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Notation

Let M (= M(G )) be a graph matrix associated to some graph G .
The characteristic polynomial of M (i.e. det(xI −M)) is called the
M-polynomial of G . The eigenvalues of M, namely the zeros of
the M-polynomial, and its spectrum (which consists of the n
M-eigenvalues) are called the M-eigenvalues and M-spectrum of
G , respectively. The largest eigenvalue of G is called the M-index.

In this talk M will be one of the following matrices:

I A, the adjacency matrix;

I L = D − A, the Laplacian matrix, where D is the diagonal
matrix of vertex degrees.

I Q = D + A, the signless Laplacian.
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Notation

The following notation will be used in the rest:

A-theory: φ(G , x) is the A-polynomial, ρ(G ) is the A-index;

L-theory: ψ(G , x) is the L-polynomial, µ(G ) is the L-index;

Q-theory: ϕ(G , x) is the Q-polynomial, κ(G ) is the Q-index;

We will now shortly survey some important results which link the
above polynomials and their corresponding theories.
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Theorem
Let G be a graph. Then ψ(G ) = ϕ(G ) if and only if G is bipartite.
If G is non bipartite then µ(G ) < κ(G ).

The subdivision graph of G , denoted by S(G ), is the graph
obtained from G by inserting a vertex of degree 2 into each of
edges of G .

Theorem
Let G be a graph of order n and size m, and let S(G ) be the
subdivision graph of G. Then

φ(S(G ), x) = xm−nϕ(G , x2).

The above results can be seen as bridges among the above
theories. So a result given for the A-theory can be translated to
the Q-theory and then to the L-theory, and vice versa.
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The graphs mentioned in this talk are: the path Pn, the cycle Cn,
the lollipop Lp

g , consisting of a cycle of lenght g with a pendant
path of lenght p. Here are depicted some other graphs.
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Fig. 1: Graphs Pa,b,d
i ,j , Qa,b,c and Ta,b,c .
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Hoffman limit values

We will consider the (connected) graphs whose M-index,
M ∈ {A, L,Q}, does not exceed the limit point for the M-index of
the Hoffman graph Hn, that is a cycle on n − 1 vertices with a
pendant edge (Hn = L1

n−1). The latter limit point will be called
the M-Hoffman limit value:

A-Hoffman l. v.: limn→∞ ρ(Hn) =
√

2 +
√

5; (Hoffman, 1972)

L-Hoffman l. v.: limn→∞ µ(Hn) = 2 + ε; (Guo, 2008)

Q-Hoffman l. v.: limn→∞ ρ(Hn) = 2 + ε; (Wang et al., 2009)

where 2 + ε is the real root of x3 − 6x2 + 8x − 4.
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The Hoffman program

Hoffman was the first who considered graph limit points for the
graph eigenvalues and he found many limit values. In particular he

found all limit points between 2 and
√

2 +
√

5. Shearer later

proved that all real values greater than
√

2 +
√

5 are limit points
for the A-index of some sequence of graphs (in particular,
caterpillars). One question arose at that time:

“Which are the graphs whose A-index do not exceed the
(A-)Hoffman limit value?”

The latter is the Hoffman program (for the A-theory).
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Graphs whose A-index does not exceed 2

In 1972, Smith determined all connected graphs whose A-index is
exactly 2, those graphs nowadays are known as the Smith graphs.
By the Interlacing Theorem, we also know that their proper
subgraphs are those whose A-index is less than 2.
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Fig. 2: Smith graphs.
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Let GM(λ) be the set of connected graphs whose M-index does not
exceed λ. The Hoffman program for the A-theory, i.e. the

complete determination of the set GA(
√

2 +
√

5), was considered
by several authors. Cvektović et al. determined the structure of

the graphs in GA(
√

2 +
√

5)...

Theorem (Cvetoković, Doob, Gutman, 1986)

GA(
√

2 +
√

5) = GA(2) ∪ {Ta,b,c | a = 1, b = 2, c > 5; or a =
1, b > 2, c > 3; or a = b = 2, c > 2; or a = 2, b = c = 3} ∪
{Qa,b,c | (a, b, c) ∈ S; or c ≥ a > 0, b ≥ b∗(a, c), (a, c) 6= (1, 1)},

where S = {(1, 1, 2), (2, 4, 2), (2, 5, 3), (3, 7, 3), (3, 8, 4)} and
b∗(a, c) is an integer function.

... and Brouwer and Neumaier finally completed the investigation:

Theorem (Brouwer, Neumaier, 1989)

GA(
√

2 +
√

5) = GA(2) ∪ {Ta,b,c | a = 1, b = 2, c > 5; or a =
1, b > 2, c > 3; or a = b = 2, c > 2; or a = 2, b = c = 3} ∪
{Qa,b,c | (a, b, c) ∈ S; or c ≥ a > 0, b ≥ b∗(a, c), (a, c) 6= (1, 1)},
where S = {(1, 1, 2), (2, 4, 2), (2, 5, 3), (3, 7, 3), (3, 8, 4)} and

b∗(a, c) =


a + c + 2, for a > 2;
c + 3, for a = 2;
c , for a = 1.
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What about the other spectra?

About the other spectra, the whole story developed completely just
recently:

In 2008, Guo computed the L-Hoffman limit value, that is
2 + ε ≈ 4.38, the real root of x3 − 6x2 + 4x − 8. Also Guo
determined all limit points between 4 and 2 + ε, and the latter
result is the L-variant of the original result of Hoffman for the
A-theory. What about the (connected) graphs whose L-index does
not exceed 2 + ε?

In fact the problem seems to be difficult. Maybe solving it for the
Q-theory might help... so Wang et al. started the study for the
Hoffman program in the Q-theory.
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The graphs whose Q-index does not exceed 4 were determined by
Cvetković et al. in 2006/7. But nothing else was done w.r.t. the
Q-theory, so Wang et al. reproduced the result of Guo on the
L-theory for the Q-theory. In fact, all limit points for the Q-index
between 4 and 2 + ε are indeed the same as those for the L-theory.

The smallest Q-limit point after 4 is 2 +
√

5, so it is natural to
consider first GQ(2 +

√
5). A graph in latter set must be a tree

with just one vertex of degree 3. Indeed, any unicyclic graph -
different from a cycle - has its Q-index larger than some Hoffman
graph (by the Hoffman-Smith lemma on internal paths), hence its
Q-index exceeds 2 + ε; in addition, κ(Wn), κ(T1,2,2) > 2 +

√
5.

Theorem
[Cvektović et al., 2007] GQ(4) = {Pn,Cn,K1,3}

[Wang et al., 2009] GQ(2 +
√

5) = GQ(4) ∪ {T1,1,a, a ≥ 2}.
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Wang et al. also proved that the graphs in GQ(2 + ε) \ GQ(2 +
√

5)
must be trees with just two vertices of degree 3, in particular:

Theorem (Wang, Huang, Belardo, Li Marzi, 2009)

GQ(2 + ε) = GQ(2 +
√

5) ∪ {Qa,b∗(a,c),c},
where b∗(a, c) is an integer function.

The authors also gave the following conjecture:

Conjecture

κ(Qa,b,c) < 2 + ε if and only if b ≥ a + c + 1.

The above conjecture was solved just recently, thanks to the
A-theory.

The structure of graphs with small M-indices Francesco Belardo



Introduction A-index <
√

2 +
√

5 Q-index < 2 + ε L-index < 2 + ε Other limit values The End

Wang et al. also proved that the graphs in GQ(2 + ε) \ GQ(2 +
√

5)
must be trees with just two vertices of degree 3, in particular:

Theorem (Wang, Huang, Belardo, Li Marzi, 2009)

GQ(2 + ε) = GQ(2 +
√

5) ∪ {Qa,b∗(a,c),c},
where b∗(a, c) is an integer function.

The authors also gave the following conjecture:

Conjecture

κ(Qa,b,c) < 2 + ε if and only if b ≥ a + c + 1.

The above conjecture was solved just recently, thanks to the
A-theory.

The structure of graphs with small M-indices Francesco Belardo



Introduction A-index <
√

2 +
√

5 Q-index < 2 + ε L-index < 2 + ε Other limit values The End

κ(Qa,b,c) > 2 + ε

The authors used three steps to solve the conjecture.

First step: Simplify the conjecture.
Indeed, it was possible to prove that

κ(Q1,k,k−1) > 2+ε implies κ(Qa,b,c) > 2+ε when b < a+c +1

Second step: Translate to the A-theory. Indeed from
S(Q1,k,k−1) = P2,2,4k

2,2k+2, we can deduce

ρ(P2,2,4k
1,2k+1) >

√
2 + ε implies κ(Q1,k,k−1) > 2 + ε.

Third step: Prove that φ(P2,2,4k
1,2k+1),

√
2 + ε) < 0.
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ρ(Gk) >
√

2 + ε

To simplify the notation let Gk = P2,2,4k
1,2k+1. In order to check that

φ(Gk ,
√

2 + ε) < 0, we need to compute explicitly the characteristic
polynomial of Gk . Recently Ramezani et al. showed that

φ(Pm, λ) =
x2m+2 − 1

xm+2 − xm
,

where where x satisfies x2 − λx + 1 = 0.

So if we express the polynomial of Gk in terms of paths, we get:

φ(Gk , λ) = λφ(T2,2k−1,2k+2)− (λ2 − 1)φ(T2,2k−1,2k−1)

= λ[(λ2 − 1)φ(P4k+2)− λφ(P2k+2)φ(P2k−1)]

−(λ2 − 1)[(λ2 − 1)φ(P4k−1)− λφ2(P2k−1)].
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To simplify the notation let Gk = P2,2,4k
1,2k+1. In order to check that
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√

2 + ε) < 0, we need to compute explicitly the characteristic
polynomial of Gk . Recently Ramezani et al. showed that

φ(Pm, λ) =
x2m+2 − 1

xm+2 − xm
,

where where x satisfies x2 − λx + 1 = 0.

So if we express the polynomial of Gk in terms of paths, we get:

Φ(Gk , x) = [x8k+2(x12 − x10 − 2x8 − x6 + 2x4 + 2x2 + 1)

+x4k+2(x10 − 3x6 − 3x4 + 1) + (x12 + 2x10

+2x8 − x6 − 2x4 − x2 + 1)] · [x4k+5(x2 − 1)2]−1.
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ρ(Gk) >
√

2 + ε

So we have that

φ(Gk ,
√

2 + ε) < 0 iff Φ(Gk , ε
′) < 0,

where ε′ = (
√
ε+ 2 +

√
ε− 2)/2.

The latter inequality was proved to be true and consequently the
following theorem was given:

Theorem (Belardo, Li Marzi, Simić, Wang, 2010)

κ(Qa,b,c) > 2 + ε if and only if b < a + c + 1.
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Hoffman program for the Q-theory

So the Q-Hoffman program is finally completed.

Theorem
Let GQ(κ) be the set of connected graphs whose Q-index does not
exceed κ. Then

I GQ(4) = {Pn,Cn,K1,3};

I GQ(2 +
√

5) = GQ(4) ∪ {T1,1,n−3 (n ≥ 5)};

I GQ(2 + ε) = GQ(2 +
√

5) ∪ {T1,b,c (c ≥ b ≥ 2),Qa,b,c (b ≥
a + c + 1)}.
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Hoffman program for the L-theory

What we can say about the Hoffman program for the L-theory?

Recall that for bipartite graphs the L-polynomial and Q-polynomial
are the same. The graphs in GQ(2 + ε) are trees (so bipartite
graphs). Hence to complete the Hoffman program for the L-theory,
we need only to consider the non bipartite graphs.

The following result of Guo is very useful in this context:

Theorem (Guo, 2007)

Let v be a vertex in a connected graph G and suppose that at v
there are s ≥ 2 hanging paths of equal length. If ∆(G ) ≥ s + 1,
then adding any edge between vertices of degree 1 in the above
hanging paths does not increase the L-index.
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Hoffman program for the L-theory

Hence, by combining the results from the Q-theory, by using the
latter result of Guo and by discarding other graphs (by using a
forbidden subgraphs argument), we are able to state the following
theorem which completes the Hoffman program for the L-theory
(in blue you have the non-bipartite graphs):

Theorem (Wang, Belardo, Huang, Li Marzi, 2010)

Let GL(µ) be the set of connected graphs whose L-index does not
exceed µ. Then

I GL(4) = {Pn,Cn,K1,3,K4,K
−
4 ,K

+
1,3};

I GL(2 +
√

5) = GL(4) ∪ {T1,1,n−3 (n ≥ 5), Ln−3
3 (n ≥ 5)};

I GL(2 + ε) = GL(2 +
√

5) ∪ {Q1,Q2,T1,b,c (c ≥ b ≥
2), L1

2k+1 (k > 1),Wn,D
−
n ,Dn (n ≥ 8),Qa,b,c (b ≥ a + c + 1)}.
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Fig. 3: Some graphs in GL(2 + ε).
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Other relevant limit values

The following theorem is due to Hoffman and Smith (1975):

Theorem
Let G = G0 be a graph with maximum vertex degree ∆, and let Gn

be S(Gn−1) then

lim
n→∞

ρ(Gn) =
∆√

∆− 1
= HoffA(∆).

For the {L,Q}-theory similarly we have

Theorem
Let G = G0 be a graph with maximum vertex degree ∆, and let Gn

be S(Gn−1) then

lim
n→∞

κ(Gn) =
∆2

∆− 1
= HoffQ(∆).
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Extended Hoffman program

If ∆ = 3 we get the following limit value (which naturally appeared
in different contexts):

HoffA(3) = 3

√
2

2
.

The above value has already been considered by several authors
(for example, Brouwer and Neumaier, Cioaba et al., Wang et al.).

However the set GA(3
√
2
2 ) is not (yet) completely characterized.

Open Problem: Describe the set GA(3
√
2
2 ).

The similar problem can be consider for the other two theories

(note, (3
√
2
2 )2 = 4.5):

Open Problem: Describe the sets GQ(4.5) and GL(4.5).
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Thank you!!
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