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INTRODUCTION

The purpose of these slides is to support teaching matrix theory with a
combinatorial approach, in particular, in the way described in the book

1. Brualdi R.A., Cvetković D., A Combinatorial Approach to Matrix
Theory and Its Application, CRC Press, Boca Raton, 2008.

Slides are contained in ten PDF-files. Each file is devoted to a theme
described in the book [1]. Selected themes do not cover the whole book; we
have taken only those subjects which require extensive graph drawings in
teaching. The idea is that a teacher of a course in matrix theory can select
some of our slides and combine them with his/her own slides or other tools
(board, oral explanations, etc.).

The list of themes and description and explanation of the corresponding
slides is given below with references to book [1].

The slides are produced in Mathematical Institute of the Serbian Academy
of Sciences and Arts, Belgrade, Serbia, within the scientific project ”Graph
Theory and Mathematical Programming with Applications to Chemistry and
Engineering”. The slides are distributed free of charge and can be down-
loaded from web sites of the book publisher and of the Mathematical Insti-
tute, Belgrade.

We are obliged to Vladimir Baltić, University of Belgrade, Faculty of Or-
ganizational Sciences, for his excellent work on implementation of the slides.
He was using LATEX and the package WinGCLC for drawing graphs, which
was developed by Predrag Janičić, University of Belgrade, Mathematical Fac-
ulty, http://www.matf.bg.ac.yu/ janicic/gclc/index.html .

Themes

1. Product of matrices, 2. Powers of matrices, 3. Determinants, 4.
Inverses, 5. Coates formula, 6. Signal flow graphs, 7. Cayley-Hamilton
theorem, 8. Jordan canonical form, 9. Non-negative matrices, 10. Control
theory.
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DESCRIPTION OF SLIDES

For each of the themes the corresponding PDF-file contains several slides.

1. Product of matrices
(related to Chapter 2 of the book [1])

Slide No. 1.1. The König digraph of a matrix and its transpose
(related to p. 36 and p. 40 of [1])
The König digraph G(A) of a 2 × 3 matrix A is given. The digraph of

the transpose AT is obtained by reversing orientation to all edges and by
exchanging colors (black and white) in all vertices. Since for the original
matrix black vertices are placed on the left hand side of the drawing, one can
do the same for the transpose as shown.

Slide No. 1.2. Matrix multiplication via König digraphs
(related to pp. 36-39 of [1])
König digraphs of two matrices are given. The number of white vertices

in the first digraph equals the number of black vertices in the second digraph
so that the multiplication of the corresponding matrices is possible. Only
entries of the first row of the first matrix and of the first column of the
second matrix are given in matrices as well as in the digraphs. Next picture
shows the composition of these two digraphs which is obtained by identifying
each white vertex of the first digraph with the correspondingly labeled black
vertex of the second digraph. The new vertices become gray. Further, all
paths from the black vertex 1 to the white vertex 1 are colored red. The sum
of weights of these paths determines the entry at position (1,1) of the matrix
product and becomes the weight of the edge between the black vertex 1 and
the white vertex 1 in the corresponding digraph.

Slide No. 1.3. Transpose of a matrix product
(related to p. 41 of [1])
Matrices A and B are given by their König digraphs G(A) and G(B).

The slide gradually gives the composition G(A) ∗G(B) and digraphs G(AB)
and G((AB)T ). The last digraph is then transformed into the composition
G(BT )∗G(AT ) which should convince the student that (AB)T equals BT AT .
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Slide No. 1.4. Associative law for matrix multiplication
(related to p. 39 of [1])
Three matrices (A, B and C) are given by their König digraphs. The

point is that both double products (AB)C and A(BC) can be obtained by
inspecting paths of length 3 between black and white vertices in the double
composition G(A) ∗ G(B) ∗ G(C). Concatenation of paths in such multiple
compositions of König digraphs is obviously associative implying that com-
position ∗ as well as the matrix multiplication are associative operations.

Slide No. 1.5. An example of finding the k-th power of a square matrix

The task of Example 3.1.3 is treated here by the König digraph. The edge
with a zero weight is omitted when drawing the digraph since paths of zero
weight do not contribute to the value of entries in the product of matrices.
Gradually, matrix powers A2, A3 and then Ak are calculated using compo-
sitions of the corresponding number of copies of the König digraph G(A) of
the matrix A. Relevant paths in these compositions and corresponding terms
of resulting matrix entries are indicated red.

2. Powers of matrices
(related to Chapter 3 of the book [1])

Slide No. 2.1. Graph theoretical interpretation of matrix powers
(related to pp. 51 - 52 of [1])
First, the student is reminded, by a square matrix A of order 3, how the

digraph D(A) is constructed. For Theorem 3.1.2, p. 51, the second proof,
given on p. 52, is illustrated. Starting from the König digraph G(A) of
a square matrix A, the slide gives gradually the composition of G(A) with
copies of itself, up to the composition of k copies. A particular path of length
k from the black vertex i to the white vertex j is indicated by red color. The
same path with the same weight exists in the digraph D(A). Since this holds
for any path of length k from the black vertex i to the white vertex j, we
conclude that the theorem is true.

Slide No. 2.2. Examples of finding powers of a matrix
(related to p. 52, p. 60 and p. 246 of [1])
Now the task of Example 3.1.3 is treated here by the digraph D(A). In

addition, the matrix A from Exercise 2 on p. 60 is treated by Theorem 3.1.2
and also by Theorem 3.1.4.
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3. Determinants
(related to Chapter 4 of the book [1])

Slide No. 3.1. The Coates digraph of a matrix
(related to p. 65 of [1])
This slide illustrates the representation of a matrix in the form of a square

scheme and in the form of a weighted digraph. Both representations are
useful; the first one for recording a matrix, the second one in proofs of many
theorems. In addition, one should point out that both digraphs D(A) and
D∗(A) are useful. In particular, in the theory of determinants both are
equally good in view of the fact that a square matrix and its transpose have
the same determinant. A less natural choice, to use D∗(A) for the definition
of a determinant, can be justified by the more natural form of the expression
for cofactors (slide 4.1) and of the Coates formula for solving the system of
linear algebraic equations (slide 5.1).

Slide No. 3.2. Evaluation of determinants of order 2
(related to p. 66 of [1])

Slide No. 3.3. Evaluation of determinants of order 3
(related to p. 66-68 of [1])
The six linear subdigraphs are colored red within the digraph but also

they are extracted. This example should make students familiar with the
structure of a linear subdigraph (collection of disjoint cycles which cover all
vertices of the digraph). In this way the student will be able to realize how
linear subdigraphs look in the general case.

Slide No. 3.4. Determinant of a transpose
(related to p. 72 of [1])
The slide helps the student to accept the proof that the matrix and its

transpose have the same determinant. First, it is made clear that the trans-
position of a matrix changes the orientation of all edges in the corresponding
digraph. (One should draw the attention that the orientation of a loop is
not important so that the change of orientation of a loop is actually not
performed on slides.) For each linear subdigraph from the previous slide, it
is shown that it goes over into a linear subdigraph of the digraph associated
to the transpose. The weight and the number of cycles are preserved which
proves the theorem. The teacher should point out that the argument does
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not depend on the example shown in slides, i.e. it holds for matrices of any
size.

Slide No. 3.5. Effect of zero entries
(related to p. 69 of [1])
Example with a matrix of order 3 is further exploited to illustrate the

effect of a zero entry on the calculation of the value of a determinant via
the associated digraph. By considering all the six linear subdigraphs, it
is suggested that linear subdigraphs containing an edge with zero weight
do not contribute to the value of the determinant, and that they can be
eliminated by deleting the edge with zero weight from the graph drawing.
In this case only four linear subdigraphs remain but the example suggests
that in the general case the deletion of such edges is allowed since such
deletion eliminates exactly those linear subdigraphs that contain at least
one such edge and that such linear subdigraphs are unnecessary since their
weights are equal to 0 and do not contribute to the value of the determinant.
The teacher should tell the students that matrices with a lot of zero entries
(sparse matrices) are very frequent in theoretical considerations as well as
in applications. On the other hand, the proofs of matrix theorems based
on associated digraphs do hold in general case irrespectively of whether the
matrix is sparse or not.

Slide No. 3.6. Multiplying a row by a number
(related to p. 72 of [1])
The slide illustrates the theorem on multiplying entries of a row by a

number α. Entries of the i-the row are weights of the edges going into vertex
i. Each linear subdigraph contains exactly one such edge and its weight is
multiplied by α.

Slide No. 3.7. Interchanging two rows
(related to pp. 73-74 of [1])
This is an illustration of the proof that the determinant changes its sign

if two rows exchange their positions. If i-the and j-th row change positions,
the associated digraph is modified in such a way that each edge going into
vertex i becomes an edge going into vertex j and vice versa. The effect of
this transformation on a linear subdigraph depends on whether vertices i
and j belong to the same or to different cycles. In both cases the parity
of the number of cycles contained in the linear subdigraph is changed while
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the weight remains unchanged. Hence, all terms in the determinant defining
expression change their sign and so does the determinant.

Slide No. 3.8. Examples of evaluation of determinants
(related to pp. 69-71, p. 95 and p.248 of [1])

There are three examples: a diagonal matrix of order n, a tridiagonal
matrix of order 4 and a matrix of order n + 1.

4. Inverses
(related to Chapter 5 of the book [1])

Slide No. 4.1. Cofactors and 1-connections
(related to pp. 103-105 of [1])
The definition of a 1-connection D[i → j] from vertex i to vertex j in a

digraph D, p. 103, is reproduced. The slide illustrates how a 1-connection
is obtained from a linear subdigraph by deleting an edge. If we apply this
procedure to linear subdigraphs of the digraph D∗(A), we get expressions for
cofactors. Relations between the numbers of cycles and weights are given,
separately for i 6= j and i = j. Finally, as an illustration, all 1-connections
of a digraph are indicated.

Slide No. 4.2. Example of finding the inverse of a matrix
(related to p. 106 of [1])
Example 5.3.3. is reproduced.

5. Coates formula
(related to Section 6.3 of the book [1])

Slide No. 5.1. Deriving the Coates formula
(related to pp. 123-124 of [1])
The slide illustrates a detail in deriving the Coates formula (6.14) for solv-

ing a system of linear algebraic equations. It is shown how a 1-connection
D∗[j → i] is extended to a 1-connection D∗[0 → i] and corresponding rela-
tions concerning the number of cycles and weights are given.

Slide No. 5.2. Example of solving a system of equations
(related to pp. 122-126 of [1])
Examples 6.3.2 and 6.3.3 are illustrated. Linear subdigraphs and 1-

connections together with corresponding terms in the solution are colored
red.
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Slide No. 5.3. Example of solving a system of equations
(related to p. 138 and pp. 249-250 of [1])
The solution of the system of Exercise 8 on p.138 is given on pp. 249-250

and this slide reproduces both the system and the solution for x1. Linear
subdigraphs and 1-connections together with corresponding terms in the so-
lution are colored red.

6. Signal flow graphs
(related to Section 6.4 of the book [1])

Slide No. 6.1. Example of solving a system of equations
(related to pp. 128-131 of [1])

The slide displays the system of linear algebraic equations of Example
6.4.4 and the corresponding signal flow graph. Then the solutions for all
three unknowns are obtained using Mason’s formula. Relevant subdigraphs
together with corresponding terms in the solution are appropriately colored.

7. Cayley-Hamilton theorem
(related to Section 7.2 of the book [1])

Slide No. 7.1. Coefficients of the characteristic polynomial
(related to pp. 85-87 of [1])

The slide first reproduces Theorem 4.3.1, p. 86, which essentially gives
coefficients of the characteristic polynomial of a matrix. In the proof we have
to evaluate the determinant det(A + λI). Here linear subdigraphs of the
corresponding digraph are relevant and we consider a linear subdigraph with
exactly k loops. Its contribution to the value of the determinant is replaced
by 2k terms of the form λp times the sum of weights of linear subdigraphs of
the digraph corresponding to a principal submatrix of order n− p. It turns
out that the coefficient of λp is equal to the sum of principal minors of order
n− p of the matrix A.

Slide No. 7.2. A proof of the Cayley-Hamilton theorem
(related to pp. 148-149 of [1])

The slide first reproduces Definition 5.3.1, p. 103, of a quasi-1-connection.
It consists of a walk and a collection of disjoint cycles with a total number of n
edges. The crucial step in the proof is the conclusion that the entry in position
(i, j) of pA(A) equals the sum of quantities (−1)c(Q)w(Q) where Q runs over
all quasi-1-connections from i to j. Then the set of all quasi-1-connections
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is partitioned into pairs such that in each pair we have quasi-1-connections
with opposite quantities (−1)c(Q)w(Q).

In a quasi-1-connection its walk is either a path which touches one of the
cycles or has a self-crossing. On the slide the edges of the walk are colored
green and those in cycles are colored red. By switching between green and
red color, the slide suggests how quasi-1-connections are paired so that they
have opposite quantities (−1)c(Q)w(Q).

8. Jordan canonical form
(related to Section 7.3 of the book [1])

Slide No. 8.1. Digraphs of Jordan matrices
(related to p. 160 of [1])
Jordan blocks of order 1, 2 and 3 together with the corresponding digraphs

are given. diagonal and off-diagonal entries are distinguished by colorings.
The Jordan matrix of Example 7.3.10, p. 161, with the corresponding digraph
is also given. Red color is used to specify particular blocks. Algebraic and
geometric multiplicities of eigenvalues are given.

9. Non-negative matrices
(related to Chapter 8 of the book [1])

Slide No. 9.1. Reducibility and connectedness of digraphs
(related to p. 172 and pp. 79-80 of [1])

By Definition 8.1.1, p. 172, a square matrix A is irreducible if its digraph
D(A) is strongly connected. The slide illustrates the situation when the ma-
trix A is reducible. Then by simultaneous permutation of rows and columns
(the same permutation is applied in both cases) the matrix can be trans-
formed into the matrix B whose digraph D(B) is presented. The student
can see that there is no path connecting a vertex from D(Z) with a vertex
from D(X). In addition it is shown that det B = det X det Z, what is the
content, with another notation, of Theorem 4.2.13.

10. Control theory
(related to Section 10.1 of the book [1])

Slide No. 10.1. Solving an electrical circuit
(related to pp. 219-221 of [1])

Example 10.1.1. is reproduced.
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Slide No. 10.2. Finding transfer function of a system
(related to pp. 222-223 of [1])

The block diagram of the system of control theory of Figure 10.5, p.222, is
reproduced in the slide. Equations describing the flow of signals throughout
the system are gradually introduced following particular vertices of the block
diagram. The corresponding signal flow digraph has identical structure as
the block diagram. In practice, the equations need not to be written, and
even the signal flow digraph has not to be drawn, since the Mason formula
can be applied directly to the block diagram. In this example, due to its
simplicity, only paths from the input to the output vertex are relevant for
terms of the numerator and only the cycles are relevant for terms of the
denominator. Red color is again used to emphasize current subdigraphs and
corresponding terms.
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