
SOME TOPICS ON INTEGRAL GRAPHS
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The M -spectrum of a graph is the spectrum of a graph matrix

M (adjacency matrix A, Laplacian L, signless Laplacian Q, etc.).

A graph is called M-integral if its M -spectrum consists entirely

of integers. If the matrix M is fixed, we say, for short, integral

instead of M -integral. A graph which is A-, L- and Q-integral is

called ALQ-integral. A survey on integral graphs can be found in

the paper

K. Balińska, D. Cvetković, Z. Radosavljević, S. Simić, D. Ste-

vanović, A survey on integral graphs, Univ. Beograd, Publ. Elek-

trotehn. Fak., Ser. Mat., 13(2002), 42-65.



For the product we have the following interesting formula

QG×K2(x) = QG(x)LG(x) = LG×K2(x).

The formula is easily obtained by elementary determinantal

transformations. Therefore it follows that

q1, q2, . . . , qn and µ1, µ2, . . . , µn

are the Q–eigenvalues (and as well the L–eigenvalues) of the graph

G×K2. In particular, we have that the Q–indices of G and G×K2

are equal (as is the case for A–indices of these graphs).

Proposition. If G is an ALQ-integral graph, then the product

G×K2 is a bipartite ALQ-integral graph.



A-integral graphs are very rare. Other kinds of integral graphs

could be more frequent. For example, out of 112 connected integral

graphs on 6 vertices there are only 6 A-integral graphs while the

number of L-integral graphs is 37. According to a table of Q-

eigenvalues of the 112 connected graphs on six vertices from there

are 13 Q-integral graphs.

The reason for high number of L-integral graphs is, among other

things, the fact that the complement of an L-integral graph is

also L-integral. There are no corresponding formulas for the A-

polynomial and for the Q-polynomial which would preserve the

property of being integral and this is reflected in statistics of inte-

gral graphs.



There are exactly 150 connected A-integral graphs up to 10

vertices.

It is established by a computer search that there are exactly 172

connected Q-integral graphs up to 10 vertices . Among them there

exists exactly one graph which is ALQ-integral but not regular and

not bipartite. It has 10 vertices. There is another ALQ-integral

(on 10 vertices) which is bipartite (and not regular).

The problem of determining all connected, non-regular ALQ-

integral graphs was posed at the Aveiro Workshop on Graph Spec-

tra, 2006. More desirable problem would appear if we require, in

addition, that the graphs are non-bipartite.

Cvetković D., Simić S.K., Towards a spectral theory of graphs

based on signless Laplacian, II, Linear Algebra Appl., 432(2010),

2257-2272.



Integral graphs have recently found some applications in quan-

tum computing, multiprocessor systems and chemistry.

Let G be a graph with the largest A-eigenvalue λ1 and the

diameter D. The quantity (D + 1)λ1 is called the tightness of G

and is denoted by t(G). There are exactly 69 non-trivial connected

graphs G with t(G) ≤ 9 and among them 14 graphs are A-integral.

D. Cvetković, T. Davidović, Multiprocessor interconnection net-

works with small tightness, Internat. J. Foundations Computer

Sci., 20(2009), No. 5, 941-963.



Load balancing and multiprocessor interconnection

networks

The job which has to be executed by a multiprocessor system

is divided into parts (elementary jobs or items) that are given to

particular processors. Elementary jobs distribution among pro-

cessors can be represented by a vector x whose coordinates are

non-negative integers associated to graph vertices and indicate how

many elementary jobs are given to corresponding processors.

The load balancing problem requires creation of algorithms for

moving elementary jobs among processors in order to achieve the

uniform distribution, i.e., that the vector x is an integer multiple

of the vector j whose all coordinates are equal to 1.



Let G be a connected graph on n vertices. Eigenvalues and cor-

responding orthonormal eigenvectors of the Laplacian L = D−A

of G are denoted by ν1, ν2, . . ., νn = 0 and u1, u2, . . . , un, re-

spectively. Any vector x from Rn can be represented as a linear

combination of the form x = α1u1 + α2u2 + · · · + αnun.

Suppose now that G has distinct Laplacian eigenvalues µ1, µ2, . . . , µm =

0 with multiplicities k1, k2, . . . , km = 1, respectively. Vector x can

now be represented in the form x = y1 + y2 + · · · + ym where yi

belongs to the eigenspace of µi for i = 1, 2, . . . , m. We also have

ym = βj for some β.



Since Lx = L(y1+y2+· · ·+ym) = µ1y1+µ2y2+· · ·+µmym, we

have x(1) = x− 1
µ1

Lx = (I− 1
µ1

L)x = (1− µ2
µ1

)y2+ · · ·+βj. We see

that the component of x in the eigenspace of µ1 has been cancelled

by the transformation by the matrix I− 1
µ1

L while the component

in the eigenspace of µm remains unchanged. The transformation

I − 1
µ2

L will cause that the component of x(2) = (I − 1
µ2

L)x(1) in

the eigenspace of µ2 disappears. Continuing in this way

x(k) = (I − 1

µk
L)x(k−1), k = 1, 2, . . . , m− 1 (1)

we shall obtain x(m−1) = βj.



We have seen how a vector x can be transformed to a multiple

of j using the iteration process (1) which involves the Laplacian

matrix of the multiprocessor graph G.

Let vector x(k) have coordinates x
(k)
1 , x

(k)
2 , . . . , x(k)

n . Relations

(1) can be rewritten in the form

x
(k)
i = x

(k−1)
i − 1

µk

∑

i∗j
(dix

(k−1)
i − x

(k−1)
j ) (2)

where di is the degree of vertex i. This means that the current

load at vertex i is changed in such a way that vertex (processor) i

sends 1
µk

-th part of its load to each of its di neighbors and, because

this holds for every vertex, also receives 1
µk

-th part of the load from

each of its di neighbors.



We have a load flow on the edge set of G. If x
(k−1)
i is negative,

then vertex i, in fact, receives the corresponding amount. For each

edge ij we have two parts of the flow: the part which is sent (or

received) by i and the part which is sent (or received) by j. Adding

algebraically we get final value of the flow through edge ij. This

flow at the end has a non-negative value which is sent either from

i to j or vice versa.



The number of iterations in (1) is equal to the number m of

non-zero distinct Laplacian eigenvalues of the underlying graph.

The maximum vertex degree ∆ of G also affects computation of

the balancing flow. The complexity of the balancing flow calcula-

tions essentially depends on the product m∆ and that is why this

quantity was proposed in

R. Elsässer, R. Královič, B. Monien, Sparse topologies with

small spectrum size, Theor. Comput. Sci. 307:549–565, 2003.

as a parameter relevant for the choice and the design of multipro-

cessor interconnection networks.



The following definitions of four kinds of graph tightness have

been introduced and used in Cvetković D., Davidović D., 2008,

2009.

First type mixed tightness t1(G) of a graph G is defined as the

product of the number of distinct eigenvalues m and the maximum

vertex degree ∆ of G, i.e., t1(G) = m∆.

Structural tightness stt(G) is the product (D + 1)∆ where D

is diameter and ∆ is the maximum vertex degree of a graph G.

Spectral tightness spt(G) is the product of the number of dis-

tinct eigenvalues m and the largest eigenvalue λ1 of a graph G.

Second type mixed tightness t2(G) is defined as a function of

the diameter D of G and the largest eigenvalue λ1, i.e., t2(G) =

(D + 1)λ1.



Several arguments were given which support the claim that

graphs with small tightness t2 are well suited for multiprocessor

interconnection networks.

It was proved that the number of connected graphs with a

bounded tightness is finite and graphs with tightness values not

exceeding 9 are determined explicitly. There are 69 such graphs

and they contain up to 10 vertices. In addition, graphs with mini-

mal tightness values when the number of vertices is n = 2, . . . , 10

are identified.



In integral graphs on n vertices there exist sets of n indepen-

dent integral eigenvectors. Such sets can be constructed using star

partitions of graphs and can be useful in treating the load bal-

ancing problems in multiprocessor systems and some problems in

combinatorial optimization.



Integral graphs in load balancing

As defined, a graph is called integral if its spectrum consists

entirely of integers. Each eigenvalue has integral eigenvectors and

each eigenspace has a basis consisting of such eigenvectors.

In integral graphs load balancing algorithms, which use eigen-

values and eigenvectors, can be executed in integer arithmetics as

noted in the paper

Cvetković D., Davidović T., Multiprocessor interconnection

networks with small tightness, Internat. J. Foundations Com-

puter Sci., 20(2009), No. 5, 941-963.

The further study of integral graphs in connection to multi-

processor topologies seems to be a promising subject for future

research.



Recall that 3, 15, (−2)4 is the spectrum of the Petersen graph.

An eigenvector for eigenvalue 1 and a load balancing flow



A basis of integral eigenvectors of an integral graph can be found

using the theory of star partitions of a graph (see the book

Cvetković D., Rowlinson P., Simić S., An Introduction to the

Theory of Graph Spectra, Cambridge University Press, Cam-

bridge, 2009, Chapter 5).

Let G be a graph an n vertices with distinct eigenvalues µ1, . . . , µm.

A partition X1∪̇ · · · ∪̇Xm of the vertex set V (G) of G is a star par-

tition of G if for each i ∈ {1, . . . , m}, µi is not an eigenvalue of

G−Xi.



For any x ∈ Xi the subgraph of G induced by V (G)−Xi+x has

a simple eigenvalue µi. If G is an integral graph, then, of course, µi

is an integer and the corresponding eigenvector can be chosen to be

integral. Extending it with zeros for coordinates corresponding to

vertices from Xi − x, we obtain an n-dimensional integral vector

which is an eigenvector of G for µi. In this way n independent

integral eigenvectors can be found.

They are not necessarily mutually orthogonal but the Gram-

Schmidt orthogonalization procedure can be applied afterward.



spectrum: 3, 15, (−2)4

An eigenvector for eigenvalue 1 and a load balancing flow



spectrum: 3, 15, (−2)4

An eigenvector for eigenvalue 1 and a load balancing flow



spectrum: 3, 15, (−2)4

An eigenvector for eigenvalue 1 and a load balancing flow



spectrum: 3, 15, (−2)4

An eigenvector for eigenvalue 1 and a load balancing flow



spectrum: 3, 15, (−2)4

An eigenvector for eigenvalue 1 and a load balancing flow



spectrum: 3, 15, (−2)4

An eigenvector for eigenvalue −2 and a load balancing flow

(hexagon as a subgraph)



spectrum: 3, 15, (−2)4

An eigenvector for eigenvalue −2 and a load balancing flow

(hexagon as a subgraph)



spectrum: 3, 15, (−2)4

An eigenvector for eigenvalue −2 and a load balancing flow

(Smith graph W6 as a subgraph)



spectrum: 3, 15, (−2)4

An eigenvector for eigenvalue −2 and a load balancing flow

(Smith graph W6 as a subgraph)



spectrum: 3, 15, (−2)4

An eigenvector for eigenvalue 3

(all-1 vector, i.e. a balanced load distribution)



spectrum: 3, 15, (−2)4

A load distribution and a load balancing flow



The last copy of the Petersen graph represents a load distribution

among processors given by weights on vertices. This load vector

can be represented as linear combination

20v0 + 11v1 + 4v2 + 5v3 − 12v5 − 5v8 − 3v9

and the resulting balancing flow is given as flows along oriented

edges. This global balancing flow is obtained by the same linear

combination of balancing flows of eigenvectors v1, . . . , v9. When

the flow is realized each vertex has a load equal to 20.



Integral graphs with small tightness

In this section we survey known integral graphs with small tight-

ness indicating the open enumeration problems.

t2(G) = (D + 1)λ1

We have t2(Kn) = 2n− 2.



t2(G) = (D + 1)λ1

Proposition 1. If p, p > 2 is a prime, there are no graphs G

such that t2(G) = p.

Proof. As known, a rational eigenvalue of a graph is an integer.

Therefore, if t2(G) = p, then either λ1 = p and D = 0 or λ1 = 1

and D = p− 1. In both cases G does not exist.



An important role play the graphs with λ1 = 2, known as Smith

graphs. There are 6 types of Smith graphs. Four of them are con-

crete graphs, while the remaining two types (cycles Cn and double-

head snakes Wn on n vertices) can have an arbitrary number of

vertices. On Fig. 1 we reproduce some of them. The remaining

Smith graphs are cycles Cn and the star S5 = K1,4.
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Figure 1: Some Smith graphs



In our study we need also graphs with λ1 < 2. By removing

vertices out of Smith graphs, we obtain paths Pn, n = 2, 3, . . .;

single-head snakes Zn, n = 4, 5, . . ., given in the upper row of

Fig. 2 up to n = 7; and the three other graphs given in the second

row of Fig. 2 and denoted by E6, E7 and E8.

Eigenvalues of Smith graphs and of their connected subgraphs

are explicitly calculated in Cvetković, Gutman 1975.
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Figure 2: Subgraphs of some Smith graphs



Proposition 2. Integral Smith graphs are the following graphs:

K2, K3, C4, K1,4, C6,W6 , H7.

Proof. By inspecting spectra of Smith graphs we easily get the

graphs quoted.



t2(G) = (D + 1)λ1

Proposition 3. The only graph G with t2(G) = 2k, k being a

prime greater than 5, is the graph Kk+1.

Proof. If we put D + 1 = 2 and λ1 = k, then clearly G = Kk+1.

In the case D + 1 = k and λ1 = 2 we have to find integral Smith

graphs. By Proposition 2 they do not exist.



We present a classification of A-integral graphs G with t(G) <

24.

By Proposition 1 there are no graphs with tightness values 3, 5,

7, 11, 13, 17, 19, 23.

t2(G) = 2. We have G = K2.

t2(G) = 4. We have G = K3.

t2(G) = 6. We have G = K4, C4, K1,4 by Proposition 2.

t2(G) = 8. We have G = K5, C6,W6 by Proposition 2.



t2(G) = 9. All connected graphs G with t2(G) ≤ 9 have been

determined in

D. Cvetković, T. Davidović, Multiprocessor interconnection net-

works with small tightness, Internat. J. Foundations Computer

Sci., 20(2009), No. 5, 941-963.

There are 69 such graphs and among them exactly 14 are in-

tegral. Those with t2(G) = 9 are the following graphs: regular

graphs K3,3, the three side prism and the Petersen graph and three

non-regular graphs K1,9 and two others.

t2(G) = 10. We have G = K6, H7 by Propositions 2 and 3.



t2(G) = 12. Here we have K7 for λ1 = 6 and by Proposition 2

there are no integral graphs for λ1 = 2. The following two cases

remain.

λ1 = 3 and D = 3. All integral cubic graphs are well known

Bussemaker F. C., Cvetković D., There are exactly 13 con-

nected, cubic, integral graphs, Univ. Beograd, Publ. Elektrotehn.

Fak., Ser. Mat. Fiz., No. 544-No. 576(1976), 43-48.

Those with D = 3 are graphs denoted there by G4, G7, G8, G11and

they have 8, 10, 12, 10 vertices respectively. G4 is the cube graph.



λ1 = 4 and D = 2. Integral regular graphs of degree 4 up to 24

vertices are listed in

Stevanović D., Abreu, N.M.M. de, Freitas, M.A.A. de, Del-

Veccio R., Walks and regular integral graphs, Linear Algebra

Appl., 423(2007), 119-135.

Those which fulfill the requirements are

B1 = K4,4, D2, D3, D4, D5, D6, D7, D8, D11

(graph names as in the cited paper).



t2(G) = 14. We have G = K8 by Proposition 3.

One can go on up to t2(G) = 23.

Most of the presented results are included into the paper

Cvetković D., Davidović T., Ilić A., Simić S.K., Graphs for

small multiprocessor interconnection networks, to appear.



Thank you for your attention


