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Introduction and Preliminaries
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Vertex-deleted subgraphs and algebraic connectivity

Basics

Given a graph G on vertices labeled 1, . . . , n, the corresponding
Laplacian matrix is the n × n matrix L such that for each
i , j = 1, . . . , n, we have: Lij = −1 if i ∼ j , Lij = 0 if i 6= j and
vertices i and j are not adjacent, and Lii = degree of vertex i .
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The corresponding Laplacian matrix is

L =

 2 −1 0 −1 0 0
−1 3 −1 0 −1 0
0 −1 2 0 0 −1
−1 0 0 2 −1 0
0 −1 0 −1 3 −1
0 0 −1 0 −1 2

.
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Properties of the Laplacian matrix

For any graph G on n vertices, its Laplacian matrix L is
symmetric;
positive semi-definite (i.e. xTLx ≥ 0 for any real vector x); and
singular, since the all ones vector, 1, is a null vector.

Label the eigenvalues of L as 0 = λ1 ≤ λ2 ≤ . . . ≤ λn.

It turns out that the nullity of L (i.e. the multiplicity of 0 as an
eigenvalue of L) coincides with the number of connected
components of G . In particular, λ2 > 0 if and only if G is
connected.

It seems that the algebraic properties of the Laplacian matrix for a
graph carry information about the graph’s combinatorial structure.
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Definition and basics on algebraic connectivity

The algebraic connectivity of G , α(G ), is the second smallest
eigenvalue of the corresponding Laplacian matrix. (Fiedler, 1973)

Sample facts: Let G be a graph on n vertices with Laplacian
matrix L.

Then α(G ) = min{xTLx |xT x = 1, xT1 = 0} =
min{

∑
i<j ,i∼j(xi − xj)

2|
∑

1≤i≤n xi
2 = 1,

∑
1≤i≤n xi = 0}. (Fiedler,

1973)

Suppose that Ĝ is formed from G by adding an edge not already
present in G . Then α(G ) ≤ α(Ĝ ). (Fiedler, 1973)

We have α(Pn) = 2(1− cos(π
n )) ≤ α(G ) ≤ n = α(Kn)
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Fiedler vectors

For a connected graph G there is also interest in the eigenvectors of
L associated with α(G ); these are known as Fiedler vectors for G .

The interest stems from the following phenomenon (Fiedler, 1975):
Label the vertices of G with the integers 1, . . . , n, and let y be a
corresponding Fiedler vector. Then y finds a ‘middle of the graph’
in the sense that there is a collection of vertices S whose
corresponding |yi |’s are small, and such that as we move along
paths away from S , the corresponding entries in y exhibit a
monotonic behaviour (positive/increasing, negative/decreasing,
identically zero).

This phenomenon has been used to advantage in sparse matrix
computations, graph partitioning, and elsewhere.
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Yet another result of Fiedler’s

Given a graph G and a vertex v of G , we let G \ v denote the
graph formed from G by deleting v and all edges incident with v .

Theorem

(Fiedler, 1973) Let G be a graph, and suppose that v is a vertex of
G. Then α(G ) ≤ α(G \ v) + 1.

In general, it’s possible for α(G \ v) to be greater than, less than,
or equal to α(G ).
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Example

1 2 3 4 5

6

For the graph G above, we have α(G ) > α(G \ v) for v = 2, 3, 4,
α(G ) = α(G \ 6), and α(G ) < α(G \ v) for v = 1, 5.
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Two functions

Given a connected graph G , we define the following two functions
on its set of vertices:
φ(v) = α(G )− α(G \ v), and κ(v) = α(G\v)

α(G) .

Evidently φ(v) < 0, φ(v) = 0, φ(v) > 0 according as
κ(v) > 1, κ(v) = 1, κ(v) < 1.

Interpretation: If κ(v) < 1, then α(G \ v) < α(G ), so the presence
of v and its incident edges serves to increase the algebraic
connectivity, while if κ(v) > 1, then v and its incident edges
decrease the algebraic connectivity. The functions φ and κ measure
that increase/decrease in absolute and relative terms, respectively.

The plan: Investigate the functions φ and κ.
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Technique

The approach to generating many of the results relies on the
following idea:
Suppose that G has n vertices, and let w be a Fielder vector for G ;
form w̃ from w by deleting the entry wv of w that corresponds to
vertex v ;
define the vector u of order n − 1 via u = w̃ + wv

n−11;

consider the quadratic form uT L̃u, where L̃ is the Laplacian matrix
for G \ v ;
that quadratic form generates an upper bound on α(G \ v) in
terms of α(G ) and the entries in w .

A consequence: If v is a vertex of G corresponding to an entry in
w of smallest absolute value, then φ(v) ≥ 0 (equivalently,
κ(v) ≤ 1). This reinforces the notion that entries in a Fiedler
vector of small absolute value are in the ‘middle’ of the graph.
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vector of small absolute value are in the ‘middle’ of the graph.
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Bounds on φ

We have already seen that for any graph G and any vertex v of G ,
φ(v) ≤ 1. Here is a companion result.

Theorem

Let G be a connected graph on n ≥ 3 vertices. Then for any
vertex v of G , φ(v) ≥ −(n − 2). Equality holds in the lower bound
if and only if G is constructed from Kn−1 by adding in the vertex v
and a single edge joining v to one vertex of Kn−1.
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Bounds on κ

If G is a graph and v is one of its vertices, we have κ(v) ≥ 0, with
κ(v) = 0 if and only if G \ v is not connected (such a vertex is
called a cutpoint of G ).

Theorem

Let G be a connected graph G on n ≥ 3 vertices, and suppose that

v is a vertex of G that is not a cutpoint. Then κ(v) ≥ 2−2 cos( π
n−1

)

3−2 cos( π
n−1

) .

Equality holds in the lower bound if and only if either
a) G is constructed from Pn−1 by adding the vertex v, along with
edges from v to all vertices of Pn−1, or
b) n = 4, 6, or 8, and G is formed from Pn−1 by adding the vertex
v, along with edges from v to all vertices of Pn−1, save for the
middle vertex.
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κ bounds, cont’d

Theorem

Let G be a connected graph on n ≥ 3 vertices. Then for any
vertex v of G , κ(v) ≤ n − 1. Equality holds in the upper bound if
and only if G is constructed from Kn−1 by adding in the vertex v
and a single edge joining v to one vertex of Kn−1.

Theorem

Let G be a connected graph on n ≥ 3 vertices. Then
min{κ(v)|v ∈ G} ≤ n−1

n . Equality holds in the inequality if and
only if G = Kn.

Steve Kirkland Algebraic Connectivity and Vertex-Deleted Subgraphs



Introduction and Preliminaries
Algebraic connectivity

Vertex-deleted subgraphs and algebraic connectivity

κ bounds, cont’d

Theorem

Let G be a connected graph on n ≥ 3 vertices. Then for any
vertex v of G , κ(v) ≤ n − 1. Equality holds in the upper bound if
and only if G is constructed from Kn−1 by adding in the vertex v
and a single edge joining v to one vertex of Kn−1.

Theorem

Let G be a connected graph on n ≥ 3 vertices. Then
min{κ(v)|v ∈ G} ≤ n−1

n . Equality holds in the inequality if and
only if G = Kn.

Steve Kirkland Algebraic Connectivity and Vertex-Deleted Subgraphs



Introduction and Preliminaries
Algebraic connectivity

Vertex-deleted subgraphs and algebraic connectivity

Vertices that ‘contribute’ to α(G )

We saw before that if φ(v) > 0, then we may take the
interpretation that v and its incident edges increase the algebraic
connectivity. How many such vertices are there?

Theorem

Let G be a connected graph on n ≥ 4 vertices. Then there are
least bα(G)(n−2)

n−1 c+ 1 vertices u for which φ(u) ≥ 0.
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An illustration using food webs

A food web is a graph that is used to represent certain
relationships in an ecosystem. The vertices of the graph
correspond to the various species in an ecosystem; for each pair of
vertices in a predator/prey relationship, the graph contains an edge
between the predator vertex and the prey vertex.

There is an obvious lack of symmetry in the relationship between
predator and prey. However, since effects due to changes to
predator and prey species can propagate throughout a food web, it
has been argued in the ecology literature that there is merit in
considering a food web as an undirected graph.

One might try to use the κ function to determine which vertices
(species) are important in terms of the connectivity properties of
the graph (food web).
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Northeast US shelf ecosystem

Example: Based on data for the Northeast US shelf ecosystem, we
have a graph G on 81 vertices, primarily representing fishes, other
vertebrates, invertebrates, and basal groups.
We have α(G ) = 7.5421.
Note that for any v , κ(v) ≥ 1− 1

α(G) = 0.8674.

The eight smallest values of κ are: 0.8755 (cancer crabs); 0.8755
(other crabs); 0.8763 (clams, mussels); 0.8791 (scallops); 0.8793
(phytoplankton); 0.8812 (lobsters); 0.8851 (detritus); and 0.8852
(urchins).
The maximum value of κ is 1.2516 (snails).
All remaining vertices yield values of κ lie between 0.9928 and
1.0023.
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κ values sorted according to the Fiedler vector for the
shelf ecosystem
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For further details . . .

S. Kirkland, Algebraic Connectivity for Vertex-Deleted Subgraphs,
and a Notion of Vertex Centrality, Discrete Mathematics 310
(2010), 911-921.
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