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PROJECTIVE POLYGON RECUTTING

Maxim Arnold and Samarth Das

Abstract. In this paper, we propose a variant of Adler’s recutting for pro-
jective polygons. We discuss its properties and overview its connection with
the cross-ratio relation.

1. Introduction

In his celebrated papers [1,2], V. Adler presented a family of elementary poly-
gon transformations, called polygon recutting, representing the action of the affine
symmetric group on the space of polygons. Polygon recutting of the j-th vertex of
a polygon P = {P1, . . . , Pn} is defined as the polygon P1 . . . P̃j . . . Pn, where P̃j is
the reflection of Pj in the perpendicular bisector to the short diagonal Pj−1Pj+1.
The complete recutting of the polygon is obtained by the composition of elementary
recuttings in vertices from 1 to n. Recutting is completely integrable transforma-
tion (in the sense of Arnold-Liouville), on the set of polygons. In [7], elementary
recuttings were interpreted as cluster transformations thus providing the set of con-
served quantities, together with the invariant Poisson structure, preserved by any
composition of elementary recuttings.

It has been shown in [8] that Adler’s recutting is closely related to the bi-
cycle correspondence on polygons. For instance, both recutting and the bicycle
correspondence share a family of conserved quantities.

The centroaffine analog of the above correspondence and recutting was recently
studied in [5], where it was shown that the conserved quantities carry over to the
centroaffine setting.

Finally, in [4] it was proven that the cross-ratio correspondence on projective
polygons is integrable in the Arnold-Liouville sense. Two projective polygons are in
α-correspondence if all the cross-ratios formed by pairs of respective sides of these
polygons are equal to α. This correspondence can be thought of as a degeneration
of the bicycle correspondence in the centroaffine setting. However, no projectively
natural recutting transformation was presented as a naive degeneration results in
the identical mapping.
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In this paper, we present a projectively natural analog of Adler’s recutting. We
present two conserved quantities in the spirit of the cross-ratio correspondence and
deduce integrable behavior for the first two non-trivial cases.

2. Notations and definitions

We will start with the description of the analog of the perpendicular bisector.
Throughout this paper, we will identify the real projective line RP1 with the abso-
lute of the hyperbolic plane, which is in turn, identified with the unit circle on the
plane. We parametrize points on this circle as

(2.1) P =
(1− p2

1 + p2
,

2p

1 + p2

)
.

Throughout the text, we denote points on the plane by upper case letters,
while the corresponding lower case letters stand for the parameters in the above
parametrization. Whenever it won’t lead to the confusion, we won’t distinguish the
points on the absolute and their parameters. If not stated otherwise, the indices
are understood (mod n). By a projective polygon, we will understand an ordered
collection P = (p1, . . . , pn) of points in RP1 considered up to the action of the group
of projective transformations. For n ⩾ 4 the cross-ratios cj = [pj , pj+1, pj+2, pj+3]
of quadruples of consecutive vertices of a polygon provide a coordinate chart for a
Zariski open subset of the set of projective polygons with no coinciding consecu-
tive vertices or sides, supplying this set with the structure of (n − 3)-dimensional
manifold. Throughout the paper, for the cross-ratio we use the convention

[a, b, c, d] =
(b− a)(d− c)

(c− a)(d− b)
.

For geometric constructions we use Beltrami-Cayley-Klein model of the hyper-
bolic plane: geodesics correspond to straight lines; note, that the Euclidean angles

Figure 1. Left: Elementary Adler’s recutting. Right: Hyper-
bolic perpendicular. The pole to the line through ideal points A

and B is the center ÂB of the circular arc AB in Poincaré model
of the hyperbolic plane. Equivalently it is the common point of
tangents to the absolute at the end-points. Every line through
ÂB is hyperbolically orthogonal AB. Dashed lines are geodesics
in Beltrami–Klein model. Solid arcs stand for Poincaré gedosecis.
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between these lines do not coincide with the hyperbolic angles. To construct a
perpendicular to the line through the ideal points A and B one has to find a pole
to this line, i.e. the common point ÂB of tangents to the absolute through points
A and B. Every geodesic through the pole is hyperbolically perpendicular to the
side AB (see the right panel of Figure 1).

While projective polygons are thought of as ideal hyperbolic polygons, i.e.
hyperbolic polygons with all their vertices lying on the absolute, the side lengths
are undefined, and so one needs some aside considerations to pick a particular
perpendicular out of the pencil of lines passing through the pole ̂pj−1pj+1. For the
present note, we chose the perpendicular passing through the intersection of the
diagonals pj−1pj+2 and pj−2pj+1.

Elementary projective recutting. It is a well-known fact (see e.g. [3]) that

Lemma 2.1. Common perpendicular to the sides AB and CD of the ideal
quadrilateral ABCD passes through the intersection of diagonals AC and BD.

Any line through the pole ÂB is perpendicular to the side AB. Thus, the line
through ÂB and ĈD is the common perpendicular to the sides AB and CD (see
left panel of Figure 2). The fact that the common point of the lines AC and BD
belongs to this perpendicular is the limit case of the Brianchon theorem.

Definition 2.1. The elementary projective recutting of an n-gon P = (p1, . . . , pn)

in j-th vertex is the polygon Fj(P) = (p1, . . . , pj−1, p̃j , pj+1, . . . , pn),where p̃j is the
hyperbolic reflection of pj in the common perpendicular to the diagonals pj−1pj+1

and pj−2pj+2 (as in the right panel of Figure 2). The polygon

F (P) := Fn ◦ · · · ◦ F1(P)

is called the complete projective recutting 1 of the polygon P.

Notice that the above construction is purely projective, as P̃j is the hyperbolic
reflection of Pj in the line AB if and only if the pole to PjP̃j belongs to AB.
Equivalently, one can observe that all three lines Pj−1Pj+1, Pj−2Pj+2 and PjP̃j

are orthogonal to AB, hence have to pass through the pole of AB. This remark
leads to yet another construction of P̃j . Let Q be the common point of Pj−1Pj+1

and Pj−2Pj+2. That is, Q is the pole of AB (see Figure 2). Then P̃j is the second
intersection point of the line QPj with the absolute.

Lemma 2.2. Let p̃j be the flip of pj. Then

(2.2) p̃j =
pj+2pj−2(pj−1 + pj+1 − pj)− pj+1pj−1(pj+2 + pj−2 − pj)

pj+2pj−2 − pj+1pj−1 + pj(pj+1 − pj+2 + pj−1 − pj−2)
.

Proof. First we find the coordinates of the pole of the line through ideal
points a and b. We obtain

(2.3) âb =
(1− ab

1 + ab
,
a+ b

1 + ab

)
.

1Complete recutting depends on the order of the vertices, not only on the cyclic order.
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Figure 2. Left: Lemma 2.1. Right: Elementary projective re-
cuting. Line AB is the common perpendicular to the diagonals
Pj−1Pj+1 and Pj−2Pj+2. According to Lemma 2.1 it also passes
via the common point of diagonals Pj−1Pj+2 and Pj−2Pj+1. Point
P̃j is the hyperbolic reflection of the point Pj in the line AB. Lines
Pj−1Pj+1, Pj−2Pj+2 and PjP̃j are concurrent at the point Q – the
pole to the line AB.

The common perpendicular to the diagonals pj−1pj+1 and pj−2pj+2 is the line
ℓ(t) = t ̂pj−1pj+1 + (1− t) ̂pj−2pj+2.

For p̃j to be the hyperbolic reflection of pj in the line ℓ, the pole p̂j p̃j has to
belong to ℓ.

Collinearity of three points (x1, y1), (x2, y2) and (x3, y3) in the plane is equiva-
lent to coplanarity of the three lines spanned by the vectors (xk, yk, 1) in R3. Thus,
the collinearity condition of the three poles, thanks to (2.3), can be written as

det

1− pj+1pj−1 1− pj+2pj−2 1− pj p̃j
pj+1 + pj−1 pj+2 + pj−2 pj + p̃j
1 + pj+1pj−1 1 + pj+2pj−2 1 + pj p̃j

 = 0.

Solving the above equation for p̃j yields (2.2). □

Since elementary recutting at j-th vertex (2.2) is a reflection in the line depend-
ing only on the vertices with the indices j, j ± 1, and j ± 2 we have the following
statement.

Lemma 2.3. The following relations hold for the elementary recuttings:

F 2
j = Id, FjFk = FkFj for |j − k| ⩾ 3.

where indices are understood cyclically.

Coxeter incidence calculus. In what follows, we will adhere to the ideology
that many incidence theorems of classical geometry can be interpreted as algebraic
identities due to the following two configuration theorems by Coxeter (see [6]). We
will use the following notations: points O, E and N stand for the stereographic
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projections (2.1) of the points 0, 1 and ∞, and other points denote the same
projection of respective expressions in variables x and y.

Theorem 2.1 (addition). Let X and Y be the stereographic projections of the
points x, y ∈ R onto the circle (see left panel of Figure 3) Let A be the point of
intersection of the line OX with the line NA, tangent to the circle at point N . Then,
the line Y A intersects the circle in the stereographic projection of the point (x− y).

X Y

X − YO

N A

X

X

Y

YO

M

N

E

Figure 3. Left: Coxeter’s addition theorem. Right: Coxeter’s
multiplication theorem.

Theorem 2.2 (multiplication). Let X and Y be the stereographic projections
of the points x, y ∈ R onto the circle. (see right panel of Figure 3). Let M be the
point of intersection of the lines ON and EX. Then, the line MY intersects the
circle in the stereographic projection of the point x/y.

For the sake of completeness, we reproduce the proofs of the above-mentioned
theorems.

Proof of Theorem 2.1. Rotate Figure 3 by π/2 counterclockwise. The
parametrization (2.1) is then the usual parametrization of the unit circle X =
(cosα, sinα) provided that x = tan α

2 . From the triangle ONA, we have NA =
2 cot α

2 . Let two points of intersection of the line through A with the circle have
coordinates (cosβ, sinβ) and (cos γ, sin γ). Then, from the collinearity one gets(

2 cot
α

2
+ sinβ

)
(1 + cos γ) = (1 + cosβ)

(
2 cot

α

2
+ sin γ

)
,

or, after simplification,

2 cot
α

2
(cos γ − cosβ) = sin γ − sinβ + sin(γ − β).

Expressing the differences of sines and cosines yields

cot
α

2

(
sin

β + γ

2

)
= cos

γ

2
cos

β

2
,

or

cot
α

2

(
tan

β

2
+ tan

γ

2

)
= 1

and Theorem 2.1 follows. □
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Proof of Theorem 2.2. Similarly, for X = (cosα, sinα) and E = (0, 1) one
can find the coordinates of the point M = (m, 0). One gets

m =
cosα

1− sinα
.

Let β and γ be the angular coordinates for the points of intersection of the line
through M with the unit circle. Then, from the colinearity condition one has:

(m− cosβ) sin γ = (m− cos γ) sinβ.

After simplification, using the expressions for the sine of the difference of angles
and for the difference of sines, one has

m
(
1− tan

β

2
tan

γ

2

)
= 1 + tan

β

2
tan

γ

2
.

Introducing the expression for m yields(
2 cos2

α

2
− 1

)(
1− tan

β

2
tan

γ

2

)
=

(
1− 2 sin

α

2
cos

α

2

)(
1 + tan

β

2
tan

γ

2

)
,

or, after some simplification

tan
β

2
tan

γ

2

(
1− tan

α

2

)
= tan2

α

2
− tan

α

2
,

and Theorem 2.2 follows. □

Now, we can interpret the elementary projective recutting in a more conceptual
way. To fix the conventions, consider a Möbius transformation

M(p) =
(p− pj−1)(pj − pj+1)

(p− pj+1)(pj − pj−1)
,

mapping the vertices (pj−1, pj , pj+1) to the points (0, 1,∞) and denoteM(pj−2) = x
andM(pj+2) = y.

Every line through the common point Q of the lines M(pj−1)M(pj+1) and
M(pj−2)M(pj+2), thanks to Theorem 2.2, intersect the absolute in two points
whose parameters multiply to xy. Hence, ifM(pj) = 1, it follows thatM(p̃j) = xy.
Taking the inverseM−1(xy) we thus obtain another derivation of the formula (2.2).

3. Conserved quantities

From now on we will use the following modification of the coordinates from the
paper [4] for the moduli space of projective equivalence classes of ideal polygons2

cj = −[pj−3, pj−2, pj−1, pj ].

Lemma 3.1. Let p̃j be the flip of pj. Denote by cj and c̃j the corresponding
cross-ratios with pj replaced by p̃j. Then, for the elementary flip one has

(3.1)
c̃j =

cj(1 + cj+2)

1 + cj+1
, c̃j+1 = cj+2,

c̃j+2 = cj+1, c̃j+3 =
cj+3(1 + cj+1)

1 + cj+2
.

2Our coordinates have opposite sign to the coordinates from [4].
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Proof. Thanks to the discussion in section 2, it is sufficient to check the
above formulae for the case when (pj−1, pj , pj+1) equals to (0, 1,∞) and therefore
p̃j = pj−2pj+2. Then (3.1) follow from the straightforward computation of the
cross-ratios. □

In this section, we provide several conserved quantities for the complete projec-
tive recutting of the polygon. For instance, the cross-ratios of the quadruple from
the second to the fifth vertex of P and of F (P) coincide. Indeed, the flip F1 shifts
c2 to the third position, next flip F2 shifts the third coordinate of the projective
class to the fourth position, etc. Hence, after n elementary flips c2 will be moved
to its initial position.

On the other hand, one can apply elementary flips in different order, thus it is
natural to investigate other quantities, preserved by all the elementary flips.

Theorem 3.1. I =
∏n

j=1 cj is preserved by any elementary flip.

Proof. Indeed, only four cross-ratios are affected by an elementary flip Fj .
cj+1 and cj+2 are swapped, and the factors for c̃j and c̃j+3 are reciprocals of
each other. □

Theorem 3.2. The k-multi-index [i1, . . . , ik] is called sparse if 1 ⩽ i1 < · · · <
ik ⩽ n and |ij − ij+1| > 1 for all j = 1, . . . , k− 1. If, in addition (n+ i1 − ik) > 1,
the multi-index is called cyclically sparse. Let Ik =

∑
[i1,...,ik]

∏k
ℓ=1 ciℓ , where the

sum is taken over all cyclically sparse k-multi-indices. Then, G =
∑⌊n/2⌋

k=1 Ik is
preserved by any elementary flip.

Proof. Let c̃i be the cross-ratios of the polygon with the vertex p1 flipped.
Then c̃i = ci for all i > 4. Thus Gk := Ik − Ĩk contains only terms with
i1 ∈ {1, 2, 3, 4}. Note that since the multi-index is cyclically sparse, no more than
two first indices may belong to the set {1, 2, 3, 4}. Thus, for any k we can represent

Gk = G
(1)
k +G

(2)
k +G

(3)
k +G

(4)
k +G

(1,4)
k +G

(1,3)
k +G

(2,4)
k ,

where

G
(j)
k =

∑
j⊆[i1,...,ik]

( k∏
ℓ=1

ciℓ −
k∏

ℓ=1

c̃iℓ

)
,

with summation taken over cyclically sparse multiindices, containing the subset
j. Hence G

(l)
k = (cl − c̃l)Ik−1 for l = 1, 2, 3, 4. Since c1c4 = c̃1c̃4 it follows that

G
(1,4)
k = 0. For the remaining terms one has G(1,3)

k = (c1c3− c̃1c̃3)Ik−2 and G
(2,4)
k =

(c2c4 − c̃2c̃4)Ik−2. Therefore,

G
(4)
k−1 +G

(2,4)
k =

(
(c2 + 1)c4 − (c̃2 + 1)c̃4

)
Ik−2.

But from the expressions (3.1) it follows that (c2 +1)c4− (c̃2 +1)c̃4 = 0 and so the
above sum vanishes. Similarly we get G

(1)
k−1 +G

(1,3)
k = 0.

The sum G
(2)
k +G

(3)
k is identically zero since it is invariant with respect to the

involution c2 ↔ c3 and at the same time changes sign under its action. □
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4. Case studies

In this section, we will describe the dynamics of projective recutting for the
case of small-gons.

Pentagons. For closed pentagons coordinates cj satisfy the relation

1 + cj + cj+1 + cj+2 + cjcj+2 = 0.

Hence, for the elementary recutting in the first vertex, thanks to (3.1), one gets
c̃1 = c4 and c̃4 = c1. Thus, application of the elementary recuttings in five consec-
utive vertices results in the following sequence of transforms:

(c1, c2, c3, c4, c5) 7→ (c4, c3, c2, c1, c5) 7→ (c4, c5, c1, c2, c3)

7→ (c1, c5, c4, c3, c2) 7→ (c2, c3, c4, c5, c1) 7→ (c3, c2, c1, c5, c4).

In other words, the complete projective recutting of the pentagon corresponds
to the permutation of the coordinates and so is an involution on the projective
equivalence class.

Hexagons. For closed hexagons we have the relations

1 + cj + cj+1 + cj+2 + cj+3 + cjcj+2 + cj+1cj+3 + cjcj+3 = 0.

Therefore, the moduli space of projective equivalence classes of hexagons is three-
dimensional. The conserved quantities from Theorems 3.1 and 3.2 constrain the
dynamics to one-dimensional ovals. While the experiments show that the dynamics
on these ovals is topologically conjugated to irrational rotation, we won’t dwell on
this here as we haven’t investigated its smoothness.

Interestingly, the dynamics for n = 7 is also restricted to a one-dimensional
torus, while the dynamics for n = 8 seems to represent the quasi-periodic motion
on two-dimensional tori in 5-dimensional space (see Figure 4).

Figure 4. 5000 iterations of the complete projective recutting
of an octagon, projected onto the three-dimensional subspace,
spanned by (c1, c3, c5).
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5. Discussion

The aim of this paper is to initiate the study of seemingly natural projective
analog of Adler’s recutting. Below we collect a few open questions in this regard.

• Currently we have observed only two non-trivial conserved quantities for
the described dynamics. However, numerical experiments suggest integ-
rable behavior for any composition Fs1 · · ·Fsn of elementary flips, corre-
sponding to any given permutation (s1, . . . , sn) ∈ Σn.
• While we were able to construct only first integrals, the integrable be-

havior suggests the existence of a suitable Poisson structure. Expressions
(3.1) resemble the underlying Y -mutation on a bipartite graph, similar to
one in [7].

Recall the definition of the Y -pattern. By the quiver we will un-
derstand the directed simply-laced graph with the vertices labeled by the
cluster variables yj . The mutation at the j-th vertex is the transformation
of the graph according to the following rules:

– Update the labels: yk 7→


y−1
j , k = j

yk(1 + yj), yk ← yj

yk(1 + y−1
j )−1, yk → yj

yk, else

.

– Add the edge yi ← yk for each 2-chain yi ← yj ← yk.
– Delete all appearing 2-cycles.
– Reverse the orientation of all edges incident to yj .

Consider the graph in Figure 5 with the labels c
(−1)j

j , following the

black zig-zag path and a
(−1)j

j , following gray zig-zag path.

c−1
1

a2 c−1
3

a4

a−1
1

c2 a−1
3

c4

Figure 5. Bi-partite Y -quiver for the formulae (3.1)

Mutations of the given graph in the vertices a2 and a−1
3 , followed

by the mutations in c2 and in c−1
3 provide the expressions (3.1) in the

limit aj → 0. For the moment we do not have appropriate geometric
interpretation for this phenomena.
• Numerical experiments show similar behavior for deeper projective bisec-

tors, i.e., common perpendiculars to Pj−1Pj+1 and Pj−kPj+k. It would
be interesting to investigate the dynamics there as well.
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Figure 6. Complete recutting in the common perpendiculars to
(Pj−1, Pj+1) and (Pj−3Pj+3) of an octagon. Arctangents of the
first, third and fifth cross-ratios are plotted.
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ПРОJЕКТИВНО ПОНОВНО РАСЕЦАЊЕ ПОЛИГОНА

Резиме. У овом раду предлажемо вариjанту Адлеровог поновног расецања за
проjективне полигоне. Разматрамо своjства дате трансформациjе, као и њену
везу са дворазмером.
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