Therefore, two last expressions show in a more obvious way than relations 
(1 .3 9) that the inertia force can exist even in the case when the velocity magnitude 
is constant v = const. Only in the case that the velocity vector v = const, that 
is, that the velocity changes neither magnitude nor direction, does it follow from 
relation (1.37) that the inertia force is equal to zero. It can be seen, from the 
relation for the velocity square (1.19), that v = const if all the velocity coordinates 
yl with respect to the base system e are constant values. Since base vectors are 
constant with respect to time, it also follows that the velocity vector is constant 
(u =  const). Consequently, as in the definition of inertia force, it follows that the 
bodies moving at constant velocity v do not produce inertia force. The coordinate 
systems that can be related to such bodies are called inertia coordinate systems.

The initial point of the force vector is called the dynamic point (Greek, 
Swa/Ma -  force). The material and the dynamic points geometrically coincide, 
but the concept of the material point implies mass, while the same material point, 
when it is called a dynamic point, is related to inertia force, or, more generally, 
some force acting at that point. In some parts of mechanics only relations between 
forces are discussed with no concept of mass. In this case, it is more natural and 
rational to use the concept of dynamic point.
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II. LAWS OF DYNAMICS

The word dynamics is derived from the Greek word (Siua/iiKri) meaning “a 
science about forces”, while the term laws of dynamics implies formulations and 
definitions used for determining particular forces with accuracy of mathematical 
functions up to the concrete constant. In this study, the knowledge necessary for 
the formulations that make up the laws of dynamics is acquired on the basis of 
experiments and measurements in nature and human practice so that no other 
logical proofs of their truthfulness are needed. They can be expressed in an oral or 
written way, in words or by mathematical formulae that satisfy the preprinciples 
of mechanics.

By the definition of inertia force, the dimensions of force are determined and 
thus, the law's of dynamics as well; in accordance with this definition all other forces 
are formulated as vector invariants having a dimension M LT-2 .

The phrase “up to the concrete constant” implies concrete real numbers deter
mined by various measurements of experimental or natural phenomena. They are 
called dynamic parameters in order to emphasize that they are comprised by the 
forces’ functions.

If the difference between the expressions determination-definition and determination- 
law is not sufficiently clear, it should be stressed that the definition is a product 
of human mind as well as of the desire for singular accuracy, while the laws of 
dynamics use w'ords or formulae of the previously defined concepts in order to 
state particular repetitive properties of the body motion with accuracy up to the 
dimension constant of the dynamic parameters.

All the forces, including the defined inertia force (1.37), appear as interactions 
of some bodies being related to other bodies. One body, that is, one non-free ma
terial point, can be only conditionally “separated” from others in such a way that 
“separation” in mechanics is abstracted by forces. The laws of natural sciences, as 
well as the laws of dynamics describe not only particular repetitive and measurable 
properties of one material point’s constraint with a multitude of others. The mental 
deliverance from constraints is achieved in dynamics by abstraction by forces, for
mulated by particular laws. Nature is much more complex than mechanical models; 
still, these models can be used to determine numerous movements of the body with 
great mathematical accuracy. Mechanics can use one concept of the material or 
dynamic point to describe a position change of all the bodies, from the celestial 
ones to the bodily molecules. And such a multitude is so great that it is hardly



comprehensible. The mass of the outer space is considered to be so great that 1023 
stars of the same magnitude as the Sun can be formed, while the composition of 
the Earth comprises about 4 x 1051 protons and neutrons (see [9]). In this theory 
of motion man can, in some cases (like that of the parachute), be regarded as a 
material point, though it is accepted that it consists of, on average, 1016 of cells 
that are, in their turn, regarded as having a structure of 1012 — 1014 atoms each. 
The number of entities stand in some proportion with the possibilities of mutual 
association. For example, in a molecule of DNA which consists of 108 — 1010 atoms, 
the atom distribution and their mutual relations exceed any countable multitude; 
this, in its own right, makes particular specific sciences introduce simpler models 
upon which they can carry out their research. Mechanics finds it sufficient to deal 
with the concepts of the material and dynamic points.

Law of constraints
It is from classical mechanics and its related sciences about nature that knowl

edge can be acquired as to the ways in which the bodies affect each other through 
real objects that are called the constraints. The present findings do not point to 
any particular body, out of a multitude of bodies, that can be isolated and ex
ist by itself, namely, without being affected by other bodies. Still, this assertion 
cannot be made about the whole multitude of bodies whose boundaries have not 
been discovered yet; neither has the multitude in its wholeness. In the observed 
rational or practical locality only limited sets of constraints are known. Many con
straints or particular sets of constraints can be abstracted by means of particular 
mathematical relations used for connecting essential attributes of motion as posi
tions of the material points x = (x1, . . .  ,x n), velocities x = (x1, . . .  ,x n) or impulses 
P =  (.Pi5 • • •, Pn), as well as time t, by means of geometrical or kinematic parameters 
x.

Exam ple 2. A body Mi of mass m\ is lying or is moving along the horizontal 
smooth plate. This body is connected with another body M2 of mass m 2 by some 
attachment (fiber, rope, thread) passing through a smooth opening O on the plate
(Fig. 1).



Therefore, two bodies with known masses are given; their motion is bound by 
means of two constraints: one of them being a smooth plate, while the other is the 
fiber connecting them. For the mathematical description of these constraints it is 
appropriate to introduce either Descartes rectilinear coordinate system Oxyz or a 
cylindrical system of coordinates p, <p, z with the coordinate origin O, so that it is:

x = pcos(p, y = psin<p, z = z. (E2.1)

In both the coordinate systems the “plate” can be represented by the relation:

f i  Zi — C = 0 . (E2 .2)

However, the second constraint in the coordinate system Oxyz is represented 
by the equation:

/ 2 := yjx f + y l + \z2\ - 1  = 0, (E2.3)

while, relative to system Op<pz, it can be represented by the equivalent equation:

y*2 = pi+ \z 2 \ - l  = 0. (E2.4)

It is understandable that at some transverse velocity the body Mi will move 
along a circular line:

x\ + Vi = 2̂> z i=  z2 = 0. (E2.5)

This will happen, among other possibilities, when the boundary point of body 
M2 coincides with point C. Such an equation also represents the case in which 
the constraint is not taken to be fiber M\C, but a circular wire of radius l along 
which body M\ glides. The mechanical difference is relevant. The wire will resist 
the motion if it is not ideally smooth; this does not happen with the fiber. In the



case of smoothness both the constraints can be abstracted by the constraint force 
which is called the constraint reaction and is most often denoted by the letter R.

This example can clearly differentiate the concept of the “constraints” in math
ematics and mechanics. It is customary in mathematics to consider every relation 
establishing some sort of ratio between the observed mathematical parameters as 
“constraint”; consequently, it includes (E2.1), (E2.2), (E2.3) or (E2.4) and (E2.5). 
In mechanics, as can be seen in this example, the constraints are (E2.2), (E2.3), 
(E2.4) or (E2.5). Therefore, each mathematical relation, as in example (E2.1), will 
not be called the constraint. The difference is not just formal. Constraints (E2.2) 
and (E2.3) or (E2.4) produce forces, so that constraint (E2.2) can be abstracted by 
some vector R \, while relations (E.3) or (E.4) are abstracted by some other vector 
R 2. However, “mathematical constraints” and those similar to them (“substitu
tion”, “transformation of coordinates”, “mapping”) do not produce any forces or 
other physical phenomena.

It depends upon the relation between these forces, that is, upon the relation 
of bodies and their association, as well as upon the inherited motion (position 
and velocity) whether body Mi, for instance, will move in the plate plane along 
the pathway having either the shape of a straight line to which point C of the 
circumference p\ = const, or that of a falling or rising helix or some other curved 
line.

In the case that the plate also moves so that the constraint should be of the
form

f i  ■= zi -  r(vt) = 0 ,

where v is a velocity parameter or in the case that fiber l changes in time, constraints 
(E.2) and (E.3) or (E.4) would be written in the form

> 0 (E2.6)

or
f 2 ( X l , y i , Z i , Z 2 , T )  >  0. (E2.7)

This simple example becomes more complex if it is not assumed that the plate 
plane is ideally smooth - as indeed happens in practice - and that the surrounding 
medium is not empty, but existent. Then the structure of the force vectors becomes 
more complex.

In the most general case, the constraints linking N  bodies M„, {y = 1, 2 ,.. . ,  N) 
can be written by means of k relations

f n ( y i , - - - , y N , y i , - - - , y N , r ( t ) ) >  o, y i e E 3N, (2.1)

where r  is some known function of time, or in the form

ff i  ( x i , . .  . , x N , X i , . .  . , x N , r ( t ) )  > 0 , {fi =  1 , . . . ,  k) (2 .1a)



since, as already stressed, the constraints are objects that are invariant regarding 
any mathematical transformations. Considering the fact that in the literature about 
the constraints’ mapping (2 .1) from one coordinate system y into the other x, or 
vice versa, there is much vagueness or incomprehension. The previous sentence 
should be repeated in the following form:

U  (V, V, T{t))y=y(x] = / M {x, x, r{t)), (2 .2)

In words, it states that the constraint equations written with respect to one 
coordinate system (y,e) can be also written with respect to the other coordinate 
system (x, g) in the region in which there is explicit mapping between them. The 
constraints can be scalar or vector invariant.

Relations (2.1) in which are real differentiable functions in the observed region, 
namely, those pointing to boundaries of motion in a particular way are considered 
as constraint relations or, shorter, constraints.

Therefore, constraints are dynamic objects that, together with material or 
dynamic bodies, make up the system of material, or, consequently, dynamic points. 
According to relations’ structure (2.1), functions of the constraints are also most 
often classified as:

• unilateral or unconstraining

U  > 0- (2.3)

• bilateral or constraining

U  = 0- (2-4)
• geometric and finite

f M  = 0- (2-5)

• kinematic or differential

f^ {y ,y ,r(t)) > 0 . (2 .6 )

• invariable and fixed

U  (y) > o. (2.7)
• variable or moveable1

f(y ,V ,T (t))=  0 . (2 .8 )

1T here  a re  o th er te rm s used in literarure; these  are, m ost often: u n ila tera l (2.3), b ila tera l 
(2.4), holonom ic (2.5), holonomic differential and non-holonom ic (2.6), scleronom ic, s ta tio n a ry  or 
autonom ous (2.7), rheonom ic, non sta tio n ary  or non-autonom ous (2.8).



It can be noticed that all the finite constraints can be written in differentiated 
form by differentiation. But, it is not always possible to reduce the originally given 
differential constraints to the finite ones. For this reason, the writing of differential 
constraints (2 .6 ) contains differential integrable - finite or holonomic, differential 
non-integrable -  non-holonomic constraints. Any particular classification implies 
that the signs of equality and inequality in (2.3) and (2.4) are taken into consider
ation simultaneously with the function class (2.5) -  (2.8).

However, much more essential is the classification of all the mechanical con
straints into real constraints and ideally smooth, or, simply, smooth constraints.

As it happens, all the constraints are real and cannot be ideally smooth. If one 
constraint is classified as “ideally smooth”, it means that in mechanics it is desirable 
to stress that its dynamic factors (friction, resistance, hardness, elasticity) that are 
not described by differentiable functions /  are either neglected or described by other 
functions. The general property of all constraints is marked by the determinant 
that will be called the law of constraints.

The constraints restrict displacement of the material points as forces; they are 
abstracted by the constraints’ reactions; k constraints f^ = 0 (p = 1 , . . . ,k ) ,  that 
constrain the motion of some v-th. material point, are abstracted by vector sum

of constraints’ reactions R vfl.
Vector (2.9) is called the resultant of the constraints’ reactions of the i'-th 

point.
The vector-function of the constraints’ reactions can be completely or partially 

determined for some classes of constraints. The most important task is to determine 
the nature of given constraints.

For example, constraint (E2.2) is a unilateral geometrical finite invariable and 
fixed. However, relation (E2.2) does not give information which is essential for 
motion, namely, whether constraint (E2.2) is real or ideally smooth. One force will 
act upon body M\ if the plate surface is rough; another force will affect it if the 
plate surface is polished and dry; another if it has the same polish, but it is covered 
with a thin layer of fluid; another if the air above the plate is rarefied or if it is a 
gas in its liquid state.

The real constraints, in addition to relation (2.1), have a multitude of proper
ties which the constraints’ reactions will depend on. For the sake of an easy, but, 
at the same time, more comprehensive solution of the given problem, constraint 
reaction R u is always possible to be resolved into two components, namely, one of 
them R f  belonging to the tangent plane at the contacting vth point of the body, 
while the other R ff is perpendicular to that tangent plane.:

k
(2.9)

( 2.10)



Forces R TV appear as a result of the constraint’s friction or the medium resis
tance which always exists. Its magnitude is experimentally determined; it is gen
eralized by the friction law and the law of medium resistance. If given force FT is 
negligibly small, RT «  0, and thus, with no effect upon motion, or if R T ^  0 is tak
en into account, independently of the constraint, then the geometrical constraints 
are considered as ideally smooth and substituted by reaction R whose direction, 
with respect to the pathway, is determined by constraint gradient

R vn = V  erad  ̂U  (2 .10a)
where is a certain constraints’ multiplier.

Laws of Friction
1 . At the contacting point between the body and the constraint friction force 

R f sets up and affects geometrical constraints at the contacting point; if the bodies 
touch each other with their surfaces, the friction force ’ point of action is considered 
to be the geometrical center of the contacting surfaces.

2. The boundary value of dry friction force R^ax at rest is proportional to the 
magnitude of force N, perpendicular to the constraint, that is,

RTmax= p R N, RN = -N ,  (2.11)

where p is a tabular coefficient of the sliding friction and rest, depending on the 
body structure (material point), way of treatment (smoothness) and other states 
(humidity, temperature, etc.) of the rubbing surfaces, but not on the size of these 
surfaces.

3. The friction force of the real constraints appears in the general case as a 
function of velocities and positions

RTM = RT(y ,y= 0 ) + RTK(y ,y ) ^ o .  (2.12)

Laws of Medium Resistance and Thrust
The bodies have a boundary contact with the surrounding real medium which 

can also be considered as a constraint. The fluid medium affects the body by 
resistance force which, in a way similar to the friction force, appears as a function 
of the contact velocity or of connecting fluid particles and bodies, as well as a force 
of pressure or thrust.

1. Each element up to the surface da of the body is affected by force pnda 
where pn is the surface force density directed with respect to the normal of surface 
elements da.

2. The principal forces’ vector

(2.13)



can be expressed as a vector sum of resistance force F T, directed opposite to velocity 
v, and thrust force F N, perpendicular to v. [22, pp. 133, 454, 455].

Law of Elasticity of Materials
The body whose constraints between particles have the property of regain

ing their original shapes after any kind of deformation is called elastic, while the 
restitution force is regarded as the force of elasticity.

At small strains F  of an elastic body, elasticity force F  is proportional to strain 
s, that is.

F  = -k e ,  (2.14)

factor.

Law of Reaction Thrust

that departs from the body of mass m (t) in time t and at 
the body affects this body by a reaction force

$  = m u  (2-15)

Law of Gravity

Thousands of years devoted to observing and studying positions and motion of 
the celestial bodies, as well as of satellites in their interactions, offer the following 
findings:

- many bodies in the outer space apparently preserve for good their positions or 
repetitive apparent motion with respect to each other,

- their mutual distances are either constant or change periodically,
- there are particular centers around which the bodies move along helical path

ways leading towards the gravitational center.
Briefly, The bodies are mutually connected by the forces that induce particu

lar motions with respect to each other, namely, the motions that depend on their 
masses, distances and kinematic characteristics of motion.

This general assertion that can be considered as the general law of gravity 
does not provide sufficient information either about the constraint or about the 
force of mutual connections. It only says that there are mutual forces and motions 
of the bodies. The theoretical assumptions of classical mechanics about the celestial 
bodies’ motion, of natural and artificial objects within the solar system have been 
confirmed so far or modified with sufficient reliability in practice. The solar system 
here implies all the bodes existing either permanently or for a limited amount of 
time in the space in which, under any kinetic circumstances, the dominant influence 
upon their motion is that of the Sun, either indirectly or through local gravitational 
fields of the planets. Of interest in this study are Kepler’s laws and Newton’s force 
of gravity.

where k is the restitution

Mass flow m = ——, at
velocity u  with respect to



Kepler’s Laws
I. The planets describe elliptical pathways around the Sun; it is at the common 
focus of all these ellipses that the Sun is located [14, p. 29].
II. The radius-vector, drawn from the Sun to the planet, covers equal surfaces in 
equal time intervals.
III. The time squares of some planets’ revolution around the Sun are proportional 
to the third degrees of the great semiaxes of their pathways.

Note. It can be noticed that all the three laws do not speak about force 
directly; neither do they determine the mutual attraction forces. For this reason, 
none of them forms the laws of dynamics on its own. However, on the basis of all the 
three laws Newton was able to determine the magnitude of the mutual attraction 
force (2.18).

Newton’s Gravitational Force
One material point of mass attracts another material point of mass m u 

(fi v) by force F w h ic h  is proportional to the product of masses and mM, 
while it is inversely proportional to squared distance of these points, namely,

■ ISfJ, 2 Č-vn,

where k = const > 0 , while

(2.16)

More material points mM affect the nth material point of mass m u by the 
resultant attraction force:

Fu = £  Fv» = ~ £  (2.17)
/i=i /x= i

The constant k is called as the universal gravitational constant. Regarding 
the importance of the law that Isaac Newton (1643-1727) deduced on the basis of 
Kepler’s laws and published in his ingenious work Philosophia naturalis principa 
mathematica (Londoni, Anno MDCLXXXVII) and in order to pay homage to my 
Professor M. Milanković who made available the grandiose Newton’s work to a 
wide reading audience by his book The Celestial Mechanics (Nebeska mehanika, 
Belgrade, 1935), I would like to quote some of his commentaries on the universal 
gravitational law. “Every particle of the matter in the outer space attracts every 
other particle by the force which falls in these particles’ straight line while having 
an intensity which is proportional to the products of masses mi and m 2 of these 
particles; it is, though, inversely proportional to their squared distance r. The 
magnitude of this force is represented, therefore, by the expression:

F = m im 2 
J r2 (2.18)



In the above expression, proportionality factor /  is one universal constant. The 
sign “minus” is eliminated from the above expression, since the word “attracts” 
explicitly determines this force’s direction”.

“It is Newton’s law that finally revealed a thousand years old mystery of the 
planetary motion; it is from it that new findings came into being. All inequalities 
of the planetary motion and the Moon became obvious as a natural consequence of 
this law, as weli as a clear expression of the mutual attraction among these celestial 
bodies. Not only that the nature of these inequalities became explained by it; now 
they could be computed and traced back into the past or followed into the future. 
It turned out that, soon after Newton’s law had been postulated, that it was also 
valid for the comets, for all the celestial bodies with no exception, namely, even 
beyond the solar system. The precession of the equinox that was, so far as we are 
informed, first stated by Chiparcos, found its full explanation by means of Newton s 
law as did the Earth’s axes nutation that was observed later on. Even the shape of 
our Earth, especially its flatness due to its rotation, was given its mechanical and 
geometrical explanation in all details. The same stands for the antique question 
concerning the rise of the sea tide which turned out to be an immediate consequence 
of the attraction between the Sun and the Moon. Thus, Newton s law, the most 
magnificent of all that a mortal man could formulate, turned out to be the general 
law of nature that all the space is subdued to. It is from this law that another new 
science came into being, namely, the celestial mechanics.

On the basis of law (2.16) it follows that force F. by which the Earth of mass 
mzm attracts some body of mass m is determined by the formula.

F  =
mm z

k\ R  + h Y e ~
- mg0e =  -m g 0 (2.19)

where R = 6,37 x 108 cm average Earth’s radius, h distance of the observed body 
from the Earth’s surface, and go denotes acceleration

90 ~  k (R + h) 2 ‘
(2.20)

On Laws of Dynamics
The introductory commentary on the laws of dynamics now becomes much 

clearer and more concrete. Our starting point that the concept of the “law of 
dynamics” implies formulations - determinants of forces with accuracy up to some 
constants - comprises the laws of constraints, friction, medium resistance, elasticity 
of materials, reactive force, gravitational law as well as the law about the Earth s 
gravitational force (2.19). Each of these basic laws is used, directly or indirectly, for 
determining particular forces. Some formulae of these forces can be of greater or 
smaller generality, but they all comprise either one or a set of constants that allow 
for or require a more accurate determination for particular objects. The accuracy of 
these constants, including the forces’ formulae, will depend not only on ignorance



of the objects’ nature, but often on the lack of mathematical knowledge which 
would otherwise provide calculations with very complex relations. For instance [2], 
in formula (2.19) the average Earth’s radius R = 6.37 x 108 cm is taken, while the 
equatorial one is 6.38 x 10 cm, [2, p. 17], “h is distance of the body from the Earth’s 
surface”, while the concept of distance “from the Earth’s surface” is not precise. 
It can mean one thing when it refers to the Earth’s mathematical surface; another 
thing is when it implies the sea surface at some geographical latitude; another thing 
is at the bottom or beyond the mountain chains. Finally, even the gravitational 
constant is subjected to scientific verification for particular gravitational areas. It is 
logical to expect that the recent development of astronautics and of its applications 
will contribute to more accurate knowledge about the gravitational force, while the 
development of other branches of mechanics will depend on making other laws of 
dynamics more concrete, modified or generalized. This study supports the view 
that the laws of dynamics are used for determining formulae of particular forces, 
except for inertia forces introduced by the definition. As could be seen, the laws are 
more or less general for particular mechanical systems. The considered number of 
laws is incomplete since, for particular and more concrete body systems, the forces 
are classified more concretely, including the laws by which they are determined. It 
is still valid that the laws of dynamics satisfy the preprinciples of mechanics.

On the basis of the fact that the laws of dynamics are determined by observing 
and measuring in nature and in experimental human practice, it is accepted that 
the principle of existence is satisfied.

Once the forces’ existence is stated, the preprinciple of invariance is an indis
pensable condition that the mappings of forces’ functions, during the transition 
from one coordinate system into another, should not change the laws of dynamics.

The history of the discovery, along with the measuring and observing practice, 
of the Newton’s theorem on “the world system” itself, as well as the “problem” 
solving about motion of two bodies (see (3A.70)), suggests that other laws of mutual 
attraction, different from (2.18), should be set up regarding the preprinciple of 
casual definiteness.

On Mutual Attraction Force
Two maternal forces of masses m \ and m 2 attract each other at mutual distance 

p(t) by the force of magnitude [69], [70]:

F =
p2 + p p -  v2or m 1m2

x -
m\ni2

mi + m2 p p

where the meaning of velocity vor is explained by the formula:

v2or = (±1 -  x2)2 + (yi -  V2)2 + (ii -  Ž2)2-

(2 .21)

If it is assumed that distance p = r does not change in time and if it is assumed 
that the distance between mass M  center of the Sun and the planet center of mass



m, the expression (2 .2 1 ) is reduced to:

F  = — V2or Mm
M  +  to r

By introducing another conjunction that it is

Uor(^) — V0r(t o)

where ft is angular velocity of the planet’s revolution around the Sun, the modified 
([14] or [15]) Newton’s force (2.18) [14] is obtained:

r 2f l2r  M m  M m
F  =  -------------- 5-  =  - x  — o - -M  +  m r 2 r 2

The principle of casual definiteness speaks about accuracy up to some con
stant. The table on page 73 clearly shows the meaning of the concept “up to some 
constant” used here along with “to the accuracy of dynamic parameters. The 
making of accuracy more relative before generalization also refers to other laws of 
dynamics.



III. PRINCIPLES OF MECHANICS
The concept of the principle of mechanics implies here an expression of general 

significance, based on the introduced concepts and definitions of mechanics whose 
truthfulness is not liable to verification.

The principles of mechanics must be concordant with the preprinciples, small- 
skip On the basis of the definitions introduced so far the principle of equilibrium 
can be set up now.

By additional defining of “work”, “action” and “compulsion”, other principles 
can be introduced, namely, the principle of work, the principle of action and the 
principle of compulsion. The principles of mechanics are not themselves sufficient to 
provide for problem-solving in mechanics without laws of dynamics. The statement 
of general significance in mechanics, such as the principle of mechanics, represents 
the basis for developing a whole theory of mechanics, but its application would 
require knowledge of the laws of dynamics.

3A. PRINCIPLE OF EQ UILIBRIUM

A body is in dynamic equilibrium so that the sums of all the forces acting upon 
particular dynamic points of the body are equal to zero.

This principle can be written in the form of vector equations:

5 ^  =  0 {v = 1 ,2 ,..., N) (3A.1)

where index v denotes the i/-th dynamic point, while index p denotes the forces 
exerted upon the i'-th dynamic point.

Material Point. If only one material point is observed, then, instead of a 
system of many equations (3A.1) there is only a vector one, namely:

]T  = 0. (3A.2)

In accordance to the definition of the inertia force and the laws of dynamics, 
equations (3A.1) can be written in the form:

lu + Fvi = 0, (3A.3)



where I  is inertia force determined by definition (1.37), while F ln are the forces 
determined by the laws of dynamics (2.2, 2.3, 2.8, 2.9, 2.10, etc.)

Equations (3A.3) allow some forces to be unknown in advance; consequently, 
they have to be determined by means of definitions (3A.3) depending on the number 
of forces known on the basis of the laws of dynamics and definition (1.37). This 
implies that the constraints equations should be added to the equations of the law 
(3A.1). By substituting inertia force (1.37), force (2.6) and constraint force (2.7) 
in equation (3A.3), the vector equation of the material point motion is obtained:

m ^  =  F  + R .  (3A.4)
at

The following conclusion can be derived from this:

C o n c lu s io n  1. The material point moves at constant velocity v  if the sum of 
acting forces F  and constraint forces is equal to zero, that is.

+ = 0 —  ®(i) = «(*o)- (3A.5)

With respect to the natural coordinate trihedron (r/i, r;2, r/3) of equation (3A.3) 
it is easy to write, if forces F, are resolved along the tangent, the principal normal 
and the binormal, namely,

F ll = F  = F t t  + Fnn  + Fbb. (3A.6)

= R  = Rtt  + Rnn  + Rbb. (3A.7)

By substituting these relations as well as the coordinates of inertia force (1-41) 
and (1.42) in equation (3A.1), the scalar equations of the material point’s motion 
are obtained in the natural system of coordinates:

Ft + Rt -  rn<~7~ = 0 (3A.8)at
Fn + Rn + In = 0 (3A.9)

Fb + Rb = 0. (3A.10)

From motion equations (3A.8) and (3A.9) the following conclusion can be 
drawn:

C o n c lu s io n  2. The material point moves with respect to magnitude at con
stant velocity if forces FT and RT and mutually annul themselves, while the sum 
of the respective components of these forces and the inertia force on the principal 
pathway normal is equal to zero.



With respect, to other coordinate systems (y, e) and (x .g ), equilibrium system 
(3A.1) is invariant and covariant. If forces F  and R  are resolved along coordinate 
vectors e or g, that is,

F  = Y iei = X JgJ, R =  Riei = Rjgj (3A.11)

and are substituted, together with relation (1.38) in equation (3A.1), the invariance 
is obvious:

(4  + Y* + Wy) = (Px + X j + R i) 9j = 0. (3A.12)

Scalar multiplication by coordinate vectors, according to relations (1.14), gives 
covariant differential equations of the point motion with respect to base system 
{y,e):

mjji = Y i+  Ri, (3 A. 13)

or with respect to any other coordinate system (x.g) that satisfies condition (1.15):

Dvimgij dt X j + Rj, (3A.14)

where
X - Y  9yl R j  =  R i

dyl
dxi

are projections of forces F  and R  upon coordinate directions gj.
Equilibrium principle (3A.1) or (3A.3) or (3A.12) can be written with respect 

to any coordinate system of coordinates (x, g) in the covariant form:

(jij (P  + A-* + Ri') — A h  X$ + Ri — 0 , (3A.15)

where A = gl3 P , X, = g ijX i, Ri = gijRi are coordinates of the forces’ covectors.
If a set of coordinates X 1 of vector F  — X ]g3 is called a vector, then a set of 

projections Xi= F ■ gi = (X 3g-j) gt is called the covariant vector coordinates. That 
is why equations (3A.15) can also be called covariant equations of the equilibrium 
principle with respect to some system of coordinates (x.g).

System of Material Points and Finite Constraints
It is dynamic equilibrium principle (3A.1) that refers to a multitude of material 

and dynamic points. All the relations from (3A.2) to (3A.13), derived only for one 
material point of mass m, stand for every u-th material point of mass m v. Such 
a system of N  material points will have N  vector equations of the form (3A.1) 
or (3A.2)-(3A.4) and k constraints equations (2.6). Nothing more important than 
this changes. However, the manner of solving problems concerned with the system 
motion comprises some difficulties and innovations originabing from the limitations 
of the applied mathematical apparatus as well as from mutual constraint of the 
material points that generate forces of a complex mathematical structure.



The simplest and thus, the most widely used, way of describing is the one with 
respect to base coordinate system (y, e).

It is assumed that there are N  material points of mass m v {v =  1 
whose position vectors r„ — yl„ei (i = 1,2,3) and that they are connected by k 
finite constraints

U v l  v l  yl) = M v \ -  ■ ■, ym ) = o, (3A.ie)
where the following notations are introduced

yl =■ y3u 2, vl =■ yZv \  vl= - viv (3A.17)

m3[/_ 2 =  m3j/_ i = m 3v. (3A.18)

The constraints (3A. 16) must satisfy the velocities conditions

dy

as well as the acceleration conditions

^ y “ = 0 , (a = 1 ,... ,k ,k  + 1 ,.. . .  3N),

fu = dyPdy0 dy°

(3A.19)

(3A.20)

matrix

These constraints are considered independent so
d U '
dy°

of the level k, is different from zero:

that the determinant of the

dfn
dya

/ 0 . (3A.21)

It follows from equations (3A. 19) that the velocities vectors are perpendicular 
to the constraints gradients. This fact points to a possibility that the constraints 
forces (2.7) can be viewed as a sum of friction forces (2.9) and normal component 

k
R *  = E -V gradv f ti, where R T would be determined by the friction law unlike

M= 1
R n determined by acceleration condition (3A.2 0).Thus all the constraints’ forces 
iž„, regarding the constraint and friction laws, can be written by means of the 
expression

k
R„ = R l  + ^ r  gradj, /,, (3A.22)

n=i
where AM are indefinite multipliers.

For the sake of brevity, friction forces AM are taken as active forces R l , while 
the constraints are regarded as ideally smooth; likewise, the constraint force always 
has the gradient direction and magnitude:

Run = I Kgradvfv (3A.23)



In view of all that has been said, it follows from the equilibrium principle that 
a system of recognizable differential equations is:

Iu + ^ 2  Fvs +  R-v =  0 (3A.24)
S

or, due to idealization of the constraints and the inertia force definition,

m , = + am grad„ j\L,
n= 1

U {r1}. . . , r N) = 0 ;

(3A.25)

in the scalar form, equations (3A.25) can be written, with respect to (3A.17) and 
(3A.18), in a brief form:

my
k

Y  + J 2 K
A*= 1

dy ’ (3A.26)

U(y) = 0 ,
and there are 31V +  k of them which is sufficient for an explicit determination of 31V 
coordinates y if Y  functions are known or 31V coordinates of the force Y  if motion 
y(t) is known as well as k of the multiplier

By substituting y from relation (1.32) in (3A.26) and subsequent multiplication
dyof equation (3A.26), by matrix — , it is obtained, in accordance with relations 

(1.31)
DyS _  y  , st'  x dffj,

a-rs , ~~ A r +  2_ , -V ,
F= 1ctt

U (x) = 0 ,

> (r, s = 1, . . . ,  3N) (3A.27)

where tensor ars(mw,x) contains only one mass m v of particular material point 
and its coordinates x ],, , xj). These differential equations are suitable due to the
possibility of reducing a great number of constraints in various coordinate systems 
x 1 to a simple form — const = 0 , so that the constraint forces are reduced to
Rv = In any other case, equations (3A.27) are more complex and complicated. 
Another form of the same equations is denoted by number (3A.15).

Systems with Variable Constraints
In the case that finite constraints (3A. 16) depend not only upon y — (y1, . . . ,  y3N) 

coordinates, but also explicitly on time as well, velocity conditions (3A. 19) and 
those of acceleration (3A.20) considerably change, since the number of addends is 
increasing under these conditions as is obvious in the following velocity conditions:

f , dh i
dyai) dt = grad„ ■ vv + ^ 0 . (3A.28)



It becomes clear that in the case of variable constraints in time, that is, of the 
constraints of the form = 0 , velocities vectors v are not orthogonal to the
constraints gradient; thus, the velocities do not lie in the constraints’ tangent planes; 
the pathway tangent does always not coincide with the constraints’ tangents. For 
the sake of a clearer analysis of velocities conditions (3A.28), it should be noted 
that the mechanical constraints are not written in the form f(y , t) = 0 since such 
a writing would comprise, for instance, the equation

/  = t2 + 2t + 3 = 0,

which loses the meaning of the mechanical constraints; it is in accordance nei
ther with relation (2.2) nor with the constraints’ law. The variable constraints in 
time must satisfy the dimension equation, that is, they have to be dimensionally 
homogeneous. In order to achieve this homogeneity between y coordinates of L di
mension and time t of dimension T, it is necessary to connect these values by some 
parameter x  of the dimensions L and T. Therefore, time in mechanical constraints 
appears in the structure of the functions containing dimension parameters, so that 
variable or moveable constraints, in accordance with definition (2 .6 ) are written in 
the form:

= ° (m = l,...,/c ) , (3A.29)
where r  is some real time function with definite real coefficients having physical 
dimensions [49], [51]. For the sake of brevity, instead of function r  with definite 
coefficients, let’s introduce an additional coordinate y°, so that it satisfies the con
dition

fo = y°{x, t) -  r(t) = 0. (3A.30)
Exam ple 3. Let the motion of two material points be limited by means of 

three constraints, namely,

h  =  (y i -  j/4)2 +  (2/2 -  y e ?  +  (2/3 -  ye)2 -  4 t2 =  0

/■2 = 2/3 -  0.5i = 0, (E3.1)
h  = ye -  0.5i + 0.3 = 0.

Regarding the fact that the coordinates have a dimension of length, the coeffi
cients 4 and 0.3 will also have a dimension of length L, while the coefficient 0.5 will 
have a dimension of velocity LT-1 . By an appropriate choice of parameters of one 
or the other dimension /x, dim/x = LT-1 , an auxiliary coordinate is introduced:

y°(y, t) = 0.5t, dimx/° = L.

Substituting time from this newly-introduced relation, t = 2y0, in the given 
constraints, it can be written that

f i  =  {yi ~  Vi)2 +  (2/2 -  2/5)2 +  (2/3 -  ye)2 —  I62/0 =  6,
/ 2  =  2/3 -  Vo =  0 ,

fe = Ve -  2/0 + 0.3 = 0.
(E3.2)



With y° coordinate, constraints equations (3A.29) can be written in the form

U(y) o, y
y

( y ° , y ) (3A.31)

while the velocity and acceleration conditions in the form (3A.19) and (3A.2), that
is,

dU  - d /M • , df„ ,0 
= » y  + w oV  = °>oy oy oyu

(3A.32)

d2f ^ . d u - ,
U  = T^jpyy + -K^yoyoy oy

(3A.33)

d2f t yy + 2
d2f • *0

y y  +  7Ž l^ y 0 y 0  + ^ + d_U 0 =
dy°dy°y ^ dy y d y °ydydyas) ' " dy°dy 

The last acceleration relation can be written in a shorter form

W y + W s = * M
(3A.34)

where the composition of function 4> is obvious.
If y from equation (3A.26) is included in equation (3A.34), it is obtained that:

djj,
dy <7=1Y  ^  m (® -  a?#dU ,0 dU

dy Y.

The solution with respect to unknown multipliers \ a shows that the reaction 
forces of variable constraints do not only depend upon y coordinates and y veloc
ities, but also on y°, as well as on inertia force —my° which emerges due to the 
constraints’ change in time.

The constraints in equations (3A.31), and, especially in (3A.12), (3A.25), 
(3A.26) or (3A.27) can be written in the form:

r v = r u (g0,^1, .. .,q n) , n = 3 N - k  (3A.35)

where q = (q1, . . .  ,qn) are independent generalized coordinates, while q° is a rheo- 
nomic coordinate satisfying equation (3A.30), that is,

q° -  T(f) = 0. (3A.36)

By reducing the finite constraints to the geometrical form (3A.35) the number 
of differential equations for the constraints’ number is also reduced; at the same 
time, constraints’ forces R  are eliminated which makes it considerably easier to 
solve the problem.



The velocities of p-th material points, according to definition (1.1), can be 
written in the following form:

dru ,0 'drv .j
+ W ‘3 +

, 9r„_n dr„ „+ -r— a = —— a 8qn dqa (3A.37)

dvi/where ——h(o) are coordinate vectors that will be marked by two-indices notation 
dqaV ’

gva\ index p denotes the number of the material point, while index a denotes the 
number of independent coordinate qa (a = 0 , 1, . . . ,  n).

For addition wdth respect to index p , we use addition sign w-hile for addition

with respect to the indices, coordinate a denotes iteration of the same letter in the 
same expression, as well as both the lower and the upper indices. Vector (3A.37), 
as can be seen, has n + 1 independent elementary vectors. Accordingly, impulse 
vector (1.26) of the p-th material point of mass m v of the observed system can also 
be represented by the formula

Pi
drv .a

= m-v- = m (3A.38)

drv
Scalar multiplication by coordinate vectors ——5- gives vector pv projectionoqP

upon the tangential direction of q@ coordinate of the p-th material point. We will 
denote it by a two-indices letter:

drv 8rv ,Q 
Pup-niudgp ■ dqa<l ■

This is in accordance with the formula for impulse’s coordinates (1.25) of one 
material point. Regarding the fact that pvp impulses are scalars, it is possible to 
sum them up:

N  N  n a
V  ̂ ° r v  r l ' -a -a

pp ■= (3A.39)
j/=l v=i

from which it can be seen that aap is an inertia tensor of the whole system:

drv dru
aaP~ t z [ m " d ^  ' W ~

= aap (m1, . . . ,m N-,qQ,q1, •••,<?") •

(3A.40)

If the masses are constant quantities, this tensor is written as a function of 
independent coordinates:

aap — O-8a --,qn) ■ (3A.41)



By means of important relations (3A.39) the concept of generalized impulses 
of the material points’ system is introduced. Therefore, the sum of the material 
points’ impulse vector projections upon the coordinate direction of the (3-th gen
eralized coordinate is considered as the generalized impulse pp. The generalized 
impulses appear as linear homogeneous forms of the generalized velocities, which is 
in accordance with the basic definition of impulse (1.24). Regarding the fact that 
the inertia tensor aap determinant is different from zero, it is possible to determine 
the generalized velocities qa as linear homogeneous combinations of the generalized 
impulses, namely:

qa = aa0pp, (3A.42)

where aais is countervariant inertia tensor.
If the constraints do not explicitly depend upon the known functions of time 

r, there is no rheonomic coordinate q°, so that in all the expressions, from (3A.35) 
to (3A.34), coordinates q°,q° and po vanish. The impulse form (3A.39) does not 
change, expect for the fact that indices a = 0 , l , . . . , n  do not assume values from 
0 to n, but from 1 to n. In order to facilitate this distinction further on, let Greek 
indices a, (3,7 , 5 assume values from 0 to n,(a, /?, 7 , 5 = 0 ,1 ,. .. ,  n), while the Latin 
ones take i,j, k, l from 1 to n (i,j, k ,l = 1 ,2 ,..., n). Then it can be written [44]:

^=S^o+f^  <3A-43)
Pi = a0iq0 + a^q3 (3A.44)
Po = aoo<?° + a0jq3 (3A.45)
<f = al0po + al3pj (3A.46)
q° = a00po + a°3p j . (3A.47)

Covariant Differential Equations of the System’s Motion
If equations (3A.1) are successively multiplied scalarly by coordinate vectors

dvi/
respective to index v and if they are added with respect to index v , the system 

of n +  1 covariant equations of the equilibrium principle is obtained, namely,

v
or, relative to equations (3A.3),

dru 
dq“ = Qa =  0

la  + Qa — 0
where now

la
N

= E 7*'-
dry
dqa

(3A.48)

(3A.49)

(3A.50)



are generalized inertia forces, while

(3A.51)

are generalized forces.
Differential equations (3A.49) represent a system of n +  1 differential covari

ant equations of motion which will be written in an extended form. In order to 
understand better their mechanical meaning, vector equations (3A.25) should be

QVv
the ones to start from. Scalar multiplication of equation (3A.25) by vectors 
followed by addition with respect to indices v , gives

dqa ’

N , o  N

E
dVis OVv v ^

I/=l
^ + E E V g r a d ^ . ^ .

U=1 dq ' V = \  (1=1

The ordinary notations are introduced:

N

V= 1
N k
E E  Ap grad„ /p 
11=1 (1=1

d r u
dqi

= 0 ,

(3A.52)

(3A.53)

d r v _  d fn  
dqi dq1since it is grad„ /p • = ~frr f°r * = 1, • • •, n;

N kY.Y. Ap grad„ f,
i s = l  (1=1

dU  _■ o .
<9g°

(3A.54)

N

E
i/=i dt

d r v
dqa

dr„
dqa

E (  d 2r v ,  d r v ,
m" { d ^ f “' q ' + d ? q

d r u
8qa '

If vector d2 tv 
dq^dqP

dT*i/
is resolved along coordinate vectors -w~f, namely,

dq°

d 2r l/ _  s dry 
dq^dqd  7 / 3  dq5



it further follows that it is

V̂v ..{} -p,5 .7  ./3
^ m v^ T d ^ = aapq + a^ r 7/397r  =V~1 ^

= aap (qp + T ^ g V )  = aapl^jj-.

(3A.55)

By substituting relations (3A.52), (3A.54) and (3A.55), regarding (3A.53), in 
equation (3A.4) the system of n +  1 covariant differential equations of motion is 
obtained [38], [49], [51]:

(a = 0 ,1 ,. .. ,  n) (3A.56)

(i = 1 , . . .  ,n) (3A.56a)

aop =  QS + Rq ='■ Qo (3A.566)

In accordance with the definition of the material point impulse it follows that 
generalized system impulses pp = aapqa are linear combinations of generalized 
velocities where the inertia tensor of a more general and complex structure:

aap = apa (m i,. . .,  mN. q°, q1, . . . , q n) .

The respective system of the covariant differential equations of motion (3A.56) 
can be written in the form:

D r  ^&al3 ^

or

M{3
Dqp
dt Qi

Ia + Qa = o, (a = 0 ,1 ----, n)

The number of degrees of freedom can be made identical to the number of n + 1 
equations (3A.56).

In this way, by means of the dynamic equilibrium principles, the laws of dy
namics and the basic definitions, the theory about motion of material points or 
bodies, as well as deformable medium, has been completely comprised, regarding 
the fact that the material point can represent both the body as an entity and its 
particular parts.

E x a m p le  4. A material point of mass m  = const is moving under the impact 
of the constraints:

f i = x  — lo — *cr(t) = 0 , t = cos Qf, 
/2  =  V = 0 , 
h  = z = 0 ,



where x, lo and 0  are concrete real numbers.
Determine the forces acting upon the body.
In this case, the system of differential equations (3A.26) is:

mx = Aj 
my =  A2 
mz = A 3 .

From condition (3A.33) it follows A2 =  A3 =  0, while it follows from equation 
/1  = it — >ct = 0

_ x f  = — + xfl2 cos tot = 0 , 
m m

so, it is obtained that the acting force is

X  = Ai =  -m x fl2 cos Df = -mCl2(x -  l0)-

Therefore, the force inducing the given motion is proportional to elongation 
(x _ z0) where proportionality factor D2 has the frequency dimension of T .

E x a m p le  5 . T h r e e  n o n - fr e e  p o in t s .  Let the points Va , 0), B ( x b , V b ,0)
and C(xc , yc ,  0) are connected in plane z = 0 by constraints (as m Fig. 2 ):

f i  = -J (xc  -  x a ) 2 + {yc -  Va )2 - h = 0 ,  

f 2 = V (x b -  Xc)2 + (Vb -  Vc) 2 ~ h  = 0, 

h  = V (XB -  xa )2 + (VB -  Va )2 -21 = 0, 
f i  = XA = 0, 
fs = yA = 0 , 
k  = yB = 0 ,

where l = l0r(t), while l0 = const and r(t) is a known time function of initial 
value r( t0 = 0) = 1; force FB = (0 ,-G B,0) is acting at point B, while force 
pc = (0 , -G ,0) is acting upon point C; G = const (as in Fig. 2). Constraints 
reactions / 4 =  0, f 5 = 0 and / 6 = 0 should be determined [67], [68], [71].



There are nine equations (3A.24), that is, (3A.26) for three dynamic points. 
However, a set of the forces, projections upon z axis is empty, so that equations 
(3A.26) can be written in the form:

xc  - x A . x B -  xA A•Ai---- --------- A3 -----—------b M — U,
1̂

\ y c  -  v a  x-Ai---- :--------A3

21
VB -  VA 

21 + A5 — 0 ,

4 (C ) +  A1^ ^ - A 2^ Z £ £  = 0 ;

I y ( C )  +  Ai V c  J  V A  -  A2 V b  ~  V c  -  G  =  0, 

U B )  + X2Xb ~ Xc + X3Xb - Xa = 0,

a2^ ^  + a3^ ^  + a6 - g b =  o.

(E5.1)

(E5.2)

(E5.3)

(E5.4)

(E5.5)

(E5.6)

It follows from (E5.3) and (E5.4) that it is:

Xl = (G -  I>iC) -  IAC)Vf ) '

A2 = 4 ^ ( g - 7 , <c , + / i (o ? £ ) ,

and then, it is obtained from (E5.5):

As "  2^  l  *<C) "  G ------------2---------

If quantities Ai, A2 and A3 are introduced in equations (E-5.1), (E5.2) and 
(E5.3), the required constraints’ reactions are obtained /1  = 0, = 0 and = 0,
namely:

A4

A5

-h { C )  -  IX(B) = RAx 
G Iy(C) yc
2 2 21

Iy(C)

U C ) = RAy,

A6 — — + G b + Ix{C ) ^ = R By.
2



Since the inertia forces:

IX(C) =  -m ice = -m l, Iy(C) = -m jjc,
IX{B) — - m Bx s  — - 2  m Bl,

the found constraints’ reactions obtain a concrete form:

A4 = Rax =  (m + 2 m B)l,

A s =  H a ,  = §  +  J  ( s c  +  y ' )  . ( E 5 . 7 )

A8 = flB» = |  + GB + =  (« o - ^ 0  -

Regarding the fact that line segments AB, AC, CB are given as known time 
functions, so ordinate yc = Vc(h h) can be determined as depending on r(t) like ijc 
derivative. For degenerative system C € AB, yc = 0, it follows from the previous 
solutions: ^  ^

Rax = (m + 2 m B)y, R av = R bv = “7  + Gb - (E5.7a)

G
that l = const and GB = 0 it follows that Rax =  0 , R av = R By — 17 •

Such a problem is solved in mechanics in a considerably simpler and shorter 
way by means of the “moment of force” and the “moment of the couples of forces . 
This statement will be explained in the following example.

E x a m p le  6 . C o u p le d  P o in ts .  Two material points of masses mi =  const 
and m2 = const are connected by a rigid constraint

f i  =  (x 2 ~  x i f  +  (2/2 -  V i f  +  (*2 -  z i )2 - l 2 =  0 ,

l = const. The first point is acted upon by force F\ = F , while the other is acted 
upon by a parallel, but inversely directed force F2; the magnitudes of these forces 
are equal, F\ = F = F2. By eliminating the constraint multiplier the dynamic 
equilibrium conditions of the material points should be determined.



Differential equations (3A. 26) are:

m \x  i = X i — 2 Xi (x2 — x\) 
miij !  = Yi -  2 A i (y2 -  t / i )  

m i Z \  =  Z \  — 2A i ( z 2 — Z i )

m2x 2 = X 2 + 2X1(x2 -  X\) 
m 2y2 = Y 2 + 2Ai (y2 -  yi) 
m 2z2 =  Z2 + 2Ai (z 2 — z i ).

Elimination of the constraint multiplier is possible in two ways:
1. By summing up the respective projections which gives:

rriiXi + m2x 2 = X \ +  X 2, 
mijji + m 2y2 = Y[ + Y2, 
m 1z1 + m2z2 = Zi + Z2.

2. By identifying the obtained values

m.iXi — X i rnijji — Yi m\Z\ — Z\
2(xi -  x2) 2 (j/ i -  y 2) 2( z i  -  z 2 )

m2x2 -  X 2 __ m 2y2 ~ Y 2 ^  m2z2 — Z2 
2 ( x 2 — x i )  2 ( y 2 - y i )  2 ( z 2 -  z i )

or



it is obtained that

dJll = (m\X\ -  X i) (2/2 -  Vi) ~ {m iVi “  U ) (x 2 -  x i) =  o, 
m l  = { m m  -  Y i )  {z2 ~  Z1 )  -  {m\Z\  -  Z x) ( 2/2 -  Vi) =  0 ,

9Jt* = (miži -  Zi) (x2 -  x\) ~ {mi'xi -  X x) {z2 -  z{) = 0,

m ; = (m2x2 -  X 2) (y2 ~ yi) -  {m2y2 -  Y2) (x2 -  xi) =  0 ,
OTJ; = {m2y2 -  Y2) (z2 -  z{) -  (m2ž2 -  Z2) {y2 -  yi) = 0, (3A.57)
m 2y =  {m2z2 -  Z2) (x2 -  xi) -  (m2x2 -  A2) (z2 -  21) = 0 ,

where letter Wi is introduced, for the time being, in order to make the notation 
shorter.

Summing up the respective relations with respect to the axes it is obtained 
that:

m l + m 2x = m \x\{y2 -  yi) + m 2x2{y2 -  2/1) —
-  [m m {x2 — xi) + m 2y2(x2 -  Xi)] —
-  [Yt(x2 -  Xi) -  X i(y2 -  yi)} -
-  [X2{y2 -  y-i) -  Y 2 {x 2 -  xi)] =
= m z { h )  +  v n z ( i2) + (fi) + (CO =
=  m z (I i)  +  T t z ( F i )  =  0 ,

i =  1 i = 1

(3A.57a)

where:

2Jlz (Ji) := lxIiy -  lylix, (3A.58)
(Fi) := lxYi -  Z„Xi, (3A.59)

Iiy : =  —m m , Ii x :=-m,iXi, lx =  x2 -  x 1 , ly =  y2 -  yi-

It can be similarly proved that two more relations follow, namely.

(ii) + ^ a J t J/(Fi) =  o>
i = l  »=1

2 2

( J i )+ ^ ® lx (F i)  = 0 .
2=1 2=1

(3A.60)

Moments of the Couples of Forces
For dynamic equilibrium of a system of points connected by various constraints, 

principle (3A.1), and, consequently, (3A.24) and (3A.26), produces other conditions 
as well such as (3A.56), (3A.57) and (3A.58). Quantity 9Ji is qualitatively different



from forces; its dimension is ML2T~2. The values of this dimension are called 
moments of forces in mechanics. The moment of forces, including the inertia forces 
moment, represents an attribute of motion produced by constraints. It can eas
ily be shown that generalized forces (3A.51) corresponding to the dimensionless 
generalized coordinates - angles, also have a dimension of the forces’ moment. A 
system of two points and a line segment that couples two parallel forces of equal 
magnitude, but opposite sense, is called a couple of forces, while vectors

artfc(F) = r dr OF
det dej

dr d F \  
dej d e i) k, * /  J /

are called moments of the couples of forces. Therefore, the moments of forces are 
derived concepts as special products of forces and lengths. The moment of the 
inertia forces’ couple I \ and I 2 , h  = —I2 , as well as of other forces, can be written 
in the form:

9JI = (r2 — r*i) x /  =  p x l  =  p x  (—m a ), (3A.61)

where p = r 2 — r  1
In accordance with relations (3A.24) and (1.37), the moment of the inertia 

forces’ couple can be represented in the following form:

m  (/) = p x dm d= p x v —---- p x (mv)
K dt H dV '

= p x vfh — p x p.
(3A.62)

This could be written in another way: the moment of the inertia forces’ couple 
of the material points is equal to the difference of the moment of couple 9Jt(vrh) of 
reactive forces Viriii and V2m 2 and moment couple Wl(p) of vectors p\ and p 2 .

If the mass is constant, the relation (3A.62) shows that the moment of the 
inertia force’s couple is equal to the couple’s moment of the impulse change in time

9tt(I) = - ( p x p ) ,  (3A.63)

with a negative sign.
Since expression (3A.61) shows that the couple’s moment 9Jl does not depend 

upon the choice of the position vector pole, it follows that 9Jt is a free vector, so that 
it can be summed up with other couples’ moments. Therefore, the forces’ vectors, 
bound at dynamic points, can be “transmitted”, in parallel way, to any other point, 
and thus, they can be added, if the sum of thus parallelly displaced forces is added 
the sum of the couples ’ moments of the respective forces.

E x a m p le  7. A  h o r iz o n ta l  b e a m  o f  v a r ia b le  le n g t h .  The “beam” as 
a homogeneous body of rectilinear form and of constant cross-section should be 
modeled by a degenerative system of points (E5.7).

Regarding the above-mentioned consequential concept of the couple, it is ex
pected that the same example could be solved by the couples’ moments as well.



In this case, it is necessary to state that in z = 0 plane there are dynamic points 
y4(0,0,0), B(21,0,0), C(L0,0) at which forces’ coordinates RAx, R avI R bv, ~Gb , 
IX(B) = - m Bx B, U C )  = - m xc , Iy{C) = - myc , -G  are present instead of
constraints.

The equilibrium equations are:

y  X i  = R ax -  m xc  -  m BxB =  0,
i

'y ] Yi — RAy — G — GB + R by — 0,
i

y  9JI.iA = —Gl -  my cl +  m xcyc  + 2 lRBy -  2IGB = 0.

It follows from this that it is identical to the result of examples (E5.7) and 
(E5.7a).

The couple of forces’ moment is here introduced by means of real constraints. 
This essential fact provides for the fact that the dynamic equilibrium principle is 
applied to the motion of bodies, either rigid or deformable, in a simple way.

The “rigid body” assumes an uncountable multitude of particles that are mu
tually linked by invariable real line segments. Out of a multitude of these particles, 
let’s observe any four of them, mutually linked by means of six lengths of tetra
hedron. The lengths of the tetrahedron sides are denoted by letters Z„M, where 
indices v mark ordinal numbers of particles 1,2,3, and /i = 1 ,.. ..  6 the number of 
independent constraints.

The constraints’ equations are of the form

Sij{yi+1 -  vDivi+i ~ vl) =  ll- (3A.64)

By observing every new point of the body, whose position is explicitly deter
mined by three new numbers, the number of new constraints increases for three. 
Thus the number of independent coordinates for determining the positions of the 
rigid body points does not change. The number of independent coordinates for 
determining motion of the rigid body’s points is reduced to 4 ■ 3 — 6 = 6, which six 
equations of dynamic equilibrium correspond to. These equations will comprise, in 
addition to forces, the forces’ couples’ moments, including the moments of inertia 
forces’ couples.

E x a m p le  8 . M o t io n  o f  T w o  B o d ie s .  The motion of a system of two 
bodies, observed as material points, is known in the celestial mechanics as the 
problem of two bodies”. Kepler’s lawrs as well as Newton s gravitational force, are 
the ones that relate to the motion of two bodies mutually attracting each other, 
this is a simple example of the system of two material points, but its reduction to 
the above-mentioned laws makes it a significant problem [69], [70].

Two bodies, observed as material points M\ and M2 , whose masses are mi 
and 7712, are moving towards each other so that the distance between their inertia 
centers is a time function p(t).



The condition that “the distance between the bodies is a time function p(t)” , 
that is,

/  = V (x i ~ x2)2 + (yi -  y2)2 + (zi -  z2)2 -  p(t) = 0 . (3A.64a)

is similar to relations (E2.5) (E3.2) or (E5); hence the motion in question can be 
considered in a similar way.

Differential equations of motion (3A.26) for these two material points, in the 
presence of “constraint” (3A.64a), can be reduced to the form:

m i x i  = - ( x i  -  x 2),
P

m m  = ~{yi -  2/2);
P

m 2x 2  = ------ ( x i  -  x 2),
P

m2y2 = ----(yi -  2/2 )•
P

(3A.65)

(3A.66)

It is obtained from acceleration condition (3A.33) that the multiplier is

m \m 2 p2 + pp— v2rA = mi + m 2 P
where

Vor = (Ž1 -  x2)2 + {in -  y2)2. 
If the letter \  denotes the expression

X = P2 + PP ~ V2or 
m\ + m 2 (3A.67)

and is substituted in equations (3A.65) and (3A.6 6 ), the following form of the 
differential equations of motion is obtained:

m xm 2m xxi = x ----5— (xi -  x2),
P

m xm2
m m  = x — 2~{yi -  2/2);

P2
m xm 2

m 2x 2 =  - x  5—(xi -  x2),
P2

m x m2
m 2y2 = - X U/i ~  Vi)-

(3A.68)

(3A.69)

The right sides in equations (3A.68) represent the coordinates of vector JF\ 
which acts upon the body of mass m x, so that the magnitude of force Fi is equal 
to:

F i = x
77117722 (3A.70)



Force F2 is of the same size, but of opposite sense (F2 = - f i )  and it acts 
upon the body of mass m2, which indicates a changed sign. This force is identical
to mutual attraction force (2 .2 1).

The problem arises during the differential equations’ integration if the structure 
of function X( t , i i . ia ,  Vuih) is taken into consideration or when it is compared o 
Newton’s gravitational law: m

F = x - ± ž- .
P2

This comparison is worth further consideration.
C o n ju n c t io n  1. For the distance p=  R = const, it follows:

X  =  ~ mi + m2
and F

?nim2 Vqt
mi + m 2 R

C o n ju n c t io n  2. Mass tth is mass of the planet, m i -  m while mass m2 is 
the Sun mass, m2 =  M; R  is the distance between the centers of the planet s an 
the Sun’s masses; velocity R is equal to average velocity of the Earth s revolution 
around the Sun. The formula for the force could be written m the following general

form: mM  vl m M R 3 4tt2
F = - m  +  M  R

where

rn + M T 2R2 
mM  Rv2 

m  +  M  R2

4it2R3

(mM
I F

x  =

(3A.71)

(3A.72)
(m + M )T2

while T  is the period of the planet’s revolution around the Sun. Under these 
assumptions, x* is constant. This formula (where R is a great semi-axis; of elliptical 
pathway) is given in the book “Celestial Mechanics” by M. Milankovic [14, p. 56], 
further on, it says in the book:

“This equation expresses one important relation of parameters a andi T, which 
is not completely identical with the third Kepler’s law. This law states that quotient

—  for all the planets is always the same, but this would not be the case regarding
tTre former equation since the presence of mass m  in this equation changes the value 
of the above-mentioned quotient from one planet to another. Still, since the masses 
of the planets are very small comparing to the Sun mass m m the above equation 
could be neglected beside M, and thus, the identity of the third Kepler law 
the laws of the celestial mechanics is obtained.

If mass m is neglected, constant (3A.72) is written by the expression [14 p. 
38, formula (28)]. In expression (2.16) this constant x  is denoted, as usual, wit
ietter k.

M T 2



and is called the universal gravitational constant whose accepted numerical value is

*: = 6.67 x 10“ 8 cm3 gr” 1 sec” 2 .

The difference between x* and x  can be determined with great accuracy, 
regarding the fact that it is:

Accordingly,

x *  =  x  — x e  +  x e 2 — • • •

where e =  — .M Since the relationship between the Earth’s and the Sun’s masses is

m  1
M  ~  333432 =  299.112263 x 10” 8

at the first approximation it turns out to be x* = 0.999997.* = 6.66997999 x 10 8. 
For Jupiter, it is =  f̂ oooome = 95479,7379 x 10“ 8 so that it is

x* = 0,999045202*: =  6,663565264 x 10” 8.

When all the previously mentioned conjunctions from the relation (3A.70) are 
taken into consideration, it is obtained that:

x * Rvlr
m  + M (3A.73)

where R would be average distance of the planet’s inertia center from the Sun’s iner
tia center, while vOT is average orbital velocity of the planet’s revolution around the 
Sun. For the Sun’s mass M  the following numerous values are found in literature: 
M  = 2 x 1033 gr, M  = 333432m© [14].

If quantity m  is taken as the mass of a planet or a satellite, on the basis of the 
data presented in Table,1 it is easy to compute quantity *:* by means of formula 
(3A.73):

1 H a m e s  A lf e n  e t  a l l ,  E v o lu t io n  o f  th e  S o la r  S y s t e m , N a t io n a l  A e r o n a u t ic s  a n d  S p a c e  A d -  
m in is t r a t io n  ( N A S A ) ,  S P -3 4 5 , 1 9 7 6 , p . 16



Sun Mass 2 x 1033 333432m©
Planets (10  s cm3 gr 1 sec
Mercury 6.6423 6.6737

Venus 6.6528 6.6843
Earth 6.6603 6.6917
Mars 6.6762 6.7078

Jupiter 6.6993 6.7008
Saturn 6.6426 6.6739

Uranium 6.6547 6.6861
Neptune 6.6582 6.6897

Pluto 6.6559 6.6874
Earth -  Moon 1 g 

Jupiter -  Europe j
Average Values 6.6569 6.6864
Average Value 6.67

Therefore, when the above-mentioned conjunctions about the motion of two 
bodies are taken into consideration, the numerical values can be obtained from 
formula (3A.73) which can be reduced, only by averaging, to one accepted gravita
tional constant.

On the basis of the obtained values x* = 6.6864, the radius of the Earth 
R = 6.382 and of the Earth’s mass m© = 5.974 [14, p. 197] is found by means of 
(3A.73) so that the square velocity of the body’s revolution around the Earth (in 
immediate vicinity) would be

2 * m  + to©= x  ---- -----

and, consequently, the Earth’s gravity acceleration 
v2 5.974 x 1027
i = 6’6864(6,38 x i W9 10 8 =  981,33cm/sec.

All the above-mentioned numerous data, if the above-mentioned conjunctions 
are taken into consideration, show under what conditions the classical value for the 
gravitational force is obtained. However, formulae (3A.67) and (3A.80) indicate 
that the attraction force depends upon velocity and acceleration of the distance 
change between the bodies. In the case of a free fall of the body of mass m , 
vr = P = {R + C) =  Ć; thus, it follows:

Fi = X
mM© _  (R +  C)CraM© 
R +  C {m +  M ©) (R +  C)
mC,

1 +
TO

M m

-  TO

:mC’ TO
0 .

2 H a m e s  A l f e n  e t  a l l ,  E v o lu t i o n  o f  t h e  S o la r  S y s t e m , N A S A ,  S P -3 4 5 , p . 1 7



As discovered a long time ago by Galileo who obtained by measurement that 
it is C = -c/t2, it is more difficult, to get Fi = mg, for the magnitude of the Earth’s 
gravitational force, as was expected.

The characteristic case is that of motion of two bodies having masses m\ and 
m 2 , whose distance p changes according to formula p =  Acos(ftt +  a), where ft 
and a are constants; vr = p.

By means of formula (3A.67) it is obtained that it is

_  p2 q 2
mi +  m2 '

By substituting in differential equations of motion (3A.68) and (3A.69) it is 
obtained that:

xi = - uj\{x 1 -  x2),

Vi  =  -<*>1(1/1 -  2/2);

X2 = C*J2(X1 — X2),
2/2 =  w|(yi -  y2);

where, for the sake of brevity, the following notations are introduced:

2 m2fi2 9 miQ2u) f — ----------- and u>2 = ----------- .m  1 + m2 mi +  m2

If we further state that x = X\ — x2, y = y\ — y2 and z = Z\ — z2, the above
given system of equations can be reduced to three homogeneous linear differential 
equations:

x = — Q 2x , y = z = —f12z.
Their solutions, as is known,

x — C\ cos fit + C2 sin Of 
y =  C3 cos fit + C4 sin fit 
z = C5 cos fit + C& sin fit.

at various initial conditions, determine various trajectories such as, for instance:
a) For t0 = 0 and x(t0) = x0, y(t0) = y0, x(t0) = ± 0 = 0 , 2/(fi>) =  2/0 =  0, 

i(to) = io = 0 oscillation x = xq cos fit, y = 2/0 cos fit, z = zo cos fit is obtained 
along the straight line

x y z
Xo 2/0 z0

b) For yo =  0, ±0 = 0, zo = z 10 — £20 =  0 and io = 0 and motion is determined 
by finite equations x = xq cos fit and 2/ = 77 sin fIt along the ellipse

x2 fl22/2
9  T  To

xo 2/o



that is,
(xi -  x2 ) 2 0 2 (ž/i ~~ v?-)2

(x i  -  x 2 )o  ( j / i  -  2/ 2 ) 0

s e



3B. W ORK PRINCIPLE

The statement of this principle requires more than the concepts defined so far. 
It is, first of all, necessary to define the concept of work.

D e f in it io n  5. W o rk . The integral

W { F ) d=  j  F  d s  (3B.1)

is the work of force F  upon real displacement d s  = dr along pathway s.
Unlike the four basic definitions in which vector invariants (1.1), (1-24), (1.29) 

and (1.37) are introduced, this definition introduces a scalar invariant into dy
namics. This eliminates the difficulties which arise in algebra as well as in the 
constrained vectors’ analysis due to the parallel displacement of the vectors and 
their addition.

For the system of N  dynamic points the forces’ work is equal to the sum of all 
the forces’ works:

N N
w  = j 2 w »=  Y F^ dTv• (3B-2)

V = l {  U=1

The physical dimension of work is

[dim W] = M LT ' 2 L = M L2 T~ 2 .

Integral (3B.1) is curvilinear. In accordance with the introduced coordinate 
systems and their respective forces’ vectors, formula (3B.1) can be written in the 
following forms:

W  = F ■ dr = Fidr1 =
S S

= J  w  = J x tdxz -  J  Qadqa.
s s s

(3B.3)

Integral (3B.2) is also reduced to the same invariant forms. In the general and 
final case work is a function of the dynamic point’s position on the pathway as well 
as of kinematic and dynamic parameters that a family of trajectories depends upon. 
Subintegral functions are forces or coordinates of the forces’ vectors that, in the 
general case, depend upon the given dynamic parameters, the position coordinates,



the coordinates of the velocities vectors as well as upon the acceleration vectors 
coordinates when the inertia forces, that is X (x ,x ,x ,x )  are in question.

For some forces the integral (3B.3) can be integrated independently of the 
pathway; this is always the case when the form F ■ dr is a total differential of some 
function, let’s say, U , namely,

Xidx1 = dU. (3B-4)

Regarding the fact that the second derivative x, due to the nature of forces X , 
can appear only in a linear form, U{x,x) appears as a function of parameters x, 
positions x and velocities x. This function is called the function of the forces, while 
the function of opposite sign is called the function of energy or, shorter, energy.

Work of Particular Forces
Work of Inertia Force (1.37)-(1.40) is represented by the relation

W ( I f ) dr = — m
m  2 v ■ dv = — — {v v2o) (3B.5)

If it is assumed that Vo = 0, negative work of inertia force can 
the formula m

a  = T » •

be expressed by

(3B.6)

which is in classical literature known as kinetic energy of the material point having 
mass m.

Inertia forces’ work of the system of N  material points having masses m u = 
const (v = 1, ■ • •, N), according to (3B.2), represents the sum of all kinetic energies 
of all material points with a negative sign:

mvVy ■ dvv
(3B.7)

NE m v 2 T?
~ Y V» =  ~ Ek■

IS= 1

For the points of constant mass, integral (3B.5) is easily obtained for expression
(1.40) as well. Namely,

/
Dyi f

aij(x )~ f[ fdxl = - J  ai3E D v 3  =

=  - \  J D { a i j v %v ? )  =

= - i  (ii ijvivj -  aij{xo)uo^o) = ~ (Ek _  E°k">'

N

w  (j) = - / m''av ■ H
U= 1  ]



since it is for = const Daij =  0 [36].
For Vo — 0 , regarding formula (3B.6), it is obtained that kinetic energy is 

equal to negative work of inertia force:

Ek = -W (I )  = (3B.7a)

It follows from here that inertia force work is equal to negative kinetic energy. 

Work of Newton's Gravitational Force (2 .1) is represented by the expression

W (Fvli) = - x m ump xm^rrip
rVy.

= - n

xm vmpwhere II = -----------— is gravitational potential energy.
^  1/fJ,

Potential Energy. For all the forces having functions of forces U(x), X (x) =  

grad U. dependent upon the material point’s position, namely, such functions that 
dU(x) = X(x)dx, potential energy Ep, as negative work of forces X(x) is the func
tion of position x:

n(x) = Ep X  (x)dx =  —(U(x) +  U(x o)). (3B.8)

Work of Constraints’ Reaction Forces.

W (R) = R T + ^  Xp grad ■ dr.
f*=i

(3B.9)

demands the previous knowledge of the resistance force or friction as well as deter
mination of Lagrange’s multipliers Xp. Friction forces R T are determined on the 
basis of the friction law. Integral

j  K  • dr
S

is more definite than integral (3B.3) only if it is known that R T belongs to the 
tangential plane of constraint f p = 0. It most often appears as a function of 
velocity, so that determination of this force’s work requires the previous knowledge 
of finite equations of motion or other relations by which velocity can be determined 
as a function of the object’s position.



Exam ple 9. The work of force R T = —yv, y  E R, v G R 3 that causes the 
material point of mass to to move from the initial position:

(yl,yl,Vo;y^y^yo)-

It is obtained from the finite or differential equations

y , .
Vi  =  —  ( y o i  ~  V i )  +  Voi ,m

so that the work of the given force:

Wr{RT) — J Rt ■ dr =  -  J yv ■ dr - -y J ŷdy1 =
s s s

V i

=  - y  J [^{yoi  -  Vi)dyz +  yoidy^ =
y o i

= ~ ~  (y°tyl -  \ yiyl^j ~

For yoi = 0, as is most often possible to take,

w(Rr) =  £ £ y- -  / W ;  ( M L 2 T " 2 ) .

The integral

/ X>*grad ' dr 
{  *

is considerably simplified, namely:
a) If the constraints are geometrical and depend only upon position f(r )  = 0. 

Then from the velocity condition

dj_
dt grad /  • — = 0

it. follows that integral (3B.7) is equal to zero, so that components grad of the 
reaction forces of constraints f do not produce work;

b) In the case that the constraints are variable in time, that is, that functions 
/ M(r ,r )  also depend, in addition to r, upon some explicit time functions r{x,t), 
for which the velocity conditions have the form:

df_
dt

d r  d f  d r
gnKi/ *  + a t S  = 0-

For this reason, the previous integral reduces to



- w 2 =  [ Y , x ^ d T = :V  (3B-10)
TO **

where V is rheonomic pseudopotential [41], [49], that can be determined if general
ized force (3A.54) is reduced to a function of r  or if

d V  =  - J 2 x ^ d r
u

is total potential, which is possible in some cases.
In order to understand the following exposition much easier, attention should 

be also paid to the work of time-dependent forces F = (Yi (x, t), Y^{x, t), Y^x, t)). 
In this case, the integral can be solved

1) as curvilinear, along the trajectory; in this case, it is necessary to determine 
time t = r(x , y) from y =  y(x, t) finite equations of motion, or,

2) by reducing curvilinear integral (3B.3) to a definite integral by introducing 
an independent time parameter, namely,

W  = J Yi(x, t)dyi =
S

tl 11
=  J Yi(x,t)yl(t)dt = J  P(x, t)dt.

to to

(3B.10a)

Regarding the preprinciple of existence, time t is an independent variable, so 
that in both of the cases the treatment of time as a function of a new independent 
parameter is excluded. The relation t = t(x, y, y) is nothing else but a motion 
equation of the given system solved with respect to t.

Exam ple 10. Motion of the material point whose pathway has the form of 
ellipse

yi =  acoswf, y2 = bsinuit,

can be written in the form:
1t = — arctg 
a)

ay2 
byi'

More generally, curvilinear integrals (3B.3) can be reduced to ordinary integrals 
of the form

t

Yi(y, y, x, t)dyl = J Yi(x,t)yl{x,t)dt,
to



that is.

W (x,t)
tJ P{x,t)dt,

to
(3B.12)

since at real displacement dy there is velocity y, so that it is dyl = yl[t)dt.
The function

P(F) = F  ■ v = Yiyi = Xi±l = Qaqa (3B.13)

is known as power in mechanics.
It is most often written in the form

dJ = P  =  X * f .dt dt (3B.14)

Elementary Work
From relation (3B.14) or directly from (3B.11) or from (3B.13) it follows that 

even differentially small work

dW  =  F ■ dr = Y;dyl — Xidxx = Qadqa (3B.15)

is a scalar invariant. This work is often considered as elementary work of forces 
upon real displacement. The expression “upon real displacement” emphasizes the 
difference from the other hypothetical and arbitrarily small work of these forces 
upon any possible small displacement Ar,

A W  = F A r .  (3B.16)

The concept of possible displacement implies any, no matter how small, diver
sion from the material point’s real position that could be achieved by that point. 
This concept is even more general than differential dr or than variation Sr of the 
position vector. In other words, this is any hypothetically feasible distance at pos
sible displacement. In practice, it could be understood as a tentative, factual or 
mental displacement. The size of the smallness cannot be accurately determined; 
it is arbitrarily small ranging from negligibly small to some finite size. Analytically 
speaking, this concept can imply a difference between the position vector of the 
possible displacement of a possibly displaced point and vector r  of the fixed or 
given position, namely, Ar := r(x  + Ax) — r(x). Following the finite increments 
formulae, function vector Ar  can be expressed in analytical form:

A r = W '{y' , ~ y , ) = ^ A y'(3B17)

as well as

dr dxJ , A r  = —— ——Ay dxi dy1
dr dr

-I---- = —— AxJ H----- = —— Aqa + • ■dxi 8qa



where Ay, Ax, Aq are coordinates of possible displacement vector in various co
ordinate systems. Vector Ar  coordinates are the ones that are most often called 
possible displacements.

By analogy with elementary work upon real displacement (3B.15), formula 
(3B.16) is called work upon possible displacements, smallskip Formula (3B.16) 
is a scalar invariant, as well as (3B.15), and thus, because of possible and real 
displacements, it satisfies the preprinciple of existence.

The invariant form

F A r = YiA yi = X tA xl = QaAqa (3B.19)

satisfies the preprinciple of invariance, while relations (3B.18) and (3B.19) deter
mine a degree of accurate determination; hence it also satisfies the preprinciple of 
casual definiteness. Regarding the fact that F  ■ dr is a scalar value, the following 
addition is possible:

N  3 N  n

Y  F- ■ A r ,  = X ] Yk ^ y k = Y  Q0AqP (3B.20)
V - 1  k - 1  /3=1

which makes up total work of all the forces Fu (p = 1 ,.. . ,  N) upon possible dis
placement.

Beside elementary work (3B.15) upon real displacement dr and work (3B.16) 
upon possible displacement Ar, work upon variations 5rv or 5y,5x,5q, is consid
erably important and is formulated by the expression

SW := F  Sr (3B.21)

or in another invariant form

SW := YSy = XSx = QSq. (3B.22)

This work cannot be made equal with elementary work dA, regardless of the 
fact that relations (3B.15) and (3B.22) are similar. However, work (3B.21) can be 
regarded as elementary work (3B.18) upon possible displacement since Sx variations 
can belong to a set of possible displacements Ax. Unlike the differential

dx dx
dx = — fit =  — df =  xdt, (3B.23)

Differential Sx that is called the variation (See [5, pp. 27, 177] or [23]) shows 
the presence of some change of function x(a,t) due to increment of parameter 
a — a  — 5a.

Therefore, the concept of function variation x = x(a ,t) implies the product 
of the function derivative with respect to the parameter and small increment of the 
given parameter, that is,

r dx dx Sxdx = ——da — — da =: — da oa da da



This means that it is

5x x(a  + A a,t) -  x(a,t)
—  := lim ------------ ---------------da Aa-^o Aa

In the same way, for the work written in the function form

W = Xdx = W (x(t,a))
S

or

w  =
l
j  Xxdt II (i)t—t(a,x))

the differentiating operation is valid

(3B.25)

(3B.26)

(3B.27)

dW  „SW = ——da da

or, if a; is expressed by means of time t,

dW dx dW  

derived from motion t = t(x):

(3B.28)

a w  r o w  dt dx r a w  dt aw
6W = —  6a = = — — dx = -^~Sx.da dt dx da dt dx dx

(3B.29)

Because of these characteristics of relations (3B.28) and (3B.29), elementary 
work upon possible variations is better to be called work variations.

Excerpta: Considering the fact that in the referential literature there is no 
unanimous understanding of the concepts of real displacement dr, possible dis
placement Ar  and variations 5r and, consequently, no respective elementary works 
(3B.15), (3B.16) and (3B.21), it is necessary to note that:

1 . real elementary displacement symbolized by differential d- refers to a change 
in time along the actual or given trajectory and it directly springs from definition 
( 1 -1),

2 . possible displacement is any - no matter how small - displacement of indefi
nite smallness or any hypothetical deviation of the dynamic point from its position, 
provided by the constraints in its continuous medium; this displacement, that does 
not really take place, disregards the time factor or any other parameter except for 
boundaries established by the constraints,

3. the variation, symbolized by differential <5-, which is in direct relation with 
derivative (3B.25), is the points’ deviation from the calculated or given trajectory 
due to insufficiently accurate casual definiteness or disturbance of some parameter 
contained within finite equations of motion or the trajectory equation in time t and 
for this reason, it is also a time function. If varying of parameter a + 5a is not 
definite, but hypothetical, it can be regarded that variation 5r belongs to a set of 
possible displacements [46].



The above-given conclusions tend to emphasize that actual displacement is 
here identified with neither possible displacement nor variations.

Finally, it should be also noted that the work dimension, which also implies 
“elementary works”, is equal to the dimension of the moment of force, that is,

For this reason, the elementary work upon possible displacements is sometimes 
called the possible moment of forces (see [12, p. 410]). These two concepts of work 
and moment of forces, due to the preprinciple of non-formality, are here regarded 
as different, since work is, by its definition, a scalar invariant, while the moment is 
a derived vector invariant or, simply, a vector.

The essence of the work principle has been known in the literature (following 
to Galileo’s postulate: “Quanto si guadagna di forza, tanto perdersi in velocita”, 
Opere 2 , p. 1830) as “the golden rule of mechanics” since the days of Aristotle, 
while later on, it has been known as “the principle of possible displacements” , “the 
principle of possible variations”, “the fundamental basic equation of mechanics” , 
“the principle of virtual work”, “the D’Alembert-Lagrange principle” and so on. 
One of the strictest mathematical analysts of classical mechanics, A. M. Ljapunov, 
has written the following:

“Principle of possible displacements has been known to Galileo; later on, it was 
used by Wallis and Ivan Bernoulli. But the first general proof of this principle was 
given only by Lagrange who built it into the foundation of his analytical mechanics. 
Afterwards, it was also proved by Poison, Cauchy and others; though, by its best 
proof, it remains Lagrange’s.”

In this approach to the theory of body motion, the principle is not being proved, 
but, as is written about the preprinciples or about the concept of the principles of 
mechanics, the principle is a true statement, in oral or written form, or both, and 
it is as much accurate as can be best stated on the basis of the existing knowledge. 
The formulation of the principle comprises its generality. Instead of proving it, its 
application to various systems is interpreted and proved. The work principle can 
be, in the shortest possible way, expressed by the following sentence:

The total work of all the forces upon possible displacements is worthless, while 
in the presence of unilateral constraints it is not positive.

The mathematical statement, regarding relation (3B.20), is even shorter:

The reader proficient in mathematics maybe finds the following formulation 
even more comprehensible:

dim W  = dimE = dim931 = ML2T 2 . (3B.30)

Formulations of Work Principle

(3B.31)



The total work of all the forces upon all independent possible displacements is 
equal to zero, while for the system with unilateral constraints it is not positive.

Relation (3B.31) is very general, abut it is not directly operative. Its applica
tion requires a strict mathematical analysis, which implies, first of all, understand
ing of the elements it contains. The limited arbitrariness of possible displacements 
is described. Vectors Fv comprise, as components, inertia force I v of ^-th of this 
material point as well as the principal vectors of all other forces F„k that exert, their 
action upon the r'-th point, that is, Fv = YlkFvk- Accordingly, without reducing 
the generality of relations (3B.31), this principle can be written in the form

N
'y  ̂{Iu + Fjf) ■ Atv $  0
U= 1

(3B.32)

The principle wuitten in this way implies that vector Fv comprises, as pointed 
out, all the forces except for inertia ones; it also comprises the constraints reactions, 
according to the law of constraints. It implies that the relations of constraints p 
are abstracted by the forces

Rv = R vn•

If the constraints’ relations are not calculated a priori, as previously said, the 
relations describing the constraints should be added to relation (3B.32), namely,

N
(I- + Fu) • Arv = 0 (3B.33)

V= 1

U (r,v ,T )>  0. (3B.34)

Regarding the signs of equality and inequality, a difference is noticed between 
relations (3B.33) and (3B.32); the sign of inequality from (3B.32) is comprised 
by relations (3B.34). In the case of bilateral constraints abstracted by the forces, 
the relation of principle (3B.32) is written in the form (3B.33), while in the case 
that the constraints are not taken into consideration in relation (3B.32), writings 
(3B.33) and (3B.34) are given in the form:

N
{Iv + Fv) ■ Arv =  o, (3B.35)

U (r ,v ,r )  = 0. (3B.36)

Starting from the fact that the constraints are more frequently wrritten in the 
coordinate form, as in relations (2.3)-(2.8), let’s observe the principle’s application 
to particular mechanical systems with respect to Descartes coordinate system y :=
(■y 1, y 2, y 3)-



Static Systems
The concept of static system here implies N  points of application Mv (u = 

1 ,... ,N ) of forces F„ = Fu = Y*ei,(i = 1,2,3) connected by k finite constraints 
(2.5). These constraints are written more concretely as

fniVitViiVit ■ ■ • iUn iVn iVn ) = 0> (3B.37)

or, by formalizing of indices

v l  =  y Zu \ vl ,,3i/ (3B.38)

as
U ( y \ . . . , y 3N) = 0. (3B.39)

For such a system I v = 0, so that relations (3B.35) and (3B.36) can be written 
in the following coordinate form:

YaA ya := Y ^ y 1 +■■■ + Y3NA y3N = 0, (3B.40)

U ( y \ - - . ,y 3N) = 0. (3B.41)

Firstly, it has to be stated that the non-ideal constraint factor is abstract
ed by the force comprised within Ya forces, while relations (3B.41) describe the 
constraints’ idealization. Developing into the order with respect to possible dis
placements of these constraints in the neighborhood of the equilibrium positions of 
points Mu(y = b), what is obtained, beside linear form (3B.40), are k linear forms 
with respect to Ay, namely:

U (y) ~ /n (&) = a»aA ya =  a ^ A y 1 + ---- h aM3Arj/3JV =  0, (3B.42)

where
djy
dya y a = b a

(3B.43)

Therefore, relations (3B.40) and (3B.41) are reduced to k + 1 linear equations

YaA ya = 0, (3B.44)
a„aA ya = 0 , ( n = l , . . . , k <  3N), (3B.45)

in which there are 3N  mutually dependent possible displacements Ay3N. Regarding 
the fact that relations (3B.44), according to the work principle formulation, should 
comprise independent possible displacements, this problem can further be solved 
in two ways in order to eliminate dependent possible displacements, namely:

a) by direct solving of equations (3B.45),
b) by introducing indefinite constraints’ multipliers.



Solution with Respect to Dependent Displacements. If possible displace- 
ments are separated into dependent Ay1, . . . .  Ayk and independent A yk+ , - • •, Ay , 
then in equations (3B.44) and (3B.45) the addends with dependent and independent 
possible displacements are separated:

YvAyv + Y pA i/ = 0, v = l (3B.46) 
a ^ A y "  + a^py13 =  0, (3 =  k + 1 ,.. .,  3N. (3B.47)

Substituting
Ay" = -cT a tfA y f*  = =  b"p, \a^\ ±  0 (3B.48)

in equation (3B.46), where av‘v is an inverse matrix a,u, , an equation with indepen
dent displacements is obtained, namely,

(Yp -  Yvbup) A /  = 0 . (3B.49)

Due to independence of displacement A y6 it follows that the system of the 
observed forces in the presence of constraints (3B.41) will be in equilibrium if it 
satisfies the following system of 3N  — k algebraic equations:

Y p  -  Yibp-------- Ykbk0 = 0. (3B.50)

As can be seen from this system of equations, it is possible to determine 3A — k 
coordinates of the forces’ vector by means of the remaining k.

Indefinite Constraints’ Multipliers. If each of equations (3B.42) is multiplied 
by its respective multiplier and then added with respect to index /i, the systems 
of k + 1 equations (3B.44) and (3B.45) are reduced to two equations:

M—1

YaAy

Of,
0 yc

A ya = 0 .
(3B.51)

The sum of these two relations

(3B.52)

provides, just like in the previous method, for elimination of dependent possible dis
placements A y1, . . . ,  A yk. Regarding the fact that Ay, are indefinite multipliers for 
the time being, it is permissible to separate the conditions that annul k multipliers 

from equations (3B.52), so that it is

f A 9-I a

h  11 d r
= 0 , cr =  1 , . . . ,  k. (3B.53)



k equations (3B.-52) of 3N  — k independent variations are left, namely:

(3B.54)

From this relation more 2>N — k equations of the form (3B.53) are obtained. 
Thus, as a solution of the static problem, a system is obtained of 3N  equations of 
the forces

and k equations of the constraints f ^ y 1, . . . ,  y3N) = 0 .

Rheonomic Systems. As in the previously-discussed static system, the work 
principle is also applied to the mechanical system with variable constraints (2 .8 ). 
For the sake of brevity, and without making it less general, it should be assumed 
that the constraints are given by the constraints equations

where r(t) is a known function of time.
Developing the function into a power series, as in (3B.42), it is shown that 

there are 3N  -f 1 possible displacements Ay0, . . . ,  Ay3N. Therefore,

The work principle comprises “all possible displacements” as well as the work 
done by particular forces upon these displacements. Therefore, in addition to works 
upon possible displacements YiAy'1, the work upon possible displacement Ay0, that 
is, FoAy0 should be added here. Thus, in such a system with variable constraints 
(3B.55), instead of relations (3B.40) and (3B.41), there is a system of equations:

From this system of equations, by the same procedure as from (3B.-51) and 
(3B.55), another additional equation is obtained

k

(3B.55)

YaA ya = Y0Ay° + YiAy1 = 0,

U ( y ° , y )  =  =  o.

(3B.56)

(3B.57)

(3B.58)

The force k
(3B.59)



is evident even in more general relations (3B.56) and (3B.54); [61].

System with Unilateral and Bilateral Constraints. The work principle, 
written by relation (3B.31), shows that the inequality sign refers to unilateral con
straints. In the case of only unilateral constraints, the principle says that work 
upon possible displacements is less than zero, that is (F„ = Fv),

N

Fv • A r v < 0
v = \

while in the case of bilateral constraints, as shown,

(3B.60)

N

Y  Fv ■ A rv = 0.
1S= 1

Let’s consider the simultaneous presence of bilateral constraints

(3B.61)

U (ru . . . , r N) = 0 fi = 1 , . . .  ,k (3B.62)

and unilateral ones
<P<r(ri,...,rN)> 0  cr = l , . . . , l (3B.63)

under the condition that it is k + 1 < 3N.
Let’s choose again coordinate system (y,e) and apply the method of the in

definite constraints’ multipliers, while relations (3B.60) and (3B.61) are reduced,
similarly to equations (3B.51), to the forms:

YaA ya = Ac, Ac < 0 (3B.64)

h  dya
(3B.65)

<7=1 y
where they are either Aca > 0 or Aĉ - < 0 . 

The sum of all the three equations

(3B.66)

3Ar / k rj p l rj r \  ^
E  + + \ A y a = A c + Y x a A Ca
a=l \  fi=l y a= 1 y /  <x=l

(3B.67)

gives a number of equations necessary and sufficient for problem-solving.



As in the case of bilateral constraints k + l of displacement Aya it is possible 
to exclude the requirement that multipliers and Xa should be such that the 
following equations are satisfied:

v  NA \ _i_ V ' d /g n
H = 1  a  cr=l y

i  =  1 , . . .  , k ; k  +  1 , . . .  , k  +  l.

(3B.68)

Remaining 3 iV  — (k +  l) coefficients, in addition to possible probable displace
ments A y i ( j  =  k  +  l +  1 , . . . ,  3N )  will be also equal to zero, that is,

Yi +
n=l

dU
dyi

V   ̂ d f a
Z ^ X a -T T -r  =  o
<7=1 dyj

(3B.69)

so that, in accordance with the principle, there should be

Ac + XctAcct =  0.

However, since it is, in accordance with (3B.60) and (3B.61), Ac < 0, it follows

i
^ X a ^ c a >Q. (3B.70)
<7=1

If independence of the indefinite constraints’ multipliers is taken into consid
eration, the following conditions of equations (3B.68) and (3B.69) follow, namely, 
that x<r and AcCT are of the same sign.



Kinetic Systems

Let’s remember that vector functions Fv, whose coordinates are Y, comprise
all the active forces F, including inertia force I  = —to—  as weU- Consequently,
3N  differential equations of motion (3B.68) and (3B.69), as well as k + l of finite 
constraints equations along with the conditions resulting from (3B.70), make up 
the total system of relations for solving motion of the observed system with finite 
unilateral and bilateral constraints

l\lon-holonomic Systems. A non-holonomic system implies a system of N  
material points, whose motion is, among other things, restricted by at least one 
differential non-integrable (non-holonomic) constraint. If the previous restriction 
is taken into consideration, let them be the constraints

Due to the difficulties arising while developing functions (3B.71) into a series 
in the vicinity of trajectory C(y) as well as due to the complexity of these con
straints’ possible equations or their kinematic nature -  and for the sake of brevity 
-  the method of constraints’ abstraction will be applied here, in accordance with 
the constraints’ law, by respective forces -  reactions of constraints R V)X. In oth
er words, each constraint (3B.71) acting upon the p-th point is replaced by the 
resultant vector of the constraints’ reaction as in (2.9), that is, . Regarding 
the previously introduced notation, this can be written in a shorter way, as well as 
other forces’ vectors, by means of a set of 3N  coordinates R i , . . . ,  Rsn - In such a 
general approach to the work principle (3B.32) it can be written in the coordinate 
form

(3B.71)

(Ia + Ya + Ra) Aya = 0. (3B.72)

The system of 3N  differential equations of motion

Ia + Ya + Ra — 0 , [a — 1 , . . . ,  3A) (3B.73)

that is,



comprises, among other things, 31V of unknown reactions of the constraints Ra 
which should satisfy the acceleration conditions

v » ( y , y , y )  =  i p ^ y a +  j ^ y a  =  °-dy° dy° (3B.74)

Substituting ya from equations (3B.73) in previous equations (3B.74), k linear 
equations with respect to Ra are obtained, namely:

i r ž v ° ‘ +  — (Ya  +  R a ) ? p ž =  0. oya m a oya

From these equations it is possible to determine k reactions:

R i  =  R i ( m , y , y , Y , R k + i , . .  - ,R 3n ) (i = l , . . . , k )

depending, among other things, upon 31V coordinates of force Y  and 31V — k of 
reactions Rj (j = k + 1,...,31V). Further on, by substituting II, in equations 
(3B.73), that is, (3B.73a), in the system of 3N  differential equations of motion, 
31V — k unknown constraints’ reactions still remain. They are, as such, possible to 
determine from this system depending on other functions in these equations or to 
look for new 3N  — k conditions that define or determine the rest of 3TV — k unknown 
reactions of differential constraints (3B.71). Many studies have been devoted to this 
problem that is still acute.

F irst Conclusion. By means of the work principle it is possible to derive and 
extend the dynamic equilibrium relations just like from the equilibrium principle; 
the work principle and the equilibrium principle are equivalent.

Invariant Writings of Work Principle
Expressions (3B.18), (3B.19) and (3B.20) point to the fact that relations 

(3B.31) or (3B.32) can be written in a similar form with respect to various coor
dinate systems. Let (y, e) be still the Cartesian orthonormal stationary coordinate 
system, (z,a) rectilinear coordinate system, (x, g^)) curvilinear system of coor
dinates and (q,g(q)) a system of independent generalized coordinates. The same 
constraints, as can be seen from (2 .2), are wuitten by invariant expressions:

f» (r ,v ,r )  = 0 / M(y,y,r) = 0 f^ z ,ž ,T )  = 0 -> = 0 ,
r  = y° = z° = x°, y = 1 , . . . ,  k,

or in the parametric form:

r. = r v (q0, q 1, . . . , q n) =: r u{q) ,  

q ° = r ( t ) .

(3B.75)
(3B.76)



According to relation (3B.18), possible displacements, on the basis of the choice 
of coordinate system, are written in the following forms:

Ajv =  = ^ 4 A * 'ay1 azl ox1
(3B.77)

or
a <9r„ . Q drv 
A r- - a r A 9  = : W Ag’ (3B.78)

where —-— are coordinate vectors of the i/-th point upon the configurational mul- 
dq

tifoldness M. The number of possible displacements allows for possible changes of 
the constraints:

A r OJf i  A . a
oy or

A/o = Ay0 -  At =  0 .

:Ax + dr (3B.79)

If force R q is applied to abstract constraint (3B.76), as much existent as other 
constraints, possible changes of constraints (3B.79) show that there are 3N  + 1 
possible displacements, so that the indices in relations (3B.77) and (3B.78) take on 
values i = 0 ,1 ,... ,  3Ar; a = 0 ,1 ,... ,  n. For this reason, work formulation (3B.31) 
has the following invariants:

as well as

Y  Ay = Z A z = X A x  =

= YiAy* = ZtA zl =  X iA xi < 0,

fix. > 0; y  =  1,• ■ • ,k < 3N, i = 0 , l , . . . ,3 N  

QAq := QaAqa < 0, (a = 0 ,1 ,... ,n).

(3B.80)

(3B.81)

In the case that the constraints’ functions do not explicitly depend on time, 
q° coordinate does not exist; therefore, in relations (3B.80) and (3B.81) there are 
no zero indices i =  0, either. The same invariance also refers to relation (3B.32). 
Regarding the fact that observed relations (3B.31) and (3B.32) have been previously 
extended with respect to rectilinear coordinates y, curvilinear coordinates x and 
generalized independent coordinates q G M  will be used further on.

a) Work Principle in Curvilinear Coordinate Systems.
It has been shown in relations (1-40) that the inertia force vector’s coordinates, 

with respect to curvilinear coordinate systems, are determined by the expressions:

Dvj



As Xi in relation (3B.8) denotes a sum of active forces and inertia forces 
(3B.82), it is:

Dv?
Xl a i3 dt ) A x 1 < 0. (3B.83)

This inequality directly follows from relation (3B.32), if it is kept in mind that 
possible displacements, as in (3B.18) are

rjr
= dx^AxS’ (r>s =  1>2>3)-

Substituting in relation (3B.32), it is obtained, regarding (1.38)

N

(3B.84)

Y  r L-
v=\

N

, drv 
' dxs ■Xf.

dr„ \ drL
dxs ) dxr

A xr

V= 1
N

,drv 
' dxs

Dvl drv ̂  drv ̂ r

^ ' f 9{i^)srXv

dt dxs ) dxr 

Dv
) r s ' dt A xr < 0.

If indices i, j  — 1,.. .  ,3N, are introduced m^k — m^k-1  =  rri3k -2 , i =  3p , 3u — 
1, 3p — 2 . the relation follows:

9 i j  X  J &i
D v i\

' dt J A x 1 < 0, (3B.85)

or relation (3B.83), regarding the fact that X\ =  QijXK
If displacements are constrained by bilateral constraints

/ At(x1, . . . ,a :3JV,T), At =  1, — , fc,

in relation (3B.83), a sign of inequality drops, while, through the constraint

f 0 = x° -  r(t) = 0 ,

abstracted by force Rq, k homogeneous linear equations with respect to possible 
displacements are obtained:

d f, d L
A ^  = ^  + ^ A *° = 0’

A/o = Ax° -  A r = 0. (i = 1 , . . . ,  3N).

(3B.86)

Multiplying with respective indefinite multipliers Â  and Aq and summing up
with

Dv1

dt J\



it is obtained that:

k
^  +  A  ) Axl +  ( Ao +  X ^ Z o  ) Ax° 0.

DvJ dfn

p= i dxl dt n=i

From this equation, 3N  differential equations of motion follow 

13 dt
DvJ _  . dfn

a-a + 2  , AM >
M=1

(3B.88)

as well the force of the constraints’ change

N

A o - - y :  \
M=1

(?X°
=:Xn (3B.89)

to which k finite equations of the observed constraints = 0 should be added.

b) Work Principle in Independent Generalized Coordinates
If all constraints (3B.57) are abstracted by respective constraints’ reactions

M=1 dy
(3B.90)

and if additional constraint y° — r  = 0 is abstracted by force Ro, then equation 
(3B.72) will have the following form:

+ ^  + A ^  +  JioAy0 = 0. (3B.91)

Substituting constraints’ equations (3B.57) by the parametric form

y{ = yi{q°,q1 ,--- ,q n), y° = q°, n = 3 N - k ,

and displacement A y 1 by independent possible displacements

dv*A y' = - ^ -A q a (a =  0,1.......n),

equation (3B.91), regarding equations (3A.57), is reduced to a new invariant form:



However, since it is / M(g°, q1, . .., qn) = 0, thus, it is

so that it follows for index j  = 1, . . . ,  n  == 3N  — k, that the work principle, observed 
with respect to the generalized coordinates, has the following form:

This equation is equivalent to the system of equations (3B.56) and (3B.57). 
Due to the described nature of possible independent generalized displacements Aqa , 
beside producing equations (3B.56) and (3B.57), work principle (3B.92) also points 
to the mutual constraint of forces /j, Q j ,  displacement Aqa and forces Io,Qo and
Ro-

Second Conclusion. As can be seen from the previous statements, the work 
principle can be applied to any coordinate system, simultaneously preserving its 
linear invariant scalar form for all the coordinate systems, constraints systems and 
systems of forces.

Relation (3B.22) has introduced the concept of work upon possible variations, 
along with the statement that variations (3B.24) can belong to the set of possible 
displacements. Consequently, for a particular subset of possible displacements, all 
the introduced work principle relations, namely, (3B.31), (3B.32), (3B.40), (3B.51) 
and (3B.52), (3B.56), (3B.64), (3B.72), (3B.81) and (3B.92) will have this very 
form, except for the fact that, instead of possible displacements A-, possible vari
ations 5- will be written. From this identity of the forms it cannot be concluded 
that the work principle upon possible variations Ar  is the same as the principle 
upon possible variations (3B.24), since Ar and 5r are not identical, ae

In the statements such as “under the action of the force” or “interaction of 
the bodies” or “action equals reaction”, the term action implies the presence of the 
forces and their inducement rather than some particular concept of action. On the 
other hand, in analytical mechanics, theoretical physics or even mathematics, the 
concept of action implies a more or less accurately determined functional whose 
definition makes no reference of force. For this reason, as in the case of work 
principle, it is necessary here to determine the concept of action.

Definition 6 . Action. Action of a force F  of the mechanical system is an 
integral value

(I j  +  Q j) Ag-' +  (/„ + Qo +  Ro) Ag° — 0. (3B.92)

Work Principle Upon Possible Variations

3C. PRINCIPLE OF ACTION

t
(3C.1)



where W{F) is work of force F.
The physical dimension of action is, just like that of the impulse moment,

dim A = M L2 T - 1 . (3C.2)

It is obvious that the subintegral expression of action is a scalar invariant that 
can be written, regarding relations (3B.2) or (31?.3), invariantly with respect to all 
the observed coordinate systems, as

t t

A(F) =  j W (F)dt = J W (Y)dt =
to to

t t= J W (X)dt = J W(Q)dt,

(3C.3)

or, regarding expression (3B.7), in the form

A{I) = [  Ekdt. (3C.4)
Jto

This written form also points to the belief that action is an integral of product 
of the work of a force and the time interval.

As there are many invariant and equivalent forms of writing down action, the 
principle of action can be and is expressed by various, though equivalent sentences. 
The mathematical statement is important here:

Action variation (3C.3) during time [to,č] is equal, by the value, to variations 
of (3C.4) for the same amount of time; thus, if

SA(F) = SA(I). (3C.5)

According to relations (3B.22), the active forces’ work upon possible variations is 

SW(Y) = YjSyi = X j6xj = Qa6qa = 0, (3C.6)

while the action variation
l  t

5A(I) = 6 J W (I)dt = J 5W(I)dt
to to

t

J  5Ekdt.
to

(3C.7)

In order to harmonize 6A  and 5W(Y), let us multiply the expression of the 
principle of work (3B.35) by the differential of time dt > 0 and subsume under the 
sign of integral, i.e.

T v + Fv) ■ 5rudt = [5W(T) +  8W{F)\ dt.



It is shown by certain transformations that

'to

N ,t
5Ekdt = — / m„a„ ■ dr„dt =

v=i
,t n

'to

f t  JV f t
/ • 5rudt = / SW(X)dt

JtQ ,._1 ./Č0

(3C.8)

therefore the principle of action can be now operationalized using the relation

[  [.5Ek + 6W (F )]dt=  [  {5Ek +YlSyi)dt = 0 . (3C.8a)
J  to Jto

A more complete and accurate determination of the relation of principle (3C.8) 
or (3C.8a) will be explained by its application to particular mechanical systems, 
from simpler to more complex ones.

Static Problem
a) The point M(y) is attacked by force Fv = FJe, (i = 1, 2,3; v =  1 , . . . ,  N). 

A point M  belongs to constraints fn(y) = 0, y < 3. What results from the principle 
of action?

According to expressions (3B.22), the active forces’ work upon variations Syi 
is

SW = YjSyi (3C.9)
N

where S y i  are coordinates of resultant force Y * =  Y * .  Since the static problem
U—\

implies that y = 0, inertia force is absent, and thus W (I) = 0 as well, so that action 
principle relation (3C.8) comes to

tJ Y^Syidt = 0 . (3C.10)
to

The constraints have to satisfy the relations’ variation

&U = i r - f y i  =  0. (3C.il)

Multiplying by indefinite coefficients XM, summing up with respect to y, inte
grating upon the interval and summing up with (3C.11), we have



which is equivalent to relation (3C.10). By the indefinite multipliers’ method, as 
from (3B.52) to (3B.53), three equations of the dynamic point equilibrium are 
obtained

N  k

E ^  + E v
v —\  f i= l

djy
dyi = 0 , i = 1,2,3.

b) Static system of N  dynamic points Mv {v = 1 , . . . ,  N), connected by con
straints fiji'x1, ...  ,x 3N) = 0; forces F„ = X^g(„) are functions of x coordinates of 
Mv(x) points’ positions.

The work of the given forces upon variations, according to definition (3B.22) 
and equations (3B.36), is

<5IV = dW
dxitSx3 = X j (x)6xj , (3C.13)

so that, similarly to relation (3C.8), the principle of action can be written in the 
form

/  ( - +  E  X^ )  5x3dt = 0- (3C.14)
t o  X  ^ =1 '

or in the form

(3C.15)

Kinetic Problem
Unlike the previous static problem, the number of forces F  is here enlarged 

with inertia forces (1.37), (1.40) and (3A.50) and their work is being determined, 
that is, kinetic energy (3B.7):

Ek
1
2

NY. m„vuVv = - aij{rn,y)yly] -  ]-ai j {m,x)x'lx \  

(i,j = 1 ,...,3 N ).

Then, according to (3C.8), relation (3C.15) becomes

5Ek +  Yj 6yj +  Y  M / m)  dt = 0 . (3C.16)
/-*=! /

Therefore, the principle of action emerges here in the form of equivalent rela
tions (3C.-5), (3C.7), (3C.8) and (3C.10). The essential difference comparing to the

/



work principle lies in the fact that the principle of action is used in the study of 
motion by means of the kinetic energy functions.

Exam ple 11. All forces, except for inertia ones, exerted upon a material point 
of constant mass m mutually annul themselves, that is, the resultant of these forces 
equals zero.

It results from relations (3C.16), (3C.12) and from definition (3C.1) that there 
is only one action

A{I) = (3C.17)

so that in this case the principle is written down as

t

• I
Ekdt = 0 (3C.18)

The significance of formula (3C.17) is also stressed by the fact that it is called 
action function, while relation (3C.18) is called the principle of least action [50] that 
has been formulated and elaborated by the most distinguished and deserving the
orists of analytical mechanics3 Jacobi even wrote that the principle of least action 
is the “mother” of the entire analytical mechanics. Relation (3C.18), derived here 
from a simple example, can also be obtained from much more general observation. 
If the active forces’ work variation is equal to zero, then it is

t \  t iJ SEkdt = 0 and J 5Wdt = 0 ,
to to

as well as vice versa. Hence relation (3C.5) can be replaced by a much more precise 
formulation

SA = 0 4=> 5W = 0. (3C.19)

For a system of kinetic energy (3B.5) relation (3C.8) is reduced to the form

11J  (5Ek + 5W{x)) dt
to

SEP) dt — b / Ldt =  0

where the function
L  := Ek -  E p ,

(3C.20)

(3C.21)

3 W o lft  ( 1 7 2 6 ) , M a u p e r t iu s  ( 1 7 4 6 ) , E u le r  ( 1 7 4 8 ) , L a g r a n g e  (1 7 6 0 )  a n d  o th e r s .



is known as the Lagrange’s function, Lagrangian or kinetic potential. Relation 
(3C.20) is known as the Hamilton’s principle or the principle of stationary action, 
whose action function t1

A  = Ldt (3C.22)
to

most often called Hamilton’s action, is most widely used in analytical dynamics, 
despite the fact that it relates only to the mechanical systems with potential forces. 
Relation (3C.8a) from which, as can be seen, (3C.18) and (3C.20) follow, is called 
the principle Hamilton- Ostrogradsky. Regarding that all three relations are shown 
here, namely (3C.8), (3C.15) and (3C.2), in a more general and modified form, the 
author has chosen the principle of action as the term. While applying Hamilton’s 
principle (3C.20) the physical meaning of function (3C.21) for which the principle 
has been set is often disregarded, so that for function L known as Lagrangian any 
function dependent on the used independent coordinate x , its derivatives x and 
time t is accepted. Such an approach has led do some results inconsistent with 
the preprinciples of mechanics, and, consequently, with the real motion as well. 
This happens especially when the principle is applied to the systems of manifolds. 
In order to make comparison of the assertions made here with the standards of 
the classical analytical mechanics much easier, we will show the application of 
action principle (3C.8) or (3C.16), in slightly more details when the configurational 
manifolds are taken into consideration.

Configurational Manifolds
Let’s observe N  material points of mass rnu (n = 1, . . . ,  N). With respect to a 

arbitrarily chosen pole O and orthonormal coordinate system (y , e), the position of 
the z/-th point shall be determined by vector r v = yl„ei. Let’s motion of the point 
be limited by k < 3N  of bilateral constraints which can be represented, according 
to the laws of constraints, by vectors R f  (of resistance, friction, etc.) as well as by 
means of independent equations:

f v ( r i , . . . , r N,T(t)) = 0  (/i = l, . . . ,fc) (3C.23)

or,
U (yhyi,yb---iyN > yN ’yNiT(t)) = °- (3C.24)

that is,
/ /x(yV--,J/3A\ 2/ )) = 0, y° = r(f). (3C.25)

Functions / M are ideally smooth and regular in the area of constraining the 
material points.

The condition for the constraints’ independence is, in the simplest way, reflect
ed in the velocity conditions at the constraints:



These equations will be written in the following form:

dylV
( d h

+ ^ y kdyk

l-E-yk+ 1 q_ . .
\d y k+lU + ^ w y 3N + ^ y°

(3C.27)

From this system, linear with respect to velocities y, it is possible to determine 
k of velocities y1,.. .y k by means of remaining 3TV — k +  1 velocities yk+1, . . .  ,y3N 
under the condition that the determinant is

dU  k 
dym k

(3C.28)

A multitude of ways, or, briefly, a manifold choice of sets of coordinates 
qa, by means of which the position or configuration of the system’s points in 
a moment of time is determined, suggests that a set of independent coordinates 
q := (q°, q1, . . . ,  qn) G M n + 1 should be called configurational manifolds. Accord
ingly, a set of coordinates q and velocity q = (q°, q1, . . . ,  qn)T should be called 
tangential manifolds T M n+l. The pencil of all the velocities vectors at the point

3vq will consequently be denoted as TqM n + 1 which implies n + 1 base vectors — —

at each point upon manifolds M n+l. Hence, we will further on consider two sets, 
namely M n+l and T M n+x, as well as pencil TqM n+l of the linear vectors. For the 
sake of brevity, the following notations are introduced:

N  := M n+1, M  := M n,

TAf := T M n+1, TM  := T M n, 

and, accordingly, TqM, TqAf as well.
Considering this condition as well as the above-stated properties of func

tions fp, it is possible, according to the implicit functions theory, to determine, 
from equations (3C.25), k dependent coordinates y1, . . . ,  yk by means of remaining 
3N — k + 1 coordinates y1, . ..  ,y 3N ,y°. The choice of dependent and independent 
coordinates is arbitrary, along with a special choice of q° coordinates, so that each of 
coordinates y1, . . . ,  y3N can itself be expressed as function 3N  — k + 1  of coordinates 
y. Since, as needed, constraints (3C.25) can be expressed - as in (2 .2 ) - in curvilinear 
coordinate systems, the possibility of selecting independent coordinates is enlarged. 
If the independent generalized coordinates are denoted by letters q°,qx, ...  ,qn, it 
follows that constraints (3C.25) can be written down in the parametric form:

yl = ,qn), q° = r(t), (3C.29)

and thus, also as



Velocity conditions (3C.26) are thus substituted, according to definition (1.1), 
by relations (3A.37), that is

dru .„ 9r„ . j  <9r„ drv
vu = — -qu + tt-t? “I------ b o— Q =■ t:— qdq° dq1 dqn dqa (3C.31)

In this topology, action principle is

[QaSqa + 5W (/)] dt = 0
*0

where
dif'Qa = Vi — ; * =  0,1, . . . ,  3N, a  = 0,1,. ..  ,n.

(3C.32)

are generalized forces. The inertia forces’ work, for m„ = const, is determined in 
relation (3B.7) as negative kinetic energy; hence, regarding expression (3C.31) it is

N

I/=l
W = - E k = - Y . ) ^  ■ v

N
1 v-> dr„ drv ,  (3C.3 3 )

= - 2 ^ V ? /  =V= 1
1 R

= - ^ aa.0 (rnv,q)qaqp, q e TJ\f.

Thus, action principle relation (3C.32) has an invariant, form (3C.8a) in the 
generalized coordinates [10]

ClJ (6Ek + QaSqa)dt = 0 , q G Af. (3C.34)
*0

Let us also show that the relation (3C.16) comes up to equation (3C.34). Again 
y° is taken as an auxiliary coordinate y° =  t (h , t). Then, in the case of constraints 
(3C.24), expression (3C.16) can be written in its extended form as:

J  (^E k + W  + Xv ̂ 6yl + Rosy°^j dt = 0 (3C.35)

Variations of equations (3B.29) are: 

dyi
&yl = dcrSqa~' 6y° = 6(l0 (a = 0,1 , . . . , n ) .



Substituting in relation (3B.35) it follows that is

k

£ {
SEk + + ■£ ^ ^  + dt =  0

i.e.,
t-lJ  (SEk + QaSqa) dt — 0 .

to
(3C.36)

regarding the fact that

and
8 yl dqa

Qo =  Ro +  Yl^ = R 0 +  Q*0

as in relation (3A.56b).
The kinetic energy is a homogeneous quadratic form:

Ek =  \ a apqaqP, (ct, /3 =  0 , 1 , . . . ,  n). 

Following classical variation calculation, after varying

X TP dEk S a I dEk r . aoEk = - — dqa +  -7— 69“ dqa dqa

and integrating (3C.36), it is obtained that:

t

(3C.37)

(3C.38)

dqa
f  (d E k d dEk \

t0 + J {w-dtW + Qa)Sqadt = 0 ( 3 C - 3 9 )to

This is always satisfied when the differential equations of motion are dealt with 

d dEk dEk
dt dqa d r = Q a ’ « =

and boundary conditions

Sqa(ti) = 0 , 6qa(to) = 0 .

Differential equations (3C.40) which amount to n + 1 , that is, 

d dEk dEk

(3C.40)

dt dq1 dqi
d dEk dEk
dt dq° dq°

Qi, i = l , . . . ,n ;

— Qo — Qo +  Ro,

(3C.40a)

(3C.40b)



are reduced to the differential equations in the extended form since it is clear that 
the kinetic energy is easy to set up aap known inertia tensor.

What is obviously adequate, for the invariable constraints’ systems in which 
all the generalized forces are equal to zero, is the principle of least action (3C.18) 
which can be, on the basis of (3B.5), brought into agreement with the preprinciple 
of existence.

For the systems with invariable constraints and with such potential energy Ep 
that the active forces are

(3C.41)

equation (3C.40b) is non-existent, while equations (3C.40a) are reduced to

d, dL dL
dt dq1 dqi

They are equivalent to principle 
If the natural Lagrange function

= 0 , (i = 1 , . . .  ,n). 

(3C.20).

L = Ek — E p(q ° ,q 1 , . . . ,  qn )

is added the function
V(q°) = -  J R0(q°)dq0,

which appears at constraints (3C.23) or (3C.29), that is, [44]

(3C.42)

(3C.43)

C = Ek -  (Ep + V), 

equations (3C.4) are reduced to

d dC 
dt dqa

that are equivalent to the principle

11
<5 J Cdt = 0 .

to

(3C.44)

(3C.45)

(3C.46)

This relation produces, in addition to equations (3B.42), one more equation, 
namely:

d dL OL
dt dq° dq° (3C.47)

C o n c lu s io n  1. The principle of action provides for the consideration of the 
mechanical systems’ motion by means of the energy functions if the non-potential 
forces are absent.



Principle of Action upon T*Af
The notation T*J\f here implies 2n + 2 dimensional manifolds which form n +1 

generalized coordinates q — (q°, q1, . . . ,  qn) and n + 1 generalized impulses p = 
(j>o,Pi, ■ ■ ■ ,Pn), meaning (1.25), that is (3A.39). Regarding the fact that p$zq E  
T*Af denotes the tangent manifolds, then the symbol T*M is called the cotangent 
manifolds. In the literature other terms can be sometimes found such as “phase 
space”, “state space”, “Hamilton’s variables”, or “cotangential spaces”. If the 
starting point is the fact that the motion state is characterized by the position 
coordinates of point q as well as the coordinates of impulse p, then it could be 
said that T*jV is the state of the system’s motion or state manifolds. Since N  := 
M n+1, T*M can also be called the extended manifolds if it is necessary to stress its 
difference from configurational manifolds M n and its respective cotangent manifolds

What is even more important than the term itself is the understanding and 
acceptance that po-Pi, ■ ■ ■ ,pn axe the impulses whose essence is determined by 
definition 2, that is, derived by formulae (1.25). At the same time, as can be seen 
from relations (3A.39) and (3A.42), there is a mutually linear combination between 
generalized impulses pa and generalized velocities qa:

The next step in considering the action principle upon T*Af implies the sub
stitution of velocities qa in the above-discussed relations by means of generalized 
impulses pp.

Action (3C.4) has, in its turn, just been defined by means of impulses,

T*M  [45], [49], [51], [59], [63].

P a  = aapq3 <=> qa = aai3p0. (3C.48)

because kinetic energy has the following forms:

(3C.49)

Hamilton’s action is expressed by the relation:

(3C.50)



where
H := Ek + Ep = -a^ppp-y + Ep(q). (3C.51)

If generalized forces Qa are separated into potential and non-potential Q*a, so 
that it is

_  _ dEp 
V“ dqa +

and if they are substituted in relation (3C.36), it is obtained that

tJ  [<5 ( paqa - H )  + Q*a6qa} dt = 0
to

Further, it is

tl

to

j  5 (paqa -  H )dt =

' .Q r .„ (d H  Spaq + padqa -  ( ----

tl
d H \

to

r dH . c 
i o  Spa +  — — Sqc 
\ d p a dqa

= PaSqa |£ + J
to

4 ~ W J  v‘“  + dr

dt =

d H \  r „' Sq° d t

Substituting in relation (3C.53), it follows

tl
pa5qa\\l + 8 H \

dPaJ)Spa + [ Q Z - p « - ^ ) * '5q°

It can be seen from formula (3C.-51) that it is

8 H
dpo =  a afllp p ,

so that, due to linear combinations (3C.48)

•a d H
Q = n- • uPa

Consequently, relation (3C.55) is reduced to

tl
PocSqa \̂ o + J  (Q a ~  P a -

to

d H \  „
dqa ) Sqadt = 0,

(3C.52)

(3C.53)

(3C.54)

dt = 0 (3C.55)

(3C.56)

(3C.57)



which is equivalent to relation (3C.39). Under conditions (3C.41), relation (3C.56) 
is satisfied if it is

Pa = - ~  +  Qa, (a = 0 , l , , . . , n )  (3C.58)

these being differential equations of the system’s motion; they, along with transfor
mations (3C.56), form the system of 2 n +  2 differential equations:

d ll  dH
tn  + Qh q = 7r - ’dql dpi (3C.59)

dH dH 
dq0 + Q o ’ q dpo’

(3C.60)

where, as in (3C.40b), Qo = Qo* + ^o-
In the case that Pi = 0 and Pq = 0 occurs, function (3C.51) can be extended 

to the total mechanical energy

E = H + V , (3C.61)

so that the system of equations (3C.56) and (3C.58), as well as (3C.59) and (3C.60), 
can be written in the canonical form:

Pa =

q =

dE \
dqa ’ I 

dE  f
dpc' )

a = 0 , 1 , . . . ,  n. (3C.62)

In the case of the system’s invariable constraints, when there is no rheonomic 
coordinate q°, equations (3C.60) vanish, while in equations (3C.62) indices range 
from 1 to n.

Conclusion 2. The principle of action provides for direct consideration of the 
mechanical system’s motion upon T*Af, as upon T*M, by the relations of the same 
type.

It is the action principle upon which the analytical mechanics, known also as 
Lagrange and Hamilton’s mechanics, has been developed.

Exam ple 12. Motion of a material point of mass m  upon a vertical con
straining smooth circular line of radius r, revolving at angular velocity cu around 
the central vertical axis [3].



Fig. 4

Let (?/i, 2/2? 2/3) £ -F be Cartesian coordinates starting from the center of cir- 
cumference 0, while axis Oy3 is directed vertically upwards. The spherical system 
of coordinates p, p, 9 is also introduced and placed in such a way that the circum
ference plane and plane y2 = 0 form an angle p. It follows from the problem that 
the material point is constrained by two constraints, namely,

f i  = p -  r = 0 , /2 = p -  u)t = 0 .

Lets denote q : = 0, q0 = ut, while the respective impulses are p and p0. 
Manifold M  is a circumference, while A'’ is a sphere.

Kinetic energy has the forms

Ek j  (yf + vl + vl) =
mr-2 , . 2 ,2 . 2
—  (q + q0 sm2 q) 1

2 m r2
Pi \

sin2 q )

since it is p — mr2q and p0 = mr2q0 sin2 q.
Potential energy is

Ep = -m gr{l -  cos q). 
Function H, accordingly, has the form

H =
2 mr2 p2 + - .^ 2  ~ mgr( 1 — cos q).sm q j  '

Differential equations of motion (3C.59) and (3C.60) are:

p=  po cos<? 
2m r2 sin3 q

Po = R0,

mgrsinq, Q = P
9 ?mr2

9o Po
mr2 sin2 q

as



3D. PRINCIPLE OF COM PULSION

In the related literature the principle of compulsion is also known as Gauss’ 
principle though the author himself did not considered it as a principle. The analyt
ical form of the Gauss' principle has been considered by many well-known scientists 
of classical mechanics. Without going into historical analysis, the concept of com
pulsion will be the first to determine here [17], [43], [48].

Definition 7. Compulsion Compulsion is a semi-sum of the products of 
mass m „ and squared acceleration difference

Z  d= -  
2

The previous formula for compulsion can be written in the form

(3D.1)

z  =  ^ 2  m v a * (3D.2)

where
h  +  F v F„a„ := ---------  = ----m u (3D.3)

accelerations of the i/-th material points caused by resultant force Fu.
Formulae (1.37), (2.12), (2.15) and (2.17) show that Fv are functions of position 

vector r, velocity r  and acceleration r. Since in finite equations of motion the 
position vector always appears as a function of parameter x  and time, it also 
follows that function Z  indirectly depends on these parameters and time, that is,

Z = Z(a(x,t)) (3D.4 )

The physical dimension of compulsion is

dim Z = M L2 T ~ 4 . (3D.5)

Function Z  satisfies the preprinciple of existence regarding the fact that mass, 
distance and time are existent, as well as the laws of dynamics and d e finit i o n  

(1.37) which determine the existence of the forces. The preprinciple of casual 
definiteness is satisfied with as much accuracy as parameters x  in function (3D.3) 
are accurately measured. Regarding the fact that Z, as can be seen from (3D.1), is 
a homogeneous quadratic form of acceleration, the invariance of compulsion under 
any regular coordinate transformation cannot be doubted. Consequently, there is no 
impediment from the aspect of the invariance preprinciple, either. The difficulties 
that arise in that sense should be looked for in mathematical skill. If at least



metrics and coordinate systems, considered together with definitions 1 and 3 are 
taken into consideration, function Z  can be written in the following forms:

2 Z  = Y  m " a *' • « i /  =  Y  rnvakue k ■ aluei =
V V
n  (3D.6 )

= Y m v S u a t a l  = atJala / .

W ith respect to the natural trihedron, forces F„ can be resolved as, for example 
(1.40a)

F„ = T I t  + T ^ n  +  T hvb (3D.7)

where r ,  n, and 6 , are orthogonal unit vectors controlling the tangent, normal and 
binormal. Thus compulsion again emerges as a sum of the squares

2Z = T 2t + T 2 + T 2 (3D.8 )

where

Analogously, each p-th vector F„ can be resolved by means of tangent pencil 
TUM,

dr
7T - G TUM  dqa

and respective vectors n ^ a, perpendicular to TVM:

f)
(3D.9)

By substituting expression (3D.6 ), after scalar multiplication at which it is

dr„
dqa ■ n ™ ~ °»

and by taking into consideration (3D.3), it is obtained that

2Z = aapaaa0 + ba0N'aN 0 (3D.10)

where aap and ba0 are coefficients of the given quadratic forms. All the above-given 
expressions for compulsion are represented by homogeneous quadratic forms of the 
coordinates of vector a which has a dimension of acceleration. In order to be applied 
in mechanics, beside stressing the statement that Z is a homogeneous quadratic 
form of a, and, that through acceleration it appears as a  function of parameter x



and time, it is necessary to reduce defined compulsion (3D.1) to clearer coordinate 
forms. Therefore, three descriptions should be distinguished by means of:

1 . orthonormal rectilinear coordinate system (y ,e ),
2 . curvilinear coordinate system (x.g), and,
3. configurational manifolds M.
In all the three cases Fu in formula (3D.1) is regarded to be a resultant vector

dvof all the forces acting upon the ;/-th point, except for inertia force I w = —m v—
dt

which is set apart by definition 4.

1. Compulsion in Coordinate System (y.e)

With respect to coordinate system (y,e), acceleration vectors are a„ = ykek, 
while forces are Fv =  yje?. (k,l = 1,2,3; v = 1 , . . . ,  N).

Substituting in formula (3D.1) it follows

N

2Z =  2 2  m" y^ek ~u=l

Y kek
m v

i Yiei
y„ei--------m u

\  m v mv ■ m vv=l

(3D.11)

If the notations are introduced: mzv- 2  — m-Sv—i = m3„; i , j  = — 2,3v

1,3u =  1,2, . . . ,  3iV as well as F j := it is obtainedm..

z  = \ h  (yl -  V )  (//' -  Y j )

= -  So??* + ^SijY iY j ,
(3D.12)

where 5,j = rriiSij.

2. Compulsion in Curvilinear Coordinate Systems
With respect to curvilinear coordinate systems that are in uniform correspon

dence with (y.e), that is,

yk = yk(x1, x2 ,x 3), ek = ^ g i , 1 dyl 
I dxk F 0 ,

and their simple substitution in relations (3D.11) or (3D.12), what would be ob
tained is:

/  Dxl Dx3 

\  dt dt
_ Dx1 _ . _ . 

- 2 X 1 - —- + X lX 3 dt
Z  --- di 72 3



since

V =
d y 1 D x i  
d x i  dt

_ V- r dy* dyj -  ^  m Jki .
!/=l

In order to understand better the subsequent particularities, relation (3D.13) 
will be directly derived from definition (3D.1). According to expression (1.30) it 
can be written:

dvu _  D xkv Fv _  - k
], —  j, Quk-i —  Quk-at at m v

Substituting in formula (3D.1), it follows

N

2 Z  = ^  m„
i/=i

N

rkDx
dt

- X 9vk (D ±l
I dt - X 9 v i  =

= £ TTli/Qi'k ' 9i-'l
v=l

(D x t
\  dt

- X D xl
d t

- X

or if the indices are used, as from (3D.11) to (3D.12), relation (3D.13) is obtained 
where

drv drvij 'y  ̂mu9vi ' 9vj
v=l E</=i

mv dxi dxi

Therefore, if the motion of the system of N material points is observed, in 
which the constraints are abstracted by the forces so that every point is viewed as 
“free” - at which every vector can be resolved into three components, compulsion 
Z  is described by forms from (3D.12) or (3D.13), each with 2>N quadratic addends

' Dxof acceleration (y — Y) or
dt

-  X

3. Compulsion in Generalized Systems of Coordinates
With respect to independent generalized coordinates q £ M n, n < 3N, the 

acceleration
du = dt \d q adT" r  i =

B2r v o dru ,.a
W d r q q +

(3D.14)

has a complex coordinate structure. Tangential pencil TVM  of vector on the basis
dvis

9 (»a :== is no  ̂ sufficient enough to be used as a means of resolving the
acceleration vector. The vector

^9{v)a _  F 7
dqP Fap9(1̂ )7 d" ^il/) (3D.15)

in the general case, it does not belong, as a whole, to pencil T„M ; instead, at 
every z/-th point, it also possesses a component perpendicular to TUM;



If vector n v is also resolved as n„ = Substituting expression (3D.15) in
(3D. 14), it is obtained that

a v = (V  + r Ip P p 'j  + b(u)al3qaq0n nudqi
D p  drv
dt dq'<+ ba0qaqp x jv)n {l/)y.

(3D.16)

F„By means of base vectors g (^ )7 and T](u), vector ----- , should also be resolved:mn xl
Fv dr„ dr
—  = Q s~z + FNn v = Q7rriv ocp

civ
Q ^ + F N^ v)n M ,.  (3D.17)

This provides for writing compulsion in the coordinate form. Namely, by 
substituting relations (3D.17) and (3D.16) in (3D.1), it follows:

1 N
m v

t/=i
N

D p
- O f

= 5 E
y = l

N

dt

Orv dry (  D p

dry
dqi + (bafjpq13 -  Fn ) x lv)n {v)l

" - 5 F Š ? ( 5 i - - e ’ )

+ Y  rnv*\V):Ay)n b')7 ' n (-')s (bapqa<i;3 -  f n )‘
v—l

_ 1
— yO"iS

D p
dt - o r

Dq5

dt Q5 ) + naW'

where
E drv dry

m " d p ; - d P '
inertia tensor

while

= {ba0p p  ~ F n )2 ,

N

y — \

N

* [ v ) >C( v ) n { v )7  ' n ( v ) 5  

N

(3D.18)

(3D.19) 

(3D.20)

(3D.21)

— ’̂ / m {y):i<ly):H(y)b(y)1 6 — m(id X(v'r
U= 1

By comparison to relations (3D.13) and (3D.12), it can be noticed that the 
formal side of compulsion is:

Zm = -a a0
Dqa _ n A  (£ p _  _dt v  A  dt Q n  =

1 ^ D* - Q , 5 £  + U * c r Q ’ .

(3D.22)

“  2 aaf3 dt dt dt



This is exactly compulsion upon manifolds M  and as such, it is sufficient, to 
consider motion in the same way as described by means of energy (3C.38) upon 
M n and M n+1.

Compulsion (3D.18) has both a quality and a quantity more

Zn  = \a 2N = y  (baf}qaq0 -  Fn f  , (3D.23)

then compulsion (3D.22) that can be interpreted as compulsion of motion upon 
TM  and T M n+1.

Compulsion Z = Zm + Zn is equivalent to compulsions (3D.13) and (3D.12). 
But, if it is desirable to describe it only at configurational manifoldness, it is suffi
cient to consider respective function (3D.22). Due to the difficulties with determin
ing factors x v in expression (3D.21), the determination of compulsion ZN should 
be done in a somewhat more accessible way for particular forms of constraints.

Formulation of Compulsion Principle
Compulsion upon real motion is the least.
In other words, function (3D.4) has the least value at differentially small 

changes of parameter xr. The mathematical relation of this principle is very simple, 
namely:

SZ =  0, (3D.24)

or, concerning function (3D.4), as well as (3D.2), and similarly to

5 Z = y  ^ - d a v = 0. (3D.25)
u da-

Consequently, the compulsion principle can be also formulated by the following 
sentence:

The first variation of compulsion with respect to acceleration is equal to zero.
Relation (3D.25) is satisfied for

w— = 0 (3D.26)dav

The same equations follow from the expression “compulsion is the least” . 
Namely, it can be seen from function (3D.2) that Z  is a positively definite qua
dratic coordinate form which is the least and equal to zero only if a„ = 0 for every 
v. The same is obtained from equations (3D.26), while the opposite is obtained for 
all av = 0 — > Z = 0.

On the basis of this principle of mechanics as well as the three previous ones, it 
is possible to develop the whole theory about motion of a system of material points. 
This can be shown by the relations recognizable from the previous discussion of the 
other principles.



Relation of Compulsion Principle 
with Respect to Coordinate Systems

Coordinate System (y,e). With respect to orthonormal coordinate system 
(y, e), motion of N  material points of mass m under the action of active forces F'v 
and k  geometrically ideally smooth bilateral constraints is observed:

U ( y l ,  v l ,  v l )  = o, (y = 1, - - -, N)- (3D.27)

Compulsion has the form (3D. 11).
The accelerations existing in the expression for compulsion are conditioned by 

the equations:

(3D.27a)

In accordance with the principle, the first variation with respect to acceleration 
j/£ of compulsion (3DG.11) is:

N
d z

N

s z  =  E  ( si -  s b ) J»; =  °,
u 7/—1

(3D.28)

while respective constraint variations (3D.27) are:

N

!/= 1

By introducing k  indefinite multipliers of constraints Ayl, it follows:

(3D.29)

N

SZ = ^  Ski W  = 0.
/ X = l

dy„i
(3D.30)

It is equivalent to equations (3D.25) or (3D.26). Relation (3D.30) can be 
written in a shorter form:

N

£
i

(3D.31)

Consequently, the differential equations of the observed system are:

8 Z
dy* M=1

V a ^ = 0. (3D.32)

Together with k given constraints / M =  0 are necessary and sufficient for 
problem-solving. The same result would be achieved if the given constraints were



abstracted by constraints’ reactions (2.9), (3.22). In that case, compulsion would 
be

Fu + Ft,
(3D.33)

while relation (3D.3)
Iv + Fv + R vCLu — m v

Equations (3D.26) would be reduced to (3D.32) while care should be taken 
about the difference between Z  and Z*.

As for mechanical systems that, in addition to holonomic constraints / M = 0, 
also comprise non-integrable (non-holonomic) differential constraints

Va{yv,yv) = o, a = 1, 2, .. .  ,1 < 3N -  k. (3D.34)

The problem may be observed as in relation (3D.33) while additional knowledge 
about reactions of constraints

i
Ftv(ip) 'y ^

M=1

is needed.
Let, as in the previous consideration of compulsion functions (3D. 11), the 

variation of binomic constraints’ acceleration conditions be (3D.29).
The conditions for acceleration of constraints ipa = 0 are

^ = Eu= 1

while the respective variations are

N N
d<fo

V= 1 dyt
o.

(3D.35)

(3D.36)

Following the previous method of indefinite multipliers Xa, an extended rela
tion (3D.31) will be obtained, namely,

TV

E dZ
dyi

k
E a
V= 1

dU
‘"dyt E Act Syt = o. (3D.37)

Curvilinear Coordinate System (x,g). First of all, it should be stressed once 
again that our initial or base coordinate system is system (y , e) for which equations



(1.12) are valid. Let’s also repeat that coordinates y l ,y 2 ,y 3 of the i'-th point 
can be substituted by coordinates xj, , x2, x3 of some other curvilinear coordinate 
system. Due to a multitude of possible coordinate systems these 31V coordinates 
x = (x^,x2 ,x 3) =  (x1 ,x 2, . . .  ,x 3N) form configurational manifolds M 3N-, each 
coordinate x £ is directed by coordinate vector g^)k(x) whose pencils at particular 
points are denoted by TXM 3N.

By substituting y = y(x) in Z(y) the compulsion of the system with N  material 
points is reduced to formulae (3D. 13). By the same substitution, constraint / M(y) = 
0 is transformed into invariant form

f fj .{y')y—y(x)  / m ^i/)

while relations (3D.27a), regarding (1.30) and (1.32) are reduced to the form:

N
/» = £

f  dyj dyl .r . d f^ d y ^ D x

V—l \dy£dyl dxr„ dxsv dyk dxT„ dt = 0,

or, by means of the changed indices, to the form

. . B f  D r i
= +  =  0 (3D.38)

The variation with respect to acceleration is

« / ,  = = 0.M da1 da1 dt (3D.39)

These relations are equivalent to relations (3D.29) since it is

, x f  dyj Dxl \  __ dyJ Dxi 
11 V&r* dt )  d x 'd dt

dyi
dx rd a \

In order to eliminate variables of acceleration in the equations (3D.39), indef
inite multipliers should be used as in relations (3C.51) to (3C.54).

The compulsion variation (3D. 13) with respect to accelerations has the form:

dZ ( D ±i ^Dx1

dt



Qij dt x * 5  dt ~ 0, (3D.41)
1 /

f f ^ - E v § ^ W  = 0.^ dx1 J (3D.42)

A view of relations (3A.27) and (3D.41) points to the conclusion that the 
differential equations of motion (3D.32) can be written in the curvilinear coordinate 
system in the same form:

^  _ V  A 0Bni 2 ^  ~  uda1 ^  M dx
m=i

(3D.43)

Dx1
where a1 = ——  are coordinates of the material points’ acceleration.

Under action of non-holonomic constraints (3D.34), beside constraints f ^ x )  = 
0, it is necessary to substitute y coordinates in equations (3D.35) or their variations 
(3D.36) by means of x coordinates so that it follows that:

y '  dip* dy* s Dxlv =  dyy dyj Dx' 
—[ dy'l dx'v dt dyi dxi dt (3D.44)

[ D x*
= Ki.S ( —j y  1 =  bai6a1 = 0

Multiplying by \ a, summing up with respect to a and making equal the same 
sides of equations (3D.44), (3D.42), it is obtained:

 ̂ H= 1  a=l /
(3D.45)

This relation is always satisfied for the motion whose differential equations are:

k p idZ
da* E  A" dx* + E  XJ>a (3D.46)

M=i (7— 1

Principle of Compulsion Generalized Systems of Coordinates. With re
spect to the generalized independent coordinates, compulsion (3D.1) is reduced to 
the form (3D. 18), that is,



where aap(m , q) are inertia tensors upon M, aa are acceleration vector coordinates, 
Qa are generalized countervariants of the forces’ coordinates, while a2N is double 
compulsion Zjsr determined by expression (3D.20); the indices denote ordinal num
bers of the generalized coordinates.

In order to describe motion upon manifoldnesses M n, M n+1; T M n and T M n+l, 
as is described by work principle (3C.92) or action principle (3C.34), it is enough 
to observe compulsion upon manifoldnesses (3D.22), that is

Z m  =  \ a a p  (a“ -  Qa) ( a ?  -  Qa) =

= ^aapaaa0 -  aa0aaQ0 + ~aa0QaQ0.
(3D.48)

where the indices go from 1 to n if the geometrical constraints are invariable, while 
they go from 0,1, . . .  ,n, if the constraints are explicitly time-dependent.

The compulsion law is simple in this case:

SZm = v r— Saa = aap(aa — Qa)Saa = 0dac (3D.49)

Regarding the fact that all variations Saa 
Sa° are equal to zero, that is,

9Zm
daa = 0

are independent, coefficients with

or
t 3  /~\3\ D q paa0 {ap ~ Q^) = aa0 ~^j- -  Qa = 0, (3D.50)

and these are differential equations of system’s motion (3D.56).
Accordingly, the compulsion principle produces a new form of differential equa

tions of the holonomic systems’ motion upon TM by means of compulsion

8 Z
daa = 0. (3D.51)

As for the systems with constraints (3D.34), what is important for this principle 
are the acceleration constraint conditioned by equations (3D.35) so that the change 
of principle (3D.49) requires the substitution of yl = y%(q) by means of generalized 
independent coordinates q in equations (3D.35). Therefore,

dy* 9yl -a ,

9 y % (q) 9 q a q

9<Pa dyi a
dy% {q) dq*a

= 0.

Since the expression with accelerations is important, these equations should 
be written in the form



where the notations are introduced

,a
8 yl dqa ^ 
d<Pa dyi

dyl\v{q) dq“ •

(3D.53)

Hence, variation (3D.52) with respect to the acceleration variations has the
form

Caa8aa = 0, <7 = 1 (3D.54)

The same acceleration variations exist in equation (3D.49) as an expression 
of the compulsion principle. The dependent variations from equations (3D.52) are 
eliminated in two ways, namely,

1. by means of indefinite multipliers of constraints Xa,
2. by substituting dependent variations from equations (3D.54) into (3D.52).
By the indefinite multipliers’ method the equations (3D.54) and (3D.49) are 

reduced to

^ gaa ~ Sa = 0. (3D.55)

In that case, the motion equations on the right side obtain, instead of zero, 
generalized reactions

Ra = Y ^ X°C<ra, (3D.56)
(7=1

so that, together with l, equations (3D.52) provide for solving the given problem.
The method of substituting the dependent variations by independent acceler

ation ones is not, in essence, more complicated. Equations (3D.54) are extended, 
for the sake of greater clarity, in the following way:

CioSa0 +  CuSa1 +  • • • +  C\k8ak =  —Cia'5aa

(3D.57)

Cko5a° + CkiSa1 + • - • + Ckk8ak = —Cka'8aa

a' = k + 1 , . . .  ,n

or, even shorter,
Caa"5aa =  -C aa' 8aa . 

For 11 Cera« || ^  0 it is obtained

(3D.57a)

da7 = - C CT7 Caa>5aa = - B 1, SaaQ'



where Cai is inverse matrix Caa' .
If these solutions are substituted in (3D.49), it is obtained that:

d z  .  a , d z  .  a7Sa + —— 77 dada1 0 a° da da°

Regarding the fact that n + 1 — l variations 5aa , are independent n + 1 — l 
differential equations of motion, freed from the constraints’ multipliers, arise that 
is,

(a' =  l + 1 , l + 2 , . . . ,  n +  1 -  l; a" = 1 , . . . ,  l).

There are n + 1 — l of these equations for the rheonomic system and n — l for 
the scleronomic system. On the other hand, that there are n + 1 + l equations

—  -  V a C (3D.60)

originated from (3D.55) for rheonomic and n + l for scleronomic system. A system 
of l constraints’ equations (3D.34) should be also added to the system of equations 
(3D.60).

Equations (3D.59) in the extended form, with no compulsion functions (3D.48) 
or (3D.47), are easily reduced to the recognizable form:

:'P K  -  Qp) -  B Ž 'aa»f) (ap -  Qp) =

-  Qa- -  ( a a. . p ^  -  Qa„ ) = 0.dt
(3D.61)

Conclusion 1. It is sufficiently clear from the motion equations of mechanical 
systems (3D.60), (3D.59), (3D.51), (3D.46), (3D.43) and (3D.32) that the compul
sion principle is not less operative in the coordinate description of motion than 
other principles of mechanics - or even more operative in its application to the 
non-holonomic constraints’ systems.

Besides, this principle points to existence of compulsion (3D.23) which is per
pendicular to the tangential manifoldness and thus to the accelerations in TM  as 
well as Tj\f. This is easy to show. Namely, principle (3D.25), applied to compulsion 
(3D.18), gives, beside equations (3D.51), another equation:

d z

daN = aN = x(bapqaq3 -  FN) = 0. (3D.62)

Final Commentary On Compulsion Principle. It has been noticed that all the 
given equations, obtained by partial differentiating of function Z  with respect, to 
a*, can be obtained in the same way by partial differentiating of compulsion Z



with respect to countervariant coordinates Y \  X 1 or Qa. This is here brought into 
accord with equations (3D.26), since, as can be seen from (3D.3) and (3D.17), Qa 
are generalized accelerations. Because of this, a more strict application of relation 
(3D.25) to compulsion (3D.48) reduces to:

SZ =  i aa/3 (a0 -  Q0) Saa + ~aap (a“ -  Qa) Sa0~

-  ^a a0 (a? -  Q0) 8Qa -  l- a af) (a“ -  Qa) 5Q0 =

= aap {a0 -  Q0) (5aa -  8Qa) = 0.

Any discussion that excludes the case that it is 

Doa
K ~ j f )  = SQa, or 6y = 8Y  

leads to the previous results, as has been done.

Excerpta about the Principles of Mechanics
The principles of mechanics are statements of general significance, formed by 

means of the introduced concepts and definitions of mechanics, whose truthfulness 
is not subjected to verification. Each principle on its own can serve as the basis for 
developing the whole theory of mechanics.

P r in c ip le  o f  E q u ilib r iu m . The sums of all the forces acting at particular 
dynamic points are equal to zero:

£  f„„ = o.
M=1

P r in c ip le  o f  W o rk . The total work of all the forces upon possible displace
ments is equal to zero, while, for the system of unilateral constraints, it is equal or 
less than zero:

y  • a t v  <  o.

P r in c ip le  o f  A c t io n . The integral of the sum 8 E k  +  5 A ( F ) ,  calculated on 
real motion for the time [to,fi], equals zero, i.e. :

rJto
(8Ek + SA(F))dt = 0.

P r in c ip le  o f  C o m p u ls io n . The compulsion variation with respect to accel
erations is equal to zero:

O ry

5Z = y ~ 8aa = 0. daa
0g



IV. TH E O R E M S  OF M ECHANICS

The concept of theorems of mechanics here implies a mathematical assertion of 
general significance about material systems’ motion whose truthfulness is proved on 
the basis of preprinciples, principles of mechanics, basic and consequent definitions 
and laws of d3mamics.

The theorems of mechanics are used to effectuate the principles of mechanics.

The theorems, as consequential assertions, should satisfy the preprinciples.

Theorem on Motion Impulse Change
The natural derivative with respect to time of the generalized impulses of the 

mechanical system of constant mass are equal to the generalized forces:

Dpa
dt =  Q a (4.1)

Proof. By the basic definition 2 and relation (3A.39), the generalized impulses 
are defined. The differential equations (3C.56) follow from the equilibrium princi
ple. Since it is

Daa@ _^
dt

for the mechanical system of constant masses, it is

D cf D ,
~ j t  (aa0q>

-
DPa
dt Qo

as claimed by the theorem.

Lemma 1. The natural derivative of the impulse of the rotary motion constant 
mass system, measured by angular change, is equal to the moment of forces.

Proof 1 . From the elementary work definition (3B.15) it follows that the gen
eralized forces for dimensionless and angular coordinates have the dimension of the 
moment of forces

ML2T“ 2 = dim <2

so that Theorem on motion impuls change confirms the lemma.



Proof 2. On the basis of the equilibrium principle, the concept of the moment 
of force is derived (3A.63). Respectively, for the rotary motion of the z A -th  particle 
of mass A m v, firmly attached to some fixed point 0 that belongs to eigen axis u 
of the rotary motion, the moment of inertia force is derived. Following expression 
(3A.63), the moment of inertia force

has the form:

I„ = -A m , dvu
dt

, T . . dv it d , d .
- m { I v) = r„ x  A m v—— = 7 V  X — ( A mvvv) =  —  (r„ x A m„vu).dt dt dt

On the other hand, for |r„| =  const, vv = oj x ru, it further follows that it is:

-9Jlv(I„) = ~  [Am„(TV x (u> x r v))\ =

= ^  [Am v [(u>(ru ■ r v) -  r v(rv • w))] = 

=  J t  [Am „ [ r t u p B j  -  y * e k (6i j y i u j j )]]

(4.2)

since it is r u ■ u> = yfei • ohe, = Sijyluioj .
If vector (4.2) is projected upon the coordinate axes, it will be obtained that:

■ ei =: an(„)j

dt ViHVuj^) ] —

= ic w h  =

(4.3)

where
P vi  ^”(v ) i j ^  (4 -4)

are impulses of motion of the v-th particle with respect to orthonormal coordinate 
system (y,e).

Returning projections (4.3) into equation (3A.58), Lemma 1 is obtained, by 
which it is:

d̂ = m { F v). (4.5)

E x a m p le  13 . The lemma's application to the description of the rotary motion 
of a rigid body of constant mass around a fixed point.



Fig. 5

For each i'-th tiny part of the body equations (4.5) and (4.4) are valid, where 
indices i, j  =  1, 2,3, v =  1, 2 ,__ If the part’s impulses (4.4) are added as parame
ters for the same i-th axis, it is obtained that

Pi =  V Pv-L = V  Am^irlSij -  yviyvj)u>3 = XijV3 (4.6)

where
l i j  = ^  -  VviVvj) (4.7)

is

is inertia tensor.
On the other hand, the principal moments of all the active forces with respect 

to the coordinate axes are
m , : = ^ 9 J li{Fv)

IS

so that, for the observed rigid body, it is obtained

f  = | ( W ) = ^ ;  («>

These are differential equations of a body’s rotary motion around a fixed point 
with respect to the fixed coordinate system.

Further extension of these equations, at first glance, opens up a question of 
derivatives with respect to time of inertia tensor (4.7), since the previous equations

= mdt 3 dt (4.9)

obviously comprise derivatives with respect to time . Let’s find their analytical 
meaning. For now, it is assumed that masses are constant. In the sum

— U)3 = + i \ 2Ul2 + Xi3W3dt (4.10)



the derivatives of the inertia tensor coordinates are:

=  ( X] 2 +  v i z )  =  2  E  A t o c ( i/ c 22/c2 +  VuZVuz) =

I n  =

±13 =

2 ^  Am„ [j/„2 (žM^3 -  y^w 1) + Uiys ( y ^ u 1 -  yviw2)] =
V

2 / 21W3 — 2/3io;2;

E
V

A  mv =

E
V

A  m v [( V v z u 2 ■-  Vv2 ^ 3j) y v  2 +  V vi (V v l ^ 3 -  Vv■3-1)] -

E
V

A mv { v W  - ■ vlz^ 3) + ^2 A m ‘
V

/ (yv3 V v2U 2 -  y v iV v 3 u x)

E
V

A m „ =

E
V

Am,, [{V v3 U 2 -~  V v 2 ^ 3]) Vv3 +  y v \ {v v 2 ^ 1 - ■i-2)] =
E A ra„ { y W  - v W ) +  ^ 2 / { y v \V v2u -  yv2V v3U 3)

 ̂ 1/

(4.11)

By the cyclic change of indices 1,2,3 —>■ 2,3,1 —> 3,1,2 it is easy to obtain 
derivatives of the other coordinates of inertia tensors I 2 j and I z j .

Substituting in (4.9) equations (4.8) obtain the form:

=  IijUJ-i +  (X33 — l2 2 )w 2U'’3 +  X2itn1u,'3 —

X3 -{- X32(u2cj2 — X23Cti3u.’3 =  93ti,

—r— = J2jd;J 4- (h i  — Xss)^;3̂ ;1 + X32W2o;1 — 
dt (4.12)

— X i2C0 3u>2 + X i3 ca3o;3 — X31 udu,’3 =  OT2,

^  +  (X22 — I U ) w V  +  X13Cj 3uj2 —

— X 23U:3CU3 +  X 2 i O>̂ lU  ̂ — X i2 U i2Ui2 —  9JI3.

When these equations are applied to engineering practice, namely, when they 
are applied to the models of body’s rotary motion, it is important to consider the 
fact that there are derivatives of inertia tensor coordinates (4.7), X,7(y(f)), with 
respect to time (4.11).

The differential equations of the body’s rotary motion are considerably simpli
fied if it is possible to attach a moveable coordinate system (z, a) to this body. With



respect to this coordinate system the inertia tensor coordinates are constant. By 
choosing the coordinate origin in the inertia center, and by orienting the coordinate 
axes along the inertia axes the values X.l3 vanish for i /  j , while la ,  is reduced to 
the central and principal inertia moments X\ , X2 and X3 If in the moveable coordi
nate system the angular velocity is denoted tt = 0.Lat, the differential equations of 
the body’s rotary motion around the inertia center is reduced to well-known Euler 
dynamic equations:

^  = h t l 1 +  (I3 -  J 2)Q2f]3 = OTj,

~  =  x 2n 2 +  ( h  -  x ^ t f n 1 =  m 2 , (4.13)

^  =  x 3n 3 +  (x2 -  x ^ n 2 =  m 3.

At the same time, it is assumed that there is an explicit constraint between 
the coordinates

yl = ljZ J z1 (4.14)

where coefficients 7 * appear as time functions.

Theorem on Kinetic Energy Change
Definition 5 has introduced the concept of work (3B.1), while concept of kinetic 

energy is consequently introduced as negative work of inertia forces (3B.6) and 
(3B.7a) of the material point of constant mass upon given motion. Work change 
with respect to time (3B.14) is called power. These concepts are sufficient for 
formulating the theorem on kinetic energy change with respect to time. The phrase 
“change with respect to time” mathematically represents a natural derivative with 
respect to independent variable t\ [44], [64],

Theorem. Kinetic energy change of the system of material points with con
stant masses that forces Qa act upon, with respect to time, is equal to power P of 
these forces, that is,

dEk
= P = QaQ ■ (4.15)

The same theorem can be expressed in the following way: The natural deriv
ative of kinetic energy of the system of material points with constant mass, with 
respect to time, is equal to power.

Proof 1. Multiplying differential equations of motion (3C.40) with qa and 
summing up with respect to index a, it is obtained that

d (d E k \ dEk dEk ,a
dt W q ) -rrr-q - 

8 qa ~ — 9 = 8 qa = Qaqa

dEk .a dEk ,.Q , dEk dEk
dqaq - 2Ek’ dqa + ^ — 9 dqa dt



while
Q aqa =  P,

the theorem on kinetic energy change (4.15) is proved.
Proof 2. Kinetic energy of the mechanical system is determined by one of 

formulae (3B.7)

Ek = h H  m"vl (4.16)

The derivative with respect to time, regarding relation (3A.4) is

that was to be proved.
Proof 3. Kinetic energy is represented by formula (3C.49) that differential 

equations of motion (3C.58) and (3C.56) correspond to. Generalized forces (3C.52) 
are formed by a sum of the generalized potential and non-potential forces. Mul
tiplying equations (3C.58) by generalized velocities qa, while equation (3C.56) is 
multiplied by the derivatives of impulse pa , and by summing up with respect to a 
it is obtained that:

• -a . dHpaq = pQ-dpa

p-9“ =  - a ^ 9 “ + W

The difference between equations (4.17) and (4.18) is

I - P a  + qa -  Q*aqa =  0opa dqa

If expression (3C.51) is taken into consideration, that is,

H = Ek(q,p) + Ep(q,t) 

as well as (3C.52), it follows

dEk . , dEk .
- P adpo

or

dqa

dEk
dt

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

= Q aqa =  P

as desired.



Change of Hamilton’s function
Lemma 2. If potential forces do not explicitly depend upon time, the derivative 

of Hamilton’s function H(q°,q1, . . .  ,qn;po,Pi, ■■■ ,pn) with respect to tim et is equal 
to the power of non-potential forces [62].

Proof. Equation (4.19) confirms the previous statement since it is

dH
dt

(4.22)

Lemma 3. Change with respect to time of Hamilton’s function H of the 
potential system with variable constraints is equal to the power of constraints Rq, 
that is,

dH
dt = Ro (4.23)

Proof 1. In accordance with equations (3C.40b) and (3C.60) for potential 
forces, it is Q* = 0, i =  1, , . . ,  n, while Qq = Qq* + R0 = Rq, since it is

so that the right side of equation (4.22) degenerates into

Q*aq° = QoQ°,

that is, when for the rheonomic coordinate it is taken that q° = t,

Q*aqa = Ro,

which proves Lemma 3.
Proof 2. If each equation (3A.25) is multiplied by respective velocity vector v v 

and summed up with respect to index v , it is obtained:

grad„ / M • vv
V V V [l

For potential forces Fv = — grad„ Ep{rv) and the velocity conditions upon the 
constraints

d
dt

+ grad„ Ep ■ v v
v

the previous equation is reduced to

d
dt m vv v + grad„ Ep ■ v v



On the basis of relations (3A.54) and (3B.7) for q° = t, it follows from the 
previous equation that it is

s < £‘ + E-) = f  = * ”' (4.24)

which is exactly Lemma 3.

Theorem on Mechanical Energy Change
By formulae (3C.43), (3C.51) and (3C.61) the total mechanical energy of the 

potential rheonomic holonomic system is defined by the formula

E = Ek{q,p) + Ep(q) + V{q0)- (4.25)

Theorem. Change with respect to time of the total mechanical energy (4.25) 
of the system with constant masses is equal to the power of non-potential forces F *, 
that is,

i/=i
(4.26)

Proof. For Q* ^  0 and formula (3C.43), according to which it is

i?o =
dV (4.27)

differential equations (3C.62) comprise additional forces Q*a,

(4.28)

(4.29)

If equations (4.28) are multiplied by velocities qa, while equations (4.29) are 
multiplied by pa and added with respect to indices a, the following two equations 
are obtained:

Pa  =
dE
dqa +  Q*a

dE
dpa

paqa

q P a  =  J,-----PauPa

BF1 

dE  .

Their difference is



that is
(4.30)

which proves Theorem (4.26).
Corollary. In the systems of constraints that do not change in time, all indices 

range from 1 to n (i = 1 , . . . ,  n), instead of from 0 to n (a = 0 ,1, . . . ,  n)\ at the 
same time, additional coordinate q° and respective force or power R0, as well as 
rheonomic pseudopotential V vanish.

The concept of controllability of motion implies the possibility that the mechan
ical system motion is realized according to a given program under the compulsion of 
special generalized forces. Motion-controlling forces Ua are here considered as gen
eralized forces of controllability. The phrase “motion control” implies the process 
of realizing a given or programmed motion. Programs can be of great variety. This 
study includes the program of pathways and the program of velocities. In setting 
up and making a motion program, the coordinate system that mechanics is based 
on should be the starting point. For the motion upon the derived manifolds it is 
also necessary to know and take into consideration the relations of their generation. 
The motion upon (2n + 2)-dimensional tangent manifolds TAf or their equivalent 
manifolds of the state T*Af will be observed further on.

The pathway program upon Af = M n + 1 can be given by one or many functions

As can be seen, the program relations are similar or equal to the ideal con
straints’ relations. Therefore, further problem-solving can be considered as condi
tioned (“constrained”) motion of mechanical systems.

A system of material points of constant masses would be forced to move ac
cording to program (4.31) and (4.32) upon the manifolds TAf whose inertia tensor 
is aa0(q°, q1,..., qn)\ the system is acted upon by natural active generalized forces

By using any of the previously mentioned principles, in addition to conditions 
(4.31) and (4.32), the differential equations of motion will be achieved

Theorem on Controllability of Motion

f ( q ° , q \ . . . , q n ) =  0 ,

while the velocities program upon TAf

V { q \ q \ . . . , q n , q \ q \ . . . , q n ) = ^

or the impulse program on T*Af which is equivalent to them 

y>*(<7°, q1, • - • ,9n;Po,Pi, • • • ,Pn) = 0.

(4.31)

n -0 -1 (4.32)

(4.33)

Qa.

(4.34)



if programs (4.31) and (4.32) are abstracted by forces U0,U i ,. . . ,  Um, m < n; or

D (f d f  dp
aa/3—  - Q a + A—  + p — ,dt

0, (4.35)

<p(q ,q , ■ ■ ■ , qn ,q ,q , ■ ■ ■ ,qn ) =  o,

if the system of equations includes equations (4.31) and (4.32).
Condition /  = 0 necessarily satisfies all the conditions of velocity and acceler

ation which means that the first and second natural derivatives of scalar function 
f are equal to zero:

£ f
dt

df_
dt f  =

f  =
d2f

dqadqd qa<f + 9 / a s = j q _
3qd dqddq0

qa<f +  = o

or
d f  DgP
dqP dt

d2f
dqd'dqa q0qa =

H r *  d2f  \
dqt> dqa d q d ) qaqP = Gayqaf

where GQ7 is the expression in brackets.

(4.36)

After determining A and //, their substitutions in relation (4.35) and compari
son with (4.34), the controlling forces are obtained.

Velocity program (4.32) should satisfy the acceleration condition

dp dp Dq°
dt dqa dt

-  Ecnqa( f  = 0

where Eal = 

Substituting
D ip

dt ~ ' ” dqa ' '"<)q
From relations (4.35) in (4.36) and (4.36a), it follows

df_
dqP1

dp
W '

a/3

a0

Qa +  x W  +  iXw )  ~ Gq7<̂

+ Xdcp + = E<^qaq(i-

(4.36a)

(4.37)



There are as many equations as unknown multipliers A and //; thus, they make 
up a solvable linear system:

BnX + B 12IJ. — C\ 1
B2 1X + B22H = C2 J (4.37a)

so that it is obtained
Ua = X ( q ,q ) - ^ + ^ { q ,q ) ^ .  (4.38)

Therefore, in order to make the system move upon manifold N  according to 
program (4.31) and (4.32), the controlling forces should primarily satisfy relations 
(4.38); then, force Ua with respect to quantity ||[/a || should be greater than natural 
generalized forces ||Qq ||, that is

\\Ua\\ > ||Qa||. (4.39)

if forces Ua control the motion opposite to the motion direction under the influence
of Qa-

In the way analogous to determination of the constraints’ reactions, controlling 
forces Ua can be determined in the function of positions q and q if the program is 
given by means of relations (4.31) or (4.32).

In this way the needed controllability conditions of some mechanical system 
are derived. In other words, it is possible to calculate, with respect to formulae 
(4.37) and (4.38), what force - and how large -  is needed to make a body move along 
a given pathway or to increase or reduce its motion velocity. What is, therefore, 
needed to control motion, in addition to conditions (4.31), (4.38) and (4.39), is 
the existence of sufficiently large controlling forces U in order to make the system 
controllable. The above-given assertion is expressed by the following controllability 
theorem.

Theorem. The mechanical system motion is controllable according to a pro
gram given in advance if there are such controlling forces of such magnitude, depen
dent upon the program parameters, which are by their absolute value greater than 
other respective active forces if the controlling forces direct the motion opposite to 
the motion direction under the influence of other forces Qa.

Recognizable Exam ple 14. Let’s determine force U that can control the 
motion a weighty material point of mass m in vertical plane z = 0 according to the 
program:

f{x ,y ) = y -  |a r  -  h = 0 

ip{x) = x — c = 0

where g is the Earth’s gravitational force acceleration, while h and c are given 
constants.



The differential equations of motion are:

mx = — X gx + y  = Ux 
my = —mg + A = —mg + Uy.

Equations (4.37) for the given example are:

A .9 qx .,—g H------- gx2 H------(A32; -  /r) = 0m m
—Xgx + n = 0 — * fi = A gx,

A = mg(l + x 2) = mg(l + c2).

According to relation (4.38), it is further obtained that:

Ux = —Xgx + fi = 0,

Uy = A ^  = mg(l + c2)

Therefore, force Uy = mg(l + c2) can be used for realizing the given motion.
A simpler problem states that, instead of the program, the controlling forces 

are given in an analytical form, without limiting their magnitudes.
Limited sets of controlling forces are more often present in engineering than 

unlimited ones.

Exam ple 15. Let’s put into motion and direct a material point of mass m 
from the rest state by controlling force U  = (U\, C/2, C/3 ),

U\ = U cosaq, U2 = U cosa2

U3 = U cos 0 :3 , |£/| = 1,

along the pathway to which point M (l, 2 ,3) belongs.
For 0 < Q3 < ^ the controlling forces are larger than the active ones. The 

differential equations of motion are:

mjji =  cos Qj.

If the initial position from the rest state is taken to be the pole of coordinate 
system (0 1 /1^22/3)5 the finite equations of motion are:

thus the pathway equations are

Vi

COS CXi 9yi = -------t2,y 2 m  ’

2/2 2/3
COS Qq COS 0.2 COS « 3  '



while, at the same time, it is necessary to satisfy the conditions: 

1 2 3
cosai cos OL2 cos Ct3 0 < a 3 < 2 ’

cos2 aq + cos2 «2  + cos2 a 3 = 1 .

Lemma. The motion T*J\f of the mechanical system with constant masses 
is controllable according to a given program if there are such controlling forces of 
such magnitude, dependent upon the program parameters of the motion state, which 
are by their absolute value greater than other respective active generalized forces if 
the controlling forces direct the motion opposite to the motion direction under the 
influence of other generalized forces Qa.

Proof. Differential equations of motion (4.34) of the system of material points 
with constant masses upon T*N  are

DPa
dt Q a  +  U a , qa ~  - af3a "p,3.

Equations (4.35) are reduced to: 

Dp( „  , d f  dip*
,. • — Qa + A ~x~z + paap—— dt dqa dpp

f { q ° , q \ . . . , q n) =  0
ip*(q°,qx, . . .  ,qn;p0, p i , . . .  ,pn) = 0̂

(4.40)

(4.41)

since it is
dtp
dtp

dip* dpp _  dip* 
q=q(p) ”  dppdq* ~ a<iP dpp'

Condition (4.36) is transformed into

( ? ,»7 =  0 , 1 , . . . ,«) .
(4.42)

Velocity condition (4.36a) is transformed into the conditions for constraining 
the impulse:

that is,

d p *  a e D P i  77 a f  777— aapaa^—̂  = E a ia

dip* Dpp _
dpp dt

= E*Klppprn (4.43)

where the substitutions are obvious.



Substituting D 'P a

dt from equation (4.41) into (4.42) and (4.43) a system of
structure equations (4.37a) is obtained; thus, the lemma is proved.

E x a m p le  16 . Translate a linear oscillator from the initial state p =  Po =  
const, <7 = 0 . into equilibrium state p = 0 , q = 0 by means of controlling force U,
\U\<1-

The differential equations of motion are:

p = —q + U, —1 < U < 1  (E16.1)
q = p, (E16.2)

under the conjunction that inertia, coefficient a = 1 and restitution coefficient c = 1 . 
Eliminating time differential dt differential equations of the phase trajectory are 
obtained:

dp _  (<?T u)
dq p

From a multitude of the curves

p2 + {q =F l ) 2 = Cl,2 for u = ±  1 ,

the ones satisfying the boundary points should be selected, that is, the first initial 
(0,po) and the second final (0, 0) ones. For the point (0,po) this is a circumference

P2 + (9 T l ) 2 = Po + 1,

while for point (0 , 0 ) it is a circumference of smaller radius

P2 + (9 T l ) 2 = 1-

It is obvious that the circumferences of the same sign of forces U do not solve 
the problem; the solution of the equations with different signs should be looked for. 
According to the lemma, force U can be a controlled one only for ||C/|| > ||g||. The 
point of the circumferences’ section p2 + (q + l ) 2 = p2 + 1 and p2 + (q — l)2 = 1 will 
exist for 4q = p$, that is, for p$ < 8 , and this at the contacting point p = 0 , q = 2 .



Fig. 6

For smaller initial values of the impulse po, let’s say po = 2, it is possible 
to translate the oscillator to the rest state by a smaller force \U\ < 1 with no 
collision. Namely, substituting in the first equation pg = 4, p =  0, it is obtained 
that q = \/5 — 1 , and thus,

U = (V5 -  l ) / 2  «  0.618

is brought into the position p = 0 , q = 0 along the phase trajectory

p2 + q2 -  (\/5 -  1)<? = 0.

Theorem on Optimal Motion of Controllable Systems
The concept of optimal motion implies here motion of the mechanical systems 

whose particular attributes have extreme values with respect to some dynamic 
parameters. These are all the systems of least action and of least compulsion, de
scribed in the section five 3C (Action Principle) and in the section 3D (Compulsion 
Principle). Regarding the fact that both action and compulsion are of such nature 
that they reach extreme values at virtual motion, it can be said that the differen
tial equations of the mechanical systems’ motion describe extreme lines of action 
and compulsion. However, though they are indeed optimal motions, they are not 
usually considered as optimal in the referential literature. Only when, besides the 
above-given attributes, extreme values of particular and specific dynamic or kinetic 
properties (such as force, energy, impulse, mass) of controllable motions are looked 
for, the concept of optimal motion can be used. For this reason, a more specif
ic phrase is used in this study, namely, optimal motion of controllable mechanical 
systems [52], [65], [66].



All the above-mentioned properties of motion for which extreme values will be 
looked for are set by the functional

J  = / T(p,q,u,t)dt
to

(4.44)

which is most often called “criterion of quality” or, simply, “quality” in the liter
ature about controllability theory. Function T  is known and continuous together 
with the derivatives

dT_ dT_
dp ’ dq ’ du

for every point (p, q) E T*Af and all the values u i , . . . ,  Uk- Besides, T{$>, q, u, t ) > 
a\\Q* ||p where a > 0, p > 1 and Q* are non-potential forces including the controlling 
forces.

Out of a great number of forms of differential motion equations let’s choose 
equations (3C.59) and (3C.60) in the form (4.28) and (4.29), that is,

f) F
P a  =  ~  +  Q*a  (P» 9. U) (4-45)

= - — , (a = 0,1, . . . ,  n), (4.46)
OPa

where a multitude of forces Q* also includes the controlling forces constrained 
together with the partial derivatives

dTa dTa dTa 
dpp ’ dq3 ’ dul

i = 0 , 1 , . . . ,  k < n.

Controlling forces Q*, as well as all controlling parameters u(i) E Lp, are 
available upon finite time interval [to,ti].

For the sake of an explicit understanding of the previous introduction let’s 
accept the following determinations.

D eterm ination. Motion of the controllable mechanical system described by 
differential equations (4.45) and (4.46) in the presence of the controlling forces will 
be considered as optimal if, according to the action principle,

Č1
J  [<5(pQgQ - E )  + Q*Jqa} dt = 0 (4.47)
to

functional (4.44) achieves its extreme value.
D eterm ination. Generalized direction forces Q*, by which optimal control 

of motion is realized, will be called optimal control forces, while control parameters 
uq, Ui , . . . ,  Uk will be considered as optimal control parameters.



The problem of optimal controllable motion is to find dynamic parameters, 
that is, those forces that translate a controllable mechanical system from state 
(p(t0),q(t0)) to state (p(h), q(ti)) so that functional (4.44) achieves its extreme 
value.

Theorem: Functional (4.44) achieves its extreme value at direct motion of 
the controllable mechanical system from one point p(to)&q(to) € T*J\f to the other 
p{t\)hq(t{) € T*N  upon:

- a non-empty multitude of solutions 2n + 2 of differential equations of motion
(4.45) and (4.46),

- a non-empty multitude of solutions of the system 2n + 2 of differential equa
tions of the variational problem

, r d2E  . g d2E .
i iq  > = m r J "  +  w r * ’ -

OPcx CjPct

(Spa)' =
d2E

dqadqP 5q;
d2E

dppdq1 

dqa 1 ' 8qa ’

; 5 p p +

+ ^ - 7

- a non-empty set of solutions out of a multitude of k equations,

02E . d2E . a 0Q*ax a , dT
,, »  Spa +  »  »  a  dqa -  - j— 6q +  =  0durOPc ouroqa aur our

r = 0 , 1 , . . . ,  m -  1 , to +  1 , . . . ,  k < n for 2n +  2 conditions

6qa(to) = 0, 6qa(h) = 0 ,

(4.48)

(4.49)

(4.50)

(4.51)

and
d2E d2E a

dumdpa Pa + dumdqa 9
d 2Q*a
dum Sqa + 7

dT
dum < 0 , (4.52)

Proof. On a non-empty multitude of solutions p{t) and q{t) of differential 
equations of direct controllable motion (4.45) and (4.46), the action principle is 
satisfied (4.47).

Functional (4.44) achieves its extreme value at the given motion if for some 
multiplier 7  e R

tl
7<5 J E(p, q, u,t)dt < 0 (4.53)



and this being minimum for 7  < 0, while maximum for 7  > 0, at condition (4.44), 
(4.51) in the extended form:

_ d E \
dpa )

OE
dq°P* + Tff ~ Qa: ] C dt = 0 . (4.54)

Let’s vary this condition in the following way:
pt 1

'to
dE

Spa +(<?“ -  S2pa-

-  ( S (p a + —  - p a ) ) Sqa- (4.55)

dt = 0 .

Due to equations (4.45) and (4.46) the members with other variations 52p and 
S2q are dropped. According to conditions (4.51) it follows

ti ti tiJ Sqa5padt = J 5padSqa = Spa5qa -  J SqadSpa =
to to to

tl

= -  J  (5pay 5qadt,
to

tl t ! tl

SpaSqadt = J Sqad5pa = — J (Sq0)' Sppdt.
to to to

Therefore, relation (4.55) is further reduced to:

/ {
to

0 v d2E £ d2E  r Q , dQ*a r 0 
W ) ~ 7.— 7r-Spa -  5q + - ~ S q °dppdpa dpgdqa dp0 Sp>3

+ w k Sv°  +
6q0 (4.56)

Relation (4.53) in its extended form



shows that relation (4.56) also contains the same variations 5pp, 5q@, 5ur as in 
the condition of achieving extreme values of quality functional (4.53). Due to 
indefiniteness and arbitrariness, of multiplier 7 , by comparison (4.56) and (4.57), 
it is obtained:

to
(Sq,0Y d2E . d2E  a OQl a _ dE_ 

dp0d p J Pa dppdqa q dpp Q 7  dpp

..  , d2E 
{5pp)' +   ̂ an -ope

d2E
dqPdp0

-8q°

d2E r a dQ*a s Q , dE  
d q P d r 5q ()qP Sq f dqP

d2E
■Spc

l a
9Q*

Spp 

5<f

■Sqa + V ^ U  =  0
durdqa "'1 ' durdpa 1 “ dur H ' dur J

On the non-empty set of solutions of equations (4.48) and (4.49) the previous 
integral variational relation is reduced to:

/ (
d2E

durdqa
Sqa +

d2E
durdpa Spa ° ^ 5 q a + Surdt < 0

OXLy C/XLy J
(4.58)

Conditions (4.52) also follow from this relation; hence the theorem is proved.

Corollary 1. If the system constraints do not depend upon time, the number 
of differential equations (4.45), (4.46), (4.48), (4.49), (4.50) and (4.51) is reduced 
for one since there is no rheonomic coordinate q° ; neither is there respective impulse 
po, so that indices a and ,8 are given values from 1 to n (a, (3 =  1,2,..., n).

Lemma. Functional (4.44) achieves its extreme value at the mechanical sys
tem’s motion directed by unconstrained forces ua, from one motion state p(t0)!kq(t0) 
to the other p(ti)kq(ti) upon a non-empty multitude of solutions of the equations:

05qa y

(SpaY =

aQ/3, Pa
dE TT

~ d ^ + Q a+ ua
d2E . 0 a(3x , dE dQ%

W d Y Sq +a S n  + 1E . ~ W E

dqPdq°
d2E  ,  , 9%

a ^ B e Sril~ ~ 'a r  + W q

v  + 1m .  ° ’

and inequalities

under the conditions

8E5qrn 7 "n---  < 0, Sum > 0,VU-m

5qa(to) = 0, Sqa{tl )= 0 .

(4.59)

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)



Proof. During the control of forces Ua , energy E  and force Q* do not depend 
upon Ua, so that the partial derivatives with respect to Ua vanish from equations 
and inequations (4.48)-(4.52).

Corollary. For scleronomic systems the number of equations (4.59)-(4.64) is 
reduced since there is no rheonomic coordinate q° so that the indices are a, (3 =

Theorem on Optimal Motion Control
The theory of optimal control is based upon more specific classifications of 

functions and sets of functions or controlling parameters than it is usually the case 
in standard mechanics. Further on, some concepts and parameters of the previously 
observed controllable optimal motion state upon T*Af are more precisely defined.

The phrase optimal motion control of the mechanical system implies functions 
u(t) G U (U region covers that of manifolds T*Ar) which, as generalized forces 
Q* = (Qo> Qi > • • ■ i Qn) or their elements, realize optimal motion at which functional 
(4.44) reaches its extreme value.

Function T  in functional (4.44) is convex and

E(p,q, u) > a\\Q*\\p, a > 0 , p > l .  (4.65)

All the controls u(t) from Lp are accessible at given finite interval [to, ti], that, 
together with solutions (p(t),q(t) of differential equations of motion (4.45) and
(4.46) give finite value to functional (4.44).

Theorem. For motion of the mechanical system upon T*N  which has
- a non-empty set of solutions of the system 2n +  2 of differential motion 

equations (4.45) and (4.46),
- a non-empty set of solutions of the system 2n + 2 of equations (4.48) and 

(4.49) of the variational problem.
- a non-empty set of solutions of the system (4.5) at 2n + 2 conditions (4.51) 

and (4.52), as well as the conditions

\\(<lT(t),pT{t))T \\ < B \\Q*(p,q,u,t)\\dtj < oo, (4.66)

where B monotonously increases along with the multiplied integral, there are optimal 
controlling forces Q* = Q*a(p,q,u*) for which functional (4.44) achieves its extreme 
value.

Proof. It follows from relation (4.66) that the motion (p(t),q(t)) corresponds 
to the set of controlling forces constrained by



Due to equations (4.65), that is, because J  > 0, it follows that there is lower 
boundary of the value of functional J. Let Q^k] be the succession of the functions 
that correspond to accessible fcth control u(fe)(t) for which the respective succes
sive consequential significance J{vSk )̂ tends towards boundary m: it follows that 
J (u (fe)) < m  + 1. For sufficiently great numbers k it further follows that

t i

to

Q{k](;s) ds < m  + 1 .

That is why such u(fe) can be chosen that will weakly tend towards boundary 
u* from Lp(to,ti), so that it is

Cl
i J  ||Q(fc)(-,s)

to

Accordingly, it is

i p  , m +  1 
ds < ------- .

j  \\Q*{p,q,u(t))\\dt <
to

where 1 /p + l/q  = 1. According to this and to relation (4.66), all solutions (pa,qa) 
of differential equations of motion (4.45) and (4.46) are uniformly constrained, that 
is

(qT (t),PT(t)Y < B m + 1 {t -  t0) i / q

Uniformly constrained solutions (qk(t), pk{t)) are continuous to the same de
gree upon interval t0 < t < ti, since for every two moments t' and t" (t0 < t '<  
t" < U) there are constants C and D, for which it is:

\\q(k){ t ') - q ^ { t ' ') \ \< C \ t" - t" \

||p(k){t') - p {k)(t") || < D\t" - t ' \+
t "

D ^ I \ \ Q * ( p {k\s) ,q^k\ s ) , u ^ ( s )
p \ 1/p

ds J ( f " - t ' ) Vq

i 1 \  i / pm + l \  |t // _  t '|i/q.< D\t” - t ' \  + D

It is possible to choose such gradually (g(fc)(t\ p (fc)(t)) that it is

lim (q{k)( t ) ,p ik)(t)) =  (q(t),p(t)), V f  € [t0 , t i
k —* m



It remains to be proved, from the mechanical standpoint, a clear statement 
that motion state (q(t),p(t)) corresponds to the right sides of differential equations 
of motion (4.45) and (4.46), so that it is Q*a =  Qa(p,q,u*), that is

q = q + limk—*-oo
to

dE(q<~k\ p ^ )
dpW ds;

p = p+  lim
k—>oo

ci

J
to

dE{p(k\ q ^ )
dqW

Due to the boundary relations:

+ Q * ( p W ( s ) , q W ( s ) M k\ s ) ) ds.

limk— >O G /

limk—>oo/

dE(q(k\p W ) d E(p(s),q(s))
dp(k) dp

dE(p(k\qdd) dE(p(s), q(s))
dqW dq

limk—> oo / Q * ^ k\ q ^ , U {k\s ) ) Q*(p(s),q(s),u*(s)) ds = 0 ,

(4.67)

that are always uniformly satisfied, except upon some multitude S  of arbitrary 
small measure, as well as due to the inequality

Q(fe)(p(fc),g(fc),u<fc>) ds <

i / p

f i & W W W ' f d s )  |s|1/q ,

which is equivalent to relation (4.67), it follows

q(t) — q + lim
k —>oo

to

dE{p(s),q(s))
dp ds,

p(t) = p +  limk—*oc
to

Q*(p(s),q(s),u*(s)) dE(p(s),q(s))'
dq ds.

This proves that to controlling forces Q*(p,q,u*) solutions pa(t) and qa(t) of 
the system of 2n + 2 differential equations of motion (4.45) and (4.46) correspond 
to.



Part of the proof referring to the extreme value of functional (4.44) is identical 
to the one in proof (4.53) and (4.56) since it is, due to additional statement that 
F  is a convex function of u, so that

J{u*) < lim I{uk),k—*oc

which shows that Q*(p,q,u*) is an optimal controlling force which optimizes the 
functional to its finite value.

Exam ple 17. The differential equations of motion are:

q = —, p = U (t), a = const, dima =  M (E17.1)

The optimal controlling force should be determined for which the functional

J  = I  U2{xt)dt, x e  R 
*0

achieves minimum at the transition from motion state q(to =  0) = 1 L, p(to = 0) = 
2 ML T ” 1 to rest state q{t\ = 1) = 0, p{t\ =  1) = 0. 

v2Energy E  = — , force Q*a — 0, F = U2, so that equations (4.60)-(4.62) have 
a simple form:

(Sp)' = 0 — > 5p = ci = const (E17.2)

v SP Cl x ci + ,
a a a

5q + 2-yU<0 — > U0 = - ~  (E17.3)
27

From conditions (4.64) for t\ it follows

C2 ii,a

so that it is obtained U = ---- —(t — h).2aY  1
Substituting in (E l7.1) and integrating thus obtained differential equation

it follows

P = ~
Cl

2 ay ( t ~ t  i)

pit) =

q{t) =

—  I2 ay 1
Cl

2a27

t \— -  « i J + c3 =  - Cl

2 aq 

+ QO:

+  Po

a



Po = p(to), qo = q(t0).

At the last above given condition q(ti) = 0, p(ti) = 0 it follows

6a27 + qo)
C l

Since it follows from relations (E17.3) that it is dim7  = M 1 T2, so that it is 
obtained for c% constant dimension

M2 M-1  T2 x(L + L) WT , dim ci = ------------- v J =  M LT -1rpO

which is in accordance with relation (E17.2), so it can be written for 7  =  —1, 
t i  = 1, Po = 2 and q0 = 1,

ci = 6(ap0 + a2q0) = 6a (2 +  a)(M LT-1).

Accordingly,

while the functional

U — 3(2 + a)(f — t\),

1

0
= 9(2 + a ) 2 = 3(2 + a)2(M2 L2 T -3)

If the inertia coefficient a is taken for unit (a = 1), it is obtained

Jmjn = 27(M2L2T -3).

Coupling Function
For the sake of writing the system of differential equations of motion (4.45),

(4.46), (4.48), (4.49), (4.50) and inequality (4.52) more briefly, as well as their 
consequential equations (4.59)-(4.63), the function is introduced

dp^6P a+ d ^ 5q0t ~ Q*a5q° + i:F  4̂'68^

This function has, as can be seen, a dimension of energy or work 

dimU = d im £ = ML2 T “ 2 .

A possible doubt in the possibility of summing up small values

5E 9E Sv— 5pa opa
dE
dqa Sqa



and
SW = Q*Jqa

with finite value T  can be eliminated since multiplier 7  can be regarded as an 
arbitrary small parameter or arbitrary small unit concrete (dimensional) number. 

Function H can even be written in a much shorter form as

H = 5E -  Q*aSqa +  ■yT (4.68a)

where Q*a comprise all non-potential and controlling forces.
For systems with invariable (scleronomic) constraints, energy E  is equal to the 

sum of kinetic energy Ek and potential energy Ep, as well as Hamilton function 
H  = E = Ek + Ep, so that the coupling function can be written in the form

dH dH
n = w < 6 p i+ w 5qi ~  Q *i 5 q i + (4'69)

or
H = 5 H -  Q*Sqi + yT.

If the differential equations of motion are written by means of kinetic energy Ek 
of generalized forces Qa, as (3B.40), the coupling function has the same significance 
as the previous ones, but another form:

8Ek , dEk
U =  d ^ dPa + ~& tdq ~ QaSq° + l T  (4-70)

The attribute coupling imposes itself since function H couples the differential 
equations of the system’s motion with the variational problem of optimal motion. 
By means of this function the above-given equations (4.45)-(4.46) are written in a 
shorter form:

Pa d{5qaY d{5pa) ’ (4.71)

, r , dH „ dH
m  =  ~ w

(sqay = uPo, (4.72)

dH
dur =  0 ; (4.73)

dH
77—  <o,OV-m

V5um >  0 . (4.74)

Accordingly, the theorem and the lemma on optimal control are expressed by 
means of relations (4.71)—(4.74), that is, by means of the coupling functions.

Exam ple 18. The coupling function from the previous example is 

T~t — — U5q + -yU2 = ^5p -U 6q  + 7 U2.



■ ° n The° rems' Theoretical mechanics, as other mathematical sciences, com- 
prises more theorems than it is given here, especially in the control theory, the 
oscillation theory or the theory about motion stability. Such assertions -  theorems
ahT f “ e“ lngf^  aS parts of some shorter Paper, outside a comprehensive study 

out body motion and only if, m particular, assertions separated in this way are 
not proved on the basis of other theorems.

an J s s J r t^ n fn  “  in the b̂ n m n g  of this chapter, the theorem implies
an assertion of general significance about body motion whose truthfulness is proved 
on the basis of definitions and principles of mechanics . ‘



V. ON D E TE R M IN IN G  M O T IO N
(Analisis and Solutions of Relation of Motion)

The integration of differential equations or of a system of differential equations 
of motion and of analyses of the solutions obtained for known parameters at some 
moment of time represents the knowledge about mechanical objects’ motion. Very 
few real motions of the body and, especially, systems of bodies, can be described 
■ V finite general analytical solutions of differential equations. Many system mod
els described in the related textbooks do not reflect faithfully the real motion of 
objects. Still, with great accuracy and with a fairly proper estimate of the error 
size, mechanics successfully solves problems of all mechanical motions accessible 
to human eye or even more than that. Many books have been written about it; 
besides, solutions of new problems are daily published. Still, only a few statements 
are considered here, namely, those based upon the previous study, especially upon 
the preprinciples.

On Rectilinear Motion

Two conclusions that follow' from differential equation (3A.4 J and represent 
the starting points of Newton’s mechanics have to be verified in accordance with 
the preprinciple of existence.

a) Material points, such as celestial bodies, ballistic projectiles or a thrown 
body are acted upon by the gravitational force, so that relation (3A.5), according 
to the present knowledge about forces, does not satisfy the preprinciple of existence; 
therefore, it cannot be claimed that the bodies move uniformly along straight lines.

If the force of universal gravitation of all the celestial bodies were known at 
every moment and in every position; and if the reactive motor could instantaneously 
produce opposite forces, the projectile would move along a straight line with respect 
to the hypothetical coordinate system (y, e).

b) Ships can move on quiet ocean waters at constant velocity, but not in a 
straight line.

c) It can be arranged locally, on the Earth, with respect to the technical system 
of measurement related to the Earth, that the reaction and other forces compel a 
body to move at constant velocity; still, this does not lead to the conclusion about 
the pathway having a shape of straight line.



A straight line as a concept of plane geometry is not accessible to logical- 
physical experiment; therefore, it is not necessary to base mechanics upon it, espe
cially since the whole theory can be extended without the principle of rectilinear 
motion.

Integrals of Material Point’s Motion Impulse
For the material point of constant mass and the condition

F  + R  = 0 (5.1)

it is obtained from equation (3A.4) that the motion impulse vector is constant, that 
is,

p  =  m v(t) =  c = const = mv(to) =  Po- (5.2)

At first sight, it seems to be the simplest first vector integral by which the 
problem of determining motion is solved:

r{t) = v(t0)t + r(t0). (5.3)

However, a view of relations (1-24) and (1.25), and especially of (3A.39) or 
(4.6), as well as disagreement about the impulse coordinates, both require that this 
essential meaning should be much more clarified. Integral (5.2) satisfies and best 
explains the preprinciple of casual definiteness. With as much accuracy as mass 
and velocity are known at some moment to, motion impulse p(t) can be determined 
under condition (5.1) at any other moment.

The preprinciple of invariance must be satisfied so that integral (5.2) - essential 
impulse p(t) - could be sustained in this theory. If vector (5.2) is resolved in 
coordinate system {y,e), as in (1.24), that is

p = m v  = mylei = će j =  rny^ei 

and if it is scalarly multiplied by vector ej, it is obtained that

Pj(t) = myj = myjito) = pj(t0). (5.4)

Allowing for parallel displacement of base vectors e*, and thus of coordinate 
vectors gk = dyl/d x kei for free displacement of the point, vector (1.24), that is,

p = m xkgk(x) = m xK (t0)gK(x 0) (5.4a)

can be scalarly multiplied by vector g{x). That is how projections of integral (5.2) 
upon coordinate directions gi(x) are obtained in the form

Pi(x,x) = aki(x)xk = akl(x0,x)xk(t0) = aKiaKLpL = a fpL, (5.5)



where capital letters in the index denote respective value at the initial moment of 
time, while the tensor

(  d y \  dy
aKi = m j  —  = mgKi = mgK{x0) ■ gi{x) (5.6)

represents a bipoint inertia tensor. In the referential literature, tensor gxi can be 
found as “the tensor of parallel displacement”.

In order to satisfy the preprinciple of invariance, integrals (5.4) and (5.5) should 
be directly obtained from the coordinate forms of motion equations (3A.13) and 
(3A.14).

According to the preprinciple of invariance, this relation should also be valid 
with respect to the curvilinear coordinate system. This is confirmed by integrating 
the equations (3.14) for A, + Rj = 0. The covariant integral [36], [42] is

a i j D v 3 =  / D ( a i j V 3 ) =  a ^ v 3 — A i  = 0 , (5.7)

where Ai is covariantly constant covector Ai = gfpKito). Accordingly, integral 
(5.7) is integral (5.5)

Pi 00 = ciijX3 = au x J = au aJhpK =  gjf pK(t0), (5.8)

Without pointing to the possibility of parallel displacement of covector gt, 
impulses (5.6) can be translated from the system of y coordinates into x  curvilinear 
coordinates. If x coordinates are denoted by indices k,l = 1,2,3, it will follow

, . dxk dxK
Pj(t)= P k &yJ = P i ^  = P id to)-Q

dy3Multiplying bv matrix 7—7 it is obtained thatox1

d x^  &ŷ
= PK^ - f y T  ' q a  = 9^ PK^  =

.dy3

since it is

9i
K _  dxK dy3

dy3 dxl
Though the covariant integrals satisfy all the three preprinciples, such inte

gration is not widely spread in mechanics due to the “difficulties” in determining 
tensor g f'. That is why the ordinary first integrals reduced to constants are looked 
for, instead of covariantly-constant integrals.

Let the differential equations of motion (3A.14) be written in the extended 
form:

Dx3 Daiji:3 Dpi dp
dt dt = —7— = - 7r  ~ Pfcfidt dt

dx3 
' dt — Xi +  Ri (5.9)



For the conditions
X{ + Ri + pkT^x1 =  0, (5.10)

that are different from conditions (5.1) the ordinary first integrals are obtained

with respect to coordinate system (x,g). Therefore, it is the same as in the case of 
integral (5.4) in base coordinate system (y,e). These integrals considerably differ 
from integral (5.8) and, therefore, from (5.4). That is why integrals (5.4) and (5.8) 
will be called covariant integrals. These ordinary integrals (5.11) destroy the tensor 
nature of the observed objects.

Exam ple 19 (See [36, pp. 47 and 49]). Let’s observe the material point’s 
motion with respect to both rectilinear system y1, y2, y3 and cylindrical coordinate 
system x l := r, x2 := tp, x3 := z.

It is known that [36]

P j(t)  = const = p j ( t 0) (5.11)

y1 = r cos ip, y2 = r sin tp, y3 = z

a,ij =  m ,

J cos(p -  p0) r0 sin(<p -  p0) 0
9iK  = < ~r sin(<p -  p0) rr0 cos(p -  <po) 0

0 0 1

The differential equations of motion and the integrals for

Y  + Ry  = 0  =>■ X  + R x = 0

are

I t I T



By covariant differentiation and covariant integration the equivalence is estab
lished at one and the same transformation:

dyl Dy1
- 4-  =  - 4-  = 0 -»dt dt

I
D x l
dt = o

I
X 1 =  x j  C O s ( x 2 — X q )  +

+ xJxq sin(x2 — Xq)

V = Vo x2 = r 1■2 / 2 2\
[X q X q C O S (x  — X q ) -(x1) 2 

- ±1 sin(x2 -  x^)] ,
x4 -- x2

A shorter, clearer, more general and important difference of the first integrals 
of the impulses pz = Ci and the covariant integrals Pi = Ai shows integration 
of differential equations (5.4) under the condition that the generalized forces are 
Qi = 0. Let it be, for the time being, once again motion of one material point in 
curvilinear system of coordinates x 1, x2, x3, that is,

d dEk
dt dxi (* = 1,2,3). (5.12)

These equations can be written in the form

D d E k 
dt dxi = 0 . (5.13)

From equations (5.12) for
dEk
dxl = 0 ,

integrals (5.11) are obtained, while from equations (5.13) covariant integrals (5.8) 
are obtained, since it is

dEk
dxi = Pi-

Canonical equations (3C.59), as can be seen from

dpi
dt

OH
dxi + Xi, (* =  1,2,3)

usually produce integral impulses of the type (5.11) under the condition that the 
right sides of these equations are equal to zero.

The distribution of the ordinary integral and of integral (5.11) is greater com
paring to covariant integrals (5.8). The reason for this mostly lies in insufficiently 
developed calculation with vectors, that is, tensors. The advantage of ordinary 
integration is also reflected in the fact that, at smaller number of integral impulses



than that of impulse coordinates, constants can be determined depending on the 
given initial values of the observed impulse, for example,

Pi(t)  =  d  =  Pi(č0) and p3(t) = c3 = p 3 (<o); 
P2 const.

This advantage becomes prominent with the system of material points with 
constraints, and especially upon manifolds TM . Accuracy of both of them is 
proved, though at various conditions. The covariant integration is invariant with 
respect to the linear homogeneous transformations of the coordinate systems; thus, 
it reflects the tensor nature of the integrals. This is not the case with ordinary 
integration; neither is it in accordance with the preprinciple of non-formality which 
points to the fact that the final results of the synthesis should be verified by com
paring them to the respective results in coordinate systems (y , e).

Exam ple 2 0 . Motion impulse integrals along the surface. The differential 
equations of the material point’s motion along surface (3A.29)

f{yijV 2 , 2/3 , Uo) = 0 , /o = y0 -  r(t) = 0 (5.14)

are of form (3A.26) and (3B.53), that is,

, .  d f  myi = Yl + X ~  
ayl (5.15)

and
X 9f o + X d f  n 

oyo oy0 (5.16)

From acceleration conditions (3A.34), that is, in the concrete case (t/j = y*)

f  d2f  d f  ... d f  .
+ 9 S » - ° ' (5.17)

it follows

ML ILLdyi dy‘
(5.18)

where
— d2f  . . d2f  d2f

d V i d y + 2dyidy0y' yo + dy0dy0yoy°- (5.19)

It becomes obvious that in the right sides of the differential equations of motion 
(5.15) there exists inertia force -m y 0 in the case that the surface equation (5.14) 
comprises a time function to the degree different from one, while in the case of the 
first degree there exists constant velocity y°. That is why it is necessary, before 
integrating differential equations (5.15), to take into consideration this fact in order



to obtain accurate motion impulse integrals. In order to stress this important 
statement, nothing will be lost concerning the general proof if the absence of the 
resultant of active forces Yz. (Yi = 0) is assumed. If multiplier (5.18) is also assumed 
to be equal to zero, there would be motion impulse integrals (5.4). Moreover, if it 
is assumed that the surface did not change in time, that is, that equation (5.14) is 
of the form f(y  \ , y2, y%) = 0, it would follow from relation (5.18)

A = —m
d  f  ■ ■

dytdy-j V iV j

H I T
dyt  d y  ’

=  0, (5.20)

which brings us back to considering motion along a double-sided fixed surface. If, 
however, this surface here changed, it would follow from relations (5.18) and (5.19)

A = — m JŽLAL
dyi d y 1

(5.21)

while its equalizing with zero would lead to the conclusion that motion impulses are 
constant at the material point’s motion along the surface which moves uniformly 
and translatory in the absence of forces. However, all the given conjunctions con
tradict to the preprinciple of existence, to Galileo’s laws as well as to the general 
gravitation law.

Conjunction (5.1) is possible, but, in that case, the multiplier of constraints 
(5.2) and (5.21) points to a considerable difference between the material point’s 
motion along a fixed, that is, a moveable surface.

With respect to the curvilinear systems of coordinates (x .g ), constraint equa
tion (5.14) is transformed into

f ( x l ,x 2,x3,x°) = 0 , i t ) (5.22)

while the differential equations of motion are transformed into form (3A.14). It is 
from these equations - along with the assumed conditions - that covariant impulse 
integrals (5.8) are obtained, while under conditions (5.10) the first integrals of form 
(5.11) will be obtained. If the observed motion along surface (5.22) is determined 
by means of equations (3B.40) in which kinetic energy

Ek = ~aapqaqp, (a,/3 = 0,1,2),

while the impulses arepo = aopq3, Pi = aipqd, Vi = aipqp, three covariant integrals 
will be obtained, namely,

pa{t) = Aa (p{t0),q(t))

under the condition that the generalized forces are equal to zero Qa = 0 or that 
the first three integrals



along with the conditions

In the case that constraints (5.22) do not explicitly depend on time, coordinate 
q° and its respective impulse vanish. Only two impulses (5.23) exist in that case.

Integrals of System Motion Impulse
For an arbitrary system of material points, it is from the theorem on points’ 

impulse change (4.11), that the covariant impulse integrals are obtained

where A a are covariantly constant vectors if the generalized forces are equal to 
zero. Since the covariant integrals upon TAT are not elaborated, the first integrals 
Pa(t) = ca = pa(to) are looked for; they are obtained in the simplest way from 
differential equations (3C.58) where from it becomes obvious that there are also 
first integrals, along with the conditions

For a = 0 from these equations, as well as from (3C.60), it is proved that 
Po A -H .

On the basis of relations (4.5) and (4.8) it follows that there are integrals of 
the rotary motion impulse of the body with constant mass around a fixed point 
and with respect to fixed coordinate orthonormal system (y.e):

if the moments of forces are = 0 , (i,j = 1 , 2 , 3)
Similarly, from differential equations (4.13) for = 0 it is obtained that

where d  = const.
By squaring these equations and by summing up it is obtained that (See, for 

example, [4, p. 74])

Pa = A a (p(t0),q(t))

Integrals of Body’s Rotary Motion Impulse

Pi =  = A i =  Iij(t0)vj (to). (5.24)

(5.25)



where c=const; [4].

Energy Integral
The theorem on kinetic energy change (4.15) shows that Ek is equal to the 

integral
Ek = J Pdt + ci, (5.27)

so that it is constant only if the system power P  is equal to zero.
Relation (4.30) shows that the total mechanical energy (4.25) is constant, that 

is,
Ek + Ep + V(q°) = c2 (5.28)

if the power of non-potential forces is equal to zero. Regarding constraints (4.32), 
the same integral can be written in the form

Ek + Ev = J R0(q°)dq° + c2. (5.29)

If it happens that the constraints are invariable, the right side integral (5.29) 
vanishes; thus, the known integral about energy “preservation” is obtained:

Ek + Ep = h =  const. (5.30)

The difference between integrals (5.29) and (5.30) is comprehensively and clear
ly presented in References [54]—[64].

Tentative Integrals of the Canonical 
Differential Equations of Motion

Every function . . . ,  qn\po, ■ •. ,pn) or

f^(q°,---,qn',Po,---,Pn) =c,1 = const (5.31)

is an integral of the equations

qa = (a = 0 ,1
opa

P a
dE

' d ^ +Qc

(5.32)

if the derivative with respect to time of function / M is equal to zero along the 
system’s phase trajectory, that is,

9E
dqa dpa dpa dq° ‘dp0



or

(/ ^ )  +  Q ; | ^ = 0 ,  (5.34)

where (f^ .E )  are Poisson’s brackets for T*Af.

E x a m p le  21 . The gyroscopic forces are given by the formula

Qa ~ Gapq3, Gap = —Gpa.

Let’s verify if E  is an integral of differential equations (5.32). Since it is 
(E , E) =  0 and

f) F
Ga^ d p ~  = =  0

it follows that there is an integral

E  = - a a3papp +  Ep(q°,q1, . . . ,  qn) +  J R0(q°)dq° = c.

Similarly, the existence of the energy integral in the presence of the non- 
holonomic constraints of form = baa(q°, q1, . . . ,  qn)q<* = 0 can be proved.

E x a m p le  22 . Hamilton's function H (pi, . . . ,  pn: q1, . . .  ,qn) is not an integral 
of differential equations (3C.62) in the general case, since it is (H , E) ^  0. Namely, 
if relations (3C.51) and (3C.61) are kept in mind, it is obtained that:

(H, H  +  V) = (H, H ) + (H, V) = (H, V) = —  —  -
8qa dpa

= dH d v  dH dV
dql dpi dpi dql + dq° dp0 dp0 dq°

dH DV 
dpo dq° = q°Ro Ž  0 .

dH dV
dp a dqa

Only in the case that the constraints do not depend upon time or that it is 
Ro = 0 , the Hamilton’s function appears as an integral of the potential mechanical 
system.

E x a m p le  23 . By the composition of differential equations (4.13) with fi*, 
for Iik = 0 , (i ^  k), Mi = 0 or by gradual multiplication of equations (4.15) 
by respective angular velocities Q1, S I2 , fž3,), by addition and integration, energy 
integral is obtained

2-E). — /^ (fž1) 2 + / 22(n - ) 2 + J33(fl3)2 = h = const

of the body’s rotation around the inertia center.



Integration and Preprinciples
In the course of developing the theory of mechanics on the basis of particular 

principles of mechanics, it has been shown that one and the same kind of motion 
of one and the same mechanical system can be described by different differential 
equations with respect to the same or different coordinate systems. For all the 
given systems of differential equations of motion it has been shown that they are in 
accordance with the preprinciples. The preprinciple of invariance could be involved 
in very complex systems of the differential equations of motion due to the devel
oped theory of differential geometry upon manifolds and invariance of the natural 
(“covariant” or “absolute”) derivative of the vector with respect to time.

However, in the calculus and its application to mechanics almost no attention 
seems to be paid to the question of invariance of the differential expression’s inte
gration, namely the differential equations among which the differential equations of 
motion are most frequent. It has been said that ordinary integration destroys the 
tensor character of geometrical and mechanical objects; this is not in accordance 
with the preprinciples, especially those of casual determinacy and invariance. The 
vector generalization as an ordered set of functions over the vector base which is, in 
its turn, made up of functions, does not lead to determining the motion attributes 
in mechanics either by means of differentiating or by means of integration; thus, it is 
not possible to bring into accord the deduced theory with the preprinciple of casual 
determinacy on the basis of this generalization. More general theories of knowdedge 
belong to upper levels of mathematics. Example 13 clearly shows the difficulties 
that are also encountered in dealing with the preprinciple of invariance if the vector 
base is not definite and known. The still present “truths” are such as “acceleration 
is not a vector (in tensor sense)” , “acceleration vector is not a vector” or “inertia 
tensor is not a tensor”. Such theses have no place in the theory that starts from the 
preprinciples introduced here, namely, from the preprinciples of existence, casual 
determinacy and the preprinciple of invariance. There is no one single general con
figurational ordering in mechanics - namely, there is no one generally ordered set of 
bodies and their mutual distances; instead, there are many sets and subsets whose 
motion problems are not solved in one single way, i. d., uniformly, but in many 
equivalent w'ays, that is, in polifold or manifold ways. Therefore, the statement 
differentiation and integration of tensor on manifolds is meaningful so long as it is 
clearly stated -what particular manifolds are referred to or if valid proofs are given 
about invariance of differentiation and integration upon manifolds. The generality 
speaks about a multitude of variety, so that, regarding the preprinciple of casual 
determinacy, solutions of general accuracy can be also looked for; they also require 
definite and general knowdedge about the given problem.

A simple integral, for instance

is indefinite or definite to the constant since, unless some other knowledge about 
the function / (x) is possessed, the particular curve (pathway, force, energy and so



on) cannot be determined from a continuous multitude of curves for each c e l .  
Not before one more data about f(x )  at any point is known, for instance /(2) = 2 , 
can the particular line be known.

Something similar refers to the covariant integrals upon metrical differential 
manifolds that are, as has been seen, present in mechanics. For the integral [36]:

/  = Jg ij(x )v t(x)dvj (x) = ^gij(x)vl(x)vJ (x) + A  (5.35)

or, much simpler,

/  = J.gij(x)dvJ (x) = gij(x) v° + Ai (5.36)

can be said that it is indefinite or definite up to the covariantly constant tensor (Ai 
- vector, A - constant). The required integral can be determined only to the degree 
of knowledge about manifolds, which also implies that of the metrical tensor gij(x) 
and covariantly constant tensor A  at some particular point. Integral (5.36) is of 
energy integral type (5.30), while integral (5.36) is of impulse type (5.24).

Exam ple 24. A system of N  material points of constant masses m v (v = 
1 and 3 N -2  of finite constraints f„ (r i, . . . ,  rN) =  0 has a two-dimensional
manifolds M 2 whose metrical, or, more precisely, inertia tensor

E drv dru , ,  ,
mu~dq̂  ' ~d(A ~ ,q ^ (5.37)I/ —1  ̂ ^

Differential equations of motion (3B.40a) for Qi = 0, Q2 = 0 are

D ( dEk \  
dt \  dql J = 0 ,

or, regarding that it is
dEk
—  = pi = aijq \

Dpi = D(ai:jqj ) = 0.

Covariant integral is of the form (5.7), that is,

J D ( a i j(q)q:l) =  a^q3 -  A{ = 0

where Ai is a covariantly constant vector, that is

DAi = dAi -  A kT^dqj = 0.

(5.38)

(5.39)

If AI2 is Euclidean manifolds, the covariantly constant vector can be deter
mined by means of initial conditions q(t0), q(t0) and autoparallel displacement



operator g f ,  that is. Ai — gfpK(to)- For manifolds of more complex structure, 
where the method of parallel transition (5.39) induces additional difficulties, other 
much simpler ways of determining A,, are required [42], The difficulties in deter
mining the boundary and initial conditions in solving partial differential equations 
are not the reason to conclude that “the integral is not correct” or that it is “im
possible” . By simplifying the example let’s observe the point’s motion along rotary 
surface z = f(p) with respect to cylindrical coordinate system (p,ip,z;g). In that 
case, the inertia tensor is

dij =  mgij =  m
0

Regarding the fact that the coordinates of this tensor do not depend upon <p =: 
q2, the coordinate A i will be constant and determined from the initial conditions. 
Other coordinate Ai can be looked for and determined by means of the observed 
surface’s metrics

-  d q ' d q ’

that is.
ds ds ’

dq1 dqJan —----— = a JPiPn = n = const.3 dt dt 3
Substituting »42 =  c = a2jq3 = P2(fo) and Ai = a\jqi = pi in the previous 

relation it follows
a11(»4i) 2 +  a22(c) 2 =  h 

which determines coordinate Ai, since it is

ma11 = ,22 m

i + i #dp

2 >

The difficulties in integration of the vector differential equations’ system - as 
the differential equations of the mechanical systems’ motion are in essence, regard
less of the coordinate form in which they are written - are best expressed by the 
known Jacobi integral

— ql -  L = const. oq1 JV) (5.40)

where L is Lagrange’s function (3C.21). This integral satisfies the system of differ
ential equations of motion (3C.40a) if kinetic energy does not explicitly depend on 
time, that is,

Ek -a ., ,(q \ . . . ,q nyfq>



while forces Qi = —
8Ep
dqi are conservative, that is, these forces’ work does not

depend on the pathway. Then it is

9L -i 1 -i r> j-ig - q  =  a,ijqJ q =  2 E k,

so that integral (5.40) is reduced to the energy preservation integral: 

Ek{t) + Ep[t) = h  = Ek(t0) + Ep(t0). (5.41)

However, integral (5.40) is accepted; while considering the systems whose ki
netic energy is of the form

Ek = +bi{q)q1 +  c(q),

t 2 'i\ To

when, instead of (5.41), a different integral is obtained:

T2 — Tq + Ep = hi = const. (5.42)

This integral does not follow directly from Theorem (4.15) on kinetic energy 
change in the mechanical systems whose constraints change in time. This discrep
ancy occurs due to overlooking equations (3C.40b), which was possible only in the 
case that it is

dE n , dEk 
d if = 0 an<l a ^  = co“ * Po-

Accordingly, this special integral of the rheonomic system is far from the en
ergy preservation integral of the rheonomic system. Prom Theorem (4.15) or from 
Lemma (4.23) it follow's that for the rheonomic system

H = Ek + Ep = j R 0dq° + C. 

or
E = \a a(3{q°, q1, . . . ,  qn)(f< f +  Ep{q°,q1, . . . ,  qn) +  T>(g°) =  hi.

It has been proved that n standard Lagrange differential equations (3C.40a) 
of the second kind are not equivalent to the system of differential equations of the 
first kind (3A.25); in order to make these two systems compatible, it is necessary 
to add equation (3C.40b) to the system of standard equations (3C.40a).

On the basis of n differential equations (3C.40a) or their respective 2n differ
ential equations (3C.59) the theorem on kinetic energy change (4.15) cannot be 
proved. In order to prove it, it is necessary to take into consideration equation 
(3C.40b), that is, relations (3C.60) equivalent to it. In view of this, it is natural



to expect that the integrals of different differential equations’ systems should be 
different. This is of great importance for mechanics, since overlooking or neglecting 
of particular parameters, let alone equations, does not give truthful information 
about motion. Similar confusion in mechanics is caused by various substitutions 
of coordinates while integrating or transforming differential equations into simpler 
forms if the basic conjunctions of the motion theory are not taken into considera
tion. It is difficult to find any work on mechanics which does not comprise a linear 
differential equation

x  + lu2x  = 0 (5.43)

describing the “harmonic oscillator”. Such system of equations, as it is knowm, 
describes periodical motion with respect to various ellipsoidal phase pathways, 
though, in essence, this can only be the mapped motion with respect to phase 
spirals whose initial differential equations of motion

z + 2 bž + cz = ±G,

where b is a coefficient of the medium resistance, while G is the ratio between dry 
friction force and mass. Namely, with two substitutions of the coordinates

z and z = xe bt

the previous equation comes up to equation (5.43), but not to harmonious motion. 
Truly, we could say “harmonious oscillations” with respect to function x(t) = zebt, 
but, as can be concluded from function z and resistance coefficient b, such motion 
of the mechanical object is not harmonious. Mechanics is not only based upon 
mathematical relations but also upon the source of these relations that satisfy its 
preprinciples. Even the most careful attempt to determine accurate solutions of the 
differential equations is liable to impermissible errors. The general solution of the 
differential equations of motion at different initial conditions determine different 
trajectories. It is for this reason that the solutions of the differential equations 
should be subjected to verification that, theoretically, mostly comprise a qualitative 
analysis of the solution or the theory of motion stability, beside practical models 
used in practice.





I  strove to present Lyapunov’s results 
without false modernization.

N. G. Chetaev

V I. ON S TA B IL ITY  OF M O T IO N  A N D  REST
Introductory Remarks

“Dynamics is a science about real equilibrium and motions of material systems. 
Galileo and Newton have discovered its principles and proved their veracity by 
experimenting with the heavy bodies’ fall and by explaining the planets’ motion. 
However, every state of the mechanical system that corresponds to mathematically 
strict solutions of both the rest equations and the differential equations of motion 
is not being observed in reality.”

“The general principle for choosing solutions that correspond to stable states 
in mechanics has not been given; instead, the character of science about idealized 
systems has been accepted and for every strict application to our nature -  every 
time, on principle -  solutions of the stability problems were looked for.”

“The general problem of motion stability in the classical study was solved by 
Lyapunov ...” [6]

The above-quoted statements of Nicolaj Gurevich Chetaev are completely in 
accordance with the preprinciples of this mechanics, whereas the work of V.V. 
Rumyantsev and A.S. Oziraner [21] best precede a short discussion of the mechan
ical systems’ stability of motion presented in this study.

Differential Equations of Motion
In order to comprise all the mechanical systems, 2n +  2 differential equations 

(3C.59) and (3C.60) are observed, that is,

where H(po,p\, . .. ,pn', q°, q1, ■ ■ ■, qn) is the function determined by formula (3C.51), 
namely,

In the system of equations (6.1) and (6.2) there are n + 1 unknown impulses

(6.1)

(6.2)

(6.3)



n unknown and independent generalized coordinates g1(t), . . . ,  qn{t) and, to the 
solution of differential equations (6 .1), the unknown force of the constraints’ change 
Ro{q0)- Coordinate q°(x,t) is given in advance to the accuracy of the chosen 
parameter.

Inertia matrix aap is positively definite and has rank n + 1. This is easily 
proved by means of positively definite function of kinetic energy Ek. If starting 
from determinants (3B.5), (3B.7) and (3C.31), it can be seen, as in (3C.33) and 
(3C.49), that kinetic energy

Ek = ^aapqaq0 = ^aa0pap0 > 0 (6.5)

is a homogeneous quadratic form of generalized velocities q°, q1, . . . ,  qn or general
ized impulses po,Pi, ■ ■ ■ ,pn\ it is positive for every qa ^  0 , while it is equal to zero 
only in the case of rest, that is, for qa = 0 ( a =  0,1, . . . ,  n) or pa =  0. Accordingly, 
both matrix aap and its inverse matrix aa/3, are positively definite.

Equation (3C.60), that is,

Po — + Q o* + (6 -6 )

wdiich, as the only one of the whole system (6.1), comprises function R0, can be 
passed over by observing only the system of 2n differential equations of motion 
(6.1). Such a system of differential equations is not complete, namely, it does not 
completely describe motion of the mechanical system with variable constraints, so 
that it can be called the system of differential equations of motion with respect to 
a part of the variables. By excluding additional coordinate q, function (6.5) loses 
the degree of homogeneity 2 , wdiich is not in accordance with the preprinciple of 
invariance.

When the mechanical systems of material points with the time-independent 
constraints are dealt with, relations (3B.60) vanish due to the absence of auxiliary 
coordinate q°, so that equations (6 .1) and (6 .2) satisfy the same form:

Pi

ql

dH
dqi +  Q*

dH
dpi ’ {i = 1 , • • •, n),

(6.7)

( 6.8)

where the function

H = ^aij(q1, . . . , q n)qlqJ + E ^ q 1, . . .  ,qn) (6.9)

comprises positively definite matrix ctq = aji of the rank n.
With the systems with variable masses m  the inertia matrix depends, through 

masses m v(t), on time t as well, as can be seen from relations (1.26), (3A.40) and 
(3C.33).



Equilibrium State and Position
The concept of the system’s equilibrium state implies rest of the observed bodies 

in particular position qa = qft = const; all the generalized velocities are equal to 
zero so that, with respect to relation (6.4), generalized impulses are also pa = 0.

The equilibrium state equations, consequently, originate from equations (6.7), 
that is,

( q ; - ^ L . = o- <6io>
or, in accordance to motion equations (3B.40) and (3B.52),

QoXq,q)\4=0 = 0 (6.11)
so that the solutions of equations (6 .10) or (6 .11) determine the equilibrium state 
go = const of the material system.

D e t e r m in a t io n  1. The equilibrium state of the mechanical system implies a 
set of solutions qq € N  of equations (6.11) and qa(t) =  0 or pa(t) =  0.

D e t e r m in a t io n  2. The equilibrium position of the mechanical system implies 
position qa = go on the coordinate manifolds whose coordinates satisfy equations 
(6 .11).

E x a m p le  25 . On a rotary ellipsoid whose equation is in coordinate system
(y.e)

f{y, t) = c2(t)(j/i + y \) + a2{t)yl -  a2{t)c2{t) = 0 

or with respect to generalized coordinates g1 =  <p, q2 = 9, q° = a(t),

y1 = g° cos 9 sing?, 
y2 — q° sin 9 sin ip,
V3 = c(q°) cosip,

there is a point of weight G; c axis of the ellipsoid is vertical, as well as y3 coordinate.
The equilibrium state of the observed point is determined by 2 + 1 equation 

(6 .11), namely:
dyi dy3

Q1 = Yi—  = - G —  = Gc sing? = 0,

Q 2 — 0,
8c

Qo = cos ̂  + ^ 0  = 0 .

It follows that the equilibrium positions at. the given variable constraint

ip = kn (k = 0 , 1 , 2 , . . . ,  n)



under the condition

R0 ± G ^ 0, or 0 —> R0 0,

so that the ellipsoid axis along which the force G is acting does not change.
Deviations from solutions qa = qfi and pa = 0 that can be called undisturbed 

or given equilibrium state are described by differential equations of motion (6.7) and 
(6 .8 ) and thus they can be called differential equations of the disturbed equilibrium 
state and, according to (4.1), they can be written in the covariant form

Dpa
dt — Qa

qa = a ^ p 0

(6 .12)

(6.13)

where it is assumed that the disturbances belong to the medium of the equilibrium 
state in T*Af, while at the equilibrium state point q = qo, p = 0, the right sides of 
the previous equations are equal to zero:

Qa(<?o,0,...,0) = 0,
aa0p0 =  0 .

(6.14)
(6.15)

That is why previous motion equations (6.7) and (6 .8 ) differ from disturbed 
equilibrium state equations (6.12)-(6.15).

The equations of the disturbed equilibrium state qa = qff =: ba = const can 
be interpreted with approximate accuracy by means of equations (6.11). For some 
other values q = b + Aq and q = 0 forces Qa will not satisfy equations (6.11). The 
first degree of accuracy

Q(b +  Aq, 0 ) — Q(q, 0 ) + dQ
dq q=b.&q + • • • 

q=0

due to equations (6 .11) is reduced to

n  -  d ®a
dq0 q=b

A q0. (6.16)

By analyzing these expressions for solutions ||AgQ|| 0, in the sense of the
dQaderivatives _ , some required conditions about the equilibrium position q = b
dd b

of the system and its stability can be reached; since they are not reliable enough, 
much more strict criteria of stability are looked for.

Differential Equations of Disturbed Motion
In the referential literature about bodies’ motion the differential equations of 

disturbed motion do not always imply the same thing, regardless of the fact that



the term is general. In the general theory of planet disturbances, these are, in the 
most general sense, differential equations of motion (See, for instance, [15, p. 53])

mvr u = Fv + G u (6-17)

which the disturbance forces are added to. While describing the system’s motion by 
means of equations (3B.59), when forces Q* are absent, the equations of disturbed 
motion are found in the form of variation:

d2H  _ , d2H . 
OqWqi S<1 dV: ,d ( /Pj"

dt Sql 2 =
d2H . , o2h  c 

dq'i dpi q + dpjdpi 1>r

(6.18)

While attempting to derive the equations of disturbed motion described by 
covariant equations (6 .12), the tensor variation equations1 have been derived

- ^ t+ R ) k iq j e q l = ViQie  (6.19)

that, due to their complex non-linear structure, are not considerably present in 
the stability theory.2 Differential equations (6.19) are equivalent to differential 
equations (6.18) in which £? := Sq1, while Ql are generalized forces dependent on 
position q and time [31, p. 41-47].

In the motion stability theory, the differential equations of disturbed motion 
are reduced to the general form:

( 6 .20)

Equations (6.17) essentially differ from the other given ones; they serve as 
the basis for elaborating the whole theory of the planet disturbances. All the 
other above-given systems of differential equations of disturbances are formed of 
the basic differential equations of motion by being developed into the degree order 
or by varying the functions and their derivatives.

In [31] it has been proved that the vector projection variation is not equal 
to the variation vector projection; thus, instead of equations (6.19) the covariant 
differential equations of disturbance are derived in the form

(6.21)

aa% a. (6 .2 2 )

1 S y n g  J .L . ,  T E N S O R I A L  M E T H O D S  IN  D Y N A M I C S ,  T o r o n to , 19 3 6 .

2 E q u a t io n s  ( 6 .1 9 ) , (6 .2 1 ) ,  (6 .2 2 ) a r e  o f te n  c a lle d  t h e  p e r t u r b e d  e q u a t io n s

Drja
dt

dt



For the sake of further clarification and estimation of the preprinciples’ satis
faction, let’s derive the previous equations starting from the basic equations of the 
dynamic equilibrium (3A.3) or from the theorem on impulse change (4 .1), that is,

— {muvv) = Fv{r, v, t). (6.23)

The solutions of the undisturbed motion are:
3v

Vv = ~ d ^ ^  and r = r ^ ~ (6.24)

To every other (disturbed) solution

* , ta dru (6.25)

the corresponding impulse is

m vv„ dr*
dt = ? dqa ?

d2rv
dq0dq°

so that the impulse disturbances, according to (1.25) and (3A.39), will be:
N

p* - p y =:ri^ = Y ^  m„ (v* -  v v
v=\

drv
dq*<

N

= £
i/=i

m dr„ drv -a d2rv dr
dqa dq*1 3q0dqa dq't

v .0~qp

However, since there is connection

d2rv Td drv
8qPdqa ‘ af}dq s ’ 

regarding relations (1.26) and (3A.41), it follows

V~r = aaye  + =
D£c

aay(Č  +  T ^ V )  = aai
or

D£°
dt = a“7 r/7.

For solutions (6.25) differential equations of motion (6.23) are:

~ ( m vv*) = nriv(d0ar vi aq0 + dar„£a

+ dsa0r ^ aq0qs + dap r„ taq0 + dap r ^ aq0 ) 

=  F *(rv +  p„, v v +  p v , t),

(6.26)

(6.27)

(6.28)



chere
a _  d- a _  d2-

d q « ' a 0 ~  d q « d q V

After scalar multiplication of these equations and equations (6.23) bv coordi-
drv

nate vectors as well as after addition with respect to index v, it is obtained:

y^m „(dar v ■ dyr„£a + 2d-,rv ■ daprvC 4 0+
is=l

+ d1r v ■ d s a p r ^ C T T  + d7r u ■ dap r ^ aQP) =
JL  Br

= ■ w

(6.29)

Partial derivatives dsaprv that exist in the previous relation can be reduced, 
by means of relation (6.26), to:

dsaprv =  ds(dap r v) =  ds{Y*pd\rv) =
= dxr vdsT*p + TxafSdsxr v =

= d \rvdsT ap +  Y^pTg^d^r^,.

If these derivatives are taken into consideration, as well as relation (6.26) and 
inertia tensor (3A.14), equation (6.29) is reduced to the form:

+ a ^ T xs( aqs + alXTXapqPt +
+  {alX chTxap +  anilX XpTl‘x )(ta( f q &+

where
N_ f)nr*

* 7  : = ^ ( F ; - F y) . - ^ = ^ 7 (C,r/,t).
U=1 ^

Equations (6.30) can be further reduced to a shorter form:

â j t (r + r^eV) + a^Zp ( r+r^ev) t
or, if equations (6.27) are considered, to the form

(6.30)

(6.31)

= dp

a, d (D C

or
aj dt dt 

D (D £

+ al^ a .

dt \  dt
D
~T7 I an

(D C
n  dt q0 = %

dt
D C \  Dr) 7 =  *
dt dt



and this, together with equations (6.28), makes up 2n + 2 differential equations of 
disturbance (6 .2 1) and (6 .2 2 ) and explains the function vector in them.

Stability of Equilibrium State and Position
The concept of stability of equilibrium state and position is not explicit, re

gardless of the fact that the concepts of equilibrium state and position have been 
previously defined. The concept of stability is necessarily preceded by explicit 
determinations [26], [30].

D e t e r m in a t io n  3. At any given positive real numbers A 1 and B i  - regardless 
of how small they are not -  some positive numbers Ai and Aj can be chosen for all 
numerical values of the coordinates of equilibrium state ql = q},, Pi =  0 , that are 
liable to the constraint

\q \t0) -  <?o| < Ait \pi(t0)| < A*, (6.32)

and for every time t > to satisfy the inequalities

\ q \ t ) - q l \ < A \  \pi(t)\ < Bi (6.33)

equilibrium state = qfopi = 0 ) of the system is stable with respect to disturbances 
ql ~f~ Qo and Pi 0 / otherwise, it is unstable.

The previous determination 1 can be formulated in other words or other re
lations, but the meaning of the disturbance’s constraints (6.32) and (6.33) should 
remain the same. By an appropriate choice of the coordinate system origin in 
equilibrium state, the equilibrium state can be represented by the zero point upon 
manifoldness T*Af, that is qa = 0, pa =  0; then equation (6.14) is reduced to

Q « (0 ,... ,0 ,i)= 0  (6.34)

D e t e r m in a t io n  4. I f at any randomly given number A >  0, regardless of 
how small it is not, such a real number A can be chosen for which all the initial 
disturbances are constrained by the relation

Sapqa{.to)q0{to) + Saflpa(to)pp(t0) < A, (6.35)

and for every t  > t o  the inequality is satisfied

S a ^ q 13 + Sai3pap0 < A , (6.36)

the undisturbed equilibrium state pa = 0 , qa = 0 is stable; otherwise, it is unstable.
As in the previous proposition, 5ap and are Kronecker’s symbols.
If the stability of the equilibrium state or of the undisturbed motion is regarded 

only with respect to part of 2m of variables q1, . . . ,  qm,p i , ...  , P m ,  m < n, the 
stability condition (6.36) is reduced to the observed variables:

Skiqkql + SklPkPi < A (k, l =  1 , .. . ,  m) (6.37)



Stability Criterion
If for the differential equations of motion of the scleronomic system (6.12) and 

(6.13) the positively definite function W(t, q1, . . .  ,qn) could be found, such that it 
is

d \ V  (  S W A  •

~dr + [ Qi + W ) qZ- °  (< =  1’- - ’n) (6'38)
the equilibrium state q = qo, p — 0 or q = 0 , q = 0 is stable.

Proof. With the conjunction that there is function W, the function

V = \ a lJ{q1^ - - ,q n)PiPj+W{q1, . . . , q n,t) (6.39)

is positively definite since kinetic energy

E k =  =  \ a %3PiPj

is, by its definition, positively definite.
The derivative with respect to time of function (6.39) is since it is

• j  • D p i  c )W

v = a  ^ r T’ + ~m +
dW  dqi 
dq1 dt ’

while
dV _  DV
dt dt

If equations (6.12) and (6.13) are kept in mind, the previous derivative is 
reduced to the form

dW
dt

dW+ a"Q,jq- + — dW
~ df Pj

d w

and the criterion is proved by this.

(6.40)

C o r o lla r ie s

1 . If the system is autonomous, function W  should be looked for only depend
ing upon the coordinates, so that condition (6.38) is reduced to

q1 < 0 . (6.41)

That is what the conservative mechanical systems for which there exists poten
tial energy Ep(q1, . . . ,  qn) are like. The choice of this very energy, if it is positively 
definite, for function W, W  = Ep, shows that it is

dEp dW_ 
dql + dqi Pj =

dW  d W \ .. n
~ w + w ]q



namely, that the equilibrium state of the system is stable.
2 . If the generalized forces consist of conservative and any other forces Q* (q, q), 

that is,

<2 . =  - ^ r  + £S («.«)

by the repeated choice W  — Ep, as the condition of the system’s equilibrium state 
stability, it is obtained as

aijQ*Pj = Q*ql < 0. (6.42)

3. If the system is acted upon by gyroscopic forces

Q* = G it f  = -G ji#  (6.43)

the equilibrium state stability condition (6.41) is satisfied since it is

Q*? = G,/r<r = 0

4 . For dissipating forces Q* = bijć^ condition (6.41) is reduced to the fact that 
the quadratic function of energy dissipation 7Z = —bijtfqi should be either greater 
or equal to zero.

G e n e r a liz a t io n  o f  t h e  C r ite r io n . The previous theorem is also valid for 
mechanical systems with rheonomic constraints. Condition (6.38) changes only if 
indices i , j  = 1 ,.. . ,  n take on values a, /3 =  0 ,1 ,... ,  n. Therefore, three additional 
addends are obtained:

dW
dt

d W \
+ aQ/3 ( Q a  +  ^  J P 0  =  ^  [ Q i  +

dW
dt

d W \
dqi )

dW+  aM ( Qi +  ) po +  a°J [Qo +  ^ )  Pjdq 
dW  N

dW
dq°

+  a  ( Q o  + ~q ^o J  Po

P j  +

(6.44)

The proof is identical to the previous one, except for the fact that the indices 
in equations (6.12) and (6.13) remain in the range 0 ,1 .. . .  n.

When the system of forces (3C.-52) is considered, where potential energy Ep = 
Ep(q° , g1, ...  ,qn), and Qq = Qo + Rq, function W  = Ep can be chosen if Ep is a 
positively definite function of q°, q1, . . . ,  qn, so that expression (6.43) is reduced to

aa0Q *aP0 =  Q*aq° Q*ql +  (Qo +  Ro)q° <  0.

C o r o lla r ie s

1. Expressions (6.38)-(6.43) appear as consequences of relations (6.44) in the 
case that the constraints are scleronomic since auxiliary coordinate q° vanishes.



2. The classical (standard) way of examining stability of the rheonomic sys
tem’s equilibrium state with respect to variables q1, . ..  ,qn',pi,.■ ■ ,pn can be re
garded as stability with respect to a part of the variables.

Necessary Additional Commentary
While verifying criteria (6.38) or (6.44) the starting point has been the fact 

that function (6.39), that is

V = Ek + W ( t,q ° ,q \ . . . ,q n) (6.45)

is a positively definite function. Since the starting conjunction is that W  is a posi
tively definite function, while Ek is kinetic energy, there should be no disagreement 
about the casual definiteness of function V. Still, the question is asked concerning 
casual definiteness of kinetic energy. In order to prove this, the starting point is, 
firstly, the preprinciple of invariance which states that motion attributes do not 
depend upon formal mathematical description, and, secondly, from the expression 
for the system’s kinetic energy

N

2Ek =  miv\ +  m,2V% + ---- 1- m,NV2N =  ^  muv„ ■ vv. (6.46)
v = l

All masses m v are positive concrete real numbers, so that it cannot be refuted 
that Ek is a positive function of vv which is equal to zero only if all the velocities, 
that is, functions vv(t) are equal to zero. Therefore, it is true that:

N

2Ek = ^  m„vv ■ v v > 0. (6-47)
v = \

With respect to the orthonormal coordinate system, regarding expression (3B.7), 
it also follows

N

2Ek = mA v h  + vl2 + vis) > 0. (6.48)
U=1

Nothing is going to change if other notations are introduced:

m 3i =  m 3i- 1 =  m 3 i _ 2 ; i = 3i/ -  2 ,  3v -  1 ,  3u 

since relation (6.48) will be

3 N
2Ek = ^ 2  m^yf ^  (6.48a)

i- 1

In other coordinate systems, let’s say (z, e) or (x , g) between which there are 
explicit dotted mappings yl = yl{z1, . . . ,  z3A), yl = yl(x1, . . . ,  x3N) or constraints



y z — y l (q°, q1 , ■ ■ ■, qn \ n < 3N), the quadratic homogeneous form (6.48) will remain 
what it is in the forms:

3  N 3  N

E m^ 2 = E
2—1 2=1 

3N

= E

mi dzk dzl

9yz ■* -p

3  N

E rrii 'd]hdy^ k i 
dxk dxl

= 9kižkž l = aki{m ,x)xkxl = aap(m,q)qaq13 > 0 .

where aki, aki, aap are positively definitive matrices. “The deviation from the 
matrices’ casual definiteness” for particular values x or q does not spring from 
the kinetic energy’s nature, but from irregularity of the transformation matrices

during the transition from one to other coordinates. For

dy^those values of coordinates x for which transformations yl =  are irregular
(therefore, non-existent), neither the casual definiteness of the matrix a,:j nor the 
kinetic energy’s coordinate forms can be estimated.

( H )  -

Exam ple 26. Kinetic motion energy of the point of mass m  in the plane can 
be written with respect to cylindrical coordinate system p, 9, z, for which there are 
relations

2/i = p cos6, 2/2 = psin9, y3 = z,

under the condition p / 0 , in the form

Ek = y  (yj + y22 + y i)  = j  (,b2 +  P202 + i 2) > 0 (6.49)

or on the plane z = c = const,

= f  ( r  + p W )-

All the three expressions for Ek are equal to zero only if the velocities are 
equal to zero since p = 0 cannot be taken into consideration in view of the fact 
that p = 0 is excluded from consideration during the transformation between the 
observed coordinate systems.

Invariant Criterion of Motion Stability
The concept of the invariant criterion implies general measurement standard 

in all the coordinate systems for estimating stability of some undisturbed mechan
ical system’s motion. As such, it comprises stability of the equilibrium position 
and state, stability of stationary motions and, in general, of motion of mechanical 
systems whose disturbance equations are of coordinate shape (6 .2 1 ) and (6 .22).



If for the differential equations of disturbance (6.21)-(6.22) there is such a pos
itively definitive function W of disturbance £°,. . . ,  £" and time t that the expression 
is

dW
dt + act{3 T 8 W \

)  W  ^  0 (6.50)

smaller or equal to zero, the undisturbed state of the mechanical system’s motion is 
stable.

Proof. As can be seen from equation (6.31), functions 'I'a for undisturbed 
motion = 0 , r]a = 0 are equal to zero, that is, TQ(0 , 0 , t) = 0 .

The function
V =  ^aa0r]ar]p + W ^ , t ) (6.51)

is positively definite, since it is

a ^ { q \ t ) ,q \ t ) , . . . , q n{t))

a positively definite matrix of the functions upon M n+l, while W(£, t) is a positively 
definite function of disturbance . Asa scalar invariant, V is a tensor of zero order.
That is why ordinary derivative —— is equal to the natural derivative

D V at3Dr)a OW Df,a dW  
~ d f ~ a ~ d r V0 + d f f  ~dT  + ~dt (6.52)

which necessarily has to be smaller or identical to zero. By substitution of the 
natural derivatives from equations (6.21) and (6.22) in (6.52) it is obtained that

DV
dt

d w  a0T dW  a g
— + a  t>mam  + — a V

and this, along with the criterion requirement, is reduced to

d w
dt +  CL

a  (3 %
ĆW\ 

+ d ^ J V0 < 0 . (6.53)

Therefore, the stability criterion is proved [47].
If neither forces F f and F  from relations (6.31) nor differences F f —Fu depend 

of time t on position r  and velocity v , function will also be explicitly indepen
dent of t. Then function W  should also be looked for only in its dependence 
on disturbances £ ° ,£ \ .. that is, W  = IT(£°,£\ . ..  ,£n), so that expressions 
(6.50) and (6.53) are reduced to



If the mechanical system’s constraints do not depend on time, q°, £°, 770, 4'oj 
vanish, so that expression (6.50), that is (6.53), is reduced to

+  alJ Vi +d w

d t

while expression (6.54) is reduced to

d ? )
Vj < 0,

t d w  ,
^  ) rh < 0

(6.55)

(6.56)

where Vtq and W  do not depend on £° and r f .
All the expressions of the previously given criterion for the equilibrium state 

stability appear as consequences of expression (6.53) if £ and 77 are regarded as 
disturbances of equilibrium state q and p.

On Integrals of Covariant Equations of Disturbance
Covariant equations of motion (6 .12) or differential equations of disturbance 

respective to them (6 .2 1 ) in their extended form and in the general case have a very- 
complex structure what makes their integration difficult. However, by applying the 
covariant integration some first covariantly constant integrals are obtained as a 
means of assessing the equilibrium state stability" as well as undisturbed motion. 
As an addition to this assertion, the two recognizable and acceptable examples are 
presented here.

1. Let generalized forces Qa in equations (6.12) have a function of force 
U(q°, q1, . . . ,  qn). Let’s multiply each equation (6.12) by respective differential from 
equation (6.13) and add in the following way,

BUaa0ppDpa = Qadqa = -g^;dqa.

Since Daal3 = 0, it is
\D  (a“% p Q) = dU

and further
-a a/3pppa — U = C = const.

2. Let the right sides of covariant equations (6.21) be linear forms of distur
bance from ^1, . . . ,  £n, that is,

Vi = -9ij{q1{ t) ,.. .,q n(t))^

where gij as well as ai:‘ (q1, . . .  ,qn) are covariantly constant tensor. For the given 
disturbances, equations (6 .21) and (6 .2 2) can be written in the covariant form:



By mutual complete multiplication and addition with respect to index i, as in 
the previous example with respect to a, it follows

«%•/>//, -  -g a ^ D C .

The covariant integration gives

-9 ij£ 3? )  = -4

where A  is a constant, DA  = dA = 0.
Therefore, by covariant or ordinary integration and the solution analysis or 

directly by applying criterion (6.50) or (6.38), the stability of undisturbed motion 
£ = 0 , t) = 0 or that of the equilibrium state of system q = qo, p = 0 can be 
assessed.

Along with additional conditions, the initial definitions can be used to speak 
about asymptotic, uniform, equiasymptotic or any similar stability on the whole 
or regarding part of the variables. As for stability of motion or equilibrium of 
the mechanical systems it is more important to note whether disturbances in the 
disturbances equations are caused by some error in calculation or they result from 
some newly-induced change of forces, namely, of inertia force due to inertia tensor 
change, or of active forces due to approximate accuracy of dynamic parameters, 
instead of ideally accurate laws of dynamics from which formulae of particular 
forces such as (2.16), (2.11), (2.13) and (2.14) are derived. In this study, the laws 
of dynamics are formulated on the basis of stable processes in the sense of the above
given definitions about stability; more precisely, it means that they are formulated 
accurately to the point of the boundary value of the given number, regardless of 
how small it is not. In differential equations (6.12) and, especially (6.21) every 
deviation of functions or their parameters (no matter how small they are) from the 
real ones can but it does not have to affect stability or instability of the observed 
motion. That is why the mechanical systems’ stability with respect to forces is of 
enormous importance.





A FTE R W O R D

The title of this monograph as well as the selection of the given contents for 
each of its sections can be regarded as an introduction to more comprehensive works 
in the field of mechanics. What is, mostly and briefly, given here, though, in the au
thor’s opinion, are only essential assertions of one theory of motion and interaction 
of bodies. Not a priori assertion, but inherited, existing and acquired knowledge 
was the starting point. The acquired knowledge suppressed some inherited and 
existing logical and mathematical standards thus making relative the accuracy of 
the most accurate natural science in the mathematical sense. This can particularly 
be seen in the following relations with variable constraints:

Standard Modification

Velocity
dr . Or

Motion impulse
Pi = dijQ3 + h  
Po =■■ - H

Pi = aijtf +  ai0q° 
Po = a0jq0 + a00q°

Acceleration

Forces
Q Q i  Q o

Work
W(Q) = /  Qdq W  = f  (Qdq + Q0dq°)

S

Variational principles

<5 f  Ei-dt = 0, 5 f  Ldt = 0 f£ (5 E k +5A(F))dt = 0 .



Kinetic energy

Ek = -zdijq'q3 + M* + c 1

Dqi
Uij dt “ °

Ek := -W (I)  = -a apqaqP

K p \n t\

Dieferential equations of motion
Dq> Dq° „

a'j ~ d T +ai° - d r  = Q'
Dq> Dq° ^

+ a°o—  = Qo

D (d L
dt

f - g - . f - iOPi
dH  . dH

Pi = -  —  , PO = ---7T7~atdqi 
Po = —H

or

D ,fd L
dt \d q \
£< ( dL
dt '\dq°

dE
<f = dpi

dE  
dp0

dE  . 8E

P o ^ - H ^ E

, q =

Pi dqi ’ P° dq°

Regarding these and similar comparisons the author has been posed some 
important and logical questions at various scientific conferences, namely questions 
like Do you find assertions made so far in the standard mechanics erroneous?” or 
“Assuming that your assertions are correct, how do you explain that they have not 
been noticed in practice?”

Avoiding the word “erroneous” the author has replied that the assertions made 
m this theory are better and more thorough. From Aristotle and Galileo, that is, 
Newton, the contention has been accepted that the body moves uniformly under 
the action of constant force. When Newton wrote his first axiom or law that the 
body moves uniformly or rectilinearly in absence of forces, philosophy considered 
and assessed that Aristotle’s view was erroneous. Such a rough assessment was not 
given by Newton; neither did Einstein state that the proposition about rectilinear 
motion was erroneous; instead, Einstein found a more complete and finer state
ment that, “rectilinear motion does not spring from experience either logically or 
experimentally”. Example (E5.7) simply gives an answer to the second question - 
though such object of mechanics is taken into consideration without including axial 
forces, therefore, there is always a possibility of displacing one end in practice; in 
other words, it has been more than just noticed in practice. In this monograph 
the mathematical knowledge that can be applied to the theory about motion of 
body is extended; and thus, some other views of particular attributes of motion 
appear. The innovations with respect to describing known and accepted relations



are stressed in more details. Thus, for instance, the concept of the material point 
is differentiated in details from the concept of the particle or covariant integration 
from standard integration of differential equations of the rigid body’s rotary mo
tion. It has been shown that the model of material point can be used to develop 
the theory applicable to all mechanical objects.

The section on P r e p r in c ip le s  that precedes the core of the book gives an 
explicit determination of the starting conjunction in mechanics as well as its basic 
concepts such as mass, distance and time; this defines its domain of research by 
means of three disjunctive sets of real numbers and pencils of three oriented vectors; 
the concept of geometrical spaces is abandoned, unlike that of the body volume; 
the possibility of two particle’s coincidence is excluded, namely, the fact that, in 
the geometrical sense, differs the concept of the particle from both the material and 
the geometrical point while, at the same time, makes the “law of non-penetration” 
redundant. The possibility of determining motion is accepted in advance, while the 
accuracy is made relative by available knowledge of the relevant natural parameters 
about some moment of rest. The knowledge about motion and rest of the body 
in mechanics, described by mathematical relations in various coordinate systems, 
is made relative - by the precondition of invariance that the natural attributes of 
motion do not depend upon the formal way of description. Therefore, the preprin
ciples objectify the subject of the theoretical mechanics while, at the same time, 
they make relative its general knowledge; they are accompanying corrector and 
verificator of all the assertions of the body motion theory.

The first section dealing with the B a s ic  D e f in it io n s  introduces and defines 
only four concepts by means of which it is possible to elaborate further one theory 
of the body motion. In accordance with the preprinciples, it was necessary in the 
beginning to open up the problem of selecting base oriented vectors, invariable in 
time. Unlike the velocity definition by means of the boundary values of distances, 
what is avoided in the velocity definition is the boundary transfer of one vector to 
another and thus the standard definition of velocity is accepted as a natural deriv
ative of velocity with respect to time. In describing motion impulse the importance 
of the inertia tensor and of its difference from the geometrical metric tensor is es
pecially stressed. This definition, just like the others, remains in the whole later 
theory which excludes from the present discussion the motion impulse as negative 
energy (Hamilton’s function), that is, work of the forces. The term “motion im
pulse” is used instead of “impulse” in order to stress its difference from the forces’ 
impulse. The definition of the inertia force determines a dimension of the force 
in general which later becomes prominent at the introduction and dimensioning of 
various dynamic parameters, as well as formulating the laws of dynamics.

The second section of the L a w s o f  D y n a m ic s  gives to the concept of the 
“law” a unique meaning of the force’s determinant; this makes it considerably dif
ferent from the concept of Newton’s laws; it is due to it that the concept of law 
in mechanics is strictly differentiated from the concepts of principles and theorems. 
The dominant place in this section belongs to the law of constraints by which it is 
stressed that the constraint between material points or particles can be abstracted



by forces, that is, that the constraints are sources of the forces’ origins, so that the 
mathematical or mental relation implied in the concept of the constraint should nec
essarily be distinguished from the motion of mechanically and objectively existing 
constraint.

In the part entitled On Mutual Attraction Force formula (2.21) is derived, 
from which the Newton’s law of gravity follows for some particular conjunctions. 
By dropping determinants of other forces, that is, of the laws of dynamics (for 
the sake of brevity), the newdy-introduced concept of the law of dynamics is not 
brought into doubt.

The third section entitled Principles of Mechanics comprises four principles 
on the basis of which (meaning, of each of them) it is possible to develop the whole 
theory about the body motion. The equilibrium principle is most comprehensively 
described with the good arguments, though it is based on the least number of defi
nitions and consequential determinations. It is sufficient enough to comprise all the 
body motions coupled with any constraints in any coordinate systems. The conse
quential effect of the coupled forces’ moment at the system of material or dynamic 
points subdued to the constraints is shown. From this principle the necessity to 
generalize the formula of the gravitational force has followed or the need to doubt 
the validity of the differential equations of motion with the constraints’ multipliers.

By introducing an additional definition of the concept of work the work prin
ciple is formulated. Unlike the vector invariant of the equilibrium principle, the 
work principle is expressed by means of the scalar invariant thus avoiding the 
difficulties in summing up the constrainted vectors. As a consequence, beside po
tential energy, “rheonomic pseudopotential” also appears as negative work of the 
constraint-changing force; that is why it is shown that kinetic energy is a negative 
work of inertia force. In a unique way elementary works upon real displacements, 
possible displacements as well as work upon possible variations are characterized. 
By introducing an additional coordinate - rheonomic coordinate - the principle of 
the rheonomic constraints’ solidification is abandoned, so that the work principle 
relation is extended for one adequate addend. This was preceded by modification of 
the constraints’ variations, as well as work of the mechanical system with rheonomic 
constraints.

The concept of action is defined by means of the concept of work; the concept 
of action is the object of the general integral variational principle called the prin
ciple of action. Therefore, the statement of the action principle required six basic 
definitions. For such formulation of the principle and with the unique concept of 
variation, the classical integral variational principles appear as corollaries. Since 
by the preprinciple of existence time is taken as an invariable, it does not vary as 
such; thus, this integral principle shows itself to be invariant upon the extended 
configurational manifolds T M n and T*Mn as well as for scleronomic systems upon 
T M n+1 and T*Mn+1; in other words, on the relations which are of the same shape 
for autonomous and non-autonomous systems. A more essential meaning of this 
principle is expressed in the section IV which proves the theorem on optimal control 
of motion.



On the basis of the first four definitions and the compulsion definition the dif
ferential variational principle of compulsion is expressed that, in essence, scalarizes 
the vector invariant of the equilibrium principle. By describing compulsion as a 
homogeneous quadratic form of the acceleration vector coordinate over the inertia 
tensor the possibility of its transformation into any coordinate system has been 
proved. From the principle’s requirement that compulsion has the least value on 
actual motion, it is easy to arrive at simple scalar differential equations of motion 
expressed by the compulsion function.

The section on T h e o r e m s  o f  M e c h a n ic s , states clearly, first of all, what is 
implied by the “theorem” in mechanics. By means of the natural derivative with 
respect to time the theorem on motion impulse change and the theorem on kinetic 
energy change are proved; both theorems, in accordance with to the preprinciples, 
have invariant sense and they differ from the accepted assertions of the analytical 
mechanics. This becomes obvious when using the example of the change of impulse 
of the rigid body’s rotary motion by which the derivatives with respect to time of 
the inertia tensor coordinates are developed. The theorem on controllable motion 
and optimal motion control that comprise all the mechanical systems connect the 
control theory with its basic roots of the analytical mechanics.

The fifth section, namely, M o t io n  D e t e r m in a t io n  by Analisis and Solutions 
of the Relations of Motion is mostly devoted to unextended covariant integration, 
to the first integrals and to the covariant integrals; Poisson’s’ brackets are extended 
for rheonomic systems. A brief, but sufficiently clear description of energy integral 
modification is given.

The final part is the sixth section entitled S ta b i l i t y  o f  M o t io n  a n d  R e s t  
by which accuracy and validity of the differential equations of motion are assessed 
depending on the observed dynamic or kinetic parameters. A special emphasis is 
paid to the thoughts of the highly distinguished Professor Nicolai Gurevich Chetaev 
concerning false modernization, namely the thoughts that are no less actual today; 
besides, not only general but covariant differential equations of disturbances are 
presented as well as the author’s general criterion of stability of the equilibrium 
state and of the mechanical system motion.

The book is properly referred to as a monograph since it presents one theo
retical entirety based on the authors’ results published in scientific journals and 
monographs listed in References. This theory comprises all the mechanical systems 
which also include rigid and deformable bodies. The author’s concept of the rheo
nomic coordinate’s application to deformable bodies has been left out. It has been 
shown [67], [71] that deformable bodies can be represented as a system of material 
points with rheonomic constraints, so that deformable medium can be modeled 
by (3+l)-dimensional manifolds. Such mechanics would develop upon the derived 
deformation tensor

/  £ o o £ o i £ 0 2 £ 0 3

£ l 0 £ l l £ 1 2 £ 1 3

£ 2 0 £ 2 1 £ 2 2 £ 2 3

\ £ 3 0 £ 3 1 £ 3 2 £ 0 3



and metrics
ds2 = £apdxadxf3, a, 0 = 0,1,2,3.

This metrics has invited quoting of the examples (E7) and (E8 ). Even more 
than that, it refutes, at the end of this book, any argument trying to prove that 
mechanics, as a science about motion of bodies, accomplished itself a long time 
ago; on the contrary, it stimulates new knowledge about motion and interaction of 
bodies.
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