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PREFACE

The "First International Workshop on Gibbs Derivatives” was held on September
26 - 28, 1989, at Kupari-Dubrovnik, Yugoslavia. The organizing committee for this
workshop consisted of Duro Kurepa, Petar Vasi¢, Mili¢ Stoji¢, Radomir S. Stankovic,
Paul L. Butzer, Franz Pichler, Claudio Moraga and Yasushi Endow. The conference
was attended by 15 mathematicians and engineers from eight countries, namely
Austria, England, F.R. of Germany, Hungary, Japan, USA, USSR and Yugoslavia. It is
most fortunate that the founder of Gibbs differentiation, John Edmund Gibbs, formerly
of the National Physical Laboratory, Teddington, England, managed to be present.

The aim of the Workshop was to review results established in the theory and
application of Gibbs derivatives since the introduction of the concept 22 years ago, to
present new results in this area, as well as to stimulate further research.

This volume, presenting the proceedings of the workshop, includes 14 invited
conference papers, one joint paper submitted at the workshop by two participants,
and three papers submitted subsequently by colleagues who could, unfortunately, not
participate, as well as a report devoted to new and unsolved problems based on a
special problem session and as augmented by later communications. This report was
kindly edited by Claudio Moraga.

The proceedings begin with comments on the literature on Gibbs derivatives
based on a list of papers on the subject, as complete as possible, compiled by J.E.
Gibbs and R.S. Stankovi¢, accompanied by some remarks on the development of the
subject and the major contributors.

The first, introductory paper by Franz Pichler is the author’s view on the history
of signal processing and the role of harmonic, particulary Fourier and Walsh analysis
in this area.

The papers of these proceedings have been grouped into two parts. The first
part contains those contributions that are mainly concerned with "continuous” Gibbs
derivatives, considered in the setting of Walsh analysis or general harmonic analysis;

Vil



the topics are often counterparts or represent extensions of results from classical
analysis. These papers deal, for example, with the connection between Newton-Leibniz
and Gibbs differentiation, with further extensions of dyadic Gibbs differentiation, with
term by term dyadic differentiation of Walsh series, with dyadic martingales, with
Hérmander-type multiplier theorems on locally compact Vilenkin groups, with conver-
gence properties of Walsh-Fourier integral operators. Applications of dyadic Gibbs
differentiation in the theory of dyadic stationary processes and statistics are also
considered.

The second part deals with papers devoted to “discrete” Gibbs derivates, in
particular with their numerical evaluation, with their possible generalizations and
extensions, with applications in image processing, linear system theory, logic design,
and so on.

It will be observed that contributions by a larger part of the world’s major
representatives concerned with Gibbs differentiation will be found in these proceed-
ings. Exceptions include those by further experts from China, Germany, USSR and
Canada such as Wei-xing Cheng, Wei-yi Su, W.Splettstoesser, H.J.Wagner, V.A.
Skorcov, and S.Cohn-Sfetcu. It is also regrettable that the number of papers dealing
with concrete engineering applications of Gibbs derivatives was not greater.

The editors’ warm thanks are due to all of the participants and contributors; they
made the workshop the success it was; to the academic Svetozar Aljancic, the
Chairman of the Scientific Council, and to Dr. Zoran Markovi¢, the Director of the
Institute of Mathematics in Belgrade who made it possible that these proceedings
could appear in the series Special Issues by the Institute of Mathematics.

Paul L. Butzer Radomir S. Stankovic August 1990
Aachen Nis
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OPENING REMARK

Dear participants of the First International Workshop on Gibbs derivatives, at
Kupari-Dubrovnik, YU, 1989:09:26:2-4.

I am honoured and pleased to welcome you in Kupari at the Adriatic coast where
we gathered at this symposium on derivatives.

The fundamental notion of derivatives of a function evolved slowly. The notion is
tied to the geometrical notion of contact (tangent) and to that of instantaneus velocity
(Newton).* Itis instructive to notify that examples of constructions of tangents occured
much prior than the concept of a tangent as a limit (Pascal and particularly Leibniz).
Anyway, f'(t) or Df(t) is a limit. In this respect it is appropriate to quote the following:

“Ultimae rationes illae quibuscum quantitates evanescunt, revera non sunt
rationes quantitatum ultimarum, sed limites ad quos quantitatum sine limite decresen-
tium rationes semper appropinquant, et quas proprius assequi possunt quam pro
data quavis differentia, nonquam vero transgredi, neque prius attingere quam quan-
titates diminuntur in infinitum?”,
or in English:

"Ultimate ratios in which quantities vanish, are not, strictly speaking, ratios of
ultimate quantities, but limits to which the ratios of these quantities, decreasing without
limit, approach, and which, though they can come nearer than any given difference,
whatever, they can neither pass over not attain before the quantities have diminished
indefinitely”. (Newton, Philosophiae Naturalis Principia, End of Section |, London 1687,
p‘3610-16 ).

One is familiar with tremendous difficulties and controverses concerning in-
finitesimales tied with derivatives and differentials and how the last concepts are
various, powerful in the theory as well as in Applications.

* It was a great event when in 1934 was published a Newton'’s letter in which he pointed out that a
Fermat's determination of a tangent provoked in him the idea of derivative,



The notion derivative was generalized in many directions. One knows e.g. the
.concept of fractional derivative D'f(x) for any real r>0for any f: R =R. Df was defined
not only for f : R=R but also for f: R"-R and for f :C"=C. So also one considered
derivatives and Mathematical Analysis connected to semi-reals or f : K=K for any

field K.
One approach was to consider the set K [[ x 1] of all formal infinite series

f :=E f, X" with coefficients fn belonging to K and to define Df :=z fa—1 X" the
n=0 n=0

approach worked irrespective as to wheter K is commutative or non commutative.

The procedure is running without any trouble if the characteristic of K is 0. If the

characteristic of K is >0 one had some difficulties in connection with Taylor’'s expan-

sions; but the problem was settled.

The present Conference concerns a very interesting transfer of derivatives for
functions defined on groups. In 1967 J.E. Gibbs introduced dyadic derivative of
functions of some cyclic groups. Afterwards the procedure was extended and studied
by various authors. | am glad to know that several of them are participating at the
present conference: | welcome you, dear Colleagues.

The job is an interesting case of transfer (transplantation) of notions and
researches from one structure, situation to other ones - a phenomenon which is of
vital importance in Mathematics as well as in other activities. As a nice case of such
considerations let be mentioned e.g. the notion of determinant over any field (J.
Dieudonné 1943).

Dear Colleagues, | wish you fruitful work and enjoyable staying at this marvellous
Adriatic coast of the ancient Dubrovnik Republik, one of the perls of the present
Yugoslavia. Remember that mathematicians M. Getaldié (Dubrovnik 1568-Dubrovnik
1626) and R.J. Boskovié (Dubrovnik 1711-Milano 1787) were born in this Republic and
performed good services to their small country.

At the end | want to let know that the Conference would not take place without
the financial help of the Zajednica za nauku i kulturu Srbije and the Matematicki institut
Beograd. The initiator and the main organizer of the Conference was docent Stankovi¢
Radomir; his main scientific contribution belongs to harmonic derivatives on groups.

| wish a good success of this Conference. | am convinced that in the future one
shall have similar gatherings because the subject is useful, important, fertile and
beautiful.

Kurepa Buro R.



WHY IWGD-897?
A look at the bibliography of Gibbs derivatives

Dr. J. E. Gibbs Radomir S. Stankovi¢
34 Fieldend Waldegrave Park Brace Taskovi¢a 17/29
TWCKENHAM 18 000 Ni§
Middlesex TW1 4TG Yugoslavia

Unated Kingdom

It is always a very difficult task to measure or estimate, and to express quantita-
tively, the degree of interest in a specific branch of knowledge. But such measurement,
however fraught with difficulty, may be a very worthwhile undertaking: for the level of
interest, among the research community, in a given topic is usually highly correlated
with its theoretical importance or its practical significance.

On the occasion of IWGD-89 we sall make bold to attack such a measurement
problem in respect of Gibbs derivatives, a concept introduced into mathematics in
1967 [1]. For want of any more sophisticated criterion, we assume that the interest in
(and hence the importance of) Gibbs derivatives is indicated by the number of
publications (per year) in which the concept is considered or at least mentioned. We
apply this criterion over the 22 years 1967-1988.

We began our analysis armed with a bibliography, consisting of 155 references.
Information about the publications in the bibliography was obtained from the citations
inthe papers already available to us and from such abstracting journals as Mathemati-
cal Reviewes (USA), Referativni Jurnal (USSR), and Zentralblatt fiir Mathematik (West
Germany). We are all too well aware that there must be a number of relevant
publications that escaped our attention and are therefore not included in the bibliog-
raphy. This caveat applies particularly, and with the highest probability, to the most
recent papers; for the reviewing procedure of abstracting journals necessarily takes
some time. Even so, we guess that the number of items missed can hardly exeed 5%
of the total number of relevant items in the literature. This promisingly small estimate
has encouraged us to make the analysis that follows. We shall be very grateful for any
information helping us to improve or update our biblography of Gibbs derivatives. We
take this opportunity to offer our sincere apologies to all authors of whose publications
we have failed to do justice.
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Figure 1 is a diagram showing the number of publications on Gibbs derivatives
recorded in our bibliography for each of the years from 1969 to 1988 inclusive. Curve
(a) relates to the total number of publications in each year. Bearing in mind the delay
that always occurs before the appearance of a paper in a journal, we have introduced
two further curves. Curve (b) refers to the results presented at conferences and
symposia and published in the appropriate proceedings, as well as those appearing
as internal reports, MSc and PhD dissertations, and the like. The number of papers
appearing each year in journals or monographs is indicated by Curve (c).

Curve (a) exibits three important peaks. The first two peaks appear in 1973 and
1976, indicating clearly the period of greatest activity in Gibbs derivatives. The
coincidence in time of the two main peaks in Curves (a) and (b) is in accordance with
the fact that the most extensive considerations of concept in its infancy is usually chiefly
confined to discussions at meetings and symposia. In this period the major contribu-
tions are from J.E. Gibbs, F. Pichler, and P.L. Butzer and his collaborators. Meanwhile
the number of relevant papers in journals grows steadily, and between 1976 and 1977
Curve (c) crosses from below to above Curve (b), seldom to fall below it thereafter.
The grand maximum of Curve (c) is attained in 1978. At about this time, contributions
from the above-mentioned authors are joined by an especially noteworthy series of
papers by C.W. Onneweer.

It is very important to notice that, after a period of apparently declining interest
in Gibbs derivatives, Figure 1 shows recrudescence of interest in the last few years. A
peak in all three curves appears in 1985, but we belived that great interest of that year
has been maintained to this day, the decline apparent in Figure 1 being due merely to
a lack of information about the most recent publications. Particularly noteworthy is that
the articles on Gibbs derivatives during the last few years are due principally to a
number of authors (Endow, Zelin He, Moraga, Stankovi¢, etc.) who have not published
on the subject before, who may therefore be regarded as a new generation of the
family of researchers on Gibbs derivatives. The welcome circumstance that these
authors come from a range of differnent countries (Japan, China, West Germany,
Yugoslavia, etc.) surely points to a world-wide interest in Gibbs derivatives. In these
facts we find a convincing answer to the question "Why IWGD-897"

Let Us mention in conclusion some further inferences that may be drawn from a
detailed study of our bibliography.

It is interesting to notice the predilections of different authors as to the medium
for presenting their results. Some, for example, Dr Gibbs, prefer to publish on line, as
it were, thus mainly in conference proceedings and reports. Others, for instance, Prof.
C. W. Onneweer, publish almost exclusively in journals. Other authors again, such as
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Prof. Butzer and Prof. Pichler, make extensive use of both media. It is a special pleasure
to emphasise the continual contributions from Prof. Bitzer during almost all the 22 years
that the concept has been around.

If we simply count the number of publications by each author, the following
picture emerges: J. E..Gibbs (27), P. L. Butzer (15), W. Splettstsser (13), H. J. Wagner
(11), R.S. Stankovi¢ (11), C. W. Onneweer (10), W. Engles (10), F. Pichler (8), F. Schipp
(8), J. Pal (8), S. Cohn-Sfetcu (5), etc.

We should like to make favourable mention of the number of colleagues initiated
directly into the field, through co-authorship of publications, by J.E. Gibbs (6), and P.L.

Butzer (6). The number of those initiated indirectly trough their numerous publications
and in other ways is certainly much greater.

£ put

(numbet
=

o =+ N W p w D N ® O

e
©

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 {year)

Fig. 1. Distribution, by year, of publications on Gibbs derivatives
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[1] J. E. Gibbs, Walsh spectrometry, a form of spectral analysis well suited to
binary digital computation, NPL AlU Rept, 1967 January 13.
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1. Introduction

After nearly 70 years since the introduction of a rather unusual complete set of orthogonal
functions by the American mathematician Josepf L. Walsh into mathematics and after about 30
years of work on the application of this set of functions to Information Engineering it might be
acceptable to make some historical remarks as seen from the subjective point of view of this
author.

To some extent the set of Walsh functions are the simplest and at the same time for digital
communication engineers most appealing set of orthogonal functions.

As we know, they take oniy the values +1 and -1 and they form with respect to multiplication an
abelian group. Their electronic generation is most simple and they share with the sinusoidial
functions, which are well established in the engineering field, many common properties. It is,
therefore, of no surprise that engineers have for a long time had an interest to use Walsh function
in mathematical modelling of signals and systems.

In the following, we describe some of the highlights concerning the different attempts to make
Walsh functions useful in engineering applications. The author does not claim any originality of
the exposition. Nor would he claim to be able to write in the strict manner of an historian of
mathematics. The goal is to collect a few facts from the history of Walsh functions to show how
the evolution of the concepts took place.

2. Early Contributions
When Joseph L. Walsh in 1923 invenied his “Walsh functions” he did this for pure mathematical

reasons. [t was the time when - following Hilbert and Schmidt - of big interest was to construct

infinite bases of functions for the Hilbert space Lp(a,b). However, “Walsh functions” were
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already in use in open wire telephone transmission systems: To compensate cross talk between
different 2-wire lines it is necessary to cross the wires in certain distances. In Germany the plan
for doing this was known as the “Kreuzungsplan von Pinkert”, named after a German telephone

engineer in about 1880. Figure 1 shows as an example such a scheme of line-crossings for sixteen

2-wire lines.
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Fig. 1. Telephone line crossing according to Pinkert

In mathematics the Walsh functions found immediate interest and as one of the first investigators
we have to mention the British mathematician R.E.A.C. Paley. When Norbert Wiener on his
occasion of visiting Cambridge met Paley they both decided to do some common work on Walsh
functions and their generalisation. They both attended the International Mathematical Congress in
Ziirich in 1932 and delivered a paper on “Characters of infinite Abelian groups™.

The still existing abstract [1] shows that they had succeeded to develop a general theory for the
harmonic-analysis of functions on abelian topological groups which includes as a special case the
Walsh-Fourier analysis of functions on the dyadic group.

As it is known from Wiener s autobiography, R.E.A.C. Paley - during the time of his visit at MIT
- got killed by an avalanche. Norbert Wiener, to my knowledge did not continue to work alone in
this area, although his popular scientific bestseller on “Cybernetics” [2] contains many facts which
show that he still was in favour of the work done earlier together with R.E.A.C. Paley. In
addition, his important book on the subject of “Filtering and Prediction” [3] shows also the strong
influence of having a more general insight on the topic available. The best reference on this topic
by Norbert Wiener is the article of Masani [4]. One can speculate that without the loss of
R.E.A.C. Paley, Norbert Wiener would have elaborated a theory of communication based on

Walsh functions.
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The time for doing this by others came in the early sixties. We mention here the interesting PhD
thesis of Frank E. Weiser [5] from 1964, an important paper by the Russion mathematicians
Polyak and Shreider [6] and last but not least the earliest papers on Walsh functions and their
application in communication engineering by Henning F. Harmuth [7], [8], [9].
From Weiser originates, for example, the concept of a “dyadic invariant linear system’ which was
many times reinvented later on (e.g. also by Pichler [10]). In the work of Polyak and Shreider we
find already the important “multiplicity theorem”, which determines the gaps in a Walsh-Fourier
expansion, when a polynomial function is represented by it. This theorem was independently
found later also by Liedl [11] and generalized by Weif3 [12].

rom Harmuth originates the fundamental idea of how to construct new type of communication
systems which are based on the Walsh functions in the same manner as conventional systems are
based on the use of sinusoidal functions. We will elaborate this idea in more detail in the next
chapter.

3. Linear Systems on the Dyadic Group

After the invention of the telephone by Graham Bell in 1876 and the first unsuccessful attempts to
ransmit speech signals on cables over long distances, it became clear that a new theory for the
synthesis of systems for cable telephone systems was needed. Oliver Heaviside in England gave
the theoretical explanations, Michael Pupin in America put the ideas into practice. Today we have,

the “Theory of electrical networks”’[13] which covers many important problem areas as they are
called in communication engineering. As a mathematical generalization we have today the theory of

“Linear systems” [14], more exactly, the theory of ordinary linear differential- or difference
equation systems (with constant coefficients), a theory which answers the relevant problems of
communication- and control engineering.

[mportant concepts in Linear Systems Theory are “convolution”, “frequency description”, “time
invariance”, “filtering”, “transfer function”, “modulation”, “Fourier-transform”, “sampling
theorem” and others.

All this concepts can be generalized and have been formulated also for the special case of “Linear
Systems on the Dyadic Group”. We mention some of the original contributions. Harmuth [8]
formulated for the first time the concept of a “sequency band pass filter” by describing the
(generalized) transfer function. He needed this concept to design a multi-channel multplexing
system based on Walsh-Fourier representation of signals.

[n the following Pichler [10] showed how such filters could be defined by dyadic convolution
operators. Furthermore, Harmuth [9] introduced the concept of sequency-single-side band
modulation. Pichler [10] proved the sampling theorem for sequency-limited signals. Furthermore,
the theory of optimal Wiener filters was developed in Pichler [15].

Edmund Gibbs from the National Physical Laboratory Teddington, U.K., developed a complete

theory of linear dyadic invariant systems (of finite kind) and he introduced the important concept
of “logical differentiation” [16]
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Differential-equations of this kind are the counterpart of ordinary classical differential equations for
the case of linear dyadic invariant systems. Their solutions can be described by dyadic convolution
operators in a similar manner such as the solutions of classical differential equations are described
by the usual convolution operation. A sound mathematical treatment of the “Gibbs Derivative” and
related equations was developed by Butzer [17], [18]. An important activity to bring researchers
together internationally was started by the US Naval Research Laboratory in Washington D.C. in
1970. From 1970 to 1974 an annual conference on Walsh functions and their applications was

held and the published conference proceedings are still providing valuable materials.
4. Later Developments and Current Stage

As was mentioned earlier, it cannot be a goal of this report to cover in any detail the development
of Walsh function research and their possible applications in Information Engineering. However,
we have to mention a few of the most important research activities. As we know, Walsh functions
are of “digital nature” when considered as signals. However, linear dyadic systems are of “analog

nature”.
The question arises whether Walsh functions are of any importance also for “digital systems”.

The answer is yes and for a fundamental and early contribution we refer to the book of Karpovsky
[19]. However, it seems that the descriptive power is more concentrated on digital systems
without memory, that is to the class of two-valued boolean functions. Another topic of application
is digital image processing. This has been considered as a possible application from the beginning,
mainly because of the existence of the Fast Walsh Fourier-transform Algorithm (Welch [20]).

Today spectral techniques based on Walsh functions are standard in digital image processing.
5. Conclusion

We have tried to mention some of the historical facts in the development of Walsh functions in
respect to their application in Information Engineering. However, the high expectations which
were set by Harmuth in the beginning, “that the Walsh functions are for digital systems just of that
kind of importance as the sinusoidal functions have gained for analog systems” did not realize.
The signals representing information in common communication and control systems demand in
processing the use of strongly time-invariant systems (in case of speech) or shift- and rotational-
invariant systems (in case of images). This means mathematically that the group R of real numbers
and the group C of complex numbers are the “natural” domain for the definition of signals.

But for special tasks in signal processing and systems theory Walsh functions have proven to be a

valuable mathematical tool.
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Abstract: In contrast with the formal analogy between Gibbs (G) and Newton-Leibniz
(NL) derivatives, ways in which these two concepts may be seen intuitively as one are
considered in this paper. The natural definition of the G-derivalive of a complex-valued
function on a cyclic group is global (as a symmetric linear combination of difference
quotients ranging over the whole group); that of the NL-derivative is local (as the limiting
value of a difference quotient). Although the philosophies of these definitions appear
diametrically opposed, they may be reconciled by Fourier considerations. In particular, a
local definition of the G-derivative may be given, as the NL-derivative of an intuitively
closely related function of a complex variable. Likewise, under suitable conditions, the
NL-derivative may be defined globally, as the limit of a sequence of G-derivatives. The
assimilation of the G- and NL-derivatives implied by these results appears to be
contraindicative of any possibility of discovering an intuitive interpretation of the
G-derivative distinct from that of the NL-derivative. -

The relationship between [Fourier methods and the local and global views of
differentiation extends in a degenerate form to Fourier analysis in the dyadic field regarded
assequence space. In this case the global definition, in which each term of the G-derivative
of asequence is expressed as a linear combination of aii the terms of the sequence, reduces
to the local definition, which is equivalent to that of the sequence of first forward finite
differences. Fourieranalysisinthe dyadic field is also of interest in requiring for consistency
that divergent series of Os and 1s be in certain circumstances summable modulo 2.

The paper ends with a briel account of the differentiation of dyadic functions, where
the distinction between local and global definitions breaks down, and where no non-trivial
Fourier analysis exists. The (partial) derivative is the analytic analogue of the algebraic
concept of Boolean difference: it enters into quasi-Taylor series of two kinds, one with, in
general, a countable infinity of terms, the other with an uncountable infinity. The latter
presents an interesting summation problem.



2 Edmund Gibbs

1 INTRODUCTION

Since Gibbs differentiation was introduced in 1967, its claim to be called "differentiation”
has been based almost exclusively on formal analogy. The functions differentiated have
been principally, though not exclusively!, complex-valued functions defined on various
groups, for example, finite groups (abelian or otherwiseQ) and direct products of countably
many cyclic groups. A prime example of what we mean by formal analogy is the fact that
the characters of the domain group (supposed abelian) are the eigenfunctions of the
G-dilferentiator (Gibbs dillerentiator). This fact not only exhibits the formal analogy
between the Gibbs and Newton-Leibniz derivatives, but also provides a convenient means
of defining the G-differentiator.

On the other hand, during the past 22 years, there has been little or no attempt, apart
from a less than fully successful essay by Gibbs and Ireland (1974), to assimilate,
heuristically or intuitively, the concepts of G-differentiation and NL-differentiation
(Newton-Leibniz differentiation). There has indeed been little progress beyond the
expression of a desire that an interpretation of the G-derivative might be found that would
have the same intuitive appeal and practical usefulness that characterise the notion of rate
of change as an interpretation of the NL-derivative.

In the present paper it will emerge that it may be too much to expect an intuitive
interpretation of the G-derivalive radically different from that of the NL-derivative. The
two concepts are perhaps closer intuitively than has been supposed. We shall see, for
example, that a definition of the G-derivative on a cyclic group may be obtained heuristically
from the NL-derivative of an associated function of a complex variable, that this G-derivative
is equal toalinear combination of difference quotients, and thus not unlike the NL-derivative
expressed as the limit of a sequence of difference quotients; that the NL-derivative is
expressible, under favourable conditions, as a limit of G-derivatives; and that the
G-derivative of a function on a cyclic group is equal to the NL-derivative of a closely related
periodic real function.

Bound up with the foregoing insights is a recognition that derivatives may be viewed, in
general, either locally or globally, the transition between the two viewpoints being a matter

of Fourier analysis. The G-derivative is naturally defined globally, but a local definition

! Cohn-Sfetcu and Gibbs (1976), for exarnple, define Gibbs differentiators on spaces of functions on a finite

abelian group into a Galois field.

2 Gibbs differentiation on finite non-abelian groups has been discussed by Stankovid (1986a, 1986b, 1988).
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can be obtained as the NL-derivative of a related function. On the other hand, the familiar
definition of the NL-derivative is local, but, when appropriate conditions are met, a global
definition may be given in terms of G-derivatives. There is thus a kind of contest between
the local and the global views which, in the light of our considerations thus far, seems to
result in dominance of the local definition for real and complex analysis and of the global
definition for analysis on the likes of finite groups.

That the tension between the local and global views is not resolved quite so simply as
the previous paragraph suggests is shown by a consideration of Fourier analysis in the
dyadic field (Gibbs 1984), where a global definition of a derivative may be given showing
some formal analogy with the NL-derivative, while the correspondinglocal definition mimics
that of the first forward difference in the calculus of finite differences. The most summary
account of Fourier analysis in the dyadic field would be incomplete without a discussion

of the summability of divergent series of Os and 1s modulo 2, which is therefore included.

We end this paper with an examination of differentiation on the space of functions from,
and to, the dyadic field. Here there is no non-trivial Fourier analysis, the fundamental
definition of the derivative is both local and global, and, for good measure, there are two

kinds of Taylor series, one with a countable, the other with an uncountable set of terms.

2 HEURISTIC APPROACH TO THE GIBBS DIFFERENTIATOR

As concrete set underlying the cyclic group Z, of order g we take the set
O=glw® w3 (W=, exp(2ni/q))

of equidistantly spaced points of the unit circle T =4, {z:|z|= 1}, the group operalion
thus being complex multiplication. The characters of the groupZ, = ({2, - ) are the T-valued
homomorphisms X, (ke P, =,,,{0,1,....q— 1)) defined by

X (™) =w* (X€EP,).

To obtain heuristically a definition of G-differentiation, we shall regard each of these
characters as a restriction to () of an NL-differentiable function defined on the complex
plane C. The arc of the unit circle intercepted in the positive sense between the identity
w?of Z, and the arbitrary element w* (x € P,)iss=21nx/qg. A representative point
setting out from w ®and travelling round the unit circle towards w* moves initially in the
direction of the positive imaginary axis. The arc from w °to w * may thus be "rectified" into

the vectort = is = 21ix/q. Itisin terms of this argument ¢ that we shall express X, . Thus,
foreachke P,
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Xe(w™)=w ™ =exp(2nikx/q) = expkt (te2mig™'P,).
The function ¥, defined by ¥, (t)=expkt (teK) is NL-differentiable and is,

_ moreover, an extension of X,. We equate the G-derivative DX, of X, at w* to the

NL-derivative W, of ¥, at ¢ . Thus
(DX ) (W)= Vi(t)=kexpkt=kX, (w").

The functions ¥, (keZ) are in fact the characters of the quotient group
U=4et R/(21iZ) of equivalence classes of imaginary numbers modulo 27i. Concretely,
Umay be identified with the segment [0, 21)( of the non-negative imaginary axis, with
addition modulo 27ti. Apart from the real constant 1, U can be assimilated to a segment
of the tangent at the point w°to the unit circle of length equal to the circumference of the
unit circle. This fact, among others, led the author to the present heuristic discussion, bul
itissufficient for the purposes of this discussion to appreciate that the functions W, (k € P 5

extend the functions X, to C and thus medialte their differentiation.

2.1 The G-derivative as a linear combination of difference quotients
If we extend the G-differentiator on Z, from the X to the whole space C, of bounded
functions Z, = C, the concept of difference quotient associated with the NL-derivative will
be found to re-emerge in an elegant form free, however, from any involvement with tie limit
concept. Such an extension may be readily effected by using the fact that an arbitrary
bounded function may be expressed as a linear combination of the characters. This is a
consequence of the fact that, with the inner product (-, -)on C, defined by
-1
(f\g>=Q'IZf(w“')g*(w"’) (f,9€Cy)
<=

(the asterisk denotes complex conjugate), the set { X, : k € P} forms an orthonormal basis

fOqu: (\k'\h)=o (k#h)‘ (Xk‘xh)=1 (k=h)'

if, foreachk e P,, (f,X,)=0, then f=0.

We can, then, expand an arbitrary f € C, in terms of the X, thus:

=1
f(w'\')=t (f X)X (w™)
k=0

-1qg-1
=q“qZ {E FOHNF (WX, (w™)

k=0£=0

-0 5§ rwnhwren,

k=0 E=0
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On the assumption that the G-differentiator is linear, we have3

-1 -1
(DAY (@) =g™ ) kY Flwho ™
E=0

k=0 =

g-1 g-1

=1 x+ =k
g7 ) FW¥EH ) kw

E=0 k=0

In deriving the last equality, we used the group property w* Q= (), from which it follows

that

-1 -1
?F(w5)=tF(mx*§) (FeC,).
£E=0 E=0

The last expression of (Df ) (w™) as a linear combination of the values of #at all points of

Z , takes a more intelligible form when the coefficients

=1
q‘ltmﬂz (5€Py)
k=0

are reduced using the easily-proved identities

a5 kw - J27 a1 (5=0)

) l(w™-1)"" (5eP\0)
and
-1
S o= 1) =2 g - 13
E=1
Thus

=1 =1 =l
AW =g f(0) ) keg™ Y 7w H Y ke
k=0 E=1

k=0

g=1
=27 (g ) f (W) ) Flw H(w -1
E=1

q-1 B q-1 _
=_;<f(w”><w"~ D7 ) F (w1
£ &

3 The first equality below yields an immediate proof that the mean value of D f is
i R Ké
gy -1 =0(Df)(wH)=o0.
kst

The last expression below is consistent with Onneweer’s (1977) definition (adopted also by P4l and Simon
(1977a, 1977h)) of the Gibbs derivalive for complex-valued functions on the direct product of countably

many cyclic groups. The less-than-satisfactory definition given by Gibbs and Ireland (1974) failed this test
of consistency, as Prof. Onneweer courteously hinted in the paper cited.
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=Y (FH - f @) (w17
E=1

g=1
c—w* Y W (F (0T F W (@ T
£=1
Substituting X . for f in this expression yields, as it should,

(ka)(wx)=ka(wx),

Apart from the factord —w*w?, each term of our, expression for Df agrees in form with
the expression
/(=)= lim (f (z+ W)= F (N (=~ hy-2)"
for the NL-derivative of a differentiable function f : C = C, except of course for the absence

of the limit and the notation for the argument values®.

3 THE RELATIONSHIP BETWEEN GIBBS AND NEWTON-LEIBNIZ
DERIVATIVES

The most striking feature of the G-differentiator is that it acts globally on its argument, in

the sense that every point of Z, except w* enters symmetrically into the expression for

(Df)(w*), whichis alinear combination, rather than a limit, of difference quotients. The

NL-derivative F/( z) on the other hand, is determined by the values of F on an arbitrarily

small neighbourhood of z. In spite of this sharp distinction in behaviour, the concept of

NL-derivative can be constructed, as we shall see, from that of the G-derivative.

4 The factor —w*w" has no immediately obvious intuitive inter retation, but this is perhaps only to be
) P p P Y

expected. The need for this factor is illustrated by the case in which f is the identity, defined by
F(w™)=w*(x€P,). Inthis case =
(DY (@)= 00" ) (~wh)=w.

1
We might expect, by over-sirict analogy with NL-differentiation, that the derivative of the identity would be
1 everywhere. The expression ( F(WE=F(w™)) (W -w™)’ 2 1., of course, but the coefficient - wtis
required, lo make the swnmation with respect to § yield 1 rather than g - 1. The remaining factor w™ is

needed to ensure that the mean value of Df vanishes:
i | =1,
q"qz (Df)(w™)= q"‘i w*=0.
x=0 x=0

Without the factor w?, the mean of Df would of course be 1.

5 The differ . .
1e difference of notation arises from the fact that we took Z, as a multiplicative group, while C is of course

additive.
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3.1 The NL-derivative of a periodic function as a limit of G-derivatives
To perform this construction we shall take areal periodic function F, of period 1, everywhere

equal to its Fourier series

F(x)= Z f F(E)exp2nik(x-£)dE

k=-=

and everywhere differentiable term by term, so that

Fl(x)=2mi ) kf F('g’)e\p2ml\(x—§)d§

km-w

In view of the definition of the Riemann integral, this equality may be written

F’ (x)=2mi Z klimqg~ QZ ( )epomk(A—g—).

km—t g-e
We assimilate F to a function 7 :T = R defined by
fexp2nix)=F(x) (xeR).

We define a sequence (f,),., of functions f,:Z, = R as restrictions of f :

2711 i 27U u
wq=exp7, fq(wq)=f(exp p )=F(a) (ged2,3,...}, HEP,).

For each x € [0, 1), there is a sequence (u,(x))7., of non-negative integers such that

C ()
lim =

g q

X.

In particular, we define u,(x )as[qgx], the greatest integer not exceeding g x. With these

definitions,

F/(x)=2mni Z klim g~ E]f (w )uok(q‘ £)

km—e goe

=2nilimgqg™’ QZ qu,f (wh)ale®

o= k=-q+1

=1 1
=21ilim q"qZ qu (ua )(uo (lgx)-§) _ w;k([qx]—s))

goe= ke

gHw k=0

=1 %’l )
=-4n3lim q“qz k) fo ol yulte=s
E=0

=-4nSlim g ' (Df,) (W™,

g

where 9 denotes imaginary part.
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3.2 The G-derivative on a cyclic group as an NL-derivative

The last formula® expresses the NL-derivative of F in terms of the limit of the G-derivatives
of an associated sequence of functions 7,. The G-derivative of a function f ,:Z, ~ C may
likewise be expressed as the NL-derivative of an associated function ¢ ,:C = C. Indeed,
in view of our heuristic approach to the G-differentiator onZ,, this is trivial. We have only

to define )
U;={2nix/qix eP €U

and¢,:U, - Cby
i =lig=1 -
bo(2Nix/ Q)= Fo @D =7 Y ) fo(wDHwi.
k=0§=0
With ¢ =4, 21ix/q,we have
-1g-1
¢q(f>=ff1[§quqwﬁ,)w;“eXpm,
k=0 %=0

which permits extension, in an obvious way, of ¢, to C. Then

-1 -1
(DF)(wi)= q‘qu qu FolwHw Fexpkt=0,(t).

k=0 &

4 LOCAL VERSUS GLOBAL DEFINITIONS OF DERIVATIVES
We have seen that the only natural definition of the G-differentiator on a cyclic group Z
is of aglobal nature, in that the G-derivative of a function fonZ ,ata given point is expressed
as a symmetric function of the values of £ at all the other points of Z,. To obtain a local
definition of the G-derivative, as in Section 3.2, we have to do something quite artificial,
namely, to construct a certain function ¢ : C = Cwhose values coincide at the appropriate
points of T with those of £, and then to NL-differentiate ¢ .

On the other hand, the natural definition of the NL-derivative of a function # :R = R (or
C - C) is undoubtedly the local definition as the limit of a difference quotient. A global
definition can be given, but only in the case of functions that are not only differentiable but
satisfy other conditions such as those imposed at the beginning of Section 3.1. As we have
seen, where the global definition is available, it can be expressed in terms of the limit of a

sequence of G-derivatives.

6 The reader may find it inleresting to check, in the case of some familiar function 7 (periodic, of period 1)
that this formula does indeed give the known expression for £’ For example, if £ (x) = cos 2y, a routine

calculation using the above formula yields F/(x)=-2nsin 21
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In either case, of the G- or of the NL-derivative, it is Fourier analysis that enables the
transition to be made between global and local definitions, or vice versa.

[t may appear from the foregoing discussion that it is the simpler structure of the domain
group Z, that results in the natural definition being global, while the more sophisticated
structures of the real and complex groups not only allow, through the limit concept, a local
definition, but forbid, through a general failure of necessarily onerous conditions, the general
use of a global definition.

As a counterexample to the above way of thinking, we shall define a G-differentiator on
a structurally unsophisticated function space on which (consistent) global and local
definitions may be given (without recourse to conventional Fourier theory), the local

definition being the more natural.

4.1 Fourier analysis in the dyadic field

The space we have in mind is F, the space of functions u:Z - GF(2) such that for some
integerm , foreach r <m, u(r)=0.Theelementsof Fexhibitanalogies with the complex
numbers and are therefore called dyadic numbers. We call

M(u) =4 sup{meZ:foreachr <m, u(r)=0}

the modulus of the dyadic number . The function space Facquires the structure of a field

if we define addition pointwise and multiplication convolutionwise:-
(u+rv)(r)y=u(r)+u(r),
(uu)(r)=2u(r—s)u(s) (u,veF,rez).

seZ

Multiplication is well defined because (unless 1 =0 or v=0)both M(u)and M (v) exist
and are finite, and so the summation is of a finite number of terms. (All additions and

stmmations in GF(2) are of course modulo 2 ) The field F is commonly called the dyadic
field.

Rather than specifying all the values of a function i € F, as, for example,
u(4)=1, u(S)=1, u(r)=0 (r<4 or F23)
we borrow the notation of real numbers written in the binary scale; thus
w=0-00011
defines the same function as the previous example. For brevity we also write
4
= 115

which may be pronounced "four crown one one".
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The analogue in F of the Euler function exp 21+ in conventional (Fourier) analysis is

the function ) ]
w=0-1111... =0«1=1
i}

pronounced "dot one foot one". The integer powers of w are easily written down, because

an analogue of the recursion formula

()0
r “Ar =1
for binomial coefficients holds among the values of w"(r), namely

Wt () =w"(r)+w'(r+1).

Thus a partial table of integer powers of wlooks like this:-

n w"

=3 1111

-2 101

=] 11
0 1
1 0-1
2 0-01
3 0-0011
4 0-0001

Inspection of this table suggests the (easily proved) the transposition formula
wh(r)=w'""(l-n),
analogous to

exp2ninx =exp2ni(-x)(-n).

The set .
IW={w"ineZl}

of integer powers of w forms a basis for the space F, that is, each element of F may be
expressed uniquely as a linear combination of elements of Iv:

u=ZU(s)ws (ueF).

seZ
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We define the dyadic conjugate w"of each element w"of I/ by

wh(r)=w"(n) (n,rez)

and hence, by linearity, the dyadic conjugate of each element of F :

L(r)=y Usyw'(r)=) U(s)w'(s),

seZ seZ

where the coefficients U/ ( s )are, of course, determined by

u=y U(sHw®.

seZ

The operation of dyadic conjugation defined on the dyadic field is analogous to that of
complex conjugation on the complex field, though it has a less easily visualised (if any)

geometrical interpretation. By analogy with the inner product

(f.9)= [ £0)g*Cx)
xeR

of two functions f, g € L?, we define the (pseudo) inner product in F by

(w,v)=) u(s)u(s).

seZ

The Fourier transform @ of u € F is defined, by analogy with

F(k)=(f,exp2nikx)= | Ff(x)exp(-21ikx),
xeR
By a(r)=(u,w)= u(s)w (s)=y u(sHw(r).

seZ seZ

The Fourier transform operator is self-inverse,

d=u,
from which it follows that
u= Z a(s)w’.
seZ

We can therefore identify the coefficients U ( s )above with the coordinates of i, and define

the dyadic conjugation operator - concisely by

a(ry=y a(s)w (s)=y w'(s)y u(t)w'(s).
seZ

seZ teZ

The last expression may be compared with that of the analogue of Fourier’s integral theorem,

u(r)= Z wi(r) Zu(l)w’(s),

seZ teZ
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4.2 A G-differentiator on the dyadic field

This expression may be used to give a global definition of a G-differentiator A:F = F. By
analogy with dx "/dx = nx """, let us define A by

1

AwT=w" (seZ)

and extend this by linearity to F, thus:

(Au)(r)= Z (AW () Z u(t)w'(s)

seZ teZ

=5 W) Y u(w'(s)

seZ teZ
=(w-lsezzu’steZleU)w[(S))(r)
= (w ' w)(r)
= “ZI w ' (r=s)u(s)

ulr+1)y+ua(r).

Bearing in mind that addition is the same as subtraction modulo 2 we see that the
G-differentiator A is simply the first forward finite-difference operator on the sequence
(u)r. e— So Gibbs differentiation subsumes the calculus of finite differences, at least
in a limited sense! The local definition

(Aw)(r)=u(r+1)+u(r)

of A is evidently much simpler and more natural than the global definition

(Au)(r)= Y wH(r) ) uHw'(s).

seZ teZ

On the face of it, evaluating the latter expression entails a knowledge of the function u on
the whole of Z, but in reality the properties of the powers of w ensure that only u(r) and
w(r+1) are needed.

Jn Section 5 we shall meet G-differentiation on a space where no non-trivial Fourier
theory appears to exist. Nevertheless a local definition of the G-derivative may be given
and two kinds of Taylor series exist, one with a countable infinity of terms, the other with

an uncountable infinity thereof.
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4.3 Summability of divergent series of terms in GF(2)

[t may have occurred to the reader that the inner product (u, v) may fail of definition for

some ordered pair (u,v)eF because neither u nor v terminates. For example, if
u=w=0-1land v=0-1, sothatv=uw, then

(u,v)=) u(s)v(s)= iw(s),
s=1

seZ

and the summation is of a countably infinite set of Is (modulo 2). It is in fact a convention

of Fourier analysis in the dyadic field necessary for consistency that a divergent series

=

Zu(r)

r=1

is summable if 1 terminates, and in this case

3 =3

Z u(r)= Z a(s).
r=1 s=]
The condition that &1 terminates is equivalent to the condition that, for some non-negative
g, uis periodic, of period 29,
Further details of Fourier analysis in the dyadic field have been recorded by Gibbs
(1984).

5 G-DIFFERENTIATION OF DYADIC FUNCTIONS

We define a dyadic function, on the analogy of areal function R = R, as a function £ :F > F.
To define differentiation on the space of such functions has long been a desideratum. The
conventional idea of G-differentiation, restricted to functions G = C, where G is some
suitable group, is open to criticism on the ground that it is only a half-generalisation tion
of differentiation C— C —a generalisation only with respect to the domain of the functions.
The critic who takes this position would prefer to see a generalisation affecting both domain
and codomain in the same way, so that differentiation R— R and C—C is extended to
differentiation of functions K=K, where K is an arbitrary member of some
not-too-restricted class of fields. In the first instance, he might be happy to see

differentiation extended to functions I' = F.
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The algebraic groundwork for such an extension already exists in the copious literature”

of so-called boolean differential calculus, which applies to functions {0,1}" = {0, 1},
where n is a positive integer. To convert this rudimentary calculus into a discipline in
which non-trivial analytical considerations play a part, we have to allow n to become
countably infinite, that is, to consider not finite-dimensional vectors of Os and 1s but infinite
sequences thereof. The domain thus becomes the set underlying F. We also have to
recognise that a function {0, 1}" - {0, 1}” is essentially equivalent to a p-vector of
functions {0, 1 }" = {0, 1}. By this observation we are led to regard a function F = F as
a sequence of functions F = & =4, GF(2). Such is the programme that is partly carried
out in a note by Gibbs (1979).

5.1 The proper differentiator

The initial idea in this development is that of the proper differentiator 6, defined on the

space A of functions  » ¢. We define 6: A = A by
(60)(E)=0(E)+o(E+1)=6¢(0)+0o(1) (peA,Eed).

where O and 1 denote the zero and unity of &, respectively. Notice that the proper

derivative of an arbitrary function ¢ € A is a constant function, equal to 1 € A if the values

of pat 0 and 1 are distinct, and equal to O € A if these values are the same. It follows that

620=0€eA.

The proper differentiator &is thus a linear operator on A such that the derivative 6t of
the identity functiont € A is 1 € A and the derivative &y of each constant function y € A is
0 € A . These properties of &are analogues of familiar properties of the real differentiator
and of the dyadic differentiator8. Unlike? the dyadic differentiator, &satisfies a simulacrum

of the product rule

D(fg)=FfDg+gDf

7 See, for example, the lecture notes of Thayse (1981).

8 The property 6, = 1 holds for the dyadic differentiator only in the vacuous sense that there is no identity

function from the dyadic group to C.

9 The (extended) dyadic differentiator obeys a product rule, in general, only if £ and g are Walsh functions
(Butzer, Engels, and Wipperfiirth, 1986).
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for real differentiation, namelle,
5(0YW)=00w+pbo+006Y.

The proper differentiator also satisfies

> (80)(8)=0

Eed
=1
analogously to the corresponding property qz (DF)(w™) of the G- differentiator for the
x=0

functions Z, - C. The operator © possesses the eigenfunction property only in a trivial
sense. The only character of GF (2) is the principal character

1 e A. The corresponding eigenvalue is O € ¢ and

01=01.

5.2 Partial proper differentiators
The dyadic field has been introduced in Section 4.1 above. Here we shall identify a dyadic

number u with asequence (u, ), whereu, = ., t (). With this convention the definitions

of addition and multiplication in F are

(u+rv), = u,+v

i r)

(uv), = Zu,_sus.
Each u € F generates a subspace F () of the linear space F defined by
F(u)={veF:(rezZ)if u,=0,thenv,=0}.
We say that u € Fis terminated iff, for some (unique) N () € Z, X y(uy-) = | and, for each
rzN(u),u,.=0. Each terminated u € F generates a finite subspace F (u) having at most
2 M MY elements.

The set IV = {w":n € Z} was introduced in Section 4.1 as a basis for F; another, less

sophisticated, basis is the set {d , } ., defined by

dy(ty=1 (s=1),
d.(t)=0 (s#t).
10 The generalisation of the product rule to the product of n functions ¢, ¢,, ..., ¢, may be written

Qoo lfem 2 2 Lo

where, of course, 6° =, 1 and6' = ,, 6.

del
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Evidentlydo=1€F. We define (r € Z) the operator T, by

(T U), =Ur.s (ueF,; seZ).

The set of operators { T, )}, is connected with the basis {d .} ., by
in particular,

Let L denote the space of functions F = F. We define (r € Z) an operatord,:L = L
by

(B fIu)=Fflu)+7F(u+d,) (fel,uekF).
The operator ¢, is evidently a generalisation of the proper differentiator &: we therefore

call 2, the r-th partial proper differentiator.

5.3 Taylor series for dyadic functions

Aswe remarked before, a dyadic function (afunction F = F) may be regarded as asequence
of functions F = &. More precisely, if f is a dyadic function, we define, for each reZ,

a function f,:F - ¢ by
fru)=(f ), (ueF).

The value of £, at u may be expressed in terms of the value of f, and its partial proper

derivatives at an arbitrary point a of F (a #u) by means of a generalised Taylor series.

The corresponding finite expansion was given by Akers (1959). The full Taylor series may

f=((LFy L2 )

Since such an equality holds for each r € F, it follows at once that

If @+ u is terminated, then the subspace F(a +u) is finite, and the series comprises at

be written
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N s i = M . . . . X
most 2V (@ @M= yormel I If @ + 1 is not terminated, then the "series" comprises 2"°

terms, and its summation presents an interesting problem.

There is another series expression for f(u) in terms of f(a) and values of partial
proper derivatives of 7. It was given by Thayse (1971) as a finite expression for boolean
functions. It has the advantage of having only a countable infinity of terms, and is therefore
a series in the conventional sense. On the other hand, it can hardly be called a Taylor
series (though we shall extend it that courtesy), for the partial proper derivatives that it uses

are not all evaluated at the same point of F. The series may be written

o s=i

fw)=Fla)+ <a+u>s<asf>(a+ > <a+u>[dl).

s=M(a=+u) t=M(a+u)
As in the case of the Akers-Taylor series, the Thayse-Taylor series reduces to a finite

expansion in the case that a-+u is terminated. It then comprises at most

1+N(a+u)-M(a+u) terms!<.

I1 A numerical example may help to clarify this unusual kind of Taylor expansion. Let a=0-10 11 and

£=0-1101. Suppose that a partial table of values of £ is as follows:

x f(x)
0-1001 1-111
a | 0-1011 1-101 | f(a)
ul 0-1101 1-011 | f(u)
0-1111 0-111

Thena+u=0'011,F(a+u)={O-OO0,0'OOl,O-OI0,0'Ol1)andtheTaylorexpansionfor F(uw)

in terms of f(a) and the partial proper dervatives of 7 al a is

3
f(u)=(( 3 ]—z[ai‘)f)m)
veF(a+u) s=

=((1 +32+33+8233)f)(a)

=1-101+1-010+0-010+1-110,
which sums, as it should, to 1-011.

12 A5 a numerical example, let us take the same a1, and 7 as in the previous footnote. Then

_3_ s-1
Flu)=f(a)+ L(a,n(m Z(a+u>,dl)
§=2 (=2

fla)+(a,f)(a)+(95f)(a+0-01)

I

1:101+1-010+1-100,

which sums, likewise, to 1-011.
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Abstract

The aim of this paper is to deal with an extension of the standard dyadic
derivative which is not restricted only to piecewise constant functions but
covers piecewise polynomial functions, many very unsmooth functions, but also
several classically smooth functions. This extension results by first
equipping the sum defining the standard dyadic derivative with the
multiplicative factor # 1 and then applying Buler’s summation process to it.
The extension, which is therefore rather basic, is of such a nature that the
characteristic properties that a "derivative" usually has are still preserved
as far as possible. This new approach to dyadic differentiation was introduced
by the authors together with Udo VWipperfiirth in 1986. In contrast to our
results there, the present approach is not given in the setting of (finite)
Yalsh-Fourier transforms but even in the original function space. llowever, it

is restricted to integer order derivatives; it does not cover the fractional
case.

The main theorems, dealing with integer order derivatives and anti-deri-
vatives, together with their proofs, are new. This extension is therefore
independent of the one of 1986.

19
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1. Introduction

This paper does not attempt to survey recent results on dyadic
differentiation but to discuss in detail the background to an extension of the
dyadic derivative, one which is applicable not only to piecewise constant
functions but also to piecewise polynomial functions, for example. The
extension is of such a nature that the characteristic properties that a
derivative usually possesses, in particular the standard dyadic derivative,
are preserved as far as possible.

There exist various forms of dyadic differentiation, one which interacts
with the Valsh functions ¢k(x) similarly as does the classical derivative with

the exponential functions eikx : D[1]¢k =k ¢k fior k = 0,1,:++, D[lj being the
dyadic derivative. One form is due to the initiator of this field of research,
John E. Gibbs [16,17,18,19,20], other forms to Pichler [33,34], WVagner and
Butzer [8,9,10,11], Pal [30,31], Onneweer [27,28,29], He Zelin [23] and others

([36], [37], [39], [43] etc).

Here the functions in question are.defined on the interval [0,1] (or
[0,0)), on the dyadic group or dyadic field. Since the dyadic derivative
depends on the ordering of the Walsh functions, Onneweer [28] managed to come
up with a derivative whose eigenvalues are independent of the particular
enumeration of the ¢k(x) as well as to unify some of the various approaches to

dyadic differentiation.

The purpose here is not to generalize the dyadic derivative in such
directions but to try to modify its definition rather basically:‘first equip
the sum defining the derivative with the multiplcative factor +1 and then
apply Buler’s summation process to it. The range of impact of the resulting
derivative is not restricted to piecewise constants but also covers several
classically smooth functions. However, this new derivative is especially

applicable to rather unsmooth functions; for example, also to xMd(x), d(x)
being Dirichlet’s function.

Let us add that this new approach to dyadic differentiation was first
considered in our papers [4, 5] where, however, the derivative is not defined
in the original function space, as below, but in the realm of Walsh
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transforms. So the present approach is more natural, and one which makes good
use of Buler summability. In this respect our main theorems (namely Theorems 1
to 4), the proofs of which are somevhat intricate, are mnew. They actually
complete results begun in Engels [12]. Further, the present matter is not
oriented towards fractional order derivatives, the subject of [4, 5], but to
derivatives and anti-derivatives of integer order r € N.

Section 2 deals with the basic concepts of Walsh analysis. Section 3 is
concerned with the standard definition of the dyadic derivative and of anti-—-
derivatives, the reason for their introduction, their role and advantages.
Vhereas Section 4 is devoted to the new, extended dyadic derivative and 1its
basic properties, Section 5 deals with the deeper ones, including the counter-
part of the fundamental theorem of the Newton-Leibniz calculus in the frame of
Walsh analysis. Section 6 treats the extended derivative in the fractional
order case, its properties, as well as compares the standard with the extended
dyadic derivative. Next come several examples of functions which are ED-dif-
ferentiable, listed in Section 7. The final section is then devoted to appli-
cations, namely to Pourier analysis and best approximation in the Walsh
setting.

2. Preliminaries

Let N = {1,2,3,--}, N, :=HU {0}, T := {0,#1,%2,---}. Bach k € N/ has a

unique dyadic expansion k = Eon

K € mo. Likewise each x € [0,1) has a unique expansion x = Ejfo xj2_(J+1) with

= € {0,1}, the finite expansion being chosen in case x is a dyadic rational.
The dyadic sum of x € [0,1) and y € [0,1) 1is defined by x @y

kaj with k; € {0,1} and o ¢ x ¢ o,

—(i+1 . .
f Ejio hj2 (3 ), where hj i= (xj+yj)mod 9> if there does not exist a number
i such that X # T for all j > jo. Consequently dyadic addition x @ y is
defined for countably many y € [0,1) in case x € [0,1) is fixed. The Valsh

ch: x.k.

functions ¢, (x) are defined (in Paley’s enumeration) by ¢k(x) = (-1) °© 3

for x €[0,1) and k € W . They possess the properties
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(2.1) f(x e y) = #.(x)¥,(¥) (x € [0,1) fixed, almost all y € [0,1)),
(2.2) 2% = 1 - (277 (kj €M),
il
(2.3) S ¥ (x) #.(x) dx = 6, ( = Kronecker delta).
0

X = X[0,1) will stand for the spaces Lp(O,l), 1 <p <o, for vhich the norms

i
Hpr = {Jﬂolf(x)lpdx}l/P in case 1 < p < @, OT = ess supxeﬁo,l)]f(x)l in case

D = o, are finite. Here f = g in the space X will mean [[f-g =0

The Valsh-Fourier series of f € X[0,1) and the respective coefficients
£°(k) are given by
o 1
(2.4) f(x) ~ ) £ E)HE), £ = [ £(u) f () du
k=0 0
For h € [0,1) there holds

(2.5) 1) | < Ellys EC+n)]7(K) = ¢ (W17 (k) (kely.

The dyadic convolution of f € X[0,1) and g € L1(0,1) as well as the
associated dyadic convolution theorem read

1
(2.6) (f * g)(x) := [ f(xeu)g(u) du (x € [0,1))
0

I
H

£+ g] (k) = £7(k) g"(k) (kel).

The uniqueness theorem states for f € X[0,1),

(2.7) f2(k) =0 (keN) iff f=0.

n S
Por the 2"-th partial sun § _ f(x) := 5_" £'(K) ¥ (x) there holds

2
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(2.8) Lin s f - £l = 0,

—i
and for the associated Walsh-Fourier kernel Dn(x) = Eﬂ:o ¢k(x),

(2.9) 0,1l = 0(log m), IID2nHl = & (n— o).

o -1
The VWalsh-Fejér kernel, Fn(x) = EkSODk(x), has the property
(2.10) IRl < 2 (n e W).

This material is standard; see e.g. [41],[40].

3. Towards the Standard Concept of Dvadic Differentiation

Almost all classical orthogonal systems can be represented as solutions
of differential equations. Obviously this cannot be true for the Walsh
functions, since step-functions are not differentiable in the Newton-Leibniz
sense (jumps !). From this point of view the question arises whether it is
possible to define a concept of differentiation adaptable to Walsh functions.
In classical Fourier analysis (e.g. [6]), with

(3.1) ()~ ] 0™, 500 = L [ f()e ™ (k € 1),

the r-th derivative can be formally obtained by

(3.2) 1) v ] T e,
k=-o

T .

for which DTelkX = (d ) FEE (ik)* eikx, k € I, the factor ik being the

dx

eigenvalue of the classical operator p! of differentiation.

In 1972 Butzer and Vagner [8] introduced the dyadic differential operator
plr] which satisfied
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w

(3.3) ey » T (0T £(1) # (%)
k=0

for which D[*] g (x) = ' $(x), k € W 5 it is the analogue of (3.2).

To see how to obtain D[l], let k = Eon kj 2j, taking kj in the form

(2.2). Then k = zjfo{l-gﬁk(z"j‘l)}zj‘i, and so, noting (2.1),

2 (1) 4 (0207
(3.4) Kk #(x) z 237y, (x) -4 (xe27 37D} = % J = 2_?_1 .

j=o0

This suggests defining D[1] in the original function space as follows:
f € X is said to be strongly dyadically differentiable ¢n X, if the sequence

of functions

n-1

j=0
converges in the norm of X; in this case the limit g of (3.5) is called the
strong dyadic dertvative of f and denoted by D[l]f = g. Higher order deriva-
tives of f € X are defined by D[r]f = D[l] (D[r_l]f), r =2,3,---. Pointwise

dyadic derivatives, to be denoted by f[r](x), are defined accordingly.

It turned out that D[r] is a linear, closed operator on X; similarly as
in classical Newton analysis {(e.g. [6]) there holds for f € X:

(3.6) D[I]f = g exists with g € X &=
there exists g € X : g"(k) = k' £°(k), k € .

Wost results obtained in the past 20 years in Walsh-Fourier analysis have
confirmed that this is probably the best concept of a dyadic derivative to
use. Nevertheless, three main questions were posed and are still not all
solved. Firstly, is it possible to give an interpretation of the dyadic deriv-
ative as for the classical derivative, which may be associated with the slope
of a tangent to a curve, or with the speed of an object ? Thus, can one asso-
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ciate the dyadic derivative with basic geometric or physical notions? Although
several attempts were made to solve this problem, there is still no intuitive
interpretation of the dyadic derivative, which may perhaps lie in the setting
of information theory and related fields, namely in fields which make use of
dyadic Valsh analysis (see also below). Anyhow, there is a first, but rather
abstract interpretation given by Gibbs and Ireland [20] in the realm of local-
ly compact|abelian groups. The second question was a possible comparison bet-
ween dyadite-differentiation and classical differentiation in terms of an ana-
lytical relationship; an answer to this very important question is also still
lacking. This is perhaps due to the fact that dyadic differentiation and clas-
sical differentiation are of rather different nature. It is well known that a
function being differentiable at some point in the classical sense needs only
t0 be defined in a arbitrary small interval about that point; dyadic differen-
tiation in contrast, - on account of dyadic addition in (3.5) - also takes

into consideration points having a distance up to x92_1 from x. Moreover,
classical differentiation is defined via the limit of one differential quo-
tient; dyadic differentiation sums up infinitely many differential quotients
of a particular kind, where addition is now dyadic addition. Nevertheless, a
function whose derivative in either sense is equal to zero is always a con-
stant function.

A third question raised, but solved, was the problem of describing
presisely the class of functions which are dyadically differentiable. It soon
became apparent that dyadic differentiability does not really apply to
classically smooth functions. Thus, Skvorcov and Wade [38], who improved
earlier results due to Bockarev [3], Butzer and Wagner [10] as well as Schipp
[37], showed that if f is continuous on [0,1) in the classical sense and
dyadically differentiable at all but countably many points x € [0,1), then f
is a constant. Then in 1985 Engels [13] fully characterized the class of
functions which are dyadically differentiable. In fact, a bounded function £
on [0,1), which possesses a finite or a countably infinite number of
discontinuities exclusively of first kind (namely jumps only) having at most a
finite number of cluster points in [0,1), is dyadically differentiable on
[051), if and only if f is a piecewise constant. Although this seems to be a
rather restrictive condition, the standard dyadic derivative is especially
adapted to functions that have only a few or short intervals of constancy. It
is even applicable to functions which seem to be rather "exotic", like
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(3.7) I(x) i= b Z ¢kiX)
k=1

Although this function ha¢ discontinuities at each dyadic rational, it is

(x € [0,1); n > 2).

still dyadically differentiable, with DIHg(x) = 52 ¥ y (x), x € [0,1).
For a graph of this function for n = 2 see [14]. Anyhow, one must admit that
piecewise constant functions play an essential role in digital signal process-
ing, communication theory, digital filter design, binary digital circuits,
multiplex systems (digital multiplexing) and coding with binary elements. This
is due to fact that Walsh functions can only take on the values #1, which play
an important role in these areas. Also in this respect, in elementary particle
physics one has even and odd parity, particles and antiparticles, positive and
negative charges; recall the famous Pauli principle of quantum mechanics here.
It is a well-known fact that the Valsh system can be applied in many fields
which are connected with binary and digital processes [22,1,2]. So if one
regards dyadic differentiation as a counterpart of the Newton-Leibniz
derivative especially for working in the binary frame (note that ’binary’ is
closely related with ’dyadic’), it is not at all surprising that dyadic
differentiation applies only to piecewise constants.

However, from the point of mathematics per se and signal analysis (see
e.g. [7]), it is desirable to differentiate functions which are not only
piecewise constants but piecewise polynomials, say. For this purpose the
definition of the dyadic derivative would have to be modified. So the problem
nov is to enlargen the class of differentiable functions, without loosing the
basic properties the standard dyadic derivative possesses.

A first possible attempt in this directions would consist in supplying
the series in (3.5) with the multiplicative factor (-1)J, thus to try to

define the extended derivative, to be denoted by D[[l]]f, in terms of the
limit in the norm of X of the sequence

(3.8) (-1)3 23 g (x) - £(xe27 37Ny},

T e [ =

0

The factor (—1)j seems to be especially compatible with the nature of the
Valsh functions, which lie at the base of dyadic analysis, since these func-
tions have the same jumping character; they only take on the values 1.
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Further, the built-in factor (-1)) seems to be only a very slight modification
of (3.5), not disturbing the properties of dyadic differentiation.

In this case, defining the r-th derivative D[[r]]f in an obvious manner,
its existence for £ € X implies

(3.9) ol ) = @) £ (k € W),
where k* = k*(k) € I is now defined by

(3.10) k* = (-1)? kj2J,

I b~18

j=0

where kj are the binary coefficients of k € mo.

In fact, taking the case r =1 for simplicity, and noting (2.5) and
(2.2},

1[2 (1)) e ()1 (a2 - n[“”fym}

j=o

IS RO [D[[”]ﬂ‘(k))

J=0

[FaN

(\ 3 (0 e )-eor ) - olWe ]|
j=0

As the norm tends to zero for n — m, there follows (3.9) if one defines k* by
(3.10).

Concerning the sequence of the k*, as k increases they oscillate from
positive to negative values, always satisfying
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positive, L odd y
k* = k*(L) = ’ JiF b ek e 9L e,
negative, L even
and

(3.11) k/5 < |k*| <k (k € I).

For more details and a table of the k* for 0 < k < 71 see [4]. For example,
0*=0, 1*=1, 2¥*=-2, 3 =-1, 4*=4, 5 =5, 6*=2, T7*¥=3,

8* = — 8, 9% = 7.

However, not even piecewise linear functions are dyadically
differentiable in the sense of (3.8). Taking, for example, the function

x , x € [0,1/2)

£(x) 1= x p(x) = {

—=x, x € [1/2,1),

then (3.8) does not converge in X-norm. Thus the possible extension (3.8) 1is
not applicable to a wider class of functions. Furthermore, the converse of
(3.9), as in the case of the operator pltl¢ (recall (3.6)), is not necessarily
true. Thus the assertion that (k*)Tf(k) = g"(k), k € N,, for some

g,f € X[0,1), does not generally lead to the existence of D[[r]]f = .

Note that one could, at least formally, rewrite definition (3.8) in the

setting of (3.3), thus define pllr1]s via the X-norm in terms of

(3.12) Y ()T £ (K) ¢ (x)-
k=0

For a short survey of dyadic differentiation as of 1981 see [40, pp. 653-657] .

4. Extended Dyadic Derivative

As observed, the foregoing extension of the dyadic derivative is not a
true one. Therefore let us try to apply a summability process to the series
(3.8) or (3.12) in order to try to force them to convergence not only for
piecewise constants. A suitable process is that connected with the name of
Euler.
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Definition 1: The series Ejio aj is said to be Fuler-summable to s, if

2

(4.1) —%:I Z [ﬁ:i] 'Z aj = .

[ o =]

v
1
SV z

V=0

tends to s for n — o.

The fact that both sides of (4.1) are equal to another seems to be somewhat
astonishing but is easy to show [24, p. 232].

The left-hand side of (4.1), which might be the more convenient form of
the definition, is usually written in the symmetric form

= 10

I 1
P

J 0

(Regarding the conversion of one into the other see [24, p. 236]).

The series (4.2) is the particular case q = 1/2 of the general
Euler—Knopp (E,q) transform, given by

(4.3) ] (3) -0t

V=0 j

I~ =

3 (a € R\{0,1}).

0

The (E,q)-transform is regular in the sense that it sums convergent
series to the same limit if and only if q is a real satisfying 0 < q < 1. (For
a proof in case g = 1/2 see Knopp [24, p. 232]). It is well-known that the
Euler process is a very effective method of convergence; it has a wide region
of summability. Although every (E,q)-summable series is Borel summable, there
is a certain superiority of the (E,q)-process in comparison with that of
Borel, especially since the (E,q)-transform permits adjunction of elements
(translative) and is easier to handle. At any rate, the Cesaro-process and
Euler-process are incomparable [24]. Anyhow, the (E,q)-process is one of the
most powerful of practical limitation processes. For questions regarding Euler

summability see in particular [24], [25, pp. 244 ff, 468 ff., 509 ff.], [35,
pp. 56 ff, 92 ff], [32], [42, pp. 130 ff].
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Definition 2: Let f € X. If there is a g € X such that

(4.4) Lin 4 £(-) - g()ly = O,

n—w

where 1
(45) 1) = T Loy
(x €0,1)), i .

then g is called the first strong eztended dyadic (=ED) derivative of f, de-
noted by E{l}f = g. ED-derivatives of higher order r € N are defined by
elrde = el ettty ser XU} oo (¢ € x[0,1); 07 € x[0,1)).

Lemma 1: If for £ € X there ezists E{r}f € X for some r € N, then
o P T s !
(4.6) [eEre ) = o™ ) (k€M)

Proof: et r = 1. Since [ 4 (u) {f(u)~f(ue2 ™M)} du = £ (k) {14 (2771)) =
2kj £°(k), one has

2

(4.7) [af £1°( { ] = 1 (3 zkj} £ (k).
V=0 j=0
Hence it follows by (2.5),

16 110 - e e g - M — 0 @ —a).

Now for arbitrary k € N there is (by definition of the dyadic expension

K K+1

of k) Jo € N with 27 < j <2 such that kj =0 for all j > j,. So,

recalling that the Buler process is regular,

!Note that one could also define dgf(x), on account of (4.1), by
@ H7T el () 52 (0d 2 (- (2T )

v+1
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n Jo Jo

1 V) \J ol - = _ind 5] Aoy = 1k £

Lin { z ol y [j]( 13 o kj}f (k) {.z (-1)3 2 kJ}f (k) = k* £°(k)
j=o j=o

This yields (4.6) in case r = 1. The rest follows by induction.

The sums dif of (4.5) can also be represented as follows:

Lemma 2: The sums dif, f € X[0,1), are equal to

(48) dy 2(x) 1= L7 ] J 0T TN D) () - (¢ D) (xe27i D)

’ -1 .
with x € [0,1), D (x) := B2 ¢ (x), [0,°() =1, k e W, and v > k.

Proof: Taking the Valsh-Fourier coefficients of (4.8),

(@ £1°(x) = 1 0 () TenT 9T e prm e 8

v=0 j=0
( 1 = n+1 V
- i AT ) (i) T n o K } £ (k)
V=0 j=o0

which is identical to the right side of (4.7) on account of the two equivalent
forms of Def. 1. The uniqueness theorem then yields (4.8).

Let us denote the rth X-norm ED -derivative built up iteratively from the
difference d f by E{r}f (When using the alternative definition of Euler sum-

mability, representation dgf is more complicated; see Lemma 5.1 of (4]).

The representation (4.8) in comparison with (4.5) is interesting in the
sense that f has been replaced by the convolution f*D which smoothens f.

The Valsh functions ¥ (x), known to be arbitrarily often differentiable

in the sense of (3.5), turn out to possess the same property in the extended
sense. Indeed,
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Lemma 3: For the Walsh functions ¢, (x) one has

(4.9) ey = WP = 0T ) (r,k € W).

Proof: Let r = 1. The general case follows by induction.

n v
iiﬂm“dg b - Kl iifm I { y E%IT .z [;] (-1)J kaj - k*}¢k”X
V=0 j=o0
n v
: il } 5] *
~Lx| ) om zo ) 07 2 gl
: J:

which tends to zero for n — o, similarly as in the proof of Lemma 1.

5. The Fundamental Theorem for the ED-Calculus

A basic role in this section will be played by the functions U;(x),
defined via

1, k=0 i
5.1 WV (k) = T € :
(5.1) SORE NN (

The Walsh-Fourier series of V; so has the form
-r
(5.2) V;(x) v+ (k%) ¢k(x).
k=1
Lemma 4. For r € N, one has VT € Ll(O,l).
Proof: If r > 2, the series (5.2) is uniformly convergent by (3.11) and repre-

sents a function g_ € Ll(O,i) with coefficients equal to g_(0) =1, g (k) =

(k*)7" for k € N. Thus gr(x) = V;(x) a.e. by the uniqueness theorem (2.7).
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In case r = 1 set
VI,m(X) 1=
Abel’s formula for partial summation with n > m yields
(5.3) V’{’n(x) - VI,m(X)

24 2" D (x) D _(x)

¥ (x)
-1 Tl
k=2 k=2

Making use of (2.9),

5.9
% k*—(k+1)* 1 1
A I PR log k + |
1,1'1 l,m Ll ngm +1 (zm)* (211_1)*
ot
log k& 1 5
D I L e R~ o,
=™ k 2 2

Now one can readily show (see [12, p. 70 f]) that for k 6[28,28+1—2],
m<s <n-1,

2s+1_2 g
|k* = (k+1)*| S Z 28—1—1] % (1_(_2)1+2)| < 25+1 E i = 28+1(S+1):
k:?s 1:0 1:O
This yields that
9 9 n-1 98+l o
} o le-(en)r) 108k ¢y (stllog 2T )
k=2" g 4 k=2°
n-2
z (s+1)28+llog 2
s
s=m 4
n-1 n-2
<2 log 2 2 (s+1)2 275 4+ 2 log 2 2 (s+1) 275,
s=m s=m
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24-8

Since the series Esio(s+1) 2 ° and Zsfo(s+1)2_s converge, the right hand side

tends to zero for m,n — o, and so V{ q converges in Ll(O,l)—norm to a func-
)
tion g, € LI(O,l) as Ll(O,l) is complete. Since W} m‘(k) =1 for k = 0, and
>
= ()71 for 1<k ¢ 2a™1, V¥ (k) = g, "(k) for k € N. Thus g, (x) = V¥(x)
1,m 1 0 i, 1
a.e., and W € Ll(o,l).
The function VX(x) allows one to define an operator I{r}, inverse to

ettt

Definition 3. Let the operator I : X[0,1) — X[0,1) be given for.f € X[0,1
{r} &

by
1

(5.4) I{r}f(x) = (VE o+ 1) J‘ f(xeu) WX(u) du.

It is obvious that I{r} is linear and dyadically continuous.

Lemma 5. If for f € X[0,1) there ezisis g € X[0,1) such that for r < N

(5.5) ~ (k)7 £ (k) = g (k) (k € M),
then
(5.6) fx) = (I{r}g)(x) +17(0) a.e..

Proof: Since f,g € X[0,1), [I{r}g]‘(k) = [Vi+g]"(k) = 0 for k=0, and
= (K7 g (k) = (k)7 (k) (k*)T for ko W. Thus [T qg + £7(0)]"(k) = £7(K)

for k € N, yielding (5.6).

Corollary 1. Let f € X[0,1) with £7(0) = 0. If for t €N there ezisis
Lt € X[0,1), then
(5.7) (I{r}(é{r}f))(x) s £(x) e

Proof: Tf €170 ¢ x[0,1), then [€17}£]"(X) = (K*)*£"(k) by (4.6). Lemma 5 then

gives
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L 010 = pr s 60700 = 0T 00 1 e w),

and so (5.7).

Now we wish to show that if (k*)Tf°(k) = g"(k), k ¢ b,, for some

g € X[0,1), then there exists E{r}f € X[0,1). Further, if f € X[0,1), then
. also E{r}(I{r}f) = f. For this purpose, let Hi(m) be defined via

0, 0<k<2®
v ()
5.8 v\ (k) = (r € W)
(5.5) A NORE S Cy
so having Walsh-Fourier series Ekm m(k*)~I # (%)
k=2 ;

Lemma 6. fne hes forr € N, m — o,

= \ T —Ih
v (@) = o(u®® 27T,

|
IlLl(o,l)

Proof: Applying Abel’s partial summation once more to (5.3), one obtains

21 ) gt 3 o ke .
= h(x) = L { D, (x)(k+1)] -
k=2" ké’gm o izi ! } ]

21'[l
(1 19 1 ( 1sm
- ) - (e - e} - (5 {_El D; (<) 2] {E§m+1)* s
27-1

2 Di(x)}(zﬂ_l)) {(zn_l)* _ (2n_2)*} i D?m(x) ) Don(x)

971 i1 ' (2"-2)* (2"-1)* gMyx  (2P-1)*
2"-3
k+ +1)*k* +2)F(k+1)*
= z . % +1 Fk+1(x) {(k il k _ Kk %ﬂ+2§§ 1) }
k=2
S JNES QA (O VM0l U i ) I € O )
2“‘( ) (2M)* { (2"+1)* } 2“—1( ) (2"1)x U (2hg)* }

D2m(x) . Dg“(x)
(
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Now the sum on the right may be rewritten as

2 (er1)* K% riyg) )y, (x) - KB (%)}

ol ¢ k*(k+1)*
‘ " oy a0 = (2"-9)%) . = (2%1) [(™)* - @D
: Fz“-2( ) (2"-2)* { (2" 3) } 2m+1( ) (2"1)* { 2n* - J
Now |(2M1)F-(2M*] = |(2"-2)*-(2"-1)*] = 1, as well as

| (2"-3)*-(2"-2)*| = 3. Combining the results, and observing (3.11), (2.9) and
(2.10),

9 9P-g . .
. . A)*KF ] s . kF
| kzgm QLT kZszl ﬁ¥11%15¥' [CLWIORSNOTRI

o™« 0™+ 0(2™ + 027" + 027" + 027,

However, by (2.9), Dy qlly = I(k+1)Fp 4 - kP |l; = 0(log k). So the sum on
the right side is bounded by

L)

0 [ Y I(et)* - k¥ _9553] [ g 32 z‘j} -0 2™ (u— a),

k=2"+1 j

the estimate following similarly as in the proof of Lemma 4. This completes

the case r = 1.

1f ¢ =2, then ™, = ™™y < gur®)? - o). The

> 3 follows by induction.

proof for r

It is important to observe that in standard dyadic analysis, the

counterpart of Lemma 6 for the function Vﬁm), for which Vﬁm)*(k) = (k)" for

k ¢ M, the order does not contain the factor m2r, so that it reads 0(2_mr).

This has far reaching implications, in particular in regard to applications,
namely to Walsh-Pourier series and approximation theory in the Valsh-frame
(see Sec. 8).
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Now to the companion of Corollary 1, namely the other half of the

fundamental theorem.

Lemma 7. For £ € X[0,1) with £7(0) = 0 there holds

(5.11) g{f}(z{r}f) - f (r €M)=

Proof: First take r = 1, and let us establish the identity

(5.12) dg(l{l}f)(x) - £(x)

A z () (-1« )00 - (¥« D)o 297} - £ ()

V=0

=5, 100 - £(0) + (£ B,
2

where

Fr(x) = ) 2777 z () (-dai ™ g - vy o 27373

V=0

For this purpose we take the Valsh-Fourier coefficients of both sides of
(5.12). For the left side,

[a8(Lgyy]" (k) - (k)

{2 27! 2 B0l 2 k) 017008 (@) - £ (K)

0, if 0 <k < 2"

m v
OO Rl W IO EE VR S A
V=0 j=o

noting (5.8) and £7(0) = 0.



28 Paul L. Butzer, W. Engsls

Concerning the right side,

. ! 0, 0<kc2®
[8 , f17(k) - £7(k) = ,
. ‘\ _fA(k)7 2[[1 <k
m v
(£ e 50 = M e ] (el ol
V=0 j:o
0, 0¢k<2"
= n .
(M) Y 2y () kg, 2 gk
V=0 i=o

Since both sides are equal, the proof of (5.12) is complete.
To establish (5.11) it remains to show, an account of (2.8), that

(5.13) lim || = F;“X = 0.
n—io

Indeed, by Lemma 6,

=
*
N
o~—1
b
|
T
—
[ e BN

V) o qyr(m)
L P

A
2
%)

|
=2
=
bt
o~—1
t\DI
T
—
[ e BN
—
.
N
)
b
|
o
MI
=
=
%]
t~
S
|
L
|
n
IO
L

=c 2™ n? % [Lﬁ[%}g;;:l] = 0(m2(%)m) (m — o).

Therefore (5.13) follows, since f € X[0,1) and F} € Ll(O,i) yields that
£+ F* ¢ x[0,1).

The general case r > 2 now follows by induction. Since V;+1 = W; * WT,
and the convolution operation is associative,
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1 1 1
el o) - e ) - e elthue «uz « 1))
= 5{1}(V; x+ f) = £. This completes the proof of Lemma 7.

Combining Corollary 1 and Lemma 7 we now have the fundamental theorem.
Theorem 1. Let f € X[0,1) with £7(0) = 0.
a) If there ezists E{I}f € X[0,1) for some r € N, then I{r}(E{r}f) =
b) There holds E{I}(I{r}f) = .

Now to the existence of E{I}f and the characterization of the class of
ED-differentiable functions.

Theorem 2. The following assertions are equivalent for £ € X[0,1) and T € N:

(1) E{r}f = g erists with g € X[0,1);
(ii) there ezists g € X[0,1) with (k*)T£ (k) = g"(k), k € N ;
(iii) there ezists g € X[0,1) with f = I{r}g + 17(0).

Proof: The implication (i) = (ii) follows by Lemma 1, (ii) = (iii) by Lemma

8. and {135) = (1) By Gemm T with [£¥M1m0) = a.

Now to the final, basic property of the operator 5{1}.
Theorem 3. The operator E{r} : X{r}[O,l) ¢ X[0,1) — x[0,1), r € N, 75 closed.
Proof: The operator E{r} is closed if and only if

(5.14;15) lin [f - flly = 0, lim ettt - gl = o
n—mw

n—i
imply f € X{r}[O,l) and g = £{r}f. In fact, (5.15) implies by (2.5) and Lemma
1’

tin [e0THe 1700 = 1in ()T £ () = g7 (K) (k €M),

n
n—wm n—wm
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By (5.14) and Lemma 1 again, this yields g"(k) = (k*)"f"(k), k € M . Thus

g = elths ¢ X[0,1) by Theorem 2.

Let us observe that Lemma 7 with its proof, and the resulting Theorems 1
to 3, are new. They complete the ED-analysis begun in [12].

G. ED - Derivative of Fractional (rders

Let us now give a further extension of the dyadic derivative, ome in

which the order r in E{I}f is extended to fractional a € R; the case for

negative a wpll cover anti-differentiation.

Tn analogy with the classical derivative (3.2) or the classical dyadic
case (i.e., (3.5) and (3.3)), it is advantageous to define this fractional

ED-derivative in the transformed state. In this frame D[[r]]f of (3.8); (3-9)

could also be defined by
n

(6.1) Lin | § (9T £ g () - e = 0.

1= 1o

But as this extension did not turn out to be a true one, the Euler
summability process will again be applied. This leads in case r is replaced by
a € R to

Defintion 3: Let f € X[0,1). If there exists g € X such that

(6.2) Lin iedete () - ()l = o,
(6.3) B = ] e ] HICREREINE)
V=0 j=0
B0 (x) = £(x) (x € [0,1)),

then g is called the strong ED-derivative of £ in X of (fractional) order a in
case a > 0, and the strong anti - ED-derivative of order a of f in X in case

a ¢ 0. In both instances g will be denoted by E{a}f.
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The partial sums (6.3) of the Euler process applied to the Valsh-Fourier

series

o

(6.4) Y (K) ¢y (x)

k=0

may be rewritten as a convolution integral,

Lemma 8. For f € X[0,1) there holds

(6.5) () = i) () ace,
(6.6) b = ) 1o

Indeed, noting (2.6), (2.1), and (2.4

(ed®het) (x)

I

V=0

‘ -v-1 " AN
Vzo 2 z (j)(J )a

-v-1 . V) /.4\0
z 2 2 (J)(J )
J=0

(x € [0,1)).

which is the right side of (6.3). Another proof of (6.5) can be obtained by

Fourier-Walsh transform techniques. In fact,

n v

6.7) P = ] 2t ] Ben
V=0 j=o0

Thus

PEARGE { ]
v=k

On the other hand, the coefficients of {6.3) are

)}(k*)“ £ (k)

z-vi()} 90,

(k e W

»,
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(6.8) () 1) = {
The uniqueness theorem, i.e. (2.7), again yields (6.5).

The ED-derivative E{a}f may also be defined in terms of the alternative
definition given by the left side of (4.1), thus as a convolution via

6.9  EM®) - | L 2 AR CIIERERABING

This gives rise, in view of (6.7), to the binomial coefficient identity
n n
1 (v il n+1 :
2 = (k) = o0 z (V+1) (0 <k <neh)

which is in fact a particular case of a more general identity due to
H.¥. Gould [21, p. 17].

Concerning fractional order derivatives in the dyadic situatiom, it was
Onneweer [29] who first defined such derivatives in the dyadic frame. Closer
to the present analysis is the approach by He Zelin [23]. In fact, he defined

the derivative T[a}f of £ € X, which coincides with D[a]f of (3.3), (3.6) in

case ¢ =t € N, in terms of

n

(6.10) Lin | § K% (k) g () - 2l = 0.

1= r-o

The VWalsh functions ¢, (x), x € [0,1), are also differentiable in th
extended fractional sense of (6.3). Indeed,
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Lemma 9. The ¢k(x) have the property

611) B ) = 00 = 90 w0 e[ ke, e e ).

The counterpart of one half of (3.6) and of (4.6) reads
Lemma 10. If f € X{a} = {f & X[0;1); E{a}f € X[0,1}, a € R, then
el = 019)® £) (k € B,).

Lemma 11. Iet £ € X{a}. Then

I

f = const., in case a > 0

E{a}f =0 &=
f =0, in case a < 0.

Lemma 12. If for f € X[0,1) there ezists g € X[0,1) such that g (k)
= (k*)af"(k), kel for fized a > 0, then

f=g=x ei_a} + 17(0) = E{’a}g + £7(0),

where
el h- ) - 1 L o (a € R),
o (k*) a , ko1
or -1
ei_a}(x) = str-lim{1 + Z (k*)_a ¢k(X)} (a > 0).
e k=1

Comparing eiAa}(x) with Wi(x) of (5.2), ei_a}(x) is actually equal to

VE() v 1 Y (k)70 (%),

k=1
so that

i
E{”r}f(x) - (ei—r}* f)(x) = J‘ f(xou) V?(u) du.
0
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Note that in Def. 3 the Euler process is actually superfluous for negative a,
the case of anti-differentiation. So in that case,

B x) = £700) + T @)W 4 (a5 0).
k=1

=3

The most important result here, quite similar to that given by Thm. 2
reads '

Theorem 4. Let f € X[0,1) and a > 0. The following three asseriions are
equivalent:

(1) Bles - g e x[0,1);
(ii) there exists g € X[0,1) with g"(k) = (k*)%"(k), k € W _;
(iii) there exists g € X[0,1) with f = E{a}g + 17(0).

The fractional counterpart of the "Fundamental Theorem" states

Theorem 5. et £ € X, £(0) = 0, a € R. Then
plodl-ady) - 1.
If, in addition, BVUE € X[0,1), then
P SIS P S

A further result in this direction is that the operator
plo} . X{a} ¢ X[0,1) — X[0,1) is linear and, as well, closed for 2 > 0.

For detailed proofs of Lemma 9-12 and Theorems 4,5 see [4]. See also the
remark preceding Lemma 14 below.

From Theorems 2 and 4 one concludes immediately that the fractional order
ED-derivative E{a}f of Def. 3 coincides with the integral order ED-derivative

E{r}f of Def. 2 provided a = r; the latter is an extension of the former.

Summing up our results, we have
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Corollary 2: Let f € X[0,1), r € N.
a) The following three assertions are equivalent to another:

(i) there exists g € X[0,1) with
in af(eF ) — g = o5
n—m
(i2)  there ezists g € X[0,1) with
= 0;

. D -1
Lin 2651y - gl
n—o

1i1) there erists g € X[0,1) with

(=]

lim Heir}* f- g[]X =
n

—m

b) The following two assertions are equivalent to each other:

(¢) there eczists g € X[0,1) such that

1
I{r}f(x) = g‘ f(xeu) VI(u) du = g(x);

(8) there ezists g € X[0,1) such that

-

—im

lim Heiﬂr}* f - gHX =0
n :

E{_r}f = i,

Whereas assertions (i) and (ii) above are given in the original function
space, statement (iii) is in the transformed space. Thus one has at least

three ways (actually six if one uses the alternative forms of Def.

1) of

defining the ED-derivative, a fact which turns out to be a very powerful tool

in calculating various examples.

Note, however, that generally [d E{r_l}f]”(k) # [Eir}f]“(k) for each

n € N, though the limits for n — o of both are equal, namely to (k*)Tf"(k)

for each k e N _.
0
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In view of the regularity of the Euler process, a possible existence of

D[[r]]f in the form (6.1) would yield that of ploks (or E{I}f) for ¢ = r € N,
and the two (three) would be equal to another. More important is the fact that
it will turn out (see below) that every function which is dyadically differ-

entiable in the classical sense (of (3.5)) is also ED-differentiable in the
sense of Def. 2.

7. The ED-Derivative of Particular Functions

Let us now consider examples of functions that are ED-differentiable.

Firstly, piecewise constant functions satisfying most reasonable
hypotheses (recall Sec. 2) can be shown to be pointwise ED-differentiable (of
order 1) on [0,1) (see Thm. 3.1 in [5, II]). Since such functions are
dyadically differentiable in the standard sense (and characterize such
differentiability completely), there follows

Theorem 6. Every function which is dyadically differentiable (according to
(8.5)) 1s also ED-differentiable. Thus, if D[r]f exists so does E{I}f.

lowever, the two derivatives, D[r]f and E{r}f, do not necessarily agree

(since no regularity question is involved here). Thus, since D[r] ¢k(x) = k"

#(x), one has plr] #q(x) = 3% fg(x) or plr] Byp(x) = (47)" ¥4,(x), but gt}
¥5(x) = (-1)* $5(x) and pir} byp(x) = (-37)F $47(x), according to Lemma 9.

Secondly, the continuous monomials fn(x) =: x, n € N, are

ED-differentiable. In fact, 5{1}f1 exists as an element in L1(0,1) (see Thm.
3<2 in [5; TI])s

[lOgQV]

D ] (G N E

{1} - 4
£ fl(x) N . 2J 2J
0 j=1

v

I o>~ 8
t\31
1
>

where pn(x) = ¢ K(x) is the Rademacher function of order x. Likewise f2 is
2

ED-differentiable; this establishes the gemeral case by reduction.
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In particular, algebraic polynomials are ED-differentiable (of order 1)

in Li(O,l). Thus the ED-derivative already has a wider range of applicability
than the standard dyadic derivative. See Figure 1 in this respect.

r 101

o o
o ~
o o
———
——

~0,50

-0,75

-1.,00

“3:25

00 o014 02 03 04 05 06 0,7 0,8 09 1,0 4,1 1,2

Fig. 1. Approximation of graph of Eil}fl(x) for n = 256.

Therdly, "piecewise polynomials" such as 8, k(x) := x" ¢k(x), n,k €N,
namely "polynomials" of order n having a, finite number of jump
discontinuities, are ED-differentiable (see Thm. 3.3 [5, I1]). Thus, for

g1,1(x) =X ¢1(X)a

[logyr]-1

R e SRR TE A S (W1 | (S VSt (SR

Further, gle} 8y 1(x) exists in L1(O,1) for all 0 < a < 1.
)
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It can be shown that whereas (even) the derivative T[anl 4 of (6.10)
does exist for 0 < a < 1, it does not do so for a = 1 (see Lemma 6.3 in [4,
I]). See Figure 2 for the ED-derivative of gy (x).
b

Fig. 2. Approximation of graph of ED-derivative Eil}gl l(x) for n = 512.
2

Fourthly, even the Dirichlet function d(x), given by d(x) :=1 if

x € [0,1)\Q, and = 0, elsewhere, @ being the rationals, is E{a}—differentiably
in the norm and pointwise sense for all a > 0 with value zero (see Lemma 3.1
in [5, II]). Note that since d(x) has infinitely many discontinuities which
lie dense in [0,1) (and do not have a finite number of cluster points in

[0,1)), the result of our first example above is not applicable here.
Fifthly, the exotic, modified Dirichlet function X" d(x), which is a
"polynomial"™ of order n possessing infinitely many discontinuities which lie

dense in [0,1), is ED-differentiable with £01(x d(x)) = £11}% (x) (Lemma 3.6
in |5y II]):
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Sizthly, to ED-derivative of the Valsh series
V;(x) =1+ Ekfl(k*)_r $(x), r 2 2. Here one can show (Lemma 3.2 [5, II])

that B8} (¥%)(x) = WE_ (x)-1, x € [0,1) whenever 0 < a < r.

Seventhly, whether classical functions such as e, sin x, log(l+x) or

even ¢k(x)ex, $i(x) sin x, 4§ (x) log(1+x) are ED-differentiable is not yet
certain. Even the famous van der Yaerden function,

wae(x) := Ekzl 4_k{4kx}, x € R, where {x} denotes the distance from x to the
nearest integer, seems to be ED-differentiable (though it is differentiable
novhere in the classical sense).

Bigthly, consider the interesting function s(x), defined by

z k
s(x) = ) ﬁi%l_ 0, (x) (x € [0,1))
k=0

which is piecewise constant with infinitely many jump discontinuties in [0,1),
so that it is ED-differentiable (according to the first example). In fact,

gl s(x) = z fkﬁfz =1 - 4x (x € [0,1)).
k=1 2

Whereas this derivative has a closed representation, s(x) does not seem
to. [Note that s(x) is continuous except at the dyadic ratiomals as well as
differentiable a.e. in [0,1), both taken in the classical sense]. Further,

E{Q}S(X) exists in view of the second example, and turns out to be
2 s(x) = - 4 et £ ().

Conversely, s(x) can be regarded as the (first order) dyadic

anti-derivative of 1-4x. In fact,
I{l}(1—4x) = 5(x) (x € [0,1)).
Classical differentiation of «-2x® decreases its order from 2 to 1 to
zero; ED-differentiation first increases the order of s(x), a piecewise

constant, to the linear function 1-4x, and then passes on to —46{1}f1 (recall
Fig. 1).
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Let us try to compare the Newtonian-Leibnizian calculus with the
ED-calculus on the basis of this example:

Newtonian Calculus ED-Calculus
l x - 2x° l s(x)
Differen- Integration Differen- Anti-Differ-
tiation 1 - 4x tiation 1 - 4x entiation
4 -4 gl

For an approximation to the graph of s(x) see Figure 3.

: 107!

13,0

10,0

o by

L~

0,0 1,0 2,0 3.0 4,0 5.0 6.0 1.0 8,0 9.0

s 107!

Fig. 3. The graph of the 40th partial sum of s(x). This is a very good
approximation to s, differing from s by at most 4
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A possible interpretation of the anti-differentiation operator

Ira = BT} for re N, in particular of I{l}f = (£4W])(x), is also still
laciing. It does not seem to be associated with the area under a curve, as is
the classical integral. Further, VI(X) is probably not positive on [0,1). In

any case, Vf(x) > -1 on [0,1). See also [5, p. 935 f] in this respect.

8. Applications to Walsh-Fourier Analysis and the Theory of Best Approximation

The dyadic modulus of continuity of f € X[0,1) is defined by

(BET) 5= s () - (el

and the dyadic Lipschitz class of order f > 0 by

Lip(f;X) = {f =~ X) = 0(6%), 6 = o).
Denoting by P the polynomials of degree < n, i.e., of
.
all p (x) = Eﬁzo ¢ ¥ (x, i, then the best approximation of
f e X[{0,1) by p, €7 is ¢ .uoy

E (£:X) := inf |I£(-) - p (*)lly-
- pne?n o X

There exists a pf € 7 such that E (£:X) = |If - pplly- Basic is the
following identity which easily follows by applying the VWalsh-Fourier
transform to both sides together with the uniqueness theorem.

Lemma 13. For f € X{r}, h €[0,27"), ne N, r € N, one has
£(x) - £(xoh) = (W) o (eldecy - b an)) (x) ace.

Theorem 7. Let f € X{r}, T € N.

2)  u(8:55X) = 0([log, 6% 6 u(s;elTe;1)) (6— 0 4).
b)  w(6;£5X) = 0([log, 61177 &TelThey (6 — 0 +).
e)  £(k) = 0([log, K% kT w(xL;eltox)) (k — o).



52 Paul L. Butzer, W. Engels

d) If, in addition, E{r}f € Lip(f;X), # > 0, then
£°(k) = 0([logy KJZ xTF) (k — o).

To prove a), one has by Lemmas 6 and 13,

ey, ety - el an),

A

[£(-) - £(-eh) [l

o[n?To T w(&;E{I}f;X)

which leads to the desired estimate for 2™ < § < 271, Part b) is immediat
by a), and c) follows by the well-known inequality |£(k)| < (1/2) o(k 1;£;X)
kel .

If one compares the above estimates with the corresponding ones of [10
for the standard dyadic derivative, one sees that in that case the orders ar

better. In particular, if the standard dyadic derivative D{r}f belongs t
Lip(f;X), then the counterpart of part d) reads £°(k) = O(k—r_ﬂ); it does no
contain the multiplicative factor (log2 k)2r, which corresponds to the facto
m?T in the basic Lemma 6. Nevertheless, the main order, namely TP

dominates the factor (log, k)2r for large k.

Theorem 7 in case r is replaced by a € R® is to be found in [4, 5]
There, however, in the power 2r of the 10g2—function the r, thus the
there,is missing. This remark applies in [5] to Theorems 4.1, 4.3, and 4.4
Lemmas 4.1, 4.3 and Corollary 4.1. This is due to the fact that the proof o
Lemma 5.5 [4], used in these results, is not complete. In fact, the estimat
(5.11) [4] should read

g - i, = o (logy m™) (n — a).

(Observe the additional a in the power of log, m). In the terminology of th
present paper it is the estimate

M, = o(nt2 M)

established for a = r in Lemma 6.
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In the present frame the Bernstein and Jackson-type inequalities read

Lemma 14. a) For Dy E Py T E N one has

; T
(8.1) 1e0p 1y < € n¥lpyllg (n € W),
C being a constant independent of n,T,p, and f.
b) If £ € XT3, then
(8.2) B (£;3) = 0f(log, n)2T L ety (n — o

- &) plLid) = g9 = X ®).

Observe that the order in (8.1) does not match (8.2) in the standard

sense in view of the additional factor (log, n)2r in (8.2), which does not
occur in standard dyadic analysis ([see e.g. 10, 41]). But inequality (8.1)

has its normal form.

Now to the counterparts of the theorems of Jackson, Steckin and Lebesgue
in approximation theory and the theory of Fourier series, respectively.

Theorem 8. a) If f ¢ X{r}, r € N, then

E (£5X) = 0|(log, n)2r 1? w(n_l;E{r}f;X) (n — o).

n
In particular, if further E{r}f € Lip(f;X), f > 0, then

(8.3) E (£;X) = 0((log, n)2F aTF

C (£51) = 0((log, n)Z 2 TF) (h—w).

b) In the converse direction, if (8.3) holds, then E{j}f ezists, belongs to
X[0,1) for 0 < j <1, and

wmf—emqh=4mw¥ffﬁﬂ (n — o).

c) If f ¢ X{r}, r €N, then

15 - £lly = 0[(logy )" L2 u(s eeim) (n = a).
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In particular, if further E{z}f € Lip(f;X), A > 0, then

IS £ - £l = 0((logy 0)* Ay,

Lemma 14 and Theorem 8 follows by the standard techniques and results in

Walsh analysis when observing Theorem 7.

Again note the additional factor (Log, n)2r in the estimates of parts a),
b) and c) above.

Concerning part b), a further open question is whether condition (8.3)

implies that £{r} satisfies some type of Lipschitz condition.
p
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Abstract. The problem of term by term pointwise (Gibbs) differentiation of a Walsh series
was introduced by Butzer and Wagner in 1975. They asked under what conditions on the
coefficients aj. is a Walsh series term by term differentiable. This problem has proved to be
an interesting one and we shall survey efforts made to resolve it. We shall also include many
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The techniques developed in response to this problem can be divided into two broad classes:
remainder techniques and interchange arguments. We begin by illustrating these techniques
for the lacunary case where the whole thing is quite simple. We then look at solutions
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§1. INTRODUCTION

We assume the reader is familiar with the Walsh-Paley system wq,ws,... (a complete
orthonormal system defined on the unit interval [0,1) which contains the Rademacher
functions), and with dyadic addition 4+ (a commutative, associative, binary operation
defined on [0,1)) which enjoys the relation

(1) wi(z +y) = wi(z)wi(y)

for k =0,1,..., z,y € [0,1), and z + y not a dyadic rational. We also assume that the
reader knows elementary facts about Walsh-Fourier series, Walsh-Fourier coefficients, and
the dyadic group. Sufficient information on these subjects can be found in Fine [12].

Each Walsh function takes on only the values +1 and —1 and has finitely many dis-
continuities. Consequently, classical differentiation cannot distinguish one Walsh function
from another. Gibbs (see [13], for example) introduced a derivative which overcame this
difficulty. Butzer and Wagner [8], [9] modified the Gibbs derivative and introduced this
concept to the mathematical world as the dyadic derivative. The strong (dyadic) deriva-
tive was discussed in [8] and the pointwise dyadic derivative was discussed in [9]. Their
definitions were essentially the following ones. Given a function f defined at pointsin [0, 1)
set

n—1
dnf(z) =Y 27 (f(2) = flx+2771)
=0

forz € [0,1) and n =1,2,.... Let X be a metrizable topological vector space of functions
which are defined a.e. on [0,1) such that the distance between two functions in X which
equal each other a.e. is zero. The function f is said to be strongly differentiable in X if
f, dof € Xforalln>1 and

dMf = lim d,f

n—oo

exists in X. The function f is said to be dyadically differentiable at a point = € [0,1) if f
is defined at ¢ and 2 4+ 277 for j =1,2,... and
f(2) ;= lim dn(f.2)
n—oo
exists and is finite. The function d“]f is called the strong derivative of f in X and fm(I\

is called the dyadic derivative of f at . Butzer and Wagner showed that each Walsh
function is always strongly differentiable and everywhere dyadically differentiable with

(2) dMwy = u'/[k]] = kwy

for k = 1,2,.... They also showed that the Walsh functions are the non-trivial solutions
of a first-order linear differential equation with respect to the strong derivative.

We shall say that a Walsh series

oo

(3) F(1) = arw(t)

k=0
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is term by term strongly differentiable in the space X if (3) converges in some sense to a
function f which is strongly differentiable in X and satisfies

dUf =" kagw,

k=0

in the topology of X. Similarly, we say that f is term by term (dyadically) differentiable at
apoint z € [0,1) if f converges at z, and z+277 for j = 1,2,..., is dyadically differentiable
at z and

o0
Mz) = karwi(z).
k=0
We shall refer to the series Efozl kajwy as the derived series.

The problem of term by term dyadic differentiation was introduced by Butzer and Wag-
ner in [9]. They asked under what conditions on the coefficients aj is the series f given
by (3) term by term differentiable. This problem has proved to be an interesting one and
we shall discuss efforts made to resolve it. Our discussion will be organized as follows.
In §2 we examine the lacunary case. The next two sections contain a survey of known
results concerning term by term pointwise differentiability: §3 deals with global differen-
tiability and §4 deals with local differentiability. In §5 we discuss term by term strong
differentiation and in §6 we raise some open problems and unanswered questions.

§2. THE LACUNARY CASE

There are two basic techniques which have been used on the problem of term by term
dyadic differentiation: the remainder term and the interchange argument. In this section
we shall illustrate these two techniques in the simple case of lacunary Walsh series.

The first technique centers on a calculation which estimates the remainder term

Rulz) i=dnf(2) — Z kapwi(z).
k=0

It then remains to find hypotheses which imply that R,(z) tends to zero as n — co.
The second technique rests on finding hypotheses which allow an interchange of limit
and summation. For example, the following result appeared in [23].

LEMMA 2.1. Let bin), by, and zy be real numbers for n,k = 0,1,..., and suppose
oo
S
k=0

converges to a finite real number. If bgcn) — by asn — oo and there is an absolute constant
M > 0 such that

oo

(n) _ 4(n)
Z’bk ~bk+1‘ SM<oo
k=0
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form =0,1,... then
o0 oo
: E (n)
= = by ‘zk = ;—o: brzx

exist and are finite.

Such results are used to verify
oo (oo
nlirgo Zakdnuvk(r) — Zak nli_n;odnwk(as).
k=0 k=0

If f is defined at z and z +2~ ¢ for £ =1,2,..., then d, f(z) = > ardpwi(z). Thus we see
by (2) that such an interchange implies term by term dyadic differentiation of the Walsh

series (3).

The Walsh series f is called lacunary if there exist integers ki, ko,... and a number
g > 1 such that
(4) kivi/k; 2 g

for j=1,2,... and
o0
F= E ag; W -
i=1

Since the Rademacher functions rq, 7y, ... satisfy
TJ- = uLZj

for j = 0,1,... it is clear that every Rademacher series is a lacunary Walsh series. It is
also clear that a Rademacher series

(5) g(f) = ZCJ‘F]'
7=0

has Z;; 2jcjrj(;1‘) as its derived series.
The remainder term of (5) is easy to analyze. Suppose that g converges at z and gp2—t1
for (=0,1,.... Fix £ > 0. By (1) we have

g9(x +270 ) = Z e;ri(z 4 g1

=0
=Y egri(e)rs(27Y).
i=0
But )
omt—1y _ -1 for j=¢
ri(2 )= ‘
1 otherwise.
Hence g(z) — g(z + 27%"1) = 2¢¢r¢(z) for £ =0,1,.... It follows that
n—1
dpg(x) = Z 2leer
=0

In particular, R,(z) = Z?_‘;n 2fere and we have proved the following result.
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THEOREM 2.1. If the Rademacher series g given (5) converges at z and = + 27t~ for
£=0,1,... then g is term by term dyadically differentiable at z if and only if the derived
series ) 2lc;r; converges at .

This theorem is due to Onneweer [16]. In fact, Onneweer investigated term by term
dyadic differentiation of Rademacher series on any compact group G which is the direct
product of cyelic groups of order p, for any sequence of primes {p,}. He showed that a
given Rademacher series which converges absolutely on G is term by term differentiable
at a point = € G if and only if the derived series converges at z. This reduces to Theorem
2.1 in the case when p, =2forn=1,2,....

To illustrate the interchange argument we pass to the full lacunary case. For each pair
of non-negative integers n, k > 0 let (), represent the integer congruent to k modulo 27,
Le., let p:= (k), be determined by 0 < p < 2™ and k = £2" + p for some integer £ > 0.
Recall from Butzer and Wagner [9] that

(6) dnwi = (k) wi
forn,k =0,1,....
Let Z}-:O ag; w; be a lacunary Walsh series which converges at z and = + 2771, for
£=0,1,..., whose derived series converges at z. Use (6) to write
s[5 o~ (Rida
In akJ lL’kj = Z I jakjuka.
j=0 j=0

Since {k;} satisfies (4), an easy calculation verifies

o

Z (ki) _ (kjs1), < 1+2< q >

Py k] le+1 q — 1
forn=1,2,.... Thus by Lemma 2.1 we have proved the following.

THEOREM 2.2. Suppose the Walsh series f given by (3) is lacunary. Let z € [0,1) and
suppose f converges att = z andt = z + 271 for ¢ = 0,1,.... If the derived series
converges at = then f is term by term dyadically differentiable at z.

A generalization of this result will appear in [24). Thus the problem of term by term
dyadic differentiation of lacunary Walsh series is closed.

63 GLOBAL DIFFERENTIABILITY

The first results on term by term dyadic differentiation were obtained by Butzer and
Wagner [9]. By an interchange argument they proved

THEOREM 3.1. If 5°77 | klay| < oo then the Walsh series f given by (3) is term by term
differentiable everywhere on [0,1)

If the coefficients are monotone the growth condition in Theorem 3.1 can be relaxed. In
(23] we find an estimate of the remainder term which verifies the following.
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THEOREM 3.2. Ifar | 0 as k — oo and ) 1o | |ax| < co then (3) is term by term differen-
tiable everywhere on (0,1).

Thus .
’ @) =) b *ult)
k=1

is term by term differentiable everywhere on [0,1) when a > 2 and on (0,1) when o > 1.
(This series is nowhere term by term differentiable when a = 1 because the derived series
fails to converge in this case). ’

Recall that a sequence {b;} is quasi-convex if

(k + 1)|bk42 — 2041 + bi| < co.
k=1

Concerning a.e. term by term differentiability, Butzer and Wagner [9] proved

THEOREM 3.3. If {ar} and {kay} are quasi- convex and kay — 0 and k — co then (3) is
term by term differentiable a.e. on [0,1).

In connection with Theorem 3.3 Butzer and Wagner conjectured that term by term
differentiability would still be possible if quasi- convexity were replaced by kap | 0 as

k — oco. This conjecture was verified by Schipp [27] who estimated the remainder term
with dn (3" 724n axwy). He proved:

THEOREM 3.4. If kap | 0 as k — oo then (3) is term by term differentiable at any point
EEIT fori= 1,25 . .

It follows that

(oo}

. 1
t) = ——wi(?
0 =2 g o ®
k=2
is term by term differentiable for every a > 0 at every point ¢ # 27¢ for i =1,2,....

A different form of the remainder term was used in [29] which resulted in the following.
(Here and elsewhere the empty sum is defined to be zero).

THEOREM 3.5. If

2ntl—g
(7) 2™ | agn| + |agn+1_q| + E lax —akq1] ] =0 as n— oo
k=2n
and the derived series converges at some point v # 27" 1 = 1,2,... then (3) is term by

term dyadically differentiable at z.

Notice that the hypotheses of Theorem 3.5 are met by coefficients which satisfy ta, | 0
as k — oco. Thus Theorem 3.5 contains Theorem 3.4 Notice also that the hypotheses
are met by coefficients which satisfy ax > axyq for 2" < k < 2" — 1 and n large, and
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2*ar — 0 as k — oo. Thus Theorem 3.5 applies in situations where kay | 0 fails and where
> lax| = co. For example the series

- oo 1 DI |
fO) =2 o5 2 )
n=1 k=2n

is term by term differentiable at all points z # 27 for 1 = 1,2, . ...

A quasi-convex sequence which converges to zero is necessarily of bounded variation.
Thus the conditions of Theorem 3.3 imply that {kax} is of bounded variation. If we
assume a little bit more we can once again obtain everywhere differentiability (see [23)):

THEOREM 3.6. If {k%ay} is of bounded variation for some a > 1 then (3) is term by term
differentiable everywhere on (0, 1).

Thus

oo

) 1
Jt) = Z Wu’k(ﬂ

k=2
is everywhere term by term differentiable on (0, 1) when @ > 1 and # > 0.
§4. LOCAL DIFFERENTIABILITY

The object is to identify conditions sufficient to conclude that f is term by term differ-
entiable at a particular point. We have mentioned two results of this type above: Theorem
2.2 and Theorem 3.5.

In [23] an effort was made to get away from conditions which imply that {kay} is of
bounded variation. Using Lemma 2.1 and the interchange argument, it was shown that

THEOREM 4.1. Let z € [0,1). Suppose for some a = a(z) > 1 that

Z k%apw(z)
k=1

converges to a finite real number. Then the Walsh series f given by (3) is term by term
differentiable at .

Thus

(8) ht) = 3 Trwn(t)
k=1 :

1s term by term differentiable for « > 1 at any point where f converges. In particular, if
{ar} are the Fourier coefficients of some f € LP[0,1) for p > 1 then (8) is a.e. term by
term differentiable on [0, 1).

Since a Walsh series with coefficients of bounded variation necessarily converges on (0, 1)
(a simple argument using Abel’s transformation), it is clear that Theorem 4.1 contains
Theorem 3.6. It is also clear for the case & > 2 that Theorem 4.1 is a corollary of Theorem
3.1, ;

It turns out that the crucial properties for Theorem 4.1 are that {k*} is monotone
non-decreasing and its reciprocal is summable. Indeed, the following will appear in [25]
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THEOREM 4.2. Let 0 < By < 51 < ... be real numbers with Yoo L/ Br 2 o0, B

oo

> axBrwi(z)

k=0

converges at some point z € [0,1) then (3) is term by term differentiable at .
Thus if

oo

(9) > k(log k) *azwy(z)

k=2

converges to a finite real number for some & > 1, then (3) is term by term differentiable
at .

One way to interpret Theorem 4.2 is that if the derived series converges fast enough at
z then (3) is term by term differentiable at z. The following result, which will appear in
(23], follows up this line of investigation.

THEOREM 4.3. Let vg > 41 > -+- > ~v; > -+ > 0 be real numbers. Let x € [0,1) and
suppose that the function f given by (3) exists and is finite at t = ¢ +277 for j = 1,2,....
a) If

o
oo <on
k=0
and
oo
Z arwi(z) = o(ym) as m — oo
k=m
then f is term by term differentiable at z.
b) If
o Tk
> % <
k=0
and

then f is term by term differentiable at .

In particular, if

= 1
(10) }\Z arwi(z) = o <W> as m — oo

for some z € [0,1) and a > 1 then (3) is term by term differentiable at .
It is interesting to note that Theorem 4.3 is a generalization of Theorem 4.2 (see [25]).
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§5 STRONG DIFFERENTIATION

The problem of term by term strong differentiation seemed closed by the initial work of
Butzer and Wagner [8]. They showed that if X is a Banach space of integrable functions
whose norm satisfies three conditions for all f,g € X:

(11) =5 £l = 171,

where 7;f(z) := f(z +277) for j = 1,2,...,

(12) 1A <A
and
(13) £ =gl <N FHNgll,

where f % g(z) := fol f(z + t)g(t) dt, then the Walsh-Fourier series of an integrable f is
term by term strongly differentiable in X if both S[f] and the derived series ) .-, kf(k)w;
converge in the norm of X. Their proof rested on characterizing the strong derivative in
the following way. A function f is strongly differentiable in a Banach space X whose
norm satisfies (11), (12), and (13) if and only if there exists a function ¢ € X whose
Walsh-Fourier coefficients satisfy §(k) = kf(k) fort B=1,2,....

Notice when (12) holds, that any Walsh series which converges in X is necessarily a
Walsh-Fourier series. Thus Butzer and Wagner showed

THEOREM 5.1. Let X be a Banach space which satisfies (11), (12), and (13). If the Walsh
series f given by (3) and its derived series converge in X then f is term by term strongly
differentiable in X.

If X is a Banach space which does not satisfy (11), (12), and (13) then this characteri-
zation no longer holds and the problem of term by term strong differentiation comes alive
again.

A quasi-normed linear space is a vector space X together with a positive definite function
||| : X = [0,00) such that

e +yll <llzll +Mwll, =<l = ll=l,

lim ||anz|| =0, and lim |az,||=0
on—0 llznll—0
for z,z,,y € X and scalars a,. A quasi-normed linear space is called complete if its
Cauchy sequences converge. (See Yosida [33], for exarple).
We shall call a quasi-normed linear space X monotone (by means of U) if there is a
finite-valued non-decreasing subadditive function ¥ on [0, 00) such that ¥(a) — O as a | 0,

(lapl) < T(lal)T(]B])
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and

llez|l < T(lal)=|

for £ € X and scalars a and §. We shall call X appropriate (for dyadic differentiation)
if X contains the Walsh functions, every element of X is a function defined a.e. on [0,1),
T]fEXforfEX and j =1,2,..., and ||f|| = 0 if and only if f =0 a.e. on [0,1). Thus
if the Walsh series f given by (3) converges in X and X is appropriate then d, f e X and

by (6) we have that
= Z (k), arwy

k=1

converges in X. This allows one to use the interchange argument on any appropriate
quasi-normed linear space where results such as Lemma 2.1 have been established. Such
results were obtained in [25] for all monotone, appropriate complete quasi- normed linear
spaces. This eventuated in the following analogues of Theorems 4.2 and 4.3.

THEOREM 5.2. Let X be an appropriate complete quasi-normed linear space which is
monotone by means of U. Let0 < By < #1 < ... be real numbers with 3 e U(1/8k) < o0
If the Walsh series f given by (3) and the series

oo

z arBrw

k=0
converge in X then f is term by term strongly differentiable in X.

THEOREM 5.3. Let X be an appropriate complete quasi-normed linear space which is

monotone by means of U. Let vo >y1 > 2% 220 be real numbers, and suppose
that the Walsh series f given by (3) converges in X.
a) If
o0
> U(n) < o0
k=0
and
I ZGU“ Il = o(¥(vm) as m — oo

k=m

then f is term by term strongly differentiable in X.

b) If R
>u(}) <o

k=0

>‘~’\)

and
fo's)
| Z karw| = o(¥(ym)) as m — oo
k=m

then f is term by term strongly differentiable in X.
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It should be pointed out that in this setting Theorem 5.2 is not a corollary of Theorem
5.3.

What kind of spaces satisfy the hypotheses of Theorems 5.2 and 5.37 Clearly every
Banach space is monotone by means of ¥(a) := a and every Banach space which satisfies
(11), (12), and (13) is appropriate. Thus Theorems 5.2 and 5.3 apply to the classical
Banach spaces L?[0,1), BMO[0,1) and H?[0,1) for 1 < p < co. Theorems 5.2 and 5.3
also apply (see [25]) to the quasi-normed linear spaces L?[0,1) for 0 < p < 1 and to the
block spaces By, ¢ > 1, which were introduced by Taibleson and Weiss [30]. In particular,
(3) is term by term strongly differentiable in L?[0,1),0 < p < 1, when

5
me/?|| Z arwg||h — 0,
k=m

as m — oo and is term by term strongly differentiable in a block space B, for some ¢ > 1
when

locrm “ Z al\ul\lls =4

k=m

as m — oo for some o > 1.
§6 UNANSWERED QUESTIONS

Can the condition ) 1/8; < oo in Theorem 4.2 be relaxed? An affirmative answer
would be provided if one could show that (3) is term by term differentiable at  when

(14) |Zuoazaw )| < oo

Similarly concerning Theorem 4.3 the question arises, is (3) term by term differentiable at

z when
oo

Z arwi(z) =o(mlogm) as m — oo?

By Theorem 3.1, (3) is term by term differentiable on [0,1) when the derived series
converges absolutely on [0,1) . It is natural to ask the following question. If the derived
series converges everywhere on [0,1) is (3) term by term differentiable at some point in
[0,1)? Perhaps (3) is term by term differentiable a.e. on [0,1) or at least on a dense G
set. An easier question along these lines is the following one of a probabilistic nature. If
the derived series converges at z, is Y e Farwi(z) term by term differentiable for almost
all choices of the signs +7

One of the curiosities of Walsh-Fourier analysis is that unlike the trigonometric case, the
Walsh-Fourier coefficients of a smooth function cannot converge too rapidly to zero. Fine
[12] was first to notice this phenomenon by showing that if f is absolutely continuous and
its Walsh-Fourier coefficients satisfy f(k) = o(1/k) as k — oo then f is constant on the
interval [0,1). Several authors have identified conditions on the Walsh-Fourier coefficients
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of a continuous function f which are sufficient to conclude f is constant. These conditions
regularly show up as hypotheses of theorems about pointwise dyadic differentiability. For
example, the conditions of Theorems 3.1 and 3.5 were first considered by Coury [10] in
this context.

This connection between pointwise dyadic differentiability and constant continuous func-
tions is no accident. In the first place, no non-constant continuous function can be dyad-
ically differentiable at all but countably many points on [0,1) (see [29]). Thus when
Bockarev [2] gives an example of a continuous non-constant function whose Walsh-Fourier

2 1
f<k):0<klogk> as k— o

he provides an example of a Walsh series f whose coefficients satisfy ax = O(1/(klogk))
as k — oo which is not term by term differentiable at all but countably many points on
[0,1).

In the second place, Engels [11] has shown that if f is a bounded function which has
at most countably many discontinuities on the interval [0,1) (all exclusively of the first
kind), and these discontinuity points have at most a finite number of cluster points, then
f is dyadically differentiable at all but countably many points in [0,1) if and only if f is
piecewise constant on [0,1). Thus it does not seem unreasonable to conjecture that any
condition on the coefficients of f sufficient to conclude that f is constant when continuous
is also sufficient to conclude that f is term by term differentiable, whether f is continuous
or not.

Here are some special cases worth considering. Bo¢karev ([1] and [2]) proved that if g is
continuous and its Walsh-Fourier coefficients satisfy |§(*)| < &x for some sequence & | 0
with 3 ;o 0k < oo then g is constant. Is (3) term by term dyadically differentiable at all
but countably many points in [0,1) when

coefficients satisfy

[oe]
lax| <6k 1 0 as k— co and Zﬁk<m'?
k=1

A less ambitious project is suggested by a corollary of Bockarev’s result. Is (3) term by
term dyadically differentiable at all but countably many points in [0,1) when

) 1

(15) “k:O<W> as k— o

for some a > 17 Notice that condition (14) is stronger than (15) for & = 1 but weaker than
(15) for any a > 1. Thus an affirmative answer to the first question in this section would
be an improvement of Bockarev’s result. Other growth conditions to check are provided
by [31] and [32]. Specifically, is (3) term by term differentiable at all but countably many
points in some interval [a,b) when any one of the following conditions is satisfied?

e 2n—N—1 2n+2[2:\'
(16) lim 2V g E E axwg converges everywhere on  [a,b),
N—co
n=N+1 (=1 k=2n4(2¢-1)2V
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or
N 2ntlog

sup | Z Z 2"azwg| is finite valued on[a, b).

N20 20 g=gn
Notice that condition (16) is stronger than condition (7) when a=0 and b=1. Thus an
affirmative answer to this last question would extend Theorem 3.5 and would provide a
local version of it as well.

With the exception of generalized Rademacher series (see Onneweer [16]), the problem
of term by term differentiation of Vilenkin series has not been touched. All of the results
cited in §3 go over to the special case of the group of integers of a p-series field, but the
general problem is wide open. The requisite tool of a fundamental theorem for the bounded
case is provided by P&l and Simon [22] and a several definitions have been provided and
compared by Onneweer [17], [18].

Another problem which has not yet been examined is term by term dyadic differentia-
tion of multiple Walsh series. Theoretical foundations of the dyadic derivative in several
variables have been provided by Butzer and Engels [3], [4] and Méricz [15] has conditions
sufficient to conclude a double Walsh series is the Walsh-Fourier series of some integrable
function. Moreover, a fundamental theorem is now available in this setting (see [28]).

What about an analogue of these results on the dyadic field? The analogous problem
would be what conditions on the Walsh transform F of a function f integrable on R* imply
that f is dyadically differentiable and that derivative is the Walsh transform of FI1? Again
the background work has been done. The dyadic derivative on RT was introduced long
ago by Butzer and Wagner [7] and the fundamental theorem is well-known (see P&l [20],
21))

Finally, Butzer, Engels, and Wipperfiirth [5], [6] have introduced the ED-derivative.
This is an extension of the dyadic derivative which is not only applicable to piecewise
constant functions but also to piecewise polynomial functions. Since more functions are
E D-differentiable than dyadically differentiable it is presumably easier to show a given
Walsh series is term by term ED-differentiable than dyadically differentiable. Thus the
growth conditions in the theorems cited above may be weakened for the ED derivative.
Moreover, the class of series available for this setting includes power series as well as Walsh
series. There is much work to do.
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ABSTRACT.This paper is a short summary of some results concerning
multiple Walsh series.The connection between Walsh series,dyadic martin-
gales and quasi-measures is investigated in one and two dimensional case.
Inequalities for martingale maximale functions, martingale transforms and

square functions are used to study norm and a.e. convergence of Walsh
series.

Duality of dyadic Hardy-,BMO-,and VMO-spaces and atomic charac-
terisation is discussed in one and two dimensional case.The dyadic differen-
tiation and integral is extended to function of two variables and the funda-
mental theorem of the calculus is given.The method can be used to study
a.e. Cesaro summability of Walsh-Fourier series in one and two variables.

1. DYADIC MARTINGALES

We shall denote the set of non-negative integers by N ,the set of positive integers
by P, the set of real numbers by R, and the set of dyadic rationals in the unit
interval [0,1] by Q. In particular, each element of Q has the form p/2" for some
p,n € N,0 < p < 2". Furhermore, let I:=[0,1) be the unit interval.

For any set X # 0 let X! := X and denote by X? the cartesian product X x X.
Thus N? is the collection of integral latice points in the first quadrant, and I? is the
unit square . We shall use the notation z = (z,,a € A) to represent a collection
z indexed by a set A. Thus a sequence and a double sequence will be represented

in the form (z,,n € N) and (z,,m € N?), respectively, where 2,, = z,, for
m = (p,q) € N,

We shall use the following partial ordering in R?. For z = (z,,z,),
Y= (v,%) ER>let z <yilz, <y and z, < y, , and set |z]| := |z,| + |z|.
Furhermore, let An:=n if n € N, and An := min{n,,n,} if n = (n,,n,) € N2,

Fix j € {1,2} and denote the j-dimensional Lebesgue measure of any measurable
subset ¥ of I’ by |V| .The L”(I’) norm of any function f € L”(I’) will be denoted
by | ]I, -

By a dyadic interval in T we mean one of the form [p/2",(p + 1)/2") for some
p,ne N,0<p <2 Givenn & N and z €1 let I,(z) denote the dyadic interval of
length 27" which contains z. Denote the collection of dyadic intervals by J.

Let J? denote the collection of dyadic intervals in I?,i.e., the sets of the form

I'=1 » I,where I}, 1, € J. Clearly, given z = (z,,1,) € I?, the dyadic intervals in
J* containing = are of the form

(1.1) Ltz) =T, (z) % L., (2}
73
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where n := (n,,n,) € N?. The set of dyadic squares is denoted by

(1.2) 0:={I=KxLeJ:|K|=|L|}.

For each n € N let A" represent the atomic o-algebra generated by the dyadic
intervals I € J of length 27 ".Thus every element of A” is a finite union of intervals
of the form [k/2", (k +1)/2").

The atomic o-algebra generated by the two dimensional dyadic intervals of the
form I = K x L with |K| = 277 and |L| = 277 will be denoted by A(»%).For 5 € {1, 2}
and n € N7 let L(A") denote the set of A"-measurable function defined on I7. Set
A == A" if n € N and let

AZ = Alramtre=l) (= (my,n,) € N?),
where A7! := A% and Al=171) = 40 A(-10) = glod) | gl-1) .= 4:0) (7 € N).

The conditional expectation of the function f € L*(I7) ( = 0, 1) with respect to
A™ (n € N7) is denoted by E, f and can be given in the.form

1 ; ;
(1.3) (B.file) = l]n(I)’I (/I] f (ze I’,ne N?).
Extending (1.3) we set
1 2
(Bloo ) ) (u,v) := ‘Ik(U”[ (/U] f(u,s)ds ((u,v) € I,k € N).

A sequence of functions f = (f,,n € N7) defined on I’ is called a dyadic mar-
tingale if each f, belongs to L(A") and

(1.4) E.f. =/, for all n<m and n,mé&N’.
fo<p<oo, f, € L' (I’) (n € N’) and

I£ll, := sup [|fu]l, < oo,

neN/

then the martingale f is called L”-bounded.
Let f € L'(I’) and define the sequence f = (f,,n € N7) by

(1.5) fo = B, f (n€ N,

It easy to see that f is a martingale.Martingales of this type are called regular.
Moreover, if f € L"(I’) for some 1 < p < oo, then f is L?-bounded and

tim 7, /], =o.
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Here and in the following the limit of a double sequence is taken in Pringsheim sense,
i.e., for every € > 0 there exists an index N € N? such that ||f, — f|| <eifn > N.
If 1 < p < co then the martingale f can be written in the form (1.5) with a function
f € L?(I7) if and only if f is L”-bounded. In the case p = 1,f is of the form (1.5) with
a function f € L* (I”) if and only if the martingale f is uniformly integrable, i.e.,

(1.6) sup / |fn] =0 as y — oo.

neN?

{Ifnl>v}

This characterisation of regular martingales holds for all martingales indexed by an
upward directed set (see NEVEU [29]).

Thus f — f := (E,f,n € N7) is a norm-preserving map from L? onto the
space of L"-bounded martingales if I < p < oo and consequently the two spaces can
be identified. In a similar way, we can identify L'(I”) with the space of uniformly
integrable martingales.

The martingale maximal function is defined by

(1.7) 7= sup |fa]-

neN/

To define the martingale transform and square function introduce the martingale
difference sequence in the one-dimensional case by

(18) d() = filadu = fn _fn—l (TLEP),

and in two-dimensional case by
(1-9) dy.o 1= fo.zn dk.o = fx;m: - fk—l.ﬁad(l.k = fo,k - fo.k—l (k € N)

du = f(nbu—_,; - f(nl—l.n-_»] - /‘[71141L’_\—‘1) +f(n1—-l.nq—1) (n: (nljnZ) ENZ)

Obviously,

o= ¥ e

k<n

Moreover,if o = (o, ,n € N’) and a, € A* (n € N7) , then the sequence

(1.10) fo =7 opdy, *:=[f2,neN)

k<n

is also a martingale and it is called the transform of f by the sequence « .
We introduce a set of function sequences to define special martingale transforms.
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To this end set
(a2 T :=
={r=(r.,n€N):7,(z) €{0,1},r, € L(A*) and 7,27, if n<m}

The square function of the martingale f is the function

(1.12) Qf i={ D |da[*)*".

ne Nl
For 0 < p < oo denote by H” the sct of martingales f = (f,,n € N7) for which
(1.13) [£ller = [1f ], < o0

It is easy to sec that if p > 1 then (1.13) implies that f is uniformly integrable and
consequently H" can be identified by a subspace of L (I7).
We shall use the hibrid Hardy space H* based on the maximal function

(1.14) f* = sup |Eie 1) f] (fe Ll(IE))-

keEN

Thus H* will represent the collection of functions f € L*(I?) satisfying

1/ == 1S

1 < oo.

Clearly H' C H' , and il [ is non-negative then f belongs to H' if and only if
fe€Llog™ L jie.,

[ Uttog” 171 < .

o

It is convenient in one dimension to identify H* with L' (I).
For any subspace Y C L' (I’) denote by ¥, the set of elements in Y satisfying

3= {fEYZEnf:O} (]l:l),

Yo:={feY :E,.nf=Eo.,/=0 (neN)} (j=2).

It was proved by HARDY (see ZYGMUND [46]), PALEY [30]
(for y = 1) and by CAIROLI [18] (for j = 2) that the L”-norm of f and f* are
equivalent (in notation |/ /||, ~ |||+ ), i.e.,there exist constants A4,,B, > 0 such
that for 1 < p < oo

(1.14) AN < W < Bullflly (f € L2 (T)),

and (1.14) does not hold for p = 1.But the L”-norn of f* and Qf are equivalent for
any 0 < p < oo,

(1.15) 1 ~ NIQEll, (0 <p < o).
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For j=1 see BURKHOLDER [7]for j=2 see BROSSARD [5],[6] (p < 2) and
METRAUX [26] (p > 1).

From (1.14) and (1.15) it follows that if |, | <1 (n € N7), then the martingale
transform defined in (1.10) satisfies

sup [|f/ [l < Clifll, (1 <p < o0)

ne N/

with a constant C,, > 0 depending only on .
In case j = 1 the dual of H} is the space of functions with bounded mean

oscillation,i.e.,the space BMO (see GARSIA [18]).A function f € LZ(I) belongs to
BMO if

(1.17) Ifllemo := sup (B, (f - Enf)z)l”lloo < 0.

neN

It is easy to see that the BMO-norm is equivalent to

(1.18) 1f]] = f;lgl{ATZO}F"”ZHf—f’Hz,

where A7 :=inf, ., 7, and [ := (E,f,n € N7),and j = 1.
The subspace of functions in BMO satisfying

(1.19) lim [|(B, (f = B, f)?)*/]| =0

n— co

[

is denoted by VMO, and it is called the space of functions with vanishing mean
oscillation.It is easy to see that VMO is the closure of the set of dyadic step functions
(i.e.,of U, L(A™)) in BMO-norm.The dual of VMO is H; (see SCHIPP [34]).

Definition (1.18) can be used to define the space BMO in the two dimensional
case.Namely,let BMO be the set of functions in L2 (I?) for which the norm defined in
(1.18) is finite. The dual space of H! is this BMO space (see BERNARD [3]).More-
over,if VMO is defined as the closure of U,enzL(A™) in BMO-norm,then the dual
space of VMO is the Hardy space H! (see F. WEISZ [43)).

A function f in L* (I) is called an co-atom if there is a dyadic interval J C I
such that

B#OYCT |, Il <1/1J] /a:o.

In the two-dimensional case it is convenient to use 2-atoms.A function o € L2 (1?)
1s said to be a 2-atom,if there exist a sequence 7 € T such that

a, =0 on the set {7, =1} (neN?),

e [l < [{Ar = 0}|~*/2,
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Dyadic atoms characterize dyadic Hardy spaces in both cases.A function
f € Lj(T?) belongs to Hj if and only if there exist dyadic atoms 8, (n € N) and
a sequence a = (a,,n € N) of real numbers such that

(1.20) f= Z a,B. and Z la,| < oo.

neEN neN

Moreover,let

(1.21) |F J=tnf Y, |,

neEN

where the infimum is taken over all sequences satisfying (1.20).Then the norm |- |
is equivalent to the H!-norm.

For the case j = 1 see SCHIPP-WADE-SIMON-PAL [86], for j=2 see
BERNARD [8], for atomic characterisation of H? with 0 < p < 1 and duality see
F.WEISZ [40-44].

Dyadic martingales are closely connected to quasi-measures and Walsh series.

2. WALS SERIES, MARTINGALES
AND QUASI-MEASURES

Let j € {1,2} and denote R’ be the algebra of sets generated by the dyadic
intervals in I7. By a quasi-measure we shall mean a real-valued set function which is
finitely additive on R’ . Clearly,the restriction of every finite Borel-measure on I to
R is a quasi-measure, but not conversely.

We shall denote the collection of quasi-measures on &7 by QM? .Let VM’ be the
set of quasi-measures with (finite) bounded variation, let BM’ be the set of (finite)
Borel-measures on 17, and denote by AM? the set of absolutely continuous measures
in BM’. Recall that the map f +— v/ defined by

(2.1) p’ (1] = /1 if (Ie®,;j=1,2)

is 1 — 1 from L*'(I”) onto AM’. Moreover, if ||v|| denotes the total variation of
v € VM’ then ||v/|| = ||f], ,i.e.,the map in question is isometric.
Let r be the function defined on I by

1, z€l0,1/2)

22) rle) = {—1, z e (1/2,1)

extended to R by periodicity of period 1. The Rademacher system r := (r,,n € N)
is defined by

(2.3) radz) =r(2"2) (z € R,n € N).
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Given n € N it is possible to write n uniquely as
(2.4) » n=> n2,
k=0

where n, =0 or 1 for k € N. The numbers n, will be called the binary coefficients
of n.

Given z € I we shall call the expansion

(2.5) =Y g iR,

keN

where each z, = 0 or 1,the dyadic expansion of z. If z € I\ Q, then (2.5) is uniquely
determined.By the dyadic expansion of z € @, we shall always mean the one which

terminates in 0‘s.The dyadic sum of z,y € I in terms of the dyadic expansion of z
and vy is defined by

(2.6) sy =) |z — pf2m Y,
keN

For z = (z:,2,),y = (y:,4) € I? set

(2.7) 2ty 1= (2141, T2 F+v).

The Walsh(-Paley) system w = (w,,n € N) was introduced by Paley as prod-
ucts of Rademacher functions in the following way.If n € N has binary coefficients
(ny,k € N), then

fe=]
(2.8) w, 1= [ #*,

k=10

The double Walsh system (w, ,n € N?) is the Kronecker product system gener-
ated by the Walsh system,i.c.,

(2.9) w, (z) 1= (w,, X w,,)(z) = w,, (z;)w,, (z2)

(n = (n,,n,) € N?,z = (z,,2,) € I?)).
There is a direct connection between dyadic expansions and Walsh functions,

namely

(2.10) w, (z) = (=1)<"=>

)

where

<n,I>::Zn,:Ik (mod2) (n€N,zel).

keN
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This implies that the Walsh functions behave almost like characters with respect
to dyadic addition,namely for a.c. z,y € I

(2.11) w, (z4y) = w, (2)w, (y) (n € NY).

If v € QM’ then the Walsh-Fourier-Stieltjes coefficients of v are defined by
(2.12) bln) = / w,, dv (n € N7).
1’

Since each Walsh function is constant on sufficiently small dyadic intervals ,this
definition makes sense.

It is easy to prove that the map v — D is a 1 — 1 function from QM’ onto the
space of sequences

(2.13) ¢ ={z:z=(z,,neN’),z, eR (neN)} (j=12).

For f € L'(T7) we shall denote by
(2.14) fn) = / Jw, (n € N7)
/i
the n-th Walsh-Fourier coellicient of [.It is clear that
(2.15) Wy=F (feL(m).

The dyadic convolution of f,¢g € L' (I?) is defined by

(2.16) (f*g)(z) := / f(zty)e(v)dy  (z€T)
17
and satisfies X
(f+g)=171"¢.
The Walsh-Fourier-Sticltjes series of v € QM is the Walsh series
(2.17) Q= Z on)w, (J=1,2),
neEN?

and the set of Walsh series will be denoted by §7. For f € L' (I?) we set

(2.18) 8 = 8w’ = Z f(-rl)wn.
nge N/
The rectangular partial sums of Sv are defined by

(2.19) S,vi=)Y_ blk)w, (n€P?),

k<n
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where in case 5 = 2 the inequality ¥ < n means that k;, <n, and k; < n,. If n, =0
or n, =0, then set S,v =0, and for n = (n,,n,) € N? denote

(2.20) 2" 1= (270,2%).

It is easy to see that the sequence of 2"-th partial sums (n € N?,j = 1,2) of
any Walsh series is a dyadic martingale. Conversely, every dyadic martingale can be
obtained in this way. Thus the investigation of 2" partial sums of Walsh series leads
to a study of dyadic martingales. Notice also that the map v — (S,~v,n € N7) is an
isomorphism from QM onto the collection of dyadic martingales M?. The inverse of
this map is of the form (f,,n € N’) = v from M’ to QM’, and can be given by

(2.21) v(I):=lim | f, ([e€®R).

n—0

1

In the case j = 2 the above limit is taken in the Pringsheim sense, i.e., An :=
min{n,,n, } — oo.

Thus for each 7 = 1,2 we have four pairwise isomorphic linear spaces QM7, M7,
#7 and §7, and the isomorphism can be given by the Walsh system as follows:

7) v (Ssnv,n € N7) from QM’ onto M’
(2.22) 1%) Vi D from QM’ onto #
111) vi— SD from QM’ onto S7.

It is easy to see that every set function v € QM can be obtained from a function
F: Q7 — R in asimple way. Namely in the case j = 1 set

(2.23) v(I):=vp(I):=F(B) = F(e) (I=][e,B) ER),

and if j = 2 then let

(2.24) v(I) = vp(I) = Floy,0) — Flay, B2) — F(Br, @)+ F(B1, Bz)
for I = [0y, B1) X [@2,B,) € J* and F: Q7 — R.

The map F +— vy is an isomorphism from the set of functions 77 defined on Q’
onto M?. Moreover, if I is the integral function of f € L' (I7), i.e.,

(2.25) F(z) = / [ ,where J, :={uel :0<u<z},
1,

then

(2.26) ve =v! on A7,
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The partial sums of any function f € L!(I”) are martingale transforms of the
regular martingales f,, := (E, (fw,.),n € N7) (m € N’), namely for each m € N7

(2.27) ' Suf =l

m oty

1nx.ru"|
(

where o* :=m; for j =1 and « :=m; m? for j =2 and m;,m (i € N) are

(i1,ia) i
the binary coefficients of m and m?, respectively.
Applying inequality (1.16) we get that the operators

S, D(F) = D) (ne )
are uniformly bounded if 1 < p < co, and consequently
Hf_SufH,,_’OO as n — oo

forall fe L" ('), 1<p<ooandj=1,2.
It is interesting that, in contrast with the trigonometric case, the operators

(2.28) T.f:= > [(Rw (n=(n,n,) N n; =n,)

k<n.k; <k,

are uniformly bounded in L”(I?)-norm if and only if p = 2. Moreover, the same holds
for the operators

R'f:= ) flnw., (t>0)

na<t—fin,

for each § > 0 (see HARRIS [20]). This implies that the one dimensional trigono-
metric and Walsh systems are not equivalent bases in L”(I) if p # 2 (see WO-SANG
YOUNG [45]).

3. WALSH-FOURIER COEFFICIENTS

For each linear normed subspace £ C ¢ denote by L. the set of sequences
z = (z,,n € N7) € ¢ such that there exists a non-increasing sequence of non-
negative numbers a = (a, ,n € N7) € [ satislying

(3.1) . £ @, (R ED),

Introduce a norm in [ by

(3.2) llzll. :=inf{|la]| i« € L and (3.1) is satisfied}.
Denote by
(33) lzll, = (D l=al™)!" (p>0),

e R
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and let £ be the set of sequences = € { satislying ||z||, < oo.
By the Hausdorfl-Young inequality,

7l <lifle (feL’(@),1<p<2,1/p+1/g=1).

For functions belonging to H! the following analogue of the Hardy inequality is
true:

S f@)/nt < Cliflas (f € HY),

ngpPJ

wheren* =nifj=1andn' =nn, ifn=(n,,n,) € N7 and j = 2.

For j =1 see LADHAWALA [23], for the case j = 2 see F. WEISZ [44].

For the trigonometric system there is a direct relationship between smoothness
of a function and how rapidly its Fourier coefficients tend to zero. This is not the
case for Walsh-Fourier coefficients.

If Fis an absolutely continuous function, i.e., if F is of the form (2.25) and if
f(0) =0, then

(3.4) F(Q” 4 k) = (_1)7‘2—|n\—21‘f(k) + O(2|n|)

holds uniformly in £ € N” as An — oco. Consequently, if for an absclutely continuous
function F(m) = o(1/m) as m — oo then F is constant. For j = 1 see FINE [16],
the case 7 = 2 is similar.

Next we investigate how rapidly the Walsh-Fourier coefficients of a non-constant
continous function can decay.

If F e C([0,1]7), then the Fourier coefficients of v € QM can be expressed by
the Fourier coefficients of F. Namely, if j = 1, v = vp,n € N and 2° < n < 2'+1,
then for all k > 1

5 ATk

(3.5) D(n) =2 Y D (2" 12" 4 n)(wym e (1 — )~ 1)

o=k t=10

(see BOCKAREYV [})).
This implies the following theorem of BOCKAREYV:

(3.7) If Feclo,1] and Fet', then F is constant.

A similar identity and thcorem holds in the two dimensional case for functions
F e Cy([0,1]*) (sce AMOODI [1)).
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4. DYADIC CALCULUS

The dyadic diflerence operator for function h : I — R was introduced by GIBBS [18]
in the following way:

(4.1) (. R)(t) 3= i: 27N k() = R(t+2777Y), (ne€P).

It is easy to sce that (2.10) implics
(4.2) (d,w,, )(t) =mw, (1) (meN,m>2"tel).

The partial dyadic derivative was introduced by BUTZER and ENGELS in [11]
by the help of difference operators @, ..Tor [ :I° — R and k = 1,2 let

=
(Ous f)(z) = Z 27 (f(2) = flz+ef)),
=0
where ! := (2717*!1,0) and €? := (0,27 7*!)).For this operator we have

O, Wy = MW (m = {my ,ms) € N?,m, €2, n€N,k=1,2).

m

Another dyadic difference operator for function of two variables was introduced by
SCHIPP and WADE [35] as [ollows: For n = (n,,n,) and f: I* — R let

(d.. f)(z) = Z olil=2(r(z) — f(I—@-e]ll) —'f(IvLei) + f(z%e}l—i—ei)).

=

It is easy to sece that for [ =¢ x h and n = (n,,n,)
d,[=d, gxd,h,
and consequently
(4.4) d,w, =m'w, (m<2",mneN).

The function [ : I/ = R is said Lo be differentiable at a point t € I if (d, f)(t)
converges, as n — 00, Lo some [inite number flt1(¢). If for some g € L* (I7)

lin;lr lld.. [ = gll, =0,

then f is called strongly diflerentiable with strong derivative g. The strong derivative
of f will be denoted by df.

The pointwise and strong partial derivatives can be defined in a similar way and
will be denoted by 9, (sce [11]).
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&5
Obviously,it follows from (4.4) that the Walsh functions w, (n € IN?) are dyadic
differentiable and

1 ®
dw, =wll =m w,, , dw, =muuw,

(m = {my,m) € Nk =1,2).
The inverse operator of d ,i.e.,the dyadic antiderivative (or integral) can be given
by the convolution
Jfi=f+xW7 (f e L' (1)),

where W7 is the function whose Walsh-Fourier coefficients satisfy

- 1 if An=0
/7 ,ﬁf i ;
e | i/n*, HneP?.

It can be proved (see BUTZLR and WAGNER [9]) that in the one dimensional
case W' € L' (I), and consequently

W2 =W!' x W? e L} (P?).
The fundamental theorem for strong derivative was proved by BUTZER and
WAGNER [9]:For each [ € L*'(I) with f(0) =0

f=J(df) and d(Jf)=f.

The Hardy-Littlewood maximal function is defined by

(M f)(z) :=sup ;‘

DI A

I(z:h)
where

Iz;h) ={yel :z<y<z+h}.
The dyadic counterpart of this operator is given by

JUT

sup |d, (Jf)].

g N

Then the following analoguc of the Hardy-Littlewood maximal inequality is true:
The operator J* is of weak-type with respect to H' | i.e., there is an absolute constant
C > 0 such that

C
Hzel : (J'/)(z) >y} < gl||f||||
fory >0 and [ with |f| € H*.

This implies the fundamental theorem for the pointwise calculus: If |f| € H' ,
in particular, if f € L' (1) or [ € (Llog® L)(1?), then

(d, J)(f) = | a.e.

as A1 — 00.
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See SCHIPP [81] for j = 1 and SCHIPP and WADE [85] for j = 2. A similar
inequality and convergence theorem holds for measures (see SCHIPp- WADE-SIMON-
PAL [36)).

For other results and applications concerning dyadic partial derivatives see
BUTZER and ENGELS [11],[12].

5. CESARO SUMMABILITY

The dyadic derivative is closely connected to (C,1)-summability of Walsh-Fourier
series. Indeed, let

k :
(5.1) D! ::5 w, (neN) , K .= > (1-=)wx (n€P)
n
k<n k<n

be the Walsh-Dirichlet and Walsh-Tcjér kernel, respectively.
The two dimensional kernels are of the form

(5.2) D! =D! xD. , K!=K, xK, (n=(n,n)eN?),

" ny

and the partial sums and (C, 1) mcans can be expressed in the form
(5.3) S,f=f+D, o.f=f+Kl (nelN,6j=12).

n?

It is easy to see that in the one dimensional case
. L i
K,=D,—=D}!" (neP).
n

This identity can be used to study a.e (C.1)-summability of Walsh series.
Introduce the maximal opcrators

o' fi= sup |0, f|, 0f i= sup losfl, 0, fi=  sup g fl.

nepP? neE N7 Iny—ni|La

It can be proved that there exists an absolute constant A > 0 such that
A L. A
Hof>w <Ml o] >y} < 1A

for every y > 0 and [ in H' and [ with |f| € H*, respectively. Consequenty, if
|f| € H (in particular if f € L'(1), or [ € (Llog* L) (1%)), then

o, = [ ae. as An— oo.
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For j = 1 see SCHIPP- WADE-SIMON-PAL [36], for j = 2 see MORICZ-SCHIPP-
WADE [28].
The operator o,, can be estimaled by the marimal function with respect to squares:

ng f“ .\/_ C‘u H SUp \E(n.n]f| ||1)

nenN

Co
{o.0 > v} < =7l (> 0).
Consequently,

o f—= [ ae 1f |n,—ny|<a and An— oco.
(See MORICZ-SCHIPp- WADE [28]).

In the proof of the above results quasi-local operators play an important role. For
each J € J7 and each r € N let J” € J? be defined by J C J™ and |J"| = 277 |J]|.
An operator T from L' (I7) into the-set of measurable function on I’ will be called
quasi-local if there exist constants C' > 0 and r € N such that

| s e,
1\
for all f € L*(I?) and J € J7 which satisfy {f # 0} C J.
Let (T,,~v € T) be a collection of bounded sublinear operators on L*(I?) and set

Ty 2= su[r)iva\ (f € L' (T7)).

If T vs quasi-local and bounded as an operator on L (I’), then there is a constant.
C > 0 such that

C :
ITflly < Cllsup [BZ [IL,  [(Tf>y) < ;Hflll (y>0,fe L),

ke N

where E? = E, if j=1and ES 1= E,,, ifj =2 for all k € N.
A connection between the one and two dimensional maximal function is given in
the next result.

Let (Vi,n € N), 1 = 0,1 be a sequence of L'(I) functions. Define the one
dimensional operators
T'h:=sup|h+V}| (i=0,1,he L'(1)),
kEN

and suppose there ezist absolute conslant A,, A, such that

0 A“
{T"h > y}| < —y—HhHl ;

TRl < Al (b€ LD,y > 0).
IfV> >0 for all k € N and
Tj=  sup  |f (VD < VL),

"y niq
(n;,na)EN?
then there holds

|{Tf>y}\<ﬂ/infm (J €H',y>0).
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Abstract. In this paper we shall be concerned with the Walsh-Fourier

transform which is a Fourier transform on the additive group of the dyadic
field and with the dyadic derivative and integral defined on the dyadic field.

1. THE DYADIC FIELD

Let F denote the set of doubly infinite sequences

= (z,,n €Z)
where z, =0or 1and z, — 0 as n — —oco. Denote the doubly infinite sequence whose

entries are identically zero by 0. Thus to each z € F with z # 0 there corresponds an
integer S(z) € Z such that

(1) Bifa) =1 but z, =0 for n < S(z).

Let z = (z,,n € Z) and y = (y,,€ Z) be elements of F. Define the sum of z
and y by

(2) z+y:=(z. — Ynls n€Z).

Define the product of z and y by

(3) zey:=({, n€l)

where for each n € Z

& = Z Z;Y; (mod2).

itj=n

Notice that (F,+) is an abelian group, (F,e) is an abelian semigroup, and in

fact, (F,+,e) is a commutative algebra over the finite field Z, := {0,1}. This algebra
has an identity

(4) e =651 BEL)
and contains a subgroup
F,={z€F:z,=0 for n<O0}
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which is isomorphic to the dyadic group.
The algebra F is normed. Indeed, for z = (z,, n € Z) € F define

(5) lels=Y" 22",

neEZ
It is easy to see that
lz[ 20, |z+yl<lzl+ v, |zeyl<lzllyl

for all z,y € F.

There is another norm, a non-Archimedean one, which can be defined on F. Set
|O]| :== 0 and for each z € F with = # 0 set

(6) ||| o= 221,
where S(z) is defined in (1). Notice that
(7) Iz + yll < max{[|z[l, [lyl|} and [z eyl = =]yl

for z,y € F. Also, by definition we have
1
slell < lal< izl (= €F).

Hence (6) is a norm on the algebra F which is equivalent to (5).
Let
B:={z€eF:|z| =1}

denote the unit ball in F. It is easy to see that B is a multiplicative subgroup of F.
Define the usual closed system in F by
(8) en = (6n,;, JEZ),
and observe that
e 02=(Bipn, JEZ)
for each n € Z and = = (z;,, j € Z) € F. Thus multiplication by e, is a shift
operator on F. Clearly,

€n ®€m = €nim and lle.]| = &~ (n,m € Z).

Thus {e, : n € Z} forms a 1-parameter subgroup of F and is algebraically isomor-
phic to Z.
Let z € F, = # 0. Choose n € Z such that ||z|| = 27". By (7) we have
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Hence e_, o z is invertible, and it follows that z is invertible with

=il

gl =(t.0e, 88"

=(e—n0z) tee_,.

Therefore F is a field. It is called the dyadic field and was introduced by N.J.Fine

[2].
It is easy to obtain from (6) that addition and multiplication are continuous maps
from F x F into F. Moreover, the inequality

o +2)7" = eoll S T

holds for all z € F satisfying ||z|| < 1, so the map z — z~! is continuous from F*
into F. Therefore the dyadic field is a topological field.
Define maps 7, : F — {0,1} by

T, (z) =7 ((z;, JEZ)):=z, (neZ).
Define the integer part of z € F by
[8] 2= (.v. By @ 1,0,0;...)
ie., [z] is that element of F defined by

0, n>0
s n < 0.

ma(l2) = {

Characters of additive group (F,+) can be generated in the following way. For
each z,y € F define

(9) '(,Dy(:z;) = (_1)"—1(I'y).

Since 7_; is linear, it is clear that each 1, is a character on (F,+), i.e., 9, is contin-
uous on F and satisfies

by (z+2) = (2)dy () (2,2 €F).

It is also clear that

(10) 1y (z) = 1. (y)
and
(11) ¥y (2) = Yy (2) b (y) (2,9 €F).

In particular, the group of characters of (F, +) is isomorphic to (F, +). It can be shown
that the functions 1, (y € F) (the so-called generalized Walsh functions) exhaust the
characters of the additive group (F,+) (see [2]).
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Differentiation of functions defined on F can be defined as follows (see [1]). For
each n € N and each function f on F set

n

(12) dufi= Y T =1, 0)
where
(13) (wf)(z) == f(z+h) (z,h€F)

represents translation of f by an element h € F. If

(14) /(@) = lim (d, )(2)

n— o0

exists at some z € F, we shall say that f is dyadically differentiable at z and call
f(z) the pointwise dyadic derivative of f at z.
Similarly, if X is some Banach space of functions on F and if the limit

(15) df := l_i;n d,f

exists in the norm of X, then we shall say that f is strongly dyadically differentiable
in X and call df the strong dyadic derivative of f.

It can be shown (see [1]) that the additive characters ¢, (y € F) are everywhere
dyadically differentiable with

(16) W=y, (veF).

2. THE WALSH-FOURIER TRANSFORM

The additive group (F,+) is a locally compact abelian group and its unit ball
B={scF:|z| =1}
is compact. Hence there is a unique Haar measure x on F which satisfies
#(B)=1.

The spaces L% (F) will be denoted by L?(F) for 1 < p < co and the corresponding
norm by || e ||p.

Given f € L' (F), the Walsh-Fourier transform of f is the function on F defined
by

(17) f@%z/f&ﬂdﬂ@&) (ver).
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(see [2]). The map f — f is a linear map from L (F) into L= (F). In fact, since

(18) Il <UUFl: (f € 2} (F)),

it is clear that

(19) lim f,(v) = fly) (weF)

for any sequence f, (n € N) which converges to f in L (F)-norm.
The Walsh-Fourier transform of an integrable function is continuous and bounded

on F. In fact, if f € I! (F), then f is uniformly continuous on F. Moreover, if
f € L*(F), and h € F, then

(20) (nf) =tn - f
and
(21) % - ) =7 ],

The convolution of two functions f and g in L' (F) is defined by

(22) (F+0)) = [ 1o +000dnt) (2P,

By Fubini’s theorem f # g € L*(F) and

(23) If gl <Wflllgly  (f,9 € L* (F)).

Thus L*(F) is a Banach algebra under function addition and convolution.

The Walsh-Fourier transform takes convolution to pointwise multiplication: if
fy9 € L*(F), then

(24) (fxg) =74

The following multiplication formula is also true: if f,9 € L*(F), then

(25) / FW)e)duy) = / £ (4)8()duly).

We remark that these properties hold for any Fourier transforms defined on a locally
compact abelian group.

The following result shows a connection between the Walsh-Fourier transform
and the strong dyadic derivative in L! (F) (see [1], [3])
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Theorem 1. If the function f € L*(F) is strongly dyadically differentiable in L' (F),
then

(26) (@) = wlfly) (WETF).

Thus, the Walsh-Fourier transform takes a derivative of f to a polynomial mul-
tiple of f. The following result shows tha}t the Walsh-Fourier transform takes a
polynomial multiple of f to a derivative of f (see [3]).

Theorem 2. Let f € L' (F)and set

g(z) = |z|f(z) (z € F).

If g € L' (F), then f is pointwise dyadically differentiable on F and

(27) M) =dly) (veF).

In the following we identify the dyadic field F with the set of non-negative real
numbers R* via the map | e | in (5). This identification takes the Haar measure
i to Lebesque measure on R*, the characters of (F,+) to generalized Walsh-Paley
functions on R*. We shall denote dyadic addition by + on R*, but leave all other
notations the same. We shall extend the Walsh-Fourier transform from L' (R*) N
L*(R*) to L?*(R™") in a special way using the eigenfunctions of the Walsh-Fourier
transform (see [4], [5]).

For each k € N define a function {1, on R* by

(28) Ol = {d)k (2), z€kk+1)

0, otherwise.
It is easy to see that Q, (k € N) are eigenfunctions of the Walsh-Fourier transform:
(29) fl, =0, (keN).
For each k € IN set
Qe.0.1 i= M and Qi 5, -1 =0.
If ke N,ne€P and j € {—1,1}, define a function ., on R* by

\_/l?‘lvbk-kn(z)) z €[k, k+1)
(30) O j(2) = —f;d)k (z), z€lk+nk+n+1)
0, otherwise.

An easy computation gives that

(31) Qkny =70 ns (k,neN, je{-1,1}).



Walsh-Fourier transform and dyadic derivative 97

Therefore the system
(32) Q:={Qn.;: kneN,je{-1,1}}
is orthonormal in L? (R™) and consists entirely of eigenfunctions of the Walsh-Fourier

transform. It can be shown that the system 1 is complete.
For each f € L*(R") let

(33) e s (f) ::/f(:z:)ﬂk‘n‘j(:c)d:c (k,neN,j €{-1,1})

represent the ()-Fourier coefficients of f. Define the Walsh-Fourier transform of f to
be the formal Walsh-Fourier transform of the (J-Fourier series of f, that is, let

(34) Ff:= Z (Ck,n,l(f)ﬁk,n.l +Ck.n.—l(f)ﬁk.n,—l)'

kneN
This defines a function Ff for each f € L?(R*). In fact, we have the following

Theorem 3. If f € L*(R*), then (34) converges in L? (R™)-norm. Moreover,

(35) [Ffl.=1fll.  (feL*@®RY),
and
(36) F(Ff)=f.

To obtain a closed form for the Walsh-Fourier transform of functions from
L?*(R7), set

t
(37) Dy} = /wy(m)dz

0
for t,y € R*. This function is an analogue of the Walsh-Dirichlet kernel. We can
prove the following (see [5])

Theorem 4. If f € L?*(R*), then
(38) (F0 = ([ 10Dw)w)

for a.e. t e RT.

This is an analogue of the classical result for the trigonometric Fourier transform
on R.

It is now easy to see that the following corollaries are true.
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Corollary 1. If f € L' (R*) N L*(R*), then

(39) | Ff=1

Corollary 2. For f € L*(R*) and t € R* define a function f, on R+ by

fi(z) = {f(z), z€(0,1)

0, otherwise.

Then
(40) Ff=lim f

in L?(R* )-norm.
3. THE DYADIC INTEGRAL

In this section we shall be concerned with the inversion of the dyadic derivative on
R*. H.J.Wagner [10] has defined for each n € Z a function W, whose Walsh-Fourier
transform is the following function:

(1) Ew) = {3, LRI

Since FW, € L*(R*"), this equality uniquely defines W, € L*(R*).
It can be shown that the W, ’s are also integrable:

Theorem 5. For eachn € Z,
W, e L'(R*)n L*(RY).
Moreover,

2):

(42) W,.(z) = lim id)x (y)dy

k— oo
o—n

for a.e. z € R* and n € Z, where this limit ezists both pointwise and in the L*(R*)-
norm.

The functions W, (n € N) provide a kernel for dyadic integration. Specifically,
if for a function f € L' (R") there exists a function ¢ € L* (R*) such that

(43) lim [[W, « f = g|l, =0,
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then ¢ is called the (strong) dyadic integral of f and will be denoted by If. This
notion of the dyadic integral is due to H.J. Wagner [10]. He was given the following
characterization of the dyadic integral: suppose that f,g € L* (R*). Then

g=1f
if and only if

X 9 . y=20
44) g(y)_{l/yf(y), y > 0.

—

This leads easily to one half of a fundamental theorem of dyadic calculus on R+ (see
10)).

Corollary 8. If f € L* (R* ) is strongly dyadically differentiable and f(O) =0, then
(45) f=1I(df).

It is clear that not every f € L! (R7*) is dyadically integrable. A concrete example
is given by f := x[0, 1) (see [10]). We remark that when replacing x([0,1) by x[0, 1),
(m € P), it can be shown that these functions are dyadically integrable. Moreover,
the following is true (see [6]):
Theorem 8. Let
(46) Y .= {x[0,2")¢,-n,, : n € N,m e P}.

Then the linear hull of Y is L'-dense in the set of dyadically integrable functions.

For the remainder of this section we shall investigate the strong and pointwise
dyadic differentiability of dyadic integrals 1f. We begin by describing the difference
functions d, (If) (n € N) of If (see [6]).

Theorem 7. Suppose that f € L* (R™) s dyadically integrable. Then

(47) d.(If)=d, W, * f
and
(48) @, ) = fim [ 2 ), )y

for n € N,where the limit ezists both in L' -norm and for a.e. z € R jwhere

(49) o, (y) = Z A N N Z y; 2791

j=-n j=-n
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> y27Tt e RY,y; €{0,1},n € N).

Jj=—o0

To estimate the functions d,W, (n € N) we introduce the functions 8, on R*

by
0
(50) Buly) = Y g2
j=-n
for n € N and y € R*. Notice that
(51) 2", (27"y) = B2 ()

for n € N and y € R*. We also introduce functions f, g, by

(52) Z 2 ZD (zd277-1),

Jj==00
i 27 ir‘DT(IJ}z—J’"l)
Jj=—o0 i=n

forneZ and z € R*.

Theorem 8. For eachn € N and z € Rt let

(53) Valz) = kl_lg; ﬂ"
Then V, ezists everywhere and
(54) (dW,o)(z) =27 " Voo (27 "2)
for n € N and z € R*. Moreover,
(55) V.| £10f, + g, + x[0,1)|d. W] (neN)
and
(56) [Valls = 0(1)

asn — oo, where d,W (n € N) was defined on [0,1) as follows (see [8]):

(57) (d.W)(z) := D3 (= —I-Z Z_ ﬁ%znﬂw(z) (z €[0,1),n € N).
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These estimates imply that every dyadic integral is strongly dyadically differen-
tiable (see [6], [10]).

Theorem 9. If f € L' (R") is dyadically integrable, then If is strongly dyadically
differentiable and

(58) d(If) = 1.

To investigate the pointwise dyadic differenti=" lity of the dyadic integral we
introduce the maximal operator

(59) T f = sgg |d, W, * f| (, (RT)).
Since by (54) and (56)
(60) ldnWall, = 0(1)

as n — oo, the operator T~ is of type (00, 00), i.e., there is a constant C > 0 such
that

(61) 1T fle <Cliflle  (f€L'RT)NL®(RY)).
The following result shows that T* is of weak type (1,1) (see [7]).

Theorem 10. There is a constant A > 0 such that

(2 e e R 5 (" )a) > v} < aLLL
for all f € L*(R*) and y > 0.

From this theorem we can deduce the following

Corollary 4. Suppose that f € L*(R*) 1s dyadically integrable. Then If is a.e.
dyadically differentiable on R* | and

(63) (I =F  ae

We remark that it is easy to see that (63) is true for functions defined in (46) whose
linear hull is L' dense in the set of dyadically integrable functions.
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Abstract. In their paper [1] P.L.Butzer and H.J. Wagner have introduced
the concept of dyadic derivative for functions defined on the dyadic field
R*. Furthermore, Wagner [5] has defined the notion of dyadic integral
as the inverse of the dyadic derivative and investigated the strong dyadlc
differentiability of dyadic integrals. In this connection see also our previous

paper [2]. In this work we shall be concerned with the almost everywhere
dyadic differentiability of dyadic integrals on R*.

1. THE DYADIC DERIVATIVE

Let f: R™ — C be a function defined on R*, and let for every n € N

n

(1) d, [ = Z 21_1(_f—T2—(1+x1f)

j=-n

be the n'" dyadic difference function of f, where 7, (h € R*) are the dyadic transla-
tion operators defined by

(2) (nf)(z) := f(z+h) (z,h €RY)

(+ denotes the dyadic addition on R*).
If for some point z € R* the limit

(3) lim (d, f)(z) =: f*(z)

exists, then we say that [ is dyadically differentiable at the point z € R* and M (z)
is the dyadic derivative of [ at z € R*. If f € L'(R™") is an integrable function and
there exists a function g € L' (R*) for which

(4) lim |d,/ — gfls = 0

holds, then [ is said to be strongly dyadically differentiable in L* (R*),and Df :=g¢g
is the strong dyadic derivative of f.

Let n € N, and define the function W, by its Walsh-Fourier transform W, as
follows:

103
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% | [5io) € |0,2™7
(%) Woly) = {l/y, 56%2‘”,—{—)00).

Wagner has proved (see [5]) that there exists an unique function W,, € L*(R") for
which (5) holds; moreover,

()

1
(6) W,.(z) = lim -, (y)dy (z €RY),
k— oo y

n—n

and the limit can be taken in the L' (R )-norm or in the pointwise sense. Here and
in the sequel the symbols ¥, (z € R™) denote the generalized Walsh functions.

In the following we introduce the tnverse operation of the dyadic derivative by
the following definition (see [5]): if for a function f € L*(R*) there ezists a function
g € L' (R™) such that

(7) Jim W, x f =gl =0,

then g ts called the strong dyadic integral of f and is denoted by If (* denotes the
dyadic convolution).

For this notion of a dyadic integral Wagner proved that the following assertions
are equivalent for f,g € L' (R7):

V) g=1If,
(8)

- . 0 =0
) QW):{way y > 0.

We remark that if f € L'(R*), then If is not necessarily defined. For example, if
£ := x[0,1) is the characteristic function of the interval [0,1), then If is not defined
(see [5]). Therefore, in the following we suppose that f € L (R*) and the dyadic
integral I/ € L' (R*) of [ exists. In the paper [2] we proved that in this case for the
dyadic difference functions of 7/ we have

(9) d,(If)=d,W, = f (n € N).

Moreover, for the functions d, WV, (n € IN) the following equality is true:

2k

(10) (d,W,)(z) = lim / la,, (). (y)dy (n€N,z € RT),
k— oo U

0
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where
(11) an(y)i= Y VI duen(y) = D w27
j=—-n j=-n
(v= > w27 'eR*, y,€{0,1},neN).
j=-—o

2. PRELIMINARIES

In the following our aim is to give an estimate for the functions d,W, (n € N). To
this end, we define 3, (v) for y € R and n € N as follows:

(12) Bu(y) =Y w2797

It is easy to see that
(13) 26, (27"y) = fan(y)  (y ERT,mEN).

Let us introduce the functions V,, (n € N) by the following equality:

k— oo

(14) V.(z) := lim /lgﬁu(y)zb,(y)dy (z e RT,n e N).

With the functions V,, (n € N) we can express the functions d, W, (n € W) as follows
(see [2]):
(15) (do W, )(z) = 27" V2, (27" 2) (zeR",neN).

In the following we give an estimate for the functions V, (n € N). For this
purpose we introduce the functions f,, g, by

i

Jolis) s= 277 Z QJVZDQ.(I—i—Z_"'_l),

(16)
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forn € Z and z € R™*, where D,. (1 € Z) denotes the 2°-th Walsh-Dirichlet kernel
on R*:

o - {3 1EpT,

From the definition of f, and g, it is easily follows that for every n € Z,

n

(18) Ifuli < >0 (n—j+1)27m =14,

Jj=—o0

n

L < Z 2i=ntl — ¢4,

Jj=-oc0

9n

Lemma 1. For the functions V,, (n € N) the following estimate is true:
(19) V| <10/, + g0 +x[0,1)|dW|  (n€N),

where the functions d, W (n € N) were defined on [0,1) in [3] as follows:

(20)  (d.W)(z) := Dy (2) +Z_Z 57’“:;.¢W+k(z) (z €[0,1),n € N).

t=1 k=0

Proof. First we notice that for §,(y), defined in (12), we have B, (y) = k for
y €128 +k, 2" +k+1),i,n € N, 0< k < 2". Next define 0 < 5, < 2" for each
J EN by j = j,(mod2"). With these notations the function V,, can be written in the
following form:

‘Aw:ﬁhmm/¢ﬂ“@:
1213 :ZLMMMM+WMW)ZL%M_

where
(22) )= [ G = Dy

for € P and z € R*. Tor each j € P we have using integration by parts that
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i+l

AJ’(I) = ./ yiz(‘][(:]) (y) - J{(Il]) (1))dy =

(24) /we

I (z) ;:/J;”(t)dt (teN,zeR")

are the integral functions of 1, and J,fl) (£ € N), respectively. It is easy to see that

[T W< fol=), 152)(8)] < fola)

for every z,£ ¢ R*.

Using the mean value theorem for integrals we see that for a
suitable choice of £ € (5,5 + 1)

i+l
1

1

G707 / (i () = 1) (1)) dy| < ]if (2).

€

1 |r
|4; (=) 7

J

Similarly we obtain

5 1
|47 (z)] < j—zfo(x)~
Therefore for every 2 eR* we have

D) < 4ol Z%

¥ Z ¢J‘]('I)‘,|J!(f])(l) _ Jl(zzl)(1)| + (.’C) Z j_';
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Since
oo oo 1
Z ]i < Z =% 2,
J - 7
=1 i=1
and-
co co 2" -1 o]
k 22n
< €3 <32,
Z‘ ]'2 Z Z (1'211 _|_k)2 — L= 122277.
j=2" =4 E=0 i=1
we have for z €R*
2%=1 p
Y, ()
Vi (@) <10f(2) +1 30 =1 170 @) - 75 @)
j=1
It is easy to see that
72 =7 )< S D Zz D, (z4+2")  (z €RY),
]—O

\;i i<Z2_ *2*D (zeR",neN),

y =1 k=0

where D,. (k € NJ is the 1-periodic extension of D,s from [0,1) to R* (see [3]).
Using these facts and the definition of g, we get the estimate

121 - IV () S ofe)  (nEN,zER?).

i=1

Comnsequently, we obtain that

+ 9o

and
IVl €10f0 + g0 + x[0,1)|d. W] (n € N).

Thus, the lemma is proved.
We remark (hat since

(25) /

(see [3]), from the lemma we have that

(26) WV lly =0[1) (n — o00).
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Using this fact it is easy to prove that the dyadic integral function If € L! (RT) of
f € L' (R™) (if it exists) is strongly dyadically differentiable and

(27) DiIf)= ¥

(see [2], [5]).

3. POINTWISE DIFFERENTIABILITY OF THE DYADIC
INTEGRAL

In the following we investigate the pointwise dyadic differentiability of dyadic integral
functions. Tor this purpose we introduce the following maximal operator:

(28) T [ = sup |d, W, = f]| (f € L'(RY)).

neN

Since from (26) and (15)

(29) Id, W,

1 =0(1) (n — o0,
the maximal operator 7" is of type (00, 00), i.e., there is a constant C' > 0 such that
(30) 1T [llee <Cli/llee (f € L'(R*)N L™ (RT)).
The following resull shows that T is of weak type {1,417
Theorem. There is a constant A > 0 such that
(31) (=€ R (7 1)(a) >y} < AL
Jorall f « L'(R") and y > 0.

From this theorem casily follows the following
Corollary. Suppose that [ € L'(R*) is dyadically integrable. Then the dyadic
integral I[ is a.e. dyadically differentiable on R* and

(

o

2) I =f e

In fact, the functions x[0.2")¢,-., (n € N,m € P) form a closed system in the
space of dyadically integrable lunctions in L! (R*)-norm and it is easy to check that
for these functions (32) is true (sce (2]).

For the proof of the Theorem we need the notion of quasi-locality for operators.
Let us introduce the following notation:

LR ) = {fez,l(w);f“(o):/f:o},
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e

The operator 7': L' (R*) — Lj(R*) is called quasi-local if f € L} (R*) and
{z € R" : [(z) # 0} C I imply that Tf is integrable outside I and

(33) / 771 < Clllls,

RH\T

where I denotes a dyadic interval and C > 0 is a constant independent of f and I.
For example, it is casy Lo sce that the operators

(34) (B! )(z) = (S [)(a+2777") (i, €Z,f€L'(RT),z€RY)

are quasi-local (here S,/ = J % D,:, ¢ € Z, denotes the 2°-th partial integral of
f € L} (R*)).
In the [ollowing, let

T, L'(R*) = L'(R*) (neN)

be a sequence of bounded linear operators, and denote by T the maximal operator
defined by

T/ := sup

neN

T.f|  (f€L*®R"Y)).

For the operator T we have the lollowing

Lemma 2. Suppose that T is quasi-local and of type (oo, c0), t.e.,

sup [T f]le =: A < +00.

Mle <1
Then T ts of weak type (1,1), i.e., for every f € L*(RY) and y > 0 we have

11
y )

(35) H{zeR* : (Tf)(z) >y} < C

where C > 0 is a constant independent of f and y.
Proof. We use for f a decomposition of Calderon-Zygmund-type: for every
y > 0 the function f can be written in the form

f=g+h=g+ ) h,

keN

where
h, = x(Iy )k (k € N),

) llolle < 2v, H)/m:/Mﬂ
Rt I

and
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lhells = / h<4ylL| (keN),
Iy

iii) the dyadic intervals I, (k € N) are pairwise disjoint and for the set

=)L |n|gm.

keN y
Since the operator T is quasi-linear, we deduce that
T/ <Tg+Th , [Tg|. < Algle < 24y.

Using these facts, we have that

{z € R : (T1)(2) > (1+24)0}| < Ho € R : (Th)(2) > v}] <

- [ T “f”l
<10]+ [z ¢ 0 (Th)(z) > v}| < y/Th

9}

where 0 := R* \ () is the complement of Q. From the quasi-linearity of T we get that
Th< Y Thy,
kEN

and the quasi-locality of T implics
/Th;r < Cllhe], (k € N).
a

Using these facts, we have that

o
‘/Th g 1 /Thk <
yﬂ y‘CENﬁ
L C c
- Z Al £ = Z 4yl | < 4C||fH
Yy i y eN )

Moreover,

[{z € R (T/)(2) > (1 +24)y}| < (1 +4CJH]%

or, equivalently,

Hz € R* :(Tf)(z) > y}| < (1 +4C)(1 +2A)Hf% (feL'(RT),y > 0),
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i.e., T is of weak type (1,1). Thus, the Temma is proved.

Proof of Theorem. Since the maximal operator 7= is of type (oo, o), we have only
to show that T* is quasi-local. Let us use for n € Z and any function h defined on
R* the following notation:

(36) h<">(z) = 2-"h(2""z)  (z € RY).

Let f., 9. be defined by (16) and recall that

an“l ) Hgn’

1 <4 (n € Z).
Notice for 7,7 € Z that

27" Dy (27" z427771) = Dyica (z+27 007 mI71)
for all z € R*. Consequently,
(37) 9o =Guons S = fn-n (munEZ).

Moreover, for 2°7! < £ < 2*, 5, € P we have the following estimate for the Walsh-
Fejér kernels K, defined on [0,1) (see [3]):

=1

$= it s
(38) Bl £ 5 9 3 (Dgo +tger-a D} S 32 Dt + fus
1=0

i=0 i=;

For the functions d, W (n € N) defined on [0,1) (see (20)) the following estimate is
true for n € N, z € [0, 1) ([3]):

(39) |d, W (z)| < 3Dsn (z)+
n—1 ,_\—x o
D2 27 Dy (a2 ) 48270 ) | K (2)] + 4K (2).
e k=1 ;

From this and (38) we deduce that

n

X[0, D|dp W[ < A(Daw + > 27" Dye) +8() 27" f, + fu)-
l '

s=0 y=0

Since
D7 = Dypen (s,n € Z),

we conclude by (15) and Lemma 1 that
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(e Wl = Voo £ 100 s + Gant

+4(Dye + Y 27 Dyen) +8(fu + )27 f, ) (neN).

Let us introduce the following maximal operators:
E' f:=sup|D, + f|, G f:=sup|g*f|,
1EZ 1EZ
F' [ :=sup|fi * f] (f € L*(RY)).
1EZ

We have proved that for f € L' (R™),

T [ <12E°[f|+ G™|f] + 34F"|f].
Thus, the quasi-locality of T* follows from the quasi-locality of E*, G* and F*. This
is trivial for £*, and we prove the quasi-locality for G* as follows (the proof of quasi-
locality for I'* is similar): let [ € L} ( ") and I C RT be a dyadic interval for which
{z e R* : [(z) # 0} C LM =2 , m € Z, then we define £(I) := m. Since for
z¢Tand j>¢I)—1,z¢r-,-:(I), we have that

(B! [)(z) = (85 [)(z+2777%) =0
if1<I),j€Zoric2,j>{I )—IA Thus

(£)=1 oo
(g, * J)(2)] < Y‘ 2 Y (B )E)

co 1=6(I)+1

forn € Z,z € R7. Since the rlght side of this estimate is independent of n, it also
holds for (G [)(z). Using this,

P(I)—-1
/G"fsmh > 7 Z S [l

R*\/ j=—o0 =8

i.e., the maximal operator G* is quasi-local. Thus, the Theorem is proved.
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Abstract. Let G be a locally compact Vilenkin group. We present a
possible approach to a thecry of dyadic differentiation on such groups.
As an application we discuss several multiplier theorems for weighted
Lebesgue and Hardy spaces on G, in which the assumption is a Hormander-
type condition for the multiplier. This condition is formulated in terms

of the dyadic derivative of fractional order.

1. INTRODUCTION

For functions defined on R the multiplier theorem of Hérmander can be formulated
most conveniently using the following notation, cf [5]. We say that a function m
belongs to M(s,£,R), 1 <s<ocoand £ € N,if f € L*(R) and if for all integers
£ with 0 < f < £ we have

sup{Rﬁ’_l /
R<|z|<2R

In [2, Theorem 2.5] Hormander proved his celebrated multiplier theorem, here

DPm(z)| dz : R > O} < oo.

stated for functions on R instead of on R™.

115
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Theorem H. Let1 <p < oco. f m € M(2,4, R) for some £ € N then there exists
a C > 0 so that for all f in the Schwartz space S(R) we have ||(mf)||p L ¢Sl

In 1979 Kurtz and Wheeden generalized Theorem H to weighted Lebesgue
spaces, where the weight function either satisfied a Muckenhoupt A, condition or
else was a suitable power of |z|. In Theorem 3 of [5] they proved the following
result, stated here again only for functions on R instead of on R".

Theorem KW. Let 0 < p<landl <s <2 Ifme M(s,1,R) then there
exists a C > 0 so that for all f € S(R) we have

1S ) lpszta < ClIfllpete

provided -1 < a < p — 1.

Eight years later Muckenhoupt, Wheeden and Young extended the definition
of the classes M(s,£,R) to all positive real values of £ and then proved several
additional generalizations of Theorems H and KW. Of particular interest here is
the following result, cf [6, Section 4].

Theorem MWY. Let 1 < p < o0, 1 < s < oo and A > max (Afssz) B
m € M(s, A, R) then there exists a C > 0 so that for all f € S(R) we have

(M) Nloete < CllF o jetes

provided max (—1,—p)) < a < min(p — 1, pA).

In view of the various recent attempts to develop a differentiation theory for
functions defined on certain topological groups, like the dyadic group, the (com-
pact) Vilenkin groups or their locally compact generalizations, one of the authors
raised the question in [10] whether an analogue of the above-mentioned theorems
holds if we define a Hérmander condition, m € M(s,)\), on such groups using the
new definition of differentiability. A solution to this question was found recently by
Kitada, who obtained a direct analogue of Theorem MWY for functions defined
on a locally compact Vilenkin group. Kitada also proved a multiplier theorem
for Hardy spaces on these groups, again using a Hérmander type assumption for
the multipliers. Subsequently, this result was extended to power-weighted Hardy
spaces by Onneweer and Quek and, independently, by Kitada. In this paper we
shall discuss these results.
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2. DIFFERENTIATION ON VILENKIN GROUPS

Throughout this paper G will denote a locally compact Vilenkin group. Thus, G is
a locally compact abelian group containing a strictly decreasing sequence of open
compact subgroups (G,)%°,, such that

(i) sup{ order G,/Gn41:n € Z} < 0,

() W= G, =G and 02 G, ={0].
Such groups are the locally compact version of the so-called Vilenkin groups, which
were first described in 1947 by Vilenkin [14]. Examples of such groups are given in
1, §4.1.2]. Further examples are the additive group of the field of p-adic numbers
or, more general, of a local field, see [13].

Let T denote the dual group of G and for each n € Z let
In={yeTlT:y(z)=1forallz € G,}.

Then (T';)Z,, is a strictly increasing sequence of compact open subgroups of " and

(i)* order (T'y41/Tr) = order(Gn/Gpi1),

(i) U=, T, =T and N2, T, = {70},
where y(z) = 1 for all z € G, see [1, §4.1.4]. Thus the system T, (T_.)=, is again
a locally compact Vilenkin group.

We choose Haar measures x on G and A and T so that p(Ge) = M) = L.
Then p(Gn) = (MT,))™! := (my,)! for every n € Z. Furthermore, there exists a
metric d on G X G defined by d(z,z) = 0 and d(z,y) = (m,) ' if —y € Gp\Grpr.
For z € G we set ||z|| = d(z,0). For every @ € R we define the function v, on
G by va(z) = ||z]|*; the corresponding measure v,dy will also be denoted by dug.
The Lebesgue spaces on G with respect to the measures dpe will be denoted by
LE(G)or L%, and for f € L7, 0 < p < o0 and a € R, we set

11 = ([ 15 @Pana(e)) "

If o = 0 we write, as usual, L? and ||f||, instead of L? and 171 e

As a further generalization of the usual LP-spaces we define the Herz spaces
on G. Both here and elsewhere we shall use the notation X, for the characteristic
function of a set A.

Definition (2.1). Let 0 < p,¢ < 0o and @ € R. A measurable function f:G—
C belongs to the Herz space K (o, p, ¢; G) = K(a,p,q) if

o0 1/q
W llkesnr = ( 3 (0ne) 1 xg0,,, 1)) < oo,

f=—00

with the usual modification if ¢ = oo.
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Thus, K(a/p,p,p) = L% if « € R and 0 < p < co. We can also define a metric
§ on T x T and in this case we set ||v]| = 6(7,70) = mn if ¥ € Tnga\Tn.

The symbols *and ~ will denote the Fourier transform and the inverse Fourler
transform, respectively. We have

(X, T = (ML)

-1 -
Xrn = (mn) 1XTn = Fﬂ'

and, hence,
=3
(o) = (#(Ga)) " Xan = B

We now briefly describe the spaces of test functions S(G) and distributions
S'(G); for more details, see [13]. A function f: G — C belongs to S(G) if there
exists k,£ € Z so that supp f C Gy and f is constant on the cosets of G;in G.
A sequence (f,)° in S(G) converges to f € §(G) if there exist k,£ € Z so that
every fn and f has its support in Gx and is constant on the cosets of G¢in G and
if limp—co fn(z) = f(z) uniformly on G. Next, §'(G) is the space of continuous
linear functionals on S(G). A sequence ($,)®° in 8'(G) converges to ¢ € §'(G) if
for all f € S(G) we have limy_co < ¢n, f > =<,/ > .

In 1979 Onneweer gave a definition for a Riesz-type derivative for functions
defined on G, see Remark 3 in [7]. In a subsequent paper (8] this definition was
extended, at least for functions on a local field, to derivatives of any order a > 0.
The definition given in [8] easily extends to groups like G or I'.

Definition (2.2). Let a > 0 and f € L}, .(G). Forz € G and m € Z define
Emof(z) by

m—1

Enal(@) = 3 ((men)® = (mo)*)(f = Bex £)(@).
t=—c0
(i) If limm—oco Em,a f(z) exists, the limit is called the pointwise derivative of order
a of f at x, denoted by f@)(z).
(i) If f € LP(G),1 < p < oo, and if limp_co E,. of exits in LP(G), the limit is
called the strong derivative in LP(G) of order a of f, denoted by Dgf. We set
D(D3) = {f € L?: Dj f exists}.

Remark (2.3). Since T, (I'_,)%,, is also a locally compact Vilenkin group we can
define similarly pointwise and strong derivatives for functions g € L} .(T). In this
case we may replace the E,, o f(z) in Definition (2.2) by

Ema 9(7) = i ((mj)™® - (m;)™)(g = Fi* 9)(7)-
j=—m+1
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The following results are easy to prove, cf [8, Theorem 1].

Proposition (2.4). Let a > 0. Then

(a) for every v € T and z € G, 7(*)(z) exists and @) (z) = ||y||*y(z),

(b) for every k € Z, (Ar)@)(z) exists for every z € G and DAy exists for every
p with 1 < p < co. Moreover,

DEAK(z) = (AR (z) = 3 (m)™(Ar = Be-a)(2).

{=—c0

Since every f € S(G) is a finite linear combination of translates of some func-
tion A (k depending on f), we have

Corollary (2.5). Let a > 0. Every f € S(G) is differentiable, both pointwise
and in L? for every 1 < p < oo.

Remark (2.6). It follows immediately from Proposition (2.4) that the derivative
of a function in S(G) does not necessarily belong to S(G). Thus, S(G) is not a
suitable class of test functions to define distributional derivatives on G. It would
be interesting to determine what, if any, choice for the class of test functions would
lead to an interesting and useful theory of distributional derivatives on G.

We now explain why the derivative as defined in Definition (2.2) is, at least for

1 < p <2, a Riesz-type derivative on G. To do so, we recall the definition of the
spaces W(L?, ) from [8].

Definition (2.7). Let « > 0 and 1 < p < 2. Then
W(L?,a) = {f € L” : there exists a g € L? such that g(v) = ||v]|%f () for a.e. v € T'}.

An argument like the one used to prove Theorem 3 in [8] yields

Theorem (2.8). If @ > 0 and 1 < p < 2 then D(D3) = W(LP,a).

For 2 < p < oo no such simple characterization of the elements of D(D;) in
terms of their Fourier transforms is known. In this case we have a different char-
acterization; a proof for the case where G is the additive group of a local field may
be found in [9, Theorem 1].
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Theorem (2.9). Let a > 0 and f € L?(G) with 2 < p < co. Then D7 f exists if
and only there exists a ¢ € LP(G) so that forall g € D(Dg), where 1/p+1/p' = 1,
we have

L 1(@D5a()du) = [ é(a)gle)duz),

Moreover, ¢ = D] f in case either of these functions exists; & is called the weak
derivative of f of order a.

3. HORMANDER-TYPE MULTIPLIERS ON G

In this section we give an application of the differentiation theory developed in
Section 2. Our application consists of two multiplier theorems, one for multipliers
on power-weighted Lebesgue spaces, Theorem (3.6), the other for power-weighted
Hardy spaces, Theorem (3.15). In both theorems the multiplier spaces M(s, ) are
described in terms of strong derivatives of order A in L*(T'), at least for 1 < s < 2.
We begin by giving the definition, due to Kitada, of the Hérmander classes M (s, )\)
on a Vilenkin group G. Throughout this section, if § € L*°(T') and k € Z we set
¢ = ¢xr, and ¢F = ¢y — ¢y

Definition (8.1). Let ¢ € L=(T"). For A > 0 and j € Z we define D¢’ by
D ¢ = (||z]|*(¢7))". We say that ¢ € M(s,)), 1 <s < oo, if

B(8,5,}) := [|$lloo + sup{(m;)**||ID*¢||, : j € Z} < 0.

Remark (3.2). If 1 < s < 2 then ¢ € M(s,)) provided the functions ¢’, the
restrictions of ¢ to I';;;\I';, are strongly differentiable in L*(T') and satisfy the in-
equality B(¢,s, ) < oco. Clearly, this is the direct analogue on I of the Hérmander
condition m € M (s, A, R) for functions on R as defined in the Introduction.

The following simple result will be used later on, cf [4, Lemma 4.2], see also [6,
Theorem 2.12 (i)].

Lemma (8.3). Let 1 <s<o00,1<t<ooand0<o<A Ifo—1/t<)A—1/s
then M(s,A) C M(t,o). Moreover, there exists a C > 0 so that for all ¢ € M(s, )
we have B(¢,t,0) < CB(¢,s, ).

Definition (3.4). Let 1 < p < co and a € R. A function ¢ € L®(T) is a
multiplier on L%, ¢ € M(LE), if there exists a C > 0 so that for all f € S(G)N L~

we have

1(65) llpa < ClIf llpia-

In [11] a proof is given of the following theorem for multipliers on LZ.
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Theorem OQ1. Let ¢ € L=(T) and 1 < r < co. Assume there exist constants
C,e> 0 so that for all k,n € Z and for all y € G; C Gnq1,

1/r
([ o 1602 =) = () (@) du@) " < Clma) " me)
Then ¢ € M(LP) for 1 < p < oo and max (—1,—p/r') < a < min(p — 1, p/r’).

An application of Theorem OQ1 yields our first Hormander-type multiplier
theorem on locally compact Vilenkin groups.

Theorem (3.5). Letl < r < o0, 1 < s < oo, let t = min(2,s,7’) and let
A>1/t.If ¢ € M(s,\) then ¢ € M(LE) for 1 < p < oo and max(—1,—p/r') <
a < min(p — 1,p/r").

Proof. Take any k,n € Z; consider the function ¢ and any y € Gy C G,41. First
assume k < £, so that Gy C Gy. Since supp ¢x C Tk, (éx) is constant on the
cosets of G and, hence, on the cosets of G;,. Therefore, if z € G and y € G, we
have (¢x)"(z — y) = (¢x) (). Consequently,

1= ([ -2 - @r@rae) =o

If k> £ weset ¢p = ¢y + ZJ_, ¢’. By the preceding argument and Minkowski’s
inequality we see that

k-1

1) < 2([

j=l n\Gn+1

k-1

@) + (] 1@rerae)”

- . 1/r
_<_ 2 ( J YE T rd z ) ,
([, N a2
because if y € Gy C Gp4y then z —y € G,\Gr4 if and only if £ € G \Grt1.
Therefore,
5 1/r
I(y) < C3 (ma) ( T d )
2, S NP @) (@) due)
= % 7 1/tl
<= £ n A-1/r+1/t'< At et [ >
< C)fma /GH\GW el (#7) (2)| du(=)
S O3 (ma) 1 DA,
j=t
< Clmnp P B 1 3) S (g

1=t
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Applying Lemma (3.3) and using the assumption that A > 1/¢, so that T2(m LA
< C(mg)Y/*=?, we obtain

Hy) £ Clmn) Y7 B(g, s, X)(mg) /=

<
. S C(mn)€+1/r’(ml)—c,

withe=A—-1/t > 0. Therefore ¢ satisfies the assumptions of Theorem OQ1 and,
hence, its conclusion.

The following result is an improvement of Theorem (3.5); it is the direct ana-
logue on G of Theorem MWY, stated in the Introduction. Theorem (3.6) is due
to Kitada, cf [3].

Theorem (3.6). Let 1 < s < oo and A > max(3,1/s). If ¢ € M(s,A) then
¢ € M(L?) for 1 < p < oo and max(—1,—p)) < a < min(p — 1,p}).

Proof. If A > 1 then A > 1/r' for all r € (1,00) and Theorem (3.5) implies that
¢ € M(L2)for1 < p<ooand —1<a<p—1 and, hence, for max(—1,—p)) <
a < min(p — 1,pA). If A < 1 and max(—1,—p)) < a < min(p — 1,p\) we can
choose an r € (1,00) so that A > 1/r" and —pA < —p/r’ < a < p/r’ < p)\. Again,
Theorem (3.5) implies that ¢ € M(L?).

Remark (3.7). In [3] Kitada also proved the analogue on G of two additional
multiplier theorems of Muckenhoupt, Wheeden and Young for power-weighted
Lebesgue spaces, namely an analogue of Theorems (1.2) and (5.1) in [6]. The
precise statement of Kitada’s results follows; a proof of these theorems will appear

elsewhere.

Theorem (3.8). Let 1 < p < 00, 1 < s < oo and A > max(1/s,|1/p — 3]).
If $ € M(s,)A) and max(—1,—pA, =1+ p(3 — ))) < @ < min(pA, -1+ p(5 +
A),=14+p(A+1—=1/s)), a # p—1, then there exists a C > 0 so that for all
7 €80(G):={f €S(G): f(7) =0} we have

(¢S Nlpa < ClIfllpa

Theorem (3.9). Let 1 <p<oo, 2<s<ooand ;> A>max(l/s,|1/p— ;).
If ¢ € M(s,A) and max(—pA, =1+ p(3 — A)) < @ < min(pA,—1+ p(A + })) then
there exists a C' > 0 so that for all f € §(G) we have

1(8F) lloe < ClIfllpea-
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Before presenting our second multiplier theorem, which deals with power-
weighted Hardy spaces on G, we first state the relevant definitions as given in
[4] or [12].

Definition (3.10). Let 0 < 7 <1 and @ > —1. A functiona: G — C is
called a (p, 00), atom if there exists a set ] = z9 + G, so that (i) supp a C I, (ii)
llallee < (a(d))77, (i) fo a(z)du(z) = 0.

Definition (3.11). Let 0 < p <1 and a > —1. A distribution f € §'(G) belongs
to the weighted (atomic) Hardy space H? if there exists a sequence (\;)$° in £P and
a sequence (a;)7° of (p,c0), atoms so that

f ZZ)\,‘(I; in SI(G)
=1
We set

0 1/p
g = int (S )

with the infimum taken over all such representations of f.
Both in [4] and in [12] a proof is given of the following theorem.

Theorem (8.12). Let 0 < p <1 and @ > —1. An f € §'(G) belongs to HE
if and only if the function f*(z) := sup, |f * Ak(z)| belongs to L?. Moreover,
2 ~ 1 f*|pa

Definition (3.13). Let 0 <p <1 and —1 < a < 0. A function ¢ € L*(T) is a
multiplier on H?, ¢ € M(HE), if there exists a C > 0 so that for all f € H2 N L?

we have

1(¢f) Nz < C|If|lmz.

In [12, Corollary (4.14)] the following multiplier theorem for power-weighted
Hardy spaces was proved.

Theorem 0Q2. Let 0 < p<landl<s < oo If ¢ € L®(T) and if for some
e>0,

Slip(mk)l/p—l-ﬂl|(¢k)v||}((1/p—l/s+c,s,oo) < 00,

then ¢ € M(H?) for —1 + p/s < « < 0.
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As an application of Theorem OQ2 we obtain the following Hormander-type
multiplier theorem for power-weighted Hardy spaces on G.

Theorem (3.14). Let 0 < p<land 1l < s < oco. If ¢ € M(s,A) for some
A>1/p—1/max(2,s') then ¢ € M(H?E) for —1 4+ p/ max(2,s’) < a < 0.

Proof. (i) Assume 1 < s <2. Then A > 1/p —1/s" and there exists an € > 0 sc
that A =1/p—1/s'+ e. Moreover, "

Sljp(mj)l/P—l-l-cH(ﬁbj)V"K(l/p—1/8’+f,3’,co) = Sl;p(mjy\_l/sll(qﬁj)'

= sup(m;)* || [l2]*(#)

sup(m;)*™*||(D*¢7) |l

3

0s3p<mj>*‘1/SHD‘¢iHs

K(\ss")

|

IN

< CB(¢,s,}) <0,

because ¢ € M (s, ). Thus Theorem OQ2 implies that ¢ € M(H?) for —1+4p/s’ <
T« <0.

(ii) If 2 < s < oo then, according to Lemma (3.3), if ¢ € M(s, A) then ¢ € M (2, A),
provided A > 0. Thus if A > 1/p — 1/2 then it follows immediately from part (i)
that ¢ € M(HE) for —1 + p/2 < a < 0. This completes the proof of the theorem.

In [4, Theorem 4.5 the following somewhat stronger result was obtained. As
far as the authors know, no comparable result for power-weighted Hardy spaces
on R" is known.

Theorem (3.15). Let 0 < p<landl <s < oo. If ¢ € M(s,)) for some
A>1/p—1/max(2,s') then ¢ € M(HE) for max(—1,—Ap) < a < 0.

Proof. (i) Assumel < s <2 If Ap>1 and —1 < a <0 we can choose ¢ such
that 1 <t < s and —1 4 p/t’ < . Since, according to Lemma (3.3), ¢ € M(t, A),
it follows immediately from Theorem (3.14) that ¢ € M(HE). f 1—p/s' < Ap <1
and —\p < a < 0 we can choose t so that 1 <t < sand —Ap < —14p/t' < a and
it follows again from Theorem (3.14) that ¢ € M(HE). (ii) Assume 2 < s < co.
Since ¢ € M(s,)\) implies that ¢ € M(2,A) we may conclude from part (i) that
¢ € M(HP) for max(—1,—Ap) < a < 0. This concludes the proof of the theorem.
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DYADIC DIFFERENTIABILITY CONDITIONS FOR
DYADIC STATIONARY PROCESSES

YASUSHI ENDOW
Faculty of Science and Engineering , Chuo University
1-13-27 Kasuga Bunkyou-ku Tokyo 112 Japan

Abstract A mean dyadic differentiability condition for harmonizable dyadic sta-
tionary processes is given in terms of its spectral distribution function, and their
derivatives are shown to be the same type of the processes. It is also shown
that linear dyadic processes, a special class of the harmonizable dyadic station-
ary processes, are mean dyadic differentiable if and only if their kernels in the
representation are strong dyadic differentiable.

INTRODUCTION

The notion of the dyadic (logical or Walsh) differentiation was initiated by Gibbs and Millard?!.
One of the remarkable things of the differentiation is that the Walsh functions are eigen-

functions of the dyadic differential operator , i.e., for every z € R4,
Dype(t) = 29, (1), t€ Ry (1)

where D, is the dyadic differential operator, 1, (t) is the Walsh function, and R, = [0,00). A
function f(t) defined on R, is called dyadic differentiable at ¢ € Ry, if the limit

n

Jim 3° 20 - fe@27h)) @

k=—N

exists, where @ is the dyadic addition and N = N(t) is the integer such that 0 <t oV < ¥,
The limit is called the dyadic derivative of f(¢) and typified by D, f(t) or FU(). If £(2) is
dyadic differentiable at every ¢t € Ry then it is simply called dyadic differentiable. If )

127
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is alsc dyadic differentiable then its derivative is called the second dyadic deiivative and is
denoted by f?)(¢) or D?f(t). The higher order derivatives are similarly defined.

A function f(t) on Ry is called dyadic (or W-) continuous at ¢ € Ry if it satisfies that
fe@h) = (), (3)

as h — 0+. if f(¢) is dyadic continuous at every t € Ry then it is simply called dyadic
continuous. A continuous function is obviously dyadic continuous. The Walsh functions
are dyadic continuous, since at every (dyadic rational) discontinuity point z, 2 & h > 2 for
sufficiently small A € Ry, and the Walsh functins are continuous on the right. We remark
that a differentiable function is, as is well-known. continuous in the ordinary case, but there
exists no such a simple relation in the dyadic caz2. Let us define a function f(t) such that
f@) = 1 #€ Dy,
= 0 t¢ Dy, (4)

where D is a set of dyadic rational contained in R. Then it is easy to see that this function
is dyadic differentiable but not dyadic continuous (this was pointed out by W. R. Wade at
IWGD’89). The converse statement is neither ture. The function f(#) = at+0b (a #0) is
clearly dyadic continuous, but not dyadic differentiable at any t € Ry.

In other convergence sense of the limit in (2) the strong differentiability was discussed
by Butzer and Wagner®. For f(t) € L?(R4) if there exists a function denoted by fl[\lﬁ(i) such
that

/ m’ S 220 - fe 2] - Fw| et — o, %)
0 k=-N

as n — oo, then f(t) is said to be strong dyadic differentiable, and j’glf}(z‘.) is called the strong
dyadic derivative of f(t). It can be shown that if both FH(t) and .fglll(f) exist then they are
equal almost everywhere, 1.e.,

fglf](f) = 8@ aat. (6)

SECOND ORDER PROCESSES

A stochastic process {X(¢),t € Ry} with finite seond moment 1s usually called a second
order process. For a second order process {X(t),t € Ry} it is called mean dyadic (or W-)

continuous at ¢ € Ry if it is satisfied that
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E

Xiteoh)—X@®)P — 0, te Ry, (7)

as h — 0+. If it is mean dyadic continuous at every t € R+, then it is simply called mean
dyvadic continuous. It is clear that mean continuous processes are mean dyadic continuous.
Now we introduce a concept of dyadic derivatives to stochastic processes. For a second

order process {\(t),t € Ry} if

E‘Z =X = X(t@2h)] — 0, teRy, (8)
k=m
as m, n — oo, then it is called mean dyadic differentiable at ¢t € Ry . By the completeness

of the Hilbert space with the inner product defined by (X,Y) = EXY, if it is mean dyadic
differentiable there exists a random variable with second moment denoted by X[)(1) such

that

E‘;.-:Z_,\,Qk‘?[-\'<t) X2 - x| - o, (9)

as n — oo. If a process is mean dyadic differentiable at every t € R, then it is simply called

mean dyadic differentiable, and the set of random variables { X[*](¢),t € R} is a second order

el

process and is called the mean dyadic derivative of the process. The higher order derivatives

are analogously defined.

DYADIC STATIONARY PROCESSES

A second order process {X(i),t € Ry} is called a dyadic stationary (DS) process if it has a

constant mean and satisfies that for every s,t € R,

EX(s)X(t) = EX(s®&T)X(l®T), aarT (10)

We remark that the equality in (10) is required to hold for not all but almost all 7. We
assume throughout without loss of generality that EX (1) = 0, ¢ € Ry. A DS process is

called W-harmonizable if it is represented by the stochastic integral,

X(t) = /  u(v)dew), (11)

(in quadratic mean) in terms of the Walsh function ,(v) and an orthognal random measure

&(+). Its covariance function R(s,t) = EX(s)X (1) is also expressed by
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Rs,) = [ 9(0)()aF () (12)
0
where F(+) is the spectral distribution function with
dF() = Eld()|*. (13)

For a W-harmonizability condition of DS processes the reader is refered to Endow®?. We
note that any W-harmonizable DS process is necessarily mean dyadic continuous. Acutually,

since the Walsh function is dyadic continuous, it is easy to see that

9 o2 2 2 . 1
ElX(teh) - X@)P <K [/O [Yreon(v) — 'dlt(v)|'dF(U)} ,

in which the right side converges to zero as h — 04, where I is a constant.
The following condition on mean dyadic differentiability of the process was given by

Endow?®.

Theorem 1. A W-harmonizable DS process {X(t),t € Ry} Is -th mean dyadic differen-

tiable, if and only if its spectral distribution function satisfies that
oo
/ vugrdF(u) < 88, P=1,2,3, .. (14)
0
The r-th mean dyadic derivative of the process is given by

Xty :/ DIy (v)dé(v) :/ o du()dE (). (15)
0 0

It follows from Theorem 1 that the »-th mean dyadic derivative {x(t),t € Ry} is also

a W-harmonizable DS process and its covariance function takes the form

Rppy(s,t) = ExU(s)xI@) = /‘L v b () (0)dF (). (16)
Jo

Covollavy 2. If (14) holds, then

DPDIR(s,t) = / vP P (V)Y (V) (v), (17)

JO

where p and q are non-negative integers such that p+q < 2r.
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Proof: Since the integral
/ vt (0) 64 (v)dF (v)
0

exists, it is easy to see that

‘ > 2*7’[R(s,t) - R(s@27%,8)] — /°° vips (V)¢ (v)dF (v)
k=-N 0

dF (v),

< /Oml Z 25721 = thp-x(v)) — v

k=-N

in which the integrand converges monotonously to zero, as n — co. Hence we have shown

(17) for p+ ¢ = 1, and inductively we may have the conclusion.

The concept of the mean dyadic derivative of the DS processes is significant for both
theory and applications. Among others Engels and Splettstdssor® applied it to signal processes
and gave an estimate of aliasing error resulting from the sampling of not necessarily squence-

limited random signals.

LINEAR DYADIC PROCESS

Let 7 be an orthogonal random measure on B(R;) with En(A4) = 0 and

EnATE) = o [ s (18)

where AN B is the intersection of A and B in B(R, ), which is the o-field of all Borel subsets

of Ry. For ®(t) € L*(Ry), define a stochastic process by the stochastic integral,

X@) = Am@a@smw@,teR% (19)

in quadratic mean. The process {X(t),t € Ry} thus defined is called a linear dyadic (LD)

process.

Now we define the Walsh transform in L?-sense of an indicator function y4(z) of a

bounded set A € B(R.);

T
Ja = l,i.m./o Xa(z)(z)de = /A'lf)t(l’)dl' (20)

T—o0

With using J4(t), we define a random measure ((-) by the integral,
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((4) = / " Ta@dn(t), (21)

which satisfles

E¢(A)X(B) = o /Ooo Ja(2)Tp(t)dt

= 02/ xa(z)xp(z)de = 02/ de. (22)
0 ANB

Since for every function f € L?(Ry) it can be shown that
/ F(t)dn(t) = / F(2)dC(2), (23)
0 0

where

T
F) = Jim [ Sy (24)

we will have that
X = [ atesie = [ w@o@d). (25)
JO 0

Put
£(4) = A dte)d(e),

then E((A) = 0 and

EC(AX(B) = a?/ |¢(2)|?dz, A, B € B(Ry). (26)
ANB

Hence, rewriting (25) as
o]
Xt} = / Uy (z)dE(2), (27)
Jo

we have shown the following?.

Lemma 3. Let {X(t),t € Ry} be an LD process expressed by (19). Then it is a W-
harmonizable DS process expressed by (27) with the spectral density (26).

The convese statemant was also shown by Endow?.

Lemma 4. A W-harmonizable DS process with spectral density is also an LD process.

These results in discrete parameter case were given by Nagai’. Application of Theorem

I to an LD process represented by (27) gives the following result.

I
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Theorem 5. For an LD process, it is r-th mean dyadic differentiable if and only if v"¢(v) €

L*(Ry), 1=1,2,3, ...

Now suppose that ®(¢t) € L?(R,) is strong dyadic differentiable and its derivative is

denoted by @51[](1‘) Since @g&l}(t) € L?(Ry) the stochastic integral
/ L)t & s)dn(s)
0
exists in quadratic mean. So

E] Z 22X (1) - X(t®27")] — / ot & s)dy(s)
0

k=-N

2

= a‘/ ’ S P s(tes) - e(t@se27F)) - efl(tes)| ds, (28)
0 k=-N

in which the right side converges to zero as n tends to infinity. Conversely, if the process
{X(t),t € R,} is mean dyadic differentiable then the left side in the following equation

converges to zero as m and n tend to infinity;

= 02/} 24=2[8(s) — B(s & 27F)]| ds. (29)
0 2

Since L%(Ry) is complete, there exists a function ¥(t) € L*(R4) such that

(o]
V/O

as n — co. This shows the strong differentiability of ®(1). Hence we have the [ollowing.

S 2 2a(s) - b(s 8275)] — W(s)| ds — 0,

k==N

Theorem 6. For an LD process {X(t),t € Ry} represented by (19), it is mean dyadic
differentiable if and only if ®(t) is strong dyadic differentiable. The mean dyacdic derivative

is given by

Xm(t) :/ ('DE\II]('/_%.s)dr/(s). (33)
0
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The dyadic derivative {X[1(t),1 € Ry} is also an LD process with ExM@) =0, ¢ € Ry and

its covariance function is given by

[ee]
Ruy(s,t) = 0'2/ @%(s@u)@&l}(t@u)du. (31)
0

Covollary 7. If ®(t) € Ry in (19) is strong dyadic diflerentiable, then DsD;R(s,1) exists
and
D,DiR(s,t) = Rpy(s,t). (32)
Proof: Since
R(s,8) = EX(X(D) = o° /w (s & u)B(t @ u)du,
it is easy that ‘

| S0 2R 0 - Rse 0] - o [ el @wse w|
k=-N °

oo L2 ) 2 q1/2p [ L 11/2
< V |3 2o - steuer™) - dhisou)| dl [/ EOIRT
0 t=—N 0
in which the right side tends to zero as n — oo. Thus we have

DsR(s,t) = /00 @E‘l,](s ®u)d(td u)dy,
and similarly °
D,D;R(s,1) = /Om ol(s © w)ali(t ® u)du.
This completes the proof.
We remark that successive applications of Theorem 6 give us the higher order case; an
LD process is r-th strong mean dyadic differentiable if and only if ®(t) is r-th strong dyadic
differentible. The r-th mean dyadic derivative {X[r(t),t € R4} is also an LD process and is

given by

X0 = [ afiee san(s) (39)
0
and its covariance function is also given by
oo
Riy(s,t) = 02/ al(s eau)cb['](t ® u)du. (34)
0

Hence, on account of Theorem 5, we have a following byproduct.

Corollary 8. A function ®(t) € L*(Ry) is r-th strong dyadic differentiable if and only If
v"$(v) € L3(Ry), where ¢(v) is the Walsh transform of ®(t) in L>-sense.
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Characteristic function of LD process

In this section we suppose that {X(¢),t € R4} is an LD process with the representation (19).
We also suppose that the random measure 7(-) has independent increments. It then has no

singular points because of (18). In this case it is shown?® that its characteristic function is

expressed by

E{iun(4)} = ea:p{/ /V [exp{iuz} — iuz — 1)(1/2*)G(dz x ds)}, (35)
aJo
where the Borel measure G is uniquely determined by the relation
—(d*/du®)InElezp{iun(A)}] = / /; expl{ive}G(de x ds), (36)
A J—co

which reduces to
= / G(dz x ds). (37)

Since an LD process with its random measure having independent increments is so-called
a linear process®, the characteristic function of the process and its derivative is expressed

explicitely in terms of the Borel measure G as
Eezpli(u X + v - X1}

=“‘P{/ / leapfiz(u- ®(s) + v 84)(s)} — iw(u- B(s) +v- B4} (s)) - 1]
0 —co

x(1/2%)G(dz x ds)} (38)
provided that ®(t) € L*(R,) is strong dyadic differentiable, where
m n m
u-X:Zu;:X(ik), v~X[1]:kaX[1](‘rk), u- e Zukfb e @ s),
k=1 k=1 k=1

and
n

v-ellis) =S woll(n @ s).
k=1
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THE COMPUTATIONS OF STATISTICAL MOMENTS
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Irbid - Jordan

Abstract

In this paper, we review the application of Gibbs derivatives in the com-
putation of statistical moments. On the one hand, the Gibbs derivatives are
applied directly to the Walsh characteristic function to obtain the desired
natural moments of the corresponding probability density function (PDF).
The indicated characteristic function is defined as the statistical expectation
value of the associated PDF. Although, consideration is primarily given of a
single-variate PDF, the technique can be easily extended to accomodate the
multivariate case .

In this connection, we also exploit the use of Walsh series expansions for
the representation of a certain class of PDFs. Consequently, we can invoke
the Gibbs derivative to attain useful expressions for the computations of the
moments in terms of the resulting Walsh expansion coefficients.

The indicated techniques are further utilized in the computations of out-
put moments of certain classes of instantatneous nonlinear transformations
In particular, direct utilization is made of the Walsh series expansions of
probability distributions available at the input of such transformations.
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1 Generalized Walsh Functions

One convenient method of defining a set of generalized Walsh functions is
via the set of Rademacher functions [1]:

w(n,z) = p(0,2"%2), n=1,2,3,.. (1)

where the zeroth-order Rademacher function is defined by

[ +1, 0<2<1/2
‘P(O"”)_{ ~1, 1/2<z<1 (2)

The resulting set of Walsh functions is subsequently defined by

T(0,2) =1, 0< x <1 (3)

and

‘I’(TL, m) = H?LO [W(‘L +1, m)]ma (4)

where the integer n is assumed to have the dyadic (binary) representation

N
n=>3 2n; mne{0,1}. (5)
1=0
The generalized Walsh functions are, in turn, defined by [2]

U(o,z) = ¥([o],2)¥([z],0);0 < 0,2 < o0, (6)

where [o] and [x] designa,te the largest integers in the real sequency and
spatial variables, o and z, respectively.

2 Moments and Walsh Characteristic Func-
tions

In this section, it is intended to define a Walsh characteristic function (WCF)
and subsequently apply a Gibbs derivative to compute the corresponding
statistical moments.

For a random variable X, with a probability density function (PDF), {(x),
the WCF is defined as the statistical expectation of the Walsh transform
kernel ¥(co,z). Hence [4]:

Se(0) = Ei[¥(o,z)]
= /(; f(2)¥(o, z)dz. (7)
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This characteristic function possesses the properties usually enjoyed by
such a function; i.e.

i) S.(0) =1
) | S(0) <L (8)

The relation connecting moments and a WCF is estabished through a
dyadic derivative, commonly called a Gibbs derivative [3], and is defined, for
a function g(z), by

d

dx@ﬂwz,fifﬂaw—g@@zﬂ (9)

The dyadic operator @ indicates a modulo -2 sum operation, without-carry.
Applying the Gibbs derivative to a generalized Walsh function yields

;ia_ ®Y(o,z)=2Y(0,2). (10) .

Generalization of result (10) to higher-orders is rather staightforward. In
particular, we obtain

dT
v =5 ;
e @Y (o,z)=2"Y(0,z) (11)
Thus, applying the Gibbs derivative to (7) renders
dr I
— ©5.(0) :/0 o f(2)¥(o, 2)de. (12)

Hence

dr 00
T ©5:(0) oo = [ o f(e)de
m,, (13)

yielding a moment of order r.

Explicit formulation for m; and ms, for instance, are obtained using (9).
This yields

mi= 3 21.(0) - 5.7 (14)

and
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S Y 2% (L 5.(0) - S.(2)

j=—o0 i=—o00

S5.(277) + 8.(27 @ 277)). (15)

The multivariate case of a joint PDF can be handled in a similar fashion
by exploiting partial Gibbs differentiation. For example, a bivariate PDF
has the corresponding two-dimensional WCEF":

Sayle, x) / / fxv(z,y)¥(0,2)¥(x,y)dzdy. (16)

Hence, the two-dimensional r-th moments are evaluated by

or o - o
@ 50 (0, %) lemao= [ [ &Y fu(m p)dady. (17)

An interesting result in this connection concerns Walsh transforms of
dyadic derivatives of functions. The result is given by

dT‘
dat

For illustration, we derive result (18) for the case r=1. For higher values
of r, derivations proceed similarly.

F.(o)= W— @ f(z)] = 0" F(0), r=1,2,3,.. (18)

Thus we consider

F(0)= [ @ f(=)¥(e,2)ds. (19)

Applying the definition of a Gibbs derivative as dictated by (9), then (19)
becomes

Fi(c / { Z k| f(a:@Z“")]}\P(or,m)dm. (20)

n—=-—oo

Interchanging summation and integration in (20), and using the dyadic
shift property of the Walsh transform; i.e

If W(f(z)] = F(o)
then W(f(z® x)] = F(0)¥(0, x),

we obtain
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F(o)= 3 2" 2[F (o) — ¥(e,27")F(o)). (21)

n=—oo

For a real variable o, the associated dyadic expansion 1s, in general, given
by

o= Y 270, o0,e{0,1}. (22)

n=-—oo

Furthermore, we have an established relation between the expansion co-
efficients o,, and Walsh functions, specified by

1
O1_p = 5[1 —¥(c,277)].
Hence, employing these latter results in (22) yields
Flo)] = %, Tl - ¥(o,27™)]F (o)

n=-—oo

= oF(0). (23)

3 PDF Walsh Series Expansion

In order to exploit a Walsh series expansion (5], we assume a PDF f(z). In
this respect, we formulate the expansion,

f() =2 an¥(n,z/z0) (24)
n=0
where the Walsh expansion coefficients are evaluated by
1 oo
e = / f(2)¥(n,z)dz;n =1,2,3, ... (25)
g JO
For convenience, we will, however, assume that z, = 1. In this case,

comparison of (25) with (7) yields
B = g (). (26)

Furthermore, (25) gives

an|< [T f(e) ] 1 ¥(n,0) do = 1 (27)
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It is possible to invoke the Gibbs derivative in application to (24) upon
completion of the Walsh transform of the same. The WCF in this case is
given by

Sule) = ian /O°° U(n,2)¥(o, z)de. (28)
Hence

dr o0 [o'e)
my =~ ® Sz(0) = Z an/ 2"V (n,z)dz. (29)
o” n=0 0

Obviously, we could alternatively arrive at (29) by computing moments
directly from the PDF. In any case, it becomes of immediate interest, in
connection with (29) to consider the integral:

Lir) = /01 2" ¥(n,z)de. (30)

One method of evaluating (30) is due to Slook [6], and renders the fol-

lowing difference evaluation type of a recursive relationship:

Lipya(#) ==Dlr) +27Lir): p=0,1,2,... (31)

This latter relation can be employed for computing the even-indexed I-
integrals from the odd-indexed ones, and vice-versa. Essentially, it cuts the
computation efforts to half.

Applications To Nonlinear Transformations

It is both of interest and significance to extend the previous techniques
in application to certain classes of nonlinear transformations. We assume an
instantaneous nonlinear transformation:

y=g(e): 0Lz<1,
and a corresponding Walsh series expansion
g(z) =3 a.¥(n,z), 0<z <1, (32)
n=0

where the Walsh expansion coefficients are evaluated by

G = /01 g(z)¥(n,z)de.
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For a positive integer r, moments m, of the indicated nonlinear transfor-
mations are subsequently given by

m. = [ lo(e)] f(2)d (33)

We now further assume that the input PDF fx(z) has a Walsh series
expansion specified by

Fx(m) = i A ¥(n,z), 0<z<1 (34)

Thus, using (33) and (34) in (32) yields

Mme= 3 oS Gny G Ang o (35)

ni=o0 Nr=0

The operation @ designates modulo-two (no-carry) summation
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Abstract

This paper discusses the norm-convergence of a class of p-adic Walsh-convolution operators. The
class is that of operators with positive parameter r with kernels that can be represented as the
Walsh-Fourier transform of a quasi-convex function g(z/r) vanishing at infinity. The paper proves
that such kernels are approximate identity kernels and that the rate of convergence of the associated
operator depends only on the behaviour of ¢ and its first two derivatives at tle origin. The paper

gives an explicit and comprehensive expression estimating the rate of convergence.
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1. Introduction

Although there has been as much interest in discussing Fourier integral operators on the linear group
R as on the circle group T there has been relatively little discussion of Walsh~Fourier operators on

RT compared with the discussion of those on [0,1).

In this paper we discuss the question of the convergence and the rate of convergence in the
g-norm of a class of Walsh-Fourier integral operators on LI(R¥)(1 € ¢ < o0). We discuss Walsh—

Fourier convolution operators T of the class defined by

Tf:f*/()mn(é)zl'.(t)dt (1)

where 7 is a quasi—convex function (see [1]) with n(0) = 1 and n(e0) = 0, ¥ is the p-adic Walsh

function with index r and * denotes p—adic Walsh convolution.

Following Fourier analysis nomenclature (see [1]) we distinguish a few special operators of this

class as
: 11—t (0<t<1),
W-TFejér if n(t) = {0 (1<) :
W-Cauchy-Poisson if nt)=e"t (0<1)
W-Gauss—Weierstrass  if n(t) = e t? (0t
1-3t3/243t%/4 (0<1<€1])
and \W-Jackson if n(t)=¢ (2- 1)3/4 (1<1<2),
0 (2g1)

where “11"” denotes “Walsh type”.

In Fourier analysis an important and easy way for some integral operators of proving that they
are convergent is to prove that their kernels are approximate identity kernels (see (1)) but in Walsh
[se]
analysis it is not as easy. In section 2 of this paper we prove that / n(t/p)de(1)dt in (1) is an
0

approximate identity kernel in L9(RT) (1 € ¢ < 00), so solving the problem of the convergence of
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(1). In section 3 we discuss the rate of convergence of (1), obtaining a comprehensive result that
shows that for all operators of this type for which 7 has continuous second—order derivatives in a
right neighborhood of 0 the rate of convergence depends only on the orders of 1 — n(¢), t7/(t) and

27"(t) as t — 0.

Denoting the p-adic sum and difference operators by & and & we use the following notation

and definitions:

Dia,z) = /Oa U (1)dt; Fla,z) = /00(1 - %)wz(t)dt:
(f #9)(z) = / f(z ©1)g(t)dt (f € LI(RY),g € L(RY));
0
f(:n):// F(O)Pa(t)dt (f € L(RY)) and
0
w(f,8) = w(g, f,8) = sup [IF(-81) = FO)lla
0<t<é

where |[-|lg = || - [lLo(r+)-

2. The convergence of the operators

Theorem 1 Let 7 be a quasi—convez function on RT with n(0) = 1 and n(cc) = 0 and let ¥, be

the p—adic Walsh functions on RT then
; == . .
Kofz)= [ a(Sptit (p>0) M)

15 an approzimate identity kernel; that is I, satisfies the following conditions:

I. / K (z)dz = 1;
0

II. || K, < oo
(=]

IIT.  lim | ,(z)|de =0 for all &> 0.
6

p—o0

Proof We have proved in [3] that 5 has the following properties:

=<} (=<} t
a) h = ho(1)dt = f —y- 3 +,
(a) h(z) /0 n(t).(1)dt / 1dn(z)/o (1 Z)w (u)du € L(R™)

0



148 He Zelin, David Mustard

(b) ”h”l < A1 : Ag, where

A; =sup

p

e u
/(; (1- ;)d:.(u)a’u

< oo and AQ‘ =/ tldn'(t)] < o0,
1 0

© () = h=) = [ h. e

The conclusions I and II of Theorem 1 are easy to get from those properties.

We first notice that for each p > 0 7i(t) = n(t/p) is still a quasi—convex function on R+ and

satisfies 7(0) = 1 and 7(c0) = 0, so we have by (a) and (c)

Koa) = [ awetoi= [T aova e @)
and
/cv K,y(z)dz = /00 K, (2)do(z)dz = 7(0) = 1
0 0
This proves conclusion 1.

Letting s = ¢/p we have by (a) and (b)

1K,y = H | sancs [ a- L <Ay Ay

< [T slan'cs) |[ 0~ Luwa

1

and so this proves conclusion II.

We now come to prove III. Letting s = t/p again
. R
Ko@) = [ ayatar
0 P
oo ps u
:/ sdn’(s)/ (L— Ly leda
0 0 ps
[ san ) [0 Eysewint [ san ) [ 0= Lypeya
= s s — —)z(u)du s s - — s L
0 " 0 ps d 7 0 ps

where d is an undetermined positive number, so

/600 | K p(2)|dz < /Ods[dn'(s)| /500 dz
+ /doosld77'(s)| /:o dz

= 11+12’ say.

ps
/0 (1- %)wr(u)du‘

/0“(1 - /)13)¢vr(u)du,
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For every ¢ > 0, by the property (b),

L d d €
BE duieen < Ag/ slafs < S @
0 ‘ ¢ 0 2

]/Otu - Yy (u)du

1

~ when d is chosen small enough.

We now estimate I;. To do this we first estimate

oo t
J(1) ='/ dz /(1— 2o (u)dul .
5 0 t
= *) , .
Let t = Zajp"f where a; € {1,2,..,p— 1} and ny > ny > ... > n; > ... and let jo be an integer
i=1
such that
] )
=i 6 3
g (3)
and
pT ekt > g (4)

then by [4] and writing x5 for the characteristic function of the set §

J(@) = /;oda:

© B o =)
< / = Z Z p_k_Hn"X[zp* tpk4+p—ni)(2)dz  (for some constant B)
6 : _ '

/ (1- %)wz(u)du
0

© p ‘o0 o
* ) Z Z p_k_l+an[fp“,lp“+p_”f)(I)dI
We get an estimate for J, as

B =5} = oo
Jg(t) < T Z Z p'k < ? Z p"} < Ep"}o+l < Eﬁ*l (5)
J=Jjo+1 k=—n; J=Jjo+1 l t p— 1 6

We now estimate J;. Let ko be an integer such that

pko_+_p—n,o <$ (G)
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pko+] +p—nj0 2 § (T)
then for 0 £<p—1,1<7<Jo and k < ko we have [fpk,ﬂpk +p~ ™) C[0,8) s0
B o Jo o p-1
-kt
gy = -~ Z Z P 1]>L[Zpk,£pk+P_nJ)(I)dI
6 j=1k=-n; =0
B oo Jo oo p-1
—k—- - 7
< = / Z p 1+n]"\<[t’p".ﬂp"+p_“i)(z)dr
& j=1k=ko £=0
B Jo o9 g
< Y Z p
j=1 k=ko
B ) p—ko—l
<=
: JoP 1_1L
)
Bij, prot! s
. fy (8)
t p-—1
It now follows by (3) and (7) that
0
pp*e + 5 > 6
2 \
50 pke < 7? (9)
and by (3)
e 6 § In £
pTMe < 5 %0 —nj,ln p<ln 5 and so nj°>—ln »
and so, by the definition of nj,
. _q¢ » In ¢ lng
=t —nn& o5
Jo e °=1Inp Inp
Int In§
and so Jjo £ = 12 (10)

Inp Inp K

Substituting (9) and (10) into (8), we get

B/t Wi \ p° 1
Ai(t) t <1n p+1n p+ ) 1

therefore.

b= /fsidn%s)l/f | [“a- immdu)

< /:0 Sldn($)|(J1(ps) + J2(p8)
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= B /lnt In$ p> 1 B 2p l}
</; 5|d77(3)|[;(m‘ fm-l_l)p—l(s-{-'psp'—lé
= [B/lnt In$ p2 1 B 2p 1}
! sl Bl SRt N | i s -
<L 3|dn(3)|tpd<lnp lnp+ >p—16 pdp—16
€
i (11)

when p is big enough.
Combining (2) and (11) we get the conclusion III of Theorem 1.

3. The rate of convergence

One sees that the kernel I, of the operator T of (1.1) depends only on the function n. We shall
show that if 77 is quasi- convex on R with 7(0) = 1 and 7(cc) = 0 then the rate of convergence of T’
depends only on the behaviour of  near 0; in fact we shall show it depends only on the convergence
rates of 7,7 and 7" near 0. To be more precise we give a definition of “smooth convergence rate”.
Definition If 7 has a continuous second derivative in (0, 6) for some § > 0 and

A =sup{a |1-n(t)=0(t*) ast— 0},

Ay =sup{b | t'(t) = O(*) ast — 0},

A3 =sup{c | *7(t) = O(t°) ast — 0}

and A =min{A;, A2, A3}
we say that 7() tends to 1 at the smooth convergence rate A as { — 0, or. siﬁply' that the smooth
convergence rate of 7 (at 0) is A and write
Os(n) = A.
o0

Because the operator T of (1.1) and its kernel Kylz) = /o n(t/p)i=(t)dt depend only on 7 and

(as we shall show) the convergence rate depends only on the number A we also call the number )

the characteristic number of the operator 7" and its kernel.

n

*) If the expresion of t is of a finit form t = 3 a;p™, the following J, becomes
. =1

a finit sum or vanishes, that is easier to get our conclusion.
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We give some examples.

1=t i<l
1—m(t) = 0(h),tn'(t) = D(t!) and *7"(t) = 0 = O(t*) for every positive number a
so A = min{l,1,00} = 1; that is, O5(m) = 1

2. m(t)=e"" (t=0).
1= my(t) = O(t), (1) = O(2) and *7"(t) = O(t)

so A = min{1,1,1} = 1; that is, Os(m) = 1.

05(773):2~
1-% +30  o0<ig]
4. me(t) = ¢ (2-1)3/4 0<t<2;
0 t>2
O:(UUZZ
5. ms(t)=1—e Y (t20)
05(7)5): oC.

Now we state the theorem on the rate of convergence.

Theorem 2  Let 7 and I, be as in Theorem 1; let f € LI(RY) (1 € ¢ < o) and let

0sn)=A (0 <A< o0) then

L =S+ Kllg= 00 [ 0 e(fp™ ) 427

)=0

where p"~
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T, if f € Lipa then
) O(p=)  (a<))
”f - f* I‘p”q = O(p—‘\ In p) (Q = )\)
O(p™) (a> )
Proof First we do some preparatory work.

(i)

(i)

If O4(n) = A then there exists §; > 0 such that n has continuous second derivatives in (0, é;) and

there exists a constant B; such that when 0 < t < & |1 —n(t)| € BitY,  |tn'(1)] € Bit?

and  [t"7'(1)] < Bit*  so  |[1—1n(t)| < Bit?,  |tn'(1)] € Bit*  and

¢ t t
/ uldn(u)| < / un(u)du < By / v Vdu < Byt (1)
0 0

0
on the other hand there exists B, such that when 6; < t < 1 |1 = 7(t)] € B26) < Bat?,
[tn(t)| € B26; < Bat* and

t .
/ uldn'(1)] € By6) < Bot? (2)
0

so by (1) and (2), when 0 < t < 1, |1 — n(t)] € Bt*, |tn(t)] < Bt* and

/O uldn(v)| < B (3)

where B = max{B;, B> }.

Integrating by parts twice we have

b b u u ) b
/a n(u)(u)du = /a udn’(u)/o (1- %)wt(v)dv - n’('u)u/(; (1- z)wt(v)dv .

=a

+1(w) /Out,bg(u)duli R (4)

Letting a = p? and b = p/*1, and using 1 — 7(1/p) instead of 7(t), we have

J+1

P u
[ (- 77(—)> Pu(w)du € L'(R*) (:
p 14

J

(4}
e

and



154 - He Zelin, David Mustard

i - B o pitt pitl
1—n(= (u)d < "(s)] = = |9'(= — |7 (—
-4 n(p))zh(u)qul(/}% s a)] = 2 1 S| + 2 [ )
pj j+1 2 i
# 5] + [ )| = ops=). (©)
(iii) We recall that (see [2]) : Y¢(u)du| € max (ﬂ, l) and so

(1= Dot = |2 g ¥ v
/0 (1-2) wlo)do u/o du/o ()
/ <1—3>?,/)i('u)dv /ldv
0 U 0

We also recall that (see [1] p.248) if n(t) is quasi—convex and 7(c0) = 0 then a?7'(a) — 0 (as

< max E,i N
26729 °

and < < u.

a — 0) and b7'(b) — 0 (as b — o0).

In (4) using 1 — n(u/p) instead of n(u) and letting b = 1 and a — 0. we have

1 - ps )
/0 (1 - n(%)) Pi(u)du = —/0 sdn'(s)/o <1 - i) ¥y (v)dv
s e 1
"(2)2F(1,1) — n(=)D(1,t) € L(R* (7
+n(p>p (1,1) r}(p) (1,2) € L(R™) (7
and 1 y 1 ) )

/0 (1 — n(?)) vy (u)du 1 < A </0 sldn'(s)| + ;In’(;)l)

+}n<1>1 = o(1)p (®)
p

Using 7(u/p) instead of n(u) and letting a = p™ and b — oo we have

o ’ oo rps -
/ o))t = /L saif(s) | (1- %) wtonts

'+£n'<£> F(;>"J)—n<£> D(p™,t) € L(RT) (9)
p p p
and o o N N
u ' Pl (P
— | Yo(u)d <A sldn'(s — 0| —
/pnn<p)¢(u)ul< 1</§|77()l+p 7<p>)
+~n<)_ﬂ>} = i), (10)
P
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(iv) Using some basic properties of the \Walsh-Fourier transform, in particular that if f and

T

/ f(u)¥e(u)du € L(RT) then (/ flu) (u)du> (z) = f(z) (see [2)), that if f € L}(RT)

and f = 0 then f =0and that if f,g € L*(R*) then f/;g = fg, we have

2’ pit! ’ Y
/ L”t(u)du*/ (1— 77(‘)) Vi(u)du = 0
0 p’ P
and so
P)+] u J+1 y
o [ (1= i <f s / e > L (1) v
p! p p
Similarly
- " )
fx/ U(E)z;ﬁt(u)du = <f—f*/ ¢t(u)du> */ T](E)u”t(u)du
p? P 0 pn P
and so
‘ plﬂ ) p)-H
1‘f/ <1~r/(3)> ve(wdu|| < w(f,p77) / (1—17(3)) b (w)du
1 P . pi p .
= 0(1)p = w(f,p™7). (11)
and
[ u o
i‘f*/ nudn| < lf,77) / n(=)he(u)du
| p" P q pm P 1
Dew(f,p™™). (12)

Now we come to the conclusion of Theorem 2. Defining R by R = ||f — f * I,||, then by

(8)-(12)
ol s
< f—f*/0 +‘f*/01<1—n(%)>w-(wdu

]
’Zf / (1—7/(%)) Yolu)du

3=0

9

+Hf*/p )w )du

q

el

<™+ 1Ml - O(Wp™™ 4+ 5~ 0(1)pY =™ w(f,p77) + O(L)p~™

7=0

L) (Zw“‘””w(f,p‘j) +p—“> : i (13)

Jj=0
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That is conclusion I of Theorem 2. From (13) we prove conclusion II. If f € Lipa then w(f,p~%) =
o)==

For a < A,

n

j—n —Jja -n 1 = ] — n—j)a —-n ‘
R=0(1) Ep(J- p=ie 4 p~mA ) = 0(1) p_na.zp(z mAp(n=jla 4 5=n2
: j=0

1 .
=0(1) | =5 > p~ (=D g pmme) = 0 (%) '
P j=0 P

R=0(1) (ZPU_")’\P_"Q + p'”") = 0(1)(n + 1)p~™
i=0

3

For a = A

Fora> A

o(2)

This completes the proof of Theorem 2.
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ABSTRACT: In this paper we consider Gibbs derivatives on finite
dyadic groups. We first discuss the matrix interpretation of
partial dyadic Gibbs derivatives and disclose some properties of
these operators. Defining the dyadic Gibbs derivative as a linear
combination of these partial differential operators we derive a
modified product rule for dyadic Gibbs derivatives.

In the second part of the paper we consider an application of
partial dyadic Gibbs derivatives to Boolean functions. We treat some
properties of these operators valid only in this case and derive a

method for detection of symmetry and co-symmetry properties of
Boolean functions.

1. INTRODUCTION

The 'discovery that information can be coded, measured and
transmitted  discretely [1,2] causes great  interest in  the
application of the discrete algebraic structures in engineering
practice and related scientific areas. Discrete functions are vVery
powerful mathematical tools for studying the discrete structures.
Among these, ‘the Boolean functions defined as a mapping

f:(O,l)nE(O,l}, neN, are most frequently used. This is a natural

) 159
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consequence of the fact that todays technology mainly provides us
only with commercially available digital equipment based on circuits
with two stable states.

[t seems that the main concurrents to Boolean functions in
future will be multi-valued logic (MVL) functions and fuzzy
functions. The continuing advancement of technology guaranties that
the application of these functions in the future will be adequately
supported with the corresponding hardware components. A confirmation
for such statements can found in the research efforts in these areas
all over the world. Let us note the organization of annual
symposiums on MVL functions conducted by IEEE and the organization
of many research groups in these areas. Good information on these
activities can be found in the Bulletin of MVL Technical Committee
of IEEE appearing quarterly.

In this paper we will consider the application of dyadic Gibbs
derivatives to Boolean functions regarded as the functions defined
on the finite dyadic group. Our overall goal is to show that this
operator can be efficiently used in the analysis of Boolean
functions with the hope that the derived results will trace a way
for a similar application of some generalizations of these operators
(see, for example [3,4,5,6]) to MVL functions or possibly fuzzy
functions.

In our consideration we start from the existing relationship
between the Boolean difference and partial Gibbs derivatives and
discuss some properties characteristic for these operators when they
are applied to Boolean functions. Then we propose a method for
detection of symmetry and co-symmetry properties of Boolean
functions:

Note that the application of the dyadic Gibbs derivative in
fault detection is considered by Edwards [8,9]. The difference with
respect to our approach is that in the methods presented in [8,9]

Boolean functions are mapped from {0,1} into the {l,-1} domain.
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2. NOTATIONS AND DEFINITIONS

It is wusual practice to consider the Boolean functions as
functions defined on a Boolean algebra, representing in the same
time the elements of another Boolean algebra under multiplication
and modulo 2 addition defined pointwise. In this paper we will use a
slightly modified approach which will enable the derivation of some

results interesting both from the theoretical and computational

point of view.

As we noted above the domain of Boolean functions is the set of
all  n-tuples (XZ"”’Xn)’ xiE(O,l}. This set under pointwise
addition modulo 2 forms an algebraic structure called the finite
dyadic group of order n, which we denote by Gn' We denote by Bn the
set of non-negative integers less than 2" Recall that there is

one-to-one correspondence between the elements of Bn and those of

Gn' More precisely, for each xeBn there is a unique dyadic expansion

of the form

and, conversely, every such expansion, that is each n-tuple from Gn’
defines a unique element of Bn' This element is usually called the
decimal index of the given n-tuple. Due to this a Boolean function
can in fact be just as well regarded as being defined on Bn taking
their values in Bnc Zc C, where Z is the set of integers and C the
set of complex numbers. Also, recall that the set of all complex
functions on Bn, denoted by C(Bn), is an Abelian group under

pointwise addition defined by

(f+g)(x)=f(x)+g(x), Vf,gEC(Bn), chBn.
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Enriched with multiplication by a scalar « ¢ C defined by

(af)(x)=af(x), YfeC(B ),

C(Bn) becomes a linear space admitting an inner product <.,.>
defined by
=277 flxgrx), f.geC(B ).
x:Bn

where g* denotes the complex conjugate of g.

Therefore, C(Bn) exhibits a Hilbert space structure with norm

IFl = (KF, 5192 = 277 ) F15Y4 vrectB ).

x=B
n

It follows that a Boolean function can be regarded as a
particular element of this Hilbert space. Furthermore, C(G) may be
given the structure of a complex function algebra by introducing the

pointwise product of functions through

(feg)x)=f(x)glx), Vf,géC(Bn), \:/xeBn.

Another important operation in C(Bn) is the convolution product

defined by:

(F*g)(z) = Z fix)glzex’) = Z flzex')g(x), VzeB , Vf,geC(B ),
x=B

x=B
n n

where x’ is the additive inverse of xeBn, and @ denotes pointwise
addition modulo 2 of the dyadic expansions of z and x’.
The dual object of Gn is the set of discrete Walsh functions

G’ ={wal(x,w)}, Vx,weBn [9], defined in a matrix form by

where ®n denotes the n-th power Kronecker product (see,for example



i
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[10,11,12]). This set forms an orthonormal base in C(Bn) so that the

Walsh (Fourier) transform can be defined as

2=
Sf(w) = Z flx)wallx,w), (1)
x=0
2%
Flx) =277 X Sf(w)wal(x,w). (2)
w=0

For the thus defined Walsh transform the main properties of the
classical Fourier transform hold. For example, the convolution

theorem states that if h=f*g, Vh,f,gEC(Bn), then

and the reverse statement also holds.

Also, let us note the shift property which states
(w) = walla,w)S (w),

S. \
flxea) I

where ® denotes the pointwise addition modulo 2 of the dyadic

expansions of x and a.

3. DYADIC GIBBS DERIVATIVE

To make this paper self-contained we will first briefly discuss
the definition and some properties of the Gibbs derivative on finite
dyadic groups. Then we will derive some new properties related with

the application of Gibbs derivatives to Boolean functions.

Definition 1. The partial dyadic Gibbs derivative of a function

feC(Bn) with respect to the variable X is defined by [13]:
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(Dif)(xz,...,xn)=f(xi®l)—f(xi)=f(x.’)—f(x.), (4)

where f(xi’) is short for f(xl,...,xi’,...,xn), xi’ is the additive
inverse of x, and @ denotes modulo 2 addition.

It is obvious that there is a strong relationship between the
partial dyadic Gibbs derivative and the Boolean difference which is
defined as

(Aif)(xz,...,xn)=f(xi@1)®f(xi).
More precisely, we immediately have
ID,f =2, (5)

where |a| is the absolute value of a.

Definition 2. The dyadic Gibbs derivative of a function feC(Bn) is
defined [13] by

-1 n-i
D = -
Pyt b= 2} 2 (D, f)0e o0 ). (6)
i=1
It is obvious that in a matrix notation the partial dyadic

Gibbs derivative can be represented by a 2" by 2" matrix Di defined

as:
n
Di = .® Ai’ (7)
J=1
with
-1 1]
’ j=1'
L1 -1
A %1 1 @
; otherwise,
1O 1]
\

where ® denotes the Kronecker product.
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From this fact, according to Definition 2, the dyadic Gibbs
derivative is represented by a i by 2" matrix representing the

linear combination of sparse matrices Di’
n-1
-1 n-i
D=-2 Z 2""'D,.
i=1

Comparing the matrices Di. with the corresponding matrices
appearing in the factorization of the Walsh matrix W allowing the
introduction of the fast Walsh transform [10,14], we infer a strong
similarity between the matrix describing the partial dyadic Gibbs
derivative Di and the matrix describing the i-th step of the fast
Walsh  transform, which implies the similarity between the
corresponding flow graphs. The only difference is that in our case
the weights in all horizontal branches of the graph are equal to -1.
It follows that the computation of the partial dyadic Gibbs
derivative can be carried out by using this modified flow
graph for computing the i-th step of the fast Walsh transform. To
illustrate  this statement we show in Fig.la  the matrix
representation of partial dyadic Gibbs derivatives for n=3. The

corresponding flow graphs are shown in Fig.l.b.

It is obvious from relation (8) that the computation of the
dyadic Gibbs derivative Df of a given function feC(Bn) can be
carried out by summing the outputs of the flow graphs for the
calculation of the partial derivatives multiplied respectively with
the factors Zn_i’, i=1,...,n. The result obtained must be multiplied
by the extra factor 2_1 introduced in Definition 2 to be consistent
with earlier definitions of the dyadic Gibbs derivative [13]. This

factor is omitted in the definition of the partial derivative for

simplicity of their application in which we are primarily interested

in this paper.
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Fig.1l.a.
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The main properties of the partial dyadic Gibbs derivatives are

stated in the following theorem.

Theorem 1. Let feC(Bn).
i-th argument iff

1. The function f is independent of its

VxeBn there holds (Dif)(x)=0.

2. DD f)=D (D,f).
3. Dyleyfrayfo)=aD fraD fy a6l f.f,€CB).

commutes with the translation operator Tq on Bn defined

4. Di
by qu(x)=f(x®q), where @ denotes the pointwise addition modulo 2 of

the dyadic expansions for x and g,
Diqu = Tquf.
is the Fourier transform of feC(Bn), then that of its

5. I Sf
partial dyadic Gibbs derivative Dif is given by

where Bi(W) = 2_1(wal(w,2n_L) - 1).

6. Convolution property

Di(f*g) = Dif*g = f"Dig Vf,gEC(Bn),
where * denotes the convolution.

7. The product rule

Di(f‘g) = f- (Dig)+g- (Dif)+(Dif) . (Dig),

where - denotes the pointwise multiplication.

Proof.l. According to Definition L, the condition

(Dif)(xl’ s ,xn)=0 simply means
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f(xiel) = f(xi),

and since xie(O,l) it follows that the function f takes the same

value independently of the value of its i-th argument.

2. By definition,

Dj(f(xieal,xj)—f(xi,xj))

=f(xi@l,xj@1)—f(xi@l,xj)—f(xi,xj@l)+f(xi,xj)

Di(f(xi,xjel)—f(xi,xj))

Df.(DJf )(x).
3. Linearity follows directly from Definition L.
4. By definition,

Diqu(x) = f(xleql, - ,xieleaqi, . ,xn@qn)

=Tq(f(x1,..‘,x ®l, ,xn)) —Tq(f(xl, VX, ,xn))
= Tq(f(xl""’xim""’xn)_f(xl""’xi"'"xn))
= Tquf(x).
5. Starting from the definition of the Walsh transform and

using the shift property,

g

SD.f(W) = Z (Dif)(x)wal(w,x)
' x=0

g™y
= X (f(xicsl)—f(xi))wal(w,X)

=0
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2"
= Z f(xi@l)wal(w,x) S Sf(w)
x=0
_ n-i B _
= wal(2 ,w)Sf(w) _Sf(w) = BL(W)SL(W)’
where Bi(w)=(wa1(2n—i,w)*l).

As a direct consequence of this property we have

=i

D.(wal(2" , X)) = -2wal(2n-i,x).

L

6. The Property 6 follows directly from the definition of the
partial dyadic Gibbs derivatives, Property 5 and the convolution
property of the Walsh transform.

7. By definition,
(Di(f°g))(x)=f(xi@l) 'g(xi@l)—f(xi) 'g(xi).

Now, also by definition,

foDig+g°Dif+Dif-Dig = f(xi) . (g(xi@l)—g(xi))
+g(xi) . (f(xi@l)-f(xi))
—(f(xiel)—f(xi)% (g(xi@l)—g(xi))

=f(xi@l) 'g(xiel)—f(xi) °g(xi)=Df‘g.

Note that the dyadic Gibbs derivative is a linear combination
of the partial dyadic Gibbs derivatives and, therefore, all
properties mentioned in Theorem | can be similarly formulated to
hold for this differential operator. Since in this paper we are
primarily interested in the application of partial derivatives, the
derivation of these properties will not be discussed here. Let us

only briefly consider the product rule for the dyadic Gibbs

derivative.
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It is known that the absence of a product rule in the form
D{f+g) = f<Dg + g+Df,

is a property characterizing Gibbs derivatives generally. However,
starting from Definition 2 and using the Property 7 from Theorem 1

we obtain, after a short calculation, the modified product rule:

n

D(f+g)=g+Df+f+Dg-2" Zz Df +(D,g).

i=1

We illustrate this fact by considering the simplest case of the
Gibbs derivative on the finite dyadic group of order 4. According to

relation (7),

D(feg)=2" (2D +D )(f g) (2D1(f°g)+D2(f'g))
(2g D f+2f D g+2(D f)-(D.g)+g* D2f+f D2g+ sz
=27} (g+ (2D +D ) F+f + (2D +D_)g+2(D )+ (D,g)+(D )+
= g+Df + f+Dg - 2 (2 2(D,f)- (D,f)e(

4. PARTIAL DYADIC GIBBS DERIVATIVES OF BOOLEAN FUNCTIONS

In this section we will discuss the application of the partial
dyadic derivatives to Boolean functions. Boolean functions are a
particular subset of functions from C(Bn) and, hence,several new
properties of these differential operators valid only in this case
can be treated.

In what follows we need the following notations and

definitions.
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Any Boolean function f is uniquely determined by its truth
vector F=[f(O),...,f(2n—l)]T. Each variable X, can be regarded as a
n-variable Booleax} function, the tr‘uth_ vector X, of which can be
partitioned into 3" segments having 2" zeros or ones. We denote by
xi’ the additive inverse of X and by f’'(x) the complement of f(x)
defined by fF’(x)=0 for f(x)=l and f’(x)=1 for f(x)=0. Also, denote

by f., the Boolean function obtained from a given Boolean function f

by replacing the variable x, by xi’ 1.8,

Recall that the replacement of a variable by its additive
inverse simply means the permutation of the function values in the
truth vector.

By 0 and 1 we denote the zero and unit vector, i.e., the vector
of order 2n all elements of which are equal to O and to I,
respectively.

Theorem 2. Let fl(x ,...,xn) be a Boolean function. Then,

1 Dif = —Dif

2. Dif = -D.f.,

5. D.(x.ex.) =D .(x.ex.) = 1-2(x.ex )
A LT i

6. D(fg) = 2_1(Dif + D.g) - D (fog),

where @ means pointwise addition modulo 2.

Note that the Properties 4 and 5 are slightly different from
the corresponding relations for the Boolean difference (see, for

example [121), which is a natural consequence of the absolute value

appearing in (5).
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Proof.l. Since feg=f+g-2f-g, for g=l, fel=1-2f,and hence
(Dif’)(x)=(Di(f®l))(x)=(Di(1—f))(x)=(Dil)(x)—(Dif)(x)=-(Dif)(x).
2. By definition Difi,=f(xi’®l)-f(xi’). Since xi’=xi®1,
Difi’=f(xt@1@1)_f(xi®1)=f(xi)_f(xi@l)=—Dif'

3. The variables xJ. and xj’, considered as n-variable Boolean
functions, obviously do not depend on the variable X, and the

property follows directly from Property 1 of Theorem 1.

4. Since Wal(Zn_L,x)=l—2xi, using the relation (9) we have

1

Dix£=2_lDi(l—wal(2n_L,x))=—2— D, (wal(2" ™", x)=1-2x

5. The Property 5 directly follows from Property 4 since there
is a one-to-one correspondence between the modulo 2 sum of variables
xi,...,xn regarded as n variable Boolean functions and Walsh
functions (see, for example, [17]).

6. Since xey=x+y-2xy, Vx,yeB, we immediately have that for

1)

Boolean functions f and g taking their values in Bl’

(Difg)=2_l((Dif)+(Dig)—Di(f@g)).
5. DETECTION OF SYMMETRY PROPERTIES OF BOOLEAN FUNCTIONS

In this section we will consider the application of partial
dyadic Gibbs derivatives in the detection of symmetry properties of
Boolean functions.

Some particular kinds of symmetries which could appear in a
Boolean function are defined and studied in [15,16,17]. Using a
similar approach the concept of complementary symmetries (co

symmetries) is introduced in [18], and their relationship with
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symmetries is shown. The application of the symmetries and
co-symmetries in logic design and functional decomposition is
discussed in [16,17]1 and [18,19], respectively. These results show
that the existence of symmetry or co-symmetry properties in a given
Boolean function offers some good possibilities for the optimization
of combinatorial network realizing this function.

In general, the answer to the question what kind of symmetries
or co-symmetries a given Boolean function does have can be obtained
only by means of a search procedure. Since there is a great number
of possible combinations it is important to have some efficient
procedures for detection of symmetry and co-symmetry properties.
Such procedures are formulated both for symmetries and co-symmetries
in terms of Walsh transform coefficients. Note that for symmetries
an alternative approach based on the application of Boolean
difference is also suggested [16]. Starting from these results we
will show that partial dyadic Gibbs derivatives can be efficiently
used in symmetry and co-symmetry properties detection. To make the
paper self-contained we will first repeat some definitions using the
notation from [18].

For a x=(x1,...,xn) we define the contex of x with respect to
i,Jj in Gn as:

goij(x)={aij | aijEGn—Z}

where o, =(x_,....>x. ,x. ., ... ’
ij (xl xl—lxwl’ ’xj—l’xj+]’ ’xn)

The restriction of x with respect to i,jeGn is given by:

xab = x with xi = a, xj = b, and a,bEBl.

Definition 3. Let f be a Boolean function.
L. f has equivalence symmetry in x; and xJ, (E(xi,xj)) iff for

all elements of the contex of x with respect to i, j
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f(xn) = f(xOO) :E(xi,xj).

2. f has non-equivalence symmetry in x, and xj (N{xi,xl.}) iff
J

for all elements of the contex of x with respect to i,j
f(xlO) = f(xoz) :N(xi,xj).

3. f has partial symmetry in x, relative to xj (P{xi,xj}) iff

for all elements of the contex of x with respect to i,j
f(xu) = f(xm) :P{xi,xj}.

4. f has partial symmetry in x; relative to xj’ (P(xi,x;’})
J
iff for all elements of the contex of x with respect to i,j

f(xOO) = f(XIO) :P(xi,xj’}.

5. f has equivalence co-symmetry in x; and xj (EC(xi,xj}) iff

for all elements of the contex of x with respect to i,J

f(xz ) = l@f(xOO) :EC(xi,xj).

1

6. f has non-equivalence co-symmetry in x; and xj (NC{xi,xj))

iff for all elements of the contex of x with respect to i,j

f(xlo) = lef(xm) :NC(xi,xj}.

7. f has partial co-symmetry in x; relative to xj (PC(xi,xj)‘)

iff for all elements of the contex of x with respect to i,j
f(xu) = l@f(xm) :PC(xi,xJ,).

J
(PC(xi,xj')) iff for all elements of the contex of x with respect to

8. f has partial co-symmetry in X; relative to Xx

i,j
f(xlO) = l@f(xoo) :PC(xi,xJ. )



Some remarks on Gibbs derivatives on finite dyadic groups 175

Note that no function can have both a symmetry and the
corresponding co-symmetry with respect to exactly the same
restriction in its domain. However, the existence of some symmetries
or co-symmetries may be conditioned to the existence of other
symmetries and co-symmetries. A study of this fact can be found in
[19].

Let us now consider, for example, non-equivalence symmetry.

According to part 2 of Definition 3, we can say that to detect
whether a given Boolean function f exhibits this property we
actually need to compare some pairs of function values specified by

the relation

f(xzo) = f(xOl).

Since any condition is allowed in the remaining function

values, they can be moved from the search procedure. It is fairly

i
Proceeding like this we in at same time associate to the remaining

obvious that this can be done by multiplying f by (x.—xj).

function values a scheme of + and - signs in such a way that the
different sign is associated to those values which must be mutually
equal if the given function has the examined symmetry property. Then
we compare these function values by calculating the partial dyadic
Gibbs derivative relative to x; and xj. Obtaining a zero vector will
mean that the examined pairs of the function values are equal and we

conclude that the given function has the non-equivalence symmetry.

More precisely, by definition

Dj(Di(xi_xj)f(xi’xj)z( (xiel)—(xJ.@l) )f(xi@l,xj@l)

—(xi—(xj@l))f(xi,xj@l)—((xiel)—xj)f(xical,xj)+(xi-xj)f(xi,xj),

from which



176 Radomir S. Stankovi¢

f(xm)-f(xlo) for X=X

f(xlo)—f(xm) for =X

]
—A

D .(D.(x.-x .)f(x.,x )
J v v ] v J

-f(x01)+f(x10) for X=X,

—f(x10)+f(x01) for X=X,

which is obviously equal to =zero iff fl(x )=f(x10), i.e, Iiff the

Q1
equality defining non-equivalence symmetry is satisfied. Therefore,
the check for detection of non-equivalence symmetry relative to the
variables x, and xj is given by

D (D.(x.-x )f)(x) = 0, VxeB .
i T n

In the same manner we can treat the similar relations for the
detection of the remaining symmetries described in Definition 3. The

results obtained are given in Table 1.

Table 1

Symmetry Definition Test for detection

E{x.,x.) f(x00)=f(x11) D.(D.((x.’—xj)f))(X)=0

i’ joi i
N{xi,xj} f(x10)=f(x01) Dj(Di((xi—xj)f))(X)=O
P{xi,xj) f(x11)=f(x01) xJ.(Dif)(x)=O

P(x.,xj’} f(x00)=f(x10) xj’(D.f)(x)=O

Il

EC(xi,xj} flx )=l@f(x00) D .(D ((x"—xj)(xixj@f)))(X)

11
NC(xi,xj) f(x10)=1@f(x01) Dj(Di((xi—xj) (xixj’ef)))(x)=

PC(xi,xj) f(x“)=l®f(x01) iji(xixj@f)(x)=O

PC{xi,xj') f(x10)=1®f(x00) xj’Di(xixj'@f) (x)=0

0

0
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In a practical application the number of computations required
by the tests shown in Table 1 can be considerably reduced by using
the fact that (Dif)(xi) = -—(Dif)(xi’), and that the truth vectors of

y

auxiliary functions x.x, x.)x., x,-x., Xx,/-x, contain a lot of
tJ t o J Lt J t )
zeros. In this way the number of computations reduces to the 2
subtractions. Since the number of pairs of function values which
must be checked to examine whether a particular symmetry or
: - ; ; : n-2
co-symmetry deces exist in a given function is equal to 2 by
def'miti\on, the tests implementable in exactly that number of
calculations can be considered to be the optimal ones with this

respect.
Illustrative example

To illustrate the preceding discussion let wus consider the

detection of non-equivalence symmetry N(xl,xz} of a three variable

Boolean function f(xl,xz,x3) regarded as a function on the finite
dyadic group of order 3 and given by its truth vector f =

[£(0),...,72"-D1"

. %*
Since XX, =0 0 -1 -111 O O] we need to calculate DZ(DZf )

#*
where f =(x-x,)f is given by £=l0 0 -f(2) -£(3) F(4) £(5) 0 Ol
it can be carried out by the flow graphs shown in Fig.2 obtained by
the corresponding modification of the flow graphs for calculation of

Dl and D2 shown in Fig 1b.

Since (sz)(x x2,x3) = -(D f)(x x2,x3) the last part of the
second step in this flow graph can be eliminated. Furthermore, since
sz) X x X4) = sz XXy X g ), another two subtractions can be
ehmma‘ced. the reduced flow graph obtained in this way is shown in

Fig.2b.
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0 -f(4)+f(2) r(o) - .
0 -f(5)+f(3) FUL)- - .
-f(2) -f(2)+5(4) Ii2) ==——> f(2)=f(4)
~£(3) ~f(3)+£(5) £(3) —//7 F(3)-£(5)
f(4) fl4)-£(2) f(4) -/// .
£(5) F(5)-£(3) f(5) & .
0 r(2)-1(4) Flg) = .
0 FL3)=F(8) 7y - :
a b.
Fig.z. a. Flow graph for detection of N‘(xl,xz) property of
three variable Boolean funct -ons
b. The flow graph of the reduced test
Conclusion

Phe Gibbs derivative on a finite dyadic group was the
initiating concept, a generalization of which lead to a whole theory
of Gibbs derivatives. Representing the dyadic Gibbs differential
operator in terms of partial dyadic Gibbs derivatives, a modified
product rule for dyadic Gibbs derivative is formulated. We hope that
this result can be a starting point for the derivation of similar
results for numerous generalizations of this operator.

By considering < the application of partial dyadic Gibbs
derivatives to Boolean functions, some new properties of these
operators are discussed, and a method for detection of symmetry and
co-symmetry properties of Boolean functions is proposed. We hope
that together with Edward’s results related with fault detection in
combinatorial networks [8,9], the result derived here could
represent a basis. for further work on the application of Gibbs

derivatives in logic design.
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1. Introduction

The concept of a “logical derivative” has been inroduced by the work of J.E. Gibbs [1] to provide
for functions defined on the finite dyadic group D(n) a calculus similar to the differential calculus
of real functions. Butzer [2], [3], Schipp [4] and others developed a complete theory of “logical
differentiation” for real functions defined on the interval [0,1).

In this paper we will consider this type of differentiation (which we call Gibbs derivation) in the
context of signal processing. We first discuss the concepts and tools which are used by us to be
able to realize effective experiments with 1-D and 2-D signals. The subsequent section deals with

the experiments we have performed. Finally we give an outlook on other experiments which seem
to be promising.

2. Gibbs Derivation

For any real-valued function f defined on a finite dyadic group D(n) the Gibbs derivative
D(f) = fll] of f isdefined by

n-1 i
) = S ) - f(x @ AG)))2"
i=0

i

' 9]
where A(i) = (Yn-1, Yn-2,...Yo) and yx =1 if k=n-i-1 and yx =0 forall k# n-i-1.
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It is easy to show that the Gibbs derivative defines a linear operation which has as its
eigenfunctions the Walsh function s as defined in the Paley-ordering. We have for all s € D(n)

Wt = Ms)ys @)

where for s = (Sp-1,5n-2,-..,5¢) We have A(s) = sp.120-1 + $p-220°2 + .+ s,

Equation (2) shows that the Gibbs derivative is the result of processing f by a linear dyadic
invariant system with transfer function H given by

H(s) = A(s) for s e D(n). ?3)

By this interpretation it is quite clear that a Gibbs derivation operator suppresses the De-values of a
signal and realizes a gain-factor which increases linearly with the spectral parameter s.
On the other hand, we have also the opportunity to consider Gibb derivation as the result of the

dyadic convolution operation with impulse response h given by

(2n-1)/2  for x = 00...0
hix)= -2l for x = A1) “)

0 for all other x.

3. Theoretical Background for the Experiments

We have developed the method base system CAST.FOURIER which provides many important
software tools to experiment with signals defined on finite Abelian Groups [Sj. We will use
CAST.FSM to investigate by experimentation the effects of the Gibbs derivation operator on 1-D
and 2-D signals.

If f isa 1-D or 2-D signal we will compute Df : = fl1} with CAST.FOURIER in the following
way:

(1) in the first step we compute the Walsh transform St of f by applying the Fast Walsh-Transform
algorithm available in CAST.FOURIER,

(2) in the second step we multiply Sy by the transfer function H of the Gibbs derivation operator D
as given by (3),

(3) in the third step we apply the inverse Walsh-Transform Algorithm to the product H -Sgto

compute Df.

We have to add the information how we want to define the Gibbs derivation operator for 2-D
signals. To do this we first remember that the 2-D Walsh-functions g  are defined by

We(X,y) = we(x) Wi(y) wheres,te D(n) and (x,y) € D(n) x D(n).

For f:D(n) x D(n) — R the Gibbs derivative Df = fl1] can be defined by
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y) = S @D 2+ S Tty Foy GAGH 2
i=0 =0

(5)
This definition ensures that the 2-D Walsh-functions s are - in analogy to the 1-D case - the

eigenfunctions of D. We have
Dyt = () + A (1) st - (6)

Besides experimenting with the Gibbs derivative we want also to make some experiments
concerning the approximation of polynomial functions by Walsh-Fourier expansions. It has been
observed by Polyak and Shreider [6] and independently also by Liedl [7] that in a Walsh-Fourier
expansion of a polynomial function of degree k all Walsh-Fouriercoefficients c(s) of Walsh-
functions s, which are generated by more than k Rademacher-functions, have the value zero.
This is the essential meaning of the “multiplicity theorem” (the number m(ys) of Rademacher-
functions in a Walsh-function s has been called the “multiplieity” of ).

The multiplicity-concept allows the definition of a special class of linear dyadic invariant filters,
which have special properties for the approximation of signals, especially if these have a shape
similar to a polynomial.

Finally as the last concept Gibbs derivations of a boolean function will be considered by
CAST.FOURIER experiments. It can be proven that the following theorem holds for boolean
functions f : D(n) —{0,1).

For any function g : D(n) — R let bool (g) denote the boolean function derived from g by

1 ifg(x)20
bool(g)(x) := (7
0 ifgx)< 0.

Chen for the Gibbs derivative fil] of a boolean function f the following theorem is valid

baol (L) =¥ | ®)

quation (8) shows that the Gibbs derivative of a boolean function f followed by the boolean
ireshold operation bool reproduces the boolean function. We will show this property also by
‘AST.FOURIER experiments in 1-D and 2-D cases of signals.

. CAST.FOURIER Experiments

1 Computation of Gibbs derivatives

s a first task we consider the computation of the Gibbs derivative of 1-D signals and 2-D signals
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»

4.1.1 1-Dsignals
Figure 1(a) shows the discrete function sin : (0,1,...,63} — R given by sin(2n x /64). Figure
1(b) is the related Walsh-Fourier spectrum Scin. We apply now the Gibbs derivative to the
function sin and get as result the function shown in Figure 1(c). Figure 1(d) shows the
computation of the second Gibbs derivative D2 (sin ) of the function sin.

4.1.2 2-Dsignals
Figure 2(a) shows the considered image “Spanish girl” sg. Figure 2(b) shows the computed
Walsh Fourier spectrum (where a log-scaling is used in presenting amplitudes). Figure 2(c) is the
Gibbs derivative D(sg) of sg. Figure 2(d) is the second Gibbs derivative D2(sg) of sg. We see the
effect of the Gibbs derivative in sharpening the edges of the image.

4.2  Multiplicity filtering

4.2.1 1-Dsignals
Figure 3(a) shows for the 1-D signal of Figure 1(a) the result of multiplicity low pass filtering of
order 3 (all spectral components of multiplicity<3 passes). Figure 3(b) is the corresponding
Walsh-Fourier spectrum. Figure 3(c) shows the signal when it passes a multiplicity low pass filter
of order 4. We see that the signal is completely reconstructed (the function sin does not contain
spectral components of order higher than 3).

4.2.2  2-Dsignals
Figure 4(a) and Figure 4(b) show the effect of filtering the image “Spanish girl” sp (of Figure
2(a)) by multiplicity low pass filters of order 6 and order 8, respectively.

4.3 Gibbs derivation of boolean functions

We consider an arbitrarily chosen boolean function f : B6 s B according to Fig. 5(a). Figure
5(b) shows the Gibbs derivative g = D(f) of the boolean function. Figure 5(c) shows the result of
the operation bool on g. We see that, as requested by (8), we get beol D(f) = f.

Finally Figure 6(a) shows a boolean image “cars’. Figure 6(b) shows the Gibbs derivative D(cars)
and Figure 6(c) shows bool (D(cars)). Again we see that we get the original image “‘cars” back;

bool(D(cars)) = cars.

5. Conclusion

The present paper discussed some of the experiments performed with the interactive method bank
system CAST.FOURIER. The experiment show that with the help of the tool “CAST.FOURIER”
it is quite easy to make the effects of taking Gibbs derivatives of 1-D signals (for example
representing speech information) and 2-D signals (representing images) better understood.
Furthermore, it is possible to combine Gibbs derivation with other known transformations, e.g.
with multiplicity filtering. It is our hope that with the performance of such and similar experiments
we will be able to develop a new type of algorithms for signal processing, especially for the field

of image processing.
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Abstract

In this paper we introduce a Variation on the Gibbs’ logic derivative . The
main difference with respect to the Gibbs' definition and its various general-
izations is that the factor jzv/—_1 is considered in the sequence domain. It is
shown that the logic derivative as disclosed in this paper has some basic pro-
perties more analogous to those of the Newton-Leibnitz derivative. We are
concerned here with the definition and properties of the logic derivative only
for discrete one-dimensional sequences, however the results of this paper
can be extended to the case where discrete sequences are multiple-dimen-
sional. Furthermore we discuss discrete cyclic invariant systems which may
be described by a linear logic difference equation. Finally, it is shown that
there is a simple relationship between the logic derivative and the ordinary
derivative of generalized functions.

(1) oy S
Variation : (Music). Repetition of a theme or melody with ormamental notes or modi~

fications in rythrm, tune, harmony or key. (Merriam-Webster Dictionary)

This paper was written while Zhang Gongll was visiting the Department of Computer
Science at the University of Dortrmund with a Research Fellowship of the German
Research Society (DFG) under an Agreement between the Mational Education Committee
of China and the German Research Soclety.
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[. Introduction

The concept of logic derivative was first presented by J. E, Gibbs [1,2,3]
with the property that the Walsh functions are characteristic solutions of a
linear operation equation just as that exponential functions emerge as the
characteristic solutions of a linear ordinary differential equation. Gibbs called
the linear operation logic derivative. Even though J.E. Gibbs and B. Ireland
further developed this idea to derivatives on finite zbelian groups [41, the
logic derivative of Gibbs has remained associated to Walsh functions in many
later publications. This is probably why, unaware of [41], Deng Weihang,
Su welyi, Ren Fuxian [51 and C.Moraga [6] introduced as a "generalization
of Gibbs' derivative™ a logic derivative in Zp” and showed that in this case the
Chrestenson functions [7] also emerge as a solution of a characteristic value

problem.

The discrete Chrestenson functions are defined by

m-1
CH, (n)= exp(JZW'SZEOkSnS/p) (1)

s’ s P

m-1 e =1 wa

and k= kspm =& n= nspm L
s=0 s=0

According to the definition of the logic derivative for this case [4, 5, 643,
we have

( _CHk(n))“) =k CHk(n) (2)

Now we consider the most simple and basic case where m=1 and p=N > &
for the Chrestenson functions. In this case the Chrestenson functions are

just the kernel functions of the discrete Fourier Transform (DFT):

@, (n)= glemka/N (3)

where k=k and n=n_.
S s
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Theretore, for the logic derivative we have:

(eJZmkn/Nym oy jemkn/N

(4)
Comparing with the Newton-Leibnitz derivative of exponential functions:

(el®ly = jealt, (5)

there are some questions to be studied in order to find a (possibly local)
relationship between the Gibbs derivative ( or a variation thereof) and the
Newton-Leibnitz derivative:

(1) Why does the factor j not affect the logic derivative of the exponential
functions?

(2) It is known that the exponential functions exp(j2nkn/N) are periodic:

ej.?'n(l—( + N)n/N _ o j2nkn/N
is its logic derivative also periodic?

In this paper we present a variation on the logic derivative of Gibbs in order
to give an answer to the questions stated above.

II. A Variation on the Logic Derivative

let f(n), n=0,1,...,N-1, be a one-dimensional complex sequence. f(n) can
be expressed as

N-1 )
fln= -3 Flk)e) 21kn/N
N k=0 (6)
where (k) is the discrete Fourier transform of f(n) and
N--1 e
Fli)= £ finye JEmkN/N (7)
n=0

Definition 1:

[he logic derivative of a one-dimensional complex sequence {(n) is defined
by
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N- 1 \
£ () = 11_1 U i (8)

k=0
- (ej2ﬂ.kn/N)(1) =k ej27tkn/N (9)

In the more general case of some periodic function with period N we
consider » = 0,1, ...,0 with Q »N . We define

(ej2'n9r1/N)(‘l) _ j[QJejE'J{Qn/N (10)

where [0 7] stands for the residue of ¢ modulo N.

Obviously,
(e)'E'Itkn/N)(ﬂ = (ejZﬂ(kH\J)n/N)H) = JL(k+N)] ej27tkn/N
-k oJ2mkn/N

since [NJ= O modulo N (13)

Definition 2:

N-1 y
Let d(n) :lN- T jh ol BTN (14)
k=0
It is easy to prove that
1 N1
f M) = fn)*dn) = F f(t)d(n © 1) (15)
=0

where @ stands for subtraction mod. N.

It follows that d(n) can be computed as shown below:

BT T TTo 1 TN-D/2 A
1 £ g2 . . . eN ! j 1/(e'-1)
/Ny 1 €S et L gFINED j2 ” 1/(e % -1)
g g G ER-W J(N-1) | 1/7(eN"1-1)

where e=exp(j2n/N).
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Then we have:

(16)
n

I1l. Properties of the Variation on the Logic Derivative

P1. The logic derivative operation is linear:

(afytm + bi o)™ = af V() + by Y () (17)

Where a, b are any complex numbers.

If f(n) = @ln) + jb(n), were ¢(n) and ¢(n) are real valued
seguences, we have:

F0 () = o'V (?) N jcp“)(n)
Proof: Set a = 1+j0 and b = 0+j1 in Eq. (17).
F2. The logic derivative of a constant i's zero.
(=0 (18)

P3. Let flA)e -->F(k) denote that F(k) is the discrete Fourier
transform of f(n), then f(1)(n)<~——>ij(k) and

(-jn) fln) <===> FP k) (19)
P4.
(cosZ'rtkn/N )(1) _L(eJE’JIkn/N i e—Jann/N>(1)
2
_ 1. gomkn/N o -j2nkn/N>
= -ksin2nkn/N (20)
P5
(smznkn/N)‘“ :l(ejZT(kn/N B e-jZﬂkn/N)(w)
2j

1 /., i2nkn/N . j2nkn/N
4, (220N ket

= kcos2nkn/N (21)
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Notice that properties P4 and P5 do not hold for Gibbs derivatives.

VI Cyclic Invariant Systems

Definition 3. The r~th derivative f(r)(n) of f(n) is defined by
(e)2Tkn/N )(r):(jk)r oj2mkn/N

N-1
=T F(K) (k)
k=0

(M) = lN r Jj2nkn/N

where f(n)«——=->F(k).

The discrete unit impulse function §(n) is defined by

§(n)=1 , if n=0
0, if n¥0.

Obyviously, d(n)¢—-->1,
§to (N <--->jk
A 57 (-3 (k)"

With eqs. (7) and (24 ) we obtain

6(1) (n) = _1___ ZJkejofkn/N
N
ie. e
dtn) = 8P
and f(n) =f(n) * 8(n)

3

I
<
T

E 3
(=2}

3

=
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Let F(k)<--->f{(n). Then we have:

N-1 ,
Flk ® kg) = X fln) eJth(k®ko)n/N
k=0
. N-1 )
= oJ2mkon/N's " g(n) gj2mkn/N
k=0
= J2mken/N £

ie. Flk ® kg) <===> f(n) oj2nkon/N

Using this shift operatiion in the sequency domain it is simple to show
that for modulated signals we have the following property.

((n) sin2mky n/N <-==> (F(k @ k) - Flk ®ky))/2]
(27)

((n) cos2rkgn/N --=> (F(k 8 ko) + F(k ®kg))/2

Definition 4.
A finite discrete linear cyclic invariant system is a convolutional system

represented as

where x(n) is the input function or source function and y(n) the output func-
tion or response function. The input and output function are related by a
finite discrete linear derivative equation; i.e.,

by @ n + by TV v by =

q q-1

= arx(r)(n) +a 1x(r—1)(rw) + v agx(nd, (28)

where hof/fo.

After computing the discrete Fourier transform for the equation we obtain

C 1 r .
v (k) ibi(jk)‘ = XUk) X A (k)
i -0

i=0
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which can be rewritten as

Y (K)= HIK)X(K), (29)
where i
%Obi(jk)
Hik= ———— | xln--X(K) and  y(m =YK,
Z’cli(jk)1
i=0

Let h{n)<--=»>H(k). If x(n)=8(n), then y(n)= h(n). We recognize that h(n)
is the impulse response function, which only depends on the system. We con-
sider H(k) to be a representation of the system in the sequency domain and
h(n) the representation in original domain as shown below:

x(n) ———{ h(n) ’———>y(n)

X (k) H (k) Y (k)
with y(n)=x(n)*h(n) (30)
and Y (k)=X(k)H (k).

VIIl. Relationship between the Logic Derivative and the Ordinary
Derivative of Generalized Functions

As earlier mentioned , the logic derivative is different from the ordinary
derivative; but there is a relationship between the logic derivative and the
ordinary derivative of generalized functions.

l et X(w) be the Fourier transform of a function x(t), and let %(w) be the
one of the sampled signal X() :

(o]
=3 x(no)sd(t-nt) (31)

n=-ow

where §(1-nt) represents a generalized delta function .
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Define a function X which consists of an infinite sum of functions x
shifted by integer multiples of T:

[e o)
% ft) = 2 x(t-nT) (32)

n=-c
We construct now the discrete function X+ by specifying values of this

function for mt, where T =Nt andm =0, 1, ..., N-1. Then we have:

00}
xp(mt) = 3 x((m+nN)T) (33)

n [eo)

It is known that the Fourier Transform of a § distribution is given by:
g(stt-vo)= e jovr (34)

(see e.g. [ 81, eq. 2-53)

It is simple then to prove that the Fourier Transform of X (t) given in eq.
(31) is:

"~ m .
X(w) = 3 x(vy)e JUVT (35)

V="

Now we express the infinite sum in terms of periods of length N and get:

Jes) (n+1)N-1 )
X(w) = X > x(yt) e JWVT

X(w) = 2 D x((mmN)r)e_jwmte ~jurive
m=0 n=-w

and using eq. (33) we obtain:

. N-1 y o
Xw) = 2 x (m1) e JumT o TJwniNT
m=0

Finally we let w = 2nk/(Nt), leading to:

N-1

§<V<Pnk/(Nr)) = ¥ x_r(mr)e_jZRmk/N (36)
m=0
from where
AN j2mkm/N
X (m1) = N X (2mk/(Nt))elemkm
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The logical derivative of x_(mt) is given by

T

N » .
xVime) = N T jk Xiken/No) g2mkm/N (37)

Suppose @(t) represents the ordinary derivative of the sampled function
X(t)

= - w [e o]
p(t)=a(x(t)) /ot ‘—'( b x(m)&(t—m))' = ¥ x(nt)§(t-n1)

f==oo n==0

where §(t-nt) denotes the ordinary derivative of 8(t-nt).

Since jm%(w) is the Fourier transform of @(t), we obtain

N-1 N :
p-n0=N"T T j(k2n/No) X(k2m/No) J2nkn/N (36)
k=0
[00) > [0 0]
where cpT(t) = ¥ @t-nT), and @)= 2 enudt-nT). (37)
Nn=-cw Nn=—o

Therefore, from eqs. (34) and (37) follows that the logic derivative of the

sequence of function values x_(nt), n=0,1,...,N-1, of a function x (t) is equal

= T
to the sequence of values apT(nT), n=0,1,...,N-1, of the function «pT(t), up tp a

scaling factor 2m/Nt, whereas the sampled signal :ﬁT (t) is the ordinary

derivative of the sampled signal ;W(t) of the function xr(t) .

o (nD) = —NE xV (no) (38)

VI Conclusions

We have shown that by intraducing a variation on the Gibbs derivative
it is possible to obtain some local relationships between Gibbs and Newton-
Leibnilz derivatives. It becomes apparent, Lthat for higher dimensional trans-
forms there are many forms of introducing variations: the factor “jk" of eq.
(9) will become jx, where x is a coding on the components k1,...,kr of k
(assuming an r-dimensional case.)
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ABSTRACT: In this paper we describe a program package for
calculating the values of Gibbs derivatives on finite Abelian
groups. We use the matrix representations of Gibbs derivatives which
enable us to define FFT-like parallel algorithm for calculation. For
programming realization we use the programming language Ada.

1.INTRODUCTION

Programs for implementation of FFT (the algorithm for efficient
computation of DFT) are today a standard part of software equipment
of any computer, ranged from PC to the large computer systems. These
programs can be easily modified to be applicable for the calculation
of the generalized Fourier transform on finite Abelian groups [1] as
well as on finite non-Abelian groups [2].

Gibbs derivatives on finite groups (see, for example [3,4] for
Abelian and [5] for non-Abelian case) form a class of differential
operators closely related to the generalized Fourier transform on

finite groups. To support their possible greater application in

209
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different areas, as for example in linear system theory I[4,6,7],
signal processing [8], logic design [9], some FFT-like algorithms
for numerical evaluation of these operators are developed [10].

In this paper we give the programming realization of these
algorithms, restricting ourselves to Gibbs derivatives on finite

Abelian groups. For programming realization we use the programming

language Ada which supports our intention to exploit a great
parallelism inherent in the algorithms proposed in [10]. In this way
we obtain highly parallel easily implementable algorithms and
subsequently programs for the computation of the Gibbs derivative of
a given function on a finite Abelian group.

Using these programs the complexity of computation of a Gibbs
derivative is approximately equal to the complexity of computation

of the Fourier transform on the given group [11].

2. NOTATION AND DEFINITIONS

To make this paper self-contained we will repeat briefly some
notations and definitions from [10].

Let G be a finite Abelian group of order g. We associate to
each group element one non-negative integer from the set
{0,1,...,g-1} providing that 0 is associated to the group
identity. In what follows the group elements will be identified with
the non-negative integers associated with them.

We assume that G can be represented as a direct product of

some subgroups Gl"”’Gn of orders gl,...,gn, respectively, i.e.,

IA
0q
=

n
G, . g = g & &8 = ..



Program for evaluation Gibbs derivatives on finite Abelian groups 211

The convention adopted above for denotation of group elements
applies to the subgroups Gi as well. Due to this assumption each

xeG can be uniquely represented as:

n
X = Yax, x.eG,, XxeG,
. il i i
=1
with
n
n g, i=1,...,n-1
a, = J=i+l J 2)
1is i=n

where gj is the order of Gj'
The group operation o of G can be expressed in terms of the
group operations 5 of the subgroups Gi , i=1,...,n as:

= 1 2 n
X oy = (x1 ° Y X5% Yors ¥ yn), x,yeG, xi,yieGi. (3)

n

The Gibbs derivative on finite groups is defined in [10] as

follows

Definition 1. The Gibbs derivative Dg on a finite Abelian group
G of order g is defined by:
-1 *

D = X G X
g g

where X is the (gxg) matrix of group characters of G, G =
¥*
diag(0,1, ...,g-1), and X denotes the transpose conjugate of X.

For numerical calculations it is more convenient to use the
definition of the Gibbs derivative in terms of partial Gibbs

derivatives, defined as follows.
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Definition 2. Let- G be representable in the form (2). The partial

Gibbs derivative |Di with respect to the variable X, is defined as:

with

where Ij is a (gjxgj) identity matrix, and ® denotes the
Kronecker product.
Definition 1. can be rewritten in terms of the partial

derivatives as follows.

Definition 3. The Gibbs derivative Dg on a finite group G of
order g is given by [10]:

where the coefficients a; are defined by (2).

3. FAST ALGORITHM

To obtain an efficient algorithm for the computation of the
Gibbs derivative on" finite Abelian groups it is convenient to start
from the definition of the Gibbs derivative in terms of partial
Gibbs derivatives, that is, from Definition 2.

According to this definition, the i-th partial Gibbs derivative
is described by a sparse matrix [Di obtained as the Kronecker product
of the matrix of the Gibbs derivative on the subgroup Gi and a
number of identity matrices. As is noted in [10], there is a strong

similarity between the matrix Di and the matrix describing the i-th

s
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tep of the FFT on G. It follows that we can associate directly to

the flow graph of a fast algorithm similar to the flow graph of
-th step of a FFT on G. Both flow graphs have identical forms. The
veights in our flow graph are determined by non zero elements of [Di
n a manner equal to that used in describing the FFT. This is best

:xplained by some example.

Example: Let G = 218 = { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15;
16,17; o } be the group with the group operation defined in Table L
The group representations of 218 over the complex field are the
Vilenkin Chrestenson functions shown in a matrix form in Fig.l.

The group Z
where ZZ=( 0,1;
addition as group operation, and 23=( 0,1,2; 2) is. the group of

%8 can be considered as the product 218=ZZXZ3><Z3,
o } is the cyclic group of order 2 with modulo 2

integers less than 3 with modulo 3 addition as group operation.

Therefore, any complex function f on 218 can be considered as

a three variable function f(xl,xz,x3), xlezz and xz,x3EZ3. The
matrices [Dl’ lD2 and lD3 of the partial Gibbs derivatives relative to
the variables xl,xz and x3 are shown at Fig. 2 a,b,c, respectively.

The corresponding flow graphs are shown in Fig.3 a,b,c. The Gibbs

derivative we calculate as D _= 9Dl+ 3[D2+ D., according to (5).

18 3

4. PARALLEL AL GORITHM

From Fig.3 it is obvious that the fast algorithms for
calculating partial Gibbs derivatives, by virtue of their nature,
are the highly parallel algorithms. The same applies to Gibbs
derivative since it is expressed as a linear combination of partial
derivatives.

Due to this fact we deduce from Definition 2. the following

parallel algorithm implementable on a multiprocessor system.
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PARALLEL ALGORITHM FOR CALCULATION OF GIBBS DERIVATIVE

Step 1. [Initialization].

Do through step 13 parallel
[ k is sign of the k-the processor, ke(l,Z,...gi}]
Step 3. [The weight matrix of the i-th partial derivative is

generated and transported in the processor’s memories];
Compute tli((j):=wi(k,j) for j:=1,l,2,...,gi.

i=1
Step 4. Compute Ng:= T gj and Gk := g/Ng/gi
j=1

Step 5. Let 1 :=1; jp := O;

step 6. jO:=0; for jO:=jO+l while jO = Ng repeat through step 13.

Step 7. jl:=0; for jl:=jl+l while jl = Gk repeat through step 12.

Step 8. Let jp:=jp+l;

1A

j2:=0; for j2:=j2+1 while j2 gi repeat step 9.

Step 9. Let bl; (j2) = f(jp); Jp = jp + Gk;

Step 10. [Each processor computes one values of the partial

derivativel;

1
07 * Bpals
1 1

o1 0o

Compute dli((l) 1=
s=1

Step 11. [The partial derivative is multiplied by appropriate

Cormpute dli((l) = ali) * dli((l);

Step 12. Let l:=l+1;
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Step_14. [The values of the Gibbs derivative are calculed by
adding of partial derivatives];

Let Nn:=Gk*Ng; s:=I;

1:=0; for l:=l+1 while | = Nn repeat through step 16.
Step 15. k:=0; for k:=k+1 while k = g repeat step 16.

step 16. Let Di(S) i= Di—l(S) + dli((l); s:=s+1;

step 17. [Dn(s)for s:=1,2,...,g are the values of the Gibbs
derivativel

End.

An implementation of the parallel algorithm described above on
the multiprocessor system is illustrated in Fig 4. With this system
it is assumed that the function f is given by a truth vector f =
(f1’f2""’fg)' This vector is stored initially in the memory of
the control processor. At the end of the computation the values of
the Gibbs derivative will be stored also in this memory.

The values of the Gibbs derivative are computed sequentially,
step by step, the values of the first partial derivative first, then
the values of the second derivative and finally the values of the
n-th partial Gibbs derivative.

For the computation of the i-th ©partial derivative g
arithmetic processors are used. Each of the arithmetic processors is
capable of performing some elementary transforms on the data stored
in its own memory under the general control of the control
processor. Those are the transforms defined by step 10. and step 1L
In one cycle, the g; terms of the function f are transported by the
control processor to the entire ensemble of arithmetic processors,
and stored in their local memories. FEach arithmetic processor
independently computes one value of ‘the partial i-th Gibbs

derivative by simply multiplying the stored values of f by the
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appropriate weight (also stored in local weight array t), and
finally édding the resulting product.
When all the input terms have been processed the processors’

memories have accumulated the intermediate results. This set of

terms can then each be transformed independently and concurrently
according to the step 1l.

After performing the gi independent Nn point transforms, the
coefficients of the i-th partial Gibbs derivative are transported,
in order to the control processor, in array D in its memory.

The control processor computes the values of the Gibbs
derivative by simply adding the appropriate values of partial
derivatives.

For the programming realization of the described parallel
algorithm, the programing language Ada is used. The program is
presented as Appendix 2. Note that the arithmetic processors are

presented as array of parallel tasks [12].
5. CONCLUSION

This paper is concerned with the program for the evaluation of
the values of the Gibbs derivative of order k of a complex function
on a finite Abelian group. The program is based upon the matrix
representation of Gibbs derivatives which enable the formulation of
an efficient parallel algorithm.

The program is written in the programming language Ada, which
has suitable mechanisms for the description of parallel tasks. In
this way we obtain an efficient program suitable for implementation
on multiprocessor systems.

We hope the results presented here will stimulate further
application of Gibbs derivatives in those areas where their

numerical evaluation is possibly required.
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APPENDIX 1.
Table 1.
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Fig.2. Matrices of the partial Gibbs derivatives
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Instructions
\ Lpe 1. LpE 2. Lre

Control | P:ea i o ; it. : Arit.
proc. : proc . . proc.

o>
iy
o+

— o~

g E Nn |i| i Nn | Nn :

P 7 ® ®

— Comunication network

Fig. 4. A multiprocessor system implementation
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APPENDIX 2.

procedure MAIN is
use PACCOMPLEX
-- PACCOMPLEX is external package for complex calculs
type COMPLEX is
record
R: FLOAT;
Y: FLOAT;
end record,;
task type PROCESSES is
entry TIN (II: in INTEGER, TI: in COMPLEX);
entry FIN (I2: in INTEGER, Fl: COMPLEX);
entry BAD (Gl: in INTEGER);
entry DAD (I4: in INTEGER, Al: COMPLEX);
entry DOUT(IS: in INTEGER, D1: out COMPLEX);
end;
PROC: array (INTEGER range <>) of PROCESSES;
B,D,F: array (INTEGER range <>) of COMPLEX;
G: array (INTEGER range <>) of INTEGER;
W: array (INTEGER range <>, INTEGER range <>) of COMPLEX;
DD,FPOM: COMPLEX;
1,J1,J2,J3,L,N,NG,GI,GG,GK,JPOM, JPO: INTEGER;

begin
input(N); input(F); input(G);
GG := 1;
for I in 1..N loop
GG := GG * G(I);
end loop;
for I in 1..N loop
GI := G(I);
input(W);
for JI in 1..GI loop
for J2 in 1..GI loop
PROC(J2). TIN(J1,W(J2,J1));
end loop;
end loop;
NG := 1;
for J1 in 1..1-1 loop
NG := NG * G(J1);

end loop;
GK := (GG/NG)/GI;
JPOC:= O;

L = 13
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for JO in 1..NG loop
for JI in 1..GK loop

JPOM := JPOC +JI;

for J2 in 1..GI loop
FPOM := F(JPOM);
for J3 in 1..GI loop

PROC(J3).FIN(J2,FPOM);

end loop;
JPOM := JPOM + GK;

end loop;

for J2 in 1..GI loop
PROC(J2).BAD(GI);

end loop;

for J2 in 1..GI loop
PROC(J2).DAD(L,GK*GI);
end loop;
L := L&l
end loop;
JPOC := JPOC + GK;
end loop;
L :=1;
for JO in 1..NG loop
for JI in 1..GK loop
for J2 in 1..GI loop
PROC(J2).DOUT(J1,DD);
D(L) := D(L) + DD;

L o= 1+#1;
end loop;
end loop;
end loop;
end loop;

end MAIN.
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task body PROCESSES is
use PACCOMPLEX;
1,J,GL,A: INTEGER;
POM: COMPLEX;
T,D,B: array (INTEGER range <>) of COMPLEX;
begin
loop
select
accept TIN(Il: in INTEGER, TI1: in COMPLEX) do
I := I+1;
T(I) :=Tl;
end;
or
accept FIN (I2: in INTEGER, Fl: in COMPLEX) do
1:= 12
B(I) := F1;
end;
or
accept BAD(GIl: in INTEGER) do
POM := O;
GL: 1= Gl
for J in 1..GL loop
POM := POM + B(J) * TQ);
end loop;
end;
or
accept DAD(I4: in INTEGER, Al: in COMPLEX) do
I := 14;
A = Al
D(I) := POM * A;
end;
or

accept DOUT (I5: in INTEGER, DI: out COMPLEX) do

I 2= I5;
D1 := D(I);
end;
end select;

end loop;
end PROCESSES.
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Abstract: In this paper we define the partial and global
differential operators on the space C(G) of all functions from a
finite Abelian group G into the complex field C. The main properties
of these operators are studied.

Considering the multiple-valued (MV) functions as the functions
belonging to C(G) taking their values in Z nch(D, it is shown that

el
some symmetry properties of these functions can be detected using

the partial derivatives introduced.

1. INTRODUCTION

In engineering practice the elements of certain functional
spaces are usually employed as the mathematical models of signals.
[n this setting the signals are frequently identified with the
functions representing their mathematical models. Several classes of
signals can be distinguished with respect to their mathematical
models.

Continuous signals are described by functions of continuous

variables. Continuous signals of continuous amplitude are sometimes

225
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called analogue signals. The best known example is the signals
modelled by functions mapping the real line R into itself, or into
the complex field C.

Signals representable by discrete functions are called discrete
signals. Usually, the domain of their mathematical models is the -s'et
of integers Z, or one of its subsets, for example, Z . the set of
non-negative integers less than some pn. P

Signals described by discrete functions taking their values in
finite sets, 1i.e., quantized discrete signals, are called digital
signals. Formally, the mathematical model of a digital signal is a
function f:$+L, where $ and L are non-empty finite sets usually
identified = with  subsets of the non-negative integers, 1855

$={0,1,...,g-1}, L={0,1,...,r-1}, g,reN. More generally, the domain

S can be considered as a direct product of some finite sets
Si=(0,1,....gi—l), i=1l,...,n, in which <case f is an n-variable
function f(xl,...,xn), xiESi'

A network whose inputs and outputs are digital signals is
called a digital network. Also, the input-output relations
describing digital networks are expressed by digital functions, or
alternatively, a digital network realizes a digital function.

It is commonly known that the problem of digital network design
is greatly simplified if the discrete functions realized belong to
some special class of digital functions; let us note symmetric or
monotone functions as examples. For this reason the detection of
peculiar properties of a given digital function, usually reported as
the analysis of digital functions, is an important task. Two
approaches prevalent today are analysis in the original domain and

analysis in the spectral domain.

The first is based on some algebraic transformations and the

difference operators for digital functions are one of the most
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powerful tools. Recall the Boolean difference [1]1 applied to Boolean
functions, and difference operators for digital functions introduced
in [2,3].

The second approach starts from the fact that the algebraic

structure of a group can be imposed on the domain &, and thus
digital functions can be considered as functions on groups. For
example, the Boolean functions can be considered as functions on
finite dyadic groups [4], while MV functions are defined on the

group Z = It follows that mathematical tools provided by abstract
p
harmonic analysis on groups can be applied to solve the problems of

analysis and synthesis of digital functions. Let us mention as
examples the discrete Walsh transform applied to Boolean functions
and the Chrestenson transform applied to MV functions [6,7,8]. The
methods based on discrete transform applications are commonly called
spectral methods, and their efficiency is supported by fast
transform algorithms [5].

in this paper we consider the digital functions as a subset of
the complex functions on finite Abelian groups and we define an
operator on C(G) (see definition below) possessing some useful
properties of both the above-mentioned approaches when it is applied
to digital functions. More precisely, we define a differential
operator having the characters of the corresponding finite Abelian
group as its eigenfunctions. In this way, the operator defined has
some properties in common with difference operators for digital
functions; on the other hand, since the operator is closely related
to the generalized Fourier transform on finite Abelian groups, its
computation is supported by a fast algorithm, comparable in

complexity with well-known FFT algorithms.
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2. NOTATIONS AND DEFINITIONS

Let G be a finite Abelian group of order g, and denote by C(G)
the set of all furictions mapping G into the complex field C. The set

C(G) is an Abelian group under pointwise addition defined by
(F+g)(x) = flx) + glx), Vf,geC(G), VxeG.
Enriched with multiplication by a scalar defined by

(af)(x)=af(x),¥feC(G),VaeC,

C(G) is a linear space admitting an inner product <¢,<> defined by

FES =g T rog(x), vr.gec(),
xe@G

where the bar notation indicates complex conjugation.

Thus C(G) has a Hilbert space structure with norm

£l = &KF, Y% = (g7 ) I Fea 192, vret(o).
xe@G

Furthermore, C(G) may be given the structure of a complex
function algebra by introducing the pointwise product of functions

through
(fg)x) = flx)glx), Vf,geC(G), VxeaG.

Another important operation in C(G) is the convolution product

defined by
(r*glz) = Z fix)glzex’) = z flzox')g(x), VzeG, Vf,geC(G),
xeG xeiG

. . . 3___ ¥ 7=
where x’ is the additive inverse of x in G, 1.e., Xo°x =€, (x’)'=x



Real Gibbs derivatives on finite Abelian groups 229

The symbols o and e represent the group operation and the identity
of G.
Let us suppose that G is réﬁresentable as a direct product of

cyclic subgroups Gi of orders g i=1,...,n, respectively, i.e.,

n n
= = = =...5Z . 1
G =% G g= Teg &= &= =8, (
i=1 =1
In what follows the subgroups G]’GZ""’Gn will be regarded as
an n-tuple (GI’GZ""’Gn)'

Due to this assumption any function feC(G) can be considered as
a function of n variables, i.e., f(x)=f(x,...,x ), xeG, xiEGi’
ie{l,...,nt.

Note that the group operation o of G can be expressed in terms

of the group operations z of subgroups Gi’ ie{l,...,n) as:

] o

xoy = (x x

11 Tp X p Y o0 Xy V) XyEG X766,

Also, each xeG can be defined in terms of the xi as follows:

n
x=Zax, x.€G., (2)
i i
i=1
with
n
m &, I o
j=i+l Y
_ (3)
a; W
1 i=n

where gj is the order of GJ,.

Now, let us note that the digital functions can be considered

as the particular functions belonging to C(G) taking their values
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from a subset LcZcC. In this case the variable xeG associated by
(2), can be considered as the decimal index corresponding to the
vector of variables (xz,...,xn), and the equality (2) is a
generalization of the well-known p-ary or binary weighted coding
applied to MV and Boolean functions, respectively.

The characters of G are defined as the homomorphisms of G into

the unit circle 15,161, i.e., they are given by

n
xlw,x) = x(lw_,...,w ), (x,...,,x )) = exp(2ni Z Wixi/gi)’(4)

i=1

on the assumption that x is represented by (2) and a similar
expression for w.

Moreover, the set of characters {x(w,x)} under pointwise
multiplication forms a group isomorphic to G. Also, {x(w,x)} is a

complete orthonormal set for C(G), i.e.,

xlw, <), x(k,)> = 8(w,k),
<F,x(w,*)> = 0, YweG, implies that f=0.

Here & is the Kronecker symbol.
Therefore, using the characters, the direct and inverse Fourier

transform on C(G) are defined respectively by:
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For this Fourier transform the main properties of the classical
Fourier transform hold. For example, the convolution theorem states
that if h=f*u, f,ueC(G), then

S, = g_lsfsu. (6)

The reverse statement is also valid, 1i.e., if the Fourier
transform of a function heC(G) can be represented as a componentwise
product of the Fourier transforms Sf and Su of some functions

f,ueC(G), then h is the convolution product of f and u, i.e., h=*u.

4. DERIVATIVE

In this section the definition of a differential operator will
Vbe introduced and its properties will be studied.
The partial differential operator introduced in [3] can be
slightly generalized as follows.
Definition 1. For a function feC(G) the partial derivative Di
with respect to the variable X, is defined by
g1
(0, Ax) = g] J  ((flxeak ) = FOxD. (7)
k=0
Although the modular arithmetic related to the group operation
o is implicitly included in (7), the partial derivative of a
function may however be conveniently evaluated using conventional
arithmetic operations only. This becomes apparent if (7) s
expressed in a matrix form.
It is obvious that the partial real Gibbs derivative Di can be

described by a g by g matrix Di defined by
n
D, =g ® A, (8)

where ® denotes the Kronecker product, and Aj is a gj by gj matrix

given by:
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r =
( -(g -1) 1 1
gJ 1
1 -(g -1) 1 1
%)
A, = A LY
J
1 1 (g -1)
i )
1., J#,
j J

with Ij the identity matrix of order g ..
4

It follows that the partial real Gibbs derivative of a function

feC(G) with respect to its i-th argument is given by
-[-)if = DiE’ (9

where Di is given by (8), F is the truth vector of f, i.e.,
F = [£(0),....flg-U1" , and D,f = [(D,)(0),...,(D,F)g-DI" .

From this matrix representation it is obvious that the values
of Qif can be calculated by using a fast flow graph having the same
structure as the i-th step in the flow graph of the fast algorithm
for a generalized Fourier transform on finite Abelian groups [9]
except that the weights are different; here all of them are real anc
only g of them are not equal to 1. More precisely, the weights
corresponding to the horizontal branches in the flow graph are equal
to —(gi—l).

For an illustration of this statement, the matrix

representations of the partial Gibbs derivatives on Z o are given ir
3

Fig.la. The flow graphs of the corresponding fast algorithm for
calculation of the values of these derivatives of a function are

shown in Fig.1b.
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-2 1 1 1 0 O
D, sl @1 e el 1 el )

|1 1 -2 0 0 1

[1 0 o =Z 1 1
D, =37l jo 1 o] e 1 -2 1])

0 0 1 11 -2

Fig.lb. The flow graphs of the fast algorithm for
calculation of the derivatives shown in Fig.la.
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The partial derivative Di can be considered as a

generalization of the Boolean difference [1]. A justification for
this statement can be found in the properties of the operator D,
i

stated in the following theorem.

Theorem 1. Let feC(G). Then,

1. f is independent of its i-th argument iff Dif = 0eC(G).,

2. Di(Djf) = Dj(Dif)’

3. Dlaf, +af)) =abDf +aDf, a,xcC f,fcC@G),
4. Di commutes with the translation operator Tq on G defined
by qu(x) = f(xeoq), ¥Yq,xeG, i.e.,
Diqu = Tquf.
5. Let feC(G). Denote by fi’ a function obtained from f by

inverting its i-th variable, i.e.,

(D.f.,)(x ,‘..,xi,...,xn)=(Djf)(xl,...,x£,...,xn), v je(l,...,n}.

6. If Sf is the Fourier transform of an feC(G), then that of

its partial real Gibbs derivative Dif is given by
SDif(W) = SB.(W)Sf(W),

where g.-1

with a; defined by (3).



Real Gibbs derivatives on finite Abelian groups 035

Particularly, for Flx)=x(w,x), we have Di(X(W’X)) =

SB (w)x(w,x), that is , the characters of G are the eigenfunctions
i

of the partial Gibbs derivatives.
7. Convolution property:
Di(f*g) = Dif*g = f*D,ég vf,geC(G),

where * denotes the convolution on G.

Proof. 1. Let us first suppose that (Dif)(x)=O. According to the

Definition 1, this condition can be expressed as

g1
-1
Bl ¥ (flxea)x) - £0) = O,
k=0
or equivalently,
f(xi ; O)+f(xi ; l)+...+f(xi i (gi—l)) = gif(x), (11)

where fl(x, ° k) is a short notation for f(x.,...,x. ®Kk,.x ).
1 I 1 i1 n

Therefore, the condition (Dif)(x)=0 actually describes a system
of algebraic equations obtained for different values of xiEGi'

According to (8), this system can be expressed in matrix form as
AiF = 0, (12)

where F is a column matrix of order gi given by F =
[f(xi=0),f(xt=l),...,f(xi=gi—1)]T, and f(xi=k) stands for
filx

l""’xi-l’k’xt+l""’xn)'

Now, we will apply a series of gi—l identical linear
transformations to the rows of matrix Ai' The transformation
consists of the replacement of a row of Ai by the row obtained by
subtracting the row considered from its preceding row. In this way

the system (12) is transformed into its equivalent system
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YF = 0,

where the elements ysr’ s,re(l,...,gi}, of Y are defined by

>

—(gi—l), ¥=1,
y =
ir I, FE2;. w108
L,
—gi, s=r-1,
B = g;» S=T, 5=2, -
0, otherwise,

From the structure of Y it follows directly that this system is
satisfied only if f(xi=0)=f(xi:1)=...=f(xi=gi—1). Conversely, if
these equalities are satisfied, then (Dif)(x) = 0 follows directly,
since the sum of elements in each row of Ai is equal to O.

2, The proof follows directly after a routine calculation

starting from the definition of partial real Gibbs derivatives and
using the fact that (xoaik)oajr = (XOaJ,r)oaik) due to the

associativity of the group operation o of G.
3. Linearity follows directly from Definition 1.

4. The proof follows from Definition 1 and the definition of

the translation (shift) operator Tq’
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g1
_l _
= g, Z T (Fleeak) = £0) = (T (D F)(x).
k=0
5. Let us recall that the additive inverse x’i of an xiEGi if

xiio can be expressed by x’i=gi—xi. Now the property is proved in a
manner similar to that used in proving the Property 4 for the

particular choice of q=(q1,...,qi,...,qn) defined by

0, S#l

6. In proving this property we use the shift property of the

Fourier transform on groups. The proof goes as follows.

By definition,

gi_l g-1 g—l
= g1_11 Z ( Z f(X'oaik)i(W,x) = Z Flc) 2w, x))
k:O XIO X'=O

=]
=g, S
) (f(XOaik) F B f
k=0
The second part of the statement follows directly by the
definition of partial real Gibbs derivatives using the relation

;{(w,xoaik)=x(w,x)x(vv,aik),
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T We will prove this property in the spectral domain. From

the Property 6 and the convolution theorem we have

SDi(f*g)(W) = (W)S(f,,E ) (w w) = SBi(W)Sf(W)Sg(W)
= Sp f(W)Sg(w) = Sf(w)SBi(W)Sg(W)
= Sf(w)SDig(w)

Now, let us consider in more detail the functions SB, in the
spectral domain given by (10). L

Recall that the matrix of characters of a group G representable
in the form (1) is the Kronecker product of the matrices of

characters of the subgroups Gi' Therefore, the first gn rows of the

matrix of characters of G can be considered as the periodic
repetition of the matrix of characters of the subgroup Gn. Since by

definition an=l (relation (3)), the values of SB (w), w=0,1,...,g-1,

n
according to (10) can be obtained by the componentwise summation of
the first gn rows of the character matrix of G. The character
matrices are symmetric and, because of the periodicity in the first
gn rows, this summation reduces to the repeated evaluation of the
Haar integral of the characters of Gn' It is known that the Haar
integral of any character is equal to zero except for the principal

character, for which it is equal to the group order g, According to

(10) we can conclude that

'O 151 (IR o]

o
<
I
-
0q
x‘
[

1, otherwise

If the variable xn is considered as a n-variable function on G

represented by its truth vector >_cn=[x(w)]T w = 0,1,...,g-1, then it

is apparent that SB takes the zero value at those w where the zero
n
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value appears in X - This conclusion in a similar way can be
extended for establishing a relation between the remaining functions

SB i=1,...,n-1 and the corresponding variables xi. More precisely,
i
the functions SB can be considered as the characteristic functions
i
associated with the variables xi, since

S_(w) = w = 0,1,...,g-L

The Property 6 of Theorem 1 establishes a relation between the
Fourier transform of a function f and that of its partial real Gibbs
derivative. The relating function Bi is therefore purposely defined
in the transform domain by the relation (10). Using the inverse

Fourier transform, we obtain

_l(

g; gi—l) for x=0
—
B — -— == — — .:
i('X) g; for x aik, k 1,...,gi 1, i=1,...,n.
0 otherwise

It follows from the Property 6 and the convolution theorem that
(Dif)(x) = (Bi*‘f)(x). (13)

Thus, the matrix Di defined by (8) is a convolution matrix.
Therefore, for the calculation of the values of the partial real
Gibbs derivatives of a given function the fast convolution algorithm
on groups can be used [17].

Using the partial derivatives and the relation (2) we can

define the global real Gibbs derivative on finite Abelian groups.
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Definition 2. The real Gibbs derivative Df of a function feC(G) is
defined by

(Df)(x) =

i

ai(Dif)(X)’ (14)
1

N~ 3

where the coefficients a; are defined by {3).

This derivative resembles very much the Gibbs differential
operators on groups introduced in [10,13]. The main distinction is
in the values of the coefficients of the terms in the summation
(14), which will be discussed later in more detail. The chief

properties of the derivative D are given in the following theorem.

Theorem 2. Let feC(G). Then,

1. DFf =0 iff F const.e C(G),

2. D(alflﬂxzfz) = ochf1 + aZDfZ, ocl,ocze(D, fl,fzeE(G),
3. D(f*g) = Df*g = f*Dg, Vf,geC(G),

4 . If the Fourier transform of f is Sf’ then that of Df

is given by

where

with the coefficients a; determined by (3).

Thus the characters of G are the eigenfunctions of D, i.e., the
characters x(w,x) can be obtained as the solutions of the linear
first order differential equation

D) = Sc(w)f(x) = 0.



Real Gibbs derivatives on finite Abelian groups 241

Proof. According to Definition 2, the real Gibbs derivative is a
linear combination of the partial real Gibbs derivatives. Hence, the
properties 1 to 4 can be proved in a manner similar to that used in
proving the corresponding properties of the partial real Gibbs
derivatives stated in Theorem 1. The proof of Theorem 2 is therefore
omitted entirely.

It is interesting to consider the relationship of the real
Gibbs derivative with some existing relevant operators.

In order to achieve computational efficiency we define our
derivative as an operator acting on C(G). This means that when it is
applied to digital functions we ©practically need only integer
arithmetic. In this way we avoid not only the necessity for modular
arithmetic appearing in dealing with digital functions in the
original domain, but also the necessity for complex arithmetic when
the digital functions are processed by spectral means. The price
paid is the absence of some other interesting properties
characteristic of some other relevant operators. For example, an
advantage of the Gibbs derivative [10] is that it can apparently be
extended, at least heuristically, to the real (Newton-Leibniz)
derivative [10]. Unlike the differential operators introduced by
Thayse for dealing with digital functions [2], our derivative, as
well as the partial derivative, of a digital function is not a
digital function, because, in general, the values of Df obviously
belong not to L but to Z.

The Property 4. of Theorem 2 suggests that there is a strong
relationship between our real Gibbs derivative and the Gibbs
derivative on finite Abelian groups [10]. This relationship becomes
apparent if we compare the matrix representations of these
operators.

According to Definition 2, the matrix D describing the

derivative D is a linear combination of matrices Di defined by (8).
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On the other hand, the Gibbs derivative DG on finite Abelian groups

can be expressed in a matrix form by
_1 =
D. =g [x]AIx],

where [x] is a g by g matrix of characters of a finite Abelian group
G of order g, and A = diag(0,l,..,g-1) [11,12].

Comparing the matrices D and DG we have

b= Re(DG),

where equality stands componentwise and Re(Q) denotes the real part
of Q. Therefore, the elements of the matrix D are equal to the real
parts of the corresponding elements of the matrix DG' Here we find
the justification for the name the real Gibbs derivative of our
differential operator. Note that if the group G has real-valued
characters, as 1is the case with the finite dyadic group, the
matrices D and DG coincide and, hence, the derivative D is equal to
the Gibbs derivative. It follows that in the case of groups having
complex-valued characters, the real Gibbs derivative can exhibit
some advantages in application to real-valued functions, because

with this operator complex arithmetic is not required.

4. APPLICATIONS

It is apparent that, owing to the properties mentioned in
Theorem 1, the possible applications of the partial differential
operator Di can be found in the same areas where the Boolean
difference is already applied in the case of Boolean functions. One
of these areas is certainly the detection of appropriately defined
symmetry properties of digital functions. In order to show this we
introduce the following definition, which can be considered as an
extension of the corresponding definition for Boolean functions
introduced by Hurst [7]. For simplicity we consider only MV

functions obtained for g =8y = - = g = p.



Real Gibbs derivatives on finite Abelian groups 243

Definition 3. For a chosen ke{0,l,...,p-1} a given MV function f:
{O,l,...,p—l}n —= {0,1,...,p-1} exhibits k-th single-variable

symmetry in X, with respect to xj, which we express as (kSVSxi,xj),

if for each X.,...,X. .,X. .,...,X . ,X. ,...,X_ we have
l) bl L_l) L+l) )J_l) J+l) )n

f(xi=O) = f(xi=l) = i = f(xi=p-l), (15)

for each xje{O,l,.‘.,p—U\(k}.

We will show that a possible approach to the detection of this
kind of symmetries in MV functions can be formulated in terms of
partial real Gibbs derivatives in a manner analogous to- the
corresponding application of Boolean difference in the case of
switching functions.

Let us consider the function

f’(x)=zj(Dif)(x) (16)

where Zj is a MV function on G defined by the requirement x7.®zj:k; ®

J

stands for modulo p addition.

Note first that the condition (15) is a weaker version of the
condition for a MV function to be independent of its i-th argument
(Property 1 of Theorem 1), since a restriction on its j-th argument
is imposed.

Now. let us suppose that f’(x)=0. This condition is equivalent

. n n-1 .
to a system of p -p linear algebraic equations, because by
definition Zj:O for x =k.

Note that the subset of variables xl,...,x

, n- ;
take (p-1)p different combinations of values because to the

restriction imposed on the variable xj. We denote these combinations

by c(s), se(O,l,...,(p—l)pn_Z—H.
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The system of linear algebraic equations under consideration

can be partitioned into p_l(pn—pn_l) disjoint subsystems of p

equations each, so that each subsystem corresponds to a particular

c(s). According to (8), these subsystems are given by

n-2
ZinFi = Op’ s=0,1,...,(p-1)p -1,

with Ffz[f(xi:O,c(s)),f(xizl,c(s)),...,f(xizp—l,c(s))]T, and Op is

the zero vector of order p.

By solving these subsystems of equations in a manner like that
used in proving Property 1 of Theorem 1, we conclude that if
f'(x)=0, then the function f satisfies the condition  (15).
Conversely, if we suppose that the condition (15) is satisfied by
the function f, then it easily follows that f’(x)=0, since the sum
of the elements in each row of the matrix Di describing the i-th
partial real Gibbs derivative is equal to zero.

In this way we actually prove that the necessary and sufficient
condition for existence of (kSVSxi,xj) property in a given MV
function, and consequently, a test for detection of this property,

is given by f’(x)=0.

ILLUSTRATIVE EXAMPLE

To illustrate the application of the partial real Gibbs
derivatives for detection of the symmetry properties defined above,
let us consider the method of detection of (ZSVle,x3) of a function
F (O,1,2}3-—-— {0,1,2} given by its truth vector shown in Table 1. It
follows from Definition 3 that a three-variable three-valued

function will have (ZSVle,x3) if



Real Gibbs derivatives on finite Abelian groups 245

f(0,x,,0) = f(1,x,,0) = f(2,x

2 2’ ol

2 Vx,€(0,1,2).

f(O,xZ, 1)

f(l,xz,l) = f(2,x2,l)

To detect this property we calculate the partial real Gibbs

derivative on X0 (le)(x), using the matrix Dl given by

—2 1 1 1 0 O il 0O O
Dl = I =2 1] ® |0 1 O ® [O 1 0
1 1 -2 0O O 1 0 6] 1

The resulting vector is multiplied componentwise by the vector

Z5 obtained from the truth vector X4 of the variable X considered
s a 3-variable function on G according to the requirement X40Z4 = 2
which must be satisfied by the corresponding elements of the vectors
Xq and Z5. The vector Z4 is also shown in Table 1. After the
calculation is carried out we obtain a zero vector and, hence, we

conclude that the given function exhibits the property (ZSVle,x3).
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Tabie 1.
XX f le Z 23D i

0. 00 f(000) 0] 2 0
1. 01 f£(001) 0 1 0
2 02 fF(002) -27(0602)+f(102)+r(202) 0] 0
3. 10 f£(010) 0 2 0
4. 11 f(011) 0 1 0
5. 1 2 r(o12) -27f(012)+f(112)+5(212) 0 0
6. 2 0 f(020) 0] 2 0
T 21 r(o21) 0 1 0
8. 2 2 r(o22) =2f(022)=Ff(122)+f(222) 0 0
9. 00 F(000) 0 2 0
10. 01 f(oo1) 0 1 0
11 02 f£0102) f£(002)-2F(102)+f(202) 0 0
12, 10 f(010) 0 2 0
13 I 1 f(or1) 0 1 0
14. 1 2 £(112) Fl012)-2f(112)+f(212) 0 0
15. 20 f(020) 0 2 0
16. 2 1 f(021) 0 1 0
L7 2 2 fll2ez) f(022)=2F(122)+1(222) 0 0
18. 00 f£(000) 0 2 0
19, 01 f(001) 0 1 0
20. 02 f(202) F(002)+f(102)-2f(202) 0 0
21. 1 0 f(010) 0 2 0
22. 11 F(011) 0] 1 0
23. I 2 flz212) Flo12)+f(112)-2f(212) 0 0
24. 2 0 F£(020) 0 2 0
25. 2. 1 r(o21) 0 1 0
26. 2 2 f(222) F(022)+r(122)-2f(222) 0 0
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CONCLUSION

The partial as well as the global real Gibbs derivatives on
finite Abelian groups are introduced in this paper. These operators
are related to the Fourier transform on groups in the same way as
the ordinary Newton-Leibniz derivative is related to the classical
Fourier transform on the real line. At the same time these operators
have some  properties characteristic of  difference operators
introduced in the area of MV functions. We hope that these
properties offer some further applications of Gibbs derivatives in
logic design and related areas as is suggested in Section 4.

Taking only real values, the differential operators introduced
may be wuseful in application to the processing of real-valued
signals. The efficiency of their application is further supported by
fast algorithms for numerical calculation which can be easily
derived by slightly modifying the existing fast Fourier transform
algorithms on groups, or directly using the fast convolution

algorithms, as is suggested by relations (8) and (13), respectively.
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Abstract: In this paper there is given a generalization of the

discrete Gibbs derivative on finite intervals using the concept of
generalized convolution product. In this way there is obtained a
family of discrete differential operators involving some known
Gibbs derivatives as particular examples.

The linear discrete differential equations with operators,
introduced and studied in this paper, are analysed. The
determination of the Moore-Penrose inverse of the generalized
discrete Gibbs differential operators enables one to obtain the

general as well as the minimum-norm least-square solutions of
these equations.

1. INTRODUCTION

Spectral techniques take up very great role among the methods
for digital signal processing. The discrete analogs of the Fourier
transform in finite rings or Galois fields, which represent the
mathematical foundations of discrete spectral analysis, are
developed in the context of algebra and number theory. Their
practical applications are supported by the advent of numerical

methods for signal processing.
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_ Pollard [31] and Nicholson [26] developed the algebraic
theory of the Fourier transform on finite rings and fields. For
more details on these subjects and the other discrete transforms
see, for example [21,35]. A good interpretation of these results

in the context of some engineering applications is given in [12].
We know from Fourier transform theory that the following

holds,

F(f(tts)) = exp(tiws)F(f(1)), (1)
dn n

F(__Ef(t)) = (iw) F(£(1), (2)
dt

where F denotes the Fourier transform operator. Relation (1) is the
basis for a method of algebraization of differential,
difference,and difference-differential equations [7,28,36].

Properties (1) and (2) and their applications suggest that it
is a very important task to disclose and study some shift and
differential operators suitable for discrete spectral analysis.

The first step in this direction was made by Gibbs who
introduced a so-called dyadic derivative for complex functions on
finite dyadic groups [15]. Later, some generalizations of this
operator were given by Gibbs and his associates [15-20], as well
as by a number of other researchers [8,27,32,33]. Some
applications of Gibbs derivatives are met in approximation theory
[8], statistics [29], and linear system theory [6,10,23].

All Gibbs differential operators mentioned above satisfy the
properties analogous to these described by (1) and (2). Moreover,
the introduction and the study of the systems described by Gibbs
differential equations is based on these properties [10,25,30].
Some interesting applications of these systems are also suggested

[1,29].
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In this paper there is given a generalization of discret@
Gibbs derivatives on finite intervals wusing the generalized
convolution product introduced in [3]. In this way there is
obtained a family of discrete differential operators involving
some known Gibbs derivatives as particular examples.

The linear discrete differential equations with operators,
introduced and studied in this paper, are analysed. The
determination of the Moore-Penrose inverse of the generalized
discrete Gibbs differential operators enables one to obtain the
general as well as minimum-norm least-square solutions of these
equations.

2. PRELIMINARIES

In this section we will introduce some notations and we will
review some definitions and statements needed for our further
considerations.

Let P denote an arbitrary field and let G be a non-empty
ordered set, which could be identified without loss of generality
with the subset of first non-negative integers, LB,
G={0,1,...,n-1}, neN. Also, denote by P(G) the linear space of all
functions mapping G into P.

Denote by A and B two invertible (nxn) matrices. The columns
of the matrices A and B we denote by {a(0),...,a(n-1)} and
{b(0),...,bln-1)}, respectively. Each column
a(k)=[a(0,k),...,a(n—l,kJ]T,keG can be considered as the vector
defining the values of a particular function from P(G). The same
applies to the columns of the matrix B. Now, we have that the
ordered sets {a(0),...,a(n-1)} and {b(0),...,b(n-1)} form two
different bases in the linear space P(G).
| Furthermore, we define the pointwise product of functions
£=(£(0),...,F(n-11", g=[g(0),...,g(n-1]" through

(Fog)i) = fli)g(i), Yf,geP(G), VieG.
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For - the given A=la(i,j)], B=[b(i, )], (i,j)eG,and for each
keG, the k-th A,B-shift, of a function feP(G), denoted by

(SIZKBJ‘)(U = f(iAeBk), is defined in [3] as the function Sf Ef=
i T it
[(SA’Bf)(O),.‘.,(SA’Bf)(n—l)] , where
=1
s* nw =7 sYunrGg, e (3)
A,B J) J 2 b
J=0
=1
(i) -
BL(J,k) = Z a( )(i,p)b(p,j)a(p,k),
p=0

(-1),. . -
where a )(L,P) is the (i,p)-th element of A l.

In matrix notation the A,B-shift of f is given by

S f = A (alk)eB)f.

Note that for the particular choice of the matrices A and B
the A,B-shift reduces to some known shift operators. For example,
if B=A the A,B-shift reduces to the so-called A-shift defined and
studied first in [2]. Note that the A-shift for functions taking
their values in commutative rings was reintroduced later in [22]
in the study of discrete analogues of the generalized shift
operators [13,24]. Furthermore, if both A and B are equal to the
discrete Fourier transformation matrix, the A,B-shift reduces to
the cyclic shift. Also, for A=B=W, with W being the Walsh matrix,
A,B-shift reduces to the dyadic shift.

Lemma 1. If A and B are biorthogonal, i.e.,

R~ 0, p=#s
Z a(j,s)b(p,j) = ;

J=0
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then ali 0, kis) = a(_l)(i,s)a(s,k), Vi, k,seG (4)
a(_l%i &5 k,s) = a(_lhi,s)a(s,k), Vi, k,seG. (5)
Proof. From (3) it follows that
n-1
ali o ki) = (S a(s(i) = § 8 k)aty,s), Vi k,seG
J=0
i.e.,
n—1 fA-1
ali @ k,s) = Z Z plblp, jlalp,k)al],s)
Jj=0 p=0

from which by using the biorthogonality of A and B the relation
(4) follows. The relation (5) can be proved similarly.
Using the A,B-shift the generalized convolution

(A,B-convolution) of two functions f,geP(G),is defined [3] as

n—1 n-1
F ATB glli)= Z Z B(L)(J}K)f(j)g(k), VieG. (6)
J=0 k=0
n-1
(r %, 2 = Z gli o J)f(J) (7)
Jj=0

where the generalized convolution matrix CA (g) is an (nxn)

matrix whose elements are given by cl(i, jl=g(i 5 J), i, JjeG.

From (6) it follows [3] that
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Fo*x wi= A

AE BfoAg).

Note that as for A,B-shift, the A,B-convolution for B=A
reduces to the so-called A-convolution defined and studied in [2]
(see, also [4]). Furthermore, for the particular choice of the
matrices A and B, the A,B-convolution reduces to the convolution
appearing in the theory of discrete orthogonal transforms on
finite groups. For example, if both A and B are equal to the
discrete Fourier transformation matrix, the A,B-convolution
reduces to the cyclic convolution. Also, for A=B=W with W being
the Walsh matrix, A,B-convolution reduces to the dyadic
convolution.

It is shown [3] that A,B-convolution satisfies the following

properties.

Lemma 2. Let f,g,heP(G). Then,

* = E * h
1. fA (g+h) f A’Bg+fA

* = o
4. A(f *_g) = BfoAg.

Obviously, the Property 4 from Lemma 2 is the generalization
of the well-known convolution theorem for Fourier transform which
states that the spectrum of the convolution of two functions is
equal to the product of the spectra of these functions. It is
important to note that the A,B-convolution enables one to
formulate the convolution theorem for any discrete transform on G.
For example, the convolution theorem for discrete Haar transform

was considered in [5].
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Lemma 3. Let f,geP(G),. Then,

1. CA’B(f+g) = CA,B(f) + CA)B(g),

Proof. 1 The proof of 1. is easily obtained by using the
definition of convolution matrix, and hence it is omitted.
2. In order to prove 2. we will start from the property 4

of Lemma 2, from which by using (7) we have

A(C (g)f) = (diag(Ag))Bf,
1.8,

c, (o)f = A (diag(Ag))Bf,

which proves 2.
3. Using 2, from property 4 of Lemma 2 we have

. -1 .
CA,D(f B g) = A “(diag(Bf-Ag))D,

C (f * g = A (diag(Ag))BB® (diag(Bf))D = C_ (g)C. (f).

If the field P is such that the conditions for the existence
of a Fourier transform are satisfied (see, for example [21]), then

the Fourier transform of feP(G) relative to A could be defined by

As in the theory of discrete transforms, the spectral
coefficients fA(i) will be called the A-spectrum of f.

The inverse Fourier transform is given by
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In matrix notation this Fourier transform and its inverse may
be written as fA‘A=Af‘, and f:A_lfA‘A, respectively.

Property 2 from Lemma 3 enables us to calculate the
Moore-Penrose inverse C+ of C . More precisely, since

A,B A,B

CA B(f)=A (diag(Af))B, it follows immediately (see, for example

[9, p.97]):
¢t (£) = B (diagf A,
A,B A
where =1 . = hs
}+(i) ) fA (i) for fA(L) =0
A 0 for fA(L) =0

The relations 1,2, and 3 from Lemma 3 and relation (9)
involve as a particular case the results from [6] obtained for

both A and B equal to the Chrestenson matrix.

3. DISCRETE GIBBS DIFFERENTIAL OPERATORS

In this section we will introduce the definition of the
discrete Gibbs differential operators relative to two a priori
chosen bases in P(G). Also, the concept of the Gibbs

anti-derivative will be introduced.

Definition 1. For a function feP(G), the A,B-Gibbs derivative

relative to the given bases A and B is defined by

.. o . .
F0) = (F * R)(i) = Z n(i o K)f(k), VieG, (10)

with k=0
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—1)(

=1
h(i) = Z 2t .
J=0

In matrix notation h=A_lV, where V=[O,l,...,n—l]T, and

therefore, the A,B-Gibbs derivative is given by

f(l) =+ * h,
A,B
where f(l) = [F (0005 F (nrl)]T.
From this representation and Property 2 of Lemma 3 we have
=1 o
£/ =D f = A (diagV)Bf,
A,B
i.e., the A,B-Gibbs differential operator is given in matrix form

by D = A \(diagV)B.
A,B

The derivatives of higher orders we define recursively as
(m) -
m) _ M-I prien yields

£ = alravena™)™ MY,

m-1

f(m) = A_l(diag(((diagV)BA_l) V))Bf.

The A,B-Gibbs derivative defined in this way includes some of
well known discrete differential operators. For example, if B=A
and G is considered as an Abelian group this operator reduces to
the operators studied in [32]. Recall that these operators include
the results from [15,17,33] obtained for A to be equal to the
Walsh, Chrestenson and Haar matrix, respectively. Notice that the
result obtained for A and B to be equal to the Chrestenson matrix
was rediscovered in [23]. However, unlike to the existing results,
the Definition 1 holds also for nonorthogonal bases. Recall that

for a given nonsingular matrix A, the matrix C whose
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eigenfunctions are the columns of A, can be determined by a
procedure given in [5]. It can be shown that for the matrix C
obtained in this way holds C = DA A

The relationship of the’ dyadic Gibbs derivative with
Ritt-Kolchin  derivatives was  discussed in [11], while  its
relationship with Boolean difference was considered in [14].

The representation of the A,B-Gibbs derivative as a
convolution operator suggests an application of the fast
convolution algorithms for the numerical evaluation of this
operator of a given function.

As we noted above, A,B-Gibbs derivative introduced here can
be considered as a generalization of some known discrete

differential operators. A justification for this statement can be

found in the following theorem.

Theorem 1. Let feP(G). Then,
L If A is orthogonal, and A_land B are biorthogonal
matrices, then DA Ba(p)=pa_1(p), where a_l(p) is the p-th column

of A7 Eimilarly, D

_l a(p)=palp).
A ,B
2. x f)-= Vof
A,B A B
* = *
= DA,B( A,B g) .4 A,B (DA,Bg)’
- -1
4. D (Sk f) =A1BSK (D (B "Af)).
B,A A,B B, A,B

Proof.
1. By (10) it follows that
n-1 n-1
s =il !
(DA’Ba(p))(L) = Z Z Ja( )(L Ac’aB k,jla(k,p),
k=0 j=0
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and by using (5)

n=1 p=1

( = “(J,klalk,p).

(D, 2Nt = ) ] ja (i Klalkp)
k=0 j=0

Since A is orthogonal,
e (-1),.
(D, alp))i) = pa “'(i,p).
A,B

The proof of the second part of the statement goes similarly.
2. The Fourier transform of A,B-Gibbs derivative of a

function feP(G) is by definition

Since h = AV it follows that
(D f) = BfoV.
AB A
3. The proof of property 3 is easily obtained by using the
Property 2 from Lemma 2, and hence it is omitted.
4. From (3) and (10) we have

k =
DA’B(SB’Af) = A “(diagV)(diagb(k))Af,

-1__- : 1 .. )
D (s* £) = a'BB N(diagb(k))AA ™ (diagV)BB "Af,
A,B  B,A
from which the statement follows directly.
Now we will consider the problem of the determination of the

values of a function from the values of its A,B-Gibbs derivatives.

Definition 2. The A,B-Gibbs anti-derivative of a function feP(G)

is defined by
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A=l
I AW = * rH = Z Rl e K)fF(K),
A,B A,B A,B
k=0
where n-1
h_l(i) = Z J—a_)(i,j).
=l
= . =] =1_~-1 -1
In matrix notation h = AV 7, where A4 =
0,1,27%,....(n-0"11", amd therefore, the A,B-Gibbs

anti-derivative is given by I _f=f * h_l.
A,B " A,B
The A,B-Gibbs anti-derivatives of higher orders we define
recursively as in the case of A,B-Gibbs derivative, which finally

yields that the A,B-Gibbs anti-derivative of order m is given by

1:’: £ = & Nispltdiagy B L1 oy B,

Starting from the definition of A,B-Gibbs derivative and

anti-derivative we have the following statement.
Theorem 2. Let feP(G). Then,
1. If £ (0) = 0, then IA,B(DB,Af)(L) = F(T).

2. If £ (0) = 0O, then DB,A(IA,Bf)(i) = f(i).

Proof.
1. By Property 2 of Theorem 1 we have

AL (D ) = B(D_ Af)oAh_l = Afo(VoAh™D).

Since VoAh—l = VoV_l = [O,l,l,...,l]T and, by assumption

~

fA(O)=O, the statement is valid.
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2. The proof can be obtained in a manner analogous to that
used for proving the Statement 1, and therefore, it is omitted.

Note that this theorem for B=A=W, where W is the Walsh
matrix, represents the discrete analogue of the corresponding

result given in [8] for the continuous Walsh functions.
4. GIBBS DISCRETE DIFFERENTIAL EQUATIONS

In this section linear discrete differential equations with
A,B-Gibbs differential operators will be introduced and studied.
The determination of the Moore-Penrose inverse of the A,B-Gibbs
differential operators enables one to obtain the general solution
2s well as the minimum-norm least-square solution of these

equations.

Definition 3. For a given function x€P(G) the relation

z dli)yt e i) = Z e(i)x(t o 1), r,s=n,teG, (11)

will be called an A,B-difference equation.

Using (7) and Property 3 from Lemma 2 the equation (11)can be

written as

C (dy =cC_ (e)x, (12)
where d=[d(O),...,d(n—l)]T, and similarly for y, e, X.
To solve this equation we will use some results from the

theory of generalized inverses (see, [9]). In this way and using

(9) we derive the following theorem.
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Thecrem 3.

1. An equation of the form (l1) is consistent if and only if

PPN

(1-dodlex =0 (13)
B B B A

where 1 is the unit vector of order n, i.e., the vector of order n
whose elements are all equal to L.
The general solution of a consistent A,B-shift equation is
given by
y=A'1<&BoéEo§;A> s (I—A’l(&;o&somrr, (14)
where T is an arbitrary matrix.

2 The minimum-norm least-square solution of equation (11)

is given by

y=A" (d_ce_ox ). (15)

-~ "Proof. To prove Theorem 3 we will use the method for the

determination of the general solution of a system of linear
equations based on the application of generalized inverses [9].

1.  From Theorem 6.3.2 proved in [9 p.97] we have that the

equation (11) written in the matrix form (12) is consistent if and

only if

By using the Property 2 of Lemma 3 and the relation (9) we
have after a short calculation that the consistency condition is
given by (13).

By using the second part of Theorem 2.1.1 from [9, p.281 we

have that the general solution of the equation (12) is given by

vy = CF (@)c (e)x + (I-C' (d)C_ (e))T,
B, A B, A B,A B,A

where T is an arbitrary matrix, which after a short calculation

yields the relation (14).
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2. By using Theorem 6.3.2., from [9, p.97] the minimum-norm
least-square solution of equation (11), written in the matrix form

(12) is given by

Using the property 2 of Lemma 3 and the relation (9) we

immediately have (15).

Definition 4. For a given function x€P(G) a relation of the form
r=1

r=l
i {
Z piDA,By - Z qiDA,BX’ (16)
i=0 i=0

will be called the A,B-Gibbs differential equation.

Note that the equation (16) can be transformed into a n
A,B-shift equation with constant coefficients by using the
convolution representation of A,B-Gibbs derivative.

Using (7) and (10) the equation (16) can be written as

where

E (p) = Z p.diag((VeBA™1) v

A,B i ’

i=0
T
d p= imi
and p [po, ’pn—ll and similarly for q.
The solution of this equation is given in the following

theorem obtained by the use of Moore-Penrose inverse.

Theorem 4.
i An A,B-Gibbs discrete differential equation is consistent

if and only if
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+
I- ( =
( EA,B.p)EA’B(p))EA,B(q)xB—O.

The general solution of a consistent A,B-Gibbs discrete
differential equation is given by
- 1

-1 _+ - +
y=B EA)B(p)EA’B(q)xB+B (I—EA,B(p)EA’B(p))T,

where T is an arbitrary matrix.

2. The minimum-norm least-square solution of an A,B-Gibbs
differential equation is given by

|
y=B EA,B(p)EA,B(q)xB.

Proof. The proof of Theorem 4 is obtained by using the Theorem
6.3.2 from [9, p.97] in a manner similar to that used in proving
Theorem 3, and therefore, it is omitted.

Note that if B=A, the requirement which must be satisfied for

A,B-Gibbs differential equation to be consistent reduces to
r-1 r=1 r-1
oi oi + oi -
I-( Z in )¢ Z in )| ( Z qu )xA—O,
i=0 =0 i=0

and the general solution is given by

r=]

r-1
-1 . ol .+ X ol ~
y=A""|( z a()veh ol Z bV )ox,
i=0 i=0
=] rel
& A1) Et ) a(v° Y} aliBv
i=0 i=0

T

where V°' denotes the pointwise product of V by itself taken i

times, and T is an arbitrary matrix.
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In this case the minimum-norm least-square solution is given

by

r-1 r=1
=l ol ol 7
y=A" (] p, @170 ) g0 x|
i=0 1=0

Theorem 4 includes Theorem 4.1 and Theorem 5.2 from [6] as
the particular examples obtained for A and B be equal to the

Chrestenson matrix.

CONCLUSION

In this paper there is given a generalization of Gibbs
differential operators on finite intervals. Unlike the existing
results the definition given in this paper holds also for the
nonorthogonal bases. At the same time, the known Gibbs
differential operators on finite Abelian groups are involved as
the particular examples.

The discrete differential equations relative to the operators
introduced are discussed. The condition of consistency is
determined and in that case the minimum-norm least-square

solutions are given.
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Abstract: In this paper we give an overview of the theory of Gibbs
differentiation on finite not necessarily Abelian groups. We also
present some new results in this area. We consider the concept of
the Gibbs derivative and anti-derivative on finite non-Abelian
groups and discuss the corresponding Gibbs differential equations.
The recent results reviewed here are related to the introduction of
partial Gibbs derivatives and to the formulation of the fast
algorithms for numerical evaluation of Gibbs derivatives on finite
groups. We also suggest the application of the Gibbs derivatives
considered here in linear system theory and logic design.

1. INTRODUCTION

In engineering practice the elements of some functional spaces
are used for mathematical modeling of signals. Usually one deals
with functions on the real line R or on the set of integers Z or on
some of its finite subsets. In a unique setting these functions can
be regarded as functions on some locally compact Abelian groups.
Powerful tools are developed for the processing of signals defined
in such a way. These tools are based on some operators in the
functional spaces mentioned. However, there are real-life signals

and systems which are naturally modeled as functions and,

269
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respectively, relations between functions on finite non-Abelian
groups. As noted in [l], some relevant examples are a problem of
pattern recognition for two colored pictures, which may be

considered as a problem of realization of a function defined on the

group of binary matrices, a problem of synthesis of rearrangeable
switching networks whose outputs depend on the permutation of input
terminals [2,3], a problem of interconnecting telephone lines, etc.
An application of non-Abelian groups in linear system theory can be
found in the approximation of a linear time invariant system by a
system whose input and output are functions defined on non-Abelian
groups [4].

Another interesting application of non-Abelian groups is
proposed in [5], where a general model of a suboptimal Wiener
filter over a group is defined. It is shown that with respect to
some criteria the wuse of a non-Abelian group may be more
advantageous than the use of an Abelian group. For example, in some
cases the use of various non-Abelian groups results in improved

statistical performance of the filter as compared to DFT.

Therefore, there is more than academic interest in extending
signal processing methods to functions defined on finite non-Abelian
groups. In this paper we consider a particular area of abstract
harmonic analysis. We are interested in extending the ideas of Gibbs
differentiation to functions defined on a finite not necessarily
Abelian group G into the field P, which could be the complex field C
or a finite one admitting the existence of a Fourier transform. The

space of such functions we denote by P(G).

In the paper we give first a short survey of the author’s work
in this area, .and then we report on some new related results. We
first consider the definition of the Gibbs differential operator in
the space P(G). This operator is an extension of the Gibbs

derivative on finite Abelian groups [6,7]1 obtained by the
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replacement of the group characters by irreducible unitary group
representations. We also consider the problem of determination of
the values of a function from the values of its Gibbs derivative. In
this order the Gibbs anti-derivative on finite non-Abelian groups is
defined. The concept of partial Gibbs derivatives is introduced. The
recent reslts on matrix representation on Gibbs derivatives and
partial Gibbs derivatives are reported and discussed. Upon these
results is based the formulation of the fast algorithm for numerical
evaluation of Gibbs derivatives on finite non-Abelian groups.

Using Gibbs derivatives the associated differential equations
with constant coefficients are defined and solved. These equations
can be considered as the input-output-state relations of a subclass
of linear translation invariant systems on finite non-Abelian groups
[8]. An application of partial Gibbs derivatives for the detection

of some properties of functions from P(G) is suggested.

2. NOTATIONS AND DEFINITIONS

Let G be a finite not necessarily Abelian group of order g. We
associate in a unique manner to each group element one non-negative
integer from the set {0,1,...,g-1} providing that O is associated to
the group identity. In what follows the group elements will be
identified with the non-negative integers associated to them.

For the field P we will assume henceforth:

1. char P = 0, or char P does not divide g.

2. P is the so-called splitting field for G.

Recall that the complex field is the splitting field for any
finite group.

Let K be the number of equivalence classes of irreducible
representations of G over P. Each such equivalence class contains

just one unitary representation. We shall denote the K irreducible
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unitary representations of G in some fixed order by RO’ Rz,.l.,RK_l.
The set ' = (RO,RI,...,RK_I) is the dual object for G. We denote by
R (x) the value of R at xeG. Note that R _(x) stands for a
W il Y i)

non-singular (rwxrw) matrix with elements RW’ (x)eP, xeG,
i,j=1,2,...,rw. It is well known that the functions RW(L’J)(x),
w=0,1,...,K-1, i.,j=1,...,rw form an orthogonal system in the space
P(G). Therefore, the direct and inverse Fourier transform of a

function feP(G) are defined respectively by

g-1
-1 -1
Spw) =r g z FWR_ (W), (1)
u=0
K-1
flx) = z Tr(Sf(W)R (x)), (2)
w=0

where Tr A denotes the trace of A.

Here and in the sequel we shall assume without explicitly
stating it that all arithmetical operations are carried out in the
field P.

Note that Tr Rw is called the character of Rw. Recall that if g
is an Abelian group then all its representations are
one-dimensional, and therefore they reduce to the characters. In
that case the set I under componentwise multiplication forms a
multiplicative group isomorphic to G.

For the Fourier transform as defined above, the main properties
characteristic for the classical Fourier transform are satjsfied.
Let us mention linearity, translation of arguments,
Wiener-Kintchine, Plancherel and Poisson theorems. For example, the

translation (shift) operator T on g is defined by

(TTf)(x) = f(xt), x,T€G, (3)
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and the following property holds

Note that the convolution theorem is wvalid in only one
direction. More precisely, if h is a function obtained as the
convolution on G of two functions f,and g, which we denvote by h=f*g,

then

-1..
r g Sh(w) = Sf(W)Sg(W).

Obviously, the reverse statement analogous to the second part
of the convolution theorem in classical Fourier analysis, can hardly
be formulated since the dual object I' does not have a group
structure so that convolution on I' is not defined.

Computation of the Fourier and inverse Fourier transform can be
carried out using  fast algorithms [1] representing the

generalization of the famous FFT.

3. GIBBS DIFFERENTIAL CALCULUS

The Gibbs differential operators on Abelian groups are defined
as linear operators having the group characters as their
eigenfunctions (see, for example [7,9,10,11]1). Since the group
characters are the kernels of Fourier transforms on locally compact
Abelian groups, it is very convenient to characterize the Gibbs
derivatives by Fourier transform coefficients. Moreover, the strong
relationship between the Gibbs derivatives and Fourier coefficients
is sometimes used as the starting point for introducing the Gibbs
derivatives on some groups (see, for example [11,12,13]). Using the
same approach Gibbs derivatives on finite non-Abelian groups are

defined in terms of Fourier coefficients as follows [14].
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Definition 1. The Gibbs derivative Df of a function feP(G) whose

Fourier transform is S _ is defined by

f

As it is noted in [14] this definition is unique only by virtue
of the fixed order which we adopted for the elements of I. If a
different notation were adopted, then (4), though unchanged in
appearance, would define a distinct differentiator. This phenomenon
is nothing new; it is already present in the definition of the
dyadic Gibbs derivative [6], which depends upon the order assumed
for the Walsh functions (the characters of the dyadic group). The
same statement applies to all other Gibbs derivatives on different
groups.

In what follows the Gibbs derivative will be denoted by Df or,
alternatively, by f(l).

Following the approach used in [15] for the dyadic derivative,
and lately in [16] for Gibbs derivatives on finite Abelian groups,
an interpretation of the Gibbs derivative defined by (4) can be
given as follows [14].

Define the partial sum fp(x), p=K, by

p-1
fox) = Z Tr(S (WR () (5)
w=0
Define also the Fejér sum as
q
_ =1
o ) = q Z £ ). (6)

p=l
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Substituting (5) into (6) we have, after a simple calculation,

The left member of this equality is the error in the
approximation of f by its Fejér sum O‘K(x). Hence, the Gibbs
derivative on a finite non-Abelian group g can be interpreted as
this error multiplied by K. Note that the corresponding result for
the infinite dyadic group is given in [17].

The main properties of the Gibbs derivative are analogous to

the corresponding properties of the classical Newton-Leibniz

derivative, and they are given in the following thecrem.

Theorem 1. If feP(G), then

L. Dlof +af ) = «Df + «,Df,, o, xeP, £ ,€PG).

2. Df = QeP iff f is a constant function.

(1)

3. If the Fourier transform of f is Sf’ then that of f

is given by

Sf(l)(W) = wa(w), w=0,1,...,X-1.

This property can be interpreted as the fact that the set
(i,J)

{RW (x)} is the set of eigenfunctions of the Gibbs derivative,

1.6

DR (i’j)(x) = wR (i’j)(x).
w w

From there, due to the linearity of Gibbs derivative, we have

further

DTrR (x) = wTrR_ (x).
W w
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4. From Property 3 it easily follows that

D(fl*fz) = (Dfl)’*f2 = fl*(DfZ), fz,fzeP(G)

where * denotes the convolution on G.

5. The Gibbs derivative commutes with the translation (shift)

operator T, i.e.,
: D(T'F) = T'(Df), VreG.

It is known that Gibbs differential operators do not obey the
product rule. The same applies to the Gibbs derivative considered

here, i.e., it is false that for each f1 and f2

D(f f,) = £,(Df,) + (DF )F,.
The Gibbs derivative can be extended to an arbitrary complex

order k by way of the definition of the delta function:

K=1
8(x) = g Z r, TR (x).

w=0

The &-function thus defined has the property

1, =0
8(x) =
68 x=0

The Gibbs derivative of order k of the &-function is obtained

by a direct generalization of the property (7),

K-1
3 (x) =g_1 z wkerer(x).
w=0

Using Property 4 from Theorem 1 we have:

K=1
wkTr(Sf(w)Rw(x)). (8)

0

(DXF)x) = (DX8)1*F)(x) =

~3

w
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4. GIBBS ANTI-DERIVATIVE

In this section we consider a method for the determination of

the values of a function from the values of its Gibbs derivatives.

It is obvious from (8) that the Gibbs derivative can be

considered as a convolution operator on P(G). More precisely, if we

introduce a function W defined by

K its Fourier transform

coefficients as:

S (w) =

where 1
r
W

Gibbs derivative of order k of a function feP(G) is given by

is the (rwxrw) identity matrix, then according to (8) the

(Df)(x) = (Wk*‘f)(x).

From here we immediately deduce the concept of the Gibbs

anti-derivative.

Let us introduce a function W—k defined in the transform domain

by:

Note that by an application of the inverse Fourier transform

K-1
W_ Ga=1e T ow e TR ().

w=1
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Observe that functions of this kind for the particular case of
the dyadic group were apparently first investigated by Watari [181,
in the frame of Walsh-Fourier multiplier theory. Such functions were
later used in [9] for the same purposes as those considered here. To
be consistent with these particular definitions we omitted the
factor g—1 the appearance of which could be expected according to
the convolution theorem.

Using the function W_ we introduce an inverse operator which

k
will be called the Gibbs anti-derivative.

Definition 2. For a functicn feP(G) the Gibbs anti-derivative of

order k, denoted by Ik, is defined as

()00 = (W_ *Aix).

The Gibbs anti-derivative can be considered as a Fourier
multiplier operator, thus having all properties characteristic for
these operators. Therefore, there is no need for any particular
consideration of these properties here.

Having the concept of the Gibbs anti-derivative we can deduce a
theorem which shows how to determine the values of -a function f from

the values of its Gibbs derivative of order k.

Theorem 2. Let feP(G) be such that S _.(0) = O. Then,
J

Fx) = g 00 (10)
or equivalently

flx) = g_le(ka)(x). (11)

Here the factor g“1 appears at the right hand side of the

equalities (10) and (11) since we omit it in the definition (9).
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Note that Theorem 2 can be regarded as a kind of counterpart of
the so-called fundamental theorem for dyadic analysis due to Butzer
and Wagner [9]. Moreover, as it is noted in [19], the theorems of
this kind are a kind of counterpart of the fundamental theorem of
the Newton-Leibniz calculus in the frame of abstract harmonic

analysis on groups.
5. PARTIAL GIBBS DERIVATIVES

In this section we shall be concerned with the partial Gibbs
derivatives for functions from P(G).

We assumed that a finite not necessarily Abelian group G of
order g can be represented as a direct product of some subgroups

Gl""’Gn of orders gl,...,gn, respectively, l.e.,

n n
G = G.; = . = —J. .
>=< g H g g1~ &, g, (12)
The convention adopted in Section 2 for the notation of group
elements applies to the subgroups Gi. as well. Due to this assumption

each xeg can be uniquely represented as

n
X = Z a.x., x.eG., xe€@G,
il i i
i=1
with
n
o g i=l,...,n-1
5. = _ J
. J=i+l
L
Ls i=n,

where gj is the order of Gj'
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The group operation oof G can be expressed in terms of the

group operations 5 of the subgroups Gi’ i=1,...,n as
xoy = (x5 x5 x oy ) x,y€G x.,y.€G (13)
Yy = 1 ylt ) y2)---) n yn ) Y ’ l,Yl L

Note that if the group G is representable in the form (12),
then its irreducible unitary representations can be obtained as the
Kronecker product of the irreducible wunitary representations of
subgroups Gi’ i=1,...,n. Therefore, the cardinality K of T can be

expressed as

where Ki is the cardinality of the dual object Fi of Gi'
Now, for a given group G of the form (12), the index w of each

unitary irreducible representation Rw can be represented as

n
w = Z b.w., w.=0,1,.,K-1,w=0,l,..K-1
T L ]
i=1
with
n
n K., i=l...,n-1
el
b, = sl . (14)
L
L, i=n

Using the notation introduced, a given function f(x), xeG can

be considered as a function of several variables, Flog . sene, ),
n

1
where xiGGi' For this function the partial Gibbs derivative with
respect to the variable X is defined [20] as follows.

Starting from Definition 1 and using some well-known properties

of group characters we easily have:
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K-1 g-1
(DF)(x) = Z wTr(rwg_l Z FWR (u “eox)).

w=0 u=0

From the invariance under translation property of the Haar

integral
) gy = ) glzoy), vzeG, geP(O)
yeG yeG
we obtain
g-1 K-1
D) = g ] Fluex) | werr(RW(u—l).
u=0 w=0

Now we have the following definition.

Definition 3. The partial Gibbs derivative (Aif)(x) at a point

=2, . 0030, 355
AR T A AR £ |

x; of a function feP(G) is defined as the Gibbs derivative

(Dfi.)(xi)’ at X5 of the function fieP(G) defined by

,...,xn)eG with respect to the i-th variable

fi(y) = f((xl,...,xi_l,y,xi”,...,xn)).
Thus,
(D.f)(x) = (Df.)(x.)
i i
g,~1 K, -1
- i i, -l
=g, X f(xl, ,xl_l,uloxi,xwl,...,xn) Z werer(ui ),

u.=0 w=0
i

where gi is the order of Gi ’ Ki denotes the number of nonequivalent
irreducible representations of Gi’ and r, 1s the dimension of the

representation R Lof G
W i
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Actually, the partial Gibbs derivative Di thus defined is the
restriction on Gi of the Gibbs derivative on G. It follows that the
partial Gibbs derivatives have properties similar to those of the

Gibbs derivative.

Theorem 3. Let feP(G). Then,

1L Dif = 0 iff f is a constant on Gi’ i.e., iff f has the same

value for ineGi. Moreover, Dic=O for any constant ceP(G).
2. Di(01f1+02f2) = ClDifl + CZDifZ’ cl,cgeP, fl,fzeP(G).
3. Di(DJf) = Dj(Dif)‘

4. If the Fourier transform of feP(G) is Sf’ then that of

Di.f is given by

SDif(W) = Bi(w)Sf(w), w=0,1,...,K-1

where Bi(W) = [O,l,...,Ki—l,O,l,...,Ki—l,...,O,l,...,Ki—l] .

5. Di(f"g) = Dif*g = fDig‘

6. MATRIX REPRESENTATION OF GIBBS DERIVATIVES

The Gibbs derivatives as defined by Definition 1 are
conveniently characterized by Fourier coefficients, a fact
explicitly expressed also in Property 3 of Theorem I.Therefore, to
get a matrix representation of these differential operators it is
very appropriate to start from the matrix representation of the
Fourier transform on G. Since this transform is given in terms of
the irreducible unitary representations which are square matrices

with elements in P, we need the following definitions of generalized

matrix multiplication.
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Definition 4. Let A be a (mxn) matrix with elements ai_jEP’
ie{0,1,...,m-1}, je{0,1,...,n-1}, and let [B] be a (nxr) matrix
whose  elements gjk’ je{o,1,...,n-1}, ke{O,1,...,r-1} are (pxp)

matrices with element in P. We define the product Ao[B] as a (mxr)

matrix [Y] whose elements ie{0,1,...,m-1}, ke{0,1,...,r-1} are

Lik
(pxp) matrices with elements in P given by

The product [BleA is defined similarly.
Definition 5. Let [Z] be a (mxn) matrix whose elements
gij,ie(O,l,...,m—l‘/, je{0,1,...,n-1} are (pxp) matrices with
elements in P, and let [Bl be a (nxr) matrix whose elements ij’
jefo,1,...,n-1}, ke{0,1,...,r-1} are (pxp) matrices with elements in
P. The product of matrices [Z] and [B] is a (mxr) matrix Y = {Z]-(Bl]

whose elements y; €P are given by

K

Using the matrix operations introduced the Fourier transform
pair defined by (1) and (2) can be expressed as follows.
Let feP(G) be given as a vector f‘=[f(0),...,f(g—1)]T. Then its

Feurier transform is given by

51 = g IR Yo,

_ B T -1 _ .
where [Sf] = [Sf(O),...,Sf(K nl, and [R ] = qu with

_ ~I
lgsq—rsRs (q), s€{0,1,...,K-1}, ge{0,1,...,g-1}.
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The inverse Fourier transform is given by

f = [R]°[Sf],

where [R] = [éij] with a_zij=Rj(i), ie{0,1,...,g-1}, j={0,1,...,K-1}.
Using these definitions relation (4) defining the Gibbs

derivative can be rewritten in a matrix form as follows.

Definition 6. The matrix Dg describing the Gibbs derivative on a
given group g of order g is given by

Dg= g—l[R]oGa[R_I],

where [R] is the matrix of unitary irreducible representations of G
over P, i.e., R = [a.]1 with a R (i), ie{0,1,...,g-1},
=LJ =t] J
Jjefo,1,...,K-1}, G is a diagonal (KxK)  matrix given by
G=diag(0,1,...,K-1), and [R_1]=[b ] with b =r R —l(q),
-sq ~Sq s s
se{0,1,...,K-1}, qe{0,1,...,g-1}.

The matrix Dg describing the Gibbs derivative of order k can be
represented in the same form substituting G by
GF=diag(0,1,2% ... k-1)¥).

The matrix representation of the partial Gibbs derivatives
follows directly since they are defined as the restriction of the

Gibbs derivative to the corresponding subgroups.

Definition 7. Let G be representable in the form (12). The partial

Gibbs derivative Ai with respect to the variable x, is defined as:

n
A, = ® A, (15)
j=t
with
D s J=i
A= &; ,
1., j=i
; J

where Ij is a (gjxgj) identity matrix, and ® denotes the Kronecker

product.
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Now, Definition 6 can be rewritten in terms of the partial

Gibbs derivatives as follows.

Definition 8. The matrix Dg of the Gibbs derivative on a group G of

order g is given by

where the coefficients bi are defined by (14).
7. FAST ALGORITHM FOR EVALUATION OF GIBBS DERIVATIVES

To obtain a fast and efficient algorithm for the evaluation of
the values of the Gibbs derivative of a given function we further
exploit the relationship of this differential operator with the
Fourier transform on groups. Recall that for the calculation of the
Fourier transform on groups some fast algorithms were developed as a
generalization of the world famous fast Fourier transform (FFT) for
the calculation of the discrete Fourier transform (DFT) regarded as
a particular 'example of the Fourier transforms on groups. See [l]
for fast Fourier transform on non-Abelian groups.

For the representation of the numerical procedure for
evaluation of Gibbs derivatives we use flow-graphs. Note that the
matrix éq of the g-th partial Gibbs derivative on a given group G is
strongly similar to the matrix describing g-th step of the fast
Fourier transform on the same group. Therefore, we can associate
easily to each matrix éq a flow-graph for the calculation of the
product éqf in a manner equal to that used with FFT. Recall that a
flow-graph consists of the input and output nodes connected
adequately with the branches. It is determined by the structure of

the matrix A the nodes of which will be mutually connected
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similarly as in the case of FFT. More precisely, the output node j
will be connected with the input node i iff the (i,j)-th element dij
of the matrix A describing the g-th partial derivative is not equal
to zero, else these nodes will be disconnected. As in the case of
FFT to each branch a weighting coefficient is associated. The weight
associated to the branch connecting the output node i with the input
node j is equal to dij'

Having the fast algorithms for the computation of partial Gibbs

derivatives available, the fast algorithms for computation of Gibbs

derivative of a function feP(G) are obtained according to the

Definition 8 simply by summing the output nodes of the flow-graphs
for calculation of the partial Gibbs derivatives multiplied by the
weight coefficients bi defined by (14).

Note that the algorithm thus obtained is quite suitable for a
parallel implementation. First, the partial Gibbs derivatives with
respect to all variables can be evaluated simultaneously. The
vectors thus obtained need be multiplied componentwise by the
corresponding factors bi and subsequently added componentwise which
requires only one step in parallel implementation. Secondly, a kind
of parallelism is inherent in the flow-graphs describing the
calculation of partial Gibbs derivatives since they consist of only
one basic operation, similar to the so-called butterfly operation
used with FFT, which is applied simultaneously to some different

subsets of input nodes.
8. EQUATIONS WITH GIBBS DERIVATIVES

Relation (8) introduces Gibbs derivatives of an arbitrary
complex order. The Gibbs derivative of a positive integer order
could be defined recursively as Dn+1f = D(an), Rl 250 « RIS

allows linear Gibbs discrete differential equations with constant
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coefficients to be defined and solved. These equations can be
considered as a particular case of the generalized linear equations
studied in [21].
Definition 9. A linear Gibbs discrete differential equation with
constant coefficients is an equation of the form
n m
Z aky(k)= z bkf(k)’ (16)
k=0 k=0

where a, b are real numbers, feP(G) and y is the required solution.

As in the case of ordinary differential equations we get the
general solution, y, of the equation (16) as the sum of the solution
Y of the homogeneous equation and the particular solution Yo of

the inhomogeneous equation, i.e.,

= 17
y yzi+yzs' W7

In order to find y,; one looks for the roots of the

characteristic equation of (16) given by

Now, we have the following theorem.

Theorem 4. If the roots (zi), i=0,1,...,n of the characteristic
equation are distinct and belong to the set {0,1,...,K-1}, then the

homogeneous solution is [8]:

" ' z, (Jj,k)
Vgl = Z Z Cijzi (),
i=0  j k=1
Z

L
where constants Cjk depend on the boundary conditions.
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There are some important differences encountered in solving
linear Gibbs discrete differential equations with constant
coefficients compared to solving ordinary differential equations. A
homogeneous equation of order n does not always have n linearly
independent solutions. The following statements are, in a way, often
taken for granted, however, we could not find a proof for these
statements, anywhere.

If t of the roots of the characteristic equation are
repetitions of the other roots, then the number of linearly

independent solutions of a linear Gibbs discrete differential
k-t 5

equation of order k is Y} r_ provided that each root of the
1=0 "1

characteristic equation is in the set {0,1,...,K-1}.

If s of the roots are not in this set, then the number of
k-s-t 5
linearly independent solutions of the given equation is ) P
i=0 i

This is not any peculiarity of the case considered here. A

corresponding statement for logical differential equations with
Gibbs derivatives on dyadic groups is given in [10]. Moreover, it
seems that an analogous statement is valid more generally, as it is
noted without proof in [21].

To get the particular solution of (16) we apply the Fourier

transform on both sides of (16), and with Property 3 of Theorem 1 we

obtain:

m
k ~ k
Z a, w Sy(w) = Z bkw Sf(w). (18)
k=0

From there, provided that equation (18) is compatible, that is,

S (0) = O for all we(zi}, i=o,...,n, we have

P m -
Sy(w)=68f(w),where P=)£ b w, Q=§ a w .
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Introducing the notation

H(w) = rwg_lP/Q, (19)

we have

(w) =r gH(w)S (w). (20)

From (13) by wusing the convolution property, the inverse

Fourier transform produces the particular solution

g-1
yzs(x) = Z h(u)f(xu—l). (21)
u=0

Now, we have that (16) has a general solution y of the form

n g-1
-1

m
'z
ylx) = 2 2 C xR, (x) + z h(u)fxu ). (22)

i=0  j k=l " u=0

9. APPLICATION OF GIBBS DERIVATIVES IN LINEAR SYSTEM THEORY

In linear system theory two general classes of systems are
usually distinguished according to their input and output signals:
the continuous systems and the discrete systems.

The input and output signals of continuous systems are modeled
by functions defined on the real line R, while those of discrete
systems are modeled by functions on the set of integers Z or on one
of its finite subsets. Both classes of systems can be uniquely
considered as systems defined on some particular locally compact
Abelian group. In this setting, using some other groups as the
domain of definition of input and output signals, several new
classes of systems can be considered. Let us note as examples the
dyadic systems [22-29], which are defined on the dyadic groups and
the p-adic systems defined on the group Z n of integers less than

p
some p'"* [11,29].
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As we noted in the Introduction, in reality there are the
signals which are naturally modeled by functions on some non-Abelian
groups. Therefore, it was interesting to introduce linear systems on
non—Abélian groups [4,5,8,30]. The study of these systems proves
useful since the use of such systems in some practical applications
offers some essential advantages over the application of the
corresponding systems on Abelian groups. A confirmation for such a
statement can be found, for example, in [5]. Here we want to point
out that a subclass of systems on finite non-Abelian groups can be
described by Gibbs discrete differential equations. We start from
the following consideration.

In its most abstract form a system is defined as a triplet
(U,Y,s) where U and Y are sets of mappings and s is a binary
(input-output) relation in UxY. Defined likewise, the system is much
too abstract, providing a model which is hardly tractable at all. A
concrete system can be obtained by imposing certain structures on
the input and output sets, as well as on the relation s itself. Here

we do this by the following definition.

Definition 10. A scalar linear system A over a finite not
necessarily Abelian group G is defined as a triplet (P(G), P(G),*)

where the input output relation * is the convolution product on G,
y = k*f, f.h.yeP(G),

g-1
y(t) = Z h(x)f('rx—l), x,T€EG. (23)

x=0

So, an ordered pair (f,y)eP(G)xP(G) is exactly then an
input-output pair of A if f and y fulfill equation (23). The

function heP(G) is the impulse response of A.
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It is easy to show that the system A is invariant against the
translation of input functions. By this we mean that if y is the
output to f, then TTy is the output to TTf, for all TeG. Therefore,
we denote the system A as a linear translation invariant (LTI
system ([8].

It is apparent that when G is the dyadic group, Definition 1.0
reduces to the dyadic systems introduced by Pichler [25] and further

studied in [27,28]. If G is the group Z , e obtain the systems

o)
studied by Moraga [11] and Cohn-Sfetcu [231.

The dyadic and p-adic systems are closely related with Gibbs

differentiators on the dyadic group and on Z - respectively (see

p
271 for dyadic and [i1] for p-adic systems). A corresponding

relationship can be established between LTI systems described by
Definition 10 and the Gibbs differential operators on finite
non-Abelian groups.

First of all, let us note that relation (8) shows that the
Gibbs differentiator Dk of order k is a LTI system having an impulse
response h given by h=8(k) (see, {81).

The  Gibbs discrete differential equation (16) can be
interpreted as an input-output relation of a system A belonging to a
linear combination of Gibbs derivatives on a finite non-Abelian
group. Note that systems of this kind on dyadic groups are
considered in [23,27].

According to (17), the general output function of this system
is represented as the sum of the zero-input response of the system
Yo and the zero-state response Y,q has a form identical to (23).

Therefore, we infer that the scalar linear system A associated
with (16), is a LTI system for which (22) represents an
input-output-state relation, and h is the impulse response of A to

the unit impulse &(x). Since h is the inverse Fourier transform of

H(w), we have that the transfer function of A is given by (19).
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10. APPLICATION OF PARTIAL GIBBS DERIVATIVES IN LOGIC DESIGN

Logic design is a scientific discipline concerned with the
design of so-called logical networks whose input-output relations
are given in terms of digital functions. Recall that a n-variable
digital function is defined as a mapping f:(Slx...xSn)»L, where Si’
i=l,...,n and L are finite sets. As examples we can mention the
Boolean functions defined by r:A{0, l}n—-(O, 1) and
f:{O,l,...,p—l}n—e(O,l,...,p—l}, (p-prime), respectively.

It appears very useful for logic design purposes to impose some
algebraic structure to the sets S and L. For example, the Boolean
functions can be considered as a subset of complex functions on
finite dyadic groups, while the multiple valued functions can be

considered as a subset of complex functions on Z o Due to this

D
approach the methods and results from abstract harmonic analysis on

groups, known as spectral techniques [31], can be applicd in the
study of digital functions.

Another wuseful approach for analysis and synthesis of digital
functions is based on the application of some differential and
difference operators. Let us note the Boolean difference applied to
Boolean functions and the difference operator introduced in [32]
applied to multiple valued functions.

We  believe that Gibbs derivatives, being a class of
differential operators closely related with Fourier transforms and
thus exhibiting good properties of both approaches mentioned
above, can be applied advantageously in logic design. Here we
suggest the application of partial Gibbs derivatives for detection
of some properties of ‘digital functions.

Recall that the procedure for synthesis of a logical network
realizing a given digital function can be greatly simplified if the

given function exhibits some particular properties, i.e., if it
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belongs to some special class of digital functions for which
efficient design methods may be known. Therefore, the analysis of
properties of digital functions is a very important task. One of the

basic problems in this analysis is to detect whether a given

function depends or not on some of its variables. This problem is
closely related with the detection of some symmetry properties of
digital functions. It is known that for the solution of this problem
differential operators as well as spectral methods can be
efficiently used [31,32]. For example, in the case of Boolean
functions we have that a given function f(xl,...,xn) is independent
of the variable x; iff the Boolean difference with respect to x; is
equal to zero (see, for example [31]).As it is suggested in [3l] a
corresponding statement can be formulated in a similar form in terms
of Gibbs derivatives on finite dyadic groups. In the case of
multiple-valued functions a differential operator with the same
property is defined in [32]. Now, we want to develop a similar
result for functions mapping a finite non-Abelian group G which can
be represented in the form (12) into a finite field P.

The fact that a function f(xl,...,xn) does not depend on its
variable xi can be viewed as the fact that f(:fl,,..,xn) has the
constant value for in.EGi‘ From this observation and the Property I
from Theorem 3 we deduce that the test for detecting whether a given
function is independent on one of its variables can be expressed by
the following statement.

A function f(xl,...,xn) is independent of its variable x; if f

‘:/xieG there holds Dif(xl""’xi) = O,
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CONCLUSION

This paper presents some basic concepts of the general theory
of Gibbs differentiation on finite non-Abelian groups: introduction
and jusﬁification of the Gibbs derivative, its main properties, the
corresponding anti-differentiation operator, a kind of counterpart
of the fundamental theorem of differential calculus in the frame of
abstract harmonic analysis on groups, and partial Gibbs derivatives.
All these concepts are discussed in the general setting of the space
of functions mapping a finite not necessarily Abelian group intc a
field which could be the complex field or a finite field admitting
the existence of a Fourier transform on &.

The definition of the Gibbs derivative in terms of partial
Gibbs derivatives is given. We also consider the matrix
representation of Gibbs and partial Gibbs derivatives an‘d we
discussed the fast algorithm for computation of Gibbs derivatives
based upoh this representation. k

Diécrete Gibbs differential equations with constant
coefficients are defined and solved. It is shown that these
equations can be used as mathematical models of a subclass of
convolution systems on finite non-Abelian groups.

An application of partial Gibbs derivatives in logic design

is suggested.
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TRENDS AND OPEN QUESTIONS

Claudio Moraga (Ed.)

In this chapter we summarize comments and remarks of ‘contributors of this
volume, pointing out important aspects of their contributions which may be considered for
further research. Readers are sincerely invited to join efforts and work in the suggested
areas. The authors would be very glad to know of new results motivated by comments and
guestions given below.
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J.E. Gibbs.

The formal analogy that exists between Newton-Leibniz and Gibbs differentiation has
continued to inspire an extensive development of novel forms of analysis. Looking back, we
see the impressive structure of abstract harmonic analysis, the analysis of complex-valued
functions on locally compact Abelian (LCA) groups and on compact non-Abelian groups,
which curiously lacked, before 1967, a derivative concept. Abstract harmonic analysis was
developed as a generalisation of Fourier analysis by replacing complex-valued functions on a
specific LCA group, the real group, by complex-valued functions on an arbitrary LCA group.
That this route was taken explains, at least to some extent, the long-continued absence of a
derivative concept. The notion of differentiation is closely connected with that of Fourier
analysis, to be sure, but the two do not necessarily arise simultaneously in the mind, as is

shown also by the earlier history of analysis.

Classical analysis may be said to have begun with the formulation of the differential
calculus by Newton and Leibniz, though of course their work was foreshadowed by that of
earlier mathematicians. It was only considerably later that Fourier introduced the
immensely important ideas associated with his name. So in classical analysis the concept of
differentiation considerably pre-dated that of Fourier analysis, which came as a bolt from
the blue, not as something obviously missing from the calculus of Fourier's time. If Fourier
had pre-dated Newton and Leibniz, the derivative might have been defined by means of
Fourier considerations, but one may wonder what could have lead to the introduction of such
a definition, and whether it would then have been clear that the derivative could be used to
solve practical problems concerning rate of change. But we may think that a similar
inversion of events has occurred in abstract harmonic analysis, where Fourier consider-
ations were extended to a more general topological situation many years before differ-
entiation was introduced in the same context. Perhaps, then, it is no wonder that we are
somewhat at a loss to interpret the Gibbs derivative in an intuitive way analogous to the
interpretation of the Newton-Leibniz derivative as rate-of-change. Possibly the truth is
that differentiation must be regarded as a purely mathematical concept that just happens, in
the special case of real and complex analysis, to be intuitively significant and useful.
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On the other hand, it may be that-further generalisation is all that is needed to
provide differentiation with a brighter future in the realm of applications. An oddity of
abstract harmonic analysis is that the domain of the functions considered has undergone,
thanks to group theory and topology, a profound generalisation, while the co-domain remains
almost exclusively restricted to the complex field. Doubtless there are excellent technical
reasons for this state of affairs, but it may be that some good would come of remembering
that the differential calculus started with a study of real functions, that is, of functions
whose domain and co-domain are essentially identical. The simplest and most appealing of the
post-Gibbs calculi is the dyadic calculus, which applies to complex-valued functions defined
on the dyadic group. It was the proving ground of the idea of differentiation on groups, and
has received the most extensive study. It could again be used as a guinea-pig, this time to
examine the possibility of reverting to the symmetry of the Newtonian situation, and taking
both domain and co-domain (of the functions to be differentiated) as the dyadic field, whose
elements it is convenient to call dyadic numbers. Such functions, on the analogy of real
functions, are naturally called dyadic functions.

This particular test-bed is specially convenient in view of the existence already of an
algebraic analogue of the proposed calculus for dyadic functions, an analogue called Boolean
difference calculus. All that remains is to put in the usual topology of the dyadic group and
the new "dyadic analysis" emerges. (The name pure dyadic analysis has been suggested to
distinguish the new discipline from the well-established dyadic analysis of complex-valued
functions on the dyadic group.) There may be some surprises in store, however: for
example, the Taylor series induced from Boolean difference calculus are of two kinds, one
with a2 countable, the other with an uncountable infinity of terms, corresponding
respectively to the cardinalities of the integers and the dyadic group. The latter "series"
presents an interesting problem in summation technique, except in the trivial case where all
but 2 finite set of terms are zero. The former series, which is a series in the conventional
sense, also has a point of difficulty, that the "expansion" is not, as in the conventional Taylor

%)

eries, about a fixed point of the domain. These problems may well be overcome, may indeed

[%2)

uggest interesting new modes of analysis, if the case of summability of divergent series of
Os and 1s modulo 2 is anything to go by. This problem, let alone its solution, long seemed
destined to remain in cloud-cuckoo-land, but a context in so-called Fourier analysis in (not
on ) the dyadic field enables such a series to be summed, provided that it is periodic of a
period that is some non-negative integer power of 2.
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P.L Butzer and W. Engels

Some unsolved problems concerning the extended dyadic derivative are summarized

below.
A function f e Lp(0,1), 1< p <eo, is said to be strongly dyadically differentiable in the
extended sense in LP = LP(0,1), if the sequence of functions

n
(1) 2

V

Z( ) 21 (f(x) - f(x @ 271y
v=0 j=0
converges in the norm of LP: in this case the limit of (1) is called the (first) strong
extended dyadic (= ED) derivative of f, and denoted by & 1. In this respect, a series 22,8
is said to be Euler-summable to s if

1 n+1

2V+1

Ya=

vl j=0 v=0

ov+1

2 E0)e

tends to s for n — . So (1) deals with the case a; = (DHi2i-1 {fx) - f(x & 270-1)},
with @ denoting dyadic addition. In comparison with the standard dyadic derivative, (1)
results by adding the multiplicative factor (-1)j to the difference and then by applying

Euler's summation process to the resulting sum. For details here see [1].

Now W. Engels (1985) [3] showed that a function f, bounded on [0,1) and possessing
a finite or countably infinite set of discontinuities of first kind (having at most a finite
number of cluster points in [0,1)) is pointwise dyadically differentiable in the standard
sense iff f is a piecewise constant on [0,1). Since every function which is dyadically
differentiable in the standard sense is also differentiable in the extended sense, the basic

question that arises is the nature of the functions that are ED-differentiable.

In this respect the authors [2] showed that the monomials x", ne Ng are ED-

differentiable, thus so are algebraic polynomials. Also "piecewise polynomials" such as
xn\yk(x), nk e No , namely "polynomials" of order n having a finite number of jump

discontinuities, are ED-differentiable ( y(x) denoting the kth Walsh function in Paley's
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enumaration). Further, even extremely unsmooth functions such as Dirichlet's function
d(x) or even x"d(x) are ED-differentiable. )

Some of the specific open problems are the following:

(i) Are the classical functions such as e, sin x, log(1+x) or even \pk(x)ex, wk(x) sin x,
\yk(x) log(1+x) ED-differentiable ?

(ii) Is the famous van der Waerden function wae(x) := E:_1 47K {4kx}, x € R, known to
be nowhere differentiable in the classical Newton-Leibniz sense, ED-differentiable? Here

{x} denotes the distance from x to the nearest integer.

(iii) The ED-derivative of fy(x) = x turns out to be

o [logav] )
en(f)x - 32wt ¥ (V) D+
v=0 j=1 \2]
0.(x) = I,VZK(X) being the Rademacher function of order k.

The concrete question is whether this double sum has a closed representation. (Is it
possibly a quadratic function?) If so, it would yield a closed expression -of the second

extended dyadic-derivative £{2}s(x), where s(x):= 2:’_0 (-1)k 47k yi(x), x € [0,1), since

el2ls(x) = -4e 1}, (x). In fact, one does not seem to have a closed form for s(x) either.

More generally, further information concerning closed representations of Euler summation

processes of specific sums of Rademacher functions would be of interest.

Of further basic importance is the associated operator of anti-differentiation of order
re N, Ty LP - LP, defined for f « LP by I{r}f(x) = OJT f(x @u)Wr*(u)du, where Wr* (x)

i Z::1(k

No (note the factor (-1 ). In this respect, if f e LP, f2(0) = 0, then £{"H (T \f) =1, r e

*

o . ~ e
)7 v (x), and k = Zj=0(-1 Vkj21, kj being the binary coefficients of k e

N. And Im(&‘{r}f ) = f when &{f e LP. This is the counterpart of the fundamental
theorem of the Newton-Leibniz calculus in the ED-setting. In this respect there is the

following question:

(iv)  What is a possible interpretation of the operator I, =€ {1 forre N, in
particular of 1{1) ?. It does not seem to be associated with the area under a curve, as is the

classical integral. The interpretation may perhaps be given in terms of more intuitive
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concepts that may occur in those sciences which make use of the Walsh analysis. Further, is
there perhaps a possible comparison between dyadic anti-differentiation and classical
integration in terms of an analytical relationship? See, e.g. [2, p. 935 f.] here. Returning
to the function s(x) above, an intuitive interpretation of the formula 1{1}(1-4f1)(x) =

s(x), x e [0,1) would be of interest.

In matters interpretation, J.E. Gibbs [4] has just given a very interesting and
contemplative discussion of the question. He feels that the intuitive interpretation of the
dyadic derivative is not radically different from that of the classical Newton derivative. For
example, he obtains the definition of the (standard) dyadic derivative on a cyclic group
heuristically from the Newton derivative of an associated function of a complex variable.
Nevertheless, for real functions f: [0,1) — R the question is by no means fully solved,

particularly in the case of the ED-derivative.

Defining the best approximation of f e LP by p, € &, (= set of all Walsh polynomials of
degree < n) by

En(fiLPy = inf ] f() - pn() [ ]p
Pn e Py

then if £{")f belongs to the dyadic Lipschitz class Lip( B; LP) of order B > 0,
(2) En(fiLP) = O((logon)? n"B) (n = eo).
The converse direction is not fully solved. Indeed,

(v) If (2) holds, then et} exists and belongs to LP for each 0 <j< r. The question now

is whether £{}f satisfies some type of Lipschitz condition.
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W. R. Wade

The following are some important open questions with respect to the paper "The Gibbs
derivative and term by term differentiation of Walsh series”. For notation and background
information, please refer to the corresponding chapter of the present Proceedings.

oo

(i) If Z klogk ay wy(x) converges at x, is f(x) = Z ay wi(x) term by term
k=2 k=0
dyadically differentiable ?

oo

(ii) If 2 ay Wk(x) =o(mlogm) as m — ee, is f(x) = Z ayg wg(x) term by term
k=m k=0
dyadically differentiable ?

oo

(iii)y |If /; k aj wy(x) converges for all xe [0,1), is f(x) = g(,) ay wy(x) term by

term dyadically differentiable at some point in [0,1) ? On some dense Ggset in [0,1]7?

Almost everywhere on [0,1]7

(iv) If Iak|s8k, 810 and 2 8y < oo, is f(x)= Z k ay wi(x) term by term
k=1 k=1

dyadically differentiable at all but countably many points in [0,1)7

oo

(v) If ag= O(k-1(log k)™) as k— oo, for some o > 1, is f(x) = 2 k ay wi(x)
k=1

term by term dyadically differentiable at all but countably many points in [0,1)?

Please recall that other unanswered questions were introduced and discussed in
section 6 of our main chapter.
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F. Schipp, J. Pal, P. Simon

We would like to comment on some unsolved problems in dyadic analysis.

(i) W. Splettstésser and W. Ziegler have introduced a concept of dydic derivative for the
Haar system on R* (see Proceedings of the A. Haar Memorial Conference, 1985, Vol ).
They have proved the fundamental theorem of dyadic calculus in the sense of norm

convergence. The question concerning a.e. differentiability of an integral function is open.

(i1) Itis known (see N. Fujii, Proc. Amer. Math. Soc.77, 111-118, (1979)) that the
L"-norm of the maximal function of (C,1) means for Walsh-Fourier series can be estimated
from above by the dyadic H'-norm of the function. It is an open question whether the above

norms are equivalent (for nonnegative functions the equivalence is true).

(iii) Let E be a set of positive measures in [0,1). Does there exist a Walsh polynomial

such that its maximum norm is less than 1 and the maximal function of its Walsh-Fourier
series greater than C-log(1/| €]) on the set E, where C>0 is an absolute constant2.

T. Kitada

The following questions refer to the paper "Hérmander-type multiplier Thecrems on
locally compact Vilenkin groups”, co-authored by T. Kitada and C.W. Onneweer. Please see

the corresponding chapter of the present book for notation and contextual information.

Theorem MWY holds for A = s = 1. This is a generalisation of the Marcinkiewicz
multiplier theorem on R and was proved by D. Kurtz (Trans. Amer. Math. Soc. 259, 235-
254, (1980)) with more general weight functions.

It is interesting to obtain a (locally compact) Vilenkin group analogue of the above

theorem using our dyadic derivatives (or any other derivatives) on such groups.

For instance, does Theorem 3.6 hold for A = s = 1 ? Even for the unweighted case we
do not know whether this is true or not, but it is easily seen that ¢ e M(1,1) does not in

general imply that ¢ e M(H!, LT).
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He Zelin

Please refer to the paper "Convergence Properties of a class of Walsh-Fourier
Integral Operators", co-authored by He Zelin and D. Mustard in these Proceedings. | would
like to present the three following questions open for further study:

(1) letfe L9 R*) (1 <q<ee), n(t) is guasi-convex on R+, n(0)=1, n(ee)=0 and
Os(n)=A (0< A <oe).

Does I, =l f-f*[on(t/p)\yo(t)dt Hq - O(p~%) (a<k) imply fe Lipa, ie.

o(f,8) = sup || f(x@h) - f || <A8% ?
0<h<3 q

If Ip= O(p~* Inp) or O(p~ ), what kind of conclusion could be made about f ?

(ii) Letfe L9 R+) (1 <q<oe), n(t) is quasi-convex on R+, n(0)=1 and n(e)=0.

If there is a A such that for any fe Lipoa |l f-f*J:n(t/p)\yo(t)dt llq = O~
it g<h, O(p=*Inp)ifa=r or O(p~)ifa>A, can we conclude that Og(n)=A ?
(iii) It is normal that we try to obtain in Walsh analysis important and useful results
similar to that in Fourier analysis. Conversely, there are some significant results in Walsh
analysis, for which we need to set up their analogues in Fourier analysis. To set up a result
in Fourier analysis similar to theorem 2 of our contribution in these Proceedings is
precisely one of these questions. A formal statement of the problem is the following:

Let f e Lip(L9,a) (1 < g<eo), m is quasi-convex on R, n(0)=1, M(xe0)=0 and
Os(n)=h (0< ) <e=). We would like to have:

O(p™) (a<h)
INf - f*[:n(u/p)ei-u dullq = O(p~™Inp ) (a=1)
O(p™) (0>A)

Prove whether this is true or not.
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R. Stankovid

In our paper "Some remarks on Gibbs derivatives on finite dyadic groups” in these
Proceedings we introduce a modified product rule for Gibbs derivatives (Theorem 1,
Property 7). As it is well known the lack of a product rule is an important problem for
Gibbs derivatives. It seems to me that the result mentioned above could be used to obtain a
modified product rule for Gibbs derivatives on finite (both Abelian and non-Abelian) groups.

The same applies to the real Gibbs derivative.

The application of partial Gibbs derivatives on finite groups in fault detection in (non
necessarily binary) logical networks and communication channels is an open area. Possibly

partial Gibbs derivatives on finite non-Abelian groups should also be considered.

Another open question is the extension of the theory of Gibbs differential calculus on

finite non-Abelian groups to infinite non-Abelian groups.

As in the case of Abelian groups, we know that the Gibbs derivative of order k e N on
a finite non-Abelian group may be considered as the mathematical model of a particular
linear shift invariant system whose impulse response is equal to the k-th Gibbs derivative
of the §-function. Moreover, the discrete Gibbs differential equations with constant
coefficients may be regarded as the input-output relations of a subclass of linear systems on
finite non-Abelian groups. It is important to estimate how large is that class of systems and
to give a strong characterization of it, i.e. determine which conditions have to be satisfied so
that a convolution system on a finite non-Abelian group can be represented by a discrete
Gibbs differential equation. The inverse problem, that of translating a system given by a
discrete Gibbs differential equation into a convolution system seems also worthy of

consideration.

Another open problem is the analysis of observability and controllability of the
considered subclass of convolution systems on finite non-Abelian groups, based on

properties of the Gibbs derivatives.

The problem of approximating a given discrete time-invariant system by a system on
a suitably chosen non-necessarily Abelian group has been reported in the literature, but as
far as | know the problem is far from having been completely solved. It is interesting to
consider whether the Gibbs derivatives can be used to provide a casual, Markovian, step-by-

step description of the group model.
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C. Moraga

In the paper "Real Gibbs derivatives on finite Abelian groups” co-authored by R.
Stankovié¢ and C. Moraga in these Proceedings, we introduced a real Gibbs derivative which
actually corresponds to the real part of the classical Gibbs derivative. This immediately
suggested two questions for further research:

(i) What are the properties of the imaginary part of the Gibbs derivative? Recall that in
the paper "Variations on the Gibbs derivative” co-authored by Zhang Gongli and C. Moraga
we introduced ad hoc a complex-valued Gibbs derivative to preserve some aspects of the
Newton-Leibniz derivative of trigonometric functions.

(ii) Is it possible to define a new kind of derivative that relates to the Gibbs derivative in
a similar way as the Hartley transform relates to the Fourier Transform?
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