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Abstract: A list of approximations of nonlinear functions of one and two arguments is done. The linearizations of nonlinear differential equations
around stationary points correspond to equilibrium positions or relative equilibrium positions of mechanical system dynamics with trigger of coupled
singularities are obtained. By using known analytical solutions of linearized nonlinear differential equations around stationary point, as the starting
solutions, by application Krilov-Bogolyubov-Mitropolyski asymptotic methods and method of variation constants and averaging, different
expressions of first approximations of nonlinear differential equation solution are obtained. First approximations of a nonlinear differential equation
obtained by different methods and around different known analytical solutions were compared and corresponding conclusions are presented. As
special examples are used nonlinear differential equations describing nonlinear dynamics of the mechanical system with coupled rotations in damping
field. A list of approximations of nonlinear functions of one and two arguments is done. The linearizations of nonlinear differential equations around
stationary points correspond to equilibrium positions or relative equilibrium positions of mechanical system dynamics with trigger of coupled
singularities are obtained. By using known analytical solutions of linearized nonlinear differential equations around stationary point, as the starting
solutions, by application Krilov-Bogolyubov-Mitropolyski asymptotic methods and method of variation constants and averaging, different
expressions of first approximations of nonlinear differential equation solution are obtained. First approximations of a nonlinear differential equation
obtained by different methods and around different known analytical solutions were compared and corresponding conclusions are presented. As
special examples are used nonlinear differential equations describing nonlinear dynamics of the mechanical system with coupled rotations in
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< For nonlinear differential equation with small cubic nonlinearity
5 . 2 52 43
% (t)+ 261% (t)+ of %, () = Fofp i (t)
~»from numerous world known monographs and books it is known the following first aproximation:
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PStarting analytical solution is in the form:
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< For the case, that 2, >0 nonlinearuty in equation is equal to zero linearized differential equation is:
$(t)+ 20% (t)+ P x, (t) = 0
and from first approximation, we obtain the following solution of previous equation:
x(t) = Rose * cos(ext +y7q ) a%0 2557 £=0
dwhich is not correct for this limit case. The correct solution of previous linear differential equation is:
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By use as a starting known analytical solution in previous form with amplitude and phase as a function in the following form:
4 (1)=R0e > cos(pt+gt)) 40 of>5f 270 Gf =0
For first asymptotic approximation of the nonlinear differential equation solution, we obtain the following expression:
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First asymptotic aproximation of the nonlinear differential equation solution is in the following form:
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The previous oblained1 first aproximation of the starting nonlinear differential equation solution is possible to obtain by different
methods: 1* Combination of the methods: Variation constants of the known analytical solution of the corresponding linear to the
nonlinear differential equation with small cubic nonlinearity and applied averaging along full phase as proposed by Hedrih; 2*
Asymptotic method Krilov-Bogolyubov Mitropolyski adopted by Mitropolyski for ining asymptotic approximation of the
solutions of the nonlinear differential equation with small nonlinearity expressed by nonlinear function
slowchanging time.
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By comparison, border cases for solutions obtained from the first approximation:
1* obtained by Hedrih, which start from known analytical solution of the linear differential equation ' |

CONCLUDING REMARKS

Let we made a general review of the obtained results for approximately solving of the nonlinear differential equation with small cubic
nonlinearity and linear damping in the form:

5(t)+ 2604 t) + oy (t) = Fag i (t)
in which hard or soft, refersto sign ¥ , & = g, and gand are small parameterT By uﬁe two methods [9] and
[8] starting known analytical solutions,  %(t)= R.( )e “CUS(DJHW)) i=ot and XO=alt)coslortFelt)
and we obtained same first approximation of the solution in the following forms [9]:
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For the case that damping coefficient tends to zero, from both first approximations (8) and (9), we obtain same analytical

approximation of the solution for conservative nonlinear system dynamics. For the case that coefficient of the cubic nonlinearity tends

to zero, from first approximation (8), we obtain known analytical solution of the linear no conservative system dynamics in the

following form:
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but from the second form (9) obtained solution D =
M)=ae oo ra)  for 420 of>o ex0 dhino
is not correct. Because is not solution of the differential equation: _
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Then we can conclude that, starting different known analytical solutions, for first app are but limited
by corresponding conditions. Approximation of the solution of nonlinear differential George Duffing differential equations (7) in the
form (8) is better them (9) known from numerous literatures. Presentation of full original results is limited by length of the paper.
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