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 Artificial intelligence (AI) is the intelligence exhibited by machines or software.

 It is also the name of the academic field of study which studies how to create

computers and computer software that are capable of intelligent behavior.

Today it has become an essential part of the technology industry, providing the

heavy lifting for many of the most challenging problems in computer science.

 One of the central challenges of computer science is to get a computer to do what needs

to be done, without telling it how to do it.

Artificial Intelligence
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 Automatic programming is growing in artificial intelligence field.

 Genetic programming (Koza, 1992).

• Based on Genetic Algorithm operators;

• Each individual Presented as a computer program;

• Increasingly used in artificial Intelligence problems.

• Genetic programming achieves goal of automatic programming (sometimes called program

synthesis or program induction) by genetically breeding a population of computer programs

using the principles of Darwinian natural selection and biologically inspired operations.

Automatic Programming
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 Symbolic regression (Koza,1992; Cai et al., 2006; Quang et al., 2011);

 Data mining (Xing, 2014; Jabeen and Baig, 2009; Pereira et al., 2014);

 Time series forecasting (Eklund, S.E., 2003; Rivero et al., 2005; Yi-Shian

Lee et Lee-Ing Tong,2011; Bouaziz et al., 2013);

 Classifications (Jabeen and Baig, 2013; Escalante et al., 2014 ; Shao et

al., 2014).

Some Genetic Programming 
applications
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 Symbolic regression searches the space of mathematical expressions to

find the model that best fits a given dataset.

 Data mining is the computational process of discovering patterns in

large data sets ("big data")

 Time series forecasting is the use of a model to predict future values

based on previously observed values.

 Classifications consists in predicting the value of a user-specified goal

attribute (the class) based on the values of other attributes, called predicting

attributes

Some Genetic Programming 
applications

6

Introduction
VNP algorithm

VNP application
Conclusions



Genetic Programming

• Preparatory Steps of Genetic Programming
.   (1) the set of terminals (e.g., the independent variables of the problem, 
zero-argument functions, and random constants) for each branch of the 
to-be-evolved program,
• (2) the set of primitive functions for each branch of the to-be-evolved 

program,
• (3) the fitness measure (for explicitly or implicitly measuring the fitness 

of individuals in the population),
• (4) certain parameters for controlling the run, and
• (5) the termination criterion and method for designating the result of 

the run.

• Executional steps of GP
7
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(1) Randomly create an initial population (generation 0) of
individual computer programs composed of the available
functions and terminals.

(2) Iteratively perform the following sub-steps (called
a generation) on the population until the termination
criterion is satisfied:

(a) Execute each program in the population and ascertain
its fitness (explicitly or implicitly) using the problem’s
fitness measure.

(b) Select one or two individual program(s) from the
population with a probability based on fitness (with
reselection allowed) to participate in the genetic
operations in (c).
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GP steps
• (c) Create new individual program(s) for the population by

applying the following genetic operations with specified
probabilities:
• (i) Reproduction: Copy the selected individual program to

the new population.
• (ii) Crossover: Create new offspring program(s) for the

new population by recombining randomly chosen parts
from two selected programs.

• (iii) Mutation: Create one new offspring program for the
new population by randomly mutating a randomly chosen
part of one selected program.

• (iv) Architecture-altering operations: Choose an
architecture-altering operation from the available repertoire
of such operations and create one new offspring program
for the new population by applying the chosen architecture-
altering operation to one selected program.

10



• (3) After the termination criterion is satisfied, 
the single best program in the population 
produced during the run (the best-so-far 
individual) is harvested and designated as the 
result of the run. If the run is successful, the 
result may be a solution (or approximate 
solution) to the problem.

11
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 Inspiring the power of Genetic programming solution

representation and Variable Neighborhood Search movements.

 Based on systematic change of neighborhood within a local search.

 Start with a single solution presented by a program

 Apply neighborhood structure movements to reach the global

optimum

Variable Neighborhood 
Programming algorithm 

presentation
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GP solution representation
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Functions

Terminals

+

2 3 * /

X 7 5Y

(+ 2 3 (* X 7) (/ Y 5))

In the majority of previous studies, programs are usually presented as trees
rather than as lines of code.

2+3(X*7)(Y/5)
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VNP solution representation
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We suggest an extended solution

illustration adding coefficients.

Each terminal node is attached by

its own parameter value. These

parameters serve to give a weight

for each terminal node

+

- /

x1 x2 x4x3

α1
α4α3α2
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VNS algorithm movements
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VNS - Overview
• Proposed by Mladenovic and Hansen in 1997 
• Main idea: Systematically change the neighborhood

structures
• Based on three facts:

 A local minimum w.r.t. one neighborhood structure is not necessary so 
for another

 A global minimum is local minimum w.r.t. all possible neighborhood 
structures

 For many problems local minima w.r.t. one or several neighborhoods 
are close to each other

16



VNS Outline of VNS algorithm

17

Procedure VNS

Define neighborhood structures Nk (k=1,...,kmax)
Generate initial solution x  ∈ X

while stopping condition is not met do
k ← 1
while k ≤ kmax do

x’ ← Shake(x), x’ ∈ Nk (x);
x” ← Local Search(x’);
if (x” is better than x) 

x ← x”; k ← 1;
else

k ← k+1;
end-while

end-while



VNS outline of algorithm
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Procedure VNS

Define neighborhood structures Nk (k=1,...,kmax)
Generate initial solution x  ∈ X

while stopping condition is not met do
k ← 1
while k ≤ kmax do

x’ ← Shake(x), x’ ∈ Nk (x);
x” ← Local Search(x’);
if (x” is better than x) 

x ← x”; k ← 1;
else

k ← k+1;
end-while

end-while



Variants of VNS algorithms
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Variable Neighborhood Descent (VND) Variants

• In VND, shaking phase is removed from VNS
• VND can be used as a part of VNS in the local 

search phase

• Sequential VND
• Cyclic VND
• Pipe VND
• Union VND
• Nested VND
• Mixed-nested VND
• Etc.

• Reduced VNS (RVNS)
• Skewed VNS (SVNS)
• General VNS (GVNS)
• VN Decomposition Search (VNDS)
• Two-level GVNS
• Nested VNS
• Parallel VNS (PVNS)
• Primal Dual VNS (P-D VNS)
• Reactive VNS
• Formulation Space Search (FSS) 
• VN Branching . . . 

Variable Neighborhood Search (VNS) Variants



Variants of VNS algorithms
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• 3 level VNS
• Backward VNS
• 2-phase VNS
• Gaussian VNS for continuous opt.
• Best improvement VNS
• VN Pump
• VNS Hybrids
• etc



Varaiable Neighborhood 
Descent (VND)

Procedure VNS
Define neighborhood structures Nk (k=1,...,kmax)
Generate initial solution s Є S
while stopping condition is not met do

k ← 1
while k ≤ kmax do

s’ ← Shake(s), s’ Є Nk (s);
s” ← LocalSearch(s’), s” Є S;
if (s” is better than s) 

s ← s”; k ← 1;
else 

k ← k+1;
endif

end-while
end-while

End-Procedure

Variable Neighborhood 
Descent (VND)

In VND, shaking phase is 
removed from VNS so that 
the algorithm explores local 
optima by using 
neighborhood structures only. 
VND can be used as a part of 
VNS in the local search 
phase



• Basic VND (BVND):
•

Variants of VND

Procedure BVND
Define neighborhood structures Nk (k=1,...,kmax)
Generate initial solution s Є S
k=1;

while k ≤ kmax do
s’← LocalSearch(s), s’Є Nk;
if (s’ is better than s) 

s ← s’; k ← 1;
else 

k ← k+1;
end-if

end-while
End-Procedure

If there is an improvement 
w.r.t. some neighborhood 

Nk , exploration is 
continued in the first 

neighborhood



• 2-opt

• OR-opt_1
• OR-opt_2

TSP neighborhoods
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VNP neighborhood 
structures(1/7)
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+

- /

x1 x2 x4x3

Changing node value operator

α1 α2
α3 α4

*

*x5
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VNP neighborhood 
structures(2/7)
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+

- /

x1 x2
x4x3

Changing parameter value operator 

α1
α4α3α2βj… γj…

Θj… εj…
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VNP neighborhood 
structures(3/7)
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+

- /

x1 x2 x4x3

Exchange operator 

α1 α2 α3 α4

*

- exp

y1 y2 y3

α1 α1 α1
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VNP neighborhood 
structures(4/7)
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+

- /

x1 x2 x4x3

Inversion operator

α1 α2
α3 α4

x5
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VNP neighborhood 
structures(5/7)
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+

-

x1 x2

Remove operator 

α1 α2

*

- exp

y1 y2 y3

α1 α1 α1

Selected node

Corresponding 
sub-tree
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VNP neighborhood 
structures(6/7)
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+

- /

x1 x2 x4x3

Move/Insertion operator

α1 α2
α3 α4 x5

+

-

/

x1 x2

x4

x3

α1 α2

α3

α4

Before After
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VNP neighborhood 
structures(7/7)
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+

- /

x1 x2 *x3

Shuffle operator

α1 α2 α3

α4

Before After

x4 x5

α5

+

- /

x1 x2 x5*

α1 α2
α3

α4

x4 x3

α5
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Learning Process
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Original dataset

Train 
set

Test 
set

VNP 

algorithm

Best model

Evaluating 

function
Fitness 
error

Original 
Dataset
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VNPD algorithm
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VNP algorithm
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Time forecasting problem
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 Time series forecasting is the use of a model to predict future values based on

previously observed values.

 The Mackey-Glass series is based on the Mackey-Glass differential equation

(Mackey, 2002).

 The gas furnace data of Box and Jenkins was collected from a combustion

process of a methane–air mixture (Box and Jenkins, 1976).

 The fitness function is the Root Mean Square Error.
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Time forecasting problem
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Method Training error RMSE Testing error

RMSE

PSO BBFN ____ 0.027

HMDDE–BBFNN 0.0094 0.0170

Classical RBF 0.0096 0.0114

CPSO 0.0199 0.0322

HCMSPSO 0.0095 0.0208

FBBFNT 0.0061 0.0068

VNP 0.0021 0.0042

Mackey-Glass dataset results
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Time forecasting problem
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Methods Prediction error RMSE

ODE 0.5132

HHMDDE 0.3745

FBBFNT 0.0047

VNP 0.0038

Box and Jenkins dataset results
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Classification problem
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 Classification consists on predicting the appropriate class of an input vector

based on a set of attributes.

We choose five datasets of radically different nature which are the Iris, Wine,

Statlog, Glass identification and Yeast datasets

 The performance measure is the Accuracy
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Classification problem
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Datasets characteristics

Datasets Classes Attributes Type Instances

Iris 3 4 Real 150

Statlog 4 18 Integer 946

Yeast 10 8 Real 1484

Wine 3 13 Integer, Real 178

Glass 

identification

6 10 Real 214
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Classification problem
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Classification results

Dataset KNN (%) DT (%) SVM(%) S2GP (%) VNP (%)

IRIS 95 91 94 96 96.7

VEHICLE 54 51 51 56 55.3

YEAST 50 55 58 61 58.2

WINE 84 84 83 85 89.1

GLASS 60 62 63 64 66
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Preventive maintenance planning 
in railway transportation
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Overview

 Railway transportation is highly regulated by the state.

 The maintenance of the railway is important for keeping freight and

passenger trains moving safely.

 Railroad companies make an inspection run for each time period and record

the characteristic of found defects.

 If a defect does not satisfy Federal Railroad Administration (FRA) standards,

then it is classified as a red tag and must be repaired immediately. Otherwise

the defect belongs to yellow class and its fixation is not urgent.

 The Railway Application Section (RAS) provides the historic of the data

describing the status of a several numbers of points in the railway.
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Preventive maintenance planning 
in railway transportation

41

Introduction
VNP algorithm

VNP application
Conclusions

2015 RAS Problem Solving 
Competition  is to predict 
the color of a selected 
defect in a predefined 
milepost value after a given 
period.

Problematic
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Preventive maintenance planning 
in railway transportation
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we can extract two different problems:

 Prevision problem: The prediction of the attribute values responsible for

the determination of the defect severity after a selected number of days.

 Classification problem: we use the updated attribute values to classify a

given defect ( VNP indicates if the defect color is red or yellow).

 VNP algorithm is flexible to be applied in the classification and the

prediction fields.

 Honor Mention

Solution



43

Conclusions
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 New algorithm introduction called VNP and based on local search and

manipulating programs;

 New solution representation ameliorating the property of generalization;

 The optimization combining simultaneously the structure of the tree and its

corresponding parameters;

 VNP algorithm application on two types of time series problems and five

datasets of classification;

 The results indicating the good generalization and the effectiveness of the

algorithm.
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