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1 My thanks to Vlado Nikiforov and Dragan Stevanović for
their kind invitation to talk here!

2 My talk is based on a joint paper with Maria Aguieiras A.
de Freitas, Renata Del Vecchio and Cybele Maia Vinagre.
My thanks to my coauthors!

3 Many thanks to the Brazilian Council for Scientific and
Technological Development for support received for our
research.
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Topics

1 Basic concepts and results;

2 A new operation and ALQ-integral graphs;

3 ALQ-integral graphs and regular graphs;

4 ALQ-integral graphs and split-like graphs.
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Basic definitions

• G = (V, E) is a simple and connected graph on n vertices
and m edges;

• A(G) is the adjacency matrix of G and λ1 ≥ . . . ≥ λn its
eigenvalues;

• D(G) is the diagonal matrix where the elements on the
main diagonal are the degrees of the vertices of G;

• L(G) = D(G)−A(G) is the Laplacian matrix of G and
µ1 ≥ . . . ≥ µn−1 ≥ µn = 0 its eigenvalues;

• Q(G) = D(G) + A(G) is the signless Laplacian matrix of
G and q1 ≥ . . . ≥ qn its eigenvalues.
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M -integral graphs

Definition: Let M be a matrix associated to a graph G. A
graph is M -integral if and only if the eigenvalues of M are all
integer numbers.

• If M = A is the adjacency matrix of G, G is called an
A-integral graph;

• If M = L is the Laplacian matrix of G, G is called an
L-integral graph;

• If M = Q is the Signless Laplacian matrix of G, G is
called a Q-integral graph.
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Regular graphs and integrality

Theorem: If G is an r-regular graph, then

PA(G, x) = PQ(G, x + r) and PL(G, x) = (−1)nPQ(G, 2r − x).

Consequently,

PL(G, x) = (−1)nPA(G, r − x).

Corollary: Let G be a regular graph. G is an A-integral graph

⇔ G is an L-integral graph ⇔ G is a Q-integral graph.
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Bipartite graphs and integrality

Theorem: Let G be a bipartite graph. G is an L-integral
graph ⇔ G is a Q-integral graph.
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ALQ-integral graphs

Definition: A graph is called an ALQ-integral when it is
simultaneously A, L and Q-integral graph.

• In 2007, Z. Stanić enumerated all connected Q-integral
graphs up to 10 vertices.

• There are 172 such graphs.

• Among them, there are 42 ALQ-integral graphs.

• It is interesting to note that only one of them is neither
regular nor bipartite.
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The smallest connected neither bipartite nor
regular ALQ-integral graph

There are no connected neither regular nor bipartite
ALQ-integral graph up to 9 vertices.

Figure: The smallest connected ALQ-integral graph (it has 10 vertices)
which is neither bipartite nor regular.
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Objective

• Our aim: To construct infinite families of ALQ-integral
graphs which necessarily contain neither regular nor
bipartite graphs.

• Remark: If we consider the computational experiments of
Stanić(2007), we can hope that the ALQ-integral graphs,
neither bipartite nor regular, have huge orders. So, we are
looking for them through the operation of graphs.
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Union and Cartesian product of graphs

Let G1 and G2 be graphs such that, for i = 1, 2, Vi and Ei are,
respectively, the sets of vertices and edges of Gi.

Union of graphs: The union G1 ∪G2 of G1 and G2 is the graph
whose vertex set is V = V1 ∪ V2 and whose edge set is E=E1 ∪ E2.

Cartesian Product: The Cartesian Product G1 ×G2 of G1 and G2 is
the graph whose vertex set is V = V1 × V2 and where

(u1, u2) ∼ (v1, v2) ⇔
{

u1 ∼ v1 in G1 and u2 = v2, or
u1 = v1 and u2 ∼ v2 in G2.

}
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Spectra of resultant graphs from operations

• G1 and G2 are A-integral graphs ⇒ G1 ∪G2 and G1×G2

are A-integral graphs;

• G1 and G2 are L-integral graphs ⇒ G1 ∪G2 and G1 ×G2

are L-integral graphs;

• G1 and G2 are Q-integral graphs ⇒ G1 ∪G2 and
G1 ×G2 are Q-integral graphs.
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A new operation

Definition of k-pla operation: Let G = (V,E) be a graph on
n vertices and, for k ∈ N, let K = {1, . . . , k} ⊂ N. We call a
k-pla graph G(k) = (Vk, Ek) of G that one which set of
vertices is Vk = V ×K and the set of edges is
Ek = {{(x1, y1), (x2, y2)}; {x1, x2} ∈ E; y1, y2 ∈ K}.

Remark:

• This definition generalizes the definition of a double graph
of G, given by Munarini et al (2008). In fact, the double
graph is a 2-pla graph of G.

• It is a special case of NEPS (see Cvetković et al.)

13 / 40



Basic
concepts and
results

A new
operation and
ALQ-integral
graphs

ALQ-integral
graphs and
regular graphs

ALQ-integral
graphs and
split-like
graphs

An example of a 3-pla graph

Figure: 3−pla graph of P3
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Matrices of a k-pla graph

• Note that G(1) ' G.

• The adjacency matrix of G(k) can be represented as

A(G(k)) = Jk ⊗A(G),
where Jk denotes the all ones matrix of order k and ⊗ is
the Kronecker product of matrices.

• Consequently,

L(G(k)) = k Ik ⊗D(G) − Jk ⊗A(G)
and

Q(G(k)) = k Ik ⊗D(G) + Jk ⊗A(G).
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The spectra of a k-pla graph

Theorem: Let G be a graph on n vertices and
D(G) = diag(d1, . . . , dn), di, 1 ≤ i, n, is degree of the vertex
vi in G. Let k ∈ N, k ≥ 2.

• The A-eigenvalues of G(k) are 0(k−1)n, kλ1, . . . , kλn,
where SpA(G) = (λ1, . . . , λn);

• The L-eigenvalues of G(k) are nd k−1
1 , . . . , nd k−1

n , kµ1, . . . ,
kµn, where SpL(G) = (µ1, . . . , µn);

• The Q-eigenvalues of G(k) are nd k−1
1 , . . . , kd k−1

n , kq1, . . . ,
kqn, where SpQ(G) = (q1, . . . , qn).

Observation: The exponents denote multiplicities.
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Sketch of the Proof

Sketch of the Proof: We have,

• A(G)v = λv =⇒ A(G(k))w = (Jk ⊗A(G))1k ⊗ v =
kλw, where w = 1k ⊗ v.

• u ∈ Rk is orthogonal to 1k =⇒ A(G(k))wi = 0, where
wi = u⊗ ei, for 1 ≤ i ≤ n.

Consequently, the A-eigenvalues of G(k) are

0(k−1)n, kλ1, . . . , kλn,

where SpA(G) = (λ1, . . . , λn). ¥

Observation: The proofs of the others items are similar. 17 / 40
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ALQ-integrality condition for a k-pla graph

Corollary: The graph G(k), k ∈ N, k ≥ 2, is ALQ-integral if
and only if G is an ALQ-integral graph.
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Corollary: For each ALQ-integral graph G, {G(k), k ∈ N} is
an infinite family of ALQ-integral graphs.

Remark: Note that if G is neither regular nor bipartite, the
same occurs with G(k), for each k ∈ N.
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Join of graphs

Definition of Join Operation: Let G1 and G2 be graphs such
that, for i = 1, 2, Vi and Ei are, respectively, the sets of
vertices and edges of Gi. The Join G1 ∨G2 of G1 and G2 is
the graph obtained from G1 ∪G2 by joining each vertex of G1

with every vertex of G2.
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The L-characteristic polynomial of a join of graphs

Theorem: For i = 1, 2, let Gi be a graph on ni vertices.
Then, the L-characteristic polynomial of G1 ∨G2 is

PL(G1 ∨G2, x) = x(x− (n1 + n2))
PL(G1, x− n2)PL(G2, x− n1)

(x− n2)(x− n1)
. (1)

Corollary: G1 ∨G2 is L-integral ⇔ G1 and G2 are L-integral.
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The A-characteristic polynomial of a join of regular
graphs

Theorem: For i = 1, 2, let Gi be a ri-regular graph on ni

vertices. Then, the A-characteristic polynomial of G1 ∨G2 is

PA(G1 ∨G2, x) =
PA(G1, x)PA(G2, x)

(x− r1)(x− r2)
f(x), (2)

where f(x) = x2 − (r1 + r2)x + r1r2 − n1n2.
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The Q-polynomial of a join of regular graphs

Theorem(Freitas et al., 2010)For i = 1, 2, let Gi be a
ri-regular graph on ni vertices. Then, the Q-characteristic
polynomial of G1 ∨G2 is

PQ(G1 ∨G2, x) =
PQ(G1, x− n2)PQ(G2, x− n1)
(x− 2r1 − n2)(x− 2r2 − n1)

f(x), (3)

where
f(x) = x2− (2(r1 + r2)+(n1 +n2))x+2(2r1r2 + r1n1 + r2n2).
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ALQ-integrality condition for a join of regular
graphs

Theorem: For i = 1, 2, let Gi be a ri-regular graph on ni.
vertices. The graph G1 ∨G2 is ALQ-integral if and only if G1

and G2 are ALQ-integral and (r1 − r2)2 + 4n1n2 and
((2r1 − n1)− (2r2 − n2))2 + 4n1n2 are perfect squares.

1 Note that if r1 − r2 6= 0 and r1 − r2 6= n1 − n2 then
G1 ∨G2 is neither regular nor bipartite.

2 From this result, we obtain some corollaries which give us
more infinite families of ALQ-integral graphs.
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K2 ∨ 4K2 satisfies the last theorem

The smallest connected neither bipartite nor regular
ALQ-integral graph is isomorphic to K2 ∨ 4K2 and it satisfies
the conditions of the last theorem.

1 G1 = K2 has 2 vertices and G2 = 4K2 has 8 vertices and
both graphs are 1-regular;

2 (r1 − r2)2 + 4n1n2 = 64 is a perfect square;

3 ((2r1 − n1)− (2r2 − n2))2 + 4n1n2 = 36;

4 Also, we have r1 − r2 = 0 6= n2 − n1 = 6.

Figure: K2 ∨ 4K2
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The first corollary

Corollary I: Let G1 and G2 be r-regular ALQ-integral graphs.
Then, G1 ∨G2 is ALQ-integral if and only if |G1||G2| is a
perfect square.

Sketch of the Proof: Let |Gi| = ni, i = 1, 2, both regular

graphs with the same degree r. From last proposition, we have:

G1 ∨G2 is ALQ-integral ⇔ ((2r−n1)− (2r−n2))2 + 4n1n2=
(n1 + n2)2 and 4n1n2 are perfect squares.

So, G1 ∨G2 is ALQ-integral ⇐⇒ |G1||G2| is a perfect square.
¥
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The first corollary generalizes a result of
Stanić(2007)

Lemma: A complete bipartite graph Kt,s is ALQ-integral if
and only if ts is a perfect square.
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The second corollary

Corollary II: For all j, k ∈ N, the graph Kj ∨ kKj is
ALQ-integral if and only if k is a perfect square.

The second corollary also generalizes the other result of Stanić
for j = 2. His result was recently published in Ars
Combinatoria (2009).
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The third corollary

Corollary III: For all j ∈ N and k =
j(j + 1)

2
, the graph

Kj,j ∨ kKj+1 is ALQ-integral.
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An example which satisfies the third corollary

Figure: K2,2 ∨ 3K3
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In 2002, Hansen et al characterized A-integral graphs and, in
2010, Freitas et al characterized Q-integral graphs in the
classes constituted by joins of complete graphs with the
complements of complete graphs.

Let a, b, k ∈ N. They are the following classes:

1 Complete split graphs, CSa
b
∼= Ka ∨Kb;

2 Multiple complete split-like graphs,
MCSa

b,k
∼= Ka ∨ (kKb);

3 Multiple extended complete split-like graphs,
MECSa

b,k
∼= Ka ∨ (k(Kb ×K2)).
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ALQ-integrality condition for split like graphs

Corollary 4: For a, b ∈ N and k ∈ N,

1 the complete split graph CSa
b is ALQ-integral if and only

if (b− 1)2 +4ab and (a+ b− 2)2 +4ab are perfect squares;

2 the multiple complete split-like graph MCSa
b,k is

ALQ-integral if and only if (a + 2(b− 1)− kb)2 + 4abk
and (b− 1)2 + 4abk are perfect squares;

3 the multiple extended complete split-like graph MECSa
b,k

is ALQ-integral if and only if (a + 2b(k − 1))2 + 8ab and
b2 + 8abk are perfect squares.
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Sketch of the Proof:

Sketch of the Proof of the first item: Ka and Kb are
regular ALQ-integral graphs of orders a and b and degrees 0
and b− 1, respectively.

From the last corollary, CSa
b is ALQ-integral ⇔ (b− 1)2 + 4ab

and (a + b− 2)2 + 4ab are perfect squares. ¥

Observation: The proof of the others items are similar.
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Families of ALQ-integral complete split graphs

Can we determine some graphs which satisfy the
conditions of the last theorem?
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Some examples: If one of the conditions below holds, CSa
b is

Q-integral:

1 a = 3jt and b = 2jt − 1, where j0 = 3, m0 = 7 and there
is mt ∈ Z, t ≥ 1 such that

jt+1 = 127jt + 484mt − 45
mt+1 = 336jt + 127mt − 120.

2 a = 10jt − 4, b = 3jt, where j0 = 4, m0 = 43 and there is
mt ∈ Z such that

jt+1 = −16855jt − 1484mt + 3528
mt+1 = −191436jt − 16855mt + 40068;

3 a = 3jt − 2 and b = 2jt, where j0 = 10, m0 = −51 and
there is mt ∈ Z such that

jt+1 = 127jt + 24mt − 45
mt+1 = 672jt + 127mt − 240;
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Observation: As we built the families of ALQ-integral graphs
for the complete split graphs, we can construct the infinite
families for the multiple complete split graphs and the multiple
extended complete split graphs in the similar way.
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A complete split graph and its spectra

Figure 1 shows the complete split graph CS9
5 whose spectra

relative to A, L and Q respectively are

1 Sp A(CS9
5) = (9, 08,−14,−5),

2 Sp L(CS9
5) = (145, 58, 0) and

3 Sp Q(CS9
5) = (20, 124, 58, 2).

Figure: CS9
5
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A multiple complete split graph and its spectra
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Figure below displays the multiple complete split graph,
MCS7

3,3, whose spectra relative to A, L and Q respectively
are:

Sp A(MCS7
3,3) = (9, 22, 06,−16,−7),

Sp L(MCS7
3,3) = (16, 106, 96, 72, 0) and

Sp Q(MCS7
3,3) = (18, 112, 96, 86, 2).

Figure: The graph MCS7
3,3 is ALQ-integral
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A multiple extended complete split graph and its
spectra

Example: Figure below shows G = MECS6
2,2 whose spectra

relative to A, L and Q are:

1 Sp A(G) = (8, 2, 09,−22,−6),

2 Sp L(G) = (14, 102, 89, 6, 0)

3 Sp Q(G) = (16, 10, 89, 62, 2).

Figure: The graph MECS6
2,2 is ALQ-integral
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