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Graph Laplacian

The graph Laplacian of a simple graph G = (V, E)
with weights wuv is defined by

L(G) = D(G)−A(G)

A(G) . . . adjacency matrix of G
D(G) . . . degree matrix with Dvv = ∑u∼v wuv

with eigenvalues 0 = λ1 ≤ λ2 < · · · < λn.
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Extremal Graphs

Let Tπ the class of all trees with prescribed degree sequence π.
Then a tree T has maximal Laplacian spectral radius in Tπ if and
only if it can be constructed by breadth-first search. [Zhang, 2008]
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Tree with degree sequence π = (42, 34, 23, 110)
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Rayleigh Quotient

Sketch of Proof:

1. Rayleigh-Ritz Theorem:

λ1 minimizes Rayleigh quotient

RL(f ) =
〈f , Lf 〉
〈f , f 〉 = ∑uv∈E wuv(f (u)− f (v))2

∑v∈V f (v)2

that is
λ1 = min

f 6=0
RL(f )

Function f that minimizes RL(f ) is eigenfunction.
It can be assumed to be strictly positive (Perron vector).
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Switching and Shifting

2. Rearrangement of edges:

I Start with some graph G and eigenfunction (Perron vector) f .

I Rearrange edges such that new graph G′ belongs to same
class.

I Compare Rayleigh quotients of f on these two graphs.
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k -th Eigenvalue

Can this idea be used to characterize graphs that have
miminal k -th eigenvalue among all graphs in the given
class?

Problem: Have to use Courant-Fischer Theorem

λk = min
f 6=0

f ⊥ fi
i = 1, . . . , k− 1

RL(f )

where fi are eigenfunctions corresponding to the i-th eigenvalue.

Eigenfunction fi on G need not be eigenfunction on G′.

That is, we have constraints for minimization problem that are
hard to control.
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Graph with Boundary

A graph with boundary is a graph G◦ = (V◦ ∪ ∂V, E◦ ∪ ∂E)
where

V◦ . . . interior vertices

∂V . . . boundary vertices

E◦ . . . interior edges ⊆ V◦ ×V◦

∂E . . . boundary edges ⊆ V◦ × ∂V
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Dirichlet Matrix

The Dirichlet matrix is the graph Laplacian restricted to the
interior vertices of a graph with boundary:

L◦(G) = D◦(G)−A◦(G)

A◦(G) . . . adjacency matrix of graph induced by V◦

D◦(G) . . . degree matrix D(G) restricted to V◦

Hence L◦(G) is the Laplacian L(G) restricted to V◦.

We denote the first Dirichlet eigenvalue by ν(G).
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Geometric Realization

The geometric realization G of a graph G with weights wuv is a
metric space where the vertices are points and the edges uv
correspond to arcs of length 1/wuv that connects the incident
vertices u and v.

v1 v2 v3 v4

w1 = 1 w2 = 2 w3 = 1
2

Define two measures

µV(G) = |V| . . . number of vertices

µE(G) = ∑
uv∈E

1
wuv

. . . cumulated length of edges
(Lebesgue measure on G)
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Rayleigh Quotient

For a vector f on G:

RL(f ) =
〈f , Lf 〉
〈f , f 〉 = ∑uv∈E wuv(f (u)− f (v))2

∑v∈V f (v)2

For a continuous piecewise differentiable function φ on G:

RL(φ) =

∫
G |∇φ|2 dµE∫
G |φ|2 dµV

The latter defines a continuous version of the graph Laplacian
on G: geometric Laplacian L
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The Geometric Laplacian

The eigenvalues of the geometric Laplacian L and the graph
Laplacian G coincide.

The eigenfunctions of L are piecewise linear (on the edges of E).
Their restrictions to V are exactly the eigenvectors of G.

[Friedman, 1993]
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Nodal Domains

Let f be an eigenvector of G. We call the components of the two
graphs induced by the vertices of non-negative and non-positive
valuations the (strong) nodal domains of f .

(Perron components)

G[{v : f (v) > 0}] and G[{v : f (v) < 0}]
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Geometric Nodal Domains

Let φ be the eigenfunction on G corresponding to eigenvector f
on G.

I Insert new vertices where φ changes sign on an edge xy
(and thus subdivide edges).

I Use arc lengths |φ(x)|
|φ(x)−φ(y)| and |φ(y)|

|φ(x)−φ(y)| , resp.

φ is eigenfunction of the new graph with same eigenvalue.

I All vertices where φ vanishes but have non-vanishing
neighbors are considered as boundary vertices.

I Split all boundary vertices such that each component has
vertices with non-zero valuation (all of same sign).

We call these components the geometric nodal domains of f .
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Geometric Nodal Domains

Let f be an eigenvector of G corresponding to eigenvalue λ.

The first Dirichlet eigenvalue at each of these geometric nodal
domains coincides with λ.

f restricted to a geometric nodal domain is an eigenvector to the
first Dirichlet eigenvalue [Bıyıkoğlu et al., 2007].

(This idea is related to the bottleneck matrix introduced in
[Kirkland et al., 1996].)
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Example

L(T) =


1 −1 0 0 0
−1 2 −1 0 0
0 −1 3 −1 −1
0 0 −1 1 0
0 0 −1 0 1


w1 = |f (y)− f (x)|/|f (x)|
w2 = |f (y)− f (x)|/|f (y)|

L(T) =


1 −1 0 0 0
−1 2 −1 0 0

0 −1 3 −1 −1
0 0 −1 1 0
0 0 −1 0 1

L(T′) =



1 −1 0 0 0 0
−1 1 + w1 −w1 0 0 0
0 −w1 w1 + w2 −w2 0 0
0 0 −w2 2 + w2 −1 −1
0 0 0 −1 1 0
0 0 0 −1 0 1


The algebraic connectivities of T and T′ coincide.

λ2(T) = λ2(T′)
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Example – Fiedler Vector
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Example – Split
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Example – Nodal Domains
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The algebraic connectivity of T and

the first Dirichlet eigenvalues of Tn and Tp

coincide.

λ2(T) = ν(Tn) = ν(Tp)
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Example – Dirichlet Matrix
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Local Eigenvalues

Let G1, . . . , Gk be graphs with boundaries.

Construct a new tree G without boundary by identifying boundary
vertices of these trees and turning the boundary vertices into
interior ones. Then

λk(G) ≤ max(ν(G1), . . . , ν(Gk))

The inequality is strict if ν(Gi) 6= ν(Gj) for some i, j.

Proof:
x1 + · · ·+ xk
y1 + · · ·+ yk

≤ max
i=1,...,k

xi
yi

where equality holds if and only if x1
y2

= · · · = xk
yk

.
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Local Eigenvalues

Proof (cont.):
I Extend Perron vector gi for each graph Gi on G

by gi(v) = 0 by v 6∈ Gi.

I Construct f = ∑k
i=1 ai gi 6= 0, such that f ⊥ fj for

j = 1, . . . , k− 1.
I Courant-Fischer Theorem

λk(T) ≤
∑k

i=1 ∑uv∈Ei
wuv a2

i (gi(u)− gi(v))2

∑k
i=1 ∑v∈Vi

a2
i gi(v)2

≤ ∑uv∈E1
wuv (g1(u)− g1(v))2

∑v∈V1
g1(v)2 = ν(G1)

where we assume ν(G1) ≥ ν(Gi).
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Local Structures

Assume:
Eigenfunction fk corresponding to the simple eigenvalue λk has
(at least) k geometric nodal domains, G1, . . . , Gk.

For each Gi let gi = fk
∣∣
Gi

and

I rearrange edges, and
I compare Rayleigh quotients of gi on both Gi and G′i.

As we now have first Dirichlet eigenvalues, we are looking at
unconstraint minima of the Rayleigh quotient.

Thus each geometric nodal domain of an extremal graph G
is extremal.
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Example

Algebraic Connectivity of Trees:

Let Tπ the class of all trees with prescribed degree sequence π.
If a tree T has minimal algebraic connectivity in Tπ, then T is a
caterpillar. The degrees on the trunk vertices are decreasing
from the end to the center. [Bıyıkoğlu and L, 2009]

+ + − − −

++++ + + − −− −−−
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Outline of Proof

I The Fiedler vector f has exactly two nodal domains
Tn and Tp [Fiedler, 1975].

I On every path starting at point where f vanishes is either
strictly increasing, decreasing or constant zero.

− − +

+

+

λ2(T′) ≤ max(ν(T′n), ν(T′p))
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Outline of Proof

I Each nodal domain of an extremal tree must be a caterpillar.
Otherwise shift branches (but leave pendant vertex) and
thus decrease the Rayleigh quotient.

I The vertex degrees must be monotone.
Otherwise shift pendant vertex away from boundary vertex
and thus decrease the Rayleigh quotient.
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Remark

By this approach we cannot make global characterizations.

In our example:
It is not known how the degree sequence has to be split for the
two nodal domains of the Fiedler vector.

16th ILAS Conference – Pisa 2010 Josef Leydold – Extremal graphs with minimal k -th Laplacian eigenvalue – 22 / 25



Thank You
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