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FOREWORD

It has been a long tradition of the Mathematical Institute of Serbian Academy
of Sciences and Arts to organize occasionally symposia dedicated to some contem-
porary problems of both theoretical and applied mathematics and mechanics. Such
an one-day Sumposium entitled: Recent advances in the analytical dynamics — con-
trol, stability and differential geometry, was held on April 4, 2001. Participation
on the Symposium was on the invitation only, and 11 reviewing and contributing
papers were presented. Within these Proceedings you will find full texts of the
papers.

The Symposium served as a convenient opportunity to pay trubute to Pro-
fessor Veljko A. Vujici¢, academician of the International Academy of Nonlinear
Sciences, on the occasion of his 70th anniversary. His curriculum vitae and the
complete list of his publications is included in the Proceedings. The Symposium
was also attended by academician Vladimir Matrosov from Russia who, in a con-
cluded speach, emphasized the role Professor Vuji¢ié¢ had played in establishing the
Yugoslav branch of the Academy of Nonlinear Sciences, and delivered diplomas to
newly elected members of the Academy from Yugoslavia.

December 12, 2001 Chairman of the Department of Mechanics
academician Vladan Djordjevié






Veljko A.Vujici¢






The life and work of Veljko A. Vujici¢,
on occasion of his 70th anniversary

Prof. Veljko Vuji¢i¢ was born on March 29, 1929 in Niksi¢. His father was
Akim and his mother was Ljubica, maiden name Vucini¢. He finished elementary
schooling and graduated from the High School in Niksi¢. He received his Diploma from
the Anti-aircraft Military Academy in Zadar, in 1949, and went to Uzice as an Instructor
in anti-aircraft firing and ordnance. He graduated from the Department of Mechanics at
the Faculty of Natural Sciences and Mathematics of Belgrade University in 1957. Two
years later he was the first M. Sc. graduate at the Department and became Assistant.

During the academic year 1959/60 he was an affiliate of the Faculty of
Mechanics and Mathematics at the University of Moscow where he worked together
with well-known Professors N. G. Chetaev and V. V. Rumyantsev.

Professor V. Vujic¢i¢ received his doctoral degree in 1961 from the Faculty of
Natural Sciences and Mathematics after having defended his thesis entitled Motion and
stability of motion of dynamically variable objects in front of the committee consisting
of A. Bilimovi¢, K. Voronjec, T. Andeli¢ and D. Raskovi¢. The same year he was
elected an assistant professor at the Faculty of Natural Sciences and Mathematics, in
1968 he was elected an associate professor and promoted to a full professor in 1974. He
has taught: Dynamics of Bodies of Variable Mass, Vibration Theory, Analytical
Mechanics, Statics, Tensor Calculus, Theory of Fields (at the Department in Zrenjanin),
Theory of Stability and Control of Mechanical Systems. At the Faculty of Mechanical
Engineering in Belgrade he has held a post-graduate course in Tensor Calculus, at the
Faculty of Engineering Sciences in Titograd he has taught Statics, Resistance of
Materials and Technical Dynamics while at the Faculty of Mining and Metallurgy in

" Kosovska Mitrovica he has held a course in Mechanics II. He was in charge for scientific
seminars on Stability of Motion, Control of Mechanical Systems and Analytical
Mechanics. Professor V. Vuji¢i¢ was the adviser of 8 Doctoral and 18 Master theses. He
has written two university textbooks (Statics and Vibration Theory) and translated two
textbooks from Russian.

Since his first scientific research work, published in 1960 in the USSR
Academy of Science magazine Applied Mathematics and Mechanics, Professor Veljko
Vuji¢i¢ has been reporting the results of his research works at international, foreign and
national scientific meetings. More than 150 bibliographic units have been published in
international and national journals. His four monographs stand out in particular as
original contributions to science: Covariant Dynamics (Belgrade, 1981), Dynamics of
Rheonomic Systems (Belgrade, 1990), Some Problems of Mechanics of Nonautonomous
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Systems (with A.A. Martinyuk; Belgrade-Kiev, 1991) and Preprinciples of Mechanics
(Belgrade, 1998).

International reference journals have published over 120 reviews of his research
works and there are more than 150 citations of his results in different journals,
monographs, university textbooks and PhD theses. His monographs have been presented
in detail in certain foreign scientific journals.

In the extremely wide scope of Prof. Vuji¢i¢’s scientific interest — from
dynamics of bodies of variable mass, analytical mechanics, vibration theory, stability of
motion and control of mechanical systems to tensor calculus and differential geometry
— his most important scientific achievements are the following mutually interlaced
fields: pioneer work in the geometrization of mechanics of objects, the weight of which
is a function of time; advancement of analytical mechanics through original
contributions published in already mentioned monographs; introduction of a general
criterion on motion stability in the vibration theory and the theory of motion stability
and, finally, introduction of preprinciples of mechanics, which imposes a new logical
sistematization of mechanics and significant changes in conceiving the principles of
mechanics.

If one word were needed to characterize creative enthusiasm of Prof. V. Vujicic¢
it would be courage — courage to stand for atitudes different from the postulates of the
standard analytical mechanics: in the early 1970s he claimed that the standard integral
calculus destroys the tensor nature of geometric and dynamic objects (this is overcome
by introducing a notion of absolute or covariant integral); in 1980s he modified, or, more
precisely, he rearranged the analytical mechanics of rheonomic systems; finally, in this
Department, not once were we the witnesses of his daring spirit subjecting even the
generality of the law of mutual attraction of bodies to the test. If one notion were needed
this would be invariance — the invariant developping of the whole theory of mechanics,
about which the respected Professor is going to talk at today’s Symposium.

Prof. Veljko Vuji¢i¢ was a founder and, for more than 20 years, the Editor-in-

Chief of Theoretical and Applied MECHANICS, a scientific journal being issued by the
Yugoslav Society of Mechanics and included so far in five international registers. Prof.
V. Vujigi¢ is a member of Editorial Boards of four national and one foreign scientific
journal as well as of one international serial of scientific monographs.
Chairman of Department of Mechanics, Director of Division of Mathematics. Mechanics
and Astronomy, Dean of the Faculty of Natural Sciences and Mathematics, then as
Director of Division of Mechanics at the SASA (Serbian Academy of Sciences and Arts)
Institute of Mathematics, Vice Director and Acting Director of the Institute. Professor V.
Vuji¢i¢ was the initiator and the president of the first Committee for mathematics and
mechanics of the Republic Association for Science (RAS) of Serbia, President of the
RAS Chamber of natural and engineering sciences, and researcher in charge for the
macroproject in mechanics at the Republic level. He was also President of the Steering
Committee and the first President of the Serbian Society of Mechanics, as well as
President of Administrative Committee of the Yugoslav Society of Mechanics.

Professor Veljko Vuji¢i¢ is an honourary member of the Yugoslav Society of
Mechanics. He is a member of several scientific foreign and international associations
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(GAMM, Tensor Society, AMS). He is also a correspondent member of the American
Academy of Mechanics (since 1994), a member of the International Academy of
Nonlinear Sciences with the main office in Moscow (since 1996) and a correspondent
member of the European Academy of Sciences and Arts with the main office in Paris
(since 1998).

For his fruitful and tireless scientific work, Professor Veljko Vuji¢i¢ has been
given two decorations of honour (the Order of Work with Golden Wreath and the Order
of Work with Red Flag) and two medals of the City of Belgrade.

Finally, let me, the undersigned — who owes respected Professor Veljko
scientific work almost three decades ago — wish dear Professor many happy returns,
good health and many more years of fruitfull work.

Zoran Draskovi¢
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The following abbreviations are used:

PAH Mex. — Pedepatusuuiit xypraax MEXAHUWKA, Mocksa

Zbl. Math. - Zentralblat fiir Mathematik und ihre Grenzgebiete, Berlin.

Math. Rev. — Mathematical Reviews, American Mathematical Society, Providence,
Rhode Island USA.

1960

1. Hexomopvie unmezpaav, ypaeHeHull 08UNCEHUA OUHAMULECKY MEHAIOULETCT
mowku (Some integrals of the equations of motion of a particle of variable
mass), Ilpurnangraa mMaTemMaTVka u MexaHuka, 1. 24, Bom. 4, pp. 732—
733, Axanemus Hayx CCCP (1960), Mocksa.

P Mex. 5 A78 (1961).

2. Identification of dynamical trajectories of a particle of variable mass as au-
toparallels (in Serbian, English summary), Recueil des travaux de ’Académie
serbe des Sciences LXIX, Institut Mathématique, N. 8, pp. 151-156 (1960).
P Mex., 7 A78 (1961); Zbl. Math., Band 134 (1967).

3. The motion of a particle of variable mass in conformal space (in Serbian, Rus-
sian summary), Bull. Soc. Math. Phys. Serbie, Vol. XII, pp. 77-82 (1960).
Math. Rev., Vol. 33 (1967); Zbl. Math., Band 135 (1967).

1961

4. Some integrals of the equations of motion of a dynamically variable point, PMM
— Journal of Applied Mathematics and Mechanics (Translation of the Soviet

By courtesy of the journal “Teorijska i primenjena mehanika”
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Journal IIMM), Vol. 24, N. 4, pp. 1094-1097, Publ. American Soc. Mech.
Eng. with Pergamon Inst. (1961).

1962

Some 1integrals of the equations of motion of variable mass objects (in Serbian,
Russian summary), Tehnika — Opxti deo XVII, N. 4, pp. 81-85 (1962).
PiK Mex., 11 A (1962).

. MOTION AND STABILITY OF MOTION OF DYNAMICALLY VARIABLE

OBJECTS (in Serbian: KRETANJE DINAMIQKI PROMENLJIVIH OBJE-
KATA I NJEGOVA STABILNOST), Doctoral Thesis, Publ. University of
Belgrade, p. 73 (1962) (Predato 1960; odbranjeno 28.04.1961. pred komisijom
u sastavu A. Bilimovié¢, K. Voronjec, T. Andjelié¢ i D. Raskovic).

La corrélation du principe de Pfaff-Bilimovich avec les autres principes de
mécanique, Publ. Inst. Math., Nouvelle série, T. 1(15), pp. 15-23 (1962),
Beograd.

Math. Rev., Vol. 32 (1966); Zbl. Math., Band 112 (1965); PiK Mex., 8 A
(1963); P¥K Mat., 10 B (1974).

Substance and matter — discontinue in continuous (in Serbian: Tvar i materija
- prekidnost u neprekidnom), “Filozofija”, Jugoslovenski ¢asopis za filozofiju,
N. 1 (1962), Beograd.

TYPICAL PROBLEMS OF THEORETICAL MECHANICS AND METH-
ODS OF SOLUTIONS (translation from Russian — Kabalsky et al. - into
Serbian), p. 450, Zavod za izdavanje udzbenika SR Srbije (1962), Beograd.

1963

ANALYTICAL MECHANICS by F. R. Gantmacher (translation from Russian
in to Serbian), p. 215, Zavod za izdavanje udfibenika SR Srbije (1963), Beograd.

1964

Ceasv npunyuna IIadd-Luaumosuna ¢ Opyeumy NPUMUUNAMU METAHUKL,
“Mexanura”— 300pHUK NEpEBONOB MHOCTPAHLIX crarbeit, Vam. “Mwup”,
2. 84 (1964), Mocksa.

P Mex., 8 A (1964).

On the rotation of a body of variable mass (in Serbian, French summary), Mat.
Vesnik, 1(16), 2, pp. 119-126 (1964).

P Mex., 11 A (1965); Zbl. Math., Band 141 (1968).

Une maniere d’obtenir les équations du mouvement d partir du principe de
Gauss on coordonnées généralisés, Mat. Vesnik, 1(17), 3, pp. 215-220 (1964).
PiK Mex., 11 A (1965).

Une formulation variationnelle du principe de Hertz dans l'espace de configu-
ration, Mat. Vesnik, 1(16), 4, pp. 329-330 (1964).
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. Sur certaines questions de la mécanique analytique des systémes non holonom-

es, C. R. Académie des Sciences, Paris, T. 259, pp. 709-711, groupe 2 (1964).
Math. Rev., Vol. 29, 4242 (1965); Zbl. Math., Band 131 (1967); PiK
Mex., 7 A (1963).

1965

Sur les oscillations des corps €élastique — linéaires dans un miliew résistant,
Mat. Vesnik, 2(17), 3 (1963).

1966

. Sur les propriétés tensorielles du “tenseur d’inertie” (in Serbian, French sum-

mary), Mat. Vesnik, 3(18), 1, pp. 11-15 (1966).

P Mart., 9 A480 (1967); Zbl. Math., Band 148 (1968).

De traitment géométrique du mouvement d’un systeme “a masse variable”, le
long des lignes géodésiques, Mat. Vesnik, 3(18), 1, pp. 48-52 (1966).

P/ Mar., 3 B (1969); Zbl. Math., Band 215, Heft 2 (1971).

THEORY OF OSCILLATIONS (in Serbian: TEORIJA OSCILACIJA), p.
435, edit. University of Belgrade, Press: “Savremena administracija” (1966),
Beograd.

1967

. On the covariant differential equations of motions of dynamical systems with

variable mass, Tensor, Vol. 18, N. 2, pp. 181-183 (1967), Fujisawa.
PA Mex., 1 A52 (1968); Zbl. Math., Band 154 (1968).

21. Sur la stabilité de [’état d’équilibre du systéme de points dynamiques d’'une

masse variable, Mat. Vesnik, 4(19), 3, pp. 207-210 (1967).

P Mex., 9. A85 (1968): Math. Rev., Vol. 37, 1119 (1969); Zbl. Math.,
Band 158 (1969).

1968

. FKpumepuil 06 ycmotinusocmu cocmoanus paeno8ecus CUuCmemb, OUHaMUe-

cuz mowex (The criterion for stability of equilibrium of systems of particles),
Publ. Inst. Math., T. 8(22), pp. 69-72 (1968).

PAH Mar., 3 5185 (1969); Zbl. Math., Band 159 (1969); Math. Rev., Vol. 40
2258 (1970).

£

. K eonpocy o dunamuveckol yemoivusocmu ynpyzuz mea (On the problem of

dynamical stability of elastic bodies), Mar. Becuux 5(20), 3, pp. 275-278
(1968). )
P Mex., 4 B300 (1969); Math. Rev., Vol. 39, 1161 (1970).

General conditions of stability of the state of equilibrium of the dynamic sistem
of a variable mass, Tensor, N. S., Vol. 19, pp. 314-316 (1968).



12

25.

26.

27.

28.

29.

30.

31.

32.

33.

BIBLIOGRAPHY OF VELJKO A. VUJICIC

Math. Rev., Vol. 38, 2982 (1969); PJK Mex., 6 A118 (1969); Zbl. Math.,
Band 182, Heft 1 (1970).

Uber die stabilitit der stationdren Bevegungen, ZAMM - Zeitschrift fiir Ange-
wandte Mathematik und Mechanik, GAMM — Tagung, Akademle—\/erlag, Ber-
lin, Band 48, pp. 291-293 (1968).

PiK Mar., 10 5223 (1969); P>K Mex., 9 A100 (1969); Math. Rev.,

Vol. 41, 7225 (1971); Zbl. Math., Band 179 (1970).

1969

Koopdunamnoe n-meproe npocmancmeo mMempuneckut men3op Komopozo 76-
O 3a8ucum om epemenu (An n-dimensional coordinate space whose metric
tensor depends on time), Publ. Inst. Math., T. 9(23), pp. 65-68 (1969).
Math. Rev., Vol. 40, 3766 (1970); PK Mat., 4 A693 (1970).

Obuee caedcmeue npsmozo memoda Janynosa 06 yemoiwusocmu (The gen-
eral corollary of the direct Lyapunov’s method of stability), Publ. Inst. Math.,
T. 9(23), pp. 139-142 (1969).

Math. Rev., Vol. 40, 2259 (1970); Zbl. Math., Band 187, Heft 1 (1970);

P Mar., 3 B257 (1970)

STATIKA, p. 210., edit. Univerzitet u Beogradu Press: Zavod za izdavanje
udfbenika SR Srbue (1969), Beograd.

1970

Conditions de non-ezistence de trajectoires de phase fermées d’un systéme de
points matériels, Publ. Inst. Math., T. 10(24), pp. 79-86 (1970).

PXK Mex., 5 A117 (1971); Math. Rev., Vol. 43, N. 2, 2884 (1972); Zbl.
Math., Band 267, 7, 35005 (1974).

Sur la théorié de l'intégration des équations différentielles du mouvement dun
systéme dynamique (in Serbian, French summary), Mat. Vesnik, N. S., 7(22),
3, pp. 389-393 (1970). :

Math. Rev., Vol. 42, 5484 (1972); Zbl. Math., Band 215, Heft 1 (1971);

PyK Mar., 5 B324 (1971); PAK Mex., 4 A149 (1971).

Abcorommvli unmezpan mensopa (The absolute ‘integral of a tensor), Publ
Math. Inst. N. S., T. 10(24), pp. 199-202 (1970).

Math. Rev., Vol. 43, 5437 (1972); Zbl. Math., Band 221, 53017 (1972).

Un critére de stabilité des solutions d’équations differentielles du mouvement
d’un systéme mécanique, Congres International des Mathématiciens, 242 (1970),
Nica.

1971

06 0010 803MONCHOCTNU NP EICTNABAEHUT KOBAPUANTIHBLT U KONNPABAPUAHTTL-
HOT Koopouram eexmopa ckopocmu (A new covariant and contravariant co-
ordinate form of velocity), Mat. Vesnik 8(23), 4, pp. 387-389 (1971).

PiK Mar., 7 A604 (1972).
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Obuwee ymeepxcienue 06 yemotnuocmu 08UNCERUT U COCTROTHUA PaA8HO8E-
cus mezanuveckuz cucmem (The general theorem of stability of motion and
equilibrium of mechanical systems), Publ.Inst. Math., T. 11(25), pp. 33-41
(1971).

Math. Rev., Vol. 46, 4818 (1973); Zbl. Math., 70011 (1972).

. Covariant equations of disturbed motion of mechanical systems, Tensor, N. S.,

Vol. 22, pp. 41-47 (1971), Fujisawa.
P Mart., 9 A629 (1971); Math. Rev., Vol. 44, 2390 (1972); Zbl. Math.,
Band 227, 70018 (1972).

. Abconomnee unmezpaas Juddepenyuanvnnz ypasrenul zeodesuveckot (The

absolute integrals of differential equations of a geodesic), Publ. Inst. Math., T.
12(26), pp. 143-148 (1971).
Math. Rev., Vol. 46, 6204 (1973); Zbl. Math., Band 227 (1972).

1972

. Incompleteness and dependence system of azioms in statics (in Serbian, Russian

summary), Tehnika, XXVII, N. 2, pp. 212-214 (1972).

. A contribution to tensor calculus, Tensor, N. S., Vol. 25, pp. 375-382 (1972),

Fujisawa.

Math. Rev., Vol. 48, N. 5, 9575 (1974); Zbl. Math., Band 53009

(1974); P7K Mar., 1 A629 (1974).

Some first integrals of differential equations of motion of a mechanical system,
Publ. Inst. Math., T. 14(28), pp. 157-162 (1972).

Math. Rev., Vol. 52, N. 3, 7250 (1976); Zbl. Math., Band 266, 70008

(1974);

P/ Mar., 12 B353 (1973); PiK Mex., 2 A129 (1974).

O realnosti prvog postulata dinamike, “Dijalektika”, ¢asopis za opSte probleme
matematickih, prirodnih i tehnic¢kih nauka, VII, 1, Univerzitet u Beogradu
(1972).

1973

Hexomopvie obuyie UHMEZPaABL HEAUHETHT MELANUNECKUT CUCTIEM 08UNCE-
nug (Certain general integrals of nonlinear mechanical systems) (in Russian,
Polish and English summaries), Nonlinear vibration problems, Polish Academy
of Sciences, T. 14, pp. 369-377 (1973).

P Mex., 3 A105, A106 (1973); Zbl. Math., 70019.

1974

Fosapuanmmnue unmezpaav, 00noil ducunamuenoti cucmemv, (Covariant inte-
grals of certain dissipative dynamical systems), Publ. Inst. Math., T. 17(31),
pp. 183-189 (1974). '

Math. Rev., 9745.
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General finite equations of geodesics, Tensor, N. S., Vol. 28, pp. 259-262
(1974), Fujisawa.

Math. Rev., 11066; Zbl. Math., 53020.

Kosapuanmnne unmezpast 8 mezanuxe, IIMM — mpuknaggas MaTeMaTUKa
n mexanuka, T. 40, Bom. 2, AH CCCP, pp. 346-351 (1976), Mocxksza.

A quarter of a century of the Mathematical institute in Beograd, Uvodnik Bul-
letin Scientifique, Section A, Conseil des Académies des Sciences et des Arts
de la RSF de Yougoslavie, T. 17, N. 34 (1974).

Prilog opstoj mehanici, Tehnika — Opsti deo, XIX, N. 8 (1974), Beograd.
1975

Covariant integrals in mechanics, PMM — Journal of App. Mech. 40, pp. 320-
326 (1976), (Translation of the Soviet Journal Ilpuxnammas MaTeMaTuka U
Mexanuka), Publ. Pergamon — press, Oxford, Toronto.

Covariant equations of the geodesics on certain surfaces (in Serbian, Russian

summary), Mat. Vesnik 12(27), pp. 399-409 (1975).
Mat. Rev. Vol., 53, N. 2, 3909 (1997); Zbl. Math., Band 344, 53005 (1977).

1976

Dinamicko svojstvo materije, Srpska akademija nauka i umetnosti, Nauéni
skupovi, Odeljenje drustvenih nauka, 3 (1976).
Masa 1t materija, Izd. preduzece “Rad” (1976), Beograd.

1977

Analytical criterion for stability of motion of rheonomic systems (in Serbian,
English summary), Glas CCCI de I’Académie serbe des Sciences, Classe des
sci. math. et nat., N. 41, pp. 83-91 (1977).

THEORY OF OSCILLATIONS (in Serbian), second revized edition, p. 462,
edit. University of Belgrade, Press “Naugna knjiga” (1977), Beograd.

1978

On the stability of the control motion of mechanical systems (in Serbian), Proc.
of Conference of Motion, Soc. Mech. Serbe (1978).

O xs8azuaunelinnm xoaebanugm smezanuneckoll cucmemn (On quasi-linear o0s-
cillations of mechanical systems) (English summary), Teo. prim. meh.,

N. 4, pp. 165-170 (1978).

Zbl. Math., Band 426 (1980); Math. Rev., e: 70031 (1980); PiK Mex.,

4 A136.

Klasi¢na mehanika i upravljanje kretanjem (Classical mechanics and control of
motion) (in Serbian, Russian summary), XIV Jugoslovenski kongres racionalne
1 primenjene mehanike, K-5 (1978), Portoroz.
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1979

Covariant differentiation of a scalar over a vector (in Serbian), Mat. Vesnik
3(16)(31), pp. 357-360 (1979).
Math. Rev., 82e: 53031 (1982).

. Optimalno upravljanje kretanjem holonomnog sistema, Glas Srpske akademije

nauka i umetnosti (1979).

. Hpunoxcenue k duffepenyuanvrvim fopman Ipafda-Burumosuywa (A con-

tribution to Pfaff-Bilimovich differential forms), Teo. prim. meh. N. 5,
pp. 174-179 (1979).
Math. Rev., g: 49031 (1981).

1980

. 06 UHMEZPAAE IFHEP2UU CUCTMEM CIMECHEHHOLT HECTNAUUOHAPHOIMU CB8AITMU

(On the energy conservation theorem of a system with rheonomic constraints),
Teo. prim. meh., N. 6, pp. 133-143 (1980).

Math. Rev., a: 70014 (1983).

Transformation of position vector coordinates (in Serbian, English summary),
Tehnika — Opxti deo, XXXV, N. 6, pp. 6-16 (1980).

K pewenuio cucmemsl x8azuaunelinns Jufdepernyuosvnin ypasrnenut (On the
solution of systems of quasilinear differential equations), Mat. Vesnik 4(17)(32),
pp. 439-442 (1980).

Math. Rev., d: 34036 (1984).

1981

Optimal control of motion of a holonomic system, Bulletin de I’ Académie serbe
des Sciences, LXXVI, N. 11, pp. 1-10 (1981).

3. The energy integrals of a rheonomic system (in Serbian), Glas CCCXXIV de

I’Académie serbe des Sciences, Classe de sci. math. et. nat., 47 (1981).
PA Mar., 3 B836 (1983).
COVARIANT DYNAMICS (in Serbian: KOVARIJANTNA DINAMIKA), (Eng-

lish sumnmary), Mat. Inst. Serbian Acad. Sci., Editions spéciales, 14, p. 136
(1981), Beograd.
Zbl. Math., Band 466, 70017 (1982); PiK Mex., 4 A30.

1982

. On the stability of the system with generalized potential, Teo. prim. meh.,

N. 8, pp. 139-141 (1982).
PiK Mex., 5 A38 (1983); Zbl. Math., Band 430, 70006; Math. Rev., d:
70030 (1984).

The problem of stability of motion (in Serbian), Modern problems of general
stability and the stability of continuum, Proc. Soc. Mech. Serbe (1982).
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Laws of natural sciences (in Serbian: Zakoni u prirodnim naukama), “Dijalek-
tika”, Casopis za opSte probleme matematickih, prirodnih i tehnickih nauka,
XVI, N. 1-4, Univerzitet u Beogradu (1972).

1983

DIDACTIC MATERIAL FOR PHYSICISTS, Part - MECHANICS, Zav. za
udzb. i nast. sred. (1983), Beograd.

Analysis of amplitudes of resonant oscillations, Tehnika — Opxti deo, XXXVIII
(1983).

PiE Mex., 12 A151 (1983).

On the minima of the moment impuls, Recueil des travaux de 'Inst. Math.,
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ON ASYMPTOTICALLY STABLE
NON-OSCILLATORY DYNAMIC SYSTEMS

Ranislav Bulatovi¢
Faculty of Mechanical Engineering, University of Montenegro, Yugoslavia

Abstract. A condition under which the symmetric damped linear multi-
degree-of-freedom system does not oscillate is stated in terms of the
coefficients of system matrices without solving the spectrum of the entire
system. This criterion is then generalized to a class of asymmetric
systems. A simple two-degree of freedom example which illustrates a
comparison with the exact result is given.

Introduction and earlier results

Systems of interest here are linear viscously damped systems described by the
differential equation

Mg+Bg+Cq=0 (1)

where ¢ is the n-dimensional position vector and M, B and C are the inertia, damping and

stiffness matrices, assumed to be constant, real symmetric and positive definite (> 0). As

M>0, one can utilize the positive definite square root in a familiar way to transform the
equation to the form

¥+ Di+Kx=0 (2)
where x = M”Zq , D=M""? BM ™% K =M""*CM"* When a solution to equation
(2) is assumed to have the form x = U exp(A1), the following algebraic problem arises

(A1+2AD+K)U =0 (3)
where U is an eigenvector of dimension n and @ is its eigenvalue. There are 2n
eigenvalues which are governed by the characteristic equation

det AT+ AD+ K) =0 4)
It is well known that all roots of this equation have negative real parts, and hence the
system (2) is asymptotically stable.
The problem considered here is now defined: Under which conditions every solution
x(t) of the differential equation (2) will be a non-oscillating function of time, 1. e.,
when all associated eigenvalues of the system will be negative real numbers.
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A necessary and sufficient condition, based on a well-known algebraic method, has
recently been reported in [3]. Nevertheless, this criterion is somewhat cumbersome to use
if the number of degrees of freedom is large, since it requires the knowledge of the
coefficients in the characteristic equation and the inspection of the minors of a 2n x 2n’
matrix. From a practical point of view, therefore it is of interest to find conditions -
expressed by the properties of the system matrices - for nonoscillation of the system.
Such conditions may yield design constraints in terms of the physical parameters of the
system.

This problem is well-known solved for a single-degree-of-freedom system described
by the scalar equation X+dx+kx=0, where d and k are positive. Necessary and
sufficient condition for such system to be non-oscillatory (overdamped or critically
damped) is d 2 2/;”2. Criterion analogous to this can be given in the case of -multi-
degree-of-freedom systems, when damping is classical, i.e., if D commutes with K then

the system (2) does not oscillate if and only if D?*-4K 20. For a general case of
damping the sufficient conditions for non-oscillation are as follows:

2
(A) (xTDx) —4xTxxT Kx > 0 for all nonzero real n-vectors x [6];

‘B) d,, >2k, ., where d, and k, are the minimal and maximal
eigenvalues of the matrix D and K, respectively [1];
(C) D=2k, 1>0,[2];
(D) D* —=2(K +ky D) >0, [4];
(E) D* =3K—-k;'K* 20, [3].

The inequality (A) is the classical definition of overdamped systems first used by
Duffin [6]. This condition is not easy to verify numerically. More recently, Barkwell and
Lancaster [1] have suggested a criterion, which is equivalent to (A), but it requires the
determination of a parameter by trial and error. Conditions (B) and (C ) are equivalent.

This fact can be readily verified reducing the matrix D to diagonal form by means of an
orthogonal transformation. From K <k, , we have

D?-2(K+ kp D)2 (D=2k p ID+2:Jky 1)
Thus, the condition (D) is weaker than (C), since whenever the later is satisfied, (D) is
automatically satisfied. Note that neither condition (E) nor condition (D) implies the
other one (see [3]). '
An additional sufficient condition for non-oscillation was proposed in [7]:
(F) D=2K"?>0."

This criterion has been accepted and used by many authors (see [2]). However, condition
(F) does not guarantee real eigenvalues, as the example in [1] illustrated.
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A new sufficient condition for non-oscillation

Theorem 1 . The system described by equation (2), with D= DT >0 and
K =KT >0, does not oscillate if
D* —K—kyI-D(K+k,I)™ KD >0, (5)

where k,, is the largest eigenvalue of the matrix K.
Proof. According to [4], we consider the following 2n-dimensional conservative

gyroscopic system
y 0 DYy Ki0Yy 0
AN SN PN ©
z -D | 0\z 01 K)\z 0

The eigenvalue problem associated with (6) is

itk 0 m _ [9] a5
-sD s I-K\Z 0

Suppose that the system (6) is stable. Then, all eigenvalues of (7) are purely imaginary. If
we substitute s=iw, i =+—1,1n (7), we obtain

— (@I +K)Y+iwDZ =0 (8)
and

—ioDY - (0*I+K)Z =0 9)
From (8),

Z=-2D @I+ K)Y, (10)

o)
and substitution of this expression into (9) leads
(@I +oD+K)D ™ (w*l —oD+K)Y =0 (11)

Let s=iw,w <0, be an eigenvale of (7) with eigenvector r".z"7T . From equations
(3) and (11), we deduce that A=w is eigenvalue of (3) with eigenvector

X =D (w*l-wD+K)Y. Consequently, the system (2) does not oscillate if the
systemn (6) is stable. '
According to [5], we introduce auxiliary function of the form
V(y,2,9,2) =V, (3,2) +V,(2,~) (12)

with v

Vi) =E"(D* =K~k DE+2E"DEn+nT (K* +k, K)n (13)
Here, £ and n are n-dimensional real vectors and k,, is the maximal eigenvalue of
matrix K . The time derivative of V', along every solution of equation (2), becomes
V =0. On the other hand, Vi (E,m), as well as the function (12), are positive definite if
and only if the condition (5) holds. Thus, under (5), according to Liapunov’s stability
theorem, the system (6) is stable and, consequently, the system'(2) does not oscillate.

There is another way of establishing this result. Indeed, the roots of (4) and
eigenvalues of the state matrix



26 Ranislav Bulatovié

are the same. The matrix A is asymmetrir, but it can be expressed as the product of two
symmetric matrices, i.e.,

A=AA,,
) | -
2 K-k
where Al = Alr = —D——__]g___M_[_: __7__D_K____
KD K +ky,K
and

3 ! 2 2
fy = AT = (r_l_)_i@_i@’fjé’y_@_L:_@f_f_fi_f_"'_uf] |

Furthemore, it can be shown that A, >0 under the condition (5). Then, matrix A is

symmetrizable and, consequently, all eigenvalues of A are real. From this and the fact
that the system is asymptotically stable we obtain the result stated in Theorem 1.

Nlustrative example

Consider the two-degree of freedom system shown in Fig. 1, where ¢; and [ stand
for the spring constants and coefficients of viscous damping, respectively, and g, and
g, are the displacements from equilibrium positions of masses s, and m,. For
simplicity, we take ¢, =¢, =¢, B, =0, =5 =B and m =m, =m. The equations of

motion for this system can be written in the form (2) with

1 0 2 -1
D= and K =
0 2 -1 1

where

The condition for non-oscillation derived here is next applied to this system and the
result is compared with the exact solution.

Bo
—
-/\/S)\/x 2
m4 FAAN My
_[}_—
P
—
B3
q q,

Fig. 1. The system of example
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An elementary calculation shows that & ,, =2.618 . Condition (5) takes the form

[O.6O3d2 ~4618  0333d%+1 )> "
0333d%>+1 30784%-3618)
which yields d > 2.958. Consequently, if the parameter d is now chosen to satisfy this
inequality then the system will not oscillate when perturbed from equilibrium.
According to [3] (Proposition 1), system of this example does not oscillate if and only

if
4 5 5y S
5, Sy 53 Sy
Sy S3 5S4 Ss
§3 S4 S5 g J
where

s,==3d: s, =5d> -6, s3=3d(4-3d%); 5, =17d* —24d”> +14;

s; =d(=33d* +50d> —45); 55 =65d° —1084* +114d” - 36.
A necessary and sufficient condition for a matrix to be positive semidefinite is for each
of its principal minors to be nonnegative. Applying this condition to H yields
d 22952 . Thus, for this example the criterion (5) gives a good result.

Generalization to a class of asymmetric systems

In this section it is shown that Theorem 1 can be generalized for a class of asymmetric
systems (i.e., the symmetry restrictions are not met by mass, damping and stiffness
matrices) commonly known as the symmetrizable systems.

Assuming that the mass matrix M is nonsingular, equation of motion can be written
as

I+ D¢+ Kg =0, (14)
where D=M7T'B and K=M7'C are both real asymmetric matrices. The
symmetrizable systems are defined by Inman [8] as systems that have symmetrizable
matrices D and K, ie., such that factorizations D=S,5, and K=5,5; are
permissible, where S, is symmetric and positive definite, while S, and S5 need only be
symmetric. Additionaly, it is supposed that D and K have positive eigenvalues. Then,
S, and S; are both positive definite matrices and the system described by (14) is

asymptotically stable [8], and hence all roots of corresponding characteristic equation
have negative real parts.
Using the transformation g = Sll/2 y, equation (14) is reduced to

5+ Dy+Ky=0 (15)
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where D=D" = 525,51 and K=K" =5/25,51?. Since D and K are both

symmetric and positive definite, Theorem 1 can be applied to equation (15). This implies
that if

P —K— kgl ~ D+ &, I KD >0, (16)

then the system does not oscillate. Here k,, represents the largest eigenvalue of the

matrix K . From the factorizations of D and X, we have

S =5"D (17)
and

8, =857°F, (18)

Substituting (17) and (18) into the expressions
(SR, gy glRg gl T gIPg piReglitg gl p f 1yi5ile 5 g sl

and

S1/7S3SI/2 ,
results in
STVErHR - B—Fjd— DeB vk, 1y BBy (19)
and
K=5"2Ks)?. (20)

from (19) and (20) we see that ku is equal to the largest eigenvalue of the matrix
K=M7C, and that (16) is equwalent to condition that eigenvalues of the asymmetric

matrix D* - K — kMI D(K-H\V]) '"KD are real and positive, since similarity

transformation preserves eigenvalues. Thus, the following result is derived.

Theorem 2. The symmetrizable system described by equation (14), where
D=M™"B and K=M"'C have positive eigenvalues, does not oscillate if the
eigenvalues of the matrix

(M7'B) =M™ C—ky I~ M B(C+k, M) CM™'B @1

are real and positive.
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Abstract: This paper presents the discrete continuum method on examples of
homogeneous discrete systems' with limited number of degrees of motion
freedom dynamics. These systems are in the form of homogeneous chains and
nets in space and plain. Material points of these nets and chains are tied by elastic,
standard hereditary or creep elements. By introducing the trigonometric method
for studying properties and equations of dynamics of discrete homogeneous
continuums we set up the discrete continuum method for the study of dynamics of
chain systems with hereditary or creeping connections. These systems' dynamics
is described by a system of integro-differential equations of differential equations
with fractional derivatives. A light standard creep element is defined by a
constitutive relation of stress-strain state, for the creation of which fractional
order derivatives were used.

Keywords: Discrete continuum, discrete hereditary system, discrete
homogeneous chain, discrete homogeneous material net, elastic element, standard
hereditary element, standard creep element, integro-differential relation,
fractional derivatives order, Jules-Lissajous figure, trigonometric method, small
vibrations.

I. Introduction

The fast development of science of material (see Ref. [2], [19], [21], [23], [24],
[25]) and experimental mechanics, of methods of numerical analysis, led to the creation
of different models of real material bodies and methods for studying dynamics and
processes which happen in them during the transduction of disturbance through
deformable bodies. In the process of creating a real body model certain simplifications
and approximations are done. There also exist different approaches to creating real body
models (see Ref. [26], [27]). One such approach is represented by a model of discrete
system of material points which are connected by certain ties, and the number of which
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is then increased to create a continuum, the motion and deformable wave propagation of
which was then described by using partial differential equations. And then, due to the
impossibility of solving them analytical, the approximation method was used for the
purpose. Methods of discretization of systems of partial differential equations and
methods of physical discretization of continuum were used. Computers were used for
obtaining numerical solutions. In this paper, we made a combination of known
trigonometric method and discrete continuum model to obtain the new discrete
continuum method for determining solutions of motion of systems of material points of
homogeneous discrete continuum in analytical form.

In an attempt to make a selection of authors who gave significant
copntrributions to the knowledge on deformable body dynamics we came to a conclusion
that it would require an entire review paper, which is not the goal of this paper so we
shall restrict ourselves to citing authors on whose papers we directly rely.

2. Discrete Continuums Models and Elements

In this paper we shall use three basic models of discrete continuum with light
constraint elements between material particles. We shall define discrete continuum as a
system of material particles which are interconnected by light standard constraint
elements which have the ability to resist axial deformation under static and dynamic
conditions.

Basic elements of discrete continuums are:

1% Material particles with mass m,, , with each particle having three degrees of motion

freedom, defined by following coordinates x,, y, and when i, j,k changes by

Yijk Zijk »

kinds i=1234,..,N,, coulomns j=1,234,..,N_ andorders k=1234,..,N

2% Light standard constraint element of negligible mass in the form of axially stressed
rod without bending, and which has the ability to resist deformation under static and

dynamic conditions; Constitutive relation between restitution force P and elongation

3

Y or X can be written down in the form f,”,(P,P, Vs Vo D, T i85 € s €55 T Ul g ):O

]

where D and J are differential integral operators (see Ref. [6], [3], [5], [10], [11], [14],

[15], [17]. [20], [2]) which find their justification in experimental verifications of

material behavior, while n,¢,¢,,c,, .... are material constants, which are also determined
experimentally.

For every single light standard constrain element of negligible mass, we shall
define a specific law of dynamics. This means that we will define dynamics constitutive
relation as determinants of forces and/or change of forces with distances and changes of
distances in time, with accuracy up to constants which depend on the accuracy of their
determination through experiment.

The accuracy of those constants laws and with them the equations of forces and
elongations will depend not only on knowing the nature of object, but also on our having
the knowledge necessary for dealing with very complex stress-strain relations (see Ref.

(18], [13], [1]). In this paper we shall use three such light standard constraint elements,
and they will be:
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1* Light standard ideally elastic constraint element for which the stress-strain
relation for the restitution force as the function of element axial elongation is given by a
linear relation of the form
P=—cy, ey
where ¢ is a rigidity coefficient or an elasticity coefficient (see Ref. [7], [8]). In natural,
non-stressed force and deformation of such elemnt are equal to zero.

2% Light standard hereditary constraint element (see Ref. [5], [6], [21], [24],
[16]) for which the stress-strain relation for the restitution force as the function of
element elongation is given by a relation:
2. a* in differential form:

DP=cCy or 71P(t)+ P(r) = nc_v(t)+ Ey(r) (@)
where, the following differential operators are introduced:

d d - 45

D=n—+1 and C =nc—+c. 3)
dt dt

and n is arelaxation time and c,c¢ are rigidity coefficints — momentary and prolonged

one.

2. b* in integral form

P(r):c{v(t)—J‘R (r-‘r)_y(‘r)dﬂ.':|: )
where R (-1)= c-¢ or is relaxation kernel (or resolvente). (5)
nc
2.c* 1inintegral form
y(f):i|:P(r)+'[K(l-T)P(T)df}a (6)
¢ 0
where  g(-1)=<=C o) is kernel of rheology (or retardation). )

3* Light standard creep constraint element (see ref. [1], [2], [3], [16]. [27])
for which the stress-strain relation for the restitution force as the function of element
elongation is given by fractional order derivatives (see Ref. [4]) in the form

P()=~fox(t)+ e, 07 ()]} (3)
where D%[e] is operator of the " derivative with respect to time  in the following
form:

R e ©

o e T(l-a)diy (1)

where ¢,c, are rigidity coefficients— momentary and prolonged one, and @ a rational

@

number between O and 1, O < < 1.

In this paper we shall define discrete continuum as a system of material
particles interconnected by light standard constrain elements (elastic, hereditary or
creep) and which are, in natural state, on defined interdistances (when constraint
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elements are unstressed). Discrete continuum is ideally elastic if it's material particles
are interconnected by light standard ideally elastic constraint elements. Discrete
continuum is a standard hereditary continuum if it's material particles are interconnected
by light standard hereditary elements. Discrete continuum is a standard creep continuum
if its material particles are interconnected by light standard creep elements.

We shall define discrete chain system as a system of discrete material particles
which can move along a line and are interconnected by standard constraint elements. The
chain is ideally elastic if material particles are interconnected by ideally elastic elements.
The chain is standard hereditary if material particles are interconnected by standard
hereditary elements. The chain is standard creep if material particles are interconnected
by standard creep elements. The number of degrees of freedom of each of these chains is
equal to the number of particles in it, since we hypothesize that each material particle
moves in the direction of the chain.

If all material particles of the discrete continuum move in the same plane they
have two degrees of motion freedom and are interconnected by light standard constraint
elements, as it is shown in the picture 1., or 2. such material system we shall call the
plane material net. The net can be elastic, standard hereditary or standard hereditary
plane material net depending on the type of constraint elements that interconnects its
material particles. It is a plane discrete material surface through which we can follow
the propagation of deformation waves, which can be elastic, hereditary or creep in two
orthogonal directions.

If each material particle of discrete continuum has three degrees of motion
freedom, and if they are interconnected by light standard elements into a space discrete
material net (as it is shown in Figure 3.) than we call it the space material discrete net of
spatial discrete continuum.

Further we introduce the hypotheses about the homogenity of discrete continual
chain or discrete continual material net, about small deformations of light standard
constraint elements, and that displacements of material particles are small.

Also we introduce the hypothesis that the homogeneous discrete continuum,
chain or net, was in natural, non-stressed state, before the initial moment of motion
observation i.e. that light standard constraint elements do not have a prehistory nor
memory of stress-strain state. With these hypotheses we shall direct our research to the
dynamics of chain-like and net-like homogeneous systems.

3. Homogeneous Elastic, Linear and Plane Discrete Continuum

In reference [22], on page 157, differential and frequency equations are derived
for small oscillations of homogeneous and non-homogeneous systems', while the idea of
trigonometric method for solving and describing the dynamics of homogeneous chain-
like systems which are constrained on both ends, free on both ends or free on one end
and constrained on the other is presented on pages 163 through 167 with appropriate
solutions and expressions for dynamic coefficients of amplification. By using the
trigonometric method we study small oscillations of homogeneous plane discrete net
(see Figure 1.) of the elastic continuum with finite degrees of motion freedom. Figure 5.
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shows a model of decomposition of a discrete net-like system around a material particle

My, -

ie (ILN,)

Yy

1.234,...., N,

J

1,2,3,4,....

i

lastic net.

Plane material e

Figure 1. Model of elastic plane discrete continuum —

clastic material net (see

Differential equtions of mass particles of the ortogonal

Figure 5.) are:

M Xk

—-X(i~!.i).j.k+ X(i,|+l),j.k

(10)

R AERTE S ATFRY
_Zi,j,(k~l.k)+Zi.j,(k,kvl)

y

;i x ik
MG i jk
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LN,

i=1234...

ie(ILN,)

Xijk

My,

jE (LN\)

Ciisl),jk

22 W,
S 3 w M >SS TS =

2 . == = S
VA QU i @ T s G b O

Qv Qi QA @ Ol
s 333

TGS S e
A M

=3

_ \
NN A\ WA\

Figure 2. Model of elastic space discrete continuum — Space material elastic net.

By using the corresponding restitution forces into ideally elastic constraint elements (1)

in the form:

(11)

~Ci(j,j+1)k ()’i.(jn),k - )'i.j,k)
Zi.j.(l:.l:+1) = _C[.j.(kJ:+1)(Zi,j,(k+l) “Zijuk )

}/I.(j.jﬁlj,k



36 Katica (Stevanovi¢) Hedrih

previous differential equtions (10) of mass particles of the ortogonal elastic material net
can be rewritten in the following form:

— Xk T Xk T 2xi,j.k T Xa1) gk = 0

m.
—C— ui = Yeer T 2)’1‘,/‘,& ~YiGak = 0 (12

m ..
?Zi.j.k )T Zzi,j,k TLja) T 0

R i41), 2 Ciiv1).j 2 Cliivl). )

R (. j+1)2 Ci (G, j+1)2 €l j+1)

....... h%‘ ....... _@1 J% .......

‘ Figure 3. Model of hereditary plane discrete continuum — Plane material hereditary net
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Now, we assume that the solutions of these differential equations (12) can be
taken in the following form:

_ (x) (>)
Xk = A Cos<a)0j KTy

= B; j cos (wi‘[o?k[ + af(fo)x ) (13)

i,jk

_ _ ) (z)
Lijk = Ci,;J: Cos(a)r'(.j).ot + ai,j.(])

By introducing following charakteristic numbers:

<ok g e} g el o
c

and prvious assumed solutions (13), into (12), these system differential equations is
transformed into following system homogeneous algbraic equations:

— At (2 = HC()I/‘).& )A'j — Ay = =0
_B;.U-l)x ( —u OJ )B (j+1)k =0 (15)

- C,x/.(/r.-l) + (2 - u:'(.}),o k‘r‘./,lz - C;.j.(x;q) =0

Now, we assume that the solutions of these homogeneous algebraic equations
(15) can be taken in the following form (see Ref. [22] - the idea of trigonometric method
for solving and describing the dynamics of homogeneous chain-like systems which are
constrained on both ends, free on both ends or free on one end and constrained on the
other is presented on pages 163 through 167 with appropriate solutions and expressions
for dynamic coefficients of amplification):

=M,,, sin .]9:(:))& > Ciju =L ;osin kyi(.:j).o (16)
By introducing previous assumed solutions into system (15) we obtain the
following:
uf)f = 21— cos ). ulil=20-cosoB), ul =20-cosy ) (A7)

_ s (x)
Apjp =Ny sINiQg, B, . ijk

where:
A* For the dynamics of homogeneous chain-like systems which are free on
both ends we obtain the following:

W) _ o _ ST oM _g _IT Mp) _,, _PT. ~
q)O»/J‘ =9,= N_, 3 91,0,!: - 9r - ‘N-— ’ y/.j,Op - ‘}/p e (18)
B* For the dynamics of homogeneous chain-like systems which are free on one
end and constrained on the other, we obtain the following:

_Gsop o Qo (pik (19)

CUaN 41 T 2N 41 TP N 4
C* Fo the dynamics of homogeneous chain-like systems which are constrained

on both ends, we obtain the following:
ST I pr

s = ; g, = ; = :
i N, +1 N, +1 Ta N.+1

In the previous expressions there are: s = 1,23,.,N_; r=123,..,N; p=123,..,N,

(20)
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m.. ~
gk Pian) jao Ciint). gk Cliien) )k

X c

ik TG G ek Ci(j+)k

~

Yijk T j k1) Ci,jikde+1)? Ci j(k k+1)

| l X
0
7
|
J
y
J

NN

L Figure 4. Model of space hereditary discrete continuum — Space hereditary material net.
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a*
v M ik —M; ik Viju)
(—’ni.j,kxi,j.k)
X(i—l,l) jok
Py - Mg iy
Yi.(/—ulk

M o Xijks YijkorZijk

i+, ),k

(—m,._j,k.')él.,j'k )

Zi,j,(k—l,k)

M, k-1 (_mi./“k Zi.j,k )

Figure 5. Model of decomposition of the space material
discrete continuum and palne of forces of interactions between
material particles

a* in plane Oxy i b* in plane Oxz

Corresponding, chracteristic numbers - eigen values of the small free
oscilations, depending on boundary chain conditions of the ends, are:

u® = 4sin? 22 u =4sin3—(25_1)ﬂ B L T L (21)
2N, 2(N, +1) 2(N, +1)
. rm . .5 (2r=1 . .2 ri
ul) = 4in? 2N : u") = 4sin %ﬁ; uf,)):451nvm;
e = 4ain®- 2L, u® :4sin2———(2p—1)ﬂ o ul) =dsin? 22, (22)
2N, B 2(N. +1) 2(N.+1)

Natural circular frequencies of the small free oscilations, depending on
boundary chain conditions of the ends, are:
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ol = ol =2 | < sin 2, (u(")=2"isi
Jk s - 3 4]
m 2N,

(2s-1

2N, +1)”

‘/TA ST

,« J=2 —S$in——=;

m 2(N,+1)
‘/_c‘ 27—1)71 )_ _Sm_(_) (23)

0 |C qPT .
\/;m 2N, +1)’

Corresponding amplitudes of the small free oscillations, depending on boundary

chain conditions of the ends, are:

_ilas-1)r ism
AY) = N(” sin —— ST ; A¥) = NO SIDL—; AY) =N gin———
(LS jk 5 i i j.k 0,j.k 2(NI +1) ijk 0.j.k 2<NI +l) 3
r . 7t r r : ](27‘—1)77: r) jrﬂ:
BY, =M%, sinL—; BY —M.(),sm—(——y; BY), =M, sin : 24
ij.k i,0.k ZN‘ ij.k i,0.k 2 N.‘. +1 ij.k 0.k 2 IV", +1 ( )
. kpm . k(2p-1g . kpm
c® =) sin L= : () — p(p) sin——————; cl) = plp) sin———;
ijk i,j.0 2N: ij.k i,j,0 Q(N: +1) ivjk i,j.0 Z(N: +l)

By following the idea of trigonometric method from reference [2

2] the law of

small free oscillations of material particles in space material elastic net, depending on
boundary chain conditions of the ends, can be written in the following form:

ZA Jkcos[ Ut 4+ o ]

ijk 2’41( COS[ '[+a ‘)]

X
s=N,
> t
gl = ZA,M cos|o®r +a! )=
r=N,

Yijk

r=N,

) v) \]
\:M"zB,uCOS[ t+o ZM,O‘sn

r=N,

Viga = ZB“’A cos|or +a )=

= ZC,]A cos[ r+a ]

p=l

ZC,HCOS[ [+a ]

p=l

zjk_zc

(5) (f) (r)
where No i Mg Liljos O

Lijk =
Z.
Ligk —

[a) r+a ]

conditions.

—ZB,‘;’Acos[ D+ ol)]= ZM,msm

at o™ ﬁ;‘are arbitrary mtegral constants, depending on

JﬁNé‘j)A sm cos[w( )t+a_§‘)]

o . i2s=1 . ;
ZNé]’A Jf’_‘ e coslo®s +a]; (25)
s=N.

() _ W () ®].
ZNOM sin N"+1)cos[wj t+og ]_.

=N,
cos[co )r+a(‘\]

l—l)Jt

mco{ ol (26)
+
r=N,
Z MO, smmc%[wrm[ +ai_\<)];
p=N.
ZL,josm (,Ob[a)l(;)[_‘_a;:)];
z‘\;L,;oSm N 1); cox[ [+a( )] @7
pel 2(N,
p=N.
EL,,Q +1)C S[a)‘(n:)[_i_al(f)];
initial
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We can see that by introducing the hypothesis about small oscillations the space
material discrete net can be presented by a system of orthogonal homogeneous discrete
chain-like continuums. Motion of each material particle of the discrete continuum is than
the resulting motion of three space orthogonal multifrequancy oscillations. Each of these
oscillations is a result of collinear superposition of asynchronous collinear oscillations in
the general case. In order to create a graphical presentation of the resulting motion of
each of material particles it is sufficient to make an analysis of motion of a single
material particle in the plane, which lies at the intersection of two orthogonal chains and
to introduce the hypothesis that initial conditions of each of these chains are such that all
material particles in the chain oscillate with a single frequency.

For example, if both chains intersecting in m,, , are constrained on both ends

than the amplification of amplitude of the observed material particle is given in the
following form:

L. ST N
sini——— g o sin j
(N,( +1) . n(v\xr‘) _ B,(,,),k _sinjo, (N\v"rl)
i B,("L)k sinf, T

. ST ;

The resulting motion of the material particle m

(s) o
(x)s) A,’.f.x: _smi@,

Nk == —
Lk 4 () 3
Al.jJ: SInQ,

(28)

in the plane material net is the

ijk
result of superposition of two orthogonal asynchronous oscillations. Based on that we
can write:

£, (r):Affj",k———( - )cos @Pr+a®); 0, =0 T (0 o), (29)

. F
SN

(N}‘Fl) o N.\‘+1

as well as the following:

i 7 sin —- sin — (s)
(r sin j6 J ) Xijk ]
Yigk =B — je =4 cos —_(/; o + o™ | cos 2 arccos Lt +
sin . . sin i
i’ sin — smq)—‘ A:f/)l_ - s
2 sSin Q. (30)
A .6,
() sin j@ S = sin —— L)
e o X . Xi gk
+ B — P +sin 5 ai"+af" sin 2 arccos 2l
sin .6, o sin i
! sin sin 2 I(X/Jk : P,
2 7 osing,

The resulting path of the motion of the material particle m, in the plane

material net we can write in the following form:

),(;) y(;J sin — sin — &)
ik Yijx . Xijk
| 2 - |cos 2 o) 4 o™ | cos 2 4recos e
gl 1S, (r) Sin j, sin P sin P (s) SNt @,
Llk ik e = Tk e
sin@, " sing, 2 M sing, (31)
. .6
sin —— (s) sin ——
2 . Xigk _ e (x) ()
+cos arc cos———————| =sin ot o,
) sin i :
sin— l(”, s S sin L
2 7 sin 2
(pl
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Previous equation is equation of the different forms of Jules-Lissajous figures, presented
in Figure 6, 7, 8 and 9 for different initial and boundary conditions of the motion of the
material particle m,, in the plane material net (Figures from Ref. [22]).

a) aln2
1 0
D s 5 C 7 =N, N
b 13 2 d
oL I Xy L l25
K 14| 4 1 210
2 .
70|7 8 \ ? 1 9 \,o
s/ ! ﬂ:—_\\ i ' 7 f] ¢ ] 72
7 7 ]
M d
N\ | # V4
b
6 10 U N Mo T ‘. N e a)
73 17 V) wld M2 g
y y
& [ 7 LI A 7405 20/
VLI S " (S SN /0 T X DR = .
”\t’_‘- 13 \ T 8]
7]
P s
w ~ 2 N 19
4 9l — 1 18l6 7
4 n 2 [] B

Figure 6. Examples of constructions of Jules-Lissajous figures (Figures from Ref. [22]).

4. Homogeneous Standard Hereditary, Linear and Plane Discrete Continuum

By using constitutive relation (2) for corresponding differential relations of
stress-strain state of standard hereditary constraint elements in homogeneous standard
hereditary discrete continuum (see Figure 4.) we can write the following relations:

R ien) )k X(i,i+l).j,k‘ Ea X(r’.i+l),j,k =i is1) ki) gk (‘x(i+1).j,k' Xijk )+ Clii+l)jk ( X(is1)jk — X, j.k)
. ]+l)kYI (j.j+1)k +Y, ok = 1 Gk Ci(jog+1)k (j’f.(j+1).k - .\'f.j.A) )k (\ (j+1)k ljk) (32)
gk A+1)Z/ Jlekat) T Z (kks1) = ”i.j.(k,kd»!]Ci.j.(k,k+l)(:i‘j‘(k+l) - ii,j,k )+ Ci.j(k_kﬁ»l)(:i.].(k*—l) ik )

We will further restrict ourselves to exploring only homogeneous space
hereditary nets, an example of which is shown in Figure 4. These nets constitute of
material particles of equal mass m and which are interconnected by standard hereditary
elements of equal relaxation times n and rigidity coefficients c,c, both prolonged and
temporary ones. Stress-strain states of these standard hereditary elements can be
expressed by the following constitutive relations:

DX/:+1).]A _C( (H—])./L \Lj.k)
DY =C (\'i,(m).k - ."::j.k) (33
DZ (kae) =C (Zi,j.(m) - Zi.j.k)

. . . . : d . d -
in which differential operators have been introduced D = n—d—+1 1 €= /zc:{—+ € .
t t
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aj

— 20—

figures for different initial and

Figure 7. Graphical presentations of Jules-Lissajous
boundary conditions of the motion of the material particle m

s in the plane material net

22)).

(

(Figures from Ref.
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Taking into account rheological relations towards the prior constitutive
relations (33) for standard hereditary elements in direction of rows, columns and ranks,
and applying the differential operator D on initial equations of motion (10) we obtain
the system of differential equations for small movements in the direction of main
coordinates of a homogeneous space discrete material hereditary net. When constitutuive
relations are taken into account the folowing system of derived differential equations is
obtained:

mD%, ;, =-C (xi,j‘k = i)k )+ c (-’C(M)j,k T Xk )
mD 5’:‘.;;— =-C («Vi.j.k = Yi(j)k )'*' c (vi.(jvl)Jr - }’i,j.k) (34)
mD zi,j.k == (zx',jk - Zi,/.(k—l))+ C (Zi,j,(m) - Zi,j.k)

Now, we assume that the solutions of these differential equations (34) can be
taken in the following form:

A A 1 A
Xk = A ;€ e Y™ B, ..e S Zijk = C.;x€ e (35)
Let untroduce following notations for binoms:
D*=ni+1 and c*=ncA+c (36)

with corresponding markings with the coresponding lambda numbers A1: }L‘b'f}_t.

A lﬁf}vo . Lets introduce the following notation

1,0k 2
() _ ™MD A (ﬂg‘ikf ) _ mDb fi (AI(‘O)A)Z ) _mDb o (’lgk}o)z -
Uy jk =T’ Uiok =T 4L i —T)B—— !
S c™ c ™
Previous characteristic expressions are in the form of:
_mADt  mA (ngA +1)
T (nocA+¢)
By introducing previous characteristic expressions (37), and previous assumed

solutions (35) into system of derived differential equations (34), system differential
equations is transformed into following system homogeneous algebraic equations:

x)
= A gu T <2 + l{(().j,k )Af.j,k = Ay ju = 0
- Bi,(j—l),k + (2 + “i(;:)).k )Bi,j,k =B, () = 0 (

- Ci.j,(k—l) + (2 + “i(,:j).() k‘i.j.k - C:’.j.(kH) =0

Now, we assume that the solutions of these homogeneous algebraic equations
(38) can be taken in the following form (see Ref. [22] and previous Chapter):

Ak = Na.j,k sin l.(p(g‘."l).k > Bi,jA =M,,, sin jei(.s?k > C[.j.k' = Li.j.o sin kYi(.:j?O (39
By introduce previous assumed solutions (39) into systems (38) we obtain the following:
(‘f) 6) —2(1 —cos QDS‘J)E‘)> w0 = —2(1 —cos 9}23}”) u,.(f,.)_ﬁ”) = —2(1 — GOS8 }/fj)é’)) (40)

0,j,k 3 i,0.k 3

37

u

(%)
(%]

ik

u

A* For the dynamics of homogeneous chain-like system which are free on both

ends we obtain the following:
. : i . T
Wag, =T, Q=6 =", yfi=y,=L%; (41)

(pc(>, =9 = N > 1.0k r N, >
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B* For the dynamics of homogeneous chain-like system which are free on one
end and constrained on the other, we obtain the following:

G-k, e _@prik )

CTAN.+1°7 T 2N, +17 P 2N _+1

C* For the dynamics of homogeneous chain-like system which are constrained
on both ends, we obtain the following:

ST I pr
= , | = , = . 43
P =N+ N+ PN A1 @
In the previous expressions there are: s =1,2,3,...,N,; r=123,.,N; p=123,. N

Corresponding characteristic eigen-expressions-relations (40) of the small free
mass particle motions-oscillations, depending on boundary chain conditions on the ends,
are:

W =—4sin? 22—; 4l = 4sin’ 2 (25 1)7[, ul = —dsin® ——"—;
2N, 2(N, +1) 2(N, +1)
() § .2 (2r—1 v " &
=—4sin” 27;\‘ : u! ):_451n-27ﬁ; uf;,) =—4sin’ > ]\’[::_1 ; (44)
= —4sin? 22, 14“):—4sinz——-—(2p_l)ﬂ : L‘((:J):_4Sinz_———_pn -
2N, " 2(N. +1) ’ 2(N. +1)

By using the previous characteristic relations, we can form sets of characteristic
polynoms-equations of dynamical hereditary processes in material net, in the following
form:

s
7 ¥ 20)
mD /501 A{‘O)P (\O)kc //_U_AJ":O’ (45)

25 > ()
[0 (), } -ute ¥4 =o.
L

;‘1:,,0 (:) ? ( ) A:/q _
!VmD A,,/.o u;5C } =0.
P

and by introducing into (45) characteristic expressions in the form
mAD*  mAt(ngA +1) :
u= = —~ we can write:

c’ (ngch +¢)

mAlD* +2c ™ (cos o, —1)= 0, s=123...1; (45%)
or in the following form:

3 - ST
mn, )2 +maAl +2(nych, +¢ {cas

~1]=O,5:1,2,3,....,n, (45%%)
n+1

of which roots are A ,,r=123 s=123..n , an there are 3n for each of the chain

orthogonal directions.
Corresponding amplitudes of own small motion for forms corresponding to
characteristic numbers and depending on boundary conditions, are:
. iSTC g . El2s—1 X ISTC
N( ) . (s) N( ) 5 ( )ﬂ . A( N(“ sin .

A(A e
2(N, +1)’

if ke 0.jk sin 2 5 ijk = Mok

N, n2(NI+1)’ Lo

Y
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i _jer-1gn ) I
BY =M@ sin 2" . BY. =MD", sm—(——yj( ; BY), =M, sin (] ) 46
ijk i,0.k ZN‘ ijk 1.0,k 9 N), +1 ijk 0.k 2 N.\, +1 > ( )
_kpr . k(2p-1) in P
e =10 sint=; b =10 sin—2E T 0 =10 sin———;
ijk (R 2N ik 1.0 > Z(N: +1) Lk w0 2(N: + 1)

By following the idea of trigonometric method from reference [22], the law of
small free motion (oscillations) of material particles in space material elastic net,
depending of boundary chain conditions on the ends, can be written in the following
type-form:

s=N s=N,

; isTC A
X = D AL ZNO I Sm :
= N,
s=N, s=N,
ST 30)
y. ZB‘” ZM(” sin——e*’ 47)
Jijk iJj K€ i0.k 5
< N,
5=N_ .
A) . ISTC (2),
Zii EC,‘”k £ EN.(’.’O sin S L
J iJi 2N

We can see that by introducing the hypothesis about small motion (or
oscillations) the space material discrete net can be presented by a system of orthogonal
homogeneous discrete hereditary chain-like continuums. Motion of each material
particle of the discrete hereditary continuum is than the resulting motion of three space
orthogonal motions or multifrequancy oscillations. Each of these motions is a result of
collinear superposition of collinear mods hereditary motions in the general case. In order
to create a graphical presentation of the resulting motion of each of material particles it
is sufficient to make an analysis of motion of a single material particle in the plane,
which lies at the intersection of two orthogonal hereditary chains and to introduce the
hypothesis that initial conditions of each of these chains are such that all material
particles have axial disturbances.

4. Homogeneous Standard Creep of a Fractional Order Derivative,
Linear and Plane Discrete Continuum

By using constitutive relation (8) for corresponding fractional order differential
relations of stress-strain state of standard creep constraint elements in homogeneous
standard creep discrete continuum (see Figure 4.) we can write the correspondig
relations for each of these constraint elements. We will further restrict ourselves to
exploring only homogeneous space creep material nets, an example of which is shown in
Figure 4. These nets constitute of material particles of equal mass m and which are
interconnected by standard creep elements of equal rigidity coefficients ¢, ¢, . both
prolonged and temporary ones. Stress-strain states of these standard creep elements can
be expressed by the corresponding constitutive relations, in which fractional order

differential operator have been introduced as D} by (9).

Taking into account corresponding creep relations (8) for standard creep
constraint elements in direction of rows, columns and ranks, with fractional order
derivative constitutive relation, and applying on initial equations of motion (10), we



Katica (Stevanovic¢) Hedrih 47

obtain the system of differential equations, with fractional order derivative, for small
movements in the direction of main coordinates of a homogeneous space discrete
material creep net. When constitutuive relations are taken into account, the folowing
system of derived differential equations, with fractional order derivative, is obtained:

Pl g 1% 73 +{C 1) ,A[\,,;(T) A,ljk(f)]+c(-1,),ADG[-‘,-.,:L(’)—-",-1“(’)]}
{coa,l,k[wr) 5,14 (O1 Cupun D o =5, O =0

VTR AN A S s M ,[.x,.,,k<r>-.x,,u(r>}}—
{CH[( 5y O ,“[x,m(f 5, 0=

S N P J+c “| Ol
M 5 Zi ik T Coije-1a) Kk f X k= 1([) Coi,j (k-1.k) X ]k _' i\j k=1 f -

D
J&“Oi,j.(k,ka-l)[xi.j.kvl l‘ i jk (f ] i, j(k k+1) Dr [X, ]A+l X 3k Z ]}:

. € .
If we introduce parameters: @; =% =5« under the hypothesis about the

a

m m
homogeneous creeping material space net, the previous system of differential equations
with fractional order derivative, can be written in a simpler form:

"'COD [— 11]1() 2\,;()_-\',71.//()]"'@0[ ,1/;(’)+ ‘,JA([) X:Al]l([)] 0
1;1 +a, D [ b 1,1;(f)+2.\’,,J.1:(’)” ."l_jfl,x:([)]‘*' a)n[ P 1;( )+2\ ,qu ] 0(49)
Zijx T O, D [ Zijka ([)"'23,‘.].;; (I)_Zi,,.;:-1<[)]+w5[_ ik ([)+2:i,j,k ([)_:’,4,.“1([)]:0

m

or
‘-)‘:i_j.l:(«[)_'_a)ril:_xi(al’j.l_([)+2x:(.a/?1:<) 1/(&1,/;()]+0)0[ 7111()*’ ll]/([) xl*—ljl([)] 0
5,0+ 02l 3L 0+ 259,02, Ol 0 5,0, O+ 23,4 0= 5,0, 0120 49%)

b0+ 02F ) (0422, 0= 20 (e 020 425, <r>—:,.1,k-]<z>]:o
If we are dealing with subsystems of the same types, but independent, we shall
study only one of these subsystems:

i)+ [ )0+ 22, (0)- x,(",jl(t)]+0)o[ X0+ Zx,.jlk([)—.x,‘l_j.k([)]:O (50)

I# For the case, that =0, previous subsystem (50) of differential equations
with fractional order derivatives, take the following form:

i'zvj.;: <[)+ (OJrz)o +0)31— Xio1, )k ( )+ 2x; ik ( >_ Xie1, )k (I>]: 0 (51)

Now, we assume that the solution of the previous equations can be taken in the
following forms:

%, (t)=A,, coslwr+p) (52)
and by untroduce into system (51), we can obtain the following system of algabraic
equations:

~A ¥ Q2-uA , —AL,, =0 (53)
where is:

L= o (54)

2 2
Wy + Oy
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This system (53) of algebraic equations is easy to solve by the use of
trigonometric method (see Ref. [22]), and for various cases of boundary conditions on
the end of the chain in rank (or column or row), we obtain the following corresponding
assumed solutions:

A =N, sinig, (55)

where is u!=2(1-cose,); for free on both ends - o, :]Sv—ﬂ; for free on one and

(2s-1) 1):: X

constrained on the other end - ¢, = N A1 and constrained on bouth ends -
0, =—2 . 5=123,..N
N, +1

X

Corresponding, eigen values of the small creeping free motions, depending on
boundary conditions of the ends, are:
2 (25—1)77.’ X (,)_45i 2

u® =4sin? T, 1™ = 4sin ;o w=4sin .
2N 2(V, +1) 2(N, +1)

Natural circular frequencies of the small free oscilations, depending on
boundary chain condistions of the ends, are:
) _n [ 2 2 o ST @) — 9 [2 3 (25‘1)77 .
@, =24y + Wy, Sin N, 0, =2\ wy + 05 sin 2(N_‘ +1) :
(x) _ 2 3 ST . =
0" =20] + w5 sin—F——; 57)
! TN, +1) .
Corresponding amplitudes of the small free creep oscilations, depending on
boundary chain conditions of the ends, are:
—1 ST
pIBZUT 0 N, sin

, ov s 2N, +1)°
Now, the law of small free creep oscilations of material particles in space
material creep net, depending on boundary chain conditions of the ends, are:

(56)

x

) (0 o BT ) Q
Allx = Noj sin N A,/x Noj si (38)
r

i,j.k

X

N,
Xijk ([)= EAi{j‘k COS(CL)_\[ +ﬁ;) (59)
$=1
or:
N,
A‘,»‘“ ZNOMSIH cos(a)z+[3 IE
o o251 s
‘:/k() ZlNéJ)L ié(([;—j:'_%cos(wx[+ﬁ:) (39 )

,” ENOHSIH W, +1)cos(a),,t+,55)

IT# For the case that a=1 previous subsystem (50) of differential equations
with fractional order derivatives, take the following form:
‘.‘:i,j.k (t)"' wy [ I(X)| ok (f)+ 7‘,(1)A (1)_ ‘,(+)1 ik (’)]"'a)o [ Xi 1, j. k(’)+ 2y, ok ([)_ Xist gk (t)]: 0, (60)
or:

:\:i.j.k(r)—‘—a)l [ A= Ijk( )+2/\11A( ) i]‘+l,/.k(f)]+wo[ Af- I}A(’)_‘—’)\ljL(r)—-'\-[H,j.k([)]:O (60%)
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By introduce the following:

%)= F 0T (61)

previous subsystem takes form:

r, jl( )+[a)§ "a;__l}_-;i—l,“( )+2x1 JL( ) ';iﬂ.j‘k([)]:O (62)

4
a* Under the assumption that w; ——4‘—> 0, the previous system can be solved in

the same way as in the previous case, with the only difference being that instead of
4
2 2 . 2 (@) . .
w; +wy we should write w5—7‘>0. Based on that we write that natural circular

frequencies depending on boundary conditions are the following:

4
o =2, a)é——a)‘ sin—2—; 0¥ =2 aJO————a)‘ sin——— (2= .
4 2N, 4 " 2N, +1)
4
(x) 2 O st
ot =20 ——sin———=; 63
ST T T 2, +1) (<)

Corresponding amplitudes of the small free creep oscilations, depending on
boundary chain conditions of the ends, are:

ST
2N, +1)’
Now, correspondig solutions of the subsystem (62) for the law of small free

creep oscilations of material particles in space material creep net, depending on
boundary chain conditions of the ends, are:

,j, ZA, cosa)t+ﬁ ) : (65)

(s) (5) o ST . (s) _ a7 o (25 I)T
Ay = Ng . sin ;o Anjx = Nojysin

2N, e = 0 o +1) i

= Néj)A sin ; (64)

or

N,
- T
x,J,(t) zNé’/’k sin 25\/

s=1 x

cos(a):i+ ﬁ;)Q

B s 1
%, (i ZNSJ; ﬁcos(w:erﬁ;) (66)

,}k ZNO/»‘ 51nﬁil)cos(&):t+ﬂj)

Now, the law of small free creep oscilations of material particles in space
material creep net, depending on boundary chain conditions of the ends, are:

2

Ly
Xi.,,k([)=5 2 ,M ZNé‘}ksm cos(a):i+ﬁj);
. K e o if2s—]
., =e *'%,, ()= ? E‘Ng';‘ksm%cos(ijﬂj); (67)

o N, ;
xi'/'k(t):e x,w(z):g 2 IZN(ETI)JC sin-z—ﬁcos(wjt+ﬁx);
s=1 x
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of
b* Under the assumption that w; —le<O, the previous system (62) can be

rewritten in the following form:
b 604 -
XL/’.A'(t)_[T_a)O} i 1]k()+2xljk() xi+1./:k(t)]=0 (68)

By uitroduce into previous system equations (68) the following assumed
solutions:

IjJ( Av jJ\e (69>
we can take the following system algebraic equations:

—Aijx (f)"'(?-_“)Ai.j,k ([)_Aii-l.jvk ([)=O (70)

where we introduce:

AZ

u= P (71)

a)l 2

R

We can determine the solution of the previous system (70) of homogeneous
algebraic equations in the same way as in the previous cases so that we can immediately
write eigenvalues of the auxiliary system depending on the boundary chain conditions of
the ends:

4 ) w" 2y=
A =42 =L _ 0 sin ; A =22, |2 — 02 sin E
. , 2N, +1)
4
A g O g2y T . 72)
4 2(V, +1)

Corresponding amplitudes of the small free creep oscilations, depending on
boundary chain conditions of the ends, are:
Ls—l)ﬂ G) ISTT N
= Ny, sin ( Ay & NoJ kS ; (73)
T e =M Sy )

Now, correspondig solutions of the subsystem (68) for the law of small free
creep oscilations of material particles in space material creep net, depending on
boundary chain conditions of the ends, are:

‘;i,jﬂk ([): ZA{‘:jVAetl(,‘H (74)

5=1

A(J) __NU‘ ¥ ST .
ij.k O/A ,)N ’ :/L

X

or:

or
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N, .
— ST _( ISTT  _3l)
r,”() 2 bl s +Né‘jk51n e "
s=1 7N1 ")‘N,r

(76)
ZSm i [NO” ChAl r+N(',’J’ASh/1( ]

:_/A

Now, the law of small free creep oscilations of material particles in space
material creep net, depending on boundary chain conditions of the ends, are:

ol
s0=e T, 0= TSN s
r
aj:[ 9 1(73 1)71
5 0)=e 7 % 0)= ZNAH 2 (77)
B w? LN !
-\],j,;;(f)ze z'~11/ =€ E ZNOH Sln a7 o

1)

For example, for the special case of the boundary conditions, when
homogeneous chain-like systems, are free on both ends, we obtain the solution in the
following form:

of ol N, . .
3 _ Tat= _ 2! () i ISTC i3l T(8) i BT |
Xk (r)— e * X (t)— e Z NOM sin Y e + NOM sin 2 e =
s=1 M N

X x

(78)

= 2 ZSln [N(;SMCh;& f“f‘NO”,\S/'I)L ]

III* For the case that ae(01) previous subsystem (50) of differential
equations with fractional order derivatives, take the following form:

X, ;A([)Ta) [ l(al)jk( )+2‘7 ( )_X:(fl).;,l: (.’)]"'(’)0[ X I/A( )+2", ok ( )"-",71,/,1;([)]:0 : (79)

We solve previous subsystem (79) through the use of Laplace's transformations.
After conducting Laplace's transformations of the previous systems (79) of differential
equations with fractional order derivative and having in mind that we introduced
notations LJLXW (r)} for Laplace's transformations, as well as that it is:

{dTU}p{ - e ) &)

1=0
and also having in mind, that we accepted the hypothesis that the initial conditions of

d* 1“1]&()

fractional order derivatives of the system are given through the use of: = =0
t
=0
as well that is
d’x,
{ djzl } PL{’QV } [pxo,/,+xo,,,] (81)

where x, ,, and x, , initial conditions of system material particles dynamics, we can
write the following system equations with unknown Laplace's transforms:

pZL{x[.j]k ([ )}+ (a)épu + w(f X_L{xi—l,j,k }+ 21’{)‘1” } {xm,j,k (l )}> = [Pxo.',,,k =+ xO:,j.k]’ (82)
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or
}> ‘-px(Jl]k O:/kJ . (82%)

olp* +w;

ZCU—)L{\’M }+< L{x—ljk }+2L{x/k 1+1/k

By introduce the following notation

5

i el ' (83)
@, p” + g '
previous system (82*) equations with unknown Laplace's transforms, we can write in
following forms:
|.Pr /} + x i J
B 8

Olp +w;

Determinant of the previous system is:

2+v -1
: -1 2+v 85
Bhs = 240 —1|*° o
-1 2+vy
By untroducing the following notation:
e I_P\Or/L+xD:]kJ (86)
(p) p +a>0 '

for the determinants A,y ;, we can write:

h(p) -1 2+v h(p)

0 2+v =1 0
Aiss = pew _q |5 A= SN L e 87)
-1 2+ -1 2+v
or
2+v -1 h(p)
-1 2+v 0
-1 0 -1
A((;))ijk 0 2+4v -1 | e (88)
-1 24+v -1
-1 2+v -1
-1 2+v

By solving the following equations (84), we obtain particular solutions, the
linear combination of which can be used for solving the given problems:

x011k+\01]AJ

L O @)L - T, }_LP(

07+

(89)
Let first analyze the solution and characteristic equation of the homooencom >v>t6m

(84):
_L{'\':’—l‘j‘k ([)}"' (2 + “)L{-\}J.k (f)}” L{-‘MJ,A— ([)}: 0. - (90)
Solution of such a system of homogeneous equations (90) from which we
obtain a series of determinants, can be obtained through the use of the trigonometric
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method or by obtaining recurent formulas. Let us make use of the trigonometric method,
and for that reason we suppose solutions in the following forms:

L{Ii.j.}: ([)}: N, i sini@, (1)
and applying into previous system (90) we have: u = 2(cosp —1) as well as the following
characteristic equations:

P +2@2p* + 0 f1-cosp,)=0, s=123..n (92)
where @, depends on the boundary conditions on the ends of the corresponding chains.

Based to the (92) the characteristic determinant of the system can be written in
the following form:

A9, =TTlp* +2(@2p® + @2 fi-cosg, )]0, 93)
s |

from which we obtain a series of determinants, when we replace one of the columns with
a column of free members on the right side of the system (89). Based on that, for given
initial conditions for one of particle coordinates of material particles in chain, we can
obtain the following determinants, corresponding to a certain column (and to an
unknown Laplace's transformation of the coordinate):

A(iy ok —/(P)A(r gk o A(”y/l —h( ) EVIE A{(trz)i.j,k :h(p)'A(“n)—my.j.k; --------- (94)

Based on these discoveries we can deduce the following expressions for the
unknown Laplace's transformations of the desired coordinate of the material particle:

. ] p'xOIj‘—i-rUl_]‘ 1
Lo O — )
“ 0 H[p +2(a) p +a)OX1 cos @, ) ]
i=1.2.3,0
The previous solution can be written in the following form.
; 1 Faiin V1 1
T—‘It\'l‘j.;: (f)}= E)_Q.[XUL],}‘ + U[;" }; 2 N p 1 (96)
’ 1+Pa—aJ 1 1+2a)_,;(1 cos « O
2 - )Pt
0 Aznlj(r?]) pz (CH
1=1,2,3,....n

After developing the binoms into series previous particular solution (96) takes
the following form:

) 1 X . m_ua ’” "m am s=n  h=e ) 20 1—c h 2\
L’{xﬁ.j,k ([)}:_O;Z—(XOI./} e z -m H Z( ) a)a ]Ez/, LOSQD)) [Pa +%\] )
£

0\ ni=1 s=n—(i-1) h=1

i=123,...,n 97)
Or: :
{ . opn 185 ) 0" p™ & (-2)'0 (1—cos<p ) () pTwyt
L ([ — ol + L ©
Wijk )} ),f (J\m,/,k P ][) % w;m ng_l); pzn rz:;, "J o (,, 7

i=123....78 (98)
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And, now, finally the previous particular solutions can be written in the
following forms: '

m=s= S=n h== A =h(h 2(/1—r+m—l) 1
L{xiﬂj.k (r)}: Xoi,jk Z (_ 1)7‘ 1—(1 )2 (_ 2)»; (1 —COsQ, ) Z[’ ]wg)Z(m-r) p2/z—a(m+r)+l +
. m=1 s=n—(i-1) h=l r=l a
. M=o s=n  h== ? f r=h h w a)g(h—’*’”—]) ’ (99)
+Xpi 4 g (— 1YFH_]>; (— 2)/ (1 —CosS (05) ; " J a)j(”") plh—a(m+r)+2

The last form of the Laplace's transform (99) of solution is suitable for
determining the inverse Laplace's transofrmation, which is, at the same time, one of
solutions of the observed problem.

When initial conditions for all material particles are different form 0, it is
necessary to create linear combinations of the obtained particular solution, and that
should be too difficult. The solution itself is not difficult to determine by finding an
inverse transformation for a certain Laplace transformation.

The problem of studying the stability of dynamics of discrete continuum with
creep constraints is a separate problem which requires separate studying.

5. Concluding Remarks

This paper presented an analytical method for the study of discrete homogeneous
continuum dynamics that uses the idea of trigonometric method form the reference [22],
where it is applied to dynamics of homogeneous elastic oscillatory chains. The paper
showed that such analytical method of discrete continuums is efficient when applied to
the study of dynamics of discrete homogeneous systems with:

a) ideally elastic constraint elements:

b) standard hereditary rheological constraint elements, which are characterized by

the existance of a relaxation kernel:

¢) ideal creep elements whose stress-strain relation can be expressed by a

derivative of fractional order.

The paper also has a more general character since it opens space for application on
discrete composite continuum. Models of such composite continuum can be obtained by
combining of homogeneous material chains of different material properties (elastic,
hereditary or creep) into a net. That would be the subject of other studies, both analytical
and corresponding numerical.

In this paper we focused only on the study of motion of material particles of
discrete continuum under the conditions of initial disturbances relayed to the continuum,
but the method is also applicable to the study of dynamics of discrete homogeneous
continuums under the effect of forced excitations on all or only on some of discrete
chains. Such model of discrete continuum creates the basis for the creation of a model of
dynamical advancement of a crack on the atomic level through a discrete continuum by
breaking of corresponding constraints with elastic, hereditary or creep relations between
material particles.
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The length of this paper also restricted us to exploring only a small number of

ideas allowed by this method.

(1]

(10]
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ON THE PLASTIC SPIN CONTROVERSY
IN POLYCRISTAL PLASTICITY

Milan Miéunovié

ABSTRACT. The paper deals with some geometrical issues essential for con-
stitutive modelling of plastic behaviour of metals. Geometric and kinematic
aspects of intragranular as well as intergranular plastic deformation of poly-
crystals are discussed. A special emphasis is given to noneuclidean inter-
pretation of inelastic deformation of monocrystals. Constitutive equation for
elastic strain is covered by the effective field homogenization method inside a
representative volume element. Evolution equations for plastic stretching and
plastic spin are shown to be mutually dependent. This is very important for
reducing number of material scalar functions during experimental calibration
of evolution equations.

1. Introduction

The principal objective of this work is to present a rational approach to inelas-
ticity of polycrystalline materials in a simplified (yet safely grounded on a correct
differential geometry of deformation) way which should serve primarily to fit mul-
tiaxial experimental results on austenitic steels like AISI 316H having face centered
cubic lattice (cf. [14, 16]). For this sake it is essential to reduce the number of
material constants to be found from the available experiments. In other words,
the general desire is to make always evolution equations with minimal number of
material constants even if these equations originate form very general functionals
like in [15]. The evolution equations comprise of plastic stretching(often named by
experimentalists as plastic strain rate tensor) as well as plastic spin. Some authors
claim that this spin has a triggering role for localization behavior while some others
like Aifantis and Dafalias 2] require independence of these two evolution equations
which greatly complicates identification problem. We are going to discuss this issue
in the sequel. '

2. Geometric preliminaries

2.1. Some generalities for polycrystals. As a prerequisite, a correct geo-
metric description of an inelastic deformation process analyzed is necessary. Con-
sider a polycrystalline body in a real configuration (k) with dislocations and an
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inhomogeneous temperature field T'(X,t) (where ¢ stands for time and X for the
considered particle of the body) subject to surface tractions. Corresponding to (k)
there exists, usually, an initial reference configuration (K) = (k(to)) with (differ-
ently distributed) dislocations at a homogeneous temperature Ty without surface
tractions. Due to these defects such a configuration is not stress-free but contains
an equilibrated residual stress (often named as "back-stress”). It is generally ac-
cepted that linear mapping function F(.,t) : (K') = (k) is compatible second rank
total deformation gradient tensor. Here time t as scalar parameter allows for family
of deformed configurations (k). In the papers dealing with continuum representa-
tions of dislocation distributions configuration (k) is imagined to be cut into small
elements denoted by (n), these being subsequently brought to the temperature of
(K) free of neighbors. The deformation tensor Fg(.,t) : (n) — (k) obtained in
such a way is incompatible and should be called the thermoelastic distortion tensor
whereas (n)-elements are commonly named as natural state local reference configu-
rations (cf. for instance [8, 12, 4]). Of course, the corresponding plastic distortion
tensor

(1) Fp ('7t) =Fg (-7t>_1F('7t)FE ('7t0)7r

is not compatible, whereas F is found by comparison of material fibres in (KX) and
(k) while Fg is determined by crystallographic vectors in (n) and (k). Multiply-
ing above formula from the left and right hand side by Fg(.,t) and Fg (.,t5)?
we reach at Kroner’s decomposition rule which is often wrongly named as Lee’s
decomposition formula. In fact, the formula is slightly modified in [19] to account
for the initial value of Fg (.,t). It is worthy of note that curl F (.,t)7! # O and
this incompatibility is commonly connected to an asymmetric second order tensor
of dislocation density.

Let us imagine that a typical (n)-element (called in the sequel representative
volume elementand denoted by RV E) is composed of N monocrystal grains, such
that each A-th grain has N slip systems A,y = Sqp @ Ngp, @ € {1,Ns}. For
instance, for FCC crystals Ny = 12. Here s, is the unit slip vector and n,p is the
unit vector normal to the slip plane. For convenience, let us introduce a third unit
vector z, 4 normal to the considered slip plane (cf. [1]) with dyads AL, = noa ®zaa
and AzQA = Zap @ Sap useful when either cross-slip or climb of dislocations has to
be taken into account.

By comparing a RV E in (n(t)) and (n(tg)) we may write a formula analogous
to (1) for the microplastic distortion tensor

IIp :=1Isg Iap,

whose components are the residual microelastic distortion tensor IIag and mi-
croplastic distortion tensor Ilxp. By means of the polar decomposition Ilxp =
RAUpg (with microrotation RKRA = 1) and assumed isoclinicity of A, in (n(t))
and (n(tg)) we may finally write

Upr = diag(l + /\IcA>) k€ {1,2,3} as well as ITyp = 1+Z’ya/\AQAA
a
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If a RVE has the volume AV = 3", AV, and the microplastic deformation
tensors for individual grains are

Oy = T2 ilyp = [1+Z~YQAA§A] U2, [1+ Z%@AA,@A].
a B

then their volume average named macroplastic deformation tensor Cp := FE Fp
has the following form:

1
(2) Cp = <CHA> e— <HXHA> = E ZHXHAAVAi
A

Of course, macroelastic strain tensor Eg = (FLFg —1)/2 = (Cg —1)/2 will
be used in the sequel as well.

Moreover, in the corresponding polar decomposition Fp = RpUp the macro-
plastic rotation tensor Rp is arbitrary [22] and might be fixed either to be a unit
tensor or to have the Mandel’s isoclinicity property (cf. [15] for details). For a def-
inition of isoclinicity we should have to find average crystal directions in RV E(t)
and RV E(to) and to make them equal. The first choicei.e., Rp = 1 seems more ap-
propriate for polycrystals and we are going to accept it in the following. Therefore,
the relationship
(3) Fp=Up=CY’
will greatly simplify macroplastic spin issue.

The above introduced microisoclinicity of grains permits the exact relationship
for material time rate of microplastic distortion

DIIyp = Z AoaDvan
(a3

such that relationships for microplastic stretching and microplastic spin tensors
read:

Dpa = RY (Dap + DlogUsp) Ra, Wna = RIWapRA + Wy,
with Dlog Uxp = diag {DAxa (1 + Aka) ™'} and following notations
9Dsp = DIApII;L + I;5DNL 5, 2Wap = DIIzpII;p — I 5 DITp.
The corresponding macroplastic stretching and macroplastic spin tensors follow
now directly from (3) in the following form:
(4) 2Dp = DUpUR! + Up!DUp, 2Wp = DUpUR! — Up'DUp.

It is worthy of note that such a representation considerably reduces number of
material constants if tensor representation based evolution equations for Dp and
Wp are chosen. Connection of the macroplastic stretching with 2 by means of
2Dp = Up'DCpUR! and is straightforward and is obtained from:

DCpa = (Z D%AAZA> Ui pHap + 5,035 D DysaAgn + i p DU pIIsp
a B

by the averaging DCp = (DCra).
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2.2. Intergrain transition of slips and rotations. At the end of this sec-
tion let us consider small microplastic homogeneous deformations 0Ilr and JITa
(and rotations 6Rr and dR4) of two arbitrarily chosen but tightly connected adja-
cent I’ and A grains inside a RV E. Requiring continuity across their (presumably
plane) joint boundary with unit normal nra it is possible to derive that the most
general difference between them must have the form

(5) 6IIr — 0IIa = bra @ nra,

wherein the vector bra is arbitrary. Since this vector has three arbitrary com-
ponents the above restriction gives six scalar equations. Thus, if IIp, ITa, 611,
S\pr and 6TIa = 6 {Ra diag(l + Aga) IIap} are known then the three Euler an-
gles increments constituting dRr as well as three principal residual microelastic
stretches increments constituting & diag(l + Axa) can be found from the above
equation. Therefore, we may conclude that for tight plane boundaries among the
grains inside a RV E the following relationship

Ra =Ra ({)\kf} , {Hrp}) , forallT € {1, _N},

1ds. More generally, knowing all microplastic distortions IIxp, A € {1, N} for
-ach grain we have six unknowns, namely, the mentioned three Euler angles as well
three principal residual microelastic stretches. Finally, suppose that our RV E
has originally at t = to shape of a cube consisting of N = n® octahedral sub-cubes.
Then total number of intergrain boundaries inside this RV E amounts to 3n%(n—1)
and number of all (5)-equations equals to 18n?(n — 1). Since the total number of
Euler angles and residual microelastic stretches of all the grains constituting the
considered RV E is 6 n® we see that for n > 2 the number of available equations is
always larger than the number of unknowns.

2.3. A note on strain measures and defect distribution. In the recent
literature there is a vast number of diverse strain and stress measures. Aside
of generally accepted (Lagrangian and Eulerian) strain tensors, it is possible to
introduce following Hill [6] generalized strain measures by

)\Qm _

(6) ~Z @ v®

where X\, (a € 1,2,3) are principal extension ratios (along principal directions) and
v are Lagrangian principal direction unit vectors appearing in the right stretch
tensor U when the polar decomposition F = RU is applied. For m = 1 we get
Lagrangian strain tensor 2¢ = FTF — 1 = U? -1, m = —1 corresponds to Almansi
strain tensor 26 = 1 — F~!1F~T =1 — U~2 whereas for m = 0 = ¢ = InU and

= 1/2 = £ = U — 1 Hill's logarithmic and Biot’s strain tensors are acquired
respectively.

All these tensors vanish in the absence of stretches i.e., when Ay = Ay =
s = 1. The similar formulae are available for elastic and plastic tensors as well.
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However, only one property will be stressed here. By means of the relations

)\2771__1 )\Qm—l
FEa a a Pa a a
EE=E ——— VUV QU EPIE ——VUp QU
. 2% E E» 2 P P>
a

following from (6) it is possible to show that
/\a 75 /\EaAPa

since proper directions of total, elastic and plastic deformations do not correspond
to the same material fibres (curves along same material points).

Let us restrict our attention to monocrystals for the moment. As a measure
of imperfections of a crystal body with dislocations Burgers vector is used whose
surface density is in fact dislocation density tensor (cf. eg. [12, 13]). This vector
is defined in a customary way according to Frank definition. Namely, if a closed
contour in (k)-configuration is mapped onto the natural state element (n), then as
a result the contour will not be closed any more. The opening i.e. the closure error
is in fact the mentioned Burgers vector

db,= Bds,

where ds,, is an infinitesimal surface vector in (n)-configuration and B =&:5 is the
second rank dislocation density tensor formed by means of double inner product of
Ricci tensor £ with the third rank antisymmetric dislocation density tensor

B=F; (curlFp) F5'.

where the curl differential operator is antisymmetrized gradient of the considered
tensor. In other words, for any vector a such a differential operation reads curla =
grada — (grada)T. The natural state elements as broken pieces might be collected
into a continuous global stress-free body only in some non-Euclidean space.

e The torsion tensor of such a space is equal to the above mentioned third
rank dislocation density tensor (cf. also [12, 21]) if a distant parallelism
space is chosen as a representative space.

e As another possibility, introducing anholonomic coordinates in each of
(n)-elements, calculating their anholonomic object and setting the cor-
responding torsion tensor to be equal to zero, we get the corresponding
Riemann-Christoffel tensor different from zero. Such a situation means
that compatibility conditions put on the tensor FEFE are not satisfied.

e The third possibility is to introduce a non-metric connection i.e., to take
that covariant derivative of metric tensor FLF g in a global space of col-
lected (n)-elements does not vanish.

Details of these three geometric descriptions are given in [11].

3. Evolution and constitutive equations

3.1. Hooke’s law by homogenization approach. Let the microelastic
strain of a A-grain inside a RV E be denoted by Esg such that the macroelas-
tic Lagrangian strain Egp = (FLFp — 1)/2 is the volume average of them i.e.
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Eg = (Exg). It must be noted, however, that microelastic strain EAg is different
and much larger from residual microelastic strain (U3 g — 1) /2.

If the microelastic strain Exp is provoked by the corresponding microstress
T4, then its volume average reads S = (X,) where the second Piola—Kirchhoff
stress tensor S = Fz'T FT is calculated with respect to the local reference (n)-
configuration. If Hooke’s law for the A-grain has the form

3p =Dy : Epp,

then its volume averaging throughout the RV E gives the familiar equation of ho-
mogenization approach

<2A> = Deﬁ H (EAE> 5 i.e. S = Deﬂ : EE~

In [10] the author proposed the approach that for polycrystals the considered
grain is understood as an inclusion in an infinite matrix composed by all the other
grains. If instead of an infinite medium we employ this reasoning to the considered
RVE then a direct application of the Levin’s expression for the effective elastic
moduli fourth rank tensor may be written as follows (index M stands for matrix
while the notation (e), means averaging by orientation only):

Dess = Dur + [D] (T — (AP), [D])™' (A),, where Dy = (D), .

Here Zoped = 0ac0bd + 6aalse is the unit fourth rank tensor and

Pr=8rDyf = — K(z —z')dV', with Kaped = (8204Gac) (ap) »
AVy

Ax = (I+ Pa [D])—l , with [D} =Dp — D

In the above Sj is the Eshelby’s tensor and G is the Green’s function for the
considered anisotropic crystal. The above expressions may be used for an analytical
determination of the effective elastic constants.

3.2. Evolution equation. According to the principle of inelastic memory
introduced by the author in [15] the second Piola-Kirchhoff stress is given by a
very general functional accounting for plastic strain as well as plastic strain rate
history as follows:

S(t) = F%, [ep(t — 7), Dep(t — 7)),
where the plastic strain tensor could be for instance ep = Up — 1. When this
functional may be represented by a nonlinear function of plastic strain and plastic

strain rate the plastic material is of differential type (cf. [15]). Solving such an
equation in plastic strain rate we would obtain the following evolution equation

(7) DEp:DaEP (S,ap)

in its standard form for isotropic materials. By means of tensor representation
theory [20, 15] it can be explicitly written as follows (MacAuley bracket (f) =1
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if plastic deformation takes place and (f) = 0 inside each elastic range):

(8) DUp = (f)ld(x)1 + d2(x)Up + d3(x)U%
+ds(x)S + d5(x)S? + ds (x)(SUp + UpS)
+d7(x)(S*Up + UpS?) + ds(x)(SUS + U3S)].

On the other hand due to antisymmetry of the plastic spin tensor, its most
general representation obtained by means of a tensorial function Wp = Wp (S,zp)
similar to (7) [20, 15] reads:

(9) Wp = (w1 (x)(SUp — UpS) + ws(x)(S*Up — UpS?)
+ w3 (x)(SU% — ULS) + wy(x)(ULS? — S*U2)
+ ws(x)(ULSUp — UpSU3)],

where the scalar coefficients in both evolution equations are functions of the set y =
{trS, tr8?, tr83, trUp, tr U, tr UL, trUpS, trULS, tr UpS?, 1 ULS?) =
{15, 25,3s,1v,2u,3v,1us, 2us, 3us, 4U5} of invariants. This issue will be dis-
cussed in more detail in the following subsection. Even if all the scalar coefficients
di,...,ds,ws,...,ws are constants their determination from experiments is a very
tedious work due to large number of them. However, if the macroplastic rotation is
taken to be zero, then from (4,8,9) the coefficients wy, ..., ws depend on di, ..., ds as
well as on the invariants from y as follows. Suppose, for simplicity, that macroplas-
tic deformation is isohoric i.e. that detUp = 1. Such an assumption is widely
accepted if damage does not develop significantly during the considered process.
Then, the Cayley—Hamilton theorem allows

A 1,
Up! =U% - 1yUp + 5 (13 —2v) 1.

Inserting this formula into expressions of plastic stretching and plastic spin (4) and
by making use of (8)—(9) after extensive but simple calculations yields the following
very important restrictions on constitutive scalar functions for plastic spin tensor:

.5
(10) w; = —1y dy — 3 (17 — 2v) de + ds,

1
we = —1y ds — 5 (1%/ — 2U) dr,

1 ;..
w3z = dy + 5 (1%, — 2U) ds,
wy =ds, ws =dg+dy + 1y ds.

The same procedure allows the following relationship for constitutive scalar func-
tions of plastic stretching:

1 1,
0=z1fdy + luds + 2pds + [3U5 — lylys + = (17 — 2v) 15} ds

2 2
1,
(11) + [4US —1y2ys + 3 (13 - 2v) 25} ds + 2dslys + dr2us + ds3us,
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which shows that only seven of the scalar functions entering into (8) are indepen-
dent. In other words, the above relationship could be written as dg = ds(d1, ..., d7).
It should be noted that in the case when damage like creep or low cycle fatigue is
important ingredient of the deformation process the restriction (11) does not hold
any more whereas the equations (10) become more involved including as one of
additional invariants 3y as well.

4. Concluding remarks

The following general conclusions might be drawn from the above analysis:

e The analysis of geometric features of inelastic straining of polycrystals
made possible considerable reduction of material constants to be deter-
mined from experiments.

e In the paper [4] the authors connected to the natural state elements mag-
netization vectors in such a way that they are isoclinic in (n) and inhomo-
geneous in (k) the inhomogeneity being responsible for magnetostrictive
strains. Such an assumption is very much in accord with the above geo-
metrical analysis.
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SOME INTRINSIC FORMULAS FOR COMPLEX
HYPERSURFACES
OF COMPLEX SPACES FORMS

Mileva Prvanovié

ABSTRACT. We prove that the formulas (3.6) are valid for any complex hy-
persurfaces of a complex space form.

1. The object of the paper

Matsumoto [1] examined the intrinsic properties of minimal hypersurfaces in a
flat space and showed that for most of them the second fundamental form can be
expressed in terms of the curvature and Ricci tensors. On the other hand, it is well
known [2], [4] than any complex hypersurface in a Kahler space is minimal and is
itself Kdhler manifold.

The object of this paper is to generalize the investigations of Matsumoto for
the complex hypersurface of complex space forms. We did not find the expressions
for the second fundamental forms. Instead, we find some formulas valid for any
complex hypersurface of a complex space form.

2. Preliminaries

Let (M’,g, j) be the Kihler manifold with the metric g, complex structure J,
and dim M = 2n + 2. The comples hypersurface M in M is the submanifold in
M of real codimension 2 having the property that the complex structure J leaves
invariant the tangent space of M at each point p € M. The complex hypersurface
is itself a Kdhler manifold (M,g,J), [2], [4], where g is induced metric and J is
induced complex structure. With respect to the local coordinates, on M, we have

gt Pl =g, Viedy =10,
where the indices a,b, h,4,7,k,... run over the range 1,2,...,2n and V denote

the operator of the covariant derivative with respect to the Levi-Civita connec-
tion. Denoting by R;jr and R;; the components of the curvature and Ricci tensor

1991 Mathematics Subject Classification. Primary 53B25; Secondary 53B35.
Key words and phrases. Kahler manifold, complex hypersurface.
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respectively, we have [3]

Rijan Ji I = Rijri
(2.1) Jj Rei = —RajJ¢ or JPRE=RIJ:
(2.2) JiR® =—R¥J. or R®JiJ] = RY
where RY = Rgpg**¢7°. Finally, if we put Fj; = J#g,;, we have Fj; = —Fj;.

The relations (2.1) and (2.2) can be generalized in the following way. Let us
put

R = RiaR]bgaba llzij :Rij: P=23,...

Rz] — Rabgzagjb

P P
Then, using (2.1) and (2.2), we easily find
(2.3) JiRej = —Ro;Jf or J;J_;zah = Jp%jajf
(2.4) RO =—B% pr ROJLY = BY

P P P P

Since M is a complex hypersurface, the normal plane of M is left invariant by the
complex structure J at each point p € M. Thus, there exists, in each neighborhood
U of p € M, two unit vector fields N and JN, mutually orthogonal and normal to

M. If h and k are the second fundamental forms corresponding to N and JN, and
hi; and k;; are their components with respect to local coordinates, then [2]. [4]

(2.5) hij = hji, kij = ki,
hip = kiaJ](‘l sy = —hviajjq:
(2.7) hij = —hav 1T}, kij = —kap I}

Using (2.4) and (2.7), we find

(2.8) bg? =0 k¥ =0,
(2.9) hijRY =0 ki jRY =0,
P P
for each p = 1,2,.... The relations (2.8) show that any complex hypersurface of a

Kahle manifold is minimal. In view of (2.6), we have
(2.10) highi g™ = ki kg™

Also, we shall use the notations

R=Ruwg*®, p=1,2,...; R=R
P P 1
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3. Main results
Now, let us suppose that M is a complex space form of holomorphic sectional
curvature ¢. Then the Gaus equation for the complex hypersurface has the form
€

(3.1) 1

(9im9j1 — Gitgjm + FimFji — FuFjm — 2Fi; Fim)
= Rijim = (himhji — hithjm + kimks — kakjm)-
Transvecting (3.1) with g™ and using (2.6), (2.7), (2.8) and (2.10), we find
(n+1)e
2
Thus he: RS, — hgR%;. = 0 and therefore

hijhskRsl = h-z’jhisskJ
hahsg R%; = Buheg Bk,

(3.2) By = git — 2harhe;g®

because of which we have
(3.3) hijhskR°1 — hahsi RS 5 = (Rijhot — Riths; ) Rk

Putting into (3.3) a instead j and b instead [, transvecting with JJ‘?JIb and using
(2.6), we obtain

hichsk R JE TP — hiyhsr RGP = (Kijkst — kuksj) Ry
Summing this and (3.3), we find
(hijhst — hiths; + kijks — kuksj) R},
= hijhek R} — hahsi RS + Riahsk R TS TP — hivhex RT3 Jf
This relation, in view of (3.1) and (2.1), can be rewritten as follows:
c
Rigis R — Z[Qz’lek — giRyj + FjiRip J) — inRkaJl? + 2Rpa J{ Fji]
(3.4) = hijher B — hithok RS + highsr Ry I3 J) — hiphk RS J)

Transvecting (3.4) with ¢'*, we get

Rias; R = <[gijR — Rij + FjiRiy JP g* — FiRis I} 9™ + 2Ria J{ Fjug*']

.
4
= hij(hst R**) = huho R3g"® + hiahsr Ry T2 JPg™* — haphsr RT3 J7 g™
But, in view of (2.1), (2.5), (2.6) and (2.9), we have
By dig™ =1, ~Flin.<begkl = Rj;,

Rkajfgzb']fgkl = R;j,

hichsk Ry JEJ g™ =0,
—haha Ry JF I = —hihysg™ RS,

because of which, the preceding relation reduces to

c
Riapj R — Z(gin +2R;;) = _2hiahsbgabR§a
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or, taking into account (3.2), to

2 é R
(3.5) Riay; R** = Bij + 5 (nthj - 5%) =0
Thus, we can state

PROPOSITION 1. For any complex hypersurface of the compler space form of
holomorphic sectional curvature ¢, the relation (3.5) holds.

Now we shall prove

PROPOSITION 2. If for the complex hypersurface of the complex space form of
holomorphic sectional curvature ¢, the relation

 peb_ p E( LRy o
& Rl = By + 5 (08 - 30u8) =0
1s valid for the integer p, then it is also valid for the integer p + 1.

PROOF. Transvecting (3.1) with R"™ and using (2.4) and (2.9), we obtain
p
im im ¢ ‘
RijimB™ + [hithjm + kkym) B™ = £ [gR + 2Ry,

But, in view of (2.6), we have
kikjmR™ = Rathjs R,
P P
because of which the preceding relation reduces to
b b _ ¢
(3.7) RajnB* + 2hathn R* = (gﬂJ;z + zgﬂ)

According our assumption (3.6) holds. Thus, substituting Raj;»R*® from (3.6) into
P
(3.7), we get

(n+1)c

pab_ _p -
(3.8) 2ha1hjb}§ p]—;_—il]l + 5 f;ﬂ

On the other hand, transvecting (3.4) with R** we find
P

opsl S . . R, PR _ F Ry JPRM L9 R, JARM
Ria B = % (95 B, = Roij + FyRusJB* = FuRip J{B" + 2Fy Rua J B )

(3.9) + hijhskpjjl“‘k - 17.1~1h.skRj§”“' + hmhskjoj‘?J,"lE’k - }z,bh.skRgJ;Jij“.

In view of (2.1), (2.4), (2.5), (2.6) and (2.9),

bplk _ _ bkl _ B
Rkb'][]p% == 0: R;‘-[,JJ]E p‘—}gll']

kl
Fj[R;\.aJiaR = Rijy
P p+1

hichsk Ry JEJPR™ =0,
j2

a

hisha RG] JP R = hiphso R R
P
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Thus, (3.9) reduces to

5 ab___c_(,, ‘ >:_ . bs a
Rzab]pfil 3 gszlfl + Zpljlu thbhas-? RS

Finally, in view of (3.8), we get

R _ R .. f( L )=
Rlab}pjjl p]E?” T3 pﬁlu 29 p-—iR—l .

This completes the proof of Proposition 2. a

As a consequence of the Propositions 1 and 2, we can state our main result:

THEOREM. For any complex hypersurface of complex space form of holomorphic
sectional curvature ¢, the relation (3.6) is valid for any integer p = 1,2, .. ..

REMARK. If the complex hypersurface is an Einstein space, all formulas (3.6)
are trivially satisfied.
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THE EIGENVALUES OF LAPLACIAN
AND THE GEOMETRY OF MANIFOLDS

Neda Bokan

ABSTRACT. Some estimations (lower and upper bounds) of the first eigenvalue A;
of the Laplace operator are very usefull in the consideration of the corresponding
compact Riemannian manifold (A7, g) and its characterization. One may use its
asymptotics to study the similar problems of the characterization of some manifolds.
The main purpose of this paper is to present some of well known results in this
context as well as to derive new ones.

1 Introduction

Let M be a Riemannian manifold. The Laplace operator A acting on smooth
functions may be defined such that we have

(1.1) Af = —div(grad f), fe€ C>®(M).

For example, in Euclidean plane and Descartues orthonormal coordinates (z,y) one
can get

8%f  0*f
oz2 0—y2>

A function fo C C°°(M) is the eigenfunction of the operator A with the corre-
sponding eigenvalue A if fy and A satisfy the relation A(fo) = A fo. The properties
of eigenfunctions and eigenvalues of A heavily depend on compactness or non-
compactness of M. We review in this paper only some facts assuming that M is
compact. Some standard results in theory of partial differential equations imply

af=-(
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that there exist a countable set of eigenvalues A; and for each A; the finite dimen-
sional family of eigenfunctions f;, such that we have A(f;) = A; fi. Moreover, A; are
positive and A; — oo, when i — 0. The collection of eigenvalues {Ai}, together
with their multiplicities is the spectrum of A. We refer the books (2], [8] and the
survey article [7] for more details.

In this spirit we may consider more general operators. So we say a partial
differential operator D on C°° (M) is of Laplace type if its leading symbol is positive
definite and defines the Riemannian metric g on M. Consequently, in some local
coordinate system one may write D = —(¢"8;8; + A'9; + B), 1 < i,j < n =
dim M. Gilkey has established in [11] the unique presentation of D in terms of
some connection and the potential function.

0.1 LEMMA. There ezists an unique connection Vp on C*°(M) and a unique
potential function Ep € C®(M) such that we have D = —(Tx(V}) + Ep). O

This Lemma is shown very fruitfull in the framework of spectral geometry, espe-
cially using the heat equation method. We refer [12] for more details. The Laplace
type differential operators appear very naturally in the context of differential ge-
ometry. To ilustrate it, let V be a torsion free connection on a smooth manifold
M, f € C®(M) and (Hessy f)(u,v) := u(v(f)) — df (Vyv) be the Hessian. For a

semi-Riemannian metric g one defines the 2nd order operators H(V) and D(g, V)

H(NVf = (Hessv +m_1pv>f,
(1.2) Df:=D(g,V)f = =Trg(H(V)f).

If g is a Riemannian metric, then D is of Laplace type. Pinkall, Schwenck-
Schellschmidt and Simon [21] have used the operator H (V) to study affine harmonic
functions and an affine version of the Minkowski problem. In [5] the authors use the
asymptotics of the heat equation corresponding to D given by (1.2) to construct
spectral invariants in affine and projective geometry.

The fundamental solution of the heat equation depends on the spectrum of the
corresponding operator ‘D, and consequently its asymptotics too. Moreover, the
coefficients in its asymptotics depend on the geometry quantities of the manifold
M. The spectrum of other operators in the framework of affine differential geometry
and Weyl geometry have been studied in [4] and [6] respectively.

Hence we may put the following question: What is the geometric meaning of
eigenvalues );, whose existence has been established using the methods of mathe-
matical analysis? :

The 20th century was devoted to the answering this question. Let us mention
that the first half of that century passed by guessing that \; completely determine
the geometry of M, as Weyl [27] proved that A; determine the volume of M. Finding
two nonisometric manifolds Milnor [18] has given the first negative answer. Later
on, many other examples have been found, like Milnor’s one, as well as many results
related to some geometric quantities of M determined by its spectrum.

To find the spectrum is a very hard problem and therefore one may use different
methods to investigate the dependence of the spectrum on a geometry of manifold
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M. There are also numerous results for the estimation of the first eigenvalues and
the corresponding geometric characteristics which depend on these ones.

The main purpose of this paper is to give overview on these results for some
types of manifolds, and to give some new characterizations of rank one symmetric
spaces, especially an Euclidean space. The paper consists 5 sections. In 1 we
deal with the basic notion and notations which we use throughout this paper.
Estimations of eigenvalues of the Laplacian, defined on a Riemannian manifold are
given in 2. The same problem for hypersurfaces in an affine space we consider in
3. We devote 4 to the first eigenvalues of the Laplacian for functions and 1-forms.
Finally, we consider in 5 the first eigenvalue of a small geodesic ball in a Riemannian
manifold. We present some known results as well as some new ones which deal with
characterizations of rank one symmetric spaces in terms of \; and some additional
assumptions.

2 Estimations of eigenvalues of Riemannian manifolds

Lower bounds are more difficult to get than upper bounds, as if we want to
use the minimax principle we must find estimates which hold for any function.
Lichnerowicz [17] has given the first estimation for A; in a class of Riemannian
manifolds (M, g) satisfying some conditions in terms of Ricci tensor p = p(g).
Namelg he has proved the following theorem.

2.1 THEOREM. Let (M,g) be a compact Riemannian manifold and suppose
that p > (n — 1)kg, with k > 0. Then we have A\; > nk. O

Obata [20] has characterized Riemannian manifolds, isometric to a sphere, in
terms of the Ricci tensor and the eigenvalue estimation.

2.2 THEOREM. Let (M,gq) be a compact Riemannian manifold, and suppose
that p > (n — 1)kg, with k > 0. Then A\ (M, g) > M (S™(k)). Furthermore, if the
equality is achieved, (M, g) is isometric to S™(k). O

Reilly [23] has derived a formula for the integrals of the invariants of the Hessian
of a function on a Riemannian manifold, and then, using this one, he has generalized
Lichnérowicz and Obata Theorems.

2.3 THEOREM. Let (M, g) be a compact Riemannian manifold with nonempty
boundary N. Assume that there is a constant ¢* > 0 such that p > (n — 1)c%g and
that the first mean curvature of N in M is nonpositive. Then the first eigenvalue
A1 of A satisfies the inequality Ny > nc?. Moreover Ay = ne? if and only if M is
isometric to a closed hemisphere of the Euclidean sphere S™(c?) of radius 1/c. O

To ilustrate a type of upper bound estimations for eigenvalues we give this one
due to Cheng [10].

2.4 THEOREM. Let (M,g) be a compact Riemannian manifold with diame-
ter d and volume V', whose Ricci curvature is greater than (n — 1)k. Set ip =
(e(n)d™ V)Y (=1) "where c(n) is the volume of the unit ball in R™. Then

(1) if i <o, then (M, g) < 16%‘41“ i)u);
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(2) if i > 1o, then Xi(M,g) < 6[(“1) sl )}2/71442[(%)1/71]’

) 2

where A;(z) = [:ﬂ:(zﬁ and As(z) = <%> Ai(z). O
Let us remark to see why we must have different estimates for i <ig and @ > 1o,

one may check the explicit example of (M, g) = S*"*(a) x S*(D), with a < D.

3 Estimations of eigenvalues of hypersurfaces in an affine space

The first eigenvalue \; for submanifolds of different spaces has been studied
intensively through these decades. We refer [24], [1] for more details and other
references. So far there are only few results on A\; = A; (M, g) in affine differential
geometry. Simon has studied A; for a hypersurface z : M" — A"l with the
Blaschke metric g. We present here some of his results. More details one can find
in [24].

3.1 THEOREM. Let z be a hyperovaloid in A"l with the mean curvature H.
Then A = M (M,g) fulfills 0 < A\; < nmaxH; eguality holds iff (M) is an
ellipsoid. O

Let k1 < ky < --- < k, be eigenvalues of the equiaffine Weingarten field B
(equiaffine shape operator). They are called the equiaffine principal curvatures.
The relations among A, (M, g), H and k; are given in the following theorem.

3.2 THEOREM. Let z be a hyperovaloid with B regular. Then

n n 1
4, > 1 - Z = > S 10
M(M,g) 2 —— 521{}(2]{(‘1) +5(n E)kl(Q)) > n(gglj{lfkl(Q) >0

Equality A (M,g) =
ellipsoid. O

2 mingenm (3H(q) + i(n - 2)k1(q)) holds iff z(M) is an
Other estimates for \; for the Dirichlet problem under special boundary con-
ditions have been studied too.

3.3 THEOREM. Let M be compact with boundary OM. Assume one of the
following conditions (1)—(3) to be fulfilled.
(1) z is a graph, i.e. there existsb € V such that (X,b) # 0 on M (so (X,b) > 0
by the proper choice of the orientation of b) and (X,b) =0 on OM.
(2) z(M) is convez and z(OM) is a p-shadow boundary with respect to parallel
light b€ V.
(3) z(M) is convez and (M) is a c-shadow boundary with respect to the center
29, and H >0 on M.
Then nmax H > A\ > nmin H.
Equality on the left implies that H =const on M. Equality on the right implies
that H = const and f is a first eigenfunction of the Laplacian. O

Let us mention that f := (X,b) for (1) and (2), and f := p(z0) — 1/H in case
(3), where p(z0)(q) : (X(q),2z0 — z(q)) is the affine support function.
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4 First Eigenvalues of the Laplacian for Functions and 1-Forms
Let us recall that the Laplacian A may also acts on p-forms. Then we use the
following formula

(4.1) A =ds+6d,

where d ¢ are the differential and the codifferential acting on p-forms. We notice
that for functions (0-forms) (4.1) and (1.1) are equivalent.

Let A; be the first (nonzero) eigenvalue of A for functions, and p; the first
eigenvalue of A for 1-forms. Kobayashi [14] has improved Lichnerowicz’s estimate.

4.1 THEOREM. Let (M,g) be a compact Riemannian manifold of dimension n
with Ricci tensor p > cg, (¢ > g). Then

nc

<pu=A
1_.[11 1,

and the equality holds if and only if M is isometric to a sphere. O

Let us recall that a complex vector field v on a complex manifold is decomposed
into the (1,0)-component v’ and the (0, 1)-component v"". A vector field v is real
if and only if v = v'. We say that a real vector field v is holomorphic if its
(1,0)-component v’ is holomorphic.

We are ready now to state Kobayashi’s theorem for Kahler manifolds, similar
to the previous one for Riemannian spaces.

4.2 THEOREM. Let M be a compact Kihler manifold with Kdhler metric g and
Ricci tensor p > cg, (¢ > 0). Then

(1) 2¢ < p1 = A1, and if the strict inequality uy < A1 holds, then all eigen
1-forms belonging to the eigenvalue i must be d-closed.
(2) If uy = 2c, then a real 1-form « is an eigenform belonging to the eigenvalue
w1 if and only if
(1) the real vector field v, corresponding to a is holomorphic;
(i) pla,a) = clal®, where p(-,-) is the symmetric form defined by the
Ricci tensor.
Moreover, the holomorphic vector fields corresponding to these eigen-
forms a form a Lie algebra.
(3) If Ay = 2¢, then a real function f is an eigenfunction belonging to the
eigenvalue N\, if and only if
(1) the vector field Jug is a Killing vector field, i.e., a holomorphic
infinitesimal isometry, where J stands for the complex structure of
M;
(ii) p(df,df) = c|df|?. Moreover, the Killing vector fields correspondmg
to these eigenfunctions f form a Lie algebra. O
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Nagano [19] determined the first eigenvalue of the Laplacian on all irreducible
compact symmetric spaces. In particular, he proved the equality A1 = 2c for all
irreducible compact Hermitian symmetric spaces, see also [25]. Consequently the
condition \; = 2c is not sufficient to characterize a complex projective space P"C
with Fubini-Study metric in terms of the first eigenvalue A;. Anyhow, Kobayashi
[14] has characterized P"C in the following way.

4.3 COROLLARY. A compact Kdihler manifold M of dimension n is isometri-
cally biholomorphic to P"C with Fubini- S@y metric if and only if A\ = 2c¢ with
multiplicity n(n +2). O

5 The first eigenvalue of a small geodesic ball in a Riemnnian manifold

Let (M,g) be a Riemannian manifold, and M, the tangent space at a point
m € M. We denote by BY.(¢) a metric ball of radius ¢, centered at m € M, i.e.

BY(e) = {expm uw)|u € Mp,|u| <e},

where exp : M,, — M is the exponential mapping of the Riemannian manifold at
me M.

Let 7 be the scalar curvature, p the Ricci tensor and R the Riemann curvature
tensor. |R|?,|p|? are the quadratic curvature invariants of the Riemannian metric
(see [2] for more details). Karp and Pinsky [13] have investigated the asymptotic
behavior of A; (g, m), the first Dirichlet eigenvalue of the Laplacian A in a metric
ball of radius ¢, centered at m € M. The coefficients are expressed in terms of the
curvature tensor and its derivatives.

5.1 THEOREM. When e | 0 we have the ezpansion
(e, m) = 2 4 17 + EXRI = |pI? + 6A7]m + O(e?).

¢y, 1, ¢y depend only on the dimension n and satisfy co > 0¢; <0, ¢cp <0. O

If w, denotes the (n — 1) dimensional measure of the unit sphere S*~!. Then

coefficient of |R|? : wn [ fofyr™2dr [1/30n(n + 2)),

coefficient of |p|? : wn [ fofor™t2dr [~1/30n(n + 2)],

coefficient of 72: zero

coefficient of AT : wy, [ fofor™ 2dr [1/5n(n + 2)].

We note also that the first eigenfunction fy is positive and decreasing, and
consequently the first and the last coefficients above are negative, proving that
co < 0.

Karp and Pinsky have derived from this theorem the following characterizaions
of the Euclidean metrics.

5.9 COROLLARY. Let n < 6. If for every m € M we have )\, (g,m) = co/e” +
O(e*), € 1 0, then (M, g) is locally isometric to R™ with the standard Euclidean
metric. O
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5.3 COROLLARY. If for every m € M we have M\ (e,m) = co/e2+O(e*), £ 1 0,
and the Ricci tensor is semidefinite (esp. if g is an Einstein metric) then (M, g) is
locally isometric to R™ with the standard Euclidean metric. O

Similar results are valid for comparision with other rank one symmetric spaces
(see [13]).

In the remaining part of this section we derive new characterizations of the
Euclidean metrics as well as rank one symmetric spaces of an arbitrary dimension,
but under some assumption.

5.4 THEOREM. If for every m € M we have (e, m) = cp/e? + O(e*), £ 1 0,
and any of the following additional hypothesis
(i) M is conformally flat,
(ii) M is a Bochner flat Kdhler manifold;
(iii) M is a Kdhler manifold with the complex conharmonic curvature tensor
equal to zero;
(iv) M is a product of surfaces;

then (M, g) is locally isometric to R™ with the standard Euclidean metric.

Proof. (i) If n < 6 Theorems follows from Corollary 5.2. If n > 6 then the
Weyl curvature tensor C' of M satisfies

. 4 : 2 :
CI? = R — 2 2
CFF = |RP = 256l + gy
Theorem 5.1 implies 7 = 0 and consequently C = 0 gives |R|> = —%5, which implies

the required result.
(ii) Let B be the Bochner curvature tensor for a 2n-dimensional Ké&hler mani-
fold (n > 1). Then we have

8 : :
_ BI2 = |RI? — 2 2
ket |B] [ n+ 2|p| ¥ (n+ 1)(n+2)T

Since B = 0 if and only if M is Bochner flat, one can use our assumption B = 0,
Theorem 5.1 and (5.1) to see |R|> = —55|p[?, i.e. [R|* = 0 and hence M is locally
flat.

(iii) Let H be the complex conharmonic curvature tensor for a 2n dimensional
Kihler manifold (see [22] and [3] for more details). Then we have

8
n+2

n o 5
T,
n+2

o> +

(5.2) |H? = |R]” -

If H = 0 then Theorem 5.1 and (5.2) imply |R|* =
can have the required result.

(iv) Let M be the Riemannian product of the surfaces M;, i =1,...,p. Then
we have |R|> = Y |R;|> and |p|> = 3 |pi?, where |R;|> = 2|p;|*. Consequently

8 2 3 .
—3/pl” and consequently one
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|R|> = 2|p|?, just as for surfaces. This relation, with Theorem 5.1, as before imply
M is locally flat. O

Karp and Pinsky [13] have characterized the rank one symmetric spaces of
dimension n < 6 by the first eigenvalue of A. To characterize rank one symmetric
spaces of dimension n > 6 we need some additional assumption. Some of possible
assumptions may be in terms of power series expansions of the (n —1)- dimensional
volume function Sm (&) of the geodesic ball By, (¢), the total scalar curvature Tm (€)
of the small geodesic sphere Gy, (¢)

Gr(e) = {expp () | u € M, [u| = ¢}
or the total norm |o|2,(g) of the second fundamental form of Gm(g), where
)= [ o) dr
Gm(e)
o) = [ leFw)dp
Gm(e)

Here dp denotes the volume element of G (€) and 7 its scalar curvature.
Chen and Vanhecke [9] have derived the following formulas for the previously
mentioned functions. So we have

(5.3) Sn(€) = cno1e™ 1 + A(n)e? + B(n)e* + 0(%)},

(5.4) (&) = eno1£"3{(n = 1)(n — 2) + C(n)e? + D(n)e* + O(e®)},
(5.5)
o2, (e) = cn1e™ 2 {(n — 1) + E(n)e? + F(n)e* + 0(e%)},
where
(5.2) A(n) = —g57(m),
(5.b) B(n) = m(ln—m(—ﬂRP + 8|p|% + 572 + 18AT)(m),
(5.c) C(n) = — 2203 r(p),
(5.4) D(n) = gapmmrg; (—3(n+2)(n + 3)| B> +8(n® 454 21)|p|? + 5(n>=7n —
6)72 4+ 18(n — 2)(n — 3)AT)(m),
(5.6) E(n) = — % r(m),

5.e
(5.f) F(n) = m(—:%(n — 13)|R|? + 8(n + 12)|p|® + 5(n + 7)7% + 18(n +
T)AT)(m).

Let us recall that c,—; = n(7)™/?/T(2+1) is the volume of the unit sphere Sr=L{1)
in Euclidean space R™.

We subscript to distinguish invariants of different manifolds. Hence 7; denotes
the scalar curvature function on M;, for example. Let M) be a rank one symmetric
space. Then 71, |R1|?, |p1|* are constant so A1y = 0.
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5.5 THEOREM. Suppose A1(e,m1) = Ai1(e,mz) and any of the following addi-
tional hypothesis .

(1) Smi(e) = Sm,(e),
(11) Tml (E) = Tmz (6)7
(iil) o2, (€) = lol7.(e),
for all sufficiently small € and for all m; € My and all my € M>.
Then 11 =73, |p1]*> = |p2[?, |R1]? = |Rao|?.

Proof. (i) Comparing the coefficients in the asymptotic expansions of \; (g, m;),
i = 1,2 shows T, = Tm,, |R1|? = |p1|*> + 6An = |Rs|? — |pa|? + 6AT,, for all
my € M, and my € Ms. Therefore, 1 and 75 are constant and Am = A = 0.
Consequently, '

(5.6) |B1l* = |p1]* = |Raf* — |pa]*.
Comparing the coefficients of e®*! in (5.3), using (5.b) then yields
(5.7) a1(|Ral? = [p]?) + 22| Ri|? = a1 (|Ra|? — [pa]?) + a2| Ro [,

where is simple to check a; # 0. We combine now (5.6) and (5.7) to complete the
proof.
The proof of (ii) and (iii) is similar to this one of (i). O

The linear and quadratic curvature invariants do not determine the Riemannian
geometry generally. One can find in [16], [15], [26], etc. some examples of spaces
with different geometries, but the same previously mentioned invariants 7, |p|* and
|R|?. But these invariants determine certain classes of rank-one symmetric spaces
(for more details see for example [9]). Consequently, we may use Theorem 5.5 to
prove the following Corollary.

5.6 COROLLARY. Let M;, 1 =1,2 be as in Theorem 5.5.

(a) If My has constant sectional curvature ¢, then M, has constant sectional
curvature c.

(b) If M; are Kdhler manifolds, and if M; is with constant holomorphic sec-
tional curvature, then M, has the same constant holomorphic sectional
curvature.

(¢) Let the holonomy group of M be a subgroup of Sp(n)-Sp(1l) and let M be
QP™(v) or its noncompact dual. Then M, is locally isometric to QP™(v)
or its noncompact dual. 0O
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STABILITY OF LINEAR CONTINUOUS SINGULAR SYSTEMS
IN THE SENSE OF LYAPUNOYV: AN OVERVIEW

Dragutin Lj. Debeljkovi¢

Faculty of Mechanical Engineering,
Dept. of Control Engineering
University of Belgrade

Abstract. Singular systems are those whose dynamics is governed by a
mixture of algebraic and differential equations. A brief survey of results
concerning stability of these systems, in the sense of Lyapunov as well as the
main features of this class of systems are also presented.

Introduction

Singular systems are those whose dynamics is governed by a mixture of algebraic
and differential equations.In that sense the algebrac equations represent the constraints to
the solution of differential part.

These systems are also known as descriptor, semi-state and generalized systems
arise naturally as a linear approximation of systems models, or linear system models in
many applications such as electrical networks, aircraft dynamics, neutral delay systems,
large-scale systems, interconnected systems, economics, optimization problems,
feedback systems, robotics, biology etc..

Consider the autonomous linear continuous singular systems (LCSS) represented,
in the forced regime, by

Ex(t) = Ax(t), x(t,)=xg

y(t) = Cx(8),

(1)

with matrix E possibly singular, where x(#)€ R" is generalized state-space vector and

u(f)e R" is control variable. Matrices A and C are of appropriate dimensions and are

defined over the field of real numbers.
System models in this form have some important advantages in comparison with

the models in the normal form, e.g. when E = I:

- These models preserve the sparsity of systems matrices (that is many entries of
system matrices are equal to zero)

- There is a tight relation between the system physical variables and the variables in
the model

- The structure of tihe physical system is well reflected in the model
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There is a great simplicity in derivation of these equations and in this connection
there is no necessity for the elimination of the unwanted (redudant) variables, as
there is no request for the formulation of the state variables.

The complex nature of singular systems causes many difficultes in analytical and
numerical treatment that do not appear when systems in the normal form are concerned.
In that sense the questions of existence, solvability, uniqueness, and smothness are
present and should be solved in satisfaction manner.

The survey of updated results for singular systems and the broad bibliography can
be found in Bajic(1992), Campbell (1980, 1982), Lewis (1986, 1987), Debeljkovic at el.
(1996.a, 1996.b, 1998) and in the two special issues of the journal Circuits, Systems and
Signal Procesing (1986, 1989).

A specific nature of singular systems is well documented in the Fig.1.

Linear contionuous
singular systems

Regular LCSS
det(cE-A) =0

Irregular LCSS
det(cE-A)=0

Solution always exists
and is unique

Nonunique
solutions

!

Possibility of

impulsive solutions

Infinite number of
solutions

Y v v

Finite number of

Possibility of
solutions

smooth solutions

Fig. 1.
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Preliminaries

Some fundamental questions of existence and uniqueness of singular system
solutions. Consider the (LCSS) described by (1). When the matrix pencil (sE - A) is
regular. i.e. when:

det(sE—-A)=0,se C, (2)

then solutions of (1) exist and they are unique for so-called consistent initial conditions
x, of x(t),and moreover, the closed form of these solutions is known.

Definition 1. Let matrices E, Ae C*" and t, € . We should say that vector x(z ;)

=xXp€ R" is consistent vector associated at o if (1) has unique solution.
Eq. (1) je tractable at t,, if it has unique solution for every consistent vector of initial
condition x, associated with f.

If Ex(r) = AX(?) is tractable for any moment t, € R, then it is tractable for every

moment te R, so one can say that eq. (1) is tractable.

Theorem 1. For given E, Ae R"™, eq. (1) is tractable if and only if there exist
scalar Ae € such that matrix (AE - A) ! exist.
Solvabulity
According to the Fig.1, the singular system is regular, when the matrix pencil
satisfy eq. (2). The regularity condition can be tested using the following theorem Yip,

Sincovec (1981).

Theorem 2. The following expressions are equivalent:
a) The matrix pencil (A,E) is solvable, e.g., det(sE —A) # 0,

b) LetX, = R(A)

X ={x(t): Ax(t) € EX; }, (3)
then:

R(E)NnX; ={0},Vi=0,1, ... @)
¢) LetY,= R(AD)

Y ={x(t): Ax(DeEY i, }, (3)
then:

R(ET)NY,; = {0},Vi=0,1, . (6)

d) Matrix:
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E 0 -
A E - 0
0 A -~ 0
G(n) = : : n+1, (7)
E
_O AA
has full row rank for n =1,2, ...
e) Matrix:
[E A 0 0]
0 E A 0
0 0 E 0
F(m= )
2| @)
E
_O A_
n+1

has full column rank for n =1,2, ...

A particular approach to the question of solvabilty can be achived using so-called
shuffle algoritam, Luenberger (1978).

The procedure starts with forming the following matrix:
EA.

If matrix E is regular, procedure is finished and system is solvable. But if this is not
case one can apply elementary row operations, so the matrix defined above can be
reduced to the form:

T A
0 A
where matrix T has a full rank.
Next "suffle” operation leads to the following matrix form:

T A,
As0Q

If the matrix A4 is regular, the system is solvable. The similar procedure is
applicable for systems given by eq. (1).
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Consistent initial conditions

Having in mind the implicit character of eq. (1), with respect to x(t), it is obvious,
that not all initial conditions are permissible.

The problem of consistent initial conditions is not characteristic for the systems in
the normal form, but it is basic one for the singular systems. One of the consequence of
this problem is the fact that it is not yet possible to derive, in an algorithmically testable
form of the necessary and sufficient conditions for the asymptotic stability of even linear
singular systems with constant coefficients.

We will say that the initial condition %, is consistent if there exist a differentiable,

continuous solution of eq. (1). The solution x(t) should be differentiable a finite number

of times and it is real analytic on interval t = 0.

Discussion and generation of consistent initial conditions were treated by several
authors. Some of these, most imortant, results are presented here.

Campbell et al. (1976) showed that x, is a consistent initial condition for eq. (1) if

and only if:
(I-EE®)%=0, ©)
or in equivalent notation:

W, = R(I - EEP), (10)

where EP is Drazin inverse of matrix E and
E=AE-A"'E. (11)
where A™'() dentos the inverse image of ( ) under operator A and X() nullspace or

kernell.
The fundamental geometric tool in the characterization of the subspace of
consistent initial conditions is the subspace sequence:

W =R",

Wi = A (EW), j20,

(12)

Lemma 1. The subspace sequence { W, M, Wi,.... } is nested in sense that:

WyoW oW, oWy o ... (13)
Moreover:
R(A) W, V)20, (14)

and there exist and integer k =0 such that:

Wi =W, (15)
so that:
Wiej =W, Vji=1. (16)

If k* is the smallest such integer with this property, then:
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Wi R(E)={0}, k2k", (17)

provided that (AE - A)" is invertibble for some Ae R, Owens, Debeljkovic (1985).

In some circumstances, it is useful to introduce the linear nonsingular
transformation of system governed by (1), in order to get the first canonical form of
linear singular system as:

X, (0)=A X, (D+A 1%, (1), (18)

0=A 31Xy (t)+A 41X ([) (19)

Then, the set of consistent initial values is equal to the manifold, or in other words
x has to satisfy:
0=A;3x0+A 4X20 , (20)
or in equivalent notation:

M=xr([a A]. 21

State response of linear singular system

Suppose that E and A are square matrices. Then the state response of autonomous
system, described by eq. (1) is given with:

D .
x(=e EAEEP q, qe R”. (22)
It is obvious that vector of consistent initial conditions must satisfy:

xo= EEP %, . (23)

Matrix transfer function

It can be shown that the matrix transfer function of linear singular system, in
certain circumstances, can not be found. This problem is completely determined by the
question of possible solvability of singular system.

If ones look at the nonautonomous linear singular system, with control matrix B
then the matrix transfer function is given with:

adj[sE — A] B

24
det(sE — A) (24)

Wi(s)=C[sE- A"'B=C

It is more than clear that only regular singular systems, see Fig.1. can have such
description.

If singular system has no transfer function, Le. it is irregular, it may still have a
general description pairing, Dziurla, Newcomb (1987), that is the description of the
form:

R(s)Y ()=Q()U(s), (25)

where Y (s) and U(s) are Laplace transforms of output and input, respectively and R(s)
and Q(s) are polinomials of complex variable.
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Impulsive behavior of linear singular system

Linear singular systems can always have an impulsive solutions whenever the
initial conditions are different from those determined by consistent initial conditions. In
that case the free response of singular system exibits exponential motions and in addition
contains some impulsive motions corresponding to the "infinite - frequency" modes,
Verghese et al. (1981). This feature of singular systems is undesirable.

If the matrix A4 is regular, the system is solvable and this fact guarantees that no
impulsive motions occur in response to arbitrary initial conditions, since then singular
system is reduced to its normal form. Conversely, one can show that if Ay is singular,
and system under the consideration is solvable then it exibits impulsive - free motions
for certain initial conditions.

Main results

Stability plays a central role in systems theory and control engineering.There are
different kinds of stability problems that arise in the study of dynamical systems. This
section is concerned with the stability of equlibrium points in the sense of Lyapunov. As
we treat the linear systems this is equivalent to the study of systems stability.The
Lyapunov direct method is well exposed in a number of very well known references.
Here we present some different and interesting approaches to this problem.

Stability definitions

Definition 2. Eq.(1) is exponentially stable if one can find two positive constants o,
[ such that:
lx(r) I Bexp(-ar) 1 x(Dll, (26)

for every solution of eq.(1), Pandolfi (1980).

Definition 3. The system given by eq.(1) will be termed asymprotically srable iff,
for all consistent initial conditions X,, it has that x(r)—>0 as t—e, Owens,
Debeljkovic (1985).

Definition 4. We call system given by eq. (1) asymprotically stable if all roots of
det (sE - A) , i.e. all finite eigenvalues of this matrix pencil, are in the open left - half
complex plane, and system under consideration is impulsivelz free if there is no x, such
that x(7) exibits discontinuous behavior in free regime. Lewis (1986).

Definition 5. The system given by eq. (1) is called asymptotically stable iff all
finite eigenvalues A;, i = 1, ..., , of the matrix pencil (AE — A) have negative parts,
Muller (1993).

Definition 6. The equilibrium x = 0 of system given by eq.(1) is said to be srable if
for every £> 0, and any 7, € J, there exists a §= 6 (&, to) > 0, such that || x(z, f , X))l < €
hold for all ¢ > t,, wheneverx,e W and || x,|| < &, where J denotes time interval such
that | = [l‘o,+°<>), ty 20, Chen, Liu (1997).
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Definition 6. The equilibrium x = 0 of system given by eq. (1) is said to be
unstable if there exist a € > 0, and &, € J, for any & > 0, such that there exists a t* 2 fp,
for which |x(r", fg, X0 )|| = € holds, although xo € WAk and ||xq|| < 8, Chen, Liu (1997).

Definition 7. The equilibrium x = 0 of system given by eq. (1) is said to be
artractive if for every t € J, there exists an 77 = 7( £, ) > 0, such that Hn *(L 15, X5) = 0y

whenever xo€ W and || xo||l< 1, Chen, Liu (1997).
Definition 8. The equilibrium x = 0 of singular system given by eq. (1) is said to be
asymptotically stable if it is stable and attractive, Chen, Liu (1997).

Lemma 2. The equilibrium x = 0 of linear singular system given by eq. (1) is
asymptotically stable if and only if it is impulsive-free, and o(E,A) < C” Chen, Liu
(1997).

Lemma 3. The equilibrium x = 0 of system given by eq. (1) is asymptotically
stable if and only if it is impulsive-free, and lim x(t) = O, Chen, Liu (1997).
t—pee

Stability theorems

Theorem 3. Eq. (1), with A = [, I being identity matrix, is exponentially stable iff
the eigenvalues of E have nonpositive real parts.

Proof. State response of singular system, under the consideration, is given by eq.
(22), with restriction on vector of consistent initial conditions, given by eq. (23).

If E is written in diagonal form, then:

T L
E_E A(I—b'))EED: qQ, (27)
0 0

which decays exponentially when A € ¢ (0) implies that Re(4) < 0.
Because the eigenvalues of M are those eigenvalues of E which are not zero, it has
completed the proof.

Theorem 4. Let [, be the matrix which represents the operator on R" which is

the identity on Q and the zero operator on A. Eq. (1), with A = I, is stable if there exists
an nxn matrix P, which is the solution of the matrix equation:

E"P+ PE=-1Ig, (28)
with the following properties:
i) P=PT,
ii) Pg=0,ge A
iii) " Pg>0,q#0,qeQ,
where:
Q=W =R8(I-EE”), (29)

A=R(EE®), (30)
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Proof. If eq. (28) has a solution P as above, E cannot have eigenvalues with
positive real parts. Hence, eq. (1) is stable. Conversely, assume that eq. (1) is stable. Let
P be defined by:

q"Pq= | llexp(EHE q P dt. (3D
0

The integral is zero if q € A and is finite number if q € Q. It is clear that matrix P
is solution of eq. (28) with the properties, a), b), ¢), Pandolfi (1980).

Theorem 5. The system given by eq. (1) is asymptotically stable if and only if
a) A is invertible and

b) there exists a positive-definite, self-adjoint operator P on R", such that:
c
) ATPE+E'PA=-Q (32)
where Q is self-adjoint and positive in the sense that:
X" (H)Qx(t) >0 for all xe W. \{0}, (33)
Owens, Debeljkovic (1985).
Proof. To prove sufficiency, note that W, m X(E) = {0} indicates that:
V(x) =x"())ETPEX(?) , (34)

is a positive-definite quadratic form on W. . All smooth solutions x(r) evolve in W\ so

V(x) can be used as a "Lyapunov function". Clearly, using the equation of motion (1), we
have:

V= x"()ETPEx(t) + x" (1) ETPEX(¢)
=(Ex()" PEx(t) + x" (t)ET PE x(t)
=(Ax()T ETPEx(t) + x' (t)ET PAx(t)
=x" (WATPEx(t) + x" (t) ETPAX(})

=—x"(HQx(t) < -AV, (35)
where:
A =min{ x" (HOx(t) :V(x) =1, xe W. }, (36)
1s strictly positive by eq. (33).
Clearly:
0 < V(x(n) < Vixg e ™ = 0 (t— o), (37)

so that Ex(r) and x(r) tend to zero as r— oo as required.

Theorem 6. The system given by eq. (1) is asymptotically stable if and only if
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a) A isinvertible and
b) there exists a positive-definite, self-adjoint operator P such that:

x' () (ATPE+ETPA)x(t) =—x" (HIx(t) for all xe W. . (38)

Owens, Debeljkovic (1985).

Theorem 7. Let (E, A) be regular and (E, A, C) be observable. Then (E, A) is
impulsive free and asymptotically stable if and only if there exist a positive definite
solution P to:

ATPE+ETPA+E'C'CE=0, (39)
and if P, and P, are two such solutions, then ETRE = E'RE, Lewis (1986).
Theorem 8. If there are symmetric matrices P, Q satisfying:

ATPE+ETPA=-Q (40)
and if:
x ETPEx>0Vx= Sy, #0, (41)
XTQXZOVX: SIY] > (42)

then system described by eq. (1) is asymptotically stable if:

E-A
rankliS . }:/1 VseC, (43)
S Q

1

and marginally stable if condition given by eq. (39) does not hold, Muller (1993).

Proof. Assume P, Q according to eq. (37,38), then by transformation:

R _
R—{R},S—[Sl Sl (44)

2

RES = , RAS = - (45)
0 N 0 I

where the identity matrices I, and I, are of dimension ny and ny with ny + ny = n and the
ny X ny matrix N, is nilpotent of index k, one has:

A'P+RA=-5/05=-0Q, (46)
with:
B=R">0, Q=Q" 20. (47)
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Therefore system given by eq. (1) is stable in the sense of Lyapunov and is
asymptotically stable iff:

sl;— A
rankli =4 =mn, VseC. (48)
So, it is necessary to show that condition:
SE—A]
rank| . =n, VseC. (49)
SQ |

is equivalent to expression, given by eq. (48). By the transformation of eq. (44,45) one
has:

sl —A 0
sE-A
rank T =rank 0 sN; — I, | =1, + rank
50
Q Q2
showing the equivalence of eq.(48) and eq. (49).

Theorem 9. The equilibrium x = 0 of system given by eq. (1) is asymptotically
stable, if there exists an n X n symmetric positive definite matrix P, such that along

SIL_A} (50)

Q

solutions of system (1) the derivative of function V(Ex) = (Ex)TP('Ex). is negative
definite for the variates of Ex, Chen, Liu (1997)

Proof. First, the regularity of (E, A) means that there exists n X n nonsingular
matrices U and V such that:

I, 0 A O i}
UEV = , UAV = . (51)
0 N 0 I
and eq. (1) is equivalent to:
Z, = +0
el (52)
Nz, =0+1z,

here Q(Zl Z2>T=x, A isan 1, x 1 nonsingular matrix and N is an 171, X 11, nilpotent
matrix, 1, + M, = n.

Next, V(Ex) is a negative definite quadratic form for the variates of Ex means that
there exists an n X n symetric matrix W with E" WE is positive semi definite and the
rank of ET WE is equal to r, such that:

V(Ex) = — (Ex)" W(Ex), (53)
or:

ATPE + ETPA =-E"WE. (54)
Letting:
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p=U" [Z‘; ?ju (55)
w=Uu’ [WT‘ %}U, (56)
2 V\él
one has:
PUA'*'ATPlz = -W,
PoN+N'R, = -NWLN, (57)
B,+AR,N = -W,N

where B, P, and W, are all positive definite matrices.
In the following it proves that N = 0. Suppose that the form of nilpotent matrix N is

Ik
N= - , (58)

.

where ]; is a Jordan block matrix which the diagonal elements are all zero (i = 1, ..., 5),

then all elements of first row of both N'B, and NTIAL, N are zero, it is follows from the
second formula of eq.(57) that al elements of first row Py, N are zero. If N =0 is not true,
without loss of generality it suposses that ], # 0, then it can be deduced that the element
of first row and first column of matrix P, is zero, this is not true since P, is positive
definite.

Thus it has N = 0, in other words, the linear singular system described by eq. (1) is
irnpulse-free.

The positive definitity of matrix W, and the first formula of eq.(57) imply that A
is an asymptotically stable matrix. It follows from eq.(52) and N = 0 that lim x = 0 hold

t—r+oe

fromx = Q (Zl z, )T and the conclusion of Theorem 9. follows from Lemma?Z.

Theorem 10. If there exist an nxn symmetric, positive definite matrix P, such that
along solutions of system given by eq. (1) the derivative of function V(Ex) =
(Ex) T P(Ex)ie. V (Ex)is positive definite for all variates of Ex, then the equilibrium x
=0 of system given by eq. (1) is unstable, Chen, Liu (1997).

Theorem 11. If there exist an nxn symmetric, positive definite matrix P, such that
along solutions of system given by eq. (1) the derivative of function V(Ex) =
(Ex)" P(Ex) ie. 1% (Ex) is negative semidefinite for all variates of Ex, then the
equilibrium x = 0 of system given by eq. (1) is stable, Chen, Liu (1997).
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Numerical examples

Some numerical examples have been worked out to show excellent application of
previous results. We shall illustrate some of these methods. No discussion is presented
since the procedure and conclussions are obviouos.

Pandolfi (1980).
1 00 -1 0 0
01 0xMBH=|0 -1 0 [x(®
000 0 0 -1
-1 0 0
A= 0 -1 0], A=A'A =1
0 0 -1
-1 0 0
E=A'E,=| 0 -1 0
0 0 0
-1 0 0
ETP+PE=-Iq=| 0 -1 0
0 0 0
05 0 0
p=pl= 0.5

0
0 0

0
X (P)=X(E) =spany| 0 ] Pq=0,qeA
1

o O

0

R(P) = R(E) = span [ 1
Lo lo

q'Pq =0.5(gi +g3)>0, VqeQ, q # 0.

So, system under consideration is stable in sense of Lyapunov.

2. Owens, Debeljkovic (1985).
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110 -2 -2 0
0 1 0lk()=|-2 -3 0l
000 0 1 1

W={xneRneRxn=-x}

Martix G can be addopted as:

1 0 0
G=|0 1 -1|=G’

T 2 2
X‘GX=x12+X2—2x2x3+.X3

x| Gx =2l +4x > 0,Vxe W, \{0}

6.75 025 0
P=1025 275 1
0 1 P33

So, for ps; > 0,0135 P is symmetric and positive definite matrix and system under

consideration is asymptotically stable.
Chen, Liu (1997).

1 00 0 1 0
00 OH=|1 1 0 [x(b
00 1 05 0 -1
9 -9 2
P=/-9 16 -2|=P">0
3 -2 B8

V(Ex) = (Ex)" P(Ex)
Using eq.(54), one can easily get:

V (Ex)=—(Ex)"W(Ex) =

16 0 0|l x
=—[x 0 xJ0o 0 ofo0
0 0 16| x

=—16(x +23),
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so, the equilibrium point of system under consideration is asymptotically stable since the
derivative of Lyapunov function, along the trajectories of system, is negative definite for
the variates of x; and x; of Ex.

Conclusion

To assure asymptotical stability for linear singular systems it is not only enough to
have the eigenvalues of matrix pair (E,A) in the left half complex plane, but also to
provide an impulse-free motion of system under consideration. Some different
approaches have been shown in order to construct Lyapunov stability criterions of
stability, asymptotic stability and unstabilty for this class of systems. Several numerical
examples have, also, been worked out in order to illustrate the efficiency of methods
proposed.

Appendix A

Drazin inverse

If F is an nxn matrix, then F? is the unique solution of the equations:
q q

FFP =FPF ,
FPFFP=F , (A1)
FDFI\'+X =Fk

where k is the index of matrix F, k = Ind (F), defined to be the smallest non-negative
integer such that:
rank F/*' = F/ (A2))

With R(F) and R(F) we will denote the kernel (null space) and range on any
operator F, respectively, i.e.:

R(F) ={x: Fx=0,V xe R"}, (A3)

RF) ={ye R", y =Fx, xe R"}, (A4)

dim R(F) + dim R(F) =n. (AS5.)
References

[1]  Baji¢, V.B., Lyapunov’s Direct Method in The Analysis of Singular Systems and
Networks, Shades Technical Publications, Hillcrest, Natal, RSA, 1992.



Dragutin Lj. Debeljkovi¢ 97

Campbell, S.L., Singular Systems of Differential Equations, Pitman, Marshfield,
Mass., 1980.

Campbell, S.L., Singular Systems of Differential Equations II, Pitman,
Marshfield, Mass., 1982.

Campbell, S.L., C.D. Meyer, N.I. Rose, “Application of Drazin Inverse to Linear
Systems of Differential Equations”, SIAM J. Appl. Math., 31 (1976) 411-425.

Chen, C., Y. Liu, “Lyapunov Stability Analysis of Linear Singular Dynamical
Systems”, Proc. Int. Conference on Inteliligent Processing Systems, Beijing,
(China), October 28 - 31, (1997), 635-639.

Circuits, Systems and Signal Processing, Special Issue on Semistate Systems, 5
(1) (1986).

Circuits, Systems and Signal Processing, Special Issue: Recent Advances in
Singular Systems, 8 (3) (1989).

Debeljkovi¢, D.Lj., S.A. Milinkovi¢, M.B. Jovanovi¢, Application of Szngular
Systems Theory in Chemical Engineering, MAPRET Lecture — Monograph, 12
International Congress of Chemical and Process Engineering, CHISA 96, Praha,
Czech Republic (1996.a).

Debeljkovi¢, Lj.D., S.A. Milinkovi¢, M.B. Jovanovié¢, "Continuous Singular
Control Systems", GIP Kultura, Beograd, 1996.b.

Debeljkovié¢, Lj.D., S.A. Milinkovi¢, M.B. Jovanovi¢, Lj.AJaci¢, "Discrete
Singular Control Systems", GIP Kultura, Beograd, 1998.

Geerts, T., “Stabilty Concepts for General Continuous-times Implicit Systems:
Definitions, Hautus Test and Lyapunov Criteria”, Int. J. Systems Sci., 26 (3)
(1995) 481-498.

Lewis, F. L., “A Survey of Linear Singular Systems”, Circ. Syst. Sig. Proc., 5 (1)
(1986) 3-36.

Lewis, F. L., “Recent Work in Singular Systems”, Proc. Int. Symp. on Sing. Syst.,
Atlanta, GA (1987) 20-24

Owens, D.H., D.Lj. Debeljkovic, "Consistency and Liapunov Stability of Linear
Decsriptor Systems: a Geometric Approach”, IMA Journal of Math. Control and
Information, (1985), No.2, pp. 139 - 151.

Pandolfi,L., “Controllabilityand Stabilization for Linear Systems of Algebraic
and Differential Equations”, JOTA, 30 (4) (1980) 601-620.

Verghese, G. C., B.C. Levy, T. Kailath, “A Generalized State-Space for Singular
Systems”, IEEE Trans. Automat. Cont., AC-26 (4) (1981) 811-831.



ON THE GEOMETRICAL SENSE
OF COVARIANT DIFFERENTIATION
IN NON-EUCLIDEAN SPACE

Zoran Draskovié

ABSTRACT. An approach to geometrical interpretation of the operation of
covariant differentiation—where the role of operators of parallel transport
in non-Euclidean space is also pointed out—is presented.

Introduction

When considering the sense of the operation of covariant differentiation, either
in Euclidean or in non-Euclidean spaces, the intention to provide a possibility of
obtaining new tensor fields from the given one is usually underlined!. However,
the fact that, on the one hand, this operation has a well defined geometrical sense
(as a limit process), and, on the other hand, in non-Euclidean spaces is often
introduced by analogy with the procedure in Euclidean space (and without stressing
the possible geometrical interpretation), was the reason to point out a geometrical
aspect of the operation of covariant differentiation in non-Euclidean spaces, too.
But, first of all, we shall dwell

On covariant differentiation in Euclidean space
It is well known that the expression for the covariant differentiation of a vector

field v = vig; defined in a domain of Euclidean space reads>

ot

U,ijlpo = 54

1 k (
s, * Diel " (Po) (1)

where Fji-k are Christoffel symbols of the second kind determined in curvilinear

coordinates z* introduced in this space, g; are the base vectors of these coordinates
and P, is the point where the covariant differentiation is performed. It is well

1See e.g., [2], pp. 143 and 180.
2Einstein’s summation convention for diagonally repeated indices is used; Latin indices have

the range 1,2,3, while Greek indices will have the range 1,2.
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known that the following equality (quoted in §46 of [6] when discussing the sense
of the covariant differentiation)

ov ;
80 |5, ~ Uil i(F) @)

holds, too. However, we can proceed in the following manner as well:

S| _ . v(P) = u(R)

0zI Py Azis0 AxJ
v (P)gi(P) — v'(FPo)gi(Fo)
Azi—0 Az
v¥(P)g%(Po, P)gi(Po) — v*(Po)gi(Fo)

Azi—0 Azi
. v*(P)g}(Po, P) — v'(Fo)
= 9i(F) ASEO Azi (3)
k Lk i i i i
Py tim )=V PIg (B, P) + o (ol (Po. P) = )
Azl —0 AzI

. vH(P) —v*(R)
- gi(Po)[Alzlin—l»o AzI

Il
g

li L (P, P
Azl}gog‘k( 0, P)

k : g.ik(PO:P)_éfc
o (2 Al;jnlo Agd ]

8’Uk P . . ) 1 P ,P
= a2 [ oo a0
" 5vi(P " 6 i‘ P 7P
= o) aﬂ) Po “k(P")’%?—) )

where g*; are the shifting operators® (“Euclidean shifters”; (4], p--806). In this
manner, the necessity of parallel transport (from the “current” point P to the
point P where the derivation is performed) of a vector considered in this limit
is unambiguously pointed out — this is a geometrical aspect of the operation of
covariant differentiation.

On covariant differentiation in non-Euclidean spaces

Tt is also well known that the expression for the covariant differentiation of a
vector field v = v¥a, defined in a domain of Riemannian space, i.e., on a surface?
(if we dwell on the two-dimensional case), reads analogously to the expression (1)

v, = A R |, v"(Po) (4)
BlP, oul | p, By 1Py d

3The first index in gf](Po, P), either superscript or subscript, refers to the point determined
by the first argument, while the second one refers to the point determined by the second argument.

4The vector at some point on surface is, by definition, the vector entirely lying in the tangent
plane of the surface at this point (see [7], p. 144). Since aq = 8r/du® (r is the position vector of
the mentioned point in the enveloping Euclidean space) are the vectors tangent to the surface, it
follows that v will also be a vector lying in the tangent plane of the surface.
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where u® are so-called surface coordinates and I'j. are Christoffel symbols of the
second kind determined for this surface in coordinates u®. Analogously to the
relation (2), the following relation:

Ov

Wlpo = v%| p, aa(Fo) -

can be established, too.
However, an attempt to establish the corresponding limit in the following case:

hiid
OuP

. U(P) ——U(PO)
= 1 i A
Py Aulﬁn—l}o Aub ' (6)

immediately imposes a question of the procedure of transport of the quantities v(P)
and v(FPp) to the same point in order to compare, i.e., to subtract, them. Putting
aside, for a moment, the essence of this transport, let us suppose the existence of
operators K % (P, P) such that®

3%(Po) = K(Po, P)v°(P), (

=4
—

and, in order to perform an inverse process, the existence of inverse operators®
K—BQ(PO) P)
v (P) = K5 (Po, P)3°(P) (8)

where”
K:f(Py, PYK%(Py,P) = 6% and K2(Py, P)K7,(Py, P) = 65. (9)
Using these quantities we can proceed analogously to (3), thus obtaining

ov

v P {Tm 0

Hve(P) " OK?
P0+7J (Po) 8715 y .

It is now clear that the manner of this transport, if we want to preserve the
usual expression (4) for covariant differentiation of a vector field, must satisfy the
following condition:

OK (Po, P)

— (a3 e £ e
Sub ‘Po - Fﬁ'Y’PO - Pﬁv‘POOE (11)
5The symbol “=” denotes coordinates of a quantity transported to the corresponding point!

6This means that | K% (Po, P)| # 0 and |K 3 (Fo, P)| # 0!

"The first index in K_%(PO,P), either superscript or subscript, again refers to the point
determined by the first argument, while the second one refers to the point determined by the
second argument.
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which (because of K¢ (Fy, P)lPo = 02) can be rewritten in the form

0K (P, P)

[ ou”
i.e., (bearing in mind that the transport is performed along a curve K with para-
metric equations u® = u®(t), so the composition with duﬁ/dt|PO is possible) in the
form

— 1% (P)K%(Py, P)]

=0 (12)

Py

dK? B
[i{% - P27(P)K§(PO,P)—‘Zu—t] L =0 (13)

However, due to the arbitrary character of the points Py and P, we conclude
that the system of functions K'% should satisfy (in each point of the above men-
tioned curve) the following system of differential equations:

B
% - 'EB'TUEdst =0, (14)

i.e., that the system of functions K3 should satisfy (along this curve) the system
of differential equations

dv® duP

— + 50— =0; 15

g TIAY g =0 (15)
hence, bearing in mind that |[K'%| # 0 and |K*| # 0, the system of functions K%

shall represent the fundamental system of solutions of the homogeneous system®
(14), ie., (15).

On the other hand, it was pointed out in [13] that the fundamental system of
solutions represents the operators of parallel transport® along the curve in whose
points the system (14), i.e., (15) is satisfied. Hence, if we want the covariant
derivative of a vector field in this two-dimensional space to have the form (4), it
follows that the operators K introduced in (7) and (8) must be the operators of

parallel*® transport with respect to the surface along the given curve on this surface.

Conclusion

This not so rigorous!! deduction points out, in a natural'? way (i.e., by consid-

ering the limit process in the definition of the operation of covariant differentiation),
the reasonableness of introducing the notion of operators of parallel'® transport in
Riemannian spaces, too.

8See e.g., p. 73 in [9].

“Mentioned in [8,10,12] in connection with the introduction of the notion of an absolute
integral of tensors in Riemannian spaces.

10This is in accordance with the statement that “the concept of absolute derivative is made
to depend on the concept of parallel displacement of a given vector at one point on a curve C to
other points on C” ([11], p. 178).

1 The rigour was not necessary here since the existence of shifting operators with respect to
the surface along a curve given on this surface was already pointed out in [13].

12Natural, in fact, in a measure in which we are capable of judging events (like the limit (6),
for example) within a Riemannian space.

130f course, the introduction of another procedure of transport of a vector over the surface
would lead to another procedure of (covariant) differentiation in this Riemannian space.
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Appendix: Operators of parallel transport
along parallels on a spherical surface

Although, on the one hand, the operators of parallel transport along a curve in
Riemannian space were introduced a long time ago'* (but without being explicitly
determined), while, on the other hand, the sense of introducing the operation of
absolute integration in non-Euclidean spaces (postulated in [8,10]) remained long-
contested, mainly due to the fact that the operators of parallel transport which
appear in this case had not been determined in the general case’® — the fact
that the fundamental system of solutions for the homogeneous system (14) or (15)
always exists, i.e., that this fundamental system represents the shifting operators
along a curve where the system (14) or (15) is satisfied, was pointed out in [13],
with reference to [1].

However, the existence of a fundamental system of solutions for the system
(15) along a given curve, i.e., the existence of shifting operators along this curve,
does not necessarily mean it is easy to find them. From the following well-known
example, we shall see that these operators were at hand (for the simpler cases, at
least) for a long time, but without being recognized.

As mentioned above, the system of differential equations for determining the
coordinates of a vector parallelly propagated along a curve on a surface reads

dv® du”
— 4+, — =0. Al
3 A g 0 (&.1)

But, in the case of transport along the ¢-parallel'® of a spherical surface with the
radius a we have u! = ¢ = s/acosVy, u? = 9 = ¥y = const and, bearing in mind
that only the three coordinates of the Christoffel symbols of the second kind are
non-zero in geographical coordinates (I'}, = I'}; = —tg¥y and I'}; = sin g cosVp),
this system reduces to

dv!/dp = v* tg g

(A.2)
dv' /dp = —v' sin g cos Vy.
The characteristic equation of this system of differential equations reads
— tgJo ‘
=0 A3
—sinvgcostdg —A 0; (4.3)

hence A = %sin®y i and the general solution may be written in the form (see [9],
p. 531)
1 = C) tg g cos(psindg) + Co tg Y sin(yp sin o)

S
I

A4)
? = —( sin ¥y sin(p sin¥g) + Ca sin Jg cos(p sindp). (

<
Il

14E.g. as “parallel propagators” in [3], p. 59.

15See p. 1307 in [12]: “...the problem of the covariantly constant tensor [...A...] in Riemann-
1an spaces 1s not solved generally”.

16 Geographical coordinates are in question!
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We shall find the constants C; i C» from the condition that v! = v} and v? = v3

for ¢ = @p. We thus obtain'’

5 sin o) sin v
v! = v} cos[(p — o) sin ¥o] 4 vy (G p— ;2} o] (A5)

v? = —v} cos g sinf(p — o) sin o] + v§ cos[(¢ — wo) sin J)

and, bearing in mind that the solution of the system of differential equations (A1)
represents the coordinates of a vector parallelly propagated along a curve on the
given surface, it follows that the quantities (cf. with the expressions (7) and (8))

ol 1
_ { cosl(o— o) singg] SO eelen o }
— cos Vg sin[(p — wo) sindg]  cos[(p — o) sin Vo]

are the coordinates of shifting operators along the parallel connecting the points Fy
and P on the spherical surface'®. Note that this form of the coefficients K could
have been anticipated by noticing that the two following solutions of the system

(A.2)
U(ll) _ tgdo  cos(esindy)
v(gl) —sindg sin(psindg)
U(lg) _ [ tg¥o sin(psindo)
v(22) T 1sindy cos(psindg)
vl Ul
form its fundamental system of solutions, since Det{ gl) U(?’) } # 0 (¥g # 0)!
(1) (2)
Now, when we have obtained the explicit expressions for the operators of parallel
fransport K" along the parallels on a spherical surface, the covariant coordinates

of a vector shifted on this surface from the point Py to the point P (along the arc
of the parallel connecting them) would be calculated according to the formula

(A7)

5%(P) = K (Po, P)v* (Ry) (A.8)
(where v! = v?, v? = vY) and the process of parallel transport of a vector along
such curves on a spherical surface can easily be represented graphically. Let us
consider a vector field with the coordinates

v =15 =0
s B (A.9)
v® = vj = const # 0

17Cf. e.g., with the expressions on p. 208 in [5]; see also p. 185 in [11].

18These coordinates differ from the ones obtained in [14] for the parallel transport along the
geodesic lines! Only when the parallel transport along the equator is in question (J = Yo = 0), i.e.,
along the geodesic line, then the operators Kﬁo‘ in both cases reduce to the Kronecker d-symbols.
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and let us perform its propagation from the point Py to the point P = P, along the
parallel connecting them, i.e., along the closed curve. Figure 1 illustrates the well-
known fact that, if a vector is transported parallelly along a contour on a spherical
surface, then we might not obtain the same vector upon return to the starting point
(see e.g., p. 154 in [7] or p. 185 in [11]), i.e., that the parallel displacement with
respect to a surface generally depends on the path.

Fig. 1

Furthermore, the graphical representation of the procedure of transport of the
vector v(P) to the point Py, where the differentiation of the vector field is per-
formed, seems to be interesting as well. If we refer to field (A.9) once again, the
transport to be performed inside the limit (6) will occur as shown in Figure 2.
However, the limit (6)!° itself can be represented as well (see Fig. 3)—this is only
the graphical illustration of the fact, shown in Figure 1, that the vectors obtained
by parallel transport of the vector field normal to the parallel along which the
transport is performed differ from the field value in the corresponding point; hence
the limiting process converges to a value different from zero, i.e., v; 7 0 in this

point?2°,

Fig. 2 Fig. 3

197ts value in this case, as is well-known, is equal v ) |P0 =9 ‘Po aq (Po) = —vg tan doa1 (Fo).
201¢ will be w1 = 0 only in the case when ¥ = ¥Jg = 0, i.e., when the parallel propagation
along the equator is in question (since the transport is performed along the geodesic line)!
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FLOATING STABILITY
OF A SOLID BODY IN A FLUID

Dusan Mikicié

Abstract. The analysis of the stability of floating of a solid body is made on the
basis of the theoretical formulas defined in shipbuilding. This theory is not
equivalent with Liapunov’s theory since the stability is estimated only for one
generalized coordinate @ - deviation of the symmetry plane of the ship from the
vertical. The final conclusions on the stability are made on the basis of mutual
positions of the mass center C, of a solid body and the metacenter M. In
practice it was observed that the solid body in the course of floating can change
its positions many times. The present paper analyzes particularly the singular
cases k=0and k=1, where k = p,/p - the ratio of an average density (p,) of
a solid body and the density (p) of the fluid. The paper provides the theoretical
explanation why the solid body — the circular cylinder, changes its positions of a
stable equilibrium by ¢ = 90° immediately upon sinking to the bottom. Besides
the stability of other bodies was investigated: square, cube, and a circular cone.
The theoretical explanations are given under which conditions the stable, labile,
and indifferent positions of carried out later on the mentioned bodies show the
overlapping with the theory.

1. Introduction

The initial ideas for the present paper where the consequence of the three TV broadcasts
(December 1999. BK, June 2000. Palma, June 2000. Palma). In these broadcasts the
scientists from the USA and Yugoslavia had commented the consequences of the
explosion of the volcano St. Helen, on 18" May 1980. The volcano is in the State
Washington and in its activity he expelled 2 km® of solid substance, plus 100 km” of
gases (SO,, CO,, H,0, CO). Apart from that 400 km® of the forest was destroyed and
partly thrown into the lake The Spirit at the foot of the volcano. The trees were floating
on the surface of the lake for several days in the position shown in fig. 1a. Upon to 6
days some arbors prior to sinking to the bottom turned spontaneously their axis into a
vertical position, fig. 1b.

The scientists commenting this phenomenon did not supply a real reply why
this changed had occurred. This paper, in the author's opinion, gives a real theoretical
basis for the above mentioned phenomena.
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a)H>Hh b)H(Hkr

Fig. 1. The transformation of an indifferent position of the balance
(a) by H > Hy, into a stable position (b) H < Hy,

fig. 2. fig. 3.
The submarine sailing in the water The balloon in the air
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! GDII

>

Q = mg — weight, Zy=m/pBL, I,= LB%/12, Vp=BLZ,- submerged volume

Fig. 4. Floating of parallelepiped in the water

Exposition of the paper

A. Let us observe primarily a simpler variant (A) when solid body is entirely submerged
into a fluid (submarine in the water fig. 2 and the balloon in the air fig.3.)

In both cases the thrust force is:

and the weight:
Q=mg

The weight acts vertically in the direction of the decrease of the angle ¢. That is why in
this case the conditions of a stable floating reads:

For a stable floating of a solid body lgl < 15° entirely submerged into the fluid the center
of gravity of mass C, must be under the center of gravity Cy, of the submerged volume.
Apart from that the solid body can be in equilibrium (P = mg), and it can move vertically
and horizontally depending on the initial conditions and on the whether P>mg or
P < mg. This analysis takes into account only two forces: the weight and the thrust force.
In the case that other forces are acting, too, (waves, engine, wind) the mechanical
analysis is more complex.
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(B) Let us consider now the floating of the solid body which is partly submerged into the
fluid fig. 4. — variant (B)

The condition of a stable floating reads:

The solid body partly submerged into the fluid for lgl < 15° floats stabile, if the center of
gravity of the mass C, is under the metacenter M. It should be kept in mind that for
small deviations I@l < 15° the thrust force P = pgVp act vertically up. The force acts on
the coating of the submerged body with the attacking point on the coating. The attacking
line passes through the center of the thrusting force P = mg, through the symmetry plane
zOy. It is easier to find this point for the inclined position 0<@< 15° In the
shipbuilding theory the stability condition is satisfied in two variants:

1. If Cyis under Cy, — a sufficient condition
2. IfCyisabove Cypand d<r

In the first case the analysis is identical with (A). The second case is partially explained
in literature [1,2,3]; the shortened version is provided here. The essence of the complete
analysis is that the center of gravity of the mass Cy, in a stable floating must be under the
metacenter M. Then the weighting force and the thrusting force will act as a couple for
stabilizing the solid body. The complete calculations [1,2,3] shows that in variant B — 2°
three important points Cp,, Cy, and M have the following distances:

8 =i, Cys r=hL€;—Al=MCvp (D
P

where:  1...(A") = LBY/12 —the axial moment of the inertia of the surface A" = BL,
which represent the flat surface obtained by the cross section of the solid body coating
with the horizontal surfase of the fluid. V, = BL-Z, — represents the submerged volume
of the solid body.

This paper stresses particularly that the explanation of the authors of the books
[1,2,3], that Cy, — center of the pressure is simultaneously the attacking point of force P
= pgV, is not correct. The following explanation is correct: Its attacking point is at the
bottom of the solid body coating, it acts vertically up through the metacenter M. If
equation (1) is applied to parallelepiped

s=tm_zy=a-n, 0<Pr k<1 )
2 2 p

. LB _ B B
12LBZ, 12Z, 12kH

3)

From the stability condition 6 < r =

H < Bl6k(1—k)]"* = H,, (k) 4)
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We conclude that parallelepiped floating is stable if its height H is not too high.
The singular points are: k=0 and k= 1.

limH (k) =limH (k) = (5)
k—0T k=1~
F ko :
K< Ri k = 0/5 ///
o, k< k<1 /
/
A ; 7
I —  — Tlo5  —_ /S —— |—k
k, =0.21 k; =9/32=0.28 ki=1-k;3 k,=0.79

Fig. 5. The position of the stable floating of the square B=H <L
in the density function p,=kp.

In this case the parallelepiped floats stabile in its position (fig. 4.) without any
restrictions.

Of interest is the case H = B when conditions of the stabile floating is obtained from
inequality (4) in the form:

f(k)=6k>—6k+1>0 (6)
k> = (3 %36, k, =0.21, k, = 0.79 (7

The values k3 and ky were calculated in the book [3], so that the square can have two
more stable positions of equilibrium for k; <k <k; and ks <k <k,, which are located
between those shown in fig. 5.

The experiment with a wooden square H = B < L shows exactly the same
situations as fig. 5. That is why it is not strange that the tree of small density p, = kp, k
< k; upon a longer stay in the water floats stabile in 5 different positions. It changes
those positions spontaneously depending on the rate of the absorption of the water and
the change of its density in accordance with fig. 5. The experiments with the cube (B =
H = L) show the same situation for k < k; and k > ks, while for k3 <k <ky the cube
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ZA
D = 2R
0 7
——— 1= 0 = —Z=
= ), [Z[E2
©_|=| ¢ |Z|%° =
—— = |~ V% _ =

Q =mg = pgR*nH, p,=kp<p, Z,=kH, &=H(-k)/2,
r=In(AT/V, =D¥(16Z,), A" =R’

Fig. 6. Floating of the cylinder in the water (H < Hy,)
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floats in such a way that it has a big diagonal on its vertical D = B-3"2. In the case k; < k
< k; and ks < k < k, the cube has the position of a stabile floating so that the big

diagonal is neither vertical nor horizontal.

Let us consider now the floating of a circular cylinder of diameter 2R, of height
H, density p, = kp, in the water of density p. The condition of a stabile floating d<r

leads to the inequality:

H < D[8k(1—k)]"* = H,, (k)

The singular values are k =0 and k = 1. The floating will be stabile in the position

displayed in fig. 6. if H < H,,. Apart from that:

hmle(k) = hmHkr(k) =

k=0t k=1~

Practically it means that the cylinder which was for a long time in the water upon

sufficient amount of the absorbed water will have the density:
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Pm=p=k=1

The consequence of it is that it can float stabile in the position according to fig. 6. Let us
analyze the real data trees:

Type of the tree k
oak 0.4-0.96
beech 0.7-0.97
pine 0.33 -0.89
ebony 1-1.26

When the tree stays a longer time in the water its density increases according to the table
below

N° of k Hkr

days
1 0.5 0.71D
2 0.6 0.72D
3 0.7 0.77D
4 0.8 0.88D
3 0.9 1.18D
6 0.98 2.53D
7 0.99 3.55D
8 0.999 11.2D

The first days the tree floats in the position (Fig. 1a), since the limiting height Hy; is
small. Upon 6 —7 days H; = 3.55D, some arbor turn already in the position as in fig.
1b. Upon 10 days a much larger number of trees turn, since Hy, > 11D; this condition is
satisfied in a majority of arbors. The analysis carried out on the circular cone turned by
its top downwards leads to the following inequality:

D L2
H <[] " = B () (10)

the other values being:

h=HK®  5=301-KOHM, r=—Ln
16 H

So for the special values of k we get:

K o

0.8 1.8D




0.9 2.64D
0.98 6.1D
0.99 8.63D
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The experiments with a wooden circular cone show the overlapping with the calculation

provided.

Conclusion

A homogeneous circular cylinder of density p, = kp, 0 < k < 1 floats in the liquid of
density p in the position shown in fig. 6. if H < H, — inequality (8). If the cylinder is of
wood, which at length absorbs the water, then k — 17, so that from (9) we see that Hy,
— o=. That is why a mass turning of arbors from the position, fig. 1a into position fig. 1b.
Afterwards the wooden cylinder sings at the bottom of the lake in a vertical position.
This conclusion is valid if the initial density 0 < pp<p < 0<k< 1, whichis accurate
in many cases (oak, beech pine, linden). In case of ebony k > 1, the tree sinks stabile
with the center of gravity C, below Cy, (variant A).

(1]
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SPECTRAL LINE SHAPES IN ASTROPHYSICS

° s

Milan S. Dimitrijevié

ABSTRACT. A review of astrophysical problems where data on spectral
line shapes broadened by charged particle impacts are of interest is given.
Also, the results of spectral line shapes reserches in Yugoslavia relevant to
astrophysical problems have been reviewed and discussed.

1. Astrophysical problems where data on spectral line
shapes broadened by charged particles are needed

From celestial objects out of our Solar system we receive only their radiation
and only by analysis of this radiation we may derive their properties. One pow-
erful tool for such analyses is spectroscopy and it is interesting how many facts
we might obtain from spectral lines. We may determine for example the chem-
ical composition, temperature, electron density, surface gravity... In comparison
with laboratory plasma sources, plasma conditions in astrophysical plasmas are
incredibly various. Consequently, broadening due to interaction between emitter
and charged particles (Stark broadening) is of interest in astrophysics in plasmas
of such extreme conditions like in the interstellar molecular clouds or neutron star
atmospheres, which can not be obtained in laboratory.

In interstellar molecular clouds, typical electron temperatures are around 30
K or smaller, and typical electron densities are 2-15 cm™3. In such conditions,
free electrons may be captured (recombination) by an ion in very distant orbit
with principal quantum number (n) values of several hundreds and deexcite in
cascade to energy levels n — 1,n — 2,... radiating in radio domain. Such distant
electrons are weakly bounded with the core and may be influenced by very weak
electric microfield. Consequently, Stark broadening may be significant (Omont and
Encrenaz, 1977). In interstellar ionized hydrogen clouds, electron temperatures are
around 10 000 K and electron density is of the order of 10* cm™ (Smirnov et al,
1984). Corresponding series of adjacent radio recombination lines originating from
energy levels with high (up to several hundreds) n values are influenced by Stark
broadening.
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For T.g > 10*K, hydrogen, the main constituent of stellar atmospheres is
mainly ionized, and among collisional broadening mechanisms for spectral lines,
the dominant is the Stark effect. This is the case for white dwarfs and hot stars
of O, B and A type. Even in cooler star atmospheres as e.g. Solar one, Stark
broadening may be important. For example, the influence of Stark broadening
within a spectral series increases with the increase of the principal quantum number
of the upper level (Dimitrijevi¢ and Sahal-Bréchot, 1984ab; 1985) and consequently,
Stark broadening contribution may become significant even in the Solar spectrum
(Vince and Dimitrijevié¢, 1985; Vince et al, 1985ab).

If you look for the star with the largest importance of Stark broadening, among
such stars are PG1159 stars, hot hydrogen deficient pre-white dwarfs, with effective
temperatures ranging from T,;; = 100 000 K (for PG1424+535 and PG1707+427)
to T.rs = 140 000 K (for PG1159-035 and PG1520+525) (Werner et al, 1991).
All such stars have the similar high surface gravity (log g = 7). The photospheres
are dominated by helium and carbon with a significant amount of oxygen present
(C/He = 0.5 and O/He = 0.13) (Werner et al, 1991). Their spectra, strongly
influenced by Stark broadening, are dominated by He II, C IV, O VI and N V lines.

The densities of matter and electron concentrations and temperatures in at-
mospheres of neutron stars are orders of magnitude larger than in atmospheres of
white dwarfs, and are typical for stellar interiors. Surface temperatures for the
photospheric emission are of the order of 10° - 107 K and electron densities of the
order of 1024 cm™3 (Madej, 1989; Paerels, 1997). In Paerels (1997) has been ob-
tained that the final opacity profile of He-like iron resonant line is therefore given
by a Voigt profile, with a total damping parameter equal to the sum of natural
and Stark (electron - impact) broadening. With the improved sensitivity of space
born X-ray instruments, spectral lines originating from neutron star atmospheres
should be resolved in the near future. Since the characteristic density in the atmo-
sphere is directly proportional to the acceleration of gravity at the stellar surface,
measurement of the pressure broadening of absorption lines will yield a direct mea-
surement of M/R?, where M and R are the stellar mass and radius. When this is
coupled with a measurement of the gravitational redshift (proportional to M/R) in
the same, or any other, line or sef of lines, the mass and radius can be determined
separately. These mass and radius measurements do not involve the distance to
star, which is usually poorly determined, or the size of the emitting area (Paerels,
1997).

To the increasing needs for Stark broadening data, have especially contributed
the space born spectroscopic instruments and the development of computers. With
the development of space astronomy, an extensive amount of spectroscopic informa-
tion over large spectral regions of all kind of celestial objects has been and will be
collected, stimulating the spectral—line—shape research. Moreover, due to drastical
increase of accuracy and possibilities, even the spectra of trace elements obtain an
increasing astrophysical interest.

Development of computers also stimulated the need for a large amount of
atomic and spectroscopic data, enabling the research on more complex problems
than before. Particularly large number of data is needed for example for opacity
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calculations. An illustrative example might be the article on the calculation of
opacities for classical Cepheid models (Iglesias et al, 1990), where 11 996 532 spec-
tral lines have been taken into account and where Stark broadening contribution
has been calculated within the Modified semiempirical method of Dimitrijevi¢ and
Konjevi¢ (1980).

Interesting investigations which become possible with the development of com-
puter technology, are calculations of equivalent width changes with the age in star-
burst stellar clusters and galaxies. In Gonzales - Delgado et al (1999), the change
of particular hydrogen and helium lines equivalent widths during 500 milion years,
has been calculated and compared with observations of stellar clusters of the Large
Magellanic Clouds, the super - star clusters in the starburst galaxy NGC 205, the
nucleus of the dwarf elliptic galaxy NGC 205, and a luminous "E+A” galaxy. Cal-
culations have been done in two steps. First, the population of stars of different
spectral types, as a function of age are calculated, and then the profiles of the lines
are synthesized by adding the different contributions from stars. For spectral line
profiles synthesis the effects of natural, Stark, Van der Waals and thermal Doppler
broadening have been taken into account.

2. Line shapes investigations in Yugoslavia and Serbia
within the period march 1997 — 31 december 2000 and
astrophysical significance of some of obtained results

From the first paper on spectral line shapes investigations published in 1962
by Vladis Vujnovi¢, up to the 31 December 2000, 1427 (1222 by serbian authors)
bibliographic items have been published by 179 Yugoslav authors, among them 152
from Serbia, 26 from Croatia and 1 living in France (Dimitrijevi¢, 1990; 1991; 1994;
1997, 2001a). We will review here shortly, the principal investigated problems, ac-
cording to analysis in Dimitrijevi¢ (2001a) for the period March 1997 - 31 December
2000.

Stark broadening of hydrogen and hydrogen-like emitter lines, has been studied
in particularly for H beta line. Its profile assymetry, shifts of central parts, theo-
retical Stark broadened profile, line shape in coaxial diode discharge, the influence
of the fine structure to line shape in a glow discharge cathode fall region, the appli-
cation of line shape for electron density diagnostics in the range 10%°-10*! m~* and
the effect of magnetic field on its emission from a T-tube plasma have been con-
sidered. Also a paper is devoted to the program for electron density determination
from the experimental H beta line profile. The influence of the fine structure to the
Stark splitting of the H gamma line in an external electric field, characteristic line
profile parameters of hydrogen Balmer lines in such a field, Stark broadening of He
II Paschen alpha line shapes, and the use of atomic hydrogen line shapes for the
excited hydrogen atoms temperature determination in a glow discharge have been
considered as well.

Work on the experimental determination of Stark broadening parameters of
nonhydrogenic atom and ion spectral lines has been continued during the considered
period: Stark broadening of folowing atoms and ions has been investigated: Ar I,
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ArIL ArIV,BII, CII, CIII, C IV, F II, F III, He I, Kr I, Kr II, Kr III, N II,
NIII, NIV,NV,Nel Nell, Ne III, NeIV,01II, O III, O V, O VL, S IV, Si
I. Moreover, ion broadening parameters have been determined for Ar I and C L
Also, the influence of ion dynamics, temperature dependence, departure from LS
coupling and Li-, Be-, B- and C-isoelectronic sequences have been investigated, as
well as the use of relative intensities of forbidden and allowed components of He
I lines for electric field measurements and the use of non hydrogenic spectral line
shapes for the electron density diagnostics of inductively coupled plasmas, fitting
procedures for recovering the profile of spectral lines and deconvolution procedure,

Using the semiclassical perturbation approach (Sahal-Bré chot, 1969ab), the
spectra of following elements have been investigated within the considered 1997 -
2000 period: Zn I, Cal, Aul, Sr I, Mg II, T1 III, In III, Y III, Ne IV, Pb IV, P IV,
VV,SV,F VI ClVIL O VII, Ar VIII, K VIII, Kr VIIL, K IX, Ca IX, Ca X, Na
X, Sc X, Mg XI, Si XI, Ti XI, Sc XI, Ti XII, Si XIII and V XIIL

When it is not possible to use the semiclassical perturbation approach with
the appropriate accuracy due to the lack of reliable atomic data, the modified
semiempirical method (Dimitrijevi¢ and Konjevié¢, 1980) can be used and within
the considered period have been obtained Stark broadening data for spectral lines
of the following emitters: Au II, Bi III, Co II, Co III, Cu III, Eu II, Eu III, Ga III,
Kr II, Kr III, La II, La III, Mn II, Na II, Nd II, Pd II, Ra II, Sc II, Sn II, Sr III,
TiII, TiIII, T1II, V II, V III, V IV, Xe II, Y II, Zr II and Zr IIL

A special attention has been paid in a number of papers to the investigation of
regularities and systematic trends of Stark broadening parameters. Similarities of
Stark broadening parameters within supermultiplet have been investigated as well
as Stark parameters dependence on the emitter rest core charge (seeing by optical
electron) within a transition array, ion off-resonances and isoelectronic sequences,
Stark width regularities along the argon isonuclear sequence and within Ar II spec-
trum. By using regularities and systematic trends, Stark broadening parameters of
a number of ion lines have been predicted.

Astronomical aspects of spectral line shapes research were studied in a number
of publications, as Balmer emission in Solar and AGN coronas, white dwarfs and
stellar flares, modeling of double-peaked lines in AGN, Sy I and quasar spectra,
line profiles variation in Mrk 817, spectral line investigation of active galactic nu-
clei, Lyman alpha forest and the total absorption cross-section of galaxies, QSO
environment and associated damped Ly alpha galaxies, diffuse bands in interstel-
lar spectra and fullerenes, contribution of interstellar matter to linewidths of Ca II
lines in spectra of late type stars, line profile variability of non-radially pulsating Be
stars, zirconium conflict in abundance determination, Stark broadening mechanism
in stellar atmospheres, the chromospheric behaviour of photospheric Mn I 539.47
nm spectral lines, spectroscopic investigations during Solar eclipses, the influence
of Belgrade Solar spectrograph’s apparatus function on line profiles and solution of
the non LTE transfer problem using the method of iteration factors.
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Astrophysical importance of our semiclassical
results and of modified semiempirical approach

In spite of the fact that the most supuisticated theoretical method for the
calculation of a Stark broadened line profile is the quantum mechanical strong
coupling approach, due to its complexity and numerical difficulties, only a small
number of such calculations exist (see e. g. references in Dimitrijevi¢, 1996). As an
example, the first calculation of Stark broadening parameters within the quantum
mechanical strong coupling method for a nonhydrogen neutral emitter spectral lines
is for Li I 2s2S — 2p®P° transition (Dimitrijevi¢ et al, 1981).

In a lot of cases such as e.g. complex spectra, heavy elements or transitions
between highly excited energy levels, the more sophysticated quantum mechanical
approach is very difficult or even practically impossible to use and, in such cases,
the semiclassical approach remains the most efficient method for Stark broadening
calculations.

In order to complete as much as possible Stark broadening data needed for
astrophysical and laboratory plasma research and stellar opacities calculations we
are making a continuous effort to provide Stark broadening data for a large set of
atoms and ions. Using the computer code developed by Benett and Griem (1971)
for neutrals and by Jones et al (1971, see also Griem, 1974) for singly charged ions
and adapted by Dimitrijevi¢ for multiply charged ions, Stark broadening data for
Brl, GeI, He I, PbI,Rb I, Cd I Zn 1, O II, O III, C III, C IV, N II, N III,
N IV, S I, S IV, Cl III, Ti IT and Mn IT spectral lines have been obtained (see
Dimitrijevi¢, 1996, 2001b and references therein).

In a series of papers we have performed large scale calculations of Stark broad-
ening parameters for a number of spectral lines of various emitters, within the semi-
classical - perturbation formalism (Sahal-Bréchot, 1969ab), for transitions when a
sufficiently complete set of reliable atomic data exists and a good accuracy of ob-
tained results is expected. All innovations and optimizations of the computer code
have been discussed several times (see e.g. Dimitrijevi¢ and Sahal-Bréchot, 1996a,
2000). Extensive calculations have been performed, up to now for a number of
radiators, and consequently, Stark broadening parameters for: 79 He, 62 Na, 51 K,
61 Li, 25 Al, 24 Rb, 3 Pd, 19 Be, 270 Mg, 31 Se, 33 Sr, 14 Ba, 189 Ca, 32 Zn, 6
Au, 48 Ag, 28 Ca II, 30 Be II, 29 Li IT, 66 Mg II, 64 Ba II, 19 Si II, 3 Fe IL, 2 Ni
II, 22 Ne II, 12 B III, 23 Al III, 10 Sc III, 27 Be III, 5 Ne IIL, 32 Y III, 20 In III, 2
TIIII, 2 Ne IV, 10 Ti IV, 39 SiIV, 90 CIV, 5 O IV, 114 P IV, 2 Pb IV, 19 O V,
30NV,25CV,51PV,34SV,26VV,300 VI 21S VI, 2F VI, 14 O VII 10
F VII, 10 Cl VII, 20 Ne VIII, 4 K VIII, 9 Ar VIII, 6 Kr VIII, 4 Ca IX, 30 K IX, 8
Na IX, 57 Na X, 48 Ca X, 4 Sc X, 7 Al XT, 4 Si XI, 18 Mg XI, 4 Ti XI, 10 Sc XI, 9
Si XII, 27 Ti XII, 61 Si XIII and 33 V XIII multiplets become available, while the
data for particular lines of F I, B II, C III, N IV, Ar II, Ga II, Ga IIL, C1I, Br L, 1
I, Cul, Hg I, N III, F V and S IV also exist (references of corresponding articles
may be found in Dimitrijevié¢, 1996; 2001b)

Our semiclassical Stark broadening parameters, were used for different astro-
physical problems (see the corresponding references in Dimitrijevic, 2001b). Since
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the helium has the largest cosmical abundance after hydrogen, it is naturally that
our He Stark broadening data have been often used for different investigations in
astrophysics. They have been used for the considerations of following astrophysical
problems: non LTE model analysis of the interacting binary 8 Lyrrae; variability
investigations of Balmer lines in Ap stars; investigations of peculiar helium - strong
stars § Orionis C and HD 58260, the chemical composition of the northern double
cluster h and y Persei and the loose association Cepheus OBIII; the role of blending
in the He singlet lines formation in Bp star atmospheres; the critical analysis of
the ultraviolet temperature scale and the effective temperature calibration of white
dwarfs; the investigation of extreme helium star BD-90-4395; the ionization and
excitation in cool giant stars; the constitution of the atmospheric layers and the
extreme ultraviolet-spectrum of hot hydrogen rich white dwarfs; spectral properties
of hot hydrogen rich white dwarfs with stratified H/He model; radiative accelera-
tions on iron; radiative acceleration of helium in the atmospheres of sdOB stars;
research of stars with peculiar helium and noble gases abundances; a spectroscopic
analysis of DAQ and hot DA white dwarfs. They entered in a spectrum synthesis
program for binary stars (Linnell and Hubeny, 1994) and have been used for atmo-
sphere research, helium surface mapping and spectrum variability considerations of
ET Andromedae, for the investigation of the He I A 10830 A formation mechanism
in classical cepheides, for the consideration of hot white dwarfs in the Extreme-
Ultraviolet Explorer survey, for the search for forced oscillations in the eclipsing
and spectroscopic binary V436 Persei-1 Persei, for investigations of helium abun-
dance in He rich stars and white dwarfs; for a study of the effect of diffusion and
mass-loss on the helium abundance in hot white dwarfs and subdwarfs, for the spec-
tral analysis of the low gravity extreme helium stars LSS 4357, LS 1143305 and
LSS 99 and the field horizontal - branch B-type star Feige 86, for comparison with
theoretical results obtained within the Stark broadening theory of solar Rydberg
lines in the far infrared spectrum, for a discussion of He I 2P-nD line formation
in A Eridani, for a study of the atmospheric variations of the peculiar B(e) star
HD 45677 (FS Canis Majoris), for a new method for fitting observations with syn-
thetic spectra, for the consideration of the abundance of Hes isotope in HgMn star
atmospheres, and investigation of the helium stratification in the atmospheres of
magnetic helium peculiar stars.

Our semiclassical Stark broadening results which have the highest impact in
astrophysics, concern ionized silicon spectral lines. Results of our semiclassical
investigations (Lanz et al, 1988) have been used (see references in Dimitrijevi¢,
2001a) for silicon abundance analyses with co-added DAQO spectrograms, of the
HgMn stars ¢ Herculis, 28 Herculis, HR 7664, v Cancri, ¢ Coronae Borealis, HR
8349, m Bootis, v Herculis, HR 7361, HR 4072, HR 7775, B stars 7 Ceti, 134
Tauri, 21 Aquilae, v Capricorni, 7 Pegasi, ¢ Herculis, ¢ Draconis, n Lyrae, 8 Cygni,
22 Cygni, B and A stars v Geminorum, 7 Sextantis, HR 4817, HR 5780, HD
60825, Merak, © Draconis, x Cephei, early A type stars 68 Tauri, 21 Lyncis, «
Draconis, 2 Lyncis, w Ursae Majoris, ¢ Aquilae, 29 Vulpeculae, o Aquarii normal
F main sequence stars § Cygni, ¢+ Piscium, o Bootis, the metallic lined stars 15
Vulpeculae, 32 Aquarii, HR 4072B, 60 Leonis, 6 Lyrrae, silicon abundance analyses
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with Complejo Astronomico el Leoncito REOSC echelle spectrograms of x Cancri,
HR 7245, ksi Octantis, HR 4487, 14 Hydrae, 3 Centauri A, silicon abundance studies
of CP stars HD 43819, HD 147550, x Lupi, 21 Canum Venaticorum, HD 133029, HD
192913, silicon abundance determination for v Geminorum, HR 1397, HR 2154, HR
60825 and 7 Sextantis. Our data have also been used for a discussion on the future
of stellar spectroscopy, investigation of blue stragglers of M 67, determination of the
effective temperature of B-type stars from the Si II lines of the UV multiplet 13.04
at 130.5 - 130.9 nm, analysis of the red spectrum of Ap stars, NLTE Analysis of
subluminous O type hot subdwarf in the binary system HD 128220, a discussion of
the role of spectral line Stark shifts for stellar chemical composition determination
with the method of atmospheric model, a discussion of the nature of the F str A
4077 type stars and have been used for atmosphere research, He surface mapping
and spectrum variability considerations of ET Andromedae.

Semiclassical Stark broadening data on N II, N III and N IV lines obtained
in Dimitrijevi¢ and Konjevit (1981a) have been used for the investigation of the
chemical composition of the young open cluster NGC 6611 (Brown et al, 1986). Our
data for Ga II (Dimitrijevi¢ and Artru, 1986) have been used for galium abundance
analysis of k Cancri (Ryabchikova and Smirnov (1994), normal late B (Smith, 1996)
and HgMn stars (Smith, 1995; 1996) and for a discussion on anomalous gallium line
profiles in HgMn stars as a possible evidence for chemically stratified atmospheres
(Dworetsky et al, 1998). Our semiclassical results for lithium (Dimitrijevi¢ and
Sahal-Bréchot, 1991) have been used for a study of the non-LTE formation of Li I
lines in cool stars (Carlson et al, 1994), Results from Dimitrijevi¢ et al (1991) for
C IV have been used for the consideration of the influence of gravitational settling
and selective radiative forces in PG 1159 stars (Unglaub and Bues, 1996), high
resolution UV spectroscopy of two hot (pre-) white dwarfs (KPD 0005+5106 and
RXJ 2117+3412) with the Hubble Space Telescope (Werner et al, 1996), spectral
energy - distribution and the atmospheric properties of the helium-rich white-dwarf
MCT 0501-2858 (Vennes et al, 1998) and for an investigation of stellar masses,
kinematics, and white dwarf composition for three close DA+dMe binaries (Vennes
et al, 1999). Stark broadening data for N V spectral lines from Dimitrijevi¢ and
Sahal-Bréchot (1992a) have been used for the spectral analysis of the planetary
nebula K 1-27 (Rauch et al, 1994) and data for O VI in Dimitrijevi¢ and Sahal-
Bréchot (1992b) for spectral analysis of the multiple-shell planetary nebula LoTr4
(Rauch et al, 1996) and for very hot hydrogen - deficient central stars of both
nebulae, as well as for the study of the EUV spectrum of the unique bare stellar core
H1504+65 (Werner and Wolf, 1999). Our Stark-broadening parameters of ionized
mercury spectral lines of astrophysical interest (Dimitrijevi¢ 1992), have been used
for determination of Hg abundances in normal late-B and HgMn stars from co-
added TUE spectra (Smith, 1997); our data for Ca II (Dimitrijevi¢ and Sahal-
Bréchot, 1993) for abundance analyses of the double-lined spectroscopic binary o
Andromedae (Ryabchikova et al, 1999), and our data for Mg I (Dimitrijevi¢ and
Sahal-Bréchot, 1996) for a non-LTE analysis of Mg I in the solar atmosphere (Zhao
et al, 1998). :

In a large number of cases, especially for more complex spectra of heavier atoms,
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there is no enough data to apply semiclassical perturbation method in an adequate
way. In order to minimize the needed atomic data and provide to astrophysicists
and physicists an adequate method for Stark broadening data calculations in such
a situation, we have developed the modified semiempirical approach (Dimitrijevi¢
and Konjevié, 1980; 1981b; 1987; Dimitrijevi¢ and Krsljanin, 1986). In fact, if
there are no perturbing levels strongly violating the assumed approximation, for
e.g. the line width calculations, we need only the energy levels with An = 0 and
;5 = £;y £ 1, since all perturbing levels with An # 0, needed for a full semiclasical
investigation, are lumped together and approximately estimated. Here, n is the
principal and / the orbital angular momentum quantum numbers of the optical
electron and with ¢ and f are denoted the initial and final state of the considered
transition. '

Due to the considerably smaller set of needed atomic data in comparison with
the complete semiclassical (Sahal-Bréchot, 1969ab) method, the MSE method is
particularly useful for stellar spectroscopy depending on very extensive list of ele-
ments and line transitions with their atomic and line broadening parameters where
it is not possible to use sophysticated theoretical approaches in all cases of interest.

The MSE method is also very useful whenever line broadening data for a large
number of lines are required, and the high precision of every particular result is not
so important like e.g. for opacity calculations or plasma modeling. Moreover, in
the case of more complex atoms or multiply charged ions the lack of the accurate
atomic data needed for more sophysticated calculations, makes that the reliability
of the semiclassical results decreases. In such cases the MSE method might be very
interesting as well.

In order to complete as much as possible the needed Stark broadening data, Bel-
grade group (Milan S. Dimitrijevié¢, Luka C. Popovié¢, Vladimir Kr§ljanin, Dragana
Tankosi¢, Nenad Milovanovié¢) used the modified semiempirical method to obtain
the Stark width and in some cases shift data for a large number of spectral lines
for the different atom and ion species. Up to now (see references in Dimitrijevic,
2001b) spectral line Stark widths for:

6 FeIl, 4 Pt II, 16 Bi II, 12 Zn II, 8 Cd II, 18 As II, 10 Br II, 18 Sb II, 8 I II,
20XeIl, 138 TiIl, 3 LaIl, 16 Mn II, 14 VII, 6 Eu II, 37 Kr II, 6 Y II, 6 Sc II, 4
Be I11, 4 B III, 13 S III, 8 Au II; 8 Zr II, 53 Ra II, 3 Mn III, 10 Ga III, 8 Ge III,
4 As TII, 3 Se III, 6 Mg III, 6 La III, 5 Sr III, 8 V III, 210 Ti III, 9 C III, 7 N III,
11 O III, 5 F III, 6 Ne III, 8 Na III, 10 Al 111, 5 Si III, 3 P III, 16 Cl I1I, 6 Ar III,
30Zr I, 2B IV, CulV,30 VIV, 14 Ge IV, 7CIV,4 NIV, 401V, 2 NelV, 4
MgIV,7SiIV,3PIV,2SIV,2ClIV,4ArIV,3CV,500V,12F V,9Ne V,
3AIV,6SiV,11 N VI 28 F VI, 8 Ne VI, 7 Na VI, 15 Si VI, 6 P VI, and 1 Cl
VI transitions have been calculated. The shift data for 16 Bi II, 12 Zn II, 8 Cd II,
18 AsII, 10 BrII, 18 Sb I, 8 I 11, 20 Xe II, 5 Ar II, 6 Eu I, 14 V II, 8 Au II, 14
Kr II and 138 Ti II transitions have been calculated. Moreover, 286 Nd IT Stark
widths have been calculated (Popovié¢ et al, 2001) within the symplified modified
semiempirical approach (Dimitrijevié and Konjevi¢, 1987).

Calculations within the our modified semiempirical approach, for comparison
with experimental data or testing of the theory have been performed also by other
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authors (see references in Dimitrijevi¢, 2001b) for Stark widths for 14 A1 T, 46 Al
ILI2AIIIL, 1 CIV, 1INV, 10 VL, 1 Ne VII, 3NIII, 30 IV,3F V, 2 Ne VI,
12CIV,4CI5NI[30OII,4FII,3Nell, 1 NII, 8 SII, 2 Ne VII, 4 N III, 2
FV, 2 Nelll, 2 Ar IIT, 2 Kr ITI, 2 Xe III, 3 Si ITI, 3 Ne III, 2 Ar III, 2 Kr III, 2
Xe III transitions. Moreover, Stark widths and shifts for 2 Cl IT and 6 Ar III lines
have been calculated.

The modified semiempirical method and Stark broadening parameters calcu-
lated within this approach have been applied in astrophysics e.g. for the determi-
nation of carbon, nitrogen and oxygen abundances in early B-type stars (Gies and
Lambert, 1992) magnesium, aluminium and silicon abundances in normal late-B
and HgMn stars, from co-added IUE spectra (Smith, 1993) and elemental abun-
dances in hot white dwarfs (Chayer et al, 1995a), investigations of abundance anom-
alies in stars (Michaud and Richer, 1992), elemental abundance analyses with DAO
spectrograms for 15 - Vulpeculae and 32 - Aquarii (Bolcal et al, 1992), radiative
acceleration calculation in stellar envelopes (Le Blanc and Michaud, 1995; Gon-
zales et al, 1995ab; Alecian et al, 1993; Seaton, 1997), consideration of radiative
levitation in hot white dwarfs (Chayer et al, 1995ab), quantitative spectroscopy of
hot stars (Kudritzki and Hummer, 1990), non - LTE calculations of silicon - line
strengths in B - type stars (Lennon et al, 1986), stellar opacities calculations and
study (Iglesias et al, 1990; Iglesias and Rogers, 1992; Rogers and Iglesias, 1992;
1995; 1999; Seaton, 1993; Mostovych et al, 1995), atmospheres and winds of hot
stars investigations (Butler, 1995), investigation of Ga II lines in the spectrum of
Ap stars (Lanz et al, 1993). Stark broadening data calculated within the modi-
fied semiempirical method entered in a critical overview of atomic data for stellar
abundance analysis (Lanz et Artru, 1988), and a catalogue of atomic data for low-
density astrophysical plasma (Golovatyj et al, 1997). The modified semiempirical
method entered also in computer codes, as e. g. OPAL opacity code (Rogers and
Iglesias, 1995), handbooks (Peach, 1996; Vogt, 1996) and monographs (Gray, 1992;
Griem, 1997; Konjevié, 1999).

Our Stark broadening results are of interest not only in astronomy but also for
laboratory, fusion, laser produced and technological plasma diagnostics, analysis
and modeling, for design of existing and development of new lasers, for optimization
of light sources etc, and were also used and cited in such investigations. In order to
make the application and usage of our Stark broadening data obtained within the
semiclassical and modified semiempirical approaches more easier, we are organizing
them now in a database BELDATA.
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Abstract. The possibilities of active control of the beam and plate structure
were investigated in the work. The bases for the investigation of the structures'
behavior under excitation by disturbances were the state space models obtained
through the finite element analysis procedure. The aim of control was to reduce
the vibrations of the mechanical structures caused by exciting forces with
frequencies corresponding to eigenmodes of the plate. Different types of
controllers were designed and through the verification of designed control laws
performed by computer simulations, optimal tracking system based on LQ
controller was adopted as the most acceptable solution. Designed controller
successfully faced the disturbance and performed good behavior in the sense of
oscillation magnitude reduction and stability margins.

Key words: clamped beam, plate structure, active vibration control, digital
tracking system based on optimal LQ regulator.

1. Introduction

The paper treats the problem of an active control of considered mechanical structures in
order to provide vibration reduction. Specific models regarding beam and plate
structures were considered and vibration control based on optimal LQ tracking system
was applied to these particular cases. Considered mechanical structures were supposed to
be acted upon by exciting periodic sine-type forces with frequencies corresponding to
the eigenfrequencies of mechanical structures which represent critical cases because of
the possibility of resonance and system destruction. Complete control design procedure
was performed in the case of beam and plate structure and designed control laws were
verified by simulations. Piezoelectric patches were used as sensors and actuators.

2. Control of the Clamped Beam

This part of the work concerns control design problem for the model of the beam
clamped at one end. The basis for the investigation of the beam behavior under
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excitation by disturbances is the state-space model obtained through the finite element
analysis procedure ([1], [2], [3], [4]). Proposed controller fulfills the conditions of
acceptable stability margins and provides desired magnitudes and frequencies of the
beam end oscillations as an alternative to complete vibration damping which is not
possible due to the system uncontrollability.

2.1 Plant Description and the State-Space Model. The plant considered is a clamped
beam treated as active plate structure controlled by four piezoelectric patch actuators
attached to the beam, two on the top and two on the bottom of the plate. Geometry of the
plant as well as the plate, actuator and sensor properties are listed in Fig.1. At first step
the plant was represented in the form of a finite element model with a mesh of 235
passive and 80 active Semiloof shell elements ([1], [2], [4]). On the basis of this mesh
the eigenfrequencies and eigenmodes were calculated. Considered frequencies which are
of interest for bending mode study cases are f;=17.2Hz, f,=108.6Hz, f,;=302.9Hz and
f=606.1Hz. Exciting forces F(f)=Asin(wt) exerted at the corner points of the beam end
were chosen according to the eigenfrequencies of interest.

235 passive Semiloof shell elements
4% AEtEioTe 80 active Semiloof shell elements

== Sensor

10 %0 \‘Q{%?:E?i:\,‘\jmf F(t)
\\\\\ \.@3%‘1:;;?;: ~

\\\\\\ \“:\—-s.’ 3/7\
Material: =
Beam: Actuator/sensor:

_ -7
E = 2.00-10° N/mm? Biy = B3 7710 Wi Y =21 00 mmV
v=03 G, = 1.3-10* N/mm? K33 = 3.36-10 .F/m
0 = 7.86-107 Ns¥/mm* v =038 t = 0.4 mm (thickness)
t = 2.0 mm (thickness) p=78510" Ns*/mm*
Fig. 1

Plate model was modally reduced and transformed into the state-space model
using the finite element software [1]. Via data exchange interface the model was
exported into Matlab/Simulink as a software environment for controller design and
testing. The controller design investigation starts with the continuous state-space model:
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X=Ax+Bu+Ed

y=Cx+Du+Fd )
with appropriate state-space matrices:
[0 0 0 0 0.0000001 0 0 0 ]
0 0 0 0 0 -0.046581 0 0
0 0 0 0 0 0 0.00000010 0
A=107 - 0 0 0 0 0 0 0 0.00000010
-0.001171 0 0 0 -0.000002 0 0 0
0 -0.04658 0 0 0 -0.000002 0 0
0 0 -0.362499 0 0 0 - 0.00000080 0
0 0 0 -1.450350 0 0 0 0.00000122 |
0 0 0 0 T K 0 ]
0 0 0 0 0 0
0 0 0 0 0 0
B=10° ° 0 0 0 . E=105 " 0 !
-0.00608366 0.00608367 -0.00366187  0.00366187 | 0.18138856 0.18138856
-0.13753931 0.13753931  0.13713482 -0.13713482 -1.11557656 -1.11557656
-0.34219542  0.34219542 121732159 -1.21732161 3.23297778  3.23297781
|-1.08861338 1.08861361  0.10482408 -0.10482390 | 6.25304539  6.25313464|

C =[1.54877435 —0.23953924 0.0893192 0.04332433 0 0 0 0] D=[0 0 0 0] F=[0 0]

2.2. Disturbance Impact Reduction using Optimal Digital LQO Tracking System. For
the purpose of vibration reduction digital tracking system with additional dynamics
based on optimal LQ regulator ([S], [6], [7], [8]) was designed. Additional dynamics is
introduced in order either to track specified reference input or to reject disturbances. In
this case both applications were used.

First the controller which reduces the magnitude of beam end oscillations was
designed using additional dynamics. Additional dynamics is ‘determined in the state-
space form on the basis of disturbance and/or reference input poles. In this case
disturbance (excitation force) is sine function and thus the s-plane poles of disturbance
are complex conjugate numbers A;,=%jw;, where @=27f; and f; (i=1, 2, 4, 6) are
eigenfrequencies for bending modes. On the basis of z-plane pole locations obtained by
mapping, polynomial 8(z) was obtained in the form:

LT def
8= - = " +82° " +..+3;. )
i

Here s=2 since there are two disturbance poles. Matrices of additional dynamics @, and
', are determined on the basis of the coefficients of the polynomial 8(z):
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(-8 1 0 - 0] [ -8 ]
-8 01 - 0 -5,
o, =| I i, Tys| o (3)
-8,, 0 0 - 1 =
| -8 0 0 - 0] -8

Discrete-time design model (®,, T;) is formed as a cascade combination of additional
dynamics (®,, T,) and discrete-time plant model (@, T') obtained for specified sampling
time T:

xd[k+1] = @dxd[k] + Td u[k] (4)

where
= x[k] O = 0] 0 L= T 5
xqlk] = k| d_l“aC o, =gl )

Feedback gain matrix L of the optimal LQ regulator is calculated on the basis of design
model (4) in such a way that the feedback law u[k]=—Lx,[k] minimizes the performance
index:

/ :% 3 (e 007 Qx4 ]+ utk " Ruti)) ©)
k=0

subject to the constraint equation (4) where Q and R are symmetric, positive-definite
matrices. Feedback gain matrix L is afterwards partitioned into submatrices L, and L,
corresponding to the plant and additional dynamics, respectively. Partitioned feedback
gain matrix is implemented in the control system as shown in Fig.2.

"""""""" Digital racking system | Ld(r)
Xx=Ax+Bu+Ed | Ym -_)’
y=Cx+Du+Fd ),_

z (q)ay ra, L'l)

Fig. 2

Additional dynamics for the sine disturbance input is of the second order and
thus the order of design model is 10. Adopted sampling time is T=0.0001s. Through
several simulation steps, matrices Q@ and R in the performance index (6) for LQ
regulator design were adopted to provide the response with acceptable trade-off between
vibration magnitude and control effort.

Q=diag(1000, ... 1000)g40, R=I (I unity matrix 4x4) (7)
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Fig. 4

Simulations were performed for sine disturbances, magnitude 0.01 and different
frequencies corresponding to eigenfrequencies: fi, fo, fa and fs. Obtained simulation
results are shown in Fig. 3. Diagrams on the left-hand side represent the response i.e.
displacement of the beam end in case when the controller is on from the very beginning
of the simulation; right hand-side diagrams represent the response when the controller is
switched on 0.5s after the beginning of simulation. The time axis is set in seconds.

Simulation results show great improvement in comparison with the response
without controller. The results are acceptable from the control point of view, since the
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maximum voltage (for : fi=17.2Hz) is less than 25V. Stability margins were also
calculated and they are: upper gain margin for inputs u; and wuy: 3.46dB, upper gain
margin for u3 and uy: 3.08dB, lower gain margin for all inputs: —30.1dB and phase
margin: 128°.

Another step forward in controller design was done by providing not only
reduction of the vibration magnitude, but also the reduction of the frequency. Namely,
optimal LQ tracking system provides tracking of specified reference input which was
also introduced in this step. On the other hand additional dynamics was determined for
disturbance as well for reference input 0.01sin(2nfif) modeling. Thus, design model of
the 14" order was obtained and through the simulation process, weighting matrices for
optimal LQ regulator design were adopted to be: Q=diag(1000, ... 1000);44, R=
diag(100, ... 100)4xq.

Simulation results in Fig. 4 show that for disturbance frequencies f,=108.6Hz
and f;=302.9Hz, controller provided oscillations of the beam end with less magnitudes
and frequencies than without controller, while for disturbance frequency f;=606.1Hz
only the frequency was reduced. Left-hand side diagrams represent displacement with
controller switched after 0.5s after the beginning of simulation and right-hand side
diagrams represent control voltage signal. The time axis is set in seconds.

3. Control of the plate structure

The possibility of active control of the plate structure was investigated in this
part of the work. As a result of a finite element analysis procedure the MIMO state space
model of the plate structure was obtained [1] as a base for the controller design.
Proposed controller was obtained using the procedure for optimal tracking system design
and the control law was verified using Matlab/Simulink simulations. Designed controller
performs very good behavior in the sense of oscillation magnitude reduction and stability
margins.

3.1 Plant Description and the State-Space Model. Active plate structure considered in
this work was represented in the form of a finite element model with a mesh of 892
normal Semiloof shell elements and 8 active Semiloof shell elements [1]. The plant is
controlled by four actuators placed on the top of the plate, while displacement is detected
by four sensors placed on the bottom of the plate. The system is excited by disturbance
force  F(f)=Asin(wg) with different frequencies @=2mf; corresponding (o
eigenfrequencies f; (i=1,...,5) of the plate. These eigenfrequencies correspond to bending
modes of the plate. It should be noted that f; 4 is double eigenfrequency. Geometry of the
plant as well as the plate, actuator and sensor properties are listed in Fig. 5.

Plate model was modally reduced and transformed into the state-space model
(1) using the finite element software [1]. Via data exchange interface the model was
exported into Matlab/Simulink as a software environment for controller design and
testing. Appropriate state-space matrices of the MIMO model (1) are listed below. '
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actuator/sensor

Material:
Plate: Actuator/sensor:
< _ ] _7
E = 2.06-10° N/mm’ Ey = Ep=3.77-10'N/mm? a1 =2.1107 mm/V
v=03 Gpp= 1.3-10* N/mm> K33 =3.36-10 " F/m
p=7.86-10” Ns%mm'* V=038 =04 mm (thickness)
t=0.9 mm (thickness) Cop= 7.85-10”° Ns*mm*
Fig. 5
r o 0 0 0 0.000100 0 0 0 ]
0 0 0 0 0 0.000100 0 0
0 0 0 0 0 0 0.000100 0
" 0 0 0 0 0 0 0 0.000100
B —1.099966 0 0 0 ~0.000159 0 0 0
0 —2.645441 0 0 0 —0.000553 0 0
0 0 ~ 6.642902 0 0 0 ~0.000515 0
! 0 0 ~9.72129031 0 0 0 ~0.000131 |
—0.2_21510 0.173010 0.100141 -0.097934 0 0O O O 00 00 0
—0.268108 0.178599 —0.091541 0.075256 0 0 O O D= 00 00 F= 0
-0256084 -0.140939  0.115913  0.078263 0 0 0 0 oo o0 ol "o
—0.268928 —0.178315 -—0.092725 -0.074636 0 0O O O 00 00 0
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= - - -

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
B=10%] ° 0 0 0 E=10%. 0
—0.102529 —0.115996 —0.112300 —0.099174 -0.234125
0.383279 0362693 —0.350380 —0.370527 —0.446124
0715363 —0.789294  0.770933 —0.709136 0.706964
| -1.286293  1.198274  1.158158 —1.241578] | 1.017061 |

3.2 Controller Design Results. Continuous-time state space model was converted to
discrete-time state space model using zero-order-hold mapping method with sampling
interval T=0.0001s.

For each disturbance corresponding to different eigenfrequencies, optimal LQ
tracking system was designed.

Additional dynamics was determined in the form of matrices @,, I', (3) on the
basis of the coefficients of the polynomial 8(z), equation (2), obtained according to
conjugate complex poles ja of disturbance. Since the plant is a multiple output system,
additional dynamics has to be replicated into four parallel systems (one per each output)
described by the state space matrices:

def def
@ = diag(®,.®,,0,,®,) T =diag(T,.T,.T,.T,). (8)

Discrete-time design model (®,, T'y) is formed as a cascade combination of additional
dynamics (@D,I") and discrete-time plant model (@, I') obtained for specified sampling

time T:
X [k+1] = Dyx k] + Tyulk] )

o = o 0 F_F | x[k] 10)
|Tc ) Tlo) T e (

Feedback gain matrix L of the optimal LQ regulator was obtained for design model and
partitioned into submatrices L; and L, corresponding to the plant and additional
dynamics, respectively [5], [6], [7], [8]. Partitioned feedback gain matrix was
implemented in control system similar to the one shown in Fig. 2, only instead of
matrices @, and T, matrices® and r respectively exist in the controller block of
digital tracking system.

Simulation results obtained for each disturbance force corresponding (o
different bending-mode eigenfrequencies are presented in Fig. 6. Simulation diagrams
represent four system outputs, i.e. sensor responses for disturbance F(f)=Asin(27fi),
A=0.01 when the controller is switched on after 0.5s. Insight in simulation diagrams of
input control signals shows that the control can be achieved with relatively small control
effort which corresponds to small voltage signals.

where
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Robustness of designed controller in terms of stability margins (upper gain margin UGM
[dB], lower gain margin LGM [dB] and phase margin PM [°]) is given in Table 1. It
shows good stability margins while the plate oscillation magnitudes were drastically
reduced as a result of controller application.

Table 1
h /2 fra fs
UGM LGM PM UGM LGM PM UGM LGM PM UGM LGM PM
i 24 46 | -30.1 88 2423 | -30.1 86 2445 | -30.1 91 2421 | -30.1 88
Uz 2454 | -30.1 88 2456 | -30.1 86 24.69 | -30.1 91 24.54 | -30.1 88
Uz 24.83 | -30.1 88 24.85 | -30.1 87 2499 | -30.1 91 2483 | -30.1 88
Uy 24.46 | -30.1 88 2448 | -30.1 86 2472 | -30.1 91 2446 | -30.1 88
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ON NONCONSISTENT INVARIANCE
IN ANALYTICAL MECHANICS

Veljko A. Vujicié

ABSTRACT. Fundamental thesis is proved in the paper that the principle
of invariance is not applied in classical analytical mechanics consequently
enough. Author of this reviewing article raises the invariance to the level of
a preprinciple [12] and asics for its consequent application in all relations
of analytical mechanics. This leads to significant modifications of basic
relations, as well as in integral calculus. Important problems, which were
treated in autor’s papers and monographs, are pointed aut briefly.

Introduction

The term indicated in the title of this review paper invariance means that the
motion nor properties of the body motion depend upon the form of statement: the
determined truth about motion, once it is written in some linguistic form, is equally
contained in the written output of some other form or some other alphabet.

This preprinciple of invariance or independence of formalities allows for mass,
as well as time, to be denoted by some other letters, let’s say 7 and ¢, which do
not change the nature of numbers m and ¢, and for which there must be m = m
and ¢ = t in the whole correspondence, [12]. The same stands for distance Ar.
No matter where the origin of coordinates from which the position vector begins
is chosen, let’s say p, there is an equality Ar = Ap, so that distance Ar does not
depend on the form of writing. This is even more expressed in the coordinate form,
in which the choice of forms is considerably larger, such as

2
3

Ar = Z (Ari) e; = Arle; = Ayle; = Azla; = Aplg; = -
=1
As such, all the three realities m € R, t € R and Ar € R3 are invariants, m
and t being scalar ones, while Ar is a vector invariant.

Key words and phrases. Invariance, preprinciple, principle, covariant equations, invariant
tensorial integral, invariant criterion of stability.
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All other factors of the body motion can also be invariantly expressed in various
coordinate systems.

Coordinate Systems

The concept of coordinate system here implies an ordered set of real numbers
and a set of mutually independent vectors that are called coordinate vectors. The
coordinate vectors differ from the base ones only in the sense that the base ones
are previously determined with respect to objects, while the coordinate ones are
determined with respect to the base ones. If the coordinate ones are original, then
they are base coordinate vectors. On the basis of the base vectors

(1) e; = const.

it is possible to introduce other coordinate systems z = (z',22,2%), (z' € R) in
which the material point’s position is explicitly mapped while the velocity has a
general invariant form.

Any other rectilinear coordinate system can be chosen as well, let’s say (z, 3),
whose directions change in time with respect to base system (y,e). The two sys-
tems’ ratio is determined by the relations:

. : Oz ; :
— — oo oY ,\_1:,/3 _ 58
7t =525, ei_—fyi 95 = V; Tz, Va'ls =02;

The velocity vector can be represented by the equation:

d .. y p it
v=— (v'e:) = y'ei = (742° + v5,2%) 7 9p =
= <")/;§iﬁza + 5£i°‘> o5 = (2% +wiPz*) a5 = vPag
where w28 = 477 = -8, = ——q}lﬁf are anti-symmetrical coefficients and * de-

notes the empty place of an index. The projections of velocity vector y; upon the
axes of base vectors e;, as scalar products of vector v; and base vectors e;, are equal
to the velocity vector coordinates y':

Ui = 6597,

while v; projections upon the axes of the coordinate vectors g; are linear homoge-
neous forms of the velocity vector coordinates:

. DrJ
(2) Vi = g-ijUJ = gijﬁ = gijmj

where g;;(z) is metric tensor.
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The velocity square, as a scalar invariant, can now be written in the following
form:

- Drt Dyl

(3) = 5ijyiy] = Qz’jiiij = gijﬁ—dT.

The previous relations can be related to the base vectors’ covariant derivatives
with respect to the coordinates

8 .
@) Vig; = 2%

- }k(I)Qi(m) =0

which are very important for describing the base vectors and their changes in time.
Just as relations

oyt or

e

ozt F T ort

(5) gi = =gl3),

establish the ratio between base vectors e and the subsequently introduced coordi-
nate g, so the covariant derivative V;g; stands in a direct relation with conditions

dei

el

(6)
The derivatives of relations (5) with respect to time, due to condition (6) are:

dgi B 52yk ]
dt ~ daigzi M

It is always possible to introduce such functions I'(z) so that it is

Py Oyt
Ozi dzt 2 gz
thus, it is obtained
dgi A d&?j _ Dgi

(7) == ngii:j =0

at g T T
These are the conditions which show that coordinate vectors g; are covariantly
constant.

This clearly shows that the velocity vector coordinates are varied regarding
various coordinate vectors. Due to the preprinciple of invariance as well as the
casual definiteness of the statement about “natural derivative” from the definition
of velocity, it is natural that the chosen coordinate vectors should be the ones that
can be related to some base vectors (1), invariable in time.

Once base vectors e; are chosen, other oriented coordinate vectors g; can be
chosen, including curvilinear ones, for which the natural derivatives (7) will be
valid.
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Motion impulse

In accordance with the velocity definition and the above-given definition, the
motion impulse can be written in the following way:

. i .
p=mv=my'e = md—zai =muv'lg; =
(8) - !
Dr?
=m——g;=m
at J

&t =mzig;.

Ozt

Further on, special emphasis will be put on p; projections of this vector upon
coordinate directions g;:

9) pi =p-gi = mgyd’ = ayd’,
where

or Or
(10) Qij =MGij = M5« =7 = 0ji (m, )

is inertia tensor.
It should be noted that inertia tensor a;;(m,z) differs from the metric tensor
gij(z). The basic physical dimensions of the impulse vector are:

dimp =MLT™!

but its coordinates and projections can also have other dimensions:

If = coordinate is an angle, then it is:

dimp; = ML*T7 .

Inertia tensor a;; sets up a relation between impulse and velocity at any posi-
tion. Its essential content is mass which exists for every body or material point as
well as in all coordinate systems.

System of Material Points and Finite Constraints. All the relations
derived only for one material point of mass m, stand for every v-th material point
of mass m,. Such a system of N material points will have N vector equations of
the form

dv
(11) m—y = F+ R.
and k constraints equations. Nothing more important than this changes. However,
the manner of solving problems concerned with the system motion comprises some
difficulties and innovations originating from the limitations of the applied math-
ematical apparatus as well as from mutual constraint of the material points that
generate forces of a complex mathematical structure.



VELJKO A. VUJICIC 141

The simplest and thus, the most widely used, way of describing is the one with
respect to base coordinate system (y, e).

It is assumed that there are N material points of mass m, (v = 1,...,N)
whose position vectors 7, = yle; (i = 1,2,3) and that they are connected by &
finite constraints

(12) Fu@l, w2, 03) = fulyts -, v*Y) =0,

where the following notations are introduced

(13) v =y 72y =y s =y
(14) Mm3y—2 = M3y—1 = M3y

The constraints (12) must satisfy the velocities conditions

(15) f‘,:%y“:& (a=1,...,kk+1,...,3N),

as well as the acceleration conditions

82f/»l s _%na

- ayﬁﬂyay 4 Byay =0

(16) fu
These constraints are considered independent so that the determinant of the

d
matrix <a—f%> of the level k, is different from zero: The holonomic constraints
Y

equations can be written in the parametric form:
(17) TU:TV(qO7q17"'vqn)>n:‘BN_ky

where ¢ = (¢',...,q") are independent generalized coordinates, while ¢° is a rheo-
nomic coordinate satisfying equation

(18) §* —lt] = 0.

The velocities of v-th material points, can be written in the following form:

ar or ar or
19 L - S
\19) Y 6q0q Bqlq

s

8q"q T 9¢e .

ar ; - .
where —g(q) are coordinate vectors that will be marked by two-indices notation

dq
Gue; index v denotes the number of the material point, while index o denotes the
number of independent coordinate ¢® (a = 0,1,...,n).
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For addition with respect to index v, we use addition sign >, while for addition

with respect to the indices, coordinate o denotes iteration of tﬁe same letter in the
same expression, as well as both the lower and the upper indices. Vector (19),
as can be seen, has n + 1 independent elementary vectors. Accordingly, impulse
vector (10) of the v-th material point of mass m, of the observed system can also
be represented by the formula

st o
(20) Dy = MyVy = maqaq .
T : or, . o
Scalar multiplication by coordinate vectors W gives vector p, projection upon

the tangential direction of ¢? coordinate of the v-th material point. We will denote
it by a two-indices letter:

—m or, Ory
Dvp = anc’ ang .

Regarding the fact that p,3 impulses are scalars, it is possible to sum them up:

N N or, Or
21 P = Dup =) Mupa 554" =0as("
(21) P Vle 3 Muga Gl 0asds

v=1

from which it can be seen that anp is an inertia tensor of the whole system:

N
or, Or
(22) Gap = vagq—f; : a—qu? = Gop (M1, . oo, M3 @00 -1 ") -
v=l

If the masses are constant quantities, this tensor is written as a function of
independent coordinates:

(23) tag = 8ge (00, @ 07 -

By means of important relations (21) the concept of generalized impulses of the
material points’ system is introduced. Therefore, the sum of the material points’
impulse vector projections upon the coordinate direction of the B-th generalized coor-
dinate is considered as the generalized impulse pg. The generalized impulses appear
as linear homogeneous forms of the generalized velocities, which is in accordance
with the basic definition of impulse (8). Regarding the fact that the inertia tensor
anp determinant is different from zero, it is possible to determine the general-
ized velocities ¢* as linear homogeneous combinations of the generalized impulses,
namely:

(24) ¢* = a*’pg,



VELJKO A. VUJICIC 143

af

If the constraints do not explicitly depend upon the known functions of time
7, there is no rheonomic coordinate ¢°, so that in all the expressions, from (17),
coordinates ¢°,¢° and po vanish. The impulse form (21) does not change, expect
for the fact that indices @ = 0,1,...,n do not assume values from 0 to n, but from
1 to n. In order to facilitate this distinction further on, let Greek indices a, 3,7, ¢
assume values from 0 to n,(c, 3,7,8 = 0,1,...,n), while the Latin ones take 1, j, k,
from 1ton (4,j,k,1=1,2,...,n). Then it can be written [44]:

where a®Y is countervariant inertia tensor.

pi = a0:id” + ai;d’

Tapt Tagt  PTowd e |
qz — azOpO + az]qu'O — aOOpO +a0_7pj‘
Covariant Differential Equations of the System’s Motion
If equations of motion

_ dv,
(25) =F,
\ 3) m dt

ar . .
are successively multiplied scalarly by coordinate vectors 5—2 respective to index
q
v and if they are added with respect to index v, the system of n + 1 covariant
equations of the motion, [4], [5], [12],

Dg”
(26) aaﬁ—ft—:cga, (@=0,1,...,n)
or
Dg? .
aig dt :Qi (z:l,‘..,n)
D¢’

dog—~ = Qo + Ro =: Qo
Analysis and Solutions of Relation of Motion

The integration of differential equations or of a system of differential equations
of motion and of analyses of the solutions obtained for known parameters at some
morment of time represents the knowledge about mechanical objects’ motion. Very
few real motions of the body and, especially, systems of bodies, can be described
by finite general analytical solutions of differential equations. Many system mod-
els described in the related textbooks do not reflect faithfully the real motion of
objects. Still, with great accuracy and with a fairly proper estimate of the error
size, mechanics successfully solves problems of all mechanical motions accessible
to human eye or even more than that. Many books have been written about it;
besides, solutions of new problems are daily published. Still, only a few statements
are considered here, namely, those based upon the preprinciple of invariance [12].
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Integrals of Material Point’s Motion Impulse
For the material point of constant mass and the condition
(27) F+R=0

it is obtained from equation (25) that the motion impulse vector is constant, that
is,

(28) p =muv(t) = ¢ = const = mv(ty) = Po.

At first sight, it seems to be the simplest first vector integral by which the
problem of determining motion is solved:

(29) r(t) = v(to)t + r(to). -

However, a view of relations (8) and (9), and especially of (21), as well as dis-
agreement about the impulse coordinates, both require that this essential meaning
should be much more clarified. Integral (28) satisfies and best explains the preprin-
ciple of casual definiteness. With as much accuracy as mass and velocity are known
at some moment to, motion impulse p(t) can be determined under condition (27)
at any other moment. i

The preprinciple of invariance must be satisfied so that integral (28)—essential
impulse p(t)—could be sustained in this theory. If vector (28) is resolved in coor-
dinate system (y,e), as in (8), that is

p=mv = myiei =cle; = myéei
and if it is scalarly multiplied by vector ej, it is obtained that
(30) p;(t) = my; = my;(to) = p;(to)-

Allowing for parallel displacement of base vectors e;, and thus of coordinate
vectors g = dy'/0z e; for free displacement of the point, vector (8), that is,

(31) p=mi*gi(z) = ma¥ (to)gx (z0)

can be scalarly multiplied by vector g(z). That is how projections of integral (28)
upon coordinate directions g;(z) are obtained in the form

(32) oi(Z, ) = g (I)Li:k = ay (a:o,a:):bk(to) = agaftpp = a.ILpL,

where capital letters in the index denote respective value at the initial moment of
time, while the tensor

B oy oy - . ]
(33) ag; =m (61‘.*')0 5l = MIKL= mgk (zo) - gi(T)
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represents a bipoint inertia tensor. In the referential literature, tensor gx; can be
found as “the tensor of parallel displacement”.

In order to satisfy the preprinciple of invariance, integrals (30) and (32) should
be directly obtained from the coordinate forms of motion equations

(34) mijy=Y; + R,
and

B Dt
(35) i~ = X+ Rj,

According to the preprinciple of invariance, this relation should also be valid with
respect to the curvilinear coordinate system. This is confirmed by integrating the
equations (35) for X; + R; = 0. The covariant integral [1], [2] is

(36) /%‘D”i :/D(aijvj) = aijv’ — Ai =0,

where A; is covariantly constant covector A; = gXpk(to). Accordingly, integral
(36) is integral (32)

JK

(37) pi(t) = ad? = aiyi’ = aigja’®pr = g¥pr (to),

Without pointing to the possibility of parallel displacement of covector g,
impulses (33) can be translated from the system of y coordinates into z curvilinear
coordinates. If z coordinates are denoted by indices k,l = 1,2, 3, it will follow

Bz* oz
; = (tg) = t —
pi(t) =prm— 7, = p;(to) = Pk (to) By
L Oy .
Multiplying by matrix e it is obtained that
Oy’ gz* @y
Pj<t)a = px(to) 5 oy7 Bt =Y i (t) = p(t),
since it is )
x_ 9280y
o= Oy Ozt

Though the covariant integrals satisfy the preprinciple,of invariance such inte-
gration is not widely spread in mechanics due to the “difficulties” in determining
tensor gf<. That is why the ordinary first integrals reduced to constants are looked
for, instead of covariantly-constant integrals.

Let the differential equations of motion be written in the extended form:

Dj:j Daijij Dpi dpi k dej
G = = = — e —
AT dt dt  dt TR

(38) = Xi = Ri.
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For the conditions
(39) Xi+ Ri+pel5;27 =0,
that are different from conditions (27) the ordinary first integrals are obtained
(40" p;(t) = const = p;(to)

with respect to coordinate system (z, g). Therefore, it is the same as in the case of
integral (30) in base coordinate system (y,e). These integrals considerably differ
from integral (37) and, therefore, from (30). That is why integrals (30) and (37)
will be called covariant integrals. These ordinary integrals (40) destroy the tensor
nature of the observed objects.

A shorter, clearer, more general and important difference of the first integrals
of the impulses p; = ¢; and the covariant integrals p; = A; shows integration
of differential equations (30) under the condition that the generalized forces are
Q; = 0. Let it be, for the time being, once again motion of one material point in
curvilinear system of coordinates zt, z2, z*, that is,

d 8E, OEy

- =% =0, (i=1,2,3).

tly %os  or

These equations can be written in the form

D 0FE;
(42) dt 01 0
From equations (41) for
OE, _
ozt '

integrals (40) are obtained, while from equations (42) covariant integrals (37) are

obtained, since it is
OFE

B P
Canonical differential equations of motion, as can be seen from
dpi o 0H

=——— 4+ X;, (=12
dt oxt + s 3)

usually produce integral impulses of the type (40) under the condition that the
right sides of these equations are equal to zero.

The distribution of the ordinary integral and of integral (40) is greater com-
paring to covariant integrals (37). The reason for this mostly lies in insufficiently
developed calculation with vectors, that is, tensors. The advantage of ordinary
integration is also reflected in the fact that, at smaller number of integral impulses



VELJKO A. VUJICIC 147

than that of impulse coordinates, constants can be determined depending on the
given initial values of the observed impulse, for example,

pi(t) =c1 =pi(to) and p3(t) = c3 = ps(to);
pa # const.

This advantage becomes prominent with the system of material points with con-
straints, and especially upon manifolds TM. Accuracy of both of them is proved,
though at various conditions. The covariant integration is invariant with respect to
the linear homogeneous transformations of the coordinate systems; thus, it reflects
the tensor nature of the integrals. This is not the case with ordinary integration;
neither is it in accordance with the preprinciple of invariance which points to the
fact that the final results of the synthesis should be verified by comparing them to
the respective results in coordinate systems (y, e).

Dynamics is a science about real equilibrium and motions of material systems.
However, every state of the mechanical system that corresponds to mathematically
strict solutions of both the rest equations and the differential equations of motion
is not being observed in reality. The general principle for choosing solutions that
correspond to stable states in mechanics has not been given; instead, the character
of science about idealized systems has been accepted and for every strict application
to our nature—every time, on principle—solutions of the stability problems were
looked for, [12].

Invariant Criterion of Motion Stability

The concept of the invariant criterion implies general measurement standard
in all the coordinate systems for estimating stability of some undisturbed mechan-
ical system’s motion. As such, it comprises stability of the equilibrium position
and state, stability of stationary motions and, in general, of motion of mechanical
systems whose disturbance equations are of coordinate shape

Do
(43 = Yu(t, 1,
D) dt 7\/) ( 7 6)
and
Dne
dt - wa (t> 777 5)
D¢? ,
(44) —di = a1y,
If for the differentiol equations of disturbance (43) and (44) there is such a pos-
itively definitive function W of disturbance £9. ... €™ and time t that the expression
18

ow ow

(45) W + aaﬁ <\I]a o @) T3 < 0
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smaller or equal to zero, the undisturbed state of the mechanical system’s motion is
stable.

Proof. As can be seen from equation

i 87"
(46) =Y (Fy - q” =T, (&nt),

v=1

functions ¥, for undisturbed motion £* = 0, 7, = 0 are equal to zero, that is,
¥,(0,0,t) = 0.
The function

1
(47) V= ia&ﬁnanﬁ + W(E,t)

is positively definite, since it is

a*?(¢°(t),¢" (8), -, 4" (1))
a positively definite matrix of the functions upon M™L while W (¢, t) is a positively
definite function of disturbance £%. As a scalar invariant, V' is a tensor of zero order.
: . .. dvV o
That is why ordinary derivative ry is equal to the natural derivative
DV ofB Dr)a OW DEx oW

(48) a ¢ Mt 56 ar T o

which necessarily has to be smaller or identical to zero. By substitution of the
natural derivatives from equations (43) and (44) in (48) it is obtained that

DV W | s an
2 2 4 gefy,
i - o T4 Yelst 5 d

3
a*’ng,

and this, along with the criterion requirement, is reduced to

oW
Y, ng < 0.
+a < +8£a>775_0

Therefore, the stability criterion is proved, [12].

If neither forces F* and F from relations (46) nor differences F7 — F), depend of
time ¢ on position 7 and velocity v, function ¥, will also be explicitly independent of
+. Then function W should also be looked for only in its dependence on disturbances
€0, ¢r, .. &n, thatis, W = W(&, ¢, ..., €M), so that expressions (45) and (49) are
reduced to

oW
(50) a®” (\If am> ng < 0.

ow
ot

(49)
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If the mechanical system’s constraints do not depend on time, ¢°,£°, o, o,
vanish, so that expression (45), that is (49), is reduced to

| ow . oW
5 tj e <
(51) 5 +a (\Ia+ ae)m <0,

while expression (50) is reduced to

. i ow
(52) a” (‘I’i+8—§i> n; <0

where ¥; and W do not depend on £° and n°.

All the expressions of the previously given criterion for the equilibrium state
stability appear as consequences of expression (49) if £ and 7 are regarded as dis-
turbances of equilibrium state ¢ and p.

On Integrals of Covariant Equations of Disturbance

Covariant equations of motion

D
ﬂ:Qa

(53) dt

or differential equations of disturbance respective to them (43) in their extended
form and in the general case have a very complex structure what makes their
integration difficult. However, by applying the covariant integration some first
covariantly constant integrals are obtained as a means of assessing the equilibrium
state stakility as well as undisturbed motion. As an addition to this assertion, the
two recognizable and acceptable examples are presented here.

1. Let the generalized forces @, in equations (53) have a function of force
U(q° q*,...,q"). Let’s multiply each equation (53) by respective differential from
equation ¢* = a*Pps and add in the following way,

a*’pgDpe = Qadg™ = -gq—qua.
Since Da®? =0, it is +D (a*#pgps) = dU and 3a* pgp, — U = C = const .

2. Let the right sides of covariant equations (43) be linear forms of distur-
bance from €!,...,€", that is, U; = —g;;(¢*(t),...,¢"™(t))&, where g;; as well as
a(q',...,q") are covariantly constant tensor. For the given disturbances, equa-
tions (43) and (44) can be written in the covariant form:

Dmi ed D¢
@ S

— A
= a“n;.

By mutual complete multiplication and addition with respect to index i, as
in the previous example with respect to a, it follows a¥n;Dn; = —g;;62 DE'. The
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covariant integration gives Sa'n;n; — gi;67€* = A, where A is a constant, DA =
dA = 0. '

Therefore, by covariant or ordinary integration and the solution analysis or
directly by applying criterion (45) or

_6K+ Q+6W
ot e

>qi§0 (i=1,...,n),

the stability of undisturbed motion £ = 0, n = 0 or that of the equilibrium state
of system g = go, p = 0 can be assessed.
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