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Graph Laplacian

The graph Laplacian of a simple graph G = (V,E)
with weights w,,;, is defined by

A(G) ... adjacency matrix of G
D(G) ... degree matrix with Doy = Y, Wio

with eigenvalues 0= A1 < Ap < -+ < Ay
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Extremal Graphs

Let 7, the class of all trees with prescribed degree sequence 7.
Then a tree T has maximal Laplacian spectral radius in 7 if and
only if it can be constructed by breadth-first search. [Zhang, 2008]

Tree with degree sequence 7 = (42,3%,23,110)
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Rayleigh Quotient

Sketch of Proof:
1. Rayleigh-Ritz Theorem:
A1 minimizes Rayleigh quotient

L) Taer walf () — £(0))?
RO = =7 e for

that is
A = min 7?,
1 F£0 L(f)

Function f that minimizes R (f) is eigenfunction.
It can be assumed to be strictly positive (Perron vector).




Switching and Shifting

2. Rearrangement of edges:

» Start with some graph G and eigenfunction (Perron vector) f.




Switching and Shifting

2. Rearrangement of edges:

» Start with some graph G and eigenfunction (Perron vector) f.

» Rearrange edges such that new graph G’ belongs to same
class.

» Compare Rayleigh quotients of f on these two graphs.
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k-th Eigenvalue

Can this idea be used to characterize graphs that have
miminal k-th eigenvalue among all graphs in the given
class?

Problem: Have to use Courant-Fischer Theorem

where f; are eigenfunctions corresponding to the i-th eigenvalue.

Eigenfunction f; on G need not be eigenfunction on G'.

That is, we have constraints for minimization problem that are
hard to control.




Graph with Boundary

A graph with boundary is a graph G° = (V° UdV,E° UJE)
where

V° ... interior vertices

dV ... boundary vertices

E° ... interioredges C V° x V°
OE ... boundary edges C V° xdV




Dirichlet Matrix

The Dirichlet matrix is the graph Laplacian restricted to the
interior vertices of a graph with boundary:

L°(G) = D°(G) — A°(G) |

A°(G) ... adjacency matrix of graph induced by V°
D°(G) ... degree matrix D(G) restricted to V°

Hence L°(G) is the Laplacian L(G) restricted to V°.

We denote the first Dirichlet eigenvalue by v (G).
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Dirichlet Matrix

O. .........
1 -1 0 O
L (T) = -1 3 -1 -1
0 -1 1 0
0 -1 0 1
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Dirichlet Matrix

3 -1 -1
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Geometric Realization

The geometric realization G of a graph G with weights w,,, is a
metric space where the vertices are points and the edges uv
correspond to arcs of length 1/w,,, that connects the incident
vertices u and v.

w1 = 1 Wy = 2 w3 = %
@ o—0 @
(%1 U2 03 U4

Define two measures

uv(G) = |V| ... number of vertices
up(G) = ¥ - ... cumulated length of edges

Wyy
E

uve (Lebesgue measure on Q)




Rayleigh Quotient

For a vector f on G:

(L) _ Tuver wnlf (1) = (0))?
.9 Locv f(0)2

RL(f) =

For a continuous piecewise differentiable function ¢ on G:

_ JgIVoPduE
Rele) = Jo 1o duy

The latter defines a continuous version of the graph Laplacian
on G: geometric Laplacian £




The Geometric Laplacian

The eigenvalues of the geometric Laplacian £ and the graph
Laplacian G coincide.

The eigenfunctions of L are piecewise linear (on the edges of E).
Their restrictions to V' are exactly the eigenvectors of G.

[Friedman, 1993]
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Nodal Domains

Let f be an eigenvector of G. We call the components of the two
graphs induced by the vertices of non-negative and non-positive

valuations the (strong) nodal domains of f.
(Perron components)

G[{v: f(v) >0}] and  G[{v:f(v) < 0}]
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Geometric Nodal Domains

Let ¢ be the eigenfunction on G corresponding to eigenvector f
on G.

» Insert new vertices where ¢ changes sign on an edge xy
(and thus subdivide edges).

[p(x)] low)l
» Use arc lengths NGEI] and B0y "ESP-

¢ is eigenfunction of the new graph with same eigenvalue.

» All vertices where ¢ vanishes but have non-vanishing
neighbors are considered as boundary vertices.

» Split all boundary vertices such that each component has
vertices with non-zero valuation (all of same sign).

We call these components the geometric nodal domains of f.
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Geometric Nodal Domains

Let f be an eigenvector of G corresponding to eigenvalue A.

The first Dirichlet eigenvalue at each of these geometric nodal
domains coincides with A.

f restricted to a geometric nodal domain is an eigenvector to the
first Dirichlet eigenvalue [Biyikoglu et al., 2007].

(This idea is related to the bottleneck matrix introduced in
[Kirkland et al., 1996].)




Example




Example

-1 2 -1 0 O
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Example — Fiedler Vector
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Example — Split

w1 wo

e— O

X 0o y

w1 = |f(y) = f)/1f(x)]
wy = |f(y) = fFO)I/If(y)l




Example — Split

w1 w»
&——=&---O-
x b Y
1 -1 0 0 0
-1 2 -1 0 0
L(T) = 0 -1 3 -1 -1
0 0 -1 1 0
0 0 -1 0 1
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Example — Split

w1 wo
e—-O-
X 00 y
1 -1 0 0 0 0
-1 1+w; —wp 0 0 O
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Example — Split

w1 w»

e—o&---O-

x oy

The algebraic connectivities of T and T’ coincide.

A2 (T) = Ao (T')
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Example — Nodal Domains

wy w2
e— o O
X (%)) y
1 -1 0 0 0 O
-1 14w —uwq 0 0 0
L(T’) _ 0 —w1 W1 t+wy —w>y 0 0
0 0 —wy 24w, —1 -1
0 0 0 -1 1 0
0 0 0 —1 0 1
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Example — Nodal Domains

w w2
e——e 0 O
X v v Y
1 -1 0 0 0 O
-1 14w —wq 0 0 0
L(T’) _ 0 —w1 W1 t+wy —w>y 0 0
0 0 —wy 24w, —1 -1
0 0 0 -1 1 0
0 0 0 —1 0 1
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Example — Dirichlet Matrix

«— olo o

X 00 (% y
3 1 -1
L(Tn):<_1 1+w1>

L(T,)=| -1 1 0
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Example — Dirichlet Matrix

w1 w»

e—e-0O O

X 0o 09 y

The algebraic connectivity of T' and
the first Dirichlet eigenvalues of T), and T,
coincide.
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Local Eigenvalues

Let Gy, ..., Gy be graphs with boundaries.

Construct a new tree G without boundary by identifying boundary
vertices of these trees and turning the boundary vertices into
interior ones. Then

M(G) < max(v(Gy),...,v(Gy))

The inequality is strict if v(G;) # v(G;) for some i, j.

Proof:
X1 + -+ Xk <

S~ Ind
n +- Yk i=1,...k Y;

where equality holds if and only if l‘/—l =...=k
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Local Eigenvalues

Proof (cont.):
» Extend Perron vector g; for each graph G; on G
by gi(v) =0by v & G;.
» Construct f = Zﬁ‘:l a;8; 7 0, such thatf | f; for
j=1,...,k—1

» Courant-Fischer Theorem

Zi‘czl YuveE; Wuo az(gi( ) —gi(v))?
Zz 1 Loev; 4 gl(v)

Luock, Wio (81(1) — 81(v))?
ZveVl gl( )

A(T) <

< V(Gl)

where we assume v(G1) > v(G;).
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Local Structures

Assume:
Eigenfunction f}. corresponding to the simple eigenvalue A has
(at least) k geometric nodal domains, Gy, ..., Gg.

For each G; let g; ka\g, and
» rearrange edges, and
» compare Rayleigh quotients of g; on both G; and Gf.

As we now have first Dirichlet eigenvalues, we are looking at
unconstraint minima of the Rayleigh quotient.

Thus each geometric nodal domain of an extremal graph G
is extremal.




Example

Algebraic Connectivity of Trees:

Let 7, the class of all trees with prescribed degree sequence 7.
If a tree T has minimal algebraic connectivity in 7, then T is a
caterpillar. The degrees on the trunk vertices are decreasing
from the end to the center. [Biyikoglu and L, 2009]
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Outline of Proof

» The Fiedler vector f has exactly two nodal domains
T, and T [Fiedler, 1975].

» On every path starting at point where f vanishes is either
strictly increasing, decreasing or constant zero.

e—e -0 O

A (T < max(v(T;),v(T;,))
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Outline of Proof

» The Fiedler vector f has exactly two nodal domains
T, and T [Fiedler, 1975].

» On every path starting at point where f vanishes is either
strictly increasing, decreasing or constant zero.

e—=o O

A (T < max(v(T;),v(T;,))
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Outline of Proof

» Each nodal domain of an extremal tree must be a caterpillar.
Otherwise shift branches (but leave pendant vertex) and
thus decrease the Rayleigh quotient.

O ® ®
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» Each nodal domain of an extremal tree must be a caterpillar.
Otherwise shift branches (but leave pendant vertex) and
thus decrease the Rayleigh quotient.
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Outline of Proof

» Each nodal domain of an extremal tree must be a caterpillar.
Otherwise shift branches (but leave pendant vertex) and
thus decrease the Rayleigh quotient.

» The vertex degrees must be monotone.
Otherwise shift pendant vertex away from boundary vertex
and thus decrease the Rayleigh quotient.
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Outline of Proof

» Each nodal domain of an extremal tree must be a caterpillar.
Otherwise shift branches (but leave pendant vertex) and
thus decrease the Rayleigh quotient.

» The vertex degrees must be monotone.
Otherwise shift pendant vertex away from boundary vertex
and thus decrease the Rayleigh quotient.

O . o
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Remark

By this approach we cannot make global characterizations.

In our example:
It is not known how the degree sequence has to be split for the
two nodal domains of the Fiedler vector.

16t



Thank You
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