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LSpectral bounds on the chromatic and stability number

Graph eigenvalues and the chromatic nhumber

» In some sense, we may say that the graph eigenvalues
encode the combinatorial structure of the graph.
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» In some sense, we may say that the graph eigenvalues
encode the combinatorial structure of the graph. This
allows several applications in Combinatorial Optimization.
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Graph eigenvalues and the chromatic number

» In some sense, we may say that the graph eigenvalues
encode the combinatorial structure of the graph. This
allows several applications in Combinatorial Optimization.

» Considering a graph G, the inequalities

14 _)\;,E(Cg) < X(G) < M(G) +1.

are the earliest graph spectra applications in combinatorial
optimization.
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Graph eigenvalues and the chromatic number

» In some sense, we may say that the graph eigenvalues
encode the combinatorial structure of the graph. This
allows several applications in Combinatorial Optimization.

» Considering a graph G, the inequalities

MG 6) < M(G) +1.

1+—/\n(G) , <

are the earliest graph spectra applications in combinatorial
optimization.

» The left inequality was obtained by Hoffman in 1970 and
the right by Wilf in 1967.
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LSpectral bounds on the chromatic and stability number

A lower bound on the stability number

On that time, based on the quadratic program of Motzkin and
Straus [Motzkin and Straus, 1965], Wilf also proposed a
spectral lower bound on the stability number of a graph.
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LSpectral bounds on the chromatic and stability number

A lower bound on the stability number

On that time, based on the quadratic program of Motzkin and
Straus [Motzkin and Straus, 1965], Wilf also proposed a
spectral lower bound on the stability number of a graph.

Theorem [Wilf, 1967]
Let G be a graph with at least one edge. Then
2

S
o(G) = 32—7/\1(6)7

where s is the sum of the entries of the normalized eigenvector

corresponding to A\{(G) (the index of the complement of G).
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Another lower bound on the chromatic number

Taking into account that

— 32
> = >
x(@) 2 (@) =a(@) 2 g
s? < nand m is a decreasing function on s?, the

Cvetkovic¢’s bound on chromatic number can be deduced.
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LSpectral bounds on the chromatic and stability number

Another lower bound on the chromatic number

Taking into account that

2
—= S
G)>w(@)=aG) > 5——F=
x(@) 2 (@) =a(6) 2 g
s? < nand W is a decreasing function on s, the

Cvetkovi¢’s bound on chromatic number can be deduced.

Theorem [Cvetkovi¢, 1972]
If G # K, is a graph with n vertices, then

n
X(G) > —=
n— )\1 (G)
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Upper bounds on the stability number

Theorem [Ryacek and Sciermeyer, 1995]

If Gis a claw- free graph with n vertices and at least one edge,

then o(G) < 2+5(G)
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Upper bounds on the stability number

Theorem [Ryacek and Sciermeyer, 1995]
If Gis a claw- free graph with n vertices and at least one edge,
then o(G) < 2+5(G)

As a consequence (since a(G)x(G) > n), if Gis k-regular and

claw-free, then y(G) > “42.
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Upper bounds on the stability number

Outline

Theorem [Ryacek and Sciermeyer, 1995]

If G is a claw-free graph with n vertices and at least one edge,

As a consequence (since a(G)x(G) > n), if G is k-regular and
claw-free, then y(G) > “}2.
Theorem [Cvetkovi¢, 1973]
Let [c—(G)|, |c°(G)|,|eT(G)| the number of eigenvalues of the

graph G smaller than, equal to, and greater than zero,
respectively. Then

o(G) < |0°(G)| +min{|o™ (G)I, lo " (G)I}.
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LMaximum cut and quadratic assignment problems

The maximum cut problem

The maximum cut (or max-cut) problem is defined as follows.
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LCIasSicaI results

LMaximum cut and quadratic assignment problems

The maximum cut problem

The maximum cut (or max-cut) problem is defined as follows.
Determine a vertex subset S ¢ V(G) for which the weight
w(O(S)) = X eco(s) W(e) is maximum, that is,

max_w(9(S)). (1)
ScV(G)
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LMaximum cut and quadratic assignment problems

The maximum cut problem

The maximum cut (or max-cut) problem is defined as follows.
Determine a vertex subset S ¢ V(G) for which the weight
w(O(S)) = X eco(s) W(e) is maximum, that is,

3?\?()(6) w(9(S)). (1)

This problem can be formulated as the following integer
quadratic program:

’
me(G,w) = Maximize ; > w1 - xix)
f€E(G)
subject to x; € {1, -1} Vi e V(G).
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Upper bound on the maximum cut problem

Outline

Theorem [Mohar and Poljak, 1990]
Let L w) be the Laplacian matrix of the weighted graph (G, w).

Then

mc(G, w) < M (Ligw))-
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LMaximum cut and quadratic assignment problems

Upper bound on the maximum cut problem

Theorem [Mohar and Poljak, 1990]

Let L w) be the Laplacian matrix of the weighted graph (G, w).
Then
mc(G, w) < M (Ligw))-

Theorem [Delorme and Poljak, 1990]
Let L(g,w) be the Laplacian matrix of the weighted graph
alert(G, w). Then
mc(G, w) < miny 7\ (LG w) + diag(v)),
where the minimum is obtained among overall u € R” such

that) ", u; = 0.
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LMaximum cut and quadratic assignment problems

The quadratic assignment problem

» The quadratic assignment problem is one the most general
combinatorial optimization models.
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The quadratic assignment problem

» The quadratic assignment problem is one the most general
combinatorial optimization models. Many other hard
combinatorial optimization problems (as it is te case of the
location decision problem) are particular cases of the
quadratic assignment problem.
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L Maximum cut and quadratic assignment problems

The quadratic assignment problem

» The quadratic assignment problem is one the most general
combinatorial optimization models. Many other hard
combinatorial optimization problems (as it is te case of the
location decision problem) are particular cases of the
quadratic assignment problem.

» The quadratic assignment problem (QAP) can be
defined as follows: given the set N = {1,... ., n} and three
n x nmatrices A = (ai), B = (by) and C = (c,,), find a
permutation 7 of the set N which minimizes

Zcm 159 L

i=1 j=1
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LMaximum cut and quadratic assignment problems

The quadratic assignment problem (alternative formulation)

» Equivalently, QAP consists on findind a n x n permutation
matrix P which minimizes the trace

mintr(C + APB")P!,
Pen

where I1 denotes the set of permutation matrices.
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LMaximum cut and quadratic assignment problems

The quadratic assignment problem (alternative formulation)

» Equivalently, QAP consists on findind a n x n permutation
matrix P which minimizes the trace

mintr(C + APB!)P!,
Pen

where [1 denotes the set of permutation matrices.

» Theorem [Finke, Burkard and Rendl, 1987]
Let A and B be symmetric n x n matrices with eigenvalues
A > > pand pug > -+ - > up, respectively. Then
ming 374 3071 @ibr(iym(y = Doitt Niktn—it1,
where the minimum is taken over all permutations = of

{1,...,n}.
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Recent results
LMaximum size induced k-regular subgraphs
:

Upper bound on the size of a vertex-set inducing subgraph with
mean degree k

» Using a quadratic programming technique jointly with the
main angles of G, as proved in (C and Rowlinson, 2010),
the size of a vertex subset S ¢ V(@) inducing a subgraph
with mean degree k has the following upper bound:

1S <inf{hZ(t) : t > —\n(G)},

Px(t—1
where h8(1) = (k + 1) (1 . %)
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L Maximum size induced k-regular subgraphs

Upper bound on the size of a vertex-set inducing subgraph with
mean degree k

» Using a quadratic programming technique jointly with the
main angles of G, as proved in (C and Rowlinson, 2010),
the size of a vertex subset S ¢ V(@) inducing a subgraph
with mean degree k has the following upper bound:

1S <inf{hZ(t) : t > —\n(G)},

P(t—1
where h8(1) = (k + 1) (1 . %)

» Considering Hg(t) = Y32 NktX, where Ny is the number
of walks of length k in G (the walk-generating function of
G), we may write hS (1) = (1 + ) Hg(—1).
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LMaximum size induced k-regular subgraphs

Induced matchings and dominating induced matchings

Lemma
Let G be a graph with an induced matching M C E(G). Then

> [M] < min{le™(G)], |e~ ()}
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LMaximum size induced k-regular subgraphs

Induced matchings and dominating induced matchings

Lemma
Let G be a graph with an induced matching M C E(G). Then

> [M] < min{le™(G)], |e~ ()}

Theorem [C, Cerdeira, Delorme and Silva, 2008]

Let G be a graph. If M C E(G) is a dominating induced
matching, then |M| > %max{|o—+(G)|, o= (G)|}.

Outline Classical results Recent results (k, T)-regular sets Bibliography
0000 oeo [e]e]
0000 (e]e] 00000000
0000000



Graph Eigenvalues in Combinatorial Optimization
Recent results

LMaximum size induced k-regular subgraphs

Induced matchings and dominating induced matchings

Lemma
Let G be a graph with an induced matching M C E(G). Then

> [M] < min{le™(G)], |e~ ()}

Theorem [C, Cerdeira, Delorme and Silva, 2008]

Let G be a graph. If M C E(G) is a dominating induced
matching, then |M| > %max{|a+(G)|, lo=(G)|}.

Corollary

If M is a dominating induced matching of a graph G, then
zmax{|o*(G)|, [~ (G)[} < M| < min{|o*(G)|, |0 (G)[}-
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LMaximum size induced k-regular subgraphs

Dominating induced matchings and maximum induced matchings

» ltis clear that if M is and induced matching of G, then

w < |E©)
= 25(G) -1’
where §(G) denotes the minimum degree of the vertices of
G.
Outline Classical results Recent results (k, T)-regular sets Bibliography
0000 ooe [e]e]
0000 (e]e] 00000000

0000000



Graph Eigenvalues in Combinatorial Optimization

Recent results
LMaximum size induced k-regular subgraphs
:

Dominating induced matchings and maximum induced matchings
» ltis clear that if M is and induced matching of G, then

[E(G)|

where §(G) denotes the minimum degree of the vertices of

G.
» If Gis p-regular and M is a dominating induced matching,

then the above upper bound is attained.
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L Maximum size induced k-regular subgraphs

Dominating induced matchings and maximum induced matchings

» ltis clear that if M is and induced matching of G, then

|E(G)]

where §(G) denotes the minimum degree of the vertices of
G.

» If Gis p-regular and M is a dominating induced matching,
then the above upper bound is attained.

» Combining the above upper bound with the previous
corollary, we may conclude that some graphs have no
dominating induced matchings.
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LPerfect Matchings and Hamiltonian graphs

Graph eigenvalues and matchings

» Theorem[Ming and Wang, 2000]

Let T be a tree with n vertices. If T has a perfect matching then
Anj2(T) = 2.
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LPerfect Matchings and Hamiltonian graphs

Graph eigenvalues and matchings

» Theorem[Ming and Wang, 2000]

Let T be a tree with n vertices. If T has a perfect matching then
Anj2(T) = 2.

» Theorem[Brouwer and Haemers, 2005]

Let G be a connected k-regular graph with 2p vertices and with
eigenvalues Ay > \o > A3 > - - > App. If

3 . .
As < k—1+@, |fk|seyen
k—1+ K2 otherwise,

then G has a perfect matching.
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LPerfect Matchings and Hamiltonian graphs

Hamiltonian paths and Hamiltonian cycles

Considering a graph G of order n, in [Fiedler and Nikiforov,
2010] the following results are deduced.

» If \{(G) > n— 2 then G has a Hamiltonian path, unless
G = K,_1 + v (a complete graph plus an isolated vertex v).
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LPerfect Matchings and Hamiltonian graphs

Hamiltonian paths and Hamiltonian cycles

Considering a graph G of order n, in [Fiedler and Nikiforov,
2010] the following results are deduced.

» If \{(G) > n— 2 then G has a Hamiltonian path, unless
G = K,_1 + v (a complete graph plus an isolated vertex v).

» If \1(G) > n— 2 then G has a Hamiltonian cycle, unless
G = K,_1 + e (a complete graph plus a pendent edge e).
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L Perfect Matchings and Hamiltonian graphs

Hamiltonian paths and Hamiltonian cycles

Considering a graph G of order n, in [Fiedler and Nikiforov,
2010] the following results are deduced.

» If A\1(G) > n— 2 then G has a Hamiltonian path, unless
G = K,_1 + v (a complete graph plus an isolated vertex v).

» If \1(G) > n— 2 then G has a Hamiltonian cycle, unless
G = K,_1 + e (a complete graph plus a pendent edge ¢).

» If \{(G) < v/n— 1 then G has a Hamiltonian path, unless

G — an‘] + V.
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L Perfect Matchings and Hamiltonian graphs

Hamiltonian paths and Hamiltonian cycles

Considering a graph G of order n, in [Fiedler and Nikiforov,
2010] the following results are deduced.

» If A\1(G) > n— 2 then G has a Hamiltonian path, unless
G = K,_1 + v (a complete graph plus an isolated vertex v).

» If \1(G) > n— 2 then G has a Hamiltonian cycle, unless
G = K,_1 + e (a complete graph plus a pendent edge ¢).
» If \{(G) < v/n— 1 then G has a Hamiltonian path, unless

G — an‘] + V.
» If \{(G) < v/n— 2 then G has a Hamiltonian cycle, unless
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I—(k, T)-regular sets

LDefinition and particular cases

Definition of (k, 7)-regular set

A vertex subset S C V(G) is (k, 7)-regular if induces a
k-regular subgraph and

Y¢S [Ng(v)N S| =r.
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Definition of (k, 7)-regular set

A vertex subset S C V(G) is (k, 7)-regular if induces a
k-regular subgraph and

Y¢S [Ng(v)N S| =r.
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L(k, T)-regular sets

LDefinition and particular cases

Definition of (k, 7)-regular set

A vertex subset S C V(G) is (k, 7)-regular if induces a
k-regular subgraph and

Y¢S [Ng(v)NS|=r.

R
7avl

7 8

S1=1{1,2,3,4}is (0,2)-regular.
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LDefinition and particular cases

Definition of (k, 7)-regular set

A vertex subset S C V(G) is (k, 7)-regular if induces a
k-regular subgraph and

Y¢S [Ng(v)NS| =

Sy ={1,2,3,4}is (0,2)-regular.
S, =1{5,6,7,8,9,10} is (1, 3)-regular.
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LDefinition and particular cases

Particular cases

» If G has a (k, 7)-regular set S then in its complement, G, S
is (|S| — k —1,|S| — 7)-regular.
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LDefinition and particular cases

Particular cases
» If G has a (k, 7)-regular set S then in its complement, G, S
is (|S| — k —1,|S| — 7)-regular.
» According to the definition, if a graph G is k-regular, then
V(G) is (k, )-regular for every nonnegative integer 7.
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LDefinition and particular cases

Particular cases
» If G has a (k, 7)-regular set S then in its complement, G, S
is (|S| — k —1,|S| — 7)-regular.
» According to the definition, if a graph G is k-regular, then
V(G) is (k, )-regular for every nonnegative integer .
» By convention, if G is k-regular, then we say that V(G) is
(k,0)-regular.
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LDefinition and particular cases

Particular cases

» If G has a (k, 7)-regular set S then in its complement, G, S
is (|S| — k —1,|S| — 7)-regular.

» According to the definition, if a graph G is k-regular, then
V(G) is (k, )-regular for every nonnegative integer 7.

» By convention, if G is k-regular, then we say that V(G) is
(k,0)-regular.

» If a p-regular graph G has a (k, 7)-regular set S, then
V(G)\ Sis (p— 7,p— k)-regular.
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L(k, T)-regular sets

LCombinatorial and algebraic properties

Independent sets and dominating induced matchings

Theorem[Barbosa and C, 2004]

A graph G has a maximum stable set which is (0, 1)-regular if
and only if each vertex belongs to exactly one simplex.
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LCombinatorial and algebraic properties

Independent sets and dominating induced matchings

Theorem[Barbosa and C, 2004]

A graph G has a maximum stable set which is (0, 1)-regular if
and only if each vertex belongs to exactly one simplex.

Theorem[C, Cerdeira, Delorme and Silva, 2008]

If M c E(G) is a dominated induced matching of G, then M is a
maximum induced matching.
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L Combinatorial and algebraic properties

Independent sets and dominating induced matchings

Theorem[Barbosa and C, 2004]

A graph G has a maximum stable set which is (0, 1)-regular if
and only if each vertex belongs to exactly one simplex.

Theorem[C, Cerdeira, Delorme and Silva, 2008]
If M ¢ E(G) is a dominated induced matching of G, then M is a
maximum induced matching.

A connected graph G with more than one edge has a
dominating induced matching D ¢ E(G) if and only if L(D) is
(0, 1)-regular in the line graph L(G).
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LCombinatorial and algebraic properties

Independent sets

Theorem

Let Gbe agraphand S C V(G). If Sis (0, 7)-regular with
7 = —An(G), then S is a maximum stable set and every
maximum stable set is (0, 7)-regular.
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LCombinatorial and algebraic properties

Independent sets

Theorem

Let Gbe agraphand S C V(G). If Sis (0, 7)-regular with
7 = —An(G), then S is a maximum stable set and every
maximum stable set is (0, 7)-regular.

» The Petersen graph P has a (0, 2)-regular set with
cardinality 4 and \,(P) = —2. Then «o(P) = 4.

» The Hoffman-Singleton graph HS has a (0, 3)-regular set
with cardinality 15 and \,(HS) = —3. Then «(HS) = 15.
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LCombinatorial and algebraic properties

Characterization of perfect matching

A connected graph G, with more than one edge, has a perfect
matching M if and only if L(M) is a (0, 2)-regular set of the line
graph L(G).
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LCombinatorial and algebraic properties

Characterization of perfect matching

A connected graph G, with more than one edge, has a perfect
matching M if and only if L(M) is a (0, 2)-regular set of the line
graph L(G).

b c b c
sl le |a a ’ ; g
f e f e
M={a,d, g} L(M)={a,d,g}
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LCombinatorial and algebraic properties

Strongly regular graphs

Theorem [C, Sciriha and Zerafa, 2009]

A k-regular graph G of order n is strongly regular with
parameters (n, k, a, c) if and only if Vv € V(G), S = Ng(v) is
(a,c)-regularin H= G — {v}.
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LCombinatorial and algebraic properties

Strongly regular graphs

Theorem [C, Sciriha and Zerafa, 2009]

A k-regular graph G of order n is strongly regular with
parameters (n, k., a, c) ifand only if Yv € V(G), S = Ng(v) is
(a,c)-regularin H= G — {v}.

The Petersen graph P The graph P — {v}
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LCombinatorial and algebraic properties

Hamiltonian cycles

Lemma

A graph G has a Hamiltonian cycle C if and only if L(C) is
(2,4)-regular inducing a connected subgraph in the line graph
L(G).
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Hamiltonian cycles

Lemma

A graph G has a Hamiltonian cycle C if and only if L(C) is
(2,4)-regular inducing a connected subgraph in the line graph
L(G).
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LCombinatorial and algebraic properties

Hamiltonian cycles

Outline

Lemma

A graph G has a Hamiltonian cycle C if and only if L(C) is
(2,4)-regular inducing a connected subgraph in the line graph
L(G).
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LCombinatorial and algebraic properties

Eigenvalues and (k, 7)-regular sets

Theorem[Thompson, 1981]

Let G be a p-regular graph and x the characteristic vector of

S C V(G). Then Sis a (k, 7)-regular set, with 7 > 0, if and only
if Kk — 7 € o(@G) with corresponding eigenvector

(p — k + 7)x — 7/, where j is the all-one vector.
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L Combinatorial and algebraic properties

Eigenvalues and (k, 7)-regular sets

Theorem[Thompson, 1981]

Let G be a p-regular graph and x the characteristic vector of

S C V(G). Then Sis a (k, 7)-regular set, with 7 > 0, if and only
if Kk — 7 € o(@G) with corresponding eigenvector

(p — k + 7)x — 7/, where j is the all-one vector.

Theorem[C and Rama, 2007]

Let A € Z and G be a graph with a (ky, 71)-regular set S;

(r1 > 0) and a (kp, 72)-regular set Sy, such that Sy # S, and
ki — 11 = ko — 7o = A\. Then X\ € o(G) with corresponding
eigenvector %x1 — X», where x; and x, are the characteristic
vectors of S; and S, respectively.
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I—Combinatorial and algebraic properties

Eigenvalues and eigenvectors

6 5 4

G

1 2 3
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LCombinatorial and algebraic properties

Eigenvalues and eigenvectors

6 5 4

G

1 2 3

Sy ={1,2,5,6} and S, = {2,3,4,5} are (2, 1)-regular.
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LCombinatorial and algebraic properties

Eigenvalues and eigenvectors

6 5 4

G

1 2 3

Sy ={1,2,5,6} and S, = {2,3,4,5} are (2, 1)-regular.
Ty ={1,4}and T> = {3,6} are (0, 1)-regular.
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LCombinatorial and algebraic properties

Eigenvalues and eigenvectors

Outline

Sy ={1,2,5,6}and S, = {2,3,4,5} are (2,1)-regular.

6

5

G

1

2

3

Ty ={1,4} and T, = {3,6} are (0, 1)-regular.
Then {—1,1} C 0(G) = {—2.41,—1,-0.41,0.41,1,2.41} and

1
0
—1
—1
0
1
Classical results
0605

€ g(;(1)

and

Recent results
000
[e]e]

1
0

O = =

(k, T)-regular sets
[e]

[e]
[e]e]e]ele]e] o)
0000000
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LCombinatorial and algebraic properties

Maximum induced k-regular subgraphs

Theorem[C, Kaminski and Lozin, 2007]
Let Gbe agraphand 7 = —\,(G). f SC V(G) is

(k, k 4+ 7)-regular, then S is a maximum cardinality set inducing
a k-regular subgraph.
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LCombinatorial and algebraic properties

Maximum induced k-regular subgraphs

Theorem[C, Kaminski and Lozin, 2007]
Let Gbe agraphand 7 = —\,(G). f SC V(G) is

(k, k 4+ 7)-regular, then S is a maximum cardinality set inducing
a k-regular subgraph.

6

3 4
Graph G with o(G) = {—2,0,4} and the (2,4)-regular set {1,3,4,6}.
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LMain and non-main eigenvalue techniques

The main characteristic polynomial

Definition

Each distinct eigenvalue juq,...,up, 1 < p < n,ofagraph G
such that £5(1;) is not orthogonal to the all-one vector j is said
to be main. The remaining distinct eigenvalues are non-main.
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L Main and non-main eigenvalue techniques

The main characteristic polynomial

Definition

Each distinct eigenvalue /u1,...,up, 1 < p < n, of agraph G
such that £5(1;) is not orthogonal to the all-one vector j is said
to be main. The remaining distinct eigenvalues are non-main.

Lemma [D. Cvetkovi¢ and M. Petri¢, 1984]
If G is a graph with p distinct main eigenvalues i1, . .., 1, then
the main characteristic polynomial of G

mG(/\) = M- Co)\p_1 — C1)\p_2 — = Cp,QA — Cp—1

has integer coefficients.
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LMain and non-main eigenvalue techniques

The walk matrix

Definition
Given a graph G of order n, the n x k walk matrix of G is the
matrix W’ — (j, Aci, A%, ... ,Ag—1j).
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LMain and non-main eigenvalue techniques

The walk matrix

Definition

Given a graph G of order n, the n x k walk matrix of G is the

matrix W' = (j, Agj. AZj, ... ,Aléqi)-

©
/Q
5° 3
Outline Classical results Recent results
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LMain and non-main eigenvalue techniques

The column space of the walking matrix

Theorem (Hagos, 2002)

Let G be a graph of order n with p distinct main eigenvalues.
The rank of its n x k walk matrix W', is p for k > p.
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LMain and non-main eigenvalue techniques

The column space of the walking matrix

Theorem (Hagos, 2002)

Let G be a graph of order n with p distinct main eigenvalues.
The rank of its n x k walk matrix W', is p for k > p.

Then the number of distinct main eigenvalues p is such that
p=min{k : {j, Aj,A%j,..., A%j} is linear dependent}.
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L(k, T)-regular sets

Ly

ain and non-main eigenvalue techniques

The

Outline

column space of the walking matrix

Theorem (Hagos, 2002)
Let G be a graph of order n with p distinct main eigenvalues.
The rank of its n x k walk matrix W', is p for k > p.

Then the number of distinct main eigenvalues p is such that
p=min{k : {j, Aj,A%j,..., A%j} is linear dependent}.
Cp_1

The pth column of AW is APj = W 5 , where ¢, for
C1

Co
j=0,....,p— 1, are the coefficients of mg(\).
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LMain and non-main eigenvalue techniques

Main (non-main) eigenvalues of graphs with (x, 7)-regular sets

Definition
The main eigenspace of a graph G, Main(G), is the subspace
spanned by the eigenvectors not orthogonal to the all one

vector J.
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LMain and non-main eigenvalue techniques

Main (non-main) eigenvalues of graphs with (x, 7)-regular sets

Definition

The main eigenspace of a graph G, Main(G), is the subspace
spanned by the eigenvectors not orthogonal to the all one
vector j.

Theorem[C, Sciriha and Zerafa, 2008]
Let G be a graph with a (k, 7)-regular set S, where = > 0, and
A€ o(G).
1. The eigenvalue X is non-main if and only if
A=k—1 or Xs € (Eg(\)*.
2. If X is main with associated eigenvector u € Main(G), then
fxs;éOand/\_rustrk
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LMain and non-main eigenvalue techniques
:

(k, T)-parametric vectors

Definition
Let G be a graph with p distinct main eigenvalues 1, ..., 1p
and {x1,..., Xp} an orthonormal basis of Main(G). Considering

the nonnegative integer ~ and the positive integer 7 such that
(k—7) ¢ {p1,..., 1p}, the vector

jx
g ZT K/—T)XI

is referred as the (x, 7)-parametric vector of G.
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LMain and non-main eigenvalue techniques

Graphs with (x, 7)-regular sets

Theorem[C, Sciriha and Zerafa, 2008]

Let G be a graph with p distinct main eigenvalues 1, ..., 1p
and {x1,...,Xp} an orthonormal basis of Main(G). Consider a

(r,7)-regular set S C V(G), with 7 > 0. Then the characteristic
vector of S, xs, is such that

Xs=9+aq,

where g € (Main(G))* and the following holds.
1. fk—7¢0(G),theng=0and xs =7 (A— (k—7)I)""j;
2. fk —7€0(G)then g € eg(k — 7).
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LMain and non-main eigenvalue techniques

Graphs with (x, 7)-regular sets

Corollary[C, Sciriha and Zerafa, 2008]

If a graph G with p distinct main eigenvalues i1, ..., 1 and
{x1,..., Xp} an orthonormal basis of Main(G) has a
(r,7)-regularset S ¢ V(G) and (x — 7) € o(G), then

pi — (K —1)
i=1
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