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PREFACE

This work represents an attempt at a comparative analysis of the
theory of discrete and visually presentable continuous symmetry groups in
E? or in E?\ {O}: Symmetry Groups of Rosettes (Chapter 1), Friezes
(Chapter 2), Ornaments (Chapter 3), Similarity Symmetry Groups in E?
(Chapter 4), Conformal Symmetry Groups in E%\ {O} (Chapter 5) and
ornamental motifs found in ornamental art that satisfy the afore mentioned
forms of symmetry.

In each chapter symmetric forms are treated from the theory of groups
point of view: generators, abstract definitions, structures, Cayley diagrams,
data on enantiomorphism, form of the fundamental region,... The analy-
sis of the origin of corresponding symmetry structures in ornamental art:
chronology of ornaments, construction problems, visual characteristics, and
their relation to geometric-algebraic properties of the discussed symmetry
is given. The discussions are followed by illustrations, such as Cayley dia-
grams and ornaments. Many of ornaments date from prehistoric or ancient
cultures. In choosing their samples, chronology was respected as much as
possible. Therefore, most of the examples date from the earliest periods —
Paleolithic, Neolithic and the period of ancient civilizations. The problems
caused by various datings of certain archaeological excavation sites have
been solved by compromise, by quoting the different dates. The problem
of symbols used in literature for denoting the symmetry groups has been
solved in the same way.

The extension of the theory of symmetry to antisymmetry and col-
ored symmetry was made only to facilitate a more detailed analysis of the
symmetry groups by the desymmetrization method.

The surprisingly early appearance of certain symmetry structures in
ornamental art of the Paleolithic and Neolithic led to attempts to interpret
the causes of this phenomenon. Among the explanations we can note the
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existence of models in nature, and constructional possibilities. As the
universal criterion, the principle of visual entropy was applied — maximal
visual and constructional simplicity and maximal symmetry.

Somewhat different in concept is the chapter on Conformal Symmetry
in E?\ {O}. As opposed to the other chapters, where the chronological
priority of ornaments "as the oldest aspect of higher mathematics given
implicitly” was stressed, in this chapter the emphasis is on the path leading
from the theory of symmetry (i.e., the derivation, classification and analysis
of conformal symmetry groups) toward ornaments understood as the visual
interpretations of abstract geometric-algebraic structures. Such an approach
is becoming increasingly more important, since it makes possible the use of
visually presented symmetry groups in all fields of science where there is
a need for the visualization of symmetry structures (Crystallography, Solid
State Physics, Chemistry, Quantum Physics, Particle Physics,. . . ). Also, by
applying a comparative, multidisciplinary analysis and by establishing the
existence of parallelism between the theory of symmetry and ornamental
art, the research field of ornamental design can be enlarged. By connecting
the theory of symmetry and the theory of visual perception, more precise
aesthetic criteria in fine arts may be created. The possibilities to apply
these criteria when analyzing works of art (painting, sculptures,...) could
form the subject of a new study.

The closing chapter, The Theory of Symmetry and Ornamental Art,
is an attempt at a survey synthesizing the relationship between the theory
of symmetry and ornamental art, and a summary of the conclusions derived
from individual chapters. Written as a compendium, this chapter could be
considered as an independent entity.

The bibliography has been divided into two parts: one represents work
in the field of the theory of symmetry and disciplines related to it, and the
other work related to ornamental art.

[ am especially thankful to Dr Dragomir Lopandié, Professor at the
Faculty of Natural Sciences and Mathematics in Belgrade, under whose
inspirational guidance this study came to life and to all the others who have
helped give this study its final form.

A first version of this work was completed in 1981 and published by
APXAIA (Belgrade, 1984). In the present version essential changes have

been made in the discussion of the color- symmetry desymmetrizations, ac-
cording to recent results in the field of colored symmetry. Certain definitions
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that were not sufficiently precise have been corrected and replaced by new
ones. Important other contributions to the theory of symmetry, which have
been made since 1981, have been also included, either in full, or through con-
cise references to the original works. The symbols for the symmetry groups
of friezes and antisymmetry have been simplified. The author is grateful to
Professors H.S5.M. Coxeter, B. Griinbaum, A.F. Palistrant, H. Stachel and
W. Jank for their remarks, advice and suggestions, that were of immense
value for the final version of the text.

Belgrade, 1989



Chapter 1

INTRODUCTION

The symmetry existing in nature and its reflection in human artifacts
has been present, from the earliest times, in all that has been done by
man. Visual structures, that are the common elements of geometry and
painting, were often arranged according te the laws of symmetry. Howsver,
the relatively independent development of geometry and painting resulted
in the formation of two different languages. Even when ialking about the
same object (such as the laws of symmetry in the visual organization of 2
painting, that are most explicitly expressed within ornamental art) these
languages use quite different terms. In fine art, the expression "symmetry”
preserved for centuries the meaning it had in Greek aesthetics: in its wider
sense it indicated harmony, accord, regularity, while in the more narrow
sense it was identified with mirror symmeiry in a vertical reflection line.
The descriptive language used in most discussions on ornaments, drifted
apart from the exact language of geometry.

With the development of natural sciences (Crystallography, Chem-
istry, Physics,...) symmetry structures have become an important area of
geometric studies; here the key words are transformation groups, invariance,
isometry,... When painting and sculpture were differentiated from the dec-
orative arts, began the period of a relative stagnation of ornamental art,
which acquired a rather subordinate role and remained on the margins of
the dominant aesthetics. On the other hand, the dynamic progress of the
mathematical theory of symmetry caused the fact that the first more signif-
icant incitement for the study of ornamental art came from mathematicians
(A. Speiser, 1927).

The approach to the classification and analysis of ornaments based on
symmetries was enriched by the contributions of different authors (E. Miiller,
1944; A.O. Shepard, 1948; J. Garrido, 1952; N.V. Belov, 1956a; L. Fejes
Téth, 1964; D.W. Crowe, 1971, 1975; D. Washburn, 1977;...). In these
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works the descriptive language was replaced by more precise geometric-
crystallographic terminology, and the theory of symmetry was established
as a powerful tool for the study of ornamental art. In time, symmetry
analysis of ornamental art became a reliable method, used mainly to study
ancient ornamental art or that of primitive peoples.

The new approach to ornamental art leads to many new questions:
which aspects of symmetry, when and where, appear in the history of or-
namental art; which are the dominant forms; how to classify colored orna-
ments; etc. Following attempts to provide answers to all these and similar
questions of the "how”, "where” and "when” type, the question "why” aris-
es naturally: why is man creating ornaments at all, why do some ornaments
appear earlier or more often,... The questions in the first group do not
penetrate the field of aesthetics and the psychology of visual perception,
and so the language of geometry is almost sufficient for their discussion. In
contrast, the second group of questions points to the necessity for a more
profound understanding of the links between visuality and symmetry and al-
so to the necessity to compare the language of the theory of symmetry with
that of the theory of visual perception. Therefore, besides the question
about the classification of ornamental motifs, the chronology of ornamental
art, problems of colored ornaments etc., one of the aims of this work is to
study the possibilities of translating geometric properties into the language
of visuality, and vice versa. When discussing the numerous problems that
ornamental art raises, special attention is paid to its roots. They are to be
found in the ornamental art of the prehistoric period, which represents the
most complete record of the beginnings of human understanding of regu-
larity. In turn, regularity is the underlying basis of all scientific knowledge,
so that in contemporary science, visualization of symmetry structures often
represents the simplest way of their modeling and interpreting. This is an
additional stimulus to strengthen the ties between science and art.

Knowledge of the terminology of the theory of symmetry is necessary
for its application to the study of ornamental art. This is the reason for
giving the basic technical terms and methods in the Introduction. The re-
maining mathematical terms with which the amateur reader is less familiar,
are given later, in the relevant chapters.

1.1. Geometry and Its Basic Terms

We take as the basis of every geometry the set of undefined elements
(point, line, plane) which constitute space, the set of undefined relations
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(incidence, intermediacy, congruence) and the set of basic apriori assertions:
azioms (postulates). All other elements and relations are defined by means
of these primitive concepts, while all other assertions (theorems) are derived
as deductive consequences of primitive propositions (axioms). So that, the
character of space (this is, its geometry) is determined by the choice of
the initial elements and their mutual relations expressed by axioms. The
axioms of the usual approaches to geometry can be divided into a number of
groups: azioms of incidence, azioms of order, azioms of continuity, azioms
of congruence and azioms of parallelism. Geometry based on the first three
groups of axioms is called ”ordered geometry”, while geometry based on
the first four groups of axioms is called ”absolute geometry”; to the latter
corresponds the n-dimensional absolute space denoted by S™.

With respect to congruence, we distinguish the analytic procedure with
the introduction of space metric and the synthetic procedure, also called non-
metric. The justification for the name ”absolute geometry” is derived from
the fact that the system of axioms introduced makes possible a branch-
ing out into the geometry of Euclid and that of Lobachevsky (hyperbolic
geometry). This is achieved by adding the axiom of parallelism. By ac-
cepting the 5th postulate of Euclid (or its equivalent, Playfair’s axiom of
parallelism: ”"For each point A and line a there exists in the plane (a, A)
at most one line p which is incident with A and disjoint from a”, where
line p is said to be parallel to a) we come to Euclidean geometry. By ac-
cepting Lobachevsky’s axiom of parallelism, which demands presence of at
least two such lines, we come to non-Euclidean hyperbolic geometry, i.e.
the geometry of Lobachevsky and that of space L™. In particular, for n = 0
all these spaces are reduced to a point, and for n = 1 to a line; their spe-
cific characteristics come to full expression for n = 2, and we distinguish
the absolute ($?), the Euclidean (E?), and the hyperbolic plane (L?). If
there is no special remark, then the terms "plane” and "space” refer to the
Euclidean spaces E% and E® respectively. By a similar extension of the set
of axioms, ordered geometry supplemented with two axioms of parallelism
becomes affine geometry (H.S.M. Coxeter, 1969).

1.2. Transformations and Symmetry Groups

A function m is a mapping of a set A to a set B if for every element
a € A there exists exactly one element b € B such that m(a) = b. The
mapping m is one-to-one if m(a) = m(a’) implies @ = a’, and it is onto
if m(A) = B, where m(A) = {m(a) | ¢« € A}. A transformation is a
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mapping of a space to itself that is both one-to-one and onto, i.e. it is a
one-to-one correspondence from the set of points in the space onto itself
(H.S.M. Coxeter, 1969; G. E. Martin, 1982). If we denote a transformation
of space by t, then for each point P which we call the original there exists
exactly one point @, the image of point P derived by transformation ¢ and
we write #{(P) = Q. Each point @ of the space is the image of some point
P derived by transformation t, where to equal images correspond equal
originals. Points P, @ in the given order are called homologous points of
transformation ¢.

A figure f is any non-empty subset of points of space. A figure f is
called invariant with respect to a transformation S if S(f) = f; in this case
the transformation S is called a symmetry of the figure f, or an element of
symmetry of the figure f. The identity transformation of space is the trans-
formation E under which every point of space is invariant, i.e. E(P) = P
holds for each point P of the space. The identity transformation is a symme-
try of any given figure. Any figure whoose set of symmetries consists only of
the identity transformation F is called asymmetric; any other figure is called
symmetric. For example, the capital letters A,B,C,D,E,K,M,T,U,V,W,Y are
mirror-symmetric, H,I,0,X doubly mirror-symmetric and point-symmetric,
N,S,Z point-symmetric, and F,G,J,P,Q,R asymmetric. The letters b d or p
q form the mirror symetric pairs, and b q or p d the point-symmetric pairs.

For every two transformations 57, S of the same space we define
the product §;53, as the composition of the transformations: §1.5;(P) =
S5(S1(P)). In other words, by product we mean the successive action of
transformations S1, S3. As a symbol for the composition §...5, where §
occurs n times, we use S™, i.e. the n-th power of the transformation S. The
order of the transformation § is the minimal n (n € N) for which 5" = F
holds. If there is no finite number n which satisfies the given relation, then
the transformation § is called a transformation of infinite order. If n = 2,
then the transformation S is called an involution. If transformations Sy and
S, are such that $1.92 = E, then §; is called the inverse of S, and vice
versa. We denote this relationship as §; = S;! and §; = S7Y. For an
involution § we have § = §~1, and for the product of two transformations
(5152)7t = 7157 holds.

A transformation t which maps every line ! onto a line t(l) is a
collineation. An affine transformation (or linear transformation) is a
collineation of the plane that preserves parallels.
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As a binary operation * we understand any rule which assigns to each
ordered pair (A, B) a certain element C written as 4« B = C, or in the
short form, AB = C. A structure (G, ) formed by a set G and a binary
operation #* is a group if it satisfies the axioms:

a1) (closure): for all A;,4; € G, A1 4, € G is satisfied;

ay) (associativity): for all A;,42,4; € G, (A1 4;)A3 = A1(A243) is
satisfied;

a3) (existence of neutral element): there exists £ € G that for each
A; € G the equality A1 F = A; is satisfied;

ay) (existence of inverse element): for each A; € G there exists A7' €
G so that AT 4; = E is satisfied.

If besides a;-aq4) also holds

as) (commutativity): for all 4;,42 € G, 414, = Az A; is satisfied,
the group is commutative or abelian.

The order of a group G is the number of elements of the group; we
distinguish finite and infinite groups. The power and the order of a group
element are defined analogously to the definition of the power and the order
of a transformation.

A figure f is said to be an invariant of the group of transformations &
if it is invariant with respect to all its transformations, i.e. if A;(f) = f for
every A; € G. All symmetries of a figure f form a group, that we call the
group of symmetries of f and denote by G . For example, all the symmetries
of a square (Figure 1.1a) form the non-abelian group, consisting of identity
transformation F, reflections R, Ry, B;RR;, RR R, and rotations ER;,
(RR1)2 Ry R — the symmetry group of square D4. The order of reflections
is 2, the order of rotations RR;, Ry R is 4, and the order of half-turn (R&,)?
is 2. This group consists of 8 elements, so it is of order 8 The elements
of the same group, expressed as products of reflection R and rotation S of
order 4 are: identity E, reflections R, RS, RS?, SR, and rotations §, S?
and S3. Instead of a square, we may consider the plane tiling having the
same symmetry (Figure 1.1b).

A subset # of group G, which by itself constitutes a group with the
same binary operation, is called a subgroup of group G if and only if (iff) for
all 4;,4; € H, Ay A" € H. Subgroups i = G and H = {E} of each group
G are called trivial, while the other subgroups are nontrivial subgroups of
the group G. In the symmetry group of square, identity transformation E
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and rotations §, §%, §3 form the subgroup of the order 4 — the rotational
subgroup of square Cy.

Groups (G, *) and (G, o) are called isemorphic if there exists a one-
to-one and onto mapping ¢ of elements of the group G; onto elements of
the group G4, so that for all A;,4; € Gy, i(A4; * 42) = i(4;) 0 i(A;3) holds;
the mapping 7 is called an isomorphism. For example, by the mapping
i{(R) = R, i(Ry) = RS is defined the isomorphism of the symmetry group
of square generated by reflections R,R;, with the same group generated by
reflection R and rotation S. Any isomorphism of a group G with itself is
called an automorphism.

Ay

-9

b
) (b)

Figure 1.1

(a) Symmetric figure (square) consisting of equaly arranged con-
gruent parts (1-8) and its symmetry transformations: identity
transformation £ (1 «+ 1,2 « 2,3 < 3,4 « 4,5 < 56 «
6,7 « 7,8 « 8), reflections R (1 « 2,3 < 8,4 « 7,5 < 6),
Ry (1 «+ 4,2 « 3,5 « 8,6 « T7), RiRR,y (1 « 6,2 « 5,3 «
4,7 — 8), RR4R (1 « 8,2 & 7,3 « 6,4 §), rotations RR;
(1—172—83—1,4—25— 36— 4,7 — 5,8 — 6), R1R
(1 —3,2— 4,3 — 54— 65768718 2)and
half-turn (RR;)? (1 « 5,2 «+ 6,3 «» 7,4 + 8). The order of the
symmetry group of square D, is equal to the number of congruent
parts (8); (b) plane tiling with the same symmetry.

Instead of representing the group in the traditional way, by means
of its Cayley table, which offers a listing of all the elements of the group
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and their compositions (products), complete information about the group is
given more effectively and concisely by a group presentation (i.e. abstract,

generating definition): a set of generators and defining relations. The group
of transformations G is discrete if for each point P of the space in which
the group G acts there is a positive distance d = d(P) such that no image
of P (distinct from P) under an element of G is at distance less than d
from P. The set {S1,52,...,Sm} of elements of a discrete group G is called
a set of generators of G if every element of the group can be expressed
as a finite product of their powers (including negative powers). Relations
9k(51,82,...,8m) = E, k = 1,2,...,s, are called defining relations if all
other relations which Sl, St Sm satisfy are algebra.lc consequences of
the defining relations (H.S.M. Coxeter, W.0.J. Moser, 1980). So that, in
further discussions each discrete group will be given by a set of generators
and defining relations, i.e. by a presentation.

The symmetry group of square is given by Cayley table:

E R Ry R,RR, RRi\R RR, (RR))® RiR
E E R Ry RRR, RR\R RR, (RR))® R.R
R R E RR, (RR;)*> RiR R, RyRR, RR,R
Ry R, RyR. . B RR,  (RR,)? R,RR, RR,R R
R\RR, RyRR, (RR,)> R\R E RR, RR,R R R,
RR,R RRyR RR, (RR))* R.R E R R R,RR,
RR; © RR;, RR,R R R, R\RR, (RR,)* RyR E
(RR1)? (RR,)* R,RR, RR,R R R, RyR E RR,
R BB B R\RR, RR,R R E RR,  (RR1)?

and by the presentation:
{R,R:} R®=R!=(RR,)=E,
or by Cayley table:
E R RS ‘RSYSR'* S 52 5

E E R RS - RS* SR '8 SE.. 5%
R R E S §* S RS RS? SR
RS RE AT B S 52 TRSEFSERR
RSETIRE2 i gt gt tdon S SE 'R RS
SR SR § Rt SRy R RS RS?
S S SR 'R RS + RS: " SPVENR
T Lgen T peeee g 2 R S
5% - G8T ‘pe - pevitiop £ R E S S?
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and by the presentation:
{S,R} S*=R?=(RS)’=E.
Two groups G; and G which are given with their presentations:
G 15150905 <25 0m i+ GE(81,59; . L5, Sm) = F k=197 hsiiigy
G {S1s0300se590) 1 BI(STySansuon)i= L= 152008 o (D)
are isomorphic iff there exist relations:
8 =25:(81,805 - 29mhi g =y 2, S n (19

D= 0 (81 5w 5 e =1, 2 o (2"

such that the systems of relations (1), (1’) are algebraically equivalent to (2),
(2’) (H.S.M. Coxeter, W.0.J. Moser, 1980). This means, that the second
presentation can be obtained from the first by the substitutions (2’), and
the first can be obtained from the second by the substitutions (1’). For
example, the groups G; and G, given by the presentations:

Gi {R,Ri} R*=R:=(RR)'=E (1)
Gy {S,R} S*=R:=(RS)}= (2)
are isomorphic, because there exist the relations:
S =RR; (1)
=RS (2)

so that the systems of relations (1) (17) are algebraically equivalent to (2),
(2) Namely, by the substitution (2’) Ry = RS, the relations (1) R* =
= (RR;)* = E are transformed into algebraicly equivalent relations

= (RSP =(RERS\'=E = S =R =[RSV =E (2

and by the substitution (1’) § = RR;, the relations (2) are transformed into
algebraicly equivalent relations

(RR,)*=R?*=(RRR,)*=E < R'=Ri=(RR)'=E (1)
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Their isomorphism, defined by the mapping i{(R) = R, i{(R;) = RS is also
simply visible from the corresponding Cayley tables.

By ”structure of the group” we understand its isomorphism with some
of the basic, well known groups (e.g., cyclic group C,, dihedral group
D,,,...) or with a direct product of such groups. The cyclic group C,, is
given by the presentation: {§} 5" = E, and the dihedral group I,, can be
given by two isomorphic presentations: {&,R:1} R? = R} = (RR))"=E
or {§,R} S™ = R? = (RS)? = E. Hence, the structure of the symmetry
group of square is Dy, and the structure of its rotational subgroup is Cy.

For groups G and G1, G NGy = {£}, given by presentations (1), (2)
we define the direct product G x G; as the group with the set of generators
{81559, -5 8my51, 85, -., 5.}, the:set of defining relations of which is, be-
sides the relatlonb (1); (2) made up of relations §;5} = §58;,i=1,2,...,m,
i =1,2,...,n. For each group G we can discuss the pOSalbﬂltV of it bemg de-
composed i.e. represented as the direct product of its nontrivial subgroups.
A group which allows such a decomposition we call reducible, otherwise it is
called irreducible. For example, the direct product of two cyclic groups, Cs
given by the presentation {S} §3 = E and C; given by {T} T? = E is
the group {S,7} $*=T?=FE ST =TS§S. By the substitution U = ST,
this results in the presentation {U} U® = E, so C3 x Ty = Cg, showing
that the group Cs is reducible.

The term "decomposition” can be used in another sense. Each group
can be decomposed according to its subgroup H:

G=gHUgHU---Ug, HU...

where ¢; 1 = {g:h | gi € G,h € H}. The expression g;H is called the
left coset which corresponds to element g; with respect to subgroup H.
Analogously, there is the possibility of the right decomposition of group G
according to subgroup H. If the above decompositions are finite, the number
of cosets is called the indez of the subgroup H in the group G; in the case
of infinite decomposition we say that H is a subgroup of infinite indez. We
should also note the property that every two cosets are either disjoint or
identical, and that the order of the group is equal to the product of the
order of the subgroup H and its index. From this results the statement that
the order of a subgroup is a divisor of the order of the group. A subgroup
H of a group G is called a normal subgroup if gH = Hg holds for every
element ¢ € G. For example, for the symmetry group of square G and
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its rotatational subgroup H holds the decomposition G = H U RH, and
gH = Hg holds for every element ¢ € G, so H is the normal subgroup of
index 2 in G. The order of K is 4, and order of G (8) is the product of the
order of H (4) and index of H in G (2).

According to those basic geometric-algebraic assumptions, we can con-
sider as the subject of this study the analysis of plane figures — ornamental
motifs and their invariance with respect to symmetry groups.

The set of points G(P) = {g(P) | g € G}, obtained from a point P by
all transformations of the group G, is called the orbit of P with respect to
G; it is the set of points equivalent to point P (or the transitivity class of P)
with respect to the group G. Analogously we can also define the orbit (or
transitivity class) of any figure f with respect to the group G and denote
it by G(f). A point P which is invariant with respect to a transformation
S, i.e. a point for which S(P) = P, is also called singular. A figure f is
invariant with respect to a transformation S if S(f) = f. A point P is a
singular (invariant) point of a group G if it is a singular (invariant) point
of all transformations of G. A point which is not an invariant point of a
transformation S is also called a point in general position with respect to
the transformation S. A point is said to be a point in general position
with respect to a group of transformations G if it is in general position
with respect to all the transformations of the group G, i.e. if it is not an
invariant point of any transformation of the group G. For example, the
singular (invariant) point of the symmetry group of square is the center of
square. The points belonging to the mirror-reflection lines are the invariant
points of the corresponding reflections. All other plane points, are the points
in general position with respect to the symmetry group of square (Figure
1)

The orbit of some point P in general position with respect to the dis-
crete group of transformations G makes possible a schematic interpretation
of the group G: a Cayley diagram or a graph of the group G — a visual
model of discrete group of transformations G. To each vertex of the graph
corresponds exactly one element of the group, and to each edge corresponds
one transformation. The edges which connect the homologous points of the
same transformation are denoted by the same type of line (full, broken,
dotted). The non-oriented edges correspond to the involutions. For any
other, oriented edge, the motion in the direction of the arrow indicates the
multiplication by the corresponding transformation from the right, and the
motion in the opposite direction of the arrow corresponds to multiplication
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by the inverse of the corresponding transformation on the right. A Cayley
diagram is a connected graph, i.e. there exists a path which connects every
two vertexes of the graph. It represents the direct visual interpretation of
the presentation of the group, since to every closed cycle there corresponds
one defining relation (1). A complete graph is considered to be the graph in
which every two vertexes are directly linked by the edge (Figure 1.2).
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Figure 1.2

(a) Graph of the group Cj given by the presentation {S} S§*= F;
(b) the complete graph of the same group.

For a discrete group G it is possible to define a fundamental region of
G. A fundamental region F is a figure which satisfies the following condi-
tions:

a) for each point P of the space where the group of transformations
G acts, there exists § € G that P € S(F);

b) for each § € G\ {E} holds int(F)Nint(S(F)) = 0. If CI(F) is the
closure of F', the orbit G(CI(F)) represents a tiling of the space on which
the group G acts. A space tiling or tessellation is a countable family of
closed sets T' = {11, T3, ...} covering space without gaps or overlaps. More
explicitly, the union of the sets 77,75, ..., which are known as the tiles of
T', is to be the whole space, and the interiors of the sets T} are to be pair-
wise disjoint (B. Griinbaum, G.C. Shephard, 1987). Since a fundamental
region F' has no points which are equivalent under any transformation of
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the group G, unless they are on the boundary, each internal point of F' is a
point in general position with respect to the group G. Regarding the extent
of the fundamental region we distinguish between groups with bounded and
unbounded fundamental regions. A discrete group of transformations G
usually does not determine uniquely the fundamental region, or the induced
tiling G(CI(F')). Therefore, it is of interest to inquire about the different
possible shapes of the fundamental region. In the tiling G(CI(F)) the in-
tersection of tiles of any finite set of tiles (containing at least two distinct
tiles) may be empty or may consist of a set of isolated points (vertices) and
arcs (edges). When discussing variations of the form of the fundamental
region F we distinguish between two aspects of change: the change in the
number of vertices and edges of the fundamental region F, and the change
of the form of the edges (arcs) themselves in which the number of vertices
and edges remains unchanged. As the result of the action of the symmetry
groups we have tile-transitive or isohedral tilings. Their tiles belong to the
same class of transitivity G(CI(F)), since for every two tiles of G(CI(F))
there exists a transformation of group G which maps one tile onto the other
(Figure 1.3).

(a) (b)
Figure 1.3

(a) Isohedral plane tiling corresponding to the symmetry group Dy;
(b) two isohedral plane tilings with different shape of the funda-
mental region, corresponding to its rotational symmetry subgroup

C,.
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: If the symmetry group G contains also transformations which map
any vertex of tiling T onto any other vertex, i.e. if the vertices make up one
class of transitivity, the tiling is said to be iscgonal. By a flag in a tiling
we mean a triple (V, E,T') consisting of a vertex V, an edge E and a tile T
which are mutually incident. A tiling is called regular if its symmetry group
is transitive on the flags of the tiling. In particular, for the symmetry groups
of ornaments there exist exactly three regular tilings (regular tessellations)
by means of regular polygons. Each of them can be denoted by a Schlifi;
symbol {p, ¢} denoting regular p-gons, where g of them are incident with each
vertex of the regular tessellation: {4,4}, {3,6}, {6,3}. A dual of regular
tiling {p, ¢} is the regular tiling {g,p} (Figure 1.4).

Figure 1.4
Regular tilings {4,4}, {3,6} and {6,3}.

A uniform or Archimedean tiling is an isogonal plane tiling by regular
polygons, which is edge-to-edge, i.e. in which every vertex and edge of a tile
is a vertex and edge of the tiling. Each of the 11 types of uniform tilings can
be denoted by the symbol (pi'pi?...p%") where p1, ps, ..., pn denote regular
p-goms, and ¢y, ¢a, . . ., ¢, the number of adjacent regular p-gons of the same
type which are incident with one vertex. Besides regular tessellations (3%) =
{3,6},(6°) = {6,3} and (4*) = {4,4} the family of uniform tilings consists
of (31.6), (3%.4%), (32.4.3.4), (3.4.6.4), (3.6.3.6), (3.122), (4.6.12) and (4.8?)
(J. Kepler, 1619) (Figure 1.5). The Archimedean tiling (3%.6) occurs in two
enantiomorphic forms — ”left” and right”.
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Figure 1.5

An open circle (or open circular disk) is the set of points X such that
OX < r, where O is a fixed point and 7 is a positive number. For OX <,
the circle (circular disk) is called a closed circle.

A transformation ¢ is continuous if for any two points P, @ of the
plane it is possible to make t(P) and ¢(Q) as close together as we wish, by
taking P and Q sufficiently close, and bicontinuous if both ¢t and ¢! are
continuous. A homeomorphism or topological transformation is any bicon-
tinuous transformation. The open (closed) topological disk is any plane set
which is homeomorphic image of an open (closed) circle.

A tiling T is normal if:

a) every tile of T is a topological disk;

b) the intersection of every two tiles of 7' is a connected set, i.e. does
not consist of two closed and disjoint subsets;
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~ ¢) the tiles of T are uniformly bounded, i.e. there exist circles ¢ and
C, with fixed radiuses, such that every tile T; of tiling T' contains a translate
of ¢ and is contained in a translate of C.

A tiling T is called homeohedral if it is normal and is such that for
any two tiles 71, T of T there exists a homeomorphism of the plane that
maps T onto 7' and T onto T5. A normal tiling is called two-homeohedral
if its tiles form two transitivity classes under a homeomorphism mapping T
onto itself. For example, all non-regular Archimedean tilings (Figure 1.5)
are two-homeohedral.

A continuous set of points is any set of points which satisfies the ax-
iom(s) of continuity. Every continuous set of points is 2 homeomorphic
image of a line. Alongside the discrete groups of transformations, continu-
ous symmelry groups may also be discussed. A symmetry group G of the
space E? or E?\ {0} is called continuous if the orbit G(P) of a point in
general position P with respect to the group G satisfies one of the following
conditions:

(i) G(P) is the complete space on which G acts; or

(i) G(P) can be divided into disjoint continuous sets of points, and for
every point of each of these sets there is a positive distance d = d(P) such
that the circle ¢(P, d) contains no points of any other of the sets mentioned.
By the terms ”continuous group of translations, rotations, central dilatations
and dilative rotations” we mean that all translations along one line, all
rotations around one center, all central dilatations with a common center,
and all dilative rotations with a common center and with a fixed angle, are
elements of such a group. In particular, the continuous symmetry groups
of ornaments, depending on whether they satisfy condition (i) or (ii), are
called the symmetry groups of continua or semicontinua.

1.3. Classification of Symmetry Transformations and Groups

As the basis for the classification of the symmetry groups G three el-
ements were taken into consideration: the types of symmetries (isometries,
similarity symmetries, conformal symmetries) that occur in G, the space on
which the group G acts, and the sequence of maximal included proper sub-
spaces, invariant with respect to the group G. According to this, the Bohm
symbols (J. Bohm, K. Dornberger-Schiff, 1966) are used for the categoriza-
tion of the groups of isometries. Symbols of the same type are applied to
the similarity symmetry and conformal symmetry groups. For example, the
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symmetry group of square Dy acts in plane and possesses only one invariant
point, so it belongs to the category Go9 — the symmetry groups of rosettes.

A transformation § is an isometry of certain space E™ (S™) if for every
two points P, @ of that space (P,Q) = (S(P), S(Q)) holds, where (P, Q)
denotes the length of the line segment defined by points P, Q. All isometries
of some space form a group.

A transformation S of n-dimensional space is called indirect (or reflec-
tive, sense reversing, opposite, odd) if it transforms any oriented (n + 1)-
point system onto an oppositely oriented (n+ 1)-point system (line segment
AB onto BA, triangle ABC onto ACB, tetrahedron ABCD onto ACBD
in cases of n = 1,2,3 respectively). Otherwise, it is called direct (sense
preserving, even) (Figure 1.6).

(a)

(h)

Figure 1.6
(a) Direct and (b) indirect plane isometry.

As an elementary isometric transformation we can take the reflec-
tion, non-identical isometry of space E™ (5™) for which, every point of its
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subspace E™~! (§771) is an invariant point. In patticular, for n = 1 we
have point reflection, for n = 2 line reflection (or simply — reflection), for
n = 3 plane reflection, involutional indirect isometries. According to the
fundamental theorem on minimal or canonic representation of an iscmet-
ric transformation of space E™ (S™), which states that every isometry of
this space can be presented as a composition of maximum n + 1 (plane)
reflections, it is possible to classify the isometries of different spaces.

The classification of isometric transformations and corresponding sym-
metry groups is common for spaces E™, §®, L™ for n < 2, while for 2 > 2
different possibilities of relations of disjoint lines, which are defined by the
axiom of parallelism, condition specific differences. This work exclusively
discusses Euclidean spaces.

In the space E? (plane) we distinguish the following isometric trans-
formations (Figure 1.7):

=

(2)

Figure 1.7

(a) Identity transformation; (b) reflection; (c) rotation; (d) trans-
lation; (e) glide reflection.
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1) identity transformation E, with the minimal reflectional represen-
tation of the length 2 (R? = E);

2) reflection R;

3) rotation S = R R,, the product of two reflections in the refiection
lines crossing in the invariant point (center of rotation). The oriented angle
of rotation is equal to twice the angle between the reflection lines R;, R;

4) translation X = Ry R,, the product of two reflections with parallel
reflection lines, such that the translation vector is perpendicular to them
and equal to twice the oriented distance between the reflection lines Ry, Ry;

5) glide reflection P = R3X = XRs = R;R;R3, the commutative
product of a translation X and a reflection R with the reflection line parallel
to the translation axis.

With respect to the invariant figures, all the points of the plane E?
are invariant points of the identity transformation E, reflection R maintains
the invariance of all the points of the reflection line, rotation S possesses a
single invariant point — the center of rotation, while translation and glide
reflection have no invariant points. A glide reflection possesses a single
invariant line — the axis, and a translation keeps invariant all the lines
parallel to the translation axis.

In the case of rotation, if the relation S = R1R; = Ry Ry holds, i.e. if
the reflection lines Ry, R, are perpendicular, as a result we get the special
involutional rotation — central reflection Z (two-fold rotation, half-turn,
point-reflection) (Figure 1.8).

Figure 1.8
Central reflection Z.
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When orientation is considered we distinguish direct transformations
(or sense preserving transformations): identity transformation E, trans-
lation, rotation, and indirect transformations (sense reversing transforma-
tions): reflection and glide reflection. Since direct transformations are the
product of an even, and the indirect ones of an odd number of reflections,
we can call them respectively even and odd transformations.

If a symmetry transformation S can be represented as a composition
§ = 81...5, such that §5;8; = §;8;, i, = 1,...,n, we can call it a
complez or composite transformation while the transformations Si,..., S5,
we call the dependent transformations or dependent elements of symmetry.
We will use such approach whenever we are interested to learn to what
degree the dependent elements of symmetry influence the characteristics
of the composite transformation, and whether they have lost or preserved
their geometric and visual characteristics during it. For example, a glide
reflection is such commutative composition of translation and reflection,
with reflection line parallel to the translation axis.

An analogous procedure makes possible the classification of isometries
of the space E3, where each isometry can be represented as the composi-
tion of four plane reflections at the most. Besides the transformations of
the space E? afore mentioned with the line reflections substituted by plane
reflections, as the new transformations of the space E® we have two more
transformations. They are a direct isometry — twist (screw), the commuta-
tive composition of a rotation and a translation, the canonic representation
of which consists of four plane reflections and indirect isometry — rotatory
reflection, the commutative composition of a rotation and a plane reflection
in the plane perpendicular to the rotation axis, the canonic representation of
which consists of three plane reflections. In particular, the involutional ro-
tatory reflection, which is the composition of three plane reflections of which
every two commute, is called point inversion Z (or rotatory inversion).

For every element S; of a transformation group G we can define the
conjugate of the element S; by an element S as the product $15,.5, which
we denote by S7. If $;5 € G, then the mapping §; onto S° represents
an automorphism of the group G. If the element S by means of which this
automorphism is being realized belongs to the group G, such an automor-
phism is called an internal automorphism. Any other automorphism of a
group G is-called an ezternal automorphism. An important characteristic of
a conjugate is that the order of the conjugate Sy is equal to the order of the
element 5. If a figure f is invariant under a transformation Sy, then S(f) is



Introduction 23

the figure invariant under transformation §¢. The conjugate of a reflection
R with invariant reflection line p, derived by isometry §, is the reflection
R with the invariant reflection line S(p). Hence we can conclude that the
isometry S; and all its conjugates Si derived by different isometries S con-
stitute one class of equivalence, i.e. the class of isometries having the same
name, which means that (internal) automorphism of a group of isometries
G transforms reflections onto reflections, rotations onto rotations, etc. The
properties of the (internal) automorphisms are frequently used when prov-
ing theorems on isometric transformations and the other symmetry transfor-
mations. For example, by ¢¥, ¢ € G, is defined an internal automorphism
of the symmetry group of square G, given by presentation {S,R} §* =
B SRS =E7T ENS ES BRF=R R =8E TR =
RS, SE =583 (§HE = 5% ($*)F = S. In the same way, it is de-
fined an external automorphism of the rotational group of square H, given
by presentation {§} S*=E: SE=5% (SH)E=29% ($3)F=3,
where the reflection line of reflection R contains the center of four-fold rota-
tion §. Hence, external automorphisms are very efficient tool for extending
symmetry groups.

Since the product of direct transformations is a direct transformation,
and the inverse of a direct transformation is a direct transformation, each
group of transformations G, which contains at least one indirect transforma-
tion has a subgroup of the index 2, denoted by G, which consists of direct
transformations of the group G. For example, the rotational subgroup of
sqare H satisfies this condition regarding the symmetry group of square, so
H = G*,[G: H] = 2. All direct isometries of the space E™ can be identified
as movements of a material object in the space E™, as opposed to indirect
isometries which do not have such a physical interpretation (e.g., a plane
reflection does not represent motion in E3).

For a figure f with the symmetry group Gy, which consists only of
direct symmetries, it is possible to have the enantiomorphism — enan-
tiomorphic modifications of a figure f, i.e. to have the "left” and "right”
form of the figure f (Figure 1.9). The existence of indirect symmetries of a
figure f implies the absence of enantiomorphism.

Since reflections have a role of elementary isometric transformations,
while all other isometries are their finite compositions, of special interest
will be symmetry groups generated by reflections — groups, a set of gen-
erators of which consists exclusively of reflections. Since every reflection
keeps invariant each point of the reflection line, the fundamental region of
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these groups will possess a fixed shape, will not allow variations and will
have rectilinear edges. All symmetry groups will be subgroups of groups
generated by reflections. In the case of conformal symmetry groups, along
with reflections, circle inversions have the analogous function. For example,
the symmetry group of square is the group generated by reflections, with
the fundamental region of the fixed shape (Figure 1.3a).

Figure 1.9

?Left” and “right” rosette with the symmetry group Cy, consisting
of direct symmetries.

The results of composition of plane isometries are different categories
of groups of isometries of the space E?, represented by Bohm symbols as:
Ga10 — symmetry groups of finite friezes, Gyp — symmetry groups of
rosettes, G1 — symmetry groups of friezes and (3 — symmetry groups
of ornaments. Because of the relation G319 C Gag, in this work we will
discuss only the categories Gao, Ga1, G9, while the category Gajo will be
discussed within the category Gag. The definitions of symmetry groups will
be derived directly from Bohm symbols: symmetry groups of rosettes are
groups of isometries of the space E? (plane) with an invariant 0-dimensional
subspace (point), symmetry groups of friezes are groups of isometries of the
space E? with an invariant 1-dimensional subspace (line) and without in-
variant points, while symmetry groups of ornaments are groups of isometries
of the space E? without invariant subspaces (points, lines). The groups of
the category G, are called the space groups, the groups of the category G,;
the line groups, and the groups of the category G, the point groups of the
space E™. With symmetry groups of friezes G3; and symmetry groups of
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ornaments G2, a group contains one or two generating translations respec-
tively, so that each of these groups has a translational subgroup. A lattice
is the orbit of a point with respect to a discrete group of translations. For
the friezes it is a linear series of equidistant points while for ornaments we
get a plane lattice or simply a lattice. Five different symmetry types of
plane lattices bear the name of Bravais lattices; the points of these lattices
ate defined by five different isohedral tessellations, which consist of paral-
lelograms, thombuses, rectangles, squares or regular hexagons. To Bravais
lattices correspond the crystal systems of the same names (Figure 1.10).

Figure 1.10
Five plane Bravais lattices.

Because the symmetry groups of friezes Gz1 are groups of isometries
of the plane E? with an invariant line, they cannot have rotations of an
order greater than 2.

For the symmetry groups of ornaments G so-called crystallographic
restriction holds, according to which symmetry groups of ornaments can
have only rotations of the order n=1,2,3,4,6. The term ”crystallograph-
ic groups” is used for all groups which satisfy this condition, despite the
category they belong to.

In isometry groups all distances between points under the effect of
symmetries remain unchanged and the congruence of homologous figures is
preserved. Consequently, the same holds for all other geometric properties
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of such figures, so that the equiangularity (the congruence of the angles of
homologous figures) and their equiformity (the same form of homologous
figures) are the direct consequences of isometrism.

The next class of symmetry groups we shall consider are the similarity
symmeiry groups. A similarity transformation of the space E™ is a trans-
formation which to each line segment of length AB assigns a line segment
of the length kAB whereby k is a real positive number, the coefficient of
similarity. In particular, if ¥ = 1 then a similarity transformation is an iso-
metry. According to the theorem on the existence of an invariant point of
every similarity transformation which is not an isometry, there are, besides
isometries, three types of similarity symmetry transformations of the space
E2:

(i) central dilatation K (or simply dilatation), a transformation which

—_—
to each vector AB assigns the vector A'B’, such that A’ = K(A4), B’ = K(B)
and A'B' = kAB , where the coefficient of the dilatation is k € ®\{-1,0,1};

(ii) dilative rotation L, the commutative composition of a central di-
latation K and a rotation, with a common invariant point;

(iii) dilative reflection M, the commutative composition of a dilata-
tion K and a reflection in the reflection line containing the invariant point
(center) of the dilatation K (Figure 1.11).

(a) (b) (c)

Figure 1.11

(a) Dilatation; (b) dilative rotation; (c) dilative reflection.
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Those transformations are, in the given order, isomorphic with the
isometries of the space E3: translation, twist and glide reflection. They
make possible the extension of the symmetry groups of rosettes Gyg by the
external automorphism, having as the result similarity symmetry groups Sz
that we will, thanks to the existence of the invariant point, call the similarity
symmetry groups of rosettes.

Dilatations K and dilative rotations L are direct, while dilative re-
flections M are indirect transformations. They all possess the proper-
ties of equiangularity and equiformity. All other aspects of similarity
symmetry groups (the problems of enantiomorphism, fundamental regions,
tessellations,...) will be discussed analogously to the case of isometry gro-
ups.

Further generalization leads to conformal transformations or circle
preserving transformations of the plane E? \ {O}; for them the property of
equiangularity has been preserved, but not that of equiformity. We have,
as the elementary transformation of conformal symmetry in E? \ {0}, the
circle inversion Ry (or simply inversion) — an involutional transformation
isomorphic with a reflection, that gives to each point A in the plane E*\{0}

—_— ——— " =
a point A; so that OAo O4; = r?, where 7 is the radius of the inversion
circle ¢(0,r) and O is the singular point of the plane E? \ {O} (Figure
1.12). Just like a reflection, for which each point of the reflection line is

Figure 1.12
Circle inversion.
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invariant, an inversion maintains invariant each point of the inversion circle.
By discussing a line as a circle with an infinite radius {(and treating as circles,
at the same time and under the same term, circles and lines) it is possible to
identify reflections with circle inversions. In such a case, 21l circle inversions
(including line reflections) and their compasitions, can be discussed as circle
preserving transformations, i.e. transformations mapping circles (including
lines) onto circles.

Besides the circle inversion Rp, by composing it with isometries main-
taining invariant the circle line ¢ of the inversion circle ¢(0,r) — with a re-
flection with reflection line containing the circle center O or with a rotation
with the rotation center O, we have two more conformal transformations:
(i) inversional reflection Zr = RiR = RREj, the involutional transforma-
tion, the commutative composition of a reflection and a circle inversion; (ii)
inversional rotation St = SRr = R[S, the commutative composition of a
rotation and a circle inversion (Figure 1.13).

(a) (b)

Figure 1.13
(2) Inversional reflection; (b) inversional rotation.
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Those three conformal symmetry transformations, besides isometries
and similarity symmetry transformations, constitute the finite and infi-
nite conformal symmetry groups Cy; ,Cy — conformal symmetry groups
of rosettesin E*\ {O}.

As an extension of the symmetry groups of rosettes Gpo we have the
finite conformal symmetry groups Cyy isomorphic with the symmetry groups
of tablets G399. As a further extension of finite conformal symmetry groups
Cs; by the similarity symmetry transformations K, L, M, we get the infi-
nite conformal symmetry groups Cy. The similarity symmetry groups S2¢
and the infinite conformal symmetry groups C» are isomorphic with the line
symmetry groups of the space E® — the symmetry groups of rods Ga;. In
line with the isomorphism mentioned, all similarity symmetry and conformal
symmetry transformations offer a reflectional (canonic) representation by,
at most, four reflections (reflections and circle inversions). By applying this
isomorphism, ornamental motifs which correspond to the similarity sym-
metry and conformal symmetry groups, satisfy one more scope of painting:
adequate interpretation of space objects in the plane. The plane structures
obtained are called generalized projections of the symmetry groups of tablets
G330 and rods Gs;.

1.4. Visual Interpretations of Symmetry Groups

All discrete symmetry groups can be visually modeled by adequate
ornamental motifs (patterns, tilings...) which for centuries have been an
important part of applied art. Besides different symbolic or schematic visu-
al interpretations of symmetry groups (such as Cayley diagrams, tables of
graphic symbols of symmetry elements, where the different symmetry trans-
formations are denoted by graphic symbols: rotations by oriented regular
polygons, reflections by full lines, glide reflections by dotted ones, etc.),
they are an important aspect of "imaginative geometry” (”"anshauliche ge-
ometrie” of D. Hilbert) — geometry of everyday life, and its relations with
art (Figure 1.14).

When trying to translate the meanings of geometric properties of sym-
metry transformations and of symmetry groups into the visual sphere, one
can mote the links between the geometric-algebraic properties of transfor-
mations and the different visual parameters (stationariness, dynamism,. . g s
A survey of geometric characteristics and their visual interpretations, which
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are relevant for such a study, is given in each chapter of this book. Along-
side the elements already mentioned: presentations of symmetry groups,
Cayley diagrams, data on enantiomorphism, also the orientability: polarity,
non-polarity and bipolarity of different lines, invariants of symmetry trans-
formations will be discussed.

=

(a) (b)
Figure 1.14

Graphic notation of the symmetry groups (a) Dy; (b) Cq.

In addition to the orientability of invariant lines — azes, also the ori-
entability of radial rays — half-lines invariant to some dilatation K, of circles
— invariants of rotations, or of equiangular, logarithmic spirals — invari-
ants of corresponding similarity symmetry or conformal symmetry groups
will be discussed. The (curved) line ! is a polar invariant line of the sym-
metry S if the relation S( T) =7 holds, where T is an orientation of the
line I. A line [ is a polar invariant line of the group G if this relation is
satisfied for all the elements of the group G. A (curved) invariant line ! of
the symmetry S is non-polar if the relation S (T) = — [ is satisfied, where
~T denotes the oppositely oriented line 7. A line invariant with respect
to the group G is non-polar if there exists at least one indirect symmetry
S € G which satisfies the condition S(T) =-T7T. A non-polar (curved)
line !, invariant of the symmetry S is bipolar if S is a direct symmetry.
A non-polar (curved) invariant line of the group G is bipolar if the set
Se= {81801 )= ., 8¢ G} contains only direct transformations.

In the visual sense, the term "polarity” can be connected with the dy-
namism of ornamental motifs corresponding to discrete symmetry groups.
For continuous symmetry groups it is immediately linked with the term wvi-
sual presentability. As opposed to the discrete symmetry groups which can
always be visually interpreted by means of ornamental motifs, the contin-
uous symmetry groups will not always offer an adequate visualization. So,
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for example, for the continuous line group of translations, its visualization is
not possible without introducing a supplementary symbol (e.g., the symbol
>, a suitable symbol of such a translation). Not having a previous
agreement or convention about its meaning, it is not possible to give to the
observer an adequate visual interpretation of this symmetry group, compre-
hensible without further explanation. Under the term ”visual presentabili-
ty” we understand the visual modeling of symmetry groups which offers to
observer the complete visual information on the observed symmetry (in the
sense of objective, geometric symmetry), without needing for an additional
explanation. In visual arts, apart from the objective, geometric symme-
try, very important are the effects of ”visual forces” (R. Arnheim, 1965,
1969). They are, for example, the upward tendency of a vertical line, the
visual effect of the "ascending” and ”descending” diagonal, the ”left” and
"right” orientation. These subjective visual factors, having a great influence
on the visual perception of symmetry and representing a subject of study
in the psychology of visual perception, are not discussed under the term
"visual presentability”, which refers only to objective, geometric symmetry
and its visual perception. Although a detailed analysis of the subjective,
visual factors of symmetry is omitted, mainly because of the complexity
of the problems of visual perception, this work offers a potential approach
to such problems. Continuous symmetry groups with continuous non-polar
elements of symmetry allow an immediate visual interpretation, while for
representing groups with polar or bipolar continuous elements of symmetry
we can apply tertures — an equal, average density of the asymmetric fig-
ures arranged along the invariant polar or bipolar line, in accordance with
the given continuous symmetry group (A.V. Shubnikov, N .V. Belov et al.,
1964). So, for example, continuous line group of translations can be inter-
preted by means of textures as the series ,, 5 455 515 993 5 2 In contrast to
physical interpretations of all continuous symmetry groups which can be
obtained by motion or some other physical effect, the domain of the visual
presentability of continuous symmetry groups, if textures are not applied,
is limited by the objective stationariness of ornamental art works to the
continuous groups with non-polar continuous elements of symmetry.

1.5. Construction Methods. Desymmetrizations.

By considering and comparing the development of construction meth-
ods for the derivation of ornamental structures in art and geometry, one can
note a few common approaches. After considering regularities on which the



32 Theory of symmetry and ornament

simplest ornamental motifs (rosettes, friezes) are based, mostly on originals
existing in nature, and after discovering the first elementary constructions,
a way was opened for the creation of ornamental motifs. This was usually
achieved beginning from ”local symmetry” — from the one fundamental re-
gion and regularly arranged neighboring fundamental regions, and resulting
in the ”global symmetry” — complete ornamental filling in of the plane.
Such a procedure represents, in fact, a series of extensions and dimensional
transitions, leading directly or indirectly from the point groups — the sym-
metry groups of rosettes Gy, over the line groups — the symmetry groups
of friezes G3;, to the plane groups — the symmetry groups of ornaments
G;. In such a case, substructures (rosettes, friezes) are called generating
substructures (Figure 1.15). A similar procedure can be traced for the sim-
ilarity symmetry groups S30 and conformal symmetry groups Cs; and Cj,
derived as extensions of isometric point groups — the symmetry groups of
rosettes Gag.

i
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(b)

(a)

Figure 1.15

Derivation of (a) frieze mm; (b) ornament pmm from generating
rosette with the symmetry group Ds,.

However, an almost equal role in the formation of different ornamen-
tal motifs belongs to the reverse desymmetrization procedure, a way which
mainly leads from the mazimal symmetry groups generated by reflections,
characterized by a high degree of visual and constructional simplicity, to
their subgroups. The results obtained are subgroups belonging to the same
category as a group undergoing desymmetrization, or its subgroups with
invariant subspace(s) of lower dimension(s) (e.g., the symmetry groups of
friezes G5, as line subgroups of the symmetry groups of ornaments G).
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At first restricted to the maximal groups of symmetry generated by reflec-
tions, to the regular tessellations or Bravais lattices, the desymmetrization
method in painting becomes in time, firstly thanks to the use of colors, an
efficient procedure for deriving all symmetry groups as subgroups of wider
groups. Under the term ”desymmetrization” of certain symmetry group we
understand this as the procedure beginning with the elimination of cerre-
sponding symmetries and resulting in the derivation of certain subgroup H
of the given group. In line with this, every desymmetrization is defined by
the group G and its subgroup H, i.e. by the group/subgroup symbol G /H.
The reverse procedure, resulting in some supergroup of the given group G,
is called symmetrization (group extension).

Within the desymmetrization method, we can, depending on the
desymmetrization means used, distinguish classical-symmetry (non-colo-
red), antisymmetry and color-symmetry desymmetrizations. Under the
term ”eclassical-symmeiry desymmetrizatior” (non-colored desymmetriza-
tion) we will discuss all desymmetrizations realized, for example, by using an
asymmétric figure belonging to the fundamental region, or by deleting their
boundaries and joining two or more adjacent fundamental regions, etc. The
term "non-colored” used as the alternative for ”classical-symmetry”, should
not be understood literally, since it does not prohibit the use of colors or
some of their equivalents (e.g., indexes), but includes as well, all other cases
where colors have been used for a desymmetrization without resulting in
some antisymmetry or color-symmetry group. In the same sense we will use
the term ” classical theory of symmetry” which denotes the theory of symme-
try without its generalizations — antisymmetry and colored symmetry. The
term ”erternal desymmetrization” will be used to denote a desymmetriza-
tion achieved by varying boundaries of a fundamental region (Figure 1.16b).

Let e; be an antiidentity transformation which satisfies the relations:
e? = E €15 = Sey, where § is any symmetry transformation. The trans-
formation §' = e;.5 is then called an antisymmetry transformation. As the
interpretation of the transformation ey, it is possible to accept the alternat-
ing change of any bivalent quality, geometric or not, which commutes with
symmetries, e.g., the color change black-white, change of electricity charges
+, -, etc. A group which besides symmetry transformations contains an-
tisymmetry transformations is called an antisymmetry group. As the basis
for deriving antisymmetry groups we take some symmetry group G which
we call a generating group of antisymmetry (or simply a generating group).
By replacing the symmetries (generators) of the group G by antisymmetries
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(antigenerators) we obtain, as a result, an antisymmetry group G’ which,
depending upon whether the antiidentity transformation e; is the element
of the group G’ or not, is called a senior (neutral, gray) or a junior (black-
white) antisymmetry group respectively. Every senior antisymmetry group
has the form G' = G X {e;} = G X3, where the group generated by e; is de-
noted by {e1}. All junior groups are isomorphic with their generating group
G. Every junior antisymmetry group is uniquely defined by the generating
group G and by its subgroup A of the index 2. From there originated the
group/subgroup symbols G/H of junior antisymmetry groups, where the
relationship G/H = C; holds (Figure 1.16c). Since all (normal) subgroups
of the index 2 of the generating group G can be obtained knowing junior

(a)

(b) (c)
Figure 1.16

(a) Generating rosette with the symmetry group Dy; (b) its exter-
~ nal desymmetrization D4/Cy; (c) antisymmetry group D, /Cjy.

antisymmetry groups derived from G, antisymmetry is included in the
desymmetrization method. Besides a large field of application in Physics,
various interpretations of the antiidentity transformation as a geometric
transformation which commutes with all the symmetries of the generating
group, make possible the dimensional transition from the symmetry groups
of the n- dimensional space to those of the (n + 1)-dimensional space. For
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example, the symmetry groups of bands G351 can be derived by using anti-
symmetry from the symmetry groups of friezes G531, the symmetry groups of
layers G35 from the symmetry groups of ornaments G5, etc. Corresponding
black-white antisymmetry plane motifs (so-called Weber diagrams or anti-
symmetry mosaics) can be understood as adequate visual interpretations of
the symmetry groups of bands G33; or layers G32, where the transformation
e; — color change black-white is identified with the plane reflection in the
invariant plane of the generating frieze or ornament (Figure 1 .17).

The first antisymmetry ornamental motifs are found in Neolithic or-
namental art with the appearance of two-colored ceramics and for centuries
have represented a suitable means for expressing the dualism, internal dy-
namism, alternation, with a distinct space component — a suggestion of the
relationships ”in front-behind”, ”above-below”, "base-ground”,. ..

N
ey
=

Figure 1.17
Weber diagrams of bands.
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The next generalization of antisymmetry is the polyvalent, colored
symmetry with the number of “colors” N > 3, where each color is de-
noted by the corresponding index 1,2,...,N. A permutaiion of the set
{1,2,...,N} is any one-to-one mapping of this set onto itself. Let Py be
a subgroup of the symmetric permutation group Sy (or simply symmetric
group), i.e. of the group of all the permutations of the set {1,2,...,N},
c € Py and ¢S = S¢, where S is a symmetry transformation, an element of
the symmetry group G. Then S* = ¢§ is called a colored symmetry trans-
formation. A color permutation ¢ can be interpreted as a change of any
polyvalent quality which commutes with symmetries § € G. A colored sym-
metry group is a group which besides symmetry transformations contains
colored symmetry transformations (or colored symmetries). By analogy to
antisymmetry groups, the symmetry group G is called a generating group of
colored symmetry. The colored symmetry group G* derived from G is called
a junior colored symmeiry group iff it is isomorphic with &. In this work
only junior colored symmetry groups are discussed. Every junior colored
symmetry group can be defined by the ordered pair (G, H) which consists
of the group G and its subgroup H of the index N,ie. [G: H]=N. Two
groups of colored symmetry (G, H) and (G’, H') are equal if there exists an
isomorphism #(G) = G’ which maps H onto H' (R.L.E. Schwarzenberger,
1984). For N = 2 and Py = C5, (G, H) is an antisymmetry group. A color
permutation group Py is called regular if it does not contain any trans-
formation, distinct from the identity permutation, which keeps invariant an
element of the set {1,2,..., N}. If it contains such a transformation, a color
permutation group is called irregular. Depending upon whether the color
permutation group Py is regular or not, we can distinguish two cases. For a
regular group Py every colored symmetry group is uniquely defined by the
generating group G and its normal subgroup H of index N — the symmetry
subgroup of G*. This results in the group/subgroup symbols of the colored
symmetry groups G/H, and [G : H] = N (Figure 1.18a). For the irregular
group Py, besides G and H we must consider alsc the subgroup H; of the
group G, which maintains each individual index (color) unchanged (i.e.
group of stationariness of colors). In this case H is not a normal subgroup
of G. The order of the group Py is NNy, where [G: H]|=N,[H: H;]= N,
and quotient group G/H; = Py. To denote such colored symmetry groups,
the symbols G/H/H, are used (Figure 1.18b).
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Figure 1.18
(a) Colored symmetry group C4/C;y; (b) Dy/D3/Cy.

By interpreting "colors” as physical polyvalent properties commuting
with every transformation of the generating symmetry group, it is possi-
ble to extend considerably the domain of the application of colored orna-
ments treated as a way of modeling symmetry structures — subjects of
natural science (Crystallography, Physics, Chemistry, Biology...). As an
clement of creative artistic work, although being in use for centuries, col-
ored symmetry can be, taking into consideration the abundance of unused
possibilities, a very inspiring region. We find proof of this in the works
of M.C. Escher (M.C. Escher, 1971a, b). On the other hand, the vari-
ous applications of colors in ornaments, e.g., ornamental motifs based on
the use of colors in a given ratio, by which harmony — balance of colors
of different intensities — is achieved, have yet to find their mathemati-
cal interpretation. Accepting "color” as a geometric property, and colored
transformations as geometric transformations which commute with the sym-
metries of the generating group, has opened up a large unexplored field for
the theory of colored symmetry. This was made clear in the recent works
discussing multi-dimensional symmetry groups, curvilinear symmetries, etc.
(A.M. Zamorzaev, Yu.S. Karpova, A.P. Lungu, A.F. Palistrant, 1986).

The results of the theory of antisymmetry and colored symmetry can
be used also for obtaining the minimal indezes of subgroups in the symmetry
groups. As opposed to the finite groups, where for the index of the given
subgroup there is exactly one possibility, in an infinite group the same sub-
group may have different indexes. For example, considering a frieze with
the symmetry group 11, generated by a translation X, and its colorings by
N = 2,3.4,... colors, where the group of color permutations is the cyclic
group Cx of the order NV, generated by the permutation ¢ = (123 - V),
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the result of every such a color-symmetry desymmetrization is the symme-
try group 11, i.e. the colored symmetry group 11/11. Therefore, we can
conclude that the index of the subgroup 11 in the group 11 is any natural
number' N and that its minimal index is two. The results of computing the
(minimal) indexes of subgroups in groups of symmetry, where the subgroups
belong to the same category of symmetry groups as the groups discussed,
based on the works of H.S.M. Coxeter and W.0.J. Moser (H.S.M. Cox-
eter, W.0.J. Moser 1980; H.S.M. Coxeter 1985, 1987) are completed with
the results obtained by using antisymmetry and colored symmetry. They
are given in the corresponding tables of (minimal) indexes of subgroups
in the symmetry groups. Besides giving the evidence of all subgroups of
the symmetry groups, these tables can serve as a basis for applying the
desymmetrization method, because the (minimal) index is the (minimal)
number of colors necessary to achieve the corresponding antisymmetry and
color-symmetry desymmetrization. For denoting subgroups which are not
normal, italic indexes are used (e.g., 3).

It is not necessary to set apart antisymmetry from colored symmetry,
since antisymmetry is only the simplest case of colored symmetry (N = 2),
but their independent analysis has its historical and methodical justifica-
tion, because bivalence is the fundamental property of many natural and
physical phenomena (electricity charges +, -, magnetism S, N, etc.) and of
human thought (bivalent Aristotelian logic). In ornamental art, examples
of antisymmetry are mainly consistent in the sense of symmetry, while con-
sistent use of colored symmetry is very rare, especially for greater values of

N

1.6. Symbols of Symmetry Groups

When denoting symmetry groups and their generalizations, antisym-
metry and colored symmetry groups, we always come across the unpleasant
task of trying, at least to some extent, to reconcile and bring to accord the
different sources and symbols used in literature. Most of symbols come from
the work of crystallographers, some from the mathematicians who were en-
gaged in studies of the theory of symmetry, while some chapters (e.g., that
on conformal symmetry) demand the introduction of new symbols. Since
only lately there have been attempts to make uniform the symbols of symme-
try groups, positive results are mainly achieved with the symmetry groups
of ornaments G (International symbols). In the other cases, a great number
of authors, with their original results introduced together new or modified
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symbols. Therefore, it is unavoidable to accept the compromise solution
and quote several alternative kinds of symbols. Also, this offers possibilities
for the application of optimal symbols in each particular case, since for the
different practical needs of the theory of symmetry, every kind of symbols
has its advantages, but also, disadvantages.

For denoting the symmetry groups of friezes and ornaments, the sim-
plified version of the International symbols (M. Senechal, 1975; H.S.M. Cox-
eter, W.0.J. Moser, 1980) will be used, while in other cases the non-
coordinate symbols, used by Soviet authors (A.V. Shubnikov, V.A. Koptsik,
1974) will be indicated also. The symbols of antisymmetry and colored sym-
metry groups will be given in the group/subgroup notation (G/H,G/H/H;)
(A.V. Shubnikov, V.A. Koptsik, 1974; A.M. Zamorzaev, 1976; H.S.M. Cox-
eter, 1985, 1987; V.A. Koptsik, J.N. Kotzev, 1974).

The International symbols are coordinate symbols of symmetry gro-
ups. For the symmetry groups of friezes and ornaments, the first coordinate .
denotes the translational subgroup p (c with the rhombic lattice) while the
other coordinates are symbols of glide reflections g and reflections m per-
pendicular to the corresponding coordinate axis and symbols of the rotation
axis n collinear with the corresponding coordinate axis.

The non-coordinate symbols of symmetry groups are mainly used in
the works of Soviet authors, in which (a) denotes a translation, (&) a glide
reflection, n the order of a rotation, the absence of symbols between elements
— collinearity (incidence) of relevant elements of symmetry (denoted in the
original works by the symbol e), while the symbol : denotes perpendicularity
of relevant symmetry elements. For example, the symmetry groups Dy and
C, will be denoted, respectively, by 4 and 4m.

Given at the beginning of each chapter is a survey of the geometric-
algebraic characteristics of the groups of symmetry discussed: presentation,
group order, group structure, reducibility, form of the fundamental region,
enantiomorphism, polarity (non-polarity, bipolarity), group-subgroup rela-
tions, table of minimal indexes of subgroups in groups, Cayley diagrams.
Further on are discussed the antisymmetry and color-symmetry desym-
metrizations, construction methods, questions related to continuous groups
and to different problems of algebraic-geometric properties of symmetry
groups, which directly influence the different visual parameters.
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1.7. Geometric-Visual Analysis of Symmetry Groups

As an illustration of the methodological approach used in this work, we
will give the example of one symmetry group and its complete comparative
analysis from the point of view of the theory of symmetry and ornamental
art.

Let the discrete group of isometric transformations of the plane E?,
generated by a glide reflection P and a zeflection Ry, be given by the pre-
sentation:

{BP,R;} R}={(R1P)’=E.

The first defining relation R? = E shows that the reflection R; is an invo-
lution, i.e. that By = R1 while from the other relation follows:

(RyPY2 = E= R\PR; = P~' = R7'PR, = P~' = PR = p-1

The glide reflection P is & transformat on without invariant points, with
an invariant line~ the axis | of the glide reflection. The cenjugate of th
transformation P d,enved by reflection B; is also a glide reflection with th
invariant line Ry{ i ). Since the axis of the glide reflection P~* is the lin

'}

@

rD

(0

—?, irom the previous relations we conclude that 2y —’A = = i onse-
quently, it follows that the reflection line of the refls u:xon Rl is perp eruuuvllar
to the axis of the glide reflection P, and that its axis T is non-polar (since
there exists an indirect transformation, the reflection E;, which transforms
it onto the oppositely oriented line -—?)

The group discussed possesses an invariant space E? — the plane, an
invariant subspace E' — a line, and has no invariant points. Therefore it
belongs to the category of symmetry groups of friezes Go; — the line groups
of the plane E* (§?%) without invariant points. Distinguishing between the
spaces E%, §?, L? is not necessary because we are dealing with the line
groups. Because this group is generated by a glide refiection P perpendicular
to the reflection R,, its crystallographic symbol will be pmg, or in short
form mg (M. Senechal, 1975). Within the crystallographic symbe! pmg,
p denotes the presence of a translation X = P?, ie. the translational
subgroup 11={X}; the symbol m denotes a reflection R, perpendicular to
this translation, and the symbol g denotes the glide reflection P. In the
short symbol mg, the translation symbol p is omitted.

Since the set P, R; is a generator set of the group mg, after conclud-
ing that the reflection line of R; is perpendicular to the axis of the glide
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reflection P, we can construct an appropriate ornamental motif, the visual
model of the frieze symmetry group mg. This is achieved by applying the
transformations P and Ry to the chosen asymmetric figure, which belongs
to a fundamental region of the symmetry group mg (Figure 1.19).

Figure 1.19

Representing the glide reflection P as the commutative composition
X1Rs = R3X; of a translation X; = R1R; (composition of reflections R;,
R, with parallel reflection lines) and a reflection R with the reflection line
parallel to the axis of the translation X;, we come to the conclusion that
the product RyP = RiRiRyR3 = RyRj is the commutative composition
of perpendicular reflections Ry, Rs, i.e. a half-turn T. The conjugates of
reflection R, and half-turn T, derived by the powers of the glide reflection P,

Figure 1.20

define respectively the set of reflections with equidistant reflection lines par-
allel to the reflection line of Ry, and the set of rotations of the order 2,
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where the dlsta.nce between the nelghbormg reflection lines (rotation cen-
ters) is | X |. So that, we come to the diagrammatic interpretation of the
group mg — a table of graphic symbols of symmetry elements, where the
axis of the glide reflection is indicated by the dotted line and by the vector
of translation, reflection lines by solid lines, and centers of rotations of the
order 2 by the symbol § (Figure 1.20).

Using the substitution 7" = R; P we come to an algebraic equivalent
of the previous presentation of the group mg — a new presentation of the
same group:

{R,, T} R:=T2=E.

Besides indicating another way to construct the frieze with symmetry group
mg, this presentation directly shows that the group mg has structure D,
Namely, group D,, has the presentation:

{51,5) SF=5 = (SHi5)" =

If 5,8, is an element of infinite order, we obtain the group D, having the
following presentation:

{S],SQ} 512 = 522 =F

which is isomorphic with the group mg.

Instead of the asymmetric figure, which under the action of the group
mg gives the frieze pattern, by considering the orbit of the closure of a fun-
damental region of the group mg we obtain the corresponding frieze tiling.
The fundamental region of the group mg and all other frieze symmetry
groups, is unbounded and allows the variation of all boundaries which do
not belong to reflection lines. Figure 1.21 shows two of these possibilities.

The Cayley diagram of the group mg is derived as the orbit of a
point in general position with respect to the group mg. Instead of a direct
mutual linking of all vertexes (i.e. orbit points) and obtaining the complete
graph, we can, aiming for simplification, link only the homologous points of
the group generators. By denoting with the broken oriented line the glide
reflection P, and with the dotted non-oriented line the reflection Ry, we get
the Cayley diagram which corresponds to the first presentation of the group
mg (Figure 1.22a).
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NN
PR

Figure 1.21

By an analogous procedure we come to the graph which corresponds
to its second presentation with the generator set { Ry, 7T}, where a half-turn
is indicated with the dot-dash line (Figure 1.22b).

Let us note also, that the defining relations can be read off directly
from the graph of the group. Each cycle, i.e. closed path in which the
beginning point coincides with the endpoint, corresponds to a relation be-
tween the elements of the group and vice versa. Cayley diagrams (graphs
of the groups) may also very efficiently serve to determine the subgroups of
the given symmetry group. Namely, every connected subgraph of the given
graph satisfying the following condition determines a certain subgroup of
the group discussed, and vice versa. The condition in question is: an ele-
ment (transformation) is included in the subgraph either wherever it occurs,
or not at all (i.e. it is deleted). Of course, to be able to determine all the
subgroups of a given group, it is necessary to use its complete graph as the
basis for defining the subgraphs.
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Figure 1.22

Since in the group mg there are indirect isometries, this group does
not give enantiomorphic modifications. For the groups consisting only of
direct symmetries, the enantiomorphic modifications can be obtained by
applying the ”left”(e.g., b) and "right” (d) form of an elementary asymmet-
ric figure. For example, for the group 11, generated by a translation X, this
results in the enantiomorphic friezes: bbbbbbbbbbbbbbbbbbbbbbbbbbbbb
and dddddddddddddddddddddddddddddd. The translation axis [ of the
group mg is non-polar, because there exi_s;cs an ixﬂirect transformation, the
reflection R; for which the relation R;( ! ) = — ! holds. Rotations of the
order 2 in the group mg are polar because each circle ¢ drawn around the
center of rotation of the order 2 is invariant only with respect to this rotation
and to the identity transformation F, so that the group C; (2) (generated
by the half-turn T') of transformations preserving the circle ¢ invariant, a
rosette subgroup C; (2) of the group mg, consists of direct transformations.
Besides the rosette subgroups C; (2), the group mg has also the rosette
subgroups D; (m), namely the one generated by the reflection Ry, or by its
conjugates.
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The group mg contains as subgroups the following symmetry groups
of friezes: pl (11) generated by the tramslation X = P?, plg (1g) gen-
erated by the glide reflection P, pm1 (ml) generated by the translation
X and the reflection R;, and itself. Besides the list of all frieze groups,
subgroups of the group mg, the table of the minimal indexes of subgroups
of the given group points out the possible desymmetrizations which lead to
this subgroup. In particular, considering the use of antisymmetry and color-
symmetry desymmetrizations, from this table we can see that antisymme-
try desymmetrizations of group mg result in the subgroups of the index 2:
1g, 12 and mi. This can be achieved by a black-white coloring (or, e.g.,
1-2 indexing) according to the laws of antisymmetry, using the following
systems of (anti)generators: {P, e;R1} or {e1Ry,e1 T} for obtaining the an-
tisymmetry desymmetrization mg/1g; {e1 P, R:} or { Ry, e1T'} for obtaining
the antisymmetry desymmetrization mg/m1; {e; P,e; R} or {e1 By, T} for
obtaining the antisymmetry desymmetrization mg/12, where e; = (12}, i.e.
the group of color permutations Py = P, = C; (Figure 1.23).
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Figure 1.23
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The junior antisymmetry groups obtained can be understood also as
adequate visual interpretations of the symmetry groups of bands G33; — as
the Weber diagrams of the symmetry groups of bands p2;11, pm11 and
p112 respectively. In this case the alternation of colors white-black is un-
derstood in the sense "above-under” the invariant plane of the frieze, i.e. as
the identification of the antiidentity transformation e; with the plane reflec-
tion in the invariant plane of the group mg. The seven generating symmetry
groups of friezes (333, seven senior antisymmetry groups and seventeen junior
antisymmetry groups correspond to the 31 groups of symmetry of bands,
offering complete information on their presentations and structures.

Using N = 4 colors and the system of colored generators {c¢; P,c2 R; }
or {c;Ry,c1c;T}, we get the color-symmetry desymmetrization mg/11,
where ¢; = (12)(34) and ¢; = (13)(24); hence, the group of color per-
mutations is Py = Py = Cy X Cy = D, (Figure 1.24).

g //
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Figure 1.24

In all the antisymmetry and color-symmetry desymmetrizations men-
tioned, for which the group Py is regular, the subgroup H derived by the
desymmetrization is a normal subgroup of the group mg (1g, m1, 12, 12).
Because of this, complete information on the antisymmetry or colored sym-
metry group, i.e. on the corresponding desymmetrization, is given by the
number N and by the group/subgroup symbol G/H. The next case of col-
oring with N = 3 colors, the irregular group Py and the subgroup H which
is not a normal subgroup of the group G, demands the symbols G/H/H;.
In this case, besides the number N, the group of colored symmetry G~, i.e.
the corresponding color-symmetry desymmetrization is uniquely defined by
the generating group G, the stationary subgroup H of G*, which maintains
every individual index (color) unchanged and its symmetry subgroup H;
which is the final result of the color-symmetry desymmetrization. The in-
dex of the subgroup H in the group G is equal to N and the product of the
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index of the subgroup H;j in group H and the number N is equal to the or-
der of the group of color permutations Py, ie. [G: H]= N, [H : H;] = Ny,
and the order of the group Py is N N;.

As an example of the irregular case we can use the color-symmetry
desymmetrization of the group mg obtained by N = 3 colors, i.e. by the
system of colored generators: {c;P,csR1} or {caR1,c1c2T}, which results
in the color-symmetry desymmetrization mg/mg/1g, where ¢; = (123),
ca = (23), Px = P3 = D3 and [mg:mg]=3, [mg:1g]=2. This color-
symmetry desymmetrization mg/mg/1g, N = 3 is shown on Figure 1.25a,
while the stationary subgroup H (mg) which maintains each individual in-
dex (color) unchanged is singled out on Figure 1.25b. All cases of subgroups
which are not normal subgroups of the given group are denoted in the ta-
bles of (minimal) indexes of subgroups in groups by italic indexes {e.g.,
[mg:mg|=3). ;
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Figure 1.25

In terms of construction, for frieze group mg we can also distinguish
the rosettal method of construction — the multiplication of a rosette with
the symmetry group C; (2) (generated by the half-turn T') or Dy (m) (gen-
erated by the reflection R;) by the glide reflection P (Figure 1.26a, b). Like
all other symmetry groups of friezes, the group mg is the subgroup of the
maximal symmetry group of friezes mm generated by reflections. Since it is
the normal subgroup of the index 2, the antisymmetry desymmetrization of
the generating group mm with a set of generators {X, R, Ry} or {R, R1, R, }
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where X is the translation, K the reflection in tramslaticn axis line, and R;,
R, reflections with reflection lines perpendicular to the translation axis, can
be used.
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Figure 1.26

By means of the system of (anti)generators: {e;X,e1R, Ry} = {e1 X,
e1R,e1R1} or {e1R, Ry,e1 Ry} the antisymmetry desymmetrization mm/
mg is obtained (Figure 1.27), where e; = (12), Py = B> = Cy, [mm :
mgli=.2.

Many visual properties of the group mg, e.g., a relative constructional
and visual simplicity of corresponding friezes conditioned by a high degree of
symmetry, specific balance of the stationariness conditioned by the presence
of reflections, by the non-polarity of the glide reflection axis, by the absence
of enantiomorphism, and the dynamism conditioned by the presence of glide
reflection and by polar, oriented rotations, are the direct consequences of
the algebraic-geometric characteristics mentioned. Also, the different pos-
sibilities that the group mg offers, e.g., the possibilities for antisymmetry
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and color-symmetry desymmetrizations, the ways of varying the form of the
fundamental region, construction possibilities etc., become evident after the
analysis of this symmetry group of friezes from the point of view of the
theory of symmetry.

Figure 1.27

Even such a concise illustration of the connections between the the-
ory of symmetry and ornamental art raises the question of the place that
ornamental art has today, from the point of view of both the artist and
the scientist. When analyzing works of art, the approach to ornamental art
from the standpoint of the theory of symmetry offers the possibility for seri-
ous analysis, a more profound study of the complete historical development
of ornamental art, the regularity and laws on which the constructions of
ornaments are founded, and an efficient classification method of a large do-
main (isometric, non-isometric, antisymmetry, color-symmetry ornamental
motifs). It opens for the artist a new field of exploration — a more exact
planning of visual effects, based on the knowledge of the theory of symmetry
and the psychology of visual perception. An example of successful creativi-
ty, artistic imagination and knowledge of exact geometric rules, is given by
the work of M.C.Escher, which points to the future of ornamental art as a
specific synthesis of science and art. On the other hand, to the scientists of
different disciplines, the theory of symmetry offers various possibilities — to
archaeologists an efficient and reliable method of classification and compar-
ative analysis; to theorists of art the basis for working out exact aesthetic
criteria; to crystallographers, physicists and chemists an obvious model of
symmetry structures. Last, but not least, to mathematicians ornamental
art, as the treasury of the implicit mathematical knowledge of humankind,
represents an inspiring field, rich with questions seeking an answer.



Chapt’ér 2

THEORY OF ISOMETRIC SYMMETRY GROUPS
IN E* AND ORNAMENTAL ART

The isometric symmetry groups in the plane E? can be classified ac-
cording to the spaces invariant with respect to the action of transformations
of the groups in question. Bohm symbols have been used to denote the cor-
responding categories of symmetry groups (J. Bohm, K. Dornberger-Schiff,
1966). In the symbol G, .., the first subscript n represents the maximal
dimension of space in which the transformations of the symmetry group
act, while the following subscripts st... represent the maximal dimensions
of subspaces that are invariant with respect to the action of transforma-
tions of the symmetry group and that are properly included in each other.
These symbols represent also the definitions of the corresponding categories
of isometric symmetry groups in E?: the symmetry groups of finite friezes
(G310, TOsettes Gog, friezes G391, and ornaments Gy. In line with the relation
G210 C G20, and to simplify things, the category G0 will not be discussed
individually but within the category Gap.

Antisymmetry and colored symmetry, the extensions of the theory of
symmetry, will be used only for a more detailed analysis of the symmetry
groups in E2.

2.1. Symmetry Groups of Rosettes Gy

In $% and in E? the 0-dimensional, point discrete symmetry groups of
rosettes Gy are the cyclic group C, (n) and the dikedral groups D, (nm).
Also visually presentable is the continuous symmetry group of rosettes D,
(com). Here, and in the sequel, we shall indicate the symbol of each symme-
try group first according to G.E. Martin (1982), followed (in parentheses)
by Shubnikov’s notation (A.V. Shubnikov, V.A. Koptsik, 1974). By C,
(n), D, (nm), Cx (0), Dy (com) are denoted the symmetry groups of
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rosettes Go, distinct from the abstract groups, denoted by Cy, Dn, Ceo,
D, and given by the presentations:

Cn {51} ST=EFE

D, {81,855} 8t =52= (5152 *=FE
Co {51} '

Do 555 54 =5=8

All the symmetry groups C,, (n) or D, (nm), obtained for different
values of n (n € N) are called the symmetry groups of the type C, (n) or
D, (nm).

Cr. (mn)

Presentation: {S} S*"=F

Order: n (n € N)

Structure: C,

Reducibility: If n = km, with (k,m) = 1, then C,, = Ci X Cp; if
n = p, with p — a prime number, then C,, is irreducible.

Form of the fundamental region: unbounded, allows variation of the
shape of its boundaries.

Enantiomorphism: enantiomorphic modifications exist.
Polarity of rotations: rotations are polar.

D, (nm)

Presentations: {S,R} S*"=R*=(SR)*=E
{R,Bh} R*=R:=(BRRi)\*=FE (R;=RS)

Order: 2n (n € N)

Structure: D,

Reducibility: If n = 4m + 2, then D, = Cy % D2m+1 = {52m+1} %
{S%, R} = {Z} x {S?, R}; in other cases D, is irreducible.

Form of the fundamental region: unbounded, of a fixed shape, with
rectilinear boundaries.

Enantiomorphism: there are no enantiomorphic modifications.
Polarity of rotations: rotations are non-polar.

D, (ocom)

Enantiomorphism: there are no enantiomorphic modifications.

Polarity of rotations: rotations are non-polar.
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Group-subgroup relations: [D,:C,]=2 [B.:Dnrl= k (in particular
D, D; =m) [Crm:Cr]= k (in particular [C;,,:Cy]= m)
he above survey of characteristics of the groups C,, (1) and Dn (nm)
is based on I. Grossman, W. Magnus (1964}, W. “.fiagm_b,A Karras, S. Soli-
tar (1966), L.C. Biedenharn, W. Brouver, W.T. Sharp (1568), A.V. Shub-
nikov, V.A. Koptsik (1974), HSM. Coxeter, W.0.J. Moser {1980).

Cayley diagrams (Figure 2.1):
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2.2. Rosettes and Ornamental Art

The continuous symmetry group Do, (com), the symmetry group of
a circle, has a relative priority in ornamental art, both in the frequency of
occurrence and in chronology. Among the earliest art forms (such as bone
engravings, stone carvings and drawings from the late period of the Pale-
olithic, the Magdalenian, 12000-10000 B.C.), it is possible to find examples
of the oldest rosettes. Among them, the most important is the circle — a
rosette with maximal symmetry.

If we accept the idea that a man, in his early childhood, is repeating
the phases of the development of humans, then the first drawings of a child
from the ”scribbling” phase, which often show a distinct circular structure,
suggest-the primariness of the circle as a geometric and visual form. In his
discussion of the appearance of circles and circular forms in the drawings
of children, Rudolph Arnheim said that a child discovered the shape of a
circle lead by ”the tendency toward a simple form in the visual and motor
behavior”, and not by imitating round objects. Having maximal symmetry,
the circle satisfies the ”principle of uniformity”, which is in the basis of the
entire activity of nature, and according to which ”"asymmetry is reduced in
isolated systems”.

This principle can be applied also to the visual field as the principle of
visual entropy — maximal symmetry, visual and constructional simplicity.
By the principle of visual entropy we understand an affirmation of the uni-
versal natural principle of economy. In the visual arts it will be expressed
through domination of ”well-behaved forms” (R. Arnheim, 1965). In orna-
mental art, the afore mentioned ”"good behavior” mostly corresponds to the
notion of symmetry. Thanks to their uniform structure, such forms offer a
possibility for their visual perception as integral entities (”gestalts”). In the
process of visual thinking they ask for a minimum of effort, thus satisfying
the principle of economy, i.e. the principle of maximal visual simplicity. Al-
though ornamental art does not make use of exact geometric constructions,
it uses its own artistic construction methods — the artistic laws of compo-
sition. The process of the artistic ”construction” of an ornament consists
of the creative anticipation of what it will look like, by choosing an elemen-
tary asymmetric figure and rules for its regular multiplication. Having in
mind the complexity of the process of creating ornamental motifs, in the
early phases of ornamental art the motifs satisfying the principle of maxi-
mal constructional simplicity, based on the simplest geometric regularities,
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were used first. Forms with maximal symmetry often satisfy the principles
of maximal visual and constructional simplicity as well. This is the rea-
son the principle of visual entropy combines three notions: the principles
of maximal visual simplicity, maximal constructional simplicity and maxi-
mal symmetry. According to their connections, mutual dependence and the
inseparability of these notions, figures satisfying one of these requirements
usually satisfy the rest as well.

Owing to the completeness, compactness, boundness and uniformity
of its structural segments, the circle in its primary sense does not only des-
ignate "roundness” but offers a possibility to designate any other abstract
form — a unit. Associated to different possible meanings, the circle be-
comes the symbol of the Sun, completeness and perfection, and remains
that throughout history (Figure 2.2).

Figure 2.2

Variations of the Sun symbol (Paleolithic, Neolithic and Bronze
. Age).

In ornamental art, the circle a leading element, either as indepen-
dent or in combination with concentric circles, or as the basis upon which
some concentric rosette of a lower degree of symmetry can be added. In
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such a desymmetrization, the newly formed rosette — the result of the su-
perposition — possesses the symmetry of the rosette that has caused the
desymmetrization. In this process, the circle plays the role of the neutral
element.

Among the symmetry groups of the type D, (nm), the group D; (m)
is most frequent in ornamental art. Usually, it is presented by a vertical
or horizontal line segment, to which in the geometric sense corresponds
symmetry group D, (2m), and in the visual sense group D; (m). Discussing
a vertical line segment, S. Langfeld (R. Arnheim, 1965, pp. 20) says: "If
one is asked to bisect a perpendicular line without measuring it, one almost
invariably places the mark too high. If a line is actually bisected, it is
with difficulty that one can convince itself that the upper half is not longer
then the lower half.”. Therefore, from the visual point of view, a vertical
or horizontal line segment possesses the symmetry group D; (m). The
primariness of these two directions is governed by their meaning in the

Figure 2.3

The rosette with symmetry D, (m) (Paleolithic, El Pendo, Spain).
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physical world. The symbolic meanings of a vertical line are: a man walking
upright, growth, upright trees, firmness, activity, while the meanings of a
horizontal line are: earth, matter, passiveness, rest, sleep, death,... Most
of them result from the physiological organization of man, its perpendicular
attitude toward the base and its plane symmetry. This is the reason, in
drawings, reflections are usually vertical, and very seldom horizontal (Figure
2.3-2.8).

Figure 2.4

Formation of rosettes with the symmetry group D, (2m) by a
superposition of rosettes with the symmetry group D; (m) (Pale-
olithic, France).

srad M

Figure 2.5

Examples of rosettes with the symmetry group D; (m) (Paleolithic,
France and Spain).
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Figure 2.6

Stylized human faces with the symmetry D; (m) (Paleolithic and
Neolithic of Europe).

R 8 Y s

Figure 2.7

Stylized human figures with the symmetry D; (m) (Paleolithic and
. Neolithic of Italy and Spain).

Figure 2.8

Stylized vehicle motifs with the symmetry D; (m).



Theory of isometric symmetry groups

59

Y NS LS S W

(e)

Figure 2.9

Examples of the symmetry group D, (m): (a) the two-headed
winged lion (Tell Hallaf, about 5000 B.C.); (b) formation of motifs
with the symmetry D; (m) (cave paintings, La Pileta, Spain); (c)
art of the pre-dynastic period of Egypt; (d) motif from the Ionian
amphora; (e) two-headed Mayans snake; ({) primitive art of the
American Indians.
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~ Rosettes with the symmetry group D1 (m) have a dominant position
in ornamental art. In the visual sense, the best illustrations of the impor-
tance of mirror symmetry are different forms of two-headed mythological
animals: the two-headed snake of the Maya Indians, Amphisbaena, the
two-headed eagle or other motifs found in heraldry, or rosettes with motifs
showing only one head and a "development” of the body (Figure 2.9, 2.24c).

Very frequent is the substitution of a reflection by a visually suggested
2-rotation axis belonging to the plane of drawing (e.g. H. Weyl, 1952, pp. 9,
Nermer’s Palette). For the symmetry of rosettes in E? such motifs are asym-
metrical. In the case of a presentation of two identical figures arranged ac-
cording to the symmetry group Dy (m), they are in the same vertical plane,
at the same distance from the observer, giving the impression of balance and
stationariness, without suggesting a space component. A visual suggestion
of the 2-rotation axis in the plane of drawing implies the relation ”in front-
behind”, so there is another element of painting — space (Figure 2.10). This
phenomenon is especially present in interlaced rosettes and similar layered
ornamental motifs (B. Grinbaum, G.C. Shephard, 1983; B. Griinbaum,
Z. Griinbaum, G.C. Shephard, 1986; B. Griinbaum, G.C. Shephard, 1987).

@
%3

Figure 2.10

- The example of the substitution of the reflection m by a suggestion
of the 2-rotation axis in the plane of the figure (Egypt).

By combining a vertical and horizontal line we get the sign of the
cross, which possesses another fundamental characteristic — perpendicu-
larity. Depending upon its construction, this symbol has three different
symmetry aspects: D; (m), D, (2m) and Dy (4m) (Figure 2.11).
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Figure 2.11

The cross motif — rosettal symbol with the symmetry group D;
(m), Dy (2m) or D (4m).

Rosettes with the symmetry groups D, (2m) (Figure 2.13), D3 (3m)
(the equilateral triangle), Dy (4m) (the square) (Figure 2.12, 2.13), Ds
(6m) (the regular hexagon) etc., based on the symmetry of regular polygons,
are very frequent. In the later periods of ornamental art they occur mostly
with plant or geometric ornamental motifs.

Figure 2.12

The rosette with the symmetry group Dy (4m) occurring in Pale-
olithic art.
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Figure 2.13

The rosettes with the symmetry groups D, (2m), Dy (4m) (Pale-
olithic, Maz d’azil).

Although the principle of crystallographic restriction (n=1,2,3,4,6) is
not respected in ornamental art, rosettes with the symmetry groups 1(m),
2(m), 3(m), 4(m), 6(m) prevail over rosettes with the symmetry group
5(m), 7(m), 9(m), etc., probably because of a simpler construction of the
corresponding regular polygons. For practical reasons, rosettes with rota-
tions of a higher order occur very seldom (Figure 2.14-2.20).

Figure 2.14

The rosette with the symmetry group C, (2) (Paleolithic, Mag-
dalenian, around 10000 B.C., Laugerie Basse, France).
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s .‘,‘. 5 Figure 2.15
a,0r t eE - o The spiral rosette with the symmetry
TN e :." group C, (2) (Paleolithic, Magdalenian,
e *r @ toe e around 10000 B.C., Mal’ta, USSR).

e

Figure 2.16

Examples of rosettes of the type C, (n) and D, (nm) in the Ne-
olithic ceramics of Middle Asia: (a) C4 (4); (b) Ce (8); (c) Cs (5);
(d) Dy (4m); (e) Cs (4); (f) Ds (4m); (g) Cs (4) ((2)(d), (8)
Samara; (e), (f) Susa; around 5500-5000 B.C.).
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Figure 2.17

Examples of rosettes of the type C, (n) and D, (nm) in the Ne-
olithic ceramics of Middle Asia (Susa, Hacilar, Catal Hiijik, Hallaf,
Eridu culture), around 6000-4500 B.C. (7500-5000 B.C.7).

(a) (b)

Figure 2.18

Rosettes with the symmetry group C, (2) and Dy (4m): (a)
Hacilar, about 6000 B.C.; (b) Aznabegovo-Vrshnik, Yugoslavia,
around 5000 B.C.
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Figure 2.19

Examples of rosettes of the type C, (n) and D, (nm) in European
ancient art: (a) Cy (4), Neolithic, Rumania; (b) Cs (4), Knossos,
Crete, around 2500 B.C.; (c) Cyo (10), Mycenae; (d) C4 (4), Crete;
(e) D3 (83m), Mycenae.

In deriving rosettes with the symmetry group C, (n) from rosettes
with the symmetry group D, (nm), the desymmetrization method can be
used. The relationship [D,:C,]= 2 holds. Even from the Neolithic, for ob-
taining rosettes with the symmetry group C, (n), the antisymmetry group
D, /C, has been used (Figure 2.21, 2.27).
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(b)

Figure 2.20

The rosettes of the type C, (n) and D, (nm) in the art of Egypt:
(a) pre-dynastic; (b) dynastic period.

Figure 2.21

Examples of antisymmetry rosettes with the antisymmetry group
Dy /Cs, that in the classical theory of symmetry are treated as
rosettes with the symmetry group C; (8) (Hajji Mohammed,
around 5000 B.C.).

Owing to the reflections, rosettes with the symmetry group D, (nm)
produce a visual impression of balance and stationariness, where one of the
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reflections is supposed to be vertical. According to the principle of visual
entropy — the tendency toward a high degree of symmetry — rosettes with
the symmetry group D, (nm) will be more frequent than rosettes with the
symmetry group Cy,, (n). They have no enantiomorphic modifications — the
oriented ”"left” and "right” rosettes with a singular direction of rotations.

Distinct from the previous type, type C, (n) consists of the symmetry
groups to which correspond visually dynamic rosettes with a polar singu-
lar direction of rotation, occurring in two enantiomorphic modifications.
For ornamental art, enantiomorphic (”left” and "right”) modifications of
rosettes, which produce an impression of the "left” and "right” rotations,
introduce the possibility to suggest motion. Depending on the orientation,
the same enantiomorphic rosettes may even have different symbolic mean-
ings. The suggestion of motion can be stressed by using forms with acute
angles oriented toward the direction of rotation.

(b) (b) (b) (b)

Figure 2.22

Variations of the (a) Chinese symbol "yang-yin” with the symmetry
group C, (2) and (b) the triquetra motif with the symmetry group
C; (3).

Typical examples of rosettes with the symmetry group C, (n) are
the triquetra (Cs (3)) (Figure 2.22b), the swastika (Cy4 (4)) (Figure 2.23)
and similar motifs represented in different civilizations (e.g. Babylonian,
Chinese, Aegean and Mayan) a symbol of the Sun, and lastly the Chinese
symbol ”yang-yin” (C; (2)) symbolizing a dynamic balance between the
male and female principle (Figure 2.22a), etc.

In the early phases of ornamental art, these symbols were used mostly
in their simplest form. Further development led toward more complexity,
and the enrichment and variation of basic elementary asymmetric figures
belonging to a fundamental region, which were multiplied by symmetry
transformations. For the symmetry groups of the type C, (n), a variety of
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rosettes can be achieved by using a curvilinear fundamental region, while
with the symmetry groups of the type D, (nm), generated by reflections,
the fundamental region must be rectilinear.

Figure 2.23

The rosette with the symmetry group C; (4) (ceramics of the Ne-
olithic of Middle Asia, around 6000 B.C.).

Even in early ornamental art (e.g., in the ceramics of the American
Indians before Columbus) with its very complicated geometric ornaments,
there are no deviations from the strict principle of symmetry (Figure 2.24a,

b).
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Interesting examples are derived by superposing concentric rosettes
with different symmetry groups. In such a case, the symmetry of the system
is the symmetry of the least symmetrical rosette belonging to the composi-
tion or some of its subgroups, usually non-trivial (Figure 2.19e, 2.23).

(2) (b) (c)

Figure 2.24

Examples of rosettes with the symmetry group (a) Cs (3); (b)
C, (4); (c) Dy (m) in the art of American Indians. The rosette
(c) represents an example of the ”development” of the body, that
results in the symmetry D; (m).

In time, the symbolic meanings of rosettes, which in the beginning of
ornamental art had played a role as a specific means of communication, were
also lost. This way, rosettes became only decorations, and they remained
so till modern times (Figure 2.25).

In the modern age, aiming for the simplest possible means of com-
munication — mainly visual — the modern designer has developed a whole
system of signs (traffic signs, trade marks, etc.) which have the symmetry
of rosettes. Also, by a multidisciplinary approach uniting ornamental art,
the theory of symmetry, and the sciences which need for the visual modeling
of rosettal symmetry structures (Crystallography, Physics, Chemistry,. . )5
rosettes gained new meanings.
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(b)

Figure 2.25

Examples of rosettes with the symmetry group (a) Cs (4), 15th
_ century; (b) Cj (3), with the dominant decorative component.

* % ok

Rosettes date back to the period of Paleolithic art and represent one of
the oldest examples of the human aim to express regularity and symmetry.
For the mathematical theory of symmetry, they are the simplest basis for
an adequate mathematical treatment of ornaments, based on the theory of
symmetry, and the record of the historic development going from visuality
to the mathematical abstraction. Even to those acquainted with the theory
of symmetry, rosettes remain the most evident visual illustration of the
visually presentable symmetry groups C, (n), D, (nm), Dy (com). By
analyzing rosettes from the point of view of the theory of symmetry, it is
possible to note the common characteristics of rosettes and create a link
between presentations of the symmetry groups of rosettes, their structures
and the visual properties of corresponding rosettes. By using the principle
of visual entropy, it is possible to establish relations between the maximal
constructional and visual simplicity and maximal symmetry on the one side,
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and the period of origin, frequency of occurrence and variety of rosettes on
the other. Because of this, we have the early appearance and dominance of
rosettes that satisfy this principle.

A survey on the symmetry groups of rosettes and the group-subgroup
relations can serve as a basis for the construction of rosettes by the desym-
metrization method. These relations are schematically shown in Figure
2.26, where an arrow designates the group-subgroup relation, and an at-
tached symbol the index of the subgroup in the group. These relations
determine the possibilities available to the classical-symmetry, antisymme-
try (for subgroups of the index 2) and color-symmetry desymmetrizations or
their combinations, aiming to obtain rosettes of a lower degree of symmetry.

a A3
Do Dan P
2 2\
Can a,. > Cn
Figure 2.26

In the table of antisymmetry desymmetrizations, symbols of antisym-
metry groups are given in the group/subgroup notation G/H (V.A. Koptsik,
1966; A.M. Zamorzaev, 1976; H.S.M. Coxeter, 1985). The group/subgroup
notation G/H gives information on the generating symmetry group G and
its (normal) subgroup H of the index 2, derived by the antisymmetry desym-
metrization (Figure 2.27). The relation G/H = Cj holds.

The table of antisymmetry desymmetrizations of symmetry groups of

Tosettes Gog:
D2n/Dn

D./C,
C2n/Cn
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In the table of color-symmetry desymmetrizations the symbols of col-
ored symmetry groups G~ are given in the notation G/H/H; (A M. Za-
morzaev, E.I. Galyarski, A.F. Palistrant, 1978; V.A. Kopisik, J.N. Kotzev,
1974). In the symbol G/H/ Hy, the first datum denoctes the generating sym-
metry group &, the second gives the stationary subgroup H of the colored
symmetry group G*, which consists of transformations maintaining an in-
dividual index (color) unchanged, while the third denotes the symmetry
subgroup H; of the colored symmetry group G*. The subgroup H; is the
result of the color-symmetry desymmetrization. A number N (V > 3) is
the nurmhber of ”colors” used to derive the colored symmeiry group. For
H = H;,ie. iff H is a normal subgroup of the group G, the symbol
G/H/H, is reduced to the symbol G/H.

The table of color-symmetry desymmetrizations of symmetry groups
of rosettes Gap:

AT'
D,;,/D./C. a
D../C, 2a
Cun/Chn a

(b)
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(e) d)

Figure 2.27

Antisymmetry rosettes in Neolithic ornamental art: (a) D4/Dg,
Danilo, Yugoslavia, about 3500 B.C.; (b) Ds/Dj;, Near East; (c)
D,/Cy, Near East; (d) D,/Cs4, Middle East; (e) Cs/C4, Middle
East; (f) C4/C,, Dimini, Greece.

So that, by color-symmetry desymmetrizations of the symmetry gro-
ups of rosettes, it is possible to obtain exclusively symmetry groups of the

type C, (n).
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Group-subgroup relations can also serve as an indicator of the fre-
quency of occurrence of certain rosettes in ornamental art, in line with the
tendency toward maximal visual simplicity and symmetry. The full expres-
sion of the principle of visual entropy is the very frequent use of circles —
visual models of the maximal continuous symmetry group of rosettes D,
(com). The same is a reason for the domination of the dihedral symmetry
groups of rosettes D, (nm) over the corresponding cyclic groups C,, (n),
resulting from the relationship [D,:C,]= 2. The priority of rosettes with
the symmetry group D, (2nm) over rosettes with the symmetry group D,
(nm), or rosettes with the symmetry group Cs, (2n) over rosettes with the
symmetry group C, (n) ( [D2n:Dy]= 2, [C2,:Crl= 2 ), may be reduced
to the question of the existence of a central reflection as the element of the
symmetry group. A similar situation holds for all other group-subgroup
relations.

For larger values of n, rosettes with the symmetry group D, (nm)
or C, (n) are rare. However, since the process of visual perception often
results in a visual, subjective symmetrization of these rosettes, perceived
by the observer as circles, even in such a case the principle of maximal
symmetry is respected, but only in the sense of visual perception.

The causes of the very early appearance and frequent occurrence of
rosettes with the symmetry groups D; (m) and D; (2m) are mainly of
a physical-physiological nature: D; (m) — human symmetry and binocu-
larity, Dy (2m) — the relation between a vertical and horizontal line and
perpendicularity of the reflections. The origins of rosettes with the sym-
metry groups Dy (4m), Dg (6m), Dg (8m), D32 (12m) can be found in
the relation vertical-horizontal, perpendicularity of the reflections (because
the symmetry group D; (2m) is the subgroup of all the symmetry groups
mentioned) and constructional simplicity, while the frequent use of rosettes
with the symmetry groups 3(m), 5(m),. .. results from their constructional
simplicity. A considerable influence is the existence of models in nature:
D; (m ) — the symmetry of almost all living beings, D, (2m ) — vertical
and horizontal line, Ds (5m) — a starfish, D¢ (6m) — a honeycomb, D,
(oom) — all circular forms found in nature, etc.

The geometric basis of rosettes with the symmetry group D, (nm)
or C, (n) is the construction of regular polygons, which is possible iff the
number of the sides of the polygon is of the form: 2™p;p;...p,, where
D1, D2,--.,Pn are prime Fermat numbers, i.e. prime numbers of the form
2" +1,me NU{0} and n € N.

The visual impression produced by a realistic rosette will be formed
in the interaction between the symmetry group of the rosette itself and the
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visual, subjective factors of symmetry. Some of them are the human plane
symmetry and binocularity, the symmetry of the limited part of the plane
to which the rosette belongs and the symmetry group D, (2m) conditioned
by the fundamental natural directions — vertical and horizontal, i.e. by
the action of the sense of balance connected to gravitation. Regarding the
symmetry group of the rosette, the other factors of symmetry usually occur
as desymmetrization factors, although sometimes they result in its visu-
al, subjective symmetrization according to the principle of maximal visual
simplicity. For example, a rosette with symmetry slightly differing from
the symmetry D; (m), the observer sees as mirror-symmetrical, the rosette
slightly deviating from the perpendicularity as perpendicular, etc. Such a
desymmetrization or symmetrization occurs after the primary visual im-
pression is formed, while during the visual perception process, the observer,
through an analytical procedure, eliminates all other influences and aims to
recognize the symmetry of the rosette itself.

Due to the form of the fundamental region, at the symmetry groups
of rosettes C, (n) it is possible to use curvilinear boundaries, while at the
symmetry groups of rosettes D, (nm) a fundamental region has a fixed
shape and rectilinear boundaries, because those symmetry groups are gen-
erated by reflections and demand the invariance of all the points of reflection
lines. By changing the boundaries of the fundamental region of the symme-
try group C, (n) we may emphasize or decrease the visual dynamism and
realize a variety of corresponding rosettes. A variety of rosettes with the
symmetry group D, (nm) may be achieved by changing the shape of an
elementary asymmetric figure belonging to the fundamental region.

Analyzing the visual characteristics of rosettes, we can use data on
the polarity of rotations and on the existence of enantiomorphic modifica-
tions, this directly indicating the dynamic or static visual impression that
the given rosette will suggest. Rosettes with polar, oriented rotations will
produce a dynamic, while rosettes with non-polar, non-oriented rotations
will produce a static impression. The polarity of rotations of the symmetry
groups of rosettes will depend on the existence of an indirect transformation
— reflection as the element of the symmetry group. Rosettes with the sym-
metry group C,, (n) will be dynamic rosettes with polar, oriented rotations,
and those with the symmetry group D, (nm) will be static rosettes with
non-polar rotations. For n — an even natural number, a central reflection
is the element of the discrete symmetry groups C, (n), D, (nm) and of the
continuous symmetry group Do, (com). For n = 4m + 2, decomposition
Caktz = C3 X Camy1 = {2} X {5}, Dam42 = C2 X Damy1 = {2} x {§%, R}
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holds, directly indicating to the corresponding subgroups and to the exis-
tence of the subgroup C; (2) generated by the central reflection Z.

All the symmetry groups of the category Gaig, namely C; (1), Dy
(m), C; (2) and D3 (2m), are included in the category Go. The group C;
(2) is the subgroup of the group C,, (n), D, (nm), and the group I, (2m)
is the subgroup of the group D, (nm) iff » is an even natural number,

The visual impression produced by a certain rosette will be influ-
enced also by the enantiomorphism — the "left” and “right” orientation of
rosettes, representing an important part of the general problem of orienta-
tion in nature (H. Weyl, 1952; R. Arnheim, 1965).

From the point of view of ornamental art, of special interest are the
symmetry groups D, (nm) with » — an even natural number. Since one
of their subgroups is the symmetry group D3 {2m), there is the possibility
to place the rosette with the symmetry group D, (nm) in such a position
that the perpendicular reflections of the subgroup D; (2m) coincide with
the fundamental natural perpendiculars — vertical and horizontal lines.

A complete table survey of subgroups of the given symmetry group
presents, in the geometric and also in the visual sense, the evidence of their
symmetry substructures. Possibilities for their visual recognition depend
on the nature of the substructures themselves, their impressiveness, visual
simplicity, dynamism or stationariness, the nature of the rosette to which
they belong and on the position of the substructure regarding the visual
dominants — reflections, vertical and horizontal lines, etc. Necessary data
can be also supplied by a survey giving decompesitions of symmetry groups
of rosettes. »

Cayley diagrams are visual interpretations of symmetry groups of
rosettes, giving complete information on symmetry groups. According to
the established connection between the geometric-algebraic properties of
the symmetry groups of rosettes and their visual models, many important
visual characteristics of a rosette are implied by the structure of their sym-
metry group.

In the development of the theory of symmetry very important have
been the visual interpretations of symmetry groups: ornaments, graphic
symbols of symmetry elements and Cayley diagrams. Visual examples have
been the motives for further analysis and discussion on the corresponding
symmetry groups. In a modern science, instances of a reversed process —
from abstract groups to their visual models — are frequent, especially in
those cases where theory precedes the practice.
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The discussion of the visual characteristics of rosettes given in this -
work, based on the theory of symmetry, can be used also in ornamental
design, for the construction of new rosettes through anticipating their visual
properties, and as a basis for exact aesthetic analyses. Also, they can be
applied in all scientific fields in needing of visual interpretations of symmetry

groups.

2.3. Symmetry Groups of Friezes Gy;

In the plane §? and E? there are seven discrete, one-dimensional, line
groups of isometries, the symmetry groups of friezes Gz;: p1l (11), plg
(1g), p12 (12), pml (m1l), plm (1m), pmg (mg), pmm (mm) and two
visually presentable continuous symmetry groups of friezes: poml=pmygl
(mpl) and pomm=pmym (mym).

To denote them, we have used the simplified version of Internation-
al Two-dimensional Symbols (M. Senechal, 1975; H.S.M. Coxeter, 1985).
Here, the first symbol represents an element of symmetry perpendicular to
the direction of the translation, while the second denotes an element of sym-
metry parallel or perpendicular (exclusively for 2-rotations) to the direction
of the translation. -

Presentations and structures:

11 {X} Co

1g {P} Coo

1z  {x0 T? =(TX)?=E D5
{7 Ta) T?=T?=E (T, = TX)

ml {X,R;} R = (R, X)2=E Do
{Rl,Rg} R§=R§=E (R2=R1X)

im {X,R} R?=E RX = XR Cos x Dy

mg {P,R;} R?=(R;P)?=E Do,
{RI,T} R§=T2=E (T=R1P)

mm {X,R, R} R*=R?=(RX)?=E RX=XR RR,=RR D.xD
{R, Rl,Rz} R2 = R’f = Rg =F RR1 = RlR RRz = RQR (RQ = R]_X)

Form of the fundamental region: unbounded, allows variation of the bound-

aries that do not belong to reflection lines.

Enantiomorphism: 11, 12 possess enantiomorphic modifications, while in
other cases the enantiomorphism does not occur.

Polarity of rotations: polar rotations — 12, mg; non-polar rotations —
mm, mgm.
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Polarity of translations: polar tramslations — 11, 1g, 1m; bipolar trans-
lations — 12; non-polar translations — m1i, mg,

mm, mgl, mgm.

The table of minimal indexes of subgroups in groups:

11 1g 12 ml 1m mg mm

13779

lgto 2953

12 = 2 2

ml 2 2

Im "2 . 2 2

mg vl 2D 2 3
mm 4 4 2 2 2 2 2

All the discrete symmetry groups of friezes are subgroups of the group
mm generated by reflections and given by the presentation:

mm {R,Ry, R} R®=R}=R}=F RRy=RiR RR;y = RyR Do x D;

Ry, T = RR, generate mg i)
R, X = R1R, generate 1m Cws X D1
Ry, 2% generate ml D
X)ViM"="RRyi generate 12 Dy
P=RR,R, generates 1g Cos
X generates 11 €

The survey of the characteristics of the symmetry groups of friezes
relies on the work of A.V. Shubnikov, V.A. Koptsik, 1974; H.S.M. Coxeter,
W.0.J. Moser, 1980.

The first derivation of the symmetry groups of friezes as the line sub-
groups of the symmetry groups of ornaments G5 and their complete list,
was given by G. Pélya (1924), P. Niggli (1926) and A. Speiser (1927).

Cayley diagrams (Figure 2.28):
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Figure 2.28

2.4. Friezes and Ornamental Art

A straight line is, most probably, the first and simplest frieze occur-
ring in the history of visual arts. From the point of view of the theory of
symmetry, it belongs to the family of friezes with the continuous symmetry

group mpm.

(a) (b)

Figure 2.29

Continuous visually presentable symmetry groups of friezes (a)
moem and (b) mg1l.
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Recent investigations of the process of visual perception have discov-
ered that in a visual sense, the perceived symmetry of a line will depend on
its position.

A horizontal line has the symmetry mgm — maximal eontinuous sym-
metry group of friezes (Figure 2.29a).

Regarded from the visual point of view, a vertical line has a polar,
oriented continuous translation axis and the continuous symmetry group
polm (Om). The phenomencn of a visual, subjective desymmetrization
of a vertical line is probably implied by gravitation. It is possible that the
tendency of a vertical line to go upward results from the objective narrowing
of vertical objects in the upper part; from the visual convergence of parallel
lines with high objects observed from a lower position; and from the habit
conditioned by a constant application of the central perspective, where the
center of the perspective is usually placed in the upper part of the picture.
A vertical line has the ”directed tension”, so that along with the objective
symmetry mom, occurs its visual, subjective desymmetrization and the
reduction to the symmetry Om. The tendency to accept a vertical form
as longer in comparison with the horizontal form of the same length is
conditioned by the polarity of the vertical axis (Figure 2.30).

Figure 2.30

Tlustration of the visual effect of polarity of the vertical line (the
vertical and horizontal line segments are of the same length).
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- A similar visual, subjective desymmetrization — a reduction to a low-
er degree of symmetry and the polarity of the axis — occurs also with
an "ascending” and ”descending” diagonal. This phenomenon can be also
treated as the difference between the "right” and "left” (H. Weyl, 1952, pp.
16; R. Arnheim, 1965, pp. 22), in the theory of visual perception discussed
by H. Wdlfflin, M. Gaffron, A. Dean and S. Cobb. Along with different
physiological interpretations, there is an interesting Weyl’s question about
whether this phenomenon is connected to writing from the left to right,
and whether it is expressed by nations writing in the opposite direction.
M.Gaffron tried to explain it by the dominance of the left brain cortex con-
taining brain centers for several activities in right-handed people, i.e. in
the dominance of righthandness. About this, S. Cobb says (R. Arnheim,
1965, pp. 23): "Many fanciful ideas have been put forward, from the theory
that the left hemisphere has a better blood supply than the right, to the
heliocentric theory that the right hand dominates because man originated
north of the equator and, locking at the sun, was impressed with the fact
that great things move toward the right! Thus right became the symbaol of
rectitude and dexterity, and things on the left were sinister. It is an inter-
esting observation that about 70 per cent of human foetuses lie in the uterus
in the ”left occiput posterior” position, i.e. facing to the right. No one has
ever found out whether or not these become the right majority of babies.
Probably the dominance of right-handness is due to chance in heredity.”.

All the continuous symmetry groups of friezes have physical interpre-
tations (A.V. Shubnikov, V.A. Koptsik, 1974). In the visual arts, besides
visual models of the continuous symmetry groups of friezes my1l and mym
(Figure 2.29) with the non-polar translation axis, adequate visual interpre-
tations of the other continuous symmetry groups of friezes with the polar
or bipolar translation axis, can be realized, in the sense of the objective
symmetry, exclusively by textures. Textures can be realized by equal aver-
age density of the same asymmetric elementary figures arranged along the
singular direction in accordance with the corresponding continuous symme-
try group. For a schematic visual interpretation of these groups by using
the graphic symbols of symmetry elements, certain supplementary symbols
(e.g., arrows) are indispensable (B. Grinbaum, G.C. Shephard, 1987).

The oldest examples of friezes are found in the art of the Paleolithic
(Magdalenian, 12000-10000 B.C.) and Neolithic. In fact, examples of all
seven discrete and two visually presentable symmetry groups of friezes are
known from the Magdalenian period.

Despite a relative variety of motifs in ornamental art, there is also a
repetition of ornamental motifs — basic, elementary patterns occurring in
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different parts of Europe, Asia and Africa, where the late Paleolithic and
Neolithic cultures were formed. Since the possibilities for communication
between distant areas were remote, we can assume that common ornamental
motifs result from similar or the same models found in nature by prehistoric
peoples and from the laws of symmetry.

Most frequently, friezes are the result of a translational repetition of
different motifs, where the symmetry of the original motif — a rosette —
determines the symmetry of the frieze itself, in the sense of composition of
the translational group 11 and the symmetry group of the rosette or by
an artistic schematization of natural objects possessing by themselves the
symmetry of friezes.

The origins of friezes are visible in cave drawings and engravings on
stones or bones from the earliest period — late Paleolithic.

Representing a herd of deer (Figure 2.31), prehistoric man had ab-
stracted a motif, almost reducing it to a translational repetition of a pair
of horns, i.e. to the frieze with the symmetry group 11. A similar process,
from the motif of dance to a frieze with the symmetry group ml, from the
motif of harpoon to a frieze with the symmetry group 1m, from the motif
of waves to a frieze with the symmetry group 12 or mg, shows the origi-
nal symbolic meanings friezes carried. Thus, friezes became one of the first
visual communication means.

* /‘//r'j
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Figure 2.31

The origin of friezes with the symmetry group 11 by the stylization
of natural models (Paleolithic, Altamira cave, Spain).

Also, the symmetry of friezes based on repetition, have made possible
a symbolic representation of certain periodic natural phenomena — the turn
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of day and night, the daily and annual revolving of the Sun — where friezes
played the role of a calendar. This is witnessed by friezes originating from
primitive art and having even today precisely defined symbolic meanings
and adequate names (Figure 2.54).

The symmetry group of friezes 11 is the result of 2 periodic, trans-
lational repetition of an asymmetric figure. The form of the fundamental
region can be arbitrary. Owing to the polarity of the frieze axis and the
sheer repetition of the motif, besides a possibility for figurative representa-
tion, there is also a possibility for a geometric-symbolic representation of
directed phenomena. Hence, directed tension resulting from the polarity of
the axis creates an impression of "motionless motion”, thus forming the time
component of painting. In combination with overlapping which makes pos-
sible the suggestion of the perspective in the sense ”in front—behind”, friezes
have been frequently used in Egyptian art, both decorative and painting,
and in the art of cultures tending to the "objective”, natural axonometric
presentation of spatial groups in motion (Figure 2.32-2.35).

Figure 2.32

Examples of friezes with the symmetry group 11 in Paleolithic art.
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Figure 2.33

Examples of friezes with the symmetry group 11 and the formation
of geometric crnamental motifs by stylization and schematization
of natural models (Paleolithic).

Figure 2.34

Examples of friezes with the symmetry group 11 in Neolithic art
(Hallaf ceramics, around 5500-4500 B.C.).
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Figure 2.35

Examples of friezes with the symmetry group 11 in the art of (a),
(b) pre-dynastic; (c) dynastic period of Egypt.

Figure 2.36

Examples of friezes with the symmetry group 1g in the Neolithic
art of Yugoslavia: (a) Butmir, around 3500 B.C.; (b) Adriatic zone,
around 3000-2000 B.C.
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Figure 2.37

iriezes with the symmetry group 1lg in the art of
Jlithic anc early Neolithic (Fontarnaud-Lugasson,
Haute, Le Placard, Marsoulas, around 15000-8000 B.C.).
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- A similar dynamic effect is produced by friezes with the symmetry
groups 1g (Figure 2.36, 2.37) and 1m (Figure 2.38-2.40) which have a polar
axis. By using different elementary asymmetric figures belonging to the
fundamental region and different directed forms with acute angles oriented
toward the direction of the axis, it is possible to intensify the already existing
impression of motion. Owing to their relation to the growth of certain
plants, friezes with the symmetry group 1g hold an important place in
plant ornaments (Figure 2.37). Since they contain a glide reflection as the
symmetry element, such friezes are suitable for representing all directed
alternating phenomena or objects by means of geometric ornaments.

trecrerrreeref !
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Figure 2.38

Examples of {riezes with the symmetry group 1m in Paleolithic art:
(a) PAbri Mege; (b) La Pasiega; (c) Marsoulas.

Owing to the existence of a central reflection as the symmetry trans-
formation of the group 12, the frieze axis is bipolar, so friezes with the
symmetry group 12 offer the possibility for registering oppositely directed
elementary asymmetric figures along the singular direction, i.e. two oppo-
sitely directed friezes with the symmetry group 11. Friezes with the sym-
metry group 12 occur in many cultures (in the Neolithic, Egyptian, Aegean,
etc.), with the application of spiral motifs (Figure 2.41-2.45).
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Figure 2.39

Friezes with. the symmetry group 1m in Paleolithic art (Maz d’azil,
La Madlene, Barma Grande, Laugerie Base, around 10000 B.C.).
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Figure 2.40

Examples of friezes with the symmetry group 1m in Neolithic art,
around 6000-3000 B.C.

All the other discrete symmetry groups of friezes m1, mg, mm and
the continuous symmetry groups of friezes myl and mom with the non-
polar axis, which contain reflections with reflection lines perpendicular to
the frieze axis, create an impression of stationariness and balance.

Friezes with the symmetry group m1 were frequently used in the pre-
historic period with the motif of the cult dance “kolo”. The origin and
development of this motif can be seen in the stone drawings from the period
of cave painting (Figure 2.46). This motif, very characteristic and suitable
for the analysis of the history of ornamental art, underwent a considerable
stylization in the Neolithic period (Figure 2.47). During the Neolithic, by
losing its symbolic meaning and by being enriched by new elements, the
motif of dance and the corresponding friezes were reduced to sheer decora-
tiveness. All types of ornaments underwent this process (Figure 2.48).
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Figure 2.41

of friezes with the symmetry group 12 in Paleolithic and
Hleolithic ari: (2) Mezin, USSR, around 12000-10000 B.C.; (b), (¢}
the Heciithic of Europe; {d), (e) Hacilar, around 5300 B.C.

(2)
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Figure 2.42

Examples of friezes with the symmetry group 12: (a) Bakun, Iran,
around 5000-4000 B.C.; (b) Malia, around 3000 B.C.; (c) Crete,
around 3060-2500 B.C.

(a) o

Figure 2.43

Friezes with the symmetry group 12 in the Neolithic art of Yu-
goslavia: (a) Aznabegovo-Vrshnik, around 5000 B.C.; (b) Hvar,
around 2500 B.C.
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Figure 2.44

Examples of friezes with the symmetry group 12 in the pre-
Columbian art of America (Mexico).
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Figure 2.45

Friezes with the symmetry group 12 with the application of spiral
_ motifs: (2) Neolithic art, Butmir, Yugoslavia; (b) Egypt.
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Figure 2.46

Examples of friezes with the symmetry group m1 in the late Pale-
olithic (Magdalenian) and early Neolithic.
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Figure 2.47

The formation and development of friezes with the symmetry group
m1, with the “kolo” motif, in prehistoric art.

(2) (b) (c) (c)

Figure 2.48

Examples of {riezes with the symmetry group m1 in Neolithic art:
(a) Hallaf, around 5000-4500 B.C. The initial motif, the stylized
head of a bull is similar to the Egyptian symbol ”ankh”; (b) Hallaf;
(c) Crete. The motif of double ax, labris”, was very often used in
early Greek ornaments.

Owing to a glide reflection and reflections in reflection lines perpendic-
ular to the frieze axis, friezes with the symmetry group mg, among geomet-
ric ornaments occur as symbols of regular alternating phenomena (Figure
2.49-2.51). Different variations of these friezes have in primitive art the
following meanings (Figure 2.54a, b, ¢, d): "Up and down”, "The daily mo-
tion of the Sun”, ”The Sun above and below the water level (the horizon)”,
"Breathing”, "Water”, ”The rhythm of water”.
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Figure 2.49

Examples of friezes with the symmét;ry group mg in Paleolithic art.

Friezes with the symmetry group mm (Figure 2.52, 2.53) often sym-
bolize an even flow of time, years and similar phenomena with a high degree
of symmetry (Figure 2.54f, g, h). It is interesting that in such cases time is
considered as non-polar. Owing to the maximal degree of symmetry and to
the fact that it contains all the other discrete symmetry groups of friezes as
subgroups, besides having a significant independent function, the symme-
try group mm will be a basis from which all the other discrete symmetry
groups of friezes can be derived by means of the desymmetrization method.
Having in mind the fixed shape of the fundamental region — rectilinear,
perpendicular, unbounded fundamental region — a variety of friezes with
the symmetry group mm can be achieved only by using different elementary
asymmetric figures belonging to the fundamental region. This holds for all
the symmetry groups of friezes generated by reflections (m1, mm).

Already in ornamental art of the Neolithic and of the first great cul-
tures — the Egyptian, Mesopotamian, and Aegean cultures, and the pre-
Columbian culture in America, etc. — by introducing new ornamental mo-
tifs and by enriching existing ones, the variety of friezes is achieved (Figure
2.55). Like for rosettes, superpositions of friezes are frequent. Some primary
symbolic meanings have been gradually replaced by new ones. The applica-
tion of different motifs unavoidably leads to decorativeness. The empirical
perception of the properties of friezes and the regularities they are based
on, resulted in new friezes constructed by using the construction rules com-
prehended, thus opening the way to artistic imagination and creation-play.
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Figure 2.50

Examples of {riezes with the symmetry group mg in Neolithic art:
(a) the early Neolithic of Europe; (b) Catal Hiijik, around 6400~
5800 B.C.: (c) Hallaf, around 6000 B.C. (7600-6900 B.C.7); (d)
Hasuna, Itaq; (e) Magelmose, 7500-6500 B.C.; (f) Pakistan around

3000 B.C.; (g) the pre-dynastic period of Egypt, around 4200-3600
B.C.
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Figure 2.51

Examples of friezes with the symmetry group mg: {a) Eynan,
Palestine, around 10000 B.C.; (b) Aznabegovo-Vrshnik, Yugosla-
via, around 5000 B.C.; (c) Nagda culture, the pre-dynastic period
of Egypt; (d) Mycenae.

TFigure 2.52

Friezes with the symmetry group mm in Paleolithic art.
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Figure 2.53

Friezes with the symmetry group mm in the Paleolithic (Magdale-
nian, around 10000 B.C.) and Neolithic.
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Figure 2.54

Examples of friezes in the art of primitive peoples, that possess

precise symbolic meanings and the corresponding names: (a) "Up

and down”, ”The Sun”, Water”, ”Breathing”; (b) ”The rhythm of

water” (Congo); (c) The Sun above and below water (horizon)”

(Pueblo Indians); (d) *Days of the full Moon” (Celebes); (e) *End-

less running of the years” (Celebes); (f), (g), (h) "The continual
~ motion of the Sun” (Fiji).
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Figure 2.55

Antisymmetry friezes in Neolithic ornamental art: (a) 11/11,
Greece, around 3000 B.C.; (b) 12/12, Greece; (c) 12/11, Near
Bast, around 5000 B.C.; (d) 1m/1m, Near East, around 5000 B.C.;
(e) im/11, Near East; (f) 1m/11, Anadolia, around 5000 B.C,;
(g) m1/m1, Near East; (h) m1/11, Near East; (i) mg/11, Greece;
(j) mg/1g, Near East, around 5000 B.C.; (k) mg/12, Anadolia;
(1) mm/mm, Tell el Hallaf, around 4900-4500 B.C.; (m) mm/m1,
Hacilar, about 5500-5200 B.C.; (n) mm/mg, Near East.
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Examples of all seven discrete symmetry groups of friezes 11, 1g,
12, m1, 1m, mg, mm and twe continuous visually presentable symmetry
groups of friezes myl and mym, represented in bone engravings or cave
drawings, date from Paleolithic art. In ornamental art, friezes ars a way to
express regularity, repetition and periodicity, while with polar friezes, where
there occurs a singular oriented direction, they represent a way to express
motion or dynamic tendencies.

In the theory of symmetry, although derived relatively late by regis-
tering the one-dimensional subgroups of the symmetry groups of ornaments
Gy (G. Pdlya, 1924; P. Niggli, 1924; A. Speiser, 1927), the symmetry gro-
ups of friezes are a suitable ground for different research. For example, the
development of the theory of antisymmetry is greatly stimulated by stud-
ies of the symmetry groups of friezes. Namely, its first accomplishment —
the antisymmetry groups of friezes (H. Heesch, 1929; H.J. Woods, 1935;
A.V. Shubnikov, 1951) — resulted from the Weber diagrams of the symme-
try groups of bands G3g;. Owing to their simplicity, the symmeiry groups
of friezes G531 — the first category of infinite iscmetry groups — were used
as a suitable medium for constructing and analyzing new theories, e.g., the
theory of antisymmetry, colored symmetry, etc.

In the same way as with rosettes, according to the principle of visual
entropy — maximal visual and constructional simplicity and maximal sym-
metry — there may be established a relation between geometric properties
of the symmetry groups of {riezes and their visual interpretations — friezes,
their frequency of occurrence, period of origin and variety. The earlier ap-
pearance and dominance of friezes satisfying this principle, is evident.

The table of the group-subgroup relations points to the possibility
to apply the desymmetrization method for the derivation of the symmetry
groups of friezes. According to the relations (Figure 2.56) and the tables
of the (minimal) indexes of subgroups in groups, the classical-symmetry,
antisymmetry (for subgroups of the index 2) and color-symmetry desym-
metrizations or their combinations can be used aiming to obtain the sym-
metry groups of friezes of a lower degree of symmetry.

A survey of the antisymmetry desymmetrizations of {riezes is given
in the corresponding table. Symbols of antisymmetry groups G’ are given
in the group/subgroup notation G/H, offering information on the gener-
ating symmetry group G and its subgroup H of the index 2 — symmetry
subgroup H of the group G’, which is the final result of the antisymmetry
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desymmetrization. So that, by antisymmetry desymmetrizations it is pos-
sible to obtain all subgroups of the index 2 of the given symmetry group

(H.S.M. Coxeter, 1985).

mgm —— mol > ml

mim > mg > 12

| l l

im > 1g > 11 <——-—

Figure 2.56

The table of antisymmetry desymmetrizations of symmetry groups of

friezes (G9y:
11/11
1g/11

12/12
12/11

ml/ml mg/ml

ml/11 mg/12
mg/lg

1m/1m

im/1g

im/11

mm/mm
mm/mg
mm/1lm
mm/ml
mm/12

The table of the color-symmetry desymmetrizations relies on the works
of J.D. Jarratt, R.L.E. Schwarzenberger (1980) and H.S.M. Coxeter (1987).
By color-symmetry desymmetrizations, the symmetry groups of friezes 11,
1g, Im, mi and 12, may be obtained. Complete information on the color-
symmetry desymmetrizations of friezes is given in the corresponding table.
Fach of the infinite classes of colored symmetry groups is denoted by a
symbol G/H/Hy; its first datum represents the generating symmetry group
G, the second its stationary subgroup H consisting of transformations of
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the colored symmetry group G* that maintain each individual index (col-
or) unchanged, and the third the symmetry subgroup H; of the group G~.
The symmetry group Hy is the final resulf of the color-symmetry desyvm-
metrization. A number N (& > 3) is the number of ”colors
the particular color-symmetry group. For H = Hy, ie. iff H is a normal
subgroup of the group G, the symbol /H/H; is reduced to the symbol

G/H.

The table of color-symmetry desymmetrizations of symmetry grougp
i J P

of friezes G31:

11/11°

1g/11
1g/1g

ml/mi/11
m1/11

12/12/11
12/11

1m/1m
im/1g
im/11

mg/mg/lg
mg/m1/11
mg/12/11
mg/lg
mg/11

mm/mm/1lm
mm/m1/11

N
N =0 (mod 2)
N =1 (mod 2)
N
N =0 (mod 2)
N

N =0 (mod 2)

N
N =0 (mod 2)
N =0 (mod 2)
N =1 (mod 2)
N =0 (mod 2)
N =0 (mod 2)
N =2 (mod 4)

N =0 (mod 4)

N

N =0 (mod 2) (N > 6)

Theory of symmetry and ornament

used to obtain

(e}
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mm/mg/lg N =0 (mod 2)
mm/12/11 N =0 (mod 2) (N_>_;6)
mm/im N =0 (mod 2)

mm/11 N =0 (mod 4)

mm/lg N =0 (mod 4)
mm/ml N=¢4

mm/12 N=4

Due to the objective stationariness of works of ornamental art, con-
tinuous friezes with a polar or bipolar axis do not have adequate visual
interprétations. The visual models of these groups can be constructed by
using textures (A.V. Shubnikov, N.V. Belov et al., 1964).

According to the principle of maximal symmetry, a survey of group-
subgroup relations may, in a way, serve as an indicator of the frequency of
occurrence of the particular symmetry groups of {riezes in ornamental art,
and also for recognition and evidence of symmetry substructures. The influ-
ence of the principle of maximal symmetry on the frequency of occurrence
of certain symmetry groups of friezes in ornamental art comes to its full
expression for the most common frieze — the straight line, which represents
3 visual illustration of the maximal continuous symmetry group of friezes
mom and in the frequent occurrence of friezes with the symmetry groups
mm, mg, etc.

The origin of friezes arose also out of the existence of natural models,
so that friezes with the symmetry group 12 or mg may be considered as
stylized forms of waves; motifs with the symmetry 1g or 1m, that are found
in arrangements of leaves in many plants, served as a source of many friezes;
while the importance of mirror symmetry in nature caused friezes with the
symmetry group mi, 1m or mm. This especially refers to the maximal
discrete symmetry group of friezes mm, which contains as subgroups all
the other discrete symmetry groups of friezes and the symmetry group of
rosettes Dy (2m) and expresses, in the visual sense, the relation "vertical-
horizontal” and the quality of perpendicularity. Besides natural objects,
the origin of friezes is also to be found in the periodic character of many
natural phenomena (the turn of day and night, the turn of the seasons, the
phases of the moon, the tides etc.). Therefore, friezes represent a record of
the first human attempts to register periodic natural phenomena, i.e. the
first calendars. In time,with their symbolic meanings clearly defined, friezes
became a visual communication means: each frieze contains a message, i.e.
its meaning is harmonized with its visual form. This can be proved by the
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preserved names of {riezes in primitive art. Later, with the development of
all other communication means, friezes lose their original symbolic function,
to be partially or completely replaced by a decorative one.

The visual impression produced by a real {risze results from the in-
teraction between its symmetry group, human mirror symmetry and binoc-
ularity, the symmetry group of a limited part of the plane to which the
frieze belongs, and the symmetry group D; (2m) caused by the fundamen-
tal natural directions — the vertical and horizontal line. Regarding the first,
the other symmetry groups mentioned have a role of desymmetrization or
symmetrization factors. Besides the objective elements of symmetry, the
visual impression is influenced by the subjective elements referring to the
physioclogical-psychological properties of the visual perception (e.g., percep-
tion of the "right” diagonal as "ascending” and the ”left” as "descending”,
etc.), so that this dependence may be very complex. Aiming to perceive and
recognize the objective, geometric symmetry, the observer must eliminate
these secondary, subjective visual factors.

A fundamental region of the symmetry group of friezes m1 or mm is
rectilinear, with boundaries incident withthe reflection lines. All the other
friezes with partly or completely curved boundaries of the fundamental re-
gion, offer a change of its shape. Aiming to increase the variety of friezes
with the symmetry group ml or mm possessing 2 rectilinear fundamen-
tal region, these possibilities are reduced to the use of different elementary
asymmetric figures belonging to the fundamental region.

Data on the polarity of friezes and enantiomorphism, in the visual
sense refer to the dynamic or static impression created by them. Friezes
with the symmetry groups 11, 1g, 1m with a polar, oriented singular di-
rection will produce a dynamic effect. Since all friezes with the polar axis
may have a curvilinear fundamental region, their visual dynamism may be
emphasized by choosing an acuteangular fundamental region with the acute
angle oriented toward the direction of the axis or by choosing an acuteangu-
lar elementary asymmetric figure belonging to the fundamental region and
directed in the same way. The symmetry group of {riezes 12 that contains
a central reflection and possesses the bipolar axis, offers a similar possibil-
ity: recognition of two oppositely oriented polar {riezes with the symmetry
group,11, which produce the visual impression of two-way motion.

‘Since the discrete symmetry groups m1, mg and mm and the contin-
uous groups mpl and mym contain reflections with reflection lines perpen-
dicular to the frieze axis, friezes corresponding to them belong to a family of
friezes with a non-polar axis. Enantiomorphic modifications of friezes with
the discrete symmetry groups 1g, m1l, 1m, mg and mm and continuous
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visually presentable symmetry groups mgl and mm, which contain indirect
isometries — reflections or glide reflections — does not occur.

Data on the polarity of friezes and enantiomorphism may be a basic
indicator of the static or dynamic visual properties of friezes. Non-polar
friezes produce static, while polar friezes produce a dynamic visual impres-
sion. Another component of a dynamic visual impression produced by a
certain frieze, may be the presence of a glide reflection, suggesting the im-
pression of alternating motion. The enantiomorphism is the "left” or "right”
orientation of a frieze — the existence of only "left” or ”right ” homologous
asymmetric elementary figures or fundamental regions. According to the
principle of maximal symmetry, those' symmetry groups of friezes with a
high degree of symmetry, mg and mm, prevail. Among them, more fre-
quent are static friezes with the symmetry group mm. Their distinctive
stationariness results from the fact that each of them may be placed in such
a position that the reflection lines corresponding to the rosettal subgroup
D, (2m) coincide with the fundamental natural directions — the vertical
and horizontal line. For the maximal continuous symmetry group of friezes
mom that may be visually modeled by a straight (horizontal) line, a similar
argument hold.

A table survey of subgroups of the symmetry groups of friezes and
their decompositions (reducibility) offers complete evidence of their sym-
metry substructures. Through its use, a visual recognition of friezes and
rosettes that a particular frieze contains, will be simplified. Certainly, stat-
ic substructures with a higher degree of symmetry may be easily perceived
and visually recognized, but low-symmetry substructures demand its use.
Besides the visual simplicity of substructures, possibilities for their visu-
al recognition will be caused by all the other elements taking part in the
formation of a visual impression: the visual qualities of suprastructure, vi-
sual simplicity, stationariness or dynamism, the relation of substructures to
vertical and horizontal line, to the surrounding, to the observer, etc.

Cayley diagrams of the symmetry groups of friezes are another suit-
able visual interpretation. Besides pointing out characteristics of generators,
relations that consist of the presentation of the corresponding symmetry
group and its structure, they indicate the visual qualities of the correspond-
ing friezes. In the tables of the graphic symbols of symmetry elements,
similar such information may be given.

The symmetry groups of friezes G; are the simplest category of the
infinite groups of isometries. In the development of the generalizations of
. the theory of symmetry — antisymmetry and colored symmetry, they had a
significant role. Since visual models are the most obvious interpretation of
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abstract geometric-algebraic structures, among infinite discrete symmetry
groups, friezes are the simplest and most suitable medium for analyzing
such generalizations.

Through knowledge of the geometric-algebraic properties of the sym-
metry groups of friezes, the visual qualities of the corresponding friezes
may be anticipated directly from the presentations and structures of their
symmetry groups. This opens a large field for ornamental design; for the
planning of visual effects produced by friezes; and for aesthetic analyses
based on exact grounds. The presence of generators of infinite order in the
symmetry groups of friezes and their possible identification with time, re-
sults in the occurrence of the time component, representing for ornamental
art the possibility to suggest motion.

2.5. Symmetry Groups of Ornaments G,

In the plane E? there is 17 discrete symmetry groups without invariant
lines or points, the crystallographic symmetry groups of ornamenis: pil,
p2, pm, pg, pmm, pmg, pgg, cm, cmm, p4, p4m, p4g, p3, p3ml,
p31m, p6, p6m, two visually presentable symmetry groups of semicontinua
Piolm (slm), pjomm (smm) and also one visually presentable symmetry
group of continua pgooom (s°*). The simplified International Symbols
by Hermann and Maugin (H.S.M. Coxeter, W.0.J. Moser, 1980, pp. 40)
are used to denote the discrete symmetry groups of ornaments, while the
symbols introduced by A.V. Shubnikov, V.A. Koptsik (1974), B. Griinbaum,
G.C. Shephard (1983) are used to denote the continuous symmetry groups
of ornaments — symmetry groups of semicontinua and coniinua.

A complete survey of the presentations, structures, possible decom-
positions and Cayley diagrams of the 17 discrete symmetry groups of orna-
ments can be found in the monograph by H.S.M. Coxeter and W.0.J. Moser:
Generators and Relations for Discrete Groups (1980, pp. 40-51). In the
same book one can find discussion of all the symmetry groups of orna-
ments treated as subgroups of the maximal symmetry groups of ornaments
p4m and p6m, generated by reflections (pp. 51-52), the table surveys of
group-subgroup relations and minimal indexes of subgroups of the symmetry
groups of ornaments (pp. 136, Table 4).

Presentations and structures:

(XY, 2} XYZ=2YX=E (Z = X-1Y"?)
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p2 {X,Y,T} XY =YX = (TX)* = (TY)* =
{Tl,Tg,T;g} T‘2 = -‘2 = (T1T2T3)2 E (Tl TY TQ = XT, Tz = T)
{11, T>,T5, Ty} T =T3 =,—' =T} =NLTLT=E (Ti=NTTT =T:X)

pm {X,Y R} XY =YX ok =(RX)2=E RYR =Y Do X Cs
(R,R.,Y} R=R:=E YR=RY YR =RY (R =RX)

pe {X.V,P}  XY=YX. .P=E. - XPX=p <2,2,00>
{F,Q} Pr=q? (@ = PX)

em {P,OQ,R} P*=Q®* R!=E RPR=Q
(P, R} R2=E RP?=P'R
(R, 5) RP=E (RS)’=(SR)? (S=PR)

pmm {R, Rl, RQ,Y} R? = R? = Rg = (RRl)z = (1211‘22)2 = (Rg},)g =K

YR=RY YR, = R,Y Do, % Dos

{R1;R2:R3:Ri}
=R} =R} =R} =(RiR:)’ = (R:Rs)’ = (RsR)* = (RuRa)* = E
(R1 = R,Rs = Ry, Ry = RzY)

pmg {P,Q,R} P?2=Q? "R?®=(RP)*=(RQ)*=

{R!T11T'_Z} 2=T3=T§:E T1RT1 =T2RT2 (T1=PR,T:.=QR)
pgg {P,Q,T} P?=Q* T?=E TPT=Q! (00,00 | 2,2)
{P,0} (PO)* = (P-10)2 = E (0 = PT)
cmm {Rl, Rz, R3, RQ,T} T*=F TRlT = R3 TR:T = R4

R% = R3 = Rz = RZ —; (R1R2)2 = (R2R3)2 = (R:':-Ri)2 = (R4R1)2 =
{Ry,R., T} RR=R=T"= (R1R3)? = (RiTR,T)*=E

p4 ‘{T]_,TQ,Tg,T{,S} Tl = TZZ = T; = TA = T1T2T3T4 =F
SA=E S§-T,8'=T; i=1,2,3 4, 4]+
{(5,T) S4=T?=(ST)?=E (T =T,)
p4m {Rl,RQ,Rs,RQ,R} R2 =F RR]R RQ RR2R= R3

R2=R2=R?=R2=(RiR;)? = (RaRs)? = (RsRe)* = (RuR1)* = E  [4,4]
(R,Ri,R;} R?=R:=R2=(RR)*=(RiR:)*=(RR)*=E

P4g {R],RQ,E3,R4,S} St=F S_“R4S"=R.' i=1,'2,3
R?=RZ = RBE = R} = (RyRy)® = (RoRa)? = (RaRy)? = (ReRy)? = B [4%,4]

(5, R} R? = 5* = (RS-'RS)?=E (R = Ry)
p3 (X,Y,2,5.) XYZ=2ZYX  S}=E  S'XS =Y
STV S =2 5258 =X At
{51,52,53} Si’ =S§=S§=Sl.9253=E (SQ=S]_X7S3=JY_151)
{51,52} 5?=Sg=(5152)3=E
p3lm {S,,5,,R} S?=53=(55)=E R*=E RSR=S;' [3*,6]

{R, S} R2=5°=(RS-IRS)* =E (S=8)
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p3ml {51, 5;, R} 53=83=(5:5)°=F RE=F A
RS;RﬁS;i }XLSQRES;}' .
{R1,Rs,Rs} RI=Rj=DRi=(RiR:)®=(RRs)’ = (BsRy)*=E
(Rl = RSQ, R:z = S]_R, R3 = R)
p& {Sl,Sg,T} Sf = Sg = (5132)2 =F 2= E TslT = Sg [?;',.6]=I>

{S5, T} SE=T*=(5T)*=FE (§=5)

pﬁm {R1,R2,R3, R} R§ = R% = Rf = (R},Rz)a = (R2R3)3 = (RgRl)s = E
R2=E RR:R=Rs RR,R=R, 3,6

(R,Ry,R:} R?=R=R:=(RiR,)®=(RR)?=(RR)°=FE

All the discrate symmetry groups of ornaments are subgroups of the

groups generated by reflections p4m and p6im, given by the presentations:

p‘in‘l {R, R]_,Rz} R = Rz = .Rg = (RRl)‘i = (RR;)Q = (RgR}i =FE ié, i]
R,, $=RR, generate pdg [4+,4]
S, Th = RiR, generate p4 [4,4]%
Ty, Ra, Ry = R,S generate emm
P=RS, O=58R, generaie DEE
R B generate em
P, Q= RPR generate PE
Ty, To =82, Ry=RRi generaie pmg
Ry, Ray Ry, Ra=SR generate pmm Do X Dss
Ty, To, Ts =RT1R generaie P2
Ry, Rs, Y =R,Ry generate pm D XCiss
Y, X =RyR; generate pl O %G
p6m {R, R;,Rg} R? = R:,f = R% = (Rle)B = (RQR)E = {"RR_{)S =¥ {3, 6]
- R, S=R\Rs generate p3im [3*+,6]
S, T=R;R generate pé [3,6]*
Ry, Ry, Ry =RR1R generate p3ml A
S] = R.] RQ, 52 = RQARg generate p3 At

Form of the fundamental region: bounded, offers a change of bound-

aries that do not belong to reflection
lines. The groups generated by reflec-
tions pmm, p3ml, p4m, p6m do not
offer any change of the shape of a fun-
damental region.
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Number of edges of the fundamental region: pm, pmm — 4;
pdm — 3.4;
pl, pg, p3 — 4,6;
P4, p4g i 33475;
p3lm, p6m — 3,4,6;
p2, pmg, pgg, cm, cmm,
pé — 3,4,5,6.
Enantiomorphism: pl, p2, p3, p4, p6 possesses enantiomorphic modifi-
cations, while in the other cases the enantiomorphism
does not occur.

Polarity of rotations: polar rotations — p2, pmg, pgg, p3, p4, p6; non-
polar rotations — pmm, cmm, pdml, p4m, pém.
The symmetry group p4g contains polar 4-rotations
and non-polar 2-rotations, and the symmetry group
p31m contains polar and non-polar 3-rotations.

Polarity of generating translation axes:
both axes are polar — p1l, pg,p3, p31lm;
both axesare bipolar —p2, pgg, p4, p4g, pb;
one axis is polar, the other non-polar — pm, cm;
one axisis non-polar, the other bipolar — pmg, cmm;
both axes are non-polar — pmm, p4m, p3dm, pSm.

The first studies on the symmetry groups of ornaments Gy were un-
dertaken by C. Jordan (1868/69), but he did not succeed in discovering all
the existing 17 symmetry groups. Namely, he omitted the group pgg, dis-
covered by L. Sohncke (1874), who, on the other hand, omitted three other
groups. The complete list of the discrete symmetry groups of ornaments
was given by E.S. Fedorov (1891b).

Cayley diagrams (Figure 2.57):
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Figure 2.57

2.6. Ornaments and Ornamental Art

A plane is called homogeneous iff all the plane points are translation-
aly equivalent, and isotropic iff all directions containing some fixed point
of the plane are equivalent. The symmetry group of the homogeneous and
isotropic plane E? is the maximal continuous symmetry group of ornaments
poocom (s®%). The continua with the symmetry group poomm (s*°*°) can
be understood as the result of the multiplication of a point or circle — a
rosette with the continuous symmetry group Do, (com) — by means of the
continuous symmetry group of translations pgg. A plane continuum with
the symmetry group pgooom (s°°°°) represents the area where all the other
plane symmetry groups exist. Apart from this continuous symmetry group
of ornaments, also visually presentable are the symmetry groups of semicon-
tinua p1olm (slm) and pyomm (smm). They are derived, respectively, as
the extensions of the visually presentable continuous symmetry groups of
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friezes mol and mom (Figure 2.29) by a translation perpendicular to the
frieze axis. In ornamental art, the symmetry groups of semicontinua usually
are presented by adequate systems of parallel lines, constructed by such a
procedure. The other continuous symmetry groups of ornaments may be
visually interpreted by using textures (A.V. Shubnikov, N.V. Belov et al,,
1964).

From the common point of view of geometry and ornamental art,
the most interesting are the crystallographic discrete syvmmetry groups of
ornaments. The idea to analyze the ornaments of different cultures by ap-
plying the theory of symmetry and by registering the symmetry groups of
ornaments, developed by G. Pdlya (1924), has been abundantly used b}
A. Speiser (1927) E. Miiller (1944), A.O. Shepard (1948), H. Weyl (1952
J. Garrido (1952), N.V. Belov (1956a), L. Fejes Téth (1964), D.W. Crowe
(1971, 1975), A.V. Shubnikov and V.A. Koptsik (1974), D.K. Washburn
(1977), E. Makovicky and M. Makovicky (1977), B. Grun’oaum (1984b),
I. Hargittai and G. Lengyel (1985), D.W. Crowe and D.K. Washburn (1985)
and by many other authors. The quoted works mainly analyze the appear-
ance of 17 discrete symmetry groups of ornaments in the art of the ancient
cultures (Egypt, China, etc.), in Moorish ornamental art or in primitive art.
How difficult it is to exhaust all the symmetry possibilities for plane orna-
ments and to discover all the symmetry groups of ornaments, is illustrated
by the fact that many nations, even those with a rich ornamental tradi-
tion, in their early art do not have such examples (B. Griinbaum, 1984b;
B. Griinbaum, Z. Griinbaum, G.C. Shephard, 1986).

In the mathematical theory of symmetry, the first complete list of the
discrete symmetry groups of ornaments was given by E.S. Fedorov (1891b),
although this problem was, even before that, the subject of study of many
important mathematicians.

Therefore, the fact that examples of most of the discrete symmetry
groups of ornaments, given in bone and stone engravings or drawings, date
from the Paleolithic ornamental art is very surprising. In the Neolithic
there came the further development of ornamental art, mainly related to
the decoration of ceramics. Neolithic ornamental art is characterized by
paraphrasing, variation, enrichment of already existent ornaments and by
the discovery of those symmetry groups of crnaments which remained undis-
covered.

Ornaments with the symmetry group pl (Figure 2.58, 2.59) for the
first time occur in Paleolithic art (Figure 2.58a, b). The origin of these
ornaments, obtained by multiplying an asymmetric figure by means of a
discrete group of translations, may be interpreted also as a translational
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Figure 2.58

Examples of ornaments with the symmetry group pl in Paleolithic
and Neolithic art: (a) Chaffaud cave, Paleolithic (Magdalenian);
(b) Paleolithic bone engravings, around 10000 B.C.; (c) Hacilar,
ceramics, around 5700-5000 B.C.
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repetition of a frieze with the symmetry group 11, already existent in Pa-
leolithic ornamental art. Both of the axes of generating translations are
polar. Since the symmetry group pl does not contain indirvect isometries,
the enantiomorphism occurs. A fundamental region usually has an arbitrary
parallelogramic form. Due to their low degree of symmetry, crnaments with
the symmetry group pl are relatively rare. Mostly, they occur with stylized
asymmetric motifs inspired by asymmetric models in nature, rather than by
using asymmetric geometric figures.

Ornaments with the symmetry group p2 (Figure 2.60-2.63) also date
from the Paleolithic, occurring in their most elementary form — as a lattice
of parallelograms (Figure 2.60b). Already in the late Paleolithic (the Mag-
dalenian), there are different ornaments with the symmetry group p2. Some
of them are very rich, as, for example, the meander motif from Ukraine,
dating to the XI millennium B.C. Despite some deviations from the exact
symmetry of ornaments, this record of Paleolithic ornamental art is of an
unexpected scope (Figure 2.60a). In Neolithic ornamental art, besides the
meander motifs, very popular were motifs based on the double spiral —
rosette with the symmetry group C; (2) — occurring for the first time in
the Paleolithic (Figure 2.60c). It is probable that, the doubls spiral can
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Figure 2.59

Examples of ornaments with the symmetry group pl: (a) Hacilar,
around 5700-5000 B.C.; (b) Velushko-Porodin, Yugoslavia, around
5000 B.C.; (c) Western Pakistan, around 3000 B.C.; (d) Naqda
culture, Egypt, around 3600-3200 B.C.; (e) the pre-dynastic period
of Egypt; (f) art of pre-Columbian America, Nasca, Peru; (g) the
ornament *Warms”, the primitive art of Africa.
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Figure 2.60

Examples of ornaments with the symmetry group p2 in Paleolithic
art, around 12000-10000 B.C.: (a) Mezin, USSR; (b) the Paleolith-
ic of Western Europe; (c) the motif of the double spiral, Mal'ta,
USSR; (d) the application of the motif of the double spiral, Arudy,
Isturiz; (e) the Paleolithic art of Europe.
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be found in ornamental art of all the Neolithic cultures, often with wave
motifs. Layered patterns (B. Griinbaum, G.C. Shephard, 1987) with the
symmetry group p2 (Figure 2.62a) originating from the Paleclithic, are
frequent (Figure 2.60b). Since a ceniral reflection is the element of the
symmetry group p2, in the corresponding ornaments both the generating
translation axes will be bipolar. Therefore, in a visual sense, such ornaments
produce an impression of two-way motion. Enantiomorphic modifications
exist. Since in nature the symmetry group C, (2) occurs relatively seldom,
ornaments with the symmetry group p2 mostly are geometric ones. The
simplest construction of ornaments with the symmetry group p2, probably
used in Paleolithic ornamental art, is a multiplication of a frieze with the
symmetry group 12 by a non-parallel translation. A fundamental region is
often triangular and offers the use of curvilinear boundaries.
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Figure 2.61

Examples of ornaments with the symmetry group p2 in Neolithic
art: (a) Tepe Guran, around 5800 B.C.; (b) Siyalk II, around 4000
B.C.; (c) Samara, around 5500 B.C.; (d) Catal Hiijik, around 6400~
5800 B.C.; (e) the Neolithic of the Middle East; (f) the Neolithic
of Tran and Egypt; (g) Neolithic of the Middle East; (h) Dimini,
Greece, around 6000 B.C.; (i) Neolithic, Czechoslovakia, around
5000-4000 B.C.; (j) Odzaki, Greece, around 6100-5800 B.C.

In the same way, a construction of ornaments with the symmetry
groups pm, pg, pmg and pmm can be interpreted as a multiplication of
the corresponding friezes by means of a translation perpendicular to the
frieze axis. All the afore mentioned symmetry groups of friezes originated
from Paleolithic ornamental art.
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Figure 2.62

Examples of ornaments with the symmetry group p2 in Neclithic
art: (a) Butmir II, Yugosiavia, around 3000 B.C.; (b) Adriatic
zone, around 3000-2000 B.C.; (c) Starchevo, Yugoslavia, around
2000 B.C.; (d) Danilo, Yugoslavia, around 4000 B.C.; {e) Vincha
1T, Yugoslavia, around 4500-4000 B.C.; (f) Adriatic zone, arcund
3000-2000 B.C.; (g) Lendel culture, Hungary, around 2900 B.C,;
(h) Neolithic, Italy, around 3700-2700 B.C.
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(c) (d) (e)

Figure 2.83

Ornaments with the symmetry group p2 in ornamental ari: (a)
application of a double spiral, rosette €, (2) in the ornaments of
the Aegean cultures and Egypt; (b) Knossos; (¢) the art of the pre-
Columbian period, Peru; (d) the art of the Pueblo Indians; (e) the
art of primitive peoples, Indonesia.
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Figure 2.64

Examples of ornaments with the symmetry group pm in Paleolithic
art (Ardales, Gorge d’Enfer, Romanelli caves).

AN

Figure 2.65

Examples of ornaments with the symmetry group pm in the Ne-
olithic art of the Middle East (Hacilar, Tell el Hallaf, around 6000

B.C.).
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Figure 2.66

Ornaments with the symmetry group pm in Neolithic art (Tell
Arpachiyah, around 6000 B.C.; Siyalk II, Eridu culture, around
5800 B.C.; Starchevo, around 5500 B.C.; Hacilar, around 5700-
5000 B.C.; Namazga I, around 4000 B.C.).
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From the Paleolithic onward, ornaments with the symmetry group pm
(Figure 2.64-2.67) are frequently used in ornamental art, as ”"geometric”,
“plant” and ”animail” ornaments. By having one polar and one non-polar
generating translation axis, they produce an impression of directed motion
in the direction parallel to the reflection lines, which usually coincides with a
vertical or horizontal line. In the same way as in friezes with the symmetry
group 1m, the visual dynamism of these ornaments can be increased by
choosing an adequate fundamental region or elementary asymmetric figure
belonging to it. There are no enantiomorphic modifications. The form of the
fundamental region may be arbitrary, but requires at least one rectilinear
boundary.
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Figure 2.67

Ornaments with the symmetry group pm: (a) Egypt, 18th dynasty;
(b) Bubastis, Egypt, 1250 B.C.; (¢) Troy, around 1500 B.C.; (d)
the primitive art of the Eskimos, Alaska, around 1825; (e) Japan;
(f) the Mittla palace, the pre-Columbian period of America.
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In ornamental art, friezes with the symmetry group 1g occur relative-
ly seldom, so the same holds for ornaments with the symmetry group pg
(Figure 2.68, 2.69). The appearance of friezes with the symmetry group
1g in Paleolithic ornamental art (e.g., in stylized plant motifs) offers some
evidence to believe that also ornaments with the symmetry group pg origi-
nate from the Paleolithic. In Neolithic ornamental art this symmetry group
mostly occurs in geometric ornaments, while in the pre-dynastic period of
Egypt and Mesopotamia it was frequently used with zoomorphic motifs.
In ornaments with the symmetry group pg both generating translation ax-
es are polar. Since the symmetry group pg contains indirect isometries —
glide reflections — enantiomorphic modifications do not occur. In the visual
sense, ornaments with the symmetry group pg produce a visual impression
of one-way alternating motion.

(c)
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Figure 2.68

Examples of ornaments with the symmetry group pg: (a) Nuzi
ceramics, Minoan period; (b) Mussian, Elam, around 5000 B.C,;
(c) Hallaf, around 6000 B.C. (7600-6900 B.C.7); (d) Eridu culture,
around 4500-4200 B.C.; (e) Hacilar, around 5700-5000 B.C.; (f)
Naqda culture, Egypt, around 3600-3200 B.C.; (g) Adriatic zone,
around 3000-2000 B.C.; (h) Iran, around 5000 B.C.

Ornaments with the symmetry group pmg (Figure 2.70-2.73), and
corresponding friezes with the symmetry group mg, originate from the Pa-
leolithic. Most probably, the symmetry group pmg is one of the oldest
symmetry groups of ornaments used in ornamental art. Their first and
most {requent visual interpretations are as stylized motifs of waves. The
symmetry group pmg is the most frequent symmetry group of ornaments
in Paleolithic and Neolithic ornamental art throughout the world.
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Figure 2.69

Examples of ornaments with the symmetry group pg in the orna-

mental art of Africa.

Regarding the frequency and variety of corresponding ornaments, only
e symmetry group of ornaments p2 can be compared with it. It is prob-
Iy i mpossib’m to find a culture and its prehistoric ornamental art without
ornaments with the symmetry group pmg. Also, by having many various
ornaments {Figure 2.71), it offers the possibility tc analyze the connections
between different Paleclithic and Neolithic cultures, distant both in space
and time, by the similarity of the motifs they used. The symmetry group
mg contains reflections with the reflection Lines perpendicular to one gen-
era‘cmg translation axis and par Lel to the other, and central reflections, so
that the first generating translation axis will be non-polar and the second
bipolar. Enantiomorphic ﬂlOleCath"XS do not exist. Owing to the bipolari-
ty of the other generating translation axis and to glide reflections that pro-
duce the visual impression of two-way alternating motion, ornaments with
the symmetry group pmg will be dynamic ones. On the other hand, as
their static component, the reflections produce the impression of balance.
A Tundamental region is usually rectangular, and requires one rectilinear
boundary that belongs to a reflection line. In Paleolithic and Neolithic or-
namental art, ornaments with the symmetry group pmg mostly occur as

"’5
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geometric ornaments with stylized "water” and meander motifs. Later, the
symmetry group pmg occurs in plant or even zoomorphic ornaments, where

Figure 2.70

Examples of ornaments with the symmetry group pmg in Pale-
olithic art: (a) Mezin, USSR, around 12000-10000 B.C.; (b) the
Paleolithic of Europe; (c) Pernak, Estonia, around 10000 B.C.; (d)
Shtetin, Magdalenian period.
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Figure 2.71

Examples of ornaments with the symmetry group pmg in Neolithic
art (Susa, Harrap, Butmir, Danilo, Vincha A, Lobositz).
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Figure 2.72

Examples of ornaments with the symmetry group pmg in the Ne-
olithic art of the Middle East (Persia, around 4000-3000 B.C.;
Samara, around 6000 B.C.; Siyalk, around 4000 B.C.; Susa 5500-

5000 B.C.) and in the art of the pre-dynastic and early dynastic
period of Egypt (Dendereh, Abydos).
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Figure 2.73

Ornaments with the symmetry group pmg: (a) Egypt, dynastic
period; (b) Troy, around 1500 B.C.; (c¢) the ornamental art of the
primitive peoples of Oceania.
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an initial figure — a rosette with the symmetry group Dy (m) — is multi-
plied by means of a glide reflection, perpendicular to the reflection line of
the roseite. Afterward, the constructed frieze with the symmetry group mg
is repeated by a translation perpendicular to the frieze axis. Most frequent-
ly, ornaments with the symmetry group pmg are construcied by a direct
translational repetition of the corresponding frieze with the symmetry group
mg by means of a translation perpendicular to the frieze axis. A specirum
of the symbolic meanings of ornaments with the symmetry group pmg is
defined by their geometric and visual properties. Therefore, such ornaments
are suitable for presenting periodic alternating non-polar phenomena.

-

Static ornaments with the symmeiry group pmm (Figure 2.74-2.76)
date from Paleolithic art, occuring as cave wall paintings and bone or sto-
ne engravings. Originally, they were used in their simplest form — as a
rectangular lattice — and later, as its various paraphrases realized by an
elementary asymmetric figure belonging o the fundamental region. Reflec-
tions with the reflection lines perpemndicular to the generating tramslation
axes cause the non-polarity of both generating translation axes, and a h‘ﬂﬁ
degree of stationariness and balance. The impression of stability can be
stressed if fundamental natural {hreumns — a vertical and horizontal lins
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Figure 2.74

Examples of ornaments with the symmetry group pmm in Pale-
olithic art: (a) Mezin, USSR, around 12000 B.C.; (b) example of 2
rectangular Bravais lattice, the Lasco cave; (c) Laugerie Haute.
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— coincide with the generating translation axes. In crnamental art, orna-
ments with the symmetry group pmm usually are in that position. Also, the
existence of horizontal reflections restricts the area of suitable ornamental
motifs to rosettes with a symmetry group having as a subgroup the symme-
try group Dy (2m). Among them, rosettes with geometric and plant (e.g.,
flower) motifs prevail. The use of zoomorphic motifs is restricted to a min-
imum. This is because the symmetry group D, (2m) occurs as a subgroup
of the complete symmetry group only in sessile living organisms, while all
non-sessile forms of life are characterized by their polarity — their orienta-
tion in space. The polarity of living things in the vertical direction and their
upward orientation makes impossible the use of zoomorphic ornaments with
the symmetry group pmm. The stated polarity contradicts the existence
of horizontal mirror symmetry, so that in such an ornament half of the fig-
ures will be in an unnatural position. Since the symmetry group pmm is
generated by reflections (pmm = {R;,R3} X {R2, R4} = Do X Do), its
fundamental region must be a rectangle.

e o ol -
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Tigure 2.75

Ornaments with the symmetry group pmm (a) Middle Empire,
Egypt; (b) the primitive art of Africa.
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Figure 2.76
Examples of ornaments with the symmetry group pmm in the Ne-
olithic art of the Middle Fast (Eridu culture, Hallaf, Catal Hiijik)
and the pre-dynastic and early dynastic period of Egypt (Dashash-
eh, Abydos).
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(2)

(c) (d)

Figure 2.77

Ornaments with the symmetry group pgg in Neolithic art: (a)

Jarmo culture, around 5300 B.C.; (b) Catal Hiijik, around 6380~

5790 B.C.; (c) Djeblet el Beda, around 6000 B.C.; (d) Tripolian

culture, USSR, around 4000-3000 B.C.; (e) Siyalk, Iran, around
4000 B.C.; (f) Susa and Butmir, around 5000-4000 B.C.



140 Theory of symmetry and crnament

» The reasons for a relatively rare use of the symmetry group pgg in
ornamental art (Figure 2.77-2.79) are connected with the difficulty in recog-
nizing the regularities these ornaments are based on and their construction-
al complexity. As opposed to ornaments with symmetry groups possessing
"evident” symmeiry elements consisting of one elementary symmetry trans-
formation, or to symmetry groups, derived as extensions of correspond-
ing symmetry groups of friezes by means of a non-parallel transiation, the
symmetry group pgg is generated by two complex, composite symmetry
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Figure 2.78

Examples of ornaments with the symmetry group pgg in the art
of Egypt and the Aegean cultures.

transformations — perpendicular glide reflections. Just how difficult it is
to perceive these ”hidden symmetries”, recognize them, construct the corre-
sponding ornaments and discover the symmetry group pgg, is proved by the
fact that it is the only symmetry group of ornaments omitted by C. Jordan
(1868/69). Ornaments with the symmetry group pgg are usually realized
by the multiplication of a frieze with the symmetry group 1g by a glide
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Figure 2.79

Ornaments with the symmetry group pgg: (2) Columbia, around
€00-1500; (&) pre-Columbian art, Peru; (c) the art of the primitive
peoples of Oceania.

reflection perpendicular fo the frieze axis. Since in Paleolithic and Neolith-
ic ornamental art friezes with the symmetry group 1g occur seldom, this
especially refers to ornaments with the symmetry group pgg. The oldest
examples of these ornaments can be found in the Neolithic (Figure 2.77) and
in the ornamental art of ancient civilizations (Figure 2.78). Besides layered
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patterns with the resulting symmetry group pgg, antisymmetry ornaments
with the antisymmetry group pmg/pgg (Figure 2.1021) are treated by the
classical theory of symmetry as ornaments with the symmetry group pgg.
Namely, the symmetry group pgg can be realized by a desymmetrization
of the symmetry group pmg, where the reflections are replaced by glide
reflections. In the classical theory of symmetry this can be achieved by
a complex, and in a technical sense inconvenient way, by eliminating the
mirror symmetry and by changing the shape of a fundamental region. By
the antisymmetry desymmetrization — black-white coloring resulting in the
antisymmetry group pmg/pgg — this may be realized more easily. A fun-
damental region of the symmetry group pgg usually is a rectangle, offering
a change of the shape. In ornaments with the symmetry group pgg both
generating translation axes are bipolar, producing the impression of max-
imal visual dynamism. On the other hand, the visual dynamism of these
crnaments represents a drawback in the sense of perceiving symmetry ele-
ments, constructing corresponding ornaments and defining a fundamental
region. Thanks to a high degree of dynamism and bipolarity of generating
translation axes, ornaments with the symmetry group pgg are mainly used
with geometric and plant ornamental motifs, as symbolic interpretations
of double-alternating motions. As singular directions, the natural perpen-
diculars — vertical and horizontal lines — may be taken. So that, the
recognition of symmetry elements may be made easier — this being difficult
in a slanting position of glide reflection axis with respect to the observer.
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Figure 2.80

The example of the ornament with the symmetry group em in
Paleolithic art.

Ornaments with the symmetry group em or cram (Figure 2.80-2.88)
are based on a rhombic lattice, the lattice with equal sides, appearing in
Paleolithic ornamental art on bone engravings. The origin of a rhombic
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lattice and its use may be interpreted as a manifestation of the principle
of visual entropy — maximal symmetry and maximal simplicity in the vi-
sual and constructional sense. The replacement of the unequal sides of a
lattice of parallelograms with equal sides results in the symmetrization of
the lattice, changing its cell symmetry from the symmetry group C; (2) to
the symmetry group D; (2m). Ornaments with the symmetry group cmmm
originated earlier, in their most elementary form as a rhombic lattice with a
rectilinear fundamental region (Figure 2.85¢). Ornaments with the symme-
try group cm or cmin maybe originate, respectively, from ornaments with
the symmetry group pm or pmm constructed by a translational repetition
of a rosette with the symmetry group Dy (m) or Dy (2m) by two perpen-
dicular translations, where "gaps” between the rosettes are filled with the
same rosettes in the same position — by centering.
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Figure 2.81

Examples of ornaments with the symmetry group c¢m in Neclithic
art: (a) Susa, around 6000 B.C.; (b) Hallaf, around 6000 B.C.;

* (c) Haldea, around 5000 B.C.; (d) Nezvisko, USSR, arcund 5000

B.C,; (e) Hallaf; (f) antisymmetry ornament with antisymmetry
group pm/cm, treated by the classical theory of symmetry as the
symmetry group cm, Hallaf,
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Figure 2.82

Ornaments with the symmetry group cm in Neolithic art: (a) Tell
Tschagar Bazaar; (b) Tell Arpachiyah; (c) Hallaf; (d) Eridu cul-
- ture; (e) Susa; () Hacilar; (g) Tripolian culture; (h) Namazga; (i)
Starchevo. These ornaments belong to the period 6500-3500 B.C.
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Figure 2.83

Ornaments with the symmetry group cm in Neolithic art (Mohen-
jo Daro, Niniva, Tepe Aly, Hacilar, Tell i Jari, around 6000-3500
B.C.).



Theory of isometric symmetzy groups 147

Ornaments with the symmetry group cm (Figure 2.80-2.84) possess
one polar diagonal generating translation. They are convenient for sug-
gesting directed motion. Gwing to the indirect isometries — reflections —
enantiomorphic modifications do not occur. A fundamental region is often
triangular, with one rectilinear side. Apart from by the construction pro-
posed above — by means of rosettes with the symmetry group D; (m) —
such ornaments may be also obtained by a desymmetrization of the symme-
try group cmm, where one reflection must be eliminated either by changing
the shape of the fundamental region or by a coloring. In the classical the-
ory of symmetry, antisymmetry ornaments with the antisymmetry group
cmm/em are included in the class of ornaments with the symmetry group
em (Figure 2.102g). Ornaments with the symmetry group cm may also
be constructed by multiplying a frieze with the symmetry group ig by a
reflection with the reflection line parallel to the frieze axis.
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Figure 2.84

Examples of ornaments with the symmetry group cm: (a) Egypt,
2310 B.C.; (b) the Knossos palace; (c) Egypt; {(d) Pseira; (e} Egypt,
1830 B.C.; (f) Arabian ornament; (g) the Mittla palace, the pre-
Columbian period of America; (h) Gothic ornament.
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(c)

Figure 2.85

Ornaments with the symmetry group emm in Paleolithic art: (a)
Polesini cave; (b) Laugerie Haute; (c) Pindel, Vogelherd.
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Figure 2.86

Examples of ornaments with the symmetry group emm in the Ne-
olithic art of the Middle East (Hallaf, Catal Hiijiik).
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Figure 2.87

Examples of ornaments with the symmetry group emm in Neolith-
ic art (Susa, Hajji Mohammed, Siyalk, Hacilar, Lendel culture,
around 6000-3000 B.C.).
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Ornaments with the symmetry group cmm (Figure 2.85-2.88) possess
one non-polar diagonal and one hipolar generating translation axis. There
are no enantiomorphic modifications. A fundamental region is often tri-
angular, with two rectilinear sides belonging to reflection lines. Since in
ornamental art, especially in the Paleolithic and Neolithic, friezes with the
symmetry group mg are the most frequent, the origin of ornaments with
the symmetry group emm can be understood as a multiplication of a frieze
with the symmetry group mg by a reflection with the reflection line parallel
to the frieze axis. This is the reason that ornaments with the symmetry
group cmm are used so much and are in such variety. In the classical the-
ory of symmetry, antisymmetry ornaments with the antisymmetry group
pmm/emm (Figure 2.102b) are included in the class of ornaments with
the symmetry group cmm, thus enriching it considerably.
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Figure 2.88

Ornaments with the symmetry group cmm in Neolithic art, Hallaf,
around 6000 B.C. (7600-6900 B.C.7).

The class of crnaments appearing much later and occurring in orna-
mental art seldom consists of ornaments with the symmetry groups p3, p3m
and p31m, belonging to the hexagonal crystal system (Figure 2.89, 2.90).
All previously discussed symmetry groups of ornaments can be realized in a
simple way, as primary plane lattices (Bravais lattices) or by composing the
symmetry groups of friezes with the simplest symmetry groups of rosettes
D (m) or C, (2), generated by a reflection or by a central reflection.
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(c) (d)

Figure 2.88

Ornamental motifs that suggest the symmetry of plane ornaments
with three-fold rotations: (a) Hallaf, around 6000 B.C. (7600-6900
B.C.7); (b) Mohenjo Daro, around 4500-4000 B.C.; (c) Tripolian
culture, around 4000-3500 B.C.; (d) the interlaced motif, Egypt,
early dynastic period.

Ornaments with the symmetry group p3 may be constructed by mul-
tiplying a rosette with the symmetry group Cj; (3) by two non-parallel
translations with translation vectors of the same intensity, constructing a
60°-angle or by multiplying a frieze with the symmetry group 11 by a trig-
onal rotation. Since natural forms with the symmetry group Cs (3) occur
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seldom, the absence of these natural models accounted for the absence of
ornaments with the symmetry group p3 in the earliest periods of ornamen-
tal art. A few older examples of crnaments containing rosettes with the
symmetry group C; {3) deviate from the exact rules of symmetry (Figure
2.89) and only suggest the p3-symmetry, which would be used consequently
in the ornamental art of the ancient civilizations (of Egypt, China, etc.)
(Figure 2.90). The usual shape of a fundamental region of the symmetry
group pd is a thombus with a 60°-angle, offering great possibilities for vari-
ations and for curvilinear boundaries. Ornaments with the symmetry group
p3 possess enantiomorphic modifications. Since they contain two dynam-
ic polar components — polar translation axes and trigonal polar oriented
rotations, such ornaments are dynamic onss. Their visual dynamism can
be stressed by using a suitable shape of the fundamental region or of an
elementary asymmetric figure belonging to the fundamental region. Rep-
resenting the result of a superposition of the symmetry groups 11 and Cs
(3), the symmetry group p3 possesses three singular polar directions, so
that the corresponding ornaments produce an impression of a three-way di-
rected motion. As a subgroup of the index 4 of the symmetry group p6, the
symmetry group p3 may be derived by a desymmetrization of the symmetry
group p6m, or even by a desymmetrization of the symmetry group p6. The
symmetry group pé€ is the subgroup of the index 2 of the symmetry group
p6m, and the symmetry group p3 is the subgroup of the index 2 of the
symmetry group p6. This offers many possibilities for classical-symmetry
or antisymmetry desymmetrizations, in particular, for the antisymmetry
desymmetrization resulting in the antisymmetry group p6/p3, treated by
the classical theory of symmetry as the symmetry group p3 (Figure 2.90a,
2.102d).

Ornaments with the symmetry groups p31m and p3m1 differ among
themselves by the position of reflection lines. In ornaments with the sym-
metry group p31lm reflection lines are parallel to the generating translation
axis, while in ornaments with the symmetry group p3m1l they are perpen-
dicular to it. Regarding their origin, both groups can be understood as
a result of superposition of the symmetry group of rosettes D3 (3m) and
the symmetry group of friezes 11, where in ornaments with the symmetry
group p3lm the frieze axis is parallel to the reflection line of the rosette,
while in ornaments with the symmetry group p3ml it is perpendicular to
the reflection line. Also, we may consider the symmetry group p31m as the
superposition of the symmetry group of rosettes C3 (3) and the symmetry
group of friezes 1m, and the symmetry group p3ml as the superposition
of the same symmetry group Cj (3) and the symmetry group of friezes m1.
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Figure 2.90

Ornaments with three-fold rotations: (a) p3; (b) p31m; (c) pSm1.
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From there result the following common properties of these two groups: the
symmetry groups p3im and p3ml are the subgroups of the index 2 of the
symmetry group p6m, so they can be derived by desymmetrizations of the
symmetry group p8m, in particular, by antisymmetry desymmetrizations.
Owing to reflections with reflection lines incident with trigonal rotation cen-
ters, the symmetry group p3 ml is characterized by the non-polarity of all
trigonal rotations. In ornaments with the symmetry group p31im half of
the trigonal rotation centers are incident to reflection lines, and the others
are not, so the symmetry group p31m contains the polar and non-polar
trigonal rotations. In both symmetry groups, the indirect transformations
— reflections — cause the absence of the enantiomorphism. In ornaments
with the symmetry groups p3im and p3ml glide reflections parallel with
reflection lines appear as secondary elements of symmetry. The different
position of reflection lines with respect to the generating translation axes
causes certain relevant constructional and visval-symbelic differences be-
tween the corresponding ornaments.

Same as their generating friezes with the symmetry group 1m, orna-
ments with the symmetry group p31m, that contain a reflection parallel to
the generating translation axis, have a polar, oriented generating transla-
tion axis. From this the visual dynamism of ornaments with the symmetry
group p3lm results. They produce the impression of three-way directed
motion. A fundamental region of the symmetry group p3lm is usually
defined by a longer diagonal and by two sides of the rhombic fundamental
region already mentioned in the case of the symmetry group p3, where these
two sides can be replaced with adequate curvilinear contours. This makes
possible different variations and the emphasis or alleviation of the dynamic
visual impression produced by the corresponding ornaments. Despite the
existing conditions for a variety of ornaments with the symmetry group
p31lm, in old ornamental art they occur relatively seldom, mainly because
of their constructional complexity and the absence of natural models. Their
full affirmation will come in the ornamental art of the developed ancient
civilizations (Figure 2.90). Examples of the symmetry group p31m may
be obtained by a desymmetrization of the symmetry group p6m in which
the symmetry group p31m is the subgroup of the index 2. Owing to the
constructional complexity of the corresponding antisymmetry mosaics, the
antisymmetry group p6m/p3im, treated by the classical theory of sym-
metry as the symmetry group p3lm , is poorly represented in ornamental
art (A.V. Shubnikov, N.V. Belov et al., 1964, pp. 220).

Similar to the corresponding symmetry group of friezes m1, the sym-
metry group of ornaments p3ml contains reflections with reflection lines
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perpendicular to the generating translation axis, that cause the non-polarity
of the axis. Therefore, in a geometric and visual-symbolic sense, the sym-
metry group p2m1l can be considered as a static equivalent of the symmetry
group p31m. The fundamental region of the symmetry group p3dml is an
equilateral triangle. The symmetry group p3mil {A) is generated by reflec-
tions, that require a rectilinear triangular fundamental region and restrict
the area of the corresponding classical-symmetry ornaments to the use of
some elementary asymmetric figure belonging to a fundamental region, re-
sulting in a marked isohedral tiling (B. Griinbaum, G.C. Shephard, 1987).
No desymmetrization of a fundamental region of the symmetry group Dj
(3m) can be achieved by changing its shape. Therefore, an internal desym-
metrization of the fundamental region becomes indispensable, making im-
possible a visual interpretation of the symmetry group p3m1 accompanied
by an isohedral tiling, without a previous internal desymmetrization of the
fundamental region. A fundamental region must be rectilinear in all the
groups generated by reflections: pmm, p4m, p6m and p3m1l. Except the
symmetry group p3ml, this fact has no influence on the possibility to con-
struct an isohedral tiling with a tile serving as the fundamental region of
the symmetry group discussed. Only in the symmetry group p3m1i, where
this tiling is a regular tessellation {3, 6}, there comes the symmetrization by
composing six equilateral triangles with a common vertex and each with the
symmetry group D3 (3m). Theresult is the isohedral tiling with the symme-
iry group p6m. Therefore, in ornamental art, the symmetry group p3ml
occurs seldom, especially in the earlier period (Figure 2.90c). Distinct from
classical-symmetry ornaments with the symmetry group p3m1i, antisymme-
try ornaments with the antisymmetry group p6m/p3ml, in the classical
theory of symmetry treated as ornaments with the symmetry group p3mi,
are some most frequent antisymmetry ornaments. The antisymmetry group
p6m/p3ml can be derived by the antisymmetry desymmetrization of the
symmetry group p6m, where the adjacent equilateral triangles of a regular
tessellation {3,6} are colored oppositely (Figure 2.102n). Their generating
symmetry group p6m is one of the most frequent symmetry groups in the
whole of ornamental art, while their constructional and visual simplicity
caused the frequent occurrence of ornaments with the antisymmetry group
pBm/p3m1.

The symmetry group p6 belongs to the hexagonal crystal system. The
corresponding ornaments (Figure 2.91) may be constructed by multiplying
a rosette with the symmetry group Cg (8) by means of two non-parallel
translations with translation vectors of the same intensity, constructing a
60°-angle. The symmetry group p6 can be obtained by superposing the
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syminetry group of friezes 11 and the symmetry group of rosettes Cg (6),
or by composing the symmetry group of friezes 12 and the symmetry group
of rosettes C3 (3). The oldest examples of ornaments with the symmetry
group p6 date from the ancient civilizations (Figure 2.91¢c,d). Owing to

Figure 2.91

Ornaments with the symmetry group pé: (a) Butmir, around 4000
B.C.; (b) Pseira; (c) Cyclades, around 2500 B.C.; (d) Crete and
. Egypt.

their constructional complexity and the lack of models in nature, in orna-
mental art they are rather rare. A fundamental region of the symmetry
group p6 may by an equilateral triangle with sides that can be replaced by
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curved lines. This results in the variety of ornaments with the symmetry
group p6. The enantiomorphism occurs. Since central reflections are ele-
ments of the symmetry group pé, the generating translation axes will be
bipolar. Although their dynamic visual effect is alleviated by central reflec-
tions and by the bipolarity of the generating translation axes, crnaments
with the symmetry group p8 belong to 2 family of dynamic ornaments.
In them, it is possible to recognize three singular bipolar directions. The
symmetry group p8 is the subgroup of the index 2 of the symmetry group
pém, so that examples of the symmetry group p6 can be coastructed by 2
desymmetrization of the symmetry group p6m, this means, of regular fes-
sellations {3,6} or {6,3}. Aiming to eliminate reflections and tc maintain
the symmetry p6, besides classical-symmeiry desymmetrizations, antisym-
metry desymmetrizations are used. As a result, antisymmetry ornamenis
with the antisymmetry group p6m/p6, considered by the classical theory
of symmetry as ornaments with the symmetry group p8, may be obtained
(Figure 2.1020).

(a)

Figure 2.92
Ornaments with the symmetry group p8m in Paleolithic art: (a)
regular tessellation {6,3}, the motif of honeycomb, Yeliseevichi,
USSR, around 10008 B.C.; (b) the example of regular tessellation
{3,6} in the Paleolithic art of Europe (Magdalenian).

The symmetry group p6m (Figure 2.92, 2.93) is the maximal symme-
try group of the hexagonal crystal system. The oldest and most frequent
ornaments with the symmetry group p8m are regular tessellations {3,6}
and {6,3}. The tessellation {6,3} dates from the Paleolithic (Figure 2.92a),
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Figure 2.93

Ornaments with the symmetry group p6m: (a) Egypt, early dy-
nastic period; (b) Sakara, arcund 2680 B.C.; (c) Egypt, around
1450 B.C.; (d) Tepe Guran, around 6000 B.C.; (e) Susa, around
6000 B.C.; (f) Samara, around 5000 B.C.; (g) Middle East, around
5000-4000 B.C.; (h) Greco-Roman mosaic.
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occurring on a bone engraving. This tessellation and ifs corresponding sym-
metry group p8m probably originated from natural models — honeycombs
— the regularity and symmetry of which has always attracted the attention
of artists and mathematicians. Its dual tessellation {3,6} also dates from
Paleolithic ornamental art (Figure 2.92b). Both ornamental motifs men-
tioned, either in their elementary form or with various paraphrases, occured
in ornamental art of different civilizations. Ornaments with the symmetry
group p6m may be constructed by multiplying a rosette with the symmetry
group D¢ (6m) by means of two non-parallel translations with franslation
vectors of the same intensity, constructing 2 60°-angle, or by composing
the symmetry group of friezes mim and the symmetry group of rosettes Cg
(6). Owing to its constructional complexity, the other construction is not
as frequent as the first. A fundamental region of the symmetry group pém
is a right-angled triangle defined by the sides and altitude of an equilateral
triangle that corresponds to a regular tessellation {3,6}. Since the symme-
try group p6m is generated by reflections, its fundamental region must be
rectilinear. The variety of ornaments with the symmetry group p6m can be
realized only by using some asymmetric figure that belongs to a fundamental
region. There are no enantiomorphic medifications. The generating transla-
tions and 6-fold rotations are non-polar. A static visual component caused
by reflections is dominant. Besides having an important role in ornamental
art, the symmetry group p6m can serve as a basis for the derivation of all
the symmetzry groups of the hexagonal crystal system by classical-symmetry,
antisymmetry and colored-symmetry desymmetrizations. All the groups of
the hexagonal crystal system are subgroups of the symmetry group p8m.
The symmetry groups p31m and p3ml are its subgroups of the index 2,
and p3 is its subgroup of the index 4 (H.S.M. Coxeter, W.0.J. Moser, 1980).
Each subgroup of the index 2 may be derived {rom its supergroup by an an-
tisymmetry desymmetrization. Regarding the frequency of occurrence, the
symmetry group p6m is one of the most frequent symmetry groups in orna-
mental art, proving that the principle of visual entropy — the aim toward
maximal constructional and visual simplicity and maximal symmetry — is
fully respected.

The square crystal system consists of the symmetry groups of orna-
ments p4 (Figure 2.94), p4g (Figure 2.95-2.97) and p4m (Figure 2.98-
2.101). Frequent examples of ornaments with the symmetry groups of the
square crystal system are mainly a result of the comstructional and visu-
al simplicity of a square lattice — regular tessellation {4,4} — on which
these ornaments are based. The oldest examples of a square lattice date
from the Paleolithic stone or bone engravings. By uniting two fundamental
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Figure 2.94

Ornaments with symmetry group p4: (a) Starchevo, Yugoslavia,
around 5§500-5000 B.C.; (b) Egypt and Aegean cultures; (c) Akhbar
school, India; (d) the art of primitive peoples, Africa.
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properties — division of 2 plane into squares, and perpendicularity — a reg-
ular tessellation {4,4} possesses the maximal symmetry group p4m of the
square crystal system and serves as a basis for the construction of all orna-
ments with the symmetry groups belonging to this crystal system. Because
all discrete symmetry groups of ornaments, except the groups of the hexag-
onal crystal system based on regular tessellations {3,6} or {6,3}, are its
subgroups, the symmetry group p4m and its corresponding square regular
tessellation {4,4} can serve as a starting point for the derivation and visu-
al interpretation of all the subgroups mentioned by the desymmetrization
method. The symmetry group p8m corresponding to regular tessellations
{3,6} and {6,3} possesses a similar property and contains as subgroups,
except the groups of the square crystal system, all the remaining discrete
symmetry groups of ornaments. Owing to its visual and constructional sim-
plicity, a regular tessellation {4,4} and the corresponding symmetry group
p4m has become the richest source for deriving symmetry groups of orna-
ments by the desvmmetrization method. Regular tessellations {3,6}, {6,3}
and the corresponding symmetry group p8m will serve only for construct-
ing ornaments with symmetry groups of a lower degree of symmetry, which
cannot be realized by the desymmetrization method from a regular tessella-
tion {4,4} — this means, for deriving by the desymmetrization methad, the
symmetry groups p3, p31m, p3m, p6 and p8m of the hexagonal crystal
gystem. A

The symmetry group p4 is the minimal symmetry group of the square
crystal system. It can be derived as an exiension of the symmetry group of
rosettes Cy4 (4) by means of a discrete group of translations geunerated by
two perpendicular translations with translation vectors of the samie inten-
sity. Also, it can be derived as a superposition of the symmetry group of
friezes 12 and the symmetry group of rosettes C4 (4) or by a desymmetriza-
tion of the symmetry group p4m in which the symmetry group p4 is the
subgroup of the index 2 . Since the symmetry group p4 does not contain
indirect isometries, there is a possibility for enantiomorphism. Owing to
the visual dynamism caused by the absence of reflections, the possibility
of enantiomorphism, and the bipolarity of generating translation axes aund
polarity of 4-rotations, the visual and constructional simplicity of a regu-
lar tessellation {4,4} is not so expressed in ornaments with the symmetry
group p4. In constructing ornaments with the symmetry group p4, all con-
struction methods will have almost equal importance. Owing to their low
degree of symmetry and complex construction, ornaments with the symme-
try group p4 are not as frequent as ornaments with the symmeiry groups
p4g and p4m belonging to the same crystal system. The oldest examples
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of ornaments with the symmetry group p4 originate from Neolithic ceram-
ics (Figure 2.94). These ornaments are constructed by multiplying a frieze
with the symmetry group 12, with the "wave” motif based on a double
spiral, by the transformations of the symmetry group Cy (4). Usually, a
fundamental region of the symmetry group p4 is an isosceles right-angled
triangle defined by the immediate vertices and the center of a square of
the regular tessellation {4,4}. Aiming for a variety of the corresponding
ornaments, a curvilinear fundamental region may be used. Polar, oriented
four-fold rotations are a dynamic visual component of ornaments with the
symmetry group p4. Therefore, although they do produce a visual sugges-
tion of motion, and this is somewhat alleviated by the visual effect produced
by the central reflections and by the bipolarity of the generating translation
axes, such ornaments belong to a family of visually dynamic ornaments.
They offer the possibility for the visual distinction of four singular bipo-
lar directions that correspond to the generating frieze with the symmetry
group 12. Since the symmetry group p4 is the subgroup of the index 2
of the maximal symmetry group p4m of the square crystal system, it is
possible to derive the symmetry group p4 by a desymmetrization of the
symmetry group p4m. Since it is also the subgroup of the index 2 of the
group p4g, desymmetrizations of the symmetry group p4g may be used to
obtain ornaments with the symmetry group p4. That especially refers to
the antisymmetry desymmetrization resulting in the antisymmetry group
p4g/p4, by the classical theory of symmetry discussed as the symmetry
group p4. ' :

Ornaments with the symmetry group p4g (Figure 2.95-2.97) may be
constructed by the multiplication of a rosette with the symmetry group Cq4
(4) by means of two perpendicular reflections that do not contain the center
of this rosette. The same symmetry group can be derived as a superposition
of the symmetry group of friezes 1g and the symmetry group of rosettes Cy
(4) or by a desymmetrization of the symmetry group of ornaments p4m, in
which the group p4g is the subgroup of the index 2. The symmetry group
p4g corresponds to a uniform tessellation s{4,4}, i.e. (4.8%) (H.S.M. Cox-
eter, W.0.J. Moser, 1980; B. Griinbaum, G.C. Shephard, 1987). According
to the criterion of maximal constructional simplicity, a desymmetrization of
the symmetry group p4dm or the multiplication of a rosette with the sym-
metry group C4 (4) by means of two perpendicular reflections, non incident
with the rosette center, will be the prevailing methods for constructing or-
naments with the symmetry group p4g. The oldest ornaments with the
symmetry group p4g appear in Neolithic ceramics (Figure 2.95). In or-
namental art of the ancient civilizations such ornaments, with somewhat
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changed Neolithic motifs, are very frequent. This especially refers to the
ornaments with the symmetry group p4g using ”swastika” motifs, which
appeared as early as the Neolithic (Figure 2.95b).

Fignre 2.95

Examples of ornaments with the symmeatry group p4g in Neolithic
art: (a) Tripolian culture, USSR, arcund 4000 B.C.; (b) Hallaf,
around 6000 B.C.; (c) Catal Hijjik, around 6400-5800 B.C.
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Figure 2.96

Examples cf ornaments with the symmetry group p4g in the art
~ of the dynastic period of Egypt.

Therefore, a detailed comparative analysis of the repetition of that
and some other ornamental motifs can be useful in the study of the inter-
cultural relations and influences that occurred in the Neolithic period and
at the beginning of ancient civilizations. Usually, 2 fundamental region of
the symmetry group p4g is an isosceles right-angled triangle defined by the
centers of adjacent sides and by the corresponding vertex of a square of the
regular tessellation {4,4}. Aiming to increase the variety of ornaments with
the symmetry group p4g and to emphasize or decrease the intensity of the
dynamic visual effect produced by them, its edges can be replaced by curved
lines. The generating transiation axes are bipolar. Despite the secondary
reflections and the absence of the enantiomorphism, the four-fold rotations
are polar, since these reflections do not contain the four-fold rotation cen-
ters. Owing to the four-fold polar, oriented rotations and glide reflections,
ornaments with the symmetry group p4g belong to 2 family of extremely
dynamic ornaments in the visual sense. They suggest a motion by their
parts and by the whoele, which is only partly offset by the static visual effect
produced by the secondary reflections. Ornaments with the symmetry group
p4g offer the possibility for the visual distinction of generating rosettes with
the symmetry group C4 (4) and generating {riezes with the symmetry group
mg. According to the principle of visual entropy, a visual recognition of their
symmetry substructures will be hindered by the visual dynamism of these
ornaments and by the visual dominance of glide reflections as the elements
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Figure 2.97

Ornaments with the symmetry group p4g: (2) Crete; (b) Aegina,
around 5000 B.C.; (c¢) Thebes, Egypt, around 1500 B.C.; (d) Greco-
Roman mosaic.
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of symmetry. The symmetry group p4g is the subgroup of the index 2
of the symmetry group p4m, so that desymmetrizations of the symmetry
sroup p4m and of a regular tessellation {4,4} can be efficiently used for
constructing ornaments with the symmetry group p4g. Besides classical-
symmetry desymmetrizations, antisymmeiry desymmetrizations resulting
in the antisymmetry group p4m/p4g, by the classical theory of symmetry
considered as the symmetry group p4g, frequently occur (Figure 2.102h).

G e

Figure 2.98

Examples of ornaments with the symmetry group pdm in Pale-
olithic art; the regular tessellation {4,4}.

The most frequent symmetry group of ornaments is the maximal sym-
metry group p4m of the square crystal system (Figure 2.98-2.101), which
corresponds to a regular tessellation {4,4}. Besides their large independent
application, the symmetry group p4m plays an important role in the con-
struction of all ornaments, except those with the symmetry groups of the
hexagonal crystal system, by the desymmetrization method. Besides the
property of regularity, a regular tessellation {4,4} possesses another funda-
mental property — the existence of two perpendicular generating transla-
tion axes incident to reflection lines. Since all the discrete symmetry groups
of ornaments, except the groups of the hexagonal crystal system, are sub-
groups of the symmetry group p4m, it can serve as a basis for the derivation
of all the discrete symmetry groups of ornaments by the desymmetrization
method, in the first place for those symmetry groups with perpendicular
generating translation axes: pm , pg, pmim, pmg, pPgg, cm, cmm, p4,
p4g. Besides classical-symmetry desymmetrizations, antisymmetry desym-
metrizations resulting in all the subgroups of the index 2 of the symmetry
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group p4dm — pmm, cmm, p4, p4g, p4m and color-symretry desym-
metrizations, may also be used. Ornaments with the symmetry group p4m
can be constructed by multiplying a frieze with the maximal symmetry
group of friezes mm by means of a four-fold rotation, by multiplying a
rosette with the symmetry group Dy (4m) by means of two perpendicular

Figure 2.99

Ornaments with the symmetry group p4m in Neolithic art (Catal
" Hijitk, around 6460-5800 B.C.; Tell Brak, around 6000 B.C.; Tell
Arpachiyah, around 6000 B.C.; Hacilar, around 5700-5000 B.C.).

translations with translation vectors of the same intensity, or by means of a
regular tessellation {4,4}. According to the principle of maximal construc-
tional simplicity, the dominant methods for constructing ornaments with
the symmetry group p4m will be by a square regular tessellation {4,4} or
the translational multiplication of a rosette with the symmetry group Dy
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{4m) . Early ornaments with the symmeatry group p4m date from the Pa-
leolithic, occurring as bone engravings representing an elementary square
lattice — regular tessellation {4,4} (Figure 2.98). The further development
of ornamental art tended toward the enrichment of ornamental motifs (Fig-
ure 2.99, 2.100). A fundamental region of the symmetry group p4m is an
isosceles right-angled triangle defined by the center of a side, its belonging

Figure 2.100

Ornaments with the symmetry group p4m in Neolithic art and the
pre-dynastic period of Egypt.

vertex, and the center of a square that corresponds to the regular tessellation
{4,4}. A fundamental region of all the groups generated by reflections must
be rectilinear, so that the variety of ornaments with the symmetry group
p4m is reduced to the use of an elementary asymmetric figure belonging
to a fundamental region. Four-fold rotations and generating translations
are non-polar. Enantiomorphic modifications do not occur. Therefore,
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ornaments with the symmetry group p4m produce an impression of sta-
tionariness and balance, caused by perpendicular reflections incident to the

generating translation axes.

Figure 2.101

The ornament ¥Frogs” with the symrmetry group p4dm, the art of
primitive peoples, Africa.

Secondary diagonal reflections contribute to the impression of station-
riness. Since taken for the directions of reflection lines nsually are the fun-
amental natural directions — vertical and horizontal line — the dynamic
visual component produced by secondary glide reflections with the axes par-
allel to the diagenals is almost irrelevant. it will come to its full expression
in ornaments with symmetry group p4m placed in such a position that the

Q—»Dﬁ
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Figure 2.102

Examples of antisymmetry ornaments with the antisymmetry gro-
up: {2) p2/p2; (b) pmm/cmm; (c) cmm/pgg; (d) pé/p3;
(e) pmg/pg; {f). pmg/pm; (g) cmm/jem; (h) p4m/pdg; (i)
p4m/p4m; (j) p4/p4; (k) pmg/pmg; (1) pmg/pgg; (m) emm/
pmm; (n) pém/p2m1l; (o) pém/p8, the antisymmetry mosaics
according to A.V. Shubnikov , N.V. Belov et al. (1964, pp. 220).

diagonals coincide with the natural fundamental directions — the vertical
and horizontal line. Besides the classical-symmetry desymmetrizations, an-
tisymmetry desymmetrizations resulting in all the subgroups of the index 2
of the symmetry group p4m, and the colored-symmetry desymmetrizations,
are used. Among antisymmetry desymmetrizations the most frequent is the
antisymmetry group p4m/p4m (”chess board”) (Figure 2.102j) discussed
in the classical theory of symmetry as the symmetry group p4m.

Basic data on antisymmetry desymmetrizations is given in the table
of the most frequent antisymmetry groups of ornaments G4, i.e. the most
frequent classical-symmetry groups that may be derived by antisymmetry
desymmetrizations:
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p2/p2 pram/cmm pmg/pm
cmm/cm pmg/pgg - cmm/pmm
pmg/pmg p4/p4 p4m/pig

. pdm/pdm pfm/p3ml pém/p8

All of them occurred in Neolithic ornamental art (Figure 2.103).

(]
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(x)

Figure 2.103

Antisymmetry ornaments in Neolithic art: (a) p1/p1; (b) p2/p2;
(c) p2/p1; (d) pm/plm; (e) pmg/pm; (f) pmg/pg; (8) pm/ p-
m1; (h) pm/em; (i) pg/pl; () em/pm; (k) em/pl; (1)
pmm/pmm; (m) pmm/cmm; (n) pmg/pmg; (o) pim/pdg;
(p) p6m/p3m1; (q) emm/pmm; (r) ecmm/cm; (s) emm/pgg;
(t) pgg/pes; (v) pgg/pg; (V) p4m/p4m; (x) p4m/cmm.



Theory of isometric symrmetry groups 175

* % %

Analyzing connections between ornamental art and the theory of sym-
metry, we can use the chronology of ornaments, considering as the main
characteristics the time, the methods and the origin of ornaments. The
oldest examples of ornaments date from the Paleolithic and Neolithic and
belong to ornaments with the symmetry groups pl, p2, (pg), pm, pmg,
pmm, em, cmm, p4m and p8m. For all the symmetry groups of orna-
ments, except the symmetry group pg, we have concrete examples of the
corresponding crnaments, occurring in the Paleclithic stone and bone en-
gravings or cave drawings and Neolithic ceramic decorations. Since friezes
with the symmetry group 1g originate from the Paleolithic, and by their
translational repetition crnaments with the symmetry group pg can be con-
structed, probably the same dating holds for crnaments with the symmetry
group pg. Another argument in favor of their early appearance is the exis-
tence of models in nature — the arrangements of leaves in some plants. On
the other hand, the visual dynamism and low degree of symmetry of orna-
ments with the symmetry group pg conld be account for their absence in
Paleolithic ornamental art and for their somewhat later appearance in the
Neclithic. It is also possible that the symmetry group pg, according to the
principle of visual entropy, was replaced by the symmetry group pmg, very
frequent in Paleolithic and Neolithic ornamental art. The first eight of the
symmetry groups of ornaments mentioned can be derived as superpositions
of symmetry groups of friezes and rosettes, without using rotations of the
order greater than 2. Because the examples of all seven discrete symmetry
groups of friezes 11, 1g, 12, m1, 1m, mg and mm occur in Paleolithic, this
is the simplest method for constructing ornaments. Five of these symme-
try groups of ornaments appear in the Paleolithic as the Bravais lattices (a
attice of parallelograms with the symmetry group p2, rectangular (pmm),
rhombic (emm), square (p4m) and hexagonal (p6m)) — the simplest vi-
sual interpretations of the maximal symmetry groups of the crystal systems
bearing the same names. The importance of reflections is proved by their
presence in all the symmetry groups of ornaments mentioned, except pi,
p2 (and pg). This illustrates the dominance of static ornaments in the vi-
sual sense, expressed by the absence of almost all the dynamic symmetry
elements — polar rotations, glide reflections and by a relative dominance of
non-polar and bipolar generating translations over the polar ones. As gen-
erating rosettes there are those with the most frequent symmetry groups of
rosettes: Dy (m), Cy (2), Dy (2m), Dy (4m) and Dg (6m). The symmetry
group of rosettes Dy (2m), besides the presence of reflections also possesses

ot
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the other fundamental property — perpendicularity of reflection lines that
coincide to the fundamental natural directions — the vertical and horizontal
line. This symmetry group is a subgroup of four of the symmetry groups
of ornaments mentioned: pmm, cmm, p4m, p6m. The two stated orna-
ments, p4m and pém, correspond to regular tessellations {4,4} and {3,6}
or {6,3}, i.e. to the perfect ornamental forms. With isogons, isohedrons,
etc., regular tessellations belong together to the general tiling theory, dis-
cussed by E.S. Fedorov (1916), B.N. Delone (1959), H. Heesch, O. Kienzle
(1963), L. Fejes T6th (1964), H. Heesch (1968), A.V. Shubnikov, V.A. Kopt-
sik (1974), B. Grinbaum, D. Lockenhoff, G.C. Shephard, A.H. Temesvari
{(1985), in many works by B. Grinbaum and G.C. Shephard (e.g., 1977¢,
1978, 1983) and in their monograph Tilings and Patterns (1987).
Generating rosettes and friezes serve as the basis for constructing or-
naments. They caused the time of appearance and the frequency of occur-
rence of particular symmetry groups of ornaments. Such constructions are
extensions from the ”local symmetry” of rosettes and friezes to the "global
symmetry” of ornaments. As a common denominator for all the character-
istics of Paleolithic ornaments we can use the principle of visual entropy —
maximal constructional and visual simplicity and maximal symmetry.

Models existing in nature are prerequisites for the early appearance
of some symmetry groups of ornaments {p2 — waves, pmg — water, pém
— a honeycomb). On the other hand, they impose cerfain restrictions in
ornamental motifs. Since almost all animals and many plants are mirror-
symmetrical, the same holds for ornaments inspired by those natural models.
Even in geometric ornaments, where such restrictions have no influence,
the importance of mirror symmetry in nature served as the implicit model
and caused the dominance of ornaments containing reflections. The causes
of this phenomenon can be found also in the constructional simplicity of
ornaments with reflections, in human mirror symmetry and binocularity.

In the lather periods — in the Neolithic and in the period of the ancient
civilizations — ornaments with the symmetry groups pg, pgg, p3, p3lm,
p3ml, p4, p4g, p6, appeared. Ornaments with the symmetry groups p3,
p31im, p3ml, p4, p4g, p6 contain rotations of the higher order — 3, 4, 8
— occurring, until till then, only in regular tessellations {4,4}, {3,6} and
{6,3},i.e. in the symmetry groups p4m, p6m. The new symmetry groups
caused new construction problems, in that the construction of ornaments
required a very complicated multiplication of friezes. In these symmetry
groups of ornaments, dynamic symmetry elements — polar rotations, po-
lar generating translations and glide reflections -— prevail. Therefore, with
the constructional complexity of the corresponding ornaments, there is the
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problem of their visual complexity — i.e. difficulties in perceiving the reg-
ularities and symmetry principles they are based on. Also, these symmetry
groups of ornaments presented the most problems to mathematicians.

The exception in this class is the symmetry group p3ml (A), be-
longing to the family of the symmetry groups generated by reflections, and
containing non-polar three-fold rotations, non-polar translations and a high
degree of symmetry — favourable conditions for the early appearance in
ornamental art. Its fundamental region is an equilateral triangle of a reg-
ular tessellation {3,6}, which must be rectilinear because the group p3ml
(A) is generated by reflections. The symmetry group of a regular tessella-
tion {3,6} is the group p6m, so that ornaments with the symmetry group
p3mi can be constructed by a translational multiplication of rosettes with
the symmetry group D3 (3m) or by means of an internal classical-symmetry
desymmetrization of the fundamental region. The use of such an elementary
asymmetric figure belonging to the fundamen®al region results in a marked
isohedral tiling with the symmetry group p3ml. However, both methods
were not used in the Paleolithic.

Distinct from classical-symmetry ornaments with the symmetry group
p3m1l occurring relatively seldom in ornamental art, antisymmetry orna-
ments with the antisymmetry group p6m/p3m1, considered in the classical
theory of symmetry as the symmetry group p3m1, are some oldest and most
frequent antisymmetry ornaments, because they can be obtained by the an-
tisymmetry desymmetrization of the symmetry group p6m, in which the
symmetry group p3ml is the subgroup of the index 2, this means, from a
regular tessellation {3,6}.

The stated chronological analysis offers an insight into all construction
problems, the methods of forming ornaments and their origin. It points out
the parallelisn between the mathematical approach to ornaments from the
theory of symmetry, and their origins and construction by methods devel-
oped in ormamental art. As basic common construction methods we can
distinguish a frieze multiplication, 2 rosette multiplication and different as-
pects of the desymmetrization method — classical-symmetry, antisymmetry
and color-symmetry desymmetrizations.

Owing to its simplicity, the construction of ornaments by using friezes
(A.V. Shubnikov, V.A. Koptsik, 1974) is, most probably, the oldest method
of constructing ornaments, since the conditions for so-doing — the existence
of examples of all the symmetry groups of friezes — were fulfilled already
in Paleolithic ornamental art. Very successful in the construction of Pa-
leolithic ornaments, this method shows its deficiency in the constructional
complexity for the ornaments with rotations of the higher order (n=3, 4, 6).
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Somewhat more complex is the method of rosette multiplication in which we
must consider, besides rosettes with a definite symmetry, directions and in-
tensities of the vectors of generating discrete translations multiplying these
rosettes. Therefore, such a construction method implicitly introduces prob-
lems of plane Bravais lattices, crystal systems with the same names, and
tessellations.

Occurring in Paleolithic ornamental art are examples of all the five
Bravais lattices corresponding to the symmetry groups p2, pmim, cmm,
p4m and p6m, i.e. to the maximal symmetry groups of the crystal systems
bearing the same names, including regular tessellations {4,4} (p4m), {3,6}
and {6,3} (p6m). Till the Neclithic, the method of rosette multiplication
remained on the level of elementary forms — Bravais lattices. Later, it was
used for the comstruction of all kinds of ornaments. In the mathematical
theory of symmetry this approach is discussed by different authors, e.g., by
A.V. Shubnikov, N.V. Belov et al. (1964), and A.V. Shubnikov, V.A. Kopt-
sik (1974).

The desymmetrization method is based on the elimination of adequate
symmetry elements of a given symmetry group, aiming to obtain one of its
subgroups. All the discrete symmetry groups of ornaments are subgroups
of the groups p4m and p8m generated by reflections (H.S.M. Coxeter,
W.0.J. Moser, 1980). Knowledge of group-subgroup relations between the
symmetry groups of ornaments makes possible the consequent application of
desymmetrizations. In ornamental art, this method appears in the Neolithic,
with the wider application of colors and decorative elements, to become in
time, along with the method of rosette and frieze multiplication, one of the
dominant construction methods.

Antisymmetry desymmetrizations originate from the use of colors in
ornamental art, beginning with Neolithic ceramics. Although colors, as an
artistic means, were used even in the Paleclithic, they were mainly used for
figurative contour drawings. Paleolithic ornaments mostly occur as stone
and bone engravings or drawings, so that antisymmetry desymmetrizations
came to their full expression with Neolithic colored, dichromatic ceramics.
They can serve as the basis for the derivation of all subgroups of the index
2 of a given symmetry group. In cases when classical-symmetry desym-
metrizations are complex, this is the most fruitful method for the deriva-
tion of certain less frequent symmetry groups of ornaments (cmm/pgg,
pmg/pg, p4m/p4g, pmg/pgg, pém/p3ml, pém/p6), because the re-
sulting symmetry groups (pgg, pg, P48, peg, pdml, p6) are derived by
antisymmetry desymmetrizations of the frequently used generating symme-
try groups (cmm, pmg, p4m, pmg, p6m, p6m).
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The list of antisymmetry desymmetrizations of the symmetry groups
of ornaments, i.e. the list of antisymmetry groups of ornaments G,
can serve as the basis for antisymmetry desymmetrizations. A survey of
the minimal indexes of subgroups in the syminstry groups of ornaments
(H.S.M. Coxeter, W.0.J. Moser, 1880, pp. 136), mosaics for dichromatic
plane groups {A.V. Shubnikov, N.V. Belov et al., 1964, pp. 220) and nu-
merous works on the theory of the antisymmetry of ornaments (H.J. Weod-
s, 1935;: A.M. Zamorzaev, A.F. Palistrant, 1960, 1961; A.V. Shubnikov,
N.V. Belov et al., 1984; A.M. Zamorzaev, 1676; 5.V. Jablan, 1986a) are
some of the possible sources for future consideration of antisymmetry desym-
meirizations.

In the table of antisymmetry desymmetrizations the antisymmetry
groups of ornaments G} are given in the group/subgroup notation G/H
giving information on the generating symmetry group & and its subgroup
H of the index 2 obtained by the aniisymmeiry desymmetrization. Aim-
ing to differentiate between two antisymmetiry groups possessing the same
group/subgroup symbol and to denote two different possible positions of
reflections in the symmeiry group pm, the symbols pmi and plm, are
used.

The table of antisymmetry desymmetrizations of symmetry groups of
ornaments G:

pl/pl pmg/pmg pdg/p4
pmg/pgg pdg/cmm
p2/p2 pmg/pm p4g/pgg
p2/pl pmg/pg
pmg/p2 p4m/pim
rs/ps p4m/pdg
pg/pl pmm/pmim pdm/p4
pmimn/cmm p4m/cmm
pm/cm pmm/pmg p4m/pmm
pm/pml pmm/pm
pm/plm pmm/p2 p3ml/p3
pm/pg
pm/pl cmm/pmm p3lm/p3
cmim/pmg
cm/pm cmm/pgg p6/p3
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cm/pg cmm/cm

cm/pl cmim/p2 p6m/p8
pém/p3im

pge/pg p4/p4 p6ém/p3ml

pgg/p2 p4/p2

Antisymmetry and color-symmetry desymmetrizations are the very
efficient tools for finding all subgroups of the index NV of a given symmetry
group. The complete list of group-subgroup relations between 17 discrete
symmetry groups of ornaments G5 and the minimal indexes of subgroups in
groups are given in the monograph by H.S.M. Coxeter and W.0.J. Moser
(1980, pp. 136). From the table of color-symmetry desymmetrizations we
can conclude that [cm:cm]= 3 (pp. 182, the color-symmetry desymmetriza-
tion em/em, N = 3) and [emm:cmm]=8 (pp. 182, the color-symmetry
desymmetrization emm/emm/cm, N = 3). After these corrections and
the corrections: [pmg:pmg]= 2, [p6:p6]=2, already given by the authors
in the reprint of their monograph, this table reads as follows.

pl p2 pg pm cm pgg pmg pmm cmm pd pég p4m p3 p3lm p3ml p6é pbm
pl
p2
2]:4
pm
cm
Pgg
pmg
pmm
cmim
p4
pdg
p4m
p3
p3lm
p3ml
p6
p6m
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Because the construction of antisymmetry ornaments and the applica-
tion of antisymmetry desymmetrizations is followed by various construction
problems, their use in ornamental art is usually restricted to the antisym-
metry groups stated in the table listing the most frequent antisymmetry
desymmetrizations (pp. 172).

The use of color-symmetry desymmetrizations in ornamental art began
with Neolithic polychromatic ceramics, to reach its peak in the ornamen-
tal art of the ancient civilizations (Egypt), in Roman floor mosaics and in
Moorish ornaments. When considering color-symmetry desymmetrizations
one should distinguish, as in antisymmetry desymmetrizations, two different
possibilities. In the first case the use of colors results in a desymmetriza-
tion of the symmetry group of the ornament, but neither an antisymmetry
nor color-symmetry group is obtained. Although the color is a means of
such desymmetrization, this is, in fact, a classical-symmetry desymmetriza-
tion, as opposed to real antisymmetry or color-symmetry desymmetrizations
resulting in antisymmetry and colored symmetry groups of ornaments. On-
ly those desymmetrizations resulting in antisymmetry or color-symmetry
groups of ornaments will be accepted and analyzed under the term of anti-
symmetry or color-symmetry desymmetrizations, while all the other desym-
metrizations using colors only as a technical means, will be discussed as
classical-symmetry desymmetrizations.

In line with the principle of visual entropy — maximal constructional
and visual simplicity and maximal symmetry — from the point of view of
ornamental art, especially important will be cclor-symmetry desymmetriza-

tions of the maximal symmetry groups of the crystal systems — desym-
metrizations of Bravais lattices.

The discussion on color-symmetry desymmetrizations of the symmetry
groups of ornaments relied on the works of A.M. Zamorzaev, E.I. Galyarski,
AF. Palistrant (1978), M. Senechal (1979), A.F. Palistrant (1980a), J.D.
Jarratt, R.L.E. Schwarzenberger (1980), R.L.E. Schwarzenberger (1984),
A.M. Zamorzaev, Yu.S. Karpova, A.P. Lungu, A.F. Palistrant (1986) and
the monograph by T.W. Wieting The Mathematical Theory of Chromatic
Plane Ornaments (1982). In this monograph the numbers of the color-
symmetry groups of ornaments for N < 60 colors, the catalogue of the color-

symmetry groups of ornaments for N < 8 colors and the colored mosaics
for N = 4 colors, are given.

Because of the large number of the color-symmetry groups of orna-
ments, in the table of the color-symmetry desymmetrizations of the sym-
metry groups of ornaments, the restriction N < 8 is accepted. In that
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way, the usual practical needs for the comstruction and analysis of col-
ored ornaments, where the number of colors N does not excesd 8, are also
satisfied. According to the definition of color-symmetry groups given by
R.L.E.Schwarzenberger (1984}, all the color-symmetry groups discussed re-
guire the even use of colors. The uneven use of colors or the use of colors in a
given ratio, e.g., 2:1:1, 4:2:1:1, 6:2:1, 6:3:1:1:1 (B. Griinbaum, Z. Griinbaum,
G.C. Shephard, 1986), which occur in ornamental art and demand a special
mathematical approach, represents an cpen research field.

In the table of the color-symmetry desymmetrizations of the symmetry
groups of ornaments, by analogy fo the corresponding tables of the color-
symmetry desymmetrizations of the symmetry groups of rosettes and friezes,
every color-symmetry group is denoted, for a fixed N, by a symbol G/H/H;.
For H = Hy,i.e. iff # is a normal subgroup of the group G, such a symbol
is reduced to the symbol G/H. If the first or the second symbol does not
uniguely determine the color-symmetry group, i.e. the corresponding color-
symmetry desymmetrization, such symbols supplemented by the symbol
of the translational group that corresponds to the subgroup H, are used
(D. Harker, 1981). In the supplementa,rv symbols —a is denoted by a, and

the symbol of the matrix i b is [ab, cd]. The incidence of the symmetry

element § of the group G to The symmetry element 51 of the subgroup His
denoted by the supplementary symbol (§ = §1). To differentiate between
the symmetry groups pg with the glide reflections g, gy, the symbols pgl,
plg are used respectively. The symbols eml, clm, and pmg, pgm, are
used analogously for denoting the two different possible positions of the
reflection m.

The table of color-symmetry desymmetrizations of symmetry groups
of ornaments Gy:

N=3

pl/pl pm/pm/pl peg/pes/pe
pm/pm

p2/p2/pl p31lm/cm/pl
pg/pg/pl p31m/p3ml

p3/pl Pg/p8

p3/p3 p3dml/cm/pl

cmm/cmm/em  p3ml/p31lm/p3 p6/p2
p6/p6/p3 pmm/pmm/pm pém/cmm/p2
p6m/p6m/p3ml
cm/cm/pl  pmg/pmg/pm
cm/cm _ pmg/pmg/pg
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N=4
p1/p1[10,04]
pi/p1[20,02]

p2/pl
p2/p2/pl
p2/p2

p3/p3/p1

p4/pl
p4/p2/p2
p4/p2(4=2)
p4/p2(2=2)
p4/p4/p2

p6/p6/p2

cm/pl/pl
cm/pl
cm/cm/pl
cm/pm/pl
cm/pg/pl
cm/pm

cm/pg

pm/p1[10, 02]
pm/p1[20,01]
pra/pl[11,11]
pm/pm/pl
pm/pm[20, 02]
pm/pg[20,02]
pm/cm/pl
pm/pm[40,01]
pm/pg[40,01]
pm/cm

pg/p1[10,02]
pg/p1[20,01]

cmm/pl
cemm/p2/p2
cemm/p2 (mm=2)
emm/p2(2=2)
cmm/pm
cmm/pg
cmm/cmm/p2

cmm/pmg/pg
cmm/pmm/pm

cmm/pgg/pg
cmm/pmg/pm

pmm/pl
pmm/p2{10, 02]
prmm/p2{11, 11]
pmm/pm[10, (2]
pmm/pm[20, (1]
pmm/pg
pmm/cm
pmm/pmm
pmimn/pgg

" pmm/pmg

pmm/pmg/pg
pmm/pmm/pm
pmm/cmm/em

pmg/pl

pmg/p2
pmg/p2{20,01]/p1
pmg/p2(11,11]/p1
pmg/pm
pmg/pgl
pmg/pm/pl
pmg/cm/pl
pmg/plg
pmg/pgg/psg
pmg/pmg/pm

pgg/pl
pgg/p2/p1
peg/p2
pgg/pg/pl

p3lm/p31m/pl
p3mi/p3ml/pl

p4m/p2

p4m/p4
pdm/em/pl
p4m/pm/pl
pdm/pmim
p4m/pgg
pdm/pmg(l1,11]/p2
p4m/pmg(10,02]/p2
p4m/pmm/pmm
pé4m/cmm
p4m/jemm/p2
p4m/p4m/pmm
p4m/p4g/pgs

pdg/p2
p4g/p4/p2
p4g/cm/pl
p4g/pg/pl
p4g/pmg/p2
p4g/pgsg
p4g/pmm

p6m/p3
p6m/p6m/p2
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ps/p111, 11]
pg/pg/pi

N=5
pl/pl

p2/p2/pl
p4/p4/pl

cm/cem/pl
cm/cm

N=6
pi/pl

p2/pl
p2/pz/pl

p3/pi/pl

p4/p2(10,03]/p1
p4/p2[21,11]/p1

p6/pl
p6/p2/p2
p6/p2/pl
p6/p3
p6/p3/p1

cm/pl/pl
cm/pl[21,11]
em/pl[21,11]
cm/pm/pl
cm/pg/pl
cm/pm

cm/pg

pm/p1[10,03]
pm/p1[30,01]

pm/pm/pl
pm/pm

rg/pe/pl
Pg/Pg

cmm/cmm/cm

pg/p1{10,03
pg/p1{30,01
pg/pl/pl
pe/pg/pl
pg/pg

l
]

cmm/p2[10,03]/pl
cmm/p2[21,11}/p1
emm/cm/pl
cmm/cm
cmm/pmm/pm
cmm/pgg/pg

cmm/pmg/pg
cmm/pmg/pm

pmm/p2[10, 03]/p1
pmm/p2(21, 11]/p1
pmm/pm/pl
pmm/pm
pmm/pmm{20,03]/pm
pmm/pmg/pm
pmm/pmg/pg
pmm/pmm[10,06]/pm
pmm/cmm/cm

pmg/p2(10,03]/p1

pmm/pmm/pm

pmg/pmg/pm
pmg/pmg/pg

pgg/pgg/pg

pgg/p2(10,03]/p1
pgg/p2{21,11}/p1
pgg/ps/pl
pge/pg

p3im/pl
p31m/p3
p3im/p3/pl
p3lm/pm/pl
p31lm/pg/pl

p3ml/pil
p3ml/p3
p3ml/pm/pl
p3ml/pg/pl

pdm/cmm/pl
p4m/pmm/pl

p4g/cmm/pl
p4g/pmm/pl

p6m/p2
p6m/p6/p3
p6m/cml/pl
p6m/clm/pl
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pm/pl/pl

pm/pm(10,06]/p1
pm/pm[20,03]/p1

pm/pg/pl
pm/cm/pl
pm/pm[30,02]
pm/pm[60,01]
pm/pg
pm/cm

N=7
pl/p1
p2/p2/pl
p3/p3/pl
pé/p6/pl
N=8
p1/p1[10,08]
p1/p1]20,04]
p2/plfl
p2/p1[2
p2/p2[1
p2/p2[2

0
0
0,08]/p1
0

,04]
,02]
,08]
,04]
p4/pl/pl
p4/pl
p4/p2[20,02]/p1
p4/p2
p4/p2{10,04
p4/p2[20,12
p4/p2[22,11
p4/p2[22,11
p4/p4/p2

/p1
/p1

Ny Nl Xl il

pmg/p2[30,01]/p1
pmg/p2(21,11}/p1
pmg/pm
pmg/pm/pl
pmg/pg/pl
pmg/pg
pmg/pgg(10,06]/p1
pmg/pmg/pm
pmg/pgg[30,02]/pg
pmg/pmg/pg

cm/cem/pl
cm/cm

pm/pm/pl
pm/pm

pg/pg/pl
pg/pg

cmm/pl/pl
cmm/pl
cmm/p2(2=2)
cmm/p2(mm=2)
cmm/p2{10,04]/p1
cmm/p2[20,12]/p1

p6m/pmm/p2
pém/pgg/p2
pém/pmg/pl
pém/pgm/pl
p6m/p3im/p3
p6m/p3im/pl
pém/p3mi

cmm/cmm/cm
pmm/pmm/pm

pmg/pmg/pm
pmg/pmg/pg

Pgg/pgg/pg

pgg/p1[10,02]
pgg/p1[11,11]
pgg/p2(20,02]/p1
Pgg/p2[i0,04]/p1
pgg/p2[22,11]/p1
rgg/pg/pl

cmm/p2(22,11]/pl(mm=2)
cmm/p2(22,11]/p1(2=2) p31m/p3/pl

cmm/em/pl
cmm/pm/pl
cmm/pg/pl
cmm/pm
cmm/pg
cmm/pmg/pl

/p1(4=2) cmm/pgg/pl
/P1(2=2) cmm/pmm/pl

cmm/pmm/pm

p3m1l/p3/pl

p4m/pl
p4m/p2/p2
p4m/p2(4m=2)
p4m/p2(2m=2)
p4m/p4/p2
p4m/pm(11,11]/p1
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p6/p3/pl

cm/p1{20, 02]
cem/pif40, Olj/Pl
cem/p1[22, 11}
em/p1[20,12}/p1
cm/p1[22,11]
‘em/pg[22,22]/p1
cm/pm[22,22)/p1
em/pml44, 11]/p1
cm/pgl44,11]/pl
em/em(31,22]/pl
cm/cem(3], 22]/pl
cm/pm

cm/pg

pon/pi[22,
pm/pm(10,08]/p1i
pm/pm[20, 04]/pl
pm/pg/pl
pm/cm{20, 14]/p1
prn/pm(40, 0]
pm/pg[40,02]
pri/em(22,22]/p1
pm/pm{80,01]
pm/pg[80,01]
pm/cm

pg/p1[10,04]
pg/p1[20,02]
pg/p1[20,12]
pg/p1[40,01]

cmm/pmg/pg
cmm/pmg/pm
cmm/pgg/pg

pmm/pif10,02]
pmm/plfli, 11]
pmm/p2
pmra/p2{10,04]/p1
pmm/p2{20,12]/p1
pm/p2(22, 11]/p1
pmm/pm/pl
pmun/pm{20, 0Z]
pmm/pg{20, 02]
pmm/em/pl
pmm/pm[40, 01]
pmin/pgl40,01]
pmm/cm
pmm/pmg{20, 04]/pg
pmm/pmm([20, 04]/pm
pmm/pgg/pg
pmm/pmg/pm
pmm/cmm/pl
pmm/pmg[10,08]/pg
pmm,/pmm{10, 08]/pm
pmm/cmm/em

pmg/pm
pmg/pg
pmg/pm(20,02]/p1

pdm/pg(lil, 11]/p1
p4m/pm[10,02]/p1
p4m/pm|20,01}/p1
p4m/pg[20,01]/p1
pdm/em/pl
pédm/femm/p2
pdm/pmg|22,11]/p1
pém/pmm[22,11}/p1
p4m/pgg(22,11]/pl
pdm/pmg(22,11}/p1
pdm/pmm{20,02]/pl
p4dm/pmg[20,02]/p1
p4m/pggl20,02]/p1
pédm/pmm

pd4m/pgg
p4m/pmg[20,02]/p2
pdm/pmg(10,04]/pg
pém/pmm[10,04]/p1
pém/cmm/pi(2m=2)
pdm/emm/pl(4dm=2)
p4m/pdm/pl
p4m/pdg/pl

pdg/pl
pdg/p2/pt
p4g/p2(4=2)
p4g/p2(2=2)
p4g/p4/pl
p4g/pglll, 11]/pl
p4g/pm/pl
p4g/pg(10,02]/p1
pdg/cmm/pl
p4g/pgg/pl
p4g/pmg/pl(4=2)
p4g/pmg/pi(2=2)

pém/p6/p2
p6m/p3mil/pl
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pg/pl[21,02] pmg/pgfll,1i]/pl pém/p3im/pl
pg/pi[22,11] pmg/em|20,12]/p1
pz/pg/pl pmg/pml[40,01]/p1

pmg/cm(21,02]/p1

pmg/pg[10,04]/p1

pmg/pge/pg

pmg/pmg/pm

A homogeneous and isotropic plane possesses the maximal continuous
symmetry group of ornaments pggoom {s™00), while all the other sym-
metry groups of ornaments are its subgroups. In ornamental art, it may
be identified as a ground representing the environment where the remain-
ing symmetry groups of ornaments exist. Among the symmetry groups of
semicontinua, only the symmetry groups pjplin (sim) and pjpmm (smm)
possess their adequate visual interpretations. The condition for the visual
presentability of the continuous symmetry groups of ornaments is the non-
polarity of their continuous translations and continucus rotations. For the
symmetry groups of semicontinua this condition is equivalent to the exis-
tence of the corresponding visually presentable continuocus friezes, by the

translational multiplication of which the corresponding semicontinua can
be derived.

s pdm, pbm
Som > pmm
sim > pm

Figure 2.104
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Between the visually presentable continuous symmetry groups of or-
naments, the following group-subgroup relations hold (Figure 2.104). These
relations point out desymmetrizations suitable to derive continuous symme-
try groups of a lower degree of symmetry and to recognize symmetry sub-
structures of visually presentable plane continua and semicontinua. Since
all discrete symmatry groups of ocrnaments (&3 are subgroups of the sym-
metry groups p4dm and p8m, for further work on group-subgroup relations
between the continuous and discrete symmetry groups of ornaments, it is
possible to use this data.

The geometric-algebraic properties of the symmetry groups of orna-
ments Gy — their presentations, data on their structure, properties of gen-
erators, polarity, non-polarity and bipclarity, enantiomorphism, form of the
fundamental region, tables of group-subgroup relations, Cayley diagrams,
etc. — offer the possibility to plan the visual properties of ornaments before
their construction. Besides the usual approach to ornamental art, where vi-
sual structures serve as the objects for analyses from the point of view of
the theory of symmetry, there is also an opposite approach — from abstract
geometric-algebraic siructures to the anticipation of their visual properties.
Then ornaments may be understood as visual medels of the corresponding
symietry groups.

Generators define a possible form of a fundamental region, so that the
incidence of a reflection line with 2 segment of the boundary of the funda-
mental region means that such a part of the boundary must be rectilinear.
A fundamental region must be rectilinear in the symmetry groups of orna-
ments generated by reflections — pmm, p3m1, p4m, p8m. All the other
symmetry groups of ornaments offer the use of curvilinear boundaries or
curvilinear parts of boundaries of a fundamental region, which do not be-
long to reflection lines. The question of the form of a fundamental region is
directly linked to the perfect plane forms — monohedral tilings, plane tilings
by congruent tiles. This problem constantly attracts mathematicians and
artists (B. Griinbaum, G.C. Shephard, 1987). In ornamental art it came
to its fullest expression in Egyptian and Moorish ornamental art and in
the graphic works by M.C. Escher (M.C. Escher, 1971a, b, 1986; B. Ernst,
1976; C.H. Macgillavry, 1976) . For the symmetry groups of ornaments
generated by reflections pmm, p4m and p&m, the problem of isohedral
tilings is simply reduced to a rectangular lattice (pmm) and regular tessel-
lations {4,4} (p4m), {3,6} or {6,3} (p6m). There is a certain anomaly
in the symmetry group p3mil (A). Owing to a symmetrization, its corre-
sponding tessellation {3, 6} possesses the symmetry group p6m. Therefore,
this is the only symmetry group of ornaments not offering any possibility
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for the corresponding isohedral unmarked tilings and requiring the use of an
asymmeiric figure within a fundamental region, this means, a marked tiling.
This contradiction can be solved by taking rotation centers always inside
the tiles, so that the symmetry group p3mil will correspond to a regular
tessellation {3,6}, and the symmetry group pém to a regular tessellation
{6,3}. Under such conditions the symmetry group p3m1l belongs to the
family of the symmetry groups of ornaments appearing in Paleolithic orna-
mental art, since the regular tessellation {3,6} dates from the Paleolithic
(Figure 2.92Db).

A generating translation axis of an ornament is non-polar iff there
exists a reflection perpendicular to it. If a central reflection center belongs
to a translation axis, this axis will be bipolar, while in the other cases that
axis will be polar. Thers will be no enantiomorphic modifications of an
ornament iff its symmetry group contains indirect isometries, A rotation of
an ornament will be non-polar iff there exist: a reflection incident to the
center of this rotation n (n=2, 3, 4, 8), i.e. iff the corresponding dihedral
group D, (nm) is a subgroup of the symmetry group of the ornament.

The visual stationariness of an ornament is conditioned by the non-
polarity of its axes and rotations, by the presence of reflections, especially
perpendicular ones, by the absence of glide reflections suggesting alternating
motions and by the absence of the enantiomorphism. Oz the other hand,
the factors that determine whether an ornament will be a dynamic one in
the visual sense, will be the polarity of translation axes suggesting one-way
directed motions, the polarity of rotations, the presence of glide reflections,
the absence of reflections and the existence of the enantiomorphism.

Besides the stated objective geometric-visual elements defining visual
stationariness or dynamism of certain ornament, the ”subjective” elements
are also important. By changing them, it is possible to influence the visual
impression that the ornament gives to the observer. Under these changeable
factors — the ”visual parameters” of an ornament — we can include the
form of a fundamental region or the shape of an asymmetric figure within a
fundamental region. By changing this it is possible to decrease or emphasize
the visual dynamism. The use of acuteangular forms in dynamic ornaments,
the change of a position of symmetry elements with respect to the observer
and to the fundamental natural directions, the visual role of the "ascending”
and "descending” diagonal, etc., can have the same function.

Real ornaments occurring in ornamental art are bounded parts of "ide-
al” unbounded geometric ornaments, i.e. their finite factor groups, derived
by the identifications pz’ = E, pj = E (m,n € N). Such a bounded part
of an ornament is defined by the intensities of the generating translations
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Pz, Py, their mutual position and by the parameters m,n. In ornaments
with the p,- and p,-translation vectors of the same intensity, especially
interesting is the case of m = =n.

The visual effect given to the observer by a real ornament is the re-
sult of the interaction between the symmetry group of the ornament, the
plane symmetry of the observer and binocularity, the symmetry of 2 bound-
ed part of the "ideal” ornament, symmetry of the environment, etc. It
is also formed under the visual-physiological influence of the fundamental
natural directions (the vertical and horizontal line, gravitation, etc.). All
these "subjective” factors participate in the formation of the primary vi-
sual impression, as desymmetrization or symmetrization factors. Some of
them (e.g., the vertical and horizontal line), may occur as a specific im-
plicit coordinate system having a relevant positive or negative influence on
the recognition of the symmetry of ornament. In the further course of the
process of visual perception, the observer tends to recognize the symmetry
of the ornament itself. Even after the elimination of disturbing elements,
the eye often perceives a visually dominant structure, reducing it to the
simplest one possible. Sometimes, according to the principle of visual en-
tropy, the visual introduction of new symmetry elements — symmetrization
of the structure — and visual substitution of dynamic elements of symme-
try by their static equivalents takes its place. This is often manifested in
experiments to recognize or reproduce certain motifs.

One comes across similar problems during the visual perception of
symmetry substructures — rosettes, friezes or ornaments — belonging to
certain ornament. Their symmetry groups appear as the subgroups of the
symmetry group of the ornament. The primary factors relevant for the visu-
al perception of substructures will be the visual simplicity of substructures
themselves (their visual stationariness or dynamism), the degree of visual
simplicity of the ornament and the position of substructures with respect
to the fundamental directions of the ornament, to the fundamental natural
directions, etc.

Visually simpler, static non-polar forms with a high degree of symme-
try, occurring as substructures, will be more easily perceived and visually
recognized. The possibility for recognizing its symmetry substructures will
depend also on the visual simplicity of the ornament itself. A high degree
of symmetry of the ornament in such a case is the aggravating factor for
registering subentities, so that the same symmetry subgroup will be easily
recognized in ornaments with a low degree of symmetry. For recognizing
the symmetry of ornaments and their substructures, it is very important
to visually recognize and discern a fundamental region or an elementary
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asymmetric figure belonging to the fundamental region. Otherwise, a slow
recognition of symmetry elements and the symmetry group of the ornament,
is unavoidable. Problems with the recognition of symmetry substructures
of one ornament can be efficiently solved by using the table of subgroups
of a given symmetry group of ornaments, and especielly, by using their vi-
sual interpretations -—— tables of the graphic symbols of symmetry elements
(A.V. Shubnikov, V.A. Koptsik, 1974; B. Griinbaum, G.C. Shephard, 1987)
and Cayley diagrams of ornaments (H.5.M. Coxeter, W.0.J. Moser, 1980).

Visualization was an important element in the development of the
theory of symmetry of ornaments, so that the visual characteristics of or-
naments caused the occurrence of similar ideas, construction methods and
even a chronological parallelism between these fields. In ornamental art and
in the theory of symmetry the cldest methods for the construction of orna-
ments, used the frieze and rosette multiplication, including the problem of
Bravais lattices, crystal systems and tessellaticns. The criteria of maximal
constructional and visual simplicity and maximal symmetry, united by the
. principle of visual entropy, played the same important role in both fields,
where the symmetry structures with emphasized visual simplicity, in which
prevail static elements, were dominant. Considering dynamic structures,
mathematicians and artists were faced with the problem of perceiving the
regularities on which they were based, when defining the elements of sym-
metry, generating and other symmetry substructures.

Throughout history, visuality was usnally the cause and the basis for
geometric discussions. Only lately, with non-Euclidean geometries, have
the toles been partly replaced, so that visualization is becoming more and
more the way of modeling already existing theories. From a methodological
aspect, this is the evolution from the empirical-inductive to the deductive
approach. Similarly, we can note the way ornaments progressed from their
origin linked to concrete meanings — models in nature -— or the symbolic
meanings of ornamental motifs. After their meaning and form were harmo-
nized, ornaments became a means of communication. In the final phase,
after having complete insight into the geometric and formal properties of
ornaments, the question of the meaning of ornaments i almost solved, but
new possibilities for artistic investigations of the variety and decorativeness
of ornaments, are opened.

This analysis of the visual properties of ornaments and their connec-
tion with the symmetry of ornaments, points out the inseparability of these
two fields. Besides the possibility for the exact analysis of ornaments, "the
theory of symmetry approach” to ornamental art provides the groundwork
for planning, constructing and considering ornaments as visual creations
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with desired visual properties. These visual properties can be anticipated
from the corresponding symmetry groups of ornaments, their presentati-
ons, properties of generators, structures, etc. Ornaments, treated as visual
models of different symmetry structures, can be the subject of scientific stu-
dies, and can be used in all scientific fields requiring a visualization of such
symmetry structures.



Chapter 3

SIMILARITY SYMMETRY IN E?

A similarity syrmetry group is any group of similarity transformations
{H.5.M. Coxeter, 1969, pp. 72), at least one of which is not an isometry.
li cczordmg o the theorem on the existence of an invariant point of every
discrete similarity transformation that is not an isometry {E.L Galyarski,
A, M Zamorzasv, 1963; H.8.M. Coxeter, 1969), all the similarity symmetry
groups of the plane E? belong to the similavit; svmmeuy groups with an
variant point. From the relationships: 53 = S99, J21 = S210, 210 C 53,

1de that {m a full undersianding of the similazity symmetry
roups of the plane £, it is enough to analyze the similarity symmetry
f S30. U'vmg to the existence Q*’ an invariant point, the

(;
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#

g oty

similarity symrnetry groups of ihe category Sy are alsc called the similarity
symmeiry groups of roseites Sag, and the correspo r'i:a,ﬁr figures possassing
such a symmetry group are called similarity symmetry rosettes.

'uﬂa of similarity symmetry and the possibility for its exact math-

2 .tment wae introduced in the monogmph by H. Weyl (1952),

whe deﬁm&' two similarity transformations of the plane E?: a central di-
latation {or simply, cﬂd‘mhoq) and dilative rotation, with the restriction
for the dilatation coefficient & > 0, and he establishes the connection be-
tween the transformations mentioned and the corresponding space isome-
iries — a translation and twist, respectively. His analysis is based on natural
forms satisfying similarity symmetry (e.g., the Nautilus shell, Figure 3.1.;
the sunflower Heliantus mazimus, etc.). In considering a spiral tendency
in nature Weyl quotes certain older authors (e.g., Leonardo and Goethe),
who also studied these problems and also that of a phyllotazis, the con-
nection’ between the way of growth of certain plants and the Fibonnaci

ematics
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sequence, linked to a golden section (H.S.M. Caoxeter, 1953, 1969). The se-
quence 1,1,2,3,5,8,13... defined by the recursion formula: f; =1, f = 1,
fat fat1 = fatz, 7 € N, is called the Fibonnaci sequence. A golden section
(" aurea sectio” or "de divina proportione”, according to L. Paccioli) is the
division of a line segment so that the ratio of the larger part to the smaller
is equal to the ratio of the whole segment to the larger part, i.e. its division
in the ratio 7 : 1, where = is the positive root of the quadratic equation
rP4r+1=0,7=(/5+1)/2~1,618033989...

Figure 3.1
Cross-section of a Nautilus shell.

The next step in the development of the theory of similarity sym-
metry in the plane E? was a contribution by A.V. Shubnikov (1960). He
described all the similarity transformations of the plane E?: central dilata-
tion K, dilative rotation I and dilative reflection M and the symmetry
groups derived by one of the transiormations mentioned and by isometries
having the same invariant point — rotations and reflections. Shubnikov de-
rived six types of discrete similarity symmetry groups of rosettes S90: CLK,
C.L,C,M,D.K,D,L, D, M, denoted by Shubnikov nK, nL, nM, nmK,
nmL, nmM respectively. Since the types D,M (nmM) and D,L (nmL)
coincide, there are, in fact, five types of the discrete similarity symmetry
groups of rosettes S39: C,K (nK), C,M (nM), C,L (nL), DK (nmK),
D, L (nmL) and two types of the visually presentable continuous similarity
symmetry groups of rosettes Syg: Do K (00X) and C,L; (nLy). The term
"type of similarity symmetry groups of rosettes” and the corresponding type
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symbol denote all the similarity symmetry groups defined by this symbol,
that can be obtained by different combinations of parameters defining them.
For example, by the symbol C, XK {nK) are denoted all the corresponding
similarity symmetry groups which can be obtained for different values of n
(n € N) and k (where K = K(k)).

Presentations and structures:

C.K(nK) {5,K} S"=E SK=KS M TN
C.L(nL) {S L} 5°=E SL=13 ot Cas
C.M(@nM) {S,M} S°=E SMS=M

D.K(nmK) {$,R,K} S*=R*=(SR?=FE KR=RK KS§=S5K D, xCs
{R,BR,,K} R*=R}=(RR))"=FE KR=RK KR =RK

D.L{nmL) {S,B,I} S"=R?=(SR)?=FE L[S=SLLRLR=RLRLRLR=1LS
{R,R;,I} RP°=R:=(RR,)"=F
LRLER=RLRL . LRyLRy=R,LR,I R;L=1LR
(L =Lz, = L{k,w/n))

Form of the fundamental region: bounded, allows changes of the shape
of boundaries that do not belong to re-
flection lines, so symmetry groups of
the types C,K (nK), C,L (nL), C,M
{nM) allow changss of the shape of all
the boundaries, while symmetry groups
of the types D, K (nmK) , D,L (nmL)
allow only changes of the shape of boun-
daries that do not belong to reflection
lines.

Number of edges of the fundamental region: D,K (nmk) — 4;
C,K (nK), C,L (nL),
C,.M (nM) — 4,6;
D,L (nmL) — 3,4,5,6.
Enantiomorphism: symmetry groups of the types C,K (nK), C,L (nL),
CrL; (nL;) give the possibility for the enantiomorp-
hism. In all other cases the enantiomorphism does not
occur.

Polarity of rotations: coincides with the polarity of rotations of the gener-
ating symmetry groups of rosettes C,, (n), D, (nm).
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Polarity of radial rays: if they exist, radial rays are polar.
The table of group-subgroup relations between discrete similarity sym-
metry groups of rosettes Sqq:

C.K C.M DX D.L
C.K 2
C.M 2 2
DK 2 2 2
DL 2 2 2 3
(k) K{km)]z m,
M(k) D™=
[L(k,6Y:L{k™ ,:m:i)j 1
If 6 =pr/q, (p,¢) = 1, then:
[L(E @) E((-1)P }32 g,
(D, L(k,0):C K({(-1k%)]= g,
[D.L:D, K(:)]= 2, [D.KE):C.M(E))=2, [C.M(#):C K (k)= 2
Further analysic on similarity symmetry groups was undertaken by
E.L Galyarski and A.M. Zamorzaev (L’}§3) Besides givin g the precise defi-
nitions of the similarity u nsformations K, L, M, they used the adequate
names for these {ransformations, comparing thcm‘ respec ti "&} with the

corresponding isometries of the space E® — translation, twist and glide re-
flection. They also successfully established the isomorphism between the
similarity symmetry groups of rosettes S3¢ and the corresponding symme-
try groups of oriented, polar rods G3;. In this way, consideration of the
similarity symmetry groups of rosettes Syp and their generalizations is re-
duced to the consideration of the corresponding, far better known Syzme:
try, antisymmetry and color-symmetry groups of polar, oriented rods Ga;.
The principle of crystallographic restriction {n=1,2,3,4,6) is followed by
E.I. Galyarski and A.M. Zamorzaev.

Isomorphism between similarity symmetry groups of rosettes Sy and
symmetry groups of polar rods Ga; is, according to A.V. Shubnikov and
V.A. Koptsik (1974):
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CnK (IIK) (a)n

C.L (nL) (a¢)n

C.M (nM) (a)na

DK (nmK) (a)nm

D,L (nmlL) (a)(2n),m=(a)(2n),a
DK (oomK) (a)oom

C.L; (nl,) ' (8)ooon

In the work by E.I. Galyarski and A.M. Zamorzaev (1963), there is
no the restriction for the dilatation coefficient ¥ > 0, used by H. Weyl
{1952). This restriction does not result in any loss of generality, but only in
the somewhat different classification of the similarity symmetry groups of
rosettes Ssgg.

There is also the problem that for every particular similarity symmetry
group of rosettes Sy, its corresponding type is not always uniquely defined.
Namely, under certain conditions, the same symmetry group can be included
in two different types. Such a case is, e.g., that symmetry groups of the type
C.K (nK), because of the relationship K (k) = L(k,0), also belong to the
type C,L (nL). If we accept the condition KX = K(k) = L(k,0) = Lo,
then there also exists the subtype D, Ly (nmLg), but symmetry groups of
the subtype mentioned are not included in the type D,Ls, (nmLy,,). If we
accept the criterion of subordination, which means, if we consider symmetry
groups existing in two different types within the larger type, certain types
would not exist at all. For example, all the symmetry groups of the type
CrK (nK) would be included in the type C, L (nL), so that the type C,K
(nK) would not exist at all, and so on. A similar problem may occur with
the same similarity symmetry group that can be defined by different sets of
parameters n, k, 6... To consequently solve that problem, it is necessary to
accept the common criterion of maximal symmetry. Such an overlapping of
different types of the similarity symmetry groups of rosettes Syq is possible
to avoid by accepting Wey!’s condition k > 0 for all the similarity symmetry
groups of rosettes S50 and the condition 0 <| 6 |< 7 /n for symmetry groups
of the type C,L (nL).

Cayley diagrams (Figure 3.2):
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200 Theory of symmetry and ornament

3.2. Similarity Symmetry Roseties and Ornamental Art

The simplest of the symmetry groups of the type C,.K (nK) is the
symmetry group K (n= 1) generated by a central dilatation with the dilata-
tion coeflicient k. In this transformation, for every two origin_a_lﬂgoints A,
B and their images A’ = K(A), B’ = K(B), the relationship A'B’ = kAB
holds. In this way, all the lines of the image are parallel to the homologous
lines of the original figure (for k > 0) or entiparallel, i.e. parallel and op-
positely oriented (for & < 0). Hence, the form and all the angles of a figure
remain unchanged under the action of the dilatation K, so the equiformi-
ty and equiangularity are the properties of a dilatation. There is also an
important metric property of a dilatation: the series of the distances of suc-
cessive homologous points of the dilatation K from the dilatation center,
is a geometric progression with the coefficient | k |. Since all the similar-
ity transformations contain a dilatational component, the metric property
holds for all the similarity transformations. A fundamental region of the
similarity symmetry group K is a part of the plane, bounded by two homol-
ogous lines of the dilatation K. The non-metric construction of similarity
symmetry roseties with the symmetry group K and their use in ornamen-
tal art, is based on the maintenance of the parallelism, without using the
metric property of the dilatation XK. The best way of achieving this is
the use of linked successive homologous asymmetric figures of the dilata-
tion K -(for & > 0), maintaining the parallelism between homologous lines
of the dilatation K (Figure 3.3). This construction method was proposed
by A.V. Shubnikov (1960). It can only be used respecting the restriction
k > 0, accepted by H. Weyl and A.V. Shubnikov. For k < 0, the dilatation
K = K(k), coinciding to the dilative rotation L(| k |, 7), is a composite
transformation consisting of the dilatation K (| & |) and the half-turn T,
with the same invariant point. By accepting the restriction & > 0, sym-
metry groups of the type C,K (nK) with n — an odd natural number and
k < 0, are included in the type C,L (nL), according to the relationship:
C.K=C,L(| k |,m) =CpL2.(| k |,7/n) =CpLz,. In particular, if n = 1
and k < 0, the relationship K=L(| k |, 7) holds. The simplest way to con-
struct a figure with the symmetry group K (for k < 0), without using the
metric property of the generating dilatation K is, most probably, to con-
struct a series of homologous asymmetric figures by the dilatation K (| k |),
and afterward, to copy every second figure by the half-turn T'. This con-
struction is the same as the construction of a figure with the symmetry
group L(| k£ [, 7). Owing to the complexity of the construction itself, in the
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earlier phases of ornamental art, it is very difficult to find examples of the
consequent use of the similarity symmetry group K (for £ < 0). The sym-
metry group K (for & > 0) occurs in ornamental art, though not frequently,
due to its low degree of symmetry. It plays a special role in fine art works
using the central perspective.

Figures with the symmetry group K possess a high degree of visual dy-
namism, producing the visual impression of centrifugal motion. They occur
as enantiomorphic modifications. Polar radial rays exist. In the geometric
sense, a radial ray is any half-line with the starting point in the center of
the dilatation K. In the visual sense, this is a basic half-line of any series
of homologous asymmetric figures of the dilatation K (Figure 3.3).

The characteristic visual properties of the symmetry group K are pre-
served in all the symmetry groups of the type C,K (nK).

Figure 3.3

Non-metric construction of a figure with the symmetry K (k > 0).

Every symmetry group of the type C,K (nK) is the direct product of
the symmetry groups K and C,, (n). Since the generating symmetry groups
K and C,, (n) occur relatively seldom in ornamental art, the same holds for
all the symmetry groups of the type C,K (nK). A fundamental region of the
symmetry group C,K (nK) is the section of the fundamental regions of the
symmetry groups K and C,, (n) with the same invariant point. Polar radial
rays exist. Similarity symmetry rosettes with a symmetry group of the type
C.K (nK) may be obtained from rosettes with the symmetry group C,
(n), multiplying them by the dilatation K with the same center. The same
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resilt can be obtained multiplying by means of the n-fold rotation, a figure
with the symmetry group K, belonging to a fundamental region of the sym-
metry group C, (n) with the same rotation and dilatation center. Besides
the construction mentioned, based on the maintenance of the parallelism,
applicable when successive homolegous asymmetric figures of the dilatation
K (for k > 0) are linked to each other, constructions based on the metric
property of the dilatation are also possible, and also the combinations of
these two methods.

Owing to its complexity, the metric construction of similarity symme-
try rosettes with the symmetry group C.K (nK) was very seldom used in
ornamental art. Where such attempts exist, they are usually followed by de-
viations from the regularity, so that similarity symmetry rosettes cbtained
only suggest the symmetry C,K (nK), without satisfying it in the strict
sense. Aiming for maximal constructional simplicity, usnally triumphant is
the simplest as possible metric regularity, where the geometric progression
formed by distances of successive homologous points of the dilatation K
from the dilatation center, is replaced by an arithmetic progression. That
disturbs the parallelism, equiformity and equiangularity, and consequently,
the similarity symmetry.

The above discussion refers to the case of & > 0.-For-k < 0 the
construction itself is more complicated, despite the fact that the parallelism
{(antiparallelism) may be used. Then, the linking of successive homologous
asyminetric figures of a dilatation, or the metric construction method cannot
be exclusively used, so that, for » — an odd natural number and k¥ < 0,
adequate examples of similarity symmetry rosettes with the symmetry group
C.K (nK) are rarely found in early ornamental art. For n — a fixed even
natural number, there is no difference between symmetry groups of the
type C,K (nK), depending on the sign of the dilatation coefficient %, so
the relationship C,K(k)=C,K(~k) holds. That is because, for n — an even
natural number, the half-turn already exists in the symmetry group C,, (n),
so it is included in the symmetry group C,K (nK) derived from it. The
difference between the symmetry groups C,K(k) and C,K(—k) occurs only
for n — a fixed odd natural number. In the symmetry group with & < 0 and
n — an odd natural number, a half-turn does not exist as an independent
symmetry transformation of the symmetry group C,K (nK), but only as
a part of the composite transformation K = TK(| k |). For n — an odd
natural number and k < 0, the relationship C,K=C,L(| k |,7/n) =C,Ls.
holds.
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Apart from by the construction methods mentioned above, similarity
symmetry rosettes with the symmetry group C,K (n¥) may be consiructed
by a desymmetrization of the symmetry group D,K (nmXK), where by a col-
oring or some other desymmetrization procedure, reflections are eliminated.
The similarity symmetry rosettes derived often belong to similarity anti-
syminetry rosettes with the antisymmetry group D,K/C,K (nmK/nK),
treated by the classical theory of symmetry 2s similarity symmetry rosettes
with the symmetry group C,K (nK).

The causes of the origin of similarity symmetry groups of the type
CLK (nK) in ornamental art, can be found in their visual-symbolic mean-
ing, where two dynamic components — the centrifugal component produced
by the dilatation K, and the suggestion of 2 rotational motion produced by
the subgroup C,, (n) — come to their full expression.

Every similarity symmetry group of the type D,K (nmK) is the di-
rect product of the symmetry groups D, (nm) and X. Similarity symmetry
rosettes with the symmetry group D,K (nmXK) can be constructed mul-
tiplying by the dilatation K a figure with the symmetry group D, (nm),
belonging to a fundamental region of the symmeiry group K, or multiplying
by the symmetries of the group D, (nm) a figure with the symmetry group
K, belonging to a fundamental region of the symmetry group D, (nm). In
both cases, the rotation and dilatation center must coincide. Existing mod-
els in nature with similarity symmetry groups of the type D, K (nmK) are
the cause of the frequent occurrence of corresponding similarity symmetry
rosettes in ornamental art (Figure 3.4). A fundamental region of the sym-
metry group D,K (nmK) is the section of the fundamental regions of the
symmetry groups D, (nm) and K with the same invariant point. Due to
the existence of at least one reflection in every symmetry group of the type
D, K (nmK), there is no enantiomorphism. Polar radial rays exist.

For constructing a figure with the symmetry group D, K (nmK), it
is possible to use the parallelism of homologous lines of the dilatation K,
by using the linking of successive homologous asymmetric figures of the di-
latation K, analogously to the construction of figures with the similarity
symmetry group C,K (nK). The metric construction method also can be
used. Like for similarity symmetry groups of the type C,K (nK) and their
visual interpretations, the same deviations from the regularity dictated by
the dilatation K frequently occur — the use of the equidistance and distur-
bance of the similarity symmetry. In the visual sense, all similarity symme-
try rosettes with symmetry groups of the type D, K (nmK) possess a static
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visual component resulting from the existence of the subgroup D, (nm),
and a dynamic, centrifugal component resulting from the visual function of
the dilatation K. For n — a fixed even natural number, for the same reason
like the symmetry groups C,K(k) and C,K(-k), the symmetry groups
D.K(k) and D, K(—-k) will not differ. Like for the symmetry groups of the
type C,K (nK), for » — an odd natural number and & < 0, constructions
of similarity symmetry rosettes of the-type D,K (nmK) are more compli-
cated. Therefore, in ornamental art, adequate examples of those similarity
symmetry groups are considerably less frequent. Accepting the restriction
k > 0, symmetry groups of the type D, K (nmK), for n — an odd natural
number and k < 0, can be discussed within the type D,L (nmL), where,
for k < 0, the relationships K=L(| & |,7) and D,K=D,L(| k |,7) =D,L,
kold.

Figure 3.4

Rosettes with the similarity symmetry group D12 K (12mK) (the
monastery of Dechani, Yugoslavia).

A special place among similarity symmetry groups of the type D, K
(nmK) is taken by the symmetry group D; K (mK). Apart from its use in
ornamental art, it frequently occurs in painting works with the application of
the central perspective, where the motif (e.g., a street, architectural objects,
the road, the tree-lined path, etc.) possesses plane symmetry.
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The appearance of similarity symmetry rosettes with symmetry gro-
ups of the type D, K {(nmK) in ornamental art, can be explained, in the
first place, as the imitation of natural forras usually possessing or suggesting
that kind of symmetry. The dihedral symmeiry group D, (nm) is present
in many living beings, as the symmetry group of the entity or its parts,
while the similarity symmetry group K is the result of the growth of living
beings. In ornamental art, an imporiant role in the formation of similarity
symrmetry rosettes with a symmetry group of the type D, X (nmK), was
their visual-symbolic meaning and the possibility for the visual suggestion of
a radial expansion from the center. This makes possible the use of similarity
svinmeiry rosettes with the symmetry group D, K {nm}i} %8 dynamic sym-
bols, possessing also a certain degree of visual stationariness and balance,
resulting from the existence of the subgroup D, (nm).

Regarding the frequency of occurrence, according to the principle of vi-
sual entropy, similarity symmetry rosettes witk similarity symmetiry groups
of the type D, K (nmK), especially for n=1,2,4,8,12..., dominate in orna-
mental art.

If we accept the criterion of subordination, previously considered sim-
ilarity symmetry groups of the types C,K (uK) and DK (nmK) can
be discussed, respectively, within the types C,L (nL} and D,L (nmL).
Symmetry groups of the type C, K (nK) can be discussed within the type
C,L (nL), where the dilatation K (%) can be understood as the dilative ro-
tation Lg(k,0), so the relationship C,K=C,Ly holds. For n ~ an odd
natural number and ¥ < 0, the relationships C,K=C,L(| £ |,#) and
D,K=D,L(| £ |,7) =D,L hold.

The simplest symmetry group of the type C,L (nL) is the symmetry
group L (n=1) generated by the dilative rotation L = L{k,d) - a com-
posite transformation representing the commutative product of a dilatation
K and the rotation .5 with the rotation angle 8. Under the action of the
transformation L, every vector AF defined by two original points A, B, is
transformed onto the vector A'B' of the intensity | kAB |, defined by the
image points A’ = L{A), B’ = L(B), which forms with the vector AD the
oriented angle 4 (for £ > 0) or 7 — 8 (for k¥ < 0). The following vector
equalities: | AB =k AL ls AB o ﬁ/kﬁz = cos § hold. Due to the
maintenance of the angle between two original vectors, all the angles and
the form of an original figure remain unchanged under the action the trans-
formation L. Hence, the equiangularity and equiformity are the properties
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of a dilative rotation. Where the angle § of the dilative rotation L is a
rational one (¢ = pr/q,(p,¢) = 1,p,9 € Z), among the symmetry transfor-
mations of the symmetry group L, there will be the dilatation K({-1)7%k?).
In a visual sense, it makes possible a division of the figure with the symme-
try group L into the sectors of the dilatation K((-1)7k?) (A.V. Shubnikov,
1960) resulting in the appearance of polar radial rays. A sector of dilaiation
is any sector between two successive radial rays. A fundamental region of
the symmetry group L is a part of the plane defined by two homologous
lines of the transformsation L.

‘There exist several ways of constructing figures with the similarity
symmetry group L. Like the constructions of similarity symmetry groups of
the type C,K (nK), they can be divided into two basic kinds: constructions
by using or not the metric property of a dilatation, which is 2 constituent
part of the composite transfermation L. Combinations of these methads
are also possible. In ornamental art, the most frequent are non-metric con-
structions. The easiest method for construction of visual interpretations of
the symmetry group L is the non-metric construction of a series of linked
homologous asymmetric figures of the dilatation K(| k |), and afterward the
rotation of every n-th figure (n € N) through the angle né (for £ > 0) or
n{w—@) (for k < 0). The metric consiruction is based on the construction of
a series of homologous paints of the dilative rotation L, which satisfy, simul-
taneously, both the rotation and the geometric progression of their distances
from the invariant point. Besides the construction methods mentioned, for
obtaining examples of the symmetry group L, we can use a desymmetriza-
tion of the continuous visually presentable similarity symmetry group DK
(comK), a visual interpretation of which consists of a series of concentric
circles satisfying the dilatation X (Figure 3.5a). A construction of a series
of consecutive §-segments (for k > 0) or (x — §)-segments (for k£ < 0) fol-
lowed by the elimination of reflections and maintenance of the equiformity
of homologous asymmetric figures of the dilatative rotation L, which belong
to the consecutive segments and consecutive circular rings, is very efficient
for obtaining visual interpretations of the symmetry group L. Such a con-
struction, in a certain sense, remains in some technical procedures (e.g.,
weaving baskets, etc.), but, because of the technical characteristics of the
work itself, there usually occur deviations from the regularity dictated by
the dilatation, the use of the simplest metric regularity — equidistance, and
the disturbance of the similarity symmetry (Figure 3.6).
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(a) (b " {e)

Figure 3.5

* Visual interpretations of the continuous similarity symmetry gro-
ups: (2) Do X (comK); (b) Ly; (c) CaL; (2L,).

Since every symmetry group L(k,#) for k¥ < 0 can be reduced to the
symmetry group L(| k |, 7 —#0), a particular analysis of the symmetry groups
L, depending on the sign of the coefficient k, is not necessary. Nevertheless,
in ornamental art, examples of the symmetry groups L with an acute min-
imal angle of the dilative rotation L and k > 0, are more frequent. In the
symmetry group L, there is the possibility of the enantiomorphism. If the
dilative rotation angle is a rational one, i.e. § = mp/q,(p,¢) = 1,p,¢ € Z,
there exist polar radial rays.

In nature, there are frequent and various examples of spiral forms.
Most of them are the results of different rotational motions. The symmetry
group L occurs as the symmetry group of complete natural forms or their
parts, in non-living natural forms (e.g., as galaxies, whirlpools at turbulent
motion of fluids, etc.) as well in at living creatures (the spiral tendency
of shell growth in some mollusks, the spiral tendency of growth in certain
plants or plant products, etc.).
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Figure 3.6

Woven baskets of the American Indians, which suggest the similar-
ity symmetry of roseties C;L (5L) and T,L (4L).

As a fundamental geometric figure, and by using models in nature, the
spiral became one of the most frequent dynamic symbols in the whole of art.
Regarding its visual-symbolic meaning and its frequency of occurrence in
ornamental art, it can be considered as the dynamic equivalent of the circle.
The oldest examples of spirals date to the Paleolithic (Figure 3.7). In the
further development of ornamental art, the spiral appears, most probably
independently, in all cultures, distant both in place and time, as one of the
basic ornamental motifs (J. Purce, 1975).

All the orbit points L(P) of a point P in general position with respect
to the symmetry group L belong to a logarithmic, equiangular spiral. A
logarithmic spiral is the orbit of a point of the plane E?\ {0}, with respect
to the continuous visually presentable conformal symmetry group L127. A
logarithmic spiral satisfies the condition of *uniform motion”, according to
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H. Weyl (1952). It is the only plane curve with the property of equiangu-
larity. This means it intersects all its radius-vectors under a constant angle.
When the angle between a radius-vector and the corresponding tangent line
is 90°, the logarithmic spiral is reduced to a circle. The fact that every linear

Figure 3.7

Paleolithic spiral ornaments: (a) Arudy; (b) Isturiz; (c) Mal’ta,
USSR (Magdalenian, around 10000 B.C.).

transformation of the plane transforms a logarithmic spiral onto the loga-
rithraic spiral congruent to it, led J. Bernulli to name it ”spira mirabilis”
(A.A. Savelov, 1960). From the point of view of the theory of similarity
syminetry, of special interest is the invariance of a logarithmic spiral with
respect to certain similarity transformations. In a visual sense, Weyl’s con-
dition of the "uniform motion” is expressed by the fact that by the uniform
rotation of a logarithmic spiral around its center, it is possible to realize the
visual impression of the change in dimensions of the logarithmic spiral —
its increase or decrease. This visual phenomenon shows the equivalence of
the action of a dilatation and rotation with the same center. This property
is used in applied art to decorate rotating elements (e.g., wheels) (Figure

3.8).
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‘ A bipolar, non-coriented logarithmic spiral corresponds to the visual-
ly presentable continuous conformal symmetry group L;Z;. An oriented
logarithmic spiral corresponds to the visually presentable continuous simi-
larity symmetry group L; (Figure 3.5b}, the subgroup of the index 2 of the
symmetry group L;Zy. An equiangular, logarithmic spirel is the invariant

Figure 3.8

Example of the equiangular, logarithmic spiral occurring as an or-
namental motif. The impression of the changes in dimensions of the
logarithmic spiral can be achieved by the rotation of this rosette
around the singular point. This indicates the equivalence of the
visual effect resulting from the dilatation and such a rotation of
equiangular spiral.
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figure of this continuous conformal symmetry group and of its subgroups.
By using that property, constructions based on the maintenance of the equ-
iangularity and equiformity may be simplified. So that, it can serve as a basis
or the construction of all similarity symmetry rosettes with the symmetry
group L, by applying the desymmetrization method to the symmetry group
L; Zy with the same dilative rotation angle (A.V. Shubnikov, 1960).

In nature, there are forms that almost perfectly satisfy the regularity
of a logarithmic, equiangular spiral. This is, so called, the spiral tendency
of growth. Despite the frequent occurrence of spiral forms in ornamental
art, the subsequent use of similarity symmetry rosettes possessing the sym-
metry group L, was relatively seldom. Since the construction of a certain
logarithmic, equiangular spiral is considerably more complicated than the
construction of some other spiral (e.g., an Archimede’s or equidistant spiral
— a plane curve that can be constructed as the evolvent of a circle by a
simple mechanical procedure), a logarithmic spiral is often replaced by an
equidistant spiral. That results in a disturbance of the equiangularity and
equiformity, and consequently, of the similarity symmetry.

«J

Yt

The basic visual-symbolic characteristic of the symmetry group L is
a double visual dynamism, caused by the visual suggestion of a rotational
motion and centrifugal expansion, resulting from the rotational and dilata-
tional component. Polar radial rays exist under the condition that § = xp/q,
(p,q) =1, p,g € Z. A degree of the visual dynamism produced by corre-
sponding similarity symmetry roseties depends on the coefficient % and on
the dilative rotation angle §. Changes in these parameters result in different
visual impressions.

The symmetry group L is applied in painting works having the central
perspective as the element, or even as a basis of the complete central dy-
namic composition of the work (e.g., in the baroque, in Tintoretto’s works),
creating thus the visual impression of an expanding rotational motion.

Similarity symmetry groups the type C,L (nL) are formed by com-
posing the symmetry groups L and C, (n) with the same invariant point.
Corresponding similarity symmetry groups can be constructed multiplying
by the dilative rotation L a figure with the symmetry group C,, (n), belong-
ing to 2 fundamental region of the symmetry group L, or multiplying by the
n-fold rotation a figure with the symmetry group L, belonging to a funda-
mental region of the symmetry group C, (n) (Figure 3.9a, 3.10). In both
cases the rotation center and dilative rotation center coincide. Construc-
tional methods used are analogous to that considered with the symmetry
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(@) (b)

Figure 3.9

Examples of similarity symmetry roseties in the art of Neolithic and
pre-dyrastic period of the ancient civilizations, around 4500-3500
B.C.: (a) Egypt; (b), (c) examples of rosettes with the similarity
symmetry group of the type C,L (nL) and DL (nmL}, Egypt
and Iran; (d) example of the rosette with the similarity symmetry
group of the type D, L (nmL), Susa ceramics.

Figure 3.10

Examples of ornamental motifs in the ceramics of the American
Indians, that suggest similarity symmetry.
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group L. In ornsmental art, especially when the metric construction method
is applied, deviations from the regularity dictated by the metric property
of the dilative rotation L, frequently occur. A tendency toward maximal
constructional simplicity results in the appearance of the equidistance, dis-
turbance of the equiangularity and equiformity, desymmetrization of the
similarity symmetry group C,L (nL) and its reduction to the symmetry
group C, (a).

By applying the criterion of maximal symmetry, it is possible to elim-
inate certain repetitions and overlappings of symmetry groups, otherwise
occurring within the type C,L (nL). The existence of the n-fold rotation
with the rotation angle 27 /n and the dilative rotation I with the dilative
rotation angle 8 (for £ > 0) or (x — ) (for & < 0), within the symmetry
group C,L (nL) results in the appearance of the new dilative rotation L'
with the minimal dilative rotation angle #', which is less than the dilative
rotation angle 6. According to the criterion «{ maximal symmetry, every
symmetry group C,L (L) can be considered as the symmetry group C,L’
(nL’). i we accept the condition C,Lg=C,L{(k,0) =C, K, the type C, K
{nK) is the subtype of the type C,L (nL). For n — an odd natural aumber
and k < 0, the relationship C,Ly,=C,L(k,7x/n) =C,K(] k£ |) =Cr.K
holds. For n ~ an odd natural number, according to the above relationship
and the relationship C,K=C,L,,, holding for n — an odd natural number
and &£ < 0, we can conclude that the types C,K (nK) and C, Ly, {(nLs,),
are dual with respect to the change of the sign of the coefficient 4.

A {undamental region of the symraetry group C,L (nL) is the section
of the fundamental regions of its generating symmetry groups C,, (n) and
L with the same invariant point. Between symmeiry groups of the type
C,L (nL) there will be no essential difference depending on the sign of the
coefficient k. Since examples of rosettes with the symmetry group C, (n)
are relatively rare in ornamental art, the same refers to similarity symmetry
rosettes with the symmetry group C,L (nL). Such similarity symmetry
rosettes occur in enantiomorphic modifications. If the angle of the dilative
rotation I is a rational one, polar radial rays exist. Then, the existence
of a dilatation as the element of the symmetry group C,L (nL) makes it
possible to divide the corresponding similarity symmetry rosette into the
sectors of the dilatation.

Similarity symmetry rosettes with the symmetry group C,L (nL)
(Figure 3.9b, 3.11c, e) possessing a very high degree of visual dynamism,
caused by the polarity of both the relevant components — n-fold rotation
and dilative rotation I — produce a visual impression of centrifugal rota-
tional expansion. The existence of models in nature, the dynamic visual
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impression that suggest, their expressiveness and visual-symbolic function
resulted in the appearance and use of similarity symmetry rosettes with the
symmetry group C,L (nL) in ornamental art.
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Figure 3.11

Examples of similarity symmetry rosettes in Greek and Byzantine
ornamental art.

Similarity symmetry groups of the subtype C,Ljn(k,7/n) (nLan(k,
7/n)) can be derived by desymmetrizations of similarity symmetry groups
of the type D,L (nmL), which are more frequent in ornamental art. By
choosing an appropriate desymmetrization and eliminating reflections of the
symmetry group D,L (nmL), the symmetry group C,L;, (nL;,) can be
obtained. By the antisymmetry desymmetrization of the symmetry group
D,L (nmL ), the antisymmetry group D,L/C,Ls, (nmL/nL,,), treated
by the classical theory of symmetry as the symmetry group C,Ls, (nLz,)
belonging to the type C,L (nL), can be derived (Figure 3.12b).
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Figure 3.12

Examples of similarity symmetry rosettes in Roman ornaments.

Every symmetry group of the type D,L (nmL) is the composition of
the symmetry groups L(k, 7/n) and D,, (nm) with the same invariant point.
A fundamental region of the symmetry group D,L (nmL) is the section
of fundarmental regions of these two symmetry groups. Similarity symme-
try rosettes with the symmetry group D,L (nmL) (Figure 3.9¢, d, 3.12c,
3.13) can be constructed multiplying by the dilative rotation L a rosette
with the symmetry group D, (nm), belonging to a fundamental region of
the symmetry group L, where the rosette center and the dilative rotation
center coincide. Construction methods used for obtaining similarity sym-
metry rosettes with the symmetry group D,L (nmL) are analogous to the
construction methods previously discussed, used with similarity symmetry
groups of the type C,L (nL). Owing to a very high degree of symmetry, the
existence of models in nature (e.g., flowers and the fruits of certain plants)
and frequent applications of the symmetry group of rosettes D, (nm), the
type D,L (nmL), regarded from the point of view of ornamental art, is
one of the largest and most heterogeneous types of the similarity symmetry
groups of rosettes S39. For n — an even natural number, there is no difference
between individual symmetry groups of the type D,L (nmL), depending
on the sign of the dilatation coefficient k, but for n — an odd natural number
and k < 0, the relationship D,L=D,L(k,7/n) =D, K(| k¥ |) =D, K holds.
According to this relationship and the relationship D, K=D,L, holding for
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n — an odd natural number and k < 0, the types D,K (nmK) and D,L
(nmlL) are dual with respect to the change of the sign of the coefficient k.
Owing to a rational angle of dilative rotation L, § = w/n, there are the
polar radial rays — the axes of the dilatation K(k?), incident to the reflec-
tion lines. Therefore, it is possible to divide a similarity symmetry rosette
with the symmetry group D,L (nmL) into the sectors of the dilatation.
Enantiomorphic modifications do not exist.

Figure 3.13

Examples of Roman floor mosaics with the similarity symmetry
groups of the type D L (nmL).

A similarity symmetry rosette with the symmetry group D,L (nmL)
can be simply derived from a similarity symmetry rosette with the sym-
metry group D, K (nmK) by its ”centering” — by rotating every second
set of its fundamental regions, homologous regarding transformations of its
subgroup D, (nm), through the angle § = x/n. The symmetry group D, L
(nmL) can be derived also by a desymmetrization of the symmetry group
D,K (nmK). Since the symmetry group D,L (nmL) is the subgroup of
the index 2 of the symmetry group D, K (nmK), by using the antisymme-
try desymmetrization, the antisymmetry group D,K/D,L (nmK/nmL),
treated by the classical theory of symmetry as the symmetry group D,L
(nmL), can be obtained.
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Similarity symmetry rosettes with the symmeiry group D, L (nmL)
possess a specific unity of visual dynamism and stationariness, produced,
respectively, by the dynamic component — dilative rotation I — and by
the static component — subgroup D, (nm). The reflections of this sub-
group cause the non-polarity of rotations and alleviate the dynamic visual
effect produced by the dilative rotation L, which suggests an impression
of centrifugal expansion. Changes of the shape of a fundamental region,
which influences the visual impression, in similarity symmetry groups of the
type D,L (nmL) are restricted to the possible use of curvilinear bound-
aries, which do not belong to reflection lines. The other boundaries must
be rectilinear. In all the similarity symmetry groups containing dilative ro-
tations, a degree of visual dynamism or stationariness can vary according
to the choice of parameters k, 6... The spectrum of possibilities includes
different varieties. This range from visually dynamic similarity symmetry
rosettes with the symmetry group C, L (nL), vith an irrational angle of the
dilative rotation L, to similarity symmetry rosettes with a rational angle,
which offer a perception of the sectors of dilatation, through to static sim-
ilarity symmetry rosettes with the symmetry group D, L (nmL), with the
coefficient of dilative rotation k = 1, which are, by their visual properties,
similar to rosettes with the symmetry group D, (nm).

The simplest among similarity symmetry groups of the type C,M
(nM) (Figure 3.14, 3.15) is the symmetry group M(n = 1) generated by
the dilative reflection M — a composite transformation representing the
cormmutative product of a dilatation and reflection. A fundamental region
of the symmetry group M is a part of the plane defined by two homologous
lines of the dilative reflection M. The polar radial rays exist. Due to the
presence of the indirect transformation — dilative reflection M — there is
no the possibility of the enantiomorphism.

There are several ways to construct figures with the similarity sym-
metry group M. They can be divided into non-metric constructions, based
on the use of the non-metric properties of the dilatation K — parallelism
or antiparallelism of homologous vectors of the dilatation K, equiformity,
equiangularity and linking of its successive homologous asymmetric figures
— and metric constructions, based on the use of the metric property of
the dilatation K that is a constitutive part of the composite transformation
M(k,m). Such a construction always begins with the metric construction of
a series of homologous asymmetric figures of the dilatation K. After that,
it is necessary to copy by the reflection in the reflection line m, every sec-

ond homologous figure mentioned. Combinations of these methods are also
possible.
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For the needs of ornamental art, probably the most efficient is the
non-metric construction, consisting of the construction of a series of asym-
metric figures that satisfy the dilatation K(| k |), by applying the linking of
successive homologous asymmetric figures of the dilatation K. After that,
every second figure must be copied by the reflection with the reflection line
m for k > 0, or by the reflection with the reflection line m’ perpendicular to
the reflection line m in the invariant point for k < 0. In line with this, when
analyzing the similarity symmetiry group M, it is not necessary to discern
the casesof k > 0, k < 0. ;

By applying the metric construction method, aiming for maximal con-
structional simplicity, there frequently occur deviations from the require-
ments of similarity symmetry. In such a case, the geometric progression
mentioned above, is replaced by an analogous arithmetic progression.

Since a dilative reflection is present in nature {(e.g., in the arrangement
and growth of leaves in certain plants), natural models are imitated by or-
namental art. Therefore, the similarity symmetry group M appears even in
Paleolithic ornamental art, although followed by deviations with respect to
the geometric consistency. The other reason for the origin and the use of the
similarity symmetry group M can be found in the visual effect and symbolic
meanings which corresponding similarity symmetry rosettes possess. Owing
to the polarity of the radial ray incident to the reflection line m and due to
the dynamic visual properties of the dilative reflection, similar to that of a
glide reflection, figures with the symmetry group M can serve as the visual
symbols of oriented, polar alternating phenomena of a growing intensity. It
is, probably, the origin and reason for the frequent occurrence of similari-
ty symmetry rosettes with the symmetry group M in primitive art. They
occurr independently, or within more complex similarity symmetry rosettes
with a symmetry group of the type C,M (nM) (Figure 3.14, 3.15). By
varying the dilatation coefficient & and the angle between the reflection line
m and the radial ray of the dilatation K (k®) which belongs to the symmetry
group M and generates its subgroup of the index 2, it is possible to em-
phasize or alleviate the dynamic visual effect produced by the polar radial
ray, which goes from suggesting an impression of dynamism, similar to that
produced by a glide reflection, to an impression of stationariness similar to
that produced by a reflection.

The use of the similarity symmetry group M in painting, comes to

its full expression when presenting objects with the symmetry group 1g by
applying the central perspective.
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Figure 3.14

The rosette with the similarity symmetry group C4M (4M) in the
ornamental art of Oceania, Bali.

Similar characteristics of all the similarity symmetry groups of the
type C,M (nM) are conditioned by the essential properties of the simi-
larity symmetry group M. Similarity symmetry groups of the type C,M
(nM) are the result obtained when composing the symmetry groups M and
C, (n) with the same invariant point. Similarity symmetry rosettes with
the symmetry group C,M (nM) can be constructed by multiplying by the
n-fold rotation 2 figure with the similarity symmetry group M, belonging to
a fundamental region of the symmetry group C, (n), or multiplying by the
dilative reflection M a figure with the symmetry group C, (n), belonging
to a fundamental region of the symmetry group C, (n). In both cases the
rosette center and the dilative reflection center must coincide. The applica-
tion of the non-metric construction method, combined with the use of the
linking of asymmetric homologous figures of the dilative reflection M, is
also possible. With the use of the metric construction method there often
occur deviations from the regularities of the similarity symmetry group M
— the replacement of the geometric progression mentioned above with a
corresponding arithmetic progression, the disturbance of equiformity and
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equiangularity, and, consequently, of the similarity symmetry. These devia-
tions are the result aiming for maximal constructional simplicity.

Figure 3.15

Examples of similarity symmetry rosettes in the ornamental art of
Oceania (New Zealand, New Guinea, Solomon Islands).
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A fundamental region of the symmetry group C,M (nM) is the sec-
tion of fundamental regions of the symmetry groups C, (n) and M with
the same invariant point. Within the type C,M (nM), there will be no
essential differences between individual symmetry groups, caused by the
sign of the dilatation coefficient k. Every symmetry group C,M(%,m), for
n — an odd natural number and k& < 0, can be treated as the symmetry
group C.M(| k |, m?’), where by m’ is denoted the reflection line per-
pendicular in the invariant point of the dilative reflection 3 (%,m) to the
reflection line m. Hence, for = — an odd natural number and &£ < 0, the
relationship C,M(k,m)=C,M(k,m’) holds. Similarity symmetry rosettes
with the symmetry groups C,M{k,m) and C,M({—k,m) will differ between
themselves regarding the position of the dilative reflection axis, only for »
~ an odd natural number, while for n» — an even natural number, there will
be no such difference. There are no enantiomorphic modifications.

Reasons for the appearance and the use of similarity symmeatry roseties
with the symmetry group C,.M (nM) in ornamental art, can be found in
the imitation of natural forms, in certain arrangements of leaves and in the
growth of some plants, combined with a decorative effect of rosettes with
the symmetry group C, (n). Among all similarity symmetry rosettes, those
with similatity symmetry groups of the type C,M (nM) possess the max-
imal degree of visual dynamism, conditioned by two dynamic components
— the n-fold rotation and dilative reflection M, which combines by itself
the visual dynamism of alternating motion and that of centrifugal expan-
sion, caused by iis dilative component. The intensity of the dynamic visual
effect can be influenced by choosing the parameter & and the position of the
reflection line m.

The symmetry groups C, (n) and M are relatively rare in ornamental
art. The same refers to the similarity symmetry groups of the type C,M
(nM), formed as their compositions. A similarity symmetry group C,M
(uM) can be obtained also by a desymmetrization of the symmetry group
D,.K (nmK) or DL (nmL), examples of which are, due to their higher
degree of symmetry, visual and constructional simplicity, more frequent in
ornamental art.

Desymmetrizations achieved by a dichromatic coloring often result in
antisymmetry groups of the type D, K/C,M (nmK/nM) or D,L/C, M
(nmL/nM), which in the classical theory of symmetry are considered with-
in the type C,M (nM). The same can be realized by suitable classical-
symmetry desymmetrizations.



222 Theory of symmetry and ornament

Similarity symmetry groups of the type D,M (nmM), the existence
of which was proposed by A.V. Shubnikov (1960), coincide to the similarity
symmetry groups of the type DL (nm).

Among the continucus similarity symmetry groups of rosettes Syg, the
symmetry groups DK (comK) and C,L; (nL;) will have adequate visual
interpretations, without using textures (Figure 3.5). As a visual model of
the symmetry group D K (comK), a series of concentric circles can be used
— this model being obtained multiplying by the dilatation K two different
concentric circles with the center incident with the dilatation center.

Adequate visual interpretations of all the other continuous similarity
symmetry groups can be obtained only by using textures — the average even
density of some elementary asymmetric figure, arranged according to the
given continuous symmetry group. Concerning physical interpretations, all
the continuous similarity symmetry groups have adequate interpretations,
which can be realized by using physical factors (e.g., motion, rotation, the
effect of a physical field, etc.).

* k%

The central problem with the similarity symmetry groups of rosettes
S90 and their examples in ornamental art is the question of the construc-
tion of corresponding similarity symmetry rosettes. As basic construction
- methods, it is possible to distinguish, first, the non-metric method, based,
directly or indirectly, on the parallelism of homologous asymmetric figures
of a dilatation, their equiangularity and equiformity; second, the metric
method, founded on the fact that the distances of homologous points of
the similarity transformations X, L, M from the invariant point form a
geometric progression; and, third, combinations of these methods.

The non-metric construction method gives the best results, guaran-
teeing that equiformity and equiangularity will be respected, and may serve
for the direct construction of similarity symmetry rosettes of the type C,K
(nK) or DK (nmK) with the dilatation coefficient k > 0, by applying the
linking of successive homologous asymmetric figures of the dilatation X or
dilative reflection M (Figure 3.3, according to A.V. Shubnikov, 1960). In
the other cases, when similarity symmetry transformations are composite
transformations, this means, in symmetry groups of the types C,K (nK),
D,K (nmK) with k¥ < 0, and all the symmetry groups of the types C,L
(nL), DL (nmL), C,M (nM), it is not possible to use exclusively linking
and parallelism. In these cases, after the first part of the construction, the



Similarity symmetry in E? 223

copying of successive homologous asymmetric figures of the dilatation K
(k > 0) by means of corresponding rotations and reflections becomes in-
dispensable, so the construction becomes more complicated. In those cases
whezre is not possible to link homologous asymmetric figures of a dilatation,
because of the complexity of construction, the non-metric method has a
relatively limited application.

The metric construction method shows its superiority, in the sense
of constructional simplicity, in those situations when the non-metric con-
struction method is difficult to apply — with composite similarity trans-
formations or with unlinked homologous asymmetric figures obtained by
dilatation. A negative aspect of the metric construction method, coming to
its expression in ornamental art, is the possibility for replacing the geomet-
ric progression mentioned above by a corresponding arithmetic progression,
aiming for maximal constructional simplicity. Such an inconsistent applica-
tion of the metric construction method unavoidably disturbs the equiangu-
larity, equiformity, and consequently, the similarity symmetry.

In ornamental art we can find many similarity symmetry rosettes,
formed by the inconsistent use of the construction methods mentioned. Such
rosettes do not satisfy the similarity symmetry but only suggest it. In early
ornamental art, this is not the excepticn but the rule.

Both construction methods mentioned are used to construct similarity
symmetry rosettes, formed by applying the similarity transformations K, L,
M on a rosette with the symmeatry group C,, (n) or D, (nm) belonging to
a fundamental region of the corresponding similarity symmetry group K, L
or M. An opposite approach — the multiplication of a figure with the simi-
larity symmetry group ¥, L, M, by the symmetries of the symmetry group
C. (n) or D, (nm) — is not s0 frequent. Such a construction requires a
better understanding of the similarity symmetry, especially concerning the
fundamental regions of the generating groups, to avoid the possible overlap-
ping of figures. In all those cases, the generating symmetry group of rosettes
and the similarity symmetry group possess the same invariant point.

The desymmetrization method is not an independent construction
method. It can be used exclusively if we know similarity symmetry groups
of rosettes with a higher degree of symmetry, which can be reduced to a
lower degree of symmetry by the elimination of certain symmetry elements,
to derive their similarity symmetry subgroups. However, since similarity
symmetry groups of a higher degree of symmetry, due to the principle of
visual entropy, are more frequent and much older, this construction method
has been abundantly used in ornamental art, with the classical-symmetry,
antisymmetry and color-symmetry desymmetrizations.
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Like the antisymmetry and colored symmetry groups of rosettes,
friezes and ornaments, such desymmetrizations of similarity symmetry
groups are of a somewhat later date, appearing in ornamental art with
dichromatic and polychromatic ceramics (in the Neolithic and in the period
of the ancient civilizations). Classical-symmetry desymmetrizations can be
used to derive similarity symmetry subgroups of the arbitrary index of the
given similarity symmetry group. Desymmetrizations of the continuous vi-
sually presentable similarity symmetry groups of the type DK (comXK),
which can be visually interpreted by a system of concentric circles, obtained
from two different concentric circles multiplied by the dilatation K with
the same center, frequently occur (Figure 3.5a). This continuous similarity
symmetry group is a perfect basis on which to apply the desymmetrization
method. Continuous similarity symmetry groups of the type C,L; (nL;)
(Figure 3.5b, ¢) are based on the continuous visually presentable conformal
symmetry group Ly Zr, which can be visually interpreted by the correspond-
ing logarithmic spiral. Therefore, they make possible a very simple transi-
tion from the visually presentable continuous, to the corresponding discrete
similarity symmetry groups.

The classical-symmetry desymmetrization method can be very suc-
cessfully applied on the similarity symmetry groups generated by the sym-
metry group D, (nm), to obtain their subgroups, generated by the sym-
metry group C, (n). Since the symmetry group C, (n) is the subgroup
of the index 2 of the symmetry group D, (nm), there is a possibility for
antisymmetry desymmetrizations.

More detailed information on possible desymmetrizations of similar-
ity symmetry groups can be found in the table of the group-subgroup re-
lations existing between different types of the similarity symmetry groups
of rosettes, and in the tables of antisymmetry and color-symmetry desym-
metrizations.

Since the continuous similarity symmetry groups DK (comK)
and C,L; (nL;) are visually presentable, very important are the group-
subgroup relations between the continuous and discrete similarity symme-
try groups of rosettes Sy0: DK — DK, DL, CL; — CL. Between the
different types of discrete similarity symmetry groups, the following rela-
tions hold: DL — DK — CM — CK, using the symbols D, C instead
of the symbols D,,, C,,, for denoting the group-subgroup relations between
the types, and not between the individual symmetry groups.

When establishing the group-subgroup relations between the individ-

ual similarity symmetry groups of rosettes S0 and their subgroups, we can
use the group-subgroup relations existing between the symmetry groups
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C,, (n}, B, (nm) and the group-subgroup relations between the symmetry
groups K, L, M, since all the similarity symmetry groups of rosettes 539
are derived as the superpositions of the symmetry groups mentioned, i.e. as
the extensions of the symmetry groups of rosettes Gyo: Cp, (n), D, (nm)
by the similarity transformations K, L, M. For the discrete similarity sym-
metry groups K, L, M, the following relationships hold: [K:K(k™)] = m,
[IM:M(k™)] = m, [L:L(k™, k)] = m (m € N). For a rational angle of the
dilative rotation 8 = pn/q,(p,q) = 1,p,¢ € Z, the following relationships
hold: [L:L(%%,¢9)] = g and L(%k?,¢6) =L{{-1)Pk%,0) =K((-1)?k?), show-
ing that every symmetry group L with a rational angle of dilative rotation
8 contains the subgroup generated by the dilatation K{(—1)Pk?). The rela-
tionship [M:K(k?)] = 2 highlights the existence of the subgroup of the index
2 generated by the dilatation K (k?) in every symmetry group M, while the
relationship C,K=C,L(k,0) =C, Lo highlights the different type possibil- :
ities for the symmetry groups C,K (nK). This means that they can be
discussed within the type C,L (nL), as the subtype C,Lg (nLe).

By accepting the criterion of subordination, by treating the symmetry
group K within the type C,L (in accordance with the relationship K=Lg),
and the type C,K (nK) as the subtype of the type C, L (nL) (in accordance
with the relationship C,K=C,Lg), the whole discussion on the discrete
similarity symmetry groups of rosettes can be reduced to the analysis of the
symmetry groups of the types C,L (nL), C,M (nM), DK (nmK) and
D,L (nmkL). The criterion of the maximal symmetry can be introduced
even between individual symmetry groups of the type C,L (nL), where the
symmetrization caused by a superposition of the n-fold rotation and the
rotational component of the dilative rotation L results in the change of the
minimal angle of the dilative rotation, and in the appearance of the new
dilative rotation L', i.e. in the new symmetry group C,L’ (nL’).

In the table of antisymmetry desymmetrizations of discrete similar-
ity symmetry groups of rosettes, the symbols of antisymmetry groups,
i.e. the corresponding antisymmetry desymmetrizations, are given in the
group/subgroup notation G/H. The symbol # corresponds to a newly de-
rived minimal angle of the dilative rotation L.

The table of antisymmetry desymmetrizations of similarity symmetry
groups of rosettes Syg:
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C.K/C.K C.M/C.K
C: K/CLK ConM/C M
ConK/CLg,
C,L/C,L(k?,26)
D.K/D.K Cs,L/CLL
D.K/C.M C.L/C.L(k, 6
D.K/C,.K
D,.K/D,K B L/D. K
DZnK/Cann DnLg’lGnL?n
D.L/C.M

Besides the possibilities to apply the antisymmetry desymmetrization
method, this table gives evidence for all the subgroups of the index 2 of any
given discrete similarity symmetry group of rosettes. By using data given by
A M. Zamorzaev (1976), it is possible to compare similarity antisymmetry
groups with the corresponding crystallographic antisymmetry groups of pe-
lar, oriented rods G3;. A complete catalogue of the similarity antisymmetry
groups of rosettes 53, is given by S.V. Jablan (1985).

The color-symmetry desymmietrizations of the discrete crystallograph-
ic similarity symmetry groups of rosettes can be partially considered by
using the work of E.I. Galyarski (1970, 1974b), A.M. Zamorzaev, E.I. Gal-
yarski, A.F. Palistrant (1978), and A.F. Palistrant (1980c).

Different problems of tiling theory (B. Griinbaum, G.C. Shephard,
1987) are extended to the similarity symmetry groups of rosettes Sy by
E.A. Zamorzaeva (1979, 1984). In the works mentioned, a link is estab-
lished between the similarity symmetry groups of rosettes Sag, the symme-
try groups of polar oriented rods G3; and corresponding symmetry groups
of ornaments Gy, resulting in the following relationships: C,K (nK), C,L
(nL) ~ p1, C,M ( nM) ~ pg, DK (nmK) ~ pm, D,L (nmL) ~ e¢m.
In this way, different problems of similarity symmetry plane tilings are re-
duced to the much better known problems of tilings that correspond to the
symietry groups of ornaments pl, pg, pm, cin. By using such an ap-
proach, the problems of isohedral and 2-homeohedral similarity symmetry
plane tilings are solved by E.A. Zamorzaeva.

The chronology of similarity symmetry rosettes in ornamental art is
connected with the problem of their construction. The oldest examples of
rosettes suggesting similarity symmetry date to the Paleolithic and Neolith-
ic, beginning with the appearance of the first spiral forms in art (Figure
3.7), series of concentric circles or concentric squares with parallel sides,
and motifs based on natural models with the similarity symmetry group
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M or D1 K (mK), etc. In the Neolithic we come across more diverse and
complex examples of rosettes with similarity symmetry groups of the type
C,L (nL) or D,L (nmL) (Figure 3.9). Already in the Neolithic and in the
ornamental art of ancient civilizations, there are examples of all the types of
similarity symmetry groups of rosettes. Though, almost unaveoidably, there
are deviations from geometric regularity, these being due to the approximate
constructions used in crnamental art. Ornamental motifs with the appli-
cation of similarity symmetry reached their peak in the ornamental art of
Rome and Byzantium (Figure 3.11-3.13), mainly in floor mosaics. Here we
find examples of all the types of the similarity symmetry groups of rosettes,
without any deviations from strict geometric regularity.

One of the conditions necessary for the appearance of corresponding
similarity symmetry rcsettes in ornamental art is the existence of models in
nature, i.e. aspiral tendency in nature, expressed through the way of growth
of certain living beings or as a result of rotaticnral motions (e.g., whirlpools
in a turbulent fluid motion, etc.). In the earlier periods of ornamental art, it
is possible to note the imitation of models in nature that possess similarity
symmetry. In the further development of crnamental art, 2 visual-symbolic
component based on a suggestion of the impression of centrifugal expansion,
produced by similarity symmetry rosettes, became the main reason for the
use of similarity symmetry. After empmcaﬂy solving the construction prob-
lems and discovering all the symmetry possibilities, i.e. all the types of the
similarity symmetry groups of rosettes, primary symbolic meanings retreat-
ed into a concern for decorativeness. That opened new possibilities for the
enrichment and variety of similarity symmetry rosettes in ornamental art.

Like with the symmetry groups of rosettes Gag, where rosettes with the
symmetry groups of the type D, (nm) are more frequent than rosettes with
the symmetry groups of the type C,, (n), the principle of visual entropy and
numerous models in nature caused the dominance of rosettes with similarity
symmetry groups of the type DK (nmK), D,L (nmL), over those with
similarity symmetry groups of the types C,K (nK), C,M (nM), C,L
(nL). As generating symmetry groups of the type D,, (nm), most frequently
are used symmetry groups of rosettes Dy (m), Dy (2m), Dy (4m), Ds
(8m), etc., mainly with n — an even natural number. In such rosettes the
incidence of reflection lines to the fundamental natural (hrectlons — vertical
and horizontal line — is possible.

A fundamental region of similarity symmetry groups offers the varia-
tion and the use of curvilinear boundaries. Rectilinear must be only those
parts of the boundaries of the fundamental region that coincide with reflec-
tion lines. By changing the form of a fundamental region we can influence
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the intensity of static or dynamic visual impression produced by the giv-
en similarity symmetry rosette and intensify desired visual impression. In
all similarity symmetry rosetites, it is possible to realize the corresponding
(unmarked) ischedral plane tilings.

A basic visual property of similarity symmetry rosettes is the impres-
sion of centrifugal expansion, which these roseites render to the cbserver.
The intensity of that impression will depend primarily on the value of the
coefficient k, on the form of a fundamental region or an elementary asym-
metric figure belonging to the fundamental region, where the adegquate use
of acuteangular forms may stress a dynamic effect of a dilatation, occurring
as the independent or dependent symmetry transformation. Polar, oriented
rotations existing in subgroups of the type C, (n) play the role of visual dy-
namic symmetry elements. Dilative reflections have a double, contradictory
role, since they cause the absence of the enantiomorphism in groups of the
type Cp,M (nM). On the other hand, they increase visual dynamism, by
suggesting the impression of a centrifugal alternating expansion. By varying
the parameter & and the position of the reflection line m, we can stress the
visual static or dynamic function of the dilative reflection M(k,m).

Enantiomorphic meodifications do not exist in similarity symmetry
groups of the types C,M {(aM), D,K (amK), D,L (nmL)}, DK
(comK), Le. in groups containing at least one indirect symmetry trams-
formation. The presence of the dilatation K or K(k?) is obligatory in all
the similarity symmetry groups of rosettes, except groups of the type C,L
(nL), which contain a dilatation only when the angle of the dilative rotaticn
L is rational. Then is possible to perceive sectors of dilatation. Since the
presence of a dilatation within the symmetry group C,L (nL) increases the
number of different symmetry transformations and simplifies the construc-
tion of corresponding rosettes, in line with the principle of visual entropy,
similarity symmetry groups of the type C,L (nL), offering a division of the
corresponding similarity symmetry rosettes into sectors of dilatation, will
be more frequent in ornamental art than groups of the type C,L (nL) with
an irrational angle of the dilative rotation L.

Because of a high degree of symmetry and the possibility for the simple
construction of their corresponding visual interpretations by desymmetriza-
tions of groups of the type DK (comK), of special interest will be groups
of the types DK (nmK) or D,L (nmL). According to the principle of vi-
sual entropy, similarity symmetry groups generated by the symmetry groups
of rosettes of the type D, (nm), for n=1,2,3,4,6,8,12,..., are the oldest and
most frequent in ornamental art. In visual interpretations of the derived
similarity symmetry groups of rosettes a dynamic visual component — the
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suggestion of a centrifugal expansion conditioned by dilatation — is in visu-
21 balance with the static component produced by reflections. The result is
non-polarity of rotations and absence of the enantiomorphism. On the oth-
er hand, in the older ornamental art and that of primitive people, visually
dynamic rosettes with similarity symmetry groups of the types C,K (nK),
C,L (nL), C.M (nM), C,L; (nL;), with polar rotations and dilative re-
flections, are very frequent. Their abundant use in ornamental art, is due
to their symbolic function.

Besides serving as a basis for the application of the desymmetrization
method, the tables of the group-subgroup relations between the types of
similarity symmetry groups or between the individual groups are, at the
same time, an indicator of symmeiry substructures of a given similarity
ymmetry group. They represent the groundwork for the exact register-
ng of the subentities mentioned, which with an empirical visual-perceptive
proach is sometimes very difficult. The sur reys given consist of a series
inclusion relations beginning with the maximal visually presentable con-
inuous similarity symmetry groups of the types DK (comK) and C,L;
L;), including all discrete similarity symmetry groups and ending with
the symmetry groups of rosettes D, (nm) and C, (n) and their subgroups.
When discussing continuous similarity symmetry groups, only the visually
presentable groups are considered, since ornamental art imposes this re-
striction. Visually non-presentable similarity symmetry groups will have
their physical interpretations, owing to the possibility of including physical
desymmetrization factors (e.g., a uniform rotation of a rosette with the sim-
ilarity symmetry group DK (ocomX¥) around the invariant point, when
its symmetry group is reduced to the symmetry group Co, K (o00K), or by
using similar methods). In ornamental art, visual presentations of such con-
tinuous similarity symmetry groups can be cbtained by using textures. As
physical interpretations of these groups, we may consider different similarity
symmetry structures realized by means of a physical field with a singular
point, the intensity of which depends on distance from the singular point,
according to the requirements of the similarity symmetry.
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In analyzing the visual properties of similarity symmetry groups we
can use, very efficiently, their visual interpretations: similarity symmetry
rosettes, tables of the graphic symbols of symmetry elements and Cayley
diagrams. Owing to the existence of the isomorphism between the similarity
symmetry groups of rosettes Sy and the symmetry groups of polar, orient-
ed rods Gy, the properties of the similarity symmetry groups of rosettes
S20, the characteristics of similarity transformations and relations which are
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included in their presentations, will be, sometimes, more evident in the sym-
metry groups of polar, oriented rods Gs; . The symmetry groups of rods Gas,
that in the isomorphism mentioned correspond to the similarity symmetry
groups of rosettes Syg, possess the same presentations and geometric char-
acteristics. By amalyzing the symmetry groups of rods Ga;, the cenclusion
on the absence of the type D, M (nmM) of the similarity symmetry groups
of rosettes and its reduction to the type D,L (nmL), becomes absclutely
clear. The same is proved by the table of the symmetry groups of rods Ga;
(A.V.Shubnikov, V.A Koptsik, 1974} in which, because of the justification
already given, there is no individual type (a){2n).&, consisting of groups
isomorphic to similarity symmetry groups of the type DM (nmM). These
symmetry groups of rods are included in the type (8)(2n),m, consisting of
groups isomorphic to the similarity symmetry groups of the type D, L (n-
mL). i}

The problem of plane symmetry groups isomorphic to the symmeiry
groups of non-polar rods Ga; is sclved in the theory of conformal symmetry
introduced by A.M. Zammorzaev, E.I. Galyarski and A.F. Palistrant (1978},
in the Euclidean plane with a singular point & removed, i.e. in the plane
E*\ {0}.

All the other problems in the field of visual interpretations of the
similarity symmetry groups of rosettes S3g — "objective” and "subjective”
symmetry, problems of perceiving the objective symmetry and eliminat-
ing other visual symmetry factors, desymmetrizations or symmetrizations
caused by physiological-physical reasons, the effect of the principle of visual
entropy, problems of visual perception of substructures, treatment of sym-
metry groups of "real” similarity symmetry rosettes as finite factor groups
of "ideal”, infinite similarity symmetry groups of rosettes, etc. — can be
discussed analogously to the similar problems of visual perception previ-
ously analyzed with the symmetry groups of rosettes Gy, friezes Gay and
ornaments G.

The chronological parallelism and the use of similar construction meth-
ods in ornamental art and the theory of similarity symmetry, the more pro-
found connection between the similarity symmetry groups used in ornamen-
tal art and the theory of symmetry, the possibility of a different approach
to ornaments treating them as models of geometric-algebraic structures and
many other similar questions, are some of the problems raised in this work
that demand a more detailed study.
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CONFORMAL SYMMETRY IN E*\ {0}

A group of conformal symmetry in E? \ {0} is a group of conformal
transformations of the plane E?\{0O} (H.S.M. Coxeter, 1969; A.M. Zamorza-
ev, E.I. Galyarski, A.F. Palistrant, 1978) at least one of which is not a
similarity transformation. According te the relationships: Ciy C Cay,
Cao = Ca10, any discussion on the conformal symmetry groups in E?\ {0}
can be reduced to the analysis of the two categories of conformal symmetry
groups — 021 and Cg.

4.1. Conformal Symmetry Groups in E? \ {0}

The idea of conformal symimetry was given in the monograph Col-
ored Symmetry, its Generalizations and Applications by A.M. Zamorzaev,
E.I. Galyarski and A.F. Palistrant (1978) as a generalization of similarity
symmetry. Along with it, there was established the isomorphism between
the symmetry groups of non-polar rods G3; and the conformal symmetry
groups of the category Cy. The isomorphism between the similarity sym-
metry groups S;p and the symmetry groups of polar rods G; is pointed out
within the analysis of the similarity symmetry groups in E? (Chapter 3).
According to the same isomorphism, the category C5 consists of the con-
formal symmetry groups isomorphic to the symmetry groups of non-polar
rods Gsy.

In conformal symmetry groups of the category Cs, besides the isome-
tries and similarity transformations, which are the elements of the similarity
symretry groups Sy, there will be, as basic transformations, three more
conformal symmetry transformations: inversion R in a circle with the cen-
ter in the singular point O of the plane E?%, inversional reflection Z; and
inversional rotation S;. An inversion circle can be denoted by myp, inver-
sional reflection center by 2; and inversional rotation center by nr.
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According to the isomorphism existing between the types of the dis-
crete symmetry groups of non-polar rods Gg; (A.V. Shubnikov, V.A. Kopt-
sik, 1974) and the corresponding types of discrete conformal symmetry
groups of the category (s, it is possible to conciude that there will be
ten types of discrete conformal symmetry groups of the category Cs.

Isomorphism between discrete symmetry groups of non-polar reds Gi;
and discrete conformal symmetry groups of category Cs:

KN; (a)(2Zn)  MNp (a)(2n)&
KC.Ry (a)n:m KD.Rr (a)mn:m
KC,Z; (a)n:2 MC.R; (a)dn:m
LC.Zy (a;)n:2 LC.Ry (a)(2n),:m

KD;N; (a)(2n)m LD.R; (a)m(2n),:m

Besides conformal symmetiry groups of the category C,, there exist five
types of discrete conformal symmetry groups of the category Cy;, isomor-
phic to the five existing types of the discrete symmetry groups of tablets
Gazo (A.V. Shubnikov, V.A. Koptsik, 1974): C,Z; ~n:2, C,R; ~n:m,
Nr~(2n), DINI'z(ﬂi)m and D, Ry ~mn:m.

Those isomorphisms make possible the defining of the continuous con-
formal symmetry groups of the categories Cy and Cy;, which in these iso-
morphisms correspond, respectively, to the continuous symmetry groups of
non-polar rods (fs; and tablets G3ag.

Owing to the existence of a singular point, any figure the symmetry
group of which is a conformal symmetry group is called a conformal symme-
try rosette. All the conformal symmetry groups of the category 3y can be
derived as the extensions of the conformal symmetry groups of the category
Cy1 by the similarity transformations K, L, M. Therefore, every conformal
symmetry rosette with a conformal symmetry group of the category C; can
be constructed, multiplying by those similarity transformations a conformal
symmetry rosette with the corresponding conformal symmetry group of the
category Cy;. Developing our analysis further we will consider first the con-
formal symmetry groups of the category Cs;. They will be used to generate
conformal symmetry groups of the category C;. An analogous approach
to the symmetry groups of rods G3; treated as extensions of the symmetry
groups of tablets G39, is given by A.V. Shubnikov and V.A. Koptsik (1974).
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According to the criterion of subordination, for the conformal sym-
metry groups of the category C,, it is possible to consider a certain type as
the subtype of the more general type (e.g., the type KC,Z; as the subtype
of the type LC,Z , according to the relationship K = L(%,0) = Ly). That
and similar problems can be solved in the same way as with the similarity
symmetry groups Sgg.

Presentations and structures of conformal symmetry groups of cate-
gory Csy:

o

Ny {51} S=FE Cza
DNy  {S.,R:} S =F ‘RA=F R=FE  RS:=SiR" GCi.xD;
C.R; {5 R;} S*=E SR; = R;S Cn x Dy
C.Zr {5,z1} S8=22=(8Z;)2="E D,
{Zr, 21} 23 =27 =(2:2})"=E
D.Rr {5, R,Ri} S*=RH*=(SR)2=E R2=FE
SR; = R;S RE; = R;R D Dy
{R,R1,R;} R*=R:=(RR,)"=E Ri =5

RR[ = R[R RlR[ = RIRl

Presentations of conformal symmetry groups of category Cs:

KN;  {K, 51} S?*=E KS;K=5;
MN;  {M, S} S*=F (MS;)?=E
KD,N; {K,S;,R} S =R?=(RS5;)*=E KR=RK  (KS;)™ =E
KC.R; {K,5,R;} S"=R!=FE SR =R;S KS=SK (KR)*=E
KC.2Zr {K,5,2;)  5°=22=(SZ1)?=E KS=SK  (KZ;)*=E
LC.R: {L,5 R:) S"=R*=FE SR;=R;S SL=LS
LR;LR; = R;LR;L=S (L = Laa = L(k, v/n))
L% - 41,5, 25} S"=22= (52,2 = E SL=1S (LZ1)* =E
MC.R; {M,5,R;} S"=R:=E SR, =R;S SMS=M (MR;)’=E
KD.R; {K,S,R,R;} S"=R*=(SR)’=E R? = SRy = RS
RR;=R,R KS=SK KR=RK (KR)’=EFE
LD.R:  {L,S,R, Ry} . S =R =(SR)Z=E R:=E SRr= R:5

RR;=RtR LS=LS LRLR=RLRL LR;LR;=R;LR;L=S5 RLR=1LS
(L= Loy = L(k,7/n))
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; Besides these presentations of conformal symmetry £, it is possible fo
have presentations with a different choice of generators. For example, groups
of the types KC, R, KC,Z;, KD,R; offer the following possibilities:

KC.R; {S5.Ri,R)} S*=R:=R?=F SR;=R;S SRy =R,S (B, =EK)

KC.Z; {5,21,2}} S*=Z}=22=E (SZ1)°=(S2))*=E (2t = Z;K)

KD.R; {5,R.R:,R)} S*=R*=(SR?=E SR;=R;S SR,=R;S

Ri=RP?=FE RR;=R/R ER,=R,R (R,=R/K

Similar possibilities exist in all the other conformal symmetry groups.

Besides indicating the different presentation possibilities, certain choices of

generators and corresponding presentations make possible a direct recogni-

tion of the structure of a group considered (e.g., the structure of groups of

the type KC Ry is Do, X Cy, of groups of the type KD,Rris D X D,
etc.).

Enantiomorphism: the enantiomorphism exists in the conformal symmetry

groups Cs; of the type C,Z type and conformal sym-

metry groups of the category C3 of the types KC,Z;

and LC,R;.
Polarity of rotations: polar rotations — Nj;, BC,R;, KN, KC, Ry,
’ EC’RRI;

bipolar rotations — C,Zr, MN;, MC.R;,
KCnZ[, LCﬁZ[;
non-polar rotations — DN, DRy, KD;Ny,
KD,R;, L,R.
Polarity of radial rays: polar — KNy;
bipolar — MN, KD Ny, KC,Zy, LC,Z  (if they
exist, i.e. if the dilative rotation angle is a rational
one);
non-polar — KC, R, KD, R, MC, R, LC, R,
LD.R;.
Form of the fundamental region: unbounded in the conformal symmetry
groups Cs1; bounded in conformal symmetry groups of the category
Cy. There exists the possibility of varying the shape of boundaries
that do not belong to reflection lines or inversion circles. In conformal
symmetry groups of the category Csq, variation of all the boundaries
is possible in groups of the types N, C,Z, of non-reflectional bound-
aries in groups of the type D; Ny, of non-inversional boundaries in
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groups of the type C,R, while in groups of the type D, Ry, it is not
possible at all. Regaring the changes of the form of 2 fundamental
région, conformal symmetry groups of the category C; offer similar
possibilities as generating conformal symmetry groups of the category
Co1.
Number of edges of the fundamental region: KC,Ry, KD, R; — 4;
KN; — 4.6;
MN;, KD;N;, KC,Zy,
LC.R, LC,Z;, MC, Ry,
LD.R;— 3,4,5,6.
Among the continuous conformal symmetry groups, visually pre-
sentable are groups Do R of the category Ci; and groups KD Ry,
K;C.R;, KiD,. R, KiD Ry, LiC.Z; of the category Cs.

Cayley diagrams (Figure 4.1):
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Figure 4.1
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4.2. Conformal Symmetry Rosettes and Ornamental Art

The simplest group of the type C,R; is the group R (n=1) gener-
ated by an inversion in the circle with the center in the singular point O
of the plane E2. The inversion Ry is the equivalent of the reflection in the
invariant plane of the symmetry groups of tablets G3390. From the existing
isomorphism between the symmetry groups of tablets G330 and conformal
symmetry groups of the category Cs;, by comparing the transformation Ry
with the plane reflection mentioned, corresponding to it in this isomorphism,
one can directly note the properties of the inversion Ry — its involution-
ality and the relations between the inversion R; and the other conformal
symmetry transformations. -

An inversion transforms a point 4 of the pla.ne E?\ {0} onto the point

A’ of the same plane, where the relationship OAoOA =12 holds, and 7 is
the length of a radius of the inversion circle. An important characteristic of
the inversion Ry is the property of equiangularity — the maintenance of the
angle between two arbitrary vectors in the plane E2? \ {O}, transformed by
the inversion Ry. The non-metric construction of the inverse point Rr(A4)
of a point A is based on the fact that the base point of the hypotenuse
altitude and a vertex that belongs to the hypotenuse are the homologous
points of the inversion in the circle with the center in the other vertex
of the hypotenuse and with the radius equal to the cathete to which this
vertex belongs (Figure 4.2). All the lines containing point O and points of
the inversion circle my are, respectively, the invariant lines and points of
the inversion R;. Circle lines containing the point O are transformed onto
the lines that do not contain the point O, circle lines that do not contain
the point O are transformed onto the circle lines that do not contain the
point O, while to all the lines not containing the point O correspond the
circle lines containing the point O. Hence, the following relationships hold:
RI(A) A@AEmI,RI(l)—I@OEIR[(l)—c<=>0¢la.nd
O€c,Ri(c)=c¢; < O¢cand O ¢ ;.

Every circle perpendicular to the inversion circle my is transformed by
the inversion R onto itself and represents its invariant, so the relationship
Ri(c) = ¢ <= cLlmy holds. All the constructions in which an inversion
takes part can be considerably simplified by using those invariance relations
— the invariance of all the points of the inversion circle mp, of lines contain-
ing the singular point O and of circles perpendicular to the inversion circle
my. Very important for the simplification of constructions is the fact that
every circle line containing the point O and touching the inversion circle my,
is transformed onto the tangent line of the circle my in the touch point and
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vice versa, and also every secant of the inversion circle my is transformed
outo the circle line containing the singular point O and the intersection
oints of the secant and inversion circle. The reverse transformations also
cld. Owing to those characteristics of the non-metric construction of in-
verse figures, according to the criterion of maximal constructional simplicity,

the metric construction was rarely used.

Figure £.2

The construction of homologous points of the inversion Rj.

Every conformal symmetry group of the type C, Ry is the direct prod-
uct of the symmetry groups C, (n) and Ry. Hence, visual interpretations of
-onformal symmetry groups of the type C,R (Figure 4.3, 4.4) can be con-
structed multiplying by the inversion R: a rosette with the symmetry group
T., (n), belonging to a fundamental region of the group Ry, or multlpbw
5y the n-fold rotation a zygure with ‘fbf- symmf-‘t’*v group Ry, belonging tc
ine fundamental region of the group C,, (n). A fundamental region of th
ip C, R is the eectmr' of the iv‘r» la nenfal regions of the groups C, V\
Rr. Owing to the pre
— inversion R; — in groups of the type Cn 1&_:»— t;Lantiomorphic modif;
tions do not occur. The visual effect and degree of visual dynamism in
rosettes with the conformal symmetry group €, R depend exclusively on
the choice of the form of a fundamental region, or on the position and form
of an elementary asymmetric figure within a fundamental region. A degree
of visual dynamism goes from conformal symmetry rosettes alike to rosettes
with the symmetry group C, (n) (Figure 4.3), to the conformal symmetry
rosettes with a fully expressed stationary visual component resulting from

'“} f’ﬂ"s

nr,
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Figure 4.3

Conformal symmetry rosettes with the symmetry groups of the

type C, Ry, which satisfy the principle of maximal constructional
simplicity.
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0

Figure 4.4

Examples of conformal symmetry rosettes with the symmetry
groups of the type C, R, with dominant static visual component
produced by the inversion R;.
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the visual effect of the inversion Ry, similar to the visual effect of a reflection.
Those "static” conformal symmetry rosettes with the group C,R can be
constructed by using an asymmetric figure, with its shape very close to the
inversion circle, or by using a fundamental region of a similar form (Figure
4.4). A fundamental region of the group C,R; offers a change of non-
inversional boundaries, i.e. boundaries that do not belong to the inversion
circle my. This is the only restriction to the choice of a fundamental region,
since the invariance of all the points of the inversion circle must be preserved.

Cwing to their low degree of symmeiry and visual dynamism condi-
tioned by the polarity of rotations, conformal symmetry roseties with the
symmetry group C,R[ are very rare in ornamental art. Such examples as
exist are constructed mostly by using half-circles containing the singular
point O, touching the inversion circle and forming a rosette with the sym-
metry group C, (n). They are iransformed by the inversion R onto the
corresponding half-tangents in the touch points (Figure 4.3). In ornamen-
tal art, the frequent use of that construction is dictated by the principle of
maximal constructional and visual simplicity, while other aspects of confor-
mal symmetry rosettes with the symmeiry group C, Ry are rarely found in
ornamental art. Conformal symmetry groups of the type C,,R; can be ob-
tained by desymmetrizations of groups of the type D, Ry, the most frequent
discrete conformal symmetry groups of the category Cs; in ornamental art.
Besides classical-symmetry desymmetrizations, frequently occurring is the
antisymmetry desymmetrization resulting in the conformal antisymmetry
group D,R;/C,Ry, which in the classical theory of symmetry can be dis-
cussed as the group C,R;.

Every group of the type D, R (Figure 4.5-4.7) is the direct product of
the symmetry groups D, (nm) and R;. Hence, visual interpretations of the
group DRy can be constructed multiplying by the inversion Ry a rosette
with the symmetry group D, (nm), belonging to a fundamental region of
the group Ry or, less frequently, multiplying by symmetry transformations
of the group D, (nm) a figure with the symmetry group Rj, belonging
to a fundamental region of the group D, (nm). A fundamental region of
the group D, Ry is the section of fundamental regions of the groups D,

(nm) and Ry. In groups of the type DRy, there are no enantiomorphic
modifications.

Conformal symmetry rosettes with the symmetry group D,R have
visual characteristics similar to that of generating rosettes with the symme-
try group D, (nm). Owing to the presence of reflections and inversions,
these conformal symmetry groups belong to the family of visually static
symmetry groups with non-polar rotations.
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Since groups of the type DRy are generated by reflections (reflec-
tions and inversions), there is no possibility for changing boundaries of a
fundamental region. Owing to the fixed shape of a fundamental region,
tilings corresponding to the group D,Ry, for fixed n, are reduced to only
one figure (Figure 4.5). In ornamental art, the variety, richness and visual
interest of conformal symmetry rosettes with the symmetry group D, R,
is achieved by applying different elementary asymmetric figures within a
fundamental region. The visual effect of the inversion Ry, within the group
D,R depends on the shape of that elementary asymmetric figure and its
position within a fundamental region. The static visual function of the in-
version Ry comes to its full expression for an elementary asymmetric figure,
by the shape and position being very close to the inversion circle.

IS

Figure 4.5

Examples of conformal symmetry rosettes with the symmetry
groups of the type D,Ry, constructed according to the principle
of maximal constructional simplicity.

In ornamental art, there are many examples of conformal symme-
try rosettes with symmetry groups of the type D,R;. The frequency of
occurrence of a particular group depends on the frequency of occurrence
of its generating group D, (nm). Therefore, the groups DRy, for n —
an even natural number, especially for n=2,4,6,8,12..., occur most often.
These groups satisfy the principle of visual entropy and offer the possibili-
ty of choosing the position of a corresponding conformal symmetry rosette,
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such that its reflection lines coincide with the fundamental natural directions
— the vertical and horizontal line.

Owing to maximal constructional simplicity, groups of the type D, Ry
have a special role in ornamental art. Very interesting visual interpretations
of these groups are obtained, reproducing by the inversion R; a rosette
with the symmetry group D, (nm), constructed by circles (or their arcs)
containing the singular point O and touching the inversion circle my. The
inversion Ry transforms these circles (arcs) onto the tangent lines (parts of
tangent lines) of the inversion circle in the touch points (Figure 4.6, 4.7).
These conformal symmetry rosettes are used in ornamental art by almost all
cultures. They have a special place in Romanesque and Gothic art, within
rosettes used in architecture.

-
L

Figure 4.6

Examples of conformal symmetry rosettes with the symmetry
groups of the type I, R, which are used in ornamental art.

The continuous conformal symmetry group D, R possesses adequate
visual interpretations. One of them is a circle. Regarded from the point of
view of the isometric theory of symmetry, a circle possesses the continuous
symmetry group of rosettes D, but for conformal symmetry, its symmetry
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Figure 4.7

Examples of conformal symmetry rosettes with the symmetry
groups of the type D, R, which are used in ornamental art.
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group is DR 7. Such a possibility for different symmetry treatments of the
same figure occurs in all situations when a certain theory (e.g., the isometric
theory of symmetry) is extended to a larger, more general theory (e.g., the
theory of conformal symmetry).

The simplest group of the type C,Zy is the group Z; (n = 1), gen-'
erated by the inversional reflection Zj, the commutative composition of a
reflection and an inversion. The inversional reflection Zy is an equivalent
of a two-fold rotation with the axis belonging to the invariant plane of the
symmetry groups of tablets Gzgo. Those isomorphism between conformal
symmetry groups of the category Cy; and the symmetry groups of tablets
(Gasg, in which the inversional reflection Z; corresponds to this two-fold
rotation, indicates the properties of the inversional reflection Z; — its invo-
lutionality and relations to the other conformal symmetry transiormations.

Since the inversional reflection Zy can be represented in the form Zy =
RR; = R;R, as the commutative product o the reflection R with the
reflection line containing the singular point O and the inversion Ky, many
properties of the inversion Ry (e.g., the property of equiangularity, etc.) and
the construction methods given analyzing the symmetry group Ry, hold and
can be transferred to the inversional reflection Z;. A fundamental region of
the group Zj can coincide with that of the group R, but offers a change of
the shape of all its boundaries.

Every group of the type C,Z; (Figure 4.8, 4.9) is a dihedral group
derived as a superposition of the groups C, (n) and Zj;. Their visual in-
terpretations can be constructed multiplying by the inversional reflection
Zr a rosette with the symmetry group C, (n), belonging to a fundamental
region of the group Zj or, less frequently, multiplying by the n-fold rotation
a conformal symmetry rosette with the symmetry group Zj, belonging to a
fundamental region of the symmetry group C, (n). According to the rela-
tionship Zr = RR; = RR, conformal symmetry rosettes with the symme-
try group C,Zy can be directly derived from conformal symmetry rosettes
with the symmetry group C,Ry, by reproducing by the reflection R with
the reflection line defined by the singular point O and by the section of the
boundaries of the fundamental region of the group C, R with the inversion
circle my, one class of fundamental regions of the group C,R [ (the internal
or external fundamental regions) (Figure 4.8). Conformal symmetry groups
of the type C,Z offer the possibility for the enantiomorphism. All the

other properties of groups of the type C,R; can be attributed to groups of
the type C,LZj.



250 Theory of symmetry and ornament

=

Figure 4.8

Examples of conformal symmetry rosettes with the symmetry
groups of the type C,Zr, constructed according to the principle
of maximal constructional simplicity.
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Figure 4.9

Examples of conformal symmetry rosettes with the symmetry
groups of the type C,Zy.
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Figure 4.10

Examples of conformal symmetry rosettes with the symmetry
groups of the type N, which satisfy the principle of maximal con-
structional simplicity.
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Figure 4.11

- Examples of conformal symmetry rosettes with the symmetry
groups of the type Nj.
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Like the symmetry groups of the type C,. Ry, the groups of the type
C,Z can be derived by a desymmetrization of the symmetry groups of the
type D,R;. Besides the classical-symmetry desymmetrizations, antisym-
metry desymmetrizations resulting in conformal antisymmetry groups of
the type D,R/C, Z , discussed in the classical theory of symmetry within
the type C,Zy, can be obtained.

Groups of the type N (Figure 4.10, 4.11) are generated by the inver-
sional rotation S;, the commutative composition of the rotation S of the
order 2n and the inversion Ry, so that the relationship S; = SRy = R;S
holds. Hence, conformal symmetry rosettes with the symmetry group N;
can be directly derived from conformal symmetry rosettes with the symme-
try group C, R, by transforming by the rotation S one class of fundamental
regions (internal or external fundamental regions) of the group C,R;. A
fundamental region of the group N; may coincide with that of the group
CnRy, but it allows the varying of all the boundaries. Conformal symmetry
rosettes with the symmetry group Ny can alsc be constructed multiplying
by the inversional rotation S; a conformal symmetry rosette with the sym-
metry group C, (n), belonging to a fundamental region of the group R;.
Groups of the type Ny are an equivalent of the symmetry groups of tablets
G390 of the type (Eﬁ) generated by n-fold rotational reflection, so that the
relationship §7 = §% 2 holds, where by S, is denoted the n-fold rotation. De-
spite the choice of a fundamental region or an elementary asymmetric figure
within a fundamental region, among all the conformal symmetry groups
of the category Cy;, conformal rosettes with groups of the type N pro-
duce the maximal degree of visual dynamism. Consequently, corresponding
conformal symmetry rosettes are very rare in ornamental art. Owing to
their maximal constructional simplicity, the most frequent are examples of
conformal symmetry rosettes with the symmetry group Ny, which consist
of half-circles containing the singular point O and touching the inversion
circle my, and of corresponding half-tangent lines onto which these half-
circles are transformed by the inversional rotation Sy (Figure 4.10). The
enantiomorphism does not occur in groups of the type N.

Groups of the type Ny can also be obtained by desymmetrizations of
groups of the type C,,R;. Besides the classical-symmetry desymmetriza-
tions, the antisymmetry desymmetrizations resulting in conformal antisym-
metry groups of the type C,,R /Ny, discussed in the classical theory of
symmetry within the type Ny, are very frequent.

According to the relationship S; = SR; = RS, where by S is denoted
the rotation of the order 2n, a connection, analogous to that existing be-
tween the types C,R; and Ny, exists between the types D,R and D;N7.
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Hence, conformal symmetry rosettes with the symmetry group D; N (Fig-
ure 4.12, 4.13) can be directly derived from conformal symmetry rosettes
with the symmetry group D,Ry, by reproducing by the rotation S one
class of the fundamental regions (the internal or external fundamental re-
gions) of the group D,R ;. The same result can be obtained multiplying by
the inversional rotation S; a conformal symmetry rosette with the symme-
try group D; (m), or multiplying by the reflection a conformal symmetry
rosette with the symmetry group N;. All the other properties of groups of
the type D; N1 — the absence of the enantiomorphism, visual characteris-
tics of corresponding conformal symmetry rosettes, etc. — are similar to
the properties of groups of the type D,Rj.

Groups of the type DNy are isomorphic to the symmetry groups of

tablets G359 of the type (2n)m generated by the n-fold rotational reﬂectlon
and the reflection in the plane containing the tablet axis.

The variety of conformal symmetry rosettes with the symmetry group
DNy can be accomplished by the choice of the form of non-reflectional
boundaries of a fundamental region or by using different elementary asym-
metric figures belonging to a fundamental region. In that way, 2 large
spectrum of the possible degree of visual dynamism can be achieved (Figure
4.12). Tt goes from static conformal symmetry rosettes with the symmetry
group D3Ny, without the application of an elementary asymmetric figure
within a fundamental region, to conformal symmetry rosettes of a higher
degree of visual dynamism, which can be, for instance, formed by circle and
line segments alternating along a radial line.

By applying the desymmetrization method on groups of the type
Dy.Ry, groups of the type D;N; can be obtained. Besides classical-
symmetry desymmetrizations, the antisymmetry desymmetrizations result-
ing in the conformal antisymmetry groups of the type Dy, R;/D; Ny, dis-

cussed in the classical theory of symmetry within the type DNz, can also
be used.

The symmetry groups of polar rods Gap, isomorphic to conformal
symmetry groups of the category C, can be derived by extending by the
translation, twist and glide reflection, the symmetry groups of tablets G0,
isomorphic to conformal symmetry groups of the category Cy;. Hence, con-
formal symmetry groups of the category C, can be derived by extending by

the similarity transformations K, L, M, conformal symmetry groups of the
category Cb;.
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Figure 4.12

Examples of conformal symmetry rosettes with the symmetry
groups of the type D, N;.
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Figure 4.13

Examples of conformal symmetry rosettes with the symmetry
groups of the type DN, which are used in ornamental art.
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According to the theorem that the product of two reflections with par-
allel reflection lines is a translation, the modulus of the translation vector
of which is twice the distance between the reflection lines, in the field of
conformal symmetry a dual theorem holds: the product of two circle in-
versions with concentric inversion circles is a dilatation with the dilatation
coefficient £ = r?/r?, where 7, r; are the lengths of the radii of the inversion
circles. It indicates the possibility of deriving conformal symmetry groups of
the category C, that contain a dilatation, by using inversions in concentric

inversion circles.
"
\ﬁ/\’\

Figure 4.14

The conformal symmetry rosette with the symmetry group K4;.

Conformal symmetry rosettes with the symmetry group KIN; (Fig-
ure 4.14) can be constructed multiplying by the dilatation K (with £ > 0)
a conformal symmetry rosette with the symmetry group Ny, belonging to
a fundamental region of the group K. A fundamental region of the group
KN is the section of fundamental regions of the groups K and Ny, and it
allows a varying of the form of all the boundaries. Since the dilatation K
is the element of every group of the type KNy, to efficiently construct the
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corresponding visual interpretations one applies two inversions in the con-
centric inversion circles. All the visual properties of a generating conformal
symmetry rosette with the symmetry group Ny, after the introduction of
the dilatation K, are maintained in the derived conformal symmetry rosette
with the symmetry group KNj;. The dilatation K stimulates their visual
dynamism, producing the suggestion of centrifugal expansion. Owing to
their low degree of symmetry and to their visual properties mentioned, the
corresponding conformal symmetry rosettes are very rare in ornamental art.
Those examples that exist in ornamental art, in the first place respect the
principle of visual entropy.

For a derivation of groups of the type KN, desymmetrizations of
groups of the type KC,,R [, somewhat more frequent in ornamental art, are
also used. Besides the classical-symmetry desymmetrizations, the antisym-
metry desymmetrizations resulting in the conformal antisymmetry groups
of the type KC,,R1/KNjy, discussed in the classical theory of symmetry
within the type KNy, are frequent.

|

2 %@/

Figure 4.15

The conformal symmetry rosette with the symmetry group M6 .

The type MN7 consists of the groups derived by the superposition of
the groups M and N;. Hence, corresponding conformal symmetry rosettes
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with the group MN; can be constructed multiplying by the dilative reflec-
tion M (with k > 0) a conformal symmetry rosette with the group Ny,
belonging to a fundamental region of the group M (Figure 4.15). A funda-
mental region of the group MN; is the section of fundamental regions of
the groups M and Ny, and allows a varying of all the boundaries.

After the introduction of the dilative reflection M, the visual proper-
ties of a generating conformal symmetry rosetie with the symmetry group
Ny, remain unchanged. In the conformal symmetry rosette with the symme-
try group MNN; obtained, the presence of the dilative reflection M increases
the visual dynamism, suggesting alternating centrifugal expansion. Since
conformal symmetry rosettes with the symmetry group MI¥; belong to a
family of dynamic, complicated conformal symmetry rosettes, the construc-
tion and symmetry of which is not comprehensible by empirical methods,
they are very rare in ornamental art.

In aiming to obtain groups of the type MINj, the desymmetrization
method can be applied on groups of the type KI}; N ;. Besides the classical-
symmetry desymmetrizations, also the antisymmetry desymmetrizations re-
sulting in antisymmetry groups of the type KDy Nj/MN, discussed in the
classical theory of symmetry within the type MN;, can also be derived.

Figure 4.16

The conformal symmetry rosette with the symmetry group KD;2;.

Conformal symmetry rosettes with the symmetry group KD, N (Fig-
ure 4.16) can be constructed multiplying by the dilatation K (with k > 0)
a conformal symmetry roseite with the symmetry group D; Ny, belonging
to a fundamental region of the symmetry group K. A fundamental region
of the group KD; N7 is the section of fundamental regions of the groups K
and DNy, and it allows a varying of non-reflectional boundaries.
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The visual properties of generating conformal symmetry rosettes with
the symmetry group D; N are maintained in derived conformal symmetry -
rosettes with the symmetry group KD;N;. The introduction of the dilata-
tion K results in the appearance of a new dynamic visual component — the
suggestion of centrifugal expansion. As in all the other cases of conformal
symmetry groups of the category C, containing a dilatation, for the con-
struction of conformal symmetry rosettes with the symmetry group KD Ny,
it is very efficient to make the use of two circle inversions with the concentric
inversion circles. Owing to the static visual component produced by reflec-
tions and the non-polarity of rotations, examples of conformal symmetry
rosettes with the symmetry group KD N are more frequent in ornamental

art, than conformal symmetry rosettes with thp symmetry group KN or
MN I

By using the desymmetrization method, besides classical-symmetry
desymmetrizations, the antisymmetry desymmetrizations of groups of the
type KDy,Ry, resulting in conformal antisymmetry groups of the type
KD;,R;/KD; Ny, discussed in the classical theory of symmetry within
the type KD;Ny, can be obtained.

The type KC,Z1 consists of conformal symmetry groups formed by
the superposition of the groups K and C,,Z;. Correspending conformal
symmetry rosettes can be constructed multiplying by the dilatation K (with
k > 0) a conformal symmetry rosette with the symmetry group C,Zr, be-
longing to the fundamental region of the group K, or by applying an inver-
sion with the inversion circle concentric to a conformal symmetry rosette
with thé symmetry group C,Z;. A fundamental region of the group KC,Zr
is the section of fundamental regions of the groups K and C,Zy, and allows
a varying of all boundaries. Visual properties of a derived conformal sym-
metry rosette with the symmetry group KC,Z; are similar to that of the
generating conformal symmetry rosette with the symmetry group C,Z;. By
introducing a new visual dynamic component — an impression of centrifu-
gal expansion — the dilatation K contributes to the increase in the visual
dynamism of the conformal symmetry rosette derived, with respect to the
generating conformal symmetry rosette. Due to their visual dynamism con-
ditioned by the bipolarity of rotations, enantiomorphism, visual function of
the dilatation K, etc., examples of conformal symmetry rosettes with the
symmetry group KC,Zy, are very rare in ornamental art (Figure 4.17).

By desymmetrizations of groups of the type KD, ,R; — the most fre-
_quent conformal symmetry groups of the category C; in ornamental art — it
is possible to derive groups of the type KC,Z . Besides classical-symmetry
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desymmetrizations, the antisymmetry desymmetrizations resulting in con-
formal antisymmetry groups of the type KD, R;/KC,Z;, discussed in the
classical theory of symmetry within the type KC,Zy, can be obtained.

2

Figure 4.17

The conformal symmetry rosette with the symmetry group KC,Z .

The type LC,Z  consists of conformal symmetry groups that are the
result of the superposition of the groups L and C,Z . Visual examples of
conformal symmetry groups of the type LC,Z; can be constructed multi-
plying by the dilative rotation L (with k > 0) a conformal symmetry rosette
with the symmetry group C,Zy, belonging to a fundamental region of the
group L (Figure 4.18). The visual effect of the dilative rotation L is the
appearance of a dynamic spiral-motion component. For a rational angle ¢
of the dilative rotation L, § = pr/q, (p,q) = 1, p,q € Z, it is possible to
divide a conformal symmetry rosette with the symmetry group LC,Z; into
sectors of the dilatation K'((—1)Pk?). A fundamental region of the group
LC,Z; is the section of fundamental regions of the groups L and C,Zj.
Hence, a varying of the shape of all the boundaries of a fundamental region
is allowed. Since the dilative rotation L is a composite transformation, the
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relationship L = K§ = SK holds, where a rotation with the rotation an-
gle 0 is denoted by S. Conformal symmetry rosettes with the symmetry
group KC,Z  can be constructed by using 2 generating conformal symme-
try rosette with the symmetry group C, Zj, but such a construction is, in
a certain degree, complicated. The conformal rosette mentioned, must be
first transformed by an inversion with the inversion circle my concentric to
this rosette. After that, the image obtained must be transformed by the
reflection R with the reflection line containing the singular point O, and
finally, by the rotation §.

-

Figure 4.18

The conformal symmetry rosette with the symmetry group LC;Z; .

Groups of the type LC,Z belong to a family of visually dynamic con-
formal symmetry groups with bipolar rotations, and with the possibility for
the enantiomorphism. The impression of visual dynamism, suggested by the
corresponding conformal symmetry rosettes, is greater than that suggested
by the generating conformal symmetry rosettes with a symmetry group of
the type C,Z;. It is the result of the presence of the dilative rotation L,
producing the visual impression of spiral-motion rotational expansion, and
representing by itself a visual interpretation of a twist within the plane.
The desired intensity of a visual dynamic impression can be achieved by
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varying the form of a fundamental region, applying - different elementary
asymmetric figures within a fundamental region and choosing the param-
eters k, 6. In ornamental art, the variety of conformal symmetry rosettes
with symmetry groups of the type LC, Z; is restricted by the principle of
visual entropy. Therefore, the most frequent conformal symmetry rosettes
with the symmetry group LC, Z are comnstructed multiplying by a dila-
tive rotation, the simplest conformal symmetry rosettes with the symmetry
group C,Z; (Figure 4.18). For the same reason, more frequent are con-
formal symmetry rosettes with symmetry groups of the type LC,Z;, with
a rational angle of the dilative rotation L. Very important in ornamental
art are conformal symmetry rosettes with a symmetry group of the subtype
L2,CnZ; (Lan = L(k,7/n)). The symmetry group mentioned is the sub-
group of the index 2 of the group LD, R. According to the relationship
K = L(k,0) = Ly, a consequent application of the criterion of subordination
requires also that the type KC, Z; must be considered as the subtype of
the type LC,Z . This would result in the complete elimination of the type
KC,Z. A similar situation occurs in all the cases of overlapping types or
individual conformal symmetry groups of the category C;. When solving
such a problem, an approach analogous to that already discussed with the
similarity symmetry groups of rosettes Sy, can be used.

By desymmetrizations of groups of the type LD, R, the correspond-
ing groups of the subtype L;,C,Zr, can be derived. Adequate antisym-
metry desymmetrizations of groups of the type LD, R result in conformal
antisymmetry groups of the type LD,R;/L;,C,Z}, in the classical the-
ory of symmetry included in the type LC,Z, as groups of the subtype
L,.C,2Z;.

Conformal symmetry rosettes with the symmetry group KC,R can
be constructed multiplying by the dilatation K (with & > 0) a conformal
symmetry rosette with the symmetry group C,R;, belonging to a funda-
mental region of the group K, or multiplying the same conformal symmetry
rosette by an inversion with the inversion circle concentric with it (Fig-
ure 4.19). A fundamental region of the group KXC,R is the section of
fundamental regions of the groups K and C,R;, and allows a varying of
boundaries that do not belong to the inversion circles, i.e. a varying of radi-
al boundaries. The visual effect of the conformal symmetry rosettes derived
is very ‘similar to that produced by the generating conformal symmetry
rosette with the symmetry group C,,R;. The introduction of the dilata-
tion K representing the new dynamic visual component — the suggestion
of centrifugal expansion — results in an increase in the visual dynamism.
Owing to their dynamic visual qualities, we would expect that conformal
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symmetry roseties with symmetry groups of the type KC,R are not so
frequent in ornamental art. However, the possibility of deriving conformal
symmetry groups of the type KC, R by desymmetrizations of groups of
the type KD,R 7, the most frequently used conformal symmetry groups of
the category C; in ornamental art, caused their more frequent occurrence.
Besides classical-symmetry desymmetrizations, the antisymmetry desym-
metrizations, resulting in the conformal antisymmetry groups of the type
KD, R;/KC,R, discussed in the classical theory of symmetry within the
type KC,R, can be obtained.

Figure 4.19
The conformal symmetry rosette with the symmetry group KC,R.

The type MC, R consists of conformal symmetry groups derived by
extending by the dilative reflection M (with & > 0) conformal symmetry
groups of the type C,R. Corresponding conformal symmetry rosettes can
be constructed multiplying by the dilative reflection M a conformal sym-
metry rosette with the symmetry group C, R, belonging to a fundamental
region of the group M. The same conformal symmetry rosettes can be con-
structed transforming by an inversion with the inversion circle m concentric
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to it, a generating conformal symmetry rosette with the symmetry group
C.R. Afterward, that image obtained we must to copy by a reflection in
the reflection line containing the singular point O (Figure 4.20). The exten-
sion of the symmetry group C, Ry by the dilative reflection M will result, in
the visual sense, in the appearance of a new dynamic visual component —
centrifugal alternating expansion. The dominance of dynamic components
caused the relatively rare occurrence of conformal symmetry groups of the
type MC, Ry in ornamental art.

Figure 4.20
The conformal symmetry rosette with the symmetry group MCsR .

By desymmetrizations of groups of the type KD, R, conformal sym-
metry groups of the type MC,R can be derived. In particular, anti-
symmetry desymmetrizations, resulting in antisymmetry groups of the type
KD,R;/MC,R/, discussed by the classical theory of symmetry within the
type MC, R, can be obtained.

The group KD,R; can be derived extending by the dilatation K
the conformal symmetry group D, R;. Corresponding conformal symmetry
rosettes can be constructed multiplying by the dilatation K a conformal
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symmetry rosette with the symmetry group D, R;, belonging to a fun-
damental region of the group K (with & > 0), or multiplying the same
conformal symmetry rosette by an inversion with the inversion circle mj
concentric to it (Figure 4.21). A fundamental region of the group KD R
is the section of fundamental regions of the groups K and D,R;. Since
the group KD,R is generated by reflections (reflections and inversions),
its fundamental region is fixed. Therefore, a fundamental region of the
group KD, R is defined by two successive reflection lines and two succes-
sive inversion circles, corresponding to this conformal symmetry group. The
varying of conformal symmetry rosettes with the symmetry group KD,.Ry
is reduced to the use of different elementary asymmetric figures belonging
to a fundamental region and to a change in the value of the parameter k.

Figure 4.21
The conformal symmetry rosette with the symmetry group KDgR .

The effect of the dilatation K on a generating conformal symmetry
rosette with the symmetry group D,Ry is reduced, in the visual sense,
to the increase in the visual dynamism and the suggestion of centrifugal
expansion. Since there are a large number of models in nature with the
symmetry group of rosettes D,, with a high degree of constructional and
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visual simplicity and symmetry, and with the dominance of the static visual
impression, conformal symmetry groups of the type KD,R [ are the most
frequent discrete conformal symmetry groups of the category C,, in orna-
mental art. Besides their individual use, groups of the type KD,R; form
the basis for applying the desymmetrization method, aiming to derive the
other types of conformal symmetry groups of the category Co;.

Figure 4.22
The conformal symmetry rosette with the symmeiry group L;2CgRy.

The group LC,R [ can be derived extending by the ”centering” dila-
tive rotation L = Ly, = L(k,7/n) (with k& > 0) the conformal symme-
try group C,R;. Hence, conformal symmetry rosettes with the symmetry
group LC, R can be constructed multiplying by the dilative rotation men-
tioned, a generating conformal symmetry rosette with the symmetry group
C.RJ, belonging to a fundamental region of the group L (Figure 4.22).
The same conformal symmetry rosettes can be constructed by using an in-
version with the inversion circle concentric to the generating rosette. In
that case, after transforming it by the inversion, the image obtained must
be rotated through the angle § = r/n. A fundamental region of the group
LC,R is the section of fundamental regions of the groups L,, and C, R,
and allows a varying of the form of non-inversional boundaries, while the
remaining boundaries are defined by the concentric inversion circles (their
corresponding arcs).
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The influence of the dilative rotation L = Ly, on a generating con-
formal symmetry rosette with the symmetry group C,R; results in the
formation of the visual impression of a spiral motion. All the other visual
properties of the generating conformal symmetry rosette remain unchanged.
Because of the rational dilative rotation angle § = 7 /n, there are sectors of
the dilatation K (k™).

In ornamental art, apart from by those construction methods, groups
of the type LC,R can be obtained by desymmetrizations of groups of
the type LD,R;. Since the group LC,R is the subgroup of the index 2
of the group LD, Ry, besides classical-symmetry desymmetrizations, very
frequent are antisymmetry desymmetrizations, resulting in antisymmetry
groups of the type LD,R;/LC,Ry, discussed in the classical theory of
symmetry within the type LC,Rj.

(8

Figure 4.23

The conformal symmetry rosette with the symmetry group LD,R;.

The group LD, R can be derived extending the group D,R by the
"centering” dilative rotation L = Ly, = L(k,7/n) (with £ > 0). In orna-
mental art, conformal symmetry rosettes with the symmetry group LD, R
are very frequent, since they can be derived multiplying by the dilative ro-
tation L = Ly, a conformal symmetry rosette with a symmetry group of the
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type DnRy, the most frequent conformal symmetry group of the category
Ca, which belongs to a fundamental region of the group L (Figure 4.23).
The same conformal symmetry rosettes can be constructed transforming by
a circle inversion with the concentric inversion circle my, the generating
rosette mentioned. Afterward, the image obtained must be rotated through
the angle § = w/n. A fundamental region of the group LD, R is the sec-
tion of fundamental regions of the groups D,R and L. Hence, a varying of
the form of a fundamental region is restricted to a change in the shape of
boundaries that do not belong to the reflection lines or inversion circles.

The dilative rotation L produces, in the visual sense, a dynamic effect
and gives the impression of a spiral motion. Although, since the "centered
dihedral” similarity symmetry group LD,, is the subgroup of the index 2
of the group LD R, there exists a specific balance between static and
dynamic visual components in conformal symmetry rosettes with the sym-
metry group LD, Ry, and even a dominance of the static ones. Because
of the rational dilative rotation angle § = n/n, there are sectors of the
dilatation K (k™).

In ornamental art, conformal symmetry rosettes with the symmetry
group LD, R; are very frequently used as individual ones, or as a basis
for applications of the desymmetrization method. Various examples are
obtained by applying a different elementary asymmetric figure within a fun-
damental region or by varying the form of a fundamental region and the
value of the parameter k.

The complete survey of continuous conformal symmetry groups of the
categories C'y; and Cy can be derived directly from the data on the contin-
uous symmetry groups of tablets G399 and non-polar rods G31, respectively
(A.V. Shubnikov, V.A. Koptsik, 1974). According to the restrictions im-
posed by ornamental art, if textures are not applied, visually presentable
are continuous conformal symmetry groups of the category Csy of the type
DR, and continuous conformal symmetry groups of the category C; of
the types KD R, KiC,Rr, KiD,R, LiD R and L;C,Z, where a
continuous dilatation group and continuous dilative rotation group is denot-
ed by K, L, respectively. In terms of ornamental art, the most interest-
ing are continuous conformal symmetry rosettes with the symmetry group
L;C,.Z;, which can be constructed multiplying by the n-fold rotation a log-
arithmic spiral — the invariant line of the continuous conformal symmetry
group L;Zy. All the other visually non-presentable continuous conformal
symmetry groups can be visually interpreted by using textures. Regarding
the physical interpretations, all the continuous conformal symmetry groups
of the categories Cy; and C; can be modeled in the plane E?\ {0}, by means
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of physical desymmetrization factors (e.g., by the uniform rotation around
the singular point O, by adequate physical fields, etc.), as was done with
the continuous symmetry groups of tablets G330 and rods (G3;, isomorphic
to them (A.V. Shubnikov, V.A. Koptsik, 1974).

* % %

As with all the previously discussed symmetry groups occurring in
ornamental art, a significant prerequisite for their early appearance and
frequent use in ornamental art is that they satisfy the principle of visual
entropy — maximal constructional and visual simplicity and maximal sym-
metry. For many ornamental art motifs, their origin and use is not directly a
function of the existence of models in nature with the corresponding symme-
try. This especially refers to conformal symmetry rosettes. Hence, probably
the most significant of the three mentioned criteria conditioning the time of
origin and frequency of occurrence of different conformal symmetry groups
in ornamental art, is the principle of maximal constructional simplicity.

An inversion is a constituent part of all the conformal symmetry trans-
formations, as an independent symmetry transformation, or as a component
of the composite transformations — inversional reflection Z; or inversional
rotation Sy, the commutative compositions of an inversion with a reflection
or with n-fold rotation. All the other conformal symmetry transformations
of the plane E?\ {O} belong to isometries or similarity symmetry transfor-
mations. Therefore, all the construction problems in conformal symmetry
rosettes with a symmetry group of the category C3; or C3, can be solved,
in principle, by using the non-metric construction to obtain homologous
points of the inversion R;. Since a non-metric construction fully satisfies
the criterion of maximal constructional simplicity, for the conformal sym-
metry transformations Ry, Zj, S, there is no reason to use the metric
construction method.

The property of equiangularity is satisfied by every inversion and
by all the other isometries and similarity symmetry transformations con-
sisting of conformal symmetry groups. Hence, this property is an invari-
ant of all the conformal symmetry groups. When constructing conformal
symmetry rosettes with an elementary asymmetric figure of an arbitrary
form, belonging to a fundamental region, as with the similarity symme-
try groups of rosettes S,, a construction of the type ”point by point” is
unavoidable. Since such a construction is very complicated, the invari-
ance of the points of the inversion circle m; and the fact that circles and
lines are homologous figures of an inversion, expressed by the relationships:



272 Theory of symmetry and ornament

RI(A}‘—’A = A €my, R[(l):l <~ O €l R[(§)=C = 0 élan_d
O€c,Ri{c)y=¢; = O¢cand O ¢ cy, Ri(c) =c <> clmyarea
basis upon which we can simplify constructions of ali conformal symmetry
rosettes.

For conformal symmetry groups of the category Csq, this is sufficient
for the construction of their visual interpretations. Besides the fact that
they can be constructed multiplying by similarity transformations X, L,
M a generating conformal symmetry rosette with a symmetry group of
the category Csi, for a construction of the conformal symmetry groups of
the category C; it is possible to use an inversion with the inversion circle
concentric to the generating rosette mentioned. Due to the simplicity of
constructions by circles and lines, in many cases this is the most suitable
construction method. Whatever the approach is, the construction of visu-
al interpretations of conformal symmetry rosettes with a symmetry group
of the category C5 is reduced to a multiplication of a conformal symme-
try rosette with the conformal symmetry group of the category Cs;. Since
conformal symmetry groups of the category C,; are the extensions of the
symmetry groups of rosettes C,, { n), D, (nm), every construction of con-
formal symmetry rosettes can be reduced to the following procedure: the
transformation of a generating rosette with the symmetry group C, (n) or
D, (am) by two circle inversions with the concentric inversion circles, by
rotations with the singular point O and by reflections with the reflection
line containing the point O.

For constructions of conformal symmetry rosettes with the desired
symmetry, the desymmetrization method is also used. This indirect con-
struction method is mainly applied to the conformal symmetry rosettes of
the types D,R;, KD,R;, LD,R;. Such conformal symmetry rosettes,
possessing a high degree of symmetry and representing the most frequent
conformal symmetry groups in ornamental art, are a suitable medium for
constructions of other conformal symmetry rosettes of a lower degree of
symietry. :

Using the desymmetrization method, besides classical-symmetry de-
symmetrizations, antisymmetry desymmetrizations can be used in all the
cases when the desired symmetry group is the subgroup of the index 2 of a
certain larger group. With conformal symmetry groups of the category Coi,
a complete survey of them is given in the table of the antisymmetry desym-
metrizations, i.e. of the corresponding conformal antisymmetry groups of
the category CJ,. In this table, symbols of antisymmetry groups are given
in the group/subgroup notation G/H.
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The table of antisymmetry desymmetrizations of conformal symmetry
groups of category Ca;:

N;/Cx C.R;/C, D,R;/D,
ConR1/CrRy D2, R; /DRy

D,N;/D, C1nR1/CoZy D,R;/C.R;

D;N;/Ny D;.R;/Di Ny

D;iN;/C,Z; C.Z;/C., D.R;/C,.Z;
C2nZI/CnZI

Besides being the basis for applications of the antisymmetry desym-
metrization method, this table is an indicator of all the subgroups of the
index 2 of conformal symmetry groups of the category Co;.

The complete derivation and catalogue <f confermal antisymmetry
groups of the categories Cj; and C} is given by S.V. Jablan (1985).

Information on some possible color-symmetry desymmetrizations of
crystallographic conformal symmetry groups of the categories Cp; and Cj,
can be obtained from the work of A.M. Zamorzaev, E.I. Galyarski, A.F. Pal-
istrant (1978), A.F. Palistrant (1980c), and E.I. Galyarski (1986), who dis-
cuss the color-symmetry groups of tablets G3s¢ and non-polar rods Gs;.

With conformal symmetry groups of the category Cj, it is possible
to establish a connection between these and the corresponding symmetry
groups of friezes G;. The following relationships hold: C, Ry ¥m1, DRy
~ mm, C,Z; ~ 12, D;N; ~ mg, N; ~ 1g. In this way, the prob-
lem of color-symmetry groups derived from conformal symmetry groups of
the category C3; can be reduced to the color-symmetry groups of friezes
(J.D. Jarratt, R.L.E. Schwarzenberger, 1981), i.e. to the use of the table of
color-symmetry desymmetrizations of the corresponding symmetry groups

of friezes. In doing so, it is necessary to be aware on the identification
pz= E.

Conformal symmetry tilings of the plane E? \ {O}, are discussed by
E.A. Zamorzaeva (1985). In this work, a connection is established between
the different types of conformal symmetry groups of the category Cj, the
symmetry groups of non-polar rods G3; and the symmetry groups of orna-
ments G,. The following relationships hold : KC, Z;, LC,Z; ~ p2, KN
~ pg, KC,R; ~ pm, LC,R; ~ cm, MN; ~ pgg, KD;N;, MC.R[
~ pmg, LD, R; ~ cnm, KD, R; ~ pmm. Using such an approach, the
problem of isogonal tilings, which correspond to conformal symmetry groups
of the category C,, is solved.
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The discussion on the visual properties of conformal symmetry groups
of the category Cj1, can be reduced to an analysis of the effects of the con-
formal transformations Ry, Z5, Sron generating rosettes with the symmetry
groups C,, (n), D, (nm).

In groups of the type C,Rj, the inversion R; causes the absence of
the enantiomorphism, existing in the symmetry group C,, (n). The intensi-
ty of the static visual impression produced. by an inversion depends on the
position and form of an elementary asymmetric figure belonging to a funda-
mental region of the conformal symmetry group containing this inversion.
It comes to its full expression only for figures that are, by their shape, close
to the inversion circle. In the geometric sense, the inversion R; causes the
constancy of the shape of the boundary of a fundamental region, which co-
incides with the inversion circle my (its arc), and the non-polarity of radial
Tays.

The inversional rotation Sy mainly keeps the properties of generating
rosettes with symmetry groups of the category G0 and somewhat intensifies
their dynamic visual properties. The inversional reflection Z; causes the
bipolarity of rotations and of radial rays, and preserves the property of the
enantiomorphism. The dynamic or static visual properties of conformal
symmetry rosettes with symmetry groups of the category Cs; will depend
on the analogous properties of generating rosettes with symmetry groups of
the category Gag.

Conformal symmetry groups of the category C; are derived extending
by the similarity transformations K, L, M, conformal symmetry groups of
the category Cy;. The dilatation K and dilative rotation L maintain all the
geometric-visual properties of the generating conformal symmetry groups
of the category C5; and introduce a new dynamic visual component — a
suggestion of centrifugal expansion, or of rotational centrifugal expansion.
The dilative reflection M, in the visual sense, produces the impression of
centrifugal alternating expansion. In the geometric sense, it eliminates the
possibility for the enantiomorphism.

The form of a fundamental region of conformal symmetry groups is
defined by the invariance of all the points of inversion circles and reflec-
tion lines. In this way, the conformal symmetry groups of the types Ny,
C.Zr, KNy, KC,Z;, LC,Z;, MNy, offer the possibility to change the
shape of all the boundaries of a fundamental region; groups of the types
C.R, MC,R;, LC, R offer the possibility to change the shape of non-
inversional boundaries; groups of the types D;N;, KD; N offer the possi-
bility to change the shape of non-reflectional boundaries; groups of the type
LD,R type offer the possibility to change the shape of non-reflectional
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and non-inversional boundaries, while groups of the types D, R, KD, R,
generated by reflections and inversions, do not offer the possibility to change
the shape of boundaries of a2 fundamental region.

In conformal symmetry groups that do not require the constancy of
the form of a fundamental region, a variety of corresponding conformal
symmetry rosettes in ornamental art is achieved by varying the boundaries
of a fundamental region or the form of an elementary asymmetric figure
belonging to a fundamental region. In the remaining conformal rosettes the
variety is achieved exclusively by the second of these possibilities.

In the geometric-visual sense, the inversion Ry represents an adequate
interpretation of "two-sideness” in the "one-sided” plane, i.e. the inter-
pretation of the symmetry transformation of the space E® — the plane
reflection in the invariant plane of the symmetry groups of tablets G3q0, in
the plane E?\ {O}. In the same way, because of the isomorphism between
the symmetry groups of tablets G359 and conformal symmetry groups of the
category Cq;, and the isomorphism between the symmetry groups of non-
polar rods G3; and conformal symmetry groups of the category Cs, apart
from the schematic visual interpretations — Cayley diagrams and tables of
the graphic symbols of symmetry elements — conformal symmetry rosettes
represent a completely adequate visual model of the symmetry groups of
tablets G330 and non-polar rods G3;. The symmetry groups of polar rods
G3; possess a similar visual interpretation in the plane E? — similarity
symmetry rosettes . On the basis of those isomorphisms, the presentations,
the geometric and visual properties of conformal symmetry groups of the
categories Csy;, Cy can be fully transferred, respectively, to the symmetry
groups of tablets G339 and non-polar rods Ga;.

In the table of the group-subgroup relations (Figure 4.24), a survey is
given of all the group-subgroup relations between the visually-presentable
continuous conformal symmetry groups, the discrete conformal symmetry
groups of the categories Cy;, C; and group-subgroup relations between con-
formal symmetry groups of the category C, and the similarity symmetry
groups of the category Sy¢. Although incomplete, as they do not include all
the group-subgroup relations but only the most important ones, the tables
can serve as a basis on which to apply the desymmetrization method for ob-
taining conformal symmetry groups or similarity symmetry groups and also
for the geometric-visual evidence of symmetry substructures of conformal
symmetry groups. Aiming for a more complete consideration of those prob-
lems, the given tables can be used with the analogous tables corresponding
to similarity symmetry groups of the category Ss0.
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The time and frequency of occurrence of different conformal symme-
iry groups in ornamental art are related to the periods when various con-
structional problems were solved. According to the criterion of maximal
constructional and visual simplicity, constructions of conformal symmetry
rosettes are mostly based on the use of circles and lines as homolegous
elements of conformal symmetry transformations. Combinations of elemen-
tary geometric figures (regular polygons, circles) with a common singular
point, found in the earliest periods of ornamental art, gave as a result the
first examples of conformal symmetry rosettes with symmetry groups of the
category Cy:, mosily of the type DRy (n=1,2,3,4,6,8,...). In the further
development of ornamental art, examples of all other conformal symmetry
groups of the category Cy; appeared. The dominance of visually static con-
ormal symmetry rosettes with a higher degree of symmetry, is expressed
throughout the history of ornamental art.

=ty

Very important in the formation of conformal symmetry rosettes was
he existence of certain models in nature — the flowers of different plants,
forms of growth, etc., possessing or suggesting different kinds of conformal
symmetry.

e

Conformal symmetry rosettes with a symmetry group of the category
(5 are constructed multiplying by similarity transformations K, L, M, a
generating conformal symmetry rosette with the symmetry group of the
category Cq1, or multiplying a generating rosette with the same symmetry
group, by an inversion with the inversion circle concentric to it. The second
construction, based on the non-metric construction method, using invariance
of all the points of inversion circles and reflection lines, and circles and lines
as homologous figures of conformal symmetry transformations, offers better
possibilities, in the sense of maximal constructional simplicity. It came to its
fullest expression in the corresponding elementary geometric constructions
by means of circles and lines used in ornamental art. In ornamental art,
conformal symmetry rosettes came to their peak in the work of Romanesque
and Gothic architects, artisans and artists. Examples of almost all the
conformal symmetry groups date from these periods. When calculating
a building proportions and other architectural elements, especially when
drawing-up the plans of the decorative architectural elements — window
and floor rosettes — Medieval architects used those constructions.

Directly linked to these problems, and covered by the theory of simi-
larity symmetry and conformal symmetry, are the questions of the theory of
proportions, the roots of which date from Greek geometry. It held a special
place in Medieval and Renaissance architectural planning and it reached
its fullest expression in applications of the ”aurea sectio” (or the "golden
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section”) and musical harmonies used in architecture and in the visual arts.
In more recent periods, examples of conformal symmetry rosettes with sym-
metry groups of the category C; can be found in the work of M.C. Esch-
er (1971a, b; 1986) (Figure 4.25), who, besides classical-symmetry, often
used conformal antisymmetry and color-symmetry rosettes, and greatly con-
tributed to the analysis of different conformal color-symmetry groups and
conformal tilings.

The problems of visual perception, referring here to conformal sym-
metry rosettes, can be solved analogously to the same problems previously
discussed in the other categories of symmetry groups, through the analysis
of the symmetrization and desymmetrization factors caused by the visual
effects of the physiological-psychological elements of visual perception.
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Figure 4.25

Examples of conformal symmetry rosettes from the work of M.C. Es-
cher.
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The approach to ornamental art from the theory of symmetry, makes
possible the recognition, classification and the exact analysis of all the vari-
ous kinds of conformal symmetry rosettes occurring in ornamental art, and
also highlights the different possibilities for constructing these conformal
symmetry rosettes possessing the symmetry and geometric-visual proper-
ties already anticipated.



Chapter 5

THE THEORY OF SYMMETRY
AND ORNAMENTAL ART

The extensiveness and universality of the theory of symmetry can be
noted, though only partially, by considering those scientific fields in which it
plays a significant role: Mathematics, Physics (especially Solid State Phy-
sics, Particle Physics, Quantum Physics), Crystallography, Chemistry, Bi-
ology, Aesthetics, Philosophy, etc. Owing to its universality and synthe-
sizing role in the whole scientific system, certain modern-day authors give
to the theory of symmetry the status of a philosophic category expressing
the fundamental laws of organization in nature. According to that, there
is the attitude of A.V. Shubnikov, who defined symmetry as ”the law of
construction of structural objects” (A.V. Shubnikov, V.A. Koptsik, 1974).
The symmetry of natural laws, material and intellectual human creations
represents a form of symmetry in nature.

An important, although apparently restricted area of the theory of
symmetry is the field of the theory of symmetry and ornamental art.
Throughout history, there have existed permanent links between geome-
try and painting, so that visnal representations were often the basis for
geometric investigations. This especially refers to ornamental art, termed
by H. Weyl (1952) "the oldest aspect of higher mathematics expressed in an
irnplicit form”. More recently, especially for the needs of non-Euclidean ge-
ometry, visualizations of mathematical structures became their most usual
model. The visual modeling of structures belonging to the field of natural
sciences (Physics, Crystallography, Biology, Chemistry, etc.) by means of
different visual representations — diagrams, graphics, graphic symbols of
syminetry elements, Cayley diagrams, graphs, etc. — brought into being a
complete visual language for the expression and representation of symme-
try structures. The long lasting interaction between geometry and painting,
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especially present in the periods of scientific and art synthesis (e.g., in Egyp-
tian, Greece, Renaissance science and art) is reflected in the simultaneity of
the most significant epochs, tendencies and ideas in geometry and painting.
In the modern period, this connection is expressed as a prolific exchange
of experience between mathematicians, scientists and artists, especially in
the period of the formatior and domination of the geometric abstraction
(e.g., in work of P. Mondrian, K. Malevich, V. Vasarely). There are al-
so examples of direct cooperation between artists and scientists (e.g., the
long standing contacts between H.S.M. Coxeter and M.C. Escher, and the
retrospective exhibition of M.C. Escher during the International Congress
of the World Crystallographic Union in Cambridge, 1960) and their joint
projects {M.C. Escher, 1971a, b, 1986; C.H. Macgillavry, 1976). Progress
in the field of visual communications (press, photography, film, TV) and its
further development open new possibilities for the visual representation of
different symmetry structures — the subjects of scientific studies — thus
making new scientific knowledge more accessible and expressible in a more
comprehensible form.

The very roots of the theory of symmetry (in Greece) are inseparably
linked to the establishment of the aesthetic principles — the canons and
theory of proportions. The links between the theory of symmetry and aes-
thetics developed and were strengthened throughout history, where works
of ornamental art represented the common ground between the theory of
symmetry and painting. A new motive for the analysis and revision of aes-
thetic criteria was the appearance of abstract painting, especially involving
geometric abstraction. Since figurative painting works are usually based on
reality — on models found in nature — in the field of the aesthetics of paint-
ing there existed criteria not connected to visuality: e.g., contents of myths,
degree of realism, etc. Non-figurative painting, abstract and ornamental,
pointed out the inconsistency and incompleteness of aesthetics founded on
the classical basis and the necessity to construct new visual-aesthetic crite-
ria, formed according to the theory of symmetry (asymmetry, dissymmetry,
antisymmetry, colored symmetry, curved symmetry, etc.).

The fundamental role of symmetry in the art is not exhausted by its
connection with ornament or geometric abstraction. Art historians often
used symmetry to characterize the formal qualities of a work of art, distin-
guishing symmetry as a basic principle of all artistic rules — the canons,
laws of composition, criteria of well-balanced form... As the most significant
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property of harmony and regularity, symmetry is one of the main organi-
zational principles in every art: painting, sculpture, architecture, music,
dance, poetry... Even in the most extreme modern art — conceptualism or
minimalism, it lays in their intellectual background.

This work is restricted to the area of ornamental art. This is so be-
cause of the fact that examples of visual interpretations of symmetry groups
occur most frequently in their explicit form in this very area. They occur,
also, in other fields of painting, but mostly in an implicit form. The pos-
sibilities of the theory of symmetry and ornamental art combined are, due
to the extensiveness of their application {covering science, aesthetics, visual
communications, etc.) far greater than those of ornamental art itself.

In this work, discrete symmetry groups formed by iscmetries and sim-
ilarity symmetries in the plane E? and also by conformal symmetries in the
plane E%\ {0}, are discussed. The condition of discreteness directly causes
the existence of 2 bounded or unbounded fundamental region of a discrete
symmetry group. '

In the plane E? and E?\ {0}, the following categories of the symmetry
groups of isometries were discussed: the symmetry groups of rosettes Gao,
friezes G, ornaments G , similarity symmetry groups S and conformal
symmetry groups Cs; and Cy. The maintenance of the metric properties of
figures, holding for symmetry groups of isometries, for similarity symmetry
groups is replaced by the similarity condition, so that the properties of
equiformity and equiangularity remain preserved. In conformal symmetry
groups, only the property of equiangularity holds. Similarity symmetry
groups 39 and conformal symmetry groups Cy; and C; are characterized,
respectively, by their isomorphism to symmetry groups of polar rods Gai,
tablets G0 and non-polar rods G3;, making possible an adequate visual
interpretation of these symmetry groups of the space E® in the plane E?
(E*\ {0}). Further extensions of the theory of symmetry leading toward
elliptic and hyperbolic groups of symmetry and their interpretations in the
inversive, conformal plane can be achieved without eliminating the condition
of equiangularity, preserved by all the conformal symmetry transformations.
A final consequences of such extensions are homology and curved symmetry
groups belonging to a family of discrete affine and topological groups. That
approach is in accord with the concept expressed in the Erlangen program
by F. Klein (1872), who proposed a derivation of sequences of symmetry
group extensions and their generalizations.
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_ From the standpcint of the theory of symmetry and ornamental
art, it is also considerable extension of the classical theory of symme-
try to antisymmetry and colored symmetry. They are not the main tep-
ic of this work, so we have discussed only those cases where antisymme-
try or colored symmetry is used for deriving classical-symmetry groups by
desymmetrizations. Antisymmetry and colored symmetry have been dis-
cussed in detail by A.V. Shubnikev, N.V. Belov et al. (1%64), A.L. Lo-
eb (1971), A.V. Shubnikov, V.A. Koptsik (1974), A.M. Zamorzaev (1976),
B. Griinbaum, G.C. Shephard (1977b, 1983, 1987), A.M. Zamorzaev,
E.I Galyarski, A.F. Palistrant (1978), M. Senechal (1979), J.D. Jarratt,
R.L.E. Schwarzenberger (1984), T.W. Wieting (1981), R.L.E. Schwarzen-
berger (1984}, S.V. Jablan (1984a, b, ¢, 1985, 1986a, b), H.S.M. Coxeter
(1985, 1987), A.M. Zamorzaev, Yu.S. Karpova, A.P. Lungu, A.F. Palistrant
(1987), etc.

When analyzing the visual characteristics of ornaments, the most fun-
damental appears to be the principle of visual entropy — maximal construc-
tional and visual simplicity and maximal symmetry. From the examples and
the accompanying arguments given in this work we can conclude that the
appearance and frequency of occurrence of different symmetry groups in
ornamental art are conditioned by the degree of agreement of correspond-
ing ornaments with this principle. The principle of visual entropy is an
affirmation of the universal natural principle of economy — its affirmation
in the field of visuality. The individual components of this principle —
the criterion of maximal visual and constructional simplicity and maximal
symmetry and their role have been analyzed regarding all the categories
of plane symmetry structures discussed. The maximal degree of symmetry
is inseparably connected to comstructional and visual simplicity. This is
proved in ornamental art by the chronological priority and domination of
examples of visually presentable continuous symmetry groups and maximal
symmetry groups generated by reflections or their equivalents, containing all
the other symmetry groups of the same category as subgroups. The prin-
ciple of maximal symmetry represents the basis of the desymmetrization
method, thus making possible the derivation of symmetry groups of a lower
degree of symmetry by a desymmetrization of groups of a higher degree of
symmetry, examples of which appear in ornamental art much earlier and oc-
cur more often. This can be achieved by classical-symmetry, antisymmetry
and color-symmetry desymmetrizations. A consequent application of the
desymmetrization method makes possible the realization of all symmetry



The theory of symmetry and ornamental art 285

groups as subgroups of the maximal symmetry groups of certain categories,
where these subgroups can be derived directly from them or by sequences
of successive desymmetrizations. In such a complementary approach to the
theory of symmetry, asymmetry could be undersiood 2as a positive-defined
property, in the sense of desymmetrization transformations, and not only
as a negative-defined property — the absence of symmetry (I.D. Akopyan,
1980).

The principle of visual entropy is in accord with the standpoint of
Gestalt psychclogy in considering the theory of visual perception (R. Arn-
heim, 1975, 1979). This point of view underlines the primary importance of
the perception of a whole (Gestalt) and its essential structural organization
laws, among which symmetry occupies an important position. That means
the priority of the synthetic part of the visual perception. The position of
Gestalt psychology has been greatly strengthened by recent research work
on the physiological and psychological basis oi visual perception. One of
the arguments proving this is, for example, the study of chronology and fre-

guency of occurrence of certain aspects of symmetry existing in ornamental
art, outlined in this book.

By the term ”visual simplicity”, the stationariness or dynamism of
symmetry structures is considered, where the dynamism of a visual object
in many cases coincides with the complexity of its form and structure, re-
sulting in difficulties when registering its symmetry. The enantiomorphism
is the possibility of existence of the ”left” or ”right” form of discussed
symmetry structure — their enantiomorphic modifications. The absence
of enantiomorphism is the result of the existence of at least one indirect
symmetry transformation within the symmetry group discussed. Somewhait
more restricted, the term ”polarity” introduces questions of polarity, non-
polarity and bipolarity of symmetry elements and their corresponding invari-
ant lines. The non-polarity of a certain symmetry element is conditioned by
the existence of adequate reflections (inversions) commuting with it, while
bipolarity is caused by the presence of adequate central reflections or their
equivalénts.

The polarity of generators of a symmetry group, especially of genera-
tors of the infinite order, introduces into ornamental art the time component
— a suggestion of movement — that can be seen in polar rosettes, friezes and
ornaments, or similarity symmetry rosettes producing the visual impression
of centrifugal expansion. The polarity considerably affects the degree of vi-
sual dynamism. A dynamic visual effect produced by polar generators can
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be stressed or lessened by the right choice of the relevant visual parameters
(e.g., by using acute-angular forms oriented toward the orientation of 2 po-
lar element of symmetry, by changing the form of a fundamental region or
the form of an elementary asymmetric figure belonging to it, or by choosing
the coeflicient of dilatation at the similarity symmetry groups Sy, etc.).

The chronology and frequency of occurrence of certain visual examples
of symmetry groups are caused also by the principle of maximal construc-
tional simplicity. Because visually presentable continuous symmetry groups
and maximal discrete symmetry groups generated by reflections or their equ-
ivalents are, also, the simplest ones in a constructional and in a visual sense,
constructional simplicity is directly connected to the degree of symmetry.

In the oldest phases of ornamental art, after the intuitive and empiri-
cal perception of construction problems, the solutions to these problems and
the forming of adequate construction methods came. According to the cri-
terion of maximal constructional simplicity, direct, non-metric construction
methods prevail in ornamental art in all the cases where their application
is possible.

The problem of the exact construction of rosettes with symmetry
groups of the category Gag is reduced to the question of the construction of
regular polygons, which is possible for the polygons with 2™p; p; .. .p, sides,
where p1, p3,..., P, are the prime Fermat numbers and n € N, m € N U {0},
while in other cases only approximate constructions are possible. Although
approximate constructions are often used in ornamental art, in the histo-
ry of rosettal ornaments there is an apparent domination of rosettes with
rotations of the order n = 1,2,3,4,6,8,12,..., while, for instance, rosettes
with rotations of the order n = 7,9, ... are extremely rare. A more detailed
analysis of the causes of this, (e.g., the existence of natural models) is given
in Chapter 2.

Symmetry groups of friezes G; possess a high degree of constructional
simplicity. Among other reasons, this caused the appearance of all seven
symmetry groups of friezes in Paleolithic ornamental art. Usually, friezes are
constructed by the method of rosette multiplication, where discrete friezes
are derived multiplying by means of a discrete translation or glide reflection
a certain rosette with the symmetry group C; (1), C, (2), D; (m), D,
(2m) — that means, by an extension from the ”local symmetry” of the
symmetry groups of finite friezes G319 to the ”global symmetry” of the
symmetry groups of friezes G;.



The theory of symmetry and ornamental art 287

Apart from their independent use, friezes are used for constructing
ornaments with symmetry groups of the category G2. In Paleolithic orna-
mental art, there occurred a multiplication of friezes by some other isometry
— by a translation, reflection, half-turn or, maybe, by a glide reflection.
The results obtained were superpositions of friezes — plane ornaments with
the absence of a rotation of an order greater than 2. From the Paleolithic
date the five plane Bravais lattices corresponding to the maximal symme-
try groups of relevant syngonies, which are, at the same time, the basis for
applying the method of rosette multiplication for constructing plane orna-
ments — the multiplication of a rosette with the symmetry group C, (n),
D, (nm) (n =1,2,3,4,6) by the discrete translational symmetry group of
ornaments pl. This method for constructing ornaments, which demands
a knowledge of plane Bravais lattices, was much more used in Neolithic
ornamental art. Interesting empirical results obtained by its use can be
traced in Moorish ornamental art, where experiments with rotations of the
order 5 were made, representing an empirical analysis of the principle of
crystallographic restriction (W. Barlow, 1894).

Constructions of similarity symmetry rosettes are based on the mul-
tiplication of a rosette with the symmetry group C, (n), D, (nm) by a
similarity symmetry transformation K, L or M, with a common invariant
point. Constructional difficulties occurring with the non-metric method of
construction, artists try to solve by using also the metric method, but this
often results in deviations from the similarity symmetry, caused by the in-
consequent application of the metric construction method.

Since the non-metric construction method fully satisfies the criterion
of maximal constructional simplicity, it prevails when constructing confor-
mal symmetry rosettes with the symmetry groups of the category Cs; or
Cy. By applying this method, visual examples of finite C3; and infinite
Cy groups of conformal symmetry in E2\ {O} can be derived by multiply-
ing some rosette with the symmetry group C, (n), D, (nm), by means
of conformal symmetry transformations Ry, Z;, S and similarity symme-
try transformations K, L, M. When doing this, aiming to simplify the
construction, we can use the correspondence between circles and lines as
homologous figures of conformal symmetry transformations, the invariance
of all the points of reflection lines and inversion circles, and the invariance
of circles perpendicular to inversion circles.
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The desymmetrization method is a universal, dependent construc-
tion method, consisting of classical-symmetry, antisymmetry and color-
symmetry desymmetrizations, making it possible to obtain visual examples
of all the subgroups of a given symmetry group. It is applied mestly on
continuous visually presentable symmetry groups or on discrete groups of a
high degree of symmetry — the symmetry groups of rosettes D, (nm),
friezes mm, ornaments pmm, p4m, p6m, similarity symmetry groups
D.K (nmK) and finite and infinite conformal symmetiry groups D,R and
KD,Ry. By antisymmetry desymmetrizations we can derive all the sub-
groups of the index 2 of a given group. Therefore, they can be used to find
all its subgroups of the index 2. As for the period of origin, antisymmetry
and color-symmetry desymmetrizations are somewhat younger than classic-
symmetry desymmetrizations, and they first appear in the Neolithic, with
the beginning of dichromatic and polychromatic ceramics. The consequent
use of the desymmetrization method requires knowledge of the tables of
group-subgroup relations.

Owing to their high degree of symmetry, and maximal visual and con-
structional simplicity, continuous symmetry groups belong to the oldest and
most frequent symmetry groups used in art. Without using textures, only
continuous symmetry groups with non-polar continuous elements of symme-
try are visually presentable. Because of that, their application in ornamental
art is strongly restricted. The first examples of visuaily presentable contin-
uous rosettes, friezes, semicontinua and continua date from the Paleolithic
and belong to the family of elementary geometric figures — circles, lines,
parallels, spirals — representing the oldest expression of human geometric
perception and knowledge. The possibilities for the visual representation
of continuous symmetry groups can be extended with textures. Continuous
visually presentable symmetry groups fully satisfy the criterion of visual
entropy, so besides having a special role as independent symmetry groups,
they serve as the most important source for deriving symmetry groups of
a lower degree of symmetry by a desymmetrization. The link between the
approaches existing in ornamental art and in the theory of symmetry is
apparent regarding their similar origins and the use of similar construction
methods.

In studying symmetry structures, besides objective elements condi-
tioning a visual impression, subjective factors — e.g., physical, physiological,
or psychological — also play their part. Regarding a symmetry structure
itself, they can represent symmetrization or desymmetrization factors. The
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most important of them are — the influence of human plane symmetry and
binocularity, the position of the symmetry structure regarding the funda-
mental natural directions, the effect of orientation ("left” or ”right”), the
influence of the symmetry of surrcunding structures, etc. The fact that re-
alistic ornaments represent finite parts of ”ideal” ornaments — their factor
groups — can also have a great influence on the visual impression produced
by 2 certain ornament. Therefore, aiming for a more thorough analysis
from the visual point of view, realistic plane symmetry structures should
be considered as the result of the interaciion between all the objectiye and
subjective factors mentioned.

Similar problems appear in attempting to perceive ali the symmetry
substructures of a given symmet zy structure. In this case, elements of sym-
metry of the larger structure represent, with respect to substructures, the
ndary visual symmetrization or deu 'mmetnzatxon factors, Visual per-
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ception of substructures and of their symmetry can be immensely simplified
by using tables of group-subgroup relations.

The theory of symmetry is one of the most efficient means for studying
the principles of balance and harmony in art. Since symmetry is one of the
basic structure-organization laws in nature, the existence of natural models
was one of the origins of ornaments and an inexhaustible source of ideas
during all the history of ornamental art. In the field of rosettal ornaments,
frequently used basic models were objects with the mirror symmetry Dy
(m), shapes with the symmetry group D, (2m) sxpressing the zela.twn be-
tween a vertical and horizontal line, and roseties with the symmetry groups
C. (n); Dy ifnm), ni='1,2 3:4:5,6. . car*esmmdmg to the symmetry of
certain plants, fiowers and some other forms of life (e.g., a starfish, jelly-
fish). The b;_,ols of friezes are the models found in nature, the distribution of
leaves on plants, the shape of waves, the periodic character of many natural
phencmena (the turn of day and Tuﬂbq, the phases of the Moon, the seasons

of the year, etc.). Resulting from there we have the primary calendar role
of friezes, witnessed by the names of many friezes preserved in the art of
primitive peoples (R. Smeets, 1975).

4

As complex plane symmetry structures, besides imitating natural
models — honeycombs or net structures — many ornaments are the re-
sult of a human longing to express regularity and to construct perfect visual
forms — discrete regular plane tilings. The similarity symmetry rosettes
and infinite conformal symmetry rosettes preduce, in the visual sense, the
impression of centrifugal expansion, giving an adequate visual interpretation
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of the basic natural tendency of living matter — growth, directly connected
with spiral structures. The spiral itself is one of oldest archetypical dynamic
symbols used in art, occurring in nature in different types of snails, flowers
and plants.

This study of the origin and development of ornamental art has been
based mainly on examples of the oldest ornaments from the Paleolithic,
Neolithic, the art of the ancient civilizations, and the native art of primitive
peoples. After an intuitive-empirical perception of symmetry by the use of
natural models (in the Paleolithic) and by solving elementary construction
problems, the first symbolic meanings of ornaments were formed. In time,
the visual-symbolic language of ornaments became a specific form of visual
commmunication. After having solved constructional problems, in ornamental
art there, then came the phase of an empirical analysis of the visual form
of ornaments: by bringing into accord the visual form and the symbolic
meaning, by solving the problems of visual stationariness or dynamism and
orientation, and by studying tessellations and perfect ornamental forms.
These were the first attempts to achieve a desired visual effect through the
choice of relevant visual parameters.

The methods for obtaining different ornaments with the same sym-
metry group, by a change of the shape of the fundamental region or of the
shape of an elementary asymmetric figure belonging to it, can be traced
in the ornamental art of Neolithic, the ancient civilizations and primitive
peoples. In this way, a special contribution to ornamental art is represented
by Islamic ornaments (D. Hill, O. Grabar, 1964; K. Critchlow, 1976) and
Moorish ornaments, and recently by the work of M.C. Escher (1971a, b,
1986).

Regarding the form of the fundamental region, we can distinguish vi-
sually static groups in the strictest sense — groups generated by reflections
and their equivalents (circle inversions) — not allowing any kind of ¢hange
of the boundary of a fundamental region, from the other symmetry groups
allowing a change of boundaries not belonging to the reflection lines or in-
version circles. Since the form of the fundamental region is fixed in the
symmetry groups of rosettes D, (nm), friezes m1, mm, ornaments pmm,
p3ml, p4m, p6m and conformal symmetry groups D,Ry, KD,R gen-
erated by reflections (and inversions), the abundance and variety of such
ornamental motifs can be exclusively achieved by changing the metric pa-
rameters — the dimensions and shape of an elementary asymmetric figure
belonging to the fundamental region. At least one isohedral plane tiling
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corresponds to each of these groups, except to the symmetry group of orna-
ments p3m1 (A), whose corresponding regular tessellation {3,6} has the
symmetry group p6m. This one and similar problems are an important
part of the theory of plane tilings (B. Grinbaum, G.C. Shephard, 1987).

By solving the construction problems and by investigating the possi-
bilities for obtaining different ornamental motifs, generations of artist and
artisans have opened vast possibilities for decorativeness in ornamental art.
In time, the symbolic meanings of ornaments were lost, and the role of or-
naments was gradually reduced to pure decorativeness, almost without any
symbolic meaning.

In ornamental art, by using an empirical approach, probably all the
different possibilities for plane symmetry structures are exhausted. Sym-
metry groups present in ornamental art, their existence and uniqueness
(completeness), have been recently scientifically verified by the theory of
symmetry. So, we can divide all the discrete symmetry groups of the plane
E? and E?\ {O} into the following categories: two types of symmetry
groups of rosettes Gg; seven symmetry groups of friezes G1; 17 symmetry
groups of ornaments G ; five types of similarity symmetry groups Sy0; five
types of finite Cy; and ten types of infinite C; conformal symmetry groups.
Throughout history, the role of ornaments was mostly symbolic or decora-
tive, but in our time, thanks to their link with science, especially with the
natural sciences, ornaments have gained new meaning. Since they can be
understood as models of structures that are the subject of scientific studies,
ornaments today have outgrown the restricted area of ornamental art.

The history of ornamental art began in the period of the middle and
late Paleolithic, around the tenth millennium B.C., when we have the first
examples of discrete symmetry groups of rosettes Gy9 among which prevail
visually static rosettes with the symmetry group D, (nm) (n = 1,2,3,4,6),
examples of all seven discrete symmetry groups of friezes, all five plane
Bravais lattices and examples of ornaments derived by elementary super-
positions of friezes. From Paleolithic art we can date examples of almost
all visually presentable continuous symmetry groups of the categories men-
tioned and the first intuitive premonitions of similarity symmetry — spirals,
radial structures, series of concentric circles or squares and also the oldest
examples of finite conformal symmetry groups of the type D, R ;.

From the ornamental art of the Neolithic and the first ancient civ-
ilizations originate examples of all the 17 symmetry groups of ornaments
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Gy . After solving construction problems and creating ornaments that pos-
sessed a higher degree of constructional and visual complexity, they began
the artistic experiments that opened the way to decorativeness, e.g., by
changing the form of a fundamental region or the shape of an elementary
asymmetric figure belonging to it. From the Neolithic date the cldest exam-
ples of antisymmetry and colored symmetry groups, being most completely
realized in the ornamental art of Egypt. The ornamental art of Greece,
Rome and Byzantium gave new results in similarity symmetry, antisymme-
try, colored symmetry and conformal symmetry, while Gothic art almost
completely exhausted the possibilities of conformal symmetry of reseties,
because dominating in this period were architectural constructions with
rosettes constructed by circles and lines. Islamic and Moorish were the
peaks of ornamental art. Renaissance and post-Renaissance ornamental art
in Europe was almost completely reduced to decorativeness, which auto-
matically reduced its status to that of a "second rate art”. Lately, with
geometric styles in painting, ornamental art gained a new affirmation with
the work of V. Vasarely, M.C. Escher, by op-art (C. Barrett, 1970) and
computer art (M.L. Prueitt, 1984). With the development of visual com-
munications and accompanying visual design, ornamental art found a new
place within the applied arts.

Interesting and not sufficiently investigated fields, referring to the
chronology of ornamental art, appear to be the complete dating of the first
appearance of all the symmetry groups in ornamental art, the evidence
of the most important archaeological locations and civilizations that have
achieved the most as for the completeness and variety of ornamental motifs,
etc. Very important are comparative analyses aiming to find connections
between civilizations, where ornaments can be the relevant indicators of
these relations; either regarding repetition of details, elementary figures
and the same forms of fundamental regions in ornamental art of different
civilizations; or, regarding the use of the same symmetry groups. Accord-
ing to Gestalt theory, when visually perceiving an ornament the observer
records and recognizes it as a whole, often abstracting details, but trying
to understand and remember its law of organization — symmetry. There-
fore, the use of the same symmetry groups by different civilizations can be a
relevant indicator of their connections. Problems of the sense and symbol-
ic meanings of ornaments, questions about relations between cosmological
theories of different civilizations and their ornaments, etc., are only parts of
this large field of investigation.
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Even the clementary symmetry structures: rosettes C, or D, and
-orresponding geometrical figures: square, circle, cross, have a symbolic

” Point: the primeval element, beginning, and kernel; symbol of the
number. It is the symbol of the beginning (grain of seed) and of the end
(grain of dust); it represents the smallest substance {atom, nucleus). The
point is in fact imaginary: it occupies no space...

Vertical line: the sign of life, health, activity, certainty, effective sta-
bility, manliness. It is the symbol of spiri¢t directed upward, of grandeur and
loftiness, and of man running erect; it is the sign of right and might...

Horizontal line: the polar opposite of the vertical, and symbol of the
earth, the passive, woman, death and rest; the material and the earth-
bound... ‘

Cross: one of the oldest and most universal signs, uniting the polar
contrasts of vertical and horizontal, of God and the world, of the spiritual
and the material, of life and death, of man and woman. It indicates the four
points of the compass and the point of intersection. After the Crucifixion it
became a holy symbol in Christianity and was used in many variations...

Circle: together with the square and triangle, the primeval signs. Alike
on all sides and the only geometric figure formed with one line with no
beginning or end, it is a sign of infinity, eternity, perfection, and God. As
a round form it is likewise a symbol of the Sun, the Cosmos, the Earth and
the planets. As a pure form it is a sign of purity; as an embracing sign, a
symbol of community...

Yang-yin: the symbol of perfect antithesis, ideal balance of opposites.
Yin signifies womanly, dark, bound to the earth, cool, reticent, oppressed;
yang manly, light, heavenly, aggressive, warm, governing. The white dot in
the dark yin and the dark dot in the light yang signifies that each is always
a part of the other...

Spiral: indicates that all life develops from one point and, still spinning
from that one point, grows to adulthood. Also a symbol of the rising sun
and the year. Much loved as an ornamental sign in many variations and
combinations in all times and by all peoples...

Double spiral: the magnificent sign for perfection — in fact, a com-
pleted S-line. Symbol of the day between the rising and the setting sun and
leap year (since a single spiral represents one year)...
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’ F;'gure eight: the loop without end and therefore symbolic of endless,
eternal time, which has no beginning or end...

Square: one of the three basic signs. Symbol of massiveness, sturdy
peace, and stability: it stands fast and firm on the ground. It is the same
on all the sides and the token for the number four, therefore, it symbolizes
the four seasons, the four points of the compass, the four elements, the four
rivers of Paradise, the four Evangelists...

Triangle: the third of the basic, primary signs. It is an aggressive
sign with its points directed outwards. It is the symbol of the Trinity and,
with a point in the middle, a sign of the all-seeing eye of God. A triangle
standing with its base firmly planted on the ground and its point striving
upwards has a womanly character, as opposed to a triangle balanced on its
point with broad ”shoulders” above, which has a more manly character...

Hezagram: two triangles passing through each other create a new
sign, a beautiful symmetrical star. It is a magic sign of preservation and
protection against destruction; also a very old Jewish sign, the Star of David,
that crowns the synagogue and decorates the Torah rolls, as well as an
emblem of the cosmos, the divine Creator, and His work...

Pentacle: another very old sign, known as the druid’s foot for its mag-
ical meaning. Pointing upwards, it is a symbol of white magic; downwards,
of black magic. The sign shows the five senses and indicates the powe-
rs and forms in nature. The lines intersect one another in golden-section
proportions...” (R. Smeets, 1975, pp. 54-56).

Symbols move the deep, secret recesses of the human soul. They
carry the mind over the borders of the finite into the realm of infinite: they
are signs of unspeakable. Even only one of them — the spiral, may be
the subject of the monograph (J. Purce, 1975). Some of them, e.g. Islamic
patterns, are the artistic vision of cosmology (K. Critchlow, 1976), but many
of them, e.g. the signs discovered by prehistoric archaeology, are still not
decoded. Their symmetry and its accord with the message may be the keys
for deciphering their symbolic meaning.

The word ”symmetry” has its roots in Greek philosophy and aesthet-
ics, where it was used to express balance, proportion, and to point out a
whole spectrum of the philosophic-aesthetic synonym terms: harmony, ac-
cord, completeness, which were used in history. This term entered science
in the 1830-ies, with the beginning of the study of crystal classes and their
analysis based on the theory of groups, introduced by E. Galois (1831) in
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work published in 1848. The essence of the theory of symmetry, based on the
theory of groups, is expressed in the Erlangen program of F. Klein (1872),
distinguishing the theory of symmetry as a universal approach to different
geometries by registering manifolds, their groups of transformations and in-
variants of these groups. Further development of the theory of symmetry
cannot be separated from crystallography and the theory of groups. Of
central interest to the problems covered by this work are the results of the
theory of symmetry in the planes E? and E? \ {0}.

The answer to the question about the existence and completeness of
the classification of symmetry groups of rosettes Ga9, H. Weyl (1952, pp.
119) attributed to Leonardo. The derivation of the 32 crystal classes
(J.F.Ch. Hessel, 1930) and 14 space Bravais lattices (O. Bravais, 1848) laid
the basis for the complete derivation of the 230 G3 crystallographic space
symmetry groups (E.S. Fedorov, 1891a; A. Schonflies, 1891), while W. Bar-
low (1894) proved the crystallographic restriction, showing that rotations of
the symmetry group of a lattice can only have periods n = 1,2, 3,4, 6.

The derivation of 17 discrete symmetry groups of ornaments G; , giv-
en incompletely by C. Jordan (1868/69), where the symmetry group pgg is
omitted, and by L. Sohncke (1874), is completely realized as a partial result
of the derivation of the 230 space groups G3 (E.S. Fedorov, 1891b). The
7 discrete symmetry groups of friezes G; are derived by G. Pélya (1924),
P. Niggli (1924) and A. Speiser (1927). The first two of them derived inde-
pendently also 17 symmetry groups of ornaments (G. Pélya, 1924; P. Niggli,
1924).

Antisymmetry introduced by H. Heesch (1929), linked to the question
of the visual interpretation of subperiodic symmetry groups of the space E®
— symmetry groups of bands G3s; and layers G'3; in the plane E2 by Weber
black-white diagrams, was further developed by H.J. Woods (1935) and
A.V. Shubnikov (1951). Recent development of the theory of antisymmetry,
multiple antisymmetry, colored symmetry and its extensions has been seen
in the contributions of many authors (e.g. A.V. Shubnikov, V.A. Koptsik,
N.V. Belov, A.M. Zamorzaev, A.F. Palistrant, E.I. Galyarski, M. Senechal,
A. Loeb, R.L.E. Schwarzenberger, T.W. Wieting, H.S.M. Coxeter, etc.).

The idea of similarity symmetry, put forward by H. Weyl (1952) was
developed by A.V. Shubnikov (1960), E.I. Galyarski and A.M. Zamorza-
ev (1963). The discovery of the isomorphism between similarity symme-
try groups Sy, finite Cy; and infinite C3 conformal symmetry groups and
symmetry groups of polar rods G3;, tablets G339 and non-polar rods Gay,
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respectively, incited the development of the theory of similarity symmetry
in E? and conformal symmetry in E?\ {O}.

Besides ornaments, as the most obvious visual models of symmetry
groups in the plane E? and E? \ {0}, Cayley diagrams {A. Cayley, 1878;
M. Dehn, 1910) and tables of graphic symbols of symmetry elements elab-
orated in crystallography, are used.

The generalized Niggli’s categorization of symmetry groups, resulting
in Bohm symbols of symmetry group categories (J. Bohm, K. Dornberger-
Schiff, 1966) is consequently used in this work. Different systems for de-
noting symmetry groups, intreduced by many authors (e.g., A. Schonflies,
A.V. Shubnikov, M. Senechal, etc.) are unified for classical-symmetry gro-
ups by using a simplified version of the International symbols of symmetry
groups of ornaments Gy (H.S.M. Coxeter, W.0.J. Moser, 1980) and by
the symbols of symmetry groups of friezes G introduced by M. Senechal
(1975). For denoting symmetry groups of rosettes Gog, similarity symme-
try groups Siz¢ and conformal symmetry groups Cs;, Cs, symbols derived
according to those introduced by A. Schénflies and A.V. Shubnikov, are
used.

Aiming for a more complete knowledge of the theory of symmetry,
very inspiring might be the books by H. Weyl (1952), L. Fejes Téth (1964),
A.V. Shubnikov, N.V. Belov et al. (1964), A.V. Shubnikov, V.A. Koptsik
(1974), A.M. Zamorzaev {1976), A.M. Zamorzaev, E.I. Galyarski, A.F. Pal-
istrant (1978), E.H. Lockwood, R.H. Macmillan (1978), T.W. Wieting
(1982), B. Griinbaum, G.C. Shephard (1987), A.M. Zamorzaev, Yu.S. Kar-
pova, A.P. Lungu, A.F. Palistrant (1987) and the monograph ” Generators
and Relations for Discrete Groups” by H.S.M. Coxeter and W.0.J. Moser
(1980).

The survey of ornamental art and the theory of symmetry given jointly
in this book makes possible their comparison in the sense of common con-
structional approaches, methods and their final results — symmetry groups
and their visual interpretations. In both fields, more sophisticated results
are obtained by a similar approach — by extending symmetry groups of
isometries in the plane E? to similarity symmetry groups S, conformal
symmetry groups Cy; and C,, antisymmetry and colored symmetry groups.
Regarding the chronology, the history of ornamental art fully satisfies the
inductive series of extensions leading from the symmetry groups of rosettes
G0, over symmetry groups of friezes Ga;, ornaments G, and similarity
symmetry groups Soo in the plane E?, to conformal symmetry groups Co;
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and C, in the plane E?\ {O}. In the development of the theory of symme-
try there are only a few exceptions from this sequence, mostly conditioned
by the practical interests of crystallographers (e.g., the derivation of the
symmetry groups of ornaments G, before the symmetry groups of friezes
G, or the very early derivation of the 230 space symmetry groups G3). In
this way, the connection between ornamental art and the theory of symme-
try represents a component of the universal, eternal link between art and
science.
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NOTATION INDEX

Symbol
Sﬁ.
E‘r’l : L?‘L

{5175’25" o ‘3511}

K = K(k)
L=1(k,8)

M = M(k,m)

G/H,G/H/H,

(G:H]=N
n
a

n-dimensional absclute space

n-dimensional Euclidean and Lobachevsky’s
space

neutral element

set of natural numbers

refleciion

subgroup

n-fold rotation (n > Z)

set of generators

direct preduct of greups &, G1

cyclic and dihedral group

interior

closure

regular tessellation

translation

glide reflection :
Bohm symbols of symmetry group categories
set of rezl numbers

coefficient of similarity

dilatation with coefficient &

dilative rotation with coefficient & and
dilative rotation angle ¢

dilative reflection with coefficient k& and
reflection line m

E? plane without point O
inversion

inversional reflection
inversional rotation

group/subgroup symbols of antisymmetry
and colored symmetry groups

H is subgroup of index N of group G
n-fold rotation
translation
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glide reflection

reflection

glide reflection

two-fold rotation

k, m are coprime numbers

continuous line group of translations
symmetry group of regular tessellation {p, q}
continuous plane group of translations
inversion circle
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abelian 8

absolute geometry 6

absolute space 6

abstract definition 10

affine geometry 6

affine transformation 7

analytic procedure 6

anomaly of group p3m1l 188
antiidentity transformation 33
antiparallelism 200
antisymmetry desymmetrization 33, 45, 71, 102, 179, 225, 273
antisymmetry mosaic 35, 171
antisymmetry group 33, 45, 71, 102, 179, 225, 273
antisyminetry transformation 33
Archimedean tiling 16
Archimede’s spiral 211
arithmetic progression 202, 218
asymmetric 7

automorphism 9

axiom 6, 8

axis 30

band 35, 46, 102

binary operation 8
bipolarity 30, 78, 111
Bohm symbols 18, 24, 50
Bravais lattice 25, 175

canonic representation 20

category of symmetry groups 24, 50

Cayley diagram 13, 42, 52, 79, 111, 198, 235
Cayley table 10

central reflection 21

circle 17, 55, 247

circle preserving transformation 28
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class of equivalence 23

classical theory of symmetry 33
classical-symmetry desymmetrization 33
classification of symmetry groups 18, 50
coefficient of dilatation 200

coefficient of similarity 26

collineation 7

color 36

colored symmetry 36, 46, 72, 104, 182
commutativity 8

complete graph 14

composite transformation 22
congruence 6, 25

connected graph 14

conformal rosette 29, 232

conformal transformation 28, 231
conjugate 22 '

continua 18, 115

continuous symmetry group 18, 31, 54, &0, 102, 115, 187, 194, 208, 224, 270
coset 12

crystal system 25, 151, 160
crystallographic groups 25
crystallographic restriction 25, 62, 196
cyclic group 12, 51

decomposition 12

defining relations 10

definitions of symmetry groups 24
desymmetrization 32, 45, 71, 102, 179, 182, 225, 273
dihedral group 51

dilatation 26, 200

dilative reflection 26, 217

dilative rotation 26, 205

direct product 12

direct transformation 19

discrete group 10

element of symmetry 7
enantiomorphism 23, 51, 77, 111, 195, 234
equiangular spiral 208



328

equiangularity 26, 200
equidistant spiral 211
equiformity 26, 200
even transformation 22
evolvent 211

Fermat number 74

Fibonnaci sequence 194

finite frieze 24

finite group 8

flag 16

form of fundamental region 51, 75, 77, 111, 135, 235
frieze 24, 77

fundamental region 14

generator 10

geometric progression 200, 218

geometry 5§, 6

glide reflection 21

giobal symmetry 32

golden section 194

graph of group 13

graphic symbols 29

group &

group generated by reflections 23, 32, 78, 188
group-subgroup relation 52, 71, 78, 103, 110, 224, 276
group/subgroup symbol 39, 46, 71, 102, 179, 182, 225, 273

half-turn 21

hexagonal crystal system 151
homeomorphism 17
homogenous plane 115
homologous points 7
homeohedral tiling 18

image 7

incidence 6

index 12, 46

indirect transformation 19
infinite group 8

infinite order 7



International symbols 39, 108
intermediacy 6

invariant 8

inverse 8

inversion 27, 241

inversion circle 27, 241
inversicnal reflection 28, 249
inversional rotation 2§, 254
involution 7

irreducible 12

irregular group 36, 46
isohedral 15

isometry 19

isomorphism 9, 11, 196, 232
isotropic plane 115

junior antisyminetry group 34
junior color-symmetry group 36

lattice 25

layer 35

line group 24

local symmetry 32
logarithinic spiral 208

mapping 6

marked tiling 156

maximal group 32

metric method 200, 217, 223
minimal index 38, 78, 180
minimal representation 20

non-coordinate symbols 39
non-metric method of construction
non-polarity 30

non-trivial 8

normal tiling 17

normal subgroup 12

nurnber of edges 111, 195, 235

odd transformation 22
orbit 13

217, 223
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ordered geometry 6
order of element 7

order of greup §, 51

order of transformation 7
orientability 30

original 7

ornament 24, 10§

permutation 36

phyllotaxis 193

point greup 24

point in general position 13

polarity 30, 51, 77, 111, 195, 234
power 7

presentation 10, 51, 77, 108, 195, 233
product of transformations 7

radial ray 30, 195

reducibility 12

reflection 19

regular group 36, 46

regular tessellation 16, 176, 188
rhombic lattice 25, 142

rod 29, 196, 232

rosette 24, 50

rotation 21

rotational reflection 22

Schlafli symbol 16

sector of dilatation 213
semicontinua 18

similarity 26, 193

singular 13

spiral 208

structure of group 12, 51, 77, 108, 195, 233
subgroup  §, 52, 78, 110, 196, 275
subspace 18, 24, 50

symbols 18, 38, 50
symmetrization 33

square lattice 160

square crystal system 160



tablet 29
tesseilation 14
texture 31

tile 14

tiling 14
transformation 6
translation 21
topological transformation
trivial 8

type 51, 194, 232
twist 22

two-fold rotation 21

uniferm tessellation 16

visual entropy 54
visual presentability 30

Weber diagram 35
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